Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
  94#include <linux/io_uring.h>
  95
  96#include "avc.h"
  97#include "objsec.h"
  98#include "netif.h"
  99#include "netnode.h"
 100#include "netport.h"
 101#include "ibpkey.h"
 102#include "xfrm.h"
 103#include "netlabel.h"
 104#include "audit.h"
 105#include "avc_ss.h"
 106
 107struct selinux_state selinux_state;
 108
 109/* SECMARK reference count */
 110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 111
 112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 113static int selinux_enforcing_boot __initdata;
 114
 115static int __init enforcing_setup(char *str)
 116{
 117	unsigned long enforcing;
 118	if (!kstrtoul(str, 0, &enforcing))
 119		selinux_enforcing_boot = enforcing ? 1 : 0;
 120	return 1;
 121}
 122__setup("enforcing=", enforcing_setup);
 123#else
 124#define selinux_enforcing_boot 1
 125#endif
 126
 127int selinux_enabled_boot __initdata = 1;
 128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 129static int __init selinux_enabled_setup(char *str)
 130{
 131	unsigned long enabled;
 132	if (!kstrtoul(str, 0, &enabled))
 133		selinux_enabled_boot = enabled ? 1 : 0;
 134	return 1;
 135}
 136__setup("selinux=", selinux_enabled_setup);
 137#endif
 138
 139static unsigned int selinux_checkreqprot_boot =
 140	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 141
 142static int __init checkreqprot_setup(char *str)
 143{
 144	unsigned long checkreqprot;
 145
 146	if (!kstrtoul(str, 0, &checkreqprot)) {
 147		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 148		if (checkreqprot)
 149			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 
 214	struct task_security_struct *tsec;
 215
 216	tsec = selinux_cred(unrcu_pointer(current->real_cred));
 217	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 218}
 219
 220/*
 221 * get the security ID of a set of credentials
 222 */
 223static inline u32 cred_sid(const struct cred *cred)
 224{
 225	const struct task_security_struct *tsec;
 226
 227	tsec = selinux_cred(cred);
 228	return tsec->sid;
 229}
 230
 231/*
 232 * get the objective security ID of a task
 233 */
 234static inline u32 task_sid_obj(const struct task_struct *task)
 235{
 236	u32 sid;
 237
 238	rcu_read_lock();
 239	sid = cred_sid(__task_cred(task));
 240	rcu_read_unlock();
 241	return sid;
 242}
 243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 245
 246/*
 247 * Try reloading inode security labels that have been marked as invalid.  The
 248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 249 * allowed; when set to false, returns -ECHILD when the label is
 250 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 251 */
 252static int __inode_security_revalidate(struct inode *inode,
 253				       struct dentry *dentry,
 254				       bool may_sleep)
 255{
 256	struct inode_security_struct *isec = selinux_inode(inode);
 257
 258	might_sleep_if(may_sleep);
 259
 260	if (selinux_initialized(&selinux_state) &&
 261	    isec->initialized != LABEL_INITIALIZED) {
 262		if (!may_sleep)
 263			return -ECHILD;
 264
 265		/*
 266		 * Try reloading the inode security label.  This will fail if
 267		 * @opt_dentry is NULL and no dentry for this inode can be
 268		 * found; in that case, continue using the old label.
 269		 */
 270		inode_doinit_with_dentry(inode, dentry);
 271	}
 272	return 0;
 273}
 274
 275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 276{
 277	return selinux_inode(inode);
 278}
 279
 280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 281{
 282	int error;
 283
 284	error = __inode_security_revalidate(inode, NULL, !rcu);
 285	if (error)
 286		return ERR_PTR(error);
 287	return selinux_inode(inode);
 288}
 289
 290/*
 291 * Get the security label of an inode.
 292 */
 293static struct inode_security_struct *inode_security(struct inode *inode)
 294{
 295	__inode_security_revalidate(inode, NULL, true);
 296	return selinux_inode(inode);
 297}
 298
 299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 300{
 301	struct inode *inode = d_backing_inode(dentry);
 302
 303	return selinux_inode(inode);
 304}
 305
 306/*
 307 * Get the security label of a dentry's backing inode.
 308 */
 309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 310{
 311	struct inode *inode = d_backing_inode(dentry);
 312
 313	__inode_security_revalidate(inode, dentry, true);
 314	return selinux_inode(inode);
 315}
 316
 317static void inode_free_security(struct inode *inode)
 318{
 319	struct inode_security_struct *isec = selinux_inode(inode);
 320	struct superblock_security_struct *sbsec;
 321
 322	if (!isec)
 323		return;
 324	sbsec = selinux_superblock(inode->i_sb);
 325	/*
 326	 * As not all inode security structures are in a list, we check for
 327	 * empty list outside of the lock to make sure that we won't waste
 328	 * time taking a lock doing nothing.
 329	 *
 330	 * The list_del_init() function can be safely called more than once.
 331	 * It should not be possible for this function to be called with
 332	 * concurrent list_add(), but for better safety against future changes
 333	 * in the code, we use list_empty_careful() here.
 334	 */
 335	if (!list_empty_careful(&isec->list)) {
 336		spin_lock(&sbsec->isec_lock);
 337		list_del_init(&isec->list);
 338		spin_unlock(&sbsec->isec_lock);
 339	}
 340}
 341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342struct selinux_mnt_opts {
 343	u32 fscontext_sid;
 344	u32 context_sid;
 345	u32 rootcontext_sid;
 346	u32 defcontext_sid;
 347};
 348
 349static void selinux_free_mnt_opts(void *mnt_opts)
 350{
 351	kfree(mnt_opts);
 
 
 
 
 
 
 
 
 
 
 352}
 353
 354enum {
 355	Opt_error = -1,
 356	Opt_context = 0,
 357	Opt_defcontext = 1,
 358	Opt_fscontext = 2,
 359	Opt_rootcontext = 3,
 360	Opt_seclabel = 4,
 361};
 362
 363#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 364static struct {
 365	const char *name;
 366	int len;
 367	int opt;
 368	bool has_arg;
 369} tokens[] = {
 370	A(context, true),
 371	A(fscontext, true),
 372	A(defcontext, true),
 373	A(rootcontext, true),
 374	A(seclabel, false),
 375};
 376#undef A
 377
 378static int match_opt_prefix(char *s, int l, char **arg)
 379{
 380	int i;
 381
 382	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 383		size_t len = tokens[i].len;
 384		if (len > l || memcmp(s, tokens[i].name, len))
 385			continue;
 386		if (tokens[i].has_arg) {
 387			if (len == l || s[len] != '=')
 388				continue;
 389			*arg = s + len + 1;
 390		} else if (len != l)
 391			continue;
 392		return tokens[i].opt;
 393	}
 394	return Opt_error;
 395}
 396
 397#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 398
 399static int may_context_mount_sb_relabel(u32 sid,
 400			struct superblock_security_struct *sbsec,
 401			const struct cred *cred)
 402{
 403	const struct task_security_struct *tsec = selinux_cred(cred);
 404	int rc;
 405
 406	rc = avc_has_perm(&selinux_state,
 407			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 408			  FILESYSTEM__RELABELFROM, NULL);
 409	if (rc)
 410		return rc;
 411
 412	rc = avc_has_perm(&selinux_state,
 413			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 414			  FILESYSTEM__RELABELTO, NULL);
 415	return rc;
 416}
 417
 418static int may_context_mount_inode_relabel(u32 sid,
 419			struct superblock_security_struct *sbsec,
 420			const struct cred *cred)
 421{
 422	const struct task_security_struct *tsec = selinux_cred(cred);
 423	int rc;
 424	rc = avc_has_perm(&selinux_state,
 425			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 426			  FILESYSTEM__RELABELFROM, NULL);
 427	if (rc)
 428		return rc;
 429
 430	rc = avc_has_perm(&selinux_state,
 431			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 432			  FILESYSTEM__ASSOCIATE, NULL);
 433	return rc;
 434}
 435
 436static int selinux_is_genfs_special_handling(struct super_block *sb)
 437{
 438	/* Special handling. Genfs but also in-core setxattr handler */
 439	return	!strcmp(sb->s_type->name, "sysfs") ||
 440		!strcmp(sb->s_type->name, "pstore") ||
 441		!strcmp(sb->s_type->name, "debugfs") ||
 442		!strcmp(sb->s_type->name, "tracefs") ||
 443		!strcmp(sb->s_type->name, "rootfs") ||
 444		(selinux_policycap_cgroupseclabel() &&
 445		 (!strcmp(sb->s_type->name, "cgroup") ||
 446		  !strcmp(sb->s_type->name, "cgroup2")));
 447}
 448
 449static int selinux_is_sblabel_mnt(struct super_block *sb)
 450{
 451	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 452
 453	/*
 454	 * IMPORTANT: Double-check logic in this function when adding a new
 455	 * SECURITY_FS_USE_* definition!
 456	 */
 457	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 458
 459	switch (sbsec->behavior) {
 460	case SECURITY_FS_USE_XATTR:
 461	case SECURITY_FS_USE_TRANS:
 462	case SECURITY_FS_USE_TASK:
 463	case SECURITY_FS_USE_NATIVE:
 464		return 1;
 465
 466	case SECURITY_FS_USE_GENFS:
 467		return selinux_is_genfs_special_handling(sb);
 468
 469	/* Never allow relabeling on context mounts */
 470	case SECURITY_FS_USE_MNTPOINT:
 471	case SECURITY_FS_USE_NONE:
 472	default:
 473		return 0;
 474	}
 475}
 476
 477static int sb_check_xattr_support(struct super_block *sb)
 478{
 479	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 480	struct dentry *root = sb->s_root;
 481	struct inode *root_inode = d_backing_inode(root);
 482	u32 sid;
 483	int rc;
 484
 485	/*
 486	 * Make sure that the xattr handler exists and that no
 487	 * error other than -ENODATA is returned by getxattr on
 488	 * the root directory.  -ENODATA is ok, as this may be
 489	 * the first boot of the SELinux kernel before we have
 490	 * assigned xattr values to the filesystem.
 491	 */
 492	if (!(root_inode->i_opflags & IOP_XATTR)) {
 493		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 494			sb->s_id, sb->s_type->name);
 495		goto fallback;
 496	}
 497
 498	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 499	if (rc < 0 && rc != -ENODATA) {
 500		if (rc == -EOPNOTSUPP) {
 501			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 502				sb->s_id, sb->s_type->name);
 503			goto fallback;
 504		} else {
 505			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 506				sb->s_id, sb->s_type->name, -rc);
 507			return rc;
 508		}
 509	}
 510	return 0;
 511
 512fallback:
 513	/* No xattr support - try to fallback to genfs if possible. */
 514	rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
 515				SECCLASS_DIR, &sid);
 516	if (rc)
 517		return -EOPNOTSUPP;
 518
 519	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 520		sb->s_id, sb->s_type->name);
 521	sbsec->behavior = SECURITY_FS_USE_GENFS;
 522	sbsec->sid = sid;
 523	return 0;
 524}
 525
 526static int sb_finish_set_opts(struct super_block *sb)
 527{
 528	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 529	struct dentry *root = sb->s_root;
 530	struct inode *root_inode = d_backing_inode(root);
 531	int rc = 0;
 532
 533	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 534		rc = sb_check_xattr_support(sb);
 535		if (rc)
 536			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537	}
 538
 539	sbsec->flags |= SE_SBINITIALIZED;
 540
 541	/*
 542	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 543	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 544	 * us a superblock that needs the flag to be cleared.
 545	 */
 546	if (selinux_is_sblabel_mnt(sb))
 547		sbsec->flags |= SBLABEL_MNT;
 548	else
 549		sbsec->flags &= ~SBLABEL_MNT;
 550
 551	/* Initialize the root inode. */
 552	rc = inode_doinit_with_dentry(root_inode, root);
 553
 554	/* Initialize any other inodes associated with the superblock, e.g.
 555	   inodes created prior to initial policy load or inodes created
 556	   during get_sb by a pseudo filesystem that directly
 557	   populates itself. */
 558	spin_lock(&sbsec->isec_lock);
 559	while (!list_empty(&sbsec->isec_head)) {
 560		struct inode_security_struct *isec =
 561				list_first_entry(&sbsec->isec_head,
 562					   struct inode_security_struct, list);
 563		struct inode *inode = isec->inode;
 564		list_del_init(&isec->list);
 565		spin_unlock(&sbsec->isec_lock);
 566		inode = igrab(inode);
 567		if (inode) {
 568			if (!IS_PRIVATE(inode))
 569				inode_doinit_with_dentry(inode, NULL);
 570			iput(inode);
 571		}
 572		spin_lock(&sbsec->isec_lock);
 573	}
 574	spin_unlock(&sbsec->isec_lock);
 
 575	return rc;
 576}
 577
 578static int bad_option(struct superblock_security_struct *sbsec, char flag,
 579		      u32 old_sid, u32 new_sid)
 580{
 581	char mnt_flags = sbsec->flags & SE_MNTMASK;
 582
 583	/* check if the old mount command had the same options */
 584	if (sbsec->flags & SE_SBINITIALIZED)
 585		if (!(sbsec->flags & flag) ||
 586		    (old_sid != new_sid))
 587			return 1;
 588
 589	/* check if we were passed the same options twice,
 590	 * aka someone passed context=a,context=b
 591	 */
 592	if (!(sbsec->flags & SE_SBINITIALIZED))
 593		if (mnt_flags & flag)
 594			return 1;
 595	return 0;
 596}
 597
 
 
 
 
 
 
 
 
 
 
 
 598/*
 599 * Allow filesystems with binary mount data to explicitly set mount point
 600 * labeling information.
 601 */
 602static int selinux_set_mnt_opts(struct super_block *sb,
 603				void *mnt_opts,
 604				unsigned long kern_flags,
 605				unsigned long *set_kern_flags)
 606{
 607	const struct cred *cred = current_cred();
 608	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 609	struct dentry *root = sb->s_root;
 610	struct selinux_mnt_opts *opts = mnt_opts;
 611	struct inode_security_struct *root_isec;
 612	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 613	u32 defcontext_sid = 0;
 614	int rc = 0;
 615
 616	mutex_lock(&sbsec->lock);
 617
 618	if (!selinux_initialized(&selinux_state)) {
 619		if (!opts) {
 620			/* Defer initialization until selinux_complete_init,
 621			   after the initial policy is loaded and the security
 622			   server is ready to handle calls. */
 623			goto out;
 624		}
 625		rc = -EINVAL;
 626		pr_warn("SELinux: Unable to set superblock options "
 627			"before the security server is initialized\n");
 628		goto out;
 629	}
 630	if (kern_flags && !set_kern_flags) {
 631		/* Specifying internal flags without providing a place to
 632		 * place the results is not allowed */
 633		rc = -EINVAL;
 634		goto out;
 635	}
 636
 637	/*
 638	 * Binary mount data FS will come through this function twice.  Once
 639	 * from an explicit call and once from the generic calls from the vfs.
 640	 * Since the generic VFS calls will not contain any security mount data
 641	 * we need to skip the double mount verification.
 642	 *
 643	 * This does open a hole in which we will not notice if the first
 644	 * mount using this sb set explicit options and a second mount using
 645	 * this sb does not set any security options.  (The first options
 646	 * will be used for both mounts)
 647	 */
 648	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 649	    && !opts)
 650		goto out;
 651
 652	root_isec = backing_inode_security_novalidate(root);
 653
 654	/*
 655	 * parse the mount options, check if they are valid sids.
 656	 * also check if someone is trying to mount the same sb more
 657	 * than once with different security options.
 658	 */
 659	if (opts) {
 660		if (opts->fscontext_sid) {
 661			fscontext_sid = opts->fscontext_sid;
 
 
 662			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 663					fscontext_sid))
 664				goto out_double_mount;
 665			sbsec->flags |= FSCONTEXT_MNT;
 666		}
 667		if (opts->context_sid) {
 668			context_sid = opts->context_sid;
 
 
 669			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 670					context_sid))
 671				goto out_double_mount;
 672			sbsec->flags |= CONTEXT_MNT;
 673		}
 674		if (opts->rootcontext_sid) {
 675			rootcontext_sid = opts->rootcontext_sid;
 
 
 676			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 677					rootcontext_sid))
 678				goto out_double_mount;
 679			sbsec->flags |= ROOTCONTEXT_MNT;
 680		}
 681		if (opts->defcontext_sid) {
 682			defcontext_sid = opts->defcontext_sid;
 
 
 683			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 684					defcontext_sid))
 685				goto out_double_mount;
 686			sbsec->flags |= DEFCONTEXT_MNT;
 687		}
 688	}
 689
 690	if (sbsec->flags & SE_SBINITIALIZED) {
 691		/* previously mounted with options, but not on this attempt? */
 692		if ((sbsec->flags & SE_MNTMASK) && !opts)
 693			goto out_double_mount;
 694		rc = 0;
 695		goto out;
 696	}
 697
 698	if (strcmp(sb->s_type->name, "proc") == 0)
 699		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 700
 701	if (!strcmp(sb->s_type->name, "debugfs") ||
 702	    !strcmp(sb->s_type->name, "tracefs") ||
 703	    !strcmp(sb->s_type->name, "binder") ||
 704	    !strcmp(sb->s_type->name, "bpf") ||
 705	    !strcmp(sb->s_type->name, "pstore") ||
 706	    !strcmp(sb->s_type->name, "securityfs"))
 707		sbsec->flags |= SE_SBGENFS;
 708
 709	if (!strcmp(sb->s_type->name, "sysfs") ||
 710	    !strcmp(sb->s_type->name, "cgroup") ||
 711	    !strcmp(sb->s_type->name, "cgroup2"))
 712		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 713
 714	if (!sbsec->behavior) {
 715		/*
 716		 * Determine the labeling behavior to use for this
 717		 * filesystem type.
 718		 */
 719		rc = security_fs_use(&selinux_state, sb);
 720		if (rc) {
 721			pr_warn("%s: security_fs_use(%s) returned %d\n",
 722					__func__, sb->s_type->name, rc);
 723			goto out;
 724		}
 725	}
 726
 727	/*
 728	 * If this is a user namespace mount and the filesystem type is not
 729	 * explicitly whitelisted, then no contexts are allowed on the command
 730	 * line and security labels must be ignored.
 731	 */
 732	if (sb->s_user_ns != &init_user_ns &&
 733	    strcmp(sb->s_type->name, "tmpfs") &&
 734	    strcmp(sb->s_type->name, "ramfs") &&
 735	    strcmp(sb->s_type->name, "devpts") &&
 736	    strcmp(sb->s_type->name, "overlay")) {
 737		if (context_sid || fscontext_sid || rootcontext_sid ||
 738		    defcontext_sid) {
 739			rc = -EACCES;
 740			goto out;
 741		}
 742		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 743			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 744			rc = security_transition_sid(&selinux_state,
 745						     current_sid(),
 746						     current_sid(),
 747						     SECCLASS_FILE, NULL,
 748						     &sbsec->mntpoint_sid);
 749			if (rc)
 750				goto out;
 751		}
 752		goto out_set_opts;
 753	}
 754
 755	/* sets the context of the superblock for the fs being mounted. */
 756	if (fscontext_sid) {
 757		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 758		if (rc)
 759			goto out;
 760
 761		sbsec->sid = fscontext_sid;
 762	}
 763
 764	/*
 765	 * Switch to using mount point labeling behavior.
 766	 * sets the label used on all file below the mountpoint, and will set
 767	 * the superblock context if not already set.
 768	 */
 769	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 770		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 771		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 772	}
 773
 774	if (context_sid) {
 775		if (!fscontext_sid) {
 776			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 777							  cred);
 778			if (rc)
 779				goto out;
 780			sbsec->sid = context_sid;
 781		} else {
 782			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 783							     cred);
 784			if (rc)
 785				goto out;
 786		}
 787		if (!rootcontext_sid)
 788			rootcontext_sid = context_sid;
 789
 790		sbsec->mntpoint_sid = context_sid;
 791		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 792	}
 793
 794	if (rootcontext_sid) {
 795		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 796						     cred);
 797		if (rc)
 798			goto out;
 799
 800		root_isec->sid = rootcontext_sid;
 801		root_isec->initialized = LABEL_INITIALIZED;
 802	}
 803
 804	if (defcontext_sid) {
 805		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 806			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 807			rc = -EINVAL;
 808			pr_warn("SELinux: defcontext option is "
 809			       "invalid for this filesystem type\n");
 810			goto out;
 811		}
 812
 813		if (defcontext_sid != sbsec->def_sid) {
 814			rc = may_context_mount_inode_relabel(defcontext_sid,
 815							     sbsec, cred);
 816			if (rc)
 817				goto out;
 818		}
 819
 820		sbsec->def_sid = defcontext_sid;
 821	}
 822
 823out_set_opts:
 824	rc = sb_finish_set_opts(sb);
 825out:
 826	mutex_unlock(&sbsec->lock);
 827	return rc;
 828out_double_mount:
 829	rc = -EINVAL;
 830	pr_warn("SELinux: mount invalid.  Same superblock, different "
 831	       "security settings for (dev %s, type %s)\n", sb->s_id,
 832	       sb->s_type->name);
 833	goto out;
 834}
 835
 836static int selinux_cmp_sb_context(const struct super_block *oldsb,
 837				    const struct super_block *newsb)
 838{
 839	struct superblock_security_struct *old = selinux_superblock(oldsb);
 840	struct superblock_security_struct *new = selinux_superblock(newsb);
 841	char oldflags = old->flags & SE_MNTMASK;
 842	char newflags = new->flags & SE_MNTMASK;
 843
 844	if (oldflags != newflags)
 845		goto mismatch;
 846	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 847		goto mismatch;
 848	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 849		goto mismatch;
 850	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 851		goto mismatch;
 852	if (oldflags & ROOTCONTEXT_MNT) {
 853		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 854		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 855		if (oldroot->sid != newroot->sid)
 856			goto mismatch;
 857	}
 858	return 0;
 859mismatch:
 860	pr_warn("SELinux: mount invalid.  Same superblock, "
 861			    "different security settings for (dev %s, "
 862			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 863	return -EBUSY;
 864}
 865
 866static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 867					struct super_block *newsb,
 868					unsigned long kern_flags,
 869					unsigned long *set_kern_flags)
 870{
 871	int rc = 0;
 872	const struct superblock_security_struct *oldsbsec =
 873						selinux_superblock(oldsb);
 874	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 875
 876	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 877	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 878	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 879
 880	/*
 881	 * if the parent was able to be mounted it clearly had no special lsm
 882	 * mount options.  thus we can safely deal with this superblock later
 883	 */
 884	if (!selinux_initialized(&selinux_state))
 885		return 0;
 886
 887	/*
 888	 * Specifying internal flags without providing a place to
 889	 * place the results is not allowed.
 890	 */
 891	if (kern_flags && !set_kern_flags)
 892		return -EINVAL;
 893
 894	/* how can we clone if the old one wasn't set up?? */
 895	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 896
 897	/* if fs is reusing a sb, make sure that the contexts match */
 898	if (newsbsec->flags & SE_SBINITIALIZED) {
 899		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 900			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 901		return selinux_cmp_sb_context(oldsb, newsb);
 902	}
 903
 904	mutex_lock(&newsbsec->lock);
 905
 906	newsbsec->flags = oldsbsec->flags;
 907
 908	newsbsec->sid = oldsbsec->sid;
 909	newsbsec->def_sid = oldsbsec->def_sid;
 910	newsbsec->behavior = oldsbsec->behavior;
 911
 912	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 913		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 914		rc = security_fs_use(&selinux_state, newsb);
 915		if (rc)
 916			goto out;
 917	}
 918
 919	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 920		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 921		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 922	}
 923
 924	if (set_context) {
 925		u32 sid = oldsbsec->mntpoint_sid;
 926
 927		if (!set_fscontext)
 928			newsbsec->sid = sid;
 929		if (!set_rootcontext) {
 930			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 931			newisec->sid = sid;
 932		}
 933		newsbsec->mntpoint_sid = sid;
 934	}
 935	if (set_rootcontext) {
 936		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 937		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 938
 939		newisec->sid = oldisec->sid;
 940	}
 941
 942	sb_finish_set_opts(newsb);
 943out:
 944	mutex_unlock(&newsbsec->lock);
 945	return rc;
 946}
 947
 948/*
 949 * NOTE: the caller is resposible for freeing the memory even if on error.
 950 */
 951static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 952{
 953	struct selinux_mnt_opts *opts = *mnt_opts;
 954	u32 *dst_sid;
 955	int rc;
 956
 957	if (token == Opt_seclabel)
 958		/* eaten and completely ignored */
 959		return 0;
 960	if (!s)
 961		return -EINVAL;
 962
 963	if (!selinux_initialized(&selinux_state)) {
 964		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
 965		return -EINVAL;
 966	}
 967
 968	if (!opts) {
 969		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
 970		if (!opts)
 971			return -ENOMEM;
 972		*mnt_opts = opts;
 973	}
 974
 
 975	switch (token) {
 976	case Opt_context:
 977		if (opts->context_sid || opts->defcontext_sid)
 978			goto err;
 979		dst_sid = &opts->context_sid;
 980		break;
 981	case Opt_fscontext:
 982		if (opts->fscontext_sid)
 983			goto err;
 984		dst_sid = &opts->fscontext_sid;
 985		break;
 986	case Opt_rootcontext:
 987		if (opts->rootcontext_sid)
 988			goto err;
 989		dst_sid = &opts->rootcontext_sid;
 990		break;
 991	case Opt_defcontext:
 992		if (opts->context_sid || opts->defcontext_sid)
 993			goto err;
 994		dst_sid = &opts->defcontext_sid;
 995		break;
 996	default:
 997		WARN_ON(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 999	}
1000	rc = security_context_str_to_sid(&selinux_state, s, dst_sid, GFP_KERNEL);
1001	if (rc)
1002		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1003			s, rc);
1004	return rc;
1005
1006err:
1007	pr_warn(SEL_MOUNT_FAIL_MSG);
1008	return -EINVAL;
 
 
 
1009}
1010
1011static int show_sid(struct seq_file *m, u32 sid)
1012{
1013	char *context = NULL;
1014	u32 len;
1015	int rc;
1016
1017	rc = security_sid_to_context(&selinux_state, sid,
1018					     &context, &len);
1019	if (!rc) {
1020		bool has_comma = strchr(context, ',');
1021
1022		seq_putc(m, '=');
1023		if (has_comma)
1024			seq_putc(m, '\"');
1025		seq_escape(m, context, "\"\n\\");
1026		if (has_comma)
1027			seq_putc(m, '\"');
1028	}
1029	kfree(context);
1030	return rc;
1031}
1032
1033static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1034{
1035	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1036	int rc;
1037
1038	if (!(sbsec->flags & SE_SBINITIALIZED))
1039		return 0;
1040
1041	if (!selinux_initialized(&selinux_state))
1042		return 0;
1043
1044	if (sbsec->flags & FSCONTEXT_MNT) {
1045		seq_putc(m, ',');
1046		seq_puts(m, FSCONTEXT_STR);
1047		rc = show_sid(m, sbsec->sid);
1048		if (rc)
1049			return rc;
1050	}
1051	if (sbsec->flags & CONTEXT_MNT) {
1052		seq_putc(m, ',');
1053		seq_puts(m, CONTEXT_STR);
1054		rc = show_sid(m, sbsec->mntpoint_sid);
1055		if (rc)
1056			return rc;
1057	}
1058	if (sbsec->flags & DEFCONTEXT_MNT) {
1059		seq_putc(m, ',');
1060		seq_puts(m, DEFCONTEXT_STR);
1061		rc = show_sid(m, sbsec->def_sid);
1062		if (rc)
1063			return rc;
1064	}
1065	if (sbsec->flags & ROOTCONTEXT_MNT) {
1066		struct dentry *root = sb->s_root;
1067		struct inode_security_struct *isec = backing_inode_security(root);
1068		seq_putc(m, ',');
1069		seq_puts(m, ROOTCONTEXT_STR);
1070		rc = show_sid(m, isec->sid);
1071		if (rc)
1072			return rc;
1073	}
1074	if (sbsec->flags & SBLABEL_MNT) {
1075		seq_putc(m, ',');
1076		seq_puts(m, SECLABEL_STR);
1077	}
1078	return 0;
1079}
1080
1081static inline u16 inode_mode_to_security_class(umode_t mode)
1082{
1083	switch (mode & S_IFMT) {
1084	case S_IFSOCK:
1085		return SECCLASS_SOCK_FILE;
1086	case S_IFLNK:
1087		return SECCLASS_LNK_FILE;
1088	case S_IFREG:
1089		return SECCLASS_FILE;
1090	case S_IFBLK:
1091		return SECCLASS_BLK_FILE;
1092	case S_IFDIR:
1093		return SECCLASS_DIR;
1094	case S_IFCHR:
1095		return SECCLASS_CHR_FILE;
1096	case S_IFIFO:
1097		return SECCLASS_FIFO_FILE;
1098
1099	}
1100
1101	return SECCLASS_FILE;
1102}
1103
1104static inline int default_protocol_stream(int protocol)
1105{
1106	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1107		protocol == IPPROTO_MPTCP);
1108}
1109
1110static inline int default_protocol_dgram(int protocol)
1111{
1112	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1113}
1114
1115static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1116{
1117	int extsockclass = selinux_policycap_extsockclass();
1118
1119	switch (family) {
1120	case PF_UNIX:
1121		switch (type) {
1122		case SOCK_STREAM:
1123		case SOCK_SEQPACKET:
1124			return SECCLASS_UNIX_STREAM_SOCKET;
1125		case SOCK_DGRAM:
1126		case SOCK_RAW:
1127			return SECCLASS_UNIX_DGRAM_SOCKET;
1128		}
1129		break;
1130	case PF_INET:
1131	case PF_INET6:
1132		switch (type) {
1133		case SOCK_STREAM:
1134		case SOCK_SEQPACKET:
1135			if (default_protocol_stream(protocol))
1136				return SECCLASS_TCP_SOCKET;
1137			else if (extsockclass && protocol == IPPROTO_SCTP)
1138				return SECCLASS_SCTP_SOCKET;
1139			else
1140				return SECCLASS_RAWIP_SOCKET;
1141		case SOCK_DGRAM:
1142			if (default_protocol_dgram(protocol))
1143				return SECCLASS_UDP_SOCKET;
1144			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1145						  protocol == IPPROTO_ICMPV6))
1146				return SECCLASS_ICMP_SOCKET;
1147			else
1148				return SECCLASS_RAWIP_SOCKET;
1149		case SOCK_DCCP:
1150			return SECCLASS_DCCP_SOCKET;
1151		default:
1152			return SECCLASS_RAWIP_SOCKET;
1153		}
1154		break;
1155	case PF_NETLINK:
1156		switch (protocol) {
1157		case NETLINK_ROUTE:
1158			return SECCLASS_NETLINK_ROUTE_SOCKET;
1159		case NETLINK_SOCK_DIAG:
1160			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1161		case NETLINK_NFLOG:
1162			return SECCLASS_NETLINK_NFLOG_SOCKET;
1163		case NETLINK_XFRM:
1164			return SECCLASS_NETLINK_XFRM_SOCKET;
1165		case NETLINK_SELINUX:
1166			return SECCLASS_NETLINK_SELINUX_SOCKET;
1167		case NETLINK_ISCSI:
1168			return SECCLASS_NETLINK_ISCSI_SOCKET;
1169		case NETLINK_AUDIT:
1170			return SECCLASS_NETLINK_AUDIT_SOCKET;
1171		case NETLINK_FIB_LOOKUP:
1172			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1173		case NETLINK_CONNECTOR:
1174			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1175		case NETLINK_NETFILTER:
1176			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1177		case NETLINK_DNRTMSG:
1178			return SECCLASS_NETLINK_DNRT_SOCKET;
1179		case NETLINK_KOBJECT_UEVENT:
1180			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1181		case NETLINK_GENERIC:
1182			return SECCLASS_NETLINK_GENERIC_SOCKET;
1183		case NETLINK_SCSITRANSPORT:
1184			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1185		case NETLINK_RDMA:
1186			return SECCLASS_NETLINK_RDMA_SOCKET;
1187		case NETLINK_CRYPTO:
1188			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1189		default:
1190			return SECCLASS_NETLINK_SOCKET;
1191		}
1192	case PF_PACKET:
1193		return SECCLASS_PACKET_SOCKET;
1194	case PF_KEY:
1195		return SECCLASS_KEY_SOCKET;
1196	case PF_APPLETALK:
1197		return SECCLASS_APPLETALK_SOCKET;
1198	}
1199
1200	if (extsockclass) {
1201		switch (family) {
1202		case PF_AX25:
1203			return SECCLASS_AX25_SOCKET;
1204		case PF_IPX:
1205			return SECCLASS_IPX_SOCKET;
1206		case PF_NETROM:
1207			return SECCLASS_NETROM_SOCKET;
1208		case PF_ATMPVC:
1209			return SECCLASS_ATMPVC_SOCKET;
1210		case PF_X25:
1211			return SECCLASS_X25_SOCKET;
1212		case PF_ROSE:
1213			return SECCLASS_ROSE_SOCKET;
1214		case PF_DECnet:
1215			return SECCLASS_DECNET_SOCKET;
1216		case PF_ATMSVC:
1217			return SECCLASS_ATMSVC_SOCKET;
1218		case PF_RDS:
1219			return SECCLASS_RDS_SOCKET;
1220		case PF_IRDA:
1221			return SECCLASS_IRDA_SOCKET;
1222		case PF_PPPOX:
1223			return SECCLASS_PPPOX_SOCKET;
1224		case PF_LLC:
1225			return SECCLASS_LLC_SOCKET;
1226		case PF_CAN:
1227			return SECCLASS_CAN_SOCKET;
1228		case PF_TIPC:
1229			return SECCLASS_TIPC_SOCKET;
1230		case PF_BLUETOOTH:
1231			return SECCLASS_BLUETOOTH_SOCKET;
1232		case PF_IUCV:
1233			return SECCLASS_IUCV_SOCKET;
1234		case PF_RXRPC:
1235			return SECCLASS_RXRPC_SOCKET;
1236		case PF_ISDN:
1237			return SECCLASS_ISDN_SOCKET;
1238		case PF_PHONET:
1239			return SECCLASS_PHONET_SOCKET;
1240		case PF_IEEE802154:
1241			return SECCLASS_IEEE802154_SOCKET;
1242		case PF_CAIF:
1243			return SECCLASS_CAIF_SOCKET;
1244		case PF_ALG:
1245			return SECCLASS_ALG_SOCKET;
1246		case PF_NFC:
1247			return SECCLASS_NFC_SOCKET;
1248		case PF_VSOCK:
1249			return SECCLASS_VSOCK_SOCKET;
1250		case PF_KCM:
1251			return SECCLASS_KCM_SOCKET;
1252		case PF_QIPCRTR:
1253			return SECCLASS_QIPCRTR_SOCKET;
1254		case PF_SMC:
1255			return SECCLASS_SMC_SOCKET;
1256		case PF_XDP:
1257			return SECCLASS_XDP_SOCKET;
1258		case PF_MCTP:
1259			return SECCLASS_MCTP_SOCKET;
1260#if PF_MAX > 46
1261#error New address family defined, please update this function.
1262#endif
1263		}
1264	}
1265
1266	return SECCLASS_SOCKET;
1267}
1268
1269static int selinux_genfs_get_sid(struct dentry *dentry,
1270				 u16 tclass,
1271				 u16 flags,
1272				 u32 *sid)
1273{
1274	int rc;
1275	struct super_block *sb = dentry->d_sb;
1276	char *buffer, *path;
1277
1278	buffer = (char *)__get_free_page(GFP_KERNEL);
1279	if (!buffer)
1280		return -ENOMEM;
1281
1282	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1283	if (IS_ERR(path))
1284		rc = PTR_ERR(path);
1285	else {
1286		if (flags & SE_SBPROC) {
1287			/* each process gets a /proc/PID/ entry. Strip off the
1288			 * PID part to get a valid selinux labeling.
1289			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1290			while (path[1] >= '0' && path[1] <= '9') {
1291				path[1] = '/';
1292				path++;
1293			}
1294		}
1295		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1296					path, tclass, sid);
1297		if (rc == -ENOENT) {
1298			/* No match in policy, mark as unlabeled. */
1299			*sid = SECINITSID_UNLABELED;
1300			rc = 0;
1301		}
1302	}
1303	free_page((unsigned long)buffer);
1304	return rc;
1305}
1306
1307static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1308				  u32 def_sid, u32 *sid)
1309{
1310#define INITCONTEXTLEN 255
1311	char *context;
1312	unsigned int len;
1313	int rc;
1314
1315	len = INITCONTEXTLEN;
1316	context = kmalloc(len + 1, GFP_NOFS);
1317	if (!context)
1318		return -ENOMEM;
1319
1320	context[len] = '\0';
1321	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1322	if (rc == -ERANGE) {
1323		kfree(context);
1324
1325		/* Need a larger buffer.  Query for the right size. */
1326		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1327		if (rc < 0)
1328			return rc;
1329
1330		len = rc;
1331		context = kmalloc(len + 1, GFP_NOFS);
1332		if (!context)
1333			return -ENOMEM;
1334
1335		context[len] = '\0';
1336		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1337				    context, len);
1338	}
1339	if (rc < 0) {
1340		kfree(context);
1341		if (rc != -ENODATA) {
1342			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1343				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1344			return rc;
1345		}
1346		*sid = def_sid;
1347		return 0;
1348	}
1349
1350	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1351					     def_sid, GFP_NOFS);
1352	if (rc) {
1353		char *dev = inode->i_sb->s_id;
1354		unsigned long ino = inode->i_ino;
1355
1356		if (rc == -EINVAL) {
1357			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1358					      ino, dev, context);
1359		} else {
1360			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1361				__func__, context, -rc, dev, ino);
1362		}
1363	}
1364	kfree(context);
1365	return 0;
1366}
1367
1368/* The inode's security attributes must be initialized before first use. */
1369static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1370{
1371	struct superblock_security_struct *sbsec = NULL;
1372	struct inode_security_struct *isec = selinux_inode(inode);
1373	u32 task_sid, sid = 0;
1374	u16 sclass;
1375	struct dentry *dentry;
1376	int rc = 0;
1377
1378	if (isec->initialized == LABEL_INITIALIZED)
1379		return 0;
1380
1381	spin_lock(&isec->lock);
1382	if (isec->initialized == LABEL_INITIALIZED)
1383		goto out_unlock;
1384
1385	if (isec->sclass == SECCLASS_FILE)
1386		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1387
1388	sbsec = selinux_superblock(inode->i_sb);
1389	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1390		/* Defer initialization until selinux_complete_init,
1391		   after the initial policy is loaded and the security
1392		   server is ready to handle calls. */
1393		spin_lock(&sbsec->isec_lock);
1394		if (list_empty(&isec->list))
1395			list_add(&isec->list, &sbsec->isec_head);
1396		spin_unlock(&sbsec->isec_lock);
1397		goto out_unlock;
1398	}
1399
1400	sclass = isec->sclass;
1401	task_sid = isec->task_sid;
1402	sid = isec->sid;
1403	isec->initialized = LABEL_PENDING;
1404	spin_unlock(&isec->lock);
1405
1406	switch (sbsec->behavior) {
1407	case SECURITY_FS_USE_NATIVE:
1408		break;
1409	case SECURITY_FS_USE_XATTR:
1410		if (!(inode->i_opflags & IOP_XATTR)) {
1411			sid = sbsec->def_sid;
1412			break;
1413		}
1414		/* Need a dentry, since the xattr API requires one.
1415		   Life would be simpler if we could just pass the inode. */
1416		if (opt_dentry) {
1417			/* Called from d_instantiate or d_splice_alias. */
1418			dentry = dget(opt_dentry);
1419		} else {
1420			/*
1421			 * Called from selinux_complete_init, try to find a dentry.
1422			 * Some filesystems really want a connected one, so try
1423			 * that first.  We could split SECURITY_FS_USE_XATTR in
1424			 * two, depending upon that...
1425			 */
1426			dentry = d_find_alias(inode);
1427			if (!dentry)
1428				dentry = d_find_any_alias(inode);
1429		}
1430		if (!dentry) {
1431			/*
1432			 * this is can be hit on boot when a file is accessed
1433			 * before the policy is loaded.  When we load policy we
1434			 * may find inodes that have no dentry on the
1435			 * sbsec->isec_head list.  No reason to complain as these
1436			 * will get fixed up the next time we go through
1437			 * inode_doinit with a dentry, before these inodes could
1438			 * be used again by userspace.
1439			 */
1440			goto out_invalid;
1441		}
1442
1443		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1444					    &sid);
1445		dput(dentry);
1446		if (rc)
1447			goto out;
1448		break;
1449	case SECURITY_FS_USE_TASK:
1450		sid = task_sid;
1451		break;
1452	case SECURITY_FS_USE_TRANS:
1453		/* Default to the fs SID. */
1454		sid = sbsec->sid;
1455
1456		/* Try to obtain a transition SID. */
1457		rc = security_transition_sid(&selinux_state, task_sid, sid,
1458					     sclass, NULL, &sid);
1459		if (rc)
1460			goto out;
1461		break;
1462	case SECURITY_FS_USE_MNTPOINT:
1463		sid = sbsec->mntpoint_sid;
1464		break;
1465	default:
1466		/* Default to the fs superblock SID. */
1467		sid = sbsec->sid;
1468
1469		if ((sbsec->flags & SE_SBGENFS) &&
1470		     (!S_ISLNK(inode->i_mode) ||
1471		      selinux_policycap_genfs_seclabel_symlinks())) {
1472			/* We must have a dentry to determine the label on
1473			 * procfs inodes */
1474			if (opt_dentry) {
1475				/* Called from d_instantiate or
1476				 * d_splice_alias. */
1477				dentry = dget(opt_dentry);
1478			} else {
1479				/* Called from selinux_complete_init, try to
1480				 * find a dentry.  Some filesystems really want
1481				 * a connected one, so try that first.
1482				 */
1483				dentry = d_find_alias(inode);
1484				if (!dentry)
1485					dentry = d_find_any_alias(inode);
1486			}
1487			/*
1488			 * This can be hit on boot when a file is accessed
1489			 * before the policy is loaded.  When we load policy we
1490			 * may find inodes that have no dentry on the
1491			 * sbsec->isec_head list.  No reason to complain as
1492			 * these will get fixed up the next time we go through
1493			 * inode_doinit() with a dentry, before these inodes
1494			 * could be used again by userspace.
1495			 */
1496			if (!dentry)
1497				goto out_invalid;
1498			rc = selinux_genfs_get_sid(dentry, sclass,
1499						   sbsec->flags, &sid);
1500			if (rc) {
1501				dput(dentry);
1502				goto out;
1503			}
1504
1505			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1506			    (inode->i_opflags & IOP_XATTR)) {
1507				rc = inode_doinit_use_xattr(inode, dentry,
1508							    sid, &sid);
1509				if (rc) {
1510					dput(dentry);
1511					goto out;
1512				}
1513			}
1514			dput(dentry);
1515		}
1516		break;
1517	}
1518
1519out:
1520	spin_lock(&isec->lock);
1521	if (isec->initialized == LABEL_PENDING) {
1522		if (rc) {
1523			isec->initialized = LABEL_INVALID;
1524			goto out_unlock;
1525		}
 
1526		isec->initialized = LABEL_INITIALIZED;
1527		isec->sid = sid;
1528	}
1529
1530out_unlock:
1531	spin_unlock(&isec->lock);
1532	return rc;
1533
1534out_invalid:
1535	spin_lock(&isec->lock);
1536	if (isec->initialized == LABEL_PENDING) {
1537		isec->initialized = LABEL_INVALID;
1538		isec->sid = sid;
1539	}
1540	spin_unlock(&isec->lock);
1541	return 0;
1542}
1543
1544/* Convert a Linux signal to an access vector. */
1545static inline u32 signal_to_av(int sig)
1546{
1547	u32 perm = 0;
1548
1549	switch (sig) {
1550	case SIGCHLD:
1551		/* Commonly granted from child to parent. */
1552		perm = PROCESS__SIGCHLD;
1553		break;
1554	case SIGKILL:
1555		/* Cannot be caught or ignored */
1556		perm = PROCESS__SIGKILL;
1557		break;
1558	case SIGSTOP:
1559		/* Cannot be caught or ignored */
1560		perm = PROCESS__SIGSTOP;
1561		break;
1562	default:
1563		/* All other signals. */
1564		perm = PROCESS__SIGNAL;
1565		break;
1566	}
1567
1568	return perm;
1569}
1570
1571#if CAP_LAST_CAP > 63
1572#error Fix SELinux to handle capabilities > 63.
1573#endif
1574
1575/* Check whether a task is allowed to use a capability. */
1576static int cred_has_capability(const struct cred *cred,
1577			       int cap, unsigned int opts, bool initns)
1578{
1579	struct common_audit_data ad;
1580	struct av_decision avd;
1581	u16 sclass;
1582	u32 sid = cred_sid(cred);
1583	u32 av = CAP_TO_MASK(cap);
1584	int rc;
1585
1586	ad.type = LSM_AUDIT_DATA_CAP;
1587	ad.u.cap = cap;
1588
1589	switch (CAP_TO_INDEX(cap)) {
1590	case 0:
1591		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1592		break;
1593	case 1:
1594		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1595		break;
1596	default:
1597		pr_err("SELinux:  out of range capability %d\n", cap);
1598		BUG();
1599		return -EINVAL;
1600	}
1601
1602	rc = avc_has_perm_noaudit(&selinux_state,
1603				  sid, sid, sclass, av, 0, &avd);
1604	if (!(opts & CAP_OPT_NOAUDIT)) {
1605		int rc2 = avc_audit(&selinux_state,
1606				    sid, sid, sclass, av, &avd, rc, &ad);
1607		if (rc2)
1608			return rc2;
1609	}
1610	return rc;
1611}
1612
1613/* Check whether a task has a particular permission to an inode.
1614   The 'adp' parameter is optional and allows other audit
1615   data to be passed (e.g. the dentry). */
1616static int inode_has_perm(const struct cred *cred,
1617			  struct inode *inode,
1618			  u32 perms,
1619			  struct common_audit_data *adp)
1620{
1621	struct inode_security_struct *isec;
1622	u32 sid;
1623
1624	validate_creds(cred);
1625
1626	if (unlikely(IS_PRIVATE(inode)))
1627		return 0;
1628
1629	sid = cred_sid(cred);
1630	isec = selinux_inode(inode);
1631
1632	return avc_has_perm(&selinux_state,
1633			    sid, isec->sid, isec->sclass, perms, adp);
1634}
1635
1636/* Same as inode_has_perm, but pass explicit audit data containing
1637   the dentry to help the auditing code to more easily generate the
1638   pathname if needed. */
1639static inline int dentry_has_perm(const struct cred *cred,
1640				  struct dentry *dentry,
1641				  u32 av)
1642{
1643	struct inode *inode = d_backing_inode(dentry);
1644	struct common_audit_data ad;
1645
1646	ad.type = LSM_AUDIT_DATA_DENTRY;
1647	ad.u.dentry = dentry;
1648	__inode_security_revalidate(inode, dentry, true);
1649	return inode_has_perm(cred, inode, av, &ad);
1650}
1651
1652/* Same as inode_has_perm, but pass explicit audit data containing
1653   the path to help the auditing code to more easily generate the
1654   pathname if needed. */
1655static inline int path_has_perm(const struct cred *cred,
1656				const struct path *path,
1657				u32 av)
1658{
1659	struct inode *inode = d_backing_inode(path->dentry);
1660	struct common_audit_data ad;
1661
1662	ad.type = LSM_AUDIT_DATA_PATH;
1663	ad.u.path = *path;
1664	__inode_security_revalidate(inode, path->dentry, true);
1665	return inode_has_perm(cred, inode, av, &ad);
1666}
1667
1668/* Same as path_has_perm, but uses the inode from the file struct. */
1669static inline int file_path_has_perm(const struct cred *cred,
1670				     struct file *file,
1671				     u32 av)
1672{
1673	struct common_audit_data ad;
1674
1675	ad.type = LSM_AUDIT_DATA_FILE;
1676	ad.u.file = file;
1677	return inode_has_perm(cred, file_inode(file), av, &ad);
1678}
1679
1680#ifdef CONFIG_BPF_SYSCALL
1681static int bpf_fd_pass(struct file *file, u32 sid);
1682#endif
1683
1684/* Check whether a task can use an open file descriptor to
1685   access an inode in a given way.  Check access to the
1686   descriptor itself, and then use dentry_has_perm to
1687   check a particular permission to the file.
1688   Access to the descriptor is implicitly granted if it
1689   has the same SID as the process.  If av is zero, then
1690   access to the file is not checked, e.g. for cases
1691   where only the descriptor is affected like seek. */
1692static int file_has_perm(const struct cred *cred,
1693			 struct file *file,
1694			 u32 av)
1695{
1696	struct file_security_struct *fsec = selinux_file(file);
1697	struct inode *inode = file_inode(file);
1698	struct common_audit_data ad;
1699	u32 sid = cred_sid(cred);
1700	int rc;
1701
1702	ad.type = LSM_AUDIT_DATA_FILE;
1703	ad.u.file = file;
1704
1705	if (sid != fsec->sid) {
1706		rc = avc_has_perm(&selinux_state,
1707				  sid, fsec->sid,
1708				  SECCLASS_FD,
1709				  FD__USE,
1710				  &ad);
1711		if (rc)
1712			goto out;
1713	}
1714
1715#ifdef CONFIG_BPF_SYSCALL
1716	rc = bpf_fd_pass(file, cred_sid(cred));
1717	if (rc)
1718		return rc;
1719#endif
1720
1721	/* av is zero if only checking access to the descriptor. */
1722	rc = 0;
1723	if (av)
1724		rc = inode_has_perm(cred, inode, av, &ad);
1725
1726out:
1727	return rc;
1728}
1729
1730/*
1731 * Determine the label for an inode that might be unioned.
1732 */
1733static int
1734selinux_determine_inode_label(const struct task_security_struct *tsec,
1735				 struct inode *dir,
1736				 const struct qstr *name, u16 tclass,
1737				 u32 *_new_isid)
1738{
1739	const struct superblock_security_struct *sbsec =
1740						selinux_superblock(dir->i_sb);
1741
1742	if ((sbsec->flags & SE_SBINITIALIZED) &&
1743	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1744		*_new_isid = sbsec->mntpoint_sid;
1745	} else if ((sbsec->flags & SBLABEL_MNT) &&
1746		   tsec->create_sid) {
1747		*_new_isid = tsec->create_sid;
1748	} else {
1749		const struct inode_security_struct *dsec = inode_security(dir);
1750		return security_transition_sid(&selinux_state, tsec->sid,
1751					       dsec->sid, tclass,
1752					       name, _new_isid);
1753	}
1754
1755	return 0;
1756}
1757
1758/* Check whether a task can create a file. */
1759static int may_create(struct inode *dir,
1760		      struct dentry *dentry,
1761		      u16 tclass)
1762{
1763	const struct task_security_struct *tsec = selinux_cred(current_cred());
1764	struct inode_security_struct *dsec;
1765	struct superblock_security_struct *sbsec;
1766	u32 sid, newsid;
1767	struct common_audit_data ad;
1768	int rc;
1769
1770	dsec = inode_security(dir);
1771	sbsec = selinux_superblock(dir->i_sb);
1772
1773	sid = tsec->sid;
1774
1775	ad.type = LSM_AUDIT_DATA_DENTRY;
1776	ad.u.dentry = dentry;
1777
1778	rc = avc_has_perm(&selinux_state,
1779			  sid, dsec->sid, SECCLASS_DIR,
1780			  DIR__ADD_NAME | DIR__SEARCH,
1781			  &ad);
1782	if (rc)
1783		return rc;
1784
1785	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1786					   &newsid);
1787	if (rc)
1788		return rc;
1789
1790	rc = avc_has_perm(&selinux_state,
1791			  sid, newsid, tclass, FILE__CREATE, &ad);
1792	if (rc)
1793		return rc;
1794
1795	return avc_has_perm(&selinux_state,
1796			    newsid, sbsec->sid,
1797			    SECCLASS_FILESYSTEM,
1798			    FILESYSTEM__ASSOCIATE, &ad);
1799}
1800
1801#define MAY_LINK	0
1802#define MAY_UNLINK	1
1803#define MAY_RMDIR	2
1804
1805/* Check whether a task can link, unlink, or rmdir a file/directory. */
1806static int may_link(struct inode *dir,
1807		    struct dentry *dentry,
1808		    int kind)
1809
1810{
1811	struct inode_security_struct *dsec, *isec;
1812	struct common_audit_data ad;
1813	u32 sid = current_sid();
1814	u32 av;
1815	int rc;
1816
1817	dsec = inode_security(dir);
1818	isec = backing_inode_security(dentry);
1819
1820	ad.type = LSM_AUDIT_DATA_DENTRY;
1821	ad.u.dentry = dentry;
1822
1823	av = DIR__SEARCH;
1824	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1825	rc = avc_has_perm(&selinux_state,
1826			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1827	if (rc)
1828		return rc;
1829
1830	switch (kind) {
1831	case MAY_LINK:
1832		av = FILE__LINK;
1833		break;
1834	case MAY_UNLINK:
1835		av = FILE__UNLINK;
1836		break;
1837	case MAY_RMDIR:
1838		av = DIR__RMDIR;
1839		break;
1840	default:
1841		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1842			__func__, kind);
1843		return 0;
1844	}
1845
1846	rc = avc_has_perm(&selinux_state,
1847			  sid, isec->sid, isec->sclass, av, &ad);
1848	return rc;
1849}
1850
1851static inline int may_rename(struct inode *old_dir,
1852			     struct dentry *old_dentry,
1853			     struct inode *new_dir,
1854			     struct dentry *new_dentry)
1855{
1856	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1857	struct common_audit_data ad;
1858	u32 sid = current_sid();
1859	u32 av;
1860	int old_is_dir, new_is_dir;
1861	int rc;
1862
1863	old_dsec = inode_security(old_dir);
1864	old_isec = backing_inode_security(old_dentry);
1865	old_is_dir = d_is_dir(old_dentry);
1866	new_dsec = inode_security(new_dir);
1867
1868	ad.type = LSM_AUDIT_DATA_DENTRY;
1869
1870	ad.u.dentry = old_dentry;
1871	rc = avc_has_perm(&selinux_state,
1872			  sid, old_dsec->sid, SECCLASS_DIR,
1873			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1874	if (rc)
1875		return rc;
1876	rc = avc_has_perm(&selinux_state,
1877			  sid, old_isec->sid,
1878			  old_isec->sclass, FILE__RENAME, &ad);
1879	if (rc)
1880		return rc;
1881	if (old_is_dir && new_dir != old_dir) {
1882		rc = avc_has_perm(&selinux_state,
1883				  sid, old_isec->sid,
1884				  old_isec->sclass, DIR__REPARENT, &ad);
1885		if (rc)
1886			return rc;
1887	}
1888
1889	ad.u.dentry = new_dentry;
1890	av = DIR__ADD_NAME | DIR__SEARCH;
1891	if (d_is_positive(new_dentry))
1892		av |= DIR__REMOVE_NAME;
1893	rc = avc_has_perm(&selinux_state,
1894			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1895	if (rc)
1896		return rc;
1897	if (d_is_positive(new_dentry)) {
1898		new_isec = backing_inode_security(new_dentry);
1899		new_is_dir = d_is_dir(new_dentry);
1900		rc = avc_has_perm(&selinux_state,
1901				  sid, new_isec->sid,
1902				  new_isec->sclass,
1903				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1904		if (rc)
1905			return rc;
1906	}
1907
1908	return 0;
1909}
1910
1911/* Check whether a task can perform a filesystem operation. */
1912static int superblock_has_perm(const struct cred *cred,
1913			       struct super_block *sb,
1914			       u32 perms,
1915			       struct common_audit_data *ad)
1916{
1917	struct superblock_security_struct *sbsec;
1918	u32 sid = cred_sid(cred);
1919
1920	sbsec = selinux_superblock(sb);
1921	return avc_has_perm(&selinux_state,
1922			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1923}
1924
1925/* Convert a Linux mode and permission mask to an access vector. */
1926static inline u32 file_mask_to_av(int mode, int mask)
1927{
1928	u32 av = 0;
1929
1930	if (!S_ISDIR(mode)) {
1931		if (mask & MAY_EXEC)
1932			av |= FILE__EXECUTE;
1933		if (mask & MAY_READ)
1934			av |= FILE__READ;
1935
1936		if (mask & MAY_APPEND)
1937			av |= FILE__APPEND;
1938		else if (mask & MAY_WRITE)
1939			av |= FILE__WRITE;
1940
1941	} else {
1942		if (mask & MAY_EXEC)
1943			av |= DIR__SEARCH;
1944		if (mask & MAY_WRITE)
1945			av |= DIR__WRITE;
1946		if (mask & MAY_READ)
1947			av |= DIR__READ;
1948	}
1949
1950	return av;
1951}
1952
1953/* Convert a Linux file to an access vector. */
1954static inline u32 file_to_av(struct file *file)
1955{
1956	u32 av = 0;
1957
1958	if (file->f_mode & FMODE_READ)
1959		av |= FILE__READ;
1960	if (file->f_mode & FMODE_WRITE) {
1961		if (file->f_flags & O_APPEND)
1962			av |= FILE__APPEND;
1963		else
1964			av |= FILE__WRITE;
1965	}
1966	if (!av) {
1967		/*
1968		 * Special file opened with flags 3 for ioctl-only use.
1969		 */
1970		av = FILE__IOCTL;
1971	}
1972
1973	return av;
1974}
1975
1976/*
1977 * Convert a file to an access vector and include the correct
1978 * open permission.
1979 */
1980static inline u32 open_file_to_av(struct file *file)
1981{
1982	u32 av = file_to_av(file);
1983	struct inode *inode = file_inode(file);
1984
1985	if (selinux_policycap_openperm() &&
1986	    inode->i_sb->s_magic != SOCKFS_MAGIC)
1987		av |= FILE__OPEN;
1988
1989	return av;
1990}
1991
1992/* Hook functions begin here. */
1993
1994static int selinux_binder_set_context_mgr(const struct cred *mgr)
1995{
 
 
 
1996	return avc_has_perm(&selinux_state,
1997			    current_sid(), cred_sid(mgr), SECCLASS_BINDER,
1998			    BINDER__SET_CONTEXT_MGR, NULL);
1999}
2000
2001static int selinux_binder_transaction(const struct cred *from,
2002				      const struct cred *to)
2003{
2004	u32 mysid = current_sid();
2005	u32 fromsid = cred_sid(from);
2006	u32 tosid = cred_sid(to);
2007	int rc;
2008
2009	if (mysid != fromsid) {
2010		rc = avc_has_perm(&selinux_state,
2011				  mysid, fromsid, SECCLASS_BINDER,
2012				  BINDER__IMPERSONATE, NULL);
2013		if (rc)
2014			return rc;
2015	}
2016
2017	return avc_has_perm(&selinux_state, fromsid, tosid,
2018			    SECCLASS_BINDER, BINDER__CALL, NULL);
 
2019}
2020
2021static int selinux_binder_transfer_binder(const struct cred *from,
2022					  const struct cred *to)
2023{
 
 
 
2024	return avc_has_perm(&selinux_state,
2025			    cred_sid(from), cred_sid(to),
2026			    SECCLASS_BINDER, BINDER__TRANSFER,
2027			    NULL);
2028}
2029
2030static int selinux_binder_transfer_file(const struct cred *from,
2031					const struct cred *to,
2032					struct file *file)
2033{
2034	u32 sid = cred_sid(to);
2035	struct file_security_struct *fsec = selinux_file(file);
2036	struct dentry *dentry = file->f_path.dentry;
2037	struct inode_security_struct *isec;
2038	struct common_audit_data ad;
2039	int rc;
2040
2041	ad.type = LSM_AUDIT_DATA_PATH;
2042	ad.u.path = file->f_path;
2043
2044	if (sid != fsec->sid) {
2045		rc = avc_has_perm(&selinux_state,
2046				  sid, fsec->sid,
2047				  SECCLASS_FD,
2048				  FD__USE,
2049				  &ad);
2050		if (rc)
2051			return rc;
2052	}
2053
2054#ifdef CONFIG_BPF_SYSCALL
2055	rc = bpf_fd_pass(file, sid);
2056	if (rc)
2057		return rc;
2058#endif
2059
2060	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2061		return 0;
2062
2063	isec = backing_inode_security(dentry);
2064	return avc_has_perm(&selinux_state,
2065			    sid, isec->sid, isec->sclass, file_to_av(file),
2066			    &ad);
2067}
2068
2069static int selinux_ptrace_access_check(struct task_struct *child,
2070				       unsigned int mode)
2071{
2072	u32 sid = current_sid();
2073	u32 csid = task_sid_obj(child);
2074
2075	if (mode & PTRACE_MODE_READ)
2076		return avc_has_perm(&selinux_state,
2077				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2078
2079	return avc_has_perm(&selinux_state,
2080			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2081}
2082
2083static int selinux_ptrace_traceme(struct task_struct *parent)
2084{
2085	return avc_has_perm(&selinux_state,
2086			    task_sid_obj(parent), task_sid_obj(current),
2087			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2088}
2089
2090static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2091			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2092{
2093	return avc_has_perm(&selinux_state,
2094			    current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2095			    PROCESS__GETCAP, NULL);
2096}
2097
2098static int selinux_capset(struct cred *new, const struct cred *old,
2099			  const kernel_cap_t *effective,
2100			  const kernel_cap_t *inheritable,
2101			  const kernel_cap_t *permitted)
2102{
2103	return avc_has_perm(&selinux_state,
2104			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2105			    PROCESS__SETCAP, NULL);
2106}
2107
2108/*
2109 * (This comment used to live with the selinux_task_setuid hook,
2110 * which was removed).
2111 *
2112 * Since setuid only affects the current process, and since the SELinux
2113 * controls are not based on the Linux identity attributes, SELinux does not
2114 * need to control this operation.  However, SELinux does control the use of
2115 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2116 */
2117
2118static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2119			   int cap, unsigned int opts)
2120{
2121	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2122}
2123
2124static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2125{
2126	const struct cred *cred = current_cred();
2127	int rc = 0;
2128
2129	if (!sb)
2130		return 0;
2131
2132	switch (cmds) {
2133	case Q_SYNC:
2134	case Q_QUOTAON:
2135	case Q_QUOTAOFF:
2136	case Q_SETINFO:
2137	case Q_SETQUOTA:
2138	case Q_XQUOTAOFF:
2139	case Q_XQUOTAON:
2140	case Q_XSETQLIM:
2141		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2142		break;
2143	case Q_GETFMT:
2144	case Q_GETINFO:
2145	case Q_GETQUOTA:
2146	case Q_XGETQUOTA:
2147	case Q_XGETQSTAT:
2148	case Q_XGETQSTATV:
2149	case Q_XGETNEXTQUOTA:
2150		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2151		break;
2152	default:
2153		rc = 0;  /* let the kernel handle invalid cmds */
2154		break;
2155	}
2156	return rc;
2157}
2158
2159static int selinux_quota_on(struct dentry *dentry)
2160{
2161	const struct cred *cred = current_cred();
2162
2163	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2164}
2165
2166static int selinux_syslog(int type)
2167{
2168	switch (type) {
2169	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2170	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2171		return avc_has_perm(&selinux_state,
2172				    current_sid(), SECINITSID_KERNEL,
2173				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2174	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2175	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2176	/* Set level of messages printed to console */
2177	case SYSLOG_ACTION_CONSOLE_LEVEL:
2178		return avc_has_perm(&selinux_state,
2179				    current_sid(), SECINITSID_KERNEL,
2180				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2181				    NULL);
2182	}
2183	/* All other syslog types */
2184	return avc_has_perm(&selinux_state,
2185			    current_sid(), SECINITSID_KERNEL,
2186			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2187}
2188
2189/*
2190 * Check that a process has enough memory to allocate a new virtual
2191 * mapping. 0 means there is enough memory for the allocation to
2192 * succeed and -ENOMEM implies there is not.
2193 *
2194 * Do not audit the selinux permission check, as this is applied to all
2195 * processes that allocate mappings.
2196 */
2197static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2198{
2199	int rc, cap_sys_admin = 0;
2200
2201	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2202				 CAP_OPT_NOAUDIT, true);
2203	if (rc == 0)
2204		cap_sys_admin = 1;
2205
2206	return cap_sys_admin;
2207}
2208
2209/* binprm security operations */
2210
2211static u32 ptrace_parent_sid(void)
2212{
2213	u32 sid = 0;
2214	struct task_struct *tracer;
2215
2216	rcu_read_lock();
2217	tracer = ptrace_parent(current);
2218	if (tracer)
2219		sid = task_sid_obj(tracer);
2220	rcu_read_unlock();
2221
2222	return sid;
2223}
2224
2225static int check_nnp_nosuid(const struct linux_binprm *bprm,
2226			    const struct task_security_struct *old_tsec,
2227			    const struct task_security_struct *new_tsec)
2228{
2229	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2230	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2231	int rc;
2232	u32 av;
2233
2234	if (!nnp && !nosuid)
2235		return 0; /* neither NNP nor nosuid */
2236
2237	if (new_tsec->sid == old_tsec->sid)
2238		return 0; /* No change in credentials */
2239
2240	/*
2241	 * If the policy enables the nnp_nosuid_transition policy capability,
2242	 * then we permit transitions under NNP or nosuid if the
2243	 * policy allows the corresponding permission between
2244	 * the old and new contexts.
2245	 */
2246	if (selinux_policycap_nnp_nosuid_transition()) {
2247		av = 0;
2248		if (nnp)
2249			av |= PROCESS2__NNP_TRANSITION;
2250		if (nosuid)
2251			av |= PROCESS2__NOSUID_TRANSITION;
2252		rc = avc_has_perm(&selinux_state,
2253				  old_tsec->sid, new_tsec->sid,
2254				  SECCLASS_PROCESS2, av, NULL);
2255		if (!rc)
2256			return 0;
2257	}
2258
2259	/*
2260	 * We also permit NNP or nosuid transitions to bounded SIDs,
2261	 * i.e. SIDs that are guaranteed to only be allowed a subset
2262	 * of the permissions of the current SID.
2263	 */
2264	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2265					 new_tsec->sid);
2266	if (!rc)
2267		return 0;
2268
2269	/*
2270	 * On failure, preserve the errno values for NNP vs nosuid.
2271	 * NNP:  Operation not permitted for caller.
2272	 * nosuid:  Permission denied to file.
2273	 */
2274	if (nnp)
2275		return -EPERM;
2276	return -EACCES;
2277}
2278
2279static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2280{
2281	const struct task_security_struct *old_tsec;
2282	struct task_security_struct *new_tsec;
2283	struct inode_security_struct *isec;
2284	struct common_audit_data ad;
2285	struct inode *inode = file_inode(bprm->file);
2286	int rc;
2287
2288	/* SELinux context only depends on initial program or script and not
2289	 * the script interpreter */
 
 
2290
2291	old_tsec = selinux_cred(current_cred());
2292	new_tsec = selinux_cred(bprm->cred);
2293	isec = inode_security(inode);
2294
2295	/* Default to the current task SID. */
2296	new_tsec->sid = old_tsec->sid;
2297	new_tsec->osid = old_tsec->sid;
2298
2299	/* Reset fs, key, and sock SIDs on execve. */
2300	new_tsec->create_sid = 0;
2301	new_tsec->keycreate_sid = 0;
2302	new_tsec->sockcreate_sid = 0;
2303
2304	if (old_tsec->exec_sid) {
2305		new_tsec->sid = old_tsec->exec_sid;
2306		/* Reset exec SID on execve. */
2307		new_tsec->exec_sid = 0;
2308
2309		/* Fail on NNP or nosuid if not an allowed transition. */
2310		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2311		if (rc)
2312			return rc;
2313	} else {
2314		/* Check for a default transition on this program. */
2315		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2316					     isec->sid, SECCLASS_PROCESS, NULL,
2317					     &new_tsec->sid);
2318		if (rc)
2319			return rc;
2320
2321		/*
2322		 * Fallback to old SID on NNP or nosuid if not an allowed
2323		 * transition.
2324		 */
2325		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2326		if (rc)
2327			new_tsec->sid = old_tsec->sid;
2328	}
2329
2330	ad.type = LSM_AUDIT_DATA_FILE;
2331	ad.u.file = bprm->file;
2332
2333	if (new_tsec->sid == old_tsec->sid) {
2334		rc = avc_has_perm(&selinux_state,
2335				  old_tsec->sid, isec->sid,
2336				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2337		if (rc)
2338			return rc;
2339	} else {
2340		/* Check permissions for the transition. */
2341		rc = avc_has_perm(&selinux_state,
2342				  old_tsec->sid, new_tsec->sid,
2343				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2344		if (rc)
2345			return rc;
2346
2347		rc = avc_has_perm(&selinux_state,
2348				  new_tsec->sid, isec->sid,
2349				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2350		if (rc)
2351			return rc;
2352
2353		/* Check for shared state */
2354		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2355			rc = avc_has_perm(&selinux_state,
2356					  old_tsec->sid, new_tsec->sid,
2357					  SECCLASS_PROCESS, PROCESS__SHARE,
2358					  NULL);
2359			if (rc)
2360				return -EPERM;
2361		}
2362
2363		/* Make sure that anyone attempting to ptrace over a task that
2364		 * changes its SID has the appropriate permit */
2365		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2366			u32 ptsid = ptrace_parent_sid();
2367			if (ptsid != 0) {
2368				rc = avc_has_perm(&selinux_state,
2369						  ptsid, new_tsec->sid,
2370						  SECCLASS_PROCESS,
2371						  PROCESS__PTRACE, NULL);
2372				if (rc)
2373					return -EPERM;
2374			}
2375		}
2376
2377		/* Clear any possibly unsafe personality bits on exec: */
2378		bprm->per_clear |= PER_CLEAR_ON_SETID;
2379
2380		/* Enable secure mode for SIDs transitions unless
2381		   the noatsecure permission is granted between
2382		   the two SIDs, i.e. ahp returns 0. */
2383		rc = avc_has_perm(&selinux_state,
2384				  old_tsec->sid, new_tsec->sid,
2385				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2386				  NULL);
2387		bprm->secureexec |= !!rc;
2388	}
2389
2390	return 0;
2391}
2392
2393static int match_file(const void *p, struct file *file, unsigned fd)
2394{
2395	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2396}
2397
2398/* Derived from fs/exec.c:flush_old_files. */
2399static inline void flush_unauthorized_files(const struct cred *cred,
2400					    struct files_struct *files)
2401{
2402	struct file *file, *devnull = NULL;
2403	struct tty_struct *tty;
2404	int drop_tty = 0;
2405	unsigned n;
2406
2407	tty = get_current_tty();
2408	if (tty) {
2409		spin_lock(&tty->files_lock);
2410		if (!list_empty(&tty->tty_files)) {
2411			struct tty_file_private *file_priv;
2412
2413			/* Revalidate access to controlling tty.
2414			   Use file_path_has_perm on the tty path directly
2415			   rather than using file_has_perm, as this particular
2416			   open file may belong to another process and we are
2417			   only interested in the inode-based check here. */
2418			file_priv = list_first_entry(&tty->tty_files,
2419						struct tty_file_private, list);
2420			file = file_priv->file;
2421			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2422				drop_tty = 1;
2423		}
2424		spin_unlock(&tty->files_lock);
2425		tty_kref_put(tty);
2426	}
2427	/* Reset controlling tty. */
2428	if (drop_tty)
2429		no_tty();
2430
2431	/* Revalidate access to inherited open files. */
2432	n = iterate_fd(files, 0, match_file, cred);
2433	if (!n) /* none found? */
2434		return;
2435
2436	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2437	if (IS_ERR(devnull))
2438		devnull = NULL;
2439	/* replace all the matching ones with this */
2440	do {
2441		replace_fd(n - 1, devnull, 0);
2442	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2443	if (devnull)
2444		fput(devnull);
2445}
2446
2447/*
2448 * Prepare a process for imminent new credential changes due to exec
2449 */
2450static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2451{
2452	struct task_security_struct *new_tsec;
2453	struct rlimit *rlim, *initrlim;
2454	int rc, i;
2455
2456	new_tsec = selinux_cred(bprm->cred);
2457	if (new_tsec->sid == new_tsec->osid)
2458		return;
2459
2460	/* Close files for which the new task SID is not authorized. */
2461	flush_unauthorized_files(bprm->cred, current->files);
2462
2463	/* Always clear parent death signal on SID transitions. */
2464	current->pdeath_signal = 0;
2465
2466	/* Check whether the new SID can inherit resource limits from the old
2467	 * SID.  If not, reset all soft limits to the lower of the current
2468	 * task's hard limit and the init task's soft limit.
2469	 *
2470	 * Note that the setting of hard limits (even to lower them) can be
2471	 * controlled by the setrlimit check.  The inclusion of the init task's
2472	 * soft limit into the computation is to avoid resetting soft limits
2473	 * higher than the default soft limit for cases where the default is
2474	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2475	 */
2476	rc = avc_has_perm(&selinux_state,
2477			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2478			  PROCESS__RLIMITINH, NULL);
2479	if (rc) {
2480		/* protect against do_prlimit() */
2481		task_lock(current);
2482		for (i = 0; i < RLIM_NLIMITS; i++) {
2483			rlim = current->signal->rlim + i;
2484			initrlim = init_task.signal->rlim + i;
2485			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2486		}
2487		task_unlock(current);
2488		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2489			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2490	}
2491}
2492
2493/*
2494 * Clean up the process immediately after the installation of new credentials
2495 * due to exec
2496 */
2497static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2498{
2499	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2500	u32 osid, sid;
2501	int rc;
2502
2503	osid = tsec->osid;
2504	sid = tsec->sid;
2505
2506	if (sid == osid)
2507		return;
2508
2509	/* Check whether the new SID can inherit signal state from the old SID.
2510	 * If not, clear itimers to avoid subsequent signal generation and
2511	 * flush and unblock signals.
2512	 *
2513	 * This must occur _after_ the task SID has been updated so that any
2514	 * kill done after the flush will be checked against the new SID.
2515	 */
2516	rc = avc_has_perm(&selinux_state,
2517			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2518	if (rc) {
2519		clear_itimer();
2520
2521		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
 
 
 
2522		if (!fatal_signal_pending(current)) {
2523			flush_sigqueue(&current->pending);
2524			flush_sigqueue(&current->signal->shared_pending);
2525			flush_signal_handlers(current, 1);
2526			sigemptyset(&current->blocked);
2527			recalc_sigpending();
2528		}
2529		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2530	}
2531
2532	/* Wake up the parent if it is waiting so that it can recheck
2533	 * wait permission to the new task SID. */
2534	read_lock(&tasklist_lock);
2535	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2536	read_unlock(&tasklist_lock);
2537}
2538
2539/* superblock security operations */
2540
2541static int selinux_sb_alloc_security(struct super_block *sb)
2542{
2543	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2544
2545	mutex_init(&sbsec->lock);
2546	INIT_LIST_HEAD(&sbsec->isec_head);
2547	spin_lock_init(&sbsec->isec_lock);
2548	sbsec->sid = SECINITSID_UNLABELED;
2549	sbsec->def_sid = SECINITSID_FILE;
2550	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2551
2552	return 0;
 
 
2553}
2554
2555static inline int opt_len(const char *s)
2556{
2557	bool open_quote = false;
2558	int len;
2559	char c;
2560
2561	for (len = 0; (c = s[len]) != '\0'; len++) {
2562		if (c == '"')
2563			open_quote = !open_quote;
2564		if (c == ',' && !open_quote)
2565			break;
2566	}
2567	return len;
2568}
2569
2570static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2571{
2572	char *from = options;
2573	char *to = options;
2574	bool first = true;
2575	int rc;
2576
2577	while (1) {
2578		int len = opt_len(from);
2579		int token;
2580		char *arg = NULL;
2581
2582		token = match_opt_prefix(from, len, &arg);
2583
2584		if (token != Opt_error) {
2585			char *p, *q;
2586
2587			/* strip quotes */
2588			if (arg) {
2589				for (p = q = arg; p < from + len; p++) {
2590					char c = *p;
2591					if (c != '"')
2592						*q++ = c;
2593				}
2594				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2595				if (!arg) {
2596					rc = -ENOMEM;
2597					goto free_opt;
2598				}
2599			}
2600			rc = selinux_add_opt(token, arg, mnt_opts);
2601			kfree(arg);
2602			arg = NULL;
2603			if (unlikely(rc)) {
 
2604				goto free_opt;
2605			}
2606		} else {
2607			if (!first) {	// copy with preceding comma
2608				from--;
2609				len++;
2610			}
2611			if (to != from)
2612				memmove(to, from, len);
2613			to += len;
2614			first = false;
2615		}
2616		if (!from[len])
2617			break;
2618		from += len + 1;
2619	}
2620	*to = '\0';
2621	return 0;
2622
2623free_opt:
2624	if (*mnt_opts) {
2625		selinux_free_mnt_opts(*mnt_opts);
2626		*mnt_opts = NULL;
2627	}
2628	return rc;
2629}
2630
2631static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2632{
2633	struct selinux_mnt_opts *opts = mnt_opts;
2634	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2635
2636	/*
2637	 * Superblock not initialized (i.e. no options) - reject if any
2638	 * options specified, otherwise accept.
2639	 */
2640	if (!(sbsec->flags & SE_SBINITIALIZED))
2641		return opts ? 1 : 0;
2642
2643	/*
2644	 * Superblock initialized and no options specified - reject if
2645	 * superblock has any options set, otherwise accept.
2646	 */
2647	if (!opts)
2648		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2649
2650	if (opts->fscontext_sid) {
2651		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2652			       opts->fscontext_sid))
2653			return 1;
2654	}
2655	if (opts->context_sid) {
2656		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2657			       opts->context_sid))
2658			return 1;
2659	}
2660	if (opts->rootcontext_sid) {
2661		struct inode_security_struct *root_isec;
2662
2663		root_isec = backing_inode_security(sb->s_root);
2664		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2665			       opts->rootcontext_sid))
2666			return 1;
2667	}
2668	if (opts->defcontext_sid) {
2669		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2670			       opts->defcontext_sid))
2671			return 1;
2672	}
2673	return 0;
2674}
2675
2676static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2677{
2678	struct selinux_mnt_opts *opts = mnt_opts;
2679	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 
 
2680
2681	if (!(sbsec->flags & SE_SBINITIALIZED))
2682		return 0;
2683
2684	if (!opts)
2685		return 0;
2686
2687	if (opts->fscontext_sid) {
2688		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2689			       opts->fscontext_sid))
 
 
2690			goto out_bad_option;
2691	}
2692	if (opts->context_sid) {
2693		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2694			       opts->context_sid))
 
 
2695			goto out_bad_option;
2696	}
2697	if (opts->rootcontext_sid) {
2698		struct inode_security_struct *root_isec;
2699		root_isec = backing_inode_security(sb->s_root);
2700		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2701			       opts->rootcontext_sid))
 
 
2702			goto out_bad_option;
2703	}
2704	if (opts->defcontext_sid) {
2705		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2706			       opts->defcontext_sid))
 
 
2707			goto out_bad_option;
2708	}
2709	return 0;
2710
2711out_bad_option:
2712	pr_warn("SELinux: unable to change security options "
2713	       "during remount (dev %s, type=%s)\n", sb->s_id,
2714	       sb->s_type->name);
2715	return -EINVAL;
2716}
2717
2718static int selinux_sb_kern_mount(struct super_block *sb)
2719{
2720	const struct cred *cred = current_cred();
2721	struct common_audit_data ad;
2722
2723	ad.type = LSM_AUDIT_DATA_DENTRY;
2724	ad.u.dentry = sb->s_root;
2725	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2726}
2727
2728static int selinux_sb_statfs(struct dentry *dentry)
2729{
2730	const struct cred *cred = current_cred();
2731	struct common_audit_data ad;
2732
2733	ad.type = LSM_AUDIT_DATA_DENTRY;
2734	ad.u.dentry = dentry->d_sb->s_root;
2735	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2736}
2737
2738static int selinux_mount(const char *dev_name,
2739			 const struct path *path,
2740			 const char *type,
2741			 unsigned long flags,
2742			 void *data)
2743{
2744	const struct cred *cred = current_cred();
2745
2746	if (flags & MS_REMOUNT)
2747		return superblock_has_perm(cred, path->dentry->d_sb,
2748					   FILESYSTEM__REMOUNT, NULL);
2749	else
2750		return path_has_perm(cred, path, FILE__MOUNTON);
2751}
2752
2753static int selinux_move_mount(const struct path *from_path,
2754			      const struct path *to_path)
2755{
2756	const struct cred *cred = current_cred();
2757
2758	return path_has_perm(cred, to_path, FILE__MOUNTON);
2759}
2760
2761static int selinux_umount(struct vfsmount *mnt, int flags)
2762{
2763	const struct cred *cred = current_cred();
2764
2765	return superblock_has_perm(cred, mnt->mnt_sb,
2766				   FILESYSTEM__UNMOUNT, NULL);
2767}
2768
2769static int selinux_fs_context_dup(struct fs_context *fc,
2770				  struct fs_context *src_fc)
2771{
2772	const struct selinux_mnt_opts *src = src_fc->security;
 
2773
2774	if (!src)
2775		return 0;
2776
2777	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2778	return fc->security ? 0 : -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779}
2780
2781static const struct fs_parameter_spec selinux_fs_parameters[] = {
2782	fsparam_string(CONTEXT_STR,	Opt_context),
2783	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2784	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2785	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2786	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2787	{}
2788};
2789
 
 
 
 
 
2790static int selinux_fs_context_parse_param(struct fs_context *fc,
2791					  struct fs_parameter *param)
2792{
2793	struct fs_parse_result result;
2794	int opt;
2795
2796	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2797	if (opt < 0)
2798		return opt;
2799
2800	return selinux_add_opt(opt, param->string, &fc->security);
 
 
 
 
 
2801}
2802
2803/* inode security operations */
2804
2805static int selinux_inode_alloc_security(struct inode *inode)
2806{
2807	struct inode_security_struct *isec = selinux_inode(inode);
2808	u32 sid = current_sid();
2809
2810	spin_lock_init(&isec->lock);
2811	INIT_LIST_HEAD(&isec->list);
2812	isec->inode = inode;
2813	isec->sid = SECINITSID_UNLABELED;
2814	isec->sclass = SECCLASS_FILE;
2815	isec->task_sid = sid;
2816	isec->initialized = LABEL_INVALID;
2817
2818	return 0;
2819}
2820
2821static void selinux_inode_free_security(struct inode *inode)
2822{
2823	inode_free_security(inode);
2824}
2825
2826static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2827					const struct qstr *name,
2828					const char **xattr_name, void **ctx,
2829					u32 *ctxlen)
2830{
2831	u32 newsid;
2832	int rc;
2833
2834	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2835					   d_inode(dentry->d_parent), name,
2836					   inode_mode_to_security_class(mode),
2837					   &newsid);
2838	if (rc)
2839		return rc;
2840
2841	if (xattr_name)
2842		*xattr_name = XATTR_NAME_SELINUX;
2843
2844	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2845				       ctxlen);
2846}
2847
2848static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2849					  struct qstr *name,
2850					  const struct cred *old,
2851					  struct cred *new)
2852{
2853	u32 newsid;
2854	int rc;
2855	struct task_security_struct *tsec;
2856
2857	rc = selinux_determine_inode_label(selinux_cred(old),
2858					   d_inode(dentry->d_parent), name,
2859					   inode_mode_to_security_class(mode),
2860					   &newsid);
2861	if (rc)
2862		return rc;
2863
2864	tsec = selinux_cred(new);
2865	tsec->create_sid = newsid;
2866	return 0;
2867}
2868
2869static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2870				       const struct qstr *qstr,
2871				       const char **name,
2872				       void **value, size_t *len)
2873{
2874	const struct task_security_struct *tsec = selinux_cred(current_cred());
2875	struct superblock_security_struct *sbsec;
2876	u32 newsid, clen;
2877	int rc;
2878	char *context;
2879
2880	sbsec = selinux_superblock(dir->i_sb);
2881
2882	newsid = tsec->create_sid;
2883
2884	rc = selinux_determine_inode_label(tsec, dir, qstr,
 
2885		inode_mode_to_security_class(inode->i_mode),
2886		&newsid);
2887	if (rc)
2888		return rc;
2889
2890	/* Possibly defer initialization to selinux_complete_init. */
2891	if (sbsec->flags & SE_SBINITIALIZED) {
2892		struct inode_security_struct *isec = selinux_inode(inode);
2893		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2894		isec->sid = newsid;
2895		isec->initialized = LABEL_INITIALIZED;
2896	}
2897
2898	if (!selinux_initialized(&selinux_state) ||
2899	    !(sbsec->flags & SBLABEL_MNT))
2900		return -EOPNOTSUPP;
2901
2902	if (name)
2903		*name = XATTR_SELINUX_SUFFIX;
2904
2905	if (value && len) {
2906		rc = security_sid_to_context_force(&selinux_state, newsid,
2907						   &context, &clen);
2908		if (rc)
2909			return rc;
2910		*value = context;
2911		*len = clen;
2912	}
2913
2914	return 0;
2915}
2916
2917static int selinux_inode_init_security_anon(struct inode *inode,
2918					    const struct qstr *name,
2919					    const struct inode *context_inode)
2920{
2921	const struct task_security_struct *tsec = selinux_cred(current_cred());
2922	struct common_audit_data ad;
2923	struct inode_security_struct *isec;
2924	int rc;
2925
2926	if (unlikely(!selinux_initialized(&selinux_state)))
2927		return 0;
2928
2929	isec = selinux_inode(inode);
2930
2931	/*
2932	 * We only get here once per ephemeral inode.  The inode has
2933	 * been initialized via inode_alloc_security but is otherwise
2934	 * untouched.
2935	 */
2936
2937	if (context_inode) {
2938		struct inode_security_struct *context_isec =
2939			selinux_inode(context_inode);
2940		if (context_isec->initialized != LABEL_INITIALIZED) {
2941			pr_err("SELinux:  context_inode is not initialized");
2942			return -EACCES;
2943		}
2944
2945		isec->sclass = context_isec->sclass;
2946		isec->sid = context_isec->sid;
2947	} else {
2948		isec->sclass = SECCLASS_ANON_INODE;
2949		rc = security_transition_sid(
2950			&selinux_state, tsec->sid, tsec->sid,
2951			isec->sclass, name, &isec->sid);
2952		if (rc)
2953			return rc;
2954	}
2955
2956	isec->initialized = LABEL_INITIALIZED;
2957	/*
2958	 * Now that we've initialized security, check whether we're
2959	 * allowed to actually create this type of anonymous inode.
2960	 */
2961
2962	ad.type = LSM_AUDIT_DATA_ANONINODE;
2963	ad.u.anonclass = name ? (const char *)name->name : "?";
2964
2965	return avc_has_perm(&selinux_state,
2966			    tsec->sid,
2967			    isec->sid,
2968			    isec->sclass,
2969			    FILE__CREATE,
2970			    &ad);
2971}
2972
2973static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2974{
2975	return may_create(dir, dentry, SECCLASS_FILE);
2976}
2977
2978static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2979{
2980	return may_link(dir, old_dentry, MAY_LINK);
2981}
2982
2983static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2984{
2985	return may_link(dir, dentry, MAY_UNLINK);
2986}
2987
2988static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2989{
2990	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2991}
2992
2993static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2994{
2995	return may_create(dir, dentry, SECCLASS_DIR);
2996}
2997
2998static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2999{
3000	return may_link(dir, dentry, MAY_RMDIR);
3001}
3002
3003static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3004{
3005	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3006}
3007
3008static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3009				struct inode *new_inode, struct dentry *new_dentry)
3010{
3011	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3012}
3013
3014static int selinux_inode_readlink(struct dentry *dentry)
3015{
3016	const struct cred *cred = current_cred();
3017
3018	return dentry_has_perm(cred, dentry, FILE__READ);
3019}
3020
3021static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3022				     bool rcu)
3023{
3024	const struct cred *cred = current_cred();
3025	struct common_audit_data ad;
3026	struct inode_security_struct *isec;
3027	u32 sid;
3028
3029	validate_creds(cred);
3030
3031	ad.type = LSM_AUDIT_DATA_DENTRY;
3032	ad.u.dentry = dentry;
3033	sid = cred_sid(cred);
3034	isec = inode_security_rcu(inode, rcu);
3035	if (IS_ERR(isec))
3036		return PTR_ERR(isec);
3037
3038	return avc_has_perm(&selinux_state,
3039				  sid, isec->sid, isec->sclass, FILE__READ, &ad);
3040}
3041
3042static noinline int audit_inode_permission(struct inode *inode,
3043					   u32 perms, u32 audited, u32 denied,
3044					   int result)
 
3045{
3046	struct common_audit_data ad;
3047	struct inode_security_struct *isec = selinux_inode(inode);
 
3048
3049	ad.type = LSM_AUDIT_DATA_INODE;
3050	ad.u.inode = inode;
3051
3052	return slow_avc_audit(&selinux_state,
3053			    current_sid(), isec->sid, isec->sclass, perms,
3054			    audited, denied, result, &ad);
 
 
 
3055}
3056
3057static int selinux_inode_permission(struct inode *inode, int mask)
3058{
3059	const struct cred *cred = current_cred();
3060	u32 perms;
3061	bool from_access;
3062	bool no_block = mask & MAY_NOT_BLOCK;
3063	struct inode_security_struct *isec;
3064	u32 sid;
3065	struct av_decision avd;
3066	int rc, rc2;
3067	u32 audited, denied;
3068
3069	from_access = mask & MAY_ACCESS;
3070	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3071
3072	/* No permission to check.  Existence test. */
3073	if (!mask)
3074		return 0;
3075
3076	validate_creds(cred);
3077
3078	if (unlikely(IS_PRIVATE(inode)))
3079		return 0;
3080
3081	perms = file_mask_to_av(inode->i_mode, mask);
3082
3083	sid = cred_sid(cred);
3084	isec = inode_security_rcu(inode, no_block);
3085	if (IS_ERR(isec))
3086		return PTR_ERR(isec);
3087
3088	rc = avc_has_perm_noaudit(&selinux_state,
3089				  sid, isec->sid, isec->sclass, perms, 0,
 
3090				  &avd);
3091	audited = avc_audit_required(perms, &avd, rc,
3092				     from_access ? FILE__AUDIT_ACCESS : 0,
3093				     &denied);
3094	if (likely(!audited))
3095		return rc;
3096
3097	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3098	if (rc2)
3099		return rc2;
3100	return rc;
3101}
3102
3103static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3104{
3105	const struct cred *cred = current_cred();
3106	struct inode *inode = d_backing_inode(dentry);
3107	unsigned int ia_valid = iattr->ia_valid;
3108	__u32 av = FILE__WRITE;
3109
3110	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3111	if (ia_valid & ATTR_FORCE) {
3112		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3113			      ATTR_FORCE);
3114		if (!ia_valid)
3115			return 0;
3116	}
3117
3118	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3119			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3120		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3121
3122	if (selinux_policycap_openperm() &&
3123	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3124	    (ia_valid & ATTR_SIZE) &&
3125	    !(ia_valid & ATTR_FILE))
3126		av |= FILE__OPEN;
3127
3128	return dentry_has_perm(cred, dentry, av);
3129}
3130
3131static int selinux_inode_getattr(const struct path *path)
3132{
3133	return path_has_perm(current_cred(), path, FILE__GETATTR);
3134}
3135
3136static bool has_cap_mac_admin(bool audit)
3137{
3138	const struct cred *cred = current_cred();
3139	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3140
3141	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3142		return false;
3143	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3144		return false;
3145	return true;
3146}
3147
3148static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3149				  struct dentry *dentry, const char *name,
3150				  const void *value, size_t size, int flags)
3151{
3152	struct inode *inode = d_backing_inode(dentry);
3153	struct inode_security_struct *isec;
3154	struct superblock_security_struct *sbsec;
3155	struct common_audit_data ad;
3156	u32 newsid, sid = current_sid();
3157	int rc = 0;
3158
3159	if (strcmp(name, XATTR_NAME_SELINUX)) {
3160		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3161		if (rc)
3162			return rc;
3163
3164		/* Not an attribute we recognize, so just check the
3165		   ordinary setattr permission. */
3166		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3167	}
3168
3169	if (!selinux_initialized(&selinux_state))
3170		return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3171
3172	sbsec = selinux_superblock(inode->i_sb);
3173	if (!(sbsec->flags & SBLABEL_MNT))
3174		return -EOPNOTSUPP;
3175
3176	if (!inode_owner_or_capable(mnt_userns, inode))
3177		return -EPERM;
3178
3179	ad.type = LSM_AUDIT_DATA_DENTRY;
3180	ad.u.dentry = dentry;
3181
3182	isec = backing_inode_security(dentry);
3183	rc = avc_has_perm(&selinux_state,
3184			  sid, isec->sid, isec->sclass,
3185			  FILE__RELABELFROM, &ad);
3186	if (rc)
3187		return rc;
3188
3189	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3190				     GFP_KERNEL);
3191	if (rc == -EINVAL) {
3192		if (!has_cap_mac_admin(true)) {
3193			struct audit_buffer *ab;
3194			size_t audit_size;
3195
3196			/* We strip a nul only if it is at the end, otherwise the
3197			 * context contains a nul and we should audit that */
3198			if (value) {
3199				const char *str = value;
3200
3201				if (str[size - 1] == '\0')
3202					audit_size = size - 1;
3203				else
3204					audit_size = size;
3205			} else {
3206				audit_size = 0;
3207			}
3208			ab = audit_log_start(audit_context(),
3209					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3210			if (!ab)
3211				return rc;
3212			audit_log_format(ab, "op=setxattr invalid_context=");
3213			audit_log_n_untrustedstring(ab, value, audit_size);
3214			audit_log_end(ab);
3215
3216			return rc;
3217		}
3218		rc = security_context_to_sid_force(&selinux_state, value,
3219						   size, &newsid);
3220	}
3221	if (rc)
3222		return rc;
3223
3224	rc = avc_has_perm(&selinux_state,
3225			  sid, newsid, isec->sclass,
3226			  FILE__RELABELTO, &ad);
3227	if (rc)
3228		return rc;
3229
3230	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3231					  sid, isec->sclass);
3232	if (rc)
3233		return rc;
3234
3235	return avc_has_perm(&selinux_state,
3236			    newsid,
3237			    sbsec->sid,
3238			    SECCLASS_FILESYSTEM,
3239			    FILESYSTEM__ASSOCIATE,
3240			    &ad);
3241}
3242
3243static int selinux_inode_set_acl(struct user_namespace *mnt_userns,
3244				 struct dentry *dentry, const char *acl_name,
3245				 struct posix_acl *kacl)
3246{
3247	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3248}
3249
3250static int selinux_inode_get_acl(struct user_namespace *mnt_userns,
3251				 struct dentry *dentry, const char *acl_name)
3252{
3253	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_remove_acl(struct user_namespace *mnt_userns,
3257				    struct dentry *dentry, const char *acl_name)
3258{
3259	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3260}
3261
3262static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3263					const void *value, size_t size,
3264					int flags)
3265{
3266	struct inode *inode = d_backing_inode(dentry);
3267	struct inode_security_struct *isec;
3268	u32 newsid;
3269	int rc;
3270
3271	if (strcmp(name, XATTR_NAME_SELINUX)) {
3272		/* Not an attribute we recognize, so nothing to do. */
3273		return;
3274	}
3275
3276	if (!selinux_initialized(&selinux_state)) {
3277		/* If we haven't even been initialized, then we can't validate
3278		 * against a policy, so leave the label as invalid. It may
3279		 * resolve to a valid label on the next revalidation try if
3280		 * we've since initialized.
3281		 */
3282		return;
3283	}
3284
3285	rc = security_context_to_sid_force(&selinux_state, value, size,
3286					   &newsid);
3287	if (rc) {
3288		pr_err("SELinux:  unable to map context to SID"
3289		       "for (%s, %lu), rc=%d\n",
3290		       inode->i_sb->s_id, inode->i_ino, -rc);
3291		return;
3292	}
3293
3294	isec = backing_inode_security(dentry);
3295	spin_lock(&isec->lock);
3296	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3297	isec->sid = newsid;
3298	isec->initialized = LABEL_INITIALIZED;
3299	spin_unlock(&isec->lock);
 
 
3300}
3301
3302static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3303{
3304	const struct cred *cred = current_cred();
3305
3306	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3307}
3308
3309static int selinux_inode_listxattr(struct dentry *dentry)
3310{
3311	const struct cred *cred = current_cred();
3312
3313	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3314}
3315
3316static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3317				     struct dentry *dentry, const char *name)
3318{
3319	if (strcmp(name, XATTR_NAME_SELINUX)) {
3320		int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3321		if (rc)
3322			return rc;
3323
3324		/* Not an attribute we recognize, so just check the
3325		   ordinary setattr permission. */
3326		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3327	}
3328
3329	if (!selinux_initialized(&selinux_state))
3330		return 0;
3331
3332	/* No one is allowed to remove a SELinux security label.
3333	   You can change the label, but all data must be labeled. */
3334	return -EACCES;
3335}
3336
3337static int selinux_path_notify(const struct path *path, u64 mask,
3338						unsigned int obj_type)
3339{
3340	int ret;
3341	u32 perm;
3342
3343	struct common_audit_data ad;
3344
3345	ad.type = LSM_AUDIT_DATA_PATH;
3346	ad.u.path = *path;
3347
3348	/*
3349	 * Set permission needed based on the type of mark being set.
3350	 * Performs an additional check for sb watches.
3351	 */
3352	switch (obj_type) {
3353	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3354		perm = FILE__WATCH_MOUNT;
3355		break;
3356	case FSNOTIFY_OBJ_TYPE_SB:
3357		perm = FILE__WATCH_SB;
3358		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3359						FILESYSTEM__WATCH, &ad);
3360		if (ret)
3361			return ret;
3362		break;
3363	case FSNOTIFY_OBJ_TYPE_INODE:
3364		perm = FILE__WATCH;
3365		break;
3366	default:
3367		return -EINVAL;
3368	}
3369
3370	/* blocking watches require the file:watch_with_perm permission */
3371	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3372		perm |= FILE__WATCH_WITH_PERM;
3373
3374	/* watches on read-like events need the file:watch_reads permission */
3375	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3376		perm |= FILE__WATCH_READS;
3377
3378	return path_has_perm(current_cred(), path, perm);
3379}
3380
3381/*
3382 * Copy the inode security context value to the user.
3383 *
3384 * Permission check is handled by selinux_inode_getxattr hook.
3385 */
3386static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3387				     struct inode *inode, const char *name,
3388				     void **buffer, bool alloc)
3389{
3390	u32 size;
3391	int error;
3392	char *context = NULL;
3393	struct inode_security_struct *isec;
3394
3395	/*
3396	 * If we're not initialized yet, then we can't validate contexts, so
3397	 * just let vfs_getxattr fall back to using the on-disk xattr.
3398	 */
3399	if (!selinux_initialized(&selinux_state) ||
3400	    strcmp(name, XATTR_SELINUX_SUFFIX))
3401		return -EOPNOTSUPP;
3402
3403	/*
3404	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3405	 * value even if it is not defined by current policy; otherwise,
3406	 * use the in-core value under current policy.
3407	 * Use the non-auditing forms of the permission checks since
3408	 * getxattr may be called by unprivileged processes commonly
3409	 * and lack of permission just means that we fall back to the
3410	 * in-core context value, not a denial.
3411	 */
3412	isec = inode_security(inode);
3413	if (has_cap_mac_admin(false))
3414		error = security_sid_to_context_force(&selinux_state,
3415						      isec->sid, &context,
3416						      &size);
3417	else
3418		error = security_sid_to_context(&selinux_state, isec->sid,
3419						&context, &size);
3420	if (error)
3421		return error;
3422	error = size;
3423	if (alloc) {
3424		*buffer = context;
3425		goto out_nofree;
3426	}
3427	kfree(context);
3428out_nofree:
3429	return error;
3430}
3431
3432static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3433				     const void *value, size_t size, int flags)
3434{
3435	struct inode_security_struct *isec = inode_security_novalidate(inode);
3436	struct superblock_security_struct *sbsec;
3437	u32 newsid;
3438	int rc;
3439
3440	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3441		return -EOPNOTSUPP;
3442
3443	sbsec = selinux_superblock(inode->i_sb);
3444	if (!(sbsec->flags & SBLABEL_MNT))
3445		return -EOPNOTSUPP;
3446
3447	if (!value || !size)
3448		return -EACCES;
3449
3450	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3451				     GFP_KERNEL);
3452	if (rc)
3453		return rc;
3454
3455	spin_lock(&isec->lock);
3456	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3457	isec->sid = newsid;
3458	isec->initialized = LABEL_INITIALIZED;
3459	spin_unlock(&isec->lock);
3460	return 0;
3461}
3462
3463static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3464{
3465	const int len = sizeof(XATTR_NAME_SELINUX);
3466
3467	if (!selinux_initialized(&selinux_state))
3468		return 0;
3469
3470	if (buffer && len <= buffer_size)
3471		memcpy(buffer, XATTR_NAME_SELINUX, len);
3472	return len;
3473}
3474
3475static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3476{
3477	struct inode_security_struct *isec = inode_security_novalidate(inode);
3478	*secid = isec->sid;
3479}
3480
3481static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3482{
3483	u32 sid;
3484	struct task_security_struct *tsec;
3485	struct cred *new_creds = *new;
3486
3487	if (new_creds == NULL) {
3488		new_creds = prepare_creds();
3489		if (!new_creds)
3490			return -ENOMEM;
3491	}
3492
3493	tsec = selinux_cred(new_creds);
3494	/* Get label from overlay inode and set it in create_sid */
3495	selinux_inode_getsecid(d_inode(src), &sid);
3496	tsec->create_sid = sid;
3497	*new = new_creds;
3498	return 0;
3499}
3500
3501static int selinux_inode_copy_up_xattr(const char *name)
3502{
3503	/* The copy_up hook above sets the initial context on an inode, but we
3504	 * don't then want to overwrite it by blindly copying all the lower
3505	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3506	 */
3507	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3508		return 1; /* Discard */
3509	/*
3510	 * Any other attribute apart from SELINUX is not claimed, supported
3511	 * by selinux.
3512	 */
3513	return -EOPNOTSUPP;
3514}
3515
3516/* kernfs node operations */
3517
3518static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3519					struct kernfs_node *kn)
3520{
3521	const struct task_security_struct *tsec = selinux_cred(current_cred());
3522	u32 parent_sid, newsid, clen;
3523	int rc;
3524	char *context;
3525
3526	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3527	if (rc == -ENODATA)
3528		return 0;
3529	else if (rc < 0)
3530		return rc;
3531
3532	clen = (u32)rc;
3533	context = kmalloc(clen, GFP_KERNEL);
3534	if (!context)
3535		return -ENOMEM;
3536
3537	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3538	if (rc < 0) {
3539		kfree(context);
3540		return rc;
3541	}
3542
3543	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3544				     GFP_KERNEL);
3545	kfree(context);
3546	if (rc)
3547		return rc;
3548
3549	if (tsec->create_sid) {
3550		newsid = tsec->create_sid;
3551	} else {
3552		u16 secclass = inode_mode_to_security_class(kn->mode);
3553		struct qstr q;
3554
3555		q.name = kn->name;
3556		q.hash_len = hashlen_string(kn_dir, kn->name);
3557
3558		rc = security_transition_sid(&selinux_state, tsec->sid,
3559					     parent_sid, secclass, &q,
3560					     &newsid);
3561		if (rc)
3562			return rc;
3563	}
3564
3565	rc = security_sid_to_context_force(&selinux_state, newsid,
3566					   &context, &clen);
3567	if (rc)
3568		return rc;
3569
3570	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3571			      XATTR_CREATE);
3572	kfree(context);
3573	return rc;
3574}
3575
3576
3577/* file security operations */
3578
3579static int selinux_revalidate_file_permission(struct file *file, int mask)
3580{
3581	const struct cred *cred = current_cred();
3582	struct inode *inode = file_inode(file);
3583
3584	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3585	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3586		mask |= MAY_APPEND;
3587
3588	return file_has_perm(cred, file,
3589			     file_mask_to_av(inode->i_mode, mask));
3590}
3591
3592static int selinux_file_permission(struct file *file, int mask)
3593{
3594	struct inode *inode = file_inode(file);
3595	struct file_security_struct *fsec = selinux_file(file);
3596	struct inode_security_struct *isec;
3597	u32 sid = current_sid();
3598
3599	if (!mask)
3600		/* No permission to check.  Existence test. */
3601		return 0;
3602
3603	isec = inode_security(inode);
3604	if (sid == fsec->sid && fsec->isid == isec->sid &&
3605	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3606		/* No change since file_open check. */
3607		return 0;
3608
3609	return selinux_revalidate_file_permission(file, mask);
3610}
3611
3612static int selinux_file_alloc_security(struct file *file)
3613{
3614	struct file_security_struct *fsec = selinux_file(file);
3615	u32 sid = current_sid();
3616
3617	fsec->sid = sid;
3618	fsec->fown_sid = sid;
3619
3620	return 0;
3621}
3622
3623/*
3624 * Check whether a task has the ioctl permission and cmd
3625 * operation to an inode.
3626 */
3627static int ioctl_has_perm(const struct cred *cred, struct file *file,
3628		u32 requested, u16 cmd)
3629{
3630	struct common_audit_data ad;
3631	struct file_security_struct *fsec = selinux_file(file);
3632	struct inode *inode = file_inode(file);
3633	struct inode_security_struct *isec;
3634	struct lsm_ioctlop_audit ioctl;
3635	u32 ssid = cred_sid(cred);
3636	int rc;
3637	u8 driver = cmd >> 8;
3638	u8 xperm = cmd & 0xff;
3639
3640	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3641	ad.u.op = &ioctl;
3642	ad.u.op->cmd = cmd;
3643	ad.u.op->path = file->f_path;
3644
3645	if (ssid != fsec->sid) {
3646		rc = avc_has_perm(&selinux_state,
3647				  ssid, fsec->sid,
3648				SECCLASS_FD,
3649				FD__USE,
3650				&ad);
3651		if (rc)
3652			goto out;
3653	}
3654
3655	if (unlikely(IS_PRIVATE(inode)))
3656		return 0;
3657
3658	isec = inode_security(inode);
3659	rc = avc_has_extended_perms(&selinux_state,
3660				    ssid, isec->sid, isec->sclass,
3661				    requested, driver, xperm, &ad);
3662out:
3663	return rc;
3664}
3665
3666static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3667			      unsigned long arg)
3668{
3669	const struct cred *cred = current_cred();
3670	int error = 0;
3671
3672	switch (cmd) {
3673	case FIONREAD:
 
3674	case FIBMAP:
 
3675	case FIGETBSZ:
 
3676	case FS_IOC_GETFLAGS:
 
3677	case FS_IOC_GETVERSION:
3678		error = file_has_perm(cred, file, FILE__GETATTR);
3679		break;
3680
3681	case FS_IOC_SETFLAGS:
 
3682	case FS_IOC_SETVERSION:
3683		error = file_has_perm(cred, file, FILE__SETATTR);
3684		break;
3685
3686	/* sys_ioctl() checks */
3687	case FIONBIO:
 
3688	case FIOASYNC:
3689		error = file_has_perm(cred, file, 0);
3690		break;
3691
3692	case KDSKBENT:
3693	case KDSKBSENT:
3694		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3695					    CAP_OPT_NONE, true);
3696		break;
3697
3698	case FIOCLEX:
3699	case FIONCLEX:
3700		if (!selinux_policycap_ioctl_skip_cloexec())
3701			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3702		break;
3703
3704	/* default case assumes that the command will go
3705	 * to the file's ioctl() function.
3706	 */
3707	default:
3708		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3709	}
3710	return error;
3711}
3712
3713static int default_noexec __ro_after_init;
3714
3715static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3716{
3717	const struct cred *cred = current_cred();
3718	u32 sid = cred_sid(cred);
3719	int rc = 0;
3720
3721	if (default_noexec &&
3722	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3723				   (!shared && (prot & PROT_WRITE)))) {
3724		/*
3725		 * We are making executable an anonymous mapping or a
3726		 * private file mapping that will also be writable.
3727		 * This has an additional check.
3728		 */
3729		rc = avc_has_perm(&selinux_state,
3730				  sid, sid, SECCLASS_PROCESS,
3731				  PROCESS__EXECMEM, NULL);
3732		if (rc)
3733			goto error;
3734	}
3735
3736	if (file) {
3737		/* read access is always possible with a mapping */
3738		u32 av = FILE__READ;
3739
3740		/* write access only matters if the mapping is shared */
3741		if (shared && (prot & PROT_WRITE))
3742			av |= FILE__WRITE;
3743
3744		if (prot & PROT_EXEC)
3745			av |= FILE__EXECUTE;
3746
3747		return file_has_perm(cred, file, av);
3748	}
3749
3750error:
3751	return rc;
3752}
3753
3754static int selinux_mmap_addr(unsigned long addr)
3755{
3756	int rc = 0;
3757
3758	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3759		u32 sid = current_sid();
3760		rc = avc_has_perm(&selinux_state,
3761				  sid, sid, SECCLASS_MEMPROTECT,
3762				  MEMPROTECT__MMAP_ZERO, NULL);
3763	}
3764
3765	return rc;
3766}
3767
3768static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3769			     unsigned long prot, unsigned long flags)
3770{
3771	struct common_audit_data ad;
3772	int rc;
3773
3774	if (file) {
3775		ad.type = LSM_AUDIT_DATA_FILE;
3776		ad.u.file = file;
3777		rc = inode_has_perm(current_cred(), file_inode(file),
3778				    FILE__MAP, &ad);
3779		if (rc)
3780			return rc;
3781	}
3782
3783	if (checkreqprot_get(&selinux_state))
3784		prot = reqprot;
3785
3786	return file_map_prot_check(file, prot,
3787				   (flags & MAP_TYPE) == MAP_SHARED);
3788}
3789
3790static int selinux_file_mprotect(struct vm_area_struct *vma,
3791				 unsigned long reqprot,
3792				 unsigned long prot)
3793{
3794	const struct cred *cred = current_cred();
3795	u32 sid = cred_sid(cred);
3796
3797	if (checkreqprot_get(&selinux_state))
3798		prot = reqprot;
3799
3800	if (default_noexec &&
3801	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3802		int rc = 0;
3803		if (vma->vm_start >= vma->vm_mm->start_brk &&
3804		    vma->vm_end <= vma->vm_mm->brk) {
3805			rc = avc_has_perm(&selinux_state,
3806					  sid, sid, SECCLASS_PROCESS,
3807					  PROCESS__EXECHEAP, NULL);
3808		} else if (!vma->vm_file &&
3809			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3810			     vma->vm_end >= vma->vm_mm->start_stack) ||
3811			    vma_is_stack_for_current(vma))) {
3812			rc = avc_has_perm(&selinux_state,
3813					  sid, sid, SECCLASS_PROCESS,
3814					  PROCESS__EXECSTACK, NULL);
3815		} else if (vma->vm_file && vma->anon_vma) {
3816			/*
3817			 * We are making executable a file mapping that has
3818			 * had some COW done. Since pages might have been
3819			 * written, check ability to execute the possibly
3820			 * modified content.  This typically should only
3821			 * occur for text relocations.
3822			 */
3823			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3824		}
3825		if (rc)
3826			return rc;
3827	}
3828
3829	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3830}
3831
3832static int selinux_file_lock(struct file *file, unsigned int cmd)
3833{
3834	const struct cred *cred = current_cred();
3835
3836	return file_has_perm(cred, file, FILE__LOCK);
3837}
3838
3839static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3840			      unsigned long arg)
3841{
3842	const struct cred *cred = current_cred();
3843	int err = 0;
3844
3845	switch (cmd) {
3846	case F_SETFL:
3847		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3848			err = file_has_perm(cred, file, FILE__WRITE);
3849			break;
3850		}
3851		fallthrough;
3852	case F_SETOWN:
3853	case F_SETSIG:
3854	case F_GETFL:
3855	case F_GETOWN:
3856	case F_GETSIG:
3857	case F_GETOWNER_UIDS:
3858		/* Just check FD__USE permission */
3859		err = file_has_perm(cred, file, 0);
3860		break;
3861	case F_GETLK:
3862	case F_SETLK:
3863	case F_SETLKW:
3864	case F_OFD_GETLK:
3865	case F_OFD_SETLK:
3866	case F_OFD_SETLKW:
3867#if BITS_PER_LONG == 32
3868	case F_GETLK64:
3869	case F_SETLK64:
3870	case F_SETLKW64:
3871#endif
3872		err = file_has_perm(cred, file, FILE__LOCK);
3873		break;
3874	}
3875
3876	return err;
3877}
3878
3879static void selinux_file_set_fowner(struct file *file)
3880{
3881	struct file_security_struct *fsec;
3882
3883	fsec = selinux_file(file);
3884	fsec->fown_sid = current_sid();
3885}
3886
3887static int selinux_file_send_sigiotask(struct task_struct *tsk,
3888				       struct fown_struct *fown, int signum)
3889{
3890	struct file *file;
3891	u32 sid = task_sid_obj(tsk);
3892	u32 perm;
3893	struct file_security_struct *fsec;
3894
3895	/* struct fown_struct is never outside the context of a struct file */
3896	file = container_of(fown, struct file, f_owner);
3897
3898	fsec = selinux_file(file);
3899
3900	if (!signum)
3901		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3902	else
3903		perm = signal_to_av(signum);
3904
3905	return avc_has_perm(&selinux_state,
3906			    fsec->fown_sid, sid,
3907			    SECCLASS_PROCESS, perm, NULL);
3908}
3909
3910static int selinux_file_receive(struct file *file)
3911{
3912	const struct cred *cred = current_cred();
3913
3914	return file_has_perm(cred, file, file_to_av(file));
3915}
3916
3917static int selinux_file_open(struct file *file)
3918{
3919	struct file_security_struct *fsec;
3920	struct inode_security_struct *isec;
3921
3922	fsec = selinux_file(file);
3923	isec = inode_security(file_inode(file));
3924	/*
3925	 * Save inode label and policy sequence number
3926	 * at open-time so that selinux_file_permission
3927	 * can determine whether revalidation is necessary.
3928	 * Task label is already saved in the file security
3929	 * struct as its SID.
3930	 */
3931	fsec->isid = isec->sid;
3932	fsec->pseqno = avc_policy_seqno(&selinux_state);
3933	/*
3934	 * Since the inode label or policy seqno may have changed
3935	 * between the selinux_inode_permission check and the saving
3936	 * of state above, recheck that access is still permitted.
3937	 * Otherwise, access might never be revalidated against the
3938	 * new inode label or new policy.
3939	 * This check is not redundant - do not remove.
3940	 */
3941	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3942}
3943
3944/* task security operations */
3945
3946static int selinux_task_alloc(struct task_struct *task,
3947			      unsigned long clone_flags)
3948{
3949	u32 sid = current_sid();
3950
3951	return avc_has_perm(&selinux_state,
3952			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3953}
3954
3955/*
3956 * prepare a new set of credentials for modification
3957 */
3958static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3959				gfp_t gfp)
3960{
3961	const struct task_security_struct *old_tsec = selinux_cred(old);
3962	struct task_security_struct *tsec = selinux_cred(new);
3963
3964	*tsec = *old_tsec;
3965	return 0;
3966}
3967
3968/*
3969 * transfer the SELinux data to a blank set of creds
3970 */
3971static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3972{
3973	const struct task_security_struct *old_tsec = selinux_cred(old);
3974	struct task_security_struct *tsec = selinux_cred(new);
3975
3976	*tsec = *old_tsec;
3977}
3978
3979static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3980{
3981	*secid = cred_sid(c);
3982}
3983
3984/*
3985 * set the security data for a kernel service
3986 * - all the creation contexts are set to unlabelled
3987 */
3988static int selinux_kernel_act_as(struct cred *new, u32 secid)
3989{
3990	struct task_security_struct *tsec = selinux_cred(new);
3991	u32 sid = current_sid();
3992	int ret;
3993
3994	ret = avc_has_perm(&selinux_state,
3995			   sid, secid,
3996			   SECCLASS_KERNEL_SERVICE,
3997			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3998			   NULL);
3999	if (ret == 0) {
4000		tsec->sid = secid;
4001		tsec->create_sid = 0;
4002		tsec->keycreate_sid = 0;
4003		tsec->sockcreate_sid = 0;
4004	}
4005	return ret;
4006}
4007
4008/*
4009 * set the file creation context in a security record to the same as the
4010 * objective context of the specified inode
4011 */
4012static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4013{
4014	struct inode_security_struct *isec = inode_security(inode);
4015	struct task_security_struct *tsec = selinux_cred(new);
4016	u32 sid = current_sid();
4017	int ret;
4018
4019	ret = avc_has_perm(&selinux_state,
4020			   sid, isec->sid,
4021			   SECCLASS_KERNEL_SERVICE,
4022			   KERNEL_SERVICE__CREATE_FILES_AS,
4023			   NULL);
4024
4025	if (ret == 0)
4026		tsec->create_sid = isec->sid;
4027	return ret;
4028}
4029
4030static int selinux_kernel_module_request(char *kmod_name)
4031{
4032	struct common_audit_data ad;
4033
4034	ad.type = LSM_AUDIT_DATA_KMOD;
4035	ad.u.kmod_name = kmod_name;
4036
4037	return avc_has_perm(&selinux_state,
4038			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4039			    SYSTEM__MODULE_REQUEST, &ad);
4040}
4041
4042static int selinux_kernel_module_from_file(struct file *file)
4043{
4044	struct common_audit_data ad;
4045	struct inode_security_struct *isec;
4046	struct file_security_struct *fsec;
4047	u32 sid = current_sid();
4048	int rc;
4049
4050	/* init_module */
4051	if (file == NULL)
4052		return avc_has_perm(&selinux_state,
4053				    sid, sid, SECCLASS_SYSTEM,
4054					SYSTEM__MODULE_LOAD, NULL);
4055
4056	/* finit_module */
4057
4058	ad.type = LSM_AUDIT_DATA_FILE;
4059	ad.u.file = file;
4060
4061	fsec = selinux_file(file);
4062	if (sid != fsec->sid) {
4063		rc = avc_has_perm(&selinux_state,
4064				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4065		if (rc)
4066			return rc;
4067	}
4068
4069	isec = inode_security(file_inode(file));
4070	return avc_has_perm(&selinux_state,
4071			    sid, isec->sid, SECCLASS_SYSTEM,
4072				SYSTEM__MODULE_LOAD, &ad);
4073}
4074
4075static int selinux_kernel_read_file(struct file *file,
4076				    enum kernel_read_file_id id,
4077				    bool contents)
4078{
4079	int rc = 0;
4080
4081	switch (id) {
4082	case READING_MODULE:
4083		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4084		break;
4085	default:
4086		break;
4087	}
4088
4089	return rc;
4090}
4091
4092static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4093{
4094	int rc = 0;
4095
4096	switch (id) {
4097	case LOADING_MODULE:
4098		rc = selinux_kernel_module_from_file(NULL);
4099		break;
4100	default:
4101		break;
4102	}
4103
4104	return rc;
4105}
4106
4107static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4108{
4109	return avc_has_perm(&selinux_state,
4110			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4111			    PROCESS__SETPGID, NULL);
4112}
4113
4114static int selinux_task_getpgid(struct task_struct *p)
4115{
4116	return avc_has_perm(&selinux_state,
4117			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4118			    PROCESS__GETPGID, NULL);
4119}
4120
4121static int selinux_task_getsid(struct task_struct *p)
4122{
4123	return avc_has_perm(&selinux_state,
4124			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4125			    PROCESS__GETSESSION, NULL);
4126}
4127
4128static void selinux_current_getsecid_subj(u32 *secid)
4129{
4130	*secid = current_sid();
4131}
4132
4133static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4134{
4135	*secid = task_sid_obj(p);
4136}
4137
4138static int selinux_task_setnice(struct task_struct *p, int nice)
4139{
4140	return avc_has_perm(&selinux_state,
4141			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4142			    PROCESS__SETSCHED, NULL);
4143}
4144
4145static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4146{
4147	return avc_has_perm(&selinux_state,
4148			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4149			    PROCESS__SETSCHED, NULL);
4150}
4151
4152static int selinux_task_getioprio(struct task_struct *p)
4153{
4154	return avc_has_perm(&selinux_state,
4155			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4156			    PROCESS__GETSCHED, NULL);
4157}
4158
4159static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4160				unsigned int flags)
4161{
4162	u32 av = 0;
4163
4164	if (!flags)
4165		return 0;
4166	if (flags & LSM_PRLIMIT_WRITE)
4167		av |= PROCESS__SETRLIMIT;
4168	if (flags & LSM_PRLIMIT_READ)
4169		av |= PROCESS__GETRLIMIT;
4170	return avc_has_perm(&selinux_state,
4171			    cred_sid(cred), cred_sid(tcred),
4172			    SECCLASS_PROCESS, av, NULL);
4173}
4174
4175static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4176		struct rlimit *new_rlim)
4177{
4178	struct rlimit *old_rlim = p->signal->rlim + resource;
4179
4180	/* Control the ability to change the hard limit (whether
4181	   lowering or raising it), so that the hard limit can
4182	   later be used as a safe reset point for the soft limit
4183	   upon context transitions.  See selinux_bprm_committing_creds. */
4184	if (old_rlim->rlim_max != new_rlim->rlim_max)
4185		return avc_has_perm(&selinux_state,
4186				    current_sid(), task_sid_obj(p),
4187				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4188
4189	return 0;
4190}
4191
4192static int selinux_task_setscheduler(struct task_struct *p)
4193{
4194	return avc_has_perm(&selinux_state,
4195			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4196			    PROCESS__SETSCHED, NULL);
4197}
4198
4199static int selinux_task_getscheduler(struct task_struct *p)
4200{
4201	return avc_has_perm(&selinux_state,
4202			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4203			    PROCESS__GETSCHED, NULL);
4204}
4205
4206static int selinux_task_movememory(struct task_struct *p)
4207{
4208	return avc_has_perm(&selinux_state,
4209			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4210			    PROCESS__SETSCHED, NULL);
4211}
4212
4213static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4214				int sig, const struct cred *cred)
4215{
4216	u32 secid;
4217	u32 perm;
4218
4219	if (!sig)
4220		perm = PROCESS__SIGNULL; /* null signal; existence test */
4221	else
4222		perm = signal_to_av(sig);
4223	if (!cred)
4224		secid = current_sid();
4225	else
4226		secid = cred_sid(cred);
4227	return avc_has_perm(&selinux_state,
4228			    secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4229}
4230
4231static void selinux_task_to_inode(struct task_struct *p,
4232				  struct inode *inode)
4233{
4234	struct inode_security_struct *isec = selinux_inode(inode);
4235	u32 sid = task_sid_obj(p);
4236
4237	spin_lock(&isec->lock);
4238	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4239	isec->sid = sid;
4240	isec->initialized = LABEL_INITIALIZED;
4241	spin_unlock(&isec->lock);
4242}
4243
4244static int selinux_userns_create(const struct cred *cred)
4245{
4246	u32 sid = current_sid();
4247
4248	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_USER_NAMESPACE,
4249						USER_NAMESPACE__CREATE, NULL);
4250}
4251
4252/* Returns error only if unable to parse addresses */
4253static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4254			struct common_audit_data *ad, u8 *proto)
4255{
4256	int offset, ihlen, ret = -EINVAL;
4257	struct iphdr _iph, *ih;
4258
4259	offset = skb_network_offset(skb);
4260	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4261	if (ih == NULL)
4262		goto out;
4263
4264	ihlen = ih->ihl * 4;
4265	if (ihlen < sizeof(_iph))
4266		goto out;
4267
4268	ad->u.net->v4info.saddr = ih->saddr;
4269	ad->u.net->v4info.daddr = ih->daddr;
4270	ret = 0;
4271
4272	if (proto)
4273		*proto = ih->protocol;
4274
4275	switch (ih->protocol) {
4276	case IPPROTO_TCP: {
4277		struct tcphdr _tcph, *th;
4278
4279		if (ntohs(ih->frag_off) & IP_OFFSET)
4280			break;
4281
4282		offset += ihlen;
4283		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4284		if (th == NULL)
4285			break;
4286
4287		ad->u.net->sport = th->source;
4288		ad->u.net->dport = th->dest;
4289		break;
4290	}
4291
4292	case IPPROTO_UDP: {
4293		struct udphdr _udph, *uh;
4294
4295		if (ntohs(ih->frag_off) & IP_OFFSET)
4296			break;
4297
4298		offset += ihlen;
4299		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4300		if (uh == NULL)
4301			break;
4302
4303		ad->u.net->sport = uh->source;
4304		ad->u.net->dport = uh->dest;
4305		break;
4306	}
4307
4308	case IPPROTO_DCCP: {
4309		struct dccp_hdr _dccph, *dh;
4310
4311		if (ntohs(ih->frag_off) & IP_OFFSET)
4312			break;
4313
4314		offset += ihlen;
4315		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316		if (dh == NULL)
4317			break;
4318
4319		ad->u.net->sport = dh->dccph_sport;
4320		ad->u.net->dport = dh->dccph_dport;
4321		break;
4322	}
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325	case IPPROTO_SCTP: {
4326		struct sctphdr _sctph, *sh;
4327
4328		if (ntohs(ih->frag_off) & IP_OFFSET)
4329			break;
4330
4331		offset += ihlen;
4332		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333		if (sh == NULL)
4334			break;
4335
4336		ad->u.net->sport = sh->source;
4337		ad->u.net->dport = sh->dest;
4338		break;
4339	}
4340#endif
4341	default:
4342		break;
4343	}
4344out:
4345	return ret;
4346}
4347
4348#if IS_ENABLED(CONFIG_IPV6)
4349
4350/* Returns error only if unable to parse addresses */
4351static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4352			struct common_audit_data *ad, u8 *proto)
4353{
4354	u8 nexthdr;
4355	int ret = -EINVAL, offset;
4356	struct ipv6hdr _ipv6h, *ip6;
4357	__be16 frag_off;
4358
4359	offset = skb_network_offset(skb);
4360	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4361	if (ip6 == NULL)
4362		goto out;
4363
4364	ad->u.net->v6info.saddr = ip6->saddr;
4365	ad->u.net->v6info.daddr = ip6->daddr;
4366	ret = 0;
4367
4368	nexthdr = ip6->nexthdr;
4369	offset += sizeof(_ipv6h);
4370	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4371	if (offset < 0)
4372		goto out;
4373
4374	if (proto)
4375		*proto = nexthdr;
4376
4377	switch (nexthdr) {
4378	case IPPROTO_TCP: {
4379		struct tcphdr _tcph, *th;
4380
4381		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4382		if (th == NULL)
4383			break;
4384
4385		ad->u.net->sport = th->source;
4386		ad->u.net->dport = th->dest;
4387		break;
4388	}
4389
4390	case IPPROTO_UDP: {
4391		struct udphdr _udph, *uh;
4392
4393		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4394		if (uh == NULL)
4395			break;
4396
4397		ad->u.net->sport = uh->source;
4398		ad->u.net->dport = uh->dest;
4399		break;
4400	}
4401
4402	case IPPROTO_DCCP: {
4403		struct dccp_hdr _dccph, *dh;
4404
4405		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4406		if (dh == NULL)
4407			break;
4408
4409		ad->u.net->sport = dh->dccph_sport;
4410		ad->u.net->dport = dh->dccph_dport;
4411		break;
4412	}
4413
4414#if IS_ENABLED(CONFIG_IP_SCTP)
4415	case IPPROTO_SCTP: {
4416		struct sctphdr _sctph, *sh;
4417
4418		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4419		if (sh == NULL)
4420			break;
4421
4422		ad->u.net->sport = sh->source;
4423		ad->u.net->dport = sh->dest;
4424		break;
4425	}
4426#endif
4427	/* includes fragments */
4428	default:
4429		break;
4430	}
4431out:
4432	return ret;
4433}
4434
4435#endif /* IPV6 */
4436
4437static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4438			     char **_addrp, int src, u8 *proto)
4439{
4440	char *addrp;
4441	int ret;
4442
4443	switch (ad->u.net->family) {
4444	case PF_INET:
4445		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4446		if (ret)
4447			goto parse_error;
4448		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4449				       &ad->u.net->v4info.daddr);
4450		goto okay;
4451
4452#if IS_ENABLED(CONFIG_IPV6)
4453	case PF_INET6:
4454		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4455		if (ret)
4456			goto parse_error;
4457		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4458				       &ad->u.net->v6info.daddr);
4459		goto okay;
4460#endif	/* IPV6 */
4461	default:
4462		addrp = NULL;
4463		goto okay;
4464	}
4465
4466parse_error:
4467	pr_warn(
4468	       "SELinux: failure in selinux_parse_skb(),"
4469	       " unable to parse packet\n");
4470	return ret;
4471
4472okay:
4473	if (_addrp)
4474		*_addrp = addrp;
4475	return 0;
4476}
4477
4478/**
4479 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4480 * @skb: the packet
4481 * @family: protocol family
4482 * @sid: the packet's peer label SID
4483 *
4484 * Description:
4485 * Check the various different forms of network peer labeling and determine
4486 * the peer label/SID for the packet; most of the magic actually occurs in
4487 * the security server function security_net_peersid_cmp().  The function
4488 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4489 * or -EACCES if @sid is invalid due to inconsistencies with the different
4490 * peer labels.
4491 *
4492 */
4493static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4494{
4495	int err;
4496	u32 xfrm_sid;
4497	u32 nlbl_sid;
4498	u32 nlbl_type;
4499
4500	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4501	if (unlikely(err))
4502		return -EACCES;
4503	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4504	if (unlikely(err))
4505		return -EACCES;
4506
4507	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4508					   nlbl_type, xfrm_sid, sid);
4509	if (unlikely(err)) {
4510		pr_warn(
4511		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4512		       " unable to determine packet's peer label\n");
4513		return -EACCES;
4514	}
4515
4516	return 0;
4517}
4518
4519/**
4520 * selinux_conn_sid - Determine the child socket label for a connection
4521 * @sk_sid: the parent socket's SID
4522 * @skb_sid: the packet's SID
4523 * @conn_sid: the resulting connection SID
4524 *
4525 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4526 * combined with the MLS information from @skb_sid in order to create
4527 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4528 * of @sk_sid.  Returns zero on success, negative values on failure.
4529 *
4530 */
4531static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4532{
4533	int err = 0;
4534
4535	if (skb_sid != SECSID_NULL)
4536		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4537					    conn_sid);
4538	else
4539		*conn_sid = sk_sid;
4540
4541	return err;
4542}
4543
4544/* socket security operations */
4545
4546static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4547				 u16 secclass, u32 *socksid)
4548{
4549	if (tsec->sockcreate_sid > SECSID_NULL) {
4550		*socksid = tsec->sockcreate_sid;
4551		return 0;
4552	}
4553
4554	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4555				       secclass, NULL, socksid);
4556}
4557
4558static int sock_has_perm(struct sock *sk, u32 perms)
4559{
4560	struct sk_security_struct *sksec = sk->sk_security;
4561	struct common_audit_data ad;
4562	struct lsm_network_audit net = {0,};
4563
4564	if (sksec->sid == SECINITSID_KERNEL)
4565		return 0;
4566
4567	ad.type = LSM_AUDIT_DATA_NET;
4568	ad.u.net = &net;
4569	ad.u.net->sk = sk;
4570
4571	return avc_has_perm(&selinux_state,
4572			    current_sid(), sksec->sid, sksec->sclass, perms,
4573			    &ad);
4574}
4575
4576static int selinux_socket_create(int family, int type,
4577				 int protocol, int kern)
4578{
4579	const struct task_security_struct *tsec = selinux_cred(current_cred());
4580	u32 newsid;
4581	u16 secclass;
4582	int rc;
4583
4584	if (kern)
4585		return 0;
4586
4587	secclass = socket_type_to_security_class(family, type, protocol);
4588	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4589	if (rc)
4590		return rc;
4591
4592	return avc_has_perm(&selinux_state,
4593			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4594}
4595
4596static int selinux_socket_post_create(struct socket *sock, int family,
4597				      int type, int protocol, int kern)
4598{
4599	const struct task_security_struct *tsec = selinux_cred(current_cred());
4600	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4601	struct sk_security_struct *sksec;
4602	u16 sclass = socket_type_to_security_class(family, type, protocol);
4603	u32 sid = SECINITSID_KERNEL;
4604	int err = 0;
4605
4606	if (!kern) {
4607		err = socket_sockcreate_sid(tsec, sclass, &sid);
4608		if (err)
4609			return err;
4610	}
4611
4612	isec->sclass = sclass;
4613	isec->sid = sid;
4614	isec->initialized = LABEL_INITIALIZED;
4615
4616	if (sock->sk) {
4617		sksec = sock->sk->sk_security;
4618		sksec->sclass = sclass;
4619		sksec->sid = sid;
4620		/* Allows detection of the first association on this socket */
4621		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4622			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4623
4624		err = selinux_netlbl_socket_post_create(sock->sk, family);
4625	}
4626
4627	return err;
4628}
4629
4630static int selinux_socket_socketpair(struct socket *socka,
4631				     struct socket *sockb)
4632{
4633	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4634	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4635
4636	sksec_a->peer_sid = sksec_b->sid;
4637	sksec_b->peer_sid = sksec_a->sid;
4638
4639	return 0;
4640}
4641
4642/* Range of port numbers used to automatically bind.
4643   Need to determine whether we should perform a name_bind
4644   permission check between the socket and the port number. */
4645
4646static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4647{
4648	struct sock *sk = sock->sk;
4649	struct sk_security_struct *sksec = sk->sk_security;
4650	u16 family;
4651	int err;
4652
4653	err = sock_has_perm(sk, SOCKET__BIND);
4654	if (err)
4655		goto out;
4656
4657	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4658	family = sk->sk_family;
4659	if (family == PF_INET || family == PF_INET6) {
4660		char *addrp;
4661		struct common_audit_data ad;
4662		struct lsm_network_audit net = {0,};
4663		struct sockaddr_in *addr4 = NULL;
4664		struct sockaddr_in6 *addr6 = NULL;
4665		u16 family_sa;
4666		unsigned short snum;
4667		u32 sid, node_perm;
4668
4669		/*
4670		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4671		 * that validates multiple binding addresses. Because of this
4672		 * need to check address->sa_family as it is possible to have
4673		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4674		 */
4675		if (addrlen < offsetofend(struct sockaddr, sa_family))
4676			return -EINVAL;
4677		family_sa = address->sa_family;
4678		switch (family_sa) {
4679		case AF_UNSPEC:
4680		case AF_INET:
4681			if (addrlen < sizeof(struct sockaddr_in))
4682				return -EINVAL;
4683			addr4 = (struct sockaddr_in *)address;
4684			if (family_sa == AF_UNSPEC) {
4685				/* see __inet_bind(), we only want to allow
4686				 * AF_UNSPEC if the address is INADDR_ANY
4687				 */
4688				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4689					goto err_af;
4690				family_sa = AF_INET;
4691			}
4692			snum = ntohs(addr4->sin_port);
4693			addrp = (char *)&addr4->sin_addr.s_addr;
4694			break;
4695		case AF_INET6:
4696			if (addrlen < SIN6_LEN_RFC2133)
4697				return -EINVAL;
4698			addr6 = (struct sockaddr_in6 *)address;
4699			snum = ntohs(addr6->sin6_port);
4700			addrp = (char *)&addr6->sin6_addr.s6_addr;
4701			break;
4702		default:
4703			goto err_af;
4704		}
4705
4706		ad.type = LSM_AUDIT_DATA_NET;
4707		ad.u.net = &net;
4708		ad.u.net->sport = htons(snum);
4709		ad.u.net->family = family_sa;
4710
4711		if (snum) {
4712			int low, high;
4713
4714			inet_get_local_port_range(sock_net(sk), &low, &high);
4715
4716			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4717			    snum < low || snum > high) {
4718				err = sel_netport_sid(sk->sk_protocol,
4719						      snum, &sid);
4720				if (err)
4721					goto out;
4722				err = avc_has_perm(&selinux_state,
4723						   sksec->sid, sid,
4724						   sksec->sclass,
4725						   SOCKET__NAME_BIND, &ad);
4726				if (err)
4727					goto out;
4728			}
4729		}
4730
4731		switch (sksec->sclass) {
4732		case SECCLASS_TCP_SOCKET:
4733			node_perm = TCP_SOCKET__NODE_BIND;
4734			break;
4735
4736		case SECCLASS_UDP_SOCKET:
4737			node_perm = UDP_SOCKET__NODE_BIND;
4738			break;
4739
4740		case SECCLASS_DCCP_SOCKET:
4741			node_perm = DCCP_SOCKET__NODE_BIND;
4742			break;
4743
4744		case SECCLASS_SCTP_SOCKET:
4745			node_perm = SCTP_SOCKET__NODE_BIND;
4746			break;
4747
4748		default:
4749			node_perm = RAWIP_SOCKET__NODE_BIND;
4750			break;
4751		}
4752
4753		err = sel_netnode_sid(addrp, family_sa, &sid);
4754		if (err)
4755			goto out;
4756
4757		if (family_sa == AF_INET)
4758			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4759		else
4760			ad.u.net->v6info.saddr = addr6->sin6_addr;
4761
4762		err = avc_has_perm(&selinux_state,
4763				   sksec->sid, sid,
4764				   sksec->sclass, node_perm, &ad);
4765		if (err)
4766			goto out;
4767	}
4768out:
4769	return err;
4770err_af:
4771	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4772	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4773		return -EINVAL;
4774	return -EAFNOSUPPORT;
4775}
4776
4777/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4778 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4779 */
4780static int selinux_socket_connect_helper(struct socket *sock,
4781					 struct sockaddr *address, int addrlen)
4782{
4783	struct sock *sk = sock->sk;
4784	struct sk_security_struct *sksec = sk->sk_security;
4785	int err;
4786
4787	err = sock_has_perm(sk, SOCKET__CONNECT);
4788	if (err)
4789		return err;
4790	if (addrlen < offsetofend(struct sockaddr, sa_family))
4791		return -EINVAL;
4792
4793	/* connect(AF_UNSPEC) has special handling, as it is a documented
4794	 * way to disconnect the socket
4795	 */
4796	if (address->sa_family == AF_UNSPEC)
4797		return 0;
4798
4799	/*
4800	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4801	 * for the port.
4802	 */
4803	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4804	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4805	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4806		struct common_audit_data ad;
4807		struct lsm_network_audit net = {0,};
4808		struct sockaddr_in *addr4 = NULL;
4809		struct sockaddr_in6 *addr6 = NULL;
4810		unsigned short snum;
4811		u32 sid, perm;
4812
4813		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4814		 * that validates multiple connect addresses. Because of this
4815		 * need to check address->sa_family as it is possible to have
4816		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4817		 */
4818		switch (address->sa_family) {
4819		case AF_INET:
4820			addr4 = (struct sockaddr_in *)address;
4821			if (addrlen < sizeof(struct sockaddr_in))
4822				return -EINVAL;
4823			snum = ntohs(addr4->sin_port);
4824			break;
4825		case AF_INET6:
4826			addr6 = (struct sockaddr_in6 *)address;
4827			if (addrlen < SIN6_LEN_RFC2133)
4828				return -EINVAL;
4829			snum = ntohs(addr6->sin6_port);
4830			break;
4831		default:
4832			/* Note that SCTP services expect -EINVAL, whereas
4833			 * others expect -EAFNOSUPPORT.
4834			 */
4835			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4836				return -EINVAL;
4837			else
4838				return -EAFNOSUPPORT;
4839		}
4840
4841		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4842		if (err)
4843			return err;
4844
4845		switch (sksec->sclass) {
4846		case SECCLASS_TCP_SOCKET:
4847			perm = TCP_SOCKET__NAME_CONNECT;
4848			break;
4849		case SECCLASS_DCCP_SOCKET:
4850			perm = DCCP_SOCKET__NAME_CONNECT;
4851			break;
4852		case SECCLASS_SCTP_SOCKET:
4853			perm = SCTP_SOCKET__NAME_CONNECT;
4854			break;
4855		}
4856
4857		ad.type = LSM_AUDIT_DATA_NET;
4858		ad.u.net = &net;
4859		ad.u.net->dport = htons(snum);
4860		ad.u.net->family = address->sa_family;
4861		err = avc_has_perm(&selinux_state,
4862				   sksec->sid, sid, sksec->sclass, perm, &ad);
4863		if (err)
4864			return err;
4865	}
4866
4867	return 0;
4868}
4869
4870/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4871static int selinux_socket_connect(struct socket *sock,
4872				  struct sockaddr *address, int addrlen)
4873{
4874	int err;
4875	struct sock *sk = sock->sk;
4876
4877	err = selinux_socket_connect_helper(sock, address, addrlen);
4878	if (err)
4879		return err;
4880
4881	return selinux_netlbl_socket_connect(sk, address);
4882}
4883
4884static int selinux_socket_listen(struct socket *sock, int backlog)
4885{
4886	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4887}
4888
4889static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4890{
4891	int err;
4892	struct inode_security_struct *isec;
4893	struct inode_security_struct *newisec;
4894	u16 sclass;
4895	u32 sid;
4896
4897	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4898	if (err)
4899		return err;
4900
4901	isec = inode_security_novalidate(SOCK_INODE(sock));
4902	spin_lock(&isec->lock);
4903	sclass = isec->sclass;
4904	sid = isec->sid;
4905	spin_unlock(&isec->lock);
4906
4907	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4908	newisec->sclass = sclass;
4909	newisec->sid = sid;
4910	newisec->initialized = LABEL_INITIALIZED;
4911
4912	return 0;
4913}
4914
4915static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4916				  int size)
4917{
4918	return sock_has_perm(sock->sk, SOCKET__WRITE);
4919}
4920
4921static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4922				  int size, int flags)
4923{
4924	return sock_has_perm(sock->sk, SOCKET__READ);
4925}
4926
4927static int selinux_socket_getsockname(struct socket *sock)
4928{
4929	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4930}
4931
4932static int selinux_socket_getpeername(struct socket *sock)
4933{
4934	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4935}
4936
4937static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4938{
4939	int err;
4940
4941	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4942	if (err)
4943		return err;
4944
4945	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4946}
4947
4948static int selinux_socket_getsockopt(struct socket *sock, int level,
4949				     int optname)
4950{
4951	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4952}
4953
4954static int selinux_socket_shutdown(struct socket *sock, int how)
4955{
4956	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4957}
4958
4959static int selinux_socket_unix_stream_connect(struct sock *sock,
4960					      struct sock *other,
4961					      struct sock *newsk)
4962{
4963	struct sk_security_struct *sksec_sock = sock->sk_security;
4964	struct sk_security_struct *sksec_other = other->sk_security;
4965	struct sk_security_struct *sksec_new = newsk->sk_security;
4966	struct common_audit_data ad;
4967	struct lsm_network_audit net = {0,};
4968	int err;
4969
4970	ad.type = LSM_AUDIT_DATA_NET;
4971	ad.u.net = &net;
4972	ad.u.net->sk = other;
4973
4974	err = avc_has_perm(&selinux_state,
4975			   sksec_sock->sid, sksec_other->sid,
4976			   sksec_other->sclass,
4977			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4978	if (err)
4979		return err;
4980
4981	/* server child socket */
4982	sksec_new->peer_sid = sksec_sock->sid;
4983	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4984				    sksec_sock->sid, &sksec_new->sid);
4985	if (err)
4986		return err;
4987
4988	/* connecting socket */
4989	sksec_sock->peer_sid = sksec_new->sid;
4990
4991	return 0;
4992}
4993
4994static int selinux_socket_unix_may_send(struct socket *sock,
4995					struct socket *other)
4996{
4997	struct sk_security_struct *ssec = sock->sk->sk_security;
4998	struct sk_security_struct *osec = other->sk->sk_security;
4999	struct common_audit_data ad;
5000	struct lsm_network_audit net = {0,};
5001
5002	ad.type = LSM_AUDIT_DATA_NET;
5003	ad.u.net = &net;
5004	ad.u.net->sk = other->sk;
5005
5006	return avc_has_perm(&selinux_state,
5007			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5008			    &ad);
5009}
5010
5011static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5012				    char *addrp, u16 family, u32 peer_sid,
5013				    struct common_audit_data *ad)
5014{
5015	int err;
5016	u32 if_sid;
5017	u32 node_sid;
5018
5019	err = sel_netif_sid(ns, ifindex, &if_sid);
5020	if (err)
5021		return err;
5022	err = avc_has_perm(&selinux_state,
5023			   peer_sid, if_sid,
5024			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5025	if (err)
5026		return err;
5027
5028	err = sel_netnode_sid(addrp, family, &node_sid);
5029	if (err)
5030		return err;
5031	return avc_has_perm(&selinux_state,
5032			    peer_sid, node_sid,
5033			    SECCLASS_NODE, NODE__RECVFROM, ad);
5034}
5035
5036static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5037				       u16 family)
5038{
5039	int err = 0;
5040	struct sk_security_struct *sksec = sk->sk_security;
5041	u32 sk_sid = sksec->sid;
5042	struct common_audit_data ad;
5043	struct lsm_network_audit net = {0,};
5044	char *addrp;
5045
5046	ad.type = LSM_AUDIT_DATA_NET;
5047	ad.u.net = &net;
5048	ad.u.net->netif = skb->skb_iif;
5049	ad.u.net->family = family;
5050	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5051	if (err)
5052		return err;
5053
5054	if (selinux_secmark_enabled()) {
5055		err = avc_has_perm(&selinux_state,
5056				   sk_sid, skb->secmark, SECCLASS_PACKET,
5057				   PACKET__RECV, &ad);
5058		if (err)
5059			return err;
5060	}
5061
5062	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5063	if (err)
5064		return err;
5065	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5066
5067	return err;
5068}
5069
5070static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5071{
5072	int err;
5073	struct sk_security_struct *sksec = sk->sk_security;
5074	u16 family = sk->sk_family;
5075	u32 sk_sid = sksec->sid;
5076	struct common_audit_data ad;
5077	struct lsm_network_audit net = {0,};
5078	char *addrp;
5079	u8 secmark_active;
5080	u8 peerlbl_active;
5081
5082	if (family != PF_INET && family != PF_INET6)
5083		return 0;
5084
5085	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5086	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5087		family = PF_INET;
5088
5089	/* If any sort of compatibility mode is enabled then handoff processing
5090	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5091	 * special handling.  We do this in an attempt to keep this function
5092	 * as fast and as clean as possible. */
5093	if (!selinux_policycap_netpeer())
5094		return selinux_sock_rcv_skb_compat(sk, skb, family);
5095
5096	secmark_active = selinux_secmark_enabled();
5097	peerlbl_active = selinux_peerlbl_enabled();
5098	if (!secmark_active && !peerlbl_active)
5099		return 0;
5100
5101	ad.type = LSM_AUDIT_DATA_NET;
5102	ad.u.net = &net;
5103	ad.u.net->netif = skb->skb_iif;
5104	ad.u.net->family = family;
5105	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5106	if (err)
5107		return err;
5108
5109	if (peerlbl_active) {
5110		u32 peer_sid;
5111
5112		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5113		if (err)
5114			return err;
5115		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5116					       addrp, family, peer_sid, &ad);
5117		if (err) {
5118			selinux_netlbl_err(skb, family, err, 0);
5119			return err;
5120		}
5121		err = avc_has_perm(&selinux_state,
5122				   sk_sid, peer_sid, SECCLASS_PEER,
5123				   PEER__RECV, &ad);
5124		if (err) {
5125			selinux_netlbl_err(skb, family, err, 0);
5126			return err;
5127		}
5128	}
5129
5130	if (secmark_active) {
5131		err = avc_has_perm(&selinux_state,
5132				   sk_sid, skb->secmark, SECCLASS_PACKET,
5133				   PACKET__RECV, &ad);
5134		if (err)
5135			return err;
5136	}
5137
5138	return err;
5139}
5140
5141static int selinux_socket_getpeersec_stream(struct socket *sock,
5142					    sockptr_t optval, sockptr_t optlen,
5143					    unsigned int len)
5144{
5145	int err = 0;
5146	char *scontext = NULL;
5147	u32 scontext_len;
5148	struct sk_security_struct *sksec = sock->sk->sk_security;
5149	u32 peer_sid = SECSID_NULL;
5150
5151	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5152	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5153	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5154		peer_sid = sksec->peer_sid;
5155	if (peer_sid == SECSID_NULL)
5156		return -ENOPROTOOPT;
5157
5158	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5159				      &scontext_len);
5160	if (err)
5161		return err;
 
5162	if (scontext_len > len) {
5163		err = -ERANGE;
5164		goto out_len;
5165	}
5166
5167	if (copy_to_sockptr(optval, scontext, scontext_len))
5168		err = -EFAULT;
 
5169out_len:
5170	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5171		err = -EFAULT;
5172	kfree(scontext);
5173	return err;
5174}
5175
5176static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5177{
5178	u32 peer_secid = SECSID_NULL;
5179	u16 family;
5180	struct inode_security_struct *isec;
5181
5182	if (skb && skb->protocol == htons(ETH_P_IP))
5183		family = PF_INET;
5184	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5185		family = PF_INET6;
5186	else if (sock)
5187		family = sock->sk->sk_family;
5188	else
5189		goto out;
5190
5191	if (sock && family == PF_UNIX) {
5192		isec = inode_security_novalidate(SOCK_INODE(sock));
5193		peer_secid = isec->sid;
5194	} else if (skb)
5195		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5196
5197out:
5198	*secid = peer_secid;
5199	if (peer_secid == SECSID_NULL)
5200		return -EINVAL;
5201	return 0;
5202}
5203
5204static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5205{
5206	struct sk_security_struct *sksec;
5207
5208	sksec = kzalloc(sizeof(*sksec), priority);
5209	if (!sksec)
5210		return -ENOMEM;
5211
5212	sksec->peer_sid = SECINITSID_UNLABELED;
5213	sksec->sid = SECINITSID_UNLABELED;
5214	sksec->sclass = SECCLASS_SOCKET;
5215	selinux_netlbl_sk_security_reset(sksec);
5216	sk->sk_security = sksec;
5217
5218	return 0;
5219}
5220
5221static void selinux_sk_free_security(struct sock *sk)
5222{
5223	struct sk_security_struct *sksec = sk->sk_security;
5224
5225	sk->sk_security = NULL;
5226	selinux_netlbl_sk_security_free(sksec);
5227	kfree(sksec);
5228}
5229
5230static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5231{
5232	struct sk_security_struct *sksec = sk->sk_security;
5233	struct sk_security_struct *newsksec = newsk->sk_security;
5234
5235	newsksec->sid = sksec->sid;
5236	newsksec->peer_sid = sksec->peer_sid;
5237	newsksec->sclass = sksec->sclass;
5238
5239	selinux_netlbl_sk_security_reset(newsksec);
5240}
5241
5242static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5243{
5244	if (!sk)
5245		*secid = SECINITSID_ANY_SOCKET;
5246	else {
5247		struct sk_security_struct *sksec = sk->sk_security;
5248
5249		*secid = sksec->sid;
5250	}
5251}
5252
5253static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5254{
5255	struct inode_security_struct *isec =
5256		inode_security_novalidate(SOCK_INODE(parent));
5257	struct sk_security_struct *sksec = sk->sk_security;
5258
5259	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5260	    sk->sk_family == PF_UNIX)
5261		isec->sid = sksec->sid;
5262	sksec->sclass = isec->sclass;
5263}
5264
5265/*
5266 * Determines peer_secid for the asoc and updates socket's peer label
5267 * if it's the first association on the socket.
5268 */
5269static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5270					  struct sk_buff *skb)
5271{
5272	struct sock *sk = asoc->base.sk;
5273	u16 family = sk->sk_family;
5274	struct sk_security_struct *sksec = sk->sk_security;
5275	struct common_audit_data ad;
5276	struct lsm_network_audit net = {0,};
5277	int err;
 
 
 
5278
5279	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5280	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5281		family = PF_INET;
5282
5283	if (selinux_peerlbl_enabled()) {
5284		asoc->peer_secid = SECSID_NULL;
5285
 
5286		/* This will return peer_sid = SECSID_NULL if there are
5287		 * no peer labels, see security_net_peersid_resolve().
5288		 */
5289		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
 
5290		if (err)
5291			return err;
5292
5293		if (asoc->peer_secid == SECSID_NULL)
5294			asoc->peer_secid = SECINITSID_UNLABELED;
5295	} else {
5296		asoc->peer_secid = SECINITSID_UNLABELED;
5297	}
5298
5299	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5300		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5301
5302		/* Here as first association on socket. As the peer SID
5303		 * was allowed by peer recv (and the netif/node checks),
5304		 * then it is approved by policy and used as the primary
5305		 * peer SID for getpeercon(3).
5306		 */
5307		sksec->peer_sid = asoc->peer_secid;
5308	} else if (sksec->peer_sid != asoc->peer_secid) {
5309		/* Other association peer SIDs are checked to enforce
5310		 * consistency among the peer SIDs.
5311		 */
5312		ad.type = LSM_AUDIT_DATA_NET;
5313		ad.u.net = &net;
5314		ad.u.net->sk = asoc->base.sk;
5315		err = avc_has_perm(&selinux_state,
5316				   sksec->peer_sid, asoc->peer_secid,
5317				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5318				   &ad);
5319		if (err)
5320			return err;
5321	}
5322	return 0;
5323}
5324
5325/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5326 * happens on an incoming connect(2), sctp_connectx(3) or
5327 * sctp_sendmsg(3) (with no association already present).
5328 */
5329static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5330				      struct sk_buff *skb)
5331{
5332	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5333	u32 conn_sid;
5334	int err;
5335
5336	if (!selinux_policycap_extsockclass())
5337		return 0;
5338
5339	err = selinux_sctp_process_new_assoc(asoc, skb);
5340	if (err)
5341		return err;
5342
5343	/* Compute the MLS component for the connection and store
5344	 * the information in asoc. This will be used by SCTP TCP type
5345	 * sockets and peeled off connections as they cause a new
5346	 * socket to be generated. selinux_sctp_sk_clone() will then
5347	 * plug this into the new socket.
5348	 */
5349	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5350	if (err)
5351		return err;
5352
5353	asoc->secid = conn_sid;
 
5354
5355	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5356	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5357}
5358
5359/* Called when SCTP receives a COOKIE ACK chunk as the final
5360 * response to an association request (initited by us).
5361 */
5362static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5363					  struct sk_buff *skb)
5364{
5365	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5366
5367	if (!selinux_policycap_extsockclass())
5368		return 0;
5369
5370	/* Inherit secid from the parent socket - this will be picked up
5371	 * by selinux_sctp_sk_clone() if the association gets peeled off
5372	 * into a new socket.
5373	 */
5374	asoc->secid = sksec->sid;
5375
5376	return selinux_sctp_process_new_assoc(asoc, skb);
5377}
5378
5379/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5380 * based on their @optname.
5381 */
5382static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5383				     struct sockaddr *address,
5384				     int addrlen)
5385{
5386	int len, err = 0, walk_size = 0;
5387	void *addr_buf;
5388	struct sockaddr *addr;
5389	struct socket *sock;
5390
5391	if (!selinux_policycap_extsockclass())
5392		return 0;
5393
5394	/* Process one or more addresses that may be IPv4 or IPv6 */
5395	sock = sk->sk_socket;
5396	addr_buf = address;
5397
5398	while (walk_size < addrlen) {
5399		if (walk_size + sizeof(sa_family_t) > addrlen)
5400			return -EINVAL;
5401
5402		addr = addr_buf;
5403		switch (addr->sa_family) {
5404		case AF_UNSPEC:
5405		case AF_INET:
5406			len = sizeof(struct sockaddr_in);
5407			break;
5408		case AF_INET6:
5409			len = sizeof(struct sockaddr_in6);
5410			break;
5411		default:
5412			return -EINVAL;
5413		}
5414
5415		if (walk_size + len > addrlen)
5416			return -EINVAL;
5417
5418		err = -EINVAL;
5419		switch (optname) {
5420		/* Bind checks */
5421		case SCTP_PRIMARY_ADDR:
5422		case SCTP_SET_PEER_PRIMARY_ADDR:
5423		case SCTP_SOCKOPT_BINDX_ADD:
5424			err = selinux_socket_bind(sock, addr, len);
5425			break;
5426		/* Connect checks */
5427		case SCTP_SOCKOPT_CONNECTX:
5428		case SCTP_PARAM_SET_PRIMARY:
5429		case SCTP_PARAM_ADD_IP:
5430		case SCTP_SENDMSG_CONNECT:
5431			err = selinux_socket_connect_helper(sock, addr, len);
5432			if (err)
5433				return err;
5434
5435			/* As selinux_sctp_bind_connect() is called by the
5436			 * SCTP protocol layer, the socket is already locked,
5437			 * therefore selinux_netlbl_socket_connect_locked()
5438			 * is called here. The situations handled are:
5439			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5440			 * whenever a new IP address is added or when a new
5441			 * primary address is selected.
5442			 * Note that an SCTP connect(2) call happens before
5443			 * the SCTP protocol layer and is handled via
5444			 * selinux_socket_connect().
5445			 */
5446			err = selinux_netlbl_socket_connect_locked(sk, addr);
5447			break;
5448		}
5449
5450		if (err)
5451			return err;
5452
5453		addr_buf += len;
5454		walk_size += len;
5455	}
5456
5457	return 0;
5458}
5459
5460/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5461static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5462				  struct sock *newsk)
5463{
5464	struct sk_security_struct *sksec = sk->sk_security;
5465	struct sk_security_struct *newsksec = newsk->sk_security;
5466
5467	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5468	 * the non-sctp clone version.
5469	 */
5470	if (!selinux_policycap_extsockclass())
5471		return selinux_sk_clone_security(sk, newsk);
5472
5473	newsksec->sid = asoc->secid;
5474	newsksec->peer_sid = asoc->peer_secid;
5475	newsksec->sclass = sksec->sclass;
5476	selinux_netlbl_sctp_sk_clone(sk, newsk);
5477}
5478
5479static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5480				     struct request_sock *req)
5481{
5482	struct sk_security_struct *sksec = sk->sk_security;
5483	int err;
5484	u16 family = req->rsk_ops->family;
5485	u32 connsid;
5486	u32 peersid;
5487
5488	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5489	if (err)
5490		return err;
5491	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5492	if (err)
5493		return err;
5494	req->secid = connsid;
5495	req->peer_secid = peersid;
5496
5497	return selinux_netlbl_inet_conn_request(req, family);
5498}
5499
5500static void selinux_inet_csk_clone(struct sock *newsk,
5501				   const struct request_sock *req)
5502{
5503	struct sk_security_struct *newsksec = newsk->sk_security;
5504
5505	newsksec->sid = req->secid;
5506	newsksec->peer_sid = req->peer_secid;
5507	/* NOTE: Ideally, we should also get the isec->sid for the
5508	   new socket in sync, but we don't have the isec available yet.
5509	   So we will wait until sock_graft to do it, by which
5510	   time it will have been created and available. */
5511
5512	/* We don't need to take any sort of lock here as we are the only
5513	 * thread with access to newsksec */
5514	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5515}
5516
5517static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5518{
5519	u16 family = sk->sk_family;
5520	struct sk_security_struct *sksec = sk->sk_security;
5521
5522	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5523	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5524		family = PF_INET;
5525
5526	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5527}
5528
5529static int selinux_secmark_relabel_packet(u32 sid)
5530{
5531	const struct task_security_struct *__tsec;
5532	u32 tsid;
5533
5534	__tsec = selinux_cred(current_cred());
5535	tsid = __tsec->sid;
5536
5537	return avc_has_perm(&selinux_state,
5538			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5539			    NULL);
5540}
5541
5542static void selinux_secmark_refcount_inc(void)
5543{
5544	atomic_inc(&selinux_secmark_refcount);
5545}
5546
5547static void selinux_secmark_refcount_dec(void)
5548{
5549	atomic_dec(&selinux_secmark_refcount);
5550}
5551
5552static void selinux_req_classify_flow(const struct request_sock *req,
5553				      struct flowi_common *flic)
5554{
5555	flic->flowic_secid = req->secid;
5556}
5557
5558static int selinux_tun_dev_alloc_security(void **security)
5559{
5560	struct tun_security_struct *tunsec;
5561
5562	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5563	if (!tunsec)
5564		return -ENOMEM;
5565	tunsec->sid = current_sid();
5566
5567	*security = tunsec;
5568	return 0;
5569}
5570
5571static void selinux_tun_dev_free_security(void *security)
5572{
5573	kfree(security);
5574}
5575
5576static int selinux_tun_dev_create(void)
5577{
5578	u32 sid = current_sid();
5579
5580	/* we aren't taking into account the "sockcreate" SID since the socket
5581	 * that is being created here is not a socket in the traditional sense,
5582	 * instead it is a private sock, accessible only to the kernel, and
5583	 * representing a wide range of network traffic spanning multiple
5584	 * connections unlike traditional sockets - check the TUN driver to
5585	 * get a better understanding of why this socket is special */
5586
5587	return avc_has_perm(&selinux_state,
5588			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5589			    NULL);
5590}
5591
5592static int selinux_tun_dev_attach_queue(void *security)
5593{
5594	struct tun_security_struct *tunsec = security;
5595
5596	return avc_has_perm(&selinux_state,
5597			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5598			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5599}
5600
5601static int selinux_tun_dev_attach(struct sock *sk, void *security)
5602{
5603	struct tun_security_struct *tunsec = security;
5604	struct sk_security_struct *sksec = sk->sk_security;
5605
5606	/* we don't currently perform any NetLabel based labeling here and it
5607	 * isn't clear that we would want to do so anyway; while we could apply
5608	 * labeling without the support of the TUN user the resulting labeled
5609	 * traffic from the other end of the connection would almost certainly
5610	 * cause confusion to the TUN user that had no idea network labeling
5611	 * protocols were being used */
5612
5613	sksec->sid = tunsec->sid;
5614	sksec->sclass = SECCLASS_TUN_SOCKET;
5615
5616	return 0;
5617}
5618
5619static int selinux_tun_dev_open(void *security)
5620{
5621	struct tun_security_struct *tunsec = security;
5622	u32 sid = current_sid();
5623	int err;
5624
5625	err = avc_has_perm(&selinux_state,
5626			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5627			   TUN_SOCKET__RELABELFROM, NULL);
5628	if (err)
5629		return err;
5630	err = avc_has_perm(&selinux_state,
5631			   sid, sid, SECCLASS_TUN_SOCKET,
5632			   TUN_SOCKET__RELABELTO, NULL);
5633	if (err)
5634		return err;
5635	tunsec->sid = sid;
5636
5637	return 0;
5638}
5639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5640#ifdef CONFIG_NETFILTER
5641
5642static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5643				       const struct nf_hook_state *state)
 
5644{
5645	int ifindex;
5646	u16 family;
5647	char *addrp;
5648	u32 peer_sid;
5649	struct common_audit_data ad;
5650	struct lsm_network_audit net = {0,};
5651	int secmark_active, peerlbl_active;
 
 
5652
5653	if (!selinux_policycap_netpeer())
5654		return NF_ACCEPT;
5655
5656	secmark_active = selinux_secmark_enabled();
 
5657	peerlbl_active = selinux_peerlbl_enabled();
5658	if (!secmark_active && !peerlbl_active)
5659		return NF_ACCEPT;
5660
5661	family = state->pf;
5662	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5663		return NF_DROP;
5664
5665	ifindex = state->in->ifindex;
5666	ad.type = LSM_AUDIT_DATA_NET;
5667	ad.u.net = &net;
5668	ad.u.net->netif = ifindex;
5669	ad.u.net->family = family;
5670	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5671		return NF_DROP;
5672
5673	if (peerlbl_active) {
5674		int err;
5675
5676		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5677					       addrp, family, peer_sid, &ad);
5678		if (err) {
5679			selinux_netlbl_err(skb, family, err, 1);
5680			return NF_DROP;
5681		}
5682	}
5683
5684	if (secmark_active)
5685		if (avc_has_perm(&selinux_state,
5686				 peer_sid, skb->secmark,
5687				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5688			return NF_DROP;
5689
5690	if (netlbl_enabled())
5691		/* we do this in the FORWARD path and not the POST_ROUTING
5692		 * path because we want to make sure we apply the necessary
5693		 * labeling before IPsec is applied so we can leverage AH
5694		 * protection */
5695		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5696			return NF_DROP;
5697
5698	return NF_ACCEPT;
5699}
5700
5701static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5702				      const struct nf_hook_state *state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5703{
5704	struct sock *sk;
5705	u32 sid;
5706
5707	if (!netlbl_enabled())
5708		return NF_ACCEPT;
5709
5710	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5711	 * because we want to make sure we apply the necessary labeling
5712	 * before IPsec is applied so we can leverage AH protection */
5713	sk = skb->sk;
5714	if (sk) {
5715		struct sk_security_struct *sksec;
5716
5717		if (sk_listener(sk))
5718			/* if the socket is the listening state then this
5719			 * packet is a SYN-ACK packet which means it needs to
5720			 * be labeled based on the connection/request_sock and
5721			 * not the parent socket.  unfortunately, we can't
5722			 * lookup the request_sock yet as it isn't queued on
5723			 * the parent socket until after the SYN-ACK is sent.
5724			 * the "solution" is to simply pass the packet as-is
5725			 * as any IP option based labeling should be copied
5726			 * from the initial connection request (in the IP
5727			 * layer).  it is far from ideal, but until we get a
5728			 * security label in the packet itself this is the
5729			 * best we can do. */
5730			return NF_ACCEPT;
5731
5732		/* standard practice, label using the parent socket */
5733		sksec = sk->sk_security;
5734		sid = sksec->sid;
5735	} else
5736		sid = SECINITSID_KERNEL;
5737	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5738		return NF_DROP;
5739
5740	return NF_ACCEPT;
5741}
5742
 
 
 
 
 
 
5743
5744static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
 
 
5745					const struct nf_hook_state *state)
5746{
5747	struct sock *sk;
 
 
 
 
 
 
 
 
5748	struct sk_security_struct *sksec;
5749	struct common_audit_data ad;
5750	struct lsm_network_audit net = {0,};
5751	u8 proto = 0;
 
5752
5753	sk = skb_to_full_sk(skb);
5754	if (sk == NULL)
5755		return NF_ACCEPT;
5756	sksec = sk->sk_security;
5757
5758	ad.type = LSM_AUDIT_DATA_NET;
5759	ad.u.net = &net;
5760	ad.u.net->netif = state->out->ifindex;
5761	ad.u.net->family = state->pf;
5762	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5763		return NF_DROP;
5764
5765	if (selinux_secmark_enabled())
5766		if (avc_has_perm(&selinux_state,
5767				 sksec->sid, skb->secmark,
5768				 SECCLASS_PACKET, PACKET__SEND, &ad))
5769			return NF_DROP_ERR(-ECONNREFUSED);
5770
5771	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5772		return NF_DROP_ERR(-ECONNREFUSED);
5773
5774	return NF_ACCEPT;
5775}
5776
5777static unsigned int selinux_ip_postroute(void *priv,
5778					 struct sk_buff *skb,
5779					 const struct nf_hook_state *state)
5780{
5781	u16 family;
5782	u32 secmark_perm;
5783	u32 peer_sid;
5784	int ifindex;
5785	struct sock *sk;
5786	struct common_audit_data ad;
5787	struct lsm_network_audit net = {0,};
5788	char *addrp;
5789	int secmark_active, peerlbl_active;
 
5790
5791	/* If any sort of compatibility mode is enabled then handoff processing
5792	 * to the selinux_ip_postroute_compat() function to deal with the
5793	 * special handling.  We do this in an attempt to keep this function
5794	 * as fast and as clean as possible. */
5795	if (!selinux_policycap_netpeer())
5796		return selinux_ip_postroute_compat(skb, state);
5797
5798	secmark_active = selinux_secmark_enabled();
5799	peerlbl_active = selinux_peerlbl_enabled();
5800	if (!secmark_active && !peerlbl_active)
5801		return NF_ACCEPT;
5802
5803	sk = skb_to_full_sk(skb);
5804
5805#ifdef CONFIG_XFRM
5806	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5807	 * packet transformation so allow the packet to pass without any checks
5808	 * since we'll have another chance to perform access control checks
5809	 * when the packet is on it's final way out.
5810	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5811	 *       is NULL, in this case go ahead and apply access control.
5812	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5813	 *       TCP listening state we cannot wait until the XFRM processing
5814	 *       is done as we will miss out on the SA label if we do;
5815	 *       unfortunately, this means more work, but it is only once per
5816	 *       connection. */
5817	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5818	    !(sk && sk_listener(sk)))
5819		return NF_ACCEPT;
5820#endif
5821
5822	family = state->pf;
5823	if (sk == NULL) {
5824		/* Without an associated socket the packet is either coming
5825		 * from the kernel or it is being forwarded; check the packet
5826		 * to determine which and if the packet is being forwarded
5827		 * query the packet directly to determine the security label. */
5828		if (skb->skb_iif) {
5829			secmark_perm = PACKET__FORWARD_OUT;
5830			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5831				return NF_DROP;
5832		} else {
5833			secmark_perm = PACKET__SEND;
5834			peer_sid = SECINITSID_KERNEL;
5835		}
5836	} else if (sk_listener(sk)) {
5837		/* Locally generated packet but the associated socket is in the
5838		 * listening state which means this is a SYN-ACK packet.  In
5839		 * this particular case the correct security label is assigned
5840		 * to the connection/request_sock but unfortunately we can't
5841		 * query the request_sock as it isn't queued on the parent
5842		 * socket until after the SYN-ACK packet is sent; the only
5843		 * viable choice is to regenerate the label like we do in
5844		 * selinux_inet_conn_request().  See also selinux_ip_output()
5845		 * for similar problems. */
5846		u32 skb_sid;
5847		struct sk_security_struct *sksec;
5848
5849		sksec = sk->sk_security;
5850		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5851			return NF_DROP;
5852		/* At this point, if the returned skb peerlbl is SECSID_NULL
5853		 * and the packet has been through at least one XFRM
5854		 * transformation then we must be dealing with the "final"
5855		 * form of labeled IPsec packet; since we've already applied
5856		 * all of our access controls on this packet we can safely
5857		 * pass the packet. */
5858		if (skb_sid == SECSID_NULL) {
5859			switch (family) {
5860			case PF_INET:
5861				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5862					return NF_ACCEPT;
5863				break;
5864			case PF_INET6:
5865				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5866					return NF_ACCEPT;
5867				break;
5868			default:
5869				return NF_DROP_ERR(-ECONNREFUSED);
5870			}
5871		}
5872		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5873			return NF_DROP;
5874		secmark_perm = PACKET__SEND;
5875	} else {
5876		/* Locally generated packet, fetch the security label from the
5877		 * associated socket. */
5878		struct sk_security_struct *sksec = sk->sk_security;
5879		peer_sid = sksec->sid;
5880		secmark_perm = PACKET__SEND;
5881	}
5882
5883	ifindex = state->out->ifindex;
5884	ad.type = LSM_AUDIT_DATA_NET;
5885	ad.u.net = &net;
5886	ad.u.net->netif = ifindex;
5887	ad.u.net->family = family;
5888	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5889		return NF_DROP;
5890
5891	if (secmark_active)
5892		if (avc_has_perm(&selinux_state,
5893				 peer_sid, skb->secmark,
5894				 SECCLASS_PACKET, secmark_perm, &ad))
5895			return NF_DROP_ERR(-ECONNREFUSED);
5896
5897	if (peerlbl_active) {
5898		u32 if_sid;
5899		u32 node_sid;
5900
5901		if (sel_netif_sid(state->net, ifindex, &if_sid))
5902			return NF_DROP;
5903		if (avc_has_perm(&selinux_state,
5904				 peer_sid, if_sid,
5905				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5906			return NF_DROP_ERR(-ECONNREFUSED);
5907
5908		if (sel_netnode_sid(addrp, family, &node_sid))
5909			return NF_DROP;
5910		if (avc_has_perm(&selinux_state,
5911				 peer_sid, node_sid,
5912				 SECCLASS_NODE, NODE__SENDTO, &ad))
5913			return NF_DROP_ERR(-ECONNREFUSED);
5914	}
5915
5916	return NF_ACCEPT;
5917}
5918#endif	/* CONFIG_NETFILTER */
5919
5920static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
 
 
5921{
5922	int rc = 0;
5923	unsigned int msg_len;
5924	unsigned int data_len = skb->len;
5925	unsigned char *data = skb->data;
5926	struct nlmsghdr *nlh;
5927	struct sk_security_struct *sksec = sk->sk_security;
5928	u16 sclass = sksec->sclass;
5929	u32 perm;
5930
5931	while (data_len >= nlmsg_total_size(0)) {
5932		nlh = (struct nlmsghdr *)data;
5933
5934		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5935		 *       users which means we can't reject skb's with bogus
5936		 *       length fields; our solution is to follow what
5937		 *       netlink_rcv_skb() does and simply skip processing at
5938		 *       messages with length fields that are clearly junk
5939		 */
5940		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5941			return 0;
5942
5943		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5944		if (rc == 0) {
5945			rc = sock_has_perm(sk, perm);
5946			if (rc)
5947				return rc;
5948		} else if (rc == -EINVAL) {
5949			/* -EINVAL is a missing msg/perm mapping */
5950			pr_warn_ratelimited("SELinux: unrecognized netlink"
5951				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5952				" pid=%d comm=%s\n",
5953				sk->sk_protocol, nlh->nlmsg_type,
5954				secclass_map[sclass - 1].name,
5955				task_pid_nr(current), current->comm);
5956			if (enforcing_enabled(&selinux_state) &&
5957			    !security_get_allow_unknown(&selinux_state))
5958				return rc;
5959			rc = 0;
5960		} else if (rc == -ENOENT) {
5961			/* -ENOENT is a missing socket/class mapping, ignore */
5962			rc = 0;
5963		} else {
5964			return rc;
5965		}
5966
5967		/* move to the next message after applying netlink padding */
5968		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5969		if (msg_len >= data_len)
5970			return 0;
5971		data_len -= msg_len;
5972		data += msg_len;
5973	}
5974
5975	return rc;
 
 
5976}
5977
5978static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5979{
5980	isec->sclass = sclass;
5981	isec->sid = current_sid();
5982}
5983
 
 
 
 
 
 
 
 
 
 
5984static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5985			u32 perms)
5986{
5987	struct ipc_security_struct *isec;
5988	struct common_audit_data ad;
5989	u32 sid = current_sid();
5990
5991	isec = selinux_ipc(ipc_perms);
5992
5993	ad.type = LSM_AUDIT_DATA_IPC;
5994	ad.u.ipc_id = ipc_perms->key;
5995
5996	return avc_has_perm(&selinux_state,
5997			    sid, isec->sid, isec->sclass, perms, &ad);
5998}
5999
6000static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6001{
6002	struct msg_security_struct *msec;
6003
6004	msec = selinux_msg_msg(msg);
6005	msec->sid = SECINITSID_UNLABELED;
6006
6007	return 0;
6008}
6009
6010/* message queue security operations */
6011static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6012{
6013	struct ipc_security_struct *isec;
6014	struct common_audit_data ad;
6015	u32 sid = current_sid();
 
6016
6017	isec = selinux_ipc(msq);
6018	ipc_init_security(isec, SECCLASS_MSGQ);
6019
6020	ad.type = LSM_AUDIT_DATA_IPC;
6021	ad.u.ipc_id = msq->key;
6022
6023	return avc_has_perm(&selinux_state,
6024			    sid, isec->sid, SECCLASS_MSGQ,
6025			    MSGQ__CREATE, &ad);
 
6026}
6027
6028static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6029{
6030	struct ipc_security_struct *isec;
6031	struct common_audit_data ad;
6032	u32 sid = current_sid();
6033
6034	isec = selinux_ipc(msq);
6035
6036	ad.type = LSM_AUDIT_DATA_IPC;
6037	ad.u.ipc_id = msq->key;
6038
6039	return avc_has_perm(&selinux_state,
6040			    sid, isec->sid, SECCLASS_MSGQ,
6041			    MSGQ__ASSOCIATE, &ad);
6042}
6043
6044static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6045{
6046	int err;
6047	int perms;
6048
6049	switch (cmd) {
6050	case IPC_INFO:
6051	case MSG_INFO:
6052		/* No specific object, just general system-wide information. */
6053		return avc_has_perm(&selinux_state,
6054				    current_sid(), SECINITSID_KERNEL,
6055				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6056	case IPC_STAT:
6057	case MSG_STAT:
6058	case MSG_STAT_ANY:
6059		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6060		break;
6061	case IPC_SET:
6062		perms = MSGQ__SETATTR;
6063		break;
6064	case IPC_RMID:
6065		perms = MSGQ__DESTROY;
6066		break;
6067	default:
6068		return 0;
6069	}
6070
6071	err = ipc_has_perm(msq, perms);
6072	return err;
6073}
6074
6075static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6076{
6077	struct ipc_security_struct *isec;
6078	struct msg_security_struct *msec;
6079	struct common_audit_data ad;
6080	u32 sid = current_sid();
6081	int rc;
6082
6083	isec = selinux_ipc(msq);
6084	msec = selinux_msg_msg(msg);
6085
6086	/*
6087	 * First time through, need to assign label to the message
6088	 */
6089	if (msec->sid == SECINITSID_UNLABELED) {
6090		/*
6091		 * Compute new sid based on current process and
6092		 * message queue this message will be stored in
6093		 */
6094		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6095					     SECCLASS_MSG, NULL, &msec->sid);
6096		if (rc)
6097			return rc;
6098	}
6099
6100	ad.type = LSM_AUDIT_DATA_IPC;
6101	ad.u.ipc_id = msq->key;
6102
6103	/* Can this process write to the queue? */
6104	rc = avc_has_perm(&selinux_state,
6105			  sid, isec->sid, SECCLASS_MSGQ,
6106			  MSGQ__WRITE, &ad);
6107	if (!rc)
6108		/* Can this process send the message */
6109		rc = avc_has_perm(&selinux_state,
6110				  sid, msec->sid, SECCLASS_MSG,
6111				  MSG__SEND, &ad);
6112	if (!rc)
6113		/* Can the message be put in the queue? */
6114		rc = avc_has_perm(&selinux_state,
6115				  msec->sid, isec->sid, SECCLASS_MSGQ,
6116				  MSGQ__ENQUEUE, &ad);
6117
6118	return rc;
6119}
6120
6121static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6122				    struct task_struct *target,
6123				    long type, int mode)
6124{
6125	struct ipc_security_struct *isec;
6126	struct msg_security_struct *msec;
6127	struct common_audit_data ad;
6128	u32 sid = task_sid_obj(target);
6129	int rc;
6130
6131	isec = selinux_ipc(msq);
6132	msec = selinux_msg_msg(msg);
6133
6134	ad.type = LSM_AUDIT_DATA_IPC;
6135	ad.u.ipc_id = msq->key;
6136
6137	rc = avc_has_perm(&selinux_state,
6138			  sid, isec->sid,
6139			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6140	if (!rc)
6141		rc = avc_has_perm(&selinux_state,
6142				  sid, msec->sid,
6143				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6144	return rc;
6145}
6146
6147/* Shared Memory security operations */
6148static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6149{
6150	struct ipc_security_struct *isec;
6151	struct common_audit_data ad;
6152	u32 sid = current_sid();
 
6153
6154	isec = selinux_ipc(shp);
6155	ipc_init_security(isec, SECCLASS_SHM);
6156
6157	ad.type = LSM_AUDIT_DATA_IPC;
6158	ad.u.ipc_id = shp->key;
6159
6160	return avc_has_perm(&selinux_state,
6161			    sid, isec->sid, SECCLASS_SHM,
6162			    SHM__CREATE, &ad);
 
6163}
6164
6165static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6166{
6167	struct ipc_security_struct *isec;
6168	struct common_audit_data ad;
6169	u32 sid = current_sid();
6170
6171	isec = selinux_ipc(shp);
6172
6173	ad.type = LSM_AUDIT_DATA_IPC;
6174	ad.u.ipc_id = shp->key;
6175
6176	return avc_has_perm(&selinux_state,
6177			    sid, isec->sid, SECCLASS_SHM,
6178			    SHM__ASSOCIATE, &ad);
6179}
6180
6181/* Note, at this point, shp is locked down */
6182static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6183{
6184	int perms;
6185	int err;
6186
6187	switch (cmd) {
6188	case IPC_INFO:
6189	case SHM_INFO:
6190		/* No specific object, just general system-wide information. */
6191		return avc_has_perm(&selinux_state,
6192				    current_sid(), SECINITSID_KERNEL,
6193				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6194	case IPC_STAT:
6195	case SHM_STAT:
6196	case SHM_STAT_ANY:
6197		perms = SHM__GETATTR | SHM__ASSOCIATE;
6198		break;
6199	case IPC_SET:
6200		perms = SHM__SETATTR;
6201		break;
6202	case SHM_LOCK:
6203	case SHM_UNLOCK:
6204		perms = SHM__LOCK;
6205		break;
6206	case IPC_RMID:
6207		perms = SHM__DESTROY;
6208		break;
6209	default:
6210		return 0;
6211	}
6212
6213	err = ipc_has_perm(shp, perms);
6214	return err;
6215}
6216
6217static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6218			     char __user *shmaddr, int shmflg)
6219{
6220	u32 perms;
6221
6222	if (shmflg & SHM_RDONLY)
6223		perms = SHM__READ;
6224	else
6225		perms = SHM__READ | SHM__WRITE;
6226
6227	return ipc_has_perm(shp, perms);
6228}
6229
6230/* Semaphore security operations */
6231static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6232{
6233	struct ipc_security_struct *isec;
6234	struct common_audit_data ad;
6235	u32 sid = current_sid();
 
6236
6237	isec = selinux_ipc(sma);
6238	ipc_init_security(isec, SECCLASS_SEM);
6239
6240	ad.type = LSM_AUDIT_DATA_IPC;
6241	ad.u.ipc_id = sma->key;
6242
6243	return avc_has_perm(&selinux_state,
6244			    sid, isec->sid, SECCLASS_SEM,
6245			    SEM__CREATE, &ad);
 
6246}
6247
6248static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6249{
6250	struct ipc_security_struct *isec;
6251	struct common_audit_data ad;
6252	u32 sid = current_sid();
6253
6254	isec = selinux_ipc(sma);
6255
6256	ad.type = LSM_AUDIT_DATA_IPC;
6257	ad.u.ipc_id = sma->key;
6258
6259	return avc_has_perm(&selinux_state,
6260			    sid, isec->sid, SECCLASS_SEM,
6261			    SEM__ASSOCIATE, &ad);
6262}
6263
6264/* Note, at this point, sma is locked down */
6265static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6266{
6267	int err;
6268	u32 perms;
6269
6270	switch (cmd) {
6271	case IPC_INFO:
6272	case SEM_INFO:
6273		/* No specific object, just general system-wide information. */
6274		return avc_has_perm(&selinux_state,
6275				    current_sid(), SECINITSID_KERNEL,
6276				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6277	case GETPID:
6278	case GETNCNT:
6279	case GETZCNT:
6280		perms = SEM__GETATTR;
6281		break;
6282	case GETVAL:
6283	case GETALL:
6284		perms = SEM__READ;
6285		break;
6286	case SETVAL:
6287	case SETALL:
6288		perms = SEM__WRITE;
6289		break;
6290	case IPC_RMID:
6291		perms = SEM__DESTROY;
6292		break;
6293	case IPC_SET:
6294		perms = SEM__SETATTR;
6295		break;
6296	case IPC_STAT:
6297	case SEM_STAT:
6298	case SEM_STAT_ANY:
6299		perms = SEM__GETATTR | SEM__ASSOCIATE;
6300		break;
6301	default:
6302		return 0;
6303	}
6304
6305	err = ipc_has_perm(sma, perms);
6306	return err;
6307}
6308
6309static int selinux_sem_semop(struct kern_ipc_perm *sma,
6310			     struct sembuf *sops, unsigned nsops, int alter)
6311{
6312	u32 perms;
6313
6314	if (alter)
6315		perms = SEM__READ | SEM__WRITE;
6316	else
6317		perms = SEM__READ;
6318
6319	return ipc_has_perm(sma, perms);
6320}
6321
6322static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6323{
6324	u32 av = 0;
6325
6326	av = 0;
6327	if (flag & S_IRUGO)
6328		av |= IPC__UNIX_READ;
6329	if (flag & S_IWUGO)
6330		av |= IPC__UNIX_WRITE;
6331
6332	if (av == 0)
6333		return 0;
6334
6335	return ipc_has_perm(ipcp, av);
6336}
6337
6338static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6339{
6340	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6341	*secid = isec->sid;
6342}
6343
6344static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6345{
6346	if (inode)
6347		inode_doinit_with_dentry(inode, dentry);
6348}
6349
6350static int selinux_getprocattr(struct task_struct *p,
6351			       const char *name, char **value)
6352{
6353	const struct task_security_struct *__tsec;
6354	u32 sid;
6355	int error;
6356	unsigned len;
6357
6358	rcu_read_lock();
6359	__tsec = selinux_cred(__task_cred(p));
6360
6361	if (current != p) {
6362		error = avc_has_perm(&selinux_state,
6363				     current_sid(), __tsec->sid,
6364				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6365		if (error)
6366			goto bad;
6367	}
6368
6369	if (!strcmp(name, "current"))
6370		sid = __tsec->sid;
6371	else if (!strcmp(name, "prev"))
6372		sid = __tsec->osid;
6373	else if (!strcmp(name, "exec"))
6374		sid = __tsec->exec_sid;
6375	else if (!strcmp(name, "fscreate"))
6376		sid = __tsec->create_sid;
6377	else if (!strcmp(name, "keycreate"))
6378		sid = __tsec->keycreate_sid;
6379	else if (!strcmp(name, "sockcreate"))
6380		sid = __tsec->sockcreate_sid;
6381	else {
6382		error = -EINVAL;
6383		goto bad;
6384	}
6385	rcu_read_unlock();
6386
6387	if (!sid)
6388		return 0;
6389
6390	error = security_sid_to_context(&selinux_state, sid, value, &len);
6391	if (error)
6392		return error;
6393	return len;
6394
6395bad:
6396	rcu_read_unlock();
6397	return error;
6398}
6399
6400static int selinux_setprocattr(const char *name, void *value, size_t size)
6401{
6402	struct task_security_struct *tsec;
6403	struct cred *new;
6404	u32 mysid = current_sid(), sid = 0, ptsid;
6405	int error;
6406	char *str = value;
6407
6408	/*
6409	 * Basic control over ability to set these attributes at all.
6410	 */
6411	if (!strcmp(name, "exec"))
6412		error = avc_has_perm(&selinux_state,
6413				     mysid, mysid, SECCLASS_PROCESS,
6414				     PROCESS__SETEXEC, NULL);
6415	else if (!strcmp(name, "fscreate"))
6416		error = avc_has_perm(&selinux_state,
6417				     mysid, mysid, SECCLASS_PROCESS,
6418				     PROCESS__SETFSCREATE, NULL);
6419	else if (!strcmp(name, "keycreate"))
6420		error = avc_has_perm(&selinux_state,
6421				     mysid, mysid, SECCLASS_PROCESS,
6422				     PROCESS__SETKEYCREATE, NULL);
6423	else if (!strcmp(name, "sockcreate"))
6424		error = avc_has_perm(&selinux_state,
6425				     mysid, mysid, SECCLASS_PROCESS,
6426				     PROCESS__SETSOCKCREATE, NULL);
6427	else if (!strcmp(name, "current"))
6428		error = avc_has_perm(&selinux_state,
6429				     mysid, mysid, SECCLASS_PROCESS,
6430				     PROCESS__SETCURRENT, NULL);
6431	else
6432		error = -EINVAL;
6433	if (error)
6434		return error;
6435
6436	/* Obtain a SID for the context, if one was specified. */
6437	if (size && str[0] && str[0] != '\n') {
6438		if (str[size-1] == '\n') {
6439			str[size-1] = 0;
6440			size--;
6441		}
6442		error = security_context_to_sid(&selinux_state, value, size,
6443						&sid, GFP_KERNEL);
6444		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6445			if (!has_cap_mac_admin(true)) {
6446				struct audit_buffer *ab;
6447				size_t audit_size;
6448
6449				/* We strip a nul only if it is at the end, otherwise the
6450				 * context contains a nul and we should audit that */
6451				if (str[size - 1] == '\0')
6452					audit_size = size - 1;
6453				else
6454					audit_size = size;
6455				ab = audit_log_start(audit_context(),
6456						     GFP_ATOMIC,
6457						     AUDIT_SELINUX_ERR);
6458				if (!ab)
6459					return error;
6460				audit_log_format(ab, "op=fscreate invalid_context=");
6461				audit_log_n_untrustedstring(ab, value, audit_size);
6462				audit_log_end(ab);
6463
6464				return error;
6465			}
6466			error = security_context_to_sid_force(
6467						      &selinux_state,
6468						      value, size, &sid);
6469		}
6470		if (error)
6471			return error;
6472	}
6473
6474	new = prepare_creds();
6475	if (!new)
6476		return -ENOMEM;
6477
6478	/* Permission checking based on the specified context is
6479	   performed during the actual operation (execve,
6480	   open/mkdir/...), when we know the full context of the
6481	   operation.  See selinux_bprm_creds_for_exec for the execve
6482	   checks and may_create for the file creation checks. The
6483	   operation will then fail if the context is not permitted. */
6484	tsec = selinux_cred(new);
6485	if (!strcmp(name, "exec")) {
6486		tsec->exec_sid = sid;
6487	} else if (!strcmp(name, "fscreate")) {
6488		tsec->create_sid = sid;
6489	} else if (!strcmp(name, "keycreate")) {
6490		if (sid) {
6491			error = avc_has_perm(&selinux_state, mysid, sid,
6492					     SECCLASS_KEY, KEY__CREATE, NULL);
6493			if (error)
6494				goto abort_change;
6495		}
6496		tsec->keycreate_sid = sid;
6497	} else if (!strcmp(name, "sockcreate")) {
6498		tsec->sockcreate_sid = sid;
6499	} else if (!strcmp(name, "current")) {
6500		error = -EINVAL;
6501		if (sid == 0)
6502			goto abort_change;
6503
6504		/* Only allow single threaded processes to change context */
 
6505		if (!current_is_single_threaded()) {
6506			error = security_bounded_transition(&selinux_state,
6507							    tsec->sid, sid);
6508			if (error)
6509				goto abort_change;
6510		}
6511
6512		/* Check permissions for the transition. */
6513		error = avc_has_perm(&selinux_state,
6514				     tsec->sid, sid, SECCLASS_PROCESS,
6515				     PROCESS__DYNTRANSITION, NULL);
6516		if (error)
6517			goto abort_change;
6518
6519		/* Check for ptracing, and update the task SID if ok.
6520		   Otherwise, leave SID unchanged and fail. */
6521		ptsid = ptrace_parent_sid();
6522		if (ptsid != 0) {
6523			error = avc_has_perm(&selinux_state,
6524					     ptsid, sid, SECCLASS_PROCESS,
6525					     PROCESS__PTRACE, NULL);
6526			if (error)
6527				goto abort_change;
6528		}
6529
6530		tsec->sid = sid;
6531	} else {
6532		error = -EINVAL;
6533		goto abort_change;
6534	}
6535
6536	commit_creds(new);
6537	return size;
6538
6539abort_change:
6540	abort_creds(new);
6541	return error;
6542}
6543
6544static int selinux_ismaclabel(const char *name)
6545{
6546	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6547}
6548
6549static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6550{
6551	return security_sid_to_context(&selinux_state, secid,
6552				       secdata, seclen);
6553}
6554
6555static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6556{
6557	return security_context_to_sid(&selinux_state, secdata, seclen,
6558				       secid, GFP_KERNEL);
6559}
6560
6561static void selinux_release_secctx(char *secdata, u32 seclen)
6562{
6563	kfree(secdata);
6564}
6565
6566static void selinux_inode_invalidate_secctx(struct inode *inode)
6567{
6568	struct inode_security_struct *isec = selinux_inode(inode);
6569
6570	spin_lock(&isec->lock);
6571	isec->initialized = LABEL_INVALID;
6572	spin_unlock(&isec->lock);
6573}
6574
6575/*
6576 *	called with inode->i_mutex locked
6577 */
6578static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6579{
6580	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6581					   ctx, ctxlen, 0);
6582	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6583	return rc == -EOPNOTSUPP ? 0 : rc;
6584}
6585
6586/*
6587 *	called with inode->i_mutex locked
6588 */
6589static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6590{
6591	return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6592				     ctx, ctxlen, 0);
6593}
6594
6595static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6596{
6597	int len = 0;
6598	len = selinux_inode_getsecurity(&init_user_ns, inode,
6599					XATTR_SELINUX_SUFFIX, ctx, true);
6600	if (len < 0)
6601		return len;
6602	*ctxlen = len;
6603	return 0;
6604}
6605#ifdef CONFIG_KEYS
6606
6607static int selinux_key_alloc(struct key *k, const struct cred *cred,
6608			     unsigned long flags)
6609{
6610	const struct task_security_struct *tsec;
6611	struct key_security_struct *ksec;
6612
6613	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6614	if (!ksec)
6615		return -ENOMEM;
6616
6617	tsec = selinux_cred(cred);
6618	if (tsec->keycreate_sid)
6619		ksec->sid = tsec->keycreate_sid;
6620	else
6621		ksec->sid = tsec->sid;
6622
6623	k->security = ksec;
6624	return 0;
6625}
6626
6627static void selinux_key_free(struct key *k)
6628{
6629	struct key_security_struct *ksec = k->security;
6630
6631	k->security = NULL;
6632	kfree(ksec);
6633}
6634
6635static int selinux_key_permission(key_ref_t key_ref,
6636				  const struct cred *cred,
6637				  enum key_need_perm need_perm)
6638{
6639	struct key *key;
6640	struct key_security_struct *ksec;
6641	u32 perm, sid;
6642
6643	switch (need_perm) {
6644	case KEY_NEED_VIEW:
6645		perm = KEY__VIEW;
6646		break;
6647	case KEY_NEED_READ:
6648		perm = KEY__READ;
6649		break;
6650	case KEY_NEED_WRITE:
6651		perm = KEY__WRITE;
6652		break;
6653	case KEY_NEED_SEARCH:
6654		perm = KEY__SEARCH;
6655		break;
6656	case KEY_NEED_LINK:
6657		perm = KEY__LINK;
6658		break;
6659	case KEY_NEED_SETATTR:
6660		perm = KEY__SETATTR;
6661		break;
6662	case KEY_NEED_UNLINK:
6663	case KEY_SYSADMIN_OVERRIDE:
6664	case KEY_AUTHTOKEN_OVERRIDE:
6665	case KEY_DEFER_PERM_CHECK:
6666		return 0;
6667	default:
6668		WARN_ON(1);
6669		return -EPERM;
6670
6671	}
6672
6673	sid = cred_sid(cred);
 
6674	key = key_ref_to_ptr(key_ref);
6675	ksec = key->security;
6676
6677	return avc_has_perm(&selinux_state,
6678			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6679}
6680
6681static int selinux_key_getsecurity(struct key *key, char **_buffer)
6682{
6683	struct key_security_struct *ksec = key->security;
6684	char *context = NULL;
6685	unsigned len;
6686	int rc;
6687
6688	rc = security_sid_to_context(&selinux_state, ksec->sid,
6689				     &context, &len);
6690	if (!rc)
6691		rc = len;
6692	*_buffer = context;
6693	return rc;
6694}
6695
6696#ifdef CONFIG_KEY_NOTIFICATIONS
6697static int selinux_watch_key(struct key *key)
6698{
6699	struct key_security_struct *ksec = key->security;
6700	u32 sid = current_sid();
6701
6702	return avc_has_perm(&selinux_state,
6703			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6704}
6705#endif
6706#endif
6707
6708#ifdef CONFIG_SECURITY_INFINIBAND
6709static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6710{
6711	struct common_audit_data ad;
6712	int err;
6713	u32 sid = 0;
6714	struct ib_security_struct *sec = ib_sec;
6715	struct lsm_ibpkey_audit ibpkey;
6716
6717	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6718	if (err)
6719		return err;
6720
6721	ad.type = LSM_AUDIT_DATA_IBPKEY;
6722	ibpkey.subnet_prefix = subnet_prefix;
6723	ibpkey.pkey = pkey_val;
6724	ad.u.ibpkey = &ibpkey;
6725	return avc_has_perm(&selinux_state,
6726			    sec->sid, sid,
6727			    SECCLASS_INFINIBAND_PKEY,
6728			    INFINIBAND_PKEY__ACCESS, &ad);
6729}
6730
6731static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6732					    u8 port_num)
6733{
6734	struct common_audit_data ad;
6735	int err;
6736	u32 sid = 0;
6737	struct ib_security_struct *sec = ib_sec;
6738	struct lsm_ibendport_audit ibendport;
6739
6740	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6741				      &sid);
6742
6743	if (err)
6744		return err;
6745
6746	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6747	ibendport.dev_name = dev_name;
6748	ibendport.port = port_num;
6749	ad.u.ibendport = &ibendport;
6750	return avc_has_perm(&selinux_state,
6751			    sec->sid, sid,
6752			    SECCLASS_INFINIBAND_ENDPORT,
6753			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6754}
6755
6756static int selinux_ib_alloc_security(void **ib_sec)
6757{
6758	struct ib_security_struct *sec;
6759
6760	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6761	if (!sec)
6762		return -ENOMEM;
6763	sec->sid = current_sid();
6764
6765	*ib_sec = sec;
6766	return 0;
6767}
6768
6769static void selinux_ib_free_security(void *ib_sec)
6770{
6771	kfree(ib_sec);
6772}
6773#endif
6774
6775#ifdef CONFIG_BPF_SYSCALL
6776static int selinux_bpf(int cmd, union bpf_attr *attr,
6777				     unsigned int size)
6778{
6779	u32 sid = current_sid();
6780	int ret;
6781
6782	switch (cmd) {
6783	case BPF_MAP_CREATE:
6784		ret = avc_has_perm(&selinux_state,
6785				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6786				   NULL);
6787		break;
6788	case BPF_PROG_LOAD:
6789		ret = avc_has_perm(&selinux_state,
6790				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6791				   NULL);
6792		break;
6793	default:
6794		ret = 0;
6795		break;
6796	}
6797
6798	return ret;
6799}
6800
6801static u32 bpf_map_fmode_to_av(fmode_t fmode)
6802{
6803	u32 av = 0;
6804
6805	if (fmode & FMODE_READ)
6806		av |= BPF__MAP_READ;
6807	if (fmode & FMODE_WRITE)
6808		av |= BPF__MAP_WRITE;
6809	return av;
6810}
6811
6812/* This function will check the file pass through unix socket or binder to see
6813 * if it is a bpf related object. And apply corresponding checks on the bpf
6814 * object based on the type. The bpf maps and programs, not like other files and
6815 * socket, are using a shared anonymous inode inside the kernel as their inode.
6816 * So checking that inode cannot identify if the process have privilege to
6817 * access the bpf object and that's why we have to add this additional check in
6818 * selinux_file_receive and selinux_binder_transfer_files.
6819 */
6820static int bpf_fd_pass(struct file *file, u32 sid)
6821{
6822	struct bpf_security_struct *bpfsec;
6823	struct bpf_prog *prog;
6824	struct bpf_map *map;
6825	int ret;
6826
6827	if (file->f_op == &bpf_map_fops) {
6828		map = file->private_data;
6829		bpfsec = map->security;
6830		ret = avc_has_perm(&selinux_state,
6831				   sid, bpfsec->sid, SECCLASS_BPF,
6832				   bpf_map_fmode_to_av(file->f_mode), NULL);
6833		if (ret)
6834			return ret;
6835	} else if (file->f_op == &bpf_prog_fops) {
6836		prog = file->private_data;
6837		bpfsec = prog->aux->security;
6838		ret = avc_has_perm(&selinux_state,
6839				   sid, bpfsec->sid, SECCLASS_BPF,
6840				   BPF__PROG_RUN, NULL);
6841		if (ret)
6842			return ret;
6843	}
6844	return 0;
6845}
6846
6847static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6848{
6849	u32 sid = current_sid();
6850	struct bpf_security_struct *bpfsec;
6851
6852	bpfsec = map->security;
6853	return avc_has_perm(&selinux_state,
6854			    sid, bpfsec->sid, SECCLASS_BPF,
6855			    bpf_map_fmode_to_av(fmode), NULL);
6856}
6857
6858static int selinux_bpf_prog(struct bpf_prog *prog)
6859{
6860	u32 sid = current_sid();
6861	struct bpf_security_struct *bpfsec;
6862
6863	bpfsec = prog->aux->security;
6864	return avc_has_perm(&selinux_state,
6865			    sid, bpfsec->sid, SECCLASS_BPF,
6866			    BPF__PROG_RUN, NULL);
6867}
6868
6869static int selinux_bpf_map_alloc(struct bpf_map *map)
6870{
6871	struct bpf_security_struct *bpfsec;
6872
6873	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6874	if (!bpfsec)
6875		return -ENOMEM;
6876
6877	bpfsec->sid = current_sid();
6878	map->security = bpfsec;
6879
6880	return 0;
6881}
6882
6883static void selinux_bpf_map_free(struct bpf_map *map)
6884{
6885	struct bpf_security_struct *bpfsec = map->security;
6886
6887	map->security = NULL;
6888	kfree(bpfsec);
6889}
6890
6891static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6892{
6893	struct bpf_security_struct *bpfsec;
6894
6895	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6896	if (!bpfsec)
6897		return -ENOMEM;
6898
6899	bpfsec->sid = current_sid();
6900	aux->security = bpfsec;
6901
6902	return 0;
6903}
6904
6905static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6906{
6907	struct bpf_security_struct *bpfsec = aux->security;
6908
6909	aux->security = NULL;
6910	kfree(bpfsec);
6911}
6912#endif
6913
6914struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6915	.lbs_cred = sizeof(struct task_security_struct),
6916	.lbs_file = sizeof(struct file_security_struct),
6917	.lbs_inode = sizeof(struct inode_security_struct),
6918	.lbs_ipc = sizeof(struct ipc_security_struct),
6919	.lbs_msg_msg = sizeof(struct msg_security_struct),
6920	.lbs_superblock = sizeof(struct superblock_security_struct),
6921};
6922
6923#ifdef CONFIG_PERF_EVENTS
6924static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6925{
6926	u32 requested, sid = current_sid();
6927
6928	if (type == PERF_SECURITY_OPEN)
6929		requested = PERF_EVENT__OPEN;
6930	else if (type == PERF_SECURITY_CPU)
6931		requested = PERF_EVENT__CPU;
6932	else if (type == PERF_SECURITY_KERNEL)
6933		requested = PERF_EVENT__KERNEL;
6934	else if (type == PERF_SECURITY_TRACEPOINT)
6935		requested = PERF_EVENT__TRACEPOINT;
6936	else
6937		return -EINVAL;
6938
6939	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6940			    requested, NULL);
6941}
6942
6943static int selinux_perf_event_alloc(struct perf_event *event)
6944{
6945	struct perf_event_security_struct *perfsec;
6946
6947	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6948	if (!perfsec)
6949		return -ENOMEM;
6950
6951	perfsec->sid = current_sid();
6952	event->security = perfsec;
6953
6954	return 0;
6955}
6956
6957static void selinux_perf_event_free(struct perf_event *event)
6958{
6959	struct perf_event_security_struct *perfsec = event->security;
6960
6961	event->security = NULL;
6962	kfree(perfsec);
6963}
6964
6965static int selinux_perf_event_read(struct perf_event *event)
6966{
6967	struct perf_event_security_struct *perfsec = event->security;
6968	u32 sid = current_sid();
6969
6970	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6971			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6972}
6973
6974static int selinux_perf_event_write(struct perf_event *event)
6975{
6976	struct perf_event_security_struct *perfsec = event->security;
6977	u32 sid = current_sid();
6978
6979	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6980			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6981}
6982#endif
6983
6984#ifdef CONFIG_IO_URING
6985/**
6986 * selinux_uring_override_creds - check the requested cred override
6987 * @new: the target creds
6988 *
6989 * Check to see if the current task is allowed to override it's credentials
6990 * to service an io_uring operation.
6991 */
6992static int selinux_uring_override_creds(const struct cred *new)
6993{
6994	return avc_has_perm(&selinux_state, current_sid(), cred_sid(new),
6995			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
6996}
6997
6998/**
6999 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7000 *
7001 * Check to see if the current task is allowed to create a new io_uring
7002 * kernel polling thread.
7003 */
7004static int selinux_uring_sqpoll(void)
7005{
7006	int sid = current_sid();
7007
7008	return avc_has_perm(&selinux_state, sid, sid,
7009			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7010}
7011
7012/**
7013 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7014 * @ioucmd: the io_uring command structure
7015 *
7016 * Check to see if the current domain is allowed to execute an
7017 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7018 *
7019 */
7020static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7021{
7022	struct file *file = ioucmd->file;
7023	struct inode *inode = file_inode(file);
7024	struct inode_security_struct *isec = selinux_inode(inode);
7025	struct common_audit_data ad;
7026
7027	ad.type = LSM_AUDIT_DATA_FILE;
7028	ad.u.file = file;
7029
7030	return avc_has_perm(&selinux_state, current_sid(), isec->sid,
7031			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7032}
7033#endif /* CONFIG_IO_URING */
7034
7035/*
7036 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7037 * 1. any hooks that don't belong to (2.) or (3.) below,
7038 * 2. hooks that both access structures allocated by other hooks, and allocate
7039 *    structures that can be later accessed by other hooks (mostly "cloning"
7040 *    hooks),
7041 * 3. hooks that only allocate structures that can be later accessed by other
7042 *    hooks ("allocating" hooks).
7043 *
7044 * Please follow block comment delimiters in the list to keep this order.
7045 *
7046 * This ordering is needed for SELinux runtime disable to work at least somewhat
7047 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7048 * when disabling SELinux at runtime.
7049 */
7050static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7051	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7052	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7053	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7054	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7055
7056	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7057	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7058	LSM_HOOK_INIT(capget, selinux_capget),
7059	LSM_HOOK_INIT(capset, selinux_capset),
7060	LSM_HOOK_INIT(capable, selinux_capable),
7061	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7062	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7063	LSM_HOOK_INIT(syslog, selinux_syslog),
7064	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7065
7066	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7067
7068	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7069	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7070	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7071
 
 
 
 
 
 
7072	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7073	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7074	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7075	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7076	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7077	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7078	LSM_HOOK_INIT(sb_mount, selinux_mount),
7079	LSM_HOOK_INIT(sb_umount, selinux_umount),
7080	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7081	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7082
7083	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7084
7085	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7086	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7087
 
7088	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7089	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7090	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7091	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7092	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7093	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7094	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7095	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7096	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7097	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7098	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7099	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7100	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7101	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7102	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7103	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7104	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7105	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7106	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7107	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7108	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7109	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7110	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7111	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7112	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7113	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7114	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7115	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7116	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7117	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7118	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7119
7120	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7121
7122	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7123	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7124	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7125	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7126	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7127	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7128	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7129	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7130	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7131	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7132	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7133
7134	LSM_HOOK_INIT(file_open, selinux_file_open),
7135
7136	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7137	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7138	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7139	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7140	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7141	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7142	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7143	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7144	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7145	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7146	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7147	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7148	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7149	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7150	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7151	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7152	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7153	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7154	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7155	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7156	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7157	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7158	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7159	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7160	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7161
7162	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7163	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7164
 
 
 
 
7165	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7166	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7167	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7168	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7169
 
7170	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7171	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7172	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7173
 
7174	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7175	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7176	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7177
7178	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7179
7180	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7181	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7182
7183	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
 
7184	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7185	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7186	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7187	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7188	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
 
7189
7190	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7191	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7192
7193	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7194	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7195	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7196	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7197	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7198	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7199	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7200	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7201	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7202	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7203	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7204	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7205	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7206	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7207	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7208	LSM_HOOK_INIT(socket_getpeersec_stream,
7209			selinux_socket_getpeersec_stream),
7210	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
 
7211	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7212	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7213	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7214	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7215	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7216	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7217	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7218	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7219	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7220	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7221	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7222	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7223	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7224	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7225	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
 
7226	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7227	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7228	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7229	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7230	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7231#ifdef CONFIG_SECURITY_INFINIBAND
7232	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7233	LSM_HOOK_INIT(ib_endport_manage_subnet,
7234		      selinux_ib_endport_manage_subnet),
 
7235	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7236#endif
7237#ifdef CONFIG_SECURITY_NETWORK_XFRM
 
 
7238	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7239	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
 
 
 
7240	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7241	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7242	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7243	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7244			selinux_xfrm_state_pol_flow_match),
7245	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7246#endif
7247
7248#ifdef CONFIG_KEYS
 
7249	LSM_HOOK_INIT(key_free, selinux_key_free),
7250	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7251	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7252#ifdef CONFIG_KEY_NOTIFICATIONS
7253	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7254#endif
7255#endif
7256
7257#ifdef CONFIG_AUDIT
 
7258	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7259	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7260	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7261#endif
7262
7263#ifdef CONFIG_BPF_SYSCALL
7264	LSM_HOOK_INIT(bpf, selinux_bpf),
7265	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7266	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7267	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7268	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7269#endif
7270
7271#ifdef CONFIG_PERF_EVENTS
7272	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7273	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7274	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7275	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7276#endif
7277
7278#ifdef CONFIG_IO_URING
7279	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7280	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7281	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7282#endif
7283
7284	/*
7285	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7286	 */
7287	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7288	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7289	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7290#ifdef CONFIG_SECURITY_NETWORK_XFRM
7291	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7292#endif
7293
7294	/*
7295	 * PUT "ALLOCATING" HOOKS HERE
7296	 */
7297	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7298	LSM_HOOK_INIT(msg_queue_alloc_security,
7299		      selinux_msg_queue_alloc_security),
7300	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7301	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7302	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7303	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7304	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7305	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7306	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7307	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7308#ifdef CONFIG_SECURITY_INFINIBAND
7309	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7310#endif
7311#ifdef CONFIG_SECURITY_NETWORK_XFRM
7312	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7313	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7314	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7315		      selinux_xfrm_state_alloc_acquire),
7316#endif
7317#ifdef CONFIG_KEYS
7318	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7319#endif
7320#ifdef CONFIG_AUDIT
7321	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7322#endif
7323#ifdef CONFIG_BPF_SYSCALL
7324	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7325	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7326#endif
7327#ifdef CONFIG_PERF_EVENTS
7328	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7329#endif
7330};
7331
7332static __init int selinux_init(void)
7333{
7334	pr_info("SELinux:  Initializing.\n");
7335
7336	memset(&selinux_state, 0, sizeof(selinux_state));
7337	enforcing_set(&selinux_state, selinux_enforcing_boot);
7338	if (CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE)
7339		pr_err("SELinux: CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE is non-zero.  This is deprecated and will be rejected in a future kernel release.\n");
7340	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7341	selinux_avc_init(&selinux_state.avc);
7342	mutex_init(&selinux_state.status_lock);
7343	mutex_init(&selinux_state.policy_mutex);
7344
7345	/* Set the security state for the initial task. */
7346	cred_init_security();
7347
7348	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7349
7350	avc_init();
7351
7352	avtab_cache_init();
7353
7354	ebitmap_cache_init();
7355
7356	hashtab_cache_init();
7357
7358	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7359
7360	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7361		panic("SELinux: Unable to register AVC netcache callback\n");
7362
7363	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7364		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7365
7366	if (selinux_enforcing_boot)
7367		pr_debug("SELinux:  Starting in enforcing mode\n");
7368	else
7369		pr_debug("SELinux:  Starting in permissive mode\n");
7370
7371	fs_validate_description("selinux", selinux_fs_parameters);
7372
7373	return 0;
7374}
7375
7376static void delayed_superblock_init(struct super_block *sb, void *unused)
7377{
7378	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7379}
7380
7381void selinux_complete_init(void)
7382{
7383	pr_debug("SELinux:  Completing initialization.\n");
7384
7385	/* Set up any superblocks initialized prior to the policy load. */
7386	pr_debug("SELinux:  Setting up existing superblocks.\n");
7387	iterate_supers(delayed_superblock_init, NULL);
7388}
7389
7390/* SELinux requires early initialization in order to label
7391   all processes and objects when they are created. */
7392DEFINE_LSM(selinux) = {
7393	.name = "selinux",
7394	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7395	.enabled = &selinux_enabled_boot,
7396	.blobs = &selinux_blob_sizes,
7397	.init = selinux_init,
7398};
7399
7400#if defined(CONFIG_NETFILTER)
7401
7402static const struct nf_hook_ops selinux_nf_ops[] = {
7403	{
7404		.hook =		selinux_ip_postroute,
7405		.pf =		NFPROTO_IPV4,
7406		.hooknum =	NF_INET_POST_ROUTING,
7407		.priority =	NF_IP_PRI_SELINUX_LAST,
7408	},
7409	{
7410		.hook =		selinux_ip_forward,
7411		.pf =		NFPROTO_IPV4,
7412		.hooknum =	NF_INET_FORWARD,
7413		.priority =	NF_IP_PRI_SELINUX_FIRST,
7414	},
7415	{
7416		.hook =		selinux_ip_output,
7417		.pf =		NFPROTO_IPV4,
7418		.hooknum =	NF_INET_LOCAL_OUT,
7419		.priority =	NF_IP_PRI_SELINUX_FIRST,
7420	},
7421#if IS_ENABLED(CONFIG_IPV6)
7422	{
7423		.hook =		selinux_ip_postroute,
7424		.pf =		NFPROTO_IPV6,
7425		.hooknum =	NF_INET_POST_ROUTING,
7426		.priority =	NF_IP6_PRI_SELINUX_LAST,
7427	},
7428	{
7429		.hook =		selinux_ip_forward,
7430		.pf =		NFPROTO_IPV6,
7431		.hooknum =	NF_INET_FORWARD,
7432		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7433	},
7434	{
7435		.hook =		selinux_ip_output,
7436		.pf =		NFPROTO_IPV6,
7437		.hooknum =	NF_INET_LOCAL_OUT,
7438		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7439	},
7440#endif	/* IPV6 */
7441};
7442
7443static int __net_init selinux_nf_register(struct net *net)
7444{
7445	return nf_register_net_hooks(net, selinux_nf_ops,
7446				     ARRAY_SIZE(selinux_nf_ops));
7447}
7448
7449static void __net_exit selinux_nf_unregister(struct net *net)
7450{
7451	nf_unregister_net_hooks(net, selinux_nf_ops,
7452				ARRAY_SIZE(selinux_nf_ops));
7453}
7454
7455static struct pernet_operations selinux_net_ops = {
7456	.init = selinux_nf_register,
7457	.exit = selinux_nf_unregister,
7458};
7459
7460static int __init selinux_nf_ip_init(void)
7461{
7462	int err;
7463
7464	if (!selinux_enabled_boot)
7465		return 0;
7466
7467	pr_debug("SELinux:  Registering netfilter hooks\n");
7468
7469	err = register_pernet_subsys(&selinux_net_ops);
7470	if (err)
7471		panic("SELinux: register_pernet_subsys: error %d\n", err);
7472
7473	return 0;
7474}
7475__initcall(selinux_nf_ip_init);
7476
7477#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7478static void selinux_nf_ip_exit(void)
7479{
7480	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7481
7482	unregister_pernet_subsys(&selinux_net_ops);
7483}
7484#endif
7485
7486#else /* CONFIG_NETFILTER */
7487
7488#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7489#define selinux_nf_ip_exit()
7490#endif
7491
7492#endif /* CONFIG_NETFILTER */
7493
7494#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7495int selinux_disable(struct selinux_state *state)
7496{
7497	if (selinux_initialized(state)) {
7498		/* Not permitted after initial policy load. */
7499		return -EINVAL;
7500	}
7501
7502	if (selinux_disabled(state)) {
7503		/* Only do this once. */
7504		return -EINVAL;
7505	}
7506
7507	selinux_mark_disabled(state);
7508
7509	pr_info("SELinux:  Disabled at runtime.\n");
7510
7511	/*
7512	 * Unregister netfilter hooks.
7513	 * Must be done before security_delete_hooks() to avoid breaking
7514	 * runtime disable.
7515	 */
7516	selinux_nf_ip_exit();
7517
7518	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7519
7520	/* Try to destroy the avc node cache */
7521	avc_disable();
 
 
 
7522
7523	/* Unregister selinuxfs. */
7524	exit_sel_fs();
7525
7526	return 0;
7527}
7528#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/tracehook.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
 
  94
  95#include "avc.h"
  96#include "objsec.h"
  97#include "netif.h"
  98#include "netnode.h"
  99#include "netport.h"
 100#include "ibpkey.h"
 101#include "xfrm.h"
 102#include "netlabel.h"
 103#include "audit.h"
 104#include "avc_ss.h"
 105
 106struct selinux_state selinux_state;
 107
 108/* SECMARK reference count */
 109static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 110
 111#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 112static int selinux_enforcing_boot;
 113
 114static int __init enforcing_setup(char *str)
 115{
 116	unsigned long enforcing;
 117	if (!kstrtoul(str, 0, &enforcing))
 118		selinux_enforcing_boot = enforcing ? 1 : 0;
 119	return 1;
 120}
 121__setup("enforcing=", enforcing_setup);
 122#else
 123#define selinux_enforcing_boot 1
 124#endif
 125
 126int selinux_enabled __lsm_ro_after_init = 1;
 127#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 128static int __init selinux_enabled_setup(char *str)
 129{
 130	unsigned long enabled;
 131	if (!kstrtoul(str, 0, &enabled))
 132		selinux_enabled = enabled ? 1 : 0;
 133	return 1;
 134}
 135__setup("selinux=", selinux_enabled_setup);
 136#endif
 137
 138static unsigned int selinux_checkreqprot_boot =
 139	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 140
 141static int __init checkreqprot_setup(char *str)
 142{
 143	unsigned long checkreqprot;
 144
 145	if (!kstrtoul(str, 0, &checkreqprot))
 146		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 
 
 
 147	return 1;
 148}
 149__setup("checkreqprot=", checkreqprot_setup);
 150
 151/**
 152 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 153 *
 154 * Description:
 155 * This function checks the SECMARK reference counter to see if any SECMARK
 156 * targets are currently configured, if the reference counter is greater than
 157 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 158 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 159 * policy capability is enabled, SECMARK is always considered enabled.
 160 *
 161 */
 162static int selinux_secmark_enabled(void)
 163{
 164	return (selinux_policycap_alwaysnetwork() ||
 165		atomic_read(&selinux_secmark_refcount));
 166}
 167
 168/**
 169 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 170 *
 171 * Description:
 172 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 173 * (1) if any are enabled or false (0) if neither are enabled.  If the
 174 * always_check_network policy capability is enabled, peer labeling
 175 * is always considered enabled.
 176 *
 177 */
 178static int selinux_peerlbl_enabled(void)
 179{
 180	return (selinux_policycap_alwaysnetwork() ||
 181		netlbl_enabled() || selinux_xfrm_enabled());
 182}
 183
 184static int selinux_netcache_avc_callback(u32 event)
 185{
 186	if (event == AVC_CALLBACK_RESET) {
 187		sel_netif_flush();
 188		sel_netnode_flush();
 189		sel_netport_flush();
 190		synchronize_net();
 191	}
 192	return 0;
 193}
 194
 195static int selinux_lsm_notifier_avc_callback(u32 event)
 196{
 197	if (event == AVC_CALLBACK_RESET) {
 198		sel_ib_pkey_flush();
 199		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 200	}
 201
 202	return 0;
 203}
 204
 205/*
 206 * initialise the security for the init task
 207 */
 208static void cred_init_security(void)
 209{
 210	struct cred *cred = (struct cred *) current->real_cred;
 211	struct task_security_struct *tsec;
 212
 213	tsec = selinux_cred(cred);
 214	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 215}
 216
 217/*
 218 * get the security ID of a set of credentials
 219 */
 220static inline u32 cred_sid(const struct cred *cred)
 221{
 222	const struct task_security_struct *tsec;
 223
 224	tsec = selinux_cred(cred);
 225	return tsec->sid;
 226}
 227
 228/*
 229 * get the objective security ID of a task
 230 */
 231static inline u32 task_sid(const struct task_struct *task)
 232{
 233	u32 sid;
 234
 235	rcu_read_lock();
 236	sid = cred_sid(__task_cred(task));
 237	rcu_read_unlock();
 238	return sid;
 239}
 240
 241/* Allocate and free functions for each kind of security blob. */
 242
 243static int inode_alloc_security(struct inode *inode)
 244{
 245	struct inode_security_struct *isec = selinux_inode(inode);
 246	u32 sid = current_sid();
 247
 248	spin_lock_init(&isec->lock);
 249	INIT_LIST_HEAD(&isec->list);
 250	isec->inode = inode;
 251	isec->sid = SECINITSID_UNLABELED;
 252	isec->sclass = SECCLASS_FILE;
 253	isec->task_sid = sid;
 254	isec->initialized = LABEL_INVALID;
 255
 256	return 0;
 257}
 258
 259static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 260
 261/*
 262 * Try reloading inode security labels that have been marked as invalid.  The
 263 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 264 * allowed; when set to false, returns -ECHILD when the label is
 265 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 266 */
 267static int __inode_security_revalidate(struct inode *inode,
 268				       struct dentry *dentry,
 269				       bool may_sleep)
 270{
 271	struct inode_security_struct *isec = selinux_inode(inode);
 272
 273	might_sleep_if(may_sleep);
 274
 275	if (selinux_state.initialized &&
 276	    isec->initialized != LABEL_INITIALIZED) {
 277		if (!may_sleep)
 278			return -ECHILD;
 279
 280		/*
 281		 * Try reloading the inode security label.  This will fail if
 282		 * @opt_dentry is NULL and no dentry for this inode can be
 283		 * found; in that case, continue using the old label.
 284		 */
 285		inode_doinit_with_dentry(inode, dentry);
 286	}
 287	return 0;
 288}
 289
 290static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 291{
 292	return selinux_inode(inode);
 293}
 294
 295static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 296{
 297	int error;
 298
 299	error = __inode_security_revalidate(inode, NULL, !rcu);
 300	if (error)
 301		return ERR_PTR(error);
 302	return selinux_inode(inode);
 303}
 304
 305/*
 306 * Get the security label of an inode.
 307 */
 308static struct inode_security_struct *inode_security(struct inode *inode)
 309{
 310	__inode_security_revalidate(inode, NULL, true);
 311	return selinux_inode(inode);
 312}
 313
 314static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 315{
 316	struct inode *inode = d_backing_inode(dentry);
 317
 318	return selinux_inode(inode);
 319}
 320
 321/*
 322 * Get the security label of a dentry's backing inode.
 323 */
 324static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 325{
 326	struct inode *inode = d_backing_inode(dentry);
 327
 328	__inode_security_revalidate(inode, dentry, true);
 329	return selinux_inode(inode);
 330}
 331
 332static void inode_free_security(struct inode *inode)
 333{
 334	struct inode_security_struct *isec = selinux_inode(inode);
 335	struct superblock_security_struct *sbsec;
 336
 337	if (!isec)
 338		return;
 339	sbsec = inode->i_sb->s_security;
 340	/*
 341	 * As not all inode security structures are in a list, we check for
 342	 * empty list outside of the lock to make sure that we won't waste
 343	 * time taking a lock doing nothing.
 344	 *
 345	 * The list_del_init() function can be safely called more than once.
 346	 * It should not be possible for this function to be called with
 347	 * concurrent list_add(), but for better safety against future changes
 348	 * in the code, we use list_empty_careful() here.
 349	 */
 350	if (!list_empty_careful(&isec->list)) {
 351		spin_lock(&sbsec->isec_lock);
 352		list_del_init(&isec->list);
 353		spin_unlock(&sbsec->isec_lock);
 354	}
 355}
 356
 357static int file_alloc_security(struct file *file)
 358{
 359	struct file_security_struct *fsec = selinux_file(file);
 360	u32 sid = current_sid();
 361
 362	fsec->sid = sid;
 363	fsec->fown_sid = sid;
 364
 365	return 0;
 366}
 367
 368static int superblock_alloc_security(struct super_block *sb)
 369{
 370	struct superblock_security_struct *sbsec;
 371
 372	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 373	if (!sbsec)
 374		return -ENOMEM;
 375
 376	mutex_init(&sbsec->lock);
 377	INIT_LIST_HEAD(&sbsec->isec_head);
 378	spin_lock_init(&sbsec->isec_lock);
 379	sbsec->sb = sb;
 380	sbsec->sid = SECINITSID_UNLABELED;
 381	sbsec->def_sid = SECINITSID_FILE;
 382	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 383	sb->s_security = sbsec;
 384
 385	return 0;
 386}
 387
 388static void superblock_free_security(struct super_block *sb)
 389{
 390	struct superblock_security_struct *sbsec = sb->s_security;
 391	sb->s_security = NULL;
 392	kfree(sbsec);
 393}
 394
 395struct selinux_mnt_opts {
 396	const char *fscontext, *context, *rootcontext, *defcontext;
 
 
 
 397};
 398
 399static void selinux_free_mnt_opts(void *mnt_opts)
 400{
 401	struct selinux_mnt_opts *opts = mnt_opts;
 402	kfree(opts->fscontext);
 403	kfree(opts->context);
 404	kfree(opts->rootcontext);
 405	kfree(opts->defcontext);
 406	kfree(opts);
 407}
 408
 409static inline int inode_doinit(struct inode *inode)
 410{
 411	return inode_doinit_with_dentry(inode, NULL);
 412}
 413
 414enum {
 415	Opt_error = -1,
 416	Opt_context = 0,
 417	Opt_defcontext = 1,
 418	Opt_fscontext = 2,
 419	Opt_rootcontext = 3,
 420	Opt_seclabel = 4,
 421};
 422
 423#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 424static struct {
 425	const char *name;
 426	int len;
 427	int opt;
 428	bool has_arg;
 429} tokens[] = {
 430	A(context, true),
 431	A(fscontext, true),
 432	A(defcontext, true),
 433	A(rootcontext, true),
 434	A(seclabel, false),
 435};
 436#undef A
 437
 438static int match_opt_prefix(char *s, int l, char **arg)
 439{
 440	int i;
 441
 442	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 443		size_t len = tokens[i].len;
 444		if (len > l || memcmp(s, tokens[i].name, len))
 445			continue;
 446		if (tokens[i].has_arg) {
 447			if (len == l || s[len] != '=')
 448				continue;
 449			*arg = s + len + 1;
 450		} else if (len != l)
 451			continue;
 452		return tokens[i].opt;
 453	}
 454	return Opt_error;
 455}
 456
 457#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 458
 459static int may_context_mount_sb_relabel(u32 sid,
 460			struct superblock_security_struct *sbsec,
 461			const struct cred *cred)
 462{
 463	const struct task_security_struct *tsec = selinux_cred(cred);
 464	int rc;
 465
 466	rc = avc_has_perm(&selinux_state,
 467			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 468			  FILESYSTEM__RELABELFROM, NULL);
 469	if (rc)
 470		return rc;
 471
 472	rc = avc_has_perm(&selinux_state,
 473			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 474			  FILESYSTEM__RELABELTO, NULL);
 475	return rc;
 476}
 477
 478static int may_context_mount_inode_relabel(u32 sid,
 479			struct superblock_security_struct *sbsec,
 480			const struct cred *cred)
 481{
 482	const struct task_security_struct *tsec = selinux_cred(cred);
 483	int rc;
 484	rc = avc_has_perm(&selinux_state,
 485			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 486			  FILESYSTEM__RELABELFROM, NULL);
 487	if (rc)
 488		return rc;
 489
 490	rc = avc_has_perm(&selinux_state,
 491			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 492			  FILESYSTEM__ASSOCIATE, NULL);
 493	return rc;
 494}
 495
 496static int selinux_is_genfs_special_handling(struct super_block *sb)
 497{
 498	/* Special handling. Genfs but also in-core setxattr handler */
 499	return	!strcmp(sb->s_type->name, "sysfs") ||
 500		!strcmp(sb->s_type->name, "pstore") ||
 501		!strcmp(sb->s_type->name, "debugfs") ||
 502		!strcmp(sb->s_type->name, "tracefs") ||
 503		!strcmp(sb->s_type->name, "rootfs") ||
 504		(selinux_policycap_cgroupseclabel() &&
 505		 (!strcmp(sb->s_type->name, "cgroup") ||
 506		  !strcmp(sb->s_type->name, "cgroup2")));
 507}
 508
 509static int selinux_is_sblabel_mnt(struct super_block *sb)
 510{
 511	struct superblock_security_struct *sbsec = sb->s_security;
 512
 513	/*
 514	 * IMPORTANT: Double-check logic in this function when adding a new
 515	 * SECURITY_FS_USE_* definition!
 516	 */
 517	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 518
 519	switch (sbsec->behavior) {
 520	case SECURITY_FS_USE_XATTR:
 521	case SECURITY_FS_USE_TRANS:
 522	case SECURITY_FS_USE_TASK:
 523	case SECURITY_FS_USE_NATIVE:
 524		return 1;
 525
 526	case SECURITY_FS_USE_GENFS:
 527		return selinux_is_genfs_special_handling(sb);
 528
 529	/* Never allow relabeling on context mounts */
 530	case SECURITY_FS_USE_MNTPOINT:
 531	case SECURITY_FS_USE_NONE:
 532	default:
 533		return 0;
 534	}
 535}
 536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537static int sb_finish_set_opts(struct super_block *sb)
 538{
 539	struct superblock_security_struct *sbsec = sb->s_security;
 540	struct dentry *root = sb->s_root;
 541	struct inode *root_inode = d_backing_inode(root);
 542	int rc = 0;
 543
 544	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 545		/* Make sure that the xattr handler exists and that no
 546		   error other than -ENODATA is returned by getxattr on
 547		   the root directory.  -ENODATA is ok, as this may be
 548		   the first boot of the SELinux kernel before we have
 549		   assigned xattr values to the filesystem. */
 550		if (!(root_inode->i_opflags & IOP_XATTR)) {
 551			pr_warn("SELinux: (dev %s, type %s) has no "
 552			       "xattr support\n", sb->s_id, sb->s_type->name);
 553			rc = -EOPNOTSUPP;
 554			goto out;
 555		}
 556
 557		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 558		if (rc < 0 && rc != -ENODATA) {
 559			if (rc == -EOPNOTSUPP)
 560				pr_warn("SELinux: (dev %s, type "
 561				       "%s) has no security xattr handler\n",
 562				       sb->s_id, sb->s_type->name);
 563			else
 564				pr_warn("SELinux: (dev %s, type "
 565				       "%s) getxattr errno %d\n", sb->s_id,
 566				       sb->s_type->name, -rc);
 567			goto out;
 568		}
 569	}
 570
 571	sbsec->flags |= SE_SBINITIALIZED;
 572
 573	/*
 574	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 575	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 576	 * us a superblock that needs the flag to be cleared.
 577	 */
 578	if (selinux_is_sblabel_mnt(sb))
 579		sbsec->flags |= SBLABEL_MNT;
 580	else
 581		sbsec->flags &= ~SBLABEL_MNT;
 582
 583	/* Initialize the root inode. */
 584	rc = inode_doinit_with_dentry(root_inode, root);
 585
 586	/* Initialize any other inodes associated with the superblock, e.g.
 587	   inodes created prior to initial policy load or inodes created
 588	   during get_sb by a pseudo filesystem that directly
 589	   populates itself. */
 590	spin_lock(&sbsec->isec_lock);
 591	while (!list_empty(&sbsec->isec_head)) {
 592		struct inode_security_struct *isec =
 593				list_first_entry(&sbsec->isec_head,
 594					   struct inode_security_struct, list);
 595		struct inode *inode = isec->inode;
 596		list_del_init(&isec->list);
 597		spin_unlock(&sbsec->isec_lock);
 598		inode = igrab(inode);
 599		if (inode) {
 600			if (!IS_PRIVATE(inode))
 601				inode_doinit(inode);
 602			iput(inode);
 603		}
 604		spin_lock(&sbsec->isec_lock);
 605	}
 606	spin_unlock(&sbsec->isec_lock);
 607out:
 608	return rc;
 609}
 610
 611static int bad_option(struct superblock_security_struct *sbsec, char flag,
 612		      u32 old_sid, u32 new_sid)
 613{
 614	char mnt_flags = sbsec->flags & SE_MNTMASK;
 615
 616	/* check if the old mount command had the same options */
 617	if (sbsec->flags & SE_SBINITIALIZED)
 618		if (!(sbsec->flags & flag) ||
 619		    (old_sid != new_sid))
 620			return 1;
 621
 622	/* check if we were passed the same options twice,
 623	 * aka someone passed context=a,context=b
 624	 */
 625	if (!(sbsec->flags & SE_SBINITIALIZED))
 626		if (mnt_flags & flag)
 627			return 1;
 628	return 0;
 629}
 630
 631static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 632{
 633	int rc = security_context_str_to_sid(&selinux_state, s,
 634					     sid, GFP_KERNEL);
 635	if (rc)
 636		pr_warn("SELinux: security_context_str_to_sid"
 637		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 638		       s, sb->s_id, sb->s_type->name, rc);
 639	return rc;
 640}
 641
 642/*
 643 * Allow filesystems with binary mount data to explicitly set mount point
 644 * labeling information.
 645 */
 646static int selinux_set_mnt_opts(struct super_block *sb,
 647				void *mnt_opts,
 648				unsigned long kern_flags,
 649				unsigned long *set_kern_flags)
 650{
 651	const struct cred *cred = current_cred();
 652	struct superblock_security_struct *sbsec = sb->s_security;
 653	struct dentry *root = sbsec->sb->s_root;
 654	struct selinux_mnt_opts *opts = mnt_opts;
 655	struct inode_security_struct *root_isec;
 656	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 657	u32 defcontext_sid = 0;
 658	int rc = 0;
 659
 660	mutex_lock(&sbsec->lock);
 661
 662	if (!selinux_state.initialized) {
 663		if (!opts) {
 664			/* Defer initialization until selinux_complete_init,
 665			   after the initial policy is loaded and the security
 666			   server is ready to handle calls. */
 667			goto out;
 668		}
 669		rc = -EINVAL;
 670		pr_warn("SELinux: Unable to set superblock options "
 671			"before the security server is initialized\n");
 672		goto out;
 673	}
 674	if (kern_flags && !set_kern_flags) {
 675		/* Specifying internal flags without providing a place to
 676		 * place the results is not allowed */
 677		rc = -EINVAL;
 678		goto out;
 679	}
 680
 681	/*
 682	 * Binary mount data FS will come through this function twice.  Once
 683	 * from an explicit call and once from the generic calls from the vfs.
 684	 * Since the generic VFS calls will not contain any security mount data
 685	 * we need to skip the double mount verification.
 686	 *
 687	 * This does open a hole in which we will not notice if the first
 688	 * mount using this sb set explict options and a second mount using
 689	 * this sb does not set any security options.  (The first options
 690	 * will be used for both mounts)
 691	 */
 692	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 693	    && !opts)
 694		goto out;
 695
 696	root_isec = backing_inode_security_novalidate(root);
 697
 698	/*
 699	 * parse the mount options, check if they are valid sids.
 700	 * also check if someone is trying to mount the same sb more
 701	 * than once with different security options.
 702	 */
 703	if (opts) {
 704		if (opts->fscontext) {
 705			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 706			if (rc)
 707				goto out;
 708			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 709					fscontext_sid))
 710				goto out_double_mount;
 711			sbsec->flags |= FSCONTEXT_MNT;
 712		}
 713		if (opts->context) {
 714			rc = parse_sid(sb, opts->context, &context_sid);
 715			if (rc)
 716				goto out;
 717			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 718					context_sid))
 719				goto out_double_mount;
 720			sbsec->flags |= CONTEXT_MNT;
 721		}
 722		if (opts->rootcontext) {
 723			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 724			if (rc)
 725				goto out;
 726			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 727					rootcontext_sid))
 728				goto out_double_mount;
 729			sbsec->flags |= ROOTCONTEXT_MNT;
 730		}
 731		if (opts->defcontext) {
 732			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 733			if (rc)
 734				goto out;
 735			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 736					defcontext_sid))
 737				goto out_double_mount;
 738			sbsec->flags |= DEFCONTEXT_MNT;
 739		}
 740	}
 741
 742	if (sbsec->flags & SE_SBINITIALIZED) {
 743		/* previously mounted with options, but not on this attempt? */
 744		if ((sbsec->flags & SE_MNTMASK) && !opts)
 745			goto out_double_mount;
 746		rc = 0;
 747		goto out;
 748	}
 749
 750	if (strcmp(sb->s_type->name, "proc") == 0)
 751		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 752
 753	if (!strcmp(sb->s_type->name, "debugfs") ||
 754	    !strcmp(sb->s_type->name, "tracefs") ||
 755	    !strcmp(sb->s_type->name, "pstore"))
 
 
 
 756		sbsec->flags |= SE_SBGENFS;
 757
 758	if (!strcmp(sb->s_type->name, "sysfs") ||
 759	    !strcmp(sb->s_type->name, "cgroup") ||
 760	    !strcmp(sb->s_type->name, "cgroup2"))
 761		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 762
 763	if (!sbsec->behavior) {
 764		/*
 765		 * Determine the labeling behavior to use for this
 766		 * filesystem type.
 767		 */
 768		rc = security_fs_use(&selinux_state, sb);
 769		if (rc) {
 770			pr_warn("%s: security_fs_use(%s) returned %d\n",
 771					__func__, sb->s_type->name, rc);
 772			goto out;
 773		}
 774	}
 775
 776	/*
 777	 * If this is a user namespace mount and the filesystem type is not
 778	 * explicitly whitelisted, then no contexts are allowed on the command
 779	 * line and security labels must be ignored.
 780	 */
 781	if (sb->s_user_ns != &init_user_ns &&
 782	    strcmp(sb->s_type->name, "tmpfs") &&
 783	    strcmp(sb->s_type->name, "ramfs") &&
 784	    strcmp(sb->s_type->name, "devpts")) {
 
 785		if (context_sid || fscontext_sid || rootcontext_sid ||
 786		    defcontext_sid) {
 787			rc = -EACCES;
 788			goto out;
 789		}
 790		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 791			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 792			rc = security_transition_sid(&selinux_state,
 793						     current_sid(),
 794						     current_sid(),
 795						     SECCLASS_FILE, NULL,
 796						     &sbsec->mntpoint_sid);
 797			if (rc)
 798				goto out;
 799		}
 800		goto out_set_opts;
 801	}
 802
 803	/* sets the context of the superblock for the fs being mounted. */
 804	if (fscontext_sid) {
 805		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 806		if (rc)
 807			goto out;
 808
 809		sbsec->sid = fscontext_sid;
 810	}
 811
 812	/*
 813	 * Switch to using mount point labeling behavior.
 814	 * sets the label used on all file below the mountpoint, and will set
 815	 * the superblock context if not already set.
 816	 */
 817	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 818		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 819		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 820	}
 821
 822	if (context_sid) {
 823		if (!fscontext_sid) {
 824			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 825							  cred);
 826			if (rc)
 827				goto out;
 828			sbsec->sid = context_sid;
 829		} else {
 830			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 831							     cred);
 832			if (rc)
 833				goto out;
 834		}
 835		if (!rootcontext_sid)
 836			rootcontext_sid = context_sid;
 837
 838		sbsec->mntpoint_sid = context_sid;
 839		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 840	}
 841
 842	if (rootcontext_sid) {
 843		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 844						     cred);
 845		if (rc)
 846			goto out;
 847
 848		root_isec->sid = rootcontext_sid;
 849		root_isec->initialized = LABEL_INITIALIZED;
 850	}
 851
 852	if (defcontext_sid) {
 853		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 854			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 855			rc = -EINVAL;
 856			pr_warn("SELinux: defcontext option is "
 857			       "invalid for this filesystem type\n");
 858			goto out;
 859		}
 860
 861		if (defcontext_sid != sbsec->def_sid) {
 862			rc = may_context_mount_inode_relabel(defcontext_sid,
 863							     sbsec, cred);
 864			if (rc)
 865				goto out;
 866		}
 867
 868		sbsec->def_sid = defcontext_sid;
 869	}
 870
 871out_set_opts:
 872	rc = sb_finish_set_opts(sb);
 873out:
 874	mutex_unlock(&sbsec->lock);
 875	return rc;
 876out_double_mount:
 877	rc = -EINVAL;
 878	pr_warn("SELinux: mount invalid.  Same superblock, different "
 879	       "security settings for (dev %s, type %s)\n", sb->s_id,
 880	       sb->s_type->name);
 881	goto out;
 882}
 883
 884static int selinux_cmp_sb_context(const struct super_block *oldsb,
 885				    const struct super_block *newsb)
 886{
 887	struct superblock_security_struct *old = oldsb->s_security;
 888	struct superblock_security_struct *new = newsb->s_security;
 889	char oldflags = old->flags & SE_MNTMASK;
 890	char newflags = new->flags & SE_MNTMASK;
 891
 892	if (oldflags != newflags)
 893		goto mismatch;
 894	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 895		goto mismatch;
 896	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 897		goto mismatch;
 898	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 899		goto mismatch;
 900	if (oldflags & ROOTCONTEXT_MNT) {
 901		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 902		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 903		if (oldroot->sid != newroot->sid)
 904			goto mismatch;
 905	}
 906	return 0;
 907mismatch:
 908	pr_warn("SELinux: mount invalid.  Same superblock, "
 909			    "different security settings for (dev %s, "
 910			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 911	return -EBUSY;
 912}
 913
 914static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 915					struct super_block *newsb,
 916					unsigned long kern_flags,
 917					unsigned long *set_kern_flags)
 918{
 919	int rc = 0;
 920	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 921	struct superblock_security_struct *newsbsec = newsb->s_security;
 
 922
 923	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 924	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 925	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 926
 927	/*
 928	 * if the parent was able to be mounted it clearly had no special lsm
 929	 * mount options.  thus we can safely deal with this superblock later
 930	 */
 931	if (!selinux_state.initialized)
 932		return 0;
 933
 934	/*
 935	 * Specifying internal flags without providing a place to
 936	 * place the results is not allowed.
 937	 */
 938	if (kern_flags && !set_kern_flags)
 939		return -EINVAL;
 940
 941	/* how can we clone if the old one wasn't set up?? */
 942	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 943
 944	/* if fs is reusing a sb, make sure that the contexts match */
 945	if (newsbsec->flags & SE_SBINITIALIZED) {
 946		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 947			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 948		return selinux_cmp_sb_context(oldsb, newsb);
 949	}
 950
 951	mutex_lock(&newsbsec->lock);
 952
 953	newsbsec->flags = oldsbsec->flags;
 954
 955	newsbsec->sid = oldsbsec->sid;
 956	newsbsec->def_sid = oldsbsec->def_sid;
 957	newsbsec->behavior = oldsbsec->behavior;
 958
 959	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 960		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 961		rc = security_fs_use(&selinux_state, newsb);
 962		if (rc)
 963			goto out;
 964	}
 965
 966	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 967		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 968		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 969	}
 970
 971	if (set_context) {
 972		u32 sid = oldsbsec->mntpoint_sid;
 973
 974		if (!set_fscontext)
 975			newsbsec->sid = sid;
 976		if (!set_rootcontext) {
 977			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 978			newisec->sid = sid;
 979		}
 980		newsbsec->mntpoint_sid = sid;
 981	}
 982	if (set_rootcontext) {
 983		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 984		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 985
 986		newisec->sid = oldisec->sid;
 987	}
 988
 989	sb_finish_set_opts(newsb);
 990out:
 991	mutex_unlock(&newsbsec->lock);
 992	return rc;
 993}
 994
 
 
 
 995static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 996{
 997	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
 998
 999	if (token == Opt_seclabel)	/* eaten and completely ignored */
 
1000		return 0;
 
 
 
 
 
 
 
1001
1002	if (!opts) {
1003		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1004		if (!opts)
1005			return -ENOMEM;
1006		*mnt_opts = opts;
1007	}
1008	if (!s)
1009		return -ENOMEM;
1010	switch (token) {
1011	case Opt_context:
1012		if (opts->context || opts->defcontext)
1013			goto Einval;
1014		opts->context = s;
1015		break;
1016	case Opt_fscontext:
1017		if (opts->fscontext)
1018			goto Einval;
1019		opts->fscontext = s;
1020		break;
1021	case Opt_rootcontext:
1022		if (opts->rootcontext)
1023			goto Einval;
1024		opts->rootcontext = s;
1025		break;
1026	case Opt_defcontext:
1027		if (opts->context || opts->defcontext)
1028			goto Einval;
1029		opts->defcontext = s;
1030		break;
1031	}
1032	return 0;
1033Einval:
1034	pr_warn(SEL_MOUNT_FAIL_MSG);
1035	return -EINVAL;
1036}
1037
1038static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1039			       void **mnt_opts)
1040{
1041	int token = Opt_error;
1042	int rc, i;
1043
1044	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1045		if (strcmp(option, tokens[i].name) == 0) {
1046			token = tokens[i].opt;
1047			break;
1048		}
1049	}
1050
1051	if (token == Opt_error)
1052		return -EINVAL;
1053
1054	if (token != Opt_seclabel) {
1055		val = kmemdup_nul(val, len, GFP_KERNEL);
1056		if (!val) {
1057			rc = -ENOMEM;
1058			goto free_opt;
1059		}
1060	}
1061	rc = selinux_add_opt(token, val, mnt_opts);
1062	if (unlikely(rc)) {
1063		kfree(val);
1064		goto free_opt;
1065	}
 
 
 
 
1066	return rc;
1067
1068free_opt:
1069	if (*mnt_opts) {
1070		selinux_free_mnt_opts(*mnt_opts);
1071		*mnt_opts = NULL;
1072	}
1073	return rc;
1074}
1075
1076static int show_sid(struct seq_file *m, u32 sid)
1077{
1078	char *context = NULL;
1079	u32 len;
1080	int rc;
1081
1082	rc = security_sid_to_context(&selinux_state, sid,
1083					     &context, &len);
1084	if (!rc) {
1085		bool has_comma = context && strchr(context, ',');
1086
1087		seq_putc(m, '=');
1088		if (has_comma)
1089			seq_putc(m, '\"');
1090		seq_escape(m, context, "\"\n\\");
1091		if (has_comma)
1092			seq_putc(m, '\"');
1093	}
1094	kfree(context);
1095	return rc;
1096}
1097
1098static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1099{
1100	struct superblock_security_struct *sbsec = sb->s_security;
1101	int rc;
1102
1103	if (!(sbsec->flags & SE_SBINITIALIZED))
1104		return 0;
1105
1106	if (!selinux_state.initialized)
1107		return 0;
1108
1109	if (sbsec->flags & FSCONTEXT_MNT) {
1110		seq_putc(m, ',');
1111		seq_puts(m, FSCONTEXT_STR);
1112		rc = show_sid(m, sbsec->sid);
1113		if (rc)
1114			return rc;
1115	}
1116	if (sbsec->flags & CONTEXT_MNT) {
1117		seq_putc(m, ',');
1118		seq_puts(m, CONTEXT_STR);
1119		rc = show_sid(m, sbsec->mntpoint_sid);
1120		if (rc)
1121			return rc;
1122	}
1123	if (sbsec->flags & DEFCONTEXT_MNT) {
1124		seq_putc(m, ',');
1125		seq_puts(m, DEFCONTEXT_STR);
1126		rc = show_sid(m, sbsec->def_sid);
1127		if (rc)
1128			return rc;
1129	}
1130	if (sbsec->flags & ROOTCONTEXT_MNT) {
1131		struct dentry *root = sbsec->sb->s_root;
1132		struct inode_security_struct *isec = backing_inode_security(root);
1133		seq_putc(m, ',');
1134		seq_puts(m, ROOTCONTEXT_STR);
1135		rc = show_sid(m, isec->sid);
1136		if (rc)
1137			return rc;
1138	}
1139	if (sbsec->flags & SBLABEL_MNT) {
1140		seq_putc(m, ',');
1141		seq_puts(m, SECLABEL_STR);
1142	}
1143	return 0;
1144}
1145
1146static inline u16 inode_mode_to_security_class(umode_t mode)
1147{
1148	switch (mode & S_IFMT) {
1149	case S_IFSOCK:
1150		return SECCLASS_SOCK_FILE;
1151	case S_IFLNK:
1152		return SECCLASS_LNK_FILE;
1153	case S_IFREG:
1154		return SECCLASS_FILE;
1155	case S_IFBLK:
1156		return SECCLASS_BLK_FILE;
1157	case S_IFDIR:
1158		return SECCLASS_DIR;
1159	case S_IFCHR:
1160		return SECCLASS_CHR_FILE;
1161	case S_IFIFO:
1162		return SECCLASS_FIFO_FILE;
1163
1164	}
1165
1166	return SECCLASS_FILE;
1167}
1168
1169static inline int default_protocol_stream(int protocol)
1170{
1171	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
 
1172}
1173
1174static inline int default_protocol_dgram(int protocol)
1175{
1176	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1177}
1178
1179static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1180{
1181	int extsockclass = selinux_policycap_extsockclass();
1182
1183	switch (family) {
1184	case PF_UNIX:
1185		switch (type) {
1186		case SOCK_STREAM:
1187		case SOCK_SEQPACKET:
1188			return SECCLASS_UNIX_STREAM_SOCKET;
1189		case SOCK_DGRAM:
1190		case SOCK_RAW:
1191			return SECCLASS_UNIX_DGRAM_SOCKET;
1192		}
1193		break;
1194	case PF_INET:
1195	case PF_INET6:
1196		switch (type) {
1197		case SOCK_STREAM:
1198		case SOCK_SEQPACKET:
1199			if (default_protocol_stream(protocol))
1200				return SECCLASS_TCP_SOCKET;
1201			else if (extsockclass && protocol == IPPROTO_SCTP)
1202				return SECCLASS_SCTP_SOCKET;
1203			else
1204				return SECCLASS_RAWIP_SOCKET;
1205		case SOCK_DGRAM:
1206			if (default_protocol_dgram(protocol))
1207				return SECCLASS_UDP_SOCKET;
1208			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1209						  protocol == IPPROTO_ICMPV6))
1210				return SECCLASS_ICMP_SOCKET;
1211			else
1212				return SECCLASS_RAWIP_SOCKET;
1213		case SOCK_DCCP:
1214			return SECCLASS_DCCP_SOCKET;
1215		default:
1216			return SECCLASS_RAWIP_SOCKET;
1217		}
1218		break;
1219	case PF_NETLINK:
1220		switch (protocol) {
1221		case NETLINK_ROUTE:
1222			return SECCLASS_NETLINK_ROUTE_SOCKET;
1223		case NETLINK_SOCK_DIAG:
1224			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1225		case NETLINK_NFLOG:
1226			return SECCLASS_NETLINK_NFLOG_SOCKET;
1227		case NETLINK_XFRM:
1228			return SECCLASS_NETLINK_XFRM_SOCKET;
1229		case NETLINK_SELINUX:
1230			return SECCLASS_NETLINK_SELINUX_SOCKET;
1231		case NETLINK_ISCSI:
1232			return SECCLASS_NETLINK_ISCSI_SOCKET;
1233		case NETLINK_AUDIT:
1234			return SECCLASS_NETLINK_AUDIT_SOCKET;
1235		case NETLINK_FIB_LOOKUP:
1236			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1237		case NETLINK_CONNECTOR:
1238			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1239		case NETLINK_NETFILTER:
1240			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1241		case NETLINK_DNRTMSG:
1242			return SECCLASS_NETLINK_DNRT_SOCKET;
1243		case NETLINK_KOBJECT_UEVENT:
1244			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1245		case NETLINK_GENERIC:
1246			return SECCLASS_NETLINK_GENERIC_SOCKET;
1247		case NETLINK_SCSITRANSPORT:
1248			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1249		case NETLINK_RDMA:
1250			return SECCLASS_NETLINK_RDMA_SOCKET;
1251		case NETLINK_CRYPTO:
1252			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1253		default:
1254			return SECCLASS_NETLINK_SOCKET;
1255		}
1256	case PF_PACKET:
1257		return SECCLASS_PACKET_SOCKET;
1258	case PF_KEY:
1259		return SECCLASS_KEY_SOCKET;
1260	case PF_APPLETALK:
1261		return SECCLASS_APPLETALK_SOCKET;
1262	}
1263
1264	if (extsockclass) {
1265		switch (family) {
1266		case PF_AX25:
1267			return SECCLASS_AX25_SOCKET;
1268		case PF_IPX:
1269			return SECCLASS_IPX_SOCKET;
1270		case PF_NETROM:
1271			return SECCLASS_NETROM_SOCKET;
1272		case PF_ATMPVC:
1273			return SECCLASS_ATMPVC_SOCKET;
1274		case PF_X25:
1275			return SECCLASS_X25_SOCKET;
1276		case PF_ROSE:
1277			return SECCLASS_ROSE_SOCKET;
1278		case PF_DECnet:
1279			return SECCLASS_DECNET_SOCKET;
1280		case PF_ATMSVC:
1281			return SECCLASS_ATMSVC_SOCKET;
1282		case PF_RDS:
1283			return SECCLASS_RDS_SOCKET;
1284		case PF_IRDA:
1285			return SECCLASS_IRDA_SOCKET;
1286		case PF_PPPOX:
1287			return SECCLASS_PPPOX_SOCKET;
1288		case PF_LLC:
1289			return SECCLASS_LLC_SOCKET;
1290		case PF_CAN:
1291			return SECCLASS_CAN_SOCKET;
1292		case PF_TIPC:
1293			return SECCLASS_TIPC_SOCKET;
1294		case PF_BLUETOOTH:
1295			return SECCLASS_BLUETOOTH_SOCKET;
1296		case PF_IUCV:
1297			return SECCLASS_IUCV_SOCKET;
1298		case PF_RXRPC:
1299			return SECCLASS_RXRPC_SOCKET;
1300		case PF_ISDN:
1301			return SECCLASS_ISDN_SOCKET;
1302		case PF_PHONET:
1303			return SECCLASS_PHONET_SOCKET;
1304		case PF_IEEE802154:
1305			return SECCLASS_IEEE802154_SOCKET;
1306		case PF_CAIF:
1307			return SECCLASS_CAIF_SOCKET;
1308		case PF_ALG:
1309			return SECCLASS_ALG_SOCKET;
1310		case PF_NFC:
1311			return SECCLASS_NFC_SOCKET;
1312		case PF_VSOCK:
1313			return SECCLASS_VSOCK_SOCKET;
1314		case PF_KCM:
1315			return SECCLASS_KCM_SOCKET;
1316		case PF_QIPCRTR:
1317			return SECCLASS_QIPCRTR_SOCKET;
1318		case PF_SMC:
1319			return SECCLASS_SMC_SOCKET;
1320		case PF_XDP:
1321			return SECCLASS_XDP_SOCKET;
1322#if PF_MAX > 45
 
 
1323#error New address family defined, please update this function.
1324#endif
1325		}
1326	}
1327
1328	return SECCLASS_SOCKET;
1329}
1330
1331static int selinux_genfs_get_sid(struct dentry *dentry,
1332				 u16 tclass,
1333				 u16 flags,
1334				 u32 *sid)
1335{
1336	int rc;
1337	struct super_block *sb = dentry->d_sb;
1338	char *buffer, *path;
1339
1340	buffer = (char *)__get_free_page(GFP_KERNEL);
1341	if (!buffer)
1342		return -ENOMEM;
1343
1344	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1345	if (IS_ERR(path))
1346		rc = PTR_ERR(path);
1347	else {
1348		if (flags & SE_SBPROC) {
1349			/* each process gets a /proc/PID/ entry. Strip off the
1350			 * PID part to get a valid selinux labeling.
1351			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1352			while (path[1] >= '0' && path[1] <= '9') {
1353				path[1] = '/';
1354				path++;
1355			}
1356		}
1357		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1358					path, tclass, sid);
1359		if (rc == -ENOENT) {
1360			/* No match in policy, mark as unlabeled. */
1361			*sid = SECINITSID_UNLABELED;
1362			rc = 0;
1363		}
1364	}
1365	free_page((unsigned long)buffer);
1366	return rc;
1367}
1368
1369static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1370				  u32 def_sid, u32 *sid)
1371{
1372#define INITCONTEXTLEN 255
1373	char *context;
1374	unsigned int len;
1375	int rc;
1376
1377	len = INITCONTEXTLEN;
1378	context = kmalloc(len + 1, GFP_NOFS);
1379	if (!context)
1380		return -ENOMEM;
1381
1382	context[len] = '\0';
1383	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1384	if (rc == -ERANGE) {
1385		kfree(context);
1386
1387		/* Need a larger buffer.  Query for the right size. */
1388		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1389		if (rc < 0)
1390			return rc;
1391
1392		len = rc;
1393		context = kmalloc(len + 1, GFP_NOFS);
1394		if (!context)
1395			return -ENOMEM;
1396
1397		context[len] = '\0';
1398		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1399				    context, len);
1400	}
1401	if (rc < 0) {
1402		kfree(context);
1403		if (rc != -ENODATA) {
1404			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1405				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1406			return rc;
1407		}
1408		*sid = def_sid;
1409		return 0;
1410	}
1411
1412	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1413					     def_sid, GFP_NOFS);
1414	if (rc) {
1415		char *dev = inode->i_sb->s_id;
1416		unsigned long ino = inode->i_ino;
1417
1418		if (rc == -EINVAL) {
1419			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1420					      ino, dev, context);
1421		} else {
1422			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1423				__func__, context, -rc, dev, ino);
1424		}
1425	}
1426	kfree(context);
1427	return 0;
1428}
1429
1430/* The inode's security attributes must be initialized before first use. */
1431static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1432{
1433	struct superblock_security_struct *sbsec = NULL;
1434	struct inode_security_struct *isec = selinux_inode(inode);
1435	u32 task_sid, sid = 0;
1436	u16 sclass;
1437	struct dentry *dentry;
1438	int rc = 0;
1439
1440	if (isec->initialized == LABEL_INITIALIZED)
1441		return 0;
1442
1443	spin_lock(&isec->lock);
1444	if (isec->initialized == LABEL_INITIALIZED)
1445		goto out_unlock;
1446
1447	if (isec->sclass == SECCLASS_FILE)
1448		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1449
1450	sbsec = inode->i_sb->s_security;
1451	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1452		/* Defer initialization until selinux_complete_init,
1453		   after the initial policy is loaded and the security
1454		   server is ready to handle calls. */
1455		spin_lock(&sbsec->isec_lock);
1456		if (list_empty(&isec->list))
1457			list_add(&isec->list, &sbsec->isec_head);
1458		spin_unlock(&sbsec->isec_lock);
1459		goto out_unlock;
1460	}
1461
1462	sclass = isec->sclass;
1463	task_sid = isec->task_sid;
1464	sid = isec->sid;
1465	isec->initialized = LABEL_PENDING;
1466	spin_unlock(&isec->lock);
1467
1468	switch (sbsec->behavior) {
1469	case SECURITY_FS_USE_NATIVE:
1470		break;
1471	case SECURITY_FS_USE_XATTR:
1472		if (!(inode->i_opflags & IOP_XATTR)) {
1473			sid = sbsec->def_sid;
1474			break;
1475		}
1476		/* Need a dentry, since the xattr API requires one.
1477		   Life would be simpler if we could just pass the inode. */
1478		if (opt_dentry) {
1479			/* Called from d_instantiate or d_splice_alias. */
1480			dentry = dget(opt_dentry);
1481		} else {
1482			/*
1483			 * Called from selinux_complete_init, try to find a dentry.
1484			 * Some filesystems really want a connected one, so try
1485			 * that first.  We could split SECURITY_FS_USE_XATTR in
1486			 * two, depending upon that...
1487			 */
1488			dentry = d_find_alias(inode);
1489			if (!dentry)
1490				dentry = d_find_any_alias(inode);
1491		}
1492		if (!dentry) {
1493			/*
1494			 * this is can be hit on boot when a file is accessed
1495			 * before the policy is loaded.  When we load policy we
1496			 * may find inodes that have no dentry on the
1497			 * sbsec->isec_head list.  No reason to complain as these
1498			 * will get fixed up the next time we go through
1499			 * inode_doinit with a dentry, before these inodes could
1500			 * be used again by userspace.
1501			 */
1502			goto out;
1503		}
1504
1505		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1506					    &sid);
1507		dput(dentry);
1508		if (rc)
1509			goto out;
1510		break;
1511	case SECURITY_FS_USE_TASK:
1512		sid = task_sid;
1513		break;
1514	case SECURITY_FS_USE_TRANS:
1515		/* Default to the fs SID. */
1516		sid = sbsec->sid;
1517
1518		/* Try to obtain a transition SID. */
1519		rc = security_transition_sid(&selinux_state, task_sid, sid,
1520					     sclass, NULL, &sid);
1521		if (rc)
1522			goto out;
1523		break;
1524	case SECURITY_FS_USE_MNTPOINT:
1525		sid = sbsec->mntpoint_sid;
1526		break;
1527	default:
1528		/* Default to the fs superblock SID. */
1529		sid = sbsec->sid;
1530
1531		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
 
 
1532			/* We must have a dentry to determine the label on
1533			 * procfs inodes */
1534			if (opt_dentry) {
1535				/* Called from d_instantiate or
1536				 * d_splice_alias. */
1537				dentry = dget(opt_dentry);
1538			} else {
1539				/* Called from selinux_complete_init, try to
1540				 * find a dentry.  Some filesystems really want
1541				 * a connected one, so try that first.
1542				 */
1543				dentry = d_find_alias(inode);
1544				if (!dentry)
1545					dentry = d_find_any_alias(inode);
1546			}
1547			/*
1548			 * This can be hit on boot when a file is accessed
1549			 * before the policy is loaded.  When we load policy we
1550			 * may find inodes that have no dentry on the
1551			 * sbsec->isec_head list.  No reason to complain as
1552			 * these will get fixed up the next time we go through
1553			 * inode_doinit() with a dentry, before these inodes
1554			 * could be used again by userspace.
1555			 */
1556			if (!dentry)
1557				goto out;
1558			rc = selinux_genfs_get_sid(dentry, sclass,
1559						   sbsec->flags, &sid);
1560			if (rc) {
1561				dput(dentry);
1562				goto out;
1563			}
1564
1565			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1566			    (inode->i_opflags & IOP_XATTR)) {
1567				rc = inode_doinit_use_xattr(inode, dentry,
1568							    sid, &sid);
1569				if (rc) {
1570					dput(dentry);
1571					goto out;
1572				}
1573			}
1574			dput(dentry);
1575		}
1576		break;
1577	}
1578
1579out:
1580	spin_lock(&isec->lock);
1581	if (isec->initialized == LABEL_PENDING) {
1582		if (!sid || rc) {
1583			isec->initialized = LABEL_INVALID;
1584			goto out_unlock;
1585		}
1586
1587		isec->initialized = LABEL_INITIALIZED;
1588		isec->sid = sid;
1589	}
1590
1591out_unlock:
1592	spin_unlock(&isec->lock);
1593	return rc;
 
 
 
 
 
 
 
 
 
1594}
1595
1596/* Convert a Linux signal to an access vector. */
1597static inline u32 signal_to_av(int sig)
1598{
1599	u32 perm = 0;
1600
1601	switch (sig) {
1602	case SIGCHLD:
1603		/* Commonly granted from child to parent. */
1604		perm = PROCESS__SIGCHLD;
1605		break;
1606	case SIGKILL:
1607		/* Cannot be caught or ignored */
1608		perm = PROCESS__SIGKILL;
1609		break;
1610	case SIGSTOP:
1611		/* Cannot be caught or ignored */
1612		perm = PROCESS__SIGSTOP;
1613		break;
1614	default:
1615		/* All other signals. */
1616		perm = PROCESS__SIGNAL;
1617		break;
1618	}
1619
1620	return perm;
1621}
1622
1623#if CAP_LAST_CAP > 63
1624#error Fix SELinux to handle capabilities > 63.
1625#endif
1626
1627/* Check whether a task is allowed to use a capability. */
1628static int cred_has_capability(const struct cred *cred,
1629			       int cap, unsigned int opts, bool initns)
1630{
1631	struct common_audit_data ad;
1632	struct av_decision avd;
1633	u16 sclass;
1634	u32 sid = cred_sid(cred);
1635	u32 av = CAP_TO_MASK(cap);
1636	int rc;
1637
1638	ad.type = LSM_AUDIT_DATA_CAP;
1639	ad.u.cap = cap;
1640
1641	switch (CAP_TO_INDEX(cap)) {
1642	case 0:
1643		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1644		break;
1645	case 1:
1646		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1647		break;
1648	default:
1649		pr_err("SELinux:  out of range capability %d\n", cap);
1650		BUG();
1651		return -EINVAL;
1652	}
1653
1654	rc = avc_has_perm_noaudit(&selinux_state,
1655				  sid, sid, sclass, av, 0, &avd);
1656	if (!(opts & CAP_OPT_NOAUDIT)) {
1657		int rc2 = avc_audit(&selinux_state,
1658				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1659		if (rc2)
1660			return rc2;
1661	}
1662	return rc;
1663}
1664
1665/* Check whether a task has a particular permission to an inode.
1666   The 'adp' parameter is optional and allows other audit
1667   data to be passed (e.g. the dentry). */
1668static int inode_has_perm(const struct cred *cred,
1669			  struct inode *inode,
1670			  u32 perms,
1671			  struct common_audit_data *adp)
1672{
1673	struct inode_security_struct *isec;
1674	u32 sid;
1675
1676	validate_creds(cred);
1677
1678	if (unlikely(IS_PRIVATE(inode)))
1679		return 0;
1680
1681	sid = cred_sid(cred);
1682	isec = selinux_inode(inode);
1683
1684	return avc_has_perm(&selinux_state,
1685			    sid, isec->sid, isec->sclass, perms, adp);
1686}
1687
1688/* Same as inode_has_perm, but pass explicit audit data containing
1689   the dentry to help the auditing code to more easily generate the
1690   pathname if needed. */
1691static inline int dentry_has_perm(const struct cred *cred,
1692				  struct dentry *dentry,
1693				  u32 av)
1694{
1695	struct inode *inode = d_backing_inode(dentry);
1696	struct common_audit_data ad;
1697
1698	ad.type = LSM_AUDIT_DATA_DENTRY;
1699	ad.u.dentry = dentry;
1700	__inode_security_revalidate(inode, dentry, true);
1701	return inode_has_perm(cred, inode, av, &ad);
1702}
1703
1704/* Same as inode_has_perm, but pass explicit audit data containing
1705   the path to help the auditing code to more easily generate the
1706   pathname if needed. */
1707static inline int path_has_perm(const struct cred *cred,
1708				const struct path *path,
1709				u32 av)
1710{
1711	struct inode *inode = d_backing_inode(path->dentry);
1712	struct common_audit_data ad;
1713
1714	ad.type = LSM_AUDIT_DATA_PATH;
1715	ad.u.path = *path;
1716	__inode_security_revalidate(inode, path->dentry, true);
1717	return inode_has_perm(cred, inode, av, &ad);
1718}
1719
1720/* Same as path_has_perm, but uses the inode from the file struct. */
1721static inline int file_path_has_perm(const struct cred *cred,
1722				     struct file *file,
1723				     u32 av)
1724{
1725	struct common_audit_data ad;
1726
1727	ad.type = LSM_AUDIT_DATA_FILE;
1728	ad.u.file = file;
1729	return inode_has_perm(cred, file_inode(file), av, &ad);
1730}
1731
1732#ifdef CONFIG_BPF_SYSCALL
1733static int bpf_fd_pass(struct file *file, u32 sid);
1734#endif
1735
1736/* Check whether a task can use an open file descriptor to
1737   access an inode in a given way.  Check access to the
1738   descriptor itself, and then use dentry_has_perm to
1739   check a particular permission to the file.
1740   Access to the descriptor is implicitly granted if it
1741   has the same SID as the process.  If av is zero, then
1742   access to the file is not checked, e.g. for cases
1743   where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745			 struct file *file,
1746			 u32 av)
1747{
1748	struct file_security_struct *fsec = selinux_file(file);
1749	struct inode *inode = file_inode(file);
1750	struct common_audit_data ad;
1751	u32 sid = cred_sid(cred);
1752	int rc;
1753
1754	ad.type = LSM_AUDIT_DATA_FILE;
1755	ad.u.file = file;
1756
1757	if (sid != fsec->sid) {
1758		rc = avc_has_perm(&selinux_state,
1759				  sid, fsec->sid,
1760				  SECCLASS_FD,
1761				  FD__USE,
1762				  &ad);
1763		if (rc)
1764			goto out;
1765	}
1766
1767#ifdef CONFIG_BPF_SYSCALL
1768	rc = bpf_fd_pass(file, cred_sid(cred));
1769	if (rc)
1770		return rc;
1771#endif
1772
1773	/* av is zero if only checking access to the descriptor. */
1774	rc = 0;
1775	if (av)
1776		rc = inode_has_perm(cred, inode, av, &ad);
1777
1778out:
1779	return rc;
1780}
1781
1782/*
1783 * Determine the label for an inode that might be unioned.
1784 */
1785static int
1786selinux_determine_inode_label(const struct task_security_struct *tsec,
1787				 struct inode *dir,
1788				 const struct qstr *name, u16 tclass,
1789				 u32 *_new_isid)
1790{
1791	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
 
1792
1793	if ((sbsec->flags & SE_SBINITIALIZED) &&
1794	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1795		*_new_isid = sbsec->mntpoint_sid;
1796	} else if ((sbsec->flags & SBLABEL_MNT) &&
1797		   tsec->create_sid) {
1798		*_new_isid = tsec->create_sid;
1799	} else {
1800		const struct inode_security_struct *dsec = inode_security(dir);
1801		return security_transition_sid(&selinux_state, tsec->sid,
1802					       dsec->sid, tclass,
1803					       name, _new_isid);
1804	}
1805
1806	return 0;
1807}
1808
1809/* Check whether a task can create a file. */
1810static int may_create(struct inode *dir,
1811		      struct dentry *dentry,
1812		      u16 tclass)
1813{
1814	const struct task_security_struct *tsec = selinux_cred(current_cred());
1815	struct inode_security_struct *dsec;
1816	struct superblock_security_struct *sbsec;
1817	u32 sid, newsid;
1818	struct common_audit_data ad;
1819	int rc;
1820
1821	dsec = inode_security(dir);
1822	sbsec = dir->i_sb->s_security;
1823
1824	sid = tsec->sid;
1825
1826	ad.type = LSM_AUDIT_DATA_DENTRY;
1827	ad.u.dentry = dentry;
1828
1829	rc = avc_has_perm(&selinux_state,
1830			  sid, dsec->sid, SECCLASS_DIR,
1831			  DIR__ADD_NAME | DIR__SEARCH,
1832			  &ad);
1833	if (rc)
1834		return rc;
1835
1836	rc = selinux_determine_inode_label(selinux_cred(current_cred()), dir,
1837					   &dentry->d_name, tclass, &newsid);
1838	if (rc)
1839		return rc;
1840
1841	rc = avc_has_perm(&selinux_state,
1842			  sid, newsid, tclass, FILE__CREATE, &ad);
1843	if (rc)
1844		return rc;
1845
1846	return avc_has_perm(&selinux_state,
1847			    newsid, sbsec->sid,
1848			    SECCLASS_FILESYSTEM,
1849			    FILESYSTEM__ASSOCIATE, &ad);
1850}
1851
1852#define MAY_LINK	0
1853#define MAY_UNLINK	1
1854#define MAY_RMDIR	2
1855
1856/* Check whether a task can link, unlink, or rmdir a file/directory. */
1857static int may_link(struct inode *dir,
1858		    struct dentry *dentry,
1859		    int kind)
1860
1861{
1862	struct inode_security_struct *dsec, *isec;
1863	struct common_audit_data ad;
1864	u32 sid = current_sid();
1865	u32 av;
1866	int rc;
1867
1868	dsec = inode_security(dir);
1869	isec = backing_inode_security(dentry);
1870
1871	ad.type = LSM_AUDIT_DATA_DENTRY;
1872	ad.u.dentry = dentry;
1873
1874	av = DIR__SEARCH;
1875	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1876	rc = avc_has_perm(&selinux_state,
1877			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1878	if (rc)
1879		return rc;
1880
1881	switch (kind) {
1882	case MAY_LINK:
1883		av = FILE__LINK;
1884		break;
1885	case MAY_UNLINK:
1886		av = FILE__UNLINK;
1887		break;
1888	case MAY_RMDIR:
1889		av = DIR__RMDIR;
1890		break;
1891	default:
1892		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1893			__func__, kind);
1894		return 0;
1895	}
1896
1897	rc = avc_has_perm(&selinux_state,
1898			  sid, isec->sid, isec->sclass, av, &ad);
1899	return rc;
1900}
1901
1902static inline int may_rename(struct inode *old_dir,
1903			     struct dentry *old_dentry,
1904			     struct inode *new_dir,
1905			     struct dentry *new_dentry)
1906{
1907	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1908	struct common_audit_data ad;
1909	u32 sid = current_sid();
1910	u32 av;
1911	int old_is_dir, new_is_dir;
1912	int rc;
1913
1914	old_dsec = inode_security(old_dir);
1915	old_isec = backing_inode_security(old_dentry);
1916	old_is_dir = d_is_dir(old_dentry);
1917	new_dsec = inode_security(new_dir);
1918
1919	ad.type = LSM_AUDIT_DATA_DENTRY;
1920
1921	ad.u.dentry = old_dentry;
1922	rc = avc_has_perm(&selinux_state,
1923			  sid, old_dsec->sid, SECCLASS_DIR,
1924			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1925	if (rc)
1926		return rc;
1927	rc = avc_has_perm(&selinux_state,
1928			  sid, old_isec->sid,
1929			  old_isec->sclass, FILE__RENAME, &ad);
1930	if (rc)
1931		return rc;
1932	if (old_is_dir && new_dir != old_dir) {
1933		rc = avc_has_perm(&selinux_state,
1934				  sid, old_isec->sid,
1935				  old_isec->sclass, DIR__REPARENT, &ad);
1936		if (rc)
1937			return rc;
1938	}
1939
1940	ad.u.dentry = new_dentry;
1941	av = DIR__ADD_NAME | DIR__SEARCH;
1942	if (d_is_positive(new_dentry))
1943		av |= DIR__REMOVE_NAME;
1944	rc = avc_has_perm(&selinux_state,
1945			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1946	if (rc)
1947		return rc;
1948	if (d_is_positive(new_dentry)) {
1949		new_isec = backing_inode_security(new_dentry);
1950		new_is_dir = d_is_dir(new_dentry);
1951		rc = avc_has_perm(&selinux_state,
1952				  sid, new_isec->sid,
1953				  new_isec->sclass,
1954				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1955		if (rc)
1956			return rc;
1957	}
1958
1959	return 0;
1960}
1961
1962/* Check whether a task can perform a filesystem operation. */
1963static int superblock_has_perm(const struct cred *cred,
1964			       struct super_block *sb,
1965			       u32 perms,
1966			       struct common_audit_data *ad)
1967{
1968	struct superblock_security_struct *sbsec;
1969	u32 sid = cred_sid(cred);
1970
1971	sbsec = sb->s_security;
1972	return avc_has_perm(&selinux_state,
1973			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1974}
1975
1976/* Convert a Linux mode and permission mask to an access vector. */
1977static inline u32 file_mask_to_av(int mode, int mask)
1978{
1979	u32 av = 0;
1980
1981	if (!S_ISDIR(mode)) {
1982		if (mask & MAY_EXEC)
1983			av |= FILE__EXECUTE;
1984		if (mask & MAY_READ)
1985			av |= FILE__READ;
1986
1987		if (mask & MAY_APPEND)
1988			av |= FILE__APPEND;
1989		else if (mask & MAY_WRITE)
1990			av |= FILE__WRITE;
1991
1992	} else {
1993		if (mask & MAY_EXEC)
1994			av |= DIR__SEARCH;
1995		if (mask & MAY_WRITE)
1996			av |= DIR__WRITE;
1997		if (mask & MAY_READ)
1998			av |= DIR__READ;
1999	}
2000
2001	return av;
2002}
2003
2004/* Convert a Linux file to an access vector. */
2005static inline u32 file_to_av(struct file *file)
2006{
2007	u32 av = 0;
2008
2009	if (file->f_mode & FMODE_READ)
2010		av |= FILE__READ;
2011	if (file->f_mode & FMODE_WRITE) {
2012		if (file->f_flags & O_APPEND)
2013			av |= FILE__APPEND;
2014		else
2015			av |= FILE__WRITE;
2016	}
2017	if (!av) {
2018		/*
2019		 * Special file opened with flags 3 for ioctl-only use.
2020		 */
2021		av = FILE__IOCTL;
2022	}
2023
2024	return av;
2025}
2026
2027/*
2028 * Convert a file to an access vector and include the correct open
2029 * open permission.
2030 */
2031static inline u32 open_file_to_av(struct file *file)
2032{
2033	u32 av = file_to_av(file);
2034	struct inode *inode = file_inode(file);
2035
2036	if (selinux_policycap_openperm() &&
2037	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2038		av |= FILE__OPEN;
2039
2040	return av;
2041}
2042
2043/* Hook functions begin here. */
2044
2045static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2046{
2047	u32 mysid = current_sid();
2048	u32 mgrsid = task_sid(mgr);
2049
2050	return avc_has_perm(&selinux_state,
2051			    mysid, mgrsid, SECCLASS_BINDER,
2052			    BINDER__SET_CONTEXT_MGR, NULL);
2053}
2054
2055static int selinux_binder_transaction(struct task_struct *from,
2056				      struct task_struct *to)
2057{
2058	u32 mysid = current_sid();
2059	u32 fromsid = task_sid(from);
2060	u32 tosid = task_sid(to);
2061	int rc;
2062
2063	if (mysid != fromsid) {
2064		rc = avc_has_perm(&selinux_state,
2065				  mysid, fromsid, SECCLASS_BINDER,
2066				  BINDER__IMPERSONATE, NULL);
2067		if (rc)
2068			return rc;
2069	}
2070
2071	return avc_has_perm(&selinux_state,
2072			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2073			    NULL);
2074}
2075
2076static int selinux_binder_transfer_binder(struct task_struct *from,
2077					  struct task_struct *to)
2078{
2079	u32 fromsid = task_sid(from);
2080	u32 tosid = task_sid(to);
2081
2082	return avc_has_perm(&selinux_state,
2083			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
 
2084			    NULL);
2085}
2086
2087static int selinux_binder_transfer_file(struct task_struct *from,
2088					struct task_struct *to,
2089					struct file *file)
2090{
2091	u32 sid = task_sid(to);
2092	struct file_security_struct *fsec = selinux_file(file);
2093	struct dentry *dentry = file->f_path.dentry;
2094	struct inode_security_struct *isec;
2095	struct common_audit_data ad;
2096	int rc;
2097
2098	ad.type = LSM_AUDIT_DATA_PATH;
2099	ad.u.path = file->f_path;
2100
2101	if (sid != fsec->sid) {
2102		rc = avc_has_perm(&selinux_state,
2103				  sid, fsec->sid,
2104				  SECCLASS_FD,
2105				  FD__USE,
2106				  &ad);
2107		if (rc)
2108			return rc;
2109	}
2110
2111#ifdef CONFIG_BPF_SYSCALL
2112	rc = bpf_fd_pass(file, sid);
2113	if (rc)
2114		return rc;
2115#endif
2116
2117	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2118		return 0;
2119
2120	isec = backing_inode_security(dentry);
2121	return avc_has_perm(&selinux_state,
2122			    sid, isec->sid, isec->sclass, file_to_av(file),
2123			    &ad);
2124}
2125
2126static int selinux_ptrace_access_check(struct task_struct *child,
2127				     unsigned int mode)
2128{
2129	u32 sid = current_sid();
2130	u32 csid = task_sid(child);
2131
2132	if (mode & PTRACE_MODE_READ)
2133		return avc_has_perm(&selinux_state,
2134				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2135
2136	return avc_has_perm(&selinux_state,
2137			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2138}
2139
2140static int selinux_ptrace_traceme(struct task_struct *parent)
2141{
2142	return avc_has_perm(&selinux_state,
2143			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2144			    PROCESS__PTRACE, NULL);
2145}
2146
2147static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2148			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2149{
2150	return avc_has_perm(&selinux_state,
2151			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2152			    PROCESS__GETCAP, NULL);
2153}
2154
2155static int selinux_capset(struct cred *new, const struct cred *old,
2156			  const kernel_cap_t *effective,
2157			  const kernel_cap_t *inheritable,
2158			  const kernel_cap_t *permitted)
2159{
2160	return avc_has_perm(&selinux_state,
2161			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2162			    PROCESS__SETCAP, NULL);
2163}
2164
2165/*
2166 * (This comment used to live with the selinux_task_setuid hook,
2167 * which was removed).
2168 *
2169 * Since setuid only affects the current process, and since the SELinux
2170 * controls are not based on the Linux identity attributes, SELinux does not
2171 * need to control this operation.  However, SELinux does control the use of
2172 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2173 */
2174
2175static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2176			   int cap, unsigned int opts)
2177{
2178	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2179}
2180
2181static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2182{
2183	const struct cred *cred = current_cred();
2184	int rc = 0;
2185
2186	if (!sb)
2187		return 0;
2188
2189	switch (cmds) {
2190	case Q_SYNC:
2191	case Q_QUOTAON:
2192	case Q_QUOTAOFF:
2193	case Q_SETINFO:
2194	case Q_SETQUOTA:
 
 
 
2195		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2196		break;
2197	case Q_GETFMT:
2198	case Q_GETINFO:
2199	case Q_GETQUOTA:
 
 
 
 
2200		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2201		break;
2202	default:
2203		rc = 0;  /* let the kernel handle invalid cmds */
2204		break;
2205	}
2206	return rc;
2207}
2208
2209static int selinux_quota_on(struct dentry *dentry)
2210{
2211	const struct cred *cred = current_cred();
2212
2213	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2214}
2215
2216static int selinux_syslog(int type)
2217{
2218	switch (type) {
2219	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2220	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2221		return avc_has_perm(&selinux_state,
2222				    current_sid(), SECINITSID_KERNEL,
2223				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2224	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2225	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2226	/* Set level of messages printed to console */
2227	case SYSLOG_ACTION_CONSOLE_LEVEL:
2228		return avc_has_perm(&selinux_state,
2229				    current_sid(), SECINITSID_KERNEL,
2230				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2231				    NULL);
2232	}
2233	/* All other syslog types */
2234	return avc_has_perm(&selinux_state,
2235			    current_sid(), SECINITSID_KERNEL,
2236			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2237}
2238
2239/*
2240 * Check that a process has enough memory to allocate a new virtual
2241 * mapping. 0 means there is enough memory for the allocation to
2242 * succeed and -ENOMEM implies there is not.
2243 *
2244 * Do not audit the selinux permission check, as this is applied to all
2245 * processes that allocate mappings.
2246 */
2247static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2248{
2249	int rc, cap_sys_admin = 0;
2250
2251	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2252				 CAP_OPT_NOAUDIT, true);
2253	if (rc == 0)
2254		cap_sys_admin = 1;
2255
2256	return cap_sys_admin;
2257}
2258
2259/* binprm security operations */
2260
2261static u32 ptrace_parent_sid(void)
2262{
2263	u32 sid = 0;
2264	struct task_struct *tracer;
2265
2266	rcu_read_lock();
2267	tracer = ptrace_parent(current);
2268	if (tracer)
2269		sid = task_sid(tracer);
2270	rcu_read_unlock();
2271
2272	return sid;
2273}
2274
2275static int check_nnp_nosuid(const struct linux_binprm *bprm,
2276			    const struct task_security_struct *old_tsec,
2277			    const struct task_security_struct *new_tsec)
2278{
2279	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2280	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2281	int rc;
2282	u32 av;
2283
2284	if (!nnp && !nosuid)
2285		return 0; /* neither NNP nor nosuid */
2286
2287	if (new_tsec->sid == old_tsec->sid)
2288		return 0; /* No change in credentials */
2289
2290	/*
2291	 * If the policy enables the nnp_nosuid_transition policy capability,
2292	 * then we permit transitions under NNP or nosuid if the
2293	 * policy allows the corresponding permission between
2294	 * the old and new contexts.
2295	 */
2296	if (selinux_policycap_nnp_nosuid_transition()) {
2297		av = 0;
2298		if (nnp)
2299			av |= PROCESS2__NNP_TRANSITION;
2300		if (nosuid)
2301			av |= PROCESS2__NOSUID_TRANSITION;
2302		rc = avc_has_perm(&selinux_state,
2303				  old_tsec->sid, new_tsec->sid,
2304				  SECCLASS_PROCESS2, av, NULL);
2305		if (!rc)
2306			return 0;
2307	}
2308
2309	/*
2310	 * We also permit NNP or nosuid transitions to bounded SIDs,
2311	 * i.e. SIDs that are guaranteed to only be allowed a subset
2312	 * of the permissions of the current SID.
2313	 */
2314	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2315					 new_tsec->sid);
2316	if (!rc)
2317		return 0;
2318
2319	/*
2320	 * On failure, preserve the errno values for NNP vs nosuid.
2321	 * NNP:  Operation not permitted for caller.
2322	 * nosuid:  Permission denied to file.
2323	 */
2324	if (nnp)
2325		return -EPERM;
2326	return -EACCES;
2327}
2328
2329static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2330{
2331	const struct task_security_struct *old_tsec;
2332	struct task_security_struct *new_tsec;
2333	struct inode_security_struct *isec;
2334	struct common_audit_data ad;
2335	struct inode *inode = file_inode(bprm->file);
2336	int rc;
2337
2338	/* SELinux context only depends on initial program or script and not
2339	 * the script interpreter */
2340	if (bprm->called_set_creds)
2341		return 0;
2342
2343	old_tsec = selinux_cred(current_cred());
2344	new_tsec = selinux_cred(bprm->cred);
2345	isec = inode_security(inode);
2346
2347	/* Default to the current task SID. */
2348	new_tsec->sid = old_tsec->sid;
2349	new_tsec->osid = old_tsec->sid;
2350
2351	/* Reset fs, key, and sock SIDs on execve. */
2352	new_tsec->create_sid = 0;
2353	new_tsec->keycreate_sid = 0;
2354	new_tsec->sockcreate_sid = 0;
2355
2356	if (old_tsec->exec_sid) {
2357		new_tsec->sid = old_tsec->exec_sid;
2358		/* Reset exec SID on execve. */
2359		new_tsec->exec_sid = 0;
2360
2361		/* Fail on NNP or nosuid if not an allowed transition. */
2362		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2363		if (rc)
2364			return rc;
2365	} else {
2366		/* Check for a default transition on this program. */
2367		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2368					     isec->sid, SECCLASS_PROCESS, NULL,
2369					     &new_tsec->sid);
2370		if (rc)
2371			return rc;
2372
2373		/*
2374		 * Fallback to old SID on NNP or nosuid if not an allowed
2375		 * transition.
2376		 */
2377		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2378		if (rc)
2379			new_tsec->sid = old_tsec->sid;
2380	}
2381
2382	ad.type = LSM_AUDIT_DATA_FILE;
2383	ad.u.file = bprm->file;
2384
2385	if (new_tsec->sid == old_tsec->sid) {
2386		rc = avc_has_perm(&selinux_state,
2387				  old_tsec->sid, isec->sid,
2388				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2389		if (rc)
2390			return rc;
2391	} else {
2392		/* Check permissions for the transition. */
2393		rc = avc_has_perm(&selinux_state,
2394				  old_tsec->sid, new_tsec->sid,
2395				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2396		if (rc)
2397			return rc;
2398
2399		rc = avc_has_perm(&selinux_state,
2400				  new_tsec->sid, isec->sid,
2401				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2402		if (rc)
2403			return rc;
2404
2405		/* Check for shared state */
2406		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2407			rc = avc_has_perm(&selinux_state,
2408					  old_tsec->sid, new_tsec->sid,
2409					  SECCLASS_PROCESS, PROCESS__SHARE,
2410					  NULL);
2411			if (rc)
2412				return -EPERM;
2413		}
2414
2415		/* Make sure that anyone attempting to ptrace over a task that
2416		 * changes its SID has the appropriate permit */
2417		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2418			u32 ptsid = ptrace_parent_sid();
2419			if (ptsid != 0) {
2420				rc = avc_has_perm(&selinux_state,
2421						  ptsid, new_tsec->sid,
2422						  SECCLASS_PROCESS,
2423						  PROCESS__PTRACE, NULL);
2424				if (rc)
2425					return -EPERM;
2426			}
2427		}
2428
2429		/* Clear any possibly unsafe personality bits on exec: */
2430		bprm->per_clear |= PER_CLEAR_ON_SETID;
2431
2432		/* Enable secure mode for SIDs transitions unless
2433		   the noatsecure permission is granted between
2434		   the two SIDs, i.e. ahp returns 0. */
2435		rc = avc_has_perm(&selinux_state,
2436				  old_tsec->sid, new_tsec->sid,
2437				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2438				  NULL);
2439		bprm->secureexec |= !!rc;
2440	}
2441
2442	return 0;
2443}
2444
2445static int match_file(const void *p, struct file *file, unsigned fd)
2446{
2447	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2448}
2449
2450/* Derived from fs/exec.c:flush_old_files. */
2451static inline void flush_unauthorized_files(const struct cred *cred,
2452					    struct files_struct *files)
2453{
2454	struct file *file, *devnull = NULL;
2455	struct tty_struct *tty;
2456	int drop_tty = 0;
2457	unsigned n;
2458
2459	tty = get_current_tty();
2460	if (tty) {
2461		spin_lock(&tty->files_lock);
2462		if (!list_empty(&tty->tty_files)) {
2463			struct tty_file_private *file_priv;
2464
2465			/* Revalidate access to controlling tty.
2466			   Use file_path_has_perm on the tty path directly
2467			   rather than using file_has_perm, as this particular
2468			   open file may belong to another process and we are
2469			   only interested in the inode-based check here. */
2470			file_priv = list_first_entry(&tty->tty_files,
2471						struct tty_file_private, list);
2472			file = file_priv->file;
2473			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2474				drop_tty = 1;
2475		}
2476		spin_unlock(&tty->files_lock);
2477		tty_kref_put(tty);
2478	}
2479	/* Reset controlling tty. */
2480	if (drop_tty)
2481		no_tty();
2482
2483	/* Revalidate access to inherited open files. */
2484	n = iterate_fd(files, 0, match_file, cred);
2485	if (!n) /* none found? */
2486		return;
2487
2488	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2489	if (IS_ERR(devnull))
2490		devnull = NULL;
2491	/* replace all the matching ones with this */
2492	do {
2493		replace_fd(n - 1, devnull, 0);
2494	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2495	if (devnull)
2496		fput(devnull);
2497}
2498
2499/*
2500 * Prepare a process for imminent new credential changes due to exec
2501 */
2502static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2503{
2504	struct task_security_struct *new_tsec;
2505	struct rlimit *rlim, *initrlim;
2506	int rc, i;
2507
2508	new_tsec = selinux_cred(bprm->cred);
2509	if (new_tsec->sid == new_tsec->osid)
2510		return;
2511
2512	/* Close files for which the new task SID is not authorized. */
2513	flush_unauthorized_files(bprm->cred, current->files);
2514
2515	/* Always clear parent death signal on SID transitions. */
2516	current->pdeath_signal = 0;
2517
2518	/* Check whether the new SID can inherit resource limits from the old
2519	 * SID.  If not, reset all soft limits to the lower of the current
2520	 * task's hard limit and the init task's soft limit.
2521	 *
2522	 * Note that the setting of hard limits (even to lower them) can be
2523	 * controlled by the setrlimit check.  The inclusion of the init task's
2524	 * soft limit into the computation is to avoid resetting soft limits
2525	 * higher than the default soft limit for cases where the default is
2526	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2527	 */
2528	rc = avc_has_perm(&selinux_state,
2529			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2530			  PROCESS__RLIMITINH, NULL);
2531	if (rc) {
2532		/* protect against do_prlimit() */
2533		task_lock(current);
2534		for (i = 0; i < RLIM_NLIMITS; i++) {
2535			rlim = current->signal->rlim + i;
2536			initrlim = init_task.signal->rlim + i;
2537			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2538		}
2539		task_unlock(current);
2540		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2541			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2542	}
2543}
2544
2545/*
2546 * Clean up the process immediately after the installation of new credentials
2547 * due to exec
2548 */
2549static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2550{
2551	const struct task_security_struct *tsec = selinux_cred(current_cred());
2552	struct itimerval itimer;
2553	u32 osid, sid;
2554	int rc, i;
2555
2556	osid = tsec->osid;
2557	sid = tsec->sid;
2558
2559	if (sid == osid)
2560		return;
2561
2562	/* Check whether the new SID can inherit signal state from the old SID.
2563	 * If not, clear itimers to avoid subsequent signal generation and
2564	 * flush and unblock signals.
2565	 *
2566	 * This must occur _after_ the task SID has been updated so that any
2567	 * kill done after the flush will be checked against the new SID.
2568	 */
2569	rc = avc_has_perm(&selinux_state,
2570			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571	if (rc) {
2572		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573			memset(&itimer, 0, sizeof itimer);
2574			for (i = 0; i < 3; i++)
2575				do_setitimer(i, &itimer, NULL);
2576		}
2577		spin_lock_irq(&current->sighand->siglock);
2578		if (!fatal_signal_pending(current)) {
2579			flush_sigqueue(&current->pending);
2580			flush_sigqueue(&current->signal->shared_pending);
2581			flush_signal_handlers(current, 1);
2582			sigemptyset(&current->blocked);
2583			recalc_sigpending();
2584		}
2585		spin_unlock_irq(&current->sighand->siglock);
2586	}
2587
2588	/* Wake up the parent if it is waiting so that it can recheck
2589	 * wait permission to the new task SID. */
2590	read_lock(&tasklist_lock);
2591	__wake_up_parent(current, current->real_parent);
2592	read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599	return superblock_alloc_security(sb);
2600}
 
 
 
 
 
 
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604	superblock_free_security(sb);
2605}
2606
2607static inline int opt_len(const char *s)
2608{
2609	bool open_quote = false;
2610	int len;
2611	char c;
2612
2613	for (len = 0; (c = s[len]) != '\0'; len++) {
2614		if (c == '"')
2615			open_quote = !open_quote;
2616		if (c == ',' && !open_quote)
2617			break;
2618	}
2619	return len;
2620}
2621
2622static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2623{
2624	char *from = options;
2625	char *to = options;
2626	bool first = true;
2627	int rc;
2628
2629	while (1) {
2630		int len = opt_len(from);
2631		int token;
2632		char *arg = NULL;
2633
2634		token = match_opt_prefix(from, len, &arg);
2635
2636		if (token != Opt_error) {
2637			char *p, *q;
2638
2639			/* strip quotes */
2640			if (arg) {
2641				for (p = q = arg; p < from + len; p++) {
2642					char c = *p;
2643					if (c != '"')
2644						*q++ = c;
2645				}
2646				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2647				if (!arg) {
2648					rc = -ENOMEM;
2649					goto free_opt;
2650				}
2651			}
2652			rc = selinux_add_opt(token, arg, mnt_opts);
 
 
2653			if (unlikely(rc)) {
2654				kfree(arg);
2655				goto free_opt;
2656			}
2657		} else {
2658			if (!first) {	// copy with preceding comma
2659				from--;
2660				len++;
2661			}
2662			if (to != from)
2663				memmove(to, from, len);
2664			to += len;
2665			first = false;
2666		}
2667		if (!from[len])
2668			break;
2669		from += len + 1;
2670	}
2671	*to = '\0';
2672	return 0;
2673
2674free_opt:
2675	if (*mnt_opts) {
2676		selinux_free_mnt_opts(*mnt_opts);
2677		*mnt_opts = NULL;
2678	}
2679	return rc;
2680}
2681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2682static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2683{
2684	struct selinux_mnt_opts *opts = mnt_opts;
2685	struct superblock_security_struct *sbsec = sb->s_security;
2686	u32 sid;
2687	int rc;
2688
2689	if (!(sbsec->flags & SE_SBINITIALIZED))
2690		return 0;
2691
2692	if (!opts)
2693		return 0;
2694
2695	if (opts->fscontext) {
2696		rc = parse_sid(sb, opts->fscontext, &sid);
2697		if (rc)
2698			return rc;
2699		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2700			goto out_bad_option;
2701	}
2702	if (opts->context) {
2703		rc = parse_sid(sb, opts->context, &sid);
2704		if (rc)
2705			return rc;
2706		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2707			goto out_bad_option;
2708	}
2709	if (opts->rootcontext) {
2710		struct inode_security_struct *root_isec;
2711		root_isec = backing_inode_security(sb->s_root);
2712		rc = parse_sid(sb, opts->rootcontext, &sid);
2713		if (rc)
2714			return rc;
2715		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2716			goto out_bad_option;
2717	}
2718	if (opts->defcontext) {
2719		rc = parse_sid(sb, opts->defcontext, &sid);
2720		if (rc)
2721			return rc;
2722		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2723			goto out_bad_option;
2724	}
2725	return 0;
2726
2727out_bad_option:
2728	pr_warn("SELinux: unable to change security options "
2729	       "during remount (dev %s, type=%s)\n", sb->s_id,
2730	       sb->s_type->name);
2731	return -EINVAL;
2732}
2733
2734static int selinux_sb_kern_mount(struct super_block *sb)
2735{
2736	const struct cred *cred = current_cred();
2737	struct common_audit_data ad;
2738
2739	ad.type = LSM_AUDIT_DATA_DENTRY;
2740	ad.u.dentry = sb->s_root;
2741	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2742}
2743
2744static int selinux_sb_statfs(struct dentry *dentry)
2745{
2746	const struct cred *cred = current_cred();
2747	struct common_audit_data ad;
2748
2749	ad.type = LSM_AUDIT_DATA_DENTRY;
2750	ad.u.dentry = dentry->d_sb->s_root;
2751	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2752}
2753
2754static int selinux_mount(const char *dev_name,
2755			 const struct path *path,
2756			 const char *type,
2757			 unsigned long flags,
2758			 void *data)
2759{
2760	const struct cred *cred = current_cred();
2761
2762	if (flags & MS_REMOUNT)
2763		return superblock_has_perm(cred, path->dentry->d_sb,
2764					   FILESYSTEM__REMOUNT, NULL);
2765	else
2766		return path_has_perm(cred, path, FILE__MOUNTON);
2767}
2768
 
 
 
 
 
 
 
 
2769static int selinux_umount(struct vfsmount *mnt, int flags)
2770{
2771	const struct cred *cred = current_cred();
2772
2773	return superblock_has_perm(cred, mnt->mnt_sb,
2774				   FILESYSTEM__UNMOUNT, NULL);
2775}
2776
2777static int selinux_fs_context_dup(struct fs_context *fc,
2778				  struct fs_context *src_fc)
2779{
2780	const struct selinux_mnt_opts *src = src_fc->security;
2781	struct selinux_mnt_opts *opts;
2782
2783	if (!src)
2784		return 0;
2785
2786	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2787	if (!fc->security)
2788		return -ENOMEM;
2789
2790	opts = fc->security;
2791
2792	if (src->fscontext) {
2793		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2794		if (!opts->fscontext)
2795			return -ENOMEM;
2796	}
2797	if (src->context) {
2798		opts->context = kstrdup(src->context, GFP_KERNEL);
2799		if (!opts->context)
2800			return -ENOMEM;
2801	}
2802	if (src->rootcontext) {
2803		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2804		if (!opts->rootcontext)
2805			return -ENOMEM;
2806	}
2807	if (src->defcontext) {
2808		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2809		if (!opts->defcontext)
2810			return -ENOMEM;
2811	}
2812	return 0;
2813}
2814
2815static const struct fs_parameter_spec selinux_param_specs[] = {
2816	fsparam_string(CONTEXT_STR,	Opt_context),
2817	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2818	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2819	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2820	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2821	{}
2822};
2823
2824static const struct fs_parameter_description selinux_fs_parameters = {
2825	.name		= "SELinux",
2826	.specs		= selinux_param_specs,
2827};
2828
2829static int selinux_fs_context_parse_param(struct fs_context *fc,
2830					  struct fs_parameter *param)
2831{
2832	struct fs_parse_result result;
2833	int opt, rc;
2834
2835	opt = fs_parse(fc, &selinux_fs_parameters, param, &result);
2836	if (opt < 0)
2837		return opt;
2838
2839	rc = selinux_add_opt(opt, param->string, &fc->security);
2840	if (!rc) {
2841		param->string = NULL;
2842		rc = 1;
2843	}
2844	return rc;
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851	return inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
2852}
2853
2854static void selinux_inode_free_security(struct inode *inode)
2855{
2856	inode_free_security(inode);
2857}
2858
2859static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2860					const struct qstr *name, void **ctx,
 
2861					u32 *ctxlen)
2862{
2863	u32 newsid;
2864	int rc;
2865
2866	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2867					   d_inode(dentry->d_parent), name,
2868					   inode_mode_to_security_class(mode),
2869					   &newsid);
2870	if (rc)
2871		return rc;
2872
 
 
 
2873	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2874				       ctxlen);
2875}
2876
2877static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2878					  struct qstr *name,
2879					  const struct cred *old,
2880					  struct cred *new)
2881{
2882	u32 newsid;
2883	int rc;
2884	struct task_security_struct *tsec;
2885
2886	rc = selinux_determine_inode_label(selinux_cred(old),
2887					   d_inode(dentry->d_parent), name,
2888					   inode_mode_to_security_class(mode),
2889					   &newsid);
2890	if (rc)
2891		return rc;
2892
2893	tsec = selinux_cred(new);
2894	tsec->create_sid = newsid;
2895	return 0;
2896}
2897
2898static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2899				       const struct qstr *qstr,
2900				       const char **name,
2901				       void **value, size_t *len)
2902{
2903	const struct task_security_struct *tsec = selinux_cred(current_cred());
2904	struct superblock_security_struct *sbsec;
2905	u32 newsid, clen;
2906	int rc;
2907	char *context;
2908
2909	sbsec = dir->i_sb->s_security;
2910
2911	newsid = tsec->create_sid;
2912
2913	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2914		dir, qstr,
2915		inode_mode_to_security_class(inode->i_mode),
2916		&newsid);
2917	if (rc)
2918		return rc;
2919
2920	/* Possibly defer initialization to selinux_complete_init. */
2921	if (sbsec->flags & SE_SBINITIALIZED) {
2922		struct inode_security_struct *isec = selinux_inode(inode);
2923		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2924		isec->sid = newsid;
2925		isec->initialized = LABEL_INITIALIZED;
2926	}
2927
2928	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
 
2929		return -EOPNOTSUPP;
2930
2931	if (name)
2932		*name = XATTR_SELINUX_SUFFIX;
2933
2934	if (value && len) {
2935		rc = security_sid_to_context_force(&selinux_state, newsid,
2936						   &context, &clen);
2937		if (rc)
2938			return rc;
2939		*value = context;
2940		*len = clen;
2941	}
2942
2943	return 0;
2944}
2945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2947{
2948	return may_create(dir, dentry, SECCLASS_FILE);
2949}
2950
2951static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2952{
2953	return may_link(dir, old_dentry, MAY_LINK);
2954}
2955
2956static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2957{
2958	return may_link(dir, dentry, MAY_UNLINK);
2959}
2960
2961static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2962{
2963	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2964}
2965
2966static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2967{
2968	return may_create(dir, dentry, SECCLASS_DIR);
2969}
2970
2971static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2972{
2973	return may_link(dir, dentry, MAY_RMDIR);
2974}
2975
2976static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2977{
2978	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2979}
2980
2981static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2982				struct inode *new_inode, struct dentry *new_dentry)
2983{
2984	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2985}
2986
2987static int selinux_inode_readlink(struct dentry *dentry)
2988{
2989	const struct cred *cred = current_cred();
2990
2991	return dentry_has_perm(cred, dentry, FILE__READ);
2992}
2993
2994static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2995				     bool rcu)
2996{
2997	const struct cred *cred = current_cred();
2998	struct common_audit_data ad;
2999	struct inode_security_struct *isec;
3000	u32 sid;
3001
3002	validate_creds(cred);
3003
3004	ad.type = LSM_AUDIT_DATA_DENTRY;
3005	ad.u.dentry = dentry;
3006	sid = cred_sid(cred);
3007	isec = inode_security_rcu(inode, rcu);
3008	if (IS_ERR(isec))
3009		return PTR_ERR(isec);
3010
3011	return avc_has_perm(&selinux_state,
3012			    sid, isec->sid, isec->sclass, FILE__READ, &ad);
3013}
3014
3015static noinline int audit_inode_permission(struct inode *inode,
3016					   u32 perms, u32 audited, u32 denied,
3017					   int result,
3018					   unsigned flags)
3019{
3020	struct common_audit_data ad;
3021	struct inode_security_struct *isec = selinux_inode(inode);
3022	int rc;
3023
3024	ad.type = LSM_AUDIT_DATA_INODE;
3025	ad.u.inode = inode;
3026
3027	rc = slow_avc_audit(&selinux_state,
3028			    current_sid(), isec->sid, isec->sclass, perms,
3029			    audited, denied, result, &ad, flags);
3030	if (rc)
3031		return rc;
3032	return 0;
3033}
3034
3035static int selinux_inode_permission(struct inode *inode, int mask)
3036{
3037	const struct cred *cred = current_cred();
3038	u32 perms;
3039	bool from_access;
3040	unsigned flags = mask & MAY_NOT_BLOCK;
3041	struct inode_security_struct *isec;
3042	u32 sid;
3043	struct av_decision avd;
3044	int rc, rc2;
3045	u32 audited, denied;
3046
3047	from_access = mask & MAY_ACCESS;
3048	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3049
3050	/* No permission to check.  Existence test. */
3051	if (!mask)
3052		return 0;
3053
3054	validate_creds(cred);
3055
3056	if (unlikely(IS_PRIVATE(inode)))
3057		return 0;
3058
3059	perms = file_mask_to_av(inode->i_mode, mask);
3060
3061	sid = cred_sid(cred);
3062	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3063	if (IS_ERR(isec))
3064		return PTR_ERR(isec);
3065
3066	rc = avc_has_perm_noaudit(&selinux_state,
3067				  sid, isec->sid, isec->sclass, perms,
3068				  (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
3069				  &avd);
3070	audited = avc_audit_required(perms, &avd, rc,
3071				     from_access ? FILE__AUDIT_ACCESS : 0,
3072				     &denied);
3073	if (likely(!audited))
3074		return rc;
3075
3076	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3077	if (rc2)
3078		return rc2;
3079	return rc;
3080}
3081
3082static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3083{
3084	const struct cred *cred = current_cred();
3085	struct inode *inode = d_backing_inode(dentry);
3086	unsigned int ia_valid = iattr->ia_valid;
3087	__u32 av = FILE__WRITE;
3088
3089	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3090	if (ia_valid & ATTR_FORCE) {
3091		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3092			      ATTR_FORCE);
3093		if (!ia_valid)
3094			return 0;
3095	}
3096
3097	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3098			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3099		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3100
3101	if (selinux_policycap_openperm() &&
3102	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3103	    (ia_valid & ATTR_SIZE) &&
3104	    !(ia_valid & ATTR_FILE))
3105		av |= FILE__OPEN;
3106
3107	return dentry_has_perm(cred, dentry, av);
3108}
3109
3110static int selinux_inode_getattr(const struct path *path)
3111{
3112	return path_has_perm(current_cred(), path, FILE__GETATTR);
3113}
3114
3115static bool has_cap_mac_admin(bool audit)
3116{
3117	const struct cred *cred = current_cred();
3118	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3119
3120	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3121		return false;
3122	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3123		return false;
3124	return true;
3125}
3126
3127static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
 
3128				  const void *value, size_t size, int flags)
3129{
3130	struct inode *inode = d_backing_inode(dentry);
3131	struct inode_security_struct *isec;
3132	struct superblock_security_struct *sbsec;
3133	struct common_audit_data ad;
3134	u32 newsid, sid = current_sid();
3135	int rc = 0;
3136
3137	if (strcmp(name, XATTR_NAME_SELINUX)) {
3138		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3139		if (rc)
3140			return rc;
3141
3142		/* Not an attribute we recognize, so just check the
3143		   ordinary setattr permission. */
3144		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3145	}
3146
3147	sbsec = inode->i_sb->s_security;
 
 
 
3148	if (!(sbsec->flags & SBLABEL_MNT))
3149		return -EOPNOTSUPP;
3150
3151	if (!inode_owner_or_capable(inode))
3152		return -EPERM;
3153
3154	ad.type = LSM_AUDIT_DATA_DENTRY;
3155	ad.u.dentry = dentry;
3156
3157	isec = backing_inode_security(dentry);
3158	rc = avc_has_perm(&selinux_state,
3159			  sid, isec->sid, isec->sclass,
3160			  FILE__RELABELFROM, &ad);
3161	if (rc)
3162		return rc;
3163
3164	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3165				     GFP_KERNEL);
3166	if (rc == -EINVAL) {
3167		if (!has_cap_mac_admin(true)) {
3168			struct audit_buffer *ab;
3169			size_t audit_size;
3170
3171			/* We strip a nul only if it is at the end, otherwise the
3172			 * context contains a nul and we should audit that */
3173			if (value) {
3174				const char *str = value;
3175
3176				if (str[size - 1] == '\0')
3177					audit_size = size - 1;
3178				else
3179					audit_size = size;
3180			} else {
3181				audit_size = 0;
3182			}
3183			ab = audit_log_start(audit_context(),
3184					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
3185			audit_log_format(ab, "op=setxattr invalid_context=");
3186			audit_log_n_untrustedstring(ab, value, audit_size);
3187			audit_log_end(ab);
3188
3189			return rc;
3190		}
3191		rc = security_context_to_sid_force(&selinux_state, value,
3192						   size, &newsid);
3193	}
3194	if (rc)
3195		return rc;
3196
3197	rc = avc_has_perm(&selinux_state,
3198			  sid, newsid, isec->sclass,
3199			  FILE__RELABELTO, &ad);
3200	if (rc)
3201		return rc;
3202
3203	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3204					  sid, isec->sclass);
3205	if (rc)
3206		return rc;
3207
3208	return avc_has_perm(&selinux_state,
3209			    newsid,
3210			    sbsec->sid,
3211			    SECCLASS_FILESYSTEM,
3212			    FILESYSTEM__ASSOCIATE,
3213			    &ad);
3214}
3215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3216static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3217					const void *value, size_t size,
3218					int flags)
3219{
3220	struct inode *inode = d_backing_inode(dentry);
3221	struct inode_security_struct *isec;
3222	u32 newsid;
3223	int rc;
3224
3225	if (strcmp(name, XATTR_NAME_SELINUX)) {
3226		/* Not an attribute we recognize, so nothing to do. */
3227		return;
3228	}
3229
 
 
 
 
 
 
 
 
 
3230	rc = security_context_to_sid_force(&selinux_state, value, size,
3231					   &newsid);
3232	if (rc) {
3233		pr_err("SELinux:  unable to map context to SID"
3234		       "for (%s, %lu), rc=%d\n",
3235		       inode->i_sb->s_id, inode->i_ino, -rc);
3236		return;
3237	}
3238
3239	isec = backing_inode_security(dentry);
3240	spin_lock(&isec->lock);
3241	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3242	isec->sid = newsid;
3243	isec->initialized = LABEL_INITIALIZED;
3244	spin_unlock(&isec->lock);
3245
3246	return;
3247}
3248
3249static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3250{
3251	const struct cred *cred = current_cred();
3252
3253	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_listxattr(struct dentry *dentry)
3257{
3258	const struct cred *cred = current_cred();
3259
3260	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3261}
3262
3263static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
 
3264{
3265	if (strcmp(name, XATTR_NAME_SELINUX)) {
3266		int rc = cap_inode_removexattr(dentry, name);
3267		if (rc)
3268			return rc;
3269
3270		/* Not an attribute we recognize, so just check the
3271		   ordinary setattr permission. */
3272		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3273	}
3274
 
 
 
3275	/* No one is allowed to remove a SELinux security label.
3276	   You can change the label, but all data must be labeled. */
3277	return -EACCES;
3278}
3279
3280static int selinux_path_notify(const struct path *path, u64 mask,
3281						unsigned int obj_type)
3282{
3283	int ret;
3284	u32 perm;
3285
3286	struct common_audit_data ad;
3287
3288	ad.type = LSM_AUDIT_DATA_PATH;
3289	ad.u.path = *path;
3290
3291	/*
3292	 * Set permission needed based on the type of mark being set.
3293	 * Performs an additional check for sb watches.
3294	 */
3295	switch (obj_type) {
3296	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3297		perm = FILE__WATCH_MOUNT;
3298		break;
3299	case FSNOTIFY_OBJ_TYPE_SB:
3300		perm = FILE__WATCH_SB;
3301		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3302						FILESYSTEM__WATCH, &ad);
3303		if (ret)
3304			return ret;
3305		break;
3306	case FSNOTIFY_OBJ_TYPE_INODE:
3307		perm = FILE__WATCH;
3308		break;
3309	default:
3310		return -EINVAL;
3311	}
3312
3313	/* blocking watches require the file:watch_with_perm permission */
3314	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3315		perm |= FILE__WATCH_WITH_PERM;
3316
3317	/* watches on read-like events need the file:watch_reads permission */
3318	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3319		perm |= FILE__WATCH_READS;
3320
3321	return path_has_perm(current_cred(), path, perm);
3322}
3323
3324/*
3325 * Copy the inode security context value to the user.
3326 *
3327 * Permission check is handled by selinux_inode_getxattr hook.
3328 */
3329static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
 
 
3330{
3331	u32 size;
3332	int error;
3333	char *context = NULL;
3334	struct inode_security_struct *isec;
3335
3336	if (strcmp(name, XATTR_SELINUX_SUFFIX))
 
 
 
 
 
3337		return -EOPNOTSUPP;
3338
3339	/*
3340	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3341	 * value even if it is not defined by current policy; otherwise,
3342	 * use the in-core value under current policy.
3343	 * Use the non-auditing forms of the permission checks since
3344	 * getxattr may be called by unprivileged processes commonly
3345	 * and lack of permission just means that we fall back to the
3346	 * in-core context value, not a denial.
3347	 */
3348	isec = inode_security(inode);
3349	if (has_cap_mac_admin(false))
3350		error = security_sid_to_context_force(&selinux_state,
3351						      isec->sid, &context,
3352						      &size);
3353	else
3354		error = security_sid_to_context(&selinux_state, isec->sid,
3355						&context, &size);
3356	if (error)
3357		return error;
3358	error = size;
3359	if (alloc) {
3360		*buffer = context;
3361		goto out_nofree;
3362	}
3363	kfree(context);
3364out_nofree:
3365	return error;
3366}
3367
3368static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3369				     const void *value, size_t size, int flags)
3370{
3371	struct inode_security_struct *isec = inode_security_novalidate(inode);
3372	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3373	u32 newsid;
3374	int rc;
3375
3376	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3377		return -EOPNOTSUPP;
3378
 
3379	if (!(sbsec->flags & SBLABEL_MNT))
3380		return -EOPNOTSUPP;
3381
3382	if (!value || !size)
3383		return -EACCES;
3384
3385	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3386				     GFP_KERNEL);
3387	if (rc)
3388		return rc;
3389
3390	spin_lock(&isec->lock);
3391	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3392	isec->sid = newsid;
3393	isec->initialized = LABEL_INITIALIZED;
3394	spin_unlock(&isec->lock);
3395	return 0;
3396}
3397
3398static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3399{
3400	const int len = sizeof(XATTR_NAME_SELINUX);
 
 
 
 
3401	if (buffer && len <= buffer_size)
3402		memcpy(buffer, XATTR_NAME_SELINUX, len);
3403	return len;
3404}
3405
3406static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3407{
3408	struct inode_security_struct *isec = inode_security_novalidate(inode);
3409	*secid = isec->sid;
3410}
3411
3412static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3413{
3414	u32 sid;
3415	struct task_security_struct *tsec;
3416	struct cred *new_creds = *new;
3417
3418	if (new_creds == NULL) {
3419		new_creds = prepare_creds();
3420		if (!new_creds)
3421			return -ENOMEM;
3422	}
3423
3424	tsec = selinux_cred(new_creds);
3425	/* Get label from overlay inode and set it in create_sid */
3426	selinux_inode_getsecid(d_inode(src), &sid);
3427	tsec->create_sid = sid;
3428	*new = new_creds;
3429	return 0;
3430}
3431
3432static int selinux_inode_copy_up_xattr(const char *name)
3433{
3434	/* The copy_up hook above sets the initial context on an inode, but we
3435	 * don't then want to overwrite it by blindly copying all the lower
3436	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3437	 */
3438	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3439		return 1; /* Discard */
3440	/*
3441	 * Any other attribute apart from SELINUX is not claimed, supported
3442	 * by selinux.
3443	 */
3444	return -EOPNOTSUPP;
3445}
3446
3447/* kernfs node operations */
3448
3449static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3450					struct kernfs_node *kn)
3451{
3452	const struct task_security_struct *tsec = selinux_cred(current_cred());
3453	u32 parent_sid, newsid, clen;
3454	int rc;
3455	char *context;
3456
3457	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3458	if (rc == -ENODATA)
3459		return 0;
3460	else if (rc < 0)
3461		return rc;
3462
3463	clen = (u32)rc;
3464	context = kmalloc(clen, GFP_KERNEL);
3465	if (!context)
3466		return -ENOMEM;
3467
3468	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3469	if (rc < 0) {
3470		kfree(context);
3471		return rc;
3472	}
3473
3474	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3475				     GFP_KERNEL);
3476	kfree(context);
3477	if (rc)
3478		return rc;
3479
3480	if (tsec->create_sid) {
3481		newsid = tsec->create_sid;
3482	} else {
3483		u16 secclass = inode_mode_to_security_class(kn->mode);
3484		struct qstr q;
3485
3486		q.name = kn->name;
3487		q.hash_len = hashlen_string(kn_dir, kn->name);
3488
3489		rc = security_transition_sid(&selinux_state, tsec->sid,
3490					     parent_sid, secclass, &q,
3491					     &newsid);
3492		if (rc)
3493			return rc;
3494	}
3495
3496	rc = security_sid_to_context_force(&selinux_state, newsid,
3497					   &context, &clen);
3498	if (rc)
3499		return rc;
3500
3501	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3502			      XATTR_CREATE);
3503	kfree(context);
3504	return rc;
3505}
3506
3507
3508/* file security operations */
3509
3510static int selinux_revalidate_file_permission(struct file *file, int mask)
3511{
3512	const struct cred *cred = current_cred();
3513	struct inode *inode = file_inode(file);
3514
3515	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3516	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3517		mask |= MAY_APPEND;
3518
3519	return file_has_perm(cred, file,
3520			     file_mask_to_av(inode->i_mode, mask));
3521}
3522
3523static int selinux_file_permission(struct file *file, int mask)
3524{
3525	struct inode *inode = file_inode(file);
3526	struct file_security_struct *fsec = selinux_file(file);
3527	struct inode_security_struct *isec;
3528	u32 sid = current_sid();
3529
3530	if (!mask)
3531		/* No permission to check.  Existence test. */
3532		return 0;
3533
3534	isec = inode_security(inode);
3535	if (sid == fsec->sid && fsec->isid == isec->sid &&
3536	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3537		/* No change since file_open check. */
3538		return 0;
3539
3540	return selinux_revalidate_file_permission(file, mask);
3541}
3542
3543static int selinux_file_alloc_security(struct file *file)
3544{
3545	return file_alloc_security(file);
 
 
 
 
 
 
3546}
3547
3548/*
3549 * Check whether a task has the ioctl permission and cmd
3550 * operation to an inode.
3551 */
3552static int ioctl_has_perm(const struct cred *cred, struct file *file,
3553		u32 requested, u16 cmd)
3554{
3555	struct common_audit_data ad;
3556	struct file_security_struct *fsec = selinux_file(file);
3557	struct inode *inode = file_inode(file);
3558	struct inode_security_struct *isec;
3559	struct lsm_ioctlop_audit ioctl;
3560	u32 ssid = cred_sid(cred);
3561	int rc;
3562	u8 driver = cmd >> 8;
3563	u8 xperm = cmd & 0xff;
3564
3565	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3566	ad.u.op = &ioctl;
3567	ad.u.op->cmd = cmd;
3568	ad.u.op->path = file->f_path;
3569
3570	if (ssid != fsec->sid) {
3571		rc = avc_has_perm(&selinux_state,
3572				  ssid, fsec->sid,
3573				SECCLASS_FD,
3574				FD__USE,
3575				&ad);
3576		if (rc)
3577			goto out;
3578	}
3579
3580	if (unlikely(IS_PRIVATE(inode)))
3581		return 0;
3582
3583	isec = inode_security(inode);
3584	rc = avc_has_extended_perms(&selinux_state,
3585				    ssid, isec->sid, isec->sclass,
3586				    requested, driver, xperm, &ad);
3587out:
3588	return rc;
3589}
3590
3591static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3592			      unsigned long arg)
3593{
3594	const struct cred *cred = current_cred();
3595	int error = 0;
3596
3597	switch (cmd) {
3598	case FIONREAD:
3599	/* fall through */
3600	case FIBMAP:
3601	/* fall through */
3602	case FIGETBSZ:
3603	/* fall through */
3604	case FS_IOC_GETFLAGS:
3605	/* fall through */
3606	case FS_IOC_GETVERSION:
3607		error = file_has_perm(cred, file, FILE__GETATTR);
3608		break;
3609
3610	case FS_IOC_SETFLAGS:
3611	/* fall through */
3612	case FS_IOC_SETVERSION:
3613		error = file_has_perm(cred, file, FILE__SETATTR);
3614		break;
3615
3616	/* sys_ioctl() checks */
3617	case FIONBIO:
3618	/* fall through */
3619	case FIOASYNC:
3620		error = file_has_perm(cred, file, 0);
3621		break;
3622
3623	case KDSKBENT:
3624	case KDSKBSENT:
3625		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3626					    CAP_OPT_NONE, true);
3627		break;
3628
 
 
 
 
 
 
3629	/* default case assumes that the command will go
3630	 * to the file's ioctl() function.
3631	 */
3632	default:
3633		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3634	}
3635	return error;
3636}
3637
3638static int default_noexec;
3639
3640static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3641{
3642	const struct cred *cred = current_cred();
3643	u32 sid = cred_sid(cred);
3644	int rc = 0;
3645
3646	if (default_noexec &&
3647	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3648				   (!shared && (prot & PROT_WRITE)))) {
3649		/*
3650		 * We are making executable an anonymous mapping or a
3651		 * private file mapping that will also be writable.
3652		 * This has an additional check.
3653		 */
3654		rc = avc_has_perm(&selinux_state,
3655				  sid, sid, SECCLASS_PROCESS,
3656				  PROCESS__EXECMEM, NULL);
3657		if (rc)
3658			goto error;
3659	}
3660
3661	if (file) {
3662		/* read access is always possible with a mapping */
3663		u32 av = FILE__READ;
3664
3665		/* write access only matters if the mapping is shared */
3666		if (shared && (prot & PROT_WRITE))
3667			av |= FILE__WRITE;
3668
3669		if (prot & PROT_EXEC)
3670			av |= FILE__EXECUTE;
3671
3672		return file_has_perm(cred, file, av);
3673	}
3674
3675error:
3676	return rc;
3677}
3678
3679static int selinux_mmap_addr(unsigned long addr)
3680{
3681	int rc = 0;
3682
3683	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3684		u32 sid = current_sid();
3685		rc = avc_has_perm(&selinux_state,
3686				  sid, sid, SECCLASS_MEMPROTECT,
3687				  MEMPROTECT__MMAP_ZERO, NULL);
3688	}
3689
3690	return rc;
3691}
3692
3693static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3694			     unsigned long prot, unsigned long flags)
3695{
3696	struct common_audit_data ad;
3697	int rc;
3698
3699	if (file) {
3700		ad.type = LSM_AUDIT_DATA_FILE;
3701		ad.u.file = file;
3702		rc = inode_has_perm(current_cred(), file_inode(file),
3703				    FILE__MAP, &ad);
3704		if (rc)
3705			return rc;
3706	}
3707
3708	if (selinux_state.checkreqprot)
3709		prot = reqprot;
3710
3711	return file_map_prot_check(file, prot,
3712				   (flags & MAP_TYPE) == MAP_SHARED);
3713}
3714
3715static int selinux_file_mprotect(struct vm_area_struct *vma,
3716				 unsigned long reqprot,
3717				 unsigned long prot)
3718{
3719	const struct cred *cred = current_cred();
3720	u32 sid = cred_sid(cred);
3721
3722	if (selinux_state.checkreqprot)
3723		prot = reqprot;
3724
3725	if (default_noexec &&
3726	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3727		int rc = 0;
3728		if (vma->vm_start >= vma->vm_mm->start_brk &&
3729		    vma->vm_end <= vma->vm_mm->brk) {
3730			rc = avc_has_perm(&selinux_state,
3731					  sid, sid, SECCLASS_PROCESS,
3732					  PROCESS__EXECHEAP, NULL);
3733		} else if (!vma->vm_file &&
3734			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3735			     vma->vm_end >= vma->vm_mm->start_stack) ||
3736			    vma_is_stack_for_current(vma))) {
3737			rc = avc_has_perm(&selinux_state,
3738					  sid, sid, SECCLASS_PROCESS,
3739					  PROCESS__EXECSTACK, NULL);
3740		} else if (vma->vm_file && vma->anon_vma) {
3741			/*
3742			 * We are making executable a file mapping that has
3743			 * had some COW done. Since pages might have been
3744			 * written, check ability to execute the possibly
3745			 * modified content.  This typically should only
3746			 * occur for text relocations.
3747			 */
3748			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3749		}
3750		if (rc)
3751			return rc;
3752	}
3753
3754	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3755}
3756
3757static int selinux_file_lock(struct file *file, unsigned int cmd)
3758{
3759	const struct cred *cred = current_cred();
3760
3761	return file_has_perm(cred, file, FILE__LOCK);
3762}
3763
3764static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3765			      unsigned long arg)
3766{
3767	const struct cred *cred = current_cred();
3768	int err = 0;
3769
3770	switch (cmd) {
3771	case F_SETFL:
3772		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3773			err = file_has_perm(cred, file, FILE__WRITE);
3774			break;
3775		}
3776		/* fall through */
3777	case F_SETOWN:
3778	case F_SETSIG:
3779	case F_GETFL:
3780	case F_GETOWN:
3781	case F_GETSIG:
3782	case F_GETOWNER_UIDS:
3783		/* Just check FD__USE permission */
3784		err = file_has_perm(cred, file, 0);
3785		break;
3786	case F_GETLK:
3787	case F_SETLK:
3788	case F_SETLKW:
3789	case F_OFD_GETLK:
3790	case F_OFD_SETLK:
3791	case F_OFD_SETLKW:
3792#if BITS_PER_LONG == 32
3793	case F_GETLK64:
3794	case F_SETLK64:
3795	case F_SETLKW64:
3796#endif
3797		err = file_has_perm(cred, file, FILE__LOCK);
3798		break;
3799	}
3800
3801	return err;
3802}
3803
3804static void selinux_file_set_fowner(struct file *file)
3805{
3806	struct file_security_struct *fsec;
3807
3808	fsec = selinux_file(file);
3809	fsec->fown_sid = current_sid();
3810}
3811
3812static int selinux_file_send_sigiotask(struct task_struct *tsk,
3813				       struct fown_struct *fown, int signum)
3814{
3815	struct file *file;
3816	u32 sid = task_sid(tsk);
3817	u32 perm;
3818	struct file_security_struct *fsec;
3819
3820	/* struct fown_struct is never outside the context of a struct file */
3821	file = container_of(fown, struct file, f_owner);
3822
3823	fsec = selinux_file(file);
3824
3825	if (!signum)
3826		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3827	else
3828		perm = signal_to_av(signum);
3829
3830	return avc_has_perm(&selinux_state,
3831			    fsec->fown_sid, sid,
3832			    SECCLASS_PROCESS, perm, NULL);
3833}
3834
3835static int selinux_file_receive(struct file *file)
3836{
3837	const struct cred *cred = current_cred();
3838
3839	return file_has_perm(cred, file, file_to_av(file));
3840}
3841
3842static int selinux_file_open(struct file *file)
3843{
3844	struct file_security_struct *fsec;
3845	struct inode_security_struct *isec;
3846
3847	fsec = selinux_file(file);
3848	isec = inode_security(file_inode(file));
3849	/*
3850	 * Save inode label and policy sequence number
3851	 * at open-time so that selinux_file_permission
3852	 * can determine whether revalidation is necessary.
3853	 * Task label is already saved in the file security
3854	 * struct as its SID.
3855	 */
3856	fsec->isid = isec->sid;
3857	fsec->pseqno = avc_policy_seqno(&selinux_state);
3858	/*
3859	 * Since the inode label or policy seqno may have changed
3860	 * between the selinux_inode_permission check and the saving
3861	 * of state above, recheck that access is still permitted.
3862	 * Otherwise, access might never be revalidated against the
3863	 * new inode label or new policy.
3864	 * This check is not redundant - do not remove.
3865	 */
3866	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3867}
3868
3869/* task security operations */
3870
3871static int selinux_task_alloc(struct task_struct *task,
3872			      unsigned long clone_flags)
3873{
3874	u32 sid = current_sid();
3875
3876	return avc_has_perm(&selinux_state,
3877			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3878}
3879
3880/*
3881 * prepare a new set of credentials for modification
3882 */
3883static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3884				gfp_t gfp)
3885{
3886	const struct task_security_struct *old_tsec = selinux_cred(old);
3887	struct task_security_struct *tsec = selinux_cred(new);
3888
3889	*tsec = *old_tsec;
3890	return 0;
3891}
3892
3893/*
3894 * transfer the SELinux data to a blank set of creds
3895 */
3896static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3897{
3898	const struct task_security_struct *old_tsec = selinux_cred(old);
3899	struct task_security_struct *tsec = selinux_cred(new);
3900
3901	*tsec = *old_tsec;
3902}
3903
3904static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3905{
3906	*secid = cred_sid(c);
3907}
3908
3909/*
3910 * set the security data for a kernel service
3911 * - all the creation contexts are set to unlabelled
3912 */
3913static int selinux_kernel_act_as(struct cred *new, u32 secid)
3914{
3915	struct task_security_struct *tsec = selinux_cred(new);
3916	u32 sid = current_sid();
3917	int ret;
3918
3919	ret = avc_has_perm(&selinux_state,
3920			   sid, secid,
3921			   SECCLASS_KERNEL_SERVICE,
3922			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3923			   NULL);
3924	if (ret == 0) {
3925		tsec->sid = secid;
3926		tsec->create_sid = 0;
3927		tsec->keycreate_sid = 0;
3928		tsec->sockcreate_sid = 0;
3929	}
3930	return ret;
3931}
3932
3933/*
3934 * set the file creation context in a security record to the same as the
3935 * objective context of the specified inode
3936 */
3937static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3938{
3939	struct inode_security_struct *isec = inode_security(inode);
3940	struct task_security_struct *tsec = selinux_cred(new);
3941	u32 sid = current_sid();
3942	int ret;
3943
3944	ret = avc_has_perm(&selinux_state,
3945			   sid, isec->sid,
3946			   SECCLASS_KERNEL_SERVICE,
3947			   KERNEL_SERVICE__CREATE_FILES_AS,
3948			   NULL);
3949
3950	if (ret == 0)
3951		tsec->create_sid = isec->sid;
3952	return ret;
3953}
3954
3955static int selinux_kernel_module_request(char *kmod_name)
3956{
3957	struct common_audit_data ad;
3958
3959	ad.type = LSM_AUDIT_DATA_KMOD;
3960	ad.u.kmod_name = kmod_name;
3961
3962	return avc_has_perm(&selinux_state,
3963			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3964			    SYSTEM__MODULE_REQUEST, &ad);
3965}
3966
3967static int selinux_kernel_module_from_file(struct file *file)
3968{
3969	struct common_audit_data ad;
3970	struct inode_security_struct *isec;
3971	struct file_security_struct *fsec;
3972	u32 sid = current_sid();
3973	int rc;
3974
3975	/* init_module */
3976	if (file == NULL)
3977		return avc_has_perm(&selinux_state,
3978				    sid, sid, SECCLASS_SYSTEM,
3979					SYSTEM__MODULE_LOAD, NULL);
3980
3981	/* finit_module */
3982
3983	ad.type = LSM_AUDIT_DATA_FILE;
3984	ad.u.file = file;
3985
3986	fsec = selinux_file(file);
3987	if (sid != fsec->sid) {
3988		rc = avc_has_perm(&selinux_state,
3989				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3990		if (rc)
3991			return rc;
3992	}
3993
3994	isec = inode_security(file_inode(file));
3995	return avc_has_perm(&selinux_state,
3996			    sid, isec->sid, SECCLASS_SYSTEM,
3997				SYSTEM__MODULE_LOAD, &ad);
3998}
3999
4000static int selinux_kernel_read_file(struct file *file,
4001				    enum kernel_read_file_id id)
 
4002{
4003	int rc = 0;
4004
4005	switch (id) {
4006	case READING_MODULE:
4007		rc = selinux_kernel_module_from_file(file);
4008		break;
4009	default:
4010		break;
4011	}
4012
4013	return rc;
4014}
4015
4016static int selinux_kernel_load_data(enum kernel_load_data_id id)
4017{
4018	int rc = 0;
4019
4020	switch (id) {
4021	case LOADING_MODULE:
4022		rc = selinux_kernel_module_from_file(NULL);
 
4023	default:
4024		break;
4025	}
4026
4027	return rc;
4028}
4029
4030static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4031{
4032	return avc_has_perm(&selinux_state,
4033			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4034			    PROCESS__SETPGID, NULL);
4035}
4036
4037static int selinux_task_getpgid(struct task_struct *p)
4038{
4039	return avc_has_perm(&selinux_state,
4040			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4041			    PROCESS__GETPGID, NULL);
4042}
4043
4044static int selinux_task_getsid(struct task_struct *p)
4045{
4046	return avc_has_perm(&selinux_state,
4047			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4048			    PROCESS__GETSESSION, NULL);
4049}
4050
4051static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4052{
4053	*secid = task_sid(p);
 
 
 
 
 
4054}
4055
4056static int selinux_task_setnice(struct task_struct *p, int nice)
4057{
4058	return avc_has_perm(&selinux_state,
4059			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4060			    PROCESS__SETSCHED, NULL);
4061}
4062
4063static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4064{
4065	return avc_has_perm(&selinux_state,
4066			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4067			    PROCESS__SETSCHED, NULL);
4068}
4069
4070static int selinux_task_getioprio(struct task_struct *p)
4071{
4072	return avc_has_perm(&selinux_state,
4073			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4074			    PROCESS__GETSCHED, NULL);
4075}
4076
4077static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4078				unsigned int flags)
4079{
4080	u32 av = 0;
4081
4082	if (!flags)
4083		return 0;
4084	if (flags & LSM_PRLIMIT_WRITE)
4085		av |= PROCESS__SETRLIMIT;
4086	if (flags & LSM_PRLIMIT_READ)
4087		av |= PROCESS__GETRLIMIT;
4088	return avc_has_perm(&selinux_state,
4089			    cred_sid(cred), cred_sid(tcred),
4090			    SECCLASS_PROCESS, av, NULL);
4091}
4092
4093static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4094		struct rlimit *new_rlim)
4095{
4096	struct rlimit *old_rlim = p->signal->rlim + resource;
4097
4098	/* Control the ability to change the hard limit (whether
4099	   lowering or raising it), so that the hard limit can
4100	   later be used as a safe reset point for the soft limit
4101	   upon context transitions.  See selinux_bprm_committing_creds. */
4102	if (old_rlim->rlim_max != new_rlim->rlim_max)
4103		return avc_has_perm(&selinux_state,
4104				    current_sid(), task_sid(p),
4105				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4106
4107	return 0;
4108}
4109
4110static int selinux_task_setscheduler(struct task_struct *p)
4111{
4112	return avc_has_perm(&selinux_state,
4113			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4114			    PROCESS__SETSCHED, NULL);
4115}
4116
4117static int selinux_task_getscheduler(struct task_struct *p)
4118{
4119	return avc_has_perm(&selinux_state,
4120			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4121			    PROCESS__GETSCHED, NULL);
4122}
4123
4124static int selinux_task_movememory(struct task_struct *p)
4125{
4126	return avc_has_perm(&selinux_state,
4127			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4128			    PROCESS__SETSCHED, NULL);
4129}
4130
4131static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4132				int sig, const struct cred *cred)
4133{
4134	u32 secid;
4135	u32 perm;
4136
4137	if (!sig)
4138		perm = PROCESS__SIGNULL; /* null signal; existence test */
4139	else
4140		perm = signal_to_av(sig);
4141	if (!cred)
4142		secid = current_sid();
4143	else
4144		secid = cred_sid(cred);
4145	return avc_has_perm(&selinux_state,
4146			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4147}
4148
4149static void selinux_task_to_inode(struct task_struct *p,
4150				  struct inode *inode)
4151{
4152	struct inode_security_struct *isec = selinux_inode(inode);
4153	u32 sid = task_sid(p);
4154
4155	spin_lock(&isec->lock);
4156	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4157	isec->sid = sid;
4158	isec->initialized = LABEL_INITIALIZED;
4159	spin_unlock(&isec->lock);
4160}
4161
 
 
 
 
 
 
 
 
4162/* Returns error only if unable to parse addresses */
4163static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4164			struct common_audit_data *ad, u8 *proto)
4165{
4166	int offset, ihlen, ret = -EINVAL;
4167	struct iphdr _iph, *ih;
4168
4169	offset = skb_network_offset(skb);
4170	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4171	if (ih == NULL)
4172		goto out;
4173
4174	ihlen = ih->ihl * 4;
4175	if (ihlen < sizeof(_iph))
4176		goto out;
4177
4178	ad->u.net->v4info.saddr = ih->saddr;
4179	ad->u.net->v4info.daddr = ih->daddr;
4180	ret = 0;
4181
4182	if (proto)
4183		*proto = ih->protocol;
4184
4185	switch (ih->protocol) {
4186	case IPPROTO_TCP: {
4187		struct tcphdr _tcph, *th;
4188
4189		if (ntohs(ih->frag_off) & IP_OFFSET)
4190			break;
4191
4192		offset += ihlen;
4193		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4194		if (th == NULL)
4195			break;
4196
4197		ad->u.net->sport = th->source;
4198		ad->u.net->dport = th->dest;
4199		break;
4200	}
4201
4202	case IPPROTO_UDP: {
4203		struct udphdr _udph, *uh;
4204
4205		if (ntohs(ih->frag_off) & IP_OFFSET)
4206			break;
4207
4208		offset += ihlen;
4209		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4210		if (uh == NULL)
4211			break;
4212
4213		ad->u.net->sport = uh->source;
4214		ad->u.net->dport = uh->dest;
4215		break;
4216	}
4217
4218	case IPPROTO_DCCP: {
4219		struct dccp_hdr _dccph, *dh;
4220
4221		if (ntohs(ih->frag_off) & IP_OFFSET)
4222			break;
4223
4224		offset += ihlen;
4225		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4226		if (dh == NULL)
4227			break;
4228
4229		ad->u.net->sport = dh->dccph_sport;
4230		ad->u.net->dport = dh->dccph_dport;
4231		break;
4232	}
4233
4234#if IS_ENABLED(CONFIG_IP_SCTP)
4235	case IPPROTO_SCTP: {
4236		struct sctphdr _sctph, *sh;
4237
4238		if (ntohs(ih->frag_off) & IP_OFFSET)
4239			break;
4240
4241		offset += ihlen;
4242		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4243		if (sh == NULL)
4244			break;
4245
4246		ad->u.net->sport = sh->source;
4247		ad->u.net->dport = sh->dest;
4248		break;
4249	}
4250#endif
4251	default:
4252		break;
4253	}
4254out:
4255	return ret;
4256}
4257
4258#if IS_ENABLED(CONFIG_IPV6)
4259
4260/* Returns error only if unable to parse addresses */
4261static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4262			struct common_audit_data *ad, u8 *proto)
4263{
4264	u8 nexthdr;
4265	int ret = -EINVAL, offset;
4266	struct ipv6hdr _ipv6h, *ip6;
4267	__be16 frag_off;
4268
4269	offset = skb_network_offset(skb);
4270	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4271	if (ip6 == NULL)
4272		goto out;
4273
4274	ad->u.net->v6info.saddr = ip6->saddr;
4275	ad->u.net->v6info.daddr = ip6->daddr;
4276	ret = 0;
4277
4278	nexthdr = ip6->nexthdr;
4279	offset += sizeof(_ipv6h);
4280	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4281	if (offset < 0)
4282		goto out;
4283
4284	if (proto)
4285		*proto = nexthdr;
4286
4287	switch (nexthdr) {
4288	case IPPROTO_TCP: {
4289		struct tcphdr _tcph, *th;
4290
4291		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4292		if (th == NULL)
4293			break;
4294
4295		ad->u.net->sport = th->source;
4296		ad->u.net->dport = th->dest;
4297		break;
4298	}
4299
4300	case IPPROTO_UDP: {
4301		struct udphdr _udph, *uh;
4302
4303		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4304		if (uh == NULL)
4305			break;
4306
4307		ad->u.net->sport = uh->source;
4308		ad->u.net->dport = uh->dest;
4309		break;
4310	}
4311
4312	case IPPROTO_DCCP: {
4313		struct dccp_hdr _dccph, *dh;
4314
4315		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316		if (dh == NULL)
4317			break;
4318
4319		ad->u.net->sport = dh->dccph_sport;
4320		ad->u.net->dport = dh->dccph_dport;
4321		break;
4322	}
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325	case IPPROTO_SCTP: {
4326		struct sctphdr _sctph, *sh;
4327
4328		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4329		if (sh == NULL)
4330			break;
4331
4332		ad->u.net->sport = sh->source;
4333		ad->u.net->dport = sh->dest;
4334		break;
4335	}
4336#endif
4337	/* includes fragments */
4338	default:
4339		break;
4340	}
4341out:
4342	return ret;
4343}
4344
4345#endif /* IPV6 */
4346
4347static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4348			     char **_addrp, int src, u8 *proto)
4349{
4350	char *addrp;
4351	int ret;
4352
4353	switch (ad->u.net->family) {
4354	case PF_INET:
4355		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4356		if (ret)
4357			goto parse_error;
4358		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4359				       &ad->u.net->v4info.daddr);
4360		goto okay;
4361
4362#if IS_ENABLED(CONFIG_IPV6)
4363	case PF_INET6:
4364		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4365		if (ret)
4366			goto parse_error;
4367		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4368				       &ad->u.net->v6info.daddr);
4369		goto okay;
4370#endif	/* IPV6 */
4371	default:
4372		addrp = NULL;
4373		goto okay;
4374	}
4375
4376parse_error:
4377	pr_warn(
4378	       "SELinux: failure in selinux_parse_skb(),"
4379	       " unable to parse packet\n");
4380	return ret;
4381
4382okay:
4383	if (_addrp)
4384		*_addrp = addrp;
4385	return 0;
4386}
4387
4388/**
4389 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4390 * @skb: the packet
4391 * @family: protocol family
4392 * @sid: the packet's peer label SID
4393 *
4394 * Description:
4395 * Check the various different forms of network peer labeling and determine
4396 * the peer label/SID for the packet; most of the magic actually occurs in
4397 * the security server function security_net_peersid_cmp().  The function
4398 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4399 * or -EACCES if @sid is invalid due to inconsistencies with the different
4400 * peer labels.
4401 *
4402 */
4403static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4404{
4405	int err;
4406	u32 xfrm_sid;
4407	u32 nlbl_sid;
4408	u32 nlbl_type;
4409
4410	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4411	if (unlikely(err))
4412		return -EACCES;
4413	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4414	if (unlikely(err))
4415		return -EACCES;
4416
4417	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4418					   nlbl_type, xfrm_sid, sid);
4419	if (unlikely(err)) {
4420		pr_warn(
4421		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4422		       " unable to determine packet's peer label\n");
4423		return -EACCES;
4424	}
4425
4426	return 0;
4427}
4428
4429/**
4430 * selinux_conn_sid - Determine the child socket label for a connection
4431 * @sk_sid: the parent socket's SID
4432 * @skb_sid: the packet's SID
4433 * @conn_sid: the resulting connection SID
4434 *
4435 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4436 * combined with the MLS information from @skb_sid in order to create
4437 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4438 * of @sk_sid.  Returns zero on success, negative values on failure.
4439 *
4440 */
4441static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4442{
4443	int err = 0;
4444
4445	if (skb_sid != SECSID_NULL)
4446		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4447					    conn_sid);
4448	else
4449		*conn_sid = sk_sid;
4450
4451	return err;
4452}
4453
4454/* socket security operations */
4455
4456static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4457				 u16 secclass, u32 *socksid)
4458{
4459	if (tsec->sockcreate_sid > SECSID_NULL) {
4460		*socksid = tsec->sockcreate_sid;
4461		return 0;
4462	}
4463
4464	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4465				       secclass, NULL, socksid);
4466}
4467
4468static int sock_has_perm(struct sock *sk, u32 perms)
4469{
4470	struct sk_security_struct *sksec = sk->sk_security;
4471	struct common_audit_data ad;
4472	struct lsm_network_audit net = {0,};
4473
4474	if (sksec->sid == SECINITSID_KERNEL)
4475		return 0;
4476
4477	ad.type = LSM_AUDIT_DATA_NET;
4478	ad.u.net = &net;
4479	ad.u.net->sk = sk;
4480
4481	return avc_has_perm(&selinux_state,
4482			    current_sid(), sksec->sid, sksec->sclass, perms,
4483			    &ad);
4484}
4485
4486static int selinux_socket_create(int family, int type,
4487				 int protocol, int kern)
4488{
4489	const struct task_security_struct *tsec = selinux_cred(current_cred());
4490	u32 newsid;
4491	u16 secclass;
4492	int rc;
4493
4494	if (kern)
4495		return 0;
4496
4497	secclass = socket_type_to_security_class(family, type, protocol);
4498	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4499	if (rc)
4500		return rc;
4501
4502	return avc_has_perm(&selinux_state,
4503			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4504}
4505
4506static int selinux_socket_post_create(struct socket *sock, int family,
4507				      int type, int protocol, int kern)
4508{
4509	const struct task_security_struct *tsec = selinux_cred(current_cred());
4510	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4511	struct sk_security_struct *sksec;
4512	u16 sclass = socket_type_to_security_class(family, type, protocol);
4513	u32 sid = SECINITSID_KERNEL;
4514	int err = 0;
4515
4516	if (!kern) {
4517		err = socket_sockcreate_sid(tsec, sclass, &sid);
4518		if (err)
4519			return err;
4520	}
4521
4522	isec->sclass = sclass;
4523	isec->sid = sid;
4524	isec->initialized = LABEL_INITIALIZED;
4525
4526	if (sock->sk) {
4527		sksec = sock->sk->sk_security;
4528		sksec->sclass = sclass;
4529		sksec->sid = sid;
4530		/* Allows detection of the first association on this socket */
4531		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4532			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4533
4534		err = selinux_netlbl_socket_post_create(sock->sk, family);
4535	}
4536
4537	return err;
4538}
4539
4540static int selinux_socket_socketpair(struct socket *socka,
4541				     struct socket *sockb)
4542{
4543	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4544	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4545
4546	sksec_a->peer_sid = sksec_b->sid;
4547	sksec_b->peer_sid = sksec_a->sid;
4548
4549	return 0;
4550}
4551
4552/* Range of port numbers used to automatically bind.
4553   Need to determine whether we should perform a name_bind
4554   permission check between the socket and the port number. */
4555
4556static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4557{
4558	struct sock *sk = sock->sk;
4559	struct sk_security_struct *sksec = sk->sk_security;
4560	u16 family;
4561	int err;
4562
4563	err = sock_has_perm(sk, SOCKET__BIND);
4564	if (err)
4565		goto out;
4566
4567	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4568	family = sk->sk_family;
4569	if (family == PF_INET || family == PF_INET6) {
4570		char *addrp;
4571		struct common_audit_data ad;
4572		struct lsm_network_audit net = {0,};
4573		struct sockaddr_in *addr4 = NULL;
4574		struct sockaddr_in6 *addr6 = NULL;
4575		u16 family_sa;
4576		unsigned short snum;
4577		u32 sid, node_perm;
4578
4579		/*
4580		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4581		 * that validates multiple binding addresses. Because of this
4582		 * need to check address->sa_family as it is possible to have
4583		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4584		 */
4585		if (addrlen < offsetofend(struct sockaddr, sa_family))
4586			return -EINVAL;
4587		family_sa = address->sa_family;
4588		switch (family_sa) {
4589		case AF_UNSPEC:
4590		case AF_INET:
4591			if (addrlen < sizeof(struct sockaddr_in))
4592				return -EINVAL;
4593			addr4 = (struct sockaddr_in *)address;
4594			if (family_sa == AF_UNSPEC) {
4595				/* see __inet_bind(), we only want to allow
4596				 * AF_UNSPEC if the address is INADDR_ANY
4597				 */
4598				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4599					goto err_af;
4600				family_sa = AF_INET;
4601			}
4602			snum = ntohs(addr4->sin_port);
4603			addrp = (char *)&addr4->sin_addr.s_addr;
4604			break;
4605		case AF_INET6:
4606			if (addrlen < SIN6_LEN_RFC2133)
4607				return -EINVAL;
4608			addr6 = (struct sockaddr_in6 *)address;
4609			snum = ntohs(addr6->sin6_port);
4610			addrp = (char *)&addr6->sin6_addr.s6_addr;
4611			break;
4612		default:
4613			goto err_af;
4614		}
4615
4616		ad.type = LSM_AUDIT_DATA_NET;
4617		ad.u.net = &net;
4618		ad.u.net->sport = htons(snum);
4619		ad.u.net->family = family_sa;
4620
4621		if (snum) {
4622			int low, high;
4623
4624			inet_get_local_port_range(sock_net(sk), &low, &high);
4625
4626			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4627			    snum > high) {
4628				err = sel_netport_sid(sk->sk_protocol,
4629						      snum, &sid);
4630				if (err)
4631					goto out;
4632				err = avc_has_perm(&selinux_state,
4633						   sksec->sid, sid,
4634						   sksec->sclass,
4635						   SOCKET__NAME_BIND, &ad);
4636				if (err)
4637					goto out;
4638			}
4639		}
4640
4641		switch (sksec->sclass) {
4642		case SECCLASS_TCP_SOCKET:
4643			node_perm = TCP_SOCKET__NODE_BIND;
4644			break;
4645
4646		case SECCLASS_UDP_SOCKET:
4647			node_perm = UDP_SOCKET__NODE_BIND;
4648			break;
4649
4650		case SECCLASS_DCCP_SOCKET:
4651			node_perm = DCCP_SOCKET__NODE_BIND;
4652			break;
4653
4654		case SECCLASS_SCTP_SOCKET:
4655			node_perm = SCTP_SOCKET__NODE_BIND;
4656			break;
4657
4658		default:
4659			node_perm = RAWIP_SOCKET__NODE_BIND;
4660			break;
4661		}
4662
4663		err = sel_netnode_sid(addrp, family_sa, &sid);
4664		if (err)
4665			goto out;
4666
4667		if (family_sa == AF_INET)
4668			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4669		else
4670			ad.u.net->v6info.saddr = addr6->sin6_addr;
4671
4672		err = avc_has_perm(&selinux_state,
4673				   sksec->sid, sid,
4674				   sksec->sclass, node_perm, &ad);
4675		if (err)
4676			goto out;
4677	}
4678out:
4679	return err;
4680err_af:
4681	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4682	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683		return -EINVAL;
4684	return -EAFNOSUPPORT;
4685}
4686
4687/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4688 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4689 */
4690static int selinux_socket_connect_helper(struct socket *sock,
4691					 struct sockaddr *address, int addrlen)
4692{
4693	struct sock *sk = sock->sk;
4694	struct sk_security_struct *sksec = sk->sk_security;
4695	int err;
4696
4697	err = sock_has_perm(sk, SOCKET__CONNECT);
4698	if (err)
4699		return err;
4700	if (addrlen < offsetofend(struct sockaddr, sa_family))
4701		return -EINVAL;
4702
4703	/* connect(AF_UNSPEC) has special handling, as it is a documented
4704	 * way to disconnect the socket
4705	 */
4706	if (address->sa_family == AF_UNSPEC)
4707		return 0;
4708
4709	/*
4710	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4711	 * for the port.
4712	 */
4713	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4714	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4715	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4716		struct common_audit_data ad;
4717		struct lsm_network_audit net = {0,};
4718		struct sockaddr_in *addr4 = NULL;
4719		struct sockaddr_in6 *addr6 = NULL;
4720		unsigned short snum;
4721		u32 sid, perm;
4722
4723		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4724		 * that validates multiple connect addresses. Because of this
4725		 * need to check address->sa_family as it is possible to have
4726		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4727		 */
4728		switch (address->sa_family) {
4729		case AF_INET:
4730			addr4 = (struct sockaddr_in *)address;
4731			if (addrlen < sizeof(struct sockaddr_in))
4732				return -EINVAL;
4733			snum = ntohs(addr4->sin_port);
4734			break;
4735		case AF_INET6:
4736			addr6 = (struct sockaddr_in6 *)address;
4737			if (addrlen < SIN6_LEN_RFC2133)
4738				return -EINVAL;
4739			snum = ntohs(addr6->sin6_port);
4740			break;
4741		default:
4742			/* Note that SCTP services expect -EINVAL, whereas
4743			 * others expect -EAFNOSUPPORT.
4744			 */
4745			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4746				return -EINVAL;
4747			else
4748				return -EAFNOSUPPORT;
4749		}
4750
4751		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4752		if (err)
4753			return err;
4754
4755		switch (sksec->sclass) {
4756		case SECCLASS_TCP_SOCKET:
4757			perm = TCP_SOCKET__NAME_CONNECT;
4758			break;
4759		case SECCLASS_DCCP_SOCKET:
4760			perm = DCCP_SOCKET__NAME_CONNECT;
4761			break;
4762		case SECCLASS_SCTP_SOCKET:
4763			perm = SCTP_SOCKET__NAME_CONNECT;
4764			break;
4765		}
4766
4767		ad.type = LSM_AUDIT_DATA_NET;
4768		ad.u.net = &net;
4769		ad.u.net->dport = htons(snum);
4770		ad.u.net->family = address->sa_family;
4771		err = avc_has_perm(&selinux_state,
4772				   sksec->sid, sid, sksec->sclass, perm, &ad);
4773		if (err)
4774			return err;
4775	}
4776
4777	return 0;
4778}
4779
4780/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4781static int selinux_socket_connect(struct socket *sock,
4782				  struct sockaddr *address, int addrlen)
4783{
4784	int err;
4785	struct sock *sk = sock->sk;
4786
4787	err = selinux_socket_connect_helper(sock, address, addrlen);
4788	if (err)
4789		return err;
4790
4791	return selinux_netlbl_socket_connect(sk, address);
4792}
4793
4794static int selinux_socket_listen(struct socket *sock, int backlog)
4795{
4796	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4797}
4798
4799static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4800{
4801	int err;
4802	struct inode_security_struct *isec;
4803	struct inode_security_struct *newisec;
4804	u16 sclass;
4805	u32 sid;
4806
4807	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4808	if (err)
4809		return err;
4810
4811	isec = inode_security_novalidate(SOCK_INODE(sock));
4812	spin_lock(&isec->lock);
4813	sclass = isec->sclass;
4814	sid = isec->sid;
4815	spin_unlock(&isec->lock);
4816
4817	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4818	newisec->sclass = sclass;
4819	newisec->sid = sid;
4820	newisec->initialized = LABEL_INITIALIZED;
4821
4822	return 0;
4823}
4824
4825static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4826				  int size)
4827{
4828	return sock_has_perm(sock->sk, SOCKET__WRITE);
4829}
4830
4831static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4832				  int size, int flags)
4833{
4834	return sock_has_perm(sock->sk, SOCKET__READ);
4835}
4836
4837static int selinux_socket_getsockname(struct socket *sock)
4838{
4839	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4840}
4841
4842static int selinux_socket_getpeername(struct socket *sock)
4843{
4844	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4845}
4846
4847static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4848{
4849	int err;
4850
4851	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4852	if (err)
4853		return err;
4854
4855	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4856}
4857
4858static int selinux_socket_getsockopt(struct socket *sock, int level,
4859				     int optname)
4860{
4861	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4862}
4863
4864static int selinux_socket_shutdown(struct socket *sock, int how)
4865{
4866	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4867}
4868
4869static int selinux_socket_unix_stream_connect(struct sock *sock,
4870					      struct sock *other,
4871					      struct sock *newsk)
4872{
4873	struct sk_security_struct *sksec_sock = sock->sk_security;
4874	struct sk_security_struct *sksec_other = other->sk_security;
4875	struct sk_security_struct *sksec_new = newsk->sk_security;
4876	struct common_audit_data ad;
4877	struct lsm_network_audit net = {0,};
4878	int err;
4879
4880	ad.type = LSM_AUDIT_DATA_NET;
4881	ad.u.net = &net;
4882	ad.u.net->sk = other;
4883
4884	err = avc_has_perm(&selinux_state,
4885			   sksec_sock->sid, sksec_other->sid,
4886			   sksec_other->sclass,
4887			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4888	if (err)
4889		return err;
4890
4891	/* server child socket */
4892	sksec_new->peer_sid = sksec_sock->sid;
4893	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4894				    sksec_sock->sid, &sksec_new->sid);
4895	if (err)
4896		return err;
4897
4898	/* connecting socket */
4899	sksec_sock->peer_sid = sksec_new->sid;
4900
4901	return 0;
4902}
4903
4904static int selinux_socket_unix_may_send(struct socket *sock,
4905					struct socket *other)
4906{
4907	struct sk_security_struct *ssec = sock->sk->sk_security;
4908	struct sk_security_struct *osec = other->sk->sk_security;
4909	struct common_audit_data ad;
4910	struct lsm_network_audit net = {0,};
4911
4912	ad.type = LSM_AUDIT_DATA_NET;
4913	ad.u.net = &net;
4914	ad.u.net->sk = other->sk;
4915
4916	return avc_has_perm(&selinux_state,
4917			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4918			    &ad);
4919}
4920
4921static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4922				    char *addrp, u16 family, u32 peer_sid,
4923				    struct common_audit_data *ad)
4924{
4925	int err;
4926	u32 if_sid;
4927	u32 node_sid;
4928
4929	err = sel_netif_sid(ns, ifindex, &if_sid);
4930	if (err)
4931		return err;
4932	err = avc_has_perm(&selinux_state,
4933			   peer_sid, if_sid,
4934			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4935	if (err)
4936		return err;
4937
4938	err = sel_netnode_sid(addrp, family, &node_sid);
4939	if (err)
4940		return err;
4941	return avc_has_perm(&selinux_state,
4942			    peer_sid, node_sid,
4943			    SECCLASS_NODE, NODE__RECVFROM, ad);
4944}
4945
4946static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4947				       u16 family)
4948{
4949	int err = 0;
4950	struct sk_security_struct *sksec = sk->sk_security;
4951	u32 sk_sid = sksec->sid;
4952	struct common_audit_data ad;
4953	struct lsm_network_audit net = {0,};
4954	char *addrp;
4955
4956	ad.type = LSM_AUDIT_DATA_NET;
4957	ad.u.net = &net;
4958	ad.u.net->netif = skb->skb_iif;
4959	ad.u.net->family = family;
4960	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4961	if (err)
4962		return err;
4963
4964	if (selinux_secmark_enabled()) {
4965		err = avc_has_perm(&selinux_state,
4966				   sk_sid, skb->secmark, SECCLASS_PACKET,
4967				   PACKET__RECV, &ad);
4968		if (err)
4969			return err;
4970	}
4971
4972	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4973	if (err)
4974		return err;
4975	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4976
4977	return err;
4978}
4979
4980static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4981{
4982	int err;
4983	struct sk_security_struct *sksec = sk->sk_security;
4984	u16 family = sk->sk_family;
4985	u32 sk_sid = sksec->sid;
4986	struct common_audit_data ad;
4987	struct lsm_network_audit net = {0,};
4988	char *addrp;
4989	u8 secmark_active;
4990	u8 peerlbl_active;
4991
4992	if (family != PF_INET && family != PF_INET6)
4993		return 0;
4994
4995	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4996	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4997		family = PF_INET;
4998
4999	/* If any sort of compatibility mode is enabled then handoff processing
5000	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5001	 * special handling.  We do this in an attempt to keep this function
5002	 * as fast and as clean as possible. */
5003	if (!selinux_policycap_netpeer())
5004		return selinux_sock_rcv_skb_compat(sk, skb, family);
5005
5006	secmark_active = selinux_secmark_enabled();
5007	peerlbl_active = selinux_peerlbl_enabled();
5008	if (!secmark_active && !peerlbl_active)
5009		return 0;
5010
5011	ad.type = LSM_AUDIT_DATA_NET;
5012	ad.u.net = &net;
5013	ad.u.net->netif = skb->skb_iif;
5014	ad.u.net->family = family;
5015	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5016	if (err)
5017		return err;
5018
5019	if (peerlbl_active) {
5020		u32 peer_sid;
5021
5022		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5023		if (err)
5024			return err;
5025		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5026					       addrp, family, peer_sid, &ad);
5027		if (err) {
5028			selinux_netlbl_err(skb, family, err, 0);
5029			return err;
5030		}
5031		err = avc_has_perm(&selinux_state,
5032				   sk_sid, peer_sid, SECCLASS_PEER,
5033				   PEER__RECV, &ad);
5034		if (err) {
5035			selinux_netlbl_err(skb, family, err, 0);
5036			return err;
5037		}
5038	}
5039
5040	if (secmark_active) {
5041		err = avc_has_perm(&selinux_state,
5042				   sk_sid, skb->secmark, SECCLASS_PACKET,
5043				   PACKET__RECV, &ad);
5044		if (err)
5045			return err;
5046	}
5047
5048	return err;
5049}
5050
5051static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5052					    int __user *optlen, unsigned len)
 
5053{
5054	int err = 0;
5055	char *scontext;
5056	u32 scontext_len;
5057	struct sk_security_struct *sksec = sock->sk->sk_security;
5058	u32 peer_sid = SECSID_NULL;
5059
5060	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5061	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5062	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5063		peer_sid = sksec->peer_sid;
5064	if (peer_sid == SECSID_NULL)
5065		return -ENOPROTOOPT;
5066
5067	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5068				      &scontext_len);
5069	if (err)
5070		return err;
5071
5072	if (scontext_len > len) {
5073		err = -ERANGE;
5074		goto out_len;
5075	}
5076
5077	if (copy_to_user(optval, scontext, scontext_len))
5078		err = -EFAULT;
5079
5080out_len:
5081	if (put_user(scontext_len, optlen))
5082		err = -EFAULT;
5083	kfree(scontext);
5084	return err;
5085}
5086
5087static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5088{
5089	u32 peer_secid = SECSID_NULL;
5090	u16 family;
5091	struct inode_security_struct *isec;
5092
5093	if (skb && skb->protocol == htons(ETH_P_IP))
5094		family = PF_INET;
5095	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5096		family = PF_INET6;
5097	else if (sock)
5098		family = sock->sk->sk_family;
5099	else
5100		goto out;
5101
5102	if (sock && family == PF_UNIX) {
5103		isec = inode_security_novalidate(SOCK_INODE(sock));
5104		peer_secid = isec->sid;
5105	} else if (skb)
5106		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5107
5108out:
5109	*secid = peer_secid;
5110	if (peer_secid == SECSID_NULL)
5111		return -EINVAL;
5112	return 0;
5113}
5114
5115static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5116{
5117	struct sk_security_struct *sksec;
5118
5119	sksec = kzalloc(sizeof(*sksec), priority);
5120	if (!sksec)
5121		return -ENOMEM;
5122
5123	sksec->peer_sid = SECINITSID_UNLABELED;
5124	sksec->sid = SECINITSID_UNLABELED;
5125	sksec->sclass = SECCLASS_SOCKET;
5126	selinux_netlbl_sk_security_reset(sksec);
5127	sk->sk_security = sksec;
5128
5129	return 0;
5130}
5131
5132static void selinux_sk_free_security(struct sock *sk)
5133{
5134	struct sk_security_struct *sksec = sk->sk_security;
5135
5136	sk->sk_security = NULL;
5137	selinux_netlbl_sk_security_free(sksec);
5138	kfree(sksec);
5139}
5140
5141static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5142{
5143	struct sk_security_struct *sksec = sk->sk_security;
5144	struct sk_security_struct *newsksec = newsk->sk_security;
5145
5146	newsksec->sid = sksec->sid;
5147	newsksec->peer_sid = sksec->peer_sid;
5148	newsksec->sclass = sksec->sclass;
5149
5150	selinux_netlbl_sk_security_reset(newsksec);
5151}
5152
5153static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5154{
5155	if (!sk)
5156		*secid = SECINITSID_ANY_SOCKET;
5157	else {
5158		struct sk_security_struct *sksec = sk->sk_security;
5159
5160		*secid = sksec->sid;
5161	}
5162}
5163
5164static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5165{
5166	struct inode_security_struct *isec =
5167		inode_security_novalidate(SOCK_INODE(parent));
5168	struct sk_security_struct *sksec = sk->sk_security;
5169
5170	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5171	    sk->sk_family == PF_UNIX)
5172		isec->sid = sksec->sid;
5173	sksec->sclass = isec->sclass;
5174}
5175
5176/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5177 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5178 * already present).
5179 */
5180static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5181				      struct sk_buff *skb)
5182{
5183	struct sk_security_struct *sksec = ep->base.sk->sk_security;
 
 
5184	struct common_audit_data ad;
5185	struct lsm_network_audit net = {0,};
5186	u8 peerlbl_active;
5187	u32 peer_sid = SECINITSID_UNLABELED;
5188	u32 conn_sid;
5189	int err = 0;
5190
5191	if (!selinux_policycap_extsockclass())
5192		return 0;
 
5193
5194	peerlbl_active = selinux_peerlbl_enabled();
 
5195
5196	if (peerlbl_active) {
5197		/* This will return peer_sid = SECSID_NULL if there are
5198		 * no peer labels, see security_net_peersid_resolve().
5199		 */
5200		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5201					      &peer_sid);
5202		if (err)
5203			return err;
5204
5205		if (peer_sid == SECSID_NULL)
5206			peer_sid = SECINITSID_UNLABELED;
 
 
5207	}
5208
5209	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5210		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5211
5212		/* Here as first association on socket. As the peer SID
5213		 * was allowed by peer recv (and the netif/node checks),
5214		 * then it is approved by policy and used as the primary
5215		 * peer SID for getpeercon(3).
5216		 */
5217		sksec->peer_sid = peer_sid;
5218	} else if  (sksec->peer_sid != peer_sid) {
5219		/* Other association peer SIDs are checked to enforce
5220		 * consistency among the peer SIDs.
5221		 */
5222		ad.type = LSM_AUDIT_DATA_NET;
5223		ad.u.net = &net;
5224		ad.u.net->sk = ep->base.sk;
5225		err = avc_has_perm(&selinux_state,
5226				   sksec->peer_sid, peer_sid, sksec->sclass,
5227				   SCTP_SOCKET__ASSOCIATION, &ad);
 
5228		if (err)
5229			return err;
5230	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5231
5232	/* Compute the MLS component for the connection and store
5233	 * the information in ep. This will be used by SCTP TCP type
5234	 * sockets and peeled off connections as they cause a new
5235	 * socket to be generated. selinux_sctp_sk_clone() will then
5236	 * plug this into the new socket.
5237	 */
5238	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5239	if (err)
5240		return err;
5241
5242	ep->secid = conn_sid;
5243	ep->peer_secid = peer_sid;
5244
5245	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5246	return selinux_netlbl_sctp_assoc_request(ep, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5247}
5248
5249/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5250 * based on their @optname.
5251 */
5252static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5253				     struct sockaddr *address,
5254				     int addrlen)
5255{
5256	int len, err = 0, walk_size = 0;
5257	void *addr_buf;
5258	struct sockaddr *addr;
5259	struct socket *sock;
5260
5261	if (!selinux_policycap_extsockclass())
5262		return 0;
5263
5264	/* Process one or more addresses that may be IPv4 or IPv6 */
5265	sock = sk->sk_socket;
5266	addr_buf = address;
5267
5268	while (walk_size < addrlen) {
5269		if (walk_size + sizeof(sa_family_t) > addrlen)
5270			return -EINVAL;
5271
5272		addr = addr_buf;
5273		switch (addr->sa_family) {
5274		case AF_UNSPEC:
5275		case AF_INET:
5276			len = sizeof(struct sockaddr_in);
5277			break;
5278		case AF_INET6:
5279			len = sizeof(struct sockaddr_in6);
5280			break;
5281		default:
5282			return -EINVAL;
5283		}
5284
5285		if (walk_size + len > addrlen)
5286			return -EINVAL;
5287
5288		err = -EINVAL;
5289		switch (optname) {
5290		/* Bind checks */
5291		case SCTP_PRIMARY_ADDR:
5292		case SCTP_SET_PEER_PRIMARY_ADDR:
5293		case SCTP_SOCKOPT_BINDX_ADD:
5294			err = selinux_socket_bind(sock, addr, len);
5295			break;
5296		/* Connect checks */
5297		case SCTP_SOCKOPT_CONNECTX:
5298		case SCTP_PARAM_SET_PRIMARY:
5299		case SCTP_PARAM_ADD_IP:
5300		case SCTP_SENDMSG_CONNECT:
5301			err = selinux_socket_connect_helper(sock, addr, len);
5302			if (err)
5303				return err;
5304
5305			/* As selinux_sctp_bind_connect() is called by the
5306			 * SCTP protocol layer, the socket is already locked,
5307			 * therefore selinux_netlbl_socket_connect_locked() is
5308			 * is called here. The situations handled are:
5309			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5310			 * whenever a new IP address is added or when a new
5311			 * primary address is selected.
5312			 * Note that an SCTP connect(2) call happens before
5313			 * the SCTP protocol layer and is handled via
5314			 * selinux_socket_connect().
5315			 */
5316			err = selinux_netlbl_socket_connect_locked(sk, addr);
5317			break;
5318		}
5319
5320		if (err)
5321			return err;
5322
5323		addr_buf += len;
5324		walk_size += len;
5325	}
5326
5327	return 0;
5328}
5329
5330/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5331static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5332				  struct sock *newsk)
5333{
5334	struct sk_security_struct *sksec = sk->sk_security;
5335	struct sk_security_struct *newsksec = newsk->sk_security;
5336
5337	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5338	 * the non-sctp clone version.
5339	 */
5340	if (!selinux_policycap_extsockclass())
5341		return selinux_sk_clone_security(sk, newsk);
5342
5343	newsksec->sid = ep->secid;
5344	newsksec->peer_sid = ep->peer_secid;
5345	newsksec->sclass = sksec->sclass;
5346	selinux_netlbl_sctp_sk_clone(sk, newsk);
5347}
5348
5349static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5350				     struct request_sock *req)
5351{
5352	struct sk_security_struct *sksec = sk->sk_security;
5353	int err;
5354	u16 family = req->rsk_ops->family;
5355	u32 connsid;
5356	u32 peersid;
5357
5358	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5359	if (err)
5360		return err;
5361	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5362	if (err)
5363		return err;
5364	req->secid = connsid;
5365	req->peer_secid = peersid;
5366
5367	return selinux_netlbl_inet_conn_request(req, family);
5368}
5369
5370static void selinux_inet_csk_clone(struct sock *newsk,
5371				   const struct request_sock *req)
5372{
5373	struct sk_security_struct *newsksec = newsk->sk_security;
5374
5375	newsksec->sid = req->secid;
5376	newsksec->peer_sid = req->peer_secid;
5377	/* NOTE: Ideally, we should also get the isec->sid for the
5378	   new socket in sync, but we don't have the isec available yet.
5379	   So we will wait until sock_graft to do it, by which
5380	   time it will have been created and available. */
5381
5382	/* We don't need to take any sort of lock here as we are the only
5383	 * thread with access to newsksec */
5384	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5385}
5386
5387static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5388{
5389	u16 family = sk->sk_family;
5390	struct sk_security_struct *sksec = sk->sk_security;
5391
5392	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5393	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5394		family = PF_INET;
5395
5396	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5397}
5398
5399static int selinux_secmark_relabel_packet(u32 sid)
5400{
5401	const struct task_security_struct *__tsec;
5402	u32 tsid;
5403
5404	__tsec = selinux_cred(current_cred());
5405	tsid = __tsec->sid;
5406
5407	return avc_has_perm(&selinux_state,
5408			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5409			    NULL);
5410}
5411
5412static void selinux_secmark_refcount_inc(void)
5413{
5414	atomic_inc(&selinux_secmark_refcount);
5415}
5416
5417static void selinux_secmark_refcount_dec(void)
5418{
5419	atomic_dec(&selinux_secmark_refcount);
5420}
5421
5422static void selinux_req_classify_flow(const struct request_sock *req,
5423				      struct flowi *fl)
5424{
5425	fl->flowi_secid = req->secid;
5426}
5427
5428static int selinux_tun_dev_alloc_security(void **security)
5429{
5430	struct tun_security_struct *tunsec;
5431
5432	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5433	if (!tunsec)
5434		return -ENOMEM;
5435	tunsec->sid = current_sid();
5436
5437	*security = tunsec;
5438	return 0;
5439}
5440
5441static void selinux_tun_dev_free_security(void *security)
5442{
5443	kfree(security);
5444}
5445
5446static int selinux_tun_dev_create(void)
5447{
5448	u32 sid = current_sid();
5449
5450	/* we aren't taking into account the "sockcreate" SID since the socket
5451	 * that is being created here is not a socket in the traditional sense,
5452	 * instead it is a private sock, accessible only to the kernel, and
5453	 * representing a wide range of network traffic spanning multiple
5454	 * connections unlike traditional sockets - check the TUN driver to
5455	 * get a better understanding of why this socket is special */
5456
5457	return avc_has_perm(&selinux_state,
5458			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5459			    NULL);
5460}
5461
5462static int selinux_tun_dev_attach_queue(void *security)
5463{
5464	struct tun_security_struct *tunsec = security;
5465
5466	return avc_has_perm(&selinux_state,
5467			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5468			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5469}
5470
5471static int selinux_tun_dev_attach(struct sock *sk, void *security)
5472{
5473	struct tun_security_struct *tunsec = security;
5474	struct sk_security_struct *sksec = sk->sk_security;
5475
5476	/* we don't currently perform any NetLabel based labeling here and it
5477	 * isn't clear that we would want to do so anyway; while we could apply
5478	 * labeling without the support of the TUN user the resulting labeled
5479	 * traffic from the other end of the connection would almost certainly
5480	 * cause confusion to the TUN user that had no idea network labeling
5481	 * protocols were being used */
5482
5483	sksec->sid = tunsec->sid;
5484	sksec->sclass = SECCLASS_TUN_SOCKET;
5485
5486	return 0;
5487}
5488
5489static int selinux_tun_dev_open(void *security)
5490{
5491	struct tun_security_struct *tunsec = security;
5492	u32 sid = current_sid();
5493	int err;
5494
5495	err = avc_has_perm(&selinux_state,
5496			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5497			   TUN_SOCKET__RELABELFROM, NULL);
5498	if (err)
5499		return err;
5500	err = avc_has_perm(&selinux_state,
5501			   sid, sid, SECCLASS_TUN_SOCKET,
5502			   TUN_SOCKET__RELABELTO, NULL);
5503	if (err)
5504		return err;
5505	tunsec->sid = sid;
5506
5507	return 0;
5508}
5509
5510static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5511{
5512	int err = 0;
5513	u32 perm;
5514	struct nlmsghdr *nlh;
5515	struct sk_security_struct *sksec = sk->sk_security;
5516
5517	if (skb->len < NLMSG_HDRLEN) {
5518		err = -EINVAL;
5519		goto out;
5520	}
5521	nlh = nlmsg_hdr(skb);
5522
5523	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5524	if (err) {
5525		if (err == -EINVAL) {
5526			pr_warn_ratelimited("SELinux: unrecognized netlink"
5527			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5528			       " pig=%d comm=%s\n",
5529			       sk->sk_protocol, nlh->nlmsg_type,
5530			       secclass_map[sksec->sclass - 1].name,
5531			       task_pid_nr(current), current->comm);
5532			if (!enforcing_enabled(&selinux_state) ||
5533			    security_get_allow_unknown(&selinux_state))
5534				err = 0;
5535		}
5536
5537		/* Ignore */
5538		if (err == -ENOENT)
5539			err = 0;
5540		goto out;
5541	}
5542
5543	err = sock_has_perm(sk, perm);
5544out:
5545	return err;
5546}
5547
5548#ifdef CONFIG_NETFILTER
5549
5550static unsigned int selinux_ip_forward(struct sk_buff *skb,
5551				       const struct net_device *indev,
5552				       u16 family)
5553{
5554	int err;
 
5555	char *addrp;
5556	u32 peer_sid;
5557	struct common_audit_data ad;
5558	struct lsm_network_audit net = {0,};
5559	u8 secmark_active;
5560	u8 netlbl_active;
5561	u8 peerlbl_active;
5562
5563	if (!selinux_policycap_netpeer())
5564		return NF_ACCEPT;
5565
5566	secmark_active = selinux_secmark_enabled();
5567	netlbl_active = netlbl_enabled();
5568	peerlbl_active = selinux_peerlbl_enabled();
5569	if (!secmark_active && !peerlbl_active)
5570		return NF_ACCEPT;
5571
 
5572	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5573		return NF_DROP;
5574
 
5575	ad.type = LSM_AUDIT_DATA_NET;
5576	ad.u.net = &net;
5577	ad.u.net->netif = indev->ifindex;
5578	ad.u.net->family = family;
5579	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5580		return NF_DROP;
5581
5582	if (peerlbl_active) {
5583		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
 
 
5584					       addrp, family, peer_sid, &ad);
5585		if (err) {
5586			selinux_netlbl_err(skb, family, err, 1);
5587			return NF_DROP;
5588		}
5589	}
5590
5591	if (secmark_active)
5592		if (avc_has_perm(&selinux_state,
5593				 peer_sid, skb->secmark,
5594				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5595			return NF_DROP;
5596
5597	if (netlbl_active)
5598		/* we do this in the FORWARD path and not the POST_ROUTING
5599		 * path because we want to make sure we apply the necessary
5600		 * labeling before IPsec is applied so we can leverage AH
5601		 * protection */
5602		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5603			return NF_DROP;
5604
5605	return NF_ACCEPT;
5606}
5607
5608static unsigned int selinux_ipv4_forward(void *priv,
5609					 struct sk_buff *skb,
5610					 const struct nf_hook_state *state)
5611{
5612	return selinux_ip_forward(skb, state->in, PF_INET);
5613}
5614
5615#if IS_ENABLED(CONFIG_IPV6)
5616static unsigned int selinux_ipv6_forward(void *priv,
5617					 struct sk_buff *skb,
5618					 const struct nf_hook_state *state)
5619{
5620	return selinux_ip_forward(skb, state->in, PF_INET6);
5621}
5622#endif	/* IPV6 */
5623
5624static unsigned int selinux_ip_output(struct sk_buff *skb,
5625				      u16 family)
5626{
5627	struct sock *sk;
5628	u32 sid;
5629
5630	if (!netlbl_enabled())
5631		return NF_ACCEPT;
5632
5633	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5634	 * because we want to make sure we apply the necessary labeling
5635	 * before IPsec is applied so we can leverage AH protection */
5636	sk = skb->sk;
5637	if (sk) {
5638		struct sk_security_struct *sksec;
5639
5640		if (sk_listener(sk))
5641			/* if the socket is the listening state then this
5642			 * packet is a SYN-ACK packet which means it needs to
5643			 * be labeled based on the connection/request_sock and
5644			 * not the parent socket.  unfortunately, we can't
5645			 * lookup the request_sock yet as it isn't queued on
5646			 * the parent socket until after the SYN-ACK is sent.
5647			 * the "solution" is to simply pass the packet as-is
5648			 * as any IP option based labeling should be copied
5649			 * from the initial connection request (in the IP
5650			 * layer).  it is far from ideal, but until we get a
5651			 * security label in the packet itself this is the
5652			 * best we can do. */
5653			return NF_ACCEPT;
5654
5655		/* standard practice, label using the parent socket */
5656		sksec = sk->sk_security;
5657		sid = sksec->sid;
5658	} else
5659		sid = SECINITSID_KERNEL;
5660	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5661		return NF_DROP;
5662
5663	return NF_ACCEPT;
5664}
5665
5666static unsigned int selinux_ipv4_output(void *priv,
5667					struct sk_buff *skb,
5668					const struct nf_hook_state *state)
5669{
5670	return selinux_ip_output(skb, PF_INET);
5671}
5672
5673#if IS_ENABLED(CONFIG_IPV6)
5674static unsigned int selinux_ipv6_output(void *priv,
5675					struct sk_buff *skb,
5676					const struct nf_hook_state *state)
5677{
5678	return selinux_ip_output(skb, PF_INET6);
5679}
5680#endif	/* IPV6 */
5681
5682static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5683						int ifindex,
5684						u16 family)
5685{
5686	struct sock *sk = skb_to_full_sk(skb);
5687	struct sk_security_struct *sksec;
5688	struct common_audit_data ad;
5689	struct lsm_network_audit net = {0,};
5690	char *addrp;
5691	u8 proto;
5692
 
5693	if (sk == NULL)
5694		return NF_ACCEPT;
5695	sksec = sk->sk_security;
5696
5697	ad.type = LSM_AUDIT_DATA_NET;
5698	ad.u.net = &net;
5699	ad.u.net->netif = ifindex;
5700	ad.u.net->family = family;
5701	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5702		return NF_DROP;
5703
5704	if (selinux_secmark_enabled())
5705		if (avc_has_perm(&selinux_state,
5706				 sksec->sid, skb->secmark,
5707				 SECCLASS_PACKET, PACKET__SEND, &ad))
5708			return NF_DROP_ERR(-ECONNREFUSED);
5709
5710	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5711		return NF_DROP_ERR(-ECONNREFUSED);
5712
5713	return NF_ACCEPT;
5714}
5715
5716static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5717					 const struct net_device *outdev,
5718					 u16 family)
5719{
 
5720	u32 secmark_perm;
5721	u32 peer_sid;
5722	int ifindex = outdev->ifindex;
5723	struct sock *sk;
5724	struct common_audit_data ad;
5725	struct lsm_network_audit net = {0,};
5726	char *addrp;
5727	u8 secmark_active;
5728	u8 peerlbl_active;
5729
5730	/* If any sort of compatibility mode is enabled then handoff processing
5731	 * to the selinux_ip_postroute_compat() function to deal with the
5732	 * special handling.  We do this in an attempt to keep this function
5733	 * as fast and as clean as possible. */
5734	if (!selinux_policycap_netpeer())
5735		return selinux_ip_postroute_compat(skb, ifindex, family);
5736
5737	secmark_active = selinux_secmark_enabled();
5738	peerlbl_active = selinux_peerlbl_enabled();
5739	if (!secmark_active && !peerlbl_active)
5740		return NF_ACCEPT;
5741
5742	sk = skb_to_full_sk(skb);
5743
5744#ifdef CONFIG_XFRM
5745	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5746	 * packet transformation so allow the packet to pass without any checks
5747	 * since we'll have another chance to perform access control checks
5748	 * when the packet is on it's final way out.
5749	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5750	 *       is NULL, in this case go ahead and apply access control.
5751	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5752	 *       TCP listening state we cannot wait until the XFRM processing
5753	 *       is done as we will miss out on the SA label if we do;
5754	 *       unfortunately, this means more work, but it is only once per
5755	 *       connection. */
5756	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5757	    !(sk && sk_listener(sk)))
5758		return NF_ACCEPT;
5759#endif
5760
 
5761	if (sk == NULL) {
5762		/* Without an associated socket the packet is either coming
5763		 * from the kernel or it is being forwarded; check the packet
5764		 * to determine which and if the packet is being forwarded
5765		 * query the packet directly to determine the security label. */
5766		if (skb->skb_iif) {
5767			secmark_perm = PACKET__FORWARD_OUT;
5768			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5769				return NF_DROP;
5770		} else {
5771			secmark_perm = PACKET__SEND;
5772			peer_sid = SECINITSID_KERNEL;
5773		}
5774	} else if (sk_listener(sk)) {
5775		/* Locally generated packet but the associated socket is in the
5776		 * listening state which means this is a SYN-ACK packet.  In
5777		 * this particular case the correct security label is assigned
5778		 * to the connection/request_sock but unfortunately we can't
5779		 * query the request_sock as it isn't queued on the parent
5780		 * socket until after the SYN-ACK packet is sent; the only
5781		 * viable choice is to regenerate the label like we do in
5782		 * selinux_inet_conn_request().  See also selinux_ip_output()
5783		 * for similar problems. */
5784		u32 skb_sid;
5785		struct sk_security_struct *sksec;
5786
5787		sksec = sk->sk_security;
5788		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5789			return NF_DROP;
5790		/* At this point, if the returned skb peerlbl is SECSID_NULL
5791		 * and the packet has been through at least one XFRM
5792		 * transformation then we must be dealing with the "final"
5793		 * form of labeled IPsec packet; since we've already applied
5794		 * all of our access controls on this packet we can safely
5795		 * pass the packet. */
5796		if (skb_sid == SECSID_NULL) {
5797			switch (family) {
5798			case PF_INET:
5799				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5800					return NF_ACCEPT;
5801				break;
5802			case PF_INET6:
5803				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5804					return NF_ACCEPT;
5805				break;
5806			default:
5807				return NF_DROP_ERR(-ECONNREFUSED);
5808			}
5809		}
5810		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5811			return NF_DROP;
5812		secmark_perm = PACKET__SEND;
5813	} else {
5814		/* Locally generated packet, fetch the security label from the
5815		 * associated socket. */
5816		struct sk_security_struct *sksec = sk->sk_security;
5817		peer_sid = sksec->sid;
5818		secmark_perm = PACKET__SEND;
5819	}
5820
 
5821	ad.type = LSM_AUDIT_DATA_NET;
5822	ad.u.net = &net;
5823	ad.u.net->netif = ifindex;
5824	ad.u.net->family = family;
5825	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5826		return NF_DROP;
5827
5828	if (secmark_active)
5829		if (avc_has_perm(&selinux_state,
5830				 peer_sid, skb->secmark,
5831				 SECCLASS_PACKET, secmark_perm, &ad))
5832			return NF_DROP_ERR(-ECONNREFUSED);
5833
5834	if (peerlbl_active) {
5835		u32 if_sid;
5836		u32 node_sid;
5837
5838		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5839			return NF_DROP;
5840		if (avc_has_perm(&selinux_state,
5841				 peer_sid, if_sid,
5842				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5843			return NF_DROP_ERR(-ECONNREFUSED);
5844
5845		if (sel_netnode_sid(addrp, family, &node_sid))
5846			return NF_DROP;
5847		if (avc_has_perm(&selinux_state,
5848				 peer_sid, node_sid,
5849				 SECCLASS_NODE, NODE__SENDTO, &ad))
5850			return NF_DROP_ERR(-ECONNREFUSED);
5851	}
5852
5853	return NF_ACCEPT;
5854}
 
5855
5856static unsigned int selinux_ipv4_postroute(void *priv,
5857					   struct sk_buff *skb,
5858					   const struct nf_hook_state *state)
5859{
5860	return selinux_ip_postroute(skb, state->out, PF_INET);
5861}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5862
5863#if IS_ENABLED(CONFIG_IPV6)
5864static unsigned int selinux_ipv6_postroute(void *priv,
5865					   struct sk_buff *skb,
5866					   const struct nf_hook_state *state)
5867{
5868	return selinux_ip_postroute(skb, state->out, PF_INET6);
5869}
5870#endif	/* IPV6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5871
5872#endif	/* CONFIG_NETFILTER */
 
 
 
 
 
 
5873
5874static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5875{
5876	return selinux_nlmsg_perm(sk, skb);
5877}
5878
5879static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5880{
5881	isec->sclass = sclass;
5882	isec->sid = current_sid();
5883}
5884
5885static int msg_msg_alloc_security(struct msg_msg *msg)
5886{
5887	struct msg_security_struct *msec;
5888
5889	msec = selinux_msg_msg(msg);
5890	msec->sid = SECINITSID_UNLABELED;
5891
5892	return 0;
5893}
5894
5895static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5896			u32 perms)
5897{
5898	struct ipc_security_struct *isec;
5899	struct common_audit_data ad;
5900	u32 sid = current_sid();
5901
5902	isec = selinux_ipc(ipc_perms);
5903
5904	ad.type = LSM_AUDIT_DATA_IPC;
5905	ad.u.ipc_id = ipc_perms->key;
5906
5907	return avc_has_perm(&selinux_state,
5908			    sid, isec->sid, isec->sclass, perms, &ad);
5909}
5910
5911static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5912{
5913	return msg_msg_alloc_security(msg);
 
 
 
 
 
5914}
5915
5916/* message queue security operations */
5917static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5918{
5919	struct ipc_security_struct *isec;
5920	struct common_audit_data ad;
5921	u32 sid = current_sid();
5922	int rc;
5923
5924	isec = selinux_ipc(msq);
5925	ipc_init_security(isec, SECCLASS_MSGQ);
5926
5927	ad.type = LSM_AUDIT_DATA_IPC;
5928	ad.u.ipc_id = msq->key;
5929
5930	rc = avc_has_perm(&selinux_state,
5931			  sid, isec->sid, SECCLASS_MSGQ,
5932			  MSGQ__CREATE, &ad);
5933	return rc;
5934}
5935
5936static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5937{
5938	struct ipc_security_struct *isec;
5939	struct common_audit_data ad;
5940	u32 sid = current_sid();
5941
5942	isec = selinux_ipc(msq);
5943
5944	ad.type = LSM_AUDIT_DATA_IPC;
5945	ad.u.ipc_id = msq->key;
5946
5947	return avc_has_perm(&selinux_state,
5948			    sid, isec->sid, SECCLASS_MSGQ,
5949			    MSGQ__ASSOCIATE, &ad);
5950}
5951
5952static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5953{
5954	int err;
5955	int perms;
5956
5957	switch (cmd) {
5958	case IPC_INFO:
5959	case MSG_INFO:
5960		/* No specific object, just general system-wide information. */
5961		return avc_has_perm(&selinux_state,
5962				    current_sid(), SECINITSID_KERNEL,
5963				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5964	case IPC_STAT:
5965	case MSG_STAT:
5966	case MSG_STAT_ANY:
5967		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5968		break;
5969	case IPC_SET:
5970		perms = MSGQ__SETATTR;
5971		break;
5972	case IPC_RMID:
5973		perms = MSGQ__DESTROY;
5974		break;
5975	default:
5976		return 0;
5977	}
5978
5979	err = ipc_has_perm(msq, perms);
5980	return err;
5981}
5982
5983static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5984{
5985	struct ipc_security_struct *isec;
5986	struct msg_security_struct *msec;
5987	struct common_audit_data ad;
5988	u32 sid = current_sid();
5989	int rc;
5990
5991	isec = selinux_ipc(msq);
5992	msec = selinux_msg_msg(msg);
5993
5994	/*
5995	 * First time through, need to assign label to the message
5996	 */
5997	if (msec->sid == SECINITSID_UNLABELED) {
5998		/*
5999		 * Compute new sid based on current process and
6000		 * message queue this message will be stored in
6001		 */
6002		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6003					     SECCLASS_MSG, NULL, &msec->sid);
6004		if (rc)
6005			return rc;
6006	}
6007
6008	ad.type = LSM_AUDIT_DATA_IPC;
6009	ad.u.ipc_id = msq->key;
6010
6011	/* Can this process write to the queue? */
6012	rc = avc_has_perm(&selinux_state,
6013			  sid, isec->sid, SECCLASS_MSGQ,
6014			  MSGQ__WRITE, &ad);
6015	if (!rc)
6016		/* Can this process send the message */
6017		rc = avc_has_perm(&selinux_state,
6018				  sid, msec->sid, SECCLASS_MSG,
6019				  MSG__SEND, &ad);
6020	if (!rc)
6021		/* Can the message be put in the queue? */
6022		rc = avc_has_perm(&selinux_state,
6023				  msec->sid, isec->sid, SECCLASS_MSGQ,
6024				  MSGQ__ENQUEUE, &ad);
6025
6026	return rc;
6027}
6028
6029static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6030				    struct task_struct *target,
6031				    long type, int mode)
6032{
6033	struct ipc_security_struct *isec;
6034	struct msg_security_struct *msec;
6035	struct common_audit_data ad;
6036	u32 sid = task_sid(target);
6037	int rc;
6038
6039	isec = selinux_ipc(msq);
6040	msec = selinux_msg_msg(msg);
6041
6042	ad.type = LSM_AUDIT_DATA_IPC;
6043	ad.u.ipc_id = msq->key;
6044
6045	rc = avc_has_perm(&selinux_state,
6046			  sid, isec->sid,
6047			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6048	if (!rc)
6049		rc = avc_has_perm(&selinux_state,
6050				  sid, msec->sid,
6051				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6052	return rc;
6053}
6054
6055/* Shared Memory security operations */
6056static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6057{
6058	struct ipc_security_struct *isec;
6059	struct common_audit_data ad;
6060	u32 sid = current_sid();
6061	int rc;
6062
6063	isec = selinux_ipc(shp);
6064	ipc_init_security(isec, SECCLASS_SHM);
6065
6066	ad.type = LSM_AUDIT_DATA_IPC;
6067	ad.u.ipc_id = shp->key;
6068
6069	rc = avc_has_perm(&selinux_state,
6070			  sid, isec->sid, SECCLASS_SHM,
6071			  SHM__CREATE, &ad);
6072	return rc;
6073}
6074
6075static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6076{
6077	struct ipc_security_struct *isec;
6078	struct common_audit_data ad;
6079	u32 sid = current_sid();
6080
6081	isec = selinux_ipc(shp);
6082
6083	ad.type = LSM_AUDIT_DATA_IPC;
6084	ad.u.ipc_id = shp->key;
6085
6086	return avc_has_perm(&selinux_state,
6087			    sid, isec->sid, SECCLASS_SHM,
6088			    SHM__ASSOCIATE, &ad);
6089}
6090
6091/* Note, at this point, shp is locked down */
6092static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6093{
6094	int perms;
6095	int err;
6096
6097	switch (cmd) {
6098	case IPC_INFO:
6099	case SHM_INFO:
6100		/* No specific object, just general system-wide information. */
6101		return avc_has_perm(&selinux_state,
6102				    current_sid(), SECINITSID_KERNEL,
6103				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6104	case IPC_STAT:
6105	case SHM_STAT:
6106	case SHM_STAT_ANY:
6107		perms = SHM__GETATTR | SHM__ASSOCIATE;
6108		break;
6109	case IPC_SET:
6110		perms = SHM__SETATTR;
6111		break;
6112	case SHM_LOCK:
6113	case SHM_UNLOCK:
6114		perms = SHM__LOCK;
6115		break;
6116	case IPC_RMID:
6117		perms = SHM__DESTROY;
6118		break;
6119	default:
6120		return 0;
6121	}
6122
6123	err = ipc_has_perm(shp, perms);
6124	return err;
6125}
6126
6127static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6128			     char __user *shmaddr, int shmflg)
6129{
6130	u32 perms;
6131
6132	if (shmflg & SHM_RDONLY)
6133		perms = SHM__READ;
6134	else
6135		perms = SHM__READ | SHM__WRITE;
6136
6137	return ipc_has_perm(shp, perms);
6138}
6139
6140/* Semaphore security operations */
6141static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6142{
6143	struct ipc_security_struct *isec;
6144	struct common_audit_data ad;
6145	u32 sid = current_sid();
6146	int rc;
6147
6148	isec = selinux_ipc(sma);
6149	ipc_init_security(isec, SECCLASS_SEM);
6150
6151	ad.type = LSM_AUDIT_DATA_IPC;
6152	ad.u.ipc_id = sma->key;
6153
6154	rc = avc_has_perm(&selinux_state,
6155			  sid, isec->sid, SECCLASS_SEM,
6156			  SEM__CREATE, &ad);
6157	return rc;
6158}
6159
6160static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6161{
6162	struct ipc_security_struct *isec;
6163	struct common_audit_data ad;
6164	u32 sid = current_sid();
6165
6166	isec = selinux_ipc(sma);
6167
6168	ad.type = LSM_AUDIT_DATA_IPC;
6169	ad.u.ipc_id = sma->key;
6170
6171	return avc_has_perm(&selinux_state,
6172			    sid, isec->sid, SECCLASS_SEM,
6173			    SEM__ASSOCIATE, &ad);
6174}
6175
6176/* Note, at this point, sma is locked down */
6177static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6178{
6179	int err;
6180	u32 perms;
6181
6182	switch (cmd) {
6183	case IPC_INFO:
6184	case SEM_INFO:
6185		/* No specific object, just general system-wide information. */
6186		return avc_has_perm(&selinux_state,
6187				    current_sid(), SECINITSID_KERNEL,
6188				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6189	case GETPID:
6190	case GETNCNT:
6191	case GETZCNT:
6192		perms = SEM__GETATTR;
6193		break;
6194	case GETVAL:
6195	case GETALL:
6196		perms = SEM__READ;
6197		break;
6198	case SETVAL:
6199	case SETALL:
6200		perms = SEM__WRITE;
6201		break;
6202	case IPC_RMID:
6203		perms = SEM__DESTROY;
6204		break;
6205	case IPC_SET:
6206		perms = SEM__SETATTR;
6207		break;
6208	case IPC_STAT:
6209	case SEM_STAT:
6210	case SEM_STAT_ANY:
6211		perms = SEM__GETATTR | SEM__ASSOCIATE;
6212		break;
6213	default:
6214		return 0;
6215	}
6216
6217	err = ipc_has_perm(sma, perms);
6218	return err;
6219}
6220
6221static int selinux_sem_semop(struct kern_ipc_perm *sma,
6222			     struct sembuf *sops, unsigned nsops, int alter)
6223{
6224	u32 perms;
6225
6226	if (alter)
6227		perms = SEM__READ | SEM__WRITE;
6228	else
6229		perms = SEM__READ;
6230
6231	return ipc_has_perm(sma, perms);
6232}
6233
6234static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6235{
6236	u32 av = 0;
6237
6238	av = 0;
6239	if (flag & S_IRUGO)
6240		av |= IPC__UNIX_READ;
6241	if (flag & S_IWUGO)
6242		av |= IPC__UNIX_WRITE;
6243
6244	if (av == 0)
6245		return 0;
6246
6247	return ipc_has_perm(ipcp, av);
6248}
6249
6250static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6251{
6252	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6253	*secid = isec->sid;
6254}
6255
6256static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6257{
6258	if (inode)
6259		inode_doinit_with_dentry(inode, dentry);
6260}
6261
6262static int selinux_getprocattr(struct task_struct *p,
6263			       char *name, char **value)
6264{
6265	const struct task_security_struct *__tsec;
6266	u32 sid;
6267	int error;
6268	unsigned len;
6269
6270	rcu_read_lock();
6271	__tsec = selinux_cred(__task_cred(p));
6272
6273	if (current != p) {
6274		error = avc_has_perm(&selinux_state,
6275				     current_sid(), __tsec->sid,
6276				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6277		if (error)
6278			goto bad;
6279	}
6280
6281	if (!strcmp(name, "current"))
6282		sid = __tsec->sid;
6283	else if (!strcmp(name, "prev"))
6284		sid = __tsec->osid;
6285	else if (!strcmp(name, "exec"))
6286		sid = __tsec->exec_sid;
6287	else if (!strcmp(name, "fscreate"))
6288		sid = __tsec->create_sid;
6289	else if (!strcmp(name, "keycreate"))
6290		sid = __tsec->keycreate_sid;
6291	else if (!strcmp(name, "sockcreate"))
6292		sid = __tsec->sockcreate_sid;
6293	else {
6294		error = -EINVAL;
6295		goto bad;
6296	}
6297	rcu_read_unlock();
6298
6299	if (!sid)
6300		return 0;
6301
6302	error = security_sid_to_context(&selinux_state, sid, value, &len);
6303	if (error)
6304		return error;
6305	return len;
6306
6307bad:
6308	rcu_read_unlock();
6309	return error;
6310}
6311
6312static int selinux_setprocattr(const char *name, void *value, size_t size)
6313{
6314	struct task_security_struct *tsec;
6315	struct cred *new;
6316	u32 mysid = current_sid(), sid = 0, ptsid;
6317	int error;
6318	char *str = value;
6319
6320	/*
6321	 * Basic control over ability to set these attributes at all.
6322	 */
6323	if (!strcmp(name, "exec"))
6324		error = avc_has_perm(&selinux_state,
6325				     mysid, mysid, SECCLASS_PROCESS,
6326				     PROCESS__SETEXEC, NULL);
6327	else if (!strcmp(name, "fscreate"))
6328		error = avc_has_perm(&selinux_state,
6329				     mysid, mysid, SECCLASS_PROCESS,
6330				     PROCESS__SETFSCREATE, NULL);
6331	else if (!strcmp(name, "keycreate"))
6332		error = avc_has_perm(&selinux_state,
6333				     mysid, mysid, SECCLASS_PROCESS,
6334				     PROCESS__SETKEYCREATE, NULL);
6335	else if (!strcmp(name, "sockcreate"))
6336		error = avc_has_perm(&selinux_state,
6337				     mysid, mysid, SECCLASS_PROCESS,
6338				     PROCESS__SETSOCKCREATE, NULL);
6339	else if (!strcmp(name, "current"))
6340		error = avc_has_perm(&selinux_state,
6341				     mysid, mysid, SECCLASS_PROCESS,
6342				     PROCESS__SETCURRENT, NULL);
6343	else
6344		error = -EINVAL;
6345	if (error)
6346		return error;
6347
6348	/* Obtain a SID for the context, if one was specified. */
6349	if (size && str[0] && str[0] != '\n') {
6350		if (str[size-1] == '\n') {
6351			str[size-1] = 0;
6352			size--;
6353		}
6354		error = security_context_to_sid(&selinux_state, value, size,
6355						&sid, GFP_KERNEL);
6356		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6357			if (!has_cap_mac_admin(true)) {
6358				struct audit_buffer *ab;
6359				size_t audit_size;
6360
6361				/* We strip a nul only if it is at the end, otherwise the
6362				 * context contains a nul and we should audit that */
6363				if (str[size - 1] == '\0')
6364					audit_size = size - 1;
6365				else
6366					audit_size = size;
6367				ab = audit_log_start(audit_context(),
6368						     GFP_ATOMIC,
6369						     AUDIT_SELINUX_ERR);
 
 
6370				audit_log_format(ab, "op=fscreate invalid_context=");
6371				audit_log_n_untrustedstring(ab, value, audit_size);
6372				audit_log_end(ab);
6373
6374				return error;
6375			}
6376			error = security_context_to_sid_force(
6377						      &selinux_state,
6378						      value, size, &sid);
6379		}
6380		if (error)
6381			return error;
6382	}
6383
6384	new = prepare_creds();
6385	if (!new)
6386		return -ENOMEM;
6387
6388	/* Permission checking based on the specified context is
6389	   performed during the actual operation (execve,
6390	   open/mkdir/...), when we know the full context of the
6391	   operation.  See selinux_bprm_set_creds for the execve
6392	   checks and may_create for the file creation checks. The
6393	   operation will then fail if the context is not permitted. */
6394	tsec = selinux_cred(new);
6395	if (!strcmp(name, "exec")) {
6396		tsec->exec_sid = sid;
6397	} else if (!strcmp(name, "fscreate")) {
6398		tsec->create_sid = sid;
6399	} else if (!strcmp(name, "keycreate")) {
6400		if (sid) {
6401			error = avc_has_perm(&selinux_state, mysid, sid,
6402					     SECCLASS_KEY, KEY__CREATE, NULL);
6403			if (error)
6404				goto abort_change;
6405		}
6406		tsec->keycreate_sid = sid;
6407	} else if (!strcmp(name, "sockcreate")) {
6408		tsec->sockcreate_sid = sid;
6409	} else if (!strcmp(name, "current")) {
6410		error = -EINVAL;
6411		if (sid == 0)
6412			goto abort_change;
6413
6414		/* Only allow single threaded processes to change context */
6415		error = -EPERM;
6416		if (!current_is_single_threaded()) {
6417			error = security_bounded_transition(&selinux_state,
6418							    tsec->sid, sid);
6419			if (error)
6420				goto abort_change;
6421		}
6422
6423		/* Check permissions for the transition. */
6424		error = avc_has_perm(&selinux_state,
6425				     tsec->sid, sid, SECCLASS_PROCESS,
6426				     PROCESS__DYNTRANSITION, NULL);
6427		if (error)
6428			goto abort_change;
6429
6430		/* Check for ptracing, and update the task SID if ok.
6431		   Otherwise, leave SID unchanged and fail. */
6432		ptsid = ptrace_parent_sid();
6433		if (ptsid != 0) {
6434			error = avc_has_perm(&selinux_state,
6435					     ptsid, sid, SECCLASS_PROCESS,
6436					     PROCESS__PTRACE, NULL);
6437			if (error)
6438				goto abort_change;
6439		}
6440
6441		tsec->sid = sid;
6442	} else {
6443		error = -EINVAL;
6444		goto abort_change;
6445	}
6446
6447	commit_creds(new);
6448	return size;
6449
6450abort_change:
6451	abort_creds(new);
6452	return error;
6453}
6454
6455static int selinux_ismaclabel(const char *name)
6456{
6457	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6458}
6459
6460static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6461{
6462	return security_sid_to_context(&selinux_state, secid,
6463				       secdata, seclen);
6464}
6465
6466static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6467{
6468	return security_context_to_sid(&selinux_state, secdata, seclen,
6469				       secid, GFP_KERNEL);
6470}
6471
6472static void selinux_release_secctx(char *secdata, u32 seclen)
6473{
6474	kfree(secdata);
6475}
6476
6477static void selinux_inode_invalidate_secctx(struct inode *inode)
6478{
6479	struct inode_security_struct *isec = selinux_inode(inode);
6480
6481	spin_lock(&isec->lock);
6482	isec->initialized = LABEL_INVALID;
6483	spin_unlock(&isec->lock);
6484}
6485
6486/*
6487 *	called with inode->i_mutex locked
6488 */
6489static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6490{
6491	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6492					   ctx, ctxlen, 0);
6493	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6494	return rc == -EOPNOTSUPP ? 0 : rc;
6495}
6496
6497/*
6498 *	called with inode->i_mutex locked
6499 */
6500static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6501{
6502	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
 
6503}
6504
6505static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6506{
6507	int len = 0;
6508	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6509						ctx, true);
6510	if (len < 0)
6511		return len;
6512	*ctxlen = len;
6513	return 0;
6514}
6515#ifdef CONFIG_KEYS
6516
6517static int selinux_key_alloc(struct key *k, const struct cred *cred,
6518			     unsigned long flags)
6519{
6520	const struct task_security_struct *tsec;
6521	struct key_security_struct *ksec;
6522
6523	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6524	if (!ksec)
6525		return -ENOMEM;
6526
6527	tsec = selinux_cred(cred);
6528	if (tsec->keycreate_sid)
6529		ksec->sid = tsec->keycreate_sid;
6530	else
6531		ksec->sid = tsec->sid;
6532
6533	k->security = ksec;
6534	return 0;
6535}
6536
6537static void selinux_key_free(struct key *k)
6538{
6539	struct key_security_struct *ksec = k->security;
6540
6541	k->security = NULL;
6542	kfree(ksec);
6543}
6544
6545static int selinux_key_permission(key_ref_t key_ref,
6546				  const struct cred *cred,
6547				  unsigned perm)
6548{
6549	struct key *key;
6550	struct key_security_struct *ksec;
6551	u32 sid;
6552
6553	/* if no specific permissions are requested, we skip the
6554	   permission check. No serious, additional covert channels
6555	   appear to be created. */
6556	if (perm == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6557		return 0;
 
 
 
 
 
6558
6559	sid = cred_sid(cred);
6560
6561	key = key_ref_to_ptr(key_ref);
6562	ksec = key->security;
6563
6564	return avc_has_perm(&selinux_state,
6565			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6566}
6567
6568static int selinux_key_getsecurity(struct key *key, char **_buffer)
6569{
6570	struct key_security_struct *ksec = key->security;
6571	char *context = NULL;
6572	unsigned len;
6573	int rc;
6574
6575	rc = security_sid_to_context(&selinux_state, ksec->sid,
6576				     &context, &len);
6577	if (!rc)
6578		rc = len;
6579	*_buffer = context;
6580	return rc;
6581}
 
 
 
 
 
 
 
 
 
 
 
6582#endif
6583
6584#ifdef CONFIG_SECURITY_INFINIBAND
6585static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6586{
6587	struct common_audit_data ad;
6588	int err;
6589	u32 sid = 0;
6590	struct ib_security_struct *sec = ib_sec;
6591	struct lsm_ibpkey_audit ibpkey;
6592
6593	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6594	if (err)
6595		return err;
6596
6597	ad.type = LSM_AUDIT_DATA_IBPKEY;
6598	ibpkey.subnet_prefix = subnet_prefix;
6599	ibpkey.pkey = pkey_val;
6600	ad.u.ibpkey = &ibpkey;
6601	return avc_has_perm(&selinux_state,
6602			    sec->sid, sid,
6603			    SECCLASS_INFINIBAND_PKEY,
6604			    INFINIBAND_PKEY__ACCESS, &ad);
6605}
6606
6607static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6608					    u8 port_num)
6609{
6610	struct common_audit_data ad;
6611	int err;
6612	u32 sid = 0;
6613	struct ib_security_struct *sec = ib_sec;
6614	struct lsm_ibendport_audit ibendport;
6615
6616	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6617				      &sid);
6618
6619	if (err)
6620		return err;
6621
6622	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6623	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6624	ibendport.port = port_num;
6625	ad.u.ibendport = &ibendport;
6626	return avc_has_perm(&selinux_state,
6627			    sec->sid, sid,
6628			    SECCLASS_INFINIBAND_ENDPORT,
6629			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6630}
6631
6632static int selinux_ib_alloc_security(void **ib_sec)
6633{
6634	struct ib_security_struct *sec;
6635
6636	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6637	if (!sec)
6638		return -ENOMEM;
6639	sec->sid = current_sid();
6640
6641	*ib_sec = sec;
6642	return 0;
6643}
6644
6645static void selinux_ib_free_security(void *ib_sec)
6646{
6647	kfree(ib_sec);
6648}
6649#endif
6650
6651#ifdef CONFIG_BPF_SYSCALL
6652static int selinux_bpf(int cmd, union bpf_attr *attr,
6653				     unsigned int size)
6654{
6655	u32 sid = current_sid();
6656	int ret;
6657
6658	switch (cmd) {
6659	case BPF_MAP_CREATE:
6660		ret = avc_has_perm(&selinux_state,
6661				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6662				   NULL);
6663		break;
6664	case BPF_PROG_LOAD:
6665		ret = avc_has_perm(&selinux_state,
6666				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6667				   NULL);
6668		break;
6669	default:
6670		ret = 0;
6671		break;
6672	}
6673
6674	return ret;
6675}
6676
6677static u32 bpf_map_fmode_to_av(fmode_t fmode)
6678{
6679	u32 av = 0;
6680
6681	if (fmode & FMODE_READ)
6682		av |= BPF__MAP_READ;
6683	if (fmode & FMODE_WRITE)
6684		av |= BPF__MAP_WRITE;
6685	return av;
6686}
6687
6688/* This function will check the file pass through unix socket or binder to see
6689 * if it is a bpf related object. And apply correspinding checks on the bpf
6690 * object based on the type. The bpf maps and programs, not like other files and
6691 * socket, are using a shared anonymous inode inside the kernel as their inode.
6692 * So checking that inode cannot identify if the process have privilege to
6693 * access the bpf object and that's why we have to add this additional check in
6694 * selinux_file_receive and selinux_binder_transfer_files.
6695 */
6696static int bpf_fd_pass(struct file *file, u32 sid)
6697{
6698	struct bpf_security_struct *bpfsec;
6699	struct bpf_prog *prog;
6700	struct bpf_map *map;
6701	int ret;
6702
6703	if (file->f_op == &bpf_map_fops) {
6704		map = file->private_data;
6705		bpfsec = map->security;
6706		ret = avc_has_perm(&selinux_state,
6707				   sid, bpfsec->sid, SECCLASS_BPF,
6708				   bpf_map_fmode_to_av(file->f_mode), NULL);
6709		if (ret)
6710			return ret;
6711	} else if (file->f_op == &bpf_prog_fops) {
6712		prog = file->private_data;
6713		bpfsec = prog->aux->security;
6714		ret = avc_has_perm(&selinux_state,
6715				   sid, bpfsec->sid, SECCLASS_BPF,
6716				   BPF__PROG_RUN, NULL);
6717		if (ret)
6718			return ret;
6719	}
6720	return 0;
6721}
6722
6723static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6724{
6725	u32 sid = current_sid();
6726	struct bpf_security_struct *bpfsec;
6727
6728	bpfsec = map->security;
6729	return avc_has_perm(&selinux_state,
6730			    sid, bpfsec->sid, SECCLASS_BPF,
6731			    bpf_map_fmode_to_av(fmode), NULL);
6732}
6733
6734static int selinux_bpf_prog(struct bpf_prog *prog)
6735{
6736	u32 sid = current_sid();
6737	struct bpf_security_struct *bpfsec;
6738
6739	bpfsec = prog->aux->security;
6740	return avc_has_perm(&selinux_state,
6741			    sid, bpfsec->sid, SECCLASS_BPF,
6742			    BPF__PROG_RUN, NULL);
6743}
6744
6745static int selinux_bpf_map_alloc(struct bpf_map *map)
6746{
6747	struct bpf_security_struct *bpfsec;
6748
6749	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6750	if (!bpfsec)
6751		return -ENOMEM;
6752
6753	bpfsec->sid = current_sid();
6754	map->security = bpfsec;
6755
6756	return 0;
6757}
6758
6759static void selinux_bpf_map_free(struct bpf_map *map)
6760{
6761	struct bpf_security_struct *bpfsec = map->security;
6762
6763	map->security = NULL;
6764	kfree(bpfsec);
6765}
6766
6767static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6768{
6769	struct bpf_security_struct *bpfsec;
6770
6771	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6772	if (!bpfsec)
6773		return -ENOMEM;
6774
6775	bpfsec->sid = current_sid();
6776	aux->security = bpfsec;
6777
6778	return 0;
6779}
6780
6781static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6782{
6783	struct bpf_security_struct *bpfsec = aux->security;
6784
6785	aux->security = NULL;
6786	kfree(bpfsec);
6787}
6788#endif
6789
6790struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6791	.lbs_cred = sizeof(struct task_security_struct),
6792	.lbs_file = sizeof(struct file_security_struct),
6793	.lbs_inode = sizeof(struct inode_security_struct),
6794	.lbs_ipc = sizeof(struct ipc_security_struct),
6795	.lbs_msg_msg = sizeof(struct msg_security_struct),
 
6796};
6797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6798static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6799	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6800	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6801	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6802	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6803
6804	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6805	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6806	LSM_HOOK_INIT(capget, selinux_capget),
6807	LSM_HOOK_INIT(capset, selinux_capset),
6808	LSM_HOOK_INIT(capable, selinux_capable),
6809	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6810	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6811	LSM_HOOK_INIT(syslog, selinux_syslog),
6812	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6813
6814	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6815
6816	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6817	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6818	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6819
6820	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
6821	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
6822
6823	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6824	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6825	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
6826	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
 
6827	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6828	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6829	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6830	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6831	LSM_HOOK_INIT(sb_mount, selinux_mount),
6832	LSM_HOOK_INIT(sb_umount, selinux_umount),
6833	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6834	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6835	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
 
6836
6837	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6838	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6839
6840	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6841	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6842	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
 
6843	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6844	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6845	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6846	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6847	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6848	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6849	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6850	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6851	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6852	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6853	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6854	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6855	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6856	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6857	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6858	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6859	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6860	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
 
 
 
6861	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6862	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6863	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6864	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6865	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6866	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6867	LSM_HOOK_INIT(path_notify, selinux_path_notify),
6868
6869	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6870
6871	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6872	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6873	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6874	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6875	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6876	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6877	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6878	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6879	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6880	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6881	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6882
6883	LSM_HOOK_INIT(file_open, selinux_file_open),
6884
6885	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6886	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6887	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6888	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6889	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6890	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6891	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6892	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
6893	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6894	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6895	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6896	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6897	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
 
6898	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6899	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6900	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6901	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6902	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6903	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6904	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6905	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6906	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6907	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
 
6908
6909	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6910	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6911
6912	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6913
6914	LSM_HOOK_INIT(msg_queue_alloc_security,
6915			selinux_msg_queue_alloc_security),
6916	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6917	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6918	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6919	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6920
6921	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6922	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6923	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6924	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6925
6926	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6927	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6928	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6929	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6930
6931	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6932
6933	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6934	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6935
6936	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6937	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6938	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6939	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6940	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6941	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6942	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6943	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6944
6945	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6946	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6947
6948	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6949	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6950	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
6951	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6952	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6953	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6954	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6955	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6956	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6957	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6958	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6959	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6960	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6961	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6962	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6963	LSM_HOOK_INIT(socket_getpeersec_stream,
6964			selinux_socket_getpeersec_stream),
6965	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6966	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6967	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6968	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6969	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6970	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6971	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
6972	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
6973	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
 
6974	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6975	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6976	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6977	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6978	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6979	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6980	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6981	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6982	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6983	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6984	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6985	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6986	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6987#ifdef CONFIG_SECURITY_INFINIBAND
6988	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
6989	LSM_HOOK_INIT(ib_endport_manage_subnet,
6990		      selinux_ib_endport_manage_subnet),
6991	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
6992	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
6993#endif
6994#ifdef CONFIG_SECURITY_NETWORK_XFRM
6995	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6996	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6997	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6998	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6999	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7000	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7001			selinux_xfrm_state_alloc_acquire),
7002	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7003	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7004	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7005	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7006			selinux_xfrm_state_pol_flow_match),
7007	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7008#endif
7009
7010#ifdef CONFIG_KEYS
7011	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7012	LSM_HOOK_INIT(key_free, selinux_key_free),
7013	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7014	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
 
 
 
7015#endif
7016
7017#ifdef CONFIG_AUDIT
7018	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7019	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7020	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7021	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7022#endif
7023
7024#ifdef CONFIG_BPF_SYSCALL
7025	LSM_HOOK_INIT(bpf, selinux_bpf),
7026	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7027	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7028	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7029	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7030	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7031	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
 
7032#endif
7033};
7034
7035static __init int selinux_init(void)
7036{
7037	pr_info("SELinux:  Initializing.\n");
7038
7039	memset(&selinux_state, 0, sizeof(selinux_state));
7040	enforcing_set(&selinux_state, selinux_enforcing_boot);
7041	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7042	selinux_ss_init(&selinux_state.ss);
 
7043	selinux_avc_init(&selinux_state.avc);
 
 
7044
7045	/* Set the security state for the initial task. */
7046	cred_init_security();
7047
7048	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7049
7050	avc_init();
7051
7052	avtab_cache_init();
7053
7054	ebitmap_cache_init();
7055
7056	hashtab_cache_init();
7057
7058	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7059
7060	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7061		panic("SELinux: Unable to register AVC netcache callback\n");
7062
7063	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7064		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7065
7066	if (selinux_enforcing_boot)
7067		pr_debug("SELinux:  Starting in enforcing mode\n");
7068	else
7069		pr_debug("SELinux:  Starting in permissive mode\n");
7070
7071	fs_validate_description(&selinux_fs_parameters);
7072
7073	return 0;
7074}
7075
7076static void delayed_superblock_init(struct super_block *sb, void *unused)
7077{
7078	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7079}
7080
7081void selinux_complete_init(void)
7082{
7083	pr_debug("SELinux:  Completing initialization.\n");
7084
7085	/* Set up any superblocks initialized prior to the policy load. */
7086	pr_debug("SELinux:  Setting up existing superblocks.\n");
7087	iterate_supers(delayed_superblock_init, NULL);
7088}
7089
7090/* SELinux requires early initialization in order to label
7091   all processes and objects when they are created. */
7092DEFINE_LSM(selinux) = {
7093	.name = "selinux",
7094	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7095	.enabled = &selinux_enabled,
7096	.blobs = &selinux_blob_sizes,
7097	.init = selinux_init,
7098};
7099
7100#if defined(CONFIG_NETFILTER)
7101
7102static const struct nf_hook_ops selinux_nf_ops[] = {
7103	{
7104		.hook =		selinux_ipv4_postroute,
7105		.pf =		NFPROTO_IPV4,
7106		.hooknum =	NF_INET_POST_ROUTING,
7107		.priority =	NF_IP_PRI_SELINUX_LAST,
7108	},
7109	{
7110		.hook =		selinux_ipv4_forward,
7111		.pf =		NFPROTO_IPV4,
7112		.hooknum =	NF_INET_FORWARD,
7113		.priority =	NF_IP_PRI_SELINUX_FIRST,
7114	},
7115	{
7116		.hook =		selinux_ipv4_output,
7117		.pf =		NFPROTO_IPV4,
7118		.hooknum =	NF_INET_LOCAL_OUT,
7119		.priority =	NF_IP_PRI_SELINUX_FIRST,
7120	},
7121#if IS_ENABLED(CONFIG_IPV6)
7122	{
7123		.hook =		selinux_ipv6_postroute,
7124		.pf =		NFPROTO_IPV6,
7125		.hooknum =	NF_INET_POST_ROUTING,
7126		.priority =	NF_IP6_PRI_SELINUX_LAST,
7127	},
7128	{
7129		.hook =		selinux_ipv6_forward,
7130		.pf =		NFPROTO_IPV6,
7131		.hooknum =	NF_INET_FORWARD,
7132		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7133	},
7134	{
7135		.hook =		selinux_ipv6_output,
7136		.pf =		NFPROTO_IPV6,
7137		.hooknum =	NF_INET_LOCAL_OUT,
7138		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7139	},
7140#endif	/* IPV6 */
7141};
7142
7143static int __net_init selinux_nf_register(struct net *net)
7144{
7145	return nf_register_net_hooks(net, selinux_nf_ops,
7146				     ARRAY_SIZE(selinux_nf_ops));
7147}
7148
7149static void __net_exit selinux_nf_unregister(struct net *net)
7150{
7151	nf_unregister_net_hooks(net, selinux_nf_ops,
7152				ARRAY_SIZE(selinux_nf_ops));
7153}
7154
7155static struct pernet_operations selinux_net_ops = {
7156	.init = selinux_nf_register,
7157	.exit = selinux_nf_unregister,
7158};
7159
7160static int __init selinux_nf_ip_init(void)
7161{
7162	int err;
7163
7164	if (!selinux_enabled)
7165		return 0;
7166
7167	pr_debug("SELinux:  Registering netfilter hooks\n");
7168
7169	err = register_pernet_subsys(&selinux_net_ops);
7170	if (err)
7171		panic("SELinux: register_pernet_subsys: error %d\n", err);
7172
7173	return 0;
7174}
7175__initcall(selinux_nf_ip_init);
7176
7177#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7178static void selinux_nf_ip_exit(void)
7179{
7180	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7181
7182	unregister_pernet_subsys(&selinux_net_ops);
7183}
7184#endif
7185
7186#else /* CONFIG_NETFILTER */
7187
7188#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7189#define selinux_nf_ip_exit()
7190#endif
7191
7192#endif /* CONFIG_NETFILTER */
7193
7194#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7195int selinux_disable(struct selinux_state *state)
7196{
7197	if (state->initialized) {
7198		/* Not permitted after initial policy load. */
7199		return -EINVAL;
7200	}
7201
7202	if (state->disabled) {
7203		/* Only do this once. */
7204		return -EINVAL;
7205	}
7206
7207	state->disabled = 1;
7208
7209	pr_info("SELinux:  Disabled at runtime.\n");
7210
7211	selinux_enabled = 0;
 
 
 
 
 
7212
7213	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7214
7215	/* Try to destroy the avc node cache */
7216	avc_disable();
7217
7218	/* Unregister netfilter hooks. */
7219	selinux_nf_ip_exit();
7220
7221	/* Unregister selinuxfs. */
7222	exit_sel_fs();
7223
7224	return 0;
7225}
7226#endif