Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "srcline.h"
20#include "symbol.h"
21#include "sort.h"
22#include "strlist.h"
23#include "target.h"
24#include "thread.h"
25#include "util.h"
26#include "vdso.h"
27#include <stdbool.h>
28#include <sys/types.h>
29#include <sys/stat.h>
30#include <unistd.h>
31#include "unwind.h"
32#include "linux/hash.h"
33#include "asm/bug.h"
34#include "bpf-event.h"
35#include <internal/lib.h> // page_size
36
37#include <linux/ctype.h>
38#include <symbol/kallsyms.h>
39#include <linux/mman.h>
40#include <linux/string.h>
41#include <linux/zalloc.h>
42
43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44
45static void dsos__init(struct dsos *dsos)
46{
47 INIT_LIST_HEAD(&dsos->head);
48 dsos->root = RB_ROOT;
49 init_rwsem(&dsos->lock);
50}
51
52static void machine__threads_init(struct machine *machine)
53{
54 int i;
55
56 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
57 struct threads *threads = &machine->threads[i];
58 threads->entries = RB_ROOT_CACHED;
59 init_rwsem(&threads->lock);
60 threads->nr = 0;
61 INIT_LIST_HEAD(&threads->dead);
62 threads->last_match = NULL;
63 }
64}
65
66static int machine__set_mmap_name(struct machine *machine)
67{
68 if (machine__is_host(machine))
69 machine->mmap_name = strdup("[kernel.kallsyms]");
70 else if (machine__is_default_guest(machine))
71 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
72 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
73 machine->pid) < 0)
74 machine->mmap_name = NULL;
75
76 return machine->mmap_name ? 0 : -ENOMEM;
77}
78
79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80{
81 int err = -ENOMEM;
82
83 memset(machine, 0, sizeof(*machine));
84 map_groups__init(&machine->kmaps, machine);
85 RB_CLEAR_NODE(&machine->rb_node);
86 dsos__init(&machine->dsos);
87
88 machine__threads_init(machine);
89
90 machine->vdso_info = NULL;
91 machine->env = NULL;
92
93 machine->pid = pid;
94
95 machine->id_hdr_size = 0;
96 machine->kptr_restrict_warned = false;
97 machine->comm_exec = false;
98 machine->kernel_start = 0;
99 machine->vmlinux_map = NULL;
100
101 machine->root_dir = strdup(root_dir);
102 if (machine->root_dir == NULL)
103 return -ENOMEM;
104
105 if (machine__set_mmap_name(machine))
106 goto out;
107
108 if (pid != HOST_KERNEL_ID) {
109 struct thread *thread = machine__findnew_thread(machine, -1,
110 pid);
111 char comm[64];
112
113 if (thread == NULL)
114 goto out;
115
116 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
117 thread__set_comm(thread, comm, 0);
118 thread__put(thread);
119 }
120
121 machine->current_tid = NULL;
122 err = 0;
123
124out:
125 if (err) {
126 zfree(&machine->root_dir);
127 zfree(&machine->mmap_name);
128 }
129 return 0;
130}
131
132struct machine *machine__new_host(void)
133{
134 struct machine *machine = malloc(sizeof(*machine));
135
136 if (machine != NULL) {
137 machine__init(machine, "", HOST_KERNEL_ID);
138
139 if (machine__create_kernel_maps(machine) < 0)
140 goto out_delete;
141 }
142
143 return machine;
144out_delete:
145 free(machine);
146 return NULL;
147}
148
149struct machine *machine__new_kallsyms(void)
150{
151 struct machine *machine = machine__new_host();
152 /*
153 * FIXME:
154 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
155 * ask for not using the kcore parsing code, once this one is fixed
156 * to create a map per module.
157 */
158 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
159 machine__delete(machine);
160 machine = NULL;
161 }
162
163 return machine;
164}
165
166static void dsos__purge(struct dsos *dsos)
167{
168 struct dso *pos, *n;
169
170 down_write(&dsos->lock);
171
172 list_for_each_entry_safe(pos, n, &dsos->head, node) {
173 RB_CLEAR_NODE(&pos->rb_node);
174 pos->root = NULL;
175 list_del_init(&pos->node);
176 dso__put(pos);
177 }
178
179 up_write(&dsos->lock);
180}
181
182static void dsos__exit(struct dsos *dsos)
183{
184 dsos__purge(dsos);
185 exit_rwsem(&dsos->lock);
186}
187
188void machine__delete_threads(struct machine *machine)
189{
190 struct rb_node *nd;
191 int i;
192
193 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
194 struct threads *threads = &machine->threads[i];
195 down_write(&threads->lock);
196 nd = rb_first_cached(&threads->entries);
197 while (nd) {
198 struct thread *t = rb_entry(nd, struct thread, rb_node);
199
200 nd = rb_next(nd);
201 __machine__remove_thread(machine, t, false);
202 }
203 up_write(&threads->lock);
204 }
205}
206
207void machine__exit(struct machine *machine)
208{
209 int i;
210
211 if (machine == NULL)
212 return;
213
214 machine__destroy_kernel_maps(machine);
215 map_groups__exit(&machine->kmaps);
216 dsos__exit(&machine->dsos);
217 machine__exit_vdso(machine);
218 zfree(&machine->root_dir);
219 zfree(&machine->mmap_name);
220 zfree(&machine->current_tid);
221
222 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
223 struct threads *threads = &machine->threads[i];
224 struct thread *thread, *n;
225 /*
226 * Forget about the dead, at this point whatever threads were
227 * left in the dead lists better have a reference count taken
228 * by who is using them, and then, when they drop those references
229 * and it finally hits zero, thread__put() will check and see that
230 * its not in the dead threads list and will not try to remove it
231 * from there, just calling thread__delete() straight away.
232 */
233 list_for_each_entry_safe(thread, n, &threads->dead, node)
234 list_del_init(&thread->node);
235
236 exit_rwsem(&threads->lock);
237 }
238}
239
240void machine__delete(struct machine *machine)
241{
242 if (machine) {
243 machine__exit(machine);
244 free(machine);
245 }
246}
247
248void machines__init(struct machines *machines)
249{
250 machine__init(&machines->host, "", HOST_KERNEL_ID);
251 machines->guests = RB_ROOT_CACHED;
252}
253
254void machines__exit(struct machines *machines)
255{
256 machine__exit(&machines->host);
257 /* XXX exit guest */
258}
259
260struct machine *machines__add(struct machines *machines, pid_t pid,
261 const char *root_dir)
262{
263 struct rb_node **p = &machines->guests.rb_root.rb_node;
264 struct rb_node *parent = NULL;
265 struct machine *pos, *machine = malloc(sizeof(*machine));
266 bool leftmost = true;
267
268 if (machine == NULL)
269 return NULL;
270
271 if (machine__init(machine, root_dir, pid) != 0) {
272 free(machine);
273 return NULL;
274 }
275
276 while (*p != NULL) {
277 parent = *p;
278 pos = rb_entry(parent, struct machine, rb_node);
279 if (pid < pos->pid)
280 p = &(*p)->rb_left;
281 else {
282 p = &(*p)->rb_right;
283 leftmost = false;
284 }
285 }
286
287 rb_link_node(&machine->rb_node, parent, p);
288 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
289
290 return machine;
291}
292
293void machines__set_comm_exec(struct machines *machines, bool comm_exec)
294{
295 struct rb_node *nd;
296
297 machines->host.comm_exec = comm_exec;
298
299 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
300 struct machine *machine = rb_entry(nd, struct machine, rb_node);
301
302 machine->comm_exec = comm_exec;
303 }
304}
305
306struct machine *machines__find(struct machines *machines, pid_t pid)
307{
308 struct rb_node **p = &machines->guests.rb_root.rb_node;
309 struct rb_node *parent = NULL;
310 struct machine *machine;
311 struct machine *default_machine = NULL;
312
313 if (pid == HOST_KERNEL_ID)
314 return &machines->host;
315
316 while (*p != NULL) {
317 parent = *p;
318 machine = rb_entry(parent, struct machine, rb_node);
319 if (pid < machine->pid)
320 p = &(*p)->rb_left;
321 else if (pid > machine->pid)
322 p = &(*p)->rb_right;
323 else
324 return machine;
325 if (!machine->pid)
326 default_machine = machine;
327 }
328
329 return default_machine;
330}
331
332struct machine *machines__findnew(struct machines *machines, pid_t pid)
333{
334 char path[PATH_MAX];
335 const char *root_dir = "";
336 struct machine *machine = machines__find(machines, pid);
337
338 if (machine && (machine->pid == pid))
339 goto out;
340
341 if ((pid != HOST_KERNEL_ID) &&
342 (pid != DEFAULT_GUEST_KERNEL_ID) &&
343 (symbol_conf.guestmount)) {
344 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
345 if (access(path, R_OK)) {
346 static struct strlist *seen;
347
348 if (!seen)
349 seen = strlist__new(NULL, NULL);
350
351 if (!strlist__has_entry(seen, path)) {
352 pr_err("Can't access file %s\n", path);
353 strlist__add(seen, path);
354 }
355 machine = NULL;
356 goto out;
357 }
358 root_dir = path;
359 }
360
361 machine = machines__add(machines, pid, root_dir);
362out:
363 return machine;
364}
365
366void machines__process_guests(struct machines *machines,
367 machine__process_t process, void *data)
368{
369 struct rb_node *nd;
370
371 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
372 struct machine *pos = rb_entry(nd, struct machine, rb_node);
373 process(pos, data);
374 }
375}
376
377void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
378{
379 struct rb_node *node;
380 struct machine *machine;
381
382 machines->host.id_hdr_size = id_hdr_size;
383
384 for (node = rb_first_cached(&machines->guests); node;
385 node = rb_next(node)) {
386 machine = rb_entry(node, struct machine, rb_node);
387 machine->id_hdr_size = id_hdr_size;
388 }
389
390 return;
391}
392
393static void machine__update_thread_pid(struct machine *machine,
394 struct thread *th, pid_t pid)
395{
396 struct thread *leader;
397
398 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
399 return;
400
401 th->pid_ = pid;
402
403 if (th->pid_ == th->tid)
404 return;
405
406 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
407 if (!leader)
408 goto out_err;
409
410 if (!leader->mg)
411 leader->mg = map_groups__new(machine);
412
413 if (!leader->mg)
414 goto out_err;
415
416 if (th->mg == leader->mg)
417 return;
418
419 if (th->mg) {
420 /*
421 * Maps are created from MMAP events which provide the pid and
422 * tid. Consequently there never should be any maps on a thread
423 * with an unknown pid. Just print an error if there are.
424 */
425 if (!map_groups__empty(th->mg))
426 pr_err("Discarding thread maps for %d:%d\n",
427 th->pid_, th->tid);
428 map_groups__put(th->mg);
429 }
430
431 th->mg = map_groups__get(leader->mg);
432out_put:
433 thread__put(leader);
434 return;
435out_err:
436 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
437 goto out_put;
438}
439
440/*
441 * Front-end cache - TID lookups come in blocks,
442 * so most of the time we dont have to look up
443 * the full rbtree:
444 */
445static struct thread*
446__threads__get_last_match(struct threads *threads, struct machine *machine,
447 int pid, int tid)
448{
449 struct thread *th;
450
451 th = threads->last_match;
452 if (th != NULL) {
453 if (th->tid == tid) {
454 machine__update_thread_pid(machine, th, pid);
455 return thread__get(th);
456 }
457
458 threads->last_match = NULL;
459 }
460
461 return NULL;
462}
463
464static struct thread*
465threads__get_last_match(struct threads *threads, struct machine *machine,
466 int pid, int tid)
467{
468 struct thread *th = NULL;
469
470 if (perf_singlethreaded)
471 th = __threads__get_last_match(threads, machine, pid, tid);
472
473 return th;
474}
475
476static void
477__threads__set_last_match(struct threads *threads, struct thread *th)
478{
479 threads->last_match = th;
480}
481
482static void
483threads__set_last_match(struct threads *threads, struct thread *th)
484{
485 if (perf_singlethreaded)
486 __threads__set_last_match(threads, th);
487}
488
489/*
490 * Caller must eventually drop thread->refcnt returned with a successful
491 * lookup/new thread inserted.
492 */
493static struct thread *____machine__findnew_thread(struct machine *machine,
494 struct threads *threads,
495 pid_t pid, pid_t tid,
496 bool create)
497{
498 struct rb_node **p = &threads->entries.rb_root.rb_node;
499 struct rb_node *parent = NULL;
500 struct thread *th;
501 bool leftmost = true;
502
503 th = threads__get_last_match(threads, machine, pid, tid);
504 if (th)
505 return th;
506
507 while (*p != NULL) {
508 parent = *p;
509 th = rb_entry(parent, struct thread, rb_node);
510
511 if (th->tid == tid) {
512 threads__set_last_match(threads, th);
513 machine__update_thread_pid(machine, th, pid);
514 return thread__get(th);
515 }
516
517 if (tid < th->tid)
518 p = &(*p)->rb_left;
519 else {
520 p = &(*p)->rb_right;
521 leftmost = false;
522 }
523 }
524
525 if (!create)
526 return NULL;
527
528 th = thread__new(pid, tid);
529 if (th != NULL) {
530 rb_link_node(&th->rb_node, parent, p);
531 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
532
533 /*
534 * We have to initialize map_groups separately
535 * after rb tree is updated.
536 *
537 * The reason is that we call machine__findnew_thread
538 * within thread__init_map_groups to find the thread
539 * leader and that would screwed the rb tree.
540 */
541 if (thread__init_map_groups(th, machine)) {
542 rb_erase_cached(&th->rb_node, &threads->entries);
543 RB_CLEAR_NODE(&th->rb_node);
544 thread__put(th);
545 return NULL;
546 }
547 /*
548 * It is now in the rbtree, get a ref
549 */
550 thread__get(th);
551 threads__set_last_match(threads, th);
552 ++threads->nr;
553 }
554
555 return th;
556}
557
558struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
559{
560 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
561}
562
563struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
564 pid_t tid)
565{
566 struct threads *threads = machine__threads(machine, tid);
567 struct thread *th;
568
569 down_write(&threads->lock);
570 th = __machine__findnew_thread(machine, pid, tid);
571 up_write(&threads->lock);
572 return th;
573}
574
575struct thread *machine__find_thread(struct machine *machine, pid_t pid,
576 pid_t tid)
577{
578 struct threads *threads = machine__threads(machine, tid);
579 struct thread *th;
580
581 down_read(&threads->lock);
582 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
583 up_read(&threads->lock);
584 return th;
585}
586
587struct comm *machine__thread_exec_comm(struct machine *machine,
588 struct thread *thread)
589{
590 if (machine->comm_exec)
591 return thread__exec_comm(thread);
592 else
593 return thread__comm(thread);
594}
595
596int machine__process_comm_event(struct machine *machine, union perf_event *event,
597 struct perf_sample *sample)
598{
599 struct thread *thread = machine__findnew_thread(machine,
600 event->comm.pid,
601 event->comm.tid);
602 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
603 int err = 0;
604
605 if (exec)
606 machine->comm_exec = true;
607
608 if (dump_trace)
609 perf_event__fprintf_comm(event, stdout);
610
611 if (thread == NULL ||
612 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
613 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
614 err = -1;
615 }
616
617 thread__put(thread);
618
619 return err;
620}
621
622int machine__process_namespaces_event(struct machine *machine __maybe_unused,
623 union perf_event *event,
624 struct perf_sample *sample __maybe_unused)
625{
626 struct thread *thread = machine__findnew_thread(machine,
627 event->namespaces.pid,
628 event->namespaces.tid);
629 int err = 0;
630
631 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
632 "\nWARNING: kernel seems to support more namespaces than perf"
633 " tool.\nTry updating the perf tool..\n\n");
634
635 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
636 "\nWARNING: perf tool seems to support more namespaces than"
637 " the kernel.\nTry updating the kernel..\n\n");
638
639 if (dump_trace)
640 perf_event__fprintf_namespaces(event, stdout);
641
642 if (thread == NULL ||
643 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
644 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
645 err = -1;
646 }
647
648 thread__put(thread);
649
650 return err;
651}
652
653int machine__process_lost_event(struct machine *machine __maybe_unused,
654 union perf_event *event, struct perf_sample *sample __maybe_unused)
655{
656 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
657 event->lost.id, event->lost.lost);
658 return 0;
659}
660
661int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
662 union perf_event *event, struct perf_sample *sample)
663{
664 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
665 sample->id, event->lost_samples.lost);
666 return 0;
667}
668
669static struct dso *machine__findnew_module_dso(struct machine *machine,
670 struct kmod_path *m,
671 const char *filename)
672{
673 struct dso *dso;
674
675 down_write(&machine->dsos.lock);
676
677 dso = __dsos__find(&machine->dsos, m->name, true);
678 if (!dso) {
679 dso = __dsos__addnew(&machine->dsos, m->name);
680 if (dso == NULL)
681 goto out_unlock;
682
683 dso__set_module_info(dso, m, machine);
684 dso__set_long_name(dso, strdup(filename), true);
685 }
686
687 dso__get(dso);
688out_unlock:
689 up_write(&machine->dsos.lock);
690 return dso;
691}
692
693int machine__process_aux_event(struct machine *machine __maybe_unused,
694 union perf_event *event)
695{
696 if (dump_trace)
697 perf_event__fprintf_aux(event, stdout);
698 return 0;
699}
700
701int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
702 union perf_event *event)
703{
704 if (dump_trace)
705 perf_event__fprintf_itrace_start(event, stdout);
706 return 0;
707}
708
709int machine__process_switch_event(struct machine *machine __maybe_unused,
710 union perf_event *event)
711{
712 if (dump_trace)
713 perf_event__fprintf_switch(event, stdout);
714 return 0;
715}
716
717static int machine__process_ksymbol_register(struct machine *machine,
718 union perf_event *event,
719 struct perf_sample *sample __maybe_unused)
720{
721 struct symbol *sym;
722 struct map *map;
723
724 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
725 if (!map) {
726 map = dso__new_map(event->ksymbol.name);
727 if (!map)
728 return -ENOMEM;
729
730 map->start = event->ksymbol.addr;
731 map->end = map->start + event->ksymbol.len;
732 map_groups__insert(&machine->kmaps, map);
733 }
734
735 sym = symbol__new(map->map_ip(map, map->start),
736 event->ksymbol.len,
737 0, 0, event->ksymbol.name);
738 if (!sym)
739 return -ENOMEM;
740 dso__insert_symbol(map->dso, sym);
741 return 0;
742}
743
744static int machine__process_ksymbol_unregister(struct machine *machine,
745 union perf_event *event,
746 struct perf_sample *sample __maybe_unused)
747{
748 struct map *map;
749
750 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
751 if (map)
752 map_groups__remove(&machine->kmaps, map);
753
754 return 0;
755}
756
757int machine__process_ksymbol(struct machine *machine __maybe_unused,
758 union perf_event *event,
759 struct perf_sample *sample)
760{
761 if (dump_trace)
762 perf_event__fprintf_ksymbol(event, stdout);
763
764 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
765 return machine__process_ksymbol_unregister(machine, event,
766 sample);
767 return machine__process_ksymbol_register(machine, event, sample);
768}
769
770static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
771{
772 const char *dup_filename;
773
774 if (!filename || !dso || !dso->long_name)
775 return;
776 if (dso->long_name[0] != '[')
777 return;
778 if (!strchr(filename, '/'))
779 return;
780
781 dup_filename = strdup(filename);
782 if (!dup_filename)
783 return;
784
785 dso__set_long_name(dso, dup_filename, true);
786}
787
788struct map *machine__findnew_module_map(struct machine *machine, u64 start,
789 const char *filename)
790{
791 struct map *map = NULL;
792 struct dso *dso = NULL;
793 struct kmod_path m;
794
795 if (kmod_path__parse_name(&m, filename))
796 return NULL;
797
798 map = map_groups__find_by_name(&machine->kmaps, m.name);
799 if (map) {
800 /*
801 * If the map's dso is an offline module, give dso__load()
802 * a chance to find the file path of that module by fixing
803 * long_name.
804 */
805 dso__adjust_kmod_long_name(map->dso, filename);
806 goto out;
807 }
808
809 dso = machine__findnew_module_dso(machine, &m, filename);
810 if (dso == NULL)
811 goto out;
812
813 map = map__new2(start, dso);
814 if (map == NULL)
815 goto out;
816
817 map_groups__insert(&machine->kmaps, map);
818
819 /* Put the map here because map_groups__insert alread got it */
820 map__put(map);
821out:
822 /* put the dso here, corresponding to machine__findnew_module_dso */
823 dso__put(dso);
824 zfree(&m.name);
825 return map;
826}
827
828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
829{
830 struct rb_node *nd;
831 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
832
833 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
834 struct machine *pos = rb_entry(nd, struct machine, rb_node);
835 ret += __dsos__fprintf(&pos->dsos.head, fp);
836 }
837
838 return ret;
839}
840
841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
842 bool (skip)(struct dso *dso, int parm), int parm)
843{
844 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
845}
846
847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
848 bool (skip)(struct dso *dso, int parm), int parm)
849{
850 struct rb_node *nd;
851 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
852
853 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
854 struct machine *pos = rb_entry(nd, struct machine, rb_node);
855 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
856 }
857 return ret;
858}
859
860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
861{
862 int i;
863 size_t printed = 0;
864 struct dso *kdso = machine__kernel_map(machine)->dso;
865
866 if (kdso->has_build_id) {
867 char filename[PATH_MAX];
868 if (dso__build_id_filename(kdso, filename, sizeof(filename),
869 false))
870 printed += fprintf(fp, "[0] %s\n", filename);
871 }
872
873 for (i = 0; i < vmlinux_path__nr_entries; ++i)
874 printed += fprintf(fp, "[%d] %s\n",
875 i + kdso->has_build_id, vmlinux_path[i]);
876
877 return printed;
878}
879
880size_t machine__fprintf(struct machine *machine, FILE *fp)
881{
882 struct rb_node *nd;
883 size_t ret;
884 int i;
885
886 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
887 struct threads *threads = &machine->threads[i];
888
889 down_read(&threads->lock);
890
891 ret = fprintf(fp, "Threads: %u\n", threads->nr);
892
893 for (nd = rb_first_cached(&threads->entries); nd;
894 nd = rb_next(nd)) {
895 struct thread *pos = rb_entry(nd, struct thread, rb_node);
896
897 ret += thread__fprintf(pos, fp);
898 }
899
900 up_read(&threads->lock);
901 }
902 return ret;
903}
904
905static struct dso *machine__get_kernel(struct machine *machine)
906{
907 const char *vmlinux_name = machine->mmap_name;
908 struct dso *kernel;
909
910 if (machine__is_host(machine)) {
911 if (symbol_conf.vmlinux_name)
912 vmlinux_name = symbol_conf.vmlinux_name;
913
914 kernel = machine__findnew_kernel(machine, vmlinux_name,
915 "[kernel]", DSO_TYPE_KERNEL);
916 } else {
917 if (symbol_conf.default_guest_vmlinux_name)
918 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
919
920 kernel = machine__findnew_kernel(machine, vmlinux_name,
921 "[guest.kernel]",
922 DSO_TYPE_GUEST_KERNEL);
923 }
924
925 if (kernel != NULL && (!kernel->has_build_id))
926 dso__read_running_kernel_build_id(kernel, machine);
927
928 return kernel;
929}
930
931struct process_args {
932 u64 start;
933};
934
935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
936 size_t bufsz)
937{
938 if (machine__is_default_guest(machine))
939 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
940 else
941 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
942}
943
944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
945
946/* Figure out the start address of kernel map from /proc/kallsyms.
947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
948 * symbol_name if it's not that important.
949 */
950static int machine__get_running_kernel_start(struct machine *machine,
951 const char **symbol_name,
952 u64 *start, u64 *end)
953{
954 char filename[PATH_MAX];
955 int i, err = -1;
956 const char *name;
957 u64 addr = 0;
958
959 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
960
961 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
962 return 0;
963
964 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
965 err = kallsyms__get_function_start(filename, name, &addr);
966 if (!err)
967 break;
968 }
969
970 if (err)
971 return -1;
972
973 if (symbol_name)
974 *symbol_name = name;
975
976 *start = addr;
977
978 err = kallsyms__get_function_start(filename, "_etext", &addr);
979 if (!err)
980 *end = addr;
981
982 return 0;
983}
984
985int machine__create_extra_kernel_map(struct machine *machine,
986 struct dso *kernel,
987 struct extra_kernel_map *xm)
988{
989 struct kmap *kmap;
990 struct map *map;
991
992 map = map__new2(xm->start, kernel);
993 if (!map)
994 return -1;
995
996 map->end = xm->end;
997 map->pgoff = xm->pgoff;
998
999 kmap = map__kmap(map);
1000
1001 kmap->kmaps = &machine->kmaps;
1002 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003
1004 map_groups__insert(&machine->kmaps, map);
1005
1006 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007 kmap->name, map->start, map->end);
1008
1009 map__put(map);
1010
1011 return 0;
1012}
1013
1014static u64 find_entry_trampoline(struct dso *dso)
1015{
1016 /* Duplicates are removed so lookup all aliases */
1017 const char *syms[] = {
1018 "_entry_trampoline",
1019 "__entry_trampoline_start",
1020 "entry_SYSCALL_64_trampoline",
1021 };
1022 struct symbol *sym = dso__first_symbol(dso);
1023 unsigned int i;
1024
1025 for (; sym; sym = dso__next_symbol(sym)) {
1026 if (sym->binding != STB_GLOBAL)
1027 continue;
1028 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029 if (!strcmp(sym->name, syms[i]))
1030 return sym->start;
1031 }
1032 }
1033
1034 return 0;
1035}
1036
1037/*
1038 * These values can be used for kernels that do not have symbols for the entry
1039 * trampolines in kallsyms.
1040 */
1041#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1042#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1043#define X86_64_ENTRY_TRAMPOLINE 0x6000
1044
1045/* Map x86_64 PTI entry trampolines */
1046int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047 struct dso *kernel)
1048{
1049 struct map_groups *kmaps = &machine->kmaps;
1050 struct maps *maps = &kmaps->maps;
1051 int nr_cpus_avail, cpu;
1052 bool found = false;
1053 struct map *map;
1054 u64 pgoff;
1055
1056 /*
1057 * In the vmlinux case, pgoff is a virtual address which must now be
1058 * mapped to a vmlinux offset.
1059 */
1060 for (map = maps__first(maps); map; map = map__next(map)) {
1061 struct kmap *kmap = __map__kmap(map);
1062 struct map *dest_map;
1063
1064 if (!kmap || !is_entry_trampoline(kmap->name))
1065 continue;
1066
1067 dest_map = map_groups__find(kmaps, map->pgoff);
1068 if (dest_map != map)
1069 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070 found = true;
1071 }
1072 if (found || machine->trampolines_mapped)
1073 return 0;
1074
1075 pgoff = find_entry_trampoline(kernel);
1076 if (!pgoff)
1077 return 0;
1078
1079 nr_cpus_avail = machine__nr_cpus_avail(machine);
1080
1081 /* Add a 1 page map for each CPU's entry trampoline */
1082 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085 X86_64_ENTRY_TRAMPOLINE;
1086 struct extra_kernel_map xm = {
1087 .start = va,
1088 .end = va + page_size,
1089 .pgoff = pgoff,
1090 };
1091
1092 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1093
1094 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1095 return -1;
1096 }
1097
1098 machine->trampolines_mapped = nr_cpus_avail;
1099
1100 return 0;
1101}
1102
1103int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104 struct dso *kernel __maybe_unused)
1105{
1106 return 0;
1107}
1108
1109static int
1110__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111{
1112 struct kmap *kmap;
1113 struct map *map;
1114
1115 /* In case of renewal the kernel map, destroy previous one */
1116 machine__destroy_kernel_maps(machine);
1117
1118 machine->vmlinux_map = map__new2(0, kernel);
1119 if (machine->vmlinux_map == NULL)
1120 return -1;
1121
1122 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123 map = machine__kernel_map(machine);
1124 kmap = map__kmap(map);
1125 if (!kmap)
1126 return -1;
1127
1128 kmap->kmaps = &machine->kmaps;
1129 map_groups__insert(&machine->kmaps, map);
1130
1131 return 0;
1132}
1133
1134void machine__destroy_kernel_maps(struct machine *machine)
1135{
1136 struct kmap *kmap;
1137 struct map *map = machine__kernel_map(machine);
1138
1139 if (map == NULL)
1140 return;
1141
1142 kmap = map__kmap(map);
1143 map_groups__remove(&machine->kmaps, map);
1144 if (kmap && kmap->ref_reloc_sym) {
1145 zfree((char **)&kmap->ref_reloc_sym->name);
1146 zfree(&kmap->ref_reloc_sym);
1147 }
1148
1149 map__zput(machine->vmlinux_map);
1150}
1151
1152int machines__create_guest_kernel_maps(struct machines *machines)
1153{
1154 int ret = 0;
1155 struct dirent **namelist = NULL;
1156 int i, items = 0;
1157 char path[PATH_MAX];
1158 pid_t pid;
1159 char *endp;
1160
1161 if (symbol_conf.default_guest_vmlinux_name ||
1162 symbol_conf.default_guest_modules ||
1163 symbol_conf.default_guest_kallsyms) {
1164 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165 }
1166
1167 if (symbol_conf.guestmount) {
1168 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169 if (items <= 0)
1170 return -ENOENT;
1171 for (i = 0; i < items; i++) {
1172 if (!isdigit(namelist[i]->d_name[0])) {
1173 /* Filter out . and .. */
1174 continue;
1175 }
1176 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177 if ((*endp != '\0') ||
1178 (endp == namelist[i]->d_name) ||
1179 (errno == ERANGE)) {
1180 pr_debug("invalid directory (%s). Skipping.\n",
1181 namelist[i]->d_name);
1182 continue;
1183 }
1184 sprintf(path, "%s/%s/proc/kallsyms",
1185 symbol_conf.guestmount,
1186 namelist[i]->d_name);
1187 ret = access(path, R_OK);
1188 if (ret) {
1189 pr_debug("Can't access file %s\n", path);
1190 goto failure;
1191 }
1192 machines__create_kernel_maps(machines, pid);
1193 }
1194failure:
1195 free(namelist);
1196 }
1197
1198 return ret;
1199}
1200
1201void machines__destroy_kernel_maps(struct machines *machines)
1202{
1203 struct rb_node *next = rb_first_cached(&machines->guests);
1204
1205 machine__destroy_kernel_maps(&machines->host);
1206
1207 while (next) {
1208 struct machine *pos = rb_entry(next, struct machine, rb_node);
1209
1210 next = rb_next(&pos->rb_node);
1211 rb_erase_cached(&pos->rb_node, &machines->guests);
1212 machine__delete(pos);
1213 }
1214}
1215
1216int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217{
1218 struct machine *machine = machines__findnew(machines, pid);
1219
1220 if (machine == NULL)
1221 return -1;
1222
1223 return machine__create_kernel_maps(machine);
1224}
1225
1226int machine__load_kallsyms(struct machine *machine, const char *filename)
1227{
1228 struct map *map = machine__kernel_map(machine);
1229 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230
1231 if (ret > 0) {
1232 dso__set_loaded(map->dso);
1233 /*
1234 * Since /proc/kallsyms will have multiple sessions for the
1235 * kernel, with modules between them, fixup the end of all
1236 * sections.
1237 */
1238 map_groups__fixup_end(&machine->kmaps);
1239 }
1240
1241 return ret;
1242}
1243
1244int machine__load_vmlinux_path(struct machine *machine)
1245{
1246 struct map *map = machine__kernel_map(machine);
1247 int ret = dso__load_vmlinux_path(map->dso, map);
1248
1249 if (ret > 0)
1250 dso__set_loaded(map->dso);
1251
1252 return ret;
1253}
1254
1255static char *get_kernel_version(const char *root_dir)
1256{
1257 char version[PATH_MAX];
1258 FILE *file;
1259 char *name, *tmp;
1260 const char *prefix = "Linux version ";
1261
1262 sprintf(version, "%s/proc/version", root_dir);
1263 file = fopen(version, "r");
1264 if (!file)
1265 return NULL;
1266
1267 tmp = fgets(version, sizeof(version), file);
1268 fclose(file);
1269 if (!tmp)
1270 return NULL;
1271
1272 name = strstr(version, prefix);
1273 if (!name)
1274 return NULL;
1275 name += strlen(prefix);
1276 tmp = strchr(name, ' ');
1277 if (tmp)
1278 *tmp = '\0';
1279
1280 return strdup(name);
1281}
1282
1283static bool is_kmod_dso(struct dso *dso)
1284{
1285 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287}
1288
1289static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290 struct kmod_path *m)
1291{
1292 char *long_name;
1293 struct map *map = map_groups__find_by_name(mg, m->name);
1294
1295 if (map == NULL)
1296 return 0;
1297
1298 long_name = strdup(path);
1299 if (long_name == NULL)
1300 return -ENOMEM;
1301
1302 dso__set_long_name(map->dso, long_name, true);
1303 dso__kernel_module_get_build_id(map->dso, "");
1304
1305 /*
1306 * Full name could reveal us kmod compression, so
1307 * we need to update the symtab_type if needed.
1308 */
1309 if (m->comp && is_kmod_dso(map->dso)) {
1310 map->dso->symtab_type++;
1311 map->dso->comp = m->comp;
1312 }
1313
1314 return 0;
1315}
1316
1317static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318 const char *dir_name, int depth)
1319{
1320 struct dirent *dent;
1321 DIR *dir = opendir(dir_name);
1322 int ret = 0;
1323
1324 if (!dir) {
1325 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326 return -1;
1327 }
1328
1329 while ((dent = readdir(dir)) != NULL) {
1330 char path[PATH_MAX];
1331 struct stat st;
1332
1333 /*sshfs might return bad dent->d_type, so we have to stat*/
1334 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335 if (stat(path, &st))
1336 continue;
1337
1338 if (S_ISDIR(st.st_mode)) {
1339 if (!strcmp(dent->d_name, ".") ||
1340 !strcmp(dent->d_name, ".."))
1341 continue;
1342
1343 /* Do not follow top-level source and build symlinks */
1344 if (depth == 0) {
1345 if (!strcmp(dent->d_name, "source") ||
1346 !strcmp(dent->d_name, "build"))
1347 continue;
1348 }
1349
1350 ret = map_groups__set_modules_path_dir(mg, path,
1351 depth + 1);
1352 if (ret < 0)
1353 goto out;
1354 } else {
1355 struct kmod_path m;
1356
1357 ret = kmod_path__parse_name(&m, dent->d_name);
1358 if (ret)
1359 goto out;
1360
1361 if (m.kmod)
1362 ret = map_groups__set_module_path(mg, path, &m);
1363
1364 zfree(&m.name);
1365
1366 if (ret)
1367 goto out;
1368 }
1369 }
1370
1371out:
1372 closedir(dir);
1373 return ret;
1374}
1375
1376static int machine__set_modules_path(struct machine *machine)
1377{
1378 char *version;
1379 char modules_path[PATH_MAX];
1380
1381 version = get_kernel_version(machine->root_dir);
1382 if (!version)
1383 return -1;
1384
1385 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386 machine->root_dir, version);
1387 free(version);
1388
1389 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390}
1391int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392 u64 *size __maybe_unused,
1393 const char *name __maybe_unused)
1394{
1395 return 0;
1396}
1397
1398static int machine__create_module(void *arg, const char *name, u64 start,
1399 u64 size)
1400{
1401 struct machine *machine = arg;
1402 struct map *map;
1403
1404 if (arch__fix_module_text_start(&start, &size, name) < 0)
1405 return -1;
1406
1407 map = machine__findnew_module_map(machine, start, name);
1408 if (map == NULL)
1409 return -1;
1410 map->end = start + size;
1411
1412 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413
1414 return 0;
1415}
1416
1417static int machine__create_modules(struct machine *machine)
1418{
1419 const char *modules;
1420 char path[PATH_MAX];
1421
1422 if (machine__is_default_guest(machine)) {
1423 modules = symbol_conf.default_guest_modules;
1424 } else {
1425 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426 modules = path;
1427 }
1428
1429 if (symbol__restricted_filename(modules, "/proc/modules"))
1430 return -1;
1431
1432 if (modules__parse(modules, machine, machine__create_module))
1433 return -1;
1434
1435 if (!machine__set_modules_path(machine))
1436 return 0;
1437
1438 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439
1440 return 0;
1441}
1442
1443static void machine__set_kernel_mmap(struct machine *machine,
1444 u64 start, u64 end)
1445{
1446 machine->vmlinux_map->start = start;
1447 machine->vmlinux_map->end = end;
1448 /*
1449 * Be a bit paranoid here, some perf.data file came with
1450 * a zero sized synthesized MMAP event for the kernel.
1451 */
1452 if (start == 0 && end == 0)
1453 machine->vmlinux_map->end = ~0ULL;
1454}
1455
1456static void machine__update_kernel_mmap(struct machine *machine,
1457 u64 start, u64 end)
1458{
1459 struct map *map = machine__kernel_map(machine);
1460
1461 map__get(map);
1462 map_groups__remove(&machine->kmaps, map);
1463
1464 machine__set_kernel_mmap(machine, start, end);
1465
1466 map_groups__insert(&machine->kmaps, map);
1467 map__put(map);
1468}
1469
1470int machine__create_kernel_maps(struct machine *machine)
1471{
1472 struct dso *kernel = machine__get_kernel(machine);
1473 const char *name = NULL;
1474 struct map *map;
1475 u64 start = 0, end = ~0ULL;
1476 int ret;
1477
1478 if (kernel == NULL)
1479 return -1;
1480
1481 ret = __machine__create_kernel_maps(machine, kernel);
1482 if (ret < 0)
1483 goto out_put;
1484
1485 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486 if (machine__is_host(machine))
1487 pr_debug("Problems creating module maps, "
1488 "continuing anyway...\n");
1489 else
1490 pr_debug("Problems creating module maps for guest %d, "
1491 "continuing anyway...\n", machine->pid);
1492 }
1493
1494 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495 if (name &&
1496 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497 machine__destroy_kernel_maps(machine);
1498 ret = -1;
1499 goto out_put;
1500 }
1501
1502 /*
1503 * we have a real start address now, so re-order the kmaps
1504 * assume it's the last in the kmaps
1505 */
1506 machine__update_kernel_mmap(machine, start, end);
1507 }
1508
1509 if (machine__create_extra_kernel_maps(machine, kernel))
1510 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511
1512 if (end == ~0ULL) {
1513 /* update end address of the kernel map using adjacent module address */
1514 map = map__next(machine__kernel_map(machine));
1515 if (map)
1516 machine__set_kernel_mmap(machine, start, map->start);
1517 }
1518
1519out_put:
1520 dso__put(kernel);
1521 return ret;
1522}
1523
1524static bool machine__uses_kcore(struct machine *machine)
1525{
1526 struct dso *dso;
1527
1528 list_for_each_entry(dso, &machine->dsos.head, node) {
1529 if (dso__is_kcore(dso))
1530 return true;
1531 }
1532
1533 return false;
1534}
1535
1536static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537 union perf_event *event)
1538{
1539 return machine__is(machine, "x86_64") &&
1540 is_entry_trampoline(event->mmap.filename);
1541}
1542
1543static int machine__process_extra_kernel_map(struct machine *machine,
1544 union perf_event *event)
1545{
1546 struct map *kernel_map = machine__kernel_map(machine);
1547 struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548 struct extra_kernel_map xm = {
1549 .start = event->mmap.start,
1550 .end = event->mmap.start + event->mmap.len,
1551 .pgoff = event->mmap.pgoff,
1552 };
1553
1554 if (kernel == NULL)
1555 return -1;
1556
1557 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558
1559 return machine__create_extra_kernel_map(machine, kernel, &xm);
1560}
1561
1562static int machine__process_kernel_mmap_event(struct machine *machine,
1563 union perf_event *event)
1564{
1565 struct map *map;
1566 enum dso_kernel_type kernel_type;
1567 bool is_kernel_mmap;
1568
1569 /* If we have maps from kcore then we do not need or want any others */
1570 if (machine__uses_kcore(machine))
1571 return 0;
1572
1573 if (machine__is_host(machine))
1574 kernel_type = DSO_TYPE_KERNEL;
1575 else
1576 kernel_type = DSO_TYPE_GUEST_KERNEL;
1577
1578 is_kernel_mmap = memcmp(event->mmap.filename,
1579 machine->mmap_name,
1580 strlen(machine->mmap_name) - 1) == 0;
1581 if (event->mmap.filename[0] == '/' ||
1582 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583 map = machine__findnew_module_map(machine, event->mmap.start,
1584 event->mmap.filename);
1585 if (map == NULL)
1586 goto out_problem;
1587
1588 map->end = map->start + event->mmap.len;
1589 } else if (is_kernel_mmap) {
1590 const char *symbol_name = (event->mmap.filename +
1591 strlen(machine->mmap_name));
1592 /*
1593 * Should be there already, from the build-id table in
1594 * the header.
1595 */
1596 struct dso *kernel = NULL;
1597 struct dso *dso;
1598
1599 down_read(&machine->dsos.lock);
1600
1601 list_for_each_entry(dso, &machine->dsos.head, node) {
1602
1603 /*
1604 * The cpumode passed to is_kernel_module is not the
1605 * cpumode of *this* event. If we insist on passing
1606 * correct cpumode to is_kernel_module, we should
1607 * record the cpumode when we adding this dso to the
1608 * linked list.
1609 *
1610 * However we don't really need passing correct
1611 * cpumode. We know the correct cpumode must be kernel
1612 * mode (if not, we should not link it onto kernel_dsos
1613 * list).
1614 *
1615 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616 * is_kernel_module() treats it as a kernel cpumode.
1617 */
1618
1619 if (!dso->kernel ||
1620 is_kernel_module(dso->long_name,
1621 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622 continue;
1623
1624
1625 kernel = dso;
1626 break;
1627 }
1628
1629 up_read(&machine->dsos.lock);
1630
1631 if (kernel == NULL)
1632 kernel = machine__findnew_dso(machine, machine->mmap_name);
1633 if (kernel == NULL)
1634 goto out_problem;
1635
1636 kernel->kernel = kernel_type;
1637 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638 dso__put(kernel);
1639 goto out_problem;
1640 }
1641
1642 if (strstr(kernel->long_name, "vmlinux"))
1643 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644
1645 machine__update_kernel_mmap(machine, event->mmap.start,
1646 event->mmap.start + event->mmap.len);
1647
1648 /*
1649 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650 * symbol. Effectively having zero here means that at record
1651 * time /proc/sys/kernel/kptr_restrict was non zero.
1652 */
1653 if (event->mmap.pgoff != 0) {
1654 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655 symbol_name,
1656 event->mmap.pgoff);
1657 }
1658
1659 if (machine__is_default_guest(machine)) {
1660 /*
1661 * preload dso of guest kernel and modules
1662 */
1663 dso__load(kernel, machine__kernel_map(machine));
1664 }
1665 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666 return machine__process_extra_kernel_map(machine, event);
1667 }
1668 return 0;
1669out_problem:
1670 return -1;
1671}
1672
1673int machine__process_mmap2_event(struct machine *machine,
1674 union perf_event *event,
1675 struct perf_sample *sample)
1676{
1677 struct thread *thread;
1678 struct map *map;
1679 int ret = 0;
1680
1681 if (dump_trace)
1682 perf_event__fprintf_mmap2(event, stdout);
1683
1684 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686 ret = machine__process_kernel_mmap_event(machine, event);
1687 if (ret < 0)
1688 goto out_problem;
1689 return 0;
1690 }
1691
1692 thread = machine__findnew_thread(machine, event->mmap2.pid,
1693 event->mmap2.tid);
1694 if (thread == NULL)
1695 goto out_problem;
1696
1697 map = map__new(machine, event->mmap2.start,
1698 event->mmap2.len, event->mmap2.pgoff,
1699 event->mmap2.maj,
1700 event->mmap2.min, event->mmap2.ino,
1701 event->mmap2.ino_generation,
1702 event->mmap2.prot,
1703 event->mmap2.flags,
1704 event->mmap2.filename, thread);
1705
1706 if (map == NULL)
1707 goto out_problem_map;
1708
1709 ret = thread__insert_map(thread, map);
1710 if (ret)
1711 goto out_problem_insert;
1712
1713 thread__put(thread);
1714 map__put(map);
1715 return 0;
1716
1717out_problem_insert:
1718 map__put(map);
1719out_problem_map:
1720 thread__put(thread);
1721out_problem:
1722 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723 return 0;
1724}
1725
1726int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727 struct perf_sample *sample)
1728{
1729 struct thread *thread;
1730 struct map *map;
1731 u32 prot = 0;
1732 int ret = 0;
1733
1734 if (dump_trace)
1735 perf_event__fprintf_mmap(event, stdout);
1736
1737 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739 ret = machine__process_kernel_mmap_event(machine, event);
1740 if (ret < 0)
1741 goto out_problem;
1742 return 0;
1743 }
1744
1745 thread = machine__findnew_thread(machine, event->mmap.pid,
1746 event->mmap.tid);
1747 if (thread == NULL)
1748 goto out_problem;
1749
1750 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751 prot = PROT_EXEC;
1752
1753 map = map__new(machine, event->mmap.start,
1754 event->mmap.len, event->mmap.pgoff,
1755 0, 0, 0, 0, prot, 0,
1756 event->mmap.filename,
1757 thread);
1758
1759 if (map == NULL)
1760 goto out_problem_map;
1761
1762 ret = thread__insert_map(thread, map);
1763 if (ret)
1764 goto out_problem_insert;
1765
1766 thread__put(thread);
1767 map__put(map);
1768 return 0;
1769
1770out_problem_insert:
1771 map__put(map);
1772out_problem_map:
1773 thread__put(thread);
1774out_problem:
1775 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776 return 0;
1777}
1778
1779static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1780{
1781 struct threads *threads = machine__threads(machine, th->tid);
1782
1783 if (threads->last_match == th)
1784 threads__set_last_match(threads, NULL);
1785
1786 if (lock)
1787 down_write(&threads->lock);
1788
1789 BUG_ON(refcount_read(&th->refcnt) == 0);
1790
1791 rb_erase_cached(&th->rb_node, &threads->entries);
1792 RB_CLEAR_NODE(&th->rb_node);
1793 --threads->nr;
1794 /*
1795 * Move it first to the dead_threads list, then drop the reference,
1796 * if this is the last reference, then the thread__delete destructor
1797 * will be called and we will remove it from the dead_threads list.
1798 */
1799 list_add_tail(&th->node, &threads->dead);
1800
1801 /*
1802 * We need to do the put here because if this is the last refcount,
1803 * then we will be touching the threads->dead head when removing the
1804 * thread.
1805 */
1806 thread__put(th);
1807
1808 if (lock)
1809 up_write(&threads->lock);
1810}
1811
1812void machine__remove_thread(struct machine *machine, struct thread *th)
1813{
1814 return __machine__remove_thread(machine, th, true);
1815}
1816
1817int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818 struct perf_sample *sample)
1819{
1820 struct thread *thread = machine__find_thread(machine,
1821 event->fork.pid,
1822 event->fork.tid);
1823 struct thread *parent = machine__findnew_thread(machine,
1824 event->fork.ppid,
1825 event->fork.ptid);
1826 bool do_maps_clone = true;
1827 int err = 0;
1828
1829 if (dump_trace)
1830 perf_event__fprintf_task(event, stdout);
1831
1832 /*
1833 * There may be an existing thread that is not actually the parent,
1834 * either because we are processing events out of order, or because the
1835 * (fork) event that would have removed the thread was lost. Assume the
1836 * latter case and continue on as best we can.
1837 */
1838 if (parent->pid_ != (pid_t)event->fork.ppid) {
1839 dump_printf("removing erroneous parent thread %d/%d\n",
1840 parent->pid_, parent->tid);
1841 machine__remove_thread(machine, parent);
1842 thread__put(parent);
1843 parent = machine__findnew_thread(machine, event->fork.ppid,
1844 event->fork.ptid);
1845 }
1846
1847 /* if a thread currently exists for the thread id remove it */
1848 if (thread != NULL) {
1849 machine__remove_thread(machine, thread);
1850 thread__put(thread);
1851 }
1852
1853 thread = machine__findnew_thread(machine, event->fork.pid,
1854 event->fork.tid);
1855 /*
1856 * When synthesizing FORK events, we are trying to create thread
1857 * objects for the already running tasks on the machine.
1858 *
1859 * Normally, for a kernel FORK event, we want to clone the parent's
1860 * maps because that is what the kernel just did.
1861 *
1862 * But when synthesizing, this should not be done. If we do, we end up
1863 * with overlapping maps as we process the sythesized MMAP2 events that
1864 * get delivered shortly thereafter.
1865 *
1866 * Use the FORK event misc flags in an internal way to signal this
1867 * situation, so we can elide the map clone when appropriate.
1868 */
1869 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870 do_maps_clone = false;
1871
1872 if (thread == NULL || parent == NULL ||
1873 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875 err = -1;
1876 }
1877 thread__put(thread);
1878 thread__put(parent);
1879
1880 return err;
1881}
1882
1883int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884 struct perf_sample *sample __maybe_unused)
1885{
1886 struct thread *thread = machine__find_thread(machine,
1887 event->fork.pid,
1888 event->fork.tid);
1889
1890 if (dump_trace)
1891 perf_event__fprintf_task(event, stdout);
1892
1893 if (thread != NULL) {
1894 thread__exited(thread);
1895 thread__put(thread);
1896 }
1897
1898 return 0;
1899}
1900
1901int machine__process_event(struct machine *machine, union perf_event *event,
1902 struct perf_sample *sample)
1903{
1904 int ret;
1905
1906 switch (event->header.type) {
1907 case PERF_RECORD_COMM:
1908 ret = machine__process_comm_event(machine, event, sample); break;
1909 case PERF_RECORD_MMAP:
1910 ret = machine__process_mmap_event(machine, event, sample); break;
1911 case PERF_RECORD_NAMESPACES:
1912 ret = machine__process_namespaces_event(machine, event, sample); break;
1913 case PERF_RECORD_MMAP2:
1914 ret = machine__process_mmap2_event(machine, event, sample); break;
1915 case PERF_RECORD_FORK:
1916 ret = machine__process_fork_event(machine, event, sample); break;
1917 case PERF_RECORD_EXIT:
1918 ret = machine__process_exit_event(machine, event, sample); break;
1919 case PERF_RECORD_LOST:
1920 ret = machine__process_lost_event(machine, event, sample); break;
1921 case PERF_RECORD_AUX:
1922 ret = machine__process_aux_event(machine, event); break;
1923 case PERF_RECORD_ITRACE_START:
1924 ret = machine__process_itrace_start_event(machine, event); break;
1925 case PERF_RECORD_LOST_SAMPLES:
1926 ret = machine__process_lost_samples_event(machine, event, sample); break;
1927 case PERF_RECORD_SWITCH:
1928 case PERF_RECORD_SWITCH_CPU_WIDE:
1929 ret = machine__process_switch_event(machine, event); break;
1930 case PERF_RECORD_KSYMBOL:
1931 ret = machine__process_ksymbol(machine, event, sample); break;
1932 case PERF_RECORD_BPF_EVENT:
1933 ret = machine__process_bpf(machine, event, sample); break;
1934 default:
1935 ret = -1;
1936 break;
1937 }
1938
1939 return ret;
1940}
1941
1942static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943{
1944 if (!regexec(regex, sym->name, 0, NULL, 0))
1945 return 1;
1946 return 0;
1947}
1948
1949static void ip__resolve_ams(struct thread *thread,
1950 struct addr_map_symbol *ams,
1951 u64 ip)
1952{
1953 struct addr_location al;
1954
1955 memset(&al, 0, sizeof(al));
1956 /*
1957 * We cannot use the header.misc hint to determine whether a
1958 * branch stack address is user, kernel, guest, hypervisor.
1959 * Branches may straddle the kernel/user/hypervisor boundaries.
1960 * Thus, we have to try consecutively until we find a match
1961 * or else, the symbol is unknown
1962 */
1963 thread__find_cpumode_addr_location(thread, ip, &al);
1964
1965 ams->addr = ip;
1966 ams->al_addr = al.addr;
1967 ams->sym = al.sym;
1968 ams->map = al.map;
1969 ams->phys_addr = 0;
1970}
1971
1972static void ip__resolve_data(struct thread *thread,
1973 u8 m, struct addr_map_symbol *ams,
1974 u64 addr, u64 phys_addr)
1975{
1976 struct addr_location al;
1977
1978 memset(&al, 0, sizeof(al));
1979
1980 thread__find_symbol(thread, m, addr, &al);
1981
1982 ams->addr = addr;
1983 ams->al_addr = al.addr;
1984 ams->sym = al.sym;
1985 ams->map = al.map;
1986 ams->phys_addr = phys_addr;
1987}
1988
1989struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990 struct addr_location *al)
1991{
1992 struct mem_info *mi = mem_info__new();
1993
1994 if (!mi)
1995 return NULL;
1996
1997 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999 sample->addr, sample->phys_addr);
2000 mi->data_src.val = sample->data_src;
2001
2002 return mi;
2003}
2004
2005static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006{
2007 char *srcline = NULL;
2008
2009 if (!map || callchain_param.key == CCKEY_FUNCTION)
2010 return srcline;
2011
2012 srcline = srcline__tree_find(&map->dso->srclines, ip);
2013 if (!srcline) {
2014 bool show_sym = false;
2015 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016
2017 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018 sym, show_sym, show_addr, ip);
2019 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020 }
2021
2022 return srcline;
2023}
2024
2025struct iterations {
2026 int nr_loop_iter;
2027 u64 cycles;
2028};
2029
2030static int add_callchain_ip(struct thread *thread,
2031 struct callchain_cursor *cursor,
2032 struct symbol **parent,
2033 struct addr_location *root_al,
2034 u8 *cpumode,
2035 u64 ip,
2036 bool branch,
2037 struct branch_flags *flags,
2038 struct iterations *iter,
2039 u64 branch_from)
2040{
2041 struct addr_location al;
2042 int nr_loop_iter = 0;
2043 u64 iter_cycles = 0;
2044 const char *srcline = NULL;
2045
2046 al.filtered = 0;
2047 al.sym = NULL;
2048 if (!cpumode) {
2049 thread__find_cpumode_addr_location(thread, ip, &al);
2050 } else {
2051 if (ip >= PERF_CONTEXT_MAX) {
2052 switch (ip) {
2053 case PERF_CONTEXT_HV:
2054 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055 break;
2056 case PERF_CONTEXT_KERNEL:
2057 *cpumode = PERF_RECORD_MISC_KERNEL;
2058 break;
2059 case PERF_CONTEXT_USER:
2060 *cpumode = PERF_RECORD_MISC_USER;
2061 break;
2062 default:
2063 pr_debug("invalid callchain context: "
2064 "%"PRId64"\n", (s64) ip);
2065 /*
2066 * It seems the callchain is corrupted.
2067 * Discard all.
2068 */
2069 callchain_cursor_reset(cursor);
2070 return 1;
2071 }
2072 return 0;
2073 }
2074 thread__find_symbol(thread, *cpumode, ip, &al);
2075 }
2076
2077 if (al.sym != NULL) {
2078 if (perf_hpp_list.parent && !*parent &&
2079 symbol__match_regex(al.sym, &parent_regex))
2080 *parent = al.sym;
2081 else if (have_ignore_callees && root_al &&
2082 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083 /* Treat this symbol as the root,
2084 forgetting its callees. */
2085 *root_al = al;
2086 callchain_cursor_reset(cursor);
2087 }
2088 }
2089
2090 if (symbol_conf.hide_unresolved && al.sym == NULL)
2091 return 0;
2092
2093 if (iter) {
2094 nr_loop_iter = iter->nr_loop_iter;
2095 iter_cycles = iter->cycles;
2096 }
2097
2098 srcline = callchain_srcline(al.map, al.sym, al.addr);
2099 return callchain_cursor_append(cursor, ip, al.map, al.sym,
2100 branch, flags, nr_loop_iter,
2101 iter_cycles, branch_from, srcline);
2102}
2103
2104struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105 struct addr_location *al)
2106{
2107 unsigned int i;
2108 const struct branch_stack *bs = sample->branch_stack;
2109 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110
2111 if (!bi)
2112 return NULL;
2113
2114 for (i = 0; i < bs->nr; i++) {
2115 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117 bi[i].flags = bs->entries[i].flags;
2118 }
2119 return bi;
2120}
2121
2122static void save_iterations(struct iterations *iter,
2123 struct branch_entry *be, int nr)
2124{
2125 int i;
2126
2127 iter->nr_loop_iter++;
2128 iter->cycles = 0;
2129
2130 for (i = 0; i < nr; i++)
2131 iter->cycles += be[i].flags.cycles;
2132}
2133
2134#define CHASHSZ 127
2135#define CHASHBITS 7
2136#define NO_ENTRY 0xff
2137
2138#define PERF_MAX_BRANCH_DEPTH 127
2139
2140/* Remove loops. */
2141static int remove_loops(struct branch_entry *l, int nr,
2142 struct iterations *iter)
2143{
2144 int i, j, off;
2145 unsigned char chash[CHASHSZ];
2146
2147 memset(chash, NO_ENTRY, sizeof(chash));
2148
2149 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150
2151 for (i = 0; i < nr; i++) {
2152 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153
2154 /* no collision handling for now */
2155 if (chash[h] == NO_ENTRY) {
2156 chash[h] = i;
2157 } else if (l[chash[h]].from == l[i].from) {
2158 bool is_loop = true;
2159 /* check if it is a real loop */
2160 off = 0;
2161 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162 if (l[j].from != l[i + off].from) {
2163 is_loop = false;
2164 break;
2165 }
2166 if (is_loop) {
2167 j = nr - (i + off);
2168 if (j > 0) {
2169 save_iterations(iter + i + off,
2170 l + i, off);
2171
2172 memmove(iter + i, iter + i + off,
2173 j * sizeof(*iter));
2174
2175 memmove(l + i, l + i + off,
2176 j * sizeof(*l));
2177 }
2178
2179 nr -= off;
2180 }
2181 }
2182 }
2183 return nr;
2184}
2185
2186/*
2187 * Recolve LBR callstack chain sample
2188 * Return:
2189 * 1 on success get LBR callchain information
2190 * 0 no available LBR callchain information, should try fp
2191 * negative error code on other errors.
2192 */
2193static int resolve_lbr_callchain_sample(struct thread *thread,
2194 struct callchain_cursor *cursor,
2195 struct perf_sample *sample,
2196 struct symbol **parent,
2197 struct addr_location *root_al,
2198 int max_stack)
2199{
2200 struct ip_callchain *chain = sample->callchain;
2201 int chain_nr = min(max_stack, (int)chain->nr), i;
2202 u8 cpumode = PERF_RECORD_MISC_USER;
2203 u64 ip, branch_from = 0;
2204
2205 for (i = 0; i < chain_nr; i++) {
2206 if (chain->ips[i] == PERF_CONTEXT_USER)
2207 break;
2208 }
2209
2210 /* LBR only affects the user callchain */
2211 if (i != chain_nr) {
2212 struct branch_stack *lbr_stack = sample->branch_stack;
2213 int lbr_nr = lbr_stack->nr, j, k;
2214 bool branch;
2215 struct branch_flags *flags;
2216 /*
2217 * LBR callstack can only get user call chain.
2218 * The mix_chain_nr is kernel call chain
2219 * number plus LBR user call chain number.
2220 * i is kernel call chain number,
2221 * 1 is PERF_CONTEXT_USER,
2222 * lbr_nr + 1 is the user call chain number.
2223 * For details, please refer to the comments
2224 * in callchain__printf
2225 */
2226 int mix_chain_nr = i + 1 + lbr_nr + 1;
2227
2228 for (j = 0; j < mix_chain_nr; j++) {
2229 int err;
2230 branch = false;
2231 flags = NULL;
2232
2233 if (callchain_param.order == ORDER_CALLEE) {
2234 if (j < i + 1)
2235 ip = chain->ips[j];
2236 else if (j > i + 1) {
2237 k = j - i - 2;
2238 ip = lbr_stack->entries[k].from;
2239 branch = true;
2240 flags = &lbr_stack->entries[k].flags;
2241 } else {
2242 ip = lbr_stack->entries[0].to;
2243 branch = true;
2244 flags = &lbr_stack->entries[0].flags;
2245 branch_from =
2246 lbr_stack->entries[0].from;
2247 }
2248 } else {
2249 if (j < lbr_nr) {
2250 k = lbr_nr - j - 1;
2251 ip = lbr_stack->entries[k].from;
2252 branch = true;
2253 flags = &lbr_stack->entries[k].flags;
2254 }
2255 else if (j > lbr_nr)
2256 ip = chain->ips[i + 1 - (j - lbr_nr)];
2257 else {
2258 ip = lbr_stack->entries[0].to;
2259 branch = true;
2260 flags = &lbr_stack->entries[0].flags;
2261 branch_from =
2262 lbr_stack->entries[0].from;
2263 }
2264 }
2265
2266 err = add_callchain_ip(thread, cursor, parent,
2267 root_al, &cpumode, ip,
2268 branch, flags, NULL,
2269 branch_from);
2270 if (err)
2271 return (err < 0) ? err : 0;
2272 }
2273 return 1;
2274 }
2275
2276 return 0;
2277}
2278
2279static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280 struct callchain_cursor *cursor,
2281 struct symbol **parent,
2282 struct addr_location *root_al,
2283 u8 *cpumode, int ent)
2284{
2285 int err = 0;
2286
2287 while (--ent >= 0) {
2288 u64 ip = chain->ips[ent];
2289
2290 if (ip >= PERF_CONTEXT_MAX) {
2291 err = add_callchain_ip(thread, cursor, parent,
2292 root_al, cpumode, ip,
2293 false, NULL, NULL, 0);
2294 break;
2295 }
2296 }
2297 return err;
2298}
2299
2300static int thread__resolve_callchain_sample(struct thread *thread,
2301 struct callchain_cursor *cursor,
2302 struct evsel *evsel,
2303 struct perf_sample *sample,
2304 struct symbol **parent,
2305 struct addr_location *root_al,
2306 int max_stack)
2307{
2308 struct branch_stack *branch = sample->branch_stack;
2309 struct ip_callchain *chain = sample->callchain;
2310 int chain_nr = 0;
2311 u8 cpumode = PERF_RECORD_MISC_USER;
2312 int i, j, err, nr_entries;
2313 int skip_idx = -1;
2314 int first_call = 0;
2315
2316 if (chain)
2317 chain_nr = chain->nr;
2318
2319 if (perf_evsel__has_branch_callstack(evsel)) {
2320 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321 root_al, max_stack);
2322 if (err)
2323 return (err < 0) ? err : 0;
2324 }
2325
2326 /*
2327 * Based on DWARF debug information, some architectures skip
2328 * a callchain entry saved by the kernel.
2329 */
2330 skip_idx = arch_skip_callchain_idx(thread, chain);
2331
2332 /*
2333 * Add branches to call stack for easier browsing. This gives
2334 * more context for a sample than just the callers.
2335 *
2336 * This uses individual histograms of paths compared to the
2337 * aggregated histograms the normal LBR mode uses.
2338 *
2339 * Limitations for now:
2340 * - No extra filters
2341 * - No annotations (should annotate somehow)
2342 */
2343
2344 if (branch && callchain_param.branch_callstack) {
2345 int nr = min(max_stack, (int)branch->nr);
2346 struct branch_entry be[nr];
2347 struct iterations iter[nr];
2348
2349 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350 pr_warning("corrupted branch chain. skipping...\n");
2351 goto check_calls;
2352 }
2353
2354 for (i = 0; i < nr; i++) {
2355 if (callchain_param.order == ORDER_CALLEE) {
2356 be[i] = branch->entries[i];
2357
2358 if (chain == NULL)
2359 continue;
2360
2361 /*
2362 * Check for overlap into the callchain.
2363 * The return address is one off compared to
2364 * the branch entry. To adjust for this
2365 * assume the calling instruction is not longer
2366 * than 8 bytes.
2367 */
2368 if (i == skip_idx ||
2369 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370 first_call++;
2371 else if (be[i].from < chain->ips[first_call] &&
2372 be[i].from >= chain->ips[first_call] - 8)
2373 first_call++;
2374 } else
2375 be[i] = branch->entries[branch->nr - i - 1];
2376 }
2377
2378 memset(iter, 0, sizeof(struct iterations) * nr);
2379 nr = remove_loops(be, nr, iter);
2380
2381 for (i = 0; i < nr; i++) {
2382 err = add_callchain_ip(thread, cursor, parent,
2383 root_al,
2384 NULL, be[i].to,
2385 true, &be[i].flags,
2386 NULL, be[i].from);
2387
2388 if (!err)
2389 err = add_callchain_ip(thread, cursor, parent, root_al,
2390 NULL, be[i].from,
2391 true, &be[i].flags,
2392 &iter[i], 0);
2393 if (err == -EINVAL)
2394 break;
2395 if (err)
2396 return err;
2397 }
2398
2399 if (chain_nr == 0)
2400 return 0;
2401
2402 chain_nr -= nr;
2403 }
2404
2405check_calls:
2406 if (callchain_param.order != ORDER_CALLEE) {
2407 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408 &cpumode, chain->nr - first_call);
2409 if (err)
2410 return (err < 0) ? err : 0;
2411 }
2412 for (i = first_call, nr_entries = 0;
2413 i < chain_nr && nr_entries < max_stack; i++) {
2414 u64 ip;
2415
2416 if (callchain_param.order == ORDER_CALLEE)
2417 j = i;
2418 else
2419 j = chain->nr - i - 1;
2420
2421#ifdef HAVE_SKIP_CALLCHAIN_IDX
2422 if (j == skip_idx)
2423 continue;
2424#endif
2425 ip = chain->ips[j];
2426 if (ip < PERF_CONTEXT_MAX)
2427 ++nr_entries;
2428 else if (callchain_param.order != ORDER_CALLEE) {
2429 err = find_prev_cpumode(chain, thread, cursor, parent,
2430 root_al, &cpumode, j);
2431 if (err)
2432 return (err < 0) ? err : 0;
2433 continue;
2434 }
2435
2436 err = add_callchain_ip(thread, cursor, parent,
2437 root_al, &cpumode, ip,
2438 false, NULL, NULL, 0);
2439
2440 if (err)
2441 return (err < 0) ? err : 0;
2442 }
2443
2444 return 0;
2445}
2446
2447static int append_inlines(struct callchain_cursor *cursor,
2448 struct map *map, struct symbol *sym, u64 ip)
2449{
2450 struct inline_node *inline_node;
2451 struct inline_list *ilist;
2452 u64 addr;
2453 int ret = 1;
2454
2455 if (!symbol_conf.inline_name || !map || !sym)
2456 return ret;
2457
2458 addr = map__map_ip(map, ip);
2459 addr = map__rip_2objdump(map, addr);
2460
2461 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462 if (!inline_node) {
2463 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464 if (!inline_node)
2465 return ret;
2466 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467 }
2468
2469 list_for_each_entry(ilist, &inline_node->val, list) {
2470 ret = callchain_cursor_append(cursor, ip, map,
2471 ilist->symbol, false,
2472 NULL, 0, 0, 0, ilist->srcline);
2473
2474 if (ret != 0)
2475 return ret;
2476 }
2477
2478 return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483 struct callchain_cursor *cursor = arg;
2484 const char *srcline = NULL;
2485 u64 addr = entry->ip;
2486
2487 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488 return 0;
2489
2490 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491 return 0;
2492
2493 /*
2494 * Convert entry->ip from a virtual address to an offset in
2495 * its corresponding binary.
2496 */
2497 if (entry->map)
2498 addr = map__map_ip(entry->map, entry->ip);
2499
2500 srcline = callchain_srcline(entry->map, entry->sym, addr);
2501 return callchain_cursor_append(cursor, entry->ip,
2502 entry->map, entry->sym,
2503 false, NULL, 0, 0, 0, srcline);
2504}
2505
2506static int thread__resolve_callchain_unwind(struct thread *thread,
2507 struct callchain_cursor *cursor,
2508 struct evsel *evsel,
2509 struct perf_sample *sample,
2510 int max_stack)
2511{
2512 /* Can we do dwarf post unwind? */
2513 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515 return 0;
2516
2517 /* Bail out if nothing was captured. */
2518 if ((!sample->user_regs.regs) ||
2519 (!sample->user_stack.size))
2520 return 0;
2521
2522 return unwind__get_entries(unwind_entry, cursor,
2523 thread, sample, max_stack);
2524}
2525
2526int thread__resolve_callchain(struct thread *thread,
2527 struct callchain_cursor *cursor,
2528 struct evsel *evsel,
2529 struct perf_sample *sample,
2530 struct symbol **parent,
2531 struct addr_location *root_al,
2532 int max_stack)
2533{
2534 int ret = 0;
2535
2536 callchain_cursor_reset(cursor);
2537
2538 if (callchain_param.order == ORDER_CALLEE) {
2539 ret = thread__resolve_callchain_sample(thread, cursor,
2540 evsel, sample,
2541 parent, root_al,
2542 max_stack);
2543 if (ret)
2544 return ret;
2545 ret = thread__resolve_callchain_unwind(thread, cursor,
2546 evsel, sample,
2547 max_stack);
2548 } else {
2549 ret = thread__resolve_callchain_unwind(thread, cursor,
2550 evsel, sample,
2551 max_stack);
2552 if (ret)
2553 return ret;
2554 ret = thread__resolve_callchain_sample(thread, cursor,
2555 evsel, sample,
2556 parent, root_al,
2557 max_stack);
2558 }
2559
2560 return ret;
2561}
2562
2563int machine__for_each_thread(struct machine *machine,
2564 int (*fn)(struct thread *thread, void *p),
2565 void *priv)
2566{
2567 struct threads *threads;
2568 struct rb_node *nd;
2569 struct thread *thread;
2570 int rc = 0;
2571 int i;
2572
2573 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574 threads = &machine->threads[i];
2575 for (nd = rb_first_cached(&threads->entries); nd;
2576 nd = rb_next(nd)) {
2577 thread = rb_entry(nd, struct thread, rb_node);
2578 rc = fn(thread, priv);
2579 if (rc != 0)
2580 return rc;
2581 }
2582
2583 list_for_each_entry(thread, &threads->dead, node) {
2584 rc = fn(thread, priv);
2585 if (rc != 0)
2586 return rc;
2587 }
2588 }
2589 return rc;
2590}
2591
2592int machines__for_each_thread(struct machines *machines,
2593 int (*fn)(struct thread *thread, void *p),
2594 void *priv)
2595{
2596 struct rb_node *nd;
2597 int rc = 0;
2598
2599 rc = machine__for_each_thread(&machines->host, fn, priv);
2600 if (rc != 0)
2601 return rc;
2602
2603 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605
2606 rc = machine__for_each_thread(machine, fn, priv);
2607 if (rc != 0)
2608 return rc;
2609 }
2610 return rc;
2611}
2612
2613pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614{
2615 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616
2617 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618 return -1;
2619
2620 return machine->current_tid[cpu];
2621}
2622
2623int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624 pid_t tid)
2625{
2626 struct thread *thread;
2627 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628
2629 if (cpu < 0)
2630 return -EINVAL;
2631
2632 if (!machine->current_tid) {
2633 int i;
2634
2635 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636 if (!machine->current_tid)
2637 return -ENOMEM;
2638 for (i = 0; i < nr_cpus; i++)
2639 machine->current_tid[i] = -1;
2640 }
2641
2642 if (cpu >= nr_cpus) {
2643 pr_err("Requested CPU %d too large. ", cpu);
2644 pr_err("Consider raising MAX_NR_CPUS\n");
2645 return -EINVAL;
2646 }
2647
2648 machine->current_tid[cpu] = tid;
2649
2650 thread = machine__findnew_thread(machine, pid, tid);
2651 if (!thread)
2652 return -ENOMEM;
2653
2654 thread->cpu = cpu;
2655 thread__put(thread);
2656
2657 return 0;
2658}
2659
2660/*
2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662 * normalized arch is needed.
2663 */
2664bool machine__is(struct machine *machine, const char *arch)
2665{
2666 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667}
2668
2669int machine__nr_cpus_avail(struct machine *machine)
2670{
2671 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672}
2673
2674int machine__get_kernel_start(struct machine *machine)
2675{
2676 struct map *map = machine__kernel_map(machine);
2677 int err = 0;
2678
2679 /*
2680 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681 * kernel. Note that addresses are unsigned so that on a 32-bit system
2682 * all addresses including kernel addresses are less than 2^32. In
2683 * that case (32-bit system), if the kernel mapping is unknown, all
2684 * addresses will be assumed to be in user space - see
2685 * machine__kernel_ip().
2686 */
2687 machine->kernel_start = 1ULL << 63;
2688 if (map) {
2689 err = map__load(map);
2690 /*
2691 * On x86_64, PTI entry trampolines are less than the
2692 * start of kernel text, but still above 2^63. So leave
2693 * kernel_start = 1ULL << 63 for x86_64.
2694 */
2695 if (!err && !machine__is(machine, "x86_64"))
2696 machine->kernel_start = map->start;
2697 }
2698 return err;
2699}
2700
2701u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702{
2703 u8 addr_cpumode = cpumode;
2704 bool kernel_ip;
2705
2706 if (!machine->single_address_space)
2707 goto out;
2708
2709 kernel_ip = machine__kernel_ip(machine, addr);
2710 switch (cpumode) {
2711 case PERF_RECORD_MISC_KERNEL:
2712 case PERF_RECORD_MISC_USER:
2713 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714 PERF_RECORD_MISC_USER;
2715 break;
2716 case PERF_RECORD_MISC_GUEST_KERNEL:
2717 case PERF_RECORD_MISC_GUEST_USER:
2718 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719 PERF_RECORD_MISC_GUEST_USER;
2720 break;
2721 default:
2722 break;
2723 }
2724out:
2725 return addr_cpumode;
2726}
2727
2728struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729{
2730 return dsos__findnew(&machine->dsos, filename);
2731}
2732
2733char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734{
2735 struct machine *machine = vmachine;
2736 struct map *map;
2737 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739 if (sym == NULL)
2740 return NULL;
2741
2742 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743 *addrp = map->unmap_ip(map, sym->start);
2744 return sym->name;
2745}
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "srcline.h"
20#include "symbol.h"
21#include "sort.h"
22#include "strlist.h"
23#include "target.h"
24#include "thread.h"
25#include "util.h"
26#include "vdso.h"
27#include <stdbool.h>
28#include <sys/types.h>
29#include <sys/stat.h>
30#include <unistd.h>
31#include "unwind.h"
32#include "linux/hash.h"
33#include "asm/bug.h"
34#include "bpf-event.h"
35#include <internal/lib.h> // page_size
36#include "cgroup.h"
37
38#include <linux/ctype.h>
39#include <symbol/kallsyms.h>
40#include <linux/mman.h>
41#include <linux/string.h>
42#include <linux/zalloc.h>
43
44static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45
46static struct dso *machine__kernel_dso(struct machine *machine)
47{
48 return machine->vmlinux_map->dso;
49}
50
51static void dsos__init(struct dsos *dsos)
52{
53 INIT_LIST_HEAD(&dsos->head);
54 dsos->root = RB_ROOT;
55 init_rwsem(&dsos->lock);
56}
57
58static void machine__threads_init(struct machine *machine)
59{
60 int i;
61
62 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 struct threads *threads = &machine->threads[i];
64 threads->entries = RB_ROOT_CACHED;
65 init_rwsem(&threads->lock);
66 threads->nr = 0;
67 INIT_LIST_HEAD(&threads->dead);
68 threads->last_match = NULL;
69 }
70}
71
72static int machine__set_mmap_name(struct machine *machine)
73{
74 if (machine__is_host(machine))
75 machine->mmap_name = strdup("[kernel.kallsyms]");
76 else if (machine__is_default_guest(machine))
77 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 machine->pid) < 0)
80 machine->mmap_name = NULL;
81
82 return machine->mmap_name ? 0 : -ENOMEM;
83}
84
85int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86{
87 int err = -ENOMEM;
88
89 memset(machine, 0, sizeof(*machine));
90 maps__init(&machine->kmaps, machine);
91 RB_CLEAR_NODE(&machine->rb_node);
92 dsos__init(&machine->dsos);
93
94 machine__threads_init(machine);
95
96 machine->vdso_info = NULL;
97 machine->env = NULL;
98
99 machine->pid = pid;
100
101 machine->id_hdr_size = 0;
102 machine->kptr_restrict_warned = false;
103 machine->comm_exec = false;
104 machine->kernel_start = 0;
105 machine->vmlinux_map = NULL;
106
107 machine->root_dir = strdup(root_dir);
108 if (machine->root_dir == NULL)
109 return -ENOMEM;
110
111 if (machine__set_mmap_name(machine))
112 goto out;
113
114 if (pid != HOST_KERNEL_ID) {
115 struct thread *thread = machine__findnew_thread(machine, -1,
116 pid);
117 char comm[64];
118
119 if (thread == NULL)
120 goto out;
121
122 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 thread__set_comm(thread, comm, 0);
124 thread__put(thread);
125 }
126
127 machine->current_tid = NULL;
128 err = 0;
129
130out:
131 if (err) {
132 zfree(&machine->root_dir);
133 zfree(&machine->mmap_name);
134 }
135 return 0;
136}
137
138struct machine *machine__new_host(void)
139{
140 struct machine *machine = malloc(sizeof(*machine));
141
142 if (machine != NULL) {
143 machine__init(machine, "", HOST_KERNEL_ID);
144
145 if (machine__create_kernel_maps(machine) < 0)
146 goto out_delete;
147 }
148
149 return machine;
150out_delete:
151 free(machine);
152 return NULL;
153}
154
155struct machine *machine__new_kallsyms(void)
156{
157 struct machine *machine = machine__new_host();
158 /*
159 * FIXME:
160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 * ask for not using the kcore parsing code, once this one is fixed
162 * to create a map per module.
163 */
164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 machine__delete(machine);
166 machine = NULL;
167 }
168
169 return machine;
170}
171
172static void dsos__purge(struct dsos *dsos)
173{
174 struct dso *pos, *n;
175
176 down_write(&dsos->lock);
177
178 list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 RB_CLEAR_NODE(&pos->rb_node);
180 pos->root = NULL;
181 list_del_init(&pos->node);
182 dso__put(pos);
183 }
184
185 up_write(&dsos->lock);
186}
187
188static void dsos__exit(struct dsos *dsos)
189{
190 dsos__purge(dsos);
191 exit_rwsem(&dsos->lock);
192}
193
194void machine__delete_threads(struct machine *machine)
195{
196 struct rb_node *nd;
197 int i;
198
199 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 struct threads *threads = &machine->threads[i];
201 down_write(&threads->lock);
202 nd = rb_first_cached(&threads->entries);
203 while (nd) {
204 struct thread *t = rb_entry(nd, struct thread, rb_node);
205
206 nd = rb_next(nd);
207 __machine__remove_thread(machine, t, false);
208 }
209 up_write(&threads->lock);
210 }
211}
212
213void machine__exit(struct machine *machine)
214{
215 int i;
216
217 if (machine == NULL)
218 return;
219
220 machine__destroy_kernel_maps(machine);
221 maps__exit(&machine->kmaps);
222 dsos__exit(&machine->dsos);
223 machine__exit_vdso(machine);
224 zfree(&machine->root_dir);
225 zfree(&machine->mmap_name);
226 zfree(&machine->current_tid);
227
228 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 struct threads *threads = &machine->threads[i];
230 struct thread *thread, *n;
231 /*
232 * Forget about the dead, at this point whatever threads were
233 * left in the dead lists better have a reference count taken
234 * by who is using them, and then, when they drop those references
235 * and it finally hits zero, thread__put() will check and see that
236 * its not in the dead threads list and will not try to remove it
237 * from there, just calling thread__delete() straight away.
238 */
239 list_for_each_entry_safe(thread, n, &threads->dead, node)
240 list_del_init(&thread->node);
241
242 exit_rwsem(&threads->lock);
243 }
244}
245
246void machine__delete(struct machine *machine)
247{
248 if (machine) {
249 machine__exit(machine);
250 free(machine);
251 }
252}
253
254void machines__init(struct machines *machines)
255{
256 machine__init(&machines->host, "", HOST_KERNEL_ID);
257 machines->guests = RB_ROOT_CACHED;
258}
259
260void machines__exit(struct machines *machines)
261{
262 machine__exit(&machines->host);
263 /* XXX exit guest */
264}
265
266struct machine *machines__add(struct machines *machines, pid_t pid,
267 const char *root_dir)
268{
269 struct rb_node **p = &machines->guests.rb_root.rb_node;
270 struct rb_node *parent = NULL;
271 struct machine *pos, *machine = malloc(sizeof(*machine));
272 bool leftmost = true;
273
274 if (machine == NULL)
275 return NULL;
276
277 if (machine__init(machine, root_dir, pid) != 0) {
278 free(machine);
279 return NULL;
280 }
281
282 while (*p != NULL) {
283 parent = *p;
284 pos = rb_entry(parent, struct machine, rb_node);
285 if (pid < pos->pid)
286 p = &(*p)->rb_left;
287 else {
288 p = &(*p)->rb_right;
289 leftmost = false;
290 }
291 }
292
293 rb_link_node(&machine->rb_node, parent, p);
294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295
296 return machine;
297}
298
299void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300{
301 struct rb_node *nd;
302
303 machines->host.comm_exec = comm_exec;
304
305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 struct machine *machine = rb_entry(nd, struct machine, rb_node);
307
308 machine->comm_exec = comm_exec;
309 }
310}
311
312struct machine *machines__find(struct machines *machines, pid_t pid)
313{
314 struct rb_node **p = &machines->guests.rb_root.rb_node;
315 struct rb_node *parent = NULL;
316 struct machine *machine;
317 struct machine *default_machine = NULL;
318
319 if (pid == HOST_KERNEL_ID)
320 return &machines->host;
321
322 while (*p != NULL) {
323 parent = *p;
324 machine = rb_entry(parent, struct machine, rb_node);
325 if (pid < machine->pid)
326 p = &(*p)->rb_left;
327 else if (pid > machine->pid)
328 p = &(*p)->rb_right;
329 else
330 return machine;
331 if (!machine->pid)
332 default_machine = machine;
333 }
334
335 return default_machine;
336}
337
338struct machine *machines__findnew(struct machines *machines, pid_t pid)
339{
340 char path[PATH_MAX];
341 const char *root_dir = "";
342 struct machine *machine = machines__find(machines, pid);
343
344 if (machine && (machine->pid == pid))
345 goto out;
346
347 if ((pid != HOST_KERNEL_ID) &&
348 (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 (symbol_conf.guestmount)) {
350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 if (access(path, R_OK)) {
352 static struct strlist *seen;
353
354 if (!seen)
355 seen = strlist__new(NULL, NULL);
356
357 if (!strlist__has_entry(seen, path)) {
358 pr_err("Can't access file %s\n", path);
359 strlist__add(seen, path);
360 }
361 machine = NULL;
362 goto out;
363 }
364 root_dir = path;
365 }
366
367 machine = machines__add(machines, pid, root_dir);
368out:
369 return machine;
370}
371
372void machines__process_guests(struct machines *machines,
373 machine__process_t process, void *data)
374{
375 struct rb_node *nd;
376
377 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378 struct machine *pos = rb_entry(nd, struct machine, rb_node);
379 process(pos, data);
380 }
381}
382
383void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384{
385 struct rb_node *node;
386 struct machine *machine;
387
388 machines->host.id_hdr_size = id_hdr_size;
389
390 for (node = rb_first_cached(&machines->guests); node;
391 node = rb_next(node)) {
392 machine = rb_entry(node, struct machine, rb_node);
393 machine->id_hdr_size = id_hdr_size;
394 }
395
396 return;
397}
398
399static void machine__update_thread_pid(struct machine *machine,
400 struct thread *th, pid_t pid)
401{
402 struct thread *leader;
403
404 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
405 return;
406
407 th->pid_ = pid;
408
409 if (th->pid_ == th->tid)
410 return;
411
412 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413 if (!leader)
414 goto out_err;
415
416 if (!leader->maps)
417 leader->maps = maps__new(machine);
418
419 if (!leader->maps)
420 goto out_err;
421
422 if (th->maps == leader->maps)
423 return;
424
425 if (th->maps) {
426 /*
427 * Maps are created from MMAP events which provide the pid and
428 * tid. Consequently there never should be any maps on a thread
429 * with an unknown pid. Just print an error if there are.
430 */
431 if (!maps__empty(th->maps))
432 pr_err("Discarding thread maps for %d:%d\n",
433 th->pid_, th->tid);
434 maps__put(th->maps);
435 }
436
437 th->maps = maps__get(leader->maps);
438out_put:
439 thread__put(leader);
440 return;
441out_err:
442 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443 goto out_put;
444}
445
446/*
447 * Front-end cache - TID lookups come in blocks,
448 * so most of the time we dont have to look up
449 * the full rbtree:
450 */
451static struct thread*
452__threads__get_last_match(struct threads *threads, struct machine *machine,
453 int pid, int tid)
454{
455 struct thread *th;
456
457 th = threads->last_match;
458 if (th != NULL) {
459 if (th->tid == tid) {
460 machine__update_thread_pid(machine, th, pid);
461 return thread__get(th);
462 }
463
464 threads->last_match = NULL;
465 }
466
467 return NULL;
468}
469
470static struct thread*
471threads__get_last_match(struct threads *threads, struct machine *machine,
472 int pid, int tid)
473{
474 struct thread *th = NULL;
475
476 if (perf_singlethreaded)
477 th = __threads__get_last_match(threads, machine, pid, tid);
478
479 return th;
480}
481
482static void
483__threads__set_last_match(struct threads *threads, struct thread *th)
484{
485 threads->last_match = th;
486}
487
488static void
489threads__set_last_match(struct threads *threads, struct thread *th)
490{
491 if (perf_singlethreaded)
492 __threads__set_last_match(threads, th);
493}
494
495/*
496 * Caller must eventually drop thread->refcnt returned with a successful
497 * lookup/new thread inserted.
498 */
499static struct thread *____machine__findnew_thread(struct machine *machine,
500 struct threads *threads,
501 pid_t pid, pid_t tid,
502 bool create)
503{
504 struct rb_node **p = &threads->entries.rb_root.rb_node;
505 struct rb_node *parent = NULL;
506 struct thread *th;
507 bool leftmost = true;
508
509 th = threads__get_last_match(threads, machine, pid, tid);
510 if (th)
511 return th;
512
513 while (*p != NULL) {
514 parent = *p;
515 th = rb_entry(parent, struct thread, rb_node);
516
517 if (th->tid == tid) {
518 threads__set_last_match(threads, th);
519 machine__update_thread_pid(machine, th, pid);
520 return thread__get(th);
521 }
522
523 if (tid < th->tid)
524 p = &(*p)->rb_left;
525 else {
526 p = &(*p)->rb_right;
527 leftmost = false;
528 }
529 }
530
531 if (!create)
532 return NULL;
533
534 th = thread__new(pid, tid);
535 if (th != NULL) {
536 rb_link_node(&th->rb_node, parent, p);
537 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538
539 /*
540 * We have to initialize maps separately after rb tree is updated.
541 *
542 * The reason is that we call machine__findnew_thread
543 * within thread__init_maps to find the thread
544 * leader and that would screwed the rb tree.
545 */
546 if (thread__init_maps(th, machine)) {
547 rb_erase_cached(&th->rb_node, &threads->entries);
548 RB_CLEAR_NODE(&th->rb_node);
549 thread__put(th);
550 return NULL;
551 }
552 /*
553 * It is now in the rbtree, get a ref
554 */
555 thread__get(th);
556 threads__set_last_match(threads, th);
557 ++threads->nr;
558 }
559
560 return th;
561}
562
563struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564{
565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566}
567
568struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569 pid_t tid)
570{
571 struct threads *threads = machine__threads(machine, tid);
572 struct thread *th;
573
574 down_write(&threads->lock);
575 th = __machine__findnew_thread(machine, pid, tid);
576 up_write(&threads->lock);
577 return th;
578}
579
580struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581 pid_t tid)
582{
583 struct threads *threads = machine__threads(machine, tid);
584 struct thread *th;
585
586 down_read(&threads->lock);
587 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
588 up_read(&threads->lock);
589 return th;
590}
591
592struct comm *machine__thread_exec_comm(struct machine *machine,
593 struct thread *thread)
594{
595 if (machine->comm_exec)
596 return thread__exec_comm(thread);
597 else
598 return thread__comm(thread);
599}
600
601int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 struct perf_sample *sample)
603{
604 struct thread *thread = machine__findnew_thread(machine,
605 event->comm.pid,
606 event->comm.tid);
607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 int err = 0;
609
610 if (exec)
611 machine->comm_exec = true;
612
613 if (dump_trace)
614 perf_event__fprintf_comm(event, stdout);
615
616 if (thread == NULL ||
617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 err = -1;
620 }
621
622 thread__put(thread);
623
624 return err;
625}
626
627int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 union perf_event *event,
629 struct perf_sample *sample __maybe_unused)
630{
631 struct thread *thread = machine__findnew_thread(machine,
632 event->namespaces.pid,
633 event->namespaces.tid);
634 int err = 0;
635
636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 "\nWARNING: kernel seems to support more namespaces than perf"
638 " tool.\nTry updating the perf tool..\n\n");
639
640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 "\nWARNING: perf tool seems to support more namespaces than"
642 " the kernel.\nTry updating the kernel..\n\n");
643
644 if (dump_trace)
645 perf_event__fprintf_namespaces(event, stdout);
646
647 if (thread == NULL ||
648 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 err = -1;
651 }
652
653 thread__put(thread);
654
655 return err;
656}
657
658int machine__process_cgroup_event(struct machine *machine,
659 union perf_event *event,
660 struct perf_sample *sample __maybe_unused)
661{
662 struct cgroup *cgrp;
663
664 if (dump_trace)
665 perf_event__fprintf_cgroup(event, stdout);
666
667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668 if (cgrp == NULL)
669 return -ENOMEM;
670
671 return 0;
672}
673
674int machine__process_lost_event(struct machine *machine __maybe_unused,
675 union perf_event *event, struct perf_sample *sample __maybe_unused)
676{
677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 event->lost.id, event->lost.lost);
679 return 0;
680}
681
682int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683 union perf_event *event, struct perf_sample *sample)
684{
685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686 sample->id, event->lost_samples.lost);
687 return 0;
688}
689
690static struct dso *machine__findnew_module_dso(struct machine *machine,
691 struct kmod_path *m,
692 const char *filename)
693{
694 struct dso *dso;
695
696 down_write(&machine->dsos.lock);
697
698 dso = __dsos__find(&machine->dsos, m->name, true);
699 if (!dso) {
700 dso = __dsos__addnew(&machine->dsos, m->name);
701 if (dso == NULL)
702 goto out_unlock;
703
704 dso__set_module_info(dso, m, machine);
705 dso__set_long_name(dso, strdup(filename), true);
706 dso->kernel = DSO_SPACE__KERNEL;
707 }
708
709 dso__get(dso);
710out_unlock:
711 up_write(&machine->dsos.lock);
712 return dso;
713}
714
715int machine__process_aux_event(struct machine *machine __maybe_unused,
716 union perf_event *event)
717{
718 if (dump_trace)
719 perf_event__fprintf_aux(event, stdout);
720 return 0;
721}
722
723int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
724 union perf_event *event)
725{
726 if (dump_trace)
727 perf_event__fprintf_itrace_start(event, stdout);
728 return 0;
729}
730
731int machine__process_switch_event(struct machine *machine __maybe_unused,
732 union perf_event *event)
733{
734 if (dump_trace)
735 perf_event__fprintf_switch(event, stdout);
736 return 0;
737}
738
739static int machine__process_ksymbol_register(struct machine *machine,
740 union perf_event *event,
741 struct perf_sample *sample __maybe_unused)
742{
743 struct symbol *sym;
744 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
745
746 if (!map) {
747 struct dso *dso = dso__new(event->ksymbol.name);
748
749 if (dso) {
750 dso->kernel = DSO_SPACE__KERNEL;
751 map = map__new2(0, dso);
752 }
753
754 if (!dso || !map) {
755 dso__put(dso);
756 return -ENOMEM;
757 }
758
759 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
760 map->dso->binary_type = DSO_BINARY_TYPE__OOL;
761 map->dso->data.file_size = event->ksymbol.len;
762 dso__set_loaded(map->dso);
763 }
764
765 map->start = event->ksymbol.addr;
766 map->end = map->start + event->ksymbol.len;
767 maps__insert(&machine->kmaps, map);
768 dso__set_loaded(dso);
769
770 if (is_bpf_image(event->ksymbol.name)) {
771 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
772 dso__set_long_name(dso, "", false);
773 }
774 }
775
776 sym = symbol__new(map->map_ip(map, map->start),
777 event->ksymbol.len,
778 0, 0, event->ksymbol.name);
779 if (!sym)
780 return -ENOMEM;
781 dso__insert_symbol(map->dso, sym);
782 return 0;
783}
784
785static int machine__process_ksymbol_unregister(struct machine *machine,
786 union perf_event *event,
787 struct perf_sample *sample __maybe_unused)
788{
789 struct map *map;
790
791 map = maps__find(&machine->kmaps, event->ksymbol.addr);
792 if (map)
793 maps__remove(&machine->kmaps, map);
794
795 return 0;
796}
797
798int machine__process_ksymbol(struct machine *machine __maybe_unused,
799 union perf_event *event,
800 struct perf_sample *sample)
801{
802 if (dump_trace)
803 perf_event__fprintf_ksymbol(event, stdout);
804
805 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
806 return machine__process_ksymbol_unregister(machine, event,
807 sample);
808 return machine__process_ksymbol_register(machine, event, sample);
809}
810
811int machine__process_text_poke(struct machine *machine, union perf_event *event,
812 struct perf_sample *sample __maybe_unused)
813{
814 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
815 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
816
817 if (dump_trace)
818 perf_event__fprintf_text_poke(event, machine, stdout);
819
820 if (!event->text_poke.new_len)
821 return 0;
822
823 if (cpumode != PERF_RECORD_MISC_KERNEL) {
824 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
825 return 0;
826 }
827
828 if (map && map->dso) {
829 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
830 int ret;
831
832 /*
833 * Kernel maps might be changed when loading symbols so loading
834 * must be done prior to using kernel maps.
835 */
836 map__load(map);
837 ret = dso__data_write_cache_addr(map->dso, map, machine,
838 event->text_poke.addr,
839 new_bytes,
840 event->text_poke.new_len);
841 if (ret != event->text_poke.new_len)
842 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
843 event->text_poke.addr);
844 } else {
845 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
846 event->text_poke.addr);
847 }
848
849 return 0;
850}
851
852static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
853 const char *filename)
854{
855 struct map *map = NULL;
856 struct kmod_path m;
857 struct dso *dso;
858
859 if (kmod_path__parse_name(&m, filename))
860 return NULL;
861
862 dso = machine__findnew_module_dso(machine, &m, filename);
863 if (dso == NULL)
864 goto out;
865
866 map = map__new2(start, dso);
867 if (map == NULL)
868 goto out;
869
870 maps__insert(&machine->kmaps, map);
871
872 /* Put the map here because maps__insert alread got it */
873 map__put(map);
874out:
875 /* put the dso here, corresponding to machine__findnew_module_dso */
876 dso__put(dso);
877 zfree(&m.name);
878 return map;
879}
880
881size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
882{
883 struct rb_node *nd;
884 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
885
886 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
887 struct machine *pos = rb_entry(nd, struct machine, rb_node);
888 ret += __dsos__fprintf(&pos->dsos.head, fp);
889 }
890
891 return ret;
892}
893
894size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
895 bool (skip)(struct dso *dso, int parm), int parm)
896{
897 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
898}
899
900size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
901 bool (skip)(struct dso *dso, int parm), int parm)
902{
903 struct rb_node *nd;
904 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
905
906 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
907 struct machine *pos = rb_entry(nd, struct machine, rb_node);
908 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
909 }
910 return ret;
911}
912
913size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
914{
915 int i;
916 size_t printed = 0;
917 struct dso *kdso = machine__kernel_dso(machine);
918
919 if (kdso->has_build_id) {
920 char filename[PATH_MAX];
921 if (dso__build_id_filename(kdso, filename, sizeof(filename),
922 false))
923 printed += fprintf(fp, "[0] %s\n", filename);
924 }
925
926 for (i = 0; i < vmlinux_path__nr_entries; ++i)
927 printed += fprintf(fp, "[%d] %s\n",
928 i + kdso->has_build_id, vmlinux_path[i]);
929
930 return printed;
931}
932
933size_t machine__fprintf(struct machine *machine, FILE *fp)
934{
935 struct rb_node *nd;
936 size_t ret;
937 int i;
938
939 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
940 struct threads *threads = &machine->threads[i];
941
942 down_read(&threads->lock);
943
944 ret = fprintf(fp, "Threads: %u\n", threads->nr);
945
946 for (nd = rb_first_cached(&threads->entries); nd;
947 nd = rb_next(nd)) {
948 struct thread *pos = rb_entry(nd, struct thread, rb_node);
949
950 ret += thread__fprintf(pos, fp);
951 }
952
953 up_read(&threads->lock);
954 }
955 return ret;
956}
957
958static struct dso *machine__get_kernel(struct machine *machine)
959{
960 const char *vmlinux_name = machine->mmap_name;
961 struct dso *kernel;
962
963 if (machine__is_host(machine)) {
964 if (symbol_conf.vmlinux_name)
965 vmlinux_name = symbol_conf.vmlinux_name;
966
967 kernel = machine__findnew_kernel(machine, vmlinux_name,
968 "[kernel]", DSO_SPACE__KERNEL);
969 } else {
970 if (symbol_conf.default_guest_vmlinux_name)
971 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
972
973 kernel = machine__findnew_kernel(machine, vmlinux_name,
974 "[guest.kernel]",
975 DSO_SPACE__KERNEL_GUEST);
976 }
977
978 if (kernel != NULL && (!kernel->has_build_id))
979 dso__read_running_kernel_build_id(kernel, machine);
980
981 return kernel;
982}
983
984struct process_args {
985 u64 start;
986};
987
988void machine__get_kallsyms_filename(struct machine *machine, char *buf,
989 size_t bufsz)
990{
991 if (machine__is_default_guest(machine))
992 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
993 else
994 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
995}
996
997const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
998
999/* Figure out the start address of kernel map from /proc/kallsyms.
1000 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1001 * symbol_name if it's not that important.
1002 */
1003static int machine__get_running_kernel_start(struct machine *machine,
1004 const char **symbol_name,
1005 u64 *start, u64 *end)
1006{
1007 char filename[PATH_MAX];
1008 int i, err = -1;
1009 const char *name;
1010 u64 addr = 0;
1011
1012 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1013
1014 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1015 return 0;
1016
1017 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1018 err = kallsyms__get_function_start(filename, name, &addr);
1019 if (!err)
1020 break;
1021 }
1022
1023 if (err)
1024 return -1;
1025
1026 if (symbol_name)
1027 *symbol_name = name;
1028
1029 *start = addr;
1030
1031 err = kallsyms__get_function_start(filename, "_etext", &addr);
1032 if (!err)
1033 *end = addr;
1034
1035 return 0;
1036}
1037
1038int machine__create_extra_kernel_map(struct machine *machine,
1039 struct dso *kernel,
1040 struct extra_kernel_map *xm)
1041{
1042 struct kmap *kmap;
1043 struct map *map;
1044
1045 map = map__new2(xm->start, kernel);
1046 if (!map)
1047 return -1;
1048
1049 map->end = xm->end;
1050 map->pgoff = xm->pgoff;
1051
1052 kmap = map__kmap(map);
1053
1054 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1055
1056 maps__insert(&machine->kmaps, map);
1057
1058 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1059 kmap->name, map->start, map->end);
1060
1061 map__put(map);
1062
1063 return 0;
1064}
1065
1066static u64 find_entry_trampoline(struct dso *dso)
1067{
1068 /* Duplicates are removed so lookup all aliases */
1069 const char *syms[] = {
1070 "_entry_trampoline",
1071 "__entry_trampoline_start",
1072 "entry_SYSCALL_64_trampoline",
1073 };
1074 struct symbol *sym = dso__first_symbol(dso);
1075 unsigned int i;
1076
1077 for (; sym; sym = dso__next_symbol(sym)) {
1078 if (sym->binding != STB_GLOBAL)
1079 continue;
1080 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1081 if (!strcmp(sym->name, syms[i]))
1082 return sym->start;
1083 }
1084 }
1085
1086 return 0;
1087}
1088
1089/*
1090 * These values can be used for kernels that do not have symbols for the entry
1091 * trampolines in kallsyms.
1092 */
1093#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1094#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1095#define X86_64_ENTRY_TRAMPOLINE 0x6000
1096
1097/* Map x86_64 PTI entry trampolines */
1098int machine__map_x86_64_entry_trampolines(struct machine *machine,
1099 struct dso *kernel)
1100{
1101 struct maps *kmaps = &machine->kmaps;
1102 int nr_cpus_avail, cpu;
1103 bool found = false;
1104 struct map *map;
1105 u64 pgoff;
1106
1107 /*
1108 * In the vmlinux case, pgoff is a virtual address which must now be
1109 * mapped to a vmlinux offset.
1110 */
1111 maps__for_each_entry(kmaps, map) {
1112 struct kmap *kmap = __map__kmap(map);
1113 struct map *dest_map;
1114
1115 if (!kmap || !is_entry_trampoline(kmap->name))
1116 continue;
1117
1118 dest_map = maps__find(kmaps, map->pgoff);
1119 if (dest_map != map)
1120 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1121 found = true;
1122 }
1123 if (found || machine->trampolines_mapped)
1124 return 0;
1125
1126 pgoff = find_entry_trampoline(kernel);
1127 if (!pgoff)
1128 return 0;
1129
1130 nr_cpus_avail = machine__nr_cpus_avail(machine);
1131
1132 /* Add a 1 page map for each CPU's entry trampoline */
1133 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1134 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1135 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1136 X86_64_ENTRY_TRAMPOLINE;
1137 struct extra_kernel_map xm = {
1138 .start = va,
1139 .end = va + page_size,
1140 .pgoff = pgoff,
1141 };
1142
1143 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1144
1145 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1146 return -1;
1147 }
1148
1149 machine->trampolines_mapped = nr_cpus_avail;
1150
1151 return 0;
1152}
1153
1154int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1155 struct dso *kernel __maybe_unused)
1156{
1157 return 0;
1158}
1159
1160static int
1161__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1162{
1163 /* In case of renewal the kernel map, destroy previous one */
1164 machine__destroy_kernel_maps(machine);
1165
1166 machine->vmlinux_map = map__new2(0, kernel);
1167 if (machine->vmlinux_map == NULL)
1168 return -1;
1169
1170 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1171 maps__insert(&machine->kmaps, machine->vmlinux_map);
1172 return 0;
1173}
1174
1175void machine__destroy_kernel_maps(struct machine *machine)
1176{
1177 struct kmap *kmap;
1178 struct map *map = machine__kernel_map(machine);
1179
1180 if (map == NULL)
1181 return;
1182
1183 kmap = map__kmap(map);
1184 maps__remove(&machine->kmaps, map);
1185 if (kmap && kmap->ref_reloc_sym) {
1186 zfree((char **)&kmap->ref_reloc_sym->name);
1187 zfree(&kmap->ref_reloc_sym);
1188 }
1189
1190 map__zput(machine->vmlinux_map);
1191}
1192
1193int machines__create_guest_kernel_maps(struct machines *machines)
1194{
1195 int ret = 0;
1196 struct dirent **namelist = NULL;
1197 int i, items = 0;
1198 char path[PATH_MAX];
1199 pid_t pid;
1200 char *endp;
1201
1202 if (symbol_conf.default_guest_vmlinux_name ||
1203 symbol_conf.default_guest_modules ||
1204 symbol_conf.default_guest_kallsyms) {
1205 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1206 }
1207
1208 if (symbol_conf.guestmount) {
1209 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1210 if (items <= 0)
1211 return -ENOENT;
1212 for (i = 0; i < items; i++) {
1213 if (!isdigit(namelist[i]->d_name[0])) {
1214 /* Filter out . and .. */
1215 continue;
1216 }
1217 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1218 if ((*endp != '\0') ||
1219 (endp == namelist[i]->d_name) ||
1220 (errno == ERANGE)) {
1221 pr_debug("invalid directory (%s). Skipping.\n",
1222 namelist[i]->d_name);
1223 continue;
1224 }
1225 sprintf(path, "%s/%s/proc/kallsyms",
1226 symbol_conf.guestmount,
1227 namelist[i]->d_name);
1228 ret = access(path, R_OK);
1229 if (ret) {
1230 pr_debug("Can't access file %s\n", path);
1231 goto failure;
1232 }
1233 machines__create_kernel_maps(machines, pid);
1234 }
1235failure:
1236 free(namelist);
1237 }
1238
1239 return ret;
1240}
1241
1242void machines__destroy_kernel_maps(struct machines *machines)
1243{
1244 struct rb_node *next = rb_first_cached(&machines->guests);
1245
1246 machine__destroy_kernel_maps(&machines->host);
1247
1248 while (next) {
1249 struct machine *pos = rb_entry(next, struct machine, rb_node);
1250
1251 next = rb_next(&pos->rb_node);
1252 rb_erase_cached(&pos->rb_node, &machines->guests);
1253 machine__delete(pos);
1254 }
1255}
1256
1257int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1258{
1259 struct machine *machine = machines__findnew(machines, pid);
1260
1261 if (machine == NULL)
1262 return -1;
1263
1264 return machine__create_kernel_maps(machine);
1265}
1266
1267int machine__load_kallsyms(struct machine *machine, const char *filename)
1268{
1269 struct map *map = machine__kernel_map(machine);
1270 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1271
1272 if (ret > 0) {
1273 dso__set_loaded(map->dso);
1274 /*
1275 * Since /proc/kallsyms will have multiple sessions for the
1276 * kernel, with modules between them, fixup the end of all
1277 * sections.
1278 */
1279 maps__fixup_end(&machine->kmaps);
1280 }
1281
1282 return ret;
1283}
1284
1285int machine__load_vmlinux_path(struct machine *machine)
1286{
1287 struct map *map = machine__kernel_map(machine);
1288 int ret = dso__load_vmlinux_path(map->dso, map);
1289
1290 if (ret > 0)
1291 dso__set_loaded(map->dso);
1292
1293 return ret;
1294}
1295
1296static char *get_kernel_version(const char *root_dir)
1297{
1298 char version[PATH_MAX];
1299 FILE *file;
1300 char *name, *tmp;
1301 const char *prefix = "Linux version ";
1302
1303 sprintf(version, "%s/proc/version", root_dir);
1304 file = fopen(version, "r");
1305 if (!file)
1306 return NULL;
1307
1308 tmp = fgets(version, sizeof(version), file);
1309 fclose(file);
1310 if (!tmp)
1311 return NULL;
1312
1313 name = strstr(version, prefix);
1314 if (!name)
1315 return NULL;
1316 name += strlen(prefix);
1317 tmp = strchr(name, ' ');
1318 if (tmp)
1319 *tmp = '\0';
1320
1321 return strdup(name);
1322}
1323
1324static bool is_kmod_dso(struct dso *dso)
1325{
1326 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1327 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1328}
1329
1330static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1331{
1332 char *long_name;
1333 struct map *map = maps__find_by_name(maps, m->name);
1334
1335 if (map == NULL)
1336 return 0;
1337
1338 long_name = strdup(path);
1339 if (long_name == NULL)
1340 return -ENOMEM;
1341
1342 dso__set_long_name(map->dso, long_name, true);
1343 dso__kernel_module_get_build_id(map->dso, "");
1344
1345 /*
1346 * Full name could reveal us kmod compression, so
1347 * we need to update the symtab_type if needed.
1348 */
1349 if (m->comp && is_kmod_dso(map->dso)) {
1350 map->dso->symtab_type++;
1351 map->dso->comp = m->comp;
1352 }
1353
1354 return 0;
1355}
1356
1357static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1358{
1359 struct dirent *dent;
1360 DIR *dir = opendir(dir_name);
1361 int ret = 0;
1362
1363 if (!dir) {
1364 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1365 return -1;
1366 }
1367
1368 while ((dent = readdir(dir)) != NULL) {
1369 char path[PATH_MAX];
1370 struct stat st;
1371
1372 /*sshfs might return bad dent->d_type, so we have to stat*/
1373 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1374 if (stat(path, &st))
1375 continue;
1376
1377 if (S_ISDIR(st.st_mode)) {
1378 if (!strcmp(dent->d_name, ".") ||
1379 !strcmp(dent->d_name, ".."))
1380 continue;
1381
1382 /* Do not follow top-level source and build symlinks */
1383 if (depth == 0) {
1384 if (!strcmp(dent->d_name, "source") ||
1385 !strcmp(dent->d_name, "build"))
1386 continue;
1387 }
1388
1389 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1390 if (ret < 0)
1391 goto out;
1392 } else {
1393 struct kmod_path m;
1394
1395 ret = kmod_path__parse_name(&m, dent->d_name);
1396 if (ret)
1397 goto out;
1398
1399 if (m.kmod)
1400 ret = maps__set_module_path(maps, path, &m);
1401
1402 zfree(&m.name);
1403
1404 if (ret)
1405 goto out;
1406 }
1407 }
1408
1409out:
1410 closedir(dir);
1411 return ret;
1412}
1413
1414static int machine__set_modules_path(struct machine *machine)
1415{
1416 char *version;
1417 char modules_path[PATH_MAX];
1418
1419 version = get_kernel_version(machine->root_dir);
1420 if (!version)
1421 return -1;
1422
1423 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1424 machine->root_dir, version);
1425 free(version);
1426
1427 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1428}
1429int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1430 u64 *size __maybe_unused,
1431 const char *name __maybe_unused)
1432{
1433 return 0;
1434}
1435
1436static int machine__create_module(void *arg, const char *name, u64 start,
1437 u64 size)
1438{
1439 struct machine *machine = arg;
1440 struct map *map;
1441
1442 if (arch__fix_module_text_start(&start, &size, name) < 0)
1443 return -1;
1444
1445 map = machine__addnew_module_map(machine, start, name);
1446 if (map == NULL)
1447 return -1;
1448 map->end = start + size;
1449
1450 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1451
1452 return 0;
1453}
1454
1455static int machine__create_modules(struct machine *machine)
1456{
1457 const char *modules;
1458 char path[PATH_MAX];
1459
1460 if (machine__is_default_guest(machine)) {
1461 modules = symbol_conf.default_guest_modules;
1462 } else {
1463 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1464 modules = path;
1465 }
1466
1467 if (symbol__restricted_filename(modules, "/proc/modules"))
1468 return -1;
1469
1470 if (modules__parse(modules, machine, machine__create_module))
1471 return -1;
1472
1473 if (!machine__set_modules_path(machine))
1474 return 0;
1475
1476 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1477
1478 return 0;
1479}
1480
1481static void machine__set_kernel_mmap(struct machine *machine,
1482 u64 start, u64 end)
1483{
1484 machine->vmlinux_map->start = start;
1485 machine->vmlinux_map->end = end;
1486 /*
1487 * Be a bit paranoid here, some perf.data file came with
1488 * a zero sized synthesized MMAP event for the kernel.
1489 */
1490 if (start == 0 && end == 0)
1491 machine->vmlinux_map->end = ~0ULL;
1492}
1493
1494static void machine__update_kernel_mmap(struct machine *machine,
1495 u64 start, u64 end)
1496{
1497 struct map *map = machine__kernel_map(machine);
1498
1499 map__get(map);
1500 maps__remove(&machine->kmaps, map);
1501
1502 machine__set_kernel_mmap(machine, start, end);
1503
1504 maps__insert(&machine->kmaps, map);
1505 map__put(map);
1506}
1507
1508int machine__create_kernel_maps(struct machine *machine)
1509{
1510 struct dso *kernel = machine__get_kernel(machine);
1511 const char *name = NULL;
1512 struct map *map;
1513 u64 start = 0, end = ~0ULL;
1514 int ret;
1515
1516 if (kernel == NULL)
1517 return -1;
1518
1519 ret = __machine__create_kernel_maps(machine, kernel);
1520 if (ret < 0)
1521 goto out_put;
1522
1523 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1524 if (machine__is_host(machine))
1525 pr_debug("Problems creating module maps, "
1526 "continuing anyway...\n");
1527 else
1528 pr_debug("Problems creating module maps for guest %d, "
1529 "continuing anyway...\n", machine->pid);
1530 }
1531
1532 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1533 if (name &&
1534 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1535 machine__destroy_kernel_maps(machine);
1536 ret = -1;
1537 goto out_put;
1538 }
1539
1540 /*
1541 * we have a real start address now, so re-order the kmaps
1542 * assume it's the last in the kmaps
1543 */
1544 machine__update_kernel_mmap(machine, start, end);
1545 }
1546
1547 if (machine__create_extra_kernel_maps(machine, kernel))
1548 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1549
1550 if (end == ~0ULL) {
1551 /* update end address of the kernel map using adjacent module address */
1552 map = map__next(machine__kernel_map(machine));
1553 if (map)
1554 machine__set_kernel_mmap(machine, start, map->start);
1555 }
1556
1557out_put:
1558 dso__put(kernel);
1559 return ret;
1560}
1561
1562static bool machine__uses_kcore(struct machine *machine)
1563{
1564 struct dso *dso;
1565
1566 list_for_each_entry(dso, &machine->dsos.head, node) {
1567 if (dso__is_kcore(dso))
1568 return true;
1569 }
1570
1571 return false;
1572}
1573
1574static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1575 union perf_event *event)
1576{
1577 return machine__is(machine, "x86_64") &&
1578 is_entry_trampoline(event->mmap.filename);
1579}
1580
1581static int machine__process_extra_kernel_map(struct machine *machine,
1582 union perf_event *event)
1583{
1584 struct dso *kernel = machine__kernel_dso(machine);
1585 struct extra_kernel_map xm = {
1586 .start = event->mmap.start,
1587 .end = event->mmap.start + event->mmap.len,
1588 .pgoff = event->mmap.pgoff,
1589 };
1590
1591 if (kernel == NULL)
1592 return -1;
1593
1594 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1595
1596 return machine__create_extra_kernel_map(machine, kernel, &xm);
1597}
1598
1599static int machine__process_kernel_mmap_event(struct machine *machine,
1600 union perf_event *event)
1601{
1602 struct map *map;
1603 enum dso_space_type dso_space;
1604 bool is_kernel_mmap;
1605
1606 /* If we have maps from kcore then we do not need or want any others */
1607 if (machine__uses_kcore(machine))
1608 return 0;
1609
1610 if (machine__is_host(machine))
1611 dso_space = DSO_SPACE__KERNEL;
1612 else
1613 dso_space = DSO_SPACE__KERNEL_GUEST;
1614
1615 is_kernel_mmap = memcmp(event->mmap.filename,
1616 machine->mmap_name,
1617 strlen(machine->mmap_name) - 1) == 0;
1618 if (event->mmap.filename[0] == '/' ||
1619 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1620 map = machine__addnew_module_map(machine, event->mmap.start,
1621 event->mmap.filename);
1622 if (map == NULL)
1623 goto out_problem;
1624
1625 map->end = map->start + event->mmap.len;
1626 } else if (is_kernel_mmap) {
1627 const char *symbol_name = (event->mmap.filename +
1628 strlen(machine->mmap_name));
1629 /*
1630 * Should be there already, from the build-id table in
1631 * the header.
1632 */
1633 struct dso *kernel = NULL;
1634 struct dso *dso;
1635
1636 down_read(&machine->dsos.lock);
1637
1638 list_for_each_entry(dso, &machine->dsos.head, node) {
1639
1640 /*
1641 * The cpumode passed to is_kernel_module is not the
1642 * cpumode of *this* event. If we insist on passing
1643 * correct cpumode to is_kernel_module, we should
1644 * record the cpumode when we adding this dso to the
1645 * linked list.
1646 *
1647 * However we don't really need passing correct
1648 * cpumode. We know the correct cpumode must be kernel
1649 * mode (if not, we should not link it onto kernel_dsos
1650 * list).
1651 *
1652 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1653 * is_kernel_module() treats it as a kernel cpumode.
1654 */
1655
1656 if (!dso->kernel ||
1657 is_kernel_module(dso->long_name,
1658 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1659 continue;
1660
1661
1662 kernel = dso;
1663 break;
1664 }
1665
1666 up_read(&machine->dsos.lock);
1667
1668 if (kernel == NULL)
1669 kernel = machine__findnew_dso(machine, machine->mmap_name);
1670 if (kernel == NULL)
1671 goto out_problem;
1672
1673 kernel->kernel = dso_space;
1674 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1675 dso__put(kernel);
1676 goto out_problem;
1677 }
1678
1679 if (strstr(kernel->long_name, "vmlinux"))
1680 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1681
1682 machine__update_kernel_mmap(machine, event->mmap.start,
1683 event->mmap.start + event->mmap.len);
1684
1685 /*
1686 * Avoid using a zero address (kptr_restrict) for the ref reloc
1687 * symbol. Effectively having zero here means that at record
1688 * time /proc/sys/kernel/kptr_restrict was non zero.
1689 */
1690 if (event->mmap.pgoff != 0) {
1691 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1692 symbol_name,
1693 event->mmap.pgoff);
1694 }
1695
1696 if (machine__is_default_guest(machine)) {
1697 /*
1698 * preload dso of guest kernel and modules
1699 */
1700 dso__load(kernel, machine__kernel_map(machine));
1701 }
1702 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1703 return machine__process_extra_kernel_map(machine, event);
1704 }
1705 return 0;
1706out_problem:
1707 return -1;
1708}
1709
1710int machine__process_mmap2_event(struct machine *machine,
1711 union perf_event *event,
1712 struct perf_sample *sample)
1713{
1714 struct thread *thread;
1715 struct map *map;
1716 struct dso_id dso_id = {
1717 .maj = event->mmap2.maj,
1718 .min = event->mmap2.min,
1719 .ino = event->mmap2.ino,
1720 .ino_generation = event->mmap2.ino_generation,
1721 };
1722 int ret = 0;
1723
1724 if (dump_trace)
1725 perf_event__fprintf_mmap2(event, stdout);
1726
1727 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1728 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1729 ret = machine__process_kernel_mmap_event(machine, event);
1730 if (ret < 0)
1731 goto out_problem;
1732 return 0;
1733 }
1734
1735 thread = machine__findnew_thread(machine, event->mmap2.pid,
1736 event->mmap2.tid);
1737 if (thread == NULL)
1738 goto out_problem;
1739
1740 map = map__new(machine, event->mmap2.start,
1741 event->mmap2.len, event->mmap2.pgoff,
1742 &dso_id, event->mmap2.prot,
1743 event->mmap2.flags,
1744 event->mmap2.filename, thread);
1745
1746 if (map == NULL)
1747 goto out_problem_map;
1748
1749 ret = thread__insert_map(thread, map);
1750 if (ret)
1751 goto out_problem_insert;
1752
1753 thread__put(thread);
1754 map__put(map);
1755 return 0;
1756
1757out_problem_insert:
1758 map__put(map);
1759out_problem_map:
1760 thread__put(thread);
1761out_problem:
1762 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1763 return 0;
1764}
1765
1766int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1767 struct perf_sample *sample)
1768{
1769 struct thread *thread;
1770 struct map *map;
1771 u32 prot = 0;
1772 int ret = 0;
1773
1774 if (dump_trace)
1775 perf_event__fprintf_mmap(event, stdout);
1776
1777 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1778 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1779 ret = machine__process_kernel_mmap_event(machine, event);
1780 if (ret < 0)
1781 goto out_problem;
1782 return 0;
1783 }
1784
1785 thread = machine__findnew_thread(machine, event->mmap.pid,
1786 event->mmap.tid);
1787 if (thread == NULL)
1788 goto out_problem;
1789
1790 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1791 prot = PROT_EXEC;
1792
1793 map = map__new(machine, event->mmap.start,
1794 event->mmap.len, event->mmap.pgoff,
1795 NULL, prot, 0, event->mmap.filename, thread);
1796
1797 if (map == NULL)
1798 goto out_problem_map;
1799
1800 ret = thread__insert_map(thread, map);
1801 if (ret)
1802 goto out_problem_insert;
1803
1804 thread__put(thread);
1805 map__put(map);
1806 return 0;
1807
1808out_problem_insert:
1809 map__put(map);
1810out_problem_map:
1811 thread__put(thread);
1812out_problem:
1813 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1814 return 0;
1815}
1816
1817static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1818{
1819 struct threads *threads = machine__threads(machine, th->tid);
1820
1821 if (threads->last_match == th)
1822 threads__set_last_match(threads, NULL);
1823
1824 if (lock)
1825 down_write(&threads->lock);
1826
1827 BUG_ON(refcount_read(&th->refcnt) == 0);
1828
1829 rb_erase_cached(&th->rb_node, &threads->entries);
1830 RB_CLEAR_NODE(&th->rb_node);
1831 --threads->nr;
1832 /*
1833 * Move it first to the dead_threads list, then drop the reference,
1834 * if this is the last reference, then the thread__delete destructor
1835 * will be called and we will remove it from the dead_threads list.
1836 */
1837 list_add_tail(&th->node, &threads->dead);
1838
1839 /*
1840 * We need to do the put here because if this is the last refcount,
1841 * then we will be touching the threads->dead head when removing the
1842 * thread.
1843 */
1844 thread__put(th);
1845
1846 if (lock)
1847 up_write(&threads->lock);
1848}
1849
1850void machine__remove_thread(struct machine *machine, struct thread *th)
1851{
1852 return __machine__remove_thread(machine, th, true);
1853}
1854
1855int machine__process_fork_event(struct machine *machine, union perf_event *event,
1856 struct perf_sample *sample)
1857{
1858 struct thread *thread = machine__find_thread(machine,
1859 event->fork.pid,
1860 event->fork.tid);
1861 struct thread *parent = machine__findnew_thread(machine,
1862 event->fork.ppid,
1863 event->fork.ptid);
1864 bool do_maps_clone = true;
1865 int err = 0;
1866
1867 if (dump_trace)
1868 perf_event__fprintf_task(event, stdout);
1869
1870 /*
1871 * There may be an existing thread that is not actually the parent,
1872 * either because we are processing events out of order, or because the
1873 * (fork) event that would have removed the thread was lost. Assume the
1874 * latter case and continue on as best we can.
1875 */
1876 if (parent->pid_ != (pid_t)event->fork.ppid) {
1877 dump_printf("removing erroneous parent thread %d/%d\n",
1878 parent->pid_, parent->tid);
1879 machine__remove_thread(machine, parent);
1880 thread__put(parent);
1881 parent = machine__findnew_thread(machine, event->fork.ppid,
1882 event->fork.ptid);
1883 }
1884
1885 /* if a thread currently exists for the thread id remove it */
1886 if (thread != NULL) {
1887 machine__remove_thread(machine, thread);
1888 thread__put(thread);
1889 }
1890
1891 thread = machine__findnew_thread(machine, event->fork.pid,
1892 event->fork.tid);
1893 /*
1894 * When synthesizing FORK events, we are trying to create thread
1895 * objects for the already running tasks on the machine.
1896 *
1897 * Normally, for a kernel FORK event, we want to clone the parent's
1898 * maps because that is what the kernel just did.
1899 *
1900 * But when synthesizing, this should not be done. If we do, we end up
1901 * with overlapping maps as we process the sythesized MMAP2 events that
1902 * get delivered shortly thereafter.
1903 *
1904 * Use the FORK event misc flags in an internal way to signal this
1905 * situation, so we can elide the map clone when appropriate.
1906 */
1907 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1908 do_maps_clone = false;
1909
1910 if (thread == NULL || parent == NULL ||
1911 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1912 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1913 err = -1;
1914 }
1915 thread__put(thread);
1916 thread__put(parent);
1917
1918 return err;
1919}
1920
1921int machine__process_exit_event(struct machine *machine, union perf_event *event,
1922 struct perf_sample *sample __maybe_unused)
1923{
1924 struct thread *thread = machine__find_thread(machine,
1925 event->fork.pid,
1926 event->fork.tid);
1927
1928 if (dump_trace)
1929 perf_event__fprintf_task(event, stdout);
1930
1931 if (thread != NULL) {
1932 thread__exited(thread);
1933 thread__put(thread);
1934 }
1935
1936 return 0;
1937}
1938
1939int machine__process_event(struct machine *machine, union perf_event *event,
1940 struct perf_sample *sample)
1941{
1942 int ret;
1943
1944 switch (event->header.type) {
1945 case PERF_RECORD_COMM:
1946 ret = machine__process_comm_event(machine, event, sample); break;
1947 case PERF_RECORD_MMAP:
1948 ret = machine__process_mmap_event(machine, event, sample); break;
1949 case PERF_RECORD_NAMESPACES:
1950 ret = machine__process_namespaces_event(machine, event, sample); break;
1951 case PERF_RECORD_CGROUP:
1952 ret = machine__process_cgroup_event(machine, event, sample); break;
1953 case PERF_RECORD_MMAP2:
1954 ret = machine__process_mmap2_event(machine, event, sample); break;
1955 case PERF_RECORD_FORK:
1956 ret = machine__process_fork_event(machine, event, sample); break;
1957 case PERF_RECORD_EXIT:
1958 ret = machine__process_exit_event(machine, event, sample); break;
1959 case PERF_RECORD_LOST:
1960 ret = machine__process_lost_event(machine, event, sample); break;
1961 case PERF_RECORD_AUX:
1962 ret = machine__process_aux_event(machine, event); break;
1963 case PERF_RECORD_ITRACE_START:
1964 ret = machine__process_itrace_start_event(machine, event); break;
1965 case PERF_RECORD_LOST_SAMPLES:
1966 ret = machine__process_lost_samples_event(machine, event, sample); break;
1967 case PERF_RECORD_SWITCH:
1968 case PERF_RECORD_SWITCH_CPU_WIDE:
1969 ret = machine__process_switch_event(machine, event); break;
1970 case PERF_RECORD_KSYMBOL:
1971 ret = machine__process_ksymbol(machine, event, sample); break;
1972 case PERF_RECORD_BPF_EVENT:
1973 ret = machine__process_bpf(machine, event, sample); break;
1974 case PERF_RECORD_TEXT_POKE:
1975 ret = machine__process_text_poke(machine, event, sample); break;
1976 default:
1977 ret = -1;
1978 break;
1979 }
1980
1981 return ret;
1982}
1983
1984static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1985{
1986 if (!regexec(regex, sym->name, 0, NULL, 0))
1987 return 1;
1988 return 0;
1989}
1990
1991static void ip__resolve_ams(struct thread *thread,
1992 struct addr_map_symbol *ams,
1993 u64 ip)
1994{
1995 struct addr_location al;
1996
1997 memset(&al, 0, sizeof(al));
1998 /*
1999 * We cannot use the header.misc hint to determine whether a
2000 * branch stack address is user, kernel, guest, hypervisor.
2001 * Branches may straddle the kernel/user/hypervisor boundaries.
2002 * Thus, we have to try consecutively until we find a match
2003 * or else, the symbol is unknown
2004 */
2005 thread__find_cpumode_addr_location(thread, ip, &al);
2006
2007 ams->addr = ip;
2008 ams->al_addr = al.addr;
2009 ams->ms.maps = al.maps;
2010 ams->ms.sym = al.sym;
2011 ams->ms.map = al.map;
2012 ams->phys_addr = 0;
2013}
2014
2015static void ip__resolve_data(struct thread *thread,
2016 u8 m, struct addr_map_symbol *ams,
2017 u64 addr, u64 phys_addr)
2018{
2019 struct addr_location al;
2020
2021 memset(&al, 0, sizeof(al));
2022
2023 thread__find_symbol(thread, m, addr, &al);
2024
2025 ams->addr = addr;
2026 ams->al_addr = al.addr;
2027 ams->ms.maps = al.maps;
2028 ams->ms.sym = al.sym;
2029 ams->ms.map = al.map;
2030 ams->phys_addr = phys_addr;
2031}
2032
2033struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2034 struct addr_location *al)
2035{
2036 struct mem_info *mi = mem_info__new();
2037
2038 if (!mi)
2039 return NULL;
2040
2041 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2042 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2043 sample->addr, sample->phys_addr);
2044 mi->data_src.val = sample->data_src;
2045
2046 return mi;
2047}
2048
2049static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2050{
2051 struct map *map = ms->map;
2052 char *srcline = NULL;
2053
2054 if (!map || callchain_param.key == CCKEY_FUNCTION)
2055 return srcline;
2056
2057 srcline = srcline__tree_find(&map->dso->srclines, ip);
2058 if (!srcline) {
2059 bool show_sym = false;
2060 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2061
2062 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2063 ms->sym, show_sym, show_addr, ip);
2064 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2065 }
2066
2067 return srcline;
2068}
2069
2070struct iterations {
2071 int nr_loop_iter;
2072 u64 cycles;
2073};
2074
2075static int add_callchain_ip(struct thread *thread,
2076 struct callchain_cursor *cursor,
2077 struct symbol **parent,
2078 struct addr_location *root_al,
2079 u8 *cpumode,
2080 u64 ip,
2081 bool branch,
2082 struct branch_flags *flags,
2083 struct iterations *iter,
2084 u64 branch_from)
2085{
2086 struct map_symbol ms;
2087 struct addr_location al;
2088 int nr_loop_iter = 0;
2089 u64 iter_cycles = 0;
2090 const char *srcline = NULL;
2091
2092 al.filtered = 0;
2093 al.sym = NULL;
2094 if (!cpumode) {
2095 thread__find_cpumode_addr_location(thread, ip, &al);
2096 } else {
2097 if (ip >= PERF_CONTEXT_MAX) {
2098 switch (ip) {
2099 case PERF_CONTEXT_HV:
2100 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2101 break;
2102 case PERF_CONTEXT_KERNEL:
2103 *cpumode = PERF_RECORD_MISC_KERNEL;
2104 break;
2105 case PERF_CONTEXT_USER:
2106 *cpumode = PERF_RECORD_MISC_USER;
2107 break;
2108 default:
2109 pr_debug("invalid callchain context: "
2110 "%"PRId64"\n", (s64) ip);
2111 /*
2112 * It seems the callchain is corrupted.
2113 * Discard all.
2114 */
2115 callchain_cursor_reset(cursor);
2116 return 1;
2117 }
2118 return 0;
2119 }
2120 thread__find_symbol(thread, *cpumode, ip, &al);
2121 }
2122
2123 if (al.sym != NULL) {
2124 if (perf_hpp_list.parent && !*parent &&
2125 symbol__match_regex(al.sym, &parent_regex))
2126 *parent = al.sym;
2127 else if (have_ignore_callees && root_al &&
2128 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2129 /* Treat this symbol as the root,
2130 forgetting its callees. */
2131 *root_al = al;
2132 callchain_cursor_reset(cursor);
2133 }
2134 }
2135
2136 if (symbol_conf.hide_unresolved && al.sym == NULL)
2137 return 0;
2138
2139 if (iter) {
2140 nr_loop_iter = iter->nr_loop_iter;
2141 iter_cycles = iter->cycles;
2142 }
2143
2144 ms.maps = al.maps;
2145 ms.map = al.map;
2146 ms.sym = al.sym;
2147 srcline = callchain_srcline(&ms, al.addr);
2148 return callchain_cursor_append(cursor, ip, &ms,
2149 branch, flags, nr_loop_iter,
2150 iter_cycles, branch_from, srcline);
2151}
2152
2153struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2154 struct addr_location *al)
2155{
2156 unsigned int i;
2157 const struct branch_stack *bs = sample->branch_stack;
2158 struct branch_entry *entries = perf_sample__branch_entries(sample);
2159 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2160
2161 if (!bi)
2162 return NULL;
2163
2164 for (i = 0; i < bs->nr; i++) {
2165 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2166 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2167 bi[i].flags = entries[i].flags;
2168 }
2169 return bi;
2170}
2171
2172static void save_iterations(struct iterations *iter,
2173 struct branch_entry *be, int nr)
2174{
2175 int i;
2176
2177 iter->nr_loop_iter++;
2178 iter->cycles = 0;
2179
2180 for (i = 0; i < nr; i++)
2181 iter->cycles += be[i].flags.cycles;
2182}
2183
2184#define CHASHSZ 127
2185#define CHASHBITS 7
2186#define NO_ENTRY 0xff
2187
2188#define PERF_MAX_BRANCH_DEPTH 127
2189
2190/* Remove loops. */
2191static int remove_loops(struct branch_entry *l, int nr,
2192 struct iterations *iter)
2193{
2194 int i, j, off;
2195 unsigned char chash[CHASHSZ];
2196
2197 memset(chash, NO_ENTRY, sizeof(chash));
2198
2199 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2200
2201 for (i = 0; i < nr; i++) {
2202 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2203
2204 /* no collision handling for now */
2205 if (chash[h] == NO_ENTRY) {
2206 chash[h] = i;
2207 } else if (l[chash[h]].from == l[i].from) {
2208 bool is_loop = true;
2209 /* check if it is a real loop */
2210 off = 0;
2211 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2212 if (l[j].from != l[i + off].from) {
2213 is_loop = false;
2214 break;
2215 }
2216 if (is_loop) {
2217 j = nr - (i + off);
2218 if (j > 0) {
2219 save_iterations(iter + i + off,
2220 l + i, off);
2221
2222 memmove(iter + i, iter + i + off,
2223 j * sizeof(*iter));
2224
2225 memmove(l + i, l + i + off,
2226 j * sizeof(*l));
2227 }
2228
2229 nr -= off;
2230 }
2231 }
2232 }
2233 return nr;
2234}
2235
2236static int lbr_callchain_add_kernel_ip(struct thread *thread,
2237 struct callchain_cursor *cursor,
2238 struct perf_sample *sample,
2239 struct symbol **parent,
2240 struct addr_location *root_al,
2241 u64 branch_from,
2242 bool callee, int end)
2243{
2244 struct ip_callchain *chain = sample->callchain;
2245 u8 cpumode = PERF_RECORD_MISC_USER;
2246 int err, i;
2247
2248 if (callee) {
2249 for (i = 0; i < end + 1; i++) {
2250 err = add_callchain_ip(thread, cursor, parent,
2251 root_al, &cpumode, chain->ips[i],
2252 false, NULL, NULL, branch_from);
2253 if (err)
2254 return err;
2255 }
2256 return 0;
2257 }
2258
2259 for (i = end; i >= 0; i--) {
2260 err = add_callchain_ip(thread, cursor, parent,
2261 root_al, &cpumode, chain->ips[i],
2262 false, NULL, NULL, branch_from);
2263 if (err)
2264 return err;
2265 }
2266
2267 return 0;
2268}
2269
2270static void save_lbr_cursor_node(struct thread *thread,
2271 struct callchain_cursor *cursor,
2272 int idx)
2273{
2274 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2275
2276 if (!lbr_stitch)
2277 return;
2278
2279 if (cursor->pos == cursor->nr) {
2280 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2281 return;
2282 }
2283
2284 if (!cursor->curr)
2285 cursor->curr = cursor->first;
2286 else
2287 cursor->curr = cursor->curr->next;
2288 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2289 sizeof(struct callchain_cursor_node));
2290
2291 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2292 cursor->pos++;
2293}
2294
2295static int lbr_callchain_add_lbr_ip(struct thread *thread,
2296 struct callchain_cursor *cursor,
2297 struct perf_sample *sample,
2298 struct symbol **parent,
2299 struct addr_location *root_al,
2300 u64 *branch_from,
2301 bool callee)
2302{
2303 struct branch_stack *lbr_stack = sample->branch_stack;
2304 struct branch_entry *entries = perf_sample__branch_entries(sample);
2305 u8 cpumode = PERF_RECORD_MISC_USER;
2306 int lbr_nr = lbr_stack->nr;
2307 struct branch_flags *flags;
2308 int err, i;
2309 u64 ip;
2310
2311 /*
2312 * The curr and pos are not used in writing session. They are cleared
2313 * in callchain_cursor_commit() when the writing session is closed.
2314 * Using curr and pos to track the current cursor node.
2315 */
2316 if (thread->lbr_stitch) {
2317 cursor->curr = NULL;
2318 cursor->pos = cursor->nr;
2319 if (cursor->nr) {
2320 cursor->curr = cursor->first;
2321 for (i = 0; i < (int)(cursor->nr - 1); i++)
2322 cursor->curr = cursor->curr->next;
2323 }
2324 }
2325
2326 if (callee) {
2327 /* Add LBR ip from first entries.to */
2328 ip = entries[0].to;
2329 flags = &entries[0].flags;
2330 *branch_from = entries[0].from;
2331 err = add_callchain_ip(thread, cursor, parent,
2332 root_al, &cpumode, ip,
2333 true, flags, NULL,
2334 *branch_from);
2335 if (err)
2336 return err;
2337
2338 /*
2339 * The number of cursor node increases.
2340 * Move the current cursor node.
2341 * But does not need to save current cursor node for entry 0.
2342 * It's impossible to stitch the whole LBRs of previous sample.
2343 */
2344 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2345 if (!cursor->curr)
2346 cursor->curr = cursor->first;
2347 else
2348 cursor->curr = cursor->curr->next;
2349 cursor->pos++;
2350 }
2351
2352 /* Add LBR ip from entries.from one by one. */
2353 for (i = 0; i < lbr_nr; i++) {
2354 ip = entries[i].from;
2355 flags = &entries[i].flags;
2356 err = add_callchain_ip(thread, cursor, parent,
2357 root_al, &cpumode, ip,
2358 true, flags, NULL,
2359 *branch_from);
2360 if (err)
2361 return err;
2362 save_lbr_cursor_node(thread, cursor, i);
2363 }
2364 return 0;
2365 }
2366
2367 /* Add LBR ip from entries.from one by one. */
2368 for (i = lbr_nr - 1; i >= 0; i--) {
2369 ip = entries[i].from;
2370 flags = &entries[i].flags;
2371 err = add_callchain_ip(thread, cursor, parent,
2372 root_al, &cpumode, ip,
2373 true, flags, NULL,
2374 *branch_from);
2375 if (err)
2376 return err;
2377 save_lbr_cursor_node(thread, cursor, i);
2378 }
2379
2380 /* Add LBR ip from first entries.to */
2381 ip = entries[0].to;
2382 flags = &entries[0].flags;
2383 *branch_from = entries[0].from;
2384 err = add_callchain_ip(thread, cursor, parent,
2385 root_al, &cpumode, ip,
2386 true, flags, NULL,
2387 *branch_from);
2388 if (err)
2389 return err;
2390
2391 return 0;
2392}
2393
2394static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2395 struct callchain_cursor *cursor)
2396{
2397 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2398 struct callchain_cursor_node *cnode;
2399 struct stitch_list *stitch_node;
2400 int err;
2401
2402 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2403 cnode = &stitch_node->cursor;
2404
2405 err = callchain_cursor_append(cursor, cnode->ip,
2406 &cnode->ms,
2407 cnode->branch,
2408 &cnode->branch_flags,
2409 cnode->nr_loop_iter,
2410 cnode->iter_cycles,
2411 cnode->branch_from,
2412 cnode->srcline);
2413 if (err)
2414 return err;
2415 }
2416 return 0;
2417}
2418
2419static struct stitch_list *get_stitch_node(struct thread *thread)
2420{
2421 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2422 struct stitch_list *stitch_node;
2423
2424 if (!list_empty(&lbr_stitch->free_lists)) {
2425 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2426 struct stitch_list, node);
2427 list_del(&stitch_node->node);
2428
2429 return stitch_node;
2430 }
2431
2432 return malloc(sizeof(struct stitch_list));
2433}
2434
2435static bool has_stitched_lbr(struct thread *thread,
2436 struct perf_sample *cur,
2437 struct perf_sample *prev,
2438 unsigned int max_lbr,
2439 bool callee)
2440{
2441 struct branch_stack *cur_stack = cur->branch_stack;
2442 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2443 struct branch_stack *prev_stack = prev->branch_stack;
2444 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2445 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2446 int i, j, nr_identical_branches = 0;
2447 struct stitch_list *stitch_node;
2448 u64 cur_base, distance;
2449
2450 if (!cur_stack || !prev_stack)
2451 return false;
2452
2453 /* Find the physical index of the base-of-stack for current sample. */
2454 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2455
2456 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2457 (max_lbr + prev_stack->hw_idx - cur_base);
2458 /* Previous sample has shorter stack. Nothing can be stitched. */
2459 if (distance + 1 > prev_stack->nr)
2460 return false;
2461
2462 /*
2463 * Check if there are identical LBRs between two samples.
2464 * Identicall LBRs must have same from, to and flags values. Also,
2465 * they have to be saved in the same LBR registers (same physical
2466 * index).
2467 *
2468 * Starts from the base-of-stack of current sample.
2469 */
2470 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2471 if ((prev_entries[i].from != cur_entries[j].from) ||
2472 (prev_entries[i].to != cur_entries[j].to) ||
2473 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2474 break;
2475 nr_identical_branches++;
2476 }
2477
2478 if (!nr_identical_branches)
2479 return false;
2480
2481 /*
2482 * Save the LBRs between the base-of-stack of previous sample
2483 * and the base-of-stack of current sample into lbr_stitch->lists.
2484 * These LBRs will be stitched later.
2485 */
2486 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2487
2488 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2489 continue;
2490
2491 stitch_node = get_stitch_node(thread);
2492 if (!stitch_node)
2493 return false;
2494
2495 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2496 sizeof(struct callchain_cursor_node));
2497
2498 if (callee)
2499 list_add(&stitch_node->node, &lbr_stitch->lists);
2500 else
2501 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2502 }
2503
2504 return true;
2505}
2506
2507static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2508{
2509 if (thread->lbr_stitch)
2510 return true;
2511
2512 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2513 if (!thread->lbr_stitch)
2514 goto err;
2515
2516 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2517 if (!thread->lbr_stitch->prev_lbr_cursor)
2518 goto free_lbr_stitch;
2519
2520 INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2521 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2522
2523 return true;
2524
2525free_lbr_stitch:
2526 zfree(&thread->lbr_stitch);
2527err:
2528 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2529 thread->lbr_stitch_enable = false;
2530 return false;
2531}
2532
2533/*
2534 * Recolve LBR callstack chain sample
2535 * Return:
2536 * 1 on success get LBR callchain information
2537 * 0 no available LBR callchain information, should try fp
2538 * negative error code on other errors.
2539 */
2540static int resolve_lbr_callchain_sample(struct thread *thread,
2541 struct callchain_cursor *cursor,
2542 struct perf_sample *sample,
2543 struct symbol **parent,
2544 struct addr_location *root_al,
2545 int max_stack,
2546 unsigned int max_lbr)
2547{
2548 bool callee = (callchain_param.order == ORDER_CALLEE);
2549 struct ip_callchain *chain = sample->callchain;
2550 int chain_nr = min(max_stack, (int)chain->nr), i;
2551 struct lbr_stitch *lbr_stitch;
2552 bool stitched_lbr = false;
2553 u64 branch_from = 0;
2554 int err;
2555
2556 for (i = 0; i < chain_nr; i++) {
2557 if (chain->ips[i] == PERF_CONTEXT_USER)
2558 break;
2559 }
2560
2561 /* LBR only affects the user callchain */
2562 if (i == chain_nr)
2563 return 0;
2564
2565 if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2566 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2567 lbr_stitch = thread->lbr_stitch;
2568
2569 stitched_lbr = has_stitched_lbr(thread, sample,
2570 &lbr_stitch->prev_sample,
2571 max_lbr, callee);
2572
2573 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2574 list_replace_init(&lbr_stitch->lists,
2575 &lbr_stitch->free_lists);
2576 }
2577 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2578 }
2579
2580 if (callee) {
2581 /* Add kernel ip */
2582 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2583 parent, root_al, branch_from,
2584 true, i);
2585 if (err)
2586 goto error;
2587
2588 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2589 root_al, &branch_from, true);
2590 if (err)
2591 goto error;
2592
2593 if (stitched_lbr) {
2594 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2595 if (err)
2596 goto error;
2597 }
2598
2599 } else {
2600 if (stitched_lbr) {
2601 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2602 if (err)
2603 goto error;
2604 }
2605 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2606 root_al, &branch_from, false);
2607 if (err)
2608 goto error;
2609
2610 /* Add kernel ip */
2611 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2612 parent, root_al, branch_from,
2613 false, i);
2614 if (err)
2615 goto error;
2616 }
2617 return 1;
2618
2619error:
2620 return (err < 0) ? err : 0;
2621}
2622
2623static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2624 struct callchain_cursor *cursor,
2625 struct symbol **parent,
2626 struct addr_location *root_al,
2627 u8 *cpumode, int ent)
2628{
2629 int err = 0;
2630
2631 while (--ent >= 0) {
2632 u64 ip = chain->ips[ent];
2633
2634 if (ip >= PERF_CONTEXT_MAX) {
2635 err = add_callchain_ip(thread, cursor, parent,
2636 root_al, cpumode, ip,
2637 false, NULL, NULL, 0);
2638 break;
2639 }
2640 }
2641 return err;
2642}
2643
2644static int thread__resolve_callchain_sample(struct thread *thread,
2645 struct callchain_cursor *cursor,
2646 struct evsel *evsel,
2647 struct perf_sample *sample,
2648 struct symbol **parent,
2649 struct addr_location *root_al,
2650 int max_stack)
2651{
2652 struct branch_stack *branch = sample->branch_stack;
2653 struct branch_entry *entries = perf_sample__branch_entries(sample);
2654 struct ip_callchain *chain = sample->callchain;
2655 int chain_nr = 0;
2656 u8 cpumode = PERF_RECORD_MISC_USER;
2657 int i, j, err, nr_entries;
2658 int skip_idx = -1;
2659 int first_call = 0;
2660
2661 if (chain)
2662 chain_nr = chain->nr;
2663
2664 if (evsel__has_branch_callstack(evsel)) {
2665 struct perf_env *env = evsel__env(evsel);
2666
2667 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2668 root_al, max_stack,
2669 !env ? 0 : env->max_branches);
2670 if (err)
2671 return (err < 0) ? err : 0;
2672 }
2673
2674 /*
2675 * Based on DWARF debug information, some architectures skip
2676 * a callchain entry saved by the kernel.
2677 */
2678 skip_idx = arch_skip_callchain_idx(thread, chain);
2679
2680 /*
2681 * Add branches to call stack for easier browsing. This gives
2682 * more context for a sample than just the callers.
2683 *
2684 * This uses individual histograms of paths compared to the
2685 * aggregated histograms the normal LBR mode uses.
2686 *
2687 * Limitations for now:
2688 * - No extra filters
2689 * - No annotations (should annotate somehow)
2690 */
2691
2692 if (branch && callchain_param.branch_callstack) {
2693 int nr = min(max_stack, (int)branch->nr);
2694 struct branch_entry be[nr];
2695 struct iterations iter[nr];
2696
2697 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2698 pr_warning("corrupted branch chain. skipping...\n");
2699 goto check_calls;
2700 }
2701
2702 for (i = 0; i < nr; i++) {
2703 if (callchain_param.order == ORDER_CALLEE) {
2704 be[i] = entries[i];
2705
2706 if (chain == NULL)
2707 continue;
2708
2709 /*
2710 * Check for overlap into the callchain.
2711 * The return address is one off compared to
2712 * the branch entry. To adjust for this
2713 * assume the calling instruction is not longer
2714 * than 8 bytes.
2715 */
2716 if (i == skip_idx ||
2717 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2718 first_call++;
2719 else if (be[i].from < chain->ips[first_call] &&
2720 be[i].from >= chain->ips[first_call] - 8)
2721 first_call++;
2722 } else
2723 be[i] = entries[branch->nr - i - 1];
2724 }
2725
2726 memset(iter, 0, sizeof(struct iterations) * nr);
2727 nr = remove_loops(be, nr, iter);
2728
2729 for (i = 0; i < nr; i++) {
2730 err = add_callchain_ip(thread, cursor, parent,
2731 root_al,
2732 NULL, be[i].to,
2733 true, &be[i].flags,
2734 NULL, be[i].from);
2735
2736 if (!err)
2737 err = add_callchain_ip(thread, cursor, parent, root_al,
2738 NULL, be[i].from,
2739 true, &be[i].flags,
2740 &iter[i], 0);
2741 if (err == -EINVAL)
2742 break;
2743 if (err)
2744 return err;
2745 }
2746
2747 if (chain_nr == 0)
2748 return 0;
2749
2750 chain_nr -= nr;
2751 }
2752
2753check_calls:
2754 if (chain && callchain_param.order != ORDER_CALLEE) {
2755 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2756 &cpumode, chain->nr - first_call);
2757 if (err)
2758 return (err < 0) ? err : 0;
2759 }
2760 for (i = first_call, nr_entries = 0;
2761 i < chain_nr && nr_entries < max_stack; i++) {
2762 u64 ip;
2763
2764 if (callchain_param.order == ORDER_CALLEE)
2765 j = i;
2766 else
2767 j = chain->nr - i - 1;
2768
2769#ifdef HAVE_SKIP_CALLCHAIN_IDX
2770 if (j == skip_idx)
2771 continue;
2772#endif
2773 ip = chain->ips[j];
2774 if (ip < PERF_CONTEXT_MAX)
2775 ++nr_entries;
2776 else if (callchain_param.order != ORDER_CALLEE) {
2777 err = find_prev_cpumode(chain, thread, cursor, parent,
2778 root_al, &cpumode, j);
2779 if (err)
2780 return (err < 0) ? err : 0;
2781 continue;
2782 }
2783
2784 err = add_callchain_ip(thread, cursor, parent,
2785 root_al, &cpumode, ip,
2786 false, NULL, NULL, 0);
2787
2788 if (err)
2789 return (err < 0) ? err : 0;
2790 }
2791
2792 return 0;
2793}
2794
2795static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2796{
2797 struct symbol *sym = ms->sym;
2798 struct map *map = ms->map;
2799 struct inline_node *inline_node;
2800 struct inline_list *ilist;
2801 u64 addr;
2802 int ret = 1;
2803
2804 if (!symbol_conf.inline_name || !map || !sym)
2805 return ret;
2806
2807 addr = map__map_ip(map, ip);
2808 addr = map__rip_2objdump(map, addr);
2809
2810 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2811 if (!inline_node) {
2812 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2813 if (!inline_node)
2814 return ret;
2815 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2816 }
2817
2818 list_for_each_entry(ilist, &inline_node->val, list) {
2819 struct map_symbol ilist_ms = {
2820 .maps = ms->maps,
2821 .map = map,
2822 .sym = ilist->symbol,
2823 };
2824 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2825 NULL, 0, 0, 0, ilist->srcline);
2826
2827 if (ret != 0)
2828 return ret;
2829 }
2830
2831 return ret;
2832}
2833
2834static int unwind_entry(struct unwind_entry *entry, void *arg)
2835{
2836 struct callchain_cursor *cursor = arg;
2837 const char *srcline = NULL;
2838 u64 addr = entry->ip;
2839
2840 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2841 return 0;
2842
2843 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2844 return 0;
2845
2846 /*
2847 * Convert entry->ip from a virtual address to an offset in
2848 * its corresponding binary.
2849 */
2850 if (entry->ms.map)
2851 addr = map__map_ip(entry->ms.map, entry->ip);
2852
2853 srcline = callchain_srcline(&entry->ms, addr);
2854 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2855 false, NULL, 0, 0, 0, srcline);
2856}
2857
2858static int thread__resolve_callchain_unwind(struct thread *thread,
2859 struct callchain_cursor *cursor,
2860 struct evsel *evsel,
2861 struct perf_sample *sample,
2862 int max_stack)
2863{
2864 /* Can we do dwarf post unwind? */
2865 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2866 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2867 return 0;
2868
2869 /* Bail out if nothing was captured. */
2870 if ((!sample->user_regs.regs) ||
2871 (!sample->user_stack.size))
2872 return 0;
2873
2874 return unwind__get_entries(unwind_entry, cursor,
2875 thread, sample, max_stack);
2876}
2877
2878int thread__resolve_callchain(struct thread *thread,
2879 struct callchain_cursor *cursor,
2880 struct evsel *evsel,
2881 struct perf_sample *sample,
2882 struct symbol **parent,
2883 struct addr_location *root_al,
2884 int max_stack)
2885{
2886 int ret = 0;
2887
2888 callchain_cursor_reset(cursor);
2889
2890 if (callchain_param.order == ORDER_CALLEE) {
2891 ret = thread__resolve_callchain_sample(thread, cursor,
2892 evsel, sample,
2893 parent, root_al,
2894 max_stack);
2895 if (ret)
2896 return ret;
2897 ret = thread__resolve_callchain_unwind(thread, cursor,
2898 evsel, sample,
2899 max_stack);
2900 } else {
2901 ret = thread__resolve_callchain_unwind(thread, cursor,
2902 evsel, sample,
2903 max_stack);
2904 if (ret)
2905 return ret;
2906 ret = thread__resolve_callchain_sample(thread, cursor,
2907 evsel, sample,
2908 parent, root_al,
2909 max_stack);
2910 }
2911
2912 return ret;
2913}
2914
2915int machine__for_each_thread(struct machine *machine,
2916 int (*fn)(struct thread *thread, void *p),
2917 void *priv)
2918{
2919 struct threads *threads;
2920 struct rb_node *nd;
2921 struct thread *thread;
2922 int rc = 0;
2923 int i;
2924
2925 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2926 threads = &machine->threads[i];
2927 for (nd = rb_first_cached(&threads->entries); nd;
2928 nd = rb_next(nd)) {
2929 thread = rb_entry(nd, struct thread, rb_node);
2930 rc = fn(thread, priv);
2931 if (rc != 0)
2932 return rc;
2933 }
2934
2935 list_for_each_entry(thread, &threads->dead, node) {
2936 rc = fn(thread, priv);
2937 if (rc != 0)
2938 return rc;
2939 }
2940 }
2941 return rc;
2942}
2943
2944int machines__for_each_thread(struct machines *machines,
2945 int (*fn)(struct thread *thread, void *p),
2946 void *priv)
2947{
2948 struct rb_node *nd;
2949 int rc = 0;
2950
2951 rc = machine__for_each_thread(&machines->host, fn, priv);
2952 if (rc != 0)
2953 return rc;
2954
2955 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2956 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2957
2958 rc = machine__for_each_thread(machine, fn, priv);
2959 if (rc != 0)
2960 return rc;
2961 }
2962 return rc;
2963}
2964
2965pid_t machine__get_current_tid(struct machine *machine, int cpu)
2966{
2967 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2968
2969 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2970 return -1;
2971
2972 return machine->current_tid[cpu];
2973}
2974
2975int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2976 pid_t tid)
2977{
2978 struct thread *thread;
2979 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2980
2981 if (cpu < 0)
2982 return -EINVAL;
2983
2984 if (!machine->current_tid) {
2985 int i;
2986
2987 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2988 if (!machine->current_tid)
2989 return -ENOMEM;
2990 for (i = 0; i < nr_cpus; i++)
2991 machine->current_tid[i] = -1;
2992 }
2993
2994 if (cpu >= nr_cpus) {
2995 pr_err("Requested CPU %d too large. ", cpu);
2996 pr_err("Consider raising MAX_NR_CPUS\n");
2997 return -EINVAL;
2998 }
2999
3000 machine->current_tid[cpu] = tid;
3001
3002 thread = machine__findnew_thread(machine, pid, tid);
3003 if (!thread)
3004 return -ENOMEM;
3005
3006 thread->cpu = cpu;
3007 thread__put(thread);
3008
3009 return 0;
3010}
3011
3012/*
3013 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3014 * normalized arch is needed.
3015 */
3016bool machine__is(struct machine *machine, const char *arch)
3017{
3018 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3019}
3020
3021int machine__nr_cpus_avail(struct machine *machine)
3022{
3023 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3024}
3025
3026int machine__get_kernel_start(struct machine *machine)
3027{
3028 struct map *map = machine__kernel_map(machine);
3029 int err = 0;
3030
3031 /*
3032 * The only addresses above 2^63 are kernel addresses of a 64-bit
3033 * kernel. Note that addresses are unsigned so that on a 32-bit system
3034 * all addresses including kernel addresses are less than 2^32. In
3035 * that case (32-bit system), if the kernel mapping is unknown, all
3036 * addresses will be assumed to be in user space - see
3037 * machine__kernel_ip().
3038 */
3039 machine->kernel_start = 1ULL << 63;
3040 if (map) {
3041 err = map__load(map);
3042 /*
3043 * On x86_64, PTI entry trampolines are less than the
3044 * start of kernel text, but still above 2^63. So leave
3045 * kernel_start = 1ULL << 63 for x86_64.
3046 */
3047 if (!err && !machine__is(machine, "x86_64"))
3048 machine->kernel_start = map->start;
3049 }
3050 return err;
3051}
3052
3053u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3054{
3055 u8 addr_cpumode = cpumode;
3056 bool kernel_ip;
3057
3058 if (!machine->single_address_space)
3059 goto out;
3060
3061 kernel_ip = machine__kernel_ip(machine, addr);
3062 switch (cpumode) {
3063 case PERF_RECORD_MISC_KERNEL:
3064 case PERF_RECORD_MISC_USER:
3065 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3066 PERF_RECORD_MISC_USER;
3067 break;
3068 case PERF_RECORD_MISC_GUEST_KERNEL:
3069 case PERF_RECORD_MISC_GUEST_USER:
3070 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3071 PERF_RECORD_MISC_GUEST_USER;
3072 break;
3073 default:
3074 break;
3075 }
3076out:
3077 return addr_cpumode;
3078}
3079
3080struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3081{
3082 return dsos__findnew_id(&machine->dsos, filename, id);
3083}
3084
3085struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3086{
3087 return machine__findnew_dso_id(machine, filename, NULL);
3088}
3089
3090char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3091{
3092 struct machine *machine = vmachine;
3093 struct map *map;
3094 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3095
3096 if (sym == NULL)
3097 return NULL;
3098
3099 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3100 *addrp = map->unmap_ip(map, sym->start);
3101 return sym->name;
3102}