Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
 
  19#include "srcline.h"
  20#include "symbol.h"
  21#include "sort.h"
  22#include "strlist.h"
  23#include "target.h"
  24#include "thread.h"
  25#include "util.h"
  26#include "vdso.h"
  27#include <stdbool.h>
  28#include <sys/types.h>
  29#include <sys/stat.h>
  30#include <unistd.h>
  31#include "unwind.h"
  32#include "linux/hash.h"
  33#include "asm/bug.h"
  34#include "bpf-event.h"
  35#include <internal/lib.h> // page_size
 
 
  36
  37#include <linux/ctype.h>
  38#include <symbol/kallsyms.h>
  39#include <linux/mman.h>
  40#include <linux/string.h>
  41#include <linux/zalloc.h>
  42
  43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  44
 
 
 
 
 
  45static void dsos__init(struct dsos *dsos)
  46{
  47	INIT_LIST_HEAD(&dsos->head);
  48	dsos->root = RB_ROOT;
  49	init_rwsem(&dsos->lock);
  50}
  51
  52static void machine__threads_init(struct machine *machine)
  53{
  54	int i;
  55
  56	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  57		struct threads *threads = &machine->threads[i];
  58		threads->entries = RB_ROOT_CACHED;
  59		init_rwsem(&threads->lock);
  60		threads->nr = 0;
  61		INIT_LIST_HEAD(&threads->dead);
  62		threads->last_match = NULL;
  63	}
  64}
  65
  66static int machine__set_mmap_name(struct machine *machine)
  67{
  68	if (machine__is_host(machine))
  69		machine->mmap_name = strdup("[kernel.kallsyms]");
  70	else if (machine__is_default_guest(machine))
  71		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  72	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  73			  machine->pid) < 0)
  74		machine->mmap_name = NULL;
  75
  76	return machine->mmap_name ? 0 : -ENOMEM;
  77}
  78
 
 
 
 
 
 
 
 
  79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  80{
  81	int err = -ENOMEM;
  82
  83	memset(machine, 0, sizeof(*machine));
  84	map_groups__init(&machine->kmaps, machine);
 
 
 
  85	RB_CLEAR_NODE(&machine->rb_node);
  86	dsos__init(&machine->dsos);
  87
  88	machine__threads_init(machine);
  89
  90	machine->vdso_info = NULL;
  91	machine->env = NULL;
  92
  93	machine->pid = pid;
  94
  95	machine->id_hdr_size = 0;
  96	machine->kptr_restrict_warned = false;
  97	machine->comm_exec = false;
  98	machine->kernel_start = 0;
  99	machine->vmlinux_map = NULL;
 100
 101	machine->root_dir = strdup(root_dir);
 102	if (machine->root_dir == NULL)
 103		return -ENOMEM;
 104
 105	if (machine__set_mmap_name(machine))
 106		goto out;
 107
 108	if (pid != HOST_KERNEL_ID) {
 109		struct thread *thread = machine__findnew_thread(machine, -1,
 110								pid);
 111		char comm[64];
 112
 113		if (thread == NULL)
 114			goto out;
 115
 116		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 117		thread__set_comm(thread, comm, 0);
 118		thread__put(thread);
 119	}
 120
 121	machine->current_tid = NULL;
 122	err = 0;
 123
 124out:
 125	if (err) {
 
 126		zfree(&machine->root_dir);
 127		zfree(&machine->mmap_name);
 128	}
 129	return 0;
 130}
 131
 132struct machine *machine__new_host(void)
 133{
 134	struct machine *machine = malloc(sizeof(*machine));
 135
 136	if (machine != NULL) {
 137		machine__init(machine, "", HOST_KERNEL_ID);
 138
 139		if (machine__create_kernel_maps(machine) < 0)
 140			goto out_delete;
 141	}
 142
 143	return machine;
 144out_delete:
 145	free(machine);
 146	return NULL;
 147}
 148
 149struct machine *machine__new_kallsyms(void)
 150{
 151	struct machine *machine = machine__new_host();
 152	/*
 153	 * FIXME:
 154	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 155	 *    ask for not using the kcore parsing code, once this one is fixed
 156	 *    to create a map per module.
 157	 */
 158	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 159		machine__delete(machine);
 160		machine = NULL;
 161	}
 162
 163	return machine;
 164}
 165
 166static void dsos__purge(struct dsos *dsos)
 167{
 168	struct dso *pos, *n;
 169
 170	down_write(&dsos->lock);
 171
 172	list_for_each_entry_safe(pos, n, &dsos->head, node) {
 173		RB_CLEAR_NODE(&pos->rb_node);
 174		pos->root = NULL;
 175		list_del_init(&pos->node);
 176		dso__put(pos);
 177	}
 178
 179	up_write(&dsos->lock);
 180}
 181
 182static void dsos__exit(struct dsos *dsos)
 183{
 184	dsos__purge(dsos);
 185	exit_rwsem(&dsos->lock);
 186}
 187
 188void machine__delete_threads(struct machine *machine)
 189{
 190	struct rb_node *nd;
 191	int i;
 192
 193	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 194		struct threads *threads = &machine->threads[i];
 195		down_write(&threads->lock);
 196		nd = rb_first_cached(&threads->entries);
 197		while (nd) {
 198			struct thread *t = rb_entry(nd, struct thread, rb_node);
 199
 200			nd = rb_next(nd);
 201			__machine__remove_thread(machine, t, false);
 202		}
 203		up_write(&threads->lock);
 204	}
 205}
 206
 207void machine__exit(struct machine *machine)
 208{
 209	int i;
 210
 211	if (machine == NULL)
 212		return;
 213
 214	machine__destroy_kernel_maps(machine);
 215	map_groups__exit(&machine->kmaps);
 216	dsos__exit(&machine->dsos);
 217	machine__exit_vdso(machine);
 218	zfree(&machine->root_dir);
 219	zfree(&machine->mmap_name);
 220	zfree(&machine->current_tid);
 
 221
 222	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 223		struct threads *threads = &machine->threads[i];
 224		struct thread *thread, *n;
 225		/*
 226		 * Forget about the dead, at this point whatever threads were
 227		 * left in the dead lists better have a reference count taken
 228		 * by who is using them, and then, when they drop those references
 229		 * and it finally hits zero, thread__put() will check and see that
 230		 * its not in the dead threads list and will not try to remove it
 231		 * from there, just calling thread__delete() straight away.
 232		 */
 233		list_for_each_entry_safe(thread, n, &threads->dead, node)
 234			list_del_init(&thread->node);
 235
 236		exit_rwsem(&threads->lock);
 237	}
 238}
 239
 240void machine__delete(struct machine *machine)
 241{
 242	if (machine) {
 243		machine__exit(machine);
 244		free(machine);
 245	}
 246}
 247
 248void machines__init(struct machines *machines)
 249{
 250	machine__init(&machines->host, "", HOST_KERNEL_ID);
 251	machines->guests = RB_ROOT_CACHED;
 252}
 253
 254void machines__exit(struct machines *machines)
 255{
 256	machine__exit(&machines->host);
 257	/* XXX exit guest */
 258}
 259
 260struct machine *machines__add(struct machines *machines, pid_t pid,
 261			      const char *root_dir)
 262{
 263	struct rb_node **p = &machines->guests.rb_root.rb_node;
 264	struct rb_node *parent = NULL;
 265	struct machine *pos, *machine = malloc(sizeof(*machine));
 266	bool leftmost = true;
 267
 268	if (machine == NULL)
 269		return NULL;
 270
 271	if (machine__init(machine, root_dir, pid) != 0) {
 272		free(machine);
 273		return NULL;
 274	}
 275
 276	while (*p != NULL) {
 277		parent = *p;
 278		pos = rb_entry(parent, struct machine, rb_node);
 279		if (pid < pos->pid)
 280			p = &(*p)->rb_left;
 281		else {
 282			p = &(*p)->rb_right;
 283			leftmost = false;
 284		}
 285	}
 286
 287	rb_link_node(&machine->rb_node, parent, p);
 288	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 289
 
 
 290	return machine;
 291}
 292
 293void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 294{
 295	struct rb_node *nd;
 296
 297	machines->host.comm_exec = comm_exec;
 298
 299	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 300		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 301
 302		machine->comm_exec = comm_exec;
 303	}
 304}
 305
 306struct machine *machines__find(struct machines *machines, pid_t pid)
 307{
 308	struct rb_node **p = &machines->guests.rb_root.rb_node;
 309	struct rb_node *parent = NULL;
 310	struct machine *machine;
 311	struct machine *default_machine = NULL;
 312
 313	if (pid == HOST_KERNEL_ID)
 314		return &machines->host;
 315
 316	while (*p != NULL) {
 317		parent = *p;
 318		machine = rb_entry(parent, struct machine, rb_node);
 319		if (pid < machine->pid)
 320			p = &(*p)->rb_left;
 321		else if (pid > machine->pid)
 322			p = &(*p)->rb_right;
 323		else
 324			return machine;
 325		if (!machine->pid)
 326			default_machine = machine;
 327	}
 328
 329	return default_machine;
 330}
 331
 332struct machine *machines__findnew(struct machines *machines, pid_t pid)
 333{
 334	char path[PATH_MAX];
 335	const char *root_dir = "";
 336	struct machine *machine = machines__find(machines, pid);
 337
 338	if (machine && (machine->pid == pid))
 339		goto out;
 340
 341	if ((pid != HOST_KERNEL_ID) &&
 342	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 343	    (symbol_conf.guestmount)) {
 344		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 345		if (access(path, R_OK)) {
 346			static struct strlist *seen;
 347
 348			if (!seen)
 349				seen = strlist__new(NULL, NULL);
 350
 351			if (!strlist__has_entry(seen, path)) {
 352				pr_err("Can't access file %s\n", path);
 353				strlist__add(seen, path);
 354			}
 355			machine = NULL;
 356			goto out;
 357		}
 358		root_dir = path;
 359	}
 360
 361	machine = machines__add(machines, pid, root_dir);
 362out:
 363	return machine;
 364}
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366void machines__process_guests(struct machines *machines,
 367			      machine__process_t process, void *data)
 368{
 369	struct rb_node *nd;
 370
 371	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 372		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 373		process(pos, data);
 374	}
 375}
 376
 377void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 378{
 379	struct rb_node *node;
 380	struct machine *machine;
 381
 382	machines->host.id_hdr_size = id_hdr_size;
 383
 384	for (node = rb_first_cached(&machines->guests); node;
 385	     node = rb_next(node)) {
 386		machine = rb_entry(node, struct machine, rb_node);
 387		machine->id_hdr_size = id_hdr_size;
 388	}
 389
 390	return;
 391}
 392
 393static void machine__update_thread_pid(struct machine *machine,
 394				       struct thread *th, pid_t pid)
 395{
 396	struct thread *leader;
 397
 398	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 399		return;
 400
 401	th->pid_ = pid;
 402
 403	if (th->pid_ == th->tid)
 404		return;
 405
 406	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 407	if (!leader)
 408		goto out_err;
 409
 410	if (!leader->mg)
 411		leader->mg = map_groups__new(machine);
 412
 413	if (!leader->mg)
 414		goto out_err;
 415
 416	if (th->mg == leader->mg)
 417		return;
 418
 419	if (th->mg) {
 420		/*
 421		 * Maps are created from MMAP events which provide the pid and
 422		 * tid.  Consequently there never should be any maps on a thread
 423		 * with an unknown pid.  Just print an error if there are.
 424		 */
 425		if (!map_groups__empty(th->mg))
 426			pr_err("Discarding thread maps for %d:%d\n",
 427			       th->pid_, th->tid);
 428		map_groups__put(th->mg);
 429	}
 430
 431	th->mg = map_groups__get(leader->mg);
 432out_put:
 433	thread__put(leader);
 434	return;
 435out_err:
 436	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 437	goto out_put;
 438}
 439
 440/*
 441 * Front-end cache - TID lookups come in blocks,
 442 * so most of the time we dont have to look up
 443 * the full rbtree:
 444 */
 445static struct thread*
 446__threads__get_last_match(struct threads *threads, struct machine *machine,
 447			  int pid, int tid)
 448{
 449	struct thread *th;
 450
 451	th = threads->last_match;
 452	if (th != NULL) {
 453		if (th->tid == tid) {
 454			machine__update_thread_pid(machine, th, pid);
 455			return thread__get(th);
 456		}
 457
 458		threads->last_match = NULL;
 459	}
 460
 461	return NULL;
 462}
 463
 464static struct thread*
 465threads__get_last_match(struct threads *threads, struct machine *machine,
 466			int pid, int tid)
 467{
 468	struct thread *th = NULL;
 469
 470	if (perf_singlethreaded)
 471		th = __threads__get_last_match(threads, machine, pid, tid);
 472
 473	return th;
 474}
 475
 476static void
 477__threads__set_last_match(struct threads *threads, struct thread *th)
 478{
 479	threads->last_match = th;
 480}
 481
 482static void
 483threads__set_last_match(struct threads *threads, struct thread *th)
 484{
 485	if (perf_singlethreaded)
 486		__threads__set_last_match(threads, th);
 487}
 488
 489/*
 490 * Caller must eventually drop thread->refcnt returned with a successful
 491 * lookup/new thread inserted.
 492 */
 493static struct thread *____machine__findnew_thread(struct machine *machine,
 494						  struct threads *threads,
 495						  pid_t pid, pid_t tid,
 496						  bool create)
 497{
 498	struct rb_node **p = &threads->entries.rb_root.rb_node;
 499	struct rb_node *parent = NULL;
 500	struct thread *th;
 501	bool leftmost = true;
 502
 503	th = threads__get_last_match(threads, machine, pid, tid);
 504	if (th)
 505		return th;
 506
 507	while (*p != NULL) {
 508		parent = *p;
 509		th = rb_entry(parent, struct thread, rb_node);
 510
 511		if (th->tid == tid) {
 512			threads__set_last_match(threads, th);
 513			machine__update_thread_pid(machine, th, pid);
 514			return thread__get(th);
 515		}
 516
 517		if (tid < th->tid)
 518			p = &(*p)->rb_left;
 519		else {
 520			p = &(*p)->rb_right;
 521			leftmost = false;
 522		}
 523	}
 524
 525	if (!create)
 526		return NULL;
 527
 528	th = thread__new(pid, tid);
 529	if (th != NULL) {
 530		rb_link_node(&th->rb_node, parent, p);
 531		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 532
 533		/*
 534		 * We have to initialize map_groups separately
 535		 * after rb tree is updated.
 536		 *
 537		 * The reason is that we call machine__findnew_thread
 538		 * within thread__init_map_groups to find the thread
 539		 * leader and that would screwed the rb tree.
 540		 */
 541		if (thread__init_map_groups(th, machine)) {
 542			rb_erase_cached(&th->rb_node, &threads->entries);
 543			RB_CLEAR_NODE(&th->rb_node);
 544			thread__put(th);
 545			return NULL;
 546		}
 547		/*
 548		 * It is now in the rbtree, get a ref
 549		 */
 550		thread__get(th);
 551		threads__set_last_match(threads, th);
 552		++threads->nr;
 553	}
 554
 555	return th;
 556}
 557
 558struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 559{
 560	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 561}
 562
 563struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 564				       pid_t tid)
 565{
 566	struct threads *threads = machine__threads(machine, tid);
 567	struct thread *th;
 568
 569	down_write(&threads->lock);
 570	th = __machine__findnew_thread(machine, pid, tid);
 571	up_write(&threads->lock);
 572	return th;
 573}
 574
 575struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 576				    pid_t tid)
 577{
 578	struct threads *threads = machine__threads(machine, tid);
 579	struct thread *th;
 580
 581	down_read(&threads->lock);
 582	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 583	up_read(&threads->lock);
 584	return th;
 585}
 586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587struct comm *machine__thread_exec_comm(struct machine *machine,
 588				       struct thread *thread)
 589{
 590	if (machine->comm_exec)
 591		return thread__exec_comm(thread);
 592	else
 593		return thread__comm(thread);
 594}
 595
 596int machine__process_comm_event(struct machine *machine, union perf_event *event,
 597				struct perf_sample *sample)
 598{
 599	struct thread *thread = machine__findnew_thread(machine,
 600							event->comm.pid,
 601							event->comm.tid);
 602	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 603	int err = 0;
 604
 605	if (exec)
 606		machine->comm_exec = true;
 607
 608	if (dump_trace)
 609		perf_event__fprintf_comm(event, stdout);
 610
 611	if (thread == NULL ||
 612	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 613		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 614		err = -1;
 615	}
 616
 617	thread__put(thread);
 618
 619	return err;
 620}
 621
 622int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 623				      union perf_event *event,
 624				      struct perf_sample *sample __maybe_unused)
 625{
 626	struct thread *thread = machine__findnew_thread(machine,
 627							event->namespaces.pid,
 628							event->namespaces.tid);
 629	int err = 0;
 630
 631	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 632		  "\nWARNING: kernel seems to support more namespaces than perf"
 633		  " tool.\nTry updating the perf tool..\n\n");
 634
 635	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 636		  "\nWARNING: perf tool seems to support more namespaces than"
 637		  " the kernel.\nTry updating the kernel..\n\n");
 638
 639	if (dump_trace)
 640		perf_event__fprintf_namespaces(event, stdout);
 641
 642	if (thread == NULL ||
 643	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 644		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 645		err = -1;
 646	}
 647
 648	thread__put(thread);
 649
 650	return err;
 651}
 652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653int machine__process_lost_event(struct machine *machine __maybe_unused,
 654				union perf_event *event, struct perf_sample *sample __maybe_unused)
 655{
 656	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 657		    event->lost.id, event->lost.lost);
 658	return 0;
 659}
 660
 661int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 662					union perf_event *event, struct perf_sample *sample)
 663{
 664	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 665		    sample->id, event->lost_samples.lost);
 666	return 0;
 667}
 668
 669static struct dso *machine__findnew_module_dso(struct machine *machine,
 670					       struct kmod_path *m,
 671					       const char *filename)
 672{
 673	struct dso *dso;
 674
 675	down_write(&machine->dsos.lock);
 676
 677	dso = __dsos__find(&machine->dsos, m->name, true);
 678	if (!dso) {
 679		dso = __dsos__addnew(&machine->dsos, m->name);
 680		if (dso == NULL)
 681			goto out_unlock;
 682
 683		dso__set_module_info(dso, m, machine);
 684		dso__set_long_name(dso, strdup(filename), true);
 
 685	}
 686
 687	dso__get(dso);
 688out_unlock:
 689	up_write(&machine->dsos.lock);
 690	return dso;
 691}
 692
 693int machine__process_aux_event(struct machine *machine __maybe_unused,
 694			       union perf_event *event)
 695{
 696	if (dump_trace)
 697		perf_event__fprintf_aux(event, stdout);
 698	return 0;
 699}
 700
 701int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 702					union perf_event *event)
 703{
 704	if (dump_trace)
 705		perf_event__fprintf_itrace_start(event, stdout);
 706	return 0;
 707}
 708
 
 
 
 
 
 
 
 
 709int machine__process_switch_event(struct machine *machine __maybe_unused,
 710				  union perf_event *event)
 711{
 712	if (dump_trace)
 713		perf_event__fprintf_switch(event, stdout);
 714	return 0;
 715}
 716
 717static int machine__process_ksymbol_register(struct machine *machine,
 718					     union perf_event *event,
 719					     struct perf_sample *sample __maybe_unused)
 720{
 721	struct symbol *sym;
 722	struct map *map;
 723
 724	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 725	if (!map) {
 726		map = dso__new_map(event->ksymbol.name);
 727		if (!map)
 
 
 
 
 
 
 
 728			return -ENOMEM;
 
 
 
 
 
 
 
 729
 730		map->start = event->ksymbol.addr;
 731		map->end = map->start + event->ksymbol.len;
 732		map_groups__insert(&machine->kmaps, map);
 
 
 
 
 
 
 
 733	}
 734
 735	sym = symbol__new(map->map_ip(map, map->start),
 736			  event->ksymbol.len,
 737			  0, 0, event->ksymbol.name);
 738	if (!sym)
 739		return -ENOMEM;
 740	dso__insert_symbol(map->dso, sym);
 741	return 0;
 742}
 743
 744static int machine__process_ksymbol_unregister(struct machine *machine,
 745					       union perf_event *event,
 746					       struct perf_sample *sample __maybe_unused)
 747{
 
 748	struct map *map;
 749
 750	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 751	if (map)
 752		map_groups__remove(&machine->kmaps, map);
 
 
 
 
 
 
 
 
 753
 754	return 0;
 755}
 756
 757int machine__process_ksymbol(struct machine *machine __maybe_unused,
 758			     union perf_event *event,
 759			     struct perf_sample *sample)
 760{
 761	if (dump_trace)
 762		perf_event__fprintf_ksymbol(event, stdout);
 763
 764	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 765		return machine__process_ksymbol_unregister(machine, event,
 766							   sample);
 767	return machine__process_ksymbol_register(machine, event, sample);
 768}
 769
 770static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 
 771{
 772	const char *dup_filename;
 
 773
 774	if (!filename || !dso || !dso->long_name)
 775		return;
 776	if (dso->long_name[0] != '[')
 777		return;
 778	if (!strchr(filename, '/'))
 779		return;
 780
 781	dup_filename = strdup(filename);
 782	if (!dup_filename)
 783		return;
 784
 785	dso__set_long_name(dso, dup_filename, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786}
 787
 788struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 789					const char *filename)
 790{
 791	struct map *map = NULL;
 792	struct dso *dso = NULL;
 793	struct kmod_path m;
 
 794
 795	if (kmod_path__parse_name(&m, filename))
 796		return NULL;
 797
 798	map = map_groups__find_by_name(&machine->kmaps, m.name);
 799	if (map) {
 800		/*
 801		 * If the map's dso is an offline module, give dso__load()
 802		 * a chance to find the file path of that module by fixing
 803		 * long_name.
 804		 */
 805		dso__adjust_kmod_long_name(map->dso, filename);
 806		goto out;
 807	}
 808
 809	dso = machine__findnew_module_dso(machine, &m, filename);
 810	if (dso == NULL)
 811		goto out;
 812
 813	map = map__new2(start, dso);
 814	if (map == NULL)
 815		goto out;
 816
 817	map_groups__insert(&machine->kmaps, map);
 818
 819	/* Put the map here because map_groups__insert alread got it */
 820	map__put(map);
 821out:
 822	/* put the dso here, corresponding to  machine__findnew_module_dso */
 823	dso__put(dso);
 824	zfree(&m.name);
 825	return map;
 826}
 827
 828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 829{
 830	struct rb_node *nd;
 831	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 832
 833	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 834		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 835		ret += __dsos__fprintf(&pos->dsos.head, fp);
 836	}
 837
 838	return ret;
 839}
 840
 841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 842				     bool (skip)(struct dso *dso, int parm), int parm)
 843{
 844	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 845}
 846
 847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 848				     bool (skip)(struct dso *dso, int parm), int parm)
 849{
 850	struct rb_node *nd;
 851	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 852
 853	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 854		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 855		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 856	}
 857	return ret;
 858}
 859
 860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 861{
 862	int i;
 863	size_t printed = 0;
 864	struct dso *kdso = machine__kernel_map(machine)->dso;
 865
 866	if (kdso->has_build_id) {
 867		char filename[PATH_MAX];
 868		if (dso__build_id_filename(kdso, filename, sizeof(filename),
 869					   false))
 870			printed += fprintf(fp, "[0] %s\n", filename);
 871	}
 872
 873	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 874		printed += fprintf(fp, "[%d] %s\n",
 875				   i + kdso->has_build_id, vmlinux_path[i]);
 876
 877	return printed;
 878}
 879
 880size_t machine__fprintf(struct machine *machine, FILE *fp)
 881{
 882	struct rb_node *nd;
 883	size_t ret;
 884	int i;
 885
 886	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 887		struct threads *threads = &machine->threads[i];
 888
 889		down_read(&threads->lock);
 890
 891		ret = fprintf(fp, "Threads: %u\n", threads->nr);
 892
 893		for (nd = rb_first_cached(&threads->entries); nd;
 894		     nd = rb_next(nd)) {
 895			struct thread *pos = rb_entry(nd, struct thread, rb_node);
 896
 897			ret += thread__fprintf(pos, fp);
 898		}
 899
 900		up_read(&threads->lock);
 901	}
 902	return ret;
 903}
 904
 905static struct dso *machine__get_kernel(struct machine *machine)
 906{
 907	const char *vmlinux_name = machine->mmap_name;
 908	struct dso *kernel;
 909
 910	if (machine__is_host(machine)) {
 911		if (symbol_conf.vmlinux_name)
 912			vmlinux_name = symbol_conf.vmlinux_name;
 913
 914		kernel = machine__findnew_kernel(machine, vmlinux_name,
 915						 "[kernel]", DSO_TYPE_KERNEL);
 916	} else {
 917		if (symbol_conf.default_guest_vmlinux_name)
 918			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 919
 920		kernel = machine__findnew_kernel(machine, vmlinux_name,
 921						 "[guest.kernel]",
 922						 DSO_TYPE_GUEST_KERNEL);
 923	}
 924
 925	if (kernel != NULL && (!kernel->has_build_id))
 926		dso__read_running_kernel_build_id(kernel, machine);
 927
 928	return kernel;
 929}
 930
 931struct process_args {
 932	u64 start;
 933};
 934
 935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 936				    size_t bufsz)
 937{
 938	if (machine__is_default_guest(machine))
 939		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 940	else
 941		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 942}
 943
 944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 945
 946/* Figure out the start address of kernel map from /proc/kallsyms.
 947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 948 * symbol_name if it's not that important.
 949 */
 950static int machine__get_running_kernel_start(struct machine *machine,
 951					     const char **symbol_name,
 952					     u64 *start, u64 *end)
 953{
 954	char filename[PATH_MAX];
 955	int i, err = -1;
 956	const char *name;
 957	u64 addr = 0;
 958
 959	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 960
 961	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 962		return 0;
 963
 964	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 965		err = kallsyms__get_function_start(filename, name, &addr);
 966		if (!err)
 967			break;
 968	}
 969
 970	if (err)
 971		return -1;
 972
 973	if (symbol_name)
 974		*symbol_name = name;
 975
 976	*start = addr;
 977
 978	err = kallsyms__get_function_start(filename, "_etext", &addr);
 979	if (!err)
 980		*end = addr;
 981
 982	return 0;
 983}
 984
 985int machine__create_extra_kernel_map(struct machine *machine,
 986				     struct dso *kernel,
 987				     struct extra_kernel_map *xm)
 988{
 989	struct kmap *kmap;
 990	struct map *map;
 991
 992	map = map__new2(xm->start, kernel);
 993	if (!map)
 994		return -1;
 995
 996	map->end   = xm->end;
 997	map->pgoff = xm->pgoff;
 998
 999	kmap = map__kmap(map);
1000
1001	kmap->kmaps = &machine->kmaps;
1002	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003
1004	map_groups__insert(&machine->kmaps, map);
1005
1006	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007		  kmap->name, map->start, map->end);
1008
1009	map__put(map);
1010
1011	return 0;
1012}
1013
1014static u64 find_entry_trampoline(struct dso *dso)
1015{
1016	/* Duplicates are removed so lookup all aliases */
1017	const char *syms[] = {
1018		"_entry_trampoline",
1019		"__entry_trampoline_start",
1020		"entry_SYSCALL_64_trampoline",
1021	};
1022	struct symbol *sym = dso__first_symbol(dso);
1023	unsigned int i;
1024
1025	for (; sym; sym = dso__next_symbol(sym)) {
1026		if (sym->binding != STB_GLOBAL)
1027			continue;
1028		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029			if (!strcmp(sym->name, syms[i]))
1030				return sym->start;
1031		}
1032	}
1033
1034	return 0;
1035}
1036
1037/*
1038 * These values can be used for kernels that do not have symbols for the entry
1039 * trampolines in kallsyms.
1040 */
1041#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1042#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1043#define X86_64_ENTRY_TRAMPOLINE		0x6000
1044
1045/* Map x86_64 PTI entry trampolines */
1046int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047					  struct dso *kernel)
1048{
1049	struct map_groups *kmaps = &machine->kmaps;
1050	struct maps *maps = &kmaps->maps;
1051	int nr_cpus_avail, cpu;
1052	bool found = false;
1053	struct map *map;
1054	u64 pgoff;
1055
1056	/*
1057	 * In the vmlinux case, pgoff is a virtual address which must now be
1058	 * mapped to a vmlinux offset.
1059	 */
1060	for (map = maps__first(maps); map; map = map__next(map)) {
1061		struct kmap *kmap = __map__kmap(map);
1062		struct map *dest_map;
1063
1064		if (!kmap || !is_entry_trampoline(kmap->name))
1065			continue;
1066
1067		dest_map = map_groups__find(kmaps, map->pgoff);
1068		if (dest_map != map)
1069			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070		found = true;
1071	}
1072	if (found || machine->trampolines_mapped)
1073		return 0;
1074
1075	pgoff = find_entry_trampoline(kernel);
1076	if (!pgoff)
1077		return 0;
1078
1079	nr_cpus_avail = machine__nr_cpus_avail(machine);
1080
1081	/* Add a 1 page map for each CPU's entry trampoline */
1082	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085			 X86_64_ENTRY_TRAMPOLINE;
1086		struct extra_kernel_map xm = {
1087			.start = va,
1088			.end   = va + page_size,
1089			.pgoff = pgoff,
1090		};
1091
1092		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1093
1094		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1095			return -1;
1096	}
1097
1098	machine->trampolines_mapped = nr_cpus_avail;
1099
1100	return 0;
1101}
1102
1103int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104					     struct dso *kernel __maybe_unused)
1105{
1106	return 0;
1107}
1108
1109static int
1110__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111{
1112	struct kmap *kmap;
1113	struct map *map;
1114
1115	/* In case of renewal the kernel map, destroy previous one */
1116	machine__destroy_kernel_maps(machine);
1117
1118	machine->vmlinux_map = map__new2(0, kernel);
1119	if (machine->vmlinux_map == NULL)
1120		return -1;
1121
1122	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123	map = machine__kernel_map(machine);
1124	kmap = map__kmap(map);
1125	if (!kmap)
1126		return -1;
1127
1128	kmap->kmaps = &machine->kmaps;
1129	map_groups__insert(&machine->kmaps, map);
1130
1131	return 0;
1132}
1133
1134void machine__destroy_kernel_maps(struct machine *machine)
1135{
1136	struct kmap *kmap;
1137	struct map *map = machine__kernel_map(machine);
1138
1139	if (map == NULL)
1140		return;
1141
1142	kmap = map__kmap(map);
1143	map_groups__remove(&machine->kmaps, map);
1144	if (kmap && kmap->ref_reloc_sym) {
1145		zfree((char **)&kmap->ref_reloc_sym->name);
1146		zfree(&kmap->ref_reloc_sym);
1147	}
1148
1149	map__zput(machine->vmlinux_map);
1150}
1151
1152int machines__create_guest_kernel_maps(struct machines *machines)
1153{
1154	int ret = 0;
1155	struct dirent **namelist = NULL;
1156	int i, items = 0;
1157	char path[PATH_MAX];
1158	pid_t pid;
1159	char *endp;
1160
1161	if (symbol_conf.default_guest_vmlinux_name ||
1162	    symbol_conf.default_guest_modules ||
1163	    symbol_conf.default_guest_kallsyms) {
1164		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165	}
1166
1167	if (symbol_conf.guestmount) {
1168		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169		if (items <= 0)
1170			return -ENOENT;
1171		for (i = 0; i < items; i++) {
1172			if (!isdigit(namelist[i]->d_name[0])) {
1173				/* Filter out . and .. */
1174				continue;
1175			}
1176			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177			if ((*endp != '\0') ||
1178			    (endp == namelist[i]->d_name) ||
1179			    (errno == ERANGE)) {
1180				pr_debug("invalid directory (%s). Skipping.\n",
1181					 namelist[i]->d_name);
1182				continue;
1183			}
1184			sprintf(path, "%s/%s/proc/kallsyms",
1185				symbol_conf.guestmount,
1186				namelist[i]->d_name);
1187			ret = access(path, R_OK);
1188			if (ret) {
1189				pr_debug("Can't access file %s\n", path);
1190				goto failure;
1191			}
1192			machines__create_kernel_maps(machines, pid);
1193		}
1194failure:
1195		free(namelist);
1196	}
1197
1198	return ret;
1199}
1200
1201void machines__destroy_kernel_maps(struct machines *machines)
1202{
1203	struct rb_node *next = rb_first_cached(&machines->guests);
1204
1205	machine__destroy_kernel_maps(&machines->host);
1206
1207	while (next) {
1208		struct machine *pos = rb_entry(next, struct machine, rb_node);
1209
1210		next = rb_next(&pos->rb_node);
1211		rb_erase_cached(&pos->rb_node, &machines->guests);
1212		machine__delete(pos);
1213	}
1214}
1215
1216int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217{
1218	struct machine *machine = machines__findnew(machines, pid);
1219
1220	if (machine == NULL)
1221		return -1;
1222
1223	return machine__create_kernel_maps(machine);
1224}
1225
1226int machine__load_kallsyms(struct machine *machine, const char *filename)
1227{
1228	struct map *map = machine__kernel_map(machine);
1229	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230
1231	if (ret > 0) {
1232		dso__set_loaded(map->dso);
1233		/*
1234		 * Since /proc/kallsyms will have multiple sessions for the
1235		 * kernel, with modules between them, fixup the end of all
1236		 * sections.
1237		 */
1238		map_groups__fixup_end(&machine->kmaps);
1239	}
1240
1241	return ret;
1242}
1243
1244int machine__load_vmlinux_path(struct machine *machine)
1245{
1246	struct map *map = machine__kernel_map(machine);
1247	int ret = dso__load_vmlinux_path(map->dso, map);
1248
1249	if (ret > 0)
1250		dso__set_loaded(map->dso);
1251
1252	return ret;
1253}
1254
1255static char *get_kernel_version(const char *root_dir)
1256{
1257	char version[PATH_MAX];
1258	FILE *file;
1259	char *name, *tmp;
1260	const char *prefix = "Linux version ";
1261
1262	sprintf(version, "%s/proc/version", root_dir);
1263	file = fopen(version, "r");
1264	if (!file)
1265		return NULL;
1266
1267	tmp = fgets(version, sizeof(version), file);
1268	fclose(file);
1269	if (!tmp)
1270		return NULL;
1271
1272	name = strstr(version, prefix);
1273	if (!name)
1274		return NULL;
1275	name += strlen(prefix);
1276	tmp = strchr(name, ' ');
1277	if (tmp)
1278		*tmp = '\0';
1279
1280	return strdup(name);
1281}
1282
1283static bool is_kmod_dso(struct dso *dso)
1284{
1285	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287}
1288
1289static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290				       struct kmod_path *m)
1291{
1292	char *long_name;
1293	struct map *map = map_groups__find_by_name(mg, m->name);
1294
1295	if (map == NULL)
1296		return 0;
1297
1298	long_name = strdup(path);
1299	if (long_name == NULL)
1300		return -ENOMEM;
1301
1302	dso__set_long_name(map->dso, long_name, true);
1303	dso__kernel_module_get_build_id(map->dso, "");
1304
1305	/*
1306	 * Full name could reveal us kmod compression, so
1307	 * we need to update the symtab_type if needed.
1308	 */
1309	if (m->comp && is_kmod_dso(map->dso)) {
1310		map->dso->symtab_type++;
1311		map->dso->comp = m->comp;
1312	}
1313
1314	return 0;
1315}
1316
1317static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318				const char *dir_name, int depth)
1319{
1320	struct dirent *dent;
1321	DIR *dir = opendir(dir_name);
1322	int ret = 0;
1323
1324	if (!dir) {
1325		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326		return -1;
1327	}
1328
1329	while ((dent = readdir(dir)) != NULL) {
1330		char path[PATH_MAX];
1331		struct stat st;
1332
1333		/*sshfs might return bad dent->d_type, so we have to stat*/
1334		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335		if (stat(path, &st))
1336			continue;
1337
1338		if (S_ISDIR(st.st_mode)) {
1339			if (!strcmp(dent->d_name, ".") ||
1340			    !strcmp(dent->d_name, ".."))
1341				continue;
1342
1343			/* Do not follow top-level source and build symlinks */
1344			if (depth == 0) {
1345				if (!strcmp(dent->d_name, "source") ||
1346				    !strcmp(dent->d_name, "build"))
1347					continue;
1348			}
1349
1350			ret = map_groups__set_modules_path_dir(mg, path,
1351							       depth + 1);
1352			if (ret < 0)
1353				goto out;
1354		} else {
1355			struct kmod_path m;
1356
1357			ret = kmod_path__parse_name(&m, dent->d_name);
1358			if (ret)
1359				goto out;
1360
1361			if (m.kmod)
1362				ret = map_groups__set_module_path(mg, path, &m);
1363
1364			zfree(&m.name);
1365
1366			if (ret)
1367				goto out;
1368		}
1369	}
1370
1371out:
1372	closedir(dir);
1373	return ret;
1374}
1375
1376static int machine__set_modules_path(struct machine *machine)
1377{
1378	char *version;
1379	char modules_path[PATH_MAX];
1380
1381	version = get_kernel_version(machine->root_dir);
1382	if (!version)
1383		return -1;
1384
1385	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386		 machine->root_dir, version);
1387	free(version);
1388
1389	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390}
1391int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392				u64 *size __maybe_unused,
1393				const char *name __maybe_unused)
1394{
1395	return 0;
1396}
1397
1398static int machine__create_module(void *arg, const char *name, u64 start,
1399				  u64 size)
1400{
1401	struct machine *machine = arg;
1402	struct map *map;
1403
1404	if (arch__fix_module_text_start(&start, &size, name) < 0)
1405		return -1;
1406
1407	map = machine__findnew_module_map(machine, start, name);
1408	if (map == NULL)
1409		return -1;
1410	map->end = start + size;
1411
1412	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413
1414	return 0;
1415}
1416
1417static int machine__create_modules(struct machine *machine)
1418{
1419	const char *modules;
1420	char path[PATH_MAX];
1421
1422	if (machine__is_default_guest(machine)) {
1423		modules = symbol_conf.default_guest_modules;
1424	} else {
1425		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426		modules = path;
1427	}
1428
1429	if (symbol__restricted_filename(modules, "/proc/modules"))
1430		return -1;
1431
1432	if (modules__parse(modules, machine, machine__create_module))
1433		return -1;
1434
1435	if (!machine__set_modules_path(machine))
1436		return 0;
1437
1438	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439
1440	return 0;
1441}
1442
1443static void machine__set_kernel_mmap(struct machine *machine,
1444				     u64 start, u64 end)
1445{
1446	machine->vmlinux_map->start = start;
1447	machine->vmlinux_map->end   = end;
1448	/*
1449	 * Be a bit paranoid here, some perf.data file came with
1450	 * a zero sized synthesized MMAP event for the kernel.
1451	 */
1452	if (start == 0 && end == 0)
1453		machine->vmlinux_map->end = ~0ULL;
1454}
1455
1456static void machine__update_kernel_mmap(struct machine *machine,
1457				     u64 start, u64 end)
1458{
1459	struct map *map = machine__kernel_map(machine);
1460
1461	map__get(map);
1462	map_groups__remove(&machine->kmaps, map);
1463
1464	machine__set_kernel_mmap(machine, start, end);
1465
1466	map_groups__insert(&machine->kmaps, map);
1467	map__put(map);
1468}
1469
1470int machine__create_kernel_maps(struct machine *machine)
1471{
1472	struct dso *kernel = machine__get_kernel(machine);
1473	const char *name = NULL;
1474	struct map *map;
1475	u64 start = 0, end = ~0ULL;
1476	int ret;
1477
1478	if (kernel == NULL)
1479		return -1;
1480
1481	ret = __machine__create_kernel_maps(machine, kernel);
1482	if (ret < 0)
1483		goto out_put;
1484
1485	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486		if (machine__is_host(machine))
1487			pr_debug("Problems creating module maps, "
1488				 "continuing anyway...\n");
1489		else
1490			pr_debug("Problems creating module maps for guest %d, "
1491				 "continuing anyway...\n", machine->pid);
1492	}
1493
1494	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495		if (name &&
1496		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497			machine__destroy_kernel_maps(machine);
1498			ret = -1;
1499			goto out_put;
1500		}
1501
1502		/*
1503		 * we have a real start address now, so re-order the kmaps
1504		 * assume it's the last in the kmaps
1505		 */
1506		machine__update_kernel_mmap(machine, start, end);
1507	}
1508
1509	if (machine__create_extra_kernel_maps(machine, kernel))
1510		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511
1512	if (end == ~0ULL) {
1513		/* update end address of the kernel map using adjacent module address */
1514		map = map__next(machine__kernel_map(machine));
1515		if (map)
1516			machine__set_kernel_mmap(machine, start, map->start);
1517	}
1518
1519out_put:
1520	dso__put(kernel);
1521	return ret;
1522}
1523
1524static bool machine__uses_kcore(struct machine *machine)
1525{
1526	struct dso *dso;
1527
1528	list_for_each_entry(dso, &machine->dsos.head, node) {
1529		if (dso__is_kcore(dso))
1530			return true;
1531	}
1532
1533	return false;
1534}
1535
1536static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537					     union perf_event *event)
1538{
1539	return machine__is(machine, "x86_64") &&
1540	       is_entry_trampoline(event->mmap.filename);
1541}
1542
1543static int machine__process_extra_kernel_map(struct machine *machine,
1544					     union perf_event *event)
1545{
1546	struct map *kernel_map = machine__kernel_map(machine);
1547	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548	struct extra_kernel_map xm = {
1549		.start = event->mmap.start,
1550		.end   = event->mmap.start + event->mmap.len,
1551		.pgoff = event->mmap.pgoff,
1552	};
1553
1554	if (kernel == NULL)
1555		return -1;
1556
1557	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558
1559	return machine__create_extra_kernel_map(machine, kernel, &xm);
1560}
1561
1562static int machine__process_kernel_mmap_event(struct machine *machine,
1563					      union perf_event *event)
 
1564{
1565	struct map *map;
1566	enum dso_kernel_type kernel_type;
1567	bool is_kernel_mmap;
 
1568
1569	/* If we have maps from kcore then we do not need or want any others */
1570	if (machine__uses_kcore(machine))
1571		return 0;
1572
1573	if (machine__is_host(machine))
1574		kernel_type = DSO_TYPE_KERNEL;
1575	else
1576		kernel_type = DSO_TYPE_GUEST_KERNEL;
1577
1578	is_kernel_mmap = memcmp(event->mmap.filename,
1579				machine->mmap_name,
1580				strlen(machine->mmap_name) - 1) == 0;
1581	if (event->mmap.filename[0] == '/' ||
1582	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583		map = machine__findnew_module_map(machine, event->mmap.start,
1584						  event->mmap.filename);
 
 
 
 
 
 
 
1585		if (map == NULL)
1586			goto out_problem;
1587
1588		map->end = map->start + event->mmap.len;
 
 
 
 
1589	} else if (is_kernel_mmap) {
1590		const char *symbol_name = (event->mmap.filename +
1591				strlen(machine->mmap_name));
1592		/*
1593		 * Should be there already, from the build-id table in
1594		 * the header.
1595		 */
1596		struct dso *kernel = NULL;
1597		struct dso *dso;
1598
1599		down_read(&machine->dsos.lock);
1600
1601		list_for_each_entry(dso, &machine->dsos.head, node) {
1602
1603			/*
1604			 * The cpumode passed to is_kernel_module is not the
1605			 * cpumode of *this* event. If we insist on passing
1606			 * correct cpumode to is_kernel_module, we should
1607			 * record the cpumode when we adding this dso to the
1608			 * linked list.
1609			 *
1610			 * However we don't really need passing correct
1611			 * cpumode.  We know the correct cpumode must be kernel
1612			 * mode (if not, we should not link it onto kernel_dsos
1613			 * list).
1614			 *
1615			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616			 * is_kernel_module() treats it as a kernel cpumode.
1617			 */
1618
1619			if (!dso->kernel ||
1620			    is_kernel_module(dso->long_name,
1621					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622				continue;
1623
1624
1625			kernel = dso;
1626			break;
1627		}
1628
1629		up_read(&machine->dsos.lock);
1630
1631		if (kernel == NULL)
1632			kernel = machine__findnew_dso(machine, machine->mmap_name);
1633		if (kernel == NULL)
1634			goto out_problem;
1635
1636		kernel->kernel = kernel_type;
1637		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638			dso__put(kernel);
1639			goto out_problem;
1640		}
1641
1642		if (strstr(kernel->long_name, "vmlinux"))
1643			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644
1645		machine__update_kernel_mmap(machine, event->mmap.start,
1646					 event->mmap.start + event->mmap.len);
 
 
1647
1648		/*
1649		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650		 * symbol. Effectively having zero here means that at record
1651		 * time /proc/sys/kernel/kptr_restrict was non zero.
1652		 */
1653		if (event->mmap.pgoff != 0) {
1654			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655							symbol_name,
1656							event->mmap.pgoff);
1657		}
1658
1659		if (machine__is_default_guest(machine)) {
1660			/*
1661			 * preload dso of guest kernel and modules
1662			 */
1663			dso__load(kernel, machine__kernel_map(machine));
1664		}
1665	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666		return machine__process_extra_kernel_map(machine, event);
1667	}
1668	return 0;
1669out_problem:
1670	return -1;
1671}
1672
1673int machine__process_mmap2_event(struct machine *machine,
1674				 union perf_event *event,
1675				 struct perf_sample *sample)
1676{
1677	struct thread *thread;
1678	struct map *map;
 
 
 
 
 
 
 
1679	int ret = 0;
1680
1681	if (dump_trace)
1682		perf_event__fprintf_mmap2(event, stdout);
1683
 
 
 
 
 
1684	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686		ret = machine__process_kernel_mmap_event(machine, event);
 
 
 
 
 
 
 
1687		if (ret < 0)
1688			goto out_problem;
1689		return 0;
1690	}
1691
1692	thread = machine__findnew_thread(machine, event->mmap2.pid,
1693					event->mmap2.tid);
1694	if (thread == NULL)
1695		goto out_problem;
1696
1697	map = map__new(machine, event->mmap2.start,
1698			event->mmap2.len, event->mmap2.pgoff,
1699			event->mmap2.maj,
1700			event->mmap2.min, event->mmap2.ino,
1701			event->mmap2.ino_generation,
1702			event->mmap2.prot,
1703			event->mmap2.flags,
1704			event->mmap2.filename, thread);
1705
1706	if (map == NULL)
1707		goto out_problem_map;
1708
1709	ret = thread__insert_map(thread, map);
1710	if (ret)
1711		goto out_problem_insert;
1712
1713	thread__put(thread);
1714	map__put(map);
1715	return 0;
1716
1717out_problem_insert:
1718	map__put(map);
1719out_problem_map:
1720	thread__put(thread);
1721out_problem:
1722	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723	return 0;
1724}
1725
1726int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727				struct perf_sample *sample)
1728{
1729	struct thread *thread;
1730	struct map *map;
1731	u32 prot = 0;
1732	int ret = 0;
1733
1734	if (dump_trace)
1735		perf_event__fprintf_mmap(event, stdout);
1736
1737	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739		ret = machine__process_kernel_mmap_event(machine, event);
 
 
 
 
 
 
 
1740		if (ret < 0)
1741			goto out_problem;
1742		return 0;
1743	}
1744
1745	thread = machine__findnew_thread(machine, event->mmap.pid,
1746					 event->mmap.tid);
1747	if (thread == NULL)
1748		goto out_problem;
1749
1750	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751		prot = PROT_EXEC;
1752
1753	map = map__new(machine, event->mmap.start,
1754			event->mmap.len, event->mmap.pgoff,
1755			0, 0, 0, 0, prot, 0,
1756			event->mmap.filename,
1757			thread);
1758
1759	if (map == NULL)
1760		goto out_problem_map;
1761
1762	ret = thread__insert_map(thread, map);
1763	if (ret)
1764		goto out_problem_insert;
1765
1766	thread__put(thread);
1767	map__put(map);
1768	return 0;
1769
1770out_problem_insert:
1771	map__put(map);
1772out_problem_map:
1773	thread__put(thread);
1774out_problem:
1775	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776	return 0;
1777}
1778
1779static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1780{
1781	struct threads *threads = machine__threads(machine, th->tid);
1782
1783	if (threads->last_match == th)
1784		threads__set_last_match(threads, NULL);
1785
1786	if (lock)
1787		down_write(&threads->lock);
1788
1789	BUG_ON(refcount_read(&th->refcnt) == 0);
1790
1791	rb_erase_cached(&th->rb_node, &threads->entries);
1792	RB_CLEAR_NODE(&th->rb_node);
1793	--threads->nr;
1794	/*
1795	 * Move it first to the dead_threads list, then drop the reference,
1796	 * if this is the last reference, then the thread__delete destructor
1797	 * will be called and we will remove it from the dead_threads list.
1798	 */
1799	list_add_tail(&th->node, &threads->dead);
1800
1801	/*
1802	 * We need to do the put here because if this is the last refcount,
1803	 * then we will be touching the threads->dead head when removing the
1804	 * thread.
1805	 */
1806	thread__put(th);
1807
1808	if (lock)
1809		up_write(&threads->lock);
1810}
1811
1812void machine__remove_thread(struct machine *machine, struct thread *th)
1813{
1814	return __machine__remove_thread(machine, th, true);
1815}
1816
1817int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818				struct perf_sample *sample)
1819{
1820	struct thread *thread = machine__find_thread(machine,
1821						     event->fork.pid,
1822						     event->fork.tid);
1823	struct thread *parent = machine__findnew_thread(machine,
1824							event->fork.ppid,
1825							event->fork.ptid);
1826	bool do_maps_clone = true;
1827	int err = 0;
1828
1829	if (dump_trace)
1830		perf_event__fprintf_task(event, stdout);
1831
1832	/*
1833	 * There may be an existing thread that is not actually the parent,
1834	 * either because we are processing events out of order, or because the
1835	 * (fork) event that would have removed the thread was lost. Assume the
1836	 * latter case and continue on as best we can.
1837	 */
1838	if (parent->pid_ != (pid_t)event->fork.ppid) {
1839		dump_printf("removing erroneous parent thread %d/%d\n",
1840			    parent->pid_, parent->tid);
1841		machine__remove_thread(machine, parent);
1842		thread__put(parent);
1843		parent = machine__findnew_thread(machine, event->fork.ppid,
1844						 event->fork.ptid);
1845	}
1846
1847	/* if a thread currently exists for the thread id remove it */
1848	if (thread != NULL) {
1849		machine__remove_thread(machine, thread);
1850		thread__put(thread);
1851	}
1852
1853	thread = machine__findnew_thread(machine, event->fork.pid,
1854					 event->fork.tid);
1855	/*
1856	 * When synthesizing FORK events, we are trying to create thread
1857	 * objects for the already running tasks on the machine.
1858	 *
1859	 * Normally, for a kernel FORK event, we want to clone the parent's
1860	 * maps because that is what the kernel just did.
1861	 *
1862	 * But when synthesizing, this should not be done.  If we do, we end up
1863	 * with overlapping maps as we process the sythesized MMAP2 events that
1864	 * get delivered shortly thereafter.
1865	 *
1866	 * Use the FORK event misc flags in an internal way to signal this
1867	 * situation, so we can elide the map clone when appropriate.
1868	 */
1869	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870		do_maps_clone = false;
1871
1872	if (thread == NULL || parent == NULL ||
1873	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875		err = -1;
1876	}
1877	thread__put(thread);
1878	thread__put(parent);
1879
1880	return err;
1881}
1882
1883int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884				struct perf_sample *sample __maybe_unused)
1885{
1886	struct thread *thread = machine__find_thread(machine,
1887						     event->fork.pid,
1888						     event->fork.tid);
1889
1890	if (dump_trace)
1891		perf_event__fprintf_task(event, stdout);
1892
1893	if (thread != NULL) {
1894		thread__exited(thread);
1895		thread__put(thread);
1896	}
1897
1898	return 0;
1899}
1900
1901int machine__process_event(struct machine *machine, union perf_event *event,
1902			   struct perf_sample *sample)
1903{
1904	int ret;
1905
1906	switch (event->header.type) {
1907	case PERF_RECORD_COMM:
1908		ret = machine__process_comm_event(machine, event, sample); break;
1909	case PERF_RECORD_MMAP:
1910		ret = machine__process_mmap_event(machine, event, sample); break;
1911	case PERF_RECORD_NAMESPACES:
1912		ret = machine__process_namespaces_event(machine, event, sample); break;
 
 
1913	case PERF_RECORD_MMAP2:
1914		ret = machine__process_mmap2_event(machine, event, sample); break;
1915	case PERF_RECORD_FORK:
1916		ret = machine__process_fork_event(machine, event, sample); break;
1917	case PERF_RECORD_EXIT:
1918		ret = machine__process_exit_event(machine, event, sample); break;
1919	case PERF_RECORD_LOST:
1920		ret = machine__process_lost_event(machine, event, sample); break;
1921	case PERF_RECORD_AUX:
1922		ret = machine__process_aux_event(machine, event); break;
1923	case PERF_RECORD_ITRACE_START:
1924		ret = machine__process_itrace_start_event(machine, event); break;
1925	case PERF_RECORD_LOST_SAMPLES:
1926		ret = machine__process_lost_samples_event(machine, event, sample); break;
1927	case PERF_RECORD_SWITCH:
1928	case PERF_RECORD_SWITCH_CPU_WIDE:
1929		ret = machine__process_switch_event(machine, event); break;
1930	case PERF_RECORD_KSYMBOL:
1931		ret = machine__process_ksymbol(machine, event, sample); break;
1932	case PERF_RECORD_BPF_EVENT:
1933		ret = machine__process_bpf(machine, event, sample); break;
 
 
 
 
1934	default:
1935		ret = -1;
1936		break;
1937	}
1938
1939	return ret;
1940}
1941
1942static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943{
1944	if (!regexec(regex, sym->name, 0, NULL, 0))
1945		return 1;
1946	return 0;
1947}
1948
1949static void ip__resolve_ams(struct thread *thread,
1950			    struct addr_map_symbol *ams,
1951			    u64 ip)
1952{
1953	struct addr_location al;
1954
1955	memset(&al, 0, sizeof(al));
1956	/*
1957	 * We cannot use the header.misc hint to determine whether a
1958	 * branch stack address is user, kernel, guest, hypervisor.
1959	 * Branches may straddle the kernel/user/hypervisor boundaries.
1960	 * Thus, we have to try consecutively until we find a match
1961	 * or else, the symbol is unknown
1962	 */
1963	thread__find_cpumode_addr_location(thread, ip, &al);
1964
1965	ams->addr = ip;
1966	ams->al_addr = al.addr;
1967	ams->sym = al.sym;
1968	ams->map = al.map;
 
 
1969	ams->phys_addr = 0;
 
1970}
1971
1972static void ip__resolve_data(struct thread *thread,
1973			     u8 m, struct addr_map_symbol *ams,
1974			     u64 addr, u64 phys_addr)
1975{
1976	struct addr_location al;
1977
1978	memset(&al, 0, sizeof(al));
1979
1980	thread__find_symbol(thread, m, addr, &al);
1981
1982	ams->addr = addr;
1983	ams->al_addr = al.addr;
1984	ams->sym = al.sym;
1985	ams->map = al.map;
 
 
1986	ams->phys_addr = phys_addr;
 
1987}
1988
1989struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990				     struct addr_location *al)
1991{
1992	struct mem_info *mi = mem_info__new();
1993
1994	if (!mi)
1995		return NULL;
1996
1997	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999			 sample->addr, sample->phys_addr);
 
2000	mi->data_src.val = sample->data_src;
2001
2002	return mi;
2003}
2004
2005static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006{
 
2007	char *srcline = NULL;
2008
2009	if (!map || callchain_param.key == CCKEY_FUNCTION)
2010		return srcline;
2011
2012	srcline = srcline__tree_find(&map->dso->srclines, ip);
2013	if (!srcline) {
2014		bool show_sym = false;
2015		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016
2017		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018				      sym, show_sym, show_addr, ip);
2019		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020	}
2021
2022	return srcline;
2023}
2024
2025struct iterations {
2026	int nr_loop_iter;
2027	u64 cycles;
2028};
2029
2030static int add_callchain_ip(struct thread *thread,
2031			    struct callchain_cursor *cursor,
2032			    struct symbol **parent,
2033			    struct addr_location *root_al,
2034			    u8 *cpumode,
2035			    u64 ip,
2036			    bool branch,
2037			    struct branch_flags *flags,
2038			    struct iterations *iter,
2039			    u64 branch_from)
2040{
 
2041	struct addr_location al;
2042	int nr_loop_iter = 0;
2043	u64 iter_cycles = 0;
2044	const char *srcline = NULL;
2045
2046	al.filtered = 0;
2047	al.sym = NULL;
 
2048	if (!cpumode) {
2049		thread__find_cpumode_addr_location(thread, ip, &al);
2050	} else {
2051		if (ip >= PERF_CONTEXT_MAX) {
2052			switch (ip) {
2053			case PERF_CONTEXT_HV:
2054				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055				break;
2056			case PERF_CONTEXT_KERNEL:
2057				*cpumode = PERF_RECORD_MISC_KERNEL;
2058				break;
2059			case PERF_CONTEXT_USER:
2060				*cpumode = PERF_RECORD_MISC_USER;
2061				break;
2062			default:
2063				pr_debug("invalid callchain context: "
2064					 "%"PRId64"\n", (s64) ip);
2065				/*
2066				 * It seems the callchain is corrupted.
2067				 * Discard all.
2068				 */
2069				callchain_cursor_reset(cursor);
2070				return 1;
2071			}
2072			return 0;
2073		}
2074		thread__find_symbol(thread, *cpumode, ip, &al);
2075	}
2076
2077	if (al.sym != NULL) {
2078		if (perf_hpp_list.parent && !*parent &&
2079		    symbol__match_regex(al.sym, &parent_regex))
2080			*parent = al.sym;
2081		else if (have_ignore_callees && root_al &&
2082		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083			/* Treat this symbol as the root,
2084			   forgetting its callees. */
2085			*root_al = al;
2086			callchain_cursor_reset(cursor);
2087		}
2088	}
2089
2090	if (symbol_conf.hide_unresolved && al.sym == NULL)
2091		return 0;
2092
2093	if (iter) {
2094		nr_loop_iter = iter->nr_loop_iter;
2095		iter_cycles = iter->cycles;
2096	}
2097
2098	srcline = callchain_srcline(al.map, al.sym, al.addr);
2099	return callchain_cursor_append(cursor, ip, al.map, al.sym,
 
 
 
2100				       branch, flags, nr_loop_iter,
2101				       iter_cycles, branch_from, srcline);
2102}
2103
2104struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105					   struct addr_location *al)
2106{
2107	unsigned int i;
2108	const struct branch_stack *bs = sample->branch_stack;
 
2109	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110
2111	if (!bi)
2112		return NULL;
2113
2114	for (i = 0; i < bs->nr; i++) {
2115		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117		bi[i].flags = bs->entries[i].flags;
2118	}
2119	return bi;
2120}
2121
2122static void save_iterations(struct iterations *iter,
2123			    struct branch_entry *be, int nr)
2124{
2125	int i;
2126
2127	iter->nr_loop_iter++;
2128	iter->cycles = 0;
2129
2130	for (i = 0; i < nr; i++)
2131		iter->cycles += be[i].flags.cycles;
2132}
2133
2134#define CHASHSZ 127
2135#define CHASHBITS 7
2136#define NO_ENTRY 0xff
2137
2138#define PERF_MAX_BRANCH_DEPTH 127
2139
2140/* Remove loops. */
2141static int remove_loops(struct branch_entry *l, int nr,
2142			struct iterations *iter)
2143{
2144	int i, j, off;
2145	unsigned char chash[CHASHSZ];
2146
2147	memset(chash, NO_ENTRY, sizeof(chash));
2148
2149	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150
2151	for (i = 0; i < nr; i++) {
2152		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153
2154		/* no collision handling for now */
2155		if (chash[h] == NO_ENTRY) {
2156			chash[h] = i;
2157		} else if (l[chash[h]].from == l[i].from) {
2158			bool is_loop = true;
2159			/* check if it is a real loop */
2160			off = 0;
2161			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162				if (l[j].from != l[i + off].from) {
2163					is_loop = false;
2164					break;
2165				}
2166			if (is_loop) {
2167				j = nr - (i + off);
2168				if (j > 0) {
2169					save_iterations(iter + i + off,
2170						l + i, off);
2171
2172					memmove(iter + i, iter + i + off,
2173						j * sizeof(*iter));
2174
2175					memmove(l + i, l + i + off,
2176						j * sizeof(*l));
2177				}
2178
2179				nr -= off;
2180			}
2181		}
2182	}
2183	return nr;
2184}
2185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186/*
2187 * Recolve LBR callstack chain sample
2188 * Return:
2189 * 1 on success get LBR callchain information
2190 * 0 no available LBR callchain information, should try fp
2191 * negative error code on other errors.
2192 */
2193static int resolve_lbr_callchain_sample(struct thread *thread,
2194					struct callchain_cursor *cursor,
2195					struct perf_sample *sample,
2196					struct symbol **parent,
2197					struct addr_location *root_al,
2198					int max_stack)
 
2199{
 
2200	struct ip_callchain *chain = sample->callchain;
2201	int chain_nr = min(max_stack, (int)chain->nr), i;
2202	u8 cpumode = PERF_RECORD_MISC_USER;
2203	u64 ip, branch_from = 0;
 
 
2204
2205	for (i = 0; i < chain_nr; i++) {
2206		if (chain->ips[i] == PERF_CONTEXT_USER)
2207			break;
2208	}
2209
2210	/* LBR only affects the user callchain */
2211	if (i != chain_nr) {
2212		struct branch_stack *lbr_stack = sample->branch_stack;
2213		int lbr_nr = lbr_stack->nr, j, k;
2214		bool branch;
2215		struct branch_flags *flags;
2216		/*
2217		 * LBR callstack can only get user call chain.
2218		 * The mix_chain_nr is kernel call chain
2219		 * number plus LBR user call chain number.
2220		 * i is kernel call chain number,
2221		 * 1 is PERF_CONTEXT_USER,
2222		 * lbr_nr + 1 is the user call chain number.
2223		 * For details, please refer to the comments
2224		 * in callchain__printf
2225		 */
2226		int mix_chain_nr = i + 1 + lbr_nr + 1;
 
 
 
 
 
 
 
 
 
2227
2228		for (j = 0; j < mix_chain_nr; j++) {
2229			int err;
2230			branch = false;
2231			flags = NULL;
2232
2233			if (callchain_param.order == ORDER_CALLEE) {
2234				if (j < i + 1)
2235					ip = chain->ips[j];
2236				else if (j > i + 1) {
2237					k = j - i - 2;
2238					ip = lbr_stack->entries[k].from;
2239					branch = true;
2240					flags = &lbr_stack->entries[k].flags;
2241				} else {
2242					ip = lbr_stack->entries[0].to;
2243					branch = true;
2244					flags = &lbr_stack->entries[0].flags;
2245					branch_from =
2246						lbr_stack->entries[0].from;
2247				}
2248			} else {
2249				if (j < lbr_nr) {
2250					k = lbr_nr - j - 1;
2251					ip = lbr_stack->entries[k].from;
2252					branch = true;
2253					flags = &lbr_stack->entries[k].flags;
2254				}
2255				else if (j > lbr_nr)
2256					ip = chain->ips[i + 1 - (j - lbr_nr)];
2257				else {
2258					ip = lbr_stack->entries[0].to;
2259					branch = true;
2260					flags = &lbr_stack->entries[0].flags;
2261					branch_from =
2262						lbr_stack->entries[0].from;
2263				}
2264			}
2265
2266			err = add_callchain_ip(thread, cursor, parent,
2267					       root_al, &cpumode, ip,
2268					       branch, flags, NULL,
2269					       branch_from);
2270			if (err)
2271				return (err < 0) ? err : 0;
2272		}
2273		return 1;
 
 
 
 
 
 
 
 
 
 
2274	}
 
2275
2276	return 0;
 
2277}
2278
2279static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280			     struct callchain_cursor *cursor,
2281			     struct symbol **parent,
2282			     struct addr_location *root_al,
2283			     u8 *cpumode, int ent)
2284{
2285	int err = 0;
2286
2287	while (--ent >= 0) {
2288		u64 ip = chain->ips[ent];
2289
2290		if (ip >= PERF_CONTEXT_MAX) {
2291			err = add_callchain_ip(thread, cursor, parent,
2292					       root_al, cpumode, ip,
2293					       false, NULL, NULL, 0);
2294			break;
2295		}
2296	}
2297	return err;
2298}
2299
 
 
 
 
 
 
 
 
 
2300static int thread__resolve_callchain_sample(struct thread *thread,
2301					    struct callchain_cursor *cursor,
2302					    struct evsel *evsel,
2303					    struct perf_sample *sample,
2304					    struct symbol **parent,
2305					    struct addr_location *root_al,
2306					    int max_stack)
2307{
2308	struct branch_stack *branch = sample->branch_stack;
 
2309	struct ip_callchain *chain = sample->callchain;
2310	int chain_nr = 0;
2311	u8 cpumode = PERF_RECORD_MISC_USER;
2312	int i, j, err, nr_entries;
2313	int skip_idx = -1;
2314	int first_call = 0;
 
2315
2316	if (chain)
2317		chain_nr = chain->nr;
2318
2319	if (perf_evsel__has_branch_callstack(evsel)) {
 
 
2320		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321						   root_al, max_stack);
 
2322		if (err)
2323			return (err < 0) ? err : 0;
2324	}
2325
2326	/*
2327	 * Based on DWARF debug information, some architectures skip
2328	 * a callchain entry saved by the kernel.
2329	 */
2330	skip_idx = arch_skip_callchain_idx(thread, chain);
2331
2332	/*
2333	 * Add branches to call stack for easier browsing. This gives
2334	 * more context for a sample than just the callers.
2335	 *
2336	 * This uses individual histograms of paths compared to the
2337	 * aggregated histograms the normal LBR mode uses.
2338	 *
2339	 * Limitations for now:
2340	 * - No extra filters
2341	 * - No annotations (should annotate somehow)
2342	 */
2343
2344	if (branch && callchain_param.branch_callstack) {
2345		int nr = min(max_stack, (int)branch->nr);
2346		struct branch_entry be[nr];
2347		struct iterations iter[nr];
2348
2349		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350			pr_warning("corrupted branch chain. skipping...\n");
2351			goto check_calls;
2352		}
2353
2354		for (i = 0; i < nr; i++) {
2355			if (callchain_param.order == ORDER_CALLEE) {
2356				be[i] = branch->entries[i];
2357
2358				if (chain == NULL)
2359					continue;
2360
2361				/*
2362				 * Check for overlap into the callchain.
2363				 * The return address is one off compared to
2364				 * the branch entry. To adjust for this
2365				 * assume the calling instruction is not longer
2366				 * than 8 bytes.
2367				 */
2368				if (i == skip_idx ||
2369				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370					first_call++;
2371				else if (be[i].from < chain->ips[first_call] &&
2372				    be[i].from >= chain->ips[first_call] - 8)
2373					first_call++;
2374			} else
2375				be[i] = branch->entries[branch->nr - i - 1];
2376		}
2377
2378		memset(iter, 0, sizeof(struct iterations) * nr);
2379		nr = remove_loops(be, nr, iter);
2380
2381		for (i = 0; i < nr; i++) {
2382			err = add_callchain_ip(thread, cursor, parent,
2383					       root_al,
2384					       NULL, be[i].to,
2385					       true, &be[i].flags,
2386					       NULL, be[i].from);
2387
2388			if (!err)
2389				err = add_callchain_ip(thread, cursor, parent, root_al,
2390						       NULL, be[i].from,
2391						       true, &be[i].flags,
2392						       &iter[i], 0);
2393			if (err == -EINVAL)
2394				break;
2395			if (err)
2396				return err;
2397		}
2398
2399		if (chain_nr == 0)
2400			return 0;
2401
2402		chain_nr -= nr;
2403	}
2404
2405check_calls:
2406	if (callchain_param.order != ORDER_CALLEE) {
2407		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408					&cpumode, chain->nr - first_call);
2409		if (err)
2410			return (err < 0) ? err : 0;
2411	}
2412	for (i = first_call, nr_entries = 0;
2413	     i < chain_nr && nr_entries < max_stack; i++) {
2414		u64 ip;
2415
2416		if (callchain_param.order == ORDER_CALLEE)
2417			j = i;
2418		else
2419			j = chain->nr - i - 1;
2420
2421#ifdef HAVE_SKIP_CALLCHAIN_IDX
2422		if (j == skip_idx)
2423			continue;
2424#endif
2425		ip = chain->ips[j];
2426		if (ip < PERF_CONTEXT_MAX)
2427                       ++nr_entries;
2428		else if (callchain_param.order != ORDER_CALLEE) {
2429			err = find_prev_cpumode(chain, thread, cursor, parent,
2430						root_al, &cpumode, j);
2431			if (err)
2432				return (err < 0) ? err : 0;
2433			continue;
2434		}
2435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2436		err = add_callchain_ip(thread, cursor, parent,
2437				       root_al, &cpumode, ip,
2438				       false, NULL, NULL, 0);
2439
2440		if (err)
2441			return (err < 0) ? err : 0;
2442	}
2443
2444	return 0;
2445}
2446
2447static int append_inlines(struct callchain_cursor *cursor,
2448			  struct map *map, struct symbol *sym, u64 ip)
2449{
 
 
2450	struct inline_node *inline_node;
2451	struct inline_list *ilist;
2452	u64 addr;
2453	int ret = 1;
2454
2455	if (!symbol_conf.inline_name || !map || !sym)
2456		return ret;
2457
2458	addr = map__map_ip(map, ip);
2459	addr = map__rip_2objdump(map, addr);
2460
2461	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462	if (!inline_node) {
2463		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464		if (!inline_node)
2465			return ret;
2466		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467	}
2468
2469	list_for_each_entry(ilist, &inline_node->val, list) {
2470		ret = callchain_cursor_append(cursor, ip, map,
2471					      ilist->symbol, false,
 
 
 
 
2472					      NULL, 0, 0, 0, ilist->srcline);
2473
2474		if (ret != 0)
2475			return ret;
2476	}
2477
2478	return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483	struct callchain_cursor *cursor = arg;
2484	const char *srcline = NULL;
2485	u64 addr = entry->ip;
2486
2487	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488		return 0;
2489
2490	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491		return 0;
2492
2493	/*
2494	 * Convert entry->ip from a virtual address to an offset in
2495	 * its corresponding binary.
2496	 */
2497	if (entry->map)
2498		addr = map__map_ip(entry->map, entry->ip);
2499
2500	srcline = callchain_srcline(entry->map, entry->sym, addr);
2501	return callchain_cursor_append(cursor, entry->ip,
2502				       entry->map, entry->sym,
2503				       false, NULL, 0, 0, 0, srcline);
2504}
2505
2506static int thread__resolve_callchain_unwind(struct thread *thread,
2507					    struct callchain_cursor *cursor,
2508					    struct evsel *evsel,
2509					    struct perf_sample *sample,
2510					    int max_stack)
2511{
2512	/* Can we do dwarf post unwind? */
2513	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515		return 0;
2516
2517	/* Bail out if nothing was captured. */
2518	if ((!sample->user_regs.regs) ||
2519	    (!sample->user_stack.size))
2520		return 0;
2521
2522	return unwind__get_entries(unwind_entry, cursor,
2523				   thread, sample, max_stack);
2524}
2525
2526int thread__resolve_callchain(struct thread *thread,
2527			      struct callchain_cursor *cursor,
2528			      struct evsel *evsel,
2529			      struct perf_sample *sample,
2530			      struct symbol **parent,
2531			      struct addr_location *root_al,
2532			      int max_stack)
2533{
2534	int ret = 0;
2535
2536	callchain_cursor_reset(cursor);
2537
2538	if (callchain_param.order == ORDER_CALLEE) {
2539		ret = thread__resolve_callchain_sample(thread, cursor,
2540						       evsel, sample,
2541						       parent, root_al,
2542						       max_stack);
2543		if (ret)
2544			return ret;
2545		ret = thread__resolve_callchain_unwind(thread, cursor,
2546						       evsel, sample,
2547						       max_stack);
2548	} else {
2549		ret = thread__resolve_callchain_unwind(thread, cursor,
2550						       evsel, sample,
2551						       max_stack);
2552		if (ret)
2553			return ret;
2554		ret = thread__resolve_callchain_sample(thread, cursor,
2555						       evsel, sample,
2556						       parent, root_al,
2557						       max_stack);
2558	}
2559
2560	return ret;
2561}
2562
2563int machine__for_each_thread(struct machine *machine,
2564			     int (*fn)(struct thread *thread, void *p),
2565			     void *priv)
2566{
2567	struct threads *threads;
2568	struct rb_node *nd;
2569	struct thread *thread;
2570	int rc = 0;
2571	int i;
2572
2573	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574		threads = &machine->threads[i];
2575		for (nd = rb_first_cached(&threads->entries); nd;
2576		     nd = rb_next(nd)) {
2577			thread = rb_entry(nd, struct thread, rb_node);
2578			rc = fn(thread, priv);
2579			if (rc != 0)
2580				return rc;
2581		}
2582
2583		list_for_each_entry(thread, &threads->dead, node) {
2584			rc = fn(thread, priv);
2585			if (rc != 0)
2586				return rc;
2587		}
2588	}
2589	return rc;
2590}
2591
2592int machines__for_each_thread(struct machines *machines,
2593			      int (*fn)(struct thread *thread, void *p),
2594			      void *priv)
2595{
2596	struct rb_node *nd;
2597	int rc = 0;
2598
2599	rc = machine__for_each_thread(&machines->host, fn, priv);
2600	if (rc != 0)
2601		return rc;
2602
2603	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605
2606		rc = machine__for_each_thread(machine, fn, priv);
2607		if (rc != 0)
2608			return rc;
2609	}
2610	return rc;
2611}
2612
2613pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614{
2615	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616
2617	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618		return -1;
2619
2620	return machine->current_tid[cpu];
2621}
2622
2623int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624			     pid_t tid)
2625{
2626	struct thread *thread;
2627	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628
2629	if (cpu < 0)
2630		return -EINVAL;
2631
2632	if (!machine->current_tid) {
2633		int i;
2634
2635		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636		if (!machine->current_tid)
2637			return -ENOMEM;
2638		for (i = 0; i < nr_cpus; i++)
2639			machine->current_tid[i] = -1;
2640	}
2641
2642	if (cpu >= nr_cpus) {
2643		pr_err("Requested CPU %d too large. ", cpu);
2644		pr_err("Consider raising MAX_NR_CPUS\n");
2645		return -EINVAL;
2646	}
2647
2648	machine->current_tid[cpu] = tid;
2649
2650	thread = machine__findnew_thread(machine, pid, tid);
2651	if (!thread)
2652		return -ENOMEM;
2653
2654	thread->cpu = cpu;
2655	thread__put(thread);
2656
2657	return 0;
2658}
2659
2660/*
2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662 * normalized arch is needed.
2663 */
2664bool machine__is(struct machine *machine, const char *arch)
2665{
2666	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667}
2668
 
 
 
 
 
2669int machine__nr_cpus_avail(struct machine *machine)
2670{
2671	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672}
2673
2674int machine__get_kernel_start(struct machine *machine)
2675{
2676	struct map *map = machine__kernel_map(machine);
2677	int err = 0;
2678
2679	/*
2680	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2682	 * all addresses including kernel addresses are less than 2^32.  In
2683	 * that case (32-bit system), if the kernel mapping is unknown, all
2684	 * addresses will be assumed to be in user space - see
2685	 * machine__kernel_ip().
2686	 */
2687	machine->kernel_start = 1ULL << 63;
2688	if (map) {
2689		err = map__load(map);
2690		/*
2691		 * On x86_64, PTI entry trampolines are less than the
2692		 * start of kernel text, but still above 2^63. So leave
2693		 * kernel_start = 1ULL << 63 for x86_64.
2694		 */
2695		if (!err && !machine__is(machine, "x86_64"))
2696			machine->kernel_start = map->start;
2697	}
2698	return err;
2699}
2700
2701u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702{
2703	u8 addr_cpumode = cpumode;
2704	bool kernel_ip;
2705
2706	if (!machine->single_address_space)
2707		goto out;
2708
2709	kernel_ip = machine__kernel_ip(machine, addr);
2710	switch (cpumode) {
2711	case PERF_RECORD_MISC_KERNEL:
2712	case PERF_RECORD_MISC_USER:
2713		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714					   PERF_RECORD_MISC_USER;
2715		break;
2716	case PERF_RECORD_MISC_GUEST_KERNEL:
2717	case PERF_RECORD_MISC_GUEST_USER:
2718		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719					   PERF_RECORD_MISC_GUEST_USER;
2720		break;
2721	default:
2722		break;
2723	}
2724out:
2725	return addr_cpumode;
2726}
2727
 
 
 
 
 
2728struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729{
2730	return dsos__findnew(&machine->dsos, filename);
2731}
2732
2733char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734{
2735	struct machine *machine = vmachine;
2736	struct map *map;
2737	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739	if (sym == NULL)
2740		return NULL;
2741
2742	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743	*addrp = map->unmap_ip(map, sym->start);
2744	return sym->name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2745}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "path.h"
  20#include "srcline.h"
  21#include "symbol.h"
  22#include "sort.h"
  23#include "strlist.h"
  24#include "target.h"
  25#include "thread.h"
  26#include "util.h"
  27#include "vdso.h"
  28#include <stdbool.h>
  29#include <sys/types.h>
  30#include <sys/stat.h>
  31#include <unistd.h>
  32#include "unwind.h"
  33#include "linux/hash.h"
  34#include "asm/bug.h"
  35#include "bpf-event.h"
  36#include <internal/lib.h> // page_size
  37#include "cgroup.h"
  38#include "arm64-frame-pointer-unwind-support.h"
  39
  40#include <linux/ctype.h>
  41#include <symbol/kallsyms.h>
  42#include <linux/mman.h>
  43#include <linux/string.h>
  44#include <linux/zalloc.h>
  45
  46static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  47
  48static struct dso *machine__kernel_dso(struct machine *machine)
  49{
  50	return machine->vmlinux_map->dso;
  51}
  52
  53static void dsos__init(struct dsos *dsos)
  54{
  55	INIT_LIST_HEAD(&dsos->head);
  56	dsos->root = RB_ROOT;
  57	init_rwsem(&dsos->lock);
  58}
  59
  60static void machine__threads_init(struct machine *machine)
  61{
  62	int i;
  63
  64	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  65		struct threads *threads = &machine->threads[i];
  66		threads->entries = RB_ROOT_CACHED;
  67		init_rwsem(&threads->lock);
  68		threads->nr = 0;
  69		INIT_LIST_HEAD(&threads->dead);
  70		threads->last_match = NULL;
  71	}
  72}
  73
  74static int machine__set_mmap_name(struct machine *machine)
  75{
  76	if (machine__is_host(machine))
  77		machine->mmap_name = strdup("[kernel.kallsyms]");
  78	else if (machine__is_default_guest(machine))
  79		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  80	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  81			  machine->pid) < 0)
  82		machine->mmap_name = NULL;
  83
  84	return machine->mmap_name ? 0 : -ENOMEM;
  85}
  86
  87static void thread__set_guest_comm(struct thread *thread, pid_t pid)
  88{
  89	char comm[64];
  90
  91	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
  92	thread__set_comm(thread, comm, 0);
  93}
  94
  95int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  96{
  97	int err = -ENOMEM;
  98
  99	memset(machine, 0, sizeof(*machine));
 100	machine->kmaps = maps__new(machine);
 101	if (machine->kmaps == NULL)
 102		return -ENOMEM;
 103
 104	RB_CLEAR_NODE(&machine->rb_node);
 105	dsos__init(&machine->dsos);
 106
 107	machine__threads_init(machine);
 108
 109	machine->vdso_info = NULL;
 110	machine->env = NULL;
 111
 112	machine->pid = pid;
 113
 114	machine->id_hdr_size = 0;
 115	machine->kptr_restrict_warned = false;
 116	machine->comm_exec = false;
 117	machine->kernel_start = 0;
 118	machine->vmlinux_map = NULL;
 119
 120	machine->root_dir = strdup(root_dir);
 121	if (machine->root_dir == NULL)
 122		goto out;
 123
 124	if (machine__set_mmap_name(machine))
 125		goto out;
 126
 127	if (pid != HOST_KERNEL_ID) {
 128		struct thread *thread = machine__findnew_thread(machine, -1,
 129								pid);
 
 130
 131		if (thread == NULL)
 132			goto out;
 133
 134		thread__set_guest_comm(thread, pid);
 
 135		thread__put(thread);
 136	}
 137
 138	machine->current_tid = NULL;
 139	err = 0;
 140
 141out:
 142	if (err) {
 143		zfree(&machine->kmaps);
 144		zfree(&machine->root_dir);
 145		zfree(&machine->mmap_name);
 146	}
 147	return 0;
 148}
 149
 150struct machine *machine__new_host(void)
 151{
 152	struct machine *machine = malloc(sizeof(*machine));
 153
 154	if (machine != NULL) {
 155		machine__init(machine, "", HOST_KERNEL_ID);
 156
 157		if (machine__create_kernel_maps(machine) < 0)
 158			goto out_delete;
 159	}
 160
 161	return machine;
 162out_delete:
 163	free(machine);
 164	return NULL;
 165}
 166
 167struct machine *machine__new_kallsyms(void)
 168{
 169	struct machine *machine = machine__new_host();
 170	/*
 171	 * FIXME:
 172	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 173	 *    ask for not using the kcore parsing code, once this one is fixed
 174	 *    to create a map per module.
 175	 */
 176	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 177		machine__delete(machine);
 178		machine = NULL;
 179	}
 180
 181	return machine;
 182}
 183
 184static void dsos__purge(struct dsos *dsos)
 185{
 186	struct dso *pos, *n;
 187
 188	down_write(&dsos->lock);
 189
 190	list_for_each_entry_safe(pos, n, &dsos->head, node) {
 191		RB_CLEAR_NODE(&pos->rb_node);
 192		pos->root = NULL;
 193		list_del_init(&pos->node);
 194		dso__put(pos);
 195	}
 196
 197	up_write(&dsos->lock);
 198}
 199
 200static void dsos__exit(struct dsos *dsos)
 201{
 202	dsos__purge(dsos);
 203	exit_rwsem(&dsos->lock);
 204}
 205
 206void machine__delete_threads(struct machine *machine)
 207{
 208	struct rb_node *nd;
 209	int i;
 210
 211	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 212		struct threads *threads = &machine->threads[i];
 213		down_write(&threads->lock);
 214		nd = rb_first_cached(&threads->entries);
 215		while (nd) {
 216			struct thread *t = rb_entry(nd, struct thread, rb_node);
 217
 218			nd = rb_next(nd);
 219			__machine__remove_thread(machine, t, false);
 220		}
 221		up_write(&threads->lock);
 222	}
 223}
 224
 225void machine__exit(struct machine *machine)
 226{
 227	int i;
 228
 229	if (machine == NULL)
 230		return;
 231
 232	machine__destroy_kernel_maps(machine);
 233	maps__delete(machine->kmaps);
 234	dsos__exit(&machine->dsos);
 235	machine__exit_vdso(machine);
 236	zfree(&machine->root_dir);
 237	zfree(&machine->mmap_name);
 238	zfree(&machine->current_tid);
 239	zfree(&machine->kallsyms_filename);
 240
 241	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 242		struct threads *threads = &machine->threads[i];
 243		struct thread *thread, *n;
 244		/*
 245		 * Forget about the dead, at this point whatever threads were
 246		 * left in the dead lists better have a reference count taken
 247		 * by who is using them, and then, when they drop those references
 248		 * and it finally hits zero, thread__put() will check and see that
 249		 * its not in the dead threads list and will not try to remove it
 250		 * from there, just calling thread__delete() straight away.
 251		 */
 252		list_for_each_entry_safe(thread, n, &threads->dead, node)
 253			list_del_init(&thread->node);
 254
 255		exit_rwsem(&threads->lock);
 256	}
 257}
 258
 259void machine__delete(struct machine *machine)
 260{
 261	if (machine) {
 262		machine__exit(machine);
 263		free(machine);
 264	}
 265}
 266
 267void machines__init(struct machines *machines)
 268{
 269	machine__init(&machines->host, "", HOST_KERNEL_ID);
 270	machines->guests = RB_ROOT_CACHED;
 271}
 272
 273void machines__exit(struct machines *machines)
 274{
 275	machine__exit(&machines->host);
 276	/* XXX exit guest */
 277}
 278
 279struct machine *machines__add(struct machines *machines, pid_t pid,
 280			      const char *root_dir)
 281{
 282	struct rb_node **p = &machines->guests.rb_root.rb_node;
 283	struct rb_node *parent = NULL;
 284	struct machine *pos, *machine = malloc(sizeof(*machine));
 285	bool leftmost = true;
 286
 287	if (machine == NULL)
 288		return NULL;
 289
 290	if (machine__init(machine, root_dir, pid) != 0) {
 291		free(machine);
 292		return NULL;
 293	}
 294
 295	while (*p != NULL) {
 296		parent = *p;
 297		pos = rb_entry(parent, struct machine, rb_node);
 298		if (pid < pos->pid)
 299			p = &(*p)->rb_left;
 300		else {
 301			p = &(*p)->rb_right;
 302			leftmost = false;
 303		}
 304	}
 305
 306	rb_link_node(&machine->rb_node, parent, p);
 307	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 308
 309	machine->machines = machines;
 310
 311	return machine;
 312}
 313
 314void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 315{
 316	struct rb_node *nd;
 317
 318	machines->host.comm_exec = comm_exec;
 319
 320	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 321		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 322
 323		machine->comm_exec = comm_exec;
 324	}
 325}
 326
 327struct machine *machines__find(struct machines *machines, pid_t pid)
 328{
 329	struct rb_node **p = &machines->guests.rb_root.rb_node;
 330	struct rb_node *parent = NULL;
 331	struct machine *machine;
 332	struct machine *default_machine = NULL;
 333
 334	if (pid == HOST_KERNEL_ID)
 335		return &machines->host;
 336
 337	while (*p != NULL) {
 338		parent = *p;
 339		machine = rb_entry(parent, struct machine, rb_node);
 340		if (pid < machine->pid)
 341			p = &(*p)->rb_left;
 342		else if (pid > machine->pid)
 343			p = &(*p)->rb_right;
 344		else
 345			return machine;
 346		if (!machine->pid)
 347			default_machine = machine;
 348	}
 349
 350	return default_machine;
 351}
 352
 353struct machine *machines__findnew(struct machines *machines, pid_t pid)
 354{
 355	char path[PATH_MAX];
 356	const char *root_dir = "";
 357	struct machine *machine = machines__find(machines, pid);
 358
 359	if (machine && (machine->pid == pid))
 360		goto out;
 361
 362	if ((pid != HOST_KERNEL_ID) &&
 363	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 364	    (symbol_conf.guestmount)) {
 365		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 366		if (access(path, R_OK)) {
 367			static struct strlist *seen;
 368
 369			if (!seen)
 370				seen = strlist__new(NULL, NULL);
 371
 372			if (!strlist__has_entry(seen, path)) {
 373				pr_err("Can't access file %s\n", path);
 374				strlist__add(seen, path);
 375			}
 376			machine = NULL;
 377			goto out;
 378		}
 379		root_dir = path;
 380	}
 381
 382	machine = machines__add(machines, pid, root_dir);
 383out:
 384	return machine;
 385}
 386
 387struct machine *machines__find_guest(struct machines *machines, pid_t pid)
 388{
 389	struct machine *machine = machines__find(machines, pid);
 390
 391	if (!machine)
 392		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
 393	return machine;
 394}
 395
 396/*
 397 * A common case for KVM test programs is that the test program acts as the
 398 * hypervisor, creating, running and destroying the virtual machine, and
 399 * providing the guest object code from its own object code. In this case,
 400 * the VM is not running an OS, but only the functions loaded into it by the
 401 * hypervisor test program, and conveniently, loaded at the same virtual
 402 * addresses.
 403 *
 404 * Normally to resolve addresses, MMAP events are needed to map addresses
 405 * back to the object code and debug symbols for that object code.
 406 *
 407 * Currently, there is no way to get such mapping information from guests
 408 * but, in the scenario described above, the guest has the same mappings
 409 * as the hypervisor, so support for that scenario can be achieved.
 410 *
 411 * To support that, copy the host thread's maps to the guest thread's maps.
 412 * Note, we do not discover the guest until we encounter a guest event,
 413 * which works well because it is not until then that we know that the host
 414 * thread's maps have been set up.
 415 *
 416 * This function returns the guest thread. Apart from keeping the data
 417 * structures sane, using a thread belonging to the guest machine, instead
 418 * of the host thread, allows it to have its own comm (refer
 419 * thread__set_guest_comm()).
 420 */
 421static struct thread *findnew_guest_code(struct machine *machine,
 422					 struct machine *host_machine,
 423					 pid_t pid)
 424{
 425	struct thread *host_thread;
 426	struct thread *thread;
 427	int err;
 428
 429	if (!machine)
 430		return NULL;
 431
 432	thread = machine__findnew_thread(machine, -1, pid);
 433	if (!thread)
 434		return NULL;
 435
 436	/* Assume maps are set up if there are any */
 437	if (thread->maps->nr_maps)
 438		return thread;
 439
 440	host_thread = machine__find_thread(host_machine, -1, pid);
 441	if (!host_thread)
 442		goto out_err;
 443
 444	thread__set_guest_comm(thread, pid);
 445
 446	/*
 447	 * Guest code can be found in hypervisor process at the same address
 448	 * so copy host maps.
 449	 */
 450	err = maps__clone(thread, host_thread->maps);
 451	thread__put(host_thread);
 452	if (err)
 453		goto out_err;
 454
 455	return thread;
 456
 457out_err:
 458	thread__zput(thread);
 459	return NULL;
 460}
 461
 462struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
 463{
 464	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
 465	struct machine *machine = machines__findnew(machines, pid);
 466
 467	return findnew_guest_code(machine, host_machine, pid);
 468}
 469
 470struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
 471{
 472	struct machines *machines = machine->machines;
 473	struct machine *host_machine;
 474
 475	if (!machines)
 476		return NULL;
 477
 478	host_machine = machines__find(machines, HOST_KERNEL_ID);
 479
 480	return findnew_guest_code(machine, host_machine, pid);
 481}
 482
 483void machines__process_guests(struct machines *machines,
 484			      machine__process_t process, void *data)
 485{
 486	struct rb_node *nd;
 487
 488	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 489		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 490		process(pos, data);
 491	}
 492}
 493
 494void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 495{
 496	struct rb_node *node;
 497	struct machine *machine;
 498
 499	machines->host.id_hdr_size = id_hdr_size;
 500
 501	for (node = rb_first_cached(&machines->guests); node;
 502	     node = rb_next(node)) {
 503		machine = rb_entry(node, struct machine, rb_node);
 504		machine->id_hdr_size = id_hdr_size;
 505	}
 506
 507	return;
 508}
 509
 510static void machine__update_thread_pid(struct machine *machine,
 511				       struct thread *th, pid_t pid)
 512{
 513	struct thread *leader;
 514
 515	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 516		return;
 517
 518	th->pid_ = pid;
 519
 520	if (th->pid_ == th->tid)
 521		return;
 522
 523	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 524	if (!leader)
 525		goto out_err;
 526
 527	if (!leader->maps)
 528		leader->maps = maps__new(machine);
 529
 530	if (!leader->maps)
 531		goto out_err;
 532
 533	if (th->maps == leader->maps)
 534		return;
 535
 536	if (th->maps) {
 537		/*
 538		 * Maps are created from MMAP events which provide the pid and
 539		 * tid.  Consequently there never should be any maps on a thread
 540		 * with an unknown pid.  Just print an error if there are.
 541		 */
 542		if (!maps__empty(th->maps))
 543			pr_err("Discarding thread maps for %d:%d\n",
 544			       th->pid_, th->tid);
 545		maps__put(th->maps);
 546	}
 547
 548	th->maps = maps__get(leader->maps);
 549out_put:
 550	thread__put(leader);
 551	return;
 552out_err:
 553	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 554	goto out_put;
 555}
 556
 557/*
 558 * Front-end cache - TID lookups come in blocks,
 559 * so most of the time we dont have to look up
 560 * the full rbtree:
 561 */
 562static struct thread*
 563__threads__get_last_match(struct threads *threads, struct machine *machine,
 564			  int pid, int tid)
 565{
 566	struct thread *th;
 567
 568	th = threads->last_match;
 569	if (th != NULL) {
 570		if (th->tid == tid) {
 571			machine__update_thread_pid(machine, th, pid);
 572			return thread__get(th);
 573		}
 574
 575		threads->last_match = NULL;
 576	}
 577
 578	return NULL;
 579}
 580
 581static struct thread*
 582threads__get_last_match(struct threads *threads, struct machine *machine,
 583			int pid, int tid)
 584{
 585	struct thread *th = NULL;
 586
 587	if (perf_singlethreaded)
 588		th = __threads__get_last_match(threads, machine, pid, tid);
 589
 590	return th;
 591}
 592
 593static void
 594__threads__set_last_match(struct threads *threads, struct thread *th)
 595{
 596	threads->last_match = th;
 597}
 598
 599static void
 600threads__set_last_match(struct threads *threads, struct thread *th)
 601{
 602	if (perf_singlethreaded)
 603		__threads__set_last_match(threads, th);
 604}
 605
 606/*
 607 * Caller must eventually drop thread->refcnt returned with a successful
 608 * lookup/new thread inserted.
 609 */
 610static struct thread *____machine__findnew_thread(struct machine *machine,
 611						  struct threads *threads,
 612						  pid_t pid, pid_t tid,
 613						  bool create)
 614{
 615	struct rb_node **p = &threads->entries.rb_root.rb_node;
 616	struct rb_node *parent = NULL;
 617	struct thread *th;
 618	bool leftmost = true;
 619
 620	th = threads__get_last_match(threads, machine, pid, tid);
 621	if (th)
 622		return th;
 623
 624	while (*p != NULL) {
 625		parent = *p;
 626		th = rb_entry(parent, struct thread, rb_node);
 627
 628		if (th->tid == tid) {
 629			threads__set_last_match(threads, th);
 630			machine__update_thread_pid(machine, th, pid);
 631			return thread__get(th);
 632		}
 633
 634		if (tid < th->tid)
 635			p = &(*p)->rb_left;
 636		else {
 637			p = &(*p)->rb_right;
 638			leftmost = false;
 639		}
 640	}
 641
 642	if (!create)
 643		return NULL;
 644
 645	th = thread__new(pid, tid);
 646	if (th != NULL) {
 647		rb_link_node(&th->rb_node, parent, p);
 648		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 649
 650		/*
 651		 * We have to initialize maps separately after rb tree is updated.
 
 652		 *
 653		 * The reason is that we call machine__findnew_thread
 654		 * within thread__init_maps to find the thread
 655		 * leader and that would screwed the rb tree.
 656		 */
 657		if (thread__init_maps(th, machine)) {
 658			rb_erase_cached(&th->rb_node, &threads->entries);
 659			RB_CLEAR_NODE(&th->rb_node);
 660			thread__put(th);
 661			return NULL;
 662		}
 663		/*
 664		 * It is now in the rbtree, get a ref
 665		 */
 666		thread__get(th);
 667		threads__set_last_match(threads, th);
 668		++threads->nr;
 669	}
 670
 671	return th;
 672}
 673
 674struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 675{
 676	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 677}
 678
 679struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 680				       pid_t tid)
 681{
 682	struct threads *threads = machine__threads(machine, tid);
 683	struct thread *th;
 684
 685	down_write(&threads->lock);
 686	th = __machine__findnew_thread(machine, pid, tid);
 687	up_write(&threads->lock);
 688	return th;
 689}
 690
 691struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 692				    pid_t tid)
 693{
 694	struct threads *threads = machine__threads(machine, tid);
 695	struct thread *th;
 696
 697	down_read(&threads->lock);
 698	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 699	up_read(&threads->lock);
 700	return th;
 701}
 702
 703/*
 704 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
 705 * So here a single thread is created for that, but actually there is a separate
 706 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
 707 * is only 1. That causes problems for some tools, requiring workarounds. For
 708 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
 709 */
 710struct thread *machine__idle_thread(struct machine *machine)
 711{
 712	struct thread *thread = machine__findnew_thread(machine, 0, 0);
 713
 714	if (!thread || thread__set_comm(thread, "swapper", 0) ||
 715	    thread__set_namespaces(thread, 0, NULL))
 716		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
 717
 718	return thread;
 719}
 720
 721struct comm *machine__thread_exec_comm(struct machine *machine,
 722				       struct thread *thread)
 723{
 724	if (machine->comm_exec)
 725		return thread__exec_comm(thread);
 726	else
 727		return thread__comm(thread);
 728}
 729
 730int machine__process_comm_event(struct machine *machine, union perf_event *event,
 731				struct perf_sample *sample)
 732{
 733	struct thread *thread = machine__findnew_thread(machine,
 734							event->comm.pid,
 735							event->comm.tid);
 736	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 737	int err = 0;
 738
 739	if (exec)
 740		machine->comm_exec = true;
 741
 742	if (dump_trace)
 743		perf_event__fprintf_comm(event, stdout);
 744
 745	if (thread == NULL ||
 746	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 747		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 748		err = -1;
 749	}
 750
 751	thread__put(thread);
 752
 753	return err;
 754}
 755
 756int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 757				      union perf_event *event,
 758				      struct perf_sample *sample __maybe_unused)
 759{
 760	struct thread *thread = machine__findnew_thread(machine,
 761							event->namespaces.pid,
 762							event->namespaces.tid);
 763	int err = 0;
 764
 765	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 766		  "\nWARNING: kernel seems to support more namespaces than perf"
 767		  " tool.\nTry updating the perf tool..\n\n");
 768
 769	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 770		  "\nWARNING: perf tool seems to support more namespaces than"
 771		  " the kernel.\nTry updating the kernel..\n\n");
 772
 773	if (dump_trace)
 774		perf_event__fprintf_namespaces(event, stdout);
 775
 776	if (thread == NULL ||
 777	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 778		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 779		err = -1;
 780	}
 781
 782	thread__put(thread);
 783
 784	return err;
 785}
 786
 787int machine__process_cgroup_event(struct machine *machine,
 788				  union perf_event *event,
 789				  struct perf_sample *sample __maybe_unused)
 790{
 791	struct cgroup *cgrp;
 792
 793	if (dump_trace)
 794		perf_event__fprintf_cgroup(event, stdout);
 795
 796	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
 797	if (cgrp == NULL)
 798		return -ENOMEM;
 799
 800	return 0;
 801}
 802
 803int machine__process_lost_event(struct machine *machine __maybe_unused,
 804				union perf_event *event, struct perf_sample *sample __maybe_unused)
 805{
 806	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 807		    event->lost.id, event->lost.lost);
 808	return 0;
 809}
 810
 811int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 812					union perf_event *event, struct perf_sample *sample)
 813{
 814	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 815		    sample->id, event->lost_samples.lost);
 816	return 0;
 817}
 818
 819static struct dso *machine__findnew_module_dso(struct machine *machine,
 820					       struct kmod_path *m,
 821					       const char *filename)
 822{
 823	struct dso *dso;
 824
 825	down_write(&machine->dsos.lock);
 826
 827	dso = __dsos__find(&machine->dsos, m->name, true);
 828	if (!dso) {
 829		dso = __dsos__addnew(&machine->dsos, m->name);
 830		if (dso == NULL)
 831			goto out_unlock;
 832
 833		dso__set_module_info(dso, m, machine);
 834		dso__set_long_name(dso, strdup(filename), true);
 835		dso->kernel = DSO_SPACE__KERNEL;
 836	}
 837
 838	dso__get(dso);
 839out_unlock:
 840	up_write(&machine->dsos.lock);
 841	return dso;
 842}
 843
 844int machine__process_aux_event(struct machine *machine __maybe_unused,
 845			       union perf_event *event)
 846{
 847	if (dump_trace)
 848		perf_event__fprintf_aux(event, stdout);
 849	return 0;
 850}
 851
 852int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 853					union perf_event *event)
 854{
 855	if (dump_trace)
 856		perf_event__fprintf_itrace_start(event, stdout);
 857	return 0;
 858}
 859
 860int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
 861					    union perf_event *event)
 862{
 863	if (dump_trace)
 864		perf_event__fprintf_aux_output_hw_id(event, stdout);
 865	return 0;
 866}
 867
 868int machine__process_switch_event(struct machine *machine __maybe_unused,
 869				  union perf_event *event)
 870{
 871	if (dump_trace)
 872		perf_event__fprintf_switch(event, stdout);
 873	return 0;
 874}
 875
 876static int machine__process_ksymbol_register(struct machine *machine,
 877					     union perf_event *event,
 878					     struct perf_sample *sample __maybe_unused)
 879{
 880	struct symbol *sym;
 881	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 882
 
 883	if (!map) {
 884		struct dso *dso = dso__new(event->ksymbol.name);
 885
 886		if (dso) {
 887			dso->kernel = DSO_SPACE__KERNEL;
 888			map = map__new2(0, dso);
 889			dso__put(dso);
 890		}
 891
 892		if (!dso || !map) {
 893			return -ENOMEM;
 894		}
 895
 896		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
 897			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
 898			map->dso->data.file_size = event->ksymbol.len;
 899			dso__set_loaded(map->dso);
 900		}
 901
 902		map->start = event->ksymbol.addr;
 903		map->end = map->start + event->ksymbol.len;
 904		maps__insert(machine__kernel_maps(machine), map);
 905		map__put(map);
 906		dso__set_loaded(dso);
 907
 908		if (is_bpf_image(event->ksymbol.name)) {
 909			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
 910			dso__set_long_name(dso, "", false);
 911		}
 912	}
 913
 914	sym = symbol__new(map->map_ip(map, map->start),
 915			  event->ksymbol.len,
 916			  0, 0, event->ksymbol.name);
 917	if (!sym)
 918		return -ENOMEM;
 919	dso__insert_symbol(map->dso, sym);
 920	return 0;
 921}
 922
 923static int machine__process_ksymbol_unregister(struct machine *machine,
 924					       union perf_event *event,
 925					       struct perf_sample *sample __maybe_unused)
 926{
 927	struct symbol *sym;
 928	struct map *map;
 929
 930	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
 931	if (!map)
 932		return 0;
 933
 934	if (map != machine->vmlinux_map)
 935		maps__remove(machine__kernel_maps(machine), map);
 936	else {
 937		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
 938		if (sym)
 939			dso__delete_symbol(map->dso, sym);
 940	}
 941
 942	return 0;
 943}
 944
 945int machine__process_ksymbol(struct machine *machine __maybe_unused,
 946			     union perf_event *event,
 947			     struct perf_sample *sample)
 948{
 949	if (dump_trace)
 950		perf_event__fprintf_ksymbol(event, stdout);
 951
 952	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 953		return machine__process_ksymbol_unregister(machine, event,
 954							   sample);
 955	return machine__process_ksymbol_register(machine, event, sample);
 956}
 957
 958int machine__process_text_poke(struct machine *machine, union perf_event *event,
 959			       struct perf_sample *sample __maybe_unused)
 960{
 961	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
 962	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
 963
 964	if (dump_trace)
 965		perf_event__fprintf_text_poke(event, machine, stdout);
 
 
 
 
 966
 967	if (!event->text_poke.new_len)
 968		return 0;
 
 969
 970	if (cpumode != PERF_RECORD_MISC_KERNEL) {
 971		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
 972		return 0;
 973	}
 974
 975	if (map && map->dso) {
 976		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
 977		int ret;
 978
 979		/*
 980		 * Kernel maps might be changed when loading symbols so loading
 981		 * must be done prior to using kernel maps.
 982		 */
 983		map__load(map);
 984		ret = dso__data_write_cache_addr(map->dso, map, machine,
 985						 event->text_poke.addr,
 986						 new_bytes,
 987						 event->text_poke.new_len);
 988		if (ret != event->text_poke.new_len)
 989			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
 990				 event->text_poke.addr);
 991	} else {
 992		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
 993			 event->text_poke.addr);
 994	}
 995
 996	return 0;
 997}
 998
 999static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1000					      const char *filename)
1001{
1002	struct map *map = NULL;
 
1003	struct kmod_path m;
1004	struct dso *dso;
1005
1006	if (kmod_path__parse_name(&m, filename))
1007		return NULL;
1008
 
 
 
 
 
 
 
 
 
 
 
1009	dso = machine__findnew_module_dso(machine, &m, filename);
1010	if (dso == NULL)
1011		goto out;
1012
1013	map = map__new2(start, dso);
1014	if (map == NULL)
1015		goto out;
1016
1017	maps__insert(machine__kernel_maps(machine), map);
1018
1019	/* Put the map here because maps__insert already got it */
1020	map__put(map);
1021out:
1022	/* put the dso here, corresponding to  machine__findnew_module_dso */
1023	dso__put(dso);
1024	zfree(&m.name);
1025	return map;
1026}
1027
1028size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1029{
1030	struct rb_node *nd;
1031	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1032
1033	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1034		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1035		ret += __dsos__fprintf(&pos->dsos.head, fp);
1036	}
1037
1038	return ret;
1039}
1040
1041size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1042				     bool (skip)(struct dso *dso, int parm), int parm)
1043{
1044	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1045}
1046
1047size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1048				     bool (skip)(struct dso *dso, int parm), int parm)
1049{
1050	struct rb_node *nd;
1051	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1052
1053	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1054		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1055		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1056	}
1057	return ret;
1058}
1059
1060size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1061{
1062	int i;
1063	size_t printed = 0;
1064	struct dso *kdso = machine__kernel_dso(machine);
1065
1066	if (kdso->has_build_id) {
1067		char filename[PATH_MAX];
1068		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1069					   false))
1070			printed += fprintf(fp, "[0] %s\n", filename);
1071	}
1072
1073	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1074		printed += fprintf(fp, "[%d] %s\n",
1075				   i + kdso->has_build_id, vmlinux_path[i]);
1076
1077	return printed;
1078}
1079
1080size_t machine__fprintf(struct machine *machine, FILE *fp)
1081{
1082	struct rb_node *nd;
1083	size_t ret;
1084	int i;
1085
1086	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1087		struct threads *threads = &machine->threads[i];
1088
1089		down_read(&threads->lock);
1090
1091		ret = fprintf(fp, "Threads: %u\n", threads->nr);
1092
1093		for (nd = rb_first_cached(&threads->entries); nd;
1094		     nd = rb_next(nd)) {
1095			struct thread *pos = rb_entry(nd, struct thread, rb_node);
1096
1097			ret += thread__fprintf(pos, fp);
1098		}
1099
1100		up_read(&threads->lock);
1101	}
1102	return ret;
1103}
1104
1105static struct dso *machine__get_kernel(struct machine *machine)
1106{
1107	const char *vmlinux_name = machine->mmap_name;
1108	struct dso *kernel;
1109
1110	if (machine__is_host(machine)) {
1111		if (symbol_conf.vmlinux_name)
1112			vmlinux_name = symbol_conf.vmlinux_name;
1113
1114		kernel = machine__findnew_kernel(machine, vmlinux_name,
1115						 "[kernel]", DSO_SPACE__KERNEL);
1116	} else {
1117		if (symbol_conf.default_guest_vmlinux_name)
1118			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1119
1120		kernel = machine__findnew_kernel(machine, vmlinux_name,
1121						 "[guest.kernel]",
1122						 DSO_SPACE__KERNEL_GUEST);
1123	}
1124
1125	if (kernel != NULL && (!kernel->has_build_id))
1126		dso__read_running_kernel_build_id(kernel, machine);
1127
1128	return kernel;
1129}
1130
 
 
 
 
1131void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1132				    size_t bufsz)
1133{
1134	if (machine__is_default_guest(machine))
1135		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1136	else
1137		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1138}
1139
1140const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1141
1142/* Figure out the start address of kernel map from /proc/kallsyms.
1143 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1144 * symbol_name if it's not that important.
1145 */
1146static int machine__get_running_kernel_start(struct machine *machine,
1147					     const char **symbol_name,
1148					     u64 *start, u64 *end)
1149{
1150	char filename[PATH_MAX];
1151	int i, err = -1;
1152	const char *name;
1153	u64 addr = 0;
1154
1155	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1156
1157	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1158		return 0;
1159
1160	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1161		err = kallsyms__get_function_start(filename, name, &addr);
1162		if (!err)
1163			break;
1164	}
1165
1166	if (err)
1167		return -1;
1168
1169	if (symbol_name)
1170		*symbol_name = name;
1171
1172	*start = addr;
1173
1174	err = kallsyms__get_function_start(filename, "_etext", &addr);
1175	if (!err)
1176		*end = addr;
1177
1178	return 0;
1179}
1180
1181int machine__create_extra_kernel_map(struct machine *machine,
1182				     struct dso *kernel,
1183				     struct extra_kernel_map *xm)
1184{
1185	struct kmap *kmap;
1186	struct map *map;
1187
1188	map = map__new2(xm->start, kernel);
1189	if (!map)
1190		return -1;
1191
1192	map->end   = xm->end;
1193	map->pgoff = xm->pgoff;
1194
1195	kmap = map__kmap(map);
1196
 
1197	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1198
1199	maps__insert(machine__kernel_maps(machine), map);
1200
1201	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1202		  kmap->name, map->start, map->end);
1203
1204	map__put(map);
1205
1206	return 0;
1207}
1208
1209static u64 find_entry_trampoline(struct dso *dso)
1210{
1211	/* Duplicates are removed so lookup all aliases */
1212	const char *syms[] = {
1213		"_entry_trampoline",
1214		"__entry_trampoline_start",
1215		"entry_SYSCALL_64_trampoline",
1216	};
1217	struct symbol *sym = dso__first_symbol(dso);
1218	unsigned int i;
1219
1220	for (; sym; sym = dso__next_symbol(sym)) {
1221		if (sym->binding != STB_GLOBAL)
1222			continue;
1223		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1224			if (!strcmp(sym->name, syms[i]))
1225				return sym->start;
1226		}
1227	}
1228
1229	return 0;
1230}
1231
1232/*
1233 * These values can be used for kernels that do not have symbols for the entry
1234 * trampolines in kallsyms.
1235 */
1236#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1237#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1238#define X86_64_ENTRY_TRAMPOLINE		0x6000
1239
1240/* Map x86_64 PTI entry trampolines */
1241int machine__map_x86_64_entry_trampolines(struct machine *machine,
1242					  struct dso *kernel)
1243{
1244	struct maps *kmaps = machine__kernel_maps(machine);
 
1245	int nr_cpus_avail, cpu;
1246	bool found = false;
1247	struct map *map;
1248	u64 pgoff;
1249
1250	/*
1251	 * In the vmlinux case, pgoff is a virtual address which must now be
1252	 * mapped to a vmlinux offset.
1253	 */
1254	maps__for_each_entry(kmaps, map) {
1255		struct kmap *kmap = __map__kmap(map);
1256		struct map *dest_map;
1257
1258		if (!kmap || !is_entry_trampoline(kmap->name))
1259			continue;
1260
1261		dest_map = maps__find(kmaps, map->pgoff);
1262		if (dest_map != map)
1263			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1264		found = true;
1265	}
1266	if (found || machine->trampolines_mapped)
1267		return 0;
1268
1269	pgoff = find_entry_trampoline(kernel);
1270	if (!pgoff)
1271		return 0;
1272
1273	nr_cpus_avail = machine__nr_cpus_avail(machine);
1274
1275	/* Add a 1 page map for each CPU's entry trampoline */
1276	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1277		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1278			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1279			 X86_64_ENTRY_TRAMPOLINE;
1280		struct extra_kernel_map xm = {
1281			.start = va,
1282			.end   = va + page_size,
1283			.pgoff = pgoff,
1284		};
1285
1286		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1287
1288		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1289			return -1;
1290	}
1291
1292	machine->trampolines_mapped = nr_cpus_avail;
1293
1294	return 0;
1295}
1296
1297int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1298					     struct dso *kernel __maybe_unused)
1299{
1300	return 0;
1301}
1302
1303static int
1304__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1305{
 
 
 
1306	/* In case of renewal the kernel map, destroy previous one */
1307	machine__destroy_kernel_maps(machine);
1308
1309	machine->vmlinux_map = map__new2(0, kernel);
1310	if (machine->vmlinux_map == NULL)
1311		return -1;
1312
1313	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1314	maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
 
 
 
 
 
 
 
1315	return 0;
1316}
1317
1318void machine__destroy_kernel_maps(struct machine *machine)
1319{
1320	struct kmap *kmap;
1321	struct map *map = machine__kernel_map(machine);
1322
1323	if (map == NULL)
1324		return;
1325
1326	kmap = map__kmap(map);
1327	maps__remove(machine__kernel_maps(machine), map);
1328	if (kmap && kmap->ref_reloc_sym) {
1329		zfree((char **)&kmap->ref_reloc_sym->name);
1330		zfree(&kmap->ref_reloc_sym);
1331	}
1332
1333	map__zput(machine->vmlinux_map);
1334}
1335
1336int machines__create_guest_kernel_maps(struct machines *machines)
1337{
1338	int ret = 0;
1339	struct dirent **namelist = NULL;
1340	int i, items = 0;
1341	char path[PATH_MAX];
1342	pid_t pid;
1343	char *endp;
1344
1345	if (symbol_conf.default_guest_vmlinux_name ||
1346	    symbol_conf.default_guest_modules ||
1347	    symbol_conf.default_guest_kallsyms) {
1348		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1349	}
1350
1351	if (symbol_conf.guestmount) {
1352		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1353		if (items <= 0)
1354			return -ENOENT;
1355		for (i = 0; i < items; i++) {
1356			if (!isdigit(namelist[i]->d_name[0])) {
1357				/* Filter out . and .. */
1358				continue;
1359			}
1360			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1361			if ((*endp != '\0') ||
1362			    (endp == namelist[i]->d_name) ||
1363			    (errno == ERANGE)) {
1364				pr_debug("invalid directory (%s). Skipping.\n",
1365					 namelist[i]->d_name);
1366				continue;
1367			}
1368			sprintf(path, "%s/%s/proc/kallsyms",
1369				symbol_conf.guestmount,
1370				namelist[i]->d_name);
1371			ret = access(path, R_OK);
1372			if (ret) {
1373				pr_debug("Can't access file %s\n", path);
1374				goto failure;
1375			}
1376			machines__create_kernel_maps(machines, pid);
1377		}
1378failure:
1379		free(namelist);
1380	}
1381
1382	return ret;
1383}
1384
1385void machines__destroy_kernel_maps(struct machines *machines)
1386{
1387	struct rb_node *next = rb_first_cached(&machines->guests);
1388
1389	machine__destroy_kernel_maps(&machines->host);
1390
1391	while (next) {
1392		struct machine *pos = rb_entry(next, struct machine, rb_node);
1393
1394		next = rb_next(&pos->rb_node);
1395		rb_erase_cached(&pos->rb_node, &machines->guests);
1396		machine__delete(pos);
1397	}
1398}
1399
1400int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1401{
1402	struct machine *machine = machines__findnew(machines, pid);
1403
1404	if (machine == NULL)
1405		return -1;
1406
1407	return machine__create_kernel_maps(machine);
1408}
1409
1410int machine__load_kallsyms(struct machine *machine, const char *filename)
1411{
1412	struct map *map = machine__kernel_map(machine);
1413	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1414
1415	if (ret > 0) {
1416		dso__set_loaded(map->dso);
1417		/*
1418		 * Since /proc/kallsyms will have multiple sessions for the
1419		 * kernel, with modules between them, fixup the end of all
1420		 * sections.
1421		 */
1422		maps__fixup_end(machine__kernel_maps(machine));
1423	}
1424
1425	return ret;
1426}
1427
1428int machine__load_vmlinux_path(struct machine *machine)
1429{
1430	struct map *map = machine__kernel_map(machine);
1431	int ret = dso__load_vmlinux_path(map->dso, map);
1432
1433	if (ret > 0)
1434		dso__set_loaded(map->dso);
1435
1436	return ret;
1437}
1438
1439static char *get_kernel_version(const char *root_dir)
1440{
1441	char version[PATH_MAX];
1442	FILE *file;
1443	char *name, *tmp;
1444	const char *prefix = "Linux version ";
1445
1446	sprintf(version, "%s/proc/version", root_dir);
1447	file = fopen(version, "r");
1448	if (!file)
1449		return NULL;
1450
1451	tmp = fgets(version, sizeof(version), file);
1452	fclose(file);
1453	if (!tmp)
1454		return NULL;
1455
1456	name = strstr(version, prefix);
1457	if (!name)
1458		return NULL;
1459	name += strlen(prefix);
1460	tmp = strchr(name, ' ');
1461	if (tmp)
1462		*tmp = '\0';
1463
1464	return strdup(name);
1465}
1466
1467static bool is_kmod_dso(struct dso *dso)
1468{
1469	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1470	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1471}
1472
1473static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
 
1474{
1475	char *long_name;
1476	struct map *map = maps__find_by_name(maps, m->name);
1477
1478	if (map == NULL)
1479		return 0;
1480
1481	long_name = strdup(path);
1482	if (long_name == NULL)
1483		return -ENOMEM;
1484
1485	dso__set_long_name(map->dso, long_name, true);
1486	dso__kernel_module_get_build_id(map->dso, "");
1487
1488	/*
1489	 * Full name could reveal us kmod compression, so
1490	 * we need to update the symtab_type if needed.
1491	 */
1492	if (m->comp && is_kmod_dso(map->dso)) {
1493		map->dso->symtab_type++;
1494		map->dso->comp = m->comp;
1495	}
1496
1497	return 0;
1498}
1499
1500static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
 
1501{
1502	struct dirent *dent;
1503	DIR *dir = opendir(dir_name);
1504	int ret = 0;
1505
1506	if (!dir) {
1507		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1508		return -1;
1509	}
1510
1511	while ((dent = readdir(dir)) != NULL) {
1512		char path[PATH_MAX];
1513		struct stat st;
1514
1515		/*sshfs might return bad dent->d_type, so we have to stat*/
1516		path__join(path, sizeof(path), dir_name, dent->d_name);
1517		if (stat(path, &st))
1518			continue;
1519
1520		if (S_ISDIR(st.st_mode)) {
1521			if (!strcmp(dent->d_name, ".") ||
1522			    !strcmp(dent->d_name, ".."))
1523				continue;
1524
1525			/* Do not follow top-level source and build symlinks */
1526			if (depth == 0) {
1527				if (!strcmp(dent->d_name, "source") ||
1528				    !strcmp(dent->d_name, "build"))
1529					continue;
1530			}
1531
1532			ret = maps__set_modules_path_dir(maps, path, depth + 1);
 
1533			if (ret < 0)
1534				goto out;
1535		} else {
1536			struct kmod_path m;
1537
1538			ret = kmod_path__parse_name(&m, dent->d_name);
1539			if (ret)
1540				goto out;
1541
1542			if (m.kmod)
1543				ret = maps__set_module_path(maps, path, &m);
1544
1545			zfree(&m.name);
1546
1547			if (ret)
1548				goto out;
1549		}
1550	}
1551
1552out:
1553	closedir(dir);
1554	return ret;
1555}
1556
1557static int machine__set_modules_path(struct machine *machine)
1558{
1559	char *version;
1560	char modules_path[PATH_MAX];
1561
1562	version = get_kernel_version(machine->root_dir);
1563	if (!version)
1564		return -1;
1565
1566	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1567		 machine->root_dir, version);
1568	free(version);
1569
1570	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1571}
1572int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1573				u64 *size __maybe_unused,
1574				const char *name __maybe_unused)
1575{
1576	return 0;
1577}
1578
1579static int machine__create_module(void *arg, const char *name, u64 start,
1580				  u64 size)
1581{
1582	struct machine *machine = arg;
1583	struct map *map;
1584
1585	if (arch__fix_module_text_start(&start, &size, name) < 0)
1586		return -1;
1587
1588	map = machine__addnew_module_map(machine, start, name);
1589	if (map == NULL)
1590		return -1;
1591	map->end = start + size;
1592
1593	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1594
1595	return 0;
1596}
1597
1598static int machine__create_modules(struct machine *machine)
1599{
1600	const char *modules;
1601	char path[PATH_MAX];
1602
1603	if (machine__is_default_guest(machine)) {
1604		modules = symbol_conf.default_guest_modules;
1605	} else {
1606		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1607		modules = path;
1608	}
1609
1610	if (symbol__restricted_filename(modules, "/proc/modules"))
1611		return -1;
1612
1613	if (modules__parse(modules, machine, machine__create_module))
1614		return -1;
1615
1616	if (!machine__set_modules_path(machine))
1617		return 0;
1618
1619	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1620
1621	return 0;
1622}
1623
1624static void machine__set_kernel_mmap(struct machine *machine,
1625				     u64 start, u64 end)
1626{
1627	machine->vmlinux_map->start = start;
1628	machine->vmlinux_map->end   = end;
1629	/*
1630	 * Be a bit paranoid here, some perf.data file came with
1631	 * a zero sized synthesized MMAP event for the kernel.
1632	 */
1633	if (start == 0 && end == 0)
1634		machine->vmlinux_map->end = ~0ULL;
1635}
1636
1637static void machine__update_kernel_mmap(struct machine *machine,
1638				     u64 start, u64 end)
1639{
1640	struct map *map = machine__kernel_map(machine);
1641
1642	map__get(map);
1643	maps__remove(machine__kernel_maps(machine), map);
1644
1645	machine__set_kernel_mmap(machine, start, end);
1646
1647	maps__insert(machine__kernel_maps(machine), map);
1648	map__put(map);
1649}
1650
1651int machine__create_kernel_maps(struct machine *machine)
1652{
1653	struct dso *kernel = machine__get_kernel(machine);
1654	const char *name = NULL;
1655	struct map *map;
1656	u64 start = 0, end = ~0ULL;
1657	int ret;
1658
1659	if (kernel == NULL)
1660		return -1;
1661
1662	ret = __machine__create_kernel_maps(machine, kernel);
1663	if (ret < 0)
1664		goto out_put;
1665
1666	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1667		if (machine__is_host(machine))
1668			pr_debug("Problems creating module maps, "
1669				 "continuing anyway...\n");
1670		else
1671			pr_debug("Problems creating module maps for guest %d, "
1672				 "continuing anyway...\n", machine->pid);
1673	}
1674
1675	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1676		if (name &&
1677		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1678			machine__destroy_kernel_maps(machine);
1679			ret = -1;
1680			goto out_put;
1681		}
1682
1683		/*
1684		 * we have a real start address now, so re-order the kmaps
1685		 * assume it's the last in the kmaps
1686		 */
1687		machine__update_kernel_mmap(machine, start, end);
1688	}
1689
1690	if (machine__create_extra_kernel_maps(machine, kernel))
1691		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1692
1693	if (end == ~0ULL) {
1694		/* update end address of the kernel map using adjacent module address */
1695		map = map__next(machine__kernel_map(machine));
1696		if (map)
1697			machine__set_kernel_mmap(machine, start, map->start);
1698	}
1699
1700out_put:
1701	dso__put(kernel);
1702	return ret;
1703}
1704
1705static bool machine__uses_kcore(struct machine *machine)
1706{
1707	struct dso *dso;
1708
1709	list_for_each_entry(dso, &machine->dsos.head, node) {
1710		if (dso__is_kcore(dso))
1711			return true;
1712	}
1713
1714	return false;
1715}
1716
1717static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1718					     struct extra_kernel_map *xm)
1719{
1720	return machine__is(machine, "x86_64") &&
1721	       is_entry_trampoline(xm->name);
1722}
1723
1724static int machine__process_extra_kernel_map(struct machine *machine,
1725					     struct extra_kernel_map *xm)
1726{
1727	struct dso *kernel = machine__kernel_dso(machine);
 
 
 
 
 
 
1728
1729	if (kernel == NULL)
1730		return -1;
1731
1732	return machine__create_extra_kernel_map(machine, kernel, xm);
 
 
1733}
1734
1735static int machine__process_kernel_mmap_event(struct machine *machine,
1736					      struct extra_kernel_map *xm,
1737					      struct build_id *bid)
1738{
1739	struct map *map;
1740	enum dso_space_type dso_space;
1741	bool is_kernel_mmap;
1742	const char *mmap_name = machine->mmap_name;
1743
1744	/* If we have maps from kcore then we do not need or want any others */
1745	if (machine__uses_kcore(machine))
1746		return 0;
1747
1748	if (machine__is_host(machine))
1749		dso_space = DSO_SPACE__KERNEL;
1750	else
1751		dso_space = DSO_SPACE__KERNEL_GUEST;
1752
1753	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1754	if (!is_kernel_mmap && !machine__is_host(machine)) {
1755		/*
1756		 * If the event was recorded inside the guest and injected into
1757		 * the host perf.data file, then it will match a host mmap_name,
1758		 * so try that - see machine__set_mmap_name().
1759		 */
1760		mmap_name = "[kernel.kallsyms]";
1761		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1762	}
1763	if (xm->name[0] == '/' ||
1764	    (!is_kernel_mmap && xm->name[0] == '[')) {
1765		map = machine__addnew_module_map(machine, xm->start,
1766						 xm->name);
1767		if (map == NULL)
1768			goto out_problem;
1769
1770		map->end = map->start + xm->end - xm->start;
1771
1772		if (build_id__is_defined(bid))
1773			dso__set_build_id(map->dso, bid);
1774
1775	} else if (is_kernel_mmap) {
1776		const char *symbol_name = xm->name + strlen(mmap_name);
 
1777		/*
1778		 * Should be there already, from the build-id table in
1779		 * the header.
1780		 */
1781		struct dso *kernel = NULL;
1782		struct dso *dso;
1783
1784		down_read(&machine->dsos.lock);
1785
1786		list_for_each_entry(dso, &machine->dsos.head, node) {
1787
1788			/*
1789			 * The cpumode passed to is_kernel_module is not the
1790			 * cpumode of *this* event. If we insist on passing
1791			 * correct cpumode to is_kernel_module, we should
1792			 * record the cpumode when we adding this dso to the
1793			 * linked list.
1794			 *
1795			 * However we don't really need passing correct
1796			 * cpumode.  We know the correct cpumode must be kernel
1797			 * mode (if not, we should not link it onto kernel_dsos
1798			 * list).
1799			 *
1800			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1801			 * is_kernel_module() treats it as a kernel cpumode.
1802			 */
1803
1804			if (!dso->kernel ||
1805			    is_kernel_module(dso->long_name,
1806					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1807				continue;
1808
1809
1810			kernel = dso;
1811			break;
1812		}
1813
1814		up_read(&machine->dsos.lock);
1815
1816		if (kernel == NULL)
1817			kernel = machine__findnew_dso(machine, machine->mmap_name);
1818		if (kernel == NULL)
1819			goto out_problem;
1820
1821		kernel->kernel = dso_space;
1822		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1823			dso__put(kernel);
1824			goto out_problem;
1825		}
1826
1827		if (strstr(kernel->long_name, "vmlinux"))
1828			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1829
1830		machine__update_kernel_mmap(machine, xm->start, xm->end);
1831
1832		if (build_id__is_defined(bid))
1833			dso__set_build_id(kernel, bid);
1834
1835		/*
1836		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1837		 * symbol. Effectively having zero here means that at record
1838		 * time /proc/sys/kernel/kptr_restrict was non zero.
1839		 */
1840		if (xm->pgoff != 0) {
1841			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1842							symbol_name,
1843							xm->pgoff);
1844		}
1845
1846		if (machine__is_default_guest(machine)) {
1847			/*
1848			 * preload dso of guest kernel and modules
1849			 */
1850			dso__load(kernel, machine__kernel_map(machine));
1851		}
1852	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1853		return machine__process_extra_kernel_map(machine, xm);
1854	}
1855	return 0;
1856out_problem:
1857	return -1;
1858}
1859
1860int machine__process_mmap2_event(struct machine *machine,
1861				 union perf_event *event,
1862				 struct perf_sample *sample)
1863{
1864	struct thread *thread;
1865	struct map *map;
1866	struct dso_id dso_id = {
1867		.maj = event->mmap2.maj,
1868		.min = event->mmap2.min,
1869		.ino = event->mmap2.ino,
1870		.ino_generation = event->mmap2.ino_generation,
1871	};
1872	struct build_id __bid, *bid = NULL;
1873	int ret = 0;
1874
1875	if (dump_trace)
1876		perf_event__fprintf_mmap2(event, stdout);
1877
1878	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1879		bid = &__bid;
1880		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1881	}
1882
1883	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1884	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1885		struct extra_kernel_map xm = {
1886			.start = event->mmap2.start,
1887			.end   = event->mmap2.start + event->mmap2.len,
1888			.pgoff = event->mmap2.pgoff,
1889		};
1890
1891		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1892		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1893		if (ret < 0)
1894			goto out_problem;
1895		return 0;
1896	}
1897
1898	thread = machine__findnew_thread(machine, event->mmap2.pid,
1899					event->mmap2.tid);
1900	if (thread == NULL)
1901		goto out_problem;
1902
1903	map = map__new(machine, event->mmap2.start,
1904			event->mmap2.len, event->mmap2.pgoff,
1905			&dso_id, event->mmap2.prot,
1906			event->mmap2.flags, bid,
 
 
 
1907			event->mmap2.filename, thread);
1908
1909	if (map == NULL)
1910		goto out_problem_map;
1911
1912	ret = thread__insert_map(thread, map);
1913	if (ret)
1914		goto out_problem_insert;
1915
1916	thread__put(thread);
1917	map__put(map);
1918	return 0;
1919
1920out_problem_insert:
1921	map__put(map);
1922out_problem_map:
1923	thread__put(thread);
1924out_problem:
1925	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1926	return 0;
1927}
1928
1929int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1930				struct perf_sample *sample)
1931{
1932	struct thread *thread;
1933	struct map *map;
1934	u32 prot = 0;
1935	int ret = 0;
1936
1937	if (dump_trace)
1938		perf_event__fprintf_mmap(event, stdout);
1939
1940	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1941	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1942		struct extra_kernel_map xm = {
1943			.start = event->mmap.start,
1944			.end   = event->mmap.start + event->mmap.len,
1945			.pgoff = event->mmap.pgoff,
1946		};
1947
1948		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1949		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1950		if (ret < 0)
1951			goto out_problem;
1952		return 0;
1953	}
1954
1955	thread = machine__findnew_thread(machine, event->mmap.pid,
1956					 event->mmap.tid);
1957	if (thread == NULL)
1958		goto out_problem;
1959
1960	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1961		prot = PROT_EXEC;
1962
1963	map = map__new(machine, event->mmap.start,
1964			event->mmap.len, event->mmap.pgoff,
1965			NULL, prot, 0, NULL, event->mmap.filename, thread);
 
 
1966
1967	if (map == NULL)
1968		goto out_problem_map;
1969
1970	ret = thread__insert_map(thread, map);
1971	if (ret)
1972		goto out_problem_insert;
1973
1974	thread__put(thread);
1975	map__put(map);
1976	return 0;
1977
1978out_problem_insert:
1979	map__put(map);
1980out_problem_map:
1981	thread__put(thread);
1982out_problem:
1983	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1984	return 0;
1985}
1986
1987static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1988{
1989	struct threads *threads = machine__threads(machine, th->tid);
1990
1991	if (threads->last_match == th)
1992		threads__set_last_match(threads, NULL);
1993
1994	if (lock)
1995		down_write(&threads->lock);
1996
1997	BUG_ON(refcount_read(&th->refcnt) == 0);
1998
1999	rb_erase_cached(&th->rb_node, &threads->entries);
2000	RB_CLEAR_NODE(&th->rb_node);
2001	--threads->nr;
2002	/*
2003	 * Move it first to the dead_threads list, then drop the reference,
2004	 * if this is the last reference, then the thread__delete destructor
2005	 * will be called and we will remove it from the dead_threads list.
2006	 */
2007	list_add_tail(&th->node, &threads->dead);
2008
2009	/*
2010	 * We need to do the put here because if this is the last refcount,
2011	 * then we will be touching the threads->dead head when removing the
2012	 * thread.
2013	 */
2014	thread__put(th);
2015
2016	if (lock)
2017		up_write(&threads->lock);
2018}
2019
2020void machine__remove_thread(struct machine *machine, struct thread *th)
2021{
2022	return __machine__remove_thread(machine, th, true);
2023}
2024
2025int machine__process_fork_event(struct machine *machine, union perf_event *event,
2026				struct perf_sample *sample)
2027{
2028	struct thread *thread = machine__find_thread(machine,
2029						     event->fork.pid,
2030						     event->fork.tid);
2031	struct thread *parent = machine__findnew_thread(machine,
2032							event->fork.ppid,
2033							event->fork.ptid);
2034	bool do_maps_clone = true;
2035	int err = 0;
2036
2037	if (dump_trace)
2038		perf_event__fprintf_task(event, stdout);
2039
2040	/*
2041	 * There may be an existing thread that is not actually the parent,
2042	 * either because we are processing events out of order, or because the
2043	 * (fork) event that would have removed the thread was lost. Assume the
2044	 * latter case and continue on as best we can.
2045	 */
2046	if (parent->pid_ != (pid_t)event->fork.ppid) {
2047		dump_printf("removing erroneous parent thread %d/%d\n",
2048			    parent->pid_, parent->tid);
2049		machine__remove_thread(machine, parent);
2050		thread__put(parent);
2051		parent = machine__findnew_thread(machine, event->fork.ppid,
2052						 event->fork.ptid);
2053	}
2054
2055	/* if a thread currently exists for the thread id remove it */
2056	if (thread != NULL) {
2057		machine__remove_thread(machine, thread);
2058		thread__put(thread);
2059	}
2060
2061	thread = machine__findnew_thread(machine, event->fork.pid,
2062					 event->fork.tid);
2063	/*
2064	 * When synthesizing FORK events, we are trying to create thread
2065	 * objects for the already running tasks on the machine.
2066	 *
2067	 * Normally, for a kernel FORK event, we want to clone the parent's
2068	 * maps because that is what the kernel just did.
2069	 *
2070	 * But when synthesizing, this should not be done.  If we do, we end up
2071	 * with overlapping maps as we process the synthesized MMAP2 events that
2072	 * get delivered shortly thereafter.
2073	 *
2074	 * Use the FORK event misc flags in an internal way to signal this
2075	 * situation, so we can elide the map clone when appropriate.
2076	 */
2077	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2078		do_maps_clone = false;
2079
2080	if (thread == NULL || parent == NULL ||
2081	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2082		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2083		err = -1;
2084	}
2085	thread__put(thread);
2086	thread__put(parent);
2087
2088	return err;
2089}
2090
2091int machine__process_exit_event(struct machine *machine, union perf_event *event,
2092				struct perf_sample *sample __maybe_unused)
2093{
2094	struct thread *thread = machine__find_thread(machine,
2095						     event->fork.pid,
2096						     event->fork.tid);
2097
2098	if (dump_trace)
2099		perf_event__fprintf_task(event, stdout);
2100
2101	if (thread != NULL) {
2102		thread__exited(thread);
2103		thread__put(thread);
2104	}
2105
2106	return 0;
2107}
2108
2109int machine__process_event(struct machine *machine, union perf_event *event,
2110			   struct perf_sample *sample)
2111{
2112	int ret;
2113
2114	switch (event->header.type) {
2115	case PERF_RECORD_COMM:
2116		ret = machine__process_comm_event(machine, event, sample); break;
2117	case PERF_RECORD_MMAP:
2118		ret = machine__process_mmap_event(machine, event, sample); break;
2119	case PERF_RECORD_NAMESPACES:
2120		ret = machine__process_namespaces_event(machine, event, sample); break;
2121	case PERF_RECORD_CGROUP:
2122		ret = machine__process_cgroup_event(machine, event, sample); break;
2123	case PERF_RECORD_MMAP2:
2124		ret = machine__process_mmap2_event(machine, event, sample); break;
2125	case PERF_RECORD_FORK:
2126		ret = machine__process_fork_event(machine, event, sample); break;
2127	case PERF_RECORD_EXIT:
2128		ret = machine__process_exit_event(machine, event, sample); break;
2129	case PERF_RECORD_LOST:
2130		ret = machine__process_lost_event(machine, event, sample); break;
2131	case PERF_RECORD_AUX:
2132		ret = machine__process_aux_event(machine, event); break;
2133	case PERF_RECORD_ITRACE_START:
2134		ret = machine__process_itrace_start_event(machine, event); break;
2135	case PERF_RECORD_LOST_SAMPLES:
2136		ret = machine__process_lost_samples_event(machine, event, sample); break;
2137	case PERF_RECORD_SWITCH:
2138	case PERF_RECORD_SWITCH_CPU_WIDE:
2139		ret = machine__process_switch_event(machine, event); break;
2140	case PERF_RECORD_KSYMBOL:
2141		ret = machine__process_ksymbol(machine, event, sample); break;
2142	case PERF_RECORD_BPF_EVENT:
2143		ret = machine__process_bpf(machine, event, sample); break;
2144	case PERF_RECORD_TEXT_POKE:
2145		ret = machine__process_text_poke(machine, event, sample); break;
2146	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2147		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2148	default:
2149		ret = -1;
2150		break;
2151	}
2152
2153	return ret;
2154}
2155
2156static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2157{
2158	if (!regexec(regex, sym->name, 0, NULL, 0))
2159		return true;
2160	return false;
2161}
2162
2163static void ip__resolve_ams(struct thread *thread,
2164			    struct addr_map_symbol *ams,
2165			    u64 ip)
2166{
2167	struct addr_location al;
2168
2169	memset(&al, 0, sizeof(al));
2170	/*
2171	 * We cannot use the header.misc hint to determine whether a
2172	 * branch stack address is user, kernel, guest, hypervisor.
2173	 * Branches may straddle the kernel/user/hypervisor boundaries.
2174	 * Thus, we have to try consecutively until we find a match
2175	 * or else, the symbol is unknown
2176	 */
2177	thread__find_cpumode_addr_location(thread, ip, &al);
2178
2179	ams->addr = ip;
2180	ams->al_addr = al.addr;
2181	ams->al_level = al.level;
2182	ams->ms.maps = al.maps;
2183	ams->ms.sym = al.sym;
2184	ams->ms.map = al.map;
2185	ams->phys_addr = 0;
2186	ams->data_page_size = 0;
2187}
2188
2189static void ip__resolve_data(struct thread *thread,
2190			     u8 m, struct addr_map_symbol *ams,
2191			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2192{
2193	struct addr_location al;
2194
2195	memset(&al, 0, sizeof(al));
2196
2197	thread__find_symbol(thread, m, addr, &al);
2198
2199	ams->addr = addr;
2200	ams->al_addr = al.addr;
2201	ams->al_level = al.level;
2202	ams->ms.maps = al.maps;
2203	ams->ms.sym = al.sym;
2204	ams->ms.map = al.map;
2205	ams->phys_addr = phys_addr;
2206	ams->data_page_size = daddr_page_size;
2207}
2208
2209struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2210				     struct addr_location *al)
2211{
2212	struct mem_info *mi = mem_info__new();
2213
2214	if (!mi)
2215		return NULL;
2216
2217	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2218	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2219			 sample->addr, sample->phys_addr,
2220			 sample->data_page_size);
2221	mi->data_src.val = sample->data_src;
2222
2223	return mi;
2224}
2225
2226static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2227{
2228	struct map *map = ms->map;
2229	char *srcline = NULL;
2230
2231	if (!map || callchain_param.key == CCKEY_FUNCTION)
2232		return srcline;
2233
2234	srcline = srcline__tree_find(&map->dso->srclines, ip);
2235	if (!srcline) {
2236		bool show_sym = false;
2237		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2238
2239		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2240				      ms->sym, show_sym, show_addr, ip);
2241		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2242	}
2243
2244	return srcline;
2245}
2246
2247struct iterations {
2248	int nr_loop_iter;
2249	u64 cycles;
2250};
2251
2252static int add_callchain_ip(struct thread *thread,
2253			    struct callchain_cursor *cursor,
2254			    struct symbol **parent,
2255			    struct addr_location *root_al,
2256			    u8 *cpumode,
2257			    u64 ip,
2258			    bool branch,
2259			    struct branch_flags *flags,
2260			    struct iterations *iter,
2261			    u64 branch_from)
2262{
2263	struct map_symbol ms;
2264	struct addr_location al;
2265	int nr_loop_iter = 0;
2266	u64 iter_cycles = 0;
2267	const char *srcline = NULL;
2268
2269	al.filtered = 0;
2270	al.sym = NULL;
2271	al.srcline = NULL;
2272	if (!cpumode) {
2273		thread__find_cpumode_addr_location(thread, ip, &al);
2274	} else {
2275		if (ip >= PERF_CONTEXT_MAX) {
2276			switch (ip) {
2277			case PERF_CONTEXT_HV:
2278				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2279				break;
2280			case PERF_CONTEXT_KERNEL:
2281				*cpumode = PERF_RECORD_MISC_KERNEL;
2282				break;
2283			case PERF_CONTEXT_USER:
2284				*cpumode = PERF_RECORD_MISC_USER;
2285				break;
2286			default:
2287				pr_debug("invalid callchain context: "
2288					 "%"PRId64"\n", (s64) ip);
2289				/*
2290				 * It seems the callchain is corrupted.
2291				 * Discard all.
2292				 */
2293				callchain_cursor_reset(cursor);
2294				return 1;
2295			}
2296			return 0;
2297		}
2298		thread__find_symbol(thread, *cpumode, ip, &al);
2299	}
2300
2301	if (al.sym != NULL) {
2302		if (perf_hpp_list.parent && !*parent &&
2303		    symbol__match_regex(al.sym, &parent_regex))
2304			*parent = al.sym;
2305		else if (have_ignore_callees && root_al &&
2306		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2307			/* Treat this symbol as the root,
2308			   forgetting its callees. */
2309			*root_al = al;
2310			callchain_cursor_reset(cursor);
2311		}
2312	}
2313
2314	if (symbol_conf.hide_unresolved && al.sym == NULL)
2315		return 0;
2316
2317	if (iter) {
2318		nr_loop_iter = iter->nr_loop_iter;
2319		iter_cycles = iter->cycles;
2320	}
2321
2322	ms.maps = al.maps;
2323	ms.map = al.map;
2324	ms.sym = al.sym;
2325	srcline = callchain_srcline(&ms, al.addr);
2326	return callchain_cursor_append(cursor, ip, &ms,
2327				       branch, flags, nr_loop_iter,
2328				       iter_cycles, branch_from, srcline);
2329}
2330
2331struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2332					   struct addr_location *al)
2333{
2334	unsigned int i;
2335	const struct branch_stack *bs = sample->branch_stack;
2336	struct branch_entry *entries = perf_sample__branch_entries(sample);
2337	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2338
2339	if (!bi)
2340		return NULL;
2341
2342	for (i = 0; i < bs->nr; i++) {
2343		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2344		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2345		bi[i].flags = entries[i].flags;
2346	}
2347	return bi;
2348}
2349
2350static void save_iterations(struct iterations *iter,
2351			    struct branch_entry *be, int nr)
2352{
2353	int i;
2354
2355	iter->nr_loop_iter++;
2356	iter->cycles = 0;
2357
2358	for (i = 0; i < nr; i++)
2359		iter->cycles += be[i].flags.cycles;
2360}
2361
2362#define CHASHSZ 127
2363#define CHASHBITS 7
2364#define NO_ENTRY 0xff
2365
2366#define PERF_MAX_BRANCH_DEPTH 127
2367
2368/* Remove loops. */
2369static int remove_loops(struct branch_entry *l, int nr,
2370			struct iterations *iter)
2371{
2372	int i, j, off;
2373	unsigned char chash[CHASHSZ];
2374
2375	memset(chash, NO_ENTRY, sizeof(chash));
2376
2377	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2378
2379	for (i = 0; i < nr; i++) {
2380		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2381
2382		/* no collision handling for now */
2383		if (chash[h] == NO_ENTRY) {
2384			chash[h] = i;
2385		} else if (l[chash[h]].from == l[i].from) {
2386			bool is_loop = true;
2387			/* check if it is a real loop */
2388			off = 0;
2389			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2390				if (l[j].from != l[i + off].from) {
2391					is_loop = false;
2392					break;
2393				}
2394			if (is_loop) {
2395				j = nr - (i + off);
2396				if (j > 0) {
2397					save_iterations(iter + i + off,
2398						l + i, off);
2399
2400					memmove(iter + i, iter + i + off,
2401						j * sizeof(*iter));
2402
2403					memmove(l + i, l + i + off,
2404						j * sizeof(*l));
2405				}
2406
2407				nr -= off;
2408			}
2409		}
2410	}
2411	return nr;
2412}
2413
2414static int lbr_callchain_add_kernel_ip(struct thread *thread,
2415				       struct callchain_cursor *cursor,
2416				       struct perf_sample *sample,
2417				       struct symbol **parent,
2418				       struct addr_location *root_al,
2419				       u64 branch_from,
2420				       bool callee, int end)
2421{
2422	struct ip_callchain *chain = sample->callchain;
2423	u8 cpumode = PERF_RECORD_MISC_USER;
2424	int err, i;
2425
2426	if (callee) {
2427		for (i = 0; i < end + 1; i++) {
2428			err = add_callchain_ip(thread, cursor, parent,
2429					       root_al, &cpumode, chain->ips[i],
2430					       false, NULL, NULL, branch_from);
2431			if (err)
2432				return err;
2433		}
2434		return 0;
2435	}
2436
2437	for (i = end; i >= 0; i--) {
2438		err = add_callchain_ip(thread, cursor, parent,
2439				       root_al, &cpumode, chain->ips[i],
2440				       false, NULL, NULL, branch_from);
2441		if (err)
2442			return err;
2443	}
2444
2445	return 0;
2446}
2447
2448static void save_lbr_cursor_node(struct thread *thread,
2449				 struct callchain_cursor *cursor,
2450				 int idx)
2451{
2452	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2453
2454	if (!lbr_stitch)
2455		return;
2456
2457	if (cursor->pos == cursor->nr) {
2458		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2459		return;
2460	}
2461
2462	if (!cursor->curr)
2463		cursor->curr = cursor->first;
2464	else
2465		cursor->curr = cursor->curr->next;
2466	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2467	       sizeof(struct callchain_cursor_node));
2468
2469	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2470	cursor->pos++;
2471}
2472
2473static int lbr_callchain_add_lbr_ip(struct thread *thread,
2474				    struct callchain_cursor *cursor,
2475				    struct perf_sample *sample,
2476				    struct symbol **parent,
2477				    struct addr_location *root_al,
2478				    u64 *branch_from,
2479				    bool callee)
2480{
2481	struct branch_stack *lbr_stack = sample->branch_stack;
2482	struct branch_entry *entries = perf_sample__branch_entries(sample);
2483	u8 cpumode = PERF_RECORD_MISC_USER;
2484	int lbr_nr = lbr_stack->nr;
2485	struct branch_flags *flags;
2486	int err, i;
2487	u64 ip;
2488
2489	/*
2490	 * The curr and pos are not used in writing session. They are cleared
2491	 * in callchain_cursor_commit() when the writing session is closed.
2492	 * Using curr and pos to track the current cursor node.
2493	 */
2494	if (thread->lbr_stitch) {
2495		cursor->curr = NULL;
2496		cursor->pos = cursor->nr;
2497		if (cursor->nr) {
2498			cursor->curr = cursor->first;
2499			for (i = 0; i < (int)(cursor->nr - 1); i++)
2500				cursor->curr = cursor->curr->next;
2501		}
2502	}
2503
2504	if (callee) {
2505		/* Add LBR ip from first entries.to */
2506		ip = entries[0].to;
2507		flags = &entries[0].flags;
2508		*branch_from = entries[0].from;
2509		err = add_callchain_ip(thread, cursor, parent,
2510				       root_al, &cpumode, ip,
2511				       true, flags, NULL,
2512				       *branch_from);
2513		if (err)
2514			return err;
2515
2516		/*
2517		 * The number of cursor node increases.
2518		 * Move the current cursor node.
2519		 * But does not need to save current cursor node for entry 0.
2520		 * It's impossible to stitch the whole LBRs of previous sample.
2521		 */
2522		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2523			if (!cursor->curr)
2524				cursor->curr = cursor->first;
2525			else
2526				cursor->curr = cursor->curr->next;
2527			cursor->pos++;
2528		}
2529
2530		/* Add LBR ip from entries.from one by one. */
2531		for (i = 0; i < lbr_nr; i++) {
2532			ip = entries[i].from;
2533			flags = &entries[i].flags;
2534			err = add_callchain_ip(thread, cursor, parent,
2535					       root_al, &cpumode, ip,
2536					       true, flags, NULL,
2537					       *branch_from);
2538			if (err)
2539				return err;
2540			save_lbr_cursor_node(thread, cursor, i);
2541		}
2542		return 0;
2543	}
2544
2545	/* Add LBR ip from entries.from one by one. */
2546	for (i = lbr_nr - 1; i >= 0; i--) {
2547		ip = entries[i].from;
2548		flags = &entries[i].flags;
2549		err = add_callchain_ip(thread, cursor, parent,
2550				       root_al, &cpumode, ip,
2551				       true, flags, NULL,
2552				       *branch_from);
2553		if (err)
2554			return err;
2555		save_lbr_cursor_node(thread, cursor, i);
2556	}
2557
2558	/* Add LBR ip from first entries.to */
2559	ip = entries[0].to;
2560	flags = &entries[0].flags;
2561	*branch_from = entries[0].from;
2562	err = add_callchain_ip(thread, cursor, parent,
2563			       root_al, &cpumode, ip,
2564			       true, flags, NULL,
2565			       *branch_from);
2566	if (err)
2567		return err;
2568
2569	return 0;
2570}
2571
2572static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2573					     struct callchain_cursor *cursor)
2574{
2575	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2576	struct callchain_cursor_node *cnode;
2577	struct stitch_list *stitch_node;
2578	int err;
2579
2580	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2581		cnode = &stitch_node->cursor;
2582
2583		err = callchain_cursor_append(cursor, cnode->ip,
2584					      &cnode->ms,
2585					      cnode->branch,
2586					      &cnode->branch_flags,
2587					      cnode->nr_loop_iter,
2588					      cnode->iter_cycles,
2589					      cnode->branch_from,
2590					      cnode->srcline);
2591		if (err)
2592			return err;
2593	}
2594	return 0;
2595}
2596
2597static struct stitch_list *get_stitch_node(struct thread *thread)
2598{
2599	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2600	struct stitch_list *stitch_node;
2601
2602	if (!list_empty(&lbr_stitch->free_lists)) {
2603		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2604					       struct stitch_list, node);
2605		list_del(&stitch_node->node);
2606
2607		return stitch_node;
2608	}
2609
2610	return malloc(sizeof(struct stitch_list));
2611}
2612
2613static bool has_stitched_lbr(struct thread *thread,
2614			     struct perf_sample *cur,
2615			     struct perf_sample *prev,
2616			     unsigned int max_lbr,
2617			     bool callee)
2618{
2619	struct branch_stack *cur_stack = cur->branch_stack;
2620	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2621	struct branch_stack *prev_stack = prev->branch_stack;
2622	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2623	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2624	int i, j, nr_identical_branches = 0;
2625	struct stitch_list *stitch_node;
2626	u64 cur_base, distance;
2627
2628	if (!cur_stack || !prev_stack)
2629		return false;
2630
2631	/* Find the physical index of the base-of-stack for current sample. */
2632	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2633
2634	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2635						     (max_lbr + prev_stack->hw_idx - cur_base);
2636	/* Previous sample has shorter stack. Nothing can be stitched. */
2637	if (distance + 1 > prev_stack->nr)
2638		return false;
2639
2640	/*
2641	 * Check if there are identical LBRs between two samples.
2642	 * Identical LBRs must have same from, to and flags values. Also,
2643	 * they have to be saved in the same LBR registers (same physical
2644	 * index).
2645	 *
2646	 * Starts from the base-of-stack of current sample.
2647	 */
2648	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2649		if ((prev_entries[i].from != cur_entries[j].from) ||
2650		    (prev_entries[i].to != cur_entries[j].to) ||
2651		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2652			break;
2653		nr_identical_branches++;
2654	}
2655
2656	if (!nr_identical_branches)
2657		return false;
2658
2659	/*
2660	 * Save the LBRs between the base-of-stack of previous sample
2661	 * and the base-of-stack of current sample into lbr_stitch->lists.
2662	 * These LBRs will be stitched later.
2663	 */
2664	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2665
2666		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2667			continue;
2668
2669		stitch_node = get_stitch_node(thread);
2670		if (!stitch_node)
2671			return false;
2672
2673		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2674		       sizeof(struct callchain_cursor_node));
2675
2676		if (callee)
2677			list_add(&stitch_node->node, &lbr_stitch->lists);
2678		else
2679			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2680	}
2681
2682	return true;
2683}
2684
2685static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2686{
2687	if (thread->lbr_stitch)
2688		return true;
2689
2690	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2691	if (!thread->lbr_stitch)
2692		goto err;
2693
2694	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2695	if (!thread->lbr_stitch->prev_lbr_cursor)
2696		goto free_lbr_stitch;
2697
2698	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2699	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2700
2701	return true;
2702
2703free_lbr_stitch:
2704	zfree(&thread->lbr_stitch);
2705err:
2706	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2707	thread->lbr_stitch_enable = false;
2708	return false;
2709}
2710
2711/*
2712 * Resolve LBR callstack chain sample
2713 * Return:
2714 * 1 on success get LBR callchain information
2715 * 0 no available LBR callchain information, should try fp
2716 * negative error code on other errors.
2717 */
2718static int resolve_lbr_callchain_sample(struct thread *thread,
2719					struct callchain_cursor *cursor,
2720					struct perf_sample *sample,
2721					struct symbol **parent,
2722					struct addr_location *root_al,
2723					int max_stack,
2724					unsigned int max_lbr)
2725{
2726	bool callee = (callchain_param.order == ORDER_CALLEE);
2727	struct ip_callchain *chain = sample->callchain;
2728	int chain_nr = min(max_stack, (int)chain->nr), i;
2729	struct lbr_stitch *lbr_stitch;
2730	bool stitched_lbr = false;
2731	u64 branch_from = 0;
2732	int err;
2733
2734	for (i = 0; i < chain_nr; i++) {
2735		if (chain->ips[i] == PERF_CONTEXT_USER)
2736			break;
2737	}
2738
2739	/* LBR only affects the user callchain */
2740	if (i == chain_nr)
2741		return 0;
2742
2743	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2744	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2745		lbr_stitch = thread->lbr_stitch;
2746
2747		stitched_lbr = has_stitched_lbr(thread, sample,
2748						&lbr_stitch->prev_sample,
2749						max_lbr, callee);
2750
2751		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2752			list_replace_init(&lbr_stitch->lists,
2753					  &lbr_stitch->free_lists);
2754		}
2755		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2756	}
2757
2758	if (callee) {
2759		/* Add kernel ip */
2760		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2761						  parent, root_al, branch_from,
2762						  true, i);
2763		if (err)
2764			goto error;
2765
2766		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2767					       root_al, &branch_from, true);
2768		if (err)
2769			goto error;
2770
2771		if (stitched_lbr) {
2772			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2773			if (err)
2774				goto error;
2775		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2776
2777	} else {
2778		if (stitched_lbr) {
2779			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
 
2780			if (err)
2781				goto error;
2782		}
2783		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2784					       root_al, &branch_from, false);
2785		if (err)
2786			goto error;
2787
2788		/* Add kernel ip */
2789		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2790						  parent, root_al, branch_from,
2791						  false, i);
2792		if (err)
2793			goto error;
2794	}
2795	return 1;
2796
2797error:
2798	return (err < 0) ? err : 0;
2799}
2800
2801static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2802			     struct callchain_cursor *cursor,
2803			     struct symbol **parent,
2804			     struct addr_location *root_al,
2805			     u8 *cpumode, int ent)
2806{
2807	int err = 0;
2808
2809	while (--ent >= 0) {
2810		u64 ip = chain->ips[ent];
2811
2812		if (ip >= PERF_CONTEXT_MAX) {
2813			err = add_callchain_ip(thread, cursor, parent,
2814					       root_al, cpumode, ip,
2815					       false, NULL, NULL, 0);
2816			break;
2817		}
2818	}
2819	return err;
2820}
2821
2822static u64 get_leaf_frame_caller(struct perf_sample *sample,
2823		struct thread *thread, int usr_idx)
2824{
2825	if (machine__normalized_is(thread->maps->machine, "arm64"))
2826		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2827	else
2828		return 0;
2829}
2830
2831static int thread__resolve_callchain_sample(struct thread *thread,
2832					    struct callchain_cursor *cursor,
2833					    struct evsel *evsel,
2834					    struct perf_sample *sample,
2835					    struct symbol **parent,
2836					    struct addr_location *root_al,
2837					    int max_stack)
2838{
2839	struct branch_stack *branch = sample->branch_stack;
2840	struct branch_entry *entries = perf_sample__branch_entries(sample);
2841	struct ip_callchain *chain = sample->callchain;
2842	int chain_nr = 0;
2843	u8 cpumode = PERF_RECORD_MISC_USER;
2844	int i, j, err, nr_entries, usr_idx;
2845	int skip_idx = -1;
2846	int first_call = 0;
2847	u64 leaf_frame_caller;
2848
2849	if (chain)
2850		chain_nr = chain->nr;
2851
2852	if (evsel__has_branch_callstack(evsel)) {
2853		struct perf_env *env = evsel__env(evsel);
2854
2855		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2856						   root_al, max_stack,
2857						   !env ? 0 : env->max_branches);
2858		if (err)
2859			return (err < 0) ? err : 0;
2860	}
2861
2862	/*
2863	 * Based on DWARF debug information, some architectures skip
2864	 * a callchain entry saved by the kernel.
2865	 */
2866	skip_idx = arch_skip_callchain_idx(thread, chain);
2867
2868	/*
2869	 * Add branches to call stack for easier browsing. This gives
2870	 * more context for a sample than just the callers.
2871	 *
2872	 * This uses individual histograms of paths compared to the
2873	 * aggregated histograms the normal LBR mode uses.
2874	 *
2875	 * Limitations for now:
2876	 * - No extra filters
2877	 * - No annotations (should annotate somehow)
2878	 */
2879
2880	if (branch && callchain_param.branch_callstack) {
2881		int nr = min(max_stack, (int)branch->nr);
2882		struct branch_entry be[nr];
2883		struct iterations iter[nr];
2884
2885		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2886			pr_warning("corrupted branch chain. skipping...\n");
2887			goto check_calls;
2888		}
2889
2890		for (i = 0; i < nr; i++) {
2891			if (callchain_param.order == ORDER_CALLEE) {
2892				be[i] = entries[i];
2893
2894				if (chain == NULL)
2895					continue;
2896
2897				/*
2898				 * Check for overlap into the callchain.
2899				 * The return address is one off compared to
2900				 * the branch entry. To adjust for this
2901				 * assume the calling instruction is not longer
2902				 * than 8 bytes.
2903				 */
2904				if (i == skip_idx ||
2905				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2906					first_call++;
2907				else if (be[i].from < chain->ips[first_call] &&
2908				    be[i].from >= chain->ips[first_call] - 8)
2909					first_call++;
2910			} else
2911				be[i] = entries[branch->nr - i - 1];
2912		}
2913
2914		memset(iter, 0, sizeof(struct iterations) * nr);
2915		nr = remove_loops(be, nr, iter);
2916
2917		for (i = 0; i < nr; i++) {
2918			err = add_callchain_ip(thread, cursor, parent,
2919					       root_al,
2920					       NULL, be[i].to,
2921					       true, &be[i].flags,
2922					       NULL, be[i].from);
2923
2924			if (!err)
2925				err = add_callchain_ip(thread, cursor, parent, root_al,
2926						       NULL, be[i].from,
2927						       true, &be[i].flags,
2928						       &iter[i], 0);
2929			if (err == -EINVAL)
2930				break;
2931			if (err)
2932				return err;
2933		}
2934
2935		if (chain_nr == 0)
2936			return 0;
2937
2938		chain_nr -= nr;
2939	}
2940
2941check_calls:
2942	if (chain && callchain_param.order != ORDER_CALLEE) {
2943		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2944					&cpumode, chain->nr - first_call);
2945		if (err)
2946			return (err < 0) ? err : 0;
2947	}
2948	for (i = first_call, nr_entries = 0;
2949	     i < chain_nr && nr_entries < max_stack; i++) {
2950		u64 ip;
2951
2952		if (callchain_param.order == ORDER_CALLEE)
2953			j = i;
2954		else
2955			j = chain->nr - i - 1;
2956
2957#ifdef HAVE_SKIP_CALLCHAIN_IDX
2958		if (j == skip_idx)
2959			continue;
2960#endif
2961		ip = chain->ips[j];
2962		if (ip < PERF_CONTEXT_MAX)
2963                       ++nr_entries;
2964		else if (callchain_param.order != ORDER_CALLEE) {
2965			err = find_prev_cpumode(chain, thread, cursor, parent,
2966						root_al, &cpumode, j);
2967			if (err)
2968				return (err < 0) ? err : 0;
2969			continue;
2970		}
2971
2972		/*
2973		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2974		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2975		 * the index will be different in order to add the missing frame
2976		 * at the right place.
2977		 */
2978
2979		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2980
2981		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2982
2983			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2984
2985			/*
2986			 * check if leaf_frame_Caller != ip to not add the same
2987			 * value twice.
2988			 */
2989
2990			if (leaf_frame_caller && leaf_frame_caller != ip) {
2991
2992				err = add_callchain_ip(thread, cursor, parent,
2993					       root_al, &cpumode, leaf_frame_caller,
2994					       false, NULL, NULL, 0);
2995				if (err)
2996					return (err < 0) ? err : 0;
2997			}
2998		}
2999
3000		err = add_callchain_ip(thread, cursor, parent,
3001				       root_al, &cpumode, ip,
3002				       false, NULL, NULL, 0);
3003
3004		if (err)
3005			return (err < 0) ? err : 0;
3006	}
3007
3008	return 0;
3009}
3010
3011static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
 
3012{
3013	struct symbol *sym = ms->sym;
3014	struct map *map = ms->map;
3015	struct inline_node *inline_node;
3016	struct inline_list *ilist;
3017	u64 addr;
3018	int ret = 1;
3019
3020	if (!symbol_conf.inline_name || !map || !sym)
3021		return ret;
3022
3023	addr = map__map_ip(map, ip);
3024	addr = map__rip_2objdump(map, addr);
3025
3026	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
3027	if (!inline_node) {
3028		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
3029		if (!inline_node)
3030			return ret;
3031		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
3032	}
3033
3034	list_for_each_entry(ilist, &inline_node->val, list) {
3035		struct map_symbol ilist_ms = {
3036			.maps = ms->maps,
3037			.map = map,
3038			.sym = ilist->symbol,
3039		};
3040		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3041					      NULL, 0, 0, 0, ilist->srcline);
3042
3043		if (ret != 0)
3044			return ret;
3045	}
3046
3047	return ret;
3048}
3049
3050static int unwind_entry(struct unwind_entry *entry, void *arg)
3051{
3052	struct callchain_cursor *cursor = arg;
3053	const char *srcline = NULL;
3054	u64 addr = entry->ip;
3055
3056	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3057		return 0;
3058
3059	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3060		return 0;
3061
3062	/*
3063	 * Convert entry->ip from a virtual address to an offset in
3064	 * its corresponding binary.
3065	 */
3066	if (entry->ms.map)
3067		addr = map__map_ip(entry->ms.map, entry->ip);
3068
3069	srcline = callchain_srcline(&entry->ms, addr);
3070	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
 
3071				       false, NULL, 0, 0, 0, srcline);
3072}
3073
3074static int thread__resolve_callchain_unwind(struct thread *thread,
3075					    struct callchain_cursor *cursor,
3076					    struct evsel *evsel,
3077					    struct perf_sample *sample,
3078					    int max_stack)
3079{
3080	/* Can we do dwarf post unwind? */
3081	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3082	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3083		return 0;
3084
3085	/* Bail out if nothing was captured. */
3086	if ((!sample->user_regs.regs) ||
3087	    (!sample->user_stack.size))
3088		return 0;
3089
3090	return unwind__get_entries(unwind_entry, cursor,
3091				   thread, sample, max_stack, false);
3092}
3093
3094int thread__resolve_callchain(struct thread *thread,
3095			      struct callchain_cursor *cursor,
3096			      struct evsel *evsel,
3097			      struct perf_sample *sample,
3098			      struct symbol **parent,
3099			      struct addr_location *root_al,
3100			      int max_stack)
3101{
3102	int ret = 0;
3103
3104	callchain_cursor_reset(cursor);
3105
3106	if (callchain_param.order == ORDER_CALLEE) {
3107		ret = thread__resolve_callchain_sample(thread, cursor,
3108						       evsel, sample,
3109						       parent, root_al,
3110						       max_stack);
3111		if (ret)
3112			return ret;
3113		ret = thread__resolve_callchain_unwind(thread, cursor,
3114						       evsel, sample,
3115						       max_stack);
3116	} else {
3117		ret = thread__resolve_callchain_unwind(thread, cursor,
3118						       evsel, sample,
3119						       max_stack);
3120		if (ret)
3121			return ret;
3122		ret = thread__resolve_callchain_sample(thread, cursor,
3123						       evsel, sample,
3124						       parent, root_al,
3125						       max_stack);
3126	}
3127
3128	return ret;
3129}
3130
3131int machine__for_each_thread(struct machine *machine,
3132			     int (*fn)(struct thread *thread, void *p),
3133			     void *priv)
3134{
3135	struct threads *threads;
3136	struct rb_node *nd;
3137	struct thread *thread;
3138	int rc = 0;
3139	int i;
3140
3141	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3142		threads = &machine->threads[i];
3143		for (nd = rb_first_cached(&threads->entries); nd;
3144		     nd = rb_next(nd)) {
3145			thread = rb_entry(nd, struct thread, rb_node);
3146			rc = fn(thread, priv);
3147			if (rc != 0)
3148				return rc;
3149		}
3150
3151		list_for_each_entry(thread, &threads->dead, node) {
3152			rc = fn(thread, priv);
3153			if (rc != 0)
3154				return rc;
3155		}
3156	}
3157	return rc;
3158}
3159
3160int machines__for_each_thread(struct machines *machines,
3161			      int (*fn)(struct thread *thread, void *p),
3162			      void *priv)
3163{
3164	struct rb_node *nd;
3165	int rc = 0;
3166
3167	rc = machine__for_each_thread(&machines->host, fn, priv);
3168	if (rc != 0)
3169		return rc;
3170
3171	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3172		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3173
3174		rc = machine__for_each_thread(machine, fn, priv);
3175		if (rc != 0)
3176			return rc;
3177	}
3178	return rc;
3179}
3180
3181pid_t machine__get_current_tid(struct machine *machine, int cpu)
3182{
3183	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
 
 
3184		return -1;
3185
3186	return machine->current_tid[cpu];
3187}
3188
3189int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3190			     pid_t tid)
3191{
3192	struct thread *thread;
3193	const pid_t init_val = -1;
3194
3195	if (cpu < 0)
3196		return -EINVAL;
3197
3198	if (realloc_array_as_needed(machine->current_tid,
3199				    machine->current_tid_sz,
3200				    (unsigned int)cpu,
3201				    &init_val))
3202		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
3203
3204	machine->current_tid[cpu] = tid;
3205
3206	thread = machine__findnew_thread(machine, pid, tid);
3207	if (!thread)
3208		return -ENOMEM;
3209
3210	thread->cpu = cpu;
3211	thread__put(thread);
3212
3213	return 0;
3214}
3215
3216/*
3217 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3218 * machine__normalized_is() if a normalized arch is needed.
3219 */
3220bool machine__is(struct machine *machine, const char *arch)
3221{
3222	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3223}
3224
3225bool machine__normalized_is(struct machine *machine, const char *arch)
3226{
3227	return machine && !strcmp(perf_env__arch(machine->env), arch);
3228}
3229
3230int machine__nr_cpus_avail(struct machine *machine)
3231{
3232	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3233}
3234
3235int machine__get_kernel_start(struct machine *machine)
3236{
3237	struct map *map = machine__kernel_map(machine);
3238	int err = 0;
3239
3240	/*
3241	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3242	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3243	 * all addresses including kernel addresses are less than 2^32.  In
3244	 * that case (32-bit system), if the kernel mapping is unknown, all
3245	 * addresses will be assumed to be in user space - see
3246	 * machine__kernel_ip().
3247	 */
3248	machine->kernel_start = 1ULL << 63;
3249	if (map) {
3250		err = map__load(map);
3251		/*
3252		 * On x86_64, PTI entry trampolines are less than the
3253		 * start of kernel text, but still above 2^63. So leave
3254		 * kernel_start = 1ULL << 63 for x86_64.
3255		 */
3256		if (!err && !machine__is(machine, "x86_64"))
3257			machine->kernel_start = map->start;
3258	}
3259	return err;
3260}
3261
3262u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3263{
3264	u8 addr_cpumode = cpumode;
3265	bool kernel_ip;
3266
3267	if (!machine->single_address_space)
3268		goto out;
3269
3270	kernel_ip = machine__kernel_ip(machine, addr);
3271	switch (cpumode) {
3272	case PERF_RECORD_MISC_KERNEL:
3273	case PERF_RECORD_MISC_USER:
3274		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3275					   PERF_RECORD_MISC_USER;
3276		break;
3277	case PERF_RECORD_MISC_GUEST_KERNEL:
3278	case PERF_RECORD_MISC_GUEST_USER:
3279		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3280					   PERF_RECORD_MISC_GUEST_USER;
3281		break;
3282	default:
3283		break;
3284	}
3285out:
3286	return addr_cpumode;
3287}
3288
3289struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3290{
3291	return dsos__findnew_id(&machine->dsos, filename, id);
3292}
3293
3294struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3295{
3296	return machine__findnew_dso_id(machine, filename, NULL);
3297}
3298
3299char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3300{
3301	struct machine *machine = vmachine;
3302	struct map *map;
3303	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3304
3305	if (sym == NULL)
3306		return NULL;
3307
3308	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3309	*addrp = map->unmap_ip(map, sym->start);
3310	return sym->name;
3311}
3312
3313int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3314{
3315	struct dso *pos;
3316	int err = 0;
3317
3318	list_for_each_entry(pos, &machine->dsos.head, node) {
3319		if (fn(pos, machine, priv))
3320			err = -1;
3321	}
3322	return err;
3323}
3324
3325int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3326{
3327	struct maps *maps = machine__kernel_maps(machine);
3328	struct map *map;
3329	int err = 0;
3330
3331	for (map = maps__first(maps); map != NULL; map = map__next(map)) {
3332		err = fn(map, priv);
3333		if (err != 0) {
3334			break;
3335		}
3336	}
3337	return err;
3338}
3339
3340bool machine__is_lock_function(struct machine *machine, u64 addr)
3341{
3342	if (!machine->sched.text_start) {
3343		struct map *kmap;
3344		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3345
3346		if (!sym) {
3347			/* to avoid retry */
3348			machine->sched.text_start = 1;
3349			return false;
3350		}
3351
3352		machine->sched.text_start = kmap->unmap_ip(kmap, sym->start);
3353
3354		/* should not fail from here */
3355		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3356		machine->sched.text_end = kmap->unmap_ip(kmap, sym->start);
3357
3358		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3359		machine->lock.text_start = kmap->unmap_ip(kmap, sym->start);
3360
3361		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3362		machine->lock.text_end = kmap->unmap_ip(kmap, sym->start);
3363	}
3364
3365	/* failed to get kernel symbols */
3366	if (machine->sched.text_start == 1)
3367		return false;
3368
3369	/* mutex and rwsem functions are in sched text section */
3370	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3371		return true;
3372
3373	/* spinlock functions are in lock text section */
3374	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3375		return true;
3376
3377	return false;
3378}