Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "srcline.h"
20#include "symbol.h"
21#include "sort.h"
22#include "strlist.h"
23#include "target.h"
24#include "thread.h"
25#include "util.h"
26#include "vdso.h"
27#include <stdbool.h>
28#include <sys/types.h>
29#include <sys/stat.h>
30#include <unistd.h>
31#include "unwind.h"
32#include "linux/hash.h"
33#include "asm/bug.h"
34#include "bpf-event.h"
35#include <internal/lib.h> // page_size
36
37#include <linux/ctype.h>
38#include <symbol/kallsyms.h>
39#include <linux/mman.h>
40#include <linux/string.h>
41#include <linux/zalloc.h>
42
43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44
45static void dsos__init(struct dsos *dsos)
46{
47 INIT_LIST_HEAD(&dsos->head);
48 dsos->root = RB_ROOT;
49 init_rwsem(&dsos->lock);
50}
51
52static void machine__threads_init(struct machine *machine)
53{
54 int i;
55
56 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
57 struct threads *threads = &machine->threads[i];
58 threads->entries = RB_ROOT_CACHED;
59 init_rwsem(&threads->lock);
60 threads->nr = 0;
61 INIT_LIST_HEAD(&threads->dead);
62 threads->last_match = NULL;
63 }
64}
65
66static int machine__set_mmap_name(struct machine *machine)
67{
68 if (machine__is_host(machine))
69 machine->mmap_name = strdup("[kernel.kallsyms]");
70 else if (machine__is_default_guest(machine))
71 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
72 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
73 machine->pid) < 0)
74 machine->mmap_name = NULL;
75
76 return machine->mmap_name ? 0 : -ENOMEM;
77}
78
79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80{
81 int err = -ENOMEM;
82
83 memset(machine, 0, sizeof(*machine));
84 map_groups__init(&machine->kmaps, machine);
85 RB_CLEAR_NODE(&machine->rb_node);
86 dsos__init(&machine->dsos);
87
88 machine__threads_init(machine);
89
90 machine->vdso_info = NULL;
91 machine->env = NULL;
92
93 machine->pid = pid;
94
95 machine->id_hdr_size = 0;
96 machine->kptr_restrict_warned = false;
97 machine->comm_exec = false;
98 machine->kernel_start = 0;
99 machine->vmlinux_map = NULL;
100
101 machine->root_dir = strdup(root_dir);
102 if (machine->root_dir == NULL)
103 return -ENOMEM;
104
105 if (machine__set_mmap_name(machine))
106 goto out;
107
108 if (pid != HOST_KERNEL_ID) {
109 struct thread *thread = machine__findnew_thread(machine, -1,
110 pid);
111 char comm[64];
112
113 if (thread == NULL)
114 goto out;
115
116 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
117 thread__set_comm(thread, comm, 0);
118 thread__put(thread);
119 }
120
121 machine->current_tid = NULL;
122 err = 0;
123
124out:
125 if (err) {
126 zfree(&machine->root_dir);
127 zfree(&machine->mmap_name);
128 }
129 return 0;
130}
131
132struct machine *machine__new_host(void)
133{
134 struct machine *machine = malloc(sizeof(*machine));
135
136 if (machine != NULL) {
137 machine__init(machine, "", HOST_KERNEL_ID);
138
139 if (machine__create_kernel_maps(machine) < 0)
140 goto out_delete;
141 }
142
143 return machine;
144out_delete:
145 free(machine);
146 return NULL;
147}
148
149struct machine *machine__new_kallsyms(void)
150{
151 struct machine *machine = machine__new_host();
152 /*
153 * FIXME:
154 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
155 * ask for not using the kcore parsing code, once this one is fixed
156 * to create a map per module.
157 */
158 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
159 machine__delete(machine);
160 machine = NULL;
161 }
162
163 return machine;
164}
165
166static void dsos__purge(struct dsos *dsos)
167{
168 struct dso *pos, *n;
169
170 down_write(&dsos->lock);
171
172 list_for_each_entry_safe(pos, n, &dsos->head, node) {
173 RB_CLEAR_NODE(&pos->rb_node);
174 pos->root = NULL;
175 list_del_init(&pos->node);
176 dso__put(pos);
177 }
178
179 up_write(&dsos->lock);
180}
181
182static void dsos__exit(struct dsos *dsos)
183{
184 dsos__purge(dsos);
185 exit_rwsem(&dsos->lock);
186}
187
188void machine__delete_threads(struct machine *machine)
189{
190 struct rb_node *nd;
191 int i;
192
193 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
194 struct threads *threads = &machine->threads[i];
195 down_write(&threads->lock);
196 nd = rb_first_cached(&threads->entries);
197 while (nd) {
198 struct thread *t = rb_entry(nd, struct thread, rb_node);
199
200 nd = rb_next(nd);
201 __machine__remove_thread(machine, t, false);
202 }
203 up_write(&threads->lock);
204 }
205}
206
207void machine__exit(struct machine *machine)
208{
209 int i;
210
211 if (machine == NULL)
212 return;
213
214 machine__destroy_kernel_maps(machine);
215 map_groups__exit(&machine->kmaps);
216 dsos__exit(&machine->dsos);
217 machine__exit_vdso(machine);
218 zfree(&machine->root_dir);
219 zfree(&machine->mmap_name);
220 zfree(&machine->current_tid);
221
222 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
223 struct threads *threads = &machine->threads[i];
224 struct thread *thread, *n;
225 /*
226 * Forget about the dead, at this point whatever threads were
227 * left in the dead lists better have a reference count taken
228 * by who is using them, and then, when they drop those references
229 * and it finally hits zero, thread__put() will check and see that
230 * its not in the dead threads list and will not try to remove it
231 * from there, just calling thread__delete() straight away.
232 */
233 list_for_each_entry_safe(thread, n, &threads->dead, node)
234 list_del_init(&thread->node);
235
236 exit_rwsem(&threads->lock);
237 }
238}
239
240void machine__delete(struct machine *machine)
241{
242 if (machine) {
243 machine__exit(machine);
244 free(machine);
245 }
246}
247
248void machines__init(struct machines *machines)
249{
250 machine__init(&machines->host, "", HOST_KERNEL_ID);
251 machines->guests = RB_ROOT_CACHED;
252}
253
254void machines__exit(struct machines *machines)
255{
256 machine__exit(&machines->host);
257 /* XXX exit guest */
258}
259
260struct machine *machines__add(struct machines *machines, pid_t pid,
261 const char *root_dir)
262{
263 struct rb_node **p = &machines->guests.rb_root.rb_node;
264 struct rb_node *parent = NULL;
265 struct machine *pos, *machine = malloc(sizeof(*machine));
266 bool leftmost = true;
267
268 if (machine == NULL)
269 return NULL;
270
271 if (machine__init(machine, root_dir, pid) != 0) {
272 free(machine);
273 return NULL;
274 }
275
276 while (*p != NULL) {
277 parent = *p;
278 pos = rb_entry(parent, struct machine, rb_node);
279 if (pid < pos->pid)
280 p = &(*p)->rb_left;
281 else {
282 p = &(*p)->rb_right;
283 leftmost = false;
284 }
285 }
286
287 rb_link_node(&machine->rb_node, parent, p);
288 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
289
290 return machine;
291}
292
293void machines__set_comm_exec(struct machines *machines, bool comm_exec)
294{
295 struct rb_node *nd;
296
297 machines->host.comm_exec = comm_exec;
298
299 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
300 struct machine *machine = rb_entry(nd, struct machine, rb_node);
301
302 machine->comm_exec = comm_exec;
303 }
304}
305
306struct machine *machines__find(struct machines *machines, pid_t pid)
307{
308 struct rb_node **p = &machines->guests.rb_root.rb_node;
309 struct rb_node *parent = NULL;
310 struct machine *machine;
311 struct machine *default_machine = NULL;
312
313 if (pid == HOST_KERNEL_ID)
314 return &machines->host;
315
316 while (*p != NULL) {
317 parent = *p;
318 machine = rb_entry(parent, struct machine, rb_node);
319 if (pid < machine->pid)
320 p = &(*p)->rb_left;
321 else if (pid > machine->pid)
322 p = &(*p)->rb_right;
323 else
324 return machine;
325 if (!machine->pid)
326 default_machine = machine;
327 }
328
329 return default_machine;
330}
331
332struct machine *machines__findnew(struct machines *machines, pid_t pid)
333{
334 char path[PATH_MAX];
335 const char *root_dir = "";
336 struct machine *machine = machines__find(machines, pid);
337
338 if (machine && (machine->pid == pid))
339 goto out;
340
341 if ((pid != HOST_KERNEL_ID) &&
342 (pid != DEFAULT_GUEST_KERNEL_ID) &&
343 (symbol_conf.guestmount)) {
344 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
345 if (access(path, R_OK)) {
346 static struct strlist *seen;
347
348 if (!seen)
349 seen = strlist__new(NULL, NULL);
350
351 if (!strlist__has_entry(seen, path)) {
352 pr_err("Can't access file %s\n", path);
353 strlist__add(seen, path);
354 }
355 machine = NULL;
356 goto out;
357 }
358 root_dir = path;
359 }
360
361 machine = machines__add(machines, pid, root_dir);
362out:
363 return machine;
364}
365
366void machines__process_guests(struct machines *machines,
367 machine__process_t process, void *data)
368{
369 struct rb_node *nd;
370
371 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
372 struct machine *pos = rb_entry(nd, struct machine, rb_node);
373 process(pos, data);
374 }
375}
376
377void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
378{
379 struct rb_node *node;
380 struct machine *machine;
381
382 machines->host.id_hdr_size = id_hdr_size;
383
384 for (node = rb_first_cached(&machines->guests); node;
385 node = rb_next(node)) {
386 machine = rb_entry(node, struct machine, rb_node);
387 machine->id_hdr_size = id_hdr_size;
388 }
389
390 return;
391}
392
393static void machine__update_thread_pid(struct machine *machine,
394 struct thread *th, pid_t pid)
395{
396 struct thread *leader;
397
398 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
399 return;
400
401 th->pid_ = pid;
402
403 if (th->pid_ == th->tid)
404 return;
405
406 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
407 if (!leader)
408 goto out_err;
409
410 if (!leader->mg)
411 leader->mg = map_groups__new(machine);
412
413 if (!leader->mg)
414 goto out_err;
415
416 if (th->mg == leader->mg)
417 return;
418
419 if (th->mg) {
420 /*
421 * Maps are created from MMAP events which provide the pid and
422 * tid. Consequently there never should be any maps on a thread
423 * with an unknown pid. Just print an error if there are.
424 */
425 if (!map_groups__empty(th->mg))
426 pr_err("Discarding thread maps for %d:%d\n",
427 th->pid_, th->tid);
428 map_groups__put(th->mg);
429 }
430
431 th->mg = map_groups__get(leader->mg);
432out_put:
433 thread__put(leader);
434 return;
435out_err:
436 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
437 goto out_put;
438}
439
440/*
441 * Front-end cache - TID lookups come in blocks,
442 * so most of the time we dont have to look up
443 * the full rbtree:
444 */
445static struct thread*
446__threads__get_last_match(struct threads *threads, struct machine *machine,
447 int pid, int tid)
448{
449 struct thread *th;
450
451 th = threads->last_match;
452 if (th != NULL) {
453 if (th->tid == tid) {
454 machine__update_thread_pid(machine, th, pid);
455 return thread__get(th);
456 }
457
458 threads->last_match = NULL;
459 }
460
461 return NULL;
462}
463
464static struct thread*
465threads__get_last_match(struct threads *threads, struct machine *machine,
466 int pid, int tid)
467{
468 struct thread *th = NULL;
469
470 if (perf_singlethreaded)
471 th = __threads__get_last_match(threads, machine, pid, tid);
472
473 return th;
474}
475
476static void
477__threads__set_last_match(struct threads *threads, struct thread *th)
478{
479 threads->last_match = th;
480}
481
482static void
483threads__set_last_match(struct threads *threads, struct thread *th)
484{
485 if (perf_singlethreaded)
486 __threads__set_last_match(threads, th);
487}
488
489/*
490 * Caller must eventually drop thread->refcnt returned with a successful
491 * lookup/new thread inserted.
492 */
493static struct thread *____machine__findnew_thread(struct machine *machine,
494 struct threads *threads,
495 pid_t pid, pid_t tid,
496 bool create)
497{
498 struct rb_node **p = &threads->entries.rb_root.rb_node;
499 struct rb_node *parent = NULL;
500 struct thread *th;
501 bool leftmost = true;
502
503 th = threads__get_last_match(threads, machine, pid, tid);
504 if (th)
505 return th;
506
507 while (*p != NULL) {
508 parent = *p;
509 th = rb_entry(parent, struct thread, rb_node);
510
511 if (th->tid == tid) {
512 threads__set_last_match(threads, th);
513 machine__update_thread_pid(machine, th, pid);
514 return thread__get(th);
515 }
516
517 if (tid < th->tid)
518 p = &(*p)->rb_left;
519 else {
520 p = &(*p)->rb_right;
521 leftmost = false;
522 }
523 }
524
525 if (!create)
526 return NULL;
527
528 th = thread__new(pid, tid);
529 if (th != NULL) {
530 rb_link_node(&th->rb_node, parent, p);
531 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
532
533 /*
534 * We have to initialize map_groups separately
535 * after rb tree is updated.
536 *
537 * The reason is that we call machine__findnew_thread
538 * within thread__init_map_groups to find the thread
539 * leader and that would screwed the rb tree.
540 */
541 if (thread__init_map_groups(th, machine)) {
542 rb_erase_cached(&th->rb_node, &threads->entries);
543 RB_CLEAR_NODE(&th->rb_node);
544 thread__put(th);
545 return NULL;
546 }
547 /*
548 * It is now in the rbtree, get a ref
549 */
550 thread__get(th);
551 threads__set_last_match(threads, th);
552 ++threads->nr;
553 }
554
555 return th;
556}
557
558struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
559{
560 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
561}
562
563struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
564 pid_t tid)
565{
566 struct threads *threads = machine__threads(machine, tid);
567 struct thread *th;
568
569 down_write(&threads->lock);
570 th = __machine__findnew_thread(machine, pid, tid);
571 up_write(&threads->lock);
572 return th;
573}
574
575struct thread *machine__find_thread(struct machine *machine, pid_t pid,
576 pid_t tid)
577{
578 struct threads *threads = machine__threads(machine, tid);
579 struct thread *th;
580
581 down_read(&threads->lock);
582 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
583 up_read(&threads->lock);
584 return th;
585}
586
587struct comm *machine__thread_exec_comm(struct machine *machine,
588 struct thread *thread)
589{
590 if (machine->comm_exec)
591 return thread__exec_comm(thread);
592 else
593 return thread__comm(thread);
594}
595
596int machine__process_comm_event(struct machine *machine, union perf_event *event,
597 struct perf_sample *sample)
598{
599 struct thread *thread = machine__findnew_thread(machine,
600 event->comm.pid,
601 event->comm.tid);
602 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
603 int err = 0;
604
605 if (exec)
606 machine->comm_exec = true;
607
608 if (dump_trace)
609 perf_event__fprintf_comm(event, stdout);
610
611 if (thread == NULL ||
612 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
613 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
614 err = -1;
615 }
616
617 thread__put(thread);
618
619 return err;
620}
621
622int machine__process_namespaces_event(struct machine *machine __maybe_unused,
623 union perf_event *event,
624 struct perf_sample *sample __maybe_unused)
625{
626 struct thread *thread = machine__findnew_thread(machine,
627 event->namespaces.pid,
628 event->namespaces.tid);
629 int err = 0;
630
631 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
632 "\nWARNING: kernel seems to support more namespaces than perf"
633 " tool.\nTry updating the perf tool..\n\n");
634
635 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
636 "\nWARNING: perf tool seems to support more namespaces than"
637 " the kernel.\nTry updating the kernel..\n\n");
638
639 if (dump_trace)
640 perf_event__fprintf_namespaces(event, stdout);
641
642 if (thread == NULL ||
643 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
644 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
645 err = -1;
646 }
647
648 thread__put(thread);
649
650 return err;
651}
652
653int machine__process_lost_event(struct machine *machine __maybe_unused,
654 union perf_event *event, struct perf_sample *sample __maybe_unused)
655{
656 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
657 event->lost.id, event->lost.lost);
658 return 0;
659}
660
661int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
662 union perf_event *event, struct perf_sample *sample)
663{
664 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
665 sample->id, event->lost_samples.lost);
666 return 0;
667}
668
669static struct dso *machine__findnew_module_dso(struct machine *machine,
670 struct kmod_path *m,
671 const char *filename)
672{
673 struct dso *dso;
674
675 down_write(&machine->dsos.lock);
676
677 dso = __dsos__find(&machine->dsos, m->name, true);
678 if (!dso) {
679 dso = __dsos__addnew(&machine->dsos, m->name);
680 if (dso == NULL)
681 goto out_unlock;
682
683 dso__set_module_info(dso, m, machine);
684 dso__set_long_name(dso, strdup(filename), true);
685 }
686
687 dso__get(dso);
688out_unlock:
689 up_write(&machine->dsos.lock);
690 return dso;
691}
692
693int machine__process_aux_event(struct machine *machine __maybe_unused,
694 union perf_event *event)
695{
696 if (dump_trace)
697 perf_event__fprintf_aux(event, stdout);
698 return 0;
699}
700
701int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
702 union perf_event *event)
703{
704 if (dump_trace)
705 perf_event__fprintf_itrace_start(event, stdout);
706 return 0;
707}
708
709int machine__process_switch_event(struct machine *machine __maybe_unused,
710 union perf_event *event)
711{
712 if (dump_trace)
713 perf_event__fprintf_switch(event, stdout);
714 return 0;
715}
716
717static int machine__process_ksymbol_register(struct machine *machine,
718 union perf_event *event,
719 struct perf_sample *sample __maybe_unused)
720{
721 struct symbol *sym;
722 struct map *map;
723
724 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
725 if (!map) {
726 map = dso__new_map(event->ksymbol.name);
727 if (!map)
728 return -ENOMEM;
729
730 map->start = event->ksymbol.addr;
731 map->end = map->start + event->ksymbol.len;
732 map_groups__insert(&machine->kmaps, map);
733 }
734
735 sym = symbol__new(map->map_ip(map, map->start),
736 event->ksymbol.len,
737 0, 0, event->ksymbol.name);
738 if (!sym)
739 return -ENOMEM;
740 dso__insert_symbol(map->dso, sym);
741 return 0;
742}
743
744static int machine__process_ksymbol_unregister(struct machine *machine,
745 union perf_event *event,
746 struct perf_sample *sample __maybe_unused)
747{
748 struct map *map;
749
750 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
751 if (map)
752 map_groups__remove(&machine->kmaps, map);
753
754 return 0;
755}
756
757int machine__process_ksymbol(struct machine *machine __maybe_unused,
758 union perf_event *event,
759 struct perf_sample *sample)
760{
761 if (dump_trace)
762 perf_event__fprintf_ksymbol(event, stdout);
763
764 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
765 return machine__process_ksymbol_unregister(machine, event,
766 sample);
767 return machine__process_ksymbol_register(machine, event, sample);
768}
769
770static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
771{
772 const char *dup_filename;
773
774 if (!filename || !dso || !dso->long_name)
775 return;
776 if (dso->long_name[0] != '[')
777 return;
778 if (!strchr(filename, '/'))
779 return;
780
781 dup_filename = strdup(filename);
782 if (!dup_filename)
783 return;
784
785 dso__set_long_name(dso, dup_filename, true);
786}
787
788struct map *machine__findnew_module_map(struct machine *machine, u64 start,
789 const char *filename)
790{
791 struct map *map = NULL;
792 struct dso *dso = NULL;
793 struct kmod_path m;
794
795 if (kmod_path__parse_name(&m, filename))
796 return NULL;
797
798 map = map_groups__find_by_name(&machine->kmaps, m.name);
799 if (map) {
800 /*
801 * If the map's dso is an offline module, give dso__load()
802 * a chance to find the file path of that module by fixing
803 * long_name.
804 */
805 dso__adjust_kmod_long_name(map->dso, filename);
806 goto out;
807 }
808
809 dso = machine__findnew_module_dso(machine, &m, filename);
810 if (dso == NULL)
811 goto out;
812
813 map = map__new2(start, dso);
814 if (map == NULL)
815 goto out;
816
817 map_groups__insert(&machine->kmaps, map);
818
819 /* Put the map here because map_groups__insert alread got it */
820 map__put(map);
821out:
822 /* put the dso here, corresponding to machine__findnew_module_dso */
823 dso__put(dso);
824 zfree(&m.name);
825 return map;
826}
827
828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
829{
830 struct rb_node *nd;
831 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
832
833 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
834 struct machine *pos = rb_entry(nd, struct machine, rb_node);
835 ret += __dsos__fprintf(&pos->dsos.head, fp);
836 }
837
838 return ret;
839}
840
841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
842 bool (skip)(struct dso *dso, int parm), int parm)
843{
844 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
845}
846
847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
848 bool (skip)(struct dso *dso, int parm), int parm)
849{
850 struct rb_node *nd;
851 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
852
853 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
854 struct machine *pos = rb_entry(nd, struct machine, rb_node);
855 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
856 }
857 return ret;
858}
859
860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
861{
862 int i;
863 size_t printed = 0;
864 struct dso *kdso = machine__kernel_map(machine)->dso;
865
866 if (kdso->has_build_id) {
867 char filename[PATH_MAX];
868 if (dso__build_id_filename(kdso, filename, sizeof(filename),
869 false))
870 printed += fprintf(fp, "[0] %s\n", filename);
871 }
872
873 for (i = 0; i < vmlinux_path__nr_entries; ++i)
874 printed += fprintf(fp, "[%d] %s\n",
875 i + kdso->has_build_id, vmlinux_path[i]);
876
877 return printed;
878}
879
880size_t machine__fprintf(struct machine *machine, FILE *fp)
881{
882 struct rb_node *nd;
883 size_t ret;
884 int i;
885
886 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
887 struct threads *threads = &machine->threads[i];
888
889 down_read(&threads->lock);
890
891 ret = fprintf(fp, "Threads: %u\n", threads->nr);
892
893 for (nd = rb_first_cached(&threads->entries); nd;
894 nd = rb_next(nd)) {
895 struct thread *pos = rb_entry(nd, struct thread, rb_node);
896
897 ret += thread__fprintf(pos, fp);
898 }
899
900 up_read(&threads->lock);
901 }
902 return ret;
903}
904
905static struct dso *machine__get_kernel(struct machine *machine)
906{
907 const char *vmlinux_name = machine->mmap_name;
908 struct dso *kernel;
909
910 if (machine__is_host(machine)) {
911 if (symbol_conf.vmlinux_name)
912 vmlinux_name = symbol_conf.vmlinux_name;
913
914 kernel = machine__findnew_kernel(machine, vmlinux_name,
915 "[kernel]", DSO_TYPE_KERNEL);
916 } else {
917 if (symbol_conf.default_guest_vmlinux_name)
918 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
919
920 kernel = machine__findnew_kernel(machine, vmlinux_name,
921 "[guest.kernel]",
922 DSO_TYPE_GUEST_KERNEL);
923 }
924
925 if (kernel != NULL && (!kernel->has_build_id))
926 dso__read_running_kernel_build_id(kernel, machine);
927
928 return kernel;
929}
930
931struct process_args {
932 u64 start;
933};
934
935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
936 size_t bufsz)
937{
938 if (machine__is_default_guest(machine))
939 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
940 else
941 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
942}
943
944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
945
946/* Figure out the start address of kernel map from /proc/kallsyms.
947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
948 * symbol_name if it's not that important.
949 */
950static int machine__get_running_kernel_start(struct machine *machine,
951 const char **symbol_name,
952 u64 *start, u64 *end)
953{
954 char filename[PATH_MAX];
955 int i, err = -1;
956 const char *name;
957 u64 addr = 0;
958
959 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
960
961 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
962 return 0;
963
964 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
965 err = kallsyms__get_function_start(filename, name, &addr);
966 if (!err)
967 break;
968 }
969
970 if (err)
971 return -1;
972
973 if (symbol_name)
974 *symbol_name = name;
975
976 *start = addr;
977
978 err = kallsyms__get_function_start(filename, "_etext", &addr);
979 if (!err)
980 *end = addr;
981
982 return 0;
983}
984
985int machine__create_extra_kernel_map(struct machine *machine,
986 struct dso *kernel,
987 struct extra_kernel_map *xm)
988{
989 struct kmap *kmap;
990 struct map *map;
991
992 map = map__new2(xm->start, kernel);
993 if (!map)
994 return -1;
995
996 map->end = xm->end;
997 map->pgoff = xm->pgoff;
998
999 kmap = map__kmap(map);
1000
1001 kmap->kmaps = &machine->kmaps;
1002 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003
1004 map_groups__insert(&machine->kmaps, map);
1005
1006 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007 kmap->name, map->start, map->end);
1008
1009 map__put(map);
1010
1011 return 0;
1012}
1013
1014static u64 find_entry_trampoline(struct dso *dso)
1015{
1016 /* Duplicates are removed so lookup all aliases */
1017 const char *syms[] = {
1018 "_entry_trampoline",
1019 "__entry_trampoline_start",
1020 "entry_SYSCALL_64_trampoline",
1021 };
1022 struct symbol *sym = dso__first_symbol(dso);
1023 unsigned int i;
1024
1025 for (; sym; sym = dso__next_symbol(sym)) {
1026 if (sym->binding != STB_GLOBAL)
1027 continue;
1028 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029 if (!strcmp(sym->name, syms[i]))
1030 return sym->start;
1031 }
1032 }
1033
1034 return 0;
1035}
1036
1037/*
1038 * These values can be used for kernels that do not have symbols for the entry
1039 * trampolines in kallsyms.
1040 */
1041#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1042#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1043#define X86_64_ENTRY_TRAMPOLINE 0x6000
1044
1045/* Map x86_64 PTI entry trampolines */
1046int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047 struct dso *kernel)
1048{
1049 struct map_groups *kmaps = &machine->kmaps;
1050 struct maps *maps = &kmaps->maps;
1051 int nr_cpus_avail, cpu;
1052 bool found = false;
1053 struct map *map;
1054 u64 pgoff;
1055
1056 /*
1057 * In the vmlinux case, pgoff is a virtual address which must now be
1058 * mapped to a vmlinux offset.
1059 */
1060 for (map = maps__first(maps); map; map = map__next(map)) {
1061 struct kmap *kmap = __map__kmap(map);
1062 struct map *dest_map;
1063
1064 if (!kmap || !is_entry_trampoline(kmap->name))
1065 continue;
1066
1067 dest_map = map_groups__find(kmaps, map->pgoff);
1068 if (dest_map != map)
1069 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070 found = true;
1071 }
1072 if (found || machine->trampolines_mapped)
1073 return 0;
1074
1075 pgoff = find_entry_trampoline(kernel);
1076 if (!pgoff)
1077 return 0;
1078
1079 nr_cpus_avail = machine__nr_cpus_avail(machine);
1080
1081 /* Add a 1 page map for each CPU's entry trampoline */
1082 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085 X86_64_ENTRY_TRAMPOLINE;
1086 struct extra_kernel_map xm = {
1087 .start = va,
1088 .end = va + page_size,
1089 .pgoff = pgoff,
1090 };
1091
1092 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1093
1094 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1095 return -1;
1096 }
1097
1098 machine->trampolines_mapped = nr_cpus_avail;
1099
1100 return 0;
1101}
1102
1103int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104 struct dso *kernel __maybe_unused)
1105{
1106 return 0;
1107}
1108
1109static int
1110__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111{
1112 struct kmap *kmap;
1113 struct map *map;
1114
1115 /* In case of renewal the kernel map, destroy previous one */
1116 machine__destroy_kernel_maps(machine);
1117
1118 machine->vmlinux_map = map__new2(0, kernel);
1119 if (machine->vmlinux_map == NULL)
1120 return -1;
1121
1122 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123 map = machine__kernel_map(machine);
1124 kmap = map__kmap(map);
1125 if (!kmap)
1126 return -1;
1127
1128 kmap->kmaps = &machine->kmaps;
1129 map_groups__insert(&machine->kmaps, map);
1130
1131 return 0;
1132}
1133
1134void machine__destroy_kernel_maps(struct machine *machine)
1135{
1136 struct kmap *kmap;
1137 struct map *map = machine__kernel_map(machine);
1138
1139 if (map == NULL)
1140 return;
1141
1142 kmap = map__kmap(map);
1143 map_groups__remove(&machine->kmaps, map);
1144 if (kmap && kmap->ref_reloc_sym) {
1145 zfree((char **)&kmap->ref_reloc_sym->name);
1146 zfree(&kmap->ref_reloc_sym);
1147 }
1148
1149 map__zput(machine->vmlinux_map);
1150}
1151
1152int machines__create_guest_kernel_maps(struct machines *machines)
1153{
1154 int ret = 0;
1155 struct dirent **namelist = NULL;
1156 int i, items = 0;
1157 char path[PATH_MAX];
1158 pid_t pid;
1159 char *endp;
1160
1161 if (symbol_conf.default_guest_vmlinux_name ||
1162 symbol_conf.default_guest_modules ||
1163 symbol_conf.default_guest_kallsyms) {
1164 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165 }
1166
1167 if (symbol_conf.guestmount) {
1168 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169 if (items <= 0)
1170 return -ENOENT;
1171 for (i = 0; i < items; i++) {
1172 if (!isdigit(namelist[i]->d_name[0])) {
1173 /* Filter out . and .. */
1174 continue;
1175 }
1176 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177 if ((*endp != '\0') ||
1178 (endp == namelist[i]->d_name) ||
1179 (errno == ERANGE)) {
1180 pr_debug("invalid directory (%s). Skipping.\n",
1181 namelist[i]->d_name);
1182 continue;
1183 }
1184 sprintf(path, "%s/%s/proc/kallsyms",
1185 symbol_conf.guestmount,
1186 namelist[i]->d_name);
1187 ret = access(path, R_OK);
1188 if (ret) {
1189 pr_debug("Can't access file %s\n", path);
1190 goto failure;
1191 }
1192 machines__create_kernel_maps(machines, pid);
1193 }
1194failure:
1195 free(namelist);
1196 }
1197
1198 return ret;
1199}
1200
1201void machines__destroy_kernel_maps(struct machines *machines)
1202{
1203 struct rb_node *next = rb_first_cached(&machines->guests);
1204
1205 machine__destroy_kernel_maps(&machines->host);
1206
1207 while (next) {
1208 struct machine *pos = rb_entry(next, struct machine, rb_node);
1209
1210 next = rb_next(&pos->rb_node);
1211 rb_erase_cached(&pos->rb_node, &machines->guests);
1212 machine__delete(pos);
1213 }
1214}
1215
1216int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217{
1218 struct machine *machine = machines__findnew(machines, pid);
1219
1220 if (machine == NULL)
1221 return -1;
1222
1223 return machine__create_kernel_maps(machine);
1224}
1225
1226int machine__load_kallsyms(struct machine *machine, const char *filename)
1227{
1228 struct map *map = machine__kernel_map(machine);
1229 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230
1231 if (ret > 0) {
1232 dso__set_loaded(map->dso);
1233 /*
1234 * Since /proc/kallsyms will have multiple sessions for the
1235 * kernel, with modules between them, fixup the end of all
1236 * sections.
1237 */
1238 map_groups__fixup_end(&machine->kmaps);
1239 }
1240
1241 return ret;
1242}
1243
1244int machine__load_vmlinux_path(struct machine *machine)
1245{
1246 struct map *map = machine__kernel_map(machine);
1247 int ret = dso__load_vmlinux_path(map->dso, map);
1248
1249 if (ret > 0)
1250 dso__set_loaded(map->dso);
1251
1252 return ret;
1253}
1254
1255static char *get_kernel_version(const char *root_dir)
1256{
1257 char version[PATH_MAX];
1258 FILE *file;
1259 char *name, *tmp;
1260 const char *prefix = "Linux version ";
1261
1262 sprintf(version, "%s/proc/version", root_dir);
1263 file = fopen(version, "r");
1264 if (!file)
1265 return NULL;
1266
1267 tmp = fgets(version, sizeof(version), file);
1268 fclose(file);
1269 if (!tmp)
1270 return NULL;
1271
1272 name = strstr(version, prefix);
1273 if (!name)
1274 return NULL;
1275 name += strlen(prefix);
1276 tmp = strchr(name, ' ');
1277 if (tmp)
1278 *tmp = '\0';
1279
1280 return strdup(name);
1281}
1282
1283static bool is_kmod_dso(struct dso *dso)
1284{
1285 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287}
1288
1289static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290 struct kmod_path *m)
1291{
1292 char *long_name;
1293 struct map *map = map_groups__find_by_name(mg, m->name);
1294
1295 if (map == NULL)
1296 return 0;
1297
1298 long_name = strdup(path);
1299 if (long_name == NULL)
1300 return -ENOMEM;
1301
1302 dso__set_long_name(map->dso, long_name, true);
1303 dso__kernel_module_get_build_id(map->dso, "");
1304
1305 /*
1306 * Full name could reveal us kmod compression, so
1307 * we need to update the symtab_type if needed.
1308 */
1309 if (m->comp && is_kmod_dso(map->dso)) {
1310 map->dso->symtab_type++;
1311 map->dso->comp = m->comp;
1312 }
1313
1314 return 0;
1315}
1316
1317static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318 const char *dir_name, int depth)
1319{
1320 struct dirent *dent;
1321 DIR *dir = opendir(dir_name);
1322 int ret = 0;
1323
1324 if (!dir) {
1325 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326 return -1;
1327 }
1328
1329 while ((dent = readdir(dir)) != NULL) {
1330 char path[PATH_MAX];
1331 struct stat st;
1332
1333 /*sshfs might return bad dent->d_type, so we have to stat*/
1334 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335 if (stat(path, &st))
1336 continue;
1337
1338 if (S_ISDIR(st.st_mode)) {
1339 if (!strcmp(dent->d_name, ".") ||
1340 !strcmp(dent->d_name, ".."))
1341 continue;
1342
1343 /* Do not follow top-level source and build symlinks */
1344 if (depth == 0) {
1345 if (!strcmp(dent->d_name, "source") ||
1346 !strcmp(dent->d_name, "build"))
1347 continue;
1348 }
1349
1350 ret = map_groups__set_modules_path_dir(mg, path,
1351 depth + 1);
1352 if (ret < 0)
1353 goto out;
1354 } else {
1355 struct kmod_path m;
1356
1357 ret = kmod_path__parse_name(&m, dent->d_name);
1358 if (ret)
1359 goto out;
1360
1361 if (m.kmod)
1362 ret = map_groups__set_module_path(mg, path, &m);
1363
1364 zfree(&m.name);
1365
1366 if (ret)
1367 goto out;
1368 }
1369 }
1370
1371out:
1372 closedir(dir);
1373 return ret;
1374}
1375
1376static int machine__set_modules_path(struct machine *machine)
1377{
1378 char *version;
1379 char modules_path[PATH_MAX];
1380
1381 version = get_kernel_version(machine->root_dir);
1382 if (!version)
1383 return -1;
1384
1385 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386 machine->root_dir, version);
1387 free(version);
1388
1389 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390}
1391int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392 u64 *size __maybe_unused,
1393 const char *name __maybe_unused)
1394{
1395 return 0;
1396}
1397
1398static int machine__create_module(void *arg, const char *name, u64 start,
1399 u64 size)
1400{
1401 struct machine *machine = arg;
1402 struct map *map;
1403
1404 if (arch__fix_module_text_start(&start, &size, name) < 0)
1405 return -1;
1406
1407 map = machine__findnew_module_map(machine, start, name);
1408 if (map == NULL)
1409 return -1;
1410 map->end = start + size;
1411
1412 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413
1414 return 0;
1415}
1416
1417static int machine__create_modules(struct machine *machine)
1418{
1419 const char *modules;
1420 char path[PATH_MAX];
1421
1422 if (machine__is_default_guest(machine)) {
1423 modules = symbol_conf.default_guest_modules;
1424 } else {
1425 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426 modules = path;
1427 }
1428
1429 if (symbol__restricted_filename(modules, "/proc/modules"))
1430 return -1;
1431
1432 if (modules__parse(modules, machine, machine__create_module))
1433 return -1;
1434
1435 if (!machine__set_modules_path(machine))
1436 return 0;
1437
1438 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439
1440 return 0;
1441}
1442
1443static void machine__set_kernel_mmap(struct machine *machine,
1444 u64 start, u64 end)
1445{
1446 machine->vmlinux_map->start = start;
1447 machine->vmlinux_map->end = end;
1448 /*
1449 * Be a bit paranoid here, some perf.data file came with
1450 * a zero sized synthesized MMAP event for the kernel.
1451 */
1452 if (start == 0 && end == 0)
1453 machine->vmlinux_map->end = ~0ULL;
1454}
1455
1456static void machine__update_kernel_mmap(struct machine *machine,
1457 u64 start, u64 end)
1458{
1459 struct map *map = machine__kernel_map(machine);
1460
1461 map__get(map);
1462 map_groups__remove(&machine->kmaps, map);
1463
1464 machine__set_kernel_mmap(machine, start, end);
1465
1466 map_groups__insert(&machine->kmaps, map);
1467 map__put(map);
1468}
1469
1470int machine__create_kernel_maps(struct machine *machine)
1471{
1472 struct dso *kernel = machine__get_kernel(machine);
1473 const char *name = NULL;
1474 struct map *map;
1475 u64 start = 0, end = ~0ULL;
1476 int ret;
1477
1478 if (kernel == NULL)
1479 return -1;
1480
1481 ret = __machine__create_kernel_maps(machine, kernel);
1482 if (ret < 0)
1483 goto out_put;
1484
1485 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486 if (machine__is_host(machine))
1487 pr_debug("Problems creating module maps, "
1488 "continuing anyway...\n");
1489 else
1490 pr_debug("Problems creating module maps for guest %d, "
1491 "continuing anyway...\n", machine->pid);
1492 }
1493
1494 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495 if (name &&
1496 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497 machine__destroy_kernel_maps(machine);
1498 ret = -1;
1499 goto out_put;
1500 }
1501
1502 /*
1503 * we have a real start address now, so re-order the kmaps
1504 * assume it's the last in the kmaps
1505 */
1506 machine__update_kernel_mmap(machine, start, end);
1507 }
1508
1509 if (machine__create_extra_kernel_maps(machine, kernel))
1510 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511
1512 if (end == ~0ULL) {
1513 /* update end address of the kernel map using adjacent module address */
1514 map = map__next(machine__kernel_map(machine));
1515 if (map)
1516 machine__set_kernel_mmap(machine, start, map->start);
1517 }
1518
1519out_put:
1520 dso__put(kernel);
1521 return ret;
1522}
1523
1524static bool machine__uses_kcore(struct machine *machine)
1525{
1526 struct dso *dso;
1527
1528 list_for_each_entry(dso, &machine->dsos.head, node) {
1529 if (dso__is_kcore(dso))
1530 return true;
1531 }
1532
1533 return false;
1534}
1535
1536static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537 union perf_event *event)
1538{
1539 return machine__is(machine, "x86_64") &&
1540 is_entry_trampoline(event->mmap.filename);
1541}
1542
1543static int machine__process_extra_kernel_map(struct machine *machine,
1544 union perf_event *event)
1545{
1546 struct map *kernel_map = machine__kernel_map(machine);
1547 struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548 struct extra_kernel_map xm = {
1549 .start = event->mmap.start,
1550 .end = event->mmap.start + event->mmap.len,
1551 .pgoff = event->mmap.pgoff,
1552 };
1553
1554 if (kernel == NULL)
1555 return -1;
1556
1557 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558
1559 return machine__create_extra_kernel_map(machine, kernel, &xm);
1560}
1561
1562static int machine__process_kernel_mmap_event(struct machine *machine,
1563 union perf_event *event)
1564{
1565 struct map *map;
1566 enum dso_kernel_type kernel_type;
1567 bool is_kernel_mmap;
1568
1569 /* If we have maps from kcore then we do not need or want any others */
1570 if (machine__uses_kcore(machine))
1571 return 0;
1572
1573 if (machine__is_host(machine))
1574 kernel_type = DSO_TYPE_KERNEL;
1575 else
1576 kernel_type = DSO_TYPE_GUEST_KERNEL;
1577
1578 is_kernel_mmap = memcmp(event->mmap.filename,
1579 machine->mmap_name,
1580 strlen(machine->mmap_name) - 1) == 0;
1581 if (event->mmap.filename[0] == '/' ||
1582 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583 map = machine__findnew_module_map(machine, event->mmap.start,
1584 event->mmap.filename);
1585 if (map == NULL)
1586 goto out_problem;
1587
1588 map->end = map->start + event->mmap.len;
1589 } else if (is_kernel_mmap) {
1590 const char *symbol_name = (event->mmap.filename +
1591 strlen(machine->mmap_name));
1592 /*
1593 * Should be there already, from the build-id table in
1594 * the header.
1595 */
1596 struct dso *kernel = NULL;
1597 struct dso *dso;
1598
1599 down_read(&machine->dsos.lock);
1600
1601 list_for_each_entry(dso, &machine->dsos.head, node) {
1602
1603 /*
1604 * The cpumode passed to is_kernel_module is not the
1605 * cpumode of *this* event. If we insist on passing
1606 * correct cpumode to is_kernel_module, we should
1607 * record the cpumode when we adding this dso to the
1608 * linked list.
1609 *
1610 * However we don't really need passing correct
1611 * cpumode. We know the correct cpumode must be kernel
1612 * mode (if not, we should not link it onto kernel_dsos
1613 * list).
1614 *
1615 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616 * is_kernel_module() treats it as a kernel cpumode.
1617 */
1618
1619 if (!dso->kernel ||
1620 is_kernel_module(dso->long_name,
1621 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622 continue;
1623
1624
1625 kernel = dso;
1626 break;
1627 }
1628
1629 up_read(&machine->dsos.lock);
1630
1631 if (kernel == NULL)
1632 kernel = machine__findnew_dso(machine, machine->mmap_name);
1633 if (kernel == NULL)
1634 goto out_problem;
1635
1636 kernel->kernel = kernel_type;
1637 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638 dso__put(kernel);
1639 goto out_problem;
1640 }
1641
1642 if (strstr(kernel->long_name, "vmlinux"))
1643 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644
1645 machine__update_kernel_mmap(machine, event->mmap.start,
1646 event->mmap.start + event->mmap.len);
1647
1648 /*
1649 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650 * symbol. Effectively having zero here means that at record
1651 * time /proc/sys/kernel/kptr_restrict was non zero.
1652 */
1653 if (event->mmap.pgoff != 0) {
1654 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655 symbol_name,
1656 event->mmap.pgoff);
1657 }
1658
1659 if (machine__is_default_guest(machine)) {
1660 /*
1661 * preload dso of guest kernel and modules
1662 */
1663 dso__load(kernel, machine__kernel_map(machine));
1664 }
1665 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666 return machine__process_extra_kernel_map(machine, event);
1667 }
1668 return 0;
1669out_problem:
1670 return -1;
1671}
1672
1673int machine__process_mmap2_event(struct machine *machine,
1674 union perf_event *event,
1675 struct perf_sample *sample)
1676{
1677 struct thread *thread;
1678 struct map *map;
1679 int ret = 0;
1680
1681 if (dump_trace)
1682 perf_event__fprintf_mmap2(event, stdout);
1683
1684 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686 ret = machine__process_kernel_mmap_event(machine, event);
1687 if (ret < 0)
1688 goto out_problem;
1689 return 0;
1690 }
1691
1692 thread = machine__findnew_thread(machine, event->mmap2.pid,
1693 event->mmap2.tid);
1694 if (thread == NULL)
1695 goto out_problem;
1696
1697 map = map__new(machine, event->mmap2.start,
1698 event->mmap2.len, event->mmap2.pgoff,
1699 event->mmap2.maj,
1700 event->mmap2.min, event->mmap2.ino,
1701 event->mmap2.ino_generation,
1702 event->mmap2.prot,
1703 event->mmap2.flags,
1704 event->mmap2.filename, thread);
1705
1706 if (map == NULL)
1707 goto out_problem_map;
1708
1709 ret = thread__insert_map(thread, map);
1710 if (ret)
1711 goto out_problem_insert;
1712
1713 thread__put(thread);
1714 map__put(map);
1715 return 0;
1716
1717out_problem_insert:
1718 map__put(map);
1719out_problem_map:
1720 thread__put(thread);
1721out_problem:
1722 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723 return 0;
1724}
1725
1726int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727 struct perf_sample *sample)
1728{
1729 struct thread *thread;
1730 struct map *map;
1731 u32 prot = 0;
1732 int ret = 0;
1733
1734 if (dump_trace)
1735 perf_event__fprintf_mmap(event, stdout);
1736
1737 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739 ret = machine__process_kernel_mmap_event(machine, event);
1740 if (ret < 0)
1741 goto out_problem;
1742 return 0;
1743 }
1744
1745 thread = machine__findnew_thread(machine, event->mmap.pid,
1746 event->mmap.tid);
1747 if (thread == NULL)
1748 goto out_problem;
1749
1750 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751 prot = PROT_EXEC;
1752
1753 map = map__new(machine, event->mmap.start,
1754 event->mmap.len, event->mmap.pgoff,
1755 0, 0, 0, 0, prot, 0,
1756 event->mmap.filename,
1757 thread);
1758
1759 if (map == NULL)
1760 goto out_problem_map;
1761
1762 ret = thread__insert_map(thread, map);
1763 if (ret)
1764 goto out_problem_insert;
1765
1766 thread__put(thread);
1767 map__put(map);
1768 return 0;
1769
1770out_problem_insert:
1771 map__put(map);
1772out_problem_map:
1773 thread__put(thread);
1774out_problem:
1775 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776 return 0;
1777}
1778
1779static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1780{
1781 struct threads *threads = machine__threads(machine, th->tid);
1782
1783 if (threads->last_match == th)
1784 threads__set_last_match(threads, NULL);
1785
1786 if (lock)
1787 down_write(&threads->lock);
1788
1789 BUG_ON(refcount_read(&th->refcnt) == 0);
1790
1791 rb_erase_cached(&th->rb_node, &threads->entries);
1792 RB_CLEAR_NODE(&th->rb_node);
1793 --threads->nr;
1794 /*
1795 * Move it first to the dead_threads list, then drop the reference,
1796 * if this is the last reference, then the thread__delete destructor
1797 * will be called and we will remove it from the dead_threads list.
1798 */
1799 list_add_tail(&th->node, &threads->dead);
1800
1801 /*
1802 * We need to do the put here because if this is the last refcount,
1803 * then we will be touching the threads->dead head when removing the
1804 * thread.
1805 */
1806 thread__put(th);
1807
1808 if (lock)
1809 up_write(&threads->lock);
1810}
1811
1812void machine__remove_thread(struct machine *machine, struct thread *th)
1813{
1814 return __machine__remove_thread(machine, th, true);
1815}
1816
1817int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818 struct perf_sample *sample)
1819{
1820 struct thread *thread = machine__find_thread(machine,
1821 event->fork.pid,
1822 event->fork.tid);
1823 struct thread *parent = machine__findnew_thread(machine,
1824 event->fork.ppid,
1825 event->fork.ptid);
1826 bool do_maps_clone = true;
1827 int err = 0;
1828
1829 if (dump_trace)
1830 perf_event__fprintf_task(event, stdout);
1831
1832 /*
1833 * There may be an existing thread that is not actually the parent,
1834 * either because we are processing events out of order, or because the
1835 * (fork) event that would have removed the thread was lost. Assume the
1836 * latter case and continue on as best we can.
1837 */
1838 if (parent->pid_ != (pid_t)event->fork.ppid) {
1839 dump_printf("removing erroneous parent thread %d/%d\n",
1840 parent->pid_, parent->tid);
1841 machine__remove_thread(machine, parent);
1842 thread__put(parent);
1843 parent = machine__findnew_thread(machine, event->fork.ppid,
1844 event->fork.ptid);
1845 }
1846
1847 /* if a thread currently exists for the thread id remove it */
1848 if (thread != NULL) {
1849 machine__remove_thread(machine, thread);
1850 thread__put(thread);
1851 }
1852
1853 thread = machine__findnew_thread(machine, event->fork.pid,
1854 event->fork.tid);
1855 /*
1856 * When synthesizing FORK events, we are trying to create thread
1857 * objects for the already running tasks on the machine.
1858 *
1859 * Normally, for a kernel FORK event, we want to clone the parent's
1860 * maps because that is what the kernel just did.
1861 *
1862 * But when synthesizing, this should not be done. If we do, we end up
1863 * with overlapping maps as we process the sythesized MMAP2 events that
1864 * get delivered shortly thereafter.
1865 *
1866 * Use the FORK event misc flags in an internal way to signal this
1867 * situation, so we can elide the map clone when appropriate.
1868 */
1869 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870 do_maps_clone = false;
1871
1872 if (thread == NULL || parent == NULL ||
1873 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875 err = -1;
1876 }
1877 thread__put(thread);
1878 thread__put(parent);
1879
1880 return err;
1881}
1882
1883int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884 struct perf_sample *sample __maybe_unused)
1885{
1886 struct thread *thread = machine__find_thread(machine,
1887 event->fork.pid,
1888 event->fork.tid);
1889
1890 if (dump_trace)
1891 perf_event__fprintf_task(event, stdout);
1892
1893 if (thread != NULL) {
1894 thread__exited(thread);
1895 thread__put(thread);
1896 }
1897
1898 return 0;
1899}
1900
1901int machine__process_event(struct machine *machine, union perf_event *event,
1902 struct perf_sample *sample)
1903{
1904 int ret;
1905
1906 switch (event->header.type) {
1907 case PERF_RECORD_COMM:
1908 ret = machine__process_comm_event(machine, event, sample); break;
1909 case PERF_RECORD_MMAP:
1910 ret = machine__process_mmap_event(machine, event, sample); break;
1911 case PERF_RECORD_NAMESPACES:
1912 ret = machine__process_namespaces_event(machine, event, sample); break;
1913 case PERF_RECORD_MMAP2:
1914 ret = machine__process_mmap2_event(machine, event, sample); break;
1915 case PERF_RECORD_FORK:
1916 ret = machine__process_fork_event(machine, event, sample); break;
1917 case PERF_RECORD_EXIT:
1918 ret = machine__process_exit_event(machine, event, sample); break;
1919 case PERF_RECORD_LOST:
1920 ret = machine__process_lost_event(machine, event, sample); break;
1921 case PERF_RECORD_AUX:
1922 ret = machine__process_aux_event(machine, event); break;
1923 case PERF_RECORD_ITRACE_START:
1924 ret = machine__process_itrace_start_event(machine, event); break;
1925 case PERF_RECORD_LOST_SAMPLES:
1926 ret = machine__process_lost_samples_event(machine, event, sample); break;
1927 case PERF_RECORD_SWITCH:
1928 case PERF_RECORD_SWITCH_CPU_WIDE:
1929 ret = machine__process_switch_event(machine, event); break;
1930 case PERF_RECORD_KSYMBOL:
1931 ret = machine__process_ksymbol(machine, event, sample); break;
1932 case PERF_RECORD_BPF_EVENT:
1933 ret = machine__process_bpf(machine, event, sample); break;
1934 default:
1935 ret = -1;
1936 break;
1937 }
1938
1939 return ret;
1940}
1941
1942static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943{
1944 if (!regexec(regex, sym->name, 0, NULL, 0))
1945 return 1;
1946 return 0;
1947}
1948
1949static void ip__resolve_ams(struct thread *thread,
1950 struct addr_map_symbol *ams,
1951 u64 ip)
1952{
1953 struct addr_location al;
1954
1955 memset(&al, 0, sizeof(al));
1956 /*
1957 * We cannot use the header.misc hint to determine whether a
1958 * branch stack address is user, kernel, guest, hypervisor.
1959 * Branches may straddle the kernel/user/hypervisor boundaries.
1960 * Thus, we have to try consecutively until we find a match
1961 * or else, the symbol is unknown
1962 */
1963 thread__find_cpumode_addr_location(thread, ip, &al);
1964
1965 ams->addr = ip;
1966 ams->al_addr = al.addr;
1967 ams->sym = al.sym;
1968 ams->map = al.map;
1969 ams->phys_addr = 0;
1970}
1971
1972static void ip__resolve_data(struct thread *thread,
1973 u8 m, struct addr_map_symbol *ams,
1974 u64 addr, u64 phys_addr)
1975{
1976 struct addr_location al;
1977
1978 memset(&al, 0, sizeof(al));
1979
1980 thread__find_symbol(thread, m, addr, &al);
1981
1982 ams->addr = addr;
1983 ams->al_addr = al.addr;
1984 ams->sym = al.sym;
1985 ams->map = al.map;
1986 ams->phys_addr = phys_addr;
1987}
1988
1989struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990 struct addr_location *al)
1991{
1992 struct mem_info *mi = mem_info__new();
1993
1994 if (!mi)
1995 return NULL;
1996
1997 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999 sample->addr, sample->phys_addr);
2000 mi->data_src.val = sample->data_src;
2001
2002 return mi;
2003}
2004
2005static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006{
2007 char *srcline = NULL;
2008
2009 if (!map || callchain_param.key == CCKEY_FUNCTION)
2010 return srcline;
2011
2012 srcline = srcline__tree_find(&map->dso->srclines, ip);
2013 if (!srcline) {
2014 bool show_sym = false;
2015 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016
2017 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018 sym, show_sym, show_addr, ip);
2019 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020 }
2021
2022 return srcline;
2023}
2024
2025struct iterations {
2026 int nr_loop_iter;
2027 u64 cycles;
2028};
2029
2030static int add_callchain_ip(struct thread *thread,
2031 struct callchain_cursor *cursor,
2032 struct symbol **parent,
2033 struct addr_location *root_al,
2034 u8 *cpumode,
2035 u64 ip,
2036 bool branch,
2037 struct branch_flags *flags,
2038 struct iterations *iter,
2039 u64 branch_from)
2040{
2041 struct addr_location al;
2042 int nr_loop_iter = 0;
2043 u64 iter_cycles = 0;
2044 const char *srcline = NULL;
2045
2046 al.filtered = 0;
2047 al.sym = NULL;
2048 if (!cpumode) {
2049 thread__find_cpumode_addr_location(thread, ip, &al);
2050 } else {
2051 if (ip >= PERF_CONTEXT_MAX) {
2052 switch (ip) {
2053 case PERF_CONTEXT_HV:
2054 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055 break;
2056 case PERF_CONTEXT_KERNEL:
2057 *cpumode = PERF_RECORD_MISC_KERNEL;
2058 break;
2059 case PERF_CONTEXT_USER:
2060 *cpumode = PERF_RECORD_MISC_USER;
2061 break;
2062 default:
2063 pr_debug("invalid callchain context: "
2064 "%"PRId64"\n", (s64) ip);
2065 /*
2066 * It seems the callchain is corrupted.
2067 * Discard all.
2068 */
2069 callchain_cursor_reset(cursor);
2070 return 1;
2071 }
2072 return 0;
2073 }
2074 thread__find_symbol(thread, *cpumode, ip, &al);
2075 }
2076
2077 if (al.sym != NULL) {
2078 if (perf_hpp_list.parent && !*parent &&
2079 symbol__match_regex(al.sym, &parent_regex))
2080 *parent = al.sym;
2081 else if (have_ignore_callees && root_al &&
2082 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083 /* Treat this symbol as the root,
2084 forgetting its callees. */
2085 *root_al = al;
2086 callchain_cursor_reset(cursor);
2087 }
2088 }
2089
2090 if (symbol_conf.hide_unresolved && al.sym == NULL)
2091 return 0;
2092
2093 if (iter) {
2094 nr_loop_iter = iter->nr_loop_iter;
2095 iter_cycles = iter->cycles;
2096 }
2097
2098 srcline = callchain_srcline(al.map, al.sym, al.addr);
2099 return callchain_cursor_append(cursor, ip, al.map, al.sym,
2100 branch, flags, nr_loop_iter,
2101 iter_cycles, branch_from, srcline);
2102}
2103
2104struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105 struct addr_location *al)
2106{
2107 unsigned int i;
2108 const struct branch_stack *bs = sample->branch_stack;
2109 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110
2111 if (!bi)
2112 return NULL;
2113
2114 for (i = 0; i < bs->nr; i++) {
2115 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117 bi[i].flags = bs->entries[i].flags;
2118 }
2119 return bi;
2120}
2121
2122static void save_iterations(struct iterations *iter,
2123 struct branch_entry *be, int nr)
2124{
2125 int i;
2126
2127 iter->nr_loop_iter++;
2128 iter->cycles = 0;
2129
2130 for (i = 0; i < nr; i++)
2131 iter->cycles += be[i].flags.cycles;
2132}
2133
2134#define CHASHSZ 127
2135#define CHASHBITS 7
2136#define NO_ENTRY 0xff
2137
2138#define PERF_MAX_BRANCH_DEPTH 127
2139
2140/* Remove loops. */
2141static int remove_loops(struct branch_entry *l, int nr,
2142 struct iterations *iter)
2143{
2144 int i, j, off;
2145 unsigned char chash[CHASHSZ];
2146
2147 memset(chash, NO_ENTRY, sizeof(chash));
2148
2149 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150
2151 for (i = 0; i < nr; i++) {
2152 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153
2154 /* no collision handling for now */
2155 if (chash[h] == NO_ENTRY) {
2156 chash[h] = i;
2157 } else if (l[chash[h]].from == l[i].from) {
2158 bool is_loop = true;
2159 /* check if it is a real loop */
2160 off = 0;
2161 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162 if (l[j].from != l[i + off].from) {
2163 is_loop = false;
2164 break;
2165 }
2166 if (is_loop) {
2167 j = nr - (i + off);
2168 if (j > 0) {
2169 save_iterations(iter + i + off,
2170 l + i, off);
2171
2172 memmove(iter + i, iter + i + off,
2173 j * sizeof(*iter));
2174
2175 memmove(l + i, l + i + off,
2176 j * sizeof(*l));
2177 }
2178
2179 nr -= off;
2180 }
2181 }
2182 }
2183 return nr;
2184}
2185
2186/*
2187 * Recolve LBR callstack chain sample
2188 * Return:
2189 * 1 on success get LBR callchain information
2190 * 0 no available LBR callchain information, should try fp
2191 * negative error code on other errors.
2192 */
2193static int resolve_lbr_callchain_sample(struct thread *thread,
2194 struct callchain_cursor *cursor,
2195 struct perf_sample *sample,
2196 struct symbol **parent,
2197 struct addr_location *root_al,
2198 int max_stack)
2199{
2200 struct ip_callchain *chain = sample->callchain;
2201 int chain_nr = min(max_stack, (int)chain->nr), i;
2202 u8 cpumode = PERF_RECORD_MISC_USER;
2203 u64 ip, branch_from = 0;
2204
2205 for (i = 0; i < chain_nr; i++) {
2206 if (chain->ips[i] == PERF_CONTEXT_USER)
2207 break;
2208 }
2209
2210 /* LBR only affects the user callchain */
2211 if (i != chain_nr) {
2212 struct branch_stack *lbr_stack = sample->branch_stack;
2213 int lbr_nr = lbr_stack->nr, j, k;
2214 bool branch;
2215 struct branch_flags *flags;
2216 /*
2217 * LBR callstack can only get user call chain.
2218 * The mix_chain_nr is kernel call chain
2219 * number plus LBR user call chain number.
2220 * i is kernel call chain number,
2221 * 1 is PERF_CONTEXT_USER,
2222 * lbr_nr + 1 is the user call chain number.
2223 * For details, please refer to the comments
2224 * in callchain__printf
2225 */
2226 int mix_chain_nr = i + 1 + lbr_nr + 1;
2227
2228 for (j = 0; j < mix_chain_nr; j++) {
2229 int err;
2230 branch = false;
2231 flags = NULL;
2232
2233 if (callchain_param.order == ORDER_CALLEE) {
2234 if (j < i + 1)
2235 ip = chain->ips[j];
2236 else if (j > i + 1) {
2237 k = j - i - 2;
2238 ip = lbr_stack->entries[k].from;
2239 branch = true;
2240 flags = &lbr_stack->entries[k].flags;
2241 } else {
2242 ip = lbr_stack->entries[0].to;
2243 branch = true;
2244 flags = &lbr_stack->entries[0].flags;
2245 branch_from =
2246 lbr_stack->entries[0].from;
2247 }
2248 } else {
2249 if (j < lbr_nr) {
2250 k = lbr_nr - j - 1;
2251 ip = lbr_stack->entries[k].from;
2252 branch = true;
2253 flags = &lbr_stack->entries[k].flags;
2254 }
2255 else if (j > lbr_nr)
2256 ip = chain->ips[i + 1 - (j - lbr_nr)];
2257 else {
2258 ip = lbr_stack->entries[0].to;
2259 branch = true;
2260 flags = &lbr_stack->entries[0].flags;
2261 branch_from =
2262 lbr_stack->entries[0].from;
2263 }
2264 }
2265
2266 err = add_callchain_ip(thread, cursor, parent,
2267 root_al, &cpumode, ip,
2268 branch, flags, NULL,
2269 branch_from);
2270 if (err)
2271 return (err < 0) ? err : 0;
2272 }
2273 return 1;
2274 }
2275
2276 return 0;
2277}
2278
2279static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280 struct callchain_cursor *cursor,
2281 struct symbol **parent,
2282 struct addr_location *root_al,
2283 u8 *cpumode, int ent)
2284{
2285 int err = 0;
2286
2287 while (--ent >= 0) {
2288 u64 ip = chain->ips[ent];
2289
2290 if (ip >= PERF_CONTEXT_MAX) {
2291 err = add_callchain_ip(thread, cursor, parent,
2292 root_al, cpumode, ip,
2293 false, NULL, NULL, 0);
2294 break;
2295 }
2296 }
2297 return err;
2298}
2299
2300static int thread__resolve_callchain_sample(struct thread *thread,
2301 struct callchain_cursor *cursor,
2302 struct evsel *evsel,
2303 struct perf_sample *sample,
2304 struct symbol **parent,
2305 struct addr_location *root_al,
2306 int max_stack)
2307{
2308 struct branch_stack *branch = sample->branch_stack;
2309 struct ip_callchain *chain = sample->callchain;
2310 int chain_nr = 0;
2311 u8 cpumode = PERF_RECORD_MISC_USER;
2312 int i, j, err, nr_entries;
2313 int skip_idx = -1;
2314 int first_call = 0;
2315
2316 if (chain)
2317 chain_nr = chain->nr;
2318
2319 if (perf_evsel__has_branch_callstack(evsel)) {
2320 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321 root_al, max_stack);
2322 if (err)
2323 return (err < 0) ? err : 0;
2324 }
2325
2326 /*
2327 * Based on DWARF debug information, some architectures skip
2328 * a callchain entry saved by the kernel.
2329 */
2330 skip_idx = arch_skip_callchain_idx(thread, chain);
2331
2332 /*
2333 * Add branches to call stack for easier browsing. This gives
2334 * more context for a sample than just the callers.
2335 *
2336 * This uses individual histograms of paths compared to the
2337 * aggregated histograms the normal LBR mode uses.
2338 *
2339 * Limitations for now:
2340 * - No extra filters
2341 * - No annotations (should annotate somehow)
2342 */
2343
2344 if (branch && callchain_param.branch_callstack) {
2345 int nr = min(max_stack, (int)branch->nr);
2346 struct branch_entry be[nr];
2347 struct iterations iter[nr];
2348
2349 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350 pr_warning("corrupted branch chain. skipping...\n");
2351 goto check_calls;
2352 }
2353
2354 for (i = 0; i < nr; i++) {
2355 if (callchain_param.order == ORDER_CALLEE) {
2356 be[i] = branch->entries[i];
2357
2358 if (chain == NULL)
2359 continue;
2360
2361 /*
2362 * Check for overlap into the callchain.
2363 * The return address is one off compared to
2364 * the branch entry. To adjust for this
2365 * assume the calling instruction is not longer
2366 * than 8 bytes.
2367 */
2368 if (i == skip_idx ||
2369 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370 first_call++;
2371 else if (be[i].from < chain->ips[first_call] &&
2372 be[i].from >= chain->ips[first_call] - 8)
2373 first_call++;
2374 } else
2375 be[i] = branch->entries[branch->nr - i - 1];
2376 }
2377
2378 memset(iter, 0, sizeof(struct iterations) * nr);
2379 nr = remove_loops(be, nr, iter);
2380
2381 for (i = 0; i < nr; i++) {
2382 err = add_callchain_ip(thread, cursor, parent,
2383 root_al,
2384 NULL, be[i].to,
2385 true, &be[i].flags,
2386 NULL, be[i].from);
2387
2388 if (!err)
2389 err = add_callchain_ip(thread, cursor, parent, root_al,
2390 NULL, be[i].from,
2391 true, &be[i].flags,
2392 &iter[i], 0);
2393 if (err == -EINVAL)
2394 break;
2395 if (err)
2396 return err;
2397 }
2398
2399 if (chain_nr == 0)
2400 return 0;
2401
2402 chain_nr -= nr;
2403 }
2404
2405check_calls:
2406 if (callchain_param.order != ORDER_CALLEE) {
2407 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408 &cpumode, chain->nr - first_call);
2409 if (err)
2410 return (err < 0) ? err : 0;
2411 }
2412 for (i = first_call, nr_entries = 0;
2413 i < chain_nr && nr_entries < max_stack; i++) {
2414 u64 ip;
2415
2416 if (callchain_param.order == ORDER_CALLEE)
2417 j = i;
2418 else
2419 j = chain->nr - i - 1;
2420
2421#ifdef HAVE_SKIP_CALLCHAIN_IDX
2422 if (j == skip_idx)
2423 continue;
2424#endif
2425 ip = chain->ips[j];
2426 if (ip < PERF_CONTEXT_MAX)
2427 ++nr_entries;
2428 else if (callchain_param.order != ORDER_CALLEE) {
2429 err = find_prev_cpumode(chain, thread, cursor, parent,
2430 root_al, &cpumode, j);
2431 if (err)
2432 return (err < 0) ? err : 0;
2433 continue;
2434 }
2435
2436 err = add_callchain_ip(thread, cursor, parent,
2437 root_al, &cpumode, ip,
2438 false, NULL, NULL, 0);
2439
2440 if (err)
2441 return (err < 0) ? err : 0;
2442 }
2443
2444 return 0;
2445}
2446
2447static int append_inlines(struct callchain_cursor *cursor,
2448 struct map *map, struct symbol *sym, u64 ip)
2449{
2450 struct inline_node *inline_node;
2451 struct inline_list *ilist;
2452 u64 addr;
2453 int ret = 1;
2454
2455 if (!symbol_conf.inline_name || !map || !sym)
2456 return ret;
2457
2458 addr = map__map_ip(map, ip);
2459 addr = map__rip_2objdump(map, addr);
2460
2461 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462 if (!inline_node) {
2463 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464 if (!inline_node)
2465 return ret;
2466 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467 }
2468
2469 list_for_each_entry(ilist, &inline_node->val, list) {
2470 ret = callchain_cursor_append(cursor, ip, map,
2471 ilist->symbol, false,
2472 NULL, 0, 0, 0, ilist->srcline);
2473
2474 if (ret != 0)
2475 return ret;
2476 }
2477
2478 return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483 struct callchain_cursor *cursor = arg;
2484 const char *srcline = NULL;
2485 u64 addr = entry->ip;
2486
2487 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488 return 0;
2489
2490 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491 return 0;
2492
2493 /*
2494 * Convert entry->ip from a virtual address to an offset in
2495 * its corresponding binary.
2496 */
2497 if (entry->map)
2498 addr = map__map_ip(entry->map, entry->ip);
2499
2500 srcline = callchain_srcline(entry->map, entry->sym, addr);
2501 return callchain_cursor_append(cursor, entry->ip,
2502 entry->map, entry->sym,
2503 false, NULL, 0, 0, 0, srcline);
2504}
2505
2506static int thread__resolve_callchain_unwind(struct thread *thread,
2507 struct callchain_cursor *cursor,
2508 struct evsel *evsel,
2509 struct perf_sample *sample,
2510 int max_stack)
2511{
2512 /* Can we do dwarf post unwind? */
2513 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515 return 0;
2516
2517 /* Bail out if nothing was captured. */
2518 if ((!sample->user_regs.regs) ||
2519 (!sample->user_stack.size))
2520 return 0;
2521
2522 return unwind__get_entries(unwind_entry, cursor,
2523 thread, sample, max_stack);
2524}
2525
2526int thread__resolve_callchain(struct thread *thread,
2527 struct callchain_cursor *cursor,
2528 struct evsel *evsel,
2529 struct perf_sample *sample,
2530 struct symbol **parent,
2531 struct addr_location *root_al,
2532 int max_stack)
2533{
2534 int ret = 0;
2535
2536 callchain_cursor_reset(cursor);
2537
2538 if (callchain_param.order == ORDER_CALLEE) {
2539 ret = thread__resolve_callchain_sample(thread, cursor,
2540 evsel, sample,
2541 parent, root_al,
2542 max_stack);
2543 if (ret)
2544 return ret;
2545 ret = thread__resolve_callchain_unwind(thread, cursor,
2546 evsel, sample,
2547 max_stack);
2548 } else {
2549 ret = thread__resolve_callchain_unwind(thread, cursor,
2550 evsel, sample,
2551 max_stack);
2552 if (ret)
2553 return ret;
2554 ret = thread__resolve_callchain_sample(thread, cursor,
2555 evsel, sample,
2556 parent, root_al,
2557 max_stack);
2558 }
2559
2560 return ret;
2561}
2562
2563int machine__for_each_thread(struct machine *machine,
2564 int (*fn)(struct thread *thread, void *p),
2565 void *priv)
2566{
2567 struct threads *threads;
2568 struct rb_node *nd;
2569 struct thread *thread;
2570 int rc = 0;
2571 int i;
2572
2573 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574 threads = &machine->threads[i];
2575 for (nd = rb_first_cached(&threads->entries); nd;
2576 nd = rb_next(nd)) {
2577 thread = rb_entry(nd, struct thread, rb_node);
2578 rc = fn(thread, priv);
2579 if (rc != 0)
2580 return rc;
2581 }
2582
2583 list_for_each_entry(thread, &threads->dead, node) {
2584 rc = fn(thread, priv);
2585 if (rc != 0)
2586 return rc;
2587 }
2588 }
2589 return rc;
2590}
2591
2592int machines__for_each_thread(struct machines *machines,
2593 int (*fn)(struct thread *thread, void *p),
2594 void *priv)
2595{
2596 struct rb_node *nd;
2597 int rc = 0;
2598
2599 rc = machine__for_each_thread(&machines->host, fn, priv);
2600 if (rc != 0)
2601 return rc;
2602
2603 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605
2606 rc = machine__for_each_thread(machine, fn, priv);
2607 if (rc != 0)
2608 return rc;
2609 }
2610 return rc;
2611}
2612
2613pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614{
2615 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616
2617 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618 return -1;
2619
2620 return machine->current_tid[cpu];
2621}
2622
2623int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624 pid_t tid)
2625{
2626 struct thread *thread;
2627 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628
2629 if (cpu < 0)
2630 return -EINVAL;
2631
2632 if (!machine->current_tid) {
2633 int i;
2634
2635 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636 if (!machine->current_tid)
2637 return -ENOMEM;
2638 for (i = 0; i < nr_cpus; i++)
2639 machine->current_tid[i] = -1;
2640 }
2641
2642 if (cpu >= nr_cpus) {
2643 pr_err("Requested CPU %d too large. ", cpu);
2644 pr_err("Consider raising MAX_NR_CPUS\n");
2645 return -EINVAL;
2646 }
2647
2648 machine->current_tid[cpu] = tid;
2649
2650 thread = machine__findnew_thread(machine, pid, tid);
2651 if (!thread)
2652 return -ENOMEM;
2653
2654 thread->cpu = cpu;
2655 thread__put(thread);
2656
2657 return 0;
2658}
2659
2660/*
2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662 * normalized arch is needed.
2663 */
2664bool machine__is(struct machine *machine, const char *arch)
2665{
2666 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667}
2668
2669int machine__nr_cpus_avail(struct machine *machine)
2670{
2671 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672}
2673
2674int machine__get_kernel_start(struct machine *machine)
2675{
2676 struct map *map = machine__kernel_map(machine);
2677 int err = 0;
2678
2679 /*
2680 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681 * kernel. Note that addresses are unsigned so that on a 32-bit system
2682 * all addresses including kernel addresses are less than 2^32. In
2683 * that case (32-bit system), if the kernel mapping is unknown, all
2684 * addresses will be assumed to be in user space - see
2685 * machine__kernel_ip().
2686 */
2687 machine->kernel_start = 1ULL << 63;
2688 if (map) {
2689 err = map__load(map);
2690 /*
2691 * On x86_64, PTI entry trampolines are less than the
2692 * start of kernel text, but still above 2^63. So leave
2693 * kernel_start = 1ULL << 63 for x86_64.
2694 */
2695 if (!err && !machine__is(machine, "x86_64"))
2696 machine->kernel_start = map->start;
2697 }
2698 return err;
2699}
2700
2701u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702{
2703 u8 addr_cpumode = cpumode;
2704 bool kernel_ip;
2705
2706 if (!machine->single_address_space)
2707 goto out;
2708
2709 kernel_ip = machine__kernel_ip(machine, addr);
2710 switch (cpumode) {
2711 case PERF_RECORD_MISC_KERNEL:
2712 case PERF_RECORD_MISC_USER:
2713 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714 PERF_RECORD_MISC_USER;
2715 break;
2716 case PERF_RECORD_MISC_GUEST_KERNEL:
2717 case PERF_RECORD_MISC_GUEST_USER:
2718 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719 PERF_RECORD_MISC_GUEST_USER;
2720 break;
2721 default:
2722 break;
2723 }
2724out:
2725 return addr_cpumode;
2726}
2727
2728struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729{
2730 return dsos__findnew(&machine->dsos, filename);
2731}
2732
2733char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734{
2735 struct machine *machine = vmachine;
2736 struct map *map;
2737 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739 if (sym == NULL)
2740 return NULL;
2741
2742 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743 *addrp = map->unmap_ip(map, sym->start);
2744 return sym->name;
2745}
1#include "callchain.h"
2#include "debug.h"
3#include "event.h"
4#include "evsel.h"
5#include "hist.h"
6#include "machine.h"
7#include "map.h"
8#include "sort.h"
9#include "strlist.h"
10#include "thread.h"
11#include "vdso.h"
12#include <stdbool.h>
13#include <symbol/kallsyms.h>
14#include "unwind.h"
15#include "linux/hash.h"
16
17static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18
19static void dsos__init(struct dsos *dsos)
20{
21 INIT_LIST_HEAD(&dsos->head);
22 dsos->root = RB_ROOT;
23 pthread_rwlock_init(&dsos->lock, NULL);
24}
25
26int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27{
28 memset(machine, 0, sizeof(*machine));
29 map_groups__init(&machine->kmaps, machine);
30 RB_CLEAR_NODE(&machine->rb_node);
31 dsos__init(&machine->dsos);
32
33 machine->threads = RB_ROOT;
34 pthread_rwlock_init(&machine->threads_lock, NULL);
35 machine->nr_threads = 0;
36 INIT_LIST_HEAD(&machine->dead_threads);
37 machine->last_match = NULL;
38
39 machine->vdso_info = NULL;
40 machine->env = NULL;
41
42 machine->pid = pid;
43
44 machine->id_hdr_size = 0;
45 machine->kptr_restrict_warned = false;
46 machine->comm_exec = false;
47 machine->kernel_start = 0;
48
49 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
50
51 machine->root_dir = strdup(root_dir);
52 if (machine->root_dir == NULL)
53 return -ENOMEM;
54
55 if (pid != HOST_KERNEL_ID) {
56 struct thread *thread = machine__findnew_thread(machine, -1,
57 pid);
58 char comm[64];
59
60 if (thread == NULL)
61 return -ENOMEM;
62
63 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
64 thread__set_comm(thread, comm, 0);
65 thread__put(thread);
66 }
67
68 machine->current_tid = NULL;
69
70 return 0;
71}
72
73struct machine *machine__new_host(void)
74{
75 struct machine *machine = malloc(sizeof(*machine));
76
77 if (machine != NULL) {
78 machine__init(machine, "", HOST_KERNEL_ID);
79
80 if (machine__create_kernel_maps(machine) < 0)
81 goto out_delete;
82 }
83
84 return machine;
85out_delete:
86 free(machine);
87 return NULL;
88}
89
90static void dsos__purge(struct dsos *dsos)
91{
92 struct dso *pos, *n;
93
94 pthread_rwlock_wrlock(&dsos->lock);
95
96 list_for_each_entry_safe(pos, n, &dsos->head, node) {
97 RB_CLEAR_NODE(&pos->rb_node);
98 pos->root = NULL;
99 list_del_init(&pos->node);
100 dso__put(pos);
101 }
102
103 pthread_rwlock_unlock(&dsos->lock);
104}
105
106static void dsos__exit(struct dsos *dsos)
107{
108 dsos__purge(dsos);
109 pthread_rwlock_destroy(&dsos->lock);
110}
111
112void machine__delete_threads(struct machine *machine)
113{
114 struct rb_node *nd;
115
116 pthread_rwlock_wrlock(&machine->threads_lock);
117 nd = rb_first(&machine->threads);
118 while (nd) {
119 struct thread *t = rb_entry(nd, struct thread, rb_node);
120
121 nd = rb_next(nd);
122 __machine__remove_thread(machine, t, false);
123 }
124 pthread_rwlock_unlock(&machine->threads_lock);
125}
126
127void machine__exit(struct machine *machine)
128{
129 machine__destroy_kernel_maps(machine);
130 map_groups__exit(&machine->kmaps);
131 dsos__exit(&machine->dsos);
132 machine__exit_vdso(machine);
133 zfree(&machine->root_dir);
134 zfree(&machine->current_tid);
135 pthread_rwlock_destroy(&machine->threads_lock);
136}
137
138void machine__delete(struct machine *machine)
139{
140 if (machine) {
141 machine__exit(machine);
142 free(machine);
143 }
144}
145
146void machines__init(struct machines *machines)
147{
148 machine__init(&machines->host, "", HOST_KERNEL_ID);
149 machines->guests = RB_ROOT;
150}
151
152void machines__exit(struct machines *machines)
153{
154 machine__exit(&machines->host);
155 /* XXX exit guest */
156}
157
158struct machine *machines__add(struct machines *machines, pid_t pid,
159 const char *root_dir)
160{
161 struct rb_node **p = &machines->guests.rb_node;
162 struct rb_node *parent = NULL;
163 struct machine *pos, *machine = malloc(sizeof(*machine));
164
165 if (machine == NULL)
166 return NULL;
167
168 if (machine__init(machine, root_dir, pid) != 0) {
169 free(machine);
170 return NULL;
171 }
172
173 while (*p != NULL) {
174 parent = *p;
175 pos = rb_entry(parent, struct machine, rb_node);
176 if (pid < pos->pid)
177 p = &(*p)->rb_left;
178 else
179 p = &(*p)->rb_right;
180 }
181
182 rb_link_node(&machine->rb_node, parent, p);
183 rb_insert_color(&machine->rb_node, &machines->guests);
184
185 return machine;
186}
187
188void machines__set_comm_exec(struct machines *machines, bool comm_exec)
189{
190 struct rb_node *nd;
191
192 machines->host.comm_exec = comm_exec;
193
194 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
195 struct machine *machine = rb_entry(nd, struct machine, rb_node);
196
197 machine->comm_exec = comm_exec;
198 }
199}
200
201struct machine *machines__find(struct machines *machines, pid_t pid)
202{
203 struct rb_node **p = &machines->guests.rb_node;
204 struct rb_node *parent = NULL;
205 struct machine *machine;
206 struct machine *default_machine = NULL;
207
208 if (pid == HOST_KERNEL_ID)
209 return &machines->host;
210
211 while (*p != NULL) {
212 parent = *p;
213 machine = rb_entry(parent, struct machine, rb_node);
214 if (pid < machine->pid)
215 p = &(*p)->rb_left;
216 else if (pid > machine->pid)
217 p = &(*p)->rb_right;
218 else
219 return machine;
220 if (!machine->pid)
221 default_machine = machine;
222 }
223
224 return default_machine;
225}
226
227struct machine *machines__findnew(struct machines *machines, pid_t pid)
228{
229 char path[PATH_MAX];
230 const char *root_dir = "";
231 struct machine *machine = machines__find(machines, pid);
232
233 if (machine && (machine->pid == pid))
234 goto out;
235
236 if ((pid != HOST_KERNEL_ID) &&
237 (pid != DEFAULT_GUEST_KERNEL_ID) &&
238 (symbol_conf.guestmount)) {
239 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
240 if (access(path, R_OK)) {
241 static struct strlist *seen;
242
243 if (!seen)
244 seen = strlist__new(NULL, NULL);
245
246 if (!strlist__has_entry(seen, path)) {
247 pr_err("Can't access file %s\n", path);
248 strlist__add(seen, path);
249 }
250 machine = NULL;
251 goto out;
252 }
253 root_dir = path;
254 }
255
256 machine = machines__add(machines, pid, root_dir);
257out:
258 return machine;
259}
260
261void machines__process_guests(struct machines *machines,
262 machine__process_t process, void *data)
263{
264 struct rb_node *nd;
265
266 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
267 struct machine *pos = rb_entry(nd, struct machine, rb_node);
268 process(pos, data);
269 }
270}
271
272char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
273{
274 if (machine__is_host(machine))
275 snprintf(bf, size, "[%s]", "kernel.kallsyms");
276 else if (machine__is_default_guest(machine))
277 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
278 else {
279 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
280 machine->pid);
281 }
282
283 return bf;
284}
285
286void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
287{
288 struct rb_node *node;
289 struct machine *machine;
290
291 machines->host.id_hdr_size = id_hdr_size;
292
293 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
294 machine = rb_entry(node, struct machine, rb_node);
295 machine->id_hdr_size = id_hdr_size;
296 }
297
298 return;
299}
300
301static void machine__update_thread_pid(struct machine *machine,
302 struct thread *th, pid_t pid)
303{
304 struct thread *leader;
305
306 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
307 return;
308
309 th->pid_ = pid;
310
311 if (th->pid_ == th->tid)
312 return;
313
314 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
315 if (!leader)
316 goto out_err;
317
318 if (!leader->mg)
319 leader->mg = map_groups__new(machine);
320
321 if (!leader->mg)
322 goto out_err;
323
324 if (th->mg == leader->mg)
325 return;
326
327 if (th->mg) {
328 /*
329 * Maps are created from MMAP events which provide the pid and
330 * tid. Consequently there never should be any maps on a thread
331 * with an unknown pid. Just print an error if there are.
332 */
333 if (!map_groups__empty(th->mg))
334 pr_err("Discarding thread maps for %d:%d\n",
335 th->pid_, th->tid);
336 map_groups__put(th->mg);
337 }
338
339 th->mg = map_groups__get(leader->mg);
340out_put:
341 thread__put(leader);
342 return;
343out_err:
344 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
345 goto out_put;
346}
347
348/*
349 * Caller must eventually drop thread->refcnt returned with a successful
350 * lookup/new thread inserted.
351 */
352static struct thread *____machine__findnew_thread(struct machine *machine,
353 pid_t pid, pid_t tid,
354 bool create)
355{
356 struct rb_node **p = &machine->threads.rb_node;
357 struct rb_node *parent = NULL;
358 struct thread *th;
359
360 /*
361 * Front-end cache - TID lookups come in blocks,
362 * so most of the time we dont have to look up
363 * the full rbtree:
364 */
365 th = machine->last_match;
366 if (th != NULL) {
367 if (th->tid == tid) {
368 machine__update_thread_pid(machine, th, pid);
369 return thread__get(th);
370 }
371
372 machine->last_match = NULL;
373 }
374
375 while (*p != NULL) {
376 parent = *p;
377 th = rb_entry(parent, struct thread, rb_node);
378
379 if (th->tid == tid) {
380 machine->last_match = th;
381 machine__update_thread_pid(machine, th, pid);
382 return thread__get(th);
383 }
384
385 if (tid < th->tid)
386 p = &(*p)->rb_left;
387 else
388 p = &(*p)->rb_right;
389 }
390
391 if (!create)
392 return NULL;
393
394 th = thread__new(pid, tid);
395 if (th != NULL) {
396 rb_link_node(&th->rb_node, parent, p);
397 rb_insert_color(&th->rb_node, &machine->threads);
398
399 /*
400 * We have to initialize map_groups separately
401 * after rb tree is updated.
402 *
403 * The reason is that we call machine__findnew_thread
404 * within thread__init_map_groups to find the thread
405 * leader and that would screwed the rb tree.
406 */
407 if (thread__init_map_groups(th, machine)) {
408 rb_erase_init(&th->rb_node, &machine->threads);
409 RB_CLEAR_NODE(&th->rb_node);
410 thread__put(th);
411 return NULL;
412 }
413 /*
414 * It is now in the rbtree, get a ref
415 */
416 thread__get(th);
417 machine->last_match = th;
418 ++machine->nr_threads;
419 }
420
421 return th;
422}
423
424struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
425{
426 return ____machine__findnew_thread(machine, pid, tid, true);
427}
428
429struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
430 pid_t tid)
431{
432 struct thread *th;
433
434 pthread_rwlock_wrlock(&machine->threads_lock);
435 th = __machine__findnew_thread(machine, pid, tid);
436 pthread_rwlock_unlock(&machine->threads_lock);
437 return th;
438}
439
440struct thread *machine__find_thread(struct machine *machine, pid_t pid,
441 pid_t tid)
442{
443 struct thread *th;
444 pthread_rwlock_rdlock(&machine->threads_lock);
445 th = ____machine__findnew_thread(machine, pid, tid, false);
446 pthread_rwlock_unlock(&machine->threads_lock);
447 return th;
448}
449
450struct comm *machine__thread_exec_comm(struct machine *machine,
451 struct thread *thread)
452{
453 if (machine->comm_exec)
454 return thread__exec_comm(thread);
455 else
456 return thread__comm(thread);
457}
458
459int machine__process_comm_event(struct machine *machine, union perf_event *event,
460 struct perf_sample *sample)
461{
462 struct thread *thread = machine__findnew_thread(machine,
463 event->comm.pid,
464 event->comm.tid);
465 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
466 int err = 0;
467
468 if (exec)
469 machine->comm_exec = true;
470
471 if (dump_trace)
472 perf_event__fprintf_comm(event, stdout);
473
474 if (thread == NULL ||
475 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
476 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
477 err = -1;
478 }
479
480 thread__put(thread);
481
482 return err;
483}
484
485int machine__process_lost_event(struct machine *machine __maybe_unused,
486 union perf_event *event, struct perf_sample *sample __maybe_unused)
487{
488 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
489 event->lost.id, event->lost.lost);
490 return 0;
491}
492
493int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
494 union perf_event *event, struct perf_sample *sample)
495{
496 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
497 sample->id, event->lost_samples.lost);
498 return 0;
499}
500
501static struct dso *machine__findnew_module_dso(struct machine *machine,
502 struct kmod_path *m,
503 const char *filename)
504{
505 struct dso *dso;
506
507 pthread_rwlock_wrlock(&machine->dsos.lock);
508
509 dso = __dsos__find(&machine->dsos, m->name, true);
510 if (!dso) {
511 dso = __dsos__addnew(&machine->dsos, m->name);
512 if (dso == NULL)
513 goto out_unlock;
514
515 if (machine__is_host(machine))
516 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
517 else
518 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
519
520 /* _KMODULE_COMP should be next to _KMODULE */
521 if (m->kmod && m->comp)
522 dso->symtab_type++;
523
524 dso__set_short_name(dso, strdup(m->name), true);
525 dso__set_long_name(dso, strdup(filename), true);
526 }
527
528 dso__get(dso);
529out_unlock:
530 pthread_rwlock_unlock(&machine->dsos.lock);
531 return dso;
532}
533
534int machine__process_aux_event(struct machine *machine __maybe_unused,
535 union perf_event *event)
536{
537 if (dump_trace)
538 perf_event__fprintf_aux(event, stdout);
539 return 0;
540}
541
542int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
543 union perf_event *event)
544{
545 if (dump_trace)
546 perf_event__fprintf_itrace_start(event, stdout);
547 return 0;
548}
549
550int machine__process_switch_event(struct machine *machine __maybe_unused,
551 union perf_event *event)
552{
553 if (dump_trace)
554 perf_event__fprintf_switch(event, stdout);
555 return 0;
556}
557
558static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
559{
560 const char *dup_filename;
561
562 if (!filename || !dso || !dso->long_name)
563 return;
564 if (dso->long_name[0] != '[')
565 return;
566 if (!strchr(filename, '/'))
567 return;
568
569 dup_filename = strdup(filename);
570 if (!dup_filename)
571 return;
572
573 dso__set_long_name(dso, dup_filename, true);
574}
575
576struct map *machine__findnew_module_map(struct machine *machine, u64 start,
577 const char *filename)
578{
579 struct map *map = NULL;
580 struct dso *dso = NULL;
581 struct kmod_path m;
582
583 if (kmod_path__parse_name(&m, filename))
584 return NULL;
585
586 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
587 m.name);
588 if (map) {
589 /*
590 * If the map's dso is an offline module, give dso__load()
591 * a chance to find the file path of that module by fixing
592 * long_name.
593 */
594 dso__adjust_kmod_long_name(map->dso, filename);
595 goto out;
596 }
597
598 dso = machine__findnew_module_dso(machine, &m, filename);
599 if (dso == NULL)
600 goto out;
601
602 map = map__new2(start, dso, MAP__FUNCTION);
603 if (map == NULL)
604 goto out;
605
606 map_groups__insert(&machine->kmaps, map);
607
608 /* Put the map here because map_groups__insert alread got it */
609 map__put(map);
610out:
611 /* put the dso here, corresponding to machine__findnew_module_dso */
612 dso__put(dso);
613 free(m.name);
614 return map;
615}
616
617size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
618{
619 struct rb_node *nd;
620 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
621
622 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
623 struct machine *pos = rb_entry(nd, struct machine, rb_node);
624 ret += __dsos__fprintf(&pos->dsos.head, fp);
625 }
626
627 return ret;
628}
629
630size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
631 bool (skip)(struct dso *dso, int parm), int parm)
632{
633 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
634}
635
636size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
637 bool (skip)(struct dso *dso, int parm), int parm)
638{
639 struct rb_node *nd;
640 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
641
642 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
643 struct machine *pos = rb_entry(nd, struct machine, rb_node);
644 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
645 }
646 return ret;
647}
648
649size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
650{
651 int i;
652 size_t printed = 0;
653 struct dso *kdso = machine__kernel_map(machine)->dso;
654
655 if (kdso->has_build_id) {
656 char filename[PATH_MAX];
657 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
658 printed += fprintf(fp, "[0] %s\n", filename);
659 }
660
661 for (i = 0; i < vmlinux_path__nr_entries; ++i)
662 printed += fprintf(fp, "[%d] %s\n",
663 i + kdso->has_build_id, vmlinux_path[i]);
664
665 return printed;
666}
667
668size_t machine__fprintf(struct machine *machine, FILE *fp)
669{
670 size_t ret;
671 struct rb_node *nd;
672
673 pthread_rwlock_rdlock(&machine->threads_lock);
674
675 ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
676
677 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
678 struct thread *pos = rb_entry(nd, struct thread, rb_node);
679
680 ret += thread__fprintf(pos, fp);
681 }
682
683 pthread_rwlock_unlock(&machine->threads_lock);
684
685 return ret;
686}
687
688static struct dso *machine__get_kernel(struct machine *machine)
689{
690 const char *vmlinux_name = NULL;
691 struct dso *kernel;
692
693 if (machine__is_host(machine)) {
694 vmlinux_name = symbol_conf.vmlinux_name;
695 if (!vmlinux_name)
696 vmlinux_name = DSO__NAME_KALLSYMS;
697
698 kernel = machine__findnew_kernel(machine, vmlinux_name,
699 "[kernel]", DSO_TYPE_KERNEL);
700 } else {
701 char bf[PATH_MAX];
702
703 if (machine__is_default_guest(machine))
704 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
705 if (!vmlinux_name)
706 vmlinux_name = machine__mmap_name(machine, bf,
707 sizeof(bf));
708
709 kernel = machine__findnew_kernel(machine, vmlinux_name,
710 "[guest.kernel]",
711 DSO_TYPE_GUEST_KERNEL);
712 }
713
714 if (kernel != NULL && (!kernel->has_build_id))
715 dso__read_running_kernel_build_id(kernel, machine);
716
717 return kernel;
718}
719
720struct process_args {
721 u64 start;
722};
723
724static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
725 size_t bufsz)
726{
727 if (machine__is_default_guest(machine))
728 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
729 else
730 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
731}
732
733const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
734
735/* Figure out the start address of kernel map from /proc/kallsyms.
736 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
737 * symbol_name if it's not that important.
738 */
739static u64 machine__get_running_kernel_start(struct machine *machine,
740 const char **symbol_name)
741{
742 char filename[PATH_MAX];
743 int i;
744 const char *name;
745 u64 addr = 0;
746
747 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
748
749 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
750 return 0;
751
752 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
753 addr = kallsyms__get_function_start(filename, name);
754 if (addr)
755 break;
756 }
757
758 if (symbol_name)
759 *symbol_name = name;
760
761 return addr;
762}
763
764int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
765{
766 enum map_type type;
767 u64 start = machine__get_running_kernel_start(machine, NULL);
768
769 /* In case of renewal the kernel map, destroy previous one */
770 machine__destroy_kernel_maps(machine);
771
772 for (type = 0; type < MAP__NR_TYPES; ++type) {
773 struct kmap *kmap;
774 struct map *map;
775
776 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
777 if (machine->vmlinux_maps[type] == NULL)
778 return -1;
779
780 machine->vmlinux_maps[type]->map_ip =
781 machine->vmlinux_maps[type]->unmap_ip =
782 identity__map_ip;
783 map = __machine__kernel_map(machine, type);
784 kmap = map__kmap(map);
785 if (!kmap)
786 return -1;
787
788 kmap->kmaps = &machine->kmaps;
789 map_groups__insert(&machine->kmaps, map);
790 }
791
792 return 0;
793}
794
795void machine__destroy_kernel_maps(struct machine *machine)
796{
797 enum map_type type;
798
799 for (type = 0; type < MAP__NR_TYPES; ++type) {
800 struct kmap *kmap;
801 struct map *map = __machine__kernel_map(machine, type);
802
803 if (map == NULL)
804 continue;
805
806 kmap = map__kmap(map);
807 map_groups__remove(&machine->kmaps, map);
808 if (kmap && kmap->ref_reloc_sym) {
809 /*
810 * ref_reloc_sym is shared among all maps, so free just
811 * on one of them.
812 */
813 if (type == MAP__FUNCTION) {
814 zfree((char **)&kmap->ref_reloc_sym->name);
815 zfree(&kmap->ref_reloc_sym);
816 } else
817 kmap->ref_reloc_sym = NULL;
818 }
819
820 map__put(machine->vmlinux_maps[type]);
821 machine->vmlinux_maps[type] = NULL;
822 }
823}
824
825int machines__create_guest_kernel_maps(struct machines *machines)
826{
827 int ret = 0;
828 struct dirent **namelist = NULL;
829 int i, items = 0;
830 char path[PATH_MAX];
831 pid_t pid;
832 char *endp;
833
834 if (symbol_conf.default_guest_vmlinux_name ||
835 symbol_conf.default_guest_modules ||
836 symbol_conf.default_guest_kallsyms) {
837 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
838 }
839
840 if (symbol_conf.guestmount) {
841 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
842 if (items <= 0)
843 return -ENOENT;
844 for (i = 0; i < items; i++) {
845 if (!isdigit(namelist[i]->d_name[0])) {
846 /* Filter out . and .. */
847 continue;
848 }
849 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
850 if ((*endp != '\0') ||
851 (endp == namelist[i]->d_name) ||
852 (errno == ERANGE)) {
853 pr_debug("invalid directory (%s). Skipping.\n",
854 namelist[i]->d_name);
855 continue;
856 }
857 sprintf(path, "%s/%s/proc/kallsyms",
858 symbol_conf.guestmount,
859 namelist[i]->d_name);
860 ret = access(path, R_OK);
861 if (ret) {
862 pr_debug("Can't access file %s\n", path);
863 goto failure;
864 }
865 machines__create_kernel_maps(machines, pid);
866 }
867failure:
868 free(namelist);
869 }
870
871 return ret;
872}
873
874void machines__destroy_kernel_maps(struct machines *machines)
875{
876 struct rb_node *next = rb_first(&machines->guests);
877
878 machine__destroy_kernel_maps(&machines->host);
879
880 while (next) {
881 struct machine *pos = rb_entry(next, struct machine, rb_node);
882
883 next = rb_next(&pos->rb_node);
884 rb_erase(&pos->rb_node, &machines->guests);
885 machine__delete(pos);
886 }
887}
888
889int machines__create_kernel_maps(struct machines *machines, pid_t pid)
890{
891 struct machine *machine = machines__findnew(machines, pid);
892
893 if (machine == NULL)
894 return -1;
895
896 return machine__create_kernel_maps(machine);
897}
898
899int __machine__load_kallsyms(struct machine *machine, const char *filename,
900 enum map_type type, bool no_kcore)
901{
902 struct map *map = machine__kernel_map(machine);
903 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
904
905 if (ret > 0) {
906 dso__set_loaded(map->dso, type);
907 /*
908 * Since /proc/kallsyms will have multiple sessions for the
909 * kernel, with modules between them, fixup the end of all
910 * sections.
911 */
912 __map_groups__fixup_end(&machine->kmaps, type);
913 }
914
915 return ret;
916}
917
918int machine__load_kallsyms(struct machine *machine, const char *filename,
919 enum map_type type)
920{
921 return __machine__load_kallsyms(machine, filename, type, false);
922}
923
924int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
925{
926 struct map *map = machine__kernel_map(machine);
927 int ret = dso__load_vmlinux_path(map->dso, map);
928
929 if (ret > 0)
930 dso__set_loaded(map->dso, type);
931
932 return ret;
933}
934
935static void map_groups__fixup_end(struct map_groups *mg)
936{
937 int i;
938 for (i = 0; i < MAP__NR_TYPES; ++i)
939 __map_groups__fixup_end(mg, i);
940}
941
942static char *get_kernel_version(const char *root_dir)
943{
944 char version[PATH_MAX];
945 FILE *file;
946 char *name, *tmp;
947 const char *prefix = "Linux version ";
948
949 sprintf(version, "%s/proc/version", root_dir);
950 file = fopen(version, "r");
951 if (!file)
952 return NULL;
953
954 version[0] = '\0';
955 tmp = fgets(version, sizeof(version), file);
956 fclose(file);
957
958 name = strstr(version, prefix);
959 if (!name)
960 return NULL;
961 name += strlen(prefix);
962 tmp = strchr(name, ' ');
963 if (tmp)
964 *tmp = '\0';
965
966 return strdup(name);
967}
968
969static bool is_kmod_dso(struct dso *dso)
970{
971 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
972 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
973}
974
975static int map_groups__set_module_path(struct map_groups *mg, const char *path,
976 struct kmod_path *m)
977{
978 struct map *map;
979 char *long_name;
980
981 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
982 if (map == NULL)
983 return 0;
984
985 long_name = strdup(path);
986 if (long_name == NULL)
987 return -ENOMEM;
988
989 dso__set_long_name(map->dso, long_name, true);
990 dso__kernel_module_get_build_id(map->dso, "");
991
992 /*
993 * Full name could reveal us kmod compression, so
994 * we need to update the symtab_type if needed.
995 */
996 if (m->comp && is_kmod_dso(map->dso))
997 map->dso->symtab_type++;
998
999 return 0;
1000}
1001
1002static int map_groups__set_modules_path_dir(struct map_groups *mg,
1003 const char *dir_name, int depth)
1004{
1005 struct dirent *dent;
1006 DIR *dir = opendir(dir_name);
1007 int ret = 0;
1008
1009 if (!dir) {
1010 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1011 return -1;
1012 }
1013
1014 while ((dent = readdir(dir)) != NULL) {
1015 char path[PATH_MAX];
1016 struct stat st;
1017
1018 /*sshfs might return bad dent->d_type, so we have to stat*/
1019 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1020 if (stat(path, &st))
1021 continue;
1022
1023 if (S_ISDIR(st.st_mode)) {
1024 if (!strcmp(dent->d_name, ".") ||
1025 !strcmp(dent->d_name, ".."))
1026 continue;
1027
1028 /* Do not follow top-level source and build symlinks */
1029 if (depth == 0) {
1030 if (!strcmp(dent->d_name, "source") ||
1031 !strcmp(dent->d_name, "build"))
1032 continue;
1033 }
1034
1035 ret = map_groups__set_modules_path_dir(mg, path,
1036 depth + 1);
1037 if (ret < 0)
1038 goto out;
1039 } else {
1040 struct kmod_path m;
1041
1042 ret = kmod_path__parse_name(&m, dent->d_name);
1043 if (ret)
1044 goto out;
1045
1046 if (m.kmod)
1047 ret = map_groups__set_module_path(mg, path, &m);
1048
1049 free(m.name);
1050
1051 if (ret)
1052 goto out;
1053 }
1054 }
1055
1056out:
1057 closedir(dir);
1058 return ret;
1059}
1060
1061static int machine__set_modules_path(struct machine *machine)
1062{
1063 char *version;
1064 char modules_path[PATH_MAX];
1065
1066 version = get_kernel_version(machine->root_dir);
1067 if (!version)
1068 return -1;
1069
1070 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1071 machine->root_dir, version);
1072 free(version);
1073
1074 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1075}
1076int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1077 const char *name __maybe_unused)
1078{
1079 return 0;
1080}
1081
1082static int machine__create_module(void *arg, const char *name, u64 start)
1083{
1084 struct machine *machine = arg;
1085 struct map *map;
1086
1087 if (arch__fix_module_text_start(&start, name) < 0)
1088 return -1;
1089
1090 map = machine__findnew_module_map(machine, start, name);
1091 if (map == NULL)
1092 return -1;
1093
1094 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1095
1096 return 0;
1097}
1098
1099static int machine__create_modules(struct machine *machine)
1100{
1101 const char *modules;
1102 char path[PATH_MAX];
1103
1104 if (machine__is_default_guest(machine)) {
1105 modules = symbol_conf.default_guest_modules;
1106 } else {
1107 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1108 modules = path;
1109 }
1110
1111 if (symbol__restricted_filename(modules, "/proc/modules"))
1112 return -1;
1113
1114 if (modules__parse(modules, machine, machine__create_module))
1115 return -1;
1116
1117 if (!machine__set_modules_path(machine))
1118 return 0;
1119
1120 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1121
1122 return 0;
1123}
1124
1125int machine__create_kernel_maps(struct machine *machine)
1126{
1127 struct dso *kernel = machine__get_kernel(machine);
1128 const char *name;
1129 u64 addr;
1130 int ret;
1131
1132 if (kernel == NULL)
1133 return -1;
1134
1135 ret = __machine__create_kernel_maps(machine, kernel);
1136 dso__put(kernel);
1137 if (ret < 0)
1138 return -1;
1139
1140 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1141 if (machine__is_host(machine))
1142 pr_debug("Problems creating module maps, "
1143 "continuing anyway...\n");
1144 else
1145 pr_debug("Problems creating module maps for guest %d, "
1146 "continuing anyway...\n", machine->pid);
1147 }
1148
1149 /*
1150 * Now that we have all the maps created, just set the ->end of them:
1151 */
1152 map_groups__fixup_end(&machine->kmaps);
1153
1154 addr = machine__get_running_kernel_start(machine, &name);
1155 if (!addr) {
1156 } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1157 machine__destroy_kernel_maps(machine);
1158 return -1;
1159 }
1160
1161 return 0;
1162}
1163
1164static void machine__set_kernel_mmap_len(struct machine *machine,
1165 union perf_event *event)
1166{
1167 int i;
1168
1169 for (i = 0; i < MAP__NR_TYPES; i++) {
1170 machine->vmlinux_maps[i]->start = event->mmap.start;
1171 machine->vmlinux_maps[i]->end = (event->mmap.start +
1172 event->mmap.len);
1173 /*
1174 * Be a bit paranoid here, some perf.data file came with
1175 * a zero sized synthesized MMAP event for the kernel.
1176 */
1177 if (machine->vmlinux_maps[i]->end == 0)
1178 machine->vmlinux_maps[i]->end = ~0ULL;
1179 }
1180}
1181
1182static bool machine__uses_kcore(struct machine *machine)
1183{
1184 struct dso *dso;
1185
1186 list_for_each_entry(dso, &machine->dsos.head, node) {
1187 if (dso__is_kcore(dso))
1188 return true;
1189 }
1190
1191 return false;
1192}
1193
1194static int machine__process_kernel_mmap_event(struct machine *machine,
1195 union perf_event *event)
1196{
1197 struct map *map;
1198 char kmmap_prefix[PATH_MAX];
1199 enum dso_kernel_type kernel_type;
1200 bool is_kernel_mmap;
1201
1202 /* If we have maps from kcore then we do not need or want any others */
1203 if (machine__uses_kcore(machine))
1204 return 0;
1205
1206 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1207 if (machine__is_host(machine))
1208 kernel_type = DSO_TYPE_KERNEL;
1209 else
1210 kernel_type = DSO_TYPE_GUEST_KERNEL;
1211
1212 is_kernel_mmap = memcmp(event->mmap.filename,
1213 kmmap_prefix,
1214 strlen(kmmap_prefix) - 1) == 0;
1215 if (event->mmap.filename[0] == '/' ||
1216 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1217 map = machine__findnew_module_map(machine, event->mmap.start,
1218 event->mmap.filename);
1219 if (map == NULL)
1220 goto out_problem;
1221
1222 map->end = map->start + event->mmap.len;
1223 } else if (is_kernel_mmap) {
1224 const char *symbol_name = (event->mmap.filename +
1225 strlen(kmmap_prefix));
1226 /*
1227 * Should be there already, from the build-id table in
1228 * the header.
1229 */
1230 struct dso *kernel = NULL;
1231 struct dso *dso;
1232
1233 pthread_rwlock_rdlock(&machine->dsos.lock);
1234
1235 list_for_each_entry(dso, &machine->dsos.head, node) {
1236
1237 /*
1238 * The cpumode passed to is_kernel_module is not the
1239 * cpumode of *this* event. If we insist on passing
1240 * correct cpumode to is_kernel_module, we should
1241 * record the cpumode when we adding this dso to the
1242 * linked list.
1243 *
1244 * However we don't really need passing correct
1245 * cpumode. We know the correct cpumode must be kernel
1246 * mode (if not, we should not link it onto kernel_dsos
1247 * list).
1248 *
1249 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1250 * is_kernel_module() treats it as a kernel cpumode.
1251 */
1252
1253 if (!dso->kernel ||
1254 is_kernel_module(dso->long_name,
1255 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1256 continue;
1257
1258
1259 kernel = dso;
1260 break;
1261 }
1262
1263 pthread_rwlock_unlock(&machine->dsos.lock);
1264
1265 if (kernel == NULL)
1266 kernel = machine__findnew_dso(machine, kmmap_prefix);
1267 if (kernel == NULL)
1268 goto out_problem;
1269
1270 kernel->kernel = kernel_type;
1271 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1272 dso__put(kernel);
1273 goto out_problem;
1274 }
1275
1276 if (strstr(kernel->long_name, "vmlinux"))
1277 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1278
1279 machine__set_kernel_mmap_len(machine, event);
1280
1281 /*
1282 * Avoid using a zero address (kptr_restrict) for the ref reloc
1283 * symbol. Effectively having zero here means that at record
1284 * time /proc/sys/kernel/kptr_restrict was non zero.
1285 */
1286 if (event->mmap.pgoff != 0) {
1287 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1288 symbol_name,
1289 event->mmap.pgoff);
1290 }
1291
1292 if (machine__is_default_guest(machine)) {
1293 /*
1294 * preload dso of guest kernel and modules
1295 */
1296 dso__load(kernel, machine__kernel_map(machine));
1297 }
1298 }
1299 return 0;
1300out_problem:
1301 return -1;
1302}
1303
1304int machine__process_mmap2_event(struct machine *machine,
1305 union perf_event *event,
1306 struct perf_sample *sample)
1307{
1308 struct thread *thread;
1309 struct map *map;
1310 enum map_type type;
1311 int ret = 0;
1312
1313 if (dump_trace)
1314 perf_event__fprintf_mmap2(event, stdout);
1315
1316 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1317 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1318 ret = machine__process_kernel_mmap_event(machine, event);
1319 if (ret < 0)
1320 goto out_problem;
1321 return 0;
1322 }
1323
1324 thread = machine__findnew_thread(machine, event->mmap2.pid,
1325 event->mmap2.tid);
1326 if (thread == NULL)
1327 goto out_problem;
1328
1329 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1330 type = MAP__VARIABLE;
1331 else
1332 type = MAP__FUNCTION;
1333
1334 map = map__new(machine, event->mmap2.start,
1335 event->mmap2.len, event->mmap2.pgoff,
1336 event->mmap2.pid, event->mmap2.maj,
1337 event->mmap2.min, event->mmap2.ino,
1338 event->mmap2.ino_generation,
1339 event->mmap2.prot,
1340 event->mmap2.flags,
1341 event->mmap2.filename, type, thread);
1342
1343 if (map == NULL)
1344 goto out_problem_map;
1345
1346 ret = thread__insert_map(thread, map);
1347 if (ret)
1348 goto out_problem_insert;
1349
1350 thread__put(thread);
1351 map__put(map);
1352 return 0;
1353
1354out_problem_insert:
1355 map__put(map);
1356out_problem_map:
1357 thread__put(thread);
1358out_problem:
1359 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1360 return 0;
1361}
1362
1363int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1364 struct perf_sample *sample)
1365{
1366 struct thread *thread;
1367 struct map *map;
1368 enum map_type type;
1369 int ret = 0;
1370
1371 if (dump_trace)
1372 perf_event__fprintf_mmap(event, stdout);
1373
1374 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1375 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1376 ret = machine__process_kernel_mmap_event(machine, event);
1377 if (ret < 0)
1378 goto out_problem;
1379 return 0;
1380 }
1381
1382 thread = machine__findnew_thread(machine, event->mmap.pid,
1383 event->mmap.tid);
1384 if (thread == NULL)
1385 goto out_problem;
1386
1387 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1388 type = MAP__VARIABLE;
1389 else
1390 type = MAP__FUNCTION;
1391
1392 map = map__new(machine, event->mmap.start,
1393 event->mmap.len, event->mmap.pgoff,
1394 event->mmap.pid, 0, 0, 0, 0, 0, 0,
1395 event->mmap.filename,
1396 type, thread);
1397
1398 if (map == NULL)
1399 goto out_problem_map;
1400
1401 ret = thread__insert_map(thread, map);
1402 if (ret)
1403 goto out_problem_insert;
1404
1405 thread__put(thread);
1406 map__put(map);
1407 return 0;
1408
1409out_problem_insert:
1410 map__put(map);
1411out_problem_map:
1412 thread__put(thread);
1413out_problem:
1414 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1415 return 0;
1416}
1417
1418static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1419{
1420 if (machine->last_match == th)
1421 machine->last_match = NULL;
1422
1423 BUG_ON(atomic_read(&th->refcnt) == 0);
1424 if (lock)
1425 pthread_rwlock_wrlock(&machine->threads_lock);
1426 rb_erase_init(&th->rb_node, &machine->threads);
1427 RB_CLEAR_NODE(&th->rb_node);
1428 --machine->nr_threads;
1429 /*
1430 * Move it first to the dead_threads list, then drop the reference,
1431 * if this is the last reference, then the thread__delete destructor
1432 * will be called and we will remove it from the dead_threads list.
1433 */
1434 list_add_tail(&th->node, &machine->dead_threads);
1435 if (lock)
1436 pthread_rwlock_unlock(&machine->threads_lock);
1437 thread__put(th);
1438}
1439
1440void machine__remove_thread(struct machine *machine, struct thread *th)
1441{
1442 return __machine__remove_thread(machine, th, true);
1443}
1444
1445int machine__process_fork_event(struct machine *machine, union perf_event *event,
1446 struct perf_sample *sample)
1447{
1448 struct thread *thread = machine__find_thread(machine,
1449 event->fork.pid,
1450 event->fork.tid);
1451 struct thread *parent = machine__findnew_thread(machine,
1452 event->fork.ppid,
1453 event->fork.ptid);
1454 int err = 0;
1455
1456 if (dump_trace)
1457 perf_event__fprintf_task(event, stdout);
1458
1459 /*
1460 * There may be an existing thread that is not actually the parent,
1461 * either because we are processing events out of order, or because the
1462 * (fork) event that would have removed the thread was lost. Assume the
1463 * latter case and continue on as best we can.
1464 */
1465 if (parent->pid_ != (pid_t)event->fork.ppid) {
1466 dump_printf("removing erroneous parent thread %d/%d\n",
1467 parent->pid_, parent->tid);
1468 machine__remove_thread(machine, parent);
1469 thread__put(parent);
1470 parent = machine__findnew_thread(machine, event->fork.ppid,
1471 event->fork.ptid);
1472 }
1473
1474 /* if a thread currently exists for the thread id remove it */
1475 if (thread != NULL) {
1476 machine__remove_thread(machine, thread);
1477 thread__put(thread);
1478 }
1479
1480 thread = machine__findnew_thread(machine, event->fork.pid,
1481 event->fork.tid);
1482
1483 if (thread == NULL || parent == NULL ||
1484 thread__fork(thread, parent, sample->time) < 0) {
1485 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1486 err = -1;
1487 }
1488 thread__put(thread);
1489 thread__put(parent);
1490
1491 return err;
1492}
1493
1494int machine__process_exit_event(struct machine *machine, union perf_event *event,
1495 struct perf_sample *sample __maybe_unused)
1496{
1497 struct thread *thread = machine__find_thread(machine,
1498 event->fork.pid,
1499 event->fork.tid);
1500
1501 if (dump_trace)
1502 perf_event__fprintf_task(event, stdout);
1503
1504 if (thread != NULL) {
1505 thread__exited(thread);
1506 thread__put(thread);
1507 }
1508
1509 return 0;
1510}
1511
1512int machine__process_event(struct machine *machine, union perf_event *event,
1513 struct perf_sample *sample)
1514{
1515 int ret;
1516
1517 switch (event->header.type) {
1518 case PERF_RECORD_COMM:
1519 ret = machine__process_comm_event(machine, event, sample); break;
1520 case PERF_RECORD_MMAP:
1521 ret = machine__process_mmap_event(machine, event, sample); break;
1522 case PERF_RECORD_MMAP2:
1523 ret = machine__process_mmap2_event(machine, event, sample); break;
1524 case PERF_RECORD_FORK:
1525 ret = machine__process_fork_event(machine, event, sample); break;
1526 case PERF_RECORD_EXIT:
1527 ret = machine__process_exit_event(machine, event, sample); break;
1528 case PERF_RECORD_LOST:
1529 ret = machine__process_lost_event(machine, event, sample); break;
1530 case PERF_RECORD_AUX:
1531 ret = machine__process_aux_event(machine, event); break;
1532 case PERF_RECORD_ITRACE_START:
1533 ret = machine__process_itrace_start_event(machine, event); break;
1534 case PERF_RECORD_LOST_SAMPLES:
1535 ret = machine__process_lost_samples_event(machine, event, sample); break;
1536 case PERF_RECORD_SWITCH:
1537 case PERF_RECORD_SWITCH_CPU_WIDE:
1538 ret = machine__process_switch_event(machine, event); break;
1539 default:
1540 ret = -1;
1541 break;
1542 }
1543
1544 return ret;
1545}
1546
1547static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1548{
1549 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1550 return 1;
1551 return 0;
1552}
1553
1554static void ip__resolve_ams(struct thread *thread,
1555 struct addr_map_symbol *ams,
1556 u64 ip)
1557{
1558 struct addr_location al;
1559
1560 memset(&al, 0, sizeof(al));
1561 /*
1562 * We cannot use the header.misc hint to determine whether a
1563 * branch stack address is user, kernel, guest, hypervisor.
1564 * Branches may straddle the kernel/user/hypervisor boundaries.
1565 * Thus, we have to try consecutively until we find a match
1566 * or else, the symbol is unknown
1567 */
1568 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1569
1570 ams->addr = ip;
1571 ams->al_addr = al.addr;
1572 ams->sym = al.sym;
1573 ams->map = al.map;
1574}
1575
1576static void ip__resolve_data(struct thread *thread,
1577 u8 m, struct addr_map_symbol *ams, u64 addr)
1578{
1579 struct addr_location al;
1580
1581 memset(&al, 0, sizeof(al));
1582
1583 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1584 if (al.map == NULL) {
1585 /*
1586 * some shared data regions have execute bit set which puts
1587 * their mapping in the MAP__FUNCTION type array.
1588 * Check there as a fallback option before dropping the sample.
1589 */
1590 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1591 }
1592
1593 ams->addr = addr;
1594 ams->al_addr = al.addr;
1595 ams->sym = al.sym;
1596 ams->map = al.map;
1597}
1598
1599struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1600 struct addr_location *al)
1601{
1602 struct mem_info *mi = zalloc(sizeof(*mi));
1603
1604 if (!mi)
1605 return NULL;
1606
1607 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1608 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1609 mi->data_src.val = sample->data_src;
1610
1611 return mi;
1612}
1613
1614static int add_callchain_ip(struct thread *thread,
1615 struct callchain_cursor *cursor,
1616 struct symbol **parent,
1617 struct addr_location *root_al,
1618 u8 *cpumode,
1619 u64 ip,
1620 bool branch,
1621 struct branch_flags *flags,
1622 int nr_loop_iter,
1623 int samples)
1624{
1625 struct addr_location al;
1626
1627 al.filtered = 0;
1628 al.sym = NULL;
1629 if (!cpumode) {
1630 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1631 ip, &al);
1632 } else {
1633 if (ip >= PERF_CONTEXT_MAX) {
1634 switch (ip) {
1635 case PERF_CONTEXT_HV:
1636 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1637 break;
1638 case PERF_CONTEXT_KERNEL:
1639 *cpumode = PERF_RECORD_MISC_KERNEL;
1640 break;
1641 case PERF_CONTEXT_USER:
1642 *cpumode = PERF_RECORD_MISC_USER;
1643 break;
1644 default:
1645 pr_debug("invalid callchain context: "
1646 "%"PRId64"\n", (s64) ip);
1647 /*
1648 * It seems the callchain is corrupted.
1649 * Discard all.
1650 */
1651 callchain_cursor_reset(cursor);
1652 return 1;
1653 }
1654 return 0;
1655 }
1656 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1657 ip, &al);
1658 }
1659
1660 if (al.sym != NULL) {
1661 if (perf_hpp_list.parent && !*parent &&
1662 symbol__match_regex(al.sym, &parent_regex))
1663 *parent = al.sym;
1664 else if (have_ignore_callees && root_al &&
1665 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1666 /* Treat this symbol as the root,
1667 forgetting its callees. */
1668 *root_al = al;
1669 callchain_cursor_reset(cursor);
1670 }
1671 }
1672
1673 if (symbol_conf.hide_unresolved && al.sym == NULL)
1674 return 0;
1675 return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1676 branch, flags, nr_loop_iter, samples);
1677}
1678
1679struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1680 struct addr_location *al)
1681{
1682 unsigned int i;
1683 const struct branch_stack *bs = sample->branch_stack;
1684 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1685
1686 if (!bi)
1687 return NULL;
1688
1689 for (i = 0; i < bs->nr; i++) {
1690 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1691 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1692 bi[i].flags = bs->entries[i].flags;
1693 }
1694 return bi;
1695}
1696
1697#define CHASHSZ 127
1698#define CHASHBITS 7
1699#define NO_ENTRY 0xff
1700
1701#define PERF_MAX_BRANCH_DEPTH 127
1702
1703/* Remove loops. */
1704static int remove_loops(struct branch_entry *l, int nr)
1705{
1706 int i, j, off;
1707 unsigned char chash[CHASHSZ];
1708
1709 memset(chash, NO_ENTRY, sizeof(chash));
1710
1711 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1712
1713 for (i = 0; i < nr; i++) {
1714 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1715
1716 /* no collision handling for now */
1717 if (chash[h] == NO_ENTRY) {
1718 chash[h] = i;
1719 } else if (l[chash[h]].from == l[i].from) {
1720 bool is_loop = true;
1721 /* check if it is a real loop */
1722 off = 0;
1723 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1724 if (l[j].from != l[i + off].from) {
1725 is_loop = false;
1726 break;
1727 }
1728 if (is_loop) {
1729 memmove(l + i, l + i + off,
1730 (nr - (i + off)) * sizeof(*l));
1731 nr -= off;
1732 }
1733 }
1734 }
1735 return nr;
1736}
1737
1738/*
1739 * Recolve LBR callstack chain sample
1740 * Return:
1741 * 1 on success get LBR callchain information
1742 * 0 no available LBR callchain information, should try fp
1743 * negative error code on other errors.
1744 */
1745static int resolve_lbr_callchain_sample(struct thread *thread,
1746 struct callchain_cursor *cursor,
1747 struct perf_sample *sample,
1748 struct symbol **parent,
1749 struct addr_location *root_al,
1750 int max_stack)
1751{
1752 struct ip_callchain *chain = sample->callchain;
1753 int chain_nr = min(max_stack, (int)chain->nr), i;
1754 u8 cpumode = PERF_RECORD_MISC_USER;
1755 u64 ip;
1756
1757 for (i = 0; i < chain_nr; i++) {
1758 if (chain->ips[i] == PERF_CONTEXT_USER)
1759 break;
1760 }
1761
1762 /* LBR only affects the user callchain */
1763 if (i != chain_nr) {
1764 struct branch_stack *lbr_stack = sample->branch_stack;
1765 int lbr_nr = lbr_stack->nr, j, k;
1766 bool branch;
1767 struct branch_flags *flags;
1768 /*
1769 * LBR callstack can only get user call chain.
1770 * The mix_chain_nr is kernel call chain
1771 * number plus LBR user call chain number.
1772 * i is kernel call chain number,
1773 * 1 is PERF_CONTEXT_USER,
1774 * lbr_nr + 1 is the user call chain number.
1775 * For details, please refer to the comments
1776 * in callchain__printf
1777 */
1778 int mix_chain_nr = i + 1 + lbr_nr + 1;
1779
1780 for (j = 0; j < mix_chain_nr; j++) {
1781 int err;
1782 branch = false;
1783 flags = NULL;
1784
1785 if (callchain_param.order == ORDER_CALLEE) {
1786 if (j < i + 1)
1787 ip = chain->ips[j];
1788 else if (j > i + 1) {
1789 k = j - i - 2;
1790 ip = lbr_stack->entries[k].from;
1791 branch = true;
1792 flags = &lbr_stack->entries[k].flags;
1793 } else {
1794 ip = lbr_stack->entries[0].to;
1795 branch = true;
1796 flags = &lbr_stack->entries[0].flags;
1797 }
1798 } else {
1799 if (j < lbr_nr) {
1800 k = lbr_nr - j - 1;
1801 ip = lbr_stack->entries[k].from;
1802 branch = true;
1803 flags = &lbr_stack->entries[k].flags;
1804 }
1805 else if (j > lbr_nr)
1806 ip = chain->ips[i + 1 - (j - lbr_nr)];
1807 else {
1808 ip = lbr_stack->entries[0].to;
1809 branch = true;
1810 flags = &lbr_stack->entries[0].flags;
1811 }
1812 }
1813
1814 err = add_callchain_ip(thread, cursor, parent,
1815 root_al, &cpumode, ip,
1816 branch, flags, 0, 0);
1817 if (err)
1818 return (err < 0) ? err : 0;
1819 }
1820 return 1;
1821 }
1822
1823 return 0;
1824}
1825
1826static int thread__resolve_callchain_sample(struct thread *thread,
1827 struct callchain_cursor *cursor,
1828 struct perf_evsel *evsel,
1829 struct perf_sample *sample,
1830 struct symbol **parent,
1831 struct addr_location *root_al,
1832 int max_stack)
1833{
1834 struct branch_stack *branch = sample->branch_stack;
1835 struct ip_callchain *chain = sample->callchain;
1836 int chain_nr = chain->nr;
1837 u8 cpumode = PERF_RECORD_MISC_USER;
1838 int i, j, err, nr_entries;
1839 int skip_idx = -1;
1840 int first_call = 0;
1841 int nr_loop_iter;
1842
1843 if (perf_evsel__has_branch_callstack(evsel)) {
1844 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1845 root_al, max_stack);
1846 if (err)
1847 return (err < 0) ? err : 0;
1848 }
1849
1850 /*
1851 * Based on DWARF debug information, some architectures skip
1852 * a callchain entry saved by the kernel.
1853 */
1854 skip_idx = arch_skip_callchain_idx(thread, chain);
1855
1856 /*
1857 * Add branches to call stack for easier browsing. This gives
1858 * more context for a sample than just the callers.
1859 *
1860 * This uses individual histograms of paths compared to the
1861 * aggregated histograms the normal LBR mode uses.
1862 *
1863 * Limitations for now:
1864 * - No extra filters
1865 * - No annotations (should annotate somehow)
1866 */
1867
1868 if (branch && callchain_param.branch_callstack) {
1869 int nr = min(max_stack, (int)branch->nr);
1870 struct branch_entry be[nr];
1871
1872 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1873 pr_warning("corrupted branch chain. skipping...\n");
1874 goto check_calls;
1875 }
1876
1877 for (i = 0; i < nr; i++) {
1878 if (callchain_param.order == ORDER_CALLEE) {
1879 be[i] = branch->entries[i];
1880 /*
1881 * Check for overlap into the callchain.
1882 * The return address is one off compared to
1883 * the branch entry. To adjust for this
1884 * assume the calling instruction is not longer
1885 * than 8 bytes.
1886 */
1887 if (i == skip_idx ||
1888 chain->ips[first_call] >= PERF_CONTEXT_MAX)
1889 first_call++;
1890 else if (be[i].from < chain->ips[first_call] &&
1891 be[i].from >= chain->ips[first_call] - 8)
1892 first_call++;
1893 } else
1894 be[i] = branch->entries[branch->nr - i - 1];
1895 }
1896
1897 nr_loop_iter = nr;
1898 nr = remove_loops(be, nr);
1899
1900 /*
1901 * Get the number of iterations.
1902 * It's only approximation, but good enough in practice.
1903 */
1904 if (nr_loop_iter > nr)
1905 nr_loop_iter = nr_loop_iter - nr + 1;
1906 else
1907 nr_loop_iter = 0;
1908
1909 for (i = 0; i < nr; i++) {
1910 if (i == nr - 1)
1911 err = add_callchain_ip(thread, cursor, parent,
1912 root_al,
1913 NULL, be[i].to,
1914 true, &be[i].flags,
1915 nr_loop_iter, 1);
1916 else
1917 err = add_callchain_ip(thread, cursor, parent,
1918 root_al,
1919 NULL, be[i].to,
1920 true, &be[i].flags,
1921 0, 0);
1922
1923 if (!err)
1924 err = add_callchain_ip(thread, cursor, parent, root_al,
1925 NULL, be[i].from,
1926 true, &be[i].flags,
1927 0, 0);
1928 if (err == -EINVAL)
1929 break;
1930 if (err)
1931 return err;
1932 }
1933 chain_nr -= nr;
1934 }
1935
1936check_calls:
1937 for (i = first_call, nr_entries = 0;
1938 i < chain_nr && nr_entries < max_stack; i++) {
1939 u64 ip;
1940
1941 if (callchain_param.order == ORDER_CALLEE)
1942 j = i;
1943 else
1944 j = chain->nr - i - 1;
1945
1946#ifdef HAVE_SKIP_CALLCHAIN_IDX
1947 if (j == skip_idx)
1948 continue;
1949#endif
1950 ip = chain->ips[j];
1951
1952 if (ip < PERF_CONTEXT_MAX)
1953 ++nr_entries;
1954
1955 err = add_callchain_ip(thread, cursor, parent,
1956 root_al, &cpumode, ip,
1957 false, NULL, 0, 0);
1958
1959 if (err)
1960 return (err < 0) ? err : 0;
1961 }
1962
1963 return 0;
1964}
1965
1966static int unwind_entry(struct unwind_entry *entry, void *arg)
1967{
1968 struct callchain_cursor *cursor = arg;
1969
1970 if (symbol_conf.hide_unresolved && entry->sym == NULL)
1971 return 0;
1972 return callchain_cursor_append(cursor, entry->ip,
1973 entry->map, entry->sym,
1974 false, NULL, 0, 0);
1975}
1976
1977static int thread__resolve_callchain_unwind(struct thread *thread,
1978 struct callchain_cursor *cursor,
1979 struct perf_evsel *evsel,
1980 struct perf_sample *sample,
1981 int max_stack)
1982{
1983 /* Can we do dwarf post unwind? */
1984 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1985 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1986 return 0;
1987
1988 /* Bail out if nothing was captured. */
1989 if ((!sample->user_regs.regs) ||
1990 (!sample->user_stack.size))
1991 return 0;
1992
1993 return unwind__get_entries(unwind_entry, cursor,
1994 thread, sample, max_stack);
1995}
1996
1997int thread__resolve_callchain(struct thread *thread,
1998 struct callchain_cursor *cursor,
1999 struct perf_evsel *evsel,
2000 struct perf_sample *sample,
2001 struct symbol **parent,
2002 struct addr_location *root_al,
2003 int max_stack)
2004{
2005 int ret = 0;
2006
2007 callchain_cursor_reset(&callchain_cursor);
2008
2009 if (callchain_param.order == ORDER_CALLEE) {
2010 ret = thread__resolve_callchain_sample(thread, cursor,
2011 evsel, sample,
2012 parent, root_al,
2013 max_stack);
2014 if (ret)
2015 return ret;
2016 ret = thread__resolve_callchain_unwind(thread, cursor,
2017 evsel, sample,
2018 max_stack);
2019 } else {
2020 ret = thread__resolve_callchain_unwind(thread, cursor,
2021 evsel, sample,
2022 max_stack);
2023 if (ret)
2024 return ret;
2025 ret = thread__resolve_callchain_sample(thread, cursor,
2026 evsel, sample,
2027 parent, root_al,
2028 max_stack);
2029 }
2030
2031 return ret;
2032}
2033
2034int machine__for_each_thread(struct machine *machine,
2035 int (*fn)(struct thread *thread, void *p),
2036 void *priv)
2037{
2038 struct rb_node *nd;
2039 struct thread *thread;
2040 int rc = 0;
2041
2042 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2043 thread = rb_entry(nd, struct thread, rb_node);
2044 rc = fn(thread, priv);
2045 if (rc != 0)
2046 return rc;
2047 }
2048
2049 list_for_each_entry(thread, &machine->dead_threads, node) {
2050 rc = fn(thread, priv);
2051 if (rc != 0)
2052 return rc;
2053 }
2054 return rc;
2055}
2056
2057int machines__for_each_thread(struct machines *machines,
2058 int (*fn)(struct thread *thread, void *p),
2059 void *priv)
2060{
2061 struct rb_node *nd;
2062 int rc = 0;
2063
2064 rc = machine__for_each_thread(&machines->host, fn, priv);
2065 if (rc != 0)
2066 return rc;
2067
2068 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2069 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2070
2071 rc = machine__for_each_thread(machine, fn, priv);
2072 if (rc != 0)
2073 return rc;
2074 }
2075 return rc;
2076}
2077
2078int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2079 struct target *target, struct thread_map *threads,
2080 perf_event__handler_t process, bool data_mmap,
2081 unsigned int proc_map_timeout)
2082{
2083 if (target__has_task(target))
2084 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2085 else if (target__has_cpu(target))
2086 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2087 /* command specified */
2088 return 0;
2089}
2090
2091pid_t machine__get_current_tid(struct machine *machine, int cpu)
2092{
2093 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2094 return -1;
2095
2096 return machine->current_tid[cpu];
2097}
2098
2099int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2100 pid_t tid)
2101{
2102 struct thread *thread;
2103
2104 if (cpu < 0)
2105 return -EINVAL;
2106
2107 if (!machine->current_tid) {
2108 int i;
2109
2110 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2111 if (!machine->current_tid)
2112 return -ENOMEM;
2113 for (i = 0; i < MAX_NR_CPUS; i++)
2114 machine->current_tid[i] = -1;
2115 }
2116
2117 if (cpu >= MAX_NR_CPUS) {
2118 pr_err("Requested CPU %d too large. ", cpu);
2119 pr_err("Consider raising MAX_NR_CPUS\n");
2120 return -EINVAL;
2121 }
2122
2123 machine->current_tid[cpu] = tid;
2124
2125 thread = machine__findnew_thread(machine, pid, tid);
2126 if (!thread)
2127 return -ENOMEM;
2128
2129 thread->cpu = cpu;
2130 thread__put(thread);
2131
2132 return 0;
2133}
2134
2135int machine__get_kernel_start(struct machine *machine)
2136{
2137 struct map *map = machine__kernel_map(machine);
2138 int err = 0;
2139
2140 /*
2141 * The only addresses above 2^63 are kernel addresses of a 64-bit
2142 * kernel. Note that addresses are unsigned so that on a 32-bit system
2143 * all addresses including kernel addresses are less than 2^32. In
2144 * that case (32-bit system), if the kernel mapping is unknown, all
2145 * addresses will be assumed to be in user space - see
2146 * machine__kernel_ip().
2147 */
2148 machine->kernel_start = 1ULL << 63;
2149 if (map) {
2150 err = map__load(map);
2151 if (map->start)
2152 machine->kernel_start = map->start;
2153 }
2154 return err;
2155}
2156
2157struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2158{
2159 return dsos__findnew(&machine->dsos, filename);
2160}
2161
2162char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2163{
2164 struct machine *machine = vmachine;
2165 struct map *map;
2166 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2167
2168 if (sym == NULL)
2169 return NULL;
2170
2171 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2172 *addrp = map->unmap_ip(map, sym->start);
2173 return sym->name;
2174}