Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "srcline.h"
  20#include "symbol.h"
  21#include "sort.h"
  22#include "strlist.h"
  23#include "target.h"
  24#include "thread.h"
  25#include "util.h"
  26#include "vdso.h"
  27#include <stdbool.h>
  28#include <sys/types.h>
  29#include <sys/stat.h>
  30#include <unistd.h>
  31#include "unwind.h"
  32#include "linux/hash.h"
  33#include "asm/bug.h"
  34#include "bpf-event.h"
  35#include <internal/lib.h> // page_size
  36
  37#include <linux/ctype.h>
  38#include <symbol/kallsyms.h>
  39#include <linux/mman.h>
  40#include <linux/string.h>
  41#include <linux/zalloc.h>
  42
  43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  44
  45static void dsos__init(struct dsos *dsos)
  46{
  47	INIT_LIST_HEAD(&dsos->head);
  48	dsos->root = RB_ROOT;
  49	init_rwsem(&dsos->lock);
  50}
  51
  52static void machine__threads_init(struct machine *machine)
  53{
  54	int i;
  55
  56	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  57		struct threads *threads = &machine->threads[i];
  58		threads->entries = RB_ROOT_CACHED;
  59		init_rwsem(&threads->lock);
  60		threads->nr = 0;
  61		INIT_LIST_HEAD(&threads->dead);
  62		threads->last_match = NULL;
  63	}
  64}
  65
  66static int machine__set_mmap_name(struct machine *machine)
  67{
  68	if (machine__is_host(machine))
  69		machine->mmap_name = strdup("[kernel.kallsyms]");
  70	else if (machine__is_default_guest(machine))
  71		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  72	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  73			  machine->pid) < 0)
  74		machine->mmap_name = NULL;
  75
  76	return machine->mmap_name ? 0 : -ENOMEM;
  77}
  78
  79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  80{
  81	int err = -ENOMEM;
  82
  83	memset(machine, 0, sizeof(*machine));
  84	map_groups__init(&machine->kmaps, machine);
  85	RB_CLEAR_NODE(&machine->rb_node);
  86	dsos__init(&machine->dsos);
  87
  88	machine__threads_init(machine);
 
 
 
 
  89
  90	machine->vdso_info = NULL;
  91	machine->env = NULL;
  92
  93	machine->pid = pid;
  94
  95	machine->id_hdr_size = 0;
  96	machine->kptr_restrict_warned = false;
  97	machine->comm_exec = false;
  98	machine->kernel_start = 0;
  99	machine->vmlinux_map = NULL;
 
 100
 101	machine->root_dir = strdup(root_dir);
 102	if (machine->root_dir == NULL)
 103		return -ENOMEM;
 104
 105	if (machine__set_mmap_name(machine))
 106		goto out;
 107
 108	if (pid != HOST_KERNEL_ID) {
 109		struct thread *thread = machine__findnew_thread(machine, -1,
 110								pid);
 111		char comm[64];
 112
 113		if (thread == NULL)
 114			goto out;
 115
 116		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 117		thread__set_comm(thread, comm, 0);
 118		thread__put(thread);
 119	}
 120
 121	machine->current_tid = NULL;
 122	err = 0;
 123
 124out:
 125	if (err) {
 126		zfree(&machine->root_dir);
 127		zfree(&machine->mmap_name);
 128	}
 129	return 0;
 130}
 131
 132struct machine *machine__new_host(void)
 133{
 134	struct machine *machine = malloc(sizeof(*machine));
 135
 136	if (machine != NULL) {
 137		machine__init(machine, "", HOST_KERNEL_ID);
 138
 139		if (machine__create_kernel_maps(machine) < 0)
 140			goto out_delete;
 141	}
 142
 143	return machine;
 144out_delete:
 145	free(machine);
 146	return NULL;
 147}
 148
 149struct machine *machine__new_kallsyms(void)
 150{
 151	struct machine *machine = machine__new_host();
 152	/*
 153	 * FIXME:
 154	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 155	 *    ask for not using the kcore parsing code, once this one is fixed
 156	 *    to create a map per module.
 157	 */
 158	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 159		machine__delete(machine);
 160		machine = NULL;
 161	}
 162
 163	return machine;
 164}
 165
 166static void dsos__purge(struct dsos *dsos)
 167{
 168	struct dso *pos, *n;
 169
 170	down_write(&dsos->lock);
 171
 172	list_for_each_entry_safe(pos, n, &dsos->head, node) {
 173		RB_CLEAR_NODE(&pos->rb_node);
 174		pos->root = NULL;
 175		list_del_init(&pos->node);
 176		dso__put(pos);
 177	}
 178
 179	up_write(&dsos->lock);
 180}
 181
 182static void dsos__exit(struct dsos *dsos)
 183{
 184	dsos__purge(dsos);
 185	exit_rwsem(&dsos->lock);
 186}
 187
 188void machine__delete_threads(struct machine *machine)
 189{
 190	struct rb_node *nd;
 191	int i;
 192
 193	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 194		struct threads *threads = &machine->threads[i];
 195		down_write(&threads->lock);
 196		nd = rb_first_cached(&threads->entries);
 197		while (nd) {
 198			struct thread *t = rb_entry(nd, struct thread, rb_node);
 199
 200			nd = rb_next(nd);
 201			__machine__remove_thread(machine, t, false);
 202		}
 203		up_write(&threads->lock);
 204	}
 
 205}
 206
 207void machine__exit(struct machine *machine)
 208{
 209	int i;
 210
 211	if (machine == NULL)
 212		return;
 213
 214	machine__destroy_kernel_maps(machine);
 215	map_groups__exit(&machine->kmaps);
 216	dsos__exit(&machine->dsos);
 217	machine__exit_vdso(machine);
 218	zfree(&machine->root_dir);
 219	zfree(&machine->mmap_name);
 220	zfree(&machine->current_tid);
 221
 222	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 223		struct threads *threads = &machine->threads[i];
 224		struct thread *thread, *n;
 225		/*
 226		 * Forget about the dead, at this point whatever threads were
 227		 * left in the dead lists better have a reference count taken
 228		 * by who is using them, and then, when they drop those references
 229		 * and it finally hits zero, thread__put() will check and see that
 230		 * its not in the dead threads list and will not try to remove it
 231		 * from there, just calling thread__delete() straight away.
 232		 */
 233		list_for_each_entry_safe(thread, n, &threads->dead, node)
 234			list_del_init(&thread->node);
 235
 236		exit_rwsem(&threads->lock);
 237	}
 238}
 239
 240void machine__delete(struct machine *machine)
 241{
 242	if (machine) {
 243		machine__exit(machine);
 244		free(machine);
 245	}
 246}
 247
 248void machines__init(struct machines *machines)
 249{
 250	machine__init(&machines->host, "", HOST_KERNEL_ID);
 251	machines->guests = RB_ROOT_CACHED;
 252}
 253
 254void machines__exit(struct machines *machines)
 255{
 256	machine__exit(&machines->host);
 257	/* XXX exit guest */
 258}
 259
 260struct machine *machines__add(struct machines *machines, pid_t pid,
 261			      const char *root_dir)
 262{
 263	struct rb_node **p = &machines->guests.rb_root.rb_node;
 264	struct rb_node *parent = NULL;
 265	struct machine *pos, *machine = malloc(sizeof(*machine));
 266	bool leftmost = true;
 267
 268	if (machine == NULL)
 269		return NULL;
 270
 271	if (machine__init(machine, root_dir, pid) != 0) {
 272		free(machine);
 273		return NULL;
 274	}
 275
 276	while (*p != NULL) {
 277		parent = *p;
 278		pos = rb_entry(parent, struct machine, rb_node);
 279		if (pid < pos->pid)
 280			p = &(*p)->rb_left;
 281		else {
 282			p = &(*p)->rb_right;
 283			leftmost = false;
 284		}
 285	}
 286
 287	rb_link_node(&machine->rb_node, parent, p);
 288	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 289
 290	return machine;
 291}
 292
 293void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 294{
 295	struct rb_node *nd;
 296
 297	machines->host.comm_exec = comm_exec;
 298
 299	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 300		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 301
 302		machine->comm_exec = comm_exec;
 303	}
 304}
 305
 306struct machine *machines__find(struct machines *machines, pid_t pid)
 307{
 308	struct rb_node **p = &machines->guests.rb_root.rb_node;
 309	struct rb_node *parent = NULL;
 310	struct machine *machine;
 311	struct machine *default_machine = NULL;
 312
 313	if (pid == HOST_KERNEL_ID)
 314		return &machines->host;
 315
 316	while (*p != NULL) {
 317		parent = *p;
 318		machine = rb_entry(parent, struct machine, rb_node);
 319		if (pid < machine->pid)
 320			p = &(*p)->rb_left;
 321		else if (pid > machine->pid)
 322			p = &(*p)->rb_right;
 323		else
 324			return machine;
 325		if (!machine->pid)
 326			default_machine = machine;
 327	}
 328
 329	return default_machine;
 330}
 331
 332struct machine *machines__findnew(struct machines *machines, pid_t pid)
 333{
 334	char path[PATH_MAX];
 335	const char *root_dir = "";
 336	struct machine *machine = machines__find(machines, pid);
 337
 338	if (machine && (machine->pid == pid))
 339		goto out;
 340
 341	if ((pid != HOST_KERNEL_ID) &&
 342	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 343	    (symbol_conf.guestmount)) {
 344		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 345		if (access(path, R_OK)) {
 346			static struct strlist *seen;
 347
 348			if (!seen)
 349				seen = strlist__new(NULL, NULL);
 350
 351			if (!strlist__has_entry(seen, path)) {
 352				pr_err("Can't access file %s\n", path);
 353				strlist__add(seen, path);
 354			}
 355			machine = NULL;
 356			goto out;
 357		}
 358		root_dir = path;
 359	}
 360
 361	machine = machines__add(machines, pid, root_dir);
 362out:
 363	return machine;
 364}
 365
 366void machines__process_guests(struct machines *machines,
 367			      machine__process_t process, void *data)
 368{
 369	struct rb_node *nd;
 370
 371	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 372		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 373		process(pos, data);
 374	}
 375}
 376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 378{
 379	struct rb_node *node;
 380	struct machine *machine;
 381
 382	machines->host.id_hdr_size = id_hdr_size;
 383
 384	for (node = rb_first_cached(&machines->guests); node;
 385	     node = rb_next(node)) {
 386		machine = rb_entry(node, struct machine, rb_node);
 387		machine->id_hdr_size = id_hdr_size;
 388	}
 389
 390	return;
 391}
 392
 393static void machine__update_thread_pid(struct machine *machine,
 394				       struct thread *th, pid_t pid)
 395{
 396	struct thread *leader;
 397
 398	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 399		return;
 400
 401	th->pid_ = pid;
 402
 403	if (th->pid_ == th->tid)
 404		return;
 405
 406	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 407	if (!leader)
 408		goto out_err;
 409
 410	if (!leader->mg)
 411		leader->mg = map_groups__new(machine);
 412
 413	if (!leader->mg)
 414		goto out_err;
 415
 416	if (th->mg == leader->mg)
 417		return;
 418
 419	if (th->mg) {
 420		/*
 421		 * Maps are created from MMAP events which provide the pid and
 422		 * tid.  Consequently there never should be any maps on a thread
 423		 * with an unknown pid.  Just print an error if there are.
 424		 */
 425		if (!map_groups__empty(th->mg))
 426			pr_err("Discarding thread maps for %d:%d\n",
 427			       th->pid_, th->tid);
 428		map_groups__put(th->mg);
 429	}
 430
 431	th->mg = map_groups__get(leader->mg);
 432out_put:
 433	thread__put(leader);
 434	return;
 435out_err:
 436	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 437	goto out_put;
 438}
 439
 440/*
 441 * Front-end cache - TID lookups come in blocks,
 442 * so most of the time we dont have to look up
 443 * the full rbtree:
 444 */
 445static struct thread*
 446__threads__get_last_match(struct threads *threads, struct machine *machine,
 447			  int pid, int tid)
 448{
 
 
 449	struct thread *th;
 450
 451	th = threads->last_match;
 
 
 
 
 
 452	if (th != NULL) {
 453		if (th->tid == tid) {
 454			machine__update_thread_pid(machine, th, pid);
 455			return thread__get(th);
 456		}
 457
 458		threads->last_match = NULL;
 459	}
 460
 461	return NULL;
 462}
 463
 464static struct thread*
 465threads__get_last_match(struct threads *threads, struct machine *machine,
 466			int pid, int tid)
 467{
 468	struct thread *th = NULL;
 469
 470	if (perf_singlethreaded)
 471		th = __threads__get_last_match(threads, machine, pid, tid);
 472
 473	return th;
 474}
 475
 476static void
 477__threads__set_last_match(struct threads *threads, struct thread *th)
 478{
 479	threads->last_match = th;
 480}
 481
 482static void
 483threads__set_last_match(struct threads *threads, struct thread *th)
 484{
 485	if (perf_singlethreaded)
 486		__threads__set_last_match(threads, th);
 487}
 488
 489/*
 490 * Caller must eventually drop thread->refcnt returned with a successful
 491 * lookup/new thread inserted.
 492 */
 493static struct thread *____machine__findnew_thread(struct machine *machine,
 494						  struct threads *threads,
 495						  pid_t pid, pid_t tid,
 496						  bool create)
 497{
 498	struct rb_node **p = &threads->entries.rb_root.rb_node;
 499	struct rb_node *parent = NULL;
 500	struct thread *th;
 501	bool leftmost = true;
 502
 503	th = threads__get_last_match(threads, machine, pid, tid);
 504	if (th)
 505		return th;
 506
 507	while (*p != NULL) {
 508		parent = *p;
 509		th = rb_entry(parent, struct thread, rb_node);
 510
 511		if (th->tid == tid) {
 512			threads__set_last_match(threads, th);
 513			machine__update_thread_pid(machine, th, pid);
 514			return thread__get(th);
 515		}
 516
 517		if (tid < th->tid)
 518			p = &(*p)->rb_left;
 519		else {
 520			p = &(*p)->rb_right;
 521			leftmost = false;
 522		}
 523	}
 524
 525	if (!create)
 526		return NULL;
 527
 528	th = thread__new(pid, tid);
 529	if (th != NULL) {
 530		rb_link_node(&th->rb_node, parent, p);
 531		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 532
 533		/*
 534		 * We have to initialize map_groups separately
 535		 * after rb tree is updated.
 536		 *
 537		 * The reason is that we call machine__findnew_thread
 538		 * within thread__init_map_groups to find the thread
 539		 * leader and that would screwed the rb tree.
 540		 */
 541		if (thread__init_map_groups(th, machine)) {
 542			rb_erase_cached(&th->rb_node, &threads->entries);
 543			RB_CLEAR_NODE(&th->rb_node);
 544			thread__put(th);
 545			return NULL;
 546		}
 547		/*
 548		 * It is now in the rbtree, get a ref
 549		 */
 550		thread__get(th);
 551		threads__set_last_match(threads, th);
 552		++threads->nr;
 553	}
 554
 555	return th;
 556}
 557
 558struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 559{
 560	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 561}
 562
 563struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 564				       pid_t tid)
 565{
 566	struct threads *threads = machine__threads(machine, tid);
 567	struct thread *th;
 568
 569	down_write(&threads->lock);
 570	th = __machine__findnew_thread(machine, pid, tid);
 571	up_write(&threads->lock);
 572	return th;
 573}
 574
 575struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 576				    pid_t tid)
 577{
 578	struct threads *threads = machine__threads(machine, tid);
 579	struct thread *th;
 580
 581	down_read(&threads->lock);
 582	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 583	up_read(&threads->lock);
 584	return th;
 585}
 586
 587struct comm *machine__thread_exec_comm(struct machine *machine,
 588				       struct thread *thread)
 589{
 590	if (machine->comm_exec)
 591		return thread__exec_comm(thread);
 592	else
 593		return thread__comm(thread);
 594}
 595
 596int machine__process_comm_event(struct machine *machine, union perf_event *event,
 597				struct perf_sample *sample)
 598{
 599	struct thread *thread = machine__findnew_thread(machine,
 600							event->comm.pid,
 601							event->comm.tid);
 602	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 603	int err = 0;
 604
 605	if (exec)
 606		machine->comm_exec = true;
 607
 608	if (dump_trace)
 609		perf_event__fprintf_comm(event, stdout);
 610
 611	if (thread == NULL ||
 612	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 613		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 614		err = -1;
 615	}
 616
 617	thread__put(thread);
 618
 619	return err;
 620}
 621
 622int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 623				      union perf_event *event,
 624				      struct perf_sample *sample __maybe_unused)
 625{
 626	struct thread *thread = machine__findnew_thread(machine,
 627							event->namespaces.pid,
 628							event->namespaces.tid);
 629	int err = 0;
 630
 631	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 632		  "\nWARNING: kernel seems to support more namespaces than perf"
 633		  " tool.\nTry updating the perf tool..\n\n");
 634
 635	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 636		  "\nWARNING: perf tool seems to support more namespaces than"
 637		  " the kernel.\nTry updating the kernel..\n\n");
 638
 639	if (dump_trace)
 640		perf_event__fprintf_namespaces(event, stdout);
 641
 642	if (thread == NULL ||
 643	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 644		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 645		err = -1;
 646	}
 647
 648	thread__put(thread);
 649
 650	return err;
 651}
 652
 653int machine__process_lost_event(struct machine *machine __maybe_unused,
 654				union perf_event *event, struct perf_sample *sample __maybe_unused)
 655{
 656	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 657		    event->lost.id, event->lost.lost);
 658	return 0;
 659}
 660
 661int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 662					union perf_event *event, struct perf_sample *sample)
 663{
 664	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 665		    sample->id, event->lost_samples.lost);
 666	return 0;
 667}
 668
 669static struct dso *machine__findnew_module_dso(struct machine *machine,
 670					       struct kmod_path *m,
 671					       const char *filename)
 672{
 673	struct dso *dso;
 674
 675	down_write(&machine->dsos.lock);
 676
 677	dso = __dsos__find(&machine->dsos, m->name, true);
 678	if (!dso) {
 679		dso = __dsos__addnew(&machine->dsos, m->name);
 680		if (dso == NULL)
 681			goto out_unlock;
 682
 683		dso__set_module_info(dso, m, machine);
 
 
 
 
 
 
 
 
 
 684		dso__set_long_name(dso, strdup(filename), true);
 685	}
 686
 687	dso__get(dso);
 688out_unlock:
 689	up_write(&machine->dsos.lock);
 690	return dso;
 691}
 692
 693int machine__process_aux_event(struct machine *machine __maybe_unused,
 694			       union perf_event *event)
 695{
 696	if (dump_trace)
 697		perf_event__fprintf_aux(event, stdout);
 698	return 0;
 699}
 700
 701int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 702					union perf_event *event)
 703{
 704	if (dump_trace)
 705		perf_event__fprintf_itrace_start(event, stdout);
 706	return 0;
 707}
 708
 709int machine__process_switch_event(struct machine *machine __maybe_unused,
 710				  union perf_event *event)
 711{
 712	if (dump_trace)
 713		perf_event__fprintf_switch(event, stdout);
 714	return 0;
 715}
 716
 717static int machine__process_ksymbol_register(struct machine *machine,
 718					     union perf_event *event,
 719					     struct perf_sample *sample __maybe_unused)
 720{
 721	struct symbol *sym;
 722	struct map *map;
 723
 724	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 725	if (!map) {
 726		map = dso__new_map(event->ksymbol.name);
 727		if (!map)
 728			return -ENOMEM;
 729
 730		map->start = event->ksymbol.addr;
 731		map->end = map->start + event->ksymbol.len;
 732		map_groups__insert(&machine->kmaps, map);
 733	}
 734
 735	sym = symbol__new(map->map_ip(map, map->start),
 736			  event->ksymbol.len,
 737			  0, 0, event->ksymbol.name);
 738	if (!sym)
 739		return -ENOMEM;
 740	dso__insert_symbol(map->dso, sym);
 741	return 0;
 742}
 743
 744static int machine__process_ksymbol_unregister(struct machine *machine,
 745					       union perf_event *event,
 746					       struct perf_sample *sample __maybe_unused)
 747{
 748	struct map *map;
 749
 750	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 751	if (map)
 752		map_groups__remove(&machine->kmaps, map);
 753
 754	return 0;
 755}
 756
 757int machine__process_ksymbol(struct machine *machine __maybe_unused,
 758			     union perf_event *event,
 759			     struct perf_sample *sample)
 760{
 761	if (dump_trace)
 762		perf_event__fprintf_ksymbol(event, stdout);
 763
 764	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 765		return machine__process_ksymbol_unregister(machine, event,
 766							   sample);
 767	return machine__process_ksymbol_register(machine, event, sample);
 768}
 769
 770static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 771{
 772	const char *dup_filename;
 773
 774	if (!filename || !dso || !dso->long_name)
 775		return;
 776	if (dso->long_name[0] != '[')
 777		return;
 778	if (!strchr(filename, '/'))
 779		return;
 780
 781	dup_filename = strdup(filename);
 782	if (!dup_filename)
 783		return;
 784
 785	dso__set_long_name(dso, dup_filename, true);
 786}
 787
 788struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 789					const char *filename)
 790{
 791	struct map *map = NULL;
 792	struct dso *dso = NULL;
 793	struct kmod_path m;
 794
 795	if (kmod_path__parse_name(&m, filename))
 796		return NULL;
 797
 798	map = map_groups__find_by_name(&machine->kmaps, m.name);
 
 799	if (map) {
 800		/*
 801		 * If the map's dso is an offline module, give dso__load()
 802		 * a chance to find the file path of that module by fixing
 803		 * long_name.
 804		 */
 805		dso__adjust_kmod_long_name(map->dso, filename);
 806		goto out;
 807	}
 808
 809	dso = machine__findnew_module_dso(machine, &m, filename);
 810	if (dso == NULL)
 811		goto out;
 812
 813	map = map__new2(start, dso);
 814	if (map == NULL)
 815		goto out;
 816
 817	map_groups__insert(&machine->kmaps, map);
 818
 819	/* Put the map here because map_groups__insert alread got it */
 820	map__put(map);
 821out:
 822	/* put the dso here, corresponding to  machine__findnew_module_dso */
 823	dso__put(dso);
 824	zfree(&m.name);
 825	return map;
 826}
 827
 828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 829{
 830	struct rb_node *nd;
 831	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 832
 833	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 834		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 835		ret += __dsos__fprintf(&pos->dsos.head, fp);
 836	}
 837
 838	return ret;
 839}
 840
 841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 842				     bool (skip)(struct dso *dso, int parm), int parm)
 843{
 844	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 845}
 846
 847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 848				     bool (skip)(struct dso *dso, int parm), int parm)
 849{
 850	struct rb_node *nd;
 851	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 852
 853	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 854		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 855		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 856	}
 857	return ret;
 858}
 859
 860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 861{
 862	int i;
 863	size_t printed = 0;
 864	struct dso *kdso = machine__kernel_map(machine)->dso;
 865
 866	if (kdso->has_build_id) {
 867		char filename[PATH_MAX];
 868		if (dso__build_id_filename(kdso, filename, sizeof(filename),
 869					   false))
 870			printed += fprintf(fp, "[0] %s\n", filename);
 871	}
 872
 873	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 874		printed += fprintf(fp, "[%d] %s\n",
 875				   i + kdso->has_build_id, vmlinux_path[i]);
 876
 877	return printed;
 878}
 879
 880size_t machine__fprintf(struct machine *machine, FILE *fp)
 881{
 882	struct rb_node *nd;
 883	size_t ret;
 884	int i;
 885
 886	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 887		struct threads *threads = &machine->threads[i];
 888
 889		down_read(&threads->lock);
 890
 891		ret = fprintf(fp, "Threads: %u\n", threads->nr);
 
 892
 893		for (nd = rb_first_cached(&threads->entries); nd;
 894		     nd = rb_next(nd)) {
 895			struct thread *pos = rb_entry(nd, struct thread, rb_node);
 896
 897			ret += thread__fprintf(pos, fp);
 898		}
 899
 900		up_read(&threads->lock);
 901	}
 902	return ret;
 903}
 904
 905static struct dso *machine__get_kernel(struct machine *machine)
 906{
 907	const char *vmlinux_name = machine->mmap_name;
 908	struct dso *kernel;
 909
 910	if (machine__is_host(machine)) {
 911		if (symbol_conf.vmlinux_name)
 912			vmlinux_name = symbol_conf.vmlinux_name;
 
 913
 914		kernel = machine__findnew_kernel(machine, vmlinux_name,
 915						 "[kernel]", DSO_TYPE_KERNEL);
 916	} else {
 917		if (symbol_conf.default_guest_vmlinux_name)
 
 
 918			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 
 
 
 919
 920		kernel = machine__findnew_kernel(machine, vmlinux_name,
 921						 "[guest.kernel]",
 922						 DSO_TYPE_GUEST_KERNEL);
 923	}
 924
 925	if (kernel != NULL && (!kernel->has_build_id))
 926		dso__read_running_kernel_build_id(kernel, machine);
 927
 928	return kernel;
 929}
 930
 931struct process_args {
 932	u64 start;
 933};
 934
 935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 936				    size_t bufsz)
 937{
 938	if (machine__is_default_guest(machine))
 939		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 940	else
 941		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 942}
 943
 944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 945
 946/* Figure out the start address of kernel map from /proc/kallsyms.
 947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 948 * symbol_name if it's not that important.
 949 */
 950static int machine__get_running_kernel_start(struct machine *machine,
 951					     const char **symbol_name,
 952					     u64 *start, u64 *end)
 953{
 954	char filename[PATH_MAX];
 955	int i, err = -1;
 956	const char *name;
 957	u64 addr = 0;
 958
 959	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 960
 961	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 962		return 0;
 963
 964	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 965		err = kallsyms__get_function_start(filename, name, &addr);
 966		if (!err)
 967			break;
 968	}
 969
 970	if (err)
 971		return -1;
 972
 973	if (symbol_name)
 974		*symbol_name = name;
 975
 976	*start = addr;
 977
 978	err = kallsyms__get_function_start(filename, "_etext", &addr);
 979	if (!err)
 980		*end = addr;
 981
 982	return 0;
 983}
 984
 985int machine__create_extra_kernel_map(struct machine *machine,
 986				     struct dso *kernel,
 987				     struct extra_kernel_map *xm)
 988{
 989	struct kmap *kmap;
 990	struct map *map;
 991
 992	map = map__new2(xm->start, kernel);
 993	if (!map)
 994		return -1;
 995
 996	map->end   = xm->end;
 997	map->pgoff = xm->pgoff;
 998
 999	kmap = map__kmap(map);
1000
1001	kmap->kmaps = &machine->kmaps;
1002	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003
1004	map_groups__insert(&machine->kmaps, map);
1005
1006	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007		  kmap->name, map->start, map->end);
1008
1009	map__put(map);
1010
1011	return 0;
1012}
1013
1014static u64 find_entry_trampoline(struct dso *dso)
1015{
1016	/* Duplicates are removed so lookup all aliases */
1017	const char *syms[] = {
1018		"_entry_trampoline",
1019		"__entry_trampoline_start",
1020		"entry_SYSCALL_64_trampoline",
1021	};
1022	struct symbol *sym = dso__first_symbol(dso);
1023	unsigned int i;
1024
1025	for (; sym; sym = dso__next_symbol(sym)) {
1026		if (sym->binding != STB_GLOBAL)
1027			continue;
1028		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029			if (!strcmp(sym->name, syms[i]))
1030				return sym->start;
1031		}
1032	}
1033
1034	return 0;
1035}
1036
1037/*
1038 * These values can be used for kernels that do not have symbols for the entry
1039 * trampolines in kallsyms.
1040 */
1041#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1042#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1043#define X86_64_ENTRY_TRAMPOLINE		0x6000
1044
1045/* Map x86_64 PTI entry trampolines */
1046int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047					  struct dso *kernel)
1048{
1049	struct map_groups *kmaps = &machine->kmaps;
1050	struct maps *maps = &kmaps->maps;
1051	int nr_cpus_avail, cpu;
1052	bool found = false;
1053	struct map *map;
1054	u64 pgoff;
1055
1056	/*
1057	 * In the vmlinux case, pgoff is a virtual address which must now be
1058	 * mapped to a vmlinux offset.
1059	 */
1060	for (map = maps__first(maps); map; map = map__next(map)) {
1061		struct kmap *kmap = __map__kmap(map);
1062		struct map *dest_map;
1063
1064		if (!kmap || !is_entry_trampoline(kmap->name))
1065			continue;
1066
1067		dest_map = map_groups__find(kmaps, map->pgoff);
1068		if (dest_map != map)
1069			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070		found = true;
1071	}
1072	if (found || machine->trampolines_mapped)
1073		return 0;
1074
1075	pgoff = find_entry_trampoline(kernel);
1076	if (!pgoff)
1077		return 0;
1078
1079	nr_cpus_avail = machine__nr_cpus_avail(machine);
1080
1081	/* Add a 1 page map for each CPU's entry trampoline */
1082	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085			 X86_64_ENTRY_TRAMPOLINE;
1086		struct extra_kernel_map xm = {
1087			.start = va,
1088			.end   = va + page_size,
1089			.pgoff = pgoff,
1090		};
1091
1092		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
 
 
1093
1094		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
 
1095			return -1;
1096	}
1097
1098	machine->trampolines_mapped = nr_cpus_avail;
 
 
 
 
 
 
1099
1100	return 0;
1101}
 
1102
1103int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104					     struct dso *kernel __maybe_unused)
1105{
1106	return 0;
1107}
1108
1109static int
1110__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111{
1112	struct kmap *kmap;
1113	struct map *map;
1114
1115	/* In case of renewal the kernel map, destroy previous one */
1116	machine__destroy_kernel_maps(machine);
1117
1118	machine->vmlinux_map = map__new2(0, kernel);
1119	if (machine->vmlinux_map == NULL)
1120		return -1;
1121
1122	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123	map = machine__kernel_map(machine);
1124	kmap = map__kmap(map);
1125	if (!kmap)
1126		return -1;
1127
1128	kmap->kmaps = &machine->kmaps;
1129	map_groups__insert(&machine->kmaps, map);
1130
1131	return 0;
1132}
 
1133
1134void machine__destroy_kernel_maps(struct machine *machine)
1135{
1136	struct kmap *kmap;
1137	struct map *map = machine__kernel_map(machine);
1138
1139	if (map == NULL)
1140		return;
 
 
 
 
 
 
 
 
 
 
 
1141
1142	kmap = map__kmap(map);
1143	map_groups__remove(&machine->kmaps, map);
1144	if (kmap && kmap->ref_reloc_sym) {
1145		zfree((char **)&kmap->ref_reloc_sym->name);
1146		zfree(&kmap->ref_reloc_sym);
1147	}
1148
1149	map__zput(machine->vmlinux_map);
1150}
1151
1152int machines__create_guest_kernel_maps(struct machines *machines)
1153{
1154	int ret = 0;
1155	struct dirent **namelist = NULL;
1156	int i, items = 0;
1157	char path[PATH_MAX];
1158	pid_t pid;
1159	char *endp;
1160
1161	if (symbol_conf.default_guest_vmlinux_name ||
1162	    symbol_conf.default_guest_modules ||
1163	    symbol_conf.default_guest_kallsyms) {
1164		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165	}
1166
1167	if (symbol_conf.guestmount) {
1168		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169		if (items <= 0)
1170			return -ENOENT;
1171		for (i = 0; i < items; i++) {
1172			if (!isdigit(namelist[i]->d_name[0])) {
1173				/* Filter out . and .. */
1174				continue;
1175			}
1176			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177			if ((*endp != '\0') ||
1178			    (endp == namelist[i]->d_name) ||
1179			    (errno == ERANGE)) {
1180				pr_debug("invalid directory (%s). Skipping.\n",
1181					 namelist[i]->d_name);
1182				continue;
1183			}
1184			sprintf(path, "%s/%s/proc/kallsyms",
1185				symbol_conf.guestmount,
1186				namelist[i]->d_name);
1187			ret = access(path, R_OK);
1188			if (ret) {
1189				pr_debug("Can't access file %s\n", path);
1190				goto failure;
1191			}
1192			machines__create_kernel_maps(machines, pid);
1193		}
1194failure:
1195		free(namelist);
1196	}
1197
1198	return ret;
1199}
1200
1201void machines__destroy_kernel_maps(struct machines *machines)
1202{
1203	struct rb_node *next = rb_first_cached(&machines->guests);
1204
1205	machine__destroy_kernel_maps(&machines->host);
1206
1207	while (next) {
1208		struct machine *pos = rb_entry(next, struct machine, rb_node);
1209
1210		next = rb_next(&pos->rb_node);
1211		rb_erase_cached(&pos->rb_node, &machines->guests);
1212		machine__delete(pos);
1213	}
1214}
1215
1216int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217{
1218	struct machine *machine = machines__findnew(machines, pid);
1219
1220	if (machine == NULL)
1221		return -1;
1222
1223	return machine__create_kernel_maps(machine);
1224}
1225
1226int machine__load_kallsyms(struct machine *machine, const char *filename)
 
1227{
1228	struct map *map = machine__kernel_map(machine);
1229	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230
1231	if (ret > 0) {
1232		dso__set_loaded(map->dso);
1233		/*
1234		 * Since /proc/kallsyms will have multiple sessions for the
1235		 * kernel, with modules between them, fixup the end of all
1236		 * sections.
1237		 */
1238		map_groups__fixup_end(&machine->kmaps);
1239	}
1240
1241	return ret;
1242}
1243
1244int machine__load_vmlinux_path(struct machine *machine)
 
 
 
 
 
 
1245{
1246	struct map *map = machine__kernel_map(machine);
1247	int ret = dso__load_vmlinux_path(map->dso, map);
1248
1249	if (ret > 0)
1250		dso__set_loaded(map->dso);
1251
1252	return ret;
1253}
1254
 
 
 
 
 
 
 
1255static char *get_kernel_version(const char *root_dir)
1256{
1257	char version[PATH_MAX];
1258	FILE *file;
1259	char *name, *tmp;
1260	const char *prefix = "Linux version ";
1261
1262	sprintf(version, "%s/proc/version", root_dir);
1263	file = fopen(version, "r");
1264	if (!file)
1265		return NULL;
1266
 
1267	tmp = fgets(version, sizeof(version), file);
1268	fclose(file);
1269	if (!tmp)
1270		return NULL;
1271
1272	name = strstr(version, prefix);
1273	if (!name)
1274		return NULL;
1275	name += strlen(prefix);
1276	tmp = strchr(name, ' ');
1277	if (tmp)
1278		*tmp = '\0';
1279
1280	return strdup(name);
1281}
1282
1283static bool is_kmod_dso(struct dso *dso)
1284{
1285	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287}
1288
1289static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290				       struct kmod_path *m)
1291{
 
1292	char *long_name;
1293	struct map *map = map_groups__find_by_name(mg, m->name);
1294
 
1295	if (map == NULL)
1296		return 0;
1297
1298	long_name = strdup(path);
1299	if (long_name == NULL)
1300		return -ENOMEM;
1301
1302	dso__set_long_name(map->dso, long_name, true);
1303	dso__kernel_module_get_build_id(map->dso, "");
1304
1305	/*
1306	 * Full name could reveal us kmod compression, so
1307	 * we need to update the symtab_type if needed.
1308	 */
1309	if (m->comp && is_kmod_dso(map->dso)) {
1310		map->dso->symtab_type++;
1311		map->dso->comp = m->comp;
1312	}
1313
1314	return 0;
1315}
1316
1317static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318				const char *dir_name, int depth)
1319{
1320	struct dirent *dent;
1321	DIR *dir = opendir(dir_name);
1322	int ret = 0;
1323
1324	if (!dir) {
1325		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326		return -1;
1327	}
1328
1329	while ((dent = readdir(dir)) != NULL) {
1330		char path[PATH_MAX];
1331		struct stat st;
1332
1333		/*sshfs might return bad dent->d_type, so we have to stat*/
1334		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335		if (stat(path, &st))
1336			continue;
1337
1338		if (S_ISDIR(st.st_mode)) {
1339			if (!strcmp(dent->d_name, ".") ||
1340			    !strcmp(dent->d_name, ".."))
1341				continue;
1342
1343			/* Do not follow top-level source and build symlinks */
1344			if (depth == 0) {
1345				if (!strcmp(dent->d_name, "source") ||
1346				    !strcmp(dent->d_name, "build"))
1347					continue;
1348			}
1349
1350			ret = map_groups__set_modules_path_dir(mg, path,
1351							       depth + 1);
1352			if (ret < 0)
1353				goto out;
1354		} else {
1355			struct kmod_path m;
1356
1357			ret = kmod_path__parse_name(&m, dent->d_name);
1358			if (ret)
1359				goto out;
1360
1361			if (m.kmod)
1362				ret = map_groups__set_module_path(mg, path, &m);
1363
1364			zfree(&m.name);
1365
1366			if (ret)
1367				goto out;
1368		}
1369	}
1370
1371out:
1372	closedir(dir);
1373	return ret;
1374}
1375
1376static int machine__set_modules_path(struct machine *machine)
1377{
1378	char *version;
1379	char modules_path[PATH_MAX];
1380
1381	version = get_kernel_version(machine->root_dir);
1382	if (!version)
1383		return -1;
1384
1385	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386		 machine->root_dir, version);
1387	free(version);
1388
1389	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390}
1391int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392				u64 *size __maybe_unused,
1393				const char *name __maybe_unused)
1394{
1395	return 0;
1396}
1397
1398static int machine__create_module(void *arg, const char *name, u64 start,
1399				  u64 size)
1400{
1401	struct machine *machine = arg;
1402	struct map *map;
1403
1404	if (arch__fix_module_text_start(&start, &size, name) < 0)
1405		return -1;
1406
1407	map = machine__findnew_module_map(machine, start, name);
1408	if (map == NULL)
1409		return -1;
1410	map->end = start + size;
1411
1412	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413
1414	return 0;
1415}
1416
1417static int machine__create_modules(struct machine *machine)
1418{
1419	const char *modules;
1420	char path[PATH_MAX];
1421
1422	if (machine__is_default_guest(machine)) {
1423		modules = symbol_conf.default_guest_modules;
1424	} else {
1425		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426		modules = path;
1427	}
1428
1429	if (symbol__restricted_filename(modules, "/proc/modules"))
1430		return -1;
1431
1432	if (modules__parse(modules, machine, machine__create_module))
1433		return -1;
1434
1435	if (!machine__set_modules_path(machine))
1436		return 0;
1437
1438	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439
1440	return 0;
1441}
1442
1443static void machine__set_kernel_mmap(struct machine *machine,
1444				     u64 start, u64 end)
1445{
1446	machine->vmlinux_map->start = start;
1447	machine->vmlinux_map->end   = end;
1448	/*
1449	 * Be a bit paranoid here, some perf.data file came with
1450	 * a zero sized synthesized MMAP event for the kernel.
1451	 */
1452	if (start == 0 && end == 0)
1453		machine->vmlinux_map->end = ~0ULL;
1454}
1455
1456static void machine__update_kernel_mmap(struct machine *machine,
1457				     u64 start, u64 end)
1458{
1459	struct map *map = machine__kernel_map(machine);
1460
1461	map__get(map);
1462	map_groups__remove(&machine->kmaps, map);
1463
1464	machine__set_kernel_mmap(machine, start, end);
1465
1466	map_groups__insert(&machine->kmaps, map);
1467	map__put(map);
1468}
1469
1470int machine__create_kernel_maps(struct machine *machine)
1471{
1472	struct dso *kernel = machine__get_kernel(machine);
1473	const char *name = NULL;
1474	struct map *map;
1475	u64 start = 0, end = ~0ULL;
1476	int ret;
1477
1478	if (kernel == NULL)
1479		return -1;
1480
1481	ret = __machine__create_kernel_maps(machine, kernel);
 
1482	if (ret < 0)
1483		goto out_put;
1484
1485	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486		if (machine__is_host(machine))
1487			pr_debug("Problems creating module maps, "
1488				 "continuing anyway...\n");
1489		else
1490			pr_debug("Problems creating module maps for guest %d, "
1491				 "continuing anyway...\n", machine->pid);
1492	}
1493
1494	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495		if (name &&
1496		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497			machine__destroy_kernel_maps(machine);
1498			ret = -1;
1499			goto out_put;
1500		}
1501
1502		/*
1503		 * we have a real start address now, so re-order the kmaps
1504		 * assume it's the last in the kmaps
1505		 */
1506		machine__update_kernel_mmap(machine, start, end);
1507	}
1508
1509	if (machine__create_extra_kernel_maps(machine, kernel))
1510		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511
1512	if (end == ~0ULL) {
1513		/* update end address of the kernel map using adjacent module address */
1514		map = map__next(machine__kernel_map(machine));
1515		if (map)
1516			machine__set_kernel_mmap(machine, start, map->start);
1517	}
1518
1519out_put:
1520	dso__put(kernel);
1521	return ret;
 
 
 
 
 
 
 
 
1522}
1523
1524static bool machine__uses_kcore(struct machine *machine)
1525{
1526	struct dso *dso;
1527
1528	list_for_each_entry(dso, &machine->dsos.head, node) {
1529		if (dso__is_kcore(dso))
1530			return true;
1531	}
1532
1533	return false;
1534}
1535
1536static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537					     union perf_event *event)
1538{
1539	return machine__is(machine, "x86_64") &&
1540	       is_entry_trampoline(event->mmap.filename);
1541}
1542
1543static int machine__process_extra_kernel_map(struct machine *machine,
1544					     union perf_event *event)
1545{
1546	struct map *kernel_map = machine__kernel_map(machine);
1547	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548	struct extra_kernel_map xm = {
1549		.start = event->mmap.start,
1550		.end   = event->mmap.start + event->mmap.len,
1551		.pgoff = event->mmap.pgoff,
1552	};
1553
1554	if (kernel == NULL)
1555		return -1;
1556
1557	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558
1559	return machine__create_extra_kernel_map(machine, kernel, &xm);
1560}
1561
1562static int machine__process_kernel_mmap_event(struct machine *machine,
1563					      union perf_event *event)
1564{
1565	struct map *map;
 
1566	enum dso_kernel_type kernel_type;
1567	bool is_kernel_mmap;
1568
1569	/* If we have maps from kcore then we do not need or want any others */
1570	if (machine__uses_kcore(machine))
1571		return 0;
1572
 
1573	if (machine__is_host(machine))
1574		kernel_type = DSO_TYPE_KERNEL;
1575	else
1576		kernel_type = DSO_TYPE_GUEST_KERNEL;
1577
1578	is_kernel_mmap = memcmp(event->mmap.filename,
1579				machine->mmap_name,
1580				strlen(machine->mmap_name) - 1) == 0;
1581	if (event->mmap.filename[0] == '/' ||
1582	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583		map = machine__findnew_module_map(machine, event->mmap.start,
1584						  event->mmap.filename);
1585		if (map == NULL)
1586			goto out_problem;
1587
1588		map->end = map->start + event->mmap.len;
1589	} else if (is_kernel_mmap) {
1590		const char *symbol_name = (event->mmap.filename +
1591				strlen(machine->mmap_name));
1592		/*
1593		 * Should be there already, from the build-id table in
1594		 * the header.
1595		 */
1596		struct dso *kernel = NULL;
1597		struct dso *dso;
1598
1599		down_read(&machine->dsos.lock);
1600
1601		list_for_each_entry(dso, &machine->dsos.head, node) {
1602
1603			/*
1604			 * The cpumode passed to is_kernel_module is not the
1605			 * cpumode of *this* event. If we insist on passing
1606			 * correct cpumode to is_kernel_module, we should
1607			 * record the cpumode when we adding this dso to the
1608			 * linked list.
1609			 *
1610			 * However we don't really need passing correct
1611			 * cpumode.  We know the correct cpumode must be kernel
1612			 * mode (if not, we should not link it onto kernel_dsos
1613			 * list).
1614			 *
1615			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616			 * is_kernel_module() treats it as a kernel cpumode.
1617			 */
1618
1619			if (!dso->kernel ||
1620			    is_kernel_module(dso->long_name,
1621					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622				continue;
1623
1624
1625			kernel = dso;
1626			break;
1627		}
1628
1629		up_read(&machine->dsos.lock);
1630
1631		if (kernel == NULL)
1632			kernel = machine__findnew_dso(machine, machine->mmap_name);
1633		if (kernel == NULL)
1634			goto out_problem;
1635
1636		kernel->kernel = kernel_type;
1637		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638			dso__put(kernel);
1639			goto out_problem;
1640		}
1641
1642		if (strstr(kernel->long_name, "vmlinux"))
1643			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644
1645		machine__update_kernel_mmap(machine, event->mmap.start,
1646					 event->mmap.start + event->mmap.len);
1647
1648		/*
1649		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650		 * symbol. Effectively having zero here means that at record
1651		 * time /proc/sys/kernel/kptr_restrict was non zero.
1652		 */
1653		if (event->mmap.pgoff != 0) {
1654			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655							symbol_name,
1656							event->mmap.pgoff);
1657		}
1658
1659		if (machine__is_default_guest(machine)) {
1660			/*
1661			 * preload dso of guest kernel and modules
1662			 */
1663			dso__load(kernel, machine__kernel_map(machine));
1664		}
1665	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666		return machine__process_extra_kernel_map(machine, event);
1667	}
1668	return 0;
1669out_problem:
1670	return -1;
1671}
1672
1673int machine__process_mmap2_event(struct machine *machine,
1674				 union perf_event *event,
1675				 struct perf_sample *sample)
1676{
1677	struct thread *thread;
1678	struct map *map;
 
1679	int ret = 0;
1680
1681	if (dump_trace)
1682		perf_event__fprintf_mmap2(event, stdout);
1683
1684	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686		ret = machine__process_kernel_mmap_event(machine, event);
1687		if (ret < 0)
1688			goto out_problem;
1689		return 0;
1690	}
1691
1692	thread = machine__findnew_thread(machine, event->mmap2.pid,
1693					event->mmap2.tid);
1694	if (thread == NULL)
1695		goto out_problem;
1696
 
 
 
 
 
1697	map = map__new(machine, event->mmap2.start,
1698			event->mmap2.len, event->mmap2.pgoff,
1699			event->mmap2.maj,
1700			event->mmap2.min, event->mmap2.ino,
1701			event->mmap2.ino_generation,
1702			event->mmap2.prot,
1703			event->mmap2.flags,
1704			event->mmap2.filename, thread);
1705
1706	if (map == NULL)
1707		goto out_problem_map;
1708
1709	ret = thread__insert_map(thread, map);
1710	if (ret)
1711		goto out_problem_insert;
1712
1713	thread__put(thread);
1714	map__put(map);
1715	return 0;
1716
1717out_problem_insert:
1718	map__put(map);
1719out_problem_map:
1720	thread__put(thread);
1721out_problem:
1722	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723	return 0;
1724}
1725
1726int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727				struct perf_sample *sample)
1728{
1729	struct thread *thread;
1730	struct map *map;
1731	u32 prot = 0;
1732	int ret = 0;
1733
1734	if (dump_trace)
1735		perf_event__fprintf_mmap(event, stdout);
1736
1737	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739		ret = machine__process_kernel_mmap_event(machine, event);
1740		if (ret < 0)
1741			goto out_problem;
1742		return 0;
1743	}
1744
1745	thread = machine__findnew_thread(machine, event->mmap.pid,
1746					 event->mmap.tid);
1747	if (thread == NULL)
1748		goto out_problem;
1749
1750	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751		prot = PROT_EXEC;
 
 
1752
1753	map = map__new(machine, event->mmap.start,
1754			event->mmap.len, event->mmap.pgoff,
1755			0, 0, 0, 0, prot, 0,
1756			event->mmap.filename,
1757			thread);
1758
1759	if (map == NULL)
1760		goto out_problem_map;
1761
1762	ret = thread__insert_map(thread, map);
1763	if (ret)
1764		goto out_problem_insert;
1765
1766	thread__put(thread);
1767	map__put(map);
1768	return 0;
1769
1770out_problem_insert:
1771	map__put(map);
1772out_problem_map:
1773	thread__put(thread);
1774out_problem:
1775	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776	return 0;
1777}
1778
1779static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1780{
1781	struct threads *threads = machine__threads(machine, th->tid);
1782
1783	if (threads->last_match == th)
1784		threads__set_last_match(threads, NULL);
1785
 
1786	if (lock)
1787		down_write(&threads->lock);
1788
1789	BUG_ON(refcount_read(&th->refcnt) == 0);
1790
1791	rb_erase_cached(&th->rb_node, &threads->entries);
1792	RB_CLEAR_NODE(&th->rb_node);
1793	--threads->nr;
1794	/*
1795	 * Move it first to the dead_threads list, then drop the reference,
1796	 * if this is the last reference, then the thread__delete destructor
1797	 * will be called and we will remove it from the dead_threads list.
1798	 */
1799	list_add_tail(&th->node, &threads->dead);
1800
1801	/*
1802	 * We need to do the put here because if this is the last refcount,
1803	 * then we will be touching the threads->dead head when removing the
1804	 * thread.
1805	 */
1806	thread__put(th);
1807
1808	if (lock)
1809		up_write(&threads->lock);
 
1810}
1811
1812void machine__remove_thread(struct machine *machine, struct thread *th)
1813{
1814	return __machine__remove_thread(machine, th, true);
1815}
1816
1817int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818				struct perf_sample *sample)
1819{
1820	struct thread *thread = machine__find_thread(machine,
1821						     event->fork.pid,
1822						     event->fork.tid);
1823	struct thread *parent = machine__findnew_thread(machine,
1824							event->fork.ppid,
1825							event->fork.ptid);
1826	bool do_maps_clone = true;
1827	int err = 0;
1828
1829	if (dump_trace)
1830		perf_event__fprintf_task(event, stdout);
1831
1832	/*
1833	 * There may be an existing thread that is not actually the parent,
1834	 * either because we are processing events out of order, or because the
1835	 * (fork) event that would have removed the thread was lost. Assume the
1836	 * latter case and continue on as best we can.
1837	 */
1838	if (parent->pid_ != (pid_t)event->fork.ppid) {
1839		dump_printf("removing erroneous parent thread %d/%d\n",
1840			    parent->pid_, parent->tid);
1841		machine__remove_thread(machine, parent);
1842		thread__put(parent);
1843		parent = machine__findnew_thread(machine, event->fork.ppid,
1844						 event->fork.ptid);
1845	}
1846
1847	/* if a thread currently exists for the thread id remove it */
1848	if (thread != NULL) {
1849		machine__remove_thread(machine, thread);
1850		thread__put(thread);
1851	}
1852
1853	thread = machine__findnew_thread(machine, event->fork.pid,
1854					 event->fork.tid);
1855	/*
1856	 * When synthesizing FORK events, we are trying to create thread
1857	 * objects for the already running tasks on the machine.
1858	 *
1859	 * Normally, for a kernel FORK event, we want to clone the parent's
1860	 * maps because that is what the kernel just did.
1861	 *
1862	 * But when synthesizing, this should not be done.  If we do, we end up
1863	 * with overlapping maps as we process the sythesized MMAP2 events that
1864	 * get delivered shortly thereafter.
1865	 *
1866	 * Use the FORK event misc flags in an internal way to signal this
1867	 * situation, so we can elide the map clone when appropriate.
1868	 */
1869	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870		do_maps_clone = false;
1871
1872	if (thread == NULL || parent == NULL ||
1873	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875		err = -1;
1876	}
1877	thread__put(thread);
1878	thread__put(parent);
1879
1880	return err;
1881}
1882
1883int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884				struct perf_sample *sample __maybe_unused)
1885{
1886	struct thread *thread = machine__find_thread(machine,
1887						     event->fork.pid,
1888						     event->fork.tid);
1889
1890	if (dump_trace)
1891		perf_event__fprintf_task(event, stdout);
1892
1893	if (thread != NULL) {
1894		thread__exited(thread);
1895		thread__put(thread);
1896	}
1897
1898	return 0;
1899}
1900
1901int machine__process_event(struct machine *machine, union perf_event *event,
1902			   struct perf_sample *sample)
1903{
1904	int ret;
1905
1906	switch (event->header.type) {
1907	case PERF_RECORD_COMM:
1908		ret = machine__process_comm_event(machine, event, sample); break;
1909	case PERF_RECORD_MMAP:
1910		ret = machine__process_mmap_event(machine, event, sample); break;
1911	case PERF_RECORD_NAMESPACES:
1912		ret = machine__process_namespaces_event(machine, event, sample); break;
1913	case PERF_RECORD_MMAP2:
1914		ret = machine__process_mmap2_event(machine, event, sample); break;
1915	case PERF_RECORD_FORK:
1916		ret = machine__process_fork_event(machine, event, sample); break;
1917	case PERF_RECORD_EXIT:
1918		ret = machine__process_exit_event(machine, event, sample); break;
1919	case PERF_RECORD_LOST:
1920		ret = machine__process_lost_event(machine, event, sample); break;
1921	case PERF_RECORD_AUX:
1922		ret = machine__process_aux_event(machine, event); break;
1923	case PERF_RECORD_ITRACE_START:
1924		ret = machine__process_itrace_start_event(machine, event); break;
1925	case PERF_RECORD_LOST_SAMPLES:
1926		ret = machine__process_lost_samples_event(machine, event, sample); break;
1927	case PERF_RECORD_SWITCH:
1928	case PERF_RECORD_SWITCH_CPU_WIDE:
1929		ret = machine__process_switch_event(machine, event); break;
1930	case PERF_RECORD_KSYMBOL:
1931		ret = machine__process_ksymbol(machine, event, sample); break;
1932	case PERF_RECORD_BPF_EVENT:
1933		ret = machine__process_bpf(machine, event, sample); break;
1934	default:
1935		ret = -1;
1936		break;
1937	}
1938
1939	return ret;
1940}
1941
1942static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943{
1944	if (!regexec(regex, sym->name, 0, NULL, 0))
1945		return 1;
1946	return 0;
1947}
1948
1949static void ip__resolve_ams(struct thread *thread,
1950			    struct addr_map_symbol *ams,
1951			    u64 ip)
1952{
1953	struct addr_location al;
1954
1955	memset(&al, 0, sizeof(al));
1956	/*
1957	 * We cannot use the header.misc hint to determine whether a
1958	 * branch stack address is user, kernel, guest, hypervisor.
1959	 * Branches may straddle the kernel/user/hypervisor boundaries.
1960	 * Thus, we have to try consecutively until we find a match
1961	 * or else, the symbol is unknown
1962	 */
1963	thread__find_cpumode_addr_location(thread, ip, &al);
1964
1965	ams->addr = ip;
1966	ams->al_addr = al.addr;
1967	ams->sym = al.sym;
1968	ams->map = al.map;
1969	ams->phys_addr = 0;
1970}
1971
1972static void ip__resolve_data(struct thread *thread,
1973			     u8 m, struct addr_map_symbol *ams,
1974			     u64 addr, u64 phys_addr)
1975{
1976	struct addr_location al;
1977
1978	memset(&al, 0, sizeof(al));
1979
1980	thread__find_symbol(thread, m, addr, &al);
 
 
 
 
 
 
 
 
1981
1982	ams->addr = addr;
1983	ams->al_addr = al.addr;
1984	ams->sym = al.sym;
1985	ams->map = al.map;
1986	ams->phys_addr = phys_addr;
1987}
1988
1989struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990				     struct addr_location *al)
1991{
1992	struct mem_info *mi = mem_info__new();
1993
1994	if (!mi)
1995		return NULL;
1996
1997	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999			 sample->addr, sample->phys_addr);
2000	mi->data_src.val = sample->data_src;
2001
2002	return mi;
2003}
2004
2005static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006{
2007	char *srcline = NULL;
2008
2009	if (!map || callchain_param.key == CCKEY_FUNCTION)
2010		return srcline;
2011
2012	srcline = srcline__tree_find(&map->dso->srclines, ip);
2013	if (!srcline) {
2014		bool show_sym = false;
2015		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016
2017		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018				      sym, show_sym, show_addr, ip);
2019		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020	}
2021
2022	return srcline;
2023}
2024
2025struct iterations {
2026	int nr_loop_iter;
2027	u64 cycles;
2028};
2029
2030static int add_callchain_ip(struct thread *thread,
2031			    struct callchain_cursor *cursor,
2032			    struct symbol **parent,
2033			    struct addr_location *root_al,
2034			    u8 *cpumode,
2035			    u64 ip,
2036			    bool branch,
2037			    struct branch_flags *flags,
2038			    struct iterations *iter,
2039			    u64 branch_from)
2040{
2041	struct addr_location al;
2042	int nr_loop_iter = 0;
2043	u64 iter_cycles = 0;
2044	const char *srcline = NULL;
2045
2046	al.filtered = 0;
2047	al.sym = NULL;
2048	if (!cpumode) {
2049		thread__find_cpumode_addr_location(thread, ip, &al);
 
2050	} else {
2051		if (ip >= PERF_CONTEXT_MAX) {
2052			switch (ip) {
2053			case PERF_CONTEXT_HV:
2054				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055				break;
2056			case PERF_CONTEXT_KERNEL:
2057				*cpumode = PERF_RECORD_MISC_KERNEL;
2058				break;
2059			case PERF_CONTEXT_USER:
2060				*cpumode = PERF_RECORD_MISC_USER;
2061				break;
2062			default:
2063				pr_debug("invalid callchain context: "
2064					 "%"PRId64"\n", (s64) ip);
2065				/*
2066				 * It seems the callchain is corrupted.
2067				 * Discard all.
2068				 */
2069				callchain_cursor_reset(cursor);
2070				return 1;
2071			}
2072			return 0;
2073		}
2074		thread__find_symbol(thread, *cpumode, ip, &al);
 
2075	}
2076
2077	if (al.sym != NULL) {
2078		if (perf_hpp_list.parent && !*parent &&
2079		    symbol__match_regex(al.sym, &parent_regex))
2080			*parent = al.sym;
2081		else if (have_ignore_callees && root_al &&
2082		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083			/* Treat this symbol as the root,
2084			   forgetting its callees. */
2085			*root_al = al;
2086			callchain_cursor_reset(cursor);
2087		}
2088	}
2089
2090	if (symbol_conf.hide_unresolved && al.sym == NULL)
2091		return 0;
2092
2093	if (iter) {
2094		nr_loop_iter = iter->nr_loop_iter;
2095		iter_cycles = iter->cycles;
2096	}
2097
2098	srcline = callchain_srcline(al.map, al.sym, al.addr);
2099	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2100				       branch, flags, nr_loop_iter,
2101				       iter_cycles, branch_from, srcline);
2102}
2103
2104struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105					   struct addr_location *al)
2106{
2107	unsigned int i;
2108	const struct branch_stack *bs = sample->branch_stack;
2109	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110
2111	if (!bi)
2112		return NULL;
2113
2114	for (i = 0; i < bs->nr; i++) {
2115		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117		bi[i].flags = bs->entries[i].flags;
2118	}
2119	return bi;
2120}
2121
2122static void save_iterations(struct iterations *iter,
2123			    struct branch_entry *be, int nr)
2124{
2125	int i;
2126
2127	iter->nr_loop_iter++;
2128	iter->cycles = 0;
2129
2130	for (i = 0; i < nr; i++)
2131		iter->cycles += be[i].flags.cycles;
2132}
2133
2134#define CHASHSZ 127
2135#define CHASHBITS 7
2136#define NO_ENTRY 0xff
2137
2138#define PERF_MAX_BRANCH_DEPTH 127
2139
2140/* Remove loops. */
2141static int remove_loops(struct branch_entry *l, int nr,
2142			struct iterations *iter)
2143{
2144	int i, j, off;
2145	unsigned char chash[CHASHSZ];
2146
2147	memset(chash, NO_ENTRY, sizeof(chash));
2148
2149	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150
2151	for (i = 0; i < nr; i++) {
2152		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153
2154		/* no collision handling for now */
2155		if (chash[h] == NO_ENTRY) {
2156			chash[h] = i;
2157		} else if (l[chash[h]].from == l[i].from) {
2158			bool is_loop = true;
2159			/* check if it is a real loop */
2160			off = 0;
2161			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162				if (l[j].from != l[i + off].from) {
2163					is_loop = false;
2164					break;
2165				}
2166			if (is_loop) {
2167				j = nr - (i + off);
2168				if (j > 0) {
2169					save_iterations(iter + i + off,
2170						l + i, off);
2171
2172					memmove(iter + i, iter + i + off,
2173						j * sizeof(*iter));
2174
2175					memmove(l + i, l + i + off,
2176						j * sizeof(*l));
2177				}
2178
2179				nr -= off;
2180			}
2181		}
2182	}
2183	return nr;
2184}
2185
2186/*
2187 * Recolve LBR callstack chain sample
2188 * Return:
2189 * 1 on success get LBR callchain information
2190 * 0 no available LBR callchain information, should try fp
2191 * negative error code on other errors.
2192 */
2193static int resolve_lbr_callchain_sample(struct thread *thread,
2194					struct callchain_cursor *cursor,
2195					struct perf_sample *sample,
2196					struct symbol **parent,
2197					struct addr_location *root_al,
2198					int max_stack)
2199{
2200	struct ip_callchain *chain = sample->callchain;
2201	int chain_nr = min(max_stack, (int)chain->nr), i;
2202	u8 cpumode = PERF_RECORD_MISC_USER;
2203	u64 ip, branch_from = 0;
2204
2205	for (i = 0; i < chain_nr; i++) {
2206		if (chain->ips[i] == PERF_CONTEXT_USER)
2207			break;
2208	}
2209
2210	/* LBR only affects the user callchain */
2211	if (i != chain_nr) {
2212		struct branch_stack *lbr_stack = sample->branch_stack;
2213		int lbr_nr = lbr_stack->nr, j, k;
2214		bool branch;
2215		struct branch_flags *flags;
2216		/*
2217		 * LBR callstack can only get user call chain.
2218		 * The mix_chain_nr is kernel call chain
2219		 * number plus LBR user call chain number.
2220		 * i is kernel call chain number,
2221		 * 1 is PERF_CONTEXT_USER,
2222		 * lbr_nr + 1 is the user call chain number.
2223		 * For details, please refer to the comments
2224		 * in callchain__printf
2225		 */
2226		int mix_chain_nr = i + 1 + lbr_nr + 1;
2227
2228		for (j = 0; j < mix_chain_nr; j++) {
2229			int err;
2230			branch = false;
2231			flags = NULL;
2232
2233			if (callchain_param.order == ORDER_CALLEE) {
2234				if (j < i + 1)
2235					ip = chain->ips[j];
2236				else if (j > i + 1) {
2237					k = j - i - 2;
2238					ip = lbr_stack->entries[k].from;
2239					branch = true;
2240					flags = &lbr_stack->entries[k].flags;
2241				} else {
2242					ip = lbr_stack->entries[0].to;
2243					branch = true;
2244					flags = &lbr_stack->entries[0].flags;
2245					branch_from =
2246						lbr_stack->entries[0].from;
2247				}
2248			} else {
2249				if (j < lbr_nr) {
2250					k = lbr_nr - j - 1;
2251					ip = lbr_stack->entries[k].from;
2252					branch = true;
2253					flags = &lbr_stack->entries[k].flags;
2254				}
2255				else if (j > lbr_nr)
2256					ip = chain->ips[i + 1 - (j - lbr_nr)];
2257				else {
2258					ip = lbr_stack->entries[0].to;
2259					branch = true;
2260					flags = &lbr_stack->entries[0].flags;
2261					branch_from =
2262						lbr_stack->entries[0].from;
2263				}
2264			}
2265
2266			err = add_callchain_ip(thread, cursor, parent,
2267					       root_al, &cpumode, ip,
2268					       branch, flags, NULL,
2269					       branch_from);
2270			if (err)
2271				return (err < 0) ? err : 0;
2272		}
2273		return 1;
2274	}
2275
2276	return 0;
2277}
2278
2279static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280			     struct callchain_cursor *cursor,
2281			     struct symbol **parent,
2282			     struct addr_location *root_al,
2283			     u8 *cpumode, int ent)
2284{
2285	int err = 0;
2286
2287	while (--ent >= 0) {
2288		u64 ip = chain->ips[ent];
2289
2290		if (ip >= PERF_CONTEXT_MAX) {
2291			err = add_callchain_ip(thread, cursor, parent,
2292					       root_al, cpumode, ip,
2293					       false, NULL, NULL, 0);
2294			break;
2295		}
2296	}
2297	return err;
2298}
2299
2300static int thread__resolve_callchain_sample(struct thread *thread,
2301					    struct callchain_cursor *cursor,
2302					    struct evsel *evsel,
2303					    struct perf_sample *sample,
2304					    struct symbol **parent,
2305					    struct addr_location *root_al,
2306					    int max_stack)
2307{
2308	struct branch_stack *branch = sample->branch_stack;
2309	struct ip_callchain *chain = sample->callchain;
2310	int chain_nr = 0;
2311	u8 cpumode = PERF_RECORD_MISC_USER;
2312	int i, j, err, nr_entries;
2313	int skip_idx = -1;
2314	int first_call = 0;
2315
2316	if (chain)
2317		chain_nr = chain->nr;
2318
2319	if (perf_evsel__has_branch_callstack(evsel)) {
2320		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321						   root_al, max_stack);
2322		if (err)
2323			return (err < 0) ? err : 0;
2324	}
2325
2326	/*
2327	 * Based on DWARF debug information, some architectures skip
2328	 * a callchain entry saved by the kernel.
2329	 */
2330	skip_idx = arch_skip_callchain_idx(thread, chain);
2331
2332	/*
2333	 * Add branches to call stack for easier browsing. This gives
2334	 * more context for a sample than just the callers.
2335	 *
2336	 * This uses individual histograms of paths compared to the
2337	 * aggregated histograms the normal LBR mode uses.
2338	 *
2339	 * Limitations for now:
2340	 * - No extra filters
2341	 * - No annotations (should annotate somehow)
2342	 */
2343
2344	if (branch && callchain_param.branch_callstack) {
2345		int nr = min(max_stack, (int)branch->nr);
2346		struct branch_entry be[nr];
2347		struct iterations iter[nr];
2348
2349		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350			pr_warning("corrupted branch chain. skipping...\n");
2351			goto check_calls;
2352		}
2353
2354		for (i = 0; i < nr; i++) {
2355			if (callchain_param.order == ORDER_CALLEE) {
2356				be[i] = branch->entries[i];
2357
2358				if (chain == NULL)
2359					continue;
2360
2361				/*
2362				 * Check for overlap into the callchain.
2363				 * The return address is one off compared to
2364				 * the branch entry. To adjust for this
2365				 * assume the calling instruction is not longer
2366				 * than 8 bytes.
2367				 */
2368				if (i == skip_idx ||
2369				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370					first_call++;
2371				else if (be[i].from < chain->ips[first_call] &&
2372				    be[i].from >= chain->ips[first_call] - 8)
2373					first_call++;
2374			} else
2375				be[i] = branch->entries[branch->nr - i - 1];
2376		}
2377
2378		memset(iter, 0, sizeof(struct iterations) * nr);
2379		nr = remove_loops(be, nr, iter);
 
 
 
 
 
 
 
 
 
2380
2381		for (i = 0; i < nr; i++) {
2382			err = add_callchain_ip(thread, cursor, parent,
2383					       root_al,
2384					       NULL, be[i].to,
2385					       true, &be[i].flags,
2386					       NULL, be[i].from);
 
 
 
 
 
 
 
2387
2388			if (!err)
2389				err = add_callchain_ip(thread, cursor, parent, root_al,
2390						       NULL, be[i].from,
2391						       true, &be[i].flags,
2392						       &iter[i], 0);
2393			if (err == -EINVAL)
2394				break;
2395			if (err)
2396				return err;
2397		}
2398
2399		if (chain_nr == 0)
2400			return 0;
2401
2402		chain_nr -= nr;
2403	}
2404
2405check_calls:
2406	if (callchain_param.order != ORDER_CALLEE) {
2407		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408					&cpumode, chain->nr - first_call);
2409		if (err)
2410			return (err < 0) ? err : 0;
2411	}
2412	for (i = first_call, nr_entries = 0;
2413	     i < chain_nr && nr_entries < max_stack; i++) {
2414		u64 ip;
2415
2416		if (callchain_param.order == ORDER_CALLEE)
2417			j = i;
2418		else
2419			j = chain->nr - i - 1;
2420
2421#ifdef HAVE_SKIP_CALLCHAIN_IDX
2422		if (j == skip_idx)
2423			continue;
2424#endif
2425		ip = chain->ips[j];
 
2426		if (ip < PERF_CONTEXT_MAX)
2427                       ++nr_entries;
2428		else if (callchain_param.order != ORDER_CALLEE) {
2429			err = find_prev_cpumode(chain, thread, cursor, parent,
2430						root_al, &cpumode, j);
2431			if (err)
2432				return (err < 0) ? err : 0;
2433			continue;
2434		}
2435
2436		err = add_callchain_ip(thread, cursor, parent,
2437				       root_al, &cpumode, ip,
2438				       false, NULL, NULL, 0);
2439
2440		if (err)
2441			return (err < 0) ? err : 0;
2442	}
2443
2444	return 0;
2445}
2446
2447static int append_inlines(struct callchain_cursor *cursor,
2448			  struct map *map, struct symbol *sym, u64 ip)
2449{
2450	struct inline_node *inline_node;
2451	struct inline_list *ilist;
2452	u64 addr;
2453	int ret = 1;
2454
2455	if (!symbol_conf.inline_name || !map || !sym)
2456		return ret;
2457
2458	addr = map__map_ip(map, ip);
2459	addr = map__rip_2objdump(map, addr);
2460
2461	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462	if (!inline_node) {
2463		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464		if (!inline_node)
2465			return ret;
2466		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467	}
2468
2469	list_for_each_entry(ilist, &inline_node->val, list) {
2470		ret = callchain_cursor_append(cursor, ip, map,
2471					      ilist->symbol, false,
2472					      NULL, 0, 0, 0, ilist->srcline);
2473
2474		if (ret != 0)
2475			return ret;
2476	}
2477
2478	return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483	struct callchain_cursor *cursor = arg;
2484	const char *srcline = NULL;
2485	u64 addr = entry->ip;
2486
2487	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488		return 0;
2489
2490	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491		return 0;
2492
2493	/*
2494	 * Convert entry->ip from a virtual address to an offset in
2495	 * its corresponding binary.
2496	 */
2497	if (entry->map)
2498		addr = map__map_ip(entry->map, entry->ip);
2499
2500	srcline = callchain_srcline(entry->map, entry->sym, addr);
2501	return callchain_cursor_append(cursor, entry->ip,
2502				       entry->map, entry->sym,
2503				       false, NULL, 0, 0, 0, srcline);
2504}
2505
2506static int thread__resolve_callchain_unwind(struct thread *thread,
2507					    struct callchain_cursor *cursor,
2508					    struct evsel *evsel,
2509					    struct perf_sample *sample,
2510					    int max_stack)
2511{
2512	/* Can we do dwarf post unwind? */
2513	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515		return 0;
2516
2517	/* Bail out if nothing was captured. */
2518	if ((!sample->user_regs.regs) ||
2519	    (!sample->user_stack.size))
2520		return 0;
2521
2522	return unwind__get_entries(unwind_entry, cursor,
2523				   thread, sample, max_stack);
2524}
2525
2526int thread__resolve_callchain(struct thread *thread,
2527			      struct callchain_cursor *cursor,
2528			      struct evsel *evsel,
2529			      struct perf_sample *sample,
2530			      struct symbol **parent,
2531			      struct addr_location *root_al,
2532			      int max_stack)
2533{
2534	int ret = 0;
2535
2536	callchain_cursor_reset(cursor);
2537
2538	if (callchain_param.order == ORDER_CALLEE) {
2539		ret = thread__resolve_callchain_sample(thread, cursor,
2540						       evsel, sample,
2541						       parent, root_al,
2542						       max_stack);
2543		if (ret)
2544			return ret;
2545		ret = thread__resolve_callchain_unwind(thread, cursor,
2546						       evsel, sample,
2547						       max_stack);
2548	} else {
2549		ret = thread__resolve_callchain_unwind(thread, cursor,
2550						       evsel, sample,
2551						       max_stack);
2552		if (ret)
2553			return ret;
2554		ret = thread__resolve_callchain_sample(thread, cursor,
2555						       evsel, sample,
2556						       parent, root_al,
2557						       max_stack);
2558	}
2559
2560	return ret;
2561}
2562
2563int machine__for_each_thread(struct machine *machine,
2564			     int (*fn)(struct thread *thread, void *p),
2565			     void *priv)
2566{
2567	struct threads *threads;
2568	struct rb_node *nd;
2569	struct thread *thread;
2570	int rc = 0;
2571	int i;
2572
2573	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574		threads = &machine->threads[i];
2575		for (nd = rb_first_cached(&threads->entries); nd;
2576		     nd = rb_next(nd)) {
2577			thread = rb_entry(nd, struct thread, rb_node);
2578			rc = fn(thread, priv);
2579			if (rc != 0)
2580				return rc;
2581		}
2582
2583		list_for_each_entry(thread, &threads->dead, node) {
2584			rc = fn(thread, priv);
2585			if (rc != 0)
2586				return rc;
2587		}
2588	}
2589	return rc;
2590}
2591
2592int machines__for_each_thread(struct machines *machines,
2593			      int (*fn)(struct thread *thread, void *p),
2594			      void *priv)
2595{
2596	struct rb_node *nd;
2597	int rc = 0;
2598
2599	rc = machine__for_each_thread(&machines->host, fn, priv);
2600	if (rc != 0)
2601		return rc;
2602
2603	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605
2606		rc = machine__for_each_thread(machine, fn, priv);
2607		if (rc != 0)
2608			return rc;
2609	}
2610	return rc;
2611}
2612
 
 
 
 
 
 
 
 
 
 
 
 
 
2613pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614{
2615	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616
2617	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618		return -1;
2619
2620	return machine->current_tid[cpu];
2621}
2622
2623int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624			     pid_t tid)
2625{
2626	struct thread *thread;
2627	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628
2629	if (cpu < 0)
2630		return -EINVAL;
2631
2632	if (!machine->current_tid) {
2633		int i;
2634
2635		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636		if (!machine->current_tid)
2637			return -ENOMEM;
2638		for (i = 0; i < nr_cpus; i++)
2639			machine->current_tid[i] = -1;
2640	}
2641
2642	if (cpu >= nr_cpus) {
2643		pr_err("Requested CPU %d too large. ", cpu);
2644		pr_err("Consider raising MAX_NR_CPUS\n");
2645		return -EINVAL;
2646	}
2647
2648	machine->current_tid[cpu] = tid;
2649
2650	thread = machine__findnew_thread(machine, pid, tid);
2651	if (!thread)
2652		return -ENOMEM;
2653
2654	thread->cpu = cpu;
2655	thread__put(thread);
2656
2657	return 0;
2658}
2659
2660/*
2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662 * normalized arch is needed.
2663 */
2664bool machine__is(struct machine *machine, const char *arch)
2665{
2666	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667}
2668
2669int machine__nr_cpus_avail(struct machine *machine)
2670{
2671	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672}
2673
2674int machine__get_kernel_start(struct machine *machine)
2675{
2676	struct map *map = machine__kernel_map(machine);
2677	int err = 0;
2678
2679	/*
2680	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2682	 * all addresses including kernel addresses are less than 2^32.  In
2683	 * that case (32-bit system), if the kernel mapping is unknown, all
2684	 * addresses will be assumed to be in user space - see
2685	 * machine__kernel_ip().
2686	 */
2687	machine->kernel_start = 1ULL << 63;
2688	if (map) {
2689		err = map__load(map);
2690		/*
2691		 * On x86_64, PTI entry trampolines are less than the
2692		 * start of kernel text, but still above 2^63. So leave
2693		 * kernel_start = 1ULL << 63 for x86_64.
2694		 */
2695		if (!err && !machine__is(machine, "x86_64"))
2696			machine->kernel_start = map->start;
2697	}
2698	return err;
2699}
2700
2701u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702{
2703	u8 addr_cpumode = cpumode;
2704	bool kernel_ip;
2705
2706	if (!machine->single_address_space)
2707		goto out;
2708
2709	kernel_ip = machine__kernel_ip(machine, addr);
2710	switch (cpumode) {
2711	case PERF_RECORD_MISC_KERNEL:
2712	case PERF_RECORD_MISC_USER:
2713		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714					   PERF_RECORD_MISC_USER;
2715		break;
2716	case PERF_RECORD_MISC_GUEST_KERNEL:
2717	case PERF_RECORD_MISC_GUEST_USER:
2718		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719					   PERF_RECORD_MISC_GUEST_USER;
2720		break;
2721	default:
2722		break;
2723	}
2724out:
2725	return addr_cpumode;
2726}
2727
2728struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729{
2730	return dsos__findnew(&machine->dsos, filename);
2731}
2732
2733char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734{
2735	struct machine *machine = vmachine;
2736	struct map *map;
2737	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739	if (sym == NULL)
2740		return NULL;
2741
2742	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743	*addrp = map->unmap_ip(map, sym->start);
2744	return sym->name;
2745}
v4.10.11
 
 
 
 
 
 
   1#include "callchain.h"
   2#include "debug.h"
 
 
   3#include "event.h"
   4#include "evsel.h"
   5#include "hist.h"
   6#include "machine.h"
   7#include "map.h"
 
 
 
 
 
   8#include "sort.h"
   9#include "strlist.h"
 
  10#include "thread.h"
 
  11#include "vdso.h"
  12#include <stdbool.h>
  13#include <symbol/kallsyms.h>
 
 
  14#include "unwind.h"
  15#include "linux/hash.h"
 
 
 
 
 
 
 
 
 
  16
  17static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  18
  19static void dsos__init(struct dsos *dsos)
  20{
  21	INIT_LIST_HEAD(&dsos->head);
  22	dsos->root = RB_ROOT;
  23	pthread_rwlock_init(&dsos->lock, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24}
  25
  26int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  27{
 
 
  28	memset(machine, 0, sizeof(*machine));
  29	map_groups__init(&machine->kmaps, machine);
  30	RB_CLEAR_NODE(&machine->rb_node);
  31	dsos__init(&machine->dsos);
  32
  33	machine->threads = RB_ROOT;
  34	pthread_rwlock_init(&machine->threads_lock, NULL);
  35	machine->nr_threads = 0;
  36	INIT_LIST_HEAD(&machine->dead_threads);
  37	machine->last_match = NULL;
  38
  39	machine->vdso_info = NULL;
  40	machine->env = NULL;
  41
  42	machine->pid = pid;
  43
  44	machine->id_hdr_size = 0;
  45	machine->kptr_restrict_warned = false;
  46	machine->comm_exec = false;
  47	machine->kernel_start = 0;
  48
  49	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
  50
  51	machine->root_dir = strdup(root_dir);
  52	if (machine->root_dir == NULL)
  53		return -ENOMEM;
  54
 
 
 
  55	if (pid != HOST_KERNEL_ID) {
  56		struct thread *thread = machine__findnew_thread(machine, -1,
  57								pid);
  58		char comm[64];
  59
  60		if (thread == NULL)
  61			return -ENOMEM;
  62
  63		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
  64		thread__set_comm(thread, comm, 0);
  65		thread__put(thread);
  66	}
  67
  68	machine->current_tid = NULL;
 
  69
 
 
 
 
 
  70	return 0;
  71}
  72
  73struct machine *machine__new_host(void)
  74{
  75	struct machine *machine = malloc(sizeof(*machine));
  76
  77	if (machine != NULL) {
  78		machine__init(machine, "", HOST_KERNEL_ID);
  79
  80		if (machine__create_kernel_maps(machine) < 0)
  81			goto out_delete;
  82	}
  83
  84	return machine;
  85out_delete:
  86	free(machine);
  87	return NULL;
  88}
  89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90static void dsos__purge(struct dsos *dsos)
  91{
  92	struct dso *pos, *n;
  93
  94	pthread_rwlock_wrlock(&dsos->lock);
  95
  96	list_for_each_entry_safe(pos, n, &dsos->head, node) {
  97		RB_CLEAR_NODE(&pos->rb_node);
  98		pos->root = NULL;
  99		list_del_init(&pos->node);
 100		dso__put(pos);
 101	}
 102
 103	pthread_rwlock_unlock(&dsos->lock);
 104}
 105
 106static void dsos__exit(struct dsos *dsos)
 107{
 108	dsos__purge(dsos);
 109	pthread_rwlock_destroy(&dsos->lock);
 110}
 111
 112void machine__delete_threads(struct machine *machine)
 113{
 114	struct rb_node *nd;
 
 115
 116	pthread_rwlock_wrlock(&machine->threads_lock);
 117	nd = rb_first(&machine->threads);
 118	while (nd) {
 119		struct thread *t = rb_entry(nd, struct thread, rb_node);
 
 
 120
 121		nd = rb_next(nd);
 122		__machine__remove_thread(machine, t, false);
 
 
 123	}
 124	pthread_rwlock_unlock(&machine->threads_lock);
 125}
 126
 127void machine__exit(struct machine *machine)
 128{
 
 
 
 
 
 129	machine__destroy_kernel_maps(machine);
 130	map_groups__exit(&machine->kmaps);
 131	dsos__exit(&machine->dsos);
 132	machine__exit_vdso(machine);
 133	zfree(&machine->root_dir);
 
 134	zfree(&machine->current_tid);
 135	pthread_rwlock_destroy(&machine->threads_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136}
 137
 138void machine__delete(struct machine *machine)
 139{
 140	if (machine) {
 141		machine__exit(machine);
 142		free(machine);
 143	}
 144}
 145
 146void machines__init(struct machines *machines)
 147{
 148	machine__init(&machines->host, "", HOST_KERNEL_ID);
 149	machines->guests = RB_ROOT;
 150}
 151
 152void machines__exit(struct machines *machines)
 153{
 154	machine__exit(&machines->host);
 155	/* XXX exit guest */
 156}
 157
 158struct machine *machines__add(struct machines *machines, pid_t pid,
 159			      const char *root_dir)
 160{
 161	struct rb_node **p = &machines->guests.rb_node;
 162	struct rb_node *parent = NULL;
 163	struct machine *pos, *machine = malloc(sizeof(*machine));
 
 164
 165	if (machine == NULL)
 166		return NULL;
 167
 168	if (machine__init(machine, root_dir, pid) != 0) {
 169		free(machine);
 170		return NULL;
 171	}
 172
 173	while (*p != NULL) {
 174		parent = *p;
 175		pos = rb_entry(parent, struct machine, rb_node);
 176		if (pid < pos->pid)
 177			p = &(*p)->rb_left;
 178		else
 179			p = &(*p)->rb_right;
 
 
 180	}
 181
 182	rb_link_node(&machine->rb_node, parent, p);
 183	rb_insert_color(&machine->rb_node, &machines->guests);
 184
 185	return machine;
 186}
 187
 188void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 189{
 190	struct rb_node *nd;
 191
 192	machines->host.comm_exec = comm_exec;
 193
 194	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 195		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 196
 197		machine->comm_exec = comm_exec;
 198	}
 199}
 200
 201struct machine *machines__find(struct machines *machines, pid_t pid)
 202{
 203	struct rb_node **p = &machines->guests.rb_node;
 204	struct rb_node *parent = NULL;
 205	struct machine *machine;
 206	struct machine *default_machine = NULL;
 207
 208	if (pid == HOST_KERNEL_ID)
 209		return &machines->host;
 210
 211	while (*p != NULL) {
 212		parent = *p;
 213		machine = rb_entry(parent, struct machine, rb_node);
 214		if (pid < machine->pid)
 215			p = &(*p)->rb_left;
 216		else if (pid > machine->pid)
 217			p = &(*p)->rb_right;
 218		else
 219			return machine;
 220		if (!machine->pid)
 221			default_machine = machine;
 222	}
 223
 224	return default_machine;
 225}
 226
 227struct machine *machines__findnew(struct machines *machines, pid_t pid)
 228{
 229	char path[PATH_MAX];
 230	const char *root_dir = "";
 231	struct machine *machine = machines__find(machines, pid);
 232
 233	if (machine && (machine->pid == pid))
 234		goto out;
 235
 236	if ((pid != HOST_KERNEL_ID) &&
 237	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 238	    (symbol_conf.guestmount)) {
 239		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 240		if (access(path, R_OK)) {
 241			static struct strlist *seen;
 242
 243			if (!seen)
 244				seen = strlist__new(NULL, NULL);
 245
 246			if (!strlist__has_entry(seen, path)) {
 247				pr_err("Can't access file %s\n", path);
 248				strlist__add(seen, path);
 249			}
 250			machine = NULL;
 251			goto out;
 252		}
 253		root_dir = path;
 254	}
 255
 256	machine = machines__add(machines, pid, root_dir);
 257out:
 258	return machine;
 259}
 260
 261void machines__process_guests(struct machines *machines,
 262			      machine__process_t process, void *data)
 263{
 264	struct rb_node *nd;
 265
 266	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 267		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 268		process(pos, data);
 269	}
 270}
 271
 272char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
 273{
 274	if (machine__is_host(machine))
 275		snprintf(bf, size, "[%s]", "kernel.kallsyms");
 276	else if (machine__is_default_guest(machine))
 277		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
 278	else {
 279		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
 280			 machine->pid);
 281	}
 282
 283	return bf;
 284}
 285
 286void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 287{
 288	struct rb_node *node;
 289	struct machine *machine;
 290
 291	machines->host.id_hdr_size = id_hdr_size;
 292
 293	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
 
 294		machine = rb_entry(node, struct machine, rb_node);
 295		machine->id_hdr_size = id_hdr_size;
 296	}
 297
 298	return;
 299}
 300
 301static void machine__update_thread_pid(struct machine *machine,
 302				       struct thread *th, pid_t pid)
 303{
 304	struct thread *leader;
 305
 306	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 307		return;
 308
 309	th->pid_ = pid;
 310
 311	if (th->pid_ == th->tid)
 312		return;
 313
 314	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 315	if (!leader)
 316		goto out_err;
 317
 318	if (!leader->mg)
 319		leader->mg = map_groups__new(machine);
 320
 321	if (!leader->mg)
 322		goto out_err;
 323
 324	if (th->mg == leader->mg)
 325		return;
 326
 327	if (th->mg) {
 328		/*
 329		 * Maps are created from MMAP events which provide the pid and
 330		 * tid.  Consequently there never should be any maps on a thread
 331		 * with an unknown pid.  Just print an error if there are.
 332		 */
 333		if (!map_groups__empty(th->mg))
 334			pr_err("Discarding thread maps for %d:%d\n",
 335			       th->pid_, th->tid);
 336		map_groups__put(th->mg);
 337	}
 338
 339	th->mg = map_groups__get(leader->mg);
 340out_put:
 341	thread__put(leader);
 342	return;
 343out_err:
 344	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 345	goto out_put;
 346}
 347
 348/*
 349 * Caller must eventually drop thread->refcnt returned with a successful
 350 * lookup/new thread inserted.
 
 351 */
 352static struct thread *____machine__findnew_thread(struct machine *machine,
 353						  pid_t pid, pid_t tid,
 354						  bool create)
 355{
 356	struct rb_node **p = &machine->threads.rb_node;
 357	struct rb_node *parent = NULL;
 358	struct thread *th;
 359
 360	/*
 361	 * Front-end cache - TID lookups come in blocks,
 362	 * so most of the time we dont have to look up
 363	 * the full rbtree:
 364	 */
 365	th = machine->last_match;
 366	if (th != NULL) {
 367		if (th->tid == tid) {
 368			machine__update_thread_pid(machine, th, pid);
 369			return thread__get(th);
 370		}
 371
 372		machine->last_match = NULL;
 373	}
 374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375	while (*p != NULL) {
 376		parent = *p;
 377		th = rb_entry(parent, struct thread, rb_node);
 378
 379		if (th->tid == tid) {
 380			machine->last_match = th;
 381			machine__update_thread_pid(machine, th, pid);
 382			return thread__get(th);
 383		}
 384
 385		if (tid < th->tid)
 386			p = &(*p)->rb_left;
 387		else
 388			p = &(*p)->rb_right;
 
 
 389	}
 390
 391	if (!create)
 392		return NULL;
 393
 394	th = thread__new(pid, tid);
 395	if (th != NULL) {
 396		rb_link_node(&th->rb_node, parent, p);
 397		rb_insert_color(&th->rb_node, &machine->threads);
 398
 399		/*
 400		 * We have to initialize map_groups separately
 401		 * after rb tree is updated.
 402		 *
 403		 * The reason is that we call machine__findnew_thread
 404		 * within thread__init_map_groups to find the thread
 405		 * leader and that would screwed the rb tree.
 406		 */
 407		if (thread__init_map_groups(th, machine)) {
 408			rb_erase_init(&th->rb_node, &machine->threads);
 409			RB_CLEAR_NODE(&th->rb_node);
 410			thread__put(th);
 411			return NULL;
 412		}
 413		/*
 414		 * It is now in the rbtree, get a ref
 415		 */
 416		thread__get(th);
 417		machine->last_match = th;
 418		++machine->nr_threads;
 419	}
 420
 421	return th;
 422}
 423
 424struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 425{
 426	return ____machine__findnew_thread(machine, pid, tid, true);
 427}
 428
 429struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 430				       pid_t tid)
 431{
 
 432	struct thread *th;
 433
 434	pthread_rwlock_wrlock(&machine->threads_lock);
 435	th = __machine__findnew_thread(machine, pid, tid);
 436	pthread_rwlock_unlock(&machine->threads_lock);
 437	return th;
 438}
 439
 440struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 441				    pid_t tid)
 442{
 
 443	struct thread *th;
 444	pthread_rwlock_rdlock(&machine->threads_lock);
 445	th =  ____machine__findnew_thread(machine, pid, tid, false);
 446	pthread_rwlock_unlock(&machine->threads_lock);
 
 447	return th;
 448}
 449
 450struct comm *machine__thread_exec_comm(struct machine *machine,
 451				       struct thread *thread)
 452{
 453	if (machine->comm_exec)
 454		return thread__exec_comm(thread);
 455	else
 456		return thread__comm(thread);
 457}
 458
 459int machine__process_comm_event(struct machine *machine, union perf_event *event,
 460				struct perf_sample *sample)
 461{
 462	struct thread *thread = machine__findnew_thread(machine,
 463							event->comm.pid,
 464							event->comm.tid);
 465	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 466	int err = 0;
 467
 468	if (exec)
 469		machine->comm_exec = true;
 470
 471	if (dump_trace)
 472		perf_event__fprintf_comm(event, stdout);
 473
 474	if (thread == NULL ||
 475	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 476		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 477		err = -1;
 478	}
 479
 480	thread__put(thread);
 481
 482	return err;
 483}
 484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485int machine__process_lost_event(struct machine *machine __maybe_unused,
 486				union perf_event *event, struct perf_sample *sample __maybe_unused)
 487{
 488	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
 489		    event->lost.id, event->lost.lost);
 490	return 0;
 491}
 492
 493int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 494					union perf_event *event, struct perf_sample *sample)
 495{
 496	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
 497		    sample->id, event->lost_samples.lost);
 498	return 0;
 499}
 500
 501static struct dso *machine__findnew_module_dso(struct machine *machine,
 502					       struct kmod_path *m,
 503					       const char *filename)
 504{
 505	struct dso *dso;
 506
 507	pthread_rwlock_wrlock(&machine->dsos.lock);
 508
 509	dso = __dsos__find(&machine->dsos, m->name, true);
 510	if (!dso) {
 511		dso = __dsos__addnew(&machine->dsos, m->name);
 512		if (dso == NULL)
 513			goto out_unlock;
 514
 515		if (machine__is_host(machine))
 516			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
 517		else
 518			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
 519
 520		/* _KMODULE_COMP should be next to _KMODULE */
 521		if (m->kmod && m->comp)
 522			dso->symtab_type++;
 523
 524		dso__set_short_name(dso, strdup(m->name), true);
 525		dso__set_long_name(dso, strdup(filename), true);
 526	}
 527
 528	dso__get(dso);
 529out_unlock:
 530	pthread_rwlock_unlock(&machine->dsos.lock);
 531	return dso;
 532}
 533
 534int machine__process_aux_event(struct machine *machine __maybe_unused,
 535			       union perf_event *event)
 536{
 537	if (dump_trace)
 538		perf_event__fprintf_aux(event, stdout);
 539	return 0;
 540}
 541
 542int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 543					union perf_event *event)
 544{
 545	if (dump_trace)
 546		perf_event__fprintf_itrace_start(event, stdout);
 547	return 0;
 548}
 549
 550int machine__process_switch_event(struct machine *machine __maybe_unused,
 551				  union perf_event *event)
 552{
 553	if (dump_trace)
 554		perf_event__fprintf_switch(event, stdout);
 555	return 0;
 556}
 557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 559{
 560	const char *dup_filename;
 561
 562	if (!filename || !dso || !dso->long_name)
 563		return;
 564	if (dso->long_name[0] != '[')
 565		return;
 566	if (!strchr(filename, '/'))
 567		return;
 568
 569	dup_filename = strdup(filename);
 570	if (!dup_filename)
 571		return;
 572
 573	dso__set_long_name(dso, dup_filename, true);
 574}
 575
 576struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 577					const char *filename)
 578{
 579	struct map *map = NULL;
 580	struct dso *dso = NULL;
 581	struct kmod_path m;
 582
 583	if (kmod_path__parse_name(&m, filename))
 584		return NULL;
 585
 586	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
 587				       m.name);
 588	if (map) {
 589		/*
 590		 * If the map's dso is an offline module, give dso__load()
 591		 * a chance to find the file path of that module by fixing
 592		 * long_name.
 593		 */
 594		dso__adjust_kmod_long_name(map->dso, filename);
 595		goto out;
 596	}
 597
 598	dso = machine__findnew_module_dso(machine, &m, filename);
 599	if (dso == NULL)
 600		goto out;
 601
 602	map = map__new2(start, dso, MAP__FUNCTION);
 603	if (map == NULL)
 604		goto out;
 605
 606	map_groups__insert(&machine->kmaps, map);
 607
 608	/* Put the map here because map_groups__insert alread got it */
 609	map__put(map);
 610out:
 611	/* put the dso here, corresponding to  machine__findnew_module_dso */
 612	dso__put(dso);
 613	free(m.name);
 614	return map;
 615}
 616
 617size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 618{
 619	struct rb_node *nd;
 620	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 621
 622	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 623		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 624		ret += __dsos__fprintf(&pos->dsos.head, fp);
 625	}
 626
 627	return ret;
 628}
 629
 630size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 631				     bool (skip)(struct dso *dso, int parm), int parm)
 632{
 633	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 634}
 635
 636size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 637				     bool (skip)(struct dso *dso, int parm), int parm)
 638{
 639	struct rb_node *nd;
 640	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 641
 642	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 643		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 644		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 645	}
 646	return ret;
 647}
 648
 649size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 650{
 651	int i;
 652	size_t printed = 0;
 653	struct dso *kdso = machine__kernel_map(machine)->dso;
 654
 655	if (kdso->has_build_id) {
 656		char filename[PATH_MAX];
 657		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
 
 658			printed += fprintf(fp, "[0] %s\n", filename);
 659	}
 660
 661	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 662		printed += fprintf(fp, "[%d] %s\n",
 663				   i + kdso->has_build_id, vmlinux_path[i]);
 664
 665	return printed;
 666}
 667
 668size_t machine__fprintf(struct machine *machine, FILE *fp)
 669{
 
 670	size_t ret;
 671	struct rb_node *nd;
 672
 673	pthread_rwlock_rdlock(&machine->threads_lock);
 
 674
 675	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
 676
 677	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
 678		struct thread *pos = rb_entry(nd, struct thread, rb_node);
 679
 680		ret += thread__fprintf(pos, fp);
 681	}
 
 682
 683	pthread_rwlock_unlock(&machine->threads_lock);
 
 684
 
 
 685	return ret;
 686}
 687
 688static struct dso *machine__get_kernel(struct machine *machine)
 689{
 690	const char *vmlinux_name = NULL;
 691	struct dso *kernel;
 692
 693	if (machine__is_host(machine)) {
 694		vmlinux_name = symbol_conf.vmlinux_name;
 695		if (!vmlinux_name)
 696			vmlinux_name = DSO__NAME_KALLSYMS;
 697
 698		kernel = machine__findnew_kernel(machine, vmlinux_name,
 699						 "[kernel]", DSO_TYPE_KERNEL);
 700	} else {
 701		char bf[PATH_MAX];
 702
 703		if (machine__is_default_guest(machine))
 704			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 705		if (!vmlinux_name)
 706			vmlinux_name = machine__mmap_name(machine, bf,
 707							  sizeof(bf));
 708
 709		kernel = machine__findnew_kernel(machine, vmlinux_name,
 710						 "[guest.kernel]",
 711						 DSO_TYPE_GUEST_KERNEL);
 712	}
 713
 714	if (kernel != NULL && (!kernel->has_build_id))
 715		dso__read_running_kernel_build_id(kernel, machine);
 716
 717	return kernel;
 718}
 719
 720struct process_args {
 721	u64 start;
 722};
 723
 724static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 725					   size_t bufsz)
 726{
 727	if (machine__is_default_guest(machine))
 728		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 729	else
 730		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 731}
 732
 733const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 734
 735/* Figure out the start address of kernel map from /proc/kallsyms.
 736 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 737 * symbol_name if it's not that important.
 738 */
 739static u64 machine__get_running_kernel_start(struct machine *machine,
 740					     const char **symbol_name)
 
 741{
 742	char filename[PATH_MAX];
 743	int i;
 744	const char *name;
 745	u64 addr = 0;
 746
 747	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 748
 749	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 750		return 0;
 751
 752	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 753		addr = kallsyms__get_function_start(filename, name);
 754		if (addr)
 755			break;
 756	}
 757
 
 
 
 758	if (symbol_name)
 759		*symbol_name = name;
 760
 761	return addr;
 
 
 
 
 
 
 762}
 763
 764int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
 
 
 765{
 766	enum map_type type;
 767	u64 start = machine__get_running_kernel_start(machine, NULL);
 768
 769	/* In case of renewal the kernel map, destroy previous one */
 770	machine__destroy_kernel_maps(machine);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771
 772	for (type = 0; type < MAP__NR_TYPES; ++type) {
 773		struct kmap *kmap;
 774		struct map *map;
 775
 776		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
 777		if (machine->vmlinux_maps[type] == NULL)
 778			return -1;
 
 779
 780		machine->vmlinux_maps[type]->map_ip =
 781			machine->vmlinux_maps[type]->unmap_ip =
 782				identity__map_ip;
 783		map = __machine__kernel_map(machine, type);
 784		kmap = map__kmap(map);
 785		if (!kmap)
 786			return -1;
 787
 788		kmap->kmaps = &machine->kmaps;
 789		map_groups__insert(&machine->kmaps, map);
 790	}
 791
 
 
 
 792	return 0;
 793}
 794
 795void machine__destroy_kernel_maps(struct machine *machine)
 
 796{
 797	enum map_type type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798
 799	for (type = 0; type < MAP__NR_TYPES; ++type) {
 800		struct kmap *kmap;
 801		struct map *map = __machine__kernel_map(machine, type);
 802
 803		if (map == NULL)
 804			continue;
 
 
 805
 806		kmap = map__kmap(map);
 807		map_groups__remove(&machine->kmaps, map);
 808		if (kmap && kmap->ref_reloc_sym) {
 809			/*
 810			 * ref_reloc_sym is shared among all maps, so free just
 811			 * on one of them.
 812			 */
 813			if (type == MAP__FUNCTION) {
 814				zfree((char **)&kmap->ref_reloc_sym->name);
 815				zfree(&kmap->ref_reloc_sym);
 816			} else
 817				kmap->ref_reloc_sym = NULL;
 818		}
 819
 820		map__put(machine->vmlinux_maps[type]);
 821		machine->vmlinux_maps[type] = NULL;
 
 
 
 822	}
 
 
 823}
 824
 825int machines__create_guest_kernel_maps(struct machines *machines)
 826{
 827	int ret = 0;
 828	struct dirent **namelist = NULL;
 829	int i, items = 0;
 830	char path[PATH_MAX];
 831	pid_t pid;
 832	char *endp;
 833
 834	if (symbol_conf.default_guest_vmlinux_name ||
 835	    symbol_conf.default_guest_modules ||
 836	    symbol_conf.default_guest_kallsyms) {
 837		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
 838	}
 839
 840	if (symbol_conf.guestmount) {
 841		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
 842		if (items <= 0)
 843			return -ENOENT;
 844		for (i = 0; i < items; i++) {
 845			if (!isdigit(namelist[i]->d_name[0])) {
 846				/* Filter out . and .. */
 847				continue;
 848			}
 849			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
 850			if ((*endp != '\0') ||
 851			    (endp == namelist[i]->d_name) ||
 852			    (errno == ERANGE)) {
 853				pr_debug("invalid directory (%s). Skipping.\n",
 854					 namelist[i]->d_name);
 855				continue;
 856			}
 857			sprintf(path, "%s/%s/proc/kallsyms",
 858				symbol_conf.guestmount,
 859				namelist[i]->d_name);
 860			ret = access(path, R_OK);
 861			if (ret) {
 862				pr_debug("Can't access file %s\n", path);
 863				goto failure;
 864			}
 865			machines__create_kernel_maps(machines, pid);
 866		}
 867failure:
 868		free(namelist);
 869	}
 870
 871	return ret;
 872}
 873
 874void machines__destroy_kernel_maps(struct machines *machines)
 875{
 876	struct rb_node *next = rb_first(&machines->guests);
 877
 878	machine__destroy_kernel_maps(&machines->host);
 879
 880	while (next) {
 881		struct machine *pos = rb_entry(next, struct machine, rb_node);
 882
 883		next = rb_next(&pos->rb_node);
 884		rb_erase(&pos->rb_node, &machines->guests);
 885		machine__delete(pos);
 886	}
 887}
 888
 889int machines__create_kernel_maps(struct machines *machines, pid_t pid)
 890{
 891	struct machine *machine = machines__findnew(machines, pid);
 892
 893	if (machine == NULL)
 894		return -1;
 895
 896	return machine__create_kernel_maps(machine);
 897}
 898
 899int __machine__load_kallsyms(struct machine *machine, const char *filename,
 900			     enum map_type type, bool no_kcore)
 901{
 902	struct map *map = machine__kernel_map(machine);
 903	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
 904
 905	if (ret > 0) {
 906		dso__set_loaded(map->dso, type);
 907		/*
 908		 * Since /proc/kallsyms will have multiple sessions for the
 909		 * kernel, with modules between them, fixup the end of all
 910		 * sections.
 911		 */
 912		__map_groups__fixup_end(&machine->kmaps, type);
 913	}
 914
 915	return ret;
 916}
 917
 918int machine__load_kallsyms(struct machine *machine, const char *filename,
 919			   enum map_type type)
 920{
 921	return __machine__load_kallsyms(machine, filename, type, false);
 922}
 923
 924int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
 925{
 926	struct map *map = machine__kernel_map(machine);
 927	int ret = dso__load_vmlinux_path(map->dso, map);
 928
 929	if (ret > 0)
 930		dso__set_loaded(map->dso, type);
 931
 932	return ret;
 933}
 934
 935static void map_groups__fixup_end(struct map_groups *mg)
 936{
 937	int i;
 938	for (i = 0; i < MAP__NR_TYPES; ++i)
 939		__map_groups__fixup_end(mg, i);
 940}
 941
 942static char *get_kernel_version(const char *root_dir)
 943{
 944	char version[PATH_MAX];
 945	FILE *file;
 946	char *name, *tmp;
 947	const char *prefix = "Linux version ";
 948
 949	sprintf(version, "%s/proc/version", root_dir);
 950	file = fopen(version, "r");
 951	if (!file)
 952		return NULL;
 953
 954	version[0] = '\0';
 955	tmp = fgets(version, sizeof(version), file);
 956	fclose(file);
 
 
 957
 958	name = strstr(version, prefix);
 959	if (!name)
 960		return NULL;
 961	name += strlen(prefix);
 962	tmp = strchr(name, ' ');
 963	if (tmp)
 964		*tmp = '\0';
 965
 966	return strdup(name);
 967}
 968
 969static bool is_kmod_dso(struct dso *dso)
 970{
 971	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
 972	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
 973}
 974
 975static int map_groups__set_module_path(struct map_groups *mg, const char *path,
 976				       struct kmod_path *m)
 977{
 978	struct map *map;
 979	char *long_name;
 
 980
 981	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
 982	if (map == NULL)
 983		return 0;
 984
 985	long_name = strdup(path);
 986	if (long_name == NULL)
 987		return -ENOMEM;
 988
 989	dso__set_long_name(map->dso, long_name, true);
 990	dso__kernel_module_get_build_id(map->dso, "");
 991
 992	/*
 993	 * Full name could reveal us kmod compression, so
 994	 * we need to update the symtab_type if needed.
 995	 */
 996	if (m->comp && is_kmod_dso(map->dso))
 997		map->dso->symtab_type++;
 
 
 998
 999	return 0;
1000}
1001
1002static int map_groups__set_modules_path_dir(struct map_groups *mg,
1003				const char *dir_name, int depth)
1004{
1005	struct dirent *dent;
1006	DIR *dir = opendir(dir_name);
1007	int ret = 0;
1008
1009	if (!dir) {
1010		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1011		return -1;
1012	}
1013
1014	while ((dent = readdir(dir)) != NULL) {
1015		char path[PATH_MAX];
1016		struct stat st;
1017
1018		/*sshfs might return bad dent->d_type, so we have to stat*/
1019		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1020		if (stat(path, &st))
1021			continue;
1022
1023		if (S_ISDIR(st.st_mode)) {
1024			if (!strcmp(dent->d_name, ".") ||
1025			    !strcmp(dent->d_name, ".."))
1026				continue;
1027
1028			/* Do not follow top-level source and build symlinks */
1029			if (depth == 0) {
1030				if (!strcmp(dent->d_name, "source") ||
1031				    !strcmp(dent->d_name, "build"))
1032					continue;
1033			}
1034
1035			ret = map_groups__set_modules_path_dir(mg, path,
1036							       depth + 1);
1037			if (ret < 0)
1038				goto out;
1039		} else {
1040			struct kmod_path m;
1041
1042			ret = kmod_path__parse_name(&m, dent->d_name);
1043			if (ret)
1044				goto out;
1045
1046			if (m.kmod)
1047				ret = map_groups__set_module_path(mg, path, &m);
1048
1049			free(m.name);
1050
1051			if (ret)
1052				goto out;
1053		}
1054	}
1055
1056out:
1057	closedir(dir);
1058	return ret;
1059}
1060
1061static int machine__set_modules_path(struct machine *machine)
1062{
1063	char *version;
1064	char modules_path[PATH_MAX];
1065
1066	version = get_kernel_version(machine->root_dir);
1067	if (!version)
1068		return -1;
1069
1070	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1071		 machine->root_dir, version);
1072	free(version);
1073
1074	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1075}
1076int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
 
1077				const char *name __maybe_unused)
1078{
1079	return 0;
1080}
1081
1082static int machine__create_module(void *arg, const char *name, u64 start)
 
1083{
1084	struct machine *machine = arg;
1085	struct map *map;
1086
1087	if (arch__fix_module_text_start(&start, name) < 0)
1088		return -1;
1089
1090	map = machine__findnew_module_map(machine, start, name);
1091	if (map == NULL)
1092		return -1;
 
1093
1094	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1095
1096	return 0;
1097}
1098
1099static int machine__create_modules(struct machine *machine)
1100{
1101	const char *modules;
1102	char path[PATH_MAX];
1103
1104	if (machine__is_default_guest(machine)) {
1105		modules = symbol_conf.default_guest_modules;
1106	} else {
1107		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1108		modules = path;
1109	}
1110
1111	if (symbol__restricted_filename(modules, "/proc/modules"))
1112		return -1;
1113
1114	if (modules__parse(modules, machine, machine__create_module))
1115		return -1;
1116
1117	if (!machine__set_modules_path(machine))
1118		return 0;
1119
1120	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1121
1122	return 0;
1123}
1124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125int machine__create_kernel_maps(struct machine *machine)
1126{
1127	struct dso *kernel = machine__get_kernel(machine);
1128	const char *name;
1129	u64 addr;
 
1130	int ret;
1131
1132	if (kernel == NULL)
1133		return -1;
1134
1135	ret = __machine__create_kernel_maps(machine, kernel);
1136	dso__put(kernel);
1137	if (ret < 0)
1138		return -1;
1139
1140	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1141		if (machine__is_host(machine))
1142			pr_debug("Problems creating module maps, "
1143				 "continuing anyway...\n");
1144		else
1145			pr_debug("Problems creating module maps for guest %d, "
1146				 "continuing anyway...\n", machine->pid);
1147	}
1148
1149	/*
1150	 * Now that we have all the maps created, just set the ->end of them:
1151	 */
1152	map_groups__fixup_end(&machine->kmaps);
 
 
 
1153
1154	addr = machine__get_running_kernel_start(machine, &name);
1155	if (!addr) {
1156	} else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1157		machine__destroy_kernel_maps(machine);
1158		return -1;
1159	}
1160
1161	return 0;
1162}
1163
1164static void machine__set_kernel_mmap_len(struct machine *machine,
1165					 union perf_event *event)
1166{
1167	int i;
 
 
1168
1169	for (i = 0; i < MAP__NR_TYPES; i++) {
1170		machine->vmlinux_maps[i]->start = event->mmap.start;
1171		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1172						   event->mmap.len);
1173		/*
1174		 * Be a bit paranoid here, some perf.data file came with
1175		 * a zero sized synthesized MMAP event for the kernel.
1176		 */
1177		if (machine->vmlinux_maps[i]->end == 0)
1178			machine->vmlinux_maps[i]->end = ~0ULL;
1179	}
1180}
1181
1182static bool machine__uses_kcore(struct machine *machine)
1183{
1184	struct dso *dso;
1185
1186	list_for_each_entry(dso, &machine->dsos.head, node) {
1187		if (dso__is_kcore(dso))
1188			return true;
1189	}
1190
1191	return false;
1192}
1193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194static int machine__process_kernel_mmap_event(struct machine *machine,
1195					      union perf_event *event)
1196{
1197	struct map *map;
1198	char kmmap_prefix[PATH_MAX];
1199	enum dso_kernel_type kernel_type;
1200	bool is_kernel_mmap;
1201
1202	/* If we have maps from kcore then we do not need or want any others */
1203	if (machine__uses_kcore(machine))
1204		return 0;
1205
1206	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1207	if (machine__is_host(machine))
1208		kernel_type = DSO_TYPE_KERNEL;
1209	else
1210		kernel_type = DSO_TYPE_GUEST_KERNEL;
1211
1212	is_kernel_mmap = memcmp(event->mmap.filename,
1213				kmmap_prefix,
1214				strlen(kmmap_prefix) - 1) == 0;
1215	if (event->mmap.filename[0] == '/' ||
1216	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1217		map = machine__findnew_module_map(machine, event->mmap.start,
1218						  event->mmap.filename);
1219		if (map == NULL)
1220			goto out_problem;
1221
1222		map->end = map->start + event->mmap.len;
1223	} else if (is_kernel_mmap) {
1224		const char *symbol_name = (event->mmap.filename +
1225				strlen(kmmap_prefix));
1226		/*
1227		 * Should be there already, from the build-id table in
1228		 * the header.
1229		 */
1230		struct dso *kernel = NULL;
1231		struct dso *dso;
1232
1233		pthread_rwlock_rdlock(&machine->dsos.lock);
1234
1235		list_for_each_entry(dso, &machine->dsos.head, node) {
1236
1237			/*
1238			 * The cpumode passed to is_kernel_module is not the
1239			 * cpumode of *this* event. If we insist on passing
1240			 * correct cpumode to is_kernel_module, we should
1241			 * record the cpumode when we adding this dso to the
1242			 * linked list.
1243			 *
1244			 * However we don't really need passing correct
1245			 * cpumode.  We know the correct cpumode must be kernel
1246			 * mode (if not, we should not link it onto kernel_dsos
1247			 * list).
1248			 *
1249			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1250			 * is_kernel_module() treats it as a kernel cpumode.
1251			 */
1252
1253			if (!dso->kernel ||
1254			    is_kernel_module(dso->long_name,
1255					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1256				continue;
1257
1258
1259			kernel = dso;
1260			break;
1261		}
1262
1263		pthread_rwlock_unlock(&machine->dsos.lock);
1264
1265		if (kernel == NULL)
1266			kernel = machine__findnew_dso(machine, kmmap_prefix);
1267		if (kernel == NULL)
1268			goto out_problem;
1269
1270		kernel->kernel = kernel_type;
1271		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1272			dso__put(kernel);
1273			goto out_problem;
1274		}
1275
1276		if (strstr(kernel->long_name, "vmlinux"))
1277			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1278
1279		machine__set_kernel_mmap_len(machine, event);
 
1280
1281		/*
1282		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1283		 * symbol. Effectively having zero here means that at record
1284		 * time /proc/sys/kernel/kptr_restrict was non zero.
1285		 */
1286		if (event->mmap.pgoff != 0) {
1287			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1288							 symbol_name,
1289							 event->mmap.pgoff);
1290		}
1291
1292		if (machine__is_default_guest(machine)) {
1293			/*
1294			 * preload dso of guest kernel and modules
1295			 */
1296			dso__load(kernel, machine__kernel_map(machine));
1297		}
 
 
1298	}
1299	return 0;
1300out_problem:
1301	return -1;
1302}
1303
1304int machine__process_mmap2_event(struct machine *machine,
1305				 union perf_event *event,
1306				 struct perf_sample *sample)
1307{
1308	struct thread *thread;
1309	struct map *map;
1310	enum map_type type;
1311	int ret = 0;
1312
1313	if (dump_trace)
1314		perf_event__fprintf_mmap2(event, stdout);
1315
1316	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1317	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1318		ret = machine__process_kernel_mmap_event(machine, event);
1319		if (ret < 0)
1320			goto out_problem;
1321		return 0;
1322	}
1323
1324	thread = machine__findnew_thread(machine, event->mmap2.pid,
1325					event->mmap2.tid);
1326	if (thread == NULL)
1327		goto out_problem;
1328
1329	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1330		type = MAP__VARIABLE;
1331	else
1332		type = MAP__FUNCTION;
1333
1334	map = map__new(machine, event->mmap2.start,
1335			event->mmap2.len, event->mmap2.pgoff,
1336			event->mmap2.pid, event->mmap2.maj,
1337			event->mmap2.min, event->mmap2.ino,
1338			event->mmap2.ino_generation,
1339			event->mmap2.prot,
1340			event->mmap2.flags,
1341			event->mmap2.filename, type, thread);
1342
1343	if (map == NULL)
1344		goto out_problem_map;
1345
1346	ret = thread__insert_map(thread, map);
1347	if (ret)
1348		goto out_problem_insert;
1349
1350	thread__put(thread);
1351	map__put(map);
1352	return 0;
1353
1354out_problem_insert:
1355	map__put(map);
1356out_problem_map:
1357	thread__put(thread);
1358out_problem:
1359	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1360	return 0;
1361}
1362
1363int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1364				struct perf_sample *sample)
1365{
1366	struct thread *thread;
1367	struct map *map;
1368	enum map_type type;
1369	int ret = 0;
1370
1371	if (dump_trace)
1372		perf_event__fprintf_mmap(event, stdout);
1373
1374	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1375	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1376		ret = machine__process_kernel_mmap_event(machine, event);
1377		if (ret < 0)
1378			goto out_problem;
1379		return 0;
1380	}
1381
1382	thread = machine__findnew_thread(machine, event->mmap.pid,
1383					 event->mmap.tid);
1384	if (thread == NULL)
1385		goto out_problem;
1386
1387	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1388		type = MAP__VARIABLE;
1389	else
1390		type = MAP__FUNCTION;
1391
1392	map = map__new(machine, event->mmap.start,
1393			event->mmap.len, event->mmap.pgoff,
1394			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1395			event->mmap.filename,
1396			type, thread);
1397
1398	if (map == NULL)
1399		goto out_problem_map;
1400
1401	ret = thread__insert_map(thread, map);
1402	if (ret)
1403		goto out_problem_insert;
1404
1405	thread__put(thread);
1406	map__put(map);
1407	return 0;
1408
1409out_problem_insert:
1410	map__put(map);
1411out_problem_map:
1412	thread__put(thread);
1413out_problem:
1414	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1415	return 0;
1416}
1417
1418static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1419{
1420	if (machine->last_match == th)
1421		machine->last_match = NULL;
 
 
1422
1423	BUG_ON(atomic_read(&th->refcnt) == 0);
1424	if (lock)
1425		pthread_rwlock_wrlock(&machine->threads_lock);
1426	rb_erase_init(&th->rb_node, &machine->threads);
 
 
 
1427	RB_CLEAR_NODE(&th->rb_node);
1428	--machine->nr_threads;
1429	/*
1430	 * Move it first to the dead_threads list, then drop the reference,
1431	 * if this is the last reference, then the thread__delete destructor
1432	 * will be called and we will remove it from the dead_threads list.
1433	 */
1434	list_add_tail(&th->node, &machine->dead_threads);
 
 
 
 
 
 
 
 
1435	if (lock)
1436		pthread_rwlock_unlock(&machine->threads_lock);
1437	thread__put(th);
1438}
1439
1440void machine__remove_thread(struct machine *machine, struct thread *th)
1441{
1442	return __machine__remove_thread(machine, th, true);
1443}
1444
1445int machine__process_fork_event(struct machine *machine, union perf_event *event,
1446				struct perf_sample *sample)
1447{
1448	struct thread *thread = machine__find_thread(machine,
1449						     event->fork.pid,
1450						     event->fork.tid);
1451	struct thread *parent = machine__findnew_thread(machine,
1452							event->fork.ppid,
1453							event->fork.ptid);
 
1454	int err = 0;
1455
1456	if (dump_trace)
1457		perf_event__fprintf_task(event, stdout);
1458
1459	/*
1460	 * There may be an existing thread that is not actually the parent,
1461	 * either because we are processing events out of order, or because the
1462	 * (fork) event that would have removed the thread was lost. Assume the
1463	 * latter case and continue on as best we can.
1464	 */
1465	if (parent->pid_ != (pid_t)event->fork.ppid) {
1466		dump_printf("removing erroneous parent thread %d/%d\n",
1467			    parent->pid_, parent->tid);
1468		machine__remove_thread(machine, parent);
1469		thread__put(parent);
1470		parent = machine__findnew_thread(machine, event->fork.ppid,
1471						 event->fork.ptid);
1472	}
1473
1474	/* if a thread currently exists for the thread id remove it */
1475	if (thread != NULL) {
1476		machine__remove_thread(machine, thread);
1477		thread__put(thread);
1478	}
1479
1480	thread = machine__findnew_thread(machine, event->fork.pid,
1481					 event->fork.tid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482
1483	if (thread == NULL || parent == NULL ||
1484	    thread__fork(thread, parent, sample->time) < 0) {
1485		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1486		err = -1;
1487	}
1488	thread__put(thread);
1489	thread__put(parent);
1490
1491	return err;
1492}
1493
1494int machine__process_exit_event(struct machine *machine, union perf_event *event,
1495				struct perf_sample *sample __maybe_unused)
1496{
1497	struct thread *thread = machine__find_thread(machine,
1498						     event->fork.pid,
1499						     event->fork.tid);
1500
1501	if (dump_trace)
1502		perf_event__fprintf_task(event, stdout);
1503
1504	if (thread != NULL) {
1505		thread__exited(thread);
1506		thread__put(thread);
1507	}
1508
1509	return 0;
1510}
1511
1512int machine__process_event(struct machine *machine, union perf_event *event,
1513			   struct perf_sample *sample)
1514{
1515	int ret;
1516
1517	switch (event->header.type) {
1518	case PERF_RECORD_COMM:
1519		ret = machine__process_comm_event(machine, event, sample); break;
1520	case PERF_RECORD_MMAP:
1521		ret = machine__process_mmap_event(machine, event, sample); break;
 
 
1522	case PERF_RECORD_MMAP2:
1523		ret = machine__process_mmap2_event(machine, event, sample); break;
1524	case PERF_RECORD_FORK:
1525		ret = machine__process_fork_event(machine, event, sample); break;
1526	case PERF_RECORD_EXIT:
1527		ret = machine__process_exit_event(machine, event, sample); break;
1528	case PERF_RECORD_LOST:
1529		ret = machine__process_lost_event(machine, event, sample); break;
1530	case PERF_RECORD_AUX:
1531		ret = machine__process_aux_event(machine, event); break;
1532	case PERF_RECORD_ITRACE_START:
1533		ret = machine__process_itrace_start_event(machine, event); break;
1534	case PERF_RECORD_LOST_SAMPLES:
1535		ret = machine__process_lost_samples_event(machine, event, sample); break;
1536	case PERF_RECORD_SWITCH:
1537	case PERF_RECORD_SWITCH_CPU_WIDE:
1538		ret = machine__process_switch_event(machine, event); break;
 
 
 
 
1539	default:
1540		ret = -1;
1541		break;
1542	}
1543
1544	return ret;
1545}
1546
1547static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1548{
1549	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1550		return 1;
1551	return 0;
1552}
1553
1554static void ip__resolve_ams(struct thread *thread,
1555			    struct addr_map_symbol *ams,
1556			    u64 ip)
1557{
1558	struct addr_location al;
1559
1560	memset(&al, 0, sizeof(al));
1561	/*
1562	 * We cannot use the header.misc hint to determine whether a
1563	 * branch stack address is user, kernel, guest, hypervisor.
1564	 * Branches may straddle the kernel/user/hypervisor boundaries.
1565	 * Thus, we have to try consecutively until we find a match
1566	 * or else, the symbol is unknown
1567	 */
1568	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1569
1570	ams->addr = ip;
1571	ams->al_addr = al.addr;
1572	ams->sym = al.sym;
1573	ams->map = al.map;
 
1574}
1575
1576static void ip__resolve_data(struct thread *thread,
1577			     u8 m, struct addr_map_symbol *ams, u64 addr)
 
1578{
1579	struct addr_location al;
1580
1581	memset(&al, 0, sizeof(al));
1582
1583	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1584	if (al.map == NULL) {
1585		/*
1586		 * some shared data regions have execute bit set which puts
1587		 * their mapping in the MAP__FUNCTION type array.
1588		 * Check there as a fallback option before dropping the sample.
1589		 */
1590		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1591	}
1592
1593	ams->addr = addr;
1594	ams->al_addr = al.addr;
1595	ams->sym = al.sym;
1596	ams->map = al.map;
 
1597}
1598
1599struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1600				     struct addr_location *al)
1601{
1602	struct mem_info *mi = zalloc(sizeof(*mi));
1603
1604	if (!mi)
1605		return NULL;
1606
1607	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1608	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
 
1609	mi->data_src.val = sample->data_src;
1610
1611	return mi;
1612}
1613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614static int add_callchain_ip(struct thread *thread,
1615			    struct callchain_cursor *cursor,
1616			    struct symbol **parent,
1617			    struct addr_location *root_al,
1618			    u8 *cpumode,
1619			    u64 ip,
1620			    bool branch,
1621			    struct branch_flags *flags,
1622			    int nr_loop_iter,
1623			    int samples)
1624{
1625	struct addr_location al;
 
 
 
1626
1627	al.filtered = 0;
1628	al.sym = NULL;
1629	if (!cpumode) {
1630		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1631						   ip, &al);
1632	} else {
1633		if (ip >= PERF_CONTEXT_MAX) {
1634			switch (ip) {
1635			case PERF_CONTEXT_HV:
1636				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1637				break;
1638			case PERF_CONTEXT_KERNEL:
1639				*cpumode = PERF_RECORD_MISC_KERNEL;
1640				break;
1641			case PERF_CONTEXT_USER:
1642				*cpumode = PERF_RECORD_MISC_USER;
1643				break;
1644			default:
1645				pr_debug("invalid callchain context: "
1646					 "%"PRId64"\n", (s64) ip);
1647				/*
1648				 * It seems the callchain is corrupted.
1649				 * Discard all.
1650				 */
1651				callchain_cursor_reset(cursor);
1652				return 1;
1653			}
1654			return 0;
1655		}
1656		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1657					   ip, &al);
1658	}
1659
1660	if (al.sym != NULL) {
1661		if (perf_hpp_list.parent && !*parent &&
1662		    symbol__match_regex(al.sym, &parent_regex))
1663			*parent = al.sym;
1664		else if (have_ignore_callees && root_al &&
1665		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1666			/* Treat this symbol as the root,
1667			   forgetting its callees. */
1668			*root_al = al;
1669			callchain_cursor_reset(cursor);
1670		}
1671	}
1672
1673	if (symbol_conf.hide_unresolved && al.sym == NULL)
1674		return 0;
1675	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1676				       branch, flags, nr_loop_iter, samples);
 
 
 
 
 
 
 
 
1677}
1678
1679struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1680					   struct addr_location *al)
1681{
1682	unsigned int i;
1683	const struct branch_stack *bs = sample->branch_stack;
1684	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1685
1686	if (!bi)
1687		return NULL;
1688
1689	for (i = 0; i < bs->nr; i++) {
1690		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1691		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1692		bi[i].flags = bs->entries[i].flags;
1693	}
1694	return bi;
1695}
1696
 
 
 
 
 
 
 
 
 
 
 
 
1697#define CHASHSZ 127
1698#define CHASHBITS 7
1699#define NO_ENTRY 0xff
1700
1701#define PERF_MAX_BRANCH_DEPTH 127
1702
1703/* Remove loops. */
1704static int remove_loops(struct branch_entry *l, int nr)
 
1705{
1706	int i, j, off;
1707	unsigned char chash[CHASHSZ];
1708
1709	memset(chash, NO_ENTRY, sizeof(chash));
1710
1711	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1712
1713	for (i = 0; i < nr; i++) {
1714		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1715
1716		/* no collision handling for now */
1717		if (chash[h] == NO_ENTRY) {
1718			chash[h] = i;
1719		} else if (l[chash[h]].from == l[i].from) {
1720			bool is_loop = true;
1721			/* check if it is a real loop */
1722			off = 0;
1723			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1724				if (l[j].from != l[i + off].from) {
1725					is_loop = false;
1726					break;
1727				}
1728			if (is_loop) {
1729				memmove(l + i, l + i + off,
1730					(nr - (i + off)) * sizeof(*l));
 
 
 
 
 
 
 
 
 
 
1731				nr -= off;
1732			}
1733		}
1734	}
1735	return nr;
1736}
1737
1738/*
1739 * Recolve LBR callstack chain sample
1740 * Return:
1741 * 1 on success get LBR callchain information
1742 * 0 no available LBR callchain information, should try fp
1743 * negative error code on other errors.
1744 */
1745static int resolve_lbr_callchain_sample(struct thread *thread,
1746					struct callchain_cursor *cursor,
1747					struct perf_sample *sample,
1748					struct symbol **parent,
1749					struct addr_location *root_al,
1750					int max_stack)
1751{
1752	struct ip_callchain *chain = sample->callchain;
1753	int chain_nr = min(max_stack, (int)chain->nr), i;
1754	u8 cpumode = PERF_RECORD_MISC_USER;
1755	u64 ip;
1756
1757	for (i = 0; i < chain_nr; i++) {
1758		if (chain->ips[i] == PERF_CONTEXT_USER)
1759			break;
1760	}
1761
1762	/* LBR only affects the user callchain */
1763	if (i != chain_nr) {
1764		struct branch_stack *lbr_stack = sample->branch_stack;
1765		int lbr_nr = lbr_stack->nr, j, k;
1766		bool branch;
1767		struct branch_flags *flags;
1768		/*
1769		 * LBR callstack can only get user call chain.
1770		 * The mix_chain_nr is kernel call chain
1771		 * number plus LBR user call chain number.
1772		 * i is kernel call chain number,
1773		 * 1 is PERF_CONTEXT_USER,
1774		 * lbr_nr + 1 is the user call chain number.
1775		 * For details, please refer to the comments
1776		 * in callchain__printf
1777		 */
1778		int mix_chain_nr = i + 1 + lbr_nr + 1;
1779
1780		for (j = 0; j < mix_chain_nr; j++) {
1781			int err;
1782			branch = false;
1783			flags = NULL;
1784
1785			if (callchain_param.order == ORDER_CALLEE) {
1786				if (j < i + 1)
1787					ip = chain->ips[j];
1788				else if (j > i + 1) {
1789					k = j - i - 2;
1790					ip = lbr_stack->entries[k].from;
1791					branch = true;
1792					flags = &lbr_stack->entries[k].flags;
1793				} else {
1794					ip = lbr_stack->entries[0].to;
1795					branch = true;
1796					flags = &lbr_stack->entries[0].flags;
 
 
1797				}
1798			} else {
1799				if (j < lbr_nr) {
1800					k = lbr_nr - j - 1;
1801					ip = lbr_stack->entries[k].from;
1802					branch = true;
1803					flags = &lbr_stack->entries[k].flags;
1804				}
1805				else if (j > lbr_nr)
1806					ip = chain->ips[i + 1 - (j - lbr_nr)];
1807				else {
1808					ip = lbr_stack->entries[0].to;
1809					branch = true;
1810					flags = &lbr_stack->entries[0].flags;
 
 
1811				}
1812			}
1813
1814			err = add_callchain_ip(thread, cursor, parent,
1815					       root_al, &cpumode, ip,
1816					       branch, flags, 0, 0);
 
1817			if (err)
1818				return (err < 0) ? err : 0;
1819		}
1820		return 1;
1821	}
1822
1823	return 0;
1824}
1825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826static int thread__resolve_callchain_sample(struct thread *thread,
1827					    struct callchain_cursor *cursor,
1828					    struct perf_evsel *evsel,
1829					    struct perf_sample *sample,
1830					    struct symbol **parent,
1831					    struct addr_location *root_al,
1832					    int max_stack)
1833{
1834	struct branch_stack *branch = sample->branch_stack;
1835	struct ip_callchain *chain = sample->callchain;
1836	int chain_nr = chain->nr;
1837	u8 cpumode = PERF_RECORD_MISC_USER;
1838	int i, j, err, nr_entries;
1839	int skip_idx = -1;
1840	int first_call = 0;
1841	int nr_loop_iter;
 
 
1842
1843	if (perf_evsel__has_branch_callstack(evsel)) {
1844		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1845						   root_al, max_stack);
1846		if (err)
1847			return (err < 0) ? err : 0;
1848	}
1849
1850	/*
1851	 * Based on DWARF debug information, some architectures skip
1852	 * a callchain entry saved by the kernel.
1853	 */
1854	skip_idx = arch_skip_callchain_idx(thread, chain);
1855
1856	/*
1857	 * Add branches to call stack for easier browsing. This gives
1858	 * more context for a sample than just the callers.
1859	 *
1860	 * This uses individual histograms of paths compared to the
1861	 * aggregated histograms the normal LBR mode uses.
1862	 *
1863	 * Limitations for now:
1864	 * - No extra filters
1865	 * - No annotations (should annotate somehow)
1866	 */
1867
1868	if (branch && callchain_param.branch_callstack) {
1869		int nr = min(max_stack, (int)branch->nr);
1870		struct branch_entry be[nr];
 
1871
1872		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1873			pr_warning("corrupted branch chain. skipping...\n");
1874			goto check_calls;
1875		}
1876
1877		for (i = 0; i < nr; i++) {
1878			if (callchain_param.order == ORDER_CALLEE) {
1879				be[i] = branch->entries[i];
 
 
 
 
1880				/*
1881				 * Check for overlap into the callchain.
1882				 * The return address is one off compared to
1883				 * the branch entry. To adjust for this
1884				 * assume the calling instruction is not longer
1885				 * than 8 bytes.
1886				 */
1887				if (i == skip_idx ||
1888				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1889					first_call++;
1890				else if (be[i].from < chain->ips[first_call] &&
1891				    be[i].from >= chain->ips[first_call] - 8)
1892					first_call++;
1893			} else
1894				be[i] = branch->entries[branch->nr - i - 1];
1895		}
1896
1897		nr_loop_iter = nr;
1898		nr = remove_loops(be, nr);
1899
1900		/*
1901		 * Get the number of iterations.
1902		 * It's only approximation, but good enough in practice.
1903		 */
1904		if (nr_loop_iter > nr)
1905			nr_loop_iter = nr_loop_iter - nr + 1;
1906		else
1907			nr_loop_iter = 0;
1908
1909		for (i = 0; i < nr; i++) {
1910			if (i == nr - 1)
1911				err = add_callchain_ip(thread, cursor, parent,
1912						       root_al,
1913						       NULL, be[i].to,
1914						       true, &be[i].flags,
1915						       nr_loop_iter, 1);
1916			else
1917				err = add_callchain_ip(thread, cursor, parent,
1918						       root_al,
1919						       NULL, be[i].to,
1920						       true, &be[i].flags,
1921						       0, 0);
1922
1923			if (!err)
1924				err = add_callchain_ip(thread, cursor, parent, root_al,
1925						       NULL, be[i].from,
1926						       true, &be[i].flags,
1927						       0, 0);
1928			if (err == -EINVAL)
1929				break;
1930			if (err)
1931				return err;
1932		}
 
 
 
 
1933		chain_nr -= nr;
1934	}
1935
1936check_calls:
 
 
 
 
 
 
1937	for (i = first_call, nr_entries = 0;
1938	     i < chain_nr && nr_entries < max_stack; i++) {
1939		u64 ip;
1940
1941		if (callchain_param.order == ORDER_CALLEE)
1942			j = i;
1943		else
1944			j = chain->nr - i - 1;
1945
1946#ifdef HAVE_SKIP_CALLCHAIN_IDX
1947		if (j == skip_idx)
1948			continue;
1949#endif
1950		ip = chain->ips[j];
1951
1952		if (ip < PERF_CONTEXT_MAX)
1953                       ++nr_entries;
 
 
 
 
 
 
 
1954
1955		err = add_callchain_ip(thread, cursor, parent,
1956				       root_al, &cpumode, ip,
1957				       false, NULL, 0, 0);
1958
1959		if (err)
1960			return (err < 0) ? err : 0;
1961	}
1962
1963	return 0;
1964}
1965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966static int unwind_entry(struct unwind_entry *entry, void *arg)
1967{
1968	struct callchain_cursor *cursor = arg;
 
 
1969
1970	if (symbol_conf.hide_unresolved && entry->sym == NULL)
1971		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1972	return callchain_cursor_append(cursor, entry->ip,
1973				       entry->map, entry->sym,
1974				       false, NULL, 0, 0);
1975}
1976
1977static int thread__resolve_callchain_unwind(struct thread *thread,
1978					    struct callchain_cursor *cursor,
1979					    struct perf_evsel *evsel,
1980					    struct perf_sample *sample,
1981					    int max_stack)
1982{
1983	/* Can we do dwarf post unwind? */
1984	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1985	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1986		return 0;
1987
1988	/* Bail out if nothing was captured. */
1989	if ((!sample->user_regs.regs) ||
1990	    (!sample->user_stack.size))
1991		return 0;
1992
1993	return unwind__get_entries(unwind_entry, cursor,
1994				   thread, sample, max_stack);
1995}
1996
1997int thread__resolve_callchain(struct thread *thread,
1998			      struct callchain_cursor *cursor,
1999			      struct perf_evsel *evsel,
2000			      struct perf_sample *sample,
2001			      struct symbol **parent,
2002			      struct addr_location *root_al,
2003			      int max_stack)
2004{
2005	int ret = 0;
2006
2007	callchain_cursor_reset(&callchain_cursor);
2008
2009	if (callchain_param.order == ORDER_CALLEE) {
2010		ret = thread__resolve_callchain_sample(thread, cursor,
2011						       evsel, sample,
2012						       parent, root_al,
2013						       max_stack);
2014		if (ret)
2015			return ret;
2016		ret = thread__resolve_callchain_unwind(thread, cursor,
2017						       evsel, sample,
2018						       max_stack);
2019	} else {
2020		ret = thread__resolve_callchain_unwind(thread, cursor,
2021						       evsel, sample,
2022						       max_stack);
2023		if (ret)
2024			return ret;
2025		ret = thread__resolve_callchain_sample(thread, cursor,
2026						       evsel, sample,
2027						       parent, root_al,
2028						       max_stack);
2029	}
2030
2031	return ret;
2032}
2033
2034int machine__for_each_thread(struct machine *machine,
2035			     int (*fn)(struct thread *thread, void *p),
2036			     void *priv)
2037{
 
2038	struct rb_node *nd;
2039	struct thread *thread;
2040	int rc = 0;
 
2041
2042	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2043		thread = rb_entry(nd, struct thread, rb_node);
2044		rc = fn(thread, priv);
2045		if (rc != 0)
2046			return rc;
2047	}
 
 
 
2048
2049	list_for_each_entry(thread, &machine->dead_threads, node) {
2050		rc = fn(thread, priv);
2051		if (rc != 0)
2052			return rc;
 
2053	}
2054	return rc;
2055}
2056
2057int machines__for_each_thread(struct machines *machines,
2058			      int (*fn)(struct thread *thread, void *p),
2059			      void *priv)
2060{
2061	struct rb_node *nd;
2062	int rc = 0;
2063
2064	rc = machine__for_each_thread(&machines->host, fn, priv);
2065	if (rc != 0)
2066		return rc;
2067
2068	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2069		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2070
2071		rc = machine__for_each_thread(machine, fn, priv);
2072		if (rc != 0)
2073			return rc;
2074	}
2075	return rc;
2076}
2077
2078int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2079				  struct target *target, struct thread_map *threads,
2080				  perf_event__handler_t process, bool data_mmap,
2081				  unsigned int proc_map_timeout)
2082{
2083	if (target__has_task(target))
2084		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2085	else if (target__has_cpu(target))
2086		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2087	/* command specified */
2088	return 0;
2089}
2090
2091pid_t machine__get_current_tid(struct machine *machine, int cpu)
2092{
2093	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
 
 
2094		return -1;
2095
2096	return machine->current_tid[cpu];
2097}
2098
2099int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2100			     pid_t tid)
2101{
2102	struct thread *thread;
 
2103
2104	if (cpu < 0)
2105		return -EINVAL;
2106
2107	if (!machine->current_tid) {
2108		int i;
2109
2110		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2111		if (!machine->current_tid)
2112			return -ENOMEM;
2113		for (i = 0; i < MAX_NR_CPUS; i++)
2114			machine->current_tid[i] = -1;
2115	}
2116
2117	if (cpu >= MAX_NR_CPUS) {
2118		pr_err("Requested CPU %d too large. ", cpu);
2119		pr_err("Consider raising MAX_NR_CPUS\n");
2120		return -EINVAL;
2121	}
2122
2123	machine->current_tid[cpu] = tid;
2124
2125	thread = machine__findnew_thread(machine, pid, tid);
2126	if (!thread)
2127		return -ENOMEM;
2128
2129	thread->cpu = cpu;
2130	thread__put(thread);
2131
2132	return 0;
2133}
2134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2135int machine__get_kernel_start(struct machine *machine)
2136{
2137	struct map *map = machine__kernel_map(machine);
2138	int err = 0;
2139
2140	/*
2141	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2142	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2143	 * all addresses including kernel addresses are less than 2^32.  In
2144	 * that case (32-bit system), if the kernel mapping is unknown, all
2145	 * addresses will be assumed to be in user space - see
2146	 * machine__kernel_ip().
2147	 */
2148	machine->kernel_start = 1ULL << 63;
2149	if (map) {
2150		err = map__load(map);
2151		if (map->start)
 
 
 
 
 
2152			machine->kernel_start = map->start;
2153	}
2154	return err;
2155}
2156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2158{
2159	return dsos__findnew(&machine->dsos, filename);
2160}
2161
2162char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2163{
2164	struct machine *machine = vmachine;
2165	struct map *map;
2166	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2167
2168	if (sym == NULL)
2169		return NULL;
2170
2171	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2172	*addrp = map->unmap_ip(map, sym->start);
2173	return sym->name;
2174}