Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
 
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
  94#include <linux/io_uring.h>
  95
  96#include "avc.h"
  97#include "objsec.h"
  98#include "netif.h"
  99#include "netnode.h"
 100#include "netport.h"
 101#include "ibpkey.h"
 102#include "xfrm.h"
 103#include "netlabel.h"
 104#include "audit.h"
 105#include "avc_ss.h"
 106
 107struct selinux_state selinux_state;
 108
 109/* SECMARK reference count */
 110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 111
 112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 113static int selinux_enforcing_boot __initdata;
 114
 115static int __init enforcing_setup(char *str)
 116{
 117	unsigned long enforcing;
 118	if (!kstrtoul(str, 0, &enforcing))
 119		selinux_enforcing_boot = enforcing ? 1 : 0;
 120	return 1;
 121}
 122__setup("enforcing=", enforcing_setup);
 123#else
 124#define selinux_enforcing_boot 1
 125#endif
 126
 127int selinux_enabled_boot __initdata = 1;
 128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 129static int __init selinux_enabled_setup(char *str)
 130{
 131	unsigned long enabled;
 132	if (!kstrtoul(str, 0, &enabled))
 133		selinux_enabled_boot = enabled ? 1 : 0;
 134	return 1;
 135}
 136__setup("selinux=", selinux_enabled_setup);
 
 
 137#endif
 138
 139static unsigned int selinux_checkreqprot_boot =
 140	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 141
 142static int __init checkreqprot_setup(char *str)
 143{
 144	unsigned long checkreqprot;
 145
 146	if (!kstrtoul(str, 0, &checkreqprot)) {
 147		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 148		if (checkreqprot)
 149			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 
 214	struct task_security_struct *tsec;
 215
 216	tsec = selinux_cred(unrcu_pointer(current->real_cred));
 
 
 
 217	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 218}
 219
 220/*
 221 * get the security ID of a set of credentials
 222 */
 223static inline u32 cred_sid(const struct cred *cred)
 224{
 225	const struct task_security_struct *tsec;
 226
 227	tsec = selinux_cred(cred);
 228	return tsec->sid;
 229}
 230
 231/*
 232 * get the objective security ID of a task
 233 */
 234static inline u32 task_sid_obj(const struct task_struct *task)
 235{
 236	u32 sid;
 237
 238	rcu_read_lock();
 239	sid = cred_sid(__task_cred(task));
 240	rcu_read_unlock();
 241	return sid;
 242}
 243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 245
 246/*
 247 * Try reloading inode security labels that have been marked as invalid.  The
 248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 249 * allowed; when set to false, returns -ECHILD when the label is
 250 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 
 251 */
 252static int __inode_security_revalidate(struct inode *inode,
 253				       struct dentry *dentry,
 254				       bool may_sleep)
 255{
 256	struct inode_security_struct *isec = selinux_inode(inode);
 257
 258	might_sleep_if(may_sleep);
 259
 260	if (selinux_initialized(&selinux_state) &&
 261	    isec->initialized != LABEL_INITIALIZED) {
 262		if (!may_sleep)
 263			return -ECHILD;
 264
 265		/*
 266		 * Try reloading the inode security label.  This will fail if
 267		 * @opt_dentry is NULL and no dentry for this inode can be
 268		 * found; in that case, continue using the old label.
 269		 */
 270		inode_doinit_with_dentry(inode, dentry);
 271	}
 272	return 0;
 273}
 274
 275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 276{
 277	return selinux_inode(inode);
 278}
 279
 280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 281{
 282	int error;
 283
 284	error = __inode_security_revalidate(inode, NULL, !rcu);
 285	if (error)
 286		return ERR_PTR(error);
 287	return selinux_inode(inode);
 288}
 289
 290/*
 291 * Get the security label of an inode.
 292 */
 293static struct inode_security_struct *inode_security(struct inode *inode)
 294{
 295	__inode_security_revalidate(inode, NULL, true);
 296	return selinux_inode(inode);
 297}
 298
 299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 300{
 301	struct inode *inode = d_backing_inode(dentry);
 302
 303	return selinux_inode(inode);
 304}
 305
 306/*
 307 * Get the security label of a dentry's backing inode.
 308 */
 309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 310{
 311	struct inode *inode = d_backing_inode(dentry);
 312
 313	__inode_security_revalidate(inode, dentry, true);
 314	return selinux_inode(inode);
 
 
 
 
 
 
 
 
 315}
 316
 317static void inode_free_security(struct inode *inode)
 318{
 319	struct inode_security_struct *isec = selinux_inode(inode);
 320	struct superblock_security_struct *sbsec;
 321
 322	if (!isec)
 323		return;
 324	sbsec = selinux_superblock(inode->i_sb);
 325	/*
 326	 * As not all inode security structures are in a list, we check for
 327	 * empty list outside of the lock to make sure that we won't waste
 328	 * time taking a lock doing nothing.
 329	 *
 330	 * The list_del_init() function can be safely called more than once.
 331	 * It should not be possible for this function to be called with
 332	 * concurrent list_add(), but for better safety against future changes
 333	 * in the code, we use list_empty_careful() here.
 334	 */
 335	if (!list_empty_careful(&isec->list)) {
 336		spin_lock(&sbsec->isec_lock);
 337		list_del_init(&isec->list);
 338		spin_unlock(&sbsec->isec_lock);
 339	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340}
 341
 342struct selinux_mnt_opts {
 343	u32 fscontext_sid;
 344	u32 context_sid;
 345	u32 rootcontext_sid;
 346	u32 defcontext_sid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347};
 348
 349static void selinux_free_mnt_opts(void *mnt_opts)
 350{
 351	kfree(mnt_opts);
 352}
 353
 354enum {
 355	Opt_error = -1,
 356	Opt_context = 0,
 357	Opt_defcontext = 1,
 358	Opt_fscontext = 2,
 359	Opt_rootcontext = 3,
 360	Opt_seclabel = 4,
 361};
 362
 363#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 364static struct {
 365	const char *name;
 366	int len;
 367	int opt;
 368	bool has_arg;
 369} tokens[] = {
 370	A(context, true),
 371	A(fscontext, true),
 372	A(defcontext, true),
 373	A(rootcontext, true),
 374	A(seclabel, false),
 375};
 376#undef A
 377
 378static int match_opt_prefix(char *s, int l, char **arg)
 379{
 380	int i;
 381
 382	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 383		size_t len = tokens[i].len;
 384		if (len > l || memcmp(s, tokens[i].name, len))
 385			continue;
 386		if (tokens[i].has_arg) {
 387			if (len == l || s[len] != '=')
 388				continue;
 389			*arg = s + len + 1;
 390		} else if (len != l)
 391			continue;
 392		return tokens[i].opt;
 393	}
 394	return Opt_error;
 395}
 396
 397#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 398
 399static int may_context_mount_sb_relabel(u32 sid,
 400			struct superblock_security_struct *sbsec,
 401			const struct cred *cred)
 402{
 403	const struct task_security_struct *tsec = selinux_cred(cred);
 404	int rc;
 405
 406	rc = avc_has_perm(&selinux_state,
 407			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 408			  FILESYSTEM__RELABELFROM, NULL);
 409	if (rc)
 410		return rc;
 411
 412	rc = avc_has_perm(&selinux_state,
 413			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 414			  FILESYSTEM__RELABELTO, NULL);
 415	return rc;
 416}
 417
 418static int may_context_mount_inode_relabel(u32 sid,
 419			struct superblock_security_struct *sbsec,
 420			const struct cred *cred)
 421{
 422	const struct task_security_struct *tsec = selinux_cred(cred);
 423	int rc;
 424	rc = avc_has_perm(&selinux_state,
 425			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 426			  FILESYSTEM__RELABELFROM, NULL);
 427	if (rc)
 428		return rc;
 429
 430	rc = avc_has_perm(&selinux_state,
 431			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 432			  FILESYSTEM__ASSOCIATE, NULL);
 433	return rc;
 434}
 435
 436static int selinux_is_genfs_special_handling(struct super_block *sb)
 437{
 438	/* Special handling. Genfs but also in-core setxattr handler */
 439	return	!strcmp(sb->s_type->name, "sysfs") ||
 440		!strcmp(sb->s_type->name, "pstore") ||
 441		!strcmp(sb->s_type->name, "debugfs") ||
 442		!strcmp(sb->s_type->name, "tracefs") ||
 443		!strcmp(sb->s_type->name, "rootfs") ||
 444		(selinux_policycap_cgroupseclabel() &&
 445		 (!strcmp(sb->s_type->name, "cgroup") ||
 446		  !strcmp(sb->s_type->name, "cgroup2")));
 447}
 448
 449static int selinux_is_sblabel_mnt(struct super_block *sb)
 450{
 451	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 452
 453	/*
 454	 * IMPORTANT: Double-check logic in this function when adding a new
 455	 * SECURITY_FS_USE_* definition!
 456	 */
 457	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 458
 459	switch (sbsec->behavior) {
 460	case SECURITY_FS_USE_XATTR:
 461	case SECURITY_FS_USE_TRANS:
 462	case SECURITY_FS_USE_TASK:
 463	case SECURITY_FS_USE_NATIVE:
 464		return 1;
 465
 466	case SECURITY_FS_USE_GENFS:
 467		return selinux_is_genfs_special_handling(sb);
 468
 469	/* Never allow relabeling on context mounts */
 470	case SECURITY_FS_USE_MNTPOINT:
 471	case SECURITY_FS_USE_NONE:
 472	default:
 473		return 0;
 474	}
 475}
 476
 477static int sb_check_xattr_support(struct super_block *sb)
 478{
 479	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 480	struct dentry *root = sb->s_root;
 481	struct inode *root_inode = d_backing_inode(root);
 482	u32 sid;
 483	int rc;
 484
 485	/*
 486	 * Make sure that the xattr handler exists and that no
 487	 * error other than -ENODATA is returned by getxattr on
 488	 * the root directory.  -ENODATA is ok, as this may be
 489	 * the first boot of the SELinux kernel before we have
 490	 * assigned xattr values to the filesystem.
 491	 */
 492	if (!(root_inode->i_opflags & IOP_XATTR)) {
 493		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 494			sb->s_id, sb->s_type->name);
 495		goto fallback;
 496	}
 497
 498	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 499	if (rc < 0 && rc != -ENODATA) {
 500		if (rc == -EOPNOTSUPP) {
 501			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 502				sb->s_id, sb->s_type->name);
 503			goto fallback;
 504		} else {
 505			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 506				sb->s_id, sb->s_type->name, -rc);
 507			return rc;
 508		}
 509	}
 510	return 0;
 511
 512fallback:
 513	/* No xattr support - try to fallback to genfs if possible. */
 514	rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
 515				SECCLASS_DIR, &sid);
 516	if (rc)
 517		return -EOPNOTSUPP;
 518
 519	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 520		sb->s_id, sb->s_type->name);
 521	sbsec->behavior = SECURITY_FS_USE_GENFS;
 522	sbsec->sid = sid;
 523	return 0;
 
 
 
 
 524}
 525
 526static int sb_finish_set_opts(struct super_block *sb)
 527{
 528	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 529	struct dentry *root = sb->s_root;
 530	struct inode *root_inode = d_backing_inode(root);
 531	int rc = 0;
 532
 533	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 534		rc = sb_check_xattr_support(sb);
 535		if (rc)
 536			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537	}
 538
 539	sbsec->flags |= SE_SBINITIALIZED;
 
 
 540
 541	/*
 542	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 543	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 544	 * us a superblock that needs the flag to be cleared.
 545	 */
 546	if (selinux_is_sblabel_mnt(sb))
 547		sbsec->flags |= SBLABEL_MNT;
 548	else
 549		sbsec->flags &= ~SBLABEL_MNT;
 550
 551	/* Initialize the root inode. */
 552	rc = inode_doinit_with_dentry(root_inode, root);
 553
 554	/* Initialize any other inodes associated with the superblock, e.g.
 555	   inodes created prior to initial policy load or inodes created
 556	   during get_sb by a pseudo filesystem that directly
 557	   populates itself. */
 558	spin_lock(&sbsec->isec_lock);
 559	while (!list_empty(&sbsec->isec_head)) {
 
 560		struct inode_security_struct *isec =
 561				list_first_entry(&sbsec->isec_head,
 562					   struct inode_security_struct, list);
 563		struct inode *inode = isec->inode;
 564		list_del_init(&isec->list);
 565		spin_unlock(&sbsec->isec_lock);
 566		inode = igrab(inode);
 567		if (inode) {
 568			if (!IS_PRIVATE(inode))
 569				inode_doinit_with_dentry(inode, NULL);
 570			iput(inode);
 571		}
 572		spin_lock(&sbsec->isec_lock);
 
 573	}
 574	spin_unlock(&sbsec->isec_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575	return rc;
 576}
 577
 578static int bad_option(struct superblock_security_struct *sbsec, char flag,
 579		      u32 old_sid, u32 new_sid)
 580{
 581	char mnt_flags = sbsec->flags & SE_MNTMASK;
 582
 583	/* check if the old mount command had the same options */
 584	if (sbsec->flags & SE_SBINITIALIZED)
 585		if (!(sbsec->flags & flag) ||
 586		    (old_sid != new_sid))
 587			return 1;
 588
 589	/* check if we were passed the same options twice,
 590	 * aka someone passed context=a,context=b
 591	 */
 592	if (!(sbsec->flags & SE_SBINITIALIZED))
 593		if (mnt_flags & flag)
 594			return 1;
 595	return 0;
 596}
 597
 598/*
 599 * Allow filesystems with binary mount data to explicitly set mount point
 600 * labeling information.
 601 */
 602static int selinux_set_mnt_opts(struct super_block *sb,
 603				void *mnt_opts,
 604				unsigned long kern_flags,
 605				unsigned long *set_kern_flags)
 606{
 607	const struct cred *cred = current_cred();
 608	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 609	struct dentry *root = sb->s_root;
 610	struct selinux_mnt_opts *opts = mnt_opts;
 
 611	struct inode_security_struct *root_isec;
 612	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 613	u32 defcontext_sid = 0;
 614	int rc = 0;
 
 
 615
 616	mutex_lock(&sbsec->lock);
 617
 618	if (!selinux_initialized(&selinux_state)) {
 619		if (!opts) {
 620			/* Defer initialization until selinux_complete_init,
 621			   after the initial policy is loaded and the security
 622			   server is ready to handle calls. */
 623			goto out;
 624		}
 625		rc = -EINVAL;
 626		pr_warn("SELinux: Unable to set superblock options "
 627			"before the security server is initialized\n");
 628		goto out;
 629	}
 630	if (kern_flags && !set_kern_flags) {
 631		/* Specifying internal flags without providing a place to
 632		 * place the results is not allowed */
 633		rc = -EINVAL;
 634		goto out;
 635	}
 636
 637	/*
 638	 * Binary mount data FS will come through this function twice.  Once
 639	 * from an explicit call and once from the generic calls from the vfs.
 640	 * Since the generic VFS calls will not contain any security mount data
 641	 * we need to skip the double mount verification.
 642	 *
 643	 * This does open a hole in which we will not notice if the first
 644	 * mount using this sb set explicit options and a second mount using
 645	 * this sb does not set any security options.  (The first options
 646	 * will be used for both mounts)
 647	 */
 648	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 649	    && !opts)
 650		goto out;
 651
 652	root_isec = backing_inode_security_novalidate(root);
 653
 654	/*
 655	 * parse the mount options, check if they are valid sids.
 656	 * also check if someone is trying to mount the same sb more
 657	 * than once with different security options.
 658	 */
 659	if (opts) {
 660		if (opts->fscontext_sid) {
 661			fscontext_sid = opts->fscontext_sid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 662			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 663					fscontext_sid))
 664				goto out_double_mount;
 
 665			sbsec->flags |= FSCONTEXT_MNT;
 666		}
 667		if (opts->context_sid) {
 668			context_sid = opts->context_sid;
 
 669			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 670					context_sid))
 671				goto out_double_mount;
 
 672			sbsec->flags |= CONTEXT_MNT;
 673		}
 674		if (opts->rootcontext_sid) {
 675			rootcontext_sid = opts->rootcontext_sid;
 
 676			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 677					rootcontext_sid))
 678				goto out_double_mount;
 
 679			sbsec->flags |= ROOTCONTEXT_MNT;
 680		}
 681		if (opts->defcontext_sid) {
 682			defcontext_sid = opts->defcontext_sid;
 
 
 683			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 684					defcontext_sid))
 685				goto out_double_mount;
 
 686			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 687		}
 688	}
 689
 690	if (sbsec->flags & SE_SBINITIALIZED) {
 691		/* previously mounted with options, but not on this attempt? */
 692		if ((sbsec->flags & SE_MNTMASK) && !opts)
 693			goto out_double_mount;
 694		rc = 0;
 695		goto out;
 696	}
 697
 698	if (strcmp(sb->s_type->name, "proc") == 0)
 699		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 700
 701	if (!strcmp(sb->s_type->name, "debugfs") ||
 702	    !strcmp(sb->s_type->name, "tracefs") ||
 703	    !strcmp(sb->s_type->name, "binder") ||
 704	    !strcmp(sb->s_type->name, "bpf") ||
 705	    !strcmp(sb->s_type->name, "pstore") ||
 706	    !strcmp(sb->s_type->name, "securityfs"))
 707		sbsec->flags |= SE_SBGENFS;
 708
 709	if (!strcmp(sb->s_type->name, "sysfs") ||
 710	    !strcmp(sb->s_type->name, "cgroup") ||
 711	    !strcmp(sb->s_type->name, "cgroup2"))
 712		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 713
 714	if (!sbsec->behavior) {
 715		/*
 716		 * Determine the labeling behavior to use for this
 717		 * filesystem type.
 718		 */
 719		rc = security_fs_use(&selinux_state, sb);
 720		if (rc) {
 721			pr_warn("%s: security_fs_use(%s) returned %d\n",
 
 722					__func__, sb->s_type->name, rc);
 723			goto out;
 724		}
 725	}
 726
 727	/*
 728	 * If this is a user namespace mount and the filesystem type is not
 729	 * explicitly whitelisted, then no contexts are allowed on the command
 730	 * line and security labels must be ignored.
 731	 */
 732	if (sb->s_user_ns != &init_user_ns &&
 733	    strcmp(sb->s_type->name, "tmpfs") &&
 734	    strcmp(sb->s_type->name, "ramfs") &&
 735	    strcmp(sb->s_type->name, "devpts") &&
 736	    strcmp(sb->s_type->name, "overlay")) {
 737		if (context_sid || fscontext_sid || rootcontext_sid ||
 738		    defcontext_sid) {
 739			rc = -EACCES;
 740			goto out;
 741		}
 742		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 743			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 744			rc = security_transition_sid(&selinux_state,
 745						     current_sid(),
 746						     current_sid(),
 747						     SECCLASS_FILE, NULL,
 748						     &sbsec->mntpoint_sid);
 749			if (rc)
 750				goto out;
 751		}
 752		goto out_set_opts;
 753	}
 754
 755	/* sets the context of the superblock for the fs being mounted. */
 756	if (fscontext_sid) {
 757		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 758		if (rc)
 759			goto out;
 760
 761		sbsec->sid = fscontext_sid;
 762	}
 763
 764	/*
 765	 * Switch to using mount point labeling behavior.
 766	 * sets the label used on all file below the mountpoint, and will set
 767	 * the superblock context if not already set.
 768	 */
 769	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 770		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 771		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 772	}
 773
 774	if (context_sid) {
 775		if (!fscontext_sid) {
 776			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 777							  cred);
 778			if (rc)
 779				goto out;
 780			sbsec->sid = context_sid;
 781		} else {
 782			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 783							     cred);
 784			if (rc)
 785				goto out;
 786		}
 787		if (!rootcontext_sid)
 788			rootcontext_sid = context_sid;
 789
 790		sbsec->mntpoint_sid = context_sid;
 791		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 792	}
 793
 794	if (rootcontext_sid) {
 795		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 796						     cred);
 797		if (rc)
 798			goto out;
 799
 800		root_isec->sid = rootcontext_sid;
 801		root_isec->initialized = LABEL_INITIALIZED;
 802	}
 803
 804	if (defcontext_sid) {
 805		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 806			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 807			rc = -EINVAL;
 808			pr_warn("SELinux: defcontext option is "
 809			       "invalid for this filesystem type\n");
 810			goto out;
 811		}
 812
 813		if (defcontext_sid != sbsec->def_sid) {
 814			rc = may_context_mount_inode_relabel(defcontext_sid,
 815							     sbsec, cred);
 816			if (rc)
 817				goto out;
 818		}
 819
 820		sbsec->def_sid = defcontext_sid;
 821	}
 822
 823out_set_opts:
 824	rc = sb_finish_set_opts(sb);
 825out:
 826	mutex_unlock(&sbsec->lock);
 827	return rc;
 828out_double_mount:
 829	rc = -EINVAL;
 830	pr_warn("SELinux: mount invalid.  Same superblock, different "
 831	       "security settings for (dev %s, type %s)\n", sb->s_id,
 832	       sb->s_type->name);
 833	goto out;
 834}
 835
 836static int selinux_cmp_sb_context(const struct super_block *oldsb,
 837				    const struct super_block *newsb)
 838{
 839	struct superblock_security_struct *old = selinux_superblock(oldsb);
 840	struct superblock_security_struct *new = selinux_superblock(newsb);
 841	char oldflags = old->flags & SE_MNTMASK;
 842	char newflags = new->flags & SE_MNTMASK;
 843
 844	if (oldflags != newflags)
 845		goto mismatch;
 846	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 847		goto mismatch;
 848	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 849		goto mismatch;
 850	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 851		goto mismatch;
 852	if (oldflags & ROOTCONTEXT_MNT) {
 853		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 854		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 855		if (oldroot->sid != newroot->sid)
 856			goto mismatch;
 857	}
 858	return 0;
 859mismatch:
 860	pr_warn("SELinux: mount invalid.  Same superblock, "
 861			    "different security settings for (dev %s, "
 862			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 863	return -EBUSY;
 864}
 865
 866static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 867					struct super_block *newsb,
 868					unsigned long kern_flags,
 869					unsigned long *set_kern_flags)
 870{
 871	int rc = 0;
 872	const struct superblock_security_struct *oldsbsec =
 873						selinux_superblock(oldsb);
 874	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 875
 876	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 877	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 878	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 879
 880	/*
 881	 * if the parent was able to be mounted it clearly had no special lsm
 882	 * mount options.  thus we can safely deal with this superblock later
 883	 */
 884	if (!selinux_initialized(&selinux_state))
 885		return 0;
 886
 887	/*
 888	 * Specifying internal flags without providing a place to
 889	 * place the results is not allowed.
 890	 */
 891	if (kern_flags && !set_kern_flags)
 892		return -EINVAL;
 893
 894	/* how can we clone if the old one wasn't set up?? */
 895	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 896
 897	/* if fs is reusing a sb, make sure that the contexts match */
 898	if (newsbsec->flags & SE_SBINITIALIZED) {
 899		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 900			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 901		return selinux_cmp_sb_context(oldsb, newsb);
 902	}
 903
 904	mutex_lock(&newsbsec->lock);
 905
 906	newsbsec->flags = oldsbsec->flags;
 907
 908	newsbsec->sid = oldsbsec->sid;
 909	newsbsec->def_sid = oldsbsec->def_sid;
 910	newsbsec->behavior = oldsbsec->behavior;
 911
 912	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 913		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 914		rc = security_fs_use(&selinux_state, newsb);
 915		if (rc)
 916			goto out;
 917	}
 918
 919	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 920		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 921		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 922	}
 923
 924	if (set_context) {
 925		u32 sid = oldsbsec->mntpoint_sid;
 926
 927		if (!set_fscontext)
 928			newsbsec->sid = sid;
 929		if (!set_rootcontext) {
 930			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 931			newisec->sid = sid;
 932		}
 933		newsbsec->mntpoint_sid = sid;
 934	}
 935	if (set_rootcontext) {
 936		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 937		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 938
 939		newisec->sid = oldisec->sid;
 940	}
 941
 942	sb_finish_set_opts(newsb);
 943out:
 944	mutex_unlock(&newsbsec->lock);
 945	return rc;
 946}
 947
 948/*
 949 * NOTE: the caller is resposible for freeing the memory even if on error.
 950 */
 951static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 952{
 953	struct selinux_mnt_opts *opts = *mnt_opts;
 954	u32 *dst_sid;
 955	int rc;
 
 956
 957	if (token == Opt_seclabel)
 958		/* eaten and completely ignored */
 959		return 0;
 960	if (!s)
 961		return -EINVAL;
 962
 963	if (!selinux_initialized(&selinux_state)) {
 964		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
 965		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966	}
 967
 968	if (!opts) {
 969		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
 970		if (!opts)
 971			return -ENOMEM;
 972		*mnt_opts = opts;
 
 
 
 
 
 973	}
 974
 975	switch (token) {
 976	case Opt_context:
 977		if (opts->context_sid || opts->defcontext_sid)
 978			goto err;
 979		dst_sid = &opts->context_sid;
 980		break;
 981	case Opt_fscontext:
 982		if (opts->fscontext_sid)
 983			goto err;
 984		dst_sid = &opts->fscontext_sid;
 985		break;
 986	case Opt_rootcontext:
 987		if (opts->rootcontext_sid)
 988			goto err;
 989		dst_sid = &opts->rootcontext_sid;
 990		break;
 991	case Opt_defcontext:
 992		if (opts->context_sid || opts->defcontext_sid)
 993			goto err;
 994		dst_sid = &opts->defcontext_sid;
 995		break;
 996	default:
 997		WARN_ON(1);
 998		return -EINVAL;
 999	}
1000	rc = security_context_str_to_sid(&selinux_state, s, dst_sid, GFP_KERNEL);
1001	if (rc)
1002		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1003			s, rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004	return rc;
 
 
 
 
 
 
 
 
 
1005
1006err:
1007	pr_warn(SEL_MOUNT_FAIL_MSG);
1008	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009}
1010
1011static int show_sid(struct seq_file *m, u32 sid)
 
1012{
1013	char *context = NULL;
1014	u32 len;
1015	int rc;
 
 
1016
1017	rc = security_sid_to_context(&selinux_state, sid,
1018					     &context, &len);
1019	if (!rc) {
1020		bool has_comma = strchr(context, ',');
1021
1022		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023		if (has_comma)
1024			seq_putc(m, '\"');
1025		seq_escape(m, context, "\"\n\\");
1026		if (has_comma)
1027			seq_putc(m, '\"');
1028	}
1029	kfree(context);
1030	return rc;
1031}
1032
1033static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1034{
1035	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1036	int rc;
1037
1038	if (!(sbsec->flags & SE_SBINITIALIZED))
1039		return 0;
 
 
 
 
 
1040
1041	if (!selinux_initialized(&selinux_state))
1042		return 0;
1043
1044	if (sbsec->flags & FSCONTEXT_MNT) {
1045		seq_putc(m, ',');
1046		seq_puts(m, FSCONTEXT_STR);
1047		rc = show_sid(m, sbsec->sid);
1048		if (rc)
1049			return rc;
1050	}
1051	if (sbsec->flags & CONTEXT_MNT) {
1052		seq_putc(m, ',');
1053		seq_puts(m, CONTEXT_STR);
1054		rc = show_sid(m, sbsec->mntpoint_sid);
1055		if (rc)
1056			return rc;
1057	}
1058	if (sbsec->flags & DEFCONTEXT_MNT) {
1059		seq_putc(m, ',');
1060		seq_puts(m, DEFCONTEXT_STR);
1061		rc = show_sid(m, sbsec->def_sid);
1062		if (rc)
1063			return rc;
1064	}
1065	if (sbsec->flags & ROOTCONTEXT_MNT) {
1066		struct dentry *root = sb->s_root;
1067		struct inode_security_struct *isec = backing_inode_security(root);
1068		seq_putc(m, ',');
1069		seq_puts(m, ROOTCONTEXT_STR);
1070		rc = show_sid(m, isec->sid);
1071		if (rc)
1072			return rc;
1073	}
1074	if (sbsec->flags & SBLABEL_MNT) {
1075		seq_putc(m, ',');
1076		seq_puts(m, SECLABEL_STR);
1077	}
1078	return 0;
1079}
1080
1081static inline u16 inode_mode_to_security_class(umode_t mode)
1082{
1083	switch (mode & S_IFMT) {
1084	case S_IFSOCK:
1085		return SECCLASS_SOCK_FILE;
1086	case S_IFLNK:
1087		return SECCLASS_LNK_FILE;
1088	case S_IFREG:
1089		return SECCLASS_FILE;
1090	case S_IFBLK:
1091		return SECCLASS_BLK_FILE;
1092	case S_IFDIR:
1093		return SECCLASS_DIR;
1094	case S_IFCHR:
1095		return SECCLASS_CHR_FILE;
1096	case S_IFIFO:
1097		return SECCLASS_FIFO_FILE;
1098
1099	}
1100
1101	return SECCLASS_FILE;
1102}
1103
1104static inline int default_protocol_stream(int protocol)
1105{
1106	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1107		protocol == IPPROTO_MPTCP);
1108}
1109
1110static inline int default_protocol_dgram(int protocol)
1111{
1112	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1113}
1114
1115static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1116{
1117	int extsockclass = selinux_policycap_extsockclass();
1118
1119	switch (family) {
1120	case PF_UNIX:
1121		switch (type) {
1122		case SOCK_STREAM:
1123		case SOCK_SEQPACKET:
1124			return SECCLASS_UNIX_STREAM_SOCKET;
1125		case SOCK_DGRAM:
1126		case SOCK_RAW:
1127			return SECCLASS_UNIX_DGRAM_SOCKET;
1128		}
1129		break;
1130	case PF_INET:
1131	case PF_INET6:
1132		switch (type) {
1133		case SOCK_STREAM:
1134		case SOCK_SEQPACKET:
1135			if (default_protocol_stream(protocol))
1136				return SECCLASS_TCP_SOCKET;
1137			else if (extsockclass && protocol == IPPROTO_SCTP)
1138				return SECCLASS_SCTP_SOCKET;
1139			else
1140				return SECCLASS_RAWIP_SOCKET;
1141		case SOCK_DGRAM:
1142			if (default_protocol_dgram(protocol))
1143				return SECCLASS_UDP_SOCKET;
1144			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1145						  protocol == IPPROTO_ICMPV6))
1146				return SECCLASS_ICMP_SOCKET;
1147			else
1148				return SECCLASS_RAWIP_SOCKET;
1149		case SOCK_DCCP:
1150			return SECCLASS_DCCP_SOCKET;
1151		default:
1152			return SECCLASS_RAWIP_SOCKET;
1153		}
1154		break;
1155	case PF_NETLINK:
1156		switch (protocol) {
1157		case NETLINK_ROUTE:
1158			return SECCLASS_NETLINK_ROUTE_SOCKET;
1159		case NETLINK_SOCK_DIAG:
1160			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1161		case NETLINK_NFLOG:
1162			return SECCLASS_NETLINK_NFLOG_SOCKET;
1163		case NETLINK_XFRM:
1164			return SECCLASS_NETLINK_XFRM_SOCKET;
1165		case NETLINK_SELINUX:
1166			return SECCLASS_NETLINK_SELINUX_SOCKET;
1167		case NETLINK_ISCSI:
1168			return SECCLASS_NETLINK_ISCSI_SOCKET;
1169		case NETLINK_AUDIT:
1170			return SECCLASS_NETLINK_AUDIT_SOCKET;
1171		case NETLINK_FIB_LOOKUP:
1172			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1173		case NETLINK_CONNECTOR:
1174			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1175		case NETLINK_NETFILTER:
1176			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1177		case NETLINK_DNRTMSG:
1178			return SECCLASS_NETLINK_DNRT_SOCKET;
1179		case NETLINK_KOBJECT_UEVENT:
1180			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1181		case NETLINK_GENERIC:
1182			return SECCLASS_NETLINK_GENERIC_SOCKET;
1183		case NETLINK_SCSITRANSPORT:
1184			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1185		case NETLINK_RDMA:
1186			return SECCLASS_NETLINK_RDMA_SOCKET;
1187		case NETLINK_CRYPTO:
1188			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1189		default:
1190			return SECCLASS_NETLINK_SOCKET;
1191		}
1192	case PF_PACKET:
1193		return SECCLASS_PACKET_SOCKET;
1194	case PF_KEY:
1195		return SECCLASS_KEY_SOCKET;
1196	case PF_APPLETALK:
1197		return SECCLASS_APPLETALK_SOCKET;
1198	}
1199
1200	if (extsockclass) {
1201		switch (family) {
1202		case PF_AX25:
1203			return SECCLASS_AX25_SOCKET;
1204		case PF_IPX:
1205			return SECCLASS_IPX_SOCKET;
1206		case PF_NETROM:
1207			return SECCLASS_NETROM_SOCKET;
1208		case PF_ATMPVC:
1209			return SECCLASS_ATMPVC_SOCKET;
1210		case PF_X25:
1211			return SECCLASS_X25_SOCKET;
1212		case PF_ROSE:
1213			return SECCLASS_ROSE_SOCKET;
1214		case PF_DECnet:
1215			return SECCLASS_DECNET_SOCKET;
1216		case PF_ATMSVC:
1217			return SECCLASS_ATMSVC_SOCKET;
1218		case PF_RDS:
1219			return SECCLASS_RDS_SOCKET;
1220		case PF_IRDA:
1221			return SECCLASS_IRDA_SOCKET;
1222		case PF_PPPOX:
1223			return SECCLASS_PPPOX_SOCKET;
1224		case PF_LLC:
1225			return SECCLASS_LLC_SOCKET;
1226		case PF_CAN:
1227			return SECCLASS_CAN_SOCKET;
1228		case PF_TIPC:
1229			return SECCLASS_TIPC_SOCKET;
1230		case PF_BLUETOOTH:
1231			return SECCLASS_BLUETOOTH_SOCKET;
1232		case PF_IUCV:
1233			return SECCLASS_IUCV_SOCKET;
1234		case PF_RXRPC:
1235			return SECCLASS_RXRPC_SOCKET;
1236		case PF_ISDN:
1237			return SECCLASS_ISDN_SOCKET;
1238		case PF_PHONET:
1239			return SECCLASS_PHONET_SOCKET;
1240		case PF_IEEE802154:
1241			return SECCLASS_IEEE802154_SOCKET;
1242		case PF_CAIF:
1243			return SECCLASS_CAIF_SOCKET;
1244		case PF_ALG:
1245			return SECCLASS_ALG_SOCKET;
1246		case PF_NFC:
1247			return SECCLASS_NFC_SOCKET;
1248		case PF_VSOCK:
1249			return SECCLASS_VSOCK_SOCKET;
1250		case PF_KCM:
1251			return SECCLASS_KCM_SOCKET;
1252		case PF_QIPCRTR:
1253			return SECCLASS_QIPCRTR_SOCKET;
1254		case PF_SMC:
1255			return SECCLASS_SMC_SOCKET;
1256		case PF_XDP:
1257			return SECCLASS_XDP_SOCKET;
1258		case PF_MCTP:
1259			return SECCLASS_MCTP_SOCKET;
1260#if PF_MAX > 46
1261#error New address family defined, please update this function.
1262#endif
1263		}
1264	}
1265
1266	return SECCLASS_SOCKET;
1267}
1268
1269static int selinux_genfs_get_sid(struct dentry *dentry,
1270				 u16 tclass,
1271				 u16 flags,
1272				 u32 *sid)
1273{
1274	int rc;
1275	struct super_block *sb = dentry->d_sb;
1276	char *buffer, *path;
1277
1278	buffer = (char *)__get_free_page(GFP_KERNEL);
1279	if (!buffer)
1280		return -ENOMEM;
1281
1282	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1283	if (IS_ERR(path))
1284		rc = PTR_ERR(path);
1285	else {
1286		if (flags & SE_SBPROC) {
1287			/* each process gets a /proc/PID/ entry. Strip off the
1288			 * PID part to get a valid selinux labeling.
1289			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1290			while (path[1] >= '0' && path[1] <= '9') {
1291				path[1] = '/';
1292				path++;
1293			}
1294		}
1295		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1296					path, tclass, sid);
1297		if (rc == -ENOENT) {
1298			/* No match in policy, mark as unlabeled. */
1299			*sid = SECINITSID_UNLABELED;
1300			rc = 0;
1301		}
1302	}
1303	free_page((unsigned long)buffer);
1304	return rc;
1305}
1306
1307static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1308				  u32 def_sid, u32 *sid)
1309{
1310#define INITCONTEXTLEN 255
1311	char *context;
1312	unsigned int len;
1313	int rc;
1314
1315	len = INITCONTEXTLEN;
1316	context = kmalloc(len + 1, GFP_NOFS);
1317	if (!context)
1318		return -ENOMEM;
1319
1320	context[len] = '\0';
1321	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1322	if (rc == -ERANGE) {
1323		kfree(context);
1324
1325		/* Need a larger buffer.  Query for the right size. */
1326		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1327		if (rc < 0)
1328			return rc;
1329
1330		len = rc;
1331		context = kmalloc(len + 1, GFP_NOFS);
1332		if (!context)
1333			return -ENOMEM;
1334
1335		context[len] = '\0';
1336		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1337				    context, len);
1338	}
1339	if (rc < 0) {
1340		kfree(context);
1341		if (rc != -ENODATA) {
1342			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1343				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1344			return rc;
1345		}
1346		*sid = def_sid;
1347		return 0;
1348	}
1349
1350	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1351					     def_sid, GFP_NOFS);
1352	if (rc) {
1353		char *dev = inode->i_sb->s_id;
1354		unsigned long ino = inode->i_ino;
1355
1356		if (rc == -EINVAL) {
1357			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1358					      ino, dev, context);
1359		} else {
1360			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1361				__func__, context, -rc, dev, ino);
1362		}
1363	}
1364	kfree(context);
1365	return 0;
1366}
1367
1368/* The inode's security attributes must be initialized before first use. */
1369static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1370{
1371	struct superblock_security_struct *sbsec = NULL;
1372	struct inode_security_struct *isec = selinux_inode(inode);
1373	u32 task_sid, sid = 0;
1374	u16 sclass;
1375	struct dentry *dentry;
 
 
 
1376	int rc = 0;
1377
1378	if (isec->initialized == LABEL_INITIALIZED)
1379		return 0;
1380
1381	spin_lock(&isec->lock);
1382	if (isec->initialized == LABEL_INITIALIZED)
1383		goto out_unlock;
1384
1385	if (isec->sclass == SECCLASS_FILE)
1386		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1387
1388	sbsec = selinux_superblock(inode->i_sb);
1389	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1390		/* Defer initialization until selinux_complete_init,
1391		   after the initial policy is loaded and the security
1392		   server is ready to handle calls. */
1393		spin_lock(&sbsec->isec_lock);
1394		if (list_empty(&isec->list))
1395			list_add(&isec->list, &sbsec->isec_head);
1396		spin_unlock(&sbsec->isec_lock);
1397		goto out_unlock;
1398	}
1399
1400	sclass = isec->sclass;
1401	task_sid = isec->task_sid;
1402	sid = isec->sid;
1403	isec->initialized = LABEL_PENDING;
1404	spin_unlock(&isec->lock);
1405
1406	switch (sbsec->behavior) {
1407	case SECURITY_FS_USE_NATIVE:
1408		break;
1409	case SECURITY_FS_USE_XATTR:
1410		if (!(inode->i_opflags & IOP_XATTR)) {
1411			sid = sbsec->def_sid;
1412			break;
1413		}
1414		/* Need a dentry, since the xattr API requires one.
1415		   Life would be simpler if we could just pass the inode. */
1416		if (opt_dentry) {
1417			/* Called from d_instantiate or d_splice_alias. */
1418			dentry = dget(opt_dentry);
1419		} else {
1420			/*
1421			 * Called from selinux_complete_init, try to find a dentry.
1422			 * Some filesystems really want a connected one, so try
1423			 * that first.  We could split SECURITY_FS_USE_XATTR in
1424			 * two, depending upon that...
1425			 */
1426			dentry = d_find_alias(inode);
1427			if (!dentry)
1428				dentry = d_find_any_alias(inode);
1429		}
1430		if (!dentry) {
1431			/*
1432			 * this is can be hit on boot when a file is accessed
1433			 * before the policy is loaded.  When we load policy we
1434			 * may find inodes that have no dentry on the
1435			 * sbsec->isec_head list.  No reason to complain as these
1436			 * will get fixed up the next time we go through
1437			 * inode_doinit with a dentry, before these inodes could
1438			 * be used again by userspace.
1439			 */
1440			goto out_invalid;
1441		}
1442
1443		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1444					    &sid);
1445		dput(dentry);
1446		if (rc)
 
1447			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448		break;
1449	case SECURITY_FS_USE_TASK:
1450		sid = task_sid;
1451		break;
1452	case SECURITY_FS_USE_TRANS:
1453		/* Default to the fs SID. */
1454		sid = sbsec->sid;
1455
1456		/* Try to obtain a transition SID. */
1457		rc = security_transition_sid(&selinux_state, task_sid, sid,
1458					     sclass, NULL, &sid);
1459		if (rc)
1460			goto out;
1461		break;
1462	case SECURITY_FS_USE_MNTPOINT:
1463		sid = sbsec->mntpoint_sid;
1464		break;
1465	default:
1466		/* Default to the fs superblock SID. */
1467		sid = sbsec->sid;
1468
1469		if ((sbsec->flags & SE_SBGENFS) &&
1470		     (!S_ISLNK(inode->i_mode) ||
1471		      selinux_policycap_genfs_seclabel_symlinks())) {
1472			/* We must have a dentry to determine the label on
1473			 * procfs inodes */
1474			if (opt_dentry) {
1475				/* Called from d_instantiate or
1476				 * d_splice_alias. */
1477				dentry = dget(opt_dentry);
1478			} else {
1479				/* Called from selinux_complete_init, try to
1480				 * find a dentry.  Some filesystems really want
1481				 * a connected one, so try that first.
1482				 */
1483				dentry = d_find_alias(inode);
1484				if (!dentry)
1485					dentry = d_find_any_alias(inode);
1486			}
1487			/*
1488			 * This can be hit on boot when a file is accessed
1489			 * before the policy is loaded.  When we load policy we
1490			 * may find inodes that have no dentry on the
1491			 * sbsec->isec_head list.  No reason to complain as
1492			 * these will get fixed up the next time we go through
1493			 * inode_doinit() with a dentry, before these inodes
1494			 * could be used again by userspace.
1495			 */
1496			if (!dentry)
1497				goto out_invalid;
1498			rc = selinux_genfs_get_sid(dentry, sclass,
1499						   sbsec->flags, &sid);
1500			if (rc) {
1501				dput(dentry);
1502				goto out;
1503			}
1504
1505			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1506			    (inode->i_opflags & IOP_XATTR)) {
1507				rc = inode_doinit_use_xattr(inode, dentry,
1508							    sid, &sid);
1509				if (rc) {
1510					dput(dentry);
1511					goto out;
1512				}
1513			}
1514			dput(dentry);
 
 
1515		}
1516		break;
1517	}
1518
1519out:
1520	spin_lock(&isec->lock);
1521	if (isec->initialized == LABEL_PENDING) {
1522		if (rc) {
1523			isec->initialized = LABEL_INVALID;
1524			goto out_unlock;
1525		}
 
1526		isec->initialized = LABEL_INITIALIZED;
1527		isec->sid = sid;
1528	}
1529
1530out_unlock:
1531	spin_unlock(&isec->lock);
1532	return rc;
1533
1534out_invalid:
1535	spin_lock(&isec->lock);
1536	if (isec->initialized == LABEL_PENDING) {
1537		isec->initialized = LABEL_INVALID;
1538		isec->sid = sid;
1539	}
1540	spin_unlock(&isec->lock);
1541	return 0;
1542}
1543
1544/* Convert a Linux signal to an access vector. */
1545static inline u32 signal_to_av(int sig)
1546{
1547	u32 perm = 0;
1548
1549	switch (sig) {
1550	case SIGCHLD:
1551		/* Commonly granted from child to parent. */
1552		perm = PROCESS__SIGCHLD;
1553		break;
1554	case SIGKILL:
1555		/* Cannot be caught or ignored */
1556		perm = PROCESS__SIGKILL;
1557		break;
1558	case SIGSTOP:
1559		/* Cannot be caught or ignored */
1560		perm = PROCESS__SIGSTOP;
1561		break;
1562	default:
1563		/* All other signals. */
1564		perm = PROCESS__SIGNAL;
1565		break;
1566	}
1567
1568	return perm;
1569}
1570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1571#if CAP_LAST_CAP > 63
1572#error Fix SELinux to handle capabilities > 63.
1573#endif
1574
1575/* Check whether a task is allowed to use a capability. */
1576static int cred_has_capability(const struct cred *cred,
1577			       int cap, unsigned int opts, bool initns)
1578{
1579	struct common_audit_data ad;
1580	struct av_decision avd;
1581	u16 sclass;
1582	u32 sid = cred_sid(cred);
1583	u32 av = CAP_TO_MASK(cap);
1584	int rc;
1585
1586	ad.type = LSM_AUDIT_DATA_CAP;
1587	ad.u.cap = cap;
1588
1589	switch (CAP_TO_INDEX(cap)) {
1590	case 0:
1591		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1592		break;
1593	case 1:
1594		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1595		break;
1596	default:
1597		pr_err("SELinux:  out of range capability %d\n", cap);
 
1598		BUG();
1599		return -EINVAL;
1600	}
1601
1602	rc = avc_has_perm_noaudit(&selinux_state,
1603				  sid, sid, sclass, av, 0, &avd);
1604	if (!(opts & CAP_OPT_NOAUDIT)) {
1605		int rc2 = avc_audit(&selinux_state,
1606				    sid, sid, sclass, av, &avd, rc, &ad);
1607		if (rc2)
1608			return rc2;
1609	}
1610	return rc;
1611}
1612
 
 
 
 
 
 
 
 
 
 
1613/* Check whether a task has a particular permission to an inode.
1614   The 'adp' parameter is optional and allows other audit
1615   data to be passed (e.g. the dentry). */
1616static int inode_has_perm(const struct cred *cred,
1617			  struct inode *inode,
1618			  u32 perms,
1619			  struct common_audit_data *adp)
1620{
1621	struct inode_security_struct *isec;
1622	u32 sid;
1623
1624	validate_creds(cred);
1625
1626	if (unlikely(IS_PRIVATE(inode)))
1627		return 0;
1628
1629	sid = cred_sid(cred);
1630	isec = selinux_inode(inode);
1631
1632	return avc_has_perm(&selinux_state,
1633			    sid, isec->sid, isec->sclass, perms, adp);
1634}
1635
1636/* Same as inode_has_perm, but pass explicit audit data containing
1637   the dentry to help the auditing code to more easily generate the
1638   pathname if needed. */
1639static inline int dentry_has_perm(const struct cred *cred,
1640				  struct dentry *dentry,
1641				  u32 av)
1642{
1643	struct inode *inode = d_backing_inode(dentry);
1644	struct common_audit_data ad;
1645
1646	ad.type = LSM_AUDIT_DATA_DENTRY;
1647	ad.u.dentry = dentry;
1648	__inode_security_revalidate(inode, dentry, true);
1649	return inode_has_perm(cred, inode, av, &ad);
1650}
1651
1652/* Same as inode_has_perm, but pass explicit audit data containing
1653   the path to help the auditing code to more easily generate the
1654   pathname if needed. */
1655static inline int path_has_perm(const struct cred *cred,
1656				const struct path *path,
1657				u32 av)
1658{
1659	struct inode *inode = d_backing_inode(path->dentry);
1660	struct common_audit_data ad;
1661
1662	ad.type = LSM_AUDIT_DATA_PATH;
1663	ad.u.path = *path;
1664	__inode_security_revalidate(inode, path->dentry, true);
1665	return inode_has_perm(cred, inode, av, &ad);
1666}
1667
1668/* Same as path_has_perm, but uses the inode from the file struct. */
1669static inline int file_path_has_perm(const struct cred *cred,
1670				     struct file *file,
1671				     u32 av)
1672{
1673	struct common_audit_data ad;
1674
1675	ad.type = LSM_AUDIT_DATA_FILE;
1676	ad.u.file = file;
1677	return inode_has_perm(cred, file_inode(file), av, &ad);
1678}
1679
1680#ifdef CONFIG_BPF_SYSCALL
1681static int bpf_fd_pass(struct file *file, u32 sid);
1682#endif
1683
1684/* Check whether a task can use an open file descriptor to
1685   access an inode in a given way.  Check access to the
1686   descriptor itself, and then use dentry_has_perm to
1687   check a particular permission to the file.
1688   Access to the descriptor is implicitly granted if it
1689   has the same SID as the process.  If av is zero, then
1690   access to the file is not checked, e.g. for cases
1691   where only the descriptor is affected like seek. */
1692static int file_has_perm(const struct cred *cred,
1693			 struct file *file,
1694			 u32 av)
1695{
1696	struct file_security_struct *fsec = selinux_file(file);
1697	struct inode *inode = file_inode(file);
1698	struct common_audit_data ad;
1699	u32 sid = cred_sid(cred);
1700	int rc;
1701
1702	ad.type = LSM_AUDIT_DATA_FILE;
1703	ad.u.file = file;
1704
1705	if (sid != fsec->sid) {
1706		rc = avc_has_perm(&selinux_state,
1707				  sid, fsec->sid,
1708				  SECCLASS_FD,
1709				  FD__USE,
1710				  &ad);
1711		if (rc)
1712			goto out;
1713	}
1714
1715#ifdef CONFIG_BPF_SYSCALL
1716	rc = bpf_fd_pass(file, cred_sid(cred));
1717	if (rc)
1718		return rc;
1719#endif
1720
1721	/* av is zero if only checking access to the descriptor. */
1722	rc = 0;
1723	if (av)
1724		rc = inode_has_perm(cred, inode, av, &ad);
1725
1726out:
1727	return rc;
1728}
1729
1730/*
1731 * Determine the label for an inode that might be unioned.
1732 */
1733static int
1734selinux_determine_inode_label(const struct task_security_struct *tsec,
1735				 struct inode *dir,
1736				 const struct qstr *name, u16 tclass,
1737				 u32 *_new_isid)
1738{
1739	const struct superblock_security_struct *sbsec =
1740						selinux_superblock(dir->i_sb);
1741
1742	if ((sbsec->flags & SE_SBINITIALIZED) &&
1743	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1744		*_new_isid = sbsec->mntpoint_sid;
1745	} else if ((sbsec->flags & SBLABEL_MNT) &&
1746		   tsec->create_sid) {
1747		*_new_isid = tsec->create_sid;
1748	} else {
1749		const struct inode_security_struct *dsec = inode_security(dir);
1750		return security_transition_sid(&selinux_state, tsec->sid,
1751					       dsec->sid, tclass,
1752					       name, _new_isid);
1753	}
1754
1755	return 0;
1756}
1757
1758/* Check whether a task can create a file. */
1759static int may_create(struct inode *dir,
1760		      struct dentry *dentry,
1761		      u16 tclass)
1762{
1763	const struct task_security_struct *tsec = selinux_cred(current_cred());
1764	struct inode_security_struct *dsec;
1765	struct superblock_security_struct *sbsec;
1766	u32 sid, newsid;
1767	struct common_audit_data ad;
1768	int rc;
1769
1770	dsec = inode_security(dir);
1771	sbsec = selinux_superblock(dir->i_sb);
1772
1773	sid = tsec->sid;
1774
1775	ad.type = LSM_AUDIT_DATA_DENTRY;
1776	ad.u.dentry = dentry;
1777
1778	rc = avc_has_perm(&selinux_state,
1779			  sid, dsec->sid, SECCLASS_DIR,
1780			  DIR__ADD_NAME | DIR__SEARCH,
1781			  &ad);
1782	if (rc)
1783		return rc;
1784
1785	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1786					   &newsid);
1787	if (rc)
1788		return rc;
1789
1790	rc = avc_has_perm(&selinux_state,
1791			  sid, newsid, tclass, FILE__CREATE, &ad);
1792	if (rc)
1793		return rc;
1794
1795	return avc_has_perm(&selinux_state,
1796			    newsid, sbsec->sid,
1797			    SECCLASS_FILESYSTEM,
1798			    FILESYSTEM__ASSOCIATE, &ad);
1799}
1800
 
 
 
 
 
 
 
 
 
1801#define MAY_LINK	0
1802#define MAY_UNLINK	1
1803#define MAY_RMDIR	2
1804
1805/* Check whether a task can link, unlink, or rmdir a file/directory. */
1806static int may_link(struct inode *dir,
1807		    struct dentry *dentry,
1808		    int kind)
1809
1810{
1811	struct inode_security_struct *dsec, *isec;
1812	struct common_audit_data ad;
1813	u32 sid = current_sid();
1814	u32 av;
1815	int rc;
1816
1817	dsec = inode_security(dir);
1818	isec = backing_inode_security(dentry);
1819
1820	ad.type = LSM_AUDIT_DATA_DENTRY;
1821	ad.u.dentry = dentry;
1822
1823	av = DIR__SEARCH;
1824	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1825	rc = avc_has_perm(&selinux_state,
1826			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1827	if (rc)
1828		return rc;
1829
1830	switch (kind) {
1831	case MAY_LINK:
1832		av = FILE__LINK;
1833		break;
1834	case MAY_UNLINK:
1835		av = FILE__UNLINK;
1836		break;
1837	case MAY_RMDIR:
1838		av = DIR__RMDIR;
1839		break;
1840	default:
1841		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1842			__func__, kind);
1843		return 0;
1844	}
1845
1846	rc = avc_has_perm(&selinux_state,
1847			  sid, isec->sid, isec->sclass, av, &ad);
1848	return rc;
1849}
1850
1851static inline int may_rename(struct inode *old_dir,
1852			     struct dentry *old_dentry,
1853			     struct inode *new_dir,
1854			     struct dentry *new_dentry)
1855{
1856	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1857	struct common_audit_data ad;
1858	u32 sid = current_sid();
1859	u32 av;
1860	int old_is_dir, new_is_dir;
1861	int rc;
1862
1863	old_dsec = inode_security(old_dir);
1864	old_isec = backing_inode_security(old_dentry);
1865	old_is_dir = d_is_dir(old_dentry);
1866	new_dsec = inode_security(new_dir);
1867
1868	ad.type = LSM_AUDIT_DATA_DENTRY;
1869
1870	ad.u.dentry = old_dentry;
1871	rc = avc_has_perm(&selinux_state,
1872			  sid, old_dsec->sid, SECCLASS_DIR,
1873			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1874	if (rc)
1875		return rc;
1876	rc = avc_has_perm(&selinux_state,
1877			  sid, old_isec->sid,
1878			  old_isec->sclass, FILE__RENAME, &ad);
1879	if (rc)
1880		return rc;
1881	if (old_is_dir && new_dir != old_dir) {
1882		rc = avc_has_perm(&selinux_state,
1883				  sid, old_isec->sid,
1884				  old_isec->sclass, DIR__REPARENT, &ad);
1885		if (rc)
1886			return rc;
1887	}
1888
1889	ad.u.dentry = new_dentry;
1890	av = DIR__ADD_NAME | DIR__SEARCH;
1891	if (d_is_positive(new_dentry))
1892		av |= DIR__REMOVE_NAME;
1893	rc = avc_has_perm(&selinux_state,
1894			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1895	if (rc)
1896		return rc;
1897	if (d_is_positive(new_dentry)) {
1898		new_isec = backing_inode_security(new_dentry);
1899		new_is_dir = d_is_dir(new_dentry);
1900		rc = avc_has_perm(&selinux_state,
1901				  sid, new_isec->sid,
1902				  new_isec->sclass,
1903				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1904		if (rc)
1905			return rc;
1906	}
1907
1908	return 0;
1909}
1910
1911/* Check whether a task can perform a filesystem operation. */
1912static int superblock_has_perm(const struct cred *cred,
1913			       struct super_block *sb,
1914			       u32 perms,
1915			       struct common_audit_data *ad)
1916{
1917	struct superblock_security_struct *sbsec;
1918	u32 sid = cred_sid(cred);
1919
1920	sbsec = selinux_superblock(sb);
1921	return avc_has_perm(&selinux_state,
1922			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1923}
1924
1925/* Convert a Linux mode and permission mask to an access vector. */
1926static inline u32 file_mask_to_av(int mode, int mask)
1927{
1928	u32 av = 0;
1929
1930	if (!S_ISDIR(mode)) {
1931		if (mask & MAY_EXEC)
1932			av |= FILE__EXECUTE;
1933		if (mask & MAY_READ)
1934			av |= FILE__READ;
1935
1936		if (mask & MAY_APPEND)
1937			av |= FILE__APPEND;
1938		else if (mask & MAY_WRITE)
1939			av |= FILE__WRITE;
1940
1941	} else {
1942		if (mask & MAY_EXEC)
1943			av |= DIR__SEARCH;
1944		if (mask & MAY_WRITE)
1945			av |= DIR__WRITE;
1946		if (mask & MAY_READ)
1947			av |= DIR__READ;
1948	}
1949
1950	return av;
1951}
1952
1953/* Convert a Linux file to an access vector. */
1954static inline u32 file_to_av(struct file *file)
1955{
1956	u32 av = 0;
1957
1958	if (file->f_mode & FMODE_READ)
1959		av |= FILE__READ;
1960	if (file->f_mode & FMODE_WRITE) {
1961		if (file->f_flags & O_APPEND)
1962			av |= FILE__APPEND;
1963		else
1964			av |= FILE__WRITE;
1965	}
1966	if (!av) {
1967		/*
1968		 * Special file opened with flags 3 for ioctl-only use.
1969		 */
1970		av = FILE__IOCTL;
1971	}
1972
1973	return av;
1974}
1975
1976/*
1977 * Convert a file to an access vector and include the correct
1978 * open permission.
1979 */
1980static inline u32 open_file_to_av(struct file *file)
1981{
1982	u32 av = file_to_av(file);
1983	struct inode *inode = file_inode(file);
1984
1985	if (selinux_policycap_openperm() &&
1986	    inode->i_sb->s_magic != SOCKFS_MAGIC)
1987		av |= FILE__OPEN;
1988
1989	return av;
1990}
1991
1992/* Hook functions begin here. */
1993
1994static int selinux_binder_set_context_mgr(const struct cred *mgr)
1995{
1996	return avc_has_perm(&selinux_state,
1997			    current_sid(), cred_sid(mgr), SECCLASS_BINDER,
 
 
1998			    BINDER__SET_CONTEXT_MGR, NULL);
1999}
2000
2001static int selinux_binder_transaction(const struct cred *from,
2002				      const struct cred *to)
2003{
2004	u32 mysid = current_sid();
2005	u32 fromsid = cred_sid(from);
2006	u32 tosid = cred_sid(to);
2007	int rc;
2008
2009	if (mysid != fromsid) {
2010		rc = avc_has_perm(&selinux_state,
2011				  mysid, fromsid, SECCLASS_BINDER,
2012				  BINDER__IMPERSONATE, NULL);
2013		if (rc)
2014			return rc;
2015	}
2016
2017	return avc_has_perm(&selinux_state, fromsid, tosid,
2018			    SECCLASS_BINDER, BINDER__CALL, NULL);
2019}
2020
2021static int selinux_binder_transfer_binder(const struct cred *from,
2022					  const struct cred *to)
2023{
2024	return avc_has_perm(&selinux_state,
2025			    cred_sid(from), cred_sid(to),
2026			    SECCLASS_BINDER, BINDER__TRANSFER,
 
2027			    NULL);
2028}
2029
2030static int selinux_binder_transfer_file(const struct cred *from,
2031					const struct cred *to,
2032					struct file *file)
2033{
2034	u32 sid = cred_sid(to);
2035	struct file_security_struct *fsec = selinux_file(file);
2036	struct dentry *dentry = file->f_path.dentry;
2037	struct inode_security_struct *isec;
2038	struct common_audit_data ad;
2039	int rc;
2040
2041	ad.type = LSM_AUDIT_DATA_PATH;
2042	ad.u.path = file->f_path;
2043
2044	if (sid != fsec->sid) {
2045		rc = avc_has_perm(&selinux_state,
2046				  sid, fsec->sid,
2047				  SECCLASS_FD,
2048				  FD__USE,
2049				  &ad);
2050		if (rc)
2051			return rc;
2052	}
2053
2054#ifdef CONFIG_BPF_SYSCALL
2055	rc = bpf_fd_pass(file, sid);
2056	if (rc)
2057		return rc;
2058#endif
2059
2060	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2061		return 0;
2062
2063	isec = backing_inode_security(dentry);
2064	return avc_has_perm(&selinux_state,
2065			    sid, isec->sid, isec->sclass, file_to_av(file),
2066			    &ad);
2067}
2068
2069static int selinux_ptrace_access_check(struct task_struct *child,
2070				       unsigned int mode)
2071{
2072	u32 sid = current_sid();
2073	u32 csid = task_sid_obj(child);
2074
2075	if (mode & PTRACE_MODE_READ)
2076		return avc_has_perm(&selinux_state,
2077				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2078
2079	return avc_has_perm(&selinux_state,
2080			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2081}
2082
2083static int selinux_ptrace_traceme(struct task_struct *parent)
2084{
2085	return avc_has_perm(&selinux_state,
2086			    task_sid_obj(parent), task_sid_obj(current),
2087			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2088}
2089
2090static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2091			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2092{
2093	return avc_has_perm(&selinux_state,
2094			    current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2095			    PROCESS__GETCAP, NULL);
2096}
2097
2098static int selinux_capset(struct cred *new, const struct cred *old,
2099			  const kernel_cap_t *effective,
2100			  const kernel_cap_t *inheritable,
2101			  const kernel_cap_t *permitted)
2102{
2103	return avc_has_perm(&selinux_state,
2104			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2105			    PROCESS__SETCAP, NULL);
2106}
2107
2108/*
2109 * (This comment used to live with the selinux_task_setuid hook,
2110 * which was removed).
2111 *
2112 * Since setuid only affects the current process, and since the SELinux
2113 * controls are not based on the Linux identity attributes, SELinux does not
2114 * need to control this operation.  However, SELinux does control the use of
2115 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2116 */
2117
2118static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2119			   int cap, unsigned int opts)
2120{
2121	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2122}
2123
2124static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2125{
2126	const struct cred *cred = current_cred();
2127	int rc = 0;
2128
2129	if (!sb)
2130		return 0;
2131
2132	switch (cmds) {
2133	case Q_SYNC:
2134	case Q_QUOTAON:
2135	case Q_QUOTAOFF:
2136	case Q_SETINFO:
2137	case Q_SETQUOTA:
2138	case Q_XQUOTAOFF:
2139	case Q_XQUOTAON:
2140	case Q_XSETQLIM:
2141		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2142		break;
2143	case Q_GETFMT:
2144	case Q_GETINFO:
2145	case Q_GETQUOTA:
2146	case Q_XGETQUOTA:
2147	case Q_XGETQSTAT:
2148	case Q_XGETQSTATV:
2149	case Q_XGETNEXTQUOTA:
2150		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2151		break;
2152	default:
2153		rc = 0;  /* let the kernel handle invalid cmds */
2154		break;
2155	}
2156	return rc;
2157}
2158
2159static int selinux_quota_on(struct dentry *dentry)
2160{
2161	const struct cred *cred = current_cred();
2162
2163	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2164}
2165
2166static int selinux_syslog(int type)
2167{
 
 
2168	switch (type) {
2169	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2170	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2171		return avc_has_perm(&selinux_state,
2172				    current_sid(), SECINITSID_KERNEL,
2173				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2174	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2175	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2176	/* Set level of messages printed to console */
2177	case SYSLOG_ACTION_CONSOLE_LEVEL:
2178		return avc_has_perm(&selinux_state,
2179				    current_sid(), SECINITSID_KERNEL,
2180				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2181				    NULL);
2182	}
2183	/* All other syslog types */
2184	return avc_has_perm(&selinux_state,
2185			    current_sid(), SECINITSID_KERNEL,
2186			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2187}
2188
2189/*
2190 * Check that a process has enough memory to allocate a new virtual
2191 * mapping. 0 means there is enough memory for the allocation to
2192 * succeed and -ENOMEM implies there is not.
2193 *
2194 * Do not audit the selinux permission check, as this is applied to all
2195 * processes that allocate mappings.
2196 */
2197static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2198{
2199	int rc, cap_sys_admin = 0;
2200
2201	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2202				 CAP_OPT_NOAUDIT, true);
2203	if (rc == 0)
2204		cap_sys_admin = 1;
2205
2206	return cap_sys_admin;
2207}
2208
2209/* binprm security operations */
2210
2211static u32 ptrace_parent_sid(void)
2212{
2213	u32 sid = 0;
2214	struct task_struct *tracer;
2215
2216	rcu_read_lock();
2217	tracer = ptrace_parent(current);
2218	if (tracer)
2219		sid = task_sid_obj(tracer);
2220	rcu_read_unlock();
2221
2222	return sid;
2223}
2224
2225static int check_nnp_nosuid(const struct linux_binprm *bprm,
2226			    const struct task_security_struct *old_tsec,
2227			    const struct task_security_struct *new_tsec)
2228{
2229	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2230	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2231	int rc;
2232	u32 av;
2233
2234	if (!nnp && !nosuid)
2235		return 0; /* neither NNP nor nosuid */
2236
2237	if (new_tsec->sid == old_tsec->sid)
2238		return 0; /* No change in credentials */
2239
2240	/*
2241	 * If the policy enables the nnp_nosuid_transition policy capability,
2242	 * then we permit transitions under NNP or nosuid if the
2243	 * policy allows the corresponding permission between
2244	 * the old and new contexts.
2245	 */
2246	if (selinux_policycap_nnp_nosuid_transition()) {
2247		av = 0;
 
 
 
 
 
2248		if (nnp)
2249			av |= PROCESS2__NNP_TRANSITION;
2250		if (nosuid)
2251			av |= PROCESS2__NOSUID_TRANSITION;
2252		rc = avc_has_perm(&selinux_state,
2253				  old_tsec->sid, new_tsec->sid,
2254				  SECCLASS_PROCESS2, av, NULL);
2255		if (!rc)
2256			return 0;
2257	}
2258
2259	/*
2260	 * We also permit NNP or nosuid transitions to bounded SIDs,
2261	 * i.e. SIDs that are guaranteed to only be allowed a subset
2262	 * of the permissions of the current SID.
2263	 */
2264	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2265					 new_tsec->sid);
2266	if (!rc)
2267		return 0;
2268
2269	/*
2270	 * On failure, preserve the errno values for NNP vs nosuid.
2271	 * NNP:  Operation not permitted for caller.
2272	 * nosuid:  Permission denied to file.
2273	 */
2274	if (nnp)
2275		return -EPERM;
2276	return -EACCES;
2277}
2278
2279static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2280{
2281	const struct task_security_struct *old_tsec;
2282	struct task_security_struct *new_tsec;
2283	struct inode_security_struct *isec;
2284	struct common_audit_data ad;
2285	struct inode *inode = file_inode(bprm->file);
2286	int rc;
2287
2288	/* SELinux context only depends on initial program or script and not
2289	 * the script interpreter */
 
 
2290
2291	old_tsec = selinux_cred(current_cred());
2292	new_tsec = selinux_cred(bprm->cred);
2293	isec = inode_security(inode);
2294
2295	/* Default to the current task SID. */
2296	new_tsec->sid = old_tsec->sid;
2297	new_tsec->osid = old_tsec->sid;
2298
2299	/* Reset fs, key, and sock SIDs on execve. */
2300	new_tsec->create_sid = 0;
2301	new_tsec->keycreate_sid = 0;
2302	new_tsec->sockcreate_sid = 0;
2303
2304	if (old_tsec->exec_sid) {
2305		new_tsec->sid = old_tsec->exec_sid;
2306		/* Reset exec SID on execve. */
2307		new_tsec->exec_sid = 0;
2308
2309		/* Fail on NNP or nosuid if not an allowed transition. */
2310		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2311		if (rc)
2312			return rc;
2313	} else {
2314		/* Check for a default transition on this program. */
2315		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2316					     isec->sid, SECCLASS_PROCESS, NULL,
2317					     &new_tsec->sid);
2318		if (rc)
2319			return rc;
2320
2321		/*
2322		 * Fallback to old SID on NNP or nosuid if not an allowed
2323		 * transition.
2324		 */
2325		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2326		if (rc)
2327			new_tsec->sid = old_tsec->sid;
2328	}
2329
2330	ad.type = LSM_AUDIT_DATA_FILE;
2331	ad.u.file = bprm->file;
2332
2333	if (new_tsec->sid == old_tsec->sid) {
2334		rc = avc_has_perm(&selinux_state,
2335				  old_tsec->sid, isec->sid,
2336				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2337		if (rc)
2338			return rc;
2339	} else {
2340		/* Check permissions for the transition. */
2341		rc = avc_has_perm(&selinux_state,
2342				  old_tsec->sid, new_tsec->sid,
2343				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2344		if (rc)
2345			return rc;
2346
2347		rc = avc_has_perm(&selinux_state,
2348				  new_tsec->sid, isec->sid,
2349				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2350		if (rc)
2351			return rc;
2352
2353		/* Check for shared state */
2354		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2355			rc = avc_has_perm(&selinux_state,
2356					  old_tsec->sid, new_tsec->sid,
2357					  SECCLASS_PROCESS, PROCESS__SHARE,
2358					  NULL);
2359			if (rc)
2360				return -EPERM;
2361		}
2362
2363		/* Make sure that anyone attempting to ptrace over a task that
2364		 * changes its SID has the appropriate permit */
2365		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2366			u32 ptsid = ptrace_parent_sid();
 
2367			if (ptsid != 0) {
2368				rc = avc_has_perm(&selinux_state,
2369						  ptsid, new_tsec->sid,
2370						  SECCLASS_PROCESS,
2371						  PROCESS__PTRACE, NULL);
2372				if (rc)
2373					return -EPERM;
2374			}
2375		}
2376
2377		/* Clear any possibly unsafe personality bits on exec: */
2378		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
 
 
 
2379
 
 
 
 
 
 
 
 
 
 
2380		/* Enable secure mode for SIDs transitions unless
2381		   the noatsecure permission is granted between
2382		   the two SIDs, i.e. ahp returns 0. */
2383		rc = avc_has_perm(&selinux_state,
2384				  old_tsec->sid, new_tsec->sid,
2385				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2386				  NULL);
2387		bprm->secureexec |= !!rc;
2388	}
2389
2390	return 0;
2391}
2392
2393static int match_file(const void *p, struct file *file, unsigned fd)
2394{
2395	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2396}
2397
2398/* Derived from fs/exec.c:flush_old_files. */
2399static inline void flush_unauthorized_files(const struct cred *cred,
2400					    struct files_struct *files)
2401{
2402	struct file *file, *devnull = NULL;
2403	struct tty_struct *tty;
2404	int drop_tty = 0;
2405	unsigned n;
2406
2407	tty = get_current_tty();
2408	if (tty) {
2409		spin_lock(&tty->files_lock);
2410		if (!list_empty(&tty->tty_files)) {
2411			struct tty_file_private *file_priv;
2412
2413			/* Revalidate access to controlling tty.
2414			   Use file_path_has_perm on the tty path directly
2415			   rather than using file_has_perm, as this particular
2416			   open file may belong to another process and we are
2417			   only interested in the inode-based check here. */
2418			file_priv = list_first_entry(&tty->tty_files,
2419						struct tty_file_private, list);
2420			file = file_priv->file;
2421			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2422				drop_tty = 1;
2423		}
2424		spin_unlock(&tty->files_lock);
2425		tty_kref_put(tty);
2426	}
2427	/* Reset controlling tty. */
2428	if (drop_tty)
2429		no_tty();
2430
2431	/* Revalidate access to inherited open files. */
2432	n = iterate_fd(files, 0, match_file, cred);
2433	if (!n) /* none found? */
2434		return;
2435
2436	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2437	if (IS_ERR(devnull))
2438		devnull = NULL;
2439	/* replace all the matching ones with this */
2440	do {
2441		replace_fd(n - 1, devnull, 0);
2442	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2443	if (devnull)
2444		fput(devnull);
2445}
2446
2447/*
2448 * Prepare a process for imminent new credential changes due to exec
2449 */
2450static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2451{
2452	struct task_security_struct *new_tsec;
2453	struct rlimit *rlim, *initrlim;
2454	int rc, i;
2455
2456	new_tsec = selinux_cred(bprm->cred);
2457	if (new_tsec->sid == new_tsec->osid)
2458		return;
2459
2460	/* Close files for which the new task SID is not authorized. */
2461	flush_unauthorized_files(bprm->cred, current->files);
2462
2463	/* Always clear parent death signal on SID transitions. */
2464	current->pdeath_signal = 0;
2465
2466	/* Check whether the new SID can inherit resource limits from the old
2467	 * SID.  If not, reset all soft limits to the lower of the current
2468	 * task's hard limit and the init task's soft limit.
2469	 *
2470	 * Note that the setting of hard limits (even to lower them) can be
2471	 * controlled by the setrlimit check.  The inclusion of the init task's
2472	 * soft limit into the computation is to avoid resetting soft limits
2473	 * higher than the default soft limit for cases where the default is
2474	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2475	 */
2476	rc = avc_has_perm(&selinux_state,
2477			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2478			  PROCESS__RLIMITINH, NULL);
2479	if (rc) {
2480		/* protect against do_prlimit() */
2481		task_lock(current);
2482		for (i = 0; i < RLIM_NLIMITS; i++) {
2483			rlim = current->signal->rlim + i;
2484			initrlim = init_task.signal->rlim + i;
2485			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2486		}
2487		task_unlock(current);
2488		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2489			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2490	}
2491}
2492
2493/*
2494 * Clean up the process immediately after the installation of new credentials
2495 * due to exec
2496 */
2497static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2498{
2499	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2500	u32 osid, sid;
2501	int rc;
2502
2503	osid = tsec->osid;
2504	sid = tsec->sid;
2505
2506	if (sid == osid)
2507		return;
2508
2509	/* Check whether the new SID can inherit signal state from the old SID.
2510	 * If not, clear itimers to avoid subsequent signal generation and
2511	 * flush and unblock signals.
2512	 *
2513	 * This must occur _after_ the task SID has been updated so that any
2514	 * kill done after the flush will be checked against the new SID.
2515	 */
2516	rc = avc_has_perm(&selinux_state,
2517			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2518	if (rc) {
2519		clear_itimer();
2520
2521		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
 
 
 
2522		if (!fatal_signal_pending(current)) {
2523			flush_sigqueue(&current->pending);
2524			flush_sigqueue(&current->signal->shared_pending);
2525			flush_signal_handlers(current, 1);
2526			sigemptyset(&current->blocked);
2527			recalc_sigpending();
2528		}
2529		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2530	}
2531
2532	/* Wake up the parent if it is waiting so that it can recheck
2533	 * wait permission to the new task SID. */
2534	read_lock(&tasklist_lock);
2535	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2536	read_unlock(&tasklist_lock);
2537}
2538
2539/* superblock security operations */
2540
2541static int selinux_sb_alloc_security(struct super_block *sb)
2542{
2543	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2544
2545	mutex_init(&sbsec->lock);
2546	INIT_LIST_HEAD(&sbsec->isec_head);
2547	spin_lock_init(&sbsec->isec_lock);
2548	sbsec->sid = SECINITSID_UNLABELED;
2549	sbsec->def_sid = SECINITSID_FILE;
2550	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2551
2552	return 0;
 
 
2553}
2554
2555static inline int opt_len(const char *s)
2556{
2557	bool open_quote = false;
2558	int len;
2559	char c;
2560
2561	for (len = 0; (c = s[len]) != '\0'; len++) {
2562		if (c == '"')
2563			open_quote = !open_quote;
2564		if (c == ',' && !open_quote)
2565			break;
2566	}
2567	return len;
2568}
2569
2570static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2571{
2572	char *from = options;
2573	char *to = options;
2574	bool first = true;
2575	int rc;
 
 
2576
2577	while (1) {
2578		int len = opt_len(from);
2579		int token;
2580		char *arg = NULL;
 
 
 
 
 
 
2581
2582		token = match_opt_prefix(from, len, &arg);
 
 
 
2583
2584		if (token != Opt_error) {
2585			char *p, *q;
 
 
 
2586
2587			/* strip quotes */
2588			if (arg) {
2589				for (p = q = arg; p < from + len; p++) {
2590					char c = *p;
2591					if (c != '"')
2592						*q++ = c;
2593				}
2594				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2595				if (!arg) {
2596					rc = -ENOMEM;
2597					goto free_opt;
2598				}
2599			}
2600			rc = selinux_add_opt(token, arg, mnt_opts);
2601			kfree(arg);
2602			arg = NULL;
2603			if (unlikely(rc)) {
2604				goto free_opt;
2605			}
2606		} else {
2607			if (!first) {	// copy with preceding comma
2608				from--;
2609				len++;
2610			}
2611			if (to != from)
2612				memmove(to, from, len);
2613			to += len;
2614			first = false;
2615		}
2616		if (!from[len])
2617			break;
2618		from += len + 1;
2619	}
2620	*to = '\0';
2621	return 0;
2622
2623free_opt:
2624	if (*mnt_opts) {
2625		selinux_free_mnt_opts(*mnt_opts);
2626		*mnt_opts = NULL;
2627	}
2628	return rc;
2629}
2630
2631static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2632{
2633	struct selinux_mnt_opts *opts = mnt_opts;
2634	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 
 
2635
2636	/*
2637	 * Superblock not initialized (i.e. no options) - reject if any
2638	 * options specified, otherwise accept.
2639	 */
2640	if (!(sbsec->flags & SE_SBINITIALIZED))
2641		return opts ? 1 : 0;
2642
2643	/*
2644	 * Superblock initialized and no options specified - reject if
2645	 * superblock has any options set, otherwise accept.
2646	 */
2647	if (!opts)
2648		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2649
2650	if (opts->fscontext_sid) {
2651		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2652			       opts->fscontext_sid))
2653			return 1;
2654	}
2655	if (opts->context_sid) {
2656		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2657			       opts->context_sid))
2658			return 1;
2659	}
2660	if (opts->rootcontext_sid) {
2661		struct inode_security_struct *root_isec;
2662
2663		root_isec = backing_inode_security(sb->s_root);
2664		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2665			       opts->rootcontext_sid))
2666			return 1;
2667	}
2668	if (opts->defcontext_sid) {
2669		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2670			       opts->defcontext_sid))
2671			return 1;
2672	}
2673	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2674}
2675
2676static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2677{
2678	struct selinux_mnt_opts *opts = mnt_opts;
2679	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 
 
2680
2681	if (!(sbsec->flags & SE_SBINITIALIZED))
2682		return 0;
2683
2684	if (!opts)
2685		return 0;
2686
2687	if (opts->fscontext_sid) {
2688		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2689			       opts->fscontext_sid))
2690			goto out_bad_option;
2691	}
2692	if (opts->context_sid) {
2693		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2694			       opts->context_sid))
2695			goto out_bad_option;
2696	}
2697	if (opts->rootcontext_sid) {
2698		struct inode_security_struct *root_isec;
2699		root_isec = backing_inode_security(sb->s_root);
2700		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2701			       opts->rootcontext_sid))
2702			goto out_bad_option;
2703	}
2704	if (opts->defcontext_sid) {
2705		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2706			       opts->defcontext_sid))
2707			goto out_bad_option;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708	}
2709	return 0;
2710
 
 
 
 
 
 
2711out_bad_option:
2712	pr_warn("SELinux: unable to change security options "
2713	       "during remount (dev %s, type=%s)\n", sb->s_id,
2714	       sb->s_type->name);
2715	return -EINVAL;
2716}
2717
2718static int selinux_sb_kern_mount(struct super_block *sb)
2719{
2720	const struct cred *cred = current_cred();
2721	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2722
2723	ad.type = LSM_AUDIT_DATA_DENTRY;
2724	ad.u.dentry = sb->s_root;
2725	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2726}
2727
2728static int selinux_sb_statfs(struct dentry *dentry)
2729{
2730	const struct cred *cred = current_cred();
2731	struct common_audit_data ad;
2732
2733	ad.type = LSM_AUDIT_DATA_DENTRY;
2734	ad.u.dentry = dentry->d_sb->s_root;
2735	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2736}
2737
2738static int selinux_mount(const char *dev_name,
2739			 const struct path *path,
2740			 const char *type,
2741			 unsigned long flags,
2742			 void *data)
2743{
2744	const struct cred *cred = current_cred();
2745
2746	if (flags & MS_REMOUNT)
2747		return superblock_has_perm(cred, path->dentry->d_sb,
2748					   FILESYSTEM__REMOUNT, NULL);
2749	else
2750		return path_has_perm(cred, path, FILE__MOUNTON);
2751}
2752
2753static int selinux_move_mount(const struct path *from_path,
2754			      const struct path *to_path)
2755{
2756	const struct cred *cred = current_cred();
2757
2758	return path_has_perm(cred, to_path, FILE__MOUNTON);
2759}
2760
2761static int selinux_umount(struct vfsmount *mnt, int flags)
2762{
2763	const struct cred *cred = current_cred();
2764
2765	return superblock_has_perm(cred, mnt->mnt_sb,
2766				   FILESYSTEM__UNMOUNT, NULL);
2767}
2768
2769static int selinux_fs_context_dup(struct fs_context *fc,
2770				  struct fs_context *src_fc)
2771{
2772	const struct selinux_mnt_opts *src = src_fc->security;
2773
2774	if (!src)
2775		return 0;
2776
2777	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2778	return fc->security ? 0 : -ENOMEM;
2779}
2780
2781static const struct fs_parameter_spec selinux_fs_parameters[] = {
2782	fsparam_string(CONTEXT_STR,	Opt_context),
2783	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2784	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2785	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2786	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2787	{}
2788};
2789
2790static int selinux_fs_context_parse_param(struct fs_context *fc,
2791					  struct fs_parameter *param)
2792{
2793	struct fs_parse_result result;
2794	int opt;
2795
2796	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2797	if (opt < 0)
2798		return opt;
2799
2800	return selinux_add_opt(opt, param->string, &fc->security);
2801}
2802
2803/* inode security operations */
2804
2805static int selinux_inode_alloc_security(struct inode *inode)
2806{
2807	struct inode_security_struct *isec = selinux_inode(inode);
2808	u32 sid = current_sid();
2809
2810	spin_lock_init(&isec->lock);
2811	INIT_LIST_HEAD(&isec->list);
2812	isec->inode = inode;
2813	isec->sid = SECINITSID_UNLABELED;
2814	isec->sclass = SECCLASS_FILE;
2815	isec->task_sid = sid;
2816	isec->initialized = LABEL_INVALID;
2817
2818	return 0;
2819}
2820
2821static void selinux_inode_free_security(struct inode *inode)
2822{
2823	inode_free_security(inode);
2824}
2825
2826static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2827					const struct qstr *name,
2828					const char **xattr_name, void **ctx,
2829					u32 *ctxlen)
2830{
2831	u32 newsid;
2832	int rc;
2833
2834	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2835					   d_inode(dentry->d_parent), name,
2836					   inode_mode_to_security_class(mode),
2837					   &newsid);
2838	if (rc)
2839		return rc;
2840
2841	if (xattr_name)
2842		*xattr_name = XATTR_NAME_SELINUX;
2843
2844	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2845				       ctxlen);
2846}
2847
2848static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2849					  struct qstr *name,
2850					  const struct cred *old,
2851					  struct cred *new)
2852{
2853	u32 newsid;
2854	int rc;
2855	struct task_security_struct *tsec;
2856
2857	rc = selinux_determine_inode_label(selinux_cred(old),
2858					   d_inode(dentry->d_parent), name,
2859					   inode_mode_to_security_class(mode),
2860					   &newsid);
2861	if (rc)
2862		return rc;
2863
2864	tsec = selinux_cred(new);
2865	tsec->create_sid = newsid;
2866	return 0;
2867}
2868
2869static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2870				       const struct qstr *qstr,
2871				       const char **name,
2872				       void **value, size_t *len)
2873{
2874	const struct task_security_struct *tsec = selinux_cred(current_cred());
2875	struct superblock_security_struct *sbsec;
2876	u32 newsid, clen;
2877	int rc;
2878	char *context;
2879
2880	sbsec = selinux_superblock(dir->i_sb);
2881
 
2882	newsid = tsec->create_sid;
2883
2884	rc = selinux_determine_inode_label(tsec, dir, qstr,
 
2885		inode_mode_to_security_class(inode->i_mode),
2886		&newsid);
2887	if (rc)
2888		return rc;
2889
2890	/* Possibly defer initialization to selinux_complete_init. */
2891	if (sbsec->flags & SE_SBINITIALIZED) {
2892		struct inode_security_struct *isec = selinux_inode(inode);
2893		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2894		isec->sid = newsid;
2895		isec->initialized = LABEL_INITIALIZED;
2896	}
2897
2898	if (!selinux_initialized(&selinux_state) ||
2899	    !(sbsec->flags & SBLABEL_MNT))
2900		return -EOPNOTSUPP;
2901
2902	if (name)
2903		*name = XATTR_SELINUX_SUFFIX;
2904
2905	if (value && len) {
2906		rc = security_sid_to_context_force(&selinux_state, newsid,
2907						   &context, &clen);
2908		if (rc)
2909			return rc;
2910		*value = context;
2911		*len = clen;
2912	}
2913
2914	return 0;
2915}
2916
2917static int selinux_inode_init_security_anon(struct inode *inode,
2918					    const struct qstr *name,
2919					    const struct inode *context_inode)
2920{
2921	const struct task_security_struct *tsec = selinux_cred(current_cred());
2922	struct common_audit_data ad;
2923	struct inode_security_struct *isec;
2924	int rc;
2925
2926	if (unlikely(!selinux_initialized(&selinux_state)))
2927		return 0;
2928
2929	isec = selinux_inode(inode);
2930
2931	/*
2932	 * We only get here once per ephemeral inode.  The inode has
2933	 * been initialized via inode_alloc_security but is otherwise
2934	 * untouched.
2935	 */
2936
2937	if (context_inode) {
2938		struct inode_security_struct *context_isec =
2939			selinux_inode(context_inode);
2940		if (context_isec->initialized != LABEL_INITIALIZED) {
2941			pr_err("SELinux:  context_inode is not initialized");
2942			return -EACCES;
2943		}
2944
2945		isec->sclass = context_isec->sclass;
2946		isec->sid = context_isec->sid;
2947	} else {
2948		isec->sclass = SECCLASS_ANON_INODE;
2949		rc = security_transition_sid(
2950			&selinux_state, tsec->sid, tsec->sid,
2951			isec->sclass, name, &isec->sid);
2952		if (rc)
2953			return rc;
2954	}
2955
2956	isec->initialized = LABEL_INITIALIZED;
2957	/*
2958	 * Now that we've initialized security, check whether we're
2959	 * allowed to actually create this type of anonymous inode.
2960	 */
2961
2962	ad.type = LSM_AUDIT_DATA_ANONINODE;
2963	ad.u.anonclass = name ? (const char *)name->name : "?";
2964
2965	return avc_has_perm(&selinux_state,
2966			    tsec->sid,
2967			    isec->sid,
2968			    isec->sclass,
2969			    FILE__CREATE,
2970			    &ad);
2971}
2972
2973static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2974{
2975	return may_create(dir, dentry, SECCLASS_FILE);
2976}
2977
2978static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2979{
2980	return may_link(dir, old_dentry, MAY_LINK);
2981}
2982
2983static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2984{
2985	return may_link(dir, dentry, MAY_UNLINK);
2986}
2987
2988static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2989{
2990	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2991}
2992
2993static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2994{
2995	return may_create(dir, dentry, SECCLASS_DIR);
2996}
2997
2998static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2999{
3000	return may_link(dir, dentry, MAY_RMDIR);
3001}
3002
3003static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3004{
3005	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3006}
3007
3008static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3009				struct inode *new_inode, struct dentry *new_dentry)
3010{
3011	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3012}
3013
3014static int selinux_inode_readlink(struct dentry *dentry)
3015{
3016	const struct cred *cred = current_cred();
3017
3018	return dentry_has_perm(cred, dentry, FILE__READ);
3019}
3020
3021static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3022				     bool rcu)
3023{
3024	const struct cred *cred = current_cred();
3025	struct common_audit_data ad;
3026	struct inode_security_struct *isec;
3027	u32 sid;
3028
3029	validate_creds(cred);
3030
3031	ad.type = LSM_AUDIT_DATA_DENTRY;
3032	ad.u.dentry = dentry;
3033	sid = cred_sid(cred);
3034	isec = inode_security_rcu(inode, rcu);
3035	if (IS_ERR(isec))
3036		return PTR_ERR(isec);
3037
3038	return avc_has_perm(&selinux_state,
3039				  sid, isec->sid, isec->sclass, FILE__READ, &ad);
3040}
3041
3042static noinline int audit_inode_permission(struct inode *inode,
3043					   u32 perms, u32 audited, u32 denied,
3044					   int result)
 
3045{
3046	struct common_audit_data ad;
3047	struct inode_security_struct *isec = selinux_inode(inode);
 
3048
3049	ad.type = LSM_AUDIT_DATA_INODE;
3050	ad.u.inode = inode;
3051
3052	return slow_avc_audit(&selinux_state,
3053			    current_sid(), isec->sid, isec->sclass, perms,
3054			    audited, denied, result, &ad);
 
 
3055}
3056
3057static int selinux_inode_permission(struct inode *inode, int mask)
3058{
3059	const struct cred *cred = current_cred();
3060	u32 perms;
3061	bool from_access;
3062	bool no_block = mask & MAY_NOT_BLOCK;
3063	struct inode_security_struct *isec;
3064	u32 sid;
3065	struct av_decision avd;
3066	int rc, rc2;
3067	u32 audited, denied;
3068
3069	from_access = mask & MAY_ACCESS;
3070	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3071
3072	/* No permission to check.  Existence test. */
3073	if (!mask)
3074		return 0;
3075
3076	validate_creds(cred);
3077
3078	if (unlikely(IS_PRIVATE(inode)))
3079		return 0;
3080
3081	perms = file_mask_to_av(inode->i_mode, mask);
3082
3083	sid = cred_sid(cred);
3084	isec = inode_security_rcu(inode, no_block);
3085	if (IS_ERR(isec))
3086		return PTR_ERR(isec);
3087
3088	rc = avc_has_perm_noaudit(&selinux_state,
3089				  sid, isec->sid, isec->sclass, perms, 0,
3090				  &avd);
3091	audited = avc_audit_required(perms, &avd, rc,
3092				     from_access ? FILE__AUDIT_ACCESS : 0,
3093				     &denied);
3094	if (likely(!audited))
3095		return rc;
3096
3097	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3098	if (rc2)
3099		return rc2;
3100	return rc;
3101}
3102
3103static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3104{
3105	const struct cred *cred = current_cred();
3106	struct inode *inode = d_backing_inode(dentry);
3107	unsigned int ia_valid = iattr->ia_valid;
3108	__u32 av = FILE__WRITE;
3109
3110	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3111	if (ia_valid & ATTR_FORCE) {
3112		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3113			      ATTR_FORCE);
3114		if (!ia_valid)
3115			return 0;
3116	}
3117
3118	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3119			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3120		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3121
3122	if (selinux_policycap_openperm() &&
3123	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3124	    (ia_valid & ATTR_SIZE) &&
3125	    !(ia_valid & ATTR_FILE))
3126		av |= FILE__OPEN;
3127
3128	return dentry_has_perm(cred, dentry, av);
3129}
3130
3131static int selinux_inode_getattr(const struct path *path)
3132{
3133	return path_has_perm(current_cred(), path, FILE__GETATTR);
3134}
3135
3136static bool has_cap_mac_admin(bool audit)
3137{
3138	const struct cred *cred = current_cred();
3139	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3140
3141	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3142		return false;
3143	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3144		return false;
3145	return true;
 
 
 
 
 
 
 
 
 
 
3146}
3147
3148static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3149				  struct dentry *dentry, const char *name,
3150				  const void *value, size_t size, int flags)
3151{
3152	struct inode *inode = d_backing_inode(dentry);
3153	struct inode_security_struct *isec;
3154	struct superblock_security_struct *sbsec;
3155	struct common_audit_data ad;
3156	u32 newsid, sid = current_sid();
3157	int rc = 0;
3158
3159	if (strcmp(name, XATTR_NAME_SELINUX)) {
3160		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3161		if (rc)
3162			return rc;
3163
3164		/* Not an attribute we recognize, so just check the
3165		   ordinary setattr permission. */
3166		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3167	}
3168
3169	if (!selinux_initialized(&selinux_state))
3170		return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3171
3172	sbsec = selinux_superblock(inode->i_sb);
3173	if (!(sbsec->flags & SBLABEL_MNT))
3174		return -EOPNOTSUPP;
3175
3176	if (!inode_owner_or_capable(mnt_userns, inode))
3177		return -EPERM;
3178
3179	ad.type = LSM_AUDIT_DATA_DENTRY;
3180	ad.u.dentry = dentry;
3181
3182	isec = backing_inode_security(dentry);
3183	rc = avc_has_perm(&selinux_state,
3184			  sid, isec->sid, isec->sclass,
3185			  FILE__RELABELFROM, &ad);
3186	if (rc)
3187		return rc;
3188
3189	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3190				     GFP_KERNEL);
3191	if (rc == -EINVAL) {
3192		if (!has_cap_mac_admin(true)) {
3193			struct audit_buffer *ab;
3194			size_t audit_size;
 
3195
3196			/* We strip a nul only if it is at the end, otherwise the
3197			 * context contains a nul and we should audit that */
3198			if (value) {
3199				const char *str = value;
3200
3201				if (str[size - 1] == '\0')
3202					audit_size = size - 1;
3203				else
3204					audit_size = size;
3205			} else {
 
3206				audit_size = 0;
3207			}
3208			ab = audit_log_start(audit_context(),
3209					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3210			if (!ab)
3211				return rc;
3212			audit_log_format(ab, "op=setxattr invalid_context=");
3213			audit_log_n_untrustedstring(ab, value, audit_size);
3214			audit_log_end(ab);
3215
3216			return rc;
3217		}
3218		rc = security_context_to_sid_force(&selinux_state, value,
3219						   size, &newsid);
3220	}
3221	if (rc)
3222		return rc;
3223
3224	rc = avc_has_perm(&selinux_state,
3225			  sid, newsid, isec->sclass,
3226			  FILE__RELABELTO, &ad);
3227	if (rc)
3228		return rc;
3229
3230	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3231					  sid, isec->sclass);
3232	if (rc)
3233		return rc;
3234
3235	return avc_has_perm(&selinux_state,
3236			    newsid,
3237			    sbsec->sid,
3238			    SECCLASS_FILESYSTEM,
3239			    FILESYSTEM__ASSOCIATE,
3240			    &ad);
3241}
3242
3243static int selinux_inode_set_acl(struct user_namespace *mnt_userns,
3244				 struct dentry *dentry, const char *acl_name,
3245				 struct posix_acl *kacl)
3246{
3247	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3248}
3249
3250static int selinux_inode_get_acl(struct user_namespace *mnt_userns,
3251				 struct dentry *dentry, const char *acl_name)
3252{
3253	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_remove_acl(struct user_namespace *mnt_userns,
3257				    struct dentry *dentry, const char *acl_name)
3258{
3259	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3260}
3261
3262static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3263					const void *value, size_t size,
3264					int flags)
3265{
3266	struct inode *inode = d_backing_inode(dentry);
3267	struct inode_security_struct *isec;
3268	u32 newsid;
3269	int rc;
3270
3271	if (strcmp(name, XATTR_NAME_SELINUX)) {
3272		/* Not an attribute we recognize, so nothing to do. */
3273		return;
3274	}
3275
3276	if (!selinux_initialized(&selinux_state)) {
3277		/* If we haven't even been initialized, then we can't validate
3278		 * against a policy, so leave the label as invalid. It may
3279		 * resolve to a valid label on the next revalidation try if
3280		 * we've since initialized.
3281		 */
3282		return;
3283	}
3284
3285	rc = security_context_to_sid_force(&selinux_state, value, size,
3286					   &newsid);
3287	if (rc) {
3288		pr_err("SELinux:  unable to map context to SID"
3289		       "for (%s, %lu), rc=%d\n",
3290		       inode->i_sb->s_id, inode->i_ino, -rc);
3291		return;
3292	}
3293
3294	isec = backing_inode_security(dentry);
3295	spin_lock(&isec->lock);
3296	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3297	isec->sid = newsid;
3298	isec->initialized = LABEL_INITIALIZED;
3299	spin_unlock(&isec->lock);
 
 
3300}
3301
3302static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3303{
3304	const struct cred *cred = current_cred();
3305
3306	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3307}
3308
3309static int selinux_inode_listxattr(struct dentry *dentry)
3310{
3311	const struct cred *cred = current_cred();
3312
3313	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3314}
3315
3316static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3317				     struct dentry *dentry, const char *name)
3318{
3319	if (strcmp(name, XATTR_NAME_SELINUX)) {
3320		int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3321		if (rc)
3322			return rc;
3323
3324		/* Not an attribute we recognize, so just check the
3325		   ordinary setattr permission. */
3326		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3327	}
3328
3329	if (!selinux_initialized(&selinux_state))
3330		return 0;
3331
3332	/* No one is allowed to remove a SELinux security label.
3333	   You can change the label, but all data must be labeled. */
3334	return -EACCES;
3335}
3336
3337static int selinux_path_notify(const struct path *path, u64 mask,
3338						unsigned int obj_type)
3339{
3340	int ret;
3341	u32 perm;
3342
3343	struct common_audit_data ad;
3344
3345	ad.type = LSM_AUDIT_DATA_PATH;
3346	ad.u.path = *path;
3347
3348	/*
3349	 * Set permission needed based on the type of mark being set.
3350	 * Performs an additional check for sb watches.
3351	 */
3352	switch (obj_type) {
3353	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3354		perm = FILE__WATCH_MOUNT;
3355		break;
3356	case FSNOTIFY_OBJ_TYPE_SB:
3357		perm = FILE__WATCH_SB;
3358		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3359						FILESYSTEM__WATCH, &ad);
3360		if (ret)
3361			return ret;
3362		break;
3363	case FSNOTIFY_OBJ_TYPE_INODE:
3364		perm = FILE__WATCH;
3365		break;
3366	default:
3367		return -EINVAL;
3368	}
3369
3370	/* blocking watches require the file:watch_with_perm permission */
3371	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3372		perm |= FILE__WATCH_WITH_PERM;
3373
3374	/* watches on read-like events need the file:watch_reads permission */
3375	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3376		perm |= FILE__WATCH_READS;
3377
3378	return path_has_perm(current_cred(), path, perm);
3379}
3380
3381/*
3382 * Copy the inode security context value to the user.
3383 *
3384 * Permission check is handled by selinux_inode_getxattr hook.
3385 */
3386static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3387				     struct inode *inode, const char *name,
3388				     void **buffer, bool alloc)
3389{
3390	u32 size;
3391	int error;
3392	char *context = NULL;
3393	struct inode_security_struct *isec;
3394
3395	/*
3396	 * If we're not initialized yet, then we can't validate contexts, so
3397	 * just let vfs_getxattr fall back to using the on-disk xattr.
3398	 */
3399	if (!selinux_initialized(&selinux_state) ||
3400	    strcmp(name, XATTR_SELINUX_SUFFIX))
3401		return -EOPNOTSUPP;
3402
3403	/*
3404	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3405	 * value even if it is not defined by current policy; otherwise,
3406	 * use the in-core value under current policy.
3407	 * Use the non-auditing forms of the permission checks since
3408	 * getxattr may be called by unprivileged processes commonly
3409	 * and lack of permission just means that we fall back to the
3410	 * in-core context value, not a denial.
3411	 */
 
 
 
 
 
3412	isec = inode_security(inode);
3413	if (has_cap_mac_admin(false))
3414		error = security_sid_to_context_force(&selinux_state,
3415						      isec->sid, &context,
3416						      &size);
3417	else
3418		error = security_sid_to_context(&selinux_state, isec->sid,
3419						&context, &size);
3420	if (error)
3421		return error;
3422	error = size;
3423	if (alloc) {
3424		*buffer = context;
3425		goto out_nofree;
3426	}
3427	kfree(context);
3428out_nofree:
3429	return error;
3430}
3431
3432static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3433				     const void *value, size_t size, int flags)
3434{
3435	struct inode_security_struct *isec = inode_security_novalidate(inode);
3436	struct superblock_security_struct *sbsec;
3437	u32 newsid;
3438	int rc;
3439
3440	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3441		return -EOPNOTSUPP;
3442
3443	sbsec = selinux_superblock(inode->i_sb);
3444	if (!(sbsec->flags & SBLABEL_MNT))
3445		return -EOPNOTSUPP;
3446
3447	if (!value || !size)
3448		return -EACCES;
3449
3450	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3451				     GFP_KERNEL);
3452	if (rc)
3453		return rc;
3454
3455	spin_lock(&isec->lock);
3456	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3457	isec->sid = newsid;
3458	isec->initialized = LABEL_INITIALIZED;
3459	spin_unlock(&isec->lock);
3460	return 0;
3461}
3462
3463static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3464{
3465	const int len = sizeof(XATTR_NAME_SELINUX);
3466
3467	if (!selinux_initialized(&selinux_state))
3468		return 0;
3469
3470	if (buffer && len <= buffer_size)
3471		memcpy(buffer, XATTR_NAME_SELINUX, len);
3472	return len;
3473}
3474
3475static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3476{
3477	struct inode_security_struct *isec = inode_security_novalidate(inode);
3478	*secid = isec->sid;
3479}
3480
3481static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3482{
3483	u32 sid;
3484	struct task_security_struct *tsec;
3485	struct cred *new_creds = *new;
3486
3487	if (new_creds == NULL) {
3488		new_creds = prepare_creds();
3489		if (!new_creds)
3490			return -ENOMEM;
3491	}
3492
3493	tsec = selinux_cred(new_creds);
3494	/* Get label from overlay inode and set it in create_sid */
3495	selinux_inode_getsecid(d_inode(src), &sid);
3496	tsec->create_sid = sid;
3497	*new = new_creds;
3498	return 0;
3499}
3500
3501static int selinux_inode_copy_up_xattr(const char *name)
3502{
3503	/* The copy_up hook above sets the initial context on an inode, but we
3504	 * don't then want to overwrite it by blindly copying all the lower
3505	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3506	 */
3507	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3508		return 1; /* Discard */
3509	/*
3510	 * Any other attribute apart from SELINUX is not claimed, supported
3511	 * by selinux.
3512	 */
3513	return -EOPNOTSUPP;
3514}
3515
3516/* kernfs node operations */
3517
3518static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3519					struct kernfs_node *kn)
3520{
3521	const struct task_security_struct *tsec = selinux_cred(current_cred());
3522	u32 parent_sid, newsid, clen;
3523	int rc;
3524	char *context;
3525
3526	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3527	if (rc == -ENODATA)
3528		return 0;
3529	else if (rc < 0)
3530		return rc;
3531
3532	clen = (u32)rc;
3533	context = kmalloc(clen, GFP_KERNEL);
3534	if (!context)
3535		return -ENOMEM;
3536
3537	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3538	if (rc < 0) {
3539		kfree(context);
3540		return rc;
3541	}
3542
3543	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3544				     GFP_KERNEL);
3545	kfree(context);
3546	if (rc)
3547		return rc;
3548
3549	if (tsec->create_sid) {
3550		newsid = tsec->create_sid;
3551	} else {
3552		u16 secclass = inode_mode_to_security_class(kn->mode);
3553		struct qstr q;
3554
3555		q.name = kn->name;
3556		q.hash_len = hashlen_string(kn_dir, kn->name);
3557
3558		rc = security_transition_sid(&selinux_state, tsec->sid,
3559					     parent_sid, secclass, &q,
3560					     &newsid);
3561		if (rc)
3562			return rc;
3563	}
3564
3565	rc = security_sid_to_context_force(&selinux_state, newsid,
3566					   &context, &clen);
3567	if (rc)
3568		return rc;
3569
3570	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3571			      XATTR_CREATE);
3572	kfree(context);
3573	return rc;
3574}
3575
3576
3577/* file security operations */
3578
3579static int selinux_revalidate_file_permission(struct file *file, int mask)
3580{
3581	const struct cred *cred = current_cred();
3582	struct inode *inode = file_inode(file);
3583
3584	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3585	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3586		mask |= MAY_APPEND;
3587
3588	return file_has_perm(cred, file,
3589			     file_mask_to_av(inode->i_mode, mask));
3590}
3591
3592static int selinux_file_permission(struct file *file, int mask)
3593{
3594	struct inode *inode = file_inode(file);
3595	struct file_security_struct *fsec = selinux_file(file);
3596	struct inode_security_struct *isec;
3597	u32 sid = current_sid();
3598
3599	if (!mask)
3600		/* No permission to check.  Existence test. */
3601		return 0;
3602
3603	isec = inode_security(inode);
3604	if (sid == fsec->sid && fsec->isid == isec->sid &&
3605	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3606		/* No change since file_open check. */
3607		return 0;
3608
3609	return selinux_revalidate_file_permission(file, mask);
3610}
3611
3612static int selinux_file_alloc_security(struct file *file)
3613{
3614	struct file_security_struct *fsec = selinux_file(file);
3615	u32 sid = current_sid();
3616
3617	fsec->sid = sid;
3618	fsec->fown_sid = sid;
3619
3620	return 0;
 
 
3621}
3622
3623/*
3624 * Check whether a task has the ioctl permission and cmd
3625 * operation to an inode.
3626 */
3627static int ioctl_has_perm(const struct cred *cred, struct file *file,
3628		u32 requested, u16 cmd)
3629{
3630	struct common_audit_data ad;
3631	struct file_security_struct *fsec = selinux_file(file);
3632	struct inode *inode = file_inode(file);
3633	struct inode_security_struct *isec;
3634	struct lsm_ioctlop_audit ioctl;
3635	u32 ssid = cred_sid(cred);
3636	int rc;
3637	u8 driver = cmd >> 8;
3638	u8 xperm = cmd & 0xff;
3639
3640	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3641	ad.u.op = &ioctl;
3642	ad.u.op->cmd = cmd;
3643	ad.u.op->path = file->f_path;
3644
3645	if (ssid != fsec->sid) {
3646		rc = avc_has_perm(&selinux_state,
3647				  ssid, fsec->sid,
3648				SECCLASS_FD,
3649				FD__USE,
3650				&ad);
3651		if (rc)
3652			goto out;
3653	}
3654
3655	if (unlikely(IS_PRIVATE(inode)))
3656		return 0;
3657
3658	isec = inode_security(inode);
3659	rc = avc_has_extended_perms(&selinux_state,
3660				    ssid, isec->sid, isec->sclass,
3661				    requested, driver, xperm, &ad);
3662out:
3663	return rc;
3664}
3665
3666static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3667			      unsigned long arg)
3668{
3669	const struct cred *cred = current_cred();
3670	int error = 0;
3671
3672	switch (cmd) {
3673	case FIONREAD:
 
3674	case FIBMAP:
 
3675	case FIGETBSZ:
 
3676	case FS_IOC_GETFLAGS:
 
3677	case FS_IOC_GETVERSION:
3678		error = file_has_perm(cred, file, FILE__GETATTR);
3679		break;
3680
3681	case FS_IOC_SETFLAGS:
 
3682	case FS_IOC_SETVERSION:
3683		error = file_has_perm(cred, file, FILE__SETATTR);
3684		break;
3685
3686	/* sys_ioctl() checks */
3687	case FIONBIO:
 
3688	case FIOASYNC:
3689		error = file_has_perm(cred, file, 0);
3690		break;
3691
3692	case KDSKBENT:
3693	case KDSKBSENT:
3694		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3695					    CAP_OPT_NONE, true);
3696		break;
3697
3698	case FIOCLEX:
3699	case FIONCLEX:
3700		if (!selinux_policycap_ioctl_skip_cloexec())
3701			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3702		break;
3703
3704	/* default case assumes that the command will go
3705	 * to the file's ioctl() function.
3706	 */
3707	default:
3708		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3709	}
3710	return error;
3711}
3712
3713static int default_noexec __ro_after_init;
3714
3715static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3716{
3717	const struct cred *cred = current_cred();
3718	u32 sid = cred_sid(cred);
3719	int rc = 0;
3720
3721	if (default_noexec &&
3722	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3723				   (!shared && (prot & PROT_WRITE)))) {
3724		/*
3725		 * We are making executable an anonymous mapping or a
3726		 * private file mapping that will also be writable.
3727		 * This has an additional check.
3728		 */
3729		rc = avc_has_perm(&selinux_state,
3730				  sid, sid, SECCLASS_PROCESS,
3731				  PROCESS__EXECMEM, NULL);
3732		if (rc)
3733			goto error;
3734	}
3735
3736	if (file) {
3737		/* read access is always possible with a mapping */
3738		u32 av = FILE__READ;
3739
3740		/* write access only matters if the mapping is shared */
3741		if (shared && (prot & PROT_WRITE))
3742			av |= FILE__WRITE;
3743
3744		if (prot & PROT_EXEC)
3745			av |= FILE__EXECUTE;
3746
3747		return file_has_perm(cred, file, av);
3748	}
3749
3750error:
3751	return rc;
3752}
3753
3754static int selinux_mmap_addr(unsigned long addr)
3755{
3756	int rc = 0;
3757
3758	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3759		u32 sid = current_sid();
3760		rc = avc_has_perm(&selinux_state,
3761				  sid, sid, SECCLASS_MEMPROTECT,
3762				  MEMPROTECT__MMAP_ZERO, NULL);
3763	}
3764
3765	return rc;
3766}
3767
3768static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3769			     unsigned long prot, unsigned long flags)
3770{
3771	struct common_audit_data ad;
3772	int rc;
3773
3774	if (file) {
3775		ad.type = LSM_AUDIT_DATA_FILE;
3776		ad.u.file = file;
3777		rc = inode_has_perm(current_cred(), file_inode(file),
3778				    FILE__MAP, &ad);
3779		if (rc)
3780			return rc;
3781	}
3782
3783	if (checkreqprot_get(&selinux_state))
3784		prot = reqprot;
3785
3786	return file_map_prot_check(file, prot,
3787				   (flags & MAP_TYPE) == MAP_SHARED);
3788}
3789
3790static int selinux_file_mprotect(struct vm_area_struct *vma,
3791				 unsigned long reqprot,
3792				 unsigned long prot)
3793{
3794	const struct cred *cred = current_cred();
3795	u32 sid = cred_sid(cred);
3796
3797	if (checkreqprot_get(&selinux_state))
3798		prot = reqprot;
3799
3800	if (default_noexec &&
3801	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3802		int rc = 0;
3803		if (vma->vm_start >= vma->vm_mm->start_brk &&
3804		    vma->vm_end <= vma->vm_mm->brk) {
3805			rc = avc_has_perm(&selinux_state,
3806					  sid, sid, SECCLASS_PROCESS,
3807					  PROCESS__EXECHEAP, NULL);
3808		} else if (!vma->vm_file &&
3809			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3810			     vma->vm_end >= vma->vm_mm->start_stack) ||
3811			    vma_is_stack_for_current(vma))) {
3812			rc = avc_has_perm(&selinux_state,
3813					  sid, sid, SECCLASS_PROCESS,
3814					  PROCESS__EXECSTACK, NULL);
3815		} else if (vma->vm_file && vma->anon_vma) {
3816			/*
3817			 * We are making executable a file mapping that has
3818			 * had some COW done. Since pages might have been
3819			 * written, check ability to execute the possibly
3820			 * modified content.  This typically should only
3821			 * occur for text relocations.
3822			 */
3823			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3824		}
3825		if (rc)
3826			return rc;
3827	}
3828
3829	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3830}
3831
3832static int selinux_file_lock(struct file *file, unsigned int cmd)
3833{
3834	const struct cred *cred = current_cred();
3835
3836	return file_has_perm(cred, file, FILE__LOCK);
3837}
3838
3839static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3840			      unsigned long arg)
3841{
3842	const struct cred *cred = current_cred();
3843	int err = 0;
3844
3845	switch (cmd) {
3846	case F_SETFL:
3847		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3848			err = file_has_perm(cred, file, FILE__WRITE);
3849			break;
3850		}
3851		fallthrough;
3852	case F_SETOWN:
3853	case F_SETSIG:
3854	case F_GETFL:
3855	case F_GETOWN:
3856	case F_GETSIG:
3857	case F_GETOWNER_UIDS:
3858		/* Just check FD__USE permission */
3859		err = file_has_perm(cred, file, 0);
3860		break;
3861	case F_GETLK:
3862	case F_SETLK:
3863	case F_SETLKW:
3864	case F_OFD_GETLK:
3865	case F_OFD_SETLK:
3866	case F_OFD_SETLKW:
3867#if BITS_PER_LONG == 32
3868	case F_GETLK64:
3869	case F_SETLK64:
3870	case F_SETLKW64:
3871#endif
3872		err = file_has_perm(cred, file, FILE__LOCK);
3873		break;
3874	}
3875
3876	return err;
3877}
3878
3879static void selinux_file_set_fowner(struct file *file)
3880{
3881	struct file_security_struct *fsec;
3882
3883	fsec = selinux_file(file);
3884	fsec->fown_sid = current_sid();
3885}
3886
3887static int selinux_file_send_sigiotask(struct task_struct *tsk,
3888				       struct fown_struct *fown, int signum)
3889{
3890	struct file *file;
3891	u32 sid = task_sid_obj(tsk);
3892	u32 perm;
3893	struct file_security_struct *fsec;
3894
3895	/* struct fown_struct is never outside the context of a struct file */
3896	file = container_of(fown, struct file, f_owner);
3897
3898	fsec = selinux_file(file);
3899
3900	if (!signum)
3901		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3902	else
3903		perm = signal_to_av(signum);
3904
3905	return avc_has_perm(&selinux_state,
3906			    fsec->fown_sid, sid,
3907			    SECCLASS_PROCESS, perm, NULL);
3908}
3909
3910static int selinux_file_receive(struct file *file)
3911{
3912	const struct cred *cred = current_cred();
3913
3914	return file_has_perm(cred, file, file_to_av(file));
3915}
3916
3917static int selinux_file_open(struct file *file)
3918{
3919	struct file_security_struct *fsec;
3920	struct inode_security_struct *isec;
3921
3922	fsec = selinux_file(file);
3923	isec = inode_security(file_inode(file));
3924	/*
3925	 * Save inode label and policy sequence number
3926	 * at open-time so that selinux_file_permission
3927	 * can determine whether revalidation is necessary.
3928	 * Task label is already saved in the file security
3929	 * struct as its SID.
3930	 */
3931	fsec->isid = isec->sid;
3932	fsec->pseqno = avc_policy_seqno(&selinux_state);
3933	/*
3934	 * Since the inode label or policy seqno may have changed
3935	 * between the selinux_inode_permission check and the saving
3936	 * of state above, recheck that access is still permitted.
3937	 * Otherwise, access might never be revalidated against the
3938	 * new inode label or new policy.
3939	 * This check is not redundant - do not remove.
3940	 */
3941	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3942}
3943
3944/* task security operations */
3945
3946static int selinux_task_alloc(struct task_struct *task,
3947			      unsigned long clone_flags)
3948{
3949	u32 sid = current_sid();
 
3950
3951	return avc_has_perm(&selinux_state,
3952			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3953}
3954
3955/*
3956 * prepare a new set of credentials for modification
3957 */
3958static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3959				gfp_t gfp)
3960{
3961	const struct task_security_struct *old_tsec = selinux_cred(old);
3962	struct task_security_struct *tsec = selinux_cred(new);
3963
3964	*tsec = *old_tsec;
 
 
 
 
 
 
3965	return 0;
3966}
3967
3968/*
3969 * transfer the SELinux data to a blank set of creds
3970 */
3971static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3972{
3973	const struct task_security_struct *old_tsec = selinux_cred(old);
3974	struct task_security_struct *tsec = selinux_cred(new);
3975
3976	*tsec = *old_tsec;
3977}
3978
3979static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3980{
3981	*secid = cred_sid(c);
3982}
3983
3984/*
3985 * set the security data for a kernel service
3986 * - all the creation contexts are set to unlabelled
3987 */
3988static int selinux_kernel_act_as(struct cred *new, u32 secid)
3989{
3990	struct task_security_struct *tsec = selinux_cred(new);
3991	u32 sid = current_sid();
3992	int ret;
3993
3994	ret = avc_has_perm(&selinux_state,
3995			   sid, secid,
3996			   SECCLASS_KERNEL_SERVICE,
3997			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3998			   NULL);
3999	if (ret == 0) {
4000		tsec->sid = secid;
4001		tsec->create_sid = 0;
4002		tsec->keycreate_sid = 0;
4003		tsec->sockcreate_sid = 0;
4004	}
4005	return ret;
4006}
4007
4008/*
4009 * set the file creation context in a security record to the same as the
4010 * objective context of the specified inode
4011 */
4012static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4013{
4014	struct inode_security_struct *isec = inode_security(inode);
4015	struct task_security_struct *tsec = selinux_cred(new);
4016	u32 sid = current_sid();
4017	int ret;
4018
4019	ret = avc_has_perm(&selinux_state,
4020			   sid, isec->sid,
4021			   SECCLASS_KERNEL_SERVICE,
4022			   KERNEL_SERVICE__CREATE_FILES_AS,
4023			   NULL);
4024
4025	if (ret == 0)
4026		tsec->create_sid = isec->sid;
4027	return ret;
4028}
4029
4030static int selinux_kernel_module_request(char *kmod_name)
4031{
 
4032	struct common_audit_data ad;
4033
 
 
4034	ad.type = LSM_AUDIT_DATA_KMOD;
4035	ad.u.kmod_name = kmod_name;
4036
4037	return avc_has_perm(&selinux_state,
4038			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4039			    SYSTEM__MODULE_REQUEST, &ad);
4040}
4041
4042static int selinux_kernel_module_from_file(struct file *file)
4043{
4044	struct common_audit_data ad;
4045	struct inode_security_struct *isec;
4046	struct file_security_struct *fsec;
4047	u32 sid = current_sid();
4048	int rc;
4049
4050	/* init_module */
4051	if (file == NULL)
4052		return avc_has_perm(&selinux_state,
4053				    sid, sid, SECCLASS_SYSTEM,
4054					SYSTEM__MODULE_LOAD, NULL);
4055
4056	/* finit_module */
4057
4058	ad.type = LSM_AUDIT_DATA_FILE;
4059	ad.u.file = file;
4060
4061	fsec = selinux_file(file);
4062	if (sid != fsec->sid) {
4063		rc = avc_has_perm(&selinux_state,
4064				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4065		if (rc)
4066			return rc;
4067	}
4068
4069	isec = inode_security(file_inode(file));
4070	return avc_has_perm(&selinux_state,
4071			    sid, isec->sid, SECCLASS_SYSTEM,
4072				SYSTEM__MODULE_LOAD, &ad);
4073}
4074
4075static int selinux_kernel_read_file(struct file *file,
4076				    enum kernel_read_file_id id,
4077				    bool contents)
4078{
4079	int rc = 0;
4080
4081	switch (id) {
4082	case READING_MODULE:
4083		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4084		break;
4085	default:
4086		break;
4087	}
4088
4089	return rc;
4090}
4091
4092static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4093{
4094	int rc = 0;
4095
4096	switch (id) {
4097	case LOADING_MODULE:
4098		rc = selinux_kernel_module_from_file(NULL);
4099		break;
4100	default:
4101		break;
4102	}
4103
4104	return rc;
4105}
4106
4107static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4108{
4109	return avc_has_perm(&selinux_state,
4110			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4111			    PROCESS__SETPGID, NULL);
4112}
4113
4114static int selinux_task_getpgid(struct task_struct *p)
4115{
4116	return avc_has_perm(&selinux_state,
4117			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4118			    PROCESS__GETPGID, NULL);
4119}
4120
4121static int selinux_task_getsid(struct task_struct *p)
4122{
4123	return avc_has_perm(&selinux_state,
4124			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4125			    PROCESS__GETSESSION, NULL);
4126}
4127
4128static void selinux_current_getsecid_subj(u32 *secid)
4129{
4130	*secid = current_sid();
4131}
4132
4133static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4134{
4135	*secid = task_sid_obj(p);
4136}
4137
4138static int selinux_task_setnice(struct task_struct *p, int nice)
4139{
4140	return avc_has_perm(&selinux_state,
4141			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4142			    PROCESS__SETSCHED, NULL);
4143}
4144
4145static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4146{
4147	return avc_has_perm(&selinux_state,
4148			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4149			    PROCESS__SETSCHED, NULL);
4150}
4151
4152static int selinux_task_getioprio(struct task_struct *p)
4153{
4154	return avc_has_perm(&selinux_state,
4155			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4156			    PROCESS__GETSCHED, NULL);
4157}
4158
4159static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4160				unsigned int flags)
4161{
4162	u32 av = 0;
4163
4164	if (!flags)
4165		return 0;
4166	if (flags & LSM_PRLIMIT_WRITE)
4167		av |= PROCESS__SETRLIMIT;
4168	if (flags & LSM_PRLIMIT_READ)
4169		av |= PROCESS__GETRLIMIT;
4170	return avc_has_perm(&selinux_state,
4171			    cred_sid(cred), cred_sid(tcred),
4172			    SECCLASS_PROCESS, av, NULL);
4173}
4174
4175static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4176		struct rlimit *new_rlim)
4177{
4178	struct rlimit *old_rlim = p->signal->rlim + resource;
4179
4180	/* Control the ability to change the hard limit (whether
4181	   lowering or raising it), so that the hard limit can
4182	   later be used as a safe reset point for the soft limit
4183	   upon context transitions.  See selinux_bprm_committing_creds. */
4184	if (old_rlim->rlim_max != new_rlim->rlim_max)
4185		return avc_has_perm(&selinux_state,
4186				    current_sid(), task_sid_obj(p),
4187				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4188
4189	return 0;
4190}
4191
4192static int selinux_task_setscheduler(struct task_struct *p)
4193{
4194	return avc_has_perm(&selinux_state,
4195			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4196			    PROCESS__SETSCHED, NULL);
4197}
4198
4199static int selinux_task_getscheduler(struct task_struct *p)
4200{
4201	return avc_has_perm(&selinux_state,
4202			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4203			    PROCESS__GETSCHED, NULL);
4204}
4205
4206static int selinux_task_movememory(struct task_struct *p)
4207{
4208	return avc_has_perm(&selinux_state,
4209			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4210			    PROCESS__SETSCHED, NULL);
4211}
4212
4213static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4214				int sig, const struct cred *cred)
4215{
4216	u32 secid;
4217	u32 perm;
 
4218
4219	if (!sig)
4220		perm = PROCESS__SIGNULL; /* null signal; existence test */
4221	else
4222		perm = signal_to_av(sig);
4223	if (!cred)
4224		secid = current_sid();
 
4225	else
4226		secid = cred_sid(cred);
4227	return avc_has_perm(&selinux_state,
4228			    secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4229}
4230
4231static void selinux_task_to_inode(struct task_struct *p,
4232				  struct inode *inode)
4233{
4234	struct inode_security_struct *isec = selinux_inode(inode);
4235	u32 sid = task_sid_obj(p);
4236
4237	spin_lock(&isec->lock);
4238	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4239	isec->sid = sid;
4240	isec->initialized = LABEL_INITIALIZED;
4241	spin_unlock(&isec->lock);
4242}
4243
4244static int selinux_userns_create(const struct cred *cred)
4245{
4246	u32 sid = current_sid();
4247
4248	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_USER_NAMESPACE,
4249						USER_NAMESPACE__CREATE, NULL);
4250}
4251
4252/* Returns error only if unable to parse addresses */
4253static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4254			struct common_audit_data *ad, u8 *proto)
4255{
4256	int offset, ihlen, ret = -EINVAL;
4257	struct iphdr _iph, *ih;
4258
4259	offset = skb_network_offset(skb);
4260	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4261	if (ih == NULL)
4262		goto out;
4263
4264	ihlen = ih->ihl * 4;
4265	if (ihlen < sizeof(_iph))
4266		goto out;
4267
4268	ad->u.net->v4info.saddr = ih->saddr;
4269	ad->u.net->v4info.daddr = ih->daddr;
4270	ret = 0;
4271
4272	if (proto)
4273		*proto = ih->protocol;
4274
4275	switch (ih->protocol) {
4276	case IPPROTO_TCP: {
4277		struct tcphdr _tcph, *th;
4278
4279		if (ntohs(ih->frag_off) & IP_OFFSET)
4280			break;
4281
4282		offset += ihlen;
4283		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4284		if (th == NULL)
4285			break;
4286
4287		ad->u.net->sport = th->source;
4288		ad->u.net->dport = th->dest;
4289		break;
4290	}
4291
4292	case IPPROTO_UDP: {
4293		struct udphdr _udph, *uh;
4294
4295		if (ntohs(ih->frag_off) & IP_OFFSET)
4296			break;
4297
4298		offset += ihlen;
4299		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4300		if (uh == NULL)
4301			break;
4302
4303		ad->u.net->sport = uh->source;
4304		ad->u.net->dport = uh->dest;
4305		break;
4306	}
4307
4308	case IPPROTO_DCCP: {
4309		struct dccp_hdr _dccph, *dh;
4310
4311		if (ntohs(ih->frag_off) & IP_OFFSET)
4312			break;
4313
4314		offset += ihlen;
4315		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316		if (dh == NULL)
4317			break;
4318
4319		ad->u.net->sport = dh->dccph_sport;
4320		ad->u.net->dport = dh->dccph_dport;
4321		break;
4322	}
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325	case IPPROTO_SCTP: {
4326		struct sctphdr _sctph, *sh;
4327
4328		if (ntohs(ih->frag_off) & IP_OFFSET)
4329			break;
4330
4331		offset += ihlen;
4332		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333		if (sh == NULL)
4334			break;
4335
4336		ad->u.net->sport = sh->source;
4337		ad->u.net->dport = sh->dest;
4338		break;
4339	}
4340#endif
4341	default:
4342		break;
4343	}
4344out:
4345	return ret;
4346}
4347
4348#if IS_ENABLED(CONFIG_IPV6)
4349
4350/* Returns error only if unable to parse addresses */
4351static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4352			struct common_audit_data *ad, u8 *proto)
4353{
4354	u8 nexthdr;
4355	int ret = -EINVAL, offset;
4356	struct ipv6hdr _ipv6h, *ip6;
4357	__be16 frag_off;
4358
4359	offset = skb_network_offset(skb);
4360	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4361	if (ip6 == NULL)
4362		goto out;
4363
4364	ad->u.net->v6info.saddr = ip6->saddr;
4365	ad->u.net->v6info.daddr = ip6->daddr;
4366	ret = 0;
4367
4368	nexthdr = ip6->nexthdr;
4369	offset += sizeof(_ipv6h);
4370	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4371	if (offset < 0)
4372		goto out;
4373
4374	if (proto)
4375		*proto = nexthdr;
4376
4377	switch (nexthdr) {
4378	case IPPROTO_TCP: {
4379		struct tcphdr _tcph, *th;
4380
4381		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4382		if (th == NULL)
4383			break;
4384
4385		ad->u.net->sport = th->source;
4386		ad->u.net->dport = th->dest;
4387		break;
4388	}
4389
4390	case IPPROTO_UDP: {
4391		struct udphdr _udph, *uh;
4392
4393		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4394		if (uh == NULL)
4395			break;
4396
4397		ad->u.net->sport = uh->source;
4398		ad->u.net->dport = uh->dest;
4399		break;
4400	}
4401
4402	case IPPROTO_DCCP: {
4403		struct dccp_hdr _dccph, *dh;
4404
4405		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4406		if (dh == NULL)
4407			break;
4408
4409		ad->u.net->sport = dh->dccph_sport;
4410		ad->u.net->dport = dh->dccph_dport;
4411		break;
4412	}
4413
4414#if IS_ENABLED(CONFIG_IP_SCTP)
4415	case IPPROTO_SCTP: {
4416		struct sctphdr _sctph, *sh;
4417
4418		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4419		if (sh == NULL)
4420			break;
4421
4422		ad->u.net->sport = sh->source;
4423		ad->u.net->dport = sh->dest;
4424		break;
4425	}
4426#endif
4427	/* includes fragments */
4428	default:
4429		break;
4430	}
4431out:
4432	return ret;
4433}
4434
4435#endif /* IPV6 */
4436
4437static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4438			     char **_addrp, int src, u8 *proto)
4439{
4440	char *addrp;
4441	int ret;
4442
4443	switch (ad->u.net->family) {
4444	case PF_INET:
4445		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4446		if (ret)
4447			goto parse_error;
4448		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4449				       &ad->u.net->v4info.daddr);
4450		goto okay;
4451
4452#if IS_ENABLED(CONFIG_IPV6)
4453	case PF_INET6:
4454		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4455		if (ret)
4456			goto parse_error;
4457		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4458				       &ad->u.net->v6info.daddr);
4459		goto okay;
4460#endif	/* IPV6 */
4461	default:
4462		addrp = NULL;
4463		goto okay;
4464	}
4465
4466parse_error:
4467	pr_warn(
4468	       "SELinux: failure in selinux_parse_skb(),"
4469	       " unable to parse packet\n");
4470	return ret;
4471
4472okay:
4473	if (_addrp)
4474		*_addrp = addrp;
4475	return 0;
4476}
4477
4478/**
4479 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4480 * @skb: the packet
4481 * @family: protocol family
4482 * @sid: the packet's peer label SID
4483 *
4484 * Description:
4485 * Check the various different forms of network peer labeling and determine
4486 * the peer label/SID for the packet; most of the magic actually occurs in
4487 * the security server function security_net_peersid_cmp().  The function
4488 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4489 * or -EACCES if @sid is invalid due to inconsistencies with the different
4490 * peer labels.
4491 *
4492 */
4493static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4494{
4495	int err;
4496	u32 xfrm_sid;
4497	u32 nlbl_sid;
4498	u32 nlbl_type;
4499
4500	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4501	if (unlikely(err))
4502		return -EACCES;
4503	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4504	if (unlikely(err))
4505		return -EACCES;
4506
4507	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4508					   nlbl_type, xfrm_sid, sid);
4509	if (unlikely(err)) {
4510		pr_warn(
4511		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4512		       " unable to determine packet's peer label\n");
4513		return -EACCES;
4514	}
4515
4516	return 0;
4517}
4518
4519/**
4520 * selinux_conn_sid - Determine the child socket label for a connection
4521 * @sk_sid: the parent socket's SID
4522 * @skb_sid: the packet's SID
4523 * @conn_sid: the resulting connection SID
4524 *
4525 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4526 * combined with the MLS information from @skb_sid in order to create
4527 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4528 * of @sk_sid.  Returns zero on success, negative values on failure.
4529 *
4530 */
4531static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4532{
4533	int err = 0;
4534
4535	if (skb_sid != SECSID_NULL)
4536		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4537					    conn_sid);
4538	else
4539		*conn_sid = sk_sid;
4540
4541	return err;
4542}
4543
4544/* socket security operations */
4545
4546static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4547				 u16 secclass, u32 *socksid)
4548{
4549	if (tsec->sockcreate_sid > SECSID_NULL) {
4550		*socksid = tsec->sockcreate_sid;
4551		return 0;
4552	}
4553
4554	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4555				       secclass, NULL, socksid);
4556}
4557
4558static int sock_has_perm(struct sock *sk, u32 perms)
4559{
4560	struct sk_security_struct *sksec = sk->sk_security;
4561	struct common_audit_data ad;
4562	struct lsm_network_audit net = {0,};
 
4563
4564	if (sksec->sid == SECINITSID_KERNEL)
4565		return 0;
4566
4567	ad.type = LSM_AUDIT_DATA_NET;
4568	ad.u.net = &net;
4569	ad.u.net->sk = sk;
4570
4571	return avc_has_perm(&selinux_state,
4572			    current_sid(), sksec->sid, sksec->sclass, perms,
4573			    &ad);
4574}
4575
4576static int selinux_socket_create(int family, int type,
4577				 int protocol, int kern)
4578{
4579	const struct task_security_struct *tsec = selinux_cred(current_cred());
4580	u32 newsid;
4581	u16 secclass;
4582	int rc;
4583
4584	if (kern)
4585		return 0;
4586
4587	secclass = socket_type_to_security_class(family, type, protocol);
4588	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4589	if (rc)
4590		return rc;
4591
4592	return avc_has_perm(&selinux_state,
4593			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4594}
4595
4596static int selinux_socket_post_create(struct socket *sock, int family,
4597				      int type, int protocol, int kern)
4598{
4599	const struct task_security_struct *tsec = selinux_cred(current_cred());
4600	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4601	struct sk_security_struct *sksec;
4602	u16 sclass = socket_type_to_security_class(family, type, protocol);
4603	u32 sid = SECINITSID_KERNEL;
4604	int err = 0;
4605
4606	if (!kern) {
4607		err = socket_sockcreate_sid(tsec, sclass, &sid);
4608		if (err)
4609			return err;
4610	}
4611
4612	isec->sclass = sclass;
4613	isec->sid = sid;
4614	isec->initialized = LABEL_INITIALIZED;
4615
4616	if (sock->sk) {
4617		sksec = sock->sk->sk_security;
4618		sksec->sclass = sclass;
4619		sksec->sid = sid;
4620		/* Allows detection of the first association on this socket */
4621		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4622			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4623
4624		err = selinux_netlbl_socket_post_create(sock->sk, family);
4625	}
4626
4627	return err;
4628}
4629
4630static int selinux_socket_socketpair(struct socket *socka,
4631				     struct socket *sockb)
4632{
4633	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4634	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4635
4636	sksec_a->peer_sid = sksec_b->sid;
4637	sksec_b->peer_sid = sksec_a->sid;
4638
4639	return 0;
4640}
4641
4642/* Range of port numbers used to automatically bind.
4643   Need to determine whether we should perform a name_bind
4644   permission check between the socket and the port number. */
4645
4646static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4647{
4648	struct sock *sk = sock->sk;
4649	struct sk_security_struct *sksec = sk->sk_security;
4650	u16 family;
4651	int err;
4652
4653	err = sock_has_perm(sk, SOCKET__BIND);
4654	if (err)
4655		goto out;
4656
4657	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4658	family = sk->sk_family;
4659	if (family == PF_INET || family == PF_INET6) {
4660		char *addrp;
 
4661		struct common_audit_data ad;
4662		struct lsm_network_audit net = {0,};
4663		struct sockaddr_in *addr4 = NULL;
4664		struct sockaddr_in6 *addr6 = NULL;
4665		u16 family_sa;
4666		unsigned short snum;
4667		u32 sid, node_perm;
4668
4669		/*
4670		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4671		 * that validates multiple binding addresses. Because of this
4672		 * need to check address->sa_family as it is possible to have
4673		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4674		 */
4675		if (addrlen < offsetofend(struct sockaddr, sa_family))
4676			return -EINVAL;
4677		family_sa = address->sa_family;
4678		switch (family_sa) {
4679		case AF_UNSPEC:
4680		case AF_INET:
4681			if (addrlen < sizeof(struct sockaddr_in))
4682				return -EINVAL;
4683			addr4 = (struct sockaddr_in *)address;
4684			if (family_sa == AF_UNSPEC) {
4685				/* see __inet_bind(), we only want to allow
4686				 * AF_UNSPEC if the address is INADDR_ANY
4687				 */
4688				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4689					goto err_af;
4690				family_sa = AF_INET;
4691			}
4692			snum = ntohs(addr4->sin_port);
4693			addrp = (char *)&addr4->sin_addr.s_addr;
4694			break;
4695		case AF_INET6:
4696			if (addrlen < SIN6_LEN_RFC2133)
4697				return -EINVAL;
4698			addr6 = (struct sockaddr_in6 *)address;
4699			snum = ntohs(addr6->sin6_port);
4700			addrp = (char *)&addr6->sin6_addr.s6_addr;
4701			break;
4702		default:
4703			goto err_af;
4704		}
4705
4706		ad.type = LSM_AUDIT_DATA_NET;
4707		ad.u.net = &net;
4708		ad.u.net->sport = htons(snum);
4709		ad.u.net->family = family_sa;
4710
4711		if (snum) {
4712			int low, high;
4713
4714			inet_get_local_port_range(sock_net(sk), &low, &high);
4715
4716			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4717			    snum < low || snum > high) {
4718				err = sel_netport_sid(sk->sk_protocol,
4719						      snum, &sid);
4720				if (err)
4721					goto out;
4722				err = avc_has_perm(&selinux_state,
4723						   sksec->sid, sid,
 
 
 
4724						   sksec->sclass,
4725						   SOCKET__NAME_BIND, &ad);
4726				if (err)
4727					goto out;
4728			}
4729		}
4730
4731		switch (sksec->sclass) {
4732		case SECCLASS_TCP_SOCKET:
4733			node_perm = TCP_SOCKET__NODE_BIND;
4734			break;
4735
4736		case SECCLASS_UDP_SOCKET:
4737			node_perm = UDP_SOCKET__NODE_BIND;
4738			break;
4739
4740		case SECCLASS_DCCP_SOCKET:
4741			node_perm = DCCP_SOCKET__NODE_BIND;
4742			break;
4743
4744		case SECCLASS_SCTP_SOCKET:
4745			node_perm = SCTP_SOCKET__NODE_BIND;
4746			break;
4747
4748		default:
4749			node_perm = RAWIP_SOCKET__NODE_BIND;
4750			break;
4751		}
4752
4753		err = sel_netnode_sid(addrp, family_sa, &sid);
4754		if (err)
4755			goto out;
4756
4757		if (family_sa == AF_INET)
 
 
 
 
 
4758			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4759		else
4760			ad.u.net->v6info.saddr = addr6->sin6_addr;
4761
4762		err = avc_has_perm(&selinux_state,
4763				   sksec->sid, sid,
4764				   sksec->sclass, node_perm, &ad);
4765		if (err)
4766			goto out;
4767	}
4768out:
4769	return err;
4770err_af:
4771	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4772	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4773		return -EINVAL;
4774	return -EAFNOSUPPORT;
4775}
4776
4777/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4778 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4779 */
4780static int selinux_socket_connect_helper(struct socket *sock,
4781					 struct sockaddr *address, int addrlen)
4782{
4783	struct sock *sk = sock->sk;
4784	struct sk_security_struct *sksec = sk->sk_security;
4785	int err;
4786
4787	err = sock_has_perm(sk, SOCKET__CONNECT);
4788	if (err)
4789		return err;
4790	if (addrlen < offsetofend(struct sockaddr, sa_family))
4791		return -EINVAL;
4792
4793	/* connect(AF_UNSPEC) has special handling, as it is a documented
4794	 * way to disconnect the socket
4795	 */
4796	if (address->sa_family == AF_UNSPEC)
4797		return 0;
4798
4799	/*
4800	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4801	 * for the port.
4802	 */
4803	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4804	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4805	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4806		struct common_audit_data ad;
4807		struct lsm_network_audit net = {0,};
4808		struct sockaddr_in *addr4 = NULL;
4809		struct sockaddr_in6 *addr6 = NULL;
4810		unsigned short snum;
4811		u32 sid, perm;
4812
4813		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4814		 * that validates multiple connect addresses. Because of this
4815		 * need to check address->sa_family as it is possible to have
4816		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4817		 */
4818		switch (address->sa_family) {
4819		case AF_INET:
4820			addr4 = (struct sockaddr_in *)address;
4821			if (addrlen < sizeof(struct sockaddr_in))
4822				return -EINVAL;
4823			snum = ntohs(addr4->sin_port);
4824			break;
4825		case AF_INET6:
4826			addr6 = (struct sockaddr_in6 *)address;
4827			if (addrlen < SIN6_LEN_RFC2133)
4828				return -EINVAL;
4829			snum = ntohs(addr6->sin6_port);
4830			break;
4831		default:
4832			/* Note that SCTP services expect -EINVAL, whereas
4833			 * others expect -EAFNOSUPPORT.
4834			 */
4835			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4836				return -EINVAL;
4837			else
4838				return -EAFNOSUPPORT;
4839		}
4840
4841		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4842		if (err)
4843			return err;
4844
4845		switch (sksec->sclass) {
4846		case SECCLASS_TCP_SOCKET:
4847			perm = TCP_SOCKET__NAME_CONNECT;
4848			break;
4849		case SECCLASS_DCCP_SOCKET:
4850			perm = DCCP_SOCKET__NAME_CONNECT;
4851			break;
4852		case SECCLASS_SCTP_SOCKET:
4853			perm = SCTP_SOCKET__NAME_CONNECT;
4854			break;
4855		}
4856
4857		ad.type = LSM_AUDIT_DATA_NET;
4858		ad.u.net = &net;
4859		ad.u.net->dport = htons(snum);
4860		ad.u.net->family = address->sa_family;
4861		err = avc_has_perm(&selinux_state,
4862				   sksec->sid, sid, sksec->sclass, perm, &ad);
4863		if (err)
4864			return err;
4865	}
4866
4867	return 0;
4868}
4869
4870/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4871static int selinux_socket_connect(struct socket *sock,
4872				  struct sockaddr *address, int addrlen)
4873{
4874	int err;
4875	struct sock *sk = sock->sk;
4876
4877	err = selinux_socket_connect_helper(sock, address, addrlen);
4878	if (err)
4879		return err;
4880
4881	return selinux_netlbl_socket_connect(sk, address);
 
4882}
4883
4884static int selinux_socket_listen(struct socket *sock, int backlog)
4885{
4886	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4887}
4888
4889static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4890{
4891	int err;
4892	struct inode_security_struct *isec;
4893	struct inode_security_struct *newisec;
4894	u16 sclass;
4895	u32 sid;
4896
4897	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4898	if (err)
4899		return err;
4900
4901	isec = inode_security_novalidate(SOCK_INODE(sock));
4902	spin_lock(&isec->lock);
4903	sclass = isec->sclass;
4904	sid = isec->sid;
4905	spin_unlock(&isec->lock);
4906
4907	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4908	newisec->sclass = sclass;
4909	newisec->sid = sid;
4910	newisec->initialized = LABEL_INITIALIZED;
4911
4912	return 0;
4913}
4914
4915static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4916				  int size)
4917{
4918	return sock_has_perm(sock->sk, SOCKET__WRITE);
4919}
4920
4921static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4922				  int size, int flags)
4923{
4924	return sock_has_perm(sock->sk, SOCKET__READ);
4925}
4926
4927static int selinux_socket_getsockname(struct socket *sock)
4928{
4929	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4930}
4931
4932static int selinux_socket_getpeername(struct socket *sock)
4933{
4934	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4935}
4936
4937static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4938{
4939	int err;
4940
4941	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4942	if (err)
4943		return err;
4944
4945	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4946}
4947
4948static int selinux_socket_getsockopt(struct socket *sock, int level,
4949				     int optname)
4950{
4951	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4952}
4953
4954static int selinux_socket_shutdown(struct socket *sock, int how)
4955{
4956	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4957}
4958
4959static int selinux_socket_unix_stream_connect(struct sock *sock,
4960					      struct sock *other,
4961					      struct sock *newsk)
4962{
4963	struct sk_security_struct *sksec_sock = sock->sk_security;
4964	struct sk_security_struct *sksec_other = other->sk_security;
4965	struct sk_security_struct *sksec_new = newsk->sk_security;
4966	struct common_audit_data ad;
4967	struct lsm_network_audit net = {0,};
4968	int err;
4969
4970	ad.type = LSM_AUDIT_DATA_NET;
4971	ad.u.net = &net;
4972	ad.u.net->sk = other;
4973
4974	err = avc_has_perm(&selinux_state,
4975			   sksec_sock->sid, sksec_other->sid,
4976			   sksec_other->sclass,
4977			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4978	if (err)
4979		return err;
4980
4981	/* server child socket */
4982	sksec_new->peer_sid = sksec_sock->sid;
4983	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4984				    sksec_sock->sid, &sksec_new->sid);
4985	if (err)
4986		return err;
4987
4988	/* connecting socket */
4989	sksec_sock->peer_sid = sksec_new->sid;
4990
4991	return 0;
4992}
4993
4994static int selinux_socket_unix_may_send(struct socket *sock,
4995					struct socket *other)
4996{
4997	struct sk_security_struct *ssec = sock->sk->sk_security;
4998	struct sk_security_struct *osec = other->sk->sk_security;
4999	struct common_audit_data ad;
5000	struct lsm_network_audit net = {0,};
5001
5002	ad.type = LSM_AUDIT_DATA_NET;
5003	ad.u.net = &net;
5004	ad.u.net->sk = other->sk;
5005
5006	return avc_has_perm(&selinux_state,
5007			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5008			    &ad);
5009}
5010
5011static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5012				    char *addrp, u16 family, u32 peer_sid,
5013				    struct common_audit_data *ad)
5014{
5015	int err;
5016	u32 if_sid;
5017	u32 node_sid;
5018
5019	err = sel_netif_sid(ns, ifindex, &if_sid);
5020	if (err)
5021		return err;
5022	err = avc_has_perm(&selinux_state,
5023			   peer_sid, if_sid,
5024			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5025	if (err)
5026		return err;
5027
5028	err = sel_netnode_sid(addrp, family, &node_sid);
5029	if (err)
5030		return err;
5031	return avc_has_perm(&selinux_state,
5032			    peer_sid, node_sid,
5033			    SECCLASS_NODE, NODE__RECVFROM, ad);
5034}
5035
5036static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5037				       u16 family)
5038{
5039	int err = 0;
5040	struct sk_security_struct *sksec = sk->sk_security;
5041	u32 sk_sid = sksec->sid;
5042	struct common_audit_data ad;
5043	struct lsm_network_audit net = {0,};
5044	char *addrp;
5045
5046	ad.type = LSM_AUDIT_DATA_NET;
5047	ad.u.net = &net;
5048	ad.u.net->netif = skb->skb_iif;
5049	ad.u.net->family = family;
5050	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5051	if (err)
5052		return err;
5053
5054	if (selinux_secmark_enabled()) {
5055		err = avc_has_perm(&selinux_state,
5056				   sk_sid, skb->secmark, SECCLASS_PACKET,
5057				   PACKET__RECV, &ad);
5058		if (err)
5059			return err;
5060	}
5061
5062	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5063	if (err)
5064		return err;
5065	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5066
5067	return err;
5068}
5069
5070static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5071{
5072	int err;
5073	struct sk_security_struct *sksec = sk->sk_security;
5074	u16 family = sk->sk_family;
5075	u32 sk_sid = sksec->sid;
5076	struct common_audit_data ad;
5077	struct lsm_network_audit net = {0,};
5078	char *addrp;
5079	u8 secmark_active;
5080	u8 peerlbl_active;
5081
5082	if (family != PF_INET && family != PF_INET6)
5083		return 0;
5084
5085	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5086	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5087		family = PF_INET;
5088
5089	/* If any sort of compatibility mode is enabled then handoff processing
5090	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5091	 * special handling.  We do this in an attempt to keep this function
5092	 * as fast and as clean as possible. */
5093	if (!selinux_policycap_netpeer())
5094		return selinux_sock_rcv_skb_compat(sk, skb, family);
5095
5096	secmark_active = selinux_secmark_enabled();
5097	peerlbl_active = selinux_peerlbl_enabled();
5098	if (!secmark_active && !peerlbl_active)
5099		return 0;
5100
5101	ad.type = LSM_AUDIT_DATA_NET;
5102	ad.u.net = &net;
5103	ad.u.net->netif = skb->skb_iif;
5104	ad.u.net->family = family;
5105	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5106	if (err)
5107		return err;
5108
5109	if (peerlbl_active) {
5110		u32 peer_sid;
5111
5112		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5113		if (err)
5114			return err;
5115		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5116					       addrp, family, peer_sid, &ad);
5117		if (err) {
5118			selinux_netlbl_err(skb, family, err, 0);
5119			return err;
5120		}
5121		err = avc_has_perm(&selinux_state,
5122				   sk_sid, peer_sid, SECCLASS_PEER,
5123				   PEER__RECV, &ad);
5124		if (err) {
5125			selinux_netlbl_err(skb, family, err, 0);
5126			return err;
5127		}
5128	}
5129
5130	if (secmark_active) {
5131		err = avc_has_perm(&selinux_state,
5132				   sk_sid, skb->secmark, SECCLASS_PACKET,
5133				   PACKET__RECV, &ad);
5134		if (err)
5135			return err;
5136	}
5137
5138	return err;
5139}
5140
5141static int selinux_socket_getpeersec_stream(struct socket *sock,
5142					    sockptr_t optval, sockptr_t optlen,
5143					    unsigned int len)
5144{
5145	int err = 0;
5146	char *scontext = NULL;
5147	u32 scontext_len;
5148	struct sk_security_struct *sksec = sock->sk->sk_security;
5149	u32 peer_sid = SECSID_NULL;
5150
5151	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5152	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5153	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5154		peer_sid = sksec->peer_sid;
5155	if (peer_sid == SECSID_NULL)
5156		return -ENOPROTOOPT;
5157
5158	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5159				      &scontext_len);
5160	if (err)
5161		return err;
 
5162	if (scontext_len > len) {
5163		err = -ERANGE;
5164		goto out_len;
5165	}
5166
5167	if (copy_to_sockptr(optval, scontext, scontext_len))
5168		err = -EFAULT;
 
5169out_len:
5170	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5171		err = -EFAULT;
5172	kfree(scontext);
5173	return err;
5174}
5175
5176static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5177{
5178	u32 peer_secid = SECSID_NULL;
5179	u16 family;
5180	struct inode_security_struct *isec;
5181
5182	if (skb && skb->protocol == htons(ETH_P_IP))
5183		family = PF_INET;
5184	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5185		family = PF_INET6;
5186	else if (sock)
5187		family = sock->sk->sk_family;
5188	else
5189		goto out;
5190
5191	if (sock && family == PF_UNIX) {
5192		isec = inode_security_novalidate(SOCK_INODE(sock));
5193		peer_secid = isec->sid;
5194	} else if (skb)
5195		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5196
5197out:
5198	*secid = peer_secid;
5199	if (peer_secid == SECSID_NULL)
5200		return -EINVAL;
5201	return 0;
5202}
5203
5204static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5205{
5206	struct sk_security_struct *sksec;
5207
5208	sksec = kzalloc(sizeof(*sksec), priority);
5209	if (!sksec)
5210		return -ENOMEM;
5211
5212	sksec->peer_sid = SECINITSID_UNLABELED;
5213	sksec->sid = SECINITSID_UNLABELED;
5214	sksec->sclass = SECCLASS_SOCKET;
5215	selinux_netlbl_sk_security_reset(sksec);
5216	sk->sk_security = sksec;
5217
5218	return 0;
5219}
5220
5221static void selinux_sk_free_security(struct sock *sk)
5222{
5223	struct sk_security_struct *sksec = sk->sk_security;
5224
5225	sk->sk_security = NULL;
5226	selinux_netlbl_sk_security_free(sksec);
5227	kfree(sksec);
5228}
5229
5230static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5231{
5232	struct sk_security_struct *sksec = sk->sk_security;
5233	struct sk_security_struct *newsksec = newsk->sk_security;
5234
5235	newsksec->sid = sksec->sid;
5236	newsksec->peer_sid = sksec->peer_sid;
5237	newsksec->sclass = sksec->sclass;
5238
5239	selinux_netlbl_sk_security_reset(newsksec);
5240}
5241
5242static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5243{
5244	if (!sk)
5245		*secid = SECINITSID_ANY_SOCKET;
5246	else {
5247		struct sk_security_struct *sksec = sk->sk_security;
5248
5249		*secid = sksec->sid;
5250	}
5251}
5252
5253static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5254{
5255	struct inode_security_struct *isec =
5256		inode_security_novalidate(SOCK_INODE(parent));
5257	struct sk_security_struct *sksec = sk->sk_security;
5258
5259	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5260	    sk->sk_family == PF_UNIX)
5261		isec->sid = sksec->sid;
5262	sksec->sclass = isec->sclass;
5263}
5264
5265/*
5266 * Determines peer_secid for the asoc and updates socket's peer label
5267 * if it's the first association on the socket.
5268 */
5269static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5270					  struct sk_buff *skb)
5271{
5272	struct sock *sk = asoc->base.sk;
5273	u16 family = sk->sk_family;
5274	struct sk_security_struct *sksec = sk->sk_security;
5275	struct common_audit_data ad;
5276	struct lsm_network_audit net = {0,};
5277	int err;
5278
5279	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5280	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5281		family = PF_INET;
5282
5283	if (selinux_peerlbl_enabled()) {
5284		asoc->peer_secid = SECSID_NULL;
5285
5286		/* This will return peer_sid = SECSID_NULL if there are
5287		 * no peer labels, see security_net_peersid_resolve().
5288		 */
5289		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5290		if (err)
5291			return err;
5292
5293		if (asoc->peer_secid == SECSID_NULL)
5294			asoc->peer_secid = SECINITSID_UNLABELED;
5295	} else {
5296		asoc->peer_secid = SECINITSID_UNLABELED;
5297	}
5298
5299	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5300		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5301
5302		/* Here as first association on socket. As the peer SID
5303		 * was allowed by peer recv (and the netif/node checks),
5304		 * then it is approved by policy and used as the primary
5305		 * peer SID for getpeercon(3).
5306		 */
5307		sksec->peer_sid = asoc->peer_secid;
5308	} else if (sksec->peer_sid != asoc->peer_secid) {
5309		/* Other association peer SIDs are checked to enforce
5310		 * consistency among the peer SIDs.
5311		 */
5312		ad.type = LSM_AUDIT_DATA_NET;
5313		ad.u.net = &net;
5314		ad.u.net->sk = asoc->base.sk;
5315		err = avc_has_perm(&selinux_state,
5316				   sksec->peer_sid, asoc->peer_secid,
5317				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5318				   &ad);
5319		if (err)
5320			return err;
5321	}
5322	return 0;
5323}
5324
5325/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5326 * happens on an incoming connect(2), sctp_connectx(3) or
5327 * sctp_sendmsg(3) (with no association already present).
5328 */
5329static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5330				      struct sk_buff *skb)
5331{
5332	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5333	u32 conn_sid;
5334	int err;
5335
5336	if (!selinux_policycap_extsockclass())
5337		return 0;
5338
5339	err = selinux_sctp_process_new_assoc(asoc, skb);
5340	if (err)
5341		return err;
5342
5343	/* Compute the MLS component for the connection and store
5344	 * the information in asoc. This will be used by SCTP TCP type
5345	 * sockets and peeled off connections as they cause a new
5346	 * socket to be generated. selinux_sctp_sk_clone() will then
5347	 * plug this into the new socket.
5348	 */
5349	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5350	if (err)
5351		return err;
5352
5353	asoc->secid = conn_sid;
5354
5355	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5356	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5357}
5358
5359/* Called when SCTP receives a COOKIE ACK chunk as the final
5360 * response to an association request (initited by us).
5361 */
5362static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5363					  struct sk_buff *skb)
5364{
5365	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5366
5367	if (!selinux_policycap_extsockclass())
5368		return 0;
5369
5370	/* Inherit secid from the parent socket - this will be picked up
5371	 * by selinux_sctp_sk_clone() if the association gets peeled off
5372	 * into a new socket.
5373	 */
5374	asoc->secid = sksec->sid;
5375
5376	return selinux_sctp_process_new_assoc(asoc, skb);
5377}
5378
5379/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5380 * based on their @optname.
5381 */
5382static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5383				     struct sockaddr *address,
5384				     int addrlen)
5385{
5386	int len, err = 0, walk_size = 0;
5387	void *addr_buf;
5388	struct sockaddr *addr;
5389	struct socket *sock;
5390
5391	if (!selinux_policycap_extsockclass())
5392		return 0;
5393
5394	/* Process one or more addresses that may be IPv4 or IPv6 */
5395	sock = sk->sk_socket;
5396	addr_buf = address;
5397
5398	while (walk_size < addrlen) {
5399		if (walk_size + sizeof(sa_family_t) > addrlen)
5400			return -EINVAL;
5401
5402		addr = addr_buf;
5403		switch (addr->sa_family) {
5404		case AF_UNSPEC:
5405		case AF_INET:
5406			len = sizeof(struct sockaddr_in);
5407			break;
5408		case AF_INET6:
5409			len = sizeof(struct sockaddr_in6);
5410			break;
5411		default:
5412			return -EINVAL;
5413		}
5414
5415		if (walk_size + len > addrlen)
5416			return -EINVAL;
5417
5418		err = -EINVAL;
5419		switch (optname) {
5420		/* Bind checks */
5421		case SCTP_PRIMARY_ADDR:
5422		case SCTP_SET_PEER_PRIMARY_ADDR:
5423		case SCTP_SOCKOPT_BINDX_ADD:
5424			err = selinux_socket_bind(sock, addr, len);
5425			break;
5426		/* Connect checks */
5427		case SCTP_SOCKOPT_CONNECTX:
5428		case SCTP_PARAM_SET_PRIMARY:
5429		case SCTP_PARAM_ADD_IP:
5430		case SCTP_SENDMSG_CONNECT:
5431			err = selinux_socket_connect_helper(sock, addr, len);
5432			if (err)
5433				return err;
5434
5435			/* As selinux_sctp_bind_connect() is called by the
5436			 * SCTP protocol layer, the socket is already locked,
5437			 * therefore selinux_netlbl_socket_connect_locked()
5438			 * is called here. The situations handled are:
5439			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5440			 * whenever a new IP address is added or when a new
5441			 * primary address is selected.
5442			 * Note that an SCTP connect(2) call happens before
5443			 * the SCTP protocol layer and is handled via
5444			 * selinux_socket_connect().
5445			 */
5446			err = selinux_netlbl_socket_connect_locked(sk, addr);
5447			break;
5448		}
5449
5450		if (err)
5451			return err;
5452
5453		addr_buf += len;
5454		walk_size += len;
5455	}
5456
5457	return 0;
5458}
5459
5460/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5461static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5462				  struct sock *newsk)
5463{
5464	struct sk_security_struct *sksec = sk->sk_security;
5465	struct sk_security_struct *newsksec = newsk->sk_security;
5466
5467	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5468	 * the non-sctp clone version.
5469	 */
5470	if (!selinux_policycap_extsockclass())
5471		return selinux_sk_clone_security(sk, newsk);
5472
5473	newsksec->sid = asoc->secid;
5474	newsksec->peer_sid = asoc->peer_secid;
5475	newsksec->sclass = sksec->sclass;
5476	selinux_netlbl_sctp_sk_clone(sk, newsk);
5477}
5478
5479static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5480				     struct request_sock *req)
5481{
5482	struct sk_security_struct *sksec = sk->sk_security;
5483	int err;
5484	u16 family = req->rsk_ops->family;
5485	u32 connsid;
5486	u32 peersid;
5487
5488	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5489	if (err)
5490		return err;
5491	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5492	if (err)
5493		return err;
5494	req->secid = connsid;
5495	req->peer_secid = peersid;
5496
5497	return selinux_netlbl_inet_conn_request(req, family);
5498}
5499
5500static void selinux_inet_csk_clone(struct sock *newsk,
5501				   const struct request_sock *req)
5502{
5503	struct sk_security_struct *newsksec = newsk->sk_security;
5504
5505	newsksec->sid = req->secid;
5506	newsksec->peer_sid = req->peer_secid;
5507	/* NOTE: Ideally, we should also get the isec->sid for the
5508	   new socket in sync, but we don't have the isec available yet.
5509	   So we will wait until sock_graft to do it, by which
5510	   time it will have been created and available. */
5511
5512	/* We don't need to take any sort of lock here as we are the only
5513	 * thread with access to newsksec */
5514	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5515}
5516
5517static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5518{
5519	u16 family = sk->sk_family;
5520	struct sk_security_struct *sksec = sk->sk_security;
5521
5522	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5523	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5524		family = PF_INET;
5525
5526	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5527}
5528
5529static int selinux_secmark_relabel_packet(u32 sid)
5530{
5531	const struct task_security_struct *__tsec;
5532	u32 tsid;
5533
5534	__tsec = selinux_cred(current_cred());
5535	tsid = __tsec->sid;
5536
5537	return avc_has_perm(&selinux_state,
5538			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5539			    NULL);
5540}
5541
5542static void selinux_secmark_refcount_inc(void)
5543{
5544	atomic_inc(&selinux_secmark_refcount);
5545}
5546
5547static void selinux_secmark_refcount_dec(void)
5548{
5549	atomic_dec(&selinux_secmark_refcount);
5550}
5551
5552static void selinux_req_classify_flow(const struct request_sock *req,
5553				      struct flowi_common *flic)
5554{
5555	flic->flowic_secid = req->secid;
5556}
5557
5558static int selinux_tun_dev_alloc_security(void **security)
5559{
5560	struct tun_security_struct *tunsec;
5561
5562	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5563	if (!tunsec)
5564		return -ENOMEM;
5565	tunsec->sid = current_sid();
5566
5567	*security = tunsec;
5568	return 0;
5569}
5570
5571static void selinux_tun_dev_free_security(void *security)
5572{
5573	kfree(security);
5574}
5575
5576static int selinux_tun_dev_create(void)
5577{
5578	u32 sid = current_sid();
5579
5580	/* we aren't taking into account the "sockcreate" SID since the socket
5581	 * that is being created here is not a socket in the traditional sense,
5582	 * instead it is a private sock, accessible only to the kernel, and
5583	 * representing a wide range of network traffic spanning multiple
5584	 * connections unlike traditional sockets - check the TUN driver to
5585	 * get a better understanding of why this socket is special */
5586
5587	return avc_has_perm(&selinux_state,
5588			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5589			    NULL);
5590}
5591
5592static int selinux_tun_dev_attach_queue(void *security)
5593{
5594	struct tun_security_struct *tunsec = security;
5595
5596	return avc_has_perm(&selinux_state,
5597			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5598			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5599}
5600
5601static int selinux_tun_dev_attach(struct sock *sk, void *security)
5602{
5603	struct tun_security_struct *tunsec = security;
5604	struct sk_security_struct *sksec = sk->sk_security;
5605
5606	/* we don't currently perform any NetLabel based labeling here and it
5607	 * isn't clear that we would want to do so anyway; while we could apply
5608	 * labeling without the support of the TUN user the resulting labeled
5609	 * traffic from the other end of the connection would almost certainly
5610	 * cause confusion to the TUN user that had no idea network labeling
5611	 * protocols were being used */
5612
5613	sksec->sid = tunsec->sid;
5614	sksec->sclass = SECCLASS_TUN_SOCKET;
5615
5616	return 0;
5617}
5618
5619static int selinux_tun_dev_open(void *security)
5620{
5621	struct tun_security_struct *tunsec = security;
5622	u32 sid = current_sid();
5623	int err;
5624
5625	err = avc_has_perm(&selinux_state,
5626			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5627			   TUN_SOCKET__RELABELFROM, NULL);
5628	if (err)
5629		return err;
5630	err = avc_has_perm(&selinux_state,
5631			   sid, sid, SECCLASS_TUN_SOCKET,
5632			   TUN_SOCKET__RELABELTO, NULL);
5633	if (err)
5634		return err;
5635	tunsec->sid = sid;
5636
5637	return 0;
5638}
5639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5640#ifdef CONFIG_NETFILTER
5641
5642static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5643				       const struct nf_hook_state *state)
 
5644{
5645	int ifindex;
5646	u16 family;
5647	char *addrp;
5648	u32 peer_sid;
5649	struct common_audit_data ad;
5650	struct lsm_network_audit net = {0,};
5651	int secmark_active, peerlbl_active;
 
 
5652
5653	if (!selinux_policycap_netpeer())
5654		return NF_ACCEPT;
5655
5656	secmark_active = selinux_secmark_enabled();
 
5657	peerlbl_active = selinux_peerlbl_enabled();
5658	if (!secmark_active && !peerlbl_active)
5659		return NF_ACCEPT;
5660
5661	family = state->pf;
5662	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5663		return NF_DROP;
5664
5665	ifindex = state->in->ifindex;
5666	ad.type = LSM_AUDIT_DATA_NET;
5667	ad.u.net = &net;
5668	ad.u.net->netif = ifindex;
5669	ad.u.net->family = family;
5670	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5671		return NF_DROP;
5672
5673	if (peerlbl_active) {
5674		int err;
5675
5676		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5677					       addrp, family, peer_sid, &ad);
5678		if (err) {
5679			selinux_netlbl_err(skb, family, err, 1);
5680			return NF_DROP;
5681		}
5682	}
5683
5684	if (secmark_active)
5685		if (avc_has_perm(&selinux_state,
5686				 peer_sid, skb->secmark,
5687				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5688			return NF_DROP;
5689
5690	if (netlbl_enabled())
5691		/* we do this in the FORWARD path and not the POST_ROUTING
5692		 * path because we want to make sure we apply the necessary
5693		 * labeling before IPsec is applied so we can leverage AH
5694		 * protection */
5695		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5696			return NF_DROP;
5697
5698	return NF_ACCEPT;
5699}
5700
5701static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5702				      const struct nf_hook_state *state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5703{
5704	struct sock *sk;
5705	u32 sid;
5706
5707	if (!netlbl_enabled())
5708		return NF_ACCEPT;
5709
5710	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5711	 * because we want to make sure we apply the necessary labeling
5712	 * before IPsec is applied so we can leverage AH protection */
5713	sk = skb->sk;
5714	if (sk) {
5715		struct sk_security_struct *sksec;
5716
5717		if (sk_listener(sk))
5718			/* if the socket is the listening state then this
5719			 * packet is a SYN-ACK packet which means it needs to
5720			 * be labeled based on the connection/request_sock and
5721			 * not the parent socket.  unfortunately, we can't
5722			 * lookup the request_sock yet as it isn't queued on
5723			 * the parent socket until after the SYN-ACK is sent.
5724			 * the "solution" is to simply pass the packet as-is
5725			 * as any IP option based labeling should be copied
5726			 * from the initial connection request (in the IP
5727			 * layer).  it is far from ideal, but until we get a
5728			 * security label in the packet itself this is the
5729			 * best we can do. */
5730			return NF_ACCEPT;
5731
5732		/* standard practice, label using the parent socket */
5733		sksec = sk->sk_security;
5734		sid = sksec->sid;
5735	} else
5736		sid = SECINITSID_KERNEL;
5737	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5738		return NF_DROP;
5739
5740	return NF_ACCEPT;
5741}
5742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5743
5744static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5745					const struct nf_hook_state *state)
 
5746{
5747	struct sock *sk;
5748	struct sk_security_struct *sksec;
5749	struct common_audit_data ad;
5750	struct lsm_network_audit net = {0,};
5751	u8 proto = 0;
 
5752
5753	sk = skb_to_full_sk(skb);
5754	if (sk == NULL)
5755		return NF_ACCEPT;
5756	sksec = sk->sk_security;
5757
5758	ad.type = LSM_AUDIT_DATA_NET;
5759	ad.u.net = &net;
5760	ad.u.net->netif = state->out->ifindex;
5761	ad.u.net->family = state->pf;
5762	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5763		return NF_DROP;
5764
5765	if (selinux_secmark_enabled())
5766		if (avc_has_perm(&selinux_state,
5767				 sksec->sid, skb->secmark,
5768				 SECCLASS_PACKET, PACKET__SEND, &ad))
5769			return NF_DROP_ERR(-ECONNREFUSED);
5770
5771	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5772		return NF_DROP_ERR(-ECONNREFUSED);
5773
5774	return NF_ACCEPT;
5775}
5776
5777static unsigned int selinux_ip_postroute(void *priv,
5778					 struct sk_buff *skb,
5779					 const struct nf_hook_state *state)
5780{
5781	u16 family;
5782	u32 secmark_perm;
5783	u32 peer_sid;
5784	int ifindex;
5785	struct sock *sk;
5786	struct common_audit_data ad;
5787	struct lsm_network_audit net = {0,};
5788	char *addrp;
5789	int secmark_active, peerlbl_active;
 
5790
5791	/* If any sort of compatibility mode is enabled then handoff processing
5792	 * to the selinux_ip_postroute_compat() function to deal with the
5793	 * special handling.  We do this in an attempt to keep this function
5794	 * as fast and as clean as possible. */
5795	if (!selinux_policycap_netpeer())
5796		return selinux_ip_postroute_compat(skb, state);
5797
5798	secmark_active = selinux_secmark_enabled();
5799	peerlbl_active = selinux_peerlbl_enabled();
5800	if (!secmark_active && !peerlbl_active)
5801		return NF_ACCEPT;
5802
5803	sk = skb_to_full_sk(skb);
5804
5805#ifdef CONFIG_XFRM
5806	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5807	 * packet transformation so allow the packet to pass without any checks
5808	 * since we'll have another chance to perform access control checks
5809	 * when the packet is on it's final way out.
5810	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5811	 *       is NULL, in this case go ahead and apply access control.
5812	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5813	 *       TCP listening state we cannot wait until the XFRM processing
5814	 *       is done as we will miss out on the SA label if we do;
5815	 *       unfortunately, this means more work, but it is only once per
5816	 *       connection. */
5817	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5818	    !(sk && sk_listener(sk)))
5819		return NF_ACCEPT;
5820#endif
5821
5822	family = state->pf;
5823	if (sk == NULL) {
5824		/* Without an associated socket the packet is either coming
5825		 * from the kernel or it is being forwarded; check the packet
5826		 * to determine which and if the packet is being forwarded
5827		 * query the packet directly to determine the security label. */
5828		if (skb->skb_iif) {
5829			secmark_perm = PACKET__FORWARD_OUT;
5830			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5831				return NF_DROP;
5832		} else {
5833			secmark_perm = PACKET__SEND;
5834			peer_sid = SECINITSID_KERNEL;
5835		}
5836	} else if (sk_listener(sk)) {
5837		/* Locally generated packet but the associated socket is in the
5838		 * listening state which means this is a SYN-ACK packet.  In
5839		 * this particular case the correct security label is assigned
5840		 * to the connection/request_sock but unfortunately we can't
5841		 * query the request_sock as it isn't queued on the parent
5842		 * socket until after the SYN-ACK packet is sent; the only
5843		 * viable choice is to regenerate the label like we do in
5844		 * selinux_inet_conn_request().  See also selinux_ip_output()
5845		 * for similar problems. */
5846		u32 skb_sid;
5847		struct sk_security_struct *sksec;
5848
5849		sksec = sk->sk_security;
5850		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5851			return NF_DROP;
5852		/* At this point, if the returned skb peerlbl is SECSID_NULL
5853		 * and the packet has been through at least one XFRM
5854		 * transformation then we must be dealing with the "final"
5855		 * form of labeled IPsec packet; since we've already applied
5856		 * all of our access controls on this packet we can safely
5857		 * pass the packet. */
5858		if (skb_sid == SECSID_NULL) {
5859			switch (family) {
5860			case PF_INET:
5861				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5862					return NF_ACCEPT;
5863				break;
5864			case PF_INET6:
5865				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5866					return NF_ACCEPT;
5867				break;
5868			default:
5869				return NF_DROP_ERR(-ECONNREFUSED);
5870			}
5871		}
5872		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5873			return NF_DROP;
5874		secmark_perm = PACKET__SEND;
5875	} else {
5876		/* Locally generated packet, fetch the security label from the
5877		 * associated socket. */
5878		struct sk_security_struct *sksec = sk->sk_security;
5879		peer_sid = sksec->sid;
5880		secmark_perm = PACKET__SEND;
5881	}
5882
5883	ifindex = state->out->ifindex;
5884	ad.type = LSM_AUDIT_DATA_NET;
5885	ad.u.net = &net;
5886	ad.u.net->netif = ifindex;
5887	ad.u.net->family = family;
5888	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5889		return NF_DROP;
5890
5891	if (secmark_active)
5892		if (avc_has_perm(&selinux_state,
5893				 peer_sid, skb->secmark,
5894				 SECCLASS_PACKET, secmark_perm, &ad))
5895			return NF_DROP_ERR(-ECONNREFUSED);
5896
5897	if (peerlbl_active) {
5898		u32 if_sid;
5899		u32 node_sid;
5900
5901		if (sel_netif_sid(state->net, ifindex, &if_sid))
5902			return NF_DROP;
5903		if (avc_has_perm(&selinux_state,
5904				 peer_sid, if_sid,
5905				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5906			return NF_DROP_ERR(-ECONNREFUSED);
5907
5908		if (sel_netnode_sid(addrp, family, &node_sid))
5909			return NF_DROP;
5910		if (avc_has_perm(&selinux_state,
5911				 peer_sid, node_sid,
5912				 SECCLASS_NODE, NODE__SENDTO, &ad))
5913			return NF_DROP_ERR(-ECONNREFUSED);
5914	}
5915
5916	return NF_ACCEPT;
5917}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5918#endif	/* CONFIG_NETFILTER */
5919
5920static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5921{
5922	int rc = 0;
5923	unsigned int msg_len;
5924	unsigned int data_len = skb->len;
5925	unsigned char *data = skb->data;
5926	struct nlmsghdr *nlh;
5927	struct sk_security_struct *sksec = sk->sk_security;
5928	u16 sclass = sksec->sclass;
5929	u32 perm;
5930
5931	while (data_len >= nlmsg_total_size(0)) {
5932		nlh = (struct nlmsghdr *)data;
 
 
 
 
5933
5934		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5935		 *       users which means we can't reject skb's with bogus
5936		 *       length fields; our solution is to follow what
5937		 *       netlink_rcv_skb() does and simply skip processing at
5938		 *       messages with length fields that are clearly junk
5939		 */
5940		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5941			return 0;
5942
5943		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5944		if (rc == 0) {
5945			rc = sock_has_perm(sk, perm);
5946			if (rc)
5947				return rc;
5948		} else if (rc == -EINVAL) {
5949			/* -EINVAL is a missing msg/perm mapping */
5950			pr_warn_ratelimited("SELinux: unrecognized netlink"
5951				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5952				" pid=%d comm=%s\n",
5953				sk->sk_protocol, nlh->nlmsg_type,
5954				secclass_map[sclass - 1].name,
5955				task_pid_nr(current), current->comm);
5956			if (enforcing_enabled(&selinux_state) &&
5957			    !security_get_allow_unknown(&selinux_state))
5958				return rc;
5959			rc = 0;
5960		} else if (rc == -ENOENT) {
5961			/* -ENOENT is a missing socket/class mapping, ignore */
5962			rc = 0;
5963		} else {
5964			return rc;
5965		}
5966
5967		/* move to the next message after applying netlink padding */
5968		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5969		if (msg_len >= data_len)
5970			return 0;
5971		data_len -= msg_len;
5972		data += msg_len;
5973	}
5974
5975	return rc;
 
 
 
 
5976}
5977
5978static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5979{
5980	isec->sclass = sclass;
5981	isec->sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5982}
5983
5984static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5985			u32 perms)
5986{
5987	struct ipc_security_struct *isec;
5988	struct common_audit_data ad;
5989	u32 sid = current_sid();
5990
5991	isec = selinux_ipc(ipc_perms);
5992
5993	ad.type = LSM_AUDIT_DATA_IPC;
5994	ad.u.ipc_id = ipc_perms->key;
5995
5996	return avc_has_perm(&selinux_state,
5997			    sid, isec->sid, isec->sclass, perms, &ad);
5998}
5999
6000static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6001{
6002	struct msg_security_struct *msec;
6003
6004	msec = selinux_msg_msg(msg);
6005	msec->sid = SECINITSID_UNLABELED;
6006
6007	return 0;
 
 
6008}
6009
6010/* message queue security operations */
6011static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6012{
6013	struct ipc_security_struct *isec;
6014	struct common_audit_data ad;
6015	u32 sid = current_sid();
 
 
 
 
 
6016
6017	isec = selinux_ipc(msq);
6018	ipc_init_security(isec, SECCLASS_MSGQ);
6019
6020	ad.type = LSM_AUDIT_DATA_IPC;
6021	ad.u.ipc_id = msq->key;
6022
6023	return avc_has_perm(&selinux_state,
6024			    sid, isec->sid, SECCLASS_MSGQ,
6025			    MSGQ__CREATE, &ad);
 
 
 
 
6026}
6027
6028static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
 
 
 
 
 
6029{
6030	struct ipc_security_struct *isec;
6031	struct common_audit_data ad;
6032	u32 sid = current_sid();
6033
6034	isec = selinux_ipc(msq);
6035
6036	ad.type = LSM_AUDIT_DATA_IPC;
6037	ad.u.ipc_id = msq->key;
6038
6039	return avc_has_perm(&selinux_state,
6040			    sid, isec->sid, SECCLASS_MSGQ,
6041			    MSGQ__ASSOCIATE, &ad);
6042}
6043
6044static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6045{
6046	int err;
6047	int perms;
6048
6049	switch (cmd) {
6050	case IPC_INFO:
6051	case MSG_INFO:
6052		/* No specific object, just general system-wide information. */
6053		return avc_has_perm(&selinux_state,
6054				    current_sid(), SECINITSID_KERNEL,
6055				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6056	case IPC_STAT:
6057	case MSG_STAT:
6058	case MSG_STAT_ANY:
6059		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6060		break;
6061	case IPC_SET:
6062		perms = MSGQ__SETATTR;
6063		break;
6064	case IPC_RMID:
6065		perms = MSGQ__DESTROY;
6066		break;
6067	default:
6068		return 0;
6069	}
6070
6071	err = ipc_has_perm(msq, perms);
6072	return err;
6073}
6074
6075static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6076{
6077	struct ipc_security_struct *isec;
6078	struct msg_security_struct *msec;
6079	struct common_audit_data ad;
6080	u32 sid = current_sid();
6081	int rc;
6082
6083	isec = selinux_ipc(msq);
6084	msec = selinux_msg_msg(msg);
6085
6086	/*
6087	 * First time through, need to assign label to the message
6088	 */
6089	if (msec->sid == SECINITSID_UNLABELED) {
6090		/*
6091		 * Compute new sid based on current process and
6092		 * message queue this message will be stored in
6093		 */
6094		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6095					     SECCLASS_MSG, NULL, &msec->sid);
6096		if (rc)
6097			return rc;
6098	}
6099
6100	ad.type = LSM_AUDIT_DATA_IPC;
6101	ad.u.ipc_id = msq->key;
6102
6103	/* Can this process write to the queue? */
6104	rc = avc_has_perm(&selinux_state,
6105			  sid, isec->sid, SECCLASS_MSGQ,
6106			  MSGQ__WRITE, &ad);
6107	if (!rc)
6108		/* Can this process send the message */
6109		rc = avc_has_perm(&selinux_state,
6110				  sid, msec->sid, SECCLASS_MSG,
6111				  MSG__SEND, &ad);
6112	if (!rc)
6113		/* Can the message be put in the queue? */
6114		rc = avc_has_perm(&selinux_state,
6115				  msec->sid, isec->sid, SECCLASS_MSGQ,
6116				  MSGQ__ENQUEUE, &ad);
6117
6118	return rc;
6119}
6120
6121static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6122				    struct task_struct *target,
6123				    long type, int mode)
6124{
6125	struct ipc_security_struct *isec;
6126	struct msg_security_struct *msec;
6127	struct common_audit_data ad;
6128	u32 sid = task_sid_obj(target);
6129	int rc;
6130
6131	isec = selinux_ipc(msq);
6132	msec = selinux_msg_msg(msg);
6133
6134	ad.type = LSM_AUDIT_DATA_IPC;
6135	ad.u.ipc_id = msq->key;
6136
6137	rc = avc_has_perm(&selinux_state,
6138			  sid, isec->sid,
6139			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6140	if (!rc)
6141		rc = avc_has_perm(&selinux_state,
6142				  sid, msec->sid,
6143				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6144	return rc;
6145}
6146
6147/* Shared Memory security operations */
6148static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6149{
6150	struct ipc_security_struct *isec;
6151	struct common_audit_data ad;
6152	u32 sid = current_sid();
 
6153
6154	isec = selinux_ipc(shp);
6155	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6156
6157	ad.type = LSM_AUDIT_DATA_IPC;
6158	ad.u.ipc_id = shp->key;
 
 
 
 
 
 
 
 
 
6159
6160	return avc_has_perm(&selinux_state,
6161			    sid, isec->sid, SECCLASS_SHM,
6162			    SHM__CREATE, &ad);
6163}
6164
6165static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6166{
6167	struct ipc_security_struct *isec;
6168	struct common_audit_data ad;
6169	u32 sid = current_sid();
6170
6171	isec = selinux_ipc(shp);
6172
6173	ad.type = LSM_AUDIT_DATA_IPC;
6174	ad.u.ipc_id = shp->key;
6175
6176	return avc_has_perm(&selinux_state,
6177			    sid, isec->sid, SECCLASS_SHM,
6178			    SHM__ASSOCIATE, &ad);
6179}
6180
6181/* Note, at this point, shp is locked down */
6182static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6183{
6184	int perms;
6185	int err;
6186
6187	switch (cmd) {
6188	case IPC_INFO:
6189	case SHM_INFO:
6190		/* No specific object, just general system-wide information. */
6191		return avc_has_perm(&selinux_state,
6192				    current_sid(), SECINITSID_KERNEL,
6193				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6194	case IPC_STAT:
6195	case SHM_STAT:
6196	case SHM_STAT_ANY:
6197		perms = SHM__GETATTR | SHM__ASSOCIATE;
6198		break;
6199	case IPC_SET:
6200		perms = SHM__SETATTR;
6201		break;
6202	case SHM_LOCK:
6203	case SHM_UNLOCK:
6204		perms = SHM__LOCK;
6205		break;
6206	case IPC_RMID:
6207		perms = SHM__DESTROY;
6208		break;
6209	default:
6210		return 0;
6211	}
6212
6213	err = ipc_has_perm(shp, perms);
6214	return err;
6215}
6216
6217static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6218			     char __user *shmaddr, int shmflg)
6219{
6220	u32 perms;
6221
6222	if (shmflg & SHM_RDONLY)
6223		perms = SHM__READ;
6224	else
6225		perms = SHM__READ | SHM__WRITE;
6226
6227	return ipc_has_perm(shp, perms);
6228}
6229
6230/* Semaphore security operations */
6231static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6232{
6233	struct ipc_security_struct *isec;
6234	struct common_audit_data ad;
6235	u32 sid = current_sid();
 
 
 
 
 
6236
6237	isec = selinux_ipc(sma);
6238	ipc_init_security(isec, SECCLASS_SEM);
6239
6240	ad.type = LSM_AUDIT_DATA_IPC;
6241	ad.u.ipc_id = sma->key;
6242
6243	return avc_has_perm(&selinux_state,
6244			    sid, isec->sid, SECCLASS_SEM,
6245			    SEM__CREATE, &ad);
 
 
 
 
6246}
6247
6248static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
 
 
 
 
 
6249{
6250	struct ipc_security_struct *isec;
6251	struct common_audit_data ad;
6252	u32 sid = current_sid();
6253
6254	isec = selinux_ipc(sma);
6255
6256	ad.type = LSM_AUDIT_DATA_IPC;
6257	ad.u.ipc_id = sma->key;
6258
6259	return avc_has_perm(&selinux_state,
6260			    sid, isec->sid, SECCLASS_SEM,
6261			    SEM__ASSOCIATE, &ad);
6262}
6263
6264/* Note, at this point, sma is locked down */
6265static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6266{
6267	int err;
6268	u32 perms;
6269
6270	switch (cmd) {
6271	case IPC_INFO:
6272	case SEM_INFO:
6273		/* No specific object, just general system-wide information. */
6274		return avc_has_perm(&selinux_state,
6275				    current_sid(), SECINITSID_KERNEL,
6276				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6277	case GETPID:
6278	case GETNCNT:
6279	case GETZCNT:
6280		perms = SEM__GETATTR;
6281		break;
6282	case GETVAL:
6283	case GETALL:
6284		perms = SEM__READ;
6285		break;
6286	case SETVAL:
6287	case SETALL:
6288		perms = SEM__WRITE;
6289		break;
6290	case IPC_RMID:
6291		perms = SEM__DESTROY;
6292		break;
6293	case IPC_SET:
6294		perms = SEM__SETATTR;
6295		break;
6296	case IPC_STAT:
6297	case SEM_STAT:
6298	case SEM_STAT_ANY:
6299		perms = SEM__GETATTR | SEM__ASSOCIATE;
6300		break;
6301	default:
6302		return 0;
6303	}
6304
6305	err = ipc_has_perm(sma, perms);
6306	return err;
6307}
6308
6309static int selinux_sem_semop(struct kern_ipc_perm *sma,
6310			     struct sembuf *sops, unsigned nsops, int alter)
6311{
6312	u32 perms;
6313
6314	if (alter)
6315		perms = SEM__READ | SEM__WRITE;
6316	else
6317		perms = SEM__READ;
6318
6319	return ipc_has_perm(sma, perms);
6320}
6321
6322static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6323{
6324	u32 av = 0;
6325
6326	av = 0;
6327	if (flag & S_IRUGO)
6328		av |= IPC__UNIX_READ;
6329	if (flag & S_IWUGO)
6330		av |= IPC__UNIX_WRITE;
6331
6332	if (av == 0)
6333		return 0;
6334
6335	return ipc_has_perm(ipcp, av);
6336}
6337
6338static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6339{
6340	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6341	*secid = isec->sid;
6342}
6343
6344static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6345{
6346	if (inode)
6347		inode_doinit_with_dentry(inode, dentry);
6348}
6349
6350static int selinux_getprocattr(struct task_struct *p,
6351			       const char *name, char **value)
6352{
6353	const struct task_security_struct *__tsec;
6354	u32 sid;
6355	int error;
6356	unsigned len;
6357
6358	rcu_read_lock();
6359	__tsec = selinux_cred(__task_cred(p));
6360
6361	if (current != p) {
6362		error = avc_has_perm(&selinux_state,
6363				     current_sid(), __tsec->sid,
6364				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6365		if (error)
6366			goto bad;
6367	}
6368
 
 
 
6369	if (!strcmp(name, "current"))
6370		sid = __tsec->sid;
6371	else if (!strcmp(name, "prev"))
6372		sid = __tsec->osid;
6373	else if (!strcmp(name, "exec"))
6374		sid = __tsec->exec_sid;
6375	else if (!strcmp(name, "fscreate"))
6376		sid = __tsec->create_sid;
6377	else if (!strcmp(name, "keycreate"))
6378		sid = __tsec->keycreate_sid;
6379	else if (!strcmp(name, "sockcreate"))
6380		sid = __tsec->sockcreate_sid;
6381	else {
6382		error = -EINVAL;
6383		goto bad;
6384	}
6385	rcu_read_unlock();
6386
6387	if (!sid)
6388		return 0;
6389
6390	error = security_sid_to_context(&selinux_state, sid, value, &len);
6391	if (error)
6392		return error;
6393	return len;
6394
6395bad:
6396	rcu_read_unlock();
6397	return error;
6398}
6399
6400static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6401{
6402	struct task_security_struct *tsec;
6403	struct cred *new;
6404	u32 mysid = current_sid(), sid = 0, ptsid;
6405	int error;
6406	char *str = value;
6407
 
 
 
 
 
 
6408	/*
6409	 * Basic control over ability to set these attributes at all.
 
 
6410	 */
6411	if (!strcmp(name, "exec"))
6412		error = avc_has_perm(&selinux_state,
6413				     mysid, mysid, SECCLASS_PROCESS,
6414				     PROCESS__SETEXEC, NULL);
6415	else if (!strcmp(name, "fscreate"))
6416		error = avc_has_perm(&selinux_state,
6417				     mysid, mysid, SECCLASS_PROCESS,
6418				     PROCESS__SETFSCREATE, NULL);
6419	else if (!strcmp(name, "keycreate"))
6420		error = avc_has_perm(&selinux_state,
6421				     mysid, mysid, SECCLASS_PROCESS,
6422				     PROCESS__SETKEYCREATE, NULL);
6423	else if (!strcmp(name, "sockcreate"))
6424		error = avc_has_perm(&selinux_state,
6425				     mysid, mysid, SECCLASS_PROCESS,
6426				     PROCESS__SETSOCKCREATE, NULL);
6427	else if (!strcmp(name, "current"))
6428		error = avc_has_perm(&selinux_state,
6429				     mysid, mysid, SECCLASS_PROCESS,
6430				     PROCESS__SETCURRENT, NULL);
6431	else
6432		error = -EINVAL;
6433	if (error)
6434		return error;
6435
6436	/* Obtain a SID for the context, if one was specified. */
6437	if (size && str[0] && str[0] != '\n') {
6438		if (str[size-1] == '\n') {
6439			str[size-1] = 0;
6440			size--;
6441		}
6442		error = security_context_to_sid(&selinux_state, value, size,
6443						&sid, GFP_KERNEL);
6444		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6445			if (!has_cap_mac_admin(true)) {
6446				struct audit_buffer *ab;
6447				size_t audit_size;
6448
6449				/* We strip a nul only if it is at the end, otherwise the
6450				 * context contains a nul and we should audit that */
6451				if (str[size - 1] == '\0')
6452					audit_size = size - 1;
6453				else
6454					audit_size = size;
6455				ab = audit_log_start(audit_context(),
6456						     GFP_ATOMIC,
6457						     AUDIT_SELINUX_ERR);
6458				if (!ab)
6459					return error;
6460				audit_log_format(ab, "op=fscreate invalid_context=");
6461				audit_log_n_untrustedstring(ab, value, audit_size);
6462				audit_log_end(ab);
6463
6464				return error;
6465			}
6466			error = security_context_to_sid_force(
6467						      &selinux_state,
6468						      value, size, &sid);
6469		}
6470		if (error)
6471			return error;
6472	}
6473
6474	new = prepare_creds();
6475	if (!new)
6476		return -ENOMEM;
6477
6478	/* Permission checking based on the specified context is
6479	   performed during the actual operation (execve,
6480	   open/mkdir/...), when we know the full context of the
6481	   operation.  See selinux_bprm_creds_for_exec for the execve
6482	   checks and may_create for the file creation checks. The
6483	   operation will then fail if the context is not permitted. */
6484	tsec = selinux_cred(new);
6485	if (!strcmp(name, "exec")) {
6486		tsec->exec_sid = sid;
6487	} else if (!strcmp(name, "fscreate")) {
6488		tsec->create_sid = sid;
6489	} else if (!strcmp(name, "keycreate")) {
6490		if (sid) {
6491			error = avc_has_perm(&selinux_state, mysid, sid,
6492					     SECCLASS_KEY, KEY__CREATE, NULL);
6493			if (error)
6494				goto abort_change;
6495		}
6496		tsec->keycreate_sid = sid;
6497	} else if (!strcmp(name, "sockcreate")) {
6498		tsec->sockcreate_sid = sid;
6499	} else if (!strcmp(name, "current")) {
6500		error = -EINVAL;
6501		if (sid == 0)
6502			goto abort_change;
6503
6504		/* Only allow single threaded processes to change context */
 
6505		if (!current_is_single_threaded()) {
6506			error = security_bounded_transition(&selinux_state,
6507							    tsec->sid, sid);
6508			if (error)
6509				goto abort_change;
6510		}
6511
6512		/* Check permissions for the transition. */
6513		error = avc_has_perm(&selinux_state,
6514				     tsec->sid, sid, SECCLASS_PROCESS,
6515				     PROCESS__DYNTRANSITION, NULL);
6516		if (error)
6517			goto abort_change;
6518
6519		/* Check for ptracing, and update the task SID if ok.
6520		   Otherwise, leave SID unchanged and fail. */
6521		ptsid = ptrace_parent_sid();
6522		if (ptsid != 0) {
6523			error = avc_has_perm(&selinux_state,
6524					     ptsid, sid, SECCLASS_PROCESS,
6525					     PROCESS__PTRACE, NULL);
6526			if (error)
6527				goto abort_change;
6528		}
6529
6530		tsec->sid = sid;
6531	} else {
6532		error = -EINVAL;
6533		goto abort_change;
6534	}
6535
6536	commit_creds(new);
6537	return size;
6538
6539abort_change:
6540	abort_creds(new);
6541	return error;
6542}
6543
6544static int selinux_ismaclabel(const char *name)
6545{
6546	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6547}
6548
6549static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6550{
6551	return security_sid_to_context(&selinux_state, secid,
6552				       secdata, seclen);
6553}
6554
6555static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6556{
6557	return security_context_to_sid(&selinux_state, secdata, seclen,
6558				       secid, GFP_KERNEL);
6559}
6560
6561static void selinux_release_secctx(char *secdata, u32 seclen)
6562{
6563	kfree(secdata);
6564}
6565
6566static void selinux_inode_invalidate_secctx(struct inode *inode)
6567{
6568	struct inode_security_struct *isec = selinux_inode(inode);
6569
6570	spin_lock(&isec->lock);
6571	isec->initialized = LABEL_INVALID;
6572	spin_unlock(&isec->lock);
6573}
6574
6575/*
6576 *	called with inode->i_mutex locked
6577 */
6578static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6579{
6580	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6581					   ctx, ctxlen, 0);
6582	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6583	return rc == -EOPNOTSUPP ? 0 : rc;
6584}
6585
6586/*
6587 *	called with inode->i_mutex locked
6588 */
6589static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6590{
6591	return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6592				     ctx, ctxlen, 0);
6593}
6594
6595static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6596{
6597	int len = 0;
6598	len = selinux_inode_getsecurity(&init_user_ns, inode,
6599					XATTR_SELINUX_SUFFIX, ctx, true);
6600	if (len < 0)
6601		return len;
6602	*ctxlen = len;
6603	return 0;
6604}
6605#ifdef CONFIG_KEYS
6606
6607static int selinux_key_alloc(struct key *k, const struct cred *cred,
6608			     unsigned long flags)
6609{
6610	const struct task_security_struct *tsec;
6611	struct key_security_struct *ksec;
6612
6613	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6614	if (!ksec)
6615		return -ENOMEM;
6616
6617	tsec = selinux_cred(cred);
6618	if (tsec->keycreate_sid)
6619		ksec->sid = tsec->keycreate_sid;
6620	else
6621		ksec->sid = tsec->sid;
6622
6623	k->security = ksec;
6624	return 0;
6625}
6626
6627static void selinux_key_free(struct key *k)
6628{
6629	struct key_security_struct *ksec = k->security;
6630
6631	k->security = NULL;
6632	kfree(ksec);
6633}
6634
6635static int selinux_key_permission(key_ref_t key_ref,
6636				  const struct cred *cred,
6637				  enum key_need_perm need_perm)
6638{
6639	struct key *key;
6640	struct key_security_struct *ksec;
6641	u32 perm, sid;
6642
6643	switch (need_perm) {
6644	case KEY_NEED_VIEW:
6645		perm = KEY__VIEW;
6646		break;
6647	case KEY_NEED_READ:
6648		perm = KEY__READ;
6649		break;
6650	case KEY_NEED_WRITE:
6651		perm = KEY__WRITE;
6652		break;
6653	case KEY_NEED_SEARCH:
6654		perm = KEY__SEARCH;
6655		break;
6656	case KEY_NEED_LINK:
6657		perm = KEY__LINK;
6658		break;
6659	case KEY_NEED_SETATTR:
6660		perm = KEY__SETATTR;
6661		break;
6662	case KEY_NEED_UNLINK:
6663	case KEY_SYSADMIN_OVERRIDE:
6664	case KEY_AUTHTOKEN_OVERRIDE:
6665	case KEY_DEFER_PERM_CHECK:
6666		return 0;
6667	default:
6668		WARN_ON(1);
6669		return -EPERM;
6670
6671	}
6672
6673	sid = cred_sid(cred);
 
6674	key = key_ref_to_ptr(key_ref);
6675	ksec = key->security;
6676
6677	return avc_has_perm(&selinux_state,
6678			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6679}
6680
6681static int selinux_key_getsecurity(struct key *key, char **_buffer)
6682{
6683	struct key_security_struct *ksec = key->security;
6684	char *context = NULL;
6685	unsigned len;
6686	int rc;
6687
6688	rc = security_sid_to_context(&selinux_state, ksec->sid,
6689				     &context, &len);
6690	if (!rc)
6691		rc = len;
6692	*_buffer = context;
6693	return rc;
6694}
6695
6696#ifdef CONFIG_KEY_NOTIFICATIONS
6697static int selinux_watch_key(struct key *key)
6698{
6699	struct key_security_struct *ksec = key->security;
6700	u32 sid = current_sid();
6701
6702	return avc_has_perm(&selinux_state,
6703			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6704}
6705#endif
6706#endif
6707
6708#ifdef CONFIG_SECURITY_INFINIBAND
6709static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6710{
6711	struct common_audit_data ad;
6712	int err;
6713	u32 sid = 0;
6714	struct ib_security_struct *sec = ib_sec;
6715	struct lsm_ibpkey_audit ibpkey;
6716
6717	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6718	if (err)
6719		return err;
6720
6721	ad.type = LSM_AUDIT_DATA_IBPKEY;
6722	ibpkey.subnet_prefix = subnet_prefix;
6723	ibpkey.pkey = pkey_val;
6724	ad.u.ibpkey = &ibpkey;
6725	return avc_has_perm(&selinux_state,
6726			    sec->sid, sid,
6727			    SECCLASS_INFINIBAND_PKEY,
6728			    INFINIBAND_PKEY__ACCESS, &ad);
6729}
6730
6731static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6732					    u8 port_num)
6733{
6734	struct common_audit_data ad;
6735	int err;
6736	u32 sid = 0;
6737	struct ib_security_struct *sec = ib_sec;
6738	struct lsm_ibendport_audit ibendport;
6739
6740	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6741				      &sid);
6742
6743	if (err)
6744		return err;
6745
6746	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6747	ibendport.dev_name = dev_name;
6748	ibendport.port = port_num;
6749	ad.u.ibendport = &ibendport;
6750	return avc_has_perm(&selinux_state,
6751			    sec->sid, sid,
6752			    SECCLASS_INFINIBAND_ENDPORT,
6753			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6754}
6755
6756static int selinux_ib_alloc_security(void **ib_sec)
6757{
6758	struct ib_security_struct *sec;
6759
6760	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6761	if (!sec)
6762		return -ENOMEM;
6763	sec->sid = current_sid();
6764
6765	*ib_sec = sec;
6766	return 0;
6767}
6768
6769static void selinux_ib_free_security(void *ib_sec)
6770{
6771	kfree(ib_sec);
6772}
6773#endif
6774
6775#ifdef CONFIG_BPF_SYSCALL
6776static int selinux_bpf(int cmd, union bpf_attr *attr,
6777				     unsigned int size)
6778{
6779	u32 sid = current_sid();
6780	int ret;
6781
6782	switch (cmd) {
6783	case BPF_MAP_CREATE:
6784		ret = avc_has_perm(&selinux_state,
6785				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6786				   NULL);
6787		break;
6788	case BPF_PROG_LOAD:
6789		ret = avc_has_perm(&selinux_state,
6790				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6791				   NULL);
6792		break;
6793	default:
6794		ret = 0;
6795		break;
6796	}
6797
6798	return ret;
6799}
6800
6801static u32 bpf_map_fmode_to_av(fmode_t fmode)
6802{
6803	u32 av = 0;
6804
6805	if (fmode & FMODE_READ)
6806		av |= BPF__MAP_READ;
6807	if (fmode & FMODE_WRITE)
6808		av |= BPF__MAP_WRITE;
6809	return av;
6810}
6811
6812/* This function will check the file pass through unix socket or binder to see
6813 * if it is a bpf related object. And apply corresponding checks on the bpf
6814 * object based on the type. The bpf maps and programs, not like other files and
6815 * socket, are using a shared anonymous inode inside the kernel as their inode.
6816 * So checking that inode cannot identify if the process have privilege to
6817 * access the bpf object and that's why we have to add this additional check in
6818 * selinux_file_receive and selinux_binder_transfer_files.
6819 */
6820static int bpf_fd_pass(struct file *file, u32 sid)
6821{
6822	struct bpf_security_struct *bpfsec;
6823	struct bpf_prog *prog;
6824	struct bpf_map *map;
6825	int ret;
6826
6827	if (file->f_op == &bpf_map_fops) {
6828		map = file->private_data;
6829		bpfsec = map->security;
6830		ret = avc_has_perm(&selinux_state,
6831				   sid, bpfsec->sid, SECCLASS_BPF,
6832				   bpf_map_fmode_to_av(file->f_mode), NULL);
6833		if (ret)
6834			return ret;
6835	} else if (file->f_op == &bpf_prog_fops) {
6836		prog = file->private_data;
6837		bpfsec = prog->aux->security;
6838		ret = avc_has_perm(&selinux_state,
6839				   sid, bpfsec->sid, SECCLASS_BPF,
6840				   BPF__PROG_RUN, NULL);
6841		if (ret)
6842			return ret;
6843	}
6844	return 0;
6845}
6846
6847static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6848{
6849	u32 sid = current_sid();
6850	struct bpf_security_struct *bpfsec;
6851
6852	bpfsec = map->security;
6853	return avc_has_perm(&selinux_state,
6854			    sid, bpfsec->sid, SECCLASS_BPF,
6855			    bpf_map_fmode_to_av(fmode), NULL);
6856}
6857
6858static int selinux_bpf_prog(struct bpf_prog *prog)
6859{
6860	u32 sid = current_sid();
6861	struct bpf_security_struct *bpfsec;
6862
6863	bpfsec = prog->aux->security;
6864	return avc_has_perm(&selinux_state,
6865			    sid, bpfsec->sid, SECCLASS_BPF,
6866			    BPF__PROG_RUN, NULL);
6867}
6868
6869static int selinux_bpf_map_alloc(struct bpf_map *map)
6870{
6871	struct bpf_security_struct *bpfsec;
6872
6873	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6874	if (!bpfsec)
6875		return -ENOMEM;
6876
6877	bpfsec->sid = current_sid();
6878	map->security = bpfsec;
6879
6880	return 0;
6881}
6882
6883static void selinux_bpf_map_free(struct bpf_map *map)
6884{
6885	struct bpf_security_struct *bpfsec = map->security;
6886
6887	map->security = NULL;
6888	kfree(bpfsec);
6889}
6890
6891static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6892{
6893	struct bpf_security_struct *bpfsec;
6894
6895	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6896	if (!bpfsec)
6897		return -ENOMEM;
6898
6899	bpfsec->sid = current_sid();
6900	aux->security = bpfsec;
6901
6902	return 0;
6903}
6904
6905static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6906{
6907	struct bpf_security_struct *bpfsec = aux->security;
6908
6909	aux->security = NULL;
6910	kfree(bpfsec);
6911}
6912#endif
6913
6914struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6915	.lbs_cred = sizeof(struct task_security_struct),
6916	.lbs_file = sizeof(struct file_security_struct),
6917	.lbs_inode = sizeof(struct inode_security_struct),
6918	.lbs_ipc = sizeof(struct ipc_security_struct),
6919	.lbs_msg_msg = sizeof(struct msg_security_struct),
6920	.lbs_superblock = sizeof(struct superblock_security_struct),
6921};
6922
6923#ifdef CONFIG_PERF_EVENTS
6924static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6925{
6926	u32 requested, sid = current_sid();
6927
6928	if (type == PERF_SECURITY_OPEN)
6929		requested = PERF_EVENT__OPEN;
6930	else if (type == PERF_SECURITY_CPU)
6931		requested = PERF_EVENT__CPU;
6932	else if (type == PERF_SECURITY_KERNEL)
6933		requested = PERF_EVENT__KERNEL;
6934	else if (type == PERF_SECURITY_TRACEPOINT)
6935		requested = PERF_EVENT__TRACEPOINT;
6936	else
6937		return -EINVAL;
6938
6939	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6940			    requested, NULL);
6941}
6942
6943static int selinux_perf_event_alloc(struct perf_event *event)
6944{
6945	struct perf_event_security_struct *perfsec;
6946
6947	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6948	if (!perfsec)
6949		return -ENOMEM;
6950
6951	perfsec->sid = current_sid();
6952	event->security = perfsec;
6953
6954	return 0;
6955}
6956
6957static void selinux_perf_event_free(struct perf_event *event)
6958{
6959	struct perf_event_security_struct *perfsec = event->security;
6960
6961	event->security = NULL;
6962	kfree(perfsec);
6963}
6964
6965static int selinux_perf_event_read(struct perf_event *event)
6966{
6967	struct perf_event_security_struct *perfsec = event->security;
6968	u32 sid = current_sid();
6969
6970	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6971			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6972}
6973
6974static int selinux_perf_event_write(struct perf_event *event)
6975{
6976	struct perf_event_security_struct *perfsec = event->security;
6977	u32 sid = current_sid();
6978
6979	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6980			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6981}
6982#endif
6983
6984#ifdef CONFIG_IO_URING
6985/**
6986 * selinux_uring_override_creds - check the requested cred override
6987 * @new: the target creds
6988 *
6989 * Check to see if the current task is allowed to override it's credentials
6990 * to service an io_uring operation.
6991 */
6992static int selinux_uring_override_creds(const struct cred *new)
6993{
6994	return avc_has_perm(&selinux_state, current_sid(), cred_sid(new),
6995			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
6996}
6997
6998/**
6999 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7000 *
7001 * Check to see if the current task is allowed to create a new io_uring
7002 * kernel polling thread.
7003 */
7004static int selinux_uring_sqpoll(void)
7005{
7006	int sid = current_sid();
7007
7008	return avc_has_perm(&selinux_state, sid, sid,
7009			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7010}
7011
7012/**
7013 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7014 * @ioucmd: the io_uring command structure
7015 *
7016 * Check to see if the current domain is allowed to execute an
7017 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7018 *
7019 */
7020static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7021{
7022	struct file *file = ioucmd->file;
7023	struct inode *inode = file_inode(file);
7024	struct inode_security_struct *isec = selinux_inode(inode);
7025	struct common_audit_data ad;
7026
7027	ad.type = LSM_AUDIT_DATA_FILE;
7028	ad.u.file = file;
7029
7030	return avc_has_perm(&selinux_state, current_sid(), isec->sid,
7031			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7032}
7033#endif /* CONFIG_IO_URING */
7034
7035/*
7036 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7037 * 1. any hooks that don't belong to (2.) or (3.) below,
7038 * 2. hooks that both access structures allocated by other hooks, and allocate
7039 *    structures that can be later accessed by other hooks (mostly "cloning"
7040 *    hooks),
7041 * 3. hooks that only allocate structures that can be later accessed by other
7042 *    hooks ("allocating" hooks).
7043 *
7044 * Please follow block comment delimiters in the list to keep this order.
7045 *
7046 * This ordering is needed for SELinux runtime disable to work at least somewhat
7047 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7048 * when disabling SELinux at runtime.
7049 */
7050static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7051	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7052	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7053	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7054	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7055
7056	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7057	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7058	LSM_HOOK_INIT(capget, selinux_capget),
7059	LSM_HOOK_INIT(capset, selinux_capset),
7060	LSM_HOOK_INIT(capable, selinux_capable),
7061	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7062	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7063	LSM_HOOK_INIT(syslog, selinux_syslog),
7064	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7065
7066	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7067
7068	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7069	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7070	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
 
7071
7072	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7073	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
 
7074	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7075	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7076	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7077	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7078	LSM_HOOK_INIT(sb_mount, selinux_mount),
7079	LSM_HOOK_INIT(sb_umount, selinux_umount),
7080	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7081	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7082
7083	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7084
7085	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7086	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7087
 
7088	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7089	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7090	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7091	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7092	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7093	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7094	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7095	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7096	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7097	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7098	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7099	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7100	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7101	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7102	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7103	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7104	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7105	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7106	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7107	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7108	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7109	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7110	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7111	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7112	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7113	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7114	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7115	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7116	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7117	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7118	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7119
7120	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7121
7122	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7123	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
 
7124	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7125	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7126	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7127	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7128	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7129	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7130	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7131	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7132	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7133
7134	LSM_HOOK_INIT(file_open, selinux_file_open),
7135
7136	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
 
 
7137	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7138	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7139	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7140	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7141	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7142	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7143	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7144	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7145	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7146	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7147	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7148	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7149	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7150	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7151	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7152	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7153	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7154	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7155	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7156	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7157	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7158	LSM_HOOK_INIT(task_kill, selinux_task_kill),
 
7159	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7160	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7161
7162	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7163	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7164
 
 
 
 
 
 
7165	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7166	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7167	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7168	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7169
 
 
7170	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7171	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7172	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7173
 
 
7174	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7175	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7176	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7177
7178	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7179
7180	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7181	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7182
7183	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
 
7184	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7185	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7186	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7187	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7188	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
 
7189
7190	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7191	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7192
7193	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7194	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7195	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7196	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7197	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7198	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7199	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7200	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7201	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7202	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7203	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7204	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7205	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7206	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7207	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7208	LSM_HOOK_INIT(socket_getpeersec_stream,
7209			selinux_socket_getpeersec_stream),
7210	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
 
7211	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7212	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7213	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7214	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7215	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7216	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7217	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7218	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7219	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7220	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7221	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7222	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7223	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7224	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7225	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
 
7226	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7227	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7228	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7229	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7230	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7231#ifdef CONFIG_SECURITY_INFINIBAND
7232	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7233	LSM_HOOK_INIT(ib_endport_manage_subnet,
7234		      selinux_ib_endport_manage_subnet),
7235	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7236#endif
7237#ifdef CONFIG_SECURITY_NETWORK_XFRM
 
 
7238	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7239	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
 
 
 
7240	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7241	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7242	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7243	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7244			selinux_xfrm_state_pol_flow_match),
7245	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7246#endif
7247
7248#ifdef CONFIG_KEYS
 
7249	LSM_HOOK_INIT(key_free, selinux_key_free),
7250	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7251	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7252#ifdef CONFIG_KEY_NOTIFICATIONS
7253	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7254#endif
7255#endif
7256
7257#ifdef CONFIG_AUDIT
 
7258	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7259	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7260	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7261#endif
7262
7263#ifdef CONFIG_BPF_SYSCALL
7264	LSM_HOOK_INIT(bpf, selinux_bpf),
7265	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7266	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7267	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7268	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7269#endif
7270
7271#ifdef CONFIG_PERF_EVENTS
7272	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7273	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7274	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7275	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7276#endif
7277
7278#ifdef CONFIG_IO_URING
7279	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7280	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7281	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7282#endif
7283
7284	/*
7285	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7286	 */
7287	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7288	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7289	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7290#ifdef CONFIG_SECURITY_NETWORK_XFRM
7291	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7292#endif
7293
7294	/*
7295	 * PUT "ALLOCATING" HOOKS HERE
7296	 */
7297	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7298	LSM_HOOK_INIT(msg_queue_alloc_security,
7299		      selinux_msg_queue_alloc_security),
7300	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7301	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7302	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7303	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7304	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7305	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7306	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7307	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7308#ifdef CONFIG_SECURITY_INFINIBAND
7309	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7310#endif
7311#ifdef CONFIG_SECURITY_NETWORK_XFRM
7312	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7313	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7314	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7315		      selinux_xfrm_state_alloc_acquire),
7316#endif
7317#ifdef CONFIG_KEYS
7318	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7319#endif
7320#ifdef CONFIG_AUDIT
7321	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7322#endif
7323#ifdef CONFIG_BPF_SYSCALL
7324	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7325	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7326#endif
7327#ifdef CONFIG_PERF_EVENTS
7328	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7329#endif
7330};
7331
7332static __init int selinux_init(void)
7333{
7334	pr_info("SELinux:  Initializing.\n");
 
 
 
 
 
 
 
 
7335
7336	memset(&selinux_state, 0, sizeof(selinux_state));
7337	enforcing_set(&selinux_state, selinux_enforcing_boot);
7338	if (CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE)
7339		pr_err("SELinux: CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE is non-zero.  This is deprecated and will be rejected in a future kernel release.\n");
7340	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7341	selinux_avc_init(&selinux_state.avc);
7342	mutex_init(&selinux_state.status_lock);
7343	mutex_init(&selinux_state.policy_mutex);
7344
7345	/* Set the security state for the initial task. */
7346	cred_init_security();
7347
7348	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7349
 
 
 
 
 
 
7350	avc_init();
7351
7352	avtab_cache_init();
7353
7354	ebitmap_cache_init();
7355
7356	hashtab_cache_init();
7357
7358	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7359
7360	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7361		panic("SELinux: Unable to register AVC netcache callback\n");
7362
7363	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7364		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7365
7366	if (selinux_enforcing_boot)
7367		pr_debug("SELinux:  Starting in enforcing mode\n");
7368	else
7369		pr_debug("SELinux:  Starting in permissive mode\n");
7370
7371	fs_validate_description("selinux", selinux_fs_parameters);
7372
7373	return 0;
7374}
7375
7376static void delayed_superblock_init(struct super_block *sb, void *unused)
7377{
7378	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7379}
7380
7381void selinux_complete_init(void)
7382{
7383	pr_debug("SELinux:  Completing initialization.\n");
7384
7385	/* Set up any superblocks initialized prior to the policy load. */
7386	pr_debug("SELinux:  Setting up existing superblocks.\n");
7387	iterate_supers(delayed_superblock_init, NULL);
7388}
7389
7390/* SELinux requires early initialization in order to label
7391   all processes and objects when they are created. */
7392DEFINE_LSM(selinux) = {
7393	.name = "selinux",
7394	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7395	.enabled = &selinux_enabled_boot,
7396	.blobs = &selinux_blob_sizes,
7397	.init = selinux_init,
7398};
7399
7400#if defined(CONFIG_NETFILTER)
7401
7402static const struct nf_hook_ops selinux_nf_ops[] = {
7403	{
7404		.hook =		selinux_ip_postroute,
7405		.pf =		NFPROTO_IPV4,
7406		.hooknum =	NF_INET_POST_ROUTING,
7407		.priority =	NF_IP_PRI_SELINUX_LAST,
7408	},
7409	{
7410		.hook =		selinux_ip_forward,
7411		.pf =		NFPROTO_IPV4,
7412		.hooknum =	NF_INET_FORWARD,
7413		.priority =	NF_IP_PRI_SELINUX_FIRST,
7414	},
7415	{
7416		.hook =		selinux_ip_output,
7417		.pf =		NFPROTO_IPV4,
7418		.hooknum =	NF_INET_LOCAL_OUT,
7419		.priority =	NF_IP_PRI_SELINUX_FIRST,
7420	},
7421#if IS_ENABLED(CONFIG_IPV6)
7422	{
7423		.hook =		selinux_ip_postroute,
7424		.pf =		NFPROTO_IPV6,
7425		.hooknum =	NF_INET_POST_ROUTING,
7426		.priority =	NF_IP6_PRI_SELINUX_LAST,
7427	},
7428	{
7429		.hook =		selinux_ip_forward,
7430		.pf =		NFPROTO_IPV6,
7431		.hooknum =	NF_INET_FORWARD,
7432		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7433	},
7434	{
7435		.hook =		selinux_ip_output,
7436		.pf =		NFPROTO_IPV6,
7437		.hooknum =	NF_INET_LOCAL_OUT,
7438		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7439	},
7440#endif	/* IPV6 */
7441};
7442
7443static int __net_init selinux_nf_register(struct net *net)
7444{
7445	return nf_register_net_hooks(net, selinux_nf_ops,
7446				     ARRAY_SIZE(selinux_nf_ops));
7447}
7448
7449static void __net_exit selinux_nf_unregister(struct net *net)
7450{
7451	nf_unregister_net_hooks(net, selinux_nf_ops,
7452				ARRAY_SIZE(selinux_nf_ops));
7453}
7454
7455static struct pernet_operations selinux_net_ops = {
7456	.init = selinux_nf_register,
7457	.exit = selinux_nf_unregister,
7458};
7459
7460static int __init selinux_nf_ip_init(void)
7461{
7462	int err;
7463
7464	if (!selinux_enabled_boot)
7465		return 0;
7466
7467	pr_debug("SELinux:  Registering netfilter hooks\n");
7468
7469	err = register_pernet_subsys(&selinux_net_ops);
7470	if (err)
7471		panic("SELinux: register_pernet_subsys: error %d\n", err);
7472
7473	return 0;
7474}
 
7475__initcall(selinux_nf_ip_init);
7476
7477#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7478static void selinux_nf_ip_exit(void)
7479{
7480	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7481
7482	unregister_pernet_subsys(&selinux_net_ops);
7483}
7484#endif
7485
7486#else /* CONFIG_NETFILTER */
7487
7488#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7489#define selinux_nf_ip_exit()
7490#endif
7491
7492#endif /* CONFIG_NETFILTER */
7493
7494#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7495int selinux_disable(struct selinux_state *state)
 
 
7496{
7497	if (selinux_initialized(state)) {
7498		/* Not permitted after initial policy load. */
7499		return -EINVAL;
7500	}
7501
7502	if (selinux_disabled(state)) {
7503		/* Only do this once. */
7504		return -EINVAL;
7505	}
7506
7507	selinux_mark_disabled(state);
7508
7509	pr_info("SELinux:  Disabled at runtime.\n");
7510
7511	/*
7512	 * Unregister netfilter hooks.
7513	 * Must be done before security_delete_hooks() to avoid breaking
7514	 * runtime disable.
7515	 */
7516	selinux_nf_ip_exit();
7517
7518	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7519
7520	/* Try to destroy the avc node cache */
7521	avc_disable();
 
 
 
7522
7523	/* Unregister selinuxfs. */
7524	exit_sel_fs();
7525
7526	return 0;
7527}
7528#endif
v4.10.11
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
 
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
 
 
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  55#include <net/inet_connection_sock.h>
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>	/* for network interface checks */
  64#include <net/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
 
 
  68#include <linux/quota.h>
  69#include <linux/un.h>		/* for Unix socket types */
  70#include <net/af_unix.h>	/* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
  83#include <linux/export.h>
  84#include <linux/msg.h>
  85#include <linux/shm.h>
 
 
 
 
 
 
 
  86
  87#include "avc.h"
  88#include "objsec.h"
  89#include "netif.h"
  90#include "netnode.h"
  91#include "netport.h"
 
  92#include "xfrm.h"
  93#include "netlabel.h"
  94#include "audit.h"
  95#include "avc_ss.h"
  96
 
 
  97/* SECMARK reference count */
  98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
  99
 100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 101int selinux_enforcing;
 102
 103static int __init enforcing_setup(char *str)
 104{
 105	unsigned long enforcing;
 106	if (!kstrtoul(str, 0, &enforcing))
 107		selinux_enforcing = enforcing ? 1 : 0;
 108	return 1;
 109}
 110__setup("enforcing=", enforcing_setup);
 
 
 111#endif
 112
 
 113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 115
 116static int __init selinux_enabled_setup(char *str)
 117{
 118	unsigned long enabled;
 119	if (!kstrtoul(str, 0, &enabled))
 120		selinux_enabled = enabled ? 1 : 0;
 121	return 1;
 122}
 123__setup("selinux=", selinux_enabled_setup);
 124#else
 125int selinux_enabled = 1;
 126#endif
 127
 128static struct kmem_cache *sel_inode_cache;
 129static struct kmem_cache *file_security_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 130
 131/**
 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 133 *
 134 * Description:
 135 * This function checks the SECMARK reference counter to see if any SECMARK
 136 * targets are currently configured, if the reference counter is greater than
 137 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 138 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 139 * policy capability is enabled, SECMARK is always considered enabled.
 140 *
 141 */
 142static int selinux_secmark_enabled(void)
 143{
 144	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 
 145}
 146
 147/**
 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 149 *
 150 * Description:
 151 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 152 * (1) if any are enabled or false (0) if neither are enabled.  If the
 153 * always_check_network policy capability is enabled, peer labeling
 154 * is always considered enabled.
 155 *
 156 */
 157static int selinux_peerlbl_enabled(void)
 158{
 159	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 
 160}
 161
 162static int selinux_netcache_avc_callback(u32 event)
 163{
 164	if (event == AVC_CALLBACK_RESET) {
 165		sel_netif_flush();
 166		sel_netnode_flush();
 167		sel_netport_flush();
 168		synchronize_net();
 169	}
 170	return 0;
 171}
 172
 
 
 
 
 
 
 
 
 
 
 173/*
 174 * initialise the security for the init task
 175 */
 176static void cred_init_security(void)
 177{
 178	struct cred *cred = (struct cred *) current->real_cred;
 179	struct task_security_struct *tsec;
 180
 181	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 182	if (!tsec)
 183		panic("SELinux:  Failed to initialize initial task.\n");
 184
 185	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 186	cred->security = tsec;
 187}
 188
 189/*
 190 * get the security ID of a set of credentials
 191 */
 192static inline u32 cred_sid(const struct cred *cred)
 193{
 194	const struct task_security_struct *tsec;
 195
 196	tsec = cred->security;
 197	return tsec->sid;
 198}
 199
 200/*
 201 * get the objective security ID of a task
 202 */
 203static inline u32 task_sid(const struct task_struct *task)
 204{
 205	u32 sid;
 206
 207	rcu_read_lock();
 208	sid = cred_sid(__task_cred(task));
 209	rcu_read_unlock();
 210	return sid;
 211}
 212
 213/*
 214 * get the subjective security ID of the current task
 215 */
 216static inline u32 current_sid(void)
 217{
 218	const struct task_security_struct *tsec = current_security();
 219
 220	return tsec->sid;
 221}
 222
 223/* Allocate and free functions for each kind of security blob. */
 224
 225static int inode_alloc_security(struct inode *inode)
 226{
 227	struct inode_security_struct *isec;
 228	u32 sid = current_sid();
 229
 230	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 231	if (!isec)
 232		return -ENOMEM;
 233
 234	spin_lock_init(&isec->lock);
 235	INIT_LIST_HEAD(&isec->list);
 236	isec->inode = inode;
 237	isec->sid = SECINITSID_UNLABELED;
 238	isec->sclass = SECCLASS_FILE;
 239	isec->task_sid = sid;
 240	isec->initialized = LABEL_INVALID;
 241	inode->i_security = isec;
 242
 243	return 0;
 244}
 245
 246static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 247
 248/*
 249 * Try reloading inode security labels that have been marked as invalid.  The
 250 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 251 * allowed; when set to false, returns -ECHILD when the label is
 252 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 253 * when no dentry is available, set it to NULL instead.
 254 */
 255static int __inode_security_revalidate(struct inode *inode,
 256				       struct dentry *opt_dentry,
 257				       bool may_sleep)
 258{
 259	struct inode_security_struct *isec = inode->i_security;
 260
 261	might_sleep_if(may_sleep);
 262
 263	if (ss_initialized && isec->initialized != LABEL_INITIALIZED) {
 
 264		if (!may_sleep)
 265			return -ECHILD;
 266
 267		/*
 268		 * Try reloading the inode security label.  This will fail if
 269		 * @opt_dentry is NULL and no dentry for this inode can be
 270		 * found; in that case, continue using the old label.
 271		 */
 272		inode_doinit_with_dentry(inode, opt_dentry);
 273	}
 274	return 0;
 275}
 276
 277static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 278{
 279	return inode->i_security;
 280}
 281
 282static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 283{
 284	int error;
 285
 286	error = __inode_security_revalidate(inode, NULL, !rcu);
 287	if (error)
 288		return ERR_PTR(error);
 289	return inode->i_security;
 290}
 291
 292/*
 293 * Get the security label of an inode.
 294 */
 295static struct inode_security_struct *inode_security(struct inode *inode)
 296{
 297	__inode_security_revalidate(inode, NULL, true);
 298	return inode->i_security;
 299}
 300
 301static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 302{
 303	struct inode *inode = d_backing_inode(dentry);
 304
 305	return inode->i_security;
 306}
 307
 308/*
 309 * Get the security label of a dentry's backing inode.
 310 */
 311static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 312{
 313	struct inode *inode = d_backing_inode(dentry);
 314
 315	__inode_security_revalidate(inode, dentry, true);
 316	return inode->i_security;
 317}
 318
 319static void inode_free_rcu(struct rcu_head *head)
 320{
 321	struct inode_security_struct *isec;
 322
 323	isec = container_of(head, struct inode_security_struct, rcu);
 324	kmem_cache_free(sel_inode_cache, isec);
 325}
 326
 327static void inode_free_security(struct inode *inode)
 328{
 329	struct inode_security_struct *isec = inode->i_security;
 330	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 331
 
 
 
 332	/*
 333	 * As not all inode security structures are in a list, we check for
 334	 * empty list outside of the lock to make sure that we won't waste
 335	 * time taking a lock doing nothing.
 336	 *
 337	 * The list_del_init() function can be safely called more than once.
 338	 * It should not be possible for this function to be called with
 339	 * concurrent list_add(), but for better safety against future changes
 340	 * in the code, we use list_empty_careful() here.
 341	 */
 342	if (!list_empty_careful(&isec->list)) {
 343		spin_lock(&sbsec->isec_lock);
 344		list_del_init(&isec->list);
 345		spin_unlock(&sbsec->isec_lock);
 346	}
 347
 348	/*
 349	 * The inode may still be referenced in a path walk and
 350	 * a call to selinux_inode_permission() can be made
 351	 * after inode_free_security() is called. Ideally, the VFS
 352	 * wouldn't do this, but fixing that is a much harder
 353	 * job. For now, simply free the i_security via RCU, and
 354	 * leave the current inode->i_security pointer intact.
 355	 * The inode will be freed after the RCU grace period too.
 356	 */
 357	call_rcu(&isec->rcu, inode_free_rcu);
 358}
 359
 360static int file_alloc_security(struct file *file)
 361{
 362	struct file_security_struct *fsec;
 363	u32 sid = current_sid();
 364
 365	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 366	if (!fsec)
 367		return -ENOMEM;
 368
 369	fsec->sid = sid;
 370	fsec->fown_sid = sid;
 371	file->f_security = fsec;
 372
 373	return 0;
 374}
 375
 376static void file_free_security(struct file *file)
 377{
 378	struct file_security_struct *fsec = file->f_security;
 379	file->f_security = NULL;
 380	kmem_cache_free(file_security_cache, fsec);
 381}
 382
 383static int superblock_alloc_security(struct super_block *sb)
 384{
 385	struct superblock_security_struct *sbsec;
 386
 387	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 388	if (!sbsec)
 389		return -ENOMEM;
 390
 391	mutex_init(&sbsec->lock);
 392	INIT_LIST_HEAD(&sbsec->isec_head);
 393	spin_lock_init(&sbsec->isec_lock);
 394	sbsec->sb = sb;
 395	sbsec->sid = SECINITSID_UNLABELED;
 396	sbsec->def_sid = SECINITSID_FILE;
 397	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 398	sb->s_security = sbsec;
 399
 400	return 0;
 401}
 402
 403static void superblock_free_security(struct super_block *sb)
 404{
 405	struct superblock_security_struct *sbsec = sb->s_security;
 406	sb->s_security = NULL;
 407	kfree(sbsec);
 408}
 409
 410/* The file system's label must be initialized prior to use. */
 411
 412static const char *labeling_behaviors[7] = {
 413	"uses xattr",
 414	"uses transition SIDs",
 415	"uses task SIDs",
 416	"uses genfs_contexts",
 417	"not configured for labeling",
 418	"uses mountpoint labeling",
 419	"uses native labeling",
 420};
 421
 422static inline int inode_doinit(struct inode *inode)
 423{
 424	return inode_doinit_with_dentry(inode, NULL);
 425}
 426
 427enum {
 428	Opt_error = -1,
 429	Opt_context = 1,
 
 430	Opt_fscontext = 2,
 431	Opt_defcontext = 3,
 432	Opt_rootcontext = 4,
 433	Opt_labelsupport = 5,
 434	Opt_nextmntopt = 6,
 
 
 
 
 
 
 
 
 
 
 
 
 435};
 
 436
 437#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 
 
 438
 439static const match_table_t tokens = {
 440	{Opt_context, CONTEXT_STR "%s"},
 441	{Opt_fscontext, FSCONTEXT_STR "%s"},
 442	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 443	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 444	{Opt_labelsupport, LABELSUPP_STR},
 445	{Opt_error, NULL},
 446};
 
 
 
 
 
 
 447
 448#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 449
 450static int may_context_mount_sb_relabel(u32 sid,
 451			struct superblock_security_struct *sbsec,
 452			const struct cred *cred)
 453{
 454	const struct task_security_struct *tsec = cred->security;
 455	int rc;
 456
 457	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 458			  FILESYSTEM__RELABELFROM, NULL);
 459	if (rc)
 460		return rc;
 461
 462	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 463			  FILESYSTEM__RELABELTO, NULL);
 464	return rc;
 465}
 466
 467static int may_context_mount_inode_relabel(u32 sid,
 468			struct superblock_security_struct *sbsec,
 469			const struct cred *cred)
 470{
 471	const struct task_security_struct *tsec = cred->security;
 472	int rc;
 473	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 474			  FILESYSTEM__RELABELFROM, NULL);
 475	if (rc)
 476		return rc;
 477
 478	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 479			  FILESYSTEM__ASSOCIATE, NULL);
 480	return rc;
 481}
 482
 
 
 
 
 
 
 
 
 
 
 
 
 
 483static int selinux_is_sblabel_mnt(struct super_block *sb)
 484{
 485	struct superblock_security_struct *sbsec = sb->s_security;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486
 487	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 488		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 489		sbsec->behavior == SECURITY_FS_USE_TASK ||
 490		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 491		/* Special handling. Genfs but also in-core setxattr handler */
 492		!strcmp(sb->s_type->name, "sysfs") ||
 493		!strcmp(sb->s_type->name, "pstore") ||
 494		!strcmp(sb->s_type->name, "debugfs") ||
 495		!strcmp(sb->s_type->name, "rootfs");
 496}
 497
 498static int sb_finish_set_opts(struct super_block *sb)
 499{
 500	struct superblock_security_struct *sbsec = sb->s_security;
 501	struct dentry *root = sb->s_root;
 502	struct inode *root_inode = d_backing_inode(root);
 503	int rc = 0;
 504
 505	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 506		/* Make sure that the xattr handler exists and that no
 507		   error other than -ENODATA is returned by getxattr on
 508		   the root directory.  -ENODATA is ok, as this may be
 509		   the first boot of the SELinux kernel before we have
 510		   assigned xattr values to the filesystem. */
 511		if (!(root_inode->i_opflags & IOP_XATTR)) {
 512			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 513			       "xattr support\n", sb->s_id, sb->s_type->name);
 514			rc = -EOPNOTSUPP;
 515			goto out;
 516		}
 517
 518		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 519		if (rc < 0 && rc != -ENODATA) {
 520			if (rc == -EOPNOTSUPP)
 521				printk(KERN_WARNING "SELinux: (dev %s, type "
 522				       "%s) has no security xattr handler\n",
 523				       sb->s_id, sb->s_type->name);
 524			else
 525				printk(KERN_WARNING "SELinux: (dev %s, type "
 526				       "%s) getxattr errno %d\n", sb->s_id,
 527				       sb->s_type->name, -rc);
 528			goto out;
 529		}
 530	}
 531
 532	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 533		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 534		       sb->s_id, sb->s_type->name);
 535
 536	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 537	if (selinux_is_sblabel_mnt(sb))
 538		sbsec->flags |= SBLABEL_MNT;
 
 
 539
 540	/* Initialize the root inode. */
 541	rc = inode_doinit_with_dentry(root_inode, root);
 542
 543	/* Initialize any other inodes associated with the superblock, e.g.
 544	   inodes created prior to initial policy load or inodes created
 545	   during get_sb by a pseudo filesystem that directly
 546	   populates itself. */
 547	spin_lock(&sbsec->isec_lock);
 548next_inode:
 549	if (!list_empty(&sbsec->isec_head)) {
 550		struct inode_security_struct *isec =
 551				list_entry(sbsec->isec_head.next,
 552					   struct inode_security_struct, list);
 553		struct inode *inode = isec->inode;
 554		list_del_init(&isec->list);
 555		spin_unlock(&sbsec->isec_lock);
 556		inode = igrab(inode);
 557		if (inode) {
 558			if (!IS_PRIVATE(inode))
 559				inode_doinit(inode);
 560			iput(inode);
 561		}
 562		spin_lock(&sbsec->isec_lock);
 563		goto next_inode;
 564	}
 565	spin_unlock(&sbsec->isec_lock);
 566out:
 567	return rc;
 568}
 569
 570/*
 571 * This function should allow an FS to ask what it's mount security
 572 * options were so it can use those later for submounts, displaying
 573 * mount options, or whatever.
 574 */
 575static int selinux_get_mnt_opts(const struct super_block *sb,
 576				struct security_mnt_opts *opts)
 577{
 578	int rc = 0, i;
 579	struct superblock_security_struct *sbsec = sb->s_security;
 580	char *context = NULL;
 581	u32 len;
 582	char tmp;
 583
 584	security_init_mnt_opts(opts);
 585
 586	if (!(sbsec->flags & SE_SBINITIALIZED))
 587		return -EINVAL;
 588
 589	if (!ss_initialized)
 590		return -EINVAL;
 591
 592	/* make sure we always check enough bits to cover the mask */
 593	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 594
 595	tmp = sbsec->flags & SE_MNTMASK;
 596	/* count the number of mount options for this sb */
 597	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 598		if (tmp & 0x01)
 599			opts->num_mnt_opts++;
 600		tmp >>= 1;
 601	}
 602	/* Check if the Label support flag is set */
 603	if (sbsec->flags & SBLABEL_MNT)
 604		opts->num_mnt_opts++;
 605
 606	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 607	if (!opts->mnt_opts) {
 608		rc = -ENOMEM;
 609		goto out_free;
 610	}
 611
 612	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 613	if (!opts->mnt_opts_flags) {
 614		rc = -ENOMEM;
 615		goto out_free;
 616	}
 617
 618	i = 0;
 619	if (sbsec->flags & FSCONTEXT_MNT) {
 620		rc = security_sid_to_context(sbsec->sid, &context, &len);
 621		if (rc)
 622			goto out_free;
 623		opts->mnt_opts[i] = context;
 624		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 625	}
 626	if (sbsec->flags & CONTEXT_MNT) {
 627		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 628		if (rc)
 629			goto out_free;
 630		opts->mnt_opts[i] = context;
 631		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 632	}
 633	if (sbsec->flags & DEFCONTEXT_MNT) {
 634		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 635		if (rc)
 636			goto out_free;
 637		opts->mnt_opts[i] = context;
 638		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 639	}
 640	if (sbsec->flags & ROOTCONTEXT_MNT) {
 641		struct dentry *root = sbsec->sb->s_root;
 642		struct inode_security_struct *isec = backing_inode_security(root);
 643
 644		rc = security_sid_to_context(isec->sid, &context, &len);
 645		if (rc)
 646			goto out_free;
 647		opts->mnt_opts[i] = context;
 648		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 649	}
 650	if (sbsec->flags & SBLABEL_MNT) {
 651		opts->mnt_opts[i] = NULL;
 652		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 653	}
 654
 655	BUG_ON(i != opts->num_mnt_opts);
 656
 657	return 0;
 658
 659out_free:
 660	security_free_mnt_opts(opts);
 661	return rc;
 662}
 663
 664static int bad_option(struct superblock_security_struct *sbsec, char flag,
 665		      u32 old_sid, u32 new_sid)
 666{
 667	char mnt_flags = sbsec->flags & SE_MNTMASK;
 668
 669	/* check if the old mount command had the same options */
 670	if (sbsec->flags & SE_SBINITIALIZED)
 671		if (!(sbsec->flags & flag) ||
 672		    (old_sid != new_sid))
 673			return 1;
 674
 675	/* check if we were passed the same options twice,
 676	 * aka someone passed context=a,context=b
 677	 */
 678	if (!(sbsec->flags & SE_SBINITIALIZED))
 679		if (mnt_flags & flag)
 680			return 1;
 681	return 0;
 682}
 683
 684/*
 685 * Allow filesystems with binary mount data to explicitly set mount point
 686 * labeling information.
 687 */
 688static int selinux_set_mnt_opts(struct super_block *sb,
 689				struct security_mnt_opts *opts,
 690				unsigned long kern_flags,
 691				unsigned long *set_kern_flags)
 692{
 693	const struct cred *cred = current_cred();
 694	int rc = 0, i;
 695	struct superblock_security_struct *sbsec = sb->s_security;
 696	const char *name = sb->s_type->name;
 697	struct dentry *root = sbsec->sb->s_root;
 698	struct inode_security_struct *root_isec;
 699	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 700	u32 defcontext_sid = 0;
 701	char **mount_options = opts->mnt_opts;
 702	int *flags = opts->mnt_opts_flags;
 703	int num_opts = opts->num_mnt_opts;
 704
 705	mutex_lock(&sbsec->lock);
 706
 707	if (!ss_initialized) {
 708		if (!num_opts) {
 709			/* Defer initialization until selinux_complete_init,
 710			   after the initial policy is loaded and the security
 711			   server is ready to handle calls. */
 712			goto out;
 713		}
 714		rc = -EINVAL;
 715		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 716			"before the security server is initialized\n");
 717		goto out;
 718	}
 719	if (kern_flags && !set_kern_flags) {
 720		/* Specifying internal flags without providing a place to
 721		 * place the results is not allowed */
 722		rc = -EINVAL;
 723		goto out;
 724	}
 725
 726	/*
 727	 * Binary mount data FS will come through this function twice.  Once
 728	 * from an explicit call and once from the generic calls from the vfs.
 729	 * Since the generic VFS calls will not contain any security mount data
 730	 * we need to skip the double mount verification.
 731	 *
 732	 * This does open a hole in which we will not notice if the first
 733	 * mount using this sb set explict options and a second mount using
 734	 * this sb does not set any security options.  (The first options
 735	 * will be used for both mounts)
 736	 */
 737	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 738	    && (num_opts == 0))
 739		goto out;
 740
 741	root_isec = backing_inode_security_novalidate(root);
 742
 743	/*
 744	 * parse the mount options, check if they are valid sids.
 745	 * also check if someone is trying to mount the same sb more
 746	 * than once with different security options.
 747	 */
 748	for (i = 0; i < num_opts; i++) {
 749		u32 sid;
 750
 751		if (flags[i] == SBLABEL_MNT)
 752			continue;
 753		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
 754		if (rc) {
 755			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 756			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 757			       mount_options[i], sb->s_id, name, rc);
 758			goto out;
 759		}
 760		switch (flags[i]) {
 761		case FSCONTEXT_MNT:
 762			fscontext_sid = sid;
 763
 764			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 765					fscontext_sid))
 766				goto out_double_mount;
 767
 768			sbsec->flags |= FSCONTEXT_MNT;
 769			break;
 770		case CONTEXT_MNT:
 771			context_sid = sid;
 772
 773			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 774					context_sid))
 775				goto out_double_mount;
 776
 777			sbsec->flags |= CONTEXT_MNT;
 778			break;
 779		case ROOTCONTEXT_MNT:
 780			rootcontext_sid = sid;
 781
 782			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 783					rootcontext_sid))
 784				goto out_double_mount;
 785
 786			sbsec->flags |= ROOTCONTEXT_MNT;
 787
 788			break;
 789		case DEFCONTEXT_MNT:
 790			defcontext_sid = sid;
 791
 792			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 793					defcontext_sid))
 794				goto out_double_mount;
 795
 796			sbsec->flags |= DEFCONTEXT_MNT;
 797
 798			break;
 799		default:
 800			rc = -EINVAL;
 801			goto out;
 802		}
 803	}
 804
 805	if (sbsec->flags & SE_SBINITIALIZED) {
 806		/* previously mounted with options, but not on this attempt? */
 807		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 808			goto out_double_mount;
 809		rc = 0;
 810		goto out;
 811	}
 812
 813	if (strcmp(sb->s_type->name, "proc") == 0)
 814		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 815
 816	if (!strcmp(sb->s_type->name, "debugfs") ||
 817	    !strcmp(sb->s_type->name, "sysfs") ||
 818	    !strcmp(sb->s_type->name, "pstore"))
 
 
 
 819		sbsec->flags |= SE_SBGENFS;
 820
 
 
 
 
 
 821	if (!sbsec->behavior) {
 822		/*
 823		 * Determine the labeling behavior to use for this
 824		 * filesystem type.
 825		 */
 826		rc = security_fs_use(sb);
 827		if (rc) {
 828			printk(KERN_WARNING
 829				"%s: security_fs_use(%s) returned %d\n",
 830					__func__, sb->s_type->name, rc);
 831			goto out;
 832		}
 833	}
 834
 835	/*
 836	 * If this is a user namespace mount, no contexts are allowed
 837	 * on the command line and security labels must be ignored.
 
 838	 */
 839	if (sb->s_user_ns != &init_user_ns) {
 
 
 
 
 840		if (context_sid || fscontext_sid || rootcontext_sid ||
 841		    defcontext_sid) {
 842			rc = -EACCES;
 843			goto out;
 844		}
 845		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 846			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 847			rc = security_transition_sid(current_sid(), current_sid(),
 
 
 848						     SECCLASS_FILE, NULL,
 849						     &sbsec->mntpoint_sid);
 850			if (rc)
 851				goto out;
 852		}
 853		goto out_set_opts;
 854	}
 855
 856	/* sets the context of the superblock for the fs being mounted. */
 857	if (fscontext_sid) {
 858		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 859		if (rc)
 860			goto out;
 861
 862		sbsec->sid = fscontext_sid;
 863	}
 864
 865	/*
 866	 * Switch to using mount point labeling behavior.
 867	 * sets the label used on all file below the mountpoint, and will set
 868	 * the superblock context if not already set.
 869	 */
 870	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 871		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 872		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 873	}
 874
 875	if (context_sid) {
 876		if (!fscontext_sid) {
 877			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 878							  cred);
 879			if (rc)
 880				goto out;
 881			sbsec->sid = context_sid;
 882		} else {
 883			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 884							     cred);
 885			if (rc)
 886				goto out;
 887		}
 888		if (!rootcontext_sid)
 889			rootcontext_sid = context_sid;
 890
 891		sbsec->mntpoint_sid = context_sid;
 892		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 893	}
 894
 895	if (rootcontext_sid) {
 896		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 897						     cred);
 898		if (rc)
 899			goto out;
 900
 901		root_isec->sid = rootcontext_sid;
 902		root_isec->initialized = LABEL_INITIALIZED;
 903	}
 904
 905	if (defcontext_sid) {
 906		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 907			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 908			rc = -EINVAL;
 909			printk(KERN_WARNING "SELinux: defcontext option is "
 910			       "invalid for this filesystem type\n");
 911			goto out;
 912		}
 913
 914		if (defcontext_sid != sbsec->def_sid) {
 915			rc = may_context_mount_inode_relabel(defcontext_sid,
 916							     sbsec, cred);
 917			if (rc)
 918				goto out;
 919		}
 920
 921		sbsec->def_sid = defcontext_sid;
 922	}
 923
 924out_set_opts:
 925	rc = sb_finish_set_opts(sb);
 926out:
 927	mutex_unlock(&sbsec->lock);
 928	return rc;
 929out_double_mount:
 930	rc = -EINVAL;
 931	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 932	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 933	goto out;
 934}
 935
 936static int selinux_cmp_sb_context(const struct super_block *oldsb,
 937				    const struct super_block *newsb)
 938{
 939	struct superblock_security_struct *old = oldsb->s_security;
 940	struct superblock_security_struct *new = newsb->s_security;
 941	char oldflags = old->flags & SE_MNTMASK;
 942	char newflags = new->flags & SE_MNTMASK;
 943
 944	if (oldflags != newflags)
 945		goto mismatch;
 946	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 947		goto mismatch;
 948	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 949		goto mismatch;
 950	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 951		goto mismatch;
 952	if (oldflags & ROOTCONTEXT_MNT) {
 953		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 954		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 955		if (oldroot->sid != newroot->sid)
 956			goto mismatch;
 957	}
 958	return 0;
 959mismatch:
 960	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 961			    "different security settings for (dev %s, "
 962			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 963	return -EBUSY;
 964}
 965
 966static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 967					struct super_block *newsb)
 
 
 968{
 969	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 970	struct superblock_security_struct *newsbsec = newsb->s_security;
 
 
 971
 972	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 973	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 974	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 975
 976	/*
 977	 * if the parent was able to be mounted it clearly had no special lsm
 978	 * mount options.  thus we can safely deal with this superblock later
 979	 */
 980	if (!ss_initialized)
 981		return 0;
 982
 
 
 
 
 
 
 
 983	/* how can we clone if the old one wasn't set up?? */
 984	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 985
 986	/* if fs is reusing a sb, make sure that the contexts match */
 987	if (newsbsec->flags & SE_SBINITIALIZED)
 
 
 988		return selinux_cmp_sb_context(oldsb, newsb);
 
 989
 990	mutex_lock(&newsbsec->lock);
 991
 992	newsbsec->flags = oldsbsec->flags;
 993
 994	newsbsec->sid = oldsbsec->sid;
 995	newsbsec->def_sid = oldsbsec->def_sid;
 996	newsbsec->behavior = oldsbsec->behavior;
 997
 
 
 
 
 
 
 
 
 
 
 
 
 998	if (set_context) {
 999		u32 sid = oldsbsec->mntpoint_sid;
1000
1001		if (!set_fscontext)
1002			newsbsec->sid = sid;
1003		if (!set_rootcontext) {
1004			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1005			newisec->sid = sid;
1006		}
1007		newsbsec->mntpoint_sid = sid;
1008	}
1009	if (set_rootcontext) {
1010		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1011		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1012
1013		newisec->sid = oldisec->sid;
1014	}
1015
1016	sb_finish_set_opts(newsb);
 
1017	mutex_unlock(&newsbsec->lock);
1018	return 0;
1019}
1020
1021static int selinux_parse_opts_str(char *options,
1022				  struct security_mnt_opts *opts)
 
 
1023{
1024	char *p;
1025	char *context = NULL, *defcontext = NULL;
1026	char *fscontext = NULL, *rootcontext = NULL;
1027	int rc, num_mnt_opts = 0;
1028
1029	opts->num_mnt_opts = 0;
 
 
 
 
1030
1031	/* Standard string-based options. */
1032	while ((p = strsep(&options, "|")) != NULL) {
1033		int token;
1034		substring_t args[MAX_OPT_ARGS];
1035
1036		if (!*p)
1037			continue;
1038
1039		token = match_token(p, tokens, args);
1040
1041		switch (token) {
1042		case Opt_context:
1043			if (context || defcontext) {
1044				rc = -EINVAL;
1045				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1046				goto out_err;
1047			}
1048			context = match_strdup(&args[0]);
1049			if (!context) {
1050				rc = -ENOMEM;
1051				goto out_err;
1052			}
1053			break;
1054
1055		case Opt_fscontext:
1056			if (fscontext) {
1057				rc = -EINVAL;
1058				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1059				goto out_err;
1060			}
1061			fscontext = match_strdup(&args[0]);
1062			if (!fscontext) {
1063				rc = -ENOMEM;
1064				goto out_err;
1065			}
1066			break;
1067
1068		case Opt_rootcontext:
1069			if (rootcontext) {
1070				rc = -EINVAL;
1071				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1072				goto out_err;
1073			}
1074			rootcontext = match_strdup(&args[0]);
1075			if (!rootcontext) {
1076				rc = -ENOMEM;
1077				goto out_err;
1078			}
1079			break;
1080
1081		case Opt_defcontext:
1082			if (context || defcontext) {
1083				rc = -EINVAL;
1084				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1085				goto out_err;
1086			}
1087			defcontext = match_strdup(&args[0]);
1088			if (!defcontext) {
1089				rc = -ENOMEM;
1090				goto out_err;
1091			}
1092			break;
1093		case Opt_labelsupport:
1094			break;
1095		default:
1096			rc = -EINVAL;
1097			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1098			goto out_err;
1099
1100		}
1101	}
1102
1103	rc = -ENOMEM;
1104	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1105	if (!opts->mnt_opts)
1106		goto out_err;
1107
1108	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1109				       GFP_KERNEL);
1110	if (!opts->mnt_opts_flags) {
1111		kfree(opts->mnt_opts);
1112		goto out_err;
1113	}
1114
1115	if (fscontext) {
1116		opts->mnt_opts[num_mnt_opts] = fscontext;
1117		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118	}
1119	if (context) {
1120		opts->mnt_opts[num_mnt_opts] = context;
1121		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1122	}
1123	if (rootcontext) {
1124		opts->mnt_opts[num_mnt_opts] = rootcontext;
1125		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1126	}
1127	if (defcontext) {
1128		opts->mnt_opts[num_mnt_opts] = defcontext;
1129		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1130	}
1131
1132	opts->num_mnt_opts = num_mnt_opts;
1133	return 0;
1134
1135out_err:
1136	kfree(context);
1137	kfree(defcontext);
1138	kfree(fscontext);
1139	kfree(rootcontext);
1140	return rc;
1141}
1142/*
1143 * string mount options parsing and call set the sbsec
1144 */
1145static int superblock_doinit(struct super_block *sb, void *data)
1146{
1147	int rc = 0;
1148	char *options = data;
1149	struct security_mnt_opts opts;
1150
1151	security_init_mnt_opts(&opts);
1152
1153	if (!data)
1154		goto out;
1155
1156	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1157
1158	rc = selinux_parse_opts_str(options, &opts);
1159	if (rc)
1160		goto out_err;
1161
1162out:
1163	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1164
1165out_err:
1166	security_free_mnt_opts(&opts);
1167	return rc;
1168}
1169
1170static void selinux_write_opts(struct seq_file *m,
1171			       struct security_mnt_opts *opts)
1172{
1173	int i;
1174	char *prefix;
1175
1176	for (i = 0; i < opts->num_mnt_opts; i++) {
1177		char *has_comma;
1178
1179		if (opts->mnt_opts[i])
1180			has_comma = strchr(opts->mnt_opts[i], ',');
1181		else
1182			has_comma = NULL;
1183
1184		switch (opts->mnt_opts_flags[i]) {
1185		case CONTEXT_MNT:
1186			prefix = CONTEXT_STR;
1187			break;
1188		case FSCONTEXT_MNT:
1189			prefix = FSCONTEXT_STR;
1190			break;
1191		case ROOTCONTEXT_MNT:
1192			prefix = ROOTCONTEXT_STR;
1193			break;
1194		case DEFCONTEXT_MNT:
1195			prefix = DEFCONTEXT_STR;
1196			break;
1197		case SBLABEL_MNT:
1198			seq_putc(m, ',');
1199			seq_puts(m, LABELSUPP_STR);
1200			continue;
1201		default:
1202			BUG();
1203			return;
1204		};
1205		/* we need a comma before each option */
1206		seq_putc(m, ',');
1207		seq_puts(m, prefix);
1208		if (has_comma)
1209			seq_putc(m, '\"');
1210		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1211		if (has_comma)
1212			seq_putc(m, '\"');
1213	}
 
 
1214}
1215
1216static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1217{
1218	struct security_mnt_opts opts;
1219	int rc;
1220
1221	rc = selinux_get_mnt_opts(sb, &opts);
1222	if (rc) {
1223		/* before policy load we may get EINVAL, don't show anything */
1224		if (rc == -EINVAL)
1225			rc = 0;
1226		return rc;
1227	}
1228
1229	selinux_write_opts(m, &opts);
 
1230
1231	security_free_mnt_opts(&opts);
1232
1233	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234}
1235
1236static inline u16 inode_mode_to_security_class(umode_t mode)
1237{
1238	switch (mode & S_IFMT) {
1239	case S_IFSOCK:
1240		return SECCLASS_SOCK_FILE;
1241	case S_IFLNK:
1242		return SECCLASS_LNK_FILE;
1243	case S_IFREG:
1244		return SECCLASS_FILE;
1245	case S_IFBLK:
1246		return SECCLASS_BLK_FILE;
1247	case S_IFDIR:
1248		return SECCLASS_DIR;
1249	case S_IFCHR:
1250		return SECCLASS_CHR_FILE;
1251	case S_IFIFO:
1252		return SECCLASS_FIFO_FILE;
1253
1254	}
1255
1256	return SECCLASS_FILE;
1257}
1258
1259static inline int default_protocol_stream(int protocol)
1260{
1261	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
 
1262}
1263
1264static inline int default_protocol_dgram(int protocol)
1265{
1266	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1267}
1268
1269static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1270{
 
 
1271	switch (family) {
1272	case PF_UNIX:
1273		switch (type) {
1274		case SOCK_STREAM:
1275		case SOCK_SEQPACKET:
1276			return SECCLASS_UNIX_STREAM_SOCKET;
1277		case SOCK_DGRAM:
 
1278			return SECCLASS_UNIX_DGRAM_SOCKET;
1279		}
1280		break;
1281	case PF_INET:
1282	case PF_INET6:
1283		switch (type) {
1284		case SOCK_STREAM:
 
1285			if (default_protocol_stream(protocol))
1286				return SECCLASS_TCP_SOCKET;
 
 
1287			else
1288				return SECCLASS_RAWIP_SOCKET;
1289		case SOCK_DGRAM:
1290			if (default_protocol_dgram(protocol))
1291				return SECCLASS_UDP_SOCKET;
 
 
 
1292			else
1293				return SECCLASS_RAWIP_SOCKET;
1294		case SOCK_DCCP:
1295			return SECCLASS_DCCP_SOCKET;
1296		default:
1297			return SECCLASS_RAWIP_SOCKET;
1298		}
1299		break;
1300	case PF_NETLINK:
1301		switch (protocol) {
1302		case NETLINK_ROUTE:
1303			return SECCLASS_NETLINK_ROUTE_SOCKET;
1304		case NETLINK_SOCK_DIAG:
1305			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1306		case NETLINK_NFLOG:
1307			return SECCLASS_NETLINK_NFLOG_SOCKET;
1308		case NETLINK_XFRM:
1309			return SECCLASS_NETLINK_XFRM_SOCKET;
1310		case NETLINK_SELINUX:
1311			return SECCLASS_NETLINK_SELINUX_SOCKET;
1312		case NETLINK_ISCSI:
1313			return SECCLASS_NETLINK_ISCSI_SOCKET;
1314		case NETLINK_AUDIT:
1315			return SECCLASS_NETLINK_AUDIT_SOCKET;
1316		case NETLINK_FIB_LOOKUP:
1317			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1318		case NETLINK_CONNECTOR:
1319			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1320		case NETLINK_NETFILTER:
1321			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1322		case NETLINK_DNRTMSG:
1323			return SECCLASS_NETLINK_DNRT_SOCKET;
1324		case NETLINK_KOBJECT_UEVENT:
1325			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1326		case NETLINK_GENERIC:
1327			return SECCLASS_NETLINK_GENERIC_SOCKET;
1328		case NETLINK_SCSITRANSPORT:
1329			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1330		case NETLINK_RDMA:
1331			return SECCLASS_NETLINK_RDMA_SOCKET;
1332		case NETLINK_CRYPTO:
1333			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1334		default:
1335			return SECCLASS_NETLINK_SOCKET;
1336		}
1337	case PF_PACKET:
1338		return SECCLASS_PACKET_SOCKET;
1339	case PF_KEY:
1340		return SECCLASS_KEY_SOCKET;
1341	case PF_APPLETALK:
1342		return SECCLASS_APPLETALK_SOCKET;
1343	}
1344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345	return SECCLASS_SOCKET;
1346}
1347
1348static int selinux_genfs_get_sid(struct dentry *dentry,
1349				 u16 tclass,
1350				 u16 flags,
1351				 u32 *sid)
1352{
1353	int rc;
1354	struct super_block *sb = dentry->d_sb;
1355	char *buffer, *path;
1356
1357	buffer = (char *)__get_free_page(GFP_KERNEL);
1358	if (!buffer)
1359		return -ENOMEM;
1360
1361	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1362	if (IS_ERR(path))
1363		rc = PTR_ERR(path);
1364	else {
1365		if (flags & SE_SBPROC) {
1366			/* each process gets a /proc/PID/ entry. Strip off the
1367			 * PID part to get a valid selinux labeling.
1368			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1369			while (path[1] >= '0' && path[1] <= '9') {
1370				path[1] = '/';
1371				path++;
1372			}
1373		}
1374		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
 
 
 
 
 
 
1375	}
1376	free_page((unsigned long)buffer);
1377	return rc;
1378}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380/* The inode's security attributes must be initialized before first use. */
1381static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1382{
1383	struct superblock_security_struct *sbsec = NULL;
1384	struct inode_security_struct *isec = inode->i_security;
1385	u32 task_sid, sid = 0;
1386	u16 sclass;
1387	struct dentry *dentry;
1388#define INITCONTEXTLEN 255
1389	char *context = NULL;
1390	unsigned len = 0;
1391	int rc = 0;
1392
1393	if (isec->initialized == LABEL_INITIALIZED)
1394		return 0;
1395
1396	spin_lock(&isec->lock);
1397	if (isec->initialized == LABEL_INITIALIZED)
1398		goto out_unlock;
1399
1400	if (isec->sclass == SECCLASS_FILE)
1401		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1402
1403	sbsec = inode->i_sb->s_security;
1404	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1405		/* Defer initialization until selinux_complete_init,
1406		   after the initial policy is loaded and the security
1407		   server is ready to handle calls. */
1408		spin_lock(&sbsec->isec_lock);
1409		if (list_empty(&isec->list))
1410			list_add(&isec->list, &sbsec->isec_head);
1411		spin_unlock(&sbsec->isec_lock);
1412		goto out_unlock;
1413	}
1414
1415	sclass = isec->sclass;
1416	task_sid = isec->task_sid;
1417	sid = isec->sid;
1418	isec->initialized = LABEL_PENDING;
1419	spin_unlock(&isec->lock);
1420
1421	switch (sbsec->behavior) {
1422	case SECURITY_FS_USE_NATIVE:
1423		break;
1424	case SECURITY_FS_USE_XATTR:
1425		if (!(inode->i_opflags & IOP_XATTR)) {
1426			sid = sbsec->def_sid;
1427			break;
1428		}
1429		/* Need a dentry, since the xattr API requires one.
1430		   Life would be simpler if we could just pass the inode. */
1431		if (opt_dentry) {
1432			/* Called from d_instantiate or d_splice_alias. */
1433			dentry = dget(opt_dentry);
1434		} else {
1435			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1436			dentry = d_find_alias(inode);
 
 
1437		}
1438		if (!dentry) {
1439			/*
1440			 * this is can be hit on boot when a file is accessed
1441			 * before the policy is loaded.  When we load policy we
1442			 * may find inodes that have no dentry on the
1443			 * sbsec->isec_head list.  No reason to complain as these
1444			 * will get fixed up the next time we go through
1445			 * inode_doinit with a dentry, before these inodes could
1446			 * be used again by userspace.
1447			 */
1448			goto out;
1449		}
1450
1451		len = INITCONTEXTLEN;
1452		context = kmalloc(len+1, GFP_NOFS);
1453		if (!context) {
1454			rc = -ENOMEM;
1455			dput(dentry);
1456			goto out;
1457		}
1458		context[len] = '\0';
1459		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1460		if (rc == -ERANGE) {
1461			kfree(context);
1462
1463			/* Need a larger buffer.  Query for the right size. */
1464			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1465			if (rc < 0) {
1466				dput(dentry);
1467				goto out;
1468			}
1469			len = rc;
1470			context = kmalloc(len+1, GFP_NOFS);
1471			if (!context) {
1472				rc = -ENOMEM;
1473				dput(dentry);
1474				goto out;
1475			}
1476			context[len] = '\0';
1477			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1478		}
1479		dput(dentry);
1480		if (rc < 0) {
1481			if (rc != -ENODATA) {
1482				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1483				       "%d for dev=%s ino=%ld\n", __func__,
1484				       -rc, inode->i_sb->s_id, inode->i_ino);
1485				kfree(context);
1486				goto out;
1487			}
1488			/* Map ENODATA to the default file SID */
1489			sid = sbsec->def_sid;
1490			rc = 0;
1491		} else {
1492			rc = security_context_to_sid_default(context, rc, &sid,
1493							     sbsec->def_sid,
1494							     GFP_NOFS);
1495			if (rc) {
1496				char *dev = inode->i_sb->s_id;
1497				unsigned long ino = inode->i_ino;
1498
1499				if (rc == -EINVAL) {
1500					if (printk_ratelimit())
1501						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1502							"context=%s.  This indicates you may need to relabel the inode or the "
1503							"filesystem in question.\n", ino, dev, context);
1504				} else {
1505					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1506					       "returned %d for dev=%s ino=%ld\n",
1507					       __func__, context, -rc, dev, ino);
1508				}
1509				kfree(context);
1510				/* Leave with the unlabeled SID */
1511				rc = 0;
1512				break;
1513			}
1514		}
1515		kfree(context);
1516		break;
1517	case SECURITY_FS_USE_TASK:
1518		sid = task_sid;
1519		break;
1520	case SECURITY_FS_USE_TRANS:
1521		/* Default to the fs SID. */
1522		sid = sbsec->sid;
1523
1524		/* Try to obtain a transition SID. */
1525		rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid);
 
1526		if (rc)
1527			goto out;
1528		break;
1529	case SECURITY_FS_USE_MNTPOINT:
1530		sid = sbsec->mntpoint_sid;
1531		break;
1532	default:
1533		/* Default to the fs superblock SID. */
1534		sid = sbsec->sid;
1535
1536		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
 
 
1537			/* We must have a dentry to determine the label on
1538			 * procfs inodes */
1539			if (opt_dentry)
1540				/* Called from d_instantiate or
1541				 * d_splice_alias. */
1542				dentry = dget(opt_dentry);
1543			else
1544				/* Called from selinux_complete_init, try to
1545				 * find a dentry. */
 
 
1546				dentry = d_find_alias(inode);
 
 
 
1547			/*
1548			 * This can be hit on boot when a file is accessed
1549			 * before the policy is loaded.  When we load policy we
1550			 * may find inodes that have no dentry on the
1551			 * sbsec->isec_head list.  No reason to complain as
1552			 * these will get fixed up the next time we go through
1553			 * inode_doinit() with a dentry, before these inodes
1554			 * could be used again by userspace.
1555			 */
1556			if (!dentry)
1557				goto out;
1558			rc = selinux_genfs_get_sid(dentry, sclass,
1559						   sbsec->flags, &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560			dput(dentry);
1561			if (rc)
1562				goto out;
1563		}
1564		break;
1565	}
1566
1567out:
1568	spin_lock(&isec->lock);
1569	if (isec->initialized == LABEL_PENDING) {
1570		if (!sid || rc) {
1571			isec->initialized = LABEL_INVALID;
1572			goto out_unlock;
1573		}
1574
1575		isec->initialized = LABEL_INITIALIZED;
1576		isec->sid = sid;
1577	}
1578
1579out_unlock:
1580	spin_unlock(&isec->lock);
1581	return rc;
 
 
 
 
 
 
 
 
 
1582}
1583
1584/* Convert a Linux signal to an access vector. */
1585static inline u32 signal_to_av(int sig)
1586{
1587	u32 perm = 0;
1588
1589	switch (sig) {
1590	case SIGCHLD:
1591		/* Commonly granted from child to parent. */
1592		perm = PROCESS__SIGCHLD;
1593		break;
1594	case SIGKILL:
1595		/* Cannot be caught or ignored */
1596		perm = PROCESS__SIGKILL;
1597		break;
1598	case SIGSTOP:
1599		/* Cannot be caught or ignored */
1600		perm = PROCESS__SIGSTOP;
1601		break;
1602	default:
1603		/* All other signals. */
1604		perm = PROCESS__SIGNAL;
1605		break;
1606	}
1607
1608	return perm;
1609}
1610
1611/*
1612 * Check permission between a pair of credentials
1613 * fork check, ptrace check, etc.
1614 */
1615static int cred_has_perm(const struct cred *actor,
1616			 const struct cred *target,
1617			 u32 perms)
1618{
1619	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1620
1621	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1622}
1623
1624/*
1625 * Check permission between a pair of tasks, e.g. signal checks,
1626 * fork check, ptrace check, etc.
1627 * tsk1 is the actor and tsk2 is the target
1628 * - this uses the default subjective creds of tsk1
1629 */
1630static int task_has_perm(const struct task_struct *tsk1,
1631			 const struct task_struct *tsk2,
1632			 u32 perms)
1633{
1634	const struct task_security_struct *__tsec1, *__tsec2;
1635	u32 sid1, sid2;
1636
1637	rcu_read_lock();
1638	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1639	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1640	rcu_read_unlock();
1641	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1642}
1643
1644/*
1645 * Check permission between current and another task, e.g. signal checks,
1646 * fork check, ptrace check, etc.
1647 * current is the actor and tsk2 is the target
1648 * - this uses current's subjective creds
1649 */
1650static int current_has_perm(const struct task_struct *tsk,
1651			    u32 perms)
1652{
1653	u32 sid, tsid;
1654
1655	sid = current_sid();
1656	tsid = task_sid(tsk);
1657	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1658}
1659
1660#if CAP_LAST_CAP > 63
1661#error Fix SELinux to handle capabilities > 63.
1662#endif
1663
1664/* Check whether a task is allowed to use a capability. */
1665static int cred_has_capability(const struct cred *cred,
1666			       int cap, int audit, bool initns)
1667{
1668	struct common_audit_data ad;
1669	struct av_decision avd;
1670	u16 sclass;
1671	u32 sid = cred_sid(cred);
1672	u32 av = CAP_TO_MASK(cap);
1673	int rc;
1674
1675	ad.type = LSM_AUDIT_DATA_CAP;
1676	ad.u.cap = cap;
1677
1678	switch (CAP_TO_INDEX(cap)) {
1679	case 0:
1680		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1681		break;
1682	case 1:
1683		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1684		break;
1685	default:
1686		printk(KERN_ERR
1687		       "SELinux:  out of range capability %d\n", cap);
1688		BUG();
1689		return -EINVAL;
1690	}
1691
1692	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1693	if (audit == SECURITY_CAP_AUDIT) {
1694		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
 
 
1695		if (rc2)
1696			return rc2;
1697	}
1698	return rc;
1699}
1700
1701/* Check whether a task is allowed to use a system operation. */
1702static int task_has_system(struct task_struct *tsk,
1703			   u32 perms)
1704{
1705	u32 sid = task_sid(tsk);
1706
1707	return avc_has_perm(sid, SECINITSID_KERNEL,
1708			    SECCLASS_SYSTEM, perms, NULL);
1709}
1710
1711/* Check whether a task has a particular permission to an inode.
1712   The 'adp' parameter is optional and allows other audit
1713   data to be passed (e.g. the dentry). */
1714static int inode_has_perm(const struct cred *cred,
1715			  struct inode *inode,
1716			  u32 perms,
1717			  struct common_audit_data *adp)
1718{
1719	struct inode_security_struct *isec;
1720	u32 sid;
1721
1722	validate_creds(cred);
1723
1724	if (unlikely(IS_PRIVATE(inode)))
1725		return 0;
1726
1727	sid = cred_sid(cred);
1728	isec = inode->i_security;
1729
1730	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1731}
1732
1733/* Same as inode_has_perm, but pass explicit audit data containing
1734   the dentry to help the auditing code to more easily generate the
1735   pathname if needed. */
1736static inline int dentry_has_perm(const struct cred *cred,
1737				  struct dentry *dentry,
1738				  u32 av)
1739{
1740	struct inode *inode = d_backing_inode(dentry);
1741	struct common_audit_data ad;
1742
1743	ad.type = LSM_AUDIT_DATA_DENTRY;
1744	ad.u.dentry = dentry;
1745	__inode_security_revalidate(inode, dentry, true);
1746	return inode_has_perm(cred, inode, av, &ad);
1747}
1748
1749/* Same as inode_has_perm, but pass explicit audit data containing
1750   the path to help the auditing code to more easily generate the
1751   pathname if needed. */
1752static inline int path_has_perm(const struct cred *cred,
1753				const struct path *path,
1754				u32 av)
1755{
1756	struct inode *inode = d_backing_inode(path->dentry);
1757	struct common_audit_data ad;
1758
1759	ad.type = LSM_AUDIT_DATA_PATH;
1760	ad.u.path = *path;
1761	__inode_security_revalidate(inode, path->dentry, true);
1762	return inode_has_perm(cred, inode, av, &ad);
1763}
1764
1765/* Same as path_has_perm, but uses the inode from the file struct. */
1766static inline int file_path_has_perm(const struct cred *cred,
1767				     struct file *file,
1768				     u32 av)
1769{
1770	struct common_audit_data ad;
1771
1772	ad.type = LSM_AUDIT_DATA_FILE;
1773	ad.u.file = file;
1774	return inode_has_perm(cred, file_inode(file), av, &ad);
1775}
1776
 
 
 
 
1777/* Check whether a task can use an open file descriptor to
1778   access an inode in a given way.  Check access to the
1779   descriptor itself, and then use dentry_has_perm to
1780   check a particular permission to the file.
1781   Access to the descriptor is implicitly granted if it
1782   has the same SID as the process.  If av is zero, then
1783   access to the file is not checked, e.g. for cases
1784   where only the descriptor is affected like seek. */
1785static int file_has_perm(const struct cred *cred,
1786			 struct file *file,
1787			 u32 av)
1788{
1789	struct file_security_struct *fsec = file->f_security;
1790	struct inode *inode = file_inode(file);
1791	struct common_audit_data ad;
1792	u32 sid = cred_sid(cred);
1793	int rc;
1794
1795	ad.type = LSM_AUDIT_DATA_FILE;
1796	ad.u.file = file;
1797
1798	if (sid != fsec->sid) {
1799		rc = avc_has_perm(sid, fsec->sid,
 
1800				  SECCLASS_FD,
1801				  FD__USE,
1802				  &ad);
1803		if (rc)
1804			goto out;
1805	}
1806
 
 
 
 
 
 
1807	/* av is zero if only checking access to the descriptor. */
1808	rc = 0;
1809	if (av)
1810		rc = inode_has_perm(cred, inode, av, &ad);
1811
1812out:
1813	return rc;
1814}
1815
1816/*
1817 * Determine the label for an inode that might be unioned.
1818 */
1819static int
1820selinux_determine_inode_label(const struct task_security_struct *tsec,
1821				 struct inode *dir,
1822				 const struct qstr *name, u16 tclass,
1823				 u32 *_new_isid)
1824{
1825	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
 
1826
1827	if ((sbsec->flags & SE_SBINITIALIZED) &&
1828	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1829		*_new_isid = sbsec->mntpoint_sid;
1830	} else if ((sbsec->flags & SBLABEL_MNT) &&
1831		   tsec->create_sid) {
1832		*_new_isid = tsec->create_sid;
1833	} else {
1834		const struct inode_security_struct *dsec = inode_security(dir);
1835		return security_transition_sid(tsec->sid, dsec->sid, tclass,
 
1836					       name, _new_isid);
1837	}
1838
1839	return 0;
1840}
1841
1842/* Check whether a task can create a file. */
1843static int may_create(struct inode *dir,
1844		      struct dentry *dentry,
1845		      u16 tclass)
1846{
1847	const struct task_security_struct *tsec = current_security();
1848	struct inode_security_struct *dsec;
1849	struct superblock_security_struct *sbsec;
1850	u32 sid, newsid;
1851	struct common_audit_data ad;
1852	int rc;
1853
1854	dsec = inode_security(dir);
1855	sbsec = dir->i_sb->s_security;
1856
1857	sid = tsec->sid;
1858
1859	ad.type = LSM_AUDIT_DATA_DENTRY;
1860	ad.u.dentry = dentry;
1861
1862	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1863			  DIR__ADD_NAME | DIR__SEARCH,
1864			  &ad);
1865	if (rc)
1866		return rc;
1867
1868	rc = selinux_determine_inode_label(current_security(), dir,
1869					   &dentry->d_name, tclass, &newsid);
1870	if (rc)
1871		return rc;
1872
1873	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1874	if (rc)
1875		return rc;
1876
1877	return avc_has_perm(newsid, sbsec->sid,
 
1878			    SECCLASS_FILESYSTEM,
1879			    FILESYSTEM__ASSOCIATE, &ad);
1880}
1881
1882/* Check whether a task can create a key. */
1883static int may_create_key(u32 ksid,
1884			  struct task_struct *ctx)
1885{
1886	u32 sid = task_sid(ctx);
1887
1888	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1889}
1890
1891#define MAY_LINK	0
1892#define MAY_UNLINK	1
1893#define MAY_RMDIR	2
1894
1895/* Check whether a task can link, unlink, or rmdir a file/directory. */
1896static int may_link(struct inode *dir,
1897		    struct dentry *dentry,
1898		    int kind)
1899
1900{
1901	struct inode_security_struct *dsec, *isec;
1902	struct common_audit_data ad;
1903	u32 sid = current_sid();
1904	u32 av;
1905	int rc;
1906
1907	dsec = inode_security(dir);
1908	isec = backing_inode_security(dentry);
1909
1910	ad.type = LSM_AUDIT_DATA_DENTRY;
1911	ad.u.dentry = dentry;
1912
1913	av = DIR__SEARCH;
1914	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1915	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1916	if (rc)
1917		return rc;
1918
1919	switch (kind) {
1920	case MAY_LINK:
1921		av = FILE__LINK;
1922		break;
1923	case MAY_UNLINK:
1924		av = FILE__UNLINK;
1925		break;
1926	case MAY_RMDIR:
1927		av = DIR__RMDIR;
1928		break;
1929	default:
1930		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1931			__func__, kind);
1932		return 0;
1933	}
1934
1935	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1936	return rc;
1937}
1938
1939static inline int may_rename(struct inode *old_dir,
1940			     struct dentry *old_dentry,
1941			     struct inode *new_dir,
1942			     struct dentry *new_dentry)
1943{
1944	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1945	struct common_audit_data ad;
1946	u32 sid = current_sid();
1947	u32 av;
1948	int old_is_dir, new_is_dir;
1949	int rc;
1950
1951	old_dsec = inode_security(old_dir);
1952	old_isec = backing_inode_security(old_dentry);
1953	old_is_dir = d_is_dir(old_dentry);
1954	new_dsec = inode_security(new_dir);
1955
1956	ad.type = LSM_AUDIT_DATA_DENTRY;
1957
1958	ad.u.dentry = old_dentry;
1959	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1960			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1961	if (rc)
1962		return rc;
1963	rc = avc_has_perm(sid, old_isec->sid,
 
1964			  old_isec->sclass, FILE__RENAME, &ad);
1965	if (rc)
1966		return rc;
1967	if (old_is_dir && new_dir != old_dir) {
1968		rc = avc_has_perm(sid, old_isec->sid,
 
1969				  old_isec->sclass, DIR__REPARENT, &ad);
1970		if (rc)
1971			return rc;
1972	}
1973
1974	ad.u.dentry = new_dentry;
1975	av = DIR__ADD_NAME | DIR__SEARCH;
1976	if (d_is_positive(new_dentry))
1977		av |= DIR__REMOVE_NAME;
1978	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1979	if (rc)
1980		return rc;
1981	if (d_is_positive(new_dentry)) {
1982		new_isec = backing_inode_security(new_dentry);
1983		new_is_dir = d_is_dir(new_dentry);
1984		rc = avc_has_perm(sid, new_isec->sid,
 
1985				  new_isec->sclass,
1986				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1987		if (rc)
1988			return rc;
1989	}
1990
1991	return 0;
1992}
1993
1994/* Check whether a task can perform a filesystem operation. */
1995static int superblock_has_perm(const struct cred *cred,
1996			       struct super_block *sb,
1997			       u32 perms,
1998			       struct common_audit_data *ad)
1999{
2000	struct superblock_security_struct *sbsec;
2001	u32 sid = cred_sid(cred);
2002
2003	sbsec = sb->s_security;
2004	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
2005}
2006
2007/* Convert a Linux mode and permission mask to an access vector. */
2008static inline u32 file_mask_to_av(int mode, int mask)
2009{
2010	u32 av = 0;
2011
2012	if (!S_ISDIR(mode)) {
2013		if (mask & MAY_EXEC)
2014			av |= FILE__EXECUTE;
2015		if (mask & MAY_READ)
2016			av |= FILE__READ;
2017
2018		if (mask & MAY_APPEND)
2019			av |= FILE__APPEND;
2020		else if (mask & MAY_WRITE)
2021			av |= FILE__WRITE;
2022
2023	} else {
2024		if (mask & MAY_EXEC)
2025			av |= DIR__SEARCH;
2026		if (mask & MAY_WRITE)
2027			av |= DIR__WRITE;
2028		if (mask & MAY_READ)
2029			av |= DIR__READ;
2030	}
2031
2032	return av;
2033}
2034
2035/* Convert a Linux file to an access vector. */
2036static inline u32 file_to_av(struct file *file)
2037{
2038	u32 av = 0;
2039
2040	if (file->f_mode & FMODE_READ)
2041		av |= FILE__READ;
2042	if (file->f_mode & FMODE_WRITE) {
2043		if (file->f_flags & O_APPEND)
2044			av |= FILE__APPEND;
2045		else
2046			av |= FILE__WRITE;
2047	}
2048	if (!av) {
2049		/*
2050		 * Special file opened with flags 3 for ioctl-only use.
2051		 */
2052		av = FILE__IOCTL;
2053	}
2054
2055	return av;
2056}
2057
2058/*
2059 * Convert a file to an access vector and include the correct open
2060 * open permission.
2061 */
2062static inline u32 open_file_to_av(struct file *file)
2063{
2064	u32 av = file_to_av(file);
 
2065
2066	if (selinux_policycap_openperm)
 
2067		av |= FILE__OPEN;
2068
2069	return av;
2070}
2071
2072/* Hook functions begin here. */
2073
2074static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2075{
2076	u32 mysid = current_sid();
2077	u32 mgrsid = task_sid(mgr);
2078
2079	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2080			    BINDER__SET_CONTEXT_MGR, NULL);
2081}
2082
2083static int selinux_binder_transaction(struct task_struct *from,
2084				      struct task_struct *to)
2085{
2086	u32 mysid = current_sid();
2087	u32 fromsid = task_sid(from);
2088	u32 tosid = task_sid(to);
2089	int rc;
2090
2091	if (mysid != fromsid) {
2092		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
 
2093				  BINDER__IMPERSONATE, NULL);
2094		if (rc)
2095			return rc;
2096	}
2097
2098	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2099			    NULL);
2100}
2101
2102static int selinux_binder_transfer_binder(struct task_struct *from,
2103					  struct task_struct *to)
2104{
2105	u32 fromsid = task_sid(from);
2106	u32 tosid = task_sid(to);
2107
2108	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2109			    NULL);
2110}
2111
2112static int selinux_binder_transfer_file(struct task_struct *from,
2113					struct task_struct *to,
2114					struct file *file)
2115{
2116	u32 sid = task_sid(to);
2117	struct file_security_struct *fsec = file->f_security;
2118	struct dentry *dentry = file->f_path.dentry;
2119	struct inode_security_struct *isec;
2120	struct common_audit_data ad;
2121	int rc;
2122
2123	ad.type = LSM_AUDIT_DATA_PATH;
2124	ad.u.path = file->f_path;
2125
2126	if (sid != fsec->sid) {
2127		rc = avc_has_perm(sid, fsec->sid,
 
2128				  SECCLASS_FD,
2129				  FD__USE,
2130				  &ad);
2131		if (rc)
2132			return rc;
2133	}
2134
 
 
 
 
 
 
2135	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2136		return 0;
2137
2138	isec = backing_inode_security(dentry);
2139	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
 
2140			    &ad);
2141}
2142
2143static int selinux_ptrace_access_check(struct task_struct *child,
2144				     unsigned int mode)
2145{
2146	if (mode & PTRACE_MODE_READ) {
2147		u32 sid = current_sid();
2148		u32 csid = task_sid(child);
2149		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150	}
 
2151
2152	return current_has_perm(child, PROCESS__PTRACE);
 
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
2158}
2159
2160static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2161			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2162{
2163	return current_has_perm(target, PROCESS__GETCAP);
 
 
2164}
2165
2166static int selinux_capset(struct cred *new, const struct cred *old,
2167			  const kernel_cap_t *effective,
2168			  const kernel_cap_t *inheritable,
2169			  const kernel_cap_t *permitted)
2170{
2171	return cred_has_perm(old, new, PROCESS__SETCAP);
 
 
2172}
2173
2174/*
2175 * (This comment used to live with the selinux_task_setuid hook,
2176 * which was removed).
2177 *
2178 * Since setuid only affects the current process, and since the SELinux
2179 * controls are not based on the Linux identity attributes, SELinux does not
2180 * need to control this operation.  However, SELinux does control the use of
2181 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2182 */
2183
2184static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2185			   int cap, int audit)
2186{
2187	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2188}
2189
2190static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2191{
2192	const struct cred *cred = current_cred();
2193	int rc = 0;
2194
2195	if (!sb)
2196		return 0;
2197
2198	switch (cmds) {
2199	case Q_SYNC:
2200	case Q_QUOTAON:
2201	case Q_QUOTAOFF:
2202	case Q_SETINFO:
2203	case Q_SETQUOTA:
 
 
 
2204		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2205		break;
2206	case Q_GETFMT:
2207	case Q_GETINFO:
2208	case Q_GETQUOTA:
 
 
 
 
2209		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2210		break;
2211	default:
2212		rc = 0;  /* let the kernel handle invalid cmds */
2213		break;
2214	}
2215	return rc;
2216}
2217
2218static int selinux_quota_on(struct dentry *dentry)
2219{
2220	const struct cred *cred = current_cred();
2221
2222	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2223}
2224
2225static int selinux_syslog(int type)
2226{
2227	int rc;
2228
2229	switch (type) {
2230	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2231	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2232		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2233		break;
 
2234	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2235	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2236	/* Set level of messages printed to console */
2237	case SYSLOG_ACTION_CONSOLE_LEVEL:
2238		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2239		break;
2240	case SYSLOG_ACTION_CLOSE:	/* Close log */
2241	case SYSLOG_ACTION_OPEN:	/* Open log */
2242	case SYSLOG_ACTION_READ:	/* Read from log */
2243	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2244	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2245	default:
2246		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2247		break;
2248	}
2249	return rc;
2250}
2251
2252/*
2253 * Check that a process has enough memory to allocate a new virtual
2254 * mapping. 0 means there is enough memory for the allocation to
2255 * succeed and -ENOMEM implies there is not.
2256 *
2257 * Do not audit the selinux permission check, as this is applied to all
2258 * processes that allocate mappings.
2259 */
2260static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2261{
2262	int rc, cap_sys_admin = 0;
2263
2264	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2265				 SECURITY_CAP_NOAUDIT, true);
2266	if (rc == 0)
2267		cap_sys_admin = 1;
2268
2269	return cap_sys_admin;
2270}
2271
2272/* binprm security operations */
2273
2274static u32 ptrace_parent_sid(struct task_struct *task)
2275{
2276	u32 sid = 0;
2277	struct task_struct *tracer;
2278
2279	rcu_read_lock();
2280	tracer = ptrace_parent(task);
2281	if (tracer)
2282		sid = task_sid(tracer);
2283	rcu_read_unlock();
2284
2285	return sid;
2286}
2287
2288static int check_nnp_nosuid(const struct linux_binprm *bprm,
2289			    const struct task_security_struct *old_tsec,
2290			    const struct task_security_struct *new_tsec)
2291{
2292	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2293	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2294	int rc;
 
2295
2296	if (!nnp && !nosuid)
2297		return 0; /* neither NNP nor nosuid */
2298
2299	if (new_tsec->sid == old_tsec->sid)
2300		return 0; /* No change in credentials */
2301
2302	/*
2303	 * The only transitions we permit under NNP or nosuid
2304	 * are transitions to bounded SIDs, i.e. SIDs that are
2305	 * guaranteed to only be allowed a subset of the permissions
2306	 * of the current SID.
2307	 */
2308	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2309	if (rc) {
2310		/*
2311		 * On failure, preserve the errno values for NNP vs nosuid.
2312		 * NNP:  Operation not permitted for caller.
2313		 * nosuid:  Permission denied to file.
2314		 */
2315		if (nnp)
2316			return -EPERM;
2317		else
2318			return -EACCES;
 
 
 
 
 
2319	}
2320	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2321}
2322
2323static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2324{
2325	const struct task_security_struct *old_tsec;
2326	struct task_security_struct *new_tsec;
2327	struct inode_security_struct *isec;
2328	struct common_audit_data ad;
2329	struct inode *inode = file_inode(bprm->file);
2330	int rc;
2331
2332	/* SELinux context only depends on initial program or script and not
2333	 * the script interpreter */
2334	if (bprm->cred_prepared)
2335		return 0;
2336
2337	old_tsec = current_security();
2338	new_tsec = bprm->cred->security;
2339	isec = inode_security(inode);
2340
2341	/* Default to the current task SID. */
2342	new_tsec->sid = old_tsec->sid;
2343	new_tsec->osid = old_tsec->sid;
2344
2345	/* Reset fs, key, and sock SIDs on execve. */
2346	new_tsec->create_sid = 0;
2347	new_tsec->keycreate_sid = 0;
2348	new_tsec->sockcreate_sid = 0;
2349
2350	if (old_tsec->exec_sid) {
2351		new_tsec->sid = old_tsec->exec_sid;
2352		/* Reset exec SID on execve. */
2353		new_tsec->exec_sid = 0;
2354
2355		/* Fail on NNP or nosuid if not an allowed transition. */
2356		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2357		if (rc)
2358			return rc;
2359	} else {
2360		/* Check for a default transition on this program. */
2361		rc = security_transition_sid(old_tsec->sid, isec->sid,
2362					     SECCLASS_PROCESS, NULL,
2363					     &new_tsec->sid);
2364		if (rc)
2365			return rc;
2366
2367		/*
2368		 * Fallback to old SID on NNP or nosuid if not an allowed
2369		 * transition.
2370		 */
2371		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2372		if (rc)
2373			new_tsec->sid = old_tsec->sid;
2374	}
2375
2376	ad.type = LSM_AUDIT_DATA_FILE;
2377	ad.u.file = bprm->file;
2378
2379	if (new_tsec->sid == old_tsec->sid) {
2380		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2381				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2382		if (rc)
2383			return rc;
2384	} else {
2385		/* Check permissions for the transition. */
2386		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2387				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2388		if (rc)
2389			return rc;
2390
2391		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2392				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2393		if (rc)
2394			return rc;
2395
2396		/* Check for shared state */
2397		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2398			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2399					  SECCLASS_PROCESS, PROCESS__SHARE,
2400					  NULL);
2401			if (rc)
2402				return -EPERM;
2403		}
2404
2405		/* Make sure that anyone attempting to ptrace over a task that
2406		 * changes its SID has the appropriate permit */
2407		if (bprm->unsafe &
2408		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2409			u32 ptsid = ptrace_parent_sid(current);
2410			if (ptsid != 0) {
2411				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2412						  SECCLASS_PROCESS,
2413						  PROCESS__PTRACE, NULL);
2414				if (rc)
2415					return -EPERM;
2416			}
2417		}
2418
2419		/* Clear any possibly unsafe personality bits on exec: */
2420		bprm->per_clear |= PER_CLEAR_ON_SETID;
2421	}
2422
2423	return 0;
2424}
2425
2426static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2427{
2428	const struct task_security_struct *tsec = current_security();
2429	u32 sid, osid;
2430	int atsecure = 0;
2431
2432	sid = tsec->sid;
2433	osid = tsec->osid;
2434
2435	if (osid != sid) {
2436		/* Enable secure mode for SIDs transitions unless
2437		   the noatsecure permission is granted between
2438		   the two SIDs, i.e. ahp returns 0. */
2439		atsecure = avc_has_perm(osid, sid,
2440					SECCLASS_PROCESS,
2441					PROCESS__NOATSECURE, NULL);
 
 
2442	}
2443
2444	return !!atsecure;
2445}
2446
2447static int match_file(const void *p, struct file *file, unsigned fd)
2448{
2449	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2450}
2451
2452/* Derived from fs/exec.c:flush_old_files. */
2453static inline void flush_unauthorized_files(const struct cred *cred,
2454					    struct files_struct *files)
2455{
2456	struct file *file, *devnull = NULL;
2457	struct tty_struct *tty;
2458	int drop_tty = 0;
2459	unsigned n;
2460
2461	tty = get_current_tty();
2462	if (tty) {
2463		spin_lock(&tty->files_lock);
2464		if (!list_empty(&tty->tty_files)) {
2465			struct tty_file_private *file_priv;
2466
2467			/* Revalidate access to controlling tty.
2468			   Use file_path_has_perm on the tty path directly
2469			   rather than using file_has_perm, as this particular
2470			   open file may belong to another process and we are
2471			   only interested in the inode-based check here. */
2472			file_priv = list_first_entry(&tty->tty_files,
2473						struct tty_file_private, list);
2474			file = file_priv->file;
2475			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2476				drop_tty = 1;
2477		}
2478		spin_unlock(&tty->files_lock);
2479		tty_kref_put(tty);
2480	}
2481	/* Reset controlling tty. */
2482	if (drop_tty)
2483		no_tty();
2484
2485	/* Revalidate access to inherited open files. */
2486	n = iterate_fd(files, 0, match_file, cred);
2487	if (!n) /* none found? */
2488		return;
2489
2490	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2491	if (IS_ERR(devnull))
2492		devnull = NULL;
2493	/* replace all the matching ones with this */
2494	do {
2495		replace_fd(n - 1, devnull, 0);
2496	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2497	if (devnull)
2498		fput(devnull);
2499}
2500
2501/*
2502 * Prepare a process for imminent new credential changes due to exec
2503 */
2504static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2505{
2506	struct task_security_struct *new_tsec;
2507	struct rlimit *rlim, *initrlim;
2508	int rc, i;
2509
2510	new_tsec = bprm->cred->security;
2511	if (new_tsec->sid == new_tsec->osid)
2512		return;
2513
2514	/* Close files for which the new task SID is not authorized. */
2515	flush_unauthorized_files(bprm->cred, current->files);
2516
2517	/* Always clear parent death signal on SID transitions. */
2518	current->pdeath_signal = 0;
2519
2520	/* Check whether the new SID can inherit resource limits from the old
2521	 * SID.  If not, reset all soft limits to the lower of the current
2522	 * task's hard limit and the init task's soft limit.
2523	 *
2524	 * Note that the setting of hard limits (even to lower them) can be
2525	 * controlled by the setrlimit check.  The inclusion of the init task's
2526	 * soft limit into the computation is to avoid resetting soft limits
2527	 * higher than the default soft limit for cases where the default is
2528	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2529	 */
2530	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2531			  PROCESS__RLIMITINH, NULL);
2532	if (rc) {
2533		/* protect against do_prlimit() */
2534		task_lock(current);
2535		for (i = 0; i < RLIM_NLIMITS; i++) {
2536			rlim = current->signal->rlim + i;
2537			initrlim = init_task.signal->rlim + i;
2538			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2539		}
2540		task_unlock(current);
2541		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2542			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2543	}
2544}
2545
2546/*
2547 * Clean up the process immediately after the installation of new credentials
2548 * due to exec
2549 */
2550static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2551{
2552	const struct task_security_struct *tsec = current_security();
2553	struct itimerval itimer;
2554	u32 osid, sid;
2555	int rc, i;
2556
2557	osid = tsec->osid;
2558	sid = tsec->sid;
2559
2560	if (sid == osid)
2561		return;
2562
2563	/* Check whether the new SID can inherit signal state from the old SID.
2564	 * If not, clear itimers to avoid subsequent signal generation and
2565	 * flush and unblock signals.
2566	 *
2567	 * This must occur _after_ the task SID has been updated so that any
2568	 * kill done after the flush will be checked against the new SID.
2569	 */
2570	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2571	if (rc) {
2572		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573			memset(&itimer, 0, sizeof itimer);
2574			for (i = 0; i < 3; i++)
2575				do_setitimer(i, &itimer, NULL);
2576		}
2577		spin_lock_irq(&current->sighand->siglock);
2578		if (!fatal_signal_pending(current)) {
2579			flush_sigqueue(&current->pending);
2580			flush_sigqueue(&current->signal->shared_pending);
2581			flush_signal_handlers(current, 1);
2582			sigemptyset(&current->blocked);
2583			recalc_sigpending();
2584		}
2585		spin_unlock_irq(&current->sighand->siglock);
2586	}
2587
2588	/* Wake up the parent if it is waiting so that it can recheck
2589	 * wait permission to the new task SID. */
2590	read_lock(&tasklist_lock);
2591	__wake_up_parent(current, current->real_parent);
2592	read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599	return superblock_alloc_security(sb);
2600}
 
 
 
 
 
 
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604	superblock_free_security(sb);
2605}
2606
2607static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2608{
2609	if (plen > olen)
2610		return 0;
 
2611
2612	return !memcmp(prefix, option, plen);
 
 
 
 
 
 
2613}
2614
2615static inline int selinux_option(char *option, int len)
2616{
2617	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2618		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2619		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2620		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2621		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2622}
2623
2624static inline void take_option(char **to, char *from, int *first, int len)
2625{
2626	if (!*first) {
2627		**to = ',';
2628		*to += 1;
2629	} else
2630		*first = 0;
2631	memcpy(*to, from, len);
2632	*to += len;
2633}
2634
2635static inline void take_selinux_option(char **to, char *from, int *first,
2636				       int len)
2637{
2638	int current_size = 0;
2639
2640	if (!*first) {
2641		**to = '|';
2642		*to += 1;
2643	} else
2644		*first = 0;
2645
2646	while (current_size < len) {
2647		if (*from != '"') {
2648			**to = *from;
2649			*to += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650		}
2651		from += 1;
2652		current_size += 1;
 
2653	}
 
 
 
 
 
 
 
 
 
2654}
2655
2656static int selinux_sb_copy_data(char *orig, char *copy)
2657{
2658	int fnosec, fsec, rc = 0;
2659	char *in_save, *in_curr, *in_end;
2660	char *sec_curr, *nosec_save, *nosec;
2661	int open_quote = 0;
2662
2663	in_curr = orig;
2664	sec_curr = copy;
 
 
 
 
2665
2666	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2667	if (!nosec) {
2668		rc = -ENOMEM;
2669		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
2670	}
 
 
2671
2672	nosec_save = nosec;
2673	fnosec = fsec = 1;
2674	in_save = in_end = orig;
2675
2676	do {
2677		if (*in_end == '"')
2678			open_quote = !open_quote;
2679		if ((*in_end == ',' && open_quote == 0) ||
2680				*in_end == '\0') {
2681			int len = in_end - in_curr;
2682
2683			if (selinux_option(in_curr, len))
2684				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2685			else
2686				take_option(&nosec, in_curr, &fnosec, len);
2687
2688			in_curr = in_end + 1;
2689		}
2690	} while (*in_end++);
2691
2692	strcpy(in_save, nosec_save);
2693	free_page((unsigned long)nosec_save);
2694out:
2695	return rc;
2696}
2697
2698static int selinux_sb_remount(struct super_block *sb, void *data)
2699{
2700	int rc, i, *flags;
2701	struct security_mnt_opts opts;
2702	char *secdata, **mount_options;
2703	struct superblock_security_struct *sbsec = sb->s_security;
2704
2705	if (!(sbsec->flags & SE_SBINITIALIZED))
2706		return 0;
2707
2708	if (!data)
2709		return 0;
2710
2711	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2712		return 0;
2713
2714	security_init_mnt_opts(&opts);
2715	secdata = alloc_secdata();
2716	if (!secdata)
2717		return -ENOMEM;
2718	rc = selinux_sb_copy_data(data, secdata);
2719	if (rc)
2720		goto out_free_secdata;
2721
2722	rc = selinux_parse_opts_str(secdata, &opts);
2723	if (rc)
2724		goto out_free_secdata;
2725
2726	mount_options = opts.mnt_opts;
2727	flags = opts.mnt_opts_flags;
2728
2729	for (i = 0; i < opts.num_mnt_opts; i++) {
2730		u32 sid;
2731
2732		if (flags[i] == SBLABEL_MNT)
2733			continue;
2734		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2735		if (rc) {
2736			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2737			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2738			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2739			goto out_free_opts;
2740		}
2741		rc = -EINVAL;
2742		switch (flags[i]) {
2743		case FSCONTEXT_MNT:
2744			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2745				goto out_bad_option;
2746			break;
2747		case CONTEXT_MNT:
2748			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2749				goto out_bad_option;
2750			break;
2751		case ROOTCONTEXT_MNT: {
2752			struct inode_security_struct *root_isec;
2753			root_isec = backing_inode_security(sb->s_root);
2754
2755			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2756				goto out_bad_option;
2757			break;
2758		}
2759		case DEFCONTEXT_MNT:
2760			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2761				goto out_bad_option;
2762			break;
2763		default:
2764			goto out_free_opts;
2765		}
2766	}
 
2767
2768	rc = 0;
2769out_free_opts:
2770	security_free_mnt_opts(&opts);
2771out_free_secdata:
2772	free_secdata(secdata);
2773	return rc;
2774out_bad_option:
2775	printk(KERN_WARNING "SELinux: unable to change security options "
2776	       "during remount (dev %s, type=%s)\n", sb->s_id,
2777	       sb->s_type->name);
2778	goto out_free_opts;
2779}
2780
2781static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2782{
2783	const struct cred *cred = current_cred();
2784	struct common_audit_data ad;
2785	int rc;
2786
2787	rc = superblock_doinit(sb, data);
2788	if (rc)
2789		return rc;
2790
2791	/* Allow all mounts performed by the kernel */
2792	if (flags & MS_KERNMOUNT)
2793		return 0;
2794
2795	ad.type = LSM_AUDIT_DATA_DENTRY;
2796	ad.u.dentry = sb->s_root;
2797	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2798}
2799
2800static int selinux_sb_statfs(struct dentry *dentry)
2801{
2802	const struct cred *cred = current_cred();
2803	struct common_audit_data ad;
2804
2805	ad.type = LSM_AUDIT_DATA_DENTRY;
2806	ad.u.dentry = dentry->d_sb->s_root;
2807	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2808}
2809
2810static int selinux_mount(const char *dev_name,
2811			 const struct path *path,
2812			 const char *type,
2813			 unsigned long flags,
2814			 void *data)
2815{
2816	const struct cred *cred = current_cred();
2817
2818	if (flags & MS_REMOUNT)
2819		return superblock_has_perm(cred, path->dentry->d_sb,
2820					   FILESYSTEM__REMOUNT, NULL);
2821	else
2822		return path_has_perm(cred, path, FILE__MOUNTON);
2823}
2824
 
 
 
 
 
 
 
 
2825static int selinux_umount(struct vfsmount *mnt, int flags)
2826{
2827	const struct cred *cred = current_cred();
2828
2829	return superblock_has_perm(cred, mnt->mnt_sb,
2830				   FILESYSTEM__UNMOUNT, NULL);
2831}
2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833/* inode security operations */
2834
2835static int selinux_inode_alloc_security(struct inode *inode)
2836{
2837	return inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
2838}
2839
2840static void selinux_inode_free_security(struct inode *inode)
2841{
2842	inode_free_security(inode);
2843}
2844
2845static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2846					const struct qstr *name, void **ctx,
 
2847					u32 *ctxlen)
2848{
2849	u32 newsid;
2850	int rc;
2851
2852	rc = selinux_determine_inode_label(current_security(),
2853					   d_inode(dentry->d_parent), name,
2854					   inode_mode_to_security_class(mode),
2855					   &newsid);
2856	if (rc)
2857		return rc;
2858
2859	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
 
 
 
 
2860}
2861
2862static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2863					  struct qstr *name,
2864					  const struct cred *old,
2865					  struct cred *new)
2866{
2867	u32 newsid;
2868	int rc;
2869	struct task_security_struct *tsec;
2870
2871	rc = selinux_determine_inode_label(old->security,
2872					   d_inode(dentry->d_parent), name,
2873					   inode_mode_to_security_class(mode),
2874					   &newsid);
2875	if (rc)
2876		return rc;
2877
2878	tsec = new->security;
2879	tsec->create_sid = newsid;
2880	return 0;
2881}
2882
2883static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2884				       const struct qstr *qstr,
2885				       const char **name,
2886				       void **value, size_t *len)
2887{
2888	const struct task_security_struct *tsec = current_security();
2889	struct superblock_security_struct *sbsec;
2890	u32 sid, newsid, clen;
2891	int rc;
2892	char *context;
2893
2894	sbsec = dir->i_sb->s_security;
2895
2896	sid = tsec->sid;
2897	newsid = tsec->create_sid;
2898
2899	rc = selinux_determine_inode_label(current_security(),
2900		dir, qstr,
2901		inode_mode_to_security_class(inode->i_mode),
2902		&newsid);
2903	if (rc)
2904		return rc;
2905
2906	/* Possibly defer initialization to selinux_complete_init. */
2907	if (sbsec->flags & SE_SBINITIALIZED) {
2908		struct inode_security_struct *isec = inode->i_security;
2909		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2910		isec->sid = newsid;
2911		isec->initialized = LABEL_INITIALIZED;
2912	}
2913
2914	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
 
2915		return -EOPNOTSUPP;
2916
2917	if (name)
2918		*name = XATTR_SELINUX_SUFFIX;
2919
2920	if (value && len) {
2921		rc = security_sid_to_context_force(newsid, &context, &clen);
 
2922		if (rc)
2923			return rc;
2924		*value = context;
2925		*len = clen;
2926	}
2927
2928	return 0;
2929}
2930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2932{
2933	return may_create(dir, dentry, SECCLASS_FILE);
2934}
2935
2936static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2937{
2938	return may_link(dir, old_dentry, MAY_LINK);
2939}
2940
2941static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2942{
2943	return may_link(dir, dentry, MAY_UNLINK);
2944}
2945
2946static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2947{
2948	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2949}
2950
2951static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2952{
2953	return may_create(dir, dentry, SECCLASS_DIR);
2954}
2955
2956static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2957{
2958	return may_link(dir, dentry, MAY_RMDIR);
2959}
2960
2961static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2962{
2963	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2964}
2965
2966static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2967				struct inode *new_inode, struct dentry *new_dentry)
2968{
2969	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2970}
2971
2972static int selinux_inode_readlink(struct dentry *dentry)
2973{
2974	const struct cred *cred = current_cred();
2975
2976	return dentry_has_perm(cred, dentry, FILE__READ);
2977}
2978
2979static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2980				     bool rcu)
2981{
2982	const struct cred *cred = current_cred();
2983	struct common_audit_data ad;
2984	struct inode_security_struct *isec;
2985	u32 sid;
2986
2987	validate_creds(cred);
2988
2989	ad.type = LSM_AUDIT_DATA_DENTRY;
2990	ad.u.dentry = dentry;
2991	sid = cred_sid(cred);
2992	isec = inode_security_rcu(inode, rcu);
2993	if (IS_ERR(isec))
2994		return PTR_ERR(isec);
2995
2996	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2997				  rcu ? MAY_NOT_BLOCK : 0);
2998}
2999
3000static noinline int audit_inode_permission(struct inode *inode,
3001					   u32 perms, u32 audited, u32 denied,
3002					   int result,
3003					   unsigned flags)
3004{
3005	struct common_audit_data ad;
3006	struct inode_security_struct *isec = inode->i_security;
3007	int rc;
3008
3009	ad.type = LSM_AUDIT_DATA_INODE;
3010	ad.u.inode = inode;
3011
3012	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3013			    audited, denied, result, &ad, flags);
3014	if (rc)
3015		return rc;
3016	return 0;
3017}
3018
3019static int selinux_inode_permission(struct inode *inode, int mask)
3020{
3021	const struct cred *cred = current_cred();
3022	u32 perms;
3023	bool from_access;
3024	unsigned flags = mask & MAY_NOT_BLOCK;
3025	struct inode_security_struct *isec;
3026	u32 sid;
3027	struct av_decision avd;
3028	int rc, rc2;
3029	u32 audited, denied;
3030
3031	from_access = mask & MAY_ACCESS;
3032	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3033
3034	/* No permission to check.  Existence test. */
3035	if (!mask)
3036		return 0;
3037
3038	validate_creds(cred);
3039
3040	if (unlikely(IS_PRIVATE(inode)))
3041		return 0;
3042
3043	perms = file_mask_to_av(inode->i_mode, mask);
3044
3045	sid = cred_sid(cred);
3046	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3047	if (IS_ERR(isec))
3048		return PTR_ERR(isec);
3049
3050	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
 
 
3051	audited = avc_audit_required(perms, &avd, rc,
3052				     from_access ? FILE__AUDIT_ACCESS : 0,
3053				     &denied);
3054	if (likely(!audited))
3055		return rc;
3056
3057	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3058	if (rc2)
3059		return rc2;
3060	return rc;
3061}
3062
3063static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3064{
3065	const struct cred *cred = current_cred();
 
3066	unsigned int ia_valid = iattr->ia_valid;
3067	__u32 av = FILE__WRITE;
3068
3069	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3070	if (ia_valid & ATTR_FORCE) {
3071		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3072			      ATTR_FORCE);
3073		if (!ia_valid)
3074			return 0;
3075	}
3076
3077	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3078			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3079		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3080
3081	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3082			&& !(ia_valid & ATTR_FILE))
 
 
3083		av |= FILE__OPEN;
3084
3085	return dentry_has_perm(cred, dentry, av);
3086}
3087
3088static int selinux_inode_getattr(const struct path *path)
3089{
3090	return path_has_perm(current_cred(), path, FILE__GETATTR);
3091}
3092
3093static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3094{
3095	const struct cred *cred = current_cred();
 
3096
3097	if (!strncmp(name, XATTR_SECURITY_PREFIX,
3098		     sizeof XATTR_SECURITY_PREFIX - 1)) {
3099		if (!strcmp(name, XATTR_NAME_CAPS)) {
3100			if (!capable(CAP_SETFCAP))
3101				return -EPERM;
3102		} else if (!capable(CAP_SYS_ADMIN)) {
3103			/* A different attribute in the security namespace.
3104			   Restrict to administrator. */
3105			return -EPERM;
3106		}
3107	}
3108
3109	/* Not an attribute we recognize, so just check the
3110	   ordinary setattr permission. */
3111	return dentry_has_perm(cred, dentry, FILE__SETATTR);
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
 
3115				  const void *value, size_t size, int flags)
3116{
3117	struct inode *inode = d_backing_inode(dentry);
3118	struct inode_security_struct *isec;
3119	struct superblock_security_struct *sbsec;
3120	struct common_audit_data ad;
3121	u32 newsid, sid = current_sid();
3122	int rc = 0;
3123
3124	if (strcmp(name, XATTR_NAME_SELINUX))
3125		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
3126
3127	sbsec = inode->i_sb->s_security;
3128	if (!(sbsec->flags & SBLABEL_MNT))
3129		return -EOPNOTSUPP;
3130
3131	if (!inode_owner_or_capable(inode))
3132		return -EPERM;
3133
3134	ad.type = LSM_AUDIT_DATA_DENTRY;
3135	ad.u.dentry = dentry;
3136
3137	isec = backing_inode_security(dentry);
3138	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
3139			  FILE__RELABELFROM, &ad);
3140	if (rc)
3141		return rc;
3142
3143	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3144	if (rc == -EINVAL) {
3145		if (!capable(CAP_MAC_ADMIN)) {
3146			struct audit_buffer *ab;
3147			size_t audit_size;
3148			const char *str;
3149
3150			/* We strip a nul only if it is at the end, otherwise the
3151			 * context contains a nul and we should audit that */
3152			if (value) {
3153				str = value;
 
3154				if (str[size - 1] == '\0')
3155					audit_size = size - 1;
3156				else
3157					audit_size = size;
3158			} else {
3159				str = "";
3160				audit_size = 0;
3161			}
3162			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
 
3163			audit_log_format(ab, "op=setxattr invalid_context=");
3164			audit_log_n_untrustedstring(ab, value, audit_size);
3165			audit_log_end(ab);
3166
3167			return rc;
3168		}
3169		rc = security_context_to_sid_force(value, size, &newsid);
 
3170	}
3171	if (rc)
3172		return rc;
3173
3174	rc = avc_has_perm(sid, newsid, isec->sclass,
 
3175			  FILE__RELABELTO, &ad);
3176	if (rc)
3177		return rc;
3178
3179	rc = security_validate_transition(isec->sid, newsid, sid,
3180					  isec->sclass);
3181	if (rc)
3182		return rc;
3183
3184	return avc_has_perm(newsid,
 
3185			    sbsec->sid,
3186			    SECCLASS_FILESYSTEM,
3187			    FILESYSTEM__ASSOCIATE,
3188			    &ad);
3189}
3190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3191static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3192					const void *value, size_t size,
3193					int flags)
3194{
3195	struct inode *inode = d_backing_inode(dentry);
3196	struct inode_security_struct *isec;
3197	u32 newsid;
3198	int rc;
3199
3200	if (strcmp(name, XATTR_NAME_SELINUX)) {
3201		/* Not an attribute we recognize, so nothing to do. */
3202		return;
3203	}
3204
3205	rc = security_context_to_sid_force(value, size, &newsid);
 
 
 
 
 
 
 
 
 
 
3206	if (rc) {
3207		printk(KERN_ERR "SELinux:  unable to map context to SID"
3208		       "for (%s, %lu), rc=%d\n",
3209		       inode->i_sb->s_id, inode->i_ino, -rc);
3210		return;
3211	}
3212
3213	isec = backing_inode_security(dentry);
3214	spin_lock(&isec->lock);
3215	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3216	isec->sid = newsid;
3217	isec->initialized = LABEL_INITIALIZED;
3218	spin_unlock(&isec->lock);
3219
3220	return;
3221}
3222
3223static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3224{
3225	const struct cred *cred = current_cred();
3226
3227	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3228}
3229
3230static int selinux_inode_listxattr(struct dentry *dentry)
3231{
3232	const struct cred *cred = current_cred();
3233
3234	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3235}
3236
3237static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
 
3238{
3239	if (strcmp(name, XATTR_NAME_SELINUX))
3240		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
3241
3242	/* No one is allowed to remove a SELinux security label.
3243	   You can change the label, but all data must be labeled. */
3244	return -EACCES;
3245}
3246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3247/*
3248 * Copy the inode security context value to the user.
3249 *
3250 * Permission check is handled by selinux_inode_getxattr hook.
3251 */
3252static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
 
 
3253{
3254	u32 size;
3255	int error;
3256	char *context = NULL;
3257	struct inode_security_struct *isec;
3258
3259	if (strcmp(name, XATTR_SELINUX_SUFFIX))
 
 
 
 
 
3260		return -EOPNOTSUPP;
3261
3262	/*
3263	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3264	 * value even if it is not defined by current policy; otherwise,
3265	 * use the in-core value under current policy.
3266	 * Use the non-auditing forms of the permission checks since
3267	 * getxattr may be called by unprivileged processes commonly
3268	 * and lack of permission just means that we fall back to the
3269	 * in-core context value, not a denial.
3270	 */
3271	error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3272			    SECURITY_CAP_NOAUDIT);
3273	if (!error)
3274		error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3275					    SECURITY_CAP_NOAUDIT, true);
3276	isec = inode_security(inode);
3277	if (!error)
3278		error = security_sid_to_context_force(isec->sid, &context,
 
3279						      &size);
3280	else
3281		error = security_sid_to_context(isec->sid, &context, &size);
 
3282	if (error)
3283		return error;
3284	error = size;
3285	if (alloc) {
3286		*buffer = context;
3287		goto out_nofree;
3288	}
3289	kfree(context);
3290out_nofree:
3291	return error;
3292}
3293
3294static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3295				     const void *value, size_t size, int flags)
3296{
3297	struct inode_security_struct *isec = inode_security_novalidate(inode);
 
3298	u32 newsid;
3299	int rc;
3300
3301	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3302		return -EOPNOTSUPP;
3303
 
 
 
 
3304	if (!value || !size)
3305		return -EACCES;
3306
3307	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3308	if (rc)
3309		return rc;
3310
3311	spin_lock(&isec->lock);
3312	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3313	isec->sid = newsid;
3314	isec->initialized = LABEL_INITIALIZED;
3315	spin_unlock(&isec->lock);
3316	return 0;
3317}
3318
3319static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3320{
3321	const int len = sizeof(XATTR_NAME_SELINUX);
 
 
 
 
3322	if (buffer && len <= buffer_size)
3323		memcpy(buffer, XATTR_NAME_SELINUX, len);
3324	return len;
3325}
3326
3327static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3328{
3329	struct inode_security_struct *isec = inode_security_novalidate(inode);
3330	*secid = isec->sid;
3331}
3332
3333static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3334{
3335	u32 sid;
3336	struct task_security_struct *tsec;
3337	struct cred *new_creds = *new;
3338
3339	if (new_creds == NULL) {
3340		new_creds = prepare_creds();
3341		if (!new_creds)
3342			return -ENOMEM;
3343	}
3344
3345	tsec = new_creds->security;
3346	/* Get label from overlay inode and set it in create_sid */
3347	selinux_inode_getsecid(d_inode(src), &sid);
3348	tsec->create_sid = sid;
3349	*new = new_creds;
3350	return 0;
3351}
3352
3353static int selinux_inode_copy_up_xattr(const char *name)
3354{
3355	/* The copy_up hook above sets the initial context on an inode, but we
3356	 * don't then want to overwrite it by blindly copying all the lower
3357	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3358	 */
3359	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3360		return 1; /* Discard */
3361	/*
3362	 * Any other attribute apart from SELINUX is not claimed, supported
3363	 * by selinux.
3364	 */
3365	return -EOPNOTSUPP;
3366}
3367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368/* file security operations */
3369
3370static int selinux_revalidate_file_permission(struct file *file, int mask)
3371{
3372	const struct cred *cred = current_cred();
3373	struct inode *inode = file_inode(file);
3374
3375	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3376	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3377		mask |= MAY_APPEND;
3378
3379	return file_has_perm(cred, file,
3380			     file_mask_to_av(inode->i_mode, mask));
3381}
3382
3383static int selinux_file_permission(struct file *file, int mask)
3384{
3385	struct inode *inode = file_inode(file);
3386	struct file_security_struct *fsec = file->f_security;
3387	struct inode_security_struct *isec;
3388	u32 sid = current_sid();
3389
3390	if (!mask)
3391		/* No permission to check.  Existence test. */
3392		return 0;
3393
3394	isec = inode_security(inode);
3395	if (sid == fsec->sid && fsec->isid == isec->sid &&
3396	    fsec->pseqno == avc_policy_seqno())
3397		/* No change since file_open check. */
3398		return 0;
3399
3400	return selinux_revalidate_file_permission(file, mask);
3401}
3402
3403static int selinux_file_alloc_security(struct file *file)
3404{
3405	return file_alloc_security(file);
3406}
 
 
 
3407
3408static void selinux_file_free_security(struct file *file)
3409{
3410	file_free_security(file);
3411}
3412
3413/*
3414 * Check whether a task has the ioctl permission and cmd
3415 * operation to an inode.
3416 */
3417static int ioctl_has_perm(const struct cred *cred, struct file *file,
3418		u32 requested, u16 cmd)
3419{
3420	struct common_audit_data ad;
3421	struct file_security_struct *fsec = file->f_security;
3422	struct inode *inode = file_inode(file);
3423	struct inode_security_struct *isec;
3424	struct lsm_ioctlop_audit ioctl;
3425	u32 ssid = cred_sid(cred);
3426	int rc;
3427	u8 driver = cmd >> 8;
3428	u8 xperm = cmd & 0xff;
3429
3430	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3431	ad.u.op = &ioctl;
3432	ad.u.op->cmd = cmd;
3433	ad.u.op->path = file->f_path;
3434
3435	if (ssid != fsec->sid) {
3436		rc = avc_has_perm(ssid, fsec->sid,
 
3437				SECCLASS_FD,
3438				FD__USE,
3439				&ad);
3440		if (rc)
3441			goto out;
3442	}
3443
3444	if (unlikely(IS_PRIVATE(inode)))
3445		return 0;
3446
3447	isec = inode_security(inode);
3448	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3449			requested, driver, xperm, &ad);
 
3450out:
3451	return rc;
3452}
3453
3454static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3455			      unsigned long arg)
3456{
3457	const struct cred *cred = current_cred();
3458	int error = 0;
3459
3460	switch (cmd) {
3461	case FIONREAD:
3462	/* fall through */
3463	case FIBMAP:
3464	/* fall through */
3465	case FIGETBSZ:
3466	/* fall through */
3467	case FS_IOC_GETFLAGS:
3468	/* fall through */
3469	case FS_IOC_GETVERSION:
3470		error = file_has_perm(cred, file, FILE__GETATTR);
3471		break;
3472
3473	case FS_IOC_SETFLAGS:
3474	/* fall through */
3475	case FS_IOC_SETVERSION:
3476		error = file_has_perm(cred, file, FILE__SETATTR);
3477		break;
3478
3479	/* sys_ioctl() checks */
3480	case FIONBIO:
3481	/* fall through */
3482	case FIOASYNC:
3483		error = file_has_perm(cred, file, 0);
3484		break;
3485
3486	case KDSKBENT:
3487	case KDSKBSENT:
3488		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3489					    SECURITY_CAP_AUDIT, true);
 
 
 
 
 
 
3490		break;
3491
3492	/* default case assumes that the command will go
3493	 * to the file's ioctl() function.
3494	 */
3495	default:
3496		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3497	}
3498	return error;
3499}
3500
3501static int default_noexec;
3502
3503static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3504{
3505	const struct cred *cred = current_cred();
 
3506	int rc = 0;
3507
3508	if (default_noexec &&
3509	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3510				   (!shared && (prot & PROT_WRITE)))) {
3511		/*
3512		 * We are making executable an anonymous mapping or a
3513		 * private file mapping that will also be writable.
3514		 * This has an additional check.
3515		 */
3516		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3517		if (rc)
3518			goto error;
3519	}
3520
3521	if (file) {
3522		/* read access is always possible with a mapping */
3523		u32 av = FILE__READ;
3524
3525		/* write access only matters if the mapping is shared */
3526		if (shared && (prot & PROT_WRITE))
3527			av |= FILE__WRITE;
3528
3529		if (prot & PROT_EXEC)
3530			av |= FILE__EXECUTE;
3531
3532		return file_has_perm(cred, file, av);
3533	}
3534
3535error:
3536	return rc;
3537}
3538
3539static int selinux_mmap_addr(unsigned long addr)
3540{
3541	int rc = 0;
3542
3543	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3544		u32 sid = current_sid();
3545		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3546				  MEMPROTECT__MMAP_ZERO, NULL);
3547	}
3548
3549	return rc;
3550}
3551
3552static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3553			     unsigned long prot, unsigned long flags)
3554{
3555	if (selinux_checkreqprot)
 
 
 
 
 
 
 
 
 
 
 
 
3556		prot = reqprot;
3557
3558	return file_map_prot_check(file, prot,
3559				   (flags & MAP_TYPE) == MAP_SHARED);
3560}
3561
3562static int selinux_file_mprotect(struct vm_area_struct *vma,
3563				 unsigned long reqprot,
3564				 unsigned long prot)
3565{
3566	const struct cred *cred = current_cred();
 
3567
3568	if (selinux_checkreqprot)
3569		prot = reqprot;
3570
3571	if (default_noexec &&
3572	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3573		int rc = 0;
3574		if (vma->vm_start >= vma->vm_mm->start_brk &&
3575		    vma->vm_end <= vma->vm_mm->brk) {
3576			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3577		} else if (!vma->vm_file &&
3578			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3579			     vma->vm_end >= vma->vm_mm->start_stack) ||
3580			    vma_is_stack_for_current(vma))) {
3581			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
3582		} else if (vma->vm_file && vma->anon_vma) {
3583			/*
3584			 * We are making executable a file mapping that has
3585			 * had some COW done. Since pages might have been
3586			 * written, check ability to execute the possibly
3587			 * modified content.  This typically should only
3588			 * occur for text relocations.
3589			 */
3590			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3591		}
3592		if (rc)
3593			return rc;
3594	}
3595
3596	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3597}
3598
3599static int selinux_file_lock(struct file *file, unsigned int cmd)
3600{
3601	const struct cred *cred = current_cred();
3602
3603	return file_has_perm(cred, file, FILE__LOCK);
3604}
3605
3606static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3607			      unsigned long arg)
3608{
3609	const struct cred *cred = current_cred();
3610	int err = 0;
3611
3612	switch (cmd) {
3613	case F_SETFL:
3614		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3615			err = file_has_perm(cred, file, FILE__WRITE);
3616			break;
3617		}
3618		/* fall through */
3619	case F_SETOWN:
3620	case F_SETSIG:
3621	case F_GETFL:
3622	case F_GETOWN:
3623	case F_GETSIG:
3624	case F_GETOWNER_UIDS:
3625		/* Just check FD__USE permission */
3626		err = file_has_perm(cred, file, 0);
3627		break;
3628	case F_GETLK:
3629	case F_SETLK:
3630	case F_SETLKW:
3631	case F_OFD_GETLK:
3632	case F_OFD_SETLK:
3633	case F_OFD_SETLKW:
3634#if BITS_PER_LONG == 32
3635	case F_GETLK64:
3636	case F_SETLK64:
3637	case F_SETLKW64:
3638#endif
3639		err = file_has_perm(cred, file, FILE__LOCK);
3640		break;
3641	}
3642
3643	return err;
3644}
3645
3646static void selinux_file_set_fowner(struct file *file)
3647{
3648	struct file_security_struct *fsec;
3649
3650	fsec = file->f_security;
3651	fsec->fown_sid = current_sid();
3652}
3653
3654static int selinux_file_send_sigiotask(struct task_struct *tsk,
3655				       struct fown_struct *fown, int signum)
3656{
3657	struct file *file;
3658	u32 sid = task_sid(tsk);
3659	u32 perm;
3660	struct file_security_struct *fsec;
3661
3662	/* struct fown_struct is never outside the context of a struct file */
3663	file = container_of(fown, struct file, f_owner);
3664
3665	fsec = file->f_security;
3666
3667	if (!signum)
3668		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3669	else
3670		perm = signal_to_av(signum);
3671
3672	return avc_has_perm(fsec->fown_sid, sid,
 
3673			    SECCLASS_PROCESS, perm, NULL);
3674}
3675
3676static int selinux_file_receive(struct file *file)
3677{
3678	const struct cred *cred = current_cred();
3679
3680	return file_has_perm(cred, file, file_to_av(file));
3681}
3682
3683static int selinux_file_open(struct file *file, const struct cred *cred)
3684{
3685	struct file_security_struct *fsec;
3686	struct inode_security_struct *isec;
3687
3688	fsec = file->f_security;
3689	isec = inode_security(file_inode(file));
3690	/*
3691	 * Save inode label and policy sequence number
3692	 * at open-time so that selinux_file_permission
3693	 * can determine whether revalidation is necessary.
3694	 * Task label is already saved in the file security
3695	 * struct as its SID.
3696	 */
3697	fsec->isid = isec->sid;
3698	fsec->pseqno = avc_policy_seqno();
3699	/*
3700	 * Since the inode label or policy seqno may have changed
3701	 * between the selinux_inode_permission check and the saving
3702	 * of state above, recheck that access is still permitted.
3703	 * Otherwise, access might never be revalidated against the
3704	 * new inode label or new policy.
3705	 * This check is not redundant - do not remove.
3706	 */
3707	return file_path_has_perm(cred, file, open_file_to_av(file));
3708}
3709
3710/* task security operations */
3711
3712static int selinux_task_create(unsigned long clone_flags)
 
3713{
3714	return current_has_perm(current, PROCESS__FORK);
3715}
3716
3717/*
3718 * allocate the SELinux part of blank credentials
3719 */
3720static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3721{
3722	struct task_security_struct *tsec;
3723
3724	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3725	if (!tsec)
3726		return -ENOMEM;
3727
3728	cred->security = tsec;
3729	return 0;
3730}
3731
3732/*
3733 * detach and free the LSM part of a set of credentials
3734 */
3735static void selinux_cred_free(struct cred *cred)
3736{
3737	struct task_security_struct *tsec = cred->security;
3738
3739	/*
3740	 * cred->security == NULL if security_cred_alloc_blank() or
3741	 * security_prepare_creds() returned an error.
3742	 */
3743	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3744	cred->security = (void *) 0x7UL;
3745	kfree(tsec);
3746}
3747
3748/*
3749 * prepare a new set of credentials for modification
3750 */
3751static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3752				gfp_t gfp)
3753{
3754	const struct task_security_struct *old_tsec;
3755	struct task_security_struct *tsec;
3756
3757	old_tsec = old->security;
3758
3759	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3760	if (!tsec)
3761		return -ENOMEM;
3762
3763	new->security = tsec;
3764	return 0;
3765}
3766
3767/*
3768 * transfer the SELinux data to a blank set of creds
3769 */
3770static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3771{
3772	const struct task_security_struct *old_tsec = old->security;
3773	struct task_security_struct *tsec = new->security;
3774
3775	*tsec = *old_tsec;
3776}
3777
 
 
 
 
 
3778/*
3779 * set the security data for a kernel service
3780 * - all the creation contexts are set to unlabelled
3781 */
3782static int selinux_kernel_act_as(struct cred *new, u32 secid)
3783{
3784	struct task_security_struct *tsec = new->security;
3785	u32 sid = current_sid();
3786	int ret;
3787
3788	ret = avc_has_perm(sid, secid,
 
3789			   SECCLASS_KERNEL_SERVICE,
3790			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3791			   NULL);
3792	if (ret == 0) {
3793		tsec->sid = secid;
3794		tsec->create_sid = 0;
3795		tsec->keycreate_sid = 0;
3796		tsec->sockcreate_sid = 0;
3797	}
3798	return ret;
3799}
3800
3801/*
3802 * set the file creation context in a security record to the same as the
3803 * objective context of the specified inode
3804 */
3805static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3806{
3807	struct inode_security_struct *isec = inode_security(inode);
3808	struct task_security_struct *tsec = new->security;
3809	u32 sid = current_sid();
3810	int ret;
3811
3812	ret = avc_has_perm(sid, isec->sid,
 
3813			   SECCLASS_KERNEL_SERVICE,
3814			   KERNEL_SERVICE__CREATE_FILES_AS,
3815			   NULL);
3816
3817	if (ret == 0)
3818		tsec->create_sid = isec->sid;
3819	return ret;
3820}
3821
3822static int selinux_kernel_module_request(char *kmod_name)
3823{
3824	u32 sid;
3825	struct common_audit_data ad;
3826
3827	sid = task_sid(current);
3828
3829	ad.type = LSM_AUDIT_DATA_KMOD;
3830	ad.u.kmod_name = kmod_name;
3831
3832	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3833			    SYSTEM__MODULE_REQUEST, &ad);
3834}
3835
3836static int selinux_kernel_module_from_file(struct file *file)
3837{
3838	struct common_audit_data ad;
3839	struct inode_security_struct *isec;
3840	struct file_security_struct *fsec;
3841	u32 sid = current_sid();
3842	int rc;
3843
3844	/* init_module */
3845	if (file == NULL)
3846		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
 
3847					SYSTEM__MODULE_LOAD, NULL);
3848
3849	/* finit_module */
3850
3851	ad.type = LSM_AUDIT_DATA_FILE;
3852	ad.u.file = file;
3853
3854	fsec = file->f_security;
3855	if (sid != fsec->sid) {
3856		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
 
3857		if (rc)
3858			return rc;
3859	}
3860
3861	isec = inode_security(file_inode(file));
3862	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
 
3863				SYSTEM__MODULE_LOAD, &ad);
3864}
3865
3866static int selinux_kernel_read_file(struct file *file,
3867				    enum kernel_read_file_id id)
 
3868{
3869	int rc = 0;
3870
3871	switch (id) {
3872	case READING_MODULE:
3873		rc = selinux_kernel_module_from_file(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3874		break;
3875	default:
3876		break;
3877	}
3878
3879	return rc;
3880}
3881
3882static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3883{
3884	return current_has_perm(p, PROCESS__SETPGID);
 
 
3885}
3886
3887static int selinux_task_getpgid(struct task_struct *p)
3888{
3889	return current_has_perm(p, PROCESS__GETPGID);
 
 
3890}
3891
3892static int selinux_task_getsid(struct task_struct *p)
3893{
3894	return current_has_perm(p, PROCESS__GETSESSION);
 
 
3895}
3896
3897static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3898{
3899	*secid = task_sid(p);
 
 
 
 
 
3900}
3901
3902static int selinux_task_setnice(struct task_struct *p, int nice)
3903{
3904	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3905}
3906
3907static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3908{
3909	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3910}
3911
3912static int selinux_task_getioprio(struct task_struct *p)
3913{
3914	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3915}
3916
3917static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3918		struct rlimit *new_rlim)
3919{
3920	struct rlimit *old_rlim = p->signal->rlim + resource;
3921
3922	/* Control the ability to change the hard limit (whether
3923	   lowering or raising it), so that the hard limit can
3924	   later be used as a safe reset point for the soft limit
3925	   upon context transitions.  See selinux_bprm_committing_creds. */
3926	if (old_rlim->rlim_max != new_rlim->rlim_max)
3927		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3928
3929	return 0;
3930}
3931
3932static int selinux_task_setscheduler(struct task_struct *p)
3933{
3934	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3935}
3936
3937static int selinux_task_getscheduler(struct task_struct *p)
3938{
3939	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3940}
3941
3942static int selinux_task_movememory(struct task_struct *p)
3943{
3944	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3945}
3946
3947static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3948				int sig, u32 secid)
3949{
 
3950	u32 perm;
3951	int rc;
3952
3953	if (!sig)
3954		perm = PROCESS__SIGNULL; /* null signal; existence test */
3955	else
3956		perm = signal_to_av(sig);
3957	if (secid)
3958		rc = avc_has_perm(secid, task_sid(p),
3959				  SECCLASS_PROCESS, perm, NULL);
3960	else
3961		rc = current_has_perm(p, perm);
3962	return rc;
3963}
3964
3965static int selinux_task_wait(struct task_struct *p)
3966{
3967	return task_has_perm(p, current, PROCESS__SIGCHLD);
3968}
3969
3970static void selinux_task_to_inode(struct task_struct *p,
3971				  struct inode *inode)
3972{
3973	struct inode_security_struct *isec = inode->i_security;
3974	u32 sid = task_sid(p);
3975
3976	spin_lock(&isec->lock);
3977	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3978	isec->sid = sid;
3979	isec->initialized = LABEL_INITIALIZED;
3980	spin_unlock(&isec->lock);
3981}
3982
 
 
 
 
 
 
 
 
3983/* Returns error only if unable to parse addresses */
3984static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3985			struct common_audit_data *ad, u8 *proto)
3986{
3987	int offset, ihlen, ret = -EINVAL;
3988	struct iphdr _iph, *ih;
3989
3990	offset = skb_network_offset(skb);
3991	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3992	if (ih == NULL)
3993		goto out;
3994
3995	ihlen = ih->ihl * 4;
3996	if (ihlen < sizeof(_iph))
3997		goto out;
3998
3999	ad->u.net->v4info.saddr = ih->saddr;
4000	ad->u.net->v4info.daddr = ih->daddr;
4001	ret = 0;
4002
4003	if (proto)
4004		*proto = ih->protocol;
4005
4006	switch (ih->protocol) {
4007	case IPPROTO_TCP: {
4008		struct tcphdr _tcph, *th;
4009
4010		if (ntohs(ih->frag_off) & IP_OFFSET)
4011			break;
4012
4013		offset += ihlen;
4014		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4015		if (th == NULL)
4016			break;
4017
4018		ad->u.net->sport = th->source;
4019		ad->u.net->dport = th->dest;
4020		break;
4021	}
4022
4023	case IPPROTO_UDP: {
4024		struct udphdr _udph, *uh;
4025
4026		if (ntohs(ih->frag_off) & IP_OFFSET)
4027			break;
4028
4029		offset += ihlen;
4030		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4031		if (uh == NULL)
4032			break;
4033
4034		ad->u.net->sport = uh->source;
4035		ad->u.net->dport = uh->dest;
4036		break;
4037	}
4038
4039	case IPPROTO_DCCP: {
4040		struct dccp_hdr _dccph, *dh;
4041
4042		if (ntohs(ih->frag_off) & IP_OFFSET)
4043			break;
4044
4045		offset += ihlen;
4046		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4047		if (dh == NULL)
4048			break;
4049
4050		ad->u.net->sport = dh->dccph_sport;
4051		ad->u.net->dport = dh->dccph_dport;
4052		break;
4053	}
4054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4055	default:
4056		break;
4057	}
4058out:
4059	return ret;
4060}
4061
4062#if IS_ENABLED(CONFIG_IPV6)
4063
4064/* Returns error only if unable to parse addresses */
4065static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4066			struct common_audit_data *ad, u8 *proto)
4067{
4068	u8 nexthdr;
4069	int ret = -EINVAL, offset;
4070	struct ipv6hdr _ipv6h, *ip6;
4071	__be16 frag_off;
4072
4073	offset = skb_network_offset(skb);
4074	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4075	if (ip6 == NULL)
4076		goto out;
4077
4078	ad->u.net->v6info.saddr = ip6->saddr;
4079	ad->u.net->v6info.daddr = ip6->daddr;
4080	ret = 0;
4081
4082	nexthdr = ip6->nexthdr;
4083	offset += sizeof(_ipv6h);
4084	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4085	if (offset < 0)
4086		goto out;
4087
4088	if (proto)
4089		*proto = nexthdr;
4090
4091	switch (nexthdr) {
4092	case IPPROTO_TCP: {
4093		struct tcphdr _tcph, *th;
4094
4095		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4096		if (th == NULL)
4097			break;
4098
4099		ad->u.net->sport = th->source;
4100		ad->u.net->dport = th->dest;
4101		break;
4102	}
4103
4104	case IPPROTO_UDP: {
4105		struct udphdr _udph, *uh;
4106
4107		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4108		if (uh == NULL)
4109			break;
4110
4111		ad->u.net->sport = uh->source;
4112		ad->u.net->dport = uh->dest;
4113		break;
4114	}
4115
4116	case IPPROTO_DCCP: {
4117		struct dccp_hdr _dccph, *dh;
4118
4119		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4120		if (dh == NULL)
4121			break;
4122
4123		ad->u.net->sport = dh->dccph_sport;
4124		ad->u.net->dport = dh->dccph_dport;
4125		break;
4126	}
4127
 
 
 
 
 
 
 
 
 
 
 
 
 
4128	/* includes fragments */
4129	default:
4130		break;
4131	}
4132out:
4133	return ret;
4134}
4135
4136#endif /* IPV6 */
4137
4138static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4139			     char **_addrp, int src, u8 *proto)
4140{
4141	char *addrp;
4142	int ret;
4143
4144	switch (ad->u.net->family) {
4145	case PF_INET:
4146		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4147		if (ret)
4148			goto parse_error;
4149		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4150				       &ad->u.net->v4info.daddr);
4151		goto okay;
4152
4153#if IS_ENABLED(CONFIG_IPV6)
4154	case PF_INET6:
4155		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4156		if (ret)
4157			goto parse_error;
4158		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4159				       &ad->u.net->v6info.daddr);
4160		goto okay;
4161#endif	/* IPV6 */
4162	default:
4163		addrp = NULL;
4164		goto okay;
4165	}
4166
4167parse_error:
4168	printk(KERN_WARNING
4169	       "SELinux: failure in selinux_parse_skb(),"
4170	       " unable to parse packet\n");
4171	return ret;
4172
4173okay:
4174	if (_addrp)
4175		*_addrp = addrp;
4176	return 0;
4177}
4178
4179/**
4180 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4181 * @skb: the packet
4182 * @family: protocol family
4183 * @sid: the packet's peer label SID
4184 *
4185 * Description:
4186 * Check the various different forms of network peer labeling and determine
4187 * the peer label/SID for the packet; most of the magic actually occurs in
4188 * the security server function security_net_peersid_cmp().  The function
4189 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4190 * or -EACCES if @sid is invalid due to inconsistencies with the different
4191 * peer labels.
4192 *
4193 */
4194static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4195{
4196	int err;
4197	u32 xfrm_sid;
4198	u32 nlbl_sid;
4199	u32 nlbl_type;
4200
4201	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4202	if (unlikely(err))
4203		return -EACCES;
4204	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4205	if (unlikely(err))
4206		return -EACCES;
4207
4208	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
4209	if (unlikely(err)) {
4210		printk(KERN_WARNING
4211		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4212		       " unable to determine packet's peer label\n");
4213		return -EACCES;
4214	}
4215
4216	return 0;
4217}
4218
4219/**
4220 * selinux_conn_sid - Determine the child socket label for a connection
4221 * @sk_sid: the parent socket's SID
4222 * @skb_sid: the packet's SID
4223 * @conn_sid: the resulting connection SID
4224 *
4225 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4226 * combined with the MLS information from @skb_sid in order to create
4227 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4228 * of @sk_sid.  Returns zero on success, negative values on failure.
4229 *
4230 */
4231static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4232{
4233	int err = 0;
4234
4235	if (skb_sid != SECSID_NULL)
4236		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
 
4237	else
4238		*conn_sid = sk_sid;
4239
4240	return err;
4241}
4242
4243/* socket security operations */
4244
4245static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4246				 u16 secclass, u32 *socksid)
4247{
4248	if (tsec->sockcreate_sid > SECSID_NULL) {
4249		*socksid = tsec->sockcreate_sid;
4250		return 0;
4251	}
4252
4253	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4254				       socksid);
4255}
4256
4257static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4258{
4259	struct sk_security_struct *sksec = sk->sk_security;
4260	struct common_audit_data ad;
4261	struct lsm_network_audit net = {0,};
4262	u32 tsid = task_sid(task);
4263
4264	if (sksec->sid == SECINITSID_KERNEL)
4265		return 0;
4266
4267	ad.type = LSM_AUDIT_DATA_NET;
4268	ad.u.net = &net;
4269	ad.u.net->sk = sk;
4270
4271	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
4272}
4273
4274static int selinux_socket_create(int family, int type,
4275				 int protocol, int kern)
4276{
4277	const struct task_security_struct *tsec = current_security();
4278	u32 newsid;
4279	u16 secclass;
4280	int rc;
4281
4282	if (kern)
4283		return 0;
4284
4285	secclass = socket_type_to_security_class(family, type, protocol);
4286	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4287	if (rc)
4288		return rc;
4289
4290	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
4291}
4292
4293static int selinux_socket_post_create(struct socket *sock, int family,
4294				      int type, int protocol, int kern)
4295{
4296	const struct task_security_struct *tsec = current_security();
4297	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4298	struct sk_security_struct *sksec;
4299	u16 sclass = socket_type_to_security_class(family, type, protocol);
4300	u32 sid = SECINITSID_KERNEL;
4301	int err = 0;
4302
4303	if (!kern) {
4304		err = socket_sockcreate_sid(tsec, sclass, &sid);
4305		if (err)
4306			return err;
4307	}
4308
4309	isec->sclass = sclass;
4310	isec->sid = sid;
4311	isec->initialized = LABEL_INITIALIZED;
4312
4313	if (sock->sk) {
4314		sksec = sock->sk->sk_security;
4315		sksec->sclass = sclass;
4316		sksec->sid = sid;
 
 
 
 
4317		err = selinux_netlbl_socket_post_create(sock->sk, family);
4318	}
4319
4320	return err;
4321}
4322
 
 
 
 
 
 
 
 
 
 
 
 
4323/* Range of port numbers used to automatically bind.
4324   Need to determine whether we should perform a name_bind
4325   permission check between the socket and the port number. */
4326
4327static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4328{
4329	struct sock *sk = sock->sk;
 
4330	u16 family;
4331	int err;
4332
4333	err = sock_has_perm(current, sk, SOCKET__BIND);
4334	if (err)
4335		goto out;
4336
4337	/*
4338	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4339	 * Multiple address binding for SCTP is not supported yet: we just
4340	 * check the first address now.
4341	 */
4342	family = sk->sk_family;
4343	if (family == PF_INET || family == PF_INET6) {
4344		char *addrp;
4345		struct sk_security_struct *sksec = sk->sk_security;
4346		struct common_audit_data ad;
4347		struct lsm_network_audit net = {0,};
4348		struct sockaddr_in *addr4 = NULL;
4349		struct sockaddr_in6 *addr6 = NULL;
 
4350		unsigned short snum;
4351		u32 sid, node_perm;
4352
4353		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
 
 
 
4354			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
4355			snum = ntohs(addr4->sin_port);
4356			addrp = (char *)&addr4->sin_addr.s_addr;
4357		} else {
 
 
 
4358			addr6 = (struct sockaddr_in6 *)address;
4359			snum = ntohs(addr6->sin6_port);
4360			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
4361		}
4362
 
 
 
 
 
4363		if (snum) {
4364			int low, high;
4365
4366			inet_get_local_port_range(sock_net(sk), &low, &high);
4367
4368			if (snum < max(PROT_SOCK, low) || snum > high) {
 
4369				err = sel_netport_sid(sk->sk_protocol,
4370						      snum, &sid);
4371				if (err)
4372					goto out;
4373				ad.type = LSM_AUDIT_DATA_NET;
4374				ad.u.net = &net;
4375				ad.u.net->sport = htons(snum);
4376				ad.u.net->family = family;
4377				err = avc_has_perm(sksec->sid, sid,
4378						   sksec->sclass,
4379						   SOCKET__NAME_BIND, &ad);
4380				if (err)
4381					goto out;
4382			}
4383		}
4384
4385		switch (sksec->sclass) {
4386		case SECCLASS_TCP_SOCKET:
4387			node_perm = TCP_SOCKET__NODE_BIND;
4388			break;
4389
4390		case SECCLASS_UDP_SOCKET:
4391			node_perm = UDP_SOCKET__NODE_BIND;
4392			break;
4393
4394		case SECCLASS_DCCP_SOCKET:
4395			node_perm = DCCP_SOCKET__NODE_BIND;
4396			break;
4397
 
 
 
 
4398		default:
4399			node_perm = RAWIP_SOCKET__NODE_BIND;
4400			break;
4401		}
4402
4403		err = sel_netnode_sid(addrp, family, &sid);
4404		if (err)
4405			goto out;
4406
4407		ad.type = LSM_AUDIT_DATA_NET;
4408		ad.u.net = &net;
4409		ad.u.net->sport = htons(snum);
4410		ad.u.net->family = family;
4411
4412		if (family == PF_INET)
4413			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4414		else
4415			ad.u.net->v6info.saddr = addr6->sin6_addr;
4416
4417		err = avc_has_perm(sksec->sid, sid,
 
4418				   sksec->sclass, node_perm, &ad);
4419		if (err)
4420			goto out;
4421	}
4422out:
4423	return err;
 
 
 
 
 
4424}
4425
4426static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
4427{
4428	struct sock *sk = sock->sk;
4429	struct sk_security_struct *sksec = sk->sk_security;
4430	int err;
4431
4432	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4433	if (err)
4434		return err;
 
 
 
 
 
 
 
 
4435
4436	/*
4437	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
4438	 */
4439	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4440	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
4441		struct common_audit_data ad;
4442		struct lsm_network_audit net = {0,};
4443		struct sockaddr_in *addr4 = NULL;
4444		struct sockaddr_in6 *addr6 = NULL;
4445		unsigned short snum;
4446		u32 sid, perm;
4447
4448		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
4449			addr4 = (struct sockaddr_in *)address;
4450			if (addrlen < sizeof(struct sockaddr_in))
4451				return -EINVAL;
4452			snum = ntohs(addr4->sin_port);
4453		} else {
 
4454			addr6 = (struct sockaddr_in6 *)address;
4455			if (addrlen < SIN6_LEN_RFC2133)
4456				return -EINVAL;
4457			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
4458		}
4459
4460		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4461		if (err)
4462			goto out;
4463
4464		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4465		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
4466
4467		ad.type = LSM_AUDIT_DATA_NET;
4468		ad.u.net = &net;
4469		ad.u.net->dport = htons(snum);
4470		ad.u.net->family = sk->sk_family;
4471		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4472		if (err)
4473			goto out;
4474	}
4475
4476	err = selinux_netlbl_socket_connect(sk, address);
 
 
 
 
 
 
 
 
 
 
 
 
4477
4478out:
4479	return err;
4480}
4481
4482static int selinux_socket_listen(struct socket *sock, int backlog)
4483{
4484	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4485}
4486
4487static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4488{
4489	int err;
4490	struct inode_security_struct *isec;
4491	struct inode_security_struct *newisec;
4492	u16 sclass;
4493	u32 sid;
4494
4495	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4496	if (err)
4497		return err;
4498
4499	isec = inode_security_novalidate(SOCK_INODE(sock));
4500	spin_lock(&isec->lock);
4501	sclass = isec->sclass;
4502	sid = isec->sid;
4503	spin_unlock(&isec->lock);
4504
4505	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4506	newisec->sclass = sclass;
4507	newisec->sid = sid;
4508	newisec->initialized = LABEL_INITIALIZED;
4509
4510	return 0;
4511}
4512
4513static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4514				  int size)
4515{
4516	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4517}
4518
4519static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4520				  int size, int flags)
4521{
4522	return sock_has_perm(current, sock->sk, SOCKET__READ);
4523}
4524
4525static int selinux_socket_getsockname(struct socket *sock)
4526{
4527	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4528}
4529
4530static int selinux_socket_getpeername(struct socket *sock)
4531{
4532	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4533}
4534
4535static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4536{
4537	int err;
4538
4539	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4540	if (err)
4541		return err;
4542
4543	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4544}
4545
4546static int selinux_socket_getsockopt(struct socket *sock, int level,
4547				     int optname)
4548{
4549	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4550}
4551
4552static int selinux_socket_shutdown(struct socket *sock, int how)
4553{
4554	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4555}
4556
4557static int selinux_socket_unix_stream_connect(struct sock *sock,
4558					      struct sock *other,
4559					      struct sock *newsk)
4560{
4561	struct sk_security_struct *sksec_sock = sock->sk_security;
4562	struct sk_security_struct *sksec_other = other->sk_security;
4563	struct sk_security_struct *sksec_new = newsk->sk_security;
4564	struct common_audit_data ad;
4565	struct lsm_network_audit net = {0,};
4566	int err;
4567
4568	ad.type = LSM_AUDIT_DATA_NET;
4569	ad.u.net = &net;
4570	ad.u.net->sk = other;
4571
4572	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4573			   sksec_other->sclass,
4574			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4575	if (err)
4576		return err;
4577
4578	/* server child socket */
4579	sksec_new->peer_sid = sksec_sock->sid;
4580	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4581				    &sksec_new->sid);
4582	if (err)
4583		return err;
4584
4585	/* connecting socket */
4586	sksec_sock->peer_sid = sksec_new->sid;
4587
4588	return 0;
4589}
4590
4591static int selinux_socket_unix_may_send(struct socket *sock,
4592					struct socket *other)
4593{
4594	struct sk_security_struct *ssec = sock->sk->sk_security;
4595	struct sk_security_struct *osec = other->sk->sk_security;
4596	struct common_audit_data ad;
4597	struct lsm_network_audit net = {0,};
4598
4599	ad.type = LSM_AUDIT_DATA_NET;
4600	ad.u.net = &net;
4601	ad.u.net->sk = other->sk;
4602
4603	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4604			    &ad);
4605}
4606
4607static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4608				    char *addrp, u16 family, u32 peer_sid,
4609				    struct common_audit_data *ad)
4610{
4611	int err;
4612	u32 if_sid;
4613	u32 node_sid;
4614
4615	err = sel_netif_sid(ns, ifindex, &if_sid);
4616	if (err)
4617		return err;
4618	err = avc_has_perm(peer_sid, if_sid,
 
4619			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4620	if (err)
4621		return err;
4622
4623	err = sel_netnode_sid(addrp, family, &node_sid);
4624	if (err)
4625		return err;
4626	return avc_has_perm(peer_sid, node_sid,
 
4627			    SECCLASS_NODE, NODE__RECVFROM, ad);
4628}
4629
4630static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4631				       u16 family)
4632{
4633	int err = 0;
4634	struct sk_security_struct *sksec = sk->sk_security;
4635	u32 sk_sid = sksec->sid;
4636	struct common_audit_data ad;
4637	struct lsm_network_audit net = {0,};
4638	char *addrp;
4639
4640	ad.type = LSM_AUDIT_DATA_NET;
4641	ad.u.net = &net;
4642	ad.u.net->netif = skb->skb_iif;
4643	ad.u.net->family = family;
4644	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4645	if (err)
4646		return err;
4647
4648	if (selinux_secmark_enabled()) {
4649		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4650				   PACKET__RECV, &ad);
4651		if (err)
4652			return err;
4653	}
4654
4655	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4656	if (err)
4657		return err;
4658	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4659
4660	return err;
4661}
4662
4663static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4664{
4665	int err;
4666	struct sk_security_struct *sksec = sk->sk_security;
4667	u16 family = sk->sk_family;
4668	u32 sk_sid = sksec->sid;
4669	struct common_audit_data ad;
4670	struct lsm_network_audit net = {0,};
4671	char *addrp;
4672	u8 secmark_active;
4673	u8 peerlbl_active;
4674
4675	if (family != PF_INET && family != PF_INET6)
4676		return 0;
4677
4678	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4679	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4680		family = PF_INET;
4681
4682	/* If any sort of compatibility mode is enabled then handoff processing
4683	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4684	 * special handling.  We do this in an attempt to keep this function
4685	 * as fast and as clean as possible. */
4686	if (!selinux_policycap_netpeer)
4687		return selinux_sock_rcv_skb_compat(sk, skb, family);
4688
4689	secmark_active = selinux_secmark_enabled();
4690	peerlbl_active = selinux_peerlbl_enabled();
4691	if (!secmark_active && !peerlbl_active)
4692		return 0;
4693
4694	ad.type = LSM_AUDIT_DATA_NET;
4695	ad.u.net = &net;
4696	ad.u.net->netif = skb->skb_iif;
4697	ad.u.net->family = family;
4698	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4699	if (err)
4700		return err;
4701
4702	if (peerlbl_active) {
4703		u32 peer_sid;
4704
4705		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4706		if (err)
4707			return err;
4708		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4709					       addrp, family, peer_sid, &ad);
4710		if (err) {
4711			selinux_netlbl_err(skb, family, err, 0);
4712			return err;
4713		}
4714		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4715				   PEER__RECV, &ad);
4716		if (err) {
4717			selinux_netlbl_err(skb, family, err, 0);
4718			return err;
4719		}
4720	}
4721
4722	if (secmark_active) {
4723		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4724				   PACKET__RECV, &ad);
4725		if (err)
4726			return err;
4727	}
4728
4729	return err;
4730}
4731
4732static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4733					    int __user *optlen, unsigned len)
 
4734{
4735	int err = 0;
4736	char *scontext;
4737	u32 scontext_len;
4738	struct sk_security_struct *sksec = sock->sk->sk_security;
4739	u32 peer_sid = SECSID_NULL;
4740
4741	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4742	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4743		peer_sid = sksec->peer_sid;
4744	if (peer_sid == SECSID_NULL)
4745		return -ENOPROTOOPT;
4746
4747	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4748	if (err)
4749		return err;
4750
4751	if (scontext_len > len) {
4752		err = -ERANGE;
4753		goto out_len;
4754	}
4755
4756	if (copy_to_user(optval, scontext, scontext_len))
4757		err = -EFAULT;
4758
4759out_len:
4760	if (put_user(scontext_len, optlen))
4761		err = -EFAULT;
4762	kfree(scontext);
4763	return err;
4764}
4765
4766static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4767{
4768	u32 peer_secid = SECSID_NULL;
4769	u16 family;
4770	struct inode_security_struct *isec;
4771
4772	if (skb && skb->protocol == htons(ETH_P_IP))
4773		family = PF_INET;
4774	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4775		family = PF_INET6;
4776	else if (sock)
4777		family = sock->sk->sk_family;
4778	else
4779		goto out;
4780
4781	if (sock && family == PF_UNIX) {
4782		isec = inode_security_novalidate(SOCK_INODE(sock));
4783		peer_secid = isec->sid;
4784	} else if (skb)
4785		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4786
4787out:
4788	*secid = peer_secid;
4789	if (peer_secid == SECSID_NULL)
4790		return -EINVAL;
4791	return 0;
4792}
4793
4794static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4795{
4796	struct sk_security_struct *sksec;
4797
4798	sksec = kzalloc(sizeof(*sksec), priority);
4799	if (!sksec)
4800		return -ENOMEM;
4801
4802	sksec->peer_sid = SECINITSID_UNLABELED;
4803	sksec->sid = SECINITSID_UNLABELED;
4804	sksec->sclass = SECCLASS_SOCKET;
4805	selinux_netlbl_sk_security_reset(sksec);
4806	sk->sk_security = sksec;
4807
4808	return 0;
4809}
4810
4811static void selinux_sk_free_security(struct sock *sk)
4812{
4813	struct sk_security_struct *sksec = sk->sk_security;
4814
4815	sk->sk_security = NULL;
4816	selinux_netlbl_sk_security_free(sksec);
4817	kfree(sksec);
4818}
4819
4820static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4821{
4822	struct sk_security_struct *sksec = sk->sk_security;
4823	struct sk_security_struct *newsksec = newsk->sk_security;
4824
4825	newsksec->sid = sksec->sid;
4826	newsksec->peer_sid = sksec->peer_sid;
4827	newsksec->sclass = sksec->sclass;
4828
4829	selinux_netlbl_sk_security_reset(newsksec);
4830}
4831
4832static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4833{
4834	if (!sk)
4835		*secid = SECINITSID_ANY_SOCKET;
4836	else {
4837		struct sk_security_struct *sksec = sk->sk_security;
4838
4839		*secid = sksec->sid;
4840	}
4841}
4842
4843static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4844{
4845	struct inode_security_struct *isec =
4846		inode_security_novalidate(SOCK_INODE(parent));
4847	struct sk_security_struct *sksec = sk->sk_security;
4848
4849	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4850	    sk->sk_family == PF_UNIX)
4851		isec->sid = sksec->sid;
4852	sksec->sclass = isec->sclass;
4853}
4854
4855static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4856				     struct request_sock *req)
4857{
4858	struct sk_security_struct *sksec = sk->sk_security;
4859	int err;
4860	u16 family = req->rsk_ops->family;
4861	u32 connsid;
4862	u32 peersid;
4863
4864	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4865	if (err)
4866		return err;
4867	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4868	if (err)
4869		return err;
4870	req->secid = connsid;
4871	req->peer_secid = peersid;
4872
4873	return selinux_netlbl_inet_conn_request(req, family);
4874}
4875
4876static void selinux_inet_csk_clone(struct sock *newsk,
4877				   const struct request_sock *req)
4878{
4879	struct sk_security_struct *newsksec = newsk->sk_security;
4880
4881	newsksec->sid = req->secid;
4882	newsksec->peer_sid = req->peer_secid;
4883	/* NOTE: Ideally, we should also get the isec->sid for the
4884	   new socket in sync, but we don't have the isec available yet.
4885	   So we will wait until sock_graft to do it, by which
4886	   time it will have been created and available. */
4887
4888	/* We don't need to take any sort of lock here as we are the only
4889	 * thread with access to newsksec */
4890	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4891}
4892
4893static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4894{
4895	u16 family = sk->sk_family;
4896	struct sk_security_struct *sksec = sk->sk_security;
4897
4898	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4899	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4900		family = PF_INET;
4901
4902	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4903}
4904
4905static int selinux_secmark_relabel_packet(u32 sid)
4906{
4907	const struct task_security_struct *__tsec;
4908	u32 tsid;
4909
4910	__tsec = current_security();
4911	tsid = __tsec->sid;
4912
4913	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4914}
4915
4916static void selinux_secmark_refcount_inc(void)
4917{
4918	atomic_inc(&selinux_secmark_refcount);
4919}
4920
4921static void selinux_secmark_refcount_dec(void)
4922{
4923	atomic_dec(&selinux_secmark_refcount);
4924}
4925
4926static void selinux_req_classify_flow(const struct request_sock *req,
4927				      struct flowi *fl)
4928{
4929	fl->flowi_secid = req->secid;
4930}
4931
4932static int selinux_tun_dev_alloc_security(void **security)
4933{
4934	struct tun_security_struct *tunsec;
4935
4936	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4937	if (!tunsec)
4938		return -ENOMEM;
4939	tunsec->sid = current_sid();
4940
4941	*security = tunsec;
4942	return 0;
4943}
4944
4945static void selinux_tun_dev_free_security(void *security)
4946{
4947	kfree(security);
4948}
4949
4950static int selinux_tun_dev_create(void)
4951{
4952	u32 sid = current_sid();
4953
4954	/* we aren't taking into account the "sockcreate" SID since the socket
4955	 * that is being created here is not a socket in the traditional sense,
4956	 * instead it is a private sock, accessible only to the kernel, and
4957	 * representing a wide range of network traffic spanning multiple
4958	 * connections unlike traditional sockets - check the TUN driver to
4959	 * get a better understanding of why this socket is special */
4960
4961	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4962			    NULL);
4963}
4964
4965static int selinux_tun_dev_attach_queue(void *security)
4966{
4967	struct tun_security_struct *tunsec = security;
4968
4969	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
4970			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4971}
4972
4973static int selinux_tun_dev_attach(struct sock *sk, void *security)
4974{
4975	struct tun_security_struct *tunsec = security;
4976	struct sk_security_struct *sksec = sk->sk_security;
4977
4978	/* we don't currently perform any NetLabel based labeling here and it
4979	 * isn't clear that we would want to do so anyway; while we could apply
4980	 * labeling without the support of the TUN user the resulting labeled
4981	 * traffic from the other end of the connection would almost certainly
4982	 * cause confusion to the TUN user that had no idea network labeling
4983	 * protocols were being used */
4984
4985	sksec->sid = tunsec->sid;
4986	sksec->sclass = SECCLASS_TUN_SOCKET;
4987
4988	return 0;
4989}
4990
4991static int selinux_tun_dev_open(void *security)
4992{
4993	struct tun_security_struct *tunsec = security;
4994	u32 sid = current_sid();
4995	int err;
4996
4997	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
4998			   TUN_SOCKET__RELABELFROM, NULL);
4999	if (err)
5000		return err;
5001	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
5002			   TUN_SOCKET__RELABELTO, NULL);
5003	if (err)
5004		return err;
5005	tunsec->sid = sid;
5006
5007	return 0;
5008}
5009
5010static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5011{
5012	int err = 0;
5013	u32 perm;
5014	struct nlmsghdr *nlh;
5015	struct sk_security_struct *sksec = sk->sk_security;
5016
5017	if (skb->len < NLMSG_HDRLEN) {
5018		err = -EINVAL;
5019		goto out;
5020	}
5021	nlh = nlmsg_hdr(skb);
5022
5023	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5024	if (err) {
5025		if (err == -EINVAL) {
5026			pr_warn_ratelimited("SELinux: unrecognized netlink"
5027			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5028			       " pig=%d comm=%s\n",
5029			       sk->sk_protocol, nlh->nlmsg_type,
5030			       secclass_map[sksec->sclass - 1].name,
5031			       task_pid_nr(current), current->comm);
5032			if (!selinux_enforcing || security_get_allow_unknown())
5033				err = 0;
5034		}
5035
5036		/* Ignore */
5037		if (err == -ENOENT)
5038			err = 0;
5039		goto out;
5040	}
5041
5042	err = sock_has_perm(current, sk, perm);
5043out:
5044	return err;
5045}
5046
5047#ifdef CONFIG_NETFILTER
5048
5049static unsigned int selinux_ip_forward(struct sk_buff *skb,
5050				       const struct net_device *indev,
5051				       u16 family)
5052{
5053	int err;
 
5054	char *addrp;
5055	u32 peer_sid;
5056	struct common_audit_data ad;
5057	struct lsm_network_audit net = {0,};
5058	u8 secmark_active;
5059	u8 netlbl_active;
5060	u8 peerlbl_active;
5061
5062	if (!selinux_policycap_netpeer)
5063		return NF_ACCEPT;
5064
5065	secmark_active = selinux_secmark_enabled();
5066	netlbl_active = netlbl_enabled();
5067	peerlbl_active = selinux_peerlbl_enabled();
5068	if (!secmark_active && !peerlbl_active)
5069		return NF_ACCEPT;
5070
 
5071	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5072		return NF_DROP;
5073
 
5074	ad.type = LSM_AUDIT_DATA_NET;
5075	ad.u.net = &net;
5076	ad.u.net->netif = indev->ifindex;
5077	ad.u.net->family = family;
5078	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5079		return NF_DROP;
5080
5081	if (peerlbl_active) {
5082		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
 
 
5083					       addrp, family, peer_sid, &ad);
5084		if (err) {
5085			selinux_netlbl_err(skb, family, err, 1);
5086			return NF_DROP;
5087		}
5088	}
5089
5090	if (secmark_active)
5091		if (avc_has_perm(peer_sid, skb->secmark,
 
5092				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5093			return NF_DROP;
5094
5095	if (netlbl_active)
5096		/* we do this in the FORWARD path and not the POST_ROUTING
5097		 * path because we want to make sure we apply the necessary
5098		 * labeling before IPsec is applied so we can leverage AH
5099		 * protection */
5100		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5101			return NF_DROP;
5102
5103	return NF_ACCEPT;
5104}
5105
5106static unsigned int selinux_ipv4_forward(void *priv,
5107					 struct sk_buff *skb,
5108					 const struct nf_hook_state *state)
5109{
5110	return selinux_ip_forward(skb, state->in, PF_INET);
5111}
5112
5113#if IS_ENABLED(CONFIG_IPV6)
5114static unsigned int selinux_ipv6_forward(void *priv,
5115					 struct sk_buff *skb,
5116					 const struct nf_hook_state *state)
5117{
5118	return selinux_ip_forward(skb, state->in, PF_INET6);
5119}
5120#endif	/* IPV6 */
5121
5122static unsigned int selinux_ip_output(struct sk_buff *skb,
5123				      u16 family)
5124{
5125	struct sock *sk;
5126	u32 sid;
5127
5128	if (!netlbl_enabled())
5129		return NF_ACCEPT;
5130
5131	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5132	 * because we want to make sure we apply the necessary labeling
5133	 * before IPsec is applied so we can leverage AH protection */
5134	sk = skb->sk;
5135	if (sk) {
5136		struct sk_security_struct *sksec;
5137
5138		if (sk_listener(sk))
5139			/* if the socket is the listening state then this
5140			 * packet is a SYN-ACK packet which means it needs to
5141			 * be labeled based on the connection/request_sock and
5142			 * not the parent socket.  unfortunately, we can't
5143			 * lookup the request_sock yet as it isn't queued on
5144			 * the parent socket until after the SYN-ACK is sent.
5145			 * the "solution" is to simply pass the packet as-is
5146			 * as any IP option based labeling should be copied
5147			 * from the initial connection request (in the IP
5148			 * layer).  it is far from ideal, but until we get a
5149			 * security label in the packet itself this is the
5150			 * best we can do. */
5151			return NF_ACCEPT;
5152
5153		/* standard practice, label using the parent socket */
5154		sksec = sk->sk_security;
5155		sid = sksec->sid;
5156	} else
5157		sid = SECINITSID_KERNEL;
5158	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5159		return NF_DROP;
5160
5161	return NF_ACCEPT;
5162}
5163
5164static unsigned int selinux_ipv4_output(void *priv,
5165					struct sk_buff *skb,
5166					const struct nf_hook_state *state)
5167{
5168	return selinux_ip_output(skb, PF_INET);
5169}
5170
5171#if IS_ENABLED(CONFIG_IPV6)
5172static unsigned int selinux_ipv6_output(void *priv,
5173					struct sk_buff *skb,
5174					const struct nf_hook_state *state)
5175{
5176	return selinux_ip_output(skb, PF_INET6);
5177}
5178#endif	/* IPV6 */
5179
5180static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5181						int ifindex,
5182						u16 family)
5183{
5184	struct sock *sk = skb_to_full_sk(skb);
5185	struct sk_security_struct *sksec;
5186	struct common_audit_data ad;
5187	struct lsm_network_audit net = {0,};
5188	char *addrp;
5189	u8 proto;
5190
 
5191	if (sk == NULL)
5192		return NF_ACCEPT;
5193	sksec = sk->sk_security;
5194
5195	ad.type = LSM_AUDIT_DATA_NET;
5196	ad.u.net = &net;
5197	ad.u.net->netif = ifindex;
5198	ad.u.net->family = family;
5199	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5200		return NF_DROP;
5201
5202	if (selinux_secmark_enabled())
5203		if (avc_has_perm(sksec->sid, skb->secmark,
 
5204				 SECCLASS_PACKET, PACKET__SEND, &ad))
5205			return NF_DROP_ERR(-ECONNREFUSED);
5206
5207	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5208		return NF_DROP_ERR(-ECONNREFUSED);
5209
5210	return NF_ACCEPT;
5211}
5212
5213static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5214					 const struct net_device *outdev,
5215					 u16 family)
5216{
 
5217	u32 secmark_perm;
5218	u32 peer_sid;
5219	int ifindex = outdev->ifindex;
5220	struct sock *sk;
5221	struct common_audit_data ad;
5222	struct lsm_network_audit net = {0,};
5223	char *addrp;
5224	u8 secmark_active;
5225	u8 peerlbl_active;
5226
5227	/* If any sort of compatibility mode is enabled then handoff processing
5228	 * to the selinux_ip_postroute_compat() function to deal with the
5229	 * special handling.  We do this in an attempt to keep this function
5230	 * as fast and as clean as possible. */
5231	if (!selinux_policycap_netpeer)
5232		return selinux_ip_postroute_compat(skb, ifindex, family);
5233
5234	secmark_active = selinux_secmark_enabled();
5235	peerlbl_active = selinux_peerlbl_enabled();
5236	if (!secmark_active && !peerlbl_active)
5237		return NF_ACCEPT;
5238
5239	sk = skb_to_full_sk(skb);
5240
5241#ifdef CONFIG_XFRM
5242	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5243	 * packet transformation so allow the packet to pass without any checks
5244	 * since we'll have another chance to perform access control checks
5245	 * when the packet is on it's final way out.
5246	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5247	 *       is NULL, in this case go ahead and apply access control.
5248	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5249	 *       TCP listening state we cannot wait until the XFRM processing
5250	 *       is done as we will miss out on the SA label if we do;
5251	 *       unfortunately, this means more work, but it is only once per
5252	 *       connection. */
5253	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5254	    !(sk && sk_listener(sk)))
5255		return NF_ACCEPT;
5256#endif
5257
 
5258	if (sk == NULL) {
5259		/* Without an associated socket the packet is either coming
5260		 * from the kernel or it is being forwarded; check the packet
5261		 * to determine which and if the packet is being forwarded
5262		 * query the packet directly to determine the security label. */
5263		if (skb->skb_iif) {
5264			secmark_perm = PACKET__FORWARD_OUT;
5265			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5266				return NF_DROP;
5267		} else {
5268			secmark_perm = PACKET__SEND;
5269			peer_sid = SECINITSID_KERNEL;
5270		}
5271	} else if (sk_listener(sk)) {
5272		/* Locally generated packet but the associated socket is in the
5273		 * listening state which means this is a SYN-ACK packet.  In
5274		 * this particular case the correct security label is assigned
5275		 * to the connection/request_sock but unfortunately we can't
5276		 * query the request_sock as it isn't queued on the parent
5277		 * socket until after the SYN-ACK packet is sent; the only
5278		 * viable choice is to regenerate the label like we do in
5279		 * selinux_inet_conn_request().  See also selinux_ip_output()
5280		 * for similar problems. */
5281		u32 skb_sid;
5282		struct sk_security_struct *sksec;
5283
5284		sksec = sk->sk_security;
5285		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5286			return NF_DROP;
5287		/* At this point, if the returned skb peerlbl is SECSID_NULL
5288		 * and the packet has been through at least one XFRM
5289		 * transformation then we must be dealing with the "final"
5290		 * form of labeled IPsec packet; since we've already applied
5291		 * all of our access controls on this packet we can safely
5292		 * pass the packet. */
5293		if (skb_sid == SECSID_NULL) {
5294			switch (family) {
5295			case PF_INET:
5296				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5297					return NF_ACCEPT;
5298				break;
5299			case PF_INET6:
5300				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5301					return NF_ACCEPT;
5302				break;
5303			default:
5304				return NF_DROP_ERR(-ECONNREFUSED);
5305			}
5306		}
5307		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5308			return NF_DROP;
5309		secmark_perm = PACKET__SEND;
5310	} else {
5311		/* Locally generated packet, fetch the security label from the
5312		 * associated socket. */
5313		struct sk_security_struct *sksec = sk->sk_security;
5314		peer_sid = sksec->sid;
5315		secmark_perm = PACKET__SEND;
5316	}
5317
 
5318	ad.type = LSM_AUDIT_DATA_NET;
5319	ad.u.net = &net;
5320	ad.u.net->netif = ifindex;
5321	ad.u.net->family = family;
5322	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5323		return NF_DROP;
5324
5325	if (secmark_active)
5326		if (avc_has_perm(peer_sid, skb->secmark,
 
5327				 SECCLASS_PACKET, secmark_perm, &ad))
5328			return NF_DROP_ERR(-ECONNREFUSED);
5329
5330	if (peerlbl_active) {
5331		u32 if_sid;
5332		u32 node_sid;
5333
5334		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5335			return NF_DROP;
5336		if (avc_has_perm(peer_sid, if_sid,
 
5337				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5338			return NF_DROP_ERR(-ECONNREFUSED);
5339
5340		if (sel_netnode_sid(addrp, family, &node_sid))
5341			return NF_DROP;
5342		if (avc_has_perm(peer_sid, node_sid,
 
5343				 SECCLASS_NODE, NODE__SENDTO, &ad))
5344			return NF_DROP_ERR(-ECONNREFUSED);
5345	}
5346
5347	return NF_ACCEPT;
5348}
5349
5350static unsigned int selinux_ipv4_postroute(void *priv,
5351					   struct sk_buff *skb,
5352					   const struct nf_hook_state *state)
5353{
5354	return selinux_ip_postroute(skb, state->out, PF_INET);
5355}
5356
5357#if IS_ENABLED(CONFIG_IPV6)
5358static unsigned int selinux_ipv6_postroute(void *priv,
5359					   struct sk_buff *skb,
5360					   const struct nf_hook_state *state)
5361{
5362	return selinux_ip_postroute(skb, state->out, PF_INET6);
5363}
5364#endif	/* IPV6 */
5365
5366#endif	/* CONFIG_NETFILTER */
5367
5368static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5369{
5370	return selinux_nlmsg_perm(sk, skb);
5371}
 
 
 
 
 
 
5372
5373static int ipc_alloc_security(struct task_struct *task,
5374			      struct kern_ipc_perm *perm,
5375			      u16 sclass)
5376{
5377	struct ipc_security_struct *isec;
5378	u32 sid;
5379
5380	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5381	if (!isec)
5382		return -ENOMEM;
 
 
 
 
 
5383
5384	sid = task_sid(task);
5385	isec->sclass = sclass;
5386	isec->sid = sid;
5387	perm->security = isec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5388
5389	return 0;
5390}
 
 
 
 
 
5391
5392static void ipc_free_security(struct kern_ipc_perm *perm)
5393{
5394	struct ipc_security_struct *isec = perm->security;
5395	perm->security = NULL;
5396	kfree(isec);
5397}
5398
5399static int msg_msg_alloc_security(struct msg_msg *msg)
5400{
5401	struct msg_security_struct *msec;
5402
5403	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5404	if (!msec)
5405		return -ENOMEM;
5406
5407	msec->sid = SECINITSID_UNLABELED;
5408	msg->security = msec;
5409
5410	return 0;
5411}
5412
5413static void msg_msg_free_security(struct msg_msg *msg)
5414{
5415	struct msg_security_struct *msec = msg->security;
5416
5417	msg->security = NULL;
5418	kfree(msec);
5419}
5420
5421static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5422			u32 perms)
5423{
5424	struct ipc_security_struct *isec;
5425	struct common_audit_data ad;
5426	u32 sid = current_sid();
5427
5428	isec = ipc_perms->security;
5429
5430	ad.type = LSM_AUDIT_DATA_IPC;
5431	ad.u.ipc_id = ipc_perms->key;
5432
5433	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
5434}
5435
5436static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5437{
5438	return msg_msg_alloc_security(msg);
5439}
 
 
5440
5441static void selinux_msg_msg_free_security(struct msg_msg *msg)
5442{
5443	msg_msg_free_security(msg);
5444}
5445
5446/* message queue security operations */
5447static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5448{
5449	struct ipc_security_struct *isec;
5450	struct common_audit_data ad;
5451	u32 sid = current_sid();
5452	int rc;
5453
5454	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5455	if (rc)
5456		return rc;
5457
5458	isec = msq->q_perm.security;
 
5459
5460	ad.type = LSM_AUDIT_DATA_IPC;
5461	ad.u.ipc_id = msq->q_perm.key;
5462
5463	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5464			  MSGQ__CREATE, &ad);
5465	if (rc) {
5466		ipc_free_security(&msq->q_perm);
5467		return rc;
5468	}
5469	return 0;
5470}
5471
5472static void selinux_msg_queue_free_security(struct msg_queue *msq)
5473{
5474	ipc_free_security(&msq->q_perm);
5475}
5476
5477static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5478{
5479	struct ipc_security_struct *isec;
5480	struct common_audit_data ad;
5481	u32 sid = current_sid();
5482
5483	isec = msq->q_perm.security;
5484
5485	ad.type = LSM_AUDIT_DATA_IPC;
5486	ad.u.ipc_id = msq->q_perm.key;
5487
5488	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5489			    MSGQ__ASSOCIATE, &ad);
5490}
5491
5492static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5493{
5494	int err;
5495	int perms;
5496
5497	switch (cmd) {
5498	case IPC_INFO:
5499	case MSG_INFO:
5500		/* No specific object, just general system-wide information. */
5501		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5502	case IPC_STAT:
5503	case MSG_STAT:
 
5504		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5505		break;
5506	case IPC_SET:
5507		perms = MSGQ__SETATTR;
5508		break;
5509	case IPC_RMID:
5510		perms = MSGQ__DESTROY;
5511		break;
5512	default:
5513		return 0;
5514	}
5515
5516	err = ipc_has_perm(&msq->q_perm, perms);
5517	return err;
5518}
5519
5520static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5521{
5522	struct ipc_security_struct *isec;
5523	struct msg_security_struct *msec;
5524	struct common_audit_data ad;
5525	u32 sid = current_sid();
5526	int rc;
5527
5528	isec = msq->q_perm.security;
5529	msec = msg->security;
5530
5531	/*
5532	 * First time through, need to assign label to the message
5533	 */
5534	if (msec->sid == SECINITSID_UNLABELED) {
5535		/*
5536		 * Compute new sid based on current process and
5537		 * message queue this message will be stored in
5538		 */
5539		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5540					     NULL, &msec->sid);
5541		if (rc)
5542			return rc;
5543	}
5544
5545	ad.type = LSM_AUDIT_DATA_IPC;
5546	ad.u.ipc_id = msq->q_perm.key;
5547
5548	/* Can this process write to the queue? */
5549	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5550			  MSGQ__WRITE, &ad);
5551	if (!rc)
5552		/* Can this process send the message */
5553		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
5554				  MSG__SEND, &ad);
5555	if (!rc)
5556		/* Can the message be put in the queue? */
5557		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
5558				  MSGQ__ENQUEUE, &ad);
5559
5560	return rc;
5561}
5562
5563static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5564				    struct task_struct *target,
5565				    long type, int mode)
5566{
5567	struct ipc_security_struct *isec;
5568	struct msg_security_struct *msec;
5569	struct common_audit_data ad;
5570	u32 sid = task_sid(target);
5571	int rc;
5572
5573	isec = msq->q_perm.security;
5574	msec = msg->security;
5575
5576	ad.type = LSM_AUDIT_DATA_IPC;
5577	ad.u.ipc_id = msq->q_perm.key;
5578
5579	rc = avc_has_perm(sid, isec->sid,
 
5580			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5581	if (!rc)
5582		rc = avc_has_perm(sid, msec->sid,
 
5583				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5584	return rc;
5585}
5586
5587/* Shared Memory security operations */
5588static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5589{
5590	struct ipc_security_struct *isec;
5591	struct common_audit_data ad;
5592	u32 sid = current_sid();
5593	int rc;
5594
5595	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5596	if (rc)
5597		return rc;
5598
5599	isec = shp->shm_perm.security;
5600
5601	ad.type = LSM_AUDIT_DATA_IPC;
5602	ad.u.ipc_id = shp->shm_perm.key;
5603
5604	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5605			  SHM__CREATE, &ad);
5606	if (rc) {
5607		ipc_free_security(&shp->shm_perm);
5608		return rc;
5609	}
5610	return 0;
5611}
5612
5613static void selinux_shm_free_security(struct shmid_kernel *shp)
5614{
5615	ipc_free_security(&shp->shm_perm);
5616}
5617
5618static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5619{
5620	struct ipc_security_struct *isec;
5621	struct common_audit_data ad;
5622	u32 sid = current_sid();
5623
5624	isec = shp->shm_perm.security;
5625
5626	ad.type = LSM_AUDIT_DATA_IPC;
5627	ad.u.ipc_id = shp->shm_perm.key;
5628
5629	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5630			    SHM__ASSOCIATE, &ad);
5631}
5632
5633/* Note, at this point, shp is locked down */
5634static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5635{
5636	int perms;
5637	int err;
5638
5639	switch (cmd) {
5640	case IPC_INFO:
5641	case SHM_INFO:
5642		/* No specific object, just general system-wide information. */
5643		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5644	case IPC_STAT:
5645	case SHM_STAT:
 
5646		perms = SHM__GETATTR | SHM__ASSOCIATE;
5647		break;
5648	case IPC_SET:
5649		perms = SHM__SETATTR;
5650		break;
5651	case SHM_LOCK:
5652	case SHM_UNLOCK:
5653		perms = SHM__LOCK;
5654		break;
5655	case IPC_RMID:
5656		perms = SHM__DESTROY;
5657		break;
5658	default:
5659		return 0;
5660	}
5661
5662	err = ipc_has_perm(&shp->shm_perm, perms);
5663	return err;
5664}
5665
5666static int selinux_shm_shmat(struct shmid_kernel *shp,
5667			     char __user *shmaddr, int shmflg)
5668{
5669	u32 perms;
5670
5671	if (shmflg & SHM_RDONLY)
5672		perms = SHM__READ;
5673	else
5674		perms = SHM__READ | SHM__WRITE;
5675
5676	return ipc_has_perm(&shp->shm_perm, perms);
5677}
5678
5679/* Semaphore security operations */
5680static int selinux_sem_alloc_security(struct sem_array *sma)
5681{
5682	struct ipc_security_struct *isec;
5683	struct common_audit_data ad;
5684	u32 sid = current_sid();
5685	int rc;
5686
5687	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5688	if (rc)
5689		return rc;
5690
5691	isec = sma->sem_perm.security;
 
5692
5693	ad.type = LSM_AUDIT_DATA_IPC;
5694	ad.u.ipc_id = sma->sem_perm.key;
5695
5696	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5697			  SEM__CREATE, &ad);
5698	if (rc) {
5699		ipc_free_security(&sma->sem_perm);
5700		return rc;
5701	}
5702	return 0;
5703}
5704
5705static void selinux_sem_free_security(struct sem_array *sma)
5706{
5707	ipc_free_security(&sma->sem_perm);
5708}
5709
5710static int selinux_sem_associate(struct sem_array *sma, int semflg)
5711{
5712	struct ipc_security_struct *isec;
5713	struct common_audit_data ad;
5714	u32 sid = current_sid();
5715
5716	isec = sma->sem_perm.security;
5717
5718	ad.type = LSM_AUDIT_DATA_IPC;
5719	ad.u.ipc_id = sma->sem_perm.key;
5720
5721	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5722			    SEM__ASSOCIATE, &ad);
5723}
5724
5725/* Note, at this point, sma is locked down */
5726static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5727{
5728	int err;
5729	u32 perms;
5730
5731	switch (cmd) {
5732	case IPC_INFO:
5733	case SEM_INFO:
5734		/* No specific object, just general system-wide information. */
5735		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5736	case GETPID:
5737	case GETNCNT:
5738	case GETZCNT:
5739		perms = SEM__GETATTR;
5740		break;
5741	case GETVAL:
5742	case GETALL:
5743		perms = SEM__READ;
5744		break;
5745	case SETVAL:
5746	case SETALL:
5747		perms = SEM__WRITE;
5748		break;
5749	case IPC_RMID:
5750		perms = SEM__DESTROY;
5751		break;
5752	case IPC_SET:
5753		perms = SEM__SETATTR;
5754		break;
5755	case IPC_STAT:
5756	case SEM_STAT:
 
5757		perms = SEM__GETATTR | SEM__ASSOCIATE;
5758		break;
5759	default:
5760		return 0;
5761	}
5762
5763	err = ipc_has_perm(&sma->sem_perm, perms);
5764	return err;
5765}
5766
5767static int selinux_sem_semop(struct sem_array *sma,
5768			     struct sembuf *sops, unsigned nsops, int alter)
5769{
5770	u32 perms;
5771
5772	if (alter)
5773		perms = SEM__READ | SEM__WRITE;
5774	else
5775		perms = SEM__READ;
5776
5777	return ipc_has_perm(&sma->sem_perm, perms);
5778}
5779
5780static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5781{
5782	u32 av = 0;
5783
5784	av = 0;
5785	if (flag & S_IRUGO)
5786		av |= IPC__UNIX_READ;
5787	if (flag & S_IWUGO)
5788		av |= IPC__UNIX_WRITE;
5789
5790	if (av == 0)
5791		return 0;
5792
5793	return ipc_has_perm(ipcp, av);
5794}
5795
5796static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5797{
5798	struct ipc_security_struct *isec = ipcp->security;
5799	*secid = isec->sid;
5800}
5801
5802static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5803{
5804	if (inode)
5805		inode_doinit_with_dentry(inode, dentry);
5806}
5807
5808static int selinux_getprocattr(struct task_struct *p,
5809			       char *name, char **value)
5810{
5811	const struct task_security_struct *__tsec;
5812	u32 sid;
5813	int error;
5814	unsigned len;
5815
 
 
 
5816	if (current != p) {
5817		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5818		if (error)
5819			return error;
5820	}
5821
5822	rcu_read_lock();
5823	__tsec = __task_cred(p)->security;
5824
5825	if (!strcmp(name, "current"))
5826		sid = __tsec->sid;
5827	else if (!strcmp(name, "prev"))
5828		sid = __tsec->osid;
5829	else if (!strcmp(name, "exec"))
5830		sid = __tsec->exec_sid;
5831	else if (!strcmp(name, "fscreate"))
5832		sid = __tsec->create_sid;
5833	else if (!strcmp(name, "keycreate"))
5834		sid = __tsec->keycreate_sid;
5835	else if (!strcmp(name, "sockcreate"))
5836		sid = __tsec->sockcreate_sid;
5837	else
5838		goto invalid;
 
 
5839	rcu_read_unlock();
5840
5841	if (!sid)
5842		return 0;
5843
5844	error = security_sid_to_context(sid, value, &len);
5845	if (error)
5846		return error;
5847	return len;
5848
5849invalid:
5850	rcu_read_unlock();
5851	return -EINVAL;
5852}
5853
5854static int selinux_setprocattr(struct task_struct *p,
5855			       char *name, void *value, size_t size)
5856{
5857	struct task_security_struct *tsec;
5858	struct cred *new;
5859	u32 sid = 0, ptsid;
5860	int error;
5861	char *str = value;
5862
5863	if (current != p) {
5864		/* SELinux only allows a process to change its own
5865		   security attributes. */
5866		return -EACCES;
5867	}
5868
5869	/*
5870	 * Basic control over ability to set these attributes at all.
5871	 * current == p, but we'll pass them separately in case the
5872	 * above restriction is ever removed.
5873	 */
5874	if (!strcmp(name, "exec"))
5875		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5876	else if (!strcmp(name, "fscreate"))
5877		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5878	else if (!strcmp(name, "keycreate"))
5879		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5880	else if (!strcmp(name, "sockcreate"))
5881		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5882	else if (!strcmp(name, "current"))
5883		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5884	else
5885		error = -EINVAL;
5886	if (error)
5887		return error;
5888
5889	/* Obtain a SID for the context, if one was specified. */
5890	if (size && str[0] && str[0] != '\n') {
5891		if (str[size-1] == '\n') {
5892			str[size-1] = 0;
5893			size--;
5894		}
5895		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
 
5896		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5897			if (!capable(CAP_MAC_ADMIN)) {
5898				struct audit_buffer *ab;
5899				size_t audit_size;
5900
5901				/* We strip a nul only if it is at the end, otherwise the
5902				 * context contains a nul and we should audit that */
5903				if (str[size - 1] == '\0')
5904					audit_size = size - 1;
5905				else
5906					audit_size = size;
5907				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
 
 
5908				audit_log_format(ab, "op=fscreate invalid_context=");
5909				audit_log_n_untrustedstring(ab, value, audit_size);
5910				audit_log_end(ab);
5911
5912				return error;
5913			}
5914			error = security_context_to_sid_force(value, size,
5915							      &sid);
 
5916		}
5917		if (error)
5918			return error;
5919	}
5920
5921	new = prepare_creds();
5922	if (!new)
5923		return -ENOMEM;
5924
5925	/* Permission checking based on the specified context is
5926	   performed during the actual operation (execve,
5927	   open/mkdir/...), when we know the full context of the
5928	   operation.  See selinux_bprm_set_creds for the execve
5929	   checks and may_create for the file creation checks. The
5930	   operation will then fail if the context is not permitted. */
5931	tsec = new->security;
5932	if (!strcmp(name, "exec")) {
5933		tsec->exec_sid = sid;
5934	} else if (!strcmp(name, "fscreate")) {
5935		tsec->create_sid = sid;
5936	} else if (!strcmp(name, "keycreate")) {
5937		error = may_create_key(sid, p);
5938		if (error)
5939			goto abort_change;
 
 
 
5940		tsec->keycreate_sid = sid;
5941	} else if (!strcmp(name, "sockcreate")) {
5942		tsec->sockcreate_sid = sid;
5943	} else if (!strcmp(name, "current")) {
5944		error = -EINVAL;
5945		if (sid == 0)
5946			goto abort_change;
5947
5948		/* Only allow single threaded processes to change context */
5949		error = -EPERM;
5950		if (!current_is_single_threaded()) {
5951			error = security_bounded_transition(tsec->sid, sid);
 
5952			if (error)
5953				goto abort_change;
5954		}
5955
5956		/* Check permissions for the transition. */
5957		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5958				     PROCESS__DYNTRANSITION, NULL);
5959		if (error)
5960			goto abort_change;
5961
5962		/* Check for ptracing, and update the task SID if ok.
5963		   Otherwise, leave SID unchanged and fail. */
5964		ptsid = ptrace_parent_sid(p);
5965		if (ptsid != 0) {
5966			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
 
5967					     PROCESS__PTRACE, NULL);
5968			if (error)
5969				goto abort_change;
5970		}
5971
5972		tsec->sid = sid;
5973	} else {
5974		error = -EINVAL;
5975		goto abort_change;
5976	}
5977
5978	commit_creds(new);
5979	return size;
5980
5981abort_change:
5982	abort_creds(new);
5983	return error;
5984}
5985
5986static int selinux_ismaclabel(const char *name)
5987{
5988	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5989}
5990
5991static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5992{
5993	return security_sid_to_context(secid, secdata, seclen);
 
5994}
5995
5996static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5997{
5998	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
 
5999}
6000
6001static void selinux_release_secctx(char *secdata, u32 seclen)
6002{
6003	kfree(secdata);
6004}
6005
6006static void selinux_inode_invalidate_secctx(struct inode *inode)
6007{
6008	struct inode_security_struct *isec = inode->i_security;
6009
6010	spin_lock(&isec->lock);
6011	isec->initialized = LABEL_INVALID;
6012	spin_unlock(&isec->lock);
6013}
6014
6015/*
6016 *	called with inode->i_mutex locked
6017 */
6018static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6019{
6020	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
6021}
6022
6023/*
6024 *	called with inode->i_mutex locked
6025 */
6026static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6027{
6028	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
 
6029}
6030
6031static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6032{
6033	int len = 0;
6034	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6035						ctx, true);
6036	if (len < 0)
6037		return len;
6038	*ctxlen = len;
6039	return 0;
6040}
6041#ifdef CONFIG_KEYS
6042
6043static int selinux_key_alloc(struct key *k, const struct cred *cred,
6044			     unsigned long flags)
6045{
6046	const struct task_security_struct *tsec;
6047	struct key_security_struct *ksec;
6048
6049	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6050	if (!ksec)
6051		return -ENOMEM;
6052
6053	tsec = cred->security;
6054	if (tsec->keycreate_sid)
6055		ksec->sid = tsec->keycreate_sid;
6056	else
6057		ksec->sid = tsec->sid;
6058
6059	k->security = ksec;
6060	return 0;
6061}
6062
6063static void selinux_key_free(struct key *k)
6064{
6065	struct key_security_struct *ksec = k->security;
6066
6067	k->security = NULL;
6068	kfree(ksec);
6069}
6070
6071static int selinux_key_permission(key_ref_t key_ref,
6072				  const struct cred *cred,
6073				  unsigned perm)
6074{
6075	struct key *key;
6076	struct key_security_struct *ksec;
6077	u32 sid;
6078
6079	/* if no specific permissions are requested, we skip the
6080	   permission check. No serious, additional covert channels
6081	   appear to be created. */
6082	if (perm == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6083		return 0;
 
 
 
 
 
6084
6085	sid = cred_sid(cred);
6086
6087	key = key_ref_to_ptr(key_ref);
6088	ksec = key->security;
6089
6090	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
6091}
6092
6093static int selinux_key_getsecurity(struct key *key, char **_buffer)
6094{
6095	struct key_security_struct *ksec = key->security;
6096	char *context = NULL;
6097	unsigned len;
6098	int rc;
6099
6100	rc = security_sid_to_context(ksec->sid, &context, &len);
 
6101	if (!rc)
6102		rc = len;
6103	*_buffer = context;
6104	return rc;
6105}
6106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6107#endif
6108
6109static struct security_hook_list selinux_hooks[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6110	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6111	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6112	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6113	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6114
6115	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6116	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6117	LSM_HOOK_INIT(capget, selinux_capget),
6118	LSM_HOOK_INIT(capset, selinux_capset),
6119	LSM_HOOK_INIT(capable, selinux_capable),
6120	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6121	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6122	LSM_HOOK_INIT(syslog, selinux_syslog),
6123	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6124
6125	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6126
6127	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6128	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6129	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6130	LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
6131
6132	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6133	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6134	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6135	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6136	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6137	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6138	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6139	LSM_HOOK_INIT(sb_mount, selinux_mount),
6140	LSM_HOOK_INIT(sb_umount, selinux_umount),
6141	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6142	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6143	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
 
6144
6145	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6146	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6147
6148	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6149	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6150	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
 
6151	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6152	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6153	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6154	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6155	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6156	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6157	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6158	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6159	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6160	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6161	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6162	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6163	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6164	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6165	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6166	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6167	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6168	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
 
 
 
6169	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6170	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6171	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6172	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6173	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6174	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
 
 
 
6175
6176	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6177	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6178	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6179	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6180	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6181	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6182	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6183	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6184	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6185	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6186	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6187	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6188
6189	LSM_HOOK_INIT(file_open, selinux_file_open),
6190
6191	LSM_HOOK_INIT(task_create, selinux_task_create),
6192	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6193	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6194	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6195	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
 
6196	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6197	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6198	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
 
6199	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6200	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6201	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6202	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6203	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
 
6204	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6205	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6206	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
 
6207	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6208	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6209	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6210	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6211	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6212	LSM_HOOK_INIT(task_wait, selinux_task_wait),
6213	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
 
6214
6215	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6216	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6217
6218	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6219	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6220
6221	LSM_HOOK_INIT(msg_queue_alloc_security,
6222			selinux_msg_queue_alloc_security),
6223	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6224	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6225	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6226	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6227	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6228
6229	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6230	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6231	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6232	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6233	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6234
6235	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6236	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6237	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6238	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6239	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6240
6241	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6242
6243	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6244	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6245
6246	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6247	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6248	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6249	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6250	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6251	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6252	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6253	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6254
6255	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6256	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6257
6258	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6259	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
 
6260	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6261	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6262	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6263	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6264	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6265	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6266	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6267	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6268	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6269	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6270	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6271	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6272	LSM_HOOK_INIT(socket_getpeersec_stream,
6273			selinux_socket_getpeersec_stream),
6274	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6275	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6276	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6277	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6278	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6279	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
 
 
 
 
6280	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6281	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6282	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6283	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6284	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6285	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6286	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6287	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6288	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6289	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6290	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6291	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6292	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6293
 
 
 
 
 
6294#ifdef CONFIG_SECURITY_NETWORK_XFRM
6295	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6296	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6297	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6298	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6299	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6300	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6301			selinux_xfrm_state_alloc_acquire),
6302	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6303	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6304	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6305	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6306			selinux_xfrm_state_pol_flow_match),
6307	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6308#endif
6309
6310#ifdef CONFIG_KEYS
6311	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6312	LSM_HOOK_INIT(key_free, selinux_key_free),
6313	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6314	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
 
 
 
6315#endif
6316
6317#ifdef CONFIG_AUDIT
6318	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6319	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6320	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6321	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6322#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6323};
6324
6325static __init int selinux_init(void)
6326{
6327	if (!security_module_enable("selinux")) {
6328		selinux_enabled = 0;
6329		return 0;
6330	}
6331
6332	if (!selinux_enabled) {
6333		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6334		return 0;
6335	}
6336
6337	printk(KERN_INFO "SELinux:  Initializing.\n");
 
 
 
 
 
 
 
6338
6339	/* Set the security state for the initial task. */
6340	cred_init_security();
6341
6342	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6343
6344	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6345					    sizeof(struct inode_security_struct),
6346					    0, SLAB_PANIC, NULL);
6347	file_security_cache = kmem_cache_create("selinux_file_security",
6348					    sizeof(struct file_security_struct),
6349					    0, SLAB_PANIC, NULL);
6350	avc_init();
6351
6352	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
 
 
 
 
 
 
6353
6354	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6355		panic("SELinux: Unable to register AVC netcache callback\n");
6356
6357	if (selinux_enforcing)
6358		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
 
 
 
6359	else
6360		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
6361
6362	return 0;
6363}
6364
6365static void delayed_superblock_init(struct super_block *sb, void *unused)
6366{
6367	superblock_doinit(sb, NULL);
6368}
6369
6370void selinux_complete_init(void)
6371{
6372	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6373
6374	/* Set up any superblocks initialized prior to the policy load. */
6375	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6376	iterate_supers(delayed_superblock_init, NULL);
6377}
6378
6379/* SELinux requires early initialization in order to label
6380   all processes and objects when they are created. */
6381security_initcall(selinux_init);
 
 
 
 
 
 
6382
6383#if defined(CONFIG_NETFILTER)
6384
6385static struct nf_hook_ops selinux_nf_ops[] = {
6386	{
6387		.hook =		selinux_ipv4_postroute,
6388		.pf =		NFPROTO_IPV4,
6389		.hooknum =	NF_INET_POST_ROUTING,
6390		.priority =	NF_IP_PRI_SELINUX_LAST,
6391	},
6392	{
6393		.hook =		selinux_ipv4_forward,
6394		.pf =		NFPROTO_IPV4,
6395		.hooknum =	NF_INET_FORWARD,
6396		.priority =	NF_IP_PRI_SELINUX_FIRST,
6397	},
6398	{
6399		.hook =		selinux_ipv4_output,
6400		.pf =		NFPROTO_IPV4,
6401		.hooknum =	NF_INET_LOCAL_OUT,
6402		.priority =	NF_IP_PRI_SELINUX_FIRST,
6403	},
6404#if IS_ENABLED(CONFIG_IPV6)
6405	{
6406		.hook =		selinux_ipv6_postroute,
6407		.pf =		NFPROTO_IPV6,
6408		.hooknum =	NF_INET_POST_ROUTING,
6409		.priority =	NF_IP6_PRI_SELINUX_LAST,
6410	},
6411	{
6412		.hook =		selinux_ipv6_forward,
6413		.pf =		NFPROTO_IPV6,
6414		.hooknum =	NF_INET_FORWARD,
6415		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6416	},
6417	{
6418		.hook =		selinux_ipv6_output,
6419		.pf =		NFPROTO_IPV6,
6420		.hooknum =	NF_INET_LOCAL_OUT,
6421		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6422	},
6423#endif	/* IPV6 */
6424};
6425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6426static int __init selinux_nf_ip_init(void)
6427{
6428	int err;
6429
6430	if (!selinux_enabled)
6431		return 0;
6432
6433	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6434
6435	err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6436	if (err)
6437		panic("SELinux: nf_register_hooks: error %d\n", err);
6438
6439	return 0;
6440}
6441
6442__initcall(selinux_nf_ip_init);
6443
6444#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6445static void selinux_nf_ip_exit(void)
6446{
6447	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6448
6449	nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6450}
6451#endif
6452
6453#else /* CONFIG_NETFILTER */
6454
6455#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6456#define selinux_nf_ip_exit()
6457#endif
6458
6459#endif /* CONFIG_NETFILTER */
6460
6461#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6462static int selinux_disabled;
6463
6464int selinux_disable(void)
6465{
6466	if (ss_initialized) {
6467		/* Not permitted after initial policy load. */
6468		return -EINVAL;
6469	}
6470
6471	if (selinux_disabled) {
6472		/* Only do this once. */
6473		return -EINVAL;
6474	}
6475
6476	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6477
6478	selinux_disabled = 1;
6479	selinux_enabled = 0;
 
 
 
 
 
 
6480
6481	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6482
6483	/* Try to destroy the avc node cache */
6484	avc_disable();
6485
6486	/* Unregister netfilter hooks. */
6487	selinux_nf_ip_exit();
6488
6489	/* Unregister selinuxfs. */
6490	exit_sel_fs();
6491
6492	return 0;
6493}
6494#endif