Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "srcline.h"
20#include "symbol.h"
21#include "sort.h"
22#include "strlist.h"
23#include "target.h"
24#include "thread.h"
25#include "util.h"
26#include "vdso.h"
27#include <stdbool.h>
28#include <sys/types.h>
29#include <sys/stat.h>
30#include <unistd.h>
31#include "unwind.h"
32#include "linux/hash.h"
33#include "asm/bug.h"
34#include "bpf-event.h"
35#include <internal/lib.h> // page_size
36
37#include <linux/ctype.h>
38#include <symbol/kallsyms.h>
39#include <linux/mman.h>
40#include <linux/string.h>
41#include <linux/zalloc.h>
42
43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44
45static void dsos__init(struct dsos *dsos)
46{
47 INIT_LIST_HEAD(&dsos->head);
48 dsos->root = RB_ROOT;
49 init_rwsem(&dsos->lock);
50}
51
52static void machine__threads_init(struct machine *machine)
53{
54 int i;
55
56 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
57 struct threads *threads = &machine->threads[i];
58 threads->entries = RB_ROOT_CACHED;
59 init_rwsem(&threads->lock);
60 threads->nr = 0;
61 INIT_LIST_HEAD(&threads->dead);
62 threads->last_match = NULL;
63 }
64}
65
66static int machine__set_mmap_name(struct machine *machine)
67{
68 if (machine__is_host(machine))
69 machine->mmap_name = strdup("[kernel.kallsyms]");
70 else if (machine__is_default_guest(machine))
71 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
72 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
73 machine->pid) < 0)
74 machine->mmap_name = NULL;
75
76 return machine->mmap_name ? 0 : -ENOMEM;
77}
78
79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80{
81 int err = -ENOMEM;
82
83 memset(machine, 0, sizeof(*machine));
84 map_groups__init(&machine->kmaps, machine);
85 RB_CLEAR_NODE(&machine->rb_node);
86 dsos__init(&machine->dsos);
87
88 machine__threads_init(machine);
89
90 machine->vdso_info = NULL;
91 machine->env = NULL;
92
93 machine->pid = pid;
94
95 machine->id_hdr_size = 0;
96 machine->kptr_restrict_warned = false;
97 machine->comm_exec = false;
98 machine->kernel_start = 0;
99 machine->vmlinux_map = NULL;
100
101 machine->root_dir = strdup(root_dir);
102 if (machine->root_dir == NULL)
103 return -ENOMEM;
104
105 if (machine__set_mmap_name(machine))
106 goto out;
107
108 if (pid != HOST_KERNEL_ID) {
109 struct thread *thread = machine__findnew_thread(machine, -1,
110 pid);
111 char comm[64];
112
113 if (thread == NULL)
114 goto out;
115
116 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
117 thread__set_comm(thread, comm, 0);
118 thread__put(thread);
119 }
120
121 machine->current_tid = NULL;
122 err = 0;
123
124out:
125 if (err) {
126 zfree(&machine->root_dir);
127 zfree(&machine->mmap_name);
128 }
129 return 0;
130}
131
132struct machine *machine__new_host(void)
133{
134 struct machine *machine = malloc(sizeof(*machine));
135
136 if (machine != NULL) {
137 machine__init(machine, "", HOST_KERNEL_ID);
138
139 if (machine__create_kernel_maps(machine) < 0)
140 goto out_delete;
141 }
142
143 return machine;
144out_delete:
145 free(machine);
146 return NULL;
147}
148
149struct machine *machine__new_kallsyms(void)
150{
151 struct machine *machine = machine__new_host();
152 /*
153 * FIXME:
154 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
155 * ask for not using the kcore parsing code, once this one is fixed
156 * to create a map per module.
157 */
158 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
159 machine__delete(machine);
160 machine = NULL;
161 }
162
163 return machine;
164}
165
166static void dsos__purge(struct dsos *dsos)
167{
168 struct dso *pos, *n;
169
170 down_write(&dsos->lock);
171
172 list_for_each_entry_safe(pos, n, &dsos->head, node) {
173 RB_CLEAR_NODE(&pos->rb_node);
174 pos->root = NULL;
175 list_del_init(&pos->node);
176 dso__put(pos);
177 }
178
179 up_write(&dsos->lock);
180}
181
182static void dsos__exit(struct dsos *dsos)
183{
184 dsos__purge(dsos);
185 exit_rwsem(&dsos->lock);
186}
187
188void machine__delete_threads(struct machine *machine)
189{
190 struct rb_node *nd;
191 int i;
192
193 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
194 struct threads *threads = &machine->threads[i];
195 down_write(&threads->lock);
196 nd = rb_first_cached(&threads->entries);
197 while (nd) {
198 struct thread *t = rb_entry(nd, struct thread, rb_node);
199
200 nd = rb_next(nd);
201 __machine__remove_thread(machine, t, false);
202 }
203 up_write(&threads->lock);
204 }
205}
206
207void machine__exit(struct machine *machine)
208{
209 int i;
210
211 if (machine == NULL)
212 return;
213
214 machine__destroy_kernel_maps(machine);
215 map_groups__exit(&machine->kmaps);
216 dsos__exit(&machine->dsos);
217 machine__exit_vdso(machine);
218 zfree(&machine->root_dir);
219 zfree(&machine->mmap_name);
220 zfree(&machine->current_tid);
221
222 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
223 struct threads *threads = &machine->threads[i];
224 struct thread *thread, *n;
225 /*
226 * Forget about the dead, at this point whatever threads were
227 * left in the dead lists better have a reference count taken
228 * by who is using them, and then, when they drop those references
229 * and it finally hits zero, thread__put() will check and see that
230 * its not in the dead threads list and will not try to remove it
231 * from there, just calling thread__delete() straight away.
232 */
233 list_for_each_entry_safe(thread, n, &threads->dead, node)
234 list_del_init(&thread->node);
235
236 exit_rwsem(&threads->lock);
237 }
238}
239
240void machine__delete(struct machine *machine)
241{
242 if (machine) {
243 machine__exit(machine);
244 free(machine);
245 }
246}
247
248void machines__init(struct machines *machines)
249{
250 machine__init(&machines->host, "", HOST_KERNEL_ID);
251 machines->guests = RB_ROOT_CACHED;
252}
253
254void machines__exit(struct machines *machines)
255{
256 machine__exit(&machines->host);
257 /* XXX exit guest */
258}
259
260struct machine *machines__add(struct machines *machines, pid_t pid,
261 const char *root_dir)
262{
263 struct rb_node **p = &machines->guests.rb_root.rb_node;
264 struct rb_node *parent = NULL;
265 struct machine *pos, *machine = malloc(sizeof(*machine));
266 bool leftmost = true;
267
268 if (machine == NULL)
269 return NULL;
270
271 if (machine__init(machine, root_dir, pid) != 0) {
272 free(machine);
273 return NULL;
274 }
275
276 while (*p != NULL) {
277 parent = *p;
278 pos = rb_entry(parent, struct machine, rb_node);
279 if (pid < pos->pid)
280 p = &(*p)->rb_left;
281 else {
282 p = &(*p)->rb_right;
283 leftmost = false;
284 }
285 }
286
287 rb_link_node(&machine->rb_node, parent, p);
288 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
289
290 return machine;
291}
292
293void machines__set_comm_exec(struct machines *machines, bool comm_exec)
294{
295 struct rb_node *nd;
296
297 machines->host.comm_exec = comm_exec;
298
299 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
300 struct machine *machine = rb_entry(nd, struct machine, rb_node);
301
302 machine->comm_exec = comm_exec;
303 }
304}
305
306struct machine *machines__find(struct machines *machines, pid_t pid)
307{
308 struct rb_node **p = &machines->guests.rb_root.rb_node;
309 struct rb_node *parent = NULL;
310 struct machine *machine;
311 struct machine *default_machine = NULL;
312
313 if (pid == HOST_KERNEL_ID)
314 return &machines->host;
315
316 while (*p != NULL) {
317 parent = *p;
318 machine = rb_entry(parent, struct machine, rb_node);
319 if (pid < machine->pid)
320 p = &(*p)->rb_left;
321 else if (pid > machine->pid)
322 p = &(*p)->rb_right;
323 else
324 return machine;
325 if (!machine->pid)
326 default_machine = machine;
327 }
328
329 return default_machine;
330}
331
332struct machine *machines__findnew(struct machines *machines, pid_t pid)
333{
334 char path[PATH_MAX];
335 const char *root_dir = "";
336 struct machine *machine = machines__find(machines, pid);
337
338 if (machine && (machine->pid == pid))
339 goto out;
340
341 if ((pid != HOST_KERNEL_ID) &&
342 (pid != DEFAULT_GUEST_KERNEL_ID) &&
343 (symbol_conf.guestmount)) {
344 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
345 if (access(path, R_OK)) {
346 static struct strlist *seen;
347
348 if (!seen)
349 seen = strlist__new(NULL, NULL);
350
351 if (!strlist__has_entry(seen, path)) {
352 pr_err("Can't access file %s\n", path);
353 strlist__add(seen, path);
354 }
355 machine = NULL;
356 goto out;
357 }
358 root_dir = path;
359 }
360
361 machine = machines__add(machines, pid, root_dir);
362out:
363 return machine;
364}
365
366void machines__process_guests(struct machines *machines,
367 machine__process_t process, void *data)
368{
369 struct rb_node *nd;
370
371 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
372 struct machine *pos = rb_entry(nd, struct machine, rb_node);
373 process(pos, data);
374 }
375}
376
377void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
378{
379 struct rb_node *node;
380 struct machine *machine;
381
382 machines->host.id_hdr_size = id_hdr_size;
383
384 for (node = rb_first_cached(&machines->guests); node;
385 node = rb_next(node)) {
386 machine = rb_entry(node, struct machine, rb_node);
387 machine->id_hdr_size = id_hdr_size;
388 }
389
390 return;
391}
392
393static void machine__update_thread_pid(struct machine *machine,
394 struct thread *th, pid_t pid)
395{
396 struct thread *leader;
397
398 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
399 return;
400
401 th->pid_ = pid;
402
403 if (th->pid_ == th->tid)
404 return;
405
406 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
407 if (!leader)
408 goto out_err;
409
410 if (!leader->mg)
411 leader->mg = map_groups__new(machine);
412
413 if (!leader->mg)
414 goto out_err;
415
416 if (th->mg == leader->mg)
417 return;
418
419 if (th->mg) {
420 /*
421 * Maps are created from MMAP events which provide the pid and
422 * tid. Consequently there never should be any maps on a thread
423 * with an unknown pid. Just print an error if there are.
424 */
425 if (!map_groups__empty(th->mg))
426 pr_err("Discarding thread maps for %d:%d\n",
427 th->pid_, th->tid);
428 map_groups__put(th->mg);
429 }
430
431 th->mg = map_groups__get(leader->mg);
432out_put:
433 thread__put(leader);
434 return;
435out_err:
436 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
437 goto out_put;
438}
439
440/*
441 * Front-end cache - TID lookups come in blocks,
442 * so most of the time we dont have to look up
443 * the full rbtree:
444 */
445static struct thread*
446__threads__get_last_match(struct threads *threads, struct machine *machine,
447 int pid, int tid)
448{
449 struct thread *th;
450
451 th = threads->last_match;
452 if (th != NULL) {
453 if (th->tid == tid) {
454 machine__update_thread_pid(machine, th, pid);
455 return thread__get(th);
456 }
457
458 threads->last_match = NULL;
459 }
460
461 return NULL;
462}
463
464static struct thread*
465threads__get_last_match(struct threads *threads, struct machine *machine,
466 int pid, int tid)
467{
468 struct thread *th = NULL;
469
470 if (perf_singlethreaded)
471 th = __threads__get_last_match(threads, machine, pid, tid);
472
473 return th;
474}
475
476static void
477__threads__set_last_match(struct threads *threads, struct thread *th)
478{
479 threads->last_match = th;
480}
481
482static void
483threads__set_last_match(struct threads *threads, struct thread *th)
484{
485 if (perf_singlethreaded)
486 __threads__set_last_match(threads, th);
487}
488
489/*
490 * Caller must eventually drop thread->refcnt returned with a successful
491 * lookup/new thread inserted.
492 */
493static struct thread *____machine__findnew_thread(struct machine *machine,
494 struct threads *threads,
495 pid_t pid, pid_t tid,
496 bool create)
497{
498 struct rb_node **p = &threads->entries.rb_root.rb_node;
499 struct rb_node *parent = NULL;
500 struct thread *th;
501 bool leftmost = true;
502
503 th = threads__get_last_match(threads, machine, pid, tid);
504 if (th)
505 return th;
506
507 while (*p != NULL) {
508 parent = *p;
509 th = rb_entry(parent, struct thread, rb_node);
510
511 if (th->tid == tid) {
512 threads__set_last_match(threads, th);
513 machine__update_thread_pid(machine, th, pid);
514 return thread__get(th);
515 }
516
517 if (tid < th->tid)
518 p = &(*p)->rb_left;
519 else {
520 p = &(*p)->rb_right;
521 leftmost = false;
522 }
523 }
524
525 if (!create)
526 return NULL;
527
528 th = thread__new(pid, tid);
529 if (th != NULL) {
530 rb_link_node(&th->rb_node, parent, p);
531 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
532
533 /*
534 * We have to initialize map_groups separately
535 * after rb tree is updated.
536 *
537 * The reason is that we call machine__findnew_thread
538 * within thread__init_map_groups to find the thread
539 * leader and that would screwed the rb tree.
540 */
541 if (thread__init_map_groups(th, machine)) {
542 rb_erase_cached(&th->rb_node, &threads->entries);
543 RB_CLEAR_NODE(&th->rb_node);
544 thread__put(th);
545 return NULL;
546 }
547 /*
548 * It is now in the rbtree, get a ref
549 */
550 thread__get(th);
551 threads__set_last_match(threads, th);
552 ++threads->nr;
553 }
554
555 return th;
556}
557
558struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
559{
560 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
561}
562
563struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
564 pid_t tid)
565{
566 struct threads *threads = machine__threads(machine, tid);
567 struct thread *th;
568
569 down_write(&threads->lock);
570 th = __machine__findnew_thread(machine, pid, tid);
571 up_write(&threads->lock);
572 return th;
573}
574
575struct thread *machine__find_thread(struct machine *machine, pid_t pid,
576 pid_t tid)
577{
578 struct threads *threads = machine__threads(machine, tid);
579 struct thread *th;
580
581 down_read(&threads->lock);
582 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
583 up_read(&threads->lock);
584 return th;
585}
586
587struct comm *machine__thread_exec_comm(struct machine *machine,
588 struct thread *thread)
589{
590 if (machine->comm_exec)
591 return thread__exec_comm(thread);
592 else
593 return thread__comm(thread);
594}
595
596int machine__process_comm_event(struct machine *machine, union perf_event *event,
597 struct perf_sample *sample)
598{
599 struct thread *thread = machine__findnew_thread(machine,
600 event->comm.pid,
601 event->comm.tid);
602 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
603 int err = 0;
604
605 if (exec)
606 machine->comm_exec = true;
607
608 if (dump_trace)
609 perf_event__fprintf_comm(event, stdout);
610
611 if (thread == NULL ||
612 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
613 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
614 err = -1;
615 }
616
617 thread__put(thread);
618
619 return err;
620}
621
622int machine__process_namespaces_event(struct machine *machine __maybe_unused,
623 union perf_event *event,
624 struct perf_sample *sample __maybe_unused)
625{
626 struct thread *thread = machine__findnew_thread(machine,
627 event->namespaces.pid,
628 event->namespaces.tid);
629 int err = 0;
630
631 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
632 "\nWARNING: kernel seems to support more namespaces than perf"
633 " tool.\nTry updating the perf tool..\n\n");
634
635 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
636 "\nWARNING: perf tool seems to support more namespaces than"
637 " the kernel.\nTry updating the kernel..\n\n");
638
639 if (dump_trace)
640 perf_event__fprintf_namespaces(event, stdout);
641
642 if (thread == NULL ||
643 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
644 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
645 err = -1;
646 }
647
648 thread__put(thread);
649
650 return err;
651}
652
653int machine__process_lost_event(struct machine *machine __maybe_unused,
654 union perf_event *event, struct perf_sample *sample __maybe_unused)
655{
656 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
657 event->lost.id, event->lost.lost);
658 return 0;
659}
660
661int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
662 union perf_event *event, struct perf_sample *sample)
663{
664 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
665 sample->id, event->lost_samples.lost);
666 return 0;
667}
668
669static struct dso *machine__findnew_module_dso(struct machine *machine,
670 struct kmod_path *m,
671 const char *filename)
672{
673 struct dso *dso;
674
675 down_write(&machine->dsos.lock);
676
677 dso = __dsos__find(&machine->dsos, m->name, true);
678 if (!dso) {
679 dso = __dsos__addnew(&machine->dsos, m->name);
680 if (dso == NULL)
681 goto out_unlock;
682
683 dso__set_module_info(dso, m, machine);
684 dso__set_long_name(dso, strdup(filename), true);
685 }
686
687 dso__get(dso);
688out_unlock:
689 up_write(&machine->dsos.lock);
690 return dso;
691}
692
693int machine__process_aux_event(struct machine *machine __maybe_unused,
694 union perf_event *event)
695{
696 if (dump_trace)
697 perf_event__fprintf_aux(event, stdout);
698 return 0;
699}
700
701int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
702 union perf_event *event)
703{
704 if (dump_trace)
705 perf_event__fprintf_itrace_start(event, stdout);
706 return 0;
707}
708
709int machine__process_switch_event(struct machine *machine __maybe_unused,
710 union perf_event *event)
711{
712 if (dump_trace)
713 perf_event__fprintf_switch(event, stdout);
714 return 0;
715}
716
717static int machine__process_ksymbol_register(struct machine *machine,
718 union perf_event *event,
719 struct perf_sample *sample __maybe_unused)
720{
721 struct symbol *sym;
722 struct map *map;
723
724 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
725 if (!map) {
726 map = dso__new_map(event->ksymbol.name);
727 if (!map)
728 return -ENOMEM;
729
730 map->start = event->ksymbol.addr;
731 map->end = map->start + event->ksymbol.len;
732 map_groups__insert(&machine->kmaps, map);
733 }
734
735 sym = symbol__new(map->map_ip(map, map->start),
736 event->ksymbol.len,
737 0, 0, event->ksymbol.name);
738 if (!sym)
739 return -ENOMEM;
740 dso__insert_symbol(map->dso, sym);
741 return 0;
742}
743
744static int machine__process_ksymbol_unregister(struct machine *machine,
745 union perf_event *event,
746 struct perf_sample *sample __maybe_unused)
747{
748 struct map *map;
749
750 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
751 if (map)
752 map_groups__remove(&machine->kmaps, map);
753
754 return 0;
755}
756
757int machine__process_ksymbol(struct machine *machine __maybe_unused,
758 union perf_event *event,
759 struct perf_sample *sample)
760{
761 if (dump_trace)
762 perf_event__fprintf_ksymbol(event, stdout);
763
764 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
765 return machine__process_ksymbol_unregister(machine, event,
766 sample);
767 return machine__process_ksymbol_register(machine, event, sample);
768}
769
770static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
771{
772 const char *dup_filename;
773
774 if (!filename || !dso || !dso->long_name)
775 return;
776 if (dso->long_name[0] != '[')
777 return;
778 if (!strchr(filename, '/'))
779 return;
780
781 dup_filename = strdup(filename);
782 if (!dup_filename)
783 return;
784
785 dso__set_long_name(dso, dup_filename, true);
786}
787
788struct map *machine__findnew_module_map(struct machine *machine, u64 start,
789 const char *filename)
790{
791 struct map *map = NULL;
792 struct dso *dso = NULL;
793 struct kmod_path m;
794
795 if (kmod_path__parse_name(&m, filename))
796 return NULL;
797
798 map = map_groups__find_by_name(&machine->kmaps, m.name);
799 if (map) {
800 /*
801 * If the map's dso is an offline module, give dso__load()
802 * a chance to find the file path of that module by fixing
803 * long_name.
804 */
805 dso__adjust_kmod_long_name(map->dso, filename);
806 goto out;
807 }
808
809 dso = machine__findnew_module_dso(machine, &m, filename);
810 if (dso == NULL)
811 goto out;
812
813 map = map__new2(start, dso);
814 if (map == NULL)
815 goto out;
816
817 map_groups__insert(&machine->kmaps, map);
818
819 /* Put the map here because map_groups__insert alread got it */
820 map__put(map);
821out:
822 /* put the dso here, corresponding to machine__findnew_module_dso */
823 dso__put(dso);
824 zfree(&m.name);
825 return map;
826}
827
828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
829{
830 struct rb_node *nd;
831 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
832
833 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
834 struct machine *pos = rb_entry(nd, struct machine, rb_node);
835 ret += __dsos__fprintf(&pos->dsos.head, fp);
836 }
837
838 return ret;
839}
840
841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
842 bool (skip)(struct dso *dso, int parm), int parm)
843{
844 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
845}
846
847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
848 bool (skip)(struct dso *dso, int parm), int parm)
849{
850 struct rb_node *nd;
851 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
852
853 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
854 struct machine *pos = rb_entry(nd, struct machine, rb_node);
855 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
856 }
857 return ret;
858}
859
860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
861{
862 int i;
863 size_t printed = 0;
864 struct dso *kdso = machine__kernel_map(machine)->dso;
865
866 if (kdso->has_build_id) {
867 char filename[PATH_MAX];
868 if (dso__build_id_filename(kdso, filename, sizeof(filename),
869 false))
870 printed += fprintf(fp, "[0] %s\n", filename);
871 }
872
873 for (i = 0; i < vmlinux_path__nr_entries; ++i)
874 printed += fprintf(fp, "[%d] %s\n",
875 i + kdso->has_build_id, vmlinux_path[i]);
876
877 return printed;
878}
879
880size_t machine__fprintf(struct machine *machine, FILE *fp)
881{
882 struct rb_node *nd;
883 size_t ret;
884 int i;
885
886 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
887 struct threads *threads = &machine->threads[i];
888
889 down_read(&threads->lock);
890
891 ret = fprintf(fp, "Threads: %u\n", threads->nr);
892
893 for (nd = rb_first_cached(&threads->entries); nd;
894 nd = rb_next(nd)) {
895 struct thread *pos = rb_entry(nd, struct thread, rb_node);
896
897 ret += thread__fprintf(pos, fp);
898 }
899
900 up_read(&threads->lock);
901 }
902 return ret;
903}
904
905static struct dso *machine__get_kernel(struct machine *machine)
906{
907 const char *vmlinux_name = machine->mmap_name;
908 struct dso *kernel;
909
910 if (machine__is_host(machine)) {
911 if (symbol_conf.vmlinux_name)
912 vmlinux_name = symbol_conf.vmlinux_name;
913
914 kernel = machine__findnew_kernel(machine, vmlinux_name,
915 "[kernel]", DSO_TYPE_KERNEL);
916 } else {
917 if (symbol_conf.default_guest_vmlinux_name)
918 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
919
920 kernel = machine__findnew_kernel(machine, vmlinux_name,
921 "[guest.kernel]",
922 DSO_TYPE_GUEST_KERNEL);
923 }
924
925 if (kernel != NULL && (!kernel->has_build_id))
926 dso__read_running_kernel_build_id(kernel, machine);
927
928 return kernel;
929}
930
931struct process_args {
932 u64 start;
933};
934
935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
936 size_t bufsz)
937{
938 if (machine__is_default_guest(machine))
939 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
940 else
941 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
942}
943
944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
945
946/* Figure out the start address of kernel map from /proc/kallsyms.
947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
948 * symbol_name if it's not that important.
949 */
950static int machine__get_running_kernel_start(struct machine *machine,
951 const char **symbol_name,
952 u64 *start, u64 *end)
953{
954 char filename[PATH_MAX];
955 int i, err = -1;
956 const char *name;
957 u64 addr = 0;
958
959 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
960
961 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
962 return 0;
963
964 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
965 err = kallsyms__get_function_start(filename, name, &addr);
966 if (!err)
967 break;
968 }
969
970 if (err)
971 return -1;
972
973 if (symbol_name)
974 *symbol_name = name;
975
976 *start = addr;
977
978 err = kallsyms__get_function_start(filename, "_etext", &addr);
979 if (!err)
980 *end = addr;
981
982 return 0;
983}
984
985int machine__create_extra_kernel_map(struct machine *machine,
986 struct dso *kernel,
987 struct extra_kernel_map *xm)
988{
989 struct kmap *kmap;
990 struct map *map;
991
992 map = map__new2(xm->start, kernel);
993 if (!map)
994 return -1;
995
996 map->end = xm->end;
997 map->pgoff = xm->pgoff;
998
999 kmap = map__kmap(map);
1000
1001 kmap->kmaps = &machine->kmaps;
1002 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003
1004 map_groups__insert(&machine->kmaps, map);
1005
1006 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007 kmap->name, map->start, map->end);
1008
1009 map__put(map);
1010
1011 return 0;
1012}
1013
1014static u64 find_entry_trampoline(struct dso *dso)
1015{
1016 /* Duplicates are removed so lookup all aliases */
1017 const char *syms[] = {
1018 "_entry_trampoline",
1019 "__entry_trampoline_start",
1020 "entry_SYSCALL_64_trampoline",
1021 };
1022 struct symbol *sym = dso__first_symbol(dso);
1023 unsigned int i;
1024
1025 for (; sym; sym = dso__next_symbol(sym)) {
1026 if (sym->binding != STB_GLOBAL)
1027 continue;
1028 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029 if (!strcmp(sym->name, syms[i]))
1030 return sym->start;
1031 }
1032 }
1033
1034 return 0;
1035}
1036
1037/*
1038 * These values can be used for kernels that do not have symbols for the entry
1039 * trampolines in kallsyms.
1040 */
1041#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1042#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1043#define X86_64_ENTRY_TRAMPOLINE 0x6000
1044
1045/* Map x86_64 PTI entry trampolines */
1046int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047 struct dso *kernel)
1048{
1049 struct map_groups *kmaps = &machine->kmaps;
1050 struct maps *maps = &kmaps->maps;
1051 int nr_cpus_avail, cpu;
1052 bool found = false;
1053 struct map *map;
1054 u64 pgoff;
1055
1056 /*
1057 * In the vmlinux case, pgoff is a virtual address which must now be
1058 * mapped to a vmlinux offset.
1059 */
1060 for (map = maps__first(maps); map; map = map__next(map)) {
1061 struct kmap *kmap = __map__kmap(map);
1062 struct map *dest_map;
1063
1064 if (!kmap || !is_entry_trampoline(kmap->name))
1065 continue;
1066
1067 dest_map = map_groups__find(kmaps, map->pgoff);
1068 if (dest_map != map)
1069 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070 found = true;
1071 }
1072 if (found || machine->trampolines_mapped)
1073 return 0;
1074
1075 pgoff = find_entry_trampoline(kernel);
1076 if (!pgoff)
1077 return 0;
1078
1079 nr_cpus_avail = machine__nr_cpus_avail(machine);
1080
1081 /* Add a 1 page map for each CPU's entry trampoline */
1082 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085 X86_64_ENTRY_TRAMPOLINE;
1086 struct extra_kernel_map xm = {
1087 .start = va,
1088 .end = va + page_size,
1089 .pgoff = pgoff,
1090 };
1091
1092 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1093
1094 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1095 return -1;
1096 }
1097
1098 machine->trampolines_mapped = nr_cpus_avail;
1099
1100 return 0;
1101}
1102
1103int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104 struct dso *kernel __maybe_unused)
1105{
1106 return 0;
1107}
1108
1109static int
1110__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111{
1112 struct kmap *kmap;
1113 struct map *map;
1114
1115 /* In case of renewal the kernel map, destroy previous one */
1116 machine__destroy_kernel_maps(machine);
1117
1118 machine->vmlinux_map = map__new2(0, kernel);
1119 if (machine->vmlinux_map == NULL)
1120 return -1;
1121
1122 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123 map = machine__kernel_map(machine);
1124 kmap = map__kmap(map);
1125 if (!kmap)
1126 return -1;
1127
1128 kmap->kmaps = &machine->kmaps;
1129 map_groups__insert(&machine->kmaps, map);
1130
1131 return 0;
1132}
1133
1134void machine__destroy_kernel_maps(struct machine *machine)
1135{
1136 struct kmap *kmap;
1137 struct map *map = machine__kernel_map(machine);
1138
1139 if (map == NULL)
1140 return;
1141
1142 kmap = map__kmap(map);
1143 map_groups__remove(&machine->kmaps, map);
1144 if (kmap && kmap->ref_reloc_sym) {
1145 zfree((char **)&kmap->ref_reloc_sym->name);
1146 zfree(&kmap->ref_reloc_sym);
1147 }
1148
1149 map__zput(machine->vmlinux_map);
1150}
1151
1152int machines__create_guest_kernel_maps(struct machines *machines)
1153{
1154 int ret = 0;
1155 struct dirent **namelist = NULL;
1156 int i, items = 0;
1157 char path[PATH_MAX];
1158 pid_t pid;
1159 char *endp;
1160
1161 if (symbol_conf.default_guest_vmlinux_name ||
1162 symbol_conf.default_guest_modules ||
1163 symbol_conf.default_guest_kallsyms) {
1164 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165 }
1166
1167 if (symbol_conf.guestmount) {
1168 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169 if (items <= 0)
1170 return -ENOENT;
1171 for (i = 0; i < items; i++) {
1172 if (!isdigit(namelist[i]->d_name[0])) {
1173 /* Filter out . and .. */
1174 continue;
1175 }
1176 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177 if ((*endp != '\0') ||
1178 (endp == namelist[i]->d_name) ||
1179 (errno == ERANGE)) {
1180 pr_debug("invalid directory (%s). Skipping.\n",
1181 namelist[i]->d_name);
1182 continue;
1183 }
1184 sprintf(path, "%s/%s/proc/kallsyms",
1185 symbol_conf.guestmount,
1186 namelist[i]->d_name);
1187 ret = access(path, R_OK);
1188 if (ret) {
1189 pr_debug("Can't access file %s\n", path);
1190 goto failure;
1191 }
1192 machines__create_kernel_maps(machines, pid);
1193 }
1194failure:
1195 free(namelist);
1196 }
1197
1198 return ret;
1199}
1200
1201void machines__destroy_kernel_maps(struct machines *machines)
1202{
1203 struct rb_node *next = rb_first_cached(&machines->guests);
1204
1205 machine__destroy_kernel_maps(&machines->host);
1206
1207 while (next) {
1208 struct machine *pos = rb_entry(next, struct machine, rb_node);
1209
1210 next = rb_next(&pos->rb_node);
1211 rb_erase_cached(&pos->rb_node, &machines->guests);
1212 machine__delete(pos);
1213 }
1214}
1215
1216int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217{
1218 struct machine *machine = machines__findnew(machines, pid);
1219
1220 if (machine == NULL)
1221 return -1;
1222
1223 return machine__create_kernel_maps(machine);
1224}
1225
1226int machine__load_kallsyms(struct machine *machine, const char *filename)
1227{
1228 struct map *map = machine__kernel_map(machine);
1229 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230
1231 if (ret > 0) {
1232 dso__set_loaded(map->dso);
1233 /*
1234 * Since /proc/kallsyms will have multiple sessions for the
1235 * kernel, with modules between them, fixup the end of all
1236 * sections.
1237 */
1238 map_groups__fixup_end(&machine->kmaps);
1239 }
1240
1241 return ret;
1242}
1243
1244int machine__load_vmlinux_path(struct machine *machine)
1245{
1246 struct map *map = machine__kernel_map(machine);
1247 int ret = dso__load_vmlinux_path(map->dso, map);
1248
1249 if (ret > 0)
1250 dso__set_loaded(map->dso);
1251
1252 return ret;
1253}
1254
1255static char *get_kernel_version(const char *root_dir)
1256{
1257 char version[PATH_MAX];
1258 FILE *file;
1259 char *name, *tmp;
1260 const char *prefix = "Linux version ";
1261
1262 sprintf(version, "%s/proc/version", root_dir);
1263 file = fopen(version, "r");
1264 if (!file)
1265 return NULL;
1266
1267 tmp = fgets(version, sizeof(version), file);
1268 fclose(file);
1269 if (!tmp)
1270 return NULL;
1271
1272 name = strstr(version, prefix);
1273 if (!name)
1274 return NULL;
1275 name += strlen(prefix);
1276 tmp = strchr(name, ' ');
1277 if (tmp)
1278 *tmp = '\0';
1279
1280 return strdup(name);
1281}
1282
1283static bool is_kmod_dso(struct dso *dso)
1284{
1285 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287}
1288
1289static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290 struct kmod_path *m)
1291{
1292 char *long_name;
1293 struct map *map = map_groups__find_by_name(mg, m->name);
1294
1295 if (map == NULL)
1296 return 0;
1297
1298 long_name = strdup(path);
1299 if (long_name == NULL)
1300 return -ENOMEM;
1301
1302 dso__set_long_name(map->dso, long_name, true);
1303 dso__kernel_module_get_build_id(map->dso, "");
1304
1305 /*
1306 * Full name could reveal us kmod compression, so
1307 * we need to update the symtab_type if needed.
1308 */
1309 if (m->comp && is_kmod_dso(map->dso)) {
1310 map->dso->symtab_type++;
1311 map->dso->comp = m->comp;
1312 }
1313
1314 return 0;
1315}
1316
1317static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318 const char *dir_name, int depth)
1319{
1320 struct dirent *dent;
1321 DIR *dir = opendir(dir_name);
1322 int ret = 0;
1323
1324 if (!dir) {
1325 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326 return -1;
1327 }
1328
1329 while ((dent = readdir(dir)) != NULL) {
1330 char path[PATH_MAX];
1331 struct stat st;
1332
1333 /*sshfs might return bad dent->d_type, so we have to stat*/
1334 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335 if (stat(path, &st))
1336 continue;
1337
1338 if (S_ISDIR(st.st_mode)) {
1339 if (!strcmp(dent->d_name, ".") ||
1340 !strcmp(dent->d_name, ".."))
1341 continue;
1342
1343 /* Do not follow top-level source and build symlinks */
1344 if (depth == 0) {
1345 if (!strcmp(dent->d_name, "source") ||
1346 !strcmp(dent->d_name, "build"))
1347 continue;
1348 }
1349
1350 ret = map_groups__set_modules_path_dir(mg, path,
1351 depth + 1);
1352 if (ret < 0)
1353 goto out;
1354 } else {
1355 struct kmod_path m;
1356
1357 ret = kmod_path__parse_name(&m, dent->d_name);
1358 if (ret)
1359 goto out;
1360
1361 if (m.kmod)
1362 ret = map_groups__set_module_path(mg, path, &m);
1363
1364 zfree(&m.name);
1365
1366 if (ret)
1367 goto out;
1368 }
1369 }
1370
1371out:
1372 closedir(dir);
1373 return ret;
1374}
1375
1376static int machine__set_modules_path(struct machine *machine)
1377{
1378 char *version;
1379 char modules_path[PATH_MAX];
1380
1381 version = get_kernel_version(machine->root_dir);
1382 if (!version)
1383 return -1;
1384
1385 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386 machine->root_dir, version);
1387 free(version);
1388
1389 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390}
1391int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392 u64 *size __maybe_unused,
1393 const char *name __maybe_unused)
1394{
1395 return 0;
1396}
1397
1398static int machine__create_module(void *arg, const char *name, u64 start,
1399 u64 size)
1400{
1401 struct machine *machine = arg;
1402 struct map *map;
1403
1404 if (arch__fix_module_text_start(&start, &size, name) < 0)
1405 return -1;
1406
1407 map = machine__findnew_module_map(machine, start, name);
1408 if (map == NULL)
1409 return -1;
1410 map->end = start + size;
1411
1412 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413
1414 return 0;
1415}
1416
1417static int machine__create_modules(struct machine *machine)
1418{
1419 const char *modules;
1420 char path[PATH_MAX];
1421
1422 if (machine__is_default_guest(machine)) {
1423 modules = symbol_conf.default_guest_modules;
1424 } else {
1425 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426 modules = path;
1427 }
1428
1429 if (symbol__restricted_filename(modules, "/proc/modules"))
1430 return -1;
1431
1432 if (modules__parse(modules, machine, machine__create_module))
1433 return -1;
1434
1435 if (!machine__set_modules_path(machine))
1436 return 0;
1437
1438 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439
1440 return 0;
1441}
1442
1443static void machine__set_kernel_mmap(struct machine *machine,
1444 u64 start, u64 end)
1445{
1446 machine->vmlinux_map->start = start;
1447 machine->vmlinux_map->end = end;
1448 /*
1449 * Be a bit paranoid here, some perf.data file came with
1450 * a zero sized synthesized MMAP event for the kernel.
1451 */
1452 if (start == 0 && end == 0)
1453 machine->vmlinux_map->end = ~0ULL;
1454}
1455
1456static void machine__update_kernel_mmap(struct machine *machine,
1457 u64 start, u64 end)
1458{
1459 struct map *map = machine__kernel_map(machine);
1460
1461 map__get(map);
1462 map_groups__remove(&machine->kmaps, map);
1463
1464 machine__set_kernel_mmap(machine, start, end);
1465
1466 map_groups__insert(&machine->kmaps, map);
1467 map__put(map);
1468}
1469
1470int machine__create_kernel_maps(struct machine *machine)
1471{
1472 struct dso *kernel = machine__get_kernel(machine);
1473 const char *name = NULL;
1474 struct map *map;
1475 u64 start = 0, end = ~0ULL;
1476 int ret;
1477
1478 if (kernel == NULL)
1479 return -1;
1480
1481 ret = __machine__create_kernel_maps(machine, kernel);
1482 if (ret < 0)
1483 goto out_put;
1484
1485 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486 if (machine__is_host(machine))
1487 pr_debug("Problems creating module maps, "
1488 "continuing anyway...\n");
1489 else
1490 pr_debug("Problems creating module maps for guest %d, "
1491 "continuing anyway...\n", machine->pid);
1492 }
1493
1494 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495 if (name &&
1496 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497 machine__destroy_kernel_maps(machine);
1498 ret = -1;
1499 goto out_put;
1500 }
1501
1502 /*
1503 * we have a real start address now, so re-order the kmaps
1504 * assume it's the last in the kmaps
1505 */
1506 machine__update_kernel_mmap(machine, start, end);
1507 }
1508
1509 if (machine__create_extra_kernel_maps(machine, kernel))
1510 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511
1512 if (end == ~0ULL) {
1513 /* update end address of the kernel map using adjacent module address */
1514 map = map__next(machine__kernel_map(machine));
1515 if (map)
1516 machine__set_kernel_mmap(machine, start, map->start);
1517 }
1518
1519out_put:
1520 dso__put(kernel);
1521 return ret;
1522}
1523
1524static bool machine__uses_kcore(struct machine *machine)
1525{
1526 struct dso *dso;
1527
1528 list_for_each_entry(dso, &machine->dsos.head, node) {
1529 if (dso__is_kcore(dso))
1530 return true;
1531 }
1532
1533 return false;
1534}
1535
1536static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537 union perf_event *event)
1538{
1539 return machine__is(machine, "x86_64") &&
1540 is_entry_trampoline(event->mmap.filename);
1541}
1542
1543static int machine__process_extra_kernel_map(struct machine *machine,
1544 union perf_event *event)
1545{
1546 struct map *kernel_map = machine__kernel_map(machine);
1547 struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548 struct extra_kernel_map xm = {
1549 .start = event->mmap.start,
1550 .end = event->mmap.start + event->mmap.len,
1551 .pgoff = event->mmap.pgoff,
1552 };
1553
1554 if (kernel == NULL)
1555 return -1;
1556
1557 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558
1559 return machine__create_extra_kernel_map(machine, kernel, &xm);
1560}
1561
1562static int machine__process_kernel_mmap_event(struct machine *machine,
1563 union perf_event *event)
1564{
1565 struct map *map;
1566 enum dso_kernel_type kernel_type;
1567 bool is_kernel_mmap;
1568
1569 /* If we have maps from kcore then we do not need or want any others */
1570 if (machine__uses_kcore(machine))
1571 return 0;
1572
1573 if (machine__is_host(machine))
1574 kernel_type = DSO_TYPE_KERNEL;
1575 else
1576 kernel_type = DSO_TYPE_GUEST_KERNEL;
1577
1578 is_kernel_mmap = memcmp(event->mmap.filename,
1579 machine->mmap_name,
1580 strlen(machine->mmap_name) - 1) == 0;
1581 if (event->mmap.filename[0] == '/' ||
1582 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583 map = machine__findnew_module_map(machine, event->mmap.start,
1584 event->mmap.filename);
1585 if (map == NULL)
1586 goto out_problem;
1587
1588 map->end = map->start + event->mmap.len;
1589 } else if (is_kernel_mmap) {
1590 const char *symbol_name = (event->mmap.filename +
1591 strlen(machine->mmap_name));
1592 /*
1593 * Should be there already, from the build-id table in
1594 * the header.
1595 */
1596 struct dso *kernel = NULL;
1597 struct dso *dso;
1598
1599 down_read(&machine->dsos.lock);
1600
1601 list_for_each_entry(dso, &machine->dsos.head, node) {
1602
1603 /*
1604 * The cpumode passed to is_kernel_module is not the
1605 * cpumode of *this* event. If we insist on passing
1606 * correct cpumode to is_kernel_module, we should
1607 * record the cpumode when we adding this dso to the
1608 * linked list.
1609 *
1610 * However we don't really need passing correct
1611 * cpumode. We know the correct cpumode must be kernel
1612 * mode (if not, we should not link it onto kernel_dsos
1613 * list).
1614 *
1615 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616 * is_kernel_module() treats it as a kernel cpumode.
1617 */
1618
1619 if (!dso->kernel ||
1620 is_kernel_module(dso->long_name,
1621 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622 continue;
1623
1624
1625 kernel = dso;
1626 break;
1627 }
1628
1629 up_read(&machine->dsos.lock);
1630
1631 if (kernel == NULL)
1632 kernel = machine__findnew_dso(machine, machine->mmap_name);
1633 if (kernel == NULL)
1634 goto out_problem;
1635
1636 kernel->kernel = kernel_type;
1637 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638 dso__put(kernel);
1639 goto out_problem;
1640 }
1641
1642 if (strstr(kernel->long_name, "vmlinux"))
1643 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644
1645 machine__update_kernel_mmap(machine, event->mmap.start,
1646 event->mmap.start + event->mmap.len);
1647
1648 /*
1649 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650 * symbol. Effectively having zero here means that at record
1651 * time /proc/sys/kernel/kptr_restrict was non zero.
1652 */
1653 if (event->mmap.pgoff != 0) {
1654 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655 symbol_name,
1656 event->mmap.pgoff);
1657 }
1658
1659 if (machine__is_default_guest(machine)) {
1660 /*
1661 * preload dso of guest kernel and modules
1662 */
1663 dso__load(kernel, machine__kernel_map(machine));
1664 }
1665 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666 return machine__process_extra_kernel_map(machine, event);
1667 }
1668 return 0;
1669out_problem:
1670 return -1;
1671}
1672
1673int machine__process_mmap2_event(struct machine *machine,
1674 union perf_event *event,
1675 struct perf_sample *sample)
1676{
1677 struct thread *thread;
1678 struct map *map;
1679 int ret = 0;
1680
1681 if (dump_trace)
1682 perf_event__fprintf_mmap2(event, stdout);
1683
1684 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686 ret = machine__process_kernel_mmap_event(machine, event);
1687 if (ret < 0)
1688 goto out_problem;
1689 return 0;
1690 }
1691
1692 thread = machine__findnew_thread(machine, event->mmap2.pid,
1693 event->mmap2.tid);
1694 if (thread == NULL)
1695 goto out_problem;
1696
1697 map = map__new(machine, event->mmap2.start,
1698 event->mmap2.len, event->mmap2.pgoff,
1699 event->mmap2.maj,
1700 event->mmap2.min, event->mmap2.ino,
1701 event->mmap2.ino_generation,
1702 event->mmap2.prot,
1703 event->mmap2.flags,
1704 event->mmap2.filename, thread);
1705
1706 if (map == NULL)
1707 goto out_problem_map;
1708
1709 ret = thread__insert_map(thread, map);
1710 if (ret)
1711 goto out_problem_insert;
1712
1713 thread__put(thread);
1714 map__put(map);
1715 return 0;
1716
1717out_problem_insert:
1718 map__put(map);
1719out_problem_map:
1720 thread__put(thread);
1721out_problem:
1722 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723 return 0;
1724}
1725
1726int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727 struct perf_sample *sample)
1728{
1729 struct thread *thread;
1730 struct map *map;
1731 u32 prot = 0;
1732 int ret = 0;
1733
1734 if (dump_trace)
1735 perf_event__fprintf_mmap(event, stdout);
1736
1737 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739 ret = machine__process_kernel_mmap_event(machine, event);
1740 if (ret < 0)
1741 goto out_problem;
1742 return 0;
1743 }
1744
1745 thread = machine__findnew_thread(machine, event->mmap.pid,
1746 event->mmap.tid);
1747 if (thread == NULL)
1748 goto out_problem;
1749
1750 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751 prot = PROT_EXEC;
1752
1753 map = map__new(machine, event->mmap.start,
1754 event->mmap.len, event->mmap.pgoff,
1755 0, 0, 0, 0, prot, 0,
1756 event->mmap.filename,
1757 thread);
1758
1759 if (map == NULL)
1760 goto out_problem_map;
1761
1762 ret = thread__insert_map(thread, map);
1763 if (ret)
1764 goto out_problem_insert;
1765
1766 thread__put(thread);
1767 map__put(map);
1768 return 0;
1769
1770out_problem_insert:
1771 map__put(map);
1772out_problem_map:
1773 thread__put(thread);
1774out_problem:
1775 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776 return 0;
1777}
1778
1779static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1780{
1781 struct threads *threads = machine__threads(machine, th->tid);
1782
1783 if (threads->last_match == th)
1784 threads__set_last_match(threads, NULL);
1785
1786 if (lock)
1787 down_write(&threads->lock);
1788
1789 BUG_ON(refcount_read(&th->refcnt) == 0);
1790
1791 rb_erase_cached(&th->rb_node, &threads->entries);
1792 RB_CLEAR_NODE(&th->rb_node);
1793 --threads->nr;
1794 /*
1795 * Move it first to the dead_threads list, then drop the reference,
1796 * if this is the last reference, then the thread__delete destructor
1797 * will be called and we will remove it from the dead_threads list.
1798 */
1799 list_add_tail(&th->node, &threads->dead);
1800
1801 /*
1802 * We need to do the put here because if this is the last refcount,
1803 * then we will be touching the threads->dead head when removing the
1804 * thread.
1805 */
1806 thread__put(th);
1807
1808 if (lock)
1809 up_write(&threads->lock);
1810}
1811
1812void machine__remove_thread(struct machine *machine, struct thread *th)
1813{
1814 return __machine__remove_thread(machine, th, true);
1815}
1816
1817int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818 struct perf_sample *sample)
1819{
1820 struct thread *thread = machine__find_thread(machine,
1821 event->fork.pid,
1822 event->fork.tid);
1823 struct thread *parent = machine__findnew_thread(machine,
1824 event->fork.ppid,
1825 event->fork.ptid);
1826 bool do_maps_clone = true;
1827 int err = 0;
1828
1829 if (dump_trace)
1830 perf_event__fprintf_task(event, stdout);
1831
1832 /*
1833 * There may be an existing thread that is not actually the parent,
1834 * either because we are processing events out of order, or because the
1835 * (fork) event that would have removed the thread was lost. Assume the
1836 * latter case and continue on as best we can.
1837 */
1838 if (parent->pid_ != (pid_t)event->fork.ppid) {
1839 dump_printf("removing erroneous parent thread %d/%d\n",
1840 parent->pid_, parent->tid);
1841 machine__remove_thread(machine, parent);
1842 thread__put(parent);
1843 parent = machine__findnew_thread(machine, event->fork.ppid,
1844 event->fork.ptid);
1845 }
1846
1847 /* if a thread currently exists for the thread id remove it */
1848 if (thread != NULL) {
1849 machine__remove_thread(machine, thread);
1850 thread__put(thread);
1851 }
1852
1853 thread = machine__findnew_thread(machine, event->fork.pid,
1854 event->fork.tid);
1855 /*
1856 * When synthesizing FORK events, we are trying to create thread
1857 * objects for the already running tasks on the machine.
1858 *
1859 * Normally, for a kernel FORK event, we want to clone the parent's
1860 * maps because that is what the kernel just did.
1861 *
1862 * But when synthesizing, this should not be done. If we do, we end up
1863 * with overlapping maps as we process the sythesized MMAP2 events that
1864 * get delivered shortly thereafter.
1865 *
1866 * Use the FORK event misc flags in an internal way to signal this
1867 * situation, so we can elide the map clone when appropriate.
1868 */
1869 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870 do_maps_clone = false;
1871
1872 if (thread == NULL || parent == NULL ||
1873 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875 err = -1;
1876 }
1877 thread__put(thread);
1878 thread__put(parent);
1879
1880 return err;
1881}
1882
1883int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884 struct perf_sample *sample __maybe_unused)
1885{
1886 struct thread *thread = machine__find_thread(machine,
1887 event->fork.pid,
1888 event->fork.tid);
1889
1890 if (dump_trace)
1891 perf_event__fprintf_task(event, stdout);
1892
1893 if (thread != NULL) {
1894 thread__exited(thread);
1895 thread__put(thread);
1896 }
1897
1898 return 0;
1899}
1900
1901int machine__process_event(struct machine *machine, union perf_event *event,
1902 struct perf_sample *sample)
1903{
1904 int ret;
1905
1906 switch (event->header.type) {
1907 case PERF_RECORD_COMM:
1908 ret = machine__process_comm_event(machine, event, sample); break;
1909 case PERF_RECORD_MMAP:
1910 ret = machine__process_mmap_event(machine, event, sample); break;
1911 case PERF_RECORD_NAMESPACES:
1912 ret = machine__process_namespaces_event(machine, event, sample); break;
1913 case PERF_RECORD_MMAP2:
1914 ret = machine__process_mmap2_event(machine, event, sample); break;
1915 case PERF_RECORD_FORK:
1916 ret = machine__process_fork_event(machine, event, sample); break;
1917 case PERF_RECORD_EXIT:
1918 ret = machine__process_exit_event(machine, event, sample); break;
1919 case PERF_RECORD_LOST:
1920 ret = machine__process_lost_event(machine, event, sample); break;
1921 case PERF_RECORD_AUX:
1922 ret = machine__process_aux_event(machine, event); break;
1923 case PERF_RECORD_ITRACE_START:
1924 ret = machine__process_itrace_start_event(machine, event); break;
1925 case PERF_RECORD_LOST_SAMPLES:
1926 ret = machine__process_lost_samples_event(machine, event, sample); break;
1927 case PERF_RECORD_SWITCH:
1928 case PERF_RECORD_SWITCH_CPU_WIDE:
1929 ret = machine__process_switch_event(machine, event); break;
1930 case PERF_RECORD_KSYMBOL:
1931 ret = machine__process_ksymbol(machine, event, sample); break;
1932 case PERF_RECORD_BPF_EVENT:
1933 ret = machine__process_bpf(machine, event, sample); break;
1934 default:
1935 ret = -1;
1936 break;
1937 }
1938
1939 return ret;
1940}
1941
1942static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943{
1944 if (!regexec(regex, sym->name, 0, NULL, 0))
1945 return 1;
1946 return 0;
1947}
1948
1949static void ip__resolve_ams(struct thread *thread,
1950 struct addr_map_symbol *ams,
1951 u64 ip)
1952{
1953 struct addr_location al;
1954
1955 memset(&al, 0, sizeof(al));
1956 /*
1957 * We cannot use the header.misc hint to determine whether a
1958 * branch stack address is user, kernel, guest, hypervisor.
1959 * Branches may straddle the kernel/user/hypervisor boundaries.
1960 * Thus, we have to try consecutively until we find a match
1961 * or else, the symbol is unknown
1962 */
1963 thread__find_cpumode_addr_location(thread, ip, &al);
1964
1965 ams->addr = ip;
1966 ams->al_addr = al.addr;
1967 ams->sym = al.sym;
1968 ams->map = al.map;
1969 ams->phys_addr = 0;
1970}
1971
1972static void ip__resolve_data(struct thread *thread,
1973 u8 m, struct addr_map_symbol *ams,
1974 u64 addr, u64 phys_addr)
1975{
1976 struct addr_location al;
1977
1978 memset(&al, 0, sizeof(al));
1979
1980 thread__find_symbol(thread, m, addr, &al);
1981
1982 ams->addr = addr;
1983 ams->al_addr = al.addr;
1984 ams->sym = al.sym;
1985 ams->map = al.map;
1986 ams->phys_addr = phys_addr;
1987}
1988
1989struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990 struct addr_location *al)
1991{
1992 struct mem_info *mi = mem_info__new();
1993
1994 if (!mi)
1995 return NULL;
1996
1997 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999 sample->addr, sample->phys_addr);
2000 mi->data_src.val = sample->data_src;
2001
2002 return mi;
2003}
2004
2005static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006{
2007 char *srcline = NULL;
2008
2009 if (!map || callchain_param.key == CCKEY_FUNCTION)
2010 return srcline;
2011
2012 srcline = srcline__tree_find(&map->dso->srclines, ip);
2013 if (!srcline) {
2014 bool show_sym = false;
2015 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016
2017 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018 sym, show_sym, show_addr, ip);
2019 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020 }
2021
2022 return srcline;
2023}
2024
2025struct iterations {
2026 int nr_loop_iter;
2027 u64 cycles;
2028};
2029
2030static int add_callchain_ip(struct thread *thread,
2031 struct callchain_cursor *cursor,
2032 struct symbol **parent,
2033 struct addr_location *root_al,
2034 u8 *cpumode,
2035 u64 ip,
2036 bool branch,
2037 struct branch_flags *flags,
2038 struct iterations *iter,
2039 u64 branch_from)
2040{
2041 struct addr_location al;
2042 int nr_loop_iter = 0;
2043 u64 iter_cycles = 0;
2044 const char *srcline = NULL;
2045
2046 al.filtered = 0;
2047 al.sym = NULL;
2048 if (!cpumode) {
2049 thread__find_cpumode_addr_location(thread, ip, &al);
2050 } else {
2051 if (ip >= PERF_CONTEXT_MAX) {
2052 switch (ip) {
2053 case PERF_CONTEXT_HV:
2054 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055 break;
2056 case PERF_CONTEXT_KERNEL:
2057 *cpumode = PERF_RECORD_MISC_KERNEL;
2058 break;
2059 case PERF_CONTEXT_USER:
2060 *cpumode = PERF_RECORD_MISC_USER;
2061 break;
2062 default:
2063 pr_debug("invalid callchain context: "
2064 "%"PRId64"\n", (s64) ip);
2065 /*
2066 * It seems the callchain is corrupted.
2067 * Discard all.
2068 */
2069 callchain_cursor_reset(cursor);
2070 return 1;
2071 }
2072 return 0;
2073 }
2074 thread__find_symbol(thread, *cpumode, ip, &al);
2075 }
2076
2077 if (al.sym != NULL) {
2078 if (perf_hpp_list.parent && !*parent &&
2079 symbol__match_regex(al.sym, &parent_regex))
2080 *parent = al.sym;
2081 else if (have_ignore_callees && root_al &&
2082 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083 /* Treat this symbol as the root,
2084 forgetting its callees. */
2085 *root_al = al;
2086 callchain_cursor_reset(cursor);
2087 }
2088 }
2089
2090 if (symbol_conf.hide_unresolved && al.sym == NULL)
2091 return 0;
2092
2093 if (iter) {
2094 nr_loop_iter = iter->nr_loop_iter;
2095 iter_cycles = iter->cycles;
2096 }
2097
2098 srcline = callchain_srcline(al.map, al.sym, al.addr);
2099 return callchain_cursor_append(cursor, ip, al.map, al.sym,
2100 branch, flags, nr_loop_iter,
2101 iter_cycles, branch_from, srcline);
2102}
2103
2104struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105 struct addr_location *al)
2106{
2107 unsigned int i;
2108 const struct branch_stack *bs = sample->branch_stack;
2109 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110
2111 if (!bi)
2112 return NULL;
2113
2114 for (i = 0; i < bs->nr; i++) {
2115 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117 bi[i].flags = bs->entries[i].flags;
2118 }
2119 return bi;
2120}
2121
2122static void save_iterations(struct iterations *iter,
2123 struct branch_entry *be, int nr)
2124{
2125 int i;
2126
2127 iter->nr_loop_iter++;
2128 iter->cycles = 0;
2129
2130 for (i = 0; i < nr; i++)
2131 iter->cycles += be[i].flags.cycles;
2132}
2133
2134#define CHASHSZ 127
2135#define CHASHBITS 7
2136#define NO_ENTRY 0xff
2137
2138#define PERF_MAX_BRANCH_DEPTH 127
2139
2140/* Remove loops. */
2141static int remove_loops(struct branch_entry *l, int nr,
2142 struct iterations *iter)
2143{
2144 int i, j, off;
2145 unsigned char chash[CHASHSZ];
2146
2147 memset(chash, NO_ENTRY, sizeof(chash));
2148
2149 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150
2151 for (i = 0; i < nr; i++) {
2152 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153
2154 /* no collision handling for now */
2155 if (chash[h] == NO_ENTRY) {
2156 chash[h] = i;
2157 } else if (l[chash[h]].from == l[i].from) {
2158 bool is_loop = true;
2159 /* check if it is a real loop */
2160 off = 0;
2161 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162 if (l[j].from != l[i + off].from) {
2163 is_loop = false;
2164 break;
2165 }
2166 if (is_loop) {
2167 j = nr - (i + off);
2168 if (j > 0) {
2169 save_iterations(iter + i + off,
2170 l + i, off);
2171
2172 memmove(iter + i, iter + i + off,
2173 j * sizeof(*iter));
2174
2175 memmove(l + i, l + i + off,
2176 j * sizeof(*l));
2177 }
2178
2179 nr -= off;
2180 }
2181 }
2182 }
2183 return nr;
2184}
2185
2186/*
2187 * Recolve LBR callstack chain sample
2188 * Return:
2189 * 1 on success get LBR callchain information
2190 * 0 no available LBR callchain information, should try fp
2191 * negative error code on other errors.
2192 */
2193static int resolve_lbr_callchain_sample(struct thread *thread,
2194 struct callchain_cursor *cursor,
2195 struct perf_sample *sample,
2196 struct symbol **parent,
2197 struct addr_location *root_al,
2198 int max_stack)
2199{
2200 struct ip_callchain *chain = sample->callchain;
2201 int chain_nr = min(max_stack, (int)chain->nr), i;
2202 u8 cpumode = PERF_RECORD_MISC_USER;
2203 u64 ip, branch_from = 0;
2204
2205 for (i = 0; i < chain_nr; i++) {
2206 if (chain->ips[i] == PERF_CONTEXT_USER)
2207 break;
2208 }
2209
2210 /* LBR only affects the user callchain */
2211 if (i != chain_nr) {
2212 struct branch_stack *lbr_stack = sample->branch_stack;
2213 int lbr_nr = lbr_stack->nr, j, k;
2214 bool branch;
2215 struct branch_flags *flags;
2216 /*
2217 * LBR callstack can only get user call chain.
2218 * The mix_chain_nr is kernel call chain
2219 * number plus LBR user call chain number.
2220 * i is kernel call chain number,
2221 * 1 is PERF_CONTEXT_USER,
2222 * lbr_nr + 1 is the user call chain number.
2223 * For details, please refer to the comments
2224 * in callchain__printf
2225 */
2226 int mix_chain_nr = i + 1 + lbr_nr + 1;
2227
2228 for (j = 0; j < mix_chain_nr; j++) {
2229 int err;
2230 branch = false;
2231 flags = NULL;
2232
2233 if (callchain_param.order == ORDER_CALLEE) {
2234 if (j < i + 1)
2235 ip = chain->ips[j];
2236 else if (j > i + 1) {
2237 k = j - i - 2;
2238 ip = lbr_stack->entries[k].from;
2239 branch = true;
2240 flags = &lbr_stack->entries[k].flags;
2241 } else {
2242 ip = lbr_stack->entries[0].to;
2243 branch = true;
2244 flags = &lbr_stack->entries[0].flags;
2245 branch_from =
2246 lbr_stack->entries[0].from;
2247 }
2248 } else {
2249 if (j < lbr_nr) {
2250 k = lbr_nr - j - 1;
2251 ip = lbr_stack->entries[k].from;
2252 branch = true;
2253 flags = &lbr_stack->entries[k].flags;
2254 }
2255 else if (j > lbr_nr)
2256 ip = chain->ips[i + 1 - (j - lbr_nr)];
2257 else {
2258 ip = lbr_stack->entries[0].to;
2259 branch = true;
2260 flags = &lbr_stack->entries[0].flags;
2261 branch_from =
2262 lbr_stack->entries[0].from;
2263 }
2264 }
2265
2266 err = add_callchain_ip(thread, cursor, parent,
2267 root_al, &cpumode, ip,
2268 branch, flags, NULL,
2269 branch_from);
2270 if (err)
2271 return (err < 0) ? err : 0;
2272 }
2273 return 1;
2274 }
2275
2276 return 0;
2277}
2278
2279static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280 struct callchain_cursor *cursor,
2281 struct symbol **parent,
2282 struct addr_location *root_al,
2283 u8 *cpumode, int ent)
2284{
2285 int err = 0;
2286
2287 while (--ent >= 0) {
2288 u64 ip = chain->ips[ent];
2289
2290 if (ip >= PERF_CONTEXT_MAX) {
2291 err = add_callchain_ip(thread, cursor, parent,
2292 root_al, cpumode, ip,
2293 false, NULL, NULL, 0);
2294 break;
2295 }
2296 }
2297 return err;
2298}
2299
2300static int thread__resolve_callchain_sample(struct thread *thread,
2301 struct callchain_cursor *cursor,
2302 struct evsel *evsel,
2303 struct perf_sample *sample,
2304 struct symbol **parent,
2305 struct addr_location *root_al,
2306 int max_stack)
2307{
2308 struct branch_stack *branch = sample->branch_stack;
2309 struct ip_callchain *chain = sample->callchain;
2310 int chain_nr = 0;
2311 u8 cpumode = PERF_RECORD_MISC_USER;
2312 int i, j, err, nr_entries;
2313 int skip_idx = -1;
2314 int first_call = 0;
2315
2316 if (chain)
2317 chain_nr = chain->nr;
2318
2319 if (perf_evsel__has_branch_callstack(evsel)) {
2320 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321 root_al, max_stack);
2322 if (err)
2323 return (err < 0) ? err : 0;
2324 }
2325
2326 /*
2327 * Based on DWARF debug information, some architectures skip
2328 * a callchain entry saved by the kernel.
2329 */
2330 skip_idx = arch_skip_callchain_idx(thread, chain);
2331
2332 /*
2333 * Add branches to call stack for easier browsing. This gives
2334 * more context for a sample than just the callers.
2335 *
2336 * This uses individual histograms of paths compared to the
2337 * aggregated histograms the normal LBR mode uses.
2338 *
2339 * Limitations for now:
2340 * - No extra filters
2341 * - No annotations (should annotate somehow)
2342 */
2343
2344 if (branch && callchain_param.branch_callstack) {
2345 int nr = min(max_stack, (int)branch->nr);
2346 struct branch_entry be[nr];
2347 struct iterations iter[nr];
2348
2349 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350 pr_warning("corrupted branch chain. skipping...\n");
2351 goto check_calls;
2352 }
2353
2354 for (i = 0; i < nr; i++) {
2355 if (callchain_param.order == ORDER_CALLEE) {
2356 be[i] = branch->entries[i];
2357
2358 if (chain == NULL)
2359 continue;
2360
2361 /*
2362 * Check for overlap into the callchain.
2363 * The return address is one off compared to
2364 * the branch entry. To adjust for this
2365 * assume the calling instruction is not longer
2366 * than 8 bytes.
2367 */
2368 if (i == skip_idx ||
2369 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370 first_call++;
2371 else if (be[i].from < chain->ips[first_call] &&
2372 be[i].from >= chain->ips[first_call] - 8)
2373 first_call++;
2374 } else
2375 be[i] = branch->entries[branch->nr - i - 1];
2376 }
2377
2378 memset(iter, 0, sizeof(struct iterations) * nr);
2379 nr = remove_loops(be, nr, iter);
2380
2381 for (i = 0; i < nr; i++) {
2382 err = add_callchain_ip(thread, cursor, parent,
2383 root_al,
2384 NULL, be[i].to,
2385 true, &be[i].flags,
2386 NULL, be[i].from);
2387
2388 if (!err)
2389 err = add_callchain_ip(thread, cursor, parent, root_al,
2390 NULL, be[i].from,
2391 true, &be[i].flags,
2392 &iter[i], 0);
2393 if (err == -EINVAL)
2394 break;
2395 if (err)
2396 return err;
2397 }
2398
2399 if (chain_nr == 0)
2400 return 0;
2401
2402 chain_nr -= nr;
2403 }
2404
2405check_calls:
2406 if (callchain_param.order != ORDER_CALLEE) {
2407 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408 &cpumode, chain->nr - first_call);
2409 if (err)
2410 return (err < 0) ? err : 0;
2411 }
2412 for (i = first_call, nr_entries = 0;
2413 i < chain_nr && nr_entries < max_stack; i++) {
2414 u64 ip;
2415
2416 if (callchain_param.order == ORDER_CALLEE)
2417 j = i;
2418 else
2419 j = chain->nr - i - 1;
2420
2421#ifdef HAVE_SKIP_CALLCHAIN_IDX
2422 if (j == skip_idx)
2423 continue;
2424#endif
2425 ip = chain->ips[j];
2426 if (ip < PERF_CONTEXT_MAX)
2427 ++nr_entries;
2428 else if (callchain_param.order != ORDER_CALLEE) {
2429 err = find_prev_cpumode(chain, thread, cursor, parent,
2430 root_al, &cpumode, j);
2431 if (err)
2432 return (err < 0) ? err : 0;
2433 continue;
2434 }
2435
2436 err = add_callchain_ip(thread, cursor, parent,
2437 root_al, &cpumode, ip,
2438 false, NULL, NULL, 0);
2439
2440 if (err)
2441 return (err < 0) ? err : 0;
2442 }
2443
2444 return 0;
2445}
2446
2447static int append_inlines(struct callchain_cursor *cursor,
2448 struct map *map, struct symbol *sym, u64 ip)
2449{
2450 struct inline_node *inline_node;
2451 struct inline_list *ilist;
2452 u64 addr;
2453 int ret = 1;
2454
2455 if (!symbol_conf.inline_name || !map || !sym)
2456 return ret;
2457
2458 addr = map__map_ip(map, ip);
2459 addr = map__rip_2objdump(map, addr);
2460
2461 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462 if (!inline_node) {
2463 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464 if (!inline_node)
2465 return ret;
2466 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467 }
2468
2469 list_for_each_entry(ilist, &inline_node->val, list) {
2470 ret = callchain_cursor_append(cursor, ip, map,
2471 ilist->symbol, false,
2472 NULL, 0, 0, 0, ilist->srcline);
2473
2474 if (ret != 0)
2475 return ret;
2476 }
2477
2478 return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483 struct callchain_cursor *cursor = arg;
2484 const char *srcline = NULL;
2485 u64 addr = entry->ip;
2486
2487 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488 return 0;
2489
2490 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491 return 0;
2492
2493 /*
2494 * Convert entry->ip from a virtual address to an offset in
2495 * its corresponding binary.
2496 */
2497 if (entry->map)
2498 addr = map__map_ip(entry->map, entry->ip);
2499
2500 srcline = callchain_srcline(entry->map, entry->sym, addr);
2501 return callchain_cursor_append(cursor, entry->ip,
2502 entry->map, entry->sym,
2503 false, NULL, 0, 0, 0, srcline);
2504}
2505
2506static int thread__resolve_callchain_unwind(struct thread *thread,
2507 struct callchain_cursor *cursor,
2508 struct evsel *evsel,
2509 struct perf_sample *sample,
2510 int max_stack)
2511{
2512 /* Can we do dwarf post unwind? */
2513 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515 return 0;
2516
2517 /* Bail out if nothing was captured. */
2518 if ((!sample->user_regs.regs) ||
2519 (!sample->user_stack.size))
2520 return 0;
2521
2522 return unwind__get_entries(unwind_entry, cursor,
2523 thread, sample, max_stack);
2524}
2525
2526int thread__resolve_callchain(struct thread *thread,
2527 struct callchain_cursor *cursor,
2528 struct evsel *evsel,
2529 struct perf_sample *sample,
2530 struct symbol **parent,
2531 struct addr_location *root_al,
2532 int max_stack)
2533{
2534 int ret = 0;
2535
2536 callchain_cursor_reset(cursor);
2537
2538 if (callchain_param.order == ORDER_CALLEE) {
2539 ret = thread__resolve_callchain_sample(thread, cursor,
2540 evsel, sample,
2541 parent, root_al,
2542 max_stack);
2543 if (ret)
2544 return ret;
2545 ret = thread__resolve_callchain_unwind(thread, cursor,
2546 evsel, sample,
2547 max_stack);
2548 } else {
2549 ret = thread__resolve_callchain_unwind(thread, cursor,
2550 evsel, sample,
2551 max_stack);
2552 if (ret)
2553 return ret;
2554 ret = thread__resolve_callchain_sample(thread, cursor,
2555 evsel, sample,
2556 parent, root_al,
2557 max_stack);
2558 }
2559
2560 return ret;
2561}
2562
2563int machine__for_each_thread(struct machine *machine,
2564 int (*fn)(struct thread *thread, void *p),
2565 void *priv)
2566{
2567 struct threads *threads;
2568 struct rb_node *nd;
2569 struct thread *thread;
2570 int rc = 0;
2571 int i;
2572
2573 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574 threads = &machine->threads[i];
2575 for (nd = rb_first_cached(&threads->entries); nd;
2576 nd = rb_next(nd)) {
2577 thread = rb_entry(nd, struct thread, rb_node);
2578 rc = fn(thread, priv);
2579 if (rc != 0)
2580 return rc;
2581 }
2582
2583 list_for_each_entry(thread, &threads->dead, node) {
2584 rc = fn(thread, priv);
2585 if (rc != 0)
2586 return rc;
2587 }
2588 }
2589 return rc;
2590}
2591
2592int machines__for_each_thread(struct machines *machines,
2593 int (*fn)(struct thread *thread, void *p),
2594 void *priv)
2595{
2596 struct rb_node *nd;
2597 int rc = 0;
2598
2599 rc = machine__for_each_thread(&machines->host, fn, priv);
2600 if (rc != 0)
2601 return rc;
2602
2603 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605
2606 rc = machine__for_each_thread(machine, fn, priv);
2607 if (rc != 0)
2608 return rc;
2609 }
2610 return rc;
2611}
2612
2613pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614{
2615 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616
2617 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618 return -1;
2619
2620 return machine->current_tid[cpu];
2621}
2622
2623int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624 pid_t tid)
2625{
2626 struct thread *thread;
2627 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628
2629 if (cpu < 0)
2630 return -EINVAL;
2631
2632 if (!machine->current_tid) {
2633 int i;
2634
2635 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636 if (!machine->current_tid)
2637 return -ENOMEM;
2638 for (i = 0; i < nr_cpus; i++)
2639 machine->current_tid[i] = -1;
2640 }
2641
2642 if (cpu >= nr_cpus) {
2643 pr_err("Requested CPU %d too large. ", cpu);
2644 pr_err("Consider raising MAX_NR_CPUS\n");
2645 return -EINVAL;
2646 }
2647
2648 machine->current_tid[cpu] = tid;
2649
2650 thread = machine__findnew_thread(machine, pid, tid);
2651 if (!thread)
2652 return -ENOMEM;
2653
2654 thread->cpu = cpu;
2655 thread__put(thread);
2656
2657 return 0;
2658}
2659
2660/*
2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662 * normalized arch is needed.
2663 */
2664bool machine__is(struct machine *machine, const char *arch)
2665{
2666 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667}
2668
2669int machine__nr_cpus_avail(struct machine *machine)
2670{
2671 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672}
2673
2674int machine__get_kernel_start(struct machine *machine)
2675{
2676 struct map *map = machine__kernel_map(machine);
2677 int err = 0;
2678
2679 /*
2680 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681 * kernel. Note that addresses are unsigned so that on a 32-bit system
2682 * all addresses including kernel addresses are less than 2^32. In
2683 * that case (32-bit system), if the kernel mapping is unknown, all
2684 * addresses will be assumed to be in user space - see
2685 * machine__kernel_ip().
2686 */
2687 machine->kernel_start = 1ULL << 63;
2688 if (map) {
2689 err = map__load(map);
2690 /*
2691 * On x86_64, PTI entry trampolines are less than the
2692 * start of kernel text, but still above 2^63. So leave
2693 * kernel_start = 1ULL << 63 for x86_64.
2694 */
2695 if (!err && !machine__is(machine, "x86_64"))
2696 machine->kernel_start = map->start;
2697 }
2698 return err;
2699}
2700
2701u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702{
2703 u8 addr_cpumode = cpumode;
2704 bool kernel_ip;
2705
2706 if (!machine->single_address_space)
2707 goto out;
2708
2709 kernel_ip = machine__kernel_ip(machine, addr);
2710 switch (cpumode) {
2711 case PERF_RECORD_MISC_KERNEL:
2712 case PERF_RECORD_MISC_USER:
2713 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714 PERF_RECORD_MISC_USER;
2715 break;
2716 case PERF_RECORD_MISC_GUEST_KERNEL:
2717 case PERF_RECORD_MISC_GUEST_USER:
2718 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719 PERF_RECORD_MISC_GUEST_USER;
2720 break;
2721 default:
2722 break;
2723 }
2724out:
2725 return addr_cpumode;
2726}
2727
2728struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729{
2730 return dsos__findnew(&machine->dsos, filename);
2731}
2732
2733char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734{
2735 struct machine *machine = vmachine;
2736 struct map *map;
2737 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739 if (sym == NULL)
2740 return NULL;
2741
2742 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743 *addrp = map->unmap_ip(map, sym->start);
2744 return sym->name;
2745}
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "path.h"
20#include "srcline.h"
21#include "symbol.h"
22#include "sort.h"
23#include "strlist.h"
24#include "target.h"
25#include "thread.h"
26#include "util.h"
27#include "vdso.h"
28#include <stdbool.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <unistd.h>
32#include "unwind.h"
33#include "linux/hash.h"
34#include "asm/bug.h"
35#include "bpf-event.h"
36#include <internal/lib.h> // page_size
37#include "cgroup.h"
38#include "arm64-frame-pointer-unwind-support.h"
39
40#include <linux/ctype.h>
41#include <symbol/kallsyms.h>
42#include <linux/mman.h>
43#include <linux/string.h>
44#include <linux/zalloc.h>
45
46static struct dso *machine__kernel_dso(struct machine *machine)
47{
48 return map__dso(machine->vmlinux_map);
49}
50
51static void dsos__init(struct dsos *dsos)
52{
53 INIT_LIST_HEAD(&dsos->head);
54 dsos->root = RB_ROOT;
55 init_rwsem(&dsos->lock);
56}
57
58static int machine__set_mmap_name(struct machine *machine)
59{
60 if (machine__is_host(machine))
61 machine->mmap_name = strdup("[kernel.kallsyms]");
62 else if (machine__is_default_guest(machine))
63 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
64 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
65 machine->pid) < 0)
66 machine->mmap_name = NULL;
67
68 return machine->mmap_name ? 0 : -ENOMEM;
69}
70
71static void thread__set_guest_comm(struct thread *thread, pid_t pid)
72{
73 char comm[64];
74
75 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
76 thread__set_comm(thread, comm, 0);
77}
78
79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80{
81 int err = -ENOMEM;
82
83 memset(machine, 0, sizeof(*machine));
84 machine->kmaps = maps__new(machine);
85 if (machine->kmaps == NULL)
86 return -ENOMEM;
87
88 RB_CLEAR_NODE(&machine->rb_node);
89 dsos__init(&machine->dsos);
90
91 threads__init(&machine->threads);
92
93 machine->vdso_info = NULL;
94 machine->env = NULL;
95
96 machine->pid = pid;
97
98 machine->id_hdr_size = 0;
99 machine->kptr_restrict_warned = false;
100 machine->comm_exec = false;
101 machine->kernel_start = 0;
102 machine->vmlinux_map = NULL;
103
104 machine->root_dir = strdup(root_dir);
105 if (machine->root_dir == NULL)
106 goto out;
107
108 if (machine__set_mmap_name(machine))
109 goto out;
110
111 if (pid != HOST_KERNEL_ID) {
112 struct thread *thread = machine__findnew_thread(machine, -1,
113 pid);
114
115 if (thread == NULL)
116 goto out;
117
118 thread__set_guest_comm(thread, pid);
119 thread__put(thread);
120 }
121
122 machine->current_tid = NULL;
123 err = 0;
124
125out:
126 if (err) {
127 zfree(&machine->kmaps);
128 zfree(&machine->root_dir);
129 zfree(&machine->mmap_name);
130 }
131 return 0;
132}
133
134struct machine *machine__new_host(void)
135{
136 struct machine *machine = malloc(sizeof(*machine));
137
138 if (machine != NULL) {
139 machine__init(machine, "", HOST_KERNEL_ID);
140
141 if (machine__create_kernel_maps(machine) < 0)
142 goto out_delete;
143 }
144
145 return machine;
146out_delete:
147 free(machine);
148 return NULL;
149}
150
151struct machine *machine__new_kallsyms(void)
152{
153 struct machine *machine = machine__new_host();
154 /*
155 * FIXME:
156 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
157 * ask for not using the kcore parsing code, once this one is fixed
158 * to create a map per module.
159 */
160 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
161 machine__delete(machine);
162 machine = NULL;
163 }
164
165 return machine;
166}
167
168static void dsos__purge(struct dsos *dsos)
169{
170 struct dso *pos, *n;
171
172 down_write(&dsos->lock);
173
174 list_for_each_entry_safe(pos, n, &dsos->head, node) {
175 RB_CLEAR_NODE(&pos->rb_node);
176 pos->root = NULL;
177 list_del_init(&pos->node);
178 dso__put(pos);
179 }
180
181 up_write(&dsos->lock);
182}
183
184static void dsos__exit(struct dsos *dsos)
185{
186 dsos__purge(dsos);
187 exit_rwsem(&dsos->lock);
188}
189
190void machine__delete_threads(struct machine *machine)
191{
192 threads__remove_all_threads(&machine->threads);
193}
194
195void machine__exit(struct machine *machine)
196{
197 if (machine == NULL)
198 return;
199
200 machine__destroy_kernel_maps(machine);
201 maps__zput(machine->kmaps);
202 dsos__exit(&machine->dsos);
203 machine__exit_vdso(machine);
204 zfree(&machine->root_dir);
205 zfree(&machine->mmap_name);
206 zfree(&machine->current_tid);
207 zfree(&machine->kallsyms_filename);
208
209 threads__exit(&machine->threads);
210}
211
212void machine__delete(struct machine *machine)
213{
214 if (machine) {
215 machine__exit(machine);
216 free(machine);
217 }
218}
219
220void machines__init(struct machines *machines)
221{
222 machine__init(&machines->host, "", HOST_KERNEL_ID);
223 machines->guests = RB_ROOT_CACHED;
224}
225
226void machines__exit(struct machines *machines)
227{
228 machine__exit(&machines->host);
229 /* XXX exit guest */
230}
231
232struct machine *machines__add(struct machines *machines, pid_t pid,
233 const char *root_dir)
234{
235 struct rb_node **p = &machines->guests.rb_root.rb_node;
236 struct rb_node *parent = NULL;
237 struct machine *pos, *machine = malloc(sizeof(*machine));
238 bool leftmost = true;
239
240 if (machine == NULL)
241 return NULL;
242
243 if (machine__init(machine, root_dir, pid) != 0) {
244 free(machine);
245 return NULL;
246 }
247
248 while (*p != NULL) {
249 parent = *p;
250 pos = rb_entry(parent, struct machine, rb_node);
251 if (pid < pos->pid)
252 p = &(*p)->rb_left;
253 else {
254 p = &(*p)->rb_right;
255 leftmost = false;
256 }
257 }
258
259 rb_link_node(&machine->rb_node, parent, p);
260 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
261
262 machine->machines = machines;
263
264 return machine;
265}
266
267void machines__set_comm_exec(struct machines *machines, bool comm_exec)
268{
269 struct rb_node *nd;
270
271 machines->host.comm_exec = comm_exec;
272
273 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
274 struct machine *machine = rb_entry(nd, struct machine, rb_node);
275
276 machine->comm_exec = comm_exec;
277 }
278}
279
280struct machine *machines__find(struct machines *machines, pid_t pid)
281{
282 struct rb_node **p = &machines->guests.rb_root.rb_node;
283 struct rb_node *parent = NULL;
284 struct machine *machine;
285 struct machine *default_machine = NULL;
286
287 if (pid == HOST_KERNEL_ID)
288 return &machines->host;
289
290 while (*p != NULL) {
291 parent = *p;
292 machine = rb_entry(parent, struct machine, rb_node);
293 if (pid < machine->pid)
294 p = &(*p)->rb_left;
295 else if (pid > machine->pid)
296 p = &(*p)->rb_right;
297 else
298 return machine;
299 if (!machine->pid)
300 default_machine = machine;
301 }
302
303 return default_machine;
304}
305
306struct machine *machines__findnew(struct machines *machines, pid_t pid)
307{
308 char path[PATH_MAX];
309 const char *root_dir = "";
310 struct machine *machine = machines__find(machines, pid);
311
312 if (machine && (machine->pid == pid))
313 goto out;
314
315 if ((pid != HOST_KERNEL_ID) &&
316 (pid != DEFAULT_GUEST_KERNEL_ID) &&
317 (symbol_conf.guestmount)) {
318 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
319 if (access(path, R_OK)) {
320 static struct strlist *seen;
321
322 if (!seen)
323 seen = strlist__new(NULL, NULL);
324
325 if (!strlist__has_entry(seen, path)) {
326 pr_err("Can't access file %s\n", path);
327 strlist__add(seen, path);
328 }
329 machine = NULL;
330 goto out;
331 }
332 root_dir = path;
333 }
334
335 machine = machines__add(machines, pid, root_dir);
336out:
337 return machine;
338}
339
340struct machine *machines__find_guest(struct machines *machines, pid_t pid)
341{
342 struct machine *machine = machines__find(machines, pid);
343
344 if (!machine)
345 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
346 return machine;
347}
348
349/*
350 * A common case for KVM test programs is that the test program acts as the
351 * hypervisor, creating, running and destroying the virtual machine, and
352 * providing the guest object code from its own object code. In this case,
353 * the VM is not running an OS, but only the functions loaded into it by the
354 * hypervisor test program, and conveniently, loaded at the same virtual
355 * addresses.
356 *
357 * Normally to resolve addresses, MMAP events are needed to map addresses
358 * back to the object code and debug symbols for that object code.
359 *
360 * Currently, there is no way to get such mapping information from guests
361 * but, in the scenario described above, the guest has the same mappings
362 * as the hypervisor, so support for that scenario can be achieved.
363 *
364 * To support that, copy the host thread's maps to the guest thread's maps.
365 * Note, we do not discover the guest until we encounter a guest event,
366 * which works well because it is not until then that we know that the host
367 * thread's maps have been set up.
368 *
369 * This function returns the guest thread. Apart from keeping the data
370 * structures sane, using a thread belonging to the guest machine, instead
371 * of the host thread, allows it to have its own comm (refer
372 * thread__set_guest_comm()).
373 */
374static struct thread *findnew_guest_code(struct machine *machine,
375 struct machine *host_machine,
376 pid_t pid)
377{
378 struct thread *host_thread;
379 struct thread *thread;
380 int err;
381
382 if (!machine)
383 return NULL;
384
385 thread = machine__findnew_thread(machine, -1, pid);
386 if (!thread)
387 return NULL;
388
389 /* Assume maps are set up if there are any */
390 if (!maps__empty(thread__maps(thread)))
391 return thread;
392
393 host_thread = machine__find_thread(host_machine, -1, pid);
394 if (!host_thread)
395 goto out_err;
396
397 thread__set_guest_comm(thread, pid);
398
399 /*
400 * Guest code can be found in hypervisor process at the same address
401 * so copy host maps.
402 */
403 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
404 thread__put(host_thread);
405 if (err)
406 goto out_err;
407
408 return thread;
409
410out_err:
411 thread__zput(thread);
412 return NULL;
413}
414
415struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
416{
417 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
418 struct machine *machine = machines__findnew(machines, pid);
419
420 return findnew_guest_code(machine, host_machine, pid);
421}
422
423struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
424{
425 struct machines *machines = machine->machines;
426 struct machine *host_machine;
427
428 if (!machines)
429 return NULL;
430
431 host_machine = machines__find(machines, HOST_KERNEL_ID);
432
433 return findnew_guest_code(machine, host_machine, pid);
434}
435
436void machines__process_guests(struct machines *machines,
437 machine__process_t process, void *data)
438{
439 struct rb_node *nd;
440
441 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
442 struct machine *pos = rb_entry(nd, struct machine, rb_node);
443 process(pos, data);
444 }
445}
446
447void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
448{
449 struct rb_node *node;
450 struct machine *machine;
451
452 machines->host.id_hdr_size = id_hdr_size;
453
454 for (node = rb_first_cached(&machines->guests); node;
455 node = rb_next(node)) {
456 machine = rb_entry(node, struct machine, rb_node);
457 machine->id_hdr_size = id_hdr_size;
458 }
459
460 return;
461}
462
463static void machine__update_thread_pid(struct machine *machine,
464 struct thread *th, pid_t pid)
465{
466 struct thread *leader;
467
468 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
469 return;
470
471 thread__set_pid(th, pid);
472
473 if (thread__pid(th) == thread__tid(th))
474 return;
475
476 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
477 if (!leader)
478 goto out_err;
479
480 if (!thread__maps(leader))
481 thread__set_maps(leader, maps__new(machine));
482
483 if (!thread__maps(leader))
484 goto out_err;
485
486 if (thread__maps(th) == thread__maps(leader))
487 goto out_put;
488
489 if (thread__maps(th)) {
490 /*
491 * Maps are created from MMAP events which provide the pid and
492 * tid. Consequently there never should be any maps on a thread
493 * with an unknown pid. Just print an error if there are.
494 */
495 if (!maps__empty(thread__maps(th)))
496 pr_err("Discarding thread maps for %d:%d\n",
497 thread__pid(th), thread__tid(th));
498 maps__put(thread__maps(th));
499 }
500
501 thread__set_maps(th, maps__get(thread__maps(leader)));
502out_put:
503 thread__put(leader);
504 return;
505out_err:
506 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
507 goto out_put;
508}
509
510/*
511 * Caller must eventually drop thread->refcnt returned with a successful
512 * lookup/new thread inserted.
513 */
514static struct thread *__machine__findnew_thread(struct machine *machine,
515 pid_t pid,
516 pid_t tid,
517 bool create)
518{
519 struct thread *th = threads__find(&machine->threads, tid);
520 bool created;
521
522 if (th) {
523 machine__update_thread_pid(machine, th, pid);
524 return th;
525 }
526 if (!create)
527 return NULL;
528
529 th = threads__findnew(&machine->threads, pid, tid, &created);
530 if (created) {
531 /*
532 * We have to initialize maps separately after rb tree is
533 * updated.
534 *
535 * The reason is that we call machine__findnew_thread within
536 * thread__init_maps to find the thread leader and that would
537 * screwed the rb tree.
538 */
539 if (thread__init_maps(th, machine)) {
540 pr_err("Thread init failed thread %d\n", pid);
541 threads__remove(&machine->threads, th);
542 thread__put(th);
543 return NULL;
544 }
545 } else
546 machine__update_thread_pid(machine, th, pid);
547
548 return th;
549}
550
551struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
552{
553 return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
554}
555
556struct thread *machine__find_thread(struct machine *machine, pid_t pid,
557 pid_t tid)
558{
559 return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
560}
561
562/*
563 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
564 * So here a single thread is created for that, but actually there is a separate
565 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
566 * is only 1. That causes problems for some tools, requiring workarounds. For
567 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
568 */
569struct thread *machine__idle_thread(struct machine *machine)
570{
571 struct thread *thread = machine__findnew_thread(machine, 0, 0);
572
573 if (!thread || thread__set_comm(thread, "swapper", 0) ||
574 thread__set_namespaces(thread, 0, NULL))
575 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
576
577 return thread;
578}
579
580struct comm *machine__thread_exec_comm(struct machine *machine,
581 struct thread *thread)
582{
583 if (machine->comm_exec)
584 return thread__exec_comm(thread);
585 else
586 return thread__comm(thread);
587}
588
589int machine__process_comm_event(struct machine *machine, union perf_event *event,
590 struct perf_sample *sample)
591{
592 struct thread *thread = machine__findnew_thread(machine,
593 event->comm.pid,
594 event->comm.tid);
595 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
596 int err = 0;
597
598 if (exec)
599 machine->comm_exec = true;
600
601 if (dump_trace)
602 perf_event__fprintf_comm(event, stdout);
603
604 if (thread == NULL ||
605 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
606 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
607 err = -1;
608 }
609
610 thread__put(thread);
611
612 return err;
613}
614
615int machine__process_namespaces_event(struct machine *machine __maybe_unused,
616 union perf_event *event,
617 struct perf_sample *sample __maybe_unused)
618{
619 struct thread *thread = machine__findnew_thread(machine,
620 event->namespaces.pid,
621 event->namespaces.tid);
622 int err = 0;
623
624 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
625 "\nWARNING: kernel seems to support more namespaces than perf"
626 " tool.\nTry updating the perf tool..\n\n");
627
628 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
629 "\nWARNING: perf tool seems to support more namespaces than"
630 " the kernel.\nTry updating the kernel..\n\n");
631
632 if (dump_trace)
633 perf_event__fprintf_namespaces(event, stdout);
634
635 if (thread == NULL ||
636 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
637 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
638 err = -1;
639 }
640
641 thread__put(thread);
642
643 return err;
644}
645
646int machine__process_cgroup_event(struct machine *machine,
647 union perf_event *event,
648 struct perf_sample *sample __maybe_unused)
649{
650 struct cgroup *cgrp;
651
652 if (dump_trace)
653 perf_event__fprintf_cgroup(event, stdout);
654
655 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
656 if (cgrp == NULL)
657 return -ENOMEM;
658
659 return 0;
660}
661
662int machine__process_lost_event(struct machine *machine __maybe_unused,
663 union perf_event *event, struct perf_sample *sample __maybe_unused)
664{
665 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
666 event->lost.id, event->lost.lost);
667 return 0;
668}
669
670int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
671 union perf_event *event, struct perf_sample *sample)
672{
673 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
674 sample->id, event->lost_samples.lost);
675 return 0;
676}
677
678static struct dso *machine__findnew_module_dso(struct machine *machine,
679 struct kmod_path *m,
680 const char *filename)
681{
682 struct dso *dso;
683
684 down_write(&machine->dsos.lock);
685
686 dso = __dsos__find(&machine->dsos, m->name, true);
687 if (!dso) {
688 dso = __dsos__addnew(&machine->dsos, m->name);
689 if (dso == NULL)
690 goto out_unlock;
691
692 dso__set_module_info(dso, m, machine);
693 dso__set_long_name(dso, strdup(filename), true);
694 dso->kernel = DSO_SPACE__KERNEL;
695 }
696
697 dso__get(dso);
698out_unlock:
699 up_write(&machine->dsos.lock);
700 return dso;
701}
702
703int machine__process_aux_event(struct machine *machine __maybe_unused,
704 union perf_event *event)
705{
706 if (dump_trace)
707 perf_event__fprintf_aux(event, stdout);
708 return 0;
709}
710
711int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
712 union perf_event *event)
713{
714 if (dump_trace)
715 perf_event__fprintf_itrace_start(event, stdout);
716 return 0;
717}
718
719int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
720 union perf_event *event)
721{
722 if (dump_trace)
723 perf_event__fprintf_aux_output_hw_id(event, stdout);
724 return 0;
725}
726
727int machine__process_switch_event(struct machine *machine __maybe_unused,
728 union perf_event *event)
729{
730 if (dump_trace)
731 perf_event__fprintf_switch(event, stdout);
732 return 0;
733}
734
735static int machine__process_ksymbol_register(struct machine *machine,
736 union perf_event *event,
737 struct perf_sample *sample __maybe_unused)
738{
739 struct symbol *sym;
740 struct dso *dso;
741 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
742 int err = 0;
743
744 if (!map) {
745 dso = dso__new(event->ksymbol.name);
746
747 if (!dso) {
748 err = -ENOMEM;
749 goto out;
750 }
751 dso->kernel = DSO_SPACE__KERNEL;
752 map = map__new2(0, dso);
753 dso__put(dso);
754 if (!map) {
755 err = -ENOMEM;
756 goto out;
757 }
758 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
759 dso->binary_type = DSO_BINARY_TYPE__OOL;
760 dso->data.file_size = event->ksymbol.len;
761 dso__set_loaded(dso);
762 }
763
764 map__set_start(map, event->ksymbol.addr);
765 map__set_end(map, map__start(map) + event->ksymbol.len);
766 err = maps__insert(machine__kernel_maps(machine), map);
767 if (err) {
768 err = -ENOMEM;
769 goto out;
770 }
771
772 dso__set_loaded(dso);
773
774 if (is_bpf_image(event->ksymbol.name)) {
775 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
776 dso__set_long_name(dso, "", false);
777 }
778 } else {
779 dso = map__dso(map);
780 }
781
782 sym = symbol__new(map__map_ip(map, map__start(map)),
783 event->ksymbol.len,
784 0, 0, event->ksymbol.name);
785 if (!sym) {
786 err = -ENOMEM;
787 goto out;
788 }
789 dso__insert_symbol(dso, sym);
790out:
791 map__put(map);
792 return err;
793}
794
795static int machine__process_ksymbol_unregister(struct machine *machine,
796 union perf_event *event,
797 struct perf_sample *sample __maybe_unused)
798{
799 struct symbol *sym;
800 struct map *map;
801
802 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
803 if (!map)
804 return 0;
805
806 if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
807 maps__remove(machine__kernel_maps(machine), map);
808 else {
809 struct dso *dso = map__dso(map);
810
811 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
812 if (sym)
813 dso__delete_symbol(dso, sym);
814 }
815 map__put(map);
816 return 0;
817}
818
819int machine__process_ksymbol(struct machine *machine __maybe_unused,
820 union perf_event *event,
821 struct perf_sample *sample)
822{
823 if (dump_trace)
824 perf_event__fprintf_ksymbol(event, stdout);
825
826 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
827 return machine__process_ksymbol_unregister(machine, event,
828 sample);
829 return machine__process_ksymbol_register(machine, event, sample);
830}
831
832int machine__process_text_poke(struct machine *machine, union perf_event *event,
833 struct perf_sample *sample __maybe_unused)
834{
835 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
836 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
837 struct dso *dso = map ? map__dso(map) : NULL;
838
839 if (dump_trace)
840 perf_event__fprintf_text_poke(event, machine, stdout);
841
842 if (!event->text_poke.new_len)
843 goto out;
844
845 if (cpumode != PERF_RECORD_MISC_KERNEL) {
846 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
847 goto out;
848 }
849
850 if (dso) {
851 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
852 int ret;
853
854 /*
855 * Kernel maps might be changed when loading symbols so loading
856 * must be done prior to using kernel maps.
857 */
858 map__load(map);
859 ret = dso__data_write_cache_addr(dso, map, machine,
860 event->text_poke.addr,
861 new_bytes,
862 event->text_poke.new_len);
863 if (ret != event->text_poke.new_len)
864 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
865 event->text_poke.addr);
866 } else {
867 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
868 event->text_poke.addr);
869 }
870out:
871 map__put(map);
872 return 0;
873}
874
875static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
876 const char *filename)
877{
878 struct map *map = NULL;
879 struct kmod_path m;
880 struct dso *dso;
881 int err;
882
883 if (kmod_path__parse_name(&m, filename))
884 return NULL;
885
886 dso = machine__findnew_module_dso(machine, &m, filename);
887 if (dso == NULL)
888 goto out;
889
890 map = map__new2(start, dso);
891 if (map == NULL)
892 goto out;
893
894 err = maps__insert(machine__kernel_maps(machine), map);
895 /* If maps__insert failed, return NULL. */
896 if (err) {
897 map__put(map);
898 map = NULL;
899 }
900out:
901 /* put the dso here, corresponding to machine__findnew_module_dso */
902 dso__put(dso);
903 zfree(&m.name);
904 return map;
905}
906
907size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
908{
909 struct rb_node *nd;
910 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
911
912 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
913 struct machine *pos = rb_entry(nd, struct machine, rb_node);
914 ret += __dsos__fprintf(&pos->dsos.head, fp);
915 }
916
917 return ret;
918}
919
920size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
921 bool (skip)(struct dso *dso, int parm), int parm)
922{
923 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
924}
925
926size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
927 bool (skip)(struct dso *dso, int parm), int parm)
928{
929 struct rb_node *nd;
930 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
931
932 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
933 struct machine *pos = rb_entry(nd, struct machine, rb_node);
934 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
935 }
936 return ret;
937}
938
939size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
940{
941 int i;
942 size_t printed = 0;
943 struct dso *kdso = machine__kernel_dso(machine);
944
945 if (kdso->has_build_id) {
946 char filename[PATH_MAX];
947 if (dso__build_id_filename(kdso, filename, sizeof(filename),
948 false))
949 printed += fprintf(fp, "[0] %s\n", filename);
950 }
951
952 for (i = 0; i < vmlinux_path__nr_entries; ++i)
953 printed += fprintf(fp, "[%d] %s\n",
954 i + kdso->has_build_id, vmlinux_path[i]);
955
956 return printed;
957}
958
959struct machine_fprintf_cb_args {
960 FILE *fp;
961 size_t printed;
962};
963
964static int machine_fprintf_cb(struct thread *thread, void *data)
965{
966 struct machine_fprintf_cb_args *args = data;
967
968 /* TODO: handle fprintf errors. */
969 args->printed += thread__fprintf(thread, args->fp);
970 return 0;
971}
972
973size_t machine__fprintf(struct machine *machine, FILE *fp)
974{
975 struct machine_fprintf_cb_args args = {
976 .fp = fp,
977 .printed = 0,
978 };
979 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
980
981 machine__for_each_thread(machine, machine_fprintf_cb, &args);
982 return ret + args.printed;
983}
984
985static struct dso *machine__get_kernel(struct machine *machine)
986{
987 const char *vmlinux_name = machine->mmap_name;
988 struct dso *kernel;
989
990 if (machine__is_host(machine)) {
991 if (symbol_conf.vmlinux_name)
992 vmlinux_name = symbol_conf.vmlinux_name;
993
994 kernel = machine__findnew_kernel(machine, vmlinux_name,
995 "[kernel]", DSO_SPACE__KERNEL);
996 } else {
997 if (symbol_conf.default_guest_vmlinux_name)
998 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
999
1000 kernel = machine__findnew_kernel(machine, vmlinux_name,
1001 "[guest.kernel]",
1002 DSO_SPACE__KERNEL_GUEST);
1003 }
1004
1005 if (kernel != NULL && (!kernel->has_build_id))
1006 dso__read_running_kernel_build_id(kernel, machine);
1007
1008 return kernel;
1009}
1010
1011void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1012 size_t bufsz)
1013{
1014 if (machine__is_default_guest(machine))
1015 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1016 else
1017 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1018}
1019
1020const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1021
1022/* Figure out the start address of kernel map from /proc/kallsyms.
1023 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1024 * symbol_name if it's not that important.
1025 */
1026static int machine__get_running_kernel_start(struct machine *machine,
1027 const char **symbol_name,
1028 u64 *start, u64 *end)
1029{
1030 char filename[PATH_MAX];
1031 int i, err = -1;
1032 const char *name;
1033 u64 addr = 0;
1034
1035 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1036
1037 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1038 return 0;
1039
1040 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1041 err = kallsyms__get_function_start(filename, name, &addr);
1042 if (!err)
1043 break;
1044 }
1045
1046 if (err)
1047 return -1;
1048
1049 if (symbol_name)
1050 *symbol_name = name;
1051
1052 *start = addr;
1053
1054 err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1055 if (err)
1056 err = kallsyms__get_function_start(filename, "_etext", &addr);
1057 if (!err)
1058 *end = addr;
1059
1060 return 0;
1061}
1062
1063int machine__create_extra_kernel_map(struct machine *machine,
1064 struct dso *kernel,
1065 struct extra_kernel_map *xm)
1066{
1067 struct kmap *kmap;
1068 struct map *map;
1069 int err;
1070
1071 map = map__new2(xm->start, kernel);
1072 if (!map)
1073 return -ENOMEM;
1074
1075 map__set_end(map, xm->end);
1076 map__set_pgoff(map, xm->pgoff);
1077
1078 kmap = map__kmap(map);
1079
1080 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1081
1082 err = maps__insert(machine__kernel_maps(machine), map);
1083
1084 if (!err) {
1085 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1086 kmap->name, map__start(map), map__end(map));
1087 }
1088
1089 map__put(map);
1090
1091 return err;
1092}
1093
1094static u64 find_entry_trampoline(struct dso *dso)
1095{
1096 /* Duplicates are removed so lookup all aliases */
1097 const char *syms[] = {
1098 "_entry_trampoline",
1099 "__entry_trampoline_start",
1100 "entry_SYSCALL_64_trampoline",
1101 };
1102 struct symbol *sym = dso__first_symbol(dso);
1103 unsigned int i;
1104
1105 for (; sym; sym = dso__next_symbol(sym)) {
1106 if (sym->binding != STB_GLOBAL)
1107 continue;
1108 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1109 if (!strcmp(sym->name, syms[i]))
1110 return sym->start;
1111 }
1112 }
1113
1114 return 0;
1115}
1116
1117/*
1118 * These values can be used for kernels that do not have symbols for the entry
1119 * trampolines in kallsyms.
1120 */
1121#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1122#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1123#define X86_64_ENTRY_TRAMPOLINE 0x6000
1124
1125struct machine__map_x86_64_entry_trampolines_args {
1126 struct maps *kmaps;
1127 bool found;
1128};
1129
1130static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1131{
1132 struct machine__map_x86_64_entry_trampolines_args *args = data;
1133 struct map *dest_map;
1134 struct kmap *kmap = __map__kmap(map);
1135
1136 if (!kmap || !is_entry_trampoline(kmap->name))
1137 return 0;
1138
1139 dest_map = maps__find(args->kmaps, map__pgoff(map));
1140 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1141 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1142
1143 map__put(dest_map);
1144 args->found = true;
1145 return 0;
1146}
1147
1148/* Map x86_64 PTI entry trampolines */
1149int machine__map_x86_64_entry_trampolines(struct machine *machine,
1150 struct dso *kernel)
1151{
1152 struct machine__map_x86_64_entry_trampolines_args args = {
1153 .kmaps = machine__kernel_maps(machine),
1154 .found = false,
1155 };
1156 int nr_cpus_avail, cpu;
1157 u64 pgoff;
1158
1159 /*
1160 * In the vmlinux case, pgoff is a virtual address which must now be
1161 * mapped to a vmlinux offset.
1162 */
1163 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1164
1165 if (args.found || machine->trampolines_mapped)
1166 return 0;
1167
1168 pgoff = find_entry_trampoline(kernel);
1169 if (!pgoff)
1170 return 0;
1171
1172 nr_cpus_avail = machine__nr_cpus_avail(machine);
1173
1174 /* Add a 1 page map for each CPU's entry trampoline */
1175 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1176 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1177 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1178 X86_64_ENTRY_TRAMPOLINE;
1179 struct extra_kernel_map xm = {
1180 .start = va,
1181 .end = va + page_size,
1182 .pgoff = pgoff,
1183 };
1184
1185 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1186
1187 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1188 return -1;
1189 }
1190
1191 machine->trampolines_mapped = nr_cpus_avail;
1192
1193 return 0;
1194}
1195
1196int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1197 struct dso *kernel __maybe_unused)
1198{
1199 return 0;
1200}
1201
1202static int
1203__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1204{
1205 /* In case of renewal the kernel map, destroy previous one */
1206 machine__destroy_kernel_maps(machine);
1207
1208 map__put(machine->vmlinux_map);
1209 machine->vmlinux_map = map__new2(0, kernel);
1210 if (machine->vmlinux_map == NULL)
1211 return -ENOMEM;
1212
1213 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1214 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1215}
1216
1217void machine__destroy_kernel_maps(struct machine *machine)
1218{
1219 struct kmap *kmap;
1220 struct map *map = machine__kernel_map(machine);
1221
1222 if (map == NULL)
1223 return;
1224
1225 kmap = map__kmap(map);
1226 maps__remove(machine__kernel_maps(machine), map);
1227 if (kmap && kmap->ref_reloc_sym) {
1228 zfree((char **)&kmap->ref_reloc_sym->name);
1229 zfree(&kmap->ref_reloc_sym);
1230 }
1231
1232 map__zput(machine->vmlinux_map);
1233}
1234
1235int machines__create_guest_kernel_maps(struct machines *machines)
1236{
1237 int ret = 0;
1238 struct dirent **namelist = NULL;
1239 int i, items = 0;
1240 char path[PATH_MAX];
1241 pid_t pid;
1242 char *endp;
1243
1244 if (symbol_conf.default_guest_vmlinux_name ||
1245 symbol_conf.default_guest_modules ||
1246 symbol_conf.default_guest_kallsyms) {
1247 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1248 }
1249
1250 if (symbol_conf.guestmount) {
1251 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1252 if (items <= 0)
1253 return -ENOENT;
1254 for (i = 0; i < items; i++) {
1255 if (!isdigit(namelist[i]->d_name[0])) {
1256 /* Filter out . and .. */
1257 continue;
1258 }
1259 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1260 if ((*endp != '\0') ||
1261 (endp == namelist[i]->d_name) ||
1262 (errno == ERANGE)) {
1263 pr_debug("invalid directory (%s). Skipping.\n",
1264 namelist[i]->d_name);
1265 continue;
1266 }
1267 sprintf(path, "%s/%s/proc/kallsyms",
1268 symbol_conf.guestmount,
1269 namelist[i]->d_name);
1270 ret = access(path, R_OK);
1271 if (ret) {
1272 pr_debug("Can't access file %s\n", path);
1273 goto failure;
1274 }
1275 machines__create_kernel_maps(machines, pid);
1276 }
1277failure:
1278 free(namelist);
1279 }
1280
1281 return ret;
1282}
1283
1284void machines__destroy_kernel_maps(struct machines *machines)
1285{
1286 struct rb_node *next = rb_first_cached(&machines->guests);
1287
1288 machine__destroy_kernel_maps(&machines->host);
1289
1290 while (next) {
1291 struct machine *pos = rb_entry(next, struct machine, rb_node);
1292
1293 next = rb_next(&pos->rb_node);
1294 rb_erase_cached(&pos->rb_node, &machines->guests);
1295 machine__delete(pos);
1296 }
1297}
1298
1299int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1300{
1301 struct machine *machine = machines__findnew(machines, pid);
1302
1303 if (machine == NULL)
1304 return -1;
1305
1306 return machine__create_kernel_maps(machine);
1307}
1308
1309int machine__load_kallsyms(struct machine *machine, const char *filename)
1310{
1311 struct map *map = machine__kernel_map(machine);
1312 struct dso *dso = map__dso(map);
1313 int ret = __dso__load_kallsyms(dso, filename, map, true);
1314
1315 if (ret > 0) {
1316 dso__set_loaded(dso);
1317 /*
1318 * Since /proc/kallsyms will have multiple sessions for the
1319 * kernel, with modules between them, fixup the end of all
1320 * sections.
1321 */
1322 maps__fixup_end(machine__kernel_maps(machine));
1323 }
1324
1325 return ret;
1326}
1327
1328int machine__load_vmlinux_path(struct machine *machine)
1329{
1330 struct map *map = machine__kernel_map(machine);
1331 struct dso *dso = map__dso(map);
1332 int ret = dso__load_vmlinux_path(dso, map);
1333
1334 if (ret > 0)
1335 dso__set_loaded(dso);
1336
1337 return ret;
1338}
1339
1340static char *get_kernel_version(const char *root_dir)
1341{
1342 char version[PATH_MAX];
1343 FILE *file;
1344 char *name, *tmp;
1345 const char *prefix = "Linux version ";
1346
1347 sprintf(version, "%s/proc/version", root_dir);
1348 file = fopen(version, "r");
1349 if (!file)
1350 return NULL;
1351
1352 tmp = fgets(version, sizeof(version), file);
1353 fclose(file);
1354 if (!tmp)
1355 return NULL;
1356
1357 name = strstr(version, prefix);
1358 if (!name)
1359 return NULL;
1360 name += strlen(prefix);
1361 tmp = strchr(name, ' ');
1362 if (tmp)
1363 *tmp = '\0';
1364
1365 return strdup(name);
1366}
1367
1368static bool is_kmod_dso(struct dso *dso)
1369{
1370 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1371 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1372}
1373
1374static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1375{
1376 char *long_name;
1377 struct dso *dso;
1378 struct map *map = maps__find_by_name(maps, m->name);
1379
1380 if (map == NULL)
1381 return 0;
1382
1383 long_name = strdup(path);
1384 if (long_name == NULL) {
1385 map__put(map);
1386 return -ENOMEM;
1387 }
1388
1389 dso = map__dso(map);
1390 dso__set_long_name(dso, long_name, true);
1391 dso__kernel_module_get_build_id(dso, "");
1392
1393 /*
1394 * Full name could reveal us kmod compression, so
1395 * we need to update the symtab_type if needed.
1396 */
1397 if (m->comp && is_kmod_dso(dso)) {
1398 dso->symtab_type++;
1399 dso->comp = m->comp;
1400 }
1401 map__put(map);
1402 return 0;
1403}
1404
1405static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1406{
1407 struct dirent *dent;
1408 DIR *dir = opendir(dir_name);
1409 int ret = 0;
1410
1411 if (!dir) {
1412 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1413 return -1;
1414 }
1415
1416 while ((dent = readdir(dir)) != NULL) {
1417 char path[PATH_MAX];
1418 struct stat st;
1419
1420 /*sshfs might return bad dent->d_type, so we have to stat*/
1421 path__join(path, sizeof(path), dir_name, dent->d_name);
1422 if (stat(path, &st))
1423 continue;
1424
1425 if (S_ISDIR(st.st_mode)) {
1426 if (!strcmp(dent->d_name, ".") ||
1427 !strcmp(dent->d_name, ".."))
1428 continue;
1429
1430 /* Do not follow top-level source and build symlinks */
1431 if (depth == 0) {
1432 if (!strcmp(dent->d_name, "source") ||
1433 !strcmp(dent->d_name, "build"))
1434 continue;
1435 }
1436
1437 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1438 if (ret < 0)
1439 goto out;
1440 } else {
1441 struct kmod_path m;
1442
1443 ret = kmod_path__parse_name(&m, dent->d_name);
1444 if (ret)
1445 goto out;
1446
1447 if (m.kmod)
1448 ret = maps__set_module_path(maps, path, &m);
1449
1450 zfree(&m.name);
1451
1452 if (ret)
1453 goto out;
1454 }
1455 }
1456
1457out:
1458 closedir(dir);
1459 return ret;
1460}
1461
1462static int machine__set_modules_path(struct machine *machine)
1463{
1464 char *version;
1465 char modules_path[PATH_MAX];
1466
1467 version = get_kernel_version(machine->root_dir);
1468 if (!version)
1469 return -1;
1470
1471 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1472 machine->root_dir, version);
1473 free(version);
1474
1475 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1476}
1477int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1478 u64 *size __maybe_unused,
1479 const char *name __maybe_unused)
1480{
1481 return 0;
1482}
1483
1484static int machine__create_module(void *arg, const char *name, u64 start,
1485 u64 size)
1486{
1487 struct machine *machine = arg;
1488 struct map *map;
1489
1490 if (arch__fix_module_text_start(&start, &size, name) < 0)
1491 return -1;
1492
1493 map = machine__addnew_module_map(machine, start, name);
1494 if (map == NULL)
1495 return -1;
1496 map__set_end(map, start + size);
1497
1498 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1499 map__put(map);
1500 return 0;
1501}
1502
1503static int machine__create_modules(struct machine *machine)
1504{
1505 const char *modules;
1506 char path[PATH_MAX];
1507
1508 if (machine__is_default_guest(machine)) {
1509 modules = symbol_conf.default_guest_modules;
1510 } else {
1511 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1512 modules = path;
1513 }
1514
1515 if (symbol__restricted_filename(modules, "/proc/modules"))
1516 return -1;
1517
1518 if (modules__parse(modules, machine, machine__create_module))
1519 return -1;
1520
1521 if (!machine__set_modules_path(machine))
1522 return 0;
1523
1524 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1525
1526 return 0;
1527}
1528
1529static void machine__set_kernel_mmap(struct machine *machine,
1530 u64 start, u64 end)
1531{
1532 map__set_start(machine->vmlinux_map, start);
1533 map__set_end(machine->vmlinux_map, end);
1534 /*
1535 * Be a bit paranoid here, some perf.data file came with
1536 * a zero sized synthesized MMAP event for the kernel.
1537 */
1538 if (start == 0 && end == 0)
1539 map__set_end(machine->vmlinux_map, ~0ULL);
1540}
1541
1542static int machine__update_kernel_mmap(struct machine *machine,
1543 u64 start, u64 end)
1544{
1545 struct map *orig, *updated;
1546 int err;
1547
1548 orig = machine->vmlinux_map;
1549 updated = map__get(orig);
1550
1551 machine->vmlinux_map = updated;
1552 maps__remove(machine__kernel_maps(machine), orig);
1553 machine__set_kernel_mmap(machine, start, end);
1554 err = maps__insert(machine__kernel_maps(machine), updated);
1555 map__put(orig);
1556
1557 return err;
1558}
1559
1560int machine__create_kernel_maps(struct machine *machine)
1561{
1562 struct dso *kernel = machine__get_kernel(machine);
1563 const char *name = NULL;
1564 u64 start = 0, end = ~0ULL;
1565 int ret;
1566
1567 if (kernel == NULL)
1568 return -1;
1569
1570 ret = __machine__create_kernel_maps(machine, kernel);
1571 if (ret < 0)
1572 goto out_put;
1573
1574 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1575 if (machine__is_host(machine))
1576 pr_debug("Problems creating module maps, "
1577 "continuing anyway...\n");
1578 else
1579 pr_debug("Problems creating module maps for guest %d, "
1580 "continuing anyway...\n", machine->pid);
1581 }
1582
1583 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1584 if (name &&
1585 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1586 machine__destroy_kernel_maps(machine);
1587 ret = -1;
1588 goto out_put;
1589 }
1590
1591 /*
1592 * we have a real start address now, so re-order the kmaps
1593 * assume it's the last in the kmaps
1594 */
1595 ret = machine__update_kernel_mmap(machine, start, end);
1596 if (ret < 0)
1597 goto out_put;
1598 }
1599
1600 if (machine__create_extra_kernel_maps(machine, kernel))
1601 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1602
1603 if (end == ~0ULL) {
1604 /* update end address of the kernel map using adjacent module address */
1605 struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1606 machine__kernel_map(machine));
1607
1608 if (next) {
1609 machine__set_kernel_mmap(machine, start, map__start(next));
1610 map__put(next);
1611 }
1612 }
1613
1614out_put:
1615 dso__put(kernel);
1616 return ret;
1617}
1618
1619static bool machine__uses_kcore(struct machine *machine)
1620{
1621 struct dso *dso;
1622
1623 list_for_each_entry(dso, &machine->dsos.head, node) {
1624 if (dso__is_kcore(dso))
1625 return true;
1626 }
1627
1628 return false;
1629}
1630
1631static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1632 struct extra_kernel_map *xm)
1633{
1634 return machine__is(machine, "x86_64") &&
1635 is_entry_trampoline(xm->name);
1636}
1637
1638static int machine__process_extra_kernel_map(struct machine *machine,
1639 struct extra_kernel_map *xm)
1640{
1641 struct dso *kernel = machine__kernel_dso(machine);
1642
1643 if (kernel == NULL)
1644 return -1;
1645
1646 return machine__create_extra_kernel_map(machine, kernel, xm);
1647}
1648
1649static int machine__process_kernel_mmap_event(struct machine *machine,
1650 struct extra_kernel_map *xm,
1651 struct build_id *bid)
1652{
1653 enum dso_space_type dso_space;
1654 bool is_kernel_mmap;
1655 const char *mmap_name = machine->mmap_name;
1656
1657 /* If we have maps from kcore then we do not need or want any others */
1658 if (machine__uses_kcore(machine))
1659 return 0;
1660
1661 if (machine__is_host(machine))
1662 dso_space = DSO_SPACE__KERNEL;
1663 else
1664 dso_space = DSO_SPACE__KERNEL_GUEST;
1665
1666 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1667 if (!is_kernel_mmap && !machine__is_host(machine)) {
1668 /*
1669 * If the event was recorded inside the guest and injected into
1670 * the host perf.data file, then it will match a host mmap_name,
1671 * so try that - see machine__set_mmap_name().
1672 */
1673 mmap_name = "[kernel.kallsyms]";
1674 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1675 }
1676 if (xm->name[0] == '/' ||
1677 (!is_kernel_mmap && xm->name[0] == '[')) {
1678 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1679
1680 if (map == NULL)
1681 goto out_problem;
1682
1683 map__set_end(map, map__start(map) + xm->end - xm->start);
1684
1685 if (build_id__is_defined(bid))
1686 dso__set_build_id(map__dso(map), bid);
1687
1688 map__put(map);
1689 } else if (is_kernel_mmap) {
1690 const char *symbol_name = xm->name + strlen(mmap_name);
1691 /*
1692 * Should be there already, from the build-id table in
1693 * the header.
1694 */
1695 struct dso *kernel = NULL;
1696 struct dso *dso;
1697
1698 down_read(&machine->dsos.lock);
1699
1700 list_for_each_entry(dso, &machine->dsos.head, node) {
1701
1702 /*
1703 * The cpumode passed to is_kernel_module is not the
1704 * cpumode of *this* event. If we insist on passing
1705 * correct cpumode to is_kernel_module, we should
1706 * record the cpumode when we adding this dso to the
1707 * linked list.
1708 *
1709 * However we don't really need passing correct
1710 * cpumode. We know the correct cpumode must be kernel
1711 * mode (if not, we should not link it onto kernel_dsos
1712 * list).
1713 *
1714 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1715 * is_kernel_module() treats it as a kernel cpumode.
1716 */
1717
1718 if (!dso->kernel ||
1719 is_kernel_module(dso->long_name,
1720 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1721 continue;
1722
1723
1724 kernel = dso__get(dso);
1725 break;
1726 }
1727
1728 up_read(&machine->dsos.lock);
1729
1730 if (kernel == NULL)
1731 kernel = machine__findnew_dso(machine, machine->mmap_name);
1732 if (kernel == NULL)
1733 goto out_problem;
1734
1735 kernel->kernel = dso_space;
1736 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1737 dso__put(kernel);
1738 goto out_problem;
1739 }
1740
1741 if (strstr(kernel->long_name, "vmlinux"))
1742 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1743
1744 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1745 dso__put(kernel);
1746 goto out_problem;
1747 }
1748
1749 if (build_id__is_defined(bid))
1750 dso__set_build_id(kernel, bid);
1751
1752 /*
1753 * Avoid using a zero address (kptr_restrict) for the ref reloc
1754 * symbol. Effectively having zero here means that at record
1755 * time /proc/sys/kernel/kptr_restrict was non zero.
1756 */
1757 if (xm->pgoff != 0) {
1758 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1759 symbol_name,
1760 xm->pgoff);
1761 }
1762
1763 if (machine__is_default_guest(machine)) {
1764 /*
1765 * preload dso of guest kernel and modules
1766 */
1767 dso__load(kernel, machine__kernel_map(machine));
1768 }
1769 dso__put(kernel);
1770 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1771 return machine__process_extra_kernel_map(machine, xm);
1772 }
1773 return 0;
1774out_problem:
1775 return -1;
1776}
1777
1778int machine__process_mmap2_event(struct machine *machine,
1779 union perf_event *event,
1780 struct perf_sample *sample)
1781{
1782 struct thread *thread;
1783 struct map *map;
1784 struct dso_id dso_id = {
1785 .maj = event->mmap2.maj,
1786 .min = event->mmap2.min,
1787 .ino = event->mmap2.ino,
1788 .ino_generation = event->mmap2.ino_generation,
1789 };
1790 struct build_id __bid, *bid = NULL;
1791 int ret = 0;
1792
1793 if (dump_trace)
1794 perf_event__fprintf_mmap2(event, stdout);
1795
1796 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1797 bid = &__bid;
1798 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1799 }
1800
1801 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1802 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1803 struct extra_kernel_map xm = {
1804 .start = event->mmap2.start,
1805 .end = event->mmap2.start + event->mmap2.len,
1806 .pgoff = event->mmap2.pgoff,
1807 };
1808
1809 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1810 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1811 if (ret < 0)
1812 goto out_problem;
1813 return 0;
1814 }
1815
1816 thread = machine__findnew_thread(machine, event->mmap2.pid,
1817 event->mmap2.tid);
1818 if (thread == NULL)
1819 goto out_problem;
1820
1821 map = map__new(machine, event->mmap2.start,
1822 event->mmap2.len, event->mmap2.pgoff,
1823 &dso_id, event->mmap2.prot,
1824 event->mmap2.flags, bid,
1825 event->mmap2.filename, thread);
1826
1827 if (map == NULL)
1828 goto out_problem_map;
1829
1830 ret = thread__insert_map(thread, map);
1831 if (ret)
1832 goto out_problem_insert;
1833
1834 thread__put(thread);
1835 map__put(map);
1836 return 0;
1837
1838out_problem_insert:
1839 map__put(map);
1840out_problem_map:
1841 thread__put(thread);
1842out_problem:
1843 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1844 return 0;
1845}
1846
1847int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1848 struct perf_sample *sample)
1849{
1850 struct thread *thread;
1851 struct map *map;
1852 u32 prot = 0;
1853 int ret = 0;
1854
1855 if (dump_trace)
1856 perf_event__fprintf_mmap(event, stdout);
1857
1858 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1859 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1860 struct extra_kernel_map xm = {
1861 .start = event->mmap.start,
1862 .end = event->mmap.start + event->mmap.len,
1863 .pgoff = event->mmap.pgoff,
1864 };
1865
1866 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1867 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1868 if (ret < 0)
1869 goto out_problem;
1870 return 0;
1871 }
1872
1873 thread = machine__findnew_thread(machine, event->mmap.pid,
1874 event->mmap.tid);
1875 if (thread == NULL)
1876 goto out_problem;
1877
1878 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1879 prot = PROT_EXEC;
1880
1881 map = map__new(machine, event->mmap.start,
1882 event->mmap.len, event->mmap.pgoff,
1883 NULL, prot, 0, NULL, event->mmap.filename, thread);
1884
1885 if (map == NULL)
1886 goto out_problem_map;
1887
1888 ret = thread__insert_map(thread, map);
1889 if (ret)
1890 goto out_problem_insert;
1891
1892 thread__put(thread);
1893 map__put(map);
1894 return 0;
1895
1896out_problem_insert:
1897 map__put(map);
1898out_problem_map:
1899 thread__put(thread);
1900out_problem:
1901 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1902 return 0;
1903}
1904
1905void machine__remove_thread(struct machine *machine, struct thread *th)
1906{
1907 return threads__remove(&machine->threads, th);
1908}
1909
1910int machine__process_fork_event(struct machine *machine, union perf_event *event,
1911 struct perf_sample *sample)
1912{
1913 struct thread *thread = machine__find_thread(machine,
1914 event->fork.pid,
1915 event->fork.tid);
1916 struct thread *parent = machine__findnew_thread(machine,
1917 event->fork.ppid,
1918 event->fork.ptid);
1919 bool do_maps_clone = true;
1920 int err = 0;
1921
1922 if (dump_trace)
1923 perf_event__fprintf_task(event, stdout);
1924
1925 /*
1926 * There may be an existing thread that is not actually the parent,
1927 * either because we are processing events out of order, or because the
1928 * (fork) event that would have removed the thread was lost. Assume the
1929 * latter case and continue on as best we can.
1930 */
1931 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1932 dump_printf("removing erroneous parent thread %d/%d\n",
1933 thread__pid(parent), thread__tid(parent));
1934 machine__remove_thread(machine, parent);
1935 thread__put(parent);
1936 parent = machine__findnew_thread(machine, event->fork.ppid,
1937 event->fork.ptid);
1938 }
1939
1940 /* if a thread currently exists for the thread id remove it */
1941 if (thread != NULL) {
1942 machine__remove_thread(machine, thread);
1943 thread__put(thread);
1944 }
1945
1946 thread = machine__findnew_thread(machine, event->fork.pid,
1947 event->fork.tid);
1948 /*
1949 * When synthesizing FORK events, we are trying to create thread
1950 * objects for the already running tasks on the machine.
1951 *
1952 * Normally, for a kernel FORK event, we want to clone the parent's
1953 * maps because that is what the kernel just did.
1954 *
1955 * But when synthesizing, this should not be done. If we do, we end up
1956 * with overlapping maps as we process the synthesized MMAP2 events that
1957 * get delivered shortly thereafter.
1958 *
1959 * Use the FORK event misc flags in an internal way to signal this
1960 * situation, so we can elide the map clone when appropriate.
1961 */
1962 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1963 do_maps_clone = false;
1964
1965 if (thread == NULL || parent == NULL ||
1966 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1967 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1968 err = -1;
1969 }
1970 thread__put(thread);
1971 thread__put(parent);
1972
1973 return err;
1974}
1975
1976int machine__process_exit_event(struct machine *machine, union perf_event *event,
1977 struct perf_sample *sample __maybe_unused)
1978{
1979 struct thread *thread = machine__find_thread(machine,
1980 event->fork.pid,
1981 event->fork.tid);
1982
1983 if (dump_trace)
1984 perf_event__fprintf_task(event, stdout);
1985
1986 if (thread != NULL) {
1987 if (symbol_conf.keep_exited_threads)
1988 thread__set_exited(thread, /*exited=*/true);
1989 else
1990 machine__remove_thread(machine, thread);
1991 }
1992 thread__put(thread);
1993 return 0;
1994}
1995
1996int machine__process_event(struct machine *machine, union perf_event *event,
1997 struct perf_sample *sample)
1998{
1999 int ret;
2000
2001 switch (event->header.type) {
2002 case PERF_RECORD_COMM:
2003 ret = machine__process_comm_event(machine, event, sample); break;
2004 case PERF_RECORD_MMAP:
2005 ret = machine__process_mmap_event(machine, event, sample); break;
2006 case PERF_RECORD_NAMESPACES:
2007 ret = machine__process_namespaces_event(machine, event, sample); break;
2008 case PERF_RECORD_CGROUP:
2009 ret = machine__process_cgroup_event(machine, event, sample); break;
2010 case PERF_RECORD_MMAP2:
2011 ret = machine__process_mmap2_event(machine, event, sample); break;
2012 case PERF_RECORD_FORK:
2013 ret = machine__process_fork_event(machine, event, sample); break;
2014 case PERF_RECORD_EXIT:
2015 ret = machine__process_exit_event(machine, event, sample); break;
2016 case PERF_RECORD_LOST:
2017 ret = machine__process_lost_event(machine, event, sample); break;
2018 case PERF_RECORD_AUX:
2019 ret = machine__process_aux_event(machine, event); break;
2020 case PERF_RECORD_ITRACE_START:
2021 ret = machine__process_itrace_start_event(machine, event); break;
2022 case PERF_RECORD_LOST_SAMPLES:
2023 ret = machine__process_lost_samples_event(machine, event, sample); break;
2024 case PERF_RECORD_SWITCH:
2025 case PERF_RECORD_SWITCH_CPU_WIDE:
2026 ret = machine__process_switch_event(machine, event); break;
2027 case PERF_RECORD_KSYMBOL:
2028 ret = machine__process_ksymbol(machine, event, sample); break;
2029 case PERF_RECORD_BPF_EVENT:
2030 ret = machine__process_bpf(machine, event, sample); break;
2031 case PERF_RECORD_TEXT_POKE:
2032 ret = machine__process_text_poke(machine, event, sample); break;
2033 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2034 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2035 default:
2036 ret = -1;
2037 break;
2038 }
2039
2040 return ret;
2041}
2042
2043static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2044{
2045 return regexec(regex, sym->name, 0, NULL, 0) == 0;
2046}
2047
2048static void ip__resolve_ams(struct thread *thread,
2049 struct addr_map_symbol *ams,
2050 u64 ip)
2051{
2052 struct addr_location al;
2053
2054 addr_location__init(&al);
2055 /*
2056 * We cannot use the header.misc hint to determine whether a
2057 * branch stack address is user, kernel, guest, hypervisor.
2058 * Branches may straddle the kernel/user/hypervisor boundaries.
2059 * Thus, we have to try consecutively until we find a match
2060 * or else, the symbol is unknown
2061 */
2062 thread__find_cpumode_addr_location(thread, ip, &al);
2063
2064 ams->addr = ip;
2065 ams->al_addr = al.addr;
2066 ams->al_level = al.level;
2067 ams->ms.maps = maps__get(al.maps);
2068 ams->ms.sym = al.sym;
2069 ams->ms.map = map__get(al.map);
2070 ams->phys_addr = 0;
2071 ams->data_page_size = 0;
2072 addr_location__exit(&al);
2073}
2074
2075static void ip__resolve_data(struct thread *thread,
2076 u8 m, struct addr_map_symbol *ams,
2077 u64 addr, u64 phys_addr, u64 daddr_page_size)
2078{
2079 struct addr_location al;
2080
2081 addr_location__init(&al);
2082
2083 thread__find_symbol(thread, m, addr, &al);
2084
2085 ams->addr = addr;
2086 ams->al_addr = al.addr;
2087 ams->al_level = al.level;
2088 ams->ms.maps = maps__get(al.maps);
2089 ams->ms.sym = al.sym;
2090 ams->ms.map = map__get(al.map);
2091 ams->phys_addr = phys_addr;
2092 ams->data_page_size = daddr_page_size;
2093 addr_location__exit(&al);
2094}
2095
2096struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2097 struct addr_location *al)
2098{
2099 struct mem_info *mi = mem_info__new();
2100
2101 if (!mi)
2102 return NULL;
2103
2104 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2105 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2106 sample->addr, sample->phys_addr,
2107 sample->data_page_size);
2108 mi->data_src.val = sample->data_src;
2109
2110 return mi;
2111}
2112
2113static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2114{
2115 struct map *map = ms->map;
2116 char *srcline = NULL;
2117 struct dso *dso;
2118
2119 if (!map || callchain_param.key == CCKEY_FUNCTION)
2120 return srcline;
2121
2122 dso = map__dso(map);
2123 srcline = srcline__tree_find(&dso->srclines, ip);
2124 if (!srcline) {
2125 bool show_sym = false;
2126 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2127
2128 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2129 ms->sym, show_sym, show_addr, ip);
2130 srcline__tree_insert(&dso->srclines, ip, srcline);
2131 }
2132
2133 return srcline;
2134}
2135
2136struct iterations {
2137 int nr_loop_iter;
2138 u64 cycles;
2139};
2140
2141static int add_callchain_ip(struct thread *thread,
2142 struct callchain_cursor *cursor,
2143 struct symbol **parent,
2144 struct addr_location *root_al,
2145 u8 *cpumode,
2146 u64 ip,
2147 bool branch,
2148 struct branch_flags *flags,
2149 struct iterations *iter,
2150 u64 branch_from)
2151{
2152 struct map_symbol ms = {};
2153 struct addr_location al;
2154 int nr_loop_iter = 0, err = 0;
2155 u64 iter_cycles = 0;
2156 const char *srcline = NULL;
2157
2158 addr_location__init(&al);
2159 al.filtered = 0;
2160 al.sym = NULL;
2161 al.srcline = NULL;
2162 if (!cpumode) {
2163 thread__find_cpumode_addr_location(thread, ip, &al);
2164 } else {
2165 if (ip >= PERF_CONTEXT_MAX) {
2166 switch (ip) {
2167 case PERF_CONTEXT_HV:
2168 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2169 break;
2170 case PERF_CONTEXT_KERNEL:
2171 *cpumode = PERF_RECORD_MISC_KERNEL;
2172 break;
2173 case PERF_CONTEXT_USER:
2174 *cpumode = PERF_RECORD_MISC_USER;
2175 break;
2176 default:
2177 pr_debug("invalid callchain context: "
2178 "%"PRId64"\n", (s64) ip);
2179 /*
2180 * It seems the callchain is corrupted.
2181 * Discard all.
2182 */
2183 callchain_cursor_reset(cursor);
2184 err = 1;
2185 goto out;
2186 }
2187 goto out;
2188 }
2189 thread__find_symbol(thread, *cpumode, ip, &al);
2190 }
2191
2192 if (al.sym != NULL) {
2193 if (perf_hpp_list.parent && !*parent &&
2194 symbol__match_regex(al.sym, &parent_regex))
2195 *parent = al.sym;
2196 else if (have_ignore_callees && root_al &&
2197 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2198 /* Treat this symbol as the root,
2199 forgetting its callees. */
2200 addr_location__copy(root_al, &al);
2201 callchain_cursor_reset(cursor);
2202 }
2203 }
2204
2205 if (symbol_conf.hide_unresolved && al.sym == NULL)
2206 goto out;
2207
2208 if (iter) {
2209 nr_loop_iter = iter->nr_loop_iter;
2210 iter_cycles = iter->cycles;
2211 }
2212
2213 ms.maps = maps__get(al.maps);
2214 ms.map = map__get(al.map);
2215 ms.sym = al.sym;
2216 srcline = callchain_srcline(&ms, al.addr);
2217 err = callchain_cursor_append(cursor, ip, &ms,
2218 branch, flags, nr_loop_iter,
2219 iter_cycles, branch_from, srcline);
2220out:
2221 addr_location__exit(&al);
2222 map_symbol__exit(&ms);
2223 return err;
2224}
2225
2226struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2227 struct addr_location *al)
2228{
2229 unsigned int i;
2230 const struct branch_stack *bs = sample->branch_stack;
2231 struct branch_entry *entries = perf_sample__branch_entries(sample);
2232 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2233
2234 if (!bi)
2235 return NULL;
2236
2237 for (i = 0; i < bs->nr; i++) {
2238 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2239 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2240 bi[i].flags = entries[i].flags;
2241 }
2242 return bi;
2243}
2244
2245static void save_iterations(struct iterations *iter,
2246 struct branch_entry *be, int nr)
2247{
2248 int i;
2249
2250 iter->nr_loop_iter++;
2251 iter->cycles = 0;
2252
2253 for (i = 0; i < nr; i++)
2254 iter->cycles += be[i].flags.cycles;
2255}
2256
2257#define CHASHSZ 127
2258#define CHASHBITS 7
2259#define NO_ENTRY 0xff
2260
2261#define PERF_MAX_BRANCH_DEPTH 127
2262
2263/* Remove loops. */
2264static int remove_loops(struct branch_entry *l, int nr,
2265 struct iterations *iter)
2266{
2267 int i, j, off;
2268 unsigned char chash[CHASHSZ];
2269
2270 memset(chash, NO_ENTRY, sizeof(chash));
2271
2272 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2273
2274 for (i = 0; i < nr; i++) {
2275 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2276
2277 /* no collision handling for now */
2278 if (chash[h] == NO_ENTRY) {
2279 chash[h] = i;
2280 } else if (l[chash[h]].from == l[i].from) {
2281 bool is_loop = true;
2282 /* check if it is a real loop */
2283 off = 0;
2284 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2285 if (l[j].from != l[i + off].from) {
2286 is_loop = false;
2287 break;
2288 }
2289 if (is_loop) {
2290 j = nr - (i + off);
2291 if (j > 0) {
2292 save_iterations(iter + i + off,
2293 l + i, off);
2294
2295 memmove(iter + i, iter + i + off,
2296 j * sizeof(*iter));
2297
2298 memmove(l + i, l + i + off,
2299 j * sizeof(*l));
2300 }
2301
2302 nr -= off;
2303 }
2304 }
2305 }
2306 return nr;
2307}
2308
2309static int lbr_callchain_add_kernel_ip(struct thread *thread,
2310 struct callchain_cursor *cursor,
2311 struct perf_sample *sample,
2312 struct symbol **parent,
2313 struct addr_location *root_al,
2314 u64 branch_from,
2315 bool callee, int end)
2316{
2317 struct ip_callchain *chain = sample->callchain;
2318 u8 cpumode = PERF_RECORD_MISC_USER;
2319 int err, i;
2320
2321 if (callee) {
2322 for (i = 0; i < end + 1; i++) {
2323 err = add_callchain_ip(thread, cursor, parent,
2324 root_al, &cpumode, chain->ips[i],
2325 false, NULL, NULL, branch_from);
2326 if (err)
2327 return err;
2328 }
2329 return 0;
2330 }
2331
2332 for (i = end; i >= 0; i--) {
2333 err = add_callchain_ip(thread, cursor, parent,
2334 root_al, &cpumode, chain->ips[i],
2335 false, NULL, NULL, branch_from);
2336 if (err)
2337 return err;
2338 }
2339
2340 return 0;
2341}
2342
2343static void save_lbr_cursor_node(struct thread *thread,
2344 struct callchain_cursor *cursor,
2345 int idx)
2346{
2347 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2348
2349 if (!lbr_stitch)
2350 return;
2351
2352 if (cursor->pos == cursor->nr) {
2353 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2354 return;
2355 }
2356
2357 if (!cursor->curr)
2358 cursor->curr = cursor->first;
2359 else
2360 cursor->curr = cursor->curr->next;
2361 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2362 sizeof(struct callchain_cursor_node));
2363
2364 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2365 cursor->pos++;
2366}
2367
2368static int lbr_callchain_add_lbr_ip(struct thread *thread,
2369 struct callchain_cursor *cursor,
2370 struct perf_sample *sample,
2371 struct symbol **parent,
2372 struct addr_location *root_al,
2373 u64 *branch_from,
2374 bool callee)
2375{
2376 struct branch_stack *lbr_stack = sample->branch_stack;
2377 struct branch_entry *entries = perf_sample__branch_entries(sample);
2378 u8 cpumode = PERF_RECORD_MISC_USER;
2379 int lbr_nr = lbr_stack->nr;
2380 struct branch_flags *flags;
2381 int err, i;
2382 u64 ip;
2383
2384 /*
2385 * The curr and pos are not used in writing session. They are cleared
2386 * in callchain_cursor_commit() when the writing session is closed.
2387 * Using curr and pos to track the current cursor node.
2388 */
2389 if (thread__lbr_stitch(thread)) {
2390 cursor->curr = NULL;
2391 cursor->pos = cursor->nr;
2392 if (cursor->nr) {
2393 cursor->curr = cursor->first;
2394 for (i = 0; i < (int)(cursor->nr - 1); i++)
2395 cursor->curr = cursor->curr->next;
2396 }
2397 }
2398
2399 if (callee) {
2400 /* Add LBR ip from first entries.to */
2401 ip = entries[0].to;
2402 flags = &entries[0].flags;
2403 *branch_from = entries[0].from;
2404 err = add_callchain_ip(thread, cursor, parent,
2405 root_al, &cpumode, ip,
2406 true, flags, NULL,
2407 *branch_from);
2408 if (err)
2409 return err;
2410
2411 /*
2412 * The number of cursor node increases.
2413 * Move the current cursor node.
2414 * But does not need to save current cursor node for entry 0.
2415 * It's impossible to stitch the whole LBRs of previous sample.
2416 */
2417 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2418 if (!cursor->curr)
2419 cursor->curr = cursor->first;
2420 else
2421 cursor->curr = cursor->curr->next;
2422 cursor->pos++;
2423 }
2424
2425 /* Add LBR ip from entries.from one by one. */
2426 for (i = 0; i < lbr_nr; i++) {
2427 ip = entries[i].from;
2428 flags = &entries[i].flags;
2429 err = add_callchain_ip(thread, cursor, parent,
2430 root_al, &cpumode, ip,
2431 true, flags, NULL,
2432 *branch_from);
2433 if (err)
2434 return err;
2435 save_lbr_cursor_node(thread, cursor, i);
2436 }
2437 return 0;
2438 }
2439
2440 /* Add LBR ip from entries.from one by one. */
2441 for (i = lbr_nr - 1; i >= 0; i--) {
2442 ip = entries[i].from;
2443 flags = &entries[i].flags;
2444 err = add_callchain_ip(thread, cursor, parent,
2445 root_al, &cpumode, ip,
2446 true, flags, NULL,
2447 *branch_from);
2448 if (err)
2449 return err;
2450 save_lbr_cursor_node(thread, cursor, i);
2451 }
2452
2453 if (lbr_nr > 0) {
2454 /* Add LBR ip from first entries.to */
2455 ip = entries[0].to;
2456 flags = &entries[0].flags;
2457 *branch_from = entries[0].from;
2458 err = add_callchain_ip(thread, cursor, parent,
2459 root_al, &cpumode, ip,
2460 true, flags, NULL,
2461 *branch_from);
2462 if (err)
2463 return err;
2464 }
2465
2466 return 0;
2467}
2468
2469static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2470 struct callchain_cursor *cursor)
2471{
2472 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2473 struct callchain_cursor_node *cnode;
2474 struct stitch_list *stitch_node;
2475 int err;
2476
2477 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2478 cnode = &stitch_node->cursor;
2479
2480 err = callchain_cursor_append(cursor, cnode->ip,
2481 &cnode->ms,
2482 cnode->branch,
2483 &cnode->branch_flags,
2484 cnode->nr_loop_iter,
2485 cnode->iter_cycles,
2486 cnode->branch_from,
2487 cnode->srcline);
2488 if (err)
2489 return err;
2490 }
2491 return 0;
2492}
2493
2494static struct stitch_list *get_stitch_node(struct thread *thread)
2495{
2496 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2497 struct stitch_list *stitch_node;
2498
2499 if (!list_empty(&lbr_stitch->free_lists)) {
2500 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2501 struct stitch_list, node);
2502 list_del(&stitch_node->node);
2503
2504 return stitch_node;
2505 }
2506
2507 return malloc(sizeof(struct stitch_list));
2508}
2509
2510static bool has_stitched_lbr(struct thread *thread,
2511 struct perf_sample *cur,
2512 struct perf_sample *prev,
2513 unsigned int max_lbr,
2514 bool callee)
2515{
2516 struct branch_stack *cur_stack = cur->branch_stack;
2517 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2518 struct branch_stack *prev_stack = prev->branch_stack;
2519 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2520 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2521 int i, j, nr_identical_branches = 0;
2522 struct stitch_list *stitch_node;
2523 u64 cur_base, distance;
2524
2525 if (!cur_stack || !prev_stack)
2526 return false;
2527
2528 /* Find the physical index of the base-of-stack for current sample. */
2529 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2530
2531 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2532 (max_lbr + prev_stack->hw_idx - cur_base);
2533 /* Previous sample has shorter stack. Nothing can be stitched. */
2534 if (distance + 1 > prev_stack->nr)
2535 return false;
2536
2537 /*
2538 * Check if there are identical LBRs between two samples.
2539 * Identical LBRs must have same from, to and flags values. Also,
2540 * they have to be saved in the same LBR registers (same physical
2541 * index).
2542 *
2543 * Starts from the base-of-stack of current sample.
2544 */
2545 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2546 if ((prev_entries[i].from != cur_entries[j].from) ||
2547 (prev_entries[i].to != cur_entries[j].to) ||
2548 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2549 break;
2550 nr_identical_branches++;
2551 }
2552
2553 if (!nr_identical_branches)
2554 return false;
2555
2556 /*
2557 * Save the LBRs between the base-of-stack of previous sample
2558 * and the base-of-stack of current sample into lbr_stitch->lists.
2559 * These LBRs will be stitched later.
2560 */
2561 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2562
2563 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2564 continue;
2565
2566 stitch_node = get_stitch_node(thread);
2567 if (!stitch_node)
2568 return false;
2569
2570 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2571 sizeof(struct callchain_cursor_node));
2572
2573 if (callee)
2574 list_add(&stitch_node->node, &lbr_stitch->lists);
2575 else
2576 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2577 }
2578
2579 return true;
2580}
2581
2582static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2583{
2584 if (thread__lbr_stitch(thread))
2585 return true;
2586
2587 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2588 if (!thread__lbr_stitch(thread))
2589 goto err;
2590
2591 thread__lbr_stitch(thread)->prev_lbr_cursor =
2592 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2593 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2594 goto free_lbr_stitch;
2595
2596 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2597 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2598
2599 return true;
2600
2601free_lbr_stitch:
2602 free(thread__lbr_stitch(thread));
2603 thread__set_lbr_stitch(thread, NULL);
2604err:
2605 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2606 thread__set_lbr_stitch_enable(thread, false);
2607 return false;
2608}
2609
2610/*
2611 * Resolve LBR callstack chain sample
2612 * Return:
2613 * 1 on success get LBR callchain information
2614 * 0 no available LBR callchain information, should try fp
2615 * negative error code on other errors.
2616 */
2617static int resolve_lbr_callchain_sample(struct thread *thread,
2618 struct callchain_cursor *cursor,
2619 struct perf_sample *sample,
2620 struct symbol **parent,
2621 struct addr_location *root_al,
2622 int max_stack,
2623 unsigned int max_lbr)
2624{
2625 bool callee = (callchain_param.order == ORDER_CALLEE);
2626 struct ip_callchain *chain = sample->callchain;
2627 int chain_nr = min(max_stack, (int)chain->nr), i;
2628 struct lbr_stitch *lbr_stitch;
2629 bool stitched_lbr = false;
2630 u64 branch_from = 0;
2631 int err;
2632
2633 for (i = 0; i < chain_nr; i++) {
2634 if (chain->ips[i] == PERF_CONTEXT_USER)
2635 break;
2636 }
2637
2638 /* LBR only affects the user callchain */
2639 if (i == chain_nr)
2640 return 0;
2641
2642 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2643 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2644 lbr_stitch = thread__lbr_stitch(thread);
2645
2646 stitched_lbr = has_stitched_lbr(thread, sample,
2647 &lbr_stitch->prev_sample,
2648 max_lbr, callee);
2649
2650 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2651 list_replace_init(&lbr_stitch->lists,
2652 &lbr_stitch->free_lists);
2653 }
2654 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2655 }
2656
2657 if (callee) {
2658 /* Add kernel ip */
2659 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2660 parent, root_al, branch_from,
2661 true, i);
2662 if (err)
2663 goto error;
2664
2665 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2666 root_al, &branch_from, true);
2667 if (err)
2668 goto error;
2669
2670 if (stitched_lbr) {
2671 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2672 if (err)
2673 goto error;
2674 }
2675
2676 } else {
2677 if (stitched_lbr) {
2678 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2679 if (err)
2680 goto error;
2681 }
2682 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2683 root_al, &branch_from, false);
2684 if (err)
2685 goto error;
2686
2687 /* Add kernel ip */
2688 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2689 parent, root_al, branch_from,
2690 false, i);
2691 if (err)
2692 goto error;
2693 }
2694 return 1;
2695
2696error:
2697 return (err < 0) ? err : 0;
2698}
2699
2700static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2701 struct callchain_cursor *cursor,
2702 struct symbol **parent,
2703 struct addr_location *root_al,
2704 u8 *cpumode, int ent)
2705{
2706 int err = 0;
2707
2708 while (--ent >= 0) {
2709 u64 ip = chain->ips[ent];
2710
2711 if (ip >= PERF_CONTEXT_MAX) {
2712 err = add_callchain_ip(thread, cursor, parent,
2713 root_al, cpumode, ip,
2714 false, NULL, NULL, 0);
2715 break;
2716 }
2717 }
2718 return err;
2719}
2720
2721static u64 get_leaf_frame_caller(struct perf_sample *sample,
2722 struct thread *thread, int usr_idx)
2723{
2724 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2725 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2726 else
2727 return 0;
2728}
2729
2730static int thread__resolve_callchain_sample(struct thread *thread,
2731 struct callchain_cursor *cursor,
2732 struct evsel *evsel,
2733 struct perf_sample *sample,
2734 struct symbol **parent,
2735 struct addr_location *root_al,
2736 int max_stack)
2737{
2738 struct branch_stack *branch = sample->branch_stack;
2739 struct branch_entry *entries = perf_sample__branch_entries(sample);
2740 struct ip_callchain *chain = sample->callchain;
2741 int chain_nr = 0;
2742 u8 cpumode = PERF_RECORD_MISC_USER;
2743 int i, j, err, nr_entries, usr_idx;
2744 int skip_idx = -1;
2745 int first_call = 0;
2746 u64 leaf_frame_caller;
2747
2748 if (chain)
2749 chain_nr = chain->nr;
2750
2751 if (evsel__has_branch_callstack(evsel)) {
2752 struct perf_env *env = evsel__env(evsel);
2753
2754 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2755 root_al, max_stack,
2756 !env ? 0 : env->max_branches);
2757 if (err)
2758 return (err < 0) ? err : 0;
2759 }
2760
2761 /*
2762 * Based on DWARF debug information, some architectures skip
2763 * a callchain entry saved by the kernel.
2764 */
2765 skip_idx = arch_skip_callchain_idx(thread, chain);
2766
2767 /*
2768 * Add branches to call stack for easier browsing. This gives
2769 * more context for a sample than just the callers.
2770 *
2771 * This uses individual histograms of paths compared to the
2772 * aggregated histograms the normal LBR mode uses.
2773 *
2774 * Limitations for now:
2775 * - No extra filters
2776 * - No annotations (should annotate somehow)
2777 */
2778
2779 if (branch && callchain_param.branch_callstack) {
2780 int nr = min(max_stack, (int)branch->nr);
2781 struct branch_entry be[nr];
2782 struct iterations iter[nr];
2783
2784 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2785 pr_warning("corrupted branch chain. skipping...\n");
2786 goto check_calls;
2787 }
2788
2789 for (i = 0; i < nr; i++) {
2790 if (callchain_param.order == ORDER_CALLEE) {
2791 be[i] = entries[i];
2792
2793 if (chain == NULL)
2794 continue;
2795
2796 /*
2797 * Check for overlap into the callchain.
2798 * The return address is one off compared to
2799 * the branch entry. To adjust for this
2800 * assume the calling instruction is not longer
2801 * than 8 bytes.
2802 */
2803 if (i == skip_idx ||
2804 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2805 first_call++;
2806 else if (be[i].from < chain->ips[first_call] &&
2807 be[i].from >= chain->ips[first_call] - 8)
2808 first_call++;
2809 } else
2810 be[i] = entries[branch->nr - i - 1];
2811 }
2812
2813 memset(iter, 0, sizeof(struct iterations) * nr);
2814 nr = remove_loops(be, nr, iter);
2815
2816 for (i = 0; i < nr; i++) {
2817 err = add_callchain_ip(thread, cursor, parent,
2818 root_al,
2819 NULL, be[i].to,
2820 true, &be[i].flags,
2821 NULL, be[i].from);
2822
2823 if (!err)
2824 err = add_callchain_ip(thread, cursor, parent, root_al,
2825 NULL, be[i].from,
2826 true, &be[i].flags,
2827 &iter[i], 0);
2828 if (err == -EINVAL)
2829 break;
2830 if (err)
2831 return err;
2832 }
2833
2834 if (chain_nr == 0)
2835 return 0;
2836
2837 chain_nr -= nr;
2838 }
2839
2840check_calls:
2841 if (chain && callchain_param.order != ORDER_CALLEE) {
2842 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2843 &cpumode, chain->nr - first_call);
2844 if (err)
2845 return (err < 0) ? err : 0;
2846 }
2847 for (i = first_call, nr_entries = 0;
2848 i < chain_nr && nr_entries < max_stack; i++) {
2849 u64 ip;
2850
2851 if (callchain_param.order == ORDER_CALLEE)
2852 j = i;
2853 else
2854 j = chain->nr - i - 1;
2855
2856#ifdef HAVE_SKIP_CALLCHAIN_IDX
2857 if (j == skip_idx)
2858 continue;
2859#endif
2860 ip = chain->ips[j];
2861 if (ip < PERF_CONTEXT_MAX)
2862 ++nr_entries;
2863 else if (callchain_param.order != ORDER_CALLEE) {
2864 err = find_prev_cpumode(chain, thread, cursor, parent,
2865 root_al, &cpumode, j);
2866 if (err)
2867 return (err < 0) ? err : 0;
2868 continue;
2869 }
2870
2871 /*
2872 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2873 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2874 * the index will be different in order to add the missing frame
2875 * at the right place.
2876 */
2877
2878 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2879
2880 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2881
2882 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2883
2884 /*
2885 * check if leaf_frame_Caller != ip to not add the same
2886 * value twice.
2887 */
2888
2889 if (leaf_frame_caller && leaf_frame_caller != ip) {
2890
2891 err = add_callchain_ip(thread, cursor, parent,
2892 root_al, &cpumode, leaf_frame_caller,
2893 false, NULL, NULL, 0);
2894 if (err)
2895 return (err < 0) ? err : 0;
2896 }
2897 }
2898
2899 err = add_callchain_ip(thread, cursor, parent,
2900 root_al, &cpumode, ip,
2901 false, NULL, NULL, 0);
2902
2903 if (err)
2904 return (err < 0) ? err : 0;
2905 }
2906
2907 return 0;
2908}
2909
2910static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2911{
2912 struct symbol *sym = ms->sym;
2913 struct map *map = ms->map;
2914 struct inline_node *inline_node;
2915 struct inline_list *ilist;
2916 struct dso *dso;
2917 u64 addr;
2918 int ret = 1;
2919 struct map_symbol ilist_ms;
2920
2921 if (!symbol_conf.inline_name || !map || !sym)
2922 return ret;
2923
2924 addr = map__dso_map_ip(map, ip);
2925 addr = map__rip_2objdump(map, addr);
2926 dso = map__dso(map);
2927
2928 inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
2929 if (!inline_node) {
2930 inline_node = dso__parse_addr_inlines(dso, addr, sym);
2931 if (!inline_node)
2932 return ret;
2933 inlines__tree_insert(&dso->inlined_nodes, inline_node);
2934 }
2935
2936 ilist_ms = (struct map_symbol) {
2937 .maps = maps__get(ms->maps),
2938 .map = map__get(map),
2939 };
2940 list_for_each_entry(ilist, &inline_node->val, list) {
2941 ilist_ms.sym = ilist->symbol;
2942 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2943 NULL, 0, 0, 0, ilist->srcline);
2944
2945 if (ret != 0)
2946 return ret;
2947 }
2948 map_symbol__exit(&ilist_ms);
2949
2950 return ret;
2951}
2952
2953static int unwind_entry(struct unwind_entry *entry, void *arg)
2954{
2955 struct callchain_cursor *cursor = arg;
2956 const char *srcline = NULL;
2957 u64 addr = entry->ip;
2958
2959 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2960 return 0;
2961
2962 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2963 return 0;
2964
2965 /*
2966 * Convert entry->ip from a virtual address to an offset in
2967 * its corresponding binary.
2968 */
2969 if (entry->ms.map)
2970 addr = map__dso_map_ip(entry->ms.map, entry->ip);
2971
2972 srcline = callchain_srcline(&entry->ms, addr);
2973 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2974 false, NULL, 0, 0, 0, srcline);
2975}
2976
2977static int thread__resolve_callchain_unwind(struct thread *thread,
2978 struct callchain_cursor *cursor,
2979 struct evsel *evsel,
2980 struct perf_sample *sample,
2981 int max_stack)
2982{
2983 /* Can we do dwarf post unwind? */
2984 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2985 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2986 return 0;
2987
2988 /* Bail out if nothing was captured. */
2989 if ((!sample->user_regs.regs) ||
2990 (!sample->user_stack.size))
2991 return 0;
2992
2993 return unwind__get_entries(unwind_entry, cursor,
2994 thread, sample, max_stack, false);
2995}
2996
2997int thread__resolve_callchain(struct thread *thread,
2998 struct callchain_cursor *cursor,
2999 struct evsel *evsel,
3000 struct perf_sample *sample,
3001 struct symbol **parent,
3002 struct addr_location *root_al,
3003 int max_stack)
3004{
3005 int ret = 0;
3006
3007 if (cursor == NULL)
3008 return -ENOMEM;
3009
3010 callchain_cursor_reset(cursor);
3011
3012 if (callchain_param.order == ORDER_CALLEE) {
3013 ret = thread__resolve_callchain_sample(thread, cursor,
3014 evsel, sample,
3015 parent, root_al,
3016 max_stack);
3017 if (ret)
3018 return ret;
3019 ret = thread__resolve_callchain_unwind(thread, cursor,
3020 evsel, sample,
3021 max_stack);
3022 } else {
3023 ret = thread__resolve_callchain_unwind(thread, cursor,
3024 evsel, sample,
3025 max_stack);
3026 if (ret)
3027 return ret;
3028 ret = thread__resolve_callchain_sample(thread, cursor,
3029 evsel, sample,
3030 parent, root_al,
3031 max_stack);
3032 }
3033
3034 return ret;
3035}
3036
3037int machine__for_each_thread(struct machine *machine,
3038 int (*fn)(struct thread *thread, void *p),
3039 void *priv)
3040{
3041 return threads__for_each_thread(&machine->threads, fn, priv);
3042}
3043
3044int machines__for_each_thread(struct machines *machines,
3045 int (*fn)(struct thread *thread, void *p),
3046 void *priv)
3047{
3048 struct rb_node *nd;
3049 int rc = 0;
3050
3051 rc = machine__for_each_thread(&machines->host, fn, priv);
3052 if (rc != 0)
3053 return rc;
3054
3055 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3056 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3057
3058 rc = machine__for_each_thread(machine, fn, priv);
3059 if (rc != 0)
3060 return rc;
3061 }
3062 return rc;
3063}
3064
3065
3066static int thread_list_cb(struct thread *thread, void *data)
3067{
3068 struct list_head *list = data;
3069 struct thread_list *entry = malloc(sizeof(*entry));
3070
3071 if (!entry)
3072 return -ENOMEM;
3073
3074 entry->thread = thread__get(thread);
3075 list_add_tail(&entry->list, list);
3076 return 0;
3077}
3078
3079int machine__thread_list(struct machine *machine, struct list_head *list)
3080{
3081 return machine__for_each_thread(machine, thread_list_cb, list);
3082}
3083
3084void thread_list__delete(struct list_head *list)
3085{
3086 struct thread_list *pos, *next;
3087
3088 list_for_each_entry_safe(pos, next, list, list) {
3089 thread__zput(pos->thread);
3090 list_del(&pos->list);
3091 free(pos);
3092 }
3093}
3094
3095pid_t machine__get_current_tid(struct machine *machine, int cpu)
3096{
3097 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3098 return -1;
3099
3100 return machine->current_tid[cpu];
3101}
3102
3103int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3104 pid_t tid)
3105{
3106 struct thread *thread;
3107 const pid_t init_val = -1;
3108
3109 if (cpu < 0)
3110 return -EINVAL;
3111
3112 if (realloc_array_as_needed(machine->current_tid,
3113 machine->current_tid_sz,
3114 (unsigned int)cpu,
3115 &init_val))
3116 return -ENOMEM;
3117
3118 machine->current_tid[cpu] = tid;
3119
3120 thread = machine__findnew_thread(machine, pid, tid);
3121 if (!thread)
3122 return -ENOMEM;
3123
3124 thread__set_cpu(thread, cpu);
3125 thread__put(thread);
3126
3127 return 0;
3128}
3129
3130/*
3131 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3132 * machine__normalized_is() if a normalized arch is needed.
3133 */
3134bool machine__is(struct machine *machine, const char *arch)
3135{
3136 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3137}
3138
3139bool machine__normalized_is(struct machine *machine, const char *arch)
3140{
3141 return machine && !strcmp(perf_env__arch(machine->env), arch);
3142}
3143
3144int machine__nr_cpus_avail(struct machine *machine)
3145{
3146 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3147}
3148
3149int machine__get_kernel_start(struct machine *machine)
3150{
3151 struct map *map = machine__kernel_map(machine);
3152 int err = 0;
3153
3154 /*
3155 * The only addresses above 2^63 are kernel addresses of a 64-bit
3156 * kernel. Note that addresses are unsigned so that on a 32-bit system
3157 * all addresses including kernel addresses are less than 2^32. In
3158 * that case (32-bit system), if the kernel mapping is unknown, all
3159 * addresses will be assumed to be in user space - see
3160 * machine__kernel_ip().
3161 */
3162 machine->kernel_start = 1ULL << 63;
3163 if (map) {
3164 err = map__load(map);
3165 /*
3166 * On x86_64, PTI entry trampolines are less than the
3167 * start of kernel text, but still above 2^63. So leave
3168 * kernel_start = 1ULL << 63 for x86_64.
3169 */
3170 if (!err && !machine__is(machine, "x86_64"))
3171 machine->kernel_start = map__start(map);
3172 }
3173 return err;
3174}
3175
3176u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3177{
3178 u8 addr_cpumode = cpumode;
3179 bool kernel_ip;
3180
3181 if (!machine->single_address_space)
3182 goto out;
3183
3184 kernel_ip = machine__kernel_ip(machine, addr);
3185 switch (cpumode) {
3186 case PERF_RECORD_MISC_KERNEL:
3187 case PERF_RECORD_MISC_USER:
3188 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3189 PERF_RECORD_MISC_USER;
3190 break;
3191 case PERF_RECORD_MISC_GUEST_KERNEL:
3192 case PERF_RECORD_MISC_GUEST_USER:
3193 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3194 PERF_RECORD_MISC_GUEST_USER;
3195 break;
3196 default:
3197 break;
3198 }
3199out:
3200 return addr_cpumode;
3201}
3202
3203struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3204{
3205 return dsos__findnew_id(&machine->dsos, filename, id);
3206}
3207
3208struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3209{
3210 return machine__findnew_dso_id(machine, filename, NULL);
3211}
3212
3213char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3214{
3215 struct machine *machine = vmachine;
3216 struct map *map;
3217 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3218
3219 if (sym == NULL)
3220 return NULL;
3221
3222 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3223 *addrp = map__unmap_ip(map, sym->start);
3224 return sym->name;
3225}
3226
3227int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3228{
3229 struct dso *pos;
3230 int err = 0;
3231
3232 list_for_each_entry(pos, &machine->dsos.head, node) {
3233 if (fn(pos, machine, priv))
3234 err = -1;
3235 }
3236 return err;
3237}
3238
3239int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3240{
3241 struct maps *maps = machine__kernel_maps(machine);
3242
3243 return maps__for_each_map(maps, fn, priv);
3244}
3245
3246bool machine__is_lock_function(struct machine *machine, u64 addr)
3247{
3248 if (!machine->sched.text_start) {
3249 struct map *kmap;
3250 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3251
3252 if (!sym) {
3253 /* to avoid retry */
3254 machine->sched.text_start = 1;
3255 return false;
3256 }
3257
3258 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3259
3260 /* should not fail from here */
3261 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3262 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3263
3264 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3265 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3266
3267 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3268 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3269 }
3270
3271 /* failed to get kernel symbols */
3272 if (machine->sched.text_start == 1)
3273 return false;
3274
3275 /* mutex and rwsem functions are in sched text section */
3276 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3277 return true;
3278
3279 /* spinlock functions are in lock text section */
3280 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3281 return true;
3282
3283 return false;
3284}