Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "srcline.h"
20#include "symbol.h"
21#include "sort.h"
22#include "strlist.h"
23#include "target.h"
24#include "thread.h"
25#include "util.h"
26#include "vdso.h"
27#include <stdbool.h>
28#include <sys/types.h>
29#include <sys/stat.h>
30#include <unistd.h>
31#include "unwind.h"
32#include "linux/hash.h"
33#include "asm/bug.h"
34#include "bpf-event.h"
35#include <internal/lib.h> // page_size
36
37#include <linux/ctype.h>
38#include <symbol/kallsyms.h>
39#include <linux/mman.h>
40#include <linux/string.h>
41#include <linux/zalloc.h>
42
43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44
45static void dsos__init(struct dsos *dsos)
46{
47 INIT_LIST_HEAD(&dsos->head);
48 dsos->root = RB_ROOT;
49 init_rwsem(&dsos->lock);
50}
51
52static void machine__threads_init(struct machine *machine)
53{
54 int i;
55
56 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
57 struct threads *threads = &machine->threads[i];
58 threads->entries = RB_ROOT_CACHED;
59 init_rwsem(&threads->lock);
60 threads->nr = 0;
61 INIT_LIST_HEAD(&threads->dead);
62 threads->last_match = NULL;
63 }
64}
65
66static int machine__set_mmap_name(struct machine *machine)
67{
68 if (machine__is_host(machine))
69 machine->mmap_name = strdup("[kernel.kallsyms]");
70 else if (machine__is_default_guest(machine))
71 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
72 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
73 machine->pid) < 0)
74 machine->mmap_name = NULL;
75
76 return machine->mmap_name ? 0 : -ENOMEM;
77}
78
79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80{
81 int err = -ENOMEM;
82
83 memset(machine, 0, sizeof(*machine));
84 map_groups__init(&machine->kmaps, machine);
85 RB_CLEAR_NODE(&machine->rb_node);
86 dsos__init(&machine->dsos);
87
88 machine__threads_init(machine);
89
90 machine->vdso_info = NULL;
91 machine->env = NULL;
92
93 machine->pid = pid;
94
95 machine->id_hdr_size = 0;
96 machine->kptr_restrict_warned = false;
97 machine->comm_exec = false;
98 machine->kernel_start = 0;
99 machine->vmlinux_map = NULL;
100
101 machine->root_dir = strdup(root_dir);
102 if (machine->root_dir == NULL)
103 return -ENOMEM;
104
105 if (machine__set_mmap_name(machine))
106 goto out;
107
108 if (pid != HOST_KERNEL_ID) {
109 struct thread *thread = machine__findnew_thread(machine, -1,
110 pid);
111 char comm[64];
112
113 if (thread == NULL)
114 goto out;
115
116 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
117 thread__set_comm(thread, comm, 0);
118 thread__put(thread);
119 }
120
121 machine->current_tid = NULL;
122 err = 0;
123
124out:
125 if (err) {
126 zfree(&machine->root_dir);
127 zfree(&machine->mmap_name);
128 }
129 return 0;
130}
131
132struct machine *machine__new_host(void)
133{
134 struct machine *machine = malloc(sizeof(*machine));
135
136 if (machine != NULL) {
137 machine__init(machine, "", HOST_KERNEL_ID);
138
139 if (machine__create_kernel_maps(machine) < 0)
140 goto out_delete;
141 }
142
143 return machine;
144out_delete:
145 free(machine);
146 return NULL;
147}
148
149struct machine *machine__new_kallsyms(void)
150{
151 struct machine *machine = machine__new_host();
152 /*
153 * FIXME:
154 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
155 * ask for not using the kcore parsing code, once this one is fixed
156 * to create a map per module.
157 */
158 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
159 machine__delete(machine);
160 machine = NULL;
161 }
162
163 return machine;
164}
165
166static void dsos__purge(struct dsos *dsos)
167{
168 struct dso *pos, *n;
169
170 down_write(&dsos->lock);
171
172 list_for_each_entry_safe(pos, n, &dsos->head, node) {
173 RB_CLEAR_NODE(&pos->rb_node);
174 pos->root = NULL;
175 list_del_init(&pos->node);
176 dso__put(pos);
177 }
178
179 up_write(&dsos->lock);
180}
181
182static void dsos__exit(struct dsos *dsos)
183{
184 dsos__purge(dsos);
185 exit_rwsem(&dsos->lock);
186}
187
188void machine__delete_threads(struct machine *machine)
189{
190 struct rb_node *nd;
191 int i;
192
193 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
194 struct threads *threads = &machine->threads[i];
195 down_write(&threads->lock);
196 nd = rb_first_cached(&threads->entries);
197 while (nd) {
198 struct thread *t = rb_entry(nd, struct thread, rb_node);
199
200 nd = rb_next(nd);
201 __machine__remove_thread(machine, t, false);
202 }
203 up_write(&threads->lock);
204 }
205}
206
207void machine__exit(struct machine *machine)
208{
209 int i;
210
211 if (machine == NULL)
212 return;
213
214 machine__destroy_kernel_maps(machine);
215 map_groups__exit(&machine->kmaps);
216 dsos__exit(&machine->dsos);
217 machine__exit_vdso(machine);
218 zfree(&machine->root_dir);
219 zfree(&machine->mmap_name);
220 zfree(&machine->current_tid);
221
222 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
223 struct threads *threads = &machine->threads[i];
224 struct thread *thread, *n;
225 /*
226 * Forget about the dead, at this point whatever threads were
227 * left in the dead lists better have a reference count taken
228 * by who is using them, and then, when they drop those references
229 * and it finally hits zero, thread__put() will check and see that
230 * its not in the dead threads list and will not try to remove it
231 * from there, just calling thread__delete() straight away.
232 */
233 list_for_each_entry_safe(thread, n, &threads->dead, node)
234 list_del_init(&thread->node);
235
236 exit_rwsem(&threads->lock);
237 }
238}
239
240void machine__delete(struct machine *machine)
241{
242 if (machine) {
243 machine__exit(machine);
244 free(machine);
245 }
246}
247
248void machines__init(struct machines *machines)
249{
250 machine__init(&machines->host, "", HOST_KERNEL_ID);
251 machines->guests = RB_ROOT_CACHED;
252}
253
254void machines__exit(struct machines *machines)
255{
256 machine__exit(&machines->host);
257 /* XXX exit guest */
258}
259
260struct machine *machines__add(struct machines *machines, pid_t pid,
261 const char *root_dir)
262{
263 struct rb_node **p = &machines->guests.rb_root.rb_node;
264 struct rb_node *parent = NULL;
265 struct machine *pos, *machine = malloc(sizeof(*machine));
266 bool leftmost = true;
267
268 if (machine == NULL)
269 return NULL;
270
271 if (machine__init(machine, root_dir, pid) != 0) {
272 free(machine);
273 return NULL;
274 }
275
276 while (*p != NULL) {
277 parent = *p;
278 pos = rb_entry(parent, struct machine, rb_node);
279 if (pid < pos->pid)
280 p = &(*p)->rb_left;
281 else {
282 p = &(*p)->rb_right;
283 leftmost = false;
284 }
285 }
286
287 rb_link_node(&machine->rb_node, parent, p);
288 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
289
290 return machine;
291}
292
293void machines__set_comm_exec(struct machines *machines, bool comm_exec)
294{
295 struct rb_node *nd;
296
297 machines->host.comm_exec = comm_exec;
298
299 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
300 struct machine *machine = rb_entry(nd, struct machine, rb_node);
301
302 machine->comm_exec = comm_exec;
303 }
304}
305
306struct machine *machines__find(struct machines *machines, pid_t pid)
307{
308 struct rb_node **p = &machines->guests.rb_root.rb_node;
309 struct rb_node *parent = NULL;
310 struct machine *machine;
311 struct machine *default_machine = NULL;
312
313 if (pid == HOST_KERNEL_ID)
314 return &machines->host;
315
316 while (*p != NULL) {
317 parent = *p;
318 machine = rb_entry(parent, struct machine, rb_node);
319 if (pid < machine->pid)
320 p = &(*p)->rb_left;
321 else if (pid > machine->pid)
322 p = &(*p)->rb_right;
323 else
324 return machine;
325 if (!machine->pid)
326 default_machine = machine;
327 }
328
329 return default_machine;
330}
331
332struct machine *machines__findnew(struct machines *machines, pid_t pid)
333{
334 char path[PATH_MAX];
335 const char *root_dir = "";
336 struct machine *machine = machines__find(machines, pid);
337
338 if (machine && (machine->pid == pid))
339 goto out;
340
341 if ((pid != HOST_KERNEL_ID) &&
342 (pid != DEFAULT_GUEST_KERNEL_ID) &&
343 (symbol_conf.guestmount)) {
344 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
345 if (access(path, R_OK)) {
346 static struct strlist *seen;
347
348 if (!seen)
349 seen = strlist__new(NULL, NULL);
350
351 if (!strlist__has_entry(seen, path)) {
352 pr_err("Can't access file %s\n", path);
353 strlist__add(seen, path);
354 }
355 machine = NULL;
356 goto out;
357 }
358 root_dir = path;
359 }
360
361 machine = machines__add(machines, pid, root_dir);
362out:
363 return machine;
364}
365
366void machines__process_guests(struct machines *machines,
367 machine__process_t process, void *data)
368{
369 struct rb_node *nd;
370
371 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
372 struct machine *pos = rb_entry(nd, struct machine, rb_node);
373 process(pos, data);
374 }
375}
376
377void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
378{
379 struct rb_node *node;
380 struct machine *machine;
381
382 machines->host.id_hdr_size = id_hdr_size;
383
384 for (node = rb_first_cached(&machines->guests); node;
385 node = rb_next(node)) {
386 machine = rb_entry(node, struct machine, rb_node);
387 machine->id_hdr_size = id_hdr_size;
388 }
389
390 return;
391}
392
393static void machine__update_thread_pid(struct machine *machine,
394 struct thread *th, pid_t pid)
395{
396 struct thread *leader;
397
398 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
399 return;
400
401 th->pid_ = pid;
402
403 if (th->pid_ == th->tid)
404 return;
405
406 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
407 if (!leader)
408 goto out_err;
409
410 if (!leader->mg)
411 leader->mg = map_groups__new(machine);
412
413 if (!leader->mg)
414 goto out_err;
415
416 if (th->mg == leader->mg)
417 return;
418
419 if (th->mg) {
420 /*
421 * Maps are created from MMAP events which provide the pid and
422 * tid. Consequently there never should be any maps on a thread
423 * with an unknown pid. Just print an error if there are.
424 */
425 if (!map_groups__empty(th->mg))
426 pr_err("Discarding thread maps for %d:%d\n",
427 th->pid_, th->tid);
428 map_groups__put(th->mg);
429 }
430
431 th->mg = map_groups__get(leader->mg);
432out_put:
433 thread__put(leader);
434 return;
435out_err:
436 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
437 goto out_put;
438}
439
440/*
441 * Front-end cache - TID lookups come in blocks,
442 * so most of the time we dont have to look up
443 * the full rbtree:
444 */
445static struct thread*
446__threads__get_last_match(struct threads *threads, struct machine *machine,
447 int pid, int tid)
448{
449 struct thread *th;
450
451 th = threads->last_match;
452 if (th != NULL) {
453 if (th->tid == tid) {
454 machine__update_thread_pid(machine, th, pid);
455 return thread__get(th);
456 }
457
458 threads->last_match = NULL;
459 }
460
461 return NULL;
462}
463
464static struct thread*
465threads__get_last_match(struct threads *threads, struct machine *machine,
466 int pid, int tid)
467{
468 struct thread *th = NULL;
469
470 if (perf_singlethreaded)
471 th = __threads__get_last_match(threads, machine, pid, tid);
472
473 return th;
474}
475
476static void
477__threads__set_last_match(struct threads *threads, struct thread *th)
478{
479 threads->last_match = th;
480}
481
482static void
483threads__set_last_match(struct threads *threads, struct thread *th)
484{
485 if (perf_singlethreaded)
486 __threads__set_last_match(threads, th);
487}
488
489/*
490 * Caller must eventually drop thread->refcnt returned with a successful
491 * lookup/new thread inserted.
492 */
493static struct thread *____machine__findnew_thread(struct machine *machine,
494 struct threads *threads,
495 pid_t pid, pid_t tid,
496 bool create)
497{
498 struct rb_node **p = &threads->entries.rb_root.rb_node;
499 struct rb_node *parent = NULL;
500 struct thread *th;
501 bool leftmost = true;
502
503 th = threads__get_last_match(threads, machine, pid, tid);
504 if (th)
505 return th;
506
507 while (*p != NULL) {
508 parent = *p;
509 th = rb_entry(parent, struct thread, rb_node);
510
511 if (th->tid == tid) {
512 threads__set_last_match(threads, th);
513 machine__update_thread_pid(machine, th, pid);
514 return thread__get(th);
515 }
516
517 if (tid < th->tid)
518 p = &(*p)->rb_left;
519 else {
520 p = &(*p)->rb_right;
521 leftmost = false;
522 }
523 }
524
525 if (!create)
526 return NULL;
527
528 th = thread__new(pid, tid);
529 if (th != NULL) {
530 rb_link_node(&th->rb_node, parent, p);
531 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
532
533 /*
534 * We have to initialize map_groups separately
535 * after rb tree is updated.
536 *
537 * The reason is that we call machine__findnew_thread
538 * within thread__init_map_groups to find the thread
539 * leader and that would screwed the rb tree.
540 */
541 if (thread__init_map_groups(th, machine)) {
542 rb_erase_cached(&th->rb_node, &threads->entries);
543 RB_CLEAR_NODE(&th->rb_node);
544 thread__put(th);
545 return NULL;
546 }
547 /*
548 * It is now in the rbtree, get a ref
549 */
550 thread__get(th);
551 threads__set_last_match(threads, th);
552 ++threads->nr;
553 }
554
555 return th;
556}
557
558struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
559{
560 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
561}
562
563struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
564 pid_t tid)
565{
566 struct threads *threads = machine__threads(machine, tid);
567 struct thread *th;
568
569 down_write(&threads->lock);
570 th = __machine__findnew_thread(machine, pid, tid);
571 up_write(&threads->lock);
572 return th;
573}
574
575struct thread *machine__find_thread(struct machine *machine, pid_t pid,
576 pid_t tid)
577{
578 struct threads *threads = machine__threads(machine, tid);
579 struct thread *th;
580
581 down_read(&threads->lock);
582 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
583 up_read(&threads->lock);
584 return th;
585}
586
587struct comm *machine__thread_exec_comm(struct machine *machine,
588 struct thread *thread)
589{
590 if (machine->comm_exec)
591 return thread__exec_comm(thread);
592 else
593 return thread__comm(thread);
594}
595
596int machine__process_comm_event(struct machine *machine, union perf_event *event,
597 struct perf_sample *sample)
598{
599 struct thread *thread = machine__findnew_thread(machine,
600 event->comm.pid,
601 event->comm.tid);
602 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
603 int err = 0;
604
605 if (exec)
606 machine->comm_exec = true;
607
608 if (dump_trace)
609 perf_event__fprintf_comm(event, stdout);
610
611 if (thread == NULL ||
612 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
613 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
614 err = -1;
615 }
616
617 thread__put(thread);
618
619 return err;
620}
621
622int machine__process_namespaces_event(struct machine *machine __maybe_unused,
623 union perf_event *event,
624 struct perf_sample *sample __maybe_unused)
625{
626 struct thread *thread = machine__findnew_thread(machine,
627 event->namespaces.pid,
628 event->namespaces.tid);
629 int err = 0;
630
631 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
632 "\nWARNING: kernel seems to support more namespaces than perf"
633 " tool.\nTry updating the perf tool..\n\n");
634
635 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
636 "\nWARNING: perf tool seems to support more namespaces than"
637 " the kernel.\nTry updating the kernel..\n\n");
638
639 if (dump_trace)
640 perf_event__fprintf_namespaces(event, stdout);
641
642 if (thread == NULL ||
643 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
644 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
645 err = -1;
646 }
647
648 thread__put(thread);
649
650 return err;
651}
652
653int machine__process_lost_event(struct machine *machine __maybe_unused,
654 union perf_event *event, struct perf_sample *sample __maybe_unused)
655{
656 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
657 event->lost.id, event->lost.lost);
658 return 0;
659}
660
661int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
662 union perf_event *event, struct perf_sample *sample)
663{
664 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
665 sample->id, event->lost_samples.lost);
666 return 0;
667}
668
669static struct dso *machine__findnew_module_dso(struct machine *machine,
670 struct kmod_path *m,
671 const char *filename)
672{
673 struct dso *dso;
674
675 down_write(&machine->dsos.lock);
676
677 dso = __dsos__find(&machine->dsos, m->name, true);
678 if (!dso) {
679 dso = __dsos__addnew(&machine->dsos, m->name);
680 if (dso == NULL)
681 goto out_unlock;
682
683 dso__set_module_info(dso, m, machine);
684 dso__set_long_name(dso, strdup(filename), true);
685 }
686
687 dso__get(dso);
688out_unlock:
689 up_write(&machine->dsos.lock);
690 return dso;
691}
692
693int machine__process_aux_event(struct machine *machine __maybe_unused,
694 union perf_event *event)
695{
696 if (dump_trace)
697 perf_event__fprintf_aux(event, stdout);
698 return 0;
699}
700
701int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
702 union perf_event *event)
703{
704 if (dump_trace)
705 perf_event__fprintf_itrace_start(event, stdout);
706 return 0;
707}
708
709int machine__process_switch_event(struct machine *machine __maybe_unused,
710 union perf_event *event)
711{
712 if (dump_trace)
713 perf_event__fprintf_switch(event, stdout);
714 return 0;
715}
716
717static int machine__process_ksymbol_register(struct machine *machine,
718 union perf_event *event,
719 struct perf_sample *sample __maybe_unused)
720{
721 struct symbol *sym;
722 struct map *map;
723
724 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
725 if (!map) {
726 map = dso__new_map(event->ksymbol.name);
727 if (!map)
728 return -ENOMEM;
729
730 map->start = event->ksymbol.addr;
731 map->end = map->start + event->ksymbol.len;
732 map_groups__insert(&machine->kmaps, map);
733 }
734
735 sym = symbol__new(map->map_ip(map, map->start),
736 event->ksymbol.len,
737 0, 0, event->ksymbol.name);
738 if (!sym)
739 return -ENOMEM;
740 dso__insert_symbol(map->dso, sym);
741 return 0;
742}
743
744static int machine__process_ksymbol_unregister(struct machine *machine,
745 union perf_event *event,
746 struct perf_sample *sample __maybe_unused)
747{
748 struct map *map;
749
750 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
751 if (map)
752 map_groups__remove(&machine->kmaps, map);
753
754 return 0;
755}
756
757int machine__process_ksymbol(struct machine *machine __maybe_unused,
758 union perf_event *event,
759 struct perf_sample *sample)
760{
761 if (dump_trace)
762 perf_event__fprintf_ksymbol(event, stdout);
763
764 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
765 return machine__process_ksymbol_unregister(machine, event,
766 sample);
767 return machine__process_ksymbol_register(machine, event, sample);
768}
769
770static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
771{
772 const char *dup_filename;
773
774 if (!filename || !dso || !dso->long_name)
775 return;
776 if (dso->long_name[0] != '[')
777 return;
778 if (!strchr(filename, '/'))
779 return;
780
781 dup_filename = strdup(filename);
782 if (!dup_filename)
783 return;
784
785 dso__set_long_name(dso, dup_filename, true);
786}
787
788struct map *machine__findnew_module_map(struct machine *machine, u64 start,
789 const char *filename)
790{
791 struct map *map = NULL;
792 struct dso *dso = NULL;
793 struct kmod_path m;
794
795 if (kmod_path__parse_name(&m, filename))
796 return NULL;
797
798 map = map_groups__find_by_name(&machine->kmaps, m.name);
799 if (map) {
800 /*
801 * If the map's dso is an offline module, give dso__load()
802 * a chance to find the file path of that module by fixing
803 * long_name.
804 */
805 dso__adjust_kmod_long_name(map->dso, filename);
806 goto out;
807 }
808
809 dso = machine__findnew_module_dso(machine, &m, filename);
810 if (dso == NULL)
811 goto out;
812
813 map = map__new2(start, dso);
814 if (map == NULL)
815 goto out;
816
817 map_groups__insert(&machine->kmaps, map);
818
819 /* Put the map here because map_groups__insert alread got it */
820 map__put(map);
821out:
822 /* put the dso here, corresponding to machine__findnew_module_dso */
823 dso__put(dso);
824 zfree(&m.name);
825 return map;
826}
827
828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
829{
830 struct rb_node *nd;
831 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
832
833 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
834 struct machine *pos = rb_entry(nd, struct machine, rb_node);
835 ret += __dsos__fprintf(&pos->dsos.head, fp);
836 }
837
838 return ret;
839}
840
841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
842 bool (skip)(struct dso *dso, int parm), int parm)
843{
844 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
845}
846
847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
848 bool (skip)(struct dso *dso, int parm), int parm)
849{
850 struct rb_node *nd;
851 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
852
853 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
854 struct machine *pos = rb_entry(nd, struct machine, rb_node);
855 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
856 }
857 return ret;
858}
859
860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
861{
862 int i;
863 size_t printed = 0;
864 struct dso *kdso = machine__kernel_map(machine)->dso;
865
866 if (kdso->has_build_id) {
867 char filename[PATH_MAX];
868 if (dso__build_id_filename(kdso, filename, sizeof(filename),
869 false))
870 printed += fprintf(fp, "[0] %s\n", filename);
871 }
872
873 for (i = 0; i < vmlinux_path__nr_entries; ++i)
874 printed += fprintf(fp, "[%d] %s\n",
875 i + kdso->has_build_id, vmlinux_path[i]);
876
877 return printed;
878}
879
880size_t machine__fprintf(struct machine *machine, FILE *fp)
881{
882 struct rb_node *nd;
883 size_t ret;
884 int i;
885
886 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
887 struct threads *threads = &machine->threads[i];
888
889 down_read(&threads->lock);
890
891 ret = fprintf(fp, "Threads: %u\n", threads->nr);
892
893 for (nd = rb_first_cached(&threads->entries); nd;
894 nd = rb_next(nd)) {
895 struct thread *pos = rb_entry(nd, struct thread, rb_node);
896
897 ret += thread__fprintf(pos, fp);
898 }
899
900 up_read(&threads->lock);
901 }
902 return ret;
903}
904
905static struct dso *machine__get_kernel(struct machine *machine)
906{
907 const char *vmlinux_name = machine->mmap_name;
908 struct dso *kernel;
909
910 if (machine__is_host(machine)) {
911 if (symbol_conf.vmlinux_name)
912 vmlinux_name = symbol_conf.vmlinux_name;
913
914 kernel = machine__findnew_kernel(machine, vmlinux_name,
915 "[kernel]", DSO_TYPE_KERNEL);
916 } else {
917 if (symbol_conf.default_guest_vmlinux_name)
918 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
919
920 kernel = machine__findnew_kernel(machine, vmlinux_name,
921 "[guest.kernel]",
922 DSO_TYPE_GUEST_KERNEL);
923 }
924
925 if (kernel != NULL && (!kernel->has_build_id))
926 dso__read_running_kernel_build_id(kernel, machine);
927
928 return kernel;
929}
930
931struct process_args {
932 u64 start;
933};
934
935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
936 size_t bufsz)
937{
938 if (machine__is_default_guest(machine))
939 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
940 else
941 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
942}
943
944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
945
946/* Figure out the start address of kernel map from /proc/kallsyms.
947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
948 * symbol_name if it's not that important.
949 */
950static int machine__get_running_kernel_start(struct machine *machine,
951 const char **symbol_name,
952 u64 *start, u64 *end)
953{
954 char filename[PATH_MAX];
955 int i, err = -1;
956 const char *name;
957 u64 addr = 0;
958
959 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
960
961 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
962 return 0;
963
964 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
965 err = kallsyms__get_function_start(filename, name, &addr);
966 if (!err)
967 break;
968 }
969
970 if (err)
971 return -1;
972
973 if (symbol_name)
974 *symbol_name = name;
975
976 *start = addr;
977
978 err = kallsyms__get_function_start(filename, "_etext", &addr);
979 if (!err)
980 *end = addr;
981
982 return 0;
983}
984
985int machine__create_extra_kernel_map(struct machine *machine,
986 struct dso *kernel,
987 struct extra_kernel_map *xm)
988{
989 struct kmap *kmap;
990 struct map *map;
991
992 map = map__new2(xm->start, kernel);
993 if (!map)
994 return -1;
995
996 map->end = xm->end;
997 map->pgoff = xm->pgoff;
998
999 kmap = map__kmap(map);
1000
1001 kmap->kmaps = &machine->kmaps;
1002 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003
1004 map_groups__insert(&machine->kmaps, map);
1005
1006 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007 kmap->name, map->start, map->end);
1008
1009 map__put(map);
1010
1011 return 0;
1012}
1013
1014static u64 find_entry_trampoline(struct dso *dso)
1015{
1016 /* Duplicates are removed so lookup all aliases */
1017 const char *syms[] = {
1018 "_entry_trampoline",
1019 "__entry_trampoline_start",
1020 "entry_SYSCALL_64_trampoline",
1021 };
1022 struct symbol *sym = dso__first_symbol(dso);
1023 unsigned int i;
1024
1025 for (; sym; sym = dso__next_symbol(sym)) {
1026 if (sym->binding != STB_GLOBAL)
1027 continue;
1028 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029 if (!strcmp(sym->name, syms[i]))
1030 return sym->start;
1031 }
1032 }
1033
1034 return 0;
1035}
1036
1037/*
1038 * These values can be used for kernels that do not have symbols for the entry
1039 * trampolines in kallsyms.
1040 */
1041#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1042#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1043#define X86_64_ENTRY_TRAMPOLINE 0x6000
1044
1045/* Map x86_64 PTI entry trampolines */
1046int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047 struct dso *kernel)
1048{
1049 struct map_groups *kmaps = &machine->kmaps;
1050 struct maps *maps = &kmaps->maps;
1051 int nr_cpus_avail, cpu;
1052 bool found = false;
1053 struct map *map;
1054 u64 pgoff;
1055
1056 /*
1057 * In the vmlinux case, pgoff is a virtual address which must now be
1058 * mapped to a vmlinux offset.
1059 */
1060 for (map = maps__first(maps); map; map = map__next(map)) {
1061 struct kmap *kmap = __map__kmap(map);
1062 struct map *dest_map;
1063
1064 if (!kmap || !is_entry_trampoline(kmap->name))
1065 continue;
1066
1067 dest_map = map_groups__find(kmaps, map->pgoff);
1068 if (dest_map != map)
1069 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070 found = true;
1071 }
1072 if (found || machine->trampolines_mapped)
1073 return 0;
1074
1075 pgoff = find_entry_trampoline(kernel);
1076 if (!pgoff)
1077 return 0;
1078
1079 nr_cpus_avail = machine__nr_cpus_avail(machine);
1080
1081 /* Add a 1 page map for each CPU's entry trampoline */
1082 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085 X86_64_ENTRY_TRAMPOLINE;
1086 struct extra_kernel_map xm = {
1087 .start = va,
1088 .end = va + page_size,
1089 .pgoff = pgoff,
1090 };
1091
1092 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1093
1094 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1095 return -1;
1096 }
1097
1098 machine->trampolines_mapped = nr_cpus_avail;
1099
1100 return 0;
1101}
1102
1103int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104 struct dso *kernel __maybe_unused)
1105{
1106 return 0;
1107}
1108
1109static int
1110__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111{
1112 struct kmap *kmap;
1113 struct map *map;
1114
1115 /* In case of renewal the kernel map, destroy previous one */
1116 machine__destroy_kernel_maps(machine);
1117
1118 machine->vmlinux_map = map__new2(0, kernel);
1119 if (machine->vmlinux_map == NULL)
1120 return -1;
1121
1122 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123 map = machine__kernel_map(machine);
1124 kmap = map__kmap(map);
1125 if (!kmap)
1126 return -1;
1127
1128 kmap->kmaps = &machine->kmaps;
1129 map_groups__insert(&machine->kmaps, map);
1130
1131 return 0;
1132}
1133
1134void machine__destroy_kernel_maps(struct machine *machine)
1135{
1136 struct kmap *kmap;
1137 struct map *map = machine__kernel_map(machine);
1138
1139 if (map == NULL)
1140 return;
1141
1142 kmap = map__kmap(map);
1143 map_groups__remove(&machine->kmaps, map);
1144 if (kmap && kmap->ref_reloc_sym) {
1145 zfree((char **)&kmap->ref_reloc_sym->name);
1146 zfree(&kmap->ref_reloc_sym);
1147 }
1148
1149 map__zput(machine->vmlinux_map);
1150}
1151
1152int machines__create_guest_kernel_maps(struct machines *machines)
1153{
1154 int ret = 0;
1155 struct dirent **namelist = NULL;
1156 int i, items = 0;
1157 char path[PATH_MAX];
1158 pid_t pid;
1159 char *endp;
1160
1161 if (symbol_conf.default_guest_vmlinux_name ||
1162 symbol_conf.default_guest_modules ||
1163 symbol_conf.default_guest_kallsyms) {
1164 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165 }
1166
1167 if (symbol_conf.guestmount) {
1168 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169 if (items <= 0)
1170 return -ENOENT;
1171 for (i = 0; i < items; i++) {
1172 if (!isdigit(namelist[i]->d_name[0])) {
1173 /* Filter out . and .. */
1174 continue;
1175 }
1176 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177 if ((*endp != '\0') ||
1178 (endp == namelist[i]->d_name) ||
1179 (errno == ERANGE)) {
1180 pr_debug("invalid directory (%s). Skipping.\n",
1181 namelist[i]->d_name);
1182 continue;
1183 }
1184 sprintf(path, "%s/%s/proc/kallsyms",
1185 symbol_conf.guestmount,
1186 namelist[i]->d_name);
1187 ret = access(path, R_OK);
1188 if (ret) {
1189 pr_debug("Can't access file %s\n", path);
1190 goto failure;
1191 }
1192 machines__create_kernel_maps(machines, pid);
1193 }
1194failure:
1195 free(namelist);
1196 }
1197
1198 return ret;
1199}
1200
1201void machines__destroy_kernel_maps(struct machines *machines)
1202{
1203 struct rb_node *next = rb_first_cached(&machines->guests);
1204
1205 machine__destroy_kernel_maps(&machines->host);
1206
1207 while (next) {
1208 struct machine *pos = rb_entry(next, struct machine, rb_node);
1209
1210 next = rb_next(&pos->rb_node);
1211 rb_erase_cached(&pos->rb_node, &machines->guests);
1212 machine__delete(pos);
1213 }
1214}
1215
1216int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217{
1218 struct machine *machine = machines__findnew(machines, pid);
1219
1220 if (machine == NULL)
1221 return -1;
1222
1223 return machine__create_kernel_maps(machine);
1224}
1225
1226int machine__load_kallsyms(struct machine *machine, const char *filename)
1227{
1228 struct map *map = machine__kernel_map(machine);
1229 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230
1231 if (ret > 0) {
1232 dso__set_loaded(map->dso);
1233 /*
1234 * Since /proc/kallsyms will have multiple sessions for the
1235 * kernel, with modules between them, fixup the end of all
1236 * sections.
1237 */
1238 map_groups__fixup_end(&machine->kmaps);
1239 }
1240
1241 return ret;
1242}
1243
1244int machine__load_vmlinux_path(struct machine *machine)
1245{
1246 struct map *map = machine__kernel_map(machine);
1247 int ret = dso__load_vmlinux_path(map->dso, map);
1248
1249 if (ret > 0)
1250 dso__set_loaded(map->dso);
1251
1252 return ret;
1253}
1254
1255static char *get_kernel_version(const char *root_dir)
1256{
1257 char version[PATH_MAX];
1258 FILE *file;
1259 char *name, *tmp;
1260 const char *prefix = "Linux version ";
1261
1262 sprintf(version, "%s/proc/version", root_dir);
1263 file = fopen(version, "r");
1264 if (!file)
1265 return NULL;
1266
1267 tmp = fgets(version, sizeof(version), file);
1268 fclose(file);
1269 if (!tmp)
1270 return NULL;
1271
1272 name = strstr(version, prefix);
1273 if (!name)
1274 return NULL;
1275 name += strlen(prefix);
1276 tmp = strchr(name, ' ');
1277 if (tmp)
1278 *tmp = '\0';
1279
1280 return strdup(name);
1281}
1282
1283static bool is_kmod_dso(struct dso *dso)
1284{
1285 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287}
1288
1289static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290 struct kmod_path *m)
1291{
1292 char *long_name;
1293 struct map *map = map_groups__find_by_name(mg, m->name);
1294
1295 if (map == NULL)
1296 return 0;
1297
1298 long_name = strdup(path);
1299 if (long_name == NULL)
1300 return -ENOMEM;
1301
1302 dso__set_long_name(map->dso, long_name, true);
1303 dso__kernel_module_get_build_id(map->dso, "");
1304
1305 /*
1306 * Full name could reveal us kmod compression, so
1307 * we need to update the symtab_type if needed.
1308 */
1309 if (m->comp && is_kmod_dso(map->dso)) {
1310 map->dso->symtab_type++;
1311 map->dso->comp = m->comp;
1312 }
1313
1314 return 0;
1315}
1316
1317static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318 const char *dir_name, int depth)
1319{
1320 struct dirent *dent;
1321 DIR *dir = opendir(dir_name);
1322 int ret = 0;
1323
1324 if (!dir) {
1325 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326 return -1;
1327 }
1328
1329 while ((dent = readdir(dir)) != NULL) {
1330 char path[PATH_MAX];
1331 struct stat st;
1332
1333 /*sshfs might return bad dent->d_type, so we have to stat*/
1334 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335 if (stat(path, &st))
1336 continue;
1337
1338 if (S_ISDIR(st.st_mode)) {
1339 if (!strcmp(dent->d_name, ".") ||
1340 !strcmp(dent->d_name, ".."))
1341 continue;
1342
1343 /* Do not follow top-level source and build symlinks */
1344 if (depth == 0) {
1345 if (!strcmp(dent->d_name, "source") ||
1346 !strcmp(dent->d_name, "build"))
1347 continue;
1348 }
1349
1350 ret = map_groups__set_modules_path_dir(mg, path,
1351 depth + 1);
1352 if (ret < 0)
1353 goto out;
1354 } else {
1355 struct kmod_path m;
1356
1357 ret = kmod_path__parse_name(&m, dent->d_name);
1358 if (ret)
1359 goto out;
1360
1361 if (m.kmod)
1362 ret = map_groups__set_module_path(mg, path, &m);
1363
1364 zfree(&m.name);
1365
1366 if (ret)
1367 goto out;
1368 }
1369 }
1370
1371out:
1372 closedir(dir);
1373 return ret;
1374}
1375
1376static int machine__set_modules_path(struct machine *machine)
1377{
1378 char *version;
1379 char modules_path[PATH_MAX];
1380
1381 version = get_kernel_version(machine->root_dir);
1382 if (!version)
1383 return -1;
1384
1385 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386 machine->root_dir, version);
1387 free(version);
1388
1389 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390}
1391int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392 u64 *size __maybe_unused,
1393 const char *name __maybe_unused)
1394{
1395 return 0;
1396}
1397
1398static int machine__create_module(void *arg, const char *name, u64 start,
1399 u64 size)
1400{
1401 struct machine *machine = arg;
1402 struct map *map;
1403
1404 if (arch__fix_module_text_start(&start, &size, name) < 0)
1405 return -1;
1406
1407 map = machine__findnew_module_map(machine, start, name);
1408 if (map == NULL)
1409 return -1;
1410 map->end = start + size;
1411
1412 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413
1414 return 0;
1415}
1416
1417static int machine__create_modules(struct machine *machine)
1418{
1419 const char *modules;
1420 char path[PATH_MAX];
1421
1422 if (machine__is_default_guest(machine)) {
1423 modules = symbol_conf.default_guest_modules;
1424 } else {
1425 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426 modules = path;
1427 }
1428
1429 if (symbol__restricted_filename(modules, "/proc/modules"))
1430 return -1;
1431
1432 if (modules__parse(modules, machine, machine__create_module))
1433 return -1;
1434
1435 if (!machine__set_modules_path(machine))
1436 return 0;
1437
1438 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439
1440 return 0;
1441}
1442
1443static void machine__set_kernel_mmap(struct machine *machine,
1444 u64 start, u64 end)
1445{
1446 machine->vmlinux_map->start = start;
1447 machine->vmlinux_map->end = end;
1448 /*
1449 * Be a bit paranoid here, some perf.data file came with
1450 * a zero sized synthesized MMAP event for the kernel.
1451 */
1452 if (start == 0 && end == 0)
1453 machine->vmlinux_map->end = ~0ULL;
1454}
1455
1456static void machine__update_kernel_mmap(struct machine *machine,
1457 u64 start, u64 end)
1458{
1459 struct map *map = machine__kernel_map(machine);
1460
1461 map__get(map);
1462 map_groups__remove(&machine->kmaps, map);
1463
1464 machine__set_kernel_mmap(machine, start, end);
1465
1466 map_groups__insert(&machine->kmaps, map);
1467 map__put(map);
1468}
1469
1470int machine__create_kernel_maps(struct machine *machine)
1471{
1472 struct dso *kernel = machine__get_kernel(machine);
1473 const char *name = NULL;
1474 struct map *map;
1475 u64 start = 0, end = ~0ULL;
1476 int ret;
1477
1478 if (kernel == NULL)
1479 return -1;
1480
1481 ret = __machine__create_kernel_maps(machine, kernel);
1482 if (ret < 0)
1483 goto out_put;
1484
1485 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486 if (machine__is_host(machine))
1487 pr_debug("Problems creating module maps, "
1488 "continuing anyway...\n");
1489 else
1490 pr_debug("Problems creating module maps for guest %d, "
1491 "continuing anyway...\n", machine->pid);
1492 }
1493
1494 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495 if (name &&
1496 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497 machine__destroy_kernel_maps(machine);
1498 ret = -1;
1499 goto out_put;
1500 }
1501
1502 /*
1503 * we have a real start address now, so re-order the kmaps
1504 * assume it's the last in the kmaps
1505 */
1506 machine__update_kernel_mmap(machine, start, end);
1507 }
1508
1509 if (machine__create_extra_kernel_maps(machine, kernel))
1510 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511
1512 if (end == ~0ULL) {
1513 /* update end address of the kernel map using adjacent module address */
1514 map = map__next(machine__kernel_map(machine));
1515 if (map)
1516 machine__set_kernel_mmap(machine, start, map->start);
1517 }
1518
1519out_put:
1520 dso__put(kernel);
1521 return ret;
1522}
1523
1524static bool machine__uses_kcore(struct machine *machine)
1525{
1526 struct dso *dso;
1527
1528 list_for_each_entry(dso, &machine->dsos.head, node) {
1529 if (dso__is_kcore(dso))
1530 return true;
1531 }
1532
1533 return false;
1534}
1535
1536static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537 union perf_event *event)
1538{
1539 return machine__is(machine, "x86_64") &&
1540 is_entry_trampoline(event->mmap.filename);
1541}
1542
1543static int machine__process_extra_kernel_map(struct machine *machine,
1544 union perf_event *event)
1545{
1546 struct map *kernel_map = machine__kernel_map(machine);
1547 struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548 struct extra_kernel_map xm = {
1549 .start = event->mmap.start,
1550 .end = event->mmap.start + event->mmap.len,
1551 .pgoff = event->mmap.pgoff,
1552 };
1553
1554 if (kernel == NULL)
1555 return -1;
1556
1557 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558
1559 return machine__create_extra_kernel_map(machine, kernel, &xm);
1560}
1561
1562static int machine__process_kernel_mmap_event(struct machine *machine,
1563 union perf_event *event)
1564{
1565 struct map *map;
1566 enum dso_kernel_type kernel_type;
1567 bool is_kernel_mmap;
1568
1569 /* If we have maps from kcore then we do not need or want any others */
1570 if (machine__uses_kcore(machine))
1571 return 0;
1572
1573 if (machine__is_host(machine))
1574 kernel_type = DSO_TYPE_KERNEL;
1575 else
1576 kernel_type = DSO_TYPE_GUEST_KERNEL;
1577
1578 is_kernel_mmap = memcmp(event->mmap.filename,
1579 machine->mmap_name,
1580 strlen(machine->mmap_name) - 1) == 0;
1581 if (event->mmap.filename[0] == '/' ||
1582 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583 map = machine__findnew_module_map(machine, event->mmap.start,
1584 event->mmap.filename);
1585 if (map == NULL)
1586 goto out_problem;
1587
1588 map->end = map->start + event->mmap.len;
1589 } else if (is_kernel_mmap) {
1590 const char *symbol_name = (event->mmap.filename +
1591 strlen(machine->mmap_name));
1592 /*
1593 * Should be there already, from the build-id table in
1594 * the header.
1595 */
1596 struct dso *kernel = NULL;
1597 struct dso *dso;
1598
1599 down_read(&machine->dsos.lock);
1600
1601 list_for_each_entry(dso, &machine->dsos.head, node) {
1602
1603 /*
1604 * The cpumode passed to is_kernel_module is not the
1605 * cpumode of *this* event. If we insist on passing
1606 * correct cpumode to is_kernel_module, we should
1607 * record the cpumode when we adding this dso to the
1608 * linked list.
1609 *
1610 * However we don't really need passing correct
1611 * cpumode. We know the correct cpumode must be kernel
1612 * mode (if not, we should not link it onto kernel_dsos
1613 * list).
1614 *
1615 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616 * is_kernel_module() treats it as a kernel cpumode.
1617 */
1618
1619 if (!dso->kernel ||
1620 is_kernel_module(dso->long_name,
1621 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622 continue;
1623
1624
1625 kernel = dso;
1626 break;
1627 }
1628
1629 up_read(&machine->dsos.lock);
1630
1631 if (kernel == NULL)
1632 kernel = machine__findnew_dso(machine, machine->mmap_name);
1633 if (kernel == NULL)
1634 goto out_problem;
1635
1636 kernel->kernel = kernel_type;
1637 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638 dso__put(kernel);
1639 goto out_problem;
1640 }
1641
1642 if (strstr(kernel->long_name, "vmlinux"))
1643 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644
1645 machine__update_kernel_mmap(machine, event->mmap.start,
1646 event->mmap.start + event->mmap.len);
1647
1648 /*
1649 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650 * symbol. Effectively having zero here means that at record
1651 * time /proc/sys/kernel/kptr_restrict was non zero.
1652 */
1653 if (event->mmap.pgoff != 0) {
1654 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655 symbol_name,
1656 event->mmap.pgoff);
1657 }
1658
1659 if (machine__is_default_guest(machine)) {
1660 /*
1661 * preload dso of guest kernel and modules
1662 */
1663 dso__load(kernel, machine__kernel_map(machine));
1664 }
1665 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666 return machine__process_extra_kernel_map(machine, event);
1667 }
1668 return 0;
1669out_problem:
1670 return -1;
1671}
1672
1673int machine__process_mmap2_event(struct machine *machine,
1674 union perf_event *event,
1675 struct perf_sample *sample)
1676{
1677 struct thread *thread;
1678 struct map *map;
1679 int ret = 0;
1680
1681 if (dump_trace)
1682 perf_event__fprintf_mmap2(event, stdout);
1683
1684 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686 ret = machine__process_kernel_mmap_event(machine, event);
1687 if (ret < 0)
1688 goto out_problem;
1689 return 0;
1690 }
1691
1692 thread = machine__findnew_thread(machine, event->mmap2.pid,
1693 event->mmap2.tid);
1694 if (thread == NULL)
1695 goto out_problem;
1696
1697 map = map__new(machine, event->mmap2.start,
1698 event->mmap2.len, event->mmap2.pgoff,
1699 event->mmap2.maj,
1700 event->mmap2.min, event->mmap2.ino,
1701 event->mmap2.ino_generation,
1702 event->mmap2.prot,
1703 event->mmap2.flags,
1704 event->mmap2.filename, thread);
1705
1706 if (map == NULL)
1707 goto out_problem_map;
1708
1709 ret = thread__insert_map(thread, map);
1710 if (ret)
1711 goto out_problem_insert;
1712
1713 thread__put(thread);
1714 map__put(map);
1715 return 0;
1716
1717out_problem_insert:
1718 map__put(map);
1719out_problem_map:
1720 thread__put(thread);
1721out_problem:
1722 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723 return 0;
1724}
1725
1726int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727 struct perf_sample *sample)
1728{
1729 struct thread *thread;
1730 struct map *map;
1731 u32 prot = 0;
1732 int ret = 0;
1733
1734 if (dump_trace)
1735 perf_event__fprintf_mmap(event, stdout);
1736
1737 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739 ret = machine__process_kernel_mmap_event(machine, event);
1740 if (ret < 0)
1741 goto out_problem;
1742 return 0;
1743 }
1744
1745 thread = machine__findnew_thread(machine, event->mmap.pid,
1746 event->mmap.tid);
1747 if (thread == NULL)
1748 goto out_problem;
1749
1750 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751 prot = PROT_EXEC;
1752
1753 map = map__new(machine, event->mmap.start,
1754 event->mmap.len, event->mmap.pgoff,
1755 0, 0, 0, 0, prot, 0,
1756 event->mmap.filename,
1757 thread);
1758
1759 if (map == NULL)
1760 goto out_problem_map;
1761
1762 ret = thread__insert_map(thread, map);
1763 if (ret)
1764 goto out_problem_insert;
1765
1766 thread__put(thread);
1767 map__put(map);
1768 return 0;
1769
1770out_problem_insert:
1771 map__put(map);
1772out_problem_map:
1773 thread__put(thread);
1774out_problem:
1775 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776 return 0;
1777}
1778
1779static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1780{
1781 struct threads *threads = machine__threads(machine, th->tid);
1782
1783 if (threads->last_match == th)
1784 threads__set_last_match(threads, NULL);
1785
1786 if (lock)
1787 down_write(&threads->lock);
1788
1789 BUG_ON(refcount_read(&th->refcnt) == 0);
1790
1791 rb_erase_cached(&th->rb_node, &threads->entries);
1792 RB_CLEAR_NODE(&th->rb_node);
1793 --threads->nr;
1794 /*
1795 * Move it first to the dead_threads list, then drop the reference,
1796 * if this is the last reference, then the thread__delete destructor
1797 * will be called and we will remove it from the dead_threads list.
1798 */
1799 list_add_tail(&th->node, &threads->dead);
1800
1801 /*
1802 * We need to do the put here because if this is the last refcount,
1803 * then we will be touching the threads->dead head when removing the
1804 * thread.
1805 */
1806 thread__put(th);
1807
1808 if (lock)
1809 up_write(&threads->lock);
1810}
1811
1812void machine__remove_thread(struct machine *machine, struct thread *th)
1813{
1814 return __machine__remove_thread(machine, th, true);
1815}
1816
1817int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818 struct perf_sample *sample)
1819{
1820 struct thread *thread = machine__find_thread(machine,
1821 event->fork.pid,
1822 event->fork.tid);
1823 struct thread *parent = machine__findnew_thread(machine,
1824 event->fork.ppid,
1825 event->fork.ptid);
1826 bool do_maps_clone = true;
1827 int err = 0;
1828
1829 if (dump_trace)
1830 perf_event__fprintf_task(event, stdout);
1831
1832 /*
1833 * There may be an existing thread that is not actually the parent,
1834 * either because we are processing events out of order, or because the
1835 * (fork) event that would have removed the thread was lost. Assume the
1836 * latter case and continue on as best we can.
1837 */
1838 if (parent->pid_ != (pid_t)event->fork.ppid) {
1839 dump_printf("removing erroneous parent thread %d/%d\n",
1840 parent->pid_, parent->tid);
1841 machine__remove_thread(machine, parent);
1842 thread__put(parent);
1843 parent = machine__findnew_thread(machine, event->fork.ppid,
1844 event->fork.ptid);
1845 }
1846
1847 /* if a thread currently exists for the thread id remove it */
1848 if (thread != NULL) {
1849 machine__remove_thread(machine, thread);
1850 thread__put(thread);
1851 }
1852
1853 thread = machine__findnew_thread(machine, event->fork.pid,
1854 event->fork.tid);
1855 /*
1856 * When synthesizing FORK events, we are trying to create thread
1857 * objects for the already running tasks on the machine.
1858 *
1859 * Normally, for a kernel FORK event, we want to clone the parent's
1860 * maps because that is what the kernel just did.
1861 *
1862 * But when synthesizing, this should not be done. If we do, we end up
1863 * with overlapping maps as we process the sythesized MMAP2 events that
1864 * get delivered shortly thereafter.
1865 *
1866 * Use the FORK event misc flags in an internal way to signal this
1867 * situation, so we can elide the map clone when appropriate.
1868 */
1869 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870 do_maps_clone = false;
1871
1872 if (thread == NULL || parent == NULL ||
1873 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875 err = -1;
1876 }
1877 thread__put(thread);
1878 thread__put(parent);
1879
1880 return err;
1881}
1882
1883int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884 struct perf_sample *sample __maybe_unused)
1885{
1886 struct thread *thread = machine__find_thread(machine,
1887 event->fork.pid,
1888 event->fork.tid);
1889
1890 if (dump_trace)
1891 perf_event__fprintf_task(event, stdout);
1892
1893 if (thread != NULL) {
1894 thread__exited(thread);
1895 thread__put(thread);
1896 }
1897
1898 return 0;
1899}
1900
1901int machine__process_event(struct machine *machine, union perf_event *event,
1902 struct perf_sample *sample)
1903{
1904 int ret;
1905
1906 switch (event->header.type) {
1907 case PERF_RECORD_COMM:
1908 ret = machine__process_comm_event(machine, event, sample); break;
1909 case PERF_RECORD_MMAP:
1910 ret = machine__process_mmap_event(machine, event, sample); break;
1911 case PERF_RECORD_NAMESPACES:
1912 ret = machine__process_namespaces_event(machine, event, sample); break;
1913 case PERF_RECORD_MMAP2:
1914 ret = machine__process_mmap2_event(machine, event, sample); break;
1915 case PERF_RECORD_FORK:
1916 ret = machine__process_fork_event(machine, event, sample); break;
1917 case PERF_RECORD_EXIT:
1918 ret = machine__process_exit_event(machine, event, sample); break;
1919 case PERF_RECORD_LOST:
1920 ret = machine__process_lost_event(machine, event, sample); break;
1921 case PERF_RECORD_AUX:
1922 ret = machine__process_aux_event(machine, event); break;
1923 case PERF_RECORD_ITRACE_START:
1924 ret = machine__process_itrace_start_event(machine, event); break;
1925 case PERF_RECORD_LOST_SAMPLES:
1926 ret = machine__process_lost_samples_event(machine, event, sample); break;
1927 case PERF_RECORD_SWITCH:
1928 case PERF_RECORD_SWITCH_CPU_WIDE:
1929 ret = machine__process_switch_event(machine, event); break;
1930 case PERF_RECORD_KSYMBOL:
1931 ret = machine__process_ksymbol(machine, event, sample); break;
1932 case PERF_RECORD_BPF_EVENT:
1933 ret = machine__process_bpf(machine, event, sample); break;
1934 default:
1935 ret = -1;
1936 break;
1937 }
1938
1939 return ret;
1940}
1941
1942static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943{
1944 if (!regexec(regex, sym->name, 0, NULL, 0))
1945 return 1;
1946 return 0;
1947}
1948
1949static void ip__resolve_ams(struct thread *thread,
1950 struct addr_map_symbol *ams,
1951 u64 ip)
1952{
1953 struct addr_location al;
1954
1955 memset(&al, 0, sizeof(al));
1956 /*
1957 * We cannot use the header.misc hint to determine whether a
1958 * branch stack address is user, kernel, guest, hypervisor.
1959 * Branches may straddle the kernel/user/hypervisor boundaries.
1960 * Thus, we have to try consecutively until we find a match
1961 * or else, the symbol is unknown
1962 */
1963 thread__find_cpumode_addr_location(thread, ip, &al);
1964
1965 ams->addr = ip;
1966 ams->al_addr = al.addr;
1967 ams->sym = al.sym;
1968 ams->map = al.map;
1969 ams->phys_addr = 0;
1970}
1971
1972static void ip__resolve_data(struct thread *thread,
1973 u8 m, struct addr_map_symbol *ams,
1974 u64 addr, u64 phys_addr)
1975{
1976 struct addr_location al;
1977
1978 memset(&al, 0, sizeof(al));
1979
1980 thread__find_symbol(thread, m, addr, &al);
1981
1982 ams->addr = addr;
1983 ams->al_addr = al.addr;
1984 ams->sym = al.sym;
1985 ams->map = al.map;
1986 ams->phys_addr = phys_addr;
1987}
1988
1989struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990 struct addr_location *al)
1991{
1992 struct mem_info *mi = mem_info__new();
1993
1994 if (!mi)
1995 return NULL;
1996
1997 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999 sample->addr, sample->phys_addr);
2000 mi->data_src.val = sample->data_src;
2001
2002 return mi;
2003}
2004
2005static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006{
2007 char *srcline = NULL;
2008
2009 if (!map || callchain_param.key == CCKEY_FUNCTION)
2010 return srcline;
2011
2012 srcline = srcline__tree_find(&map->dso->srclines, ip);
2013 if (!srcline) {
2014 bool show_sym = false;
2015 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016
2017 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018 sym, show_sym, show_addr, ip);
2019 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020 }
2021
2022 return srcline;
2023}
2024
2025struct iterations {
2026 int nr_loop_iter;
2027 u64 cycles;
2028};
2029
2030static int add_callchain_ip(struct thread *thread,
2031 struct callchain_cursor *cursor,
2032 struct symbol **parent,
2033 struct addr_location *root_al,
2034 u8 *cpumode,
2035 u64 ip,
2036 bool branch,
2037 struct branch_flags *flags,
2038 struct iterations *iter,
2039 u64 branch_from)
2040{
2041 struct addr_location al;
2042 int nr_loop_iter = 0;
2043 u64 iter_cycles = 0;
2044 const char *srcline = NULL;
2045
2046 al.filtered = 0;
2047 al.sym = NULL;
2048 if (!cpumode) {
2049 thread__find_cpumode_addr_location(thread, ip, &al);
2050 } else {
2051 if (ip >= PERF_CONTEXT_MAX) {
2052 switch (ip) {
2053 case PERF_CONTEXT_HV:
2054 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055 break;
2056 case PERF_CONTEXT_KERNEL:
2057 *cpumode = PERF_RECORD_MISC_KERNEL;
2058 break;
2059 case PERF_CONTEXT_USER:
2060 *cpumode = PERF_RECORD_MISC_USER;
2061 break;
2062 default:
2063 pr_debug("invalid callchain context: "
2064 "%"PRId64"\n", (s64) ip);
2065 /*
2066 * It seems the callchain is corrupted.
2067 * Discard all.
2068 */
2069 callchain_cursor_reset(cursor);
2070 return 1;
2071 }
2072 return 0;
2073 }
2074 thread__find_symbol(thread, *cpumode, ip, &al);
2075 }
2076
2077 if (al.sym != NULL) {
2078 if (perf_hpp_list.parent && !*parent &&
2079 symbol__match_regex(al.sym, &parent_regex))
2080 *parent = al.sym;
2081 else if (have_ignore_callees && root_al &&
2082 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083 /* Treat this symbol as the root,
2084 forgetting its callees. */
2085 *root_al = al;
2086 callchain_cursor_reset(cursor);
2087 }
2088 }
2089
2090 if (symbol_conf.hide_unresolved && al.sym == NULL)
2091 return 0;
2092
2093 if (iter) {
2094 nr_loop_iter = iter->nr_loop_iter;
2095 iter_cycles = iter->cycles;
2096 }
2097
2098 srcline = callchain_srcline(al.map, al.sym, al.addr);
2099 return callchain_cursor_append(cursor, ip, al.map, al.sym,
2100 branch, flags, nr_loop_iter,
2101 iter_cycles, branch_from, srcline);
2102}
2103
2104struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105 struct addr_location *al)
2106{
2107 unsigned int i;
2108 const struct branch_stack *bs = sample->branch_stack;
2109 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110
2111 if (!bi)
2112 return NULL;
2113
2114 for (i = 0; i < bs->nr; i++) {
2115 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117 bi[i].flags = bs->entries[i].flags;
2118 }
2119 return bi;
2120}
2121
2122static void save_iterations(struct iterations *iter,
2123 struct branch_entry *be, int nr)
2124{
2125 int i;
2126
2127 iter->nr_loop_iter++;
2128 iter->cycles = 0;
2129
2130 for (i = 0; i < nr; i++)
2131 iter->cycles += be[i].flags.cycles;
2132}
2133
2134#define CHASHSZ 127
2135#define CHASHBITS 7
2136#define NO_ENTRY 0xff
2137
2138#define PERF_MAX_BRANCH_DEPTH 127
2139
2140/* Remove loops. */
2141static int remove_loops(struct branch_entry *l, int nr,
2142 struct iterations *iter)
2143{
2144 int i, j, off;
2145 unsigned char chash[CHASHSZ];
2146
2147 memset(chash, NO_ENTRY, sizeof(chash));
2148
2149 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150
2151 for (i = 0; i < nr; i++) {
2152 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153
2154 /* no collision handling for now */
2155 if (chash[h] == NO_ENTRY) {
2156 chash[h] = i;
2157 } else if (l[chash[h]].from == l[i].from) {
2158 bool is_loop = true;
2159 /* check if it is a real loop */
2160 off = 0;
2161 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162 if (l[j].from != l[i + off].from) {
2163 is_loop = false;
2164 break;
2165 }
2166 if (is_loop) {
2167 j = nr - (i + off);
2168 if (j > 0) {
2169 save_iterations(iter + i + off,
2170 l + i, off);
2171
2172 memmove(iter + i, iter + i + off,
2173 j * sizeof(*iter));
2174
2175 memmove(l + i, l + i + off,
2176 j * sizeof(*l));
2177 }
2178
2179 nr -= off;
2180 }
2181 }
2182 }
2183 return nr;
2184}
2185
2186/*
2187 * Recolve LBR callstack chain sample
2188 * Return:
2189 * 1 on success get LBR callchain information
2190 * 0 no available LBR callchain information, should try fp
2191 * negative error code on other errors.
2192 */
2193static int resolve_lbr_callchain_sample(struct thread *thread,
2194 struct callchain_cursor *cursor,
2195 struct perf_sample *sample,
2196 struct symbol **parent,
2197 struct addr_location *root_al,
2198 int max_stack)
2199{
2200 struct ip_callchain *chain = sample->callchain;
2201 int chain_nr = min(max_stack, (int)chain->nr), i;
2202 u8 cpumode = PERF_RECORD_MISC_USER;
2203 u64 ip, branch_from = 0;
2204
2205 for (i = 0; i < chain_nr; i++) {
2206 if (chain->ips[i] == PERF_CONTEXT_USER)
2207 break;
2208 }
2209
2210 /* LBR only affects the user callchain */
2211 if (i != chain_nr) {
2212 struct branch_stack *lbr_stack = sample->branch_stack;
2213 int lbr_nr = lbr_stack->nr, j, k;
2214 bool branch;
2215 struct branch_flags *flags;
2216 /*
2217 * LBR callstack can only get user call chain.
2218 * The mix_chain_nr is kernel call chain
2219 * number plus LBR user call chain number.
2220 * i is kernel call chain number,
2221 * 1 is PERF_CONTEXT_USER,
2222 * lbr_nr + 1 is the user call chain number.
2223 * For details, please refer to the comments
2224 * in callchain__printf
2225 */
2226 int mix_chain_nr = i + 1 + lbr_nr + 1;
2227
2228 for (j = 0; j < mix_chain_nr; j++) {
2229 int err;
2230 branch = false;
2231 flags = NULL;
2232
2233 if (callchain_param.order == ORDER_CALLEE) {
2234 if (j < i + 1)
2235 ip = chain->ips[j];
2236 else if (j > i + 1) {
2237 k = j - i - 2;
2238 ip = lbr_stack->entries[k].from;
2239 branch = true;
2240 flags = &lbr_stack->entries[k].flags;
2241 } else {
2242 ip = lbr_stack->entries[0].to;
2243 branch = true;
2244 flags = &lbr_stack->entries[0].flags;
2245 branch_from =
2246 lbr_stack->entries[0].from;
2247 }
2248 } else {
2249 if (j < lbr_nr) {
2250 k = lbr_nr - j - 1;
2251 ip = lbr_stack->entries[k].from;
2252 branch = true;
2253 flags = &lbr_stack->entries[k].flags;
2254 }
2255 else if (j > lbr_nr)
2256 ip = chain->ips[i + 1 - (j - lbr_nr)];
2257 else {
2258 ip = lbr_stack->entries[0].to;
2259 branch = true;
2260 flags = &lbr_stack->entries[0].flags;
2261 branch_from =
2262 lbr_stack->entries[0].from;
2263 }
2264 }
2265
2266 err = add_callchain_ip(thread, cursor, parent,
2267 root_al, &cpumode, ip,
2268 branch, flags, NULL,
2269 branch_from);
2270 if (err)
2271 return (err < 0) ? err : 0;
2272 }
2273 return 1;
2274 }
2275
2276 return 0;
2277}
2278
2279static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280 struct callchain_cursor *cursor,
2281 struct symbol **parent,
2282 struct addr_location *root_al,
2283 u8 *cpumode, int ent)
2284{
2285 int err = 0;
2286
2287 while (--ent >= 0) {
2288 u64 ip = chain->ips[ent];
2289
2290 if (ip >= PERF_CONTEXT_MAX) {
2291 err = add_callchain_ip(thread, cursor, parent,
2292 root_al, cpumode, ip,
2293 false, NULL, NULL, 0);
2294 break;
2295 }
2296 }
2297 return err;
2298}
2299
2300static int thread__resolve_callchain_sample(struct thread *thread,
2301 struct callchain_cursor *cursor,
2302 struct evsel *evsel,
2303 struct perf_sample *sample,
2304 struct symbol **parent,
2305 struct addr_location *root_al,
2306 int max_stack)
2307{
2308 struct branch_stack *branch = sample->branch_stack;
2309 struct ip_callchain *chain = sample->callchain;
2310 int chain_nr = 0;
2311 u8 cpumode = PERF_RECORD_MISC_USER;
2312 int i, j, err, nr_entries;
2313 int skip_idx = -1;
2314 int first_call = 0;
2315
2316 if (chain)
2317 chain_nr = chain->nr;
2318
2319 if (perf_evsel__has_branch_callstack(evsel)) {
2320 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321 root_al, max_stack);
2322 if (err)
2323 return (err < 0) ? err : 0;
2324 }
2325
2326 /*
2327 * Based on DWARF debug information, some architectures skip
2328 * a callchain entry saved by the kernel.
2329 */
2330 skip_idx = arch_skip_callchain_idx(thread, chain);
2331
2332 /*
2333 * Add branches to call stack for easier browsing. This gives
2334 * more context for a sample than just the callers.
2335 *
2336 * This uses individual histograms of paths compared to the
2337 * aggregated histograms the normal LBR mode uses.
2338 *
2339 * Limitations for now:
2340 * - No extra filters
2341 * - No annotations (should annotate somehow)
2342 */
2343
2344 if (branch && callchain_param.branch_callstack) {
2345 int nr = min(max_stack, (int)branch->nr);
2346 struct branch_entry be[nr];
2347 struct iterations iter[nr];
2348
2349 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350 pr_warning("corrupted branch chain. skipping...\n");
2351 goto check_calls;
2352 }
2353
2354 for (i = 0; i < nr; i++) {
2355 if (callchain_param.order == ORDER_CALLEE) {
2356 be[i] = branch->entries[i];
2357
2358 if (chain == NULL)
2359 continue;
2360
2361 /*
2362 * Check for overlap into the callchain.
2363 * The return address is one off compared to
2364 * the branch entry. To adjust for this
2365 * assume the calling instruction is not longer
2366 * than 8 bytes.
2367 */
2368 if (i == skip_idx ||
2369 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370 first_call++;
2371 else if (be[i].from < chain->ips[first_call] &&
2372 be[i].from >= chain->ips[first_call] - 8)
2373 first_call++;
2374 } else
2375 be[i] = branch->entries[branch->nr - i - 1];
2376 }
2377
2378 memset(iter, 0, sizeof(struct iterations) * nr);
2379 nr = remove_loops(be, nr, iter);
2380
2381 for (i = 0; i < nr; i++) {
2382 err = add_callchain_ip(thread, cursor, parent,
2383 root_al,
2384 NULL, be[i].to,
2385 true, &be[i].flags,
2386 NULL, be[i].from);
2387
2388 if (!err)
2389 err = add_callchain_ip(thread, cursor, parent, root_al,
2390 NULL, be[i].from,
2391 true, &be[i].flags,
2392 &iter[i], 0);
2393 if (err == -EINVAL)
2394 break;
2395 if (err)
2396 return err;
2397 }
2398
2399 if (chain_nr == 0)
2400 return 0;
2401
2402 chain_nr -= nr;
2403 }
2404
2405check_calls:
2406 if (callchain_param.order != ORDER_CALLEE) {
2407 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408 &cpumode, chain->nr - first_call);
2409 if (err)
2410 return (err < 0) ? err : 0;
2411 }
2412 for (i = first_call, nr_entries = 0;
2413 i < chain_nr && nr_entries < max_stack; i++) {
2414 u64 ip;
2415
2416 if (callchain_param.order == ORDER_CALLEE)
2417 j = i;
2418 else
2419 j = chain->nr - i - 1;
2420
2421#ifdef HAVE_SKIP_CALLCHAIN_IDX
2422 if (j == skip_idx)
2423 continue;
2424#endif
2425 ip = chain->ips[j];
2426 if (ip < PERF_CONTEXT_MAX)
2427 ++nr_entries;
2428 else if (callchain_param.order != ORDER_CALLEE) {
2429 err = find_prev_cpumode(chain, thread, cursor, parent,
2430 root_al, &cpumode, j);
2431 if (err)
2432 return (err < 0) ? err : 0;
2433 continue;
2434 }
2435
2436 err = add_callchain_ip(thread, cursor, parent,
2437 root_al, &cpumode, ip,
2438 false, NULL, NULL, 0);
2439
2440 if (err)
2441 return (err < 0) ? err : 0;
2442 }
2443
2444 return 0;
2445}
2446
2447static int append_inlines(struct callchain_cursor *cursor,
2448 struct map *map, struct symbol *sym, u64 ip)
2449{
2450 struct inline_node *inline_node;
2451 struct inline_list *ilist;
2452 u64 addr;
2453 int ret = 1;
2454
2455 if (!symbol_conf.inline_name || !map || !sym)
2456 return ret;
2457
2458 addr = map__map_ip(map, ip);
2459 addr = map__rip_2objdump(map, addr);
2460
2461 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462 if (!inline_node) {
2463 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464 if (!inline_node)
2465 return ret;
2466 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467 }
2468
2469 list_for_each_entry(ilist, &inline_node->val, list) {
2470 ret = callchain_cursor_append(cursor, ip, map,
2471 ilist->symbol, false,
2472 NULL, 0, 0, 0, ilist->srcline);
2473
2474 if (ret != 0)
2475 return ret;
2476 }
2477
2478 return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483 struct callchain_cursor *cursor = arg;
2484 const char *srcline = NULL;
2485 u64 addr = entry->ip;
2486
2487 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488 return 0;
2489
2490 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491 return 0;
2492
2493 /*
2494 * Convert entry->ip from a virtual address to an offset in
2495 * its corresponding binary.
2496 */
2497 if (entry->map)
2498 addr = map__map_ip(entry->map, entry->ip);
2499
2500 srcline = callchain_srcline(entry->map, entry->sym, addr);
2501 return callchain_cursor_append(cursor, entry->ip,
2502 entry->map, entry->sym,
2503 false, NULL, 0, 0, 0, srcline);
2504}
2505
2506static int thread__resolve_callchain_unwind(struct thread *thread,
2507 struct callchain_cursor *cursor,
2508 struct evsel *evsel,
2509 struct perf_sample *sample,
2510 int max_stack)
2511{
2512 /* Can we do dwarf post unwind? */
2513 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515 return 0;
2516
2517 /* Bail out if nothing was captured. */
2518 if ((!sample->user_regs.regs) ||
2519 (!sample->user_stack.size))
2520 return 0;
2521
2522 return unwind__get_entries(unwind_entry, cursor,
2523 thread, sample, max_stack);
2524}
2525
2526int thread__resolve_callchain(struct thread *thread,
2527 struct callchain_cursor *cursor,
2528 struct evsel *evsel,
2529 struct perf_sample *sample,
2530 struct symbol **parent,
2531 struct addr_location *root_al,
2532 int max_stack)
2533{
2534 int ret = 0;
2535
2536 callchain_cursor_reset(cursor);
2537
2538 if (callchain_param.order == ORDER_CALLEE) {
2539 ret = thread__resolve_callchain_sample(thread, cursor,
2540 evsel, sample,
2541 parent, root_al,
2542 max_stack);
2543 if (ret)
2544 return ret;
2545 ret = thread__resolve_callchain_unwind(thread, cursor,
2546 evsel, sample,
2547 max_stack);
2548 } else {
2549 ret = thread__resolve_callchain_unwind(thread, cursor,
2550 evsel, sample,
2551 max_stack);
2552 if (ret)
2553 return ret;
2554 ret = thread__resolve_callchain_sample(thread, cursor,
2555 evsel, sample,
2556 parent, root_al,
2557 max_stack);
2558 }
2559
2560 return ret;
2561}
2562
2563int machine__for_each_thread(struct machine *machine,
2564 int (*fn)(struct thread *thread, void *p),
2565 void *priv)
2566{
2567 struct threads *threads;
2568 struct rb_node *nd;
2569 struct thread *thread;
2570 int rc = 0;
2571 int i;
2572
2573 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574 threads = &machine->threads[i];
2575 for (nd = rb_first_cached(&threads->entries); nd;
2576 nd = rb_next(nd)) {
2577 thread = rb_entry(nd, struct thread, rb_node);
2578 rc = fn(thread, priv);
2579 if (rc != 0)
2580 return rc;
2581 }
2582
2583 list_for_each_entry(thread, &threads->dead, node) {
2584 rc = fn(thread, priv);
2585 if (rc != 0)
2586 return rc;
2587 }
2588 }
2589 return rc;
2590}
2591
2592int machines__for_each_thread(struct machines *machines,
2593 int (*fn)(struct thread *thread, void *p),
2594 void *priv)
2595{
2596 struct rb_node *nd;
2597 int rc = 0;
2598
2599 rc = machine__for_each_thread(&machines->host, fn, priv);
2600 if (rc != 0)
2601 return rc;
2602
2603 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605
2606 rc = machine__for_each_thread(machine, fn, priv);
2607 if (rc != 0)
2608 return rc;
2609 }
2610 return rc;
2611}
2612
2613pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614{
2615 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616
2617 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618 return -1;
2619
2620 return machine->current_tid[cpu];
2621}
2622
2623int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624 pid_t tid)
2625{
2626 struct thread *thread;
2627 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628
2629 if (cpu < 0)
2630 return -EINVAL;
2631
2632 if (!machine->current_tid) {
2633 int i;
2634
2635 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636 if (!machine->current_tid)
2637 return -ENOMEM;
2638 for (i = 0; i < nr_cpus; i++)
2639 machine->current_tid[i] = -1;
2640 }
2641
2642 if (cpu >= nr_cpus) {
2643 pr_err("Requested CPU %d too large. ", cpu);
2644 pr_err("Consider raising MAX_NR_CPUS\n");
2645 return -EINVAL;
2646 }
2647
2648 machine->current_tid[cpu] = tid;
2649
2650 thread = machine__findnew_thread(machine, pid, tid);
2651 if (!thread)
2652 return -ENOMEM;
2653
2654 thread->cpu = cpu;
2655 thread__put(thread);
2656
2657 return 0;
2658}
2659
2660/*
2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662 * normalized arch is needed.
2663 */
2664bool machine__is(struct machine *machine, const char *arch)
2665{
2666 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667}
2668
2669int machine__nr_cpus_avail(struct machine *machine)
2670{
2671 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672}
2673
2674int machine__get_kernel_start(struct machine *machine)
2675{
2676 struct map *map = machine__kernel_map(machine);
2677 int err = 0;
2678
2679 /*
2680 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681 * kernel. Note that addresses are unsigned so that on a 32-bit system
2682 * all addresses including kernel addresses are less than 2^32. In
2683 * that case (32-bit system), if the kernel mapping is unknown, all
2684 * addresses will be assumed to be in user space - see
2685 * machine__kernel_ip().
2686 */
2687 machine->kernel_start = 1ULL << 63;
2688 if (map) {
2689 err = map__load(map);
2690 /*
2691 * On x86_64, PTI entry trampolines are less than the
2692 * start of kernel text, but still above 2^63. So leave
2693 * kernel_start = 1ULL << 63 for x86_64.
2694 */
2695 if (!err && !machine__is(machine, "x86_64"))
2696 machine->kernel_start = map->start;
2697 }
2698 return err;
2699}
2700
2701u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702{
2703 u8 addr_cpumode = cpumode;
2704 bool kernel_ip;
2705
2706 if (!machine->single_address_space)
2707 goto out;
2708
2709 kernel_ip = machine__kernel_ip(machine, addr);
2710 switch (cpumode) {
2711 case PERF_RECORD_MISC_KERNEL:
2712 case PERF_RECORD_MISC_USER:
2713 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714 PERF_RECORD_MISC_USER;
2715 break;
2716 case PERF_RECORD_MISC_GUEST_KERNEL:
2717 case PERF_RECORD_MISC_GUEST_USER:
2718 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719 PERF_RECORD_MISC_GUEST_USER;
2720 break;
2721 default:
2722 break;
2723 }
2724out:
2725 return addr_cpumode;
2726}
2727
2728struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729{
2730 return dsos__findnew(&machine->dsos, filename);
2731}
2732
2733char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734{
2735 struct machine *machine = vmachine;
2736 struct map *map;
2737 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739 if (sym == NULL)
2740 return NULL;
2741
2742 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743 *addrp = map->unmap_ip(map, sym->start);
2744 return sym->name;
2745}
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "path.h"
20#include "srcline.h"
21#include "symbol.h"
22#include "sort.h"
23#include "strlist.h"
24#include "target.h"
25#include "thread.h"
26#include "util.h"
27#include "vdso.h"
28#include <stdbool.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <unistd.h>
32#include "unwind.h"
33#include "linux/hash.h"
34#include "asm/bug.h"
35#include "bpf-event.h"
36#include <internal/lib.h> // page_size
37#include "cgroup.h"
38#include "arm64-frame-pointer-unwind-support.h"
39
40#include <linux/ctype.h>
41#include <symbol/kallsyms.h>
42#include <linux/mman.h>
43#include <linux/string.h>
44#include <linux/zalloc.h>
45
46static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
47 struct thread *th, bool lock);
48
49static struct dso *machine__kernel_dso(struct machine *machine)
50{
51 return map__dso(machine->vmlinux_map);
52}
53
54static void dsos__init(struct dsos *dsos)
55{
56 INIT_LIST_HEAD(&dsos->head);
57 dsos->root = RB_ROOT;
58 init_rwsem(&dsos->lock);
59}
60
61static void machine__threads_init(struct machine *machine)
62{
63 int i;
64
65 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
66 struct threads *threads = &machine->threads[i];
67 threads->entries = RB_ROOT_CACHED;
68 init_rwsem(&threads->lock);
69 threads->nr = 0;
70 threads->last_match = NULL;
71 }
72}
73
74static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd)
75{
76 int to_find = (int) *((pid_t *)key);
77
78 return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread);
79}
80
81static struct thread_rb_node *thread_rb_node__find(const struct thread *th,
82 struct rb_root *tree)
83{
84 pid_t to_find = thread__tid(th);
85 struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid);
86
87 return rb_entry(nd, struct thread_rb_node, rb_node);
88}
89
90static int machine__set_mmap_name(struct machine *machine)
91{
92 if (machine__is_host(machine))
93 machine->mmap_name = strdup("[kernel.kallsyms]");
94 else if (machine__is_default_guest(machine))
95 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
96 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
97 machine->pid) < 0)
98 machine->mmap_name = NULL;
99
100 return machine->mmap_name ? 0 : -ENOMEM;
101}
102
103static void thread__set_guest_comm(struct thread *thread, pid_t pid)
104{
105 char comm[64];
106
107 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
108 thread__set_comm(thread, comm, 0);
109}
110
111int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
112{
113 int err = -ENOMEM;
114
115 memset(machine, 0, sizeof(*machine));
116 machine->kmaps = maps__new(machine);
117 if (machine->kmaps == NULL)
118 return -ENOMEM;
119
120 RB_CLEAR_NODE(&machine->rb_node);
121 dsos__init(&machine->dsos);
122
123 machine__threads_init(machine);
124
125 machine->vdso_info = NULL;
126 machine->env = NULL;
127
128 machine->pid = pid;
129
130 machine->id_hdr_size = 0;
131 machine->kptr_restrict_warned = false;
132 machine->comm_exec = false;
133 machine->kernel_start = 0;
134 machine->vmlinux_map = NULL;
135
136 machine->root_dir = strdup(root_dir);
137 if (machine->root_dir == NULL)
138 goto out;
139
140 if (machine__set_mmap_name(machine))
141 goto out;
142
143 if (pid != HOST_KERNEL_ID) {
144 struct thread *thread = machine__findnew_thread(machine, -1,
145 pid);
146
147 if (thread == NULL)
148 goto out;
149
150 thread__set_guest_comm(thread, pid);
151 thread__put(thread);
152 }
153
154 machine->current_tid = NULL;
155 err = 0;
156
157out:
158 if (err) {
159 zfree(&machine->kmaps);
160 zfree(&machine->root_dir);
161 zfree(&machine->mmap_name);
162 }
163 return 0;
164}
165
166struct machine *machine__new_host(void)
167{
168 struct machine *machine = malloc(sizeof(*machine));
169
170 if (machine != NULL) {
171 machine__init(machine, "", HOST_KERNEL_ID);
172
173 if (machine__create_kernel_maps(machine) < 0)
174 goto out_delete;
175 }
176
177 return machine;
178out_delete:
179 free(machine);
180 return NULL;
181}
182
183struct machine *machine__new_kallsyms(void)
184{
185 struct machine *machine = machine__new_host();
186 /*
187 * FIXME:
188 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
189 * ask for not using the kcore parsing code, once this one is fixed
190 * to create a map per module.
191 */
192 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
193 machine__delete(machine);
194 machine = NULL;
195 }
196
197 return machine;
198}
199
200static void dsos__purge(struct dsos *dsos)
201{
202 struct dso *pos, *n;
203
204 down_write(&dsos->lock);
205
206 list_for_each_entry_safe(pos, n, &dsos->head, node) {
207 RB_CLEAR_NODE(&pos->rb_node);
208 pos->root = NULL;
209 list_del_init(&pos->node);
210 dso__put(pos);
211 }
212
213 up_write(&dsos->lock);
214}
215
216static void dsos__exit(struct dsos *dsos)
217{
218 dsos__purge(dsos);
219 exit_rwsem(&dsos->lock);
220}
221
222void machine__delete_threads(struct machine *machine)
223{
224 struct rb_node *nd;
225 int i;
226
227 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
228 struct threads *threads = &machine->threads[i];
229 down_write(&threads->lock);
230 nd = rb_first_cached(&threads->entries);
231 while (nd) {
232 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
233
234 nd = rb_next(nd);
235 __machine__remove_thread(machine, trb, trb->thread, false);
236 }
237 up_write(&threads->lock);
238 }
239}
240
241void machine__exit(struct machine *machine)
242{
243 int i;
244
245 if (machine == NULL)
246 return;
247
248 machine__destroy_kernel_maps(machine);
249 maps__zput(machine->kmaps);
250 dsos__exit(&machine->dsos);
251 machine__exit_vdso(machine);
252 zfree(&machine->root_dir);
253 zfree(&machine->mmap_name);
254 zfree(&machine->current_tid);
255 zfree(&machine->kallsyms_filename);
256
257 machine__delete_threads(machine);
258 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
259 struct threads *threads = &machine->threads[i];
260
261 exit_rwsem(&threads->lock);
262 }
263}
264
265void machine__delete(struct machine *machine)
266{
267 if (machine) {
268 machine__exit(machine);
269 free(machine);
270 }
271}
272
273void machines__init(struct machines *machines)
274{
275 machine__init(&machines->host, "", HOST_KERNEL_ID);
276 machines->guests = RB_ROOT_CACHED;
277}
278
279void machines__exit(struct machines *machines)
280{
281 machine__exit(&machines->host);
282 /* XXX exit guest */
283}
284
285struct machine *machines__add(struct machines *machines, pid_t pid,
286 const char *root_dir)
287{
288 struct rb_node **p = &machines->guests.rb_root.rb_node;
289 struct rb_node *parent = NULL;
290 struct machine *pos, *machine = malloc(sizeof(*machine));
291 bool leftmost = true;
292
293 if (machine == NULL)
294 return NULL;
295
296 if (machine__init(machine, root_dir, pid) != 0) {
297 free(machine);
298 return NULL;
299 }
300
301 while (*p != NULL) {
302 parent = *p;
303 pos = rb_entry(parent, struct machine, rb_node);
304 if (pid < pos->pid)
305 p = &(*p)->rb_left;
306 else {
307 p = &(*p)->rb_right;
308 leftmost = false;
309 }
310 }
311
312 rb_link_node(&machine->rb_node, parent, p);
313 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
314
315 machine->machines = machines;
316
317 return machine;
318}
319
320void machines__set_comm_exec(struct machines *machines, bool comm_exec)
321{
322 struct rb_node *nd;
323
324 machines->host.comm_exec = comm_exec;
325
326 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
327 struct machine *machine = rb_entry(nd, struct machine, rb_node);
328
329 machine->comm_exec = comm_exec;
330 }
331}
332
333struct machine *machines__find(struct machines *machines, pid_t pid)
334{
335 struct rb_node **p = &machines->guests.rb_root.rb_node;
336 struct rb_node *parent = NULL;
337 struct machine *machine;
338 struct machine *default_machine = NULL;
339
340 if (pid == HOST_KERNEL_ID)
341 return &machines->host;
342
343 while (*p != NULL) {
344 parent = *p;
345 machine = rb_entry(parent, struct machine, rb_node);
346 if (pid < machine->pid)
347 p = &(*p)->rb_left;
348 else if (pid > machine->pid)
349 p = &(*p)->rb_right;
350 else
351 return machine;
352 if (!machine->pid)
353 default_machine = machine;
354 }
355
356 return default_machine;
357}
358
359struct machine *machines__findnew(struct machines *machines, pid_t pid)
360{
361 char path[PATH_MAX];
362 const char *root_dir = "";
363 struct machine *machine = machines__find(machines, pid);
364
365 if (machine && (machine->pid == pid))
366 goto out;
367
368 if ((pid != HOST_KERNEL_ID) &&
369 (pid != DEFAULT_GUEST_KERNEL_ID) &&
370 (symbol_conf.guestmount)) {
371 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
372 if (access(path, R_OK)) {
373 static struct strlist *seen;
374
375 if (!seen)
376 seen = strlist__new(NULL, NULL);
377
378 if (!strlist__has_entry(seen, path)) {
379 pr_err("Can't access file %s\n", path);
380 strlist__add(seen, path);
381 }
382 machine = NULL;
383 goto out;
384 }
385 root_dir = path;
386 }
387
388 machine = machines__add(machines, pid, root_dir);
389out:
390 return machine;
391}
392
393struct machine *machines__find_guest(struct machines *machines, pid_t pid)
394{
395 struct machine *machine = machines__find(machines, pid);
396
397 if (!machine)
398 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
399 return machine;
400}
401
402/*
403 * A common case for KVM test programs is that the test program acts as the
404 * hypervisor, creating, running and destroying the virtual machine, and
405 * providing the guest object code from its own object code. In this case,
406 * the VM is not running an OS, but only the functions loaded into it by the
407 * hypervisor test program, and conveniently, loaded at the same virtual
408 * addresses.
409 *
410 * Normally to resolve addresses, MMAP events are needed to map addresses
411 * back to the object code and debug symbols for that object code.
412 *
413 * Currently, there is no way to get such mapping information from guests
414 * but, in the scenario described above, the guest has the same mappings
415 * as the hypervisor, so support for that scenario can be achieved.
416 *
417 * To support that, copy the host thread's maps to the guest thread's maps.
418 * Note, we do not discover the guest until we encounter a guest event,
419 * which works well because it is not until then that we know that the host
420 * thread's maps have been set up.
421 *
422 * This function returns the guest thread. Apart from keeping the data
423 * structures sane, using a thread belonging to the guest machine, instead
424 * of the host thread, allows it to have its own comm (refer
425 * thread__set_guest_comm()).
426 */
427static struct thread *findnew_guest_code(struct machine *machine,
428 struct machine *host_machine,
429 pid_t pid)
430{
431 struct thread *host_thread;
432 struct thread *thread;
433 int err;
434
435 if (!machine)
436 return NULL;
437
438 thread = machine__findnew_thread(machine, -1, pid);
439 if (!thread)
440 return NULL;
441
442 /* Assume maps are set up if there are any */
443 if (maps__nr_maps(thread__maps(thread)))
444 return thread;
445
446 host_thread = machine__find_thread(host_machine, -1, pid);
447 if (!host_thread)
448 goto out_err;
449
450 thread__set_guest_comm(thread, pid);
451
452 /*
453 * Guest code can be found in hypervisor process at the same address
454 * so copy host maps.
455 */
456 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
457 thread__put(host_thread);
458 if (err)
459 goto out_err;
460
461 return thread;
462
463out_err:
464 thread__zput(thread);
465 return NULL;
466}
467
468struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
469{
470 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
471 struct machine *machine = machines__findnew(machines, pid);
472
473 return findnew_guest_code(machine, host_machine, pid);
474}
475
476struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
477{
478 struct machines *machines = machine->machines;
479 struct machine *host_machine;
480
481 if (!machines)
482 return NULL;
483
484 host_machine = machines__find(machines, HOST_KERNEL_ID);
485
486 return findnew_guest_code(machine, host_machine, pid);
487}
488
489void machines__process_guests(struct machines *machines,
490 machine__process_t process, void *data)
491{
492 struct rb_node *nd;
493
494 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
495 struct machine *pos = rb_entry(nd, struct machine, rb_node);
496 process(pos, data);
497 }
498}
499
500void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
501{
502 struct rb_node *node;
503 struct machine *machine;
504
505 machines->host.id_hdr_size = id_hdr_size;
506
507 for (node = rb_first_cached(&machines->guests); node;
508 node = rb_next(node)) {
509 machine = rb_entry(node, struct machine, rb_node);
510 machine->id_hdr_size = id_hdr_size;
511 }
512
513 return;
514}
515
516static void machine__update_thread_pid(struct machine *machine,
517 struct thread *th, pid_t pid)
518{
519 struct thread *leader;
520
521 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
522 return;
523
524 thread__set_pid(th, pid);
525
526 if (thread__pid(th) == thread__tid(th))
527 return;
528
529 leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
530 if (!leader)
531 goto out_err;
532
533 if (!thread__maps(leader))
534 thread__set_maps(leader, maps__new(machine));
535
536 if (!thread__maps(leader))
537 goto out_err;
538
539 if (thread__maps(th) == thread__maps(leader))
540 goto out_put;
541
542 if (thread__maps(th)) {
543 /*
544 * Maps are created from MMAP events which provide the pid and
545 * tid. Consequently there never should be any maps on a thread
546 * with an unknown pid. Just print an error if there are.
547 */
548 if (!maps__empty(thread__maps(th)))
549 pr_err("Discarding thread maps for %d:%d\n",
550 thread__pid(th), thread__tid(th));
551 maps__put(thread__maps(th));
552 }
553
554 thread__set_maps(th, maps__get(thread__maps(leader)));
555out_put:
556 thread__put(leader);
557 return;
558out_err:
559 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
560 goto out_put;
561}
562
563/*
564 * Front-end cache - TID lookups come in blocks,
565 * so most of the time we dont have to look up
566 * the full rbtree:
567 */
568static struct thread*
569__threads__get_last_match(struct threads *threads, struct machine *machine,
570 int pid, int tid)
571{
572 struct thread *th;
573
574 th = threads->last_match;
575 if (th != NULL) {
576 if (thread__tid(th) == tid) {
577 machine__update_thread_pid(machine, th, pid);
578 return thread__get(th);
579 }
580 thread__put(threads->last_match);
581 threads->last_match = NULL;
582 }
583
584 return NULL;
585}
586
587static struct thread*
588threads__get_last_match(struct threads *threads, struct machine *machine,
589 int pid, int tid)
590{
591 struct thread *th = NULL;
592
593 if (perf_singlethreaded)
594 th = __threads__get_last_match(threads, machine, pid, tid);
595
596 return th;
597}
598
599static void
600__threads__set_last_match(struct threads *threads, struct thread *th)
601{
602 thread__put(threads->last_match);
603 threads->last_match = thread__get(th);
604}
605
606static void
607threads__set_last_match(struct threads *threads, struct thread *th)
608{
609 if (perf_singlethreaded)
610 __threads__set_last_match(threads, th);
611}
612
613/*
614 * Caller must eventually drop thread->refcnt returned with a successful
615 * lookup/new thread inserted.
616 */
617static struct thread *____machine__findnew_thread(struct machine *machine,
618 struct threads *threads,
619 pid_t pid, pid_t tid,
620 bool create)
621{
622 struct rb_node **p = &threads->entries.rb_root.rb_node;
623 struct rb_node *parent = NULL;
624 struct thread *th;
625 struct thread_rb_node *nd;
626 bool leftmost = true;
627
628 th = threads__get_last_match(threads, machine, pid, tid);
629 if (th)
630 return th;
631
632 while (*p != NULL) {
633 parent = *p;
634 th = rb_entry(parent, struct thread_rb_node, rb_node)->thread;
635
636 if (thread__tid(th) == tid) {
637 threads__set_last_match(threads, th);
638 machine__update_thread_pid(machine, th, pid);
639 return thread__get(th);
640 }
641
642 if (tid < thread__tid(th))
643 p = &(*p)->rb_left;
644 else {
645 p = &(*p)->rb_right;
646 leftmost = false;
647 }
648 }
649
650 if (!create)
651 return NULL;
652
653 th = thread__new(pid, tid);
654 if (th == NULL)
655 return NULL;
656
657 nd = malloc(sizeof(*nd));
658 if (nd == NULL) {
659 thread__put(th);
660 return NULL;
661 }
662 nd->thread = th;
663
664 rb_link_node(&nd->rb_node, parent, p);
665 rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost);
666 /*
667 * We have to initialize maps separately after rb tree is updated.
668 *
669 * The reason is that we call machine__findnew_thread within
670 * thread__init_maps to find the thread leader and that would screwed
671 * the rb tree.
672 */
673 if (thread__init_maps(th, machine)) {
674 pr_err("Thread init failed thread %d\n", pid);
675 rb_erase_cached(&nd->rb_node, &threads->entries);
676 RB_CLEAR_NODE(&nd->rb_node);
677 free(nd);
678 thread__put(th);
679 return NULL;
680 }
681 /*
682 * It is now in the rbtree, get a ref
683 */
684 threads__set_last_match(threads, th);
685 ++threads->nr;
686
687 return thread__get(th);
688}
689
690struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
691{
692 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
693}
694
695struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
696 pid_t tid)
697{
698 struct threads *threads = machine__threads(machine, tid);
699 struct thread *th;
700
701 down_write(&threads->lock);
702 th = __machine__findnew_thread(machine, pid, tid);
703 up_write(&threads->lock);
704 return th;
705}
706
707struct thread *machine__find_thread(struct machine *machine, pid_t pid,
708 pid_t tid)
709{
710 struct threads *threads = machine__threads(machine, tid);
711 struct thread *th;
712
713 down_read(&threads->lock);
714 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
715 up_read(&threads->lock);
716 return th;
717}
718
719/*
720 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
721 * So here a single thread is created for that, but actually there is a separate
722 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
723 * is only 1. That causes problems for some tools, requiring workarounds. For
724 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
725 */
726struct thread *machine__idle_thread(struct machine *machine)
727{
728 struct thread *thread = machine__findnew_thread(machine, 0, 0);
729
730 if (!thread || thread__set_comm(thread, "swapper", 0) ||
731 thread__set_namespaces(thread, 0, NULL))
732 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
733
734 return thread;
735}
736
737struct comm *machine__thread_exec_comm(struct machine *machine,
738 struct thread *thread)
739{
740 if (machine->comm_exec)
741 return thread__exec_comm(thread);
742 else
743 return thread__comm(thread);
744}
745
746int machine__process_comm_event(struct machine *machine, union perf_event *event,
747 struct perf_sample *sample)
748{
749 struct thread *thread = machine__findnew_thread(machine,
750 event->comm.pid,
751 event->comm.tid);
752 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
753 int err = 0;
754
755 if (exec)
756 machine->comm_exec = true;
757
758 if (dump_trace)
759 perf_event__fprintf_comm(event, stdout);
760
761 if (thread == NULL ||
762 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
763 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
764 err = -1;
765 }
766
767 thread__put(thread);
768
769 return err;
770}
771
772int machine__process_namespaces_event(struct machine *machine __maybe_unused,
773 union perf_event *event,
774 struct perf_sample *sample __maybe_unused)
775{
776 struct thread *thread = machine__findnew_thread(machine,
777 event->namespaces.pid,
778 event->namespaces.tid);
779 int err = 0;
780
781 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
782 "\nWARNING: kernel seems to support more namespaces than perf"
783 " tool.\nTry updating the perf tool..\n\n");
784
785 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
786 "\nWARNING: perf tool seems to support more namespaces than"
787 " the kernel.\nTry updating the kernel..\n\n");
788
789 if (dump_trace)
790 perf_event__fprintf_namespaces(event, stdout);
791
792 if (thread == NULL ||
793 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
794 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
795 err = -1;
796 }
797
798 thread__put(thread);
799
800 return err;
801}
802
803int machine__process_cgroup_event(struct machine *machine,
804 union perf_event *event,
805 struct perf_sample *sample __maybe_unused)
806{
807 struct cgroup *cgrp;
808
809 if (dump_trace)
810 perf_event__fprintf_cgroup(event, stdout);
811
812 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
813 if (cgrp == NULL)
814 return -ENOMEM;
815
816 return 0;
817}
818
819int machine__process_lost_event(struct machine *machine __maybe_unused,
820 union perf_event *event, struct perf_sample *sample __maybe_unused)
821{
822 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
823 event->lost.id, event->lost.lost);
824 return 0;
825}
826
827int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
828 union perf_event *event, struct perf_sample *sample)
829{
830 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
831 sample->id, event->lost_samples.lost);
832 return 0;
833}
834
835static struct dso *machine__findnew_module_dso(struct machine *machine,
836 struct kmod_path *m,
837 const char *filename)
838{
839 struct dso *dso;
840
841 down_write(&machine->dsos.lock);
842
843 dso = __dsos__find(&machine->dsos, m->name, true);
844 if (!dso) {
845 dso = __dsos__addnew(&machine->dsos, m->name);
846 if (dso == NULL)
847 goto out_unlock;
848
849 dso__set_module_info(dso, m, machine);
850 dso__set_long_name(dso, strdup(filename), true);
851 dso->kernel = DSO_SPACE__KERNEL;
852 }
853
854 dso__get(dso);
855out_unlock:
856 up_write(&machine->dsos.lock);
857 return dso;
858}
859
860int machine__process_aux_event(struct machine *machine __maybe_unused,
861 union perf_event *event)
862{
863 if (dump_trace)
864 perf_event__fprintf_aux(event, stdout);
865 return 0;
866}
867
868int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
869 union perf_event *event)
870{
871 if (dump_trace)
872 perf_event__fprintf_itrace_start(event, stdout);
873 return 0;
874}
875
876int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
877 union perf_event *event)
878{
879 if (dump_trace)
880 perf_event__fprintf_aux_output_hw_id(event, stdout);
881 return 0;
882}
883
884int machine__process_switch_event(struct machine *machine __maybe_unused,
885 union perf_event *event)
886{
887 if (dump_trace)
888 perf_event__fprintf_switch(event, stdout);
889 return 0;
890}
891
892static int machine__process_ksymbol_register(struct machine *machine,
893 union perf_event *event,
894 struct perf_sample *sample __maybe_unused)
895{
896 struct symbol *sym;
897 struct dso *dso;
898 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
899 bool put_map = false;
900 int err = 0;
901
902 if (!map) {
903 dso = dso__new(event->ksymbol.name);
904
905 if (!dso) {
906 err = -ENOMEM;
907 goto out;
908 }
909 dso->kernel = DSO_SPACE__KERNEL;
910 map = map__new2(0, dso);
911 dso__put(dso);
912 if (!map) {
913 err = -ENOMEM;
914 goto out;
915 }
916 /*
917 * The inserted map has a get on it, we need to put to release
918 * the reference count here, but do it after all accesses are
919 * done.
920 */
921 put_map = true;
922 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
923 dso->binary_type = DSO_BINARY_TYPE__OOL;
924 dso->data.file_size = event->ksymbol.len;
925 dso__set_loaded(dso);
926 }
927
928 map__set_start(map, event->ksymbol.addr);
929 map__set_end(map, map__start(map) + event->ksymbol.len);
930 err = maps__insert(machine__kernel_maps(machine), map);
931 if (err) {
932 err = -ENOMEM;
933 goto out;
934 }
935
936 dso__set_loaded(dso);
937
938 if (is_bpf_image(event->ksymbol.name)) {
939 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
940 dso__set_long_name(dso, "", false);
941 }
942 } else {
943 dso = map__dso(map);
944 }
945
946 sym = symbol__new(map__map_ip(map, map__start(map)),
947 event->ksymbol.len,
948 0, 0, event->ksymbol.name);
949 if (!sym) {
950 err = -ENOMEM;
951 goto out;
952 }
953 dso__insert_symbol(dso, sym);
954out:
955 if (put_map)
956 map__put(map);
957 return err;
958}
959
960static int machine__process_ksymbol_unregister(struct machine *machine,
961 union perf_event *event,
962 struct perf_sample *sample __maybe_unused)
963{
964 struct symbol *sym;
965 struct map *map;
966
967 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
968 if (!map)
969 return 0;
970
971 if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
972 maps__remove(machine__kernel_maps(machine), map);
973 else {
974 struct dso *dso = map__dso(map);
975
976 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
977 if (sym)
978 dso__delete_symbol(dso, sym);
979 }
980
981 return 0;
982}
983
984int machine__process_ksymbol(struct machine *machine __maybe_unused,
985 union perf_event *event,
986 struct perf_sample *sample)
987{
988 if (dump_trace)
989 perf_event__fprintf_ksymbol(event, stdout);
990
991 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
992 return machine__process_ksymbol_unregister(machine, event,
993 sample);
994 return machine__process_ksymbol_register(machine, event, sample);
995}
996
997int machine__process_text_poke(struct machine *machine, union perf_event *event,
998 struct perf_sample *sample __maybe_unused)
999{
1000 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
1001 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1002 struct dso *dso = map ? map__dso(map) : NULL;
1003
1004 if (dump_trace)
1005 perf_event__fprintf_text_poke(event, machine, stdout);
1006
1007 if (!event->text_poke.new_len)
1008 return 0;
1009
1010 if (cpumode != PERF_RECORD_MISC_KERNEL) {
1011 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
1012 return 0;
1013 }
1014
1015 if (dso) {
1016 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1017 int ret;
1018
1019 /*
1020 * Kernel maps might be changed when loading symbols so loading
1021 * must be done prior to using kernel maps.
1022 */
1023 map__load(map);
1024 ret = dso__data_write_cache_addr(dso, map, machine,
1025 event->text_poke.addr,
1026 new_bytes,
1027 event->text_poke.new_len);
1028 if (ret != event->text_poke.new_len)
1029 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1030 event->text_poke.addr);
1031 } else {
1032 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1033 event->text_poke.addr);
1034 }
1035
1036 return 0;
1037}
1038
1039static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1040 const char *filename)
1041{
1042 struct map *map = NULL;
1043 struct kmod_path m;
1044 struct dso *dso;
1045 int err;
1046
1047 if (kmod_path__parse_name(&m, filename))
1048 return NULL;
1049
1050 dso = machine__findnew_module_dso(machine, &m, filename);
1051 if (dso == NULL)
1052 goto out;
1053
1054 map = map__new2(start, dso);
1055 if (map == NULL)
1056 goto out;
1057
1058 err = maps__insert(machine__kernel_maps(machine), map);
1059 /* If maps__insert failed, return NULL. */
1060 if (err) {
1061 map__put(map);
1062 map = NULL;
1063 }
1064out:
1065 /* put the dso here, corresponding to machine__findnew_module_dso */
1066 dso__put(dso);
1067 zfree(&m.name);
1068 return map;
1069}
1070
1071size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1072{
1073 struct rb_node *nd;
1074 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1075
1076 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1077 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1078 ret += __dsos__fprintf(&pos->dsos.head, fp);
1079 }
1080
1081 return ret;
1082}
1083
1084size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1085 bool (skip)(struct dso *dso, int parm), int parm)
1086{
1087 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1088}
1089
1090size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1091 bool (skip)(struct dso *dso, int parm), int parm)
1092{
1093 struct rb_node *nd;
1094 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1095
1096 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1097 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1098 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1099 }
1100 return ret;
1101}
1102
1103size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1104{
1105 int i;
1106 size_t printed = 0;
1107 struct dso *kdso = machine__kernel_dso(machine);
1108
1109 if (kdso->has_build_id) {
1110 char filename[PATH_MAX];
1111 if (dso__build_id_filename(kdso, filename, sizeof(filename),
1112 false))
1113 printed += fprintf(fp, "[0] %s\n", filename);
1114 }
1115
1116 for (i = 0; i < vmlinux_path__nr_entries; ++i)
1117 printed += fprintf(fp, "[%d] %s\n",
1118 i + kdso->has_build_id, vmlinux_path[i]);
1119
1120 return printed;
1121}
1122
1123size_t machine__fprintf(struct machine *machine, FILE *fp)
1124{
1125 struct rb_node *nd;
1126 size_t ret;
1127 int i;
1128
1129 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1130 struct threads *threads = &machine->threads[i];
1131
1132 down_read(&threads->lock);
1133
1134 ret = fprintf(fp, "Threads: %u\n", threads->nr);
1135
1136 for (nd = rb_first_cached(&threads->entries); nd;
1137 nd = rb_next(nd)) {
1138 struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread;
1139
1140 ret += thread__fprintf(pos, fp);
1141 }
1142
1143 up_read(&threads->lock);
1144 }
1145 return ret;
1146}
1147
1148static struct dso *machine__get_kernel(struct machine *machine)
1149{
1150 const char *vmlinux_name = machine->mmap_name;
1151 struct dso *kernel;
1152
1153 if (machine__is_host(machine)) {
1154 if (symbol_conf.vmlinux_name)
1155 vmlinux_name = symbol_conf.vmlinux_name;
1156
1157 kernel = machine__findnew_kernel(machine, vmlinux_name,
1158 "[kernel]", DSO_SPACE__KERNEL);
1159 } else {
1160 if (symbol_conf.default_guest_vmlinux_name)
1161 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1162
1163 kernel = machine__findnew_kernel(machine, vmlinux_name,
1164 "[guest.kernel]",
1165 DSO_SPACE__KERNEL_GUEST);
1166 }
1167
1168 if (kernel != NULL && (!kernel->has_build_id))
1169 dso__read_running_kernel_build_id(kernel, machine);
1170
1171 return kernel;
1172}
1173
1174void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1175 size_t bufsz)
1176{
1177 if (machine__is_default_guest(machine))
1178 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1179 else
1180 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1181}
1182
1183const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1184
1185/* Figure out the start address of kernel map from /proc/kallsyms.
1186 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1187 * symbol_name if it's not that important.
1188 */
1189static int machine__get_running_kernel_start(struct machine *machine,
1190 const char **symbol_name,
1191 u64 *start, u64 *end)
1192{
1193 char filename[PATH_MAX];
1194 int i, err = -1;
1195 const char *name;
1196 u64 addr = 0;
1197
1198 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1199
1200 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1201 return 0;
1202
1203 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1204 err = kallsyms__get_function_start(filename, name, &addr);
1205 if (!err)
1206 break;
1207 }
1208
1209 if (err)
1210 return -1;
1211
1212 if (symbol_name)
1213 *symbol_name = name;
1214
1215 *start = addr;
1216
1217 err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1218 if (err)
1219 err = kallsyms__get_function_start(filename, "_etext", &addr);
1220 if (!err)
1221 *end = addr;
1222
1223 return 0;
1224}
1225
1226int machine__create_extra_kernel_map(struct machine *machine,
1227 struct dso *kernel,
1228 struct extra_kernel_map *xm)
1229{
1230 struct kmap *kmap;
1231 struct map *map;
1232 int err;
1233
1234 map = map__new2(xm->start, kernel);
1235 if (!map)
1236 return -ENOMEM;
1237
1238 map__set_end(map, xm->end);
1239 map__set_pgoff(map, xm->pgoff);
1240
1241 kmap = map__kmap(map);
1242
1243 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1244
1245 err = maps__insert(machine__kernel_maps(machine), map);
1246
1247 if (!err) {
1248 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1249 kmap->name, map__start(map), map__end(map));
1250 }
1251
1252 map__put(map);
1253
1254 return err;
1255}
1256
1257static u64 find_entry_trampoline(struct dso *dso)
1258{
1259 /* Duplicates are removed so lookup all aliases */
1260 const char *syms[] = {
1261 "_entry_trampoline",
1262 "__entry_trampoline_start",
1263 "entry_SYSCALL_64_trampoline",
1264 };
1265 struct symbol *sym = dso__first_symbol(dso);
1266 unsigned int i;
1267
1268 for (; sym; sym = dso__next_symbol(sym)) {
1269 if (sym->binding != STB_GLOBAL)
1270 continue;
1271 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1272 if (!strcmp(sym->name, syms[i]))
1273 return sym->start;
1274 }
1275 }
1276
1277 return 0;
1278}
1279
1280/*
1281 * These values can be used for kernels that do not have symbols for the entry
1282 * trampolines in kallsyms.
1283 */
1284#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1285#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1286#define X86_64_ENTRY_TRAMPOLINE 0x6000
1287
1288struct machine__map_x86_64_entry_trampolines_args {
1289 struct maps *kmaps;
1290 bool found;
1291};
1292
1293static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1294{
1295 struct machine__map_x86_64_entry_trampolines_args *args = data;
1296 struct map *dest_map;
1297 struct kmap *kmap = __map__kmap(map);
1298
1299 if (!kmap || !is_entry_trampoline(kmap->name))
1300 return 0;
1301
1302 dest_map = maps__find(args->kmaps, map__pgoff(map));
1303 if (dest_map != map)
1304 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1305
1306 args->found = true;
1307 return 0;
1308}
1309
1310/* Map x86_64 PTI entry trampolines */
1311int machine__map_x86_64_entry_trampolines(struct machine *machine,
1312 struct dso *kernel)
1313{
1314 struct machine__map_x86_64_entry_trampolines_args args = {
1315 .kmaps = machine__kernel_maps(machine),
1316 .found = false,
1317 };
1318 int nr_cpus_avail, cpu;
1319 u64 pgoff;
1320
1321 /*
1322 * In the vmlinux case, pgoff is a virtual address which must now be
1323 * mapped to a vmlinux offset.
1324 */
1325 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1326
1327 if (args.found || machine->trampolines_mapped)
1328 return 0;
1329
1330 pgoff = find_entry_trampoline(kernel);
1331 if (!pgoff)
1332 return 0;
1333
1334 nr_cpus_avail = machine__nr_cpus_avail(machine);
1335
1336 /* Add a 1 page map for each CPU's entry trampoline */
1337 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1338 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1339 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1340 X86_64_ENTRY_TRAMPOLINE;
1341 struct extra_kernel_map xm = {
1342 .start = va,
1343 .end = va + page_size,
1344 .pgoff = pgoff,
1345 };
1346
1347 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1348
1349 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1350 return -1;
1351 }
1352
1353 machine->trampolines_mapped = nr_cpus_avail;
1354
1355 return 0;
1356}
1357
1358int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1359 struct dso *kernel __maybe_unused)
1360{
1361 return 0;
1362}
1363
1364static int
1365__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1366{
1367 /* In case of renewal the kernel map, destroy previous one */
1368 machine__destroy_kernel_maps(machine);
1369
1370 map__put(machine->vmlinux_map);
1371 machine->vmlinux_map = map__new2(0, kernel);
1372 if (machine->vmlinux_map == NULL)
1373 return -ENOMEM;
1374
1375 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1376 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1377}
1378
1379void machine__destroy_kernel_maps(struct machine *machine)
1380{
1381 struct kmap *kmap;
1382 struct map *map = machine__kernel_map(machine);
1383
1384 if (map == NULL)
1385 return;
1386
1387 kmap = map__kmap(map);
1388 maps__remove(machine__kernel_maps(machine), map);
1389 if (kmap && kmap->ref_reloc_sym) {
1390 zfree((char **)&kmap->ref_reloc_sym->name);
1391 zfree(&kmap->ref_reloc_sym);
1392 }
1393
1394 map__zput(machine->vmlinux_map);
1395}
1396
1397int machines__create_guest_kernel_maps(struct machines *machines)
1398{
1399 int ret = 0;
1400 struct dirent **namelist = NULL;
1401 int i, items = 0;
1402 char path[PATH_MAX];
1403 pid_t pid;
1404 char *endp;
1405
1406 if (symbol_conf.default_guest_vmlinux_name ||
1407 symbol_conf.default_guest_modules ||
1408 symbol_conf.default_guest_kallsyms) {
1409 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1410 }
1411
1412 if (symbol_conf.guestmount) {
1413 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1414 if (items <= 0)
1415 return -ENOENT;
1416 for (i = 0; i < items; i++) {
1417 if (!isdigit(namelist[i]->d_name[0])) {
1418 /* Filter out . and .. */
1419 continue;
1420 }
1421 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1422 if ((*endp != '\0') ||
1423 (endp == namelist[i]->d_name) ||
1424 (errno == ERANGE)) {
1425 pr_debug("invalid directory (%s). Skipping.\n",
1426 namelist[i]->d_name);
1427 continue;
1428 }
1429 sprintf(path, "%s/%s/proc/kallsyms",
1430 symbol_conf.guestmount,
1431 namelist[i]->d_name);
1432 ret = access(path, R_OK);
1433 if (ret) {
1434 pr_debug("Can't access file %s\n", path);
1435 goto failure;
1436 }
1437 machines__create_kernel_maps(machines, pid);
1438 }
1439failure:
1440 free(namelist);
1441 }
1442
1443 return ret;
1444}
1445
1446void machines__destroy_kernel_maps(struct machines *machines)
1447{
1448 struct rb_node *next = rb_first_cached(&machines->guests);
1449
1450 machine__destroy_kernel_maps(&machines->host);
1451
1452 while (next) {
1453 struct machine *pos = rb_entry(next, struct machine, rb_node);
1454
1455 next = rb_next(&pos->rb_node);
1456 rb_erase_cached(&pos->rb_node, &machines->guests);
1457 machine__delete(pos);
1458 }
1459}
1460
1461int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1462{
1463 struct machine *machine = machines__findnew(machines, pid);
1464
1465 if (machine == NULL)
1466 return -1;
1467
1468 return machine__create_kernel_maps(machine);
1469}
1470
1471int machine__load_kallsyms(struct machine *machine, const char *filename)
1472{
1473 struct map *map = machine__kernel_map(machine);
1474 struct dso *dso = map__dso(map);
1475 int ret = __dso__load_kallsyms(dso, filename, map, true);
1476
1477 if (ret > 0) {
1478 dso__set_loaded(dso);
1479 /*
1480 * Since /proc/kallsyms will have multiple sessions for the
1481 * kernel, with modules between them, fixup the end of all
1482 * sections.
1483 */
1484 maps__fixup_end(machine__kernel_maps(machine));
1485 }
1486
1487 return ret;
1488}
1489
1490int machine__load_vmlinux_path(struct machine *machine)
1491{
1492 struct map *map = machine__kernel_map(machine);
1493 struct dso *dso = map__dso(map);
1494 int ret = dso__load_vmlinux_path(dso, map);
1495
1496 if (ret > 0)
1497 dso__set_loaded(dso);
1498
1499 return ret;
1500}
1501
1502static char *get_kernel_version(const char *root_dir)
1503{
1504 char version[PATH_MAX];
1505 FILE *file;
1506 char *name, *tmp;
1507 const char *prefix = "Linux version ";
1508
1509 sprintf(version, "%s/proc/version", root_dir);
1510 file = fopen(version, "r");
1511 if (!file)
1512 return NULL;
1513
1514 tmp = fgets(version, sizeof(version), file);
1515 fclose(file);
1516 if (!tmp)
1517 return NULL;
1518
1519 name = strstr(version, prefix);
1520 if (!name)
1521 return NULL;
1522 name += strlen(prefix);
1523 tmp = strchr(name, ' ');
1524 if (tmp)
1525 *tmp = '\0';
1526
1527 return strdup(name);
1528}
1529
1530static bool is_kmod_dso(struct dso *dso)
1531{
1532 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1533 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1534}
1535
1536static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1537{
1538 char *long_name;
1539 struct dso *dso;
1540 struct map *map = maps__find_by_name(maps, m->name);
1541
1542 if (map == NULL)
1543 return 0;
1544
1545 long_name = strdup(path);
1546 if (long_name == NULL)
1547 return -ENOMEM;
1548
1549 dso = map__dso(map);
1550 dso__set_long_name(dso, long_name, true);
1551 dso__kernel_module_get_build_id(dso, "");
1552
1553 /*
1554 * Full name could reveal us kmod compression, so
1555 * we need to update the symtab_type if needed.
1556 */
1557 if (m->comp && is_kmod_dso(dso)) {
1558 dso->symtab_type++;
1559 dso->comp = m->comp;
1560 }
1561
1562 return 0;
1563}
1564
1565static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1566{
1567 struct dirent *dent;
1568 DIR *dir = opendir(dir_name);
1569 int ret = 0;
1570
1571 if (!dir) {
1572 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1573 return -1;
1574 }
1575
1576 while ((dent = readdir(dir)) != NULL) {
1577 char path[PATH_MAX];
1578 struct stat st;
1579
1580 /*sshfs might return bad dent->d_type, so we have to stat*/
1581 path__join(path, sizeof(path), dir_name, dent->d_name);
1582 if (stat(path, &st))
1583 continue;
1584
1585 if (S_ISDIR(st.st_mode)) {
1586 if (!strcmp(dent->d_name, ".") ||
1587 !strcmp(dent->d_name, ".."))
1588 continue;
1589
1590 /* Do not follow top-level source and build symlinks */
1591 if (depth == 0) {
1592 if (!strcmp(dent->d_name, "source") ||
1593 !strcmp(dent->d_name, "build"))
1594 continue;
1595 }
1596
1597 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1598 if (ret < 0)
1599 goto out;
1600 } else {
1601 struct kmod_path m;
1602
1603 ret = kmod_path__parse_name(&m, dent->d_name);
1604 if (ret)
1605 goto out;
1606
1607 if (m.kmod)
1608 ret = maps__set_module_path(maps, path, &m);
1609
1610 zfree(&m.name);
1611
1612 if (ret)
1613 goto out;
1614 }
1615 }
1616
1617out:
1618 closedir(dir);
1619 return ret;
1620}
1621
1622static int machine__set_modules_path(struct machine *machine)
1623{
1624 char *version;
1625 char modules_path[PATH_MAX];
1626
1627 version = get_kernel_version(machine->root_dir);
1628 if (!version)
1629 return -1;
1630
1631 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1632 machine->root_dir, version);
1633 free(version);
1634
1635 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1636}
1637int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1638 u64 *size __maybe_unused,
1639 const char *name __maybe_unused)
1640{
1641 return 0;
1642}
1643
1644static int machine__create_module(void *arg, const char *name, u64 start,
1645 u64 size)
1646{
1647 struct machine *machine = arg;
1648 struct map *map;
1649
1650 if (arch__fix_module_text_start(&start, &size, name) < 0)
1651 return -1;
1652
1653 map = machine__addnew_module_map(machine, start, name);
1654 if (map == NULL)
1655 return -1;
1656 map__set_end(map, start + size);
1657
1658 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1659 map__put(map);
1660 return 0;
1661}
1662
1663static int machine__create_modules(struct machine *machine)
1664{
1665 const char *modules;
1666 char path[PATH_MAX];
1667
1668 if (machine__is_default_guest(machine)) {
1669 modules = symbol_conf.default_guest_modules;
1670 } else {
1671 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1672 modules = path;
1673 }
1674
1675 if (symbol__restricted_filename(modules, "/proc/modules"))
1676 return -1;
1677
1678 if (modules__parse(modules, machine, machine__create_module))
1679 return -1;
1680
1681 if (!machine__set_modules_path(machine))
1682 return 0;
1683
1684 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1685
1686 return 0;
1687}
1688
1689static void machine__set_kernel_mmap(struct machine *machine,
1690 u64 start, u64 end)
1691{
1692 map__set_start(machine->vmlinux_map, start);
1693 map__set_end(machine->vmlinux_map, end);
1694 /*
1695 * Be a bit paranoid here, some perf.data file came with
1696 * a zero sized synthesized MMAP event for the kernel.
1697 */
1698 if (start == 0 && end == 0)
1699 map__set_end(machine->vmlinux_map, ~0ULL);
1700}
1701
1702static int machine__update_kernel_mmap(struct machine *machine,
1703 u64 start, u64 end)
1704{
1705 struct map *orig, *updated;
1706 int err;
1707
1708 orig = machine->vmlinux_map;
1709 updated = map__get(orig);
1710
1711 machine->vmlinux_map = updated;
1712 machine__set_kernel_mmap(machine, start, end);
1713 maps__remove(machine__kernel_maps(machine), orig);
1714 err = maps__insert(machine__kernel_maps(machine), updated);
1715 map__put(orig);
1716
1717 return err;
1718}
1719
1720int machine__create_kernel_maps(struct machine *machine)
1721{
1722 struct dso *kernel = machine__get_kernel(machine);
1723 const char *name = NULL;
1724 u64 start = 0, end = ~0ULL;
1725 int ret;
1726
1727 if (kernel == NULL)
1728 return -1;
1729
1730 ret = __machine__create_kernel_maps(machine, kernel);
1731 if (ret < 0)
1732 goto out_put;
1733
1734 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1735 if (machine__is_host(machine))
1736 pr_debug("Problems creating module maps, "
1737 "continuing anyway...\n");
1738 else
1739 pr_debug("Problems creating module maps for guest %d, "
1740 "continuing anyway...\n", machine->pid);
1741 }
1742
1743 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1744 if (name &&
1745 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1746 machine__destroy_kernel_maps(machine);
1747 ret = -1;
1748 goto out_put;
1749 }
1750
1751 /*
1752 * we have a real start address now, so re-order the kmaps
1753 * assume it's the last in the kmaps
1754 */
1755 ret = machine__update_kernel_mmap(machine, start, end);
1756 if (ret < 0)
1757 goto out_put;
1758 }
1759
1760 if (machine__create_extra_kernel_maps(machine, kernel))
1761 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1762
1763 if (end == ~0ULL) {
1764 /* update end address of the kernel map using adjacent module address */
1765 struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1766 machine__kernel_map(machine));
1767
1768 if (next)
1769 machine__set_kernel_mmap(machine, start, map__start(next));
1770 }
1771
1772out_put:
1773 dso__put(kernel);
1774 return ret;
1775}
1776
1777static bool machine__uses_kcore(struct machine *machine)
1778{
1779 struct dso *dso;
1780
1781 list_for_each_entry(dso, &machine->dsos.head, node) {
1782 if (dso__is_kcore(dso))
1783 return true;
1784 }
1785
1786 return false;
1787}
1788
1789static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1790 struct extra_kernel_map *xm)
1791{
1792 return machine__is(machine, "x86_64") &&
1793 is_entry_trampoline(xm->name);
1794}
1795
1796static int machine__process_extra_kernel_map(struct machine *machine,
1797 struct extra_kernel_map *xm)
1798{
1799 struct dso *kernel = machine__kernel_dso(machine);
1800
1801 if (kernel == NULL)
1802 return -1;
1803
1804 return machine__create_extra_kernel_map(machine, kernel, xm);
1805}
1806
1807static int machine__process_kernel_mmap_event(struct machine *machine,
1808 struct extra_kernel_map *xm,
1809 struct build_id *bid)
1810{
1811 enum dso_space_type dso_space;
1812 bool is_kernel_mmap;
1813 const char *mmap_name = machine->mmap_name;
1814
1815 /* If we have maps from kcore then we do not need or want any others */
1816 if (machine__uses_kcore(machine))
1817 return 0;
1818
1819 if (machine__is_host(machine))
1820 dso_space = DSO_SPACE__KERNEL;
1821 else
1822 dso_space = DSO_SPACE__KERNEL_GUEST;
1823
1824 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1825 if (!is_kernel_mmap && !machine__is_host(machine)) {
1826 /*
1827 * If the event was recorded inside the guest and injected into
1828 * the host perf.data file, then it will match a host mmap_name,
1829 * so try that - see machine__set_mmap_name().
1830 */
1831 mmap_name = "[kernel.kallsyms]";
1832 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1833 }
1834 if (xm->name[0] == '/' ||
1835 (!is_kernel_mmap && xm->name[0] == '[')) {
1836 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1837
1838 if (map == NULL)
1839 goto out_problem;
1840
1841 map__set_end(map, map__start(map) + xm->end - xm->start);
1842
1843 if (build_id__is_defined(bid))
1844 dso__set_build_id(map__dso(map), bid);
1845
1846 map__put(map);
1847 } else if (is_kernel_mmap) {
1848 const char *symbol_name = xm->name + strlen(mmap_name);
1849 /*
1850 * Should be there already, from the build-id table in
1851 * the header.
1852 */
1853 struct dso *kernel = NULL;
1854 struct dso *dso;
1855
1856 down_read(&machine->dsos.lock);
1857
1858 list_for_each_entry(dso, &machine->dsos.head, node) {
1859
1860 /*
1861 * The cpumode passed to is_kernel_module is not the
1862 * cpumode of *this* event. If we insist on passing
1863 * correct cpumode to is_kernel_module, we should
1864 * record the cpumode when we adding this dso to the
1865 * linked list.
1866 *
1867 * However we don't really need passing correct
1868 * cpumode. We know the correct cpumode must be kernel
1869 * mode (if not, we should not link it onto kernel_dsos
1870 * list).
1871 *
1872 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1873 * is_kernel_module() treats it as a kernel cpumode.
1874 */
1875
1876 if (!dso->kernel ||
1877 is_kernel_module(dso->long_name,
1878 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1879 continue;
1880
1881
1882 kernel = dso__get(dso);
1883 break;
1884 }
1885
1886 up_read(&machine->dsos.lock);
1887
1888 if (kernel == NULL)
1889 kernel = machine__findnew_dso(machine, machine->mmap_name);
1890 if (kernel == NULL)
1891 goto out_problem;
1892
1893 kernel->kernel = dso_space;
1894 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1895 dso__put(kernel);
1896 goto out_problem;
1897 }
1898
1899 if (strstr(kernel->long_name, "vmlinux"))
1900 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1901
1902 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1903 dso__put(kernel);
1904 goto out_problem;
1905 }
1906
1907 if (build_id__is_defined(bid))
1908 dso__set_build_id(kernel, bid);
1909
1910 /*
1911 * Avoid using a zero address (kptr_restrict) for the ref reloc
1912 * symbol. Effectively having zero here means that at record
1913 * time /proc/sys/kernel/kptr_restrict was non zero.
1914 */
1915 if (xm->pgoff != 0) {
1916 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1917 symbol_name,
1918 xm->pgoff);
1919 }
1920
1921 if (machine__is_default_guest(machine)) {
1922 /*
1923 * preload dso of guest kernel and modules
1924 */
1925 dso__load(kernel, machine__kernel_map(machine));
1926 }
1927 dso__put(kernel);
1928 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1929 return machine__process_extra_kernel_map(machine, xm);
1930 }
1931 return 0;
1932out_problem:
1933 return -1;
1934}
1935
1936int machine__process_mmap2_event(struct machine *machine,
1937 union perf_event *event,
1938 struct perf_sample *sample)
1939{
1940 struct thread *thread;
1941 struct map *map;
1942 struct dso_id dso_id = {
1943 .maj = event->mmap2.maj,
1944 .min = event->mmap2.min,
1945 .ino = event->mmap2.ino,
1946 .ino_generation = event->mmap2.ino_generation,
1947 };
1948 struct build_id __bid, *bid = NULL;
1949 int ret = 0;
1950
1951 if (dump_trace)
1952 perf_event__fprintf_mmap2(event, stdout);
1953
1954 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1955 bid = &__bid;
1956 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1957 }
1958
1959 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1960 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1961 struct extra_kernel_map xm = {
1962 .start = event->mmap2.start,
1963 .end = event->mmap2.start + event->mmap2.len,
1964 .pgoff = event->mmap2.pgoff,
1965 };
1966
1967 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1968 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1969 if (ret < 0)
1970 goto out_problem;
1971 return 0;
1972 }
1973
1974 thread = machine__findnew_thread(machine, event->mmap2.pid,
1975 event->mmap2.tid);
1976 if (thread == NULL)
1977 goto out_problem;
1978
1979 map = map__new(machine, event->mmap2.start,
1980 event->mmap2.len, event->mmap2.pgoff,
1981 &dso_id, event->mmap2.prot,
1982 event->mmap2.flags, bid,
1983 event->mmap2.filename, thread);
1984
1985 if (map == NULL)
1986 goto out_problem_map;
1987
1988 ret = thread__insert_map(thread, map);
1989 if (ret)
1990 goto out_problem_insert;
1991
1992 thread__put(thread);
1993 map__put(map);
1994 return 0;
1995
1996out_problem_insert:
1997 map__put(map);
1998out_problem_map:
1999 thread__put(thread);
2000out_problem:
2001 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
2002 return 0;
2003}
2004
2005int machine__process_mmap_event(struct machine *machine, union perf_event *event,
2006 struct perf_sample *sample)
2007{
2008 struct thread *thread;
2009 struct map *map;
2010 u32 prot = 0;
2011 int ret = 0;
2012
2013 if (dump_trace)
2014 perf_event__fprintf_mmap(event, stdout);
2015
2016 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
2017 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
2018 struct extra_kernel_map xm = {
2019 .start = event->mmap.start,
2020 .end = event->mmap.start + event->mmap.len,
2021 .pgoff = event->mmap.pgoff,
2022 };
2023
2024 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
2025 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
2026 if (ret < 0)
2027 goto out_problem;
2028 return 0;
2029 }
2030
2031 thread = machine__findnew_thread(machine, event->mmap.pid,
2032 event->mmap.tid);
2033 if (thread == NULL)
2034 goto out_problem;
2035
2036 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2037 prot = PROT_EXEC;
2038
2039 map = map__new(machine, event->mmap.start,
2040 event->mmap.len, event->mmap.pgoff,
2041 NULL, prot, 0, NULL, event->mmap.filename, thread);
2042
2043 if (map == NULL)
2044 goto out_problem_map;
2045
2046 ret = thread__insert_map(thread, map);
2047 if (ret)
2048 goto out_problem_insert;
2049
2050 thread__put(thread);
2051 map__put(map);
2052 return 0;
2053
2054out_problem_insert:
2055 map__put(map);
2056out_problem_map:
2057 thread__put(thread);
2058out_problem:
2059 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2060 return 0;
2061}
2062
2063static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
2064 struct thread *th, bool lock)
2065{
2066 struct threads *threads = machine__threads(machine, thread__tid(th));
2067
2068 if (!nd)
2069 nd = thread_rb_node__find(th, &threads->entries.rb_root);
2070
2071 if (threads->last_match && RC_CHK_EQUAL(threads->last_match, th))
2072 threads__set_last_match(threads, NULL);
2073
2074 if (lock)
2075 down_write(&threads->lock);
2076
2077 BUG_ON(refcount_read(thread__refcnt(th)) == 0);
2078
2079 thread__put(nd->thread);
2080 rb_erase_cached(&nd->rb_node, &threads->entries);
2081 RB_CLEAR_NODE(&nd->rb_node);
2082 --threads->nr;
2083
2084 free(nd);
2085
2086 if (lock)
2087 up_write(&threads->lock);
2088}
2089
2090void machine__remove_thread(struct machine *machine, struct thread *th)
2091{
2092 return __machine__remove_thread(machine, NULL, th, true);
2093}
2094
2095int machine__process_fork_event(struct machine *machine, union perf_event *event,
2096 struct perf_sample *sample)
2097{
2098 struct thread *thread = machine__find_thread(machine,
2099 event->fork.pid,
2100 event->fork.tid);
2101 struct thread *parent = machine__findnew_thread(machine,
2102 event->fork.ppid,
2103 event->fork.ptid);
2104 bool do_maps_clone = true;
2105 int err = 0;
2106
2107 if (dump_trace)
2108 perf_event__fprintf_task(event, stdout);
2109
2110 /*
2111 * There may be an existing thread that is not actually the parent,
2112 * either because we are processing events out of order, or because the
2113 * (fork) event that would have removed the thread was lost. Assume the
2114 * latter case and continue on as best we can.
2115 */
2116 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
2117 dump_printf("removing erroneous parent thread %d/%d\n",
2118 thread__pid(parent), thread__tid(parent));
2119 machine__remove_thread(machine, parent);
2120 thread__put(parent);
2121 parent = machine__findnew_thread(machine, event->fork.ppid,
2122 event->fork.ptid);
2123 }
2124
2125 /* if a thread currently exists for the thread id remove it */
2126 if (thread != NULL) {
2127 machine__remove_thread(machine, thread);
2128 thread__put(thread);
2129 }
2130
2131 thread = machine__findnew_thread(machine, event->fork.pid,
2132 event->fork.tid);
2133 /*
2134 * When synthesizing FORK events, we are trying to create thread
2135 * objects for the already running tasks on the machine.
2136 *
2137 * Normally, for a kernel FORK event, we want to clone the parent's
2138 * maps because that is what the kernel just did.
2139 *
2140 * But when synthesizing, this should not be done. If we do, we end up
2141 * with overlapping maps as we process the synthesized MMAP2 events that
2142 * get delivered shortly thereafter.
2143 *
2144 * Use the FORK event misc flags in an internal way to signal this
2145 * situation, so we can elide the map clone when appropriate.
2146 */
2147 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2148 do_maps_clone = false;
2149
2150 if (thread == NULL || parent == NULL ||
2151 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2152 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2153 err = -1;
2154 }
2155 thread__put(thread);
2156 thread__put(parent);
2157
2158 return err;
2159}
2160
2161int machine__process_exit_event(struct machine *machine, union perf_event *event,
2162 struct perf_sample *sample __maybe_unused)
2163{
2164 struct thread *thread = machine__find_thread(machine,
2165 event->fork.pid,
2166 event->fork.tid);
2167
2168 if (dump_trace)
2169 perf_event__fprintf_task(event, stdout);
2170
2171 if (thread != NULL) {
2172 if (symbol_conf.keep_exited_threads)
2173 thread__set_exited(thread, /*exited=*/true);
2174 else
2175 machine__remove_thread(machine, thread);
2176 }
2177 thread__put(thread);
2178 return 0;
2179}
2180
2181int machine__process_event(struct machine *machine, union perf_event *event,
2182 struct perf_sample *sample)
2183{
2184 int ret;
2185
2186 switch (event->header.type) {
2187 case PERF_RECORD_COMM:
2188 ret = machine__process_comm_event(machine, event, sample); break;
2189 case PERF_RECORD_MMAP:
2190 ret = machine__process_mmap_event(machine, event, sample); break;
2191 case PERF_RECORD_NAMESPACES:
2192 ret = machine__process_namespaces_event(machine, event, sample); break;
2193 case PERF_RECORD_CGROUP:
2194 ret = machine__process_cgroup_event(machine, event, sample); break;
2195 case PERF_RECORD_MMAP2:
2196 ret = machine__process_mmap2_event(machine, event, sample); break;
2197 case PERF_RECORD_FORK:
2198 ret = machine__process_fork_event(machine, event, sample); break;
2199 case PERF_RECORD_EXIT:
2200 ret = machine__process_exit_event(machine, event, sample); break;
2201 case PERF_RECORD_LOST:
2202 ret = machine__process_lost_event(machine, event, sample); break;
2203 case PERF_RECORD_AUX:
2204 ret = machine__process_aux_event(machine, event); break;
2205 case PERF_RECORD_ITRACE_START:
2206 ret = machine__process_itrace_start_event(machine, event); break;
2207 case PERF_RECORD_LOST_SAMPLES:
2208 ret = machine__process_lost_samples_event(machine, event, sample); break;
2209 case PERF_RECORD_SWITCH:
2210 case PERF_RECORD_SWITCH_CPU_WIDE:
2211 ret = machine__process_switch_event(machine, event); break;
2212 case PERF_RECORD_KSYMBOL:
2213 ret = machine__process_ksymbol(machine, event, sample); break;
2214 case PERF_RECORD_BPF_EVENT:
2215 ret = machine__process_bpf(machine, event, sample); break;
2216 case PERF_RECORD_TEXT_POKE:
2217 ret = machine__process_text_poke(machine, event, sample); break;
2218 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2219 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2220 default:
2221 ret = -1;
2222 break;
2223 }
2224
2225 return ret;
2226}
2227
2228static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2229{
2230 return regexec(regex, sym->name, 0, NULL, 0) == 0;
2231}
2232
2233static void ip__resolve_ams(struct thread *thread,
2234 struct addr_map_symbol *ams,
2235 u64 ip)
2236{
2237 struct addr_location al;
2238
2239 addr_location__init(&al);
2240 /*
2241 * We cannot use the header.misc hint to determine whether a
2242 * branch stack address is user, kernel, guest, hypervisor.
2243 * Branches may straddle the kernel/user/hypervisor boundaries.
2244 * Thus, we have to try consecutively until we find a match
2245 * or else, the symbol is unknown
2246 */
2247 thread__find_cpumode_addr_location(thread, ip, &al);
2248
2249 ams->addr = ip;
2250 ams->al_addr = al.addr;
2251 ams->al_level = al.level;
2252 ams->ms.maps = maps__get(al.maps);
2253 ams->ms.sym = al.sym;
2254 ams->ms.map = map__get(al.map);
2255 ams->phys_addr = 0;
2256 ams->data_page_size = 0;
2257 addr_location__exit(&al);
2258}
2259
2260static void ip__resolve_data(struct thread *thread,
2261 u8 m, struct addr_map_symbol *ams,
2262 u64 addr, u64 phys_addr, u64 daddr_page_size)
2263{
2264 struct addr_location al;
2265
2266 addr_location__init(&al);
2267
2268 thread__find_symbol(thread, m, addr, &al);
2269
2270 ams->addr = addr;
2271 ams->al_addr = al.addr;
2272 ams->al_level = al.level;
2273 ams->ms.maps = maps__get(al.maps);
2274 ams->ms.sym = al.sym;
2275 ams->ms.map = map__get(al.map);
2276 ams->phys_addr = phys_addr;
2277 ams->data_page_size = daddr_page_size;
2278 addr_location__exit(&al);
2279}
2280
2281struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2282 struct addr_location *al)
2283{
2284 struct mem_info *mi = mem_info__new();
2285
2286 if (!mi)
2287 return NULL;
2288
2289 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2290 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2291 sample->addr, sample->phys_addr,
2292 sample->data_page_size);
2293 mi->data_src.val = sample->data_src;
2294
2295 return mi;
2296}
2297
2298static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2299{
2300 struct map *map = ms->map;
2301 char *srcline = NULL;
2302 struct dso *dso;
2303
2304 if (!map || callchain_param.key == CCKEY_FUNCTION)
2305 return srcline;
2306
2307 dso = map__dso(map);
2308 srcline = srcline__tree_find(&dso->srclines, ip);
2309 if (!srcline) {
2310 bool show_sym = false;
2311 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2312
2313 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2314 ms->sym, show_sym, show_addr, ip);
2315 srcline__tree_insert(&dso->srclines, ip, srcline);
2316 }
2317
2318 return srcline;
2319}
2320
2321struct iterations {
2322 int nr_loop_iter;
2323 u64 cycles;
2324};
2325
2326static int add_callchain_ip(struct thread *thread,
2327 struct callchain_cursor *cursor,
2328 struct symbol **parent,
2329 struct addr_location *root_al,
2330 u8 *cpumode,
2331 u64 ip,
2332 bool branch,
2333 struct branch_flags *flags,
2334 struct iterations *iter,
2335 u64 branch_from)
2336{
2337 struct map_symbol ms = {};
2338 struct addr_location al;
2339 int nr_loop_iter = 0, err = 0;
2340 u64 iter_cycles = 0;
2341 const char *srcline = NULL;
2342
2343 addr_location__init(&al);
2344 al.filtered = 0;
2345 al.sym = NULL;
2346 al.srcline = NULL;
2347 if (!cpumode) {
2348 thread__find_cpumode_addr_location(thread, ip, &al);
2349 } else {
2350 if (ip >= PERF_CONTEXT_MAX) {
2351 switch (ip) {
2352 case PERF_CONTEXT_HV:
2353 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2354 break;
2355 case PERF_CONTEXT_KERNEL:
2356 *cpumode = PERF_RECORD_MISC_KERNEL;
2357 break;
2358 case PERF_CONTEXT_USER:
2359 *cpumode = PERF_RECORD_MISC_USER;
2360 break;
2361 default:
2362 pr_debug("invalid callchain context: "
2363 "%"PRId64"\n", (s64) ip);
2364 /*
2365 * It seems the callchain is corrupted.
2366 * Discard all.
2367 */
2368 callchain_cursor_reset(cursor);
2369 err = 1;
2370 goto out;
2371 }
2372 goto out;
2373 }
2374 thread__find_symbol(thread, *cpumode, ip, &al);
2375 }
2376
2377 if (al.sym != NULL) {
2378 if (perf_hpp_list.parent && !*parent &&
2379 symbol__match_regex(al.sym, &parent_regex))
2380 *parent = al.sym;
2381 else if (have_ignore_callees && root_al &&
2382 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2383 /* Treat this symbol as the root,
2384 forgetting its callees. */
2385 addr_location__copy(root_al, &al);
2386 callchain_cursor_reset(cursor);
2387 }
2388 }
2389
2390 if (symbol_conf.hide_unresolved && al.sym == NULL)
2391 goto out;
2392
2393 if (iter) {
2394 nr_loop_iter = iter->nr_loop_iter;
2395 iter_cycles = iter->cycles;
2396 }
2397
2398 ms.maps = maps__get(al.maps);
2399 ms.map = map__get(al.map);
2400 ms.sym = al.sym;
2401 srcline = callchain_srcline(&ms, al.addr);
2402 err = callchain_cursor_append(cursor, ip, &ms,
2403 branch, flags, nr_loop_iter,
2404 iter_cycles, branch_from, srcline);
2405out:
2406 addr_location__exit(&al);
2407 map_symbol__exit(&ms);
2408 return err;
2409}
2410
2411struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2412 struct addr_location *al)
2413{
2414 unsigned int i;
2415 const struct branch_stack *bs = sample->branch_stack;
2416 struct branch_entry *entries = perf_sample__branch_entries(sample);
2417 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2418
2419 if (!bi)
2420 return NULL;
2421
2422 for (i = 0; i < bs->nr; i++) {
2423 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2424 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2425 bi[i].flags = entries[i].flags;
2426 }
2427 return bi;
2428}
2429
2430static void save_iterations(struct iterations *iter,
2431 struct branch_entry *be, int nr)
2432{
2433 int i;
2434
2435 iter->nr_loop_iter++;
2436 iter->cycles = 0;
2437
2438 for (i = 0; i < nr; i++)
2439 iter->cycles += be[i].flags.cycles;
2440}
2441
2442#define CHASHSZ 127
2443#define CHASHBITS 7
2444#define NO_ENTRY 0xff
2445
2446#define PERF_MAX_BRANCH_DEPTH 127
2447
2448/* Remove loops. */
2449static int remove_loops(struct branch_entry *l, int nr,
2450 struct iterations *iter)
2451{
2452 int i, j, off;
2453 unsigned char chash[CHASHSZ];
2454
2455 memset(chash, NO_ENTRY, sizeof(chash));
2456
2457 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2458
2459 for (i = 0; i < nr; i++) {
2460 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2461
2462 /* no collision handling for now */
2463 if (chash[h] == NO_ENTRY) {
2464 chash[h] = i;
2465 } else if (l[chash[h]].from == l[i].from) {
2466 bool is_loop = true;
2467 /* check if it is a real loop */
2468 off = 0;
2469 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2470 if (l[j].from != l[i + off].from) {
2471 is_loop = false;
2472 break;
2473 }
2474 if (is_loop) {
2475 j = nr - (i + off);
2476 if (j > 0) {
2477 save_iterations(iter + i + off,
2478 l + i, off);
2479
2480 memmove(iter + i, iter + i + off,
2481 j * sizeof(*iter));
2482
2483 memmove(l + i, l + i + off,
2484 j * sizeof(*l));
2485 }
2486
2487 nr -= off;
2488 }
2489 }
2490 }
2491 return nr;
2492}
2493
2494static int lbr_callchain_add_kernel_ip(struct thread *thread,
2495 struct callchain_cursor *cursor,
2496 struct perf_sample *sample,
2497 struct symbol **parent,
2498 struct addr_location *root_al,
2499 u64 branch_from,
2500 bool callee, int end)
2501{
2502 struct ip_callchain *chain = sample->callchain;
2503 u8 cpumode = PERF_RECORD_MISC_USER;
2504 int err, i;
2505
2506 if (callee) {
2507 for (i = 0; i < end + 1; i++) {
2508 err = add_callchain_ip(thread, cursor, parent,
2509 root_al, &cpumode, chain->ips[i],
2510 false, NULL, NULL, branch_from);
2511 if (err)
2512 return err;
2513 }
2514 return 0;
2515 }
2516
2517 for (i = end; i >= 0; i--) {
2518 err = add_callchain_ip(thread, cursor, parent,
2519 root_al, &cpumode, chain->ips[i],
2520 false, NULL, NULL, branch_from);
2521 if (err)
2522 return err;
2523 }
2524
2525 return 0;
2526}
2527
2528static void save_lbr_cursor_node(struct thread *thread,
2529 struct callchain_cursor *cursor,
2530 int idx)
2531{
2532 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2533
2534 if (!lbr_stitch)
2535 return;
2536
2537 if (cursor->pos == cursor->nr) {
2538 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2539 return;
2540 }
2541
2542 if (!cursor->curr)
2543 cursor->curr = cursor->first;
2544 else
2545 cursor->curr = cursor->curr->next;
2546 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2547 sizeof(struct callchain_cursor_node));
2548
2549 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2550 cursor->pos++;
2551}
2552
2553static int lbr_callchain_add_lbr_ip(struct thread *thread,
2554 struct callchain_cursor *cursor,
2555 struct perf_sample *sample,
2556 struct symbol **parent,
2557 struct addr_location *root_al,
2558 u64 *branch_from,
2559 bool callee)
2560{
2561 struct branch_stack *lbr_stack = sample->branch_stack;
2562 struct branch_entry *entries = perf_sample__branch_entries(sample);
2563 u8 cpumode = PERF_RECORD_MISC_USER;
2564 int lbr_nr = lbr_stack->nr;
2565 struct branch_flags *flags;
2566 int err, i;
2567 u64 ip;
2568
2569 /*
2570 * The curr and pos are not used in writing session. They are cleared
2571 * in callchain_cursor_commit() when the writing session is closed.
2572 * Using curr and pos to track the current cursor node.
2573 */
2574 if (thread__lbr_stitch(thread)) {
2575 cursor->curr = NULL;
2576 cursor->pos = cursor->nr;
2577 if (cursor->nr) {
2578 cursor->curr = cursor->first;
2579 for (i = 0; i < (int)(cursor->nr - 1); i++)
2580 cursor->curr = cursor->curr->next;
2581 }
2582 }
2583
2584 if (callee) {
2585 /* Add LBR ip from first entries.to */
2586 ip = entries[0].to;
2587 flags = &entries[0].flags;
2588 *branch_from = entries[0].from;
2589 err = add_callchain_ip(thread, cursor, parent,
2590 root_al, &cpumode, ip,
2591 true, flags, NULL,
2592 *branch_from);
2593 if (err)
2594 return err;
2595
2596 /*
2597 * The number of cursor node increases.
2598 * Move the current cursor node.
2599 * But does not need to save current cursor node for entry 0.
2600 * It's impossible to stitch the whole LBRs of previous sample.
2601 */
2602 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2603 if (!cursor->curr)
2604 cursor->curr = cursor->first;
2605 else
2606 cursor->curr = cursor->curr->next;
2607 cursor->pos++;
2608 }
2609
2610 /* Add LBR ip from entries.from one by one. */
2611 for (i = 0; i < lbr_nr; i++) {
2612 ip = entries[i].from;
2613 flags = &entries[i].flags;
2614 err = add_callchain_ip(thread, cursor, parent,
2615 root_al, &cpumode, ip,
2616 true, flags, NULL,
2617 *branch_from);
2618 if (err)
2619 return err;
2620 save_lbr_cursor_node(thread, cursor, i);
2621 }
2622 return 0;
2623 }
2624
2625 /* Add LBR ip from entries.from one by one. */
2626 for (i = lbr_nr - 1; i >= 0; i--) {
2627 ip = entries[i].from;
2628 flags = &entries[i].flags;
2629 err = add_callchain_ip(thread, cursor, parent,
2630 root_al, &cpumode, ip,
2631 true, flags, NULL,
2632 *branch_from);
2633 if (err)
2634 return err;
2635 save_lbr_cursor_node(thread, cursor, i);
2636 }
2637
2638 if (lbr_nr > 0) {
2639 /* Add LBR ip from first entries.to */
2640 ip = entries[0].to;
2641 flags = &entries[0].flags;
2642 *branch_from = entries[0].from;
2643 err = add_callchain_ip(thread, cursor, parent,
2644 root_al, &cpumode, ip,
2645 true, flags, NULL,
2646 *branch_from);
2647 if (err)
2648 return err;
2649 }
2650
2651 return 0;
2652}
2653
2654static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2655 struct callchain_cursor *cursor)
2656{
2657 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2658 struct callchain_cursor_node *cnode;
2659 struct stitch_list *stitch_node;
2660 int err;
2661
2662 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2663 cnode = &stitch_node->cursor;
2664
2665 err = callchain_cursor_append(cursor, cnode->ip,
2666 &cnode->ms,
2667 cnode->branch,
2668 &cnode->branch_flags,
2669 cnode->nr_loop_iter,
2670 cnode->iter_cycles,
2671 cnode->branch_from,
2672 cnode->srcline);
2673 if (err)
2674 return err;
2675 }
2676 return 0;
2677}
2678
2679static struct stitch_list *get_stitch_node(struct thread *thread)
2680{
2681 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2682 struct stitch_list *stitch_node;
2683
2684 if (!list_empty(&lbr_stitch->free_lists)) {
2685 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2686 struct stitch_list, node);
2687 list_del(&stitch_node->node);
2688
2689 return stitch_node;
2690 }
2691
2692 return malloc(sizeof(struct stitch_list));
2693}
2694
2695static bool has_stitched_lbr(struct thread *thread,
2696 struct perf_sample *cur,
2697 struct perf_sample *prev,
2698 unsigned int max_lbr,
2699 bool callee)
2700{
2701 struct branch_stack *cur_stack = cur->branch_stack;
2702 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2703 struct branch_stack *prev_stack = prev->branch_stack;
2704 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2705 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2706 int i, j, nr_identical_branches = 0;
2707 struct stitch_list *stitch_node;
2708 u64 cur_base, distance;
2709
2710 if (!cur_stack || !prev_stack)
2711 return false;
2712
2713 /* Find the physical index of the base-of-stack for current sample. */
2714 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2715
2716 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2717 (max_lbr + prev_stack->hw_idx - cur_base);
2718 /* Previous sample has shorter stack. Nothing can be stitched. */
2719 if (distance + 1 > prev_stack->nr)
2720 return false;
2721
2722 /*
2723 * Check if there are identical LBRs between two samples.
2724 * Identical LBRs must have same from, to and flags values. Also,
2725 * they have to be saved in the same LBR registers (same physical
2726 * index).
2727 *
2728 * Starts from the base-of-stack of current sample.
2729 */
2730 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2731 if ((prev_entries[i].from != cur_entries[j].from) ||
2732 (prev_entries[i].to != cur_entries[j].to) ||
2733 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2734 break;
2735 nr_identical_branches++;
2736 }
2737
2738 if (!nr_identical_branches)
2739 return false;
2740
2741 /*
2742 * Save the LBRs between the base-of-stack of previous sample
2743 * and the base-of-stack of current sample into lbr_stitch->lists.
2744 * These LBRs will be stitched later.
2745 */
2746 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2747
2748 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2749 continue;
2750
2751 stitch_node = get_stitch_node(thread);
2752 if (!stitch_node)
2753 return false;
2754
2755 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2756 sizeof(struct callchain_cursor_node));
2757
2758 if (callee)
2759 list_add(&stitch_node->node, &lbr_stitch->lists);
2760 else
2761 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2762 }
2763
2764 return true;
2765}
2766
2767static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2768{
2769 if (thread__lbr_stitch(thread))
2770 return true;
2771
2772 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2773 if (!thread__lbr_stitch(thread))
2774 goto err;
2775
2776 thread__lbr_stitch(thread)->prev_lbr_cursor =
2777 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2778 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2779 goto free_lbr_stitch;
2780
2781 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2782 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2783
2784 return true;
2785
2786free_lbr_stitch:
2787 free(thread__lbr_stitch(thread));
2788 thread__set_lbr_stitch(thread, NULL);
2789err:
2790 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2791 thread__set_lbr_stitch_enable(thread, false);
2792 return false;
2793}
2794
2795/*
2796 * Resolve LBR callstack chain sample
2797 * Return:
2798 * 1 on success get LBR callchain information
2799 * 0 no available LBR callchain information, should try fp
2800 * negative error code on other errors.
2801 */
2802static int resolve_lbr_callchain_sample(struct thread *thread,
2803 struct callchain_cursor *cursor,
2804 struct perf_sample *sample,
2805 struct symbol **parent,
2806 struct addr_location *root_al,
2807 int max_stack,
2808 unsigned int max_lbr)
2809{
2810 bool callee = (callchain_param.order == ORDER_CALLEE);
2811 struct ip_callchain *chain = sample->callchain;
2812 int chain_nr = min(max_stack, (int)chain->nr), i;
2813 struct lbr_stitch *lbr_stitch;
2814 bool stitched_lbr = false;
2815 u64 branch_from = 0;
2816 int err;
2817
2818 for (i = 0; i < chain_nr; i++) {
2819 if (chain->ips[i] == PERF_CONTEXT_USER)
2820 break;
2821 }
2822
2823 /* LBR only affects the user callchain */
2824 if (i == chain_nr)
2825 return 0;
2826
2827 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2828 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2829 lbr_stitch = thread__lbr_stitch(thread);
2830
2831 stitched_lbr = has_stitched_lbr(thread, sample,
2832 &lbr_stitch->prev_sample,
2833 max_lbr, callee);
2834
2835 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2836 list_replace_init(&lbr_stitch->lists,
2837 &lbr_stitch->free_lists);
2838 }
2839 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2840 }
2841
2842 if (callee) {
2843 /* Add kernel ip */
2844 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2845 parent, root_al, branch_from,
2846 true, i);
2847 if (err)
2848 goto error;
2849
2850 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2851 root_al, &branch_from, true);
2852 if (err)
2853 goto error;
2854
2855 if (stitched_lbr) {
2856 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2857 if (err)
2858 goto error;
2859 }
2860
2861 } else {
2862 if (stitched_lbr) {
2863 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2864 if (err)
2865 goto error;
2866 }
2867 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2868 root_al, &branch_from, false);
2869 if (err)
2870 goto error;
2871
2872 /* Add kernel ip */
2873 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2874 parent, root_al, branch_from,
2875 false, i);
2876 if (err)
2877 goto error;
2878 }
2879 return 1;
2880
2881error:
2882 return (err < 0) ? err : 0;
2883}
2884
2885static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2886 struct callchain_cursor *cursor,
2887 struct symbol **parent,
2888 struct addr_location *root_al,
2889 u8 *cpumode, int ent)
2890{
2891 int err = 0;
2892
2893 while (--ent >= 0) {
2894 u64 ip = chain->ips[ent];
2895
2896 if (ip >= PERF_CONTEXT_MAX) {
2897 err = add_callchain_ip(thread, cursor, parent,
2898 root_al, cpumode, ip,
2899 false, NULL, NULL, 0);
2900 break;
2901 }
2902 }
2903 return err;
2904}
2905
2906static u64 get_leaf_frame_caller(struct perf_sample *sample,
2907 struct thread *thread, int usr_idx)
2908{
2909 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2910 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2911 else
2912 return 0;
2913}
2914
2915static int thread__resolve_callchain_sample(struct thread *thread,
2916 struct callchain_cursor *cursor,
2917 struct evsel *evsel,
2918 struct perf_sample *sample,
2919 struct symbol **parent,
2920 struct addr_location *root_al,
2921 int max_stack)
2922{
2923 struct branch_stack *branch = sample->branch_stack;
2924 struct branch_entry *entries = perf_sample__branch_entries(sample);
2925 struct ip_callchain *chain = sample->callchain;
2926 int chain_nr = 0;
2927 u8 cpumode = PERF_RECORD_MISC_USER;
2928 int i, j, err, nr_entries, usr_idx;
2929 int skip_idx = -1;
2930 int first_call = 0;
2931 u64 leaf_frame_caller;
2932
2933 if (chain)
2934 chain_nr = chain->nr;
2935
2936 if (evsel__has_branch_callstack(evsel)) {
2937 struct perf_env *env = evsel__env(evsel);
2938
2939 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2940 root_al, max_stack,
2941 !env ? 0 : env->max_branches);
2942 if (err)
2943 return (err < 0) ? err : 0;
2944 }
2945
2946 /*
2947 * Based on DWARF debug information, some architectures skip
2948 * a callchain entry saved by the kernel.
2949 */
2950 skip_idx = arch_skip_callchain_idx(thread, chain);
2951
2952 /*
2953 * Add branches to call stack for easier browsing. This gives
2954 * more context for a sample than just the callers.
2955 *
2956 * This uses individual histograms of paths compared to the
2957 * aggregated histograms the normal LBR mode uses.
2958 *
2959 * Limitations for now:
2960 * - No extra filters
2961 * - No annotations (should annotate somehow)
2962 */
2963
2964 if (branch && callchain_param.branch_callstack) {
2965 int nr = min(max_stack, (int)branch->nr);
2966 struct branch_entry be[nr];
2967 struct iterations iter[nr];
2968
2969 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2970 pr_warning("corrupted branch chain. skipping...\n");
2971 goto check_calls;
2972 }
2973
2974 for (i = 0; i < nr; i++) {
2975 if (callchain_param.order == ORDER_CALLEE) {
2976 be[i] = entries[i];
2977
2978 if (chain == NULL)
2979 continue;
2980
2981 /*
2982 * Check for overlap into the callchain.
2983 * The return address is one off compared to
2984 * the branch entry. To adjust for this
2985 * assume the calling instruction is not longer
2986 * than 8 bytes.
2987 */
2988 if (i == skip_idx ||
2989 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2990 first_call++;
2991 else if (be[i].from < chain->ips[first_call] &&
2992 be[i].from >= chain->ips[first_call] - 8)
2993 first_call++;
2994 } else
2995 be[i] = entries[branch->nr - i - 1];
2996 }
2997
2998 memset(iter, 0, sizeof(struct iterations) * nr);
2999 nr = remove_loops(be, nr, iter);
3000
3001 for (i = 0; i < nr; i++) {
3002 err = add_callchain_ip(thread, cursor, parent,
3003 root_al,
3004 NULL, be[i].to,
3005 true, &be[i].flags,
3006 NULL, be[i].from);
3007
3008 if (!err)
3009 err = add_callchain_ip(thread, cursor, parent, root_al,
3010 NULL, be[i].from,
3011 true, &be[i].flags,
3012 &iter[i], 0);
3013 if (err == -EINVAL)
3014 break;
3015 if (err)
3016 return err;
3017 }
3018
3019 if (chain_nr == 0)
3020 return 0;
3021
3022 chain_nr -= nr;
3023 }
3024
3025check_calls:
3026 if (chain && callchain_param.order != ORDER_CALLEE) {
3027 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
3028 &cpumode, chain->nr - first_call);
3029 if (err)
3030 return (err < 0) ? err : 0;
3031 }
3032 for (i = first_call, nr_entries = 0;
3033 i < chain_nr && nr_entries < max_stack; i++) {
3034 u64 ip;
3035
3036 if (callchain_param.order == ORDER_CALLEE)
3037 j = i;
3038 else
3039 j = chain->nr - i - 1;
3040
3041#ifdef HAVE_SKIP_CALLCHAIN_IDX
3042 if (j == skip_idx)
3043 continue;
3044#endif
3045 ip = chain->ips[j];
3046 if (ip < PERF_CONTEXT_MAX)
3047 ++nr_entries;
3048 else if (callchain_param.order != ORDER_CALLEE) {
3049 err = find_prev_cpumode(chain, thread, cursor, parent,
3050 root_al, &cpumode, j);
3051 if (err)
3052 return (err < 0) ? err : 0;
3053 continue;
3054 }
3055
3056 /*
3057 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3058 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3059 * the index will be different in order to add the missing frame
3060 * at the right place.
3061 */
3062
3063 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3064
3065 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3066
3067 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3068
3069 /*
3070 * check if leaf_frame_Caller != ip to not add the same
3071 * value twice.
3072 */
3073
3074 if (leaf_frame_caller && leaf_frame_caller != ip) {
3075
3076 err = add_callchain_ip(thread, cursor, parent,
3077 root_al, &cpumode, leaf_frame_caller,
3078 false, NULL, NULL, 0);
3079 if (err)
3080 return (err < 0) ? err : 0;
3081 }
3082 }
3083
3084 err = add_callchain_ip(thread, cursor, parent,
3085 root_al, &cpumode, ip,
3086 false, NULL, NULL, 0);
3087
3088 if (err)
3089 return (err < 0) ? err : 0;
3090 }
3091
3092 return 0;
3093}
3094
3095static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3096{
3097 struct symbol *sym = ms->sym;
3098 struct map *map = ms->map;
3099 struct inline_node *inline_node;
3100 struct inline_list *ilist;
3101 struct dso *dso;
3102 u64 addr;
3103 int ret = 1;
3104 struct map_symbol ilist_ms;
3105
3106 if (!symbol_conf.inline_name || !map || !sym)
3107 return ret;
3108
3109 addr = map__dso_map_ip(map, ip);
3110 addr = map__rip_2objdump(map, addr);
3111 dso = map__dso(map);
3112
3113 inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3114 if (!inline_node) {
3115 inline_node = dso__parse_addr_inlines(dso, addr, sym);
3116 if (!inline_node)
3117 return ret;
3118 inlines__tree_insert(&dso->inlined_nodes, inline_node);
3119 }
3120
3121 ilist_ms = (struct map_symbol) {
3122 .maps = maps__get(ms->maps),
3123 .map = map__get(map),
3124 };
3125 list_for_each_entry(ilist, &inline_node->val, list) {
3126 ilist_ms.sym = ilist->symbol;
3127 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3128 NULL, 0, 0, 0, ilist->srcline);
3129
3130 if (ret != 0)
3131 return ret;
3132 }
3133 map_symbol__exit(&ilist_ms);
3134
3135 return ret;
3136}
3137
3138static int unwind_entry(struct unwind_entry *entry, void *arg)
3139{
3140 struct callchain_cursor *cursor = arg;
3141 const char *srcline = NULL;
3142 u64 addr = entry->ip;
3143
3144 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3145 return 0;
3146
3147 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3148 return 0;
3149
3150 /*
3151 * Convert entry->ip from a virtual address to an offset in
3152 * its corresponding binary.
3153 */
3154 if (entry->ms.map)
3155 addr = map__dso_map_ip(entry->ms.map, entry->ip);
3156
3157 srcline = callchain_srcline(&entry->ms, addr);
3158 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3159 false, NULL, 0, 0, 0, srcline);
3160}
3161
3162static int thread__resolve_callchain_unwind(struct thread *thread,
3163 struct callchain_cursor *cursor,
3164 struct evsel *evsel,
3165 struct perf_sample *sample,
3166 int max_stack)
3167{
3168 /* Can we do dwarf post unwind? */
3169 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3170 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3171 return 0;
3172
3173 /* Bail out if nothing was captured. */
3174 if ((!sample->user_regs.regs) ||
3175 (!sample->user_stack.size))
3176 return 0;
3177
3178 return unwind__get_entries(unwind_entry, cursor,
3179 thread, sample, max_stack, false);
3180}
3181
3182int thread__resolve_callchain(struct thread *thread,
3183 struct callchain_cursor *cursor,
3184 struct evsel *evsel,
3185 struct perf_sample *sample,
3186 struct symbol **parent,
3187 struct addr_location *root_al,
3188 int max_stack)
3189{
3190 int ret = 0;
3191
3192 if (cursor == NULL)
3193 return -ENOMEM;
3194
3195 callchain_cursor_reset(cursor);
3196
3197 if (callchain_param.order == ORDER_CALLEE) {
3198 ret = thread__resolve_callchain_sample(thread, cursor,
3199 evsel, sample,
3200 parent, root_al,
3201 max_stack);
3202 if (ret)
3203 return ret;
3204 ret = thread__resolve_callchain_unwind(thread, cursor,
3205 evsel, sample,
3206 max_stack);
3207 } else {
3208 ret = thread__resolve_callchain_unwind(thread, cursor,
3209 evsel, sample,
3210 max_stack);
3211 if (ret)
3212 return ret;
3213 ret = thread__resolve_callchain_sample(thread, cursor,
3214 evsel, sample,
3215 parent, root_al,
3216 max_stack);
3217 }
3218
3219 return ret;
3220}
3221
3222int machine__for_each_thread(struct machine *machine,
3223 int (*fn)(struct thread *thread, void *p),
3224 void *priv)
3225{
3226 struct threads *threads;
3227 struct rb_node *nd;
3228 int rc = 0;
3229 int i;
3230
3231 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3232 threads = &machine->threads[i];
3233 for (nd = rb_first_cached(&threads->entries); nd;
3234 nd = rb_next(nd)) {
3235 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
3236
3237 rc = fn(trb->thread, priv);
3238 if (rc != 0)
3239 return rc;
3240 }
3241 }
3242 return rc;
3243}
3244
3245int machines__for_each_thread(struct machines *machines,
3246 int (*fn)(struct thread *thread, void *p),
3247 void *priv)
3248{
3249 struct rb_node *nd;
3250 int rc = 0;
3251
3252 rc = machine__for_each_thread(&machines->host, fn, priv);
3253 if (rc != 0)
3254 return rc;
3255
3256 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3257 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3258
3259 rc = machine__for_each_thread(machine, fn, priv);
3260 if (rc != 0)
3261 return rc;
3262 }
3263 return rc;
3264}
3265
3266pid_t machine__get_current_tid(struct machine *machine, int cpu)
3267{
3268 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3269 return -1;
3270
3271 return machine->current_tid[cpu];
3272}
3273
3274int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3275 pid_t tid)
3276{
3277 struct thread *thread;
3278 const pid_t init_val = -1;
3279
3280 if (cpu < 0)
3281 return -EINVAL;
3282
3283 if (realloc_array_as_needed(machine->current_tid,
3284 machine->current_tid_sz,
3285 (unsigned int)cpu,
3286 &init_val))
3287 return -ENOMEM;
3288
3289 machine->current_tid[cpu] = tid;
3290
3291 thread = machine__findnew_thread(machine, pid, tid);
3292 if (!thread)
3293 return -ENOMEM;
3294
3295 thread__set_cpu(thread, cpu);
3296 thread__put(thread);
3297
3298 return 0;
3299}
3300
3301/*
3302 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3303 * machine__normalized_is() if a normalized arch is needed.
3304 */
3305bool machine__is(struct machine *machine, const char *arch)
3306{
3307 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3308}
3309
3310bool machine__normalized_is(struct machine *machine, const char *arch)
3311{
3312 return machine && !strcmp(perf_env__arch(machine->env), arch);
3313}
3314
3315int machine__nr_cpus_avail(struct machine *machine)
3316{
3317 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3318}
3319
3320int machine__get_kernel_start(struct machine *machine)
3321{
3322 struct map *map = machine__kernel_map(machine);
3323 int err = 0;
3324
3325 /*
3326 * The only addresses above 2^63 are kernel addresses of a 64-bit
3327 * kernel. Note that addresses are unsigned so that on a 32-bit system
3328 * all addresses including kernel addresses are less than 2^32. In
3329 * that case (32-bit system), if the kernel mapping is unknown, all
3330 * addresses will be assumed to be in user space - see
3331 * machine__kernel_ip().
3332 */
3333 machine->kernel_start = 1ULL << 63;
3334 if (map) {
3335 err = map__load(map);
3336 /*
3337 * On x86_64, PTI entry trampolines are less than the
3338 * start of kernel text, but still above 2^63. So leave
3339 * kernel_start = 1ULL << 63 for x86_64.
3340 */
3341 if (!err && !machine__is(machine, "x86_64"))
3342 machine->kernel_start = map__start(map);
3343 }
3344 return err;
3345}
3346
3347u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3348{
3349 u8 addr_cpumode = cpumode;
3350 bool kernel_ip;
3351
3352 if (!machine->single_address_space)
3353 goto out;
3354
3355 kernel_ip = machine__kernel_ip(machine, addr);
3356 switch (cpumode) {
3357 case PERF_RECORD_MISC_KERNEL:
3358 case PERF_RECORD_MISC_USER:
3359 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3360 PERF_RECORD_MISC_USER;
3361 break;
3362 case PERF_RECORD_MISC_GUEST_KERNEL:
3363 case PERF_RECORD_MISC_GUEST_USER:
3364 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3365 PERF_RECORD_MISC_GUEST_USER;
3366 break;
3367 default:
3368 break;
3369 }
3370out:
3371 return addr_cpumode;
3372}
3373
3374struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3375{
3376 return dsos__findnew_id(&machine->dsos, filename, id);
3377}
3378
3379struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3380{
3381 return machine__findnew_dso_id(machine, filename, NULL);
3382}
3383
3384char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3385{
3386 struct machine *machine = vmachine;
3387 struct map *map;
3388 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3389
3390 if (sym == NULL)
3391 return NULL;
3392
3393 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3394 *addrp = map__unmap_ip(map, sym->start);
3395 return sym->name;
3396}
3397
3398int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3399{
3400 struct dso *pos;
3401 int err = 0;
3402
3403 list_for_each_entry(pos, &machine->dsos.head, node) {
3404 if (fn(pos, machine, priv))
3405 err = -1;
3406 }
3407 return err;
3408}
3409
3410int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3411{
3412 struct maps *maps = machine__kernel_maps(machine);
3413
3414 return maps__for_each_map(maps, fn, priv);
3415}
3416
3417bool machine__is_lock_function(struct machine *machine, u64 addr)
3418{
3419 if (!machine->sched.text_start) {
3420 struct map *kmap;
3421 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3422
3423 if (!sym) {
3424 /* to avoid retry */
3425 machine->sched.text_start = 1;
3426 return false;
3427 }
3428
3429 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3430
3431 /* should not fail from here */
3432 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3433 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3434
3435 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3436 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3437
3438 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3439 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3440 }
3441
3442 /* failed to get kernel symbols */
3443 if (machine->sched.text_start == 1)
3444 return false;
3445
3446 /* mutex and rwsem functions are in sched text section */
3447 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3448 return true;
3449
3450 /* spinlock functions are in lock text section */
3451 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3452 return true;
3453
3454 return false;
3455}