Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <linux/bpf.h>
89#include <linux/kernfs.h>
90#include <linux/stringhash.h> /* for hashlen_string() */
91#include <uapi/linux/mount.h>
92#include <linux/fsnotify.h>
93#include <linux/fanotify.h>
94#include <linux/io_uring.h>
95
96#include "avc.h"
97#include "objsec.h"
98#include "netif.h"
99#include "netnode.h"
100#include "netport.h"
101#include "ibpkey.h"
102#include "xfrm.h"
103#include "netlabel.h"
104#include "audit.h"
105#include "avc_ss.h"
106
107struct selinux_state selinux_state;
108
109/* SECMARK reference count */
110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
111
112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
113static int selinux_enforcing_boot __initdata;
114
115static int __init enforcing_setup(char *str)
116{
117 unsigned long enforcing;
118 if (!kstrtoul(str, 0, &enforcing))
119 selinux_enforcing_boot = enforcing ? 1 : 0;
120 return 1;
121}
122__setup("enforcing=", enforcing_setup);
123#else
124#define selinux_enforcing_boot 1
125#endif
126
127int selinux_enabled_boot __initdata = 1;
128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
129static int __init selinux_enabled_setup(char *str)
130{
131 unsigned long enabled;
132 if (!kstrtoul(str, 0, &enabled))
133 selinux_enabled_boot = enabled ? 1 : 0;
134 return 1;
135}
136__setup("selinux=", selinux_enabled_setup);
137#endif
138
139static unsigned int selinux_checkreqprot_boot =
140 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
141
142static int __init checkreqprot_setup(char *str)
143{
144 unsigned long checkreqprot;
145
146 if (!kstrtoul(str, 0, &checkreqprot)) {
147 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
148 if (checkreqprot)
149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218}
219
220/*
221 * get the security ID of a set of credentials
222 */
223static inline u32 cred_sid(const struct cred *cred)
224{
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229}
230
231/*
232 * get the objective security ID of a task
233 */
234static inline u32 task_sid_obj(const struct task_struct *task)
235{
236 u32 sid;
237
238 rcu_read_lock();
239 sid = cred_sid(__task_cred(task));
240 rcu_read_unlock();
241 return sid;
242}
243
244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
245
246/*
247 * Try reloading inode security labels that have been marked as invalid. The
248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
249 * allowed; when set to false, returns -ECHILD when the label is
250 * invalid. The @dentry parameter should be set to a dentry of the inode.
251 */
252static int __inode_security_revalidate(struct inode *inode,
253 struct dentry *dentry,
254 bool may_sleep)
255{
256 struct inode_security_struct *isec = selinux_inode(inode);
257
258 might_sleep_if(may_sleep);
259
260 if (selinux_initialized(&selinux_state) &&
261 isec->initialized != LABEL_INITIALIZED) {
262 if (!may_sleep)
263 return -ECHILD;
264
265 /*
266 * Try reloading the inode security label. This will fail if
267 * @opt_dentry is NULL and no dentry for this inode can be
268 * found; in that case, continue using the old label.
269 */
270 inode_doinit_with_dentry(inode, dentry);
271 }
272 return 0;
273}
274
275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
276{
277 return selinux_inode(inode);
278}
279
280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
281{
282 int error;
283
284 error = __inode_security_revalidate(inode, NULL, !rcu);
285 if (error)
286 return ERR_PTR(error);
287 return selinux_inode(inode);
288}
289
290/*
291 * Get the security label of an inode.
292 */
293static struct inode_security_struct *inode_security(struct inode *inode)
294{
295 __inode_security_revalidate(inode, NULL, true);
296 return selinux_inode(inode);
297}
298
299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
300{
301 struct inode *inode = d_backing_inode(dentry);
302
303 return selinux_inode(inode);
304}
305
306/*
307 * Get the security label of a dentry's backing inode.
308 */
309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
310{
311 struct inode *inode = d_backing_inode(dentry);
312
313 __inode_security_revalidate(inode, dentry, true);
314 return selinux_inode(inode);
315}
316
317static void inode_free_security(struct inode *inode)
318{
319 struct inode_security_struct *isec = selinux_inode(inode);
320 struct superblock_security_struct *sbsec;
321
322 if (!isec)
323 return;
324 sbsec = selinux_superblock(inode->i_sb);
325 /*
326 * As not all inode security structures are in a list, we check for
327 * empty list outside of the lock to make sure that we won't waste
328 * time taking a lock doing nothing.
329 *
330 * The list_del_init() function can be safely called more than once.
331 * It should not be possible for this function to be called with
332 * concurrent list_add(), but for better safety against future changes
333 * in the code, we use list_empty_careful() here.
334 */
335 if (!list_empty_careful(&isec->list)) {
336 spin_lock(&sbsec->isec_lock);
337 list_del_init(&isec->list);
338 spin_unlock(&sbsec->isec_lock);
339 }
340}
341
342struct selinux_mnt_opts {
343 u32 fscontext_sid;
344 u32 context_sid;
345 u32 rootcontext_sid;
346 u32 defcontext_sid;
347};
348
349static void selinux_free_mnt_opts(void *mnt_opts)
350{
351 kfree(mnt_opts);
352}
353
354enum {
355 Opt_error = -1,
356 Opt_context = 0,
357 Opt_defcontext = 1,
358 Opt_fscontext = 2,
359 Opt_rootcontext = 3,
360 Opt_seclabel = 4,
361};
362
363#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
364static struct {
365 const char *name;
366 int len;
367 int opt;
368 bool has_arg;
369} tokens[] = {
370 A(context, true),
371 A(fscontext, true),
372 A(defcontext, true),
373 A(rootcontext, true),
374 A(seclabel, false),
375};
376#undef A
377
378static int match_opt_prefix(char *s, int l, char **arg)
379{
380 int i;
381
382 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
383 size_t len = tokens[i].len;
384 if (len > l || memcmp(s, tokens[i].name, len))
385 continue;
386 if (tokens[i].has_arg) {
387 if (len == l || s[len] != '=')
388 continue;
389 *arg = s + len + 1;
390 } else if (len != l)
391 continue;
392 return tokens[i].opt;
393 }
394 return Opt_error;
395}
396
397#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
398
399static int may_context_mount_sb_relabel(u32 sid,
400 struct superblock_security_struct *sbsec,
401 const struct cred *cred)
402{
403 const struct task_security_struct *tsec = selinux_cred(cred);
404 int rc;
405
406 rc = avc_has_perm(&selinux_state,
407 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
408 FILESYSTEM__RELABELFROM, NULL);
409 if (rc)
410 return rc;
411
412 rc = avc_has_perm(&selinux_state,
413 tsec->sid, sid, SECCLASS_FILESYSTEM,
414 FILESYSTEM__RELABELTO, NULL);
415 return rc;
416}
417
418static int may_context_mount_inode_relabel(u32 sid,
419 struct superblock_security_struct *sbsec,
420 const struct cred *cred)
421{
422 const struct task_security_struct *tsec = selinux_cred(cred);
423 int rc;
424 rc = avc_has_perm(&selinux_state,
425 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
426 FILESYSTEM__RELABELFROM, NULL);
427 if (rc)
428 return rc;
429
430 rc = avc_has_perm(&selinux_state,
431 sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 FILESYSTEM__ASSOCIATE, NULL);
433 return rc;
434}
435
436static int selinux_is_genfs_special_handling(struct super_block *sb)
437{
438 /* Special handling. Genfs but also in-core setxattr handler */
439 return !strcmp(sb->s_type->name, "sysfs") ||
440 !strcmp(sb->s_type->name, "pstore") ||
441 !strcmp(sb->s_type->name, "debugfs") ||
442 !strcmp(sb->s_type->name, "tracefs") ||
443 !strcmp(sb->s_type->name, "rootfs") ||
444 (selinux_policycap_cgroupseclabel() &&
445 (!strcmp(sb->s_type->name, "cgroup") ||
446 !strcmp(sb->s_type->name, "cgroup2")));
447}
448
449static int selinux_is_sblabel_mnt(struct super_block *sb)
450{
451 struct superblock_security_struct *sbsec = selinux_superblock(sb);
452
453 /*
454 * IMPORTANT: Double-check logic in this function when adding a new
455 * SECURITY_FS_USE_* definition!
456 */
457 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
458
459 switch (sbsec->behavior) {
460 case SECURITY_FS_USE_XATTR:
461 case SECURITY_FS_USE_TRANS:
462 case SECURITY_FS_USE_TASK:
463 case SECURITY_FS_USE_NATIVE:
464 return 1;
465
466 case SECURITY_FS_USE_GENFS:
467 return selinux_is_genfs_special_handling(sb);
468
469 /* Never allow relabeling on context mounts */
470 case SECURITY_FS_USE_MNTPOINT:
471 case SECURITY_FS_USE_NONE:
472 default:
473 return 0;
474 }
475}
476
477static int sb_check_xattr_support(struct super_block *sb)
478{
479 struct superblock_security_struct *sbsec = selinux_superblock(sb);
480 struct dentry *root = sb->s_root;
481 struct inode *root_inode = d_backing_inode(root);
482 u32 sid;
483 int rc;
484
485 /*
486 * Make sure that the xattr handler exists and that no
487 * error other than -ENODATA is returned by getxattr on
488 * the root directory. -ENODATA is ok, as this may be
489 * the first boot of the SELinux kernel before we have
490 * assigned xattr values to the filesystem.
491 */
492 if (!(root_inode->i_opflags & IOP_XATTR)) {
493 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
494 sb->s_id, sb->s_type->name);
495 goto fallback;
496 }
497
498 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
499 if (rc < 0 && rc != -ENODATA) {
500 if (rc == -EOPNOTSUPP) {
501 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
502 sb->s_id, sb->s_type->name);
503 goto fallback;
504 } else {
505 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
506 sb->s_id, sb->s_type->name, -rc);
507 return rc;
508 }
509 }
510 return 0;
511
512fallback:
513 /* No xattr support - try to fallback to genfs if possible. */
514 rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
515 SECCLASS_DIR, &sid);
516 if (rc)
517 return -EOPNOTSUPP;
518
519 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
520 sb->s_id, sb->s_type->name);
521 sbsec->behavior = SECURITY_FS_USE_GENFS;
522 sbsec->sid = sid;
523 return 0;
524}
525
526static int sb_finish_set_opts(struct super_block *sb)
527{
528 struct superblock_security_struct *sbsec = selinux_superblock(sb);
529 struct dentry *root = sb->s_root;
530 struct inode *root_inode = d_backing_inode(root);
531 int rc = 0;
532
533 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
534 rc = sb_check_xattr_support(sb);
535 if (rc)
536 return rc;
537 }
538
539 sbsec->flags |= SE_SBINITIALIZED;
540
541 /*
542 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
543 * leave the flag untouched because sb_clone_mnt_opts might be handing
544 * us a superblock that needs the flag to be cleared.
545 */
546 if (selinux_is_sblabel_mnt(sb))
547 sbsec->flags |= SBLABEL_MNT;
548 else
549 sbsec->flags &= ~SBLABEL_MNT;
550
551 /* Initialize the root inode. */
552 rc = inode_doinit_with_dentry(root_inode, root);
553
554 /* Initialize any other inodes associated with the superblock, e.g.
555 inodes created prior to initial policy load or inodes created
556 during get_sb by a pseudo filesystem that directly
557 populates itself. */
558 spin_lock(&sbsec->isec_lock);
559 while (!list_empty(&sbsec->isec_head)) {
560 struct inode_security_struct *isec =
561 list_first_entry(&sbsec->isec_head,
562 struct inode_security_struct, list);
563 struct inode *inode = isec->inode;
564 list_del_init(&isec->list);
565 spin_unlock(&sbsec->isec_lock);
566 inode = igrab(inode);
567 if (inode) {
568 if (!IS_PRIVATE(inode))
569 inode_doinit_with_dentry(inode, NULL);
570 iput(inode);
571 }
572 spin_lock(&sbsec->isec_lock);
573 }
574 spin_unlock(&sbsec->isec_lock);
575 return rc;
576}
577
578static int bad_option(struct superblock_security_struct *sbsec, char flag,
579 u32 old_sid, u32 new_sid)
580{
581 char mnt_flags = sbsec->flags & SE_MNTMASK;
582
583 /* check if the old mount command had the same options */
584 if (sbsec->flags & SE_SBINITIALIZED)
585 if (!(sbsec->flags & flag) ||
586 (old_sid != new_sid))
587 return 1;
588
589 /* check if we were passed the same options twice,
590 * aka someone passed context=a,context=b
591 */
592 if (!(sbsec->flags & SE_SBINITIALIZED))
593 if (mnt_flags & flag)
594 return 1;
595 return 0;
596}
597
598/*
599 * Allow filesystems with binary mount data to explicitly set mount point
600 * labeling information.
601 */
602static int selinux_set_mnt_opts(struct super_block *sb,
603 void *mnt_opts,
604 unsigned long kern_flags,
605 unsigned long *set_kern_flags)
606{
607 const struct cred *cred = current_cred();
608 struct superblock_security_struct *sbsec = selinux_superblock(sb);
609 struct dentry *root = sb->s_root;
610 struct selinux_mnt_opts *opts = mnt_opts;
611 struct inode_security_struct *root_isec;
612 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
613 u32 defcontext_sid = 0;
614 int rc = 0;
615
616 mutex_lock(&sbsec->lock);
617
618 if (!selinux_initialized(&selinux_state)) {
619 if (!opts) {
620 /* Defer initialization until selinux_complete_init,
621 after the initial policy is loaded and the security
622 server is ready to handle calls. */
623 goto out;
624 }
625 rc = -EINVAL;
626 pr_warn("SELinux: Unable to set superblock options "
627 "before the security server is initialized\n");
628 goto out;
629 }
630 if (kern_flags && !set_kern_flags) {
631 /* Specifying internal flags without providing a place to
632 * place the results is not allowed */
633 rc = -EINVAL;
634 goto out;
635 }
636
637 /*
638 * Binary mount data FS will come through this function twice. Once
639 * from an explicit call and once from the generic calls from the vfs.
640 * Since the generic VFS calls will not contain any security mount data
641 * we need to skip the double mount verification.
642 *
643 * This does open a hole in which we will not notice if the first
644 * mount using this sb set explicit options and a second mount using
645 * this sb does not set any security options. (The first options
646 * will be used for both mounts)
647 */
648 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
649 && !opts)
650 goto out;
651
652 root_isec = backing_inode_security_novalidate(root);
653
654 /*
655 * parse the mount options, check if they are valid sids.
656 * also check if someone is trying to mount the same sb more
657 * than once with different security options.
658 */
659 if (opts) {
660 if (opts->fscontext_sid) {
661 fscontext_sid = opts->fscontext_sid;
662 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
663 fscontext_sid))
664 goto out_double_mount;
665 sbsec->flags |= FSCONTEXT_MNT;
666 }
667 if (opts->context_sid) {
668 context_sid = opts->context_sid;
669 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
670 context_sid))
671 goto out_double_mount;
672 sbsec->flags |= CONTEXT_MNT;
673 }
674 if (opts->rootcontext_sid) {
675 rootcontext_sid = opts->rootcontext_sid;
676 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
677 rootcontext_sid))
678 goto out_double_mount;
679 sbsec->flags |= ROOTCONTEXT_MNT;
680 }
681 if (opts->defcontext_sid) {
682 defcontext_sid = opts->defcontext_sid;
683 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
684 defcontext_sid))
685 goto out_double_mount;
686 sbsec->flags |= DEFCONTEXT_MNT;
687 }
688 }
689
690 if (sbsec->flags & SE_SBINITIALIZED) {
691 /* previously mounted with options, but not on this attempt? */
692 if ((sbsec->flags & SE_MNTMASK) && !opts)
693 goto out_double_mount;
694 rc = 0;
695 goto out;
696 }
697
698 if (strcmp(sb->s_type->name, "proc") == 0)
699 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
700
701 if (!strcmp(sb->s_type->name, "debugfs") ||
702 !strcmp(sb->s_type->name, "tracefs") ||
703 !strcmp(sb->s_type->name, "binder") ||
704 !strcmp(sb->s_type->name, "bpf") ||
705 !strcmp(sb->s_type->name, "pstore") ||
706 !strcmp(sb->s_type->name, "securityfs"))
707 sbsec->flags |= SE_SBGENFS;
708
709 if (!strcmp(sb->s_type->name, "sysfs") ||
710 !strcmp(sb->s_type->name, "cgroup") ||
711 !strcmp(sb->s_type->name, "cgroup2"))
712 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
713
714 if (!sbsec->behavior) {
715 /*
716 * Determine the labeling behavior to use for this
717 * filesystem type.
718 */
719 rc = security_fs_use(&selinux_state, sb);
720 if (rc) {
721 pr_warn("%s: security_fs_use(%s) returned %d\n",
722 __func__, sb->s_type->name, rc);
723 goto out;
724 }
725 }
726
727 /*
728 * If this is a user namespace mount and the filesystem type is not
729 * explicitly whitelisted, then no contexts are allowed on the command
730 * line and security labels must be ignored.
731 */
732 if (sb->s_user_ns != &init_user_ns &&
733 strcmp(sb->s_type->name, "tmpfs") &&
734 strcmp(sb->s_type->name, "ramfs") &&
735 strcmp(sb->s_type->name, "devpts") &&
736 strcmp(sb->s_type->name, "overlay")) {
737 if (context_sid || fscontext_sid || rootcontext_sid ||
738 defcontext_sid) {
739 rc = -EACCES;
740 goto out;
741 }
742 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
743 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
744 rc = security_transition_sid(&selinux_state,
745 current_sid(),
746 current_sid(),
747 SECCLASS_FILE, NULL,
748 &sbsec->mntpoint_sid);
749 if (rc)
750 goto out;
751 }
752 goto out_set_opts;
753 }
754
755 /* sets the context of the superblock for the fs being mounted. */
756 if (fscontext_sid) {
757 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
758 if (rc)
759 goto out;
760
761 sbsec->sid = fscontext_sid;
762 }
763
764 /*
765 * Switch to using mount point labeling behavior.
766 * sets the label used on all file below the mountpoint, and will set
767 * the superblock context if not already set.
768 */
769 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
770 sbsec->behavior = SECURITY_FS_USE_NATIVE;
771 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
772 }
773
774 if (context_sid) {
775 if (!fscontext_sid) {
776 rc = may_context_mount_sb_relabel(context_sid, sbsec,
777 cred);
778 if (rc)
779 goto out;
780 sbsec->sid = context_sid;
781 } else {
782 rc = may_context_mount_inode_relabel(context_sid, sbsec,
783 cred);
784 if (rc)
785 goto out;
786 }
787 if (!rootcontext_sid)
788 rootcontext_sid = context_sid;
789
790 sbsec->mntpoint_sid = context_sid;
791 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
792 }
793
794 if (rootcontext_sid) {
795 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
796 cred);
797 if (rc)
798 goto out;
799
800 root_isec->sid = rootcontext_sid;
801 root_isec->initialized = LABEL_INITIALIZED;
802 }
803
804 if (defcontext_sid) {
805 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
806 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
807 rc = -EINVAL;
808 pr_warn("SELinux: defcontext option is "
809 "invalid for this filesystem type\n");
810 goto out;
811 }
812
813 if (defcontext_sid != sbsec->def_sid) {
814 rc = may_context_mount_inode_relabel(defcontext_sid,
815 sbsec, cred);
816 if (rc)
817 goto out;
818 }
819
820 sbsec->def_sid = defcontext_sid;
821 }
822
823out_set_opts:
824 rc = sb_finish_set_opts(sb);
825out:
826 mutex_unlock(&sbsec->lock);
827 return rc;
828out_double_mount:
829 rc = -EINVAL;
830 pr_warn("SELinux: mount invalid. Same superblock, different "
831 "security settings for (dev %s, type %s)\n", sb->s_id,
832 sb->s_type->name);
833 goto out;
834}
835
836static int selinux_cmp_sb_context(const struct super_block *oldsb,
837 const struct super_block *newsb)
838{
839 struct superblock_security_struct *old = selinux_superblock(oldsb);
840 struct superblock_security_struct *new = selinux_superblock(newsb);
841 char oldflags = old->flags & SE_MNTMASK;
842 char newflags = new->flags & SE_MNTMASK;
843
844 if (oldflags != newflags)
845 goto mismatch;
846 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
847 goto mismatch;
848 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
849 goto mismatch;
850 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
851 goto mismatch;
852 if (oldflags & ROOTCONTEXT_MNT) {
853 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
854 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
855 if (oldroot->sid != newroot->sid)
856 goto mismatch;
857 }
858 return 0;
859mismatch:
860 pr_warn("SELinux: mount invalid. Same superblock, "
861 "different security settings for (dev %s, "
862 "type %s)\n", newsb->s_id, newsb->s_type->name);
863 return -EBUSY;
864}
865
866static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
867 struct super_block *newsb,
868 unsigned long kern_flags,
869 unsigned long *set_kern_flags)
870{
871 int rc = 0;
872 const struct superblock_security_struct *oldsbsec =
873 selinux_superblock(oldsb);
874 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
875
876 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
877 int set_context = (oldsbsec->flags & CONTEXT_MNT);
878 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
879
880 /*
881 * if the parent was able to be mounted it clearly had no special lsm
882 * mount options. thus we can safely deal with this superblock later
883 */
884 if (!selinux_initialized(&selinux_state))
885 return 0;
886
887 /*
888 * Specifying internal flags without providing a place to
889 * place the results is not allowed.
890 */
891 if (kern_flags && !set_kern_flags)
892 return -EINVAL;
893
894 /* how can we clone if the old one wasn't set up?? */
895 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
896
897 /* if fs is reusing a sb, make sure that the contexts match */
898 if (newsbsec->flags & SE_SBINITIALIZED) {
899 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
900 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
901 return selinux_cmp_sb_context(oldsb, newsb);
902 }
903
904 mutex_lock(&newsbsec->lock);
905
906 newsbsec->flags = oldsbsec->flags;
907
908 newsbsec->sid = oldsbsec->sid;
909 newsbsec->def_sid = oldsbsec->def_sid;
910 newsbsec->behavior = oldsbsec->behavior;
911
912 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
913 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
914 rc = security_fs_use(&selinux_state, newsb);
915 if (rc)
916 goto out;
917 }
918
919 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
920 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
921 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
922 }
923
924 if (set_context) {
925 u32 sid = oldsbsec->mntpoint_sid;
926
927 if (!set_fscontext)
928 newsbsec->sid = sid;
929 if (!set_rootcontext) {
930 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
931 newisec->sid = sid;
932 }
933 newsbsec->mntpoint_sid = sid;
934 }
935 if (set_rootcontext) {
936 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
937 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
938
939 newisec->sid = oldisec->sid;
940 }
941
942 sb_finish_set_opts(newsb);
943out:
944 mutex_unlock(&newsbsec->lock);
945 return rc;
946}
947
948/*
949 * NOTE: the caller is resposible for freeing the memory even if on error.
950 */
951static int selinux_add_opt(int token, const char *s, void **mnt_opts)
952{
953 struct selinux_mnt_opts *opts = *mnt_opts;
954 u32 *dst_sid;
955 int rc;
956
957 if (token == Opt_seclabel)
958 /* eaten and completely ignored */
959 return 0;
960 if (!s)
961 return -EINVAL;
962
963 if (!selinux_initialized(&selinux_state)) {
964 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
965 return -EINVAL;
966 }
967
968 if (!opts) {
969 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
970 if (!opts)
971 return -ENOMEM;
972 *mnt_opts = opts;
973 }
974
975 switch (token) {
976 case Opt_context:
977 if (opts->context_sid || opts->defcontext_sid)
978 goto err;
979 dst_sid = &opts->context_sid;
980 break;
981 case Opt_fscontext:
982 if (opts->fscontext_sid)
983 goto err;
984 dst_sid = &opts->fscontext_sid;
985 break;
986 case Opt_rootcontext:
987 if (opts->rootcontext_sid)
988 goto err;
989 dst_sid = &opts->rootcontext_sid;
990 break;
991 case Opt_defcontext:
992 if (opts->context_sid || opts->defcontext_sid)
993 goto err;
994 dst_sid = &opts->defcontext_sid;
995 break;
996 default:
997 WARN_ON(1);
998 return -EINVAL;
999 }
1000 rc = security_context_str_to_sid(&selinux_state, s, dst_sid, GFP_KERNEL);
1001 if (rc)
1002 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1003 s, rc);
1004 return rc;
1005
1006err:
1007 pr_warn(SEL_MOUNT_FAIL_MSG);
1008 return -EINVAL;
1009}
1010
1011static int show_sid(struct seq_file *m, u32 sid)
1012{
1013 char *context = NULL;
1014 u32 len;
1015 int rc;
1016
1017 rc = security_sid_to_context(&selinux_state, sid,
1018 &context, &len);
1019 if (!rc) {
1020 bool has_comma = strchr(context, ',');
1021
1022 seq_putc(m, '=');
1023 if (has_comma)
1024 seq_putc(m, '\"');
1025 seq_escape(m, context, "\"\n\\");
1026 if (has_comma)
1027 seq_putc(m, '\"');
1028 }
1029 kfree(context);
1030 return rc;
1031}
1032
1033static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1034{
1035 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1036 int rc;
1037
1038 if (!(sbsec->flags & SE_SBINITIALIZED))
1039 return 0;
1040
1041 if (!selinux_initialized(&selinux_state))
1042 return 0;
1043
1044 if (sbsec->flags & FSCONTEXT_MNT) {
1045 seq_putc(m, ',');
1046 seq_puts(m, FSCONTEXT_STR);
1047 rc = show_sid(m, sbsec->sid);
1048 if (rc)
1049 return rc;
1050 }
1051 if (sbsec->flags & CONTEXT_MNT) {
1052 seq_putc(m, ',');
1053 seq_puts(m, CONTEXT_STR);
1054 rc = show_sid(m, sbsec->mntpoint_sid);
1055 if (rc)
1056 return rc;
1057 }
1058 if (sbsec->flags & DEFCONTEXT_MNT) {
1059 seq_putc(m, ',');
1060 seq_puts(m, DEFCONTEXT_STR);
1061 rc = show_sid(m, sbsec->def_sid);
1062 if (rc)
1063 return rc;
1064 }
1065 if (sbsec->flags & ROOTCONTEXT_MNT) {
1066 struct dentry *root = sb->s_root;
1067 struct inode_security_struct *isec = backing_inode_security(root);
1068 seq_putc(m, ',');
1069 seq_puts(m, ROOTCONTEXT_STR);
1070 rc = show_sid(m, isec->sid);
1071 if (rc)
1072 return rc;
1073 }
1074 if (sbsec->flags & SBLABEL_MNT) {
1075 seq_putc(m, ',');
1076 seq_puts(m, SECLABEL_STR);
1077 }
1078 return 0;
1079}
1080
1081static inline u16 inode_mode_to_security_class(umode_t mode)
1082{
1083 switch (mode & S_IFMT) {
1084 case S_IFSOCK:
1085 return SECCLASS_SOCK_FILE;
1086 case S_IFLNK:
1087 return SECCLASS_LNK_FILE;
1088 case S_IFREG:
1089 return SECCLASS_FILE;
1090 case S_IFBLK:
1091 return SECCLASS_BLK_FILE;
1092 case S_IFDIR:
1093 return SECCLASS_DIR;
1094 case S_IFCHR:
1095 return SECCLASS_CHR_FILE;
1096 case S_IFIFO:
1097 return SECCLASS_FIFO_FILE;
1098
1099 }
1100
1101 return SECCLASS_FILE;
1102}
1103
1104static inline int default_protocol_stream(int protocol)
1105{
1106 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1107 protocol == IPPROTO_MPTCP);
1108}
1109
1110static inline int default_protocol_dgram(int protocol)
1111{
1112 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1113}
1114
1115static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1116{
1117 int extsockclass = selinux_policycap_extsockclass();
1118
1119 switch (family) {
1120 case PF_UNIX:
1121 switch (type) {
1122 case SOCK_STREAM:
1123 case SOCK_SEQPACKET:
1124 return SECCLASS_UNIX_STREAM_SOCKET;
1125 case SOCK_DGRAM:
1126 case SOCK_RAW:
1127 return SECCLASS_UNIX_DGRAM_SOCKET;
1128 }
1129 break;
1130 case PF_INET:
1131 case PF_INET6:
1132 switch (type) {
1133 case SOCK_STREAM:
1134 case SOCK_SEQPACKET:
1135 if (default_protocol_stream(protocol))
1136 return SECCLASS_TCP_SOCKET;
1137 else if (extsockclass && protocol == IPPROTO_SCTP)
1138 return SECCLASS_SCTP_SOCKET;
1139 else
1140 return SECCLASS_RAWIP_SOCKET;
1141 case SOCK_DGRAM:
1142 if (default_protocol_dgram(protocol))
1143 return SECCLASS_UDP_SOCKET;
1144 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1145 protocol == IPPROTO_ICMPV6))
1146 return SECCLASS_ICMP_SOCKET;
1147 else
1148 return SECCLASS_RAWIP_SOCKET;
1149 case SOCK_DCCP:
1150 return SECCLASS_DCCP_SOCKET;
1151 default:
1152 return SECCLASS_RAWIP_SOCKET;
1153 }
1154 break;
1155 case PF_NETLINK:
1156 switch (protocol) {
1157 case NETLINK_ROUTE:
1158 return SECCLASS_NETLINK_ROUTE_SOCKET;
1159 case NETLINK_SOCK_DIAG:
1160 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1161 case NETLINK_NFLOG:
1162 return SECCLASS_NETLINK_NFLOG_SOCKET;
1163 case NETLINK_XFRM:
1164 return SECCLASS_NETLINK_XFRM_SOCKET;
1165 case NETLINK_SELINUX:
1166 return SECCLASS_NETLINK_SELINUX_SOCKET;
1167 case NETLINK_ISCSI:
1168 return SECCLASS_NETLINK_ISCSI_SOCKET;
1169 case NETLINK_AUDIT:
1170 return SECCLASS_NETLINK_AUDIT_SOCKET;
1171 case NETLINK_FIB_LOOKUP:
1172 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1173 case NETLINK_CONNECTOR:
1174 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1175 case NETLINK_NETFILTER:
1176 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1177 case NETLINK_DNRTMSG:
1178 return SECCLASS_NETLINK_DNRT_SOCKET;
1179 case NETLINK_KOBJECT_UEVENT:
1180 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1181 case NETLINK_GENERIC:
1182 return SECCLASS_NETLINK_GENERIC_SOCKET;
1183 case NETLINK_SCSITRANSPORT:
1184 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1185 case NETLINK_RDMA:
1186 return SECCLASS_NETLINK_RDMA_SOCKET;
1187 case NETLINK_CRYPTO:
1188 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1189 default:
1190 return SECCLASS_NETLINK_SOCKET;
1191 }
1192 case PF_PACKET:
1193 return SECCLASS_PACKET_SOCKET;
1194 case PF_KEY:
1195 return SECCLASS_KEY_SOCKET;
1196 case PF_APPLETALK:
1197 return SECCLASS_APPLETALK_SOCKET;
1198 }
1199
1200 if (extsockclass) {
1201 switch (family) {
1202 case PF_AX25:
1203 return SECCLASS_AX25_SOCKET;
1204 case PF_IPX:
1205 return SECCLASS_IPX_SOCKET;
1206 case PF_NETROM:
1207 return SECCLASS_NETROM_SOCKET;
1208 case PF_ATMPVC:
1209 return SECCLASS_ATMPVC_SOCKET;
1210 case PF_X25:
1211 return SECCLASS_X25_SOCKET;
1212 case PF_ROSE:
1213 return SECCLASS_ROSE_SOCKET;
1214 case PF_DECnet:
1215 return SECCLASS_DECNET_SOCKET;
1216 case PF_ATMSVC:
1217 return SECCLASS_ATMSVC_SOCKET;
1218 case PF_RDS:
1219 return SECCLASS_RDS_SOCKET;
1220 case PF_IRDA:
1221 return SECCLASS_IRDA_SOCKET;
1222 case PF_PPPOX:
1223 return SECCLASS_PPPOX_SOCKET;
1224 case PF_LLC:
1225 return SECCLASS_LLC_SOCKET;
1226 case PF_CAN:
1227 return SECCLASS_CAN_SOCKET;
1228 case PF_TIPC:
1229 return SECCLASS_TIPC_SOCKET;
1230 case PF_BLUETOOTH:
1231 return SECCLASS_BLUETOOTH_SOCKET;
1232 case PF_IUCV:
1233 return SECCLASS_IUCV_SOCKET;
1234 case PF_RXRPC:
1235 return SECCLASS_RXRPC_SOCKET;
1236 case PF_ISDN:
1237 return SECCLASS_ISDN_SOCKET;
1238 case PF_PHONET:
1239 return SECCLASS_PHONET_SOCKET;
1240 case PF_IEEE802154:
1241 return SECCLASS_IEEE802154_SOCKET;
1242 case PF_CAIF:
1243 return SECCLASS_CAIF_SOCKET;
1244 case PF_ALG:
1245 return SECCLASS_ALG_SOCKET;
1246 case PF_NFC:
1247 return SECCLASS_NFC_SOCKET;
1248 case PF_VSOCK:
1249 return SECCLASS_VSOCK_SOCKET;
1250 case PF_KCM:
1251 return SECCLASS_KCM_SOCKET;
1252 case PF_QIPCRTR:
1253 return SECCLASS_QIPCRTR_SOCKET;
1254 case PF_SMC:
1255 return SECCLASS_SMC_SOCKET;
1256 case PF_XDP:
1257 return SECCLASS_XDP_SOCKET;
1258 case PF_MCTP:
1259 return SECCLASS_MCTP_SOCKET;
1260#if PF_MAX > 46
1261#error New address family defined, please update this function.
1262#endif
1263 }
1264 }
1265
1266 return SECCLASS_SOCKET;
1267}
1268
1269static int selinux_genfs_get_sid(struct dentry *dentry,
1270 u16 tclass,
1271 u16 flags,
1272 u32 *sid)
1273{
1274 int rc;
1275 struct super_block *sb = dentry->d_sb;
1276 char *buffer, *path;
1277
1278 buffer = (char *)__get_free_page(GFP_KERNEL);
1279 if (!buffer)
1280 return -ENOMEM;
1281
1282 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1283 if (IS_ERR(path))
1284 rc = PTR_ERR(path);
1285 else {
1286 if (flags & SE_SBPROC) {
1287 /* each process gets a /proc/PID/ entry. Strip off the
1288 * PID part to get a valid selinux labeling.
1289 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1290 while (path[1] >= '0' && path[1] <= '9') {
1291 path[1] = '/';
1292 path++;
1293 }
1294 }
1295 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1296 path, tclass, sid);
1297 if (rc == -ENOENT) {
1298 /* No match in policy, mark as unlabeled. */
1299 *sid = SECINITSID_UNLABELED;
1300 rc = 0;
1301 }
1302 }
1303 free_page((unsigned long)buffer);
1304 return rc;
1305}
1306
1307static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1308 u32 def_sid, u32 *sid)
1309{
1310#define INITCONTEXTLEN 255
1311 char *context;
1312 unsigned int len;
1313 int rc;
1314
1315 len = INITCONTEXTLEN;
1316 context = kmalloc(len + 1, GFP_NOFS);
1317 if (!context)
1318 return -ENOMEM;
1319
1320 context[len] = '\0';
1321 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1322 if (rc == -ERANGE) {
1323 kfree(context);
1324
1325 /* Need a larger buffer. Query for the right size. */
1326 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1327 if (rc < 0)
1328 return rc;
1329
1330 len = rc;
1331 context = kmalloc(len + 1, GFP_NOFS);
1332 if (!context)
1333 return -ENOMEM;
1334
1335 context[len] = '\0';
1336 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1337 context, len);
1338 }
1339 if (rc < 0) {
1340 kfree(context);
1341 if (rc != -ENODATA) {
1342 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1343 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1344 return rc;
1345 }
1346 *sid = def_sid;
1347 return 0;
1348 }
1349
1350 rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1351 def_sid, GFP_NOFS);
1352 if (rc) {
1353 char *dev = inode->i_sb->s_id;
1354 unsigned long ino = inode->i_ino;
1355
1356 if (rc == -EINVAL) {
1357 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1358 ino, dev, context);
1359 } else {
1360 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1361 __func__, context, -rc, dev, ino);
1362 }
1363 }
1364 kfree(context);
1365 return 0;
1366}
1367
1368/* The inode's security attributes must be initialized before first use. */
1369static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1370{
1371 struct superblock_security_struct *sbsec = NULL;
1372 struct inode_security_struct *isec = selinux_inode(inode);
1373 u32 task_sid, sid = 0;
1374 u16 sclass;
1375 struct dentry *dentry;
1376 int rc = 0;
1377
1378 if (isec->initialized == LABEL_INITIALIZED)
1379 return 0;
1380
1381 spin_lock(&isec->lock);
1382 if (isec->initialized == LABEL_INITIALIZED)
1383 goto out_unlock;
1384
1385 if (isec->sclass == SECCLASS_FILE)
1386 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1387
1388 sbsec = selinux_superblock(inode->i_sb);
1389 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1390 /* Defer initialization until selinux_complete_init,
1391 after the initial policy is loaded and the security
1392 server is ready to handle calls. */
1393 spin_lock(&sbsec->isec_lock);
1394 if (list_empty(&isec->list))
1395 list_add(&isec->list, &sbsec->isec_head);
1396 spin_unlock(&sbsec->isec_lock);
1397 goto out_unlock;
1398 }
1399
1400 sclass = isec->sclass;
1401 task_sid = isec->task_sid;
1402 sid = isec->sid;
1403 isec->initialized = LABEL_PENDING;
1404 spin_unlock(&isec->lock);
1405
1406 switch (sbsec->behavior) {
1407 case SECURITY_FS_USE_NATIVE:
1408 break;
1409 case SECURITY_FS_USE_XATTR:
1410 if (!(inode->i_opflags & IOP_XATTR)) {
1411 sid = sbsec->def_sid;
1412 break;
1413 }
1414 /* Need a dentry, since the xattr API requires one.
1415 Life would be simpler if we could just pass the inode. */
1416 if (opt_dentry) {
1417 /* Called from d_instantiate or d_splice_alias. */
1418 dentry = dget(opt_dentry);
1419 } else {
1420 /*
1421 * Called from selinux_complete_init, try to find a dentry.
1422 * Some filesystems really want a connected one, so try
1423 * that first. We could split SECURITY_FS_USE_XATTR in
1424 * two, depending upon that...
1425 */
1426 dentry = d_find_alias(inode);
1427 if (!dentry)
1428 dentry = d_find_any_alias(inode);
1429 }
1430 if (!dentry) {
1431 /*
1432 * this is can be hit on boot when a file is accessed
1433 * before the policy is loaded. When we load policy we
1434 * may find inodes that have no dentry on the
1435 * sbsec->isec_head list. No reason to complain as these
1436 * will get fixed up the next time we go through
1437 * inode_doinit with a dentry, before these inodes could
1438 * be used again by userspace.
1439 */
1440 goto out_invalid;
1441 }
1442
1443 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1444 &sid);
1445 dput(dentry);
1446 if (rc)
1447 goto out;
1448 break;
1449 case SECURITY_FS_USE_TASK:
1450 sid = task_sid;
1451 break;
1452 case SECURITY_FS_USE_TRANS:
1453 /* Default to the fs SID. */
1454 sid = sbsec->sid;
1455
1456 /* Try to obtain a transition SID. */
1457 rc = security_transition_sid(&selinux_state, task_sid, sid,
1458 sclass, NULL, &sid);
1459 if (rc)
1460 goto out;
1461 break;
1462 case SECURITY_FS_USE_MNTPOINT:
1463 sid = sbsec->mntpoint_sid;
1464 break;
1465 default:
1466 /* Default to the fs superblock SID. */
1467 sid = sbsec->sid;
1468
1469 if ((sbsec->flags & SE_SBGENFS) &&
1470 (!S_ISLNK(inode->i_mode) ||
1471 selinux_policycap_genfs_seclabel_symlinks())) {
1472 /* We must have a dentry to determine the label on
1473 * procfs inodes */
1474 if (opt_dentry) {
1475 /* Called from d_instantiate or
1476 * d_splice_alias. */
1477 dentry = dget(opt_dentry);
1478 } else {
1479 /* Called from selinux_complete_init, try to
1480 * find a dentry. Some filesystems really want
1481 * a connected one, so try that first.
1482 */
1483 dentry = d_find_alias(inode);
1484 if (!dentry)
1485 dentry = d_find_any_alias(inode);
1486 }
1487 /*
1488 * This can be hit on boot when a file is accessed
1489 * before the policy is loaded. When we load policy we
1490 * may find inodes that have no dentry on the
1491 * sbsec->isec_head list. No reason to complain as
1492 * these will get fixed up the next time we go through
1493 * inode_doinit() with a dentry, before these inodes
1494 * could be used again by userspace.
1495 */
1496 if (!dentry)
1497 goto out_invalid;
1498 rc = selinux_genfs_get_sid(dentry, sclass,
1499 sbsec->flags, &sid);
1500 if (rc) {
1501 dput(dentry);
1502 goto out;
1503 }
1504
1505 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1506 (inode->i_opflags & IOP_XATTR)) {
1507 rc = inode_doinit_use_xattr(inode, dentry,
1508 sid, &sid);
1509 if (rc) {
1510 dput(dentry);
1511 goto out;
1512 }
1513 }
1514 dput(dentry);
1515 }
1516 break;
1517 }
1518
1519out:
1520 spin_lock(&isec->lock);
1521 if (isec->initialized == LABEL_PENDING) {
1522 if (rc) {
1523 isec->initialized = LABEL_INVALID;
1524 goto out_unlock;
1525 }
1526 isec->initialized = LABEL_INITIALIZED;
1527 isec->sid = sid;
1528 }
1529
1530out_unlock:
1531 spin_unlock(&isec->lock);
1532 return rc;
1533
1534out_invalid:
1535 spin_lock(&isec->lock);
1536 if (isec->initialized == LABEL_PENDING) {
1537 isec->initialized = LABEL_INVALID;
1538 isec->sid = sid;
1539 }
1540 spin_unlock(&isec->lock);
1541 return 0;
1542}
1543
1544/* Convert a Linux signal to an access vector. */
1545static inline u32 signal_to_av(int sig)
1546{
1547 u32 perm = 0;
1548
1549 switch (sig) {
1550 case SIGCHLD:
1551 /* Commonly granted from child to parent. */
1552 perm = PROCESS__SIGCHLD;
1553 break;
1554 case SIGKILL:
1555 /* Cannot be caught or ignored */
1556 perm = PROCESS__SIGKILL;
1557 break;
1558 case SIGSTOP:
1559 /* Cannot be caught or ignored */
1560 perm = PROCESS__SIGSTOP;
1561 break;
1562 default:
1563 /* All other signals. */
1564 perm = PROCESS__SIGNAL;
1565 break;
1566 }
1567
1568 return perm;
1569}
1570
1571#if CAP_LAST_CAP > 63
1572#error Fix SELinux to handle capabilities > 63.
1573#endif
1574
1575/* Check whether a task is allowed to use a capability. */
1576static int cred_has_capability(const struct cred *cred,
1577 int cap, unsigned int opts, bool initns)
1578{
1579 struct common_audit_data ad;
1580 struct av_decision avd;
1581 u16 sclass;
1582 u32 sid = cred_sid(cred);
1583 u32 av = CAP_TO_MASK(cap);
1584 int rc;
1585
1586 ad.type = LSM_AUDIT_DATA_CAP;
1587 ad.u.cap = cap;
1588
1589 switch (CAP_TO_INDEX(cap)) {
1590 case 0:
1591 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1592 break;
1593 case 1:
1594 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1595 break;
1596 default:
1597 pr_err("SELinux: out of range capability %d\n", cap);
1598 BUG();
1599 return -EINVAL;
1600 }
1601
1602 rc = avc_has_perm_noaudit(&selinux_state,
1603 sid, sid, sclass, av, 0, &avd);
1604 if (!(opts & CAP_OPT_NOAUDIT)) {
1605 int rc2 = avc_audit(&selinux_state,
1606 sid, sid, sclass, av, &avd, rc, &ad);
1607 if (rc2)
1608 return rc2;
1609 }
1610 return rc;
1611}
1612
1613/* Check whether a task has a particular permission to an inode.
1614 The 'adp' parameter is optional and allows other audit
1615 data to be passed (e.g. the dentry). */
1616static int inode_has_perm(const struct cred *cred,
1617 struct inode *inode,
1618 u32 perms,
1619 struct common_audit_data *adp)
1620{
1621 struct inode_security_struct *isec;
1622 u32 sid;
1623
1624 validate_creds(cred);
1625
1626 if (unlikely(IS_PRIVATE(inode)))
1627 return 0;
1628
1629 sid = cred_sid(cred);
1630 isec = selinux_inode(inode);
1631
1632 return avc_has_perm(&selinux_state,
1633 sid, isec->sid, isec->sclass, perms, adp);
1634}
1635
1636/* Same as inode_has_perm, but pass explicit audit data containing
1637 the dentry to help the auditing code to more easily generate the
1638 pathname if needed. */
1639static inline int dentry_has_perm(const struct cred *cred,
1640 struct dentry *dentry,
1641 u32 av)
1642{
1643 struct inode *inode = d_backing_inode(dentry);
1644 struct common_audit_data ad;
1645
1646 ad.type = LSM_AUDIT_DATA_DENTRY;
1647 ad.u.dentry = dentry;
1648 __inode_security_revalidate(inode, dentry, true);
1649 return inode_has_perm(cred, inode, av, &ad);
1650}
1651
1652/* Same as inode_has_perm, but pass explicit audit data containing
1653 the path to help the auditing code to more easily generate the
1654 pathname if needed. */
1655static inline int path_has_perm(const struct cred *cred,
1656 const struct path *path,
1657 u32 av)
1658{
1659 struct inode *inode = d_backing_inode(path->dentry);
1660 struct common_audit_data ad;
1661
1662 ad.type = LSM_AUDIT_DATA_PATH;
1663 ad.u.path = *path;
1664 __inode_security_revalidate(inode, path->dentry, true);
1665 return inode_has_perm(cred, inode, av, &ad);
1666}
1667
1668/* Same as path_has_perm, but uses the inode from the file struct. */
1669static inline int file_path_has_perm(const struct cred *cred,
1670 struct file *file,
1671 u32 av)
1672{
1673 struct common_audit_data ad;
1674
1675 ad.type = LSM_AUDIT_DATA_FILE;
1676 ad.u.file = file;
1677 return inode_has_perm(cred, file_inode(file), av, &ad);
1678}
1679
1680#ifdef CONFIG_BPF_SYSCALL
1681static int bpf_fd_pass(struct file *file, u32 sid);
1682#endif
1683
1684/* Check whether a task can use an open file descriptor to
1685 access an inode in a given way. Check access to the
1686 descriptor itself, and then use dentry_has_perm to
1687 check a particular permission to the file.
1688 Access to the descriptor is implicitly granted if it
1689 has the same SID as the process. If av is zero, then
1690 access to the file is not checked, e.g. for cases
1691 where only the descriptor is affected like seek. */
1692static int file_has_perm(const struct cred *cred,
1693 struct file *file,
1694 u32 av)
1695{
1696 struct file_security_struct *fsec = selinux_file(file);
1697 struct inode *inode = file_inode(file);
1698 struct common_audit_data ad;
1699 u32 sid = cred_sid(cred);
1700 int rc;
1701
1702 ad.type = LSM_AUDIT_DATA_FILE;
1703 ad.u.file = file;
1704
1705 if (sid != fsec->sid) {
1706 rc = avc_has_perm(&selinux_state,
1707 sid, fsec->sid,
1708 SECCLASS_FD,
1709 FD__USE,
1710 &ad);
1711 if (rc)
1712 goto out;
1713 }
1714
1715#ifdef CONFIG_BPF_SYSCALL
1716 rc = bpf_fd_pass(file, cred_sid(cred));
1717 if (rc)
1718 return rc;
1719#endif
1720
1721 /* av is zero if only checking access to the descriptor. */
1722 rc = 0;
1723 if (av)
1724 rc = inode_has_perm(cred, inode, av, &ad);
1725
1726out:
1727 return rc;
1728}
1729
1730/*
1731 * Determine the label for an inode that might be unioned.
1732 */
1733static int
1734selinux_determine_inode_label(const struct task_security_struct *tsec,
1735 struct inode *dir,
1736 const struct qstr *name, u16 tclass,
1737 u32 *_new_isid)
1738{
1739 const struct superblock_security_struct *sbsec =
1740 selinux_superblock(dir->i_sb);
1741
1742 if ((sbsec->flags & SE_SBINITIALIZED) &&
1743 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1744 *_new_isid = sbsec->mntpoint_sid;
1745 } else if ((sbsec->flags & SBLABEL_MNT) &&
1746 tsec->create_sid) {
1747 *_new_isid = tsec->create_sid;
1748 } else {
1749 const struct inode_security_struct *dsec = inode_security(dir);
1750 return security_transition_sid(&selinux_state, tsec->sid,
1751 dsec->sid, tclass,
1752 name, _new_isid);
1753 }
1754
1755 return 0;
1756}
1757
1758/* Check whether a task can create a file. */
1759static int may_create(struct inode *dir,
1760 struct dentry *dentry,
1761 u16 tclass)
1762{
1763 const struct task_security_struct *tsec = selinux_cred(current_cred());
1764 struct inode_security_struct *dsec;
1765 struct superblock_security_struct *sbsec;
1766 u32 sid, newsid;
1767 struct common_audit_data ad;
1768 int rc;
1769
1770 dsec = inode_security(dir);
1771 sbsec = selinux_superblock(dir->i_sb);
1772
1773 sid = tsec->sid;
1774
1775 ad.type = LSM_AUDIT_DATA_DENTRY;
1776 ad.u.dentry = dentry;
1777
1778 rc = avc_has_perm(&selinux_state,
1779 sid, dsec->sid, SECCLASS_DIR,
1780 DIR__ADD_NAME | DIR__SEARCH,
1781 &ad);
1782 if (rc)
1783 return rc;
1784
1785 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1786 &newsid);
1787 if (rc)
1788 return rc;
1789
1790 rc = avc_has_perm(&selinux_state,
1791 sid, newsid, tclass, FILE__CREATE, &ad);
1792 if (rc)
1793 return rc;
1794
1795 return avc_has_perm(&selinux_state,
1796 newsid, sbsec->sid,
1797 SECCLASS_FILESYSTEM,
1798 FILESYSTEM__ASSOCIATE, &ad);
1799}
1800
1801#define MAY_LINK 0
1802#define MAY_UNLINK 1
1803#define MAY_RMDIR 2
1804
1805/* Check whether a task can link, unlink, or rmdir a file/directory. */
1806static int may_link(struct inode *dir,
1807 struct dentry *dentry,
1808 int kind)
1809
1810{
1811 struct inode_security_struct *dsec, *isec;
1812 struct common_audit_data ad;
1813 u32 sid = current_sid();
1814 u32 av;
1815 int rc;
1816
1817 dsec = inode_security(dir);
1818 isec = backing_inode_security(dentry);
1819
1820 ad.type = LSM_AUDIT_DATA_DENTRY;
1821 ad.u.dentry = dentry;
1822
1823 av = DIR__SEARCH;
1824 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1825 rc = avc_has_perm(&selinux_state,
1826 sid, dsec->sid, SECCLASS_DIR, av, &ad);
1827 if (rc)
1828 return rc;
1829
1830 switch (kind) {
1831 case MAY_LINK:
1832 av = FILE__LINK;
1833 break;
1834 case MAY_UNLINK:
1835 av = FILE__UNLINK;
1836 break;
1837 case MAY_RMDIR:
1838 av = DIR__RMDIR;
1839 break;
1840 default:
1841 pr_warn("SELinux: %s: unrecognized kind %d\n",
1842 __func__, kind);
1843 return 0;
1844 }
1845
1846 rc = avc_has_perm(&selinux_state,
1847 sid, isec->sid, isec->sclass, av, &ad);
1848 return rc;
1849}
1850
1851static inline int may_rename(struct inode *old_dir,
1852 struct dentry *old_dentry,
1853 struct inode *new_dir,
1854 struct dentry *new_dentry)
1855{
1856 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1857 struct common_audit_data ad;
1858 u32 sid = current_sid();
1859 u32 av;
1860 int old_is_dir, new_is_dir;
1861 int rc;
1862
1863 old_dsec = inode_security(old_dir);
1864 old_isec = backing_inode_security(old_dentry);
1865 old_is_dir = d_is_dir(old_dentry);
1866 new_dsec = inode_security(new_dir);
1867
1868 ad.type = LSM_AUDIT_DATA_DENTRY;
1869
1870 ad.u.dentry = old_dentry;
1871 rc = avc_has_perm(&selinux_state,
1872 sid, old_dsec->sid, SECCLASS_DIR,
1873 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1874 if (rc)
1875 return rc;
1876 rc = avc_has_perm(&selinux_state,
1877 sid, old_isec->sid,
1878 old_isec->sclass, FILE__RENAME, &ad);
1879 if (rc)
1880 return rc;
1881 if (old_is_dir && new_dir != old_dir) {
1882 rc = avc_has_perm(&selinux_state,
1883 sid, old_isec->sid,
1884 old_isec->sclass, DIR__REPARENT, &ad);
1885 if (rc)
1886 return rc;
1887 }
1888
1889 ad.u.dentry = new_dentry;
1890 av = DIR__ADD_NAME | DIR__SEARCH;
1891 if (d_is_positive(new_dentry))
1892 av |= DIR__REMOVE_NAME;
1893 rc = avc_has_perm(&selinux_state,
1894 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1895 if (rc)
1896 return rc;
1897 if (d_is_positive(new_dentry)) {
1898 new_isec = backing_inode_security(new_dentry);
1899 new_is_dir = d_is_dir(new_dentry);
1900 rc = avc_has_perm(&selinux_state,
1901 sid, new_isec->sid,
1902 new_isec->sclass,
1903 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1904 if (rc)
1905 return rc;
1906 }
1907
1908 return 0;
1909}
1910
1911/* Check whether a task can perform a filesystem operation. */
1912static int superblock_has_perm(const struct cred *cred,
1913 struct super_block *sb,
1914 u32 perms,
1915 struct common_audit_data *ad)
1916{
1917 struct superblock_security_struct *sbsec;
1918 u32 sid = cred_sid(cred);
1919
1920 sbsec = selinux_superblock(sb);
1921 return avc_has_perm(&selinux_state,
1922 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1923}
1924
1925/* Convert a Linux mode and permission mask to an access vector. */
1926static inline u32 file_mask_to_av(int mode, int mask)
1927{
1928 u32 av = 0;
1929
1930 if (!S_ISDIR(mode)) {
1931 if (mask & MAY_EXEC)
1932 av |= FILE__EXECUTE;
1933 if (mask & MAY_READ)
1934 av |= FILE__READ;
1935
1936 if (mask & MAY_APPEND)
1937 av |= FILE__APPEND;
1938 else if (mask & MAY_WRITE)
1939 av |= FILE__WRITE;
1940
1941 } else {
1942 if (mask & MAY_EXEC)
1943 av |= DIR__SEARCH;
1944 if (mask & MAY_WRITE)
1945 av |= DIR__WRITE;
1946 if (mask & MAY_READ)
1947 av |= DIR__READ;
1948 }
1949
1950 return av;
1951}
1952
1953/* Convert a Linux file to an access vector. */
1954static inline u32 file_to_av(struct file *file)
1955{
1956 u32 av = 0;
1957
1958 if (file->f_mode & FMODE_READ)
1959 av |= FILE__READ;
1960 if (file->f_mode & FMODE_WRITE) {
1961 if (file->f_flags & O_APPEND)
1962 av |= FILE__APPEND;
1963 else
1964 av |= FILE__WRITE;
1965 }
1966 if (!av) {
1967 /*
1968 * Special file opened with flags 3 for ioctl-only use.
1969 */
1970 av = FILE__IOCTL;
1971 }
1972
1973 return av;
1974}
1975
1976/*
1977 * Convert a file to an access vector and include the correct
1978 * open permission.
1979 */
1980static inline u32 open_file_to_av(struct file *file)
1981{
1982 u32 av = file_to_av(file);
1983 struct inode *inode = file_inode(file);
1984
1985 if (selinux_policycap_openperm() &&
1986 inode->i_sb->s_magic != SOCKFS_MAGIC)
1987 av |= FILE__OPEN;
1988
1989 return av;
1990}
1991
1992/* Hook functions begin here. */
1993
1994static int selinux_binder_set_context_mgr(const struct cred *mgr)
1995{
1996 return avc_has_perm(&selinux_state,
1997 current_sid(), cred_sid(mgr), SECCLASS_BINDER,
1998 BINDER__SET_CONTEXT_MGR, NULL);
1999}
2000
2001static int selinux_binder_transaction(const struct cred *from,
2002 const struct cred *to)
2003{
2004 u32 mysid = current_sid();
2005 u32 fromsid = cred_sid(from);
2006 u32 tosid = cred_sid(to);
2007 int rc;
2008
2009 if (mysid != fromsid) {
2010 rc = avc_has_perm(&selinux_state,
2011 mysid, fromsid, SECCLASS_BINDER,
2012 BINDER__IMPERSONATE, NULL);
2013 if (rc)
2014 return rc;
2015 }
2016
2017 return avc_has_perm(&selinux_state, fromsid, tosid,
2018 SECCLASS_BINDER, BINDER__CALL, NULL);
2019}
2020
2021static int selinux_binder_transfer_binder(const struct cred *from,
2022 const struct cred *to)
2023{
2024 return avc_has_perm(&selinux_state,
2025 cred_sid(from), cred_sid(to),
2026 SECCLASS_BINDER, BINDER__TRANSFER,
2027 NULL);
2028}
2029
2030static int selinux_binder_transfer_file(const struct cred *from,
2031 const struct cred *to,
2032 struct file *file)
2033{
2034 u32 sid = cred_sid(to);
2035 struct file_security_struct *fsec = selinux_file(file);
2036 struct dentry *dentry = file->f_path.dentry;
2037 struct inode_security_struct *isec;
2038 struct common_audit_data ad;
2039 int rc;
2040
2041 ad.type = LSM_AUDIT_DATA_PATH;
2042 ad.u.path = file->f_path;
2043
2044 if (sid != fsec->sid) {
2045 rc = avc_has_perm(&selinux_state,
2046 sid, fsec->sid,
2047 SECCLASS_FD,
2048 FD__USE,
2049 &ad);
2050 if (rc)
2051 return rc;
2052 }
2053
2054#ifdef CONFIG_BPF_SYSCALL
2055 rc = bpf_fd_pass(file, sid);
2056 if (rc)
2057 return rc;
2058#endif
2059
2060 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2061 return 0;
2062
2063 isec = backing_inode_security(dentry);
2064 return avc_has_perm(&selinux_state,
2065 sid, isec->sid, isec->sclass, file_to_av(file),
2066 &ad);
2067}
2068
2069static int selinux_ptrace_access_check(struct task_struct *child,
2070 unsigned int mode)
2071{
2072 u32 sid = current_sid();
2073 u32 csid = task_sid_obj(child);
2074
2075 if (mode & PTRACE_MODE_READ)
2076 return avc_has_perm(&selinux_state,
2077 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2078
2079 return avc_has_perm(&selinux_state,
2080 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2081}
2082
2083static int selinux_ptrace_traceme(struct task_struct *parent)
2084{
2085 return avc_has_perm(&selinux_state,
2086 task_sid_obj(parent), task_sid_obj(current),
2087 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2088}
2089
2090static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2091 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2092{
2093 return avc_has_perm(&selinux_state,
2094 current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2095 PROCESS__GETCAP, NULL);
2096}
2097
2098static int selinux_capset(struct cred *new, const struct cred *old,
2099 const kernel_cap_t *effective,
2100 const kernel_cap_t *inheritable,
2101 const kernel_cap_t *permitted)
2102{
2103 return avc_has_perm(&selinux_state,
2104 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2105 PROCESS__SETCAP, NULL);
2106}
2107
2108/*
2109 * (This comment used to live with the selinux_task_setuid hook,
2110 * which was removed).
2111 *
2112 * Since setuid only affects the current process, and since the SELinux
2113 * controls are not based on the Linux identity attributes, SELinux does not
2114 * need to control this operation. However, SELinux does control the use of
2115 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2116 */
2117
2118static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2119 int cap, unsigned int opts)
2120{
2121 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2122}
2123
2124static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2125{
2126 const struct cred *cred = current_cred();
2127 int rc = 0;
2128
2129 if (!sb)
2130 return 0;
2131
2132 switch (cmds) {
2133 case Q_SYNC:
2134 case Q_QUOTAON:
2135 case Q_QUOTAOFF:
2136 case Q_SETINFO:
2137 case Q_SETQUOTA:
2138 case Q_XQUOTAOFF:
2139 case Q_XQUOTAON:
2140 case Q_XSETQLIM:
2141 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2142 break;
2143 case Q_GETFMT:
2144 case Q_GETINFO:
2145 case Q_GETQUOTA:
2146 case Q_XGETQUOTA:
2147 case Q_XGETQSTAT:
2148 case Q_XGETQSTATV:
2149 case Q_XGETNEXTQUOTA:
2150 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2151 break;
2152 default:
2153 rc = 0; /* let the kernel handle invalid cmds */
2154 break;
2155 }
2156 return rc;
2157}
2158
2159static int selinux_quota_on(struct dentry *dentry)
2160{
2161 const struct cred *cred = current_cred();
2162
2163 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2164}
2165
2166static int selinux_syslog(int type)
2167{
2168 switch (type) {
2169 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2170 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2171 return avc_has_perm(&selinux_state,
2172 current_sid(), SECINITSID_KERNEL,
2173 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2174 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2175 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2176 /* Set level of messages printed to console */
2177 case SYSLOG_ACTION_CONSOLE_LEVEL:
2178 return avc_has_perm(&selinux_state,
2179 current_sid(), SECINITSID_KERNEL,
2180 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2181 NULL);
2182 }
2183 /* All other syslog types */
2184 return avc_has_perm(&selinux_state,
2185 current_sid(), SECINITSID_KERNEL,
2186 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2187}
2188
2189/*
2190 * Check that a process has enough memory to allocate a new virtual
2191 * mapping. 0 means there is enough memory for the allocation to
2192 * succeed and -ENOMEM implies there is not.
2193 *
2194 * Do not audit the selinux permission check, as this is applied to all
2195 * processes that allocate mappings.
2196 */
2197static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2198{
2199 int rc, cap_sys_admin = 0;
2200
2201 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2202 CAP_OPT_NOAUDIT, true);
2203 if (rc == 0)
2204 cap_sys_admin = 1;
2205
2206 return cap_sys_admin;
2207}
2208
2209/* binprm security operations */
2210
2211static u32 ptrace_parent_sid(void)
2212{
2213 u32 sid = 0;
2214 struct task_struct *tracer;
2215
2216 rcu_read_lock();
2217 tracer = ptrace_parent(current);
2218 if (tracer)
2219 sid = task_sid_obj(tracer);
2220 rcu_read_unlock();
2221
2222 return sid;
2223}
2224
2225static int check_nnp_nosuid(const struct linux_binprm *bprm,
2226 const struct task_security_struct *old_tsec,
2227 const struct task_security_struct *new_tsec)
2228{
2229 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2230 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2231 int rc;
2232 u32 av;
2233
2234 if (!nnp && !nosuid)
2235 return 0; /* neither NNP nor nosuid */
2236
2237 if (new_tsec->sid == old_tsec->sid)
2238 return 0; /* No change in credentials */
2239
2240 /*
2241 * If the policy enables the nnp_nosuid_transition policy capability,
2242 * then we permit transitions under NNP or nosuid if the
2243 * policy allows the corresponding permission between
2244 * the old and new contexts.
2245 */
2246 if (selinux_policycap_nnp_nosuid_transition()) {
2247 av = 0;
2248 if (nnp)
2249 av |= PROCESS2__NNP_TRANSITION;
2250 if (nosuid)
2251 av |= PROCESS2__NOSUID_TRANSITION;
2252 rc = avc_has_perm(&selinux_state,
2253 old_tsec->sid, new_tsec->sid,
2254 SECCLASS_PROCESS2, av, NULL);
2255 if (!rc)
2256 return 0;
2257 }
2258
2259 /*
2260 * We also permit NNP or nosuid transitions to bounded SIDs,
2261 * i.e. SIDs that are guaranteed to only be allowed a subset
2262 * of the permissions of the current SID.
2263 */
2264 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2265 new_tsec->sid);
2266 if (!rc)
2267 return 0;
2268
2269 /*
2270 * On failure, preserve the errno values for NNP vs nosuid.
2271 * NNP: Operation not permitted for caller.
2272 * nosuid: Permission denied to file.
2273 */
2274 if (nnp)
2275 return -EPERM;
2276 return -EACCES;
2277}
2278
2279static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2280{
2281 const struct task_security_struct *old_tsec;
2282 struct task_security_struct *new_tsec;
2283 struct inode_security_struct *isec;
2284 struct common_audit_data ad;
2285 struct inode *inode = file_inode(bprm->file);
2286 int rc;
2287
2288 /* SELinux context only depends on initial program or script and not
2289 * the script interpreter */
2290
2291 old_tsec = selinux_cred(current_cred());
2292 new_tsec = selinux_cred(bprm->cred);
2293 isec = inode_security(inode);
2294
2295 /* Default to the current task SID. */
2296 new_tsec->sid = old_tsec->sid;
2297 new_tsec->osid = old_tsec->sid;
2298
2299 /* Reset fs, key, and sock SIDs on execve. */
2300 new_tsec->create_sid = 0;
2301 new_tsec->keycreate_sid = 0;
2302 new_tsec->sockcreate_sid = 0;
2303
2304 if (old_tsec->exec_sid) {
2305 new_tsec->sid = old_tsec->exec_sid;
2306 /* Reset exec SID on execve. */
2307 new_tsec->exec_sid = 0;
2308
2309 /* Fail on NNP or nosuid if not an allowed transition. */
2310 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2311 if (rc)
2312 return rc;
2313 } else {
2314 /* Check for a default transition on this program. */
2315 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2316 isec->sid, SECCLASS_PROCESS, NULL,
2317 &new_tsec->sid);
2318 if (rc)
2319 return rc;
2320
2321 /*
2322 * Fallback to old SID on NNP or nosuid if not an allowed
2323 * transition.
2324 */
2325 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2326 if (rc)
2327 new_tsec->sid = old_tsec->sid;
2328 }
2329
2330 ad.type = LSM_AUDIT_DATA_FILE;
2331 ad.u.file = bprm->file;
2332
2333 if (new_tsec->sid == old_tsec->sid) {
2334 rc = avc_has_perm(&selinux_state,
2335 old_tsec->sid, isec->sid,
2336 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2337 if (rc)
2338 return rc;
2339 } else {
2340 /* Check permissions for the transition. */
2341 rc = avc_has_perm(&selinux_state,
2342 old_tsec->sid, new_tsec->sid,
2343 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2344 if (rc)
2345 return rc;
2346
2347 rc = avc_has_perm(&selinux_state,
2348 new_tsec->sid, isec->sid,
2349 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2350 if (rc)
2351 return rc;
2352
2353 /* Check for shared state */
2354 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2355 rc = avc_has_perm(&selinux_state,
2356 old_tsec->sid, new_tsec->sid,
2357 SECCLASS_PROCESS, PROCESS__SHARE,
2358 NULL);
2359 if (rc)
2360 return -EPERM;
2361 }
2362
2363 /* Make sure that anyone attempting to ptrace over a task that
2364 * changes its SID has the appropriate permit */
2365 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2366 u32 ptsid = ptrace_parent_sid();
2367 if (ptsid != 0) {
2368 rc = avc_has_perm(&selinux_state,
2369 ptsid, new_tsec->sid,
2370 SECCLASS_PROCESS,
2371 PROCESS__PTRACE, NULL);
2372 if (rc)
2373 return -EPERM;
2374 }
2375 }
2376
2377 /* Clear any possibly unsafe personality bits on exec: */
2378 bprm->per_clear |= PER_CLEAR_ON_SETID;
2379
2380 /* Enable secure mode for SIDs transitions unless
2381 the noatsecure permission is granted between
2382 the two SIDs, i.e. ahp returns 0. */
2383 rc = avc_has_perm(&selinux_state,
2384 old_tsec->sid, new_tsec->sid,
2385 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2386 NULL);
2387 bprm->secureexec |= !!rc;
2388 }
2389
2390 return 0;
2391}
2392
2393static int match_file(const void *p, struct file *file, unsigned fd)
2394{
2395 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2396}
2397
2398/* Derived from fs/exec.c:flush_old_files. */
2399static inline void flush_unauthorized_files(const struct cred *cred,
2400 struct files_struct *files)
2401{
2402 struct file *file, *devnull = NULL;
2403 struct tty_struct *tty;
2404 int drop_tty = 0;
2405 unsigned n;
2406
2407 tty = get_current_tty();
2408 if (tty) {
2409 spin_lock(&tty->files_lock);
2410 if (!list_empty(&tty->tty_files)) {
2411 struct tty_file_private *file_priv;
2412
2413 /* Revalidate access to controlling tty.
2414 Use file_path_has_perm on the tty path directly
2415 rather than using file_has_perm, as this particular
2416 open file may belong to another process and we are
2417 only interested in the inode-based check here. */
2418 file_priv = list_first_entry(&tty->tty_files,
2419 struct tty_file_private, list);
2420 file = file_priv->file;
2421 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2422 drop_tty = 1;
2423 }
2424 spin_unlock(&tty->files_lock);
2425 tty_kref_put(tty);
2426 }
2427 /* Reset controlling tty. */
2428 if (drop_tty)
2429 no_tty();
2430
2431 /* Revalidate access to inherited open files. */
2432 n = iterate_fd(files, 0, match_file, cred);
2433 if (!n) /* none found? */
2434 return;
2435
2436 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2437 if (IS_ERR(devnull))
2438 devnull = NULL;
2439 /* replace all the matching ones with this */
2440 do {
2441 replace_fd(n - 1, devnull, 0);
2442 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2443 if (devnull)
2444 fput(devnull);
2445}
2446
2447/*
2448 * Prepare a process for imminent new credential changes due to exec
2449 */
2450static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2451{
2452 struct task_security_struct *new_tsec;
2453 struct rlimit *rlim, *initrlim;
2454 int rc, i;
2455
2456 new_tsec = selinux_cred(bprm->cred);
2457 if (new_tsec->sid == new_tsec->osid)
2458 return;
2459
2460 /* Close files for which the new task SID is not authorized. */
2461 flush_unauthorized_files(bprm->cred, current->files);
2462
2463 /* Always clear parent death signal on SID transitions. */
2464 current->pdeath_signal = 0;
2465
2466 /* Check whether the new SID can inherit resource limits from the old
2467 * SID. If not, reset all soft limits to the lower of the current
2468 * task's hard limit and the init task's soft limit.
2469 *
2470 * Note that the setting of hard limits (even to lower them) can be
2471 * controlled by the setrlimit check. The inclusion of the init task's
2472 * soft limit into the computation is to avoid resetting soft limits
2473 * higher than the default soft limit for cases where the default is
2474 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2475 */
2476 rc = avc_has_perm(&selinux_state,
2477 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2478 PROCESS__RLIMITINH, NULL);
2479 if (rc) {
2480 /* protect against do_prlimit() */
2481 task_lock(current);
2482 for (i = 0; i < RLIM_NLIMITS; i++) {
2483 rlim = current->signal->rlim + i;
2484 initrlim = init_task.signal->rlim + i;
2485 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2486 }
2487 task_unlock(current);
2488 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2489 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2490 }
2491}
2492
2493/*
2494 * Clean up the process immediately after the installation of new credentials
2495 * due to exec
2496 */
2497static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2498{
2499 const struct task_security_struct *tsec = selinux_cred(current_cred());
2500 u32 osid, sid;
2501 int rc;
2502
2503 osid = tsec->osid;
2504 sid = tsec->sid;
2505
2506 if (sid == osid)
2507 return;
2508
2509 /* Check whether the new SID can inherit signal state from the old SID.
2510 * If not, clear itimers to avoid subsequent signal generation and
2511 * flush and unblock signals.
2512 *
2513 * This must occur _after_ the task SID has been updated so that any
2514 * kill done after the flush will be checked against the new SID.
2515 */
2516 rc = avc_has_perm(&selinux_state,
2517 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2518 if (rc) {
2519 clear_itimer();
2520
2521 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2522 if (!fatal_signal_pending(current)) {
2523 flush_sigqueue(¤t->pending);
2524 flush_sigqueue(¤t->signal->shared_pending);
2525 flush_signal_handlers(current, 1);
2526 sigemptyset(¤t->blocked);
2527 recalc_sigpending();
2528 }
2529 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2530 }
2531
2532 /* Wake up the parent if it is waiting so that it can recheck
2533 * wait permission to the new task SID. */
2534 read_lock(&tasklist_lock);
2535 __wake_up_parent(current, unrcu_pointer(current->real_parent));
2536 read_unlock(&tasklist_lock);
2537}
2538
2539/* superblock security operations */
2540
2541static int selinux_sb_alloc_security(struct super_block *sb)
2542{
2543 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2544
2545 mutex_init(&sbsec->lock);
2546 INIT_LIST_HEAD(&sbsec->isec_head);
2547 spin_lock_init(&sbsec->isec_lock);
2548 sbsec->sid = SECINITSID_UNLABELED;
2549 sbsec->def_sid = SECINITSID_FILE;
2550 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2551
2552 return 0;
2553}
2554
2555static inline int opt_len(const char *s)
2556{
2557 bool open_quote = false;
2558 int len;
2559 char c;
2560
2561 for (len = 0; (c = s[len]) != '\0'; len++) {
2562 if (c == '"')
2563 open_quote = !open_quote;
2564 if (c == ',' && !open_quote)
2565 break;
2566 }
2567 return len;
2568}
2569
2570static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2571{
2572 char *from = options;
2573 char *to = options;
2574 bool first = true;
2575 int rc;
2576
2577 while (1) {
2578 int len = opt_len(from);
2579 int token;
2580 char *arg = NULL;
2581
2582 token = match_opt_prefix(from, len, &arg);
2583
2584 if (token != Opt_error) {
2585 char *p, *q;
2586
2587 /* strip quotes */
2588 if (arg) {
2589 for (p = q = arg; p < from + len; p++) {
2590 char c = *p;
2591 if (c != '"')
2592 *q++ = c;
2593 }
2594 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2595 if (!arg) {
2596 rc = -ENOMEM;
2597 goto free_opt;
2598 }
2599 }
2600 rc = selinux_add_opt(token, arg, mnt_opts);
2601 kfree(arg);
2602 arg = NULL;
2603 if (unlikely(rc)) {
2604 goto free_opt;
2605 }
2606 } else {
2607 if (!first) { // copy with preceding comma
2608 from--;
2609 len++;
2610 }
2611 if (to != from)
2612 memmove(to, from, len);
2613 to += len;
2614 first = false;
2615 }
2616 if (!from[len])
2617 break;
2618 from += len + 1;
2619 }
2620 *to = '\0';
2621 return 0;
2622
2623free_opt:
2624 if (*mnt_opts) {
2625 selinux_free_mnt_opts(*mnt_opts);
2626 *mnt_opts = NULL;
2627 }
2628 return rc;
2629}
2630
2631static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2632{
2633 struct selinux_mnt_opts *opts = mnt_opts;
2634 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2635
2636 /*
2637 * Superblock not initialized (i.e. no options) - reject if any
2638 * options specified, otherwise accept.
2639 */
2640 if (!(sbsec->flags & SE_SBINITIALIZED))
2641 return opts ? 1 : 0;
2642
2643 /*
2644 * Superblock initialized and no options specified - reject if
2645 * superblock has any options set, otherwise accept.
2646 */
2647 if (!opts)
2648 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2649
2650 if (opts->fscontext_sid) {
2651 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2652 opts->fscontext_sid))
2653 return 1;
2654 }
2655 if (opts->context_sid) {
2656 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2657 opts->context_sid))
2658 return 1;
2659 }
2660 if (opts->rootcontext_sid) {
2661 struct inode_security_struct *root_isec;
2662
2663 root_isec = backing_inode_security(sb->s_root);
2664 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2665 opts->rootcontext_sid))
2666 return 1;
2667 }
2668 if (opts->defcontext_sid) {
2669 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2670 opts->defcontext_sid))
2671 return 1;
2672 }
2673 return 0;
2674}
2675
2676static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2677{
2678 struct selinux_mnt_opts *opts = mnt_opts;
2679 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2680
2681 if (!(sbsec->flags & SE_SBINITIALIZED))
2682 return 0;
2683
2684 if (!opts)
2685 return 0;
2686
2687 if (opts->fscontext_sid) {
2688 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2689 opts->fscontext_sid))
2690 goto out_bad_option;
2691 }
2692 if (opts->context_sid) {
2693 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2694 opts->context_sid))
2695 goto out_bad_option;
2696 }
2697 if (opts->rootcontext_sid) {
2698 struct inode_security_struct *root_isec;
2699 root_isec = backing_inode_security(sb->s_root);
2700 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2701 opts->rootcontext_sid))
2702 goto out_bad_option;
2703 }
2704 if (opts->defcontext_sid) {
2705 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2706 opts->defcontext_sid))
2707 goto out_bad_option;
2708 }
2709 return 0;
2710
2711out_bad_option:
2712 pr_warn("SELinux: unable to change security options "
2713 "during remount (dev %s, type=%s)\n", sb->s_id,
2714 sb->s_type->name);
2715 return -EINVAL;
2716}
2717
2718static int selinux_sb_kern_mount(struct super_block *sb)
2719{
2720 const struct cred *cred = current_cred();
2721 struct common_audit_data ad;
2722
2723 ad.type = LSM_AUDIT_DATA_DENTRY;
2724 ad.u.dentry = sb->s_root;
2725 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2726}
2727
2728static int selinux_sb_statfs(struct dentry *dentry)
2729{
2730 const struct cred *cred = current_cred();
2731 struct common_audit_data ad;
2732
2733 ad.type = LSM_AUDIT_DATA_DENTRY;
2734 ad.u.dentry = dentry->d_sb->s_root;
2735 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2736}
2737
2738static int selinux_mount(const char *dev_name,
2739 const struct path *path,
2740 const char *type,
2741 unsigned long flags,
2742 void *data)
2743{
2744 const struct cred *cred = current_cred();
2745
2746 if (flags & MS_REMOUNT)
2747 return superblock_has_perm(cred, path->dentry->d_sb,
2748 FILESYSTEM__REMOUNT, NULL);
2749 else
2750 return path_has_perm(cred, path, FILE__MOUNTON);
2751}
2752
2753static int selinux_move_mount(const struct path *from_path,
2754 const struct path *to_path)
2755{
2756 const struct cred *cred = current_cred();
2757
2758 return path_has_perm(cred, to_path, FILE__MOUNTON);
2759}
2760
2761static int selinux_umount(struct vfsmount *mnt, int flags)
2762{
2763 const struct cred *cred = current_cred();
2764
2765 return superblock_has_perm(cred, mnt->mnt_sb,
2766 FILESYSTEM__UNMOUNT, NULL);
2767}
2768
2769static int selinux_fs_context_dup(struct fs_context *fc,
2770 struct fs_context *src_fc)
2771{
2772 const struct selinux_mnt_opts *src = src_fc->security;
2773
2774 if (!src)
2775 return 0;
2776
2777 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2778 return fc->security ? 0 : -ENOMEM;
2779}
2780
2781static const struct fs_parameter_spec selinux_fs_parameters[] = {
2782 fsparam_string(CONTEXT_STR, Opt_context),
2783 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2784 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2785 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2786 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2787 {}
2788};
2789
2790static int selinux_fs_context_parse_param(struct fs_context *fc,
2791 struct fs_parameter *param)
2792{
2793 struct fs_parse_result result;
2794 int opt;
2795
2796 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2797 if (opt < 0)
2798 return opt;
2799
2800 return selinux_add_opt(opt, param->string, &fc->security);
2801}
2802
2803/* inode security operations */
2804
2805static int selinux_inode_alloc_security(struct inode *inode)
2806{
2807 struct inode_security_struct *isec = selinux_inode(inode);
2808 u32 sid = current_sid();
2809
2810 spin_lock_init(&isec->lock);
2811 INIT_LIST_HEAD(&isec->list);
2812 isec->inode = inode;
2813 isec->sid = SECINITSID_UNLABELED;
2814 isec->sclass = SECCLASS_FILE;
2815 isec->task_sid = sid;
2816 isec->initialized = LABEL_INVALID;
2817
2818 return 0;
2819}
2820
2821static void selinux_inode_free_security(struct inode *inode)
2822{
2823 inode_free_security(inode);
2824}
2825
2826static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2827 const struct qstr *name,
2828 const char **xattr_name, void **ctx,
2829 u32 *ctxlen)
2830{
2831 u32 newsid;
2832 int rc;
2833
2834 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2835 d_inode(dentry->d_parent), name,
2836 inode_mode_to_security_class(mode),
2837 &newsid);
2838 if (rc)
2839 return rc;
2840
2841 if (xattr_name)
2842 *xattr_name = XATTR_NAME_SELINUX;
2843
2844 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2845 ctxlen);
2846}
2847
2848static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2849 struct qstr *name,
2850 const struct cred *old,
2851 struct cred *new)
2852{
2853 u32 newsid;
2854 int rc;
2855 struct task_security_struct *tsec;
2856
2857 rc = selinux_determine_inode_label(selinux_cred(old),
2858 d_inode(dentry->d_parent), name,
2859 inode_mode_to_security_class(mode),
2860 &newsid);
2861 if (rc)
2862 return rc;
2863
2864 tsec = selinux_cred(new);
2865 tsec->create_sid = newsid;
2866 return 0;
2867}
2868
2869static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2870 const struct qstr *qstr,
2871 const char **name,
2872 void **value, size_t *len)
2873{
2874 const struct task_security_struct *tsec = selinux_cred(current_cred());
2875 struct superblock_security_struct *sbsec;
2876 u32 newsid, clen;
2877 int rc;
2878 char *context;
2879
2880 sbsec = selinux_superblock(dir->i_sb);
2881
2882 newsid = tsec->create_sid;
2883
2884 rc = selinux_determine_inode_label(tsec, dir, qstr,
2885 inode_mode_to_security_class(inode->i_mode),
2886 &newsid);
2887 if (rc)
2888 return rc;
2889
2890 /* Possibly defer initialization to selinux_complete_init. */
2891 if (sbsec->flags & SE_SBINITIALIZED) {
2892 struct inode_security_struct *isec = selinux_inode(inode);
2893 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2894 isec->sid = newsid;
2895 isec->initialized = LABEL_INITIALIZED;
2896 }
2897
2898 if (!selinux_initialized(&selinux_state) ||
2899 !(sbsec->flags & SBLABEL_MNT))
2900 return -EOPNOTSUPP;
2901
2902 if (name)
2903 *name = XATTR_SELINUX_SUFFIX;
2904
2905 if (value && len) {
2906 rc = security_sid_to_context_force(&selinux_state, newsid,
2907 &context, &clen);
2908 if (rc)
2909 return rc;
2910 *value = context;
2911 *len = clen;
2912 }
2913
2914 return 0;
2915}
2916
2917static int selinux_inode_init_security_anon(struct inode *inode,
2918 const struct qstr *name,
2919 const struct inode *context_inode)
2920{
2921 const struct task_security_struct *tsec = selinux_cred(current_cred());
2922 struct common_audit_data ad;
2923 struct inode_security_struct *isec;
2924 int rc;
2925
2926 if (unlikely(!selinux_initialized(&selinux_state)))
2927 return 0;
2928
2929 isec = selinux_inode(inode);
2930
2931 /*
2932 * We only get here once per ephemeral inode. The inode has
2933 * been initialized via inode_alloc_security but is otherwise
2934 * untouched.
2935 */
2936
2937 if (context_inode) {
2938 struct inode_security_struct *context_isec =
2939 selinux_inode(context_inode);
2940 if (context_isec->initialized != LABEL_INITIALIZED) {
2941 pr_err("SELinux: context_inode is not initialized");
2942 return -EACCES;
2943 }
2944
2945 isec->sclass = context_isec->sclass;
2946 isec->sid = context_isec->sid;
2947 } else {
2948 isec->sclass = SECCLASS_ANON_INODE;
2949 rc = security_transition_sid(
2950 &selinux_state, tsec->sid, tsec->sid,
2951 isec->sclass, name, &isec->sid);
2952 if (rc)
2953 return rc;
2954 }
2955
2956 isec->initialized = LABEL_INITIALIZED;
2957 /*
2958 * Now that we've initialized security, check whether we're
2959 * allowed to actually create this type of anonymous inode.
2960 */
2961
2962 ad.type = LSM_AUDIT_DATA_ANONINODE;
2963 ad.u.anonclass = name ? (const char *)name->name : "?";
2964
2965 return avc_has_perm(&selinux_state,
2966 tsec->sid,
2967 isec->sid,
2968 isec->sclass,
2969 FILE__CREATE,
2970 &ad);
2971}
2972
2973static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2974{
2975 return may_create(dir, dentry, SECCLASS_FILE);
2976}
2977
2978static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2979{
2980 return may_link(dir, old_dentry, MAY_LINK);
2981}
2982
2983static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2984{
2985 return may_link(dir, dentry, MAY_UNLINK);
2986}
2987
2988static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2989{
2990 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2991}
2992
2993static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2994{
2995 return may_create(dir, dentry, SECCLASS_DIR);
2996}
2997
2998static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2999{
3000 return may_link(dir, dentry, MAY_RMDIR);
3001}
3002
3003static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3004{
3005 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3006}
3007
3008static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3009 struct inode *new_inode, struct dentry *new_dentry)
3010{
3011 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3012}
3013
3014static int selinux_inode_readlink(struct dentry *dentry)
3015{
3016 const struct cred *cred = current_cred();
3017
3018 return dentry_has_perm(cred, dentry, FILE__READ);
3019}
3020
3021static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3022 bool rcu)
3023{
3024 const struct cred *cred = current_cred();
3025 struct common_audit_data ad;
3026 struct inode_security_struct *isec;
3027 u32 sid;
3028
3029 validate_creds(cred);
3030
3031 ad.type = LSM_AUDIT_DATA_DENTRY;
3032 ad.u.dentry = dentry;
3033 sid = cred_sid(cred);
3034 isec = inode_security_rcu(inode, rcu);
3035 if (IS_ERR(isec))
3036 return PTR_ERR(isec);
3037
3038 return avc_has_perm(&selinux_state,
3039 sid, isec->sid, isec->sclass, FILE__READ, &ad);
3040}
3041
3042static noinline int audit_inode_permission(struct inode *inode,
3043 u32 perms, u32 audited, u32 denied,
3044 int result)
3045{
3046 struct common_audit_data ad;
3047 struct inode_security_struct *isec = selinux_inode(inode);
3048
3049 ad.type = LSM_AUDIT_DATA_INODE;
3050 ad.u.inode = inode;
3051
3052 return slow_avc_audit(&selinux_state,
3053 current_sid(), isec->sid, isec->sclass, perms,
3054 audited, denied, result, &ad);
3055}
3056
3057static int selinux_inode_permission(struct inode *inode, int mask)
3058{
3059 const struct cred *cred = current_cred();
3060 u32 perms;
3061 bool from_access;
3062 bool no_block = mask & MAY_NOT_BLOCK;
3063 struct inode_security_struct *isec;
3064 u32 sid;
3065 struct av_decision avd;
3066 int rc, rc2;
3067 u32 audited, denied;
3068
3069 from_access = mask & MAY_ACCESS;
3070 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3071
3072 /* No permission to check. Existence test. */
3073 if (!mask)
3074 return 0;
3075
3076 validate_creds(cred);
3077
3078 if (unlikely(IS_PRIVATE(inode)))
3079 return 0;
3080
3081 perms = file_mask_to_av(inode->i_mode, mask);
3082
3083 sid = cred_sid(cred);
3084 isec = inode_security_rcu(inode, no_block);
3085 if (IS_ERR(isec))
3086 return PTR_ERR(isec);
3087
3088 rc = avc_has_perm_noaudit(&selinux_state,
3089 sid, isec->sid, isec->sclass, perms, 0,
3090 &avd);
3091 audited = avc_audit_required(perms, &avd, rc,
3092 from_access ? FILE__AUDIT_ACCESS : 0,
3093 &denied);
3094 if (likely(!audited))
3095 return rc;
3096
3097 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3098 if (rc2)
3099 return rc2;
3100 return rc;
3101}
3102
3103static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3104{
3105 const struct cred *cred = current_cred();
3106 struct inode *inode = d_backing_inode(dentry);
3107 unsigned int ia_valid = iattr->ia_valid;
3108 __u32 av = FILE__WRITE;
3109
3110 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3111 if (ia_valid & ATTR_FORCE) {
3112 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3113 ATTR_FORCE);
3114 if (!ia_valid)
3115 return 0;
3116 }
3117
3118 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3119 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3120 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3121
3122 if (selinux_policycap_openperm() &&
3123 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3124 (ia_valid & ATTR_SIZE) &&
3125 !(ia_valid & ATTR_FILE))
3126 av |= FILE__OPEN;
3127
3128 return dentry_has_perm(cred, dentry, av);
3129}
3130
3131static int selinux_inode_getattr(const struct path *path)
3132{
3133 return path_has_perm(current_cred(), path, FILE__GETATTR);
3134}
3135
3136static bool has_cap_mac_admin(bool audit)
3137{
3138 const struct cred *cred = current_cred();
3139 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3140
3141 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3142 return false;
3143 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3144 return false;
3145 return true;
3146}
3147
3148static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3149 struct dentry *dentry, const char *name,
3150 const void *value, size_t size, int flags)
3151{
3152 struct inode *inode = d_backing_inode(dentry);
3153 struct inode_security_struct *isec;
3154 struct superblock_security_struct *sbsec;
3155 struct common_audit_data ad;
3156 u32 newsid, sid = current_sid();
3157 int rc = 0;
3158
3159 if (strcmp(name, XATTR_NAME_SELINUX)) {
3160 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3161 if (rc)
3162 return rc;
3163
3164 /* Not an attribute we recognize, so just check the
3165 ordinary setattr permission. */
3166 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3167 }
3168
3169 if (!selinux_initialized(&selinux_state))
3170 return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3171
3172 sbsec = selinux_superblock(inode->i_sb);
3173 if (!(sbsec->flags & SBLABEL_MNT))
3174 return -EOPNOTSUPP;
3175
3176 if (!inode_owner_or_capable(mnt_userns, inode))
3177 return -EPERM;
3178
3179 ad.type = LSM_AUDIT_DATA_DENTRY;
3180 ad.u.dentry = dentry;
3181
3182 isec = backing_inode_security(dentry);
3183 rc = avc_has_perm(&selinux_state,
3184 sid, isec->sid, isec->sclass,
3185 FILE__RELABELFROM, &ad);
3186 if (rc)
3187 return rc;
3188
3189 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3190 GFP_KERNEL);
3191 if (rc == -EINVAL) {
3192 if (!has_cap_mac_admin(true)) {
3193 struct audit_buffer *ab;
3194 size_t audit_size;
3195
3196 /* We strip a nul only if it is at the end, otherwise the
3197 * context contains a nul and we should audit that */
3198 if (value) {
3199 const char *str = value;
3200
3201 if (str[size - 1] == '\0')
3202 audit_size = size - 1;
3203 else
3204 audit_size = size;
3205 } else {
3206 audit_size = 0;
3207 }
3208 ab = audit_log_start(audit_context(),
3209 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3210 if (!ab)
3211 return rc;
3212 audit_log_format(ab, "op=setxattr invalid_context=");
3213 audit_log_n_untrustedstring(ab, value, audit_size);
3214 audit_log_end(ab);
3215
3216 return rc;
3217 }
3218 rc = security_context_to_sid_force(&selinux_state, value,
3219 size, &newsid);
3220 }
3221 if (rc)
3222 return rc;
3223
3224 rc = avc_has_perm(&selinux_state,
3225 sid, newsid, isec->sclass,
3226 FILE__RELABELTO, &ad);
3227 if (rc)
3228 return rc;
3229
3230 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3231 sid, isec->sclass);
3232 if (rc)
3233 return rc;
3234
3235 return avc_has_perm(&selinux_state,
3236 newsid,
3237 sbsec->sid,
3238 SECCLASS_FILESYSTEM,
3239 FILESYSTEM__ASSOCIATE,
3240 &ad);
3241}
3242
3243static int selinux_inode_set_acl(struct user_namespace *mnt_userns,
3244 struct dentry *dentry, const char *acl_name,
3245 struct posix_acl *kacl)
3246{
3247 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3248}
3249
3250static int selinux_inode_get_acl(struct user_namespace *mnt_userns,
3251 struct dentry *dentry, const char *acl_name)
3252{
3253 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_remove_acl(struct user_namespace *mnt_userns,
3257 struct dentry *dentry, const char *acl_name)
3258{
3259 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3260}
3261
3262static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3263 const void *value, size_t size,
3264 int flags)
3265{
3266 struct inode *inode = d_backing_inode(dentry);
3267 struct inode_security_struct *isec;
3268 u32 newsid;
3269 int rc;
3270
3271 if (strcmp(name, XATTR_NAME_SELINUX)) {
3272 /* Not an attribute we recognize, so nothing to do. */
3273 return;
3274 }
3275
3276 if (!selinux_initialized(&selinux_state)) {
3277 /* If we haven't even been initialized, then we can't validate
3278 * against a policy, so leave the label as invalid. It may
3279 * resolve to a valid label on the next revalidation try if
3280 * we've since initialized.
3281 */
3282 return;
3283 }
3284
3285 rc = security_context_to_sid_force(&selinux_state, value, size,
3286 &newsid);
3287 if (rc) {
3288 pr_err("SELinux: unable to map context to SID"
3289 "for (%s, %lu), rc=%d\n",
3290 inode->i_sb->s_id, inode->i_ino, -rc);
3291 return;
3292 }
3293
3294 isec = backing_inode_security(dentry);
3295 spin_lock(&isec->lock);
3296 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3297 isec->sid = newsid;
3298 isec->initialized = LABEL_INITIALIZED;
3299 spin_unlock(&isec->lock);
3300}
3301
3302static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3303{
3304 const struct cred *cred = current_cred();
3305
3306 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3307}
3308
3309static int selinux_inode_listxattr(struct dentry *dentry)
3310{
3311 const struct cred *cred = current_cred();
3312
3313 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3314}
3315
3316static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3317 struct dentry *dentry, const char *name)
3318{
3319 if (strcmp(name, XATTR_NAME_SELINUX)) {
3320 int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3321 if (rc)
3322 return rc;
3323
3324 /* Not an attribute we recognize, so just check the
3325 ordinary setattr permission. */
3326 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3327 }
3328
3329 if (!selinux_initialized(&selinux_state))
3330 return 0;
3331
3332 /* No one is allowed to remove a SELinux security label.
3333 You can change the label, but all data must be labeled. */
3334 return -EACCES;
3335}
3336
3337static int selinux_path_notify(const struct path *path, u64 mask,
3338 unsigned int obj_type)
3339{
3340 int ret;
3341 u32 perm;
3342
3343 struct common_audit_data ad;
3344
3345 ad.type = LSM_AUDIT_DATA_PATH;
3346 ad.u.path = *path;
3347
3348 /*
3349 * Set permission needed based on the type of mark being set.
3350 * Performs an additional check for sb watches.
3351 */
3352 switch (obj_type) {
3353 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3354 perm = FILE__WATCH_MOUNT;
3355 break;
3356 case FSNOTIFY_OBJ_TYPE_SB:
3357 perm = FILE__WATCH_SB;
3358 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3359 FILESYSTEM__WATCH, &ad);
3360 if (ret)
3361 return ret;
3362 break;
3363 case FSNOTIFY_OBJ_TYPE_INODE:
3364 perm = FILE__WATCH;
3365 break;
3366 default:
3367 return -EINVAL;
3368 }
3369
3370 /* blocking watches require the file:watch_with_perm permission */
3371 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3372 perm |= FILE__WATCH_WITH_PERM;
3373
3374 /* watches on read-like events need the file:watch_reads permission */
3375 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3376 perm |= FILE__WATCH_READS;
3377
3378 return path_has_perm(current_cred(), path, perm);
3379}
3380
3381/*
3382 * Copy the inode security context value to the user.
3383 *
3384 * Permission check is handled by selinux_inode_getxattr hook.
3385 */
3386static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3387 struct inode *inode, const char *name,
3388 void **buffer, bool alloc)
3389{
3390 u32 size;
3391 int error;
3392 char *context = NULL;
3393 struct inode_security_struct *isec;
3394
3395 /*
3396 * If we're not initialized yet, then we can't validate contexts, so
3397 * just let vfs_getxattr fall back to using the on-disk xattr.
3398 */
3399 if (!selinux_initialized(&selinux_state) ||
3400 strcmp(name, XATTR_SELINUX_SUFFIX))
3401 return -EOPNOTSUPP;
3402
3403 /*
3404 * If the caller has CAP_MAC_ADMIN, then get the raw context
3405 * value even if it is not defined by current policy; otherwise,
3406 * use the in-core value under current policy.
3407 * Use the non-auditing forms of the permission checks since
3408 * getxattr may be called by unprivileged processes commonly
3409 * and lack of permission just means that we fall back to the
3410 * in-core context value, not a denial.
3411 */
3412 isec = inode_security(inode);
3413 if (has_cap_mac_admin(false))
3414 error = security_sid_to_context_force(&selinux_state,
3415 isec->sid, &context,
3416 &size);
3417 else
3418 error = security_sid_to_context(&selinux_state, isec->sid,
3419 &context, &size);
3420 if (error)
3421 return error;
3422 error = size;
3423 if (alloc) {
3424 *buffer = context;
3425 goto out_nofree;
3426 }
3427 kfree(context);
3428out_nofree:
3429 return error;
3430}
3431
3432static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3433 const void *value, size_t size, int flags)
3434{
3435 struct inode_security_struct *isec = inode_security_novalidate(inode);
3436 struct superblock_security_struct *sbsec;
3437 u32 newsid;
3438 int rc;
3439
3440 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3441 return -EOPNOTSUPP;
3442
3443 sbsec = selinux_superblock(inode->i_sb);
3444 if (!(sbsec->flags & SBLABEL_MNT))
3445 return -EOPNOTSUPP;
3446
3447 if (!value || !size)
3448 return -EACCES;
3449
3450 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3451 GFP_KERNEL);
3452 if (rc)
3453 return rc;
3454
3455 spin_lock(&isec->lock);
3456 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3457 isec->sid = newsid;
3458 isec->initialized = LABEL_INITIALIZED;
3459 spin_unlock(&isec->lock);
3460 return 0;
3461}
3462
3463static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3464{
3465 const int len = sizeof(XATTR_NAME_SELINUX);
3466
3467 if (!selinux_initialized(&selinux_state))
3468 return 0;
3469
3470 if (buffer && len <= buffer_size)
3471 memcpy(buffer, XATTR_NAME_SELINUX, len);
3472 return len;
3473}
3474
3475static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3476{
3477 struct inode_security_struct *isec = inode_security_novalidate(inode);
3478 *secid = isec->sid;
3479}
3480
3481static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3482{
3483 u32 sid;
3484 struct task_security_struct *tsec;
3485 struct cred *new_creds = *new;
3486
3487 if (new_creds == NULL) {
3488 new_creds = prepare_creds();
3489 if (!new_creds)
3490 return -ENOMEM;
3491 }
3492
3493 tsec = selinux_cred(new_creds);
3494 /* Get label from overlay inode and set it in create_sid */
3495 selinux_inode_getsecid(d_inode(src), &sid);
3496 tsec->create_sid = sid;
3497 *new = new_creds;
3498 return 0;
3499}
3500
3501static int selinux_inode_copy_up_xattr(const char *name)
3502{
3503 /* The copy_up hook above sets the initial context on an inode, but we
3504 * don't then want to overwrite it by blindly copying all the lower
3505 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3506 */
3507 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3508 return 1; /* Discard */
3509 /*
3510 * Any other attribute apart from SELINUX is not claimed, supported
3511 * by selinux.
3512 */
3513 return -EOPNOTSUPP;
3514}
3515
3516/* kernfs node operations */
3517
3518static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3519 struct kernfs_node *kn)
3520{
3521 const struct task_security_struct *tsec = selinux_cred(current_cred());
3522 u32 parent_sid, newsid, clen;
3523 int rc;
3524 char *context;
3525
3526 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3527 if (rc == -ENODATA)
3528 return 0;
3529 else if (rc < 0)
3530 return rc;
3531
3532 clen = (u32)rc;
3533 context = kmalloc(clen, GFP_KERNEL);
3534 if (!context)
3535 return -ENOMEM;
3536
3537 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3538 if (rc < 0) {
3539 kfree(context);
3540 return rc;
3541 }
3542
3543 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3544 GFP_KERNEL);
3545 kfree(context);
3546 if (rc)
3547 return rc;
3548
3549 if (tsec->create_sid) {
3550 newsid = tsec->create_sid;
3551 } else {
3552 u16 secclass = inode_mode_to_security_class(kn->mode);
3553 struct qstr q;
3554
3555 q.name = kn->name;
3556 q.hash_len = hashlen_string(kn_dir, kn->name);
3557
3558 rc = security_transition_sid(&selinux_state, tsec->sid,
3559 parent_sid, secclass, &q,
3560 &newsid);
3561 if (rc)
3562 return rc;
3563 }
3564
3565 rc = security_sid_to_context_force(&selinux_state, newsid,
3566 &context, &clen);
3567 if (rc)
3568 return rc;
3569
3570 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3571 XATTR_CREATE);
3572 kfree(context);
3573 return rc;
3574}
3575
3576
3577/* file security operations */
3578
3579static int selinux_revalidate_file_permission(struct file *file, int mask)
3580{
3581 const struct cred *cred = current_cred();
3582 struct inode *inode = file_inode(file);
3583
3584 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3585 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3586 mask |= MAY_APPEND;
3587
3588 return file_has_perm(cred, file,
3589 file_mask_to_av(inode->i_mode, mask));
3590}
3591
3592static int selinux_file_permission(struct file *file, int mask)
3593{
3594 struct inode *inode = file_inode(file);
3595 struct file_security_struct *fsec = selinux_file(file);
3596 struct inode_security_struct *isec;
3597 u32 sid = current_sid();
3598
3599 if (!mask)
3600 /* No permission to check. Existence test. */
3601 return 0;
3602
3603 isec = inode_security(inode);
3604 if (sid == fsec->sid && fsec->isid == isec->sid &&
3605 fsec->pseqno == avc_policy_seqno(&selinux_state))
3606 /* No change since file_open check. */
3607 return 0;
3608
3609 return selinux_revalidate_file_permission(file, mask);
3610}
3611
3612static int selinux_file_alloc_security(struct file *file)
3613{
3614 struct file_security_struct *fsec = selinux_file(file);
3615 u32 sid = current_sid();
3616
3617 fsec->sid = sid;
3618 fsec->fown_sid = sid;
3619
3620 return 0;
3621}
3622
3623/*
3624 * Check whether a task has the ioctl permission and cmd
3625 * operation to an inode.
3626 */
3627static int ioctl_has_perm(const struct cred *cred, struct file *file,
3628 u32 requested, u16 cmd)
3629{
3630 struct common_audit_data ad;
3631 struct file_security_struct *fsec = selinux_file(file);
3632 struct inode *inode = file_inode(file);
3633 struct inode_security_struct *isec;
3634 struct lsm_ioctlop_audit ioctl;
3635 u32 ssid = cred_sid(cred);
3636 int rc;
3637 u8 driver = cmd >> 8;
3638 u8 xperm = cmd & 0xff;
3639
3640 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3641 ad.u.op = &ioctl;
3642 ad.u.op->cmd = cmd;
3643 ad.u.op->path = file->f_path;
3644
3645 if (ssid != fsec->sid) {
3646 rc = avc_has_perm(&selinux_state,
3647 ssid, fsec->sid,
3648 SECCLASS_FD,
3649 FD__USE,
3650 &ad);
3651 if (rc)
3652 goto out;
3653 }
3654
3655 if (unlikely(IS_PRIVATE(inode)))
3656 return 0;
3657
3658 isec = inode_security(inode);
3659 rc = avc_has_extended_perms(&selinux_state,
3660 ssid, isec->sid, isec->sclass,
3661 requested, driver, xperm, &ad);
3662out:
3663 return rc;
3664}
3665
3666static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3667 unsigned long arg)
3668{
3669 const struct cred *cred = current_cred();
3670 int error = 0;
3671
3672 switch (cmd) {
3673 case FIONREAD:
3674 case FIBMAP:
3675 case FIGETBSZ:
3676 case FS_IOC_GETFLAGS:
3677 case FS_IOC_GETVERSION:
3678 error = file_has_perm(cred, file, FILE__GETATTR);
3679 break;
3680
3681 case FS_IOC_SETFLAGS:
3682 case FS_IOC_SETVERSION:
3683 error = file_has_perm(cred, file, FILE__SETATTR);
3684 break;
3685
3686 /* sys_ioctl() checks */
3687 case FIONBIO:
3688 case FIOASYNC:
3689 error = file_has_perm(cred, file, 0);
3690 break;
3691
3692 case KDSKBENT:
3693 case KDSKBSENT:
3694 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3695 CAP_OPT_NONE, true);
3696 break;
3697
3698 case FIOCLEX:
3699 case FIONCLEX:
3700 if (!selinux_policycap_ioctl_skip_cloexec())
3701 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3702 break;
3703
3704 /* default case assumes that the command will go
3705 * to the file's ioctl() function.
3706 */
3707 default:
3708 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3709 }
3710 return error;
3711}
3712
3713static int default_noexec __ro_after_init;
3714
3715static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3716{
3717 const struct cred *cred = current_cred();
3718 u32 sid = cred_sid(cred);
3719 int rc = 0;
3720
3721 if (default_noexec &&
3722 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3723 (!shared && (prot & PROT_WRITE)))) {
3724 /*
3725 * We are making executable an anonymous mapping or a
3726 * private file mapping that will also be writable.
3727 * This has an additional check.
3728 */
3729 rc = avc_has_perm(&selinux_state,
3730 sid, sid, SECCLASS_PROCESS,
3731 PROCESS__EXECMEM, NULL);
3732 if (rc)
3733 goto error;
3734 }
3735
3736 if (file) {
3737 /* read access is always possible with a mapping */
3738 u32 av = FILE__READ;
3739
3740 /* write access only matters if the mapping is shared */
3741 if (shared && (prot & PROT_WRITE))
3742 av |= FILE__WRITE;
3743
3744 if (prot & PROT_EXEC)
3745 av |= FILE__EXECUTE;
3746
3747 return file_has_perm(cred, file, av);
3748 }
3749
3750error:
3751 return rc;
3752}
3753
3754static int selinux_mmap_addr(unsigned long addr)
3755{
3756 int rc = 0;
3757
3758 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3759 u32 sid = current_sid();
3760 rc = avc_has_perm(&selinux_state,
3761 sid, sid, SECCLASS_MEMPROTECT,
3762 MEMPROTECT__MMAP_ZERO, NULL);
3763 }
3764
3765 return rc;
3766}
3767
3768static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3769 unsigned long prot, unsigned long flags)
3770{
3771 struct common_audit_data ad;
3772 int rc;
3773
3774 if (file) {
3775 ad.type = LSM_AUDIT_DATA_FILE;
3776 ad.u.file = file;
3777 rc = inode_has_perm(current_cred(), file_inode(file),
3778 FILE__MAP, &ad);
3779 if (rc)
3780 return rc;
3781 }
3782
3783 if (checkreqprot_get(&selinux_state))
3784 prot = reqprot;
3785
3786 return file_map_prot_check(file, prot,
3787 (flags & MAP_TYPE) == MAP_SHARED);
3788}
3789
3790static int selinux_file_mprotect(struct vm_area_struct *vma,
3791 unsigned long reqprot,
3792 unsigned long prot)
3793{
3794 const struct cred *cred = current_cred();
3795 u32 sid = cred_sid(cred);
3796
3797 if (checkreqprot_get(&selinux_state))
3798 prot = reqprot;
3799
3800 if (default_noexec &&
3801 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3802 int rc = 0;
3803 if (vma->vm_start >= vma->vm_mm->start_brk &&
3804 vma->vm_end <= vma->vm_mm->brk) {
3805 rc = avc_has_perm(&selinux_state,
3806 sid, sid, SECCLASS_PROCESS,
3807 PROCESS__EXECHEAP, NULL);
3808 } else if (!vma->vm_file &&
3809 ((vma->vm_start <= vma->vm_mm->start_stack &&
3810 vma->vm_end >= vma->vm_mm->start_stack) ||
3811 vma_is_stack_for_current(vma))) {
3812 rc = avc_has_perm(&selinux_state,
3813 sid, sid, SECCLASS_PROCESS,
3814 PROCESS__EXECSTACK, NULL);
3815 } else if (vma->vm_file && vma->anon_vma) {
3816 /*
3817 * We are making executable a file mapping that has
3818 * had some COW done. Since pages might have been
3819 * written, check ability to execute the possibly
3820 * modified content. This typically should only
3821 * occur for text relocations.
3822 */
3823 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3824 }
3825 if (rc)
3826 return rc;
3827 }
3828
3829 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3830}
3831
3832static int selinux_file_lock(struct file *file, unsigned int cmd)
3833{
3834 const struct cred *cred = current_cred();
3835
3836 return file_has_perm(cred, file, FILE__LOCK);
3837}
3838
3839static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3840 unsigned long arg)
3841{
3842 const struct cred *cred = current_cred();
3843 int err = 0;
3844
3845 switch (cmd) {
3846 case F_SETFL:
3847 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3848 err = file_has_perm(cred, file, FILE__WRITE);
3849 break;
3850 }
3851 fallthrough;
3852 case F_SETOWN:
3853 case F_SETSIG:
3854 case F_GETFL:
3855 case F_GETOWN:
3856 case F_GETSIG:
3857 case F_GETOWNER_UIDS:
3858 /* Just check FD__USE permission */
3859 err = file_has_perm(cred, file, 0);
3860 break;
3861 case F_GETLK:
3862 case F_SETLK:
3863 case F_SETLKW:
3864 case F_OFD_GETLK:
3865 case F_OFD_SETLK:
3866 case F_OFD_SETLKW:
3867#if BITS_PER_LONG == 32
3868 case F_GETLK64:
3869 case F_SETLK64:
3870 case F_SETLKW64:
3871#endif
3872 err = file_has_perm(cred, file, FILE__LOCK);
3873 break;
3874 }
3875
3876 return err;
3877}
3878
3879static void selinux_file_set_fowner(struct file *file)
3880{
3881 struct file_security_struct *fsec;
3882
3883 fsec = selinux_file(file);
3884 fsec->fown_sid = current_sid();
3885}
3886
3887static int selinux_file_send_sigiotask(struct task_struct *tsk,
3888 struct fown_struct *fown, int signum)
3889{
3890 struct file *file;
3891 u32 sid = task_sid_obj(tsk);
3892 u32 perm;
3893 struct file_security_struct *fsec;
3894
3895 /* struct fown_struct is never outside the context of a struct file */
3896 file = container_of(fown, struct file, f_owner);
3897
3898 fsec = selinux_file(file);
3899
3900 if (!signum)
3901 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3902 else
3903 perm = signal_to_av(signum);
3904
3905 return avc_has_perm(&selinux_state,
3906 fsec->fown_sid, sid,
3907 SECCLASS_PROCESS, perm, NULL);
3908}
3909
3910static int selinux_file_receive(struct file *file)
3911{
3912 const struct cred *cred = current_cred();
3913
3914 return file_has_perm(cred, file, file_to_av(file));
3915}
3916
3917static int selinux_file_open(struct file *file)
3918{
3919 struct file_security_struct *fsec;
3920 struct inode_security_struct *isec;
3921
3922 fsec = selinux_file(file);
3923 isec = inode_security(file_inode(file));
3924 /*
3925 * Save inode label and policy sequence number
3926 * at open-time so that selinux_file_permission
3927 * can determine whether revalidation is necessary.
3928 * Task label is already saved in the file security
3929 * struct as its SID.
3930 */
3931 fsec->isid = isec->sid;
3932 fsec->pseqno = avc_policy_seqno(&selinux_state);
3933 /*
3934 * Since the inode label or policy seqno may have changed
3935 * between the selinux_inode_permission check and the saving
3936 * of state above, recheck that access is still permitted.
3937 * Otherwise, access might never be revalidated against the
3938 * new inode label or new policy.
3939 * This check is not redundant - do not remove.
3940 */
3941 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3942}
3943
3944/* task security operations */
3945
3946static int selinux_task_alloc(struct task_struct *task,
3947 unsigned long clone_flags)
3948{
3949 u32 sid = current_sid();
3950
3951 return avc_has_perm(&selinux_state,
3952 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3953}
3954
3955/*
3956 * prepare a new set of credentials for modification
3957 */
3958static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3959 gfp_t gfp)
3960{
3961 const struct task_security_struct *old_tsec = selinux_cred(old);
3962 struct task_security_struct *tsec = selinux_cred(new);
3963
3964 *tsec = *old_tsec;
3965 return 0;
3966}
3967
3968/*
3969 * transfer the SELinux data to a blank set of creds
3970 */
3971static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3972{
3973 const struct task_security_struct *old_tsec = selinux_cred(old);
3974 struct task_security_struct *tsec = selinux_cred(new);
3975
3976 *tsec = *old_tsec;
3977}
3978
3979static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3980{
3981 *secid = cred_sid(c);
3982}
3983
3984/*
3985 * set the security data for a kernel service
3986 * - all the creation contexts are set to unlabelled
3987 */
3988static int selinux_kernel_act_as(struct cred *new, u32 secid)
3989{
3990 struct task_security_struct *tsec = selinux_cred(new);
3991 u32 sid = current_sid();
3992 int ret;
3993
3994 ret = avc_has_perm(&selinux_state,
3995 sid, secid,
3996 SECCLASS_KERNEL_SERVICE,
3997 KERNEL_SERVICE__USE_AS_OVERRIDE,
3998 NULL);
3999 if (ret == 0) {
4000 tsec->sid = secid;
4001 tsec->create_sid = 0;
4002 tsec->keycreate_sid = 0;
4003 tsec->sockcreate_sid = 0;
4004 }
4005 return ret;
4006}
4007
4008/*
4009 * set the file creation context in a security record to the same as the
4010 * objective context of the specified inode
4011 */
4012static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4013{
4014 struct inode_security_struct *isec = inode_security(inode);
4015 struct task_security_struct *tsec = selinux_cred(new);
4016 u32 sid = current_sid();
4017 int ret;
4018
4019 ret = avc_has_perm(&selinux_state,
4020 sid, isec->sid,
4021 SECCLASS_KERNEL_SERVICE,
4022 KERNEL_SERVICE__CREATE_FILES_AS,
4023 NULL);
4024
4025 if (ret == 0)
4026 tsec->create_sid = isec->sid;
4027 return ret;
4028}
4029
4030static int selinux_kernel_module_request(char *kmod_name)
4031{
4032 struct common_audit_data ad;
4033
4034 ad.type = LSM_AUDIT_DATA_KMOD;
4035 ad.u.kmod_name = kmod_name;
4036
4037 return avc_has_perm(&selinux_state,
4038 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4039 SYSTEM__MODULE_REQUEST, &ad);
4040}
4041
4042static int selinux_kernel_module_from_file(struct file *file)
4043{
4044 struct common_audit_data ad;
4045 struct inode_security_struct *isec;
4046 struct file_security_struct *fsec;
4047 u32 sid = current_sid();
4048 int rc;
4049
4050 /* init_module */
4051 if (file == NULL)
4052 return avc_has_perm(&selinux_state,
4053 sid, sid, SECCLASS_SYSTEM,
4054 SYSTEM__MODULE_LOAD, NULL);
4055
4056 /* finit_module */
4057
4058 ad.type = LSM_AUDIT_DATA_FILE;
4059 ad.u.file = file;
4060
4061 fsec = selinux_file(file);
4062 if (sid != fsec->sid) {
4063 rc = avc_has_perm(&selinux_state,
4064 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4065 if (rc)
4066 return rc;
4067 }
4068
4069 isec = inode_security(file_inode(file));
4070 return avc_has_perm(&selinux_state,
4071 sid, isec->sid, SECCLASS_SYSTEM,
4072 SYSTEM__MODULE_LOAD, &ad);
4073}
4074
4075static int selinux_kernel_read_file(struct file *file,
4076 enum kernel_read_file_id id,
4077 bool contents)
4078{
4079 int rc = 0;
4080
4081 switch (id) {
4082 case READING_MODULE:
4083 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4084 break;
4085 default:
4086 break;
4087 }
4088
4089 return rc;
4090}
4091
4092static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4093{
4094 int rc = 0;
4095
4096 switch (id) {
4097 case LOADING_MODULE:
4098 rc = selinux_kernel_module_from_file(NULL);
4099 break;
4100 default:
4101 break;
4102 }
4103
4104 return rc;
4105}
4106
4107static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4108{
4109 return avc_has_perm(&selinux_state,
4110 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4111 PROCESS__SETPGID, NULL);
4112}
4113
4114static int selinux_task_getpgid(struct task_struct *p)
4115{
4116 return avc_has_perm(&selinux_state,
4117 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4118 PROCESS__GETPGID, NULL);
4119}
4120
4121static int selinux_task_getsid(struct task_struct *p)
4122{
4123 return avc_has_perm(&selinux_state,
4124 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4125 PROCESS__GETSESSION, NULL);
4126}
4127
4128static void selinux_current_getsecid_subj(u32 *secid)
4129{
4130 *secid = current_sid();
4131}
4132
4133static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4134{
4135 *secid = task_sid_obj(p);
4136}
4137
4138static int selinux_task_setnice(struct task_struct *p, int nice)
4139{
4140 return avc_has_perm(&selinux_state,
4141 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4142 PROCESS__SETSCHED, NULL);
4143}
4144
4145static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4146{
4147 return avc_has_perm(&selinux_state,
4148 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4149 PROCESS__SETSCHED, NULL);
4150}
4151
4152static int selinux_task_getioprio(struct task_struct *p)
4153{
4154 return avc_has_perm(&selinux_state,
4155 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4156 PROCESS__GETSCHED, NULL);
4157}
4158
4159static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4160 unsigned int flags)
4161{
4162 u32 av = 0;
4163
4164 if (!flags)
4165 return 0;
4166 if (flags & LSM_PRLIMIT_WRITE)
4167 av |= PROCESS__SETRLIMIT;
4168 if (flags & LSM_PRLIMIT_READ)
4169 av |= PROCESS__GETRLIMIT;
4170 return avc_has_perm(&selinux_state,
4171 cred_sid(cred), cred_sid(tcred),
4172 SECCLASS_PROCESS, av, NULL);
4173}
4174
4175static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4176 struct rlimit *new_rlim)
4177{
4178 struct rlimit *old_rlim = p->signal->rlim + resource;
4179
4180 /* Control the ability to change the hard limit (whether
4181 lowering or raising it), so that the hard limit can
4182 later be used as a safe reset point for the soft limit
4183 upon context transitions. See selinux_bprm_committing_creds. */
4184 if (old_rlim->rlim_max != new_rlim->rlim_max)
4185 return avc_has_perm(&selinux_state,
4186 current_sid(), task_sid_obj(p),
4187 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4188
4189 return 0;
4190}
4191
4192static int selinux_task_setscheduler(struct task_struct *p)
4193{
4194 return avc_has_perm(&selinux_state,
4195 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4196 PROCESS__SETSCHED, NULL);
4197}
4198
4199static int selinux_task_getscheduler(struct task_struct *p)
4200{
4201 return avc_has_perm(&selinux_state,
4202 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4203 PROCESS__GETSCHED, NULL);
4204}
4205
4206static int selinux_task_movememory(struct task_struct *p)
4207{
4208 return avc_has_perm(&selinux_state,
4209 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4210 PROCESS__SETSCHED, NULL);
4211}
4212
4213static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4214 int sig, const struct cred *cred)
4215{
4216 u32 secid;
4217 u32 perm;
4218
4219 if (!sig)
4220 perm = PROCESS__SIGNULL; /* null signal; existence test */
4221 else
4222 perm = signal_to_av(sig);
4223 if (!cred)
4224 secid = current_sid();
4225 else
4226 secid = cred_sid(cred);
4227 return avc_has_perm(&selinux_state,
4228 secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4229}
4230
4231static void selinux_task_to_inode(struct task_struct *p,
4232 struct inode *inode)
4233{
4234 struct inode_security_struct *isec = selinux_inode(inode);
4235 u32 sid = task_sid_obj(p);
4236
4237 spin_lock(&isec->lock);
4238 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4239 isec->sid = sid;
4240 isec->initialized = LABEL_INITIALIZED;
4241 spin_unlock(&isec->lock);
4242}
4243
4244static int selinux_userns_create(const struct cred *cred)
4245{
4246 u32 sid = current_sid();
4247
4248 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_USER_NAMESPACE,
4249 USER_NAMESPACE__CREATE, NULL);
4250}
4251
4252/* Returns error only if unable to parse addresses */
4253static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4254 struct common_audit_data *ad, u8 *proto)
4255{
4256 int offset, ihlen, ret = -EINVAL;
4257 struct iphdr _iph, *ih;
4258
4259 offset = skb_network_offset(skb);
4260 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4261 if (ih == NULL)
4262 goto out;
4263
4264 ihlen = ih->ihl * 4;
4265 if (ihlen < sizeof(_iph))
4266 goto out;
4267
4268 ad->u.net->v4info.saddr = ih->saddr;
4269 ad->u.net->v4info.daddr = ih->daddr;
4270 ret = 0;
4271
4272 if (proto)
4273 *proto = ih->protocol;
4274
4275 switch (ih->protocol) {
4276 case IPPROTO_TCP: {
4277 struct tcphdr _tcph, *th;
4278
4279 if (ntohs(ih->frag_off) & IP_OFFSET)
4280 break;
4281
4282 offset += ihlen;
4283 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4284 if (th == NULL)
4285 break;
4286
4287 ad->u.net->sport = th->source;
4288 ad->u.net->dport = th->dest;
4289 break;
4290 }
4291
4292 case IPPROTO_UDP: {
4293 struct udphdr _udph, *uh;
4294
4295 if (ntohs(ih->frag_off) & IP_OFFSET)
4296 break;
4297
4298 offset += ihlen;
4299 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4300 if (uh == NULL)
4301 break;
4302
4303 ad->u.net->sport = uh->source;
4304 ad->u.net->dport = uh->dest;
4305 break;
4306 }
4307
4308 case IPPROTO_DCCP: {
4309 struct dccp_hdr _dccph, *dh;
4310
4311 if (ntohs(ih->frag_off) & IP_OFFSET)
4312 break;
4313
4314 offset += ihlen;
4315 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316 if (dh == NULL)
4317 break;
4318
4319 ad->u.net->sport = dh->dccph_sport;
4320 ad->u.net->dport = dh->dccph_dport;
4321 break;
4322 }
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325 case IPPROTO_SCTP: {
4326 struct sctphdr _sctph, *sh;
4327
4328 if (ntohs(ih->frag_off) & IP_OFFSET)
4329 break;
4330
4331 offset += ihlen;
4332 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333 if (sh == NULL)
4334 break;
4335
4336 ad->u.net->sport = sh->source;
4337 ad->u.net->dport = sh->dest;
4338 break;
4339 }
4340#endif
4341 default:
4342 break;
4343 }
4344out:
4345 return ret;
4346}
4347
4348#if IS_ENABLED(CONFIG_IPV6)
4349
4350/* Returns error only if unable to parse addresses */
4351static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4352 struct common_audit_data *ad, u8 *proto)
4353{
4354 u8 nexthdr;
4355 int ret = -EINVAL, offset;
4356 struct ipv6hdr _ipv6h, *ip6;
4357 __be16 frag_off;
4358
4359 offset = skb_network_offset(skb);
4360 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4361 if (ip6 == NULL)
4362 goto out;
4363
4364 ad->u.net->v6info.saddr = ip6->saddr;
4365 ad->u.net->v6info.daddr = ip6->daddr;
4366 ret = 0;
4367
4368 nexthdr = ip6->nexthdr;
4369 offset += sizeof(_ipv6h);
4370 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4371 if (offset < 0)
4372 goto out;
4373
4374 if (proto)
4375 *proto = nexthdr;
4376
4377 switch (nexthdr) {
4378 case IPPROTO_TCP: {
4379 struct tcphdr _tcph, *th;
4380
4381 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4382 if (th == NULL)
4383 break;
4384
4385 ad->u.net->sport = th->source;
4386 ad->u.net->dport = th->dest;
4387 break;
4388 }
4389
4390 case IPPROTO_UDP: {
4391 struct udphdr _udph, *uh;
4392
4393 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4394 if (uh == NULL)
4395 break;
4396
4397 ad->u.net->sport = uh->source;
4398 ad->u.net->dport = uh->dest;
4399 break;
4400 }
4401
4402 case IPPROTO_DCCP: {
4403 struct dccp_hdr _dccph, *dh;
4404
4405 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4406 if (dh == NULL)
4407 break;
4408
4409 ad->u.net->sport = dh->dccph_sport;
4410 ad->u.net->dport = dh->dccph_dport;
4411 break;
4412 }
4413
4414#if IS_ENABLED(CONFIG_IP_SCTP)
4415 case IPPROTO_SCTP: {
4416 struct sctphdr _sctph, *sh;
4417
4418 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4419 if (sh == NULL)
4420 break;
4421
4422 ad->u.net->sport = sh->source;
4423 ad->u.net->dport = sh->dest;
4424 break;
4425 }
4426#endif
4427 /* includes fragments */
4428 default:
4429 break;
4430 }
4431out:
4432 return ret;
4433}
4434
4435#endif /* IPV6 */
4436
4437static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4438 char **_addrp, int src, u8 *proto)
4439{
4440 char *addrp;
4441 int ret;
4442
4443 switch (ad->u.net->family) {
4444 case PF_INET:
4445 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4446 if (ret)
4447 goto parse_error;
4448 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4449 &ad->u.net->v4info.daddr);
4450 goto okay;
4451
4452#if IS_ENABLED(CONFIG_IPV6)
4453 case PF_INET6:
4454 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4455 if (ret)
4456 goto parse_error;
4457 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4458 &ad->u.net->v6info.daddr);
4459 goto okay;
4460#endif /* IPV6 */
4461 default:
4462 addrp = NULL;
4463 goto okay;
4464 }
4465
4466parse_error:
4467 pr_warn(
4468 "SELinux: failure in selinux_parse_skb(),"
4469 " unable to parse packet\n");
4470 return ret;
4471
4472okay:
4473 if (_addrp)
4474 *_addrp = addrp;
4475 return 0;
4476}
4477
4478/**
4479 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4480 * @skb: the packet
4481 * @family: protocol family
4482 * @sid: the packet's peer label SID
4483 *
4484 * Description:
4485 * Check the various different forms of network peer labeling and determine
4486 * the peer label/SID for the packet; most of the magic actually occurs in
4487 * the security server function security_net_peersid_cmp(). The function
4488 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4489 * or -EACCES if @sid is invalid due to inconsistencies with the different
4490 * peer labels.
4491 *
4492 */
4493static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4494{
4495 int err;
4496 u32 xfrm_sid;
4497 u32 nlbl_sid;
4498 u32 nlbl_type;
4499
4500 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4501 if (unlikely(err))
4502 return -EACCES;
4503 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4504 if (unlikely(err))
4505 return -EACCES;
4506
4507 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4508 nlbl_type, xfrm_sid, sid);
4509 if (unlikely(err)) {
4510 pr_warn(
4511 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4512 " unable to determine packet's peer label\n");
4513 return -EACCES;
4514 }
4515
4516 return 0;
4517}
4518
4519/**
4520 * selinux_conn_sid - Determine the child socket label for a connection
4521 * @sk_sid: the parent socket's SID
4522 * @skb_sid: the packet's SID
4523 * @conn_sid: the resulting connection SID
4524 *
4525 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4526 * combined with the MLS information from @skb_sid in order to create
4527 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4528 * of @sk_sid. Returns zero on success, negative values on failure.
4529 *
4530 */
4531static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4532{
4533 int err = 0;
4534
4535 if (skb_sid != SECSID_NULL)
4536 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4537 conn_sid);
4538 else
4539 *conn_sid = sk_sid;
4540
4541 return err;
4542}
4543
4544/* socket security operations */
4545
4546static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4547 u16 secclass, u32 *socksid)
4548{
4549 if (tsec->sockcreate_sid > SECSID_NULL) {
4550 *socksid = tsec->sockcreate_sid;
4551 return 0;
4552 }
4553
4554 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4555 secclass, NULL, socksid);
4556}
4557
4558static int sock_has_perm(struct sock *sk, u32 perms)
4559{
4560 struct sk_security_struct *sksec = sk->sk_security;
4561 struct common_audit_data ad;
4562 struct lsm_network_audit net = {0,};
4563
4564 if (sksec->sid == SECINITSID_KERNEL)
4565 return 0;
4566
4567 ad.type = LSM_AUDIT_DATA_NET;
4568 ad.u.net = &net;
4569 ad.u.net->sk = sk;
4570
4571 return avc_has_perm(&selinux_state,
4572 current_sid(), sksec->sid, sksec->sclass, perms,
4573 &ad);
4574}
4575
4576static int selinux_socket_create(int family, int type,
4577 int protocol, int kern)
4578{
4579 const struct task_security_struct *tsec = selinux_cred(current_cred());
4580 u32 newsid;
4581 u16 secclass;
4582 int rc;
4583
4584 if (kern)
4585 return 0;
4586
4587 secclass = socket_type_to_security_class(family, type, protocol);
4588 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4589 if (rc)
4590 return rc;
4591
4592 return avc_has_perm(&selinux_state,
4593 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4594}
4595
4596static int selinux_socket_post_create(struct socket *sock, int family,
4597 int type, int protocol, int kern)
4598{
4599 const struct task_security_struct *tsec = selinux_cred(current_cred());
4600 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4601 struct sk_security_struct *sksec;
4602 u16 sclass = socket_type_to_security_class(family, type, protocol);
4603 u32 sid = SECINITSID_KERNEL;
4604 int err = 0;
4605
4606 if (!kern) {
4607 err = socket_sockcreate_sid(tsec, sclass, &sid);
4608 if (err)
4609 return err;
4610 }
4611
4612 isec->sclass = sclass;
4613 isec->sid = sid;
4614 isec->initialized = LABEL_INITIALIZED;
4615
4616 if (sock->sk) {
4617 sksec = sock->sk->sk_security;
4618 sksec->sclass = sclass;
4619 sksec->sid = sid;
4620 /* Allows detection of the first association on this socket */
4621 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4622 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4623
4624 err = selinux_netlbl_socket_post_create(sock->sk, family);
4625 }
4626
4627 return err;
4628}
4629
4630static int selinux_socket_socketpair(struct socket *socka,
4631 struct socket *sockb)
4632{
4633 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4634 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4635
4636 sksec_a->peer_sid = sksec_b->sid;
4637 sksec_b->peer_sid = sksec_a->sid;
4638
4639 return 0;
4640}
4641
4642/* Range of port numbers used to automatically bind.
4643 Need to determine whether we should perform a name_bind
4644 permission check between the socket and the port number. */
4645
4646static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4647{
4648 struct sock *sk = sock->sk;
4649 struct sk_security_struct *sksec = sk->sk_security;
4650 u16 family;
4651 int err;
4652
4653 err = sock_has_perm(sk, SOCKET__BIND);
4654 if (err)
4655 goto out;
4656
4657 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4658 family = sk->sk_family;
4659 if (family == PF_INET || family == PF_INET6) {
4660 char *addrp;
4661 struct common_audit_data ad;
4662 struct lsm_network_audit net = {0,};
4663 struct sockaddr_in *addr4 = NULL;
4664 struct sockaddr_in6 *addr6 = NULL;
4665 u16 family_sa;
4666 unsigned short snum;
4667 u32 sid, node_perm;
4668
4669 /*
4670 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4671 * that validates multiple binding addresses. Because of this
4672 * need to check address->sa_family as it is possible to have
4673 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4674 */
4675 if (addrlen < offsetofend(struct sockaddr, sa_family))
4676 return -EINVAL;
4677 family_sa = address->sa_family;
4678 switch (family_sa) {
4679 case AF_UNSPEC:
4680 case AF_INET:
4681 if (addrlen < sizeof(struct sockaddr_in))
4682 return -EINVAL;
4683 addr4 = (struct sockaddr_in *)address;
4684 if (family_sa == AF_UNSPEC) {
4685 /* see __inet_bind(), we only want to allow
4686 * AF_UNSPEC if the address is INADDR_ANY
4687 */
4688 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4689 goto err_af;
4690 family_sa = AF_INET;
4691 }
4692 snum = ntohs(addr4->sin_port);
4693 addrp = (char *)&addr4->sin_addr.s_addr;
4694 break;
4695 case AF_INET6:
4696 if (addrlen < SIN6_LEN_RFC2133)
4697 return -EINVAL;
4698 addr6 = (struct sockaddr_in6 *)address;
4699 snum = ntohs(addr6->sin6_port);
4700 addrp = (char *)&addr6->sin6_addr.s6_addr;
4701 break;
4702 default:
4703 goto err_af;
4704 }
4705
4706 ad.type = LSM_AUDIT_DATA_NET;
4707 ad.u.net = &net;
4708 ad.u.net->sport = htons(snum);
4709 ad.u.net->family = family_sa;
4710
4711 if (snum) {
4712 int low, high;
4713
4714 inet_get_local_port_range(sock_net(sk), &low, &high);
4715
4716 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4717 snum < low || snum > high) {
4718 err = sel_netport_sid(sk->sk_protocol,
4719 snum, &sid);
4720 if (err)
4721 goto out;
4722 err = avc_has_perm(&selinux_state,
4723 sksec->sid, sid,
4724 sksec->sclass,
4725 SOCKET__NAME_BIND, &ad);
4726 if (err)
4727 goto out;
4728 }
4729 }
4730
4731 switch (sksec->sclass) {
4732 case SECCLASS_TCP_SOCKET:
4733 node_perm = TCP_SOCKET__NODE_BIND;
4734 break;
4735
4736 case SECCLASS_UDP_SOCKET:
4737 node_perm = UDP_SOCKET__NODE_BIND;
4738 break;
4739
4740 case SECCLASS_DCCP_SOCKET:
4741 node_perm = DCCP_SOCKET__NODE_BIND;
4742 break;
4743
4744 case SECCLASS_SCTP_SOCKET:
4745 node_perm = SCTP_SOCKET__NODE_BIND;
4746 break;
4747
4748 default:
4749 node_perm = RAWIP_SOCKET__NODE_BIND;
4750 break;
4751 }
4752
4753 err = sel_netnode_sid(addrp, family_sa, &sid);
4754 if (err)
4755 goto out;
4756
4757 if (family_sa == AF_INET)
4758 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4759 else
4760 ad.u.net->v6info.saddr = addr6->sin6_addr;
4761
4762 err = avc_has_perm(&selinux_state,
4763 sksec->sid, sid,
4764 sksec->sclass, node_perm, &ad);
4765 if (err)
4766 goto out;
4767 }
4768out:
4769 return err;
4770err_af:
4771 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4772 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4773 return -EINVAL;
4774 return -EAFNOSUPPORT;
4775}
4776
4777/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4778 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4779 */
4780static int selinux_socket_connect_helper(struct socket *sock,
4781 struct sockaddr *address, int addrlen)
4782{
4783 struct sock *sk = sock->sk;
4784 struct sk_security_struct *sksec = sk->sk_security;
4785 int err;
4786
4787 err = sock_has_perm(sk, SOCKET__CONNECT);
4788 if (err)
4789 return err;
4790 if (addrlen < offsetofend(struct sockaddr, sa_family))
4791 return -EINVAL;
4792
4793 /* connect(AF_UNSPEC) has special handling, as it is a documented
4794 * way to disconnect the socket
4795 */
4796 if (address->sa_family == AF_UNSPEC)
4797 return 0;
4798
4799 /*
4800 * If a TCP, DCCP or SCTP socket, check name_connect permission
4801 * for the port.
4802 */
4803 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4804 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4805 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4806 struct common_audit_data ad;
4807 struct lsm_network_audit net = {0,};
4808 struct sockaddr_in *addr4 = NULL;
4809 struct sockaddr_in6 *addr6 = NULL;
4810 unsigned short snum;
4811 u32 sid, perm;
4812
4813 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4814 * that validates multiple connect addresses. Because of this
4815 * need to check address->sa_family as it is possible to have
4816 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4817 */
4818 switch (address->sa_family) {
4819 case AF_INET:
4820 addr4 = (struct sockaddr_in *)address;
4821 if (addrlen < sizeof(struct sockaddr_in))
4822 return -EINVAL;
4823 snum = ntohs(addr4->sin_port);
4824 break;
4825 case AF_INET6:
4826 addr6 = (struct sockaddr_in6 *)address;
4827 if (addrlen < SIN6_LEN_RFC2133)
4828 return -EINVAL;
4829 snum = ntohs(addr6->sin6_port);
4830 break;
4831 default:
4832 /* Note that SCTP services expect -EINVAL, whereas
4833 * others expect -EAFNOSUPPORT.
4834 */
4835 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4836 return -EINVAL;
4837 else
4838 return -EAFNOSUPPORT;
4839 }
4840
4841 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4842 if (err)
4843 return err;
4844
4845 switch (sksec->sclass) {
4846 case SECCLASS_TCP_SOCKET:
4847 perm = TCP_SOCKET__NAME_CONNECT;
4848 break;
4849 case SECCLASS_DCCP_SOCKET:
4850 perm = DCCP_SOCKET__NAME_CONNECT;
4851 break;
4852 case SECCLASS_SCTP_SOCKET:
4853 perm = SCTP_SOCKET__NAME_CONNECT;
4854 break;
4855 }
4856
4857 ad.type = LSM_AUDIT_DATA_NET;
4858 ad.u.net = &net;
4859 ad.u.net->dport = htons(snum);
4860 ad.u.net->family = address->sa_family;
4861 err = avc_has_perm(&selinux_state,
4862 sksec->sid, sid, sksec->sclass, perm, &ad);
4863 if (err)
4864 return err;
4865 }
4866
4867 return 0;
4868}
4869
4870/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4871static int selinux_socket_connect(struct socket *sock,
4872 struct sockaddr *address, int addrlen)
4873{
4874 int err;
4875 struct sock *sk = sock->sk;
4876
4877 err = selinux_socket_connect_helper(sock, address, addrlen);
4878 if (err)
4879 return err;
4880
4881 return selinux_netlbl_socket_connect(sk, address);
4882}
4883
4884static int selinux_socket_listen(struct socket *sock, int backlog)
4885{
4886 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4887}
4888
4889static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4890{
4891 int err;
4892 struct inode_security_struct *isec;
4893 struct inode_security_struct *newisec;
4894 u16 sclass;
4895 u32 sid;
4896
4897 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4898 if (err)
4899 return err;
4900
4901 isec = inode_security_novalidate(SOCK_INODE(sock));
4902 spin_lock(&isec->lock);
4903 sclass = isec->sclass;
4904 sid = isec->sid;
4905 spin_unlock(&isec->lock);
4906
4907 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4908 newisec->sclass = sclass;
4909 newisec->sid = sid;
4910 newisec->initialized = LABEL_INITIALIZED;
4911
4912 return 0;
4913}
4914
4915static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4916 int size)
4917{
4918 return sock_has_perm(sock->sk, SOCKET__WRITE);
4919}
4920
4921static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4922 int size, int flags)
4923{
4924 return sock_has_perm(sock->sk, SOCKET__READ);
4925}
4926
4927static int selinux_socket_getsockname(struct socket *sock)
4928{
4929 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4930}
4931
4932static int selinux_socket_getpeername(struct socket *sock)
4933{
4934 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4935}
4936
4937static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4938{
4939 int err;
4940
4941 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4942 if (err)
4943 return err;
4944
4945 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4946}
4947
4948static int selinux_socket_getsockopt(struct socket *sock, int level,
4949 int optname)
4950{
4951 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4952}
4953
4954static int selinux_socket_shutdown(struct socket *sock, int how)
4955{
4956 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4957}
4958
4959static int selinux_socket_unix_stream_connect(struct sock *sock,
4960 struct sock *other,
4961 struct sock *newsk)
4962{
4963 struct sk_security_struct *sksec_sock = sock->sk_security;
4964 struct sk_security_struct *sksec_other = other->sk_security;
4965 struct sk_security_struct *sksec_new = newsk->sk_security;
4966 struct common_audit_data ad;
4967 struct lsm_network_audit net = {0,};
4968 int err;
4969
4970 ad.type = LSM_AUDIT_DATA_NET;
4971 ad.u.net = &net;
4972 ad.u.net->sk = other;
4973
4974 err = avc_has_perm(&selinux_state,
4975 sksec_sock->sid, sksec_other->sid,
4976 sksec_other->sclass,
4977 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4978 if (err)
4979 return err;
4980
4981 /* server child socket */
4982 sksec_new->peer_sid = sksec_sock->sid;
4983 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4984 sksec_sock->sid, &sksec_new->sid);
4985 if (err)
4986 return err;
4987
4988 /* connecting socket */
4989 sksec_sock->peer_sid = sksec_new->sid;
4990
4991 return 0;
4992}
4993
4994static int selinux_socket_unix_may_send(struct socket *sock,
4995 struct socket *other)
4996{
4997 struct sk_security_struct *ssec = sock->sk->sk_security;
4998 struct sk_security_struct *osec = other->sk->sk_security;
4999 struct common_audit_data ad;
5000 struct lsm_network_audit net = {0,};
5001
5002 ad.type = LSM_AUDIT_DATA_NET;
5003 ad.u.net = &net;
5004 ad.u.net->sk = other->sk;
5005
5006 return avc_has_perm(&selinux_state,
5007 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5008 &ad);
5009}
5010
5011static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5012 char *addrp, u16 family, u32 peer_sid,
5013 struct common_audit_data *ad)
5014{
5015 int err;
5016 u32 if_sid;
5017 u32 node_sid;
5018
5019 err = sel_netif_sid(ns, ifindex, &if_sid);
5020 if (err)
5021 return err;
5022 err = avc_has_perm(&selinux_state,
5023 peer_sid, if_sid,
5024 SECCLASS_NETIF, NETIF__INGRESS, ad);
5025 if (err)
5026 return err;
5027
5028 err = sel_netnode_sid(addrp, family, &node_sid);
5029 if (err)
5030 return err;
5031 return avc_has_perm(&selinux_state,
5032 peer_sid, node_sid,
5033 SECCLASS_NODE, NODE__RECVFROM, ad);
5034}
5035
5036static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5037 u16 family)
5038{
5039 int err = 0;
5040 struct sk_security_struct *sksec = sk->sk_security;
5041 u32 sk_sid = sksec->sid;
5042 struct common_audit_data ad;
5043 struct lsm_network_audit net = {0,};
5044 char *addrp;
5045
5046 ad.type = LSM_AUDIT_DATA_NET;
5047 ad.u.net = &net;
5048 ad.u.net->netif = skb->skb_iif;
5049 ad.u.net->family = family;
5050 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5051 if (err)
5052 return err;
5053
5054 if (selinux_secmark_enabled()) {
5055 err = avc_has_perm(&selinux_state,
5056 sk_sid, skb->secmark, SECCLASS_PACKET,
5057 PACKET__RECV, &ad);
5058 if (err)
5059 return err;
5060 }
5061
5062 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5063 if (err)
5064 return err;
5065 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5066
5067 return err;
5068}
5069
5070static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5071{
5072 int err;
5073 struct sk_security_struct *sksec = sk->sk_security;
5074 u16 family = sk->sk_family;
5075 u32 sk_sid = sksec->sid;
5076 struct common_audit_data ad;
5077 struct lsm_network_audit net = {0,};
5078 char *addrp;
5079 u8 secmark_active;
5080 u8 peerlbl_active;
5081
5082 if (family != PF_INET && family != PF_INET6)
5083 return 0;
5084
5085 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5086 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5087 family = PF_INET;
5088
5089 /* If any sort of compatibility mode is enabled then handoff processing
5090 * to the selinux_sock_rcv_skb_compat() function to deal with the
5091 * special handling. We do this in an attempt to keep this function
5092 * as fast and as clean as possible. */
5093 if (!selinux_policycap_netpeer())
5094 return selinux_sock_rcv_skb_compat(sk, skb, family);
5095
5096 secmark_active = selinux_secmark_enabled();
5097 peerlbl_active = selinux_peerlbl_enabled();
5098 if (!secmark_active && !peerlbl_active)
5099 return 0;
5100
5101 ad.type = LSM_AUDIT_DATA_NET;
5102 ad.u.net = &net;
5103 ad.u.net->netif = skb->skb_iif;
5104 ad.u.net->family = family;
5105 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5106 if (err)
5107 return err;
5108
5109 if (peerlbl_active) {
5110 u32 peer_sid;
5111
5112 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5113 if (err)
5114 return err;
5115 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5116 addrp, family, peer_sid, &ad);
5117 if (err) {
5118 selinux_netlbl_err(skb, family, err, 0);
5119 return err;
5120 }
5121 err = avc_has_perm(&selinux_state,
5122 sk_sid, peer_sid, SECCLASS_PEER,
5123 PEER__RECV, &ad);
5124 if (err) {
5125 selinux_netlbl_err(skb, family, err, 0);
5126 return err;
5127 }
5128 }
5129
5130 if (secmark_active) {
5131 err = avc_has_perm(&selinux_state,
5132 sk_sid, skb->secmark, SECCLASS_PACKET,
5133 PACKET__RECV, &ad);
5134 if (err)
5135 return err;
5136 }
5137
5138 return err;
5139}
5140
5141static int selinux_socket_getpeersec_stream(struct socket *sock,
5142 sockptr_t optval, sockptr_t optlen,
5143 unsigned int len)
5144{
5145 int err = 0;
5146 char *scontext = NULL;
5147 u32 scontext_len;
5148 struct sk_security_struct *sksec = sock->sk->sk_security;
5149 u32 peer_sid = SECSID_NULL;
5150
5151 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5152 sksec->sclass == SECCLASS_TCP_SOCKET ||
5153 sksec->sclass == SECCLASS_SCTP_SOCKET)
5154 peer_sid = sksec->peer_sid;
5155 if (peer_sid == SECSID_NULL)
5156 return -ENOPROTOOPT;
5157
5158 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5159 &scontext_len);
5160 if (err)
5161 return err;
5162 if (scontext_len > len) {
5163 err = -ERANGE;
5164 goto out_len;
5165 }
5166
5167 if (copy_to_sockptr(optval, scontext, scontext_len))
5168 err = -EFAULT;
5169out_len:
5170 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5171 err = -EFAULT;
5172 kfree(scontext);
5173 return err;
5174}
5175
5176static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5177{
5178 u32 peer_secid = SECSID_NULL;
5179 u16 family;
5180 struct inode_security_struct *isec;
5181
5182 if (skb && skb->protocol == htons(ETH_P_IP))
5183 family = PF_INET;
5184 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5185 family = PF_INET6;
5186 else if (sock)
5187 family = sock->sk->sk_family;
5188 else
5189 goto out;
5190
5191 if (sock && family == PF_UNIX) {
5192 isec = inode_security_novalidate(SOCK_INODE(sock));
5193 peer_secid = isec->sid;
5194 } else if (skb)
5195 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5196
5197out:
5198 *secid = peer_secid;
5199 if (peer_secid == SECSID_NULL)
5200 return -EINVAL;
5201 return 0;
5202}
5203
5204static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5205{
5206 struct sk_security_struct *sksec;
5207
5208 sksec = kzalloc(sizeof(*sksec), priority);
5209 if (!sksec)
5210 return -ENOMEM;
5211
5212 sksec->peer_sid = SECINITSID_UNLABELED;
5213 sksec->sid = SECINITSID_UNLABELED;
5214 sksec->sclass = SECCLASS_SOCKET;
5215 selinux_netlbl_sk_security_reset(sksec);
5216 sk->sk_security = sksec;
5217
5218 return 0;
5219}
5220
5221static void selinux_sk_free_security(struct sock *sk)
5222{
5223 struct sk_security_struct *sksec = sk->sk_security;
5224
5225 sk->sk_security = NULL;
5226 selinux_netlbl_sk_security_free(sksec);
5227 kfree(sksec);
5228}
5229
5230static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5231{
5232 struct sk_security_struct *sksec = sk->sk_security;
5233 struct sk_security_struct *newsksec = newsk->sk_security;
5234
5235 newsksec->sid = sksec->sid;
5236 newsksec->peer_sid = sksec->peer_sid;
5237 newsksec->sclass = sksec->sclass;
5238
5239 selinux_netlbl_sk_security_reset(newsksec);
5240}
5241
5242static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5243{
5244 if (!sk)
5245 *secid = SECINITSID_ANY_SOCKET;
5246 else {
5247 struct sk_security_struct *sksec = sk->sk_security;
5248
5249 *secid = sksec->sid;
5250 }
5251}
5252
5253static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5254{
5255 struct inode_security_struct *isec =
5256 inode_security_novalidate(SOCK_INODE(parent));
5257 struct sk_security_struct *sksec = sk->sk_security;
5258
5259 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5260 sk->sk_family == PF_UNIX)
5261 isec->sid = sksec->sid;
5262 sksec->sclass = isec->sclass;
5263}
5264
5265/*
5266 * Determines peer_secid for the asoc and updates socket's peer label
5267 * if it's the first association on the socket.
5268 */
5269static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5270 struct sk_buff *skb)
5271{
5272 struct sock *sk = asoc->base.sk;
5273 u16 family = sk->sk_family;
5274 struct sk_security_struct *sksec = sk->sk_security;
5275 struct common_audit_data ad;
5276 struct lsm_network_audit net = {0,};
5277 int err;
5278
5279 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5280 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5281 family = PF_INET;
5282
5283 if (selinux_peerlbl_enabled()) {
5284 asoc->peer_secid = SECSID_NULL;
5285
5286 /* This will return peer_sid = SECSID_NULL if there are
5287 * no peer labels, see security_net_peersid_resolve().
5288 */
5289 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5290 if (err)
5291 return err;
5292
5293 if (asoc->peer_secid == SECSID_NULL)
5294 asoc->peer_secid = SECINITSID_UNLABELED;
5295 } else {
5296 asoc->peer_secid = SECINITSID_UNLABELED;
5297 }
5298
5299 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5300 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5301
5302 /* Here as first association on socket. As the peer SID
5303 * was allowed by peer recv (and the netif/node checks),
5304 * then it is approved by policy and used as the primary
5305 * peer SID for getpeercon(3).
5306 */
5307 sksec->peer_sid = asoc->peer_secid;
5308 } else if (sksec->peer_sid != asoc->peer_secid) {
5309 /* Other association peer SIDs are checked to enforce
5310 * consistency among the peer SIDs.
5311 */
5312 ad.type = LSM_AUDIT_DATA_NET;
5313 ad.u.net = &net;
5314 ad.u.net->sk = asoc->base.sk;
5315 err = avc_has_perm(&selinux_state,
5316 sksec->peer_sid, asoc->peer_secid,
5317 sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5318 &ad);
5319 if (err)
5320 return err;
5321 }
5322 return 0;
5323}
5324
5325/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5326 * happens on an incoming connect(2), sctp_connectx(3) or
5327 * sctp_sendmsg(3) (with no association already present).
5328 */
5329static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5330 struct sk_buff *skb)
5331{
5332 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5333 u32 conn_sid;
5334 int err;
5335
5336 if (!selinux_policycap_extsockclass())
5337 return 0;
5338
5339 err = selinux_sctp_process_new_assoc(asoc, skb);
5340 if (err)
5341 return err;
5342
5343 /* Compute the MLS component for the connection and store
5344 * the information in asoc. This will be used by SCTP TCP type
5345 * sockets and peeled off connections as they cause a new
5346 * socket to be generated. selinux_sctp_sk_clone() will then
5347 * plug this into the new socket.
5348 */
5349 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5350 if (err)
5351 return err;
5352
5353 asoc->secid = conn_sid;
5354
5355 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5356 return selinux_netlbl_sctp_assoc_request(asoc, skb);
5357}
5358
5359/* Called when SCTP receives a COOKIE ACK chunk as the final
5360 * response to an association request (initited by us).
5361 */
5362static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5363 struct sk_buff *skb)
5364{
5365 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5366
5367 if (!selinux_policycap_extsockclass())
5368 return 0;
5369
5370 /* Inherit secid from the parent socket - this will be picked up
5371 * by selinux_sctp_sk_clone() if the association gets peeled off
5372 * into a new socket.
5373 */
5374 asoc->secid = sksec->sid;
5375
5376 return selinux_sctp_process_new_assoc(asoc, skb);
5377}
5378
5379/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5380 * based on their @optname.
5381 */
5382static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5383 struct sockaddr *address,
5384 int addrlen)
5385{
5386 int len, err = 0, walk_size = 0;
5387 void *addr_buf;
5388 struct sockaddr *addr;
5389 struct socket *sock;
5390
5391 if (!selinux_policycap_extsockclass())
5392 return 0;
5393
5394 /* Process one or more addresses that may be IPv4 or IPv6 */
5395 sock = sk->sk_socket;
5396 addr_buf = address;
5397
5398 while (walk_size < addrlen) {
5399 if (walk_size + sizeof(sa_family_t) > addrlen)
5400 return -EINVAL;
5401
5402 addr = addr_buf;
5403 switch (addr->sa_family) {
5404 case AF_UNSPEC:
5405 case AF_INET:
5406 len = sizeof(struct sockaddr_in);
5407 break;
5408 case AF_INET6:
5409 len = sizeof(struct sockaddr_in6);
5410 break;
5411 default:
5412 return -EINVAL;
5413 }
5414
5415 if (walk_size + len > addrlen)
5416 return -EINVAL;
5417
5418 err = -EINVAL;
5419 switch (optname) {
5420 /* Bind checks */
5421 case SCTP_PRIMARY_ADDR:
5422 case SCTP_SET_PEER_PRIMARY_ADDR:
5423 case SCTP_SOCKOPT_BINDX_ADD:
5424 err = selinux_socket_bind(sock, addr, len);
5425 break;
5426 /* Connect checks */
5427 case SCTP_SOCKOPT_CONNECTX:
5428 case SCTP_PARAM_SET_PRIMARY:
5429 case SCTP_PARAM_ADD_IP:
5430 case SCTP_SENDMSG_CONNECT:
5431 err = selinux_socket_connect_helper(sock, addr, len);
5432 if (err)
5433 return err;
5434
5435 /* As selinux_sctp_bind_connect() is called by the
5436 * SCTP protocol layer, the socket is already locked,
5437 * therefore selinux_netlbl_socket_connect_locked()
5438 * is called here. The situations handled are:
5439 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5440 * whenever a new IP address is added or when a new
5441 * primary address is selected.
5442 * Note that an SCTP connect(2) call happens before
5443 * the SCTP protocol layer and is handled via
5444 * selinux_socket_connect().
5445 */
5446 err = selinux_netlbl_socket_connect_locked(sk, addr);
5447 break;
5448 }
5449
5450 if (err)
5451 return err;
5452
5453 addr_buf += len;
5454 walk_size += len;
5455 }
5456
5457 return 0;
5458}
5459
5460/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5461static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5462 struct sock *newsk)
5463{
5464 struct sk_security_struct *sksec = sk->sk_security;
5465 struct sk_security_struct *newsksec = newsk->sk_security;
5466
5467 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5468 * the non-sctp clone version.
5469 */
5470 if (!selinux_policycap_extsockclass())
5471 return selinux_sk_clone_security(sk, newsk);
5472
5473 newsksec->sid = asoc->secid;
5474 newsksec->peer_sid = asoc->peer_secid;
5475 newsksec->sclass = sksec->sclass;
5476 selinux_netlbl_sctp_sk_clone(sk, newsk);
5477}
5478
5479static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5480 struct request_sock *req)
5481{
5482 struct sk_security_struct *sksec = sk->sk_security;
5483 int err;
5484 u16 family = req->rsk_ops->family;
5485 u32 connsid;
5486 u32 peersid;
5487
5488 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5489 if (err)
5490 return err;
5491 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5492 if (err)
5493 return err;
5494 req->secid = connsid;
5495 req->peer_secid = peersid;
5496
5497 return selinux_netlbl_inet_conn_request(req, family);
5498}
5499
5500static void selinux_inet_csk_clone(struct sock *newsk,
5501 const struct request_sock *req)
5502{
5503 struct sk_security_struct *newsksec = newsk->sk_security;
5504
5505 newsksec->sid = req->secid;
5506 newsksec->peer_sid = req->peer_secid;
5507 /* NOTE: Ideally, we should also get the isec->sid for the
5508 new socket in sync, but we don't have the isec available yet.
5509 So we will wait until sock_graft to do it, by which
5510 time it will have been created and available. */
5511
5512 /* We don't need to take any sort of lock here as we are the only
5513 * thread with access to newsksec */
5514 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5515}
5516
5517static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5518{
5519 u16 family = sk->sk_family;
5520 struct sk_security_struct *sksec = sk->sk_security;
5521
5522 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5523 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5524 family = PF_INET;
5525
5526 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5527}
5528
5529static int selinux_secmark_relabel_packet(u32 sid)
5530{
5531 const struct task_security_struct *__tsec;
5532 u32 tsid;
5533
5534 __tsec = selinux_cred(current_cred());
5535 tsid = __tsec->sid;
5536
5537 return avc_has_perm(&selinux_state,
5538 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5539 NULL);
5540}
5541
5542static void selinux_secmark_refcount_inc(void)
5543{
5544 atomic_inc(&selinux_secmark_refcount);
5545}
5546
5547static void selinux_secmark_refcount_dec(void)
5548{
5549 atomic_dec(&selinux_secmark_refcount);
5550}
5551
5552static void selinux_req_classify_flow(const struct request_sock *req,
5553 struct flowi_common *flic)
5554{
5555 flic->flowic_secid = req->secid;
5556}
5557
5558static int selinux_tun_dev_alloc_security(void **security)
5559{
5560 struct tun_security_struct *tunsec;
5561
5562 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5563 if (!tunsec)
5564 return -ENOMEM;
5565 tunsec->sid = current_sid();
5566
5567 *security = tunsec;
5568 return 0;
5569}
5570
5571static void selinux_tun_dev_free_security(void *security)
5572{
5573 kfree(security);
5574}
5575
5576static int selinux_tun_dev_create(void)
5577{
5578 u32 sid = current_sid();
5579
5580 /* we aren't taking into account the "sockcreate" SID since the socket
5581 * that is being created here is not a socket in the traditional sense,
5582 * instead it is a private sock, accessible only to the kernel, and
5583 * representing a wide range of network traffic spanning multiple
5584 * connections unlike traditional sockets - check the TUN driver to
5585 * get a better understanding of why this socket is special */
5586
5587 return avc_has_perm(&selinux_state,
5588 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5589 NULL);
5590}
5591
5592static int selinux_tun_dev_attach_queue(void *security)
5593{
5594 struct tun_security_struct *tunsec = security;
5595
5596 return avc_has_perm(&selinux_state,
5597 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5598 TUN_SOCKET__ATTACH_QUEUE, NULL);
5599}
5600
5601static int selinux_tun_dev_attach(struct sock *sk, void *security)
5602{
5603 struct tun_security_struct *tunsec = security;
5604 struct sk_security_struct *sksec = sk->sk_security;
5605
5606 /* we don't currently perform any NetLabel based labeling here and it
5607 * isn't clear that we would want to do so anyway; while we could apply
5608 * labeling without the support of the TUN user the resulting labeled
5609 * traffic from the other end of the connection would almost certainly
5610 * cause confusion to the TUN user that had no idea network labeling
5611 * protocols were being used */
5612
5613 sksec->sid = tunsec->sid;
5614 sksec->sclass = SECCLASS_TUN_SOCKET;
5615
5616 return 0;
5617}
5618
5619static int selinux_tun_dev_open(void *security)
5620{
5621 struct tun_security_struct *tunsec = security;
5622 u32 sid = current_sid();
5623 int err;
5624
5625 err = avc_has_perm(&selinux_state,
5626 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5627 TUN_SOCKET__RELABELFROM, NULL);
5628 if (err)
5629 return err;
5630 err = avc_has_perm(&selinux_state,
5631 sid, sid, SECCLASS_TUN_SOCKET,
5632 TUN_SOCKET__RELABELTO, NULL);
5633 if (err)
5634 return err;
5635 tunsec->sid = sid;
5636
5637 return 0;
5638}
5639
5640#ifdef CONFIG_NETFILTER
5641
5642static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5643 const struct nf_hook_state *state)
5644{
5645 int ifindex;
5646 u16 family;
5647 char *addrp;
5648 u32 peer_sid;
5649 struct common_audit_data ad;
5650 struct lsm_network_audit net = {0,};
5651 int secmark_active, peerlbl_active;
5652
5653 if (!selinux_policycap_netpeer())
5654 return NF_ACCEPT;
5655
5656 secmark_active = selinux_secmark_enabled();
5657 peerlbl_active = selinux_peerlbl_enabled();
5658 if (!secmark_active && !peerlbl_active)
5659 return NF_ACCEPT;
5660
5661 family = state->pf;
5662 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5663 return NF_DROP;
5664
5665 ifindex = state->in->ifindex;
5666 ad.type = LSM_AUDIT_DATA_NET;
5667 ad.u.net = &net;
5668 ad.u.net->netif = ifindex;
5669 ad.u.net->family = family;
5670 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5671 return NF_DROP;
5672
5673 if (peerlbl_active) {
5674 int err;
5675
5676 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5677 addrp, family, peer_sid, &ad);
5678 if (err) {
5679 selinux_netlbl_err(skb, family, err, 1);
5680 return NF_DROP;
5681 }
5682 }
5683
5684 if (secmark_active)
5685 if (avc_has_perm(&selinux_state,
5686 peer_sid, skb->secmark,
5687 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5688 return NF_DROP;
5689
5690 if (netlbl_enabled())
5691 /* we do this in the FORWARD path and not the POST_ROUTING
5692 * path because we want to make sure we apply the necessary
5693 * labeling before IPsec is applied so we can leverage AH
5694 * protection */
5695 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5696 return NF_DROP;
5697
5698 return NF_ACCEPT;
5699}
5700
5701static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5702 const struct nf_hook_state *state)
5703{
5704 struct sock *sk;
5705 u32 sid;
5706
5707 if (!netlbl_enabled())
5708 return NF_ACCEPT;
5709
5710 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5711 * because we want to make sure we apply the necessary labeling
5712 * before IPsec is applied so we can leverage AH protection */
5713 sk = skb->sk;
5714 if (sk) {
5715 struct sk_security_struct *sksec;
5716
5717 if (sk_listener(sk))
5718 /* if the socket is the listening state then this
5719 * packet is a SYN-ACK packet which means it needs to
5720 * be labeled based on the connection/request_sock and
5721 * not the parent socket. unfortunately, we can't
5722 * lookup the request_sock yet as it isn't queued on
5723 * the parent socket until after the SYN-ACK is sent.
5724 * the "solution" is to simply pass the packet as-is
5725 * as any IP option based labeling should be copied
5726 * from the initial connection request (in the IP
5727 * layer). it is far from ideal, but until we get a
5728 * security label in the packet itself this is the
5729 * best we can do. */
5730 return NF_ACCEPT;
5731
5732 /* standard practice, label using the parent socket */
5733 sksec = sk->sk_security;
5734 sid = sksec->sid;
5735 } else
5736 sid = SECINITSID_KERNEL;
5737 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5738 return NF_DROP;
5739
5740 return NF_ACCEPT;
5741}
5742
5743
5744static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5745 const struct nf_hook_state *state)
5746{
5747 struct sock *sk;
5748 struct sk_security_struct *sksec;
5749 struct common_audit_data ad;
5750 struct lsm_network_audit net = {0,};
5751 u8 proto = 0;
5752
5753 sk = skb_to_full_sk(skb);
5754 if (sk == NULL)
5755 return NF_ACCEPT;
5756 sksec = sk->sk_security;
5757
5758 ad.type = LSM_AUDIT_DATA_NET;
5759 ad.u.net = &net;
5760 ad.u.net->netif = state->out->ifindex;
5761 ad.u.net->family = state->pf;
5762 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5763 return NF_DROP;
5764
5765 if (selinux_secmark_enabled())
5766 if (avc_has_perm(&selinux_state,
5767 sksec->sid, skb->secmark,
5768 SECCLASS_PACKET, PACKET__SEND, &ad))
5769 return NF_DROP_ERR(-ECONNREFUSED);
5770
5771 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5772 return NF_DROP_ERR(-ECONNREFUSED);
5773
5774 return NF_ACCEPT;
5775}
5776
5777static unsigned int selinux_ip_postroute(void *priv,
5778 struct sk_buff *skb,
5779 const struct nf_hook_state *state)
5780{
5781 u16 family;
5782 u32 secmark_perm;
5783 u32 peer_sid;
5784 int ifindex;
5785 struct sock *sk;
5786 struct common_audit_data ad;
5787 struct lsm_network_audit net = {0,};
5788 char *addrp;
5789 int secmark_active, peerlbl_active;
5790
5791 /* If any sort of compatibility mode is enabled then handoff processing
5792 * to the selinux_ip_postroute_compat() function to deal with the
5793 * special handling. We do this in an attempt to keep this function
5794 * as fast and as clean as possible. */
5795 if (!selinux_policycap_netpeer())
5796 return selinux_ip_postroute_compat(skb, state);
5797
5798 secmark_active = selinux_secmark_enabled();
5799 peerlbl_active = selinux_peerlbl_enabled();
5800 if (!secmark_active && !peerlbl_active)
5801 return NF_ACCEPT;
5802
5803 sk = skb_to_full_sk(skb);
5804
5805#ifdef CONFIG_XFRM
5806 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5807 * packet transformation so allow the packet to pass without any checks
5808 * since we'll have another chance to perform access control checks
5809 * when the packet is on it's final way out.
5810 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5811 * is NULL, in this case go ahead and apply access control.
5812 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5813 * TCP listening state we cannot wait until the XFRM processing
5814 * is done as we will miss out on the SA label if we do;
5815 * unfortunately, this means more work, but it is only once per
5816 * connection. */
5817 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5818 !(sk && sk_listener(sk)))
5819 return NF_ACCEPT;
5820#endif
5821
5822 family = state->pf;
5823 if (sk == NULL) {
5824 /* Without an associated socket the packet is either coming
5825 * from the kernel or it is being forwarded; check the packet
5826 * to determine which and if the packet is being forwarded
5827 * query the packet directly to determine the security label. */
5828 if (skb->skb_iif) {
5829 secmark_perm = PACKET__FORWARD_OUT;
5830 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5831 return NF_DROP;
5832 } else {
5833 secmark_perm = PACKET__SEND;
5834 peer_sid = SECINITSID_KERNEL;
5835 }
5836 } else if (sk_listener(sk)) {
5837 /* Locally generated packet but the associated socket is in the
5838 * listening state which means this is a SYN-ACK packet. In
5839 * this particular case the correct security label is assigned
5840 * to the connection/request_sock but unfortunately we can't
5841 * query the request_sock as it isn't queued on the parent
5842 * socket until after the SYN-ACK packet is sent; the only
5843 * viable choice is to regenerate the label like we do in
5844 * selinux_inet_conn_request(). See also selinux_ip_output()
5845 * for similar problems. */
5846 u32 skb_sid;
5847 struct sk_security_struct *sksec;
5848
5849 sksec = sk->sk_security;
5850 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5851 return NF_DROP;
5852 /* At this point, if the returned skb peerlbl is SECSID_NULL
5853 * and the packet has been through at least one XFRM
5854 * transformation then we must be dealing with the "final"
5855 * form of labeled IPsec packet; since we've already applied
5856 * all of our access controls on this packet we can safely
5857 * pass the packet. */
5858 if (skb_sid == SECSID_NULL) {
5859 switch (family) {
5860 case PF_INET:
5861 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5862 return NF_ACCEPT;
5863 break;
5864 case PF_INET6:
5865 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5866 return NF_ACCEPT;
5867 break;
5868 default:
5869 return NF_DROP_ERR(-ECONNREFUSED);
5870 }
5871 }
5872 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5873 return NF_DROP;
5874 secmark_perm = PACKET__SEND;
5875 } else {
5876 /* Locally generated packet, fetch the security label from the
5877 * associated socket. */
5878 struct sk_security_struct *sksec = sk->sk_security;
5879 peer_sid = sksec->sid;
5880 secmark_perm = PACKET__SEND;
5881 }
5882
5883 ifindex = state->out->ifindex;
5884 ad.type = LSM_AUDIT_DATA_NET;
5885 ad.u.net = &net;
5886 ad.u.net->netif = ifindex;
5887 ad.u.net->family = family;
5888 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5889 return NF_DROP;
5890
5891 if (secmark_active)
5892 if (avc_has_perm(&selinux_state,
5893 peer_sid, skb->secmark,
5894 SECCLASS_PACKET, secmark_perm, &ad))
5895 return NF_DROP_ERR(-ECONNREFUSED);
5896
5897 if (peerlbl_active) {
5898 u32 if_sid;
5899 u32 node_sid;
5900
5901 if (sel_netif_sid(state->net, ifindex, &if_sid))
5902 return NF_DROP;
5903 if (avc_has_perm(&selinux_state,
5904 peer_sid, if_sid,
5905 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5906 return NF_DROP_ERR(-ECONNREFUSED);
5907
5908 if (sel_netnode_sid(addrp, family, &node_sid))
5909 return NF_DROP;
5910 if (avc_has_perm(&selinux_state,
5911 peer_sid, node_sid,
5912 SECCLASS_NODE, NODE__SENDTO, &ad))
5913 return NF_DROP_ERR(-ECONNREFUSED);
5914 }
5915
5916 return NF_ACCEPT;
5917}
5918#endif /* CONFIG_NETFILTER */
5919
5920static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5921{
5922 int rc = 0;
5923 unsigned int msg_len;
5924 unsigned int data_len = skb->len;
5925 unsigned char *data = skb->data;
5926 struct nlmsghdr *nlh;
5927 struct sk_security_struct *sksec = sk->sk_security;
5928 u16 sclass = sksec->sclass;
5929 u32 perm;
5930
5931 while (data_len >= nlmsg_total_size(0)) {
5932 nlh = (struct nlmsghdr *)data;
5933
5934 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5935 * users which means we can't reject skb's with bogus
5936 * length fields; our solution is to follow what
5937 * netlink_rcv_skb() does and simply skip processing at
5938 * messages with length fields that are clearly junk
5939 */
5940 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5941 return 0;
5942
5943 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5944 if (rc == 0) {
5945 rc = sock_has_perm(sk, perm);
5946 if (rc)
5947 return rc;
5948 } else if (rc == -EINVAL) {
5949 /* -EINVAL is a missing msg/perm mapping */
5950 pr_warn_ratelimited("SELinux: unrecognized netlink"
5951 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5952 " pid=%d comm=%s\n",
5953 sk->sk_protocol, nlh->nlmsg_type,
5954 secclass_map[sclass - 1].name,
5955 task_pid_nr(current), current->comm);
5956 if (enforcing_enabled(&selinux_state) &&
5957 !security_get_allow_unknown(&selinux_state))
5958 return rc;
5959 rc = 0;
5960 } else if (rc == -ENOENT) {
5961 /* -ENOENT is a missing socket/class mapping, ignore */
5962 rc = 0;
5963 } else {
5964 return rc;
5965 }
5966
5967 /* move to the next message after applying netlink padding */
5968 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5969 if (msg_len >= data_len)
5970 return 0;
5971 data_len -= msg_len;
5972 data += msg_len;
5973 }
5974
5975 return rc;
5976}
5977
5978static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5979{
5980 isec->sclass = sclass;
5981 isec->sid = current_sid();
5982}
5983
5984static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5985 u32 perms)
5986{
5987 struct ipc_security_struct *isec;
5988 struct common_audit_data ad;
5989 u32 sid = current_sid();
5990
5991 isec = selinux_ipc(ipc_perms);
5992
5993 ad.type = LSM_AUDIT_DATA_IPC;
5994 ad.u.ipc_id = ipc_perms->key;
5995
5996 return avc_has_perm(&selinux_state,
5997 sid, isec->sid, isec->sclass, perms, &ad);
5998}
5999
6000static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6001{
6002 struct msg_security_struct *msec;
6003
6004 msec = selinux_msg_msg(msg);
6005 msec->sid = SECINITSID_UNLABELED;
6006
6007 return 0;
6008}
6009
6010/* message queue security operations */
6011static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6012{
6013 struct ipc_security_struct *isec;
6014 struct common_audit_data ad;
6015 u32 sid = current_sid();
6016
6017 isec = selinux_ipc(msq);
6018 ipc_init_security(isec, SECCLASS_MSGQ);
6019
6020 ad.type = LSM_AUDIT_DATA_IPC;
6021 ad.u.ipc_id = msq->key;
6022
6023 return avc_has_perm(&selinux_state,
6024 sid, isec->sid, SECCLASS_MSGQ,
6025 MSGQ__CREATE, &ad);
6026}
6027
6028static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6029{
6030 struct ipc_security_struct *isec;
6031 struct common_audit_data ad;
6032 u32 sid = current_sid();
6033
6034 isec = selinux_ipc(msq);
6035
6036 ad.type = LSM_AUDIT_DATA_IPC;
6037 ad.u.ipc_id = msq->key;
6038
6039 return avc_has_perm(&selinux_state,
6040 sid, isec->sid, SECCLASS_MSGQ,
6041 MSGQ__ASSOCIATE, &ad);
6042}
6043
6044static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6045{
6046 int err;
6047 int perms;
6048
6049 switch (cmd) {
6050 case IPC_INFO:
6051 case MSG_INFO:
6052 /* No specific object, just general system-wide information. */
6053 return avc_has_perm(&selinux_state,
6054 current_sid(), SECINITSID_KERNEL,
6055 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6056 case IPC_STAT:
6057 case MSG_STAT:
6058 case MSG_STAT_ANY:
6059 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6060 break;
6061 case IPC_SET:
6062 perms = MSGQ__SETATTR;
6063 break;
6064 case IPC_RMID:
6065 perms = MSGQ__DESTROY;
6066 break;
6067 default:
6068 return 0;
6069 }
6070
6071 err = ipc_has_perm(msq, perms);
6072 return err;
6073}
6074
6075static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6076{
6077 struct ipc_security_struct *isec;
6078 struct msg_security_struct *msec;
6079 struct common_audit_data ad;
6080 u32 sid = current_sid();
6081 int rc;
6082
6083 isec = selinux_ipc(msq);
6084 msec = selinux_msg_msg(msg);
6085
6086 /*
6087 * First time through, need to assign label to the message
6088 */
6089 if (msec->sid == SECINITSID_UNLABELED) {
6090 /*
6091 * Compute new sid based on current process and
6092 * message queue this message will be stored in
6093 */
6094 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6095 SECCLASS_MSG, NULL, &msec->sid);
6096 if (rc)
6097 return rc;
6098 }
6099
6100 ad.type = LSM_AUDIT_DATA_IPC;
6101 ad.u.ipc_id = msq->key;
6102
6103 /* Can this process write to the queue? */
6104 rc = avc_has_perm(&selinux_state,
6105 sid, isec->sid, SECCLASS_MSGQ,
6106 MSGQ__WRITE, &ad);
6107 if (!rc)
6108 /* Can this process send the message */
6109 rc = avc_has_perm(&selinux_state,
6110 sid, msec->sid, SECCLASS_MSG,
6111 MSG__SEND, &ad);
6112 if (!rc)
6113 /* Can the message be put in the queue? */
6114 rc = avc_has_perm(&selinux_state,
6115 msec->sid, isec->sid, SECCLASS_MSGQ,
6116 MSGQ__ENQUEUE, &ad);
6117
6118 return rc;
6119}
6120
6121static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6122 struct task_struct *target,
6123 long type, int mode)
6124{
6125 struct ipc_security_struct *isec;
6126 struct msg_security_struct *msec;
6127 struct common_audit_data ad;
6128 u32 sid = task_sid_obj(target);
6129 int rc;
6130
6131 isec = selinux_ipc(msq);
6132 msec = selinux_msg_msg(msg);
6133
6134 ad.type = LSM_AUDIT_DATA_IPC;
6135 ad.u.ipc_id = msq->key;
6136
6137 rc = avc_has_perm(&selinux_state,
6138 sid, isec->sid,
6139 SECCLASS_MSGQ, MSGQ__READ, &ad);
6140 if (!rc)
6141 rc = avc_has_perm(&selinux_state,
6142 sid, msec->sid,
6143 SECCLASS_MSG, MSG__RECEIVE, &ad);
6144 return rc;
6145}
6146
6147/* Shared Memory security operations */
6148static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6149{
6150 struct ipc_security_struct *isec;
6151 struct common_audit_data ad;
6152 u32 sid = current_sid();
6153
6154 isec = selinux_ipc(shp);
6155 ipc_init_security(isec, SECCLASS_SHM);
6156
6157 ad.type = LSM_AUDIT_DATA_IPC;
6158 ad.u.ipc_id = shp->key;
6159
6160 return avc_has_perm(&selinux_state,
6161 sid, isec->sid, SECCLASS_SHM,
6162 SHM__CREATE, &ad);
6163}
6164
6165static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6166{
6167 struct ipc_security_struct *isec;
6168 struct common_audit_data ad;
6169 u32 sid = current_sid();
6170
6171 isec = selinux_ipc(shp);
6172
6173 ad.type = LSM_AUDIT_DATA_IPC;
6174 ad.u.ipc_id = shp->key;
6175
6176 return avc_has_perm(&selinux_state,
6177 sid, isec->sid, SECCLASS_SHM,
6178 SHM__ASSOCIATE, &ad);
6179}
6180
6181/* Note, at this point, shp is locked down */
6182static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6183{
6184 int perms;
6185 int err;
6186
6187 switch (cmd) {
6188 case IPC_INFO:
6189 case SHM_INFO:
6190 /* No specific object, just general system-wide information. */
6191 return avc_has_perm(&selinux_state,
6192 current_sid(), SECINITSID_KERNEL,
6193 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6194 case IPC_STAT:
6195 case SHM_STAT:
6196 case SHM_STAT_ANY:
6197 perms = SHM__GETATTR | SHM__ASSOCIATE;
6198 break;
6199 case IPC_SET:
6200 perms = SHM__SETATTR;
6201 break;
6202 case SHM_LOCK:
6203 case SHM_UNLOCK:
6204 perms = SHM__LOCK;
6205 break;
6206 case IPC_RMID:
6207 perms = SHM__DESTROY;
6208 break;
6209 default:
6210 return 0;
6211 }
6212
6213 err = ipc_has_perm(shp, perms);
6214 return err;
6215}
6216
6217static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6218 char __user *shmaddr, int shmflg)
6219{
6220 u32 perms;
6221
6222 if (shmflg & SHM_RDONLY)
6223 perms = SHM__READ;
6224 else
6225 perms = SHM__READ | SHM__WRITE;
6226
6227 return ipc_has_perm(shp, perms);
6228}
6229
6230/* Semaphore security operations */
6231static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6232{
6233 struct ipc_security_struct *isec;
6234 struct common_audit_data ad;
6235 u32 sid = current_sid();
6236
6237 isec = selinux_ipc(sma);
6238 ipc_init_security(isec, SECCLASS_SEM);
6239
6240 ad.type = LSM_AUDIT_DATA_IPC;
6241 ad.u.ipc_id = sma->key;
6242
6243 return avc_has_perm(&selinux_state,
6244 sid, isec->sid, SECCLASS_SEM,
6245 SEM__CREATE, &ad);
6246}
6247
6248static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6249{
6250 struct ipc_security_struct *isec;
6251 struct common_audit_data ad;
6252 u32 sid = current_sid();
6253
6254 isec = selinux_ipc(sma);
6255
6256 ad.type = LSM_AUDIT_DATA_IPC;
6257 ad.u.ipc_id = sma->key;
6258
6259 return avc_has_perm(&selinux_state,
6260 sid, isec->sid, SECCLASS_SEM,
6261 SEM__ASSOCIATE, &ad);
6262}
6263
6264/* Note, at this point, sma is locked down */
6265static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6266{
6267 int err;
6268 u32 perms;
6269
6270 switch (cmd) {
6271 case IPC_INFO:
6272 case SEM_INFO:
6273 /* No specific object, just general system-wide information. */
6274 return avc_has_perm(&selinux_state,
6275 current_sid(), SECINITSID_KERNEL,
6276 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6277 case GETPID:
6278 case GETNCNT:
6279 case GETZCNT:
6280 perms = SEM__GETATTR;
6281 break;
6282 case GETVAL:
6283 case GETALL:
6284 perms = SEM__READ;
6285 break;
6286 case SETVAL:
6287 case SETALL:
6288 perms = SEM__WRITE;
6289 break;
6290 case IPC_RMID:
6291 perms = SEM__DESTROY;
6292 break;
6293 case IPC_SET:
6294 perms = SEM__SETATTR;
6295 break;
6296 case IPC_STAT:
6297 case SEM_STAT:
6298 case SEM_STAT_ANY:
6299 perms = SEM__GETATTR | SEM__ASSOCIATE;
6300 break;
6301 default:
6302 return 0;
6303 }
6304
6305 err = ipc_has_perm(sma, perms);
6306 return err;
6307}
6308
6309static int selinux_sem_semop(struct kern_ipc_perm *sma,
6310 struct sembuf *sops, unsigned nsops, int alter)
6311{
6312 u32 perms;
6313
6314 if (alter)
6315 perms = SEM__READ | SEM__WRITE;
6316 else
6317 perms = SEM__READ;
6318
6319 return ipc_has_perm(sma, perms);
6320}
6321
6322static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6323{
6324 u32 av = 0;
6325
6326 av = 0;
6327 if (flag & S_IRUGO)
6328 av |= IPC__UNIX_READ;
6329 if (flag & S_IWUGO)
6330 av |= IPC__UNIX_WRITE;
6331
6332 if (av == 0)
6333 return 0;
6334
6335 return ipc_has_perm(ipcp, av);
6336}
6337
6338static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6339{
6340 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6341 *secid = isec->sid;
6342}
6343
6344static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6345{
6346 if (inode)
6347 inode_doinit_with_dentry(inode, dentry);
6348}
6349
6350static int selinux_getprocattr(struct task_struct *p,
6351 const char *name, char **value)
6352{
6353 const struct task_security_struct *__tsec;
6354 u32 sid;
6355 int error;
6356 unsigned len;
6357
6358 rcu_read_lock();
6359 __tsec = selinux_cred(__task_cred(p));
6360
6361 if (current != p) {
6362 error = avc_has_perm(&selinux_state,
6363 current_sid(), __tsec->sid,
6364 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6365 if (error)
6366 goto bad;
6367 }
6368
6369 if (!strcmp(name, "current"))
6370 sid = __tsec->sid;
6371 else if (!strcmp(name, "prev"))
6372 sid = __tsec->osid;
6373 else if (!strcmp(name, "exec"))
6374 sid = __tsec->exec_sid;
6375 else if (!strcmp(name, "fscreate"))
6376 sid = __tsec->create_sid;
6377 else if (!strcmp(name, "keycreate"))
6378 sid = __tsec->keycreate_sid;
6379 else if (!strcmp(name, "sockcreate"))
6380 sid = __tsec->sockcreate_sid;
6381 else {
6382 error = -EINVAL;
6383 goto bad;
6384 }
6385 rcu_read_unlock();
6386
6387 if (!sid)
6388 return 0;
6389
6390 error = security_sid_to_context(&selinux_state, sid, value, &len);
6391 if (error)
6392 return error;
6393 return len;
6394
6395bad:
6396 rcu_read_unlock();
6397 return error;
6398}
6399
6400static int selinux_setprocattr(const char *name, void *value, size_t size)
6401{
6402 struct task_security_struct *tsec;
6403 struct cred *new;
6404 u32 mysid = current_sid(), sid = 0, ptsid;
6405 int error;
6406 char *str = value;
6407
6408 /*
6409 * Basic control over ability to set these attributes at all.
6410 */
6411 if (!strcmp(name, "exec"))
6412 error = avc_has_perm(&selinux_state,
6413 mysid, mysid, SECCLASS_PROCESS,
6414 PROCESS__SETEXEC, NULL);
6415 else if (!strcmp(name, "fscreate"))
6416 error = avc_has_perm(&selinux_state,
6417 mysid, mysid, SECCLASS_PROCESS,
6418 PROCESS__SETFSCREATE, NULL);
6419 else if (!strcmp(name, "keycreate"))
6420 error = avc_has_perm(&selinux_state,
6421 mysid, mysid, SECCLASS_PROCESS,
6422 PROCESS__SETKEYCREATE, NULL);
6423 else if (!strcmp(name, "sockcreate"))
6424 error = avc_has_perm(&selinux_state,
6425 mysid, mysid, SECCLASS_PROCESS,
6426 PROCESS__SETSOCKCREATE, NULL);
6427 else if (!strcmp(name, "current"))
6428 error = avc_has_perm(&selinux_state,
6429 mysid, mysid, SECCLASS_PROCESS,
6430 PROCESS__SETCURRENT, NULL);
6431 else
6432 error = -EINVAL;
6433 if (error)
6434 return error;
6435
6436 /* Obtain a SID for the context, if one was specified. */
6437 if (size && str[0] && str[0] != '\n') {
6438 if (str[size-1] == '\n') {
6439 str[size-1] = 0;
6440 size--;
6441 }
6442 error = security_context_to_sid(&selinux_state, value, size,
6443 &sid, GFP_KERNEL);
6444 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6445 if (!has_cap_mac_admin(true)) {
6446 struct audit_buffer *ab;
6447 size_t audit_size;
6448
6449 /* We strip a nul only if it is at the end, otherwise the
6450 * context contains a nul and we should audit that */
6451 if (str[size - 1] == '\0')
6452 audit_size = size - 1;
6453 else
6454 audit_size = size;
6455 ab = audit_log_start(audit_context(),
6456 GFP_ATOMIC,
6457 AUDIT_SELINUX_ERR);
6458 if (!ab)
6459 return error;
6460 audit_log_format(ab, "op=fscreate invalid_context=");
6461 audit_log_n_untrustedstring(ab, value, audit_size);
6462 audit_log_end(ab);
6463
6464 return error;
6465 }
6466 error = security_context_to_sid_force(
6467 &selinux_state,
6468 value, size, &sid);
6469 }
6470 if (error)
6471 return error;
6472 }
6473
6474 new = prepare_creds();
6475 if (!new)
6476 return -ENOMEM;
6477
6478 /* Permission checking based on the specified context is
6479 performed during the actual operation (execve,
6480 open/mkdir/...), when we know the full context of the
6481 operation. See selinux_bprm_creds_for_exec for the execve
6482 checks and may_create for the file creation checks. The
6483 operation will then fail if the context is not permitted. */
6484 tsec = selinux_cred(new);
6485 if (!strcmp(name, "exec")) {
6486 tsec->exec_sid = sid;
6487 } else if (!strcmp(name, "fscreate")) {
6488 tsec->create_sid = sid;
6489 } else if (!strcmp(name, "keycreate")) {
6490 if (sid) {
6491 error = avc_has_perm(&selinux_state, mysid, sid,
6492 SECCLASS_KEY, KEY__CREATE, NULL);
6493 if (error)
6494 goto abort_change;
6495 }
6496 tsec->keycreate_sid = sid;
6497 } else if (!strcmp(name, "sockcreate")) {
6498 tsec->sockcreate_sid = sid;
6499 } else if (!strcmp(name, "current")) {
6500 error = -EINVAL;
6501 if (sid == 0)
6502 goto abort_change;
6503
6504 /* Only allow single threaded processes to change context */
6505 if (!current_is_single_threaded()) {
6506 error = security_bounded_transition(&selinux_state,
6507 tsec->sid, sid);
6508 if (error)
6509 goto abort_change;
6510 }
6511
6512 /* Check permissions for the transition. */
6513 error = avc_has_perm(&selinux_state,
6514 tsec->sid, sid, SECCLASS_PROCESS,
6515 PROCESS__DYNTRANSITION, NULL);
6516 if (error)
6517 goto abort_change;
6518
6519 /* Check for ptracing, and update the task SID if ok.
6520 Otherwise, leave SID unchanged and fail. */
6521 ptsid = ptrace_parent_sid();
6522 if (ptsid != 0) {
6523 error = avc_has_perm(&selinux_state,
6524 ptsid, sid, SECCLASS_PROCESS,
6525 PROCESS__PTRACE, NULL);
6526 if (error)
6527 goto abort_change;
6528 }
6529
6530 tsec->sid = sid;
6531 } else {
6532 error = -EINVAL;
6533 goto abort_change;
6534 }
6535
6536 commit_creds(new);
6537 return size;
6538
6539abort_change:
6540 abort_creds(new);
6541 return error;
6542}
6543
6544static int selinux_ismaclabel(const char *name)
6545{
6546 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6547}
6548
6549static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6550{
6551 return security_sid_to_context(&selinux_state, secid,
6552 secdata, seclen);
6553}
6554
6555static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6556{
6557 return security_context_to_sid(&selinux_state, secdata, seclen,
6558 secid, GFP_KERNEL);
6559}
6560
6561static void selinux_release_secctx(char *secdata, u32 seclen)
6562{
6563 kfree(secdata);
6564}
6565
6566static void selinux_inode_invalidate_secctx(struct inode *inode)
6567{
6568 struct inode_security_struct *isec = selinux_inode(inode);
6569
6570 spin_lock(&isec->lock);
6571 isec->initialized = LABEL_INVALID;
6572 spin_unlock(&isec->lock);
6573}
6574
6575/*
6576 * called with inode->i_mutex locked
6577 */
6578static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6579{
6580 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6581 ctx, ctxlen, 0);
6582 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6583 return rc == -EOPNOTSUPP ? 0 : rc;
6584}
6585
6586/*
6587 * called with inode->i_mutex locked
6588 */
6589static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6590{
6591 return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6592 ctx, ctxlen, 0);
6593}
6594
6595static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6596{
6597 int len = 0;
6598 len = selinux_inode_getsecurity(&init_user_ns, inode,
6599 XATTR_SELINUX_SUFFIX, ctx, true);
6600 if (len < 0)
6601 return len;
6602 *ctxlen = len;
6603 return 0;
6604}
6605#ifdef CONFIG_KEYS
6606
6607static int selinux_key_alloc(struct key *k, const struct cred *cred,
6608 unsigned long flags)
6609{
6610 const struct task_security_struct *tsec;
6611 struct key_security_struct *ksec;
6612
6613 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6614 if (!ksec)
6615 return -ENOMEM;
6616
6617 tsec = selinux_cred(cred);
6618 if (tsec->keycreate_sid)
6619 ksec->sid = tsec->keycreate_sid;
6620 else
6621 ksec->sid = tsec->sid;
6622
6623 k->security = ksec;
6624 return 0;
6625}
6626
6627static void selinux_key_free(struct key *k)
6628{
6629 struct key_security_struct *ksec = k->security;
6630
6631 k->security = NULL;
6632 kfree(ksec);
6633}
6634
6635static int selinux_key_permission(key_ref_t key_ref,
6636 const struct cred *cred,
6637 enum key_need_perm need_perm)
6638{
6639 struct key *key;
6640 struct key_security_struct *ksec;
6641 u32 perm, sid;
6642
6643 switch (need_perm) {
6644 case KEY_NEED_VIEW:
6645 perm = KEY__VIEW;
6646 break;
6647 case KEY_NEED_READ:
6648 perm = KEY__READ;
6649 break;
6650 case KEY_NEED_WRITE:
6651 perm = KEY__WRITE;
6652 break;
6653 case KEY_NEED_SEARCH:
6654 perm = KEY__SEARCH;
6655 break;
6656 case KEY_NEED_LINK:
6657 perm = KEY__LINK;
6658 break;
6659 case KEY_NEED_SETATTR:
6660 perm = KEY__SETATTR;
6661 break;
6662 case KEY_NEED_UNLINK:
6663 case KEY_SYSADMIN_OVERRIDE:
6664 case KEY_AUTHTOKEN_OVERRIDE:
6665 case KEY_DEFER_PERM_CHECK:
6666 return 0;
6667 default:
6668 WARN_ON(1);
6669 return -EPERM;
6670
6671 }
6672
6673 sid = cred_sid(cred);
6674 key = key_ref_to_ptr(key_ref);
6675 ksec = key->security;
6676
6677 return avc_has_perm(&selinux_state,
6678 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6679}
6680
6681static int selinux_key_getsecurity(struct key *key, char **_buffer)
6682{
6683 struct key_security_struct *ksec = key->security;
6684 char *context = NULL;
6685 unsigned len;
6686 int rc;
6687
6688 rc = security_sid_to_context(&selinux_state, ksec->sid,
6689 &context, &len);
6690 if (!rc)
6691 rc = len;
6692 *_buffer = context;
6693 return rc;
6694}
6695
6696#ifdef CONFIG_KEY_NOTIFICATIONS
6697static int selinux_watch_key(struct key *key)
6698{
6699 struct key_security_struct *ksec = key->security;
6700 u32 sid = current_sid();
6701
6702 return avc_has_perm(&selinux_state,
6703 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6704}
6705#endif
6706#endif
6707
6708#ifdef CONFIG_SECURITY_INFINIBAND
6709static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6710{
6711 struct common_audit_data ad;
6712 int err;
6713 u32 sid = 0;
6714 struct ib_security_struct *sec = ib_sec;
6715 struct lsm_ibpkey_audit ibpkey;
6716
6717 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6718 if (err)
6719 return err;
6720
6721 ad.type = LSM_AUDIT_DATA_IBPKEY;
6722 ibpkey.subnet_prefix = subnet_prefix;
6723 ibpkey.pkey = pkey_val;
6724 ad.u.ibpkey = &ibpkey;
6725 return avc_has_perm(&selinux_state,
6726 sec->sid, sid,
6727 SECCLASS_INFINIBAND_PKEY,
6728 INFINIBAND_PKEY__ACCESS, &ad);
6729}
6730
6731static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6732 u8 port_num)
6733{
6734 struct common_audit_data ad;
6735 int err;
6736 u32 sid = 0;
6737 struct ib_security_struct *sec = ib_sec;
6738 struct lsm_ibendport_audit ibendport;
6739
6740 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6741 &sid);
6742
6743 if (err)
6744 return err;
6745
6746 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6747 ibendport.dev_name = dev_name;
6748 ibendport.port = port_num;
6749 ad.u.ibendport = &ibendport;
6750 return avc_has_perm(&selinux_state,
6751 sec->sid, sid,
6752 SECCLASS_INFINIBAND_ENDPORT,
6753 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6754}
6755
6756static int selinux_ib_alloc_security(void **ib_sec)
6757{
6758 struct ib_security_struct *sec;
6759
6760 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6761 if (!sec)
6762 return -ENOMEM;
6763 sec->sid = current_sid();
6764
6765 *ib_sec = sec;
6766 return 0;
6767}
6768
6769static void selinux_ib_free_security(void *ib_sec)
6770{
6771 kfree(ib_sec);
6772}
6773#endif
6774
6775#ifdef CONFIG_BPF_SYSCALL
6776static int selinux_bpf(int cmd, union bpf_attr *attr,
6777 unsigned int size)
6778{
6779 u32 sid = current_sid();
6780 int ret;
6781
6782 switch (cmd) {
6783 case BPF_MAP_CREATE:
6784 ret = avc_has_perm(&selinux_state,
6785 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6786 NULL);
6787 break;
6788 case BPF_PROG_LOAD:
6789 ret = avc_has_perm(&selinux_state,
6790 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6791 NULL);
6792 break;
6793 default:
6794 ret = 0;
6795 break;
6796 }
6797
6798 return ret;
6799}
6800
6801static u32 bpf_map_fmode_to_av(fmode_t fmode)
6802{
6803 u32 av = 0;
6804
6805 if (fmode & FMODE_READ)
6806 av |= BPF__MAP_READ;
6807 if (fmode & FMODE_WRITE)
6808 av |= BPF__MAP_WRITE;
6809 return av;
6810}
6811
6812/* This function will check the file pass through unix socket or binder to see
6813 * if it is a bpf related object. And apply corresponding checks on the bpf
6814 * object based on the type. The bpf maps and programs, not like other files and
6815 * socket, are using a shared anonymous inode inside the kernel as their inode.
6816 * So checking that inode cannot identify if the process have privilege to
6817 * access the bpf object and that's why we have to add this additional check in
6818 * selinux_file_receive and selinux_binder_transfer_files.
6819 */
6820static int bpf_fd_pass(struct file *file, u32 sid)
6821{
6822 struct bpf_security_struct *bpfsec;
6823 struct bpf_prog *prog;
6824 struct bpf_map *map;
6825 int ret;
6826
6827 if (file->f_op == &bpf_map_fops) {
6828 map = file->private_data;
6829 bpfsec = map->security;
6830 ret = avc_has_perm(&selinux_state,
6831 sid, bpfsec->sid, SECCLASS_BPF,
6832 bpf_map_fmode_to_av(file->f_mode), NULL);
6833 if (ret)
6834 return ret;
6835 } else if (file->f_op == &bpf_prog_fops) {
6836 prog = file->private_data;
6837 bpfsec = prog->aux->security;
6838 ret = avc_has_perm(&selinux_state,
6839 sid, bpfsec->sid, SECCLASS_BPF,
6840 BPF__PROG_RUN, NULL);
6841 if (ret)
6842 return ret;
6843 }
6844 return 0;
6845}
6846
6847static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6848{
6849 u32 sid = current_sid();
6850 struct bpf_security_struct *bpfsec;
6851
6852 bpfsec = map->security;
6853 return avc_has_perm(&selinux_state,
6854 sid, bpfsec->sid, SECCLASS_BPF,
6855 bpf_map_fmode_to_av(fmode), NULL);
6856}
6857
6858static int selinux_bpf_prog(struct bpf_prog *prog)
6859{
6860 u32 sid = current_sid();
6861 struct bpf_security_struct *bpfsec;
6862
6863 bpfsec = prog->aux->security;
6864 return avc_has_perm(&selinux_state,
6865 sid, bpfsec->sid, SECCLASS_BPF,
6866 BPF__PROG_RUN, NULL);
6867}
6868
6869static int selinux_bpf_map_alloc(struct bpf_map *map)
6870{
6871 struct bpf_security_struct *bpfsec;
6872
6873 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6874 if (!bpfsec)
6875 return -ENOMEM;
6876
6877 bpfsec->sid = current_sid();
6878 map->security = bpfsec;
6879
6880 return 0;
6881}
6882
6883static void selinux_bpf_map_free(struct bpf_map *map)
6884{
6885 struct bpf_security_struct *bpfsec = map->security;
6886
6887 map->security = NULL;
6888 kfree(bpfsec);
6889}
6890
6891static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6892{
6893 struct bpf_security_struct *bpfsec;
6894
6895 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6896 if (!bpfsec)
6897 return -ENOMEM;
6898
6899 bpfsec->sid = current_sid();
6900 aux->security = bpfsec;
6901
6902 return 0;
6903}
6904
6905static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6906{
6907 struct bpf_security_struct *bpfsec = aux->security;
6908
6909 aux->security = NULL;
6910 kfree(bpfsec);
6911}
6912#endif
6913
6914struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6915 .lbs_cred = sizeof(struct task_security_struct),
6916 .lbs_file = sizeof(struct file_security_struct),
6917 .lbs_inode = sizeof(struct inode_security_struct),
6918 .lbs_ipc = sizeof(struct ipc_security_struct),
6919 .lbs_msg_msg = sizeof(struct msg_security_struct),
6920 .lbs_superblock = sizeof(struct superblock_security_struct),
6921};
6922
6923#ifdef CONFIG_PERF_EVENTS
6924static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6925{
6926 u32 requested, sid = current_sid();
6927
6928 if (type == PERF_SECURITY_OPEN)
6929 requested = PERF_EVENT__OPEN;
6930 else if (type == PERF_SECURITY_CPU)
6931 requested = PERF_EVENT__CPU;
6932 else if (type == PERF_SECURITY_KERNEL)
6933 requested = PERF_EVENT__KERNEL;
6934 else if (type == PERF_SECURITY_TRACEPOINT)
6935 requested = PERF_EVENT__TRACEPOINT;
6936 else
6937 return -EINVAL;
6938
6939 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6940 requested, NULL);
6941}
6942
6943static int selinux_perf_event_alloc(struct perf_event *event)
6944{
6945 struct perf_event_security_struct *perfsec;
6946
6947 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6948 if (!perfsec)
6949 return -ENOMEM;
6950
6951 perfsec->sid = current_sid();
6952 event->security = perfsec;
6953
6954 return 0;
6955}
6956
6957static void selinux_perf_event_free(struct perf_event *event)
6958{
6959 struct perf_event_security_struct *perfsec = event->security;
6960
6961 event->security = NULL;
6962 kfree(perfsec);
6963}
6964
6965static int selinux_perf_event_read(struct perf_event *event)
6966{
6967 struct perf_event_security_struct *perfsec = event->security;
6968 u32 sid = current_sid();
6969
6970 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6971 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6972}
6973
6974static int selinux_perf_event_write(struct perf_event *event)
6975{
6976 struct perf_event_security_struct *perfsec = event->security;
6977 u32 sid = current_sid();
6978
6979 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6980 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6981}
6982#endif
6983
6984#ifdef CONFIG_IO_URING
6985/**
6986 * selinux_uring_override_creds - check the requested cred override
6987 * @new: the target creds
6988 *
6989 * Check to see if the current task is allowed to override it's credentials
6990 * to service an io_uring operation.
6991 */
6992static int selinux_uring_override_creds(const struct cred *new)
6993{
6994 return avc_has_perm(&selinux_state, current_sid(), cred_sid(new),
6995 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
6996}
6997
6998/**
6999 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7000 *
7001 * Check to see if the current task is allowed to create a new io_uring
7002 * kernel polling thread.
7003 */
7004static int selinux_uring_sqpoll(void)
7005{
7006 int sid = current_sid();
7007
7008 return avc_has_perm(&selinux_state, sid, sid,
7009 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7010}
7011
7012/**
7013 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7014 * @ioucmd: the io_uring command structure
7015 *
7016 * Check to see if the current domain is allowed to execute an
7017 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7018 *
7019 */
7020static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7021{
7022 struct file *file = ioucmd->file;
7023 struct inode *inode = file_inode(file);
7024 struct inode_security_struct *isec = selinux_inode(inode);
7025 struct common_audit_data ad;
7026
7027 ad.type = LSM_AUDIT_DATA_FILE;
7028 ad.u.file = file;
7029
7030 return avc_has_perm(&selinux_state, current_sid(), isec->sid,
7031 SECCLASS_IO_URING, IO_URING__CMD, &ad);
7032}
7033#endif /* CONFIG_IO_URING */
7034
7035/*
7036 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7037 * 1. any hooks that don't belong to (2.) or (3.) below,
7038 * 2. hooks that both access structures allocated by other hooks, and allocate
7039 * structures that can be later accessed by other hooks (mostly "cloning"
7040 * hooks),
7041 * 3. hooks that only allocate structures that can be later accessed by other
7042 * hooks ("allocating" hooks).
7043 *
7044 * Please follow block comment delimiters in the list to keep this order.
7045 *
7046 * This ordering is needed for SELinux runtime disable to work at least somewhat
7047 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7048 * when disabling SELinux at runtime.
7049 */
7050static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7051 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7052 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7053 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7054 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7055
7056 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7057 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7058 LSM_HOOK_INIT(capget, selinux_capget),
7059 LSM_HOOK_INIT(capset, selinux_capset),
7060 LSM_HOOK_INIT(capable, selinux_capable),
7061 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7062 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7063 LSM_HOOK_INIT(syslog, selinux_syslog),
7064 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7065
7066 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7067
7068 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7069 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7070 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7071
7072 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7073 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7074 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7075 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7076 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7077 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7078 LSM_HOOK_INIT(sb_mount, selinux_mount),
7079 LSM_HOOK_INIT(sb_umount, selinux_umount),
7080 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7081 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7082
7083 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7084
7085 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7086 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7087
7088 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7089 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7090 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7091 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7092 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7093 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7094 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7095 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7096 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7097 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7098 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7099 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7100 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7101 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7102 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7103 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7104 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7105 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7106 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7107 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7108 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7109 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7110 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7111 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7112 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7113 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7114 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7115 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7116 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7117 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7118 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7119
7120 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7121
7122 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7123 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7124 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7125 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7126 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7127 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7128 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7129 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7130 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7131 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7132 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7133
7134 LSM_HOOK_INIT(file_open, selinux_file_open),
7135
7136 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7137 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7138 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7139 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7140 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7141 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7142 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7143 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7144 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7145 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7146 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7147 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7148 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7149 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7150 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7151 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7152 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7153 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7154 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7155 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7156 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7157 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7158 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7159 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7160 LSM_HOOK_INIT(userns_create, selinux_userns_create),
7161
7162 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7163 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7164
7165 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7166 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7167 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7168 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7169
7170 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7171 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7172 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7173
7174 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7175 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7176 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7177
7178 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7179
7180 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7181 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7182
7183 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7184 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7185 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7186 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7187 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7188 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7189
7190 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7191 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7192
7193 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7194 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7195 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7196 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7197 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7198 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7199 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7200 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7201 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7202 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7203 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7204 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7205 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7206 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7207 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7208 LSM_HOOK_INIT(socket_getpeersec_stream,
7209 selinux_socket_getpeersec_stream),
7210 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7211 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7212 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7213 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7214 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7215 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7216 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7217 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7218 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7219 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7220 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7221 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7222 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7223 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7224 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7225 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7226 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7227 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7228 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7229 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7230 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7231#ifdef CONFIG_SECURITY_INFINIBAND
7232 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7233 LSM_HOOK_INIT(ib_endport_manage_subnet,
7234 selinux_ib_endport_manage_subnet),
7235 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7236#endif
7237#ifdef CONFIG_SECURITY_NETWORK_XFRM
7238 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7239 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7240 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7241 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7242 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7243 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7244 selinux_xfrm_state_pol_flow_match),
7245 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7246#endif
7247
7248#ifdef CONFIG_KEYS
7249 LSM_HOOK_INIT(key_free, selinux_key_free),
7250 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7251 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7252#ifdef CONFIG_KEY_NOTIFICATIONS
7253 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7254#endif
7255#endif
7256
7257#ifdef CONFIG_AUDIT
7258 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7259 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7260 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7261#endif
7262
7263#ifdef CONFIG_BPF_SYSCALL
7264 LSM_HOOK_INIT(bpf, selinux_bpf),
7265 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7266 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7267 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7268 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7269#endif
7270
7271#ifdef CONFIG_PERF_EVENTS
7272 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7273 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7274 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7275 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7276#endif
7277
7278#ifdef CONFIG_IO_URING
7279 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7280 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7281 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7282#endif
7283
7284 /*
7285 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7286 */
7287 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7288 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7289 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7290#ifdef CONFIG_SECURITY_NETWORK_XFRM
7291 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7292#endif
7293
7294 /*
7295 * PUT "ALLOCATING" HOOKS HERE
7296 */
7297 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7298 LSM_HOOK_INIT(msg_queue_alloc_security,
7299 selinux_msg_queue_alloc_security),
7300 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7301 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7302 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7303 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7304 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7305 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7306 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7307 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7308#ifdef CONFIG_SECURITY_INFINIBAND
7309 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7310#endif
7311#ifdef CONFIG_SECURITY_NETWORK_XFRM
7312 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7313 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7314 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7315 selinux_xfrm_state_alloc_acquire),
7316#endif
7317#ifdef CONFIG_KEYS
7318 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7319#endif
7320#ifdef CONFIG_AUDIT
7321 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7322#endif
7323#ifdef CONFIG_BPF_SYSCALL
7324 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7325 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7326#endif
7327#ifdef CONFIG_PERF_EVENTS
7328 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7329#endif
7330};
7331
7332static __init int selinux_init(void)
7333{
7334 pr_info("SELinux: Initializing.\n");
7335
7336 memset(&selinux_state, 0, sizeof(selinux_state));
7337 enforcing_set(&selinux_state, selinux_enforcing_boot);
7338 if (CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE)
7339 pr_err("SELinux: CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE is non-zero. This is deprecated and will be rejected in a future kernel release.\n");
7340 checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7341 selinux_avc_init(&selinux_state.avc);
7342 mutex_init(&selinux_state.status_lock);
7343 mutex_init(&selinux_state.policy_mutex);
7344
7345 /* Set the security state for the initial task. */
7346 cred_init_security();
7347
7348 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7349
7350 avc_init();
7351
7352 avtab_cache_init();
7353
7354 ebitmap_cache_init();
7355
7356 hashtab_cache_init();
7357
7358 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7359
7360 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7361 panic("SELinux: Unable to register AVC netcache callback\n");
7362
7363 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7364 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7365
7366 if (selinux_enforcing_boot)
7367 pr_debug("SELinux: Starting in enforcing mode\n");
7368 else
7369 pr_debug("SELinux: Starting in permissive mode\n");
7370
7371 fs_validate_description("selinux", selinux_fs_parameters);
7372
7373 return 0;
7374}
7375
7376static void delayed_superblock_init(struct super_block *sb, void *unused)
7377{
7378 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7379}
7380
7381void selinux_complete_init(void)
7382{
7383 pr_debug("SELinux: Completing initialization.\n");
7384
7385 /* Set up any superblocks initialized prior to the policy load. */
7386 pr_debug("SELinux: Setting up existing superblocks.\n");
7387 iterate_supers(delayed_superblock_init, NULL);
7388}
7389
7390/* SELinux requires early initialization in order to label
7391 all processes and objects when they are created. */
7392DEFINE_LSM(selinux) = {
7393 .name = "selinux",
7394 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7395 .enabled = &selinux_enabled_boot,
7396 .blobs = &selinux_blob_sizes,
7397 .init = selinux_init,
7398};
7399
7400#if defined(CONFIG_NETFILTER)
7401
7402static const struct nf_hook_ops selinux_nf_ops[] = {
7403 {
7404 .hook = selinux_ip_postroute,
7405 .pf = NFPROTO_IPV4,
7406 .hooknum = NF_INET_POST_ROUTING,
7407 .priority = NF_IP_PRI_SELINUX_LAST,
7408 },
7409 {
7410 .hook = selinux_ip_forward,
7411 .pf = NFPROTO_IPV4,
7412 .hooknum = NF_INET_FORWARD,
7413 .priority = NF_IP_PRI_SELINUX_FIRST,
7414 },
7415 {
7416 .hook = selinux_ip_output,
7417 .pf = NFPROTO_IPV4,
7418 .hooknum = NF_INET_LOCAL_OUT,
7419 .priority = NF_IP_PRI_SELINUX_FIRST,
7420 },
7421#if IS_ENABLED(CONFIG_IPV6)
7422 {
7423 .hook = selinux_ip_postroute,
7424 .pf = NFPROTO_IPV6,
7425 .hooknum = NF_INET_POST_ROUTING,
7426 .priority = NF_IP6_PRI_SELINUX_LAST,
7427 },
7428 {
7429 .hook = selinux_ip_forward,
7430 .pf = NFPROTO_IPV6,
7431 .hooknum = NF_INET_FORWARD,
7432 .priority = NF_IP6_PRI_SELINUX_FIRST,
7433 },
7434 {
7435 .hook = selinux_ip_output,
7436 .pf = NFPROTO_IPV6,
7437 .hooknum = NF_INET_LOCAL_OUT,
7438 .priority = NF_IP6_PRI_SELINUX_FIRST,
7439 },
7440#endif /* IPV6 */
7441};
7442
7443static int __net_init selinux_nf_register(struct net *net)
7444{
7445 return nf_register_net_hooks(net, selinux_nf_ops,
7446 ARRAY_SIZE(selinux_nf_ops));
7447}
7448
7449static void __net_exit selinux_nf_unregister(struct net *net)
7450{
7451 nf_unregister_net_hooks(net, selinux_nf_ops,
7452 ARRAY_SIZE(selinux_nf_ops));
7453}
7454
7455static struct pernet_operations selinux_net_ops = {
7456 .init = selinux_nf_register,
7457 .exit = selinux_nf_unregister,
7458};
7459
7460static int __init selinux_nf_ip_init(void)
7461{
7462 int err;
7463
7464 if (!selinux_enabled_boot)
7465 return 0;
7466
7467 pr_debug("SELinux: Registering netfilter hooks\n");
7468
7469 err = register_pernet_subsys(&selinux_net_ops);
7470 if (err)
7471 panic("SELinux: register_pernet_subsys: error %d\n", err);
7472
7473 return 0;
7474}
7475__initcall(selinux_nf_ip_init);
7476
7477#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7478static void selinux_nf_ip_exit(void)
7479{
7480 pr_debug("SELinux: Unregistering netfilter hooks\n");
7481
7482 unregister_pernet_subsys(&selinux_net_ops);
7483}
7484#endif
7485
7486#else /* CONFIG_NETFILTER */
7487
7488#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7489#define selinux_nf_ip_exit()
7490#endif
7491
7492#endif /* CONFIG_NETFILTER */
7493
7494#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7495int selinux_disable(struct selinux_state *state)
7496{
7497 if (selinux_initialized(state)) {
7498 /* Not permitted after initial policy load. */
7499 return -EINVAL;
7500 }
7501
7502 if (selinux_disabled(state)) {
7503 /* Only do this once. */
7504 return -EINVAL;
7505 }
7506
7507 selinux_mark_disabled(state);
7508
7509 pr_info("SELinux: Disabled at runtime.\n");
7510
7511 /*
7512 * Unregister netfilter hooks.
7513 * Must be done before security_delete_hooks() to avoid breaking
7514 * runtime disable.
7515 */
7516 selinux_nf_ip_exit();
7517
7518 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7519
7520 /* Try to destroy the avc node cache */
7521 avc_disable();
7522
7523 /* Unregister selinuxfs. */
7524 exit_sel_fs();
7525
7526 return 0;
7527}
7528#endif
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/lsm_hooks.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55#include <net/inet_connection_sock.h>
56#include <net/net_namespace.h>
57#include <net/netlabel.h>
58#include <linux/uaccess.h>
59#include <asm/ioctls.h>
60#include <linux/atomic.h>
61#include <linux/bitops.h>
62#include <linux/interrupt.h>
63#include <linux/netdevice.h> /* for network interface checks */
64#include <net/netlink.h>
65#include <linux/tcp.h>
66#include <linux/udp.h>
67#include <linux/dccp.h>
68#include <linux/quota.h>
69#include <linux/un.h> /* for Unix socket types */
70#include <net/af_unix.h> /* for Unix socket types */
71#include <linux/parser.h>
72#include <linux/nfs_mount.h>
73#include <net/ipv6.h>
74#include <linux/hugetlb.h>
75#include <linux/personality.h>
76#include <linux/audit.h>
77#include <linux/string.h>
78#include <linux/selinux.h>
79#include <linux/mutex.h>
80#include <linux/posix-timers.h>
81#include <linux/syslog.h>
82#include <linux/user_namespace.h>
83#include <linux/export.h>
84#include <linux/msg.h>
85#include <linux/shm.h>
86
87#include "avc.h"
88#include "objsec.h"
89#include "netif.h"
90#include "netnode.h"
91#include "netport.h"
92#include "xfrm.h"
93#include "netlabel.h"
94#include "audit.h"
95#include "avc_ss.h"
96
97/* SECMARK reference count */
98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101int selinux_enforcing;
102
103static int __init enforcing_setup(char *str)
104{
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109}
110__setup("enforcing=", enforcing_setup);
111#endif
112
113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116static int __init selinux_enabled_setup(char *str)
117{
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122}
123__setup("selinux=", selinux_enabled_setup);
124#else
125int selinux_enabled = 1;
126#endif
127
128static struct kmem_cache *sel_inode_cache;
129static struct kmem_cache *file_security_cache;
130
131/**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled. If the always_check_network
139 * policy capability is enabled, SECMARK is always considered enabled.
140 *
141 */
142static int selinux_secmark_enabled(void)
143{
144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
145}
146
147/**
148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
149 *
150 * Description:
151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
152 * (1) if any are enabled or false (0) if neither are enabled. If the
153 * always_check_network policy capability is enabled, peer labeling
154 * is always considered enabled.
155 *
156 */
157static int selinux_peerlbl_enabled(void)
158{
159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
160}
161
162static int selinux_netcache_avc_callback(u32 event)
163{
164 if (event == AVC_CALLBACK_RESET) {
165 sel_netif_flush();
166 sel_netnode_flush();
167 sel_netport_flush();
168 synchronize_net();
169 }
170 return 0;
171}
172
173/*
174 * initialise the security for the init task
175 */
176static void cred_init_security(void)
177{
178 struct cred *cred = (struct cred *) current->real_cred;
179 struct task_security_struct *tsec;
180
181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
182 if (!tsec)
183 panic("SELinux: Failed to initialize initial task.\n");
184
185 tsec->osid = tsec->sid = SECINITSID_KERNEL;
186 cred->security = tsec;
187}
188
189/*
190 * get the security ID of a set of credentials
191 */
192static inline u32 cred_sid(const struct cred *cred)
193{
194 const struct task_security_struct *tsec;
195
196 tsec = cred->security;
197 return tsec->sid;
198}
199
200/*
201 * get the objective security ID of a task
202 */
203static inline u32 task_sid(const struct task_struct *task)
204{
205 u32 sid;
206
207 rcu_read_lock();
208 sid = cred_sid(__task_cred(task));
209 rcu_read_unlock();
210 return sid;
211}
212
213/*
214 * get the subjective security ID of the current task
215 */
216static inline u32 current_sid(void)
217{
218 const struct task_security_struct *tsec = current_security();
219
220 return tsec->sid;
221}
222
223/* Allocate and free functions for each kind of security blob. */
224
225static int inode_alloc_security(struct inode *inode)
226{
227 struct inode_security_struct *isec;
228 u32 sid = current_sid();
229
230 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
231 if (!isec)
232 return -ENOMEM;
233
234 spin_lock_init(&isec->lock);
235 INIT_LIST_HEAD(&isec->list);
236 isec->inode = inode;
237 isec->sid = SECINITSID_UNLABELED;
238 isec->sclass = SECCLASS_FILE;
239 isec->task_sid = sid;
240 isec->initialized = LABEL_INVALID;
241 inode->i_security = isec;
242
243 return 0;
244}
245
246static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
247
248/*
249 * Try reloading inode security labels that have been marked as invalid. The
250 * @may_sleep parameter indicates when sleeping and thus reloading labels is
251 * allowed; when set to false, returns -ECHILD when the label is
252 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
253 * when no dentry is available, set it to NULL instead.
254 */
255static int __inode_security_revalidate(struct inode *inode,
256 struct dentry *opt_dentry,
257 bool may_sleep)
258{
259 struct inode_security_struct *isec = inode->i_security;
260
261 might_sleep_if(may_sleep);
262
263 if (ss_initialized && isec->initialized != LABEL_INITIALIZED) {
264 if (!may_sleep)
265 return -ECHILD;
266
267 /*
268 * Try reloading the inode security label. This will fail if
269 * @opt_dentry is NULL and no dentry for this inode can be
270 * found; in that case, continue using the old label.
271 */
272 inode_doinit_with_dentry(inode, opt_dentry);
273 }
274 return 0;
275}
276
277static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
278{
279 return inode->i_security;
280}
281
282static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
283{
284 int error;
285
286 error = __inode_security_revalidate(inode, NULL, !rcu);
287 if (error)
288 return ERR_PTR(error);
289 return inode->i_security;
290}
291
292/*
293 * Get the security label of an inode.
294 */
295static struct inode_security_struct *inode_security(struct inode *inode)
296{
297 __inode_security_revalidate(inode, NULL, true);
298 return inode->i_security;
299}
300
301static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
302{
303 struct inode *inode = d_backing_inode(dentry);
304
305 return inode->i_security;
306}
307
308/*
309 * Get the security label of a dentry's backing inode.
310 */
311static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
312{
313 struct inode *inode = d_backing_inode(dentry);
314
315 __inode_security_revalidate(inode, dentry, true);
316 return inode->i_security;
317}
318
319static void inode_free_rcu(struct rcu_head *head)
320{
321 struct inode_security_struct *isec;
322
323 isec = container_of(head, struct inode_security_struct, rcu);
324 kmem_cache_free(sel_inode_cache, isec);
325}
326
327static void inode_free_security(struct inode *inode)
328{
329 struct inode_security_struct *isec = inode->i_security;
330 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
331
332 /*
333 * As not all inode security structures are in a list, we check for
334 * empty list outside of the lock to make sure that we won't waste
335 * time taking a lock doing nothing.
336 *
337 * The list_del_init() function can be safely called more than once.
338 * It should not be possible for this function to be called with
339 * concurrent list_add(), but for better safety against future changes
340 * in the code, we use list_empty_careful() here.
341 */
342 if (!list_empty_careful(&isec->list)) {
343 spin_lock(&sbsec->isec_lock);
344 list_del_init(&isec->list);
345 spin_unlock(&sbsec->isec_lock);
346 }
347
348 /*
349 * The inode may still be referenced in a path walk and
350 * a call to selinux_inode_permission() can be made
351 * after inode_free_security() is called. Ideally, the VFS
352 * wouldn't do this, but fixing that is a much harder
353 * job. For now, simply free the i_security via RCU, and
354 * leave the current inode->i_security pointer intact.
355 * The inode will be freed after the RCU grace period too.
356 */
357 call_rcu(&isec->rcu, inode_free_rcu);
358}
359
360static int file_alloc_security(struct file *file)
361{
362 struct file_security_struct *fsec;
363 u32 sid = current_sid();
364
365 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
366 if (!fsec)
367 return -ENOMEM;
368
369 fsec->sid = sid;
370 fsec->fown_sid = sid;
371 file->f_security = fsec;
372
373 return 0;
374}
375
376static void file_free_security(struct file *file)
377{
378 struct file_security_struct *fsec = file->f_security;
379 file->f_security = NULL;
380 kmem_cache_free(file_security_cache, fsec);
381}
382
383static int superblock_alloc_security(struct super_block *sb)
384{
385 struct superblock_security_struct *sbsec;
386
387 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
388 if (!sbsec)
389 return -ENOMEM;
390
391 mutex_init(&sbsec->lock);
392 INIT_LIST_HEAD(&sbsec->isec_head);
393 spin_lock_init(&sbsec->isec_lock);
394 sbsec->sb = sb;
395 sbsec->sid = SECINITSID_UNLABELED;
396 sbsec->def_sid = SECINITSID_FILE;
397 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
398 sb->s_security = sbsec;
399
400 return 0;
401}
402
403static void superblock_free_security(struct super_block *sb)
404{
405 struct superblock_security_struct *sbsec = sb->s_security;
406 sb->s_security = NULL;
407 kfree(sbsec);
408}
409
410/* The file system's label must be initialized prior to use. */
411
412static const char *labeling_behaviors[7] = {
413 "uses xattr",
414 "uses transition SIDs",
415 "uses task SIDs",
416 "uses genfs_contexts",
417 "not configured for labeling",
418 "uses mountpoint labeling",
419 "uses native labeling",
420};
421
422static inline int inode_doinit(struct inode *inode)
423{
424 return inode_doinit_with_dentry(inode, NULL);
425}
426
427enum {
428 Opt_error = -1,
429 Opt_context = 1,
430 Opt_fscontext = 2,
431 Opt_defcontext = 3,
432 Opt_rootcontext = 4,
433 Opt_labelsupport = 5,
434 Opt_nextmntopt = 6,
435};
436
437#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
438
439static const match_table_t tokens = {
440 {Opt_context, CONTEXT_STR "%s"},
441 {Opt_fscontext, FSCONTEXT_STR "%s"},
442 {Opt_defcontext, DEFCONTEXT_STR "%s"},
443 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
444 {Opt_labelsupport, LABELSUPP_STR},
445 {Opt_error, NULL},
446};
447
448#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
449
450static int may_context_mount_sb_relabel(u32 sid,
451 struct superblock_security_struct *sbsec,
452 const struct cred *cred)
453{
454 const struct task_security_struct *tsec = cred->security;
455 int rc;
456
457 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
458 FILESYSTEM__RELABELFROM, NULL);
459 if (rc)
460 return rc;
461
462 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
463 FILESYSTEM__RELABELTO, NULL);
464 return rc;
465}
466
467static int may_context_mount_inode_relabel(u32 sid,
468 struct superblock_security_struct *sbsec,
469 const struct cred *cred)
470{
471 const struct task_security_struct *tsec = cred->security;
472 int rc;
473 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
474 FILESYSTEM__RELABELFROM, NULL);
475 if (rc)
476 return rc;
477
478 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
479 FILESYSTEM__ASSOCIATE, NULL);
480 return rc;
481}
482
483static int selinux_is_sblabel_mnt(struct super_block *sb)
484{
485 struct superblock_security_struct *sbsec = sb->s_security;
486
487 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
488 sbsec->behavior == SECURITY_FS_USE_TRANS ||
489 sbsec->behavior == SECURITY_FS_USE_TASK ||
490 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
491 /* Special handling. Genfs but also in-core setxattr handler */
492 !strcmp(sb->s_type->name, "sysfs") ||
493 !strcmp(sb->s_type->name, "pstore") ||
494 !strcmp(sb->s_type->name, "debugfs") ||
495 !strcmp(sb->s_type->name, "rootfs");
496}
497
498static int sb_finish_set_opts(struct super_block *sb)
499{
500 struct superblock_security_struct *sbsec = sb->s_security;
501 struct dentry *root = sb->s_root;
502 struct inode *root_inode = d_backing_inode(root);
503 int rc = 0;
504
505 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
506 /* Make sure that the xattr handler exists and that no
507 error other than -ENODATA is returned by getxattr on
508 the root directory. -ENODATA is ok, as this may be
509 the first boot of the SELinux kernel before we have
510 assigned xattr values to the filesystem. */
511 if (!(root_inode->i_opflags & IOP_XATTR)) {
512 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
513 "xattr support\n", sb->s_id, sb->s_type->name);
514 rc = -EOPNOTSUPP;
515 goto out;
516 }
517
518 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
519 if (rc < 0 && rc != -ENODATA) {
520 if (rc == -EOPNOTSUPP)
521 printk(KERN_WARNING "SELinux: (dev %s, type "
522 "%s) has no security xattr handler\n",
523 sb->s_id, sb->s_type->name);
524 else
525 printk(KERN_WARNING "SELinux: (dev %s, type "
526 "%s) getxattr errno %d\n", sb->s_id,
527 sb->s_type->name, -rc);
528 goto out;
529 }
530 }
531
532 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
533 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
534 sb->s_id, sb->s_type->name);
535
536 sbsec->flags |= SE_SBINITIALIZED;
537 if (selinux_is_sblabel_mnt(sb))
538 sbsec->flags |= SBLABEL_MNT;
539
540 /* Initialize the root inode. */
541 rc = inode_doinit_with_dentry(root_inode, root);
542
543 /* Initialize any other inodes associated with the superblock, e.g.
544 inodes created prior to initial policy load or inodes created
545 during get_sb by a pseudo filesystem that directly
546 populates itself. */
547 spin_lock(&sbsec->isec_lock);
548next_inode:
549 if (!list_empty(&sbsec->isec_head)) {
550 struct inode_security_struct *isec =
551 list_entry(sbsec->isec_head.next,
552 struct inode_security_struct, list);
553 struct inode *inode = isec->inode;
554 list_del_init(&isec->list);
555 spin_unlock(&sbsec->isec_lock);
556 inode = igrab(inode);
557 if (inode) {
558 if (!IS_PRIVATE(inode))
559 inode_doinit(inode);
560 iput(inode);
561 }
562 spin_lock(&sbsec->isec_lock);
563 goto next_inode;
564 }
565 spin_unlock(&sbsec->isec_lock);
566out:
567 return rc;
568}
569
570/*
571 * This function should allow an FS to ask what it's mount security
572 * options were so it can use those later for submounts, displaying
573 * mount options, or whatever.
574 */
575static int selinux_get_mnt_opts(const struct super_block *sb,
576 struct security_mnt_opts *opts)
577{
578 int rc = 0, i;
579 struct superblock_security_struct *sbsec = sb->s_security;
580 char *context = NULL;
581 u32 len;
582 char tmp;
583
584 security_init_mnt_opts(opts);
585
586 if (!(sbsec->flags & SE_SBINITIALIZED))
587 return -EINVAL;
588
589 if (!ss_initialized)
590 return -EINVAL;
591
592 /* make sure we always check enough bits to cover the mask */
593 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
594
595 tmp = sbsec->flags & SE_MNTMASK;
596 /* count the number of mount options for this sb */
597 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
598 if (tmp & 0x01)
599 opts->num_mnt_opts++;
600 tmp >>= 1;
601 }
602 /* Check if the Label support flag is set */
603 if (sbsec->flags & SBLABEL_MNT)
604 opts->num_mnt_opts++;
605
606 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
607 if (!opts->mnt_opts) {
608 rc = -ENOMEM;
609 goto out_free;
610 }
611
612 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
613 if (!opts->mnt_opts_flags) {
614 rc = -ENOMEM;
615 goto out_free;
616 }
617
618 i = 0;
619 if (sbsec->flags & FSCONTEXT_MNT) {
620 rc = security_sid_to_context(sbsec->sid, &context, &len);
621 if (rc)
622 goto out_free;
623 opts->mnt_opts[i] = context;
624 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
625 }
626 if (sbsec->flags & CONTEXT_MNT) {
627 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
628 if (rc)
629 goto out_free;
630 opts->mnt_opts[i] = context;
631 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
632 }
633 if (sbsec->flags & DEFCONTEXT_MNT) {
634 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
635 if (rc)
636 goto out_free;
637 opts->mnt_opts[i] = context;
638 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
639 }
640 if (sbsec->flags & ROOTCONTEXT_MNT) {
641 struct dentry *root = sbsec->sb->s_root;
642 struct inode_security_struct *isec = backing_inode_security(root);
643
644 rc = security_sid_to_context(isec->sid, &context, &len);
645 if (rc)
646 goto out_free;
647 opts->mnt_opts[i] = context;
648 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
649 }
650 if (sbsec->flags & SBLABEL_MNT) {
651 opts->mnt_opts[i] = NULL;
652 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
653 }
654
655 BUG_ON(i != opts->num_mnt_opts);
656
657 return 0;
658
659out_free:
660 security_free_mnt_opts(opts);
661 return rc;
662}
663
664static int bad_option(struct superblock_security_struct *sbsec, char flag,
665 u32 old_sid, u32 new_sid)
666{
667 char mnt_flags = sbsec->flags & SE_MNTMASK;
668
669 /* check if the old mount command had the same options */
670 if (sbsec->flags & SE_SBINITIALIZED)
671 if (!(sbsec->flags & flag) ||
672 (old_sid != new_sid))
673 return 1;
674
675 /* check if we were passed the same options twice,
676 * aka someone passed context=a,context=b
677 */
678 if (!(sbsec->flags & SE_SBINITIALIZED))
679 if (mnt_flags & flag)
680 return 1;
681 return 0;
682}
683
684/*
685 * Allow filesystems with binary mount data to explicitly set mount point
686 * labeling information.
687 */
688static int selinux_set_mnt_opts(struct super_block *sb,
689 struct security_mnt_opts *opts,
690 unsigned long kern_flags,
691 unsigned long *set_kern_flags)
692{
693 const struct cred *cred = current_cred();
694 int rc = 0, i;
695 struct superblock_security_struct *sbsec = sb->s_security;
696 const char *name = sb->s_type->name;
697 struct dentry *root = sbsec->sb->s_root;
698 struct inode_security_struct *root_isec;
699 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
700 u32 defcontext_sid = 0;
701 char **mount_options = opts->mnt_opts;
702 int *flags = opts->mnt_opts_flags;
703 int num_opts = opts->num_mnt_opts;
704
705 mutex_lock(&sbsec->lock);
706
707 if (!ss_initialized) {
708 if (!num_opts) {
709 /* Defer initialization until selinux_complete_init,
710 after the initial policy is loaded and the security
711 server is ready to handle calls. */
712 goto out;
713 }
714 rc = -EINVAL;
715 printk(KERN_WARNING "SELinux: Unable to set superblock options "
716 "before the security server is initialized\n");
717 goto out;
718 }
719 if (kern_flags && !set_kern_flags) {
720 /* Specifying internal flags without providing a place to
721 * place the results is not allowed */
722 rc = -EINVAL;
723 goto out;
724 }
725
726 /*
727 * Binary mount data FS will come through this function twice. Once
728 * from an explicit call and once from the generic calls from the vfs.
729 * Since the generic VFS calls will not contain any security mount data
730 * we need to skip the double mount verification.
731 *
732 * This does open a hole in which we will not notice if the first
733 * mount using this sb set explict options and a second mount using
734 * this sb does not set any security options. (The first options
735 * will be used for both mounts)
736 */
737 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
738 && (num_opts == 0))
739 goto out;
740
741 root_isec = backing_inode_security_novalidate(root);
742
743 /*
744 * parse the mount options, check if they are valid sids.
745 * also check if someone is trying to mount the same sb more
746 * than once with different security options.
747 */
748 for (i = 0; i < num_opts; i++) {
749 u32 sid;
750
751 if (flags[i] == SBLABEL_MNT)
752 continue;
753 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
754 if (rc) {
755 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
756 "(%s) failed for (dev %s, type %s) errno=%d\n",
757 mount_options[i], sb->s_id, name, rc);
758 goto out;
759 }
760 switch (flags[i]) {
761 case FSCONTEXT_MNT:
762 fscontext_sid = sid;
763
764 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
765 fscontext_sid))
766 goto out_double_mount;
767
768 sbsec->flags |= FSCONTEXT_MNT;
769 break;
770 case CONTEXT_MNT:
771 context_sid = sid;
772
773 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
774 context_sid))
775 goto out_double_mount;
776
777 sbsec->flags |= CONTEXT_MNT;
778 break;
779 case ROOTCONTEXT_MNT:
780 rootcontext_sid = sid;
781
782 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
783 rootcontext_sid))
784 goto out_double_mount;
785
786 sbsec->flags |= ROOTCONTEXT_MNT;
787
788 break;
789 case DEFCONTEXT_MNT:
790 defcontext_sid = sid;
791
792 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
793 defcontext_sid))
794 goto out_double_mount;
795
796 sbsec->flags |= DEFCONTEXT_MNT;
797
798 break;
799 default:
800 rc = -EINVAL;
801 goto out;
802 }
803 }
804
805 if (sbsec->flags & SE_SBINITIALIZED) {
806 /* previously mounted with options, but not on this attempt? */
807 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
808 goto out_double_mount;
809 rc = 0;
810 goto out;
811 }
812
813 if (strcmp(sb->s_type->name, "proc") == 0)
814 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
815
816 if (!strcmp(sb->s_type->name, "debugfs") ||
817 !strcmp(sb->s_type->name, "sysfs") ||
818 !strcmp(sb->s_type->name, "pstore"))
819 sbsec->flags |= SE_SBGENFS;
820
821 if (!sbsec->behavior) {
822 /*
823 * Determine the labeling behavior to use for this
824 * filesystem type.
825 */
826 rc = security_fs_use(sb);
827 if (rc) {
828 printk(KERN_WARNING
829 "%s: security_fs_use(%s) returned %d\n",
830 __func__, sb->s_type->name, rc);
831 goto out;
832 }
833 }
834
835 /*
836 * If this is a user namespace mount, no contexts are allowed
837 * on the command line and security labels must be ignored.
838 */
839 if (sb->s_user_ns != &init_user_ns) {
840 if (context_sid || fscontext_sid || rootcontext_sid ||
841 defcontext_sid) {
842 rc = -EACCES;
843 goto out;
844 }
845 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
846 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
847 rc = security_transition_sid(current_sid(), current_sid(),
848 SECCLASS_FILE, NULL,
849 &sbsec->mntpoint_sid);
850 if (rc)
851 goto out;
852 }
853 goto out_set_opts;
854 }
855
856 /* sets the context of the superblock for the fs being mounted. */
857 if (fscontext_sid) {
858 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
859 if (rc)
860 goto out;
861
862 sbsec->sid = fscontext_sid;
863 }
864
865 /*
866 * Switch to using mount point labeling behavior.
867 * sets the label used on all file below the mountpoint, and will set
868 * the superblock context if not already set.
869 */
870 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
871 sbsec->behavior = SECURITY_FS_USE_NATIVE;
872 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
873 }
874
875 if (context_sid) {
876 if (!fscontext_sid) {
877 rc = may_context_mount_sb_relabel(context_sid, sbsec,
878 cred);
879 if (rc)
880 goto out;
881 sbsec->sid = context_sid;
882 } else {
883 rc = may_context_mount_inode_relabel(context_sid, sbsec,
884 cred);
885 if (rc)
886 goto out;
887 }
888 if (!rootcontext_sid)
889 rootcontext_sid = context_sid;
890
891 sbsec->mntpoint_sid = context_sid;
892 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
893 }
894
895 if (rootcontext_sid) {
896 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
897 cred);
898 if (rc)
899 goto out;
900
901 root_isec->sid = rootcontext_sid;
902 root_isec->initialized = LABEL_INITIALIZED;
903 }
904
905 if (defcontext_sid) {
906 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
907 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
908 rc = -EINVAL;
909 printk(KERN_WARNING "SELinux: defcontext option is "
910 "invalid for this filesystem type\n");
911 goto out;
912 }
913
914 if (defcontext_sid != sbsec->def_sid) {
915 rc = may_context_mount_inode_relabel(defcontext_sid,
916 sbsec, cred);
917 if (rc)
918 goto out;
919 }
920
921 sbsec->def_sid = defcontext_sid;
922 }
923
924out_set_opts:
925 rc = sb_finish_set_opts(sb);
926out:
927 mutex_unlock(&sbsec->lock);
928 return rc;
929out_double_mount:
930 rc = -EINVAL;
931 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
932 "security settings for (dev %s, type %s)\n", sb->s_id, name);
933 goto out;
934}
935
936static int selinux_cmp_sb_context(const struct super_block *oldsb,
937 const struct super_block *newsb)
938{
939 struct superblock_security_struct *old = oldsb->s_security;
940 struct superblock_security_struct *new = newsb->s_security;
941 char oldflags = old->flags & SE_MNTMASK;
942 char newflags = new->flags & SE_MNTMASK;
943
944 if (oldflags != newflags)
945 goto mismatch;
946 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
947 goto mismatch;
948 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
949 goto mismatch;
950 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
951 goto mismatch;
952 if (oldflags & ROOTCONTEXT_MNT) {
953 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
954 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
955 if (oldroot->sid != newroot->sid)
956 goto mismatch;
957 }
958 return 0;
959mismatch:
960 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
961 "different security settings for (dev %s, "
962 "type %s)\n", newsb->s_id, newsb->s_type->name);
963 return -EBUSY;
964}
965
966static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
967 struct super_block *newsb)
968{
969 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
970 struct superblock_security_struct *newsbsec = newsb->s_security;
971
972 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
973 int set_context = (oldsbsec->flags & CONTEXT_MNT);
974 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
975
976 /*
977 * if the parent was able to be mounted it clearly had no special lsm
978 * mount options. thus we can safely deal with this superblock later
979 */
980 if (!ss_initialized)
981 return 0;
982
983 /* how can we clone if the old one wasn't set up?? */
984 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
985
986 /* if fs is reusing a sb, make sure that the contexts match */
987 if (newsbsec->flags & SE_SBINITIALIZED)
988 return selinux_cmp_sb_context(oldsb, newsb);
989
990 mutex_lock(&newsbsec->lock);
991
992 newsbsec->flags = oldsbsec->flags;
993
994 newsbsec->sid = oldsbsec->sid;
995 newsbsec->def_sid = oldsbsec->def_sid;
996 newsbsec->behavior = oldsbsec->behavior;
997
998 if (set_context) {
999 u32 sid = oldsbsec->mntpoint_sid;
1000
1001 if (!set_fscontext)
1002 newsbsec->sid = sid;
1003 if (!set_rootcontext) {
1004 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1005 newisec->sid = sid;
1006 }
1007 newsbsec->mntpoint_sid = sid;
1008 }
1009 if (set_rootcontext) {
1010 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1011 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1012
1013 newisec->sid = oldisec->sid;
1014 }
1015
1016 sb_finish_set_opts(newsb);
1017 mutex_unlock(&newsbsec->lock);
1018 return 0;
1019}
1020
1021static int selinux_parse_opts_str(char *options,
1022 struct security_mnt_opts *opts)
1023{
1024 char *p;
1025 char *context = NULL, *defcontext = NULL;
1026 char *fscontext = NULL, *rootcontext = NULL;
1027 int rc, num_mnt_opts = 0;
1028
1029 opts->num_mnt_opts = 0;
1030
1031 /* Standard string-based options. */
1032 while ((p = strsep(&options, "|")) != NULL) {
1033 int token;
1034 substring_t args[MAX_OPT_ARGS];
1035
1036 if (!*p)
1037 continue;
1038
1039 token = match_token(p, tokens, args);
1040
1041 switch (token) {
1042 case Opt_context:
1043 if (context || defcontext) {
1044 rc = -EINVAL;
1045 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1046 goto out_err;
1047 }
1048 context = match_strdup(&args[0]);
1049 if (!context) {
1050 rc = -ENOMEM;
1051 goto out_err;
1052 }
1053 break;
1054
1055 case Opt_fscontext:
1056 if (fscontext) {
1057 rc = -EINVAL;
1058 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1059 goto out_err;
1060 }
1061 fscontext = match_strdup(&args[0]);
1062 if (!fscontext) {
1063 rc = -ENOMEM;
1064 goto out_err;
1065 }
1066 break;
1067
1068 case Opt_rootcontext:
1069 if (rootcontext) {
1070 rc = -EINVAL;
1071 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1072 goto out_err;
1073 }
1074 rootcontext = match_strdup(&args[0]);
1075 if (!rootcontext) {
1076 rc = -ENOMEM;
1077 goto out_err;
1078 }
1079 break;
1080
1081 case Opt_defcontext:
1082 if (context || defcontext) {
1083 rc = -EINVAL;
1084 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1085 goto out_err;
1086 }
1087 defcontext = match_strdup(&args[0]);
1088 if (!defcontext) {
1089 rc = -ENOMEM;
1090 goto out_err;
1091 }
1092 break;
1093 case Opt_labelsupport:
1094 break;
1095 default:
1096 rc = -EINVAL;
1097 printk(KERN_WARNING "SELinux: unknown mount option\n");
1098 goto out_err;
1099
1100 }
1101 }
1102
1103 rc = -ENOMEM;
1104 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1105 if (!opts->mnt_opts)
1106 goto out_err;
1107
1108 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1109 GFP_KERNEL);
1110 if (!opts->mnt_opts_flags) {
1111 kfree(opts->mnt_opts);
1112 goto out_err;
1113 }
1114
1115 if (fscontext) {
1116 opts->mnt_opts[num_mnt_opts] = fscontext;
1117 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1118 }
1119 if (context) {
1120 opts->mnt_opts[num_mnt_opts] = context;
1121 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1122 }
1123 if (rootcontext) {
1124 opts->mnt_opts[num_mnt_opts] = rootcontext;
1125 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1126 }
1127 if (defcontext) {
1128 opts->mnt_opts[num_mnt_opts] = defcontext;
1129 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1130 }
1131
1132 opts->num_mnt_opts = num_mnt_opts;
1133 return 0;
1134
1135out_err:
1136 kfree(context);
1137 kfree(defcontext);
1138 kfree(fscontext);
1139 kfree(rootcontext);
1140 return rc;
1141}
1142/*
1143 * string mount options parsing and call set the sbsec
1144 */
1145static int superblock_doinit(struct super_block *sb, void *data)
1146{
1147 int rc = 0;
1148 char *options = data;
1149 struct security_mnt_opts opts;
1150
1151 security_init_mnt_opts(&opts);
1152
1153 if (!data)
1154 goto out;
1155
1156 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1157
1158 rc = selinux_parse_opts_str(options, &opts);
1159 if (rc)
1160 goto out_err;
1161
1162out:
1163 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1164
1165out_err:
1166 security_free_mnt_opts(&opts);
1167 return rc;
1168}
1169
1170static void selinux_write_opts(struct seq_file *m,
1171 struct security_mnt_opts *opts)
1172{
1173 int i;
1174 char *prefix;
1175
1176 for (i = 0; i < opts->num_mnt_opts; i++) {
1177 char *has_comma;
1178
1179 if (opts->mnt_opts[i])
1180 has_comma = strchr(opts->mnt_opts[i], ',');
1181 else
1182 has_comma = NULL;
1183
1184 switch (opts->mnt_opts_flags[i]) {
1185 case CONTEXT_MNT:
1186 prefix = CONTEXT_STR;
1187 break;
1188 case FSCONTEXT_MNT:
1189 prefix = FSCONTEXT_STR;
1190 break;
1191 case ROOTCONTEXT_MNT:
1192 prefix = ROOTCONTEXT_STR;
1193 break;
1194 case DEFCONTEXT_MNT:
1195 prefix = DEFCONTEXT_STR;
1196 break;
1197 case SBLABEL_MNT:
1198 seq_putc(m, ',');
1199 seq_puts(m, LABELSUPP_STR);
1200 continue;
1201 default:
1202 BUG();
1203 return;
1204 };
1205 /* we need a comma before each option */
1206 seq_putc(m, ',');
1207 seq_puts(m, prefix);
1208 if (has_comma)
1209 seq_putc(m, '\"');
1210 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1211 if (has_comma)
1212 seq_putc(m, '\"');
1213 }
1214}
1215
1216static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1217{
1218 struct security_mnt_opts opts;
1219 int rc;
1220
1221 rc = selinux_get_mnt_opts(sb, &opts);
1222 if (rc) {
1223 /* before policy load we may get EINVAL, don't show anything */
1224 if (rc == -EINVAL)
1225 rc = 0;
1226 return rc;
1227 }
1228
1229 selinux_write_opts(m, &opts);
1230
1231 security_free_mnt_opts(&opts);
1232
1233 return rc;
1234}
1235
1236static inline u16 inode_mode_to_security_class(umode_t mode)
1237{
1238 switch (mode & S_IFMT) {
1239 case S_IFSOCK:
1240 return SECCLASS_SOCK_FILE;
1241 case S_IFLNK:
1242 return SECCLASS_LNK_FILE;
1243 case S_IFREG:
1244 return SECCLASS_FILE;
1245 case S_IFBLK:
1246 return SECCLASS_BLK_FILE;
1247 case S_IFDIR:
1248 return SECCLASS_DIR;
1249 case S_IFCHR:
1250 return SECCLASS_CHR_FILE;
1251 case S_IFIFO:
1252 return SECCLASS_FIFO_FILE;
1253
1254 }
1255
1256 return SECCLASS_FILE;
1257}
1258
1259static inline int default_protocol_stream(int protocol)
1260{
1261 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1262}
1263
1264static inline int default_protocol_dgram(int protocol)
1265{
1266 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1267}
1268
1269static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1270{
1271 switch (family) {
1272 case PF_UNIX:
1273 switch (type) {
1274 case SOCK_STREAM:
1275 case SOCK_SEQPACKET:
1276 return SECCLASS_UNIX_STREAM_SOCKET;
1277 case SOCK_DGRAM:
1278 return SECCLASS_UNIX_DGRAM_SOCKET;
1279 }
1280 break;
1281 case PF_INET:
1282 case PF_INET6:
1283 switch (type) {
1284 case SOCK_STREAM:
1285 if (default_protocol_stream(protocol))
1286 return SECCLASS_TCP_SOCKET;
1287 else
1288 return SECCLASS_RAWIP_SOCKET;
1289 case SOCK_DGRAM:
1290 if (default_protocol_dgram(protocol))
1291 return SECCLASS_UDP_SOCKET;
1292 else
1293 return SECCLASS_RAWIP_SOCKET;
1294 case SOCK_DCCP:
1295 return SECCLASS_DCCP_SOCKET;
1296 default:
1297 return SECCLASS_RAWIP_SOCKET;
1298 }
1299 break;
1300 case PF_NETLINK:
1301 switch (protocol) {
1302 case NETLINK_ROUTE:
1303 return SECCLASS_NETLINK_ROUTE_SOCKET;
1304 case NETLINK_SOCK_DIAG:
1305 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1306 case NETLINK_NFLOG:
1307 return SECCLASS_NETLINK_NFLOG_SOCKET;
1308 case NETLINK_XFRM:
1309 return SECCLASS_NETLINK_XFRM_SOCKET;
1310 case NETLINK_SELINUX:
1311 return SECCLASS_NETLINK_SELINUX_SOCKET;
1312 case NETLINK_ISCSI:
1313 return SECCLASS_NETLINK_ISCSI_SOCKET;
1314 case NETLINK_AUDIT:
1315 return SECCLASS_NETLINK_AUDIT_SOCKET;
1316 case NETLINK_FIB_LOOKUP:
1317 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1318 case NETLINK_CONNECTOR:
1319 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1320 case NETLINK_NETFILTER:
1321 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1322 case NETLINK_DNRTMSG:
1323 return SECCLASS_NETLINK_DNRT_SOCKET;
1324 case NETLINK_KOBJECT_UEVENT:
1325 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1326 case NETLINK_GENERIC:
1327 return SECCLASS_NETLINK_GENERIC_SOCKET;
1328 case NETLINK_SCSITRANSPORT:
1329 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1330 case NETLINK_RDMA:
1331 return SECCLASS_NETLINK_RDMA_SOCKET;
1332 case NETLINK_CRYPTO:
1333 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1334 default:
1335 return SECCLASS_NETLINK_SOCKET;
1336 }
1337 case PF_PACKET:
1338 return SECCLASS_PACKET_SOCKET;
1339 case PF_KEY:
1340 return SECCLASS_KEY_SOCKET;
1341 case PF_APPLETALK:
1342 return SECCLASS_APPLETALK_SOCKET;
1343 }
1344
1345 return SECCLASS_SOCKET;
1346}
1347
1348static int selinux_genfs_get_sid(struct dentry *dentry,
1349 u16 tclass,
1350 u16 flags,
1351 u32 *sid)
1352{
1353 int rc;
1354 struct super_block *sb = dentry->d_sb;
1355 char *buffer, *path;
1356
1357 buffer = (char *)__get_free_page(GFP_KERNEL);
1358 if (!buffer)
1359 return -ENOMEM;
1360
1361 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1362 if (IS_ERR(path))
1363 rc = PTR_ERR(path);
1364 else {
1365 if (flags & SE_SBPROC) {
1366 /* each process gets a /proc/PID/ entry. Strip off the
1367 * PID part to get a valid selinux labeling.
1368 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1369 while (path[1] >= '0' && path[1] <= '9') {
1370 path[1] = '/';
1371 path++;
1372 }
1373 }
1374 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1375 }
1376 free_page((unsigned long)buffer);
1377 return rc;
1378}
1379
1380/* The inode's security attributes must be initialized before first use. */
1381static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1382{
1383 struct superblock_security_struct *sbsec = NULL;
1384 struct inode_security_struct *isec = inode->i_security;
1385 u32 task_sid, sid = 0;
1386 u16 sclass;
1387 struct dentry *dentry;
1388#define INITCONTEXTLEN 255
1389 char *context = NULL;
1390 unsigned len = 0;
1391 int rc = 0;
1392
1393 if (isec->initialized == LABEL_INITIALIZED)
1394 return 0;
1395
1396 spin_lock(&isec->lock);
1397 if (isec->initialized == LABEL_INITIALIZED)
1398 goto out_unlock;
1399
1400 if (isec->sclass == SECCLASS_FILE)
1401 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1402
1403 sbsec = inode->i_sb->s_security;
1404 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1405 /* Defer initialization until selinux_complete_init,
1406 after the initial policy is loaded and the security
1407 server is ready to handle calls. */
1408 spin_lock(&sbsec->isec_lock);
1409 if (list_empty(&isec->list))
1410 list_add(&isec->list, &sbsec->isec_head);
1411 spin_unlock(&sbsec->isec_lock);
1412 goto out_unlock;
1413 }
1414
1415 sclass = isec->sclass;
1416 task_sid = isec->task_sid;
1417 sid = isec->sid;
1418 isec->initialized = LABEL_PENDING;
1419 spin_unlock(&isec->lock);
1420
1421 switch (sbsec->behavior) {
1422 case SECURITY_FS_USE_NATIVE:
1423 break;
1424 case SECURITY_FS_USE_XATTR:
1425 if (!(inode->i_opflags & IOP_XATTR)) {
1426 sid = sbsec->def_sid;
1427 break;
1428 }
1429 /* Need a dentry, since the xattr API requires one.
1430 Life would be simpler if we could just pass the inode. */
1431 if (opt_dentry) {
1432 /* Called from d_instantiate or d_splice_alias. */
1433 dentry = dget(opt_dentry);
1434 } else {
1435 /* Called from selinux_complete_init, try to find a dentry. */
1436 dentry = d_find_alias(inode);
1437 }
1438 if (!dentry) {
1439 /*
1440 * this is can be hit on boot when a file is accessed
1441 * before the policy is loaded. When we load policy we
1442 * may find inodes that have no dentry on the
1443 * sbsec->isec_head list. No reason to complain as these
1444 * will get fixed up the next time we go through
1445 * inode_doinit with a dentry, before these inodes could
1446 * be used again by userspace.
1447 */
1448 goto out;
1449 }
1450
1451 len = INITCONTEXTLEN;
1452 context = kmalloc(len+1, GFP_NOFS);
1453 if (!context) {
1454 rc = -ENOMEM;
1455 dput(dentry);
1456 goto out;
1457 }
1458 context[len] = '\0';
1459 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1460 if (rc == -ERANGE) {
1461 kfree(context);
1462
1463 /* Need a larger buffer. Query for the right size. */
1464 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1465 if (rc < 0) {
1466 dput(dentry);
1467 goto out;
1468 }
1469 len = rc;
1470 context = kmalloc(len+1, GFP_NOFS);
1471 if (!context) {
1472 rc = -ENOMEM;
1473 dput(dentry);
1474 goto out;
1475 }
1476 context[len] = '\0';
1477 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1478 }
1479 dput(dentry);
1480 if (rc < 0) {
1481 if (rc != -ENODATA) {
1482 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1483 "%d for dev=%s ino=%ld\n", __func__,
1484 -rc, inode->i_sb->s_id, inode->i_ino);
1485 kfree(context);
1486 goto out;
1487 }
1488 /* Map ENODATA to the default file SID */
1489 sid = sbsec->def_sid;
1490 rc = 0;
1491 } else {
1492 rc = security_context_to_sid_default(context, rc, &sid,
1493 sbsec->def_sid,
1494 GFP_NOFS);
1495 if (rc) {
1496 char *dev = inode->i_sb->s_id;
1497 unsigned long ino = inode->i_ino;
1498
1499 if (rc == -EINVAL) {
1500 if (printk_ratelimit())
1501 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1502 "context=%s. This indicates you may need to relabel the inode or the "
1503 "filesystem in question.\n", ino, dev, context);
1504 } else {
1505 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1506 "returned %d for dev=%s ino=%ld\n",
1507 __func__, context, -rc, dev, ino);
1508 }
1509 kfree(context);
1510 /* Leave with the unlabeled SID */
1511 rc = 0;
1512 break;
1513 }
1514 }
1515 kfree(context);
1516 break;
1517 case SECURITY_FS_USE_TASK:
1518 sid = task_sid;
1519 break;
1520 case SECURITY_FS_USE_TRANS:
1521 /* Default to the fs SID. */
1522 sid = sbsec->sid;
1523
1524 /* Try to obtain a transition SID. */
1525 rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid);
1526 if (rc)
1527 goto out;
1528 break;
1529 case SECURITY_FS_USE_MNTPOINT:
1530 sid = sbsec->mntpoint_sid;
1531 break;
1532 default:
1533 /* Default to the fs superblock SID. */
1534 sid = sbsec->sid;
1535
1536 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1537 /* We must have a dentry to determine the label on
1538 * procfs inodes */
1539 if (opt_dentry)
1540 /* Called from d_instantiate or
1541 * d_splice_alias. */
1542 dentry = dget(opt_dentry);
1543 else
1544 /* Called from selinux_complete_init, try to
1545 * find a dentry. */
1546 dentry = d_find_alias(inode);
1547 /*
1548 * This can be hit on boot when a file is accessed
1549 * before the policy is loaded. When we load policy we
1550 * may find inodes that have no dentry on the
1551 * sbsec->isec_head list. No reason to complain as
1552 * these will get fixed up the next time we go through
1553 * inode_doinit() with a dentry, before these inodes
1554 * could be used again by userspace.
1555 */
1556 if (!dentry)
1557 goto out;
1558 rc = selinux_genfs_get_sid(dentry, sclass,
1559 sbsec->flags, &sid);
1560 dput(dentry);
1561 if (rc)
1562 goto out;
1563 }
1564 break;
1565 }
1566
1567out:
1568 spin_lock(&isec->lock);
1569 if (isec->initialized == LABEL_PENDING) {
1570 if (!sid || rc) {
1571 isec->initialized = LABEL_INVALID;
1572 goto out_unlock;
1573 }
1574
1575 isec->initialized = LABEL_INITIALIZED;
1576 isec->sid = sid;
1577 }
1578
1579out_unlock:
1580 spin_unlock(&isec->lock);
1581 return rc;
1582}
1583
1584/* Convert a Linux signal to an access vector. */
1585static inline u32 signal_to_av(int sig)
1586{
1587 u32 perm = 0;
1588
1589 switch (sig) {
1590 case SIGCHLD:
1591 /* Commonly granted from child to parent. */
1592 perm = PROCESS__SIGCHLD;
1593 break;
1594 case SIGKILL:
1595 /* Cannot be caught or ignored */
1596 perm = PROCESS__SIGKILL;
1597 break;
1598 case SIGSTOP:
1599 /* Cannot be caught or ignored */
1600 perm = PROCESS__SIGSTOP;
1601 break;
1602 default:
1603 /* All other signals. */
1604 perm = PROCESS__SIGNAL;
1605 break;
1606 }
1607
1608 return perm;
1609}
1610
1611/*
1612 * Check permission between a pair of credentials
1613 * fork check, ptrace check, etc.
1614 */
1615static int cred_has_perm(const struct cred *actor,
1616 const struct cred *target,
1617 u32 perms)
1618{
1619 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1620
1621 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1622}
1623
1624/*
1625 * Check permission between a pair of tasks, e.g. signal checks,
1626 * fork check, ptrace check, etc.
1627 * tsk1 is the actor and tsk2 is the target
1628 * - this uses the default subjective creds of tsk1
1629 */
1630static int task_has_perm(const struct task_struct *tsk1,
1631 const struct task_struct *tsk2,
1632 u32 perms)
1633{
1634 const struct task_security_struct *__tsec1, *__tsec2;
1635 u32 sid1, sid2;
1636
1637 rcu_read_lock();
1638 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1639 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1640 rcu_read_unlock();
1641 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1642}
1643
1644/*
1645 * Check permission between current and another task, e.g. signal checks,
1646 * fork check, ptrace check, etc.
1647 * current is the actor and tsk2 is the target
1648 * - this uses current's subjective creds
1649 */
1650static int current_has_perm(const struct task_struct *tsk,
1651 u32 perms)
1652{
1653 u32 sid, tsid;
1654
1655 sid = current_sid();
1656 tsid = task_sid(tsk);
1657 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1658}
1659
1660#if CAP_LAST_CAP > 63
1661#error Fix SELinux to handle capabilities > 63.
1662#endif
1663
1664/* Check whether a task is allowed to use a capability. */
1665static int cred_has_capability(const struct cred *cred,
1666 int cap, int audit, bool initns)
1667{
1668 struct common_audit_data ad;
1669 struct av_decision avd;
1670 u16 sclass;
1671 u32 sid = cred_sid(cred);
1672 u32 av = CAP_TO_MASK(cap);
1673 int rc;
1674
1675 ad.type = LSM_AUDIT_DATA_CAP;
1676 ad.u.cap = cap;
1677
1678 switch (CAP_TO_INDEX(cap)) {
1679 case 0:
1680 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1681 break;
1682 case 1:
1683 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1684 break;
1685 default:
1686 printk(KERN_ERR
1687 "SELinux: out of range capability %d\n", cap);
1688 BUG();
1689 return -EINVAL;
1690 }
1691
1692 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1693 if (audit == SECURITY_CAP_AUDIT) {
1694 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1695 if (rc2)
1696 return rc2;
1697 }
1698 return rc;
1699}
1700
1701/* Check whether a task is allowed to use a system operation. */
1702static int task_has_system(struct task_struct *tsk,
1703 u32 perms)
1704{
1705 u32 sid = task_sid(tsk);
1706
1707 return avc_has_perm(sid, SECINITSID_KERNEL,
1708 SECCLASS_SYSTEM, perms, NULL);
1709}
1710
1711/* Check whether a task has a particular permission to an inode.
1712 The 'adp' parameter is optional and allows other audit
1713 data to be passed (e.g. the dentry). */
1714static int inode_has_perm(const struct cred *cred,
1715 struct inode *inode,
1716 u32 perms,
1717 struct common_audit_data *adp)
1718{
1719 struct inode_security_struct *isec;
1720 u32 sid;
1721
1722 validate_creds(cred);
1723
1724 if (unlikely(IS_PRIVATE(inode)))
1725 return 0;
1726
1727 sid = cred_sid(cred);
1728 isec = inode->i_security;
1729
1730 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1731}
1732
1733/* Same as inode_has_perm, but pass explicit audit data containing
1734 the dentry to help the auditing code to more easily generate the
1735 pathname if needed. */
1736static inline int dentry_has_perm(const struct cred *cred,
1737 struct dentry *dentry,
1738 u32 av)
1739{
1740 struct inode *inode = d_backing_inode(dentry);
1741 struct common_audit_data ad;
1742
1743 ad.type = LSM_AUDIT_DATA_DENTRY;
1744 ad.u.dentry = dentry;
1745 __inode_security_revalidate(inode, dentry, true);
1746 return inode_has_perm(cred, inode, av, &ad);
1747}
1748
1749/* Same as inode_has_perm, but pass explicit audit data containing
1750 the path to help the auditing code to more easily generate the
1751 pathname if needed. */
1752static inline int path_has_perm(const struct cred *cred,
1753 const struct path *path,
1754 u32 av)
1755{
1756 struct inode *inode = d_backing_inode(path->dentry);
1757 struct common_audit_data ad;
1758
1759 ad.type = LSM_AUDIT_DATA_PATH;
1760 ad.u.path = *path;
1761 __inode_security_revalidate(inode, path->dentry, true);
1762 return inode_has_perm(cred, inode, av, &ad);
1763}
1764
1765/* Same as path_has_perm, but uses the inode from the file struct. */
1766static inline int file_path_has_perm(const struct cred *cred,
1767 struct file *file,
1768 u32 av)
1769{
1770 struct common_audit_data ad;
1771
1772 ad.type = LSM_AUDIT_DATA_FILE;
1773 ad.u.file = file;
1774 return inode_has_perm(cred, file_inode(file), av, &ad);
1775}
1776
1777/* Check whether a task can use an open file descriptor to
1778 access an inode in a given way. Check access to the
1779 descriptor itself, and then use dentry_has_perm to
1780 check a particular permission to the file.
1781 Access to the descriptor is implicitly granted if it
1782 has the same SID as the process. If av is zero, then
1783 access to the file is not checked, e.g. for cases
1784 where only the descriptor is affected like seek. */
1785static int file_has_perm(const struct cred *cred,
1786 struct file *file,
1787 u32 av)
1788{
1789 struct file_security_struct *fsec = file->f_security;
1790 struct inode *inode = file_inode(file);
1791 struct common_audit_data ad;
1792 u32 sid = cred_sid(cred);
1793 int rc;
1794
1795 ad.type = LSM_AUDIT_DATA_FILE;
1796 ad.u.file = file;
1797
1798 if (sid != fsec->sid) {
1799 rc = avc_has_perm(sid, fsec->sid,
1800 SECCLASS_FD,
1801 FD__USE,
1802 &ad);
1803 if (rc)
1804 goto out;
1805 }
1806
1807 /* av is zero if only checking access to the descriptor. */
1808 rc = 0;
1809 if (av)
1810 rc = inode_has_perm(cred, inode, av, &ad);
1811
1812out:
1813 return rc;
1814}
1815
1816/*
1817 * Determine the label for an inode that might be unioned.
1818 */
1819static int
1820selinux_determine_inode_label(const struct task_security_struct *tsec,
1821 struct inode *dir,
1822 const struct qstr *name, u16 tclass,
1823 u32 *_new_isid)
1824{
1825 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1826
1827 if ((sbsec->flags & SE_SBINITIALIZED) &&
1828 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1829 *_new_isid = sbsec->mntpoint_sid;
1830 } else if ((sbsec->flags & SBLABEL_MNT) &&
1831 tsec->create_sid) {
1832 *_new_isid = tsec->create_sid;
1833 } else {
1834 const struct inode_security_struct *dsec = inode_security(dir);
1835 return security_transition_sid(tsec->sid, dsec->sid, tclass,
1836 name, _new_isid);
1837 }
1838
1839 return 0;
1840}
1841
1842/* Check whether a task can create a file. */
1843static int may_create(struct inode *dir,
1844 struct dentry *dentry,
1845 u16 tclass)
1846{
1847 const struct task_security_struct *tsec = current_security();
1848 struct inode_security_struct *dsec;
1849 struct superblock_security_struct *sbsec;
1850 u32 sid, newsid;
1851 struct common_audit_data ad;
1852 int rc;
1853
1854 dsec = inode_security(dir);
1855 sbsec = dir->i_sb->s_security;
1856
1857 sid = tsec->sid;
1858
1859 ad.type = LSM_AUDIT_DATA_DENTRY;
1860 ad.u.dentry = dentry;
1861
1862 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1863 DIR__ADD_NAME | DIR__SEARCH,
1864 &ad);
1865 if (rc)
1866 return rc;
1867
1868 rc = selinux_determine_inode_label(current_security(), dir,
1869 &dentry->d_name, tclass, &newsid);
1870 if (rc)
1871 return rc;
1872
1873 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1874 if (rc)
1875 return rc;
1876
1877 return avc_has_perm(newsid, sbsec->sid,
1878 SECCLASS_FILESYSTEM,
1879 FILESYSTEM__ASSOCIATE, &ad);
1880}
1881
1882/* Check whether a task can create a key. */
1883static int may_create_key(u32 ksid,
1884 struct task_struct *ctx)
1885{
1886 u32 sid = task_sid(ctx);
1887
1888 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1889}
1890
1891#define MAY_LINK 0
1892#define MAY_UNLINK 1
1893#define MAY_RMDIR 2
1894
1895/* Check whether a task can link, unlink, or rmdir a file/directory. */
1896static int may_link(struct inode *dir,
1897 struct dentry *dentry,
1898 int kind)
1899
1900{
1901 struct inode_security_struct *dsec, *isec;
1902 struct common_audit_data ad;
1903 u32 sid = current_sid();
1904 u32 av;
1905 int rc;
1906
1907 dsec = inode_security(dir);
1908 isec = backing_inode_security(dentry);
1909
1910 ad.type = LSM_AUDIT_DATA_DENTRY;
1911 ad.u.dentry = dentry;
1912
1913 av = DIR__SEARCH;
1914 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1915 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1916 if (rc)
1917 return rc;
1918
1919 switch (kind) {
1920 case MAY_LINK:
1921 av = FILE__LINK;
1922 break;
1923 case MAY_UNLINK:
1924 av = FILE__UNLINK;
1925 break;
1926 case MAY_RMDIR:
1927 av = DIR__RMDIR;
1928 break;
1929 default:
1930 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1931 __func__, kind);
1932 return 0;
1933 }
1934
1935 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1936 return rc;
1937}
1938
1939static inline int may_rename(struct inode *old_dir,
1940 struct dentry *old_dentry,
1941 struct inode *new_dir,
1942 struct dentry *new_dentry)
1943{
1944 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1945 struct common_audit_data ad;
1946 u32 sid = current_sid();
1947 u32 av;
1948 int old_is_dir, new_is_dir;
1949 int rc;
1950
1951 old_dsec = inode_security(old_dir);
1952 old_isec = backing_inode_security(old_dentry);
1953 old_is_dir = d_is_dir(old_dentry);
1954 new_dsec = inode_security(new_dir);
1955
1956 ad.type = LSM_AUDIT_DATA_DENTRY;
1957
1958 ad.u.dentry = old_dentry;
1959 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1960 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1961 if (rc)
1962 return rc;
1963 rc = avc_has_perm(sid, old_isec->sid,
1964 old_isec->sclass, FILE__RENAME, &ad);
1965 if (rc)
1966 return rc;
1967 if (old_is_dir && new_dir != old_dir) {
1968 rc = avc_has_perm(sid, old_isec->sid,
1969 old_isec->sclass, DIR__REPARENT, &ad);
1970 if (rc)
1971 return rc;
1972 }
1973
1974 ad.u.dentry = new_dentry;
1975 av = DIR__ADD_NAME | DIR__SEARCH;
1976 if (d_is_positive(new_dentry))
1977 av |= DIR__REMOVE_NAME;
1978 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1979 if (rc)
1980 return rc;
1981 if (d_is_positive(new_dentry)) {
1982 new_isec = backing_inode_security(new_dentry);
1983 new_is_dir = d_is_dir(new_dentry);
1984 rc = avc_has_perm(sid, new_isec->sid,
1985 new_isec->sclass,
1986 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1987 if (rc)
1988 return rc;
1989 }
1990
1991 return 0;
1992}
1993
1994/* Check whether a task can perform a filesystem operation. */
1995static int superblock_has_perm(const struct cred *cred,
1996 struct super_block *sb,
1997 u32 perms,
1998 struct common_audit_data *ad)
1999{
2000 struct superblock_security_struct *sbsec;
2001 u32 sid = cred_sid(cred);
2002
2003 sbsec = sb->s_security;
2004 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2005}
2006
2007/* Convert a Linux mode and permission mask to an access vector. */
2008static inline u32 file_mask_to_av(int mode, int mask)
2009{
2010 u32 av = 0;
2011
2012 if (!S_ISDIR(mode)) {
2013 if (mask & MAY_EXEC)
2014 av |= FILE__EXECUTE;
2015 if (mask & MAY_READ)
2016 av |= FILE__READ;
2017
2018 if (mask & MAY_APPEND)
2019 av |= FILE__APPEND;
2020 else if (mask & MAY_WRITE)
2021 av |= FILE__WRITE;
2022
2023 } else {
2024 if (mask & MAY_EXEC)
2025 av |= DIR__SEARCH;
2026 if (mask & MAY_WRITE)
2027 av |= DIR__WRITE;
2028 if (mask & MAY_READ)
2029 av |= DIR__READ;
2030 }
2031
2032 return av;
2033}
2034
2035/* Convert a Linux file to an access vector. */
2036static inline u32 file_to_av(struct file *file)
2037{
2038 u32 av = 0;
2039
2040 if (file->f_mode & FMODE_READ)
2041 av |= FILE__READ;
2042 if (file->f_mode & FMODE_WRITE) {
2043 if (file->f_flags & O_APPEND)
2044 av |= FILE__APPEND;
2045 else
2046 av |= FILE__WRITE;
2047 }
2048 if (!av) {
2049 /*
2050 * Special file opened with flags 3 for ioctl-only use.
2051 */
2052 av = FILE__IOCTL;
2053 }
2054
2055 return av;
2056}
2057
2058/*
2059 * Convert a file to an access vector and include the correct open
2060 * open permission.
2061 */
2062static inline u32 open_file_to_av(struct file *file)
2063{
2064 u32 av = file_to_av(file);
2065
2066 if (selinux_policycap_openperm)
2067 av |= FILE__OPEN;
2068
2069 return av;
2070}
2071
2072/* Hook functions begin here. */
2073
2074static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2075{
2076 u32 mysid = current_sid();
2077 u32 mgrsid = task_sid(mgr);
2078
2079 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2080 BINDER__SET_CONTEXT_MGR, NULL);
2081}
2082
2083static int selinux_binder_transaction(struct task_struct *from,
2084 struct task_struct *to)
2085{
2086 u32 mysid = current_sid();
2087 u32 fromsid = task_sid(from);
2088 u32 tosid = task_sid(to);
2089 int rc;
2090
2091 if (mysid != fromsid) {
2092 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2093 BINDER__IMPERSONATE, NULL);
2094 if (rc)
2095 return rc;
2096 }
2097
2098 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2099 NULL);
2100}
2101
2102static int selinux_binder_transfer_binder(struct task_struct *from,
2103 struct task_struct *to)
2104{
2105 u32 fromsid = task_sid(from);
2106 u32 tosid = task_sid(to);
2107
2108 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2109 NULL);
2110}
2111
2112static int selinux_binder_transfer_file(struct task_struct *from,
2113 struct task_struct *to,
2114 struct file *file)
2115{
2116 u32 sid = task_sid(to);
2117 struct file_security_struct *fsec = file->f_security;
2118 struct dentry *dentry = file->f_path.dentry;
2119 struct inode_security_struct *isec;
2120 struct common_audit_data ad;
2121 int rc;
2122
2123 ad.type = LSM_AUDIT_DATA_PATH;
2124 ad.u.path = file->f_path;
2125
2126 if (sid != fsec->sid) {
2127 rc = avc_has_perm(sid, fsec->sid,
2128 SECCLASS_FD,
2129 FD__USE,
2130 &ad);
2131 if (rc)
2132 return rc;
2133 }
2134
2135 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2136 return 0;
2137
2138 isec = backing_inode_security(dentry);
2139 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2140 &ad);
2141}
2142
2143static int selinux_ptrace_access_check(struct task_struct *child,
2144 unsigned int mode)
2145{
2146 if (mode & PTRACE_MODE_READ) {
2147 u32 sid = current_sid();
2148 u32 csid = task_sid(child);
2149 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150 }
2151
2152 return current_has_perm(child, PROCESS__PTRACE);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157 return task_has_perm(parent, current, PROCESS__PTRACE);
2158}
2159
2160static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2161 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2162{
2163 return current_has_perm(target, PROCESS__GETCAP);
2164}
2165
2166static int selinux_capset(struct cred *new, const struct cred *old,
2167 const kernel_cap_t *effective,
2168 const kernel_cap_t *inheritable,
2169 const kernel_cap_t *permitted)
2170{
2171 return cred_has_perm(old, new, PROCESS__SETCAP);
2172}
2173
2174/*
2175 * (This comment used to live with the selinux_task_setuid hook,
2176 * which was removed).
2177 *
2178 * Since setuid only affects the current process, and since the SELinux
2179 * controls are not based on the Linux identity attributes, SELinux does not
2180 * need to control this operation. However, SELinux does control the use of
2181 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2182 */
2183
2184static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2185 int cap, int audit)
2186{
2187 return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2188}
2189
2190static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2191{
2192 const struct cred *cred = current_cred();
2193 int rc = 0;
2194
2195 if (!sb)
2196 return 0;
2197
2198 switch (cmds) {
2199 case Q_SYNC:
2200 case Q_QUOTAON:
2201 case Q_QUOTAOFF:
2202 case Q_SETINFO:
2203 case Q_SETQUOTA:
2204 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2205 break;
2206 case Q_GETFMT:
2207 case Q_GETINFO:
2208 case Q_GETQUOTA:
2209 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2210 break;
2211 default:
2212 rc = 0; /* let the kernel handle invalid cmds */
2213 break;
2214 }
2215 return rc;
2216}
2217
2218static int selinux_quota_on(struct dentry *dentry)
2219{
2220 const struct cred *cred = current_cred();
2221
2222 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2223}
2224
2225static int selinux_syslog(int type)
2226{
2227 int rc;
2228
2229 switch (type) {
2230 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2231 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2232 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2233 break;
2234 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2235 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2236 /* Set level of messages printed to console */
2237 case SYSLOG_ACTION_CONSOLE_LEVEL:
2238 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2239 break;
2240 case SYSLOG_ACTION_CLOSE: /* Close log */
2241 case SYSLOG_ACTION_OPEN: /* Open log */
2242 case SYSLOG_ACTION_READ: /* Read from log */
2243 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2244 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2245 default:
2246 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2247 break;
2248 }
2249 return rc;
2250}
2251
2252/*
2253 * Check that a process has enough memory to allocate a new virtual
2254 * mapping. 0 means there is enough memory for the allocation to
2255 * succeed and -ENOMEM implies there is not.
2256 *
2257 * Do not audit the selinux permission check, as this is applied to all
2258 * processes that allocate mappings.
2259 */
2260static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2261{
2262 int rc, cap_sys_admin = 0;
2263
2264 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2265 SECURITY_CAP_NOAUDIT, true);
2266 if (rc == 0)
2267 cap_sys_admin = 1;
2268
2269 return cap_sys_admin;
2270}
2271
2272/* binprm security operations */
2273
2274static u32 ptrace_parent_sid(struct task_struct *task)
2275{
2276 u32 sid = 0;
2277 struct task_struct *tracer;
2278
2279 rcu_read_lock();
2280 tracer = ptrace_parent(task);
2281 if (tracer)
2282 sid = task_sid(tracer);
2283 rcu_read_unlock();
2284
2285 return sid;
2286}
2287
2288static int check_nnp_nosuid(const struct linux_binprm *bprm,
2289 const struct task_security_struct *old_tsec,
2290 const struct task_security_struct *new_tsec)
2291{
2292 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2293 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2294 int rc;
2295
2296 if (!nnp && !nosuid)
2297 return 0; /* neither NNP nor nosuid */
2298
2299 if (new_tsec->sid == old_tsec->sid)
2300 return 0; /* No change in credentials */
2301
2302 /*
2303 * The only transitions we permit under NNP or nosuid
2304 * are transitions to bounded SIDs, i.e. SIDs that are
2305 * guaranteed to only be allowed a subset of the permissions
2306 * of the current SID.
2307 */
2308 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2309 if (rc) {
2310 /*
2311 * On failure, preserve the errno values for NNP vs nosuid.
2312 * NNP: Operation not permitted for caller.
2313 * nosuid: Permission denied to file.
2314 */
2315 if (nnp)
2316 return -EPERM;
2317 else
2318 return -EACCES;
2319 }
2320 return 0;
2321}
2322
2323static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2324{
2325 const struct task_security_struct *old_tsec;
2326 struct task_security_struct *new_tsec;
2327 struct inode_security_struct *isec;
2328 struct common_audit_data ad;
2329 struct inode *inode = file_inode(bprm->file);
2330 int rc;
2331
2332 /* SELinux context only depends on initial program or script and not
2333 * the script interpreter */
2334 if (bprm->cred_prepared)
2335 return 0;
2336
2337 old_tsec = current_security();
2338 new_tsec = bprm->cred->security;
2339 isec = inode_security(inode);
2340
2341 /* Default to the current task SID. */
2342 new_tsec->sid = old_tsec->sid;
2343 new_tsec->osid = old_tsec->sid;
2344
2345 /* Reset fs, key, and sock SIDs on execve. */
2346 new_tsec->create_sid = 0;
2347 new_tsec->keycreate_sid = 0;
2348 new_tsec->sockcreate_sid = 0;
2349
2350 if (old_tsec->exec_sid) {
2351 new_tsec->sid = old_tsec->exec_sid;
2352 /* Reset exec SID on execve. */
2353 new_tsec->exec_sid = 0;
2354
2355 /* Fail on NNP or nosuid if not an allowed transition. */
2356 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2357 if (rc)
2358 return rc;
2359 } else {
2360 /* Check for a default transition on this program. */
2361 rc = security_transition_sid(old_tsec->sid, isec->sid,
2362 SECCLASS_PROCESS, NULL,
2363 &new_tsec->sid);
2364 if (rc)
2365 return rc;
2366
2367 /*
2368 * Fallback to old SID on NNP or nosuid if not an allowed
2369 * transition.
2370 */
2371 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2372 if (rc)
2373 new_tsec->sid = old_tsec->sid;
2374 }
2375
2376 ad.type = LSM_AUDIT_DATA_FILE;
2377 ad.u.file = bprm->file;
2378
2379 if (new_tsec->sid == old_tsec->sid) {
2380 rc = avc_has_perm(old_tsec->sid, isec->sid,
2381 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2382 if (rc)
2383 return rc;
2384 } else {
2385 /* Check permissions for the transition. */
2386 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2387 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2388 if (rc)
2389 return rc;
2390
2391 rc = avc_has_perm(new_tsec->sid, isec->sid,
2392 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2393 if (rc)
2394 return rc;
2395
2396 /* Check for shared state */
2397 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2398 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2399 SECCLASS_PROCESS, PROCESS__SHARE,
2400 NULL);
2401 if (rc)
2402 return -EPERM;
2403 }
2404
2405 /* Make sure that anyone attempting to ptrace over a task that
2406 * changes its SID has the appropriate permit */
2407 if (bprm->unsafe &
2408 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2409 u32 ptsid = ptrace_parent_sid(current);
2410 if (ptsid != 0) {
2411 rc = avc_has_perm(ptsid, new_tsec->sid,
2412 SECCLASS_PROCESS,
2413 PROCESS__PTRACE, NULL);
2414 if (rc)
2415 return -EPERM;
2416 }
2417 }
2418
2419 /* Clear any possibly unsafe personality bits on exec: */
2420 bprm->per_clear |= PER_CLEAR_ON_SETID;
2421 }
2422
2423 return 0;
2424}
2425
2426static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2427{
2428 const struct task_security_struct *tsec = current_security();
2429 u32 sid, osid;
2430 int atsecure = 0;
2431
2432 sid = tsec->sid;
2433 osid = tsec->osid;
2434
2435 if (osid != sid) {
2436 /* Enable secure mode for SIDs transitions unless
2437 the noatsecure permission is granted between
2438 the two SIDs, i.e. ahp returns 0. */
2439 atsecure = avc_has_perm(osid, sid,
2440 SECCLASS_PROCESS,
2441 PROCESS__NOATSECURE, NULL);
2442 }
2443
2444 return !!atsecure;
2445}
2446
2447static int match_file(const void *p, struct file *file, unsigned fd)
2448{
2449 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2450}
2451
2452/* Derived from fs/exec.c:flush_old_files. */
2453static inline void flush_unauthorized_files(const struct cred *cred,
2454 struct files_struct *files)
2455{
2456 struct file *file, *devnull = NULL;
2457 struct tty_struct *tty;
2458 int drop_tty = 0;
2459 unsigned n;
2460
2461 tty = get_current_tty();
2462 if (tty) {
2463 spin_lock(&tty->files_lock);
2464 if (!list_empty(&tty->tty_files)) {
2465 struct tty_file_private *file_priv;
2466
2467 /* Revalidate access to controlling tty.
2468 Use file_path_has_perm on the tty path directly
2469 rather than using file_has_perm, as this particular
2470 open file may belong to another process and we are
2471 only interested in the inode-based check here. */
2472 file_priv = list_first_entry(&tty->tty_files,
2473 struct tty_file_private, list);
2474 file = file_priv->file;
2475 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2476 drop_tty = 1;
2477 }
2478 spin_unlock(&tty->files_lock);
2479 tty_kref_put(tty);
2480 }
2481 /* Reset controlling tty. */
2482 if (drop_tty)
2483 no_tty();
2484
2485 /* Revalidate access to inherited open files. */
2486 n = iterate_fd(files, 0, match_file, cred);
2487 if (!n) /* none found? */
2488 return;
2489
2490 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2491 if (IS_ERR(devnull))
2492 devnull = NULL;
2493 /* replace all the matching ones with this */
2494 do {
2495 replace_fd(n - 1, devnull, 0);
2496 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2497 if (devnull)
2498 fput(devnull);
2499}
2500
2501/*
2502 * Prepare a process for imminent new credential changes due to exec
2503 */
2504static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2505{
2506 struct task_security_struct *new_tsec;
2507 struct rlimit *rlim, *initrlim;
2508 int rc, i;
2509
2510 new_tsec = bprm->cred->security;
2511 if (new_tsec->sid == new_tsec->osid)
2512 return;
2513
2514 /* Close files for which the new task SID is not authorized. */
2515 flush_unauthorized_files(bprm->cred, current->files);
2516
2517 /* Always clear parent death signal on SID transitions. */
2518 current->pdeath_signal = 0;
2519
2520 /* Check whether the new SID can inherit resource limits from the old
2521 * SID. If not, reset all soft limits to the lower of the current
2522 * task's hard limit and the init task's soft limit.
2523 *
2524 * Note that the setting of hard limits (even to lower them) can be
2525 * controlled by the setrlimit check. The inclusion of the init task's
2526 * soft limit into the computation is to avoid resetting soft limits
2527 * higher than the default soft limit for cases where the default is
2528 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2529 */
2530 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2531 PROCESS__RLIMITINH, NULL);
2532 if (rc) {
2533 /* protect against do_prlimit() */
2534 task_lock(current);
2535 for (i = 0; i < RLIM_NLIMITS; i++) {
2536 rlim = current->signal->rlim + i;
2537 initrlim = init_task.signal->rlim + i;
2538 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2539 }
2540 task_unlock(current);
2541 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2542 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2543 }
2544}
2545
2546/*
2547 * Clean up the process immediately after the installation of new credentials
2548 * due to exec
2549 */
2550static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2551{
2552 const struct task_security_struct *tsec = current_security();
2553 struct itimerval itimer;
2554 u32 osid, sid;
2555 int rc, i;
2556
2557 osid = tsec->osid;
2558 sid = tsec->sid;
2559
2560 if (sid == osid)
2561 return;
2562
2563 /* Check whether the new SID can inherit signal state from the old SID.
2564 * If not, clear itimers to avoid subsequent signal generation and
2565 * flush and unblock signals.
2566 *
2567 * This must occur _after_ the task SID has been updated so that any
2568 * kill done after the flush will be checked against the new SID.
2569 */
2570 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571 if (rc) {
2572 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573 memset(&itimer, 0, sizeof itimer);
2574 for (i = 0; i < 3; i++)
2575 do_setitimer(i, &itimer, NULL);
2576 }
2577 spin_lock_irq(¤t->sighand->siglock);
2578 if (!fatal_signal_pending(current)) {
2579 flush_sigqueue(¤t->pending);
2580 flush_sigqueue(¤t->signal->shared_pending);
2581 flush_signal_handlers(current, 1);
2582 sigemptyset(¤t->blocked);
2583 recalc_sigpending();
2584 }
2585 spin_unlock_irq(¤t->sighand->siglock);
2586 }
2587
2588 /* Wake up the parent if it is waiting so that it can recheck
2589 * wait permission to the new task SID. */
2590 read_lock(&tasklist_lock);
2591 __wake_up_parent(current, current->real_parent);
2592 read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599 return superblock_alloc_security(sb);
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604 superblock_free_security(sb);
2605}
2606
2607static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2608{
2609 if (plen > olen)
2610 return 0;
2611
2612 return !memcmp(prefix, option, plen);
2613}
2614
2615static inline int selinux_option(char *option, int len)
2616{
2617 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2618 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2619 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2620 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2621 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2622}
2623
2624static inline void take_option(char **to, char *from, int *first, int len)
2625{
2626 if (!*first) {
2627 **to = ',';
2628 *to += 1;
2629 } else
2630 *first = 0;
2631 memcpy(*to, from, len);
2632 *to += len;
2633}
2634
2635static inline void take_selinux_option(char **to, char *from, int *first,
2636 int len)
2637{
2638 int current_size = 0;
2639
2640 if (!*first) {
2641 **to = '|';
2642 *to += 1;
2643 } else
2644 *first = 0;
2645
2646 while (current_size < len) {
2647 if (*from != '"') {
2648 **to = *from;
2649 *to += 1;
2650 }
2651 from += 1;
2652 current_size += 1;
2653 }
2654}
2655
2656static int selinux_sb_copy_data(char *orig, char *copy)
2657{
2658 int fnosec, fsec, rc = 0;
2659 char *in_save, *in_curr, *in_end;
2660 char *sec_curr, *nosec_save, *nosec;
2661 int open_quote = 0;
2662
2663 in_curr = orig;
2664 sec_curr = copy;
2665
2666 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2667 if (!nosec) {
2668 rc = -ENOMEM;
2669 goto out;
2670 }
2671
2672 nosec_save = nosec;
2673 fnosec = fsec = 1;
2674 in_save = in_end = orig;
2675
2676 do {
2677 if (*in_end == '"')
2678 open_quote = !open_quote;
2679 if ((*in_end == ',' && open_quote == 0) ||
2680 *in_end == '\0') {
2681 int len = in_end - in_curr;
2682
2683 if (selinux_option(in_curr, len))
2684 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2685 else
2686 take_option(&nosec, in_curr, &fnosec, len);
2687
2688 in_curr = in_end + 1;
2689 }
2690 } while (*in_end++);
2691
2692 strcpy(in_save, nosec_save);
2693 free_page((unsigned long)nosec_save);
2694out:
2695 return rc;
2696}
2697
2698static int selinux_sb_remount(struct super_block *sb, void *data)
2699{
2700 int rc, i, *flags;
2701 struct security_mnt_opts opts;
2702 char *secdata, **mount_options;
2703 struct superblock_security_struct *sbsec = sb->s_security;
2704
2705 if (!(sbsec->flags & SE_SBINITIALIZED))
2706 return 0;
2707
2708 if (!data)
2709 return 0;
2710
2711 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2712 return 0;
2713
2714 security_init_mnt_opts(&opts);
2715 secdata = alloc_secdata();
2716 if (!secdata)
2717 return -ENOMEM;
2718 rc = selinux_sb_copy_data(data, secdata);
2719 if (rc)
2720 goto out_free_secdata;
2721
2722 rc = selinux_parse_opts_str(secdata, &opts);
2723 if (rc)
2724 goto out_free_secdata;
2725
2726 mount_options = opts.mnt_opts;
2727 flags = opts.mnt_opts_flags;
2728
2729 for (i = 0; i < opts.num_mnt_opts; i++) {
2730 u32 sid;
2731
2732 if (flags[i] == SBLABEL_MNT)
2733 continue;
2734 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2735 if (rc) {
2736 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2737 "(%s) failed for (dev %s, type %s) errno=%d\n",
2738 mount_options[i], sb->s_id, sb->s_type->name, rc);
2739 goto out_free_opts;
2740 }
2741 rc = -EINVAL;
2742 switch (flags[i]) {
2743 case FSCONTEXT_MNT:
2744 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2745 goto out_bad_option;
2746 break;
2747 case CONTEXT_MNT:
2748 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2749 goto out_bad_option;
2750 break;
2751 case ROOTCONTEXT_MNT: {
2752 struct inode_security_struct *root_isec;
2753 root_isec = backing_inode_security(sb->s_root);
2754
2755 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2756 goto out_bad_option;
2757 break;
2758 }
2759 case DEFCONTEXT_MNT:
2760 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2761 goto out_bad_option;
2762 break;
2763 default:
2764 goto out_free_opts;
2765 }
2766 }
2767
2768 rc = 0;
2769out_free_opts:
2770 security_free_mnt_opts(&opts);
2771out_free_secdata:
2772 free_secdata(secdata);
2773 return rc;
2774out_bad_option:
2775 printk(KERN_WARNING "SELinux: unable to change security options "
2776 "during remount (dev %s, type=%s)\n", sb->s_id,
2777 sb->s_type->name);
2778 goto out_free_opts;
2779}
2780
2781static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2782{
2783 const struct cred *cred = current_cred();
2784 struct common_audit_data ad;
2785 int rc;
2786
2787 rc = superblock_doinit(sb, data);
2788 if (rc)
2789 return rc;
2790
2791 /* Allow all mounts performed by the kernel */
2792 if (flags & MS_KERNMOUNT)
2793 return 0;
2794
2795 ad.type = LSM_AUDIT_DATA_DENTRY;
2796 ad.u.dentry = sb->s_root;
2797 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2798}
2799
2800static int selinux_sb_statfs(struct dentry *dentry)
2801{
2802 const struct cred *cred = current_cred();
2803 struct common_audit_data ad;
2804
2805 ad.type = LSM_AUDIT_DATA_DENTRY;
2806 ad.u.dentry = dentry->d_sb->s_root;
2807 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2808}
2809
2810static int selinux_mount(const char *dev_name,
2811 const struct path *path,
2812 const char *type,
2813 unsigned long flags,
2814 void *data)
2815{
2816 const struct cred *cred = current_cred();
2817
2818 if (flags & MS_REMOUNT)
2819 return superblock_has_perm(cred, path->dentry->d_sb,
2820 FILESYSTEM__REMOUNT, NULL);
2821 else
2822 return path_has_perm(cred, path, FILE__MOUNTON);
2823}
2824
2825static int selinux_umount(struct vfsmount *mnt, int flags)
2826{
2827 const struct cred *cred = current_cred();
2828
2829 return superblock_has_perm(cred, mnt->mnt_sb,
2830 FILESYSTEM__UNMOUNT, NULL);
2831}
2832
2833/* inode security operations */
2834
2835static int selinux_inode_alloc_security(struct inode *inode)
2836{
2837 return inode_alloc_security(inode);
2838}
2839
2840static void selinux_inode_free_security(struct inode *inode)
2841{
2842 inode_free_security(inode);
2843}
2844
2845static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2846 const struct qstr *name, void **ctx,
2847 u32 *ctxlen)
2848{
2849 u32 newsid;
2850 int rc;
2851
2852 rc = selinux_determine_inode_label(current_security(),
2853 d_inode(dentry->d_parent), name,
2854 inode_mode_to_security_class(mode),
2855 &newsid);
2856 if (rc)
2857 return rc;
2858
2859 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2860}
2861
2862static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2863 struct qstr *name,
2864 const struct cred *old,
2865 struct cred *new)
2866{
2867 u32 newsid;
2868 int rc;
2869 struct task_security_struct *tsec;
2870
2871 rc = selinux_determine_inode_label(old->security,
2872 d_inode(dentry->d_parent), name,
2873 inode_mode_to_security_class(mode),
2874 &newsid);
2875 if (rc)
2876 return rc;
2877
2878 tsec = new->security;
2879 tsec->create_sid = newsid;
2880 return 0;
2881}
2882
2883static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2884 const struct qstr *qstr,
2885 const char **name,
2886 void **value, size_t *len)
2887{
2888 const struct task_security_struct *tsec = current_security();
2889 struct superblock_security_struct *sbsec;
2890 u32 sid, newsid, clen;
2891 int rc;
2892 char *context;
2893
2894 sbsec = dir->i_sb->s_security;
2895
2896 sid = tsec->sid;
2897 newsid = tsec->create_sid;
2898
2899 rc = selinux_determine_inode_label(current_security(),
2900 dir, qstr,
2901 inode_mode_to_security_class(inode->i_mode),
2902 &newsid);
2903 if (rc)
2904 return rc;
2905
2906 /* Possibly defer initialization to selinux_complete_init. */
2907 if (sbsec->flags & SE_SBINITIALIZED) {
2908 struct inode_security_struct *isec = inode->i_security;
2909 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2910 isec->sid = newsid;
2911 isec->initialized = LABEL_INITIALIZED;
2912 }
2913
2914 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2915 return -EOPNOTSUPP;
2916
2917 if (name)
2918 *name = XATTR_SELINUX_SUFFIX;
2919
2920 if (value && len) {
2921 rc = security_sid_to_context_force(newsid, &context, &clen);
2922 if (rc)
2923 return rc;
2924 *value = context;
2925 *len = clen;
2926 }
2927
2928 return 0;
2929}
2930
2931static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2932{
2933 return may_create(dir, dentry, SECCLASS_FILE);
2934}
2935
2936static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2937{
2938 return may_link(dir, old_dentry, MAY_LINK);
2939}
2940
2941static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2942{
2943 return may_link(dir, dentry, MAY_UNLINK);
2944}
2945
2946static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2947{
2948 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2949}
2950
2951static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2952{
2953 return may_create(dir, dentry, SECCLASS_DIR);
2954}
2955
2956static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2957{
2958 return may_link(dir, dentry, MAY_RMDIR);
2959}
2960
2961static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2962{
2963 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2964}
2965
2966static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2967 struct inode *new_inode, struct dentry *new_dentry)
2968{
2969 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2970}
2971
2972static int selinux_inode_readlink(struct dentry *dentry)
2973{
2974 const struct cred *cred = current_cred();
2975
2976 return dentry_has_perm(cred, dentry, FILE__READ);
2977}
2978
2979static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2980 bool rcu)
2981{
2982 const struct cred *cred = current_cred();
2983 struct common_audit_data ad;
2984 struct inode_security_struct *isec;
2985 u32 sid;
2986
2987 validate_creds(cred);
2988
2989 ad.type = LSM_AUDIT_DATA_DENTRY;
2990 ad.u.dentry = dentry;
2991 sid = cred_sid(cred);
2992 isec = inode_security_rcu(inode, rcu);
2993 if (IS_ERR(isec))
2994 return PTR_ERR(isec);
2995
2996 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2997 rcu ? MAY_NOT_BLOCK : 0);
2998}
2999
3000static noinline int audit_inode_permission(struct inode *inode,
3001 u32 perms, u32 audited, u32 denied,
3002 int result,
3003 unsigned flags)
3004{
3005 struct common_audit_data ad;
3006 struct inode_security_struct *isec = inode->i_security;
3007 int rc;
3008
3009 ad.type = LSM_AUDIT_DATA_INODE;
3010 ad.u.inode = inode;
3011
3012 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3013 audited, denied, result, &ad, flags);
3014 if (rc)
3015 return rc;
3016 return 0;
3017}
3018
3019static int selinux_inode_permission(struct inode *inode, int mask)
3020{
3021 const struct cred *cred = current_cred();
3022 u32 perms;
3023 bool from_access;
3024 unsigned flags = mask & MAY_NOT_BLOCK;
3025 struct inode_security_struct *isec;
3026 u32 sid;
3027 struct av_decision avd;
3028 int rc, rc2;
3029 u32 audited, denied;
3030
3031 from_access = mask & MAY_ACCESS;
3032 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3033
3034 /* No permission to check. Existence test. */
3035 if (!mask)
3036 return 0;
3037
3038 validate_creds(cred);
3039
3040 if (unlikely(IS_PRIVATE(inode)))
3041 return 0;
3042
3043 perms = file_mask_to_av(inode->i_mode, mask);
3044
3045 sid = cred_sid(cred);
3046 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3047 if (IS_ERR(isec))
3048 return PTR_ERR(isec);
3049
3050 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
3051 audited = avc_audit_required(perms, &avd, rc,
3052 from_access ? FILE__AUDIT_ACCESS : 0,
3053 &denied);
3054 if (likely(!audited))
3055 return rc;
3056
3057 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3058 if (rc2)
3059 return rc2;
3060 return rc;
3061}
3062
3063static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3064{
3065 const struct cred *cred = current_cred();
3066 unsigned int ia_valid = iattr->ia_valid;
3067 __u32 av = FILE__WRITE;
3068
3069 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3070 if (ia_valid & ATTR_FORCE) {
3071 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3072 ATTR_FORCE);
3073 if (!ia_valid)
3074 return 0;
3075 }
3076
3077 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3078 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3079 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3080
3081 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3082 && !(ia_valid & ATTR_FILE))
3083 av |= FILE__OPEN;
3084
3085 return dentry_has_perm(cred, dentry, av);
3086}
3087
3088static int selinux_inode_getattr(const struct path *path)
3089{
3090 return path_has_perm(current_cred(), path, FILE__GETATTR);
3091}
3092
3093static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3094{
3095 const struct cred *cred = current_cred();
3096
3097 if (!strncmp(name, XATTR_SECURITY_PREFIX,
3098 sizeof XATTR_SECURITY_PREFIX - 1)) {
3099 if (!strcmp(name, XATTR_NAME_CAPS)) {
3100 if (!capable(CAP_SETFCAP))
3101 return -EPERM;
3102 } else if (!capable(CAP_SYS_ADMIN)) {
3103 /* A different attribute in the security namespace.
3104 Restrict to administrator. */
3105 return -EPERM;
3106 }
3107 }
3108
3109 /* Not an attribute we recognize, so just check the
3110 ordinary setattr permission. */
3111 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115 const void *value, size_t size, int flags)
3116{
3117 struct inode *inode = d_backing_inode(dentry);
3118 struct inode_security_struct *isec;
3119 struct superblock_security_struct *sbsec;
3120 struct common_audit_data ad;
3121 u32 newsid, sid = current_sid();
3122 int rc = 0;
3123
3124 if (strcmp(name, XATTR_NAME_SELINUX))
3125 return selinux_inode_setotherxattr(dentry, name);
3126
3127 sbsec = inode->i_sb->s_security;
3128 if (!(sbsec->flags & SBLABEL_MNT))
3129 return -EOPNOTSUPP;
3130
3131 if (!inode_owner_or_capable(inode))
3132 return -EPERM;
3133
3134 ad.type = LSM_AUDIT_DATA_DENTRY;
3135 ad.u.dentry = dentry;
3136
3137 isec = backing_inode_security(dentry);
3138 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3139 FILE__RELABELFROM, &ad);
3140 if (rc)
3141 return rc;
3142
3143 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3144 if (rc == -EINVAL) {
3145 if (!capable(CAP_MAC_ADMIN)) {
3146 struct audit_buffer *ab;
3147 size_t audit_size;
3148 const char *str;
3149
3150 /* We strip a nul only if it is at the end, otherwise the
3151 * context contains a nul and we should audit that */
3152 if (value) {
3153 str = value;
3154 if (str[size - 1] == '\0')
3155 audit_size = size - 1;
3156 else
3157 audit_size = size;
3158 } else {
3159 str = "";
3160 audit_size = 0;
3161 }
3162 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3163 audit_log_format(ab, "op=setxattr invalid_context=");
3164 audit_log_n_untrustedstring(ab, value, audit_size);
3165 audit_log_end(ab);
3166
3167 return rc;
3168 }
3169 rc = security_context_to_sid_force(value, size, &newsid);
3170 }
3171 if (rc)
3172 return rc;
3173
3174 rc = avc_has_perm(sid, newsid, isec->sclass,
3175 FILE__RELABELTO, &ad);
3176 if (rc)
3177 return rc;
3178
3179 rc = security_validate_transition(isec->sid, newsid, sid,
3180 isec->sclass);
3181 if (rc)
3182 return rc;
3183
3184 return avc_has_perm(newsid,
3185 sbsec->sid,
3186 SECCLASS_FILESYSTEM,
3187 FILESYSTEM__ASSOCIATE,
3188 &ad);
3189}
3190
3191static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3192 const void *value, size_t size,
3193 int flags)
3194{
3195 struct inode *inode = d_backing_inode(dentry);
3196 struct inode_security_struct *isec;
3197 u32 newsid;
3198 int rc;
3199
3200 if (strcmp(name, XATTR_NAME_SELINUX)) {
3201 /* Not an attribute we recognize, so nothing to do. */
3202 return;
3203 }
3204
3205 rc = security_context_to_sid_force(value, size, &newsid);
3206 if (rc) {
3207 printk(KERN_ERR "SELinux: unable to map context to SID"
3208 "for (%s, %lu), rc=%d\n",
3209 inode->i_sb->s_id, inode->i_ino, -rc);
3210 return;
3211 }
3212
3213 isec = backing_inode_security(dentry);
3214 spin_lock(&isec->lock);
3215 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3216 isec->sid = newsid;
3217 isec->initialized = LABEL_INITIALIZED;
3218 spin_unlock(&isec->lock);
3219
3220 return;
3221}
3222
3223static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3224{
3225 const struct cred *cred = current_cred();
3226
3227 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3228}
3229
3230static int selinux_inode_listxattr(struct dentry *dentry)
3231{
3232 const struct cred *cred = current_cred();
3233
3234 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3235}
3236
3237static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3238{
3239 if (strcmp(name, XATTR_NAME_SELINUX))
3240 return selinux_inode_setotherxattr(dentry, name);
3241
3242 /* No one is allowed to remove a SELinux security label.
3243 You can change the label, but all data must be labeled. */
3244 return -EACCES;
3245}
3246
3247/*
3248 * Copy the inode security context value to the user.
3249 *
3250 * Permission check is handled by selinux_inode_getxattr hook.
3251 */
3252static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3253{
3254 u32 size;
3255 int error;
3256 char *context = NULL;
3257 struct inode_security_struct *isec;
3258
3259 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3260 return -EOPNOTSUPP;
3261
3262 /*
3263 * If the caller has CAP_MAC_ADMIN, then get the raw context
3264 * value even if it is not defined by current policy; otherwise,
3265 * use the in-core value under current policy.
3266 * Use the non-auditing forms of the permission checks since
3267 * getxattr may be called by unprivileged processes commonly
3268 * and lack of permission just means that we fall back to the
3269 * in-core context value, not a denial.
3270 */
3271 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3272 SECURITY_CAP_NOAUDIT);
3273 if (!error)
3274 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3275 SECURITY_CAP_NOAUDIT, true);
3276 isec = inode_security(inode);
3277 if (!error)
3278 error = security_sid_to_context_force(isec->sid, &context,
3279 &size);
3280 else
3281 error = security_sid_to_context(isec->sid, &context, &size);
3282 if (error)
3283 return error;
3284 error = size;
3285 if (alloc) {
3286 *buffer = context;
3287 goto out_nofree;
3288 }
3289 kfree(context);
3290out_nofree:
3291 return error;
3292}
3293
3294static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3295 const void *value, size_t size, int flags)
3296{
3297 struct inode_security_struct *isec = inode_security_novalidate(inode);
3298 u32 newsid;
3299 int rc;
3300
3301 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3302 return -EOPNOTSUPP;
3303
3304 if (!value || !size)
3305 return -EACCES;
3306
3307 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3308 if (rc)
3309 return rc;
3310
3311 spin_lock(&isec->lock);
3312 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3313 isec->sid = newsid;
3314 isec->initialized = LABEL_INITIALIZED;
3315 spin_unlock(&isec->lock);
3316 return 0;
3317}
3318
3319static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3320{
3321 const int len = sizeof(XATTR_NAME_SELINUX);
3322 if (buffer && len <= buffer_size)
3323 memcpy(buffer, XATTR_NAME_SELINUX, len);
3324 return len;
3325}
3326
3327static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3328{
3329 struct inode_security_struct *isec = inode_security_novalidate(inode);
3330 *secid = isec->sid;
3331}
3332
3333static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3334{
3335 u32 sid;
3336 struct task_security_struct *tsec;
3337 struct cred *new_creds = *new;
3338
3339 if (new_creds == NULL) {
3340 new_creds = prepare_creds();
3341 if (!new_creds)
3342 return -ENOMEM;
3343 }
3344
3345 tsec = new_creds->security;
3346 /* Get label from overlay inode and set it in create_sid */
3347 selinux_inode_getsecid(d_inode(src), &sid);
3348 tsec->create_sid = sid;
3349 *new = new_creds;
3350 return 0;
3351}
3352
3353static int selinux_inode_copy_up_xattr(const char *name)
3354{
3355 /* The copy_up hook above sets the initial context on an inode, but we
3356 * don't then want to overwrite it by blindly copying all the lower
3357 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3358 */
3359 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3360 return 1; /* Discard */
3361 /*
3362 * Any other attribute apart from SELINUX is not claimed, supported
3363 * by selinux.
3364 */
3365 return -EOPNOTSUPP;
3366}
3367
3368/* file security operations */
3369
3370static int selinux_revalidate_file_permission(struct file *file, int mask)
3371{
3372 const struct cred *cred = current_cred();
3373 struct inode *inode = file_inode(file);
3374
3375 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3376 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3377 mask |= MAY_APPEND;
3378
3379 return file_has_perm(cred, file,
3380 file_mask_to_av(inode->i_mode, mask));
3381}
3382
3383static int selinux_file_permission(struct file *file, int mask)
3384{
3385 struct inode *inode = file_inode(file);
3386 struct file_security_struct *fsec = file->f_security;
3387 struct inode_security_struct *isec;
3388 u32 sid = current_sid();
3389
3390 if (!mask)
3391 /* No permission to check. Existence test. */
3392 return 0;
3393
3394 isec = inode_security(inode);
3395 if (sid == fsec->sid && fsec->isid == isec->sid &&
3396 fsec->pseqno == avc_policy_seqno())
3397 /* No change since file_open check. */
3398 return 0;
3399
3400 return selinux_revalidate_file_permission(file, mask);
3401}
3402
3403static int selinux_file_alloc_security(struct file *file)
3404{
3405 return file_alloc_security(file);
3406}
3407
3408static void selinux_file_free_security(struct file *file)
3409{
3410 file_free_security(file);
3411}
3412
3413/*
3414 * Check whether a task has the ioctl permission and cmd
3415 * operation to an inode.
3416 */
3417static int ioctl_has_perm(const struct cred *cred, struct file *file,
3418 u32 requested, u16 cmd)
3419{
3420 struct common_audit_data ad;
3421 struct file_security_struct *fsec = file->f_security;
3422 struct inode *inode = file_inode(file);
3423 struct inode_security_struct *isec;
3424 struct lsm_ioctlop_audit ioctl;
3425 u32 ssid = cred_sid(cred);
3426 int rc;
3427 u8 driver = cmd >> 8;
3428 u8 xperm = cmd & 0xff;
3429
3430 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3431 ad.u.op = &ioctl;
3432 ad.u.op->cmd = cmd;
3433 ad.u.op->path = file->f_path;
3434
3435 if (ssid != fsec->sid) {
3436 rc = avc_has_perm(ssid, fsec->sid,
3437 SECCLASS_FD,
3438 FD__USE,
3439 &ad);
3440 if (rc)
3441 goto out;
3442 }
3443
3444 if (unlikely(IS_PRIVATE(inode)))
3445 return 0;
3446
3447 isec = inode_security(inode);
3448 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3449 requested, driver, xperm, &ad);
3450out:
3451 return rc;
3452}
3453
3454static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3455 unsigned long arg)
3456{
3457 const struct cred *cred = current_cred();
3458 int error = 0;
3459
3460 switch (cmd) {
3461 case FIONREAD:
3462 /* fall through */
3463 case FIBMAP:
3464 /* fall through */
3465 case FIGETBSZ:
3466 /* fall through */
3467 case FS_IOC_GETFLAGS:
3468 /* fall through */
3469 case FS_IOC_GETVERSION:
3470 error = file_has_perm(cred, file, FILE__GETATTR);
3471 break;
3472
3473 case FS_IOC_SETFLAGS:
3474 /* fall through */
3475 case FS_IOC_SETVERSION:
3476 error = file_has_perm(cred, file, FILE__SETATTR);
3477 break;
3478
3479 /* sys_ioctl() checks */
3480 case FIONBIO:
3481 /* fall through */
3482 case FIOASYNC:
3483 error = file_has_perm(cred, file, 0);
3484 break;
3485
3486 case KDSKBENT:
3487 case KDSKBSENT:
3488 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3489 SECURITY_CAP_AUDIT, true);
3490 break;
3491
3492 /* default case assumes that the command will go
3493 * to the file's ioctl() function.
3494 */
3495 default:
3496 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3497 }
3498 return error;
3499}
3500
3501static int default_noexec;
3502
3503static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3504{
3505 const struct cred *cred = current_cred();
3506 int rc = 0;
3507
3508 if (default_noexec &&
3509 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3510 (!shared && (prot & PROT_WRITE)))) {
3511 /*
3512 * We are making executable an anonymous mapping or a
3513 * private file mapping that will also be writable.
3514 * This has an additional check.
3515 */
3516 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3517 if (rc)
3518 goto error;
3519 }
3520
3521 if (file) {
3522 /* read access is always possible with a mapping */
3523 u32 av = FILE__READ;
3524
3525 /* write access only matters if the mapping is shared */
3526 if (shared && (prot & PROT_WRITE))
3527 av |= FILE__WRITE;
3528
3529 if (prot & PROT_EXEC)
3530 av |= FILE__EXECUTE;
3531
3532 return file_has_perm(cred, file, av);
3533 }
3534
3535error:
3536 return rc;
3537}
3538
3539static int selinux_mmap_addr(unsigned long addr)
3540{
3541 int rc = 0;
3542
3543 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3544 u32 sid = current_sid();
3545 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3546 MEMPROTECT__MMAP_ZERO, NULL);
3547 }
3548
3549 return rc;
3550}
3551
3552static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3553 unsigned long prot, unsigned long flags)
3554{
3555 if (selinux_checkreqprot)
3556 prot = reqprot;
3557
3558 return file_map_prot_check(file, prot,
3559 (flags & MAP_TYPE) == MAP_SHARED);
3560}
3561
3562static int selinux_file_mprotect(struct vm_area_struct *vma,
3563 unsigned long reqprot,
3564 unsigned long prot)
3565{
3566 const struct cred *cred = current_cred();
3567
3568 if (selinux_checkreqprot)
3569 prot = reqprot;
3570
3571 if (default_noexec &&
3572 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3573 int rc = 0;
3574 if (vma->vm_start >= vma->vm_mm->start_brk &&
3575 vma->vm_end <= vma->vm_mm->brk) {
3576 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3577 } else if (!vma->vm_file &&
3578 ((vma->vm_start <= vma->vm_mm->start_stack &&
3579 vma->vm_end >= vma->vm_mm->start_stack) ||
3580 vma_is_stack_for_current(vma))) {
3581 rc = current_has_perm(current, PROCESS__EXECSTACK);
3582 } else if (vma->vm_file && vma->anon_vma) {
3583 /*
3584 * We are making executable a file mapping that has
3585 * had some COW done. Since pages might have been
3586 * written, check ability to execute the possibly
3587 * modified content. This typically should only
3588 * occur for text relocations.
3589 */
3590 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3591 }
3592 if (rc)
3593 return rc;
3594 }
3595
3596 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3597}
3598
3599static int selinux_file_lock(struct file *file, unsigned int cmd)
3600{
3601 const struct cred *cred = current_cred();
3602
3603 return file_has_perm(cred, file, FILE__LOCK);
3604}
3605
3606static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3607 unsigned long arg)
3608{
3609 const struct cred *cred = current_cred();
3610 int err = 0;
3611
3612 switch (cmd) {
3613 case F_SETFL:
3614 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3615 err = file_has_perm(cred, file, FILE__WRITE);
3616 break;
3617 }
3618 /* fall through */
3619 case F_SETOWN:
3620 case F_SETSIG:
3621 case F_GETFL:
3622 case F_GETOWN:
3623 case F_GETSIG:
3624 case F_GETOWNER_UIDS:
3625 /* Just check FD__USE permission */
3626 err = file_has_perm(cred, file, 0);
3627 break;
3628 case F_GETLK:
3629 case F_SETLK:
3630 case F_SETLKW:
3631 case F_OFD_GETLK:
3632 case F_OFD_SETLK:
3633 case F_OFD_SETLKW:
3634#if BITS_PER_LONG == 32
3635 case F_GETLK64:
3636 case F_SETLK64:
3637 case F_SETLKW64:
3638#endif
3639 err = file_has_perm(cred, file, FILE__LOCK);
3640 break;
3641 }
3642
3643 return err;
3644}
3645
3646static void selinux_file_set_fowner(struct file *file)
3647{
3648 struct file_security_struct *fsec;
3649
3650 fsec = file->f_security;
3651 fsec->fown_sid = current_sid();
3652}
3653
3654static int selinux_file_send_sigiotask(struct task_struct *tsk,
3655 struct fown_struct *fown, int signum)
3656{
3657 struct file *file;
3658 u32 sid = task_sid(tsk);
3659 u32 perm;
3660 struct file_security_struct *fsec;
3661
3662 /* struct fown_struct is never outside the context of a struct file */
3663 file = container_of(fown, struct file, f_owner);
3664
3665 fsec = file->f_security;
3666
3667 if (!signum)
3668 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3669 else
3670 perm = signal_to_av(signum);
3671
3672 return avc_has_perm(fsec->fown_sid, sid,
3673 SECCLASS_PROCESS, perm, NULL);
3674}
3675
3676static int selinux_file_receive(struct file *file)
3677{
3678 const struct cred *cred = current_cred();
3679
3680 return file_has_perm(cred, file, file_to_av(file));
3681}
3682
3683static int selinux_file_open(struct file *file, const struct cred *cred)
3684{
3685 struct file_security_struct *fsec;
3686 struct inode_security_struct *isec;
3687
3688 fsec = file->f_security;
3689 isec = inode_security(file_inode(file));
3690 /*
3691 * Save inode label and policy sequence number
3692 * at open-time so that selinux_file_permission
3693 * can determine whether revalidation is necessary.
3694 * Task label is already saved in the file security
3695 * struct as its SID.
3696 */
3697 fsec->isid = isec->sid;
3698 fsec->pseqno = avc_policy_seqno();
3699 /*
3700 * Since the inode label or policy seqno may have changed
3701 * between the selinux_inode_permission check and the saving
3702 * of state above, recheck that access is still permitted.
3703 * Otherwise, access might never be revalidated against the
3704 * new inode label or new policy.
3705 * This check is not redundant - do not remove.
3706 */
3707 return file_path_has_perm(cred, file, open_file_to_av(file));
3708}
3709
3710/* task security operations */
3711
3712static int selinux_task_create(unsigned long clone_flags)
3713{
3714 return current_has_perm(current, PROCESS__FORK);
3715}
3716
3717/*
3718 * allocate the SELinux part of blank credentials
3719 */
3720static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3721{
3722 struct task_security_struct *tsec;
3723
3724 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3725 if (!tsec)
3726 return -ENOMEM;
3727
3728 cred->security = tsec;
3729 return 0;
3730}
3731
3732/*
3733 * detach and free the LSM part of a set of credentials
3734 */
3735static void selinux_cred_free(struct cred *cred)
3736{
3737 struct task_security_struct *tsec = cred->security;
3738
3739 /*
3740 * cred->security == NULL if security_cred_alloc_blank() or
3741 * security_prepare_creds() returned an error.
3742 */
3743 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3744 cred->security = (void *) 0x7UL;
3745 kfree(tsec);
3746}
3747
3748/*
3749 * prepare a new set of credentials for modification
3750 */
3751static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3752 gfp_t gfp)
3753{
3754 const struct task_security_struct *old_tsec;
3755 struct task_security_struct *tsec;
3756
3757 old_tsec = old->security;
3758
3759 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3760 if (!tsec)
3761 return -ENOMEM;
3762
3763 new->security = tsec;
3764 return 0;
3765}
3766
3767/*
3768 * transfer the SELinux data to a blank set of creds
3769 */
3770static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3771{
3772 const struct task_security_struct *old_tsec = old->security;
3773 struct task_security_struct *tsec = new->security;
3774
3775 *tsec = *old_tsec;
3776}
3777
3778/*
3779 * set the security data for a kernel service
3780 * - all the creation contexts are set to unlabelled
3781 */
3782static int selinux_kernel_act_as(struct cred *new, u32 secid)
3783{
3784 struct task_security_struct *tsec = new->security;
3785 u32 sid = current_sid();
3786 int ret;
3787
3788 ret = avc_has_perm(sid, secid,
3789 SECCLASS_KERNEL_SERVICE,
3790 KERNEL_SERVICE__USE_AS_OVERRIDE,
3791 NULL);
3792 if (ret == 0) {
3793 tsec->sid = secid;
3794 tsec->create_sid = 0;
3795 tsec->keycreate_sid = 0;
3796 tsec->sockcreate_sid = 0;
3797 }
3798 return ret;
3799}
3800
3801/*
3802 * set the file creation context in a security record to the same as the
3803 * objective context of the specified inode
3804 */
3805static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3806{
3807 struct inode_security_struct *isec = inode_security(inode);
3808 struct task_security_struct *tsec = new->security;
3809 u32 sid = current_sid();
3810 int ret;
3811
3812 ret = avc_has_perm(sid, isec->sid,
3813 SECCLASS_KERNEL_SERVICE,
3814 KERNEL_SERVICE__CREATE_FILES_AS,
3815 NULL);
3816
3817 if (ret == 0)
3818 tsec->create_sid = isec->sid;
3819 return ret;
3820}
3821
3822static int selinux_kernel_module_request(char *kmod_name)
3823{
3824 u32 sid;
3825 struct common_audit_data ad;
3826
3827 sid = task_sid(current);
3828
3829 ad.type = LSM_AUDIT_DATA_KMOD;
3830 ad.u.kmod_name = kmod_name;
3831
3832 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3833 SYSTEM__MODULE_REQUEST, &ad);
3834}
3835
3836static int selinux_kernel_module_from_file(struct file *file)
3837{
3838 struct common_audit_data ad;
3839 struct inode_security_struct *isec;
3840 struct file_security_struct *fsec;
3841 u32 sid = current_sid();
3842 int rc;
3843
3844 /* init_module */
3845 if (file == NULL)
3846 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
3847 SYSTEM__MODULE_LOAD, NULL);
3848
3849 /* finit_module */
3850
3851 ad.type = LSM_AUDIT_DATA_FILE;
3852 ad.u.file = file;
3853
3854 fsec = file->f_security;
3855 if (sid != fsec->sid) {
3856 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3857 if (rc)
3858 return rc;
3859 }
3860
3861 isec = inode_security(file_inode(file));
3862 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
3863 SYSTEM__MODULE_LOAD, &ad);
3864}
3865
3866static int selinux_kernel_read_file(struct file *file,
3867 enum kernel_read_file_id id)
3868{
3869 int rc = 0;
3870
3871 switch (id) {
3872 case READING_MODULE:
3873 rc = selinux_kernel_module_from_file(file);
3874 break;
3875 default:
3876 break;
3877 }
3878
3879 return rc;
3880}
3881
3882static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3883{
3884 return current_has_perm(p, PROCESS__SETPGID);
3885}
3886
3887static int selinux_task_getpgid(struct task_struct *p)
3888{
3889 return current_has_perm(p, PROCESS__GETPGID);
3890}
3891
3892static int selinux_task_getsid(struct task_struct *p)
3893{
3894 return current_has_perm(p, PROCESS__GETSESSION);
3895}
3896
3897static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3898{
3899 *secid = task_sid(p);
3900}
3901
3902static int selinux_task_setnice(struct task_struct *p, int nice)
3903{
3904 return current_has_perm(p, PROCESS__SETSCHED);
3905}
3906
3907static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3908{
3909 return current_has_perm(p, PROCESS__SETSCHED);
3910}
3911
3912static int selinux_task_getioprio(struct task_struct *p)
3913{
3914 return current_has_perm(p, PROCESS__GETSCHED);
3915}
3916
3917static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3918 struct rlimit *new_rlim)
3919{
3920 struct rlimit *old_rlim = p->signal->rlim + resource;
3921
3922 /* Control the ability to change the hard limit (whether
3923 lowering or raising it), so that the hard limit can
3924 later be used as a safe reset point for the soft limit
3925 upon context transitions. See selinux_bprm_committing_creds. */
3926 if (old_rlim->rlim_max != new_rlim->rlim_max)
3927 return current_has_perm(p, PROCESS__SETRLIMIT);
3928
3929 return 0;
3930}
3931
3932static int selinux_task_setscheduler(struct task_struct *p)
3933{
3934 return current_has_perm(p, PROCESS__SETSCHED);
3935}
3936
3937static int selinux_task_getscheduler(struct task_struct *p)
3938{
3939 return current_has_perm(p, PROCESS__GETSCHED);
3940}
3941
3942static int selinux_task_movememory(struct task_struct *p)
3943{
3944 return current_has_perm(p, PROCESS__SETSCHED);
3945}
3946
3947static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3948 int sig, u32 secid)
3949{
3950 u32 perm;
3951 int rc;
3952
3953 if (!sig)
3954 perm = PROCESS__SIGNULL; /* null signal; existence test */
3955 else
3956 perm = signal_to_av(sig);
3957 if (secid)
3958 rc = avc_has_perm(secid, task_sid(p),
3959 SECCLASS_PROCESS, perm, NULL);
3960 else
3961 rc = current_has_perm(p, perm);
3962 return rc;
3963}
3964
3965static int selinux_task_wait(struct task_struct *p)
3966{
3967 return task_has_perm(p, current, PROCESS__SIGCHLD);
3968}
3969
3970static void selinux_task_to_inode(struct task_struct *p,
3971 struct inode *inode)
3972{
3973 struct inode_security_struct *isec = inode->i_security;
3974 u32 sid = task_sid(p);
3975
3976 spin_lock(&isec->lock);
3977 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3978 isec->sid = sid;
3979 isec->initialized = LABEL_INITIALIZED;
3980 spin_unlock(&isec->lock);
3981}
3982
3983/* Returns error only if unable to parse addresses */
3984static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3985 struct common_audit_data *ad, u8 *proto)
3986{
3987 int offset, ihlen, ret = -EINVAL;
3988 struct iphdr _iph, *ih;
3989
3990 offset = skb_network_offset(skb);
3991 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3992 if (ih == NULL)
3993 goto out;
3994
3995 ihlen = ih->ihl * 4;
3996 if (ihlen < sizeof(_iph))
3997 goto out;
3998
3999 ad->u.net->v4info.saddr = ih->saddr;
4000 ad->u.net->v4info.daddr = ih->daddr;
4001 ret = 0;
4002
4003 if (proto)
4004 *proto = ih->protocol;
4005
4006 switch (ih->protocol) {
4007 case IPPROTO_TCP: {
4008 struct tcphdr _tcph, *th;
4009
4010 if (ntohs(ih->frag_off) & IP_OFFSET)
4011 break;
4012
4013 offset += ihlen;
4014 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4015 if (th == NULL)
4016 break;
4017
4018 ad->u.net->sport = th->source;
4019 ad->u.net->dport = th->dest;
4020 break;
4021 }
4022
4023 case IPPROTO_UDP: {
4024 struct udphdr _udph, *uh;
4025
4026 if (ntohs(ih->frag_off) & IP_OFFSET)
4027 break;
4028
4029 offset += ihlen;
4030 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4031 if (uh == NULL)
4032 break;
4033
4034 ad->u.net->sport = uh->source;
4035 ad->u.net->dport = uh->dest;
4036 break;
4037 }
4038
4039 case IPPROTO_DCCP: {
4040 struct dccp_hdr _dccph, *dh;
4041
4042 if (ntohs(ih->frag_off) & IP_OFFSET)
4043 break;
4044
4045 offset += ihlen;
4046 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4047 if (dh == NULL)
4048 break;
4049
4050 ad->u.net->sport = dh->dccph_sport;
4051 ad->u.net->dport = dh->dccph_dport;
4052 break;
4053 }
4054
4055 default:
4056 break;
4057 }
4058out:
4059 return ret;
4060}
4061
4062#if IS_ENABLED(CONFIG_IPV6)
4063
4064/* Returns error only if unable to parse addresses */
4065static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4066 struct common_audit_data *ad, u8 *proto)
4067{
4068 u8 nexthdr;
4069 int ret = -EINVAL, offset;
4070 struct ipv6hdr _ipv6h, *ip6;
4071 __be16 frag_off;
4072
4073 offset = skb_network_offset(skb);
4074 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4075 if (ip6 == NULL)
4076 goto out;
4077
4078 ad->u.net->v6info.saddr = ip6->saddr;
4079 ad->u.net->v6info.daddr = ip6->daddr;
4080 ret = 0;
4081
4082 nexthdr = ip6->nexthdr;
4083 offset += sizeof(_ipv6h);
4084 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4085 if (offset < 0)
4086 goto out;
4087
4088 if (proto)
4089 *proto = nexthdr;
4090
4091 switch (nexthdr) {
4092 case IPPROTO_TCP: {
4093 struct tcphdr _tcph, *th;
4094
4095 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4096 if (th == NULL)
4097 break;
4098
4099 ad->u.net->sport = th->source;
4100 ad->u.net->dport = th->dest;
4101 break;
4102 }
4103
4104 case IPPROTO_UDP: {
4105 struct udphdr _udph, *uh;
4106
4107 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4108 if (uh == NULL)
4109 break;
4110
4111 ad->u.net->sport = uh->source;
4112 ad->u.net->dport = uh->dest;
4113 break;
4114 }
4115
4116 case IPPROTO_DCCP: {
4117 struct dccp_hdr _dccph, *dh;
4118
4119 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4120 if (dh == NULL)
4121 break;
4122
4123 ad->u.net->sport = dh->dccph_sport;
4124 ad->u.net->dport = dh->dccph_dport;
4125 break;
4126 }
4127
4128 /* includes fragments */
4129 default:
4130 break;
4131 }
4132out:
4133 return ret;
4134}
4135
4136#endif /* IPV6 */
4137
4138static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4139 char **_addrp, int src, u8 *proto)
4140{
4141 char *addrp;
4142 int ret;
4143
4144 switch (ad->u.net->family) {
4145 case PF_INET:
4146 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4147 if (ret)
4148 goto parse_error;
4149 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4150 &ad->u.net->v4info.daddr);
4151 goto okay;
4152
4153#if IS_ENABLED(CONFIG_IPV6)
4154 case PF_INET6:
4155 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4156 if (ret)
4157 goto parse_error;
4158 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4159 &ad->u.net->v6info.daddr);
4160 goto okay;
4161#endif /* IPV6 */
4162 default:
4163 addrp = NULL;
4164 goto okay;
4165 }
4166
4167parse_error:
4168 printk(KERN_WARNING
4169 "SELinux: failure in selinux_parse_skb(),"
4170 " unable to parse packet\n");
4171 return ret;
4172
4173okay:
4174 if (_addrp)
4175 *_addrp = addrp;
4176 return 0;
4177}
4178
4179/**
4180 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4181 * @skb: the packet
4182 * @family: protocol family
4183 * @sid: the packet's peer label SID
4184 *
4185 * Description:
4186 * Check the various different forms of network peer labeling and determine
4187 * the peer label/SID for the packet; most of the magic actually occurs in
4188 * the security server function security_net_peersid_cmp(). The function
4189 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4190 * or -EACCES if @sid is invalid due to inconsistencies with the different
4191 * peer labels.
4192 *
4193 */
4194static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4195{
4196 int err;
4197 u32 xfrm_sid;
4198 u32 nlbl_sid;
4199 u32 nlbl_type;
4200
4201 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4202 if (unlikely(err))
4203 return -EACCES;
4204 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4205 if (unlikely(err))
4206 return -EACCES;
4207
4208 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4209 if (unlikely(err)) {
4210 printk(KERN_WARNING
4211 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4212 " unable to determine packet's peer label\n");
4213 return -EACCES;
4214 }
4215
4216 return 0;
4217}
4218
4219/**
4220 * selinux_conn_sid - Determine the child socket label for a connection
4221 * @sk_sid: the parent socket's SID
4222 * @skb_sid: the packet's SID
4223 * @conn_sid: the resulting connection SID
4224 *
4225 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4226 * combined with the MLS information from @skb_sid in order to create
4227 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4228 * of @sk_sid. Returns zero on success, negative values on failure.
4229 *
4230 */
4231static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4232{
4233 int err = 0;
4234
4235 if (skb_sid != SECSID_NULL)
4236 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4237 else
4238 *conn_sid = sk_sid;
4239
4240 return err;
4241}
4242
4243/* socket security operations */
4244
4245static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4246 u16 secclass, u32 *socksid)
4247{
4248 if (tsec->sockcreate_sid > SECSID_NULL) {
4249 *socksid = tsec->sockcreate_sid;
4250 return 0;
4251 }
4252
4253 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4254 socksid);
4255}
4256
4257static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4258{
4259 struct sk_security_struct *sksec = sk->sk_security;
4260 struct common_audit_data ad;
4261 struct lsm_network_audit net = {0,};
4262 u32 tsid = task_sid(task);
4263
4264 if (sksec->sid == SECINITSID_KERNEL)
4265 return 0;
4266
4267 ad.type = LSM_AUDIT_DATA_NET;
4268 ad.u.net = &net;
4269 ad.u.net->sk = sk;
4270
4271 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4272}
4273
4274static int selinux_socket_create(int family, int type,
4275 int protocol, int kern)
4276{
4277 const struct task_security_struct *tsec = current_security();
4278 u32 newsid;
4279 u16 secclass;
4280 int rc;
4281
4282 if (kern)
4283 return 0;
4284
4285 secclass = socket_type_to_security_class(family, type, protocol);
4286 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4287 if (rc)
4288 return rc;
4289
4290 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4291}
4292
4293static int selinux_socket_post_create(struct socket *sock, int family,
4294 int type, int protocol, int kern)
4295{
4296 const struct task_security_struct *tsec = current_security();
4297 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4298 struct sk_security_struct *sksec;
4299 u16 sclass = socket_type_to_security_class(family, type, protocol);
4300 u32 sid = SECINITSID_KERNEL;
4301 int err = 0;
4302
4303 if (!kern) {
4304 err = socket_sockcreate_sid(tsec, sclass, &sid);
4305 if (err)
4306 return err;
4307 }
4308
4309 isec->sclass = sclass;
4310 isec->sid = sid;
4311 isec->initialized = LABEL_INITIALIZED;
4312
4313 if (sock->sk) {
4314 sksec = sock->sk->sk_security;
4315 sksec->sclass = sclass;
4316 sksec->sid = sid;
4317 err = selinux_netlbl_socket_post_create(sock->sk, family);
4318 }
4319
4320 return err;
4321}
4322
4323/* Range of port numbers used to automatically bind.
4324 Need to determine whether we should perform a name_bind
4325 permission check between the socket and the port number. */
4326
4327static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4328{
4329 struct sock *sk = sock->sk;
4330 u16 family;
4331 int err;
4332
4333 err = sock_has_perm(current, sk, SOCKET__BIND);
4334 if (err)
4335 goto out;
4336
4337 /*
4338 * If PF_INET or PF_INET6, check name_bind permission for the port.
4339 * Multiple address binding for SCTP is not supported yet: we just
4340 * check the first address now.
4341 */
4342 family = sk->sk_family;
4343 if (family == PF_INET || family == PF_INET6) {
4344 char *addrp;
4345 struct sk_security_struct *sksec = sk->sk_security;
4346 struct common_audit_data ad;
4347 struct lsm_network_audit net = {0,};
4348 struct sockaddr_in *addr4 = NULL;
4349 struct sockaddr_in6 *addr6 = NULL;
4350 unsigned short snum;
4351 u32 sid, node_perm;
4352
4353 if (family == PF_INET) {
4354 addr4 = (struct sockaddr_in *)address;
4355 snum = ntohs(addr4->sin_port);
4356 addrp = (char *)&addr4->sin_addr.s_addr;
4357 } else {
4358 addr6 = (struct sockaddr_in6 *)address;
4359 snum = ntohs(addr6->sin6_port);
4360 addrp = (char *)&addr6->sin6_addr.s6_addr;
4361 }
4362
4363 if (snum) {
4364 int low, high;
4365
4366 inet_get_local_port_range(sock_net(sk), &low, &high);
4367
4368 if (snum < max(PROT_SOCK, low) || snum > high) {
4369 err = sel_netport_sid(sk->sk_protocol,
4370 snum, &sid);
4371 if (err)
4372 goto out;
4373 ad.type = LSM_AUDIT_DATA_NET;
4374 ad.u.net = &net;
4375 ad.u.net->sport = htons(snum);
4376 ad.u.net->family = family;
4377 err = avc_has_perm(sksec->sid, sid,
4378 sksec->sclass,
4379 SOCKET__NAME_BIND, &ad);
4380 if (err)
4381 goto out;
4382 }
4383 }
4384
4385 switch (sksec->sclass) {
4386 case SECCLASS_TCP_SOCKET:
4387 node_perm = TCP_SOCKET__NODE_BIND;
4388 break;
4389
4390 case SECCLASS_UDP_SOCKET:
4391 node_perm = UDP_SOCKET__NODE_BIND;
4392 break;
4393
4394 case SECCLASS_DCCP_SOCKET:
4395 node_perm = DCCP_SOCKET__NODE_BIND;
4396 break;
4397
4398 default:
4399 node_perm = RAWIP_SOCKET__NODE_BIND;
4400 break;
4401 }
4402
4403 err = sel_netnode_sid(addrp, family, &sid);
4404 if (err)
4405 goto out;
4406
4407 ad.type = LSM_AUDIT_DATA_NET;
4408 ad.u.net = &net;
4409 ad.u.net->sport = htons(snum);
4410 ad.u.net->family = family;
4411
4412 if (family == PF_INET)
4413 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4414 else
4415 ad.u.net->v6info.saddr = addr6->sin6_addr;
4416
4417 err = avc_has_perm(sksec->sid, sid,
4418 sksec->sclass, node_perm, &ad);
4419 if (err)
4420 goto out;
4421 }
4422out:
4423 return err;
4424}
4425
4426static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4427{
4428 struct sock *sk = sock->sk;
4429 struct sk_security_struct *sksec = sk->sk_security;
4430 int err;
4431
4432 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4433 if (err)
4434 return err;
4435
4436 /*
4437 * If a TCP or DCCP socket, check name_connect permission for the port.
4438 */
4439 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4440 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4441 struct common_audit_data ad;
4442 struct lsm_network_audit net = {0,};
4443 struct sockaddr_in *addr4 = NULL;
4444 struct sockaddr_in6 *addr6 = NULL;
4445 unsigned short snum;
4446 u32 sid, perm;
4447
4448 if (sk->sk_family == PF_INET) {
4449 addr4 = (struct sockaddr_in *)address;
4450 if (addrlen < sizeof(struct sockaddr_in))
4451 return -EINVAL;
4452 snum = ntohs(addr4->sin_port);
4453 } else {
4454 addr6 = (struct sockaddr_in6 *)address;
4455 if (addrlen < SIN6_LEN_RFC2133)
4456 return -EINVAL;
4457 snum = ntohs(addr6->sin6_port);
4458 }
4459
4460 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4461 if (err)
4462 goto out;
4463
4464 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4465 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4466
4467 ad.type = LSM_AUDIT_DATA_NET;
4468 ad.u.net = &net;
4469 ad.u.net->dport = htons(snum);
4470 ad.u.net->family = sk->sk_family;
4471 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4472 if (err)
4473 goto out;
4474 }
4475
4476 err = selinux_netlbl_socket_connect(sk, address);
4477
4478out:
4479 return err;
4480}
4481
4482static int selinux_socket_listen(struct socket *sock, int backlog)
4483{
4484 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4485}
4486
4487static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4488{
4489 int err;
4490 struct inode_security_struct *isec;
4491 struct inode_security_struct *newisec;
4492 u16 sclass;
4493 u32 sid;
4494
4495 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4496 if (err)
4497 return err;
4498
4499 isec = inode_security_novalidate(SOCK_INODE(sock));
4500 spin_lock(&isec->lock);
4501 sclass = isec->sclass;
4502 sid = isec->sid;
4503 spin_unlock(&isec->lock);
4504
4505 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4506 newisec->sclass = sclass;
4507 newisec->sid = sid;
4508 newisec->initialized = LABEL_INITIALIZED;
4509
4510 return 0;
4511}
4512
4513static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4514 int size)
4515{
4516 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4517}
4518
4519static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4520 int size, int flags)
4521{
4522 return sock_has_perm(current, sock->sk, SOCKET__READ);
4523}
4524
4525static int selinux_socket_getsockname(struct socket *sock)
4526{
4527 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4528}
4529
4530static int selinux_socket_getpeername(struct socket *sock)
4531{
4532 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4533}
4534
4535static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4536{
4537 int err;
4538
4539 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4540 if (err)
4541 return err;
4542
4543 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4544}
4545
4546static int selinux_socket_getsockopt(struct socket *sock, int level,
4547 int optname)
4548{
4549 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4550}
4551
4552static int selinux_socket_shutdown(struct socket *sock, int how)
4553{
4554 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4555}
4556
4557static int selinux_socket_unix_stream_connect(struct sock *sock,
4558 struct sock *other,
4559 struct sock *newsk)
4560{
4561 struct sk_security_struct *sksec_sock = sock->sk_security;
4562 struct sk_security_struct *sksec_other = other->sk_security;
4563 struct sk_security_struct *sksec_new = newsk->sk_security;
4564 struct common_audit_data ad;
4565 struct lsm_network_audit net = {0,};
4566 int err;
4567
4568 ad.type = LSM_AUDIT_DATA_NET;
4569 ad.u.net = &net;
4570 ad.u.net->sk = other;
4571
4572 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4573 sksec_other->sclass,
4574 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4575 if (err)
4576 return err;
4577
4578 /* server child socket */
4579 sksec_new->peer_sid = sksec_sock->sid;
4580 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4581 &sksec_new->sid);
4582 if (err)
4583 return err;
4584
4585 /* connecting socket */
4586 sksec_sock->peer_sid = sksec_new->sid;
4587
4588 return 0;
4589}
4590
4591static int selinux_socket_unix_may_send(struct socket *sock,
4592 struct socket *other)
4593{
4594 struct sk_security_struct *ssec = sock->sk->sk_security;
4595 struct sk_security_struct *osec = other->sk->sk_security;
4596 struct common_audit_data ad;
4597 struct lsm_network_audit net = {0,};
4598
4599 ad.type = LSM_AUDIT_DATA_NET;
4600 ad.u.net = &net;
4601 ad.u.net->sk = other->sk;
4602
4603 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4604 &ad);
4605}
4606
4607static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4608 char *addrp, u16 family, u32 peer_sid,
4609 struct common_audit_data *ad)
4610{
4611 int err;
4612 u32 if_sid;
4613 u32 node_sid;
4614
4615 err = sel_netif_sid(ns, ifindex, &if_sid);
4616 if (err)
4617 return err;
4618 err = avc_has_perm(peer_sid, if_sid,
4619 SECCLASS_NETIF, NETIF__INGRESS, ad);
4620 if (err)
4621 return err;
4622
4623 err = sel_netnode_sid(addrp, family, &node_sid);
4624 if (err)
4625 return err;
4626 return avc_has_perm(peer_sid, node_sid,
4627 SECCLASS_NODE, NODE__RECVFROM, ad);
4628}
4629
4630static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4631 u16 family)
4632{
4633 int err = 0;
4634 struct sk_security_struct *sksec = sk->sk_security;
4635 u32 sk_sid = sksec->sid;
4636 struct common_audit_data ad;
4637 struct lsm_network_audit net = {0,};
4638 char *addrp;
4639
4640 ad.type = LSM_AUDIT_DATA_NET;
4641 ad.u.net = &net;
4642 ad.u.net->netif = skb->skb_iif;
4643 ad.u.net->family = family;
4644 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4645 if (err)
4646 return err;
4647
4648 if (selinux_secmark_enabled()) {
4649 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4650 PACKET__RECV, &ad);
4651 if (err)
4652 return err;
4653 }
4654
4655 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4656 if (err)
4657 return err;
4658 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4659
4660 return err;
4661}
4662
4663static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4664{
4665 int err;
4666 struct sk_security_struct *sksec = sk->sk_security;
4667 u16 family = sk->sk_family;
4668 u32 sk_sid = sksec->sid;
4669 struct common_audit_data ad;
4670 struct lsm_network_audit net = {0,};
4671 char *addrp;
4672 u8 secmark_active;
4673 u8 peerlbl_active;
4674
4675 if (family != PF_INET && family != PF_INET6)
4676 return 0;
4677
4678 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4679 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4680 family = PF_INET;
4681
4682 /* If any sort of compatibility mode is enabled then handoff processing
4683 * to the selinux_sock_rcv_skb_compat() function to deal with the
4684 * special handling. We do this in an attempt to keep this function
4685 * as fast and as clean as possible. */
4686 if (!selinux_policycap_netpeer)
4687 return selinux_sock_rcv_skb_compat(sk, skb, family);
4688
4689 secmark_active = selinux_secmark_enabled();
4690 peerlbl_active = selinux_peerlbl_enabled();
4691 if (!secmark_active && !peerlbl_active)
4692 return 0;
4693
4694 ad.type = LSM_AUDIT_DATA_NET;
4695 ad.u.net = &net;
4696 ad.u.net->netif = skb->skb_iif;
4697 ad.u.net->family = family;
4698 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4699 if (err)
4700 return err;
4701
4702 if (peerlbl_active) {
4703 u32 peer_sid;
4704
4705 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4706 if (err)
4707 return err;
4708 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4709 addrp, family, peer_sid, &ad);
4710 if (err) {
4711 selinux_netlbl_err(skb, family, err, 0);
4712 return err;
4713 }
4714 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4715 PEER__RECV, &ad);
4716 if (err) {
4717 selinux_netlbl_err(skb, family, err, 0);
4718 return err;
4719 }
4720 }
4721
4722 if (secmark_active) {
4723 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4724 PACKET__RECV, &ad);
4725 if (err)
4726 return err;
4727 }
4728
4729 return err;
4730}
4731
4732static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4733 int __user *optlen, unsigned len)
4734{
4735 int err = 0;
4736 char *scontext;
4737 u32 scontext_len;
4738 struct sk_security_struct *sksec = sock->sk->sk_security;
4739 u32 peer_sid = SECSID_NULL;
4740
4741 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4742 sksec->sclass == SECCLASS_TCP_SOCKET)
4743 peer_sid = sksec->peer_sid;
4744 if (peer_sid == SECSID_NULL)
4745 return -ENOPROTOOPT;
4746
4747 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4748 if (err)
4749 return err;
4750
4751 if (scontext_len > len) {
4752 err = -ERANGE;
4753 goto out_len;
4754 }
4755
4756 if (copy_to_user(optval, scontext, scontext_len))
4757 err = -EFAULT;
4758
4759out_len:
4760 if (put_user(scontext_len, optlen))
4761 err = -EFAULT;
4762 kfree(scontext);
4763 return err;
4764}
4765
4766static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4767{
4768 u32 peer_secid = SECSID_NULL;
4769 u16 family;
4770 struct inode_security_struct *isec;
4771
4772 if (skb && skb->protocol == htons(ETH_P_IP))
4773 family = PF_INET;
4774 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4775 family = PF_INET6;
4776 else if (sock)
4777 family = sock->sk->sk_family;
4778 else
4779 goto out;
4780
4781 if (sock && family == PF_UNIX) {
4782 isec = inode_security_novalidate(SOCK_INODE(sock));
4783 peer_secid = isec->sid;
4784 } else if (skb)
4785 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4786
4787out:
4788 *secid = peer_secid;
4789 if (peer_secid == SECSID_NULL)
4790 return -EINVAL;
4791 return 0;
4792}
4793
4794static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4795{
4796 struct sk_security_struct *sksec;
4797
4798 sksec = kzalloc(sizeof(*sksec), priority);
4799 if (!sksec)
4800 return -ENOMEM;
4801
4802 sksec->peer_sid = SECINITSID_UNLABELED;
4803 sksec->sid = SECINITSID_UNLABELED;
4804 sksec->sclass = SECCLASS_SOCKET;
4805 selinux_netlbl_sk_security_reset(sksec);
4806 sk->sk_security = sksec;
4807
4808 return 0;
4809}
4810
4811static void selinux_sk_free_security(struct sock *sk)
4812{
4813 struct sk_security_struct *sksec = sk->sk_security;
4814
4815 sk->sk_security = NULL;
4816 selinux_netlbl_sk_security_free(sksec);
4817 kfree(sksec);
4818}
4819
4820static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4821{
4822 struct sk_security_struct *sksec = sk->sk_security;
4823 struct sk_security_struct *newsksec = newsk->sk_security;
4824
4825 newsksec->sid = sksec->sid;
4826 newsksec->peer_sid = sksec->peer_sid;
4827 newsksec->sclass = sksec->sclass;
4828
4829 selinux_netlbl_sk_security_reset(newsksec);
4830}
4831
4832static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4833{
4834 if (!sk)
4835 *secid = SECINITSID_ANY_SOCKET;
4836 else {
4837 struct sk_security_struct *sksec = sk->sk_security;
4838
4839 *secid = sksec->sid;
4840 }
4841}
4842
4843static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4844{
4845 struct inode_security_struct *isec =
4846 inode_security_novalidate(SOCK_INODE(parent));
4847 struct sk_security_struct *sksec = sk->sk_security;
4848
4849 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4850 sk->sk_family == PF_UNIX)
4851 isec->sid = sksec->sid;
4852 sksec->sclass = isec->sclass;
4853}
4854
4855static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4856 struct request_sock *req)
4857{
4858 struct sk_security_struct *sksec = sk->sk_security;
4859 int err;
4860 u16 family = req->rsk_ops->family;
4861 u32 connsid;
4862 u32 peersid;
4863
4864 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4865 if (err)
4866 return err;
4867 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4868 if (err)
4869 return err;
4870 req->secid = connsid;
4871 req->peer_secid = peersid;
4872
4873 return selinux_netlbl_inet_conn_request(req, family);
4874}
4875
4876static void selinux_inet_csk_clone(struct sock *newsk,
4877 const struct request_sock *req)
4878{
4879 struct sk_security_struct *newsksec = newsk->sk_security;
4880
4881 newsksec->sid = req->secid;
4882 newsksec->peer_sid = req->peer_secid;
4883 /* NOTE: Ideally, we should also get the isec->sid for the
4884 new socket in sync, but we don't have the isec available yet.
4885 So we will wait until sock_graft to do it, by which
4886 time it will have been created and available. */
4887
4888 /* We don't need to take any sort of lock here as we are the only
4889 * thread with access to newsksec */
4890 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4891}
4892
4893static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4894{
4895 u16 family = sk->sk_family;
4896 struct sk_security_struct *sksec = sk->sk_security;
4897
4898 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4899 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4900 family = PF_INET;
4901
4902 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4903}
4904
4905static int selinux_secmark_relabel_packet(u32 sid)
4906{
4907 const struct task_security_struct *__tsec;
4908 u32 tsid;
4909
4910 __tsec = current_security();
4911 tsid = __tsec->sid;
4912
4913 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4914}
4915
4916static void selinux_secmark_refcount_inc(void)
4917{
4918 atomic_inc(&selinux_secmark_refcount);
4919}
4920
4921static void selinux_secmark_refcount_dec(void)
4922{
4923 atomic_dec(&selinux_secmark_refcount);
4924}
4925
4926static void selinux_req_classify_flow(const struct request_sock *req,
4927 struct flowi *fl)
4928{
4929 fl->flowi_secid = req->secid;
4930}
4931
4932static int selinux_tun_dev_alloc_security(void **security)
4933{
4934 struct tun_security_struct *tunsec;
4935
4936 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4937 if (!tunsec)
4938 return -ENOMEM;
4939 tunsec->sid = current_sid();
4940
4941 *security = tunsec;
4942 return 0;
4943}
4944
4945static void selinux_tun_dev_free_security(void *security)
4946{
4947 kfree(security);
4948}
4949
4950static int selinux_tun_dev_create(void)
4951{
4952 u32 sid = current_sid();
4953
4954 /* we aren't taking into account the "sockcreate" SID since the socket
4955 * that is being created here is not a socket in the traditional sense,
4956 * instead it is a private sock, accessible only to the kernel, and
4957 * representing a wide range of network traffic spanning multiple
4958 * connections unlike traditional sockets - check the TUN driver to
4959 * get a better understanding of why this socket is special */
4960
4961 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4962 NULL);
4963}
4964
4965static int selinux_tun_dev_attach_queue(void *security)
4966{
4967 struct tun_security_struct *tunsec = security;
4968
4969 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4970 TUN_SOCKET__ATTACH_QUEUE, NULL);
4971}
4972
4973static int selinux_tun_dev_attach(struct sock *sk, void *security)
4974{
4975 struct tun_security_struct *tunsec = security;
4976 struct sk_security_struct *sksec = sk->sk_security;
4977
4978 /* we don't currently perform any NetLabel based labeling here and it
4979 * isn't clear that we would want to do so anyway; while we could apply
4980 * labeling without the support of the TUN user the resulting labeled
4981 * traffic from the other end of the connection would almost certainly
4982 * cause confusion to the TUN user that had no idea network labeling
4983 * protocols were being used */
4984
4985 sksec->sid = tunsec->sid;
4986 sksec->sclass = SECCLASS_TUN_SOCKET;
4987
4988 return 0;
4989}
4990
4991static int selinux_tun_dev_open(void *security)
4992{
4993 struct tun_security_struct *tunsec = security;
4994 u32 sid = current_sid();
4995 int err;
4996
4997 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4998 TUN_SOCKET__RELABELFROM, NULL);
4999 if (err)
5000 return err;
5001 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5002 TUN_SOCKET__RELABELTO, NULL);
5003 if (err)
5004 return err;
5005 tunsec->sid = sid;
5006
5007 return 0;
5008}
5009
5010static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5011{
5012 int err = 0;
5013 u32 perm;
5014 struct nlmsghdr *nlh;
5015 struct sk_security_struct *sksec = sk->sk_security;
5016
5017 if (skb->len < NLMSG_HDRLEN) {
5018 err = -EINVAL;
5019 goto out;
5020 }
5021 nlh = nlmsg_hdr(skb);
5022
5023 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5024 if (err) {
5025 if (err == -EINVAL) {
5026 pr_warn_ratelimited("SELinux: unrecognized netlink"
5027 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5028 " pig=%d comm=%s\n",
5029 sk->sk_protocol, nlh->nlmsg_type,
5030 secclass_map[sksec->sclass - 1].name,
5031 task_pid_nr(current), current->comm);
5032 if (!selinux_enforcing || security_get_allow_unknown())
5033 err = 0;
5034 }
5035
5036 /* Ignore */
5037 if (err == -ENOENT)
5038 err = 0;
5039 goto out;
5040 }
5041
5042 err = sock_has_perm(current, sk, perm);
5043out:
5044 return err;
5045}
5046
5047#ifdef CONFIG_NETFILTER
5048
5049static unsigned int selinux_ip_forward(struct sk_buff *skb,
5050 const struct net_device *indev,
5051 u16 family)
5052{
5053 int err;
5054 char *addrp;
5055 u32 peer_sid;
5056 struct common_audit_data ad;
5057 struct lsm_network_audit net = {0,};
5058 u8 secmark_active;
5059 u8 netlbl_active;
5060 u8 peerlbl_active;
5061
5062 if (!selinux_policycap_netpeer)
5063 return NF_ACCEPT;
5064
5065 secmark_active = selinux_secmark_enabled();
5066 netlbl_active = netlbl_enabled();
5067 peerlbl_active = selinux_peerlbl_enabled();
5068 if (!secmark_active && !peerlbl_active)
5069 return NF_ACCEPT;
5070
5071 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5072 return NF_DROP;
5073
5074 ad.type = LSM_AUDIT_DATA_NET;
5075 ad.u.net = &net;
5076 ad.u.net->netif = indev->ifindex;
5077 ad.u.net->family = family;
5078 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5079 return NF_DROP;
5080
5081 if (peerlbl_active) {
5082 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5083 addrp, family, peer_sid, &ad);
5084 if (err) {
5085 selinux_netlbl_err(skb, family, err, 1);
5086 return NF_DROP;
5087 }
5088 }
5089
5090 if (secmark_active)
5091 if (avc_has_perm(peer_sid, skb->secmark,
5092 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5093 return NF_DROP;
5094
5095 if (netlbl_active)
5096 /* we do this in the FORWARD path and not the POST_ROUTING
5097 * path because we want to make sure we apply the necessary
5098 * labeling before IPsec is applied so we can leverage AH
5099 * protection */
5100 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5101 return NF_DROP;
5102
5103 return NF_ACCEPT;
5104}
5105
5106static unsigned int selinux_ipv4_forward(void *priv,
5107 struct sk_buff *skb,
5108 const struct nf_hook_state *state)
5109{
5110 return selinux_ip_forward(skb, state->in, PF_INET);
5111}
5112
5113#if IS_ENABLED(CONFIG_IPV6)
5114static unsigned int selinux_ipv6_forward(void *priv,
5115 struct sk_buff *skb,
5116 const struct nf_hook_state *state)
5117{
5118 return selinux_ip_forward(skb, state->in, PF_INET6);
5119}
5120#endif /* IPV6 */
5121
5122static unsigned int selinux_ip_output(struct sk_buff *skb,
5123 u16 family)
5124{
5125 struct sock *sk;
5126 u32 sid;
5127
5128 if (!netlbl_enabled())
5129 return NF_ACCEPT;
5130
5131 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5132 * because we want to make sure we apply the necessary labeling
5133 * before IPsec is applied so we can leverage AH protection */
5134 sk = skb->sk;
5135 if (sk) {
5136 struct sk_security_struct *sksec;
5137
5138 if (sk_listener(sk))
5139 /* if the socket is the listening state then this
5140 * packet is a SYN-ACK packet which means it needs to
5141 * be labeled based on the connection/request_sock and
5142 * not the parent socket. unfortunately, we can't
5143 * lookup the request_sock yet as it isn't queued on
5144 * the parent socket until after the SYN-ACK is sent.
5145 * the "solution" is to simply pass the packet as-is
5146 * as any IP option based labeling should be copied
5147 * from the initial connection request (in the IP
5148 * layer). it is far from ideal, but until we get a
5149 * security label in the packet itself this is the
5150 * best we can do. */
5151 return NF_ACCEPT;
5152
5153 /* standard practice, label using the parent socket */
5154 sksec = sk->sk_security;
5155 sid = sksec->sid;
5156 } else
5157 sid = SECINITSID_KERNEL;
5158 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5159 return NF_DROP;
5160
5161 return NF_ACCEPT;
5162}
5163
5164static unsigned int selinux_ipv4_output(void *priv,
5165 struct sk_buff *skb,
5166 const struct nf_hook_state *state)
5167{
5168 return selinux_ip_output(skb, PF_INET);
5169}
5170
5171#if IS_ENABLED(CONFIG_IPV6)
5172static unsigned int selinux_ipv6_output(void *priv,
5173 struct sk_buff *skb,
5174 const struct nf_hook_state *state)
5175{
5176 return selinux_ip_output(skb, PF_INET6);
5177}
5178#endif /* IPV6 */
5179
5180static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5181 int ifindex,
5182 u16 family)
5183{
5184 struct sock *sk = skb_to_full_sk(skb);
5185 struct sk_security_struct *sksec;
5186 struct common_audit_data ad;
5187 struct lsm_network_audit net = {0,};
5188 char *addrp;
5189 u8 proto;
5190
5191 if (sk == NULL)
5192 return NF_ACCEPT;
5193 sksec = sk->sk_security;
5194
5195 ad.type = LSM_AUDIT_DATA_NET;
5196 ad.u.net = &net;
5197 ad.u.net->netif = ifindex;
5198 ad.u.net->family = family;
5199 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5200 return NF_DROP;
5201
5202 if (selinux_secmark_enabled())
5203 if (avc_has_perm(sksec->sid, skb->secmark,
5204 SECCLASS_PACKET, PACKET__SEND, &ad))
5205 return NF_DROP_ERR(-ECONNREFUSED);
5206
5207 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5208 return NF_DROP_ERR(-ECONNREFUSED);
5209
5210 return NF_ACCEPT;
5211}
5212
5213static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5214 const struct net_device *outdev,
5215 u16 family)
5216{
5217 u32 secmark_perm;
5218 u32 peer_sid;
5219 int ifindex = outdev->ifindex;
5220 struct sock *sk;
5221 struct common_audit_data ad;
5222 struct lsm_network_audit net = {0,};
5223 char *addrp;
5224 u8 secmark_active;
5225 u8 peerlbl_active;
5226
5227 /* If any sort of compatibility mode is enabled then handoff processing
5228 * to the selinux_ip_postroute_compat() function to deal with the
5229 * special handling. We do this in an attempt to keep this function
5230 * as fast and as clean as possible. */
5231 if (!selinux_policycap_netpeer)
5232 return selinux_ip_postroute_compat(skb, ifindex, family);
5233
5234 secmark_active = selinux_secmark_enabled();
5235 peerlbl_active = selinux_peerlbl_enabled();
5236 if (!secmark_active && !peerlbl_active)
5237 return NF_ACCEPT;
5238
5239 sk = skb_to_full_sk(skb);
5240
5241#ifdef CONFIG_XFRM
5242 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5243 * packet transformation so allow the packet to pass without any checks
5244 * since we'll have another chance to perform access control checks
5245 * when the packet is on it's final way out.
5246 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5247 * is NULL, in this case go ahead and apply access control.
5248 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5249 * TCP listening state we cannot wait until the XFRM processing
5250 * is done as we will miss out on the SA label if we do;
5251 * unfortunately, this means more work, but it is only once per
5252 * connection. */
5253 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5254 !(sk && sk_listener(sk)))
5255 return NF_ACCEPT;
5256#endif
5257
5258 if (sk == NULL) {
5259 /* Without an associated socket the packet is either coming
5260 * from the kernel or it is being forwarded; check the packet
5261 * to determine which and if the packet is being forwarded
5262 * query the packet directly to determine the security label. */
5263 if (skb->skb_iif) {
5264 secmark_perm = PACKET__FORWARD_OUT;
5265 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5266 return NF_DROP;
5267 } else {
5268 secmark_perm = PACKET__SEND;
5269 peer_sid = SECINITSID_KERNEL;
5270 }
5271 } else if (sk_listener(sk)) {
5272 /* Locally generated packet but the associated socket is in the
5273 * listening state which means this is a SYN-ACK packet. In
5274 * this particular case the correct security label is assigned
5275 * to the connection/request_sock but unfortunately we can't
5276 * query the request_sock as it isn't queued on the parent
5277 * socket until after the SYN-ACK packet is sent; the only
5278 * viable choice is to regenerate the label like we do in
5279 * selinux_inet_conn_request(). See also selinux_ip_output()
5280 * for similar problems. */
5281 u32 skb_sid;
5282 struct sk_security_struct *sksec;
5283
5284 sksec = sk->sk_security;
5285 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5286 return NF_DROP;
5287 /* At this point, if the returned skb peerlbl is SECSID_NULL
5288 * and the packet has been through at least one XFRM
5289 * transformation then we must be dealing with the "final"
5290 * form of labeled IPsec packet; since we've already applied
5291 * all of our access controls on this packet we can safely
5292 * pass the packet. */
5293 if (skb_sid == SECSID_NULL) {
5294 switch (family) {
5295 case PF_INET:
5296 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5297 return NF_ACCEPT;
5298 break;
5299 case PF_INET6:
5300 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5301 return NF_ACCEPT;
5302 break;
5303 default:
5304 return NF_DROP_ERR(-ECONNREFUSED);
5305 }
5306 }
5307 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5308 return NF_DROP;
5309 secmark_perm = PACKET__SEND;
5310 } else {
5311 /* Locally generated packet, fetch the security label from the
5312 * associated socket. */
5313 struct sk_security_struct *sksec = sk->sk_security;
5314 peer_sid = sksec->sid;
5315 secmark_perm = PACKET__SEND;
5316 }
5317
5318 ad.type = LSM_AUDIT_DATA_NET;
5319 ad.u.net = &net;
5320 ad.u.net->netif = ifindex;
5321 ad.u.net->family = family;
5322 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5323 return NF_DROP;
5324
5325 if (secmark_active)
5326 if (avc_has_perm(peer_sid, skb->secmark,
5327 SECCLASS_PACKET, secmark_perm, &ad))
5328 return NF_DROP_ERR(-ECONNREFUSED);
5329
5330 if (peerlbl_active) {
5331 u32 if_sid;
5332 u32 node_sid;
5333
5334 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5335 return NF_DROP;
5336 if (avc_has_perm(peer_sid, if_sid,
5337 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5338 return NF_DROP_ERR(-ECONNREFUSED);
5339
5340 if (sel_netnode_sid(addrp, family, &node_sid))
5341 return NF_DROP;
5342 if (avc_has_perm(peer_sid, node_sid,
5343 SECCLASS_NODE, NODE__SENDTO, &ad))
5344 return NF_DROP_ERR(-ECONNREFUSED);
5345 }
5346
5347 return NF_ACCEPT;
5348}
5349
5350static unsigned int selinux_ipv4_postroute(void *priv,
5351 struct sk_buff *skb,
5352 const struct nf_hook_state *state)
5353{
5354 return selinux_ip_postroute(skb, state->out, PF_INET);
5355}
5356
5357#if IS_ENABLED(CONFIG_IPV6)
5358static unsigned int selinux_ipv6_postroute(void *priv,
5359 struct sk_buff *skb,
5360 const struct nf_hook_state *state)
5361{
5362 return selinux_ip_postroute(skb, state->out, PF_INET6);
5363}
5364#endif /* IPV6 */
5365
5366#endif /* CONFIG_NETFILTER */
5367
5368static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5369{
5370 return selinux_nlmsg_perm(sk, skb);
5371}
5372
5373static int ipc_alloc_security(struct task_struct *task,
5374 struct kern_ipc_perm *perm,
5375 u16 sclass)
5376{
5377 struct ipc_security_struct *isec;
5378 u32 sid;
5379
5380 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5381 if (!isec)
5382 return -ENOMEM;
5383
5384 sid = task_sid(task);
5385 isec->sclass = sclass;
5386 isec->sid = sid;
5387 perm->security = isec;
5388
5389 return 0;
5390}
5391
5392static void ipc_free_security(struct kern_ipc_perm *perm)
5393{
5394 struct ipc_security_struct *isec = perm->security;
5395 perm->security = NULL;
5396 kfree(isec);
5397}
5398
5399static int msg_msg_alloc_security(struct msg_msg *msg)
5400{
5401 struct msg_security_struct *msec;
5402
5403 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5404 if (!msec)
5405 return -ENOMEM;
5406
5407 msec->sid = SECINITSID_UNLABELED;
5408 msg->security = msec;
5409
5410 return 0;
5411}
5412
5413static void msg_msg_free_security(struct msg_msg *msg)
5414{
5415 struct msg_security_struct *msec = msg->security;
5416
5417 msg->security = NULL;
5418 kfree(msec);
5419}
5420
5421static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5422 u32 perms)
5423{
5424 struct ipc_security_struct *isec;
5425 struct common_audit_data ad;
5426 u32 sid = current_sid();
5427
5428 isec = ipc_perms->security;
5429
5430 ad.type = LSM_AUDIT_DATA_IPC;
5431 ad.u.ipc_id = ipc_perms->key;
5432
5433 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5434}
5435
5436static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5437{
5438 return msg_msg_alloc_security(msg);
5439}
5440
5441static void selinux_msg_msg_free_security(struct msg_msg *msg)
5442{
5443 msg_msg_free_security(msg);
5444}
5445
5446/* message queue security operations */
5447static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5448{
5449 struct ipc_security_struct *isec;
5450 struct common_audit_data ad;
5451 u32 sid = current_sid();
5452 int rc;
5453
5454 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5455 if (rc)
5456 return rc;
5457
5458 isec = msq->q_perm.security;
5459
5460 ad.type = LSM_AUDIT_DATA_IPC;
5461 ad.u.ipc_id = msq->q_perm.key;
5462
5463 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5464 MSGQ__CREATE, &ad);
5465 if (rc) {
5466 ipc_free_security(&msq->q_perm);
5467 return rc;
5468 }
5469 return 0;
5470}
5471
5472static void selinux_msg_queue_free_security(struct msg_queue *msq)
5473{
5474 ipc_free_security(&msq->q_perm);
5475}
5476
5477static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5478{
5479 struct ipc_security_struct *isec;
5480 struct common_audit_data ad;
5481 u32 sid = current_sid();
5482
5483 isec = msq->q_perm.security;
5484
5485 ad.type = LSM_AUDIT_DATA_IPC;
5486 ad.u.ipc_id = msq->q_perm.key;
5487
5488 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5489 MSGQ__ASSOCIATE, &ad);
5490}
5491
5492static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5493{
5494 int err;
5495 int perms;
5496
5497 switch (cmd) {
5498 case IPC_INFO:
5499 case MSG_INFO:
5500 /* No specific object, just general system-wide information. */
5501 return task_has_system(current, SYSTEM__IPC_INFO);
5502 case IPC_STAT:
5503 case MSG_STAT:
5504 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5505 break;
5506 case IPC_SET:
5507 perms = MSGQ__SETATTR;
5508 break;
5509 case IPC_RMID:
5510 perms = MSGQ__DESTROY;
5511 break;
5512 default:
5513 return 0;
5514 }
5515
5516 err = ipc_has_perm(&msq->q_perm, perms);
5517 return err;
5518}
5519
5520static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5521{
5522 struct ipc_security_struct *isec;
5523 struct msg_security_struct *msec;
5524 struct common_audit_data ad;
5525 u32 sid = current_sid();
5526 int rc;
5527
5528 isec = msq->q_perm.security;
5529 msec = msg->security;
5530
5531 /*
5532 * First time through, need to assign label to the message
5533 */
5534 if (msec->sid == SECINITSID_UNLABELED) {
5535 /*
5536 * Compute new sid based on current process and
5537 * message queue this message will be stored in
5538 */
5539 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5540 NULL, &msec->sid);
5541 if (rc)
5542 return rc;
5543 }
5544
5545 ad.type = LSM_AUDIT_DATA_IPC;
5546 ad.u.ipc_id = msq->q_perm.key;
5547
5548 /* Can this process write to the queue? */
5549 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5550 MSGQ__WRITE, &ad);
5551 if (!rc)
5552 /* Can this process send the message */
5553 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5554 MSG__SEND, &ad);
5555 if (!rc)
5556 /* Can the message be put in the queue? */
5557 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5558 MSGQ__ENQUEUE, &ad);
5559
5560 return rc;
5561}
5562
5563static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5564 struct task_struct *target,
5565 long type, int mode)
5566{
5567 struct ipc_security_struct *isec;
5568 struct msg_security_struct *msec;
5569 struct common_audit_data ad;
5570 u32 sid = task_sid(target);
5571 int rc;
5572
5573 isec = msq->q_perm.security;
5574 msec = msg->security;
5575
5576 ad.type = LSM_AUDIT_DATA_IPC;
5577 ad.u.ipc_id = msq->q_perm.key;
5578
5579 rc = avc_has_perm(sid, isec->sid,
5580 SECCLASS_MSGQ, MSGQ__READ, &ad);
5581 if (!rc)
5582 rc = avc_has_perm(sid, msec->sid,
5583 SECCLASS_MSG, MSG__RECEIVE, &ad);
5584 return rc;
5585}
5586
5587/* Shared Memory security operations */
5588static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5589{
5590 struct ipc_security_struct *isec;
5591 struct common_audit_data ad;
5592 u32 sid = current_sid();
5593 int rc;
5594
5595 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5596 if (rc)
5597 return rc;
5598
5599 isec = shp->shm_perm.security;
5600
5601 ad.type = LSM_AUDIT_DATA_IPC;
5602 ad.u.ipc_id = shp->shm_perm.key;
5603
5604 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5605 SHM__CREATE, &ad);
5606 if (rc) {
5607 ipc_free_security(&shp->shm_perm);
5608 return rc;
5609 }
5610 return 0;
5611}
5612
5613static void selinux_shm_free_security(struct shmid_kernel *shp)
5614{
5615 ipc_free_security(&shp->shm_perm);
5616}
5617
5618static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5619{
5620 struct ipc_security_struct *isec;
5621 struct common_audit_data ad;
5622 u32 sid = current_sid();
5623
5624 isec = shp->shm_perm.security;
5625
5626 ad.type = LSM_AUDIT_DATA_IPC;
5627 ad.u.ipc_id = shp->shm_perm.key;
5628
5629 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5630 SHM__ASSOCIATE, &ad);
5631}
5632
5633/* Note, at this point, shp is locked down */
5634static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5635{
5636 int perms;
5637 int err;
5638
5639 switch (cmd) {
5640 case IPC_INFO:
5641 case SHM_INFO:
5642 /* No specific object, just general system-wide information. */
5643 return task_has_system(current, SYSTEM__IPC_INFO);
5644 case IPC_STAT:
5645 case SHM_STAT:
5646 perms = SHM__GETATTR | SHM__ASSOCIATE;
5647 break;
5648 case IPC_SET:
5649 perms = SHM__SETATTR;
5650 break;
5651 case SHM_LOCK:
5652 case SHM_UNLOCK:
5653 perms = SHM__LOCK;
5654 break;
5655 case IPC_RMID:
5656 perms = SHM__DESTROY;
5657 break;
5658 default:
5659 return 0;
5660 }
5661
5662 err = ipc_has_perm(&shp->shm_perm, perms);
5663 return err;
5664}
5665
5666static int selinux_shm_shmat(struct shmid_kernel *shp,
5667 char __user *shmaddr, int shmflg)
5668{
5669 u32 perms;
5670
5671 if (shmflg & SHM_RDONLY)
5672 perms = SHM__READ;
5673 else
5674 perms = SHM__READ | SHM__WRITE;
5675
5676 return ipc_has_perm(&shp->shm_perm, perms);
5677}
5678
5679/* Semaphore security operations */
5680static int selinux_sem_alloc_security(struct sem_array *sma)
5681{
5682 struct ipc_security_struct *isec;
5683 struct common_audit_data ad;
5684 u32 sid = current_sid();
5685 int rc;
5686
5687 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5688 if (rc)
5689 return rc;
5690
5691 isec = sma->sem_perm.security;
5692
5693 ad.type = LSM_AUDIT_DATA_IPC;
5694 ad.u.ipc_id = sma->sem_perm.key;
5695
5696 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5697 SEM__CREATE, &ad);
5698 if (rc) {
5699 ipc_free_security(&sma->sem_perm);
5700 return rc;
5701 }
5702 return 0;
5703}
5704
5705static void selinux_sem_free_security(struct sem_array *sma)
5706{
5707 ipc_free_security(&sma->sem_perm);
5708}
5709
5710static int selinux_sem_associate(struct sem_array *sma, int semflg)
5711{
5712 struct ipc_security_struct *isec;
5713 struct common_audit_data ad;
5714 u32 sid = current_sid();
5715
5716 isec = sma->sem_perm.security;
5717
5718 ad.type = LSM_AUDIT_DATA_IPC;
5719 ad.u.ipc_id = sma->sem_perm.key;
5720
5721 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5722 SEM__ASSOCIATE, &ad);
5723}
5724
5725/* Note, at this point, sma is locked down */
5726static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5727{
5728 int err;
5729 u32 perms;
5730
5731 switch (cmd) {
5732 case IPC_INFO:
5733 case SEM_INFO:
5734 /* No specific object, just general system-wide information. */
5735 return task_has_system(current, SYSTEM__IPC_INFO);
5736 case GETPID:
5737 case GETNCNT:
5738 case GETZCNT:
5739 perms = SEM__GETATTR;
5740 break;
5741 case GETVAL:
5742 case GETALL:
5743 perms = SEM__READ;
5744 break;
5745 case SETVAL:
5746 case SETALL:
5747 perms = SEM__WRITE;
5748 break;
5749 case IPC_RMID:
5750 perms = SEM__DESTROY;
5751 break;
5752 case IPC_SET:
5753 perms = SEM__SETATTR;
5754 break;
5755 case IPC_STAT:
5756 case SEM_STAT:
5757 perms = SEM__GETATTR | SEM__ASSOCIATE;
5758 break;
5759 default:
5760 return 0;
5761 }
5762
5763 err = ipc_has_perm(&sma->sem_perm, perms);
5764 return err;
5765}
5766
5767static int selinux_sem_semop(struct sem_array *sma,
5768 struct sembuf *sops, unsigned nsops, int alter)
5769{
5770 u32 perms;
5771
5772 if (alter)
5773 perms = SEM__READ | SEM__WRITE;
5774 else
5775 perms = SEM__READ;
5776
5777 return ipc_has_perm(&sma->sem_perm, perms);
5778}
5779
5780static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5781{
5782 u32 av = 0;
5783
5784 av = 0;
5785 if (flag & S_IRUGO)
5786 av |= IPC__UNIX_READ;
5787 if (flag & S_IWUGO)
5788 av |= IPC__UNIX_WRITE;
5789
5790 if (av == 0)
5791 return 0;
5792
5793 return ipc_has_perm(ipcp, av);
5794}
5795
5796static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5797{
5798 struct ipc_security_struct *isec = ipcp->security;
5799 *secid = isec->sid;
5800}
5801
5802static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5803{
5804 if (inode)
5805 inode_doinit_with_dentry(inode, dentry);
5806}
5807
5808static int selinux_getprocattr(struct task_struct *p,
5809 char *name, char **value)
5810{
5811 const struct task_security_struct *__tsec;
5812 u32 sid;
5813 int error;
5814 unsigned len;
5815
5816 if (current != p) {
5817 error = current_has_perm(p, PROCESS__GETATTR);
5818 if (error)
5819 return error;
5820 }
5821
5822 rcu_read_lock();
5823 __tsec = __task_cred(p)->security;
5824
5825 if (!strcmp(name, "current"))
5826 sid = __tsec->sid;
5827 else if (!strcmp(name, "prev"))
5828 sid = __tsec->osid;
5829 else if (!strcmp(name, "exec"))
5830 sid = __tsec->exec_sid;
5831 else if (!strcmp(name, "fscreate"))
5832 sid = __tsec->create_sid;
5833 else if (!strcmp(name, "keycreate"))
5834 sid = __tsec->keycreate_sid;
5835 else if (!strcmp(name, "sockcreate"))
5836 sid = __tsec->sockcreate_sid;
5837 else
5838 goto invalid;
5839 rcu_read_unlock();
5840
5841 if (!sid)
5842 return 0;
5843
5844 error = security_sid_to_context(sid, value, &len);
5845 if (error)
5846 return error;
5847 return len;
5848
5849invalid:
5850 rcu_read_unlock();
5851 return -EINVAL;
5852}
5853
5854static int selinux_setprocattr(struct task_struct *p,
5855 char *name, void *value, size_t size)
5856{
5857 struct task_security_struct *tsec;
5858 struct cred *new;
5859 u32 sid = 0, ptsid;
5860 int error;
5861 char *str = value;
5862
5863 if (current != p) {
5864 /* SELinux only allows a process to change its own
5865 security attributes. */
5866 return -EACCES;
5867 }
5868
5869 /*
5870 * Basic control over ability to set these attributes at all.
5871 * current == p, but we'll pass them separately in case the
5872 * above restriction is ever removed.
5873 */
5874 if (!strcmp(name, "exec"))
5875 error = current_has_perm(p, PROCESS__SETEXEC);
5876 else if (!strcmp(name, "fscreate"))
5877 error = current_has_perm(p, PROCESS__SETFSCREATE);
5878 else if (!strcmp(name, "keycreate"))
5879 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5880 else if (!strcmp(name, "sockcreate"))
5881 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5882 else if (!strcmp(name, "current"))
5883 error = current_has_perm(p, PROCESS__SETCURRENT);
5884 else
5885 error = -EINVAL;
5886 if (error)
5887 return error;
5888
5889 /* Obtain a SID for the context, if one was specified. */
5890 if (size && str[0] && str[0] != '\n') {
5891 if (str[size-1] == '\n') {
5892 str[size-1] = 0;
5893 size--;
5894 }
5895 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5896 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5897 if (!capable(CAP_MAC_ADMIN)) {
5898 struct audit_buffer *ab;
5899 size_t audit_size;
5900
5901 /* We strip a nul only if it is at the end, otherwise the
5902 * context contains a nul and we should audit that */
5903 if (str[size - 1] == '\0')
5904 audit_size = size - 1;
5905 else
5906 audit_size = size;
5907 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5908 audit_log_format(ab, "op=fscreate invalid_context=");
5909 audit_log_n_untrustedstring(ab, value, audit_size);
5910 audit_log_end(ab);
5911
5912 return error;
5913 }
5914 error = security_context_to_sid_force(value, size,
5915 &sid);
5916 }
5917 if (error)
5918 return error;
5919 }
5920
5921 new = prepare_creds();
5922 if (!new)
5923 return -ENOMEM;
5924
5925 /* Permission checking based on the specified context is
5926 performed during the actual operation (execve,
5927 open/mkdir/...), when we know the full context of the
5928 operation. See selinux_bprm_set_creds for the execve
5929 checks and may_create for the file creation checks. The
5930 operation will then fail if the context is not permitted. */
5931 tsec = new->security;
5932 if (!strcmp(name, "exec")) {
5933 tsec->exec_sid = sid;
5934 } else if (!strcmp(name, "fscreate")) {
5935 tsec->create_sid = sid;
5936 } else if (!strcmp(name, "keycreate")) {
5937 error = may_create_key(sid, p);
5938 if (error)
5939 goto abort_change;
5940 tsec->keycreate_sid = sid;
5941 } else if (!strcmp(name, "sockcreate")) {
5942 tsec->sockcreate_sid = sid;
5943 } else if (!strcmp(name, "current")) {
5944 error = -EINVAL;
5945 if (sid == 0)
5946 goto abort_change;
5947
5948 /* Only allow single threaded processes to change context */
5949 error = -EPERM;
5950 if (!current_is_single_threaded()) {
5951 error = security_bounded_transition(tsec->sid, sid);
5952 if (error)
5953 goto abort_change;
5954 }
5955
5956 /* Check permissions for the transition. */
5957 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5958 PROCESS__DYNTRANSITION, NULL);
5959 if (error)
5960 goto abort_change;
5961
5962 /* Check for ptracing, and update the task SID if ok.
5963 Otherwise, leave SID unchanged and fail. */
5964 ptsid = ptrace_parent_sid(p);
5965 if (ptsid != 0) {
5966 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5967 PROCESS__PTRACE, NULL);
5968 if (error)
5969 goto abort_change;
5970 }
5971
5972 tsec->sid = sid;
5973 } else {
5974 error = -EINVAL;
5975 goto abort_change;
5976 }
5977
5978 commit_creds(new);
5979 return size;
5980
5981abort_change:
5982 abort_creds(new);
5983 return error;
5984}
5985
5986static int selinux_ismaclabel(const char *name)
5987{
5988 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5989}
5990
5991static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5992{
5993 return security_sid_to_context(secid, secdata, seclen);
5994}
5995
5996static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5997{
5998 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5999}
6000
6001static void selinux_release_secctx(char *secdata, u32 seclen)
6002{
6003 kfree(secdata);
6004}
6005
6006static void selinux_inode_invalidate_secctx(struct inode *inode)
6007{
6008 struct inode_security_struct *isec = inode->i_security;
6009
6010 spin_lock(&isec->lock);
6011 isec->initialized = LABEL_INVALID;
6012 spin_unlock(&isec->lock);
6013}
6014
6015/*
6016 * called with inode->i_mutex locked
6017 */
6018static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6019{
6020 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6021}
6022
6023/*
6024 * called with inode->i_mutex locked
6025 */
6026static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6027{
6028 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6029}
6030
6031static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6032{
6033 int len = 0;
6034 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6035 ctx, true);
6036 if (len < 0)
6037 return len;
6038 *ctxlen = len;
6039 return 0;
6040}
6041#ifdef CONFIG_KEYS
6042
6043static int selinux_key_alloc(struct key *k, const struct cred *cred,
6044 unsigned long flags)
6045{
6046 const struct task_security_struct *tsec;
6047 struct key_security_struct *ksec;
6048
6049 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6050 if (!ksec)
6051 return -ENOMEM;
6052
6053 tsec = cred->security;
6054 if (tsec->keycreate_sid)
6055 ksec->sid = tsec->keycreate_sid;
6056 else
6057 ksec->sid = tsec->sid;
6058
6059 k->security = ksec;
6060 return 0;
6061}
6062
6063static void selinux_key_free(struct key *k)
6064{
6065 struct key_security_struct *ksec = k->security;
6066
6067 k->security = NULL;
6068 kfree(ksec);
6069}
6070
6071static int selinux_key_permission(key_ref_t key_ref,
6072 const struct cred *cred,
6073 unsigned perm)
6074{
6075 struct key *key;
6076 struct key_security_struct *ksec;
6077 u32 sid;
6078
6079 /* if no specific permissions are requested, we skip the
6080 permission check. No serious, additional covert channels
6081 appear to be created. */
6082 if (perm == 0)
6083 return 0;
6084
6085 sid = cred_sid(cred);
6086
6087 key = key_ref_to_ptr(key_ref);
6088 ksec = key->security;
6089
6090 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6091}
6092
6093static int selinux_key_getsecurity(struct key *key, char **_buffer)
6094{
6095 struct key_security_struct *ksec = key->security;
6096 char *context = NULL;
6097 unsigned len;
6098 int rc;
6099
6100 rc = security_sid_to_context(ksec->sid, &context, &len);
6101 if (!rc)
6102 rc = len;
6103 *_buffer = context;
6104 return rc;
6105}
6106
6107#endif
6108
6109static struct security_hook_list selinux_hooks[] = {
6110 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6111 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6112 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6113 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6114
6115 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6116 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6117 LSM_HOOK_INIT(capget, selinux_capget),
6118 LSM_HOOK_INIT(capset, selinux_capset),
6119 LSM_HOOK_INIT(capable, selinux_capable),
6120 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6121 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6122 LSM_HOOK_INIT(syslog, selinux_syslog),
6123 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6124
6125 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6126
6127 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6128 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6129 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6130 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
6131
6132 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6133 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6134 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6135 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6136 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6137 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6138 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6139 LSM_HOOK_INIT(sb_mount, selinux_mount),
6140 LSM_HOOK_INIT(sb_umount, selinux_umount),
6141 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6142 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6143 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6144
6145 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6146 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6147
6148 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6149 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6150 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6151 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6152 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6153 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6154 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6155 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6156 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6157 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6158 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6159 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6160 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6161 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6162 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6163 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6164 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6165 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6166 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6167 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6168 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6169 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6170 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6171 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6172 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6173 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6174 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6175
6176 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6177 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6178 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6179 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6180 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6181 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6182 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6183 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6184 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6185 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6186 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6187 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6188
6189 LSM_HOOK_INIT(file_open, selinux_file_open),
6190
6191 LSM_HOOK_INIT(task_create, selinux_task_create),
6192 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6193 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6194 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6195 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6196 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6197 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6198 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6199 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6200 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6201 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6202 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6203 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6204 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6205 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6206 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6207 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6208 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6209 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6210 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6211 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6212 LSM_HOOK_INIT(task_wait, selinux_task_wait),
6213 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6214
6215 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6216 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6217
6218 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6219 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6220
6221 LSM_HOOK_INIT(msg_queue_alloc_security,
6222 selinux_msg_queue_alloc_security),
6223 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6224 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6225 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6226 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6227 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6228
6229 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6230 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6231 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6232 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6233 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6234
6235 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6236 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6237 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6238 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6239 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6240
6241 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6242
6243 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6244 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6245
6246 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6247 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6248 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6249 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6250 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6251 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6252 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6253 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6254
6255 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6256 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6257
6258 LSM_HOOK_INIT(socket_create, selinux_socket_create),
6259 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6260 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6261 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6262 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6263 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6264 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6265 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6266 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6267 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6268 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6269 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6270 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6271 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6272 LSM_HOOK_INIT(socket_getpeersec_stream,
6273 selinux_socket_getpeersec_stream),
6274 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6275 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6276 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6277 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6278 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6279 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6280 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6281 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6282 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6283 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6284 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6285 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6286 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6287 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6288 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6289 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6290 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6291 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6292 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6293
6294#ifdef CONFIG_SECURITY_NETWORK_XFRM
6295 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6296 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6297 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6298 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6299 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6300 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6301 selinux_xfrm_state_alloc_acquire),
6302 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6303 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6304 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6305 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6306 selinux_xfrm_state_pol_flow_match),
6307 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6308#endif
6309
6310#ifdef CONFIG_KEYS
6311 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6312 LSM_HOOK_INIT(key_free, selinux_key_free),
6313 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6314 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6315#endif
6316
6317#ifdef CONFIG_AUDIT
6318 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6319 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6320 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6321 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6322#endif
6323};
6324
6325static __init int selinux_init(void)
6326{
6327 if (!security_module_enable("selinux")) {
6328 selinux_enabled = 0;
6329 return 0;
6330 }
6331
6332 if (!selinux_enabled) {
6333 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6334 return 0;
6335 }
6336
6337 printk(KERN_INFO "SELinux: Initializing.\n");
6338
6339 /* Set the security state for the initial task. */
6340 cred_init_security();
6341
6342 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6343
6344 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6345 sizeof(struct inode_security_struct),
6346 0, SLAB_PANIC, NULL);
6347 file_security_cache = kmem_cache_create("selinux_file_security",
6348 sizeof(struct file_security_struct),
6349 0, SLAB_PANIC, NULL);
6350 avc_init();
6351
6352 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6353
6354 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6355 panic("SELinux: Unable to register AVC netcache callback\n");
6356
6357 if (selinux_enforcing)
6358 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6359 else
6360 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6361
6362 return 0;
6363}
6364
6365static void delayed_superblock_init(struct super_block *sb, void *unused)
6366{
6367 superblock_doinit(sb, NULL);
6368}
6369
6370void selinux_complete_init(void)
6371{
6372 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6373
6374 /* Set up any superblocks initialized prior to the policy load. */
6375 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6376 iterate_supers(delayed_superblock_init, NULL);
6377}
6378
6379/* SELinux requires early initialization in order to label
6380 all processes and objects when they are created. */
6381security_initcall(selinux_init);
6382
6383#if defined(CONFIG_NETFILTER)
6384
6385static struct nf_hook_ops selinux_nf_ops[] = {
6386 {
6387 .hook = selinux_ipv4_postroute,
6388 .pf = NFPROTO_IPV4,
6389 .hooknum = NF_INET_POST_ROUTING,
6390 .priority = NF_IP_PRI_SELINUX_LAST,
6391 },
6392 {
6393 .hook = selinux_ipv4_forward,
6394 .pf = NFPROTO_IPV4,
6395 .hooknum = NF_INET_FORWARD,
6396 .priority = NF_IP_PRI_SELINUX_FIRST,
6397 },
6398 {
6399 .hook = selinux_ipv4_output,
6400 .pf = NFPROTO_IPV4,
6401 .hooknum = NF_INET_LOCAL_OUT,
6402 .priority = NF_IP_PRI_SELINUX_FIRST,
6403 },
6404#if IS_ENABLED(CONFIG_IPV6)
6405 {
6406 .hook = selinux_ipv6_postroute,
6407 .pf = NFPROTO_IPV6,
6408 .hooknum = NF_INET_POST_ROUTING,
6409 .priority = NF_IP6_PRI_SELINUX_LAST,
6410 },
6411 {
6412 .hook = selinux_ipv6_forward,
6413 .pf = NFPROTO_IPV6,
6414 .hooknum = NF_INET_FORWARD,
6415 .priority = NF_IP6_PRI_SELINUX_FIRST,
6416 },
6417 {
6418 .hook = selinux_ipv6_output,
6419 .pf = NFPROTO_IPV6,
6420 .hooknum = NF_INET_LOCAL_OUT,
6421 .priority = NF_IP6_PRI_SELINUX_FIRST,
6422 },
6423#endif /* IPV6 */
6424};
6425
6426static int __init selinux_nf_ip_init(void)
6427{
6428 int err;
6429
6430 if (!selinux_enabled)
6431 return 0;
6432
6433 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6434
6435 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6436 if (err)
6437 panic("SELinux: nf_register_hooks: error %d\n", err);
6438
6439 return 0;
6440}
6441
6442__initcall(selinux_nf_ip_init);
6443
6444#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6445static void selinux_nf_ip_exit(void)
6446{
6447 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6448
6449 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6450}
6451#endif
6452
6453#else /* CONFIG_NETFILTER */
6454
6455#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6456#define selinux_nf_ip_exit()
6457#endif
6458
6459#endif /* CONFIG_NETFILTER */
6460
6461#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6462static int selinux_disabled;
6463
6464int selinux_disable(void)
6465{
6466 if (ss_initialized) {
6467 /* Not permitted after initial policy load. */
6468 return -EINVAL;
6469 }
6470
6471 if (selinux_disabled) {
6472 /* Only do this once. */
6473 return -EINVAL;
6474 }
6475
6476 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6477
6478 selinux_disabled = 1;
6479 selinux_enabled = 0;
6480
6481 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6482
6483 /* Try to destroy the avc node cache */
6484 avc_disable();
6485
6486 /* Unregister netfilter hooks. */
6487 selinux_nf_ip_exit();
6488
6489 /* Unregister selinuxfs. */
6490 exit_sel_fs();
6491
6492 return 0;
6493}
6494#endif