Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
 
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
  94#include <linux/io_uring.h>
 
  95
  96#include "avc.h"
  97#include "objsec.h"
  98#include "netif.h"
  99#include "netnode.h"
 100#include "netport.h"
 101#include "ibpkey.h"
 102#include "xfrm.h"
 103#include "netlabel.h"
 104#include "audit.h"
 105#include "avc_ss.h"
 106
 
 
 107struct selinux_state selinux_state;
 108
 109/* SECMARK reference count */
 110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 111
 112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 113static int selinux_enforcing_boot __initdata;
 114
 115static int __init enforcing_setup(char *str)
 116{
 117	unsigned long enforcing;
 118	if (!kstrtoul(str, 0, &enforcing))
 119		selinux_enforcing_boot = enforcing ? 1 : 0;
 120	return 1;
 121}
 122__setup("enforcing=", enforcing_setup);
 123#else
 124#define selinux_enforcing_boot 1
 125#endif
 126
 127int selinux_enabled_boot __initdata = 1;
 128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 129static int __init selinux_enabled_setup(char *str)
 130{
 131	unsigned long enabled;
 132	if (!kstrtoul(str, 0, &enabled))
 133		selinux_enabled_boot = enabled ? 1 : 0;
 134	return 1;
 135}
 136__setup("selinux=", selinux_enabled_setup);
 137#endif
 138
 139static unsigned int selinux_checkreqprot_boot =
 140	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 141
 142static int __init checkreqprot_setup(char *str)
 143{
 144	unsigned long checkreqprot;
 145
 146	if (!kstrtoul(str, 0, &checkreqprot)) {
 147		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 148		if (checkreqprot)
 149			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 214	struct task_security_struct *tsec;
 215
 216	tsec = selinux_cred(unrcu_pointer(current->real_cred));
 217	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 218}
 219
 220/*
 221 * get the security ID of a set of credentials
 222 */
 223static inline u32 cred_sid(const struct cred *cred)
 224{
 225	const struct task_security_struct *tsec;
 226
 227	tsec = selinux_cred(cred);
 228	return tsec->sid;
 229}
 230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231/*
 232 * get the objective security ID of a task
 233 */
 234static inline u32 task_sid_obj(const struct task_struct *task)
 235{
 236	u32 sid;
 237
 238	rcu_read_lock();
 239	sid = cred_sid(__task_cred(task));
 240	rcu_read_unlock();
 241	return sid;
 242}
 243
 244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 245
 246/*
 247 * Try reloading inode security labels that have been marked as invalid.  The
 248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 249 * allowed; when set to false, returns -ECHILD when the label is
 250 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 251 */
 252static int __inode_security_revalidate(struct inode *inode,
 253				       struct dentry *dentry,
 254				       bool may_sleep)
 255{
 256	struct inode_security_struct *isec = selinux_inode(inode);
 257
 258	might_sleep_if(may_sleep);
 259
 260	if (selinux_initialized(&selinux_state) &&
 261	    isec->initialized != LABEL_INITIALIZED) {
 262		if (!may_sleep)
 263			return -ECHILD;
 264
 265		/*
 266		 * Try reloading the inode security label.  This will fail if
 267		 * @opt_dentry is NULL and no dentry for this inode can be
 268		 * found; in that case, continue using the old label.
 269		 */
 270		inode_doinit_with_dentry(inode, dentry);
 271	}
 272	return 0;
 273}
 274
 275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 276{
 277	return selinux_inode(inode);
 278}
 279
 280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 281{
 282	int error;
 283
 284	error = __inode_security_revalidate(inode, NULL, !rcu);
 285	if (error)
 286		return ERR_PTR(error);
 287	return selinux_inode(inode);
 288}
 289
 290/*
 291 * Get the security label of an inode.
 292 */
 293static struct inode_security_struct *inode_security(struct inode *inode)
 294{
 295	__inode_security_revalidate(inode, NULL, true);
 296	return selinux_inode(inode);
 297}
 298
 299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 300{
 301	struct inode *inode = d_backing_inode(dentry);
 302
 303	return selinux_inode(inode);
 304}
 305
 306/*
 307 * Get the security label of a dentry's backing inode.
 308 */
 309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 310{
 311	struct inode *inode = d_backing_inode(dentry);
 312
 313	__inode_security_revalidate(inode, dentry, true);
 314	return selinux_inode(inode);
 315}
 316
 317static void inode_free_security(struct inode *inode)
 318{
 319	struct inode_security_struct *isec = selinux_inode(inode);
 320	struct superblock_security_struct *sbsec;
 321
 322	if (!isec)
 323		return;
 324	sbsec = selinux_superblock(inode->i_sb);
 325	/*
 326	 * As not all inode security structures are in a list, we check for
 327	 * empty list outside of the lock to make sure that we won't waste
 328	 * time taking a lock doing nothing.
 329	 *
 330	 * The list_del_init() function can be safely called more than once.
 331	 * It should not be possible for this function to be called with
 332	 * concurrent list_add(), but for better safety against future changes
 333	 * in the code, we use list_empty_careful() here.
 334	 */
 335	if (!list_empty_careful(&isec->list)) {
 336		spin_lock(&sbsec->isec_lock);
 337		list_del_init(&isec->list);
 338		spin_unlock(&sbsec->isec_lock);
 339	}
 340}
 341
 342struct selinux_mnt_opts {
 343	u32 fscontext_sid;
 344	u32 context_sid;
 345	u32 rootcontext_sid;
 346	u32 defcontext_sid;
 347};
 348
 349static void selinux_free_mnt_opts(void *mnt_opts)
 350{
 351	kfree(mnt_opts);
 352}
 353
 354enum {
 355	Opt_error = -1,
 356	Opt_context = 0,
 357	Opt_defcontext = 1,
 358	Opt_fscontext = 2,
 359	Opt_rootcontext = 3,
 360	Opt_seclabel = 4,
 361};
 362
 363#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 364static struct {
 365	const char *name;
 366	int len;
 367	int opt;
 368	bool has_arg;
 369} tokens[] = {
 370	A(context, true),
 371	A(fscontext, true),
 372	A(defcontext, true),
 373	A(rootcontext, true),
 374	A(seclabel, false),
 375};
 376#undef A
 377
 378static int match_opt_prefix(char *s, int l, char **arg)
 379{
 380	int i;
 381
 382	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 383		size_t len = tokens[i].len;
 384		if (len > l || memcmp(s, tokens[i].name, len))
 385			continue;
 386		if (tokens[i].has_arg) {
 387			if (len == l || s[len] != '=')
 388				continue;
 389			*arg = s + len + 1;
 390		} else if (len != l)
 391			continue;
 392		return tokens[i].opt;
 393	}
 394	return Opt_error;
 395}
 396
 397#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 398
 399static int may_context_mount_sb_relabel(u32 sid,
 400			struct superblock_security_struct *sbsec,
 401			const struct cred *cred)
 402{
 403	const struct task_security_struct *tsec = selinux_cred(cred);
 404	int rc;
 405
 406	rc = avc_has_perm(&selinux_state,
 407			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 408			  FILESYSTEM__RELABELFROM, NULL);
 409	if (rc)
 410		return rc;
 411
 412	rc = avc_has_perm(&selinux_state,
 413			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 414			  FILESYSTEM__RELABELTO, NULL);
 415	return rc;
 416}
 417
 418static int may_context_mount_inode_relabel(u32 sid,
 419			struct superblock_security_struct *sbsec,
 420			const struct cred *cred)
 421{
 422	const struct task_security_struct *tsec = selinux_cred(cred);
 423	int rc;
 424	rc = avc_has_perm(&selinux_state,
 425			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 426			  FILESYSTEM__RELABELFROM, NULL);
 427	if (rc)
 428		return rc;
 429
 430	rc = avc_has_perm(&selinux_state,
 431			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 432			  FILESYSTEM__ASSOCIATE, NULL);
 433	return rc;
 434}
 435
 436static int selinux_is_genfs_special_handling(struct super_block *sb)
 437{
 438	/* Special handling. Genfs but also in-core setxattr handler */
 439	return	!strcmp(sb->s_type->name, "sysfs") ||
 440		!strcmp(sb->s_type->name, "pstore") ||
 441		!strcmp(sb->s_type->name, "debugfs") ||
 442		!strcmp(sb->s_type->name, "tracefs") ||
 443		!strcmp(sb->s_type->name, "rootfs") ||
 444		(selinux_policycap_cgroupseclabel() &&
 445		 (!strcmp(sb->s_type->name, "cgroup") ||
 446		  !strcmp(sb->s_type->name, "cgroup2")));
 447}
 448
 449static int selinux_is_sblabel_mnt(struct super_block *sb)
 450{
 451	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 452
 453	/*
 454	 * IMPORTANT: Double-check logic in this function when adding a new
 455	 * SECURITY_FS_USE_* definition!
 456	 */
 457	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 458
 459	switch (sbsec->behavior) {
 460	case SECURITY_FS_USE_XATTR:
 461	case SECURITY_FS_USE_TRANS:
 462	case SECURITY_FS_USE_TASK:
 463	case SECURITY_FS_USE_NATIVE:
 464		return 1;
 465
 466	case SECURITY_FS_USE_GENFS:
 467		return selinux_is_genfs_special_handling(sb);
 468
 469	/* Never allow relabeling on context mounts */
 470	case SECURITY_FS_USE_MNTPOINT:
 471	case SECURITY_FS_USE_NONE:
 472	default:
 473		return 0;
 474	}
 475}
 476
 477static int sb_check_xattr_support(struct super_block *sb)
 478{
 479	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 480	struct dentry *root = sb->s_root;
 481	struct inode *root_inode = d_backing_inode(root);
 482	u32 sid;
 483	int rc;
 484
 485	/*
 486	 * Make sure that the xattr handler exists and that no
 487	 * error other than -ENODATA is returned by getxattr on
 488	 * the root directory.  -ENODATA is ok, as this may be
 489	 * the first boot of the SELinux kernel before we have
 490	 * assigned xattr values to the filesystem.
 491	 */
 492	if (!(root_inode->i_opflags & IOP_XATTR)) {
 493		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 494			sb->s_id, sb->s_type->name);
 495		goto fallback;
 496	}
 497
 498	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 499	if (rc < 0 && rc != -ENODATA) {
 500		if (rc == -EOPNOTSUPP) {
 501			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 502				sb->s_id, sb->s_type->name);
 503			goto fallback;
 504		} else {
 505			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 506				sb->s_id, sb->s_type->name, -rc);
 507			return rc;
 508		}
 509	}
 510	return 0;
 511
 512fallback:
 513	/* No xattr support - try to fallback to genfs if possible. */
 514	rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
 515				SECCLASS_DIR, &sid);
 516	if (rc)
 517		return -EOPNOTSUPP;
 518
 519	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 520		sb->s_id, sb->s_type->name);
 521	sbsec->behavior = SECURITY_FS_USE_GENFS;
 522	sbsec->sid = sid;
 523	return 0;
 524}
 525
 526static int sb_finish_set_opts(struct super_block *sb)
 527{
 528	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 529	struct dentry *root = sb->s_root;
 530	struct inode *root_inode = d_backing_inode(root);
 531	int rc = 0;
 532
 533	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 534		rc = sb_check_xattr_support(sb);
 535		if (rc)
 536			return rc;
 537	}
 538
 539	sbsec->flags |= SE_SBINITIALIZED;
 540
 541	/*
 542	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 543	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 544	 * us a superblock that needs the flag to be cleared.
 545	 */
 546	if (selinux_is_sblabel_mnt(sb))
 547		sbsec->flags |= SBLABEL_MNT;
 548	else
 549		sbsec->flags &= ~SBLABEL_MNT;
 550
 551	/* Initialize the root inode. */
 552	rc = inode_doinit_with_dentry(root_inode, root);
 553
 554	/* Initialize any other inodes associated with the superblock, e.g.
 555	   inodes created prior to initial policy load or inodes created
 556	   during get_sb by a pseudo filesystem that directly
 557	   populates itself. */
 558	spin_lock(&sbsec->isec_lock);
 559	while (!list_empty(&sbsec->isec_head)) {
 560		struct inode_security_struct *isec =
 561				list_first_entry(&sbsec->isec_head,
 562					   struct inode_security_struct, list);
 563		struct inode *inode = isec->inode;
 564		list_del_init(&isec->list);
 565		spin_unlock(&sbsec->isec_lock);
 566		inode = igrab(inode);
 567		if (inode) {
 568			if (!IS_PRIVATE(inode))
 569				inode_doinit_with_dentry(inode, NULL);
 570			iput(inode);
 571		}
 572		spin_lock(&sbsec->isec_lock);
 573	}
 574	spin_unlock(&sbsec->isec_lock);
 575	return rc;
 576}
 577
 578static int bad_option(struct superblock_security_struct *sbsec, char flag,
 579		      u32 old_sid, u32 new_sid)
 580{
 581	char mnt_flags = sbsec->flags & SE_MNTMASK;
 582
 583	/* check if the old mount command had the same options */
 584	if (sbsec->flags & SE_SBINITIALIZED)
 585		if (!(sbsec->flags & flag) ||
 586		    (old_sid != new_sid))
 587			return 1;
 588
 589	/* check if we were passed the same options twice,
 590	 * aka someone passed context=a,context=b
 591	 */
 592	if (!(sbsec->flags & SE_SBINITIALIZED))
 593		if (mnt_flags & flag)
 594			return 1;
 595	return 0;
 596}
 597
 598/*
 599 * Allow filesystems with binary mount data to explicitly set mount point
 600 * labeling information.
 601 */
 602static int selinux_set_mnt_opts(struct super_block *sb,
 603				void *mnt_opts,
 604				unsigned long kern_flags,
 605				unsigned long *set_kern_flags)
 606{
 607	const struct cred *cred = current_cred();
 608	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 609	struct dentry *root = sb->s_root;
 610	struct selinux_mnt_opts *opts = mnt_opts;
 611	struct inode_security_struct *root_isec;
 612	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 613	u32 defcontext_sid = 0;
 614	int rc = 0;
 615
 
 
 
 
 
 
 
 616	mutex_lock(&sbsec->lock);
 617
 618	if (!selinux_initialized(&selinux_state)) {
 619		if (!opts) {
 620			/* Defer initialization until selinux_complete_init,
 621			   after the initial policy is loaded and the security
 622			   server is ready to handle calls. */
 
 
 
 
 623			goto out;
 624		}
 625		rc = -EINVAL;
 626		pr_warn("SELinux: Unable to set superblock options "
 627			"before the security server is initialized\n");
 628		goto out;
 629	}
 630	if (kern_flags && !set_kern_flags) {
 631		/* Specifying internal flags without providing a place to
 632		 * place the results is not allowed */
 633		rc = -EINVAL;
 634		goto out;
 635	}
 636
 637	/*
 638	 * Binary mount data FS will come through this function twice.  Once
 639	 * from an explicit call and once from the generic calls from the vfs.
 640	 * Since the generic VFS calls will not contain any security mount data
 641	 * we need to skip the double mount verification.
 642	 *
 643	 * This does open a hole in which we will not notice if the first
 644	 * mount using this sb set explicit options and a second mount using
 645	 * this sb does not set any security options.  (The first options
 646	 * will be used for both mounts)
 647	 */
 648	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 649	    && !opts)
 650		goto out;
 651
 652	root_isec = backing_inode_security_novalidate(root);
 653
 654	/*
 655	 * parse the mount options, check if they are valid sids.
 656	 * also check if someone is trying to mount the same sb more
 657	 * than once with different security options.
 658	 */
 659	if (opts) {
 660		if (opts->fscontext_sid) {
 661			fscontext_sid = opts->fscontext_sid;
 662			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 663					fscontext_sid))
 664				goto out_double_mount;
 665			sbsec->flags |= FSCONTEXT_MNT;
 666		}
 667		if (opts->context_sid) {
 668			context_sid = opts->context_sid;
 669			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 670					context_sid))
 671				goto out_double_mount;
 672			sbsec->flags |= CONTEXT_MNT;
 673		}
 674		if (opts->rootcontext_sid) {
 675			rootcontext_sid = opts->rootcontext_sid;
 676			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 677					rootcontext_sid))
 678				goto out_double_mount;
 679			sbsec->flags |= ROOTCONTEXT_MNT;
 680		}
 681		if (opts->defcontext_sid) {
 682			defcontext_sid = opts->defcontext_sid;
 683			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 684					defcontext_sid))
 685				goto out_double_mount;
 686			sbsec->flags |= DEFCONTEXT_MNT;
 687		}
 688	}
 689
 690	if (sbsec->flags & SE_SBINITIALIZED) {
 691		/* previously mounted with options, but not on this attempt? */
 692		if ((sbsec->flags & SE_MNTMASK) && !opts)
 693			goto out_double_mount;
 694		rc = 0;
 695		goto out;
 696	}
 697
 698	if (strcmp(sb->s_type->name, "proc") == 0)
 699		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 700
 701	if (!strcmp(sb->s_type->name, "debugfs") ||
 702	    !strcmp(sb->s_type->name, "tracefs") ||
 703	    !strcmp(sb->s_type->name, "binder") ||
 704	    !strcmp(sb->s_type->name, "bpf") ||
 705	    !strcmp(sb->s_type->name, "pstore") ||
 706	    !strcmp(sb->s_type->name, "securityfs"))
 707		sbsec->flags |= SE_SBGENFS;
 708
 709	if (!strcmp(sb->s_type->name, "sysfs") ||
 710	    !strcmp(sb->s_type->name, "cgroup") ||
 711	    !strcmp(sb->s_type->name, "cgroup2"))
 712		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 713
 714	if (!sbsec->behavior) {
 715		/*
 716		 * Determine the labeling behavior to use for this
 717		 * filesystem type.
 718		 */
 719		rc = security_fs_use(&selinux_state, sb);
 720		if (rc) {
 721			pr_warn("%s: security_fs_use(%s) returned %d\n",
 722					__func__, sb->s_type->name, rc);
 723			goto out;
 724		}
 725	}
 726
 727	/*
 728	 * If this is a user namespace mount and the filesystem type is not
 729	 * explicitly whitelisted, then no contexts are allowed on the command
 730	 * line and security labels must be ignored.
 731	 */
 732	if (sb->s_user_ns != &init_user_ns &&
 733	    strcmp(sb->s_type->name, "tmpfs") &&
 734	    strcmp(sb->s_type->name, "ramfs") &&
 735	    strcmp(sb->s_type->name, "devpts") &&
 736	    strcmp(sb->s_type->name, "overlay")) {
 737		if (context_sid || fscontext_sid || rootcontext_sid ||
 738		    defcontext_sid) {
 739			rc = -EACCES;
 740			goto out;
 741		}
 742		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 743			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 744			rc = security_transition_sid(&selinux_state,
 745						     current_sid(),
 746						     current_sid(),
 747						     SECCLASS_FILE, NULL,
 748						     &sbsec->mntpoint_sid);
 749			if (rc)
 750				goto out;
 751		}
 752		goto out_set_opts;
 753	}
 754
 755	/* sets the context of the superblock for the fs being mounted. */
 756	if (fscontext_sid) {
 757		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 758		if (rc)
 759			goto out;
 760
 761		sbsec->sid = fscontext_sid;
 762	}
 763
 764	/*
 765	 * Switch to using mount point labeling behavior.
 766	 * sets the label used on all file below the mountpoint, and will set
 767	 * the superblock context if not already set.
 768	 */
 769	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 
 
 
 
 
 
 
 
 
 
 770		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 771		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 772	}
 773
 774	if (context_sid) {
 775		if (!fscontext_sid) {
 776			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 777							  cred);
 778			if (rc)
 779				goto out;
 780			sbsec->sid = context_sid;
 781		} else {
 782			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 783							     cred);
 784			if (rc)
 785				goto out;
 786		}
 787		if (!rootcontext_sid)
 788			rootcontext_sid = context_sid;
 789
 790		sbsec->mntpoint_sid = context_sid;
 791		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 792	}
 793
 794	if (rootcontext_sid) {
 795		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 796						     cred);
 797		if (rc)
 798			goto out;
 799
 800		root_isec->sid = rootcontext_sid;
 801		root_isec->initialized = LABEL_INITIALIZED;
 802	}
 803
 804	if (defcontext_sid) {
 805		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 806			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 807			rc = -EINVAL;
 808			pr_warn("SELinux: defcontext option is "
 809			       "invalid for this filesystem type\n");
 810			goto out;
 811		}
 812
 813		if (defcontext_sid != sbsec->def_sid) {
 814			rc = may_context_mount_inode_relabel(defcontext_sid,
 815							     sbsec, cred);
 816			if (rc)
 817				goto out;
 818		}
 819
 820		sbsec->def_sid = defcontext_sid;
 821	}
 822
 823out_set_opts:
 824	rc = sb_finish_set_opts(sb);
 825out:
 826	mutex_unlock(&sbsec->lock);
 827	return rc;
 828out_double_mount:
 829	rc = -EINVAL;
 830	pr_warn("SELinux: mount invalid.  Same superblock, different "
 831	       "security settings for (dev %s, type %s)\n", sb->s_id,
 832	       sb->s_type->name);
 833	goto out;
 834}
 835
 836static int selinux_cmp_sb_context(const struct super_block *oldsb,
 837				    const struct super_block *newsb)
 838{
 839	struct superblock_security_struct *old = selinux_superblock(oldsb);
 840	struct superblock_security_struct *new = selinux_superblock(newsb);
 841	char oldflags = old->flags & SE_MNTMASK;
 842	char newflags = new->flags & SE_MNTMASK;
 843
 844	if (oldflags != newflags)
 845		goto mismatch;
 846	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 847		goto mismatch;
 848	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 849		goto mismatch;
 850	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 851		goto mismatch;
 852	if (oldflags & ROOTCONTEXT_MNT) {
 853		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 854		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 855		if (oldroot->sid != newroot->sid)
 856			goto mismatch;
 857	}
 858	return 0;
 859mismatch:
 860	pr_warn("SELinux: mount invalid.  Same superblock, "
 861			    "different security settings for (dev %s, "
 862			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 863	return -EBUSY;
 864}
 865
 866static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 867					struct super_block *newsb,
 868					unsigned long kern_flags,
 869					unsigned long *set_kern_flags)
 870{
 871	int rc = 0;
 872	const struct superblock_security_struct *oldsbsec =
 873						selinux_superblock(oldsb);
 874	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 875
 876	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 877	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 878	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 879
 880	/*
 881	 * if the parent was able to be mounted it clearly had no special lsm
 882	 * mount options.  thus we can safely deal with this superblock later
 883	 */
 884	if (!selinux_initialized(&selinux_state))
 885		return 0;
 886
 887	/*
 888	 * Specifying internal flags without providing a place to
 889	 * place the results is not allowed.
 890	 */
 891	if (kern_flags && !set_kern_flags)
 892		return -EINVAL;
 893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894	/* how can we clone if the old one wasn't set up?? */
 895	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 896
 897	/* if fs is reusing a sb, make sure that the contexts match */
 898	if (newsbsec->flags & SE_SBINITIALIZED) {
 
 899		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 900			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 901		return selinux_cmp_sb_context(oldsb, newsb);
 902	}
 903
 904	mutex_lock(&newsbsec->lock);
 905
 906	newsbsec->flags = oldsbsec->flags;
 907
 908	newsbsec->sid = oldsbsec->sid;
 909	newsbsec->def_sid = oldsbsec->def_sid;
 910	newsbsec->behavior = oldsbsec->behavior;
 911
 912	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 913		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 914		rc = security_fs_use(&selinux_state, newsb);
 915		if (rc)
 916			goto out;
 917	}
 918
 919	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 920		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 921		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 922	}
 923
 924	if (set_context) {
 925		u32 sid = oldsbsec->mntpoint_sid;
 926
 927		if (!set_fscontext)
 928			newsbsec->sid = sid;
 929		if (!set_rootcontext) {
 930			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 931			newisec->sid = sid;
 932		}
 933		newsbsec->mntpoint_sid = sid;
 934	}
 935	if (set_rootcontext) {
 936		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 937		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 938
 939		newisec->sid = oldisec->sid;
 940	}
 941
 942	sb_finish_set_opts(newsb);
 943out:
 944	mutex_unlock(&newsbsec->lock);
 945	return rc;
 946}
 947
 948/*
 949 * NOTE: the caller is resposible for freeing the memory even if on error.
 950 */
 951static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 952{
 953	struct selinux_mnt_opts *opts = *mnt_opts;
 954	u32 *dst_sid;
 955	int rc;
 956
 957	if (token == Opt_seclabel)
 958		/* eaten and completely ignored */
 959		return 0;
 960	if (!s)
 961		return -EINVAL;
 962
 963	if (!selinux_initialized(&selinux_state)) {
 964		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
 965		return -EINVAL;
 966	}
 967
 968	if (!opts) {
 969		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
 970		if (!opts)
 971			return -ENOMEM;
 972		*mnt_opts = opts;
 973	}
 974
 975	switch (token) {
 976	case Opt_context:
 977		if (opts->context_sid || opts->defcontext_sid)
 978			goto err;
 979		dst_sid = &opts->context_sid;
 980		break;
 981	case Opt_fscontext:
 982		if (opts->fscontext_sid)
 983			goto err;
 984		dst_sid = &opts->fscontext_sid;
 985		break;
 986	case Opt_rootcontext:
 987		if (opts->rootcontext_sid)
 988			goto err;
 989		dst_sid = &opts->rootcontext_sid;
 990		break;
 991	case Opt_defcontext:
 992		if (opts->context_sid || opts->defcontext_sid)
 993			goto err;
 994		dst_sid = &opts->defcontext_sid;
 995		break;
 996	default:
 997		WARN_ON(1);
 998		return -EINVAL;
 999	}
1000	rc = security_context_str_to_sid(&selinux_state, s, dst_sid, GFP_KERNEL);
1001	if (rc)
1002		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1003			s, rc);
1004	return rc;
1005
1006err:
1007	pr_warn(SEL_MOUNT_FAIL_MSG);
1008	return -EINVAL;
1009}
1010
1011static int show_sid(struct seq_file *m, u32 sid)
1012{
1013	char *context = NULL;
1014	u32 len;
1015	int rc;
1016
1017	rc = security_sid_to_context(&selinux_state, sid,
1018					     &context, &len);
1019	if (!rc) {
1020		bool has_comma = strchr(context, ',');
1021
1022		seq_putc(m, '=');
1023		if (has_comma)
1024			seq_putc(m, '\"');
1025		seq_escape(m, context, "\"\n\\");
1026		if (has_comma)
1027			seq_putc(m, '\"');
1028	}
1029	kfree(context);
1030	return rc;
1031}
1032
1033static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1034{
1035	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1036	int rc;
1037
1038	if (!(sbsec->flags & SE_SBINITIALIZED))
1039		return 0;
1040
1041	if (!selinux_initialized(&selinux_state))
1042		return 0;
1043
1044	if (sbsec->flags & FSCONTEXT_MNT) {
1045		seq_putc(m, ',');
1046		seq_puts(m, FSCONTEXT_STR);
1047		rc = show_sid(m, sbsec->sid);
1048		if (rc)
1049			return rc;
1050	}
1051	if (sbsec->flags & CONTEXT_MNT) {
1052		seq_putc(m, ',');
1053		seq_puts(m, CONTEXT_STR);
1054		rc = show_sid(m, sbsec->mntpoint_sid);
1055		if (rc)
1056			return rc;
1057	}
1058	if (sbsec->flags & DEFCONTEXT_MNT) {
1059		seq_putc(m, ',');
1060		seq_puts(m, DEFCONTEXT_STR);
1061		rc = show_sid(m, sbsec->def_sid);
1062		if (rc)
1063			return rc;
1064	}
1065	if (sbsec->flags & ROOTCONTEXT_MNT) {
1066		struct dentry *root = sb->s_root;
1067		struct inode_security_struct *isec = backing_inode_security(root);
1068		seq_putc(m, ',');
1069		seq_puts(m, ROOTCONTEXT_STR);
1070		rc = show_sid(m, isec->sid);
1071		if (rc)
1072			return rc;
1073	}
1074	if (sbsec->flags & SBLABEL_MNT) {
1075		seq_putc(m, ',');
1076		seq_puts(m, SECLABEL_STR);
1077	}
1078	return 0;
1079}
1080
1081static inline u16 inode_mode_to_security_class(umode_t mode)
1082{
1083	switch (mode & S_IFMT) {
1084	case S_IFSOCK:
1085		return SECCLASS_SOCK_FILE;
1086	case S_IFLNK:
1087		return SECCLASS_LNK_FILE;
1088	case S_IFREG:
1089		return SECCLASS_FILE;
1090	case S_IFBLK:
1091		return SECCLASS_BLK_FILE;
1092	case S_IFDIR:
1093		return SECCLASS_DIR;
1094	case S_IFCHR:
1095		return SECCLASS_CHR_FILE;
1096	case S_IFIFO:
1097		return SECCLASS_FIFO_FILE;
1098
1099	}
1100
1101	return SECCLASS_FILE;
1102}
1103
1104static inline int default_protocol_stream(int protocol)
1105{
1106	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1107		protocol == IPPROTO_MPTCP);
1108}
1109
1110static inline int default_protocol_dgram(int protocol)
1111{
1112	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1113}
1114
1115static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1116{
1117	int extsockclass = selinux_policycap_extsockclass();
1118
1119	switch (family) {
1120	case PF_UNIX:
1121		switch (type) {
1122		case SOCK_STREAM:
1123		case SOCK_SEQPACKET:
1124			return SECCLASS_UNIX_STREAM_SOCKET;
1125		case SOCK_DGRAM:
1126		case SOCK_RAW:
1127			return SECCLASS_UNIX_DGRAM_SOCKET;
1128		}
1129		break;
1130	case PF_INET:
1131	case PF_INET6:
1132		switch (type) {
1133		case SOCK_STREAM:
1134		case SOCK_SEQPACKET:
1135			if (default_protocol_stream(protocol))
1136				return SECCLASS_TCP_SOCKET;
1137			else if (extsockclass && protocol == IPPROTO_SCTP)
1138				return SECCLASS_SCTP_SOCKET;
1139			else
1140				return SECCLASS_RAWIP_SOCKET;
1141		case SOCK_DGRAM:
1142			if (default_protocol_dgram(protocol))
1143				return SECCLASS_UDP_SOCKET;
1144			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1145						  protocol == IPPROTO_ICMPV6))
1146				return SECCLASS_ICMP_SOCKET;
1147			else
1148				return SECCLASS_RAWIP_SOCKET;
1149		case SOCK_DCCP:
1150			return SECCLASS_DCCP_SOCKET;
1151		default:
1152			return SECCLASS_RAWIP_SOCKET;
1153		}
1154		break;
1155	case PF_NETLINK:
1156		switch (protocol) {
1157		case NETLINK_ROUTE:
1158			return SECCLASS_NETLINK_ROUTE_SOCKET;
1159		case NETLINK_SOCK_DIAG:
1160			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1161		case NETLINK_NFLOG:
1162			return SECCLASS_NETLINK_NFLOG_SOCKET;
1163		case NETLINK_XFRM:
1164			return SECCLASS_NETLINK_XFRM_SOCKET;
1165		case NETLINK_SELINUX:
1166			return SECCLASS_NETLINK_SELINUX_SOCKET;
1167		case NETLINK_ISCSI:
1168			return SECCLASS_NETLINK_ISCSI_SOCKET;
1169		case NETLINK_AUDIT:
1170			return SECCLASS_NETLINK_AUDIT_SOCKET;
1171		case NETLINK_FIB_LOOKUP:
1172			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1173		case NETLINK_CONNECTOR:
1174			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1175		case NETLINK_NETFILTER:
1176			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1177		case NETLINK_DNRTMSG:
1178			return SECCLASS_NETLINK_DNRT_SOCKET;
1179		case NETLINK_KOBJECT_UEVENT:
1180			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1181		case NETLINK_GENERIC:
1182			return SECCLASS_NETLINK_GENERIC_SOCKET;
1183		case NETLINK_SCSITRANSPORT:
1184			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1185		case NETLINK_RDMA:
1186			return SECCLASS_NETLINK_RDMA_SOCKET;
1187		case NETLINK_CRYPTO:
1188			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1189		default:
1190			return SECCLASS_NETLINK_SOCKET;
1191		}
1192	case PF_PACKET:
1193		return SECCLASS_PACKET_SOCKET;
1194	case PF_KEY:
1195		return SECCLASS_KEY_SOCKET;
1196	case PF_APPLETALK:
1197		return SECCLASS_APPLETALK_SOCKET;
1198	}
1199
1200	if (extsockclass) {
1201		switch (family) {
1202		case PF_AX25:
1203			return SECCLASS_AX25_SOCKET;
1204		case PF_IPX:
1205			return SECCLASS_IPX_SOCKET;
1206		case PF_NETROM:
1207			return SECCLASS_NETROM_SOCKET;
1208		case PF_ATMPVC:
1209			return SECCLASS_ATMPVC_SOCKET;
1210		case PF_X25:
1211			return SECCLASS_X25_SOCKET;
1212		case PF_ROSE:
1213			return SECCLASS_ROSE_SOCKET;
1214		case PF_DECnet:
1215			return SECCLASS_DECNET_SOCKET;
1216		case PF_ATMSVC:
1217			return SECCLASS_ATMSVC_SOCKET;
1218		case PF_RDS:
1219			return SECCLASS_RDS_SOCKET;
1220		case PF_IRDA:
1221			return SECCLASS_IRDA_SOCKET;
1222		case PF_PPPOX:
1223			return SECCLASS_PPPOX_SOCKET;
1224		case PF_LLC:
1225			return SECCLASS_LLC_SOCKET;
1226		case PF_CAN:
1227			return SECCLASS_CAN_SOCKET;
1228		case PF_TIPC:
1229			return SECCLASS_TIPC_SOCKET;
1230		case PF_BLUETOOTH:
1231			return SECCLASS_BLUETOOTH_SOCKET;
1232		case PF_IUCV:
1233			return SECCLASS_IUCV_SOCKET;
1234		case PF_RXRPC:
1235			return SECCLASS_RXRPC_SOCKET;
1236		case PF_ISDN:
1237			return SECCLASS_ISDN_SOCKET;
1238		case PF_PHONET:
1239			return SECCLASS_PHONET_SOCKET;
1240		case PF_IEEE802154:
1241			return SECCLASS_IEEE802154_SOCKET;
1242		case PF_CAIF:
1243			return SECCLASS_CAIF_SOCKET;
1244		case PF_ALG:
1245			return SECCLASS_ALG_SOCKET;
1246		case PF_NFC:
1247			return SECCLASS_NFC_SOCKET;
1248		case PF_VSOCK:
1249			return SECCLASS_VSOCK_SOCKET;
1250		case PF_KCM:
1251			return SECCLASS_KCM_SOCKET;
1252		case PF_QIPCRTR:
1253			return SECCLASS_QIPCRTR_SOCKET;
1254		case PF_SMC:
1255			return SECCLASS_SMC_SOCKET;
1256		case PF_XDP:
1257			return SECCLASS_XDP_SOCKET;
1258		case PF_MCTP:
1259			return SECCLASS_MCTP_SOCKET;
1260#if PF_MAX > 46
1261#error New address family defined, please update this function.
1262#endif
1263		}
1264	}
1265
1266	return SECCLASS_SOCKET;
1267}
1268
1269static int selinux_genfs_get_sid(struct dentry *dentry,
1270				 u16 tclass,
1271				 u16 flags,
1272				 u32 *sid)
1273{
1274	int rc;
1275	struct super_block *sb = dentry->d_sb;
1276	char *buffer, *path;
1277
1278	buffer = (char *)__get_free_page(GFP_KERNEL);
1279	if (!buffer)
1280		return -ENOMEM;
1281
1282	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1283	if (IS_ERR(path))
1284		rc = PTR_ERR(path);
1285	else {
1286		if (flags & SE_SBPROC) {
1287			/* each process gets a /proc/PID/ entry. Strip off the
1288			 * PID part to get a valid selinux labeling.
1289			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1290			while (path[1] >= '0' && path[1] <= '9') {
1291				path[1] = '/';
1292				path++;
1293			}
1294		}
1295		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1296					path, tclass, sid);
1297		if (rc == -ENOENT) {
1298			/* No match in policy, mark as unlabeled. */
1299			*sid = SECINITSID_UNLABELED;
1300			rc = 0;
1301		}
1302	}
1303	free_page((unsigned long)buffer);
1304	return rc;
1305}
1306
1307static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1308				  u32 def_sid, u32 *sid)
1309{
1310#define INITCONTEXTLEN 255
1311	char *context;
1312	unsigned int len;
1313	int rc;
1314
1315	len = INITCONTEXTLEN;
1316	context = kmalloc(len + 1, GFP_NOFS);
1317	if (!context)
1318		return -ENOMEM;
1319
1320	context[len] = '\0';
1321	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1322	if (rc == -ERANGE) {
1323		kfree(context);
1324
1325		/* Need a larger buffer.  Query for the right size. */
1326		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1327		if (rc < 0)
1328			return rc;
1329
1330		len = rc;
1331		context = kmalloc(len + 1, GFP_NOFS);
1332		if (!context)
1333			return -ENOMEM;
1334
1335		context[len] = '\0';
1336		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1337				    context, len);
1338	}
1339	if (rc < 0) {
1340		kfree(context);
1341		if (rc != -ENODATA) {
1342			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1343				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1344			return rc;
1345		}
1346		*sid = def_sid;
1347		return 0;
1348	}
1349
1350	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1351					     def_sid, GFP_NOFS);
1352	if (rc) {
1353		char *dev = inode->i_sb->s_id;
1354		unsigned long ino = inode->i_ino;
1355
1356		if (rc == -EINVAL) {
1357			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1358					      ino, dev, context);
1359		} else {
1360			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1361				__func__, context, -rc, dev, ino);
1362		}
1363	}
1364	kfree(context);
1365	return 0;
1366}
1367
1368/* The inode's security attributes must be initialized before first use. */
1369static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1370{
1371	struct superblock_security_struct *sbsec = NULL;
1372	struct inode_security_struct *isec = selinux_inode(inode);
1373	u32 task_sid, sid = 0;
1374	u16 sclass;
1375	struct dentry *dentry;
1376	int rc = 0;
1377
1378	if (isec->initialized == LABEL_INITIALIZED)
1379		return 0;
1380
1381	spin_lock(&isec->lock);
1382	if (isec->initialized == LABEL_INITIALIZED)
1383		goto out_unlock;
1384
1385	if (isec->sclass == SECCLASS_FILE)
1386		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1387
1388	sbsec = selinux_superblock(inode->i_sb);
1389	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1390		/* Defer initialization until selinux_complete_init,
1391		   after the initial policy is loaded and the security
1392		   server is ready to handle calls. */
1393		spin_lock(&sbsec->isec_lock);
1394		if (list_empty(&isec->list))
1395			list_add(&isec->list, &sbsec->isec_head);
1396		spin_unlock(&sbsec->isec_lock);
1397		goto out_unlock;
1398	}
1399
1400	sclass = isec->sclass;
1401	task_sid = isec->task_sid;
1402	sid = isec->sid;
1403	isec->initialized = LABEL_PENDING;
1404	spin_unlock(&isec->lock);
1405
1406	switch (sbsec->behavior) {
 
 
 
 
1407	case SECURITY_FS_USE_NATIVE:
1408		break;
1409	case SECURITY_FS_USE_XATTR:
1410		if (!(inode->i_opflags & IOP_XATTR)) {
1411			sid = sbsec->def_sid;
1412			break;
1413		}
1414		/* Need a dentry, since the xattr API requires one.
1415		   Life would be simpler if we could just pass the inode. */
1416		if (opt_dentry) {
1417			/* Called from d_instantiate or d_splice_alias. */
1418			dentry = dget(opt_dentry);
1419		} else {
1420			/*
1421			 * Called from selinux_complete_init, try to find a dentry.
1422			 * Some filesystems really want a connected one, so try
1423			 * that first.  We could split SECURITY_FS_USE_XATTR in
1424			 * two, depending upon that...
1425			 */
1426			dentry = d_find_alias(inode);
1427			if (!dentry)
1428				dentry = d_find_any_alias(inode);
1429		}
1430		if (!dentry) {
1431			/*
1432			 * this is can be hit on boot when a file is accessed
1433			 * before the policy is loaded.  When we load policy we
1434			 * may find inodes that have no dentry on the
1435			 * sbsec->isec_head list.  No reason to complain as these
1436			 * will get fixed up the next time we go through
1437			 * inode_doinit with a dentry, before these inodes could
1438			 * be used again by userspace.
1439			 */
1440			goto out_invalid;
1441		}
1442
1443		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1444					    &sid);
1445		dput(dentry);
1446		if (rc)
1447			goto out;
1448		break;
1449	case SECURITY_FS_USE_TASK:
1450		sid = task_sid;
1451		break;
1452	case SECURITY_FS_USE_TRANS:
1453		/* Default to the fs SID. */
1454		sid = sbsec->sid;
1455
1456		/* Try to obtain a transition SID. */
1457		rc = security_transition_sid(&selinux_state, task_sid, sid,
1458					     sclass, NULL, &sid);
1459		if (rc)
1460			goto out;
1461		break;
1462	case SECURITY_FS_USE_MNTPOINT:
1463		sid = sbsec->mntpoint_sid;
1464		break;
1465	default:
1466		/* Default to the fs superblock SID. */
1467		sid = sbsec->sid;
1468
1469		if ((sbsec->flags & SE_SBGENFS) &&
1470		     (!S_ISLNK(inode->i_mode) ||
1471		      selinux_policycap_genfs_seclabel_symlinks())) {
1472			/* We must have a dentry to determine the label on
1473			 * procfs inodes */
1474			if (opt_dentry) {
1475				/* Called from d_instantiate or
1476				 * d_splice_alias. */
1477				dentry = dget(opt_dentry);
1478			} else {
1479				/* Called from selinux_complete_init, try to
1480				 * find a dentry.  Some filesystems really want
1481				 * a connected one, so try that first.
1482				 */
1483				dentry = d_find_alias(inode);
1484				if (!dentry)
1485					dentry = d_find_any_alias(inode);
1486			}
1487			/*
1488			 * This can be hit on boot when a file is accessed
1489			 * before the policy is loaded.  When we load policy we
1490			 * may find inodes that have no dentry on the
1491			 * sbsec->isec_head list.  No reason to complain as
1492			 * these will get fixed up the next time we go through
1493			 * inode_doinit() with a dentry, before these inodes
1494			 * could be used again by userspace.
1495			 */
1496			if (!dentry)
1497				goto out_invalid;
1498			rc = selinux_genfs_get_sid(dentry, sclass,
1499						   sbsec->flags, &sid);
1500			if (rc) {
1501				dput(dentry);
1502				goto out;
1503			}
1504
1505			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1506			    (inode->i_opflags & IOP_XATTR)) {
1507				rc = inode_doinit_use_xattr(inode, dentry,
1508							    sid, &sid);
1509				if (rc) {
1510					dput(dentry);
1511					goto out;
1512				}
1513			}
1514			dput(dentry);
1515		}
1516		break;
1517	}
1518
1519out:
1520	spin_lock(&isec->lock);
1521	if (isec->initialized == LABEL_PENDING) {
1522		if (rc) {
1523			isec->initialized = LABEL_INVALID;
1524			goto out_unlock;
1525		}
1526		isec->initialized = LABEL_INITIALIZED;
1527		isec->sid = sid;
1528	}
1529
1530out_unlock:
1531	spin_unlock(&isec->lock);
1532	return rc;
1533
1534out_invalid:
1535	spin_lock(&isec->lock);
1536	if (isec->initialized == LABEL_PENDING) {
1537		isec->initialized = LABEL_INVALID;
1538		isec->sid = sid;
1539	}
1540	spin_unlock(&isec->lock);
1541	return 0;
1542}
1543
1544/* Convert a Linux signal to an access vector. */
1545static inline u32 signal_to_av(int sig)
1546{
1547	u32 perm = 0;
1548
1549	switch (sig) {
1550	case SIGCHLD:
1551		/* Commonly granted from child to parent. */
1552		perm = PROCESS__SIGCHLD;
1553		break;
1554	case SIGKILL:
1555		/* Cannot be caught or ignored */
1556		perm = PROCESS__SIGKILL;
1557		break;
1558	case SIGSTOP:
1559		/* Cannot be caught or ignored */
1560		perm = PROCESS__SIGSTOP;
1561		break;
1562	default:
1563		/* All other signals. */
1564		perm = PROCESS__SIGNAL;
1565		break;
1566	}
1567
1568	return perm;
1569}
1570
1571#if CAP_LAST_CAP > 63
1572#error Fix SELinux to handle capabilities > 63.
1573#endif
1574
1575/* Check whether a task is allowed to use a capability. */
1576static int cred_has_capability(const struct cred *cred,
1577			       int cap, unsigned int opts, bool initns)
1578{
1579	struct common_audit_data ad;
1580	struct av_decision avd;
1581	u16 sclass;
1582	u32 sid = cred_sid(cred);
1583	u32 av = CAP_TO_MASK(cap);
1584	int rc;
1585
1586	ad.type = LSM_AUDIT_DATA_CAP;
1587	ad.u.cap = cap;
1588
1589	switch (CAP_TO_INDEX(cap)) {
1590	case 0:
1591		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1592		break;
1593	case 1:
1594		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1595		break;
1596	default:
1597		pr_err("SELinux:  out of range capability %d\n", cap);
1598		BUG();
1599		return -EINVAL;
1600	}
1601
1602	rc = avc_has_perm_noaudit(&selinux_state,
1603				  sid, sid, sclass, av, 0, &avd);
1604	if (!(opts & CAP_OPT_NOAUDIT)) {
1605		int rc2 = avc_audit(&selinux_state,
1606				    sid, sid, sclass, av, &avd, rc, &ad);
1607		if (rc2)
1608			return rc2;
1609	}
1610	return rc;
1611}
1612
1613/* Check whether a task has a particular permission to an inode.
1614   The 'adp' parameter is optional and allows other audit
1615   data to be passed (e.g. the dentry). */
1616static int inode_has_perm(const struct cred *cred,
1617			  struct inode *inode,
1618			  u32 perms,
1619			  struct common_audit_data *adp)
1620{
1621	struct inode_security_struct *isec;
1622	u32 sid;
1623
1624	validate_creds(cred);
1625
1626	if (unlikely(IS_PRIVATE(inode)))
1627		return 0;
1628
1629	sid = cred_sid(cred);
1630	isec = selinux_inode(inode);
1631
1632	return avc_has_perm(&selinux_state,
1633			    sid, isec->sid, isec->sclass, perms, adp);
1634}
1635
1636/* Same as inode_has_perm, but pass explicit audit data containing
1637   the dentry to help the auditing code to more easily generate the
1638   pathname if needed. */
1639static inline int dentry_has_perm(const struct cred *cred,
1640				  struct dentry *dentry,
1641				  u32 av)
1642{
1643	struct inode *inode = d_backing_inode(dentry);
1644	struct common_audit_data ad;
1645
1646	ad.type = LSM_AUDIT_DATA_DENTRY;
1647	ad.u.dentry = dentry;
1648	__inode_security_revalidate(inode, dentry, true);
1649	return inode_has_perm(cred, inode, av, &ad);
1650}
1651
1652/* Same as inode_has_perm, but pass explicit audit data containing
1653   the path to help the auditing code to more easily generate the
1654   pathname if needed. */
1655static inline int path_has_perm(const struct cred *cred,
1656				const struct path *path,
1657				u32 av)
1658{
1659	struct inode *inode = d_backing_inode(path->dentry);
1660	struct common_audit_data ad;
1661
1662	ad.type = LSM_AUDIT_DATA_PATH;
1663	ad.u.path = *path;
1664	__inode_security_revalidate(inode, path->dentry, true);
1665	return inode_has_perm(cred, inode, av, &ad);
1666}
1667
1668/* Same as path_has_perm, but uses the inode from the file struct. */
1669static inline int file_path_has_perm(const struct cred *cred,
1670				     struct file *file,
1671				     u32 av)
1672{
1673	struct common_audit_data ad;
1674
1675	ad.type = LSM_AUDIT_DATA_FILE;
1676	ad.u.file = file;
1677	return inode_has_perm(cred, file_inode(file), av, &ad);
1678}
1679
1680#ifdef CONFIG_BPF_SYSCALL
1681static int bpf_fd_pass(struct file *file, u32 sid);
1682#endif
1683
1684/* Check whether a task can use an open file descriptor to
1685   access an inode in a given way.  Check access to the
1686   descriptor itself, and then use dentry_has_perm to
1687   check a particular permission to the file.
1688   Access to the descriptor is implicitly granted if it
1689   has the same SID as the process.  If av is zero, then
1690   access to the file is not checked, e.g. for cases
1691   where only the descriptor is affected like seek. */
1692static int file_has_perm(const struct cred *cred,
1693			 struct file *file,
1694			 u32 av)
1695{
1696	struct file_security_struct *fsec = selinux_file(file);
1697	struct inode *inode = file_inode(file);
1698	struct common_audit_data ad;
1699	u32 sid = cred_sid(cred);
1700	int rc;
1701
1702	ad.type = LSM_AUDIT_DATA_FILE;
1703	ad.u.file = file;
1704
1705	if (sid != fsec->sid) {
1706		rc = avc_has_perm(&selinux_state,
1707				  sid, fsec->sid,
1708				  SECCLASS_FD,
1709				  FD__USE,
1710				  &ad);
1711		if (rc)
1712			goto out;
1713	}
1714
1715#ifdef CONFIG_BPF_SYSCALL
1716	rc = bpf_fd_pass(file, cred_sid(cred));
1717	if (rc)
1718		return rc;
1719#endif
1720
1721	/* av is zero if only checking access to the descriptor. */
1722	rc = 0;
1723	if (av)
1724		rc = inode_has_perm(cred, inode, av, &ad);
1725
1726out:
1727	return rc;
1728}
1729
1730/*
1731 * Determine the label for an inode that might be unioned.
1732 */
1733static int
1734selinux_determine_inode_label(const struct task_security_struct *tsec,
1735				 struct inode *dir,
1736				 const struct qstr *name, u16 tclass,
1737				 u32 *_new_isid)
1738{
1739	const struct superblock_security_struct *sbsec =
1740						selinux_superblock(dir->i_sb);
1741
1742	if ((sbsec->flags & SE_SBINITIALIZED) &&
1743	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1744		*_new_isid = sbsec->mntpoint_sid;
1745	} else if ((sbsec->flags & SBLABEL_MNT) &&
1746		   tsec->create_sid) {
1747		*_new_isid = tsec->create_sid;
1748	} else {
1749		const struct inode_security_struct *dsec = inode_security(dir);
1750		return security_transition_sid(&selinux_state, tsec->sid,
1751					       dsec->sid, tclass,
1752					       name, _new_isid);
1753	}
1754
1755	return 0;
1756}
1757
1758/* Check whether a task can create a file. */
1759static int may_create(struct inode *dir,
1760		      struct dentry *dentry,
1761		      u16 tclass)
1762{
1763	const struct task_security_struct *tsec = selinux_cred(current_cred());
1764	struct inode_security_struct *dsec;
1765	struct superblock_security_struct *sbsec;
1766	u32 sid, newsid;
1767	struct common_audit_data ad;
1768	int rc;
1769
1770	dsec = inode_security(dir);
1771	sbsec = selinux_superblock(dir->i_sb);
1772
1773	sid = tsec->sid;
1774
1775	ad.type = LSM_AUDIT_DATA_DENTRY;
1776	ad.u.dentry = dentry;
1777
1778	rc = avc_has_perm(&selinux_state,
1779			  sid, dsec->sid, SECCLASS_DIR,
1780			  DIR__ADD_NAME | DIR__SEARCH,
1781			  &ad);
1782	if (rc)
1783		return rc;
1784
1785	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1786					   &newsid);
1787	if (rc)
1788		return rc;
1789
1790	rc = avc_has_perm(&selinux_state,
1791			  sid, newsid, tclass, FILE__CREATE, &ad);
1792	if (rc)
1793		return rc;
1794
1795	return avc_has_perm(&selinux_state,
1796			    newsid, sbsec->sid,
1797			    SECCLASS_FILESYSTEM,
1798			    FILESYSTEM__ASSOCIATE, &ad);
1799}
1800
1801#define MAY_LINK	0
1802#define MAY_UNLINK	1
1803#define MAY_RMDIR	2
1804
1805/* Check whether a task can link, unlink, or rmdir a file/directory. */
1806static int may_link(struct inode *dir,
1807		    struct dentry *dentry,
1808		    int kind)
1809
1810{
1811	struct inode_security_struct *dsec, *isec;
1812	struct common_audit_data ad;
1813	u32 sid = current_sid();
1814	u32 av;
1815	int rc;
1816
1817	dsec = inode_security(dir);
1818	isec = backing_inode_security(dentry);
1819
1820	ad.type = LSM_AUDIT_DATA_DENTRY;
1821	ad.u.dentry = dentry;
1822
1823	av = DIR__SEARCH;
1824	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1825	rc = avc_has_perm(&selinux_state,
1826			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1827	if (rc)
1828		return rc;
1829
1830	switch (kind) {
1831	case MAY_LINK:
1832		av = FILE__LINK;
1833		break;
1834	case MAY_UNLINK:
1835		av = FILE__UNLINK;
1836		break;
1837	case MAY_RMDIR:
1838		av = DIR__RMDIR;
1839		break;
1840	default:
1841		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1842			__func__, kind);
1843		return 0;
1844	}
1845
1846	rc = avc_has_perm(&selinux_state,
1847			  sid, isec->sid, isec->sclass, av, &ad);
1848	return rc;
1849}
1850
1851static inline int may_rename(struct inode *old_dir,
1852			     struct dentry *old_dentry,
1853			     struct inode *new_dir,
1854			     struct dentry *new_dentry)
1855{
1856	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1857	struct common_audit_data ad;
1858	u32 sid = current_sid();
1859	u32 av;
1860	int old_is_dir, new_is_dir;
1861	int rc;
1862
1863	old_dsec = inode_security(old_dir);
1864	old_isec = backing_inode_security(old_dentry);
1865	old_is_dir = d_is_dir(old_dentry);
1866	new_dsec = inode_security(new_dir);
1867
1868	ad.type = LSM_AUDIT_DATA_DENTRY;
1869
1870	ad.u.dentry = old_dentry;
1871	rc = avc_has_perm(&selinux_state,
1872			  sid, old_dsec->sid, SECCLASS_DIR,
1873			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1874	if (rc)
1875		return rc;
1876	rc = avc_has_perm(&selinux_state,
1877			  sid, old_isec->sid,
1878			  old_isec->sclass, FILE__RENAME, &ad);
1879	if (rc)
1880		return rc;
1881	if (old_is_dir && new_dir != old_dir) {
1882		rc = avc_has_perm(&selinux_state,
1883				  sid, old_isec->sid,
1884				  old_isec->sclass, DIR__REPARENT, &ad);
1885		if (rc)
1886			return rc;
1887	}
1888
1889	ad.u.dentry = new_dentry;
1890	av = DIR__ADD_NAME | DIR__SEARCH;
1891	if (d_is_positive(new_dentry))
1892		av |= DIR__REMOVE_NAME;
1893	rc = avc_has_perm(&selinux_state,
1894			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1895	if (rc)
1896		return rc;
1897	if (d_is_positive(new_dentry)) {
1898		new_isec = backing_inode_security(new_dentry);
1899		new_is_dir = d_is_dir(new_dentry);
1900		rc = avc_has_perm(&selinux_state,
1901				  sid, new_isec->sid,
1902				  new_isec->sclass,
1903				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1904		if (rc)
1905			return rc;
1906	}
1907
1908	return 0;
1909}
1910
1911/* Check whether a task can perform a filesystem operation. */
1912static int superblock_has_perm(const struct cred *cred,
1913			       struct super_block *sb,
1914			       u32 perms,
1915			       struct common_audit_data *ad)
1916{
1917	struct superblock_security_struct *sbsec;
1918	u32 sid = cred_sid(cred);
1919
1920	sbsec = selinux_superblock(sb);
1921	return avc_has_perm(&selinux_state,
1922			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1923}
1924
1925/* Convert a Linux mode and permission mask to an access vector. */
1926static inline u32 file_mask_to_av(int mode, int mask)
1927{
1928	u32 av = 0;
1929
1930	if (!S_ISDIR(mode)) {
1931		if (mask & MAY_EXEC)
1932			av |= FILE__EXECUTE;
1933		if (mask & MAY_READ)
1934			av |= FILE__READ;
1935
1936		if (mask & MAY_APPEND)
1937			av |= FILE__APPEND;
1938		else if (mask & MAY_WRITE)
1939			av |= FILE__WRITE;
1940
1941	} else {
1942		if (mask & MAY_EXEC)
1943			av |= DIR__SEARCH;
1944		if (mask & MAY_WRITE)
1945			av |= DIR__WRITE;
1946		if (mask & MAY_READ)
1947			av |= DIR__READ;
1948	}
1949
1950	return av;
1951}
1952
1953/* Convert a Linux file to an access vector. */
1954static inline u32 file_to_av(struct file *file)
1955{
1956	u32 av = 0;
1957
1958	if (file->f_mode & FMODE_READ)
1959		av |= FILE__READ;
1960	if (file->f_mode & FMODE_WRITE) {
1961		if (file->f_flags & O_APPEND)
1962			av |= FILE__APPEND;
1963		else
1964			av |= FILE__WRITE;
1965	}
1966	if (!av) {
1967		/*
1968		 * Special file opened with flags 3 for ioctl-only use.
1969		 */
1970		av = FILE__IOCTL;
1971	}
1972
1973	return av;
1974}
1975
1976/*
1977 * Convert a file to an access vector and include the correct
1978 * open permission.
1979 */
1980static inline u32 open_file_to_av(struct file *file)
1981{
1982	u32 av = file_to_av(file);
1983	struct inode *inode = file_inode(file);
1984
1985	if (selinux_policycap_openperm() &&
1986	    inode->i_sb->s_magic != SOCKFS_MAGIC)
1987		av |= FILE__OPEN;
1988
1989	return av;
1990}
1991
1992/* Hook functions begin here. */
1993
1994static int selinux_binder_set_context_mgr(const struct cred *mgr)
1995{
1996	return avc_has_perm(&selinux_state,
1997			    current_sid(), cred_sid(mgr), SECCLASS_BINDER,
1998			    BINDER__SET_CONTEXT_MGR, NULL);
1999}
2000
2001static int selinux_binder_transaction(const struct cred *from,
2002				      const struct cred *to)
2003{
2004	u32 mysid = current_sid();
2005	u32 fromsid = cred_sid(from);
2006	u32 tosid = cred_sid(to);
2007	int rc;
2008
2009	if (mysid != fromsid) {
2010		rc = avc_has_perm(&selinux_state,
2011				  mysid, fromsid, SECCLASS_BINDER,
2012				  BINDER__IMPERSONATE, NULL);
2013		if (rc)
2014			return rc;
2015	}
2016
2017	return avc_has_perm(&selinux_state, fromsid, tosid,
2018			    SECCLASS_BINDER, BINDER__CALL, NULL);
2019}
2020
2021static int selinux_binder_transfer_binder(const struct cred *from,
2022					  const struct cred *to)
2023{
2024	return avc_has_perm(&selinux_state,
2025			    cred_sid(from), cred_sid(to),
2026			    SECCLASS_BINDER, BINDER__TRANSFER,
2027			    NULL);
2028}
2029
2030static int selinux_binder_transfer_file(const struct cred *from,
2031					const struct cred *to,
2032					struct file *file)
2033{
2034	u32 sid = cred_sid(to);
2035	struct file_security_struct *fsec = selinux_file(file);
2036	struct dentry *dentry = file->f_path.dentry;
2037	struct inode_security_struct *isec;
2038	struct common_audit_data ad;
2039	int rc;
2040
2041	ad.type = LSM_AUDIT_DATA_PATH;
2042	ad.u.path = file->f_path;
2043
2044	if (sid != fsec->sid) {
2045		rc = avc_has_perm(&selinux_state,
2046				  sid, fsec->sid,
2047				  SECCLASS_FD,
2048				  FD__USE,
2049				  &ad);
2050		if (rc)
2051			return rc;
2052	}
2053
2054#ifdef CONFIG_BPF_SYSCALL
2055	rc = bpf_fd_pass(file, sid);
2056	if (rc)
2057		return rc;
2058#endif
2059
2060	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2061		return 0;
2062
2063	isec = backing_inode_security(dentry);
2064	return avc_has_perm(&selinux_state,
2065			    sid, isec->sid, isec->sclass, file_to_av(file),
2066			    &ad);
2067}
2068
2069static int selinux_ptrace_access_check(struct task_struct *child,
2070				       unsigned int mode)
2071{
2072	u32 sid = current_sid();
2073	u32 csid = task_sid_obj(child);
2074
2075	if (mode & PTRACE_MODE_READ)
2076		return avc_has_perm(&selinux_state,
2077				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2078
2079	return avc_has_perm(&selinux_state,
2080			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2081}
2082
2083static int selinux_ptrace_traceme(struct task_struct *parent)
2084{
2085	return avc_has_perm(&selinux_state,
2086			    task_sid_obj(parent), task_sid_obj(current),
2087			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2088}
2089
2090static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2091			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2092{
2093	return avc_has_perm(&selinux_state,
2094			    current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2095			    PROCESS__GETCAP, NULL);
2096}
2097
2098static int selinux_capset(struct cred *new, const struct cred *old,
2099			  const kernel_cap_t *effective,
2100			  const kernel_cap_t *inheritable,
2101			  const kernel_cap_t *permitted)
2102{
2103	return avc_has_perm(&selinux_state,
2104			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2105			    PROCESS__SETCAP, NULL);
2106}
2107
2108/*
2109 * (This comment used to live with the selinux_task_setuid hook,
2110 * which was removed).
2111 *
2112 * Since setuid only affects the current process, and since the SELinux
2113 * controls are not based on the Linux identity attributes, SELinux does not
2114 * need to control this operation.  However, SELinux does control the use of
2115 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2116 */
2117
2118static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2119			   int cap, unsigned int opts)
2120{
2121	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2122}
2123
2124static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2125{
2126	const struct cred *cred = current_cred();
2127	int rc = 0;
2128
2129	if (!sb)
2130		return 0;
2131
2132	switch (cmds) {
2133	case Q_SYNC:
2134	case Q_QUOTAON:
2135	case Q_QUOTAOFF:
2136	case Q_SETINFO:
2137	case Q_SETQUOTA:
2138	case Q_XQUOTAOFF:
2139	case Q_XQUOTAON:
2140	case Q_XSETQLIM:
2141		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2142		break;
2143	case Q_GETFMT:
2144	case Q_GETINFO:
2145	case Q_GETQUOTA:
2146	case Q_XGETQUOTA:
2147	case Q_XGETQSTAT:
2148	case Q_XGETQSTATV:
2149	case Q_XGETNEXTQUOTA:
2150		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2151		break;
2152	default:
2153		rc = 0;  /* let the kernel handle invalid cmds */
2154		break;
2155	}
2156	return rc;
2157}
2158
2159static int selinux_quota_on(struct dentry *dentry)
2160{
2161	const struct cred *cred = current_cred();
2162
2163	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2164}
2165
2166static int selinux_syslog(int type)
2167{
2168	switch (type) {
2169	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2170	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2171		return avc_has_perm(&selinux_state,
2172				    current_sid(), SECINITSID_KERNEL,
2173				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2174	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2175	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2176	/* Set level of messages printed to console */
2177	case SYSLOG_ACTION_CONSOLE_LEVEL:
2178		return avc_has_perm(&selinux_state,
2179				    current_sid(), SECINITSID_KERNEL,
2180				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2181				    NULL);
2182	}
2183	/* All other syslog types */
2184	return avc_has_perm(&selinux_state,
2185			    current_sid(), SECINITSID_KERNEL,
2186			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2187}
2188
2189/*
2190 * Check that a process has enough memory to allocate a new virtual
2191 * mapping. 0 means there is enough memory for the allocation to
2192 * succeed and -ENOMEM implies there is not.
2193 *
2194 * Do not audit the selinux permission check, as this is applied to all
2195 * processes that allocate mappings.
2196 */
2197static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2198{
2199	int rc, cap_sys_admin = 0;
2200
2201	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2202				 CAP_OPT_NOAUDIT, true);
2203	if (rc == 0)
2204		cap_sys_admin = 1;
2205
2206	return cap_sys_admin;
2207}
2208
2209/* binprm security operations */
2210
2211static u32 ptrace_parent_sid(void)
2212{
2213	u32 sid = 0;
2214	struct task_struct *tracer;
2215
2216	rcu_read_lock();
2217	tracer = ptrace_parent(current);
2218	if (tracer)
2219		sid = task_sid_obj(tracer);
2220	rcu_read_unlock();
2221
2222	return sid;
2223}
2224
2225static int check_nnp_nosuid(const struct linux_binprm *bprm,
2226			    const struct task_security_struct *old_tsec,
2227			    const struct task_security_struct *new_tsec)
2228{
2229	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2230	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2231	int rc;
2232	u32 av;
2233
2234	if (!nnp && !nosuid)
2235		return 0; /* neither NNP nor nosuid */
2236
2237	if (new_tsec->sid == old_tsec->sid)
2238		return 0; /* No change in credentials */
2239
2240	/*
2241	 * If the policy enables the nnp_nosuid_transition policy capability,
2242	 * then we permit transitions under NNP or nosuid if the
2243	 * policy allows the corresponding permission between
2244	 * the old and new contexts.
2245	 */
2246	if (selinux_policycap_nnp_nosuid_transition()) {
2247		av = 0;
2248		if (nnp)
2249			av |= PROCESS2__NNP_TRANSITION;
2250		if (nosuid)
2251			av |= PROCESS2__NOSUID_TRANSITION;
2252		rc = avc_has_perm(&selinux_state,
2253				  old_tsec->sid, new_tsec->sid,
2254				  SECCLASS_PROCESS2, av, NULL);
2255		if (!rc)
2256			return 0;
2257	}
2258
2259	/*
2260	 * We also permit NNP or nosuid transitions to bounded SIDs,
2261	 * i.e. SIDs that are guaranteed to only be allowed a subset
2262	 * of the permissions of the current SID.
2263	 */
2264	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2265					 new_tsec->sid);
2266	if (!rc)
2267		return 0;
2268
2269	/*
2270	 * On failure, preserve the errno values for NNP vs nosuid.
2271	 * NNP:  Operation not permitted for caller.
2272	 * nosuid:  Permission denied to file.
2273	 */
2274	if (nnp)
2275		return -EPERM;
2276	return -EACCES;
2277}
2278
2279static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2280{
2281	const struct task_security_struct *old_tsec;
2282	struct task_security_struct *new_tsec;
2283	struct inode_security_struct *isec;
2284	struct common_audit_data ad;
2285	struct inode *inode = file_inode(bprm->file);
2286	int rc;
2287
2288	/* SELinux context only depends on initial program or script and not
2289	 * the script interpreter */
2290
2291	old_tsec = selinux_cred(current_cred());
2292	new_tsec = selinux_cred(bprm->cred);
2293	isec = inode_security(inode);
2294
2295	/* Default to the current task SID. */
2296	new_tsec->sid = old_tsec->sid;
2297	new_tsec->osid = old_tsec->sid;
2298
2299	/* Reset fs, key, and sock SIDs on execve. */
2300	new_tsec->create_sid = 0;
2301	new_tsec->keycreate_sid = 0;
2302	new_tsec->sockcreate_sid = 0;
2303
 
 
 
 
 
 
 
 
 
 
 
 
 
2304	if (old_tsec->exec_sid) {
2305		new_tsec->sid = old_tsec->exec_sid;
2306		/* Reset exec SID on execve. */
2307		new_tsec->exec_sid = 0;
2308
2309		/* Fail on NNP or nosuid if not an allowed transition. */
2310		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2311		if (rc)
2312			return rc;
2313	} else {
2314		/* Check for a default transition on this program. */
2315		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2316					     isec->sid, SECCLASS_PROCESS, NULL,
2317					     &new_tsec->sid);
2318		if (rc)
2319			return rc;
2320
2321		/*
2322		 * Fallback to old SID on NNP or nosuid if not an allowed
2323		 * transition.
2324		 */
2325		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2326		if (rc)
2327			new_tsec->sid = old_tsec->sid;
2328	}
2329
2330	ad.type = LSM_AUDIT_DATA_FILE;
2331	ad.u.file = bprm->file;
2332
2333	if (new_tsec->sid == old_tsec->sid) {
2334		rc = avc_has_perm(&selinux_state,
2335				  old_tsec->sid, isec->sid,
2336				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2337		if (rc)
2338			return rc;
2339	} else {
2340		/* Check permissions for the transition. */
2341		rc = avc_has_perm(&selinux_state,
2342				  old_tsec->sid, new_tsec->sid,
2343				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2344		if (rc)
2345			return rc;
2346
2347		rc = avc_has_perm(&selinux_state,
2348				  new_tsec->sid, isec->sid,
2349				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2350		if (rc)
2351			return rc;
2352
2353		/* Check for shared state */
2354		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2355			rc = avc_has_perm(&selinux_state,
2356					  old_tsec->sid, new_tsec->sid,
2357					  SECCLASS_PROCESS, PROCESS__SHARE,
2358					  NULL);
2359			if (rc)
2360				return -EPERM;
2361		}
2362
2363		/* Make sure that anyone attempting to ptrace over a task that
2364		 * changes its SID has the appropriate permit */
2365		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2366			u32 ptsid = ptrace_parent_sid();
2367			if (ptsid != 0) {
2368				rc = avc_has_perm(&selinux_state,
2369						  ptsid, new_tsec->sid,
2370						  SECCLASS_PROCESS,
2371						  PROCESS__PTRACE, NULL);
2372				if (rc)
2373					return -EPERM;
2374			}
2375		}
2376
2377		/* Clear any possibly unsafe personality bits on exec: */
2378		bprm->per_clear |= PER_CLEAR_ON_SETID;
2379
2380		/* Enable secure mode for SIDs transitions unless
2381		   the noatsecure permission is granted between
2382		   the two SIDs, i.e. ahp returns 0. */
2383		rc = avc_has_perm(&selinux_state,
2384				  old_tsec->sid, new_tsec->sid,
2385				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2386				  NULL);
2387		bprm->secureexec |= !!rc;
2388	}
2389
2390	return 0;
2391}
2392
2393static int match_file(const void *p, struct file *file, unsigned fd)
2394{
2395	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2396}
2397
2398/* Derived from fs/exec.c:flush_old_files. */
2399static inline void flush_unauthorized_files(const struct cred *cred,
2400					    struct files_struct *files)
2401{
2402	struct file *file, *devnull = NULL;
2403	struct tty_struct *tty;
2404	int drop_tty = 0;
2405	unsigned n;
2406
2407	tty = get_current_tty();
2408	if (tty) {
2409		spin_lock(&tty->files_lock);
2410		if (!list_empty(&tty->tty_files)) {
2411			struct tty_file_private *file_priv;
2412
2413			/* Revalidate access to controlling tty.
2414			   Use file_path_has_perm on the tty path directly
2415			   rather than using file_has_perm, as this particular
2416			   open file may belong to another process and we are
2417			   only interested in the inode-based check here. */
2418			file_priv = list_first_entry(&tty->tty_files,
2419						struct tty_file_private, list);
2420			file = file_priv->file;
2421			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2422				drop_tty = 1;
2423		}
2424		spin_unlock(&tty->files_lock);
2425		tty_kref_put(tty);
2426	}
2427	/* Reset controlling tty. */
2428	if (drop_tty)
2429		no_tty();
2430
2431	/* Revalidate access to inherited open files. */
2432	n = iterate_fd(files, 0, match_file, cred);
2433	if (!n) /* none found? */
2434		return;
2435
2436	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2437	if (IS_ERR(devnull))
2438		devnull = NULL;
2439	/* replace all the matching ones with this */
2440	do {
2441		replace_fd(n - 1, devnull, 0);
2442	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2443	if (devnull)
2444		fput(devnull);
2445}
2446
2447/*
2448 * Prepare a process for imminent new credential changes due to exec
2449 */
2450static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2451{
2452	struct task_security_struct *new_tsec;
2453	struct rlimit *rlim, *initrlim;
2454	int rc, i;
2455
2456	new_tsec = selinux_cred(bprm->cred);
2457	if (new_tsec->sid == new_tsec->osid)
2458		return;
2459
2460	/* Close files for which the new task SID is not authorized. */
2461	flush_unauthorized_files(bprm->cred, current->files);
2462
2463	/* Always clear parent death signal on SID transitions. */
2464	current->pdeath_signal = 0;
2465
2466	/* Check whether the new SID can inherit resource limits from the old
2467	 * SID.  If not, reset all soft limits to the lower of the current
2468	 * task's hard limit and the init task's soft limit.
2469	 *
2470	 * Note that the setting of hard limits (even to lower them) can be
2471	 * controlled by the setrlimit check.  The inclusion of the init task's
2472	 * soft limit into the computation is to avoid resetting soft limits
2473	 * higher than the default soft limit for cases where the default is
2474	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2475	 */
2476	rc = avc_has_perm(&selinux_state,
2477			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2478			  PROCESS__RLIMITINH, NULL);
2479	if (rc) {
2480		/* protect against do_prlimit() */
2481		task_lock(current);
2482		for (i = 0; i < RLIM_NLIMITS; i++) {
2483			rlim = current->signal->rlim + i;
2484			initrlim = init_task.signal->rlim + i;
2485			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2486		}
2487		task_unlock(current);
2488		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2489			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2490	}
2491}
2492
2493/*
2494 * Clean up the process immediately after the installation of new credentials
2495 * due to exec
2496 */
2497static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2498{
2499	const struct task_security_struct *tsec = selinux_cred(current_cred());
2500	u32 osid, sid;
2501	int rc;
2502
2503	osid = tsec->osid;
2504	sid = tsec->sid;
2505
2506	if (sid == osid)
2507		return;
2508
2509	/* Check whether the new SID can inherit signal state from the old SID.
2510	 * If not, clear itimers to avoid subsequent signal generation and
2511	 * flush and unblock signals.
2512	 *
2513	 * This must occur _after_ the task SID has been updated so that any
2514	 * kill done after the flush will be checked against the new SID.
2515	 */
2516	rc = avc_has_perm(&selinux_state,
2517			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2518	if (rc) {
2519		clear_itimer();
2520
2521		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2522		if (!fatal_signal_pending(current)) {
2523			flush_sigqueue(&current->pending);
2524			flush_sigqueue(&current->signal->shared_pending);
2525			flush_signal_handlers(current, 1);
2526			sigemptyset(&current->blocked);
2527			recalc_sigpending();
2528		}
2529		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2530	}
2531
2532	/* Wake up the parent if it is waiting so that it can recheck
2533	 * wait permission to the new task SID. */
2534	read_lock(&tasklist_lock);
2535	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2536	read_unlock(&tasklist_lock);
2537}
2538
2539/* superblock security operations */
2540
2541static int selinux_sb_alloc_security(struct super_block *sb)
2542{
2543	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2544
2545	mutex_init(&sbsec->lock);
2546	INIT_LIST_HEAD(&sbsec->isec_head);
2547	spin_lock_init(&sbsec->isec_lock);
2548	sbsec->sid = SECINITSID_UNLABELED;
2549	sbsec->def_sid = SECINITSID_FILE;
2550	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2551
2552	return 0;
2553}
2554
2555static inline int opt_len(const char *s)
2556{
2557	bool open_quote = false;
2558	int len;
2559	char c;
2560
2561	for (len = 0; (c = s[len]) != '\0'; len++) {
2562		if (c == '"')
2563			open_quote = !open_quote;
2564		if (c == ',' && !open_quote)
2565			break;
2566	}
2567	return len;
2568}
2569
2570static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2571{
2572	char *from = options;
2573	char *to = options;
2574	bool first = true;
2575	int rc;
2576
2577	while (1) {
2578		int len = opt_len(from);
2579		int token;
2580		char *arg = NULL;
2581
2582		token = match_opt_prefix(from, len, &arg);
2583
2584		if (token != Opt_error) {
2585			char *p, *q;
2586
2587			/* strip quotes */
2588			if (arg) {
2589				for (p = q = arg; p < from + len; p++) {
2590					char c = *p;
2591					if (c != '"')
2592						*q++ = c;
2593				}
2594				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2595				if (!arg) {
2596					rc = -ENOMEM;
2597					goto free_opt;
2598				}
2599			}
2600			rc = selinux_add_opt(token, arg, mnt_opts);
2601			kfree(arg);
2602			arg = NULL;
2603			if (unlikely(rc)) {
2604				goto free_opt;
2605			}
2606		} else {
2607			if (!first) {	// copy with preceding comma
2608				from--;
2609				len++;
2610			}
2611			if (to != from)
2612				memmove(to, from, len);
2613			to += len;
2614			first = false;
2615		}
2616		if (!from[len])
2617			break;
2618		from += len + 1;
2619	}
2620	*to = '\0';
2621	return 0;
2622
2623free_opt:
2624	if (*mnt_opts) {
2625		selinux_free_mnt_opts(*mnt_opts);
2626		*mnt_opts = NULL;
2627	}
2628	return rc;
2629}
2630
2631static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2632{
2633	struct selinux_mnt_opts *opts = mnt_opts;
2634	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2635
2636	/*
2637	 * Superblock not initialized (i.e. no options) - reject if any
2638	 * options specified, otherwise accept.
2639	 */
2640	if (!(sbsec->flags & SE_SBINITIALIZED))
2641		return opts ? 1 : 0;
2642
2643	/*
2644	 * Superblock initialized and no options specified - reject if
2645	 * superblock has any options set, otherwise accept.
2646	 */
2647	if (!opts)
2648		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2649
2650	if (opts->fscontext_sid) {
2651		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2652			       opts->fscontext_sid))
2653			return 1;
2654	}
2655	if (opts->context_sid) {
2656		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2657			       opts->context_sid))
2658			return 1;
2659	}
2660	if (opts->rootcontext_sid) {
2661		struct inode_security_struct *root_isec;
2662
2663		root_isec = backing_inode_security(sb->s_root);
2664		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2665			       opts->rootcontext_sid))
2666			return 1;
2667	}
2668	if (opts->defcontext_sid) {
2669		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2670			       opts->defcontext_sid))
2671			return 1;
2672	}
2673	return 0;
2674}
2675
2676static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2677{
2678	struct selinux_mnt_opts *opts = mnt_opts;
2679	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2680
2681	if (!(sbsec->flags & SE_SBINITIALIZED))
2682		return 0;
2683
2684	if (!opts)
2685		return 0;
2686
2687	if (opts->fscontext_sid) {
2688		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2689			       opts->fscontext_sid))
2690			goto out_bad_option;
2691	}
2692	if (opts->context_sid) {
2693		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2694			       opts->context_sid))
2695			goto out_bad_option;
2696	}
2697	if (opts->rootcontext_sid) {
2698		struct inode_security_struct *root_isec;
2699		root_isec = backing_inode_security(sb->s_root);
2700		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2701			       opts->rootcontext_sid))
2702			goto out_bad_option;
2703	}
2704	if (opts->defcontext_sid) {
2705		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2706			       opts->defcontext_sid))
2707			goto out_bad_option;
2708	}
2709	return 0;
2710
2711out_bad_option:
2712	pr_warn("SELinux: unable to change security options "
2713	       "during remount (dev %s, type=%s)\n", sb->s_id,
2714	       sb->s_type->name);
2715	return -EINVAL;
2716}
2717
2718static int selinux_sb_kern_mount(struct super_block *sb)
2719{
2720	const struct cred *cred = current_cred();
2721	struct common_audit_data ad;
2722
2723	ad.type = LSM_AUDIT_DATA_DENTRY;
2724	ad.u.dentry = sb->s_root;
2725	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2726}
2727
2728static int selinux_sb_statfs(struct dentry *dentry)
2729{
2730	const struct cred *cred = current_cred();
2731	struct common_audit_data ad;
2732
2733	ad.type = LSM_AUDIT_DATA_DENTRY;
2734	ad.u.dentry = dentry->d_sb->s_root;
2735	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2736}
2737
2738static int selinux_mount(const char *dev_name,
2739			 const struct path *path,
2740			 const char *type,
2741			 unsigned long flags,
2742			 void *data)
2743{
2744	const struct cred *cred = current_cred();
2745
2746	if (flags & MS_REMOUNT)
2747		return superblock_has_perm(cred, path->dentry->d_sb,
2748					   FILESYSTEM__REMOUNT, NULL);
2749	else
2750		return path_has_perm(cred, path, FILE__MOUNTON);
2751}
2752
2753static int selinux_move_mount(const struct path *from_path,
2754			      const struct path *to_path)
2755{
2756	const struct cred *cred = current_cred();
2757
2758	return path_has_perm(cred, to_path, FILE__MOUNTON);
2759}
2760
2761static int selinux_umount(struct vfsmount *mnt, int flags)
2762{
2763	const struct cred *cred = current_cred();
2764
2765	return superblock_has_perm(cred, mnt->mnt_sb,
2766				   FILESYSTEM__UNMOUNT, NULL);
2767}
2768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769static int selinux_fs_context_dup(struct fs_context *fc,
2770				  struct fs_context *src_fc)
2771{
2772	const struct selinux_mnt_opts *src = src_fc->security;
2773
2774	if (!src)
2775		return 0;
2776
2777	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2778	return fc->security ? 0 : -ENOMEM;
2779}
2780
2781static const struct fs_parameter_spec selinux_fs_parameters[] = {
2782	fsparam_string(CONTEXT_STR,	Opt_context),
2783	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2784	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2785	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2786	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2787	{}
2788};
2789
2790static int selinux_fs_context_parse_param(struct fs_context *fc,
2791					  struct fs_parameter *param)
2792{
2793	struct fs_parse_result result;
2794	int opt;
2795
2796	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2797	if (opt < 0)
2798		return opt;
2799
2800	return selinux_add_opt(opt, param->string, &fc->security);
2801}
2802
2803/* inode security operations */
2804
2805static int selinux_inode_alloc_security(struct inode *inode)
2806{
2807	struct inode_security_struct *isec = selinux_inode(inode);
2808	u32 sid = current_sid();
2809
2810	spin_lock_init(&isec->lock);
2811	INIT_LIST_HEAD(&isec->list);
2812	isec->inode = inode;
2813	isec->sid = SECINITSID_UNLABELED;
2814	isec->sclass = SECCLASS_FILE;
2815	isec->task_sid = sid;
2816	isec->initialized = LABEL_INVALID;
2817
2818	return 0;
2819}
2820
2821static void selinux_inode_free_security(struct inode *inode)
2822{
2823	inode_free_security(inode);
2824}
2825
2826static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2827					const struct qstr *name,
2828					const char **xattr_name, void **ctx,
2829					u32 *ctxlen)
2830{
2831	u32 newsid;
2832	int rc;
2833
2834	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2835					   d_inode(dentry->d_parent), name,
2836					   inode_mode_to_security_class(mode),
2837					   &newsid);
2838	if (rc)
2839		return rc;
2840
2841	if (xattr_name)
2842		*xattr_name = XATTR_NAME_SELINUX;
2843
2844	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2845				       ctxlen);
2846}
2847
2848static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2849					  struct qstr *name,
2850					  const struct cred *old,
2851					  struct cred *new)
2852{
2853	u32 newsid;
2854	int rc;
2855	struct task_security_struct *tsec;
2856
2857	rc = selinux_determine_inode_label(selinux_cred(old),
2858					   d_inode(dentry->d_parent), name,
2859					   inode_mode_to_security_class(mode),
2860					   &newsid);
2861	if (rc)
2862		return rc;
2863
2864	tsec = selinux_cred(new);
2865	tsec->create_sid = newsid;
2866	return 0;
2867}
2868
2869static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2870				       const struct qstr *qstr,
2871				       const char **name,
2872				       void **value, size_t *len)
2873{
2874	const struct task_security_struct *tsec = selinux_cred(current_cred());
2875	struct superblock_security_struct *sbsec;
 
2876	u32 newsid, clen;
 
2877	int rc;
2878	char *context;
2879
2880	sbsec = selinux_superblock(dir->i_sb);
2881
2882	newsid = tsec->create_sid;
2883
2884	rc = selinux_determine_inode_label(tsec, dir, qstr,
2885		inode_mode_to_security_class(inode->i_mode),
2886		&newsid);
2887	if (rc)
2888		return rc;
2889
2890	/* Possibly defer initialization to selinux_complete_init. */
2891	if (sbsec->flags & SE_SBINITIALIZED) {
2892		struct inode_security_struct *isec = selinux_inode(inode);
2893		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2894		isec->sid = newsid;
2895		isec->initialized = LABEL_INITIALIZED;
2896	}
2897
2898	if (!selinux_initialized(&selinux_state) ||
2899	    !(sbsec->flags & SBLABEL_MNT))
2900		return -EOPNOTSUPP;
2901
2902	if (name)
2903		*name = XATTR_SELINUX_SUFFIX;
2904
2905	if (value && len) {
2906		rc = security_sid_to_context_force(&selinux_state, newsid,
2907						   &context, &clen);
2908		if (rc)
2909			return rc;
2910		*value = context;
2911		*len = clen;
 
2912	}
2913
2914	return 0;
2915}
2916
2917static int selinux_inode_init_security_anon(struct inode *inode,
2918					    const struct qstr *name,
2919					    const struct inode *context_inode)
2920{
2921	const struct task_security_struct *tsec = selinux_cred(current_cred());
2922	struct common_audit_data ad;
2923	struct inode_security_struct *isec;
2924	int rc;
2925
2926	if (unlikely(!selinux_initialized(&selinux_state)))
2927		return 0;
2928
2929	isec = selinux_inode(inode);
2930
2931	/*
2932	 * We only get here once per ephemeral inode.  The inode has
2933	 * been initialized via inode_alloc_security but is otherwise
2934	 * untouched.
2935	 */
2936
2937	if (context_inode) {
2938		struct inode_security_struct *context_isec =
2939			selinux_inode(context_inode);
2940		if (context_isec->initialized != LABEL_INITIALIZED) {
2941			pr_err("SELinux:  context_inode is not initialized");
2942			return -EACCES;
2943		}
2944
2945		isec->sclass = context_isec->sclass;
2946		isec->sid = context_isec->sid;
2947	} else {
2948		isec->sclass = SECCLASS_ANON_INODE;
2949		rc = security_transition_sid(
2950			&selinux_state, tsec->sid, tsec->sid,
2951			isec->sclass, name, &isec->sid);
2952		if (rc)
2953			return rc;
2954	}
2955
2956	isec->initialized = LABEL_INITIALIZED;
2957	/*
2958	 * Now that we've initialized security, check whether we're
2959	 * allowed to actually create this type of anonymous inode.
2960	 */
2961
2962	ad.type = LSM_AUDIT_DATA_ANONINODE;
2963	ad.u.anonclass = name ? (const char *)name->name : "?";
2964
2965	return avc_has_perm(&selinux_state,
2966			    tsec->sid,
2967			    isec->sid,
2968			    isec->sclass,
2969			    FILE__CREATE,
2970			    &ad);
2971}
2972
2973static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2974{
2975	return may_create(dir, dentry, SECCLASS_FILE);
2976}
2977
2978static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2979{
2980	return may_link(dir, old_dentry, MAY_LINK);
2981}
2982
2983static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2984{
2985	return may_link(dir, dentry, MAY_UNLINK);
2986}
2987
2988static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2989{
2990	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2991}
2992
2993static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2994{
2995	return may_create(dir, dentry, SECCLASS_DIR);
2996}
2997
2998static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2999{
3000	return may_link(dir, dentry, MAY_RMDIR);
3001}
3002
3003static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3004{
3005	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3006}
3007
3008static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3009				struct inode *new_inode, struct dentry *new_dentry)
3010{
3011	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3012}
3013
3014static int selinux_inode_readlink(struct dentry *dentry)
3015{
3016	const struct cred *cred = current_cred();
3017
3018	return dentry_has_perm(cred, dentry, FILE__READ);
3019}
3020
3021static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3022				     bool rcu)
3023{
3024	const struct cred *cred = current_cred();
3025	struct common_audit_data ad;
3026	struct inode_security_struct *isec;
3027	u32 sid;
3028
3029	validate_creds(cred);
3030
3031	ad.type = LSM_AUDIT_DATA_DENTRY;
3032	ad.u.dentry = dentry;
3033	sid = cred_sid(cred);
3034	isec = inode_security_rcu(inode, rcu);
3035	if (IS_ERR(isec))
3036		return PTR_ERR(isec);
3037
3038	return avc_has_perm(&selinux_state,
3039				  sid, isec->sid, isec->sclass, FILE__READ, &ad);
3040}
3041
3042static noinline int audit_inode_permission(struct inode *inode,
3043					   u32 perms, u32 audited, u32 denied,
3044					   int result)
3045{
3046	struct common_audit_data ad;
3047	struct inode_security_struct *isec = selinux_inode(inode);
3048
3049	ad.type = LSM_AUDIT_DATA_INODE;
3050	ad.u.inode = inode;
3051
3052	return slow_avc_audit(&selinux_state,
3053			    current_sid(), isec->sid, isec->sclass, perms,
3054			    audited, denied, result, &ad);
3055}
3056
3057static int selinux_inode_permission(struct inode *inode, int mask)
3058{
3059	const struct cred *cred = current_cred();
3060	u32 perms;
3061	bool from_access;
3062	bool no_block = mask & MAY_NOT_BLOCK;
3063	struct inode_security_struct *isec;
3064	u32 sid;
3065	struct av_decision avd;
3066	int rc, rc2;
3067	u32 audited, denied;
3068
3069	from_access = mask & MAY_ACCESS;
3070	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3071
3072	/* No permission to check.  Existence test. */
3073	if (!mask)
3074		return 0;
3075
3076	validate_creds(cred);
3077
3078	if (unlikely(IS_PRIVATE(inode)))
3079		return 0;
3080
3081	perms = file_mask_to_av(inode->i_mode, mask);
3082
3083	sid = cred_sid(cred);
3084	isec = inode_security_rcu(inode, no_block);
3085	if (IS_ERR(isec))
3086		return PTR_ERR(isec);
3087
3088	rc = avc_has_perm_noaudit(&selinux_state,
3089				  sid, isec->sid, isec->sclass, perms, 0,
3090				  &avd);
3091	audited = avc_audit_required(perms, &avd, rc,
3092				     from_access ? FILE__AUDIT_ACCESS : 0,
3093				     &denied);
3094	if (likely(!audited))
3095		return rc;
3096
3097	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3098	if (rc2)
3099		return rc2;
3100	return rc;
3101}
3102
3103static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
 
3104{
3105	const struct cred *cred = current_cred();
3106	struct inode *inode = d_backing_inode(dentry);
3107	unsigned int ia_valid = iattr->ia_valid;
3108	__u32 av = FILE__WRITE;
3109
3110	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3111	if (ia_valid & ATTR_FORCE) {
3112		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3113			      ATTR_FORCE);
3114		if (!ia_valid)
3115			return 0;
3116	}
3117
3118	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3119			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3120		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3121
3122	if (selinux_policycap_openperm() &&
3123	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3124	    (ia_valid & ATTR_SIZE) &&
3125	    !(ia_valid & ATTR_FILE))
3126		av |= FILE__OPEN;
3127
3128	return dentry_has_perm(cred, dentry, av);
3129}
3130
3131static int selinux_inode_getattr(const struct path *path)
3132{
3133	return path_has_perm(current_cred(), path, FILE__GETATTR);
3134}
3135
3136static bool has_cap_mac_admin(bool audit)
3137{
3138	const struct cred *cred = current_cred();
3139	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3140
3141	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3142		return false;
3143	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3144		return false;
3145	return true;
3146}
3147
3148static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3149				  struct dentry *dentry, const char *name,
3150				  const void *value, size_t size, int flags)
3151{
3152	struct inode *inode = d_backing_inode(dentry);
3153	struct inode_security_struct *isec;
3154	struct superblock_security_struct *sbsec;
3155	struct common_audit_data ad;
3156	u32 newsid, sid = current_sid();
3157	int rc = 0;
3158
3159	if (strcmp(name, XATTR_NAME_SELINUX)) {
3160		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3161		if (rc)
3162			return rc;
3163
3164		/* Not an attribute we recognize, so just check the
3165		   ordinary setattr permission. */
3166		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3167	}
3168
3169	if (!selinux_initialized(&selinux_state))
3170		return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3171
3172	sbsec = selinux_superblock(inode->i_sb);
3173	if (!(sbsec->flags & SBLABEL_MNT))
3174		return -EOPNOTSUPP;
3175
3176	if (!inode_owner_or_capable(mnt_userns, inode))
3177		return -EPERM;
3178
3179	ad.type = LSM_AUDIT_DATA_DENTRY;
3180	ad.u.dentry = dentry;
3181
3182	isec = backing_inode_security(dentry);
3183	rc = avc_has_perm(&selinux_state,
3184			  sid, isec->sid, isec->sclass,
3185			  FILE__RELABELFROM, &ad);
3186	if (rc)
3187		return rc;
3188
3189	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3190				     GFP_KERNEL);
3191	if (rc == -EINVAL) {
3192		if (!has_cap_mac_admin(true)) {
3193			struct audit_buffer *ab;
3194			size_t audit_size;
3195
3196			/* We strip a nul only if it is at the end, otherwise the
3197			 * context contains a nul and we should audit that */
3198			if (value) {
3199				const char *str = value;
3200
3201				if (str[size - 1] == '\0')
3202					audit_size = size - 1;
3203				else
3204					audit_size = size;
3205			} else {
3206				audit_size = 0;
3207			}
3208			ab = audit_log_start(audit_context(),
3209					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3210			if (!ab)
3211				return rc;
3212			audit_log_format(ab, "op=setxattr invalid_context=");
3213			audit_log_n_untrustedstring(ab, value, audit_size);
3214			audit_log_end(ab);
3215
3216			return rc;
3217		}
3218		rc = security_context_to_sid_force(&selinux_state, value,
3219						   size, &newsid);
3220	}
3221	if (rc)
3222		return rc;
3223
3224	rc = avc_has_perm(&selinux_state,
3225			  sid, newsid, isec->sclass,
3226			  FILE__RELABELTO, &ad);
3227	if (rc)
3228		return rc;
3229
3230	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3231					  sid, isec->sclass);
3232	if (rc)
3233		return rc;
3234
3235	return avc_has_perm(&selinux_state,
3236			    newsid,
3237			    sbsec->sid,
3238			    SECCLASS_FILESYSTEM,
3239			    FILESYSTEM__ASSOCIATE,
3240			    &ad);
3241}
3242
3243static int selinux_inode_set_acl(struct user_namespace *mnt_userns,
3244				 struct dentry *dentry, const char *acl_name,
3245				 struct posix_acl *kacl)
3246{
3247	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3248}
3249
3250static int selinux_inode_get_acl(struct user_namespace *mnt_userns,
3251				 struct dentry *dentry, const char *acl_name)
3252{
3253	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_remove_acl(struct user_namespace *mnt_userns,
3257				    struct dentry *dentry, const char *acl_name)
3258{
3259	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3260}
3261
3262static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3263					const void *value, size_t size,
3264					int flags)
3265{
3266	struct inode *inode = d_backing_inode(dentry);
3267	struct inode_security_struct *isec;
3268	u32 newsid;
3269	int rc;
3270
3271	if (strcmp(name, XATTR_NAME_SELINUX)) {
3272		/* Not an attribute we recognize, so nothing to do. */
3273		return;
3274	}
3275
3276	if (!selinux_initialized(&selinux_state)) {
3277		/* If we haven't even been initialized, then we can't validate
3278		 * against a policy, so leave the label as invalid. It may
3279		 * resolve to a valid label on the next revalidation try if
3280		 * we've since initialized.
3281		 */
3282		return;
3283	}
3284
3285	rc = security_context_to_sid_force(&selinux_state, value, size,
3286					   &newsid);
3287	if (rc) {
3288		pr_err("SELinux:  unable to map context to SID"
3289		       "for (%s, %lu), rc=%d\n",
3290		       inode->i_sb->s_id, inode->i_ino, -rc);
3291		return;
3292	}
3293
3294	isec = backing_inode_security(dentry);
3295	spin_lock(&isec->lock);
3296	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3297	isec->sid = newsid;
3298	isec->initialized = LABEL_INITIALIZED;
3299	spin_unlock(&isec->lock);
3300}
3301
3302static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3303{
3304	const struct cred *cred = current_cred();
3305
3306	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3307}
3308
3309static int selinux_inode_listxattr(struct dentry *dentry)
3310{
3311	const struct cred *cred = current_cred();
3312
3313	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3314}
3315
3316static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3317				     struct dentry *dentry, const char *name)
3318{
3319	if (strcmp(name, XATTR_NAME_SELINUX)) {
3320		int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3321		if (rc)
3322			return rc;
3323
3324		/* Not an attribute we recognize, so just check the
3325		   ordinary setattr permission. */
3326		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3327	}
3328
3329	if (!selinux_initialized(&selinux_state))
3330		return 0;
3331
3332	/* No one is allowed to remove a SELinux security label.
3333	   You can change the label, but all data must be labeled. */
3334	return -EACCES;
3335}
3336
3337static int selinux_path_notify(const struct path *path, u64 mask,
3338						unsigned int obj_type)
3339{
3340	int ret;
3341	u32 perm;
3342
3343	struct common_audit_data ad;
3344
3345	ad.type = LSM_AUDIT_DATA_PATH;
3346	ad.u.path = *path;
3347
3348	/*
3349	 * Set permission needed based on the type of mark being set.
3350	 * Performs an additional check for sb watches.
3351	 */
3352	switch (obj_type) {
3353	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3354		perm = FILE__WATCH_MOUNT;
3355		break;
3356	case FSNOTIFY_OBJ_TYPE_SB:
3357		perm = FILE__WATCH_SB;
3358		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3359						FILESYSTEM__WATCH, &ad);
3360		if (ret)
3361			return ret;
3362		break;
3363	case FSNOTIFY_OBJ_TYPE_INODE:
3364		perm = FILE__WATCH;
3365		break;
3366	default:
3367		return -EINVAL;
3368	}
3369
3370	/* blocking watches require the file:watch_with_perm permission */
3371	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3372		perm |= FILE__WATCH_WITH_PERM;
3373
3374	/* watches on read-like events need the file:watch_reads permission */
3375	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3376		perm |= FILE__WATCH_READS;
3377
3378	return path_has_perm(current_cred(), path, perm);
3379}
3380
3381/*
3382 * Copy the inode security context value to the user.
3383 *
3384 * Permission check is handled by selinux_inode_getxattr hook.
3385 */
3386static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3387				     struct inode *inode, const char *name,
3388				     void **buffer, bool alloc)
3389{
3390	u32 size;
3391	int error;
3392	char *context = NULL;
3393	struct inode_security_struct *isec;
3394
3395	/*
3396	 * If we're not initialized yet, then we can't validate contexts, so
3397	 * just let vfs_getxattr fall back to using the on-disk xattr.
3398	 */
3399	if (!selinux_initialized(&selinux_state) ||
3400	    strcmp(name, XATTR_SELINUX_SUFFIX))
3401		return -EOPNOTSUPP;
3402
3403	/*
3404	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3405	 * value even if it is not defined by current policy; otherwise,
3406	 * use the in-core value under current policy.
3407	 * Use the non-auditing forms of the permission checks since
3408	 * getxattr may be called by unprivileged processes commonly
3409	 * and lack of permission just means that we fall back to the
3410	 * in-core context value, not a denial.
3411	 */
3412	isec = inode_security(inode);
3413	if (has_cap_mac_admin(false))
3414		error = security_sid_to_context_force(&selinux_state,
3415						      isec->sid, &context,
3416						      &size);
3417	else
3418		error = security_sid_to_context(&selinux_state, isec->sid,
3419						&context, &size);
3420	if (error)
3421		return error;
3422	error = size;
3423	if (alloc) {
3424		*buffer = context;
3425		goto out_nofree;
3426	}
3427	kfree(context);
3428out_nofree:
3429	return error;
3430}
3431
3432static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3433				     const void *value, size_t size, int flags)
3434{
3435	struct inode_security_struct *isec = inode_security_novalidate(inode);
3436	struct superblock_security_struct *sbsec;
3437	u32 newsid;
3438	int rc;
3439
3440	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3441		return -EOPNOTSUPP;
3442
3443	sbsec = selinux_superblock(inode->i_sb);
3444	if (!(sbsec->flags & SBLABEL_MNT))
3445		return -EOPNOTSUPP;
3446
3447	if (!value || !size)
3448		return -EACCES;
3449
3450	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3451				     GFP_KERNEL);
3452	if (rc)
3453		return rc;
3454
3455	spin_lock(&isec->lock);
3456	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3457	isec->sid = newsid;
3458	isec->initialized = LABEL_INITIALIZED;
3459	spin_unlock(&isec->lock);
3460	return 0;
3461}
3462
3463static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3464{
3465	const int len = sizeof(XATTR_NAME_SELINUX);
3466
3467	if (!selinux_initialized(&selinux_state))
3468		return 0;
3469
3470	if (buffer && len <= buffer_size)
3471		memcpy(buffer, XATTR_NAME_SELINUX, len);
3472	return len;
3473}
3474
3475static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3476{
3477	struct inode_security_struct *isec = inode_security_novalidate(inode);
3478	*secid = isec->sid;
3479}
3480
3481static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3482{
3483	u32 sid;
3484	struct task_security_struct *tsec;
3485	struct cred *new_creds = *new;
3486
3487	if (new_creds == NULL) {
3488		new_creds = prepare_creds();
3489		if (!new_creds)
3490			return -ENOMEM;
3491	}
3492
3493	tsec = selinux_cred(new_creds);
3494	/* Get label from overlay inode and set it in create_sid */
3495	selinux_inode_getsecid(d_inode(src), &sid);
3496	tsec->create_sid = sid;
3497	*new = new_creds;
3498	return 0;
3499}
3500
3501static int selinux_inode_copy_up_xattr(const char *name)
3502{
3503	/* The copy_up hook above sets the initial context on an inode, but we
3504	 * don't then want to overwrite it by blindly copying all the lower
3505	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
 
3506	 */
3507	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3508		return 1; /* Discard */
3509	/*
3510	 * Any other attribute apart from SELINUX is not claimed, supported
3511	 * by selinux.
3512	 */
3513	return -EOPNOTSUPP;
3514}
3515
3516/* kernfs node operations */
3517
3518static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3519					struct kernfs_node *kn)
3520{
3521	const struct task_security_struct *tsec = selinux_cred(current_cred());
3522	u32 parent_sid, newsid, clen;
3523	int rc;
3524	char *context;
3525
3526	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3527	if (rc == -ENODATA)
3528		return 0;
3529	else if (rc < 0)
3530		return rc;
3531
3532	clen = (u32)rc;
3533	context = kmalloc(clen, GFP_KERNEL);
3534	if (!context)
3535		return -ENOMEM;
3536
3537	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3538	if (rc < 0) {
3539		kfree(context);
3540		return rc;
3541	}
3542
3543	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3544				     GFP_KERNEL);
3545	kfree(context);
3546	if (rc)
3547		return rc;
3548
3549	if (tsec->create_sid) {
3550		newsid = tsec->create_sid;
3551	} else {
3552		u16 secclass = inode_mode_to_security_class(kn->mode);
3553		struct qstr q;
3554
3555		q.name = kn->name;
3556		q.hash_len = hashlen_string(kn_dir, kn->name);
3557
3558		rc = security_transition_sid(&selinux_state, tsec->sid,
3559					     parent_sid, secclass, &q,
3560					     &newsid);
3561		if (rc)
3562			return rc;
3563	}
3564
3565	rc = security_sid_to_context_force(&selinux_state, newsid,
3566					   &context, &clen);
3567	if (rc)
3568		return rc;
3569
3570	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3571			      XATTR_CREATE);
3572	kfree(context);
3573	return rc;
3574}
3575
3576
3577/* file security operations */
3578
3579static int selinux_revalidate_file_permission(struct file *file, int mask)
3580{
3581	const struct cred *cred = current_cred();
3582	struct inode *inode = file_inode(file);
3583
3584	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3585	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3586		mask |= MAY_APPEND;
3587
3588	return file_has_perm(cred, file,
3589			     file_mask_to_av(inode->i_mode, mask));
3590}
3591
3592static int selinux_file_permission(struct file *file, int mask)
3593{
3594	struct inode *inode = file_inode(file);
3595	struct file_security_struct *fsec = selinux_file(file);
3596	struct inode_security_struct *isec;
3597	u32 sid = current_sid();
3598
3599	if (!mask)
3600		/* No permission to check.  Existence test. */
3601		return 0;
3602
3603	isec = inode_security(inode);
3604	if (sid == fsec->sid && fsec->isid == isec->sid &&
3605	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3606		/* No change since file_open check. */
3607		return 0;
3608
3609	return selinux_revalidate_file_permission(file, mask);
3610}
3611
3612static int selinux_file_alloc_security(struct file *file)
3613{
3614	struct file_security_struct *fsec = selinux_file(file);
3615	u32 sid = current_sid();
3616
3617	fsec->sid = sid;
3618	fsec->fown_sid = sid;
3619
3620	return 0;
3621}
3622
3623/*
3624 * Check whether a task has the ioctl permission and cmd
3625 * operation to an inode.
3626 */
3627static int ioctl_has_perm(const struct cred *cred, struct file *file,
3628		u32 requested, u16 cmd)
3629{
3630	struct common_audit_data ad;
3631	struct file_security_struct *fsec = selinux_file(file);
3632	struct inode *inode = file_inode(file);
3633	struct inode_security_struct *isec;
3634	struct lsm_ioctlop_audit ioctl;
3635	u32 ssid = cred_sid(cred);
3636	int rc;
3637	u8 driver = cmd >> 8;
3638	u8 xperm = cmd & 0xff;
3639
3640	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3641	ad.u.op = &ioctl;
3642	ad.u.op->cmd = cmd;
3643	ad.u.op->path = file->f_path;
3644
3645	if (ssid != fsec->sid) {
3646		rc = avc_has_perm(&selinux_state,
3647				  ssid, fsec->sid,
3648				SECCLASS_FD,
3649				FD__USE,
3650				&ad);
3651		if (rc)
3652			goto out;
3653	}
3654
3655	if (unlikely(IS_PRIVATE(inode)))
3656		return 0;
3657
3658	isec = inode_security(inode);
3659	rc = avc_has_extended_perms(&selinux_state,
3660				    ssid, isec->sid, isec->sclass,
3661				    requested, driver, xperm, &ad);
3662out:
3663	return rc;
3664}
3665
3666static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3667			      unsigned long arg)
3668{
3669	const struct cred *cred = current_cred();
3670	int error = 0;
3671
3672	switch (cmd) {
3673	case FIONREAD:
3674	case FIBMAP:
3675	case FIGETBSZ:
3676	case FS_IOC_GETFLAGS:
3677	case FS_IOC_GETVERSION:
3678		error = file_has_perm(cred, file, FILE__GETATTR);
3679		break;
3680
3681	case FS_IOC_SETFLAGS:
3682	case FS_IOC_SETVERSION:
3683		error = file_has_perm(cred, file, FILE__SETATTR);
3684		break;
3685
3686	/* sys_ioctl() checks */
3687	case FIONBIO:
3688	case FIOASYNC:
3689		error = file_has_perm(cred, file, 0);
3690		break;
3691
3692	case KDSKBENT:
3693	case KDSKBSENT:
3694		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3695					    CAP_OPT_NONE, true);
3696		break;
3697
3698	case FIOCLEX:
3699	case FIONCLEX:
3700		if (!selinux_policycap_ioctl_skip_cloexec())
3701			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3702		break;
3703
3704	/* default case assumes that the command will go
3705	 * to the file's ioctl() function.
3706	 */
3707	default:
3708		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3709	}
3710	return error;
3711}
3712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3713static int default_noexec __ro_after_init;
3714
3715static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3716{
3717	const struct cred *cred = current_cred();
3718	u32 sid = cred_sid(cred);
3719	int rc = 0;
3720
3721	if (default_noexec &&
3722	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3723				   (!shared && (prot & PROT_WRITE)))) {
3724		/*
3725		 * We are making executable an anonymous mapping or a
3726		 * private file mapping that will also be writable.
3727		 * This has an additional check.
3728		 */
3729		rc = avc_has_perm(&selinux_state,
3730				  sid, sid, SECCLASS_PROCESS,
3731				  PROCESS__EXECMEM, NULL);
3732		if (rc)
3733			goto error;
3734	}
3735
3736	if (file) {
3737		/* read access is always possible with a mapping */
3738		u32 av = FILE__READ;
3739
3740		/* write access only matters if the mapping is shared */
3741		if (shared && (prot & PROT_WRITE))
3742			av |= FILE__WRITE;
3743
3744		if (prot & PROT_EXEC)
3745			av |= FILE__EXECUTE;
3746
3747		return file_has_perm(cred, file, av);
3748	}
3749
3750error:
3751	return rc;
3752}
3753
3754static int selinux_mmap_addr(unsigned long addr)
3755{
3756	int rc = 0;
3757
3758	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3759		u32 sid = current_sid();
3760		rc = avc_has_perm(&selinux_state,
3761				  sid, sid, SECCLASS_MEMPROTECT,
3762				  MEMPROTECT__MMAP_ZERO, NULL);
3763	}
3764
3765	return rc;
3766}
3767
3768static int selinux_mmap_file(struct file *file, unsigned long reqprot,
 
3769			     unsigned long prot, unsigned long flags)
3770{
3771	struct common_audit_data ad;
3772	int rc;
3773
3774	if (file) {
3775		ad.type = LSM_AUDIT_DATA_FILE;
3776		ad.u.file = file;
3777		rc = inode_has_perm(current_cred(), file_inode(file),
3778				    FILE__MAP, &ad);
3779		if (rc)
3780			return rc;
3781	}
3782
3783	if (checkreqprot_get(&selinux_state))
3784		prot = reqprot;
3785
3786	return file_map_prot_check(file, prot,
3787				   (flags & MAP_TYPE) == MAP_SHARED);
3788}
3789
3790static int selinux_file_mprotect(struct vm_area_struct *vma,
3791				 unsigned long reqprot,
3792				 unsigned long prot)
3793{
3794	const struct cred *cred = current_cred();
3795	u32 sid = cred_sid(cred);
3796
3797	if (checkreqprot_get(&selinux_state))
3798		prot = reqprot;
3799
3800	if (default_noexec &&
3801	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3802		int rc = 0;
3803		if (vma->vm_start >= vma->vm_mm->start_brk &&
3804		    vma->vm_end <= vma->vm_mm->brk) {
3805			rc = avc_has_perm(&selinux_state,
3806					  sid, sid, SECCLASS_PROCESS,
3807					  PROCESS__EXECHEAP, NULL);
3808		} else if (!vma->vm_file &&
3809			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3810			     vma->vm_end >= vma->vm_mm->start_stack) ||
3811			    vma_is_stack_for_current(vma))) {
3812			rc = avc_has_perm(&selinux_state,
3813					  sid, sid, SECCLASS_PROCESS,
3814					  PROCESS__EXECSTACK, NULL);
3815		} else if (vma->vm_file && vma->anon_vma) {
3816			/*
3817			 * We are making executable a file mapping that has
3818			 * had some COW done. Since pages might have been
3819			 * written, check ability to execute the possibly
3820			 * modified content.  This typically should only
3821			 * occur for text relocations.
3822			 */
3823			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3824		}
3825		if (rc)
3826			return rc;
3827	}
3828
3829	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3830}
3831
3832static int selinux_file_lock(struct file *file, unsigned int cmd)
3833{
3834	const struct cred *cred = current_cred();
3835
3836	return file_has_perm(cred, file, FILE__LOCK);
3837}
3838
3839static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3840			      unsigned long arg)
3841{
3842	const struct cred *cred = current_cred();
3843	int err = 0;
3844
3845	switch (cmd) {
3846	case F_SETFL:
3847		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3848			err = file_has_perm(cred, file, FILE__WRITE);
3849			break;
3850		}
3851		fallthrough;
3852	case F_SETOWN:
3853	case F_SETSIG:
3854	case F_GETFL:
3855	case F_GETOWN:
3856	case F_GETSIG:
3857	case F_GETOWNER_UIDS:
3858		/* Just check FD__USE permission */
3859		err = file_has_perm(cred, file, 0);
3860		break;
3861	case F_GETLK:
3862	case F_SETLK:
3863	case F_SETLKW:
3864	case F_OFD_GETLK:
3865	case F_OFD_SETLK:
3866	case F_OFD_SETLKW:
3867#if BITS_PER_LONG == 32
3868	case F_GETLK64:
3869	case F_SETLK64:
3870	case F_SETLKW64:
3871#endif
3872		err = file_has_perm(cred, file, FILE__LOCK);
3873		break;
3874	}
3875
3876	return err;
3877}
3878
3879static void selinux_file_set_fowner(struct file *file)
3880{
3881	struct file_security_struct *fsec;
3882
3883	fsec = selinux_file(file);
3884	fsec->fown_sid = current_sid();
3885}
3886
3887static int selinux_file_send_sigiotask(struct task_struct *tsk,
3888				       struct fown_struct *fown, int signum)
3889{
3890	struct file *file;
3891	u32 sid = task_sid_obj(tsk);
3892	u32 perm;
3893	struct file_security_struct *fsec;
3894
3895	/* struct fown_struct is never outside the context of a struct file */
3896	file = container_of(fown, struct file, f_owner);
3897
3898	fsec = selinux_file(file);
3899
3900	if (!signum)
3901		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3902	else
3903		perm = signal_to_av(signum);
3904
3905	return avc_has_perm(&selinux_state,
3906			    fsec->fown_sid, sid,
3907			    SECCLASS_PROCESS, perm, NULL);
3908}
3909
3910static int selinux_file_receive(struct file *file)
3911{
3912	const struct cred *cred = current_cred();
3913
3914	return file_has_perm(cred, file, file_to_av(file));
3915}
3916
3917static int selinux_file_open(struct file *file)
3918{
3919	struct file_security_struct *fsec;
3920	struct inode_security_struct *isec;
3921
3922	fsec = selinux_file(file);
3923	isec = inode_security(file_inode(file));
3924	/*
3925	 * Save inode label and policy sequence number
3926	 * at open-time so that selinux_file_permission
3927	 * can determine whether revalidation is necessary.
3928	 * Task label is already saved in the file security
3929	 * struct as its SID.
3930	 */
3931	fsec->isid = isec->sid;
3932	fsec->pseqno = avc_policy_seqno(&selinux_state);
3933	/*
3934	 * Since the inode label or policy seqno may have changed
3935	 * between the selinux_inode_permission check and the saving
3936	 * of state above, recheck that access is still permitted.
3937	 * Otherwise, access might never be revalidated against the
3938	 * new inode label or new policy.
3939	 * This check is not redundant - do not remove.
3940	 */
3941	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3942}
3943
3944/* task security operations */
3945
3946static int selinux_task_alloc(struct task_struct *task,
3947			      unsigned long clone_flags)
3948{
3949	u32 sid = current_sid();
3950
3951	return avc_has_perm(&selinux_state,
3952			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3953}
3954
3955/*
3956 * prepare a new set of credentials for modification
3957 */
3958static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3959				gfp_t gfp)
3960{
3961	const struct task_security_struct *old_tsec = selinux_cred(old);
3962	struct task_security_struct *tsec = selinux_cred(new);
3963
3964	*tsec = *old_tsec;
3965	return 0;
3966}
3967
3968/*
3969 * transfer the SELinux data to a blank set of creds
3970 */
3971static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3972{
3973	const struct task_security_struct *old_tsec = selinux_cred(old);
3974	struct task_security_struct *tsec = selinux_cred(new);
3975
3976	*tsec = *old_tsec;
3977}
3978
3979static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3980{
3981	*secid = cred_sid(c);
3982}
3983
3984/*
3985 * set the security data for a kernel service
3986 * - all the creation contexts are set to unlabelled
3987 */
3988static int selinux_kernel_act_as(struct cred *new, u32 secid)
3989{
3990	struct task_security_struct *tsec = selinux_cred(new);
3991	u32 sid = current_sid();
3992	int ret;
3993
3994	ret = avc_has_perm(&selinux_state,
3995			   sid, secid,
3996			   SECCLASS_KERNEL_SERVICE,
3997			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3998			   NULL);
3999	if (ret == 0) {
4000		tsec->sid = secid;
4001		tsec->create_sid = 0;
4002		tsec->keycreate_sid = 0;
4003		tsec->sockcreate_sid = 0;
4004	}
4005	return ret;
4006}
4007
4008/*
4009 * set the file creation context in a security record to the same as the
4010 * objective context of the specified inode
4011 */
4012static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4013{
4014	struct inode_security_struct *isec = inode_security(inode);
4015	struct task_security_struct *tsec = selinux_cred(new);
4016	u32 sid = current_sid();
4017	int ret;
4018
4019	ret = avc_has_perm(&selinux_state,
4020			   sid, isec->sid,
4021			   SECCLASS_KERNEL_SERVICE,
4022			   KERNEL_SERVICE__CREATE_FILES_AS,
4023			   NULL);
4024
4025	if (ret == 0)
4026		tsec->create_sid = isec->sid;
4027	return ret;
4028}
4029
4030static int selinux_kernel_module_request(char *kmod_name)
4031{
4032	struct common_audit_data ad;
4033
4034	ad.type = LSM_AUDIT_DATA_KMOD;
4035	ad.u.kmod_name = kmod_name;
4036
4037	return avc_has_perm(&selinux_state,
4038			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4039			    SYSTEM__MODULE_REQUEST, &ad);
4040}
4041
4042static int selinux_kernel_module_from_file(struct file *file)
4043{
4044	struct common_audit_data ad;
4045	struct inode_security_struct *isec;
4046	struct file_security_struct *fsec;
4047	u32 sid = current_sid();
4048	int rc;
4049
4050	/* init_module */
4051	if (file == NULL)
4052		return avc_has_perm(&selinux_state,
4053				    sid, sid, SECCLASS_SYSTEM,
4054					SYSTEM__MODULE_LOAD, NULL);
4055
4056	/* finit_module */
4057
4058	ad.type = LSM_AUDIT_DATA_FILE;
4059	ad.u.file = file;
4060
4061	fsec = selinux_file(file);
4062	if (sid != fsec->sid) {
4063		rc = avc_has_perm(&selinux_state,
4064				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4065		if (rc)
4066			return rc;
4067	}
4068
4069	isec = inode_security(file_inode(file));
4070	return avc_has_perm(&selinux_state,
4071			    sid, isec->sid, SECCLASS_SYSTEM,
4072				SYSTEM__MODULE_LOAD, &ad);
4073}
4074
4075static int selinux_kernel_read_file(struct file *file,
4076				    enum kernel_read_file_id id,
4077				    bool contents)
4078{
4079	int rc = 0;
4080
4081	switch (id) {
4082	case READING_MODULE:
4083		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4084		break;
4085	default:
4086		break;
4087	}
4088
4089	return rc;
4090}
4091
4092static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4093{
4094	int rc = 0;
4095
4096	switch (id) {
4097	case LOADING_MODULE:
4098		rc = selinux_kernel_module_from_file(NULL);
4099		break;
4100	default:
4101		break;
4102	}
4103
4104	return rc;
4105}
4106
4107static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4108{
4109	return avc_has_perm(&selinux_state,
4110			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4111			    PROCESS__SETPGID, NULL);
4112}
4113
4114static int selinux_task_getpgid(struct task_struct *p)
4115{
4116	return avc_has_perm(&selinux_state,
4117			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4118			    PROCESS__GETPGID, NULL);
4119}
4120
4121static int selinux_task_getsid(struct task_struct *p)
4122{
4123	return avc_has_perm(&selinux_state,
4124			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4125			    PROCESS__GETSESSION, NULL);
4126}
4127
4128static void selinux_current_getsecid_subj(u32 *secid)
4129{
4130	*secid = current_sid();
4131}
4132
4133static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4134{
4135	*secid = task_sid_obj(p);
4136}
4137
4138static int selinux_task_setnice(struct task_struct *p, int nice)
4139{
4140	return avc_has_perm(&selinux_state,
4141			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4142			    PROCESS__SETSCHED, NULL);
4143}
4144
4145static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4146{
4147	return avc_has_perm(&selinux_state,
4148			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4149			    PROCESS__SETSCHED, NULL);
4150}
4151
4152static int selinux_task_getioprio(struct task_struct *p)
4153{
4154	return avc_has_perm(&selinux_state,
4155			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4156			    PROCESS__GETSCHED, NULL);
4157}
4158
4159static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4160				unsigned int flags)
4161{
4162	u32 av = 0;
4163
4164	if (!flags)
4165		return 0;
4166	if (flags & LSM_PRLIMIT_WRITE)
4167		av |= PROCESS__SETRLIMIT;
4168	if (flags & LSM_PRLIMIT_READ)
4169		av |= PROCESS__GETRLIMIT;
4170	return avc_has_perm(&selinux_state,
4171			    cred_sid(cred), cred_sid(tcred),
4172			    SECCLASS_PROCESS, av, NULL);
4173}
4174
4175static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4176		struct rlimit *new_rlim)
4177{
4178	struct rlimit *old_rlim = p->signal->rlim + resource;
4179
4180	/* Control the ability to change the hard limit (whether
4181	   lowering or raising it), so that the hard limit can
4182	   later be used as a safe reset point for the soft limit
4183	   upon context transitions.  See selinux_bprm_committing_creds. */
4184	if (old_rlim->rlim_max != new_rlim->rlim_max)
4185		return avc_has_perm(&selinux_state,
4186				    current_sid(), task_sid_obj(p),
4187				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4188
4189	return 0;
4190}
4191
4192static int selinux_task_setscheduler(struct task_struct *p)
4193{
4194	return avc_has_perm(&selinux_state,
4195			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4196			    PROCESS__SETSCHED, NULL);
4197}
4198
4199static int selinux_task_getscheduler(struct task_struct *p)
4200{
4201	return avc_has_perm(&selinux_state,
4202			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4203			    PROCESS__GETSCHED, NULL);
4204}
4205
4206static int selinux_task_movememory(struct task_struct *p)
4207{
4208	return avc_has_perm(&selinux_state,
4209			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4210			    PROCESS__SETSCHED, NULL);
4211}
4212
4213static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4214				int sig, const struct cred *cred)
4215{
4216	u32 secid;
4217	u32 perm;
4218
4219	if (!sig)
4220		perm = PROCESS__SIGNULL; /* null signal; existence test */
4221	else
4222		perm = signal_to_av(sig);
4223	if (!cred)
4224		secid = current_sid();
4225	else
4226		secid = cred_sid(cred);
4227	return avc_has_perm(&selinux_state,
4228			    secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4229}
4230
4231static void selinux_task_to_inode(struct task_struct *p,
4232				  struct inode *inode)
4233{
4234	struct inode_security_struct *isec = selinux_inode(inode);
4235	u32 sid = task_sid_obj(p);
4236
4237	spin_lock(&isec->lock);
4238	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4239	isec->sid = sid;
4240	isec->initialized = LABEL_INITIALIZED;
4241	spin_unlock(&isec->lock);
4242}
4243
4244static int selinux_userns_create(const struct cred *cred)
4245{
4246	u32 sid = current_sid();
4247
4248	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_USER_NAMESPACE,
4249						USER_NAMESPACE__CREATE, NULL);
4250}
4251
4252/* Returns error only if unable to parse addresses */
4253static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4254			struct common_audit_data *ad, u8 *proto)
4255{
4256	int offset, ihlen, ret = -EINVAL;
4257	struct iphdr _iph, *ih;
4258
4259	offset = skb_network_offset(skb);
4260	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4261	if (ih == NULL)
4262		goto out;
4263
4264	ihlen = ih->ihl * 4;
4265	if (ihlen < sizeof(_iph))
4266		goto out;
4267
4268	ad->u.net->v4info.saddr = ih->saddr;
4269	ad->u.net->v4info.daddr = ih->daddr;
4270	ret = 0;
4271
4272	if (proto)
4273		*proto = ih->protocol;
4274
4275	switch (ih->protocol) {
4276	case IPPROTO_TCP: {
4277		struct tcphdr _tcph, *th;
4278
4279		if (ntohs(ih->frag_off) & IP_OFFSET)
4280			break;
4281
4282		offset += ihlen;
4283		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4284		if (th == NULL)
4285			break;
4286
4287		ad->u.net->sport = th->source;
4288		ad->u.net->dport = th->dest;
4289		break;
4290	}
4291
4292	case IPPROTO_UDP: {
4293		struct udphdr _udph, *uh;
4294
4295		if (ntohs(ih->frag_off) & IP_OFFSET)
4296			break;
4297
4298		offset += ihlen;
4299		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4300		if (uh == NULL)
4301			break;
4302
4303		ad->u.net->sport = uh->source;
4304		ad->u.net->dport = uh->dest;
4305		break;
4306	}
4307
4308	case IPPROTO_DCCP: {
4309		struct dccp_hdr _dccph, *dh;
4310
4311		if (ntohs(ih->frag_off) & IP_OFFSET)
4312			break;
4313
4314		offset += ihlen;
4315		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316		if (dh == NULL)
4317			break;
4318
4319		ad->u.net->sport = dh->dccph_sport;
4320		ad->u.net->dport = dh->dccph_dport;
4321		break;
4322	}
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325	case IPPROTO_SCTP: {
4326		struct sctphdr _sctph, *sh;
4327
4328		if (ntohs(ih->frag_off) & IP_OFFSET)
4329			break;
4330
4331		offset += ihlen;
4332		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333		if (sh == NULL)
4334			break;
4335
4336		ad->u.net->sport = sh->source;
4337		ad->u.net->dport = sh->dest;
4338		break;
4339	}
4340#endif
4341	default:
4342		break;
4343	}
4344out:
4345	return ret;
4346}
4347
4348#if IS_ENABLED(CONFIG_IPV6)
4349
4350/* Returns error only if unable to parse addresses */
4351static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4352			struct common_audit_data *ad, u8 *proto)
4353{
4354	u8 nexthdr;
4355	int ret = -EINVAL, offset;
4356	struct ipv6hdr _ipv6h, *ip6;
4357	__be16 frag_off;
4358
4359	offset = skb_network_offset(skb);
4360	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4361	if (ip6 == NULL)
4362		goto out;
4363
4364	ad->u.net->v6info.saddr = ip6->saddr;
4365	ad->u.net->v6info.daddr = ip6->daddr;
4366	ret = 0;
4367
4368	nexthdr = ip6->nexthdr;
4369	offset += sizeof(_ipv6h);
4370	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4371	if (offset < 0)
4372		goto out;
4373
4374	if (proto)
4375		*proto = nexthdr;
4376
4377	switch (nexthdr) {
4378	case IPPROTO_TCP: {
4379		struct tcphdr _tcph, *th;
4380
4381		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4382		if (th == NULL)
4383			break;
4384
4385		ad->u.net->sport = th->source;
4386		ad->u.net->dport = th->dest;
4387		break;
4388	}
4389
4390	case IPPROTO_UDP: {
4391		struct udphdr _udph, *uh;
4392
4393		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4394		if (uh == NULL)
4395			break;
4396
4397		ad->u.net->sport = uh->source;
4398		ad->u.net->dport = uh->dest;
4399		break;
4400	}
4401
4402	case IPPROTO_DCCP: {
4403		struct dccp_hdr _dccph, *dh;
4404
4405		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4406		if (dh == NULL)
4407			break;
4408
4409		ad->u.net->sport = dh->dccph_sport;
4410		ad->u.net->dport = dh->dccph_dport;
4411		break;
4412	}
4413
4414#if IS_ENABLED(CONFIG_IP_SCTP)
4415	case IPPROTO_SCTP: {
4416		struct sctphdr _sctph, *sh;
4417
4418		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4419		if (sh == NULL)
4420			break;
4421
4422		ad->u.net->sport = sh->source;
4423		ad->u.net->dport = sh->dest;
4424		break;
4425	}
4426#endif
4427	/* includes fragments */
4428	default:
4429		break;
4430	}
4431out:
4432	return ret;
4433}
4434
4435#endif /* IPV6 */
4436
4437static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4438			     char **_addrp, int src, u8 *proto)
4439{
4440	char *addrp;
4441	int ret;
4442
4443	switch (ad->u.net->family) {
4444	case PF_INET:
4445		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4446		if (ret)
4447			goto parse_error;
4448		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4449				       &ad->u.net->v4info.daddr);
4450		goto okay;
4451
4452#if IS_ENABLED(CONFIG_IPV6)
4453	case PF_INET6:
4454		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4455		if (ret)
4456			goto parse_error;
4457		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4458				       &ad->u.net->v6info.daddr);
4459		goto okay;
4460#endif	/* IPV6 */
4461	default:
4462		addrp = NULL;
4463		goto okay;
4464	}
4465
4466parse_error:
4467	pr_warn(
4468	       "SELinux: failure in selinux_parse_skb(),"
4469	       " unable to parse packet\n");
4470	return ret;
4471
4472okay:
4473	if (_addrp)
4474		*_addrp = addrp;
4475	return 0;
4476}
4477
4478/**
4479 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4480 * @skb: the packet
4481 * @family: protocol family
4482 * @sid: the packet's peer label SID
4483 *
4484 * Description:
4485 * Check the various different forms of network peer labeling and determine
4486 * the peer label/SID for the packet; most of the magic actually occurs in
4487 * the security server function security_net_peersid_cmp().  The function
4488 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4489 * or -EACCES if @sid is invalid due to inconsistencies with the different
4490 * peer labels.
4491 *
4492 */
4493static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4494{
4495	int err;
4496	u32 xfrm_sid;
4497	u32 nlbl_sid;
4498	u32 nlbl_type;
4499
4500	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4501	if (unlikely(err))
4502		return -EACCES;
4503	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4504	if (unlikely(err))
4505		return -EACCES;
4506
4507	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4508					   nlbl_type, xfrm_sid, sid);
4509	if (unlikely(err)) {
4510		pr_warn(
4511		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4512		       " unable to determine packet's peer label\n");
4513		return -EACCES;
4514	}
4515
4516	return 0;
4517}
4518
4519/**
4520 * selinux_conn_sid - Determine the child socket label for a connection
4521 * @sk_sid: the parent socket's SID
4522 * @skb_sid: the packet's SID
4523 * @conn_sid: the resulting connection SID
4524 *
4525 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4526 * combined with the MLS information from @skb_sid in order to create
4527 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4528 * of @sk_sid.  Returns zero on success, negative values on failure.
4529 *
4530 */
4531static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4532{
4533	int err = 0;
4534
4535	if (skb_sid != SECSID_NULL)
4536		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4537					    conn_sid);
4538	else
4539		*conn_sid = sk_sid;
4540
4541	return err;
4542}
4543
4544/* socket security operations */
4545
4546static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4547				 u16 secclass, u32 *socksid)
4548{
4549	if (tsec->sockcreate_sid > SECSID_NULL) {
4550		*socksid = tsec->sockcreate_sid;
4551		return 0;
4552	}
4553
4554	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4555				       secclass, NULL, socksid);
4556}
4557
4558static int sock_has_perm(struct sock *sk, u32 perms)
4559{
4560	struct sk_security_struct *sksec = sk->sk_security;
4561	struct common_audit_data ad;
4562	struct lsm_network_audit net = {0,};
4563
4564	if (sksec->sid == SECINITSID_KERNEL)
4565		return 0;
4566
4567	ad.type = LSM_AUDIT_DATA_NET;
4568	ad.u.net = &net;
4569	ad.u.net->sk = sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
4570
4571	return avc_has_perm(&selinux_state,
4572			    current_sid(), sksec->sid, sksec->sclass, perms,
4573			    &ad);
4574}
4575
4576static int selinux_socket_create(int family, int type,
4577				 int protocol, int kern)
4578{
4579	const struct task_security_struct *tsec = selinux_cred(current_cred());
4580	u32 newsid;
4581	u16 secclass;
4582	int rc;
4583
4584	if (kern)
4585		return 0;
4586
4587	secclass = socket_type_to_security_class(family, type, protocol);
4588	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4589	if (rc)
4590		return rc;
4591
4592	return avc_has_perm(&selinux_state,
4593			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4594}
4595
4596static int selinux_socket_post_create(struct socket *sock, int family,
4597				      int type, int protocol, int kern)
4598{
4599	const struct task_security_struct *tsec = selinux_cred(current_cred());
4600	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4601	struct sk_security_struct *sksec;
4602	u16 sclass = socket_type_to_security_class(family, type, protocol);
4603	u32 sid = SECINITSID_KERNEL;
4604	int err = 0;
4605
4606	if (!kern) {
4607		err = socket_sockcreate_sid(tsec, sclass, &sid);
4608		if (err)
4609			return err;
4610	}
4611
4612	isec->sclass = sclass;
4613	isec->sid = sid;
4614	isec->initialized = LABEL_INITIALIZED;
4615
4616	if (sock->sk) {
4617		sksec = sock->sk->sk_security;
4618		sksec->sclass = sclass;
4619		sksec->sid = sid;
4620		/* Allows detection of the first association on this socket */
4621		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4622			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4623
4624		err = selinux_netlbl_socket_post_create(sock->sk, family);
4625	}
4626
4627	return err;
4628}
4629
4630static int selinux_socket_socketpair(struct socket *socka,
4631				     struct socket *sockb)
4632{
4633	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4634	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4635
4636	sksec_a->peer_sid = sksec_b->sid;
4637	sksec_b->peer_sid = sksec_a->sid;
4638
4639	return 0;
4640}
4641
4642/* Range of port numbers used to automatically bind.
4643   Need to determine whether we should perform a name_bind
4644   permission check between the socket and the port number. */
4645
4646static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4647{
4648	struct sock *sk = sock->sk;
4649	struct sk_security_struct *sksec = sk->sk_security;
4650	u16 family;
4651	int err;
4652
4653	err = sock_has_perm(sk, SOCKET__BIND);
4654	if (err)
4655		goto out;
4656
4657	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4658	family = sk->sk_family;
4659	if (family == PF_INET || family == PF_INET6) {
4660		char *addrp;
4661		struct common_audit_data ad;
4662		struct lsm_network_audit net = {0,};
4663		struct sockaddr_in *addr4 = NULL;
4664		struct sockaddr_in6 *addr6 = NULL;
4665		u16 family_sa;
4666		unsigned short snum;
4667		u32 sid, node_perm;
4668
4669		/*
4670		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4671		 * that validates multiple binding addresses. Because of this
4672		 * need to check address->sa_family as it is possible to have
4673		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4674		 */
4675		if (addrlen < offsetofend(struct sockaddr, sa_family))
4676			return -EINVAL;
4677		family_sa = address->sa_family;
4678		switch (family_sa) {
4679		case AF_UNSPEC:
4680		case AF_INET:
4681			if (addrlen < sizeof(struct sockaddr_in))
4682				return -EINVAL;
4683			addr4 = (struct sockaddr_in *)address;
4684			if (family_sa == AF_UNSPEC) {
 
 
 
 
 
 
 
4685				/* see __inet_bind(), we only want to allow
4686				 * AF_UNSPEC if the address is INADDR_ANY
4687				 */
4688				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4689					goto err_af;
4690				family_sa = AF_INET;
4691			}
4692			snum = ntohs(addr4->sin_port);
4693			addrp = (char *)&addr4->sin_addr.s_addr;
4694			break;
4695		case AF_INET6:
4696			if (addrlen < SIN6_LEN_RFC2133)
4697				return -EINVAL;
4698			addr6 = (struct sockaddr_in6 *)address;
4699			snum = ntohs(addr6->sin6_port);
4700			addrp = (char *)&addr6->sin6_addr.s6_addr;
4701			break;
4702		default:
4703			goto err_af;
4704		}
4705
4706		ad.type = LSM_AUDIT_DATA_NET;
4707		ad.u.net = &net;
4708		ad.u.net->sport = htons(snum);
4709		ad.u.net->family = family_sa;
4710
4711		if (snum) {
4712			int low, high;
4713
4714			inet_get_local_port_range(sock_net(sk), &low, &high);
4715
4716			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4717			    snum < low || snum > high) {
4718				err = sel_netport_sid(sk->sk_protocol,
4719						      snum, &sid);
4720				if (err)
4721					goto out;
4722				err = avc_has_perm(&selinux_state,
4723						   sksec->sid, sid,
4724						   sksec->sclass,
4725						   SOCKET__NAME_BIND, &ad);
4726				if (err)
4727					goto out;
4728			}
4729		}
4730
4731		switch (sksec->sclass) {
4732		case SECCLASS_TCP_SOCKET:
4733			node_perm = TCP_SOCKET__NODE_BIND;
4734			break;
4735
4736		case SECCLASS_UDP_SOCKET:
4737			node_perm = UDP_SOCKET__NODE_BIND;
4738			break;
4739
4740		case SECCLASS_DCCP_SOCKET:
4741			node_perm = DCCP_SOCKET__NODE_BIND;
4742			break;
4743
4744		case SECCLASS_SCTP_SOCKET:
4745			node_perm = SCTP_SOCKET__NODE_BIND;
4746			break;
4747
4748		default:
4749			node_perm = RAWIP_SOCKET__NODE_BIND;
4750			break;
4751		}
4752
4753		err = sel_netnode_sid(addrp, family_sa, &sid);
4754		if (err)
4755			goto out;
4756
4757		if (family_sa == AF_INET)
4758			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4759		else
4760			ad.u.net->v6info.saddr = addr6->sin6_addr;
4761
4762		err = avc_has_perm(&selinux_state,
4763				   sksec->sid, sid,
4764				   sksec->sclass, node_perm, &ad);
4765		if (err)
4766			goto out;
4767	}
4768out:
4769	return err;
4770err_af:
4771	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4772	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4773		return -EINVAL;
4774	return -EAFNOSUPPORT;
4775}
4776
4777/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4778 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4779 */
4780static int selinux_socket_connect_helper(struct socket *sock,
4781					 struct sockaddr *address, int addrlen)
4782{
4783	struct sock *sk = sock->sk;
4784	struct sk_security_struct *sksec = sk->sk_security;
4785	int err;
4786
4787	err = sock_has_perm(sk, SOCKET__CONNECT);
4788	if (err)
4789		return err;
4790	if (addrlen < offsetofend(struct sockaddr, sa_family))
4791		return -EINVAL;
4792
4793	/* connect(AF_UNSPEC) has special handling, as it is a documented
4794	 * way to disconnect the socket
4795	 */
4796	if (address->sa_family == AF_UNSPEC)
4797		return 0;
4798
4799	/*
4800	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4801	 * for the port.
4802	 */
4803	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4804	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4805	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4806		struct common_audit_data ad;
4807		struct lsm_network_audit net = {0,};
4808		struct sockaddr_in *addr4 = NULL;
4809		struct sockaddr_in6 *addr6 = NULL;
4810		unsigned short snum;
4811		u32 sid, perm;
4812
4813		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4814		 * that validates multiple connect addresses. Because of this
4815		 * need to check address->sa_family as it is possible to have
4816		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4817		 */
4818		switch (address->sa_family) {
4819		case AF_INET:
4820			addr4 = (struct sockaddr_in *)address;
4821			if (addrlen < sizeof(struct sockaddr_in))
4822				return -EINVAL;
4823			snum = ntohs(addr4->sin_port);
4824			break;
4825		case AF_INET6:
4826			addr6 = (struct sockaddr_in6 *)address;
4827			if (addrlen < SIN6_LEN_RFC2133)
4828				return -EINVAL;
4829			snum = ntohs(addr6->sin6_port);
4830			break;
4831		default:
4832			/* Note that SCTP services expect -EINVAL, whereas
4833			 * others expect -EAFNOSUPPORT.
4834			 */
4835			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4836				return -EINVAL;
4837			else
4838				return -EAFNOSUPPORT;
4839		}
4840
4841		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4842		if (err)
4843			return err;
4844
4845		switch (sksec->sclass) {
4846		case SECCLASS_TCP_SOCKET:
4847			perm = TCP_SOCKET__NAME_CONNECT;
4848			break;
4849		case SECCLASS_DCCP_SOCKET:
4850			perm = DCCP_SOCKET__NAME_CONNECT;
4851			break;
4852		case SECCLASS_SCTP_SOCKET:
4853			perm = SCTP_SOCKET__NAME_CONNECT;
4854			break;
4855		}
4856
4857		ad.type = LSM_AUDIT_DATA_NET;
4858		ad.u.net = &net;
4859		ad.u.net->dport = htons(snum);
4860		ad.u.net->family = address->sa_family;
4861		err = avc_has_perm(&selinux_state,
4862				   sksec->sid, sid, sksec->sclass, perm, &ad);
4863		if (err)
4864			return err;
4865	}
4866
4867	return 0;
4868}
4869
4870/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4871static int selinux_socket_connect(struct socket *sock,
4872				  struct sockaddr *address, int addrlen)
4873{
4874	int err;
4875	struct sock *sk = sock->sk;
4876
4877	err = selinux_socket_connect_helper(sock, address, addrlen);
4878	if (err)
4879		return err;
4880
4881	return selinux_netlbl_socket_connect(sk, address);
4882}
4883
4884static int selinux_socket_listen(struct socket *sock, int backlog)
4885{
4886	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4887}
4888
4889static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4890{
4891	int err;
4892	struct inode_security_struct *isec;
4893	struct inode_security_struct *newisec;
4894	u16 sclass;
4895	u32 sid;
4896
4897	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4898	if (err)
4899		return err;
4900
4901	isec = inode_security_novalidate(SOCK_INODE(sock));
4902	spin_lock(&isec->lock);
4903	sclass = isec->sclass;
4904	sid = isec->sid;
4905	spin_unlock(&isec->lock);
4906
4907	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4908	newisec->sclass = sclass;
4909	newisec->sid = sid;
4910	newisec->initialized = LABEL_INITIALIZED;
4911
4912	return 0;
4913}
4914
4915static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4916				  int size)
4917{
4918	return sock_has_perm(sock->sk, SOCKET__WRITE);
4919}
4920
4921static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4922				  int size, int flags)
4923{
4924	return sock_has_perm(sock->sk, SOCKET__READ);
4925}
4926
4927static int selinux_socket_getsockname(struct socket *sock)
4928{
4929	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4930}
4931
4932static int selinux_socket_getpeername(struct socket *sock)
4933{
4934	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4935}
4936
4937static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4938{
4939	int err;
4940
4941	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4942	if (err)
4943		return err;
4944
4945	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4946}
4947
4948static int selinux_socket_getsockopt(struct socket *sock, int level,
4949				     int optname)
4950{
4951	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4952}
4953
4954static int selinux_socket_shutdown(struct socket *sock, int how)
4955{
4956	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4957}
4958
4959static int selinux_socket_unix_stream_connect(struct sock *sock,
4960					      struct sock *other,
4961					      struct sock *newsk)
4962{
4963	struct sk_security_struct *sksec_sock = sock->sk_security;
4964	struct sk_security_struct *sksec_other = other->sk_security;
4965	struct sk_security_struct *sksec_new = newsk->sk_security;
4966	struct common_audit_data ad;
4967	struct lsm_network_audit net = {0,};
4968	int err;
4969
4970	ad.type = LSM_AUDIT_DATA_NET;
4971	ad.u.net = &net;
4972	ad.u.net->sk = other;
4973
4974	err = avc_has_perm(&selinux_state,
4975			   sksec_sock->sid, sksec_other->sid,
4976			   sksec_other->sclass,
4977			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4978	if (err)
4979		return err;
4980
4981	/* server child socket */
4982	sksec_new->peer_sid = sksec_sock->sid;
4983	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4984				    sksec_sock->sid, &sksec_new->sid);
4985	if (err)
4986		return err;
4987
4988	/* connecting socket */
4989	sksec_sock->peer_sid = sksec_new->sid;
4990
4991	return 0;
4992}
4993
4994static int selinux_socket_unix_may_send(struct socket *sock,
4995					struct socket *other)
4996{
4997	struct sk_security_struct *ssec = sock->sk->sk_security;
4998	struct sk_security_struct *osec = other->sk->sk_security;
4999	struct common_audit_data ad;
5000	struct lsm_network_audit net = {0,};
5001
5002	ad.type = LSM_AUDIT_DATA_NET;
5003	ad.u.net = &net;
5004	ad.u.net->sk = other->sk;
5005
5006	return avc_has_perm(&selinux_state,
5007			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5008			    &ad);
5009}
5010
5011static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5012				    char *addrp, u16 family, u32 peer_sid,
5013				    struct common_audit_data *ad)
5014{
5015	int err;
5016	u32 if_sid;
5017	u32 node_sid;
5018
5019	err = sel_netif_sid(ns, ifindex, &if_sid);
5020	if (err)
5021		return err;
5022	err = avc_has_perm(&selinux_state,
5023			   peer_sid, if_sid,
5024			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5025	if (err)
5026		return err;
5027
5028	err = sel_netnode_sid(addrp, family, &node_sid);
5029	if (err)
5030		return err;
5031	return avc_has_perm(&selinux_state,
5032			    peer_sid, node_sid,
5033			    SECCLASS_NODE, NODE__RECVFROM, ad);
5034}
5035
5036static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5037				       u16 family)
5038{
5039	int err = 0;
5040	struct sk_security_struct *sksec = sk->sk_security;
5041	u32 sk_sid = sksec->sid;
5042	struct common_audit_data ad;
5043	struct lsm_network_audit net = {0,};
5044	char *addrp;
5045
5046	ad.type = LSM_AUDIT_DATA_NET;
5047	ad.u.net = &net;
5048	ad.u.net->netif = skb->skb_iif;
5049	ad.u.net->family = family;
5050	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5051	if (err)
5052		return err;
5053
5054	if (selinux_secmark_enabled()) {
5055		err = avc_has_perm(&selinux_state,
5056				   sk_sid, skb->secmark, SECCLASS_PACKET,
5057				   PACKET__RECV, &ad);
5058		if (err)
5059			return err;
5060	}
5061
5062	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5063	if (err)
5064		return err;
5065	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5066
5067	return err;
5068}
5069
5070static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5071{
5072	int err;
5073	struct sk_security_struct *sksec = sk->sk_security;
5074	u16 family = sk->sk_family;
5075	u32 sk_sid = sksec->sid;
5076	struct common_audit_data ad;
5077	struct lsm_network_audit net = {0,};
5078	char *addrp;
5079	u8 secmark_active;
5080	u8 peerlbl_active;
5081
5082	if (family != PF_INET && family != PF_INET6)
5083		return 0;
5084
5085	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5086	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5087		family = PF_INET;
5088
5089	/* If any sort of compatibility mode is enabled then handoff processing
5090	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5091	 * special handling.  We do this in an attempt to keep this function
5092	 * as fast and as clean as possible. */
5093	if (!selinux_policycap_netpeer())
5094		return selinux_sock_rcv_skb_compat(sk, skb, family);
5095
5096	secmark_active = selinux_secmark_enabled();
5097	peerlbl_active = selinux_peerlbl_enabled();
5098	if (!secmark_active && !peerlbl_active)
5099		return 0;
5100
5101	ad.type = LSM_AUDIT_DATA_NET;
5102	ad.u.net = &net;
5103	ad.u.net->netif = skb->skb_iif;
5104	ad.u.net->family = family;
5105	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5106	if (err)
5107		return err;
5108
5109	if (peerlbl_active) {
5110		u32 peer_sid;
5111
5112		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5113		if (err)
5114			return err;
5115		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5116					       addrp, family, peer_sid, &ad);
5117		if (err) {
5118			selinux_netlbl_err(skb, family, err, 0);
5119			return err;
5120		}
5121		err = avc_has_perm(&selinux_state,
5122				   sk_sid, peer_sid, SECCLASS_PEER,
5123				   PEER__RECV, &ad);
5124		if (err) {
5125			selinux_netlbl_err(skb, family, err, 0);
5126			return err;
5127		}
5128	}
5129
5130	if (secmark_active) {
5131		err = avc_has_perm(&selinux_state,
5132				   sk_sid, skb->secmark, SECCLASS_PACKET,
5133				   PACKET__RECV, &ad);
5134		if (err)
5135			return err;
5136	}
5137
5138	return err;
5139}
5140
5141static int selinux_socket_getpeersec_stream(struct socket *sock,
5142					    sockptr_t optval, sockptr_t optlen,
5143					    unsigned int len)
5144{
5145	int err = 0;
5146	char *scontext = NULL;
5147	u32 scontext_len;
5148	struct sk_security_struct *sksec = sock->sk->sk_security;
5149	u32 peer_sid = SECSID_NULL;
5150
5151	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5152	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5153	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5154		peer_sid = sksec->peer_sid;
5155	if (peer_sid == SECSID_NULL)
5156		return -ENOPROTOOPT;
5157
5158	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5159				      &scontext_len);
5160	if (err)
5161		return err;
5162	if (scontext_len > len) {
5163		err = -ERANGE;
5164		goto out_len;
5165	}
5166
5167	if (copy_to_sockptr(optval, scontext, scontext_len))
5168		err = -EFAULT;
5169out_len:
5170	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5171		err = -EFAULT;
5172	kfree(scontext);
5173	return err;
5174}
5175
5176static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
 
5177{
5178	u32 peer_secid = SECSID_NULL;
5179	u16 family;
5180	struct inode_security_struct *isec;
5181
5182	if (skb && skb->protocol == htons(ETH_P_IP))
5183		family = PF_INET;
5184	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5185		family = PF_INET6;
5186	else if (sock)
5187		family = sock->sk->sk_family;
5188	else
5189		goto out;
 
 
5190
5191	if (sock && family == PF_UNIX) {
 
5192		isec = inode_security_novalidate(SOCK_INODE(sock));
5193		peer_secid = isec->sid;
5194	} else if (skb)
5195		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5196
5197out:
5198	*secid = peer_secid;
5199	if (peer_secid == SECSID_NULL)
5200		return -EINVAL;
5201	return 0;
5202}
5203
5204static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5205{
5206	struct sk_security_struct *sksec;
5207
5208	sksec = kzalloc(sizeof(*sksec), priority);
5209	if (!sksec)
5210		return -ENOMEM;
5211
5212	sksec->peer_sid = SECINITSID_UNLABELED;
5213	sksec->sid = SECINITSID_UNLABELED;
5214	sksec->sclass = SECCLASS_SOCKET;
5215	selinux_netlbl_sk_security_reset(sksec);
5216	sk->sk_security = sksec;
5217
5218	return 0;
5219}
5220
5221static void selinux_sk_free_security(struct sock *sk)
5222{
5223	struct sk_security_struct *sksec = sk->sk_security;
5224
5225	sk->sk_security = NULL;
5226	selinux_netlbl_sk_security_free(sksec);
5227	kfree(sksec);
5228}
5229
5230static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5231{
5232	struct sk_security_struct *sksec = sk->sk_security;
5233	struct sk_security_struct *newsksec = newsk->sk_security;
5234
5235	newsksec->sid = sksec->sid;
5236	newsksec->peer_sid = sksec->peer_sid;
5237	newsksec->sclass = sksec->sclass;
5238
5239	selinux_netlbl_sk_security_reset(newsksec);
5240}
5241
5242static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5243{
5244	if (!sk)
5245		*secid = SECINITSID_ANY_SOCKET;
5246	else {
5247		struct sk_security_struct *sksec = sk->sk_security;
5248
5249		*secid = sksec->sid;
5250	}
5251}
5252
5253static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5254{
5255	struct inode_security_struct *isec =
5256		inode_security_novalidate(SOCK_INODE(parent));
5257	struct sk_security_struct *sksec = sk->sk_security;
5258
5259	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5260	    sk->sk_family == PF_UNIX)
5261		isec->sid = sksec->sid;
5262	sksec->sclass = isec->sclass;
5263}
5264
5265/*
5266 * Determines peer_secid for the asoc and updates socket's peer label
5267 * if it's the first association on the socket.
5268 */
5269static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5270					  struct sk_buff *skb)
5271{
5272	struct sock *sk = asoc->base.sk;
5273	u16 family = sk->sk_family;
5274	struct sk_security_struct *sksec = sk->sk_security;
5275	struct common_audit_data ad;
5276	struct lsm_network_audit net = {0,};
5277	int err;
5278
5279	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5280	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5281		family = PF_INET;
5282
5283	if (selinux_peerlbl_enabled()) {
5284		asoc->peer_secid = SECSID_NULL;
5285
5286		/* This will return peer_sid = SECSID_NULL if there are
5287		 * no peer labels, see security_net_peersid_resolve().
5288		 */
5289		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5290		if (err)
5291			return err;
5292
5293		if (asoc->peer_secid == SECSID_NULL)
5294			asoc->peer_secid = SECINITSID_UNLABELED;
5295	} else {
5296		asoc->peer_secid = SECINITSID_UNLABELED;
5297	}
5298
5299	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5300		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5301
5302		/* Here as first association on socket. As the peer SID
5303		 * was allowed by peer recv (and the netif/node checks),
5304		 * then it is approved by policy and used as the primary
5305		 * peer SID for getpeercon(3).
5306		 */
5307		sksec->peer_sid = asoc->peer_secid;
5308	} else if (sksec->peer_sid != asoc->peer_secid) {
5309		/* Other association peer SIDs are checked to enforce
5310		 * consistency among the peer SIDs.
5311		 */
5312		ad.type = LSM_AUDIT_DATA_NET;
5313		ad.u.net = &net;
5314		ad.u.net->sk = asoc->base.sk;
5315		err = avc_has_perm(&selinux_state,
5316				   sksec->peer_sid, asoc->peer_secid,
5317				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5318				   &ad);
5319		if (err)
5320			return err;
5321	}
5322	return 0;
5323}
5324
5325/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5326 * happens on an incoming connect(2), sctp_connectx(3) or
5327 * sctp_sendmsg(3) (with no association already present).
5328 */
5329static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5330				      struct sk_buff *skb)
5331{
5332	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5333	u32 conn_sid;
5334	int err;
5335
5336	if (!selinux_policycap_extsockclass())
5337		return 0;
5338
5339	err = selinux_sctp_process_new_assoc(asoc, skb);
5340	if (err)
5341		return err;
5342
5343	/* Compute the MLS component for the connection and store
5344	 * the information in asoc. This will be used by SCTP TCP type
5345	 * sockets and peeled off connections as they cause a new
5346	 * socket to be generated. selinux_sctp_sk_clone() will then
5347	 * plug this into the new socket.
5348	 */
5349	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5350	if (err)
5351		return err;
5352
5353	asoc->secid = conn_sid;
5354
5355	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5356	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5357}
5358
5359/* Called when SCTP receives a COOKIE ACK chunk as the final
5360 * response to an association request (initited by us).
5361 */
5362static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5363					  struct sk_buff *skb)
5364{
5365	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5366
5367	if (!selinux_policycap_extsockclass())
5368		return 0;
5369
5370	/* Inherit secid from the parent socket - this will be picked up
5371	 * by selinux_sctp_sk_clone() if the association gets peeled off
5372	 * into a new socket.
5373	 */
5374	asoc->secid = sksec->sid;
5375
5376	return selinux_sctp_process_new_assoc(asoc, skb);
5377}
5378
5379/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5380 * based on their @optname.
5381 */
5382static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5383				     struct sockaddr *address,
5384				     int addrlen)
5385{
5386	int len, err = 0, walk_size = 0;
5387	void *addr_buf;
5388	struct sockaddr *addr;
5389	struct socket *sock;
5390
5391	if (!selinux_policycap_extsockclass())
5392		return 0;
5393
5394	/* Process one or more addresses that may be IPv4 or IPv6 */
5395	sock = sk->sk_socket;
5396	addr_buf = address;
5397
5398	while (walk_size < addrlen) {
5399		if (walk_size + sizeof(sa_family_t) > addrlen)
5400			return -EINVAL;
5401
5402		addr = addr_buf;
5403		switch (addr->sa_family) {
5404		case AF_UNSPEC:
5405		case AF_INET:
5406			len = sizeof(struct sockaddr_in);
5407			break;
5408		case AF_INET6:
5409			len = sizeof(struct sockaddr_in6);
5410			break;
5411		default:
5412			return -EINVAL;
5413		}
5414
5415		if (walk_size + len > addrlen)
5416			return -EINVAL;
5417
5418		err = -EINVAL;
5419		switch (optname) {
5420		/* Bind checks */
5421		case SCTP_PRIMARY_ADDR:
5422		case SCTP_SET_PEER_PRIMARY_ADDR:
5423		case SCTP_SOCKOPT_BINDX_ADD:
5424			err = selinux_socket_bind(sock, addr, len);
5425			break;
5426		/* Connect checks */
5427		case SCTP_SOCKOPT_CONNECTX:
5428		case SCTP_PARAM_SET_PRIMARY:
5429		case SCTP_PARAM_ADD_IP:
5430		case SCTP_SENDMSG_CONNECT:
5431			err = selinux_socket_connect_helper(sock, addr, len);
5432			if (err)
5433				return err;
5434
5435			/* As selinux_sctp_bind_connect() is called by the
5436			 * SCTP protocol layer, the socket is already locked,
5437			 * therefore selinux_netlbl_socket_connect_locked()
5438			 * is called here. The situations handled are:
5439			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5440			 * whenever a new IP address is added or when a new
5441			 * primary address is selected.
5442			 * Note that an SCTP connect(2) call happens before
5443			 * the SCTP protocol layer and is handled via
5444			 * selinux_socket_connect().
5445			 */
5446			err = selinux_netlbl_socket_connect_locked(sk, addr);
5447			break;
5448		}
5449
5450		if (err)
5451			return err;
5452
5453		addr_buf += len;
5454		walk_size += len;
5455	}
5456
5457	return 0;
5458}
5459
5460/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5461static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5462				  struct sock *newsk)
5463{
5464	struct sk_security_struct *sksec = sk->sk_security;
5465	struct sk_security_struct *newsksec = newsk->sk_security;
5466
5467	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5468	 * the non-sctp clone version.
5469	 */
5470	if (!selinux_policycap_extsockclass())
5471		return selinux_sk_clone_security(sk, newsk);
5472
5473	newsksec->sid = asoc->secid;
5474	newsksec->peer_sid = asoc->peer_secid;
5475	newsksec->sclass = sksec->sclass;
5476	selinux_netlbl_sctp_sk_clone(sk, newsk);
5477}
5478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5479static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5480				     struct request_sock *req)
5481{
5482	struct sk_security_struct *sksec = sk->sk_security;
5483	int err;
5484	u16 family = req->rsk_ops->family;
5485	u32 connsid;
5486	u32 peersid;
5487
5488	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5489	if (err)
5490		return err;
5491	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5492	if (err)
5493		return err;
5494	req->secid = connsid;
5495	req->peer_secid = peersid;
5496
5497	return selinux_netlbl_inet_conn_request(req, family);
5498}
5499
5500static void selinux_inet_csk_clone(struct sock *newsk,
5501				   const struct request_sock *req)
5502{
5503	struct sk_security_struct *newsksec = newsk->sk_security;
5504
5505	newsksec->sid = req->secid;
5506	newsksec->peer_sid = req->peer_secid;
5507	/* NOTE: Ideally, we should also get the isec->sid for the
5508	   new socket in sync, but we don't have the isec available yet.
5509	   So we will wait until sock_graft to do it, by which
5510	   time it will have been created and available. */
5511
5512	/* We don't need to take any sort of lock here as we are the only
5513	 * thread with access to newsksec */
5514	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5515}
5516
5517static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5518{
5519	u16 family = sk->sk_family;
5520	struct sk_security_struct *sksec = sk->sk_security;
5521
5522	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5523	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5524		family = PF_INET;
5525
5526	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5527}
5528
5529static int selinux_secmark_relabel_packet(u32 sid)
5530{
5531	const struct task_security_struct *__tsec;
5532	u32 tsid;
5533
5534	__tsec = selinux_cred(current_cred());
5535	tsid = __tsec->sid;
5536
5537	return avc_has_perm(&selinux_state,
5538			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5539			    NULL);
5540}
5541
5542static void selinux_secmark_refcount_inc(void)
5543{
5544	atomic_inc(&selinux_secmark_refcount);
5545}
5546
5547static void selinux_secmark_refcount_dec(void)
5548{
5549	atomic_dec(&selinux_secmark_refcount);
5550}
5551
5552static void selinux_req_classify_flow(const struct request_sock *req,
5553				      struct flowi_common *flic)
5554{
5555	flic->flowic_secid = req->secid;
5556}
5557
5558static int selinux_tun_dev_alloc_security(void **security)
5559{
5560	struct tun_security_struct *tunsec;
5561
5562	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5563	if (!tunsec)
5564		return -ENOMEM;
5565	tunsec->sid = current_sid();
5566
5567	*security = tunsec;
5568	return 0;
5569}
5570
5571static void selinux_tun_dev_free_security(void *security)
5572{
5573	kfree(security);
5574}
5575
5576static int selinux_tun_dev_create(void)
5577{
5578	u32 sid = current_sid();
5579
5580	/* we aren't taking into account the "sockcreate" SID since the socket
5581	 * that is being created here is not a socket in the traditional sense,
5582	 * instead it is a private sock, accessible only to the kernel, and
5583	 * representing a wide range of network traffic spanning multiple
5584	 * connections unlike traditional sockets - check the TUN driver to
5585	 * get a better understanding of why this socket is special */
5586
5587	return avc_has_perm(&selinux_state,
5588			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5589			    NULL);
5590}
5591
5592static int selinux_tun_dev_attach_queue(void *security)
5593{
5594	struct tun_security_struct *tunsec = security;
5595
5596	return avc_has_perm(&selinux_state,
5597			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5598			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5599}
5600
5601static int selinux_tun_dev_attach(struct sock *sk, void *security)
5602{
5603	struct tun_security_struct *tunsec = security;
5604	struct sk_security_struct *sksec = sk->sk_security;
5605
5606	/* we don't currently perform any NetLabel based labeling here and it
5607	 * isn't clear that we would want to do so anyway; while we could apply
5608	 * labeling without the support of the TUN user the resulting labeled
5609	 * traffic from the other end of the connection would almost certainly
5610	 * cause confusion to the TUN user that had no idea network labeling
5611	 * protocols were being used */
5612
5613	sksec->sid = tunsec->sid;
5614	sksec->sclass = SECCLASS_TUN_SOCKET;
5615
5616	return 0;
5617}
5618
5619static int selinux_tun_dev_open(void *security)
5620{
5621	struct tun_security_struct *tunsec = security;
5622	u32 sid = current_sid();
5623	int err;
5624
5625	err = avc_has_perm(&selinux_state,
5626			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5627			   TUN_SOCKET__RELABELFROM, NULL);
5628	if (err)
5629		return err;
5630	err = avc_has_perm(&selinux_state,
5631			   sid, sid, SECCLASS_TUN_SOCKET,
5632			   TUN_SOCKET__RELABELTO, NULL);
5633	if (err)
5634		return err;
5635	tunsec->sid = sid;
5636
5637	return 0;
5638}
5639
5640#ifdef CONFIG_NETFILTER
5641
5642static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5643				       const struct nf_hook_state *state)
5644{
5645	int ifindex;
5646	u16 family;
5647	char *addrp;
5648	u32 peer_sid;
5649	struct common_audit_data ad;
5650	struct lsm_network_audit net = {0,};
5651	int secmark_active, peerlbl_active;
5652
5653	if (!selinux_policycap_netpeer())
5654		return NF_ACCEPT;
5655
5656	secmark_active = selinux_secmark_enabled();
5657	peerlbl_active = selinux_peerlbl_enabled();
5658	if (!secmark_active && !peerlbl_active)
5659		return NF_ACCEPT;
5660
5661	family = state->pf;
5662	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5663		return NF_DROP;
5664
5665	ifindex = state->in->ifindex;
5666	ad.type = LSM_AUDIT_DATA_NET;
5667	ad.u.net = &net;
5668	ad.u.net->netif = ifindex;
5669	ad.u.net->family = family;
5670	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5671		return NF_DROP;
5672
5673	if (peerlbl_active) {
5674		int err;
5675
5676		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5677					       addrp, family, peer_sid, &ad);
5678		if (err) {
5679			selinux_netlbl_err(skb, family, err, 1);
5680			return NF_DROP;
5681		}
5682	}
5683
5684	if (secmark_active)
5685		if (avc_has_perm(&selinux_state,
5686				 peer_sid, skb->secmark,
5687				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5688			return NF_DROP;
5689
5690	if (netlbl_enabled())
5691		/* we do this in the FORWARD path and not the POST_ROUTING
5692		 * path because we want to make sure we apply the necessary
5693		 * labeling before IPsec is applied so we can leverage AH
5694		 * protection */
5695		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5696			return NF_DROP;
5697
5698	return NF_ACCEPT;
5699}
5700
5701static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5702				      const struct nf_hook_state *state)
5703{
5704	struct sock *sk;
5705	u32 sid;
5706
5707	if (!netlbl_enabled())
5708		return NF_ACCEPT;
5709
5710	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5711	 * because we want to make sure we apply the necessary labeling
5712	 * before IPsec is applied so we can leverage AH protection */
5713	sk = skb->sk;
5714	if (sk) {
5715		struct sk_security_struct *sksec;
5716
5717		if (sk_listener(sk))
5718			/* if the socket is the listening state then this
5719			 * packet is a SYN-ACK packet which means it needs to
5720			 * be labeled based on the connection/request_sock and
5721			 * not the parent socket.  unfortunately, we can't
5722			 * lookup the request_sock yet as it isn't queued on
5723			 * the parent socket until after the SYN-ACK is sent.
5724			 * the "solution" is to simply pass the packet as-is
5725			 * as any IP option based labeling should be copied
5726			 * from the initial connection request (in the IP
5727			 * layer).  it is far from ideal, but until we get a
5728			 * security label in the packet itself this is the
5729			 * best we can do. */
5730			return NF_ACCEPT;
5731
5732		/* standard practice, label using the parent socket */
5733		sksec = sk->sk_security;
5734		sid = sksec->sid;
5735	} else
5736		sid = SECINITSID_KERNEL;
5737	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5738		return NF_DROP;
5739
5740	return NF_ACCEPT;
5741}
5742
5743
5744static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5745					const struct nf_hook_state *state)
5746{
5747	struct sock *sk;
5748	struct sk_security_struct *sksec;
5749	struct common_audit_data ad;
5750	struct lsm_network_audit net = {0,};
5751	u8 proto = 0;
5752
5753	sk = skb_to_full_sk(skb);
5754	if (sk == NULL)
5755		return NF_ACCEPT;
5756	sksec = sk->sk_security;
5757
5758	ad.type = LSM_AUDIT_DATA_NET;
5759	ad.u.net = &net;
5760	ad.u.net->netif = state->out->ifindex;
5761	ad.u.net->family = state->pf;
5762	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5763		return NF_DROP;
5764
5765	if (selinux_secmark_enabled())
5766		if (avc_has_perm(&selinux_state,
5767				 sksec->sid, skb->secmark,
5768				 SECCLASS_PACKET, PACKET__SEND, &ad))
5769			return NF_DROP_ERR(-ECONNREFUSED);
5770
5771	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5772		return NF_DROP_ERR(-ECONNREFUSED);
5773
5774	return NF_ACCEPT;
5775}
5776
5777static unsigned int selinux_ip_postroute(void *priv,
5778					 struct sk_buff *skb,
5779					 const struct nf_hook_state *state)
5780{
5781	u16 family;
5782	u32 secmark_perm;
5783	u32 peer_sid;
5784	int ifindex;
5785	struct sock *sk;
5786	struct common_audit_data ad;
5787	struct lsm_network_audit net = {0,};
5788	char *addrp;
5789	int secmark_active, peerlbl_active;
5790
5791	/* If any sort of compatibility mode is enabled then handoff processing
5792	 * to the selinux_ip_postroute_compat() function to deal with the
5793	 * special handling.  We do this in an attempt to keep this function
5794	 * as fast and as clean as possible. */
5795	if (!selinux_policycap_netpeer())
5796		return selinux_ip_postroute_compat(skb, state);
5797
5798	secmark_active = selinux_secmark_enabled();
5799	peerlbl_active = selinux_peerlbl_enabled();
5800	if (!secmark_active && !peerlbl_active)
5801		return NF_ACCEPT;
5802
5803	sk = skb_to_full_sk(skb);
5804
5805#ifdef CONFIG_XFRM
5806	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5807	 * packet transformation so allow the packet to pass without any checks
5808	 * since we'll have another chance to perform access control checks
5809	 * when the packet is on it's final way out.
5810	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5811	 *       is NULL, in this case go ahead and apply access control.
5812	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5813	 *       TCP listening state we cannot wait until the XFRM processing
5814	 *       is done as we will miss out on the SA label if we do;
5815	 *       unfortunately, this means more work, but it is only once per
5816	 *       connection. */
5817	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5818	    !(sk && sk_listener(sk)))
5819		return NF_ACCEPT;
5820#endif
5821
5822	family = state->pf;
5823	if (sk == NULL) {
5824		/* Without an associated socket the packet is either coming
5825		 * from the kernel or it is being forwarded; check the packet
5826		 * to determine which and if the packet is being forwarded
5827		 * query the packet directly to determine the security label. */
5828		if (skb->skb_iif) {
5829			secmark_perm = PACKET__FORWARD_OUT;
5830			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5831				return NF_DROP;
5832		} else {
5833			secmark_perm = PACKET__SEND;
5834			peer_sid = SECINITSID_KERNEL;
5835		}
5836	} else if (sk_listener(sk)) {
5837		/* Locally generated packet but the associated socket is in the
5838		 * listening state which means this is a SYN-ACK packet.  In
5839		 * this particular case the correct security label is assigned
5840		 * to the connection/request_sock but unfortunately we can't
5841		 * query the request_sock as it isn't queued on the parent
5842		 * socket until after the SYN-ACK packet is sent; the only
5843		 * viable choice is to regenerate the label like we do in
5844		 * selinux_inet_conn_request().  See also selinux_ip_output()
5845		 * for similar problems. */
5846		u32 skb_sid;
5847		struct sk_security_struct *sksec;
5848
5849		sksec = sk->sk_security;
5850		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5851			return NF_DROP;
5852		/* At this point, if the returned skb peerlbl is SECSID_NULL
5853		 * and the packet has been through at least one XFRM
5854		 * transformation then we must be dealing with the "final"
5855		 * form of labeled IPsec packet; since we've already applied
5856		 * all of our access controls on this packet we can safely
5857		 * pass the packet. */
5858		if (skb_sid == SECSID_NULL) {
5859			switch (family) {
5860			case PF_INET:
5861				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5862					return NF_ACCEPT;
5863				break;
5864			case PF_INET6:
5865				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5866					return NF_ACCEPT;
5867				break;
5868			default:
5869				return NF_DROP_ERR(-ECONNREFUSED);
5870			}
5871		}
5872		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5873			return NF_DROP;
5874		secmark_perm = PACKET__SEND;
5875	} else {
5876		/* Locally generated packet, fetch the security label from the
5877		 * associated socket. */
5878		struct sk_security_struct *sksec = sk->sk_security;
5879		peer_sid = sksec->sid;
5880		secmark_perm = PACKET__SEND;
5881	}
5882
5883	ifindex = state->out->ifindex;
5884	ad.type = LSM_AUDIT_DATA_NET;
5885	ad.u.net = &net;
5886	ad.u.net->netif = ifindex;
5887	ad.u.net->family = family;
5888	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5889		return NF_DROP;
5890
5891	if (secmark_active)
5892		if (avc_has_perm(&selinux_state,
5893				 peer_sid, skb->secmark,
5894				 SECCLASS_PACKET, secmark_perm, &ad))
5895			return NF_DROP_ERR(-ECONNREFUSED);
5896
5897	if (peerlbl_active) {
5898		u32 if_sid;
5899		u32 node_sid;
5900
5901		if (sel_netif_sid(state->net, ifindex, &if_sid))
5902			return NF_DROP;
5903		if (avc_has_perm(&selinux_state,
5904				 peer_sid, if_sid,
5905				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5906			return NF_DROP_ERR(-ECONNREFUSED);
5907
5908		if (sel_netnode_sid(addrp, family, &node_sid))
5909			return NF_DROP;
5910		if (avc_has_perm(&selinux_state,
5911				 peer_sid, node_sid,
5912				 SECCLASS_NODE, NODE__SENDTO, &ad))
5913			return NF_DROP_ERR(-ECONNREFUSED);
5914	}
5915
5916	return NF_ACCEPT;
5917}
5918#endif	/* CONFIG_NETFILTER */
5919
5920static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5921{
5922	int rc = 0;
5923	unsigned int msg_len;
5924	unsigned int data_len = skb->len;
5925	unsigned char *data = skb->data;
5926	struct nlmsghdr *nlh;
5927	struct sk_security_struct *sksec = sk->sk_security;
5928	u16 sclass = sksec->sclass;
5929	u32 perm;
5930
5931	while (data_len >= nlmsg_total_size(0)) {
5932		nlh = (struct nlmsghdr *)data;
5933
5934		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5935		 *       users which means we can't reject skb's with bogus
5936		 *       length fields; our solution is to follow what
5937		 *       netlink_rcv_skb() does and simply skip processing at
5938		 *       messages with length fields that are clearly junk
5939		 */
5940		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5941			return 0;
5942
5943		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5944		if (rc == 0) {
5945			rc = sock_has_perm(sk, perm);
5946			if (rc)
5947				return rc;
5948		} else if (rc == -EINVAL) {
5949			/* -EINVAL is a missing msg/perm mapping */
5950			pr_warn_ratelimited("SELinux: unrecognized netlink"
5951				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5952				" pid=%d comm=%s\n",
5953				sk->sk_protocol, nlh->nlmsg_type,
5954				secclass_map[sclass - 1].name,
5955				task_pid_nr(current), current->comm);
5956			if (enforcing_enabled(&selinux_state) &&
5957			    !security_get_allow_unknown(&selinux_state))
5958				return rc;
5959			rc = 0;
5960		} else if (rc == -ENOENT) {
5961			/* -ENOENT is a missing socket/class mapping, ignore */
5962			rc = 0;
5963		} else {
5964			return rc;
5965		}
5966
5967		/* move to the next message after applying netlink padding */
5968		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5969		if (msg_len >= data_len)
5970			return 0;
5971		data_len -= msg_len;
5972		data += msg_len;
5973	}
5974
5975	return rc;
5976}
5977
5978static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5979{
5980	isec->sclass = sclass;
5981	isec->sid = current_sid();
5982}
5983
5984static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5985			u32 perms)
5986{
5987	struct ipc_security_struct *isec;
5988	struct common_audit_data ad;
5989	u32 sid = current_sid();
5990
5991	isec = selinux_ipc(ipc_perms);
5992
5993	ad.type = LSM_AUDIT_DATA_IPC;
5994	ad.u.ipc_id = ipc_perms->key;
5995
5996	return avc_has_perm(&selinux_state,
5997			    sid, isec->sid, isec->sclass, perms, &ad);
5998}
5999
6000static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6001{
6002	struct msg_security_struct *msec;
6003
6004	msec = selinux_msg_msg(msg);
6005	msec->sid = SECINITSID_UNLABELED;
6006
6007	return 0;
6008}
6009
6010/* message queue security operations */
6011static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6012{
6013	struct ipc_security_struct *isec;
6014	struct common_audit_data ad;
6015	u32 sid = current_sid();
6016
6017	isec = selinux_ipc(msq);
6018	ipc_init_security(isec, SECCLASS_MSGQ);
6019
6020	ad.type = LSM_AUDIT_DATA_IPC;
6021	ad.u.ipc_id = msq->key;
6022
6023	return avc_has_perm(&selinux_state,
6024			    sid, isec->sid, SECCLASS_MSGQ,
6025			    MSGQ__CREATE, &ad);
6026}
6027
6028static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6029{
6030	struct ipc_security_struct *isec;
6031	struct common_audit_data ad;
6032	u32 sid = current_sid();
6033
6034	isec = selinux_ipc(msq);
6035
6036	ad.type = LSM_AUDIT_DATA_IPC;
6037	ad.u.ipc_id = msq->key;
6038
6039	return avc_has_perm(&selinux_state,
6040			    sid, isec->sid, SECCLASS_MSGQ,
6041			    MSGQ__ASSOCIATE, &ad);
6042}
6043
6044static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6045{
6046	int err;
6047	int perms;
6048
6049	switch (cmd) {
6050	case IPC_INFO:
6051	case MSG_INFO:
6052		/* No specific object, just general system-wide information. */
6053		return avc_has_perm(&selinux_state,
6054				    current_sid(), SECINITSID_KERNEL,
6055				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6056	case IPC_STAT:
6057	case MSG_STAT:
6058	case MSG_STAT_ANY:
6059		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6060		break;
6061	case IPC_SET:
6062		perms = MSGQ__SETATTR;
6063		break;
6064	case IPC_RMID:
6065		perms = MSGQ__DESTROY;
6066		break;
6067	default:
6068		return 0;
6069	}
6070
6071	err = ipc_has_perm(msq, perms);
6072	return err;
6073}
6074
6075static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6076{
6077	struct ipc_security_struct *isec;
6078	struct msg_security_struct *msec;
6079	struct common_audit_data ad;
6080	u32 sid = current_sid();
6081	int rc;
6082
6083	isec = selinux_ipc(msq);
6084	msec = selinux_msg_msg(msg);
6085
6086	/*
6087	 * First time through, need to assign label to the message
6088	 */
6089	if (msec->sid == SECINITSID_UNLABELED) {
6090		/*
6091		 * Compute new sid based on current process and
6092		 * message queue this message will be stored in
6093		 */
6094		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6095					     SECCLASS_MSG, NULL, &msec->sid);
6096		if (rc)
6097			return rc;
6098	}
6099
6100	ad.type = LSM_AUDIT_DATA_IPC;
6101	ad.u.ipc_id = msq->key;
6102
6103	/* Can this process write to the queue? */
6104	rc = avc_has_perm(&selinux_state,
6105			  sid, isec->sid, SECCLASS_MSGQ,
6106			  MSGQ__WRITE, &ad);
6107	if (!rc)
6108		/* Can this process send the message */
6109		rc = avc_has_perm(&selinux_state,
6110				  sid, msec->sid, SECCLASS_MSG,
6111				  MSG__SEND, &ad);
6112	if (!rc)
6113		/* Can the message be put in the queue? */
6114		rc = avc_has_perm(&selinux_state,
6115				  msec->sid, isec->sid, SECCLASS_MSGQ,
6116				  MSGQ__ENQUEUE, &ad);
6117
6118	return rc;
6119}
6120
6121static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6122				    struct task_struct *target,
6123				    long type, int mode)
6124{
6125	struct ipc_security_struct *isec;
6126	struct msg_security_struct *msec;
6127	struct common_audit_data ad;
6128	u32 sid = task_sid_obj(target);
6129	int rc;
6130
6131	isec = selinux_ipc(msq);
6132	msec = selinux_msg_msg(msg);
6133
6134	ad.type = LSM_AUDIT_DATA_IPC;
6135	ad.u.ipc_id = msq->key;
6136
6137	rc = avc_has_perm(&selinux_state,
6138			  sid, isec->sid,
6139			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6140	if (!rc)
6141		rc = avc_has_perm(&selinux_state,
6142				  sid, msec->sid,
6143				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6144	return rc;
6145}
6146
6147/* Shared Memory security operations */
6148static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6149{
6150	struct ipc_security_struct *isec;
6151	struct common_audit_data ad;
6152	u32 sid = current_sid();
6153
6154	isec = selinux_ipc(shp);
6155	ipc_init_security(isec, SECCLASS_SHM);
6156
6157	ad.type = LSM_AUDIT_DATA_IPC;
6158	ad.u.ipc_id = shp->key;
6159
6160	return avc_has_perm(&selinux_state,
6161			    sid, isec->sid, SECCLASS_SHM,
6162			    SHM__CREATE, &ad);
6163}
6164
6165static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6166{
6167	struct ipc_security_struct *isec;
6168	struct common_audit_data ad;
6169	u32 sid = current_sid();
6170
6171	isec = selinux_ipc(shp);
6172
6173	ad.type = LSM_AUDIT_DATA_IPC;
6174	ad.u.ipc_id = shp->key;
6175
6176	return avc_has_perm(&selinux_state,
6177			    sid, isec->sid, SECCLASS_SHM,
6178			    SHM__ASSOCIATE, &ad);
6179}
6180
6181/* Note, at this point, shp is locked down */
6182static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6183{
6184	int perms;
6185	int err;
6186
6187	switch (cmd) {
6188	case IPC_INFO:
6189	case SHM_INFO:
6190		/* No specific object, just general system-wide information. */
6191		return avc_has_perm(&selinux_state,
6192				    current_sid(), SECINITSID_KERNEL,
6193				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6194	case IPC_STAT:
6195	case SHM_STAT:
6196	case SHM_STAT_ANY:
6197		perms = SHM__GETATTR | SHM__ASSOCIATE;
6198		break;
6199	case IPC_SET:
6200		perms = SHM__SETATTR;
6201		break;
6202	case SHM_LOCK:
6203	case SHM_UNLOCK:
6204		perms = SHM__LOCK;
6205		break;
6206	case IPC_RMID:
6207		perms = SHM__DESTROY;
6208		break;
6209	default:
6210		return 0;
6211	}
6212
6213	err = ipc_has_perm(shp, perms);
6214	return err;
6215}
6216
6217static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6218			     char __user *shmaddr, int shmflg)
6219{
6220	u32 perms;
6221
6222	if (shmflg & SHM_RDONLY)
6223		perms = SHM__READ;
6224	else
6225		perms = SHM__READ | SHM__WRITE;
6226
6227	return ipc_has_perm(shp, perms);
6228}
6229
6230/* Semaphore security operations */
6231static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6232{
6233	struct ipc_security_struct *isec;
6234	struct common_audit_data ad;
6235	u32 sid = current_sid();
6236
6237	isec = selinux_ipc(sma);
6238	ipc_init_security(isec, SECCLASS_SEM);
6239
6240	ad.type = LSM_AUDIT_DATA_IPC;
6241	ad.u.ipc_id = sma->key;
6242
6243	return avc_has_perm(&selinux_state,
6244			    sid, isec->sid, SECCLASS_SEM,
6245			    SEM__CREATE, &ad);
6246}
6247
6248static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6249{
6250	struct ipc_security_struct *isec;
6251	struct common_audit_data ad;
6252	u32 sid = current_sid();
6253
6254	isec = selinux_ipc(sma);
6255
6256	ad.type = LSM_AUDIT_DATA_IPC;
6257	ad.u.ipc_id = sma->key;
6258
6259	return avc_has_perm(&selinux_state,
6260			    sid, isec->sid, SECCLASS_SEM,
6261			    SEM__ASSOCIATE, &ad);
6262}
6263
6264/* Note, at this point, sma is locked down */
6265static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6266{
6267	int err;
6268	u32 perms;
6269
6270	switch (cmd) {
6271	case IPC_INFO:
6272	case SEM_INFO:
6273		/* No specific object, just general system-wide information. */
6274		return avc_has_perm(&selinux_state,
6275				    current_sid(), SECINITSID_KERNEL,
6276				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6277	case GETPID:
6278	case GETNCNT:
6279	case GETZCNT:
6280		perms = SEM__GETATTR;
6281		break;
6282	case GETVAL:
6283	case GETALL:
6284		perms = SEM__READ;
6285		break;
6286	case SETVAL:
6287	case SETALL:
6288		perms = SEM__WRITE;
6289		break;
6290	case IPC_RMID:
6291		perms = SEM__DESTROY;
6292		break;
6293	case IPC_SET:
6294		perms = SEM__SETATTR;
6295		break;
6296	case IPC_STAT:
6297	case SEM_STAT:
6298	case SEM_STAT_ANY:
6299		perms = SEM__GETATTR | SEM__ASSOCIATE;
6300		break;
6301	default:
6302		return 0;
6303	}
6304
6305	err = ipc_has_perm(sma, perms);
6306	return err;
6307}
6308
6309static int selinux_sem_semop(struct kern_ipc_perm *sma,
6310			     struct sembuf *sops, unsigned nsops, int alter)
6311{
6312	u32 perms;
6313
6314	if (alter)
6315		perms = SEM__READ | SEM__WRITE;
6316	else
6317		perms = SEM__READ;
6318
6319	return ipc_has_perm(sma, perms);
6320}
6321
6322static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6323{
6324	u32 av = 0;
6325
6326	av = 0;
6327	if (flag & S_IRUGO)
6328		av |= IPC__UNIX_READ;
6329	if (flag & S_IWUGO)
6330		av |= IPC__UNIX_WRITE;
6331
6332	if (av == 0)
6333		return 0;
6334
6335	return ipc_has_perm(ipcp, av);
6336}
6337
6338static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6339{
6340	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6341	*secid = isec->sid;
6342}
6343
6344static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6345{
6346	if (inode)
6347		inode_doinit_with_dentry(inode, dentry);
6348}
6349
6350static int selinux_getprocattr(struct task_struct *p,
6351			       const char *name, char **value)
6352{
6353	const struct task_security_struct *__tsec;
6354	u32 sid;
6355	int error;
6356	unsigned len;
6357
6358	rcu_read_lock();
6359	__tsec = selinux_cred(__task_cred(p));
6360
6361	if (current != p) {
6362		error = avc_has_perm(&selinux_state,
6363				     current_sid(), __tsec->sid,
6364				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6365		if (error)
6366			goto bad;
6367	}
6368
6369	if (!strcmp(name, "current"))
 
6370		sid = __tsec->sid;
6371	else if (!strcmp(name, "prev"))
 
6372		sid = __tsec->osid;
6373	else if (!strcmp(name, "exec"))
 
6374		sid = __tsec->exec_sid;
6375	else if (!strcmp(name, "fscreate"))
 
6376		sid = __tsec->create_sid;
6377	else if (!strcmp(name, "keycreate"))
 
6378		sid = __tsec->keycreate_sid;
6379	else if (!strcmp(name, "sockcreate"))
 
6380		sid = __tsec->sockcreate_sid;
6381	else {
6382		error = -EINVAL;
 
6383		goto bad;
6384	}
6385	rcu_read_unlock();
6386
6387	if (!sid)
6388		return 0;
6389
6390	error = security_sid_to_context(&selinux_state, sid, value, &len);
6391	if (error)
6392		return error;
6393	return len;
6394
6395bad:
6396	rcu_read_unlock();
6397	return error;
6398}
6399
6400static int selinux_setprocattr(const char *name, void *value, size_t size)
6401{
6402	struct task_security_struct *tsec;
6403	struct cred *new;
6404	u32 mysid = current_sid(), sid = 0, ptsid;
6405	int error;
6406	char *str = value;
6407
6408	/*
6409	 * Basic control over ability to set these attributes at all.
6410	 */
6411	if (!strcmp(name, "exec"))
6412		error = avc_has_perm(&selinux_state,
6413				     mysid, mysid, SECCLASS_PROCESS,
6414				     PROCESS__SETEXEC, NULL);
6415	else if (!strcmp(name, "fscreate"))
6416		error = avc_has_perm(&selinux_state,
6417				     mysid, mysid, SECCLASS_PROCESS,
6418				     PROCESS__SETFSCREATE, NULL);
6419	else if (!strcmp(name, "keycreate"))
6420		error = avc_has_perm(&selinux_state,
6421				     mysid, mysid, SECCLASS_PROCESS,
6422				     PROCESS__SETKEYCREATE, NULL);
6423	else if (!strcmp(name, "sockcreate"))
6424		error = avc_has_perm(&selinux_state,
6425				     mysid, mysid, SECCLASS_PROCESS,
6426				     PROCESS__SETSOCKCREATE, NULL);
6427	else if (!strcmp(name, "current"))
6428		error = avc_has_perm(&selinux_state,
6429				     mysid, mysid, SECCLASS_PROCESS,
6430				     PROCESS__SETCURRENT, NULL);
6431	else
6432		error = -EINVAL;
 
 
 
6433	if (error)
6434		return error;
6435
6436	/* Obtain a SID for the context, if one was specified. */
6437	if (size && str[0] && str[0] != '\n') {
6438		if (str[size-1] == '\n') {
6439			str[size-1] = 0;
6440			size--;
6441		}
6442		error = security_context_to_sid(&selinux_state, value, size,
6443						&sid, GFP_KERNEL);
6444		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6445			if (!has_cap_mac_admin(true)) {
6446				struct audit_buffer *ab;
6447				size_t audit_size;
6448
6449				/* We strip a nul only if it is at the end, otherwise the
6450				 * context contains a nul and we should audit that */
 
6451				if (str[size - 1] == '\0')
6452					audit_size = size - 1;
6453				else
6454					audit_size = size;
6455				ab = audit_log_start(audit_context(),
6456						     GFP_ATOMIC,
6457						     AUDIT_SELINUX_ERR);
6458				if (!ab)
6459					return error;
6460				audit_log_format(ab, "op=fscreate invalid_context=");
6461				audit_log_n_untrustedstring(ab, value, audit_size);
 
6462				audit_log_end(ab);
6463
6464				return error;
6465			}
6466			error = security_context_to_sid_force(
6467						      &selinux_state,
6468						      value, size, &sid);
6469		}
6470		if (error)
6471			return error;
6472	}
6473
6474	new = prepare_creds();
6475	if (!new)
6476		return -ENOMEM;
6477
6478	/* Permission checking based on the specified context is
6479	   performed during the actual operation (execve,
6480	   open/mkdir/...), when we know the full context of the
6481	   operation.  See selinux_bprm_creds_for_exec for the execve
6482	   checks and may_create for the file creation checks. The
6483	   operation will then fail if the context is not permitted. */
6484	tsec = selinux_cred(new);
6485	if (!strcmp(name, "exec")) {
6486		tsec->exec_sid = sid;
6487	} else if (!strcmp(name, "fscreate")) {
6488		tsec->create_sid = sid;
6489	} else if (!strcmp(name, "keycreate")) {
6490		if (sid) {
6491			error = avc_has_perm(&selinux_state, mysid, sid,
6492					     SECCLASS_KEY, KEY__CREATE, NULL);
6493			if (error)
6494				goto abort_change;
6495		}
6496		tsec->keycreate_sid = sid;
6497	} else if (!strcmp(name, "sockcreate")) {
6498		tsec->sockcreate_sid = sid;
6499	} else if (!strcmp(name, "current")) {
6500		error = -EINVAL;
6501		if (sid == 0)
6502			goto abort_change;
6503
6504		/* Only allow single threaded processes to change context */
6505		if (!current_is_single_threaded()) {
6506			error = security_bounded_transition(&selinux_state,
6507							    tsec->sid, sid);
6508			if (error)
6509				goto abort_change;
6510		}
6511
6512		/* Check permissions for the transition. */
6513		error = avc_has_perm(&selinux_state,
6514				     tsec->sid, sid, SECCLASS_PROCESS,
6515				     PROCESS__DYNTRANSITION, NULL);
6516		if (error)
6517			goto abort_change;
6518
6519		/* Check for ptracing, and update the task SID if ok.
6520		   Otherwise, leave SID unchanged and fail. */
6521		ptsid = ptrace_parent_sid();
6522		if (ptsid != 0) {
6523			error = avc_has_perm(&selinux_state,
6524					     ptsid, sid, SECCLASS_PROCESS,
6525					     PROCESS__PTRACE, NULL);
6526			if (error)
6527				goto abort_change;
6528		}
6529
6530		tsec->sid = sid;
6531	} else {
6532		error = -EINVAL;
6533		goto abort_change;
6534	}
6535
6536	commit_creds(new);
6537	return size;
6538
6539abort_change:
6540	abort_creds(new);
6541	return error;
6542}
6543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6544static int selinux_ismaclabel(const char *name)
6545{
6546	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6547}
6548
6549static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6550{
6551	return security_sid_to_context(&selinux_state, secid,
6552				       secdata, seclen);
6553}
6554
6555static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6556{
6557	return security_context_to_sid(&selinux_state, secdata, seclen,
6558				       secid, GFP_KERNEL);
6559}
6560
6561static void selinux_release_secctx(char *secdata, u32 seclen)
6562{
6563	kfree(secdata);
6564}
6565
6566static void selinux_inode_invalidate_secctx(struct inode *inode)
6567{
6568	struct inode_security_struct *isec = selinux_inode(inode);
6569
6570	spin_lock(&isec->lock);
6571	isec->initialized = LABEL_INVALID;
6572	spin_unlock(&isec->lock);
6573}
6574
6575/*
6576 *	called with inode->i_mutex locked
6577 */
6578static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6579{
6580	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6581					   ctx, ctxlen, 0);
6582	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6583	return rc == -EOPNOTSUPP ? 0 : rc;
6584}
6585
6586/*
6587 *	called with inode->i_mutex locked
6588 */
6589static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6590{
6591	return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6592				     ctx, ctxlen, 0);
6593}
6594
6595static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6596{
6597	int len = 0;
6598	len = selinux_inode_getsecurity(&init_user_ns, inode,
6599					XATTR_SELINUX_SUFFIX, ctx, true);
6600	if (len < 0)
6601		return len;
6602	*ctxlen = len;
6603	return 0;
6604}
6605#ifdef CONFIG_KEYS
6606
6607static int selinux_key_alloc(struct key *k, const struct cred *cred,
6608			     unsigned long flags)
6609{
6610	const struct task_security_struct *tsec;
6611	struct key_security_struct *ksec;
6612
6613	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6614	if (!ksec)
6615		return -ENOMEM;
6616
6617	tsec = selinux_cred(cred);
6618	if (tsec->keycreate_sid)
6619		ksec->sid = tsec->keycreate_sid;
6620	else
6621		ksec->sid = tsec->sid;
6622
6623	k->security = ksec;
6624	return 0;
6625}
6626
6627static void selinux_key_free(struct key *k)
6628{
6629	struct key_security_struct *ksec = k->security;
6630
6631	k->security = NULL;
6632	kfree(ksec);
6633}
6634
6635static int selinux_key_permission(key_ref_t key_ref,
6636				  const struct cred *cred,
6637				  enum key_need_perm need_perm)
6638{
6639	struct key *key;
6640	struct key_security_struct *ksec;
6641	u32 perm, sid;
6642
6643	switch (need_perm) {
6644	case KEY_NEED_VIEW:
6645		perm = KEY__VIEW;
6646		break;
6647	case KEY_NEED_READ:
6648		perm = KEY__READ;
6649		break;
6650	case KEY_NEED_WRITE:
6651		perm = KEY__WRITE;
6652		break;
6653	case KEY_NEED_SEARCH:
6654		perm = KEY__SEARCH;
6655		break;
6656	case KEY_NEED_LINK:
6657		perm = KEY__LINK;
6658		break;
6659	case KEY_NEED_SETATTR:
6660		perm = KEY__SETATTR;
6661		break;
6662	case KEY_NEED_UNLINK:
6663	case KEY_SYSADMIN_OVERRIDE:
6664	case KEY_AUTHTOKEN_OVERRIDE:
6665	case KEY_DEFER_PERM_CHECK:
6666		return 0;
6667	default:
6668		WARN_ON(1);
6669		return -EPERM;
6670
6671	}
6672
6673	sid = cred_sid(cred);
6674	key = key_ref_to_ptr(key_ref);
6675	ksec = key->security;
6676
6677	return avc_has_perm(&selinux_state,
6678			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6679}
6680
6681static int selinux_key_getsecurity(struct key *key, char **_buffer)
6682{
6683	struct key_security_struct *ksec = key->security;
6684	char *context = NULL;
6685	unsigned len;
6686	int rc;
6687
6688	rc = security_sid_to_context(&selinux_state, ksec->sid,
6689				     &context, &len);
6690	if (!rc)
6691		rc = len;
6692	*_buffer = context;
6693	return rc;
6694}
6695
6696#ifdef CONFIG_KEY_NOTIFICATIONS
6697static int selinux_watch_key(struct key *key)
6698{
6699	struct key_security_struct *ksec = key->security;
6700	u32 sid = current_sid();
6701
6702	return avc_has_perm(&selinux_state,
6703			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6704}
6705#endif
6706#endif
6707
6708#ifdef CONFIG_SECURITY_INFINIBAND
6709static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6710{
6711	struct common_audit_data ad;
6712	int err;
6713	u32 sid = 0;
6714	struct ib_security_struct *sec = ib_sec;
6715	struct lsm_ibpkey_audit ibpkey;
6716
6717	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6718	if (err)
6719		return err;
6720
6721	ad.type = LSM_AUDIT_DATA_IBPKEY;
6722	ibpkey.subnet_prefix = subnet_prefix;
6723	ibpkey.pkey = pkey_val;
6724	ad.u.ibpkey = &ibpkey;
6725	return avc_has_perm(&selinux_state,
6726			    sec->sid, sid,
6727			    SECCLASS_INFINIBAND_PKEY,
6728			    INFINIBAND_PKEY__ACCESS, &ad);
6729}
6730
6731static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6732					    u8 port_num)
6733{
6734	struct common_audit_data ad;
6735	int err;
6736	u32 sid = 0;
6737	struct ib_security_struct *sec = ib_sec;
6738	struct lsm_ibendport_audit ibendport;
6739
6740	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6741				      &sid);
6742
6743	if (err)
6744		return err;
6745
6746	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6747	ibendport.dev_name = dev_name;
6748	ibendport.port = port_num;
6749	ad.u.ibendport = &ibendport;
6750	return avc_has_perm(&selinux_state,
6751			    sec->sid, sid,
6752			    SECCLASS_INFINIBAND_ENDPORT,
6753			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6754}
6755
6756static int selinux_ib_alloc_security(void **ib_sec)
6757{
6758	struct ib_security_struct *sec;
6759
6760	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6761	if (!sec)
6762		return -ENOMEM;
6763	sec->sid = current_sid();
6764
6765	*ib_sec = sec;
6766	return 0;
6767}
6768
6769static void selinux_ib_free_security(void *ib_sec)
6770{
6771	kfree(ib_sec);
6772}
6773#endif
6774
6775#ifdef CONFIG_BPF_SYSCALL
6776static int selinux_bpf(int cmd, union bpf_attr *attr,
6777				     unsigned int size)
6778{
6779	u32 sid = current_sid();
6780	int ret;
6781
6782	switch (cmd) {
6783	case BPF_MAP_CREATE:
6784		ret = avc_has_perm(&selinux_state,
6785				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6786				   NULL);
6787		break;
6788	case BPF_PROG_LOAD:
6789		ret = avc_has_perm(&selinux_state,
6790				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6791				   NULL);
6792		break;
6793	default:
6794		ret = 0;
6795		break;
6796	}
6797
6798	return ret;
6799}
6800
6801static u32 bpf_map_fmode_to_av(fmode_t fmode)
6802{
6803	u32 av = 0;
6804
6805	if (fmode & FMODE_READ)
6806		av |= BPF__MAP_READ;
6807	if (fmode & FMODE_WRITE)
6808		av |= BPF__MAP_WRITE;
6809	return av;
6810}
6811
6812/* This function will check the file pass through unix socket or binder to see
6813 * if it is a bpf related object. And apply corresponding checks on the bpf
6814 * object based on the type. The bpf maps and programs, not like other files and
6815 * socket, are using a shared anonymous inode inside the kernel as their inode.
6816 * So checking that inode cannot identify if the process have privilege to
6817 * access the bpf object and that's why we have to add this additional check in
6818 * selinux_file_receive and selinux_binder_transfer_files.
6819 */
6820static int bpf_fd_pass(struct file *file, u32 sid)
6821{
6822	struct bpf_security_struct *bpfsec;
6823	struct bpf_prog *prog;
6824	struct bpf_map *map;
6825	int ret;
6826
6827	if (file->f_op == &bpf_map_fops) {
6828		map = file->private_data;
6829		bpfsec = map->security;
6830		ret = avc_has_perm(&selinux_state,
6831				   sid, bpfsec->sid, SECCLASS_BPF,
6832				   bpf_map_fmode_to_av(file->f_mode), NULL);
6833		if (ret)
6834			return ret;
6835	} else if (file->f_op == &bpf_prog_fops) {
6836		prog = file->private_data;
6837		bpfsec = prog->aux->security;
6838		ret = avc_has_perm(&selinux_state,
6839				   sid, bpfsec->sid, SECCLASS_BPF,
6840				   BPF__PROG_RUN, NULL);
6841		if (ret)
6842			return ret;
6843	}
6844	return 0;
6845}
6846
6847static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6848{
6849	u32 sid = current_sid();
6850	struct bpf_security_struct *bpfsec;
6851
6852	bpfsec = map->security;
6853	return avc_has_perm(&selinux_state,
6854			    sid, bpfsec->sid, SECCLASS_BPF,
6855			    bpf_map_fmode_to_av(fmode), NULL);
6856}
6857
6858static int selinux_bpf_prog(struct bpf_prog *prog)
6859{
6860	u32 sid = current_sid();
6861	struct bpf_security_struct *bpfsec;
6862
6863	bpfsec = prog->aux->security;
6864	return avc_has_perm(&selinux_state,
6865			    sid, bpfsec->sid, SECCLASS_BPF,
6866			    BPF__PROG_RUN, NULL);
6867}
6868
6869static int selinux_bpf_map_alloc(struct bpf_map *map)
 
6870{
6871	struct bpf_security_struct *bpfsec;
6872
6873	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6874	if (!bpfsec)
6875		return -ENOMEM;
6876
6877	bpfsec->sid = current_sid();
6878	map->security = bpfsec;
6879
6880	return 0;
6881}
6882
6883static void selinux_bpf_map_free(struct bpf_map *map)
6884{
6885	struct bpf_security_struct *bpfsec = map->security;
6886
6887	map->security = NULL;
6888	kfree(bpfsec);
6889}
6890
6891static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
 
6892{
6893	struct bpf_security_struct *bpfsec;
6894
6895	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6896	if (!bpfsec)
6897		return -ENOMEM;
6898
6899	bpfsec->sid = current_sid();
6900	aux->security = bpfsec;
6901
6902	return 0;
6903}
6904
6905static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6906{
6907	struct bpf_security_struct *bpfsec = aux->security;
6908
6909	aux->security = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6910	kfree(bpfsec);
6911}
6912#endif
6913
6914struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6915	.lbs_cred = sizeof(struct task_security_struct),
6916	.lbs_file = sizeof(struct file_security_struct),
6917	.lbs_inode = sizeof(struct inode_security_struct),
6918	.lbs_ipc = sizeof(struct ipc_security_struct),
6919	.lbs_msg_msg = sizeof(struct msg_security_struct),
6920	.lbs_superblock = sizeof(struct superblock_security_struct),
 
6921};
6922
6923#ifdef CONFIG_PERF_EVENTS
6924static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6925{
6926	u32 requested, sid = current_sid();
6927
6928	if (type == PERF_SECURITY_OPEN)
6929		requested = PERF_EVENT__OPEN;
6930	else if (type == PERF_SECURITY_CPU)
6931		requested = PERF_EVENT__CPU;
6932	else if (type == PERF_SECURITY_KERNEL)
6933		requested = PERF_EVENT__KERNEL;
6934	else if (type == PERF_SECURITY_TRACEPOINT)
6935		requested = PERF_EVENT__TRACEPOINT;
6936	else
6937		return -EINVAL;
6938
6939	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6940			    requested, NULL);
6941}
6942
6943static int selinux_perf_event_alloc(struct perf_event *event)
6944{
6945	struct perf_event_security_struct *perfsec;
6946
6947	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6948	if (!perfsec)
6949		return -ENOMEM;
6950
6951	perfsec->sid = current_sid();
6952	event->security = perfsec;
6953
6954	return 0;
6955}
6956
6957static void selinux_perf_event_free(struct perf_event *event)
6958{
6959	struct perf_event_security_struct *perfsec = event->security;
6960
6961	event->security = NULL;
6962	kfree(perfsec);
6963}
6964
6965static int selinux_perf_event_read(struct perf_event *event)
6966{
6967	struct perf_event_security_struct *perfsec = event->security;
6968	u32 sid = current_sid();
6969
6970	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6971			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6972}
6973
6974static int selinux_perf_event_write(struct perf_event *event)
6975{
6976	struct perf_event_security_struct *perfsec = event->security;
6977	u32 sid = current_sid();
6978
6979	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6980			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6981}
6982#endif
6983
6984#ifdef CONFIG_IO_URING
6985/**
6986 * selinux_uring_override_creds - check the requested cred override
6987 * @new: the target creds
6988 *
6989 * Check to see if the current task is allowed to override it's credentials
6990 * to service an io_uring operation.
6991 */
6992static int selinux_uring_override_creds(const struct cred *new)
6993{
6994	return avc_has_perm(&selinux_state, current_sid(), cred_sid(new),
6995			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
6996}
6997
6998/**
6999 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7000 *
7001 * Check to see if the current task is allowed to create a new io_uring
7002 * kernel polling thread.
7003 */
7004static int selinux_uring_sqpoll(void)
7005{
7006	int sid = current_sid();
7007
7008	return avc_has_perm(&selinux_state, sid, sid,
7009			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7010}
7011
7012/**
7013 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7014 * @ioucmd: the io_uring command structure
7015 *
7016 * Check to see if the current domain is allowed to execute an
7017 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7018 *
7019 */
7020static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7021{
7022	struct file *file = ioucmd->file;
7023	struct inode *inode = file_inode(file);
7024	struct inode_security_struct *isec = selinux_inode(inode);
7025	struct common_audit_data ad;
7026
7027	ad.type = LSM_AUDIT_DATA_FILE;
7028	ad.u.file = file;
7029
7030	return avc_has_perm(&selinux_state, current_sid(), isec->sid,
7031			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7032}
7033#endif /* CONFIG_IO_URING */
7034
 
 
 
 
 
7035/*
7036 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7037 * 1. any hooks that don't belong to (2.) or (3.) below,
7038 * 2. hooks that both access structures allocated by other hooks, and allocate
7039 *    structures that can be later accessed by other hooks (mostly "cloning"
7040 *    hooks),
7041 * 3. hooks that only allocate structures that can be later accessed by other
7042 *    hooks ("allocating" hooks).
7043 *
7044 * Please follow block comment delimiters in the list to keep this order.
7045 *
7046 * This ordering is needed for SELinux runtime disable to work at least somewhat
7047 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7048 * when disabling SELinux at runtime.
7049 */
7050static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7051	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7052	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7053	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7054	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7055
7056	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7057	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7058	LSM_HOOK_INIT(capget, selinux_capget),
7059	LSM_HOOK_INIT(capset, selinux_capset),
7060	LSM_HOOK_INIT(capable, selinux_capable),
7061	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7062	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7063	LSM_HOOK_INIT(syslog, selinux_syslog),
7064	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7065
7066	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7067
7068	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7069	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7070	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7071
7072	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7073	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7074	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7075	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7076	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7077	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7078	LSM_HOOK_INIT(sb_mount, selinux_mount),
7079	LSM_HOOK_INIT(sb_umount, selinux_umount),
7080	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7081	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7082
7083	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7084
7085	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7086	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7087
7088	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7089	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7090	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7091	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7092	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7093	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7094	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7095	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7096	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7097	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7098	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7099	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7100	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7101	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7102	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7103	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7104	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7105	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7106	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7107	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7108	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7109	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7110	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7111	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7112	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7113	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7114	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7115	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7116	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7117	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7118	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7119
7120	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7121
7122	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7123	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7124	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
 
7125	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7126	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7127	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7128	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7129	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7130	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7131	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7132	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7133
7134	LSM_HOOK_INIT(file_open, selinux_file_open),
7135
7136	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7137	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7138	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7139	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7140	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7141	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7142	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7143	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7144	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7145	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7146	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7147	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7148	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7149	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7150	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7151	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7152	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7153	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7154	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7155	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7156	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7157	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7158	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7159	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7160	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7161
7162	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7163	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7164
7165	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7166	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7167	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7168	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7169
7170	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7171	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7172	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7173
7174	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7175	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7176	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7177
7178	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7179
 
 
7180	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7181	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7182
7183	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7184	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7185	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7186	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7187	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7188	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7189
7190	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7191	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7192
7193	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7194	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7195	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7196	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7197	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7198	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7199	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7200	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7201	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7202	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7203	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7204	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7205	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7206	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7207	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7208	LSM_HOOK_INIT(socket_getpeersec_stream,
7209			selinux_socket_getpeersec_stream),
7210	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7211	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7212	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7213	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7214	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7215	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7216	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7217	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7218	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
 
7219	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7220	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7221	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7222	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7223	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7224	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7225	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7226	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7227	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7228	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7229	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7230	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7231#ifdef CONFIG_SECURITY_INFINIBAND
7232	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7233	LSM_HOOK_INIT(ib_endport_manage_subnet,
7234		      selinux_ib_endport_manage_subnet),
7235	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7236#endif
7237#ifdef CONFIG_SECURITY_NETWORK_XFRM
7238	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7239	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7240	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7241	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7242	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7243	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7244			selinux_xfrm_state_pol_flow_match),
7245	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7246#endif
7247
7248#ifdef CONFIG_KEYS
7249	LSM_HOOK_INIT(key_free, selinux_key_free),
7250	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7251	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7252#ifdef CONFIG_KEY_NOTIFICATIONS
7253	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7254#endif
7255#endif
7256
7257#ifdef CONFIG_AUDIT
7258	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7259	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7260	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7261#endif
7262
7263#ifdef CONFIG_BPF_SYSCALL
7264	LSM_HOOK_INIT(bpf, selinux_bpf),
7265	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7266	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7267	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7268	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
 
7269#endif
7270
7271#ifdef CONFIG_PERF_EVENTS
7272	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7273	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7274	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7275	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7276#endif
7277
7278#ifdef CONFIG_IO_URING
7279	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7280	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7281	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7282#endif
7283
7284	/*
7285	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7286	 */
 
7287	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7288	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7289	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7290#ifdef CONFIG_SECURITY_NETWORK_XFRM
7291	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7292#endif
7293
7294	/*
7295	 * PUT "ALLOCATING" HOOKS HERE
7296	 */
7297	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7298	LSM_HOOK_INIT(msg_queue_alloc_security,
7299		      selinux_msg_queue_alloc_security),
7300	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7301	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7302	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7303	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7304	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7305	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7306	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7307	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7308#ifdef CONFIG_SECURITY_INFINIBAND
7309	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7310#endif
7311#ifdef CONFIG_SECURITY_NETWORK_XFRM
7312	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7313	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7314	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7315		      selinux_xfrm_state_alloc_acquire),
7316#endif
7317#ifdef CONFIG_KEYS
7318	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7319#endif
7320#ifdef CONFIG_AUDIT
7321	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7322#endif
7323#ifdef CONFIG_BPF_SYSCALL
7324	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7325	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
 
7326#endif
7327#ifdef CONFIG_PERF_EVENTS
7328	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7329#endif
7330};
7331
7332static __init int selinux_init(void)
7333{
7334	pr_info("SELinux:  Initializing.\n");
7335
7336	memset(&selinux_state, 0, sizeof(selinux_state));
7337	enforcing_set(&selinux_state, selinux_enforcing_boot);
7338	if (CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE)
7339		pr_err("SELinux: CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE is non-zero.  This is deprecated and will be rejected in a future kernel release.\n");
7340	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7341	selinux_avc_init(&selinux_state.avc);
7342	mutex_init(&selinux_state.status_lock);
7343	mutex_init(&selinux_state.policy_mutex);
7344
7345	/* Set the security state for the initial task. */
7346	cred_init_security();
7347
7348	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
 
 
7349
7350	avc_init();
7351
7352	avtab_cache_init();
7353
7354	ebitmap_cache_init();
7355
7356	hashtab_cache_init();
7357
7358	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
 
7359
7360	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7361		panic("SELinux: Unable to register AVC netcache callback\n");
7362
7363	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7364		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7365
7366	if (selinux_enforcing_boot)
7367		pr_debug("SELinux:  Starting in enforcing mode\n");
7368	else
7369		pr_debug("SELinux:  Starting in permissive mode\n");
7370
7371	fs_validate_description("selinux", selinux_fs_parameters);
7372
7373	return 0;
7374}
7375
7376static void delayed_superblock_init(struct super_block *sb, void *unused)
7377{
7378	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7379}
7380
7381void selinux_complete_init(void)
7382{
7383	pr_debug("SELinux:  Completing initialization.\n");
7384
7385	/* Set up any superblocks initialized prior to the policy load. */
7386	pr_debug("SELinux:  Setting up existing superblocks.\n");
7387	iterate_supers(delayed_superblock_init, NULL);
7388}
7389
7390/* SELinux requires early initialization in order to label
7391   all processes and objects when they are created. */
7392DEFINE_LSM(selinux) = {
7393	.name = "selinux",
7394	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7395	.enabled = &selinux_enabled_boot,
7396	.blobs = &selinux_blob_sizes,
7397	.init = selinux_init,
7398};
7399
7400#if defined(CONFIG_NETFILTER)
7401
7402static const struct nf_hook_ops selinux_nf_ops[] = {
7403	{
7404		.hook =		selinux_ip_postroute,
7405		.pf =		NFPROTO_IPV4,
7406		.hooknum =	NF_INET_POST_ROUTING,
7407		.priority =	NF_IP_PRI_SELINUX_LAST,
7408	},
7409	{
7410		.hook =		selinux_ip_forward,
7411		.pf =		NFPROTO_IPV4,
7412		.hooknum =	NF_INET_FORWARD,
7413		.priority =	NF_IP_PRI_SELINUX_FIRST,
7414	},
7415	{
7416		.hook =		selinux_ip_output,
7417		.pf =		NFPROTO_IPV4,
7418		.hooknum =	NF_INET_LOCAL_OUT,
7419		.priority =	NF_IP_PRI_SELINUX_FIRST,
7420	},
7421#if IS_ENABLED(CONFIG_IPV6)
7422	{
7423		.hook =		selinux_ip_postroute,
7424		.pf =		NFPROTO_IPV6,
7425		.hooknum =	NF_INET_POST_ROUTING,
7426		.priority =	NF_IP6_PRI_SELINUX_LAST,
7427	},
7428	{
7429		.hook =		selinux_ip_forward,
7430		.pf =		NFPROTO_IPV6,
7431		.hooknum =	NF_INET_FORWARD,
7432		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7433	},
7434	{
7435		.hook =		selinux_ip_output,
7436		.pf =		NFPROTO_IPV6,
7437		.hooknum =	NF_INET_LOCAL_OUT,
7438		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7439	},
7440#endif	/* IPV6 */
7441};
7442
7443static int __net_init selinux_nf_register(struct net *net)
7444{
7445	return nf_register_net_hooks(net, selinux_nf_ops,
7446				     ARRAY_SIZE(selinux_nf_ops));
7447}
7448
7449static void __net_exit selinux_nf_unregister(struct net *net)
7450{
7451	nf_unregister_net_hooks(net, selinux_nf_ops,
7452				ARRAY_SIZE(selinux_nf_ops));
7453}
7454
7455static struct pernet_operations selinux_net_ops = {
7456	.init = selinux_nf_register,
7457	.exit = selinux_nf_unregister,
7458};
7459
7460static int __init selinux_nf_ip_init(void)
7461{
7462	int err;
7463
7464	if (!selinux_enabled_boot)
7465		return 0;
7466
7467	pr_debug("SELinux:  Registering netfilter hooks\n");
7468
7469	err = register_pernet_subsys(&selinux_net_ops);
7470	if (err)
7471		panic("SELinux: register_pernet_subsys: error %d\n", err);
7472
7473	return 0;
7474}
7475__initcall(selinux_nf_ip_init);
7476
7477#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7478static void selinux_nf_ip_exit(void)
7479{
7480	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7481
7482	unregister_pernet_subsys(&selinux_net_ops);
7483}
7484#endif
7485
7486#else /* CONFIG_NETFILTER */
7487
7488#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7489#define selinux_nf_ip_exit()
7490#endif
7491
7492#endif /* CONFIG_NETFILTER */
7493
7494#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7495int selinux_disable(struct selinux_state *state)
7496{
7497	if (selinux_initialized(state)) {
7498		/* Not permitted after initial policy load. */
7499		return -EINVAL;
7500	}
7501
7502	if (selinux_disabled(state)) {
7503		/* Only do this once. */
7504		return -EINVAL;
7505	}
7506
7507	selinux_mark_disabled(state);
7508
7509	pr_info("SELinux:  Disabled at runtime.\n");
7510
7511	/*
7512	 * Unregister netfilter hooks.
7513	 * Must be done before security_delete_hooks() to avoid breaking
7514	 * runtime disable.
7515	 */
7516	selinux_nf_ip_exit();
7517
7518	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7519
7520	/* Try to destroy the avc node cache */
7521	avc_disable();
7522
7523	/* Unregister selinuxfs. */
7524	exit_sel_fs();
7525
7526	return 0;
7527}
7528#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <uapi/linux/shm.h>
  89#include <linux/bpf.h>
  90#include <linux/kernfs.h>
  91#include <linux/stringhash.h>	/* for hashlen_string() */
  92#include <uapi/linux/mount.h>
  93#include <linux/fsnotify.h>
  94#include <linux/fanotify.h>
  95#include <linux/io_uring/cmd.h>
  96#include <uapi/linux/lsm.h>
  97
  98#include "avc.h"
  99#include "objsec.h"
 100#include "netif.h"
 101#include "netnode.h"
 102#include "netport.h"
 103#include "ibpkey.h"
 104#include "xfrm.h"
 105#include "netlabel.h"
 106#include "audit.h"
 107#include "avc_ss.h"
 108
 109#define SELINUX_INODE_INIT_XATTRS 1
 110
 111struct selinux_state selinux_state;
 112
 113/* SECMARK reference count */
 114static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 115
 116#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 117static int selinux_enforcing_boot __initdata;
 118
 119static int __init enforcing_setup(char *str)
 120{
 121	unsigned long enforcing;
 122	if (!kstrtoul(str, 0, &enforcing))
 123		selinux_enforcing_boot = enforcing ? 1 : 0;
 124	return 1;
 125}
 126__setup("enforcing=", enforcing_setup);
 127#else
 128#define selinux_enforcing_boot 1
 129#endif
 130
 131int selinux_enabled_boot __initdata = 1;
 132#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 133static int __init selinux_enabled_setup(char *str)
 134{
 135	unsigned long enabled;
 136	if (!kstrtoul(str, 0, &enabled))
 137		selinux_enabled_boot = enabled ? 1 : 0;
 138	return 1;
 139}
 140__setup("selinux=", selinux_enabled_setup);
 141#endif
 142
 
 
 
 143static int __init checkreqprot_setup(char *str)
 144{
 145	unsigned long checkreqprot;
 146
 147	if (!kstrtoul(str, 0, &checkreqprot)) {
 
 148		if (checkreqprot)
 149			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 214	struct task_security_struct *tsec;
 215
 216	tsec = selinux_cred(unrcu_pointer(current->real_cred));
 217	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 218}
 219
 220/*
 221 * get the security ID of a set of credentials
 222 */
 223static inline u32 cred_sid(const struct cred *cred)
 224{
 225	const struct task_security_struct *tsec;
 226
 227	tsec = selinux_cred(cred);
 228	return tsec->sid;
 229}
 230
 231static void __ad_net_init(struct common_audit_data *ad,
 232			  struct lsm_network_audit *net,
 233			  int ifindex, struct sock *sk, u16 family)
 234{
 235	ad->type = LSM_AUDIT_DATA_NET;
 236	ad->u.net = net;
 237	net->netif = ifindex;
 238	net->sk = sk;
 239	net->family = family;
 240}
 241
 242static void ad_net_init_from_sk(struct common_audit_data *ad,
 243				struct lsm_network_audit *net,
 244				struct sock *sk)
 245{
 246	__ad_net_init(ad, net, 0, sk, 0);
 247}
 248
 249static void ad_net_init_from_iif(struct common_audit_data *ad,
 250				 struct lsm_network_audit *net,
 251				 int ifindex, u16 family)
 252{
 253	__ad_net_init(ad, net, ifindex, NULL, family);
 254}
 255
 256/*
 257 * get the objective security ID of a task
 258 */
 259static inline u32 task_sid_obj(const struct task_struct *task)
 260{
 261	u32 sid;
 262
 263	rcu_read_lock();
 264	sid = cred_sid(__task_cred(task));
 265	rcu_read_unlock();
 266	return sid;
 267}
 268
 269static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 270
 271/*
 272 * Try reloading inode security labels that have been marked as invalid.  The
 273 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 274 * allowed; when set to false, returns -ECHILD when the label is
 275 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 276 */
 277static int __inode_security_revalidate(struct inode *inode,
 278				       struct dentry *dentry,
 279				       bool may_sleep)
 280{
 281	struct inode_security_struct *isec = selinux_inode(inode);
 282
 283	might_sleep_if(may_sleep);
 284
 285	if (selinux_initialized() &&
 286	    isec->initialized != LABEL_INITIALIZED) {
 287		if (!may_sleep)
 288			return -ECHILD;
 289
 290		/*
 291		 * Try reloading the inode security label.  This will fail if
 292		 * @opt_dentry is NULL and no dentry for this inode can be
 293		 * found; in that case, continue using the old label.
 294		 */
 295		inode_doinit_with_dentry(inode, dentry);
 296	}
 297	return 0;
 298}
 299
 300static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 301{
 302	return selinux_inode(inode);
 303}
 304
 305static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 306{
 307	int error;
 308
 309	error = __inode_security_revalidate(inode, NULL, !rcu);
 310	if (error)
 311		return ERR_PTR(error);
 312	return selinux_inode(inode);
 313}
 314
 315/*
 316 * Get the security label of an inode.
 317 */
 318static struct inode_security_struct *inode_security(struct inode *inode)
 319{
 320	__inode_security_revalidate(inode, NULL, true);
 321	return selinux_inode(inode);
 322}
 323
 324static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 325{
 326	struct inode *inode = d_backing_inode(dentry);
 327
 328	return selinux_inode(inode);
 329}
 330
 331/*
 332 * Get the security label of a dentry's backing inode.
 333 */
 334static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 335{
 336	struct inode *inode = d_backing_inode(dentry);
 337
 338	__inode_security_revalidate(inode, dentry, true);
 339	return selinux_inode(inode);
 340}
 341
 342static void inode_free_security(struct inode *inode)
 343{
 344	struct inode_security_struct *isec = selinux_inode(inode);
 345	struct superblock_security_struct *sbsec;
 346
 347	if (!isec)
 348		return;
 349	sbsec = selinux_superblock(inode->i_sb);
 350	/*
 351	 * As not all inode security structures are in a list, we check for
 352	 * empty list outside of the lock to make sure that we won't waste
 353	 * time taking a lock doing nothing.
 354	 *
 355	 * The list_del_init() function can be safely called more than once.
 356	 * It should not be possible for this function to be called with
 357	 * concurrent list_add(), but for better safety against future changes
 358	 * in the code, we use list_empty_careful() here.
 359	 */
 360	if (!list_empty_careful(&isec->list)) {
 361		spin_lock(&sbsec->isec_lock);
 362		list_del_init(&isec->list);
 363		spin_unlock(&sbsec->isec_lock);
 364	}
 365}
 366
 367struct selinux_mnt_opts {
 368	u32 fscontext_sid;
 369	u32 context_sid;
 370	u32 rootcontext_sid;
 371	u32 defcontext_sid;
 372};
 373
 374static void selinux_free_mnt_opts(void *mnt_opts)
 375{
 376	kfree(mnt_opts);
 377}
 378
 379enum {
 380	Opt_error = -1,
 381	Opt_context = 0,
 382	Opt_defcontext = 1,
 383	Opt_fscontext = 2,
 384	Opt_rootcontext = 3,
 385	Opt_seclabel = 4,
 386};
 387
 388#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 389static const struct {
 390	const char *name;
 391	int len;
 392	int opt;
 393	bool has_arg;
 394} tokens[] = {
 395	A(context, true),
 396	A(fscontext, true),
 397	A(defcontext, true),
 398	A(rootcontext, true),
 399	A(seclabel, false),
 400};
 401#undef A
 402
 403static int match_opt_prefix(char *s, int l, char **arg)
 404{
 405	int i;
 406
 407	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 408		size_t len = tokens[i].len;
 409		if (len > l || memcmp(s, tokens[i].name, len))
 410			continue;
 411		if (tokens[i].has_arg) {
 412			if (len == l || s[len] != '=')
 413				continue;
 414			*arg = s + len + 1;
 415		} else if (len != l)
 416			continue;
 417		return tokens[i].opt;
 418	}
 419	return Opt_error;
 420}
 421
 422#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 423
 424static int may_context_mount_sb_relabel(u32 sid,
 425			struct superblock_security_struct *sbsec,
 426			const struct cred *cred)
 427{
 428	const struct task_security_struct *tsec = selinux_cred(cred);
 429	int rc;
 430
 431	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 432			  FILESYSTEM__RELABELFROM, NULL);
 433	if (rc)
 434		return rc;
 435
 436	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 437			  FILESYSTEM__RELABELTO, NULL);
 438	return rc;
 439}
 440
 441static int may_context_mount_inode_relabel(u32 sid,
 442			struct superblock_security_struct *sbsec,
 443			const struct cred *cred)
 444{
 445	const struct task_security_struct *tsec = selinux_cred(cred);
 446	int rc;
 447	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 448			  FILESYSTEM__RELABELFROM, NULL);
 449	if (rc)
 450		return rc;
 451
 452	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 453			  FILESYSTEM__ASSOCIATE, NULL);
 454	return rc;
 455}
 456
 457static int selinux_is_genfs_special_handling(struct super_block *sb)
 458{
 459	/* Special handling. Genfs but also in-core setxattr handler */
 460	return	!strcmp(sb->s_type->name, "sysfs") ||
 461		!strcmp(sb->s_type->name, "pstore") ||
 462		!strcmp(sb->s_type->name, "debugfs") ||
 463		!strcmp(sb->s_type->name, "tracefs") ||
 464		!strcmp(sb->s_type->name, "rootfs") ||
 465		(selinux_policycap_cgroupseclabel() &&
 466		 (!strcmp(sb->s_type->name, "cgroup") ||
 467		  !strcmp(sb->s_type->name, "cgroup2")));
 468}
 469
 470static int selinux_is_sblabel_mnt(struct super_block *sb)
 471{
 472	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 473
 474	/*
 475	 * IMPORTANT: Double-check logic in this function when adding a new
 476	 * SECURITY_FS_USE_* definition!
 477	 */
 478	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 479
 480	switch (sbsec->behavior) {
 481	case SECURITY_FS_USE_XATTR:
 482	case SECURITY_FS_USE_TRANS:
 483	case SECURITY_FS_USE_TASK:
 484	case SECURITY_FS_USE_NATIVE:
 485		return 1;
 486
 487	case SECURITY_FS_USE_GENFS:
 488		return selinux_is_genfs_special_handling(sb);
 489
 490	/* Never allow relabeling on context mounts */
 491	case SECURITY_FS_USE_MNTPOINT:
 492	case SECURITY_FS_USE_NONE:
 493	default:
 494		return 0;
 495	}
 496}
 497
 498static int sb_check_xattr_support(struct super_block *sb)
 499{
 500	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 501	struct dentry *root = sb->s_root;
 502	struct inode *root_inode = d_backing_inode(root);
 503	u32 sid;
 504	int rc;
 505
 506	/*
 507	 * Make sure that the xattr handler exists and that no
 508	 * error other than -ENODATA is returned by getxattr on
 509	 * the root directory.  -ENODATA is ok, as this may be
 510	 * the first boot of the SELinux kernel before we have
 511	 * assigned xattr values to the filesystem.
 512	 */
 513	if (!(root_inode->i_opflags & IOP_XATTR)) {
 514		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 515			sb->s_id, sb->s_type->name);
 516		goto fallback;
 517	}
 518
 519	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 520	if (rc < 0 && rc != -ENODATA) {
 521		if (rc == -EOPNOTSUPP) {
 522			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 523				sb->s_id, sb->s_type->name);
 524			goto fallback;
 525		} else {
 526			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 527				sb->s_id, sb->s_type->name, -rc);
 528			return rc;
 529		}
 530	}
 531	return 0;
 532
 533fallback:
 534	/* No xattr support - try to fallback to genfs if possible. */
 535	rc = security_genfs_sid(sb->s_type->name, "/",
 536				SECCLASS_DIR, &sid);
 537	if (rc)
 538		return -EOPNOTSUPP;
 539
 540	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 541		sb->s_id, sb->s_type->name);
 542	sbsec->behavior = SECURITY_FS_USE_GENFS;
 543	sbsec->sid = sid;
 544	return 0;
 545}
 546
 547static int sb_finish_set_opts(struct super_block *sb)
 548{
 549	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 550	struct dentry *root = sb->s_root;
 551	struct inode *root_inode = d_backing_inode(root);
 552	int rc = 0;
 553
 554	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 555		rc = sb_check_xattr_support(sb);
 556		if (rc)
 557			return rc;
 558	}
 559
 560	sbsec->flags |= SE_SBINITIALIZED;
 561
 562	/*
 563	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 564	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 565	 * us a superblock that needs the flag to be cleared.
 566	 */
 567	if (selinux_is_sblabel_mnt(sb))
 568		sbsec->flags |= SBLABEL_MNT;
 569	else
 570		sbsec->flags &= ~SBLABEL_MNT;
 571
 572	/* Initialize the root inode. */
 573	rc = inode_doinit_with_dentry(root_inode, root);
 574
 575	/* Initialize any other inodes associated with the superblock, e.g.
 576	   inodes created prior to initial policy load or inodes created
 577	   during get_sb by a pseudo filesystem that directly
 578	   populates itself. */
 579	spin_lock(&sbsec->isec_lock);
 580	while (!list_empty(&sbsec->isec_head)) {
 581		struct inode_security_struct *isec =
 582				list_first_entry(&sbsec->isec_head,
 583					   struct inode_security_struct, list);
 584		struct inode *inode = isec->inode;
 585		list_del_init(&isec->list);
 586		spin_unlock(&sbsec->isec_lock);
 587		inode = igrab(inode);
 588		if (inode) {
 589			if (!IS_PRIVATE(inode))
 590				inode_doinit_with_dentry(inode, NULL);
 591			iput(inode);
 592		}
 593		spin_lock(&sbsec->isec_lock);
 594	}
 595	spin_unlock(&sbsec->isec_lock);
 596	return rc;
 597}
 598
 599static int bad_option(struct superblock_security_struct *sbsec, char flag,
 600		      u32 old_sid, u32 new_sid)
 601{
 602	char mnt_flags = sbsec->flags & SE_MNTMASK;
 603
 604	/* check if the old mount command had the same options */
 605	if (sbsec->flags & SE_SBINITIALIZED)
 606		if (!(sbsec->flags & flag) ||
 607		    (old_sid != new_sid))
 608			return 1;
 609
 610	/* check if we were passed the same options twice,
 611	 * aka someone passed context=a,context=b
 612	 */
 613	if (!(sbsec->flags & SE_SBINITIALIZED))
 614		if (mnt_flags & flag)
 615			return 1;
 616	return 0;
 617}
 618
 619/*
 620 * Allow filesystems with binary mount data to explicitly set mount point
 621 * labeling information.
 622 */
 623static int selinux_set_mnt_opts(struct super_block *sb,
 624				void *mnt_opts,
 625				unsigned long kern_flags,
 626				unsigned long *set_kern_flags)
 627{
 628	const struct cred *cred = current_cred();
 629	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 630	struct dentry *root = sb->s_root;
 631	struct selinux_mnt_opts *opts = mnt_opts;
 632	struct inode_security_struct *root_isec;
 633	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 634	u32 defcontext_sid = 0;
 635	int rc = 0;
 636
 637	/*
 638	 * Specifying internal flags without providing a place to
 639	 * place the results is not allowed
 640	 */
 641	if (kern_flags && !set_kern_flags)
 642		return -EINVAL;
 643
 644	mutex_lock(&sbsec->lock);
 645
 646	if (!selinux_initialized()) {
 647		if (!opts) {
 648			/* Defer initialization until selinux_complete_init,
 649			   after the initial policy is loaded and the security
 650			   server is ready to handle calls. */
 651			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
 652				sbsec->flags |= SE_SBNATIVE;
 653				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 654			}
 655			goto out;
 656		}
 657		rc = -EINVAL;
 658		pr_warn("SELinux: Unable to set superblock options "
 659			"before the security server is initialized\n");
 660		goto out;
 661	}
 
 
 
 
 
 
 662
 663	/*
 664	 * Binary mount data FS will come through this function twice.  Once
 665	 * from an explicit call and once from the generic calls from the vfs.
 666	 * Since the generic VFS calls will not contain any security mount data
 667	 * we need to skip the double mount verification.
 668	 *
 669	 * This does open a hole in which we will not notice if the first
 670	 * mount using this sb set explicit options and a second mount using
 671	 * this sb does not set any security options.  (The first options
 672	 * will be used for both mounts)
 673	 */
 674	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 675	    && !opts)
 676		goto out;
 677
 678	root_isec = backing_inode_security_novalidate(root);
 679
 680	/*
 681	 * parse the mount options, check if they are valid sids.
 682	 * also check if someone is trying to mount the same sb more
 683	 * than once with different security options.
 684	 */
 685	if (opts) {
 686		if (opts->fscontext_sid) {
 687			fscontext_sid = opts->fscontext_sid;
 688			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 689					fscontext_sid))
 690				goto out_double_mount;
 691			sbsec->flags |= FSCONTEXT_MNT;
 692		}
 693		if (opts->context_sid) {
 694			context_sid = opts->context_sid;
 695			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 696					context_sid))
 697				goto out_double_mount;
 698			sbsec->flags |= CONTEXT_MNT;
 699		}
 700		if (opts->rootcontext_sid) {
 701			rootcontext_sid = opts->rootcontext_sid;
 702			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 703					rootcontext_sid))
 704				goto out_double_mount;
 705			sbsec->flags |= ROOTCONTEXT_MNT;
 706		}
 707		if (opts->defcontext_sid) {
 708			defcontext_sid = opts->defcontext_sid;
 709			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 710					defcontext_sid))
 711				goto out_double_mount;
 712			sbsec->flags |= DEFCONTEXT_MNT;
 713		}
 714	}
 715
 716	if (sbsec->flags & SE_SBINITIALIZED) {
 717		/* previously mounted with options, but not on this attempt? */
 718		if ((sbsec->flags & SE_MNTMASK) && !opts)
 719			goto out_double_mount;
 720		rc = 0;
 721		goto out;
 722	}
 723
 724	if (strcmp(sb->s_type->name, "proc") == 0)
 725		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 726
 727	if (!strcmp(sb->s_type->name, "debugfs") ||
 728	    !strcmp(sb->s_type->name, "tracefs") ||
 729	    !strcmp(sb->s_type->name, "binder") ||
 730	    !strcmp(sb->s_type->name, "bpf") ||
 731	    !strcmp(sb->s_type->name, "pstore") ||
 732	    !strcmp(sb->s_type->name, "securityfs"))
 733		sbsec->flags |= SE_SBGENFS;
 734
 735	if (!strcmp(sb->s_type->name, "sysfs") ||
 736	    !strcmp(sb->s_type->name, "cgroup") ||
 737	    !strcmp(sb->s_type->name, "cgroup2"))
 738		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 739
 740	if (!sbsec->behavior) {
 741		/*
 742		 * Determine the labeling behavior to use for this
 743		 * filesystem type.
 744		 */
 745		rc = security_fs_use(sb);
 746		if (rc) {
 747			pr_warn("%s: security_fs_use(%s) returned %d\n",
 748					__func__, sb->s_type->name, rc);
 749			goto out;
 750		}
 751	}
 752
 753	/*
 754	 * If this is a user namespace mount and the filesystem type is not
 755	 * explicitly whitelisted, then no contexts are allowed on the command
 756	 * line and security labels must be ignored.
 757	 */
 758	if (sb->s_user_ns != &init_user_ns &&
 759	    strcmp(sb->s_type->name, "tmpfs") &&
 760	    strcmp(sb->s_type->name, "ramfs") &&
 761	    strcmp(sb->s_type->name, "devpts") &&
 762	    strcmp(sb->s_type->name, "overlay")) {
 763		if (context_sid || fscontext_sid || rootcontext_sid ||
 764		    defcontext_sid) {
 765			rc = -EACCES;
 766			goto out;
 767		}
 768		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 769			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 770			rc = security_transition_sid(current_sid(),
 
 771						     current_sid(),
 772						     SECCLASS_FILE, NULL,
 773						     &sbsec->mntpoint_sid);
 774			if (rc)
 775				goto out;
 776		}
 777		goto out_set_opts;
 778	}
 779
 780	/* sets the context of the superblock for the fs being mounted. */
 781	if (fscontext_sid) {
 782		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 783		if (rc)
 784			goto out;
 785
 786		sbsec->sid = fscontext_sid;
 787	}
 788
 789	/*
 790	 * Switch to using mount point labeling behavior.
 791	 * sets the label used on all file below the mountpoint, and will set
 792	 * the superblock context if not already set.
 793	 */
 794	if (sbsec->flags & SE_SBNATIVE) {
 795		/*
 796		 * This means we are initializing a superblock that has been
 797		 * mounted before the SELinux was initialized and the
 798		 * filesystem requested native labeling. We had already
 799		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
 800		 * in the original mount attempt, so now we just need to set
 801		 * the SECURITY_FS_USE_NATIVE behavior.
 802		 */
 803		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 804	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 805		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 806		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 807	}
 808
 809	if (context_sid) {
 810		if (!fscontext_sid) {
 811			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 812							  cred);
 813			if (rc)
 814				goto out;
 815			sbsec->sid = context_sid;
 816		} else {
 817			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 818							     cred);
 819			if (rc)
 820				goto out;
 821		}
 822		if (!rootcontext_sid)
 823			rootcontext_sid = context_sid;
 824
 825		sbsec->mntpoint_sid = context_sid;
 826		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 827	}
 828
 829	if (rootcontext_sid) {
 830		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 831						     cred);
 832		if (rc)
 833			goto out;
 834
 835		root_isec->sid = rootcontext_sid;
 836		root_isec->initialized = LABEL_INITIALIZED;
 837	}
 838
 839	if (defcontext_sid) {
 840		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 841			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 842			rc = -EINVAL;
 843			pr_warn("SELinux: defcontext option is "
 844			       "invalid for this filesystem type\n");
 845			goto out;
 846		}
 847
 848		if (defcontext_sid != sbsec->def_sid) {
 849			rc = may_context_mount_inode_relabel(defcontext_sid,
 850							     sbsec, cred);
 851			if (rc)
 852				goto out;
 853		}
 854
 855		sbsec->def_sid = defcontext_sid;
 856	}
 857
 858out_set_opts:
 859	rc = sb_finish_set_opts(sb);
 860out:
 861	mutex_unlock(&sbsec->lock);
 862	return rc;
 863out_double_mount:
 864	rc = -EINVAL;
 865	pr_warn("SELinux: mount invalid.  Same superblock, different "
 866	       "security settings for (dev %s, type %s)\n", sb->s_id,
 867	       sb->s_type->name);
 868	goto out;
 869}
 870
 871static int selinux_cmp_sb_context(const struct super_block *oldsb,
 872				    const struct super_block *newsb)
 873{
 874	struct superblock_security_struct *old = selinux_superblock(oldsb);
 875	struct superblock_security_struct *new = selinux_superblock(newsb);
 876	char oldflags = old->flags & SE_MNTMASK;
 877	char newflags = new->flags & SE_MNTMASK;
 878
 879	if (oldflags != newflags)
 880		goto mismatch;
 881	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 882		goto mismatch;
 883	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 884		goto mismatch;
 885	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 886		goto mismatch;
 887	if (oldflags & ROOTCONTEXT_MNT) {
 888		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 889		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 890		if (oldroot->sid != newroot->sid)
 891			goto mismatch;
 892	}
 893	return 0;
 894mismatch:
 895	pr_warn("SELinux: mount invalid.  Same superblock, "
 896			    "different security settings for (dev %s, "
 897			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 898	return -EBUSY;
 899}
 900
 901static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 902					struct super_block *newsb,
 903					unsigned long kern_flags,
 904					unsigned long *set_kern_flags)
 905{
 906	int rc = 0;
 907	const struct superblock_security_struct *oldsbsec =
 908						selinux_superblock(oldsb);
 909	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 910
 911	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 912	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 913	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 914
 915	/*
 
 
 
 
 
 
 
 916	 * Specifying internal flags without providing a place to
 917	 * place the results is not allowed.
 918	 */
 919	if (kern_flags && !set_kern_flags)
 920		return -EINVAL;
 921
 922	mutex_lock(&newsbsec->lock);
 923
 924	/*
 925	 * if the parent was able to be mounted it clearly had no special lsm
 926	 * mount options.  thus we can safely deal with this superblock later
 927	 */
 928	if (!selinux_initialized()) {
 929		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
 930			newsbsec->flags |= SE_SBNATIVE;
 931			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 932		}
 933		goto out;
 934	}
 935
 936	/* how can we clone if the old one wasn't set up?? */
 937	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 938
 939	/* if fs is reusing a sb, make sure that the contexts match */
 940	if (newsbsec->flags & SE_SBINITIALIZED) {
 941		mutex_unlock(&newsbsec->lock);
 942		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 943			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 944		return selinux_cmp_sb_context(oldsb, newsb);
 945	}
 946
 
 
 947	newsbsec->flags = oldsbsec->flags;
 948
 949	newsbsec->sid = oldsbsec->sid;
 950	newsbsec->def_sid = oldsbsec->def_sid;
 951	newsbsec->behavior = oldsbsec->behavior;
 952
 953	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 954		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 955		rc = security_fs_use(newsb);
 956		if (rc)
 957			goto out;
 958	}
 959
 960	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 961		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 962		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 963	}
 964
 965	if (set_context) {
 966		u32 sid = oldsbsec->mntpoint_sid;
 967
 968		if (!set_fscontext)
 969			newsbsec->sid = sid;
 970		if (!set_rootcontext) {
 971			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 972			newisec->sid = sid;
 973		}
 974		newsbsec->mntpoint_sid = sid;
 975	}
 976	if (set_rootcontext) {
 977		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 978		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 979
 980		newisec->sid = oldisec->sid;
 981	}
 982
 983	sb_finish_set_opts(newsb);
 984out:
 985	mutex_unlock(&newsbsec->lock);
 986	return rc;
 987}
 988
 989/*
 990 * NOTE: the caller is responsible for freeing the memory even if on error.
 991 */
 992static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 993{
 994	struct selinux_mnt_opts *opts = *mnt_opts;
 995	u32 *dst_sid;
 996	int rc;
 997
 998	if (token == Opt_seclabel)
 999		/* eaten and completely ignored */
1000		return 0;
1001	if (!s)
1002		return -EINVAL;
1003
1004	if (!selinux_initialized()) {
1005		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006		return -EINVAL;
1007	}
1008
1009	if (!opts) {
1010		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011		if (!opts)
1012			return -ENOMEM;
1013		*mnt_opts = opts;
1014	}
1015
1016	switch (token) {
1017	case Opt_context:
1018		if (opts->context_sid || opts->defcontext_sid)
1019			goto err;
1020		dst_sid = &opts->context_sid;
1021		break;
1022	case Opt_fscontext:
1023		if (opts->fscontext_sid)
1024			goto err;
1025		dst_sid = &opts->fscontext_sid;
1026		break;
1027	case Opt_rootcontext:
1028		if (opts->rootcontext_sid)
1029			goto err;
1030		dst_sid = &opts->rootcontext_sid;
1031		break;
1032	case Opt_defcontext:
1033		if (opts->context_sid || opts->defcontext_sid)
1034			goto err;
1035		dst_sid = &opts->defcontext_sid;
1036		break;
1037	default:
1038		WARN_ON(1);
1039		return -EINVAL;
1040	}
1041	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042	if (rc)
1043		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044			s, rc);
1045	return rc;
1046
1047err:
1048	pr_warn(SEL_MOUNT_FAIL_MSG);
1049	return -EINVAL;
1050}
1051
1052static int show_sid(struct seq_file *m, u32 sid)
1053{
1054	char *context = NULL;
1055	u32 len;
1056	int rc;
1057
1058	rc = security_sid_to_context(sid, &context, &len);
 
1059	if (!rc) {
1060		bool has_comma = strchr(context, ',');
1061
1062		seq_putc(m, '=');
1063		if (has_comma)
1064			seq_putc(m, '\"');
1065		seq_escape(m, context, "\"\n\\");
1066		if (has_comma)
1067			seq_putc(m, '\"');
1068	}
1069	kfree(context);
1070	return rc;
1071}
1072
1073static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074{
1075	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076	int rc;
1077
1078	if (!(sbsec->flags & SE_SBINITIALIZED))
1079		return 0;
1080
1081	if (!selinux_initialized())
1082		return 0;
1083
1084	if (sbsec->flags & FSCONTEXT_MNT) {
1085		seq_putc(m, ',');
1086		seq_puts(m, FSCONTEXT_STR);
1087		rc = show_sid(m, sbsec->sid);
1088		if (rc)
1089			return rc;
1090	}
1091	if (sbsec->flags & CONTEXT_MNT) {
1092		seq_putc(m, ',');
1093		seq_puts(m, CONTEXT_STR);
1094		rc = show_sid(m, sbsec->mntpoint_sid);
1095		if (rc)
1096			return rc;
1097	}
1098	if (sbsec->flags & DEFCONTEXT_MNT) {
1099		seq_putc(m, ',');
1100		seq_puts(m, DEFCONTEXT_STR);
1101		rc = show_sid(m, sbsec->def_sid);
1102		if (rc)
1103			return rc;
1104	}
1105	if (sbsec->flags & ROOTCONTEXT_MNT) {
1106		struct dentry *root = sb->s_root;
1107		struct inode_security_struct *isec = backing_inode_security(root);
1108		seq_putc(m, ',');
1109		seq_puts(m, ROOTCONTEXT_STR);
1110		rc = show_sid(m, isec->sid);
1111		if (rc)
1112			return rc;
1113	}
1114	if (sbsec->flags & SBLABEL_MNT) {
1115		seq_putc(m, ',');
1116		seq_puts(m, SECLABEL_STR);
1117	}
1118	return 0;
1119}
1120
1121static inline u16 inode_mode_to_security_class(umode_t mode)
1122{
1123	switch (mode & S_IFMT) {
1124	case S_IFSOCK:
1125		return SECCLASS_SOCK_FILE;
1126	case S_IFLNK:
1127		return SECCLASS_LNK_FILE;
1128	case S_IFREG:
1129		return SECCLASS_FILE;
1130	case S_IFBLK:
1131		return SECCLASS_BLK_FILE;
1132	case S_IFDIR:
1133		return SECCLASS_DIR;
1134	case S_IFCHR:
1135		return SECCLASS_CHR_FILE;
1136	case S_IFIFO:
1137		return SECCLASS_FIFO_FILE;
1138
1139	}
1140
1141	return SECCLASS_FILE;
1142}
1143
1144static inline int default_protocol_stream(int protocol)
1145{
1146	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147		protocol == IPPROTO_MPTCP);
1148}
1149
1150static inline int default_protocol_dgram(int protocol)
1151{
1152	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153}
1154
1155static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156{
1157	bool extsockclass = selinux_policycap_extsockclass();
1158
1159	switch (family) {
1160	case PF_UNIX:
1161		switch (type) {
1162		case SOCK_STREAM:
1163		case SOCK_SEQPACKET:
1164			return SECCLASS_UNIX_STREAM_SOCKET;
1165		case SOCK_DGRAM:
1166		case SOCK_RAW:
1167			return SECCLASS_UNIX_DGRAM_SOCKET;
1168		}
1169		break;
1170	case PF_INET:
1171	case PF_INET6:
1172		switch (type) {
1173		case SOCK_STREAM:
1174		case SOCK_SEQPACKET:
1175			if (default_protocol_stream(protocol))
1176				return SECCLASS_TCP_SOCKET;
1177			else if (extsockclass && protocol == IPPROTO_SCTP)
1178				return SECCLASS_SCTP_SOCKET;
1179			else
1180				return SECCLASS_RAWIP_SOCKET;
1181		case SOCK_DGRAM:
1182			if (default_protocol_dgram(protocol))
1183				return SECCLASS_UDP_SOCKET;
1184			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185						  protocol == IPPROTO_ICMPV6))
1186				return SECCLASS_ICMP_SOCKET;
1187			else
1188				return SECCLASS_RAWIP_SOCKET;
1189		case SOCK_DCCP:
1190			return SECCLASS_DCCP_SOCKET;
1191		default:
1192			return SECCLASS_RAWIP_SOCKET;
1193		}
1194		break;
1195	case PF_NETLINK:
1196		switch (protocol) {
1197		case NETLINK_ROUTE:
1198			return SECCLASS_NETLINK_ROUTE_SOCKET;
1199		case NETLINK_SOCK_DIAG:
1200			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201		case NETLINK_NFLOG:
1202			return SECCLASS_NETLINK_NFLOG_SOCKET;
1203		case NETLINK_XFRM:
1204			return SECCLASS_NETLINK_XFRM_SOCKET;
1205		case NETLINK_SELINUX:
1206			return SECCLASS_NETLINK_SELINUX_SOCKET;
1207		case NETLINK_ISCSI:
1208			return SECCLASS_NETLINK_ISCSI_SOCKET;
1209		case NETLINK_AUDIT:
1210			return SECCLASS_NETLINK_AUDIT_SOCKET;
1211		case NETLINK_FIB_LOOKUP:
1212			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213		case NETLINK_CONNECTOR:
1214			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215		case NETLINK_NETFILTER:
1216			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217		case NETLINK_DNRTMSG:
1218			return SECCLASS_NETLINK_DNRT_SOCKET;
1219		case NETLINK_KOBJECT_UEVENT:
1220			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221		case NETLINK_GENERIC:
1222			return SECCLASS_NETLINK_GENERIC_SOCKET;
1223		case NETLINK_SCSITRANSPORT:
1224			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225		case NETLINK_RDMA:
1226			return SECCLASS_NETLINK_RDMA_SOCKET;
1227		case NETLINK_CRYPTO:
1228			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229		default:
1230			return SECCLASS_NETLINK_SOCKET;
1231		}
1232	case PF_PACKET:
1233		return SECCLASS_PACKET_SOCKET;
1234	case PF_KEY:
1235		return SECCLASS_KEY_SOCKET;
1236	case PF_APPLETALK:
1237		return SECCLASS_APPLETALK_SOCKET;
1238	}
1239
1240	if (extsockclass) {
1241		switch (family) {
1242		case PF_AX25:
1243			return SECCLASS_AX25_SOCKET;
1244		case PF_IPX:
1245			return SECCLASS_IPX_SOCKET;
1246		case PF_NETROM:
1247			return SECCLASS_NETROM_SOCKET;
1248		case PF_ATMPVC:
1249			return SECCLASS_ATMPVC_SOCKET;
1250		case PF_X25:
1251			return SECCLASS_X25_SOCKET;
1252		case PF_ROSE:
1253			return SECCLASS_ROSE_SOCKET;
1254		case PF_DECnet:
1255			return SECCLASS_DECNET_SOCKET;
1256		case PF_ATMSVC:
1257			return SECCLASS_ATMSVC_SOCKET;
1258		case PF_RDS:
1259			return SECCLASS_RDS_SOCKET;
1260		case PF_IRDA:
1261			return SECCLASS_IRDA_SOCKET;
1262		case PF_PPPOX:
1263			return SECCLASS_PPPOX_SOCKET;
1264		case PF_LLC:
1265			return SECCLASS_LLC_SOCKET;
1266		case PF_CAN:
1267			return SECCLASS_CAN_SOCKET;
1268		case PF_TIPC:
1269			return SECCLASS_TIPC_SOCKET;
1270		case PF_BLUETOOTH:
1271			return SECCLASS_BLUETOOTH_SOCKET;
1272		case PF_IUCV:
1273			return SECCLASS_IUCV_SOCKET;
1274		case PF_RXRPC:
1275			return SECCLASS_RXRPC_SOCKET;
1276		case PF_ISDN:
1277			return SECCLASS_ISDN_SOCKET;
1278		case PF_PHONET:
1279			return SECCLASS_PHONET_SOCKET;
1280		case PF_IEEE802154:
1281			return SECCLASS_IEEE802154_SOCKET;
1282		case PF_CAIF:
1283			return SECCLASS_CAIF_SOCKET;
1284		case PF_ALG:
1285			return SECCLASS_ALG_SOCKET;
1286		case PF_NFC:
1287			return SECCLASS_NFC_SOCKET;
1288		case PF_VSOCK:
1289			return SECCLASS_VSOCK_SOCKET;
1290		case PF_KCM:
1291			return SECCLASS_KCM_SOCKET;
1292		case PF_QIPCRTR:
1293			return SECCLASS_QIPCRTR_SOCKET;
1294		case PF_SMC:
1295			return SECCLASS_SMC_SOCKET;
1296		case PF_XDP:
1297			return SECCLASS_XDP_SOCKET;
1298		case PF_MCTP:
1299			return SECCLASS_MCTP_SOCKET;
1300#if PF_MAX > 46
1301#error New address family defined, please update this function.
1302#endif
1303		}
1304	}
1305
1306	return SECCLASS_SOCKET;
1307}
1308
1309static int selinux_genfs_get_sid(struct dentry *dentry,
1310				 u16 tclass,
1311				 u16 flags,
1312				 u32 *sid)
1313{
1314	int rc;
1315	struct super_block *sb = dentry->d_sb;
1316	char *buffer, *path;
1317
1318	buffer = (char *)__get_free_page(GFP_KERNEL);
1319	if (!buffer)
1320		return -ENOMEM;
1321
1322	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323	if (IS_ERR(path))
1324		rc = PTR_ERR(path);
1325	else {
1326		if (flags & SE_SBPROC) {
1327			/* each process gets a /proc/PID/ entry. Strip off the
1328			 * PID part to get a valid selinux labeling.
1329			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330			while (path[1] >= '0' && path[1] <= '9') {
1331				path[1] = '/';
1332				path++;
1333			}
1334		}
1335		rc = security_genfs_sid(sb->s_type->name,
1336					path, tclass, sid);
1337		if (rc == -ENOENT) {
1338			/* No match in policy, mark as unlabeled. */
1339			*sid = SECINITSID_UNLABELED;
1340			rc = 0;
1341		}
1342	}
1343	free_page((unsigned long)buffer);
1344	return rc;
1345}
1346
1347static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348				  u32 def_sid, u32 *sid)
1349{
1350#define INITCONTEXTLEN 255
1351	char *context;
1352	unsigned int len;
1353	int rc;
1354
1355	len = INITCONTEXTLEN;
1356	context = kmalloc(len + 1, GFP_NOFS);
1357	if (!context)
1358		return -ENOMEM;
1359
1360	context[len] = '\0';
1361	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362	if (rc == -ERANGE) {
1363		kfree(context);
1364
1365		/* Need a larger buffer.  Query for the right size. */
1366		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367		if (rc < 0)
1368			return rc;
1369
1370		len = rc;
1371		context = kmalloc(len + 1, GFP_NOFS);
1372		if (!context)
1373			return -ENOMEM;
1374
1375		context[len] = '\0';
1376		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377				    context, len);
1378	}
1379	if (rc < 0) {
1380		kfree(context);
1381		if (rc != -ENODATA) {
1382			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1383				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384			return rc;
1385		}
1386		*sid = def_sid;
1387		return 0;
1388	}
1389
1390	rc = security_context_to_sid_default(context, rc, sid,
1391					     def_sid, GFP_NOFS);
1392	if (rc) {
1393		char *dev = inode->i_sb->s_id;
1394		unsigned long ino = inode->i_ino;
1395
1396		if (rc == -EINVAL) {
1397			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1398					      ino, dev, context);
1399		} else {
1400			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401				__func__, context, -rc, dev, ino);
1402		}
1403	}
1404	kfree(context);
1405	return 0;
1406}
1407
1408/* The inode's security attributes must be initialized before first use. */
1409static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410{
1411	struct superblock_security_struct *sbsec = NULL;
1412	struct inode_security_struct *isec = selinux_inode(inode);
1413	u32 task_sid, sid = 0;
1414	u16 sclass;
1415	struct dentry *dentry;
1416	int rc = 0;
1417
1418	if (isec->initialized == LABEL_INITIALIZED)
1419		return 0;
1420
1421	spin_lock(&isec->lock);
1422	if (isec->initialized == LABEL_INITIALIZED)
1423		goto out_unlock;
1424
1425	if (isec->sclass == SECCLASS_FILE)
1426		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427
1428	sbsec = selinux_superblock(inode->i_sb);
1429	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430		/* Defer initialization until selinux_complete_init,
1431		   after the initial policy is loaded and the security
1432		   server is ready to handle calls. */
1433		spin_lock(&sbsec->isec_lock);
1434		if (list_empty(&isec->list))
1435			list_add(&isec->list, &sbsec->isec_head);
1436		spin_unlock(&sbsec->isec_lock);
1437		goto out_unlock;
1438	}
1439
1440	sclass = isec->sclass;
1441	task_sid = isec->task_sid;
1442	sid = isec->sid;
1443	isec->initialized = LABEL_PENDING;
1444	spin_unlock(&isec->lock);
1445
1446	switch (sbsec->behavior) {
1447	/*
1448	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449	 * via xattr when called from delayed_superblock_init().
1450	 */
1451	case SECURITY_FS_USE_NATIVE:
 
1452	case SECURITY_FS_USE_XATTR:
1453		if (!(inode->i_opflags & IOP_XATTR)) {
1454			sid = sbsec->def_sid;
1455			break;
1456		}
1457		/* Need a dentry, since the xattr API requires one.
1458		   Life would be simpler if we could just pass the inode. */
1459		if (opt_dentry) {
1460			/* Called from d_instantiate or d_splice_alias. */
1461			dentry = dget(opt_dentry);
1462		} else {
1463			/*
1464			 * Called from selinux_complete_init, try to find a dentry.
1465			 * Some filesystems really want a connected one, so try
1466			 * that first.  We could split SECURITY_FS_USE_XATTR in
1467			 * two, depending upon that...
1468			 */
1469			dentry = d_find_alias(inode);
1470			if (!dentry)
1471				dentry = d_find_any_alias(inode);
1472		}
1473		if (!dentry) {
1474			/*
1475			 * this is can be hit on boot when a file is accessed
1476			 * before the policy is loaded.  When we load policy we
1477			 * may find inodes that have no dentry on the
1478			 * sbsec->isec_head list.  No reason to complain as these
1479			 * will get fixed up the next time we go through
1480			 * inode_doinit with a dentry, before these inodes could
1481			 * be used again by userspace.
1482			 */
1483			goto out_invalid;
1484		}
1485
1486		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487					    &sid);
1488		dput(dentry);
1489		if (rc)
1490			goto out;
1491		break;
1492	case SECURITY_FS_USE_TASK:
1493		sid = task_sid;
1494		break;
1495	case SECURITY_FS_USE_TRANS:
1496		/* Default to the fs SID. */
1497		sid = sbsec->sid;
1498
1499		/* Try to obtain a transition SID. */
1500		rc = security_transition_sid(task_sid, sid,
1501					     sclass, NULL, &sid);
1502		if (rc)
1503			goto out;
1504		break;
1505	case SECURITY_FS_USE_MNTPOINT:
1506		sid = sbsec->mntpoint_sid;
1507		break;
1508	default:
1509		/* Default to the fs superblock SID. */
1510		sid = sbsec->sid;
1511
1512		if ((sbsec->flags & SE_SBGENFS) &&
1513		     (!S_ISLNK(inode->i_mode) ||
1514		      selinux_policycap_genfs_seclabel_symlinks())) {
1515			/* We must have a dentry to determine the label on
1516			 * procfs inodes */
1517			if (opt_dentry) {
1518				/* Called from d_instantiate or
1519				 * d_splice_alias. */
1520				dentry = dget(opt_dentry);
1521			} else {
1522				/* Called from selinux_complete_init, try to
1523				 * find a dentry.  Some filesystems really want
1524				 * a connected one, so try that first.
1525				 */
1526				dentry = d_find_alias(inode);
1527				if (!dentry)
1528					dentry = d_find_any_alias(inode);
1529			}
1530			/*
1531			 * This can be hit on boot when a file is accessed
1532			 * before the policy is loaded.  When we load policy we
1533			 * may find inodes that have no dentry on the
1534			 * sbsec->isec_head list.  No reason to complain as
1535			 * these will get fixed up the next time we go through
1536			 * inode_doinit() with a dentry, before these inodes
1537			 * could be used again by userspace.
1538			 */
1539			if (!dentry)
1540				goto out_invalid;
1541			rc = selinux_genfs_get_sid(dentry, sclass,
1542						   sbsec->flags, &sid);
1543			if (rc) {
1544				dput(dentry);
1545				goto out;
1546			}
1547
1548			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549			    (inode->i_opflags & IOP_XATTR)) {
1550				rc = inode_doinit_use_xattr(inode, dentry,
1551							    sid, &sid);
1552				if (rc) {
1553					dput(dentry);
1554					goto out;
1555				}
1556			}
1557			dput(dentry);
1558		}
1559		break;
1560	}
1561
1562out:
1563	spin_lock(&isec->lock);
1564	if (isec->initialized == LABEL_PENDING) {
1565		if (rc) {
1566			isec->initialized = LABEL_INVALID;
1567			goto out_unlock;
1568		}
1569		isec->initialized = LABEL_INITIALIZED;
1570		isec->sid = sid;
1571	}
1572
1573out_unlock:
1574	spin_unlock(&isec->lock);
1575	return rc;
1576
1577out_invalid:
1578	spin_lock(&isec->lock);
1579	if (isec->initialized == LABEL_PENDING) {
1580		isec->initialized = LABEL_INVALID;
1581		isec->sid = sid;
1582	}
1583	spin_unlock(&isec->lock);
1584	return 0;
1585}
1586
1587/* Convert a Linux signal to an access vector. */
1588static inline u32 signal_to_av(int sig)
1589{
1590	u32 perm = 0;
1591
1592	switch (sig) {
1593	case SIGCHLD:
1594		/* Commonly granted from child to parent. */
1595		perm = PROCESS__SIGCHLD;
1596		break;
1597	case SIGKILL:
1598		/* Cannot be caught or ignored */
1599		perm = PROCESS__SIGKILL;
1600		break;
1601	case SIGSTOP:
1602		/* Cannot be caught or ignored */
1603		perm = PROCESS__SIGSTOP;
1604		break;
1605	default:
1606		/* All other signals. */
1607		perm = PROCESS__SIGNAL;
1608		break;
1609	}
1610
1611	return perm;
1612}
1613
1614#if CAP_LAST_CAP > 63
1615#error Fix SELinux to handle capabilities > 63.
1616#endif
1617
1618/* Check whether a task is allowed to use a capability. */
1619static int cred_has_capability(const struct cred *cred,
1620			       int cap, unsigned int opts, bool initns)
1621{
1622	struct common_audit_data ad;
1623	struct av_decision avd;
1624	u16 sclass;
1625	u32 sid = cred_sid(cred);
1626	u32 av = CAP_TO_MASK(cap);
1627	int rc;
1628
1629	ad.type = LSM_AUDIT_DATA_CAP;
1630	ad.u.cap = cap;
1631
1632	switch (CAP_TO_INDEX(cap)) {
1633	case 0:
1634		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635		break;
1636	case 1:
1637		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638		break;
1639	default:
1640		pr_err("SELinux:  out of range capability %d\n", cap);
1641		BUG();
1642		return -EINVAL;
1643	}
1644
1645	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
 
1646	if (!(opts & CAP_OPT_NOAUDIT)) {
1647		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
 
1648		if (rc2)
1649			return rc2;
1650	}
1651	return rc;
1652}
1653
1654/* Check whether a task has a particular permission to an inode.
1655   The 'adp' parameter is optional and allows other audit
1656   data to be passed (e.g. the dentry). */
1657static int inode_has_perm(const struct cred *cred,
1658			  struct inode *inode,
1659			  u32 perms,
1660			  struct common_audit_data *adp)
1661{
1662	struct inode_security_struct *isec;
1663	u32 sid;
1664
 
 
1665	if (unlikely(IS_PRIVATE(inode)))
1666		return 0;
1667
1668	sid = cred_sid(cred);
1669	isec = selinux_inode(inode);
1670
1671	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1672}
1673
1674/* Same as inode_has_perm, but pass explicit audit data containing
1675   the dentry to help the auditing code to more easily generate the
1676   pathname if needed. */
1677static inline int dentry_has_perm(const struct cred *cred,
1678				  struct dentry *dentry,
1679				  u32 av)
1680{
1681	struct inode *inode = d_backing_inode(dentry);
1682	struct common_audit_data ad;
1683
1684	ad.type = LSM_AUDIT_DATA_DENTRY;
1685	ad.u.dentry = dentry;
1686	__inode_security_revalidate(inode, dentry, true);
1687	return inode_has_perm(cred, inode, av, &ad);
1688}
1689
1690/* Same as inode_has_perm, but pass explicit audit data containing
1691   the path to help the auditing code to more easily generate the
1692   pathname if needed. */
1693static inline int path_has_perm(const struct cred *cred,
1694				const struct path *path,
1695				u32 av)
1696{
1697	struct inode *inode = d_backing_inode(path->dentry);
1698	struct common_audit_data ad;
1699
1700	ad.type = LSM_AUDIT_DATA_PATH;
1701	ad.u.path = *path;
1702	__inode_security_revalidate(inode, path->dentry, true);
1703	return inode_has_perm(cred, inode, av, &ad);
1704}
1705
1706/* Same as path_has_perm, but uses the inode from the file struct. */
1707static inline int file_path_has_perm(const struct cred *cred,
1708				     struct file *file,
1709				     u32 av)
1710{
1711	struct common_audit_data ad;
1712
1713	ad.type = LSM_AUDIT_DATA_FILE;
1714	ad.u.file = file;
1715	return inode_has_perm(cred, file_inode(file), av, &ad);
1716}
1717
1718#ifdef CONFIG_BPF_SYSCALL
1719static int bpf_fd_pass(const struct file *file, u32 sid);
1720#endif
1721
1722/* Check whether a task can use an open file descriptor to
1723   access an inode in a given way.  Check access to the
1724   descriptor itself, and then use dentry_has_perm to
1725   check a particular permission to the file.
1726   Access to the descriptor is implicitly granted if it
1727   has the same SID as the process.  If av is zero, then
1728   access to the file is not checked, e.g. for cases
1729   where only the descriptor is affected like seek. */
1730static int file_has_perm(const struct cred *cred,
1731			 struct file *file,
1732			 u32 av)
1733{
1734	struct file_security_struct *fsec = selinux_file(file);
1735	struct inode *inode = file_inode(file);
1736	struct common_audit_data ad;
1737	u32 sid = cred_sid(cred);
1738	int rc;
1739
1740	ad.type = LSM_AUDIT_DATA_FILE;
1741	ad.u.file = file;
1742
1743	if (sid != fsec->sid) {
1744		rc = avc_has_perm(sid, fsec->sid,
 
1745				  SECCLASS_FD,
1746				  FD__USE,
1747				  &ad);
1748		if (rc)
1749			goto out;
1750	}
1751
1752#ifdef CONFIG_BPF_SYSCALL
1753	rc = bpf_fd_pass(file, cred_sid(cred));
1754	if (rc)
1755		return rc;
1756#endif
1757
1758	/* av is zero if only checking access to the descriptor. */
1759	rc = 0;
1760	if (av)
1761		rc = inode_has_perm(cred, inode, av, &ad);
1762
1763out:
1764	return rc;
1765}
1766
1767/*
1768 * Determine the label for an inode that might be unioned.
1769 */
1770static int
1771selinux_determine_inode_label(const struct task_security_struct *tsec,
1772				 struct inode *dir,
1773				 const struct qstr *name, u16 tclass,
1774				 u32 *_new_isid)
1775{
1776	const struct superblock_security_struct *sbsec =
1777						selinux_superblock(dir->i_sb);
1778
1779	if ((sbsec->flags & SE_SBINITIALIZED) &&
1780	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781		*_new_isid = sbsec->mntpoint_sid;
1782	} else if ((sbsec->flags & SBLABEL_MNT) &&
1783		   tsec->create_sid) {
1784		*_new_isid = tsec->create_sid;
1785	} else {
1786		const struct inode_security_struct *dsec = inode_security(dir);
1787		return security_transition_sid(tsec->sid,
1788					       dsec->sid, tclass,
1789					       name, _new_isid);
1790	}
1791
1792	return 0;
1793}
1794
1795/* Check whether a task can create a file. */
1796static int may_create(struct inode *dir,
1797		      struct dentry *dentry,
1798		      u16 tclass)
1799{
1800	const struct task_security_struct *tsec = selinux_cred(current_cred());
1801	struct inode_security_struct *dsec;
1802	struct superblock_security_struct *sbsec;
1803	u32 sid, newsid;
1804	struct common_audit_data ad;
1805	int rc;
1806
1807	dsec = inode_security(dir);
1808	sbsec = selinux_superblock(dir->i_sb);
1809
1810	sid = tsec->sid;
1811
1812	ad.type = LSM_AUDIT_DATA_DENTRY;
1813	ad.u.dentry = dentry;
1814
1815	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1816			  DIR__ADD_NAME | DIR__SEARCH,
1817			  &ad);
1818	if (rc)
1819		return rc;
1820
1821	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822					   &newsid);
1823	if (rc)
1824		return rc;
1825
1826	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1827	if (rc)
1828		return rc;
1829
1830	return avc_has_perm(newsid, sbsec->sid,
 
1831			    SECCLASS_FILESYSTEM,
1832			    FILESYSTEM__ASSOCIATE, &ad);
1833}
1834
1835#define MAY_LINK	0
1836#define MAY_UNLINK	1
1837#define MAY_RMDIR	2
1838
1839/* Check whether a task can link, unlink, or rmdir a file/directory. */
1840static int may_link(struct inode *dir,
1841		    struct dentry *dentry,
1842		    int kind)
1843
1844{
1845	struct inode_security_struct *dsec, *isec;
1846	struct common_audit_data ad;
1847	u32 sid = current_sid();
1848	u32 av;
1849	int rc;
1850
1851	dsec = inode_security(dir);
1852	isec = backing_inode_security(dentry);
1853
1854	ad.type = LSM_AUDIT_DATA_DENTRY;
1855	ad.u.dentry = dentry;
1856
1857	av = DIR__SEARCH;
1858	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1860	if (rc)
1861		return rc;
1862
1863	switch (kind) {
1864	case MAY_LINK:
1865		av = FILE__LINK;
1866		break;
1867	case MAY_UNLINK:
1868		av = FILE__UNLINK;
1869		break;
1870	case MAY_RMDIR:
1871		av = DIR__RMDIR;
1872		break;
1873	default:
1874		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1875			__func__, kind);
1876		return 0;
1877	}
1878
1879	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1880	return rc;
1881}
1882
1883static inline int may_rename(struct inode *old_dir,
1884			     struct dentry *old_dentry,
1885			     struct inode *new_dir,
1886			     struct dentry *new_dentry)
1887{
1888	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889	struct common_audit_data ad;
1890	u32 sid = current_sid();
1891	u32 av;
1892	int old_is_dir, new_is_dir;
1893	int rc;
1894
1895	old_dsec = inode_security(old_dir);
1896	old_isec = backing_inode_security(old_dentry);
1897	old_is_dir = d_is_dir(old_dentry);
1898	new_dsec = inode_security(new_dir);
1899
1900	ad.type = LSM_AUDIT_DATA_DENTRY;
1901
1902	ad.u.dentry = old_dentry;
1903	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1904			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905	if (rc)
1906		return rc;
1907	rc = avc_has_perm(sid, old_isec->sid,
 
1908			  old_isec->sclass, FILE__RENAME, &ad);
1909	if (rc)
1910		return rc;
1911	if (old_is_dir && new_dir != old_dir) {
1912		rc = avc_has_perm(sid, old_isec->sid,
 
1913				  old_isec->sclass, DIR__REPARENT, &ad);
1914		if (rc)
1915			return rc;
1916	}
1917
1918	ad.u.dentry = new_dentry;
1919	av = DIR__ADD_NAME | DIR__SEARCH;
1920	if (d_is_positive(new_dentry))
1921		av |= DIR__REMOVE_NAME;
1922	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1923	if (rc)
1924		return rc;
1925	if (d_is_positive(new_dentry)) {
1926		new_isec = backing_inode_security(new_dentry);
1927		new_is_dir = d_is_dir(new_dentry);
1928		rc = avc_has_perm(sid, new_isec->sid,
 
1929				  new_isec->sclass,
1930				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931		if (rc)
1932			return rc;
1933	}
1934
1935	return 0;
1936}
1937
1938/* Check whether a task can perform a filesystem operation. */
1939static int superblock_has_perm(const struct cred *cred,
1940			       const struct super_block *sb,
1941			       u32 perms,
1942			       struct common_audit_data *ad)
1943{
1944	struct superblock_security_struct *sbsec;
1945	u32 sid = cred_sid(cred);
1946
1947	sbsec = selinux_superblock(sb);
1948	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1949}
1950
1951/* Convert a Linux mode and permission mask to an access vector. */
1952static inline u32 file_mask_to_av(int mode, int mask)
1953{
1954	u32 av = 0;
1955
1956	if (!S_ISDIR(mode)) {
1957		if (mask & MAY_EXEC)
1958			av |= FILE__EXECUTE;
1959		if (mask & MAY_READ)
1960			av |= FILE__READ;
1961
1962		if (mask & MAY_APPEND)
1963			av |= FILE__APPEND;
1964		else if (mask & MAY_WRITE)
1965			av |= FILE__WRITE;
1966
1967	} else {
1968		if (mask & MAY_EXEC)
1969			av |= DIR__SEARCH;
1970		if (mask & MAY_WRITE)
1971			av |= DIR__WRITE;
1972		if (mask & MAY_READ)
1973			av |= DIR__READ;
1974	}
1975
1976	return av;
1977}
1978
1979/* Convert a Linux file to an access vector. */
1980static inline u32 file_to_av(const struct file *file)
1981{
1982	u32 av = 0;
1983
1984	if (file->f_mode & FMODE_READ)
1985		av |= FILE__READ;
1986	if (file->f_mode & FMODE_WRITE) {
1987		if (file->f_flags & O_APPEND)
1988			av |= FILE__APPEND;
1989		else
1990			av |= FILE__WRITE;
1991	}
1992	if (!av) {
1993		/*
1994		 * Special file opened with flags 3 for ioctl-only use.
1995		 */
1996		av = FILE__IOCTL;
1997	}
1998
1999	return av;
2000}
2001
2002/*
2003 * Convert a file to an access vector and include the correct
2004 * open permission.
2005 */
2006static inline u32 open_file_to_av(struct file *file)
2007{
2008	u32 av = file_to_av(file);
2009	struct inode *inode = file_inode(file);
2010
2011	if (selinux_policycap_openperm() &&
2012	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2013		av |= FILE__OPEN;
2014
2015	return av;
2016}
2017
2018/* Hook functions begin here. */
2019
2020static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021{
2022	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
 
2023			    BINDER__SET_CONTEXT_MGR, NULL);
2024}
2025
2026static int selinux_binder_transaction(const struct cred *from,
2027				      const struct cred *to)
2028{
2029	u32 mysid = current_sid();
2030	u32 fromsid = cred_sid(from);
2031	u32 tosid = cred_sid(to);
2032	int rc;
2033
2034	if (mysid != fromsid) {
2035		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
 
2036				  BINDER__IMPERSONATE, NULL);
2037		if (rc)
2038			return rc;
2039	}
2040
2041	return avc_has_perm(fromsid, tosid,
2042			    SECCLASS_BINDER, BINDER__CALL, NULL);
2043}
2044
2045static int selinux_binder_transfer_binder(const struct cred *from,
2046					  const struct cred *to)
2047{
2048	return avc_has_perm(cred_sid(from), cred_sid(to),
 
2049			    SECCLASS_BINDER, BINDER__TRANSFER,
2050			    NULL);
2051}
2052
2053static int selinux_binder_transfer_file(const struct cred *from,
2054					const struct cred *to,
2055					const struct file *file)
2056{
2057	u32 sid = cred_sid(to);
2058	struct file_security_struct *fsec = selinux_file(file);
2059	struct dentry *dentry = file->f_path.dentry;
2060	struct inode_security_struct *isec;
2061	struct common_audit_data ad;
2062	int rc;
2063
2064	ad.type = LSM_AUDIT_DATA_PATH;
2065	ad.u.path = file->f_path;
2066
2067	if (sid != fsec->sid) {
2068		rc = avc_has_perm(sid, fsec->sid,
 
2069				  SECCLASS_FD,
2070				  FD__USE,
2071				  &ad);
2072		if (rc)
2073			return rc;
2074	}
2075
2076#ifdef CONFIG_BPF_SYSCALL
2077	rc = bpf_fd_pass(file, sid);
2078	if (rc)
2079		return rc;
2080#endif
2081
2082	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083		return 0;
2084
2085	isec = backing_inode_security(dentry);
2086	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
 
2087			    &ad);
2088}
2089
2090static int selinux_ptrace_access_check(struct task_struct *child,
2091				       unsigned int mode)
2092{
2093	u32 sid = current_sid();
2094	u32 csid = task_sid_obj(child);
2095
2096	if (mode & PTRACE_MODE_READ)
2097		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098				NULL);
2099
2100	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101			NULL);
2102}
2103
2104static int selinux_ptrace_traceme(struct task_struct *parent)
2105{
2106	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
 
2107			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108}
2109
2110static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112{
2113	return avc_has_perm(current_sid(), task_sid_obj(target),
2114			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
 
2115}
2116
2117static int selinux_capset(struct cred *new, const struct cred *old,
2118			  const kernel_cap_t *effective,
2119			  const kernel_cap_t *inheritable,
2120			  const kernel_cap_t *permitted)
2121{
2122	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
 
2123			    PROCESS__SETCAP, NULL);
2124}
2125
2126/*
2127 * (This comment used to live with the selinux_task_setuid hook,
2128 * which was removed).
2129 *
2130 * Since setuid only affects the current process, and since the SELinux
2131 * controls are not based on the Linux identity attributes, SELinux does not
2132 * need to control this operation.  However, SELinux does control the use of
2133 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134 */
2135
2136static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137			   int cap, unsigned int opts)
2138{
2139	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140}
2141
2142static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143{
2144	const struct cred *cred = current_cred();
2145	int rc = 0;
2146
2147	if (!sb)
2148		return 0;
2149
2150	switch (cmds) {
2151	case Q_SYNC:
2152	case Q_QUOTAON:
2153	case Q_QUOTAOFF:
2154	case Q_SETINFO:
2155	case Q_SETQUOTA:
2156	case Q_XQUOTAOFF:
2157	case Q_XQUOTAON:
2158	case Q_XSETQLIM:
2159		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160		break;
2161	case Q_GETFMT:
2162	case Q_GETINFO:
2163	case Q_GETQUOTA:
2164	case Q_XGETQUOTA:
2165	case Q_XGETQSTAT:
2166	case Q_XGETQSTATV:
2167	case Q_XGETNEXTQUOTA:
2168		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169		break;
2170	default:
2171		rc = 0;  /* let the kernel handle invalid cmds */
2172		break;
2173	}
2174	return rc;
2175}
2176
2177static int selinux_quota_on(struct dentry *dentry)
2178{
2179	const struct cred *cred = current_cred();
2180
2181	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182}
2183
2184static int selinux_syslog(int type)
2185{
2186	switch (type) {
2187	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2188	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2189		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2190				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2192	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2193	/* Set level of messages printed to console */
2194	case SYSLOG_ACTION_CONSOLE_LEVEL:
2195		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2196				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197				    NULL);
2198	}
2199	/* All other syslog types */
2200	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2201			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202}
2203
2204/*
2205 * Check that a process has enough memory to allocate a new virtual
2206 * mapping. 0 means there is enough memory for the allocation to
2207 * succeed and -ENOMEM implies there is not.
2208 *
2209 * Do not audit the selinux permission check, as this is applied to all
2210 * processes that allocate mappings.
2211 */
2212static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2213{
2214	int rc, cap_sys_admin = 0;
2215
2216	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2217				 CAP_OPT_NOAUDIT, true);
2218	if (rc == 0)
2219		cap_sys_admin = 1;
2220
2221	return cap_sys_admin;
2222}
2223
2224/* binprm security operations */
2225
2226static u32 ptrace_parent_sid(void)
2227{
2228	u32 sid = 0;
2229	struct task_struct *tracer;
2230
2231	rcu_read_lock();
2232	tracer = ptrace_parent(current);
2233	if (tracer)
2234		sid = task_sid_obj(tracer);
2235	rcu_read_unlock();
2236
2237	return sid;
2238}
2239
2240static int check_nnp_nosuid(const struct linux_binprm *bprm,
2241			    const struct task_security_struct *old_tsec,
2242			    const struct task_security_struct *new_tsec)
2243{
2244	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2245	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2246	int rc;
2247	u32 av;
2248
2249	if (!nnp && !nosuid)
2250		return 0; /* neither NNP nor nosuid */
2251
2252	if (new_tsec->sid == old_tsec->sid)
2253		return 0; /* No change in credentials */
2254
2255	/*
2256	 * If the policy enables the nnp_nosuid_transition policy capability,
2257	 * then we permit transitions under NNP or nosuid if the
2258	 * policy allows the corresponding permission between
2259	 * the old and new contexts.
2260	 */
2261	if (selinux_policycap_nnp_nosuid_transition()) {
2262		av = 0;
2263		if (nnp)
2264			av |= PROCESS2__NNP_TRANSITION;
2265		if (nosuid)
2266			av |= PROCESS2__NOSUID_TRANSITION;
2267		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2268				  SECCLASS_PROCESS2, av, NULL);
2269		if (!rc)
2270			return 0;
2271	}
2272
2273	/*
2274	 * We also permit NNP or nosuid transitions to bounded SIDs,
2275	 * i.e. SIDs that are guaranteed to only be allowed a subset
2276	 * of the permissions of the current SID.
2277	 */
2278	rc = security_bounded_transition(old_tsec->sid,
2279					 new_tsec->sid);
2280	if (!rc)
2281		return 0;
2282
2283	/*
2284	 * On failure, preserve the errno values for NNP vs nosuid.
2285	 * NNP:  Operation not permitted for caller.
2286	 * nosuid:  Permission denied to file.
2287	 */
2288	if (nnp)
2289		return -EPERM;
2290	return -EACCES;
2291}
2292
2293static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2294{
2295	const struct task_security_struct *old_tsec;
2296	struct task_security_struct *new_tsec;
2297	struct inode_security_struct *isec;
2298	struct common_audit_data ad;
2299	struct inode *inode = file_inode(bprm->file);
2300	int rc;
2301
2302	/* SELinux context only depends on initial program or script and not
2303	 * the script interpreter */
2304
2305	old_tsec = selinux_cred(current_cred());
2306	new_tsec = selinux_cred(bprm->cred);
2307	isec = inode_security(inode);
2308
2309	/* Default to the current task SID. */
2310	new_tsec->sid = old_tsec->sid;
2311	new_tsec->osid = old_tsec->sid;
2312
2313	/* Reset fs, key, and sock SIDs on execve. */
2314	new_tsec->create_sid = 0;
2315	new_tsec->keycreate_sid = 0;
2316	new_tsec->sockcreate_sid = 0;
2317
2318	/*
2319	 * Before policy is loaded, label any task outside kernel space
2320	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2321	 * early boot end up with a label different from SECINITSID_KERNEL
2322	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2323	 */
2324	if (!selinux_initialized()) {
2325		new_tsec->sid = SECINITSID_INIT;
2326		/* also clear the exec_sid just in case */
2327		new_tsec->exec_sid = 0;
2328		return 0;
2329	}
2330
2331	if (old_tsec->exec_sid) {
2332		new_tsec->sid = old_tsec->exec_sid;
2333		/* Reset exec SID on execve. */
2334		new_tsec->exec_sid = 0;
2335
2336		/* Fail on NNP or nosuid if not an allowed transition. */
2337		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338		if (rc)
2339			return rc;
2340	} else {
2341		/* Check for a default transition on this program. */
2342		rc = security_transition_sid(old_tsec->sid,
2343					     isec->sid, SECCLASS_PROCESS, NULL,
2344					     &new_tsec->sid);
2345		if (rc)
2346			return rc;
2347
2348		/*
2349		 * Fallback to old SID on NNP or nosuid if not an allowed
2350		 * transition.
2351		 */
2352		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2353		if (rc)
2354			new_tsec->sid = old_tsec->sid;
2355	}
2356
2357	ad.type = LSM_AUDIT_DATA_FILE;
2358	ad.u.file = bprm->file;
2359
2360	if (new_tsec->sid == old_tsec->sid) {
2361		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2362				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2363		if (rc)
2364			return rc;
2365	} else {
2366		/* Check permissions for the transition. */
2367		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2368				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2369		if (rc)
2370			return rc;
2371
2372		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2373				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2374		if (rc)
2375			return rc;
2376
2377		/* Check for shared state */
2378		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2379			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2380					  SECCLASS_PROCESS, PROCESS__SHARE,
2381					  NULL);
2382			if (rc)
2383				return -EPERM;
2384		}
2385
2386		/* Make sure that anyone attempting to ptrace over a task that
2387		 * changes its SID has the appropriate permit */
2388		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2389			u32 ptsid = ptrace_parent_sid();
2390			if (ptsid != 0) {
2391				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2392						  SECCLASS_PROCESS,
2393						  PROCESS__PTRACE, NULL);
2394				if (rc)
2395					return -EPERM;
2396			}
2397		}
2398
2399		/* Clear any possibly unsafe personality bits on exec: */
2400		bprm->per_clear |= PER_CLEAR_ON_SETID;
2401
2402		/* Enable secure mode for SIDs transitions unless
2403		   the noatsecure permission is granted between
2404		   the two SIDs, i.e. ahp returns 0. */
2405		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2406				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2407				  NULL);
2408		bprm->secureexec |= !!rc;
2409	}
2410
2411	return 0;
2412}
2413
2414static int match_file(const void *p, struct file *file, unsigned fd)
2415{
2416	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2417}
2418
2419/* Derived from fs/exec.c:flush_old_files. */
2420static inline void flush_unauthorized_files(const struct cred *cred,
2421					    struct files_struct *files)
2422{
2423	struct file *file, *devnull = NULL;
2424	struct tty_struct *tty;
2425	int drop_tty = 0;
2426	unsigned n;
2427
2428	tty = get_current_tty();
2429	if (tty) {
2430		spin_lock(&tty->files_lock);
2431		if (!list_empty(&tty->tty_files)) {
2432			struct tty_file_private *file_priv;
2433
2434			/* Revalidate access to controlling tty.
2435			   Use file_path_has_perm on the tty path directly
2436			   rather than using file_has_perm, as this particular
2437			   open file may belong to another process and we are
2438			   only interested in the inode-based check here. */
2439			file_priv = list_first_entry(&tty->tty_files,
2440						struct tty_file_private, list);
2441			file = file_priv->file;
2442			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2443				drop_tty = 1;
2444		}
2445		spin_unlock(&tty->files_lock);
2446		tty_kref_put(tty);
2447	}
2448	/* Reset controlling tty. */
2449	if (drop_tty)
2450		no_tty();
2451
2452	/* Revalidate access to inherited open files. */
2453	n = iterate_fd(files, 0, match_file, cred);
2454	if (!n) /* none found? */
2455		return;
2456
2457	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2458	if (IS_ERR(devnull))
2459		devnull = NULL;
2460	/* replace all the matching ones with this */
2461	do {
2462		replace_fd(n - 1, devnull, 0);
2463	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2464	if (devnull)
2465		fput(devnull);
2466}
2467
2468/*
2469 * Prepare a process for imminent new credential changes due to exec
2470 */
2471static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2472{
2473	struct task_security_struct *new_tsec;
2474	struct rlimit *rlim, *initrlim;
2475	int rc, i;
2476
2477	new_tsec = selinux_cred(bprm->cred);
2478	if (new_tsec->sid == new_tsec->osid)
2479		return;
2480
2481	/* Close files for which the new task SID is not authorized. */
2482	flush_unauthorized_files(bprm->cred, current->files);
2483
2484	/* Always clear parent death signal on SID transitions. */
2485	current->pdeath_signal = 0;
2486
2487	/* Check whether the new SID can inherit resource limits from the old
2488	 * SID.  If not, reset all soft limits to the lower of the current
2489	 * task's hard limit and the init task's soft limit.
2490	 *
2491	 * Note that the setting of hard limits (even to lower them) can be
2492	 * controlled by the setrlimit check.  The inclusion of the init task's
2493	 * soft limit into the computation is to avoid resetting soft limits
2494	 * higher than the default soft limit for cases where the default is
2495	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2496	 */
2497	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2498			  PROCESS__RLIMITINH, NULL);
2499	if (rc) {
2500		/* protect against do_prlimit() */
2501		task_lock(current);
2502		for (i = 0; i < RLIM_NLIMITS; i++) {
2503			rlim = current->signal->rlim + i;
2504			initrlim = init_task.signal->rlim + i;
2505			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2506		}
2507		task_unlock(current);
2508		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2509			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2510	}
2511}
2512
2513/*
2514 * Clean up the process immediately after the installation of new credentials
2515 * due to exec
2516 */
2517static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2518{
2519	const struct task_security_struct *tsec = selinux_cred(current_cred());
2520	u32 osid, sid;
2521	int rc;
2522
2523	osid = tsec->osid;
2524	sid = tsec->sid;
2525
2526	if (sid == osid)
2527		return;
2528
2529	/* Check whether the new SID can inherit signal state from the old SID.
2530	 * If not, clear itimers to avoid subsequent signal generation and
2531	 * flush and unblock signals.
2532	 *
2533	 * This must occur _after_ the task SID has been updated so that any
2534	 * kill done after the flush will be checked against the new SID.
2535	 */
2536	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2537	if (rc) {
2538		clear_itimer();
2539
2540		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2541		if (!fatal_signal_pending(current)) {
2542			flush_sigqueue(&current->pending);
2543			flush_sigqueue(&current->signal->shared_pending);
2544			flush_signal_handlers(current, 1);
2545			sigemptyset(&current->blocked);
2546			recalc_sigpending();
2547		}
2548		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2549	}
2550
2551	/* Wake up the parent if it is waiting so that it can recheck
2552	 * wait permission to the new task SID. */
2553	read_lock(&tasklist_lock);
2554	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2555	read_unlock(&tasklist_lock);
2556}
2557
2558/* superblock security operations */
2559
2560static int selinux_sb_alloc_security(struct super_block *sb)
2561{
2562	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2563
2564	mutex_init(&sbsec->lock);
2565	INIT_LIST_HEAD(&sbsec->isec_head);
2566	spin_lock_init(&sbsec->isec_lock);
2567	sbsec->sid = SECINITSID_UNLABELED;
2568	sbsec->def_sid = SECINITSID_FILE;
2569	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2570
2571	return 0;
2572}
2573
2574static inline int opt_len(const char *s)
2575{
2576	bool open_quote = false;
2577	int len;
2578	char c;
2579
2580	for (len = 0; (c = s[len]) != '\0'; len++) {
2581		if (c == '"')
2582			open_quote = !open_quote;
2583		if (c == ',' && !open_quote)
2584			break;
2585	}
2586	return len;
2587}
2588
2589static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2590{
2591	char *from = options;
2592	char *to = options;
2593	bool first = true;
2594	int rc;
2595
2596	while (1) {
2597		int len = opt_len(from);
2598		int token;
2599		char *arg = NULL;
2600
2601		token = match_opt_prefix(from, len, &arg);
2602
2603		if (token != Opt_error) {
2604			char *p, *q;
2605
2606			/* strip quotes */
2607			if (arg) {
2608				for (p = q = arg; p < from + len; p++) {
2609					char c = *p;
2610					if (c != '"')
2611						*q++ = c;
2612				}
2613				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2614				if (!arg) {
2615					rc = -ENOMEM;
2616					goto free_opt;
2617				}
2618			}
2619			rc = selinux_add_opt(token, arg, mnt_opts);
2620			kfree(arg);
2621			arg = NULL;
2622			if (unlikely(rc)) {
2623				goto free_opt;
2624			}
2625		} else {
2626			if (!first) {	// copy with preceding comma
2627				from--;
2628				len++;
2629			}
2630			if (to != from)
2631				memmove(to, from, len);
2632			to += len;
2633			first = false;
2634		}
2635		if (!from[len])
2636			break;
2637		from += len + 1;
2638	}
2639	*to = '\0';
2640	return 0;
2641
2642free_opt:
2643	if (*mnt_opts) {
2644		selinux_free_mnt_opts(*mnt_opts);
2645		*mnt_opts = NULL;
2646	}
2647	return rc;
2648}
2649
2650static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2651{
2652	struct selinux_mnt_opts *opts = mnt_opts;
2653	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2654
2655	/*
2656	 * Superblock not initialized (i.e. no options) - reject if any
2657	 * options specified, otherwise accept.
2658	 */
2659	if (!(sbsec->flags & SE_SBINITIALIZED))
2660		return opts ? 1 : 0;
2661
2662	/*
2663	 * Superblock initialized and no options specified - reject if
2664	 * superblock has any options set, otherwise accept.
2665	 */
2666	if (!opts)
2667		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2668
2669	if (opts->fscontext_sid) {
2670		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2671			       opts->fscontext_sid))
2672			return 1;
2673	}
2674	if (opts->context_sid) {
2675		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2676			       opts->context_sid))
2677			return 1;
2678	}
2679	if (opts->rootcontext_sid) {
2680		struct inode_security_struct *root_isec;
2681
2682		root_isec = backing_inode_security(sb->s_root);
2683		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2684			       opts->rootcontext_sid))
2685			return 1;
2686	}
2687	if (opts->defcontext_sid) {
2688		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2689			       opts->defcontext_sid))
2690			return 1;
2691	}
2692	return 0;
2693}
2694
2695static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2696{
2697	struct selinux_mnt_opts *opts = mnt_opts;
2698	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2699
2700	if (!(sbsec->flags & SE_SBINITIALIZED))
2701		return 0;
2702
2703	if (!opts)
2704		return 0;
2705
2706	if (opts->fscontext_sid) {
2707		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2708			       opts->fscontext_sid))
2709			goto out_bad_option;
2710	}
2711	if (opts->context_sid) {
2712		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2713			       opts->context_sid))
2714			goto out_bad_option;
2715	}
2716	if (opts->rootcontext_sid) {
2717		struct inode_security_struct *root_isec;
2718		root_isec = backing_inode_security(sb->s_root);
2719		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2720			       opts->rootcontext_sid))
2721			goto out_bad_option;
2722	}
2723	if (opts->defcontext_sid) {
2724		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2725			       opts->defcontext_sid))
2726			goto out_bad_option;
2727	}
2728	return 0;
2729
2730out_bad_option:
2731	pr_warn("SELinux: unable to change security options "
2732	       "during remount (dev %s, type=%s)\n", sb->s_id,
2733	       sb->s_type->name);
2734	return -EINVAL;
2735}
2736
2737static int selinux_sb_kern_mount(const struct super_block *sb)
2738{
2739	const struct cred *cred = current_cred();
2740	struct common_audit_data ad;
2741
2742	ad.type = LSM_AUDIT_DATA_DENTRY;
2743	ad.u.dentry = sb->s_root;
2744	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2745}
2746
2747static int selinux_sb_statfs(struct dentry *dentry)
2748{
2749	const struct cred *cred = current_cred();
2750	struct common_audit_data ad;
2751
2752	ad.type = LSM_AUDIT_DATA_DENTRY;
2753	ad.u.dentry = dentry->d_sb->s_root;
2754	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2755}
2756
2757static int selinux_mount(const char *dev_name,
2758			 const struct path *path,
2759			 const char *type,
2760			 unsigned long flags,
2761			 void *data)
2762{
2763	const struct cred *cred = current_cred();
2764
2765	if (flags & MS_REMOUNT)
2766		return superblock_has_perm(cred, path->dentry->d_sb,
2767					   FILESYSTEM__REMOUNT, NULL);
2768	else
2769		return path_has_perm(cred, path, FILE__MOUNTON);
2770}
2771
2772static int selinux_move_mount(const struct path *from_path,
2773			      const struct path *to_path)
2774{
2775	const struct cred *cred = current_cred();
2776
2777	return path_has_perm(cred, to_path, FILE__MOUNTON);
2778}
2779
2780static int selinux_umount(struct vfsmount *mnt, int flags)
2781{
2782	const struct cred *cred = current_cred();
2783
2784	return superblock_has_perm(cred, mnt->mnt_sb,
2785				   FILESYSTEM__UNMOUNT, NULL);
2786}
2787
2788static int selinux_fs_context_submount(struct fs_context *fc,
2789				   struct super_block *reference)
2790{
2791	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2792	struct selinux_mnt_opts *opts;
2793
2794	/*
2795	 * Ensure that fc->security remains NULL when no options are set
2796	 * as expected by selinux_set_mnt_opts().
2797	 */
2798	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2799		return 0;
2800
2801	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2802	if (!opts)
2803		return -ENOMEM;
2804
2805	if (sbsec->flags & FSCONTEXT_MNT)
2806		opts->fscontext_sid = sbsec->sid;
2807	if (sbsec->flags & CONTEXT_MNT)
2808		opts->context_sid = sbsec->mntpoint_sid;
2809	if (sbsec->flags & DEFCONTEXT_MNT)
2810		opts->defcontext_sid = sbsec->def_sid;
2811	fc->security = opts;
2812	return 0;
2813}
2814
2815static int selinux_fs_context_dup(struct fs_context *fc,
2816				  struct fs_context *src_fc)
2817{
2818	const struct selinux_mnt_opts *src = src_fc->security;
2819
2820	if (!src)
2821		return 0;
2822
2823	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2824	return fc->security ? 0 : -ENOMEM;
2825}
2826
2827static const struct fs_parameter_spec selinux_fs_parameters[] = {
2828	fsparam_string(CONTEXT_STR,	Opt_context),
2829	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2830	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2831	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2832	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2833	{}
2834};
2835
2836static int selinux_fs_context_parse_param(struct fs_context *fc,
2837					  struct fs_parameter *param)
2838{
2839	struct fs_parse_result result;
2840	int opt;
2841
2842	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2843	if (opt < 0)
2844		return opt;
2845
2846	return selinux_add_opt(opt, param->string, &fc->security);
2847}
2848
2849/* inode security operations */
2850
2851static int selinux_inode_alloc_security(struct inode *inode)
2852{
2853	struct inode_security_struct *isec = selinux_inode(inode);
2854	u32 sid = current_sid();
2855
2856	spin_lock_init(&isec->lock);
2857	INIT_LIST_HEAD(&isec->list);
2858	isec->inode = inode;
2859	isec->sid = SECINITSID_UNLABELED;
2860	isec->sclass = SECCLASS_FILE;
2861	isec->task_sid = sid;
2862	isec->initialized = LABEL_INVALID;
2863
2864	return 0;
2865}
2866
2867static void selinux_inode_free_security(struct inode *inode)
2868{
2869	inode_free_security(inode);
2870}
2871
2872static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2873					const struct qstr *name,
2874					const char **xattr_name, void **ctx,
2875					u32 *ctxlen)
2876{
2877	u32 newsid;
2878	int rc;
2879
2880	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2881					   d_inode(dentry->d_parent), name,
2882					   inode_mode_to_security_class(mode),
2883					   &newsid);
2884	if (rc)
2885		return rc;
2886
2887	if (xattr_name)
2888		*xattr_name = XATTR_NAME_SELINUX;
2889
2890	return security_sid_to_context(newsid, (char **)ctx,
2891				       ctxlen);
2892}
2893
2894static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2895					  struct qstr *name,
2896					  const struct cred *old,
2897					  struct cred *new)
2898{
2899	u32 newsid;
2900	int rc;
2901	struct task_security_struct *tsec;
2902
2903	rc = selinux_determine_inode_label(selinux_cred(old),
2904					   d_inode(dentry->d_parent), name,
2905					   inode_mode_to_security_class(mode),
2906					   &newsid);
2907	if (rc)
2908		return rc;
2909
2910	tsec = selinux_cred(new);
2911	tsec->create_sid = newsid;
2912	return 0;
2913}
2914
2915static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2916				       const struct qstr *qstr,
2917				       struct xattr *xattrs, int *xattr_count)
 
2918{
2919	const struct task_security_struct *tsec = selinux_cred(current_cred());
2920	struct superblock_security_struct *sbsec;
2921	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2922	u32 newsid, clen;
2923	u16 newsclass;
2924	int rc;
2925	char *context;
2926
2927	sbsec = selinux_superblock(dir->i_sb);
2928
2929	newsid = tsec->create_sid;
2930	newsclass = inode_mode_to_security_class(inode->i_mode);
2931	rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
 
 
2932	if (rc)
2933		return rc;
2934
2935	/* Possibly defer initialization to selinux_complete_init. */
2936	if (sbsec->flags & SE_SBINITIALIZED) {
2937		struct inode_security_struct *isec = selinux_inode(inode);
2938		isec->sclass = newsclass;
2939		isec->sid = newsid;
2940		isec->initialized = LABEL_INITIALIZED;
2941	}
2942
2943	if (!selinux_initialized() ||
2944	    !(sbsec->flags & SBLABEL_MNT))
2945		return -EOPNOTSUPP;
2946
2947	if (xattr) {
2948		rc = security_sid_to_context_force(newsid,
 
 
 
2949						   &context, &clen);
2950		if (rc)
2951			return rc;
2952		xattr->value = context;
2953		xattr->value_len = clen;
2954		xattr->name = XATTR_SELINUX_SUFFIX;
2955	}
2956
2957	return 0;
2958}
2959
2960static int selinux_inode_init_security_anon(struct inode *inode,
2961					    const struct qstr *name,
2962					    const struct inode *context_inode)
2963{
2964	const struct task_security_struct *tsec = selinux_cred(current_cred());
2965	struct common_audit_data ad;
2966	struct inode_security_struct *isec;
2967	int rc;
2968
2969	if (unlikely(!selinux_initialized()))
2970		return 0;
2971
2972	isec = selinux_inode(inode);
2973
2974	/*
2975	 * We only get here once per ephemeral inode.  The inode has
2976	 * been initialized via inode_alloc_security but is otherwise
2977	 * untouched.
2978	 */
2979
2980	if (context_inode) {
2981		struct inode_security_struct *context_isec =
2982			selinux_inode(context_inode);
2983		if (context_isec->initialized != LABEL_INITIALIZED) {
2984			pr_err("SELinux:  context_inode is not initialized\n");
2985			return -EACCES;
2986		}
2987
2988		isec->sclass = context_isec->sclass;
2989		isec->sid = context_isec->sid;
2990	} else {
2991		isec->sclass = SECCLASS_ANON_INODE;
2992		rc = security_transition_sid(
2993			tsec->sid, tsec->sid,
2994			isec->sclass, name, &isec->sid);
2995		if (rc)
2996			return rc;
2997	}
2998
2999	isec->initialized = LABEL_INITIALIZED;
3000	/*
3001	 * Now that we've initialized security, check whether we're
3002	 * allowed to actually create this type of anonymous inode.
3003	 */
3004
3005	ad.type = LSM_AUDIT_DATA_ANONINODE;
3006	ad.u.anonclass = name ? (const char *)name->name : "?";
3007
3008	return avc_has_perm(tsec->sid,
 
3009			    isec->sid,
3010			    isec->sclass,
3011			    FILE__CREATE,
3012			    &ad);
3013}
3014
3015static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3016{
3017	return may_create(dir, dentry, SECCLASS_FILE);
3018}
3019
3020static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3021{
3022	return may_link(dir, old_dentry, MAY_LINK);
3023}
3024
3025static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3026{
3027	return may_link(dir, dentry, MAY_UNLINK);
3028}
3029
3030static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3031{
3032	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3033}
3034
3035static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3036{
3037	return may_create(dir, dentry, SECCLASS_DIR);
3038}
3039
3040static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3041{
3042	return may_link(dir, dentry, MAY_RMDIR);
3043}
3044
3045static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3046{
3047	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3048}
3049
3050static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3051				struct inode *new_inode, struct dentry *new_dentry)
3052{
3053	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3054}
3055
3056static int selinux_inode_readlink(struct dentry *dentry)
3057{
3058	const struct cred *cred = current_cred();
3059
3060	return dentry_has_perm(cred, dentry, FILE__READ);
3061}
3062
3063static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3064				     bool rcu)
3065{
3066	const struct cred *cred = current_cred();
3067	struct common_audit_data ad;
3068	struct inode_security_struct *isec;
3069	u32 sid;
3070
 
 
3071	ad.type = LSM_AUDIT_DATA_DENTRY;
3072	ad.u.dentry = dentry;
3073	sid = cred_sid(cred);
3074	isec = inode_security_rcu(inode, rcu);
3075	if (IS_ERR(isec))
3076		return PTR_ERR(isec);
3077
3078	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
 
3079}
3080
3081static noinline int audit_inode_permission(struct inode *inode,
3082					   u32 perms, u32 audited, u32 denied,
3083					   int result)
3084{
3085	struct common_audit_data ad;
3086	struct inode_security_struct *isec = selinux_inode(inode);
3087
3088	ad.type = LSM_AUDIT_DATA_INODE;
3089	ad.u.inode = inode;
3090
3091	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
 
3092			    audited, denied, result, &ad);
3093}
3094
3095static int selinux_inode_permission(struct inode *inode, int mask)
3096{
3097	const struct cred *cred = current_cred();
3098	u32 perms;
3099	bool from_access;
3100	bool no_block = mask & MAY_NOT_BLOCK;
3101	struct inode_security_struct *isec;
3102	u32 sid;
3103	struct av_decision avd;
3104	int rc, rc2;
3105	u32 audited, denied;
3106
3107	from_access = mask & MAY_ACCESS;
3108	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3109
3110	/* No permission to check.  Existence test. */
3111	if (!mask)
3112		return 0;
3113
 
 
3114	if (unlikely(IS_PRIVATE(inode)))
3115		return 0;
3116
3117	perms = file_mask_to_av(inode->i_mode, mask);
3118
3119	sid = cred_sid(cred);
3120	isec = inode_security_rcu(inode, no_block);
3121	if (IS_ERR(isec))
3122		return PTR_ERR(isec);
3123
3124	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
 
3125				  &avd);
3126	audited = avc_audit_required(perms, &avd, rc,
3127				     from_access ? FILE__AUDIT_ACCESS : 0,
3128				     &denied);
3129	if (likely(!audited))
3130		return rc;
3131
3132	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3133	if (rc2)
3134		return rc2;
3135	return rc;
3136}
3137
3138static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3139				 struct iattr *iattr)
3140{
3141	const struct cred *cred = current_cred();
3142	struct inode *inode = d_backing_inode(dentry);
3143	unsigned int ia_valid = iattr->ia_valid;
3144	__u32 av = FILE__WRITE;
3145
3146	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3147	if (ia_valid & ATTR_FORCE) {
3148		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3149			      ATTR_FORCE);
3150		if (!ia_valid)
3151			return 0;
3152	}
3153
3154	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3155			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3156		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3157
3158	if (selinux_policycap_openperm() &&
3159	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3160	    (ia_valid & ATTR_SIZE) &&
3161	    !(ia_valid & ATTR_FILE))
3162		av |= FILE__OPEN;
3163
3164	return dentry_has_perm(cred, dentry, av);
3165}
3166
3167static int selinux_inode_getattr(const struct path *path)
3168{
3169	return path_has_perm(current_cred(), path, FILE__GETATTR);
3170}
3171
3172static bool has_cap_mac_admin(bool audit)
3173{
3174	const struct cred *cred = current_cred();
3175	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3176
3177	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3178		return false;
3179	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3180		return false;
3181	return true;
3182}
3183
3184static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3185				  struct dentry *dentry, const char *name,
3186				  const void *value, size_t size, int flags)
3187{
3188	struct inode *inode = d_backing_inode(dentry);
3189	struct inode_security_struct *isec;
3190	struct superblock_security_struct *sbsec;
3191	struct common_audit_data ad;
3192	u32 newsid, sid = current_sid();
3193	int rc = 0;
3194
3195	if (strcmp(name, XATTR_NAME_SELINUX)) {
3196		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3197		if (rc)
3198			return rc;
3199
3200		/* Not an attribute we recognize, so just check the
3201		   ordinary setattr permission. */
3202		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3203	}
3204
3205	if (!selinux_initialized())
3206		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3207
3208	sbsec = selinux_superblock(inode->i_sb);
3209	if (!(sbsec->flags & SBLABEL_MNT))
3210		return -EOPNOTSUPP;
3211
3212	if (!inode_owner_or_capable(idmap, inode))
3213		return -EPERM;
3214
3215	ad.type = LSM_AUDIT_DATA_DENTRY;
3216	ad.u.dentry = dentry;
3217
3218	isec = backing_inode_security(dentry);
3219	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
3220			  FILE__RELABELFROM, &ad);
3221	if (rc)
3222		return rc;
3223
3224	rc = security_context_to_sid(value, size, &newsid,
3225				     GFP_KERNEL);
3226	if (rc == -EINVAL) {
3227		if (!has_cap_mac_admin(true)) {
3228			struct audit_buffer *ab;
3229			size_t audit_size;
3230
3231			/* We strip a nul only if it is at the end, otherwise the
3232			 * context contains a nul and we should audit that */
3233			if (value) {
3234				const char *str = value;
3235
3236				if (str[size - 1] == '\0')
3237					audit_size = size - 1;
3238				else
3239					audit_size = size;
3240			} else {
3241				audit_size = 0;
3242			}
3243			ab = audit_log_start(audit_context(),
3244					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3245			if (!ab)
3246				return rc;
3247			audit_log_format(ab, "op=setxattr invalid_context=");
3248			audit_log_n_untrustedstring(ab, value, audit_size);
3249			audit_log_end(ab);
3250
3251			return rc;
3252		}
3253		rc = security_context_to_sid_force(value,
3254						   size, &newsid);
3255	}
3256	if (rc)
3257		return rc;
3258
3259	rc = avc_has_perm(sid, newsid, isec->sclass,
 
3260			  FILE__RELABELTO, &ad);
3261	if (rc)
3262		return rc;
3263
3264	rc = security_validate_transition(isec->sid, newsid,
3265					  sid, isec->sclass);
3266	if (rc)
3267		return rc;
3268
3269	return avc_has_perm(newsid,
 
3270			    sbsec->sid,
3271			    SECCLASS_FILESYSTEM,
3272			    FILESYSTEM__ASSOCIATE,
3273			    &ad);
3274}
3275
3276static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3277				 struct dentry *dentry, const char *acl_name,
3278				 struct posix_acl *kacl)
3279{
3280	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3281}
3282
3283static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3284				 struct dentry *dentry, const char *acl_name)
3285{
3286	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3287}
3288
3289static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3290				    struct dentry *dentry, const char *acl_name)
3291{
3292	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3293}
3294
3295static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3296					const void *value, size_t size,
3297					int flags)
3298{
3299	struct inode *inode = d_backing_inode(dentry);
3300	struct inode_security_struct *isec;
3301	u32 newsid;
3302	int rc;
3303
3304	if (strcmp(name, XATTR_NAME_SELINUX)) {
3305		/* Not an attribute we recognize, so nothing to do. */
3306		return;
3307	}
3308
3309	if (!selinux_initialized()) {
3310		/* If we haven't even been initialized, then we can't validate
3311		 * against a policy, so leave the label as invalid. It may
3312		 * resolve to a valid label on the next revalidation try if
3313		 * we've since initialized.
3314		 */
3315		return;
3316	}
3317
3318	rc = security_context_to_sid_force(value, size,
3319					   &newsid);
3320	if (rc) {
3321		pr_err("SELinux:  unable to map context to SID"
3322		       "for (%s, %lu), rc=%d\n",
3323		       inode->i_sb->s_id, inode->i_ino, -rc);
3324		return;
3325	}
3326
3327	isec = backing_inode_security(dentry);
3328	spin_lock(&isec->lock);
3329	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3330	isec->sid = newsid;
3331	isec->initialized = LABEL_INITIALIZED;
3332	spin_unlock(&isec->lock);
3333}
3334
3335static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3336{
3337	const struct cred *cred = current_cred();
3338
3339	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3340}
3341
3342static int selinux_inode_listxattr(struct dentry *dentry)
3343{
3344	const struct cred *cred = current_cred();
3345
3346	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3347}
3348
3349static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3350				     struct dentry *dentry, const char *name)
3351{
3352	if (strcmp(name, XATTR_NAME_SELINUX)) {
3353		int rc = cap_inode_removexattr(idmap, dentry, name);
3354		if (rc)
3355			return rc;
3356
3357		/* Not an attribute we recognize, so just check the
3358		   ordinary setattr permission. */
3359		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360	}
3361
3362	if (!selinux_initialized())
3363		return 0;
3364
3365	/* No one is allowed to remove a SELinux security label.
3366	   You can change the label, but all data must be labeled. */
3367	return -EACCES;
3368}
3369
3370static int selinux_path_notify(const struct path *path, u64 mask,
3371						unsigned int obj_type)
3372{
3373	int ret;
3374	u32 perm;
3375
3376	struct common_audit_data ad;
3377
3378	ad.type = LSM_AUDIT_DATA_PATH;
3379	ad.u.path = *path;
3380
3381	/*
3382	 * Set permission needed based on the type of mark being set.
3383	 * Performs an additional check for sb watches.
3384	 */
3385	switch (obj_type) {
3386	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3387		perm = FILE__WATCH_MOUNT;
3388		break;
3389	case FSNOTIFY_OBJ_TYPE_SB:
3390		perm = FILE__WATCH_SB;
3391		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3392						FILESYSTEM__WATCH, &ad);
3393		if (ret)
3394			return ret;
3395		break;
3396	case FSNOTIFY_OBJ_TYPE_INODE:
3397		perm = FILE__WATCH;
3398		break;
3399	default:
3400		return -EINVAL;
3401	}
3402
3403	/* blocking watches require the file:watch_with_perm permission */
3404	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3405		perm |= FILE__WATCH_WITH_PERM;
3406
3407	/* watches on read-like events need the file:watch_reads permission */
3408	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3409		perm |= FILE__WATCH_READS;
3410
3411	return path_has_perm(current_cred(), path, perm);
3412}
3413
3414/*
3415 * Copy the inode security context value to the user.
3416 *
3417 * Permission check is handled by selinux_inode_getxattr hook.
3418 */
3419static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3420				     struct inode *inode, const char *name,
3421				     void **buffer, bool alloc)
3422{
3423	u32 size;
3424	int error;
3425	char *context = NULL;
3426	struct inode_security_struct *isec;
3427
3428	/*
3429	 * If we're not initialized yet, then we can't validate contexts, so
3430	 * just let vfs_getxattr fall back to using the on-disk xattr.
3431	 */
3432	if (!selinux_initialized() ||
3433	    strcmp(name, XATTR_SELINUX_SUFFIX))
3434		return -EOPNOTSUPP;
3435
3436	/*
3437	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3438	 * value even if it is not defined by current policy; otherwise,
3439	 * use the in-core value under current policy.
3440	 * Use the non-auditing forms of the permission checks since
3441	 * getxattr may be called by unprivileged processes commonly
3442	 * and lack of permission just means that we fall back to the
3443	 * in-core context value, not a denial.
3444	 */
3445	isec = inode_security(inode);
3446	if (has_cap_mac_admin(false))
3447		error = security_sid_to_context_force(isec->sid, &context,
 
3448						      &size);
3449	else
3450		error = security_sid_to_context(isec->sid,
3451						&context, &size);
3452	if (error)
3453		return error;
3454	error = size;
3455	if (alloc) {
3456		*buffer = context;
3457		goto out_nofree;
3458	}
3459	kfree(context);
3460out_nofree:
3461	return error;
3462}
3463
3464static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3465				     const void *value, size_t size, int flags)
3466{
3467	struct inode_security_struct *isec = inode_security_novalidate(inode);
3468	struct superblock_security_struct *sbsec;
3469	u32 newsid;
3470	int rc;
3471
3472	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3473		return -EOPNOTSUPP;
3474
3475	sbsec = selinux_superblock(inode->i_sb);
3476	if (!(sbsec->flags & SBLABEL_MNT))
3477		return -EOPNOTSUPP;
3478
3479	if (!value || !size)
3480		return -EACCES;
3481
3482	rc = security_context_to_sid(value, size, &newsid,
3483				     GFP_KERNEL);
3484	if (rc)
3485		return rc;
3486
3487	spin_lock(&isec->lock);
3488	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3489	isec->sid = newsid;
3490	isec->initialized = LABEL_INITIALIZED;
3491	spin_unlock(&isec->lock);
3492	return 0;
3493}
3494
3495static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3496{
3497	const int len = sizeof(XATTR_NAME_SELINUX);
3498
3499	if (!selinux_initialized())
3500		return 0;
3501
3502	if (buffer && len <= buffer_size)
3503		memcpy(buffer, XATTR_NAME_SELINUX, len);
3504	return len;
3505}
3506
3507static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3508{
3509	struct inode_security_struct *isec = inode_security_novalidate(inode);
3510	*secid = isec->sid;
3511}
3512
3513static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514{
3515	u32 sid;
3516	struct task_security_struct *tsec;
3517	struct cred *new_creds = *new;
3518
3519	if (new_creds == NULL) {
3520		new_creds = prepare_creds();
3521		if (!new_creds)
3522			return -ENOMEM;
3523	}
3524
3525	tsec = selinux_cred(new_creds);
3526	/* Get label from overlay inode and set it in create_sid */
3527	selinux_inode_getsecid(d_inode(src), &sid);
3528	tsec->create_sid = sid;
3529	*new = new_creds;
3530	return 0;
3531}
3532
3533static int selinux_inode_copy_up_xattr(const char *name)
3534{
3535	/* The copy_up hook above sets the initial context on an inode, but we
3536	 * don't then want to overwrite it by blindly copying all the lower
3537	 * xattrs up.  Instead, filter out SELinux-related xattrs following
3538	 * policy load.
3539	 */
3540	if (selinux_initialized() && strcmp(name, XATTR_NAME_SELINUX) == 0)
3541		return 1; /* Discard */
3542	/*
3543	 * Any other attribute apart from SELINUX is not claimed, supported
3544	 * by selinux.
3545	 */
3546	return -EOPNOTSUPP;
3547}
3548
3549/* kernfs node operations */
3550
3551static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552					struct kernfs_node *kn)
3553{
3554	const struct task_security_struct *tsec = selinux_cred(current_cred());
3555	u32 parent_sid, newsid, clen;
3556	int rc;
3557	char *context;
3558
3559	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560	if (rc == -ENODATA)
3561		return 0;
3562	else if (rc < 0)
3563		return rc;
3564
3565	clen = (u32)rc;
3566	context = kmalloc(clen, GFP_KERNEL);
3567	if (!context)
3568		return -ENOMEM;
3569
3570	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571	if (rc < 0) {
3572		kfree(context);
3573		return rc;
3574	}
3575
3576	rc = security_context_to_sid(context, clen, &parent_sid,
3577				     GFP_KERNEL);
3578	kfree(context);
3579	if (rc)
3580		return rc;
3581
3582	if (tsec->create_sid) {
3583		newsid = tsec->create_sid;
3584	} else {
3585		u16 secclass = inode_mode_to_security_class(kn->mode);
3586		struct qstr q;
3587
3588		q.name = kn->name;
3589		q.hash_len = hashlen_string(kn_dir, kn->name);
3590
3591		rc = security_transition_sid(tsec->sid,
3592					     parent_sid, secclass, &q,
3593					     &newsid);
3594		if (rc)
3595			return rc;
3596	}
3597
3598	rc = security_sid_to_context_force(newsid,
3599					   &context, &clen);
3600	if (rc)
3601		return rc;
3602
3603	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604			      XATTR_CREATE);
3605	kfree(context);
3606	return rc;
3607}
3608
3609
3610/* file security operations */
3611
3612static int selinux_revalidate_file_permission(struct file *file, int mask)
3613{
3614	const struct cred *cred = current_cred();
3615	struct inode *inode = file_inode(file);
3616
3617	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619		mask |= MAY_APPEND;
3620
3621	return file_has_perm(cred, file,
3622			     file_mask_to_av(inode->i_mode, mask));
3623}
3624
3625static int selinux_file_permission(struct file *file, int mask)
3626{
3627	struct inode *inode = file_inode(file);
3628	struct file_security_struct *fsec = selinux_file(file);
3629	struct inode_security_struct *isec;
3630	u32 sid = current_sid();
3631
3632	if (!mask)
3633		/* No permission to check.  Existence test. */
3634		return 0;
3635
3636	isec = inode_security(inode);
3637	if (sid == fsec->sid && fsec->isid == isec->sid &&
3638	    fsec->pseqno == avc_policy_seqno())
3639		/* No change since file_open check. */
3640		return 0;
3641
3642	return selinux_revalidate_file_permission(file, mask);
3643}
3644
3645static int selinux_file_alloc_security(struct file *file)
3646{
3647	struct file_security_struct *fsec = selinux_file(file);
3648	u32 sid = current_sid();
3649
3650	fsec->sid = sid;
3651	fsec->fown_sid = sid;
3652
3653	return 0;
3654}
3655
3656/*
3657 * Check whether a task has the ioctl permission and cmd
3658 * operation to an inode.
3659 */
3660static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661		u32 requested, u16 cmd)
3662{
3663	struct common_audit_data ad;
3664	struct file_security_struct *fsec = selinux_file(file);
3665	struct inode *inode = file_inode(file);
3666	struct inode_security_struct *isec;
3667	struct lsm_ioctlop_audit ioctl;
3668	u32 ssid = cred_sid(cred);
3669	int rc;
3670	u8 driver = cmd >> 8;
3671	u8 xperm = cmd & 0xff;
3672
3673	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674	ad.u.op = &ioctl;
3675	ad.u.op->cmd = cmd;
3676	ad.u.op->path = file->f_path;
3677
3678	if (ssid != fsec->sid) {
3679		rc = avc_has_perm(ssid, fsec->sid,
 
3680				SECCLASS_FD,
3681				FD__USE,
3682				&ad);
3683		if (rc)
3684			goto out;
3685	}
3686
3687	if (unlikely(IS_PRIVATE(inode)))
3688		return 0;
3689
3690	isec = inode_security(inode);
3691	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
 
3692				    requested, driver, xperm, &ad);
3693out:
3694	return rc;
3695}
3696
3697static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698			      unsigned long arg)
3699{
3700	const struct cred *cred = current_cred();
3701	int error = 0;
3702
3703	switch (cmd) {
3704	case FIONREAD:
3705	case FIBMAP:
3706	case FIGETBSZ:
3707	case FS_IOC_GETFLAGS:
3708	case FS_IOC_GETVERSION:
3709		error = file_has_perm(cred, file, FILE__GETATTR);
3710		break;
3711
3712	case FS_IOC_SETFLAGS:
3713	case FS_IOC_SETVERSION:
3714		error = file_has_perm(cred, file, FILE__SETATTR);
3715		break;
3716
3717	/* sys_ioctl() checks */
3718	case FIONBIO:
3719	case FIOASYNC:
3720		error = file_has_perm(cred, file, 0);
3721		break;
3722
3723	case KDSKBENT:
3724	case KDSKBSENT:
3725		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726					    CAP_OPT_NONE, true);
3727		break;
3728
3729	case FIOCLEX:
3730	case FIONCLEX:
3731		if (!selinux_policycap_ioctl_skip_cloexec())
3732			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733		break;
3734
3735	/* default case assumes that the command will go
3736	 * to the file's ioctl() function.
3737	 */
3738	default:
3739		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740	}
3741	return error;
3742}
3743
3744static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745			      unsigned long arg)
3746{
3747	/*
3748	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749	 * make sure we don't compare 32-bit flags to 64-bit flags.
3750	 */
3751	switch (cmd) {
3752	case FS_IOC32_GETFLAGS:
3753		cmd = FS_IOC_GETFLAGS;
3754		break;
3755	case FS_IOC32_SETFLAGS:
3756		cmd = FS_IOC_SETFLAGS;
3757		break;
3758	case FS_IOC32_GETVERSION:
3759		cmd = FS_IOC_GETVERSION;
3760		break;
3761	case FS_IOC32_SETVERSION:
3762		cmd = FS_IOC_SETVERSION;
3763		break;
3764	default:
3765		break;
3766	}
3767
3768	return selinux_file_ioctl(file, cmd, arg);
3769}
3770
3771static int default_noexec __ro_after_init;
3772
3773static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774{
3775	const struct cred *cred = current_cred();
3776	u32 sid = cred_sid(cred);
3777	int rc = 0;
3778
3779	if (default_noexec &&
3780	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781				   (!shared && (prot & PROT_WRITE)))) {
3782		/*
3783		 * We are making executable an anonymous mapping or a
3784		 * private file mapping that will also be writable.
3785		 * This has an additional check.
3786		 */
3787		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
3788				  PROCESS__EXECMEM, NULL);
3789		if (rc)
3790			goto error;
3791	}
3792
3793	if (file) {
3794		/* read access is always possible with a mapping */
3795		u32 av = FILE__READ;
3796
3797		/* write access only matters if the mapping is shared */
3798		if (shared && (prot & PROT_WRITE))
3799			av |= FILE__WRITE;
3800
3801		if (prot & PROT_EXEC)
3802			av |= FILE__EXECUTE;
3803
3804		return file_has_perm(cred, file, av);
3805	}
3806
3807error:
3808	return rc;
3809}
3810
3811static int selinux_mmap_addr(unsigned long addr)
3812{
3813	int rc = 0;
3814
3815	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816		u32 sid = current_sid();
3817		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3818				  MEMPROTECT__MMAP_ZERO, NULL);
3819	}
3820
3821	return rc;
3822}
3823
3824static int selinux_mmap_file(struct file *file,
3825			     unsigned long reqprot __always_unused,
3826			     unsigned long prot, unsigned long flags)
3827{
3828	struct common_audit_data ad;
3829	int rc;
3830
3831	if (file) {
3832		ad.type = LSM_AUDIT_DATA_FILE;
3833		ad.u.file = file;
3834		rc = inode_has_perm(current_cred(), file_inode(file),
3835				    FILE__MAP, &ad);
3836		if (rc)
3837			return rc;
3838	}
3839
 
 
 
3840	return file_map_prot_check(file, prot,
3841				   (flags & MAP_TYPE) == MAP_SHARED);
3842}
3843
3844static int selinux_file_mprotect(struct vm_area_struct *vma,
3845				 unsigned long reqprot __always_unused,
3846				 unsigned long prot)
3847{
3848	const struct cred *cred = current_cred();
3849	u32 sid = cred_sid(cred);
3850
 
 
 
3851	if (default_noexec &&
3852	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853		int rc = 0;
3854		if (vma_is_initial_heap(vma)) {
3855			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
 
3856					  PROCESS__EXECHEAP, NULL);
3857		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
 
 
3858			    vma_is_stack_for_current(vma))) {
3859			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
3860					  PROCESS__EXECSTACK, NULL);
3861		} else if (vma->vm_file && vma->anon_vma) {
3862			/*
3863			 * We are making executable a file mapping that has
3864			 * had some COW done. Since pages might have been
3865			 * written, check ability to execute the possibly
3866			 * modified content.  This typically should only
3867			 * occur for text relocations.
3868			 */
3869			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3870		}
3871		if (rc)
3872			return rc;
3873	}
3874
3875	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3876}
3877
3878static int selinux_file_lock(struct file *file, unsigned int cmd)
3879{
3880	const struct cred *cred = current_cred();
3881
3882	return file_has_perm(cred, file, FILE__LOCK);
3883}
3884
3885static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3886			      unsigned long arg)
3887{
3888	const struct cred *cred = current_cred();
3889	int err = 0;
3890
3891	switch (cmd) {
3892	case F_SETFL:
3893		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3894			err = file_has_perm(cred, file, FILE__WRITE);
3895			break;
3896		}
3897		fallthrough;
3898	case F_SETOWN:
3899	case F_SETSIG:
3900	case F_GETFL:
3901	case F_GETOWN:
3902	case F_GETSIG:
3903	case F_GETOWNER_UIDS:
3904		/* Just check FD__USE permission */
3905		err = file_has_perm(cred, file, 0);
3906		break;
3907	case F_GETLK:
3908	case F_SETLK:
3909	case F_SETLKW:
3910	case F_OFD_GETLK:
3911	case F_OFD_SETLK:
3912	case F_OFD_SETLKW:
3913#if BITS_PER_LONG == 32
3914	case F_GETLK64:
3915	case F_SETLK64:
3916	case F_SETLKW64:
3917#endif
3918		err = file_has_perm(cred, file, FILE__LOCK);
3919		break;
3920	}
3921
3922	return err;
3923}
3924
3925static void selinux_file_set_fowner(struct file *file)
3926{
3927	struct file_security_struct *fsec;
3928
3929	fsec = selinux_file(file);
3930	fsec->fown_sid = current_sid();
3931}
3932
3933static int selinux_file_send_sigiotask(struct task_struct *tsk,
3934				       struct fown_struct *fown, int signum)
3935{
3936	struct file *file;
3937	u32 sid = task_sid_obj(tsk);
3938	u32 perm;
3939	struct file_security_struct *fsec;
3940
3941	/* struct fown_struct is never outside the context of a struct file */
3942	file = container_of(fown, struct file, f_owner);
3943
3944	fsec = selinux_file(file);
3945
3946	if (!signum)
3947		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3948	else
3949		perm = signal_to_av(signum);
3950
3951	return avc_has_perm(fsec->fown_sid, sid,
 
3952			    SECCLASS_PROCESS, perm, NULL);
3953}
3954
3955static int selinux_file_receive(struct file *file)
3956{
3957	const struct cred *cred = current_cred();
3958
3959	return file_has_perm(cred, file, file_to_av(file));
3960}
3961
3962static int selinux_file_open(struct file *file)
3963{
3964	struct file_security_struct *fsec;
3965	struct inode_security_struct *isec;
3966
3967	fsec = selinux_file(file);
3968	isec = inode_security(file_inode(file));
3969	/*
3970	 * Save inode label and policy sequence number
3971	 * at open-time so that selinux_file_permission
3972	 * can determine whether revalidation is necessary.
3973	 * Task label is already saved in the file security
3974	 * struct as its SID.
3975	 */
3976	fsec->isid = isec->sid;
3977	fsec->pseqno = avc_policy_seqno();
3978	/*
3979	 * Since the inode label or policy seqno may have changed
3980	 * between the selinux_inode_permission check and the saving
3981	 * of state above, recheck that access is still permitted.
3982	 * Otherwise, access might never be revalidated against the
3983	 * new inode label or new policy.
3984	 * This check is not redundant - do not remove.
3985	 */
3986	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3987}
3988
3989/* task security operations */
3990
3991static int selinux_task_alloc(struct task_struct *task,
3992			      unsigned long clone_flags)
3993{
3994	u32 sid = current_sid();
3995
3996	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
3997}
3998
3999/*
4000 * prepare a new set of credentials for modification
4001 */
4002static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4003				gfp_t gfp)
4004{
4005	const struct task_security_struct *old_tsec = selinux_cred(old);
4006	struct task_security_struct *tsec = selinux_cred(new);
4007
4008	*tsec = *old_tsec;
4009	return 0;
4010}
4011
4012/*
4013 * transfer the SELinux data to a blank set of creds
4014 */
4015static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4016{
4017	const struct task_security_struct *old_tsec = selinux_cred(old);
4018	struct task_security_struct *tsec = selinux_cred(new);
4019
4020	*tsec = *old_tsec;
4021}
4022
4023static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4024{
4025	*secid = cred_sid(c);
4026}
4027
4028/*
4029 * set the security data for a kernel service
4030 * - all the creation contexts are set to unlabelled
4031 */
4032static int selinux_kernel_act_as(struct cred *new, u32 secid)
4033{
4034	struct task_security_struct *tsec = selinux_cred(new);
4035	u32 sid = current_sid();
4036	int ret;
4037
4038	ret = avc_has_perm(sid, secid,
 
4039			   SECCLASS_KERNEL_SERVICE,
4040			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4041			   NULL);
4042	if (ret == 0) {
4043		tsec->sid = secid;
4044		tsec->create_sid = 0;
4045		tsec->keycreate_sid = 0;
4046		tsec->sockcreate_sid = 0;
4047	}
4048	return ret;
4049}
4050
4051/*
4052 * set the file creation context in a security record to the same as the
4053 * objective context of the specified inode
4054 */
4055static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4056{
4057	struct inode_security_struct *isec = inode_security(inode);
4058	struct task_security_struct *tsec = selinux_cred(new);
4059	u32 sid = current_sid();
4060	int ret;
4061
4062	ret = avc_has_perm(sid, isec->sid,
 
4063			   SECCLASS_KERNEL_SERVICE,
4064			   KERNEL_SERVICE__CREATE_FILES_AS,
4065			   NULL);
4066
4067	if (ret == 0)
4068		tsec->create_sid = isec->sid;
4069	return ret;
4070}
4071
4072static int selinux_kernel_module_request(char *kmod_name)
4073{
4074	struct common_audit_data ad;
4075
4076	ad.type = LSM_AUDIT_DATA_KMOD;
4077	ad.u.kmod_name = kmod_name;
4078
4079	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
4080			    SYSTEM__MODULE_REQUEST, &ad);
4081}
4082
4083static int selinux_kernel_module_from_file(struct file *file)
4084{
4085	struct common_audit_data ad;
4086	struct inode_security_struct *isec;
4087	struct file_security_struct *fsec;
4088	u32 sid = current_sid();
4089	int rc;
4090
4091	/* init_module */
4092	if (file == NULL)
4093		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
 
4094					SYSTEM__MODULE_LOAD, NULL);
4095
4096	/* finit_module */
4097
4098	ad.type = LSM_AUDIT_DATA_FILE;
4099	ad.u.file = file;
4100
4101	fsec = selinux_file(file);
4102	if (sid != fsec->sid) {
4103		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
 
4104		if (rc)
4105			return rc;
4106	}
4107
4108	isec = inode_security(file_inode(file));
4109	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
 
4110				SYSTEM__MODULE_LOAD, &ad);
4111}
4112
4113static int selinux_kernel_read_file(struct file *file,
4114				    enum kernel_read_file_id id,
4115				    bool contents)
4116{
4117	int rc = 0;
4118
4119	switch (id) {
4120	case READING_MODULE:
4121		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4122		break;
4123	default:
4124		break;
4125	}
4126
4127	return rc;
4128}
4129
4130static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4131{
4132	int rc = 0;
4133
4134	switch (id) {
4135	case LOADING_MODULE:
4136		rc = selinux_kernel_module_from_file(NULL);
4137		break;
4138	default:
4139		break;
4140	}
4141
4142	return rc;
4143}
4144
4145static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4146{
4147	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4148			    PROCESS__SETPGID, NULL);
4149}
4150
4151static int selinux_task_getpgid(struct task_struct *p)
4152{
4153	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4154			    PROCESS__GETPGID, NULL);
4155}
4156
4157static int selinux_task_getsid(struct task_struct *p)
4158{
4159	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4160			    PROCESS__GETSESSION, NULL);
4161}
4162
4163static void selinux_current_getsecid_subj(u32 *secid)
4164{
4165	*secid = current_sid();
4166}
4167
4168static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4169{
4170	*secid = task_sid_obj(p);
4171}
4172
4173static int selinux_task_setnice(struct task_struct *p, int nice)
4174{
4175	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4176			    PROCESS__SETSCHED, NULL);
4177}
4178
4179static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4180{
4181	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4182			    PROCESS__SETSCHED, NULL);
4183}
4184
4185static int selinux_task_getioprio(struct task_struct *p)
4186{
4187	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4188			    PROCESS__GETSCHED, NULL);
4189}
4190
4191static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4192				unsigned int flags)
4193{
4194	u32 av = 0;
4195
4196	if (!flags)
4197		return 0;
4198	if (flags & LSM_PRLIMIT_WRITE)
4199		av |= PROCESS__SETRLIMIT;
4200	if (flags & LSM_PRLIMIT_READ)
4201		av |= PROCESS__GETRLIMIT;
4202	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
 
4203			    SECCLASS_PROCESS, av, NULL);
4204}
4205
4206static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4207		struct rlimit *new_rlim)
4208{
4209	struct rlimit *old_rlim = p->signal->rlim + resource;
4210
4211	/* Control the ability to change the hard limit (whether
4212	   lowering or raising it), so that the hard limit can
4213	   later be used as a safe reset point for the soft limit
4214	   upon context transitions.  See selinux_bprm_committing_creds. */
4215	if (old_rlim->rlim_max != new_rlim->rlim_max)
4216		return avc_has_perm(current_sid(), task_sid_obj(p),
 
4217				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4218
4219	return 0;
4220}
4221
4222static int selinux_task_setscheduler(struct task_struct *p)
4223{
4224	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4225			    PROCESS__SETSCHED, NULL);
4226}
4227
4228static int selinux_task_getscheduler(struct task_struct *p)
4229{
4230	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4231			    PROCESS__GETSCHED, NULL);
4232}
4233
4234static int selinux_task_movememory(struct task_struct *p)
4235{
4236	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4237			    PROCESS__SETSCHED, NULL);
4238}
4239
4240static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4241				int sig, const struct cred *cred)
4242{
4243	u32 secid;
4244	u32 perm;
4245
4246	if (!sig)
4247		perm = PROCESS__SIGNULL; /* null signal; existence test */
4248	else
4249		perm = signal_to_av(sig);
4250	if (!cred)
4251		secid = current_sid();
4252	else
4253		secid = cred_sid(cred);
4254	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
 
4255}
4256
4257static void selinux_task_to_inode(struct task_struct *p,
4258				  struct inode *inode)
4259{
4260	struct inode_security_struct *isec = selinux_inode(inode);
4261	u32 sid = task_sid_obj(p);
4262
4263	spin_lock(&isec->lock);
4264	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4265	isec->sid = sid;
4266	isec->initialized = LABEL_INITIALIZED;
4267	spin_unlock(&isec->lock);
4268}
4269
4270static int selinux_userns_create(const struct cred *cred)
4271{
4272	u32 sid = current_sid();
4273
4274	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4275			USER_NAMESPACE__CREATE, NULL);
4276}
4277
4278/* Returns error only if unable to parse addresses */
4279static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4280			struct common_audit_data *ad, u8 *proto)
4281{
4282	int offset, ihlen, ret = -EINVAL;
4283	struct iphdr _iph, *ih;
4284
4285	offset = skb_network_offset(skb);
4286	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4287	if (ih == NULL)
4288		goto out;
4289
4290	ihlen = ih->ihl * 4;
4291	if (ihlen < sizeof(_iph))
4292		goto out;
4293
4294	ad->u.net->v4info.saddr = ih->saddr;
4295	ad->u.net->v4info.daddr = ih->daddr;
4296	ret = 0;
4297
4298	if (proto)
4299		*proto = ih->protocol;
4300
4301	switch (ih->protocol) {
4302	case IPPROTO_TCP: {
4303		struct tcphdr _tcph, *th;
4304
4305		if (ntohs(ih->frag_off) & IP_OFFSET)
4306			break;
4307
4308		offset += ihlen;
4309		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4310		if (th == NULL)
4311			break;
4312
4313		ad->u.net->sport = th->source;
4314		ad->u.net->dport = th->dest;
4315		break;
4316	}
4317
4318	case IPPROTO_UDP: {
4319		struct udphdr _udph, *uh;
4320
4321		if (ntohs(ih->frag_off) & IP_OFFSET)
4322			break;
4323
4324		offset += ihlen;
4325		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4326		if (uh == NULL)
4327			break;
4328
4329		ad->u.net->sport = uh->source;
4330		ad->u.net->dport = uh->dest;
4331		break;
4332	}
4333
4334	case IPPROTO_DCCP: {
4335		struct dccp_hdr _dccph, *dh;
4336
4337		if (ntohs(ih->frag_off) & IP_OFFSET)
4338			break;
4339
4340		offset += ihlen;
4341		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4342		if (dh == NULL)
4343			break;
4344
4345		ad->u.net->sport = dh->dccph_sport;
4346		ad->u.net->dport = dh->dccph_dport;
4347		break;
4348	}
4349
4350#if IS_ENABLED(CONFIG_IP_SCTP)
4351	case IPPROTO_SCTP: {
4352		struct sctphdr _sctph, *sh;
4353
4354		if (ntohs(ih->frag_off) & IP_OFFSET)
4355			break;
4356
4357		offset += ihlen;
4358		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4359		if (sh == NULL)
4360			break;
4361
4362		ad->u.net->sport = sh->source;
4363		ad->u.net->dport = sh->dest;
4364		break;
4365	}
4366#endif
4367	default:
4368		break;
4369	}
4370out:
4371	return ret;
4372}
4373
4374#if IS_ENABLED(CONFIG_IPV6)
4375
4376/* Returns error only if unable to parse addresses */
4377static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4378			struct common_audit_data *ad, u8 *proto)
4379{
4380	u8 nexthdr;
4381	int ret = -EINVAL, offset;
4382	struct ipv6hdr _ipv6h, *ip6;
4383	__be16 frag_off;
4384
4385	offset = skb_network_offset(skb);
4386	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4387	if (ip6 == NULL)
4388		goto out;
4389
4390	ad->u.net->v6info.saddr = ip6->saddr;
4391	ad->u.net->v6info.daddr = ip6->daddr;
4392	ret = 0;
4393
4394	nexthdr = ip6->nexthdr;
4395	offset += sizeof(_ipv6h);
4396	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4397	if (offset < 0)
4398		goto out;
4399
4400	if (proto)
4401		*proto = nexthdr;
4402
4403	switch (nexthdr) {
4404	case IPPROTO_TCP: {
4405		struct tcphdr _tcph, *th;
4406
4407		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4408		if (th == NULL)
4409			break;
4410
4411		ad->u.net->sport = th->source;
4412		ad->u.net->dport = th->dest;
4413		break;
4414	}
4415
4416	case IPPROTO_UDP: {
4417		struct udphdr _udph, *uh;
4418
4419		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4420		if (uh == NULL)
4421			break;
4422
4423		ad->u.net->sport = uh->source;
4424		ad->u.net->dport = uh->dest;
4425		break;
4426	}
4427
4428	case IPPROTO_DCCP: {
4429		struct dccp_hdr _dccph, *dh;
4430
4431		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4432		if (dh == NULL)
4433			break;
4434
4435		ad->u.net->sport = dh->dccph_sport;
4436		ad->u.net->dport = dh->dccph_dport;
4437		break;
4438	}
4439
4440#if IS_ENABLED(CONFIG_IP_SCTP)
4441	case IPPROTO_SCTP: {
4442		struct sctphdr _sctph, *sh;
4443
4444		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4445		if (sh == NULL)
4446			break;
4447
4448		ad->u.net->sport = sh->source;
4449		ad->u.net->dport = sh->dest;
4450		break;
4451	}
4452#endif
4453	/* includes fragments */
4454	default:
4455		break;
4456	}
4457out:
4458	return ret;
4459}
4460
4461#endif /* IPV6 */
4462
4463static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4464			     char **_addrp, int src, u8 *proto)
4465{
4466	char *addrp;
4467	int ret;
4468
4469	switch (ad->u.net->family) {
4470	case PF_INET:
4471		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4472		if (ret)
4473			goto parse_error;
4474		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4475				       &ad->u.net->v4info.daddr);
4476		goto okay;
4477
4478#if IS_ENABLED(CONFIG_IPV6)
4479	case PF_INET6:
4480		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4481		if (ret)
4482			goto parse_error;
4483		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4484				       &ad->u.net->v6info.daddr);
4485		goto okay;
4486#endif	/* IPV6 */
4487	default:
4488		addrp = NULL;
4489		goto okay;
4490	}
4491
4492parse_error:
4493	pr_warn(
4494	       "SELinux: failure in selinux_parse_skb(),"
4495	       " unable to parse packet\n");
4496	return ret;
4497
4498okay:
4499	if (_addrp)
4500		*_addrp = addrp;
4501	return 0;
4502}
4503
4504/**
4505 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4506 * @skb: the packet
4507 * @family: protocol family
4508 * @sid: the packet's peer label SID
4509 *
4510 * Description:
4511 * Check the various different forms of network peer labeling and determine
4512 * the peer label/SID for the packet; most of the magic actually occurs in
4513 * the security server function security_net_peersid_cmp().  The function
4514 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4515 * or -EACCES if @sid is invalid due to inconsistencies with the different
4516 * peer labels.
4517 *
4518 */
4519static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4520{
4521	int err;
4522	u32 xfrm_sid;
4523	u32 nlbl_sid;
4524	u32 nlbl_type;
4525
4526	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4527	if (unlikely(err))
4528		return -EACCES;
4529	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4530	if (unlikely(err))
4531		return -EACCES;
4532
4533	err = security_net_peersid_resolve(nlbl_sid,
4534					   nlbl_type, xfrm_sid, sid);
4535	if (unlikely(err)) {
4536		pr_warn(
4537		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4538		       " unable to determine packet's peer label\n");
4539		return -EACCES;
4540	}
4541
4542	return 0;
4543}
4544
4545/**
4546 * selinux_conn_sid - Determine the child socket label for a connection
4547 * @sk_sid: the parent socket's SID
4548 * @skb_sid: the packet's SID
4549 * @conn_sid: the resulting connection SID
4550 *
4551 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4552 * combined with the MLS information from @skb_sid in order to create
4553 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4554 * of @sk_sid.  Returns zero on success, negative values on failure.
4555 *
4556 */
4557static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4558{
4559	int err = 0;
4560
4561	if (skb_sid != SECSID_NULL)
4562		err = security_sid_mls_copy(sk_sid, skb_sid,
4563					    conn_sid);
4564	else
4565		*conn_sid = sk_sid;
4566
4567	return err;
4568}
4569
4570/* socket security operations */
4571
4572static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4573				 u16 secclass, u32 *socksid)
4574{
4575	if (tsec->sockcreate_sid > SECSID_NULL) {
4576		*socksid = tsec->sockcreate_sid;
4577		return 0;
4578	}
4579
4580	return security_transition_sid(tsec->sid, tsec->sid,
4581				       secclass, NULL, socksid);
4582}
4583
4584static int sock_has_perm(struct sock *sk, u32 perms)
4585{
4586	struct sk_security_struct *sksec = sk->sk_security;
4587	struct common_audit_data ad;
4588	struct lsm_network_audit net;
4589
4590	if (sksec->sid == SECINITSID_KERNEL)
4591		return 0;
4592
4593	/*
4594	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4595	 * inherited the kernel context from early boot used to be skipped
4596	 * here, so preserve that behavior unless the capability is set.
4597	 *
4598	 * By setting the capability the policy signals that it is ready
4599	 * for this quirk to be fixed. Note that sockets created by a kernel
4600	 * thread or a usermode helper executed without a transition will
4601	 * still be skipped in this check regardless of the policycap
4602	 * setting.
4603	 */
4604	if (!selinux_policycap_userspace_initial_context() &&
4605	    sksec->sid == SECINITSID_INIT)
4606		return 0;
4607
4608	ad_net_init_from_sk(&ad, &net, sk);
4609
4610	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
 
4611			    &ad);
4612}
4613
4614static int selinux_socket_create(int family, int type,
4615				 int protocol, int kern)
4616{
4617	const struct task_security_struct *tsec = selinux_cred(current_cred());
4618	u32 newsid;
4619	u16 secclass;
4620	int rc;
4621
4622	if (kern)
4623		return 0;
4624
4625	secclass = socket_type_to_security_class(family, type, protocol);
4626	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4627	if (rc)
4628		return rc;
4629
4630	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
4631}
4632
4633static int selinux_socket_post_create(struct socket *sock, int family,
4634				      int type, int protocol, int kern)
4635{
4636	const struct task_security_struct *tsec = selinux_cred(current_cred());
4637	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4638	struct sk_security_struct *sksec;
4639	u16 sclass = socket_type_to_security_class(family, type, protocol);
4640	u32 sid = SECINITSID_KERNEL;
4641	int err = 0;
4642
4643	if (!kern) {
4644		err = socket_sockcreate_sid(tsec, sclass, &sid);
4645		if (err)
4646			return err;
4647	}
4648
4649	isec->sclass = sclass;
4650	isec->sid = sid;
4651	isec->initialized = LABEL_INITIALIZED;
4652
4653	if (sock->sk) {
4654		sksec = sock->sk->sk_security;
4655		sksec->sclass = sclass;
4656		sksec->sid = sid;
4657		/* Allows detection of the first association on this socket */
4658		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4659			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4660
4661		err = selinux_netlbl_socket_post_create(sock->sk, family);
4662	}
4663
4664	return err;
4665}
4666
4667static int selinux_socket_socketpair(struct socket *socka,
4668				     struct socket *sockb)
4669{
4670	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4671	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4672
4673	sksec_a->peer_sid = sksec_b->sid;
4674	sksec_b->peer_sid = sksec_a->sid;
4675
4676	return 0;
4677}
4678
4679/* Range of port numbers used to automatically bind.
4680   Need to determine whether we should perform a name_bind
4681   permission check between the socket and the port number. */
4682
4683static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4684{
4685	struct sock *sk = sock->sk;
4686	struct sk_security_struct *sksec = sk->sk_security;
4687	u16 family;
4688	int err;
4689
4690	err = sock_has_perm(sk, SOCKET__BIND);
4691	if (err)
4692		goto out;
4693
4694	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4695	family = sk->sk_family;
4696	if (family == PF_INET || family == PF_INET6) {
4697		char *addrp;
4698		struct common_audit_data ad;
4699		struct lsm_network_audit net = {0,};
4700		struct sockaddr_in *addr4 = NULL;
4701		struct sockaddr_in6 *addr6 = NULL;
4702		u16 family_sa;
4703		unsigned short snum;
4704		u32 sid, node_perm;
4705
4706		/*
4707		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4708		 * that validates multiple binding addresses. Because of this
4709		 * need to check address->sa_family as it is possible to have
4710		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4711		 */
4712		if (addrlen < offsetofend(struct sockaddr, sa_family))
4713			return -EINVAL;
4714		family_sa = address->sa_family;
4715		switch (family_sa) {
4716		case AF_UNSPEC:
4717		case AF_INET:
4718			if (addrlen < sizeof(struct sockaddr_in))
4719				return -EINVAL;
4720			addr4 = (struct sockaddr_in *)address;
4721			if (family_sa == AF_UNSPEC) {
4722				if (family == PF_INET6) {
4723					/* Length check from inet6_bind_sk() */
4724					if (addrlen < SIN6_LEN_RFC2133)
4725						return -EINVAL;
4726					/* Family check from __inet6_bind() */
4727					goto err_af;
4728				}
4729				/* see __inet_bind(), we only want to allow
4730				 * AF_UNSPEC if the address is INADDR_ANY
4731				 */
4732				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4733					goto err_af;
4734				family_sa = AF_INET;
4735			}
4736			snum = ntohs(addr4->sin_port);
4737			addrp = (char *)&addr4->sin_addr.s_addr;
4738			break;
4739		case AF_INET6:
4740			if (addrlen < SIN6_LEN_RFC2133)
4741				return -EINVAL;
4742			addr6 = (struct sockaddr_in6 *)address;
4743			snum = ntohs(addr6->sin6_port);
4744			addrp = (char *)&addr6->sin6_addr.s6_addr;
4745			break;
4746		default:
4747			goto err_af;
4748		}
4749
4750		ad.type = LSM_AUDIT_DATA_NET;
4751		ad.u.net = &net;
4752		ad.u.net->sport = htons(snum);
4753		ad.u.net->family = family_sa;
4754
4755		if (snum) {
4756			int low, high;
4757
4758			inet_get_local_port_range(sock_net(sk), &low, &high);
4759
4760			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4761			    snum < low || snum > high) {
4762				err = sel_netport_sid(sk->sk_protocol,
4763						      snum, &sid);
4764				if (err)
4765					goto out;
4766				err = avc_has_perm(sksec->sid, sid,
 
4767						   sksec->sclass,
4768						   SOCKET__NAME_BIND, &ad);
4769				if (err)
4770					goto out;
4771			}
4772		}
4773
4774		switch (sksec->sclass) {
4775		case SECCLASS_TCP_SOCKET:
4776			node_perm = TCP_SOCKET__NODE_BIND;
4777			break;
4778
4779		case SECCLASS_UDP_SOCKET:
4780			node_perm = UDP_SOCKET__NODE_BIND;
4781			break;
4782
4783		case SECCLASS_DCCP_SOCKET:
4784			node_perm = DCCP_SOCKET__NODE_BIND;
4785			break;
4786
4787		case SECCLASS_SCTP_SOCKET:
4788			node_perm = SCTP_SOCKET__NODE_BIND;
4789			break;
4790
4791		default:
4792			node_perm = RAWIP_SOCKET__NODE_BIND;
4793			break;
4794		}
4795
4796		err = sel_netnode_sid(addrp, family_sa, &sid);
4797		if (err)
4798			goto out;
4799
4800		if (family_sa == AF_INET)
4801			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4802		else
4803			ad.u.net->v6info.saddr = addr6->sin6_addr;
4804
4805		err = avc_has_perm(sksec->sid, sid,
 
4806				   sksec->sclass, node_perm, &ad);
4807		if (err)
4808			goto out;
4809	}
4810out:
4811	return err;
4812err_af:
4813	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4814	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4815		return -EINVAL;
4816	return -EAFNOSUPPORT;
4817}
4818
4819/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4820 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4821 */
4822static int selinux_socket_connect_helper(struct socket *sock,
4823					 struct sockaddr *address, int addrlen)
4824{
4825	struct sock *sk = sock->sk;
4826	struct sk_security_struct *sksec = sk->sk_security;
4827	int err;
4828
4829	err = sock_has_perm(sk, SOCKET__CONNECT);
4830	if (err)
4831		return err;
4832	if (addrlen < offsetofend(struct sockaddr, sa_family))
4833		return -EINVAL;
4834
4835	/* connect(AF_UNSPEC) has special handling, as it is a documented
4836	 * way to disconnect the socket
4837	 */
4838	if (address->sa_family == AF_UNSPEC)
4839		return 0;
4840
4841	/*
4842	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4843	 * for the port.
4844	 */
4845	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4846	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4847	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4848		struct common_audit_data ad;
4849		struct lsm_network_audit net = {0,};
4850		struct sockaddr_in *addr4 = NULL;
4851		struct sockaddr_in6 *addr6 = NULL;
4852		unsigned short snum;
4853		u32 sid, perm;
4854
4855		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4856		 * that validates multiple connect addresses. Because of this
4857		 * need to check address->sa_family as it is possible to have
4858		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4859		 */
4860		switch (address->sa_family) {
4861		case AF_INET:
4862			addr4 = (struct sockaddr_in *)address;
4863			if (addrlen < sizeof(struct sockaddr_in))
4864				return -EINVAL;
4865			snum = ntohs(addr4->sin_port);
4866			break;
4867		case AF_INET6:
4868			addr6 = (struct sockaddr_in6 *)address;
4869			if (addrlen < SIN6_LEN_RFC2133)
4870				return -EINVAL;
4871			snum = ntohs(addr6->sin6_port);
4872			break;
4873		default:
4874			/* Note that SCTP services expect -EINVAL, whereas
4875			 * others expect -EAFNOSUPPORT.
4876			 */
4877			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4878				return -EINVAL;
4879			else
4880				return -EAFNOSUPPORT;
4881		}
4882
4883		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4884		if (err)
4885			return err;
4886
4887		switch (sksec->sclass) {
4888		case SECCLASS_TCP_SOCKET:
4889			perm = TCP_SOCKET__NAME_CONNECT;
4890			break;
4891		case SECCLASS_DCCP_SOCKET:
4892			perm = DCCP_SOCKET__NAME_CONNECT;
4893			break;
4894		case SECCLASS_SCTP_SOCKET:
4895			perm = SCTP_SOCKET__NAME_CONNECT;
4896			break;
4897		}
4898
4899		ad.type = LSM_AUDIT_DATA_NET;
4900		ad.u.net = &net;
4901		ad.u.net->dport = htons(snum);
4902		ad.u.net->family = address->sa_family;
4903		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4904		if (err)
4905			return err;
4906	}
4907
4908	return 0;
4909}
4910
4911/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4912static int selinux_socket_connect(struct socket *sock,
4913				  struct sockaddr *address, int addrlen)
4914{
4915	int err;
4916	struct sock *sk = sock->sk;
4917
4918	err = selinux_socket_connect_helper(sock, address, addrlen);
4919	if (err)
4920		return err;
4921
4922	return selinux_netlbl_socket_connect(sk, address);
4923}
4924
4925static int selinux_socket_listen(struct socket *sock, int backlog)
4926{
4927	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4928}
4929
4930static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4931{
4932	int err;
4933	struct inode_security_struct *isec;
4934	struct inode_security_struct *newisec;
4935	u16 sclass;
4936	u32 sid;
4937
4938	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4939	if (err)
4940		return err;
4941
4942	isec = inode_security_novalidate(SOCK_INODE(sock));
4943	spin_lock(&isec->lock);
4944	sclass = isec->sclass;
4945	sid = isec->sid;
4946	spin_unlock(&isec->lock);
4947
4948	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4949	newisec->sclass = sclass;
4950	newisec->sid = sid;
4951	newisec->initialized = LABEL_INITIALIZED;
4952
4953	return 0;
4954}
4955
4956static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4957				  int size)
4958{
4959	return sock_has_perm(sock->sk, SOCKET__WRITE);
4960}
4961
4962static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4963				  int size, int flags)
4964{
4965	return sock_has_perm(sock->sk, SOCKET__READ);
4966}
4967
4968static int selinux_socket_getsockname(struct socket *sock)
4969{
4970	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4971}
4972
4973static int selinux_socket_getpeername(struct socket *sock)
4974{
4975	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4976}
4977
4978static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4979{
4980	int err;
4981
4982	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4983	if (err)
4984		return err;
4985
4986	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4987}
4988
4989static int selinux_socket_getsockopt(struct socket *sock, int level,
4990				     int optname)
4991{
4992	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4993}
4994
4995static int selinux_socket_shutdown(struct socket *sock, int how)
4996{
4997	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4998}
4999
5000static int selinux_socket_unix_stream_connect(struct sock *sock,
5001					      struct sock *other,
5002					      struct sock *newsk)
5003{
5004	struct sk_security_struct *sksec_sock = sock->sk_security;
5005	struct sk_security_struct *sksec_other = other->sk_security;
5006	struct sk_security_struct *sksec_new = newsk->sk_security;
5007	struct common_audit_data ad;
5008	struct lsm_network_audit net;
5009	int err;
5010
5011	ad_net_init_from_sk(&ad, &net, other);
 
 
5012
5013	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
5014			   sksec_other->sclass,
5015			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5016	if (err)
5017		return err;
5018
5019	/* server child socket */
5020	sksec_new->peer_sid = sksec_sock->sid;
5021	err = security_sid_mls_copy(sksec_other->sid,
5022				    sksec_sock->sid, &sksec_new->sid);
5023	if (err)
5024		return err;
5025
5026	/* connecting socket */
5027	sksec_sock->peer_sid = sksec_new->sid;
5028
5029	return 0;
5030}
5031
5032static int selinux_socket_unix_may_send(struct socket *sock,
5033					struct socket *other)
5034{
5035	struct sk_security_struct *ssec = sock->sk->sk_security;
5036	struct sk_security_struct *osec = other->sk->sk_security;
5037	struct common_audit_data ad;
5038	struct lsm_network_audit net;
5039
5040	ad_net_init_from_sk(&ad, &net, other->sk);
 
 
5041
5042	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
5043			    &ad);
5044}
5045
5046static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5047				    char *addrp, u16 family, u32 peer_sid,
5048				    struct common_audit_data *ad)
5049{
5050	int err;
5051	u32 if_sid;
5052	u32 node_sid;
5053
5054	err = sel_netif_sid(ns, ifindex, &if_sid);
5055	if (err)
5056		return err;
5057	err = avc_has_perm(peer_sid, if_sid,
 
5058			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5059	if (err)
5060		return err;
5061
5062	err = sel_netnode_sid(addrp, family, &node_sid);
5063	if (err)
5064		return err;
5065	return avc_has_perm(peer_sid, node_sid,
 
5066			    SECCLASS_NODE, NODE__RECVFROM, ad);
5067}
5068
5069static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5070				       u16 family)
5071{
5072	int err = 0;
5073	struct sk_security_struct *sksec = sk->sk_security;
5074	u32 sk_sid = sksec->sid;
5075	struct common_audit_data ad;
5076	struct lsm_network_audit net;
5077	char *addrp;
5078
5079	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
 
 
 
5080	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5081	if (err)
5082		return err;
5083
5084	if (selinux_secmark_enabled()) {
5085		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
5086				   PACKET__RECV, &ad);
5087		if (err)
5088			return err;
5089	}
5090
5091	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5092	if (err)
5093		return err;
5094	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5095
5096	return err;
5097}
5098
5099static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5100{
5101	int err, peerlbl_active, secmark_active;
5102	struct sk_security_struct *sksec = sk->sk_security;
5103	u16 family = sk->sk_family;
5104	u32 sk_sid = sksec->sid;
5105	struct common_audit_data ad;
5106	struct lsm_network_audit net;
5107	char *addrp;
 
 
5108
5109	if (family != PF_INET && family != PF_INET6)
5110		return 0;
5111
5112	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5113	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5114		family = PF_INET;
5115
5116	/* If any sort of compatibility mode is enabled then handoff processing
5117	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5118	 * special handling.  We do this in an attempt to keep this function
5119	 * as fast and as clean as possible. */
5120	if (!selinux_policycap_netpeer())
5121		return selinux_sock_rcv_skb_compat(sk, skb, family);
5122
5123	secmark_active = selinux_secmark_enabled();
5124	peerlbl_active = selinux_peerlbl_enabled();
5125	if (!secmark_active && !peerlbl_active)
5126		return 0;
5127
5128	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
 
 
 
5129	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5130	if (err)
5131		return err;
5132
5133	if (peerlbl_active) {
5134		u32 peer_sid;
5135
5136		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5137		if (err)
5138			return err;
5139		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5140					       addrp, family, peer_sid, &ad);
5141		if (err) {
5142			selinux_netlbl_err(skb, family, err, 0);
5143			return err;
5144		}
5145		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
5146				   PEER__RECV, &ad);
5147		if (err) {
5148			selinux_netlbl_err(skb, family, err, 0);
5149			return err;
5150		}
5151	}
5152
5153	if (secmark_active) {
5154		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
5155				   PACKET__RECV, &ad);
5156		if (err)
5157			return err;
5158	}
5159
5160	return err;
5161}
5162
5163static int selinux_socket_getpeersec_stream(struct socket *sock,
5164					    sockptr_t optval, sockptr_t optlen,
5165					    unsigned int len)
5166{
5167	int err = 0;
5168	char *scontext = NULL;
5169	u32 scontext_len;
5170	struct sk_security_struct *sksec = sock->sk->sk_security;
5171	u32 peer_sid = SECSID_NULL;
5172
5173	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5174	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5175	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5176		peer_sid = sksec->peer_sid;
5177	if (peer_sid == SECSID_NULL)
5178		return -ENOPROTOOPT;
5179
5180	err = security_sid_to_context(peer_sid, &scontext,
5181				      &scontext_len);
5182	if (err)
5183		return err;
5184	if (scontext_len > len) {
5185		err = -ERANGE;
5186		goto out_len;
5187	}
5188
5189	if (copy_to_sockptr(optval, scontext, scontext_len))
5190		err = -EFAULT;
5191out_len:
5192	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5193		err = -EFAULT;
5194	kfree(scontext);
5195	return err;
5196}
5197
5198static int selinux_socket_getpeersec_dgram(struct socket *sock,
5199					   struct sk_buff *skb, u32 *secid)
5200{
5201	u32 peer_secid = SECSID_NULL;
5202	u16 family;
 
5203
5204	if (skb && skb->protocol == htons(ETH_P_IP))
5205		family = PF_INET;
5206	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5207		family = PF_INET6;
5208	else if (sock)
5209		family = sock->sk->sk_family;
5210	else {
5211		*secid = SECSID_NULL;
5212		return -EINVAL;
5213	}
5214
5215	if (sock && family == PF_UNIX) {
5216		struct inode_security_struct *isec;
5217		isec = inode_security_novalidate(SOCK_INODE(sock));
5218		peer_secid = isec->sid;
5219	} else if (skb)
5220		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5221
 
5222	*secid = peer_secid;
5223	if (peer_secid == SECSID_NULL)
5224		return -ENOPROTOOPT;
5225	return 0;
5226}
5227
5228static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5229{
5230	struct sk_security_struct *sksec;
5231
5232	sksec = kzalloc(sizeof(*sksec), priority);
5233	if (!sksec)
5234		return -ENOMEM;
5235
5236	sksec->peer_sid = SECINITSID_UNLABELED;
5237	sksec->sid = SECINITSID_UNLABELED;
5238	sksec->sclass = SECCLASS_SOCKET;
5239	selinux_netlbl_sk_security_reset(sksec);
5240	sk->sk_security = sksec;
5241
5242	return 0;
5243}
5244
5245static void selinux_sk_free_security(struct sock *sk)
5246{
5247	struct sk_security_struct *sksec = sk->sk_security;
5248
5249	sk->sk_security = NULL;
5250	selinux_netlbl_sk_security_free(sksec);
5251	kfree(sksec);
5252}
5253
5254static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5255{
5256	struct sk_security_struct *sksec = sk->sk_security;
5257	struct sk_security_struct *newsksec = newsk->sk_security;
5258
5259	newsksec->sid = sksec->sid;
5260	newsksec->peer_sid = sksec->peer_sid;
5261	newsksec->sclass = sksec->sclass;
5262
5263	selinux_netlbl_sk_security_reset(newsksec);
5264}
5265
5266static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5267{
5268	if (!sk)
5269		*secid = SECINITSID_ANY_SOCKET;
5270	else {
5271		const struct sk_security_struct *sksec = sk->sk_security;
5272
5273		*secid = sksec->sid;
5274	}
5275}
5276
5277static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5278{
5279	struct inode_security_struct *isec =
5280		inode_security_novalidate(SOCK_INODE(parent));
5281	struct sk_security_struct *sksec = sk->sk_security;
5282
5283	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5284	    sk->sk_family == PF_UNIX)
5285		isec->sid = sksec->sid;
5286	sksec->sclass = isec->sclass;
5287}
5288
5289/*
5290 * Determines peer_secid for the asoc and updates socket's peer label
5291 * if it's the first association on the socket.
5292 */
5293static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5294					  struct sk_buff *skb)
5295{
5296	struct sock *sk = asoc->base.sk;
5297	u16 family = sk->sk_family;
5298	struct sk_security_struct *sksec = sk->sk_security;
5299	struct common_audit_data ad;
5300	struct lsm_network_audit net;
5301	int err;
5302
5303	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5304	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5305		family = PF_INET;
5306
5307	if (selinux_peerlbl_enabled()) {
5308		asoc->peer_secid = SECSID_NULL;
5309
5310		/* This will return peer_sid = SECSID_NULL if there are
5311		 * no peer labels, see security_net_peersid_resolve().
5312		 */
5313		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5314		if (err)
5315			return err;
5316
5317		if (asoc->peer_secid == SECSID_NULL)
5318			asoc->peer_secid = SECINITSID_UNLABELED;
5319	} else {
5320		asoc->peer_secid = SECINITSID_UNLABELED;
5321	}
5322
5323	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5324		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5325
5326		/* Here as first association on socket. As the peer SID
5327		 * was allowed by peer recv (and the netif/node checks),
5328		 * then it is approved by policy and used as the primary
5329		 * peer SID for getpeercon(3).
5330		 */
5331		sksec->peer_sid = asoc->peer_secid;
5332	} else if (sksec->peer_sid != asoc->peer_secid) {
5333		/* Other association peer SIDs are checked to enforce
5334		 * consistency among the peer SIDs.
5335		 */
5336		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5337		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
 
 
 
5338				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5339				   &ad);
5340		if (err)
5341			return err;
5342	}
5343	return 0;
5344}
5345
5346/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5347 * happens on an incoming connect(2), sctp_connectx(3) or
5348 * sctp_sendmsg(3) (with no association already present).
5349 */
5350static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5351				      struct sk_buff *skb)
5352{
5353	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5354	u32 conn_sid;
5355	int err;
5356
5357	if (!selinux_policycap_extsockclass())
5358		return 0;
5359
5360	err = selinux_sctp_process_new_assoc(asoc, skb);
5361	if (err)
5362		return err;
5363
5364	/* Compute the MLS component for the connection and store
5365	 * the information in asoc. This will be used by SCTP TCP type
5366	 * sockets and peeled off connections as they cause a new
5367	 * socket to be generated. selinux_sctp_sk_clone() will then
5368	 * plug this into the new socket.
5369	 */
5370	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5371	if (err)
5372		return err;
5373
5374	asoc->secid = conn_sid;
5375
5376	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5377	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5378}
5379
5380/* Called when SCTP receives a COOKIE ACK chunk as the final
5381 * response to an association request (initited by us).
5382 */
5383static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5384					  struct sk_buff *skb)
5385{
5386	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5387
5388	if (!selinux_policycap_extsockclass())
5389		return 0;
5390
5391	/* Inherit secid from the parent socket - this will be picked up
5392	 * by selinux_sctp_sk_clone() if the association gets peeled off
5393	 * into a new socket.
5394	 */
5395	asoc->secid = sksec->sid;
5396
5397	return selinux_sctp_process_new_assoc(asoc, skb);
5398}
5399
5400/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5401 * based on their @optname.
5402 */
5403static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5404				     struct sockaddr *address,
5405				     int addrlen)
5406{
5407	int len, err = 0, walk_size = 0;
5408	void *addr_buf;
5409	struct sockaddr *addr;
5410	struct socket *sock;
5411
5412	if (!selinux_policycap_extsockclass())
5413		return 0;
5414
5415	/* Process one or more addresses that may be IPv4 or IPv6 */
5416	sock = sk->sk_socket;
5417	addr_buf = address;
5418
5419	while (walk_size < addrlen) {
5420		if (walk_size + sizeof(sa_family_t) > addrlen)
5421			return -EINVAL;
5422
5423		addr = addr_buf;
5424		switch (addr->sa_family) {
5425		case AF_UNSPEC:
5426		case AF_INET:
5427			len = sizeof(struct sockaddr_in);
5428			break;
5429		case AF_INET6:
5430			len = sizeof(struct sockaddr_in6);
5431			break;
5432		default:
5433			return -EINVAL;
5434		}
5435
5436		if (walk_size + len > addrlen)
5437			return -EINVAL;
5438
5439		err = -EINVAL;
5440		switch (optname) {
5441		/* Bind checks */
5442		case SCTP_PRIMARY_ADDR:
5443		case SCTP_SET_PEER_PRIMARY_ADDR:
5444		case SCTP_SOCKOPT_BINDX_ADD:
5445			err = selinux_socket_bind(sock, addr, len);
5446			break;
5447		/* Connect checks */
5448		case SCTP_SOCKOPT_CONNECTX:
5449		case SCTP_PARAM_SET_PRIMARY:
5450		case SCTP_PARAM_ADD_IP:
5451		case SCTP_SENDMSG_CONNECT:
5452			err = selinux_socket_connect_helper(sock, addr, len);
5453			if (err)
5454				return err;
5455
5456			/* As selinux_sctp_bind_connect() is called by the
5457			 * SCTP protocol layer, the socket is already locked,
5458			 * therefore selinux_netlbl_socket_connect_locked()
5459			 * is called here. The situations handled are:
5460			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5461			 * whenever a new IP address is added or when a new
5462			 * primary address is selected.
5463			 * Note that an SCTP connect(2) call happens before
5464			 * the SCTP protocol layer and is handled via
5465			 * selinux_socket_connect().
5466			 */
5467			err = selinux_netlbl_socket_connect_locked(sk, addr);
5468			break;
5469		}
5470
5471		if (err)
5472			return err;
5473
5474		addr_buf += len;
5475		walk_size += len;
5476	}
5477
5478	return 0;
5479}
5480
5481/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5482static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5483				  struct sock *newsk)
5484{
5485	struct sk_security_struct *sksec = sk->sk_security;
5486	struct sk_security_struct *newsksec = newsk->sk_security;
5487
5488	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5489	 * the non-sctp clone version.
5490	 */
5491	if (!selinux_policycap_extsockclass())
5492		return selinux_sk_clone_security(sk, newsk);
5493
5494	newsksec->sid = asoc->secid;
5495	newsksec->peer_sid = asoc->peer_secid;
5496	newsksec->sclass = sksec->sclass;
5497	selinux_netlbl_sctp_sk_clone(sk, newsk);
5498}
5499
5500static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5501{
5502	struct sk_security_struct *ssksec = ssk->sk_security;
5503	struct sk_security_struct *sksec = sk->sk_security;
5504
5505	ssksec->sclass = sksec->sclass;
5506	ssksec->sid = sksec->sid;
5507
5508	/* replace the existing subflow label deleting the existing one
5509	 * and re-recreating a new label using the updated context
5510	 */
5511	selinux_netlbl_sk_security_free(ssksec);
5512	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5513}
5514
5515static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5516				     struct request_sock *req)
5517{
5518	struct sk_security_struct *sksec = sk->sk_security;
5519	int err;
5520	u16 family = req->rsk_ops->family;
5521	u32 connsid;
5522	u32 peersid;
5523
5524	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5525	if (err)
5526		return err;
5527	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5528	if (err)
5529		return err;
5530	req->secid = connsid;
5531	req->peer_secid = peersid;
5532
5533	return selinux_netlbl_inet_conn_request(req, family);
5534}
5535
5536static void selinux_inet_csk_clone(struct sock *newsk,
5537				   const struct request_sock *req)
5538{
5539	struct sk_security_struct *newsksec = newsk->sk_security;
5540
5541	newsksec->sid = req->secid;
5542	newsksec->peer_sid = req->peer_secid;
5543	/* NOTE: Ideally, we should also get the isec->sid for the
5544	   new socket in sync, but we don't have the isec available yet.
5545	   So we will wait until sock_graft to do it, by which
5546	   time it will have been created and available. */
5547
5548	/* We don't need to take any sort of lock here as we are the only
5549	 * thread with access to newsksec */
5550	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5551}
5552
5553static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5554{
5555	u16 family = sk->sk_family;
5556	struct sk_security_struct *sksec = sk->sk_security;
5557
5558	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5559	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5560		family = PF_INET;
5561
5562	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5563}
5564
5565static int selinux_secmark_relabel_packet(u32 sid)
5566{
5567	const struct task_security_struct *tsec;
5568	u32 tsid;
5569
5570	tsec = selinux_cred(current_cred());
5571	tsid = tsec->sid;
5572
5573	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
 
5574			    NULL);
5575}
5576
5577static void selinux_secmark_refcount_inc(void)
5578{
5579	atomic_inc(&selinux_secmark_refcount);
5580}
5581
5582static void selinux_secmark_refcount_dec(void)
5583{
5584	atomic_dec(&selinux_secmark_refcount);
5585}
5586
5587static void selinux_req_classify_flow(const struct request_sock *req,
5588				      struct flowi_common *flic)
5589{
5590	flic->flowic_secid = req->secid;
5591}
5592
5593static int selinux_tun_dev_alloc_security(void **security)
5594{
5595	struct tun_security_struct *tunsec;
5596
5597	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5598	if (!tunsec)
5599		return -ENOMEM;
5600	tunsec->sid = current_sid();
5601
5602	*security = tunsec;
5603	return 0;
5604}
5605
5606static void selinux_tun_dev_free_security(void *security)
5607{
5608	kfree(security);
5609}
5610
5611static int selinux_tun_dev_create(void)
5612{
5613	u32 sid = current_sid();
5614
5615	/* we aren't taking into account the "sockcreate" SID since the socket
5616	 * that is being created here is not a socket in the traditional sense,
5617	 * instead it is a private sock, accessible only to the kernel, and
5618	 * representing a wide range of network traffic spanning multiple
5619	 * connections unlike traditional sockets - check the TUN driver to
5620	 * get a better understanding of why this socket is special */
5621
5622	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
5623			    NULL);
5624}
5625
5626static int selinux_tun_dev_attach_queue(void *security)
5627{
5628	struct tun_security_struct *tunsec = security;
5629
5630	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
5631			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5632}
5633
5634static int selinux_tun_dev_attach(struct sock *sk, void *security)
5635{
5636	struct tun_security_struct *tunsec = security;
5637	struct sk_security_struct *sksec = sk->sk_security;
5638
5639	/* we don't currently perform any NetLabel based labeling here and it
5640	 * isn't clear that we would want to do so anyway; while we could apply
5641	 * labeling without the support of the TUN user the resulting labeled
5642	 * traffic from the other end of the connection would almost certainly
5643	 * cause confusion to the TUN user that had no idea network labeling
5644	 * protocols were being used */
5645
5646	sksec->sid = tunsec->sid;
5647	sksec->sclass = SECCLASS_TUN_SOCKET;
5648
5649	return 0;
5650}
5651
5652static int selinux_tun_dev_open(void *security)
5653{
5654	struct tun_security_struct *tunsec = security;
5655	u32 sid = current_sid();
5656	int err;
5657
5658	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
5659			   TUN_SOCKET__RELABELFROM, NULL);
5660	if (err)
5661		return err;
5662	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
5663			   TUN_SOCKET__RELABELTO, NULL);
5664	if (err)
5665		return err;
5666	tunsec->sid = sid;
5667
5668	return 0;
5669}
5670
5671#ifdef CONFIG_NETFILTER
5672
5673static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5674				       const struct nf_hook_state *state)
5675{
5676	int ifindex;
5677	u16 family;
5678	char *addrp;
5679	u32 peer_sid;
5680	struct common_audit_data ad;
5681	struct lsm_network_audit net;
5682	int secmark_active, peerlbl_active;
5683
5684	if (!selinux_policycap_netpeer())
5685		return NF_ACCEPT;
5686
5687	secmark_active = selinux_secmark_enabled();
5688	peerlbl_active = selinux_peerlbl_enabled();
5689	if (!secmark_active && !peerlbl_active)
5690		return NF_ACCEPT;
5691
5692	family = state->pf;
5693	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5694		return NF_DROP;
5695
5696	ifindex = state->in->ifindex;
5697	ad_net_init_from_iif(&ad, &net, ifindex, family);
 
 
 
5698	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5699		return NF_DROP;
5700
5701	if (peerlbl_active) {
5702		int err;
5703
5704		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5705					       addrp, family, peer_sid, &ad);
5706		if (err) {
5707			selinux_netlbl_err(skb, family, err, 1);
5708			return NF_DROP;
5709		}
5710	}
5711
5712	if (secmark_active)
5713		if (avc_has_perm(peer_sid, skb->secmark,
 
5714				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5715			return NF_DROP;
5716
5717	if (netlbl_enabled())
5718		/* we do this in the FORWARD path and not the POST_ROUTING
5719		 * path because we want to make sure we apply the necessary
5720		 * labeling before IPsec is applied so we can leverage AH
5721		 * protection */
5722		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5723			return NF_DROP;
5724
5725	return NF_ACCEPT;
5726}
5727
5728static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5729				      const struct nf_hook_state *state)
5730{
5731	struct sock *sk;
5732	u32 sid;
5733
5734	if (!netlbl_enabled())
5735		return NF_ACCEPT;
5736
5737	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5738	 * because we want to make sure we apply the necessary labeling
5739	 * before IPsec is applied so we can leverage AH protection */
5740	sk = skb->sk;
5741	if (sk) {
5742		struct sk_security_struct *sksec;
5743
5744		if (sk_listener(sk))
5745			/* if the socket is the listening state then this
5746			 * packet is a SYN-ACK packet which means it needs to
5747			 * be labeled based on the connection/request_sock and
5748			 * not the parent socket.  unfortunately, we can't
5749			 * lookup the request_sock yet as it isn't queued on
5750			 * the parent socket until after the SYN-ACK is sent.
5751			 * the "solution" is to simply pass the packet as-is
5752			 * as any IP option based labeling should be copied
5753			 * from the initial connection request (in the IP
5754			 * layer).  it is far from ideal, but until we get a
5755			 * security label in the packet itself this is the
5756			 * best we can do. */
5757			return NF_ACCEPT;
5758
5759		/* standard practice, label using the parent socket */
5760		sksec = sk->sk_security;
5761		sid = sksec->sid;
5762	} else
5763		sid = SECINITSID_KERNEL;
5764	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5765		return NF_DROP;
5766
5767	return NF_ACCEPT;
5768}
5769
5770
5771static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5772					const struct nf_hook_state *state)
5773{
5774	struct sock *sk;
5775	struct sk_security_struct *sksec;
5776	struct common_audit_data ad;
5777	struct lsm_network_audit net;
5778	u8 proto = 0;
5779
5780	sk = skb_to_full_sk(skb);
5781	if (sk == NULL)
5782		return NF_ACCEPT;
5783	sksec = sk->sk_security;
5784
5785	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
 
 
 
5786	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5787		return NF_DROP;
5788
5789	if (selinux_secmark_enabled())
5790		if (avc_has_perm(sksec->sid, skb->secmark,
 
5791				 SECCLASS_PACKET, PACKET__SEND, &ad))
5792			return NF_DROP_ERR(-ECONNREFUSED);
5793
5794	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5795		return NF_DROP_ERR(-ECONNREFUSED);
5796
5797	return NF_ACCEPT;
5798}
5799
5800static unsigned int selinux_ip_postroute(void *priv,
5801					 struct sk_buff *skb,
5802					 const struct nf_hook_state *state)
5803{
5804	u16 family;
5805	u32 secmark_perm;
5806	u32 peer_sid;
5807	int ifindex;
5808	struct sock *sk;
5809	struct common_audit_data ad;
5810	struct lsm_network_audit net;
5811	char *addrp;
5812	int secmark_active, peerlbl_active;
5813
5814	/* If any sort of compatibility mode is enabled then handoff processing
5815	 * to the selinux_ip_postroute_compat() function to deal with the
5816	 * special handling.  We do this in an attempt to keep this function
5817	 * as fast and as clean as possible. */
5818	if (!selinux_policycap_netpeer())
5819		return selinux_ip_postroute_compat(skb, state);
5820
5821	secmark_active = selinux_secmark_enabled();
5822	peerlbl_active = selinux_peerlbl_enabled();
5823	if (!secmark_active && !peerlbl_active)
5824		return NF_ACCEPT;
5825
5826	sk = skb_to_full_sk(skb);
5827
5828#ifdef CONFIG_XFRM
5829	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5830	 * packet transformation so allow the packet to pass without any checks
5831	 * since we'll have another chance to perform access control checks
5832	 * when the packet is on it's final way out.
5833	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5834	 *       is NULL, in this case go ahead and apply access control.
5835	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5836	 *       TCP listening state we cannot wait until the XFRM processing
5837	 *       is done as we will miss out on the SA label if we do;
5838	 *       unfortunately, this means more work, but it is only once per
5839	 *       connection. */
5840	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5841	    !(sk && sk_listener(sk)))
5842		return NF_ACCEPT;
5843#endif
5844
5845	family = state->pf;
5846	if (sk == NULL) {
5847		/* Without an associated socket the packet is either coming
5848		 * from the kernel or it is being forwarded; check the packet
5849		 * to determine which and if the packet is being forwarded
5850		 * query the packet directly to determine the security label. */
5851		if (skb->skb_iif) {
5852			secmark_perm = PACKET__FORWARD_OUT;
5853			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5854				return NF_DROP;
5855		} else {
5856			secmark_perm = PACKET__SEND;
5857			peer_sid = SECINITSID_KERNEL;
5858		}
5859	} else if (sk_listener(sk)) {
5860		/* Locally generated packet but the associated socket is in the
5861		 * listening state which means this is a SYN-ACK packet.  In
5862		 * this particular case the correct security label is assigned
5863		 * to the connection/request_sock but unfortunately we can't
5864		 * query the request_sock as it isn't queued on the parent
5865		 * socket until after the SYN-ACK packet is sent; the only
5866		 * viable choice is to regenerate the label like we do in
5867		 * selinux_inet_conn_request().  See also selinux_ip_output()
5868		 * for similar problems. */
5869		u32 skb_sid;
5870		struct sk_security_struct *sksec;
5871
5872		sksec = sk->sk_security;
5873		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5874			return NF_DROP;
5875		/* At this point, if the returned skb peerlbl is SECSID_NULL
5876		 * and the packet has been through at least one XFRM
5877		 * transformation then we must be dealing with the "final"
5878		 * form of labeled IPsec packet; since we've already applied
5879		 * all of our access controls on this packet we can safely
5880		 * pass the packet. */
5881		if (skb_sid == SECSID_NULL) {
5882			switch (family) {
5883			case PF_INET:
5884				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5885					return NF_ACCEPT;
5886				break;
5887			case PF_INET6:
5888				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5889					return NF_ACCEPT;
5890				break;
5891			default:
5892				return NF_DROP_ERR(-ECONNREFUSED);
5893			}
5894		}
5895		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5896			return NF_DROP;
5897		secmark_perm = PACKET__SEND;
5898	} else {
5899		/* Locally generated packet, fetch the security label from the
5900		 * associated socket. */
5901		struct sk_security_struct *sksec = sk->sk_security;
5902		peer_sid = sksec->sid;
5903		secmark_perm = PACKET__SEND;
5904	}
5905
5906	ifindex = state->out->ifindex;
5907	ad_net_init_from_iif(&ad, &net, ifindex, family);
 
 
 
5908	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5909		return NF_DROP;
5910
5911	if (secmark_active)
5912		if (avc_has_perm(peer_sid, skb->secmark,
 
5913				 SECCLASS_PACKET, secmark_perm, &ad))
5914			return NF_DROP_ERR(-ECONNREFUSED);
5915
5916	if (peerlbl_active) {
5917		u32 if_sid;
5918		u32 node_sid;
5919
5920		if (sel_netif_sid(state->net, ifindex, &if_sid))
5921			return NF_DROP;
5922		if (avc_has_perm(peer_sid, if_sid,
 
5923				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5924			return NF_DROP_ERR(-ECONNREFUSED);
5925
5926		if (sel_netnode_sid(addrp, family, &node_sid))
5927			return NF_DROP;
5928		if (avc_has_perm(peer_sid, node_sid,
 
5929				 SECCLASS_NODE, NODE__SENDTO, &ad))
5930			return NF_DROP_ERR(-ECONNREFUSED);
5931	}
5932
5933	return NF_ACCEPT;
5934}
5935#endif	/* CONFIG_NETFILTER */
5936
5937static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5938{
5939	int rc = 0;
5940	unsigned int msg_len;
5941	unsigned int data_len = skb->len;
5942	unsigned char *data = skb->data;
5943	struct nlmsghdr *nlh;
5944	struct sk_security_struct *sksec = sk->sk_security;
5945	u16 sclass = sksec->sclass;
5946	u32 perm;
5947
5948	while (data_len >= nlmsg_total_size(0)) {
5949		nlh = (struct nlmsghdr *)data;
5950
5951		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5952		 *       users which means we can't reject skb's with bogus
5953		 *       length fields; our solution is to follow what
5954		 *       netlink_rcv_skb() does and simply skip processing at
5955		 *       messages with length fields that are clearly junk
5956		 */
5957		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5958			return 0;
5959
5960		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5961		if (rc == 0) {
5962			rc = sock_has_perm(sk, perm);
5963			if (rc)
5964				return rc;
5965		} else if (rc == -EINVAL) {
5966			/* -EINVAL is a missing msg/perm mapping */
5967			pr_warn_ratelimited("SELinux: unrecognized netlink"
5968				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5969				" pid=%d comm=%s\n",
5970				sk->sk_protocol, nlh->nlmsg_type,
5971				secclass_map[sclass - 1].name,
5972				task_pid_nr(current), current->comm);
5973			if (enforcing_enabled() &&
5974			    !security_get_allow_unknown())
5975				return rc;
5976			rc = 0;
5977		} else if (rc == -ENOENT) {
5978			/* -ENOENT is a missing socket/class mapping, ignore */
5979			rc = 0;
5980		} else {
5981			return rc;
5982		}
5983
5984		/* move to the next message after applying netlink padding */
5985		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5986		if (msg_len >= data_len)
5987			return 0;
5988		data_len -= msg_len;
5989		data += msg_len;
5990	}
5991
5992	return rc;
5993}
5994
5995static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5996{
5997	isec->sclass = sclass;
5998	isec->sid = current_sid();
5999}
6000
6001static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6002			u32 perms)
6003{
6004	struct ipc_security_struct *isec;
6005	struct common_audit_data ad;
6006	u32 sid = current_sid();
6007
6008	isec = selinux_ipc(ipc_perms);
6009
6010	ad.type = LSM_AUDIT_DATA_IPC;
6011	ad.u.ipc_id = ipc_perms->key;
6012
6013	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
6014}
6015
6016static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6017{
6018	struct msg_security_struct *msec;
6019
6020	msec = selinux_msg_msg(msg);
6021	msec->sid = SECINITSID_UNLABELED;
6022
6023	return 0;
6024}
6025
6026/* message queue security operations */
6027static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6028{
6029	struct ipc_security_struct *isec;
6030	struct common_audit_data ad;
6031	u32 sid = current_sid();
6032
6033	isec = selinux_ipc(msq);
6034	ipc_init_security(isec, SECCLASS_MSGQ);
6035
6036	ad.type = LSM_AUDIT_DATA_IPC;
6037	ad.u.ipc_id = msq->key;
6038
6039	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
6040			    MSGQ__CREATE, &ad);
6041}
6042
6043static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6044{
6045	struct ipc_security_struct *isec;
6046	struct common_audit_data ad;
6047	u32 sid = current_sid();
6048
6049	isec = selinux_ipc(msq);
6050
6051	ad.type = LSM_AUDIT_DATA_IPC;
6052	ad.u.ipc_id = msq->key;
6053
6054	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
6055			    MSGQ__ASSOCIATE, &ad);
6056}
6057
6058static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6059{
6060	u32 perms;
 
6061
6062	switch (cmd) {
6063	case IPC_INFO:
6064	case MSG_INFO:
6065		/* No specific object, just general system-wide information. */
6066		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6067				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6068	case IPC_STAT:
6069	case MSG_STAT:
6070	case MSG_STAT_ANY:
6071		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6072		break;
6073	case IPC_SET:
6074		perms = MSGQ__SETATTR;
6075		break;
6076	case IPC_RMID:
6077		perms = MSGQ__DESTROY;
6078		break;
6079	default:
6080		return 0;
6081	}
6082
6083	return ipc_has_perm(msq, perms);
 
6084}
6085
6086static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6087{
6088	struct ipc_security_struct *isec;
6089	struct msg_security_struct *msec;
6090	struct common_audit_data ad;
6091	u32 sid = current_sid();
6092	int rc;
6093
6094	isec = selinux_ipc(msq);
6095	msec = selinux_msg_msg(msg);
6096
6097	/*
6098	 * First time through, need to assign label to the message
6099	 */
6100	if (msec->sid == SECINITSID_UNLABELED) {
6101		/*
6102		 * Compute new sid based on current process and
6103		 * message queue this message will be stored in
6104		 */
6105		rc = security_transition_sid(sid, isec->sid,
6106					     SECCLASS_MSG, NULL, &msec->sid);
6107		if (rc)
6108			return rc;
6109	}
6110
6111	ad.type = LSM_AUDIT_DATA_IPC;
6112	ad.u.ipc_id = msq->key;
6113
6114	/* Can this process write to the queue? */
6115	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
6116			  MSGQ__WRITE, &ad);
6117	if (!rc)
6118		/* Can this process send the message */
6119		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
6120				  MSG__SEND, &ad);
6121	if (!rc)
6122		/* Can the message be put in the queue? */
6123		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
6124				  MSGQ__ENQUEUE, &ad);
6125
6126	return rc;
6127}
6128
6129static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6130				    struct task_struct *target,
6131				    long type, int mode)
6132{
6133	struct ipc_security_struct *isec;
6134	struct msg_security_struct *msec;
6135	struct common_audit_data ad;
6136	u32 sid = task_sid_obj(target);
6137	int rc;
6138
6139	isec = selinux_ipc(msq);
6140	msec = selinux_msg_msg(msg);
6141
6142	ad.type = LSM_AUDIT_DATA_IPC;
6143	ad.u.ipc_id = msq->key;
6144
6145	rc = avc_has_perm(sid, isec->sid,
 
6146			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6147	if (!rc)
6148		rc = avc_has_perm(sid, msec->sid,
 
6149				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6150	return rc;
6151}
6152
6153/* Shared Memory security operations */
6154static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6155{
6156	struct ipc_security_struct *isec;
6157	struct common_audit_data ad;
6158	u32 sid = current_sid();
6159
6160	isec = selinux_ipc(shp);
6161	ipc_init_security(isec, SECCLASS_SHM);
6162
6163	ad.type = LSM_AUDIT_DATA_IPC;
6164	ad.u.ipc_id = shp->key;
6165
6166	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
6167			    SHM__CREATE, &ad);
6168}
6169
6170static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6171{
6172	struct ipc_security_struct *isec;
6173	struct common_audit_data ad;
6174	u32 sid = current_sid();
6175
6176	isec = selinux_ipc(shp);
6177
6178	ad.type = LSM_AUDIT_DATA_IPC;
6179	ad.u.ipc_id = shp->key;
6180
6181	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
6182			    SHM__ASSOCIATE, &ad);
6183}
6184
6185/* Note, at this point, shp is locked down */
6186static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6187{
6188	u32 perms;
 
6189
6190	switch (cmd) {
6191	case IPC_INFO:
6192	case SHM_INFO:
6193		/* No specific object, just general system-wide information. */
6194		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6195				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6196	case IPC_STAT:
6197	case SHM_STAT:
6198	case SHM_STAT_ANY:
6199		perms = SHM__GETATTR | SHM__ASSOCIATE;
6200		break;
6201	case IPC_SET:
6202		perms = SHM__SETATTR;
6203		break;
6204	case SHM_LOCK:
6205	case SHM_UNLOCK:
6206		perms = SHM__LOCK;
6207		break;
6208	case IPC_RMID:
6209		perms = SHM__DESTROY;
6210		break;
6211	default:
6212		return 0;
6213	}
6214
6215	return ipc_has_perm(shp, perms);
 
6216}
6217
6218static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6219			     char __user *shmaddr, int shmflg)
6220{
6221	u32 perms;
6222
6223	if (shmflg & SHM_RDONLY)
6224		perms = SHM__READ;
6225	else
6226		perms = SHM__READ | SHM__WRITE;
6227
6228	return ipc_has_perm(shp, perms);
6229}
6230
6231/* Semaphore security operations */
6232static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6233{
6234	struct ipc_security_struct *isec;
6235	struct common_audit_data ad;
6236	u32 sid = current_sid();
6237
6238	isec = selinux_ipc(sma);
6239	ipc_init_security(isec, SECCLASS_SEM);
6240
6241	ad.type = LSM_AUDIT_DATA_IPC;
6242	ad.u.ipc_id = sma->key;
6243
6244	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
6245			    SEM__CREATE, &ad);
6246}
6247
6248static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6249{
6250	struct ipc_security_struct *isec;
6251	struct common_audit_data ad;
6252	u32 sid = current_sid();
6253
6254	isec = selinux_ipc(sma);
6255
6256	ad.type = LSM_AUDIT_DATA_IPC;
6257	ad.u.ipc_id = sma->key;
6258
6259	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
6260			    SEM__ASSOCIATE, &ad);
6261}
6262
6263/* Note, at this point, sma is locked down */
6264static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6265{
6266	int err;
6267	u32 perms;
6268
6269	switch (cmd) {
6270	case IPC_INFO:
6271	case SEM_INFO:
6272		/* No specific object, just general system-wide information. */
6273		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6274				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6275	case GETPID:
6276	case GETNCNT:
6277	case GETZCNT:
6278		perms = SEM__GETATTR;
6279		break;
6280	case GETVAL:
6281	case GETALL:
6282		perms = SEM__READ;
6283		break;
6284	case SETVAL:
6285	case SETALL:
6286		perms = SEM__WRITE;
6287		break;
6288	case IPC_RMID:
6289		perms = SEM__DESTROY;
6290		break;
6291	case IPC_SET:
6292		perms = SEM__SETATTR;
6293		break;
6294	case IPC_STAT:
6295	case SEM_STAT:
6296	case SEM_STAT_ANY:
6297		perms = SEM__GETATTR | SEM__ASSOCIATE;
6298		break;
6299	default:
6300		return 0;
6301	}
6302
6303	err = ipc_has_perm(sma, perms);
6304	return err;
6305}
6306
6307static int selinux_sem_semop(struct kern_ipc_perm *sma,
6308			     struct sembuf *sops, unsigned nsops, int alter)
6309{
6310	u32 perms;
6311
6312	if (alter)
6313		perms = SEM__READ | SEM__WRITE;
6314	else
6315		perms = SEM__READ;
6316
6317	return ipc_has_perm(sma, perms);
6318}
6319
6320static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6321{
6322	u32 av = 0;
6323
6324	av = 0;
6325	if (flag & S_IRUGO)
6326		av |= IPC__UNIX_READ;
6327	if (flag & S_IWUGO)
6328		av |= IPC__UNIX_WRITE;
6329
6330	if (av == 0)
6331		return 0;
6332
6333	return ipc_has_perm(ipcp, av);
6334}
6335
6336static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6337{
6338	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6339	*secid = isec->sid;
6340}
6341
6342static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6343{
6344	if (inode)
6345		inode_doinit_with_dentry(inode, dentry);
6346}
6347
6348static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6349			       char **value)
6350{
6351	const struct task_security_struct *__tsec;
6352	u32 sid;
6353	int error;
6354	unsigned len;
6355
6356	rcu_read_lock();
6357	__tsec = selinux_cred(__task_cred(p));
6358
6359	if (current != p) {
6360		error = avc_has_perm(current_sid(), __tsec->sid,
 
6361				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362		if (error)
6363			goto bad;
6364	}
6365
6366	switch (attr) {
6367	case LSM_ATTR_CURRENT:
6368		sid = __tsec->sid;
6369		break;
6370	case LSM_ATTR_PREV:
6371		sid = __tsec->osid;
6372		break;
6373	case LSM_ATTR_EXEC:
6374		sid = __tsec->exec_sid;
6375		break;
6376	case LSM_ATTR_FSCREATE:
6377		sid = __tsec->create_sid;
6378		break;
6379	case LSM_ATTR_KEYCREATE:
6380		sid = __tsec->keycreate_sid;
6381		break;
6382	case LSM_ATTR_SOCKCREATE:
6383		sid = __tsec->sockcreate_sid;
6384		break;
6385	default:
6386		error = -EOPNOTSUPP;
6387		goto bad;
6388	}
6389	rcu_read_unlock();
6390
6391	if (!sid)
6392		return 0;
6393
6394	error = security_sid_to_context(sid, value, &len);
6395	if (error)
6396		return error;
6397	return len;
6398
6399bad:
6400	rcu_read_unlock();
6401	return error;
6402}
6403
6404static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6405{
6406	struct task_security_struct *tsec;
6407	struct cred *new;
6408	u32 mysid = current_sid(), sid = 0, ptsid;
6409	int error;
6410	char *str = value;
6411
6412	/*
6413	 * Basic control over ability to set these attributes at all.
6414	 */
6415	switch (attr) {
6416	case LSM_ATTR_EXEC:
6417		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6418				     PROCESS__SETEXEC, NULL);
6419		break;
6420	case LSM_ATTR_FSCREATE:
6421		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6422				     PROCESS__SETFSCREATE, NULL);
6423		break;
6424	case LSM_ATTR_KEYCREATE:
6425		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6426				     PROCESS__SETKEYCREATE, NULL);
6427		break;
6428	case LSM_ATTR_SOCKCREATE:
6429		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6430				     PROCESS__SETSOCKCREATE, NULL);
6431		break;
6432	case LSM_ATTR_CURRENT:
6433		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6434				     PROCESS__SETCURRENT, NULL);
6435		break;
6436	default:
6437		error = -EOPNOTSUPP;
6438		break;
6439	}
6440	if (error)
6441		return error;
6442
6443	/* Obtain a SID for the context, if one was specified. */
6444	if (size && str[0] && str[0] != '\n') {
6445		if (str[size-1] == '\n') {
6446			str[size-1] = 0;
6447			size--;
6448		}
6449		error = security_context_to_sid(value, size,
6450						&sid, GFP_KERNEL);
6451		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6452			if (!has_cap_mac_admin(true)) {
6453				struct audit_buffer *ab;
6454				size_t audit_size;
6455
6456				/* We strip a nul only if it is at the end,
6457				 * otherwise the context contains a nul and
6458				 * we should audit that */
6459				if (str[size - 1] == '\0')
6460					audit_size = size - 1;
6461				else
6462					audit_size = size;
6463				ab = audit_log_start(audit_context(),
6464						     GFP_ATOMIC,
6465						     AUDIT_SELINUX_ERR);
6466				if (!ab)
6467					return error;
6468				audit_log_format(ab, "op=fscreate invalid_context=");
6469				audit_log_n_untrustedstring(ab, value,
6470							    audit_size);
6471				audit_log_end(ab);
6472
6473				return error;
6474			}
6475			error = security_context_to_sid_force(value, size,
6476							&sid);
 
6477		}
6478		if (error)
6479			return error;
6480	}
6481
6482	new = prepare_creds();
6483	if (!new)
6484		return -ENOMEM;
6485
6486	/* Permission checking based on the specified context is
6487	   performed during the actual operation (execve,
6488	   open/mkdir/...), when we know the full context of the
6489	   operation.  See selinux_bprm_creds_for_exec for the execve
6490	   checks and may_create for the file creation checks. The
6491	   operation will then fail if the context is not permitted. */
6492	tsec = selinux_cred(new);
6493	if (attr == LSM_ATTR_EXEC) {
6494		tsec->exec_sid = sid;
6495	} else if (attr == LSM_ATTR_FSCREATE) {
6496		tsec->create_sid = sid;
6497	} else if (attr == LSM_ATTR_KEYCREATE) {
6498		if (sid) {
6499			error = avc_has_perm(mysid, sid,
6500					     SECCLASS_KEY, KEY__CREATE, NULL);
6501			if (error)
6502				goto abort_change;
6503		}
6504		tsec->keycreate_sid = sid;
6505	} else if (attr == LSM_ATTR_SOCKCREATE) {
6506		tsec->sockcreate_sid = sid;
6507	} else if (attr == LSM_ATTR_CURRENT) {
6508		error = -EINVAL;
6509		if (sid == 0)
6510			goto abort_change;
6511
 
6512		if (!current_is_single_threaded()) {
6513			error = security_bounded_transition(tsec->sid, sid);
 
6514			if (error)
6515				goto abort_change;
6516		}
6517
6518		/* Check permissions for the transition. */
6519		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
6520				     PROCESS__DYNTRANSITION, NULL);
6521		if (error)
6522			goto abort_change;
6523
6524		/* Check for ptracing, and update the task SID if ok.
6525		   Otherwise, leave SID unchanged and fail. */
6526		ptsid = ptrace_parent_sid();
6527		if (ptsid != 0) {
6528			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
 
6529					     PROCESS__PTRACE, NULL);
6530			if (error)
6531				goto abort_change;
6532		}
6533
6534		tsec->sid = sid;
6535	} else {
6536		error = -EINVAL;
6537		goto abort_change;
6538	}
6539
6540	commit_creds(new);
6541	return size;
6542
6543abort_change:
6544	abort_creds(new);
6545	return error;
6546}
6547
6548/**
6549 * selinux_getselfattr - Get SELinux current task attributes
6550 * @attr: the requested attribute
6551 * @ctx: buffer to receive the result
6552 * @size: buffer size (input), buffer size used (output)
6553 * @flags: unused
6554 *
6555 * Fill the passed user space @ctx with the details of the requested
6556 * attribute.
6557 *
6558 * Returns the number of attributes on success, an error code otherwise.
6559 * There will only ever be one attribute.
6560 */
6561static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6562			       u32 *size, u32 flags)
6563{
6564	int rc;
6565	char *val = NULL;
6566	int val_len;
6567
6568	val_len = selinux_lsm_getattr(attr, current, &val);
6569	if (val_len < 0)
6570		return val_len;
6571	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6572	kfree(val);
6573	return (!rc ? 1 : rc);
6574}
6575
6576static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6577			       u32 size, u32 flags)
6578{
6579	int rc;
6580
6581	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6582	if (rc > 0)
6583		return 0;
6584	return rc;
6585}
6586
6587static int selinux_getprocattr(struct task_struct *p,
6588			       const char *name, char **value)
6589{
6590	unsigned int attr = lsm_name_to_attr(name);
6591	int rc;
6592
6593	if (attr) {
6594		rc = selinux_lsm_getattr(attr, p, value);
6595		if (rc != -EOPNOTSUPP)
6596			return rc;
6597	}
6598
6599	return -EINVAL;
6600}
6601
6602static int selinux_setprocattr(const char *name, void *value, size_t size)
6603{
6604	int attr = lsm_name_to_attr(name);
6605
6606	if (attr)
6607		return selinux_lsm_setattr(attr, value, size);
6608	return -EINVAL;
6609}
6610
6611static int selinux_ismaclabel(const char *name)
6612{
6613	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6614}
6615
6616static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6617{
6618	return security_sid_to_context(secid,
6619				       secdata, seclen);
6620}
6621
6622static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6623{
6624	return security_context_to_sid(secdata, seclen,
6625				       secid, GFP_KERNEL);
6626}
6627
6628static void selinux_release_secctx(char *secdata, u32 seclen)
6629{
6630	kfree(secdata);
6631}
6632
6633static void selinux_inode_invalidate_secctx(struct inode *inode)
6634{
6635	struct inode_security_struct *isec = selinux_inode(inode);
6636
6637	spin_lock(&isec->lock);
6638	isec->initialized = LABEL_INVALID;
6639	spin_unlock(&isec->lock);
6640}
6641
6642/*
6643 *	called with inode->i_mutex locked
6644 */
6645static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6646{
6647	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6648					   ctx, ctxlen, 0);
6649	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6650	return rc == -EOPNOTSUPP ? 0 : rc;
6651}
6652
6653/*
6654 *	called with inode->i_mutex locked
6655 */
6656static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6657{
6658	return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6659				     ctx, ctxlen, 0);
6660}
6661
6662static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6663{
6664	int len = 0;
6665	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6666					XATTR_SELINUX_SUFFIX, ctx, true);
6667	if (len < 0)
6668		return len;
6669	*ctxlen = len;
6670	return 0;
6671}
6672#ifdef CONFIG_KEYS
6673
6674static int selinux_key_alloc(struct key *k, const struct cred *cred,
6675			     unsigned long flags)
6676{
6677	const struct task_security_struct *tsec;
6678	struct key_security_struct *ksec;
6679
6680	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6681	if (!ksec)
6682		return -ENOMEM;
6683
6684	tsec = selinux_cred(cred);
6685	if (tsec->keycreate_sid)
6686		ksec->sid = tsec->keycreate_sid;
6687	else
6688		ksec->sid = tsec->sid;
6689
6690	k->security = ksec;
6691	return 0;
6692}
6693
6694static void selinux_key_free(struct key *k)
6695{
6696	struct key_security_struct *ksec = k->security;
6697
6698	k->security = NULL;
6699	kfree(ksec);
6700}
6701
6702static int selinux_key_permission(key_ref_t key_ref,
6703				  const struct cred *cred,
6704				  enum key_need_perm need_perm)
6705{
6706	struct key *key;
6707	struct key_security_struct *ksec;
6708	u32 perm, sid;
6709
6710	switch (need_perm) {
6711	case KEY_NEED_VIEW:
6712		perm = KEY__VIEW;
6713		break;
6714	case KEY_NEED_READ:
6715		perm = KEY__READ;
6716		break;
6717	case KEY_NEED_WRITE:
6718		perm = KEY__WRITE;
6719		break;
6720	case KEY_NEED_SEARCH:
6721		perm = KEY__SEARCH;
6722		break;
6723	case KEY_NEED_LINK:
6724		perm = KEY__LINK;
6725		break;
6726	case KEY_NEED_SETATTR:
6727		perm = KEY__SETATTR;
6728		break;
6729	case KEY_NEED_UNLINK:
6730	case KEY_SYSADMIN_OVERRIDE:
6731	case KEY_AUTHTOKEN_OVERRIDE:
6732	case KEY_DEFER_PERM_CHECK:
6733		return 0;
6734	default:
6735		WARN_ON(1);
6736		return -EPERM;
6737
6738	}
6739
6740	sid = cred_sid(cred);
6741	key = key_ref_to_ptr(key_ref);
6742	ksec = key->security;
6743
6744	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
6745}
6746
6747static int selinux_key_getsecurity(struct key *key, char **_buffer)
6748{
6749	struct key_security_struct *ksec = key->security;
6750	char *context = NULL;
6751	unsigned len;
6752	int rc;
6753
6754	rc = security_sid_to_context(ksec->sid,
6755				     &context, &len);
6756	if (!rc)
6757		rc = len;
6758	*_buffer = context;
6759	return rc;
6760}
6761
6762#ifdef CONFIG_KEY_NOTIFICATIONS
6763static int selinux_watch_key(struct key *key)
6764{
6765	struct key_security_struct *ksec = key->security;
6766	u32 sid = current_sid();
6767
6768	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
 
6769}
6770#endif
6771#endif
6772
6773#ifdef CONFIG_SECURITY_INFINIBAND
6774static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6775{
6776	struct common_audit_data ad;
6777	int err;
6778	u32 sid = 0;
6779	struct ib_security_struct *sec = ib_sec;
6780	struct lsm_ibpkey_audit ibpkey;
6781
6782	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6783	if (err)
6784		return err;
6785
6786	ad.type = LSM_AUDIT_DATA_IBPKEY;
6787	ibpkey.subnet_prefix = subnet_prefix;
6788	ibpkey.pkey = pkey_val;
6789	ad.u.ibpkey = &ibpkey;
6790	return avc_has_perm(sec->sid, sid,
 
6791			    SECCLASS_INFINIBAND_PKEY,
6792			    INFINIBAND_PKEY__ACCESS, &ad);
6793}
6794
6795static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6796					    u8 port_num)
6797{
6798	struct common_audit_data ad;
6799	int err;
6800	u32 sid = 0;
6801	struct ib_security_struct *sec = ib_sec;
6802	struct lsm_ibendport_audit ibendport;
6803
6804	err = security_ib_endport_sid(dev_name, port_num,
6805				      &sid);
6806
6807	if (err)
6808		return err;
6809
6810	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6811	ibendport.dev_name = dev_name;
6812	ibendport.port = port_num;
6813	ad.u.ibendport = &ibendport;
6814	return avc_has_perm(sec->sid, sid,
 
6815			    SECCLASS_INFINIBAND_ENDPORT,
6816			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6817}
6818
6819static int selinux_ib_alloc_security(void **ib_sec)
6820{
6821	struct ib_security_struct *sec;
6822
6823	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6824	if (!sec)
6825		return -ENOMEM;
6826	sec->sid = current_sid();
6827
6828	*ib_sec = sec;
6829	return 0;
6830}
6831
6832static void selinux_ib_free_security(void *ib_sec)
6833{
6834	kfree(ib_sec);
6835}
6836#endif
6837
6838#ifdef CONFIG_BPF_SYSCALL
6839static int selinux_bpf(int cmd, union bpf_attr *attr,
6840				     unsigned int size)
6841{
6842	u32 sid = current_sid();
6843	int ret;
6844
6845	switch (cmd) {
6846	case BPF_MAP_CREATE:
6847		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
 
6848				   NULL);
6849		break;
6850	case BPF_PROG_LOAD:
6851		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
 
6852				   NULL);
6853		break;
6854	default:
6855		ret = 0;
6856		break;
6857	}
6858
6859	return ret;
6860}
6861
6862static u32 bpf_map_fmode_to_av(fmode_t fmode)
6863{
6864	u32 av = 0;
6865
6866	if (fmode & FMODE_READ)
6867		av |= BPF__MAP_READ;
6868	if (fmode & FMODE_WRITE)
6869		av |= BPF__MAP_WRITE;
6870	return av;
6871}
6872
6873/* This function will check the file pass through unix socket or binder to see
6874 * if it is a bpf related object. And apply corresponding checks on the bpf
6875 * object based on the type. The bpf maps and programs, not like other files and
6876 * socket, are using a shared anonymous inode inside the kernel as their inode.
6877 * So checking that inode cannot identify if the process have privilege to
6878 * access the bpf object and that's why we have to add this additional check in
6879 * selinux_file_receive and selinux_binder_transfer_files.
6880 */
6881static int bpf_fd_pass(const struct file *file, u32 sid)
6882{
6883	struct bpf_security_struct *bpfsec;
6884	struct bpf_prog *prog;
6885	struct bpf_map *map;
6886	int ret;
6887
6888	if (file->f_op == &bpf_map_fops) {
6889		map = file->private_data;
6890		bpfsec = map->security;
6891		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6892				   bpf_map_fmode_to_av(file->f_mode), NULL);
6893		if (ret)
6894			return ret;
6895	} else if (file->f_op == &bpf_prog_fops) {
6896		prog = file->private_data;
6897		bpfsec = prog->aux->security;
6898		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6899				   BPF__PROG_RUN, NULL);
6900		if (ret)
6901			return ret;
6902	}
6903	return 0;
6904}
6905
6906static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6907{
6908	u32 sid = current_sid();
6909	struct bpf_security_struct *bpfsec;
6910
6911	bpfsec = map->security;
6912	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6913			    bpf_map_fmode_to_av(fmode), NULL);
6914}
6915
6916static int selinux_bpf_prog(struct bpf_prog *prog)
6917{
6918	u32 sid = current_sid();
6919	struct bpf_security_struct *bpfsec;
6920
6921	bpfsec = prog->aux->security;
6922	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6923			    BPF__PROG_RUN, NULL);
6924}
6925
6926static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6927				  struct bpf_token *token)
6928{
6929	struct bpf_security_struct *bpfsec;
6930
6931	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6932	if (!bpfsec)
6933		return -ENOMEM;
6934
6935	bpfsec->sid = current_sid();
6936	map->security = bpfsec;
6937
6938	return 0;
6939}
6940
6941static void selinux_bpf_map_free(struct bpf_map *map)
6942{
6943	struct bpf_security_struct *bpfsec = map->security;
6944
6945	map->security = NULL;
6946	kfree(bpfsec);
6947}
6948
6949static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6950				 struct bpf_token *token)
6951{
6952	struct bpf_security_struct *bpfsec;
6953
6954	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6955	if (!bpfsec)
6956		return -ENOMEM;
6957
6958	bpfsec->sid = current_sid();
6959	prog->aux->security = bpfsec;
6960
6961	return 0;
6962}
6963
6964static void selinux_bpf_prog_free(struct bpf_prog *prog)
6965{
6966	struct bpf_security_struct *bpfsec = prog->aux->security;
6967
6968	prog->aux->security = NULL;
6969	kfree(bpfsec);
6970}
6971
6972static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6973				    struct path *path)
6974{
6975	struct bpf_security_struct *bpfsec;
6976
6977	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6978	if (!bpfsec)
6979		return -ENOMEM;
6980
6981	bpfsec->sid = current_sid();
6982	token->security = bpfsec;
6983
6984	return 0;
6985}
6986
6987static void selinux_bpf_token_free(struct bpf_token *token)
6988{
6989	struct bpf_security_struct *bpfsec = token->security;
6990
6991	token->security = NULL;
6992	kfree(bpfsec);
6993}
6994#endif
6995
6996struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6997	.lbs_cred = sizeof(struct task_security_struct),
6998	.lbs_file = sizeof(struct file_security_struct),
6999	.lbs_inode = sizeof(struct inode_security_struct),
7000	.lbs_ipc = sizeof(struct ipc_security_struct),
7001	.lbs_msg_msg = sizeof(struct msg_security_struct),
7002	.lbs_superblock = sizeof(struct superblock_security_struct),
7003	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7004};
7005
7006#ifdef CONFIG_PERF_EVENTS
7007static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7008{
7009	u32 requested, sid = current_sid();
7010
7011	if (type == PERF_SECURITY_OPEN)
7012		requested = PERF_EVENT__OPEN;
7013	else if (type == PERF_SECURITY_CPU)
7014		requested = PERF_EVENT__CPU;
7015	else if (type == PERF_SECURITY_KERNEL)
7016		requested = PERF_EVENT__KERNEL;
7017	else if (type == PERF_SECURITY_TRACEPOINT)
7018		requested = PERF_EVENT__TRACEPOINT;
7019	else
7020		return -EINVAL;
7021
7022	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7023			    requested, NULL);
7024}
7025
7026static int selinux_perf_event_alloc(struct perf_event *event)
7027{
7028	struct perf_event_security_struct *perfsec;
7029
7030	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7031	if (!perfsec)
7032		return -ENOMEM;
7033
7034	perfsec->sid = current_sid();
7035	event->security = perfsec;
7036
7037	return 0;
7038}
7039
7040static void selinux_perf_event_free(struct perf_event *event)
7041{
7042	struct perf_event_security_struct *perfsec = event->security;
7043
7044	event->security = NULL;
7045	kfree(perfsec);
7046}
7047
7048static int selinux_perf_event_read(struct perf_event *event)
7049{
7050	struct perf_event_security_struct *perfsec = event->security;
7051	u32 sid = current_sid();
7052
7053	return avc_has_perm(sid, perfsec->sid,
7054			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7055}
7056
7057static int selinux_perf_event_write(struct perf_event *event)
7058{
7059	struct perf_event_security_struct *perfsec = event->security;
7060	u32 sid = current_sid();
7061
7062	return avc_has_perm(sid, perfsec->sid,
7063			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7064}
7065#endif
7066
7067#ifdef CONFIG_IO_URING
7068/**
7069 * selinux_uring_override_creds - check the requested cred override
7070 * @new: the target creds
7071 *
7072 * Check to see if the current task is allowed to override it's credentials
7073 * to service an io_uring operation.
7074 */
7075static int selinux_uring_override_creds(const struct cred *new)
7076{
7077	return avc_has_perm(current_sid(), cred_sid(new),
7078			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7079}
7080
7081/**
7082 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7083 *
7084 * Check to see if the current task is allowed to create a new io_uring
7085 * kernel polling thread.
7086 */
7087static int selinux_uring_sqpoll(void)
7088{
7089	u32 sid = current_sid();
7090
7091	return avc_has_perm(sid, sid,
7092			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7093}
7094
7095/**
7096 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7097 * @ioucmd: the io_uring command structure
7098 *
7099 * Check to see if the current domain is allowed to execute an
7100 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7101 *
7102 */
7103static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7104{
7105	struct file *file = ioucmd->file;
7106	struct inode *inode = file_inode(file);
7107	struct inode_security_struct *isec = selinux_inode(inode);
7108	struct common_audit_data ad;
7109
7110	ad.type = LSM_AUDIT_DATA_FILE;
7111	ad.u.file = file;
7112
7113	return avc_has_perm(current_sid(), isec->sid,
7114			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7115}
7116#endif /* CONFIG_IO_URING */
7117
7118static const struct lsm_id selinux_lsmid = {
7119	.name = "selinux",
7120	.id = LSM_ID_SELINUX,
7121};
7122
7123/*
7124 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7125 * 1. any hooks that don't belong to (2.) or (3.) below,
7126 * 2. hooks that both access structures allocated by other hooks, and allocate
7127 *    structures that can be later accessed by other hooks (mostly "cloning"
7128 *    hooks),
7129 * 3. hooks that only allocate structures that can be later accessed by other
7130 *    hooks ("allocating" hooks).
7131 *
7132 * Please follow block comment delimiters in the list to keep this order.
 
 
 
 
7133 */
7134static struct security_hook_list selinux_hooks[] __ro_after_init = {
7135	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7136	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7137	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7138	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7139
7140	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7141	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7142	LSM_HOOK_INIT(capget, selinux_capget),
7143	LSM_HOOK_INIT(capset, selinux_capset),
7144	LSM_HOOK_INIT(capable, selinux_capable),
7145	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7146	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7147	LSM_HOOK_INIT(syslog, selinux_syslog),
7148	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7149
7150	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7151
7152	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7153	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7154	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7155
7156	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7157	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7158	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7159	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7160	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7161	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7162	LSM_HOOK_INIT(sb_mount, selinux_mount),
7163	LSM_HOOK_INIT(sb_umount, selinux_umount),
7164	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7165	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7166
7167	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7168
7169	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7170	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7171
7172	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7173	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7174	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7175	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7176	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7177	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7178	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7179	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7180	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7181	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7182	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7183	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7184	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7185	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7186	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7187	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7188	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7189	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7190	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7191	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7192	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7193	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7194	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7195	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7196	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7197	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7198	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7199	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7200	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7201	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7202	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7203
7204	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7205
7206	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7207	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7208	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7209	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7210	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7211	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7212	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7213	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7214	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7215	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7216	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7217	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7218
7219	LSM_HOOK_INIT(file_open, selinux_file_open),
7220
7221	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7222	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7223	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7224	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7225	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7226	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7227	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7228	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7229	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7230	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7231	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7232	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7233	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7234	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7235	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7236	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7237	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7238	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7239	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7240	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7241	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7242	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7243	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7244	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7245	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7246
7247	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7248	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7249
7250	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7251	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7252	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7253	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7254
7255	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7256	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7257	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7258
7259	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7260	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7261	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7262
7263	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7264
7265	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7266	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7267	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7268	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7269
7270	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7271	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7272	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7273	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7274	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7275	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7276
7277	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7278	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7279
7280	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7281	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7282	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7283	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7284	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7285	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7286	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7287	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7288	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7289	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7290	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7291	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7292	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7293	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7294	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7295	LSM_HOOK_INIT(socket_getpeersec_stream,
7296			selinux_socket_getpeersec_stream),
7297	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7298	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7299	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7300	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7301	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7302	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7303	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7304	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7305	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7306	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7307	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7308	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7309	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7310	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7311	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7312	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7313	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7314	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7315	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7316	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7317	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7318	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7319#ifdef CONFIG_SECURITY_INFINIBAND
7320	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7321	LSM_HOOK_INIT(ib_endport_manage_subnet,
7322		      selinux_ib_endport_manage_subnet),
7323	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7324#endif
7325#ifdef CONFIG_SECURITY_NETWORK_XFRM
7326	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7327	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7328	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7329	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7330	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7331	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7332			selinux_xfrm_state_pol_flow_match),
7333	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7334#endif
7335
7336#ifdef CONFIG_KEYS
7337	LSM_HOOK_INIT(key_free, selinux_key_free),
7338	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7339	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7340#ifdef CONFIG_KEY_NOTIFICATIONS
7341	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7342#endif
7343#endif
7344
7345#ifdef CONFIG_AUDIT
7346	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7347	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7348	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7349#endif
7350
7351#ifdef CONFIG_BPF_SYSCALL
7352	LSM_HOOK_INIT(bpf, selinux_bpf),
7353	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7354	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7355	LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7356	LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7357	LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7358#endif
7359
7360#ifdef CONFIG_PERF_EVENTS
7361	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7362	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7363	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7364	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7365#endif
7366
7367#ifdef CONFIG_IO_URING
7368	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7369	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7370	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7371#endif
7372
7373	/*
7374	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7375	 */
7376	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7377	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7378	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7379	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7380#ifdef CONFIG_SECURITY_NETWORK_XFRM
7381	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7382#endif
7383
7384	/*
7385	 * PUT "ALLOCATING" HOOKS HERE
7386	 */
7387	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7388	LSM_HOOK_INIT(msg_queue_alloc_security,
7389		      selinux_msg_queue_alloc_security),
7390	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7391	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7392	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7393	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7394	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7395	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7396	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7397	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7398#ifdef CONFIG_SECURITY_INFINIBAND
7399	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7400#endif
7401#ifdef CONFIG_SECURITY_NETWORK_XFRM
7402	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7403	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7404	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7405		      selinux_xfrm_state_alloc_acquire),
7406#endif
7407#ifdef CONFIG_KEYS
7408	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7409#endif
7410#ifdef CONFIG_AUDIT
7411	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7412#endif
7413#ifdef CONFIG_BPF_SYSCALL
7414	LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7415	LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7416	LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7417#endif
7418#ifdef CONFIG_PERF_EVENTS
7419	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7420#endif
7421};
7422
7423static __init int selinux_init(void)
7424{
7425	pr_info("SELinux:  Initializing.\n");
7426
7427	memset(&selinux_state, 0, sizeof(selinux_state));
7428	enforcing_set(selinux_enforcing_boot);
7429	selinux_avc_init();
 
 
 
7430	mutex_init(&selinux_state.status_lock);
7431	mutex_init(&selinux_state.policy_mutex);
7432
7433	/* Set the security state for the initial task. */
7434	cred_init_security();
7435
7436	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7437	if (!default_noexec)
7438		pr_notice("SELinux:  virtual memory is executable by default\n");
7439
7440	avc_init();
7441
7442	avtab_cache_init();
7443
7444	ebitmap_cache_init();
7445
7446	hashtab_cache_init();
7447
7448	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7449			   &selinux_lsmid);
7450
7451	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7452		panic("SELinux: Unable to register AVC netcache callback\n");
7453
7454	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7455		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7456
7457	if (selinux_enforcing_boot)
7458		pr_debug("SELinux:  Starting in enforcing mode\n");
7459	else
7460		pr_debug("SELinux:  Starting in permissive mode\n");
7461
7462	fs_validate_description("selinux", selinux_fs_parameters);
7463
7464	return 0;
7465}
7466
7467static void delayed_superblock_init(struct super_block *sb, void *unused)
7468{
7469	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7470}
7471
7472void selinux_complete_init(void)
7473{
7474	pr_debug("SELinux:  Completing initialization.\n");
7475
7476	/* Set up any superblocks initialized prior to the policy load. */
7477	pr_debug("SELinux:  Setting up existing superblocks.\n");
7478	iterate_supers(delayed_superblock_init, NULL);
7479}
7480
7481/* SELinux requires early initialization in order to label
7482   all processes and objects when they are created. */
7483DEFINE_LSM(selinux) = {
7484	.name = "selinux",
7485	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7486	.enabled = &selinux_enabled_boot,
7487	.blobs = &selinux_blob_sizes,
7488	.init = selinux_init,
7489};
7490
7491#if defined(CONFIG_NETFILTER)
 
7492static const struct nf_hook_ops selinux_nf_ops[] = {
7493	{
7494		.hook =		selinux_ip_postroute,
7495		.pf =		NFPROTO_IPV4,
7496		.hooknum =	NF_INET_POST_ROUTING,
7497		.priority =	NF_IP_PRI_SELINUX_LAST,
7498	},
7499	{
7500		.hook =		selinux_ip_forward,
7501		.pf =		NFPROTO_IPV4,
7502		.hooknum =	NF_INET_FORWARD,
7503		.priority =	NF_IP_PRI_SELINUX_FIRST,
7504	},
7505	{
7506		.hook =		selinux_ip_output,
7507		.pf =		NFPROTO_IPV4,
7508		.hooknum =	NF_INET_LOCAL_OUT,
7509		.priority =	NF_IP_PRI_SELINUX_FIRST,
7510	},
7511#if IS_ENABLED(CONFIG_IPV6)
7512	{
7513		.hook =		selinux_ip_postroute,
7514		.pf =		NFPROTO_IPV6,
7515		.hooknum =	NF_INET_POST_ROUTING,
7516		.priority =	NF_IP6_PRI_SELINUX_LAST,
7517	},
7518	{
7519		.hook =		selinux_ip_forward,
7520		.pf =		NFPROTO_IPV6,
7521		.hooknum =	NF_INET_FORWARD,
7522		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7523	},
7524	{
7525		.hook =		selinux_ip_output,
7526		.pf =		NFPROTO_IPV6,
7527		.hooknum =	NF_INET_LOCAL_OUT,
7528		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7529	},
7530#endif	/* IPV6 */
7531};
7532
7533static int __net_init selinux_nf_register(struct net *net)
7534{
7535	return nf_register_net_hooks(net, selinux_nf_ops,
7536				     ARRAY_SIZE(selinux_nf_ops));
7537}
7538
7539static void __net_exit selinux_nf_unregister(struct net *net)
7540{
7541	nf_unregister_net_hooks(net, selinux_nf_ops,
7542				ARRAY_SIZE(selinux_nf_ops));
7543}
7544
7545static struct pernet_operations selinux_net_ops = {
7546	.init = selinux_nf_register,
7547	.exit = selinux_nf_unregister,
7548};
7549
7550static int __init selinux_nf_ip_init(void)
7551{
7552	int err;
7553
7554	if (!selinux_enabled_boot)
7555		return 0;
7556
7557	pr_debug("SELinux:  Registering netfilter hooks\n");
7558
7559	err = register_pernet_subsys(&selinux_net_ops);
7560	if (err)
7561		panic("SELinux: register_pernet_subsys: error %d\n", err);
7562
7563	return 0;
7564}
7565__initcall(selinux_nf_ip_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7566#endif /* CONFIG_NETFILTER */