Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
 
  19#include "srcline.h"
  20#include "symbol.h"
  21#include "sort.h"
  22#include "strlist.h"
  23#include "target.h"
  24#include "thread.h"
  25#include "util.h"
  26#include "vdso.h"
  27#include <stdbool.h>
  28#include <sys/types.h>
  29#include <sys/stat.h>
  30#include <unistd.h>
  31#include "unwind.h"
  32#include "linux/hash.h"
  33#include "asm/bug.h"
  34#include "bpf-event.h"
  35#include <internal/lib.h> // page_size
 
 
  36
  37#include <linux/ctype.h>
  38#include <symbol/kallsyms.h>
  39#include <linux/mman.h>
  40#include <linux/string.h>
  41#include <linux/zalloc.h>
  42
  43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
 
 
 
 
 
 
  44
  45static void dsos__init(struct dsos *dsos)
  46{
  47	INIT_LIST_HEAD(&dsos->head);
  48	dsos->root = RB_ROOT;
  49	init_rwsem(&dsos->lock);
  50}
  51
  52static void machine__threads_init(struct machine *machine)
  53{
  54	int i;
  55
  56	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  57		struct threads *threads = &machine->threads[i];
  58		threads->entries = RB_ROOT_CACHED;
  59		init_rwsem(&threads->lock);
  60		threads->nr = 0;
  61		INIT_LIST_HEAD(&threads->dead);
  62		threads->last_match = NULL;
  63	}
  64}
  65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66static int machine__set_mmap_name(struct machine *machine)
  67{
  68	if (machine__is_host(machine))
  69		machine->mmap_name = strdup("[kernel.kallsyms]");
  70	else if (machine__is_default_guest(machine))
  71		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  72	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  73			  machine->pid) < 0)
  74		machine->mmap_name = NULL;
  75
  76	return machine->mmap_name ? 0 : -ENOMEM;
  77}
  78
 
 
 
 
 
 
 
 
  79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  80{
  81	int err = -ENOMEM;
  82
  83	memset(machine, 0, sizeof(*machine));
  84	map_groups__init(&machine->kmaps, machine);
 
 
 
  85	RB_CLEAR_NODE(&machine->rb_node);
  86	dsos__init(&machine->dsos);
  87
  88	machine__threads_init(machine);
  89
  90	machine->vdso_info = NULL;
  91	machine->env = NULL;
  92
  93	machine->pid = pid;
  94
  95	machine->id_hdr_size = 0;
  96	machine->kptr_restrict_warned = false;
  97	machine->comm_exec = false;
  98	machine->kernel_start = 0;
  99	machine->vmlinux_map = NULL;
 100
 101	machine->root_dir = strdup(root_dir);
 102	if (machine->root_dir == NULL)
 103		return -ENOMEM;
 104
 105	if (machine__set_mmap_name(machine))
 106		goto out;
 107
 108	if (pid != HOST_KERNEL_ID) {
 109		struct thread *thread = machine__findnew_thread(machine, -1,
 110								pid);
 111		char comm[64];
 112
 113		if (thread == NULL)
 114			goto out;
 115
 116		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 117		thread__set_comm(thread, comm, 0);
 118		thread__put(thread);
 119	}
 120
 121	machine->current_tid = NULL;
 122	err = 0;
 123
 124out:
 125	if (err) {
 
 126		zfree(&machine->root_dir);
 127		zfree(&machine->mmap_name);
 128	}
 129	return 0;
 130}
 131
 132struct machine *machine__new_host(void)
 133{
 134	struct machine *machine = malloc(sizeof(*machine));
 135
 136	if (machine != NULL) {
 137		machine__init(machine, "", HOST_KERNEL_ID);
 138
 139		if (machine__create_kernel_maps(machine) < 0)
 140			goto out_delete;
 141	}
 142
 143	return machine;
 144out_delete:
 145	free(machine);
 146	return NULL;
 147}
 148
 149struct machine *machine__new_kallsyms(void)
 150{
 151	struct machine *machine = machine__new_host();
 152	/*
 153	 * FIXME:
 154	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 155	 *    ask for not using the kcore parsing code, once this one is fixed
 156	 *    to create a map per module.
 157	 */
 158	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 159		machine__delete(machine);
 160		machine = NULL;
 161	}
 162
 163	return machine;
 164}
 165
 166static void dsos__purge(struct dsos *dsos)
 167{
 168	struct dso *pos, *n;
 169
 170	down_write(&dsos->lock);
 171
 172	list_for_each_entry_safe(pos, n, &dsos->head, node) {
 173		RB_CLEAR_NODE(&pos->rb_node);
 174		pos->root = NULL;
 175		list_del_init(&pos->node);
 176		dso__put(pos);
 177	}
 178
 179	up_write(&dsos->lock);
 180}
 181
 182static void dsos__exit(struct dsos *dsos)
 183{
 184	dsos__purge(dsos);
 185	exit_rwsem(&dsos->lock);
 186}
 187
 188void machine__delete_threads(struct machine *machine)
 189{
 190	struct rb_node *nd;
 191	int i;
 192
 193	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 194		struct threads *threads = &machine->threads[i];
 195		down_write(&threads->lock);
 196		nd = rb_first_cached(&threads->entries);
 197		while (nd) {
 198			struct thread *t = rb_entry(nd, struct thread, rb_node);
 199
 200			nd = rb_next(nd);
 201			__machine__remove_thread(machine, t, false);
 202		}
 203		up_write(&threads->lock);
 204	}
 205}
 206
 207void machine__exit(struct machine *machine)
 208{
 209	int i;
 210
 211	if (machine == NULL)
 212		return;
 213
 214	machine__destroy_kernel_maps(machine);
 215	map_groups__exit(&machine->kmaps);
 216	dsos__exit(&machine->dsos);
 217	machine__exit_vdso(machine);
 218	zfree(&machine->root_dir);
 219	zfree(&machine->mmap_name);
 220	zfree(&machine->current_tid);
 
 221
 
 222	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 223		struct threads *threads = &machine->threads[i];
 224		struct thread *thread, *n;
 225		/*
 226		 * Forget about the dead, at this point whatever threads were
 227		 * left in the dead lists better have a reference count taken
 228		 * by who is using them, and then, when they drop those references
 229		 * and it finally hits zero, thread__put() will check and see that
 230		 * its not in the dead threads list and will not try to remove it
 231		 * from there, just calling thread__delete() straight away.
 232		 */
 233		list_for_each_entry_safe(thread, n, &threads->dead, node)
 234			list_del_init(&thread->node);
 235
 236		exit_rwsem(&threads->lock);
 237	}
 238}
 239
 240void machine__delete(struct machine *machine)
 241{
 242	if (machine) {
 243		machine__exit(machine);
 244		free(machine);
 245	}
 246}
 247
 248void machines__init(struct machines *machines)
 249{
 250	machine__init(&machines->host, "", HOST_KERNEL_ID);
 251	machines->guests = RB_ROOT_CACHED;
 252}
 253
 254void machines__exit(struct machines *machines)
 255{
 256	machine__exit(&machines->host);
 257	/* XXX exit guest */
 258}
 259
 260struct machine *machines__add(struct machines *machines, pid_t pid,
 261			      const char *root_dir)
 262{
 263	struct rb_node **p = &machines->guests.rb_root.rb_node;
 264	struct rb_node *parent = NULL;
 265	struct machine *pos, *machine = malloc(sizeof(*machine));
 266	bool leftmost = true;
 267
 268	if (machine == NULL)
 269		return NULL;
 270
 271	if (machine__init(machine, root_dir, pid) != 0) {
 272		free(machine);
 273		return NULL;
 274	}
 275
 276	while (*p != NULL) {
 277		parent = *p;
 278		pos = rb_entry(parent, struct machine, rb_node);
 279		if (pid < pos->pid)
 280			p = &(*p)->rb_left;
 281		else {
 282			p = &(*p)->rb_right;
 283			leftmost = false;
 284		}
 285	}
 286
 287	rb_link_node(&machine->rb_node, parent, p);
 288	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 289
 
 
 290	return machine;
 291}
 292
 293void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 294{
 295	struct rb_node *nd;
 296
 297	machines->host.comm_exec = comm_exec;
 298
 299	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 300		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 301
 302		machine->comm_exec = comm_exec;
 303	}
 304}
 305
 306struct machine *machines__find(struct machines *machines, pid_t pid)
 307{
 308	struct rb_node **p = &machines->guests.rb_root.rb_node;
 309	struct rb_node *parent = NULL;
 310	struct machine *machine;
 311	struct machine *default_machine = NULL;
 312
 313	if (pid == HOST_KERNEL_ID)
 314		return &machines->host;
 315
 316	while (*p != NULL) {
 317		parent = *p;
 318		machine = rb_entry(parent, struct machine, rb_node);
 319		if (pid < machine->pid)
 320			p = &(*p)->rb_left;
 321		else if (pid > machine->pid)
 322			p = &(*p)->rb_right;
 323		else
 324			return machine;
 325		if (!machine->pid)
 326			default_machine = machine;
 327	}
 328
 329	return default_machine;
 330}
 331
 332struct machine *machines__findnew(struct machines *machines, pid_t pid)
 333{
 334	char path[PATH_MAX];
 335	const char *root_dir = "";
 336	struct machine *machine = machines__find(machines, pid);
 337
 338	if (machine && (machine->pid == pid))
 339		goto out;
 340
 341	if ((pid != HOST_KERNEL_ID) &&
 342	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 343	    (symbol_conf.guestmount)) {
 344		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 345		if (access(path, R_OK)) {
 346			static struct strlist *seen;
 347
 348			if (!seen)
 349				seen = strlist__new(NULL, NULL);
 350
 351			if (!strlist__has_entry(seen, path)) {
 352				pr_err("Can't access file %s\n", path);
 353				strlist__add(seen, path);
 354			}
 355			machine = NULL;
 356			goto out;
 357		}
 358		root_dir = path;
 359	}
 360
 361	machine = machines__add(machines, pid, root_dir);
 362out:
 363	return machine;
 364}
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366void machines__process_guests(struct machines *machines,
 367			      machine__process_t process, void *data)
 368{
 369	struct rb_node *nd;
 370
 371	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 372		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 373		process(pos, data);
 374	}
 375}
 376
 377void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 378{
 379	struct rb_node *node;
 380	struct machine *machine;
 381
 382	machines->host.id_hdr_size = id_hdr_size;
 383
 384	for (node = rb_first_cached(&machines->guests); node;
 385	     node = rb_next(node)) {
 386		machine = rb_entry(node, struct machine, rb_node);
 387		machine->id_hdr_size = id_hdr_size;
 388	}
 389
 390	return;
 391}
 392
 393static void machine__update_thread_pid(struct machine *machine,
 394				       struct thread *th, pid_t pid)
 395{
 396	struct thread *leader;
 397
 398	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 399		return;
 400
 401	th->pid_ = pid;
 402
 403	if (th->pid_ == th->tid)
 404		return;
 405
 406	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 407	if (!leader)
 408		goto out_err;
 409
 410	if (!leader->mg)
 411		leader->mg = map_groups__new(machine);
 412
 413	if (!leader->mg)
 414		goto out_err;
 415
 416	if (th->mg == leader->mg)
 417		return;
 418
 419	if (th->mg) {
 420		/*
 421		 * Maps are created from MMAP events which provide the pid and
 422		 * tid.  Consequently there never should be any maps on a thread
 423		 * with an unknown pid.  Just print an error if there are.
 424		 */
 425		if (!map_groups__empty(th->mg))
 426			pr_err("Discarding thread maps for %d:%d\n",
 427			       th->pid_, th->tid);
 428		map_groups__put(th->mg);
 429	}
 430
 431	th->mg = map_groups__get(leader->mg);
 432out_put:
 433	thread__put(leader);
 434	return;
 435out_err:
 436	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 437	goto out_put;
 438}
 439
 440/*
 441 * Front-end cache - TID lookups come in blocks,
 442 * so most of the time we dont have to look up
 443 * the full rbtree:
 444 */
 445static struct thread*
 446__threads__get_last_match(struct threads *threads, struct machine *machine,
 447			  int pid, int tid)
 448{
 449	struct thread *th;
 450
 451	th = threads->last_match;
 452	if (th != NULL) {
 453		if (th->tid == tid) {
 454			machine__update_thread_pid(machine, th, pid);
 455			return thread__get(th);
 456		}
 457
 458		threads->last_match = NULL;
 459	}
 460
 461	return NULL;
 462}
 463
 464static struct thread*
 465threads__get_last_match(struct threads *threads, struct machine *machine,
 466			int pid, int tid)
 467{
 468	struct thread *th = NULL;
 469
 470	if (perf_singlethreaded)
 471		th = __threads__get_last_match(threads, machine, pid, tid);
 472
 473	return th;
 474}
 475
 476static void
 477__threads__set_last_match(struct threads *threads, struct thread *th)
 478{
 479	threads->last_match = th;
 
 480}
 481
 482static void
 483threads__set_last_match(struct threads *threads, struct thread *th)
 484{
 485	if (perf_singlethreaded)
 486		__threads__set_last_match(threads, th);
 487}
 488
 489/*
 490 * Caller must eventually drop thread->refcnt returned with a successful
 491 * lookup/new thread inserted.
 492 */
 493static struct thread *____machine__findnew_thread(struct machine *machine,
 494						  struct threads *threads,
 495						  pid_t pid, pid_t tid,
 496						  bool create)
 497{
 498	struct rb_node **p = &threads->entries.rb_root.rb_node;
 499	struct rb_node *parent = NULL;
 500	struct thread *th;
 
 501	bool leftmost = true;
 502
 503	th = threads__get_last_match(threads, machine, pid, tid);
 504	if (th)
 505		return th;
 506
 507	while (*p != NULL) {
 508		parent = *p;
 509		th = rb_entry(parent, struct thread, rb_node);
 510
 511		if (th->tid == tid) {
 512			threads__set_last_match(threads, th);
 513			machine__update_thread_pid(machine, th, pid);
 514			return thread__get(th);
 515		}
 516
 517		if (tid < th->tid)
 518			p = &(*p)->rb_left;
 519		else {
 520			p = &(*p)->rb_right;
 521			leftmost = false;
 522		}
 523	}
 524
 525	if (!create)
 526		return NULL;
 527
 528	th = thread__new(pid, tid);
 529	if (th != NULL) {
 530		rb_link_node(&th->rb_node, parent, p);
 531		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 532
 533		/*
 534		 * We have to initialize map_groups separately
 535		 * after rb tree is updated.
 536		 *
 537		 * The reason is that we call machine__findnew_thread
 538		 * within thread__init_map_groups to find the thread
 539		 * leader and that would screwed the rb tree.
 540		 */
 541		if (thread__init_map_groups(th, machine)) {
 542			rb_erase_cached(&th->rb_node, &threads->entries);
 543			RB_CLEAR_NODE(&th->rb_node);
 544			thread__put(th);
 545			return NULL;
 546		}
 547		/*
 548		 * It is now in the rbtree, get a ref
 549		 */
 550		thread__get(th);
 551		threads__set_last_match(threads, th);
 552		++threads->nr;
 553	}
 
 554
 555	return th;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556}
 557
 558struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 559{
 560	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 561}
 562
 563struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 564				       pid_t tid)
 565{
 566	struct threads *threads = machine__threads(machine, tid);
 567	struct thread *th;
 568
 569	down_write(&threads->lock);
 570	th = __machine__findnew_thread(machine, pid, tid);
 571	up_write(&threads->lock);
 572	return th;
 573}
 574
 575struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 576				    pid_t tid)
 577{
 578	struct threads *threads = machine__threads(machine, tid);
 579	struct thread *th;
 580
 581	down_read(&threads->lock);
 582	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 583	up_read(&threads->lock);
 584	return th;
 585}
 586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587struct comm *machine__thread_exec_comm(struct machine *machine,
 588				       struct thread *thread)
 589{
 590	if (machine->comm_exec)
 591		return thread__exec_comm(thread);
 592	else
 593		return thread__comm(thread);
 594}
 595
 596int machine__process_comm_event(struct machine *machine, union perf_event *event,
 597				struct perf_sample *sample)
 598{
 599	struct thread *thread = machine__findnew_thread(machine,
 600							event->comm.pid,
 601							event->comm.tid);
 602	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 603	int err = 0;
 604
 605	if (exec)
 606		machine->comm_exec = true;
 607
 608	if (dump_trace)
 609		perf_event__fprintf_comm(event, stdout);
 610
 611	if (thread == NULL ||
 612	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 613		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 614		err = -1;
 615	}
 616
 617	thread__put(thread);
 618
 619	return err;
 620}
 621
 622int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 623				      union perf_event *event,
 624				      struct perf_sample *sample __maybe_unused)
 625{
 626	struct thread *thread = machine__findnew_thread(machine,
 627							event->namespaces.pid,
 628							event->namespaces.tid);
 629	int err = 0;
 630
 631	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 632		  "\nWARNING: kernel seems to support more namespaces than perf"
 633		  " tool.\nTry updating the perf tool..\n\n");
 634
 635	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 636		  "\nWARNING: perf tool seems to support more namespaces than"
 637		  " the kernel.\nTry updating the kernel..\n\n");
 638
 639	if (dump_trace)
 640		perf_event__fprintf_namespaces(event, stdout);
 641
 642	if (thread == NULL ||
 643	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 644		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 645		err = -1;
 646	}
 647
 648	thread__put(thread);
 649
 650	return err;
 651}
 652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653int machine__process_lost_event(struct machine *machine __maybe_unused,
 654				union perf_event *event, struct perf_sample *sample __maybe_unused)
 655{
 656	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 657		    event->lost.id, event->lost.lost);
 658	return 0;
 659}
 660
 661int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 662					union perf_event *event, struct perf_sample *sample)
 663{
 664	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 665		    sample->id, event->lost_samples.lost);
 666	return 0;
 667}
 668
 669static struct dso *machine__findnew_module_dso(struct machine *machine,
 670					       struct kmod_path *m,
 671					       const char *filename)
 672{
 673	struct dso *dso;
 674
 675	down_write(&machine->dsos.lock);
 676
 677	dso = __dsos__find(&machine->dsos, m->name, true);
 678	if (!dso) {
 679		dso = __dsos__addnew(&machine->dsos, m->name);
 680		if (dso == NULL)
 681			goto out_unlock;
 682
 683		dso__set_module_info(dso, m, machine);
 684		dso__set_long_name(dso, strdup(filename), true);
 
 685	}
 686
 687	dso__get(dso);
 688out_unlock:
 689	up_write(&machine->dsos.lock);
 690	return dso;
 691}
 692
 693int machine__process_aux_event(struct machine *machine __maybe_unused,
 694			       union perf_event *event)
 695{
 696	if (dump_trace)
 697		perf_event__fprintf_aux(event, stdout);
 698	return 0;
 699}
 700
 701int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 702					union perf_event *event)
 703{
 704	if (dump_trace)
 705		perf_event__fprintf_itrace_start(event, stdout);
 706	return 0;
 707}
 708
 
 
 
 
 
 
 
 
 709int machine__process_switch_event(struct machine *machine __maybe_unused,
 710				  union perf_event *event)
 711{
 712	if (dump_trace)
 713		perf_event__fprintf_switch(event, stdout);
 714	return 0;
 715}
 716
 717static int machine__process_ksymbol_register(struct machine *machine,
 718					     union perf_event *event,
 719					     struct perf_sample *sample __maybe_unused)
 720{
 721	struct symbol *sym;
 722	struct map *map;
 
 
 
 723
 724	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 725	if (!map) {
 726		map = dso__new_map(event->ksymbol.name);
 727		if (!map)
 728			return -ENOMEM;
 729
 730		map->start = event->ksymbol.addr;
 731		map->end = map->start + event->ksymbol.len;
 732		map_groups__insert(&machine->kmaps, map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733	}
 734
 735	sym = symbol__new(map->map_ip(map, map->start),
 736			  event->ksymbol.len,
 737			  0, 0, event->ksymbol.name);
 738	if (!sym)
 739		return -ENOMEM;
 740	dso__insert_symbol(map->dso, sym);
 741	return 0;
 
 
 
 
 
 742}
 743
 744static int machine__process_ksymbol_unregister(struct machine *machine,
 745					       union perf_event *event,
 746					       struct perf_sample *sample __maybe_unused)
 747{
 
 748	struct map *map;
 749
 750	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 751	if (map)
 752		map_groups__remove(&machine->kmaps, map);
 
 
 
 
 
 
 
 
 
 
 753
 754	return 0;
 755}
 756
 757int machine__process_ksymbol(struct machine *machine __maybe_unused,
 758			     union perf_event *event,
 759			     struct perf_sample *sample)
 760{
 761	if (dump_trace)
 762		perf_event__fprintf_ksymbol(event, stdout);
 763
 764	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 765		return machine__process_ksymbol_unregister(machine, event,
 766							   sample);
 767	return machine__process_ksymbol_register(machine, event, sample);
 768}
 769
 770static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 
 771{
 772	const char *dup_filename;
 
 
 773
 774	if (!filename || !dso || !dso->long_name)
 775		return;
 776	if (dso->long_name[0] != '[')
 777		return;
 778	if (!strchr(filename, '/'))
 779		return;
 780
 781	dup_filename = strdup(filename);
 782	if (!dup_filename)
 783		return;
 784
 785	dso__set_long_name(dso, dup_filename, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786}
 787
 788struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 789					const char *filename)
 790{
 791	struct map *map = NULL;
 792	struct dso *dso = NULL;
 793	struct kmod_path m;
 
 
 794
 795	if (kmod_path__parse_name(&m, filename))
 796		return NULL;
 797
 798	map = map_groups__find_by_name(&machine->kmaps, m.name);
 799	if (map) {
 800		/*
 801		 * If the map's dso is an offline module, give dso__load()
 802		 * a chance to find the file path of that module by fixing
 803		 * long_name.
 804		 */
 805		dso__adjust_kmod_long_name(map->dso, filename);
 806		goto out;
 807	}
 808
 809	dso = machine__findnew_module_dso(machine, &m, filename);
 810	if (dso == NULL)
 811		goto out;
 812
 813	map = map__new2(start, dso);
 814	if (map == NULL)
 815		goto out;
 816
 817	map_groups__insert(&machine->kmaps, map);
 818
 819	/* Put the map here because map_groups__insert alread got it */
 820	map__put(map);
 
 
 821out:
 822	/* put the dso here, corresponding to  machine__findnew_module_dso */
 823	dso__put(dso);
 824	zfree(&m.name);
 825	return map;
 826}
 827
 828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 829{
 830	struct rb_node *nd;
 831	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 832
 833	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 834		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 835		ret += __dsos__fprintf(&pos->dsos.head, fp);
 836	}
 837
 838	return ret;
 839}
 840
 841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 842				     bool (skip)(struct dso *dso, int parm), int parm)
 843{
 844	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 845}
 846
 847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 848				     bool (skip)(struct dso *dso, int parm), int parm)
 849{
 850	struct rb_node *nd;
 851	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 852
 853	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 854		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 855		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 856	}
 857	return ret;
 858}
 859
 860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 861{
 862	int i;
 863	size_t printed = 0;
 864	struct dso *kdso = machine__kernel_map(machine)->dso;
 865
 866	if (kdso->has_build_id) {
 867		char filename[PATH_MAX];
 868		if (dso__build_id_filename(kdso, filename, sizeof(filename),
 869					   false))
 870			printed += fprintf(fp, "[0] %s\n", filename);
 871	}
 872
 873	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 874		printed += fprintf(fp, "[%d] %s\n",
 875				   i + kdso->has_build_id, vmlinux_path[i]);
 876
 877	return printed;
 878}
 879
 880size_t machine__fprintf(struct machine *machine, FILE *fp)
 881{
 882	struct rb_node *nd;
 883	size_t ret;
 884	int i;
 885
 886	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 887		struct threads *threads = &machine->threads[i];
 888
 889		down_read(&threads->lock);
 890
 891		ret = fprintf(fp, "Threads: %u\n", threads->nr);
 892
 893		for (nd = rb_first_cached(&threads->entries); nd;
 894		     nd = rb_next(nd)) {
 895			struct thread *pos = rb_entry(nd, struct thread, rb_node);
 896
 897			ret += thread__fprintf(pos, fp);
 898		}
 899
 900		up_read(&threads->lock);
 901	}
 902	return ret;
 903}
 904
 905static struct dso *machine__get_kernel(struct machine *machine)
 906{
 907	const char *vmlinux_name = machine->mmap_name;
 908	struct dso *kernel;
 909
 910	if (machine__is_host(machine)) {
 911		if (symbol_conf.vmlinux_name)
 912			vmlinux_name = symbol_conf.vmlinux_name;
 913
 914		kernel = machine__findnew_kernel(machine, vmlinux_name,
 915						 "[kernel]", DSO_TYPE_KERNEL);
 916	} else {
 917		if (symbol_conf.default_guest_vmlinux_name)
 918			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 919
 920		kernel = machine__findnew_kernel(machine, vmlinux_name,
 921						 "[guest.kernel]",
 922						 DSO_TYPE_GUEST_KERNEL);
 923	}
 924
 925	if (kernel != NULL && (!kernel->has_build_id))
 926		dso__read_running_kernel_build_id(kernel, machine);
 927
 928	return kernel;
 929}
 930
 931struct process_args {
 932	u64 start;
 933};
 934
 935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 936				    size_t bufsz)
 937{
 938	if (machine__is_default_guest(machine))
 939		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 940	else
 941		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 942}
 943
 944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 945
 946/* Figure out the start address of kernel map from /proc/kallsyms.
 947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 948 * symbol_name if it's not that important.
 949 */
 950static int machine__get_running_kernel_start(struct machine *machine,
 951					     const char **symbol_name,
 952					     u64 *start, u64 *end)
 953{
 954	char filename[PATH_MAX];
 955	int i, err = -1;
 956	const char *name;
 957	u64 addr = 0;
 958
 959	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 960
 961	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 962		return 0;
 963
 964	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 965		err = kallsyms__get_function_start(filename, name, &addr);
 966		if (!err)
 967			break;
 968	}
 969
 970	if (err)
 971		return -1;
 972
 973	if (symbol_name)
 974		*symbol_name = name;
 975
 976	*start = addr;
 977
 978	err = kallsyms__get_function_start(filename, "_etext", &addr);
 
 
 979	if (!err)
 980		*end = addr;
 981
 982	return 0;
 983}
 984
 985int machine__create_extra_kernel_map(struct machine *machine,
 986				     struct dso *kernel,
 987				     struct extra_kernel_map *xm)
 988{
 989	struct kmap *kmap;
 990	struct map *map;
 
 991
 992	map = map__new2(xm->start, kernel);
 993	if (!map)
 994		return -1;
 995
 996	map->end   = xm->end;
 997	map->pgoff = xm->pgoff;
 998
 999	kmap = map__kmap(map);
1000
1001	kmap->kmaps = &machine->kmaps;
1002	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003
1004	map_groups__insert(&machine->kmaps, map);
1005
1006	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007		  kmap->name, map->start, map->end);
 
 
1008
1009	map__put(map);
1010
1011	return 0;
1012}
1013
1014static u64 find_entry_trampoline(struct dso *dso)
1015{
1016	/* Duplicates are removed so lookup all aliases */
1017	const char *syms[] = {
1018		"_entry_trampoline",
1019		"__entry_trampoline_start",
1020		"entry_SYSCALL_64_trampoline",
1021	};
1022	struct symbol *sym = dso__first_symbol(dso);
1023	unsigned int i;
1024
1025	for (; sym; sym = dso__next_symbol(sym)) {
1026		if (sym->binding != STB_GLOBAL)
1027			continue;
1028		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029			if (!strcmp(sym->name, syms[i]))
1030				return sym->start;
1031		}
1032	}
1033
1034	return 0;
1035}
1036
1037/*
1038 * These values can be used for kernels that do not have symbols for the entry
1039 * trampolines in kallsyms.
1040 */
1041#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1042#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1043#define X86_64_ENTRY_TRAMPOLINE		0x6000
1044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045/* Map x86_64 PTI entry trampolines */
1046int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047					  struct dso *kernel)
1048{
1049	struct map_groups *kmaps = &machine->kmaps;
1050	struct maps *maps = &kmaps->maps;
 
 
1051	int nr_cpus_avail, cpu;
1052	bool found = false;
1053	struct map *map;
1054	u64 pgoff;
1055
1056	/*
1057	 * In the vmlinux case, pgoff is a virtual address which must now be
1058	 * mapped to a vmlinux offset.
1059	 */
1060	for (map = maps__first(maps); map; map = map__next(map)) {
1061		struct kmap *kmap = __map__kmap(map);
1062		struct map *dest_map;
1063
1064		if (!kmap || !is_entry_trampoline(kmap->name))
1065			continue;
1066
1067		dest_map = map_groups__find(kmaps, map->pgoff);
1068		if (dest_map != map)
1069			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070		found = true;
1071	}
1072	if (found || machine->trampolines_mapped)
1073		return 0;
1074
1075	pgoff = find_entry_trampoline(kernel);
1076	if (!pgoff)
1077		return 0;
1078
1079	nr_cpus_avail = machine__nr_cpus_avail(machine);
1080
1081	/* Add a 1 page map for each CPU's entry trampoline */
1082	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085			 X86_64_ENTRY_TRAMPOLINE;
1086		struct extra_kernel_map xm = {
1087			.start = va,
1088			.end   = va + page_size,
1089			.pgoff = pgoff,
1090		};
1091
1092		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1093
1094		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1095			return -1;
1096	}
1097
1098	machine->trampolines_mapped = nr_cpus_avail;
1099
1100	return 0;
1101}
1102
1103int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104					     struct dso *kernel __maybe_unused)
1105{
1106	return 0;
1107}
1108
1109static int
1110__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111{
1112	struct kmap *kmap;
1113	struct map *map;
1114
1115	/* In case of renewal the kernel map, destroy previous one */
1116	machine__destroy_kernel_maps(machine);
1117
 
1118	machine->vmlinux_map = map__new2(0, kernel);
1119	if (machine->vmlinux_map == NULL)
1120		return -1;
1121
1122	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123	map = machine__kernel_map(machine);
1124	kmap = map__kmap(map);
1125	if (!kmap)
1126		return -1;
1127
1128	kmap->kmaps = &machine->kmaps;
1129	map_groups__insert(&machine->kmaps, map);
1130
1131	return 0;
 
1132}
1133
1134void machine__destroy_kernel_maps(struct machine *machine)
1135{
1136	struct kmap *kmap;
1137	struct map *map = machine__kernel_map(machine);
1138
1139	if (map == NULL)
1140		return;
1141
1142	kmap = map__kmap(map);
1143	map_groups__remove(&machine->kmaps, map);
1144	if (kmap && kmap->ref_reloc_sym) {
1145		zfree((char **)&kmap->ref_reloc_sym->name);
1146		zfree(&kmap->ref_reloc_sym);
1147	}
1148
1149	map__zput(machine->vmlinux_map);
1150}
1151
1152int machines__create_guest_kernel_maps(struct machines *machines)
1153{
1154	int ret = 0;
1155	struct dirent **namelist = NULL;
1156	int i, items = 0;
1157	char path[PATH_MAX];
1158	pid_t pid;
1159	char *endp;
1160
1161	if (symbol_conf.default_guest_vmlinux_name ||
1162	    symbol_conf.default_guest_modules ||
1163	    symbol_conf.default_guest_kallsyms) {
1164		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165	}
1166
1167	if (symbol_conf.guestmount) {
1168		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169		if (items <= 0)
1170			return -ENOENT;
1171		for (i = 0; i < items; i++) {
1172			if (!isdigit(namelist[i]->d_name[0])) {
1173				/* Filter out . and .. */
1174				continue;
1175			}
1176			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177			if ((*endp != '\0') ||
1178			    (endp == namelist[i]->d_name) ||
1179			    (errno == ERANGE)) {
1180				pr_debug("invalid directory (%s). Skipping.\n",
1181					 namelist[i]->d_name);
1182				continue;
1183			}
1184			sprintf(path, "%s/%s/proc/kallsyms",
1185				symbol_conf.guestmount,
1186				namelist[i]->d_name);
1187			ret = access(path, R_OK);
1188			if (ret) {
1189				pr_debug("Can't access file %s\n", path);
1190				goto failure;
1191			}
1192			machines__create_kernel_maps(machines, pid);
1193		}
1194failure:
1195		free(namelist);
1196	}
1197
1198	return ret;
1199}
1200
1201void machines__destroy_kernel_maps(struct machines *machines)
1202{
1203	struct rb_node *next = rb_first_cached(&machines->guests);
1204
1205	machine__destroy_kernel_maps(&machines->host);
1206
1207	while (next) {
1208		struct machine *pos = rb_entry(next, struct machine, rb_node);
1209
1210		next = rb_next(&pos->rb_node);
1211		rb_erase_cached(&pos->rb_node, &machines->guests);
1212		machine__delete(pos);
1213	}
1214}
1215
1216int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217{
1218	struct machine *machine = machines__findnew(machines, pid);
1219
1220	if (machine == NULL)
1221		return -1;
1222
1223	return machine__create_kernel_maps(machine);
1224}
1225
1226int machine__load_kallsyms(struct machine *machine, const char *filename)
1227{
1228	struct map *map = machine__kernel_map(machine);
1229	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
 
1230
1231	if (ret > 0) {
1232		dso__set_loaded(map->dso);
1233		/*
1234		 * Since /proc/kallsyms will have multiple sessions for the
1235		 * kernel, with modules between them, fixup the end of all
1236		 * sections.
1237		 */
1238		map_groups__fixup_end(&machine->kmaps);
1239	}
1240
1241	return ret;
1242}
1243
1244int machine__load_vmlinux_path(struct machine *machine)
1245{
1246	struct map *map = machine__kernel_map(machine);
1247	int ret = dso__load_vmlinux_path(map->dso, map);
 
1248
1249	if (ret > 0)
1250		dso__set_loaded(map->dso);
1251
1252	return ret;
1253}
1254
1255static char *get_kernel_version(const char *root_dir)
1256{
1257	char version[PATH_MAX];
1258	FILE *file;
1259	char *name, *tmp;
1260	const char *prefix = "Linux version ";
1261
1262	sprintf(version, "%s/proc/version", root_dir);
1263	file = fopen(version, "r");
1264	if (!file)
1265		return NULL;
1266
1267	tmp = fgets(version, sizeof(version), file);
1268	fclose(file);
1269	if (!tmp)
1270		return NULL;
1271
1272	name = strstr(version, prefix);
1273	if (!name)
1274		return NULL;
1275	name += strlen(prefix);
1276	tmp = strchr(name, ' ');
1277	if (tmp)
1278		*tmp = '\0';
1279
1280	return strdup(name);
1281}
1282
1283static bool is_kmod_dso(struct dso *dso)
1284{
1285	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287}
1288
1289static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290				       struct kmod_path *m)
1291{
1292	char *long_name;
1293	struct map *map = map_groups__find_by_name(mg, m->name);
 
1294
1295	if (map == NULL)
1296		return 0;
1297
1298	long_name = strdup(path);
1299	if (long_name == NULL)
1300		return -ENOMEM;
1301
1302	dso__set_long_name(map->dso, long_name, true);
1303	dso__kernel_module_get_build_id(map->dso, "");
 
1304
1305	/*
1306	 * Full name could reveal us kmod compression, so
1307	 * we need to update the symtab_type if needed.
1308	 */
1309	if (m->comp && is_kmod_dso(map->dso)) {
1310		map->dso->symtab_type++;
1311		map->dso->comp = m->comp;
1312	}
1313
1314	return 0;
1315}
1316
1317static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318				const char *dir_name, int depth)
1319{
1320	struct dirent *dent;
1321	DIR *dir = opendir(dir_name);
1322	int ret = 0;
1323
1324	if (!dir) {
1325		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326		return -1;
1327	}
1328
1329	while ((dent = readdir(dir)) != NULL) {
1330		char path[PATH_MAX];
1331		struct stat st;
1332
1333		/*sshfs might return bad dent->d_type, so we have to stat*/
1334		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335		if (stat(path, &st))
1336			continue;
1337
1338		if (S_ISDIR(st.st_mode)) {
1339			if (!strcmp(dent->d_name, ".") ||
1340			    !strcmp(dent->d_name, ".."))
1341				continue;
1342
1343			/* Do not follow top-level source and build symlinks */
1344			if (depth == 0) {
1345				if (!strcmp(dent->d_name, "source") ||
1346				    !strcmp(dent->d_name, "build"))
1347					continue;
1348			}
1349
1350			ret = map_groups__set_modules_path_dir(mg, path,
1351							       depth + 1);
1352			if (ret < 0)
1353				goto out;
1354		} else {
1355			struct kmod_path m;
1356
1357			ret = kmod_path__parse_name(&m, dent->d_name);
1358			if (ret)
1359				goto out;
1360
1361			if (m.kmod)
1362				ret = map_groups__set_module_path(mg, path, &m);
1363
1364			zfree(&m.name);
1365
1366			if (ret)
1367				goto out;
1368		}
1369	}
1370
1371out:
1372	closedir(dir);
1373	return ret;
1374}
1375
1376static int machine__set_modules_path(struct machine *machine)
1377{
1378	char *version;
1379	char modules_path[PATH_MAX];
1380
1381	version = get_kernel_version(machine->root_dir);
1382	if (!version)
1383		return -1;
1384
1385	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386		 machine->root_dir, version);
1387	free(version);
1388
1389	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390}
1391int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392				u64 *size __maybe_unused,
1393				const char *name __maybe_unused)
1394{
1395	return 0;
1396}
1397
1398static int machine__create_module(void *arg, const char *name, u64 start,
1399				  u64 size)
1400{
1401	struct machine *machine = arg;
1402	struct map *map;
1403
1404	if (arch__fix_module_text_start(&start, &size, name) < 0)
1405		return -1;
1406
1407	map = machine__findnew_module_map(machine, start, name);
1408	if (map == NULL)
1409		return -1;
1410	map->end = start + size;
1411
1412	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413
 
 
1414	return 0;
1415}
1416
1417static int machine__create_modules(struct machine *machine)
1418{
1419	const char *modules;
1420	char path[PATH_MAX];
1421
1422	if (machine__is_default_guest(machine)) {
1423		modules = symbol_conf.default_guest_modules;
1424	} else {
1425		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426		modules = path;
1427	}
1428
1429	if (symbol__restricted_filename(modules, "/proc/modules"))
1430		return -1;
1431
1432	if (modules__parse(modules, machine, machine__create_module))
1433		return -1;
1434
1435	if (!machine__set_modules_path(machine))
1436		return 0;
1437
1438	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439
1440	return 0;
1441}
1442
1443static void machine__set_kernel_mmap(struct machine *machine,
1444				     u64 start, u64 end)
1445{
1446	machine->vmlinux_map->start = start;
1447	machine->vmlinux_map->end   = end;
1448	/*
1449	 * Be a bit paranoid here, some perf.data file came with
1450	 * a zero sized synthesized MMAP event for the kernel.
1451	 */
1452	if (start == 0 && end == 0)
1453		machine->vmlinux_map->end = ~0ULL;
1454}
1455
1456static void machine__update_kernel_mmap(struct machine *machine,
1457				     u64 start, u64 end)
1458{
1459	struct map *map = machine__kernel_map(machine);
 
1460
1461	map__get(map);
1462	map_groups__remove(&machine->kmaps, map);
1463
 
1464	machine__set_kernel_mmap(machine, start, end);
 
 
 
1465
1466	map_groups__insert(&machine->kmaps, map);
1467	map__put(map);
1468}
1469
1470int machine__create_kernel_maps(struct machine *machine)
1471{
1472	struct dso *kernel = machine__get_kernel(machine);
1473	const char *name = NULL;
1474	struct map *map;
1475	u64 start = 0, end = ~0ULL;
1476	int ret;
1477
1478	if (kernel == NULL)
1479		return -1;
1480
1481	ret = __machine__create_kernel_maps(machine, kernel);
1482	if (ret < 0)
1483		goto out_put;
1484
1485	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486		if (machine__is_host(machine))
1487			pr_debug("Problems creating module maps, "
1488				 "continuing anyway...\n");
1489		else
1490			pr_debug("Problems creating module maps for guest %d, "
1491				 "continuing anyway...\n", machine->pid);
1492	}
1493
1494	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495		if (name &&
1496		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497			machine__destroy_kernel_maps(machine);
1498			ret = -1;
1499			goto out_put;
1500		}
1501
1502		/*
1503		 * we have a real start address now, so re-order the kmaps
1504		 * assume it's the last in the kmaps
1505		 */
1506		machine__update_kernel_mmap(machine, start, end);
 
 
1507	}
1508
1509	if (machine__create_extra_kernel_maps(machine, kernel))
1510		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511
1512	if (end == ~0ULL) {
1513		/* update end address of the kernel map using adjacent module address */
1514		map = map__next(machine__kernel_map(machine));
1515		if (map)
1516			machine__set_kernel_mmap(machine, start, map->start);
 
 
1517	}
1518
1519out_put:
1520	dso__put(kernel);
1521	return ret;
1522}
1523
1524static bool machine__uses_kcore(struct machine *machine)
1525{
1526	struct dso *dso;
1527
1528	list_for_each_entry(dso, &machine->dsos.head, node) {
1529		if (dso__is_kcore(dso))
1530			return true;
1531	}
1532
1533	return false;
1534}
1535
1536static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537					     union perf_event *event)
1538{
1539	return machine__is(machine, "x86_64") &&
1540	       is_entry_trampoline(event->mmap.filename);
1541}
1542
1543static int machine__process_extra_kernel_map(struct machine *machine,
1544					     union perf_event *event)
1545{
1546	struct map *kernel_map = machine__kernel_map(machine);
1547	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548	struct extra_kernel_map xm = {
1549		.start = event->mmap.start,
1550		.end   = event->mmap.start + event->mmap.len,
1551		.pgoff = event->mmap.pgoff,
1552	};
1553
1554	if (kernel == NULL)
1555		return -1;
1556
1557	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558
1559	return machine__create_extra_kernel_map(machine, kernel, &xm);
1560}
1561
1562static int machine__process_kernel_mmap_event(struct machine *machine,
1563					      union perf_event *event)
 
1564{
1565	struct map *map;
1566	enum dso_kernel_type kernel_type;
1567	bool is_kernel_mmap;
 
1568
1569	/* If we have maps from kcore then we do not need or want any others */
1570	if (machine__uses_kcore(machine))
1571		return 0;
1572
1573	if (machine__is_host(machine))
1574		kernel_type = DSO_TYPE_KERNEL;
1575	else
1576		kernel_type = DSO_TYPE_GUEST_KERNEL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1577
1578	is_kernel_mmap = memcmp(event->mmap.filename,
1579				machine->mmap_name,
1580				strlen(machine->mmap_name) - 1) == 0;
1581	if (event->mmap.filename[0] == '/' ||
1582	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583		map = machine__findnew_module_map(machine, event->mmap.start,
1584						  event->mmap.filename);
1585		if (map == NULL)
1586			goto out_problem;
1587
1588		map->end = map->start + event->mmap.len;
 
 
 
 
 
1589	} else if (is_kernel_mmap) {
1590		const char *symbol_name = (event->mmap.filename +
1591				strlen(machine->mmap_name));
1592		/*
1593		 * Should be there already, from the build-id table in
1594		 * the header.
1595		 */
1596		struct dso *kernel = NULL;
1597		struct dso *dso;
1598
1599		down_read(&machine->dsos.lock);
1600
1601		list_for_each_entry(dso, &machine->dsos.head, node) {
1602
1603			/*
1604			 * The cpumode passed to is_kernel_module is not the
1605			 * cpumode of *this* event. If we insist on passing
1606			 * correct cpumode to is_kernel_module, we should
1607			 * record the cpumode when we adding this dso to the
1608			 * linked list.
1609			 *
1610			 * However we don't really need passing correct
1611			 * cpumode.  We know the correct cpumode must be kernel
1612			 * mode (if not, we should not link it onto kernel_dsos
1613			 * list).
1614			 *
1615			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616			 * is_kernel_module() treats it as a kernel cpumode.
1617			 */
1618
1619			if (!dso->kernel ||
1620			    is_kernel_module(dso->long_name,
1621					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622				continue;
1623
1624
1625			kernel = dso;
1626			break;
1627		}
1628
1629		up_read(&machine->dsos.lock);
1630
1631		if (kernel == NULL)
1632			kernel = machine__findnew_dso(machine, machine->mmap_name);
1633		if (kernel == NULL)
1634			goto out_problem;
1635
1636		kernel->kernel = kernel_type;
1637		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638			dso__put(kernel);
1639			goto out_problem;
1640		}
1641
1642		if (strstr(kernel->long_name, "vmlinux"))
1643			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644
1645		machine__update_kernel_mmap(machine, event->mmap.start,
1646					 event->mmap.start + event->mmap.len);
 
 
 
 
 
1647
1648		/*
1649		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650		 * symbol. Effectively having zero here means that at record
1651		 * time /proc/sys/kernel/kptr_restrict was non zero.
1652		 */
1653		if (event->mmap.pgoff != 0) {
1654			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655							symbol_name,
1656							event->mmap.pgoff);
1657		}
1658
1659		if (machine__is_default_guest(machine)) {
1660			/*
1661			 * preload dso of guest kernel and modules
1662			 */
1663			dso__load(kernel, machine__kernel_map(machine));
1664		}
1665	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666		return machine__process_extra_kernel_map(machine, event);
 
1667	}
1668	return 0;
1669out_problem:
1670	return -1;
1671}
1672
1673int machine__process_mmap2_event(struct machine *machine,
1674				 union perf_event *event,
1675				 struct perf_sample *sample)
1676{
1677	struct thread *thread;
1678	struct map *map;
 
 
 
 
 
 
 
1679	int ret = 0;
1680
1681	if (dump_trace)
1682		perf_event__fprintf_mmap2(event, stdout);
1683
 
 
 
 
 
1684	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686		ret = machine__process_kernel_mmap_event(machine, event);
 
 
 
 
 
 
 
1687		if (ret < 0)
1688			goto out_problem;
1689		return 0;
1690	}
1691
1692	thread = machine__findnew_thread(machine, event->mmap2.pid,
1693					event->mmap2.tid);
1694	if (thread == NULL)
1695		goto out_problem;
1696
1697	map = map__new(machine, event->mmap2.start,
1698			event->mmap2.len, event->mmap2.pgoff,
1699			event->mmap2.maj,
1700			event->mmap2.min, event->mmap2.ino,
1701			event->mmap2.ino_generation,
1702			event->mmap2.prot,
1703			event->mmap2.flags,
1704			event->mmap2.filename, thread);
1705
1706	if (map == NULL)
1707		goto out_problem_map;
1708
1709	ret = thread__insert_map(thread, map);
1710	if (ret)
1711		goto out_problem_insert;
1712
1713	thread__put(thread);
1714	map__put(map);
1715	return 0;
1716
1717out_problem_insert:
1718	map__put(map);
1719out_problem_map:
1720	thread__put(thread);
1721out_problem:
1722	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723	return 0;
1724}
1725
1726int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727				struct perf_sample *sample)
1728{
1729	struct thread *thread;
1730	struct map *map;
1731	u32 prot = 0;
1732	int ret = 0;
1733
1734	if (dump_trace)
1735		perf_event__fprintf_mmap(event, stdout);
1736
1737	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739		ret = machine__process_kernel_mmap_event(machine, event);
 
 
 
 
 
 
 
1740		if (ret < 0)
1741			goto out_problem;
1742		return 0;
1743	}
1744
1745	thread = machine__findnew_thread(machine, event->mmap.pid,
1746					 event->mmap.tid);
1747	if (thread == NULL)
1748		goto out_problem;
1749
1750	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751		prot = PROT_EXEC;
1752
1753	map = map__new(machine, event->mmap.start,
1754			event->mmap.len, event->mmap.pgoff,
1755			0, 0, 0, 0, prot, 0,
1756			event->mmap.filename,
1757			thread);
1758
1759	if (map == NULL)
1760		goto out_problem_map;
1761
1762	ret = thread__insert_map(thread, map);
1763	if (ret)
1764		goto out_problem_insert;
1765
1766	thread__put(thread);
1767	map__put(map);
1768	return 0;
1769
1770out_problem_insert:
1771	map__put(map);
1772out_problem_map:
1773	thread__put(thread);
1774out_problem:
1775	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776	return 0;
1777}
1778
1779static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
 
1780{
1781	struct threads *threads = machine__threads(machine, th->tid);
1782
1783	if (threads->last_match == th)
 
 
 
1784		threads__set_last_match(threads, NULL);
1785
1786	if (lock)
1787		down_write(&threads->lock);
1788
1789	BUG_ON(refcount_read(&th->refcnt) == 0);
1790
1791	rb_erase_cached(&th->rb_node, &threads->entries);
1792	RB_CLEAR_NODE(&th->rb_node);
 
1793	--threads->nr;
1794	/*
1795	 * Move it first to the dead_threads list, then drop the reference,
1796	 * if this is the last reference, then the thread__delete destructor
1797	 * will be called and we will remove it from the dead_threads list.
1798	 */
1799	list_add_tail(&th->node, &threads->dead);
1800
1801	/*
1802	 * We need to do the put here because if this is the last refcount,
1803	 * then we will be touching the threads->dead head when removing the
1804	 * thread.
1805	 */
1806	thread__put(th);
1807
1808	if (lock)
1809		up_write(&threads->lock);
1810}
1811
1812void machine__remove_thread(struct machine *machine, struct thread *th)
1813{
1814	return __machine__remove_thread(machine, th, true);
1815}
1816
1817int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818				struct perf_sample *sample)
1819{
1820	struct thread *thread = machine__find_thread(machine,
1821						     event->fork.pid,
1822						     event->fork.tid);
1823	struct thread *parent = machine__findnew_thread(machine,
1824							event->fork.ppid,
1825							event->fork.ptid);
1826	bool do_maps_clone = true;
1827	int err = 0;
1828
1829	if (dump_trace)
1830		perf_event__fprintf_task(event, stdout);
1831
1832	/*
1833	 * There may be an existing thread that is not actually the parent,
1834	 * either because we are processing events out of order, or because the
1835	 * (fork) event that would have removed the thread was lost. Assume the
1836	 * latter case and continue on as best we can.
1837	 */
1838	if (parent->pid_ != (pid_t)event->fork.ppid) {
1839		dump_printf("removing erroneous parent thread %d/%d\n",
1840			    parent->pid_, parent->tid);
1841		machine__remove_thread(machine, parent);
1842		thread__put(parent);
1843		parent = machine__findnew_thread(machine, event->fork.ppid,
1844						 event->fork.ptid);
1845	}
1846
1847	/* if a thread currently exists for the thread id remove it */
1848	if (thread != NULL) {
1849		machine__remove_thread(machine, thread);
1850		thread__put(thread);
1851	}
1852
1853	thread = machine__findnew_thread(machine, event->fork.pid,
1854					 event->fork.tid);
1855	/*
1856	 * When synthesizing FORK events, we are trying to create thread
1857	 * objects for the already running tasks on the machine.
1858	 *
1859	 * Normally, for a kernel FORK event, we want to clone the parent's
1860	 * maps because that is what the kernel just did.
1861	 *
1862	 * But when synthesizing, this should not be done.  If we do, we end up
1863	 * with overlapping maps as we process the sythesized MMAP2 events that
1864	 * get delivered shortly thereafter.
1865	 *
1866	 * Use the FORK event misc flags in an internal way to signal this
1867	 * situation, so we can elide the map clone when appropriate.
1868	 */
1869	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870		do_maps_clone = false;
1871
1872	if (thread == NULL || parent == NULL ||
1873	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875		err = -1;
1876	}
1877	thread__put(thread);
1878	thread__put(parent);
1879
1880	return err;
1881}
1882
1883int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884				struct perf_sample *sample __maybe_unused)
1885{
1886	struct thread *thread = machine__find_thread(machine,
1887						     event->fork.pid,
1888						     event->fork.tid);
1889
1890	if (dump_trace)
1891		perf_event__fprintf_task(event, stdout);
1892
1893	if (thread != NULL) {
1894		thread__exited(thread);
1895		thread__put(thread);
 
 
1896	}
1897
1898	return 0;
1899}
1900
1901int machine__process_event(struct machine *machine, union perf_event *event,
1902			   struct perf_sample *sample)
1903{
1904	int ret;
1905
1906	switch (event->header.type) {
1907	case PERF_RECORD_COMM:
1908		ret = machine__process_comm_event(machine, event, sample); break;
1909	case PERF_RECORD_MMAP:
1910		ret = machine__process_mmap_event(machine, event, sample); break;
1911	case PERF_RECORD_NAMESPACES:
1912		ret = machine__process_namespaces_event(machine, event, sample); break;
 
 
1913	case PERF_RECORD_MMAP2:
1914		ret = machine__process_mmap2_event(machine, event, sample); break;
1915	case PERF_RECORD_FORK:
1916		ret = machine__process_fork_event(machine, event, sample); break;
1917	case PERF_RECORD_EXIT:
1918		ret = machine__process_exit_event(machine, event, sample); break;
1919	case PERF_RECORD_LOST:
1920		ret = machine__process_lost_event(machine, event, sample); break;
1921	case PERF_RECORD_AUX:
1922		ret = machine__process_aux_event(machine, event); break;
1923	case PERF_RECORD_ITRACE_START:
1924		ret = machine__process_itrace_start_event(machine, event); break;
1925	case PERF_RECORD_LOST_SAMPLES:
1926		ret = machine__process_lost_samples_event(machine, event, sample); break;
1927	case PERF_RECORD_SWITCH:
1928	case PERF_RECORD_SWITCH_CPU_WIDE:
1929		ret = machine__process_switch_event(machine, event); break;
1930	case PERF_RECORD_KSYMBOL:
1931		ret = machine__process_ksymbol(machine, event, sample); break;
1932	case PERF_RECORD_BPF_EVENT:
1933		ret = machine__process_bpf(machine, event, sample); break;
 
 
 
 
1934	default:
1935		ret = -1;
1936		break;
1937	}
1938
1939	return ret;
1940}
1941
1942static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943{
1944	if (!regexec(regex, sym->name, 0, NULL, 0))
1945		return 1;
1946	return 0;
1947}
1948
1949static void ip__resolve_ams(struct thread *thread,
1950			    struct addr_map_symbol *ams,
1951			    u64 ip)
1952{
1953	struct addr_location al;
1954
1955	memset(&al, 0, sizeof(al));
1956	/*
1957	 * We cannot use the header.misc hint to determine whether a
1958	 * branch stack address is user, kernel, guest, hypervisor.
1959	 * Branches may straddle the kernel/user/hypervisor boundaries.
1960	 * Thus, we have to try consecutively until we find a match
1961	 * or else, the symbol is unknown
1962	 */
1963	thread__find_cpumode_addr_location(thread, ip, &al);
1964
1965	ams->addr = ip;
1966	ams->al_addr = al.addr;
1967	ams->sym = al.sym;
1968	ams->map = al.map;
 
 
1969	ams->phys_addr = 0;
 
 
1970}
1971
1972static void ip__resolve_data(struct thread *thread,
1973			     u8 m, struct addr_map_symbol *ams,
1974			     u64 addr, u64 phys_addr)
1975{
1976	struct addr_location al;
1977
1978	memset(&al, 0, sizeof(al));
1979
1980	thread__find_symbol(thread, m, addr, &al);
1981
1982	ams->addr = addr;
1983	ams->al_addr = al.addr;
1984	ams->sym = al.sym;
1985	ams->map = al.map;
 
 
1986	ams->phys_addr = phys_addr;
 
 
1987}
1988
1989struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990				     struct addr_location *al)
1991{
1992	struct mem_info *mi = mem_info__new();
1993
1994	if (!mi)
1995		return NULL;
1996
1997	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999			 sample->addr, sample->phys_addr);
 
2000	mi->data_src.val = sample->data_src;
2001
2002	return mi;
2003}
2004
2005static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006{
 
2007	char *srcline = NULL;
 
2008
2009	if (!map || callchain_param.key == CCKEY_FUNCTION)
2010		return srcline;
2011
2012	srcline = srcline__tree_find(&map->dso->srclines, ip);
 
2013	if (!srcline) {
2014		bool show_sym = false;
2015		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016
2017		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018				      sym, show_sym, show_addr, ip);
2019		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020	}
2021
2022	return srcline;
2023}
2024
2025struct iterations {
2026	int nr_loop_iter;
2027	u64 cycles;
2028};
2029
2030static int add_callchain_ip(struct thread *thread,
2031			    struct callchain_cursor *cursor,
2032			    struct symbol **parent,
2033			    struct addr_location *root_al,
2034			    u8 *cpumode,
2035			    u64 ip,
2036			    bool branch,
2037			    struct branch_flags *flags,
2038			    struct iterations *iter,
2039			    u64 branch_from)
2040{
 
2041	struct addr_location al;
2042	int nr_loop_iter = 0;
2043	u64 iter_cycles = 0;
2044	const char *srcline = NULL;
2045
 
2046	al.filtered = 0;
2047	al.sym = NULL;
 
2048	if (!cpumode) {
2049		thread__find_cpumode_addr_location(thread, ip, &al);
2050	} else {
2051		if (ip >= PERF_CONTEXT_MAX) {
2052			switch (ip) {
2053			case PERF_CONTEXT_HV:
2054				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055				break;
2056			case PERF_CONTEXT_KERNEL:
2057				*cpumode = PERF_RECORD_MISC_KERNEL;
2058				break;
2059			case PERF_CONTEXT_USER:
2060				*cpumode = PERF_RECORD_MISC_USER;
2061				break;
2062			default:
2063				pr_debug("invalid callchain context: "
2064					 "%"PRId64"\n", (s64) ip);
2065				/*
2066				 * It seems the callchain is corrupted.
2067				 * Discard all.
2068				 */
2069				callchain_cursor_reset(cursor);
2070				return 1;
 
2071			}
2072			return 0;
2073		}
2074		thread__find_symbol(thread, *cpumode, ip, &al);
2075	}
2076
2077	if (al.sym != NULL) {
2078		if (perf_hpp_list.parent && !*parent &&
2079		    symbol__match_regex(al.sym, &parent_regex))
2080			*parent = al.sym;
2081		else if (have_ignore_callees && root_al &&
2082		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083			/* Treat this symbol as the root,
2084			   forgetting its callees. */
2085			*root_al = al;
2086			callchain_cursor_reset(cursor);
2087		}
2088	}
2089
2090	if (symbol_conf.hide_unresolved && al.sym == NULL)
2091		return 0;
2092
2093	if (iter) {
2094		nr_loop_iter = iter->nr_loop_iter;
2095		iter_cycles = iter->cycles;
2096	}
2097
2098	srcline = callchain_srcline(al.map, al.sym, al.addr);
2099	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2100				       branch, flags, nr_loop_iter,
2101				       iter_cycles, branch_from, srcline);
 
 
 
 
 
 
 
2102}
2103
2104struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105					   struct addr_location *al)
2106{
2107	unsigned int i;
2108	const struct branch_stack *bs = sample->branch_stack;
 
2109	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110
2111	if (!bi)
2112		return NULL;
2113
2114	for (i = 0; i < bs->nr; i++) {
2115		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117		bi[i].flags = bs->entries[i].flags;
2118	}
2119	return bi;
2120}
2121
2122static void save_iterations(struct iterations *iter,
2123			    struct branch_entry *be, int nr)
2124{
2125	int i;
2126
2127	iter->nr_loop_iter++;
2128	iter->cycles = 0;
2129
2130	for (i = 0; i < nr; i++)
2131		iter->cycles += be[i].flags.cycles;
2132}
2133
2134#define CHASHSZ 127
2135#define CHASHBITS 7
2136#define NO_ENTRY 0xff
2137
2138#define PERF_MAX_BRANCH_DEPTH 127
2139
2140/* Remove loops. */
2141static int remove_loops(struct branch_entry *l, int nr,
2142			struct iterations *iter)
2143{
2144	int i, j, off;
2145	unsigned char chash[CHASHSZ];
2146
2147	memset(chash, NO_ENTRY, sizeof(chash));
2148
2149	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150
2151	for (i = 0; i < nr; i++) {
2152		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153
2154		/* no collision handling for now */
2155		if (chash[h] == NO_ENTRY) {
2156			chash[h] = i;
2157		} else if (l[chash[h]].from == l[i].from) {
2158			bool is_loop = true;
2159			/* check if it is a real loop */
2160			off = 0;
2161			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162				if (l[j].from != l[i + off].from) {
2163					is_loop = false;
2164					break;
2165				}
2166			if (is_loop) {
2167				j = nr - (i + off);
2168				if (j > 0) {
2169					save_iterations(iter + i + off,
2170						l + i, off);
2171
2172					memmove(iter + i, iter + i + off,
2173						j * sizeof(*iter));
2174
2175					memmove(l + i, l + i + off,
2176						j * sizeof(*l));
2177				}
2178
2179				nr -= off;
2180			}
2181		}
2182	}
2183	return nr;
2184}
2185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186/*
2187 * Recolve LBR callstack chain sample
2188 * Return:
2189 * 1 on success get LBR callchain information
2190 * 0 no available LBR callchain information, should try fp
2191 * negative error code on other errors.
2192 */
2193static int resolve_lbr_callchain_sample(struct thread *thread,
2194					struct callchain_cursor *cursor,
2195					struct perf_sample *sample,
2196					struct symbol **parent,
2197					struct addr_location *root_al,
2198					int max_stack)
 
2199{
 
2200	struct ip_callchain *chain = sample->callchain;
2201	int chain_nr = min(max_stack, (int)chain->nr), i;
2202	u8 cpumode = PERF_RECORD_MISC_USER;
2203	u64 ip, branch_from = 0;
 
 
2204
2205	for (i = 0; i < chain_nr; i++) {
2206		if (chain->ips[i] == PERF_CONTEXT_USER)
2207			break;
2208	}
2209
2210	/* LBR only affects the user callchain */
2211	if (i != chain_nr) {
2212		struct branch_stack *lbr_stack = sample->branch_stack;
2213		int lbr_nr = lbr_stack->nr, j, k;
2214		bool branch;
2215		struct branch_flags *flags;
2216		/*
2217		 * LBR callstack can only get user call chain.
2218		 * The mix_chain_nr is kernel call chain
2219		 * number plus LBR user call chain number.
2220		 * i is kernel call chain number,
2221		 * 1 is PERF_CONTEXT_USER,
2222		 * lbr_nr + 1 is the user call chain number.
2223		 * For details, please refer to the comments
2224		 * in callchain__printf
2225		 */
2226		int mix_chain_nr = i + 1 + lbr_nr + 1;
2227
2228		for (j = 0; j < mix_chain_nr; j++) {
2229			int err;
2230			branch = false;
2231			flags = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232
2233			if (callchain_param.order == ORDER_CALLEE) {
2234				if (j < i + 1)
2235					ip = chain->ips[j];
2236				else if (j > i + 1) {
2237					k = j - i - 2;
2238					ip = lbr_stack->entries[k].from;
2239					branch = true;
2240					flags = &lbr_stack->entries[k].flags;
2241				} else {
2242					ip = lbr_stack->entries[0].to;
2243					branch = true;
2244					flags = &lbr_stack->entries[0].flags;
2245					branch_from =
2246						lbr_stack->entries[0].from;
2247				}
2248			} else {
2249				if (j < lbr_nr) {
2250					k = lbr_nr - j - 1;
2251					ip = lbr_stack->entries[k].from;
2252					branch = true;
2253					flags = &lbr_stack->entries[k].flags;
2254				}
2255				else if (j > lbr_nr)
2256					ip = chain->ips[i + 1 - (j - lbr_nr)];
2257				else {
2258					ip = lbr_stack->entries[0].to;
2259					branch = true;
2260					flags = &lbr_stack->entries[0].flags;
2261					branch_from =
2262						lbr_stack->entries[0].from;
2263				}
2264			}
2265
2266			err = add_callchain_ip(thread, cursor, parent,
2267					       root_al, &cpumode, ip,
2268					       branch, flags, NULL,
2269					       branch_from);
2270			if (err)
2271				return (err < 0) ? err : 0;
2272		}
2273		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274	}
 
2275
2276	return 0;
 
2277}
2278
2279static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280			     struct callchain_cursor *cursor,
2281			     struct symbol **parent,
2282			     struct addr_location *root_al,
2283			     u8 *cpumode, int ent)
2284{
2285	int err = 0;
2286
2287	while (--ent >= 0) {
2288		u64 ip = chain->ips[ent];
2289
2290		if (ip >= PERF_CONTEXT_MAX) {
2291			err = add_callchain_ip(thread, cursor, parent,
2292					       root_al, cpumode, ip,
2293					       false, NULL, NULL, 0);
2294			break;
2295		}
2296	}
2297	return err;
2298}
2299
 
 
 
 
 
 
 
 
 
2300static int thread__resolve_callchain_sample(struct thread *thread,
2301					    struct callchain_cursor *cursor,
2302					    struct evsel *evsel,
2303					    struct perf_sample *sample,
2304					    struct symbol **parent,
2305					    struct addr_location *root_al,
2306					    int max_stack)
2307{
2308	struct branch_stack *branch = sample->branch_stack;
 
2309	struct ip_callchain *chain = sample->callchain;
2310	int chain_nr = 0;
2311	u8 cpumode = PERF_RECORD_MISC_USER;
2312	int i, j, err, nr_entries;
2313	int skip_idx = -1;
2314	int first_call = 0;
 
2315
2316	if (chain)
2317		chain_nr = chain->nr;
2318
2319	if (perf_evsel__has_branch_callstack(evsel)) {
 
 
2320		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321						   root_al, max_stack);
 
2322		if (err)
2323			return (err < 0) ? err : 0;
2324	}
2325
2326	/*
2327	 * Based on DWARF debug information, some architectures skip
2328	 * a callchain entry saved by the kernel.
2329	 */
2330	skip_idx = arch_skip_callchain_idx(thread, chain);
2331
2332	/*
2333	 * Add branches to call stack for easier browsing. This gives
2334	 * more context for a sample than just the callers.
2335	 *
2336	 * This uses individual histograms of paths compared to the
2337	 * aggregated histograms the normal LBR mode uses.
2338	 *
2339	 * Limitations for now:
2340	 * - No extra filters
2341	 * - No annotations (should annotate somehow)
2342	 */
2343
2344	if (branch && callchain_param.branch_callstack) {
2345		int nr = min(max_stack, (int)branch->nr);
2346		struct branch_entry be[nr];
2347		struct iterations iter[nr];
2348
2349		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350			pr_warning("corrupted branch chain. skipping...\n");
2351			goto check_calls;
2352		}
2353
2354		for (i = 0; i < nr; i++) {
2355			if (callchain_param.order == ORDER_CALLEE) {
2356				be[i] = branch->entries[i];
2357
2358				if (chain == NULL)
2359					continue;
2360
2361				/*
2362				 * Check for overlap into the callchain.
2363				 * The return address is one off compared to
2364				 * the branch entry. To adjust for this
2365				 * assume the calling instruction is not longer
2366				 * than 8 bytes.
2367				 */
2368				if (i == skip_idx ||
2369				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370					first_call++;
2371				else if (be[i].from < chain->ips[first_call] &&
2372				    be[i].from >= chain->ips[first_call] - 8)
2373					first_call++;
2374			} else
2375				be[i] = branch->entries[branch->nr - i - 1];
2376		}
2377
2378		memset(iter, 0, sizeof(struct iterations) * nr);
2379		nr = remove_loops(be, nr, iter);
2380
2381		for (i = 0; i < nr; i++) {
2382			err = add_callchain_ip(thread, cursor, parent,
2383					       root_al,
2384					       NULL, be[i].to,
2385					       true, &be[i].flags,
2386					       NULL, be[i].from);
2387
2388			if (!err)
2389				err = add_callchain_ip(thread, cursor, parent, root_al,
2390						       NULL, be[i].from,
2391						       true, &be[i].flags,
2392						       &iter[i], 0);
2393			if (err == -EINVAL)
2394				break;
2395			if (err)
2396				return err;
2397		}
2398
2399		if (chain_nr == 0)
2400			return 0;
2401
2402		chain_nr -= nr;
2403	}
2404
2405check_calls:
2406	if (callchain_param.order != ORDER_CALLEE) {
2407		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408					&cpumode, chain->nr - first_call);
2409		if (err)
2410			return (err < 0) ? err : 0;
2411	}
2412	for (i = first_call, nr_entries = 0;
2413	     i < chain_nr && nr_entries < max_stack; i++) {
2414		u64 ip;
2415
2416		if (callchain_param.order == ORDER_CALLEE)
2417			j = i;
2418		else
2419			j = chain->nr - i - 1;
2420
2421#ifdef HAVE_SKIP_CALLCHAIN_IDX
2422		if (j == skip_idx)
2423			continue;
2424#endif
2425		ip = chain->ips[j];
2426		if (ip < PERF_CONTEXT_MAX)
2427                       ++nr_entries;
2428		else if (callchain_param.order != ORDER_CALLEE) {
2429			err = find_prev_cpumode(chain, thread, cursor, parent,
2430						root_al, &cpumode, j);
2431			if (err)
2432				return (err < 0) ? err : 0;
2433			continue;
2434		}
2435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2436		err = add_callchain_ip(thread, cursor, parent,
2437				       root_al, &cpumode, ip,
2438				       false, NULL, NULL, 0);
2439
2440		if (err)
2441			return (err < 0) ? err : 0;
2442	}
2443
2444	return 0;
2445}
2446
2447static int append_inlines(struct callchain_cursor *cursor,
2448			  struct map *map, struct symbol *sym, u64 ip)
2449{
 
 
2450	struct inline_node *inline_node;
2451	struct inline_list *ilist;
 
2452	u64 addr;
2453	int ret = 1;
 
2454
2455	if (!symbol_conf.inline_name || !map || !sym)
2456		return ret;
2457
2458	addr = map__map_ip(map, ip);
2459	addr = map__rip_2objdump(map, addr);
 
2460
2461	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462	if (!inline_node) {
2463		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464		if (!inline_node)
2465			return ret;
2466		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467	}
2468
 
 
 
 
2469	list_for_each_entry(ilist, &inline_node->val, list) {
2470		ret = callchain_cursor_append(cursor, ip, map,
2471					      ilist->symbol, false,
2472					      NULL, 0, 0, 0, ilist->srcline);
2473
2474		if (ret != 0)
2475			return ret;
2476	}
 
2477
2478	return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483	struct callchain_cursor *cursor = arg;
2484	const char *srcline = NULL;
2485	u64 addr = entry->ip;
2486
2487	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488		return 0;
2489
2490	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491		return 0;
2492
2493	/*
2494	 * Convert entry->ip from a virtual address to an offset in
2495	 * its corresponding binary.
2496	 */
2497	if (entry->map)
2498		addr = map__map_ip(entry->map, entry->ip);
2499
2500	srcline = callchain_srcline(entry->map, entry->sym, addr);
2501	return callchain_cursor_append(cursor, entry->ip,
2502				       entry->map, entry->sym,
2503				       false, NULL, 0, 0, 0, srcline);
2504}
2505
2506static int thread__resolve_callchain_unwind(struct thread *thread,
2507					    struct callchain_cursor *cursor,
2508					    struct evsel *evsel,
2509					    struct perf_sample *sample,
2510					    int max_stack)
2511{
2512	/* Can we do dwarf post unwind? */
2513	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515		return 0;
2516
2517	/* Bail out if nothing was captured. */
2518	if ((!sample->user_regs.regs) ||
2519	    (!sample->user_stack.size))
2520		return 0;
2521
2522	return unwind__get_entries(unwind_entry, cursor,
2523				   thread, sample, max_stack);
2524}
2525
2526int thread__resolve_callchain(struct thread *thread,
2527			      struct callchain_cursor *cursor,
2528			      struct evsel *evsel,
2529			      struct perf_sample *sample,
2530			      struct symbol **parent,
2531			      struct addr_location *root_al,
2532			      int max_stack)
2533{
2534	int ret = 0;
2535
 
 
 
2536	callchain_cursor_reset(cursor);
2537
2538	if (callchain_param.order == ORDER_CALLEE) {
2539		ret = thread__resolve_callchain_sample(thread, cursor,
2540						       evsel, sample,
2541						       parent, root_al,
2542						       max_stack);
2543		if (ret)
2544			return ret;
2545		ret = thread__resolve_callchain_unwind(thread, cursor,
2546						       evsel, sample,
2547						       max_stack);
2548	} else {
2549		ret = thread__resolve_callchain_unwind(thread, cursor,
2550						       evsel, sample,
2551						       max_stack);
2552		if (ret)
2553			return ret;
2554		ret = thread__resolve_callchain_sample(thread, cursor,
2555						       evsel, sample,
2556						       parent, root_al,
2557						       max_stack);
2558	}
2559
2560	return ret;
2561}
2562
2563int machine__for_each_thread(struct machine *machine,
2564			     int (*fn)(struct thread *thread, void *p),
2565			     void *priv)
2566{
2567	struct threads *threads;
2568	struct rb_node *nd;
2569	struct thread *thread;
2570	int rc = 0;
2571	int i;
2572
2573	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574		threads = &machine->threads[i];
2575		for (nd = rb_first_cached(&threads->entries); nd;
2576		     nd = rb_next(nd)) {
2577			thread = rb_entry(nd, struct thread, rb_node);
2578			rc = fn(thread, priv);
2579			if (rc != 0)
2580				return rc;
2581		}
2582
2583		list_for_each_entry(thread, &threads->dead, node) {
2584			rc = fn(thread, priv);
2585			if (rc != 0)
2586				return rc;
2587		}
2588	}
2589	return rc;
2590}
2591
2592int machines__for_each_thread(struct machines *machines,
2593			      int (*fn)(struct thread *thread, void *p),
2594			      void *priv)
2595{
2596	struct rb_node *nd;
2597	int rc = 0;
2598
2599	rc = machine__for_each_thread(&machines->host, fn, priv);
2600	if (rc != 0)
2601		return rc;
2602
2603	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605
2606		rc = machine__for_each_thread(machine, fn, priv);
2607		if (rc != 0)
2608			return rc;
2609	}
2610	return rc;
2611}
2612
2613pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614{
2615	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616
2617	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618		return -1;
2619
2620	return machine->current_tid[cpu];
2621}
2622
2623int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624			     pid_t tid)
2625{
2626	struct thread *thread;
2627	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628
2629	if (cpu < 0)
2630		return -EINVAL;
2631
2632	if (!machine->current_tid) {
2633		int i;
2634
2635		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636		if (!machine->current_tid)
2637			return -ENOMEM;
2638		for (i = 0; i < nr_cpus; i++)
2639			machine->current_tid[i] = -1;
2640	}
2641
2642	if (cpu >= nr_cpus) {
2643		pr_err("Requested CPU %d too large. ", cpu);
2644		pr_err("Consider raising MAX_NR_CPUS\n");
2645		return -EINVAL;
2646	}
2647
2648	machine->current_tid[cpu] = tid;
2649
2650	thread = machine__findnew_thread(machine, pid, tid);
2651	if (!thread)
2652		return -ENOMEM;
2653
2654	thread->cpu = cpu;
2655	thread__put(thread);
2656
2657	return 0;
2658}
2659
2660/*
2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662 * normalized arch is needed.
2663 */
2664bool machine__is(struct machine *machine, const char *arch)
2665{
2666	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667}
2668
 
 
 
 
 
2669int machine__nr_cpus_avail(struct machine *machine)
2670{
2671	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672}
2673
2674int machine__get_kernel_start(struct machine *machine)
2675{
2676	struct map *map = machine__kernel_map(machine);
2677	int err = 0;
2678
2679	/*
2680	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2682	 * all addresses including kernel addresses are less than 2^32.  In
2683	 * that case (32-bit system), if the kernel mapping is unknown, all
2684	 * addresses will be assumed to be in user space - see
2685	 * machine__kernel_ip().
2686	 */
2687	machine->kernel_start = 1ULL << 63;
2688	if (map) {
2689		err = map__load(map);
2690		/*
2691		 * On x86_64, PTI entry trampolines are less than the
2692		 * start of kernel text, but still above 2^63. So leave
2693		 * kernel_start = 1ULL << 63 for x86_64.
2694		 */
2695		if (!err && !machine__is(machine, "x86_64"))
2696			machine->kernel_start = map->start;
2697	}
2698	return err;
2699}
2700
2701u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702{
2703	u8 addr_cpumode = cpumode;
2704	bool kernel_ip;
2705
2706	if (!machine->single_address_space)
2707		goto out;
2708
2709	kernel_ip = machine__kernel_ip(machine, addr);
2710	switch (cpumode) {
2711	case PERF_RECORD_MISC_KERNEL:
2712	case PERF_RECORD_MISC_USER:
2713		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714					   PERF_RECORD_MISC_USER;
2715		break;
2716	case PERF_RECORD_MISC_GUEST_KERNEL:
2717	case PERF_RECORD_MISC_GUEST_USER:
2718		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719					   PERF_RECORD_MISC_GUEST_USER;
2720		break;
2721	default:
2722		break;
2723	}
2724out:
2725	return addr_cpumode;
2726}
2727
 
 
 
 
 
2728struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729{
2730	return dsos__findnew(&machine->dsos, filename);
2731}
2732
2733char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734{
2735	struct machine *machine = vmachine;
2736	struct map *map;
2737	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739	if (sym == NULL)
2740		return NULL;
2741
2742	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743	*addrp = map->unmap_ip(map, sym->start);
2744	return sym->name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2745}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "path.h"
  20#include "srcline.h"
  21#include "symbol.h"
  22#include "sort.h"
  23#include "strlist.h"
  24#include "target.h"
  25#include "thread.h"
  26#include "util.h"
  27#include "vdso.h"
  28#include <stdbool.h>
  29#include <sys/types.h>
  30#include <sys/stat.h>
  31#include <unistd.h>
  32#include "unwind.h"
  33#include "linux/hash.h"
  34#include "asm/bug.h"
  35#include "bpf-event.h"
  36#include <internal/lib.h> // page_size
  37#include "cgroup.h"
  38#include "arm64-frame-pointer-unwind-support.h"
  39
  40#include <linux/ctype.h>
  41#include <symbol/kallsyms.h>
  42#include <linux/mman.h>
  43#include <linux/string.h>
  44#include <linux/zalloc.h>
  45
  46static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
  47				     struct thread *th, bool lock);
  48
  49static struct dso *machine__kernel_dso(struct machine *machine)
  50{
  51	return map__dso(machine->vmlinux_map);
  52}
  53
  54static void dsos__init(struct dsos *dsos)
  55{
  56	INIT_LIST_HEAD(&dsos->head);
  57	dsos->root = RB_ROOT;
  58	init_rwsem(&dsos->lock);
  59}
  60
  61static void machine__threads_init(struct machine *machine)
  62{
  63	int i;
  64
  65	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  66		struct threads *threads = &machine->threads[i];
  67		threads->entries = RB_ROOT_CACHED;
  68		init_rwsem(&threads->lock);
  69		threads->nr = 0;
 
  70		threads->last_match = NULL;
  71	}
  72}
  73
  74static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd)
  75{
  76	int to_find = (int) *((pid_t *)key);
  77
  78	return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread);
  79}
  80
  81static struct thread_rb_node *thread_rb_node__find(const struct thread *th,
  82						   struct rb_root *tree)
  83{
  84	pid_t to_find = thread__tid(th);
  85	struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid);
  86
  87	return rb_entry(nd, struct thread_rb_node, rb_node);
  88}
  89
  90static int machine__set_mmap_name(struct machine *machine)
  91{
  92	if (machine__is_host(machine))
  93		machine->mmap_name = strdup("[kernel.kallsyms]");
  94	else if (machine__is_default_guest(machine))
  95		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  96	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  97			  machine->pid) < 0)
  98		machine->mmap_name = NULL;
  99
 100	return machine->mmap_name ? 0 : -ENOMEM;
 101}
 102
 103static void thread__set_guest_comm(struct thread *thread, pid_t pid)
 104{
 105	char comm[64];
 106
 107	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 108	thread__set_comm(thread, comm, 0);
 109}
 110
 111int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
 112{
 113	int err = -ENOMEM;
 114
 115	memset(machine, 0, sizeof(*machine));
 116	machine->kmaps = maps__new(machine);
 117	if (machine->kmaps == NULL)
 118		return -ENOMEM;
 119
 120	RB_CLEAR_NODE(&machine->rb_node);
 121	dsos__init(&machine->dsos);
 122
 123	machine__threads_init(machine);
 124
 125	machine->vdso_info = NULL;
 126	machine->env = NULL;
 127
 128	machine->pid = pid;
 129
 130	machine->id_hdr_size = 0;
 131	machine->kptr_restrict_warned = false;
 132	machine->comm_exec = false;
 133	machine->kernel_start = 0;
 134	machine->vmlinux_map = NULL;
 135
 136	machine->root_dir = strdup(root_dir);
 137	if (machine->root_dir == NULL)
 138		goto out;
 139
 140	if (machine__set_mmap_name(machine))
 141		goto out;
 142
 143	if (pid != HOST_KERNEL_ID) {
 144		struct thread *thread = machine__findnew_thread(machine, -1,
 145								pid);
 
 146
 147		if (thread == NULL)
 148			goto out;
 149
 150		thread__set_guest_comm(thread, pid);
 
 151		thread__put(thread);
 152	}
 153
 154	machine->current_tid = NULL;
 155	err = 0;
 156
 157out:
 158	if (err) {
 159		zfree(&machine->kmaps);
 160		zfree(&machine->root_dir);
 161		zfree(&machine->mmap_name);
 162	}
 163	return 0;
 164}
 165
 166struct machine *machine__new_host(void)
 167{
 168	struct machine *machine = malloc(sizeof(*machine));
 169
 170	if (machine != NULL) {
 171		machine__init(machine, "", HOST_KERNEL_ID);
 172
 173		if (machine__create_kernel_maps(machine) < 0)
 174			goto out_delete;
 175	}
 176
 177	return machine;
 178out_delete:
 179	free(machine);
 180	return NULL;
 181}
 182
 183struct machine *machine__new_kallsyms(void)
 184{
 185	struct machine *machine = machine__new_host();
 186	/*
 187	 * FIXME:
 188	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 189	 *    ask for not using the kcore parsing code, once this one is fixed
 190	 *    to create a map per module.
 191	 */
 192	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 193		machine__delete(machine);
 194		machine = NULL;
 195	}
 196
 197	return machine;
 198}
 199
 200static void dsos__purge(struct dsos *dsos)
 201{
 202	struct dso *pos, *n;
 203
 204	down_write(&dsos->lock);
 205
 206	list_for_each_entry_safe(pos, n, &dsos->head, node) {
 207		RB_CLEAR_NODE(&pos->rb_node);
 208		pos->root = NULL;
 209		list_del_init(&pos->node);
 210		dso__put(pos);
 211	}
 212
 213	up_write(&dsos->lock);
 214}
 215
 216static void dsos__exit(struct dsos *dsos)
 217{
 218	dsos__purge(dsos);
 219	exit_rwsem(&dsos->lock);
 220}
 221
 222void machine__delete_threads(struct machine *machine)
 223{
 224	struct rb_node *nd;
 225	int i;
 226
 227	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 228		struct threads *threads = &machine->threads[i];
 229		down_write(&threads->lock);
 230		nd = rb_first_cached(&threads->entries);
 231		while (nd) {
 232			struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
 233
 234			nd = rb_next(nd);
 235			__machine__remove_thread(machine, trb, trb->thread, false);
 236		}
 237		up_write(&threads->lock);
 238	}
 239}
 240
 241void machine__exit(struct machine *machine)
 242{
 243	int i;
 244
 245	if (machine == NULL)
 246		return;
 247
 248	machine__destroy_kernel_maps(machine);
 249	maps__zput(machine->kmaps);
 250	dsos__exit(&machine->dsos);
 251	machine__exit_vdso(machine);
 252	zfree(&machine->root_dir);
 253	zfree(&machine->mmap_name);
 254	zfree(&machine->current_tid);
 255	zfree(&machine->kallsyms_filename);
 256
 257	machine__delete_threads(machine);
 258	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 259		struct threads *threads = &machine->threads[i];
 
 
 
 
 
 
 
 
 
 
 
 260
 261		exit_rwsem(&threads->lock);
 262	}
 263}
 264
 265void machine__delete(struct machine *machine)
 266{
 267	if (machine) {
 268		machine__exit(machine);
 269		free(machine);
 270	}
 271}
 272
 273void machines__init(struct machines *machines)
 274{
 275	machine__init(&machines->host, "", HOST_KERNEL_ID);
 276	machines->guests = RB_ROOT_CACHED;
 277}
 278
 279void machines__exit(struct machines *machines)
 280{
 281	machine__exit(&machines->host);
 282	/* XXX exit guest */
 283}
 284
 285struct machine *machines__add(struct machines *machines, pid_t pid,
 286			      const char *root_dir)
 287{
 288	struct rb_node **p = &machines->guests.rb_root.rb_node;
 289	struct rb_node *parent = NULL;
 290	struct machine *pos, *machine = malloc(sizeof(*machine));
 291	bool leftmost = true;
 292
 293	if (machine == NULL)
 294		return NULL;
 295
 296	if (machine__init(machine, root_dir, pid) != 0) {
 297		free(machine);
 298		return NULL;
 299	}
 300
 301	while (*p != NULL) {
 302		parent = *p;
 303		pos = rb_entry(parent, struct machine, rb_node);
 304		if (pid < pos->pid)
 305			p = &(*p)->rb_left;
 306		else {
 307			p = &(*p)->rb_right;
 308			leftmost = false;
 309		}
 310	}
 311
 312	rb_link_node(&machine->rb_node, parent, p);
 313	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 314
 315	machine->machines = machines;
 316
 317	return machine;
 318}
 319
 320void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 321{
 322	struct rb_node *nd;
 323
 324	machines->host.comm_exec = comm_exec;
 325
 326	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 327		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 328
 329		machine->comm_exec = comm_exec;
 330	}
 331}
 332
 333struct machine *machines__find(struct machines *machines, pid_t pid)
 334{
 335	struct rb_node **p = &machines->guests.rb_root.rb_node;
 336	struct rb_node *parent = NULL;
 337	struct machine *machine;
 338	struct machine *default_machine = NULL;
 339
 340	if (pid == HOST_KERNEL_ID)
 341		return &machines->host;
 342
 343	while (*p != NULL) {
 344		parent = *p;
 345		machine = rb_entry(parent, struct machine, rb_node);
 346		if (pid < machine->pid)
 347			p = &(*p)->rb_left;
 348		else if (pid > machine->pid)
 349			p = &(*p)->rb_right;
 350		else
 351			return machine;
 352		if (!machine->pid)
 353			default_machine = machine;
 354	}
 355
 356	return default_machine;
 357}
 358
 359struct machine *machines__findnew(struct machines *machines, pid_t pid)
 360{
 361	char path[PATH_MAX];
 362	const char *root_dir = "";
 363	struct machine *machine = machines__find(machines, pid);
 364
 365	if (machine && (machine->pid == pid))
 366		goto out;
 367
 368	if ((pid != HOST_KERNEL_ID) &&
 369	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 370	    (symbol_conf.guestmount)) {
 371		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 372		if (access(path, R_OK)) {
 373			static struct strlist *seen;
 374
 375			if (!seen)
 376				seen = strlist__new(NULL, NULL);
 377
 378			if (!strlist__has_entry(seen, path)) {
 379				pr_err("Can't access file %s\n", path);
 380				strlist__add(seen, path);
 381			}
 382			machine = NULL;
 383			goto out;
 384		}
 385		root_dir = path;
 386	}
 387
 388	machine = machines__add(machines, pid, root_dir);
 389out:
 390	return machine;
 391}
 392
 393struct machine *machines__find_guest(struct machines *machines, pid_t pid)
 394{
 395	struct machine *machine = machines__find(machines, pid);
 396
 397	if (!machine)
 398		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
 399	return machine;
 400}
 401
 402/*
 403 * A common case for KVM test programs is that the test program acts as the
 404 * hypervisor, creating, running and destroying the virtual machine, and
 405 * providing the guest object code from its own object code. In this case,
 406 * the VM is not running an OS, but only the functions loaded into it by the
 407 * hypervisor test program, and conveniently, loaded at the same virtual
 408 * addresses.
 409 *
 410 * Normally to resolve addresses, MMAP events are needed to map addresses
 411 * back to the object code and debug symbols for that object code.
 412 *
 413 * Currently, there is no way to get such mapping information from guests
 414 * but, in the scenario described above, the guest has the same mappings
 415 * as the hypervisor, so support for that scenario can be achieved.
 416 *
 417 * To support that, copy the host thread's maps to the guest thread's maps.
 418 * Note, we do not discover the guest until we encounter a guest event,
 419 * which works well because it is not until then that we know that the host
 420 * thread's maps have been set up.
 421 *
 422 * This function returns the guest thread. Apart from keeping the data
 423 * structures sane, using a thread belonging to the guest machine, instead
 424 * of the host thread, allows it to have its own comm (refer
 425 * thread__set_guest_comm()).
 426 */
 427static struct thread *findnew_guest_code(struct machine *machine,
 428					 struct machine *host_machine,
 429					 pid_t pid)
 430{
 431	struct thread *host_thread;
 432	struct thread *thread;
 433	int err;
 434
 435	if (!machine)
 436		return NULL;
 437
 438	thread = machine__findnew_thread(machine, -1, pid);
 439	if (!thread)
 440		return NULL;
 441
 442	/* Assume maps are set up if there are any */
 443	if (maps__nr_maps(thread__maps(thread)))
 444		return thread;
 445
 446	host_thread = machine__find_thread(host_machine, -1, pid);
 447	if (!host_thread)
 448		goto out_err;
 449
 450	thread__set_guest_comm(thread, pid);
 451
 452	/*
 453	 * Guest code can be found in hypervisor process at the same address
 454	 * so copy host maps.
 455	 */
 456	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
 457	thread__put(host_thread);
 458	if (err)
 459		goto out_err;
 460
 461	return thread;
 462
 463out_err:
 464	thread__zput(thread);
 465	return NULL;
 466}
 467
 468struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
 469{
 470	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
 471	struct machine *machine = machines__findnew(machines, pid);
 472
 473	return findnew_guest_code(machine, host_machine, pid);
 474}
 475
 476struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
 477{
 478	struct machines *machines = machine->machines;
 479	struct machine *host_machine;
 480
 481	if (!machines)
 482		return NULL;
 483
 484	host_machine = machines__find(machines, HOST_KERNEL_ID);
 485
 486	return findnew_guest_code(machine, host_machine, pid);
 487}
 488
 489void machines__process_guests(struct machines *machines,
 490			      machine__process_t process, void *data)
 491{
 492	struct rb_node *nd;
 493
 494	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 495		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 496		process(pos, data);
 497	}
 498}
 499
 500void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 501{
 502	struct rb_node *node;
 503	struct machine *machine;
 504
 505	machines->host.id_hdr_size = id_hdr_size;
 506
 507	for (node = rb_first_cached(&machines->guests); node;
 508	     node = rb_next(node)) {
 509		machine = rb_entry(node, struct machine, rb_node);
 510		machine->id_hdr_size = id_hdr_size;
 511	}
 512
 513	return;
 514}
 515
 516static void machine__update_thread_pid(struct machine *machine,
 517				       struct thread *th, pid_t pid)
 518{
 519	struct thread *leader;
 520
 521	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
 522		return;
 523
 524	thread__set_pid(th, pid);
 525
 526	if (thread__pid(th) == thread__tid(th))
 527		return;
 528
 529	leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
 530	if (!leader)
 531		goto out_err;
 532
 533	if (!thread__maps(leader))
 534		thread__set_maps(leader, maps__new(machine));
 535
 536	if (!thread__maps(leader))
 537		goto out_err;
 538
 539	if (thread__maps(th) == thread__maps(leader))
 540		goto out_put;
 541
 542	if (thread__maps(th)) {
 543		/*
 544		 * Maps are created from MMAP events which provide the pid and
 545		 * tid.  Consequently there never should be any maps on a thread
 546		 * with an unknown pid.  Just print an error if there are.
 547		 */
 548		if (!maps__empty(thread__maps(th)))
 549			pr_err("Discarding thread maps for %d:%d\n",
 550				thread__pid(th), thread__tid(th));
 551		maps__put(thread__maps(th));
 552	}
 553
 554	thread__set_maps(th, maps__get(thread__maps(leader)));
 555out_put:
 556	thread__put(leader);
 557	return;
 558out_err:
 559	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
 560	goto out_put;
 561}
 562
 563/*
 564 * Front-end cache - TID lookups come in blocks,
 565 * so most of the time we dont have to look up
 566 * the full rbtree:
 567 */
 568static struct thread*
 569__threads__get_last_match(struct threads *threads, struct machine *machine,
 570			  int pid, int tid)
 571{
 572	struct thread *th;
 573
 574	th = threads->last_match;
 575	if (th != NULL) {
 576		if (thread__tid(th) == tid) {
 577			machine__update_thread_pid(machine, th, pid);
 578			return thread__get(th);
 579		}
 580		thread__put(threads->last_match);
 581		threads->last_match = NULL;
 582	}
 583
 584	return NULL;
 585}
 586
 587static struct thread*
 588threads__get_last_match(struct threads *threads, struct machine *machine,
 589			int pid, int tid)
 590{
 591	struct thread *th = NULL;
 592
 593	if (perf_singlethreaded)
 594		th = __threads__get_last_match(threads, machine, pid, tid);
 595
 596	return th;
 597}
 598
 599static void
 600__threads__set_last_match(struct threads *threads, struct thread *th)
 601{
 602	thread__put(threads->last_match);
 603	threads->last_match = thread__get(th);
 604}
 605
 606static void
 607threads__set_last_match(struct threads *threads, struct thread *th)
 608{
 609	if (perf_singlethreaded)
 610		__threads__set_last_match(threads, th);
 611}
 612
 613/*
 614 * Caller must eventually drop thread->refcnt returned with a successful
 615 * lookup/new thread inserted.
 616 */
 617static struct thread *____machine__findnew_thread(struct machine *machine,
 618						  struct threads *threads,
 619						  pid_t pid, pid_t tid,
 620						  bool create)
 621{
 622	struct rb_node **p = &threads->entries.rb_root.rb_node;
 623	struct rb_node *parent = NULL;
 624	struct thread *th;
 625	struct thread_rb_node *nd;
 626	bool leftmost = true;
 627
 628	th = threads__get_last_match(threads, machine, pid, tid);
 629	if (th)
 630		return th;
 631
 632	while (*p != NULL) {
 633		parent = *p;
 634		th = rb_entry(parent, struct thread_rb_node, rb_node)->thread;
 635
 636		if (thread__tid(th) == tid) {
 637			threads__set_last_match(threads, th);
 638			machine__update_thread_pid(machine, th, pid);
 639			return thread__get(th);
 640		}
 641
 642		if (tid < thread__tid(th))
 643			p = &(*p)->rb_left;
 644		else {
 645			p = &(*p)->rb_right;
 646			leftmost = false;
 647		}
 648	}
 649
 650	if (!create)
 651		return NULL;
 652
 653	th = thread__new(pid, tid);
 654	if (th == NULL)
 655		return NULL;
 
 656
 657	nd = malloc(sizeof(*nd));
 658	if (nd == NULL) {
 659		thread__put(th);
 660		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661	}
 662	nd->thread = th;
 663
 664	rb_link_node(&nd->rb_node, parent, p);
 665	rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost);
 666	/*
 667	 * We have to initialize maps separately after rb tree is updated.
 668	 *
 669	 * The reason is that we call machine__findnew_thread within
 670	 * thread__init_maps to find the thread leader and that would screwed
 671	 * the rb tree.
 672	 */
 673	if (thread__init_maps(th, machine)) {
 674		pr_err("Thread init failed thread %d\n", pid);
 675		rb_erase_cached(&nd->rb_node, &threads->entries);
 676		RB_CLEAR_NODE(&nd->rb_node);
 677		free(nd);
 678		thread__put(th);
 679		return NULL;
 680	}
 681	/*
 682	 * It is now in the rbtree, get a ref
 683	 */
 684	threads__set_last_match(threads, th);
 685	++threads->nr;
 686
 687	return thread__get(th);
 688}
 689
 690struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 691{
 692	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 693}
 694
 695struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 696				       pid_t tid)
 697{
 698	struct threads *threads = machine__threads(machine, tid);
 699	struct thread *th;
 700
 701	down_write(&threads->lock);
 702	th = __machine__findnew_thread(machine, pid, tid);
 703	up_write(&threads->lock);
 704	return th;
 705}
 706
 707struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 708				    pid_t tid)
 709{
 710	struct threads *threads = machine__threads(machine, tid);
 711	struct thread *th;
 712
 713	down_read(&threads->lock);
 714	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 715	up_read(&threads->lock);
 716	return th;
 717}
 718
 719/*
 720 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
 721 * So here a single thread is created for that, but actually there is a separate
 722 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
 723 * is only 1. That causes problems for some tools, requiring workarounds. For
 724 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
 725 */
 726struct thread *machine__idle_thread(struct machine *machine)
 727{
 728	struct thread *thread = machine__findnew_thread(machine, 0, 0);
 729
 730	if (!thread || thread__set_comm(thread, "swapper", 0) ||
 731	    thread__set_namespaces(thread, 0, NULL))
 732		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
 733
 734	return thread;
 735}
 736
 737struct comm *machine__thread_exec_comm(struct machine *machine,
 738				       struct thread *thread)
 739{
 740	if (machine->comm_exec)
 741		return thread__exec_comm(thread);
 742	else
 743		return thread__comm(thread);
 744}
 745
 746int machine__process_comm_event(struct machine *machine, union perf_event *event,
 747				struct perf_sample *sample)
 748{
 749	struct thread *thread = machine__findnew_thread(machine,
 750							event->comm.pid,
 751							event->comm.tid);
 752	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 753	int err = 0;
 754
 755	if (exec)
 756		machine->comm_exec = true;
 757
 758	if (dump_trace)
 759		perf_event__fprintf_comm(event, stdout);
 760
 761	if (thread == NULL ||
 762	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 763		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 764		err = -1;
 765	}
 766
 767	thread__put(thread);
 768
 769	return err;
 770}
 771
 772int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 773				      union perf_event *event,
 774				      struct perf_sample *sample __maybe_unused)
 775{
 776	struct thread *thread = machine__findnew_thread(machine,
 777							event->namespaces.pid,
 778							event->namespaces.tid);
 779	int err = 0;
 780
 781	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 782		  "\nWARNING: kernel seems to support more namespaces than perf"
 783		  " tool.\nTry updating the perf tool..\n\n");
 784
 785	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 786		  "\nWARNING: perf tool seems to support more namespaces than"
 787		  " the kernel.\nTry updating the kernel..\n\n");
 788
 789	if (dump_trace)
 790		perf_event__fprintf_namespaces(event, stdout);
 791
 792	if (thread == NULL ||
 793	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 794		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 795		err = -1;
 796	}
 797
 798	thread__put(thread);
 799
 800	return err;
 801}
 802
 803int machine__process_cgroup_event(struct machine *machine,
 804				  union perf_event *event,
 805				  struct perf_sample *sample __maybe_unused)
 806{
 807	struct cgroup *cgrp;
 808
 809	if (dump_trace)
 810		perf_event__fprintf_cgroup(event, stdout);
 811
 812	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
 813	if (cgrp == NULL)
 814		return -ENOMEM;
 815
 816	return 0;
 817}
 818
 819int machine__process_lost_event(struct machine *machine __maybe_unused,
 820				union perf_event *event, struct perf_sample *sample __maybe_unused)
 821{
 822	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 823		    event->lost.id, event->lost.lost);
 824	return 0;
 825}
 826
 827int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 828					union perf_event *event, struct perf_sample *sample)
 829{
 830	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 831		    sample->id, event->lost_samples.lost);
 832	return 0;
 833}
 834
 835static struct dso *machine__findnew_module_dso(struct machine *machine,
 836					       struct kmod_path *m,
 837					       const char *filename)
 838{
 839	struct dso *dso;
 840
 841	down_write(&machine->dsos.lock);
 842
 843	dso = __dsos__find(&machine->dsos, m->name, true);
 844	if (!dso) {
 845		dso = __dsos__addnew(&machine->dsos, m->name);
 846		if (dso == NULL)
 847			goto out_unlock;
 848
 849		dso__set_module_info(dso, m, machine);
 850		dso__set_long_name(dso, strdup(filename), true);
 851		dso->kernel = DSO_SPACE__KERNEL;
 852	}
 853
 854	dso__get(dso);
 855out_unlock:
 856	up_write(&machine->dsos.lock);
 857	return dso;
 858}
 859
 860int machine__process_aux_event(struct machine *machine __maybe_unused,
 861			       union perf_event *event)
 862{
 863	if (dump_trace)
 864		perf_event__fprintf_aux(event, stdout);
 865	return 0;
 866}
 867
 868int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 869					union perf_event *event)
 870{
 871	if (dump_trace)
 872		perf_event__fprintf_itrace_start(event, stdout);
 873	return 0;
 874}
 875
 876int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
 877					    union perf_event *event)
 878{
 879	if (dump_trace)
 880		perf_event__fprintf_aux_output_hw_id(event, stdout);
 881	return 0;
 882}
 883
 884int machine__process_switch_event(struct machine *machine __maybe_unused,
 885				  union perf_event *event)
 886{
 887	if (dump_trace)
 888		perf_event__fprintf_switch(event, stdout);
 889	return 0;
 890}
 891
 892static int machine__process_ksymbol_register(struct machine *machine,
 893					     union perf_event *event,
 894					     struct perf_sample *sample __maybe_unused)
 895{
 896	struct symbol *sym;
 897	struct dso *dso;
 898	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 899	bool put_map = false;
 900	int err = 0;
 901
 
 902	if (!map) {
 903		dso = dso__new(event->ksymbol.name);
 
 
 904
 905		if (!dso) {
 906			err = -ENOMEM;
 907			goto out;
 908		}
 909		dso->kernel = DSO_SPACE__KERNEL;
 910		map = map__new2(0, dso);
 911		dso__put(dso);
 912		if (!map) {
 913			err = -ENOMEM;
 914			goto out;
 915		}
 916		/*
 917		 * The inserted map has a get on it, we need to put to release
 918		 * the reference count here, but do it after all accesses are
 919		 * done.
 920		 */
 921		put_map = true;
 922		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
 923			dso->binary_type = DSO_BINARY_TYPE__OOL;
 924			dso->data.file_size = event->ksymbol.len;
 925			dso__set_loaded(dso);
 926		}
 927
 928		map__set_start(map, event->ksymbol.addr);
 929		map__set_end(map, map__start(map) + event->ksymbol.len);
 930		err = maps__insert(machine__kernel_maps(machine), map);
 931		if (err) {
 932			err = -ENOMEM;
 933			goto out;
 934		}
 935
 936		dso__set_loaded(dso);
 937
 938		if (is_bpf_image(event->ksymbol.name)) {
 939			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
 940			dso__set_long_name(dso, "", false);
 941		}
 942	} else {
 943		dso = map__dso(map);
 944	}
 945
 946	sym = symbol__new(map__map_ip(map, map__start(map)),
 947			  event->ksymbol.len,
 948			  0, 0, event->ksymbol.name);
 949	if (!sym) {
 950		err = -ENOMEM;
 951		goto out;
 952	}
 953	dso__insert_symbol(dso, sym);
 954out:
 955	if (put_map)
 956		map__put(map);
 957	return err;
 958}
 959
 960static int machine__process_ksymbol_unregister(struct machine *machine,
 961					       union perf_event *event,
 962					       struct perf_sample *sample __maybe_unused)
 963{
 964	struct symbol *sym;
 965	struct map *map;
 966
 967	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 968	if (!map)
 969		return 0;
 970
 971	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
 972		maps__remove(machine__kernel_maps(machine), map);
 973	else {
 974		struct dso *dso = map__dso(map);
 975
 976		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
 977		if (sym)
 978			dso__delete_symbol(dso, sym);
 979	}
 980
 981	return 0;
 982}
 983
 984int machine__process_ksymbol(struct machine *machine __maybe_unused,
 985			     union perf_event *event,
 986			     struct perf_sample *sample)
 987{
 988	if (dump_trace)
 989		perf_event__fprintf_ksymbol(event, stdout);
 990
 991	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 992		return machine__process_ksymbol_unregister(machine, event,
 993							   sample);
 994	return machine__process_ksymbol_register(machine, event, sample);
 995}
 996
 997int machine__process_text_poke(struct machine *machine, union perf_event *event,
 998			       struct perf_sample *sample __maybe_unused)
 999{
1000	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
1001	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1002	struct dso *dso = map ? map__dso(map) : NULL;
1003
1004	if (dump_trace)
1005		perf_event__fprintf_text_poke(event, machine, stdout);
 
 
 
 
1006
1007	if (!event->text_poke.new_len)
1008		return 0;
 
1009
1010	if (cpumode != PERF_RECORD_MISC_KERNEL) {
1011		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
1012		return 0;
1013	}
1014
1015	if (dso) {
1016		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1017		int ret;
1018
1019		/*
1020		 * Kernel maps might be changed when loading symbols so loading
1021		 * must be done prior to using kernel maps.
1022		 */
1023		map__load(map);
1024		ret = dso__data_write_cache_addr(dso, map, machine,
1025						 event->text_poke.addr,
1026						 new_bytes,
1027						 event->text_poke.new_len);
1028		if (ret != event->text_poke.new_len)
1029			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1030				 event->text_poke.addr);
1031	} else {
1032		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1033			 event->text_poke.addr);
1034	}
1035
1036	return 0;
1037}
1038
1039static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1040					      const char *filename)
1041{
1042	struct map *map = NULL;
 
1043	struct kmod_path m;
1044	struct dso *dso;
1045	int err;
1046
1047	if (kmod_path__parse_name(&m, filename))
1048		return NULL;
1049
 
 
 
 
 
 
 
 
 
 
 
1050	dso = machine__findnew_module_dso(machine, &m, filename);
1051	if (dso == NULL)
1052		goto out;
1053
1054	map = map__new2(start, dso);
1055	if (map == NULL)
1056		goto out;
1057
1058	err = maps__insert(machine__kernel_maps(machine), map);
1059	/* If maps__insert failed, return NULL. */
1060	if (err) {
1061		map__put(map);
1062		map = NULL;
1063	}
1064out:
1065	/* put the dso here, corresponding to  machine__findnew_module_dso */
1066	dso__put(dso);
1067	zfree(&m.name);
1068	return map;
1069}
1070
1071size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1072{
1073	struct rb_node *nd;
1074	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1075
1076	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1077		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1078		ret += __dsos__fprintf(&pos->dsos.head, fp);
1079	}
1080
1081	return ret;
1082}
1083
1084size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1085				     bool (skip)(struct dso *dso, int parm), int parm)
1086{
1087	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1088}
1089
1090size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1091				     bool (skip)(struct dso *dso, int parm), int parm)
1092{
1093	struct rb_node *nd;
1094	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1095
1096	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1097		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1098		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1099	}
1100	return ret;
1101}
1102
1103size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1104{
1105	int i;
1106	size_t printed = 0;
1107	struct dso *kdso = machine__kernel_dso(machine);
1108
1109	if (kdso->has_build_id) {
1110		char filename[PATH_MAX];
1111		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1112					   false))
1113			printed += fprintf(fp, "[0] %s\n", filename);
1114	}
1115
1116	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1117		printed += fprintf(fp, "[%d] %s\n",
1118				   i + kdso->has_build_id, vmlinux_path[i]);
1119
1120	return printed;
1121}
1122
1123size_t machine__fprintf(struct machine *machine, FILE *fp)
1124{
1125	struct rb_node *nd;
1126	size_t ret;
1127	int i;
1128
1129	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1130		struct threads *threads = &machine->threads[i];
1131
1132		down_read(&threads->lock);
1133
1134		ret = fprintf(fp, "Threads: %u\n", threads->nr);
1135
1136		for (nd = rb_first_cached(&threads->entries); nd;
1137		     nd = rb_next(nd)) {
1138			struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread;
1139
1140			ret += thread__fprintf(pos, fp);
1141		}
1142
1143		up_read(&threads->lock);
1144	}
1145	return ret;
1146}
1147
1148static struct dso *machine__get_kernel(struct machine *machine)
1149{
1150	const char *vmlinux_name = machine->mmap_name;
1151	struct dso *kernel;
1152
1153	if (machine__is_host(machine)) {
1154		if (symbol_conf.vmlinux_name)
1155			vmlinux_name = symbol_conf.vmlinux_name;
1156
1157		kernel = machine__findnew_kernel(machine, vmlinux_name,
1158						 "[kernel]", DSO_SPACE__KERNEL);
1159	} else {
1160		if (symbol_conf.default_guest_vmlinux_name)
1161			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1162
1163		kernel = machine__findnew_kernel(machine, vmlinux_name,
1164						 "[guest.kernel]",
1165						 DSO_SPACE__KERNEL_GUEST);
1166	}
1167
1168	if (kernel != NULL && (!kernel->has_build_id))
1169		dso__read_running_kernel_build_id(kernel, machine);
1170
1171	return kernel;
1172}
1173
 
 
 
 
1174void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1175				    size_t bufsz)
1176{
1177	if (machine__is_default_guest(machine))
1178		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1179	else
1180		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1181}
1182
1183const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1184
1185/* Figure out the start address of kernel map from /proc/kallsyms.
1186 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1187 * symbol_name if it's not that important.
1188 */
1189static int machine__get_running_kernel_start(struct machine *machine,
1190					     const char **symbol_name,
1191					     u64 *start, u64 *end)
1192{
1193	char filename[PATH_MAX];
1194	int i, err = -1;
1195	const char *name;
1196	u64 addr = 0;
1197
1198	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1199
1200	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1201		return 0;
1202
1203	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1204		err = kallsyms__get_function_start(filename, name, &addr);
1205		if (!err)
1206			break;
1207	}
1208
1209	if (err)
1210		return -1;
1211
1212	if (symbol_name)
1213		*symbol_name = name;
1214
1215	*start = addr;
1216
1217	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1218	if (err)
1219		err = kallsyms__get_function_start(filename, "_etext", &addr);
1220	if (!err)
1221		*end = addr;
1222
1223	return 0;
1224}
1225
1226int machine__create_extra_kernel_map(struct machine *machine,
1227				     struct dso *kernel,
1228				     struct extra_kernel_map *xm)
1229{
1230	struct kmap *kmap;
1231	struct map *map;
1232	int err;
1233
1234	map = map__new2(xm->start, kernel);
1235	if (!map)
1236		return -ENOMEM;
1237
1238	map__set_end(map, xm->end);
1239	map__set_pgoff(map, xm->pgoff);
1240
1241	kmap = map__kmap(map);
1242
 
1243	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1244
1245	err = maps__insert(machine__kernel_maps(machine), map);
1246
1247	if (!err) {
1248		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1249			kmap->name, map__start(map), map__end(map));
1250	}
1251
1252	map__put(map);
1253
1254	return err;
1255}
1256
1257static u64 find_entry_trampoline(struct dso *dso)
1258{
1259	/* Duplicates are removed so lookup all aliases */
1260	const char *syms[] = {
1261		"_entry_trampoline",
1262		"__entry_trampoline_start",
1263		"entry_SYSCALL_64_trampoline",
1264	};
1265	struct symbol *sym = dso__first_symbol(dso);
1266	unsigned int i;
1267
1268	for (; sym; sym = dso__next_symbol(sym)) {
1269		if (sym->binding != STB_GLOBAL)
1270			continue;
1271		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1272			if (!strcmp(sym->name, syms[i]))
1273				return sym->start;
1274		}
1275	}
1276
1277	return 0;
1278}
1279
1280/*
1281 * These values can be used for kernels that do not have symbols for the entry
1282 * trampolines in kallsyms.
1283 */
1284#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1285#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1286#define X86_64_ENTRY_TRAMPOLINE		0x6000
1287
1288struct machine__map_x86_64_entry_trampolines_args {
1289	struct maps *kmaps;
1290	bool found;
1291};
1292
1293static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1294{
1295	struct machine__map_x86_64_entry_trampolines_args *args = data;
1296	struct map *dest_map;
1297	struct kmap *kmap = __map__kmap(map);
1298
1299	if (!kmap || !is_entry_trampoline(kmap->name))
1300		return 0;
1301
1302	dest_map = maps__find(args->kmaps, map__pgoff(map));
1303	if (dest_map != map)
1304		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1305
1306	args->found = true;
1307	return 0;
1308}
1309
1310/* Map x86_64 PTI entry trampolines */
1311int machine__map_x86_64_entry_trampolines(struct machine *machine,
1312					  struct dso *kernel)
1313{
1314	struct machine__map_x86_64_entry_trampolines_args args = {
1315		.kmaps = machine__kernel_maps(machine),
1316		.found = false,
1317	};
1318	int nr_cpus_avail, cpu;
 
 
1319	u64 pgoff;
1320
1321	/*
1322	 * In the vmlinux case, pgoff is a virtual address which must now be
1323	 * mapped to a vmlinux offset.
1324	 */
1325	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
 
 
1326
1327	if (args.found || machine->trampolines_mapped)
 
 
 
 
 
 
 
 
1328		return 0;
1329
1330	pgoff = find_entry_trampoline(kernel);
1331	if (!pgoff)
1332		return 0;
1333
1334	nr_cpus_avail = machine__nr_cpus_avail(machine);
1335
1336	/* Add a 1 page map for each CPU's entry trampoline */
1337	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1338		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1339			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1340			 X86_64_ENTRY_TRAMPOLINE;
1341		struct extra_kernel_map xm = {
1342			.start = va,
1343			.end   = va + page_size,
1344			.pgoff = pgoff,
1345		};
1346
1347		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1348
1349		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1350			return -1;
1351	}
1352
1353	machine->trampolines_mapped = nr_cpus_avail;
1354
1355	return 0;
1356}
1357
1358int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1359					     struct dso *kernel __maybe_unused)
1360{
1361	return 0;
1362}
1363
1364static int
1365__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1366{
 
 
 
1367	/* In case of renewal the kernel map, destroy previous one */
1368	machine__destroy_kernel_maps(machine);
1369
1370	map__put(machine->vmlinux_map);
1371	machine->vmlinux_map = map__new2(0, kernel);
1372	if (machine->vmlinux_map == NULL)
1373		return -ENOMEM;
 
 
 
 
 
 
 
 
 
1374
1375	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1376	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1377}
1378
1379void machine__destroy_kernel_maps(struct machine *machine)
1380{
1381	struct kmap *kmap;
1382	struct map *map = machine__kernel_map(machine);
1383
1384	if (map == NULL)
1385		return;
1386
1387	kmap = map__kmap(map);
1388	maps__remove(machine__kernel_maps(machine), map);
1389	if (kmap && kmap->ref_reloc_sym) {
1390		zfree((char **)&kmap->ref_reloc_sym->name);
1391		zfree(&kmap->ref_reloc_sym);
1392	}
1393
1394	map__zput(machine->vmlinux_map);
1395}
1396
1397int machines__create_guest_kernel_maps(struct machines *machines)
1398{
1399	int ret = 0;
1400	struct dirent **namelist = NULL;
1401	int i, items = 0;
1402	char path[PATH_MAX];
1403	pid_t pid;
1404	char *endp;
1405
1406	if (symbol_conf.default_guest_vmlinux_name ||
1407	    symbol_conf.default_guest_modules ||
1408	    symbol_conf.default_guest_kallsyms) {
1409		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1410	}
1411
1412	if (symbol_conf.guestmount) {
1413		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1414		if (items <= 0)
1415			return -ENOENT;
1416		for (i = 0; i < items; i++) {
1417			if (!isdigit(namelist[i]->d_name[0])) {
1418				/* Filter out . and .. */
1419				continue;
1420			}
1421			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1422			if ((*endp != '\0') ||
1423			    (endp == namelist[i]->d_name) ||
1424			    (errno == ERANGE)) {
1425				pr_debug("invalid directory (%s). Skipping.\n",
1426					 namelist[i]->d_name);
1427				continue;
1428			}
1429			sprintf(path, "%s/%s/proc/kallsyms",
1430				symbol_conf.guestmount,
1431				namelist[i]->d_name);
1432			ret = access(path, R_OK);
1433			if (ret) {
1434				pr_debug("Can't access file %s\n", path);
1435				goto failure;
1436			}
1437			machines__create_kernel_maps(machines, pid);
1438		}
1439failure:
1440		free(namelist);
1441	}
1442
1443	return ret;
1444}
1445
1446void machines__destroy_kernel_maps(struct machines *machines)
1447{
1448	struct rb_node *next = rb_first_cached(&machines->guests);
1449
1450	machine__destroy_kernel_maps(&machines->host);
1451
1452	while (next) {
1453		struct machine *pos = rb_entry(next, struct machine, rb_node);
1454
1455		next = rb_next(&pos->rb_node);
1456		rb_erase_cached(&pos->rb_node, &machines->guests);
1457		machine__delete(pos);
1458	}
1459}
1460
1461int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1462{
1463	struct machine *machine = machines__findnew(machines, pid);
1464
1465	if (machine == NULL)
1466		return -1;
1467
1468	return machine__create_kernel_maps(machine);
1469}
1470
1471int machine__load_kallsyms(struct machine *machine, const char *filename)
1472{
1473	struct map *map = machine__kernel_map(machine);
1474	struct dso *dso = map__dso(map);
1475	int ret = __dso__load_kallsyms(dso, filename, map, true);
1476
1477	if (ret > 0) {
1478		dso__set_loaded(dso);
1479		/*
1480		 * Since /proc/kallsyms will have multiple sessions for the
1481		 * kernel, with modules between them, fixup the end of all
1482		 * sections.
1483		 */
1484		maps__fixup_end(machine__kernel_maps(machine));
1485	}
1486
1487	return ret;
1488}
1489
1490int machine__load_vmlinux_path(struct machine *machine)
1491{
1492	struct map *map = machine__kernel_map(machine);
1493	struct dso *dso = map__dso(map);
1494	int ret = dso__load_vmlinux_path(dso, map);
1495
1496	if (ret > 0)
1497		dso__set_loaded(dso);
1498
1499	return ret;
1500}
1501
1502static char *get_kernel_version(const char *root_dir)
1503{
1504	char version[PATH_MAX];
1505	FILE *file;
1506	char *name, *tmp;
1507	const char *prefix = "Linux version ";
1508
1509	sprintf(version, "%s/proc/version", root_dir);
1510	file = fopen(version, "r");
1511	if (!file)
1512		return NULL;
1513
1514	tmp = fgets(version, sizeof(version), file);
1515	fclose(file);
1516	if (!tmp)
1517		return NULL;
1518
1519	name = strstr(version, prefix);
1520	if (!name)
1521		return NULL;
1522	name += strlen(prefix);
1523	tmp = strchr(name, ' ');
1524	if (tmp)
1525		*tmp = '\0';
1526
1527	return strdup(name);
1528}
1529
1530static bool is_kmod_dso(struct dso *dso)
1531{
1532	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1533	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1534}
1535
1536static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
 
1537{
1538	char *long_name;
1539	struct dso *dso;
1540	struct map *map = maps__find_by_name(maps, m->name);
1541
1542	if (map == NULL)
1543		return 0;
1544
1545	long_name = strdup(path);
1546	if (long_name == NULL)
1547		return -ENOMEM;
1548
1549	dso = map__dso(map);
1550	dso__set_long_name(dso, long_name, true);
1551	dso__kernel_module_get_build_id(dso, "");
1552
1553	/*
1554	 * Full name could reveal us kmod compression, so
1555	 * we need to update the symtab_type if needed.
1556	 */
1557	if (m->comp && is_kmod_dso(dso)) {
1558		dso->symtab_type++;
1559		dso->comp = m->comp;
1560	}
1561
1562	return 0;
1563}
1564
1565static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
 
1566{
1567	struct dirent *dent;
1568	DIR *dir = opendir(dir_name);
1569	int ret = 0;
1570
1571	if (!dir) {
1572		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1573		return -1;
1574	}
1575
1576	while ((dent = readdir(dir)) != NULL) {
1577		char path[PATH_MAX];
1578		struct stat st;
1579
1580		/*sshfs might return bad dent->d_type, so we have to stat*/
1581		path__join(path, sizeof(path), dir_name, dent->d_name);
1582		if (stat(path, &st))
1583			continue;
1584
1585		if (S_ISDIR(st.st_mode)) {
1586			if (!strcmp(dent->d_name, ".") ||
1587			    !strcmp(dent->d_name, ".."))
1588				continue;
1589
1590			/* Do not follow top-level source and build symlinks */
1591			if (depth == 0) {
1592				if (!strcmp(dent->d_name, "source") ||
1593				    !strcmp(dent->d_name, "build"))
1594					continue;
1595			}
1596
1597			ret = maps__set_modules_path_dir(maps, path, depth + 1);
 
1598			if (ret < 0)
1599				goto out;
1600		} else {
1601			struct kmod_path m;
1602
1603			ret = kmod_path__parse_name(&m, dent->d_name);
1604			if (ret)
1605				goto out;
1606
1607			if (m.kmod)
1608				ret = maps__set_module_path(maps, path, &m);
1609
1610			zfree(&m.name);
1611
1612			if (ret)
1613				goto out;
1614		}
1615	}
1616
1617out:
1618	closedir(dir);
1619	return ret;
1620}
1621
1622static int machine__set_modules_path(struct machine *machine)
1623{
1624	char *version;
1625	char modules_path[PATH_MAX];
1626
1627	version = get_kernel_version(machine->root_dir);
1628	if (!version)
1629		return -1;
1630
1631	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1632		 machine->root_dir, version);
1633	free(version);
1634
1635	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1636}
1637int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1638				u64 *size __maybe_unused,
1639				const char *name __maybe_unused)
1640{
1641	return 0;
1642}
1643
1644static int machine__create_module(void *arg, const char *name, u64 start,
1645				  u64 size)
1646{
1647	struct machine *machine = arg;
1648	struct map *map;
1649
1650	if (arch__fix_module_text_start(&start, &size, name) < 0)
1651		return -1;
1652
1653	map = machine__addnew_module_map(machine, start, name);
1654	if (map == NULL)
1655		return -1;
1656	map__set_end(map, start + size);
 
 
1657
1658	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1659	map__put(map);
1660	return 0;
1661}
1662
1663static int machine__create_modules(struct machine *machine)
1664{
1665	const char *modules;
1666	char path[PATH_MAX];
1667
1668	if (machine__is_default_guest(machine)) {
1669		modules = symbol_conf.default_guest_modules;
1670	} else {
1671		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1672		modules = path;
1673	}
1674
1675	if (symbol__restricted_filename(modules, "/proc/modules"))
1676		return -1;
1677
1678	if (modules__parse(modules, machine, machine__create_module))
1679		return -1;
1680
1681	if (!machine__set_modules_path(machine))
1682		return 0;
1683
1684	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1685
1686	return 0;
1687}
1688
1689static void machine__set_kernel_mmap(struct machine *machine,
1690				     u64 start, u64 end)
1691{
1692	map__set_start(machine->vmlinux_map, start);
1693	map__set_end(machine->vmlinux_map, end);
1694	/*
1695	 * Be a bit paranoid here, some perf.data file came with
1696	 * a zero sized synthesized MMAP event for the kernel.
1697	 */
1698	if (start == 0 && end == 0)
1699		map__set_end(machine->vmlinux_map, ~0ULL);
1700}
1701
1702static int machine__update_kernel_mmap(struct machine *machine,
1703				     u64 start, u64 end)
1704{
1705	struct map *orig, *updated;
1706	int err;
1707
1708	orig = machine->vmlinux_map;
1709	updated = map__get(orig);
1710
1711	machine->vmlinux_map = updated;
1712	machine__set_kernel_mmap(machine, start, end);
1713	maps__remove(machine__kernel_maps(machine), orig);
1714	err = maps__insert(machine__kernel_maps(machine), updated);
1715	map__put(orig);
1716
1717	return err;
 
1718}
1719
1720int machine__create_kernel_maps(struct machine *machine)
1721{
1722	struct dso *kernel = machine__get_kernel(machine);
1723	const char *name = NULL;
 
1724	u64 start = 0, end = ~0ULL;
1725	int ret;
1726
1727	if (kernel == NULL)
1728		return -1;
1729
1730	ret = __machine__create_kernel_maps(machine, kernel);
1731	if (ret < 0)
1732		goto out_put;
1733
1734	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1735		if (machine__is_host(machine))
1736			pr_debug("Problems creating module maps, "
1737				 "continuing anyway...\n");
1738		else
1739			pr_debug("Problems creating module maps for guest %d, "
1740				 "continuing anyway...\n", machine->pid);
1741	}
1742
1743	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1744		if (name &&
1745		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1746			machine__destroy_kernel_maps(machine);
1747			ret = -1;
1748			goto out_put;
1749		}
1750
1751		/*
1752		 * we have a real start address now, so re-order the kmaps
1753		 * assume it's the last in the kmaps
1754		 */
1755		ret = machine__update_kernel_mmap(machine, start, end);
1756		if (ret < 0)
1757			goto out_put;
1758	}
1759
1760	if (machine__create_extra_kernel_maps(machine, kernel))
1761		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1762
1763	if (end == ~0ULL) {
1764		/* update end address of the kernel map using adjacent module address */
1765		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1766							 machine__kernel_map(machine));
1767
1768		if (next)
1769			machine__set_kernel_mmap(machine, start, map__start(next));
1770	}
1771
1772out_put:
1773	dso__put(kernel);
1774	return ret;
1775}
1776
1777static bool machine__uses_kcore(struct machine *machine)
1778{
1779	struct dso *dso;
1780
1781	list_for_each_entry(dso, &machine->dsos.head, node) {
1782		if (dso__is_kcore(dso))
1783			return true;
1784	}
1785
1786	return false;
1787}
1788
1789static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1790					     struct extra_kernel_map *xm)
1791{
1792	return machine__is(machine, "x86_64") &&
1793	       is_entry_trampoline(xm->name);
1794}
1795
1796static int machine__process_extra_kernel_map(struct machine *machine,
1797					     struct extra_kernel_map *xm)
1798{
1799	struct dso *kernel = machine__kernel_dso(machine);
 
 
 
 
 
 
1800
1801	if (kernel == NULL)
1802		return -1;
1803
1804	return machine__create_extra_kernel_map(machine, kernel, xm);
 
 
1805}
1806
1807static int machine__process_kernel_mmap_event(struct machine *machine,
1808					      struct extra_kernel_map *xm,
1809					      struct build_id *bid)
1810{
1811	enum dso_space_type dso_space;
 
1812	bool is_kernel_mmap;
1813	const char *mmap_name = machine->mmap_name;
1814
1815	/* If we have maps from kcore then we do not need or want any others */
1816	if (machine__uses_kcore(machine))
1817		return 0;
1818
1819	if (machine__is_host(machine))
1820		dso_space = DSO_SPACE__KERNEL;
1821	else
1822		dso_space = DSO_SPACE__KERNEL_GUEST;
1823
1824	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1825	if (!is_kernel_mmap && !machine__is_host(machine)) {
1826		/*
1827		 * If the event was recorded inside the guest and injected into
1828		 * the host perf.data file, then it will match a host mmap_name,
1829		 * so try that - see machine__set_mmap_name().
1830		 */
1831		mmap_name = "[kernel.kallsyms]";
1832		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1833	}
1834	if (xm->name[0] == '/' ||
1835	    (!is_kernel_mmap && xm->name[0] == '[')) {
1836		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1837
 
 
 
 
 
 
 
1838		if (map == NULL)
1839			goto out_problem;
1840
1841		map__set_end(map, map__start(map) + xm->end - xm->start);
1842
1843		if (build_id__is_defined(bid))
1844			dso__set_build_id(map__dso(map), bid);
1845
1846		map__put(map);
1847	} else if (is_kernel_mmap) {
1848		const char *symbol_name = xm->name + strlen(mmap_name);
 
1849		/*
1850		 * Should be there already, from the build-id table in
1851		 * the header.
1852		 */
1853		struct dso *kernel = NULL;
1854		struct dso *dso;
1855
1856		down_read(&machine->dsos.lock);
1857
1858		list_for_each_entry(dso, &machine->dsos.head, node) {
1859
1860			/*
1861			 * The cpumode passed to is_kernel_module is not the
1862			 * cpumode of *this* event. If we insist on passing
1863			 * correct cpumode to is_kernel_module, we should
1864			 * record the cpumode when we adding this dso to the
1865			 * linked list.
1866			 *
1867			 * However we don't really need passing correct
1868			 * cpumode.  We know the correct cpumode must be kernel
1869			 * mode (if not, we should not link it onto kernel_dsos
1870			 * list).
1871			 *
1872			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1873			 * is_kernel_module() treats it as a kernel cpumode.
1874			 */
1875
1876			if (!dso->kernel ||
1877			    is_kernel_module(dso->long_name,
1878					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1879				continue;
1880
1881
1882			kernel = dso__get(dso);
1883			break;
1884		}
1885
1886		up_read(&machine->dsos.lock);
1887
1888		if (kernel == NULL)
1889			kernel = machine__findnew_dso(machine, machine->mmap_name);
1890		if (kernel == NULL)
1891			goto out_problem;
1892
1893		kernel->kernel = dso_space;
1894		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1895			dso__put(kernel);
1896			goto out_problem;
1897		}
1898
1899		if (strstr(kernel->long_name, "vmlinux"))
1900			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1901
1902		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1903			dso__put(kernel);
1904			goto out_problem;
1905		}
1906
1907		if (build_id__is_defined(bid))
1908			dso__set_build_id(kernel, bid);
1909
1910		/*
1911		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1912		 * symbol. Effectively having zero here means that at record
1913		 * time /proc/sys/kernel/kptr_restrict was non zero.
1914		 */
1915		if (xm->pgoff != 0) {
1916			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1917							symbol_name,
1918							xm->pgoff);
1919		}
1920
1921		if (machine__is_default_guest(machine)) {
1922			/*
1923			 * preload dso of guest kernel and modules
1924			 */
1925			dso__load(kernel, machine__kernel_map(machine));
1926		}
1927		dso__put(kernel);
1928	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1929		return machine__process_extra_kernel_map(machine, xm);
1930	}
1931	return 0;
1932out_problem:
1933	return -1;
1934}
1935
1936int machine__process_mmap2_event(struct machine *machine,
1937				 union perf_event *event,
1938				 struct perf_sample *sample)
1939{
1940	struct thread *thread;
1941	struct map *map;
1942	struct dso_id dso_id = {
1943		.maj = event->mmap2.maj,
1944		.min = event->mmap2.min,
1945		.ino = event->mmap2.ino,
1946		.ino_generation = event->mmap2.ino_generation,
1947	};
1948	struct build_id __bid, *bid = NULL;
1949	int ret = 0;
1950
1951	if (dump_trace)
1952		perf_event__fprintf_mmap2(event, stdout);
1953
1954	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1955		bid = &__bid;
1956		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1957	}
1958
1959	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1960	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1961		struct extra_kernel_map xm = {
1962			.start = event->mmap2.start,
1963			.end   = event->mmap2.start + event->mmap2.len,
1964			.pgoff = event->mmap2.pgoff,
1965		};
1966
1967		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1968		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1969		if (ret < 0)
1970			goto out_problem;
1971		return 0;
1972	}
1973
1974	thread = machine__findnew_thread(machine, event->mmap2.pid,
1975					event->mmap2.tid);
1976	if (thread == NULL)
1977		goto out_problem;
1978
1979	map = map__new(machine, event->mmap2.start,
1980			event->mmap2.len, event->mmap2.pgoff,
1981			&dso_id, event->mmap2.prot,
1982			event->mmap2.flags, bid,
 
 
 
1983			event->mmap2.filename, thread);
1984
1985	if (map == NULL)
1986		goto out_problem_map;
1987
1988	ret = thread__insert_map(thread, map);
1989	if (ret)
1990		goto out_problem_insert;
1991
1992	thread__put(thread);
1993	map__put(map);
1994	return 0;
1995
1996out_problem_insert:
1997	map__put(map);
1998out_problem_map:
1999	thread__put(thread);
2000out_problem:
2001	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
2002	return 0;
2003}
2004
2005int machine__process_mmap_event(struct machine *machine, union perf_event *event,
2006				struct perf_sample *sample)
2007{
2008	struct thread *thread;
2009	struct map *map;
2010	u32 prot = 0;
2011	int ret = 0;
2012
2013	if (dump_trace)
2014		perf_event__fprintf_mmap(event, stdout);
2015
2016	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
2017	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
2018		struct extra_kernel_map xm = {
2019			.start = event->mmap.start,
2020			.end   = event->mmap.start + event->mmap.len,
2021			.pgoff = event->mmap.pgoff,
2022		};
2023
2024		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
2025		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
2026		if (ret < 0)
2027			goto out_problem;
2028		return 0;
2029	}
2030
2031	thread = machine__findnew_thread(machine, event->mmap.pid,
2032					 event->mmap.tid);
2033	if (thread == NULL)
2034		goto out_problem;
2035
2036	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2037		prot = PROT_EXEC;
2038
2039	map = map__new(machine, event->mmap.start,
2040			event->mmap.len, event->mmap.pgoff,
2041			NULL, prot, 0, NULL, event->mmap.filename, thread);
 
 
2042
2043	if (map == NULL)
2044		goto out_problem_map;
2045
2046	ret = thread__insert_map(thread, map);
2047	if (ret)
2048		goto out_problem_insert;
2049
2050	thread__put(thread);
2051	map__put(map);
2052	return 0;
2053
2054out_problem_insert:
2055	map__put(map);
2056out_problem_map:
2057	thread__put(thread);
2058out_problem:
2059	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2060	return 0;
2061}
2062
2063static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
2064				     struct thread *th, bool lock)
2065{
2066	struct threads *threads = machine__threads(machine, thread__tid(th));
2067
2068	if (!nd)
2069		nd = thread_rb_node__find(th, &threads->entries.rb_root);
2070
2071	if (threads->last_match && RC_CHK_EQUAL(threads->last_match, th))
2072		threads__set_last_match(threads, NULL);
2073
2074	if (lock)
2075		down_write(&threads->lock);
2076
2077	BUG_ON(refcount_read(thread__refcnt(th)) == 0);
2078
2079	thread__put(nd->thread);
2080	rb_erase_cached(&nd->rb_node, &threads->entries);
2081	RB_CLEAR_NODE(&nd->rb_node);
2082	--threads->nr;
 
 
 
 
 
 
2083
2084	free(nd);
 
 
 
 
 
2085
2086	if (lock)
2087		up_write(&threads->lock);
2088}
2089
2090void machine__remove_thread(struct machine *machine, struct thread *th)
2091{
2092	return __machine__remove_thread(machine, NULL, th, true);
2093}
2094
2095int machine__process_fork_event(struct machine *machine, union perf_event *event,
2096				struct perf_sample *sample)
2097{
2098	struct thread *thread = machine__find_thread(machine,
2099						     event->fork.pid,
2100						     event->fork.tid);
2101	struct thread *parent = machine__findnew_thread(machine,
2102							event->fork.ppid,
2103							event->fork.ptid);
2104	bool do_maps_clone = true;
2105	int err = 0;
2106
2107	if (dump_trace)
2108		perf_event__fprintf_task(event, stdout);
2109
2110	/*
2111	 * There may be an existing thread that is not actually the parent,
2112	 * either because we are processing events out of order, or because the
2113	 * (fork) event that would have removed the thread was lost. Assume the
2114	 * latter case and continue on as best we can.
2115	 */
2116	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
2117		dump_printf("removing erroneous parent thread %d/%d\n",
2118			    thread__pid(parent), thread__tid(parent));
2119		machine__remove_thread(machine, parent);
2120		thread__put(parent);
2121		parent = machine__findnew_thread(machine, event->fork.ppid,
2122						 event->fork.ptid);
2123	}
2124
2125	/* if a thread currently exists for the thread id remove it */
2126	if (thread != NULL) {
2127		machine__remove_thread(machine, thread);
2128		thread__put(thread);
2129	}
2130
2131	thread = machine__findnew_thread(machine, event->fork.pid,
2132					 event->fork.tid);
2133	/*
2134	 * When synthesizing FORK events, we are trying to create thread
2135	 * objects for the already running tasks on the machine.
2136	 *
2137	 * Normally, for a kernel FORK event, we want to clone the parent's
2138	 * maps because that is what the kernel just did.
2139	 *
2140	 * But when synthesizing, this should not be done.  If we do, we end up
2141	 * with overlapping maps as we process the synthesized MMAP2 events that
2142	 * get delivered shortly thereafter.
2143	 *
2144	 * Use the FORK event misc flags in an internal way to signal this
2145	 * situation, so we can elide the map clone when appropriate.
2146	 */
2147	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2148		do_maps_clone = false;
2149
2150	if (thread == NULL || parent == NULL ||
2151	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2152		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2153		err = -1;
2154	}
2155	thread__put(thread);
2156	thread__put(parent);
2157
2158	return err;
2159}
2160
2161int machine__process_exit_event(struct machine *machine, union perf_event *event,
2162				struct perf_sample *sample __maybe_unused)
2163{
2164	struct thread *thread = machine__find_thread(machine,
2165						     event->fork.pid,
2166						     event->fork.tid);
2167
2168	if (dump_trace)
2169		perf_event__fprintf_task(event, stdout);
2170
2171	if (thread != NULL) {
2172		if (symbol_conf.keep_exited_threads)
2173			thread__set_exited(thread, /*exited=*/true);
2174		else
2175			machine__remove_thread(machine, thread);
2176	}
2177	thread__put(thread);
2178	return 0;
2179}
2180
2181int machine__process_event(struct machine *machine, union perf_event *event,
2182			   struct perf_sample *sample)
2183{
2184	int ret;
2185
2186	switch (event->header.type) {
2187	case PERF_RECORD_COMM:
2188		ret = machine__process_comm_event(machine, event, sample); break;
2189	case PERF_RECORD_MMAP:
2190		ret = machine__process_mmap_event(machine, event, sample); break;
2191	case PERF_RECORD_NAMESPACES:
2192		ret = machine__process_namespaces_event(machine, event, sample); break;
2193	case PERF_RECORD_CGROUP:
2194		ret = machine__process_cgroup_event(machine, event, sample); break;
2195	case PERF_RECORD_MMAP2:
2196		ret = machine__process_mmap2_event(machine, event, sample); break;
2197	case PERF_RECORD_FORK:
2198		ret = machine__process_fork_event(machine, event, sample); break;
2199	case PERF_RECORD_EXIT:
2200		ret = machine__process_exit_event(machine, event, sample); break;
2201	case PERF_RECORD_LOST:
2202		ret = machine__process_lost_event(machine, event, sample); break;
2203	case PERF_RECORD_AUX:
2204		ret = machine__process_aux_event(machine, event); break;
2205	case PERF_RECORD_ITRACE_START:
2206		ret = machine__process_itrace_start_event(machine, event); break;
2207	case PERF_RECORD_LOST_SAMPLES:
2208		ret = machine__process_lost_samples_event(machine, event, sample); break;
2209	case PERF_RECORD_SWITCH:
2210	case PERF_RECORD_SWITCH_CPU_WIDE:
2211		ret = machine__process_switch_event(machine, event); break;
2212	case PERF_RECORD_KSYMBOL:
2213		ret = machine__process_ksymbol(machine, event, sample); break;
2214	case PERF_RECORD_BPF_EVENT:
2215		ret = machine__process_bpf(machine, event, sample); break;
2216	case PERF_RECORD_TEXT_POKE:
2217		ret = machine__process_text_poke(machine, event, sample); break;
2218	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2219		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2220	default:
2221		ret = -1;
2222		break;
2223	}
2224
2225	return ret;
2226}
2227
2228static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2229{
2230	return regexec(regex, sym->name, 0, NULL, 0) == 0;
 
 
2231}
2232
2233static void ip__resolve_ams(struct thread *thread,
2234			    struct addr_map_symbol *ams,
2235			    u64 ip)
2236{
2237	struct addr_location al;
2238
2239	addr_location__init(&al);
2240	/*
2241	 * We cannot use the header.misc hint to determine whether a
2242	 * branch stack address is user, kernel, guest, hypervisor.
2243	 * Branches may straddle the kernel/user/hypervisor boundaries.
2244	 * Thus, we have to try consecutively until we find a match
2245	 * or else, the symbol is unknown
2246	 */
2247	thread__find_cpumode_addr_location(thread, ip, &al);
2248
2249	ams->addr = ip;
2250	ams->al_addr = al.addr;
2251	ams->al_level = al.level;
2252	ams->ms.maps = maps__get(al.maps);
2253	ams->ms.sym = al.sym;
2254	ams->ms.map = map__get(al.map);
2255	ams->phys_addr = 0;
2256	ams->data_page_size = 0;
2257	addr_location__exit(&al);
2258}
2259
2260static void ip__resolve_data(struct thread *thread,
2261			     u8 m, struct addr_map_symbol *ams,
2262			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2263{
2264	struct addr_location al;
2265
2266	addr_location__init(&al);
2267
2268	thread__find_symbol(thread, m, addr, &al);
2269
2270	ams->addr = addr;
2271	ams->al_addr = al.addr;
2272	ams->al_level = al.level;
2273	ams->ms.maps = maps__get(al.maps);
2274	ams->ms.sym = al.sym;
2275	ams->ms.map = map__get(al.map);
2276	ams->phys_addr = phys_addr;
2277	ams->data_page_size = daddr_page_size;
2278	addr_location__exit(&al);
2279}
2280
2281struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2282				     struct addr_location *al)
2283{
2284	struct mem_info *mi = mem_info__new();
2285
2286	if (!mi)
2287		return NULL;
2288
2289	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2290	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2291			 sample->addr, sample->phys_addr,
2292			 sample->data_page_size);
2293	mi->data_src.val = sample->data_src;
2294
2295	return mi;
2296}
2297
2298static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2299{
2300	struct map *map = ms->map;
2301	char *srcline = NULL;
2302	struct dso *dso;
2303
2304	if (!map || callchain_param.key == CCKEY_FUNCTION)
2305		return srcline;
2306
2307	dso = map__dso(map);
2308	srcline = srcline__tree_find(&dso->srclines, ip);
2309	if (!srcline) {
2310		bool show_sym = false;
2311		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2312
2313		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2314				      ms->sym, show_sym, show_addr, ip);
2315		srcline__tree_insert(&dso->srclines, ip, srcline);
2316	}
2317
2318	return srcline;
2319}
2320
2321struct iterations {
2322	int nr_loop_iter;
2323	u64 cycles;
2324};
2325
2326static int add_callchain_ip(struct thread *thread,
2327			    struct callchain_cursor *cursor,
2328			    struct symbol **parent,
2329			    struct addr_location *root_al,
2330			    u8 *cpumode,
2331			    u64 ip,
2332			    bool branch,
2333			    struct branch_flags *flags,
2334			    struct iterations *iter,
2335			    u64 branch_from)
2336{
2337	struct map_symbol ms = {};
2338	struct addr_location al;
2339	int nr_loop_iter = 0, err = 0;
2340	u64 iter_cycles = 0;
2341	const char *srcline = NULL;
2342
2343	addr_location__init(&al);
2344	al.filtered = 0;
2345	al.sym = NULL;
2346	al.srcline = NULL;
2347	if (!cpumode) {
2348		thread__find_cpumode_addr_location(thread, ip, &al);
2349	} else {
2350		if (ip >= PERF_CONTEXT_MAX) {
2351			switch (ip) {
2352			case PERF_CONTEXT_HV:
2353				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2354				break;
2355			case PERF_CONTEXT_KERNEL:
2356				*cpumode = PERF_RECORD_MISC_KERNEL;
2357				break;
2358			case PERF_CONTEXT_USER:
2359				*cpumode = PERF_RECORD_MISC_USER;
2360				break;
2361			default:
2362				pr_debug("invalid callchain context: "
2363					 "%"PRId64"\n", (s64) ip);
2364				/*
2365				 * It seems the callchain is corrupted.
2366				 * Discard all.
2367				 */
2368				callchain_cursor_reset(cursor);
2369				err = 1;
2370				goto out;
2371			}
2372			goto out;
2373		}
2374		thread__find_symbol(thread, *cpumode, ip, &al);
2375	}
2376
2377	if (al.sym != NULL) {
2378		if (perf_hpp_list.parent && !*parent &&
2379		    symbol__match_regex(al.sym, &parent_regex))
2380			*parent = al.sym;
2381		else if (have_ignore_callees && root_al &&
2382		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2383			/* Treat this symbol as the root,
2384			   forgetting its callees. */
2385			addr_location__copy(root_al, &al);
2386			callchain_cursor_reset(cursor);
2387		}
2388	}
2389
2390	if (symbol_conf.hide_unresolved && al.sym == NULL)
2391		goto out;
2392
2393	if (iter) {
2394		nr_loop_iter = iter->nr_loop_iter;
2395		iter_cycles = iter->cycles;
2396	}
2397
2398	ms.maps = maps__get(al.maps);
2399	ms.map = map__get(al.map);
2400	ms.sym = al.sym;
2401	srcline = callchain_srcline(&ms, al.addr);
2402	err = callchain_cursor_append(cursor, ip, &ms,
2403				      branch, flags, nr_loop_iter,
2404				      iter_cycles, branch_from, srcline);
2405out:
2406	addr_location__exit(&al);
2407	map_symbol__exit(&ms);
2408	return err;
2409}
2410
2411struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2412					   struct addr_location *al)
2413{
2414	unsigned int i;
2415	const struct branch_stack *bs = sample->branch_stack;
2416	struct branch_entry *entries = perf_sample__branch_entries(sample);
2417	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2418
2419	if (!bi)
2420		return NULL;
2421
2422	for (i = 0; i < bs->nr; i++) {
2423		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2424		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2425		bi[i].flags = entries[i].flags;
2426	}
2427	return bi;
2428}
2429
2430static void save_iterations(struct iterations *iter,
2431			    struct branch_entry *be, int nr)
2432{
2433	int i;
2434
2435	iter->nr_loop_iter++;
2436	iter->cycles = 0;
2437
2438	for (i = 0; i < nr; i++)
2439		iter->cycles += be[i].flags.cycles;
2440}
2441
2442#define CHASHSZ 127
2443#define CHASHBITS 7
2444#define NO_ENTRY 0xff
2445
2446#define PERF_MAX_BRANCH_DEPTH 127
2447
2448/* Remove loops. */
2449static int remove_loops(struct branch_entry *l, int nr,
2450			struct iterations *iter)
2451{
2452	int i, j, off;
2453	unsigned char chash[CHASHSZ];
2454
2455	memset(chash, NO_ENTRY, sizeof(chash));
2456
2457	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2458
2459	for (i = 0; i < nr; i++) {
2460		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2461
2462		/* no collision handling for now */
2463		if (chash[h] == NO_ENTRY) {
2464			chash[h] = i;
2465		} else if (l[chash[h]].from == l[i].from) {
2466			bool is_loop = true;
2467			/* check if it is a real loop */
2468			off = 0;
2469			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2470				if (l[j].from != l[i + off].from) {
2471					is_loop = false;
2472					break;
2473				}
2474			if (is_loop) {
2475				j = nr - (i + off);
2476				if (j > 0) {
2477					save_iterations(iter + i + off,
2478						l + i, off);
2479
2480					memmove(iter + i, iter + i + off,
2481						j * sizeof(*iter));
2482
2483					memmove(l + i, l + i + off,
2484						j * sizeof(*l));
2485				}
2486
2487				nr -= off;
2488			}
2489		}
2490	}
2491	return nr;
2492}
2493
2494static int lbr_callchain_add_kernel_ip(struct thread *thread,
2495				       struct callchain_cursor *cursor,
2496				       struct perf_sample *sample,
2497				       struct symbol **parent,
2498				       struct addr_location *root_al,
2499				       u64 branch_from,
2500				       bool callee, int end)
2501{
2502	struct ip_callchain *chain = sample->callchain;
2503	u8 cpumode = PERF_RECORD_MISC_USER;
2504	int err, i;
2505
2506	if (callee) {
2507		for (i = 0; i < end + 1; i++) {
2508			err = add_callchain_ip(thread, cursor, parent,
2509					       root_al, &cpumode, chain->ips[i],
2510					       false, NULL, NULL, branch_from);
2511			if (err)
2512				return err;
2513		}
2514		return 0;
2515	}
2516
2517	for (i = end; i >= 0; i--) {
2518		err = add_callchain_ip(thread, cursor, parent,
2519				       root_al, &cpumode, chain->ips[i],
2520				       false, NULL, NULL, branch_from);
2521		if (err)
2522			return err;
2523	}
2524
2525	return 0;
2526}
2527
2528static void save_lbr_cursor_node(struct thread *thread,
2529				 struct callchain_cursor *cursor,
2530				 int idx)
2531{
2532	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2533
2534	if (!lbr_stitch)
2535		return;
2536
2537	if (cursor->pos == cursor->nr) {
2538		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2539		return;
2540	}
2541
2542	if (!cursor->curr)
2543		cursor->curr = cursor->first;
2544	else
2545		cursor->curr = cursor->curr->next;
2546	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2547	       sizeof(struct callchain_cursor_node));
2548
2549	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2550	cursor->pos++;
2551}
2552
2553static int lbr_callchain_add_lbr_ip(struct thread *thread,
2554				    struct callchain_cursor *cursor,
2555				    struct perf_sample *sample,
2556				    struct symbol **parent,
2557				    struct addr_location *root_al,
2558				    u64 *branch_from,
2559				    bool callee)
2560{
2561	struct branch_stack *lbr_stack = sample->branch_stack;
2562	struct branch_entry *entries = perf_sample__branch_entries(sample);
2563	u8 cpumode = PERF_RECORD_MISC_USER;
2564	int lbr_nr = lbr_stack->nr;
2565	struct branch_flags *flags;
2566	int err, i;
2567	u64 ip;
2568
2569	/*
2570	 * The curr and pos are not used in writing session. They are cleared
2571	 * in callchain_cursor_commit() when the writing session is closed.
2572	 * Using curr and pos to track the current cursor node.
2573	 */
2574	if (thread__lbr_stitch(thread)) {
2575		cursor->curr = NULL;
2576		cursor->pos = cursor->nr;
2577		if (cursor->nr) {
2578			cursor->curr = cursor->first;
2579			for (i = 0; i < (int)(cursor->nr - 1); i++)
2580				cursor->curr = cursor->curr->next;
2581		}
2582	}
2583
2584	if (callee) {
2585		/* Add LBR ip from first entries.to */
2586		ip = entries[0].to;
2587		flags = &entries[0].flags;
2588		*branch_from = entries[0].from;
2589		err = add_callchain_ip(thread, cursor, parent,
2590				       root_al, &cpumode, ip,
2591				       true, flags, NULL,
2592				       *branch_from);
2593		if (err)
2594			return err;
2595
2596		/*
2597		 * The number of cursor node increases.
2598		 * Move the current cursor node.
2599		 * But does not need to save current cursor node for entry 0.
2600		 * It's impossible to stitch the whole LBRs of previous sample.
2601		 */
2602		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2603			if (!cursor->curr)
2604				cursor->curr = cursor->first;
2605			else
2606				cursor->curr = cursor->curr->next;
2607			cursor->pos++;
2608		}
2609
2610		/* Add LBR ip from entries.from one by one. */
2611		for (i = 0; i < lbr_nr; i++) {
2612			ip = entries[i].from;
2613			flags = &entries[i].flags;
2614			err = add_callchain_ip(thread, cursor, parent,
2615					       root_al, &cpumode, ip,
2616					       true, flags, NULL,
2617					       *branch_from);
2618			if (err)
2619				return err;
2620			save_lbr_cursor_node(thread, cursor, i);
2621		}
2622		return 0;
2623	}
2624
2625	/* Add LBR ip from entries.from one by one. */
2626	for (i = lbr_nr - 1; i >= 0; i--) {
2627		ip = entries[i].from;
2628		flags = &entries[i].flags;
2629		err = add_callchain_ip(thread, cursor, parent,
2630				       root_al, &cpumode, ip,
2631				       true, flags, NULL,
2632				       *branch_from);
2633		if (err)
2634			return err;
2635		save_lbr_cursor_node(thread, cursor, i);
2636	}
2637
2638	if (lbr_nr > 0) {
2639		/* Add LBR ip from first entries.to */
2640		ip = entries[0].to;
2641		flags = &entries[0].flags;
2642		*branch_from = entries[0].from;
2643		err = add_callchain_ip(thread, cursor, parent,
2644				root_al, &cpumode, ip,
2645				true, flags, NULL,
2646				*branch_from);
2647		if (err)
2648			return err;
2649	}
2650
2651	return 0;
2652}
2653
2654static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2655					     struct callchain_cursor *cursor)
2656{
2657	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2658	struct callchain_cursor_node *cnode;
2659	struct stitch_list *stitch_node;
2660	int err;
2661
2662	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2663		cnode = &stitch_node->cursor;
2664
2665		err = callchain_cursor_append(cursor, cnode->ip,
2666					      &cnode->ms,
2667					      cnode->branch,
2668					      &cnode->branch_flags,
2669					      cnode->nr_loop_iter,
2670					      cnode->iter_cycles,
2671					      cnode->branch_from,
2672					      cnode->srcline);
2673		if (err)
2674			return err;
2675	}
2676	return 0;
2677}
2678
2679static struct stitch_list *get_stitch_node(struct thread *thread)
2680{
2681	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2682	struct stitch_list *stitch_node;
2683
2684	if (!list_empty(&lbr_stitch->free_lists)) {
2685		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2686					       struct stitch_list, node);
2687		list_del(&stitch_node->node);
2688
2689		return stitch_node;
2690	}
2691
2692	return malloc(sizeof(struct stitch_list));
2693}
2694
2695static bool has_stitched_lbr(struct thread *thread,
2696			     struct perf_sample *cur,
2697			     struct perf_sample *prev,
2698			     unsigned int max_lbr,
2699			     bool callee)
2700{
2701	struct branch_stack *cur_stack = cur->branch_stack;
2702	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2703	struct branch_stack *prev_stack = prev->branch_stack;
2704	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2705	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2706	int i, j, nr_identical_branches = 0;
2707	struct stitch_list *stitch_node;
2708	u64 cur_base, distance;
2709
2710	if (!cur_stack || !prev_stack)
2711		return false;
2712
2713	/* Find the physical index of the base-of-stack for current sample. */
2714	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2715
2716	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2717						     (max_lbr + prev_stack->hw_idx - cur_base);
2718	/* Previous sample has shorter stack. Nothing can be stitched. */
2719	if (distance + 1 > prev_stack->nr)
2720		return false;
2721
2722	/*
2723	 * Check if there are identical LBRs between two samples.
2724	 * Identical LBRs must have same from, to and flags values. Also,
2725	 * they have to be saved in the same LBR registers (same physical
2726	 * index).
2727	 *
2728	 * Starts from the base-of-stack of current sample.
2729	 */
2730	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2731		if ((prev_entries[i].from != cur_entries[j].from) ||
2732		    (prev_entries[i].to != cur_entries[j].to) ||
2733		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2734			break;
2735		nr_identical_branches++;
2736	}
2737
2738	if (!nr_identical_branches)
2739		return false;
2740
2741	/*
2742	 * Save the LBRs between the base-of-stack of previous sample
2743	 * and the base-of-stack of current sample into lbr_stitch->lists.
2744	 * These LBRs will be stitched later.
2745	 */
2746	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2747
2748		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2749			continue;
2750
2751		stitch_node = get_stitch_node(thread);
2752		if (!stitch_node)
2753			return false;
2754
2755		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2756		       sizeof(struct callchain_cursor_node));
2757
2758		if (callee)
2759			list_add(&stitch_node->node, &lbr_stitch->lists);
2760		else
2761			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2762	}
2763
2764	return true;
2765}
2766
2767static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2768{
2769	if (thread__lbr_stitch(thread))
2770		return true;
2771
2772	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2773	if (!thread__lbr_stitch(thread))
2774		goto err;
2775
2776	thread__lbr_stitch(thread)->prev_lbr_cursor =
2777		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2778	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2779		goto free_lbr_stitch;
2780
2781	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2782	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2783
2784	return true;
2785
2786free_lbr_stitch:
2787	free(thread__lbr_stitch(thread));
2788	thread__set_lbr_stitch(thread, NULL);
2789err:
2790	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2791	thread__set_lbr_stitch_enable(thread, false);
2792	return false;
2793}
2794
2795/*
2796 * Resolve LBR callstack chain sample
2797 * Return:
2798 * 1 on success get LBR callchain information
2799 * 0 no available LBR callchain information, should try fp
2800 * negative error code on other errors.
2801 */
2802static int resolve_lbr_callchain_sample(struct thread *thread,
2803					struct callchain_cursor *cursor,
2804					struct perf_sample *sample,
2805					struct symbol **parent,
2806					struct addr_location *root_al,
2807					int max_stack,
2808					unsigned int max_lbr)
2809{
2810	bool callee = (callchain_param.order == ORDER_CALLEE);
2811	struct ip_callchain *chain = sample->callchain;
2812	int chain_nr = min(max_stack, (int)chain->nr), i;
2813	struct lbr_stitch *lbr_stitch;
2814	bool stitched_lbr = false;
2815	u64 branch_from = 0;
2816	int err;
2817
2818	for (i = 0; i < chain_nr; i++) {
2819		if (chain->ips[i] == PERF_CONTEXT_USER)
2820			break;
2821	}
2822
2823	/* LBR only affects the user callchain */
2824	if (i == chain_nr)
2825		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2826
2827	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2828	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2829		lbr_stitch = thread__lbr_stitch(thread);
2830
2831		stitched_lbr = has_stitched_lbr(thread, sample,
2832						&lbr_stitch->prev_sample,
2833						max_lbr, callee);
2834
2835		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2836			list_replace_init(&lbr_stitch->lists,
2837					  &lbr_stitch->free_lists);
2838		}
2839		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2840	}
2841
2842	if (callee) {
2843		/* Add kernel ip */
2844		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2845						  parent, root_al, branch_from,
2846						  true, i);
2847		if (err)
2848			goto error;
2849
2850		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2851					       root_al, &branch_from, true);
2852		if (err)
2853			goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854
2855		if (stitched_lbr) {
2856			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
 
 
2857			if (err)
2858				goto error;
2859		}
2860
2861	} else {
2862		if (stitched_lbr) {
2863			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2864			if (err)
2865				goto error;
2866		}
2867		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2868					       root_al, &branch_from, false);
2869		if (err)
2870			goto error;
2871
2872		/* Add kernel ip */
2873		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2874						  parent, root_al, branch_from,
2875						  false, i);
2876		if (err)
2877			goto error;
2878	}
2879	return 1;
2880
2881error:
2882	return (err < 0) ? err : 0;
2883}
2884
2885static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2886			     struct callchain_cursor *cursor,
2887			     struct symbol **parent,
2888			     struct addr_location *root_al,
2889			     u8 *cpumode, int ent)
2890{
2891	int err = 0;
2892
2893	while (--ent >= 0) {
2894		u64 ip = chain->ips[ent];
2895
2896		if (ip >= PERF_CONTEXT_MAX) {
2897			err = add_callchain_ip(thread, cursor, parent,
2898					       root_al, cpumode, ip,
2899					       false, NULL, NULL, 0);
2900			break;
2901		}
2902	}
2903	return err;
2904}
2905
2906static u64 get_leaf_frame_caller(struct perf_sample *sample,
2907		struct thread *thread, int usr_idx)
2908{
2909	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2910		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2911	else
2912		return 0;
2913}
2914
2915static int thread__resolve_callchain_sample(struct thread *thread,
2916					    struct callchain_cursor *cursor,
2917					    struct evsel *evsel,
2918					    struct perf_sample *sample,
2919					    struct symbol **parent,
2920					    struct addr_location *root_al,
2921					    int max_stack)
2922{
2923	struct branch_stack *branch = sample->branch_stack;
2924	struct branch_entry *entries = perf_sample__branch_entries(sample);
2925	struct ip_callchain *chain = sample->callchain;
2926	int chain_nr = 0;
2927	u8 cpumode = PERF_RECORD_MISC_USER;
2928	int i, j, err, nr_entries, usr_idx;
2929	int skip_idx = -1;
2930	int first_call = 0;
2931	u64 leaf_frame_caller;
2932
2933	if (chain)
2934		chain_nr = chain->nr;
2935
2936	if (evsel__has_branch_callstack(evsel)) {
2937		struct perf_env *env = evsel__env(evsel);
2938
2939		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2940						   root_al, max_stack,
2941						   !env ? 0 : env->max_branches);
2942		if (err)
2943			return (err < 0) ? err : 0;
2944	}
2945
2946	/*
2947	 * Based on DWARF debug information, some architectures skip
2948	 * a callchain entry saved by the kernel.
2949	 */
2950	skip_idx = arch_skip_callchain_idx(thread, chain);
2951
2952	/*
2953	 * Add branches to call stack for easier browsing. This gives
2954	 * more context for a sample than just the callers.
2955	 *
2956	 * This uses individual histograms of paths compared to the
2957	 * aggregated histograms the normal LBR mode uses.
2958	 *
2959	 * Limitations for now:
2960	 * - No extra filters
2961	 * - No annotations (should annotate somehow)
2962	 */
2963
2964	if (branch && callchain_param.branch_callstack) {
2965		int nr = min(max_stack, (int)branch->nr);
2966		struct branch_entry be[nr];
2967		struct iterations iter[nr];
2968
2969		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2970			pr_warning("corrupted branch chain. skipping...\n");
2971			goto check_calls;
2972		}
2973
2974		for (i = 0; i < nr; i++) {
2975			if (callchain_param.order == ORDER_CALLEE) {
2976				be[i] = entries[i];
2977
2978				if (chain == NULL)
2979					continue;
2980
2981				/*
2982				 * Check for overlap into the callchain.
2983				 * The return address is one off compared to
2984				 * the branch entry. To adjust for this
2985				 * assume the calling instruction is not longer
2986				 * than 8 bytes.
2987				 */
2988				if (i == skip_idx ||
2989				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2990					first_call++;
2991				else if (be[i].from < chain->ips[first_call] &&
2992				    be[i].from >= chain->ips[first_call] - 8)
2993					first_call++;
2994			} else
2995				be[i] = entries[branch->nr - i - 1];
2996		}
2997
2998		memset(iter, 0, sizeof(struct iterations) * nr);
2999		nr = remove_loops(be, nr, iter);
3000
3001		for (i = 0; i < nr; i++) {
3002			err = add_callchain_ip(thread, cursor, parent,
3003					       root_al,
3004					       NULL, be[i].to,
3005					       true, &be[i].flags,
3006					       NULL, be[i].from);
3007
3008			if (!err)
3009				err = add_callchain_ip(thread, cursor, parent, root_al,
3010						       NULL, be[i].from,
3011						       true, &be[i].flags,
3012						       &iter[i], 0);
3013			if (err == -EINVAL)
3014				break;
3015			if (err)
3016				return err;
3017		}
3018
3019		if (chain_nr == 0)
3020			return 0;
3021
3022		chain_nr -= nr;
3023	}
3024
3025check_calls:
3026	if (chain && callchain_param.order != ORDER_CALLEE) {
3027		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
3028					&cpumode, chain->nr - first_call);
3029		if (err)
3030			return (err < 0) ? err : 0;
3031	}
3032	for (i = first_call, nr_entries = 0;
3033	     i < chain_nr && nr_entries < max_stack; i++) {
3034		u64 ip;
3035
3036		if (callchain_param.order == ORDER_CALLEE)
3037			j = i;
3038		else
3039			j = chain->nr - i - 1;
3040
3041#ifdef HAVE_SKIP_CALLCHAIN_IDX
3042		if (j == skip_idx)
3043			continue;
3044#endif
3045		ip = chain->ips[j];
3046		if (ip < PERF_CONTEXT_MAX)
3047                       ++nr_entries;
3048		else if (callchain_param.order != ORDER_CALLEE) {
3049			err = find_prev_cpumode(chain, thread, cursor, parent,
3050						root_al, &cpumode, j);
3051			if (err)
3052				return (err < 0) ? err : 0;
3053			continue;
3054		}
3055
3056		/*
3057		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3058		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3059		 * the index will be different in order to add the missing frame
3060		 * at the right place.
3061		 */
3062
3063		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3064
3065		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3066
3067			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3068
3069			/*
3070			 * check if leaf_frame_Caller != ip to not add the same
3071			 * value twice.
3072			 */
3073
3074			if (leaf_frame_caller && leaf_frame_caller != ip) {
3075
3076				err = add_callchain_ip(thread, cursor, parent,
3077					       root_al, &cpumode, leaf_frame_caller,
3078					       false, NULL, NULL, 0);
3079				if (err)
3080					return (err < 0) ? err : 0;
3081			}
3082		}
3083
3084		err = add_callchain_ip(thread, cursor, parent,
3085				       root_al, &cpumode, ip,
3086				       false, NULL, NULL, 0);
3087
3088		if (err)
3089			return (err < 0) ? err : 0;
3090	}
3091
3092	return 0;
3093}
3094
3095static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
 
3096{
3097	struct symbol *sym = ms->sym;
3098	struct map *map = ms->map;
3099	struct inline_node *inline_node;
3100	struct inline_list *ilist;
3101	struct dso *dso;
3102	u64 addr;
3103	int ret = 1;
3104	struct map_symbol ilist_ms;
3105
3106	if (!symbol_conf.inline_name || !map || !sym)
3107		return ret;
3108
3109	addr = map__dso_map_ip(map, ip);
3110	addr = map__rip_2objdump(map, addr);
3111	dso = map__dso(map);
3112
3113	inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3114	if (!inline_node) {
3115		inline_node = dso__parse_addr_inlines(dso, addr, sym);
3116		if (!inline_node)
3117			return ret;
3118		inlines__tree_insert(&dso->inlined_nodes, inline_node);
3119	}
3120
3121	ilist_ms = (struct map_symbol) {
3122		.maps = maps__get(ms->maps),
3123		.map = map__get(map),
3124	};
3125	list_for_each_entry(ilist, &inline_node->val, list) {
3126		ilist_ms.sym = ilist->symbol;
3127		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3128					      NULL, 0, 0, 0, ilist->srcline);
3129
3130		if (ret != 0)
3131			return ret;
3132	}
3133	map_symbol__exit(&ilist_ms);
3134
3135	return ret;
3136}
3137
3138static int unwind_entry(struct unwind_entry *entry, void *arg)
3139{
3140	struct callchain_cursor *cursor = arg;
3141	const char *srcline = NULL;
3142	u64 addr = entry->ip;
3143
3144	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3145		return 0;
3146
3147	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3148		return 0;
3149
3150	/*
3151	 * Convert entry->ip from a virtual address to an offset in
3152	 * its corresponding binary.
3153	 */
3154	if (entry->ms.map)
3155		addr = map__dso_map_ip(entry->ms.map, entry->ip);
3156
3157	srcline = callchain_srcline(&entry->ms, addr);
3158	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
 
3159				       false, NULL, 0, 0, 0, srcline);
3160}
3161
3162static int thread__resolve_callchain_unwind(struct thread *thread,
3163					    struct callchain_cursor *cursor,
3164					    struct evsel *evsel,
3165					    struct perf_sample *sample,
3166					    int max_stack)
3167{
3168	/* Can we do dwarf post unwind? */
3169	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3170	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3171		return 0;
3172
3173	/* Bail out if nothing was captured. */
3174	if ((!sample->user_regs.regs) ||
3175	    (!sample->user_stack.size))
3176		return 0;
3177
3178	return unwind__get_entries(unwind_entry, cursor,
3179				   thread, sample, max_stack, false);
3180}
3181
3182int thread__resolve_callchain(struct thread *thread,
3183			      struct callchain_cursor *cursor,
3184			      struct evsel *evsel,
3185			      struct perf_sample *sample,
3186			      struct symbol **parent,
3187			      struct addr_location *root_al,
3188			      int max_stack)
3189{
3190	int ret = 0;
3191
3192	if (cursor == NULL)
3193		return -ENOMEM;
3194
3195	callchain_cursor_reset(cursor);
3196
3197	if (callchain_param.order == ORDER_CALLEE) {
3198		ret = thread__resolve_callchain_sample(thread, cursor,
3199						       evsel, sample,
3200						       parent, root_al,
3201						       max_stack);
3202		if (ret)
3203			return ret;
3204		ret = thread__resolve_callchain_unwind(thread, cursor,
3205						       evsel, sample,
3206						       max_stack);
3207	} else {
3208		ret = thread__resolve_callchain_unwind(thread, cursor,
3209						       evsel, sample,
3210						       max_stack);
3211		if (ret)
3212			return ret;
3213		ret = thread__resolve_callchain_sample(thread, cursor,
3214						       evsel, sample,
3215						       parent, root_al,
3216						       max_stack);
3217	}
3218
3219	return ret;
3220}
3221
3222int machine__for_each_thread(struct machine *machine,
3223			     int (*fn)(struct thread *thread, void *p),
3224			     void *priv)
3225{
3226	struct threads *threads;
3227	struct rb_node *nd;
 
3228	int rc = 0;
3229	int i;
3230
3231	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3232		threads = &machine->threads[i];
3233		for (nd = rb_first_cached(&threads->entries); nd;
3234		     nd = rb_next(nd)) {
3235			struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
 
 
 
 
3236
3237			rc = fn(trb->thread, priv);
 
3238			if (rc != 0)
3239				return rc;
3240		}
3241	}
3242	return rc;
3243}
3244
3245int machines__for_each_thread(struct machines *machines,
3246			      int (*fn)(struct thread *thread, void *p),
3247			      void *priv)
3248{
3249	struct rb_node *nd;
3250	int rc = 0;
3251
3252	rc = machine__for_each_thread(&machines->host, fn, priv);
3253	if (rc != 0)
3254		return rc;
3255
3256	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3257		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3258
3259		rc = machine__for_each_thread(machine, fn, priv);
3260		if (rc != 0)
3261			return rc;
3262	}
3263	return rc;
3264}
3265
3266pid_t machine__get_current_tid(struct machine *machine, int cpu)
3267{
3268	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
 
 
3269		return -1;
3270
3271	return machine->current_tid[cpu];
3272}
3273
3274int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3275			     pid_t tid)
3276{
3277	struct thread *thread;
3278	const pid_t init_val = -1;
3279
3280	if (cpu < 0)
3281		return -EINVAL;
3282
3283	if (realloc_array_as_needed(machine->current_tid,
3284				    machine->current_tid_sz,
3285				    (unsigned int)cpu,
3286				    &init_val))
3287		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
3288
3289	machine->current_tid[cpu] = tid;
3290
3291	thread = machine__findnew_thread(machine, pid, tid);
3292	if (!thread)
3293		return -ENOMEM;
3294
3295	thread__set_cpu(thread, cpu);
3296	thread__put(thread);
3297
3298	return 0;
3299}
3300
3301/*
3302 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3303 * machine__normalized_is() if a normalized arch is needed.
3304 */
3305bool machine__is(struct machine *machine, const char *arch)
3306{
3307	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3308}
3309
3310bool machine__normalized_is(struct machine *machine, const char *arch)
3311{
3312	return machine && !strcmp(perf_env__arch(machine->env), arch);
3313}
3314
3315int machine__nr_cpus_avail(struct machine *machine)
3316{
3317	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3318}
3319
3320int machine__get_kernel_start(struct machine *machine)
3321{
3322	struct map *map = machine__kernel_map(machine);
3323	int err = 0;
3324
3325	/*
3326	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3327	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3328	 * all addresses including kernel addresses are less than 2^32.  In
3329	 * that case (32-bit system), if the kernel mapping is unknown, all
3330	 * addresses will be assumed to be in user space - see
3331	 * machine__kernel_ip().
3332	 */
3333	machine->kernel_start = 1ULL << 63;
3334	if (map) {
3335		err = map__load(map);
3336		/*
3337		 * On x86_64, PTI entry trampolines are less than the
3338		 * start of kernel text, but still above 2^63. So leave
3339		 * kernel_start = 1ULL << 63 for x86_64.
3340		 */
3341		if (!err && !machine__is(machine, "x86_64"))
3342			machine->kernel_start = map__start(map);
3343	}
3344	return err;
3345}
3346
3347u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3348{
3349	u8 addr_cpumode = cpumode;
3350	bool kernel_ip;
3351
3352	if (!machine->single_address_space)
3353		goto out;
3354
3355	kernel_ip = machine__kernel_ip(machine, addr);
3356	switch (cpumode) {
3357	case PERF_RECORD_MISC_KERNEL:
3358	case PERF_RECORD_MISC_USER:
3359		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3360					   PERF_RECORD_MISC_USER;
3361		break;
3362	case PERF_RECORD_MISC_GUEST_KERNEL:
3363	case PERF_RECORD_MISC_GUEST_USER:
3364		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3365					   PERF_RECORD_MISC_GUEST_USER;
3366		break;
3367	default:
3368		break;
3369	}
3370out:
3371	return addr_cpumode;
3372}
3373
3374struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3375{
3376	return dsos__findnew_id(&machine->dsos, filename, id);
3377}
3378
3379struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3380{
3381	return machine__findnew_dso_id(machine, filename, NULL);
3382}
3383
3384char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3385{
3386	struct machine *machine = vmachine;
3387	struct map *map;
3388	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3389
3390	if (sym == NULL)
3391		return NULL;
3392
3393	*modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3394	*addrp = map__unmap_ip(map, sym->start);
3395	return sym->name;
3396}
3397
3398int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3399{
3400	struct dso *pos;
3401	int err = 0;
3402
3403	list_for_each_entry(pos, &machine->dsos.head, node) {
3404		if (fn(pos, machine, priv))
3405			err = -1;
3406	}
3407	return err;
3408}
3409
3410int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3411{
3412	struct maps *maps = machine__kernel_maps(machine);
3413
3414	return maps__for_each_map(maps, fn, priv);
3415}
3416
3417bool machine__is_lock_function(struct machine *machine, u64 addr)
3418{
3419	if (!machine->sched.text_start) {
3420		struct map *kmap;
3421		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3422
3423		if (!sym) {
3424			/* to avoid retry */
3425			machine->sched.text_start = 1;
3426			return false;
3427		}
3428
3429		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3430
3431		/* should not fail from here */
3432		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3433		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3434
3435		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3436		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3437
3438		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3439		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3440	}
3441
3442	/* failed to get kernel symbols */
3443	if (machine->sched.text_start == 1)
3444		return false;
3445
3446	/* mutex and rwsem functions are in sched text section */
3447	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3448		return true;
3449
3450	/* spinlock functions are in lock text section */
3451	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3452		return true;
3453
3454	return false;
3455}