Linux Audio

Check our new training course

Loading...
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/security.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  55#include <net/net_namespace.h>
  56#include <net/netlabel.h>
  57#include <linux/uaccess.h>
  58#include <asm/ioctls.h>
  59#include <linux/atomic.h>
  60#include <linux/bitops.h>
  61#include <linux/interrupt.h>
  62#include <linux/netdevice.h>	/* for network interface checks */
  63#include <linux/netlink.h>
  64#include <linux/tcp.h>
  65#include <linux/udp.h>
  66#include <linux/dccp.h>
  67#include <linux/quota.h>
  68#include <linux/un.h>		/* for Unix socket types */
  69#include <net/af_unix.h>	/* for Unix socket types */
  70#include <linux/parser.h>
  71#include <linux/nfs_mount.h>
  72#include <net/ipv6.h>
  73#include <linux/hugetlb.h>
  74#include <linux/personality.h>
  75#include <linux/audit.h>
  76#include <linux/string.h>
  77#include <linux/selinux.h>
  78#include <linux/mutex.h>
  79#include <linux/posix-timers.h>
  80#include <linux/syslog.h>
  81#include <linux/user_namespace.h>
  82#include <linux/export.h>
  83#include <linux/msg.h>
  84#include <linux/shm.h>
  85
  86#include "avc.h"
  87#include "objsec.h"
  88#include "netif.h"
  89#include "netnode.h"
  90#include "netport.h"
  91#include "xfrm.h"
  92#include "netlabel.h"
  93#include "audit.h"
  94#include "avc_ss.h"
  95
  96#define NUM_SEL_MNT_OPTS 5
  97
  98extern struct security_operations *security_ops;
  99
 100/* SECMARK reference count */
 101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 102
 103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 104int selinux_enforcing;
 105
 106static int __init enforcing_setup(char *str)
 107{
 108	unsigned long enforcing;
 109	if (!strict_strtoul(str, 0, &enforcing))
 110		selinux_enforcing = enforcing ? 1 : 0;
 111	return 1;
 112}
 113__setup("enforcing=", enforcing_setup);
 114#endif
 115
 116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 118
 119static int __init selinux_enabled_setup(char *str)
 120{
 121	unsigned long enabled;
 122	if (!strict_strtoul(str, 0, &enabled))
 123		selinux_enabled = enabled ? 1 : 0;
 124	return 1;
 125}
 126__setup("selinux=", selinux_enabled_setup);
 127#else
 128int selinux_enabled = 1;
 129#endif
 130
 131static struct kmem_cache *sel_inode_cache;
 132
 133/**
 134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 135 *
 136 * Description:
 137 * This function checks the SECMARK reference counter to see if any SECMARK
 138 * targets are currently configured, if the reference counter is greater than
 139 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 140 * enabled, false (0) if SECMARK is disabled.
 141 *
 142 */
 143static int selinux_secmark_enabled(void)
 144{
 145	return (atomic_read(&selinux_secmark_refcount) > 0);
 146}
 147
 148/*
 149 * initialise the security for the init task
 150 */
 151static void cred_init_security(void)
 152{
 153	struct cred *cred = (struct cred *) current->real_cred;
 154	struct task_security_struct *tsec;
 155
 156	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 157	if (!tsec)
 158		panic("SELinux:  Failed to initialize initial task.\n");
 159
 160	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 161	cred->security = tsec;
 162}
 163
 164/*
 165 * get the security ID of a set of credentials
 166 */
 167static inline u32 cred_sid(const struct cred *cred)
 168{
 169	const struct task_security_struct *tsec;
 170
 171	tsec = cred->security;
 172	return tsec->sid;
 173}
 174
 175/*
 176 * get the objective security ID of a task
 177 */
 178static inline u32 task_sid(const struct task_struct *task)
 179{
 180	u32 sid;
 181
 182	rcu_read_lock();
 183	sid = cred_sid(__task_cred(task));
 184	rcu_read_unlock();
 185	return sid;
 186}
 187
 188/*
 189 * get the subjective security ID of the current task
 190 */
 191static inline u32 current_sid(void)
 192{
 193	const struct task_security_struct *tsec = current_security();
 194
 195	return tsec->sid;
 196}
 197
 198/* Allocate and free functions for each kind of security blob. */
 199
 200static int inode_alloc_security(struct inode *inode)
 201{
 202	struct inode_security_struct *isec;
 203	u32 sid = current_sid();
 204
 205	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 206	if (!isec)
 207		return -ENOMEM;
 208
 209	mutex_init(&isec->lock);
 210	INIT_LIST_HEAD(&isec->list);
 211	isec->inode = inode;
 212	isec->sid = SECINITSID_UNLABELED;
 213	isec->sclass = SECCLASS_FILE;
 214	isec->task_sid = sid;
 215	inode->i_security = isec;
 216
 217	return 0;
 218}
 219
 220static void inode_free_security(struct inode *inode)
 221{
 222	struct inode_security_struct *isec = inode->i_security;
 223	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 224
 225	spin_lock(&sbsec->isec_lock);
 226	if (!list_empty(&isec->list))
 227		list_del_init(&isec->list);
 228	spin_unlock(&sbsec->isec_lock);
 229
 230	inode->i_security = NULL;
 231	kmem_cache_free(sel_inode_cache, isec);
 232}
 233
 234static int file_alloc_security(struct file *file)
 235{
 236	struct file_security_struct *fsec;
 237	u32 sid = current_sid();
 238
 239	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
 240	if (!fsec)
 241		return -ENOMEM;
 242
 243	fsec->sid = sid;
 244	fsec->fown_sid = sid;
 245	file->f_security = fsec;
 246
 247	return 0;
 248}
 249
 250static void file_free_security(struct file *file)
 251{
 252	struct file_security_struct *fsec = file->f_security;
 253	file->f_security = NULL;
 254	kfree(fsec);
 255}
 256
 257static int superblock_alloc_security(struct super_block *sb)
 258{
 259	struct superblock_security_struct *sbsec;
 260
 261	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 262	if (!sbsec)
 263		return -ENOMEM;
 264
 265	mutex_init(&sbsec->lock);
 266	INIT_LIST_HEAD(&sbsec->isec_head);
 267	spin_lock_init(&sbsec->isec_lock);
 268	sbsec->sb = sb;
 269	sbsec->sid = SECINITSID_UNLABELED;
 270	sbsec->def_sid = SECINITSID_FILE;
 271	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 272	sb->s_security = sbsec;
 273
 274	return 0;
 275}
 276
 277static void superblock_free_security(struct super_block *sb)
 278{
 279	struct superblock_security_struct *sbsec = sb->s_security;
 280	sb->s_security = NULL;
 281	kfree(sbsec);
 282}
 283
 284/* The file system's label must be initialized prior to use. */
 285
 286static const char *labeling_behaviors[6] = {
 287	"uses xattr",
 288	"uses transition SIDs",
 289	"uses task SIDs",
 290	"uses genfs_contexts",
 291	"not configured for labeling",
 292	"uses mountpoint labeling",
 293};
 294
 295static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 296
 297static inline int inode_doinit(struct inode *inode)
 298{
 299	return inode_doinit_with_dentry(inode, NULL);
 300}
 301
 302enum {
 303	Opt_error = -1,
 304	Opt_context = 1,
 305	Opt_fscontext = 2,
 306	Opt_defcontext = 3,
 307	Opt_rootcontext = 4,
 308	Opt_labelsupport = 5,
 309};
 310
 311static const match_table_t tokens = {
 312	{Opt_context, CONTEXT_STR "%s"},
 313	{Opt_fscontext, FSCONTEXT_STR "%s"},
 314	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 315	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 316	{Opt_labelsupport, LABELSUPP_STR},
 317	{Opt_error, NULL},
 318};
 319
 320#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 321
 322static int may_context_mount_sb_relabel(u32 sid,
 323			struct superblock_security_struct *sbsec,
 324			const struct cred *cred)
 325{
 326	const struct task_security_struct *tsec = cred->security;
 327	int rc;
 328
 329	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 330			  FILESYSTEM__RELABELFROM, NULL);
 331	if (rc)
 332		return rc;
 333
 334	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 335			  FILESYSTEM__RELABELTO, NULL);
 336	return rc;
 337}
 338
 339static int may_context_mount_inode_relabel(u32 sid,
 340			struct superblock_security_struct *sbsec,
 341			const struct cred *cred)
 342{
 343	const struct task_security_struct *tsec = cred->security;
 344	int rc;
 345	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 346			  FILESYSTEM__RELABELFROM, NULL);
 347	if (rc)
 348		return rc;
 349
 350	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 351			  FILESYSTEM__ASSOCIATE, NULL);
 352	return rc;
 353}
 354
 355static int sb_finish_set_opts(struct super_block *sb)
 356{
 357	struct superblock_security_struct *sbsec = sb->s_security;
 358	struct dentry *root = sb->s_root;
 359	struct inode *root_inode = root->d_inode;
 360	int rc = 0;
 361
 362	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 363		/* Make sure that the xattr handler exists and that no
 364		   error other than -ENODATA is returned by getxattr on
 365		   the root directory.  -ENODATA is ok, as this may be
 366		   the first boot of the SELinux kernel before we have
 367		   assigned xattr values to the filesystem. */
 368		if (!root_inode->i_op->getxattr) {
 369			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 370			       "xattr support\n", sb->s_id, sb->s_type->name);
 371			rc = -EOPNOTSUPP;
 372			goto out;
 373		}
 374		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 375		if (rc < 0 && rc != -ENODATA) {
 376			if (rc == -EOPNOTSUPP)
 377				printk(KERN_WARNING "SELinux: (dev %s, type "
 378				       "%s) has no security xattr handler\n",
 379				       sb->s_id, sb->s_type->name);
 380			else
 381				printk(KERN_WARNING "SELinux: (dev %s, type "
 382				       "%s) getxattr errno %d\n", sb->s_id,
 383				       sb->s_type->name, -rc);
 384			goto out;
 385		}
 386	}
 387
 388	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
 389
 390	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 391		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 392		       sb->s_id, sb->s_type->name);
 393	else
 394		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
 395		       sb->s_id, sb->s_type->name,
 396		       labeling_behaviors[sbsec->behavior-1]);
 397
 398	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
 399	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
 400	    sbsec->behavior == SECURITY_FS_USE_NONE ||
 401	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 402		sbsec->flags &= ~SE_SBLABELSUPP;
 403
 404	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
 405	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
 406		sbsec->flags |= SE_SBLABELSUPP;
 407
 408	/* Initialize the root inode. */
 409	rc = inode_doinit_with_dentry(root_inode, root);
 410
 411	/* Initialize any other inodes associated with the superblock, e.g.
 412	   inodes created prior to initial policy load or inodes created
 413	   during get_sb by a pseudo filesystem that directly
 414	   populates itself. */
 415	spin_lock(&sbsec->isec_lock);
 416next_inode:
 417	if (!list_empty(&sbsec->isec_head)) {
 418		struct inode_security_struct *isec =
 419				list_entry(sbsec->isec_head.next,
 420					   struct inode_security_struct, list);
 421		struct inode *inode = isec->inode;
 422		spin_unlock(&sbsec->isec_lock);
 423		inode = igrab(inode);
 424		if (inode) {
 425			if (!IS_PRIVATE(inode))
 426				inode_doinit(inode);
 427			iput(inode);
 428		}
 429		spin_lock(&sbsec->isec_lock);
 430		list_del_init(&isec->list);
 431		goto next_inode;
 432	}
 433	spin_unlock(&sbsec->isec_lock);
 434out:
 435	return rc;
 436}
 437
 438/*
 439 * This function should allow an FS to ask what it's mount security
 440 * options were so it can use those later for submounts, displaying
 441 * mount options, or whatever.
 442 */
 443static int selinux_get_mnt_opts(const struct super_block *sb,
 444				struct security_mnt_opts *opts)
 445{
 446	int rc = 0, i;
 447	struct superblock_security_struct *sbsec = sb->s_security;
 448	char *context = NULL;
 449	u32 len;
 450	char tmp;
 451
 452	security_init_mnt_opts(opts);
 453
 454	if (!(sbsec->flags & SE_SBINITIALIZED))
 455		return -EINVAL;
 456
 457	if (!ss_initialized)
 458		return -EINVAL;
 459
 460	tmp = sbsec->flags & SE_MNTMASK;
 461	/* count the number of mount options for this sb */
 462	for (i = 0; i < 8; i++) {
 463		if (tmp & 0x01)
 464			opts->num_mnt_opts++;
 465		tmp >>= 1;
 466	}
 467	/* Check if the Label support flag is set */
 468	if (sbsec->flags & SE_SBLABELSUPP)
 469		opts->num_mnt_opts++;
 470
 471	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 472	if (!opts->mnt_opts) {
 473		rc = -ENOMEM;
 474		goto out_free;
 475	}
 476
 477	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 478	if (!opts->mnt_opts_flags) {
 479		rc = -ENOMEM;
 480		goto out_free;
 481	}
 482
 483	i = 0;
 484	if (sbsec->flags & FSCONTEXT_MNT) {
 485		rc = security_sid_to_context(sbsec->sid, &context, &len);
 486		if (rc)
 487			goto out_free;
 488		opts->mnt_opts[i] = context;
 489		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 490	}
 491	if (sbsec->flags & CONTEXT_MNT) {
 492		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 493		if (rc)
 494			goto out_free;
 495		opts->mnt_opts[i] = context;
 496		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 497	}
 498	if (sbsec->flags & DEFCONTEXT_MNT) {
 499		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 500		if (rc)
 501			goto out_free;
 502		opts->mnt_opts[i] = context;
 503		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 504	}
 505	if (sbsec->flags & ROOTCONTEXT_MNT) {
 506		struct inode *root = sbsec->sb->s_root->d_inode;
 507		struct inode_security_struct *isec = root->i_security;
 508
 509		rc = security_sid_to_context(isec->sid, &context, &len);
 510		if (rc)
 511			goto out_free;
 512		opts->mnt_opts[i] = context;
 513		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 514	}
 515	if (sbsec->flags & SE_SBLABELSUPP) {
 516		opts->mnt_opts[i] = NULL;
 517		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
 518	}
 519
 520	BUG_ON(i != opts->num_mnt_opts);
 521
 522	return 0;
 523
 524out_free:
 525	security_free_mnt_opts(opts);
 526	return rc;
 527}
 528
 529static int bad_option(struct superblock_security_struct *sbsec, char flag,
 530		      u32 old_sid, u32 new_sid)
 531{
 532	char mnt_flags = sbsec->flags & SE_MNTMASK;
 533
 534	/* check if the old mount command had the same options */
 535	if (sbsec->flags & SE_SBINITIALIZED)
 536		if (!(sbsec->flags & flag) ||
 537		    (old_sid != new_sid))
 538			return 1;
 539
 540	/* check if we were passed the same options twice,
 541	 * aka someone passed context=a,context=b
 542	 */
 543	if (!(sbsec->flags & SE_SBINITIALIZED))
 544		if (mnt_flags & flag)
 545			return 1;
 546	return 0;
 547}
 548
 549/*
 550 * Allow filesystems with binary mount data to explicitly set mount point
 551 * labeling information.
 552 */
 553static int selinux_set_mnt_opts(struct super_block *sb,
 554				struct security_mnt_opts *opts)
 555{
 556	const struct cred *cred = current_cred();
 557	int rc = 0, i;
 558	struct superblock_security_struct *sbsec = sb->s_security;
 559	const char *name = sb->s_type->name;
 560	struct inode *inode = sbsec->sb->s_root->d_inode;
 561	struct inode_security_struct *root_isec = inode->i_security;
 562	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 563	u32 defcontext_sid = 0;
 564	char **mount_options = opts->mnt_opts;
 565	int *flags = opts->mnt_opts_flags;
 566	int num_opts = opts->num_mnt_opts;
 567
 568	mutex_lock(&sbsec->lock);
 569
 570	if (!ss_initialized) {
 571		if (!num_opts) {
 572			/* Defer initialization until selinux_complete_init,
 573			   after the initial policy is loaded and the security
 574			   server is ready to handle calls. */
 575			goto out;
 576		}
 577		rc = -EINVAL;
 578		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 579			"before the security server is initialized\n");
 580		goto out;
 581	}
 582
 583	/*
 584	 * Binary mount data FS will come through this function twice.  Once
 585	 * from an explicit call and once from the generic calls from the vfs.
 586	 * Since the generic VFS calls will not contain any security mount data
 587	 * we need to skip the double mount verification.
 588	 *
 589	 * This does open a hole in which we will not notice if the first
 590	 * mount using this sb set explict options and a second mount using
 591	 * this sb does not set any security options.  (The first options
 592	 * will be used for both mounts)
 593	 */
 594	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 595	    && (num_opts == 0))
 596		goto out;
 597
 598	/*
 599	 * parse the mount options, check if they are valid sids.
 600	 * also check if someone is trying to mount the same sb more
 601	 * than once with different security options.
 602	 */
 603	for (i = 0; i < num_opts; i++) {
 604		u32 sid;
 605
 606		if (flags[i] == SE_SBLABELSUPP)
 607			continue;
 608		rc = security_context_to_sid(mount_options[i],
 609					     strlen(mount_options[i]), &sid);
 610		if (rc) {
 611			printk(KERN_WARNING "SELinux: security_context_to_sid"
 612			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 613			       mount_options[i], sb->s_id, name, rc);
 614			goto out;
 615		}
 616		switch (flags[i]) {
 617		case FSCONTEXT_MNT:
 618			fscontext_sid = sid;
 619
 620			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 621					fscontext_sid))
 622				goto out_double_mount;
 623
 624			sbsec->flags |= FSCONTEXT_MNT;
 625			break;
 626		case CONTEXT_MNT:
 627			context_sid = sid;
 628
 629			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 630					context_sid))
 631				goto out_double_mount;
 632
 633			sbsec->flags |= CONTEXT_MNT;
 634			break;
 635		case ROOTCONTEXT_MNT:
 636			rootcontext_sid = sid;
 637
 638			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 639					rootcontext_sid))
 640				goto out_double_mount;
 641
 642			sbsec->flags |= ROOTCONTEXT_MNT;
 643
 644			break;
 645		case DEFCONTEXT_MNT:
 646			defcontext_sid = sid;
 647
 648			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 649					defcontext_sid))
 650				goto out_double_mount;
 651
 652			sbsec->flags |= DEFCONTEXT_MNT;
 653
 654			break;
 655		default:
 656			rc = -EINVAL;
 657			goto out;
 658		}
 659	}
 660
 661	if (sbsec->flags & SE_SBINITIALIZED) {
 662		/* previously mounted with options, but not on this attempt? */
 663		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 664			goto out_double_mount;
 665		rc = 0;
 666		goto out;
 667	}
 668
 669	if (strcmp(sb->s_type->name, "proc") == 0)
 670		sbsec->flags |= SE_SBPROC;
 671
 672	/* Determine the labeling behavior to use for this filesystem type. */
 673	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
 674	if (rc) {
 675		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
 676		       __func__, sb->s_type->name, rc);
 677		goto out;
 678	}
 679
 680	/* sets the context of the superblock for the fs being mounted. */
 681	if (fscontext_sid) {
 682		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 683		if (rc)
 684			goto out;
 685
 686		sbsec->sid = fscontext_sid;
 687	}
 688
 689	/*
 690	 * Switch to using mount point labeling behavior.
 691	 * sets the label used on all file below the mountpoint, and will set
 692	 * the superblock context if not already set.
 693	 */
 694	if (context_sid) {
 695		if (!fscontext_sid) {
 696			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 697							  cred);
 698			if (rc)
 699				goto out;
 700			sbsec->sid = context_sid;
 701		} else {
 702			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 703							     cred);
 704			if (rc)
 705				goto out;
 706		}
 707		if (!rootcontext_sid)
 708			rootcontext_sid = context_sid;
 709
 710		sbsec->mntpoint_sid = context_sid;
 711		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 712	}
 713
 714	if (rootcontext_sid) {
 715		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 716						     cred);
 717		if (rc)
 718			goto out;
 719
 720		root_isec->sid = rootcontext_sid;
 721		root_isec->initialized = 1;
 722	}
 723
 724	if (defcontext_sid) {
 725		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
 726			rc = -EINVAL;
 727			printk(KERN_WARNING "SELinux: defcontext option is "
 728			       "invalid for this filesystem type\n");
 729			goto out;
 730		}
 731
 732		if (defcontext_sid != sbsec->def_sid) {
 733			rc = may_context_mount_inode_relabel(defcontext_sid,
 734							     sbsec, cred);
 735			if (rc)
 736				goto out;
 737		}
 738
 739		sbsec->def_sid = defcontext_sid;
 740	}
 741
 742	rc = sb_finish_set_opts(sb);
 743out:
 744	mutex_unlock(&sbsec->lock);
 745	return rc;
 746out_double_mount:
 747	rc = -EINVAL;
 748	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 749	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 750	goto out;
 751}
 752
 753static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 754					struct super_block *newsb)
 755{
 756	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 757	struct superblock_security_struct *newsbsec = newsb->s_security;
 758
 759	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 760	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 761	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 762
 763	/*
 764	 * if the parent was able to be mounted it clearly had no special lsm
 765	 * mount options.  thus we can safely deal with this superblock later
 766	 */
 767	if (!ss_initialized)
 768		return;
 769
 770	/* how can we clone if the old one wasn't set up?? */
 771	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 772
 773	/* if fs is reusing a sb, just let its options stand... */
 774	if (newsbsec->flags & SE_SBINITIALIZED)
 775		return;
 776
 777	mutex_lock(&newsbsec->lock);
 778
 779	newsbsec->flags = oldsbsec->flags;
 780
 781	newsbsec->sid = oldsbsec->sid;
 782	newsbsec->def_sid = oldsbsec->def_sid;
 783	newsbsec->behavior = oldsbsec->behavior;
 784
 785	if (set_context) {
 786		u32 sid = oldsbsec->mntpoint_sid;
 787
 788		if (!set_fscontext)
 789			newsbsec->sid = sid;
 790		if (!set_rootcontext) {
 791			struct inode *newinode = newsb->s_root->d_inode;
 792			struct inode_security_struct *newisec = newinode->i_security;
 793			newisec->sid = sid;
 794		}
 795		newsbsec->mntpoint_sid = sid;
 796	}
 797	if (set_rootcontext) {
 798		const struct inode *oldinode = oldsb->s_root->d_inode;
 799		const struct inode_security_struct *oldisec = oldinode->i_security;
 800		struct inode *newinode = newsb->s_root->d_inode;
 801		struct inode_security_struct *newisec = newinode->i_security;
 802
 803		newisec->sid = oldisec->sid;
 804	}
 805
 806	sb_finish_set_opts(newsb);
 807	mutex_unlock(&newsbsec->lock);
 808}
 809
 810static int selinux_parse_opts_str(char *options,
 811				  struct security_mnt_opts *opts)
 812{
 813	char *p;
 814	char *context = NULL, *defcontext = NULL;
 815	char *fscontext = NULL, *rootcontext = NULL;
 816	int rc, num_mnt_opts = 0;
 817
 818	opts->num_mnt_opts = 0;
 819
 820	/* Standard string-based options. */
 821	while ((p = strsep(&options, "|")) != NULL) {
 822		int token;
 823		substring_t args[MAX_OPT_ARGS];
 824
 825		if (!*p)
 826			continue;
 827
 828		token = match_token(p, tokens, args);
 829
 830		switch (token) {
 831		case Opt_context:
 832			if (context || defcontext) {
 833				rc = -EINVAL;
 834				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 835				goto out_err;
 836			}
 837			context = match_strdup(&args[0]);
 838			if (!context) {
 839				rc = -ENOMEM;
 840				goto out_err;
 841			}
 842			break;
 843
 844		case Opt_fscontext:
 845			if (fscontext) {
 846				rc = -EINVAL;
 847				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 848				goto out_err;
 849			}
 850			fscontext = match_strdup(&args[0]);
 851			if (!fscontext) {
 852				rc = -ENOMEM;
 853				goto out_err;
 854			}
 855			break;
 856
 857		case Opt_rootcontext:
 858			if (rootcontext) {
 859				rc = -EINVAL;
 860				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 861				goto out_err;
 862			}
 863			rootcontext = match_strdup(&args[0]);
 864			if (!rootcontext) {
 865				rc = -ENOMEM;
 866				goto out_err;
 867			}
 868			break;
 869
 870		case Opt_defcontext:
 871			if (context || defcontext) {
 872				rc = -EINVAL;
 873				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 874				goto out_err;
 875			}
 876			defcontext = match_strdup(&args[0]);
 877			if (!defcontext) {
 878				rc = -ENOMEM;
 879				goto out_err;
 880			}
 881			break;
 882		case Opt_labelsupport:
 883			break;
 884		default:
 885			rc = -EINVAL;
 886			printk(KERN_WARNING "SELinux:  unknown mount option\n");
 887			goto out_err;
 888
 889		}
 890	}
 891
 892	rc = -ENOMEM;
 893	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
 894	if (!opts->mnt_opts)
 895		goto out_err;
 896
 897	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
 898	if (!opts->mnt_opts_flags) {
 899		kfree(opts->mnt_opts);
 900		goto out_err;
 901	}
 902
 903	if (fscontext) {
 904		opts->mnt_opts[num_mnt_opts] = fscontext;
 905		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
 906	}
 907	if (context) {
 908		opts->mnt_opts[num_mnt_opts] = context;
 909		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
 910	}
 911	if (rootcontext) {
 912		opts->mnt_opts[num_mnt_opts] = rootcontext;
 913		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
 914	}
 915	if (defcontext) {
 916		opts->mnt_opts[num_mnt_opts] = defcontext;
 917		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
 918	}
 919
 920	opts->num_mnt_opts = num_mnt_opts;
 921	return 0;
 922
 923out_err:
 924	kfree(context);
 925	kfree(defcontext);
 926	kfree(fscontext);
 927	kfree(rootcontext);
 928	return rc;
 929}
 930/*
 931 * string mount options parsing and call set the sbsec
 932 */
 933static int superblock_doinit(struct super_block *sb, void *data)
 934{
 935	int rc = 0;
 936	char *options = data;
 937	struct security_mnt_opts opts;
 938
 939	security_init_mnt_opts(&opts);
 940
 941	if (!data)
 942		goto out;
 943
 944	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
 945
 946	rc = selinux_parse_opts_str(options, &opts);
 947	if (rc)
 948		goto out_err;
 949
 950out:
 951	rc = selinux_set_mnt_opts(sb, &opts);
 952
 953out_err:
 954	security_free_mnt_opts(&opts);
 955	return rc;
 956}
 957
 958static void selinux_write_opts(struct seq_file *m,
 959			       struct security_mnt_opts *opts)
 960{
 961	int i;
 962	char *prefix;
 963
 964	for (i = 0; i < opts->num_mnt_opts; i++) {
 965		char *has_comma;
 966
 967		if (opts->mnt_opts[i])
 968			has_comma = strchr(opts->mnt_opts[i], ',');
 969		else
 970			has_comma = NULL;
 971
 972		switch (opts->mnt_opts_flags[i]) {
 973		case CONTEXT_MNT:
 974			prefix = CONTEXT_STR;
 975			break;
 976		case FSCONTEXT_MNT:
 977			prefix = FSCONTEXT_STR;
 978			break;
 979		case ROOTCONTEXT_MNT:
 980			prefix = ROOTCONTEXT_STR;
 981			break;
 982		case DEFCONTEXT_MNT:
 983			prefix = DEFCONTEXT_STR;
 984			break;
 985		case SE_SBLABELSUPP:
 986			seq_putc(m, ',');
 987			seq_puts(m, LABELSUPP_STR);
 988			continue;
 989		default:
 990			BUG();
 991			return;
 992		};
 993		/* we need a comma before each option */
 994		seq_putc(m, ',');
 995		seq_puts(m, prefix);
 996		if (has_comma)
 997			seq_putc(m, '\"');
 998		seq_puts(m, opts->mnt_opts[i]);
 999		if (has_comma)
1000			seq_putc(m, '\"');
1001	}
1002}
1003
1004static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005{
1006	struct security_mnt_opts opts;
1007	int rc;
1008
1009	rc = selinux_get_mnt_opts(sb, &opts);
1010	if (rc) {
1011		/* before policy load we may get EINVAL, don't show anything */
1012		if (rc == -EINVAL)
1013			rc = 0;
1014		return rc;
1015	}
1016
1017	selinux_write_opts(m, &opts);
1018
1019	security_free_mnt_opts(&opts);
1020
1021	return rc;
1022}
1023
1024static inline u16 inode_mode_to_security_class(umode_t mode)
1025{
1026	switch (mode & S_IFMT) {
1027	case S_IFSOCK:
1028		return SECCLASS_SOCK_FILE;
1029	case S_IFLNK:
1030		return SECCLASS_LNK_FILE;
1031	case S_IFREG:
1032		return SECCLASS_FILE;
1033	case S_IFBLK:
1034		return SECCLASS_BLK_FILE;
1035	case S_IFDIR:
1036		return SECCLASS_DIR;
1037	case S_IFCHR:
1038		return SECCLASS_CHR_FILE;
1039	case S_IFIFO:
1040		return SECCLASS_FIFO_FILE;
1041
1042	}
1043
1044	return SECCLASS_FILE;
1045}
1046
1047static inline int default_protocol_stream(int protocol)
1048{
1049	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050}
1051
1052static inline int default_protocol_dgram(int protocol)
1053{
1054	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055}
1056
1057static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058{
1059	switch (family) {
1060	case PF_UNIX:
1061		switch (type) {
1062		case SOCK_STREAM:
1063		case SOCK_SEQPACKET:
1064			return SECCLASS_UNIX_STREAM_SOCKET;
1065		case SOCK_DGRAM:
1066			return SECCLASS_UNIX_DGRAM_SOCKET;
1067		}
1068		break;
1069	case PF_INET:
1070	case PF_INET6:
1071		switch (type) {
1072		case SOCK_STREAM:
1073			if (default_protocol_stream(protocol))
1074				return SECCLASS_TCP_SOCKET;
1075			else
1076				return SECCLASS_RAWIP_SOCKET;
1077		case SOCK_DGRAM:
1078			if (default_protocol_dgram(protocol))
1079				return SECCLASS_UDP_SOCKET;
1080			else
1081				return SECCLASS_RAWIP_SOCKET;
1082		case SOCK_DCCP:
1083			return SECCLASS_DCCP_SOCKET;
1084		default:
1085			return SECCLASS_RAWIP_SOCKET;
1086		}
1087		break;
1088	case PF_NETLINK:
1089		switch (protocol) {
1090		case NETLINK_ROUTE:
1091			return SECCLASS_NETLINK_ROUTE_SOCKET;
1092		case NETLINK_FIREWALL:
1093			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094		case NETLINK_SOCK_DIAG:
1095			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096		case NETLINK_NFLOG:
1097			return SECCLASS_NETLINK_NFLOG_SOCKET;
1098		case NETLINK_XFRM:
1099			return SECCLASS_NETLINK_XFRM_SOCKET;
1100		case NETLINK_SELINUX:
1101			return SECCLASS_NETLINK_SELINUX_SOCKET;
1102		case NETLINK_AUDIT:
1103			return SECCLASS_NETLINK_AUDIT_SOCKET;
1104		case NETLINK_IP6_FW:
1105			return SECCLASS_NETLINK_IP6FW_SOCKET;
1106		case NETLINK_DNRTMSG:
1107			return SECCLASS_NETLINK_DNRT_SOCKET;
1108		case NETLINK_KOBJECT_UEVENT:
1109			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110		default:
1111			return SECCLASS_NETLINK_SOCKET;
1112		}
1113	case PF_PACKET:
1114		return SECCLASS_PACKET_SOCKET;
1115	case PF_KEY:
1116		return SECCLASS_KEY_SOCKET;
1117	case PF_APPLETALK:
1118		return SECCLASS_APPLETALK_SOCKET;
1119	}
1120
1121	return SECCLASS_SOCKET;
1122}
1123
1124#ifdef CONFIG_PROC_FS
1125static int selinux_proc_get_sid(struct dentry *dentry,
1126				u16 tclass,
1127				u32 *sid)
1128{
1129	int rc;
1130	char *buffer, *path;
1131
1132	buffer = (char *)__get_free_page(GFP_KERNEL);
1133	if (!buffer)
1134		return -ENOMEM;
1135
1136	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137	if (IS_ERR(path))
1138		rc = PTR_ERR(path);
1139	else {
1140		/* each process gets a /proc/PID/ entry. Strip off the
1141		 * PID part to get a valid selinux labeling.
1142		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143		while (path[1] >= '0' && path[1] <= '9') {
1144			path[1] = '/';
1145			path++;
1146		}
1147		rc = security_genfs_sid("proc", path, tclass, sid);
1148	}
1149	free_page((unsigned long)buffer);
1150	return rc;
1151}
1152#else
1153static int selinux_proc_get_sid(struct dentry *dentry,
1154				u16 tclass,
1155				u32 *sid)
1156{
1157	return -EINVAL;
1158}
1159#endif
1160
1161/* The inode's security attributes must be initialized before first use. */
1162static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163{
1164	struct superblock_security_struct *sbsec = NULL;
1165	struct inode_security_struct *isec = inode->i_security;
1166	u32 sid;
1167	struct dentry *dentry;
1168#define INITCONTEXTLEN 255
1169	char *context = NULL;
1170	unsigned len = 0;
1171	int rc = 0;
1172
1173	if (isec->initialized)
1174		goto out;
1175
1176	mutex_lock(&isec->lock);
1177	if (isec->initialized)
1178		goto out_unlock;
1179
1180	sbsec = inode->i_sb->s_security;
1181	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182		/* Defer initialization until selinux_complete_init,
1183		   after the initial policy is loaded and the security
1184		   server is ready to handle calls. */
1185		spin_lock(&sbsec->isec_lock);
1186		if (list_empty(&isec->list))
1187			list_add(&isec->list, &sbsec->isec_head);
1188		spin_unlock(&sbsec->isec_lock);
1189		goto out_unlock;
1190	}
1191
1192	switch (sbsec->behavior) {
1193	case SECURITY_FS_USE_XATTR:
1194		if (!inode->i_op->getxattr) {
1195			isec->sid = sbsec->def_sid;
1196			break;
1197		}
1198
1199		/* Need a dentry, since the xattr API requires one.
1200		   Life would be simpler if we could just pass the inode. */
1201		if (opt_dentry) {
1202			/* Called from d_instantiate or d_splice_alias. */
1203			dentry = dget(opt_dentry);
1204		} else {
1205			/* Called from selinux_complete_init, try to find a dentry. */
1206			dentry = d_find_alias(inode);
1207		}
1208		if (!dentry) {
1209			/*
1210			 * this is can be hit on boot when a file is accessed
1211			 * before the policy is loaded.  When we load policy we
1212			 * may find inodes that have no dentry on the
1213			 * sbsec->isec_head list.  No reason to complain as these
1214			 * will get fixed up the next time we go through
1215			 * inode_doinit with a dentry, before these inodes could
1216			 * be used again by userspace.
1217			 */
1218			goto out_unlock;
1219		}
1220
1221		len = INITCONTEXTLEN;
1222		context = kmalloc(len+1, GFP_NOFS);
1223		if (!context) {
1224			rc = -ENOMEM;
1225			dput(dentry);
1226			goto out_unlock;
1227		}
1228		context[len] = '\0';
1229		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230					   context, len);
1231		if (rc == -ERANGE) {
1232			kfree(context);
1233
1234			/* Need a larger buffer.  Query for the right size. */
1235			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236						   NULL, 0);
1237			if (rc < 0) {
1238				dput(dentry);
1239				goto out_unlock;
1240			}
1241			len = rc;
1242			context = kmalloc(len+1, GFP_NOFS);
1243			if (!context) {
1244				rc = -ENOMEM;
1245				dput(dentry);
1246				goto out_unlock;
1247			}
1248			context[len] = '\0';
1249			rc = inode->i_op->getxattr(dentry,
1250						   XATTR_NAME_SELINUX,
1251						   context, len);
1252		}
1253		dput(dentry);
1254		if (rc < 0) {
1255			if (rc != -ENODATA) {
1256				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257				       "%d for dev=%s ino=%ld\n", __func__,
1258				       -rc, inode->i_sb->s_id, inode->i_ino);
1259				kfree(context);
1260				goto out_unlock;
1261			}
1262			/* Map ENODATA to the default file SID */
1263			sid = sbsec->def_sid;
1264			rc = 0;
1265		} else {
1266			rc = security_context_to_sid_default(context, rc, &sid,
1267							     sbsec->def_sid,
1268							     GFP_NOFS);
1269			if (rc) {
1270				char *dev = inode->i_sb->s_id;
1271				unsigned long ino = inode->i_ino;
1272
1273				if (rc == -EINVAL) {
1274					if (printk_ratelimit())
1275						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276							"context=%s.  This indicates you may need to relabel the inode or the "
1277							"filesystem in question.\n", ino, dev, context);
1278				} else {
1279					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280					       "returned %d for dev=%s ino=%ld\n",
1281					       __func__, context, -rc, dev, ino);
1282				}
1283				kfree(context);
1284				/* Leave with the unlabeled SID */
1285				rc = 0;
1286				break;
1287			}
1288		}
1289		kfree(context);
1290		isec->sid = sid;
1291		break;
1292	case SECURITY_FS_USE_TASK:
1293		isec->sid = isec->task_sid;
1294		break;
1295	case SECURITY_FS_USE_TRANS:
1296		/* Default to the fs SID. */
1297		isec->sid = sbsec->sid;
1298
1299		/* Try to obtain a transition SID. */
1300		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302					     isec->sclass, NULL, &sid);
1303		if (rc)
1304			goto out_unlock;
1305		isec->sid = sid;
1306		break;
1307	case SECURITY_FS_USE_MNTPOINT:
1308		isec->sid = sbsec->mntpoint_sid;
1309		break;
1310	default:
1311		/* Default to the fs superblock SID. */
1312		isec->sid = sbsec->sid;
1313
1314		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315			if (opt_dentry) {
1316				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317				rc = selinux_proc_get_sid(opt_dentry,
1318							  isec->sclass,
1319							  &sid);
1320				if (rc)
1321					goto out_unlock;
1322				isec->sid = sid;
1323			}
1324		}
1325		break;
1326	}
1327
1328	isec->initialized = 1;
1329
1330out_unlock:
1331	mutex_unlock(&isec->lock);
1332out:
1333	if (isec->sclass == SECCLASS_FILE)
1334		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335	return rc;
1336}
1337
1338/* Convert a Linux signal to an access vector. */
1339static inline u32 signal_to_av(int sig)
1340{
1341	u32 perm = 0;
1342
1343	switch (sig) {
1344	case SIGCHLD:
1345		/* Commonly granted from child to parent. */
1346		perm = PROCESS__SIGCHLD;
1347		break;
1348	case SIGKILL:
1349		/* Cannot be caught or ignored */
1350		perm = PROCESS__SIGKILL;
1351		break;
1352	case SIGSTOP:
1353		/* Cannot be caught or ignored */
1354		perm = PROCESS__SIGSTOP;
1355		break;
1356	default:
1357		/* All other signals. */
1358		perm = PROCESS__SIGNAL;
1359		break;
1360	}
1361
1362	return perm;
1363}
1364
1365/*
1366 * Check permission between a pair of credentials
1367 * fork check, ptrace check, etc.
1368 */
1369static int cred_has_perm(const struct cred *actor,
1370			 const struct cred *target,
1371			 u32 perms)
1372{
1373	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376}
1377
1378/*
1379 * Check permission between a pair of tasks, e.g. signal checks,
1380 * fork check, ptrace check, etc.
1381 * tsk1 is the actor and tsk2 is the target
1382 * - this uses the default subjective creds of tsk1
1383 */
1384static int task_has_perm(const struct task_struct *tsk1,
1385			 const struct task_struct *tsk2,
1386			 u32 perms)
1387{
1388	const struct task_security_struct *__tsec1, *__tsec2;
1389	u32 sid1, sid2;
1390
1391	rcu_read_lock();
1392	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1393	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1394	rcu_read_unlock();
1395	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396}
1397
1398/*
1399 * Check permission between current and another task, e.g. signal checks,
1400 * fork check, ptrace check, etc.
1401 * current is the actor and tsk2 is the target
1402 * - this uses current's subjective creds
1403 */
1404static int current_has_perm(const struct task_struct *tsk,
1405			    u32 perms)
1406{
1407	u32 sid, tsid;
1408
1409	sid = current_sid();
1410	tsid = task_sid(tsk);
1411	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412}
1413
1414#if CAP_LAST_CAP > 63
1415#error Fix SELinux to handle capabilities > 63.
1416#endif
1417
1418/* Check whether a task is allowed to use a capability. */
1419static int cred_has_capability(const struct cred *cred,
1420			       int cap, int audit)
1421{
1422	struct common_audit_data ad;
1423	struct av_decision avd;
1424	u16 sclass;
1425	u32 sid = cred_sid(cred);
1426	u32 av = CAP_TO_MASK(cap);
1427	int rc;
1428
1429	ad.type = LSM_AUDIT_DATA_CAP;
1430	ad.u.cap = cap;
1431
1432	switch (CAP_TO_INDEX(cap)) {
1433	case 0:
1434		sclass = SECCLASS_CAPABILITY;
1435		break;
1436	case 1:
1437		sclass = SECCLASS_CAPABILITY2;
1438		break;
1439	default:
1440		printk(KERN_ERR
1441		       "SELinux:  out of range capability %d\n", cap);
1442		BUG();
1443		return -EINVAL;
1444	}
1445
1446	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447	if (audit == SECURITY_CAP_AUDIT) {
1448		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449		if (rc2)
1450			return rc2;
1451	}
1452	return rc;
1453}
1454
1455/* Check whether a task is allowed to use a system operation. */
1456static int task_has_system(struct task_struct *tsk,
1457			   u32 perms)
1458{
1459	u32 sid = task_sid(tsk);
1460
1461	return avc_has_perm(sid, SECINITSID_KERNEL,
1462			    SECCLASS_SYSTEM, perms, NULL);
1463}
1464
1465/* Check whether a task has a particular permission to an inode.
1466   The 'adp' parameter is optional and allows other audit
1467   data to be passed (e.g. the dentry). */
1468static int inode_has_perm(const struct cred *cred,
1469			  struct inode *inode,
1470			  u32 perms,
1471			  struct common_audit_data *adp,
1472			  unsigned flags)
1473{
1474	struct inode_security_struct *isec;
1475	u32 sid;
1476
1477	validate_creds(cred);
1478
1479	if (unlikely(IS_PRIVATE(inode)))
1480		return 0;
1481
1482	sid = cred_sid(cred);
1483	isec = inode->i_security;
1484
1485	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486}
1487
1488/* Same as inode_has_perm, but pass explicit audit data containing
1489   the dentry to help the auditing code to more easily generate the
1490   pathname if needed. */
1491static inline int dentry_has_perm(const struct cred *cred,
1492				  struct dentry *dentry,
1493				  u32 av)
1494{
1495	struct inode *inode = dentry->d_inode;
1496	struct common_audit_data ad;
1497
1498	ad.type = LSM_AUDIT_DATA_DENTRY;
1499	ad.u.dentry = dentry;
1500	return inode_has_perm(cred, inode, av, &ad, 0);
1501}
1502
1503/* Same as inode_has_perm, but pass explicit audit data containing
1504   the path to help the auditing code to more easily generate the
1505   pathname if needed. */
1506static inline int path_has_perm(const struct cred *cred,
1507				struct path *path,
1508				u32 av)
1509{
1510	struct inode *inode = path->dentry->d_inode;
1511	struct common_audit_data ad;
1512
1513	ad.type = LSM_AUDIT_DATA_PATH;
1514	ad.u.path = *path;
1515	return inode_has_perm(cred, inode, av, &ad, 0);
1516}
1517
1518/* Check whether a task can use an open file descriptor to
1519   access an inode in a given way.  Check access to the
1520   descriptor itself, and then use dentry_has_perm to
1521   check a particular permission to the file.
1522   Access to the descriptor is implicitly granted if it
1523   has the same SID as the process.  If av is zero, then
1524   access to the file is not checked, e.g. for cases
1525   where only the descriptor is affected like seek. */
1526static int file_has_perm(const struct cred *cred,
1527			 struct file *file,
1528			 u32 av)
1529{
1530	struct file_security_struct *fsec = file->f_security;
1531	struct inode *inode = file->f_path.dentry->d_inode;
1532	struct common_audit_data ad;
1533	u32 sid = cred_sid(cred);
1534	int rc;
1535
1536	ad.type = LSM_AUDIT_DATA_PATH;
1537	ad.u.path = file->f_path;
1538
1539	if (sid != fsec->sid) {
1540		rc = avc_has_perm(sid, fsec->sid,
1541				  SECCLASS_FD,
1542				  FD__USE,
1543				  &ad);
1544		if (rc)
1545			goto out;
1546	}
1547
1548	/* av is zero if only checking access to the descriptor. */
1549	rc = 0;
1550	if (av)
1551		rc = inode_has_perm(cred, inode, av, &ad, 0);
1552
1553out:
1554	return rc;
1555}
1556
1557/* Check whether a task can create a file. */
1558static int may_create(struct inode *dir,
1559		      struct dentry *dentry,
1560		      u16 tclass)
1561{
1562	const struct task_security_struct *tsec = current_security();
1563	struct inode_security_struct *dsec;
1564	struct superblock_security_struct *sbsec;
1565	u32 sid, newsid;
1566	struct common_audit_data ad;
1567	int rc;
1568
1569	dsec = dir->i_security;
1570	sbsec = dir->i_sb->s_security;
1571
1572	sid = tsec->sid;
1573	newsid = tsec->create_sid;
1574
1575	ad.type = LSM_AUDIT_DATA_DENTRY;
1576	ad.u.dentry = dentry;
1577
1578	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579			  DIR__ADD_NAME | DIR__SEARCH,
1580			  &ad);
1581	if (rc)
1582		return rc;
1583
1584	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585		rc = security_transition_sid(sid, dsec->sid, tclass,
1586					     &dentry->d_name, &newsid);
1587		if (rc)
1588			return rc;
1589	}
1590
1591	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592	if (rc)
1593		return rc;
1594
1595	return avc_has_perm(newsid, sbsec->sid,
1596			    SECCLASS_FILESYSTEM,
1597			    FILESYSTEM__ASSOCIATE, &ad);
1598}
1599
1600/* Check whether a task can create a key. */
1601static int may_create_key(u32 ksid,
1602			  struct task_struct *ctx)
1603{
1604	u32 sid = task_sid(ctx);
1605
1606	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607}
1608
1609#define MAY_LINK	0
1610#define MAY_UNLINK	1
1611#define MAY_RMDIR	2
1612
1613/* Check whether a task can link, unlink, or rmdir a file/directory. */
1614static int may_link(struct inode *dir,
1615		    struct dentry *dentry,
1616		    int kind)
1617
1618{
1619	struct inode_security_struct *dsec, *isec;
1620	struct common_audit_data ad;
1621	u32 sid = current_sid();
1622	u32 av;
1623	int rc;
1624
1625	dsec = dir->i_security;
1626	isec = dentry->d_inode->i_security;
1627
1628	ad.type = LSM_AUDIT_DATA_DENTRY;
1629	ad.u.dentry = dentry;
1630
1631	av = DIR__SEARCH;
1632	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634	if (rc)
1635		return rc;
1636
1637	switch (kind) {
1638	case MAY_LINK:
1639		av = FILE__LINK;
1640		break;
1641	case MAY_UNLINK:
1642		av = FILE__UNLINK;
1643		break;
1644	case MAY_RMDIR:
1645		av = DIR__RMDIR;
1646		break;
1647	default:
1648		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1649			__func__, kind);
1650		return 0;
1651	}
1652
1653	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654	return rc;
1655}
1656
1657static inline int may_rename(struct inode *old_dir,
1658			     struct dentry *old_dentry,
1659			     struct inode *new_dir,
1660			     struct dentry *new_dentry)
1661{
1662	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663	struct common_audit_data ad;
1664	u32 sid = current_sid();
1665	u32 av;
1666	int old_is_dir, new_is_dir;
1667	int rc;
1668
1669	old_dsec = old_dir->i_security;
1670	old_isec = old_dentry->d_inode->i_security;
1671	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672	new_dsec = new_dir->i_security;
1673
1674	ad.type = LSM_AUDIT_DATA_DENTRY;
1675
1676	ad.u.dentry = old_dentry;
1677	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679	if (rc)
1680		return rc;
1681	rc = avc_has_perm(sid, old_isec->sid,
1682			  old_isec->sclass, FILE__RENAME, &ad);
1683	if (rc)
1684		return rc;
1685	if (old_is_dir && new_dir != old_dir) {
1686		rc = avc_has_perm(sid, old_isec->sid,
1687				  old_isec->sclass, DIR__REPARENT, &ad);
1688		if (rc)
1689			return rc;
1690	}
1691
1692	ad.u.dentry = new_dentry;
1693	av = DIR__ADD_NAME | DIR__SEARCH;
1694	if (new_dentry->d_inode)
1695		av |= DIR__REMOVE_NAME;
1696	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697	if (rc)
1698		return rc;
1699	if (new_dentry->d_inode) {
1700		new_isec = new_dentry->d_inode->i_security;
1701		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702		rc = avc_has_perm(sid, new_isec->sid,
1703				  new_isec->sclass,
1704				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705		if (rc)
1706			return rc;
1707	}
1708
1709	return 0;
1710}
1711
1712/* Check whether a task can perform a filesystem operation. */
1713static int superblock_has_perm(const struct cred *cred,
1714			       struct super_block *sb,
1715			       u32 perms,
1716			       struct common_audit_data *ad)
1717{
1718	struct superblock_security_struct *sbsec;
1719	u32 sid = cred_sid(cred);
1720
1721	sbsec = sb->s_security;
1722	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723}
1724
1725/* Convert a Linux mode and permission mask to an access vector. */
1726static inline u32 file_mask_to_av(int mode, int mask)
1727{
1728	u32 av = 0;
1729
1730	if (!S_ISDIR(mode)) {
1731		if (mask & MAY_EXEC)
1732			av |= FILE__EXECUTE;
1733		if (mask & MAY_READ)
1734			av |= FILE__READ;
1735
1736		if (mask & MAY_APPEND)
1737			av |= FILE__APPEND;
1738		else if (mask & MAY_WRITE)
1739			av |= FILE__WRITE;
1740
1741	} else {
1742		if (mask & MAY_EXEC)
1743			av |= DIR__SEARCH;
1744		if (mask & MAY_WRITE)
1745			av |= DIR__WRITE;
1746		if (mask & MAY_READ)
1747			av |= DIR__READ;
1748	}
1749
1750	return av;
1751}
1752
1753/* Convert a Linux file to an access vector. */
1754static inline u32 file_to_av(struct file *file)
1755{
1756	u32 av = 0;
1757
1758	if (file->f_mode & FMODE_READ)
1759		av |= FILE__READ;
1760	if (file->f_mode & FMODE_WRITE) {
1761		if (file->f_flags & O_APPEND)
1762			av |= FILE__APPEND;
1763		else
1764			av |= FILE__WRITE;
1765	}
1766	if (!av) {
1767		/*
1768		 * Special file opened with flags 3 for ioctl-only use.
1769		 */
1770		av = FILE__IOCTL;
1771	}
1772
1773	return av;
1774}
1775
1776/*
1777 * Convert a file to an access vector and include the correct open
1778 * open permission.
1779 */
1780static inline u32 open_file_to_av(struct file *file)
1781{
1782	u32 av = file_to_av(file);
1783
1784	if (selinux_policycap_openperm)
1785		av |= FILE__OPEN;
1786
1787	return av;
1788}
1789
1790/* Hook functions begin here. */
1791
1792static int selinux_ptrace_access_check(struct task_struct *child,
1793				     unsigned int mode)
1794{
1795	int rc;
1796
1797	rc = cap_ptrace_access_check(child, mode);
1798	if (rc)
1799		return rc;
1800
1801	if (mode & PTRACE_MODE_READ) {
1802		u32 sid = current_sid();
1803		u32 csid = task_sid(child);
1804		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805	}
1806
1807	return current_has_perm(child, PROCESS__PTRACE);
1808}
1809
1810static int selinux_ptrace_traceme(struct task_struct *parent)
1811{
1812	int rc;
1813
1814	rc = cap_ptrace_traceme(parent);
1815	if (rc)
1816		return rc;
1817
1818	return task_has_perm(parent, current, PROCESS__PTRACE);
1819}
1820
1821static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823{
1824	int error;
1825
1826	error = current_has_perm(target, PROCESS__GETCAP);
1827	if (error)
1828		return error;
1829
1830	return cap_capget(target, effective, inheritable, permitted);
1831}
1832
1833static int selinux_capset(struct cred *new, const struct cred *old,
1834			  const kernel_cap_t *effective,
1835			  const kernel_cap_t *inheritable,
1836			  const kernel_cap_t *permitted)
1837{
1838	int error;
1839
1840	error = cap_capset(new, old,
1841				      effective, inheritable, permitted);
1842	if (error)
1843		return error;
1844
1845	return cred_has_perm(old, new, PROCESS__SETCAP);
1846}
1847
1848/*
1849 * (This comment used to live with the selinux_task_setuid hook,
1850 * which was removed).
1851 *
1852 * Since setuid only affects the current process, and since the SELinux
1853 * controls are not based on the Linux identity attributes, SELinux does not
1854 * need to control this operation.  However, SELinux does control the use of
1855 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856 */
1857
1858static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859			   int cap, int audit)
1860{
1861	int rc;
1862
1863	rc = cap_capable(cred, ns, cap, audit);
1864	if (rc)
1865		return rc;
1866
1867	return cred_has_capability(cred, cap, audit);
1868}
1869
1870static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871{
1872	const struct cred *cred = current_cred();
1873	int rc = 0;
1874
1875	if (!sb)
1876		return 0;
1877
1878	switch (cmds) {
1879	case Q_SYNC:
1880	case Q_QUOTAON:
1881	case Q_QUOTAOFF:
1882	case Q_SETINFO:
1883	case Q_SETQUOTA:
1884		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885		break;
1886	case Q_GETFMT:
1887	case Q_GETINFO:
1888	case Q_GETQUOTA:
1889		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890		break;
1891	default:
1892		rc = 0;  /* let the kernel handle invalid cmds */
1893		break;
1894	}
1895	return rc;
1896}
1897
1898static int selinux_quota_on(struct dentry *dentry)
1899{
1900	const struct cred *cred = current_cred();
1901
1902	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903}
1904
1905static int selinux_syslog(int type)
1906{
1907	int rc;
1908
1909	switch (type) {
1910	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1911	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1912		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913		break;
1914	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1915	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1916	/* Set level of messages printed to console */
1917	case SYSLOG_ACTION_CONSOLE_LEVEL:
1918		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919		break;
1920	case SYSLOG_ACTION_CLOSE:	/* Close log */
1921	case SYSLOG_ACTION_OPEN:	/* Open log */
1922	case SYSLOG_ACTION_READ:	/* Read from log */
1923	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1924	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1925	default:
1926		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927		break;
1928	}
1929	return rc;
1930}
1931
1932/*
1933 * Check that a process has enough memory to allocate a new virtual
1934 * mapping. 0 means there is enough memory for the allocation to
1935 * succeed and -ENOMEM implies there is not.
1936 *
1937 * Do not audit the selinux permission check, as this is applied to all
1938 * processes that allocate mappings.
1939 */
1940static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941{
1942	int rc, cap_sys_admin = 0;
1943
1944	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945			     SECURITY_CAP_NOAUDIT);
1946	if (rc == 0)
1947		cap_sys_admin = 1;
1948
1949	return __vm_enough_memory(mm, pages, cap_sys_admin);
1950}
1951
1952/* binprm security operations */
1953
1954static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955{
1956	const struct task_security_struct *old_tsec;
1957	struct task_security_struct *new_tsec;
1958	struct inode_security_struct *isec;
1959	struct common_audit_data ad;
1960	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961	int rc;
1962
1963	rc = cap_bprm_set_creds(bprm);
1964	if (rc)
1965		return rc;
1966
1967	/* SELinux context only depends on initial program or script and not
1968	 * the script interpreter */
1969	if (bprm->cred_prepared)
1970		return 0;
1971
1972	old_tsec = current_security();
1973	new_tsec = bprm->cred->security;
1974	isec = inode->i_security;
1975
1976	/* Default to the current task SID. */
1977	new_tsec->sid = old_tsec->sid;
1978	new_tsec->osid = old_tsec->sid;
1979
1980	/* Reset fs, key, and sock SIDs on execve. */
1981	new_tsec->create_sid = 0;
1982	new_tsec->keycreate_sid = 0;
1983	new_tsec->sockcreate_sid = 0;
1984
1985	if (old_tsec->exec_sid) {
1986		new_tsec->sid = old_tsec->exec_sid;
1987		/* Reset exec SID on execve. */
1988		new_tsec->exec_sid = 0;
1989
1990		/*
1991		 * Minimize confusion: if no_new_privs and a transition is
1992		 * explicitly requested, then fail the exec.
1993		 */
1994		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995			return -EPERM;
1996	} else {
1997		/* Check for a default transition on this program. */
1998		rc = security_transition_sid(old_tsec->sid, isec->sid,
1999					     SECCLASS_PROCESS, NULL,
2000					     &new_tsec->sid);
2001		if (rc)
2002			return rc;
2003	}
2004
2005	ad.type = LSM_AUDIT_DATA_PATH;
2006	ad.u.path = bprm->file->f_path;
2007
2008	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010		new_tsec->sid = old_tsec->sid;
2011
2012	if (new_tsec->sid == old_tsec->sid) {
2013		rc = avc_has_perm(old_tsec->sid, isec->sid,
2014				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015		if (rc)
2016			return rc;
2017	} else {
2018		/* Check permissions for the transition. */
2019		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021		if (rc)
2022			return rc;
2023
2024		rc = avc_has_perm(new_tsec->sid, isec->sid,
2025				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026		if (rc)
2027			return rc;
2028
2029		/* Check for shared state */
2030		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032					  SECCLASS_PROCESS, PROCESS__SHARE,
2033					  NULL);
2034			if (rc)
2035				return -EPERM;
2036		}
2037
2038		/* Make sure that anyone attempting to ptrace over a task that
2039		 * changes its SID has the appropriate permit */
2040		if (bprm->unsafe &
2041		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042			struct task_struct *tracer;
2043			struct task_security_struct *sec;
2044			u32 ptsid = 0;
2045
2046			rcu_read_lock();
2047			tracer = ptrace_parent(current);
2048			if (likely(tracer != NULL)) {
2049				sec = __task_cred(tracer)->security;
2050				ptsid = sec->sid;
2051			}
2052			rcu_read_unlock();
2053
2054			if (ptsid != 0) {
2055				rc = avc_has_perm(ptsid, new_tsec->sid,
2056						  SECCLASS_PROCESS,
2057						  PROCESS__PTRACE, NULL);
2058				if (rc)
2059					return -EPERM;
2060			}
2061		}
2062
2063		/* Clear any possibly unsafe personality bits on exec: */
2064		bprm->per_clear |= PER_CLEAR_ON_SETID;
2065	}
2066
2067	return 0;
2068}
2069
2070static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071{
2072	const struct task_security_struct *tsec = current_security();
2073	u32 sid, osid;
2074	int atsecure = 0;
2075
2076	sid = tsec->sid;
2077	osid = tsec->osid;
2078
2079	if (osid != sid) {
2080		/* Enable secure mode for SIDs transitions unless
2081		   the noatsecure permission is granted between
2082		   the two SIDs, i.e. ahp returns 0. */
2083		atsecure = avc_has_perm(osid, sid,
2084					SECCLASS_PROCESS,
2085					PROCESS__NOATSECURE, NULL);
2086	}
2087
2088	return (atsecure || cap_bprm_secureexec(bprm));
2089}
2090
2091/* Derived from fs/exec.c:flush_old_files. */
2092static inline void flush_unauthorized_files(const struct cred *cred,
2093					    struct files_struct *files)
2094{
2095	struct file *file, *devnull = NULL;
2096	struct tty_struct *tty;
2097	struct fdtable *fdt;
2098	long j = -1;
2099	int drop_tty = 0;
2100
2101	tty = get_current_tty();
2102	if (tty) {
2103		spin_lock(&tty_files_lock);
2104		if (!list_empty(&tty->tty_files)) {
2105			struct tty_file_private *file_priv;
2106
2107			/* Revalidate access to controlling tty.
2108			   Use path_has_perm on the tty path directly rather
2109			   than using file_has_perm, as this particular open
2110			   file may belong to another process and we are only
2111			   interested in the inode-based check here. */
2112			file_priv = list_first_entry(&tty->tty_files,
2113						struct tty_file_private, list);
2114			file = file_priv->file;
2115			if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2116				drop_tty = 1;
2117		}
2118		spin_unlock(&tty_files_lock);
2119		tty_kref_put(tty);
2120	}
2121	/* Reset controlling tty. */
2122	if (drop_tty)
2123		no_tty();
2124
2125	/* Revalidate access to inherited open files. */
2126	spin_lock(&files->file_lock);
2127	for (;;) {
2128		unsigned long set, i;
2129		int fd;
2130
2131		j++;
2132		i = j * BITS_PER_LONG;
2133		fdt = files_fdtable(files);
2134		if (i >= fdt->max_fds)
2135			break;
2136		set = fdt->open_fds[j];
2137		if (!set)
2138			continue;
2139		spin_unlock(&files->file_lock);
2140		for ( ; set ; i++, set >>= 1) {
2141			if (set & 1) {
2142				file = fget(i);
2143				if (!file)
2144					continue;
2145				if (file_has_perm(cred,
2146						  file,
2147						  file_to_av(file))) {
2148					sys_close(i);
2149					fd = get_unused_fd();
2150					if (fd != i) {
2151						if (fd >= 0)
2152							put_unused_fd(fd);
2153						fput(file);
2154						continue;
2155					}
2156					if (devnull) {
2157						get_file(devnull);
2158					} else {
2159						devnull = dentry_open(
2160							dget(selinux_null),
2161							mntget(selinuxfs_mount),
2162							O_RDWR, cred);
2163						if (IS_ERR(devnull)) {
2164							devnull = NULL;
2165							put_unused_fd(fd);
2166							fput(file);
2167							continue;
2168						}
2169					}
2170					fd_install(fd, devnull);
2171				}
2172				fput(file);
2173			}
2174		}
2175		spin_lock(&files->file_lock);
2176
2177	}
2178	spin_unlock(&files->file_lock);
2179}
2180
2181/*
2182 * Prepare a process for imminent new credential changes due to exec
2183 */
2184static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2185{
2186	struct task_security_struct *new_tsec;
2187	struct rlimit *rlim, *initrlim;
2188	int rc, i;
2189
2190	new_tsec = bprm->cred->security;
2191	if (new_tsec->sid == new_tsec->osid)
2192		return;
2193
2194	/* Close files for which the new task SID is not authorized. */
2195	flush_unauthorized_files(bprm->cred, current->files);
2196
2197	/* Always clear parent death signal on SID transitions. */
2198	current->pdeath_signal = 0;
2199
2200	/* Check whether the new SID can inherit resource limits from the old
2201	 * SID.  If not, reset all soft limits to the lower of the current
2202	 * task's hard limit and the init task's soft limit.
2203	 *
2204	 * Note that the setting of hard limits (even to lower them) can be
2205	 * controlled by the setrlimit check.  The inclusion of the init task's
2206	 * soft limit into the computation is to avoid resetting soft limits
2207	 * higher than the default soft limit for cases where the default is
2208	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2209	 */
2210	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2211			  PROCESS__RLIMITINH, NULL);
2212	if (rc) {
2213		/* protect against do_prlimit() */
2214		task_lock(current);
2215		for (i = 0; i < RLIM_NLIMITS; i++) {
2216			rlim = current->signal->rlim + i;
2217			initrlim = init_task.signal->rlim + i;
2218			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2219		}
2220		task_unlock(current);
2221		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2222	}
2223}
2224
2225/*
2226 * Clean up the process immediately after the installation of new credentials
2227 * due to exec
2228 */
2229static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2230{
2231	const struct task_security_struct *tsec = current_security();
2232	struct itimerval itimer;
2233	u32 osid, sid;
2234	int rc, i;
2235
2236	osid = tsec->osid;
2237	sid = tsec->sid;
2238
2239	if (sid == osid)
2240		return;
2241
2242	/* Check whether the new SID can inherit signal state from the old SID.
2243	 * If not, clear itimers to avoid subsequent signal generation and
2244	 * flush and unblock signals.
2245	 *
2246	 * This must occur _after_ the task SID has been updated so that any
2247	 * kill done after the flush will be checked against the new SID.
2248	 */
2249	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2250	if (rc) {
2251		memset(&itimer, 0, sizeof itimer);
2252		for (i = 0; i < 3; i++)
2253			do_setitimer(i, &itimer, NULL);
2254		spin_lock_irq(&current->sighand->siglock);
2255		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2256			__flush_signals(current);
2257			flush_signal_handlers(current, 1);
2258			sigemptyset(&current->blocked);
2259		}
2260		spin_unlock_irq(&current->sighand->siglock);
2261	}
2262
2263	/* Wake up the parent if it is waiting so that it can recheck
2264	 * wait permission to the new task SID. */
2265	read_lock(&tasklist_lock);
2266	__wake_up_parent(current, current->real_parent);
2267	read_unlock(&tasklist_lock);
2268}
2269
2270/* superblock security operations */
2271
2272static int selinux_sb_alloc_security(struct super_block *sb)
2273{
2274	return superblock_alloc_security(sb);
2275}
2276
2277static void selinux_sb_free_security(struct super_block *sb)
2278{
2279	superblock_free_security(sb);
2280}
2281
2282static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2283{
2284	if (plen > olen)
2285		return 0;
2286
2287	return !memcmp(prefix, option, plen);
2288}
2289
2290static inline int selinux_option(char *option, int len)
2291{
2292	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2293		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2294		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2295		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2296		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2297}
2298
2299static inline void take_option(char **to, char *from, int *first, int len)
2300{
2301	if (!*first) {
2302		**to = ',';
2303		*to += 1;
2304	} else
2305		*first = 0;
2306	memcpy(*to, from, len);
2307	*to += len;
2308}
2309
2310static inline void take_selinux_option(char **to, char *from, int *first,
2311				       int len)
2312{
2313	int current_size = 0;
2314
2315	if (!*first) {
2316		**to = '|';
2317		*to += 1;
2318	} else
2319		*first = 0;
2320
2321	while (current_size < len) {
2322		if (*from != '"') {
2323			**to = *from;
2324			*to += 1;
2325		}
2326		from += 1;
2327		current_size += 1;
2328	}
2329}
2330
2331static int selinux_sb_copy_data(char *orig, char *copy)
2332{
2333	int fnosec, fsec, rc = 0;
2334	char *in_save, *in_curr, *in_end;
2335	char *sec_curr, *nosec_save, *nosec;
2336	int open_quote = 0;
2337
2338	in_curr = orig;
2339	sec_curr = copy;
2340
2341	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2342	if (!nosec) {
2343		rc = -ENOMEM;
2344		goto out;
2345	}
2346
2347	nosec_save = nosec;
2348	fnosec = fsec = 1;
2349	in_save = in_end = orig;
2350
2351	do {
2352		if (*in_end == '"')
2353			open_quote = !open_quote;
2354		if ((*in_end == ',' && open_quote == 0) ||
2355				*in_end == '\0') {
2356			int len = in_end - in_curr;
2357
2358			if (selinux_option(in_curr, len))
2359				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2360			else
2361				take_option(&nosec, in_curr, &fnosec, len);
2362
2363			in_curr = in_end + 1;
2364		}
2365	} while (*in_end++);
2366
2367	strcpy(in_save, nosec_save);
2368	free_page((unsigned long)nosec_save);
2369out:
2370	return rc;
2371}
2372
2373static int selinux_sb_remount(struct super_block *sb, void *data)
2374{
2375	int rc, i, *flags;
2376	struct security_mnt_opts opts;
2377	char *secdata, **mount_options;
2378	struct superblock_security_struct *sbsec = sb->s_security;
2379
2380	if (!(sbsec->flags & SE_SBINITIALIZED))
2381		return 0;
2382
2383	if (!data)
2384		return 0;
2385
2386	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2387		return 0;
2388
2389	security_init_mnt_opts(&opts);
2390	secdata = alloc_secdata();
2391	if (!secdata)
2392		return -ENOMEM;
2393	rc = selinux_sb_copy_data(data, secdata);
2394	if (rc)
2395		goto out_free_secdata;
2396
2397	rc = selinux_parse_opts_str(secdata, &opts);
2398	if (rc)
2399		goto out_free_secdata;
2400
2401	mount_options = opts.mnt_opts;
2402	flags = opts.mnt_opts_flags;
2403
2404	for (i = 0; i < opts.num_mnt_opts; i++) {
2405		u32 sid;
2406		size_t len;
2407
2408		if (flags[i] == SE_SBLABELSUPP)
2409			continue;
2410		len = strlen(mount_options[i]);
2411		rc = security_context_to_sid(mount_options[i], len, &sid);
2412		if (rc) {
2413			printk(KERN_WARNING "SELinux: security_context_to_sid"
2414			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2415			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2416			goto out_free_opts;
2417		}
2418		rc = -EINVAL;
2419		switch (flags[i]) {
2420		case FSCONTEXT_MNT:
2421			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2422				goto out_bad_option;
2423			break;
2424		case CONTEXT_MNT:
2425			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2426				goto out_bad_option;
2427			break;
2428		case ROOTCONTEXT_MNT: {
2429			struct inode_security_struct *root_isec;
2430			root_isec = sb->s_root->d_inode->i_security;
2431
2432			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2433				goto out_bad_option;
2434			break;
2435		}
2436		case DEFCONTEXT_MNT:
2437			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2438				goto out_bad_option;
2439			break;
2440		default:
2441			goto out_free_opts;
2442		}
2443	}
2444
2445	rc = 0;
2446out_free_opts:
2447	security_free_mnt_opts(&opts);
2448out_free_secdata:
2449	free_secdata(secdata);
2450	return rc;
2451out_bad_option:
2452	printk(KERN_WARNING "SELinux: unable to change security options "
2453	       "during remount (dev %s, type=%s)\n", sb->s_id,
2454	       sb->s_type->name);
2455	goto out_free_opts;
2456}
2457
2458static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2459{
2460	const struct cred *cred = current_cred();
2461	struct common_audit_data ad;
2462	int rc;
2463
2464	rc = superblock_doinit(sb, data);
2465	if (rc)
2466		return rc;
2467
2468	/* Allow all mounts performed by the kernel */
2469	if (flags & MS_KERNMOUNT)
2470		return 0;
2471
2472	ad.type = LSM_AUDIT_DATA_DENTRY;
2473	ad.u.dentry = sb->s_root;
2474	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2475}
2476
2477static int selinux_sb_statfs(struct dentry *dentry)
2478{
2479	const struct cred *cred = current_cred();
2480	struct common_audit_data ad;
2481
2482	ad.type = LSM_AUDIT_DATA_DENTRY;
2483	ad.u.dentry = dentry->d_sb->s_root;
2484	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2485}
2486
2487static int selinux_mount(char *dev_name,
2488			 struct path *path,
2489			 char *type,
2490			 unsigned long flags,
2491			 void *data)
2492{
2493	const struct cred *cred = current_cred();
2494
2495	if (flags & MS_REMOUNT)
2496		return superblock_has_perm(cred, path->dentry->d_sb,
2497					   FILESYSTEM__REMOUNT, NULL);
2498	else
2499		return path_has_perm(cred, path, FILE__MOUNTON);
2500}
2501
2502static int selinux_umount(struct vfsmount *mnt, int flags)
2503{
2504	const struct cred *cred = current_cred();
2505
2506	return superblock_has_perm(cred, mnt->mnt_sb,
2507				   FILESYSTEM__UNMOUNT, NULL);
2508}
2509
2510/* inode security operations */
2511
2512static int selinux_inode_alloc_security(struct inode *inode)
2513{
2514	return inode_alloc_security(inode);
2515}
2516
2517static void selinux_inode_free_security(struct inode *inode)
2518{
2519	inode_free_security(inode);
2520}
2521
2522static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2523				       const struct qstr *qstr, char **name,
2524				       void **value, size_t *len)
2525{
2526	const struct task_security_struct *tsec = current_security();
2527	struct inode_security_struct *dsec;
2528	struct superblock_security_struct *sbsec;
2529	u32 sid, newsid, clen;
2530	int rc;
2531	char *namep = NULL, *context;
2532
2533	dsec = dir->i_security;
2534	sbsec = dir->i_sb->s_security;
2535
2536	sid = tsec->sid;
2537	newsid = tsec->create_sid;
2538
2539	if ((sbsec->flags & SE_SBINITIALIZED) &&
2540	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2541		newsid = sbsec->mntpoint_sid;
2542	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2543		rc = security_transition_sid(sid, dsec->sid,
2544					     inode_mode_to_security_class(inode->i_mode),
2545					     qstr, &newsid);
2546		if (rc) {
2547			printk(KERN_WARNING "%s:  "
2548			       "security_transition_sid failed, rc=%d (dev=%s "
2549			       "ino=%ld)\n",
2550			       __func__,
2551			       -rc, inode->i_sb->s_id, inode->i_ino);
2552			return rc;
2553		}
2554	}
2555
2556	/* Possibly defer initialization to selinux_complete_init. */
2557	if (sbsec->flags & SE_SBINITIALIZED) {
2558		struct inode_security_struct *isec = inode->i_security;
2559		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2560		isec->sid = newsid;
2561		isec->initialized = 1;
2562	}
2563
2564	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2565		return -EOPNOTSUPP;
2566
2567	if (name) {
2568		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2569		if (!namep)
2570			return -ENOMEM;
2571		*name = namep;
2572	}
2573
2574	if (value && len) {
2575		rc = security_sid_to_context_force(newsid, &context, &clen);
2576		if (rc) {
2577			kfree(namep);
2578			return rc;
2579		}
2580		*value = context;
2581		*len = clen;
2582	}
2583
2584	return 0;
2585}
2586
2587static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2588{
2589	return may_create(dir, dentry, SECCLASS_FILE);
2590}
2591
2592static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2593{
2594	return may_link(dir, old_dentry, MAY_LINK);
2595}
2596
2597static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2598{
2599	return may_link(dir, dentry, MAY_UNLINK);
2600}
2601
2602static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2603{
2604	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2605}
2606
2607static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2608{
2609	return may_create(dir, dentry, SECCLASS_DIR);
2610}
2611
2612static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2613{
2614	return may_link(dir, dentry, MAY_RMDIR);
2615}
2616
2617static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2618{
2619	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2620}
2621
2622static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2623				struct inode *new_inode, struct dentry *new_dentry)
2624{
2625	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2626}
2627
2628static int selinux_inode_readlink(struct dentry *dentry)
2629{
2630	const struct cred *cred = current_cred();
2631
2632	return dentry_has_perm(cred, dentry, FILE__READ);
2633}
2634
2635static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2636{
2637	const struct cred *cred = current_cred();
2638
2639	return dentry_has_perm(cred, dentry, FILE__READ);
2640}
2641
2642static noinline int audit_inode_permission(struct inode *inode,
2643					   u32 perms, u32 audited, u32 denied,
2644					   unsigned flags)
2645{
2646	struct common_audit_data ad;
2647	struct inode_security_struct *isec = inode->i_security;
2648	int rc;
2649
2650	ad.type = LSM_AUDIT_DATA_INODE;
2651	ad.u.inode = inode;
2652
2653	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2654			    audited, denied, &ad, flags);
2655	if (rc)
2656		return rc;
2657	return 0;
2658}
2659
2660static int selinux_inode_permission(struct inode *inode, int mask)
2661{
2662	const struct cred *cred = current_cred();
2663	u32 perms;
2664	bool from_access;
2665	unsigned flags = mask & MAY_NOT_BLOCK;
2666	struct inode_security_struct *isec;
2667	u32 sid;
2668	struct av_decision avd;
2669	int rc, rc2;
2670	u32 audited, denied;
2671
2672	from_access = mask & MAY_ACCESS;
2673	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2674
2675	/* No permission to check.  Existence test. */
2676	if (!mask)
2677		return 0;
2678
2679	validate_creds(cred);
2680
2681	if (unlikely(IS_PRIVATE(inode)))
2682		return 0;
2683
2684	perms = file_mask_to_av(inode->i_mode, mask);
2685
2686	sid = cred_sid(cred);
2687	isec = inode->i_security;
2688
2689	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2690	audited = avc_audit_required(perms, &avd, rc,
2691				     from_access ? FILE__AUDIT_ACCESS : 0,
2692				     &denied);
2693	if (likely(!audited))
2694		return rc;
2695
2696	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2697	if (rc2)
2698		return rc2;
2699	return rc;
2700}
2701
2702static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2703{
2704	const struct cred *cred = current_cred();
2705	unsigned int ia_valid = iattr->ia_valid;
2706	__u32 av = FILE__WRITE;
2707
2708	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2709	if (ia_valid & ATTR_FORCE) {
2710		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2711			      ATTR_FORCE);
2712		if (!ia_valid)
2713			return 0;
2714	}
2715
2716	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2717			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2718		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2719
2720	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2721		av |= FILE__OPEN;
2722
2723	return dentry_has_perm(cred, dentry, av);
2724}
2725
2726static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2727{
2728	const struct cred *cred = current_cred();
2729	struct path path;
2730
2731	path.dentry = dentry;
2732	path.mnt = mnt;
2733
2734	return path_has_perm(cred, &path, FILE__GETATTR);
2735}
2736
2737static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2738{
2739	const struct cred *cred = current_cred();
2740
2741	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2742		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2743		if (!strcmp(name, XATTR_NAME_CAPS)) {
2744			if (!capable(CAP_SETFCAP))
2745				return -EPERM;
2746		} else if (!capable(CAP_SYS_ADMIN)) {
2747			/* A different attribute in the security namespace.
2748			   Restrict to administrator. */
2749			return -EPERM;
2750		}
2751	}
2752
2753	/* Not an attribute we recognize, so just check the
2754	   ordinary setattr permission. */
2755	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2756}
2757
2758static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2759				  const void *value, size_t size, int flags)
2760{
2761	struct inode *inode = dentry->d_inode;
2762	struct inode_security_struct *isec = inode->i_security;
2763	struct superblock_security_struct *sbsec;
2764	struct common_audit_data ad;
2765	u32 newsid, sid = current_sid();
2766	int rc = 0;
2767
2768	if (strcmp(name, XATTR_NAME_SELINUX))
2769		return selinux_inode_setotherxattr(dentry, name);
2770
2771	sbsec = inode->i_sb->s_security;
2772	if (!(sbsec->flags & SE_SBLABELSUPP))
2773		return -EOPNOTSUPP;
2774
2775	if (!inode_owner_or_capable(inode))
2776		return -EPERM;
2777
2778	ad.type = LSM_AUDIT_DATA_DENTRY;
2779	ad.u.dentry = dentry;
2780
2781	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2782			  FILE__RELABELFROM, &ad);
2783	if (rc)
2784		return rc;
2785
2786	rc = security_context_to_sid(value, size, &newsid);
2787	if (rc == -EINVAL) {
2788		if (!capable(CAP_MAC_ADMIN)) {
2789			struct audit_buffer *ab;
2790			size_t audit_size;
2791			const char *str;
2792
2793			/* We strip a nul only if it is at the end, otherwise the
2794			 * context contains a nul and we should audit that */
2795			if (value) {
2796				str = value;
2797				if (str[size - 1] == '\0')
2798					audit_size = size - 1;
2799				else
2800					audit_size = size;
2801			} else {
2802				str = "";
2803				audit_size = 0;
2804			}
2805			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2806			audit_log_format(ab, "op=setxattr invalid_context=");
2807			audit_log_n_untrustedstring(ab, value, audit_size);
2808			audit_log_end(ab);
2809
2810			return rc;
2811		}
2812		rc = security_context_to_sid_force(value, size, &newsid);
2813	}
2814	if (rc)
2815		return rc;
2816
2817	rc = avc_has_perm(sid, newsid, isec->sclass,
2818			  FILE__RELABELTO, &ad);
2819	if (rc)
2820		return rc;
2821
2822	rc = security_validate_transition(isec->sid, newsid, sid,
2823					  isec->sclass);
2824	if (rc)
2825		return rc;
2826
2827	return avc_has_perm(newsid,
2828			    sbsec->sid,
2829			    SECCLASS_FILESYSTEM,
2830			    FILESYSTEM__ASSOCIATE,
2831			    &ad);
2832}
2833
2834static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2835					const void *value, size_t size,
2836					int flags)
2837{
2838	struct inode *inode = dentry->d_inode;
2839	struct inode_security_struct *isec = inode->i_security;
2840	u32 newsid;
2841	int rc;
2842
2843	if (strcmp(name, XATTR_NAME_SELINUX)) {
2844		/* Not an attribute we recognize, so nothing to do. */
2845		return;
2846	}
2847
2848	rc = security_context_to_sid_force(value, size, &newsid);
2849	if (rc) {
2850		printk(KERN_ERR "SELinux:  unable to map context to SID"
2851		       "for (%s, %lu), rc=%d\n",
2852		       inode->i_sb->s_id, inode->i_ino, -rc);
2853		return;
2854	}
2855
2856	isec->sid = newsid;
2857	return;
2858}
2859
2860static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2861{
2862	const struct cred *cred = current_cred();
2863
2864	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2865}
2866
2867static int selinux_inode_listxattr(struct dentry *dentry)
2868{
2869	const struct cred *cred = current_cred();
2870
2871	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2872}
2873
2874static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2875{
2876	if (strcmp(name, XATTR_NAME_SELINUX))
2877		return selinux_inode_setotherxattr(dentry, name);
2878
2879	/* No one is allowed to remove a SELinux security label.
2880	   You can change the label, but all data must be labeled. */
2881	return -EACCES;
2882}
2883
2884/*
2885 * Copy the inode security context value to the user.
2886 *
2887 * Permission check is handled by selinux_inode_getxattr hook.
2888 */
2889static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2890{
2891	u32 size;
2892	int error;
2893	char *context = NULL;
2894	struct inode_security_struct *isec = inode->i_security;
2895
2896	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2897		return -EOPNOTSUPP;
2898
2899	/*
2900	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2901	 * value even if it is not defined by current policy; otherwise,
2902	 * use the in-core value under current policy.
2903	 * Use the non-auditing forms of the permission checks since
2904	 * getxattr may be called by unprivileged processes commonly
2905	 * and lack of permission just means that we fall back to the
2906	 * in-core context value, not a denial.
2907	 */
2908	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2909				SECURITY_CAP_NOAUDIT);
2910	if (!error)
2911		error = security_sid_to_context_force(isec->sid, &context,
2912						      &size);
2913	else
2914		error = security_sid_to_context(isec->sid, &context, &size);
2915	if (error)
2916		return error;
2917	error = size;
2918	if (alloc) {
2919		*buffer = context;
2920		goto out_nofree;
2921	}
2922	kfree(context);
2923out_nofree:
2924	return error;
2925}
2926
2927static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2928				     const void *value, size_t size, int flags)
2929{
2930	struct inode_security_struct *isec = inode->i_security;
2931	u32 newsid;
2932	int rc;
2933
2934	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2935		return -EOPNOTSUPP;
2936
2937	if (!value || !size)
2938		return -EACCES;
2939
2940	rc = security_context_to_sid((void *)value, size, &newsid);
2941	if (rc)
2942		return rc;
2943
2944	isec->sid = newsid;
2945	isec->initialized = 1;
2946	return 0;
2947}
2948
2949static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2950{
2951	const int len = sizeof(XATTR_NAME_SELINUX);
2952	if (buffer && len <= buffer_size)
2953		memcpy(buffer, XATTR_NAME_SELINUX, len);
2954	return len;
2955}
2956
2957static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2958{
2959	struct inode_security_struct *isec = inode->i_security;
2960	*secid = isec->sid;
2961}
2962
2963/* file security operations */
2964
2965static int selinux_revalidate_file_permission(struct file *file, int mask)
2966{
2967	const struct cred *cred = current_cred();
2968	struct inode *inode = file->f_path.dentry->d_inode;
2969
2970	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2971	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2972		mask |= MAY_APPEND;
2973
2974	return file_has_perm(cred, file,
2975			     file_mask_to_av(inode->i_mode, mask));
2976}
2977
2978static int selinux_file_permission(struct file *file, int mask)
2979{
2980	struct inode *inode = file->f_path.dentry->d_inode;
2981	struct file_security_struct *fsec = file->f_security;
2982	struct inode_security_struct *isec = inode->i_security;
2983	u32 sid = current_sid();
2984
2985	if (!mask)
2986		/* No permission to check.  Existence test. */
2987		return 0;
2988
2989	if (sid == fsec->sid && fsec->isid == isec->sid &&
2990	    fsec->pseqno == avc_policy_seqno())
2991		/* No change since file_open check. */
2992		return 0;
2993
2994	return selinux_revalidate_file_permission(file, mask);
2995}
2996
2997static int selinux_file_alloc_security(struct file *file)
2998{
2999	return file_alloc_security(file);
3000}
3001
3002static void selinux_file_free_security(struct file *file)
3003{
3004	file_free_security(file);
3005}
3006
3007static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3008			      unsigned long arg)
3009{
3010	const struct cred *cred = current_cred();
3011	int error = 0;
3012
3013	switch (cmd) {
3014	case FIONREAD:
3015	/* fall through */
3016	case FIBMAP:
3017	/* fall through */
3018	case FIGETBSZ:
3019	/* fall through */
3020	case FS_IOC_GETFLAGS:
3021	/* fall through */
3022	case FS_IOC_GETVERSION:
3023		error = file_has_perm(cred, file, FILE__GETATTR);
3024		break;
3025
3026	case FS_IOC_SETFLAGS:
3027	/* fall through */
3028	case FS_IOC_SETVERSION:
3029		error = file_has_perm(cred, file, FILE__SETATTR);
3030		break;
3031
3032	/* sys_ioctl() checks */
3033	case FIONBIO:
3034	/* fall through */
3035	case FIOASYNC:
3036		error = file_has_perm(cred, file, 0);
3037		break;
3038
3039	case KDSKBENT:
3040	case KDSKBSENT:
3041		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3042					    SECURITY_CAP_AUDIT);
3043		break;
3044
3045	/* default case assumes that the command will go
3046	 * to the file's ioctl() function.
3047	 */
3048	default:
3049		error = file_has_perm(cred, file, FILE__IOCTL);
3050	}
3051	return error;
3052}
3053
3054static int default_noexec;
3055
3056static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3057{
3058	const struct cred *cred = current_cred();
3059	int rc = 0;
3060
3061	if (default_noexec &&
3062	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3063		/*
3064		 * We are making executable an anonymous mapping or a
3065		 * private file mapping that will also be writable.
3066		 * This has an additional check.
3067		 */
3068		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3069		if (rc)
3070			goto error;
3071	}
3072
3073	if (file) {
3074		/* read access is always possible with a mapping */
3075		u32 av = FILE__READ;
3076
3077		/* write access only matters if the mapping is shared */
3078		if (shared && (prot & PROT_WRITE))
3079			av |= FILE__WRITE;
3080
3081		if (prot & PROT_EXEC)
3082			av |= FILE__EXECUTE;
3083
3084		return file_has_perm(cred, file, av);
3085	}
3086
3087error:
3088	return rc;
3089}
3090
3091static int selinux_mmap_addr(unsigned long addr)
3092{
3093	int rc = 0;
3094	u32 sid = current_sid();
3095
3096	/*
3097	 * notice that we are intentionally putting the SELinux check before
3098	 * the secondary cap_file_mmap check.  This is such a likely attempt
3099	 * at bad behaviour/exploit that we always want to get the AVC, even
3100	 * if DAC would have also denied the operation.
3101	 */
3102	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3103		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3104				  MEMPROTECT__MMAP_ZERO, NULL);
3105		if (rc)
3106			return rc;
3107	}
3108
3109	/* do DAC check on address space usage */
3110	return cap_mmap_addr(addr);
3111}
3112
3113static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3114			     unsigned long prot, unsigned long flags)
3115{
3116	if (selinux_checkreqprot)
3117		prot = reqprot;
3118
3119	return file_map_prot_check(file, prot,
3120				   (flags & MAP_TYPE) == MAP_SHARED);
3121}
3122
3123static int selinux_file_mprotect(struct vm_area_struct *vma,
3124				 unsigned long reqprot,
3125				 unsigned long prot)
3126{
3127	const struct cred *cred = current_cred();
3128
3129	if (selinux_checkreqprot)
3130		prot = reqprot;
3131
3132	if (default_noexec &&
3133	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3134		int rc = 0;
3135		if (vma->vm_start >= vma->vm_mm->start_brk &&
3136		    vma->vm_end <= vma->vm_mm->brk) {
3137			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3138		} else if (!vma->vm_file &&
3139			   vma->vm_start <= vma->vm_mm->start_stack &&
3140			   vma->vm_end >= vma->vm_mm->start_stack) {
3141			rc = current_has_perm(current, PROCESS__EXECSTACK);
3142		} else if (vma->vm_file && vma->anon_vma) {
3143			/*
3144			 * We are making executable a file mapping that has
3145			 * had some COW done. Since pages might have been
3146			 * written, check ability to execute the possibly
3147			 * modified content.  This typically should only
3148			 * occur for text relocations.
3149			 */
3150			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3151		}
3152		if (rc)
3153			return rc;
3154	}
3155
3156	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3157}
3158
3159static int selinux_file_lock(struct file *file, unsigned int cmd)
3160{
3161	const struct cred *cred = current_cred();
3162
3163	return file_has_perm(cred, file, FILE__LOCK);
3164}
3165
3166static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3167			      unsigned long arg)
3168{
3169	const struct cred *cred = current_cred();
3170	int err = 0;
3171
3172	switch (cmd) {
3173	case F_SETFL:
3174		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3175			err = -EINVAL;
3176			break;
3177		}
3178
3179		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3180			err = file_has_perm(cred, file, FILE__WRITE);
3181			break;
3182		}
3183		/* fall through */
3184	case F_SETOWN:
3185	case F_SETSIG:
3186	case F_GETFL:
3187	case F_GETOWN:
3188	case F_GETSIG:
3189		/* Just check FD__USE permission */
3190		err = file_has_perm(cred, file, 0);
3191		break;
3192	case F_GETLK:
3193	case F_SETLK:
3194	case F_SETLKW:
3195#if BITS_PER_LONG == 32
3196	case F_GETLK64:
3197	case F_SETLK64:
3198	case F_SETLKW64:
3199#endif
3200		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3201			err = -EINVAL;
3202			break;
3203		}
3204		err = file_has_perm(cred, file, FILE__LOCK);
3205		break;
3206	}
3207
3208	return err;
3209}
3210
3211static int selinux_file_set_fowner(struct file *file)
3212{
3213	struct file_security_struct *fsec;
3214
3215	fsec = file->f_security;
3216	fsec->fown_sid = current_sid();
3217
3218	return 0;
3219}
3220
3221static int selinux_file_send_sigiotask(struct task_struct *tsk,
3222				       struct fown_struct *fown, int signum)
3223{
3224	struct file *file;
3225	u32 sid = task_sid(tsk);
3226	u32 perm;
3227	struct file_security_struct *fsec;
3228
3229	/* struct fown_struct is never outside the context of a struct file */
3230	file = container_of(fown, struct file, f_owner);
3231
3232	fsec = file->f_security;
3233
3234	if (!signum)
3235		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3236	else
3237		perm = signal_to_av(signum);
3238
3239	return avc_has_perm(fsec->fown_sid, sid,
3240			    SECCLASS_PROCESS, perm, NULL);
3241}
3242
3243static int selinux_file_receive(struct file *file)
3244{
3245	const struct cred *cred = current_cred();
3246
3247	return file_has_perm(cred, file, file_to_av(file));
3248}
3249
3250static int selinux_file_open(struct file *file, const struct cred *cred)
3251{
3252	struct file_security_struct *fsec;
3253	struct inode_security_struct *isec;
3254
3255	fsec = file->f_security;
3256	isec = file->f_path.dentry->d_inode->i_security;
3257	/*
3258	 * Save inode label and policy sequence number
3259	 * at open-time so that selinux_file_permission
3260	 * can determine whether revalidation is necessary.
3261	 * Task label is already saved in the file security
3262	 * struct as its SID.
3263	 */
3264	fsec->isid = isec->sid;
3265	fsec->pseqno = avc_policy_seqno();
3266	/*
3267	 * Since the inode label or policy seqno may have changed
3268	 * between the selinux_inode_permission check and the saving
3269	 * of state above, recheck that access is still permitted.
3270	 * Otherwise, access might never be revalidated against the
3271	 * new inode label or new policy.
3272	 * This check is not redundant - do not remove.
3273	 */
3274	return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3275}
3276
3277/* task security operations */
3278
3279static int selinux_task_create(unsigned long clone_flags)
3280{
3281	return current_has_perm(current, PROCESS__FORK);
3282}
3283
3284/*
3285 * allocate the SELinux part of blank credentials
3286 */
3287static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3288{
3289	struct task_security_struct *tsec;
3290
3291	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3292	if (!tsec)
3293		return -ENOMEM;
3294
3295	cred->security = tsec;
3296	return 0;
3297}
3298
3299/*
3300 * detach and free the LSM part of a set of credentials
3301 */
3302static void selinux_cred_free(struct cred *cred)
3303{
3304	struct task_security_struct *tsec = cred->security;
3305
3306	/*
3307	 * cred->security == NULL if security_cred_alloc_blank() or
3308	 * security_prepare_creds() returned an error.
3309	 */
3310	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3311	cred->security = (void *) 0x7UL;
3312	kfree(tsec);
3313}
3314
3315/*
3316 * prepare a new set of credentials for modification
3317 */
3318static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3319				gfp_t gfp)
3320{
3321	const struct task_security_struct *old_tsec;
3322	struct task_security_struct *tsec;
3323
3324	old_tsec = old->security;
3325
3326	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3327	if (!tsec)
3328		return -ENOMEM;
3329
3330	new->security = tsec;
3331	return 0;
3332}
3333
3334/*
3335 * transfer the SELinux data to a blank set of creds
3336 */
3337static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3338{
3339	const struct task_security_struct *old_tsec = old->security;
3340	struct task_security_struct *tsec = new->security;
3341
3342	*tsec = *old_tsec;
3343}
3344
3345/*
3346 * set the security data for a kernel service
3347 * - all the creation contexts are set to unlabelled
3348 */
3349static int selinux_kernel_act_as(struct cred *new, u32 secid)
3350{
3351	struct task_security_struct *tsec = new->security;
3352	u32 sid = current_sid();
3353	int ret;
3354
3355	ret = avc_has_perm(sid, secid,
3356			   SECCLASS_KERNEL_SERVICE,
3357			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3358			   NULL);
3359	if (ret == 0) {
3360		tsec->sid = secid;
3361		tsec->create_sid = 0;
3362		tsec->keycreate_sid = 0;
3363		tsec->sockcreate_sid = 0;
3364	}
3365	return ret;
3366}
3367
3368/*
3369 * set the file creation context in a security record to the same as the
3370 * objective context of the specified inode
3371 */
3372static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3373{
3374	struct inode_security_struct *isec = inode->i_security;
3375	struct task_security_struct *tsec = new->security;
3376	u32 sid = current_sid();
3377	int ret;
3378
3379	ret = avc_has_perm(sid, isec->sid,
3380			   SECCLASS_KERNEL_SERVICE,
3381			   KERNEL_SERVICE__CREATE_FILES_AS,
3382			   NULL);
3383
3384	if (ret == 0)
3385		tsec->create_sid = isec->sid;
3386	return ret;
3387}
3388
3389static int selinux_kernel_module_request(char *kmod_name)
3390{
3391	u32 sid;
3392	struct common_audit_data ad;
3393
3394	sid = task_sid(current);
3395
3396	ad.type = LSM_AUDIT_DATA_KMOD;
3397	ad.u.kmod_name = kmod_name;
3398
3399	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3400			    SYSTEM__MODULE_REQUEST, &ad);
3401}
3402
3403static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3404{
3405	return current_has_perm(p, PROCESS__SETPGID);
3406}
3407
3408static int selinux_task_getpgid(struct task_struct *p)
3409{
3410	return current_has_perm(p, PROCESS__GETPGID);
3411}
3412
3413static int selinux_task_getsid(struct task_struct *p)
3414{
3415	return current_has_perm(p, PROCESS__GETSESSION);
3416}
3417
3418static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3419{
3420	*secid = task_sid(p);
3421}
3422
3423static int selinux_task_setnice(struct task_struct *p, int nice)
3424{
3425	int rc;
3426
3427	rc = cap_task_setnice(p, nice);
3428	if (rc)
3429		return rc;
3430
3431	return current_has_perm(p, PROCESS__SETSCHED);
3432}
3433
3434static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3435{
3436	int rc;
3437
3438	rc = cap_task_setioprio(p, ioprio);
3439	if (rc)
3440		return rc;
3441
3442	return current_has_perm(p, PROCESS__SETSCHED);
3443}
3444
3445static int selinux_task_getioprio(struct task_struct *p)
3446{
3447	return current_has_perm(p, PROCESS__GETSCHED);
3448}
3449
3450static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3451		struct rlimit *new_rlim)
3452{
3453	struct rlimit *old_rlim = p->signal->rlim + resource;
3454
3455	/* Control the ability to change the hard limit (whether
3456	   lowering or raising it), so that the hard limit can
3457	   later be used as a safe reset point for the soft limit
3458	   upon context transitions.  See selinux_bprm_committing_creds. */
3459	if (old_rlim->rlim_max != new_rlim->rlim_max)
3460		return current_has_perm(p, PROCESS__SETRLIMIT);
3461
3462	return 0;
3463}
3464
3465static int selinux_task_setscheduler(struct task_struct *p)
3466{
3467	int rc;
3468
3469	rc = cap_task_setscheduler(p);
3470	if (rc)
3471		return rc;
3472
3473	return current_has_perm(p, PROCESS__SETSCHED);
3474}
3475
3476static int selinux_task_getscheduler(struct task_struct *p)
3477{
3478	return current_has_perm(p, PROCESS__GETSCHED);
3479}
3480
3481static int selinux_task_movememory(struct task_struct *p)
3482{
3483	return current_has_perm(p, PROCESS__SETSCHED);
3484}
3485
3486static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3487				int sig, u32 secid)
3488{
3489	u32 perm;
3490	int rc;
3491
3492	if (!sig)
3493		perm = PROCESS__SIGNULL; /* null signal; existence test */
3494	else
3495		perm = signal_to_av(sig);
3496	if (secid)
3497		rc = avc_has_perm(secid, task_sid(p),
3498				  SECCLASS_PROCESS, perm, NULL);
3499	else
3500		rc = current_has_perm(p, perm);
3501	return rc;
3502}
3503
3504static int selinux_task_wait(struct task_struct *p)
3505{
3506	return task_has_perm(p, current, PROCESS__SIGCHLD);
3507}
3508
3509static void selinux_task_to_inode(struct task_struct *p,
3510				  struct inode *inode)
3511{
3512	struct inode_security_struct *isec = inode->i_security;
3513	u32 sid = task_sid(p);
3514
3515	isec->sid = sid;
3516	isec->initialized = 1;
3517}
3518
3519/* Returns error only if unable to parse addresses */
3520static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3521			struct common_audit_data *ad, u8 *proto)
3522{
3523	int offset, ihlen, ret = -EINVAL;
3524	struct iphdr _iph, *ih;
3525
3526	offset = skb_network_offset(skb);
3527	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3528	if (ih == NULL)
3529		goto out;
3530
3531	ihlen = ih->ihl * 4;
3532	if (ihlen < sizeof(_iph))
3533		goto out;
3534
3535	ad->u.net->v4info.saddr = ih->saddr;
3536	ad->u.net->v4info.daddr = ih->daddr;
3537	ret = 0;
3538
3539	if (proto)
3540		*proto = ih->protocol;
3541
3542	switch (ih->protocol) {
3543	case IPPROTO_TCP: {
3544		struct tcphdr _tcph, *th;
3545
3546		if (ntohs(ih->frag_off) & IP_OFFSET)
3547			break;
3548
3549		offset += ihlen;
3550		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3551		if (th == NULL)
3552			break;
3553
3554		ad->u.net->sport = th->source;
3555		ad->u.net->dport = th->dest;
3556		break;
3557	}
3558
3559	case IPPROTO_UDP: {
3560		struct udphdr _udph, *uh;
3561
3562		if (ntohs(ih->frag_off) & IP_OFFSET)
3563			break;
3564
3565		offset += ihlen;
3566		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3567		if (uh == NULL)
3568			break;
3569
3570		ad->u.net->sport = uh->source;
3571		ad->u.net->dport = uh->dest;
3572		break;
3573	}
3574
3575	case IPPROTO_DCCP: {
3576		struct dccp_hdr _dccph, *dh;
3577
3578		if (ntohs(ih->frag_off) & IP_OFFSET)
3579			break;
3580
3581		offset += ihlen;
3582		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3583		if (dh == NULL)
3584			break;
3585
3586		ad->u.net->sport = dh->dccph_sport;
3587		ad->u.net->dport = dh->dccph_dport;
3588		break;
3589	}
3590
3591	default:
3592		break;
3593	}
3594out:
3595	return ret;
3596}
3597
3598#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3599
3600/* Returns error only if unable to parse addresses */
3601static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3602			struct common_audit_data *ad, u8 *proto)
3603{
3604	u8 nexthdr;
3605	int ret = -EINVAL, offset;
3606	struct ipv6hdr _ipv6h, *ip6;
3607	__be16 frag_off;
3608
3609	offset = skb_network_offset(skb);
3610	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3611	if (ip6 == NULL)
3612		goto out;
3613
3614	ad->u.net->v6info.saddr = ip6->saddr;
3615	ad->u.net->v6info.daddr = ip6->daddr;
3616	ret = 0;
3617
3618	nexthdr = ip6->nexthdr;
3619	offset += sizeof(_ipv6h);
3620	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3621	if (offset < 0)
3622		goto out;
3623
3624	if (proto)
3625		*proto = nexthdr;
3626
3627	switch (nexthdr) {
3628	case IPPROTO_TCP: {
3629		struct tcphdr _tcph, *th;
3630
3631		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3632		if (th == NULL)
3633			break;
3634
3635		ad->u.net->sport = th->source;
3636		ad->u.net->dport = th->dest;
3637		break;
3638	}
3639
3640	case IPPROTO_UDP: {
3641		struct udphdr _udph, *uh;
3642
3643		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3644		if (uh == NULL)
3645			break;
3646
3647		ad->u.net->sport = uh->source;
3648		ad->u.net->dport = uh->dest;
3649		break;
3650	}
3651
3652	case IPPROTO_DCCP: {
3653		struct dccp_hdr _dccph, *dh;
3654
3655		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3656		if (dh == NULL)
3657			break;
3658
3659		ad->u.net->sport = dh->dccph_sport;
3660		ad->u.net->dport = dh->dccph_dport;
3661		break;
3662	}
3663
3664	/* includes fragments */
3665	default:
3666		break;
3667	}
3668out:
3669	return ret;
3670}
3671
3672#endif /* IPV6 */
3673
3674static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3675			     char **_addrp, int src, u8 *proto)
3676{
3677	char *addrp;
3678	int ret;
3679
3680	switch (ad->u.net->family) {
3681	case PF_INET:
3682		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3683		if (ret)
3684			goto parse_error;
3685		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3686				       &ad->u.net->v4info.daddr);
3687		goto okay;
3688
3689#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3690	case PF_INET6:
3691		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3692		if (ret)
3693			goto parse_error;
3694		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3695				       &ad->u.net->v6info.daddr);
3696		goto okay;
3697#endif	/* IPV6 */
3698	default:
3699		addrp = NULL;
3700		goto okay;
3701	}
3702
3703parse_error:
3704	printk(KERN_WARNING
3705	       "SELinux: failure in selinux_parse_skb(),"
3706	       " unable to parse packet\n");
3707	return ret;
3708
3709okay:
3710	if (_addrp)
3711		*_addrp = addrp;
3712	return 0;
3713}
3714
3715/**
3716 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3717 * @skb: the packet
3718 * @family: protocol family
3719 * @sid: the packet's peer label SID
3720 *
3721 * Description:
3722 * Check the various different forms of network peer labeling and determine
3723 * the peer label/SID for the packet; most of the magic actually occurs in
3724 * the security server function security_net_peersid_cmp().  The function
3725 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3726 * or -EACCES if @sid is invalid due to inconsistencies with the different
3727 * peer labels.
3728 *
3729 */
3730static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3731{
3732	int err;
3733	u32 xfrm_sid;
3734	u32 nlbl_sid;
3735	u32 nlbl_type;
3736
3737	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3738	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3739
3740	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3741	if (unlikely(err)) {
3742		printk(KERN_WARNING
3743		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3744		       " unable to determine packet's peer label\n");
3745		return -EACCES;
3746	}
3747
3748	return 0;
3749}
3750
3751/* socket security operations */
3752
3753static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3754				 u16 secclass, u32 *socksid)
3755{
3756	if (tsec->sockcreate_sid > SECSID_NULL) {
3757		*socksid = tsec->sockcreate_sid;
3758		return 0;
3759	}
3760
3761	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3762				       socksid);
3763}
3764
3765static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3766{
3767	struct sk_security_struct *sksec = sk->sk_security;
3768	struct common_audit_data ad;
3769	struct lsm_network_audit net = {0,};
3770	u32 tsid = task_sid(task);
3771
3772	if (sksec->sid == SECINITSID_KERNEL)
3773		return 0;
3774
3775	ad.type = LSM_AUDIT_DATA_NET;
3776	ad.u.net = &net;
3777	ad.u.net->sk = sk;
3778
3779	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3780}
3781
3782static int selinux_socket_create(int family, int type,
3783				 int protocol, int kern)
3784{
3785	const struct task_security_struct *tsec = current_security();
3786	u32 newsid;
3787	u16 secclass;
3788	int rc;
3789
3790	if (kern)
3791		return 0;
3792
3793	secclass = socket_type_to_security_class(family, type, protocol);
3794	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3795	if (rc)
3796		return rc;
3797
3798	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3799}
3800
3801static int selinux_socket_post_create(struct socket *sock, int family,
3802				      int type, int protocol, int kern)
3803{
3804	const struct task_security_struct *tsec = current_security();
3805	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3806	struct sk_security_struct *sksec;
3807	int err = 0;
3808
3809	isec->sclass = socket_type_to_security_class(family, type, protocol);
3810
3811	if (kern)
3812		isec->sid = SECINITSID_KERNEL;
3813	else {
3814		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3815		if (err)
3816			return err;
3817	}
3818
3819	isec->initialized = 1;
3820
3821	if (sock->sk) {
3822		sksec = sock->sk->sk_security;
3823		sksec->sid = isec->sid;
3824		sksec->sclass = isec->sclass;
3825		err = selinux_netlbl_socket_post_create(sock->sk, family);
3826	}
3827
3828	return err;
3829}
3830
3831/* Range of port numbers used to automatically bind.
3832   Need to determine whether we should perform a name_bind
3833   permission check between the socket and the port number. */
3834
3835static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3836{
3837	struct sock *sk = sock->sk;
3838	u16 family;
3839	int err;
3840
3841	err = sock_has_perm(current, sk, SOCKET__BIND);
3842	if (err)
3843		goto out;
3844
3845	/*
3846	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3847	 * Multiple address binding for SCTP is not supported yet: we just
3848	 * check the first address now.
3849	 */
3850	family = sk->sk_family;
3851	if (family == PF_INET || family == PF_INET6) {
3852		char *addrp;
3853		struct sk_security_struct *sksec = sk->sk_security;
3854		struct common_audit_data ad;
3855		struct lsm_network_audit net = {0,};
3856		struct sockaddr_in *addr4 = NULL;
3857		struct sockaddr_in6 *addr6 = NULL;
3858		unsigned short snum;
3859		u32 sid, node_perm;
3860
3861		if (family == PF_INET) {
3862			addr4 = (struct sockaddr_in *)address;
3863			snum = ntohs(addr4->sin_port);
3864			addrp = (char *)&addr4->sin_addr.s_addr;
3865		} else {
3866			addr6 = (struct sockaddr_in6 *)address;
3867			snum = ntohs(addr6->sin6_port);
3868			addrp = (char *)&addr6->sin6_addr.s6_addr;
3869		}
3870
3871		if (snum) {
3872			int low, high;
3873
3874			inet_get_local_port_range(&low, &high);
3875
3876			if (snum < max(PROT_SOCK, low) || snum > high) {
3877				err = sel_netport_sid(sk->sk_protocol,
3878						      snum, &sid);
3879				if (err)
3880					goto out;
3881				ad.type = LSM_AUDIT_DATA_NET;
3882				ad.u.net = &net;
3883				ad.u.net->sport = htons(snum);
3884				ad.u.net->family = family;
3885				err = avc_has_perm(sksec->sid, sid,
3886						   sksec->sclass,
3887						   SOCKET__NAME_BIND, &ad);
3888				if (err)
3889					goto out;
3890			}
3891		}
3892
3893		switch (sksec->sclass) {
3894		case SECCLASS_TCP_SOCKET:
3895			node_perm = TCP_SOCKET__NODE_BIND;
3896			break;
3897
3898		case SECCLASS_UDP_SOCKET:
3899			node_perm = UDP_SOCKET__NODE_BIND;
3900			break;
3901
3902		case SECCLASS_DCCP_SOCKET:
3903			node_perm = DCCP_SOCKET__NODE_BIND;
3904			break;
3905
3906		default:
3907			node_perm = RAWIP_SOCKET__NODE_BIND;
3908			break;
3909		}
3910
3911		err = sel_netnode_sid(addrp, family, &sid);
3912		if (err)
3913			goto out;
3914
3915		ad.type = LSM_AUDIT_DATA_NET;
3916		ad.u.net = &net;
3917		ad.u.net->sport = htons(snum);
3918		ad.u.net->family = family;
3919
3920		if (family == PF_INET)
3921			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3922		else
3923			ad.u.net->v6info.saddr = addr6->sin6_addr;
3924
3925		err = avc_has_perm(sksec->sid, sid,
3926				   sksec->sclass, node_perm, &ad);
3927		if (err)
3928			goto out;
3929	}
3930out:
3931	return err;
3932}
3933
3934static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3935{
3936	struct sock *sk = sock->sk;
3937	struct sk_security_struct *sksec = sk->sk_security;
3938	int err;
3939
3940	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3941	if (err)
3942		return err;
3943
3944	/*
3945	 * If a TCP or DCCP socket, check name_connect permission for the port.
3946	 */
3947	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3948	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
3949		struct common_audit_data ad;
3950		struct lsm_network_audit net = {0,};
3951		struct sockaddr_in *addr4 = NULL;
3952		struct sockaddr_in6 *addr6 = NULL;
3953		unsigned short snum;
3954		u32 sid, perm;
3955
3956		if (sk->sk_family == PF_INET) {
3957			addr4 = (struct sockaddr_in *)address;
3958			if (addrlen < sizeof(struct sockaddr_in))
3959				return -EINVAL;
3960			snum = ntohs(addr4->sin_port);
3961		} else {
3962			addr6 = (struct sockaddr_in6 *)address;
3963			if (addrlen < SIN6_LEN_RFC2133)
3964				return -EINVAL;
3965			snum = ntohs(addr6->sin6_port);
3966		}
3967
3968		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3969		if (err)
3970			goto out;
3971
3972		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3973		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3974
3975		ad.type = LSM_AUDIT_DATA_NET;
3976		ad.u.net = &net;
3977		ad.u.net->dport = htons(snum);
3978		ad.u.net->family = sk->sk_family;
3979		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3980		if (err)
3981			goto out;
3982	}
3983
3984	err = selinux_netlbl_socket_connect(sk, address);
3985
3986out:
3987	return err;
3988}
3989
3990static int selinux_socket_listen(struct socket *sock, int backlog)
3991{
3992	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3993}
3994
3995static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3996{
3997	int err;
3998	struct inode_security_struct *isec;
3999	struct inode_security_struct *newisec;
4000
4001	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4002	if (err)
4003		return err;
4004
4005	newisec = SOCK_INODE(newsock)->i_security;
4006
4007	isec = SOCK_INODE(sock)->i_security;
4008	newisec->sclass = isec->sclass;
4009	newisec->sid = isec->sid;
4010	newisec->initialized = 1;
4011
4012	return 0;
4013}
4014
4015static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4016				  int size)
4017{
4018	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4019}
4020
4021static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4022				  int size, int flags)
4023{
4024	return sock_has_perm(current, sock->sk, SOCKET__READ);
4025}
4026
4027static int selinux_socket_getsockname(struct socket *sock)
4028{
4029	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4030}
4031
4032static int selinux_socket_getpeername(struct socket *sock)
4033{
4034	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4035}
4036
4037static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4038{
4039	int err;
4040
4041	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4042	if (err)
4043		return err;
4044
4045	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4046}
4047
4048static int selinux_socket_getsockopt(struct socket *sock, int level,
4049				     int optname)
4050{
4051	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4052}
4053
4054static int selinux_socket_shutdown(struct socket *sock, int how)
4055{
4056	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4057}
4058
4059static int selinux_socket_unix_stream_connect(struct sock *sock,
4060					      struct sock *other,
4061					      struct sock *newsk)
4062{
4063	struct sk_security_struct *sksec_sock = sock->sk_security;
4064	struct sk_security_struct *sksec_other = other->sk_security;
4065	struct sk_security_struct *sksec_new = newsk->sk_security;
4066	struct common_audit_data ad;
4067	struct lsm_network_audit net = {0,};
4068	int err;
4069
4070	ad.type = LSM_AUDIT_DATA_NET;
4071	ad.u.net = &net;
4072	ad.u.net->sk = other;
4073
4074	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4075			   sksec_other->sclass,
4076			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4077	if (err)
4078		return err;
4079
4080	/* server child socket */
4081	sksec_new->peer_sid = sksec_sock->sid;
4082	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4083				    &sksec_new->sid);
4084	if (err)
4085		return err;
4086
4087	/* connecting socket */
4088	sksec_sock->peer_sid = sksec_new->sid;
4089
4090	return 0;
4091}
4092
4093static int selinux_socket_unix_may_send(struct socket *sock,
4094					struct socket *other)
4095{
4096	struct sk_security_struct *ssec = sock->sk->sk_security;
4097	struct sk_security_struct *osec = other->sk->sk_security;
4098	struct common_audit_data ad;
4099	struct lsm_network_audit net = {0,};
4100
4101	ad.type = LSM_AUDIT_DATA_NET;
4102	ad.u.net = &net;
4103	ad.u.net->sk = other->sk;
4104
4105	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4106			    &ad);
4107}
4108
4109static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4110				    u32 peer_sid,
4111				    struct common_audit_data *ad)
4112{
4113	int err;
4114	u32 if_sid;
4115	u32 node_sid;
4116
4117	err = sel_netif_sid(ifindex, &if_sid);
4118	if (err)
4119		return err;
4120	err = avc_has_perm(peer_sid, if_sid,
4121			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4122	if (err)
4123		return err;
4124
4125	err = sel_netnode_sid(addrp, family, &node_sid);
4126	if (err)
4127		return err;
4128	return avc_has_perm(peer_sid, node_sid,
4129			    SECCLASS_NODE, NODE__RECVFROM, ad);
4130}
4131
4132static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4133				       u16 family)
4134{
4135	int err = 0;
4136	struct sk_security_struct *sksec = sk->sk_security;
4137	u32 sk_sid = sksec->sid;
4138	struct common_audit_data ad;
4139	struct lsm_network_audit net = {0,};
4140	char *addrp;
4141
4142	ad.type = LSM_AUDIT_DATA_NET;
4143	ad.u.net = &net;
4144	ad.u.net->netif = skb->skb_iif;
4145	ad.u.net->family = family;
4146	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4147	if (err)
4148		return err;
4149
4150	if (selinux_secmark_enabled()) {
4151		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4152				   PACKET__RECV, &ad);
4153		if (err)
4154			return err;
4155	}
4156
4157	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4158	if (err)
4159		return err;
4160	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4161
4162	return err;
4163}
4164
4165static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4166{
4167	int err;
4168	struct sk_security_struct *sksec = sk->sk_security;
4169	u16 family = sk->sk_family;
4170	u32 sk_sid = sksec->sid;
4171	struct common_audit_data ad;
4172	struct lsm_network_audit net = {0,};
4173	char *addrp;
4174	u8 secmark_active;
4175	u8 peerlbl_active;
4176
4177	if (family != PF_INET && family != PF_INET6)
4178		return 0;
4179
4180	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4181	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4182		family = PF_INET;
4183
4184	/* If any sort of compatibility mode is enabled then handoff processing
4185	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4186	 * special handling.  We do this in an attempt to keep this function
4187	 * as fast and as clean as possible. */
4188	if (!selinux_policycap_netpeer)
4189		return selinux_sock_rcv_skb_compat(sk, skb, family);
4190
4191	secmark_active = selinux_secmark_enabled();
4192	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4193	if (!secmark_active && !peerlbl_active)
4194		return 0;
4195
4196	ad.type = LSM_AUDIT_DATA_NET;
4197	ad.u.net = &net;
4198	ad.u.net->netif = skb->skb_iif;
4199	ad.u.net->family = family;
4200	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4201	if (err)
4202		return err;
4203
4204	if (peerlbl_active) {
4205		u32 peer_sid;
4206
4207		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4208		if (err)
4209			return err;
4210		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4211					       peer_sid, &ad);
4212		if (err) {
4213			selinux_netlbl_err(skb, err, 0);
4214			return err;
4215		}
4216		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4217				   PEER__RECV, &ad);
4218		if (err)
4219			selinux_netlbl_err(skb, err, 0);
4220	}
4221
4222	if (secmark_active) {
4223		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4224				   PACKET__RECV, &ad);
4225		if (err)
4226			return err;
4227	}
4228
4229	return err;
4230}
4231
4232static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4233					    int __user *optlen, unsigned len)
4234{
4235	int err = 0;
4236	char *scontext;
4237	u32 scontext_len;
4238	struct sk_security_struct *sksec = sock->sk->sk_security;
4239	u32 peer_sid = SECSID_NULL;
4240
4241	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4242	    sksec->sclass == SECCLASS_TCP_SOCKET)
4243		peer_sid = sksec->peer_sid;
4244	if (peer_sid == SECSID_NULL)
4245		return -ENOPROTOOPT;
4246
4247	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4248	if (err)
4249		return err;
4250
4251	if (scontext_len > len) {
4252		err = -ERANGE;
4253		goto out_len;
4254	}
4255
4256	if (copy_to_user(optval, scontext, scontext_len))
4257		err = -EFAULT;
4258
4259out_len:
4260	if (put_user(scontext_len, optlen))
4261		err = -EFAULT;
4262	kfree(scontext);
4263	return err;
4264}
4265
4266static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4267{
4268	u32 peer_secid = SECSID_NULL;
4269	u16 family;
4270
4271	if (skb && skb->protocol == htons(ETH_P_IP))
4272		family = PF_INET;
4273	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4274		family = PF_INET6;
4275	else if (sock)
4276		family = sock->sk->sk_family;
4277	else
4278		goto out;
4279
4280	if (sock && family == PF_UNIX)
4281		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4282	else if (skb)
4283		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4284
4285out:
4286	*secid = peer_secid;
4287	if (peer_secid == SECSID_NULL)
4288		return -EINVAL;
4289	return 0;
4290}
4291
4292static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4293{
4294	struct sk_security_struct *sksec;
4295
4296	sksec = kzalloc(sizeof(*sksec), priority);
4297	if (!sksec)
4298		return -ENOMEM;
4299
4300	sksec->peer_sid = SECINITSID_UNLABELED;
4301	sksec->sid = SECINITSID_UNLABELED;
4302	selinux_netlbl_sk_security_reset(sksec);
4303	sk->sk_security = sksec;
4304
4305	return 0;
4306}
4307
4308static void selinux_sk_free_security(struct sock *sk)
4309{
4310	struct sk_security_struct *sksec = sk->sk_security;
4311
4312	sk->sk_security = NULL;
4313	selinux_netlbl_sk_security_free(sksec);
4314	kfree(sksec);
4315}
4316
4317static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4318{
4319	struct sk_security_struct *sksec = sk->sk_security;
4320	struct sk_security_struct *newsksec = newsk->sk_security;
4321
4322	newsksec->sid = sksec->sid;
4323	newsksec->peer_sid = sksec->peer_sid;
4324	newsksec->sclass = sksec->sclass;
4325
4326	selinux_netlbl_sk_security_reset(newsksec);
4327}
4328
4329static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4330{
4331	if (!sk)
4332		*secid = SECINITSID_ANY_SOCKET;
4333	else {
4334		struct sk_security_struct *sksec = sk->sk_security;
4335
4336		*secid = sksec->sid;
4337	}
4338}
4339
4340static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4341{
4342	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4343	struct sk_security_struct *sksec = sk->sk_security;
4344
4345	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4346	    sk->sk_family == PF_UNIX)
4347		isec->sid = sksec->sid;
4348	sksec->sclass = isec->sclass;
4349}
4350
4351static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4352				     struct request_sock *req)
4353{
4354	struct sk_security_struct *sksec = sk->sk_security;
4355	int err;
4356	u16 family = sk->sk_family;
4357	u32 newsid;
4358	u32 peersid;
4359
4360	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4361	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362		family = PF_INET;
4363
4364	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4365	if (err)
4366		return err;
4367	if (peersid == SECSID_NULL) {
4368		req->secid = sksec->sid;
4369		req->peer_secid = SECSID_NULL;
4370	} else {
4371		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4372		if (err)
4373			return err;
4374		req->secid = newsid;
4375		req->peer_secid = peersid;
4376	}
4377
4378	return selinux_netlbl_inet_conn_request(req, family);
4379}
4380
4381static void selinux_inet_csk_clone(struct sock *newsk,
4382				   const struct request_sock *req)
4383{
4384	struct sk_security_struct *newsksec = newsk->sk_security;
4385
4386	newsksec->sid = req->secid;
4387	newsksec->peer_sid = req->peer_secid;
4388	/* NOTE: Ideally, we should also get the isec->sid for the
4389	   new socket in sync, but we don't have the isec available yet.
4390	   So we will wait until sock_graft to do it, by which
4391	   time it will have been created and available. */
4392
4393	/* We don't need to take any sort of lock here as we are the only
4394	 * thread with access to newsksec */
4395	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4396}
4397
4398static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4399{
4400	u16 family = sk->sk_family;
4401	struct sk_security_struct *sksec = sk->sk_security;
4402
4403	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4404	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4405		family = PF_INET;
4406
4407	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4408}
4409
4410static int selinux_secmark_relabel_packet(u32 sid)
4411{
4412	const struct task_security_struct *__tsec;
4413	u32 tsid;
4414
4415	__tsec = current_security();
4416	tsid = __tsec->sid;
4417
4418	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4419}
4420
4421static void selinux_secmark_refcount_inc(void)
4422{
4423	atomic_inc(&selinux_secmark_refcount);
4424}
4425
4426static void selinux_secmark_refcount_dec(void)
4427{
4428	atomic_dec(&selinux_secmark_refcount);
4429}
4430
4431static void selinux_req_classify_flow(const struct request_sock *req,
4432				      struct flowi *fl)
4433{
4434	fl->flowi_secid = req->secid;
4435}
4436
4437static int selinux_tun_dev_create(void)
4438{
4439	u32 sid = current_sid();
4440
4441	/* we aren't taking into account the "sockcreate" SID since the socket
4442	 * that is being created here is not a socket in the traditional sense,
4443	 * instead it is a private sock, accessible only to the kernel, and
4444	 * representing a wide range of network traffic spanning multiple
4445	 * connections unlike traditional sockets - check the TUN driver to
4446	 * get a better understanding of why this socket is special */
4447
4448	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4449			    NULL);
4450}
4451
4452static void selinux_tun_dev_post_create(struct sock *sk)
4453{
4454	struct sk_security_struct *sksec = sk->sk_security;
4455
4456	/* we don't currently perform any NetLabel based labeling here and it
4457	 * isn't clear that we would want to do so anyway; while we could apply
4458	 * labeling without the support of the TUN user the resulting labeled
4459	 * traffic from the other end of the connection would almost certainly
4460	 * cause confusion to the TUN user that had no idea network labeling
4461	 * protocols were being used */
4462
4463	/* see the comments in selinux_tun_dev_create() about why we don't use
4464	 * the sockcreate SID here */
4465
4466	sksec->sid = current_sid();
4467	sksec->sclass = SECCLASS_TUN_SOCKET;
4468}
4469
4470static int selinux_tun_dev_attach(struct sock *sk)
4471{
4472	struct sk_security_struct *sksec = sk->sk_security;
4473	u32 sid = current_sid();
4474	int err;
4475
4476	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4477			   TUN_SOCKET__RELABELFROM, NULL);
4478	if (err)
4479		return err;
4480	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4481			   TUN_SOCKET__RELABELTO, NULL);
4482	if (err)
4483		return err;
4484
4485	sksec->sid = sid;
4486
4487	return 0;
4488}
4489
4490static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4491{
4492	int err = 0;
4493	u32 perm;
4494	struct nlmsghdr *nlh;
4495	struct sk_security_struct *sksec = sk->sk_security;
4496
4497	if (skb->len < NLMSG_SPACE(0)) {
4498		err = -EINVAL;
4499		goto out;
4500	}
4501	nlh = nlmsg_hdr(skb);
4502
4503	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4504	if (err) {
4505		if (err == -EINVAL) {
4506			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4507				  "SELinux:  unrecognized netlink message"
4508				  " type=%hu for sclass=%hu\n",
4509				  nlh->nlmsg_type, sksec->sclass);
4510			if (!selinux_enforcing || security_get_allow_unknown())
4511				err = 0;
4512		}
4513
4514		/* Ignore */
4515		if (err == -ENOENT)
4516			err = 0;
4517		goto out;
4518	}
4519
4520	err = sock_has_perm(current, sk, perm);
4521out:
4522	return err;
4523}
4524
4525#ifdef CONFIG_NETFILTER
4526
4527static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4528				       u16 family)
4529{
4530	int err;
4531	char *addrp;
4532	u32 peer_sid;
4533	struct common_audit_data ad;
4534	struct lsm_network_audit net = {0,};
4535	u8 secmark_active;
4536	u8 netlbl_active;
4537	u8 peerlbl_active;
4538
4539	if (!selinux_policycap_netpeer)
4540		return NF_ACCEPT;
4541
4542	secmark_active = selinux_secmark_enabled();
4543	netlbl_active = netlbl_enabled();
4544	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4545	if (!secmark_active && !peerlbl_active)
4546		return NF_ACCEPT;
4547
4548	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4549		return NF_DROP;
4550
4551	ad.type = LSM_AUDIT_DATA_NET;
4552	ad.u.net = &net;
4553	ad.u.net->netif = ifindex;
4554	ad.u.net->family = family;
4555	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4556		return NF_DROP;
4557
4558	if (peerlbl_active) {
4559		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4560					       peer_sid, &ad);
4561		if (err) {
4562			selinux_netlbl_err(skb, err, 1);
4563			return NF_DROP;
4564		}
4565	}
4566
4567	if (secmark_active)
4568		if (avc_has_perm(peer_sid, skb->secmark,
4569				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4570			return NF_DROP;
4571
4572	if (netlbl_active)
4573		/* we do this in the FORWARD path and not the POST_ROUTING
4574		 * path because we want to make sure we apply the necessary
4575		 * labeling before IPsec is applied so we can leverage AH
4576		 * protection */
4577		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4578			return NF_DROP;
4579
4580	return NF_ACCEPT;
4581}
4582
4583static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4584					 struct sk_buff *skb,
4585					 const struct net_device *in,
4586					 const struct net_device *out,
4587					 int (*okfn)(struct sk_buff *))
4588{
4589	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4590}
4591
4592#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4593static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4594					 struct sk_buff *skb,
4595					 const struct net_device *in,
4596					 const struct net_device *out,
4597					 int (*okfn)(struct sk_buff *))
4598{
4599	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4600}
4601#endif	/* IPV6 */
4602
4603static unsigned int selinux_ip_output(struct sk_buff *skb,
4604				      u16 family)
4605{
4606	u32 sid;
4607
4608	if (!netlbl_enabled())
4609		return NF_ACCEPT;
4610
4611	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4612	 * because we want to make sure we apply the necessary labeling
4613	 * before IPsec is applied so we can leverage AH protection */
4614	if (skb->sk) {
4615		struct sk_security_struct *sksec = skb->sk->sk_security;
4616		sid = sksec->sid;
4617	} else
4618		sid = SECINITSID_KERNEL;
4619	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4620		return NF_DROP;
4621
4622	return NF_ACCEPT;
4623}
4624
4625static unsigned int selinux_ipv4_output(unsigned int hooknum,
4626					struct sk_buff *skb,
4627					const struct net_device *in,
4628					const struct net_device *out,
4629					int (*okfn)(struct sk_buff *))
4630{
4631	return selinux_ip_output(skb, PF_INET);
4632}
4633
4634static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4635						int ifindex,
4636						u16 family)
4637{
4638	struct sock *sk = skb->sk;
4639	struct sk_security_struct *sksec;
4640	struct common_audit_data ad;
4641	struct lsm_network_audit net = {0,};
4642	char *addrp;
4643	u8 proto;
4644
4645	if (sk == NULL)
4646		return NF_ACCEPT;
4647	sksec = sk->sk_security;
4648
4649	ad.type = LSM_AUDIT_DATA_NET;
4650	ad.u.net = &net;
4651	ad.u.net->netif = ifindex;
4652	ad.u.net->family = family;
4653	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4654		return NF_DROP;
4655
4656	if (selinux_secmark_enabled())
4657		if (avc_has_perm(sksec->sid, skb->secmark,
4658				 SECCLASS_PACKET, PACKET__SEND, &ad))
4659			return NF_DROP_ERR(-ECONNREFUSED);
4660
4661	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4662		return NF_DROP_ERR(-ECONNREFUSED);
4663
4664	return NF_ACCEPT;
4665}
4666
4667static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4668					 u16 family)
4669{
4670	u32 secmark_perm;
4671	u32 peer_sid;
4672	struct sock *sk;
4673	struct common_audit_data ad;
4674	struct lsm_network_audit net = {0,};
4675	char *addrp;
4676	u8 secmark_active;
4677	u8 peerlbl_active;
4678
4679	/* If any sort of compatibility mode is enabled then handoff processing
4680	 * to the selinux_ip_postroute_compat() function to deal with the
4681	 * special handling.  We do this in an attempt to keep this function
4682	 * as fast and as clean as possible. */
4683	if (!selinux_policycap_netpeer)
4684		return selinux_ip_postroute_compat(skb, ifindex, family);
4685#ifdef CONFIG_XFRM
4686	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4687	 * packet transformation so allow the packet to pass without any checks
4688	 * since we'll have another chance to perform access control checks
4689	 * when the packet is on it's final way out.
4690	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4691	 *       is NULL, in this case go ahead and apply access control. */
4692	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4693		return NF_ACCEPT;
4694#endif
4695	secmark_active = selinux_secmark_enabled();
4696	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4697	if (!secmark_active && !peerlbl_active)
4698		return NF_ACCEPT;
4699
4700	/* if the packet is being forwarded then get the peer label from the
4701	 * packet itself; otherwise check to see if it is from a local
4702	 * application or the kernel, if from an application get the peer label
4703	 * from the sending socket, otherwise use the kernel's sid */
4704	sk = skb->sk;
4705	if (sk == NULL) {
4706		if (skb->skb_iif) {
4707			secmark_perm = PACKET__FORWARD_OUT;
4708			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4709				return NF_DROP;
4710		} else {
4711			secmark_perm = PACKET__SEND;
4712			peer_sid = SECINITSID_KERNEL;
4713		}
4714	} else {
4715		struct sk_security_struct *sksec = sk->sk_security;
4716		peer_sid = sksec->sid;
4717		secmark_perm = PACKET__SEND;
4718	}
4719
4720	ad.type = LSM_AUDIT_DATA_NET;
4721	ad.u.net = &net;
4722	ad.u.net->netif = ifindex;
4723	ad.u.net->family = family;
4724	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4725		return NF_DROP;
4726
4727	if (secmark_active)
4728		if (avc_has_perm(peer_sid, skb->secmark,
4729				 SECCLASS_PACKET, secmark_perm, &ad))
4730			return NF_DROP_ERR(-ECONNREFUSED);
4731
4732	if (peerlbl_active) {
4733		u32 if_sid;
4734		u32 node_sid;
4735
4736		if (sel_netif_sid(ifindex, &if_sid))
4737			return NF_DROP;
4738		if (avc_has_perm(peer_sid, if_sid,
4739				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4740			return NF_DROP_ERR(-ECONNREFUSED);
4741
4742		if (sel_netnode_sid(addrp, family, &node_sid))
4743			return NF_DROP;
4744		if (avc_has_perm(peer_sid, node_sid,
4745				 SECCLASS_NODE, NODE__SENDTO, &ad))
4746			return NF_DROP_ERR(-ECONNREFUSED);
4747	}
4748
4749	return NF_ACCEPT;
4750}
4751
4752static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4753					   struct sk_buff *skb,
4754					   const struct net_device *in,
4755					   const struct net_device *out,
4756					   int (*okfn)(struct sk_buff *))
4757{
4758	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4759}
4760
4761#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4762static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4763					   struct sk_buff *skb,
4764					   const struct net_device *in,
4765					   const struct net_device *out,
4766					   int (*okfn)(struct sk_buff *))
4767{
4768	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4769}
4770#endif	/* IPV6 */
4771
4772#endif	/* CONFIG_NETFILTER */
4773
4774static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4775{
4776	int err;
4777
4778	err = cap_netlink_send(sk, skb);
4779	if (err)
4780		return err;
4781
4782	return selinux_nlmsg_perm(sk, skb);
4783}
4784
4785static int ipc_alloc_security(struct task_struct *task,
4786			      struct kern_ipc_perm *perm,
4787			      u16 sclass)
4788{
4789	struct ipc_security_struct *isec;
4790	u32 sid;
4791
4792	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4793	if (!isec)
4794		return -ENOMEM;
4795
4796	sid = task_sid(task);
4797	isec->sclass = sclass;
4798	isec->sid = sid;
4799	perm->security = isec;
4800
4801	return 0;
4802}
4803
4804static void ipc_free_security(struct kern_ipc_perm *perm)
4805{
4806	struct ipc_security_struct *isec = perm->security;
4807	perm->security = NULL;
4808	kfree(isec);
4809}
4810
4811static int msg_msg_alloc_security(struct msg_msg *msg)
4812{
4813	struct msg_security_struct *msec;
4814
4815	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4816	if (!msec)
4817		return -ENOMEM;
4818
4819	msec->sid = SECINITSID_UNLABELED;
4820	msg->security = msec;
4821
4822	return 0;
4823}
4824
4825static void msg_msg_free_security(struct msg_msg *msg)
4826{
4827	struct msg_security_struct *msec = msg->security;
4828
4829	msg->security = NULL;
4830	kfree(msec);
4831}
4832
4833static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4834			u32 perms)
4835{
4836	struct ipc_security_struct *isec;
4837	struct common_audit_data ad;
4838	u32 sid = current_sid();
4839
4840	isec = ipc_perms->security;
4841
4842	ad.type = LSM_AUDIT_DATA_IPC;
4843	ad.u.ipc_id = ipc_perms->key;
4844
4845	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4846}
4847
4848static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4849{
4850	return msg_msg_alloc_security(msg);
4851}
4852
4853static void selinux_msg_msg_free_security(struct msg_msg *msg)
4854{
4855	msg_msg_free_security(msg);
4856}
4857
4858/* message queue security operations */
4859static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4860{
4861	struct ipc_security_struct *isec;
4862	struct common_audit_data ad;
4863	u32 sid = current_sid();
4864	int rc;
4865
4866	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4867	if (rc)
4868		return rc;
4869
4870	isec = msq->q_perm.security;
4871
4872	ad.type = LSM_AUDIT_DATA_IPC;
4873	ad.u.ipc_id = msq->q_perm.key;
4874
4875	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4876			  MSGQ__CREATE, &ad);
4877	if (rc) {
4878		ipc_free_security(&msq->q_perm);
4879		return rc;
4880	}
4881	return 0;
4882}
4883
4884static void selinux_msg_queue_free_security(struct msg_queue *msq)
4885{
4886	ipc_free_security(&msq->q_perm);
4887}
4888
4889static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4890{
4891	struct ipc_security_struct *isec;
4892	struct common_audit_data ad;
4893	u32 sid = current_sid();
4894
4895	isec = msq->q_perm.security;
4896
4897	ad.type = LSM_AUDIT_DATA_IPC;
4898	ad.u.ipc_id = msq->q_perm.key;
4899
4900	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4901			    MSGQ__ASSOCIATE, &ad);
4902}
4903
4904static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4905{
4906	int err;
4907	int perms;
4908
4909	switch (cmd) {
4910	case IPC_INFO:
4911	case MSG_INFO:
4912		/* No specific object, just general system-wide information. */
4913		return task_has_system(current, SYSTEM__IPC_INFO);
4914	case IPC_STAT:
4915	case MSG_STAT:
4916		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4917		break;
4918	case IPC_SET:
4919		perms = MSGQ__SETATTR;
4920		break;
4921	case IPC_RMID:
4922		perms = MSGQ__DESTROY;
4923		break;
4924	default:
4925		return 0;
4926	}
4927
4928	err = ipc_has_perm(&msq->q_perm, perms);
4929	return err;
4930}
4931
4932static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4933{
4934	struct ipc_security_struct *isec;
4935	struct msg_security_struct *msec;
4936	struct common_audit_data ad;
4937	u32 sid = current_sid();
4938	int rc;
4939
4940	isec = msq->q_perm.security;
4941	msec = msg->security;
4942
4943	/*
4944	 * First time through, need to assign label to the message
4945	 */
4946	if (msec->sid == SECINITSID_UNLABELED) {
4947		/*
4948		 * Compute new sid based on current process and
4949		 * message queue this message will be stored in
4950		 */
4951		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4952					     NULL, &msec->sid);
4953		if (rc)
4954			return rc;
4955	}
4956
4957	ad.type = LSM_AUDIT_DATA_IPC;
4958	ad.u.ipc_id = msq->q_perm.key;
4959
4960	/* Can this process write to the queue? */
4961	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4962			  MSGQ__WRITE, &ad);
4963	if (!rc)
4964		/* Can this process send the message */
4965		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4966				  MSG__SEND, &ad);
4967	if (!rc)
4968		/* Can the message be put in the queue? */
4969		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4970				  MSGQ__ENQUEUE, &ad);
4971
4972	return rc;
4973}
4974
4975static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4976				    struct task_struct *target,
4977				    long type, int mode)
4978{
4979	struct ipc_security_struct *isec;
4980	struct msg_security_struct *msec;
4981	struct common_audit_data ad;
4982	u32 sid = task_sid(target);
4983	int rc;
4984
4985	isec = msq->q_perm.security;
4986	msec = msg->security;
4987
4988	ad.type = LSM_AUDIT_DATA_IPC;
4989	ad.u.ipc_id = msq->q_perm.key;
4990
4991	rc = avc_has_perm(sid, isec->sid,
4992			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4993	if (!rc)
4994		rc = avc_has_perm(sid, msec->sid,
4995				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4996	return rc;
4997}
4998
4999/* Shared Memory security operations */
5000static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5001{
5002	struct ipc_security_struct *isec;
5003	struct common_audit_data ad;
5004	u32 sid = current_sid();
5005	int rc;
5006
5007	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5008	if (rc)
5009		return rc;
5010
5011	isec = shp->shm_perm.security;
5012
5013	ad.type = LSM_AUDIT_DATA_IPC;
5014	ad.u.ipc_id = shp->shm_perm.key;
5015
5016	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5017			  SHM__CREATE, &ad);
5018	if (rc) {
5019		ipc_free_security(&shp->shm_perm);
5020		return rc;
5021	}
5022	return 0;
5023}
5024
5025static void selinux_shm_free_security(struct shmid_kernel *shp)
5026{
5027	ipc_free_security(&shp->shm_perm);
5028}
5029
5030static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5031{
5032	struct ipc_security_struct *isec;
5033	struct common_audit_data ad;
5034	u32 sid = current_sid();
5035
5036	isec = shp->shm_perm.security;
5037
5038	ad.type = LSM_AUDIT_DATA_IPC;
5039	ad.u.ipc_id = shp->shm_perm.key;
5040
5041	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5042			    SHM__ASSOCIATE, &ad);
5043}
5044
5045/* Note, at this point, shp is locked down */
5046static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5047{
5048	int perms;
5049	int err;
5050
5051	switch (cmd) {
5052	case IPC_INFO:
5053	case SHM_INFO:
5054		/* No specific object, just general system-wide information. */
5055		return task_has_system(current, SYSTEM__IPC_INFO);
5056	case IPC_STAT:
5057	case SHM_STAT:
5058		perms = SHM__GETATTR | SHM__ASSOCIATE;
5059		break;
5060	case IPC_SET:
5061		perms = SHM__SETATTR;
5062		break;
5063	case SHM_LOCK:
5064	case SHM_UNLOCK:
5065		perms = SHM__LOCK;
5066		break;
5067	case IPC_RMID:
5068		perms = SHM__DESTROY;
5069		break;
5070	default:
5071		return 0;
5072	}
5073
5074	err = ipc_has_perm(&shp->shm_perm, perms);
5075	return err;
5076}
5077
5078static int selinux_shm_shmat(struct shmid_kernel *shp,
5079			     char __user *shmaddr, int shmflg)
5080{
5081	u32 perms;
5082
5083	if (shmflg & SHM_RDONLY)
5084		perms = SHM__READ;
5085	else
5086		perms = SHM__READ | SHM__WRITE;
5087
5088	return ipc_has_perm(&shp->shm_perm, perms);
5089}
5090
5091/* Semaphore security operations */
5092static int selinux_sem_alloc_security(struct sem_array *sma)
5093{
5094	struct ipc_security_struct *isec;
5095	struct common_audit_data ad;
5096	u32 sid = current_sid();
5097	int rc;
5098
5099	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5100	if (rc)
5101		return rc;
5102
5103	isec = sma->sem_perm.security;
5104
5105	ad.type = LSM_AUDIT_DATA_IPC;
5106	ad.u.ipc_id = sma->sem_perm.key;
5107
5108	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5109			  SEM__CREATE, &ad);
5110	if (rc) {
5111		ipc_free_security(&sma->sem_perm);
5112		return rc;
5113	}
5114	return 0;
5115}
5116
5117static void selinux_sem_free_security(struct sem_array *sma)
5118{
5119	ipc_free_security(&sma->sem_perm);
5120}
5121
5122static int selinux_sem_associate(struct sem_array *sma, int semflg)
5123{
5124	struct ipc_security_struct *isec;
5125	struct common_audit_data ad;
5126	u32 sid = current_sid();
5127
5128	isec = sma->sem_perm.security;
5129
5130	ad.type = LSM_AUDIT_DATA_IPC;
5131	ad.u.ipc_id = sma->sem_perm.key;
5132
5133	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5134			    SEM__ASSOCIATE, &ad);
5135}
5136
5137/* Note, at this point, sma is locked down */
5138static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5139{
5140	int err;
5141	u32 perms;
5142
5143	switch (cmd) {
5144	case IPC_INFO:
5145	case SEM_INFO:
5146		/* No specific object, just general system-wide information. */
5147		return task_has_system(current, SYSTEM__IPC_INFO);
5148	case GETPID:
5149	case GETNCNT:
5150	case GETZCNT:
5151		perms = SEM__GETATTR;
5152		break;
5153	case GETVAL:
5154	case GETALL:
5155		perms = SEM__READ;
5156		break;
5157	case SETVAL:
5158	case SETALL:
5159		perms = SEM__WRITE;
5160		break;
5161	case IPC_RMID:
5162		perms = SEM__DESTROY;
5163		break;
5164	case IPC_SET:
5165		perms = SEM__SETATTR;
5166		break;
5167	case IPC_STAT:
5168	case SEM_STAT:
5169		perms = SEM__GETATTR | SEM__ASSOCIATE;
5170		break;
5171	default:
5172		return 0;
5173	}
5174
5175	err = ipc_has_perm(&sma->sem_perm, perms);
5176	return err;
5177}
5178
5179static int selinux_sem_semop(struct sem_array *sma,
5180			     struct sembuf *sops, unsigned nsops, int alter)
5181{
5182	u32 perms;
5183
5184	if (alter)
5185		perms = SEM__READ | SEM__WRITE;
5186	else
5187		perms = SEM__READ;
5188
5189	return ipc_has_perm(&sma->sem_perm, perms);
5190}
5191
5192static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5193{
5194	u32 av = 0;
5195
5196	av = 0;
5197	if (flag & S_IRUGO)
5198		av |= IPC__UNIX_READ;
5199	if (flag & S_IWUGO)
5200		av |= IPC__UNIX_WRITE;
5201
5202	if (av == 0)
5203		return 0;
5204
5205	return ipc_has_perm(ipcp, av);
5206}
5207
5208static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5209{
5210	struct ipc_security_struct *isec = ipcp->security;
5211	*secid = isec->sid;
5212}
5213
5214static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5215{
5216	if (inode)
5217		inode_doinit_with_dentry(inode, dentry);
5218}
5219
5220static int selinux_getprocattr(struct task_struct *p,
5221			       char *name, char **value)
5222{
5223	const struct task_security_struct *__tsec;
5224	u32 sid;
5225	int error;
5226	unsigned len;
5227
5228	if (current != p) {
5229		error = current_has_perm(p, PROCESS__GETATTR);
5230		if (error)
5231			return error;
5232	}
5233
5234	rcu_read_lock();
5235	__tsec = __task_cred(p)->security;
5236
5237	if (!strcmp(name, "current"))
5238		sid = __tsec->sid;
5239	else if (!strcmp(name, "prev"))
5240		sid = __tsec->osid;
5241	else if (!strcmp(name, "exec"))
5242		sid = __tsec->exec_sid;
5243	else if (!strcmp(name, "fscreate"))
5244		sid = __tsec->create_sid;
5245	else if (!strcmp(name, "keycreate"))
5246		sid = __tsec->keycreate_sid;
5247	else if (!strcmp(name, "sockcreate"))
5248		sid = __tsec->sockcreate_sid;
5249	else
5250		goto invalid;
5251	rcu_read_unlock();
5252
5253	if (!sid)
5254		return 0;
5255
5256	error = security_sid_to_context(sid, value, &len);
5257	if (error)
5258		return error;
5259	return len;
5260
5261invalid:
5262	rcu_read_unlock();
5263	return -EINVAL;
5264}
5265
5266static int selinux_setprocattr(struct task_struct *p,
5267			       char *name, void *value, size_t size)
5268{
5269	struct task_security_struct *tsec;
5270	struct task_struct *tracer;
5271	struct cred *new;
5272	u32 sid = 0, ptsid;
5273	int error;
5274	char *str = value;
5275
5276	if (current != p) {
5277		/* SELinux only allows a process to change its own
5278		   security attributes. */
5279		return -EACCES;
5280	}
5281
5282	/*
5283	 * Basic control over ability to set these attributes at all.
5284	 * current == p, but we'll pass them separately in case the
5285	 * above restriction is ever removed.
5286	 */
5287	if (!strcmp(name, "exec"))
5288		error = current_has_perm(p, PROCESS__SETEXEC);
5289	else if (!strcmp(name, "fscreate"))
5290		error = current_has_perm(p, PROCESS__SETFSCREATE);
5291	else if (!strcmp(name, "keycreate"))
5292		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5293	else if (!strcmp(name, "sockcreate"))
5294		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5295	else if (!strcmp(name, "current"))
5296		error = current_has_perm(p, PROCESS__SETCURRENT);
5297	else
5298		error = -EINVAL;
5299	if (error)
5300		return error;
5301
5302	/* Obtain a SID for the context, if one was specified. */
5303	if (size && str[1] && str[1] != '\n') {
5304		if (str[size-1] == '\n') {
5305			str[size-1] = 0;
5306			size--;
5307		}
5308		error = security_context_to_sid(value, size, &sid);
5309		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5310			if (!capable(CAP_MAC_ADMIN)) {
5311				struct audit_buffer *ab;
5312				size_t audit_size;
5313
5314				/* We strip a nul only if it is at the end, otherwise the
5315				 * context contains a nul and we should audit that */
5316				if (str[size - 1] == '\0')
5317					audit_size = size - 1;
5318				else
5319					audit_size = size;
5320				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5321				audit_log_format(ab, "op=fscreate invalid_context=");
5322				audit_log_n_untrustedstring(ab, value, audit_size);
5323				audit_log_end(ab);
5324
5325				return error;
5326			}
5327			error = security_context_to_sid_force(value, size,
5328							      &sid);
5329		}
5330		if (error)
5331			return error;
5332	}
5333
5334	new = prepare_creds();
5335	if (!new)
5336		return -ENOMEM;
5337
5338	/* Permission checking based on the specified context is
5339	   performed during the actual operation (execve,
5340	   open/mkdir/...), when we know the full context of the
5341	   operation.  See selinux_bprm_set_creds for the execve
5342	   checks and may_create for the file creation checks. The
5343	   operation will then fail if the context is not permitted. */
5344	tsec = new->security;
5345	if (!strcmp(name, "exec")) {
5346		tsec->exec_sid = sid;
5347	} else if (!strcmp(name, "fscreate")) {
5348		tsec->create_sid = sid;
5349	} else if (!strcmp(name, "keycreate")) {
5350		error = may_create_key(sid, p);
5351		if (error)
5352			goto abort_change;
5353		tsec->keycreate_sid = sid;
5354	} else if (!strcmp(name, "sockcreate")) {
5355		tsec->sockcreate_sid = sid;
5356	} else if (!strcmp(name, "current")) {
5357		error = -EINVAL;
5358		if (sid == 0)
5359			goto abort_change;
5360
5361		/* Only allow single threaded processes to change context */
5362		error = -EPERM;
5363		if (!current_is_single_threaded()) {
5364			error = security_bounded_transition(tsec->sid, sid);
5365			if (error)
5366				goto abort_change;
5367		}
5368
5369		/* Check permissions for the transition. */
5370		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5371				     PROCESS__DYNTRANSITION, NULL);
5372		if (error)
5373			goto abort_change;
5374
5375		/* Check for ptracing, and update the task SID if ok.
5376		   Otherwise, leave SID unchanged and fail. */
5377		ptsid = 0;
5378		task_lock(p);
5379		tracer = ptrace_parent(p);
5380		if (tracer)
5381			ptsid = task_sid(tracer);
5382		task_unlock(p);
5383
5384		if (tracer) {
5385			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5386					     PROCESS__PTRACE, NULL);
5387			if (error)
5388				goto abort_change;
5389		}
5390
5391		tsec->sid = sid;
5392	} else {
5393		error = -EINVAL;
5394		goto abort_change;
5395	}
5396
5397	commit_creds(new);
5398	return size;
5399
5400abort_change:
5401	abort_creds(new);
5402	return error;
5403}
5404
5405static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5406{
5407	return security_sid_to_context(secid, secdata, seclen);
5408}
5409
5410static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5411{
5412	return security_context_to_sid(secdata, seclen, secid);
5413}
5414
5415static void selinux_release_secctx(char *secdata, u32 seclen)
5416{
5417	kfree(secdata);
5418}
5419
5420/*
5421 *	called with inode->i_mutex locked
5422 */
5423static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5424{
5425	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5426}
5427
5428/*
5429 *	called with inode->i_mutex locked
5430 */
5431static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5432{
5433	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5434}
5435
5436static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5437{
5438	int len = 0;
5439	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5440						ctx, true);
5441	if (len < 0)
5442		return len;
5443	*ctxlen = len;
5444	return 0;
5445}
5446#ifdef CONFIG_KEYS
5447
5448static int selinux_key_alloc(struct key *k, const struct cred *cred,
5449			     unsigned long flags)
5450{
5451	const struct task_security_struct *tsec;
5452	struct key_security_struct *ksec;
5453
5454	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5455	if (!ksec)
5456		return -ENOMEM;
5457
5458	tsec = cred->security;
5459	if (tsec->keycreate_sid)
5460		ksec->sid = tsec->keycreate_sid;
5461	else
5462		ksec->sid = tsec->sid;
5463
5464	k->security = ksec;
5465	return 0;
5466}
5467
5468static void selinux_key_free(struct key *k)
5469{
5470	struct key_security_struct *ksec = k->security;
5471
5472	k->security = NULL;
5473	kfree(ksec);
5474}
5475
5476static int selinux_key_permission(key_ref_t key_ref,
5477				  const struct cred *cred,
5478				  key_perm_t perm)
5479{
5480	struct key *key;
5481	struct key_security_struct *ksec;
5482	u32 sid;
5483
5484	/* if no specific permissions are requested, we skip the
5485	   permission check. No serious, additional covert channels
5486	   appear to be created. */
5487	if (perm == 0)
5488		return 0;
5489
5490	sid = cred_sid(cred);
5491
5492	key = key_ref_to_ptr(key_ref);
5493	ksec = key->security;
5494
5495	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5496}
5497
5498static int selinux_key_getsecurity(struct key *key, char **_buffer)
5499{
5500	struct key_security_struct *ksec = key->security;
5501	char *context = NULL;
5502	unsigned len;
5503	int rc;
5504
5505	rc = security_sid_to_context(ksec->sid, &context, &len);
5506	if (!rc)
5507		rc = len;
5508	*_buffer = context;
5509	return rc;
5510}
5511
5512#endif
5513
5514static struct security_operations selinux_ops = {
5515	.name =				"selinux",
5516
5517	.ptrace_access_check =		selinux_ptrace_access_check,
5518	.ptrace_traceme =		selinux_ptrace_traceme,
5519	.capget =			selinux_capget,
5520	.capset =			selinux_capset,
5521	.capable =			selinux_capable,
5522	.quotactl =			selinux_quotactl,
5523	.quota_on =			selinux_quota_on,
5524	.syslog =			selinux_syslog,
5525	.vm_enough_memory =		selinux_vm_enough_memory,
5526
5527	.netlink_send =			selinux_netlink_send,
5528
5529	.bprm_set_creds =		selinux_bprm_set_creds,
5530	.bprm_committing_creds =	selinux_bprm_committing_creds,
5531	.bprm_committed_creds =		selinux_bprm_committed_creds,
5532	.bprm_secureexec =		selinux_bprm_secureexec,
5533
5534	.sb_alloc_security =		selinux_sb_alloc_security,
5535	.sb_free_security =		selinux_sb_free_security,
5536	.sb_copy_data =			selinux_sb_copy_data,
5537	.sb_remount =			selinux_sb_remount,
5538	.sb_kern_mount =		selinux_sb_kern_mount,
5539	.sb_show_options =		selinux_sb_show_options,
5540	.sb_statfs =			selinux_sb_statfs,
5541	.sb_mount =			selinux_mount,
5542	.sb_umount =			selinux_umount,
5543	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5544	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5545	.sb_parse_opts_str = 		selinux_parse_opts_str,
5546
5547
5548	.inode_alloc_security =		selinux_inode_alloc_security,
5549	.inode_free_security =		selinux_inode_free_security,
5550	.inode_init_security =		selinux_inode_init_security,
5551	.inode_create =			selinux_inode_create,
5552	.inode_link =			selinux_inode_link,
5553	.inode_unlink =			selinux_inode_unlink,
5554	.inode_symlink =		selinux_inode_symlink,
5555	.inode_mkdir =			selinux_inode_mkdir,
5556	.inode_rmdir =			selinux_inode_rmdir,
5557	.inode_mknod =			selinux_inode_mknod,
5558	.inode_rename =			selinux_inode_rename,
5559	.inode_readlink =		selinux_inode_readlink,
5560	.inode_follow_link =		selinux_inode_follow_link,
5561	.inode_permission =		selinux_inode_permission,
5562	.inode_setattr =		selinux_inode_setattr,
5563	.inode_getattr =		selinux_inode_getattr,
5564	.inode_setxattr =		selinux_inode_setxattr,
5565	.inode_post_setxattr =		selinux_inode_post_setxattr,
5566	.inode_getxattr =		selinux_inode_getxattr,
5567	.inode_listxattr =		selinux_inode_listxattr,
5568	.inode_removexattr =		selinux_inode_removexattr,
5569	.inode_getsecurity =		selinux_inode_getsecurity,
5570	.inode_setsecurity =		selinux_inode_setsecurity,
5571	.inode_listsecurity =		selinux_inode_listsecurity,
5572	.inode_getsecid =		selinux_inode_getsecid,
5573
5574	.file_permission =		selinux_file_permission,
5575	.file_alloc_security =		selinux_file_alloc_security,
5576	.file_free_security =		selinux_file_free_security,
5577	.file_ioctl =			selinux_file_ioctl,
5578	.mmap_file =			selinux_mmap_file,
5579	.mmap_addr =			selinux_mmap_addr,
5580	.file_mprotect =		selinux_file_mprotect,
5581	.file_lock =			selinux_file_lock,
5582	.file_fcntl =			selinux_file_fcntl,
5583	.file_set_fowner =		selinux_file_set_fowner,
5584	.file_send_sigiotask =		selinux_file_send_sigiotask,
5585	.file_receive =			selinux_file_receive,
5586
5587	.file_open =			selinux_file_open,
5588
5589	.task_create =			selinux_task_create,
5590	.cred_alloc_blank =		selinux_cred_alloc_blank,
5591	.cred_free =			selinux_cred_free,
5592	.cred_prepare =			selinux_cred_prepare,
5593	.cred_transfer =		selinux_cred_transfer,
5594	.kernel_act_as =		selinux_kernel_act_as,
5595	.kernel_create_files_as =	selinux_kernel_create_files_as,
5596	.kernel_module_request =	selinux_kernel_module_request,
5597	.task_setpgid =			selinux_task_setpgid,
5598	.task_getpgid =			selinux_task_getpgid,
5599	.task_getsid =			selinux_task_getsid,
5600	.task_getsecid =		selinux_task_getsecid,
5601	.task_setnice =			selinux_task_setnice,
5602	.task_setioprio =		selinux_task_setioprio,
5603	.task_getioprio =		selinux_task_getioprio,
5604	.task_setrlimit =		selinux_task_setrlimit,
5605	.task_setscheduler =		selinux_task_setscheduler,
5606	.task_getscheduler =		selinux_task_getscheduler,
5607	.task_movememory =		selinux_task_movememory,
5608	.task_kill =			selinux_task_kill,
5609	.task_wait =			selinux_task_wait,
5610	.task_to_inode =		selinux_task_to_inode,
5611
5612	.ipc_permission =		selinux_ipc_permission,
5613	.ipc_getsecid =			selinux_ipc_getsecid,
5614
5615	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5616	.msg_msg_free_security =	selinux_msg_msg_free_security,
5617
5618	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5619	.msg_queue_free_security =	selinux_msg_queue_free_security,
5620	.msg_queue_associate =		selinux_msg_queue_associate,
5621	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5622	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5623	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5624
5625	.shm_alloc_security =		selinux_shm_alloc_security,
5626	.shm_free_security =		selinux_shm_free_security,
5627	.shm_associate =		selinux_shm_associate,
5628	.shm_shmctl =			selinux_shm_shmctl,
5629	.shm_shmat =			selinux_shm_shmat,
5630
5631	.sem_alloc_security =		selinux_sem_alloc_security,
5632	.sem_free_security =		selinux_sem_free_security,
5633	.sem_associate =		selinux_sem_associate,
5634	.sem_semctl =			selinux_sem_semctl,
5635	.sem_semop =			selinux_sem_semop,
5636
5637	.d_instantiate =		selinux_d_instantiate,
5638
5639	.getprocattr =			selinux_getprocattr,
5640	.setprocattr =			selinux_setprocattr,
5641
5642	.secid_to_secctx =		selinux_secid_to_secctx,
5643	.secctx_to_secid =		selinux_secctx_to_secid,
5644	.release_secctx =		selinux_release_secctx,
5645	.inode_notifysecctx =		selinux_inode_notifysecctx,
5646	.inode_setsecctx =		selinux_inode_setsecctx,
5647	.inode_getsecctx =		selinux_inode_getsecctx,
5648
5649	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5650	.unix_may_send =		selinux_socket_unix_may_send,
5651
5652	.socket_create =		selinux_socket_create,
5653	.socket_post_create =		selinux_socket_post_create,
5654	.socket_bind =			selinux_socket_bind,
5655	.socket_connect =		selinux_socket_connect,
5656	.socket_listen =		selinux_socket_listen,
5657	.socket_accept =		selinux_socket_accept,
5658	.socket_sendmsg =		selinux_socket_sendmsg,
5659	.socket_recvmsg =		selinux_socket_recvmsg,
5660	.socket_getsockname =		selinux_socket_getsockname,
5661	.socket_getpeername =		selinux_socket_getpeername,
5662	.socket_getsockopt =		selinux_socket_getsockopt,
5663	.socket_setsockopt =		selinux_socket_setsockopt,
5664	.socket_shutdown =		selinux_socket_shutdown,
5665	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5666	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5667	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5668	.sk_alloc_security =		selinux_sk_alloc_security,
5669	.sk_free_security =		selinux_sk_free_security,
5670	.sk_clone_security =		selinux_sk_clone_security,
5671	.sk_getsecid =			selinux_sk_getsecid,
5672	.sock_graft =			selinux_sock_graft,
5673	.inet_conn_request =		selinux_inet_conn_request,
5674	.inet_csk_clone =		selinux_inet_csk_clone,
5675	.inet_conn_established =	selinux_inet_conn_established,
5676	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5677	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5678	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5679	.req_classify_flow =		selinux_req_classify_flow,
5680	.tun_dev_create =		selinux_tun_dev_create,
5681	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5682	.tun_dev_attach =		selinux_tun_dev_attach,
5683
5684#ifdef CONFIG_SECURITY_NETWORK_XFRM
5685	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5686	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5687	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5688	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5689	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5690	.xfrm_state_free_security =	selinux_xfrm_state_free,
5691	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5692	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5693	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5694	.xfrm_decode_session =		selinux_xfrm_decode_session,
5695#endif
5696
5697#ifdef CONFIG_KEYS
5698	.key_alloc =			selinux_key_alloc,
5699	.key_free =			selinux_key_free,
5700	.key_permission =		selinux_key_permission,
5701	.key_getsecurity =		selinux_key_getsecurity,
5702#endif
5703
5704#ifdef CONFIG_AUDIT
5705	.audit_rule_init =		selinux_audit_rule_init,
5706	.audit_rule_known =		selinux_audit_rule_known,
5707	.audit_rule_match =		selinux_audit_rule_match,
5708	.audit_rule_free =		selinux_audit_rule_free,
5709#endif
5710};
5711
5712static __init int selinux_init(void)
5713{
5714	if (!security_module_enable(&selinux_ops)) {
5715		selinux_enabled = 0;
5716		return 0;
5717	}
5718
5719	if (!selinux_enabled) {
5720		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5721		return 0;
5722	}
5723
5724	printk(KERN_INFO "SELinux:  Initializing.\n");
5725
5726	/* Set the security state for the initial task. */
5727	cred_init_security();
5728
5729	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5730
5731	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5732					    sizeof(struct inode_security_struct),
5733					    0, SLAB_PANIC, NULL);
5734	avc_init();
5735
5736	if (register_security(&selinux_ops))
5737		panic("SELinux: Unable to register with kernel.\n");
5738
5739	if (selinux_enforcing)
5740		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5741	else
5742		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5743
5744	return 0;
5745}
5746
5747static void delayed_superblock_init(struct super_block *sb, void *unused)
5748{
5749	superblock_doinit(sb, NULL);
5750}
5751
5752void selinux_complete_init(void)
5753{
5754	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5755
5756	/* Set up any superblocks initialized prior to the policy load. */
5757	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5758	iterate_supers(delayed_superblock_init, NULL);
5759}
5760
5761/* SELinux requires early initialization in order to label
5762   all processes and objects when they are created. */
5763security_initcall(selinux_init);
5764
5765#if defined(CONFIG_NETFILTER)
5766
5767static struct nf_hook_ops selinux_ipv4_ops[] = {
5768	{
5769		.hook =		selinux_ipv4_postroute,
5770		.owner =	THIS_MODULE,
5771		.pf =		PF_INET,
5772		.hooknum =	NF_INET_POST_ROUTING,
5773		.priority =	NF_IP_PRI_SELINUX_LAST,
5774	},
5775	{
5776		.hook =		selinux_ipv4_forward,
5777		.owner =	THIS_MODULE,
5778		.pf =		PF_INET,
5779		.hooknum =	NF_INET_FORWARD,
5780		.priority =	NF_IP_PRI_SELINUX_FIRST,
5781	},
5782	{
5783		.hook =		selinux_ipv4_output,
5784		.owner =	THIS_MODULE,
5785		.pf =		PF_INET,
5786		.hooknum =	NF_INET_LOCAL_OUT,
5787		.priority =	NF_IP_PRI_SELINUX_FIRST,
5788	}
5789};
5790
5791#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5792
5793static struct nf_hook_ops selinux_ipv6_ops[] = {
5794	{
5795		.hook =		selinux_ipv6_postroute,
5796		.owner =	THIS_MODULE,
5797		.pf =		PF_INET6,
5798		.hooknum =	NF_INET_POST_ROUTING,
5799		.priority =	NF_IP6_PRI_SELINUX_LAST,
5800	},
5801	{
5802		.hook =		selinux_ipv6_forward,
5803		.owner =	THIS_MODULE,
5804		.pf =		PF_INET6,
5805		.hooknum =	NF_INET_FORWARD,
5806		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5807	}
5808};
5809
5810#endif	/* IPV6 */
5811
5812static int __init selinux_nf_ip_init(void)
5813{
5814	int err = 0;
5815
5816	if (!selinux_enabled)
5817		goto out;
5818
5819	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5820
5821	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5822	if (err)
5823		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5824
5825#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5826	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5827	if (err)
5828		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5829#endif	/* IPV6 */
5830
5831out:
5832	return err;
5833}
5834
5835__initcall(selinux_nf_ip_init);
5836
5837#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5838static void selinux_nf_ip_exit(void)
5839{
5840	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5841
5842	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5843#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5844	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5845#endif	/* IPV6 */
5846}
5847#endif
5848
5849#else /* CONFIG_NETFILTER */
5850
5851#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5852#define selinux_nf_ip_exit()
5853#endif
5854
5855#endif /* CONFIG_NETFILTER */
5856
5857#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5858static int selinux_disabled;
5859
5860int selinux_disable(void)
5861{
5862	if (ss_initialized) {
5863		/* Not permitted after initial policy load. */
5864		return -EINVAL;
5865	}
5866
5867	if (selinux_disabled) {
5868		/* Only do this once. */
5869		return -EINVAL;
5870	}
5871
5872	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5873
5874	selinux_disabled = 1;
5875	selinux_enabled = 0;
5876
5877	reset_security_ops();
5878
5879	/* Try to destroy the avc node cache */
5880	avc_disable();
5881
5882	/* Unregister netfilter hooks. */
5883	selinux_nf_ip_exit();
5884
5885	/* Unregister selinuxfs. */
5886	exit_sel_fs();
5887
5888	return 0;
5889}
5890#endif