Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
 
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
  94#include <linux/io_uring.h>
  95
  96#include "avc.h"
  97#include "objsec.h"
  98#include "netif.h"
  99#include "netnode.h"
 100#include "netport.h"
 101#include "ibpkey.h"
 102#include "xfrm.h"
 103#include "netlabel.h"
 104#include "audit.h"
 105#include "avc_ss.h"
 106
 107struct selinux_state selinux_state;
 108
 109/* SECMARK reference count */
 110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 111
 112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 113static int selinux_enforcing_boot __initdata;
 114
 115static int __init enforcing_setup(char *str)
 116{
 117	unsigned long enforcing;
 118	if (!kstrtoul(str, 0, &enforcing))
 119		selinux_enforcing_boot = enforcing ? 1 : 0;
 120	return 1;
 121}
 122__setup("enforcing=", enforcing_setup);
 123#else
 124#define selinux_enforcing_boot 1
 125#endif
 126
 127int selinux_enabled_boot __initdata = 1;
 128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 129static int __init selinux_enabled_setup(char *str)
 130{
 131	unsigned long enabled;
 132	if (!kstrtoul(str, 0, &enabled))
 133		selinux_enabled_boot = enabled ? 1 : 0;
 134	return 1;
 135}
 136__setup("selinux=", selinux_enabled_setup);
 
 
 137#endif
 138
 139static unsigned int selinux_checkreqprot_boot =
 140	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 141
 142static int __init checkreqprot_setup(char *str)
 143{
 144	unsigned long checkreqprot;
 145
 146	if (!kstrtoul(str, 0, &checkreqprot)) {
 147		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 148		if (checkreqprot)
 149			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 
 214	struct task_security_struct *tsec;
 215
 216	tsec = selinux_cred(unrcu_pointer(current->real_cred));
 
 
 
 217	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 218}
 219
 220/*
 221 * get the security ID of a set of credentials
 222 */
 223static inline u32 cred_sid(const struct cred *cred)
 224{
 225	const struct task_security_struct *tsec;
 226
 227	tsec = selinux_cred(cred);
 228	return tsec->sid;
 229}
 230
 231/*
 232 * get the objective security ID of a task
 233 */
 234static inline u32 task_sid_obj(const struct task_struct *task)
 235{
 236	u32 sid;
 237
 238	rcu_read_lock();
 239	sid = cred_sid(__task_cred(task));
 240	rcu_read_unlock();
 241	return sid;
 242}
 243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 245
 246/*
 247 * Try reloading inode security labels that have been marked as invalid.  The
 248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 249 * allowed; when set to false, returns -ECHILD when the label is
 250 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 
 251 */
 252static int __inode_security_revalidate(struct inode *inode,
 253				       struct dentry *dentry,
 254				       bool may_sleep)
 255{
 256	struct inode_security_struct *isec = selinux_inode(inode);
 257
 258	might_sleep_if(may_sleep);
 259
 260	if (selinux_initialized(&selinux_state) &&
 261	    isec->initialized != LABEL_INITIALIZED) {
 262		if (!may_sleep)
 263			return -ECHILD;
 264
 265		/*
 266		 * Try reloading the inode security label.  This will fail if
 267		 * @opt_dentry is NULL and no dentry for this inode can be
 268		 * found; in that case, continue using the old label.
 269		 */
 270		inode_doinit_with_dentry(inode, dentry);
 271	}
 272	return 0;
 273}
 274
 275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 276{
 277	return selinux_inode(inode);
 278}
 279
 280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 281{
 282	int error;
 283
 284	error = __inode_security_revalidate(inode, NULL, !rcu);
 285	if (error)
 286		return ERR_PTR(error);
 287	return selinux_inode(inode);
 288}
 289
 290/*
 291 * Get the security label of an inode.
 292 */
 293static struct inode_security_struct *inode_security(struct inode *inode)
 294{
 295	__inode_security_revalidate(inode, NULL, true);
 296	return selinux_inode(inode);
 297}
 298
 299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 300{
 301	struct inode *inode = d_backing_inode(dentry);
 302
 303	return selinux_inode(inode);
 304}
 305
 306/*
 307 * Get the security label of a dentry's backing inode.
 308 */
 309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 310{
 311	struct inode *inode = d_backing_inode(dentry);
 312
 313	__inode_security_revalidate(inode, dentry, true);
 314	return selinux_inode(inode);
 
 
 
 
 
 
 
 
 315}
 316
 317static void inode_free_security(struct inode *inode)
 318{
 319	struct inode_security_struct *isec = selinux_inode(inode);
 320	struct superblock_security_struct *sbsec;
 321
 322	if (!isec)
 323		return;
 324	sbsec = selinux_superblock(inode->i_sb);
 325	/*
 326	 * As not all inode security structures are in a list, we check for
 327	 * empty list outside of the lock to make sure that we won't waste
 328	 * time taking a lock doing nothing.
 329	 *
 330	 * The list_del_init() function can be safely called more than once.
 331	 * It should not be possible for this function to be called with
 332	 * concurrent list_add(), but for better safety against future changes
 333	 * in the code, we use list_empty_careful() here.
 334	 */
 335	if (!list_empty_careful(&isec->list)) {
 336		spin_lock(&sbsec->isec_lock);
 337		list_del_init(&isec->list);
 338		spin_unlock(&sbsec->isec_lock);
 339	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340}
 341
 342struct selinux_mnt_opts {
 343	u32 fscontext_sid;
 344	u32 context_sid;
 345	u32 rootcontext_sid;
 346	u32 defcontext_sid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347};
 348
 349static void selinux_free_mnt_opts(void *mnt_opts)
 350{
 351	kfree(mnt_opts);
 352}
 353
 354enum {
 355	Opt_error = -1,
 356	Opt_context = 0,
 357	Opt_defcontext = 1,
 358	Opt_fscontext = 2,
 359	Opt_rootcontext = 3,
 360	Opt_seclabel = 4,
 
 
 361};
 362
 363#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 364static struct {
 365	const char *name;
 366	int len;
 367	int opt;
 368	bool has_arg;
 369} tokens[] = {
 370	A(context, true),
 371	A(fscontext, true),
 372	A(defcontext, true),
 373	A(rootcontext, true),
 374	A(seclabel, false),
 375};
 376#undef A
 377
 378static int match_opt_prefix(char *s, int l, char **arg)
 379{
 380	int i;
 381
 382	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 383		size_t len = tokens[i].len;
 384		if (len > l || memcmp(s, tokens[i].name, len))
 385			continue;
 386		if (tokens[i].has_arg) {
 387			if (len == l || s[len] != '=')
 388				continue;
 389			*arg = s + len + 1;
 390		} else if (len != l)
 391			continue;
 392		return tokens[i].opt;
 393	}
 394	return Opt_error;
 395}
 396
 397#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 398
 399static int may_context_mount_sb_relabel(u32 sid,
 400			struct superblock_security_struct *sbsec,
 401			const struct cred *cred)
 402{
 403	const struct task_security_struct *tsec = selinux_cred(cred);
 404	int rc;
 405
 406	rc = avc_has_perm(&selinux_state,
 407			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 408			  FILESYSTEM__RELABELFROM, NULL);
 409	if (rc)
 410		return rc;
 411
 412	rc = avc_has_perm(&selinux_state,
 413			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 414			  FILESYSTEM__RELABELTO, NULL);
 415	return rc;
 416}
 417
 418static int may_context_mount_inode_relabel(u32 sid,
 419			struct superblock_security_struct *sbsec,
 420			const struct cred *cred)
 421{
 422	const struct task_security_struct *tsec = selinux_cred(cred);
 423	int rc;
 424	rc = avc_has_perm(&selinux_state,
 425			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 426			  FILESYSTEM__RELABELFROM, NULL);
 427	if (rc)
 428		return rc;
 429
 430	rc = avc_has_perm(&selinux_state,
 431			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 432			  FILESYSTEM__ASSOCIATE, NULL);
 433	return rc;
 434}
 435
 436static int selinux_is_genfs_special_handling(struct super_block *sb)
 437{
 438	/* Special handling. Genfs but also in-core setxattr handler */
 439	return	!strcmp(sb->s_type->name, "sysfs") ||
 440		!strcmp(sb->s_type->name, "pstore") ||
 441		!strcmp(sb->s_type->name, "debugfs") ||
 442		!strcmp(sb->s_type->name, "tracefs") ||
 443		!strcmp(sb->s_type->name, "rootfs") ||
 444		(selinux_policycap_cgroupseclabel() &&
 445		 (!strcmp(sb->s_type->name, "cgroup") ||
 446		  !strcmp(sb->s_type->name, "cgroup2")));
 447}
 448
 449static int selinux_is_sblabel_mnt(struct super_block *sb)
 450{
 451	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 452
 453	/*
 454	 * IMPORTANT: Double-check logic in this function when adding a new
 455	 * SECURITY_FS_USE_* definition!
 456	 */
 457	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 458
 459	switch (sbsec->behavior) {
 460	case SECURITY_FS_USE_XATTR:
 461	case SECURITY_FS_USE_TRANS:
 462	case SECURITY_FS_USE_TASK:
 463	case SECURITY_FS_USE_NATIVE:
 464		return 1;
 465
 466	case SECURITY_FS_USE_GENFS:
 467		return selinux_is_genfs_special_handling(sb);
 468
 469	/* Never allow relabeling on context mounts */
 470	case SECURITY_FS_USE_MNTPOINT:
 471	case SECURITY_FS_USE_NONE:
 472	default:
 473		return 0;
 474	}
 475}
 476
 477static int sb_check_xattr_support(struct super_block *sb)
 478{
 479	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 480	struct dentry *root = sb->s_root;
 481	struct inode *root_inode = d_backing_inode(root);
 482	u32 sid;
 483	int rc;
 484
 485	/*
 486	 * Make sure that the xattr handler exists and that no
 487	 * error other than -ENODATA is returned by getxattr on
 488	 * the root directory.  -ENODATA is ok, as this may be
 489	 * the first boot of the SELinux kernel before we have
 490	 * assigned xattr values to the filesystem.
 491	 */
 492	if (!(root_inode->i_opflags & IOP_XATTR)) {
 493		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 494			sb->s_id, sb->s_type->name);
 495		goto fallback;
 496	}
 497
 498	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 499	if (rc < 0 && rc != -ENODATA) {
 500		if (rc == -EOPNOTSUPP) {
 501			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 502				sb->s_id, sb->s_type->name);
 503			goto fallback;
 504		} else {
 505			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 506				sb->s_id, sb->s_type->name, -rc);
 507			return rc;
 508		}
 509	}
 510	return 0;
 511
 512fallback:
 513	/* No xattr support - try to fallback to genfs if possible. */
 514	rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
 515				SECCLASS_DIR, &sid);
 516	if (rc)
 517		return -EOPNOTSUPP;
 518
 519	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 520		sb->s_id, sb->s_type->name);
 521	sbsec->behavior = SECURITY_FS_USE_GENFS;
 522	sbsec->sid = sid;
 523	return 0;
 524}
 525
 526static int sb_finish_set_opts(struct super_block *sb)
 527{
 528	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 529	struct dentry *root = sb->s_root;
 530	struct inode *root_inode = d_backing_inode(root);
 531	int rc = 0;
 532
 533	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 534		rc = sb_check_xattr_support(sb);
 535		if (rc)
 536			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537	}
 538
 539	sbsec->flags |= SE_SBINITIALIZED;
 
 
 540
 541	/*
 542	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 543	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 544	 * us a superblock that needs the flag to be cleared.
 545	 */
 546	if (selinux_is_sblabel_mnt(sb))
 547		sbsec->flags |= SBLABEL_MNT;
 548	else
 549		sbsec->flags &= ~SBLABEL_MNT;
 550
 551	/* Initialize the root inode. */
 552	rc = inode_doinit_with_dentry(root_inode, root);
 553
 554	/* Initialize any other inodes associated with the superblock, e.g.
 555	   inodes created prior to initial policy load or inodes created
 556	   during get_sb by a pseudo filesystem that directly
 557	   populates itself. */
 558	spin_lock(&sbsec->isec_lock);
 559	while (!list_empty(&sbsec->isec_head)) {
 
 560		struct inode_security_struct *isec =
 561				list_first_entry(&sbsec->isec_head,
 562					   struct inode_security_struct, list);
 563		struct inode *inode = isec->inode;
 564		list_del_init(&isec->list);
 565		spin_unlock(&sbsec->isec_lock);
 566		inode = igrab(inode);
 567		if (inode) {
 568			if (!IS_PRIVATE(inode))
 569				inode_doinit_with_dentry(inode, NULL);
 570			iput(inode);
 571		}
 572		spin_lock(&sbsec->isec_lock);
 
 573	}
 574	spin_unlock(&sbsec->isec_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575	return rc;
 576}
 577
 578static int bad_option(struct superblock_security_struct *sbsec, char flag,
 579		      u32 old_sid, u32 new_sid)
 580{
 581	char mnt_flags = sbsec->flags & SE_MNTMASK;
 582
 583	/* check if the old mount command had the same options */
 584	if (sbsec->flags & SE_SBINITIALIZED)
 585		if (!(sbsec->flags & flag) ||
 586		    (old_sid != new_sid))
 587			return 1;
 588
 589	/* check if we were passed the same options twice,
 590	 * aka someone passed context=a,context=b
 591	 */
 592	if (!(sbsec->flags & SE_SBINITIALIZED))
 593		if (mnt_flags & flag)
 594			return 1;
 595	return 0;
 596}
 597
 598/*
 599 * Allow filesystems with binary mount data to explicitly set mount point
 600 * labeling information.
 601 */
 602static int selinux_set_mnt_opts(struct super_block *sb,
 603				void *mnt_opts,
 604				unsigned long kern_flags,
 605				unsigned long *set_kern_flags)
 606{
 607	const struct cred *cred = current_cred();
 608	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 609	struct dentry *root = sb->s_root;
 610	struct selinux_mnt_opts *opts = mnt_opts;
 611	struct inode_security_struct *root_isec;
 
 612	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 613	u32 defcontext_sid = 0;
 614	int rc = 0;
 
 
 615
 616	mutex_lock(&sbsec->lock);
 617
 618	if (!selinux_initialized(&selinux_state)) {
 619		if (!opts) {
 620			/* Defer initialization until selinux_complete_init,
 621			   after the initial policy is loaded and the security
 622			   server is ready to handle calls. */
 623			goto out;
 624		}
 625		rc = -EINVAL;
 626		pr_warn("SELinux: Unable to set superblock options "
 627			"before the security server is initialized\n");
 628		goto out;
 629	}
 630	if (kern_flags && !set_kern_flags) {
 631		/* Specifying internal flags without providing a place to
 632		 * place the results is not allowed */
 633		rc = -EINVAL;
 634		goto out;
 635	}
 636
 637	/*
 638	 * Binary mount data FS will come through this function twice.  Once
 639	 * from an explicit call and once from the generic calls from the vfs.
 640	 * Since the generic VFS calls will not contain any security mount data
 641	 * we need to skip the double mount verification.
 642	 *
 643	 * This does open a hole in which we will not notice if the first
 644	 * mount using this sb set explicit options and a second mount using
 645	 * this sb does not set any security options.  (The first options
 646	 * will be used for both mounts)
 647	 */
 648	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 649	    && !opts)
 650		goto out;
 651
 652	root_isec = backing_inode_security_novalidate(root);
 653
 654	/*
 655	 * parse the mount options, check if they are valid sids.
 656	 * also check if someone is trying to mount the same sb more
 657	 * than once with different security options.
 658	 */
 659	if (opts) {
 660		if (opts->fscontext_sid) {
 661			fscontext_sid = opts->fscontext_sid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 662			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 663					fscontext_sid))
 664				goto out_double_mount;
 
 665			sbsec->flags |= FSCONTEXT_MNT;
 666		}
 667		if (opts->context_sid) {
 668			context_sid = opts->context_sid;
 
 669			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 670					context_sid))
 671				goto out_double_mount;
 
 672			sbsec->flags |= CONTEXT_MNT;
 673		}
 674		if (opts->rootcontext_sid) {
 675			rootcontext_sid = opts->rootcontext_sid;
 
 676			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 677					rootcontext_sid))
 678				goto out_double_mount;
 
 679			sbsec->flags |= ROOTCONTEXT_MNT;
 680		}
 681		if (opts->defcontext_sid) {
 682			defcontext_sid = opts->defcontext_sid;
 
 
 683			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 684					defcontext_sid))
 685				goto out_double_mount;
 
 686			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 687		}
 688	}
 689
 690	if (sbsec->flags & SE_SBINITIALIZED) {
 691		/* previously mounted with options, but not on this attempt? */
 692		if ((sbsec->flags & SE_MNTMASK) && !opts)
 693			goto out_double_mount;
 694		rc = 0;
 695		goto out;
 696	}
 697
 698	if (strcmp(sb->s_type->name, "proc") == 0)
 699		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 700
 701	if (!strcmp(sb->s_type->name, "debugfs") ||
 702	    !strcmp(sb->s_type->name, "tracefs") ||
 703	    !strcmp(sb->s_type->name, "binder") ||
 704	    !strcmp(sb->s_type->name, "bpf") ||
 705	    !strcmp(sb->s_type->name, "pstore") ||
 706	    !strcmp(sb->s_type->name, "securityfs"))
 707		sbsec->flags |= SE_SBGENFS;
 708
 709	if (!strcmp(sb->s_type->name, "sysfs") ||
 710	    !strcmp(sb->s_type->name, "cgroup") ||
 711	    !strcmp(sb->s_type->name, "cgroup2"))
 712		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 713
 714	if (!sbsec->behavior) {
 715		/*
 716		 * Determine the labeling behavior to use for this
 717		 * filesystem type.
 718		 */
 719		rc = security_fs_use(&selinux_state, sb);
 720		if (rc) {
 721			pr_warn("%s: security_fs_use(%s) returned %d\n",
 
 722					__func__, sb->s_type->name, rc);
 723			goto out;
 724		}
 725	}
 726
 727	/*
 728	 * If this is a user namespace mount and the filesystem type is not
 729	 * explicitly whitelisted, then no contexts are allowed on the command
 730	 * line and security labels must be ignored.
 731	 */
 732	if (sb->s_user_ns != &init_user_ns &&
 733	    strcmp(sb->s_type->name, "tmpfs") &&
 734	    strcmp(sb->s_type->name, "ramfs") &&
 735	    strcmp(sb->s_type->name, "devpts") &&
 736	    strcmp(sb->s_type->name, "overlay")) {
 737		if (context_sid || fscontext_sid || rootcontext_sid ||
 738		    defcontext_sid) {
 739			rc = -EACCES;
 740			goto out;
 741		}
 742		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 743			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 744			rc = security_transition_sid(&selinux_state,
 745						     current_sid(),
 746						     current_sid(),
 747						     SECCLASS_FILE, NULL,
 748						     &sbsec->mntpoint_sid);
 749			if (rc)
 750				goto out;
 751		}
 752		goto out_set_opts;
 753	}
 754
 755	/* sets the context of the superblock for the fs being mounted. */
 756	if (fscontext_sid) {
 757		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 758		if (rc)
 759			goto out;
 760
 761		sbsec->sid = fscontext_sid;
 762	}
 763
 764	/*
 765	 * Switch to using mount point labeling behavior.
 766	 * sets the label used on all file below the mountpoint, and will set
 767	 * the superblock context if not already set.
 768	 */
 769	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 770		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 771		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 772	}
 773
 774	if (context_sid) {
 775		if (!fscontext_sid) {
 776			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 777							  cred);
 778			if (rc)
 779				goto out;
 780			sbsec->sid = context_sid;
 781		} else {
 782			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 783							     cred);
 784			if (rc)
 785				goto out;
 786		}
 787		if (!rootcontext_sid)
 788			rootcontext_sid = context_sid;
 789
 790		sbsec->mntpoint_sid = context_sid;
 791		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 792	}
 793
 794	if (rootcontext_sid) {
 795		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 796						     cred);
 797		if (rc)
 798			goto out;
 799
 800		root_isec->sid = rootcontext_sid;
 801		root_isec->initialized = LABEL_INITIALIZED;
 802	}
 803
 804	if (defcontext_sid) {
 805		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 806			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 807			rc = -EINVAL;
 808			pr_warn("SELinux: defcontext option is "
 809			       "invalid for this filesystem type\n");
 810			goto out;
 811		}
 812
 813		if (defcontext_sid != sbsec->def_sid) {
 814			rc = may_context_mount_inode_relabel(defcontext_sid,
 815							     sbsec, cred);
 816			if (rc)
 817				goto out;
 818		}
 819
 820		sbsec->def_sid = defcontext_sid;
 821	}
 822
 823out_set_opts:
 824	rc = sb_finish_set_opts(sb);
 825out:
 826	mutex_unlock(&sbsec->lock);
 827	return rc;
 828out_double_mount:
 829	rc = -EINVAL;
 830	pr_warn("SELinux: mount invalid.  Same superblock, different "
 831	       "security settings for (dev %s, type %s)\n", sb->s_id,
 832	       sb->s_type->name);
 833	goto out;
 834}
 835
 836static int selinux_cmp_sb_context(const struct super_block *oldsb,
 837				    const struct super_block *newsb)
 838{
 839	struct superblock_security_struct *old = selinux_superblock(oldsb);
 840	struct superblock_security_struct *new = selinux_superblock(newsb);
 841	char oldflags = old->flags & SE_MNTMASK;
 842	char newflags = new->flags & SE_MNTMASK;
 843
 844	if (oldflags != newflags)
 845		goto mismatch;
 846	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 847		goto mismatch;
 848	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 849		goto mismatch;
 850	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 851		goto mismatch;
 852	if (oldflags & ROOTCONTEXT_MNT) {
 853		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 854		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 855		if (oldroot->sid != newroot->sid)
 856			goto mismatch;
 857	}
 858	return 0;
 859mismatch:
 860	pr_warn("SELinux: mount invalid.  Same superblock, "
 861			    "different security settings for (dev %s, "
 862			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 863	return -EBUSY;
 864}
 865
 866static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 867					struct super_block *newsb,
 868					unsigned long kern_flags,
 869					unsigned long *set_kern_flags)
 870{
 871	int rc = 0;
 872	const struct superblock_security_struct *oldsbsec =
 873						selinux_superblock(oldsb);
 874	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 875
 876	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 877	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 878	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 879
 880	/*
 881	 * if the parent was able to be mounted it clearly had no special lsm
 882	 * mount options.  thus we can safely deal with this superblock later
 883	 */
 884	if (!selinux_initialized(&selinux_state))
 885		return 0;
 886
 887	/*
 888	 * Specifying internal flags without providing a place to
 889	 * place the results is not allowed.
 890	 */
 891	if (kern_flags && !set_kern_flags)
 892		return -EINVAL;
 893
 894	/* how can we clone if the old one wasn't set up?? */
 895	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 896
 897	/* if fs is reusing a sb, make sure that the contexts match */
 898	if (newsbsec->flags & SE_SBINITIALIZED) {
 899		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 900			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 901		return selinux_cmp_sb_context(oldsb, newsb);
 902	}
 903
 904	mutex_lock(&newsbsec->lock);
 905
 906	newsbsec->flags = oldsbsec->flags;
 907
 908	newsbsec->sid = oldsbsec->sid;
 909	newsbsec->def_sid = oldsbsec->def_sid;
 910	newsbsec->behavior = oldsbsec->behavior;
 911
 912	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 913		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 914		rc = security_fs_use(&selinux_state, newsb);
 915		if (rc)
 916			goto out;
 917	}
 918
 919	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 920		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 921		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 922	}
 923
 924	if (set_context) {
 925		u32 sid = oldsbsec->mntpoint_sid;
 926
 927		if (!set_fscontext)
 928			newsbsec->sid = sid;
 929		if (!set_rootcontext) {
 930			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 931			newisec->sid = sid;
 932		}
 933		newsbsec->mntpoint_sid = sid;
 934	}
 935	if (set_rootcontext) {
 936		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 937		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 938
 939		newisec->sid = oldisec->sid;
 940	}
 941
 942	sb_finish_set_opts(newsb);
 943out:
 944	mutex_unlock(&newsbsec->lock);
 945	return rc;
 946}
 947
 948/*
 949 * NOTE: the caller is resposible for freeing the memory even if on error.
 950 */
 951static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 952{
 953	struct selinux_mnt_opts *opts = *mnt_opts;
 954	u32 *dst_sid;
 955	int rc;
 
 956
 957	if (token == Opt_seclabel)
 958		/* eaten and completely ignored */
 959		return 0;
 960	if (!s)
 961		return -EINVAL;
 962
 963	if (!selinux_initialized(&selinux_state)) {
 964		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
 965		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966	}
 967
 968	if (!opts) {
 969		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
 970		if (!opts)
 971			return -ENOMEM;
 972		*mnt_opts = opts;
 973	}
 974
 975	switch (token) {
 976	case Opt_context:
 977		if (opts->context_sid || opts->defcontext_sid)
 978			goto err;
 979		dst_sid = &opts->context_sid;
 980		break;
 981	case Opt_fscontext:
 982		if (opts->fscontext_sid)
 983			goto err;
 984		dst_sid = &opts->fscontext_sid;
 985		break;
 986	case Opt_rootcontext:
 987		if (opts->rootcontext_sid)
 988			goto err;
 989		dst_sid = &opts->rootcontext_sid;
 990		break;
 991	case Opt_defcontext:
 992		if (opts->context_sid || opts->defcontext_sid)
 993			goto err;
 994		dst_sid = &opts->defcontext_sid;
 995		break;
 996	default:
 997		WARN_ON(1);
 998		return -EINVAL;
 999	}
1000	rc = security_context_str_to_sid(&selinux_state, s, dst_sid, GFP_KERNEL);
1001	if (rc)
1002		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1003			s, rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004	return rc;
 
 
 
 
 
 
 
 
 
1005
1006err:
1007	pr_warn(SEL_MOUNT_FAIL_MSG);
1008	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009}
1010
1011static int show_sid(struct seq_file *m, u32 sid)
 
1012{
1013	char *context = NULL;
1014	u32 len;
1015	int rc;
1016
1017	rc = security_sid_to_context(&selinux_state, sid,
1018					     &context, &len);
1019	if (!rc) {
1020		bool has_comma = strchr(context, ',');
1021
1022		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023		if (has_comma)
1024			seq_putc(m, '\"');
1025		seq_escape(m, context, "\"\n\\");
1026		if (has_comma)
1027			seq_putc(m, '\"');
1028	}
1029	kfree(context);
1030	return rc;
1031}
1032
1033static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1034{
1035	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1036	int rc;
1037
1038	if (!(sbsec->flags & SE_SBINITIALIZED))
1039		return 0;
 
 
 
 
 
1040
1041	if (!selinux_initialized(&selinux_state))
1042		return 0;
1043
1044	if (sbsec->flags & FSCONTEXT_MNT) {
1045		seq_putc(m, ',');
1046		seq_puts(m, FSCONTEXT_STR);
1047		rc = show_sid(m, sbsec->sid);
1048		if (rc)
1049			return rc;
1050	}
1051	if (sbsec->flags & CONTEXT_MNT) {
1052		seq_putc(m, ',');
1053		seq_puts(m, CONTEXT_STR);
1054		rc = show_sid(m, sbsec->mntpoint_sid);
1055		if (rc)
1056			return rc;
1057	}
1058	if (sbsec->flags & DEFCONTEXT_MNT) {
1059		seq_putc(m, ',');
1060		seq_puts(m, DEFCONTEXT_STR);
1061		rc = show_sid(m, sbsec->def_sid);
1062		if (rc)
1063			return rc;
1064	}
1065	if (sbsec->flags & ROOTCONTEXT_MNT) {
1066		struct dentry *root = sb->s_root;
1067		struct inode_security_struct *isec = backing_inode_security(root);
1068		seq_putc(m, ',');
1069		seq_puts(m, ROOTCONTEXT_STR);
1070		rc = show_sid(m, isec->sid);
1071		if (rc)
1072			return rc;
1073	}
1074	if (sbsec->flags & SBLABEL_MNT) {
1075		seq_putc(m, ',');
1076		seq_puts(m, SECLABEL_STR);
1077	}
1078	return 0;
1079}
1080
1081static inline u16 inode_mode_to_security_class(umode_t mode)
1082{
1083	switch (mode & S_IFMT) {
1084	case S_IFSOCK:
1085		return SECCLASS_SOCK_FILE;
1086	case S_IFLNK:
1087		return SECCLASS_LNK_FILE;
1088	case S_IFREG:
1089		return SECCLASS_FILE;
1090	case S_IFBLK:
1091		return SECCLASS_BLK_FILE;
1092	case S_IFDIR:
1093		return SECCLASS_DIR;
1094	case S_IFCHR:
1095		return SECCLASS_CHR_FILE;
1096	case S_IFIFO:
1097		return SECCLASS_FIFO_FILE;
1098
1099	}
1100
1101	return SECCLASS_FILE;
1102}
1103
1104static inline int default_protocol_stream(int protocol)
1105{
1106	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1107		protocol == IPPROTO_MPTCP);
1108}
1109
1110static inline int default_protocol_dgram(int protocol)
1111{
1112	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1113}
1114
1115static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1116{
1117	int extsockclass = selinux_policycap_extsockclass();
1118
1119	switch (family) {
1120	case PF_UNIX:
1121		switch (type) {
1122		case SOCK_STREAM:
1123		case SOCK_SEQPACKET:
1124			return SECCLASS_UNIX_STREAM_SOCKET;
1125		case SOCK_DGRAM:
1126		case SOCK_RAW:
1127			return SECCLASS_UNIX_DGRAM_SOCKET;
1128		}
1129		break;
1130	case PF_INET:
1131	case PF_INET6:
1132		switch (type) {
1133		case SOCK_STREAM:
1134		case SOCK_SEQPACKET:
1135			if (default_protocol_stream(protocol))
1136				return SECCLASS_TCP_SOCKET;
1137			else if (extsockclass && protocol == IPPROTO_SCTP)
1138				return SECCLASS_SCTP_SOCKET;
1139			else
1140				return SECCLASS_RAWIP_SOCKET;
1141		case SOCK_DGRAM:
1142			if (default_protocol_dgram(protocol))
1143				return SECCLASS_UDP_SOCKET;
1144			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1145						  protocol == IPPROTO_ICMPV6))
1146				return SECCLASS_ICMP_SOCKET;
1147			else
1148				return SECCLASS_RAWIP_SOCKET;
1149		case SOCK_DCCP:
1150			return SECCLASS_DCCP_SOCKET;
1151		default:
1152			return SECCLASS_RAWIP_SOCKET;
1153		}
1154		break;
1155	case PF_NETLINK:
1156		switch (protocol) {
1157		case NETLINK_ROUTE:
1158			return SECCLASS_NETLINK_ROUTE_SOCKET;
1159		case NETLINK_SOCK_DIAG:
1160			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1161		case NETLINK_NFLOG:
1162			return SECCLASS_NETLINK_NFLOG_SOCKET;
1163		case NETLINK_XFRM:
1164			return SECCLASS_NETLINK_XFRM_SOCKET;
1165		case NETLINK_SELINUX:
1166			return SECCLASS_NETLINK_SELINUX_SOCKET;
1167		case NETLINK_ISCSI:
1168			return SECCLASS_NETLINK_ISCSI_SOCKET;
1169		case NETLINK_AUDIT:
1170			return SECCLASS_NETLINK_AUDIT_SOCKET;
1171		case NETLINK_FIB_LOOKUP:
1172			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1173		case NETLINK_CONNECTOR:
1174			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1175		case NETLINK_NETFILTER:
1176			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1177		case NETLINK_DNRTMSG:
1178			return SECCLASS_NETLINK_DNRT_SOCKET;
1179		case NETLINK_KOBJECT_UEVENT:
1180			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1181		case NETLINK_GENERIC:
1182			return SECCLASS_NETLINK_GENERIC_SOCKET;
1183		case NETLINK_SCSITRANSPORT:
1184			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1185		case NETLINK_RDMA:
1186			return SECCLASS_NETLINK_RDMA_SOCKET;
1187		case NETLINK_CRYPTO:
1188			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1189		default:
1190			return SECCLASS_NETLINK_SOCKET;
1191		}
1192	case PF_PACKET:
1193		return SECCLASS_PACKET_SOCKET;
1194	case PF_KEY:
1195		return SECCLASS_KEY_SOCKET;
1196	case PF_APPLETALK:
1197		return SECCLASS_APPLETALK_SOCKET;
1198	}
1199
1200	if (extsockclass) {
1201		switch (family) {
1202		case PF_AX25:
1203			return SECCLASS_AX25_SOCKET;
1204		case PF_IPX:
1205			return SECCLASS_IPX_SOCKET;
1206		case PF_NETROM:
1207			return SECCLASS_NETROM_SOCKET;
1208		case PF_ATMPVC:
1209			return SECCLASS_ATMPVC_SOCKET;
1210		case PF_X25:
1211			return SECCLASS_X25_SOCKET;
1212		case PF_ROSE:
1213			return SECCLASS_ROSE_SOCKET;
1214		case PF_DECnet:
1215			return SECCLASS_DECNET_SOCKET;
1216		case PF_ATMSVC:
1217			return SECCLASS_ATMSVC_SOCKET;
1218		case PF_RDS:
1219			return SECCLASS_RDS_SOCKET;
1220		case PF_IRDA:
1221			return SECCLASS_IRDA_SOCKET;
1222		case PF_PPPOX:
1223			return SECCLASS_PPPOX_SOCKET;
1224		case PF_LLC:
1225			return SECCLASS_LLC_SOCKET;
1226		case PF_CAN:
1227			return SECCLASS_CAN_SOCKET;
1228		case PF_TIPC:
1229			return SECCLASS_TIPC_SOCKET;
1230		case PF_BLUETOOTH:
1231			return SECCLASS_BLUETOOTH_SOCKET;
1232		case PF_IUCV:
1233			return SECCLASS_IUCV_SOCKET;
1234		case PF_RXRPC:
1235			return SECCLASS_RXRPC_SOCKET;
1236		case PF_ISDN:
1237			return SECCLASS_ISDN_SOCKET;
1238		case PF_PHONET:
1239			return SECCLASS_PHONET_SOCKET;
1240		case PF_IEEE802154:
1241			return SECCLASS_IEEE802154_SOCKET;
1242		case PF_CAIF:
1243			return SECCLASS_CAIF_SOCKET;
1244		case PF_ALG:
1245			return SECCLASS_ALG_SOCKET;
1246		case PF_NFC:
1247			return SECCLASS_NFC_SOCKET;
1248		case PF_VSOCK:
1249			return SECCLASS_VSOCK_SOCKET;
1250		case PF_KCM:
1251			return SECCLASS_KCM_SOCKET;
1252		case PF_QIPCRTR:
1253			return SECCLASS_QIPCRTR_SOCKET;
1254		case PF_SMC:
1255			return SECCLASS_SMC_SOCKET;
1256		case PF_XDP:
1257			return SECCLASS_XDP_SOCKET;
1258		case PF_MCTP:
1259			return SECCLASS_MCTP_SOCKET;
1260#if PF_MAX > 46
1261#error New address family defined, please update this function.
1262#endif
1263		}
1264	}
1265
1266	return SECCLASS_SOCKET;
1267}
1268
1269static int selinux_genfs_get_sid(struct dentry *dentry,
1270				 u16 tclass,
1271				 u16 flags,
1272				 u32 *sid)
1273{
1274	int rc;
1275	struct super_block *sb = dentry->d_sb;
1276	char *buffer, *path;
1277
1278	buffer = (char *)__get_free_page(GFP_KERNEL);
1279	if (!buffer)
1280		return -ENOMEM;
1281
1282	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1283	if (IS_ERR(path))
1284		rc = PTR_ERR(path);
1285	else {
1286		if (flags & SE_SBPROC) {
1287			/* each process gets a /proc/PID/ entry. Strip off the
1288			 * PID part to get a valid selinux labeling.
1289			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1290			while (path[1] >= '0' && path[1] <= '9') {
1291				path[1] = '/';
1292				path++;
1293			}
1294		}
1295		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1296					path, tclass, sid);
1297		if (rc == -ENOENT) {
1298			/* No match in policy, mark as unlabeled. */
1299			*sid = SECINITSID_UNLABELED;
1300			rc = 0;
1301		}
1302	}
1303	free_page((unsigned long)buffer);
1304	return rc;
1305}
1306
1307static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1308				  u32 def_sid, u32 *sid)
1309{
1310#define INITCONTEXTLEN 255
1311	char *context;
1312	unsigned int len;
1313	int rc;
1314
1315	len = INITCONTEXTLEN;
1316	context = kmalloc(len + 1, GFP_NOFS);
1317	if (!context)
1318		return -ENOMEM;
1319
1320	context[len] = '\0';
1321	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1322	if (rc == -ERANGE) {
1323		kfree(context);
1324
1325		/* Need a larger buffer.  Query for the right size. */
1326		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1327		if (rc < 0)
1328			return rc;
1329
1330		len = rc;
1331		context = kmalloc(len + 1, GFP_NOFS);
1332		if (!context)
1333			return -ENOMEM;
1334
1335		context[len] = '\0';
1336		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1337				    context, len);
1338	}
1339	if (rc < 0) {
1340		kfree(context);
1341		if (rc != -ENODATA) {
1342			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1343				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1344			return rc;
1345		}
1346		*sid = def_sid;
1347		return 0;
1348	}
1349
1350	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1351					     def_sid, GFP_NOFS);
1352	if (rc) {
1353		char *dev = inode->i_sb->s_id;
1354		unsigned long ino = inode->i_ino;
1355
1356		if (rc == -EINVAL) {
1357			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1358					      ino, dev, context);
1359		} else {
1360			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1361				__func__, context, -rc, dev, ino);
1362		}
1363	}
1364	kfree(context);
1365	return 0;
1366}
1367
1368/* The inode's security attributes must be initialized before first use. */
1369static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1370{
1371	struct superblock_security_struct *sbsec = NULL;
1372	struct inode_security_struct *isec = selinux_inode(inode);
1373	u32 task_sid, sid = 0;
1374	u16 sclass;
1375	struct dentry *dentry;
 
 
 
1376	int rc = 0;
1377
1378	if (isec->initialized == LABEL_INITIALIZED)
1379		return 0;
1380
1381	spin_lock(&isec->lock);
1382	if (isec->initialized == LABEL_INITIALIZED)
1383		goto out_unlock;
1384
1385	if (isec->sclass == SECCLASS_FILE)
1386		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1387
1388	sbsec = selinux_superblock(inode->i_sb);
1389	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1390		/* Defer initialization until selinux_complete_init,
1391		   after the initial policy is loaded and the security
1392		   server is ready to handle calls. */
1393		spin_lock(&sbsec->isec_lock);
1394		if (list_empty(&isec->list))
1395			list_add(&isec->list, &sbsec->isec_head);
1396		spin_unlock(&sbsec->isec_lock);
1397		goto out_unlock;
1398	}
1399
1400	sclass = isec->sclass;
1401	task_sid = isec->task_sid;
1402	sid = isec->sid;
1403	isec->initialized = LABEL_PENDING;
1404	spin_unlock(&isec->lock);
1405
1406	switch (sbsec->behavior) {
1407	case SECURITY_FS_USE_NATIVE:
1408		break;
1409	case SECURITY_FS_USE_XATTR:
1410		if (!(inode->i_opflags & IOP_XATTR)) {
1411			sid = sbsec->def_sid;
1412			break;
1413		}
 
1414		/* Need a dentry, since the xattr API requires one.
1415		   Life would be simpler if we could just pass the inode. */
1416		if (opt_dentry) {
1417			/* Called from d_instantiate or d_splice_alias. */
1418			dentry = dget(opt_dentry);
1419		} else {
1420			/*
1421			 * Called from selinux_complete_init, try to find a dentry.
1422			 * Some filesystems really want a connected one, so try
1423			 * that first.  We could split SECURITY_FS_USE_XATTR in
1424			 * two, depending upon that...
1425			 */
1426			dentry = d_find_alias(inode);
1427			if (!dentry)
1428				dentry = d_find_any_alias(inode);
1429		}
1430		if (!dentry) {
1431			/*
1432			 * this is can be hit on boot when a file is accessed
1433			 * before the policy is loaded.  When we load policy we
1434			 * may find inodes that have no dentry on the
1435			 * sbsec->isec_head list.  No reason to complain as these
1436			 * will get fixed up the next time we go through
1437			 * inode_doinit with a dentry, before these inodes could
1438			 * be used again by userspace.
1439			 */
1440			goto out_invalid;
1441		}
1442
1443		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1444					    &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1445		dput(dentry);
1446		if (rc)
1447			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448		break;
1449	case SECURITY_FS_USE_TASK:
1450		sid = task_sid;
1451		break;
1452	case SECURITY_FS_USE_TRANS:
1453		/* Default to the fs SID. */
1454		sid = sbsec->sid;
1455
1456		/* Try to obtain a transition SID. */
1457		rc = security_transition_sid(&selinux_state, task_sid, sid,
1458					     sclass, NULL, &sid);
 
1459		if (rc)
1460			goto out;
 
1461		break;
1462	case SECURITY_FS_USE_MNTPOINT:
1463		sid = sbsec->mntpoint_sid;
1464		break;
1465	default:
1466		/* Default to the fs superblock SID. */
1467		sid = sbsec->sid;
1468
1469		if ((sbsec->flags & SE_SBGENFS) &&
1470		     (!S_ISLNK(inode->i_mode) ||
1471		      selinux_policycap_genfs_seclabel_symlinks())) {
1472			/* We must have a dentry to determine the label on
1473			 * procfs inodes */
1474			if (opt_dentry) {
1475				/* Called from d_instantiate or
1476				 * d_splice_alias. */
1477				dentry = dget(opt_dentry);
1478			} else {
1479				/* Called from selinux_complete_init, try to
1480				 * find a dentry.  Some filesystems really want
1481				 * a connected one, so try that first.
1482				 */
1483				dentry = d_find_alias(inode);
1484				if (!dentry)
1485					dentry = d_find_any_alias(inode);
1486			}
1487			/*
1488			 * This can be hit on boot when a file is accessed
1489			 * before the policy is loaded.  When we load policy we
1490			 * may find inodes that have no dentry on the
1491			 * sbsec->isec_head list.  No reason to complain as
1492			 * these will get fixed up the next time we go through
1493			 * inode_doinit() with a dentry, before these inodes
1494			 * could be used again by userspace.
1495			 */
1496			if (!dentry)
1497				goto out_invalid;
1498			rc = selinux_genfs_get_sid(dentry, sclass,
 
1499						   sbsec->flags, &sid);
1500			if (rc) {
1501				dput(dentry);
1502				goto out;
1503			}
1504
1505			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1506			    (inode->i_opflags & IOP_XATTR)) {
1507				rc = inode_doinit_use_xattr(inode, dentry,
1508							    sid, &sid);
1509				if (rc) {
1510					dput(dentry);
1511					goto out;
1512				}
1513			}
1514			dput(dentry);
 
 
 
1515		}
1516		break;
1517	}
1518
1519out:
1520	spin_lock(&isec->lock);
1521	if (isec->initialized == LABEL_PENDING) {
1522		if (rc) {
1523			isec->initialized = LABEL_INVALID;
1524			goto out_unlock;
1525		}
1526		isec->initialized = LABEL_INITIALIZED;
1527		isec->sid = sid;
1528	}
1529
1530out_unlock:
1531	spin_unlock(&isec->lock);
 
 
 
1532	return rc;
1533
1534out_invalid:
1535	spin_lock(&isec->lock);
1536	if (isec->initialized == LABEL_PENDING) {
1537		isec->initialized = LABEL_INVALID;
1538		isec->sid = sid;
1539	}
1540	spin_unlock(&isec->lock);
1541	return 0;
1542}
1543
1544/* Convert a Linux signal to an access vector. */
1545static inline u32 signal_to_av(int sig)
1546{
1547	u32 perm = 0;
1548
1549	switch (sig) {
1550	case SIGCHLD:
1551		/* Commonly granted from child to parent. */
1552		perm = PROCESS__SIGCHLD;
1553		break;
1554	case SIGKILL:
1555		/* Cannot be caught or ignored */
1556		perm = PROCESS__SIGKILL;
1557		break;
1558	case SIGSTOP:
1559		/* Cannot be caught or ignored */
1560		perm = PROCESS__SIGSTOP;
1561		break;
1562	default:
1563		/* All other signals. */
1564		perm = PROCESS__SIGNAL;
1565		break;
1566	}
1567
1568	return perm;
1569}
1570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1571#if CAP_LAST_CAP > 63
1572#error Fix SELinux to handle capabilities > 63.
1573#endif
1574
1575/* Check whether a task is allowed to use a capability. */
1576static int cred_has_capability(const struct cred *cred,
1577			       int cap, unsigned int opts, bool initns)
1578{
1579	struct common_audit_data ad;
1580	struct av_decision avd;
1581	u16 sclass;
1582	u32 sid = cred_sid(cred);
1583	u32 av = CAP_TO_MASK(cap);
1584	int rc;
1585
1586	ad.type = LSM_AUDIT_DATA_CAP;
1587	ad.u.cap = cap;
1588
1589	switch (CAP_TO_INDEX(cap)) {
1590	case 0:
1591		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1592		break;
1593	case 1:
1594		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1595		break;
1596	default:
1597		pr_err("SELinux:  out of range capability %d\n", cap);
 
1598		BUG();
1599		return -EINVAL;
1600	}
1601
1602	rc = avc_has_perm_noaudit(&selinux_state,
1603				  sid, sid, sclass, av, 0, &avd);
1604	if (!(opts & CAP_OPT_NOAUDIT)) {
1605		int rc2 = avc_audit(&selinux_state,
1606				    sid, sid, sclass, av, &avd, rc, &ad);
1607		if (rc2)
1608			return rc2;
1609	}
1610	return rc;
1611}
1612
 
 
 
 
 
 
 
 
 
 
1613/* Check whether a task has a particular permission to an inode.
1614   The 'adp' parameter is optional and allows other audit
1615   data to be passed (e.g. the dentry). */
1616static int inode_has_perm(const struct cred *cred,
1617			  struct inode *inode,
1618			  u32 perms,
1619			  struct common_audit_data *adp)
1620{
1621	struct inode_security_struct *isec;
1622	u32 sid;
1623
1624	validate_creds(cred);
1625
1626	if (unlikely(IS_PRIVATE(inode)))
1627		return 0;
1628
1629	sid = cred_sid(cred);
1630	isec = selinux_inode(inode);
1631
1632	return avc_has_perm(&selinux_state,
1633			    sid, isec->sid, isec->sclass, perms, adp);
1634}
1635
1636/* Same as inode_has_perm, but pass explicit audit data containing
1637   the dentry to help the auditing code to more easily generate the
1638   pathname if needed. */
1639static inline int dentry_has_perm(const struct cred *cred,
1640				  struct dentry *dentry,
1641				  u32 av)
1642{
1643	struct inode *inode = d_backing_inode(dentry);
1644	struct common_audit_data ad;
1645
1646	ad.type = LSM_AUDIT_DATA_DENTRY;
1647	ad.u.dentry = dentry;
1648	__inode_security_revalidate(inode, dentry, true);
1649	return inode_has_perm(cred, inode, av, &ad);
1650}
1651
1652/* Same as inode_has_perm, but pass explicit audit data containing
1653   the path to help the auditing code to more easily generate the
1654   pathname if needed. */
1655static inline int path_has_perm(const struct cred *cred,
1656				const struct path *path,
1657				u32 av)
1658{
1659	struct inode *inode = d_backing_inode(path->dentry);
1660	struct common_audit_data ad;
1661
1662	ad.type = LSM_AUDIT_DATA_PATH;
1663	ad.u.path = *path;
1664	__inode_security_revalidate(inode, path->dentry, true);
1665	return inode_has_perm(cred, inode, av, &ad);
1666}
1667
1668/* Same as path_has_perm, but uses the inode from the file struct. */
1669static inline int file_path_has_perm(const struct cred *cred,
1670				     struct file *file,
1671				     u32 av)
1672{
1673	struct common_audit_data ad;
1674
1675	ad.type = LSM_AUDIT_DATA_FILE;
1676	ad.u.file = file;
1677	return inode_has_perm(cred, file_inode(file), av, &ad);
1678}
1679
1680#ifdef CONFIG_BPF_SYSCALL
1681static int bpf_fd_pass(struct file *file, u32 sid);
1682#endif
1683
1684/* Check whether a task can use an open file descriptor to
1685   access an inode in a given way.  Check access to the
1686   descriptor itself, and then use dentry_has_perm to
1687   check a particular permission to the file.
1688   Access to the descriptor is implicitly granted if it
1689   has the same SID as the process.  If av is zero, then
1690   access to the file is not checked, e.g. for cases
1691   where only the descriptor is affected like seek. */
1692static int file_has_perm(const struct cred *cred,
1693			 struct file *file,
1694			 u32 av)
1695{
1696	struct file_security_struct *fsec = selinux_file(file);
1697	struct inode *inode = file_inode(file);
1698	struct common_audit_data ad;
1699	u32 sid = cred_sid(cred);
1700	int rc;
1701
1702	ad.type = LSM_AUDIT_DATA_FILE;
1703	ad.u.file = file;
1704
1705	if (sid != fsec->sid) {
1706		rc = avc_has_perm(&selinux_state,
1707				  sid, fsec->sid,
1708				  SECCLASS_FD,
1709				  FD__USE,
1710				  &ad);
1711		if (rc)
1712			goto out;
1713	}
1714
1715#ifdef CONFIG_BPF_SYSCALL
1716	rc = bpf_fd_pass(file, cred_sid(cred));
1717	if (rc)
1718		return rc;
1719#endif
1720
1721	/* av is zero if only checking access to the descriptor. */
1722	rc = 0;
1723	if (av)
1724		rc = inode_has_perm(cred, inode, av, &ad);
1725
1726out:
1727	return rc;
1728}
1729
1730/*
1731 * Determine the label for an inode that might be unioned.
1732 */
1733static int
1734selinux_determine_inode_label(const struct task_security_struct *tsec,
1735				 struct inode *dir,
1736				 const struct qstr *name, u16 tclass,
1737				 u32 *_new_isid)
1738{
1739	const struct superblock_security_struct *sbsec =
1740						selinux_superblock(dir->i_sb);
1741
1742	if ((sbsec->flags & SE_SBINITIALIZED) &&
1743	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1744		*_new_isid = sbsec->mntpoint_sid;
1745	} else if ((sbsec->flags & SBLABEL_MNT) &&
1746		   tsec->create_sid) {
1747		*_new_isid = tsec->create_sid;
1748	} else {
1749		const struct inode_security_struct *dsec = inode_security(dir);
1750		return security_transition_sid(&selinux_state, tsec->sid,
1751					       dsec->sid, tclass,
1752					       name, _new_isid);
1753	}
1754
1755	return 0;
1756}
1757
1758/* Check whether a task can create a file. */
1759static int may_create(struct inode *dir,
1760		      struct dentry *dentry,
1761		      u16 tclass)
1762{
1763	const struct task_security_struct *tsec = selinux_cred(current_cred());
1764	struct inode_security_struct *dsec;
1765	struct superblock_security_struct *sbsec;
1766	u32 sid, newsid;
1767	struct common_audit_data ad;
1768	int rc;
1769
1770	dsec = inode_security(dir);
1771	sbsec = selinux_superblock(dir->i_sb);
1772
1773	sid = tsec->sid;
1774
1775	ad.type = LSM_AUDIT_DATA_DENTRY;
1776	ad.u.dentry = dentry;
1777
1778	rc = avc_has_perm(&selinux_state,
1779			  sid, dsec->sid, SECCLASS_DIR,
1780			  DIR__ADD_NAME | DIR__SEARCH,
1781			  &ad);
1782	if (rc)
1783		return rc;
1784
1785	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1786					   &newsid);
1787	if (rc)
1788		return rc;
1789
1790	rc = avc_has_perm(&selinux_state,
1791			  sid, newsid, tclass, FILE__CREATE, &ad);
1792	if (rc)
1793		return rc;
1794
1795	return avc_has_perm(&selinux_state,
1796			    newsid, sbsec->sid,
1797			    SECCLASS_FILESYSTEM,
1798			    FILESYSTEM__ASSOCIATE, &ad);
1799}
1800
 
 
 
 
 
 
 
 
 
1801#define MAY_LINK	0
1802#define MAY_UNLINK	1
1803#define MAY_RMDIR	2
1804
1805/* Check whether a task can link, unlink, or rmdir a file/directory. */
1806static int may_link(struct inode *dir,
1807		    struct dentry *dentry,
1808		    int kind)
1809
1810{
1811	struct inode_security_struct *dsec, *isec;
1812	struct common_audit_data ad;
1813	u32 sid = current_sid();
1814	u32 av;
1815	int rc;
1816
1817	dsec = inode_security(dir);
1818	isec = backing_inode_security(dentry);
1819
1820	ad.type = LSM_AUDIT_DATA_DENTRY;
1821	ad.u.dentry = dentry;
1822
1823	av = DIR__SEARCH;
1824	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1825	rc = avc_has_perm(&selinux_state,
1826			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1827	if (rc)
1828		return rc;
1829
1830	switch (kind) {
1831	case MAY_LINK:
1832		av = FILE__LINK;
1833		break;
1834	case MAY_UNLINK:
1835		av = FILE__UNLINK;
1836		break;
1837	case MAY_RMDIR:
1838		av = DIR__RMDIR;
1839		break;
1840	default:
1841		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1842			__func__, kind);
1843		return 0;
1844	}
1845
1846	rc = avc_has_perm(&selinux_state,
1847			  sid, isec->sid, isec->sclass, av, &ad);
1848	return rc;
1849}
1850
1851static inline int may_rename(struct inode *old_dir,
1852			     struct dentry *old_dentry,
1853			     struct inode *new_dir,
1854			     struct dentry *new_dentry)
1855{
1856	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1857	struct common_audit_data ad;
1858	u32 sid = current_sid();
1859	u32 av;
1860	int old_is_dir, new_is_dir;
1861	int rc;
1862
1863	old_dsec = inode_security(old_dir);
1864	old_isec = backing_inode_security(old_dentry);
1865	old_is_dir = d_is_dir(old_dentry);
1866	new_dsec = inode_security(new_dir);
1867
1868	ad.type = LSM_AUDIT_DATA_DENTRY;
1869
1870	ad.u.dentry = old_dentry;
1871	rc = avc_has_perm(&selinux_state,
1872			  sid, old_dsec->sid, SECCLASS_DIR,
1873			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1874	if (rc)
1875		return rc;
1876	rc = avc_has_perm(&selinux_state,
1877			  sid, old_isec->sid,
1878			  old_isec->sclass, FILE__RENAME, &ad);
1879	if (rc)
1880		return rc;
1881	if (old_is_dir && new_dir != old_dir) {
1882		rc = avc_has_perm(&selinux_state,
1883				  sid, old_isec->sid,
1884				  old_isec->sclass, DIR__REPARENT, &ad);
1885		if (rc)
1886			return rc;
1887	}
1888
1889	ad.u.dentry = new_dentry;
1890	av = DIR__ADD_NAME | DIR__SEARCH;
1891	if (d_is_positive(new_dentry))
1892		av |= DIR__REMOVE_NAME;
1893	rc = avc_has_perm(&selinux_state,
1894			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1895	if (rc)
1896		return rc;
1897	if (d_is_positive(new_dentry)) {
1898		new_isec = backing_inode_security(new_dentry);
1899		new_is_dir = d_is_dir(new_dentry);
1900		rc = avc_has_perm(&selinux_state,
1901				  sid, new_isec->sid,
1902				  new_isec->sclass,
1903				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1904		if (rc)
1905			return rc;
1906	}
1907
1908	return 0;
1909}
1910
1911/* Check whether a task can perform a filesystem operation. */
1912static int superblock_has_perm(const struct cred *cred,
1913			       struct super_block *sb,
1914			       u32 perms,
1915			       struct common_audit_data *ad)
1916{
1917	struct superblock_security_struct *sbsec;
1918	u32 sid = cred_sid(cred);
1919
1920	sbsec = selinux_superblock(sb);
1921	return avc_has_perm(&selinux_state,
1922			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1923}
1924
1925/* Convert a Linux mode and permission mask to an access vector. */
1926static inline u32 file_mask_to_av(int mode, int mask)
1927{
1928	u32 av = 0;
1929
1930	if (!S_ISDIR(mode)) {
1931		if (mask & MAY_EXEC)
1932			av |= FILE__EXECUTE;
1933		if (mask & MAY_READ)
1934			av |= FILE__READ;
1935
1936		if (mask & MAY_APPEND)
1937			av |= FILE__APPEND;
1938		else if (mask & MAY_WRITE)
1939			av |= FILE__WRITE;
1940
1941	} else {
1942		if (mask & MAY_EXEC)
1943			av |= DIR__SEARCH;
1944		if (mask & MAY_WRITE)
1945			av |= DIR__WRITE;
1946		if (mask & MAY_READ)
1947			av |= DIR__READ;
1948	}
1949
1950	return av;
1951}
1952
1953/* Convert a Linux file to an access vector. */
1954static inline u32 file_to_av(struct file *file)
1955{
1956	u32 av = 0;
1957
1958	if (file->f_mode & FMODE_READ)
1959		av |= FILE__READ;
1960	if (file->f_mode & FMODE_WRITE) {
1961		if (file->f_flags & O_APPEND)
1962			av |= FILE__APPEND;
1963		else
1964			av |= FILE__WRITE;
1965	}
1966	if (!av) {
1967		/*
1968		 * Special file opened with flags 3 for ioctl-only use.
1969		 */
1970		av = FILE__IOCTL;
1971	}
1972
1973	return av;
1974}
1975
1976/*
1977 * Convert a file to an access vector and include the correct
1978 * open permission.
1979 */
1980static inline u32 open_file_to_av(struct file *file)
1981{
1982	u32 av = file_to_av(file);
1983	struct inode *inode = file_inode(file);
1984
1985	if (selinux_policycap_openperm() &&
1986	    inode->i_sb->s_magic != SOCKFS_MAGIC)
1987		av |= FILE__OPEN;
1988
1989	return av;
1990}
1991
1992/* Hook functions begin here. */
1993
1994static int selinux_binder_set_context_mgr(const struct cred *mgr)
1995{
1996	return avc_has_perm(&selinux_state,
1997			    current_sid(), cred_sid(mgr), SECCLASS_BINDER,
 
 
1998			    BINDER__SET_CONTEXT_MGR, NULL);
1999}
2000
2001static int selinux_binder_transaction(const struct cred *from,
2002				      const struct cred *to)
2003{
2004	u32 mysid = current_sid();
2005	u32 fromsid = cred_sid(from);
2006	u32 tosid = cred_sid(to);
2007	int rc;
2008
2009	if (mysid != fromsid) {
2010		rc = avc_has_perm(&selinux_state,
2011				  mysid, fromsid, SECCLASS_BINDER,
2012				  BINDER__IMPERSONATE, NULL);
2013		if (rc)
2014			return rc;
2015	}
2016
2017	return avc_has_perm(&selinux_state, fromsid, tosid,
2018			    SECCLASS_BINDER, BINDER__CALL, NULL);
2019}
2020
2021static int selinux_binder_transfer_binder(const struct cred *from,
2022					  const struct cred *to)
2023{
2024	return avc_has_perm(&selinux_state,
2025			    cred_sid(from), cred_sid(to),
2026			    SECCLASS_BINDER, BINDER__TRANSFER,
 
2027			    NULL);
2028}
2029
2030static int selinux_binder_transfer_file(const struct cred *from,
2031					const struct cred *to,
2032					struct file *file)
2033{
2034	u32 sid = cred_sid(to);
2035	struct file_security_struct *fsec = selinux_file(file);
2036	struct dentry *dentry = file->f_path.dentry;
2037	struct inode_security_struct *isec;
2038	struct common_audit_data ad;
2039	int rc;
2040
2041	ad.type = LSM_AUDIT_DATA_PATH;
2042	ad.u.path = file->f_path;
2043
2044	if (sid != fsec->sid) {
2045		rc = avc_has_perm(&selinux_state,
2046				  sid, fsec->sid,
2047				  SECCLASS_FD,
2048				  FD__USE,
2049				  &ad);
2050		if (rc)
2051			return rc;
2052	}
2053
2054#ifdef CONFIG_BPF_SYSCALL
2055	rc = bpf_fd_pass(file, sid);
2056	if (rc)
2057		return rc;
2058#endif
2059
2060	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2061		return 0;
2062
2063	isec = backing_inode_security(dentry);
2064	return avc_has_perm(&selinux_state,
2065			    sid, isec->sid, isec->sclass, file_to_av(file),
2066			    &ad);
2067}
2068
2069static int selinux_ptrace_access_check(struct task_struct *child,
2070				       unsigned int mode)
2071{
2072	u32 sid = current_sid();
2073	u32 csid = task_sid_obj(child);
2074
2075	if (mode & PTRACE_MODE_READ)
2076		return avc_has_perm(&selinux_state,
2077				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2078
2079	return avc_has_perm(&selinux_state,
2080			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2081}
2082
2083static int selinux_ptrace_traceme(struct task_struct *parent)
2084{
2085	return avc_has_perm(&selinux_state,
2086			    task_sid_obj(parent), task_sid_obj(current),
2087			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2088}
2089
2090static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2091			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2092{
2093	return avc_has_perm(&selinux_state,
2094			    current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2095			    PROCESS__GETCAP, NULL);
2096}
2097
2098static int selinux_capset(struct cred *new, const struct cred *old,
2099			  const kernel_cap_t *effective,
2100			  const kernel_cap_t *inheritable,
2101			  const kernel_cap_t *permitted)
2102{
2103	return avc_has_perm(&selinux_state,
2104			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2105			    PROCESS__SETCAP, NULL);
2106}
2107
2108/*
2109 * (This comment used to live with the selinux_task_setuid hook,
2110 * which was removed).
2111 *
2112 * Since setuid only affects the current process, and since the SELinux
2113 * controls are not based on the Linux identity attributes, SELinux does not
2114 * need to control this operation.  However, SELinux does control the use of
2115 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2116 */
2117
2118static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2119			   int cap, unsigned int opts)
2120{
2121	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2122}
2123
2124static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2125{
2126	const struct cred *cred = current_cred();
2127	int rc = 0;
2128
2129	if (!sb)
2130		return 0;
2131
2132	switch (cmds) {
2133	case Q_SYNC:
2134	case Q_QUOTAON:
2135	case Q_QUOTAOFF:
2136	case Q_SETINFO:
2137	case Q_SETQUOTA:
2138	case Q_XQUOTAOFF:
2139	case Q_XQUOTAON:
2140	case Q_XSETQLIM:
2141		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2142		break;
2143	case Q_GETFMT:
2144	case Q_GETINFO:
2145	case Q_GETQUOTA:
2146	case Q_XGETQUOTA:
2147	case Q_XGETQSTAT:
2148	case Q_XGETQSTATV:
2149	case Q_XGETNEXTQUOTA:
2150		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2151		break;
2152	default:
2153		rc = 0;  /* let the kernel handle invalid cmds */
2154		break;
2155	}
2156	return rc;
2157}
2158
2159static int selinux_quota_on(struct dentry *dentry)
2160{
2161	const struct cred *cred = current_cred();
2162
2163	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2164}
2165
2166static int selinux_syslog(int type)
2167{
 
 
2168	switch (type) {
2169	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2170	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2171		return avc_has_perm(&selinux_state,
2172				    current_sid(), SECINITSID_KERNEL,
2173				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2174	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2175	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2176	/* Set level of messages printed to console */
2177	case SYSLOG_ACTION_CONSOLE_LEVEL:
2178		return avc_has_perm(&selinux_state,
2179				    current_sid(), SECINITSID_KERNEL,
2180				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2181				    NULL);
2182	}
2183	/* All other syslog types */
2184	return avc_has_perm(&selinux_state,
2185			    current_sid(), SECINITSID_KERNEL,
2186			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2187}
2188
2189/*
2190 * Check that a process has enough memory to allocate a new virtual
2191 * mapping. 0 means there is enough memory for the allocation to
2192 * succeed and -ENOMEM implies there is not.
2193 *
2194 * Do not audit the selinux permission check, as this is applied to all
2195 * processes that allocate mappings.
2196 */
2197static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2198{
2199	int rc, cap_sys_admin = 0;
2200
2201	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2202				 CAP_OPT_NOAUDIT, true);
2203	if (rc == 0)
2204		cap_sys_admin = 1;
2205
2206	return cap_sys_admin;
2207}
2208
2209/* binprm security operations */
2210
2211static u32 ptrace_parent_sid(void)
2212{
2213	u32 sid = 0;
2214	struct task_struct *tracer;
2215
2216	rcu_read_lock();
2217	tracer = ptrace_parent(current);
2218	if (tracer)
2219		sid = task_sid_obj(tracer);
2220	rcu_read_unlock();
2221
2222	return sid;
2223}
2224
2225static int check_nnp_nosuid(const struct linux_binprm *bprm,
2226			    const struct task_security_struct *old_tsec,
2227			    const struct task_security_struct *new_tsec)
2228{
2229	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2230	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2231	int rc;
2232	u32 av;
2233
2234	if (!nnp && !nosuid)
2235		return 0; /* neither NNP nor nosuid */
2236
2237	if (new_tsec->sid == old_tsec->sid)
2238		return 0; /* No change in credentials */
2239
2240	/*
2241	 * If the policy enables the nnp_nosuid_transition policy capability,
2242	 * then we permit transitions under NNP or nosuid if the
2243	 * policy allows the corresponding permission between
2244	 * the old and new contexts.
2245	 */
2246	if (selinux_policycap_nnp_nosuid_transition()) {
2247		av = 0;
 
 
 
 
 
2248		if (nnp)
2249			av |= PROCESS2__NNP_TRANSITION;
2250		if (nosuid)
2251			av |= PROCESS2__NOSUID_TRANSITION;
2252		rc = avc_has_perm(&selinux_state,
2253				  old_tsec->sid, new_tsec->sid,
2254				  SECCLASS_PROCESS2, av, NULL);
2255		if (!rc)
2256			return 0;
2257	}
2258
2259	/*
2260	 * We also permit NNP or nosuid transitions to bounded SIDs,
2261	 * i.e. SIDs that are guaranteed to only be allowed a subset
2262	 * of the permissions of the current SID.
2263	 */
2264	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2265					 new_tsec->sid);
2266	if (!rc)
2267		return 0;
2268
2269	/*
2270	 * On failure, preserve the errno values for NNP vs nosuid.
2271	 * NNP:  Operation not permitted for caller.
2272	 * nosuid:  Permission denied to file.
2273	 */
2274	if (nnp)
2275		return -EPERM;
2276	return -EACCES;
2277}
2278
2279static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2280{
2281	const struct task_security_struct *old_tsec;
2282	struct task_security_struct *new_tsec;
2283	struct inode_security_struct *isec;
2284	struct common_audit_data ad;
2285	struct inode *inode = file_inode(bprm->file);
2286	int rc;
2287
2288	/* SELinux context only depends on initial program or script and not
2289	 * the script interpreter */
 
 
2290
2291	old_tsec = selinux_cred(current_cred());
2292	new_tsec = selinux_cred(bprm->cred);
2293	isec = inode_security(inode);
2294
2295	/* Default to the current task SID. */
2296	new_tsec->sid = old_tsec->sid;
2297	new_tsec->osid = old_tsec->sid;
2298
2299	/* Reset fs, key, and sock SIDs on execve. */
2300	new_tsec->create_sid = 0;
2301	new_tsec->keycreate_sid = 0;
2302	new_tsec->sockcreate_sid = 0;
2303
2304	if (old_tsec->exec_sid) {
2305		new_tsec->sid = old_tsec->exec_sid;
2306		/* Reset exec SID on execve. */
2307		new_tsec->exec_sid = 0;
2308
2309		/* Fail on NNP or nosuid if not an allowed transition. */
2310		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2311		if (rc)
2312			return rc;
2313	} else {
2314		/* Check for a default transition on this program. */
2315		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2316					     isec->sid, SECCLASS_PROCESS, NULL,
2317					     &new_tsec->sid);
2318		if (rc)
2319			return rc;
2320
2321		/*
2322		 * Fallback to old SID on NNP or nosuid if not an allowed
2323		 * transition.
2324		 */
2325		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2326		if (rc)
2327			new_tsec->sid = old_tsec->sid;
2328	}
2329
2330	ad.type = LSM_AUDIT_DATA_FILE;
2331	ad.u.file = bprm->file;
2332
2333	if (new_tsec->sid == old_tsec->sid) {
2334		rc = avc_has_perm(&selinux_state,
2335				  old_tsec->sid, isec->sid,
2336				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2337		if (rc)
2338			return rc;
2339	} else {
2340		/* Check permissions for the transition. */
2341		rc = avc_has_perm(&selinux_state,
2342				  old_tsec->sid, new_tsec->sid,
2343				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2344		if (rc)
2345			return rc;
2346
2347		rc = avc_has_perm(&selinux_state,
2348				  new_tsec->sid, isec->sid,
2349				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2350		if (rc)
2351			return rc;
2352
2353		/* Check for shared state */
2354		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2355			rc = avc_has_perm(&selinux_state,
2356					  old_tsec->sid, new_tsec->sid,
2357					  SECCLASS_PROCESS, PROCESS__SHARE,
2358					  NULL);
2359			if (rc)
2360				return -EPERM;
2361		}
2362
2363		/* Make sure that anyone attempting to ptrace over a task that
2364		 * changes its SID has the appropriate permit */
2365		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2366			u32 ptsid = ptrace_parent_sid();
 
 
 
 
 
 
 
 
 
 
 
 
2367			if (ptsid != 0) {
2368				rc = avc_has_perm(&selinux_state,
2369						  ptsid, new_tsec->sid,
2370						  SECCLASS_PROCESS,
2371						  PROCESS__PTRACE, NULL);
2372				if (rc)
2373					return -EPERM;
2374			}
2375		}
2376
2377		/* Clear any possibly unsafe personality bits on exec: */
2378		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
2379
 
 
 
 
 
 
 
 
 
 
 
 
 
2380		/* Enable secure mode for SIDs transitions unless
2381		   the noatsecure permission is granted between
2382		   the two SIDs, i.e. ahp returns 0. */
2383		rc = avc_has_perm(&selinux_state,
2384				  old_tsec->sid, new_tsec->sid,
2385				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2386				  NULL);
2387		bprm->secureexec |= !!rc;
2388	}
2389
2390	return 0;
2391}
2392
2393static int match_file(const void *p, struct file *file, unsigned fd)
2394{
2395	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2396}
2397
2398/* Derived from fs/exec.c:flush_old_files. */
2399static inline void flush_unauthorized_files(const struct cred *cred,
2400					    struct files_struct *files)
2401{
2402	struct file *file, *devnull = NULL;
2403	struct tty_struct *tty;
2404	int drop_tty = 0;
2405	unsigned n;
2406
2407	tty = get_current_tty();
2408	if (tty) {
2409		spin_lock(&tty->files_lock);
2410		if (!list_empty(&tty->tty_files)) {
2411			struct tty_file_private *file_priv;
2412
2413			/* Revalidate access to controlling tty.
2414			   Use file_path_has_perm on the tty path directly
2415			   rather than using file_has_perm, as this particular
2416			   open file may belong to another process and we are
2417			   only interested in the inode-based check here. */
2418			file_priv = list_first_entry(&tty->tty_files,
2419						struct tty_file_private, list);
2420			file = file_priv->file;
2421			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2422				drop_tty = 1;
2423		}
2424		spin_unlock(&tty->files_lock);
2425		tty_kref_put(tty);
2426	}
2427	/* Reset controlling tty. */
2428	if (drop_tty)
2429		no_tty();
2430
2431	/* Revalidate access to inherited open files. */
2432	n = iterate_fd(files, 0, match_file, cred);
2433	if (!n) /* none found? */
2434		return;
2435
2436	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2437	if (IS_ERR(devnull))
2438		devnull = NULL;
2439	/* replace all the matching ones with this */
2440	do {
2441		replace_fd(n - 1, devnull, 0);
2442	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2443	if (devnull)
2444		fput(devnull);
2445}
2446
2447/*
2448 * Prepare a process for imminent new credential changes due to exec
2449 */
2450static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2451{
2452	struct task_security_struct *new_tsec;
2453	struct rlimit *rlim, *initrlim;
2454	int rc, i;
2455
2456	new_tsec = selinux_cred(bprm->cred);
2457	if (new_tsec->sid == new_tsec->osid)
2458		return;
2459
2460	/* Close files for which the new task SID is not authorized. */
2461	flush_unauthorized_files(bprm->cred, current->files);
2462
2463	/* Always clear parent death signal on SID transitions. */
2464	current->pdeath_signal = 0;
2465
2466	/* Check whether the new SID can inherit resource limits from the old
2467	 * SID.  If not, reset all soft limits to the lower of the current
2468	 * task's hard limit and the init task's soft limit.
2469	 *
2470	 * Note that the setting of hard limits (even to lower them) can be
2471	 * controlled by the setrlimit check.  The inclusion of the init task's
2472	 * soft limit into the computation is to avoid resetting soft limits
2473	 * higher than the default soft limit for cases where the default is
2474	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2475	 */
2476	rc = avc_has_perm(&selinux_state,
2477			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2478			  PROCESS__RLIMITINH, NULL);
2479	if (rc) {
2480		/* protect against do_prlimit() */
2481		task_lock(current);
2482		for (i = 0; i < RLIM_NLIMITS; i++) {
2483			rlim = current->signal->rlim + i;
2484			initrlim = init_task.signal->rlim + i;
2485			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2486		}
2487		task_unlock(current);
2488		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2489			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2490	}
2491}
2492
2493/*
2494 * Clean up the process immediately after the installation of new credentials
2495 * due to exec
2496 */
2497static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2498{
2499	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2500	u32 osid, sid;
2501	int rc;
2502
2503	osid = tsec->osid;
2504	sid = tsec->sid;
2505
2506	if (sid == osid)
2507		return;
2508
2509	/* Check whether the new SID can inherit signal state from the old SID.
2510	 * If not, clear itimers to avoid subsequent signal generation and
2511	 * flush and unblock signals.
2512	 *
2513	 * This must occur _after_ the task SID has been updated so that any
2514	 * kill done after the flush will be checked against the new SID.
2515	 */
2516	rc = avc_has_perm(&selinux_state,
2517			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2518	if (rc) {
2519		clear_itimer();
2520
2521		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
 
2522		if (!fatal_signal_pending(current)) {
2523			flush_sigqueue(&current->pending);
2524			flush_sigqueue(&current->signal->shared_pending);
2525			flush_signal_handlers(current, 1);
2526			sigemptyset(&current->blocked);
2527			recalc_sigpending();
2528		}
2529		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2530	}
2531
2532	/* Wake up the parent if it is waiting so that it can recheck
2533	 * wait permission to the new task SID. */
2534	read_lock(&tasklist_lock);
2535	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2536	read_unlock(&tasklist_lock);
2537}
2538
2539/* superblock security operations */
2540
2541static int selinux_sb_alloc_security(struct super_block *sb)
2542{
2543	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2544
2545	mutex_init(&sbsec->lock);
2546	INIT_LIST_HEAD(&sbsec->isec_head);
2547	spin_lock_init(&sbsec->isec_lock);
2548	sbsec->sid = SECINITSID_UNLABELED;
2549	sbsec->def_sid = SECINITSID_FILE;
2550	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2551
2552	return 0;
 
 
2553}
2554
2555static inline int opt_len(const char *s)
2556{
2557	bool open_quote = false;
2558	int len;
2559	char c;
2560
2561	for (len = 0; (c = s[len]) != '\0'; len++) {
2562		if (c == '"')
2563			open_quote = !open_quote;
2564		if (c == ',' && !open_quote)
2565			break;
2566	}
2567	return len;
2568}
2569
2570static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2571{
2572	char *from = options;
2573	char *to = options;
2574	bool first = true;
2575	int rc;
 
 
2576
2577	while (1) {
2578		int len = opt_len(from);
2579		int token;
2580		char *arg = NULL;
 
 
 
 
 
 
2581
2582		token = match_opt_prefix(from, len, &arg);
 
 
 
2583
2584		if (token != Opt_error) {
2585			char *p, *q;
 
 
 
2586
2587			/* strip quotes */
2588			if (arg) {
2589				for (p = q = arg; p < from + len; p++) {
2590					char c = *p;
2591					if (c != '"')
2592						*q++ = c;
2593				}
2594				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2595				if (!arg) {
2596					rc = -ENOMEM;
2597					goto free_opt;
2598				}
2599			}
2600			rc = selinux_add_opt(token, arg, mnt_opts);
2601			kfree(arg);
2602			arg = NULL;
2603			if (unlikely(rc)) {
2604				goto free_opt;
2605			}
2606		} else {
2607			if (!first) {	// copy with preceding comma
2608				from--;
2609				len++;
2610			}
2611			if (to != from)
2612				memmove(to, from, len);
2613			to += len;
2614			first = false;
2615		}
2616		if (!from[len])
2617			break;
2618		from += len + 1;
2619	}
2620	*to = '\0';
2621	return 0;
2622
2623free_opt:
2624	if (*mnt_opts) {
2625		selinux_free_mnt_opts(*mnt_opts);
2626		*mnt_opts = NULL;
2627	}
2628	return rc;
2629}
2630
2631static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2632{
2633	struct selinux_mnt_opts *opts = mnt_opts;
2634	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2635
2636	/*
2637	 * Superblock not initialized (i.e. no options) - reject if any
2638	 * options specified, otherwise accept.
2639	 */
2640	if (!(sbsec->flags & SE_SBINITIALIZED))
2641		return opts ? 1 : 0;
2642
2643	/*
2644	 * Superblock initialized and no options specified - reject if
2645	 * superblock has any options set, otherwise accept.
2646	 */
2647	if (!opts)
2648		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2649
2650	if (opts->fscontext_sid) {
2651		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2652			       opts->fscontext_sid))
2653			return 1;
2654	}
2655	if (opts->context_sid) {
2656		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2657			       opts->context_sid))
2658			return 1;
2659	}
2660	if (opts->rootcontext_sid) {
2661		struct inode_security_struct *root_isec;
2662
2663		root_isec = backing_inode_security(sb->s_root);
2664		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2665			       opts->rootcontext_sid))
2666			return 1;
2667	}
2668	if (opts->defcontext_sid) {
2669		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2670			       opts->defcontext_sid))
2671			return 1;
2672	}
2673	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2674}
2675
2676static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2677{
2678	struct selinux_mnt_opts *opts = mnt_opts;
2679	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 
 
2680
2681	if (!(sbsec->flags & SE_SBINITIALIZED))
2682		return 0;
2683
2684	if (!opts)
2685		return 0;
2686
2687	if (opts->fscontext_sid) {
2688		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2689			       opts->fscontext_sid))
2690			goto out_bad_option;
2691	}
2692	if (opts->context_sid) {
2693		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2694			       opts->context_sid))
2695			goto out_bad_option;
2696	}
2697	if (opts->rootcontext_sid) {
2698		struct inode_security_struct *root_isec;
2699		root_isec = backing_inode_security(sb->s_root);
2700		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2701			       opts->rootcontext_sid))
2702			goto out_bad_option;
2703	}
2704	if (opts->defcontext_sid) {
2705		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2706			       opts->defcontext_sid))
2707			goto out_bad_option;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708	}
2709	return 0;
2710
 
 
 
 
 
 
2711out_bad_option:
2712	pr_warn("SELinux: unable to change security options "
2713	       "during remount (dev %s, type=%s)\n", sb->s_id,
2714	       sb->s_type->name);
2715	return -EINVAL;
2716}
2717
2718static int selinux_sb_kern_mount(struct super_block *sb)
2719{
2720	const struct cred *cred = current_cred();
2721	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2722
2723	ad.type = LSM_AUDIT_DATA_DENTRY;
2724	ad.u.dentry = sb->s_root;
2725	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2726}
2727
2728static int selinux_sb_statfs(struct dentry *dentry)
2729{
2730	const struct cred *cred = current_cred();
2731	struct common_audit_data ad;
2732
2733	ad.type = LSM_AUDIT_DATA_DENTRY;
2734	ad.u.dentry = dentry->d_sb->s_root;
2735	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2736}
2737
2738static int selinux_mount(const char *dev_name,
2739			 const struct path *path,
2740			 const char *type,
2741			 unsigned long flags,
2742			 void *data)
2743{
2744	const struct cred *cred = current_cred();
2745
2746	if (flags & MS_REMOUNT)
2747		return superblock_has_perm(cred, path->dentry->d_sb,
2748					   FILESYSTEM__REMOUNT, NULL);
2749	else
2750		return path_has_perm(cred, path, FILE__MOUNTON);
2751}
2752
2753static int selinux_move_mount(const struct path *from_path,
2754			      const struct path *to_path)
2755{
2756	const struct cred *cred = current_cred();
2757
2758	return path_has_perm(cred, to_path, FILE__MOUNTON);
2759}
2760
2761static int selinux_umount(struct vfsmount *mnt, int flags)
2762{
2763	const struct cred *cred = current_cred();
2764
2765	return superblock_has_perm(cred, mnt->mnt_sb,
2766				   FILESYSTEM__UNMOUNT, NULL);
2767}
2768
2769static int selinux_fs_context_dup(struct fs_context *fc,
2770				  struct fs_context *src_fc)
2771{
2772	const struct selinux_mnt_opts *src = src_fc->security;
2773
2774	if (!src)
2775		return 0;
2776
2777	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2778	return fc->security ? 0 : -ENOMEM;
2779}
2780
2781static const struct fs_parameter_spec selinux_fs_parameters[] = {
2782	fsparam_string(CONTEXT_STR,	Opt_context),
2783	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2784	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2785	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2786	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2787	{}
2788};
2789
2790static int selinux_fs_context_parse_param(struct fs_context *fc,
2791					  struct fs_parameter *param)
2792{
2793	struct fs_parse_result result;
2794	int opt;
2795
2796	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2797	if (opt < 0)
2798		return opt;
2799
2800	return selinux_add_opt(opt, param->string, &fc->security);
2801}
2802
2803/* inode security operations */
2804
2805static int selinux_inode_alloc_security(struct inode *inode)
2806{
2807	struct inode_security_struct *isec = selinux_inode(inode);
2808	u32 sid = current_sid();
2809
2810	spin_lock_init(&isec->lock);
2811	INIT_LIST_HEAD(&isec->list);
2812	isec->inode = inode;
2813	isec->sid = SECINITSID_UNLABELED;
2814	isec->sclass = SECCLASS_FILE;
2815	isec->task_sid = sid;
2816	isec->initialized = LABEL_INVALID;
2817
2818	return 0;
2819}
2820
2821static void selinux_inode_free_security(struct inode *inode)
2822{
2823	inode_free_security(inode);
2824}
2825
2826static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2827					const struct qstr *name,
2828					const char **xattr_name, void **ctx,
2829					u32 *ctxlen)
2830{
2831	u32 newsid;
2832	int rc;
2833
2834	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2835					   d_inode(dentry->d_parent), name,
2836					   inode_mode_to_security_class(mode),
2837					   &newsid);
2838	if (rc)
2839		return rc;
2840
2841	if (xattr_name)
2842		*xattr_name = XATTR_NAME_SELINUX;
2843
2844	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2845				       ctxlen);
2846}
2847
2848static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2849					  struct qstr *name,
2850					  const struct cred *old,
2851					  struct cred *new)
2852{
2853	u32 newsid;
2854	int rc;
2855	struct task_security_struct *tsec;
2856
2857	rc = selinux_determine_inode_label(selinux_cred(old),
2858					   d_inode(dentry->d_parent), name,
2859					   inode_mode_to_security_class(mode),
2860					   &newsid);
2861	if (rc)
2862		return rc;
2863
2864	tsec = selinux_cred(new);
2865	tsec->create_sid = newsid;
2866	return 0;
2867}
2868
2869static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2870				       const struct qstr *qstr,
2871				       const char **name,
2872				       void **value, size_t *len)
2873{
2874	const struct task_security_struct *tsec = selinux_cred(current_cred());
2875	struct superblock_security_struct *sbsec;
2876	u32 newsid, clen;
2877	int rc;
2878	char *context;
2879
2880	sbsec = selinux_superblock(dir->i_sb);
2881
 
2882	newsid = tsec->create_sid;
2883
2884	rc = selinux_determine_inode_label(tsec, dir, qstr,
 
2885		inode_mode_to_security_class(inode->i_mode),
2886		&newsid);
2887	if (rc)
2888		return rc;
2889
2890	/* Possibly defer initialization to selinux_complete_init. */
2891	if (sbsec->flags & SE_SBINITIALIZED) {
2892		struct inode_security_struct *isec = selinux_inode(inode);
2893		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2894		isec->sid = newsid;
2895		isec->initialized = LABEL_INITIALIZED;
2896	}
2897
2898	if (!selinux_initialized(&selinux_state) ||
2899	    !(sbsec->flags & SBLABEL_MNT))
2900		return -EOPNOTSUPP;
2901
2902	if (name)
2903		*name = XATTR_SELINUX_SUFFIX;
2904
2905	if (value && len) {
2906		rc = security_sid_to_context_force(&selinux_state, newsid,
2907						   &context, &clen);
2908		if (rc)
2909			return rc;
2910		*value = context;
2911		*len = clen;
2912	}
2913
2914	return 0;
2915}
2916
2917static int selinux_inode_init_security_anon(struct inode *inode,
2918					    const struct qstr *name,
2919					    const struct inode *context_inode)
2920{
2921	const struct task_security_struct *tsec = selinux_cred(current_cred());
2922	struct common_audit_data ad;
2923	struct inode_security_struct *isec;
2924	int rc;
2925
2926	if (unlikely(!selinux_initialized(&selinux_state)))
2927		return 0;
2928
2929	isec = selinux_inode(inode);
2930
2931	/*
2932	 * We only get here once per ephemeral inode.  The inode has
2933	 * been initialized via inode_alloc_security but is otherwise
2934	 * untouched.
2935	 */
2936
2937	if (context_inode) {
2938		struct inode_security_struct *context_isec =
2939			selinux_inode(context_inode);
2940		if (context_isec->initialized != LABEL_INITIALIZED) {
2941			pr_err("SELinux:  context_inode is not initialized");
2942			return -EACCES;
2943		}
2944
2945		isec->sclass = context_isec->sclass;
2946		isec->sid = context_isec->sid;
2947	} else {
2948		isec->sclass = SECCLASS_ANON_INODE;
2949		rc = security_transition_sid(
2950			&selinux_state, tsec->sid, tsec->sid,
2951			isec->sclass, name, &isec->sid);
2952		if (rc)
2953			return rc;
2954	}
2955
2956	isec->initialized = LABEL_INITIALIZED;
2957	/*
2958	 * Now that we've initialized security, check whether we're
2959	 * allowed to actually create this type of anonymous inode.
2960	 */
2961
2962	ad.type = LSM_AUDIT_DATA_ANONINODE;
2963	ad.u.anonclass = name ? (const char *)name->name : "?";
2964
2965	return avc_has_perm(&selinux_state,
2966			    tsec->sid,
2967			    isec->sid,
2968			    isec->sclass,
2969			    FILE__CREATE,
2970			    &ad);
2971}
2972
2973static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2974{
2975	return may_create(dir, dentry, SECCLASS_FILE);
2976}
2977
2978static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2979{
2980	return may_link(dir, old_dentry, MAY_LINK);
2981}
2982
2983static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2984{
2985	return may_link(dir, dentry, MAY_UNLINK);
2986}
2987
2988static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2989{
2990	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2991}
2992
2993static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2994{
2995	return may_create(dir, dentry, SECCLASS_DIR);
2996}
2997
2998static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2999{
3000	return may_link(dir, dentry, MAY_RMDIR);
3001}
3002
3003static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3004{
3005	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3006}
3007
3008static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3009				struct inode *new_inode, struct dentry *new_dentry)
3010{
3011	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3012}
3013
3014static int selinux_inode_readlink(struct dentry *dentry)
3015{
3016	const struct cred *cred = current_cred();
3017
3018	return dentry_has_perm(cred, dentry, FILE__READ);
3019}
3020
3021static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3022				     bool rcu)
3023{
3024	const struct cred *cred = current_cred();
3025	struct common_audit_data ad;
3026	struct inode_security_struct *isec;
3027	u32 sid;
3028
3029	validate_creds(cred);
3030
3031	ad.type = LSM_AUDIT_DATA_DENTRY;
3032	ad.u.dentry = dentry;
3033	sid = cred_sid(cred);
3034	isec = inode_security_rcu(inode, rcu);
3035	if (IS_ERR(isec))
3036		return PTR_ERR(isec);
3037
3038	return avc_has_perm(&selinux_state,
3039				  sid, isec->sid, isec->sclass, FILE__READ, &ad);
3040}
3041
3042static noinline int audit_inode_permission(struct inode *inode,
3043					   u32 perms, u32 audited, u32 denied,
3044					   int result)
 
3045{
3046	struct common_audit_data ad;
3047	struct inode_security_struct *isec = selinux_inode(inode);
 
3048
3049	ad.type = LSM_AUDIT_DATA_INODE;
3050	ad.u.inode = inode;
3051
3052	return slow_avc_audit(&selinux_state,
3053			    current_sid(), isec->sid, isec->sclass, perms,
3054			    audited, denied, result, &ad);
 
 
3055}
3056
3057static int selinux_inode_permission(struct inode *inode, int mask)
3058{
3059	const struct cred *cred = current_cred();
3060	u32 perms;
3061	bool from_access;
3062	bool no_block = mask & MAY_NOT_BLOCK;
3063	struct inode_security_struct *isec;
3064	u32 sid;
3065	struct av_decision avd;
3066	int rc, rc2;
3067	u32 audited, denied;
3068
3069	from_access = mask & MAY_ACCESS;
3070	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3071
3072	/* No permission to check.  Existence test. */
3073	if (!mask)
3074		return 0;
3075
3076	validate_creds(cred);
3077
3078	if (unlikely(IS_PRIVATE(inode)))
3079		return 0;
3080
3081	perms = file_mask_to_av(inode->i_mode, mask);
3082
3083	sid = cred_sid(cred);
3084	isec = inode_security_rcu(inode, no_block);
3085	if (IS_ERR(isec))
3086		return PTR_ERR(isec);
3087
3088	rc = avc_has_perm_noaudit(&selinux_state,
3089				  sid, isec->sid, isec->sclass, perms, 0,
3090				  &avd);
3091	audited = avc_audit_required(perms, &avd, rc,
3092				     from_access ? FILE__AUDIT_ACCESS : 0,
3093				     &denied);
3094	if (likely(!audited))
3095		return rc;
3096
3097	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3098	if (rc2)
3099		return rc2;
3100	return rc;
3101}
3102
3103static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3104{
3105	const struct cred *cred = current_cred();
3106	struct inode *inode = d_backing_inode(dentry);
3107	unsigned int ia_valid = iattr->ia_valid;
3108	__u32 av = FILE__WRITE;
3109
3110	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3111	if (ia_valid & ATTR_FORCE) {
3112		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3113			      ATTR_FORCE);
3114		if (!ia_valid)
3115			return 0;
3116	}
3117
3118	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3119			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3120		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3121
3122	if (selinux_policycap_openperm() &&
3123	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3124	    (ia_valid & ATTR_SIZE) &&
3125	    !(ia_valid & ATTR_FILE))
3126		av |= FILE__OPEN;
3127
3128	return dentry_has_perm(cred, dentry, av);
3129}
3130
3131static int selinux_inode_getattr(const struct path *path)
3132{
3133	return path_has_perm(current_cred(), path, FILE__GETATTR);
3134}
3135
3136static bool has_cap_mac_admin(bool audit)
3137{
3138	const struct cred *cred = current_cred();
3139	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3140
3141	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3142		return false;
3143	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3144		return false;
3145	return true;
 
 
 
 
 
 
 
 
 
 
3146}
3147
3148static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3149				  struct dentry *dentry, const char *name,
3150				  const void *value, size_t size, int flags)
3151{
3152	struct inode *inode = d_backing_inode(dentry);
3153	struct inode_security_struct *isec;
3154	struct superblock_security_struct *sbsec;
3155	struct common_audit_data ad;
3156	u32 newsid, sid = current_sid();
3157	int rc = 0;
3158
3159	if (strcmp(name, XATTR_NAME_SELINUX)) {
3160		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3161		if (rc)
3162			return rc;
3163
3164		/* Not an attribute we recognize, so just check the
3165		   ordinary setattr permission. */
3166		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3167	}
3168
3169	if (!selinux_initialized(&selinux_state))
3170		return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3171
3172	sbsec = selinux_superblock(inode->i_sb);
3173	if (!(sbsec->flags & SBLABEL_MNT))
3174		return -EOPNOTSUPP;
3175
3176	if (!inode_owner_or_capable(mnt_userns, inode))
3177		return -EPERM;
3178
3179	ad.type = LSM_AUDIT_DATA_DENTRY;
3180	ad.u.dentry = dentry;
3181
3182	isec = backing_inode_security(dentry);
3183	rc = avc_has_perm(&selinux_state,
3184			  sid, isec->sid, isec->sclass,
3185			  FILE__RELABELFROM, &ad);
3186	if (rc)
3187		return rc;
3188
3189	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3190				     GFP_KERNEL);
3191	if (rc == -EINVAL) {
3192		if (!has_cap_mac_admin(true)) {
3193			struct audit_buffer *ab;
3194			size_t audit_size;
 
3195
3196			/* We strip a nul only if it is at the end, otherwise the
3197			 * context contains a nul and we should audit that */
3198			if (value) {
3199				const char *str = value;
3200
3201				if (str[size - 1] == '\0')
3202					audit_size = size - 1;
3203				else
3204					audit_size = size;
3205			} else {
 
3206				audit_size = 0;
3207			}
3208			ab = audit_log_start(audit_context(),
3209					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3210			if (!ab)
3211				return rc;
3212			audit_log_format(ab, "op=setxattr invalid_context=");
3213			audit_log_n_untrustedstring(ab, value, audit_size);
3214			audit_log_end(ab);
3215
3216			return rc;
3217		}
3218		rc = security_context_to_sid_force(&selinux_state, value,
3219						   size, &newsid);
3220	}
3221	if (rc)
3222		return rc;
3223
3224	rc = avc_has_perm(&selinux_state,
3225			  sid, newsid, isec->sclass,
3226			  FILE__RELABELTO, &ad);
3227	if (rc)
3228		return rc;
3229
3230	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3231					  sid, isec->sclass);
3232	if (rc)
3233		return rc;
3234
3235	return avc_has_perm(&selinux_state,
3236			    newsid,
3237			    sbsec->sid,
3238			    SECCLASS_FILESYSTEM,
3239			    FILESYSTEM__ASSOCIATE,
3240			    &ad);
3241}
3242
3243static int selinux_inode_set_acl(struct user_namespace *mnt_userns,
3244				 struct dentry *dentry, const char *acl_name,
3245				 struct posix_acl *kacl)
3246{
3247	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3248}
3249
3250static int selinux_inode_get_acl(struct user_namespace *mnt_userns,
3251				 struct dentry *dentry, const char *acl_name)
3252{
3253	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_remove_acl(struct user_namespace *mnt_userns,
3257				    struct dentry *dentry, const char *acl_name)
3258{
3259	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3260}
3261
3262static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3263					const void *value, size_t size,
3264					int flags)
3265{
3266	struct inode *inode = d_backing_inode(dentry);
3267	struct inode_security_struct *isec;
3268	u32 newsid;
3269	int rc;
3270
3271	if (strcmp(name, XATTR_NAME_SELINUX)) {
3272		/* Not an attribute we recognize, so nothing to do. */
3273		return;
3274	}
3275
3276	if (!selinux_initialized(&selinux_state)) {
3277		/* If we haven't even been initialized, then we can't validate
3278		 * against a policy, so leave the label as invalid. It may
3279		 * resolve to a valid label on the next revalidation try if
3280		 * we've since initialized.
3281		 */
3282		return;
3283	}
3284
3285	rc = security_context_to_sid_force(&selinux_state, value, size,
3286					   &newsid);
3287	if (rc) {
3288		pr_err("SELinux:  unable to map context to SID"
3289		       "for (%s, %lu), rc=%d\n",
3290		       inode->i_sb->s_id, inode->i_ino, -rc);
3291		return;
3292	}
3293
3294	isec = backing_inode_security(dentry);
3295	spin_lock(&isec->lock);
3296	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3297	isec->sid = newsid;
3298	isec->initialized = LABEL_INITIALIZED;
3299	spin_unlock(&isec->lock);
 
3300}
3301
3302static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3303{
3304	const struct cred *cred = current_cred();
3305
3306	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3307}
3308
3309static int selinux_inode_listxattr(struct dentry *dentry)
3310{
3311	const struct cred *cred = current_cred();
3312
3313	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3314}
3315
3316static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3317				     struct dentry *dentry, const char *name)
3318{
3319	if (strcmp(name, XATTR_NAME_SELINUX)) {
3320		int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3321		if (rc)
3322			return rc;
3323
3324		/* Not an attribute we recognize, so just check the
3325		   ordinary setattr permission. */
3326		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3327	}
3328
3329	if (!selinux_initialized(&selinux_state))
3330		return 0;
3331
3332	/* No one is allowed to remove a SELinux security label.
3333	   You can change the label, but all data must be labeled. */
3334	return -EACCES;
3335}
3336
3337static int selinux_path_notify(const struct path *path, u64 mask,
3338						unsigned int obj_type)
3339{
3340	int ret;
3341	u32 perm;
3342
3343	struct common_audit_data ad;
3344
3345	ad.type = LSM_AUDIT_DATA_PATH;
3346	ad.u.path = *path;
3347
3348	/*
3349	 * Set permission needed based on the type of mark being set.
3350	 * Performs an additional check for sb watches.
3351	 */
3352	switch (obj_type) {
3353	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3354		perm = FILE__WATCH_MOUNT;
3355		break;
3356	case FSNOTIFY_OBJ_TYPE_SB:
3357		perm = FILE__WATCH_SB;
3358		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3359						FILESYSTEM__WATCH, &ad);
3360		if (ret)
3361			return ret;
3362		break;
3363	case FSNOTIFY_OBJ_TYPE_INODE:
3364		perm = FILE__WATCH;
3365		break;
3366	default:
3367		return -EINVAL;
3368	}
3369
3370	/* blocking watches require the file:watch_with_perm permission */
3371	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3372		perm |= FILE__WATCH_WITH_PERM;
3373
3374	/* watches on read-like events need the file:watch_reads permission */
3375	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3376		perm |= FILE__WATCH_READS;
3377
3378	return path_has_perm(current_cred(), path, perm);
3379}
3380
3381/*
3382 * Copy the inode security context value to the user.
3383 *
3384 * Permission check is handled by selinux_inode_getxattr hook.
3385 */
3386static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3387				     struct inode *inode, const char *name,
3388				     void **buffer, bool alloc)
3389{
3390	u32 size;
3391	int error;
3392	char *context = NULL;
3393	struct inode_security_struct *isec;
3394
3395	/*
3396	 * If we're not initialized yet, then we can't validate contexts, so
3397	 * just let vfs_getxattr fall back to using the on-disk xattr.
3398	 */
3399	if (!selinux_initialized(&selinux_state) ||
3400	    strcmp(name, XATTR_SELINUX_SUFFIX))
3401		return -EOPNOTSUPP;
3402
3403	/*
3404	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3405	 * value even if it is not defined by current policy; otherwise,
3406	 * use the in-core value under current policy.
3407	 * Use the non-auditing forms of the permission checks since
3408	 * getxattr may be called by unprivileged processes commonly
3409	 * and lack of permission just means that we fall back to the
3410	 * in-core context value, not a denial.
3411	 */
3412	isec = inode_security(inode);
3413	if (has_cap_mac_admin(false))
3414		error = security_sid_to_context_force(&selinux_state,
3415						      isec->sid, &context,
 
 
 
3416						      &size);
3417	else
3418		error = security_sid_to_context(&selinux_state, isec->sid,
3419						&context, &size);
3420	if (error)
3421		return error;
3422	error = size;
3423	if (alloc) {
3424		*buffer = context;
3425		goto out_nofree;
3426	}
3427	kfree(context);
3428out_nofree:
3429	return error;
3430}
3431
3432static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3433				     const void *value, size_t size, int flags)
3434{
3435	struct inode_security_struct *isec = inode_security_novalidate(inode);
3436	struct superblock_security_struct *sbsec;
3437	u32 newsid;
3438	int rc;
3439
3440	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3441		return -EOPNOTSUPP;
3442
3443	sbsec = selinux_superblock(inode->i_sb);
3444	if (!(sbsec->flags & SBLABEL_MNT))
3445		return -EOPNOTSUPP;
3446
3447	if (!value || !size)
3448		return -EACCES;
3449
3450	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3451				     GFP_KERNEL);
3452	if (rc)
3453		return rc;
3454
3455	spin_lock(&isec->lock);
3456	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3457	isec->sid = newsid;
3458	isec->initialized = LABEL_INITIALIZED;
3459	spin_unlock(&isec->lock);
3460	return 0;
3461}
3462
3463static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3464{
3465	const int len = sizeof(XATTR_NAME_SELINUX);
3466
3467	if (!selinux_initialized(&selinux_state))
3468		return 0;
3469
3470	if (buffer && len <= buffer_size)
3471		memcpy(buffer, XATTR_NAME_SELINUX, len);
3472	return len;
3473}
3474
3475static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3476{
3477	struct inode_security_struct *isec = inode_security_novalidate(inode);
3478	*secid = isec->sid;
3479}
3480
3481static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3482{
3483	u32 sid;
3484	struct task_security_struct *tsec;
3485	struct cred *new_creds = *new;
3486
3487	if (new_creds == NULL) {
3488		new_creds = prepare_creds();
3489		if (!new_creds)
3490			return -ENOMEM;
3491	}
3492
3493	tsec = selinux_cred(new_creds);
3494	/* Get label from overlay inode and set it in create_sid */
3495	selinux_inode_getsecid(d_inode(src), &sid);
3496	tsec->create_sid = sid;
3497	*new = new_creds;
3498	return 0;
3499}
3500
3501static int selinux_inode_copy_up_xattr(const char *name)
3502{
3503	/* The copy_up hook above sets the initial context on an inode, but we
3504	 * don't then want to overwrite it by blindly copying all the lower
3505	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3506	 */
3507	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3508		return 1; /* Discard */
3509	/*
3510	 * Any other attribute apart from SELINUX is not claimed, supported
3511	 * by selinux.
3512	 */
3513	return -EOPNOTSUPP;
3514}
3515
3516/* kernfs node operations */
3517
3518static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3519					struct kernfs_node *kn)
3520{
3521	const struct task_security_struct *tsec = selinux_cred(current_cred());
3522	u32 parent_sid, newsid, clen;
3523	int rc;
3524	char *context;
3525
3526	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3527	if (rc == -ENODATA)
3528		return 0;
3529	else if (rc < 0)
3530		return rc;
3531
3532	clen = (u32)rc;
3533	context = kmalloc(clen, GFP_KERNEL);
3534	if (!context)
3535		return -ENOMEM;
3536
3537	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3538	if (rc < 0) {
3539		kfree(context);
3540		return rc;
3541	}
3542
3543	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3544				     GFP_KERNEL);
3545	kfree(context);
3546	if (rc)
3547		return rc;
3548
3549	if (tsec->create_sid) {
3550		newsid = tsec->create_sid;
3551	} else {
3552		u16 secclass = inode_mode_to_security_class(kn->mode);
3553		struct qstr q;
3554
3555		q.name = kn->name;
3556		q.hash_len = hashlen_string(kn_dir, kn->name);
3557
3558		rc = security_transition_sid(&selinux_state, tsec->sid,
3559					     parent_sid, secclass, &q,
3560					     &newsid);
3561		if (rc)
3562			return rc;
3563	}
3564
3565	rc = security_sid_to_context_force(&selinux_state, newsid,
3566					   &context, &clen);
3567	if (rc)
3568		return rc;
3569
3570	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3571			      XATTR_CREATE);
3572	kfree(context);
3573	return rc;
3574}
3575
3576
3577/* file security operations */
3578
3579static int selinux_revalidate_file_permission(struct file *file, int mask)
3580{
3581	const struct cred *cred = current_cred();
3582	struct inode *inode = file_inode(file);
3583
3584	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3585	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3586		mask |= MAY_APPEND;
3587
3588	return file_has_perm(cred, file,
3589			     file_mask_to_av(inode->i_mode, mask));
3590}
3591
3592static int selinux_file_permission(struct file *file, int mask)
3593{
3594	struct inode *inode = file_inode(file);
3595	struct file_security_struct *fsec = selinux_file(file);
3596	struct inode_security_struct *isec;
3597	u32 sid = current_sid();
3598
3599	if (!mask)
3600		/* No permission to check.  Existence test. */
3601		return 0;
3602
3603	isec = inode_security(inode);
3604	if (sid == fsec->sid && fsec->isid == isec->sid &&
3605	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3606		/* No change since file_open check. */
3607		return 0;
3608
3609	return selinux_revalidate_file_permission(file, mask);
3610}
3611
3612static int selinux_file_alloc_security(struct file *file)
3613{
3614	struct file_security_struct *fsec = selinux_file(file);
3615	u32 sid = current_sid();
3616
3617	fsec->sid = sid;
3618	fsec->fown_sid = sid;
3619
3620	return 0;
 
 
3621}
3622
3623/*
3624 * Check whether a task has the ioctl permission and cmd
3625 * operation to an inode.
3626 */
3627static int ioctl_has_perm(const struct cred *cred, struct file *file,
3628		u32 requested, u16 cmd)
3629{
3630	struct common_audit_data ad;
3631	struct file_security_struct *fsec = selinux_file(file);
3632	struct inode *inode = file_inode(file);
3633	struct inode_security_struct *isec;
3634	struct lsm_ioctlop_audit ioctl;
3635	u32 ssid = cred_sid(cred);
3636	int rc;
3637	u8 driver = cmd >> 8;
3638	u8 xperm = cmd & 0xff;
3639
3640	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3641	ad.u.op = &ioctl;
3642	ad.u.op->cmd = cmd;
3643	ad.u.op->path = file->f_path;
3644
3645	if (ssid != fsec->sid) {
3646		rc = avc_has_perm(&selinux_state,
3647				  ssid, fsec->sid,
3648				SECCLASS_FD,
3649				FD__USE,
3650				&ad);
3651		if (rc)
3652			goto out;
3653	}
3654
3655	if (unlikely(IS_PRIVATE(inode)))
3656		return 0;
3657
3658	isec = inode_security(inode);
3659	rc = avc_has_extended_perms(&selinux_state,
3660				    ssid, isec->sid, isec->sclass,
3661				    requested, driver, xperm, &ad);
3662out:
3663	return rc;
3664}
3665
3666static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3667			      unsigned long arg)
3668{
3669	const struct cred *cred = current_cred();
3670	int error = 0;
3671
3672	switch (cmd) {
3673	case FIONREAD:
 
3674	case FIBMAP:
 
3675	case FIGETBSZ:
 
3676	case FS_IOC_GETFLAGS:
 
3677	case FS_IOC_GETVERSION:
3678		error = file_has_perm(cred, file, FILE__GETATTR);
3679		break;
3680
3681	case FS_IOC_SETFLAGS:
 
3682	case FS_IOC_SETVERSION:
3683		error = file_has_perm(cred, file, FILE__SETATTR);
3684		break;
3685
3686	/* sys_ioctl() checks */
3687	case FIONBIO:
 
3688	case FIOASYNC:
3689		error = file_has_perm(cred, file, 0);
3690		break;
3691
3692	case KDSKBENT:
3693	case KDSKBSENT:
3694		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3695					    CAP_OPT_NONE, true);
3696		break;
3697
3698	case FIOCLEX:
3699	case FIONCLEX:
3700		if (!selinux_policycap_ioctl_skip_cloexec())
3701			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3702		break;
3703
3704	/* default case assumes that the command will go
3705	 * to the file's ioctl() function.
3706	 */
3707	default:
3708		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3709	}
3710	return error;
3711}
3712
3713static int default_noexec __ro_after_init;
3714
3715static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3716{
3717	const struct cred *cred = current_cred();
3718	u32 sid = cred_sid(cred);
3719	int rc = 0;
3720
3721	if (default_noexec &&
3722	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3723				   (!shared && (prot & PROT_WRITE)))) {
3724		/*
3725		 * We are making executable an anonymous mapping or a
3726		 * private file mapping that will also be writable.
3727		 * This has an additional check.
3728		 */
3729		rc = avc_has_perm(&selinux_state,
3730				  sid, sid, SECCLASS_PROCESS,
3731				  PROCESS__EXECMEM, NULL);
3732		if (rc)
3733			goto error;
3734	}
3735
3736	if (file) {
3737		/* read access is always possible with a mapping */
3738		u32 av = FILE__READ;
3739
3740		/* write access only matters if the mapping is shared */
3741		if (shared && (prot & PROT_WRITE))
3742			av |= FILE__WRITE;
3743
3744		if (prot & PROT_EXEC)
3745			av |= FILE__EXECUTE;
3746
3747		return file_has_perm(cred, file, av);
3748	}
3749
3750error:
3751	return rc;
3752}
3753
3754static int selinux_mmap_addr(unsigned long addr)
3755{
3756	int rc = 0;
3757
3758	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3759		u32 sid = current_sid();
3760		rc = avc_has_perm(&selinux_state,
3761				  sid, sid, SECCLASS_MEMPROTECT,
3762				  MEMPROTECT__MMAP_ZERO, NULL);
3763	}
3764
3765	return rc;
3766}
3767
3768static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3769			     unsigned long prot, unsigned long flags)
3770{
3771	struct common_audit_data ad;
3772	int rc;
3773
3774	if (file) {
3775		ad.type = LSM_AUDIT_DATA_FILE;
3776		ad.u.file = file;
3777		rc = inode_has_perm(current_cred(), file_inode(file),
3778				    FILE__MAP, &ad);
3779		if (rc)
3780			return rc;
3781	}
3782
3783	if (checkreqprot_get(&selinux_state))
3784		prot = reqprot;
3785
3786	return file_map_prot_check(file, prot,
3787				   (flags & MAP_TYPE) == MAP_SHARED);
3788}
3789
3790static int selinux_file_mprotect(struct vm_area_struct *vma,
3791				 unsigned long reqprot,
3792				 unsigned long prot)
3793{
3794	const struct cred *cred = current_cred();
3795	u32 sid = cred_sid(cred);
3796
3797	if (checkreqprot_get(&selinux_state))
3798		prot = reqprot;
3799
3800	if (default_noexec &&
3801	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3802		int rc = 0;
3803		if (vma->vm_start >= vma->vm_mm->start_brk &&
3804		    vma->vm_end <= vma->vm_mm->brk) {
3805			rc = avc_has_perm(&selinux_state,
3806					  sid, sid, SECCLASS_PROCESS,
3807					  PROCESS__EXECHEAP, NULL);
3808		} else if (!vma->vm_file &&
3809			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3810			     vma->vm_end >= vma->vm_mm->start_stack) ||
3811			    vma_is_stack_for_current(vma))) {
3812			rc = avc_has_perm(&selinux_state,
3813					  sid, sid, SECCLASS_PROCESS,
3814					  PROCESS__EXECSTACK, NULL);
3815		} else if (vma->vm_file && vma->anon_vma) {
3816			/*
3817			 * We are making executable a file mapping that has
3818			 * had some COW done. Since pages might have been
3819			 * written, check ability to execute the possibly
3820			 * modified content.  This typically should only
3821			 * occur for text relocations.
3822			 */
3823			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3824		}
3825		if (rc)
3826			return rc;
3827	}
3828
3829	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3830}
3831
3832static int selinux_file_lock(struct file *file, unsigned int cmd)
3833{
3834	const struct cred *cred = current_cred();
3835
3836	return file_has_perm(cred, file, FILE__LOCK);
3837}
3838
3839static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3840			      unsigned long arg)
3841{
3842	const struct cred *cred = current_cred();
3843	int err = 0;
3844
3845	switch (cmd) {
3846	case F_SETFL:
3847		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3848			err = file_has_perm(cred, file, FILE__WRITE);
3849			break;
3850		}
3851		fallthrough;
3852	case F_SETOWN:
3853	case F_SETSIG:
3854	case F_GETFL:
3855	case F_GETOWN:
3856	case F_GETSIG:
3857	case F_GETOWNER_UIDS:
3858		/* Just check FD__USE permission */
3859		err = file_has_perm(cred, file, 0);
3860		break;
3861	case F_GETLK:
3862	case F_SETLK:
3863	case F_SETLKW:
3864	case F_OFD_GETLK:
3865	case F_OFD_SETLK:
3866	case F_OFD_SETLKW:
3867#if BITS_PER_LONG == 32
3868	case F_GETLK64:
3869	case F_SETLK64:
3870	case F_SETLKW64:
3871#endif
3872		err = file_has_perm(cred, file, FILE__LOCK);
3873		break;
3874	}
3875
3876	return err;
3877}
3878
3879static void selinux_file_set_fowner(struct file *file)
3880{
3881	struct file_security_struct *fsec;
3882
3883	fsec = selinux_file(file);
3884	fsec->fown_sid = current_sid();
3885}
3886
3887static int selinux_file_send_sigiotask(struct task_struct *tsk,
3888				       struct fown_struct *fown, int signum)
3889{
3890	struct file *file;
3891	u32 sid = task_sid_obj(tsk);
3892	u32 perm;
3893	struct file_security_struct *fsec;
3894
3895	/* struct fown_struct is never outside the context of a struct file */
3896	file = container_of(fown, struct file, f_owner);
3897
3898	fsec = selinux_file(file);
3899
3900	if (!signum)
3901		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3902	else
3903		perm = signal_to_av(signum);
3904
3905	return avc_has_perm(&selinux_state,
3906			    fsec->fown_sid, sid,
3907			    SECCLASS_PROCESS, perm, NULL);
3908}
3909
3910static int selinux_file_receive(struct file *file)
3911{
3912	const struct cred *cred = current_cred();
3913
3914	return file_has_perm(cred, file, file_to_av(file));
3915}
3916
3917static int selinux_file_open(struct file *file)
3918{
3919	struct file_security_struct *fsec;
3920	struct inode_security_struct *isec;
3921
3922	fsec = selinux_file(file);
3923	isec = inode_security(file_inode(file));
3924	/*
3925	 * Save inode label and policy sequence number
3926	 * at open-time so that selinux_file_permission
3927	 * can determine whether revalidation is necessary.
3928	 * Task label is already saved in the file security
3929	 * struct as its SID.
3930	 */
3931	fsec->isid = isec->sid;
3932	fsec->pseqno = avc_policy_seqno(&selinux_state);
3933	/*
3934	 * Since the inode label or policy seqno may have changed
3935	 * between the selinux_inode_permission check and the saving
3936	 * of state above, recheck that access is still permitted.
3937	 * Otherwise, access might never be revalidated against the
3938	 * new inode label or new policy.
3939	 * This check is not redundant - do not remove.
3940	 */
3941	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3942}
3943
3944/* task security operations */
3945
3946static int selinux_task_alloc(struct task_struct *task,
3947			      unsigned long clone_flags)
3948{
3949	u32 sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
3950
3951	return avc_has_perm(&selinux_state,
3952			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3953}
3954
3955/*
3956 * prepare a new set of credentials for modification
3957 */
3958static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3959				gfp_t gfp)
3960{
3961	const struct task_security_struct *old_tsec = selinux_cred(old);
3962	struct task_security_struct *tsec = selinux_cred(new);
3963
3964	*tsec = *old_tsec;
 
 
 
 
 
 
3965	return 0;
3966}
3967
3968/*
3969 * transfer the SELinux data to a blank set of creds
3970 */
3971static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3972{
3973	const struct task_security_struct *old_tsec = selinux_cred(old);
3974	struct task_security_struct *tsec = selinux_cred(new);
3975
3976	*tsec = *old_tsec;
3977}
3978
3979static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3980{
3981	*secid = cred_sid(c);
3982}
3983
3984/*
3985 * set the security data for a kernel service
3986 * - all the creation contexts are set to unlabelled
3987 */
3988static int selinux_kernel_act_as(struct cred *new, u32 secid)
3989{
3990	struct task_security_struct *tsec = selinux_cred(new);
3991	u32 sid = current_sid();
3992	int ret;
3993
3994	ret = avc_has_perm(&selinux_state,
3995			   sid, secid,
3996			   SECCLASS_KERNEL_SERVICE,
3997			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3998			   NULL);
3999	if (ret == 0) {
4000		tsec->sid = secid;
4001		tsec->create_sid = 0;
4002		tsec->keycreate_sid = 0;
4003		tsec->sockcreate_sid = 0;
4004	}
4005	return ret;
4006}
4007
4008/*
4009 * set the file creation context in a security record to the same as the
4010 * objective context of the specified inode
4011 */
4012static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4013{
4014	struct inode_security_struct *isec = inode_security(inode);
4015	struct task_security_struct *tsec = selinux_cred(new);
4016	u32 sid = current_sid();
4017	int ret;
4018
4019	ret = avc_has_perm(&selinux_state,
4020			   sid, isec->sid,
4021			   SECCLASS_KERNEL_SERVICE,
4022			   KERNEL_SERVICE__CREATE_FILES_AS,
4023			   NULL);
4024
4025	if (ret == 0)
4026		tsec->create_sid = isec->sid;
4027	return ret;
4028}
4029
4030static int selinux_kernel_module_request(char *kmod_name)
4031{
 
4032	struct common_audit_data ad;
4033
 
 
4034	ad.type = LSM_AUDIT_DATA_KMOD;
4035	ad.u.kmod_name = kmod_name;
4036
4037	return avc_has_perm(&selinux_state,
4038			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4039			    SYSTEM__MODULE_REQUEST, &ad);
4040}
4041
4042static int selinux_kernel_module_from_file(struct file *file)
4043{
4044	struct common_audit_data ad;
4045	struct inode_security_struct *isec;
4046	struct file_security_struct *fsec;
4047	u32 sid = current_sid();
4048	int rc;
4049
4050	/* init_module */
4051	if (file == NULL)
4052		return avc_has_perm(&selinux_state,
4053				    sid, sid, SECCLASS_SYSTEM,
4054					SYSTEM__MODULE_LOAD, NULL);
4055
4056	/* finit_module */
4057
4058	ad.type = LSM_AUDIT_DATA_FILE;
4059	ad.u.file = file;
4060
4061	fsec = selinux_file(file);
4062	if (sid != fsec->sid) {
4063		rc = avc_has_perm(&selinux_state,
4064				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4065		if (rc)
4066			return rc;
4067	}
4068
4069	isec = inode_security(file_inode(file));
4070	return avc_has_perm(&selinux_state,
4071			    sid, isec->sid, SECCLASS_SYSTEM,
4072				SYSTEM__MODULE_LOAD, &ad);
4073}
4074
4075static int selinux_kernel_read_file(struct file *file,
4076				    enum kernel_read_file_id id,
4077				    bool contents)
4078{
4079	int rc = 0;
4080
4081	switch (id) {
4082	case READING_MODULE:
4083		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4084		break;
4085	default:
4086		break;
4087	}
4088
4089	return rc;
4090}
4091
4092static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4093{
4094	int rc = 0;
4095
4096	switch (id) {
4097	case LOADING_MODULE:
4098		rc = selinux_kernel_module_from_file(NULL);
4099		break;
4100	default:
4101		break;
4102	}
4103
4104	return rc;
4105}
4106
4107static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4108{
4109	return avc_has_perm(&selinux_state,
4110			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4111			    PROCESS__SETPGID, NULL);
4112}
4113
4114static int selinux_task_getpgid(struct task_struct *p)
4115{
4116	return avc_has_perm(&selinux_state,
4117			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4118			    PROCESS__GETPGID, NULL);
4119}
4120
4121static int selinux_task_getsid(struct task_struct *p)
4122{
4123	return avc_has_perm(&selinux_state,
4124			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4125			    PROCESS__GETSESSION, NULL);
4126}
4127
4128static void selinux_current_getsecid_subj(u32 *secid)
4129{
4130	*secid = current_sid();
4131}
4132
4133static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4134{
4135	*secid = task_sid_obj(p);
4136}
4137
4138static int selinux_task_setnice(struct task_struct *p, int nice)
4139{
4140	return avc_has_perm(&selinux_state,
4141			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4142			    PROCESS__SETSCHED, NULL);
4143}
4144
4145static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4146{
4147	return avc_has_perm(&selinux_state,
4148			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4149			    PROCESS__SETSCHED, NULL);
4150}
4151
4152static int selinux_task_getioprio(struct task_struct *p)
4153{
4154	return avc_has_perm(&selinux_state,
4155			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4156			    PROCESS__GETSCHED, NULL);
4157}
4158
4159static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4160				unsigned int flags)
4161{
4162	u32 av = 0;
4163
4164	if (!flags)
4165		return 0;
4166	if (flags & LSM_PRLIMIT_WRITE)
4167		av |= PROCESS__SETRLIMIT;
4168	if (flags & LSM_PRLIMIT_READ)
4169		av |= PROCESS__GETRLIMIT;
4170	return avc_has_perm(&selinux_state,
4171			    cred_sid(cred), cred_sid(tcred),
4172			    SECCLASS_PROCESS, av, NULL);
4173}
4174
4175static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4176		struct rlimit *new_rlim)
4177{
4178	struct rlimit *old_rlim = p->signal->rlim + resource;
4179
4180	/* Control the ability to change the hard limit (whether
4181	   lowering or raising it), so that the hard limit can
4182	   later be used as a safe reset point for the soft limit
4183	   upon context transitions.  See selinux_bprm_committing_creds. */
4184	if (old_rlim->rlim_max != new_rlim->rlim_max)
4185		return avc_has_perm(&selinux_state,
4186				    current_sid(), task_sid_obj(p),
4187				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4188
4189	return 0;
4190}
4191
4192static int selinux_task_setscheduler(struct task_struct *p)
4193{
4194	return avc_has_perm(&selinux_state,
4195			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4196			    PROCESS__SETSCHED, NULL);
4197}
4198
4199static int selinux_task_getscheduler(struct task_struct *p)
4200{
4201	return avc_has_perm(&selinux_state,
4202			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4203			    PROCESS__GETSCHED, NULL);
4204}
4205
4206static int selinux_task_movememory(struct task_struct *p)
4207{
4208	return avc_has_perm(&selinux_state,
4209			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4210			    PROCESS__SETSCHED, NULL);
4211}
4212
4213static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4214				int sig, const struct cred *cred)
4215{
4216	u32 secid;
4217	u32 perm;
 
4218
4219	if (!sig)
4220		perm = PROCESS__SIGNULL; /* null signal; existence test */
4221	else
4222		perm = signal_to_av(sig);
4223	if (!cred)
4224		secid = current_sid();
 
4225	else
4226		secid = cred_sid(cred);
4227	return avc_has_perm(&selinux_state,
4228			    secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4229}
4230
4231static void selinux_task_to_inode(struct task_struct *p,
4232				  struct inode *inode)
4233{
4234	struct inode_security_struct *isec = selinux_inode(inode);
4235	u32 sid = task_sid_obj(p);
4236
4237	spin_lock(&isec->lock);
4238	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4239	isec->sid = sid;
4240	isec->initialized = LABEL_INITIALIZED;
4241	spin_unlock(&isec->lock);
4242}
4243
4244static int selinux_userns_create(const struct cred *cred)
4245{
4246	u32 sid = current_sid();
4247
4248	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_USER_NAMESPACE,
4249						USER_NAMESPACE__CREATE, NULL);
4250}
4251
4252/* Returns error only if unable to parse addresses */
4253static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4254			struct common_audit_data *ad, u8 *proto)
4255{
4256	int offset, ihlen, ret = -EINVAL;
4257	struct iphdr _iph, *ih;
4258
4259	offset = skb_network_offset(skb);
4260	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4261	if (ih == NULL)
4262		goto out;
4263
4264	ihlen = ih->ihl * 4;
4265	if (ihlen < sizeof(_iph))
4266		goto out;
4267
4268	ad->u.net->v4info.saddr = ih->saddr;
4269	ad->u.net->v4info.daddr = ih->daddr;
4270	ret = 0;
4271
4272	if (proto)
4273		*proto = ih->protocol;
4274
4275	switch (ih->protocol) {
4276	case IPPROTO_TCP: {
4277		struct tcphdr _tcph, *th;
4278
4279		if (ntohs(ih->frag_off) & IP_OFFSET)
4280			break;
4281
4282		offset += ihlen;
4283		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4284		if (th == NULL)
4285			break;
4286
4287		ad->u.net->sport = th->source;
4288		ad->u.net->dport = th->dest;
4289		break;
4290	}
4291
4292	case IPPROTO_UDP: {
4293		struct udphdr _udph, *uh;
4294
4295		if (ntohs(ih->frag_off) & IP_OFFSET)
4296			break;
4297
4298		offset += ihlen;
4299		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4300		if (uh == NULL)
4301			break;
4302
4303		ad->u.net->sport = uh->source;
4304		ad->u.net->dport = uh->dest;
4305		break;
4306	}
4307
4308	case IPPROTO_DCCP: {
4309		struct dccp_hdr _dccph, *dh;
4310
4311		if (ntohs(ih->frag_off) & IP_OFFSET)
4312			break;
4313
4314		offset += ihlen;
4315		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316		if (dh == NULL)
4317			break;
4318
4319		ad->u.net->sport = dh->dccph_sport;
4320		ad->u.net->dport = dh->dccph_dport;
4321		break;
4322	}
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325	case IPPROTO_SCTP: {
4326		struct sctphdr _sctph, *sh;
4327
4328		if (ntohs(ih->frag_off) & IP_OFFSET)
4329			break;
4330
4331		offset += ihlen;
4332		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333		if (sh == NULL)
4334			break;
4335
4336		ad->u.net->sport = sh->source;
4337		ad->u.net->dport = sh->dest;
4338		break;
4339	}
4340#endif
4341	default:
4342		break;
4343	}
4344out:
4345	return ret;
4346}
4347
4348#if IS_ENABLED(CONFIG_IPV6)
4349
4350/* Returns error only if unable to parse addresses */
4351static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4352			struct common_audit_data *ad, u8 *proto)
4353{
4354	u8 nexthdr;
4355	int ret = -EINVAL, offset;
4356	struct ipv6hdr _ipv6h, *ip6;
4357	__be16 frag_off;
4358
4359	offset = skb_network_offset(skb);
4360	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4361	if (ip6 == NULL)
4362		goto out;
4363
4364	ad->u.net->v6info.saddr = ip6->saddr;
4365	ad->u.net->v6info.daddr = ip6->daddr;
4366	ret = 0;
4367
4368	nexthdr = ip6->nexthdr;
4369	offset += sizeof(_ipv6h);
4370	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4371	if (offset < 0)
4372		goto out;
4373
4374	if (proto)
4375		*proto = nexthdr;
4376
4377	switch (nexthdr) {
4378	case IPPROTO_TCP: {
4379		struct tcphdr _tcph, *th;
4380
4381		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4382		if (th == NULL)
4383			break;
4384
4385		ad->u.net->sport = th->source;
4386		ad->u.net->dport = th->dest;
4387		break;
4388	}
4389
4390	case IPPROTO_UDP: {
4391		struct udphdr _udph, *uh;
4392
4393		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4394		if (uh == NULL)
4395			break;
4396
4397		ad->u.net->sport = uh->source;
4398		ad->u.net->dport = uh->dest;
4399		break;
4400	}
4401
4402	case IPPROTO_DCCP: {
4403		struct dccp_hdr _dccph, *dh;
4404
4405		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4406		if (dh == NULL)
4407			break;
4408
4409		ad->u.net->sport = dh->dccph_sport;
4410		ad->u.net->dport = dh->dccph_dport;
4411		break;
4412	}
4413
4414#if IS_ENABLED(CONFIG_IP_SCTP)
4415	case IPPROTO_SCTP: {
4416		struct sctphdr _sctph, *sh;
4417
4418		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4419		if (sh == NULL)
4420			break;
4421
4422		ad->u.net->sport = sh->source;
4423		ad->u.net->dport = sh->dest;
4424		break;
4425	}
4426#endif
4427	/* includes fragments */
4428	default:
4429		break;
4430	}
4431out:
4432	return ret;
4433}
4434
4435#endif /* IPV6 */
4436
4437static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4438			     char **_addrp, int src, u8 *proto)
4439{
4440	char *addrp;
4441	int ret;
4442
4443	switch (ad->u.net->family) {
4444	case PF_INET:
4445		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4446		if (ret)
4447			goto parse_error;
4448		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4449				       &ad->u.net->v4info.daddr);
4450		goto okay;
4451
4452#if IS_ENABLED(CONFIG_IPV6)
4453	case PF_INET6:
4454		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4455		if (ret)
4456			goto parse_error;
4457		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4458				       &ad->u.net->v6info.daddr);
4459		goto okay;
4460#endif	/* IPV6 */
4461	default:
4462		addrp = NULL;
4463		goto okay;
4464	}
4465
4466parse_error:
4467	pr_warn(
4468	       "SELinux: failure in selinux_parse_skb(),"
4469	       " unable to parse packet\n");
4470	return ret;
4471
4472okay:
4473	if (_addrp)
4474		*_addrp = addrp;
4475	return 0;
4476}
4477
4478/**
4479 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4480 * @skb: the packet
4481 * @family: protocol family
4482 * @sid: the packet's peer label SID
4483 *
4484 * Description:
4485 * Check the various different forms of network peer labeling and determine
4486 * the peer label/SID for the packet; most of the magic actually occurs in
4487 * the security server function security_net_peersid_cmp().  The function
4488 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4489 * or -EACCES if @sid is invalid due to inconsistencies with the different
4490 * peer labels.
4491 *
4492 */
4493static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4494{
4495	int err;
4496	u32 xfrm_sid;
4497	u32 nlbl_sid;
4498	u32 nlbl_type;
4499
4500	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4501	if (unlikely(err))
4502		return -EACCES;
4503	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4504	if (unlikely(err))
4505		return -EACCES;
4506
4507	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4508					   nlbl_type, xfrm_sid, sid);
4509	if (unlikely(err)) {
4510		pr_warn(
4511		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4512		       " unable to determine packet's peer label\n");
4513		return -EACCES;
4514	}
4515
4516	return 0;
4517}
4518
4519/**
4520 * selinux_conn_sid - Determine the child socket label for a connection
4521 * @sk_sid: the parent socket's SID
4522 * @skb_sid: the packet's SID
4523 * @conn_sid: the resulting connection SID
4524 *
4525 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4526 * combined with the MLS information from @skb_sid in order to create
4527 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4528 * of @sk_sid.  Returns zero on success, negative values on failure.
4529 *
4530 */
4531static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4532{
4533	int err = 0;
4534
4535	if (skb_sid != SECSID_NULL)
4536		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4537					    conn_sid);
4538	else
4539		*conn_sid = sk_sid;
4540
4541	return err;
4542}
4543
4544/* socket security operations */
4545
4546static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4547				 u16 secclass, u32 *socksid)
4548{
4549	if (tsec->sockcreate_sid > SECSID_NULL) {
4550		*socksid = tsec->sockcreate_sid;
4551		return 0;
4552	}
4553
4554	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4555				       secclass, NULL, socksid);
4556}
4557
4558static int sock_has_perm(struct sock *sk, u32 perms)
4559{
4560	struct sk_security_struct *sksec = sk->sk_security;
4561	struct common_audit_data ad;
4562	struct lsm_network_audit net = {0,};
 
4563
4564	if (sksec->sid == SECINITSID_KERNEL)
4565		return 0;
4566
4567	ad.type = LSM_AUDIT_DATA_NET;
4568	ad.u.net = &net;
4569	ad.u.net->sk = sk;
4570
4571	return avc_has_perm(&selinux_state,
4572			    current_sid(), sksec->sid, sksec->sclass, perms,
4573			    &ad);
4574}
4575
4576static int selinux_socket_create(int family, int type,
4577				 int protocol, int kern)
4578{
4579	const struct task_security_struct *tsec = selinux_cred(current_cred());
4580	u32 newsid;
4581	u16 secclass;
4582	int rc;
4583
4584	if (kern)
4585		return 0;
4586
4587	secclass = socket_type_to_security_class(family, type, protocol);
4588	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4589	if (rc)
4590		return rc;
4591
4592	return avc_has_perm(&selinux_state,
4593			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4594}
4595
4596static int selinux_socket_post_create(struct socket *sock, int family,
4597				      int type, int protocol, int kern)
4598{
4599	const struct task_security_struct *tsec = selinux_cred(current_cred());
4600	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4601	struct sk_security_struct *sksec;
4602	u16 sclass = socket_type_to_security_class(family, type, protocol);
4603	u32 sid = SECINITSID_KERNEL;
4604	int err = 0;
4605
4606	if (!kern) {
4607		err = socket_sockcreate_sid(tsec, sclass, &sid);
 
 
 
 
4608		if (err)
4609			return err;
4610	}
4611
4612	isec->sclass = sclass;
4613	isec->sid = sid;
4614	isec->initialized = LABEL_INITIALIZED;
4615
4616	if (sock->sk) {
4617		sksec = sock->sk->sk_security;
4618		sksec->sclass = sclass;
4619		sksec->sid = sid;
4620		/* Allows detection of the first association on this socket */
4621		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4622			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4623
4624		err = selinux_netlbl_socket_post_create(sock->sk, family);
4625	}
4626
4627	return err;
4628}
4629
4630static int selinux_socket_socketpair(struct socket *socka,
4631				     struct socket *sockb)
4632{
4633	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4634	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4635
4636	sksec_a->peer_sid = sksec_b->sid;
4637	sksec_b->peer_sid = sksec_a->sid;
4638
4639	return 0;
4640}
4641
4642/* Range of port numbers used to automatically bind.
4643   Need to determine whether we should perform a name_bind
4644   permission check between the socket and the port number. */
4645
4646static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4647{
4648	struct sock *sk = sock->sk;
4649	struct sk_security_struct *sksec = sk->sk_security;
4650	u16 family;
4651	int err;
4652
4653	err = sock_has_perm(sk, SOCKET__BIND);
4654	if (err)
4655		goto out;
4656
4657	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4658	family = sk->sk_family;
4659	if (family == PF_INET || family == PF_INET6) {
4660		char *addrp;
 
4661		struct common_audit_data ad;
4662		struct lsm_network_audit net = {0,};
4663		struct sockaddr_in *addr4 = NULL;
4664		struct sockaddr_in6 *addr6 = NULL;
4665		u16 family_sa;
4666		unsigned short snum;
4667		u32 sid, node_perm;
4668
4669		/*
4670		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4671		 * that validates multiple binding addresses. Because of this
4672		 * need to check address->sa_family as it is possible to have
4673		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4674		 */
4675		if (addrlen < offsetofend(struct sockaddr, sa_family))
4676			return -EINVAL;
4677		family_sa = address->sa_family;
4678		switch (family_sa) {
4679		case AF_UNSPEC:
4680		case AF_INET:
4681			if (addrlen < sizeof(struct sockaddr_in))
4682				return -EINVAL;
4683			addr4 = (struct sockaddr_in *)address;
4684			if (family_sa == AF_UNSPEC) {
4685				/* see __inet_bind(), we only want to allow
4686				 * AF_UNSPEC if the address is INADDR_ANY
4687				 */
4688				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4689					goto err_af;
4690				family_sa = AF_INET;
4691			}
4692			snum = ntohs(addr4->sin_port);
4693			addrp = (char *)&addr4->sin_addr.s_addr;
4694			break;
4695		case AF_INET6:
4696			if (addrlen < SIN6_LEN_RFC2133)
4697				return -EINVAL;
4698			addr6 = (struct sockaddr_in6 *)address;
4699			snum = ntohs(addr6->sin6_port);
4700			addrp = (char *)&addr6->sin6_addr.s6_addr;
4701			break;
4702		default:
4703			goto err_af;
4704		}
4705
4706		ad.type = LSM_AUDIT_DATA_NET;
4707		ad.u.net = &net;
4708		ad.u.net->sport = htons(snum);
4709		ad.u.net->family = family_sa;
4710
4711		if (snum) {
4712			int low, high;
4713
4714			inet_get_local_port_range(sock_net(sk), &low, &high);
4715
4716			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4717			    snum < low || snum > high) {
4718				err = sel_netport_sid(sk->sk_protocol,
4719						      snum, &sid);
4720				if (err)
4721					goto out;
4722				err = avc_has_perm(&selinux_state,
4723						   sksec->sid, sid,
 
 
 
4724						   sksec->sclass,
4725						   SOCKET__NAME_BIND, &ad);
4726				if (err)
4727					goto out;
4728			}
4729		}
4730
4731		switch (sksec->sclass) {
4732		case SECCLASS_TCP_SOCKET:
4733			node_perm = TCP_SOCKET__NODE_BIND;
4734			break;
4735
4736		case SECCLASS_UDP_SOCKET:
4737			node_perm = UDP_SOCKET__NODE_BIND;
4738			break;
4739
4740		case SECCLASS_DCCP_SOCKET:
4741			node_perm = DCCP_SOCKET__NODE_BIND;
4742			break;
4743
4744		case SECCLASS_SCTP_SOCKET:
4745			node_perm = SCTP_SOCKET__NODE_BIND;
4746			break;
4747
4748		default:
4749			node_perm = RAWIP_SOCKET__NODE_BIND;
4750			break;
4751		}
4752
4753		err = sel_netnode_sid(addrp, family_sa, &sid);
4754		if (err)
4755			goto out;
4756
4757		if (family_sa == AF_INET)
 
 
 
 
 
4758			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4759		else
4760			ad.u.net->v6info.saddr = addr6->sin6_addr;
4761
4762		err = avc_has_perm(&selinux_state,
4763				   sksec->sid, sid,
4764				   sksec->sclass, node_perm, &ad);
4765		if (err)
4766			goto out;
4767	}
4768out:
4769	return err;
4770err_af:
4771	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4772	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4773		return -EINVAL;
4774	return -EAFNOSUPPORT;
4775}
4776
4777/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4778 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4779 */
4780static int selinux_socket_connect_helper(struct socket *sock,
4781					 struct sockaddr *address, int addrlen)
4782{
4783	struct sock *sk = sock->sk;
4784	struct sk_security_struct *sksec = sk->sk_security;
4785	int err;
4786
4787	err = sock_has_perm(sk, SOCKET__CONNECT);
4788	if (err)
4789		return err;
4790	if (addrlen < offsetofend(struct sockaddr, sa_family))
4791		return -EINVAL;
4792
4793	/* connect(AF_UNSPEC) has special handling, as it is a documented
4794	 * way to disconnect the socket
4795	 */
4796	if (address->sa_family == AF_UNSPEC)
4797		return 0;
4798
4799	/*
4800	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4801	 * for the port.
4802	 */
4803	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4804	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4805	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4806		struct common_audit_data ad;
4807		struct lsm_network_audit net = {0,};
4808		struct sockaddr_in *addr4 = NULL;
4809		struct sockaddr_in6 *addr6 = NULL;
4810		unsigned short snum;
4811		u32 sid, perm;
4812
4813		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4814		 * that validates multiple connect addresses. Because of this
4815		 * need to check address->sa_family as it is possible to have
4816		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4817		 */
4818		switch (address->sa_family) {
4819		case AF_INET:
4820			addr4 = (struct sockaddr_in *)address;
4821			if (addrlen < sizeof(struct sockaddr_in))
4822				return -EINVAL;
4823			snum = ntohs(addr4->sin_port);
4824			break;
4825		case AF_INET6:
4826			addr6 = (struct sockaddr_in6 *)address;
4827			if (addrlen < SIN6_LEN_RFC2133)
4828				return -EINVAL;
4829			snum = ntohs(addr6->sin6_port);
4830			break;
4831		default:
4832			/* Note that SCTP services expect -EINVAL, whereas
4833			 * others expect -EAFNOSUPPORT.
4834			 */
4835			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4836				return -EINVAL;
4837			else
4838				return -EAFNOSUPPORT;
4839		}
4840
4841		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4842		if (err)
4843			return err;
4844
4845		switch (sksec->sclass) {
4846		case SECCLASS_TCP_SOCKET:
4847			perm = TCP_SOCKET__NAME_CONNECT;
4848			break;
4849		case SECCLASS_DCCP_SOCKET:
4850			perm = DCCP_SOCKET__NAME_CONNECT;
4851			break;
4852		case SECCLASS_SCTP_SOCKET:
4853			perm = SCTP_SOCKET__NAME_CONNECT;
4854			break;
4855		}
4856
4857		ad.type = LSM_AUDIT_DATA_NET;
4858		ad.u.net = &net;
4859		ad.u.net->dport = htons(snum);
4860		ad.u.net->family = address->sa_family;
4861		err = avc_has_perm(&selinux_state,
4862				   sksec->sid, sid, sksec->sclass, perm, &ad);
4863		if (err)
4864			return err;
4865	}
4866
4867	return 0;
4868}
4869
4870/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4871static int selinux_socket_connect(struct socket *sock,
4872				  struct sockaddr *address, int addrlen)
4873{
4874	int err;
4875	struct sock *sk = sock->sk;
4876
4877	err = selinux_socket_connect_helper(sock, address, addrlen);
4878	if (err)
4879		return err;
4880
4881	return selinux_netlbl_socket_connect(sk, address);
4882}
4883
4884static int selinux_socket_listen(struct socket *sock, int backlog)
4885{
4886	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4887}
4888
4889static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4890{
4891	int err;
4892	struct inode_security_struct *isec;
4893	struct inode_security_struct *newisec;
4894	u16 sclass;
4895	u32 sid;
4896
4897	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4898	if (err)
4899		return err;
4900
4901	isec = inode_security_novalidate(SOCK_INODE(sock));
4902	spin_lock(&isec->lock);
4903	sclass = isec->sclass;
4904	sid = isec->sid;
4905	spin_unlock(&isec->lock);
4906
4907	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4908	newisec->sclass = sclass;
4909	newisec->sid = sid;
 
 
4910	newisec->initialized = LABEL_INITIALIZED;
4911
4912	return 0;
4913}
4914
4915static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4916				  int size)
4917{
4918	return sock_has_perm(sock->sk, SOCKET__WRITE);
4919}
4920
4921static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4922				  int size, int flags)
4923{
4924	return sock_has_perm(sock->sk, SOCKET__READ);
4925}
4926
4927static int selinux_socket_getsockname(struct socket *sock)
4928{
4929	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4930}
4931
4932static int selinux_socket_getpeername(struct socket *sock)
4933{
4934	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4935}
4936
4937static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4938{
4939	int err;
4940
4941	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4942	if (err)
4943		return err;
4944
4945	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4946}
4947
4948static int selinux_socket_getsockopt(struct socket *sock, int level,
4949				     int optname)
4950{
4951	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4952}
4953
4954static int selinux_socket_shutdown(struct socket *sock, int how)
4955{
4956	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4957}
4958
4959static int selinux_socket_unix_stream_connect(struct sock *sock,
4960					      struct sock *other,
4961					      struct sock *newsk)
4962{
4963	struct sk_security_struct *sksec_sock = sock->sk_security;
4964	struct sk_security_struct *sksec_other = other->sk_security;
4965	struct sk_security_struct *sksec_new = newsk->sk_security;
4966	struct common_audit_data ad;
4967	struct lsm_network_audit net = {0,};
4968	int err;
4969
4970	ad.type = LSM_AUDIT_DATA_NET;
4971	ad.u.net = &net;
4972	ad.u.net->sk = other;
4973
4974	err = avc_has_perm(&selinux_state,
4975			   sksec_sock->sid, sksec_other->sid,
4976			   sksec_other->sclass,
4977			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4978	if (err)
4979		return err;
4980
4981	/* server child socket */
4982	sksec_new->peer_sid = sksec_sock->sid;
4983	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4984				    sksec_sock->sid, &sksec_new->sid);
4985	if (err)
4986		return err;
4987
4988	/* connecting socket */
4989	sksec_sock->peer_sid = sksec_new->sid;
4990
4991	return 0;
4992}
4993
4994static int selinux_socket_unix_may_send(struct socket *sock,
4995					struct socket *other)
4996{
4997	struct sk_security_struct *ssec = sock->sk->sk_security;
4998	struct sk_security_struct *osec = other->sk->sk_security;
4999	struct common_audit_data ad;
5000	struct lsm_network_audit net = {0,};
5001
5002	ad.type = LSM_AUDIT_DATA_NET;
5003	ad.u.net = &net;
5004	ad.u.net->sk = other->sk;
5005
5006	return avc_has_perm(&selinux_state,
5007			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5008			    &ad);
5009}
5010
5011static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5012				    char *addrp, u16 family, u32 peer_sid,
5013				    struct common_audit_data *ad)
5014{
5015	int err;
5016	u32 if_sid;
5017	u32 node_sid;
5018
5019	err = sel_netif_sid(ns, ifindex, &if_sid);
5020	if (err)
5021		return err;
5022	err = avc_has_perm(&selinux_state,
5023			   peer_sid, if_sid,
5024			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5025	if (err)
5026		return err;
5027
5028	err = sel_netnode_sid(addrp, family, &node_sid);
5029	if (err)
5030		return err;
5031	return avc_has_perm(&selinux_state,
5032			    peer_sid, node_sid,
5033			    SECCLASS_NODE, NODE__RECVFROM, ad);
5034}
5035
5036static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5037				       u16 family)
5038{
5039	int err = 0;
5040	struct sk_security_struct *sksec = sk->sk_security;
5041	u32 sk_sid = sksec->sid;
5042	struct common_audit_data ad;
5043	struct lsm_network_audit net = {0,};
5044	char *addrp;
5045
5046	ad.type = LSM_AUDIT_DATA_NET;
5047	ad.u.net = &net;
5048	ad.u.net->netif = skb->skb_iif;
5049	ad.u.net->family = family;
5050	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5051	if (err)
5052		return err;
5053
5054	if (selinux_secmark_enabled()) {
5055		err = avc_has_perm(&selinux_state,
5056				   sk_sid, skb->secmark, SECCLASS_PACKET,
5057				   PACKET__RECV, &ad);
5058		if (err)
5059			return err;
5060	}
5061
5062	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5063	if (err)
5064		return err;
5065	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5066
5067	return err;
5068}
5069
5070static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5071{
5072	int err;
5073	struct sk_security_struct *sksec = sk->sk_security;
5074	u16 family = sk->sk_family;
5075	u32 sk_sid = sksec->sid;
5076	struct common_audit_data ad;
5077	struct lsm_network_audit net = {0,};
5078	char *addrp;
5079	u8 secmark_active;
5080	u8 peerlbl_active;
5081
5082	if (family != PF_INET && family != PF_INET6)
5083		return 0;
5084
5085	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5086	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5087		family = PF_INET;
5088
5089	/* If any sort of compatibility mode is enabled then handoff processing
5090	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5091	 * special handling.  We do this in an attempt to keep this function
5092	 * as fast and as clean as possible. */
5093	if (!selinux_policycap_netpeer())
5094		return selinux_sock_rcv_skb_compat(sk, skb, family);
5095
5096	secmark_active = selinux_secmark_enabled();
5097	peerlbl_active = selinux_peerlbl_enabled();
5098	if (!secmark_active && !peerlbl_active)
5099		return 0;
5100
5101	ad.type = LSM_AUDIT_DATA_NET;
5102	ad.u.net = &net;
5103	ad.u.net->netif = skb->skb_iif;
5104	ad.u.net->family = family;
5105	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5106	if (err)
5107		return err;
5108
5109	if (peerlbl_active) {
5110		u32 peer_sid;
5111
5112		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5113		if (err)
5114			return err;
5115		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5116					       addrp, family, peer_sid, &ad);
5117		if (err) {
5118			selinux_netlbl_err(skb, family, err, 0);
5119			return err;
5120		}
5121		err = avc_has_perm(&selinux_state,
5122				   sk_sid, peer_sid, SECCLASS_PEER,
5123				   PEER__RECV, &ad);
5124		if (err) {
5125			selinux_netlbl_err(skb, family, err, 0);
5126			return err;
5127		}
5128	}
5129
5130	if (secmark_active) {
5131		err = avc_has_perm(&selinux_state,
5132				   sk_sid, skb->secmark, SECCLASS_PACKET,
5133				   PACKET__RECV, &ad);
5134		if (err)
5135			return err;
5136	}
5137
5138	return err;
5139}
5140
5141static int selinux_socket_getpeersec_stream(struct socket *sock,
5142					    sockptr_t optval, sockptr_t optlen,
5143					    unsigned int len)
5144{
5145	int err = 0;
5146	char *scontext = NULL;
5147	u32 scontext_len;
5148	struct sk_security_struct *sksec = sock->sk->sk_security;
5149	u32 peer_sid = SECSID_NULL;
5150
5151	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5152	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5153	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5154		peer_sid = sksec->peer_sid;
5155	if (peer_sid == SECSID_NULL)
5156		return -ENOPROTOOPT;
5157
5158	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5159				      &scontext_len);
5160	if (err)
5161		return err;
 
5162	if (scontext_len > len) {
5163		err = -ERANGE;
5164		goto out_len;
5165	}
5166
5167	if (copy_to_sockptr(optval, scontext, scontext_len))
5168		err = -EFAULT;
 
5169out_len:
5170	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5171		err = -EFAULT;
5172	kfree(scontext);
5173	return err;
5174}
5175
5176static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5177{
5178	u32 peer_secid = SECSID_NULL;
5179	u16 family;
5180	struct inode_security_struct *isec;
5181
5182	if (skb && skb->protocol == htons(ETH_P_IP))
5183		family = PF_INET;
5184	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5185		family = PF_INET6;
5186	else if (sock)
5187		family = sock->sk->sk_family;
5188	else
5189		goto out;
5190
5191	if (sock && family == PF_UNIX) {
5192		isec = inode_security_novalidate(SOCK_INODE(sock));
5193		peer_secid = isec->sid;
5194	} else if (skb)
5195		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5196
5197out:
5198	*secid = peer_secid;
5199	if (peer_secid == SECSID_NULL)
5200		return -EINVAL;
5201	return 0;
5202}
5203
5204static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5205{
5206	struct sk_security_struct *sksec;
5207
5208	sksec = kzalloc(sizeof(*sksec), priority);
5209	if (!sksec)
5210		return -ENOMEM;
5211
5212	sksec->peer_sid = SECINITSID_UNLABELED;
5213	sksec->sid = SECINITSID_UNLABELED;
5214	sksec->sclass = SECCLASS_SOCKET;
5215	selinux_netlbl_sk_security_reset(sksec);
5216	sk->sk_security = sksec;
5217
5218	return 0;
5219}
5220
5221static void selinux_sk_free_security(struct sock *sk)
5222{
5223	struct sk_security_struct *sksec = sk->sk_security;
5224
5225	sk->sk_security = NULL;
5226	selinux_netlbl_sk_security_free(sksec);
5227	kfree(sksec);
5228}
5229
5230static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5231{
5232	struct sk_security_struct *sksec = sk->sk_security;
5233	struct sk_security_struct *newsksec = newsk->sk_security;
5234
5235	newsksec->sid = sksec->sid;
5236	newsksec->peer_sid = sksec->peer_sid;
5237	newsksec->sclass = sksec->sclass;
5238
5239	selinux_netlbl_sk_security_reset(newsksec);
5240}
5241
5242static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5243{
5244	if (!sk)
5245		*secid = SECINITSID_ANY_SOCKET;
5246	else {
5247		struct sk_security_struct *sksec = sk->sk_security;
5248
5249		*secid = sksec->sid;
5250	}
5251}
5252
5253static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5254{
5255	struct inode_security_struct *isec =
5256		inode_security_novalidate(SOCK_INODE(parent));
5257	struct sk_security_struct *sksec = sk->sk_security;
5258
5259	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5260	    sk->sk_family == PF_UNIX)
5261		isec->sid = sksec->sid;
5262	sksec->sclass = isec->sclass;
5263}
5264
5265/*
5266 * Determines peer_secid for the asoc and updates socket's peer label
5267 * if it's the first association on the socket.
5268 */
5269static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5270					  struct sk_buff *skb)
5271{
5272	struct sock *sk = asoc->base.sk;
5273	u16 family = sk->sk_family;
5274	struct sk_security_struct *sksec = sk->sk_security;
5275	struct common_audit_data ad;
5276	struct lsm_network_audit net = {0,};
5277	int err;
5278
5279	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5280	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5281		family = PF_INET;
5282
5283	if (selinux_peerlbl_enabled()) {
5284		asoc->peer_secid = SECSID_NULL;
5285
5286		/* This will return peer_sid = SECSID_NULL if there are
5287		 * no peer labels, see security_net_peersid_resolve().
5288		 */
5289		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5290		if (err)
5291			return err;
5292
5293		if (asoc->peer_secid == SECSID_NULL)
5294			asoc->peer_secid = SECINITSID_UNLABELED;
5295	} else {
5296		asoc->peer_secid = SECINITSID_UNLABELED;
5297	}
5298
5299	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5300		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5301
5302		/* Here as first association on socket. As the peer SID
5303		 * was allowed by peer recv (and the netif/node checks),
5304		 * then it is approved by policy and used as the primary
5305		 * peer SID for getpeercon(3).
5306		 */
5307		sksec->peer_sid = asoc->peer_secid;
5308	} else if (sksec->peer_sid != asoc->peer_secid) {
5309		/* Other association peer SIDs are checked to enforce
5310		 * consistency among the peer SIDs.
5311		 */
5312		ad.type = LSM_AUDIT_DATA_NET;
5313		ad.u.net = &net;
5314		ad.u.net->sk = asoc->base.sk;
5315		err = avc_has_perm(&selinux_state,
5316				   sksec->peer_sid, asoc->peer_secid,
5317				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5318				   &ad);
5319		if (err)
5320			return err;
5321	}
5322	return 0;
5323}
5324
5325/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5326 * happens on an incoming connect(2), sctp_connectx(3) or
5327 * sctp_sendmsg(3) (with no association already present).
5328 */
5329static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5330				      struct sk_buff *skb)
5331{
5332	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5333	u32 conn_sid;
5334	int err;
5335
5336	if (!selinux_policycap_extsockclass())
5337		return 0;
5338
5339	err = selinux_sctp_process_new_assoc(asoc, skb);
5340	if (err)
5341		return err;
5342
5343	/* Compute the MLS component for the connection and store
5344	 * the information in asoc. This will be used by SCTP TCP type
5345	 * sockets and peeled off connections as they cause a new
5346	 * socket to be generated. selinux_sctp_sk_clone() will then
5347	 * plug this into the new socket.
5348	 */
5349	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5350	if (err)
5351		return err;
5352
5353	asoc->secid = conn_sid;
5354
5355	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5356	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5357}
5358
5359/* Called when SCTP receives a COOKIE ACK chunk as the final
5360 * response to an association request (initited by us).
5361 */
5362static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5363					  struct sk_buff *skb)
5364{
5365	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5366
5367	if (!selinux_policycap_extsockclass())
5368		return 0;
5369
5370	/* Inherit secid from the parent socket - this will be picked up
5371	 * by selinux_sctp_sk_clone() if the association gets peeled off
5372	 * into a new socket.
5373	 */
5374	asoc->secid = sksec->sid;
5375
5376	return selinux_sctp_process_new_assoc(asoc, skb);
5377}
5378
5379/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5380 * based on their @optname.
5381 */
5382static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5383				     struct sockaddr *address,
5384				     int addrlen)
5385{
5386	int len, err = 0, walk_size = 0;
5387	void *addr_buf;
5388	struct sockaddr *addr;
5389	struct socket *sock;
5390
5391	if (!selinux_policycap_extsockclass())
5392		return 0;
5393
5394	/* Process one or more addresses that may be IPv4 or IPv6 */
5395	sock = sk->sk_socket;
5396	addr_buf = address;
5397
5398	while (walk_size < addrlen) {
5399		if (walk_size + sizeof(sa_family_t) > addrlen)
5400			return -EINVAL;
5401
5402		addr = addr_buf;
5403		switch (addr->sa_family) {
5404		case AF_UNSPEC:
5405		case AF_INET:
5406			len = sizeof(struct sockaddr_in);
5407			break;
5408		case AF_INET6:
5409			len = sizeof(struct sockaddr_in6);
5410			break;
5411		default:
5412			return -EINVAL;
5413		}
5414
5415		if (walk_size + len > addrlen)
5416			return -EINVAL;
5417
5418		err = -EINVAL;
5419		switch (optname) {
5420		/* Bind checks */
5421		case SCTP_PRIMARY_ADDR:
5422		case SCTP_SET_PEER_PRIMARY_ADDR:
5423		case SCTP_SOCKOPT_BINDX_ADD:
5424			err = selinux_socket_bind(sock, addr, len);
5425			break;
5426		/* Connect checks */
5427		case SCTP_SOCKOPT_CONNECTX:
5428		case SCTP_PARAM_SET_PRIMARY:
5429		case SCTP_PARAM_ADD_IP:
5430		case SCTP_SENDMSG_CONNECT:
5431			err = selinux_socket_connect_helper(sock, addr, len);
5432			if (err)
5433				return err;
5434
5435			/* As selinux_sctp_bind_connect() is called by the
5436			 * SCTP protocol layer, the socket is already locked,
5437			 * therefore selinux_netlbl_socket_connect_locked()
5438			 * is called here. The situations handled are:
5439			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5440			 * whenever a new IP address is added or when a new
5441			 * primary address is selected.
5442			 * Note that an SCTP connect(2) call happens before
5443			 * the SCTP protocol layer and is handled via
5444			 * selinux_socket_connect().
5445			 */
5446			err = selinux_netlbl_socket_connect_locked(sk, addr);
5447			break;
5448		}
5449
5450		if (err)
5451			return err;
5452
5453		addr_buf += len;
5454		walk_size += len;
5455	}
5456
5457	return 0;
5458}
5459
5460/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5461static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5462				  struct sock *newsk)
5463{
5464	struct sk_security_struct *sksec = sk->sk_security;
5465	struct sk_security_struct *newsksec = newsk->sk_security;
5466
5467	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5468	 * the non-sctp clone version.
5469	 */
5470	if (!selinux_policycap_extsockclass())
5471		return selinux_sk_clone_security(sk, newsk);
5472
5473	newsksec->sid = asoc->secid;
5474	newsksec->peer_sid = asoc->peer_secid;
5475	newsksec->sclass = sksec->sclass;
5476	selinux_netlbl_sctp_sk_clone(sk, newsk);
5477}
5478
5479static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5480				     struct request_sock *req)
5481{
5482	struct sk_security_struct *sksec = sk->sk_security;
5483	int err;
5484	u16 family = req->rsk_ops->family;
5485	u32 connsid;
5486	u32 peersid;
5487
5488	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5489	if (err)
5490		return err;
5491	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5492	if (err)
5493		return err;
5494	req->secid = connsid;
5495	req->peer_secid = peersid;
5496
5497	return selinux_netlbl_inet_conn_request(req, family);
5498}
5499
5500static void selinux_inet_csk_clone(struct sock *newsk,
5501				   const struct request_sock *req)
5502{
5503	struct sk_security_struct *newsksec = newsk->sk_security;
5504
5505	newsksec->sid = req->secid;
5506	newsksec->peer_sid = req->peer_secid;
5507	/* NOTE: Ideally, we should also get the isec->sid for the
5508	   new socket in sync, but we don't have the isec available yet.
5509	   So we will wait until sock_graft to do it, by which
5510	   time it will have been created and available. */
5511
5512	/* We don't need to take any sort of lock here as we are the only
5513	 * thread with access to newsksec */
5514	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5515}
5516
5517static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5518{
5519	u16 family = sk->sk_family;
5520	struct sk_security_struct *sksec = sk->sk_security;
5521
5522	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5523	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5524		family = PF_INET;
5525
5526	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5527}
5528
5529static int selinux_secmark_relabel_packet(u32 sid)
5530{
5531	const struct task_security_struct *__tsec;
5532	u32 tsid;
5533
5534	__tsec = selinux_cred(current_cred());
5535	tsid = __tsec->sid;
5536
5537	return avc_has_perm(&selinux_state,
5538			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5539			    NULL);
5540}
5541
5542static void selinux_secmark_refcount_inc(void)
5543{
5544	atomic_inc(&selinux_secmark_refcount);
5545}
5546
5547static void selinux_secmark_refcount_dec(void)
5548{
5549	atomic_dec(&selinux_secmark_refcount);
5550}
5551
5552static void selinux_req_classify_flow(const struct request_sock *req,
5553				      struct flowi_common *flic)
5554{
5555	flic->flowic_secid = req->secid;
5556}
5557
5558static int selinux_tun_dev_alloc_security(void **security)
5559{
5560	struct tun_security_struct *tunsec;
5561
5562	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5563	if (!tunsec)
5564		return -ENOMEM;
5565	tunsec->sid = current_sid();
5566
5567	*security = tunsec;
5568	return 0;
5569}
5570
5571static void selinux_tun_dev_free_security(void *security)
5572{
5573	kfree(security);
5574}
5575
5576static int selinux_tun_dev_create(void)
5577{
5578	u32 sid = current_sid();
5579
5580	/* we aren't taking into account the "sockcreate" SID since the socket
5581	 * that is being created here is not a socket in the traditional sense,
5582	 * instead it is a private sock, accessible only to the kernel, and
5583	 * representing a wide range of network traffic spanning multiple
5584	 * connections unlike traditional sockets - check the TUN driver to
5585	 * get a better understanding of why this socket is special */
5586
5587	return avc_has_perm(&selinux_state,
5588			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5589			    NULL);
5590}
5591
5592static int selinux_tun_dev_attach_queue(void *security)
5593{
5594	struct tun_security_struct *tunsec = security;
5595
5596	return avc_has_perm(&selinux_state,
5597			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5598			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5599}
5600
5601static int selinux_tun_dev_attach(struct sock *sk, void *security)
5602{
5603	struct tun_security_struct *tunsec = security;
5604	struct sk_security_struct *sksec = sk->sk_security;
5605
5606	/* we don't currently perform any NetLabel based labeling here and it
5607	 * isn't clear that we would want to do so anyway; while we could apply
5608	 * labeling without the support of the TUN user the resulting labeled
5609	 * traffic from the other end of the connection would almost certainly
5610	 * cause confusion to the TUN user that had no idea network labeling
5611	 * protocols were being used */
5612
5613	sksec->sid = tunsec->sid;
5614	sksec->sclass = SECCLASS_TUN_SOCKET;
5615
5616	return 0;
5617}
5618
5619static int selinux_tun_dev_open(void *security)
5620{
5621	struct tun_security_struct *tunsec = security;
5622	u32 sid = current_sid();
5623	int err;
5624
5625	err = avc_has_perm(&selinux_state,
5626			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5627			   TUN_SOCKET__RELABELFROM, NULL);
5628	if (err)
5629		return err;
5630	err = avc_has_perm(&selinux_state,
5631			   sid, sid, SECCLASS_TUN_SOCKET,
5632			   TUN_SOCKET__RELABELTO, NULL);
5633	if (err)
5634		return err;
5635	tunsec->sid = sid;
5636
5637	return 0;
5638}
5639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5640#ifdef CONFIG_NETFILTER
5641
5642static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5643				       const struct nf_hook_state *state)
 
5644{
5645	int ifindex;
5646	u16 family;
5647	char *addrp;
5648	u32 peer_sid;
5649	struct common_audit_data ad;
5650	struct lsm_network_audit net = {0,};
5651	int secmark_active, peerlbl_active;
 
 
5652
5653	if (!selinux_policycap_netpeer())
5654		return NF_ACCEPT;
5655
5656	secmark_active = selinux_secmark_enabled();
 
5657	peerlbl_active = selinux_peerlbl_enabled();
5658	if (!secmark_active && !peerlbl_active)
5659		return NF_ACCEPT;
5660
5661	family = state->pf;
5662	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5663		return NF_DROP;
5664
5665	ifindex = state->in->ifindex;
5666	ad.type = LSM_AUDIT_DATA_NET;
5667	ad.u.net = &net;
5668	ad.u.net->netif = ifindex;
5669	ad.u.net->family = family;
5670	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5671		return NF_DROP;
5672
5673	if (peerlbl_active) {
5674		int err;
5675
5676		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5677					       addrp, family, peer_sid, &ad);
5678		if (err) {
5679			selinux_netlbl_err(skb, family, err, 1);
5680			return NF_DROP;
5681		}
5682	}
5683
5684	if (secmark_active)
5685		if (avc_has_perm(&selinux_state,
5686				 peer_sid, skb->secmark,
5687				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5688			return NF_DROP;
5689
5690	if (netlbl_enabled())
5691		/* we do this in the FORWARD path and not the POST_ROUTING
5692		 * path because we want to make sure we apply the necessary
5693		 * labeling before IPsec is applied so we can leverage AH
5694		 * protection */
5695		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5696			return NF_DROP;
5697
5698	return NF_ACCEPT;
5699}
5700
5701static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5702				      const struct nf_hook_state *state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5703{
5704	struct sock *sk;
5705	u32 sid;
5706
5707	if (!netlbl_enabled())
5708		return NF_ACCEPT;
5709
5710	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5711	 * because we want to make sure we apply the necessary labeling
5712	 * before IPsec is applied so we can leverage AH protection */
5713	sk = skb->sk;
5714	if (sk) {
5715		struct sk_security_struct *sksec;
5716
5717		if (sk_listener(sk))
5718			/* if the socket is the listening state then this
5719			 * packet is a SYN-ACK packet which means it needs to
5720			 * be labeled based on the connection/request_sock and
5721			 * not the parent socket.  unfortunately, we can't
5722			 * lookup the request_sock yet as it isn't queued on
5723			 * the parent socket until after the SYN-ACK is sent.
5724			 * the "solution" is to simply pass the packet as-is
5725			 * as any IP option based labeling should be copied
5726			 * from the initial connection request (in the IP
5727			 * layer).  it is far from ideal, but until we get a
5728			 * security label in the packet itself this is the
5729			 * best we can do. */
5730			return NF_ACCEPT;
5731
5732		/* standard practice, label using the parent socket */
5733		sksec = sk->sk_security;
5734		sid = sksec->sid;
5735	} else
5736		sid = SECINITSID_KERNEL;
5737	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5738		return NF_DROP;
5739
5740	return NF_ACCEPT;
5741}
5742
 
 
 
 
 
 
5743
5744static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5745					const struct nf_hook_state *state)
 
5746{
5747	struct sock *sk;
5748	struct sk_security_struct *sksec;
5749	struct common_audit_data ad;
5750	struct lsm_network_audit net = {0,};
5751	u8 proto = 0;
 
5752
5753	sk = skb_to_full_sk(skb);
5754	if (sk == NULL)
5755		return NF_ACCEPT;
5756	sksec = sk->sk_security;
5757
5758	ad.type = LSM_AUDIT_DATA_NET;
5759	ad.u.net = &net;
5760	ad.u.net->netif = state->out->ifindex;
5761	ad.u.net->family = state->pf;
5762	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5763		return NF_DROP;
5764
5765	if (selinux_secmark_enabled())
5766		if (avc_has_perm(&selinux_state,
5767				 sksec->sid, skb->secmark,
5768				 SECCLASS_PACKET, PACKET__SEND, &ad))
5769			return NF_DROP_ERR(-ECONNREFUSED);
5770
5771	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5772		return NF_DROP_ERR(-ECONNREFUSED);
5773
5774	return NF_ACCEPT;
5775}
5776
5777static unsigned int selinux_ip_postroute(void *priv,
5778					 struct sk_buff *skb,
5779					 const struct nf_hook_state *state)
5780{
5781	u16 family;
5782	u32 secmark_perm;
5783	u32 peer_sid;
5784	int ifindex;
5785	struct sock *sk;
5786	struct common_audit_data ad;
5787	struct lsm_network_audit net = {0,};
5788	char *addrp;
5789	int secmark_active, peerlbl_active;
 
5790
5791	/* If any sort of compatibility mode is enabled then handoff processing
5792	 * to the selinux_ip_postroute_compat() function to deal with the
5793	 * special handling.  We do this in an attempt to keep this function
5794	 * as fast and as clean as possible. */
5795	if (!selinux_policycap_netpeer())
5796		return selinux_ip_postroute_compat(skb, state);
5797
5798	secmark_active = selinux_secmark_enabled();
5799	peerlbl_active = selinux_peerlbl_enabled();
5800	if (!secmark_active && !peerlbl_active)
5801		return NF_ACCEPT;
5802
5803	sk = skb_to_full_sk(skb);
5804
5805#ifdef CONFIG_XFRM
5806	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5807	 * packet transformation so allow the packet to pass without any checks
5808	 * since we'll have another chance to perform access control checks
5809	 * when the packet is on it's final way out.
5810	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5811	 *       is NULL, in this case go ahead and apply access control.
5812	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5813	 *       TCP listening state we cannot wait until the XFRM processing
5814	 *       is done as we will miss out on the SA label if we do;
5815	 *       unfortunately, this means more work, but it is only once per
5816	 *       connection. */
5817	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5818	    !(sk && sk_listener(sk)))
5819		return NF_ACCEPT;
5820#endif
5821
5822	family = state->pf;
5823	if (sk == NULL) {
5824		/* Without an associated socket the packet is either coming
5825		 * from the kernel or it is being forwarded; check the packet
5826		 * to determine which and if the packet is being forwarded
5827		 * query the packet directly to determine the security label. */
5828		if (skb->skb_iif) {
5829			secmark_perm = PACKET__FORWARD_OUT;
5830			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5831				return NF_DROP;
5832		} else {
5833			secmark_perm = PACKET__SEND;
5834			peer_sid = SECINITSID_KERNEL;
5835		}
5836	} else if (sk_listener(sk)) {
5837		/* Locally generated packet but the associated socket is in the
5838		 * listening state which means this is a SYN-ACK packet.  In
5839		 * this particular case the correct security label is assigned
5840		 * to the connection/request_sock but unfortunately we can't
5841		 * query the request_sock as it isn't queued on the parent
5842		 * socket until after the SYN-ACK packet is sent; the only
5843		 * viable choice is to regenerate the label like we do in
5844		 * selinux_inet_conn_request().  See also selinux_ip_output()
5845		 * for similar problems. */
5846		u32 skb_sid;
5847		struct sk_security_struct *sksec;
5848
5849		sksec = sk->sk_security;
5850		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5851			return NF_DROP;
5852		/* At this point, if the returned skb peerlbl is SECSID_NULL
5853		 * and the packet has been through at least one XFRM
5854		 * transformation then we must be dealing with the "final"
5855		 * form of labeled IPsec packet; since we've already applied
5856		 * all of our access controls on this packet we can safely
5857		 * pass the packet. */
5858		if (skb_sid == SECSID_NULL) {
5859			switch (family) {
5860			case PF_INET:
5861				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5862					return NF_ACCEPT;
5863				break;
5864			case PF_INET6:
5865				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5866					return NF_ACCEPT;
5867				break;
5868			default:
5869				return NF_DROP_ERR(-ECONNREFUSED);
5870			}
5871		}
5872		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5873			return NF_DROP;
5874		secmark_perm = PACKET__SEND;
5875	} else {
5876		/* Locally generated packet, fetch the security label from the
5877		 * associated socket. */
5878		struct sk_security_struct *sksec = sk->sk_security;
5879		peer_sid = sksec->sid;
5880		secmark_perm = PACKET__SEND;
5881	}
5882
5883	ifindex = state->out->ifindex;
5884	ad.type = LSM_AUDIT_DATA_NET;
5885	ad.u.net = &net;
5886	ad.u.net->netif = ifindex;
5887	ad.u.net->family = family;
5888	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5889		return NF_DROP;
5890
5891	if (secmark_active)
5892		if (avc_has_perm(&selinux_state,
5893				 peer_sid, skb->secmark,
5894				 SECCLASS_PACKET, secmark_perm, &ad))
5895			return NF_DROP_ERR(-ECONNREFUSED);
5896
5897	if (peerlbl_active) {
5898		u32 if_sid;
5899		u32 node_sid;
5900
5901		if (sel_netif_sid(state->net, ifindex, &if_sid))
5902			return NF_DROP;
5903		if (avc_has_perm(&selinux_state,
5904				 peer_sid, if_sid,
5905				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5906			return NF_DROP_ERR(-ECONNREFUSED);
5907
5908		if (sel_netnode_sid(addrp, family, &node_sid))
5909			return NF_DROP;
5910		if (avc_has_perm(&selinux_state,
5911				 peer_sid, node_sid,
5912				 SECCLASS_NODE, NODE__SENDTO, &ad))
5913			return NF_DROP_ERR(-ECONNREFUSED);
5914	}
5915
5916	return NF_ACCEPT;
5917}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5918#endif	/* CONFIG_NETFILTER */
5919
5920static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5921{
5922	int rc = 0;
5923	unsigned int msg_len;
5924	unsigned int data_len = skb->len;
5925	unsigned char *data = skb->data;
5926	struct nlmsghdr *nlh;
5927	struct sk_security_struct *sksec = sk->sk_security;
5928	u16 sclass = sksec->sclass;
5929	u32 perm;
5930
5931	while (data_len >= nlmsg_total_size(0)) {
5932		nlh = (struct nlmsghdr *)data;
 
 
 
 
5933
5934		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5935		 *       users which means we can't reject skb's with bogus
5936		 *       length fields; our solution is to follow what
5937		 *       netlink_rcv_skb() does and simply skip processing at
5938		 *       messages with length fields that are clearly junk
5939		 */
5940		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5941			return 0;
5942
5943		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5944		if (rc == 0) {
5945			rc = sock_has_perm(sk, perm);
5946			if (rc)
5947				return rc;
5948		} else if (rc == -EINVAL) {
5949			/* -EINVAL is a missing msg/perm mapping */
5950			pr_warn_ratelimited("SELinux: unrecognized netlink"
5951				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5952				" pid=%d comm=%s\n",
5953				sk->sk_protocol, nlh->nlmsg_type,
5954				secclass_map[sclass - 1].name,
5955				task_pid_nr(current), current->comm);
5956			if (enforcing_enabled(&selinux_state) &&
5957			    !security_get_allow_unknown(&selinux_state))
5958				return rc;
5959			rc = 0;
5960		} else if (rc == -ENOENT) {
5961			/* -ENOENT is a missing socket/class mapping, ignore */
5962			rc = 0;
5963		} else {
5964			return rc;
5965		}
5966
5967		/* move to the next message after applying netlink padding */
5968		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5969		if (msg_len >= data_len)
5970			return 0;
5971		data_len -= msg_len;
5972		data += msg_len;
5973	}
5974
5975	return rc;
 
 
 
 
5976}
5977
5978static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5979{
5980	isec->sclass = sclass;
5981	isec->sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5982}
5983
5984static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5985			u32 perms)
5986{
5987	struct ipc_security_struct *isec;
5988	struct common_audit_data ad;
5989	u32 sid = current_sid();
5990
5991	isec = selinux_ipc(ipc_perms);
5992
5993	ad.type = LSM_AUDIT_DATA_IPC;
5994	ad.u.ipc_id = ipc_perms->key;
5995
5996	return avc_has_perm(&selinux_state,
5997			    sid, isec->sid, isec->sclass, perms, &ad);
5998}
5999
6000static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6001{
6002	struct msg_security_struct *msec;
6003
6004	msec = selinux_msg_msg(msg);
6005	msec->sid = SECINITSID_UNLABELED;
6006
6007	return 0;
 
 
6008}
6009
6010/* message queue security operations */
6011static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6012{
6013	struct ipc_security_struct *isec;
6014	struct common_audit_data ad;
6015	u32 sid = current_sid();
 
6016
6017	isec = selinux_ipc(msq);
6018	ipc_init_security(isec, SECCLASS_MSGQ);
 
 
 
6019
6020	ad.type = LSM_AUDIT_DATA_IPC;
6021	ad.u.ipc_id = msq->key;
6022
6023	return avc_has_perm(&selinux_state,
6024			    sid, isec->sid, SECCLASS_MSGQ,
6025			    MSGQ__CREATE, &ad);
 
 
 
 
 
 
 
 
 
6026}
6027
6028static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6029{
6030	struct ipc_security_struct *isec;
6031	struct common_audit_data ad;
6032	u32 sid = current_sid();
6033
6034	isec = selinux_ipc(msq);
6035
6036	ad.type = LSM_AUDIT_DATA_IPC;
6037	ad.u.ipc_id = msq->key;
6038
6039	return avc_has_perm(&selinux_state,
6040			    sid, isec->sid, SECCLASS_MSGQ,
6041			    MSGQ__ASSOCIATE, &ad);
6042}
6043
6044static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6045{
6046	int err;
6047	int perms;
6048
6049	switch (cmd) {
6050	case IPC_INFO:
6051	case MSG_INFO:
6052		/* No specific object, just general system-wide information. */
6053		return avc_has_perm(&selinux_state,
6054				    current_sid(), SECINITSID_KERNEL,
6055				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6056	case IPC_STAT:
6057	case MSG_STAT:
6058	case MSG_STAT_ANY:
6059		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6060		break;
6061	case IPC_SET:
6062		perms = MSGQ__SETATTR;
6063		break;
6064	case IPC_RMID:
6065		perms = MSGQ__DESTROY;
6066		break;
6067	default:
6068		return 0;
6069	}
6070
6071	err = ipc_has_perm(msq, perms);
6072	return err;
6073}
6074
6075static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6076{
6077	struct ipc_security_struct *isec;
6078	struct msg_security_struct *msec;
6079	struct common_audit_data ad;
6080	u32 sid = current_sid();
6081	int rc;
6082
6083	isec = selinux_ipc(msq);
6084	msec = selinux_msg_msg(msg);
6085
6086	/*
6087	 * First time through, need to assign label to the message
6088	 */
6089	if (msec->sid == SECINITSID_UNLABELED) {
6090		/*
6091		 * Compute new sid based on current process and
6092		 * message queue this message will be stored in
6093		 */
6094		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6095					     SECCLASS_MSG, NULL, &msec->sid);
6096		if (rc)
6097			return rc;
6098	}
6099
6100	ad.type = LSM_AUDIT_DATA_IPC;
6101	ad.u.ipc_id = msq->key;
6102
6103	/* Can this process write to the queue? */
6104	rc = avc_has_perm(&selinux_state,
6105			  sid, isec->sid, SECCLASS_MSGQ,
6106			  MSGQ__WRITE, &ad);
6107	if (!rc)
6108		/* Can this process send the message */
6109		rc = avc_has_perm(&selinux_state,
6110				  sid, msec->sid, SECCLASS_MSG,
6111				  MSG__SEND, &ad);
6112	if (!rc)
6113		/* Can the message be put in the queue? */
6114		rc = avc_has_perm(&selinux_state,
6115				  msec->sid, isec->sid, SECCLASS_MSGQ,
6116				  MSGQ__ENQUEUE, &ad);
6117
6118	return rc;
6119}
6120
6121static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6122				    struct task_struct *target,
6123				    long type, int mode)
6124{
6125	struct ipc_security_struct *isec;
6126	struct msg_security_struct *msec;
6127	struct common_audit_data ad;
6128	u32 sid = task_sid_obj(target);
6129	int rc;
6130
6131	isec = selinux_ipc(msq);
6132	msec = selinux_msg_msg(msg);
6133
6134	ad.type = LSM_AUDIT_DATA_IPC;
6135	ad.u.ipc_id = msq->key;
6136
6137	rc = avc_has_perm(&selinux_state,
6138			  sid, isec->sid,
6139			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6140	if (!rc)
6141		rc = avc_has_perm(&selinux_state,
6142				  sid, msec->sid,
6143				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6144	return rc;
6145}
6146
6147/* Shared Memory security operations */
6148static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6149{
6150	struct ipc_security_struct *isec;
6151	struct common_audit_data ad;
6152	u32 sid = current_sid();
 
 
 
 
 
6153
6154	isec = selinux_ipc(shp);
6155	ipc_init_security(isec, SECCLASS_SHM);
6156
6157	ad.type = LSM_AUDIT_DATA_IPC;
6158	ad.u.ipc_id = shp->key;
 
 
 
 
 
 
 
 
 
6159
6160	return avc_has_perm(&selinux_state,
6161			    sid, isec->sid, SECCLASS_SHM,
6162			    SHM__CREATE, &ad);
6163}
6164
6165static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6166{
6167	struct ipc_security_struct *isec;
6168	struct common_audit_data ad;
6169	u32 sid = current_sid();
6170
6171	isec = selinux_ipc(shp);
6172
6173	ad.type = LSM_AUDIT_DATA_IPC;
6174	ad.u.ipc_id = shp->key;
6175
6176	return avc_has_perm(&selinux_state,
6177			    sid, isec->sid, SECCLASS_SHM,
6178			    SHM__ASSOCIATE, &ad);
6179}
6180
6181/* Note, at this point, shp is locked down */
6182static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6183{
6184	int perms;
6185	int err;
6186
6187	switch (cmd) {
6188	case IPC_INFO:
6189	case SHM_INFO:
6190		/* No specific object, just general system-wide information. */
6191		return avc_has_perm(&selinux_state,
6192				    current_sid(), SECINITSID_KERNEL,
6193				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6194	case IPC_STAT:
6195	case SHM_STAT:
6196	case SHM_STAT_ANY:
6197		perms = SHM__GETATTR | SHM__ASSOCIATE;
6198		break;
6199	case IPC_SET:
6200		perms = SHM__SETATTR;
6201		break;
6202	case SHM_LOCK:
6203	case SHM_UNLOCK:
6204		perms = SHM__LOCK;
6205		break;
6206	case IPC_RMID:
6207		perms = SHM__DESTROY;
6208		break;
6209	default:
6210		return 0;
6211	}
6212
6213	err = ipc_has_perm(shp, perms);
6214	return err;
6215}
6216
6217static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6218			     char __user *shmaddr, int shmflg)
6219{
6220	u32 perms;
6221
6222	if (shmflg & SHM_RDONLY)
6223		perms = SHM__READ;
6224	else
6225		perms = SHM__READ | SHM__WRITE;
6226
6227	return ipc_has_perm(shp, perms);
6228}
6229
6230/* Semaphore security operations */
6231static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6232{
6233	struct ipc_security_struct *isec;
6234	struct common_audit_data ad;
6235	u32 sid = current_sid();
 
6236
6237	isec = selinux_ipc(sma);
6238	ipc_init_security(isec, SECCLASS_SEM);
 
 
 
6239
6240	ad.type = LSM_AUDIT_DATA_IPC;
6241	ad.u.ipc_id = sma->key;
6242
6243	return avc_has_perm(&selinux_state,
6244			    sid, isec->sid, SECCLASS_SEM,
6245			    SEM__CREATE, &ad);
 
 
 
 
6246}
6247
6248static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
 
 
 
 
 
6249{
6250	struct ipc_security_struct *isec;
6251	struct common_audit_data ad;
6252	u32 sid = current_sid();
6253
6254	isec = selinux_ipc(sma);
6255
6256	ad.type = LSM_AUDIT_DATA_IPC;
6257	ad.u.ipc_id = sma->key;
6258
6259	return avc_has_perm(&selinux_state,
6260			    sid, isec->sid, SECCLASS_SEM,
6261			    SEM__ASSOCIATE, &ad);
6262}
6263
6264/* Note, at this point, sma is locked down */
6265static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6266{
6267	int err;
6268	u32 perms;
6269
6270	switch (cmd) {
6271	case IPC_INFO:
6272	case SEM_INFO:
6273		/* No specific object, just general system-wide information. */
6274		return avc_has_perm(&selinux_state,
6275				    current_sid(), SECINITSID_KERNEL,
6276				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6277	case GETPID:
6278	case GETNCNT:
6279	case GETZCNT:
6280		perms = SEM__GETATTR;
6281		break;
6282	case GETVAL:
6283	case GETALL:
6284		perms = SEM__READ;
6285		break;
6286	case SETVAL:
6287	case SETALL:
6288		perms = SEM__WRITE;
6289		break;
6290	case IPC_RMID:
6291		perms = SEM__DESTROY;
6292		break;
6293	case IPC_SET:
6294		perms = SEM__SETATTR;
6295		break;
6296	case IPC_STAT:
6297	case SEM_STAT:
6298	case SEM_STAT_ANY:
6299		perms = SEM__GETATTR | SEM__ASSOCIATE;
6300		break;
6301	default:
6302		return 0;
6303	}
6304
6305	err = ipc_has_perm(sma, perms);
6306	return err;
6307}
6308
6309static int selinux_sem_semop(struct kern_ipc_perm *sma,
6310			     struct sembuf *sops, unsigned nsops, int alter)
6311{
6312	u32 perms;
6313
6314	if (alter)
6315		perms = SEM__READ | SEM__WRITE;
6316	else
6317		perms = SEM__READ;
6318
6319	return ipc_has_perm(sma, perms);
6320}
6321
6322static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6323{
6324	u32 av = 0;
6325
6326	av = 0;
6327	if (flag & S_IRUGO)
6328		av |= IPC__UNIX_READ;
6329	if (flag & S_IWUGO)
6330		av |= IPC__UNIX_WRITE;
6331
6332	if (av == 0)
6333		return 0;
6334
6335	return ipc_has_perm(ipcp, av);
6336}
6337
6338static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6339{
6340	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6341	*secid = isec->sid;
6342}
6343
6344static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6345{
6346	if (inode)
6347		inode_doinit_with_dentry(inode, dentry);
6348}
6349
6350static int selinux_getprocattr(struct task_struct *p,
6351			       const char *name, char **value)
6352{
6353	const struct task_security_struct *__tsec;
6354	u32 sid;
6355	int error;
6356	unsigned len;
6357
6358	rcu_read_lock();
6359	__tsec = selinux_cred(__task_cred(p));
6360
6361	if (current != p) {
6362		error = avc_has_perm(&selinux_state,
6363				     current_sid(), __tsec->sid,
6364				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6365		if (error)
6366			goto bad;
6367	}
6368
 
 
 
6369	if (!strcmp(name, "current"))
6370		sid = __tsec->sid;
6371	else if (!strcmp(name, "prev"))
6372		sid = __tsec->osid;
6373	else if (!strcmp(name, "exec"))
6374		sid = __tsec->exec_sid;
6375	else if (!strcmp(name, "fscreate"))
6376		sid = __tsec->create_sid;
6377	else if (!strcmp(name, "keycreate"))
6378		sid = __tsec->keycreate_sid;
6379	else if (!strcmp(name, "sockcreate"))
6380		sid = __tsec->sockcreate_sid;
6381	else {
6382		error = -EINVAL;
6383		goto bad;
6384	}
6385	rcu_read_unlock();
6386
6387	if (!sid)
6388		return 0;
6389
6390	error = security_sid_to_context(&selinux_state, sid, value, &len);
6391	if (error)
6392		return error;
6393	return len;
6394
6395bad:
6396	rcu_read_unlock();
6397	return error;
6398}
6399
6400static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6401{
6402	struct task_security_struct *tsec;
 
6403	struct cred *new;
6404	u32 mysid = current_sid(), sid = 0, ptsid;
6405	int error;
6406	char *str = value;
6407
 
 
 
 
 
 
6408	/*
6409	 * Basic control over ability to set these attributes at all.
 
 
6410	 */
6411	if (!strcmp(name, "exec"))
6412		error = avc_has_perm(&selinux_state,
6413				     mysid, mysid, SECCLASS_PROCESS,
6414				     PROCESS__SETEXEC, NULL);
6415	else if (!strcmp(name, "fscreate"))
6416		error = avc_has_perm(&selinux_state,
6417				     mysid, mysid, SECCLASS_PROCESS,
6418				     PROCESS__SETFSCREATE, NULL);
6419	else if (!strcmp(name, "keycreate"))
6420		error = avc_has_perm(&selinux_state,
6421				     mysid, mysid, SECCLASS_PROCESS,
6422				     PROCESS__SETKEYCREATE, NULL);
6423	else if (!strcmp(name, "sockcreate"))
6424		error = avc_has_perm(&selinux_state,
6425				     mysid, mysid, SECCLASS_PROCESS,
6426				     PROCESS__SETSOCKCREATE, NULL);
6427	else if (!strcmp(name, "current"))
6428		error = avc_has_perm(&selinux_state,
6429				     mysid, mysid, SECCLASS_PROCESS,
6430				     PROCESS__SETCURRENT, NULL);
6431	else
6432		error = -EINVAL;
6433	if (error)
6434		return error;
6435
6436	/* Obtain a SID for the context, if one was specified. */
6437	if (size && str[0] && str[0] != '\n') {
6438		if (str[size-1] == '\n') {
6439			str[size-1] = 0;
6440			size--;
6441		}
6442		error = security_context_to_sid(&selinux_state, value, size,
6443						&sid, GFP_KERNEL);
6444		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6445			if (!has_cap_mac_admin(true)) {
6446				struct audit_buffer *ab;
6447				size_t audit_size;
6448
6449				/* We strip a nul only if it is at the end, otherwise the
6450				 * context contains a nul and we should audit that */
6451				if (str[size - 1] == '\0')
6452					audit_size = size - 1;
6453				else
6454					audit_size = size;
6455				ab = audit_log_start(audit_context(),
6456						     GFP_ATOMIC,
6457						     AUDIT_SELINUX_ERR);
6458				if (!ab)
6459					return error;
6460				audit_log_format(ab, "op=fscreate invalid_context=");
6461				audit_log_n_untrustedstring(ab, value, audit_size);
6462				audit_log_end(ab);
6463
6464				return error;
6465			}
6466			error = security_context_to_sid_force(
6467						      &selinux_state,
6468						      value, size, &sid);
6469		}
6470		if (error)
6471			return error;
6472	}
6473
6474	new = prepare_creds();
6475	if (!new)
6476		return -ENOMEM;
6477
6478	/* Permission checking based on the specified context is
6479	   performed during the actual operation (execve,
6480	   open/mkdir/...), when we know the full context of the
6481	   operation.  See selinux_bprm_creds_for_exec for the execve
6482	   checks and may_create for the file creation checks. The
6483	   operation will then fail if the context is not permitted. */
6484	tsec = selinux_cred(new);
6485	if (!strcmp(name, "exec")) {
6486		tsec->exec_sid = sid;
6487	} else if (!strcmp(name, "fscreate")) {
6488		tsec->create_sid = sid;
6489	} else if (!strcmp(name, "keycreate")) {
6490		if (sid) {
6491			error = avc_has_perm(&selinux_state, mysid, sid,
6492					     SECCLASS_KEY, KEY__CREATE, NULL);
6493			if (error)
6494				goto abort_change;
6495		}
6496		tsec->keycreate_sid = sid;
6497	} else if (!strcmp(name, "sockcreate")) {
6498		tsec->sockcreate_sid = sid;
6499	} else if (!strcmp(name, "current")) {
6500		error = -EINVAL;
6501		if (sid == 0)
6502			goto abort_change;
6503
6504		/* Only allow single threaded processes to change context */
 
6505		if (!current_is_single_threaded()) {
6506			error = security_bounded_transition(&selinux_state,
6507							    tsec->sid, sid);
6508			if (error)
6509				goto abort_change;
6510		}
6511
6512		/* Check permissions for the transition. */
6513		error = avc_has_perm(&selinux_state,
6514				     tsec->sid, sid, SECCLASS_PROCESS,
6515				     PROCESS__DYNTRANSITION, NULL);
6516		if (error)
6517			goto abort_change;
6518
6519		/* Check for ptracing, and update the task SID if ok.
6520		   Otherwise, leave SID unchanged and fail. */
6521		ptsid = ptrace_parent_sid();
6522		if (ptsid != 0) {
6523			error = avc_has_perm(&selinux_state,
6524					     ptsid, sid, SECCLASS_PROCESS,
 
 
 
 
 
6525					     PROCESS__PTRACE, NULL);
6526			if (error)
6527				goto abort_change;
6528		}
6529
6530		tsec->sid = sid;
6531	} else {
6532		error = -EINVAL;
6533		goto abort_change;
6534	}
6535
6536	commit_creds(new);
6537	return size;
6538
6539abort_change:
6540	abort_creds(new);
6541	return error;
6542}
6543
6544static int selinux_ismaclabel(const char *name)
6545{
6546	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6547}
6548
6549static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6550{
6551	return security_sid_to_context(&selinux_state, secid,
6552				       secdata, seclen);
6553}
6554
6555static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6556{
6557	return security_context_to_sid(&selinux_state, secdata, seclen,
6558				       secid, GFP_KERNEL);
6559}
6560
6561static void selinux_release_secctx(char *secdata, u32 seclen)
6562{
6563	kfree(secdata);
6564}
6565
6566static void selinux_inode_invalidate_secctx(struct inode *inode)
6567{
6568	struct inode_security_struct *isec = selinux_inode(inode);
6569
6570	spin_lock(&isec->lock);
6571	isec->initialized = LABEL_INVALID;
6572	spin_unlock(&isec->lock);
6573}
6574
6575/*
6576 *	called with inode->i_mutex locked
6577 */
6578static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6579{
6580	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6581					   ctx, ctxlen, 0);
6582	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6583	return rc == -EOPNOTSUPP ? 0 : rc;
6584}
6585
6586/*
6587 *	called with inode->i_mutex locked
6588 */
6589static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6590{
6591	return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6592				     ctx, ctxlen, 0);
6593}
6594
6595static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6596{
6597	int len = 0;
6598	len = selinux_inode_getsecurity(&init_user_ns, inode,
6599					XATTR_SELINUX_SUFFIX, ctx, true);
6600	if (len < 0)
6601		return len;
6602	*ctxlen = len;
6603	return 0;
6604}
6605#ifdef CONFIG_KEYS
6606
6607static int selinux_key_alloc(struct key *k, const struct cred *cred,
6608			     unsigned long flags)
6609{
6610	const struct task_security_struct *tsec;
6611	struct key_security_struct *ksec;
6612
6613	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6614	if (!ksec)
6615		return -ENOMEM;
6616
6617	tsec = selinux_cred(cred);
6618	if (tsec->keycreate_sid)
6619		ksec->sid = tsec->keycreate_sid;
6620	else
6621		ksec->sid = tsec->sid;
6622
6623	k->security = ksec;
6624	return 0;
6625}
6626
6627static void selinux_key_free(struct key *k)
6628{
6629	struct key_security_struct *ksec = k->security;
6630
6631	k->security = NULL;
6632	kfree(ksec);
6633}
6634
6635static int selinux_key_permission(key_ref_t key_ref,
6636				  const struct cred *cred,
6637				  enum key_need_perm need_perm)
6638{
6639	struct key *key;
6640	struct key_security_struct *ksec;
6641	u32 perm, sid;
6642
6643	switch (need_perm) {
6644	case KEY_NEED_VIEW:
6645		perm = KEY__VIEW;
6646		break;
6647	case KEY_NEED_READ:
6648		perm = KEY__READ;
6649		break;
6650	case KEY_NEED_WRITE:
6651		perm = KEY__WRITE;
6652		break;
6653	case KEY_NEED_SEARCH:
6654		perm = KEY__SEARCH;
6655		break;
6656	case KEY_NEED_LINK:
6657		perm = KEY__LINK;
6658		break;
6659	case KEY_NEED_SETATTR:
6660		perm = KEY__SETATTR;
6661		break;
6662	case KEY_NEED_UNLINK:
6663	case KEY_SYSADMIN_OVERRIDE:
6664	case KEY_AUTHTOKEN_OVERRIDE:
6665	case KEY_DEFER_PERM_CHECK:
6666		return 0;
6667	default:
6668		WARN_ON(1);
6669		return -EPERM;
6670
6671	}
6672
6673	sid = cred_sid(cred);
 
6674	key = key_ref_to_ptr(key_ref);
6675	ksec = key->security;
6676
6677	return avc_has_perm(&selinux_state,
6678			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6679}
6680
6681static int selinux_key_getsecurity(struct key *key, char **_buffer)
6682{
6683	struct key_security_struct *ksec = key->security;
6684	char *context = NULL;
6685	unsigned len;
6686	int rc;
6687
6688	rc = security_sid_to_context(&selinux_state, ksec->sid,
6689				     &context, &len);
6690	if (!rc)
6691		rc = len;
6692	*_buffer = context;
6693	return rc;
6694}
6695
6696#ifdef CONFIG_KEY_NOTIFICATIONS
6697static int selinux_watch_key(struct key *key)
6698{
6699	struct key_security_struct *ksec = key->security;
6700	u32 sid = current_sid();
6701
6702	return avc_has_perm(&selinux_state,
6703			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6704}
6705#endif
6706#endif
6707
6708#ifdef CONFIG_SECURITY_INFINIBAND
6709static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6710{
6711	struct common_audit_data ad;
6712	int err;
6713	u32 sid = 0;
6714	struct ib_security_struct *sec = ib_sec;
6715	struct lsm_ibpkey_audit ibpkey;
6716
6717	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6718	if (err)
6719		return err;
6720
6721	ad.type = LSM_AUDIT_DATA_IBPKEY;
6722	ibpkey.subnet_prefix = subnet_prefix;
6723	ibpkey.pkey = pkey_val;
6724	ad.u.ibpkey = &ibpkey;
6725	return avc_has_perm(&selinux_state,
6726			    sec->sid, sid,
6727			    SECCLASS_INFINIBAND_PKEY,
6728			    INFINIBAND_PKEY__ACCESS, &ad);
6729}
6730
6731static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6732					    u8 port_num)
6733{
6734	struct common_audit_data ad;
6735	int err;
6736	u32 sid = 0;
6737	struct ib_security_struct *sec = ib_sec;
6738	struct lsm_ibendport_audit ibendport;
6739
6740	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6741				      &sid);
6742
6743	if (err)
6744		return err;
6745
6746	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6747	ibendport.dev_name = dev_name;
6748	ibendport.port = port_num;
6749	ad.u.ibendport = &ibendport;
6750	return avc_has_perm(&selinux_state,
6751			    sec->sid, sid,
6752			    SECCLASS_INFINIBAND_ENDPORT,
6753			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6754}
6755
6756static int selinux_ib_alloc_security(void **ib_sec)
6757{
6758	struct ib_security_struct *sec;
6759
6760	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6761	if (!sec)
6762		return -ENOMEM;
6763	sec->sid = current_sid();
6764
6765	*ib_sec = sec;
6766	return 0;
6767}
6768
6769static void selinux_ib_free_security(void *ib_sec)
6770{
6771	kfree(ib_sec);
6772}
6773#endif
6774
6775#ifdef CONFIG_BPF_SYSCALL
6776static int selinux_bpf(int cmd, union bpf_attr *attr,
6777				     unsigned int size)
6778{
6779	u32 sid = current_sid();
6780	int ret;
6781
6782	switch (cmd) {
6783	case BPF_MAP_CREATE:
6784		ret = avc_has_perm(&selinux_state,
6785				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6786				   NULL);
6787		break;
6788	case BPF_PROG_LOAD:
6789		ret = avc_has_perm(&selinux_state,
6790				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6791				   NULL);
6792		break;
6793	default:
6794		ret = 0;
6795		break;
6796	}
6797
6798	return ret;
6799}
6800
6801static u32 bpf_map_fmode_to_av(fmode_t fmode)
6802{
6803	u32 av = 0;
6804
6805	if (fmode & FMODE_READ)
6806		av |= BPF__MAP_READ;
6807	if (fmode & FMODE_WRITE)
6808		av |= BPF__MAP_WRITE;
6809	return av;
6810}
6811
6812/* This function will check the file pass through unix socket or binder to see
6813 * if it is a bpf related object. And apply corresponding checks on the bpf
6814 * object based on the type. The bpf maps and programs, not like other files and
6815 * socket, are using a shared anonymous inode inside the kernel as their inode.
6816 * So checking that inode cannot identify if the process have privilege to
6817 * access the bpf object and that's why we have to add this additional check in
6818 * selinux_file_receive and selinux_binder_transfer_files.
6819 */
6820static int bpf_fd_pass(struct file *file, u32 sid)
6821{
6822	struct bpf_security_struct *bpfsec;
6823	struct bpf_prog *prog;
6824	struct bpf_map *map;
6825	int ret;
6826
6827	if (file->f_op == &bpf_map_fops) {
6828		map = file->private_data;
6829		bpfsec = map->security;
6830		ret = avc_has_perm(&selinux_state,
6831				   sid, bpfsec->sid, SECCLASS_BPF,
6832				   bpf_map_fmode_to_av(file->f_mode), NULL);
6833		if (ret)
6834			return ret;
6835	} else if (file->f_op == &bpf_prog_fops) {
6836		prog = file->private_data;
6837		bpfsec = prog->aux->security;
6838		ret = avc_has_perm(&selinux_state,
6839				   sid, bpfsec->sid, SECCLASS_BPF,
6840				   BPF__PROG_RUN, NULL);
6841		if (ret)
6842			return ret;
6843	}
6844	return 0;
6845}
6846
6847static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6848{
6849	u32 sid = current_sid();
6850	struct bpf_security_struct *bpfsec;
6851
6852	bpfsec = map->security;
6853	return avc_has_perm(&selinux_state,
6854			    sid, bpfsec->sid, SECCLASS_BPF,
6855			    bpf_map_fmode_to_av(fmode), NULL);
6856}
6857
6858static int selinux_bpf_prog(struct bpf_prog *prog)
6859{
6860	u32 sid = current_sid();
6861	struct bpf_security_struct *bpfsec;
6862
6863	bpfsec = prog->aux->security;
6864	return avc_has_perm(&selinux_state,
6865			    sid, bpfsec->sid, SECCLASS_BPF,
6866			    BPF__PROG_RUN, NULL);
6867}
6868
6869static int selinux_bpf_map_alloc(struct bpf_map *map)
6870{
6871	struct bpf_security_struct *bpfsec;
6872
6873	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6874	if (!bpfsec)
6875		return -ENOMEM;
6876
6877	bpfsec->sid = current_sid();
6878	map->security = bpfsec;
6879
6880	return 0;
6881}
6882
6883static void selinux_bpf_map_free(struct bpf_map *map)
6884{
6885	struct bpf_security_struct *bpfsec = map->security;
6886
6887	map->security = NULL;
6888	kfree(bpfsec);
6889}
6890
6891static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6892{
6893	struct bpf_security_struct *bpfsec;
6894
6895	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6896	if (!bpfsec)
6897		return -ENOMEM;
6898
6899	bpfsec->sid = current_sid();
6900	aux->security = bpfsec;
6901
6902	return 0;
6903}
6904
6905static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6906{
6907	struct bpf_security_struct *bpfsec = aux->security;
6908
6909	aux->security = NULL;
6910	kfree(bpfsec);
6911}
6912#endif
6913
6914struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6915	.lbs_cred = sizeof(struct task_security_struct),
6916	.lbs_file = sizeof(struct file_security_struct),
6917	.lbs_inode = sizeof(struct inode_security_struct),
6918	.lbs_ipc = sizeof(struct ipc_security_struct),
6919	.lbs_msg_msg = sizeof(struct msg_security_struct),
6920	.lbs_superblock = sizeof(struct superblock_security_struct),
6921};
6922
6923#ifdef CONFIG_PERF_EVENTS
6924static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6925{
6926	u32 requested, sid = current_sid();
6927
6928	if (type == PERF_SECURITY_OPEN)
6929		requested = PERF_EVENT__OPEN;
6930	else if (type == PERF_SECURITY_CPU)
6931		requested = PERF_EVENT__CPU;
6932	else if (type == PERF_SECURITY_KERNEL)
6933		requested = PERF_EVENT__KERNEL;
6934	else if (type == PERF_SECURITY_TRACEPOINT)
6935		requested = PERF_EVENT__TRACEPOINT;
6936	else
6937		return -EINVAL;
6938
6939	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6940			    requested, NULL);
6941}
6942
6943static int selinux_perf_event_alloc(struct perf_event *event)
6944{
6945	struct perf_event_security_struct *perfsec;
6946
6947	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6948	if (!perfsec)
6949		return -ENOMEM;
6950
6951	perfsec->sid = current_sid();
6952	event->security = perfsec;
6953
6954	return 0;
6955}
6956
6957static void selinux_perf_event_free(struct perf_event *event)
6958{
6959	struct perf_event_security_struct *perfsec = event->security;
6960
6961	event->security = NULL;
6962	kfree(perfsec);
6963}
6964
6965static int selinux_perf_event_read(struct perf_event *event)
6966{
6967	struct perf_event_security_struct *perfsec = event->security;
6968	u32 sid = current_sid();
6969
6970	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6971			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6972}
6973
6974static int selinux_perf_event_write(struct perf_event *event)
6975{
6976	struct perf_event_security_struct *perfsec = event->security;
6977	u32 sid = current_sid();
6978
6979	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6980			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6981}
6982#endif
6983
6984#ifdef CONFIG_IO_URING
6985/**
6986 * selinux_uring_override_creds - check the requested cred override
6987 * @new: the target creds
6988 *
6989 * Check to see if the current task is allowed to override it's credentials
6990 * to service an io_uring operation.
6991 */
6992static int selinux_uring_override_creds(const struct cred *new)
6993{
6994	return avc_has_perm(&selinux_state, current_sid(), cred_sid(new),
6995			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
6996}
6997
6998/**
6999 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7000 *
7001 * Check to see if the current task is allowed to create a new io_uring
7002 * kernel polling thread.
7003 */
7004static int selinux_uring_sqpoll(void)
7005{
7006	int sid = current_sid();
7007
7008	return avc_has_perm(&selinux_state, sid, sid,
7009			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7010}
7011
7012/**
7013 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7014 * @ioucmd: the io_uring command structure
7015 *
7016 * Check to see if the current domain is allowed to execute an
7017 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7018 *
7019 */
7020static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7021{
7022	struct file *file = ioucmd->file;
7023	struct inode *inode = file_inode(file);
7024	struct inode_security_struct *isec = selinux_inode(inode);
7025	struct common_audit_data ad;
7026
7027	ad.type = LSM_AUDIT_DATA_FILE;
7028	ad.u.file = file;
7029
7030	return avc_has_perm(&selinux_state, current_sid(), isec->sid,
7031			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7032}
7033#endif /* CONFIG_IO_URING */
7034
7035/*
7036 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7037 * 1. any hooks that don't belong to (2.) or (3.) below,
7038 * 2. hooks that both access structures allocated by other hooks, and allocate
7039 *    structures that can be later accessed by other hooks (mostly "cloning"
7040 *    hooks),
7041 * 3. hooks that only allocate structures that can be later accessed by other
7042 *    hooks ("allocating" hooks).
7043 *
7044 * Please follow block comment delimiters in the list to keep this order.
7045 *
7046 * This ordering is needed for SELinux runtime disable to work at least somewhat
7047 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7048 * when disabling SELinux at runtime.
7049 */
7050static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7051	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7052	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7053	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7054	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7055
7056	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7057	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7058	LSM_HOOK_INIT(capget, selinux_capget),
7059	LSM_HOOK_INIT(capset, selinux_capset),
7060	LSM_HOOK_INIT(capable, selinux_capable),
7061	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7062	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7063	LSM_HOOK_INIT(syslog, selinux_syslog),
7064	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7065
7066	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7067
7068	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7069	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7070	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
 
7071
7072	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7073	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
 
7074	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7075	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7076	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7077	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7078	LSM_HOOK_INIT(sb_mount, selinux_mount),
7079	LSM_HOOK_INIT(sb_umount, selinux_umount),
7080	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7081	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7082
7083	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7084
7085	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7086	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7087
 
7088	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7089	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7090	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7091	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7092	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7093	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7094	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7095	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7096	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7097	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7098	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7099	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7100	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7101	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7102	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7103	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7104	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7105	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7106	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7107	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7108	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7109	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7110	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7111	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7112	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7113	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7114	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7115	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7116	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7117	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7118	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7119
7120	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7121
7122	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7123	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
 
7124	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7125	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7126	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7127	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7128	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7129	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7130	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7131	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7132	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7133
7134	LSM_HOOK_INIT(file_open, selinux_file_open),
7135
7136	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
 
 
7137	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7138	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7139	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7140	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7141	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7142	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7143	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7144	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7145	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7146	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7147	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7148	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7149	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7150	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7151	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7152	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7153	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7154	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7155	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7156	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7157	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7158	LSM_HOOK_INIT(task_kill, selinux_task_kill),
 
7159	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7160	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7161
7162	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7163	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7164
 
 
 
 
 
 
7165	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7166	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7167	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7168	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7169
 
 
7170	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7171	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7172	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7173
 
 
7174	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7175	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7176	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7177
7178	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7179
7180	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7181	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7182
7183	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
 
7184	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7185	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7186	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7187	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7188	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
 
7189
7190	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7191	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7192
7193	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7194	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7195	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7196	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7197	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7198	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7199	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7200	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7201	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7202	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7203	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7204	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7205	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7206	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7207	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7208	LSM_HOOK_INIT(socket_getpeersec_stream,
7209			selinux_socket_getpeersec_stream),
7210	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
 
7211	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7212	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7213	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7214	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7215	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7216	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7217	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7218	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7219	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7220	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7221	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7222	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7223	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7224	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7225	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
 
7226	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7227	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7228	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7229	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7230	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7231#ifdef CONFIG_SECURITY_INFINIBAND
7232	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7233	LSM_HOOK_INIT(ib_endport_manage_subnet,
7234		      selinux_ib_endport_manage_subnet),
7235	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7236#endif
7237#ifdef CONFIG_SECURITY_NETWORK_XFRM
 
 
7238	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7239	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
 
 
 
7240	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7241	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7242	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7243	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7244			selinux_xfrm_state_pol_flow_match),
7245	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7246#endif
7247
7248#ifdef CONFIG_KEYS
 
7249	LSM_HOOK_INIT(key_free, selinux_key_free),
7250	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7251	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7252#ifdef CONFIG_KEY_NOTIFICATIONS
7253	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7254#endif
7255#endif
7256
7257#ifdef CONFIG_AUDIT
 
7258	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7259	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7260	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7261#endif
7262
7263#ifdef CONFIG_BPF_SYSCALL
7264	LSM_HOOK_INIT(bpf, selinux_bpf),
7265	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7266	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7267	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7268	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7269#endif
7270
7271#ifdef CONFIG_PERF_EVENTS
7272	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7273	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7274	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7275	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7276#endif
7277
7278#ifdef CONFIG_IO_URING
7279	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7280	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7281	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7282#endif
7283
7284	/*
7285	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7286	 */
7287	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7288	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7289	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7290#ifdef CONFIG_SECURITY_NETWORK_XFRM
7291	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7292#endif
7293
7294	/*
7295	 * PUT "ALLOCATING" HOOKS HERE
7296	 */
7297	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7298	LSM_HOOK_INIT(msg_queue_alloc_security,
7299		      selinux_msg_queue_alloc_security),
7300	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7301	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7302	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7303	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7304	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7305	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7306	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7307	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7308#ifdef CONFIG_SECURITY_INFINIBAND
7309	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7310#endif
7311#ifdef CONFIG_SECURITY_NETWORK_XFRM
7312	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7313	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7314	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7315		      selinux_xfrm_state_alloc_acquire),
7316#endif
7317#ifdef CONFIG_KEYS
7318	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7319#endif
7320#ifdef CONFIG_AUDIT
7321	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7322#endif
7323#ifdef CONFIG_BPF_SYSCALL
7324	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7325	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7326#endif
7327#ifdef CONFIG_PERF_EVENTS
7328	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7329#endif
7330};
7331
7332static __init int selinux_init(void)
7333{
7334	pr_info("SELinux:  Initializing.\n");
 
 
 
7335
7336	memset(&selinux_state, 0, sizeof(selinux_state));
7337	enforcing_set(&selinux_state, selinux_enforcing_boot);
7338	if (CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE)
7339		pr_err("SELinux: CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE is non-zero.  This is deprecated and will be rejected in a future kernel release.\n");
7340	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7341	selinux_avc_init(&selinux_state.avc);
7342	mutex_init(&selinux_state.status_lock);
7343	mutex_init(&selinux_state.policy_mutex);
7344
7345	/* Set the security state for the initial task. */
7346	cred_init_security();
7347
7348	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7349
 
 
 
 
 
 
7350	avc_init();
7351
7352	avtab_cache_init();
7353
7354	ebitmap_cache_init();
7355
7356	hashtab_cache_init();
7357
7358	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7359
7360	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7361		panic("SELinux: Unable to register AVC netcache callback\n");
7362
7363	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7364		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7365
7366	if (selinux_enforcing_boot)
7367		pr_debug("SELinux:  Starting in enforcing mode\n");
7368	else
7369		pr_debug("SELinux:  Starting in permissive mode\n");
7370
7371	fs_validate_description("selinux", selinux_fs_parameters);
7372
7373	return 0;
7374}
7375
7376static void delayed_superblock_init(struct super_block *sb, void *unused)
7377{
7378	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7379}
7380
7381void selinux_complete_init(void)
7382{
7383	pr_debug("SELinux:  Completing initialization.\n");
7384
7385	/* Set up any superblocks initialized prior to the policy load. */
7386	pr_debug("SELinux:  Setting up existing superblocks.\n");
7387	iterate_supers(delayed_superblock_init, NULL);
7388}
7389
7390/* SELinux requires early initialization in order to label
7391   all processes and objects when they are created. */
7392DEFINE_LSM(selinux) = {
7393	.name = "selinux",
7394	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7395	.enabled = &selinux_enabled_boot,
7396	.blobs = &selinux_blob_sizes,
7397	.init = selinux_init,
7398};
7399
7400#if defined(CONFIG_NETFILTER)
7401
7402static const struct nf_hook_ops selinux_nf_ops[] = {
7403	{
7404		.hook =		selinux_ip_postroute,
7405		.pf =		NFPROTO_IPV4,
7406		.hooknum =	NF_INET_POST_ROUTING,
7407		.priority =	NF_IP_PRI_SELINUX_LAST,
7408	},
7409	{
7410		.hook =		selinux_ip_forward,
7411		.pf =		NFPROTO_IPV4,
7412		.hooknum =	NF_INET_FORWARD,
7413		.priority =	NF_IP_PRI_SELINUX_FIRST,
7414	},
7415	{
7416		.hook =		selinux_ip_output,
7417		.pf =		NFPROTO_IPV4,
7418		.hooknum =	NF_INET_LOCAL_OUT,
7419		.priority =	NF_IP_PRI_SELINUX_FIRST,
7420	},
7421#if IS_ENABLED(CONFIG_IPV6)
7422	{
7423		.hook =		selinux_ip_postroute,
7424		.pf =		NFPROTO_IPV6,
7425		.hooknum =	NF_INET_POST_ROUTING,
7426		.priority =	NF_IP6_PRI_SELINUX_LAST,
7427	},
7428	{
7429		.hook =		selinux_ip_forward,
7430		.pf =		NFPROTO_IPV6,
7431		.hooknum =	NF_INET_FORWARD,
7432		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7433	},
7434	{
7435		.hook =		selinux_ip_output,
7436		.pf =		NFPROTO_IPV6,
7437		.hooknum =	NF_INET_LOCAL_OUT,
7438		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7439	},
7440#endif	/* IPV6 */
7441};
7442
7443static int __net_init selinux_nf_register(struct net *net)
7444{
7445	return nf_register_net_hooks(net, selinux_nf_ops,
7446				     ARRAY_SIZE(selinux_nf_ops));
7447}
7448
7449static void __net_exit selinux_nf_unregister(struct net *net)
7450{
7451	nf_unregister_net_hooks(net, selinux_nf_ops,
7452				ARRAY_SIZE(selinux_nf_ops));
7453}
7454
7455static struct pernet_operations selinux_net_ops = {
7456	.init = selinux_nf_register,
7457	.exit = selinux_nf_unregister,
7458};
7459
7460static int __init selinux_nf_ip_init(void)
7461{
7462	int err;
7463
7464	if (!selinux_enabled_boot)
7465		return 0;
7466
7467	pr_debug("SELinux:  Registering netfilter hooks\n");
7468
7469	err = register_pernet_subsys(&selinux_net_ops);
7470	if (err)
7471		panic("SELinux: register_pernet_subsys: error %d\n", err);
7472
7473	return 0;
7474}
 
7475__initcall(selinux_nf_ip_init);
7476
7477#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7478static void selinux_nf_ip_exit(void)
7479{
7480	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7481
7482	unregister_pernet_subsys(&selinux_net_ops);
7483}
7484#endif
7485
7486#else /* CONFIG_NETFILTER */
7487
7488#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7489#define selinux_nf_ip_exit()
7490#endif
7491
7492#endif /* CONFIG_NETFILTER */
7493
7494#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7495int selinux_disable(struct selinux_state *state)
 
 
7496{
7497	if (selinux_initialized(state)) {
7498		/* Not permitted after initial policy load. */
7499		return -EINVAL;
7500	}
7501
7502	if (selinux_disabled(state)) {
7503		/* Only do this once. */
7504		return -EINVAL;
7505	}
7506
7507	selinux_mark_disabled(state);
7508
7509	pr_info("SELinux:  Disabled at runtime.\n");
7510
7511	/*
7512	 * Unregister netfilter hooks.
7513	 * Must be done before security_delete_hooks() to avoid breaking
7514	 * runtime disable.
7515	 */
7516	selinux_nf_ip_exit();
7517
7518	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7519
7520	/* Try to destroy the avc node cache */
7521	avc_disable();
 
 
 
7522
7523	/* Unregister selinuxfs. */
7524	exit_sel_fs();
7525
7526	return 0;
7527}
7528#endif
v4.6
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
 
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
 
 
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  55#include <net/inet_connection_sock.h>
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>	/* for network interface checks */
  64#include <net/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
 
 
  68#include <linux/quota.h>
  69#include <linux/un.h>		/* for Unix socket types */
  70#include <net/af_unix.h>	/* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
  83#include <linux/export.h>
  84#include <linux/msg.h>
  85#include <linux/shm.h>
 
 
 
 
 
 
 
  86
  87#include "avc.h"
  88#include "objsec.h"
  89#include "netif.h"
  90#include "netnode.h"
  91#include "netport.h"
 
  92#include "xfrm.h"
  93#include "netlabel.h"
  94#include "audit.h"
  95#include "avc_ss.h"
  96
 
 
  97/* SECMARK reference count */
  98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
  99
 100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 101int selinux_enforcing;
 102
 103static int __init enforcing_setup(char *str)
 104{
 105	unsigned long enforcing;
 106	if (!kstrtoul(str, 0, &enforcing))
 107		selinux_enforcing = enforcing ? 1 : 0;
 108	return 1;
 109}
 110__setup("enforcing=", enforcing_setup);
 
 
 111#endif
 112
 
 113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 115
 116static int __init selinux_enabled_setup(char *str)
 117{
 118	unsigned long enabled;
 119	if (!kstrtoul(str, 0, &enabled))
 120		selinux_enabled = enabled ? 1 : 0;
 121	return 1;
 122}
 123__setup("selinux=", selinux_enabled_setup);
 124#else
 125int selinux_enabled = 1;
 126#endif
 127
 128static struct kmem_cache *sel_inode_cache;
 129static struct kmem_cache *file_security_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 130
 131/**
 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 133 *
 134 * Description:
 135 * This function checks the SECMARK reference counter to see if any SECMARK
 136 * targets are currently configured, if the reference counter is greater than
 137 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 138 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 139 * policy capability is enabled, SECMARK is always considered enabled.
 140 *
 141 */
 142static int selinux_secmark_enabled(void)
 143{
 144	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 
 145}
 146
 147/**
 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 149 *
 150 * Description:
 151 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 152 * (1) if any are enabled or false (0) if neither are enabled.  If the
 153 * always_check_network policy capability is enabled, peer labeling
 154 * is always considered enabled.
 155 *
 156 */
 157static int selinux_peerlbl_enabled(void)
 158{
 159	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 
 160}
 161
 162static int selinux_netcache_avc_callback(u32 event)
 163{
 164	if (event == AVC_CALLBACK_RESET) {
 165		sel_netif_flush();
 166		sel_netnode_flush();
 167		sel_netport_flush();
 168		synchronize_net();
 169	}
 170	return 0;
 171}
 172
 
 
 
 
 
 
 
 
 
 
 173/*
 174 * initialise the security for the init task
 175 */
 176static void cred_init_security(void)
 177{
 178	struct cred *cred = (struct cred *) current->real_cred;
 179	struct task_security_struct *tsec;
 180
 181	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 182	if (!tsec)
 183		panic("SELinux:  Failed to initialize initial task.\n");
 184
 185	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 186	cred->security = tsec;
 187}
 188
 189/*
 190 * get the security ID of a set of credentials
 191 */
 192static inline u32 cred_sid(const struct cred *cred)
 193{
 194	const struct task_security_struct *tsec;
 195
 196	tsec = cred->security;
 197	return tsec->sid;
 198}
 199
 200/*
 201 * get the objective security ID of a task
 202 */
 203static inline u32 task_sid(const struct task_struct *task)
 204{
 205	u32 sid;
 206
 207	rcu_read_lock();
 208	sid = cred_sid(__task_cred(task));
 209	rcu_read_unlock();
 210	return sid;
 211}
 212
 213/*
 214 * get the subjective security ID of the current task
 215 */
 216static inline u32 current_sid(void)
 217{
 218	const struct task_security_struct *tsec = current_security();
 219
 220	return tsec->sid;
 221}
 222
 223/* Allocate and free functions for each kind of security blob. */
 224
 225static int inode_alloc_security(struct inode *inode)
 226{
 227	struct inode_security_struct *isec;
 228	u32 sid = current_sid();
 229
 230	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 231	if (!isec)
 232		return -ENOMEM;
 233
 234	mutex_init(&isec->lock);
 235	INIT_LIST_HEAD(&isec->list);
 236	isec->inode = inode;
 237	isec->sid = SECINITSID_UNLABELED;
 238	isec->sclass = SECCLASS_FILE;
 239	isec->task_sid = sid;
 240	inode->i_security = isec;
 241
 242	return 0;
 243}
 244
 245static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 246
 247/*
 248 * Try reloading inode security labels that have been marked as invalid.  The
 249 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 250 * allowed; when set to false, returns ERR_PTR(-ECHILD) when the label is
 251 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 252 * when no dentry is available, set it to NULL instead.
 253 */
 254static int __inode_security_revalidate(struct inode *inode,
 255				       struct dentry *opt_dentry,
 256				       bool may_sleep)
 257{
 258	struct inode_security_struct *isec = inode->i_security;
 259
 260	might_sleep_if(may_sleep);
 261
 262	if (isec->initialized == LABEL_INVALID) {
 
 263		if (!may_sleep)
 264			return -ECHILD;
 265
 266		/*
 267		 * Try reloading the inode security label.  This will fail if
 268		 * @opt_dentry is NULL and no dentry for this inode can be
 269		 * found; in that case, continue using the old label.
 270		 */
 271		inode_doinit_with_dentry(inode, opt_dentry);
 272	}
 273	return 0;
 274}
 275
 276static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 277{
 278	return inode->i_security;
 279}
 280
 281static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 282{
 283	int error;
 284
 285	error = __inode_security_revalidate(inode, NULL, !rcu);
 286	if (error)
 287		return ERR_PTR(error);
 288	return inode->i_security;
 289}
 290
 291/*
 292 * Get the security label of an inode.
 293 */
 294static struct inode_security_struct *inode_security(struct inode *inode)
 295{
 296	__inode_security_revalidate(inode, NULL, true);
 297	return inode->i_security;
 
 
 
 
 
 
 
 298}
 299
 300/*
 301 * Get the security label of a dentry's backing inode.
 302 */
 303static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 304{
 305	struct inode *inode = d_backing_inode(dentry);
 306
 307	__inode_security_revalidate(inode, dentry, true);
 308	return inode->i_security;
 309}
 310
 311static void inode_free_rcu(struct rcu_head *head)
 312{
 313	struct inode_security_struct *isec;
 314
 315	isec = container_of(head, struct inode_security_struct, rcu);
 316	kmem_cache_free(sel_inode_cache, isec);
 317}
 318
 319static void inode_free_security(struct inode *inode)
 320{
 321	struct inode_security_struct *isec = inode->i_security;
 322	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 323
 
 
 
 324	/*
 325	 * As not all inode security structures are in a list, we check for
 326	 * empty list outside of the lock to make sure that we won't waste
 327	 * time taking a lock doing nothing.
 328	 *
 329	 * The list_del_init() function can be safely called more than once.
 330	 * It should not be possible for this function to be called with
 331	 * concurrent list_add(), but for better safety against future changes
 332	 * in the code, we use list_empty_careful() here.
 333	 */
 334	if (!list_empty_careful(&isec->list)) {
 335		spin_lock(&sbsec->isec_lock);
 336		list_del_init(&isec->list);
 337		spin_unlock(&sbsec->isec_lock);
 338	}
 339
 340	/*
 341	 * The inode may still be referenced in a path walk and
 342	 * a call to selinux_inode_permission() can be made
 343	 * after inode_free_security() is called. Ideally, the VFS
 344	 * wouldn't do this, but fixing that is a much harder
 345	 * job. For now, simply free the i_security via RCU, and
 346	 * leave the current inode->i_security pointer intact.
 347	 * The inode will be freed after the RCU grace period too.
 348	 */
 349	call_rcu(&isec->rcu, inode_free_rcu);
 350}
 351
 352static int file_alloc_security(struct file *file)
 353{
 354	struct file_security_struct *fsec;
 355	u32 sid = current_sid();
 356
 357	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 358	if (!fsec)
 359		return -ENOMEM;
 360
 361	fsec->sid = sid;
 362	fsec->fown_sid = sid;
 363	file->f_security = fsec;
 364
 365	return 0;
 366}
 367
 368static void file_free_security(struct file *file)
 369{
 370	struct file_security_struct *fsec = file->f_security;
 371	file->f_security = NULL;
 372	kmem_cache_free(file_security_cache, fsec);
 373}
 374
 375static int superblock_alloc_security(struct super_block *sb)
 376{
 377	struct superblock_security_struct *sbsec;
 378
 379	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 380	if (!sbsec)
 381		return -ENOMEM;
 382
 383	mutex_init(&sbsec->lock);
 384	INIT_LIST_HEAD(&sbsec->isec_head);
 385	spin_lock_init(&sbsec->isec_lock);
 386	sbsec->sb = sb;
 387	sbsec->sid = SECINITSID_UNLABELED;
 388	sbsec->def_sid = SECINITSID_FILE;
 389	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 390	sb->s_security = sbsec;
 391
 392	return 0;
 393}
 394
 395static void superblock_free_security(struct super_block *sb)
 396{
 397	struct superblock_security_struct *sbsec = sb->s_security;
 398	sb->s_security = NULL;
 399	kfree(sbsec);
 400}
 401
 402/* The file system's label must be initialized prior to use. */
 403
 404static const char *labeling_behaviors[7] = {
 405	"uses xattr",
 406	"uses transition SIDs",
 407	"uses task SIDs",
 408	"uses genfs_contexts",
 409	"not configured for labeling",
 410	"uses mountpoint labeling",
 411	"uses native labeling",
 412};
 413
 414static inline int inode_doinit(struct inode *inode)
 415{
 416	return inode_doinit_with_dentry(inode, NULL);
 417}
 418
 419enum {
 420	Opt_error = -1,
 421	Opt_context = 1,
 
 422	Opt_fscontext = 2,
 423	Opt_defcontext = 3,
 424	Opt_rootcontext = 4,
 425	Opt_labelsupport = 5,
 426	Opt_nextmntopt = 6,
 427};
 428
 429#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430
 431static const match_table_t tokens = {
 432	{Opt_context, CONTEXT_STR "%s"},
 433	{Opt_fscontext, FSCONTEXT_STR "%s"},
 434	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 435	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 436	{Opt_labelsupport, LABELSUPP_STR},
 437	{Opt_error, NULL},
 438};
 
 
 
 
 
 
 439
 440#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 441
 442static int may_context_mount_sb_relabel(u32 sid,
 443			struct superblock_security_struct *sbsec,
 444			const struct cred *cred)
 445{
 446	const struct task_security_struct *tsec = cred->security;
 447	int rc;
 448
 449	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 450			  FILESYSTEM__RELABELFROM, NULL);
 451	if (rc)
 452		return rc;
 453
 454	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 455			  FILESYSTEM__RELABELTO, NULL);
 456	return rc;
 457}
 458
 459static int may_context_mount_inode_relabel(u32 sid,
 460			struct superblock_security_struct *sbsec,
 461			const struct cred *cred)
 462{
 463	const struct task_security_struct *tsec = cred->security;
 464	int rc;
 465	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 466			  FILESYSTEM__RELABELFROM, NULL);
 467	if (rc)
 468		return rc;
 469
 470	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 471			  FILESYSTEM__ASSOCIATE, NULL);
 472	return rc;
 473}
 474
 
 
 
 
 
 
 
 
 
 
 
 
 
 475static int selinux_is_sblabel_mnt(struct super_block *sb)
 476{
 477	struct superblock_security_struct *sbsec = sb->s_security;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478
 479	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 480		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 481		sbsec->behavior == SECURITY_FS_USE_TASK ||
 482		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 483		/* Special handling. Genfs but also in-core setxattr handler */
 484		!strcmp(sb->s_type->name, "sysfs") ||
 485		!strcmp(sb->s_type->name, "pstore") ||
 486		!strcmp(sb->s_type->name, "debugfs") ||
 487		!strcmp(sb->s_type->name, "rootfs");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488}
 489
 490static int sb_finish_set_opts(struct super_block *sb)
 491{
 492	struct superblock_security_struct *sbsec = sb->s_security;
 493	struct dentry *root = sb->s_root;
 494	struct inode *root_inode = d_backing_inode(root);
 495	int rc = 0;
 496
 497	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 498		/* Make sure that the xattr handler exists and that no
 499		   error other than -ENODATA is returned by getxattr on
 500		   the root directory.  -ENODATA is ok, as this may be
 501		   the first boot of the SELinux kernel before we have
 502		   assigned xattr values to the filesystem. */
 503		if (!root_inode->i_op->getxattr) {
 504			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 505			       "xattr support\n", sb->s_id, sb->s_type->name);
 506			rc = -EOPNOTSUPP;
 507			goto out;
 508		}
 509		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 510		if (rc < 0 && rc != -ENODATA) {
 511			if (rc == -EOPNOTSUPP)
 512				printk(KERN_WARNING "SELinux: (dev %s, type "
 513				       "%s) has no security xattr handler\n",
 514				       sb->s_id, sb->s_type->name);
 515			else
 516				printk(KERN_WARNING "SELinux: (dev %s, type "
 517				       "%s) getxattr errno %d\n", sb->s_id,
 518				       sb->s_type->name, -rc);
 519			goto out;
 520		}
 521	}
 522
 523	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 524		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 525		       sb->s_id, sb->s_type->name);
 526
 527	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 528	if (selinux_is_sblabel_mnt(sb))
 529		sbsec->flags |= SBLABEL_MNT;
 
 
 530
 531	/* Initialize the root inode. */
 532	rc = inode_doinit_with_dentry(root_inode, root);
 533
 534	/* Initialize any other inodes associated with the superblock, e.g.
 535	   inodes created prior to initial policy load or inodes created
 536	   during get_sb by a pseudo filesystem that directly
 537	   populates itself. */
 538	spin_lock(&sbsec->isec_lock);
 539next_inode:
 540	if (!list_empty(&sbsec->isec_head)) {
 541		struct inode_security_struct *isec =
 542				list_entry(sbsec->isec_head.next,
 543					   struct inode_security_struct, list);
 544		struct inode *inode = isec->inode;
 545		list_del_init(&isec->list);
 546		spin_unlock(&sbsec->isec_lock);
 547		inode = igrab(inode);
 548		if (inode) {
 549			if (!IS_PRIVATE(inode))
 550				inode_doinit(inode);
 551			iput(inode);
 552		}
 553		spin_lock(&sbsec->isec_lock);
 554		goto next_inode;
 555	}
 556	spin_unlock(&sbsec->isec_lock);
 557out:
 558	return rc;
 559}
 560
 561/*
 562 * This function should allow an FS to ask what it's mount security
 563 * options were so it can use those later for submounts, displaying
 564 * mount options, or whatever.
 565 */
 566static int selinux_get_mnt_opts(const struct super_block *sb,
 567				struct security_mnt_opts *opts)
 568{
 569	int rc = 0, i;
 570	struct superblock_security_struct *sbsec = sb->s_security;
 571	char *context = NULL;
 572	u32 len;
 573	char tmp;
 574
 575	security_init_mnt_opts(opts);
 576
 577	if (!(sbsec->flags & SE_SBINITIALIZED))
 578		return -EINVAL;
 579
 580	if (!ss_initialized)
 581		return -EINVAL;
 582
 583	/* make sure we always check enough bits to cover the mask */
 584	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 585
 586	tmp = sbsec->flags & SE_MNTMASK;
 587	/* count the number of mount options for this sb */
 588	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 589		if (tmp & 0x01)
 590			opts->num_mnt_opts++;
 591		tmp >>= 1;
 592	}
 593	/* Check if the Label support flag is set */
 594	if (sbsec->flags & SBLABEL_MNT)
 595		opts->num_mnt_opts++;
 596
 597	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 598	if (!opts->mnt_opts) {
 599		rc = -ENOMEM;
 600		goto out_free;
 601	}
 602
 603	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 604	if (!opts->mnt_opts_flags) {
 605		rc = -ENOMEM;
 606		goto out_free;
 607	}
 608
 609	i = 0;
 610	if (sbsec->flags & FSCONTEXT_MNT) {
 611		rc = security_sid_to_context(sbsec->sid, &context, &len);
 612		if (rc)
 613			goto out_free;
 614		opts->mnt_opts[i] = context;
 615		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 616	}
 617	if (sbsec->flags & CONTEXT_MNT) {
 618		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 619		if (rc)
 620			goto out_free;
 621		opts->mnt_opts[i] = context;
 622		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 623	}
 624	if (sbsec->flags & DEFCONTEXT_MNT) {
 625		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 626		if (rc)
 627			goto out_free;
 628		opts->mnt_opts[i] = context;
 629		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 630	}
 631	if (sbsec->flags & ROOTCONTEXT_MNT) {
 632		struct dentry *root = sbsec->sb->s_root;
 633		struct inode_security_struct *isec = backing_inode_security(root);
 634
 635		rc = security_sid_to_context(isec->sid, &context, &len);
 636		if (rc)
 637			goto out_free;
 638		opts->mnt_opts[i] = context;
 639		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 640	}
 641	if (sbsec->flags & SBLABEL_MNT) {
 642		opts->mnt_opts[i] = NULL;
 643		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 644	}
 645
 646	BUG_ON(i != opts->num_mnt_opts);
 647
 648	return 0;
 649
 650out_free:
 651	security_free_mnt_opts(opts);
 652	return rc;
 653}
 654
 655static int bad_option(struct superblock_security_struct *sbsec, char flag,
 656		      u32 old_sid, u32 new_sid)
 657{
 658	char mnt_flags = sbsec->flags & SE_MNTMASK;
 659
 660	/* check if the old mount command had the same options */
 661	if (sbsec->flags & SE_SBINITIALIZED)
 662		if (!(sbsec->flags & flag) ||
 663		    (old_sid != new_sid))
 664			return 1;
 665
 666	/* check if we were passed the same options twice,
 667	 * aka someone passed context=a,context=b
 668	 */
 669	if (!(sbsec->flags & SE_SBINITIALIZED))
 670		if (mnt_flags & flag)
 671			return 1;
 672	return 0;
 673}
 674
 675/*
 676 * Allow filesystems with binary mount data to explicitly set mount point
 677 * labeling information.
 678 */
 679static int selinux_set_mnt_opts(struct super_block *sb,
 680				struct security_mnt_opts *opts,
 681				unsigned long kern_flags,
 682				unsigned long *set_kern_flags)
 683{
 684	const struct cred *cred = current_cred();
 685	int rc = 0, i;
 686	struct superblock_security_struct *sbsec = sb->s_security;
 687	const char *name = sb->s_type->name;
 688	struct dentry *root = sbsec->sb->s_root;
 689	struct inode_security_struct *root_isec = backing_inode_security(root);
 690	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 691	u32 defcontext_sid = 0;
 692	char **mount_options = opts->mnt_opts;
 693	int *flags = opts->mnt_opts_flags;
 694	int num_opts = opts->num_mnt_opts;
 695
 696	mutex_lock(&sbsec->lock);
 697
 698	if (!ss_initialized) {
 699		if (!num_opts) {
 700			/* Defer initialization until selinux_complete_init,
 701			   after the initial policy is loaded and the security
 702			   server is ready to handle calls. */
 703			goto out;
 704		}
 705		rc = -EINVAL;
 706		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 707			"before the security server is initialized\n");
 708		goto out;
 709	}
 710	if (kern_flags && !set_kern_flags) {
 711		/* Specifying internal flags without providing a place to
 712		 * place the results is not allowed */
 713		rc = -EINVAL;
 714		goto out;
 715	}
 716
 717	/*
 718	 * Binary mount data FS will come through this function twice.  Once
 719	 * from an explicit call and once from the generic calls from the vfs.
 720	 * Since the generic VFS calls will not contain any security mount data
 721	 * we need to skip the double mount verification.
 722	 *
 723	 * This does open a hole in which we will not notice if the first
 724	 * mount using this sb set explict options and a second mount using
 725	 * this sb does not set any security options.  (The first options
 726	 * will be used for both mounts)
 727	 */
 728	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 729	    && (num_opts == 0))
 730		goto out;
 731
 
 
 732	/*
 733	 * parse the mount options, check if they are valid sids.
 734	 * also check if someone is trying to mount the same sb more
 735	 * than once with different security options.
 736	 */
 737	for (i = 0; i < num_opts; i++) {
 738		u32 sid;
 739
 740		if (flags[i] == SBLABEL_MNT)
 741			continue;
 742		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
 743		if (rc) {
 744			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 745			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 746			       mount_options[i], sb->s_id, name, rc);
 747			goto out;
 748		}
 749		switch (flags[i]) {
 750		case FSCONTEXT_MNT:
 751			fscontext_sid = sid;
 752
 753			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 754					fscontext_sid))
 755				goto out_double_mount;
 756
 757			sbsec->flags |= FSCONTEXT_MNT;
 758			break;
 759		case CONTEXT_MNT:
 760			context_sid = sid;
 761
 762			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 763					context_sid))
 764				goto out_double_mount;
 765
 766			sbsec->flags |= CONTEXT_MNT;
 767			break;
 768		case ROOTCONTEXT_MNT:
 769			rootcontext_sid = sid;
 770
 771			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 772					rootcontext_sid))
 773				goto out_double_mount;
 774
 775			sbsec->flags |= ROOTCONTEXT_MNT;
 776
 777			break;
 778		case DEFCONTEXT_MNT:
 779			defcontext_sid = sid;
 780
 781			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 782					defcontext_sid))
 783				goto out_double_mount;
 784
 785			sbsec->flags |= DEFCONTEXT_MNT;
 786
 787			break;
 788		default:
 789			rc = -EINVAL;
 790			goto out;
 791		}
 792	}
 793
 794	if (sbsec->flags & SE_SBINITIALIZED) {
 795		/* previously mounted with options, but not on this attempt? */
 796		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 797			goto out_double_mount;
 798		rc = 0;
 799		goto out;
 800	}
 801
 802	if (strcmp(sb->s_type->name, "proc") == 0)
 803		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 804
 805	if (!strcmp(sb->s_type->name, "debugfs") ||
 806	    !strcmp(sb->s_type->name, "sysfs") ||
 807	    !strcmp(sb->s_type->name, "pstore"))
 
 
 
 808		sbsec->flags |= SE_SBGENFS;
 809
 
 
 
 
 
 810	if (!sbsec->behavior) {
 811		/*
 812		 * Determine the labeling behavior to use for this
 813		 * filesystem type.
 814		 */
 815		rc = security_fs_use(sb);
 816		if (rc) {
 817			printk(KERN_WARNING
 818				"%s: security_fs_use(%s) returned %d\n",
 819					__func__, sb->s_type->name, rc);
 820			goto out;
 821		}
 822	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	/* sets the context of the superblock for the fs being mounted. */
 824	if (fscontext_sid) {
 825		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 826		if (rc)
 827			goto out;
 828
 829		sbsec->sid = fscontext_sid;
 830	}
 831
 832	/*
 833	 * Switch to using mount point labeling behavior.
 834	 * sets the label used on all file below the mountpoint, and will set
 835	 * the superblock context if not already set.
 836	 */
 837	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 838		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 839		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 840	}
 841
 842	if (context_sid) {
 843		if (!fscontext_sid) {
 844			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 845							  cred);
 846			if (rc)
 847				goto out;
 848			sbsec->sid = context_sid;
 849		} else {
 850			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 851							     cred);
 852			if (rc)
 853				goto out;
 854		}
 855		if (!rootcontext_sid)
 856			rootcontext_sid = context_sid;
 857
 858		sbsec->mntpoint_sid = context_sid;
 859		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 860	}
 861
 862	if (rootcontext_sid) {
 863		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 864						     cred);
 865		if (rc)
 866			goto out;
 867
 868		root_isec->sid = rootcontext_sid;
 869		root_isec->initialized = LABEL_INITIALIZED;
 870	}
 871
 872	if (defcontext_sid) {
 873		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 874			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 875			rc = -EINVAL;
 876			printk(KERN_WARNING "SELinux: defcontext option is "
 877			       "invalid for this filesystem type\n");
 878			goto out;
 879		}
 880
 881		if (defcontext_sid != sbsec->def_sid) {
 882			rc = may_context_mount_inode_relabel(defcontext_sid,
 883							     sbsec, cred);
 884			if (rc)
 885				goto out;
 886		}
 887
 888		sbsec->def_sid = defcontext_sid;
 889	}
 890
 
 891	rc = sb_finish_set_opts(sb);
 892out:
 893	mutex_unlock(&sbsec->lock);
 894	return rc;
 895out_double_mount:
 896	rc = -EINVAL;
 897	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 898	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 899	goto out;
 900}
 901
 902static int selinux_cmp_sb_context(const struct super_block *oldsb,
 903				    const struct super_block *newsb)
 904{
 905	struct superblock_security_struct *old = oldsb->s_security;
 906	struct superblock_security_struct *new = newsb->s_security;
 907	char oldflags = old->flags & SE_MNTMASK;
 908	char newflags = new->flags & SE_MNTMASK;
 909
 910	if (oldflags != newflags)
 911		goto mismatch;
 912	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 913		goto mismatch;
 914	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 915		goto mismatch;
 916	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 917		goto mismatch;
 918	if (oldflags & ROOTCONTEXT_MNT) {
 919		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 920		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 921		if (oldroot->sid != newroot->sid)
 922			goto mismatch;
 923	}
 924	return 0;
 925mismatch:
 926	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 927			    "different security settings for (dev %s, "
 928			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 929	return -EBUSY;
 930}
 931
 932static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 933					struct super_block *newsb)
 
 
 934{
 935	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 936	struct superblock_security_struct *newsbsec = newsb->s_security;
 
 
 937
 938	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 939	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 940	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 941
 942	/*
 943	 * if the parent was able to be mounted it clearly had no special lsm
 944	 * mount options.  thus we can safely deal with this superblock later
 945	 */
 946	if (!ss_initialized)
 947		return 0;
 948
 
 
 
 
 
 
 
 949	/* how can we clone if the old one wasn't set up?? */
 950	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 951
 952	/* if fs is reusing a sb, make sure that the contexts match */
 953	if (newsbsec->flags & SE_SBINITIALIZED)
 
 
 954		return selinux_cmp_sb_context(oldsb, newsb);
 
 955
 956	mutex_lock(&newsbsec->lock);
 957
 958	newsbsec->flags = oldsbsec->flags;
 959
 960	newsbsec->sid = oldsbsec->sid;
 961	newsbsec->def_sid = oldsbsec->def_sid;
 962	newsbsec->behavior = oldsbsec->behavior;
 963
 
 
 
 
 
 
 
 
 
 
 
 
 964	if (set_context) {
 965		u32 sid = oldsbsec->mntpoint_sid;
 966
 967		if (!set_fscontext)
 968			newsbsec->sid = sid;
 969		if (!set_rootcontext) {
 970			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 971			newisec->sid = sid;
 972		}
 973		newsbsec->mntpoint_sid = sid;
 974	}
 975	if (set_rootcontext) {
 976		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 977		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 978
 979		newisec->sid = oldisec->sid;
 980	}
 981
 982	sb_finish_set_opts(newsb);
 
 983	mutex_unlock(&newsbsec->lock);
 984	return 0;
 985}
 986
 987static int selinux_parse_opts_str(char *options,
 988				  struct security_mnt_opts *opts)
 
 
 989{
 990	char *p;
 991	char *context = NULL, *defcontext = NULL;
 992	char *fscontext = NULL, *rootcontext = NULL;
 993	int rc, num_mnt_opts = 0;
 994
 995	opts->num_mnt_opts = 0;
 
 
 
 
 996
 997	/* Standard string-based options. */
 998	while ((p = strsep(&options, "|")) != NULL) {
 999		int token;
1000		substring_t args[MAX_OPT_ARGS];
1001
1002		if (!*p)
1003			continue;
1004
1005		token = match_token(p, tokens, args);
1006
1007		switch (token) {
1008		case Opt_context:
1009			if (context || defcontext) {
1010				rc = -EINVAL;
1011				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1012				goto out_err;
1013			}
1014			context = match_strdup(&args[0]);
1015			if (!context) {
1016				rc = -ENOMEM;
1017				goto out_err;
1018			}
1019			break;
1020
1021		case Opt_fscontext:
1022			if (fscontext) {
1023				rc = -EINVAL;
1024				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1025				goto out_err;
1026			}
1027			fscontext = match_strdup(&args[0]);
1028			if (!fscontext) {
1029				rc = -ENOMEM;
1030				goto out_err;
1031			}
1032			break;
1033
1034		case Opt_rootcontext:
1035			if (rootcontext) {
1036				rc = -EINVAL;
1037				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1038				goto out_err;
1039			}
1040			rootcontext = match_strdup(&args[0]);
1041			if (!rootcontext) {
1042				rc = -ENOMEM;
1043				goto out_err;
1044			}
1045			break;
1046
1047		case Opt_defcontext:
1048			if (context || defcontext) {
1049				rc = -EINVAL;
1050				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1051				goto out_err;
1052			}
1053			defcontext = match_strdup(&args[0]);
1054			if (!defcontext) {
1055				rc = -ENOMEM;
1056				goto out_err;
1057			}
1058			break;
1059		case Opt_labelsupport:
1060			break;
1061		default:
1062			rc = -EINVAL;
1063			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1064			goto out_err;
1065
1066		}
1067	}
1068
1069	rc = -ENOMEM;
1070	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1071	if (!opts->mnt_opts)
1072		goto out_err;
1073
1074	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1075	if (!opts->mnt_opts_flags) {
1076		kfree(opts->mnt_opts);
1077		goto out_err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078	}
1079
1080	if (fscontext) {
1081		opts->mnt_opts[num_mnt_opts] = fscontext;
1082		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1083	}
1084	if (context) {
1085		opts->mnt_opts[num_mnt_opts] = context;
1086		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1087	}
1088	if (rootcontext) {
1089		opts->mnt_opts[num_mnt_opts] = rootcontext;
1090		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1091	}
1092	if (defcontext) {
1093		opts->mnt_opts[num_mnt_opts] = defcontext;
1094		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1095	}
1096
1097	opts->num_mnt_opts = num_mnt_opts;
1098	return 0;
1099
1100out_err:
1101	kfree(context);
1102	kfree(defcontext);
1103	kfree(fscontext);
1104	kfree(rootcontext);
1105	return rc;
1106}
1107/*
1108 * string mount options parsing and call set the sbsec
1109 */
1110static int superblock_doinit(struct super_block *sb, void *data)
1111{
1112	int rc = 0;
1113	char *options = data;
1114	struct security_mnt_opts opts;
1115
1116	security_init_mnt_opts(&opts);
1117
1118	if (!data)
1119		goto out;
1120
1121	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1122
1123	rc = selinux_parse_opts_str(options, &opts);
1124	if (rc)
1125		goto out_err;
1126
1127out:
1128	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1129
1130out_err:
1131	security_free_mnt_opts(&opts);
1132	return rc;
1133}
1134
1135static void selinux_write_opts(struct seq_file *m,
1136			       struct security_mnt_opts *opts)
1137{
1138	int i;
1139	char *prefix;
 
1140
1141	for (i = 0; i < opts->num_mnt_opts; i++) {
1142		char *has_comma;
 
 
1143
1144		if (opts->mnt_opts[i])
1145			has_comma = strchr(opts->mnt_opts[i], ',');
1146		else
1147			has_comma = NULL;
1148
1149		switch (opts->mnt_opts_flags[i]) {
1150		case CONTEXT_MNT:
1151			prefix = CONTEXT_STR;
1152			break;
1153		case FSCONTEXT_MNT:
1154			prefix = FSCONTEXT_STR;
1155			break;
1156		case ROOTCONTEXT_MNT:
1157			prefix = ROOTCONTEXT_STR;
1158			break;
1159		case DEFCONTEXT_MNT:
1160			prefix = DEFCONTEXT_STR;
1161			break;
1162		case SBLABEL_MNT:
1163			seq_putc(m, ',');
1164			seq_puts(m, LABELSUPP_STR);
1165			continue;
1166		default:
1167			BUG();
1168			return;
1169		};
1170		/* we need a comma before each option */
1171		seq_putc(m, ',');
1172		seq_puts(m, prefix);
1173		if (has_comma)
1174			seq_putc(m, '\"');
1175		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1176		if (has_comma)
1177			seq_putc(m, '\"');
1178	}
 
 
1179}
1180
1181static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1182{
1183	struct security_mnt_opts opts;
1184	int rc;
1185
1186	rc = selinux_get_mnt_opts(sb, &opts);
1187	if (rc) {
1188		/* before policy load we may get EINVAL, don't show anything */
1189		if (rc == -EINVAL)
1190			rc = 0;
1191		return rc;
1192	}
1193
1194	selinux_write_opts(m, &opts);
 
1195
1196	security_free_mnt_opts(&opts);
1197
1198	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199}
1200
1201static inline u16 inode_mode_to_security_class(umode_t mode)
1202{
1203	switch (mode & S_IFMT) {
1204	case S_IFSOCK:
1205		return SECCLASS_SOCK_FILE;
1206	case S_IFLNK:
1207		return SECCLASS_LNK_FILE;
1208	case S_IFREG:
1209		return SECCLASS_FILE;
1210	case S_IFBLK:
1211		return SECCLASS_BLK_FILE;
1212	case S_IFDIR:
1213		return SECCLASS_DIR;
1214	case S_IFCHR:
1215		return SECCLASS_CHR_FILE;
1216	case S_IFIFO:
1217		return SECCLASS_FIFO_FILE;
1218
1219	}
1220
1221	return SECCLASS_FILE;
1222}
1223
1224static inline int default_protocol_stream(int protocol)
1225{
1226	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
 
1227}
1228
1229static inline int default_protocol_dgram(int protocol)
1230{
1231	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1232}
1233
1234static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1235{
 
 
1236	switch (family) {
1237	case PF_UNIX:
1238		switch (type) {
1239		case SOCK_STREAM:
1240		case SOCK_SEQPACKET:
1241			return SECCLASS_UNIX_STREAM_SOCKET;
1242		case SOCK_DGRAM:
 
1243			return SECCLASS_UNIX_DGRAM_SOCKET;
1244		}
1245		break;
1246	case PF_INET:
1247	case PF_INET6:
1248		switch (type) {
1249		case SOCK_STREAM:
 
1250			if (default_protocol_stream(protocol))
1251				return SECCLASS_TCP_SOCKET;
 
 
1252			else
1253				return SECCLASS_RAWIP_SOCKET;
1254		case SOCK_DGRAM:
1255			if (default_protocol_dgram(protocol))
1256				return SECCLASS_UDP_SOCKET;
 
 
 
1257			else
1258				return SECCLASS_RAWIP_SOCKET;
1259		case SOCK_DCCP:
1260			return SECCLASS_DCCP_SOCKET;
1261		default:
1262			return SECCLASS_RAWIP_SOCKET;
1263		}
1264		break;
1265	case PF_NETLINK:
1266		switch (protocol) {
1267		case NETLINK_ROUTE:
1268			return SECCLASS_NETLINK_ROUTE_SOCKET;
1269		case NETLINK_SOCK_DIAG:
1270			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1271		case NETLINK_NFLOG:
1272			return SECCLASS_NETLINK_NFLOG_SOCKET;
1273		case NETLINK_XFRM:
1274			return SECCLASS_NETLINK_XFRM_SOCKET;
1275		case NETLINK_SELINUX:
1276			return SECCLASS_NETLINK_SELINUX_SOCKET;
1277		case NETLINK_ISCSI:
1278			return SECCLASS_NETLINK_ISCSI_SOCKET;
1279		case NETLINK_AUDIT:
1280			return SECCLASS_NETLINK_AUDIT_SOCKET;
1281		case NETLINK_FIB_LOOKUP:
1282			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1283		case NETLINK_CONNECTOR:
1284			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1285		case NETLINK_NETFILTER:
1286			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1287		case NETLINK_DNRTMSG:
1288			return SECCLASS_NETLINK_DNRT_SOCKET;
1289		case NETLINK_KOBJECT_UEVENT:
1290			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1291		case NETLINK_GENERIC:
1292			return SECCLASS_NETLINK_GENERIC_SOCKET;
1293		case NETLINK_SCSITRANSPORT:
1294			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1295		case NETLINK_RDMA:
1296			return SECCLASS_NETLINK_RDMA_SOCKET;
1297		case NETLINK_CRYPTO:
1298			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1299		default:
1300			return SECCLASS_NETLINK_SOCKET;
1301		}
1302	case PF_PACKET:
1303		return SECCLASS_PACKET_SOCKET;
1304	case PF_KEY:
1305		return SECCLASS_KEY_SOCKET;
1306	case PF_APPLETALK:
1307		return SECCLASS_APPLETALK_SOCKET;
1308	}
1309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310	return SECCLASS_SOCKET;
1311}
1312
1313static int selinux_genfs_get_sid(struct dentry *dentry,
1314				 u16 tclass,
1315				 u16 flags,
1316				 u32 *sid)
1317{
1318	int rc;
1319	struct super_block *sb = dentry->d_inode->i_sb;
1320	char *buffer, *path;
1321
1322	buffer = (char *)__get_free_page(GFP_KERNEL);
1323	if (!buffer)
1324		return -ENOMEM;
1325
1326	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1327	if (IS_ERR(path))
1328		rc = PTR_ERR(path);
1329	else {
1330		if (flags & SE_SBPROC) {
1331			/* each process gets a /proc/PID/ entry. Strip off the
1332			 * PID part to get a valid selinux labeling.
1333			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1334			while (path[1] >= '0' && path[1] <= '9') {
1335				path[1] = '/';
1336				path++;
1337			}
1338		}
1339		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
 
 
 
 
 
 
1340	}
1341	free_page((unsigned long)buffer);
1342	return rc;
1343}
1344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345/* The inode's security attributes must be initialized before first use. */
1346static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1347{
1348	struct superblock_security_struct *sbsec = NULL;
1349	struct inode_security_struct *isec = inode->i_security;
1350	u32 sid;
 
1351	struct dentry *dentry;
1352#define INITCONTEXTLEN 255
1353	char *context = NULL;
1354	unsigned len = 0;
1355	int rc = 0;
1356
1357	if (isec->initialized == LABEL_INITIALIZED)
1358		goto out;
1359
1360	mutex_lock(&isec->lock);
1361	if (isec->initialized == LABEL_INITIALIZED)
1362		goto out_unlock;
1363
1364	sbsec = inode->i_sb->s_security;
 
 
 
1365	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1366		/* Defer initialization until selinux_complete_init,
1367		   after the initial policy is loaded and the security
1368		   server is ready to handle calls. */
1369		spin_lock(&sbsec->isec_lock);
1370		if (list_empty(&isec->list))
1371			list_add(&isec->list, &sbsec->isec_head);
1372		spin_unlock(&sbsec->isec_lock);
1373		goto out_unlock;
1374	}
1375
 
 
 
 
 
 
1376	switch (sbsec->behavior) {
1377	case SECURITY_FS_USE_NATIVE:
1378		break;
1379	case SECURITY_FS_USE_XATTR:
1380		if (!inode->i_op->getxattr) {
1381			isec->sid = sbsec->def_sid;
1382			break;
1383		}
1384
1385		/* Need a dentry, since the xattr API requires one.
1386		   Life would be simpler if we could just pass the inode. */
1387		if (opt_dentry) {
1388			/* Called from d_instantiate or d_splice_alias. */
1389			dentry = dget(opt_dentry);
1390		} else {
1391			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1392			dentry = d_find_alias(inode);
 
 
1393		}
1394		if (!dentry) {
1395			/*
1396			 * this is can be hit on boot when a file is accessed
1397			 * before the policy is loaded.  When we load policy we
1398			 * may find inodes that have no dentry on the
1399			 * sbsec->isec_head list.  No reason to complain as these
1400			 * will get fixed up the next time we go through
1401			 * inode_doinit with a dentry, before these inodes could
1402			 * be used again by userspace.
1403			 */
1404			goto out_unlock;
1405		}
1406
1407		len = INITCONTEXTLEN;
1408		context = kmalloc(len+1, GFP_NOFS);
1409		if (!context) {
1410			rc = -ENOMEM;
1411			dput(dentry);
1412			goto out_unlock;
1413		}
1414		context[len] = '\0';
1415		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1416					   context, len);
1417		if (rc == -ERANGE) {
1418			kfree(context);
1419
1420			/* Need a larger buffer.  Query for the right size. */
1421			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1422						   NULL, 0);
1423			if (rc < 0) {
1424				dput(dentry);
1425				goto out_unlock;
1426			}
1427			len = rc;
1428			context = kmalloc(len+1, GFP_NOFS);
1429			if (!context) {
1430				rc = -ENOMEM;
1431				dput(dentry);
1432				goto out_unlock;
1433			}
1434			context[len] = '\0';
1435			rc = inode->i_op->getxattr(dentry,
1436						   XATTR_NAME_SELINUX,
1437						   context, len);
1438		}
1439		dput(dentry);
1440		if (rc < 0) {
1441			if (rc != -ENODATA) {
1442				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1443				       "%d for dev=%s ino=%ld\n", __func__,
1444				       -rc, inode->i_sb->s_id, inode->i_ino);
1445				kfree(context);
1446				goto out_unlock;
1447			}
1448			/* Map ENODATA to the default file SID */
1449			sid = sbsec->def_sid;
1450			rc = 0;
1451		} else {
1452			rc = security_context_to_sid_default(context, rc, &sid,
1453							     sbsec->def_sid,
1454							     GFP_NOFS);
1455			if (rc) {
1456				char *dev = inode->i_sb->s_id;
1457				unsigned long ino = inode->i_ino;
1458
1459				if (rc == -EINVAL) {
1460					if (printk_ratelimit())
1461						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1462							"context=%s.  This indicates you may need to relabel the inode or the "
1463							"filesystem in question.\n", ino, dev, context);
1464				} else {
1465					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1466					       "returned %d for dev=%s ino=%ld\n",
1467					       __func__, context, -rc, dev, ino);
1468				}
1469				kfree(context);
1470				/* Leave with the unlabeled SID */
1471				rc = 0;
1472				break;
1473			}
1474		}
1475		kfree(context);
1476		isec->sid = sid;
1477		break;
1478	case SECURITY_FS_USE_TASK:
1479		isec->sid = isec->task_sid;
1480		break;
1481	case SECURITY_FS_USE_TRANS:
1482		/* Default to the fs SID. */
1483		isec->sid = sbsec->sid;
1484
1485		/* Try to obtain a transition SID. */
1486		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1487		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1488					     isec->sclass, NULL, &sid);
1489		if (rc)
1490			goto out_unlock;
1491		isec->sid = sid;
1492		break;
1493	case SECURITY_FS_USE_MNTPOINT:
1494		isec->sid = sbsec->mntpoint_sid;
1495		break;
1496	default:
1497		/* Default to the fs superblock SID. */
1498		isec->sid = sbsec->sid;
1499
1500		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
 
 
1501			/* We must have a dentry to determine the label on
1502			 * procfs inodes */
1503			if (opt_dentry)
1504				/* Called from d_instantiate or
1505				 * d_splice_alias. */
1506				dentry = dget(opt_dentry);
1507			else
1508				/* Called from selinux_complete_init, try to
1509				 * find a dentry. */
 
 
1510				dentry = d_find_alias(inode);
 
 
 
1511			/*
1512			 * This can be hit on boot when a file is accessed
1513			 * before the policy is loaded.  When we load policy we
1514			 * may find inodes that have no dentry on the
1515			 * sbsec->isec_head list.  No reason to complain as
1516			 * these will get fixed up the next time we go through
1517			 * inode_doinit() with a dentry, before these inodes
1518			 * could be used again by userspace.
1519			 */
1520			if (!dentry)
1521				goto out_unlock;
1522			isec->sclass = inode_mode_to_security_class(inode->i_mode);
1523			rc = selinux_genfs_get_sid(dentry, isec->sclass,
1524						   sbsec->flags, &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525			dput(dentry);
1526			if (rc)
1527				goto out_unlock;
1528			isec->sid = sid;
1529		}
1530		break;
1531	}
1532
1533	isec->initialized = LABEL_INITIALIZED;
 
 
 
 
 
 
 
 
 
1534
1535out_unlock:
1536	mutex_unlock(&isec->lock);
1537out:
1538	if (isec->sclass == SECCLASS_FILE)
1539		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1540	return rc;
 
 
 
 
 
 
 
 
 
1541}
1542
1543/* Convert a Linux signal to an access vector. */
1544static inline u32 signal_to_av(int sig)
1545{
1546	u32 perm = 0;
1547
1548	switch (sig) {
1549	case SIGCHLD:
1550		/* Commonly granted from child to parent. */
1551		perm = PROCESS__SIGCHLD;
1552		break;
1553	case SIGKILL:
1554		/* Cannot be caught or ignored */
1555		perm = PROCESS__SIGKILL;
1556		break;
1557	case SIGSTOP:
1558		/* Cannot be caught or ignored */
1559		perm = PROCESS__SIGSTOP;
1560		break;
1561	default:
1562		/* All other signals. */
1563		perm = PROCESS__SIGNAL;
1564		break;
1565	}
1566
1567	return perm;
1568}
1569
1570/*
1571 * Check permission between a pair of credentials
1572 * fork check, ptrace check, etc.
1573 */
1574static int cred_has_perm(const struct cred *actor,
1575			 const struct cred *target,
1576			 u32 perms)
1577{
1578	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1579
1580	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1581}
1582
1583/*
1584 * Check permission between a pair of tasks, e.g. signal checks,
1585 * fork check, ptrace check, etc.
1586 * tsk1 is the actor and tsk2 is the target
1587 * - this uses the default subjective creds of tsk1
1588 */
1589static int task_has_perm(const struct task_struct *tsk1,
1590			 const struct task_struct *tsk2,
1591			 u32 perms)
1592{
1593	const struct task_security_struct *__tsec1, *__tsec2;
1594	u32 sid1, sid2;
1595
1596	rcu_read_lock();
1597	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1598	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1599	rcu_read_unlock();
1600	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1601}
1602
1603/*
1604 * Check permission between current and another task, e.g. signal checks,
1605 * fork check, ptrace check, etc.
1606 * current is the actor and tsk2 is the target
1607 * - this uses current's subjective creds
1608 */
1609static int current_has_perm(const struct task_struct *tsk,
1610			    u32 perms)
1611{
1612	u32 sid, tsid;
1613
1614	sid = current_sid();
1615	tsid = task_sid(tsk);
1616	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625			       int cap, int audit)
1626{
1627	struct common_audit_data ad;
1628	struct av_decision avd;
1629	u16 sclass;
1630	u32 sid = cred_sid(cred);
1631	u32 av = CAP_TO_MASK(cap);
1632	int rc;
1633
1634	ad.type = LSM_AUDIT_DATA_CAP;
1635	ad.u.cap = cap;
1636
1637	switch (CAP_TO_INDEX(cap)) {
1638	case 0:
1639		sclass = SECCLASS_CAPABILITY;
1640		break;
1641	case 1:
1642		sclass = SECCLASS_CAPABILITY2;
1643		break;
1644	default:
1645		printk(KERN_ERR
1646		       "SELinux:  out of range capability %d\n", cap);
1647		BUG();
1648		return -EINVAL;
1649	}
1650
1651	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1652	if (audit == SECURITY_CAP_AUDIT) {
1653		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
 
 
1654		if (rc2)
1655			return rc2;
1656	}
1657	return rc;
1658}
1659
1660/* Check whether a task is allowed to use a system operation. */
1661static int task_has_system(struct task_struct *tsk,
1662			   u32 perms)
1663{
1664	u32 sid = task_sid(tsk);
1665
1666	return avc_has_perm(sid, SECINITSID_KERNEL,
1667			    SECCLASS_SYSTEM, perms, NULL);
1668}
1669
1670/* Check whether a task has a particular permission to an inode.
1671   The 'adp' parameter is optional and allows other audit
1672   data to be passed (e.g. the dentry). */
1673static int inode_has_perm(const struct cred *cred,
1674			  struct inode *inode,
1675			  u32 perms,
1676			  struct common_audit_data *adp)
1677{
1678	struct inode_security_struct *isec;
1679	u32 sid;
1680
1681	validate_creds(cred);
1682
1683	if (unlikely(IS_PRIVATE(inode)))
1684		return 0;
1685
1686	sid = cred_sid(cred);
1687	isec = inode->i_security;
1688
1689	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1690}
1691
1692/* Same as inode_has_perm, but pass explicit audit data containing
1693   the dentry to help the auditing code to more easily generate the
1694   pathname if needed. */
1695static inline int dentry_has_perm(const struct cred *cred,
1696				  struct dentry *dentry,
1697				  u32 av)
1698{
1699	struct inode *inode = d_backing_inode(dentry);
1700	struct common_audit_data ad;
1701
1702	ad.type = LSM_AUDIT_DATA_DENTRY;
1703	ad.u.dentry = dentry;
1704	__inode_security_revalidate(inode, dentry, true);
1705	return inode_has_perm(cred, inode, av, &ad);
1706}
1707
1708/* Same as inode_has_perm, but pass explicit audit data containing
1709   the path to help the auditing code to more easily generate the
1710   pathname if needed. */
1711static inline int path_has_perm(const struct cred *cred,
1712				const struct path *path,
1713				u32 av)
1714{
1715	struct inode *inode = d_backing_inode(path->dentry);
1716	struct common_audit_data ad;
1717
1718	ad.type = LSM_AUDIT_DATA_PATH;
1719	ad.u.path = *path;
1720	__inode_security_revalidate(inode, path->dentry, true);
1721	return inode_has_perm(cred, inode, av, &ad);
1722}
1723
1724/* Same as path_has_perm, but uses the inode from the file struct. */
1725static inline int file_path_has_perm(const struct cred *cred,
1726				     struct file *file,
1727				     u32 av)
1728{
1729	struct common_audit_data ad;
1730
1731	ad.type = LSM_AUDIT_DATA_PATH;
1732	ad.u.path = file->f_path;
1733	return inode_has_perm(cred, file_inode(file), av, &ad);
1734}
1735
 
 
 
 
1736/* Check whether a task can use an open file descriptor to
1737   access an inode in a given way.  Check access to the
1738   descriptor itself, and then use dentry_has_perm to
1739   check a particular permission to the file.
1740   Access to the descriptor is implicitly granted if it
1741   has the same SID as the process.  If av is zero, then
1742   access to the file is not checked, e.g. for cases
1743   where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745			 struct file *file,
1746			 u32 av)
1747{
1748	struct file_security_struct *fsec = file->f_security;
1749	struct inode *inode = file_inode(file);
1750	struct common_audit_data ad;
1751	u32 sid = cred_sid(cred);
1752	int rc;
1753
1754	ad.type = LSM_AUDIT_DATA_PATH;
1755	ad.u.path = file->f_path;
1756
1757	if (sid != fsec->sid) {
1758		rc = avc_has_perm(sid, fsec->sid,
 
1759				  SECCLASS_FD,
1760				  FD__USE,
1761				  &ad);
1762		if (rc)
1763			goto out;
1764	}
1765
 
 
 
 
 
 
1766	/* av is zero if only checking access to the descriptor. */
1767	rc = 0;
1768	if (av)
1769		rc = inode_has_perm(cred, inode, av, &ad);
1770
1771out:
1772	return rc;
1773}
1774
1775/*
1776 * Determine the label for an inode that might be unioned.
1777 */
1778static int selinux_determine_inode_label(struct inode *dir,
1779					 const struct qstr *name,
1780					 u16 tclass,
1781					 u32 *_new_isid)
1782{
1783	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1784	const struct inode_security_struct *dsec = inode_security(dir);
1785	const struct task_security_struct *tsec = current_security();
1786
1787	if ((sbsec->flags & SE_SBINITIALIZED) &&
1788	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1789		*_new_isid = sbsec->mntpoint_sid;
1790	} else if ((sbsec->flags & SBLABEL_MNT) &&
1791		   tsec->create_sid) {
1792		*_new_isid = tsec->create_sid;
1793	} else {
1794		return security_transition_sid(tsec->sid, dsec->sid, tclass,
 
 
1795					       name, _new_isid);
1796	}
1797
1798	return 0;
1799}
1800
1801/* Check whether a task can create a file. */
1802static int may_create(struct inode *dir,
1803		      struct dentry *dentry,
1804		      u16 tclass)
1805{
1806	const struct task_security_struct *tsec = current_security();
1807	struct inode_security_struct *dsec;
1808	struct superblock_security_struct *sbsec;
1809	u32 sid, newsid;
1810	struct common_audit_data ad;
1811	int rc;
1812
1813	dsec = inode_security(dir);
1814	sbsec = dir->i_sb->s_security;
1815
1816	sid = tsec->sid;
1817
1818	ad.type = LSM_AUDIT_DATA_DENTRY;
1819	ad.u.dentry = dentry;
1820
1821	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1822			  DIR__ADD_NAME | DIR__SEARCH,
1823			  &ad);
1824	if (rc)
1825		return rc;
1826
1827	rc = selinux_determine_inode_label(dir, &dentry->d_name, tclass,
1828					   &newsid);
1829	if (rc)
1830		return rc;
1831
1832	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1833	if (rc)
1834		return rc;
1835
1836	return avc_has_perm(newsid, sbsec->sid,
 
1837			    SECCLASS_FILESYSTEM,
1838			    FILESYSTEM__ASSOCIATE, &ad);
1839}
1840
1841/* Check whether a task can create a key. */
1842static int may_create_key(u32 ksid,
1843			  struct task_struct *ctx)
1844{
1845	u32 sid = task_sid(ctx);
1846
1847	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1848}
1849
1850#define MAY_LINK	0
1851#define MAY_UNLINK	1
1852#define MAY_RMDIR	2
1853
1854/* Check whether a task can link, unlink, or rmdir a file/directory. */
1855static int may_link(struct inode *dir,
1856		    struct dentry *dentry,
1857		    int kind)
1858
1859{
1860	struct inode_security_struct *dsec, *isec;
1861	struct common_audit_data ad;
1862	u32 sid = current_sid();
1863	u32 av;
1864	int rc;
1865
1866	dsec = inode_security(dir);
1867	isec = backing_inode_security(dentry);
1868
1869	ad.type = LSM_AUDIT_DATA_DENTRY;
1870	ad.u.dentry = dentry;
1871
1872	av = DIR__SEARCH;
1873	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1874	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1875	if (rc)
1876		return rc;
1877
1878	switch (kind) {
1879	case MAY_LINK:
1880		av = FILE__LINK;
1881		break;
1882	case MAY_UNLINK:
1883		av = FILE__UNLINK;
1884		break;
1885	case MAY_RMDIR:
1886		av = DIR__RMDIR;
1887		break;
1888	default:
1889		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1890			__func__, kind);
1891		return 0;
1892	}
1893
1894	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1895	return rc;
1896}
1897
1898static inline int may_rename(struct inode *old_dir,
1899			     struct dentry *old_dentry,
1900			     struct inode *new_dir,
1901			     struct dentry *new_dentry)
1902{
1903	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1904	struct common_audit_data ad;
1905	u32 sid = current_sid();
1906	u32 av;
1907	int old_is_dir, new_is_dir;
1908	int rc;
1909
1910	old_dsec = inode_security(old_dir);
1911	old_isec = backing_inode_security(old_dentry);
1912	old_is_dir = d_is_dir(old_dentry);
1913	new_dsec = inode_security(new_dir);
1914
1915	ad.type = LSM_AUDIT_DATA_DENTRY;
1916
1917	ad.u.dentry = old_dentry;
1918	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1919			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1920	if (rc)
1921		return rc;
1922	rc = avc_has_perm(sid, old_isec->sid,
 
1923			  old_isec->sclass, FILE__RENAME, &ad);
1924	if (rc)
1925		return rc;
1926	if (old_is_dir && new_dir != old_dir) {
1927		rc = avc_has_perm(sid, old_isec->sid,
 
1928				  old_isec->sclass, DIR__REPARENT, &ad);
1929		if (rc)
1930			return rc;
1931	}
1932
1933	ad.u.dentry = new_dentry;
1934	av = DIR__ADD_NAME | DIR__SEARCH;
1935	if (d_is_positive(new_dentry))
1936		av |= DIR__REMOVE_NAME;
1937	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1938	if (rc)
1939		return rc;
1940	if (d_is_positive(new_dentry)) {
1941		new_isec = backing_inode_security(new_dentry);
1942		new_is_dir = d_is_dir(new_dentry);
1943		rc = avc_has_perm(sid, new_isec->sid,
 
1944				  new_isec->sclass,
1945				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1946		if (rc)
1947			return rc;
1948	}
1949
1950	return 0;
1951}
1952
1953/* Check whether a task can perform a filesystem operation. */
1954static int superblock_has_perm(const struct cred *cred,
1955			       struct super_block *sb,
1956			       u32 perms,
1957			       struct common_audit_data *ad)
1958{
1959	struct superblock_security_struct *sbsec;
1960	u32 sid = cred_sid(cred);
1961
1962	sbsec = sb->s_security;
1963	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1964}
1965
1966/* Convert a Linux mode and permission mask to an access vector. */
1967static inline u32 file_mask_to_av(int mode, int mask)
1968{
1969	u32 av = 0;
1970
1971	if (!S_ISDIR(mode)) {
1972		if (mask & MAY_EXEC)
1973			av |= FILE__EXECUTE;
1974		if (mask & MAY_READ)
1975			av |= FILE__READ;
1976
1977		if (mask & MAY_APPEND)
1978			av |= FILE__APPEND;
1979		else if (mask & MAY_WRITE)
1980			av |= FILE__WRITE;
1981
1982	} else {
1983		if (mask & MAY_EXEC)
1984			av |= DIR__SEARCH;
1985		if (mask & MAY_WRITE)
1986			av |= DIR__WRITE;
1987		if (mask & MAY_READ)
1988			av |= DIR__READ;
1989	}
1990
1991	return av;
1992}
1993
1994/* Convert a Linux file to an access vector. */
1995static inline u32 file_to_av(struct file *file)
1996{
1997	u32 av = 0;
1998
1999	if (file->f_mode & FMODE_READ)
2000		av |= FILE__READ;
2001	if (file->f_mode & FMODE_WRITE) {
2002		if (file->f_flags & O_APPEND)
2003			av |= FILE__APPEND;
2004		else
2005			av |= FILE__WRITE;
2006	}
2007	if (!av) {
2008		/*
2009		 * Special file opened with flags 3 for ioctl-only use.
2010		 */
2011		av = FILE__IOCTL;
2012	}
2013
2014	return av;
2015}
2016
2017/*
2018 * Convert a file to an access vector and include the correct open
2019 * open permission.
2020 */
2021static inline u32 open_file_to_av(struct file *file)
2022{
2023	u32 av = file_to_av(file);
 
2024
2025	if (selinux_policycap_openperm)
 
2026		av |= FILE__OPEN;
2027
2028	return av;
2029}
2030
2031/* Hook functions begin here. */
2032
2033static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2034{
2035	u32 mysid = current_sid();
2036	u32 mgrsid = task_sid(mgr);
2037
2038	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2039			    BINDER__SET_CONTEXT_MGR, NULL);
2040}
2041
2042static int selinux_binder_transaction(struct task_struct *from,
2043				      struct task_struct *to)
2044{
2045	u32 mysid = current_sid();
2046	u32 fromsid = task_sid(from);
2047	u32 tosid = task_sid(to);
2048	int rc;
2049
2050	if (mysid != fromsid) {
2051		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
 
2052				  BINDER__IMPERSONATE, NULL);
2053		if (rc)
2054			return rc;
2055	}
2056
2057	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2058			    NULL);
2059}
2060
2061static int selinux_binder_transfer_binder(struct task_struct *from,
2062					  struct task_struct *to)
2063{
2064	u32 fromsid = task_sid(from);
2065	u32 tosid = task_sid(to);
2066
2067	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2068			    NULL);
2069}
2070
2071static int selinux_binder_transfer_file(struct task_struct *from,
2072					struct task_struct *to,
2073					struct file *file)
2074{
2075	u32 sid = task_sid(to);
2076	struct file_security_struct *fsec = file->f_security;
2077	struct dentry *dentry = file->f_path.dentry;
2078	struct inode_security_struct *isec = backing_inode_security(dentry);
2079	struct common_audit_data ad;
2080	int rc;
2081
2082	ad.type = LSM_AUDIT_DATA_PATH;
2083	ad.u.path = file->f_path;
2084
2085	if (sid != fsec->sid) {
2086		rc = avc_has_perm(sid, fsec->sid,
 
2087				  SECCLASS_FD,
2088				  FD__USE,
2089				  &ad);
2090		if (rc)
2091			return rc;
2092	}
2093
 
 
 
 
 
 
2094	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2095		return 0;
2096
2097	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
 
 
2098			    &ad);
2099}
2100
2101static int selinux_ptrace_access_check(struct task_struct *child,
2102				     unsigned int mode)
2103{
2104	if (mode & PTRACE_MODE_READ) {
2105		u32 sid = current_sid();
2106		u32 csid = task_sid(child);
2107		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2108	}
 
2109
2110	return current_has_perm(child, PROCESS__PTRACE);
 
2111}
2112
2113static int selinux_ptrace_traceme(struct task_struct *parent)
2114{
2115	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
2116}
2117
2118static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2119			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2120{
2121	return current_has_perm(target, PROCESS__GETCAP);
 
 
2122}
2123
2124static int selinux_capset(struct cred *new, const struct cred *old,
2125			  const kernel_cap_t *effective,
2126			  const kernel_cap_t *inheritable,
2127			  const kernel_cap_t *permitted)
2128{
2129	return cred_has_perm(old, new, PROCESS__SETCAP);
 
 
2130}
2131
2132/*
2133 * (This comment used to live with the selinux_task_setuid hook,
2134 * which was removed).
2135 *
2136 * Since setuid only affects the current process, and since the SELinux
2137 * controls are not based on the Linux identity attributes, SELinux does not
2138 * need to control this operation.  However, SELinux does control the use of
2139 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2140 */
2141
2142static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2143			   int cap, int audit)
2144{
2145	return cred_has_capability(cred, cap, audit);
2146}
2147
2148static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2149{
2150	const struct cred *cred = current_cred();
2151	int rc = 0;
2152
2153	if (!sb)
2154		return 0;
2155
2156	switch (cmds) {
2157	case Q_SYNC:
2158	case Q_QUOTAON:
2159	case Q_QUOTAOFF:
2160	case Q_SETINFO:
2161	case Q_SETQUOTA:
 
 
 
2162		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2163		break;
2164	case Q_GETFMT:
2165	case Q_GETINFO:
2166	case Q_GETQUOTA:
 
 
 
 
2167		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2168		break;
2169	default:
2170		rc = 0;  /* let the kernel handle invalid cmds */
2171		break;
2172	}
2173	return rc;
2174}
2175
2176static int selinux_quota_on(struct dentry *dentry)
2177{
2178	const struct cred *cred = current_cred();
2179
2180	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2181}
2182
2183static int selinux_syslog(int type)
2184{
2185	int rc;
2186
2187	switch (type) {
2188	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2189	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2190		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2191		break;
 
2192	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2193	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2194	/* Set level of messages printed to console */
2195	case SYSLOG_ACTION_CONSOLE_LEVEL:
2196		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2197		break;
2198	case SYSLOG_ACTION_CLOSE:	/* Close log */
2199	case SYSLOG_ACTION_OPEN:	/* Open log */
2200	case SYSLOG_ACTION_READ:	/* Read from log */
2201	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2202	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2203	default:
2204		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2205		break;
2206	}
2207	return rc;
2208}
2209
2210/*
2211 * Check that a process has enough memory to allocate a new virtual
2212 * mapping. 0 means there is enough memory for the allocation to
2213 * succeed and -ENOMEM implies there is not.
2214 *
2215 * Do not audit the selinux permission check, as this is applied to all
2216 * processes that allocate mappings.
2217 */
2218static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2219{
2220	int rc, cap_sys_admin = 0;
2221
2222	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2223					SECURITY_CAP_NOAUDIT);
2224	if (rc == 0)
2225		cap_sys_admin = 1;
2226
2227	return cap_sys_admin;
2228}
2229
2230/* binprm security operations */
2231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232static int check_nnp_nosuid(const struct linux_binprm *bprm,
2233			    const struct task_security_struct *old_tsec,
2234			    const struct task_security_struct *new_tsec)
2235{
2236	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2237	int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2238	int rc;
 
2239
2240	if (!nnp && !nosuid)
2241		return 0; /* neither NNP nor nosuid */
2242
2243	if (new_tsec->sid == old_tsec->sid)
2244		return 0; /* No change in credentials */
2245
2246	/*
2247	 * The only transitions we permit under NNP or nosuid
2248	 * are transitions to bounded SIDs, i.e. SIDs that are
2249	 * guaranteed to only be allowed a subset of the permissions
2250	 * of the current SID.
2251	 */
2252	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2253	if (rc) {
2254		/*
2255		 * On failure, preserve the errno values for NNP vs nosuid.
2256		 * NNP:  Operation not permitted for caller.
2257		 * nosuid:  Permission denied to file.
2258		 */
2259		if (nnp)
2260			return -EPERM;
2261		else
2262			return -EACCES;
 
 
 
 
 
2263	}
2264	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2265}
2266
2267static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2268{
2269	const struct task_security_struct *old_tsec;
2270	struct task_security_struct *new_tsec;
2271	struct inode_security_struct *isec;
2272	struct common_audit_data ad;
2273	struct inode *inode = file_inode(bprm->file);
2274	int rc;
2275
2276	/* SELinux context only depends on initial program or script and not
2277	 * the script interpreter */
2278	if (bprm->cred_prepared)
2279		return 0;
2280
2281	old_tsec = current_security();
2282	new_tsec = bprm->cred->security;
2283	isec = inode_security(inode);
2284
2285	/* Default to the current task SID. */
2286	new_tsec->sid = old_tsec->sid;
2287	new_tsec->osid = old_tsec->sid;
2288
2289	/* Reset fs, key, and sock SIDs on execve. */
2290	new_tsec->create_sid = 0;
2291	new_tsec->keycreate_sid = 0;
2292	new_tsec->sockcreate_sid = 0;
2293
2294	if (old_tsec->exec_sid) {
2295		new_tsec->sid = old_tsec->exec_sid;
2296		/* Reset exec SID on execve. */
2297		new_tsec->exec_sid = 0;
2298
2299		/* Fail on NNP or nosuid if not an allowed transition. */
2300		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2301		if (rc)
2302			return rc;
2303	} else {
2304		/* Check for a default transition on this program. */
2305		rc = security_transition_sid(old_tsec->sid, isec->sid,
2306					     SECCLASS_PROCESS, NULL,
2307					     &new_tsec->sid);
2308		if (rc)
2309			return rc;
2310
2311		/*
2312		 * Fallback to old SID on NNP or nosuid if not an allowed
2313		 * transition.
2314		 */
2315		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2316		if (rc)
2317			new_tsec->sid = old_tsec->sid;
2318	}
2319
2320	ad.type = LSM_AUDIT_DATA_PATH;
2321	ad.u.path = bprm->file->f_path;
2322
2323	if (new_tsec->sid == old_tsec->sid) {
2324		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2325				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2326		if (rc)
2327			return rc;
2328	} else {
2329		/* Check permissions for the transition. */
2330		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2331				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2332		if (rc)
2333			return rc;
2334
2335		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2336				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2337		if (rc)
2338			return rc;
2339
2340		/* Check for shared state */
2341		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2342			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2343					  SECCLASS_PROCESS, PROCESS__SHARE,
2344					  NULL);
2345			if (rc)
2346				return -EPERM;
2347		}
2348
2349		/* Make sure that anyone attempting to ptrace over a task that
2350		 * changes its SID has the appropriate permit */
2351		if (bprm->unsafe &
2352		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2353			struct task_struct *tracer;
2354			struct task_security_struct *sec;
2355			u32 ptsid = 0;
2356
2357			rcu_read_lock();
2358			tracer = ptrace_parent(current);
2359			if (likely(tracer != NULL)) {
2360				sec = __task_cred(tracer)->security;
2361				ptsid = sec->sid;
2362			}
2363			rcu_read_unlock();
2364
2365			if (ptsid != 0) {
2366				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2367						  SECCLASS_PROCESS,
2368						  PROCESS__PTRACE, NULL);
2369				if (rc)
2370					return -EPERM;
2371			}
2372		}
2373
2374		/* Clear any possibly unsafe personality bits on exec: */
2375		bprm->per_clear |= PER_CLEAR_ON_SETID;
2376	}
2377
2378	return 0;
2379}
2380
2381static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2382{
2383	const struct task_security_struct *tsec = current_security();
2384	u32 sid, osid;
2385	int atsecure = 0;
2386
2387	sid = tsec->sid;
2388	osid = tsec->osid;
2389
2390	if (osid != sid) {
2391		/* Enable secure mode for SIDs transitions unless
2392		   the noatsecure permission is granted between
2393		   the two SIDs, i.e. ahp returns 0. */
2394		atsecure = avc_has_perm(osid, sid,
2395					SECCLASS_PROCESS,
2396					PROCESS__NOATSECURE, NULL);
 
 
2397	}
2398
2399	return !!atsecure;
2400}
2401
2402static int match_file(const void *p, struct file *file, unsigned fd)
2403{
2404	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2405}
2406
2407/* Derived from fs/exec.c:flush_old_files. */
2408static inline void flush_unauthorized_files(const struct cred *cred,
2409					    struct files_struct *files)
2410{
2411	struct file *file, *devnull = NULL;
2412	struct tty_struct *tty;
2413	int drop_tty = 0;
2414	unsigned n;
2415
2416	tty = get_current_tty();
2417	if (tty) {
2418		spin_lock(&tty->files_lock);
2419		if (!list_empty(&tty->tty_files)) {
2420			struct tty_file_private *file_priv;
2421
2422			/* Revalidate access to controlling tty.
2423			   Use file_path_has_perm on the tty path directly
2424			   rather than using file_has_perm, as this particular
2425			   open file may belong to another process and we are
2426			   only interested in the inode-based check here. */
2427			file_priv = list_first_entry(&tty->tty_files,
2428						struct tty_file_private, list);
2429			file = file_priv->file;
2430			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2431				drop_tty = 1;
2432		}
2433		spin_unlock(&tty->files_lock);
2434		tty_kref_put(tty);
2435	}
2436	/* Reset controlling tty. */
2437	if (drop_tty)
2438		no_tty();
2439
2440	/* Revalidate access to inherited open files. */
2441	n = iterate_fd(files, 0, match_file, cred);
2442	if (!n) /* none found? */
2443		return;
2444
2445	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2446	if (IS_ERR(devnull))
2447		devnull = NULL;
2448	/* replace all the matching ones with this */
2449	do {
2450		replace_fd(n - 1, devnull, 0);
2451	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2452	if (devnull)
2453		fput(devnull);
2454}
2455
2456/*
2457 * Prepare a process for imminent new credential changes due to exec
2458 */
2459static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2460{
2461	struct task_security_struct *new_tsec;
2462	struct rlimit *rlim, *initrlim;
2463	int rc, i;
2464
2465	new_tsec = bprm->cred->security;
2466	if (new_tsec->sid == new_tsec->osid)
2467		return;
2468
2469	/* Close files for which the new task SID is not authorized. */
2470	flush_unauthorized_files(bprm->cred, current->files);
2471
2472	/* Always clear parent death signal on SID transitions. */
2473	current->pdeath_signal = 0;
2474
2475	/* Check whether the new SID can inherit resource limits from the old
2476	 * SID.  If not, reset all soft limits to the lower of the current
2477	 * task's hard limit and the init task's soft limit.
2478	 *
2479	 * Note that the setting of hard limits (even to lower them) can be
2480	 * controlled by the setrlimit check.  The inclusion of the init task's
2481	 * soft limit into the computation is to avoid resetting soft limits
2482	 * higher than the default soft limit for cases where the default is
2483	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2484	 */
2485	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2486			  PROCESS__RLIMITINH, NULL);
2487	if (rc) {
2488		/* protect against do_prlimit() */
2489		task_lock(current);
2490		for (i = 0; i < RLIM_NLIMITS; i++) {
2491			rlim = current->signal->rlim + i;
2492			initrlim = init_task.signal->rlim + i;
2493			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2494		}
2495		task_unlock(current);
2496		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
 
2497	}
2498}
2499
2500/*
2501 * Clean up the process immediately after the installation of new credentials
2502 * due to exec
2503 */
2504static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2505{
2506	const struct task_security_struct *tsec = current_security();
2507	struct itimerval itimer;
2508	u32 osid, sid;
2509	int rc, i;
2510
2511	osid = tsec->osid;
2512	sid = tsec->sid;
2513
2514	if (sid == osid)
2515		return;
2516
2517	/* Check whether the new SID can inherit signal state from the old SID.
2518	 * If not, clear itimers to avoid subsequent signal generation and
2519	 * flush and unblock signals.
2520	 *
2521	 * This must occur _after_ the task SID has been updated so that any
2522	 * kill done after the flush will be checked against the new SID.
2523	 */
2524	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2525	if (rc) {
2526		memset(&itimer, 0, sizeof itimer);
2527		for (i = 0; i < 3; i++)
2528			do_setitimer(i, &itimer, NULL);
2529		spin_lock_irq(&current->sighand->siglock);
2530		if (!fatal_signal_pending(current)) {
2531			flush_sigqueue(&current->pending);
2532			flush_sigqueue(&current->signal->shared_pending);
2533			flush_signal_handlers(current, 1);
2534			sigemptyset(&current->blocked);
2535			recalc_sigpending();
2536		}
2537		spin_unlock_irq(&current->sighand->siglock);
2538	}
2539
2540	/* Wake up the parent if it is waiting so that it can recheck
2541	 * wait permission to the new task SID. */
2542	read_lock(&tasklist_lock);
2543	__wake_up_parent(current, current->real_parent);
2544	read_unlock(&tasklist_lock);
2545}
2546
2547/* superblock security operations */
2548
2549static int selinux_sb_alloc_security(struct super_block *sb)
2550{
2551	return superblock_alloc_security(sb);
2552}
 
 
 
 
 
 
2553
2554static void selinux_sb_free_security(struct super_block *sb)
2555{
2556	superblock_free_security(sb);
2557}
2558
2559static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2560{
2561	if (plen > olen)
2562		return 0;
 
2563
2564	return !memcmp(prefix, option, plen);
 
 
 
 
 
 
2565}
2566
2567static inline int selinux_option(char *option, int len)
2568{
2569	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2570		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2571		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2572		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2573		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2574}
2575
2576static inline void take_option(char **to, char *from, int *first, int len)
2577{
2578	if (!*first) {
2579		**to = ',';
2580		*to += 1;
2581	} else
2582		*first = 0;
2583	memcpy(*to, from, len);
2584	*to += len;
2585}
2586
2587static inline void take_selinux_option(char **to, char *from, int *first,
2588				       int len)
2589{
2590	int current_size = 0;
2591
2592	if (!*first) {
2593		**to = '|';
2594		*to += 1;
2595	} else
2596		*first = 0;
2597
2598	while (current_size < len) {
2599		if (*from != '"') {
2600			**to = *from;
2601			*to += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602		}
2603		from += 1;
2604		current_size += 1;
 
2605	}
 
 
 
 
 
 
 
 
 
2606}
2607
2608static int selinux_sb_copy_data(char *orig, char *copy)
2609{
2610	int fnosec, fsec, rc = 0;
2611	char *in_save, *in_curr, *in_end;
2612	char *sec_curr, *nosec_save, *nosec;
2613	int open_quote = 0;
 
 
 
 
 
2614
2615	in_curr = orig;
2616	sec_curr = copy;
 
 
 
 
2617
2618	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2619	if (!nosec) {
2620		rc = -ENOMEM;
2621		goto out;
 
 
 
 
 
2622	}
 
 
2623
2624	nosec_save = nosec;
2625	fnosec = fsec = 1;
2626	in_save = in_end = orig;
2627
2628	do {
2629		if (*in_end == '"')
2630			open_quote = !open_quote;
2631		if ((*in_end == ',' && open_quote == 0) ||
2632				*in_end == '\0') {
2633			int len = in_end - in_curr;
2634
2635			if (selinux_option(in_curr, len))
2636				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2637			else
2638				take_option(&nosec, in_curr, &fnosec, len);
2639
2640			in_curr = in_end + 1;
2641		}
2642	} while (*in_end++);
2643
2644	strcpy(in_save, nosec_save);
2645	free_page((unsigned long)nosec_save);
2646out:
2647	return rc;
2648}
2649
2650static int selinux_sb_remount(struct super_block *sb, void *data)
2651{
2652	int rc, i, *flags;
2653	struct security_mnt_opts opts;
2654	char *secdata, **mount_options;
2655	struct superblock_security_struct *sbsec = sb->s_security;
2656
2657	if (!(sbsec->flags & SE_SBINITIALIZED))
2658		return 0;
2659
2660	if (!data)
2661		return 0;
2662
2663	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2664		return 0;
2665
2666	security_init_mnt_opts(&opts);
2667	secdata = alloc_secdata();
2668	if (!secdata)
2669		return -ENOMEM;
2670	rc = selinux_sb_copy_data(data, secdata);
2671	if (rc)
2672		goto out_free_secdata;
2673
2674	rc = selinux_parse_opts_str(secdata, &opts);
2675	if (rc)
2676		goto out_free_secdata;
2677
2678	mount_options = opts.mnt_opts;
2679	flags = opts.mnt_opts_flags;
2680
2681	for (i = 0; i < opts.num_mnt_opts; i++) {
2682		u32 sid;
2683
2684		if (flags[i] == SBLABEL_MNT)
2685			continue;
2686		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2687		if (rc) {
2688			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2689			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2690			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2691			goto out_free_opts;
2692		}
2693		rc = -EINVAL;
2694		switch (flags[i]) {
2695		case FSCONTEXT_MNT:
2696			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2697				goto out_bad_option;
2698			break;
2699		case CONTEXT_MNT:
2700			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2701				goto out_bad_option;
2702			break;
2703		case ROOTCONTEXT_MNT: {
2704			struct inode_security_struct *root_isec;
2705			root_isec = backing_inode_security(sb->s_root);
2706
2707			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2708				goto out_bad_option;
2709			break;
2710		}
2711		case DEFCONTEXT_MNT:
2712			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2713				goto out_bad_option;
2714			break;
2715		default:
2716			goto out_free_opts;
2717		}
2718	}
 
2719
2720	rc = 0;
2721out_free_opts:
2722	security_free_mnt_opts(&opts);
2723out_free_secdata:
2724	free_secdata(secdata);
2725	return rc;
2726out_bad_option:
2727	printk(KERN_WARNING "SELinux: unable to change security options "
2728	       "during remount (dev %s, type=%s)\n", sb->s_id,
2729	       sb->s_type->name);
2730	goto out_free_opts;
2731}
2732
2733static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2734{
2735	const struct cred *cred = current_cred();
2736	struct common_audit_data ad;
2737	int rc;
2738
2739	rc = superblock_doinit(sb, data);
2740	if (rc)
2741		return rc;
2742
2743	/* Allow all mounts performed by the kernel */
2744	if (flags & MS_KERNMOUNT)
2745		return 0;
2746
2747	ad.type = LSM_AUDIT_DATA_DENTRY;
2748	ad.u.dentry = sb->s_root;
2749	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2750}
2751
2752static int selinux_sb_statfs(struct dentry *dentry)
2753{
2754	const struct cred *cred = current_cred();
2755	struct common_audit_data ad;
2756
2757	ad.type = LSM_AUDIT_DATA_DENTRY;
2758	ad.u.dentry = dentry->d_sb->s_root;
2759	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2760}
2761
2762static int selinux_mount(const char *dev_name,
2763			 struct path *path,
2764			 const char *type,
2765			 unsigned long flags,
2766			 void *data)
2767{
2768	const struct cred *cred = current_cred();
2769
2770	if (flags & MS_REMOUNT)
2771		return superblock_has_perm(cred, path->dentry->d_sb,
2772					   FILESYSTEM__REMOUNT, NULL);
2773	else
2774		return path_has_perm(cred, path, FILE__MOUNTON);
2775}
2776
 
 
 
 
 
 
 
 
2777static int selinux_umount(struct vfsmount *mnt, int flags)
2778{
2779	const struct cred *cred = current_cred();
2780
2781	return superblock_has_perm(cred, mnt->mnt_sb,
2782				   FILESYSTEM__UNMOUNT, NULL);
2783}
2784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785/* inode security operations */
2786
2787static int selinux_inode_alloc_security(struct inode *inode)
2788{
2789	return inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
2790}
2791
2792static void selinux_inode_free_security(struct inode *inode)
2793{
2794	inode_free_security(inode);
2795}
2796
2797static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2798					struct qstr *name, void **ctx,
 
2799					u32 *ctxlen)
2800{
2801	u32 newsid;
2802	int rc;
2803
2804	rc = selinux_determine_inode_label(d_inode(dentry->d_parent), name,
 
2805					   inode_mode_to_security_class(mode),
2806					   &newsid);
2807	if (rc)
2808		return rc;
2809
2810	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2811}
2812
2813static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2814				       const struct qstr *qstr,
2815				       const char **name,
2816				       void **value, size_t *len)
2817{
2818	const struct task_security_struct *tsec = current_security();
2819	struct superblock_security_struct *sbsec;
2820	u32 sid, newsid, clen;
2821	int rc;
2822	char *context;
2823
2824	sbsec = dir->i_sb->s_security;
2825
2826	sid = tsec->sid;
2827	newsid = tsec->create_sid;
2828
2829	rc = selinux_determine_inode_label(
2830		dir, qstr,
2831		inode_mode_to_security_class(inode->i_mode),
2832		&newsid);
2833	if (rc)
2834		return rc;
2835
2836	/* Possibly defer initialization to selinux_complete_init. */
2837	if (sbsec->flags & SE_SBINITIALIZED) {
2838		struct inode_security_struct *isec = inode->i_security;
2839		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2840		isec->sid = newsid;
2841		isec->initialized = LABEL_INITIALIZED;
2842	}
2843
2844	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
 
2845		return -EOPNOTSUPP;
2846
2847	if (name)
2848		*name = XATTR_SELINUX_SUFFIX;
2849
2850	if (value && len) {
2851		rc = security_sid_to_context_force(newsid, &context, &clen);
 
2852		if (rc)
2853			return rc;
2854		*value = context;
2855		*len = clen;
2856	}
2857
2858	return 0;
2859}
2860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2862{
2863	return may_create(dir, dentry, SECCLASS_FILE);
2864}
2865
2866static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2867{
2868	return may_link(dir, old_dentry, MAY_LINK);
2869}
2870
2871static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2872{
2873	return may_link(dir, dentry, MAY_UNLINK);
2874}
2875
2876static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2877{
2878	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2879}
2880
2881static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2882{
2883	return may_create(dir, dentry, SECCLASS_DIR);
2884}
2885
2886static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2887{
2888	return may_link(dir, dentry, MAY_RMDIR);
2889}
2890
2891static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892{
2893	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2894}
2895
2896static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2897				struct inode *new_inode, struct dentry *new_dentry)
2898{
2899	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2900}
2901
2902static int selinux_inode_readlink(struct dentry *dentry)
2903{
2904	const struct cred *cred = current_cred();
2905
2906	return dentry_has_perm(cred, dentry, FILE__READ);
2907}
2908
2909static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2910				     bool rcu)
2911{
2912	const struct cred *cred = current_cred();
2913	struct common_audit_data ad;
2914	struct inode_security_struct *isec;
2915	u32 sid;
2916
2917	validate_creds(cred);
2918
2919	ad.type = LSM_AUDIT_DATA_DENTRY;
2920	ad.u.dentry = dentry;
2921	sid = cred_sid(cred);
2922	isec = inode_security_rcu(inode, rcu);
2923	if (IS_ERR(isec))
2924		return PTR_ERR(isec);
2925
2926	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2927				  rcu ? MAY_NOT_BLOCK : 0);
2928}
2929
2930static noinline int audit_inode_permission(struct inode *inode,
2931					   u32 perms, u32 audited, u32 denied,
2932					   int result,
2933					   unsigned flags)
2934{
2935	struct common_audit_data ad;
2936	struct inode_security_struct *isec = inode->i_security;
2937	int rc;
2938
2939	ad.type = LSM_AUDIT_DATA_INODE;
2940	ad.u.inode = inode;
2941
2942	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2943			    audited, denied, result, &ad, flags);
2944	if (rc)
2945		return rc;
2946	return 0;
2947}
2948
2949static int selinux_inode_permission(struct inode *inode, int mask)
2950{
2951	const struct cred *cred = current_cred();
2952	u32 perms;
2953	bool from_access;
2954	unsigned flags = mask & MAY_NOT_BLOCK;
2955	struct inode_security_struct *isec;
2956	u32 sid;
2957	struct av_decision avd;
2958	int rc, rc2;
2959	u32 audited, denied;
2960
2961	from_access = mask & MAY_ACCESS;
2962	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2963
2964	/* No permission to check.  Existence test. */
2965	if (!mask)
2966		return 0;
2967
2968	validate_creds(cred);
2969
2970	if (unlikely(IS_PRIVATE(inode)))
2971		return 0;
2972
2973	perms = file_mask_to_av(inode->i_mode, mask);
2974
2975	sid = cred_sid(cred);
2976	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
2977	if (IS_ERR(isec))
2978		return PTR_ERR(isec);
2979
2980	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
 
 
2981	audited = avc_audit_required(perms, &avd, rc,
2982				     from_access ? FILE__AUDIT_ACCESS : 0,
2983				     &denied);
2984	if (likely(!audited))
2985		return rc;
2986
2987	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2988	if (rc2)
2989		return rc2;
2990	return rc;
2991}
2992
2993static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2994{
2995	const struct cred *cred = current_cred();
 
2996	unsigned int ia_valid = iattr->ia_valid;
2997	__u32 av = FILE__WRITE;
2998
2999	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3000	if (ia_valid & ATTR_FORCE) {
3001		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3002			      ATTR_FORCE);
3003		if (!ia_valid)
3004			return 0;
3005	}
3006
3007	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3008			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3009		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3010
3011	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3012			&& !(ia_valid & ATTR_FILE))
 
 
3013		av |= FILE__OPEN;
3014
3015	return dentry_has_perm(cred, dentry, av);
3016}
3017
3018static int selinux_inode_getattr(const struct path *path)
3019{
3020	return path_has_perm(current_cred(), path, FILE__GETATTR);
3021}
3022
3023static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3024{
3025	const struct cred *cred = current_cred();
 
3026
3027	if (!strncmp(name, XATTR_SECURITY_PREFIX,
3028		     sizeof XATTR_SECURITY_PREFIX - 1)) {
3029		if (!strcmp(name, XATTR_NAME_CAPS)) {
3030			if (!capable(CAP_SETFCAP))
3031				return -EPERM;
3032		} else if (!capable(CAP_SYS_ADMIN)) {
3033			/* A different attribute in the security namespace.
3034			   Restrict to administrator. */
3035			return -EPERM;
3036		}
3037	}
3038
3039	/* Not an attribute we recognize, so just check the
3040	   ordinary setattr permission. */
3041	return dentry_has_perm(cred, dentry, FILE__SETATTR);
3042}
3043
3044static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
 
3045				  const void *value, size_t size, int flags)
3046{
3047	struct inode *inode = d_backing_inode(dentry);
3048	struct inode_security_struct *isec = backing_inode_security(dentry);
3049	struct superblock_security_struct *sbsec;
3050	struct common_audit_data ad;
3051	u32 newsid, sid = current_sid();
3052	int rc = 0;
3053
3054	if (strcmp(name, XATTR_NAME_SELINUX))
3055		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
3056
3057	sbsec = inode->i_sb->s_security;
 
 
 
3058	if (!(sbsec->flags & SBLABEL_MNT))
3059		return -EOPNOTSUPP;
3060
3061	if (!inode_owner_or_capable(inode))
3062		return -EPERM;
3063
3064	ad.type = LSM_AUDIT_DATA_DENTRY;
3065	ad.u.dentry = dentry;
3066
3067	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
 
3068			  FILE__RELABELFROM, &ad);
3069	if (rc)
3070		return rc;
3071
3072	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3073	if (rc == -EINVAL) {
3074		if (!capable(CAP_MAC_ADMIN)) {
3075			struct audit_buffer *ab;
3076			size_t audit_size;
3077			const char *str;
3078
3079			/* We strip a nul only if it is at the end, otherwise the
3080			 * context contains a nul and we should audit that */
3081			if (value) {
3082				str = value;
 
3083				if (str[size - 1] == '\0')
3084					audit_size = size - 1;
3085				else
3086					audit_size = size;
3087			} else {
3088				str = "";
3089				audit_size = 0;
3090			}
3091			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
 
3092			audit_log_format(ab, "op=setxattr invalid_context=");
3093			audit_log_n_untrustedstring(ab, value, audit_size);
3094			audit_log_end(ab);
3095
3096			return rc;
3097		}
3098		rc = security_context_to_sid_force(value, size, &newsid);
 
3099	}
3100	if (rc)
3101		return rc;
3102
3103	rc = avc_has_perm(sid, newsid, isec->sclass,
 
3104			  FILE__RELABELTO, &ad);
3105	if (rc)
3106		return rc;
3107
3108	rc = security_validate_transition(isec->sid, newsid, sid,
3109					  isec->sclass);
3110	if (rc)
3111		return rc;
3112
3113	return avc_has_perm(newsid,
 
3114			    sbsec->sid,
3115			    SECCLASS_FILESYSTEM,
3116			    FILESYSTEM__ASSOCIATE,
3117			    &ad);
3118}
3119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3120static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3121					const void *value, size_t size,
3122					int flags)
3123{
3124	struct inode *inode = d_backing_inode(dentry);
3125	struct inode_security_struct *isec = backing_inode_security(dentry);
3126	u32 newsid;
3127	int rc;
3128
3129	if (strcmp(name, XATTR_NAME_SELINUX)) {
3130		/* Not an attribute we recognize, so nothing to do. */
3131		return;
3132	}
3133
3134	rc = security_context_to_sid_force(value, size, &newsid);
 
 
 
 
 
 
 
 
 
 
3135	if (rc) {
3136		printk(KERN_ERR "SELinux:  unable to map context to SID"
3137		       "for (%s, %lu), rc=%d\n",
3138		       inode->i_sb->s_id, inode->i_ino, -rc);
3139		return;
3140	}
3141
 
 
3142	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3143	isec->sid = newsid;
3144	isec->initialized = LABEL_INITIALIZED;
3145
3146	return;
3147}
3148
3149static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3150{
3151	const struct cred *cred = current_cred();
3152
3153	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3154}
3155
3156static int selinux_inode_listxattr(struct dentry *dentry)
3157{
3158	const struct cred *cred = current_cred();
3159
3160	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3161}
3162
3163static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
 
3164{
3165	if (strcmp(name, XATTR_NAME_SELINUX))
3166		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
3167
3168	/* No one is allowed to remove a SELinux security label.
3169	   You can change the label, but all data must be labeled. */
3170	return -EACCES;
3171}
3172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3173/*
3174 * Copy the inode security context value to the user.
3175 *
3176 * Permission check is handled by selinux_inode_getxattr hook.
3177 */
3178static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
 
 
3179{
3180	u32 size;
3181	int error;
3182	char *context = NULL;
3183	struct inode_security_struct *isec = inode_security(inode);
3184
3185	if (strcmp(name, XATTR_SELINUX_SUFFIX))
 
 
 
 
 
3186		return -EOPNOTSUPP;
3187
3188	/*
3189	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3190	 * value even if it is not defined by current policy; otherwise,
3191	 * use the in-core value under current policy.
3192	 * Use the non-auditing forms of the permission checks since
3193	 * getxattr may be called by unprivileged processes commonly
3194	 * and lack of permission just means that we fall back to the
3195	 * in-core context value, not a denial.
3196	 */
3197	error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3198			    SECURITY_CAP_NOAUDIT);
3199	if (!error)
3200		error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3201					    SECURITY_CAP_NOAUDIT);
3202	if (!error)
3203		error = security_sid_to_context_force(isec->sid, &context,
3204						      &size);
3205	else
3206		error = security_sid_to_context(isec->sid, &context, &size);
 
3207	if (error)
3208		return error;
3209	error = size;
3210	if (alloc) {
3211		*buffer = context;
3212		goto out_nofree;
3213	}
3214	kfree(context);
3215out_nofree:
3216	return error;
3217}
3218
3219static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3220				     const void *value, size_t size, int flags)
3221{
3222	struct inode_security_struct *isec = inode_security(inode);
 
3223	u32 newsid;
3224	int rc;
3225
3226	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3227		return -EOPNOTSUPP;
3228
 
 
 
 
3229	if (!value || !size)
3230		return -EACCES;
3231
3232	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3233	if (rc)
3234		return rc;
3235
 
3236	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3237	isec->sid = newsid;
3238	isec->initialized = LABEL_INITIALIZED;
 
3239	return 0;
3240}
3241
3242static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3243{
3244	const int len = sizeof(XATTR_NAME_SELINUX);
 
 
 
 
3245	if (buffer && len <= buffer_size)
3246		memcpy(buffer, XATTR_NAME_SELINUX, len);
3247	return len;
3248}
3249
3250static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3251{
3252	struct inode_security_struct *isec = inode_security_novalidate(inode);
3253	*secid = isec->sid;
3254}
3255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3256/* file security operations */
3257
3258static int selinux_revalidate_file_permission(struct file *file, int mask)
3259{
3260	const struct cred *cred = current_cred();
3261	struct inode *inode = file_inode(file);
3262
3263	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3264	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3265		mask |= MAY_APPEND;
3266
3267	return file_has_perm(cred, file,
3268			     file_mask_to_av(inode->i_mode, mask));
3269}
3270
3271static int selinux_file_permission(struct file *file, int mask)
3272{
3273	struct inode *inode = file_inode(file);
3274	struct file_security_struct *fsec = file->f_security;
3275	struct inode_security_struct *isec;
3276	u32 sid = current_sid();
3277
3278	if (!mask)
3279		/* No permission to check.  Existence test. */
3280		return 0;
3281
3282	isec = inode_security(inode);
3283	if (sid == fsec->sid && fsec->isid == isec->sid &&
3284	    fsec->pseqno == avc_policy_seqno())
3285		/* No change since file_open check. */
3286		return 0;
3287
3288	return selinux_revalidate_file_permission(file, mask);
3289}
3290
3291static int selinux_file_alloc_security(struct file *file)
3292{
3293	return file_alloc_security(file);
3294}
 
 
 
3295
3296static void selinux_file_free_security(struct file *file)
3297{
3298	file_free_security(file);
3299}
3300
3301/*
3302 * Check whether a task has the ioctl permission and cmd
3303 * operation to an inode.
3304 */
3305static int ioctl_has_perm(const struct cred *cred, struct file *file,
3306		u32 requested, u16 cmd)
3307{
3308	struct common_audit_data ad;
3309	struct file_security_struct *fsec = file->f_security;
3310	struct inode *inode = file_inode(file);
3311	struct inode_security_struct *isec = inode_security(inode);
3312	struct lsm_ioctlop_audit ioctl;
3313	u32 ssid = cred_sid(cred);
3314	int rc;
3315	u8 driver = cmd >> 8;
3316	u8 xperm = cmd & 0xff;
3317
3318	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3319	ad.u.op = &ioctl;
3320	ad.u.op->cmd = cmd;
3321	ad.u.op->path = file->f_path;
3322
3323	if (ssid != fsec->sid) {
3324		rc = avc_has_perm(ssid, fsec->sid,
 
3325				SECCLASS_FD,
3326				FD__USE,
3327				&ad);
3328		if (rc)
3329			goto out;
3330	}
3331
3332	if (unlikely(IS_PRIVATE(inode)))
3333		return 0;
3334
3335	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3336			requested, driver, xperm, &ad);
 
 
3337out:
3338	return rc;
3339}
3340
3341static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3342			      unsigned long arg)
3343{
3344	const struct cred *cred = current_cred();
3345	int error = 0;
3346
3347	switch (cmd) {
3348	case FIONREAD:
3349	/* fall through */
3350	case FIBMAP:
3351	/* fall through */
3352	case FIGETBSZ:
3353	/* fall through */
3354	case FS_IOC_GETFLAGS:
3355	/* fall through */
3356	case FS_IOC_GETVERSION:
3357		error = file_has_perm(cred, file, FILE__GETATTR);
3358		break;
3359
3360	case FS_IOC_SETFLAGS:
3361	/* fall through */
3362	case FS_IOC_SETVERSION:
3363		error = file_has_perm(cred, file, FILE__SETATTR);
3364		break;
3365
3366	/* sys_ioctl() checks */
3367	case FIONBIO:
3368	/* fall through */
3369	case FIOASYNC:
3370		error = file_has_perm(cred, file, 0);
3371		break;
3372
3373	case KDSKBENT:
3374	case KDSKBSENT:
3375		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3376					    SECURITY_CAP_AUDIT);
 
 
 
 
 
 
3377		break;
3378
3379	/* default case assumes that the command will go
3380	 * to the file's ioctl() function.
3381	 */
3382	default:
3383		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3384	}
3385	return error;
3386}
3387
3388static int default_noexec;
3389
3390static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3391{
3392	const struct cred *cred = current_cred();
 
3393	int rc = 0;
3394
3395	if (default_noexec &&
3396	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3397				   (!shared && (prot & PROT_WRITE)))) {
3398		/*
3399		 * We are making executable an anonymous mapping or a
3400		 * private file mapping that will also be writable.
3401		 * This has an additional check.
3402		 */
3403		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3404		if (rc)
3405			goto error;
3406	}
3407
3408	if (file) {
3409		/* read access is always possible with a mapping */
3410		u32 av = FILE__READ;
3411
3412		/* write access only matters if the mapping is shared */
3413		if (shared && (prot & PROT_WRITE))
3414			av |= FILE__WRITE;
3415
3416		if (prot & PROT_EXEC)
3417			av |= FILE__EXECUTE;
3418
3419		return file_has_perm(cred, file, av);
3420	}
3421
3422error:
3423	return rc;
3424}
3425
3426static int selinux_mmap_addr(unsigned long addr)
3427{
3428	int rc = 0;
3429
3430	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3431		u32 sid = current_sid();
3432		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3433				  MEMPROTECT__MMAP_ZERO, NULL);
3434	}
3435
3436	return rc;
3437}
3438
3439static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3440			     unsigned long prot, unsigned long flags)
3441{
3442	if (selinux_checkreqprot)
 
 
 
 
 
 
 
 
 
 
 
 
3443		prot = reqprot;
3444
3445	return file_map_prot_check(file, prot,
3446				   (flags & MAP_TYPE) == MAP_SHARED);
3447}
3448
3449static int selinux_file_mprotect(struct vm_area_struct *vma,
3450				 unsigned long reqprot,
3451				 unsigned long prot)
3452{
3453	const struct cred *cred = current_cred();
 
3454
3455	if (selinux_checkreqprot)
3456		prot = reqprot;
3457
3458	if (default_noexec &&
3459	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3460		int rc = 0;
3461		if (vma->vm_start >= vma->vm_mm->start_brk &&
3462		    vma->vm_end <= vma->vm_mm->brk) {
3463			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3464		} else if (!vma->vm_file &&
3465			   vma->vm_start <= vma->vm_mm->start_stack &&
3466			   vma->vm_end >= vma->vm_mm->start_stack) {
3467			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
 
3468		} else if (vma->vm_file && vma->anon_vma) {
3469			/*
3470			 * We are making executable a file mapping that has
3471			 * had some COW done. Since pages might have been
3472			 * written, check ability to execute the possibly
3473			 * modified content.  This typically should only
3474			 * occur for text relocations.
3475			 */
3476			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3477		}
3478		if (rc)
3479			return rc;
3480	}
3481
3482	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3483}
3484
3485static int selinux_file_lock(struct file *file, unsigned int cmd)
3486{
3487	const struct cred *cred = current_cred();
3488
3489	return file_has_perm(cred, file, FILE__LOCK);
3490}
3491
3492static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3493			      unsigned long arg)
3494{
3495	const struct cred *cred = current_cred();
3496	int err = 0;
3497
3498	switch (cmd) {
3499	case F_SETFL:
3500		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3501			err = file_has_perm(cred, file, FILE__WRITE);
3502			break;
3503		}
3504		/* fall through */
3505	case F_SETOWN:
3506	case F_SETSIG:
3507	case F_GETFL:
3508	case F_GETOWN:
3509	case F_GETSIG:
3510	case F_GETOWNER_UIDS:
3511		/* Just check FD__USE permission */
3512		err = file_has_perm(cred, file, 0);
3513		break;
3514	case F_GETLK:
3515	case F_SETLK:
3516	case F_SETLKW:
3517	case F_OFD_GETLK:
3518	case F_OFD_SETLK:
3519	case F_OFD_SETLKW:
3520#if BITS_PER_LONG == 32
3521	case F_GETLK64:
3522	case F_SETLK64:
3523	case F_SETLKW64:
3524#endif
3525		err = file_has_perm(cred, file, FILE__LOCK);
3526		break;
3527	}
3528
3529	return err;
3530}
3531
3532static void selinux_file_set_fowner(struct file *file)
3533{
3534	struct file_security_struct *fsec;
3535
3536	fsec = file->f_security;
3537	fsec->fown_sid = current_sid();
3538}
3539
3540static int selinux_file_send_sigiotask(struct task_struct *tsk,
3541				       struct fown_struct *fown, int signum)
3542{
3543	struct file *file;
3544	u32 sid = task_sid(tsk);
3545	u32 perm;
3546	struct file_security_struct *fsec;
3547
3548	/* struct fown_struct is never outside the context of a struct file */
3549	file = container_of(fown, struct file, f_owner);
3550
3551	fsec = file->f_security;
3552
3553	if (!signum)
3554		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3555	else
3556		perm = signal_to_av(signum);
3557
3558	return avc_has_perm(fsec->fown_sid, sid,
 
3559			    SECCLASS_PROCESS, perm, NULL);
3560}
3561
3562static int selinux_file_receive(struct file *file)
3563{
3564	const struct cred *cred = current_cred();
3565
3566	return file_has_perm(cred, file, file_to_av(file));
3567}
3568
3569static int selinux_file_open(struct file *file, const struct cred *cred)
3570{
3571	struct file_security_struct *fsec;
3572	struct inode_security_struct *isec;
3573
3574	fsec = file->f_security;
3575	isec = inode_security(file_inode(file));
3576	/*
3577	 * Save inode label and policy sequence number
3578	 * at open-time so that selinux_file_permission
3579	 * can determine whether revalidation is necessary.
3580	 * Task label is already saved in the file security
3581	 * struct as its SID.
3582	 */
3583	fsec->isid = isec->sid;
3584	fsec->pseqno = avc_policy_seqno();
3585	/*
3586	 * Since the inode label or policy seqno may have changed
3587	 * between the selinux_inode_permission check and the saving
3588	 * of state above, recheck that access is still permitted.
3589	 * Otherwise, access might never be revalidated against the
3590	 * new inode label or new policy.
3591	 * This check is not redundant - do not remove.
3592	 */
3593	return file_path_has_perm(cred, file, open_file_to_av(file));
3594}
3595
3596/* task security operations */
3597
3598static int selinux_task_create(unsigned long clone_flags)
 
3599{
3600	return current_has_perm(current, PROCESS__FORK);
3601}
3602
3603/*
3604 * allocate the SELinux part of blank credentials
3605 */
3606static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3607{
3608	struct task_security_struct *tsec;
3609
3610	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3611	if (!tsec)
3612		return -ENOMEM;
3613
3614	cred->security = tsec;
3615	return 0;
3616}
3617
3618/*
3619 * detach and free the LSM part of a set of credentials
3620 */
3621static void selinux_cred_free(struct cred *cred)
3622{
3623	struct task_security_struct *tsec = cred->security;
3624
3625	/*
3626	 * cred->security == NULL if security_cred_alloc_blank() or
3627	 * security_prepare_creds() returned an error.
3628	 */
3629	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3630	cred->security = (void *) 0x7UL;
3631	kfree(tsec);
3632}
3633
3634/*
3635 * prepare a new set of credentials for modification
3636 */
3637static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3638				gfp_t gfp)
3639{
3640	const struct task_security_struct *old_tsec;
3641	struct task_security_struct *tsec;
3642
3643	old_tsec = old->security;
3644
3645	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3646	if (!tsec)
3647		return -ENOMEM;
3648
3649	new->security = tsec;
3650	return 0;
3651}
3652
3653/*
3654 * transfer the SELinux data to a blank set of creds
3655 */
3656static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3657{
3658	const struct task_security_struct *old_tsec = old->security;
3659	struct task_security_struct *tsec = new->security;
3660
3661	*tsec = *old_tsec;
3662}
3663
 
 
 
 
 
3664/*
3665 * set the security data for a kernel service
3666 * - all the creation contexts are set to unlabelled
3667 */
3668static int selinux_kernel_act_as(struct cred *new, u32 secid)
3669{
3670	struct task_security_struct *tsec = new->security;
3671	u32 sid = current_sid();
3672	int ret;
3673
3674	ret = avc_has_perm(sid, secid,
 
3675			   SECCLASS_KERNEL_SERVICE,
3676			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3677			   NULL);
3678	if (ret == 0) {
3679		tsec->sid = secid;
3680		tsec->create_sid = 0;
3681		tsec->keycreate_sid = 0;
3682		tsec->sockcreate_sid = 0;
3683	}
3684	return ret;
3685}
3686
3687/*
3688 * set the file creation context in a security record to the same as the
3689 * objective context of the specified inode
3690 */
3691static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3692{
3693	struct inode_security_struct *isec = inode_security(inode);
3694	struct task_security_struct *tsec = new->security;
3695	u32 sid = current_sid();
3696	int ret;
3697
3698	ret = avc_has_perm(sid, isec->sid,
 
3699			   SECCLASS_KERNEL_SERVICE,
3700			   KERNEL_SERVICE__CREATE_FILES_AS,
3701			   NULL);
3702
3703	if (ret == 0)
3704		tsec->create_sid = isec->sid;
3705	return ret;
3706}
3707
3708static int selinux_kernel_module_request(char *kmod_name)
3709{
3710	u32 sid;
3711	struct common_audit_data ad;
3712
3713	sid = task_sid(current);
3714
3715	ad.type = LSM_AUDIT_DATA_KMOD;
3716	ad.u.kmod_name = kmod_name;
3717
3718	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3719			    SYSTEM__MODULE_REQUEST, &ad);
3720}
3721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3722static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3723{
3724	return current_has_perm(p, PROCESS__SETPGID);
 
 
3725}
3726
3727static int selinux_task_getpgid(struct task_struct *p)
3728{
3729	return current_has_perm(p, PROCESS__GETPGID);
 
 
3730}
3731
3732static int selinux_task_getsid(struct task_struct *p)
3733{
3734	return current_has_perm(p, PROCESS__GETSESSION);
 
 
 
 
 
 
 
3735}
3736
3737static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3738{
3739	*secid = task_sid(p);
3740}
3741
3742static int selinux_task_setnice(struct task_struct *p, int nice)
3743{
3744	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3745}
3746
3747static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3748{
3749	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3750}
3751
3752static int selinux_task_getioprio(struct task_struct *p)
3753{
3754	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3755}
3756
3757static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3758		struct rlimit *new_rlim)
3759{
3760	struct rlimit *old_rlim = p->signal->rlim + resource;
3761
3762	/* Control the ability to change the hard limit (whether
3763	   lowering or raising it), so that the hard limit can
3764	   later be used as a safe reset point for the soft limit
3765	   upon context transitions.  See selinux_bprm_committing_creds. */
3766	if (old_rlim->rlim_max != new_rlim->rlim_max)
3767		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3768
3769	return 0;
3770}
3771
3772static int selinux_task_setscheduler(struct task_struct *p)
3773{
3774	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3775}
3776
3777static int selinux_task_getscheduler(struct task_struct *p)
3778{
3779	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3780}
3781
3782static int selinux_task_movememory(struct task_struct *p)
3783{
3784	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3785}
3786
3787static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3788				int sig, u32 secid)
3789{
 
3790	u32 perm;
3791	int rc;
3792
3793	if (!sig)
3794		perm = PROCESS__SIGNULL; /* null signal; existence test */
3795	else
3796		perm = signal_to_av(sig);
3797	if (secid)
3798		rc = avc_has_perm(secid, task_sid(p),
3799				  SECCLASS_PROCESS, perm, NULL);
3800	else
3801		rc = current_has_perm(p, perm);
3802	return rc;
3803}
3804
3805static int selinux_task_wait(struct task_struct *p)
3806{
3807	return task_has_perm(p, current, PROCESS__SIGCHLD);
3808}
3809
3810static void selinux_task_to_inode(struct task_struct *p,
3811				  struct inode *inode)
3812{
3813	struct inode_security_struct *isec = inode->i_security;
3814	u32 sid = task_sid(p);
3815
 
 
3816	isec->sid = sid;
3817	isec->initialized = LABEL_INITIALIZED;
 
 
 
 
 
 
 
 
 
3818}
3819
3820/* Returns error only if unable to parse addresses */
3821static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3822			struct common_audit_data *ad, u8 *proto)
3823{
3824	int offset, ihlen, ret = -EINVAL;
3825	struct iphdr _iph, *ih;
3826
3827	offset = skb_network_offset(skb);
3828	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3829	if (ih == NULL)
3830		goto out;
3831
3832	ihlen = ih->ihl * 4;
3833	if (ihlen < sizeof(_iph))
3834		goto out;
3835
3836	ad->u.net->v4info.saddr = ih->saddr;
3837	ad->u.net->v4info.daddr = ih->daddr;
3838	ret = 0;
3839
3840	if (proto)
3841		*proto = ih->protocol;
3842
3843	switch (ih->protocol) {
3844	case IPPROTO_TCP: {
3845		struct tcphdr _tcph, *th;
3846
3847		if (ntohs(ih->frag_off) & IP_OFFSET)
3848			break;
3849
3850		offset += ihlen;
3851		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3852		if (th == NULL)
3853			break;
3854
3855		ad->u.net->sport = th->source;
3856		ad->u.net->dport = th->dest;
3857		break;
3858	}
3859
3860	case IPPROTO_UDP: {
3861		struct udphdr _udph, *uh;
3862
3863		if (ntohs(ih->frag_off) & IP_OFFSET)
3864			break;
3865
3866		offset += ihlen;
3867		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3868		if (uh == NULL)
3869			break;
3870
3871		ad->u.net->sport = uh->source;
3872		ad->u.net->dport = uh->dest;
3873		break;
3874	}
3875
3876	case IPPROTO_DCCP: {
3877		struct dccp_hdr _dccph, *dh;
3878
3879		if (ntohs(ih->frag_off) & IP_OFFSET)
3880			break;
3881
3882		offset += ihlen;
3883		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3884		if (dh == NULL)
3885			break;
3886
3887		ad->u.net->sport = dh->dccph_sport;
3888		ad->u.net->dport = dh->dccph_dport;
3889		break;
3890	}
3891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3892	default:
3893		break;
3894	}
3895out:
3896	return ret;
3897}
3898
3899#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3900
3901/* Returns error only if unable to parse addresses */
3902static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3903			struct common_audit_data *ad, u8 *proto)
3904{
3905	u8 nexthdr;
3906	int ret = -EINVAL, offset;
3907	struct ipv6hdr _ipv6h, *ip6;
3908	__be16 frag_off;
3909
3910	offset = skb_network_offset(skb);
3911	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3912	if (ip6 == NULL)
3913		goto out;
3914
3915	ad->u.net->v6info.saddr = ip6->saddr;
3916	ad->u.net->v6info.daddr = ip6->daddr;
3917	ret = 0;
3918
3919	nexthdr = ip6->nexthdr;
3920	offset += sizeof(_ipv6h);
3921	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3922	if (offset < 0)
3923		goto out;
3924
3925	if (proto)
3926		*proto = nexthdr;
3927
3928	switch (nexthdr) {
3929	case IPPROTO_TCP: {
3930		struct tcphdr _tcph, *th;
3931
3932		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3933		if (th == NULL)
3934			break;
3935
3936		ad->u.net->sport = th->source;
3937		ad->u.net->dport = th->dest;
3938		break;
3939	}
3940
3941	case IPPROTO_UDP: {
3942		struct udphdr _udph, *uh;
3943
3944		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3945		if (uh == NULL)
3946			break;
3947
3948		ad->u.net->sport = uh->source;
3949		ad->u.net->dport = uh->dest;
3950		break;
3951	}
3952
3953	case IPPROTO_DCCP: {
3954		struct dccp_hdr _dccph, *dh;
3955
3956		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3957		if (dh == NULL)
3958			break;
3959
3960		ad->u.net->sport = dh->dccph_sport;
3961		ad->u.net->dport = dh->dccph_dport;
3962		break;
3963	}
3964
 
 
 
 
 
 
 
 
 
 
 
 
 
3965	/* includes fragments */
3966	default:
3967		break;
3968	}
3969out:
3970	return ret;
3971}
3972
3973#endif /* IPV6 */
3974
3975static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3976			     char **_addrp, int src, u8 *proto)
3977{
3978	char *addrp;
3979	int ret;
3980
3981	switch (ad->u.net->family) {
3982	case PF_INET:
3983		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3984		if (ret)
3985			goto parse_error;
3986		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3987				       &ad->u.net->v4info.daddr);
3988		goto okay;
3989
3990#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3991	case PF_INET6:
3992		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3993		if (ret)
3994			goto parse_error;
3995		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3996				       &ad->u.net->v6info.daddr);
3997		goto okay;
3998#endif	/* IPV6 */
3999	default:
4000		addrp = NULL;
4001		goto okay;
4002	}
4003
4004parse_error:
4005	printk(KERN_WARNING
4006	       "SELinux: failure in selinux_parse_skb(),"
4007	       " unable to parse packet\n");
4008	return ret;
4009
4010okay:
4011	if (_addrp)
4012		*_addrp = addrp;
4013	return 0;
4014}
4015
4016/**
4017 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4018 * @skb: the packet
4019 * @family: protocol family
4020 * @sid: the packet's peer label SID
4021 *
4022 * Description:
4023 * Check the various different forms of network peer labeling and determine
4024 * the peer label/SID for the packet; most of the magic actually occurs in
4025 * the security server function security_net_peersid_cmp().  The function
4026 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4027 * or -EACCES if @sid is invalid due to inconsistencies with the different
4028 * peer labels.
4029 *
4030 */
4031static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4032{
4033	int err;
4034	u32 xfrm_sid;
4035	u32 nlbl_sid;
4036	u32 nlbl_type;
4037
4038	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4039	if (unlikely(err))
4040		return -EACCES;
4041	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4042	if (unlikely(err))
4043		return -EACCES;
4044
4045	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
4046	if (unlikely(err)) {
4047		printk(KERN_WARNING
4048		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4049		       " unable to determine packet's peer label\n");
4050		return -EACCES;
4051	}
4052
4053	return 0;
4054}
4055
4056/**
4057 * selinux_conn_sid - Determine the child socket label for a connection
4058 * @sk_sid: the parent socket's SID
4059 * @skb_sid: the packet's SID
4060 * @conn_sid: the resulting connection SID
4061 *
4062 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4063 * combined with the MLS information from @skb_sid in order to create
4064 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4065 * of @sk_sid.  Returns zero on success, negative values on failure.
4066 *
4067 */
4068static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4069{
4070	int err = 0;
4071
4072	if (skb_sid != SECSID_NULL)
4073		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
 
4074	else
4075		*conn_sid = sk_sid;
4076
4077	return err;
4078}
4079
4080/* socket security operations */
4081
4082static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4083				 u16 secclass, u32 *socksid)
4084{
4085	if (tsec->sockcreate_sid > SECSID_NULL) {
4086		*socksid = tsec->sockcreate_sid;
4087		return 0;
4088	}
4089
4090	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4091				       socksid);
4092}
4093
4094static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4095{
4096	struct sk_security_struct *sksec = sk->sk_security;
4097	struct common_audit_data ad;
4098	struct lsm_network_audit net = {0,};
4099	u32 tsid = task_sid(task);
4100
4101	if (sksec->sid == SECINITSID_KERNEL)
4102		return 0;
4103
4104	ad.type = LSM_AUDIT_DATA_NET;
4105	ad.u.net = &net;
4106	ad.u.net->sk = sk;
4107
4108	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
4109}
4110
4111static int selinux_socket_create(int family, int type,
4112				 int protocol, int kern)
4113{
4114	const struct task_security_struct *tsec = current_security();
4115	u32 newsid;
4116	u16 secclass;
4117	int rc;
4118
4119	if (kern)
4120		return 0;
4121
4122	secclass = socket_type_to_security_class(family, type, protocol);
4123	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4124	if (rc)
4125		return rc;
4126
4127	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
4128}
4129
4130static int selinux_socket_post_create(struct socket *sock, int family,
4131				      int type, int protocol, int kern)
4132{
4133	const struct task_security_struct *tsec = current_security();
4134	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4135	struct sk_security_struct *sksec;
 
 
4136	int err = 0;
4137
4138	isec->sclass = socket_type_to_security_class(family, type, protocol);
4139
4140	if (kern)
4141		isec->sid = SECINITSID_KERNEL;
4142	else {
4143		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4144		if (err)
4145			return err;
4146	}
4147
 
 
4148	isec->initialized = LABEL_INITIALIZED;
4149
4150	if (sock->sk) {
4151		sksec = sock->sk->sk_security;
4152		sksec->sid = isec->sid;
4153		sksec->sclass = isec->sclass;
 
 
 
 
4154		err = selinux_netlbl_socket_post_create(sock->sk, family);
4155	}
4156
4157	return err;
4158}
4159
 
 
 
 
 
 
 
 
 
 
 
 
4160/* Range of port numbers used to automatically bind.
4161   Need to determine whether we should perform a name_bind
4162   permission check between the socket and the port number. */
4163
4164static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4165{
4166	struct sock *sk = sock->sk;
 
4167	u16 family;
4168	int err;
4169
4170	err = sock_has_perm(current, sk, SOCKET__BIND);
4171	if (err)
4172		goto out;
4173
4174	/*
4175	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4176	 * Multiple address binding for SCTP is not supported yet: we just
4177	 * check the first address now.
4178	 */
4179	family = sk->sk_family;
4180	if (family == PF_INET || family == PF_INET6) {
4181		char *addrp;
4182		struct sk_security_struct *sksec = sk->sk_security;
4183		struct common_audit_data ad;
4184		struct lsm_network_audit net = {0,};
4185		struct sockaddr_in *addr4 = NULL;
4186		struct sockaddr_in6 *addr6 = NULL;
 
4187		unsigned short snum;
4188		u32 sid, node_perm;
4189
4190		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
 
 
 
4191			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
4192			snum = ntohs(addr4->sin_port);
4193			addrp = (char *)&addr4->sin_addr.s_addr;
4194		} else {
 
 
 
4195			addr6 = (struct sockaddr_in6 *)address;
4196			snum = ntohs(addr6->sin6_port);
4197			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
4198		}
4199
 
 
 
 
 
4200		if (snum) {
4201			int low, high;
4202
4203			inet_get_local_port_range(sock_net(sk), &low, &high);
4204
4205			if (snum < max(PROT_SOCK, low) || snum > high) {
 
4206				err = sel_netport_sid(sk->sk_protocol,
4207						      snum, &sid);
4208				if (err)
4209					goto out;
4210				ad.type = LSM_AUDIT_DATA_NET;
4211				ad.u.net = &net;
4212				ad.u.net->sport = htons(snum);
4213				ad.u.net->family = family;
4214				err = avc_has_perm(sksec->sid, sid,
4215						   sksec->sclass,
4216						   SOCKET__NAME_BIND, &ad);
4217				if (err)
4218					goto out;
4219			}
4220		}
4221
4222		switch (sksec->sclass) {
4223		case SECCLASS_TCP_SOCKET:
4224			node_perm = TCP_SOCKET__NODE_BIND;
4225			break;
4226
4227		case SECCLASS_UDP_SOCKET:
4228			node_perm = UDP_SOCKET__NODE_BIND;
4229			break;
4230
4231		case SECCLASS_DCCP_SOCKET:
4232			node_perm = DCCP_SOCKET__NODE_BIND;
4233			break;
4234
 
 
 
 
4235		default:
4236			node_perm = RAWIP_SOCKET__NODE_BIND;
4237			break;
4238		}
4239
4240		err = sel_netnode_sid(addrp, family, &sid);
4241		if (err)
4242			goto out;
4243
4244		ad.type = LSM_AUDIT_DATA_NET;
4245		ad.u.net = &net;
4246		ad.u.net->sport = htons(snum);
4247		ad.u.net->family = family;
4248
4249		if (family == PF_INET)
4250			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4251		else
4252			ad.u.net->v6info.saddr = addr6->sin6_addr;
4253
4254		err = avc_has_perm(sksec->sid, sid,
 
4255				   sksec->sclass, node_perm, &ad);
4256		if (err)
4257			goto out;
4258	}
4259out:
4260	return err;
 
 
 
 
 
4261}
4262
4263static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
4264{
4265	struct sock *sk = sock->sk;
4266	struct sk_security_struct *sksec = sk->sk_security;
4267	int err;
4268
4269	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4270	if (err)
4271		return err;
 
 
 
 
 
 
 
 
4272
4273	/*
4274	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
4275	 */
4276	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4277	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
4278		struct common_audit_data ad;
4279		struct lsm_network_audit net = {0,};
4280		struct sockaddr_in *addr4 = NULL;
4281		struct sockaddr_in6 *addr6 = NULL;
4282		unsigned short snum;
4283		u32 sid, perm;
4284
4285		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
4286			addr4 = (struct sockaddr_in *)address;
4287			if (addrlen < sizeof(struct sockaddr_in))
4288				return -EINVAL;
4289			snum = ntohs(addr4->sin_port);
4290		} else {
 
4291			addr6 = (struct sockaddr_in6 *)address;
4292			if (addrlen < SIN6_LEN_RFC2133)
4293				return -EINVAL;
4294			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
4295		}
4296
4297		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4298		if (err)
4299			goto out;
4300
4301		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4302		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
4303
4304		ad.type = LSM_AUDIT_DATA_NET;
4305		ad.u.net = &net;
4306		ad.u.net->dport = htons(snum);
4307		ad.u.net->family = sk->sk_family;
4308		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4309		if (err)
4310			goto out;
4311	}
4312
4313	err = selinux_netlbl_socket_connect(sk, address);
 
4314
4315out:
4316	return err;
 
 
 
 
 
 
 
 
 
 
4317}
4318
4319static int selinux_socket_listen(struct socket *sock, int backlog)
4320{
4321	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4322}
4323
4324static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4325{
4326	int err;
4327	struct inode_security_struct *isec;
4328	struct inode_security_struct *newisec;
 
 
4329
4330	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4331	if (err)
4332		return err;
4333
 
 
 
 
 
 
4334	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4335
4336	isec = inode_security_novalidate(SOCK_INODE(sock));
4337	newisec->sclass = isec->sclass;
4338	newisec->sid = isec->sid;
4339	newisec->initialized = LABEL_INITIALIZED;
4340
4341	return 0;
4342}
4343
4344static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4345				  int size)
4346{
4347	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4348}
4349
4350static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4351				  int size, int flags)
4352{
4353	return sock_has_perm(current, sock->sk, SOCKET__READ);
4354}
4355
4356static int selinux_socket_getsockname(struct socket *sock)
4357{
4358	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4359}
4360
4361static int selinux_socket_getpeername(struct socket *sock)
4362{
4363	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4364}
4365
4366static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4367{
4368	int err;
4369
4370	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4371	if (err)
4372		return err;
4373
4374	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4375}
4376
4377static int selinux_socket_getsockopt(struct socket *sock, int level,
4378				     int optname)
4379{
4380	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4381}
4382
4383static int selinux_socket_shutdown(struct socket *sock, int how)
4384{
4385	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4386}
4387
4388static int selinux_socket_unix_stream_connect(struct sock *sock,
4389					      struct sock *other,
4390					      struct sock *newsk)
4391{
4392	struct sk_security_struct *sksec_sock = sock->sk_security;
4393	struct sk_security_struct *sksec_other = other->sk_security;
4394	struct sk_security_struct *sksec_new = newsk->sk_security;
4395	struct common_audit_data ad;
4396	struct lsm_network_audit net = {0,};
4397	int err;
4398
4399	ad.type = LSM_AUDIT_DATA_NET;
4400	ad.u.net = &net;
4401	ad.u.net->sk = other;
4402
4403	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4404			   sksec_other->sclass,
4405			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4406	if (err)
4407		return err;
4408
4409	/* server child socket */
4410	sksec_new->peer_sid = sksec_sock->sid;
4411	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4412				    &sksec_new->sid);
4413	if (err)
4414		return err;
4415
4416	/* connecting socket */
4417	sksec_sock->peer_sid = sksec_new->sid;
4418
4419	return 0;
4420}
4421
4422static int selinux_socket_unix_may_send(struct socket *sock,
4423					struct socket *other)
4424{
4425	struct sk_security_struct *ssec = sock->sk->sk_security;
4426	struct sk_security_struct *osec = other->sk->sk_security;
4427	struct common_audit_data ad;
4428	struct lsm_network_audit net = {0,};
4429
4430	ad.type = LSM_AUDIT_DATA_NET;
4431	ad.u.net = &net;
4432	ad.u.net->sk = other->sk;
4433
4434	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4435			    &ad);
4436}
4437
4438static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4439				    char *addrp, u16 family, u32 peer_sid,
4440				    struct common_audit_data *ad)
4441{
4442	int err;
4443	u32 if_sid;
4444	u32 node_sid;
4445
4446	err = sel_netif_sid(ns, ifindex, &if_sid);
4447	if (err)
4448		return err;
4449	err = avc_has_perm(peer_sid, if_sid,
 
4450			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4451	if (err)
4452		return err;
4453
4454	err = sel_netnode_sid(addrp, family, &node_sid);
4455	if (err)
4456		return err;
4457	return avc_has_perm(peer_sid, node_sid,
 
4458			    SECCLASS_NODE, NODE__RECVFROM, ad);
4459}
4460
4461static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4462				       u16 family)
4463{
4464	int err = 0;
4465	struct sk_security_struct *sksec = sk->sk_security;
4466	u32 sk_sid = sksec->sid;
4467	struct common_audit_data ad;
4468	struct lsm_network_audit net = {0,};
4469	char *addrp;
4470
4471	ad.type = LSM_AUDIT_DATA_NET;
4472	ad.u.net = &net;
4473	ad.u.net->netif = skb->skb_iif;
4474	ad.u.net->family = family;
4475	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4476	if (err)
4477		return err;
4478
4479	if (selinux_secmark_enabled()) {
4480		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4481				   PACKET__RECV, &ad);
4482		if (err)
4483			return err;
4484	}
4485
4486	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4487	if (err)
4488		return err;
4489	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4490
4491	return err;
4492}
4493
4494static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4495{
4496	int err;
4497	struct sk_security_struct *sksec = sk->sk_security;
4498	u16 family = sk->sk_family;
4499	u32 sk_sid = sksec->sid;
4500	struct common_audit_data ad;
4501	struct lsm_network_audit net = {0,};
4502	char *addrp;
4503	u8 secmark_active;
4504	u8 peerlbl_active;
4505
4506	if (family != PF_INET && family != PF_INET6)
4507		return 0;
4508
4509	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4510	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4511		family = PF_INET;
4512
4513	/* If any sort of compatibility mode is enabled then handoff processing
4514	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4515	 * special handling.  We do this in an attempt to keep this function
4516	 * as fast and as clean as possible. */
4517	if (!selinux_policycap_netpeer)
4518		return selinux_sock_rcv_skb_compat(sk, skb, family);
4519
4520	secmark_active = selinux_secmark_enabled();
4521	peerlbl_active = selinux_peerlbl_enabled();
4522	if (!secmark_active && !peerlbl_active)
4523		return 0;
4524
4525	ad.type = LSM_AUDIT_DATA_NET;
4526	ad.u.net = &net;
4527	ad.u.net->netif = skb->skb_iif;
4528	ad.u.net->family = family;
4529	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4530	if (err)
4531		return err;
4532
4533	if (peerlbl_active) {
4534		u32 peer_sid;
4535
4536		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4537		if (err)
4538			return err;
4539		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4540					       addrp, family, peer_sid, &ad);
4541		if (err) {
4542			selinux_netlbl_err(skb, err, 0);
4543			return err;
4544		}
4545		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4546				   PEER__RECV, &ad);
4547		if (err) {
4548			selinux_netlbl_err(skb, err, 0);
4549			return err;
4550		}
4551	}
4552
4553	if (secmark_active) {
4554		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4555				   PACKET__RECV, &ad);
4556		if (err)
4557			return err;
4558	}
4559
4560	return err;
4561}
4562
4563static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4564					    int __user *optlen, unsigned len)
 
4565{
4566	int err = 0;
4567	char *scontext;
4568	u32 scontext_len;
4569	struct sk_security_struct *sksec = sock->sk->sk_security;
4570	u32 peer_sid = SECSID_NULL;
4571
4572	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4573	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4574		peer_sid = sksec->peer_sid;
4575	if (peer_sid == SECSID_NULL)
4576		return -ENOPROTOOPT;
4577
4578	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4579	if (err)
4580		return err;
4581
4582	if (scontext_len > len) {
4583		err = -ERANGE;
4584		goto out_len;
4585	}
4586
4587	if (copy_to_user(optval, scontext, scontext_len))
4588		err = -EFAULT;
4589
4590out_len:
4591	if (put_user(scontext_len, optlen))
4592		err = -EFAULT;
4593	kfree(scontext);
4594	return err;
4595}
4596
4597static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4598{
4599	u32 peer_secid = SECSID_NULL;
4600	u16 family;
 
4601
4602	if (skb && skb->protocol == htons(ETH_P_IP))
4603		family = PF_INET;
4604	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4605		family = PF_INET6;
4606	else if (sock)
4607		family = sock->sk->sk_family;
4608	else
4609		goto out;
4610
4611	if (sock && family == PF_UNIX)
4612		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4613	else if (skb)
 
4614		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4615
4616out:
4617	*secid = peer_secid;
4618	if (peer_secid == SECSID_NULL)
4619		return -EINVAL;
4620	return 0;
4621}
4622
4623static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4624{
4625	struct sk_security_struct *sksec;
4626
4627	sksec = kzalloc(sizeof(*sksec), priority);
4628	if (!sksec)
4629		return -ENOMEM;
4630
4631	sksec->peer_sid = SECINITSID_UNLABELED;
4632	sksec->sid = SECINITSID_UNLABELED;
4633	sksec->sclass = SECCLASS_SOCKET;
4634	selinux_netlbl_sk_security_reset(sksec);
4635	sk->sk_security = sksec;
4636
4637	return 0;
4638}
4639
4640static void selinux_sk_free_security(struct sock *sk)
4641{
4642	struct sk_security_struct *sksec = sk->sk_security;
4643
4644	sk->sk_security = NULL;
4645	selinux_netlbl_sk_security_free(sksec);
4646	kfree(sksec);
4647}
4648
4649static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4650{
4651	struct sk_security_struct *sksec = sk->sk_security;
4652	struct sk_security_struct *newsksec = newsk->sk_security;
4653
4654	newsksec->sid = sksec->sid;
4655	newsksec->peer_sid = sksec->peer_sid;
4656	newsksec->sclass = sksec->sclass;
4657
4658	selinux_netlbl_sk_security_reset(newsksec);
4659}
4660
4661static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4662{
4663	if (!sk)
4664		*secid = SECINITSID_ANY_SOCKET;
4665	else {
4666		struct sk_security_struct *sksec = sk->sk_security;
4667
4668		*secid = sksec->sid;
4669	}
4670}
4671
4672static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4673{
4674	struct inode_security_struct *isec =
4675		inode_security_novalidate(SOCK_INODE(parent));
4676	struct sk_security_struct *sksec = sk->sk_security;
4677
4678	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4679	    sk->sk_family == PF_UNIX)
4680		isec->sid = sksec->sid;
4681	sksec->sclass = isec->sclass;
4682}
4683
4684static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4685				     struct request_sock *req)
4686{
4687	struct sk_security_struct *sksec = sk->sk_security;
4688	int err;
4689	u16 family = req->rsk_ops->family;
4690	u32 connsid;
4691	u32 peersid;
4692
4693	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4694	if (err)
4695		return err;
4696	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4697	if (err)
4698		return err;
4699	req->secid = connsid;
4700	req->peer_secid = peersid;
4701
4702	return selinux_netlbl_inet_conn_request(req, family);
4703}
4704
4705static void selinux_inet_csk_clone(struct sock *newsk,
4706				   const struct request_sock *req)
4707{
4708	struct sk_security_struct *newsksec = newsk->sk_security;
4709
4710	newsksec->sid = req->secid;
4711	newsksec->peer_sid = req->peer_secid;
4712	/* NOTE: Ideally, we should also get the isec->sid for the
4713	   new socket in sync, but we don't have the isec available yet.
4714	   So we will wait until sock_graft to do it, by which
4715	   time it will have been created and available. */
4716
4717	/* We don't need to take any sort of lock here as we are the only
4718	 * thread with access to newsksec */
4719	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4720}
4721
4722static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4723{
4724	u16 family = sk->sk_family;
4725	struct sk_security_struct *sksec = sk->sk_security;
4726
4727	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4728	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4729		family = PF_INET;
4730
4731	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4732}
4733
4734static int selinux_secmark_relabel_packet(u32 sid)
4735{
4736	const struct task_security_struct *__tsec;
4737	u32 tsid;
4738
4739	__tsec = current_security();
4740	tsid = __tsec->sid;
4741
4742	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4743}
4744
4745static void selinux_secmark_refcount_inc(void)
4746{
4747	atomic_inc(&selinux_secmark_refcount);
4748}
4749
4750static void selinux_secmark_refcount_dec(void)
4751{
4752	atomic_dec(&selinux_secmark_refcount);
4753}
4754
4755static void selinux_req_classify_flow(const struct request_sock *req,
4756				      struct flowi *fl)
4757{
4758	fl->flowi_secid = req->secid;
4759}
4760
4761static int selinux_tun_dev_alloc_security(void **security)
4762{
4763	struct tun_security_struct *tunsec;
4764
4765	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4766	if (!tunsec)
4767		return -ENOMEM;
4768	tunsec->sid = current_sid();
4769
4770	*security = tunsec;
4771	return 0;
4772}
4773
4774static void selinux_tun_dev_free_security(void *security)
4775{
4776	kfree(security);
4777}
4778
4779static int selinux_tun_dev_create(void)
4780{
4781	u32 sid = current_sid();
4782
4783	/* we aren't taking into account the "sockcreate" SID since the socket
4784	 * that is being created here is not a socket in the traditional sense,
4785	 * instead it is a private sock, accessible only to the kernel, and
4786	 * representing a wide range of network traffic spanning multiple
4787	 * connections unlike traditional sockets - check the TUN driver to
4788	 * get a better understanding of why this socket is special */
4789
4790	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4791			    NULL);
4792}
4793
4794static int selinux_tun_dev_attach_queue(void *security)
4795{
4796	struct tun_security_struct *tunsec = security;
4797
4798	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
4799			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4800}
4801
4802static int selinux_tun_dev_attach(struct sock *sk, void *security)
4803{
4804	struct tun_security_struct *tunsec = security;
4805	struct sk_security_struct *sksec = sk->sk_security;
4806
4807	/* we don't currently perform any NetLabel based labeling here and it
4808	 * isn't clear that we would want to do so anyway; while we could apply
4809	 * labeling without the support of the TUN user the resulting labeled
4810	 * traffic from the other end of the connection would almost certainly
4811	 * cause confusion to the TUN user that had no idea network labeling
4812	 * protocols were being used */
4813
4814	sksec->sid = tunsec->sid;
4815	sksec->sclass = SECCLASS_TUN_SOCKET;
4816
4817	return 0;
4818}
4819
4820static int selinux_tun_dev_open(void *security)
4821{
4822	struct tun_security_struct *tunsec = security;
4823	u32 sid = current_sid();
4824	int err;
4825
4826	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
4827			   TUN_SOCKET__RELABELFROM, NULL);
4828	if (err)
4829		return err;
4830	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
4831			   TUN_SOCKET__RELABELTO, NULL);
4832	if (err)
4833		return err;
4834	tunsec->sid = sid;
4835
4836	return 0;
4837}
4838
4839static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4840{
4841	int err = 0;
4842	u32 perm;
4843	struct nlmsghdr *nlh;
4844	struct sk_security_struct *sksec = sk->sk_security;
4845
4846	if (skb->len < NLMSG_HDRLEN) {
4847		err = -EINVAL;
4848		goto out;
4849	}
4850	nlh = nlmsg_hdr(skb);
4851
4852	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4853	if (err) {
4854		if (err == -EINVAL) {
4855			pr_warn_ratelimited("SELinux: unrecognized netlink"
4856			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
4857			       " pig=%d comm=%s\n",
4858			       sk->sk_protocol, nlh->nlmsg_type,
4859			       secclass_map[sksec->sclass - 1].name,
4860			       task_pid_nr(current), current->comm);
4861			if (!selinux_enforcing || security_get_allow_unknown())
4862				err = 0;
4863		}
4864
4865		/* Ignore */
4866		if (err == -ENOENT)
4867			err = 0;
4868		goto out;
4869	}
4870
4871	err = sock_has_perm(current, sk, perm);
4872out:
4873	return err;
4874}
4875
4876#ifdef CONFIG_NETFILTER
4877
4878static unsigned int selinux_ip_forward(struct sk_buff *skb,
4879				       const struct net_device *indev,
4880				       u16 family)
4881{
4882	int err;
 
4883	char *addrp;
4884	u32 peer_sid;
4885	struct common_audit_data ad;
4886	struct lsm_network_audit net = {0,};
4887	u8 secmark_active;
4888	u8 netlbl_active;
4889	u8 peerlbl_active;
4890
4891	if (!selinux_policycap_netpeer)
4892		return NF_ACCEPT;
4893
4894	secmark_active = selinux_secmark_enabled();
4895	netlbl_active = netlbl_enabled();
4896	peerlbl_active = selinux_peerlbl_enabled();
4897	if (!secmark_active && !peerlbl_active)
4898		return NF_ACCEPT;
4899
 
4900	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4901		return NF_DROP;
4902
 
4903	ad.type = LSM_AUDIT_DATA_NET;
4904	ad.u.net = &net;
4905	ad.u.net->netif = indev->ifindex;
4906	ad.u.net->family = family;
4907	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4908		return NF_DROP;
4909
4910	if (peerlbl_active) {
4911		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
 
 
4912					       addrp, family, peer_sid, &ad);
4913		if (err) {
4914			selinux_netlbl_err(skb, err, 1);
4915			return NF_DROP;
4916		}
4917	}
4918
4919	if (secmark_active)
4920		if (avc_has_perm(peer_sid, skb->secmark,
 
4921				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4922			return NF_DROP;
4923
4924	if (netlbl_active)
4925		/* we do this in the FORWARD path and not the POST_ROUTING
4926		 * path because we want to make sure we apply the necessary
4927		 * labeling before IPsec is applied so we can leverage AH
4928		 * protection */
4929		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4930			return NF_DROP;
4931
4932	return NF_ACCEPT;
4933}
4934
4935static unsigned int selinux_ipv4_forward(void *priv,
4936					 struct sk_buff *skb,
4937					 const struct nf_hook_state *state)
4938{
4939	return selinux_ip_forward(skb, state->in, PF_INET);
4940}
4941
4942#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4943static unsigned int selinux_ipv6_forward(void *priv,
4944					 struct sk_buff *skb,
4945					 const struct nf_hook_state *state)
4946{
4947	return selinux_ip_forward(skb, state->in, PF_INET6);
4948}
4949#endif	/* IPV6 */
4950
4951static unsigned int selinux_ip_output(struct sk_buff *skb,
4952				      u16 family)
4953{
4954	struct sock *sk;
4955	u32 sid;
4956
4957	if (!netlbl_enabled())
4958		return NF_ACCEPT;
4959
4960	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4961	 * because we want to make sure we apply the necessary labeling
4962	 * before IPsec is applied so we can leverage AH protection */
4963	sk = skb->sk;
4964	if (sk) {
4965		struct sk_security_struct *sksec;
4966
4967		if (sk_listener(sk))
4968			/* if the socket is the listening state then this
4969			 * packet is a SYN-ACK packet which means it needs to
4970			 * be labeled based on the connection/request_sock and
4971			 * not the parent socket.  unfortunately, we can't
4972			 * lookup the request_sock yet as it isn't queued on
4973			 * the parent socket until after the SYN-ACK is sent.
4974			 * the "solution" is to simply pass the packet as-is
4975			 * as any IP option based labeling should be copied
4976			 * from the initial connection request (in the IP
4977			 * layer).  it is far from ideal, but until we get a
4978			 * security label in the packet itself this is the
4979			 * best we can do. */
4980			return NF_ACCEPT;
4981
4982		/* standard practice, label using the parent socket */
4983		sksec = sk->sk_security;
4984		sid = sksec->sid;
4985	} else
4986		sid = SECINITSID_KERNEL;
4987	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4988		return NF_DROP;
4989
4990	return NF_ACCEPT;
4991}
4992
4993static unsigned int selinux_ipv4_output(void *priv,
4994					struct sk_buff *skb,
4995					const struct nf_hook_state *state)
4996{
4997	return selinux_ip_output(skb, PF_INET);
4998}
4999
5000static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5001						int ifindex,
5002						u16 family)
5003{
5004	struct sock *sk = skb_to_full_sk(skb);
5005	struct sk_security_struct *sksec;
5006	struct common_audit_data ad;
5007	struct lsm_network_audit net = {0,};
5008	char *addrp;
5009	u8 proto;
5010
 
5011	if (sk == NULL)
5012		return NF_ACCEPT;
5013	sksec = sk->sk_security;
5014
5015	ad.type = LSM_AUDIT_DATA_NET;
5016	ad.u.net = &net;
5017	ad.u.net->netif = ifindex;
5018	ad.u.net->family = family;
5019	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5020		return NF_DROP;
5021
5022	if (selinux_secmark_enabled())
5023		if (avc_has_perm(sksec->sid, skb->secmark,
 
5024				 SECCLASS_PACKET, PACKET__SEND, &ad))
5025			return NF_DROP_ERR(-ECONNREFUSED);
5026
5027	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5028		return NF_DROP_ERR(-ECONNREFUSED);
5029
5030	return NF_ACCEPT;
5031}
5032
5033static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5034					 const struct net_device *outdev,
5035					 u16 family)
5036{
 
5037	u32 secmark_perm;
5038	u32 peer_sid;
5039	int ifindex = outdev->ifindex;
5040	struct sock *sk;
5041	struct common_audit_data ad;
5042	struct lsm_network_audit net = {0,};
5043	char *addrp;
5044	u8 secmark_active;
5045	u8 peerlbl_active;
5046
5047	/* If any sort of compatibility mode is enabled then handoff processing
5048	 * to the selinux_ip_postroute_compat() function to deal with the
5049	 * special handling.  We do this in an attempt to keep this function
5050	 * as fast and as clean as possible. */
5051	if (!selinux_policycap_netpeer)
5052		return selinux_ip_postroute_compat(skb, ifindex, family);
5053
5054	secmark_active = selinux_secmark_enabled();
5055	peerlbl_active = selinux_peerlbl_enabled();
5056	if (!secmark_active && !peerlbl_active)
5057		return NF_ACCEPT;
5058
5059	sk = skb_to_full_sk(skb);
5060
5061#ifdef CONFIG_XFRM
5062	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5063	 * packet transformation so allow the packet to pass without any checks
5064	 * since we'll have another chance to perform access control checks
5065	 * when the packet is on it's final way out.
5066	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5067	 *       is NULL, in this case go ahead and apply access control.
5068	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5069	 *       TCP listening state we cannot wait until the XFRM processing
5070	 *       is done as we will miss out on the SA label if we do;
5071	 *       unfortunately, this means more work, but it is only once per
5072	 *       connection. */
5073	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5074	    !(sk && sk_listener(sk)))
5075		return NF_ACCEPT;
5076#endif
5077
 
5078	if (sk == NULL) {
5079		/* Without an associated socket the packet is either coming
5080		 * from the kernel or it is being forwarded; check the packet
5081		 * to determine which and if the packet is being forwarded
5082		 * query the packet directly to determine the security label. */
5083		if (skb->skb_iif) {
5084			secmark_perm = PACKET__FORWARD_OUT;
5085			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5086				return NF_DROP;
5087		} else {
5088			secmark_perm = PACKET__SEND;
5089			peer_sid = SECINITSID_KERNEL;
5090		}
5091	} else if (sk_listener(sk)) {
5092		/* Locally generated packet but the associated socket is in the
5093		 * listening state which means this is a SYN-ACK packet.  In
5094		 * this particular case the correct security label is assigned
5095		 * to the connection/request_sock but unfortunately we can't
5096		 * query the request_sock as it isn't queued on the parent
5097		 * socket until after the SYN-ACK packet is sent; the only
5098		 * viable choice is to regenerate the label like we do in
5099		 * selinux_inet_conn_request().  See also selinux_ip_output()
5100		 * for similar problems. */
5101		u32 skb_sid;
5102		struct sk_security_struct *sksec;
5103
5104		sksec = sk->sk_security;
5105		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5106			return NF_DROP;
5107		/* At this point, if the returned skb peerlbl is SECSID_NULL
5108		 * and the packet has been through at least one XFRM
5109		 * transformation then we must be dealing with the "final"
5110		 * form of labeled IPsec packet; since we've already applied
5111		 * all of our access controls on this packet we can safely
5112		 * pass the packet. */
5113		if (skb_sid == SECSID_NULL) {
5114			switch (family) {
5115			case PF_INET:
5116				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5117					return NF_ACCEPT;
5118				break;
5119			case PF_INET6:
5120				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5121					return NF_ACCEPT;
5122				break;
5123			default:
5124				return NF_DROP_ERR(-ECONNREFUSED);
5125			}
5126		}
5127		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5128			return NF_DROP;
5129		secmark_perm = PACKET__SEND;
5130	} else {
5131		/* Locally generated packet, fetch the security label from the
5132		 * associated socket. */
5133		struct sk_security_struct *sksec = sk->sk_security;
5134		peer_sid = sksec->sid;
5135		secmark_perm = PACKET__SEND;
5136	}
5137
 
5138	ad.type = LSM_AUDIT_DATA_NET;
5139	ad.u.net = &net;
5140	ad.u.net->netif = ifindex;
5141	ad.u.net->family = family;
5142	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5143		return NF_DROP;
5144
5145	if (secmark_active)
5146		if (avc_has_perm(peer_sid, skb->secmark,
 
5147				 SECCLASS_PACKET, secmark_perm, &ad))
5148			return NF_DROP_ERR(-ECONNREFUSED);
5149
5150	if (peerlbl_active) {
5151		u32 if_sid;
5152		u32 node_sid;
5153
5154		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5155			return NF_DROP;
5156		if (avc_has_perm(peer_sid, if_sid,
 
5157				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5158			return NF_DROP_ERR(-ECONNREFUSED);
5159
5160		if (sel_netnode_sid(addrp, family, &node_sid))
5161			return NF_DROP;
5162		if (avc_has_perm(peer_sid, node_sid,
 
5163				 SECCLASS_NODE, NODE__SENDTO, &ad))
5164			return NF_DROP_ERR(-ECONNREFUSED);
5165	}
5166
5167	return NF_ACCEPT;
5168}
5169
5170static unsigned int selinux_ipv4_postroute(void *priv,
5171					   struct sk_buff *skb,
5172					   const struct nf_hook_state *state)
5173{
5174	return selinux_ip_postroute(skb, state->out, PF_INET);
5175}
5176
5177#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5178static unsigned int selinux_ipv6_postroute(void *priv,
5179					   struct sk_buff *skb,
5180					   const struct nf_hook_state *state)
5181{
5182	return selinux_ip_postroute(skb, state->out, PF_INET6);
5183}
5184#endif	/* IPV6 */
5185
5186#endif	/* CONFIG_NETFILTER */
5187
5188static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5189{
5190	return selinux_nlmsg_perm(sk, skb);
5191}
 
 
 
 
 
 
5192
5193static int ipc_alloc_security(struct task_struct *task,
5194			      struct kern_ipc_perm *perm,
5195			      u16 sclass)
5196{
5197	struct ipc_security_struct *isec;
5198	u32 sid;
5199
5200	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5201	if (!isec)
5202		return -ENOMEM;
 
 
 
 
 
5203
5204	sid = task_sid(task);
5205	isec->sclass = sclass;
5206	isec->sid = sid;
5207	perm->security = isec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5208
5209	return 0;
5210}
 
 
 
 
 
5211
5212static void ipc_free_security(struct kern_ipc_perm *perm)
5213{
5214	struct ipc_security_struct *isec = perm->security;
5215	perm->security = NULL;
5216	kfree(isec);
5217}
5218
5219static int msg_msg_alloc_security(struct msg_msg *msg)
5220{
5221	struct msg_security_struct *msec;
5222
5223	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5224	if (!msec)
5225		return -ENOMEM;
5226
5227	msec->sid = SECINITSID_UNLABELED;
5228	msg->security = msec;
5229
5230	return 0;
5231}
5232
5233static void msg_msg_free_security(struct msg_msg *msg)
5234{
5235	struct msg_security_struct *msec = msg->security;
5236
5237	msg->security = NULL;
5238	kfree(msec);
5239}
5240
5241static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5242			u32 perms)
5243{
5244	struct ipc_security_struct *isec;
5245	struct common_audit_data ad;
5246	u32 sid = current_sid();
5247
5248	isec = ipc_perms->security;
5249
5250	ad.type = LSM_AUDIT_DATA_IPC;
5251	ad.u.ipc_id = ipc_perms->key;
5252
5253	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
5254}
5255
5256static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5257{
5258	return msg_msg_alloc_security(msg);
5259}
 
 
5260
5261static void selinux_msg_msg_free_security(struct msg_msg *msg)
5262{
5263	msg_msg_free_security(msg);
5264}
5265
5266/* message queue security operations */
5267static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5268{
5269	struct ipc_security_struct *isec;
5270	struct common_audit_data ad;
5271	u32 sid = current_sid();
5272	int rc;
5273
5274	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5275	if (rc)
5276		return rc;
5277
5278	isec = msq->q_perm.security;
5279
5280	ad.type = LSM_AUDIT_DATA_IPC;
5281	ad.u.ipc_id = msq->q_perm.key;
5282
5283	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5284			  MSGQ__CREATE, &ad);
5285	if (rc) {
5286		ipc_free_security(&msq->q_perm);
5287		return rc;
5288	}
5289	return 0;
5290}
5291
5292static void selinux_msg_queue_free_security(struct msg_queue *msq)
5293{
5294	ipc_free_security(&msq->q_perm);
5295}
5296
5297static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5298{
5299	struct ipc_security_struct *isec;
5300	struct common_audit_data ad;
5301	u32 sid = current_sid();
5302
5303	isec = msq->q_perm.security;
5304
5305	ad.type = LSM_AUDIT_DATA_IPC;
5306	ad.u.ipc_id = msq->q_perm.key;
5307
5308	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5309			    MSGQ__ASSOCIATE, &ad);
5310}
5311
5312static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5313{
5314	int err;
5315	int perms;
5316
5317	switch (cmd) {
5318	case IPC_INFO:
5319	case MSG_INFO:
5320		/* No specific object, just general system-wide information. */
5321		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5322	case IPC_STAT:
5323	case MSG_STAT:
 
5324		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5325		break;
5326	case IPC_SET:
5327		perms = MSGQ__SETATTR;
5328		break;
5329	case IPC_RMID:
5330		perms = MSGQ__DESTROY;
5331		break;
5332	default:
5333		return 0;
5334	}
5335
5336	err = ipc_has_perm(&msq->q_perm, perms);
5337	return err;
5338}
5339
5340static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5341{
5342	struct ipc_security_struct *isec;
5343	struct msg_security_struct *msec;
5344	struct common_audit_data ad;
5345	u32 sid = current_sid();
5346	int rc;
5347
5348	isec = msq->q_perm.security;
5349	msec = msg->security;
5350
5351	/*
5352	 * First time through, need to assign label to the message
5353	 */
5354	if (msec->sid == SECINITSID_UNLABELED) {
5355		/*
5356		 * Compute new sid based on current process and
5357		 * message queue this message will be stored in
5358		 */
5359		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5360					     NULL, &msec->sid);
5361		if (rc)
5362			return rc;
5363	}
5364
5365	ad.type = LSM_AUDIT_DATA_IPC;
5366	ad.u.ipc_id = msq->q_perm.key;
5367
5368	/* Can this process write to the queue? */
5369	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5370			  MSGQ__WRITE, &ad);
5371	if (!rc)
5372		/* Can this process send the message */
5373		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
5374				  MSG__SEND, &ad);
5375	if (!rc)
5376		/* Can the message be put in the queue? */
5377		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
5378				  MSGQ__ENQUEUE, &ad);
5379
5380	return rc;
5381}
5382
5383static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5384				    struct task_struct *target,
5385				    long type, int mode)
5386{
5387	struct ipc_security_struct *isec;
5388	struct msg_security_struct *msec;
5389	struct common_audit_data ad;
5390	u32 sid = task_sid(target);
5391	int rc;
5392
5393	isec = msq->q_perm.security;
5394	msec = msg->security;
5395
5396	ad.type = LSM_AUDIT_DATA_IPC;
5397	ad.u.ipc_id = msq->q_perm.key;
5398
5399	rc = avc_has_perm(sid, isec->sid,
 
5400			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5401	if (!rc)
5402		rc = avc_has_perm(sid, msec->sid,
 
5403				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5404	return rc;
5405}
5406
5407/* Shared Memory security operations */
5408static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5409{
5410	struct ipc_security_struct *isec;
5411	struct common_audit_data ad;
5412	u32 sid = current_sid();
5413	int rc;
5414
5415	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5416	if (rc)
5417		return rc;
5418
5419	isec = shp->shm_perm.security;
 
5420
5421	ad.type = LSM_AUDIT_DATA_IPC;
5422	ad.u.ipc_id = shp->shm_perm.key;
5423
5424	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5425			  SHM__CREATE, &ad);
5426	if (rc) {
5427		ipc_free_security(&shp->shm_perm);
5428		return rc;
5429	}
5430	return 0;
5431}
5432
5433static void selinux_shm_free_security(struct shmid_kernel *shp)
5434{
5435	ipc_free_security(&shp->shm_perm);
5436}
5437
5438static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5439{
5440	struct ipc_security_struct *isec;
5441	struct common_audit_data ad;
5442	u32 sid = current_sid();
5443
5444	isec = shp->shm_perm.security;
5445
5446	ad.type = LSM_AUDIT_DATA_IPC;
5447	ad.u.ipc_id = shp->shm_perm.key;
5448
5449	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5450			    SHM__ASSOCIATE, &ad);
5451}
5452
5453/* Note, at this point, shp is locked down */
5454static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5455{
5456	int perms;
5457	int err;
5458
5459	switch (cmd) {
5460	case IPC_INFO:
5461	case SHM_INFO:
5462		/* No specific object, just general system-wide information. */
5463		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5464	case IPC_STAT:
5465	case SHM_STAT:
 
5466		perms = SHM__GETATTR | SHM__ASSOCIATE;
5467		break;
5468	case IPC_SET:
5469		perms = SHM__SETATTR;
5470		break;
5471	case SHM_LOCK:
5472	case SHM_UNLOCK:
5473		perms = SHM__LOCK;
5474		break;
5475	case IPC_RMID:
5476		perms = SHM__DESTROY;
5477		break;
5478	default:
5479		return 0;
5480	}
5481
5482	err = ipc_has_perm(&shp->shm_perm, perms);
5483	return err;
5484}
5485
5486static int selinux_shm_shmat(struct shmid_kernel *shp,
5487			     char __user *shmaddr, int shmflg)
5488{
5489	u32 perms;
5490
5491	if (shmflg & SHM_RDONLY)
5492		perms = SHM__READ;
5493	else
5494		perms = SHM__READ | SHM__WRITE;
5495
5496	return ipc_has_perm(&shp->shm_perm, perms);
5497}
5498
5499/* Semaphore security operations */
5500static int selinux_sem_alloc_security(struct sem_array *sma)
5501{
5502	struct ipc_security_struct *isec;
5503	struct common_audit_data ad;
5504	u32 sid = current_sid();
5505	int rc;
5506
5507	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5508	if (rc)
5509		return rc;
5510
5511	isec = sma->sem_perm.security;
5512
5513	ad.type = LSM_AUDIT_DATA_IPC;
5514	ad.u.ipc_id = sma->sem_perm.key;
5515
5516	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5517			  SEM__CREATE, &ad);
5518	if (rc) {
5519		ipc_free_security(&sma->sem_perm);
5520		return rc;
5521	}
5522	return 0;
5523}
5524
5525static void selinux_sem_free_security(struct sem_array *sma)
5526{
5527	ipc_free_security(&sma->sem_perm);
5528}
5529
5530static int selinux_sem_associate(struct sem_array *sma, int semflg)
5531{
5532	struct ipc_security_struct *isec;
5533	struct common_audit_data ad;
5534	u32 sid = current_sid();
5535
5536	isec = sma->sem_perm.security;
5537
5538	ad.type = LSM_AUDIT_DATA_IPC;
5539	ad.u.ipc_id = sma->sem_perm.key;
5540
5541	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5542			    SEM__ASSOCIATE, &ad);
5543}
5544
5545/* Note, at this point, sma is locked down */
5546static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5547{
5548	int err;
5549	u32 perms;
5550
5551	switch (cmd) {
5552	case IPC_INFO:
5553	case SEM_INFO:
5554		/* No specific object, just general system-wide information. */
5555		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5556	case GETPID:
5557	case GETNCNT:
5558	case GETZCNT:
5559		perms = SEM__GETATTR;
5560		break;
5561	case GETVAL:
5562	case GETALL:
5563		perms = SEM__READ;
5564		break;
5565	case SETVAL:
5566	case SETALL:
5567		perms = SEM__WRITE;
5568		break;
5569	case IPC_RMID:
5570		perms = SEM__DESTROY;
5571		break;
5572	case IPC_SET:
5573		perms = SEM__SETATTR;
5574		break;
5575	case IPC_STAT:
5576	case SEM_STAT:
 
5577		perms = SEM__GETATTR | SEM__ASSOCIATE;
5578		break;
5579	default:
5580		return 0;
5581	}
5582
5583	err = ipc_has_perm(&sma->sem_perm, perms);
5584	return err;
5585}
5586
5587static int selinux_sem_semop(struct sem_array *sma,
5588			     struct sembuf *sops, unsigned nsops, int alter)
5589{
5590	u32 perms;
5591
5592	if (alter)
5593		perms = SEM__READ | SEM__WRITE;
5594	else
5595		perms = SEM__READ;
5596
5597	return ipc_has_perm(&sma->sem_perm, perms);
5598}
5599
5600static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5601{
5602	u32 av = 0;
5603
5604	av = 0;
5605	if (flag & S_IRUGO)
5606		av |= IPC__UNIX_READ;
5607	if (flag & S_IWUGO)
5608		av |= IPC__UNIX_WRITE;
5609
5610	if (av == 0)
5611		return 0;
5612
5613	return ipc_has_perm(ipcp, av);
5614}
5615
5616static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5617{
5618	struct ipc_security_struct *isec = ipcp->security;
5619	*secid = isec->sid;
5620}
5621
5622static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5623{
5624	if (inode)
5625		inode_doinit_with_dentry(inode, dentry);
5626}
5627
5628static int selinux_getprocattr(struct task_struct *p,
5629			       char *name, char **value)
5630{
5631	const struct task_security_struct *__tsec;
5632	u32 sid;
5633	int error;
5634	unsigned len;
5635
 
 
 
5636	if (current != p) {
5637		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5638		if (error)
5639			return error;
5640	}
5641
5642	rcu_read_lock();
5643	__tsec = __task_cred(p)->security;
5644
5645	if (!strcmp(name, "current"))
5646		sid = __tsec->sid;
5647	else if (!strcmp(name, "prev"))
5648		sid = __tsec->osid;
5649	else if (!strcmp(name, "exec"))
5650		sid = __tsec->exec_sid;
5651	else if (!strcmp(name, "fscreate"))
5652		sid = __tsec->create_sid;
5653	else if (!strcmp(name, "keycreate"))
5654		sid = __tsec->keycreate_sid;
5655	else if (!strcmp(name, "sockcreate"))
5656		sid = __tsec->sockcreate_sid;
5657	else
5658		goto invalid;
 
 
5659	rcu_read_unlock();
5660
5661	if (!sid)
5662		return 0;
5663
5664	error = security_sid_to_context(sid, value, &len);
5665	if (error)
5666		return error;
5667	return len;
5668
5669invalid:
5670	rcu_read_unlock();
5671	return -EINVAL;
5672}
5673
5674static int selinux_setprocattr(struct task_struct *p,
5675			       char *name, void *value, size_t size)
5676{
5677	struct task_security_struct *tsec;
5678	struct task_struct *tracer;
5679	struct cred *new;
5680	u32 sid = 0, ptsid;
5681	int error;
5682	char *str = value;
5683
5684	if (current != p) {
5685		/* SELinux only allows a process to change its own
5686		   security attributes. */
5687		return -EACCES;
5688	}
5689
5690	/*
5691	 * Basic control over ability to set these attributes at all.
5692	 * current == p, but we'll pass them separately in case the
5693	 * above restriction is ever removed.
5694	 */
5695	if (!strcmp(name, "exec"))
5696		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5697	else if (!strcmp(name, "fscreate"))
5698		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5699	else if (!strcmp(name, "keycreate"))
5700		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5701	else if (!strcmp(name, "sockcreate"))
5702		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5703	else if (!strcmp(name, "current"))
5704		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5705	else
5706		error = -EINVAL;
5707	if (error)
5708		return error;
5709
5710	/* Obtain a SID for the context, if one was specified. */
5711	if (size && str[1] && str[1] != '\n') {
5712		if (str[size-1] == '\n') {
5713			str[size-1] = 0;
5714			size--;
5715		}
5716		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
 
5717		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5718			if (!capable(CAP_MAC_ADMIN)) {
5719				struct audit_buffer *ab;
5720				size_t audit_size;
5721
5722				/* We strip a nul only if it is at the end, otherwise the
5723				 * context contains a nul and we should audit that */
5724				if (str[size - 1] == '\0')
5725					audit_size = size - 1;
5726				else
5727					audit_size = size;
5728				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
 
 
5729				audit_log_format(ab, "op=fscreate invalid_context=");
5730				audit_log_n_untrustedstring(ab, value, audit_size);
5731				audit_log_end(ab);
5732
5733				return error;
5734			}
5735			error = security_context_to_sid_force(value, size,
5736							      &sid);
 
5737		}
5738		if (error)
5739			return error;
5740	}
5741
5742	new = prepare_creds();
5743	if (!new)
5744		return -ENOMEM;
5745
5746	/* Permission checking based on the specified context is
5747	   performed during the actual operation (execve,
5748	   open/mkdir/...), when we know the full context of the
5749	   operation.  See selinux_bprm_set_creds for the execve
5750	   checks and may_create for the file creation checks. The
5751	   operation will then fail if the context is not permitted. */
5752	tsec = new->security;
5753	if (!strcmp(name, "exec")) {
5754		tsec->exec_sid = sid;
5755	} else if (!strcmp(name, "fscreate")) {
5756		tsec->create_sid = sid;
5757	} else if (!strcmp(name, "keycreate")) {
5758		error = may_create_key(sid, p);
5759		if (error)
5760			goto abort_change;
 
 
 
5761		tsec->keycreate_sid = sid;
5762	} else if (!strcmp(name, "sockcreate")) {
5763		tsec->sockcreate_sid = sid;
5764	} else if (!strcmp(name, "current")) {
5765		error = -EINVAL;
5766		if (sid == 0)
5767			goto abort_change;
5768
5769		/* Only allow single threaded processes to change context */
5770		error = -EPERM;
5771		if (!current_is_single_threaded()) {
5772			error = security_bounded_transition(tsec->sid, sid);
 
5773			if (error)
5774				goto abort_change;
5775		}
5776
5777		/* Check permissions for the transition. */
5778		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5779				     PROCESS__DYNTRANSITION, NULL);
5780		if (error)
5781			goto abort_change;
5782
5783		/* Check for ptracing, and update the task SID if ok.
5784		   Otherwise, leave SID unchanged and fail. */
5785		ptsid = 0;
5786		rcu_read_lock();
5787		tracer = ptrace_parent(p);
5788		if (tracer)
5789			ptsid = task_sid(tracer);
5790		rcu_read_unlock();
5791
5792		if (tracer) {
5793			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5794					     PROCESS__PTRACE, NULL);
5795			if (error)
5796				goto abort_change;
5797		}
5798
5799		tsec->sid = sid;
5800	} else {
5801		error = -EINVAL;
5802		goto abort_change;
5803	}
5804
5805	commit_creds(new);
5806	return size;
5807
5808abort_change:
5809	abort_creds(new);
5810	return error;
5811}
5812
5813static int selinux_ismaclabel(const char *name)
5814{
5815	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5816}
5817
5818static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5819{
5820	return security_sid_to_context(secid, secdata, seclen);
 
5821}
5822
5823static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5824{
5825	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
 
5826}
5827
5828static void selinux_release_secctx(char *secdata, u32 seclen)
5829{
5830	kfree(secdata);
5831}
5832
5833static void selinux_inode_invalidate_secctx(struct inode *inode)
5834{
5835	struct inode_security_struct *isec = inode->i_security;
5836
5837	mutex_lock(&isec->lock);
5838	isec->initialized = LABEL_INVALID;
5839	mutex_unlock(&isec->lock);
5840}
5841
5842/*
5843 *	called with inode->i_mutex locked
5844 */
5845static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5846{
5847	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
5848}
5849
5850/*
5851 *	called with inode->i_mutex locked
5852 */
5853static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5854{
5855	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
 
5856}
5857
5858static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5859{
5860	int len = 0;
5861	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5862						ctx, true);
5863	if (len < 0)
5864		return len;
5865	*ctxlen = len;
5866	return 0;
5867}
5868#ifdef CONFIG_KEYS
5869
5870static int selinux_key_alloc(struct key *k, const struct cred *cred,
5871			     unsigned long flags)
5872{
5873	const struct task_security_struct *tsec;
5874	struct key_security_struct *ksec;
5875
5876	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5877	if (!ksec)
5878		return -ENOMEM;
5879
5880	tsec = cred->security;
5881	if (tsec->keycreate_sid)
5882		ksec->sid = tsec->keycreate_sid;
5883	else
5884		ksec->sid = tsec->sid;
5885
5886	k->security = ksec;
5887	return 0;
5888}
5889
5890static void selinux_key_free(struct key *k)
5891{
5892	struct key_security_struct *ksec = k->security;
5893
5894	k->security = NULL;
5895	kfree(ksec);
5896}
5897
5898static int selinux_key_permission(key_ref_t key_ref,
5899				  const struct cred *cred,
5900				  unsigned perm)
5901{
5902	struct key *key;
5903	struct key_security_struct *ksec;
5904	u32 sid;
5905
5906	/* if no specific permissions are requested, we skip the
5907	   permission check. No serious, additional covert channels
5908	   appear to be created. */
5909	if (perm == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5910		return 0;
 
 
 
 
 
5911
5912	sid = cred_sid(cred);
5913
5914	key = key_ref_to_ptr(key_ref);
5915	ksec = key->security;
5916
5917	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
5918}
5919
5920static int selinux_key_getsecurity(struct key *key, char **_buffer)
5921{
5922	struct key_security_struct *ksec = key->security;
5923	char *context = NULL;
5924	unsigned len;
5925	int rc;
5926
5927	rc = security_sid_to_context(ksec->sid, &context, &len);
 
5928	if (!rc)
5929		rc = len;
5930	*_buffer = context;
5931	return rc;
5932}
5933
 
 
 
 
 
 
 
 
 
 
5934#endif
5935
5936static struct security_hook_list selinux_hooks[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5937	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5938	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5939	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5940	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5941
5942	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5943	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5944	LSM_HOOK_INIT(capget, selinux_capget),
5945	LSM_HOOK_INIT(capset, selinux_capset),
5946	LSM_HOOK_INIT(capable, selinux_capable),
5947	LSM_HOOK_INIT(quotactl, selinux_quotactl),
5948	LSM_HOOK_INIT(quota_on, selinux_quota_on),
5949	LSM_HOOK_INIT(syslog, selinux_syslog),
5950	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5951
5952	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5953
5954	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5955	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5956	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5957	LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5958
5959	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5960	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5961	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5962	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5963	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5964	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5965	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5966	LSM_HOOK_INIT(sb_mount, selinux_mount),
5967	LSM_HOOK_INIT(sb_umount, selinux_umount),
5968	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5969	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5970	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
 
5971
5972	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
 
5973
5974	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5975	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5976	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
 
5977	LSM_HOOK_INIT(inode_create, selinux_inode_create),
5978	LSM_HOOK_INIT(inode_link, selinux_inode_link),
5979	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5980	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5981	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5982	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5983	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5984	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5985	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5986	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5987	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5988	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5989	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5990	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5991	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5992	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5993	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5994	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
 
 
 
5995	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5996	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5997	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5998	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
 
 
 
 
 
5999
6000	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6001	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6002	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6003	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6004	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6005	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6006	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6007	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6008	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6009	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6010	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6011	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6012
6013	LSM_HOOK_INIT(file_open, selinux_file_open),
6014
6015	LSM_HOOK_INIT(task_create, selinux_task_create),
6016	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6017	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6018	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6019	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
 
6020	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6021	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6022	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
 
 
6023	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6024	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6025	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6026	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
 
6027	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6028	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6029	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
 
6030	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6031	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6032	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6033	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6034	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6035	LSM_HOOK_INIT(task_wait, selinux_task_wait),
6036	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
 
6037
6038	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6039	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6040
6041	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6042	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6043
6044	LSM_HOOK_INIT(msg_queue_alloc_security,
6045			selinux_msg_queue_alloc_security),
6046	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6047	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6048	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6049	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6050	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6051
6052	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6053	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6054	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6055	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6056	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6057
6058	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6059	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6060	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6061	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6062	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6063
6064	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6065
6066	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6067	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6068
6069	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6070	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6071	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6072	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6073	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6074	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6075	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6076	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6077
6078	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6079	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6080
6081	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6082	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
 
6083	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6084	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6085	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6086	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6087	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6088	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6089	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6090	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6091	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6092	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6093	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6094	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6095	LSM_HOOK_INIT(socket_getpeersec_stream,
6096			selinux_socket_getpeersec_stream),
6097	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6098	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6099	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6100	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6101	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6102	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
 
 
 
 
6103	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6104	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6105	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6106	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6107	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6108	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6109	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6110	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6111	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6112	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6113	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6114	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6115	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6116
 
 
 
 
 
6117#ifdef CONFIG_SECURITY_NETWORK_XFRM
6118	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6119	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6120	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6121	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6122	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6123	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6124			selinux_xfrm_state_alloc_acquire),
6125	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6126	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6127	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6128	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6129			selinux_xfrm_state_pol_flow_match),
6130	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6131#endif
6132
6133#ifdef CONFIG_KEYS
6134	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6135	LSM_HOOK_INIT(key_free, selinux_key_free),
6136	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6137	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
 
 
 
6138#endif
6139
6140#ifdef CONFIG_AUDIT
6141	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6142	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6143	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6144	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6145#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6146};
6147
6148static __init int selinux_init(void)
6149{
6150	if (!security_module_enable("selinux")) {
6151		selinux_enabled = 0;
6152		return 0;
6153	}
6154
6155	if (!selinux_enabled) {
6156		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6157		return 0;
6158	}
6159
6160	printk(KERN_INFO "SELinux:  Initializing.\n");
 
 
6161
6162	/* Set the security state for the initial task. */
6163	cred_init_security();
6164
6165	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6166
6167	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6168					    sizeof(struct inode_security_struct),
6169					    0, SLAB_PANIC, NULL);
6170	file_security_cache = kmem_cache_create("selinux_file_security",
6171					    sizeof(struct file_security_struct),
6172					    0, SLAB_PANIC, NULL);
6173	avc_init();
6174
6175	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
 
 
 
 
 
 
6176
6177	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6178		panic("SELinux: Unable to register AVC netcache callback\n");
6179
6180	if (selinux_enforcing)
6181		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
 
 
 
6182	else
6183		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
6184
6185	return 0;
6186}
6187
6188static void delayed_superblock_init(struct super_block *sb, void *unused)
6189{
6190	superblock_doinit(sb, NULL);
6191}
6192
6193void selinux_complete_init(void)
6194{
6195	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6196
6197	/* Set up any superblocks initialized prior to the policy load. */
6198	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6199	iterate_supers(delayed_superblock_init, NULL);
6200}
6201
6202/* SELinux requires early initialization in order to label
6203   all processes and objects when they are created. */
6204security_initcall(selinux_init);
 
 
 
 
 
 
6205
6206#if defined(CONFIG_NETFILTER)
6207
6208static struct nf_hook_ops selinux_nf_ops[] = {
6209	{
6210		.hook =		selinux_ipv4_postroute,
6211		.pf =		NFPROTO_IPV4,
6212		.hooknum =	NF_INET_POST_ROUTING,
6213		.priority =	NF_IP_PRI_SELINUX_LAST,
6214	},
6215	{
6216		.hook =		selinux_ipv4_forward,
6217		.pf =		NFPROTO_IPV4,
6218		.hooknum =	NF_INET_FORWARD,
6219		.priority =	NF_IP_PRI_SELINUX_FIRST,
6220	},
6221	{
6222		.hook =		selinux_ipv4_output,
6223		.pf =		NFPROTO_IPV4,
6224		.hooknum =	NF_INET_LOCAL_OUT,
6225		.priority =	NF_IP_PRI_SELINUX_FIRST,
6226	},
6227#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6228	{
6229		.hook =		selinux_ipv6_postroute,
6230		.pf =		NFPROTO_IPV6,
6231		.hooknum =	NF_INET_POST_ROUTING,
6232		.priority =	NF_IP6_PRI_SELINUX_LAST,
6233	},
6234	{
6235		.hook =		selinux_ipv6_forward,
6236		.pf =		NFPROTO_IPV6,
6237		.hooknum =	NF_INET_FORWARD,
6238		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6239	},
 
 
 
 
 
 
6240#endif	/* IPV6 */
6241};
6242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6243static int __init selinux_nf_ip_init(void)
6244{
6245	int err;
6246
6247	if (!selinux_enabled)
6248		return 0;
6249
6250	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6251
6252	err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6253	if (err)
6254		panic("SELinux: nf_register_hooks: error %d\n", err);
6255
6256	return 0;
6257}
6258
6259__initcall(selinux_nf_ip_init);
6260
6261#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6262static void selinux_nf_ip_exit(void)
6263{
6264	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6265
6266	nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6267}
6268#endif
6269
6270#else /* CONFIG_NETFILTER */
6271
6272#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6273#define selinux_nf_ip_exit()
6274#endif
6275
6276#endif /* CONFIG_NETFILTER */
6277
6278#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6279static int selinux_disabled;
6280
6281int selinux_disable(void)
6282{
6283	if (ss_initialized) {
6284		/* Not permitted after initial policy load. */
6285		return -EINVAL;
6286	}
6287
6288	if (selinux_disabled) {
6289		/* Only do this once. */
6290		return -EINVAL;
6291	}
6292
6293	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6294
6295	selinux_disabled = 1;
6296	selinux_enabled = 0;
 
 
 
 
 
 
6297
6298	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6299
6300	/* Try to destroy the avc node cache */
6301	avc_disable();
6302
6303	/* Unregister netfilter hooks. */
6304	selinux_nf_ip_exit();
6305
6306	/* Unregister selinuxfs. */
6307	exit_sel_fs();
6308
6309	return 0;
6310}
6311#endif