Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "srcline.h"
  20#include "symbol.h"
  21#include "sort.h"
  22#include "strlist.h"
  23#include "target.h"
  24#include "thread.h"
  25#include "util.h"
  26#include "vdso.h"
  27#include <stdbool.h>
  28#include <sys/types.h>
  29#include <sys/stat.h>
  30#include <unistd.h>
  31#include "unwind.h"
  32#include "linux/hash.h"
  33#include "asm/bug.h"
  34#include "bpf-event.h"
  35#include <internal/lib.h> // page_size
  36
  37#include <linux/ctype.h>
  38#include <symbol/kallsyms.h>
  39#include <linux/mman.h>
  40#include <linux/string.h>
  41#include <linux/zalloc.h>
  42
  43static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  44
  45static void dsos__init(struct dsos *dsos)
  46{
  47	INIT_LIST_HEAD(&dsos->head);
  48	dsos->root = RB_ROOT;
  49	init_rwsem(&dsos->lock);
  50}
  51
  52static void machine__threads_init(struct machine *machine)
  53{
  54	int i;
  55
  56	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  57		struct threads *threads = &machine->threads[i];
  58		threads->entries = RB_ROOT_CACHED;
  59		init_rwsem(&threads->lock);
  60		threads->nr = 0;
  61		INIT_LIST_HEAD(&threads->dead);
  62		threads->last_match = NULL;
  63	}
  64}
  65
  66static int machine__set_mmap_name(struct machine *machine)
  67{
  68	if (machine__is_host(machine))
  69		machine->mmap_name = strdup("[kernel.kallsyms]");
  70	else if (machine__is_default_guest(machine))
  71		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  72	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  73			  machine->pid) < 0)
  74		machine->mmap_name = NULL;
  75
  76	return machine->mmap_name ? 0 : -ENOMEM;
  77}
  78
  79int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  80{
  81	int err = -ENOMEM;
  82
  83	memset(machine, 0, sizeof(*machine));
  84	map_groups__init(&machine->kmaps, machine);
  85	RB_CLEAR_NODE(&machine->rb_node);
  86	dsos__init(&machine->dsos);
  87
  88	machine__threads_init(machine);
 
 
 
  89
  90	machine->vdso_info = NULL;
  91	machine->env = NULL;
  92
  93	machine->pid = pid;
  94
 
  95	machine->id_hdr_size = 0;
  96	machine->kptr_restrict_warned = false;
  97	machine->comm_exec = false;
  98	machine->kernel_start = 0;
  99	machine->vmlinux_map = NULL;
 
 100
 101	machine->root_dir = strdup(root_dir);
 102	if (machine->root_dir == NULL)
 103		return -ENOMEM;
 104
 105	if (machine__set_mmap_name(machine))
 106		goto out;
 107
 108	if (pid != HOST_KERNEL_ID) {
 109		struct thread *thread = machine__findnew_thread(machine, -1,
 110								pid);
 111		char comm[64];
 112
 113		if (thread == NULL)
 114			goto out;
 115
 116		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 117		thread__set_comm(thread, comm, 0);
 118		thread__put(thread);
 119	}
 120
 121	machine->current_tid = NULL;
 122	err = 0;
 123
 124out:
 125	if (err) {
 126		zfree(&machine->root_dir);
 127		zfree(&machine->mmap_name);
 128	}
 129	return 0;
 130}
 131
 132struct machine *machine__new_host(void)
 133{
 134	struct machine *machine = malloc(sizeof(*machine));
 135
 136	if (machine != NULL) {
 137		machine__init(machine, "", HOST_KERNEL_ID);
 138
 139		if (machine__create_kernel_maps(machine) < 0)
 140			goto out_delete;
 141	}
 142
 143	return machine;
 144out_delete:
 145	free(machine);
 146	return NULL;
 147}
 148
 149struct machine *machine__new_kallsyms(void)
 150{
 151	struct machine *machine = machine__new_host();
 152	/*
 153	 * FIXME:
 154	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 155	 *    ask for not using the kcore parsing code, once this one is fixed
 156	 *    to create a map per module.
 157	 */
 158	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 159		machine__delete(machine);
 160		machine = NULL;
 161	}
 162
 163	return machine;
 164}
 165
 166static void dsos__purge(struct dsos *dsos)
 167{
 168	struct dso *pos, *n;
 169
 170	down_write(&dsos->lock);
 171
 172	list_for_each_entry_safe(pos, n, &dsos->head, node) {
 173		RB_CLEAR_NODE(&pos->rb_node);
 174		pos->root = NULL;
 175		list_del_init(&pos->node);
 176		dso__put(pos);
 177	}
 178
 179	up_write(&dsos->lock);
 180}
 181
 182static void dsos__exit(struct dsos *dsos)
 183{
 184	dsos__purge(dsos);
 185	exit_rwsem(&dsos->lock);
 186}
 187
 188void machine__delete_threads(struct machine *machine)
 189{
 190	struct rb_node *nd;
 191	int i;
 192
 193	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 194		struct threads *threads = &machine->threads[i];
 195		down_write(&threads->lock);
 196		nd = rb_first_cached(&threads->entries);
 197		while (nd) {
 198			struct thread *t = rb_entry(nd, struct thread, rb_node);
 199
 200			nd = rb_next(nd);
 201			__machine__remove_thread(machine, t, false);
 202		}
 203		up_write(&threads->lock);
 204	}
 
 205}
 206
 207void machine__exit(struct machine *machine)
 208{
 209	int i;
 210
 211	if (machine == NULL)
 212		return;
 213
 214	machine__destroy_kernel_maps(machine);
 215	map_groups__exit(&machine->kmaps);
 216	dsos__exit(&machine->dsos);
 217	machine__exit_vdso(machine);
 218	zfree(&machine->root_dir);
 219	zfree(&machine->mmap_name);
 220	zfree(&machine->current_tid);
 221
 222	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 223		struct threads *threads = &machine->threads[i];
 224		struct thread *thread, *n;
 225		/*
 226		 * Forget about the dead, at this point whatever threads were
 227		 * left in the dead lists better have a reference count taken
 228		 * by who is using them, and then, when they drop those references
 229		 * and it finally hits zero, thread__put() will check and see that
 230		 * its not in the dead threads list and will not try to remove it
 231		 * from there, just calling thread__delete() straight away.
 232		 */
 233		list_for_each_entry_safe(thread, n, &threads->dead, node)
 234			list_del_init(&thread->node);
 235
 236		exit_rwsem(&threads->lock);
 237	}
 238}
 239
 240void machine__delete(struct machine *machine)
 241{
 242	if (machine) {
 243		machine__exit(machine);
 244		free(machine);
 245	}
 246}
 247
 248void machines__init(struct machines *machines)
 249{
 250	machine__init(&machines->host, "", HOST_KERNEL_ID);
 251	machines->guests = RB_ROOT_CACHED;
 
 252}
 253
 254void machines__exit(struct machines *machines)
 255{
 256	machine__exit(&machines->host);
 257	/* XXX exit guest */
 258}
 259
 260struct machine *machines__add(struct machines *machines, pid_t pid,
 261			      const char *root_dir)
 262{
 263	struct rb_node **p = &machines->guests.rb_root.rb_node;
 264	struct rb_node *parent = NULL;
 265	struct machine *pos, *machine = malloc(sizeof(*machine));
 266	bool leftmost = true;
 267
 268	if (machine == NULL)
 269		return NULL;
 270
 271	if (machine__init(machine, root_dir, pid) != 0) {
 272		free(machine);
 273		return NULL;
 274	}
 275
 
 
 276	while (*p != NULL) {
 277		parent = *p;
 278		pos = rb_entry(parent, struct machine, rb_node);
 279		if (pid < pos->pid)
 280			p = &(*p)->rb_left;
 281		else {
 282			p = &(*p)->rb_right;
 283			leftmost = false;
 284		}
 285	}
 286
 287	rb_link_node(&machine->rb_node, parent, p);
 288	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 289
 290	return machine;
 291}
 292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 294{
 295	struct rb_node *nd;
 296
 297	machines->host.comm_exec = comm_exec;
 298
 299	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 300		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 301
 302		machine->comm_exec = comm_exec;
 303	}
 304}
 305
 306struct machine *machines__find(struct machines *machines, pid_t pid)
 307{
 308	struct rb_node **p = &machines->guests.rb_root.rb_node;
 309	struct rb_node *parent = NULL;
 310	struct machine *machine;
 311	struct machine *default_machine = NULL;
 312
 313	if (pid == HOST_KERNEL_ID)
 314		return &machines->host;
 315
 316	while (*p != NULL) {
 317		parent = *p;
 318		machine = rb_entry(parent, struct machine, rb_node);
 319		if (pid < machine->pid)
 320			p = &(*p)->rb_left;
 321		else if (pid > machine->pid)
 322			p = &(*p)->rb_right;
 323		else
 324			return machine;
 325		if (!machine->pid)
 326			default_machine = machine;
 327	}
 328
 329	return default_machine;
 330}
 331
 332struct machine *machines__findnew(struct machines *machines, pid_t pid)
 333{
 334	char path[PATH_MAX];
 335	const char *root_dir = "";
 336	struct machine *machine = machines__find(machines, pid);
 337
 338	if (machine && (machine->pid == pid))
 339		goto out;
 340
 341	if ((pid != HOST_KERNEL_ID) &&
 342	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 343	    (symbol_conf.guestmount)) {
 344		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 345		if (access(path, R_OK)) {
 346			static struct strlist *seen;
 347
 348			if (!seen)
 349				seen = strlist__new(NULL, NULL);
 350
 351			if (!strlist__has_entry(seen, path)) {
 352				pr_err("Can't access file %s\n", path);
 353				strlist__add(seen, path);
 354			}
 355			machine = NULL;
 356			goto out;
 357		}
 358		root_dir = path;
 359	}
 360
 361	machine = machines__add(machines, pid, root_dir);
 362out:
 363	return machine;
 364}
 365
 366void machines__process_guests(struct machines *machines,
 367			      machine__process_t process, void *data)
 368{
 369	struct rb_node *nd;
 370
 371	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 372		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 373		process(pos, data);
 374	}
 375}
 376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 378{
 379	struct rb_node *node;
 380	struct machine *machine;
 381
 382	machines->host.id_hdr_size = id_hdr_size;
 383
 384	for (node = rb_first_cached(&machines->guests); node;
 385	     node = rb_next(node)) {
 386		machine = rb_entry(node, struct machine, rb_node);
 387		machine->id_hdr_size = id_hdr_size;
 388	}
 389
 390	return;
 391}
 392
 393static void machine__update_thread_pid(struct machine *machine,
 394				       struct thread *th, pid_t pid)
 395{
 396	struct thread *leader;
 397
 398	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 399		return;
 400
 401	th->pid_ = pid;
 402
 403	if (th->pid_ == th->tid)
 404		return;
 405
 406	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 407	if (!leader)
 408		goto out_err;
 409
 410	if (!leader->mg)
 411		leader->mg = map_groups__new(machine);
 412
 413	if (!leader->mg)
 414		goto out_err;
 415
 416	if (th->mg == leader->mg)
 417		return;
 418
 419	if (th->mg) {
 420		/*
 421		 * Maps are created from MMAP events which provide the pid and
 422		 * tid.  Consequently there never should be any maps on a thread
 423		 * with an unknown pid.  Just print an error if there are.
 424		 */
 425		if (!map_groups__empty(th->mg))
 426			pr_err("Discarding thread maps for %d:%d\n",
 427			       th->pid_, th->tid);
 428		map_groups__put(th->mg);
 429	}
 430
 431	th->mg = map_groups__get(leader->mg);
 432out_put:
 433	thread__put(leader);
 434	return;
 435out_err:
 436	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 437	goto out_put;
 438}
 439
 440/*
 441 * Front-end cache - TID lookups come in blocks,
 442 * so most of the time we dont have to look up
 443 * the full rbtree:
 444 */
 445static struct thread*
 446__threads__get_last_match(struct threads *threads, struct machine *machine,
 447			  int pid, int tid)
 448{
 
 
 449	struct thread *th;
 450
 451	th = threads->last_match;
 
 
 
 
 
 452	if (th != NULL) {
 453		if (th->tid == tid) {
 454			machine__update_thread_pid(machine, th, pid);
 455			return thread__get(th);
 456		}
 457
 458		threads->last_match = NULL;
 459	}
 460
 461	return NULL;
 462}
 463
 464static struct thread*
 465threads__get_last_match(struct threads *threads, struct machine *machine,
 466			int pid, int tid)
 467{
 468	struct thread *th = NULL;
 469
 470	if (perf_singlethreaded)
 471		th = __threads__get_last_match(threads, machine, pid, tid);
 472
 473	return th;
 474}
 475
 476static void
 477__threads__set_last_match(struct threads *threads, struct thread *th)
 478{
 479	threads->last_match = th;
 480}
 481
 482static void
 483threads__set_last_match(struct threads *threads, struct thread *th)
 484{
 485	if (perf_singlethreaded)
 486		__threads__set_last_match(threads, th);
 487}
 488
 489/*
 490 * Caller must eventually drop thread->refcnt returned with a successful
 491 * lookup/new thread inserted.
 492 */
 493static struct thread *____machine__findnew_thread(struct machine *machine,
 494						  struct threads *threads,
 495						  pid_t pid, pid_t tid,
 496						  bool create)
 497{
 498	struct rb_node **p = &threads->entries.rb_root.rb_node;
 499	struct rb_node *parent = NULL;
 500	struct thread *th;
 501	bool leftmost = true;
 502
 503	th = threads__get_last_match(threads, machine, pid, tid);
 504	if (th)
 505		return th;
 506
 507	while (*p != NULL) {
 508		parent = *p;
 509		th = rb_entry(parent, struct thread, rb_node);
 510
 511		if (th->tid == tid) {
 512			threads__set_last_match(threads, th);
 513			machine__update_thread_pid(machine, th, pid);
 514			return thread__get(th);
 515		}
 516
 517		if (tid < th->tid)
 518			p = &(*p)->rb_left;
 519		else {
 520			p = &(*p)->rb_right;
 521			leftmost = false;
 522		}
 523	}
 524
 525	if (!create)
 526		return NULL;
 527
 528	th = thread__new(pid, tid);
 529	if (th != NULL) {
 530		rb_link_node(&th->rb_node, parent, p);
 531		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 532
 533		/*
 534		 * We have to initialize map_groups separately
 535		 * after rb tree is updated.
 536		 *
 537		 * The reason is that we call machine__findnew_thread
 538		 * within thread__init_map_groups to find the thread
 539		 * leader and that would screwed the rb tree.
 540		 */
 541		if (thread__init_map_groups(th, machine)) {
 542			rb_erase_cached(&th->rb_node, &threads->entries);
 543			RB_CLEAR_NODE(&th->rb_node);
 544			thread__put(th);
 545			return NULL;
 546		}
 547		/*
 548		 * It is now in the rbtree, get a ref
 549		 */
 550		thread__get(th);
 551		threads__set_last_match(threads, th);
 552		++threads->nr;
 553	}
 554
 555	return th;
 556}
 557
 558struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 559{
 560	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 561}
 562
 563struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 564				       pid_t tid)
 565{
 566	struct threads *threads = machine__threads(machine, tid);
 567	struct thread *th;
 568
 569	down_write(&threads->lock);
 570	th = __machine__findnew_thread(machine, pid, tid);
 571	up_write(&threads->lock);
 572	return th;
 573}
 574
 575struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 576				    pid_t tid)
 577{
 578	struct threads *threads = machine__threads(machine, tid);
 579	struct thread *th;
 580
 581	down_read(&threads->lock);
 582	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 583	up_read(&threads->lock);
 584	return th;
 585}
 586
 587struct comm *machine__thread_exec_comm(struct machine *machine,
 588				       struct thread *thread)
 589{
 590	if (machine->comm_exec)
 591		return thread__exec_comm(thread);
 592	else
 593		return thread__comm(thread);
 594}
 595
 596int machine__process_comm_event(struct machine *machine, union perf_event *event,
 597				struct perf_sample *sample)
 598{
 599	struct thread *thread = machine__findnew_thread(machine,
 600							event->comm.pid,
 601							event->comm.tid);
 602	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 603	int err = 0;
 604
 605	if (exec)
 606		machine->comm_exec = true;
 607
 608	if (dump_trace)
 609		perf_event__fprintf_comm(event, stdout);
 610
 611	if (thread == NULL ||
 612	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 613		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 614		err = -1;
 615	}
 616
 617	thread__put(thread);
 618
 619	return err;
 620}
 621
 622int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 623				      union perf_event *event,
 624				      struct perf_sample *sample __maybe_unused)
 625{
 626	struct thread *thread = machine__findnew_thread(machine,
 627							event->namespaces.pid,
 628							event->namespaces.tid);
 629	int err = 0;
 630
 631	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 632		  "\nWARNING: kernel seems to support more namespaces than perf"
 633		  " tool.\nTry updating the perf tool..\n\n");
 634
 635	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 636		  "\nWARNING: perf tool seems to support more namespaces than"
 637		  " the kernel.\nTry updating the kernel..\n\n");
 638
 639	if (dump_trace)
 640		perf_event__fprintf_namespaces(event, stdout);
 641
 642	if (thread == NULL ||
 643	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 644		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 645		err = -1;
 646	}
 647
 648	thread__put(thread);
 649
 650	return err;
 651}
 652
 653int machine__process_lost_event(struct machine *machine __maybe_unused,
 654				union perf_event *event, struct perf_sample *sample __maybe_unused)
 655{
 656	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 657		    event->lost.id, event->lost.lost);
 658	return 0;
 659}
 660
 661int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 662					union perf_event *event, struct perf_sample *sample)
 663{
 664	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 665		    sample->id, event->lost_samples.lost);
 666	return 0;
 667}
 668
 669static struct dso *machine__findnew_module_dso(struct machine *machine,
 670					       struct kmod_path *m,
 671					       const char *filename)
 672{
 673	struct dso *dso;
 674
 675	down_write(&machine->dsos.lock);
 676
 677	dso = __dsos__find(&machine->dsos, m->name, true);
 678	if (!dso) {
 679		dso = __dsos__addnew(&machine->dsos, m->name);
 680		if (dso == NULL)
 681			goto out_unlock;
 682
 683		dso__set_module_info(dso, m, machine);
 
 
 
 
 
 
 
 
 
 684		dso__set_long_name(dso, strdup(filename), true);
 685	}
 686
 687	dso__get(dso);
 688out_unlock:
 689	up_write(&machine->dsos.lock);
 690	return dso;
 691}
 692
 693int machine__process_aux_event(struct machine *machine __maybe_unused,
 694			       union perf_event *event)
 695{
 696	if (dump_trace)
 697		perf_event__fprintf_aux(event, stdout);
 698	return 0;
 699}
 700
 701int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 702					union perf_event *event)
 703{
 704	if (dump_trace)
 705		perf_event__fprintf_itrace_start(event, stdout);
 706	return 0;
 707}
 708
 709int machine__process_switch_event(struct machine *machine __maybe_unused,
 710				  union perf_event *event)
 711{
 712	if (dump_trace)
 713		perf_event__fprintf_switch(event, stdout);
 714	return 0;
 715}
 716
 717static int machine__process_ksymbol_register(struct machine *machine,
 718					     union perf_event *event,
 719					     struct perf_sample *sample __maybe_unused)
 720{
 721	struct symbol *sym;
 722	struct map *map;
 723
 724	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 725	if (!map) {
 726		map = dso__new_map(event->ksymbol.name);
 727		if (!map)
 728			return -ENOMEM;
 729
 730		map->start = event->ksymbol.addr;
 731		map->end = map->start + event->ksymbol.len;
 732		map_groups__insert(&machine->kmaps, map);
 733	}
 734
 735	sym = symbol__new(map->map_ip(map, map->start),
 736			  event->ksymbol.len,
 737			  0, 0, event->ksymbol.name);
 738	if (!sym)
 739		return -ENOMEM;
 740	dso__insert_symbol(map->dso, sym);
 741	return 0;
 742}
 743
 744static int machine__process_ksymbol_unregister(struct machine *machine,
 745					       union perf_event *event,
 746					       struct perf_sample *sample __maybe_unused)
 747{
 748	struct map *map;
 749
 750	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
 751	if (map)
 752		map_groups__remove(&machine->kmaps, map);
 753
 754	return 0;
 755}
 756
 757int machine__process_ksymbol(struct machine *machine __maybe_unused,
 758			     union perf_event *event,
 759			     struct perf_sample *sample)
 760{
 761	if (dump_trace)
 762		perf_event__fprintf_ksymbol(event, stdout);
 763
 764	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 765		return machine__process_ksymbol_unregister(machine, event,
 766							   sample);
 767	return machine__process_ksymbol_register(machine, event, sample);
 768}
 769
 770static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 771{
 772	const char *dup_filename;
 773
 774	if (!filename || !dso || !dso->long_name)
 775		return;
 776	if (dso->long_name[0] != '[')
 777		return;
 778	if (!strchr(filename, '/'))
 779		return;
 780
 781	dup_filename = strdup(filename);
 782	if (!dup_filename)
 783		return;
 784
 785	dso__set_long_name(dso, dup_filename, true);
 786}
 787
 788struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 789					const char *filename)
 790{
 791	struct map *map = NULL;
 792	struct dso *dso = NULL;
 793	struct kmod_path m;
 794
 795	if (kmod_path__parse_name(&m, filename))
 796		return NULL;
 797
 798	map = map_groups__find_by_name(&machine->kmaps, m.name);
 
 799	if (map) {
 800		/*
 801		 * If the map's dso is an offline module, give dso__load()
 802		 * a chance to find the file path of that module by fixing
 803		 * long_name.
 804		 */
 805		dso__adjust_kmod_long_name(map->dso, filename);
 806		goto out;
 807	}
 808
 809	dso = machine__findnew_module_dso(machine, &m, filename);
 810	if (dso == NULL)
 811		goto out;
 812
 813	map = map__new2(start, dso);
 814	if (map == NULL)
 815		goto out;
 816
 817	map_groups__insert(&machine->kmaps, map);
 818
 819	/* Put the map here because map_groups__insert alread got it */
 820	map__put(map);
 821out:
 822	/* put the dso here, corresponding to  machine__findnew_module_dso */
 823	dso__put(dso);
 824	zfree(&m.name);
 825	return map;
 826}
 827
 828size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 829{
 830	struct rb_node *nd;
 831	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 832
 833	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 834		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 835		ret += __dsos__fprintf(&pos->dsos.head, fp);
 836	}
 837
 838	return ret;
 839}
 840
 841size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 842				     bool (skip)(struct dso *dso, int parm), int parm)
 843{
 844	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 845}
 846
 847size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 848				     bool (skip)(struct dso *dso, int parm), int parm)
 849{
 850	struct rb_node *nd;
 851	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 852
 853	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 854		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 855		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 856	}
 857	return ret;
 858}
 859
 860size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 861{
 862	int i;
 863	size_t printed = 0;
 864	struct dso *kdso = machine__kernel_map(machine)->dso;
 865
 866	if (kdso->has_build_id) {
 867		char filename[PATH_MAX];
 868		if (dso__build_id_filename(kdso, filename, sizeof(filename),
 869					   false))
 870			printed += fprintf(fp, "[0] %s\n", filename);
 871	}
 872
 873	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 874		printed += fprintf(fp, "[%d] %s\n",
 875				   i + kdso->has_build_id, vmlinux_path[i]);
 876
 877	return printed;
 878}
 879
 880size_t machine__fprintf(struct machine *machine, FILE *fp)
 881{
 
 882	struct rb_node *nd;
 883	size_t ret;
 884	int i;
 885
 886	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 887		struct threads *threads = &machine->threads[i];
 888
 889		down_read(&threads->lock);
 
 890
 891		ret = fprintf(fp, "Threads: %u\n", threads->nr);
 892
 893		for (nd = rb_first_cached(&threads->entries); nd;
 894		     nd = rb_next(nd)) {
 895			struct thread *pos = rb_entry(nd, struct thread, rb_node);
 896
 897			ret += thread__fprintf(pos, fp);
 898		}
 899
 900		up_read(&threads->lock);
 901	}
 902	return ret;
 903}
 904
 905static struct dso *machine__get_kernel(struct machine *machine)
 906{
 907	const char *vmlinux_name = machine->mmap_name;
 908	struct dso *kernel;
 909
 910	if (machine__is_host(machine)) {
 911		if (symbol_conf.vmlinux_name)
 912			vmlinux_name = symbol_conf.vmlinux_name;
 
 913
 914		kernel = machine__findnew_kernel(machine, vmlinux_name,
 915						 "[kernel]", DSO_TYPE_KERNEL);
 916	} else {
 917		if (symbol_conf.default_guest_vmlinux_name)
 
 
 918			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 
 
 
 919
 920		kernel = machine__findnew_kernel(machine, vmlinux_name,
 921						 "[guest.kernel]",
 922						 DSO_TYPE_GUEST_KERNEL);
 923	}
 924
 925	if (kernel != NULL && (!kernel->has_build_id))
 926		dso__read_running_kernel_build_id(kernel, machine);
 927
 928	return kernel;
 929}
 930
 931struct process_args {
 932	u64 start;
 933};
 934
 935void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 936				    size_t bufsz)
 937{
 938	if (machine__is_default_guest(machine))
 939		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 940	else
 941		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 942}
 943
 944const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 945
 946/* Figure out the start address of kernel map from /proc/kallsyms.
 947 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 948 * symbol_name if it's not that important.
 949 */
 950static int machine__get_running_kernel_start(struct machine *machine,
 951					     const char **symbol_name,
 952					     u64 *start, u64 *end)
 953{
 954	char filename[PATH_MAX];
 955	int i, err = -1;
 956	const char *name;
 957	u64 addr = 0;
 958
 959	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 960
 961	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 962		return 0;
 963
 964	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 965		err = kallsyms__get_function_start(filename, name, &addr);
 966		if (!err)
 967			break;
 968	}
 969
 970	if (err)
 971		return -1;
 972
 973	if (symbol_name)
 974		*symbol_name = name;
 975
 976	*start = addr;
 977
 978	err = kallsyms__get_function_start(filename, "_etext", &addr);
 979	if (!err)
 980		*end = addr;
 981
 982	return 0;
 983}
 984
 985int machine__create_extra_kernel_map(struct machine *machine,
 986				     struct dso *kernel,
 987				     struct extra_kernel_map *xm)
 988{
 989	struct kmap *kmap;
 990	struct map *map;
 991
 992	map = map__new2(xm->start, kernel);
 993	if (!map)
 994		return -1;
 995
 996	map->end   = xm->end;
 997	map->pgoff = xm->pgoff;
 998
 999	kmap = map__kmap(map);
1000
1001	kmap->kmaps = &machine->kmaps;
1002	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1003
1004	map_groups__insert(&machine->kmaps, map);
1005
1006	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1007		  kmap->name, map->start, map->end);
1008
1009	map__put(map);
1010
1011	return 0;
1012}
1013
1014static u64 find_entry_trampoline(struct dso *dso)
1015{
1016	/* Duplicates are removed so lookup all aliases */
1017	const char *syms[] = {
1018		"_entry_trampoline",
1019		"__entry_trampoline_start",
1020		"entry_SYSCALL_64_trampoline",
1021	};
1022	struct symbol *sym = dso__first_symbol(dso);
1023	unsigned int i;
1024
1025	for (; sym; sym = dso__next_symbol(sym)) {
1026		if (sym->binding != STB_GLOBAL)
1027			continue;
1028		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1029			if (!strcmp(sym->name, syms[i]))
1030				return sym->start;
1031		}
1032	}
1033
1034	return 0;
1035}
1036
1037/*
1038 * These values can be used for kernels that do not have symbols for the entry
1039 * trampolines in kallsyms.
1040 */
1041#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1042#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1043#define X86_64_ENTRY_TRAMPOLINE		0x6000
1044
1045/* Map x86_64 PTI entry trampolines */
1046int machine__map_x86_64_entry_trampolines(struct machine *machine,
1047					  struct dso *kernel)
1048{
1049	struct map_groups *kmaps = &machine->kmaps;
1050	struct maps *maps = &kmaps->maps;
1051	int nr_cpus_avail, cpu;
1052	bool found = false;
1053	struct map *map;
1054	u64 pgoff;
1055
1056	/*
1057	 * In the vmlinux case, pgoff is a virtual address which must now be
1058	 * mapped to a vmlinux offset.
1059	 */
1060	for (map = maps__first(maps); map; map = map__next(map)) {
1061		struct kmap *kmap = __map__kmap(map);
1062		struct map *dest_map;
1063
1064		if (!kmap || !is_entry_trampoline(kmap->name))
1065			continue;
1066
1067		dest_map = map_groups__find(kmaps, map->pgoff);
1068		if (dest_map != map)
1069			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1070		found = true;
1071	}
1072	if (found || machine->trampolines_mapped)
1073		return 0;
1074
1075	pgoff = find_entry_trampoline(kernel);
1076	if (!pgoff)
1077		return 0;
1078
1079	nr_cpus_avail = machine__nr_cpus_avail(machine);
1080
1081	/* Add a 1 page map for each CPU's entry trampoline */
1082	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1083		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1084			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1085			 X86_64_ENTRY_TRAMPOLINE;
1086		struct extra_kernel_map xm = {
1087			.start = va,
1088			.end   = va + page_size,
1089			.pgoff = pgoff,
1090		};
1091
1092		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
 
 
1093
1094		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
 
1095			return -1;
1096	}
1097
1098	machine->trampolines_mapped = nr_cpus_avail;
 
 
 
 
 
 
1099
1100	return 0;
1101}
 
1102
1103int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1104					     struct dso *kernel __maybe_unused)
1105{
1106	return 0;
1107}
1108
1109static int
1110__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1111{
1112	struct kmap *kmap;
1113	struct map *map;
1114
1115	/* In case of renewal the kernel map, destroy previous one */
1116	machine__destroy_kernel_maps(machine);
1117
1118	machine->vmlinux_map = map__new2(0, kernel);
1119	if (machine->vmlinux_map == NULL)
1120		return -1;
1121
1122	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1123	map = machine__kernel_map(machine);
1124	kmap = map__kmap(map);
1125	if (!kmap)
1126		return -1;
1127
1128	kmap->kmaps = &machine->kmaps;
1129	map_groups__insert(&machine->kmaps, map);
1130
1131	return 0;
1132}
 
1133
1134void machine__destroy_kernel_maps(struct machine *machine)
1135{
1136	struct kmap *kmap;
1137	struct map *map = machine__kernel_map(machine);
1138
1139	if (map == NULL)
1140		return;
 
 
 
 
 
 
 
 
 
 
 
1141
1142	kmap = map__kmap(map);
1143	map_groups__remove(&machine->kmaps, map);
1144	if (kmap && kmap->ref_reloc_sym) {
1145		zfree((char **)&kmap->ref_reloc_sym->name);
1146		zfree(&kmap->ref_reloc_sym);
1147	}
1148
1149	map__zput(machine->vmlinux_map);
1150}
1151
1152int machines__create_guest_kernel_maps(struct machines *machines)
1153{
1154	int ret = 0;
1155	struct dirent **namelist = NULL;
1156	int i, items = 0;
1157	char path[PATH_MAX];
1158	pid_t pid;
1159	char *endp;
1160
1161	if (symbol_conf.default_guest_vmlinux_name ||
1162	    symbol_conf.default_guest_modules ||
1163	    symbol_conf.default_guest_kallsyms) {
1164		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1165	}
1166
1167	if (symbol_conf.guestmount) {
1168		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1169		if (items <= 0)
1170			return -ENOENT;
1171		for (i = 0; i < items; i++) {
1172			if (!isdigit(namelist[i]->d_name[0])) {
1173				/* Filter out . and .. */
1174				continue;
1175			}
1176			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1177			if ((*endp != '\0') ||
1178			    (endp == namelist[i]->d_name) ||
1179			    (errno == ERANGE)) {
1180				pr_debug("invalid directory (%s). Skipping.\n",
1181					 namelist[i]->d_name);
1182				continue;
1183			}
1184			sprintf(path, "%s/%s/proc/kallsyms",
1185				symbol_conf.guestmount,
1186				namelist[i]->d_name);
1187			ret = access(path, R_OK);
1188			if (ret) {
1189				pr_debug("Can't access file %s\n", path);
1190				goto failure;
1191			}
1192			machines__create_kernel_maps(machines, pid);
1193		}
1194failure:
1195		free(namelist);
1196	}
1197
1198	return ret;
1199}
1200
1201void machines__destroy_kernel_maps(struct machines *machines)
1202{
1203	struct rb_node *next = rb_first_cached(&machines->guests);
1204
1205	machine__destroy_kernel_maps(&machines->host);
1206
1207	while (next) {
1208		struct machine *pos = rb_entry(next, struct machine, rb_node);
1209
1210		next = rb_next(&pos->rb_node);
1211		rb_erase_cached(&pos->rb_node, &machines->guests);
1212		machine__delete(pos);
1213	}
1214}
1215
1216int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217{
1218	struct machine *machine = machines__findnew(machines, pid);
1219
1220	if (machine == NULL)
1221		return -1;
1222
1223	return machine__create_kernel_maps(machine);
1224}
1225
1226int machine__load_kallsyms(struct machine *machine, const char *filename)
 
1227{
1228	struct map *map = machine__kernel_map(machine);
1229	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230
1231	if (ret > 0) {
1232		dso__set_loaded(map->dso);
1233		/*
1234		 * Since /proc/kallsyms will have multiple sessions for the
1235		 * kernel, with modules between them, fixup the end of all
1236		 * sections.
1237		 */
1238		map_groups__fixup_end(&machine->kmaps);
1239	}
1240
1241	return ret;
1242}
1243
1244int machine__load_vmlinux_path(struct machine *machine)
 
1245{
1246	struct map *map = machine__kernel_map(machine);
1247	int ret = dso__load_vmlinux_path(map->dso, map);
1248
1249	if (ret > 0)
1250		dso__set_loaded(map->dso);
1251
1252	return ret;
1253}
1254
 
 
 
 
 
 
 
1255static char *get_kernel_version(const char *root_dir)
1256{
1257	char version[PATH_MAX];
1258	FILE *file;
1259	char *name, *tmp;
1260	const char *prefix = "Linux version ";
1261
1262	sprintf(version, "%s/proc/version", root_dir);
1263	file = fopen(version, "r");
1264	if (!file)
1265		return NULL;
1266
 
1267	tmp = fgets(version, sizeof(version), file);
1268	fclose(file);
1269	if (!tmp)
1270		return NULL;
1271
1272	name = strstr(version, prefix);
1273	if (!name)
1274		return NULL;
1275	name += strlen(prefix);
1276	tmp = strchr(name, ' ');
1277	if (tmp)
1278		*tmp = '\0';
1279
1280	return strdup(name);
1281}
1282
1283static bool is_kmod_dso(struct dso *dso)
1284{
1285	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1286	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1287}
1288
1289static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1290				       struct kmod_path *m)
1291{
 
1292	char *long_name;
1293	struct map *map = map_groups__find_by_name(mg, m->name);
1294
 
1295	if (map == NULL)
1296		return 0;
1297
1298	long_name = strdup(path);
1299	if (long_name == NULL)
1300		return -ENOMEM;
1301
1302	dso__set_long_name(map->dso, long_name, true);
1303	dso__kernel_module_get_build_id(map->dso, "");
1304
1305	/*
1306	 * Full name could reveal us kmod compression, so
1307	 * we need to update the symtab_type if needed.
1308	 */
1309	if (m->comp && is_kmod_dso(map->dso)) {
1310		map->dso->symtab_type++;
1311		map->dso->comp = m->comp;
1312	}
1313
1314	return 0;
1315}
1316
1317static int map_groups__set_modules_path_dir(struct map_groups *mg,
1318				const char *dir_name, int depth)
1319{
1320	struct dirent *dent;
1321	DIR *dir = opendir(dir_name);
1322	int ret = 0;
1323
1324	if (!dir) {
1325		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1326		return -1;
1327	}
1328
1329	while ((dent = readdir(dir)) != NULL) {
1330		char path[PATH_MAX];
1331		struct stat st;
1332
1333		/*sshfs might return bad dent->d_type, so we have to stat*/
1334		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1335		if (stat(path, &st))
1336			continue;
1337
1338		if (S_ISDIR(st.st_mode)) {
1339			if (!strcmp(dent->d_name, ".") ||
1340			    !strcmp(dent->d_name, ".."))
1341				continue;
1342
1343			/* Do not follow top-level source and build symlinks */
1344			if (depth == 0) {
1345				if (!strcmp(dent->d_name, "source") ||
1346				    !strcmp(dent->d_name, "build"))
1347					continue;
1348			}
1349
1350			ret = map_groups__set_modules_path_dir(mg, path,
1351							       depth + 1);
1352			if (ret < 0)
1353				goto out;
1354		} else {
1355			struct kmod_path m;
1356
1357			ret = kmod_path__parse_name(&m, dent->d_name);
1358			if (ret)
1359				goto out;
1360
1361			if (m.kmod)
1362				ret = map_groups__set_module_path(mg, path, &m);
1363
1364			zfree(&m.name);
1365
1366			if (ret)
1367				goto out;
1368		}
1369	}
1370
1371out:
1372	closedir(dir);
1373	return ret;
1374}
1375
1376static int machine__set_modules_path(struct machine *machine)
1377{
1378	char *version;
1379	char modules_path[PATH_MAX];
1380
1381	version = get_kernel_version(machine->root_dir);
1382	if (!version)
1383		return -1;
1384
1385	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1386		 machine->root_dir, version);
1387	free(version);
1388
1389	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1390}
1391int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1392				u64 *size __maybe_unused,
1393				const char *name __maybe_unused)
1394{
1395	return 0;
1396}
1397
1398static int machine__create_module(void *arg, const char *name, u64 start,
1399				  u64 size)
1400{
1401	struct machine *machine = arg;
1402	struct map *map;
1403
1404	if (arch__fix_module_text_start(&start, &size, name) < 0)
1405		return -1;
1406
1407	map = machine__findnew_module_map(machine, start, name);
1408	if (map == NULL)
1409		return -1;
1410	map->end = start + size;
1411
1412	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1413
1414	return 0;
1415}
1416
1417static int machine__create_modules(struct machine *machine)
1418{
1419	const char *modules;
1420	char path[PATH_MAX];
1421
1422	if (machine__is_default_guest(machine)) {
1423		modules = symbol_conf.default_guest_modules;
1424	} else {
1425		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1426		modules = path;
1427	}
1428
1429	if (symbol__restricted_filename(modules, "/proc/modules"))
1430		return -1;
1431
1432	if (modules__parse(modules, machine, machine__create_module))
1433		return -1;
1434
1435	if (!machine__set_modules_path(machine))
1436		return 0;
1437
1438	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1439
1440	return 0;
1441}
1442
1443static void machine__set_kernel_mmap(struct machine *machine,
1444				     u64 start, u64 end)
1445{
1446	machine->vmlinux_map->start = start;
1447	machine->vmlinux_map->end   = end;
1448	/*
1449	 * Be a bit paranoid here, some perf.data file came with
1450	 * a zero sized synthesized MMAP event for the kernel.
1451	 */
1452	if (start == 0 && end == 0)
1453		machine->vmlinux_map->end = ~0ULL;
1454}
1455
1456static void machine__update_kernel_mmap(struct machine *machine,
1457				     u64 start, u64 end)
1458{
1459	struct map *map = machine__kernel_map(machine);
1460
1461	map__get(map);
1462	map_groups__remove(&machine->kmaps, map);
1463
1464	machine__set_kernel_mmap(machine, start, end);
1465
1466	map_groups__insert(&machine->kmaps, map);
1467	map__put(map);
1468}
1469
1470int machine__create_kernel_maps(struct machine *machine)
1471{
1472	struct dso *kernel = machine__get_kernel(machine);
1473	const char *name = NULL;
1474	struct map *map;
1475	u64 start = 0, end = ~0ULL;
1476	int ret;
1477
1478	if (kernel == NULL)
1479		return -1;
1480
1481	ret = __machine__create_kernel_maps(machine, kernel);
 
1482	if (ret < 0)
1483		goto out_put;
1484
1485	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1486		if (machine__is_host(machine))
1487			pr_debug("Problems creating module maps, "
1488				 "continuing anyway...\n");
1489		else
1490			pr_debug("Problems creating module maps for guest %d, "
1491				 "continuing anyway...\n", machine->pid);
1492	}
1493
1494	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1495		if (name &&
1496		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1497			machine__destroy_kernel_maps(machine);
1498			ret = -1;
1499			goto out_put;
1500		}
1501
1502		/*
1503		 * we have a real start address now, so re-order the kmaps
1504		 * assume it's the last in the kmaps
1505		 */
1506		machine__update_kernel_mmap(machine, start, end);
1507	}
1508
1509	if (machine__create_extra_kernel_maps(machine, kernel))
1510		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1511
1512	if (end == ~0ULL) {
1513		/* update end address of the kernel map using adjacent module address */
1514		map = map__next(machine__kernel_map(machine));
1515		if (map)
1516			machine__set_kernel_mmap(machine, start, map->start);
1517	}
1518
1519out_put:
1520	dso__put(kernel);
1521	return ret;
 
 
 
 
 
 
 
 
1522}
1523
1524static bool machine__uses_kcore(struct machine *machine)
1525{
1526	struct dso *dso;
1527
1528	list_for_each_entry(dso, &machine->dsos.head, node) {
1529		if (dso__is_kcore(dso))
1530			return true;
1531	}
1532
1533	return false;
1534}
1535
1536static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1537					     union perf_event *event)
1538{
1539	return machine__is(machine, "x86_64") &&
1540	       is_entry_trampoline(event->mmap.filename);
1541}
1542
1543static int machine__process_extra_kernel_map(struct machine *machine,
1544					     union perf_event *event)
1545{
1546	struct map *kernel_map = machine__kernel_map(machine);
1547	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1548	struct extra_kernel_map xm = {
1549		.start = event->mmap.start,
1550		.end   = event->mmap.start + event->mmap.len,
1551		.pgoff = event->mmap.pgoff,
1552	};
1553
1554	if (kernel == NULL)
1555		return -1;
1556
1557	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1558
1559	return machine__create_extra_kernel_map(machine, kernel, &xm);
1560}
1561
1562static int machine__process_kernel_mmap_event(struct machine *machine,
1563					      union perf_event *event)
1564{
1565	struct map *map;
 
1566	enum dso_kernel_type kernel_type;
1567	bool is_kernel_mmap;
1568
1569	/* If we have maps from kcore then we do not need or want any others */
1570	if (machine__uses_kcore(machine))
1571		return 0;
1572
 
1573	if (machine__is_host(machine))
1574		kernel_type = DSO_TYPE_KERNEL;
1575	else
1576		kernel_type = DSO_TYPE_GUEST_KERNEL;
1577
1578	is_kernel_mmap = memcmp(event->mmap.filename,
1579				machine->mmap_name,
1580				strlen(machine->mmap_name) - 1) == 0;
1581	if (event->mmap.filename[0] == '/' ||
1582	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1583		map = machine__findnew_module_map(machine, event->mmap.start,
1584						  event->mmap.filename);
1585		if (map == NULL)
1586			goto out_problem;
1587
1588		map->end = map->start + event->mmap.len;
1589	} else if (is_kernel_mmap) {
1590		const char *symbol_name = (event->mmap.filename +
1591				strlen(machine->mmap_name));
1592		/*
1593		 * Should be there already, from the build-id table in
1594		 * the header.
1595		 */
1596		struct dso *kernel = NULL;
1597		struct dso *dso;
1598
1599		down_read(&machine->dsos.lock);
1600
1601		list_for_each_entry(dso, &machine->dsos.head, node) {
1602
1603			/*
1604			 * The cpumode passed to is_kernel_module is not the
1605			 * cpumode of *this* event. If we insist on passing
1606			 * correct cpumode to is_kernel_module, we should
1607			 * record the cpumode when we adding this dso to the
1608			 * linked list.
1609			 *
1610			 * However we don't really need passing correct
1611			 * cpumode.  We know the correct cpumode must be kernel
1612			 * mode (if not, we should not link it onto kernel_dsos
1613			 * list).
1614			 *
1615			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1616			 * is_kernel_module() treats it as a kernel cpumode.
1617			 */
1618
1619			if (!dso->kernel ||
1620			    is_kernel_module(dso->long_name,
1621					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1622				continue;
1623
1624
1625			kernel = dso;
1626			break;
1627		}
1628
1629		up_read(&machine->dsos.lock);
1630
1631		if (kernel == NULL)
1632			kernel = machine__findnew_dso(machine, machine->mmap_name);
1633		if (kernel == NULL)
1634			goto out_problem;
1635
1636		kernel->kernel = kernel_type;
1637		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1638			dso__put(kernel);
1639			goto out_problem;
1640		}
1641
1642		if (strstr(kernel->long_name, "vmlinux"))
1643			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1644
1645		machine__update_kernel_mmap(machine, event->mmap.start,
1646					 event->mmap.start + event->mmap.len);
1647
1648		/*
1649		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1650		 * symbol. Effectively having zero here means that at record
1651		 * time /proc/sys/kernel/kptr_restrict was non zero.
1652		 */
1653		if (event->mmap.pgoff != 0) {
1654			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1655							symbol_name,
1656							event->mmap.pgoff);
1657		}
1658
1659		if (machine__is_default_guest(machine)) {
1660			/*
1661			 * preload dso of guest kernel and modules
1662			 */
1663			dso__load(kernel, machine__kernel_map(machine));
1664		}
1665	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1666		return machine__process_extra_kernel_map(machine, event);
1667	}
1668	return 0;
1669out_problem:
1670	return -1;
1671}
1672
1673int machine__process_mmap2_event(struct machine *machine,
1674				 union perf_event *event,
1675				 struct perf_sample *sample)
1676{
1677	struct thread *thread;
1678	struct map *map;
 
1679	int ret = 0;
1680
1681	if (dump_trace)
1682		perf_event__fprintf_mmap2(event, stdout);
1683
1684	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1685	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1686		ret = machine__process_kernel_mmap_event(machine, event);
1687		if (ret < 0)
1688			goto out_problem;
1689		return 0;
1690	}
1691
1692	thread = machine__findnew_thread(machine, event->mmap2.pid,
1693					event->mmap2.tid);
1694	if (thread == NULL)
1695		goto out_problem;
1696
 
 
 
 
 
1697	map = map__new(machine, event->mmap2.start,
1698			event->mmap2.len, event->mmap2.pgoff,
1699			event->mmap2.maj,
1700			event->mmap2.min, event->mmap2.ino,
1701			event->mmap2.ino_generation,
1702			event->mmap2.prot,
1703			event->mmap2.flags,
1704			event->mmap2.filename, thread);
1705
1706	if (map == NULL)
1707		goto out_problem_map;
1708
1709	ret = thread__insert_map(thread, map);
1710	if (ret)
1711		goto out_problem_insert;
1712
1713	thread__put(thread);
1714	map__put(map);
1715	return 0;
1716
1717out_problem_insert:
1718	map__put(map);
1719out_problem_map:
1720	thread__put(thread);
1721out_problem:
1722	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1723	return 0;
1724}
1725
1726int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1727				struct perf_sample *sample)
1728{
1729	struct thread *thread;
1730	struct map *map;
1731	u32 prot = 0;
1732	int ret = 0;
1733
1734	if (dump_trace)
1735		perf_event__fprintf_mmap(event, stdout);
1736
1737	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1738	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1739		ret = machine__process_kernel_mmap_event(machine, event);
1740		if (ret < 0)
1741			goto out_problem;
1742		return 0;
1743	}
1744
1745	thread = machine__findnew_thread(machine, event->mmap.pid,
1746					 event->mmap.tid);
1747	if (thread == NULL)
1748		goto out_problem;
1749
1750	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1751		prot = PROT_EXEC;
 
 
1752
1753	map = map__new(machine, event->mmap.start,
1754			event->mmap.len, event->mmap.pgoff,
1755			0, 0, 0, 0, prot, 0,
1756			event->mmap.filename,
1757			thread);
1758
1759	if (map == NULL)
1760		goto out_problem_map;
1761
1762	ret = thread__insert_map(thread, map);
1763	if (ret)
1764		goto out_problem_insert;
1765
1766	thread__put(thread);
1767	map__put(map);
1768	return 0;
1769
1770out_problem_insert:
1771	map__put(map);
1772out_problem_map:
1773	thread__put(thread);
1774out_problem:
1775	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1776	return 0;
1777}
1778
1779static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1780{
1781	struct threads *threads = machine__threads(machine, th->tid);
1782
1783	if (threads->last_match == th)
1784		threads__set_last_match(threads, NULL);
1785
 
1786	if (lock)
1787		down_write(&threads->lock);
1788
1789	BUG_ON(refcount_read(&th->refcnt) == 0);
1790
1791	rb_erase_cached(&th->rb_node, &threads->entries);
1792	RB_CLEAR_NODE(&th->rb_node);
1793	--threads->nr;
1794	/*
1795	 * Move it first to the dead_threads list, then drop the reference,
1796	 * if this is the last reference, then the thread__delete destructor
1797	 * will be called and we will remove it from the dead_threads list.
1798	 */
1799	list_add_tail(&th->node, &threads->dead);
1800
1801	/*
1802	 * We need to do the put here because if this is the last refcount,
1803	 * then we will be touching the threads->dead head when removing the
1804	 * thread.
1805	 */
1806	thread__put(th);
1807
1808	if (lock)
1809		up_write(&threads->lock);
 
1810}
1811
1812void machine__remove_thread(struct machine *machine, struct thread *th)
1813{
1814	return __machine__remove_thread(machine, th, true);
1815}
1816
1817int machine__process_fork_event(struct machine *machine, union perf_event *event,
1818				struct perf_sample *sample)
1819{
1820	struct thread *thread = machine__find_thread(machine,
1821						     event->fork.pid,
1822						     event->fork.tid);
1823	struct thread *parent = machine__findnew_thread(machine,
1824							event->fork.ppid,
1825							event->fork.ptid);
1826	bool do_maps_clone = true;
1827	int err = 0;
1828
1829	if (dump_trace)
1830		perf_event__fprintf_task(event, stdout);
1831
1832	/*
1833	 * There may be an existing thread that is not actually the parent,
1834	 * either because we are processing events out of order, or because the
1835	 * (fork) event that would have removed the thread was lost. Assume the
1836	 * latter case and continue on as best we can.
1837	 */
1838	if (parent->pid_ != (pid_t)event->fork.ppid) {
1839		dump_printf("removing erroneous parent thread %d/%d\n",
1840			    parent->pid_, parent->tid);
1841		machine__remove_thread(machine, parent);
1842		thread__put(parent);
1843		parent = machine__findnew_thread(machine, event->fork.ppid,
1844						 event->fork.ptid);
1845	}
1846
1847	/* if a thread currently exists for the thread id remove it */
1848	if (thread != NULL) {
1849		machine__remove_thread(machine, thread);
1850		thread__put(thread);
1851	}
1852
1853	thread = machine__findnew_thread(machine, event->fork.pid,
1854					 event->fork.tid);
1855	/*
1856	 * When synthesizing FORK events, we are trying to create thread
1857	 * objects for the already running tasks on the machine.
1858	 *
1859	 * Normally, for a kernel FORK event, we want to clone the parent's
1860	 * maps because that is what the kernel just did.
1861	 *
1862	 * But when synthesizing, this should not be done.  If we do, we end up
1863	 * with overlapping maps as we process the sythesized MMAP2 events that
1864	 * get delivered shortly thereafter.
1865	 *
1866	 * Use the FORK event misc flags in an internal way to signal this
1867	 * situation, so we can elide the map clone when appropriate.
1868	 */
1869	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1870		do_maps_clone = false;
1871
1872	if (thread == NULL || parent == NULL ||
1873	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1874		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1875		err = -1;
1876	}
1877	thread__put(thread);
1878	thread__put(parent);
1879
1880	return err;
1881}
1882
1883int machine__process_exit_event(struct machine *machine, union perf_event *event,
1884				struct perf_sample *sample __maybe_unused)
1885{
1886	struct thread *thread = machine__find_thread(machine,
1887						     event->fork.pid,
1888						     event->fork.tid);
1889
1890	if (dump_trace)
1891		perf_event__fprintf_task(event, stdout);
1892
1893	if (thread != NULL) {
1894		thread__exited(thread);
1895		thread__put(thread);
1896	}
1897
1898	return 0;
1899}
1900
1901int machine__process_event(struct machine *machine, union perf_event *event,
1902			   struct perf_sample *sample)
1903{
1904	int ret;
1905
1906	switch (event->header.type) {
1907	case PERF_RECORD_COMM:
1908		ret = machine__process_comm_event(machine, event, sample); break;
1909	case PERF_RECORD_MMAP:
1910		ret = machine__process_mmap_event(machine, event, sample); break;
1911	case PERF_RECORD_NAMESPACES:
1912		ret = machine__process_namespaces_event(machine, event, sample); break;
1913	case PERF_RECORD_MMAP2:
1914		ret = machine__process_mmap2_event(machine, event, sample); break;
1915	case PERF_RECORD_FORK:
1916		ret = machine__process_fork_event(machine, event, sample); break;
1917	case PERF_RECORD_EXIT:
1918		ret = machine__process_exit_event(machine, event, sample); break;
1919	case PERF_RECORD_LOST:
1920		ret = machine__process_lost_event(machine, event, sample); break;
1921	case PERF_RECORD_AUX:
1922		ret = machine__process_aux_event(machine, event); break;
1923	case PERF_RECORD_ITRACE_START:
1924		ret = machine__process_itrace_start_event(machine, event); break;
1925	case PERF_RECORD_LOST_SAMPLES:
1926		ret = machine__process_lost_samples_event(machine, event, sample); break;
1927	case PERF_RECORD_SWITCH:
1928	case PERF_RECORD_SWITCH_CPU_WIDE:
1929		ret = machine__process_switch_event(machine, event); break;
1930	case PERF_RECORD_KSYMBOL:
1931		ret = machine__process_ksymbol(machine, event, sample); break;
1932	case PERF_RECORD_BPF_EVENT:
1933		ret = machine__process_bpf(machine, event, sample); break;
1934	default:
1935		ret = -1;
1936		break;
1937	}
1938
1939	return ret;
1940}
1941
1942static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1943{
1944	if (!regexec(regex, sym->name, 0, NULL, 0))
1945		return 1;
1946	return 0;
1947}
1948
1949static void ip__resolve_ams(struct thread *thread,
1950			    struct addr_map_symbol *ams,
1951			    u64 ip)
1952{
1953	struct addr_location al;
1954
1955	memset(&al, 0, sizeof(al));
1956	/*
1957	 * We cannot use the header.misc hint to determine whether a
1958	 * branch stack address is user, kernel, guest, hypervisor.
1959	 * Branches may straddle the kernel/user/hypervisor boundaries.
1960	 * Thus, we have to try consecutively until we find a match
1961	 * or else, the symbol is unknown
1962	 */
1963	thread__find_cpumode_addr_location(thread, ip, &al);
1964
1965	ams->addr = ip;
1966	ams->al_addr = al.addr;
1967	ams->sym = al.sym;
1968	ams->map = al.map;
1969	ams->phys_addr = 0;
1970}
1971
1972static void ip__resolve_data(struct thread *thread,
1973			     u8 m, struct addr_map_symbol *ams,
1974			     u64 addr, u64 phys_addr)
1975{
1976	struct addr_location al;
1977
1978	memset(&al, 0, sizeof(al));
1979
1980	thread__find_symbol(thread, m, addr, &al);
 
 
 
 
 
 
 
 
1981
1982	ams->addr = addr;
1983	ams->al_addr = al.addr;
1984	ams->sym = al.sym;
1985	ams->map = al.map;
1986	ams->phys_addr = phys_addr;
1987}
1988
1989struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1990				     struct addr_location *al)
1991{
1992	struct mem_info *mi = mem_info__new();
1993
1994	if (!mi)
1995		return NULL;
1996
1997	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1998	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1999			 sample->addr, sample->phys_addr);
2000	mi->data_src.val = sample->data_src;
2001
2002	return mi;
2003}
2004
2005static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
2006{
2007	char *srcline = NULL;
2008
2009	if (!map || callchain_param.key == CCKEY_FUNCTION)
2010		return srcline;
2011
2012	srcline = srcline__tree_find(&map->dso->srclines, ip);
2013	if (!srcline) {
2014		bool show_sym = false;
2015		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2016
2017		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2018				      sym, show_sym, show_addr, ip);
2019		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2020	}
2021
2022	return srcline;
2023}
2024
2025struct iterations {
2026	int nr_loop_iter;
2027	u64 cycles;
2028};
2029
2030static int add_callchain_ip(struct thread *thread,
2031			    struct callchain_cursor *cursor,
2032			    struct symbol **parent,
2033			    struct addr_location *root_al,
2034			    u8 *cpumode,
2035			    u64 ip,
2036			    bool branch,
2037			    struct branch_flags *flags,
2038			    struct iterations *iter,
2039			    u64 branch_from)
2040{
2041	struct addr_location al;
2042	int nr_loop_iter = 0;
2043	u64 iter_cycles = 0;
2044	const char *srcline = NULL;
2045
2046	al.filtered = 0;
2047	al.sym = NULL;
2048	if (!cpumode) {
2049		thread__find_cpumode_addr_location(thread, ip, &al);
 
2050	} else {
2051		if (ip >= PERF_CONTEXT_MAX) {
2052			switch (ip) {
2053			case PERF_CONTEXT_HV:
2054				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2055				break;
2056			case PERF_CONTEXT_KERNEL:
2057				*cpumode = PERF_RECORD_MISC_KERNEL;
2058				break;
2059			case PERF_CONTEXT_USER:
2060				*cpumode = PERF_RECORD_MISC_USER;
2061				break;
2062			default:
2063				pr_debug("invalid callchain context: "
2064					 "%"PRId64"\n", (s64) ip);
2065				/*
2066				 * It seems the callchain is corrupted.
2067				 * Discard all.
2068				 */
2069				callchain_cursor_reset(cursor);
2070				return 1;
2071			}
2072			return 0;
2073		}
2074		thread__find_symbol(thread, *cpumode, ip, &al);
 
2075	}
2076
2077	if (al.sym != NULL) {
2078		if (perf_hpp_list.parent && !*parent &&
2079		    symbol__match_regex(al.sym, &parent_regex))
2080			*parent = al.sym;
2081		else if (have_ignore_callees && root_al &&
2082		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2083			/* Treat this symbol as the root,
2084			   forgetting its callees. */
2085			*root_al = al;
2086			callchain_cursor_reset(cursor);
2087		}
2088	}
2089
2090	if (symbol_conf.hide_unresolved && al.sym == NULL)
2091		return 0;
2092
2093	if (iter) {
2094		nr_loop_iter = iter->nr_loop_iter;
2095		iter_cycles = iter->cycles;
2096	}
2097
2098	srcline = callchain_srcline(al.map, al.sym, al.addr);
2099	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2100				       branch, flags, nr_loop_iter,
2101				       iter_cycles, branch_from, srcline);
2102}
2103
2104struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2105					   struct addr_location *al)
2106{
2107	unsigned int i;
2108	const struct branch_stack *bs = sample->branch_stack;
2109	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2110
2111	if (!bi)
2112		return NULL;
2113
2114	for (i = 0; i < bs->nr; i++) {
2115		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2116		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2117		bi[i].flags = bs->entries[i].flags;
2118	}
2119	return bi;
2120}
2121
2122static void save_iterations(struct iterations *iter,
2123			    struct branch_entry *be, int nr)
2124{
2125	int i;
2126
2127	iter->nr_loop_iter++;
2128	iter->cycles = 0;
2129
2130	for (i = 0; i < nr; i++)
2131		iter->cycles += be[i].flags.cycles;
2132}
2133
2134#define CHASHSZ 127
2135#define CHASHBITS 7
2136#define NO_ENTRY 0xff
2137
2138#define PERF_MAX_BRANCH_DEPTH 127
2139
2140/* Remove loops. */
2141static int remove_loops(struct branch_entry *l, int nr,
2142			struct iterations *iter)
2143{
2144	int i, j, off;
2145	unsigned char chash[CHASHSZ];
2146
2147	memset(chash, NO_ENTRY, sizeof(chash));
2148
2149	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2150
2151	for (i = 0; i < nr; i++) {
2152		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2153
2154		/* no collision handling for now */
2155		if (chash[h] == NO_ENTRY) {
2156			chash[h] = i;
2157		} else if (l[chash[h]].from == l[i].from) {
2158			bool is_loop = true;
2159			/* check if it is a real loop */
2160			off = 0;
2161			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2162				if (l[j].from != l[i + off].from) {
2163					is_loop = false;
2164					break;
2165				}
2166			if (is_loop) {
2167				j = nr - (i + off);
2168				if (j > 0) {
2169					save_iterations(iter + i + off,
2170						l + i, off);
2171
2172					memmove(iter + i, iter + i + off,
2173						j * sizeof(*iter));
2174
2175					memmove(l + i, l + i + off,
2176						j * sizeof(*l));
2177				}
2178
2179				nr -= off;
2180			}
2181		}
2182	}
2183	return nr;
2184}
2185
2186/*
2187 * Recolve LBR callstack chain sample
2188 * Return:
2189 * 1 on success get LBR callchain information
2190 * 0 no available LBR callchain information, should try fp
2191 * negative error code on other errors.
2192 */
2193static int resolve_lbr_callchain_sample(struct thread *thread,
2194					struct callchain_cursor *cursor,
2195					struct perf_sample *sample,
2196					struct symbol **parent,
2197					struct addr_location *root_al,
2198					int max_stack)
2199{
2200	struct ip_callchain *chain = sample->callchain;
2201	int chain_nr = min(max_stack, (int)chain->nr), i;
2202	u8 cpumode = PERF_RECORD_MISC_USER;
2203	u64 ip, branch_from = 0;
 
2204
2205	for (i = 0; i < chain_nr; i++) {
2206		if (chain->ips[i] == PERF_CONTEXT_USER)
2207			break;
2208	}
2209
2210	/* LBR only affects the user callchain */
2211	if (i != chain_nr) {
2212		struct branch_stack *lbr_stack = sample->branch_stack;
2213		int lbr_nr = lbr_stack->nr, j, k;
2214		bool branch;
2215		struct branch_flags *flags;
2216		/*
2217		 * LBR callstack can only get user call chain.
2218		 * The mix_chain_nr is kernel call chain
2219		 * number plus LBR user call chain number.
2220		 * i is kernel call chain number,
2221		 * 1 is PERF_CONTEXT_USER,
2222		 * lbr_nr + 1 is the user call chain number.
2223		 * For details, please refer to the comments
2224		 * in callchain__printf
2225		 */
2226		int mix_chain_nr = i + 1 + lbr_nr + 1;
2227
2228		for (j = 0; j < mix_chain_nr; j++) {
2229			int err;
2230			branch = false;
2231			flags = NULL;
2232
 
2233			if (callchain_param.order == ORDER_CALLEE) {
2234				if (j < i + 1)
2235					ip = chain->ips[j];
2236				else if (j > i + 1) {
2237					k = j - i - 2;
2238					ip = lbr_stack->entries[k].from;
2239					branch = true;
2240					flags = &lbr_stack->entries[k].flags;
2241				} else {
2242					ip = lbr_stack->entries[0].to;
2243					branch = true;
2244					flags = &lbr_stack->entries[0].flags;
2245					branch_from =
2246						lbr_stack->entries[0].from;
2247				}
2248			} else {
2249				if (j < lbr_nr) {
2250					k = lbr_nr - j - 1;
2251					ip = lbr_stack->entries[k].from;
2252					branch = true;
2253					flags = &lbr_stack->entries[k].flags;
2254				}
2255				else if (j > lbr_nr)
2256					ip = chain->ips[i + 1 - (j - lbr_nr)];
2257				else {
2258					ip = lbr_stack->entries[0].to;
2259					branch = true;
2260					flags = &lbr_stack->entries[0].flags;
2261					branch_from =
2262						lbr_stack->entries[0].from;
2263				}
2264			}
2265
2266			err = add_callchain_ip(thread, cursor, parent,
2267					       root_al, &cpumode, ip,
2268					       branch, flags, NULL,
2269					       branch_from);
2270			if (err)
2271				return (err < 0) ? err : 0;
2272		}
2273		return 1;
2274	}
2275
2276	return 0;
2277}
2278
2279static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2280			     struct callchain_cursor *cursor,
2281			     struct symbol **parent,
2282			     struct addr_location *root_al,
2283			     u8 *cpumode, int ent)
2284{
2285	int err = 0;
2286
2287	while (--ent >= 0) {
2288		u64 ip = chain->ips[ent];
2289
2290		if (ip >= PERF_CONTEXT_MAX) {
2291			err = add_callchain_ip(thread, cursor, parent,
2292					       root_al, cpumode, ip,
2293					       false, NULL, NULL, 0);
2294			break;
2295		}
2296	}
2297	return err;
2298}
2299
2300static int thread__resolve_callchain_sample(struct thread *thread,
2301					    struct callchain_cursor *cursor,
2302					    struct evsel *evsel,
2303					    struct perf_sample *sample,
2304					    struct symbol **parent,
2305					    struct addr_location *root_al,
2306					    int max_stack)
2307{
2308	struct branch_stack *branch = sample->branch_stack;
2309	struct ip_callchain *chain = sample->callchain;
2310	int chain_nr = 0;
2311	u8 cpumode = PERF_RECORD_MISC_USER;
2312	int i, j, err, nr_entries;
2313	int skip_idx = -1;
2314	int first_call = 0;
2315
2316	if (chain)
2317		chain_nr = chain->nr;
2318
2319	if (perf_evsel__has_branch_callstack(evsel)) {
2320		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2321						   root_al, max_stack);
2322		if (err)
2323			return (err < 0) ? err : 0;
2324	}
2325
2326	/*
2327	 * Based on DWARF debug information, some architectures skip
2328	 * a callchain entry saved by the kernel.
2329	 */
2330	skip_idx = arch_skip_callchain_idx(thread, chain);
 
2331
2332	/*
2333	 * Add branches to call stack for easier browsing. This gives
2334	 * more context for a sample than just the callers.
2335	 *
2336	 * This uses individual histograms of paths compared to the
2337	 * aggregated histograms the normal LBR mode uses.
2338	 *
2339	 * Limitations for now:
2340	 * - No extra filters
2341	 * - No annotations (should annotate somehow)
2342	 */
2343
2344	if (branch && callchain_param.branch_callstack) {
2345		int nr = min(max_stack, (int)branch->nr);
2346		struct branch_entry be[nr];
2347		struct iterations iter[nr];
2348
2349		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2350			pr_warning("corrupted branch chain. skipping...\n");
2351			goto check_calls;
2352		}
2353
2354		for (i = 0; i < nr; i++) {
2355			if (callchain_param.order == ORDER_CALLEE) {
2356				be[i] = branch->entries[i];
2357
2358				if (chain == NULL)
2359					continue;
2360
2361				/*
2362				 * Check for overlap into the callchain.
2363				 * The return address is one off compared to
2364				 * the branch entry. To adjust for this
2365				 * assume the calling instruction is not longer
2366				 * than 8 bytes.
2367				 */
2368				if (i == skip_idx ||
2369				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2370					first_call++;
2371				else if (be[i].from < chain->ips[first_call] &&
2372				    be[i].from >= chain->ips[first_call] - 8)
2373					first_call++;
2374			} else
2375				be[i] = branch->entries[branch->nr - i - 1];
2376		}
2377
2378		memset(iter, 0, sizeof(struct iterations) * nr);
2379		nr = remove_loops(be, nr, iter);
2380
2381		for (i = 0; i < nr; i++) {
2382			err = add_callchain_ip(thread, cursor, parent,
2383					       root_al,
2384					       NULL, be[i].to,
2385					       true, &be[i].flags,
2386					       NULL, be[i].from);
2387
2388			if (!err)
2389				err = add_callchain_ip(thread, cursor, parent, root_al,
2390						       NULL, be[i].from,
2391						       true, &be[i].flags,
2392						       &iter[i], 0);
2393			if (err == -EINVAL)
2394				break;
2395			if (err)
2396				return err;
2397		}
2398
2399		if (chain_nr == 0)
2400			return 0;
2401
2402		chain_nr -= nr;
2403	}
2404
2405check_calls:
2406	if (callchain_param.order != ORDER_CALLEE) {
2407		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2408					&cpumode, chain->nr - first_call);
2409		if (err)
2410			return (err < 0) ? err : 0;
2411	}
2412	for (i = first_call, nr_entries = 0;
2413	     i < chain_nr && nr_entries < max_stack; i++) {
2414		u64 ip;
2415
2416		if (callchain_param.order == ORDER_CALLEE)
2417			j = i;
2418		else
2419			j = chain->nr - i - 1;
2420
2421#ifdef HAVE_SKIP_CALLCHAIN_IDX
2422		if (j == skip_idx)
2423			continue;
2424#endif
2425		ip = chain->ips[j];
2426		if (ip < PERF_CONTEXT_MAX)
2427                       ++nr_entries;
2428		else if (callchain_param.order != ORDER_CALLEE) {
2429			err = find_prev_cpumode(chain, thread, cursor, parent,
2430						root_al, &cpumode, j);
2431			if (err)
2432				return (err < 0) ? err : 0;
2433			continue;
2434		}
2435
2436		err = add_callchain_ip(thread, cursor, parent,
2437				       root_al, &cpumode, ip,
2438				       false, NULL, NULL, 0);
2439
2440		if (err)
2441			return (err < 0) ? err : 0;
2442	}
2443
2444	return 0;
2445}
2446
2447static int append_inlines(struct callchain_cursor *cursor,
2448			  struct map *map, struct symbol *sym, u64 ip)
2449{
2450	struct inline_node *inline_node;
2451	struct inline_list *ilist;
2452	u64 addr;
2453	int ret = 1;
2454
2455	if (!symbol_conf.inline_name || !map || !sym)
2456		return ret;
2457
2458	addr = map__map_ip(map, ip);
2459	addr = map__rip_2objdump(map, addr);
2460
2461	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2462	if (!inline_node) {
2463		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2464		if (!inline_node)
2465			return ret;
2466		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2467	}
2468
2469	list_for_each_entry(ilist, &inline_node->val, list) {
2470		ret = callchain_cursor_append(cursor, ip, map,
2471					      ilist->symbol, false,
2472					      NULL, 0, 0, 0, ilist->srcline);
2473
2474		if (ret != 0)
2475			return ret;
2476	}
2477
2478	return ret;
2479}
2480
2481static int unwind_entry(struct unwind_entry *entry, void *arg)
2482{
2483	struct callchain_cursor *cursor = arg;
2484	const char *srcline = NULL;
2485	u64 addr = entry->ip;
2486
2487	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2488		return 0;
2489
2490	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2491		return 0;
2492
2493	/*
2494	 * Convert entry->ip from a virtual address to an offset in
2495	 * its corresponding binary.
2496	 */
2497	if (entry->map)
2498		addr = map__map_ip(entry->map, entry->ip);
2499
2500	srcline = callchain_srcline(entry->map, entry->sym, addr);
2501	return callchain_cursor_append(cursor, entry->ip,
2502				       entry->map, entry->sym,
2503				       false, NULL, 0, 0, 0, srcline);
2504}
2505
2506static int thread__resolve_callchain_unwind(struct thread *thread,
2507					    struct callchain_cursor *cursor,
2508					    struct evsel *evsel,
2509					    struct perf_sample *sample,
2510					    int max_stack)
 
2511{
 
 
 
 
 
 
2512	/* Can we do dwarf post unwind? */
2513	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2514	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2515		return 0;
2516
2517	/* Bail out if nothing was captured. */
2518	if ((!sample->user_regs.regs) ||
2519	    (!sample->user_stack.size))
2520		return 0;
2521
2522	return unwind__get_entries(unwind_entry, cursor,
2523				   thread, sample, max_stack);
2524}
2525
2526int thread__resolve_callchain(struct thread *thread,
2527			      struct callchain_cursor *cursor,
2528			      struct evsel *evsel,
2529			      struct perf_sample *sample,
2530			      struct symbol **parent,
2531			      struct addr_location *root_al,
2532			      int max_stack)
2533{
2534	int ret = 0;
2535
2536	callchain_cursor_reset(cursor);
2537
2538	if (callchain_param.order == ORDER_CALLEE) {
2539		ret = thread__resolve_callchain_sample(thread, cursor,
2540						       evsel, sample,
2541						       parent, root_al,
2542						       max_stack);
2543		if (ret)
2544			return ret;
2545		ret = thread__resolve_callchain_unwind(thread, cursor,
2546						       evsel, sample,
2547						       max_stack);
2548	} else {
2549		ret = thread__resolve_callchain_unwind(thread, cursor,
2550						       evsel, sample,
2551						       max_stack);
2552		if (ret)
2553			return ret;
2554		ret = thread__resolve_callchain_sample(thread, cursor,
2555						       evsel, sample,
2556						       parent, root_al,
2557						       max_stack);
2558	}
2559
2560	return ret;
2561}
2562
2563int machine__for_each_thread(struct machine *machine,
2564			     int (*fn)(struct thread *thread, void *p),
2565			     void *priv)
2566{
2567	struct threads *threads;
2568	struct rb_node *nd;
2569	struct thread *thread;
2570	int rc = 0;
2571	int i;
2572
2573	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2574		threads = &machine->threads[i];
2575		for (nd = rb_first_cached(&threads->entries); nd;
2576		     nd = rb_next(nd)) {
2577			thread = rb_entry(nd, struct thread, rb_node);
2578			rc = fn(thread, priv);
2579			if (rc != 0)
2580				return rc;
2581		}
2582
2583		list_for_each_entry(thread, &threads->dead, node) {
2584			rc = fn(thread, priv);
2585			if (rc != 0)
2586				return rc;
2587		}
2588	}
2589	return rc;
2590}
2591
2592int machines__for_each_thread(struct machines *machines,
2593			      int (*fn)(struct thread *thread, void *p),
2594			      void *priv)
2595{
2596	struct rb_node *nd;
2597	int rc = 0;
2598
2599	rc = machine__for_each_thread(&machines->host, fn, priv);
2600	if (rc != 0)
2601		return rc;
2602
2603	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2604		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2605
2606		rc = machine__for_each_thread(machine, fn, priv);
2607		if (rc != 0)
2608			return rc;
2609	}
2610	return rc;
2611}
2612
 
 
 
 
 
 
 
 
 
 
 
 
 
2613pid_t machine__get_current_tid(struct machine *machine, int cpu)
2614{
2615	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2616
2617	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2618		return -1;
2619
2620	return machine->current_tid[cpu];
2621}
2622
2623int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2624			     pid_t tid)
2625{
2626	struct thread *thread;
2627	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2628
2629	if (cpu < 0)
2630		return -EINVAL;
2631
2632	if (!machine->current_tid) {
2633		int i;
2634
2635		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2636		if (!machine->current_tid)
2637			return -ENOMEM;
2638		for (i = 0; i < nr_cpus; i++)
2639			machine->current_tid[i] = -1;
2640	}
2641
2642	if (cpu >= nr_cpus) {
2643		pr_err("Requested CPU %d too large. ", cpu);
2644		pr_err("Consider raising MAX_NR_CPUS\n");
2645		return -EINVAL;
2646	}
2647
2648	machine->current_tid[cpu] = tid;
2649
2650	thread = machine__findnew_thread(machine, pid, tid);
2651	if (!thread)
2652		return -ENOMEM;
2653
2654	thread->cpu = cpu;
2655	thread__put(thread);
2656
2657	return 0;
2658}
2659
2660/*
2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662 * normalized arch is needed.
2663 */
2664bool machine__is(struct machine *machine, const char *arch)
2665{
2666	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667}
2668
2669int machine__nr_cpus_avail(struct machine *machine)
2670{
2671	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672}
2673
2674int machine__get_kernel_start(struct machine *machine)
2675{
2676	struct map *map = machine__kernel_map(machine);
2677	int err = 0;
2678
2679	/*
2680	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2682	 * all addresses including kernel addresses are less than 2^32.  In
2683	 * that case (32-bit system), if the kernel mapping is unknown, all
2684	 * addresses will be assumed to be in user space - see
2685	 * machine__kernel_ip().
2686	 */
2687	machine->kernel_start = 1ULL << 63;
2688	if (map) {
2689		err = map__load(map);
2690		/*
2691		 * On x86_64, PTI entry trampolines are less than the
2692		 * start of kernel text, but still above 2^63. So leave
2693		 * kernel_start = 1ULL << 63 for x86_64.
2694		 */
2695		if (!err && !machine__is(machine, "x86_64"))
2696			machine->kernel_start = map->start;
2697	}
2698	return err;
2699}
2700
2701u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702{
2703	u8 addr_cpumode = cpumode;
2704	bool kernel_ip;
2705
2706	if (!machine->single_address_space)
2707		goto out;
2708
2709	kernel_ip = machine__kernel_ip(machine, addr);
2710	switch (cpumode) {
2711	case PERF_RECORD_MISC_KERNEL:
2712	case PERF_RECORD_MISC_USER:
2713		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714					   PERF_RECORD_MISC_USER;
2715		break;
2716	case PERF_RECORD_MISC_GUEST_KERNEL:
2717	case PERF_RECORD_MISC_GUEST_USER:
2718		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719					   PERF_RECORD_MISC_GUEST_USER;
2720		break;
2721	default:
2722		break;
2723	}
2724out:
2725	return addr_cpumode;
2726}
2727
2728struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729{
2730	return dsos__findnew(&machine->dsos, filename);
2731}
2732
2733char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734{
2735	struct machine *machine = vmachine;
2736	struct map *map;
2737	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738
2739	if (sym == NULL)
2740		return NULL;
2741
2742	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743	*addrp = map->unmap_ip(map, sym->start);
2744	return sym->name;
2745}
v4.6
 
 
 
 
 
 
   1#include "callchain.h"
   2#include "debug.h"
 
 
   3#include "event.h"
   4#include "evsel.h"
   5#include "hist.h"
   6#include "machine.h"
   7#include "map.h"
 
 
 
 
 
   8#include "sort.h"
   9#include "strlist.h"
 
  10#include "thread.h"
 
  11#include "vdso.h"
  12#include <stdbool.h>
  13#include <symbol/kallsyms.h>
 
 
  14#include "unwind.h"
  15#include "linux/hash.h"
 
 
 
 
 
 
 
 
 
  16
  17static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  18
  19static void dsos__init(struct dsos *dsos)
  20{
  21	INIT_LIST_HEAD(&dsos->head);
  22	dsos->root = RB_ROOT;
  23	pthread_rwlock_init(&dsos->lock, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24}
  25
  26int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  27{
 
 
  28	memset(machine, 0, sizeof(*machine));
  29	map_groups__init(&machine->kmaps, machine);
  30	RB_CLEAR_NODE(&machine->rb_node);
  31	dsos__init(&machine->dsos);
  32
  33	machine->threads = RB_ROOT;
  34	pthread_rwlock_init(&machine->threads_lock, NULL);
  35	INIT_LIST_HEAD(&machine->dead_threads);
  36	machine->last_match = NULL;
  37
  38	machine->vdso_info = NULL;
  39	machine->env = NULL;
  40
  41	machine->pid = pid;
  42
  43	machine->symbol_filter = NULL;
  44	machine->id_hdr_size = 0;
 
  45	machine->comm_exec = false;
  46	machine->kernel_start = 0;
  47
  48	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
  49
  50	machine->root_dir = strdup(root_dir);
  51	if (machine->root_dir == NULL)
  52		return -ENOMEM;
  53
 
 
 
  54	if (pid != HOST_KERNEL_ID) {
  55		struct thread *thread = machine__findnew_thread(machine, -1,
  56								pid);
  57		char comm[64];
  58
  59		if (thread == NULL)
  60			return -ENOMEM;
  61
  62		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
  63		thread__set_comm(thread, comm, 0);
  64		thread__put(thread);
  65	}
  66
  67	machine->current_tid = NULL;
 
  68
 
 
 
 
 
  69	return 0;
  70}
  71
  72struct machine *machine__new_host(void)
  73{
  74	struct machine *machine = malloc(sizeof(*machine));
  75
  76	if (machine != NULL) {
  77		machine__init(machine, "", HOST_KERNEL_ID);
  78
  79		if (machine__create_kernel_maps(machine) < 0)
  80			goto out_delete;
  81	}
  82
  83	return machine;
  84out_delete:
  85	free(machine);
  86	return NULL;
  87}
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89static void dsos__purge(struct dsos *dsos)
  90{
  91	struct dso *pos, *n;
  92
  93	pthread_rwlock_wrlock(&dsos->lock);
  94
  95	list_for_each_entry_safe(pos, n, &dsos->head, node) {
  96		RB_CLEAR_NODE(&pos->rb_node);
  97		pos->root = NULL;
  98		list_del_init(&pos->node);
  99		dso__put(pos);
 100	}
 101
 102	pthread_rwlock_unlock(&dsos->lock);
 103}
 104
 105static void dsos__exit(struct dsos *dsos)
 106{
 107	dsos__purge(dsos);
 108	pthread_rwlock_destroy(&dsos->lock);
 109}
 110
 111void machine__delete_threads(struct machine *machine)
 112{
 113	struct rb_node *nd;
 
 114
 115	pthread_rwlock_wrlock(&machine->threads_lock);
 116	nd = rb_first(&machine->threads);
 117	while (nd) {
 118		struct thread *t = rb_entry(nd, struct thread, rb_node);
 
 
 119
 120		nd = rb_next(nd);
 121		__machine__remove_thread(machine, t, false);
 
 
 122	}
 123	pthread_rwlock_unlock(&machine->threads_lock);
 124}
 125
 126void machine__exit(struct machine *machine)
 127{
 
 
 
 
 
 128	machine__destroy_kernel_maps(machine);
 129	map_groups__exit(&machine->kmaps);
 130	dsos__exit(&machine->dsos);
 131	machine__exit_vdso(machine);
 132	zfree(&machine->root_dir);
 
 133	zfree(&machine->current_tid);
 134	pthread_rwlock_destroy(&machine->threads_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 135}
 136
 137void machine__delete(struct machine *machine)
 138{
 139	machine__exit(machine);
 140	free(machine);
 
 
 141}
 142
 143void machines__init(struct machines *machines)
 144{
 145	machine__init(&machines->host, "", HOST_KERNEL_ID);
 146	machines->guests = RB_ROOT;
 147	machines->symbol_filter = NULL;
 148}
 149
 150void machines__exit(struct machines *machines)
 151{
 152	machine__exit(&machines->host);
 153	/* XXX exit guest */
 154}
 155
 156struct machine *machines__add(struct machines *machines, pid_t pid,
 157			      const char *root_dir)
 158{
 159	struct rb_node **p = &machines->guests.rb_node;
 160	struct rb_node *parent = NULL;
 161	struct machine *pos, *machine = malloc(sizeof(*machine));
 
 162
 163	if (machine == NULL)
 164		return NULL;
 165
 166	if (machine__init(machine, root_dir, pid) != 0) {
 167		free(machine);
 168		return NULL;
 169	}
 170
 171	machine->symbol_filter = machines->symbol_filter;
 172
 173	while (*p != NULL) {
 174		parent = *p;
 175		pos = rb_entry(parent, struct machine, rb_node);
 176		if (pid < pos->pid)
 177			p = &(*p)->rb_left;
 178		else
 179			p = &(*p)->rb_right;
 
 
 180	}
 181
 182	rb_link_node(&machine->rb_node, parent, p);
 183	rb_insert_color(&machine->rb_node, &machines->guests);
 184
 185	return machine;
 186}
 187
 188void machines__set_symbol_filter(struct machines *machines,
 189				 symbol_filter_t symbol_filter)
 190{
 191	struct rb_node *nd;
 192
 193	machines->symbol_filter = symbol_filter;
 194	machines->host.symbol_filter = symbol_filter;
 195
 196	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 197		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 198
 199		machine->symbol_filter = symbol_filter;
 200	}
 201}
 202
 203void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 204{
 205	struct rb_node *nd;
 206
 207	machines->host.comm_exec = comm_exec;
 208
 209	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 210		struct machine *machine = rb_entry(nd, struct machine, rb_node);
 211
 212		machine->comm_exec = comm_exec;
 213	}
 214}
 215
 216struct machine *machines__find(struct machines *machines, pid_t pid)
 217{
 218	struct rb_node **p = &machines->guests.rb_node;
 219	struct rb_node *parent = NULL;
 220	struct machine *machine;
 221	struct machine *default_machine = NULL;
 222
 223	if (pid == HOST_KERNEL_ID)
 224		return &machines->host;
 225
 226	while (*p != NULL) {
 227		parent = *p;
 228		machine = rb_entry(parent, struct machine, rb_node);
 229		if (pid < machine->pid)
 230			p = &(*p)->rb_left;
 231		else if (pid > machine->pid)
 232			p = &(*p)->rb_right;
 233		else
 234			return machine;
 235		if (!machine->pid)
 236			default_machine = machine;
 237	}
 238
 239	return default_machine;
 240}
 241
 242struct machine *machines__findnew(struct machines *machines, pid_t pid)
 243{
 244	char path[PATH_MAX];
 245	const char *root_dir = "";
 246	struct machine *machine = machines__find(machines, pid);
 247
 248	if (machine && (machine->pid == pid))
 249		goto out;
 250
 251	if ((pid != HOST_KERNEL_ID) &&
 252	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
 253	    (symbol_conf.guestmount)) {
 254		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 255		if (access(path, R_OK)) {
 256			static struct strlist *seen;
 257
 258			if (!seen)
 259				seen = strlist__new(NULL, NULL);
 260
 261			if (!strlist__has_entry(seen, path)) {
 262				pr_err("Can't access file %s\n", path);
 263				strlist__add(seen, path);
 264			}
 265			machine = NULL;
 266			goto out;
 267		}
 268		root_dir = path;
 269	}
 270
 271	machine = machines__add(machines, pid, root_dir);
 272out:
 273	return machine;
 274}
 275
 276void machines__process_guests(struct machines *machines,
 277			      machine__process_t process, void *data)
 278{
 279	struct rb_node *nd;
 280
 281	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 282		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 283		process(pos, data);
 284	}
 285}
 286
 287char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
 288{
 289	if (machine__is_host(machine))
 290		snprintf(bf, size, "[%s]", "kernel.kallsyms");
 291	else if (machine__is_default_guest(machine))
 292		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
 293	else {
 294		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
 295			 machine->pid);
 296	}
 297
 298	return bf;
 299}
 300
 301void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 302{
 303	struct rb_node *node;
 304	struct machine *machine;
 305
 306	machines->host.id_hdr_size = id_hdr_size;
 307
 308	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
 
 309		machine = rb_entry(node, struct machine, rb_node);
 310		machine->id_hdr_size = id_hdr_size;
 311	}
 312
 313	return;
 314}
 315
 316static void machine__update_thread_pid(struct machine *machine,
 317				       struct thread *th, pid_t pid)
 318{
 319	struct thread *leader;
 320
 321	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 322		return;
 323
 324	th->pid_ = pid;
 325
 326	if (th->pid_ == th->tid)
 327		return;
 328
 329	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 330	if (!leader)
 331		goto out_err;
 332
 333	if (!leader->mg)
 334		leader->mg = map_groups__new(machine);
 335
 336	if (!leader->mg)
 337		goto out_err;
 338
 339	if (th->mg == leader->mg)
 340		return;
 341
 342	if (th->mg) {
 343		/*
 344		 * Maps are created from MMAP events which provide the pid and
 345		 * tid.  Consequently there never should be any maps on a thread
 346		 * with an unknown pid.  Just print an error if there are.
 347		 */
 348		if (!map_groups__empty(th->mg))
 349			pr_err("Discarding thread maps for %d:%d\n",
 350			       th->pid_, th->tid);
 351		map_groups__put(th->mg);
 352	}
 353
 354	th->mg = map_groups__get(leader->mg);
 355out_put:
 356	thread__put(leader);
 357	return;
 358out_err:
 359	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 360	goto out_put;
 361}
 362
 363/*
 364 * Caller must eventually drop thread->refcnt returned with a successfull
 365 * lookup/new thread inserted.
 
 366 */
 367static struct thread *____machine__findnew_thread(struct machine *machine,
 368						  pid_t pid, pid_t tid,
 369						  bool create)
 370{
 371	struct rb_node **p = &machine->threads.rb_node;
 372	struct rb_node *parent = NULL;
 373	struct thread *th;
 374
 375	/*
 376	 * Front-end cache - TID lookups come in blocks,
 377	 * so most of the time we dont have to look up
 378	 * the full rbtree:
 379	 */
 380	th = machine->last_match;
 381	if (th != NULL) {
 382		if (th->tid == tid) {
 383			machine__update_thread_pid(machine, th, pid);
 384			return thread__get(th);
 385		}
 386
 387		machine->last_match = NULL;
 388	}
 389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390	while (*p != NULL) {
 391		parent = *p;
 392		th = rb_entry(parent, struct thread, rb_node);
 393
 394		if (th->tid == tid) {
 395			machine->last_match = th;
 396			machine__update_thread_pid(machine, th, pid);
 397			return thread__get(th);
 398		}
 399
 400		if (tid < th->tid)
 401			p = &(*p)->rb_left;
 402		else
 403			p = &(*p)->rb_right;
 
 
 404	}
 405
 406	if (!create)
 407		return NULL;
 408
 409	th = thread__new(pid, tid);
 410	if (th != NULL) {
 411		rb_link_node(&th->rb_node, parent, p);
 412		rb_insert_color(&th->rb_node, &machine->threads);
 413
 414		/*
 415		 * We have to initialize map_groups separately
 416		 * after rb tree is updated.
 417		 *
 418		 * The reason is that we call machine__findnew_thread
 419		 * within thread__init_map_groups to find the thread
 420		 * leader and that would screwed the rb tree.
 421		 */
 422		if (thread__init_map_groups(th, machine)) {
 423			rb_erase_init(&th->rb_node, &machine->threads);
 424			RB_CLEAR_NODE(&th->rb_node);
 425			thread__put(th);
 426			return NULL;
 427		}
 428		/*
 429		 * It is now in the rbtree, get a ref
 430		 */
 431		thread__get(th);
 432		machine->last_match = th;
 
 433	}
 434
 435	return th;
 436}
 437
 438struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 439{
 440	return ____machine__findnew_thread(machine, pid, tid, true);
 441}
 442
 443struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 444				       pid_t tid)
 445{
 
 446	struct thread *th;
 447
 448	pthread_rwlock_wrlock(&machine->threads_lock);
 449	th = __machine__findnew_thread(machine, pid, tid);
 450	pthread_rwlock_unlock(&machine->threads_lock);
 451	return th;
 452}
 453
 454struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 455				    pid_t tid)
 456{
 
 457	struct thread *th;
 458	pthread_rwlock_rdlock(&machine->threads_lock);
 459	th =  ____machine__findnew_thread(machine, pid, tid, false);
 460	pthread_rwlock_unlock(&machine->threads_lock);
 
 461	return th;
 462}
 463
 464struct comm *machine__thread_exec_comm(struct machine *machine,
 465				       struct thread *thread)
 466{
 467	if (machine->comm_exec)
 468		return thread__exec_comm(thread);
 469	else
 470		return thread__comm(thread);
 471}
 472
 473int machine__process_comm_event(struct machine *machine, union perf_event *event,
 474				struct perf_sample *sample)
 475{
 476	struct thread *thread = machine__findnew_thread(machine,
 477							event->comm.pid,
 478							event->comm.tid);
 479	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 480	int err = 0;
 481
 482	if (exec)
 483		machine->comm_exec = true;
 484
 485	if (dump_trace)
 486		perf_event__fprintf_comm(event, stdout);
 487
 488	if (thread == NULL ||
 489	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 490		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 491		err = -1;
 492	}
 493
 494	thread__put(thread);
 495
 496	return err;
 497}
 498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499int machine__process_lost_event(struct machine *machine __maybe_unused,
 500				union perf_event *event, struct perf_sample *sample __maybe_unused)
 501{
 502	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
 503		    event->lost.id, event->lost.lost);
 504	return 0;
 505}
 506
 507int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 508					union perf_event *event, struct perf_sample *sample)
 509{
 510	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
 511		    sample->id, event->lost_samples.lost);
 512	return 0;
 513}
 514
 515static struct dso *machine__findnew_module_dso(struct machine *machine,
 516					       struct kmod_path *m,
 517					       const char *filename)
 518{
 519	struct dso *dso;
 520
 521	pthread_rwlock_wrlock(&machine->dsos.lock);
 522
 523	dso = __dsos__find(&machine->dsos, m->name, true);
 524	if (!dso) {
 525		dso = __dsos__addnew(&machine->dsos, m->name);
 526		if (dso == NULL)
 527			goto out_unlock;
 528
 529		if (machine__is_host(machine))
 530			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
 531		else
 532			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
 533
 534		/* _KMODULE_COMP should be next to _KMODULE */
 535		if (m->kmod && m->comp)
 536			dso->symtab_type++;
 537
 538		dso__set_short_name(dso, strdup(m->name), true);
 539		dso__set_long_name(dso, strdup(filename), true);
 540	}
 541
 542	dso__get(dso);
 543out_unlock:
 544	pthread_rwlock_unlock(&machine->dsos.lock);
 545	return dso;
 546}
 547
 548int machine__process_aux_event(struct machine *machine __maybe_unused,
 549			       union perf_event *event)
 550{
 551	if (dump_trace)
 552		perf_event__fprintf_aux(event, stdout);
 553	return 0;
 554}
 555
 556int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 557					union perf_event *event)
 558{
 559	if (dump_trace)
 560		perf_event__fprintf_itrace_start(event, stdout);
 561	return 0;
 562}
 563
 564int machine__process_switch_event(struct machine *machine __maybe_unused,
 565				  union perf_event *event)
 566{
 567	if (dump_trace)
 568		perf_event__fprintf_switch(event, stdout);
 569	return 0;
 570}
 571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 573{
 574	const char *dup_filename;
 575
 576	if (!filename || !dso || !dso->long_name)
 577		return;
 578	if (dso->long_name[0] != '[')
 579		return;
 580	if (!strchr(filename, '/'))
 581		return;
 582
 583	dup_filename = strdup(filename);
 584	if (!dup_filename)
 585		return;
 586
 587	dso__set_long_name(dso, dup_filename, true);
 588}
 589
 590struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 591					const char *filename)
 592{
 593	struct map *map = NULL;
 594	struct dso *dso = NULL;
 595	struct kmod_path m;
 596
 597	if (kmod_path__parse_name(&m, filename))
 598		return NULL;
 599
 600	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
 601				       m.name);
 602	if (map) {
 603		/*
 604		 * If the map's dso is an offline module, give dso__load()
 605		 * a chance to find the file path of that module by fixing
 606		 * long_name.
 607		 */
 608		dso__adjust_kmod_long_name(map->dso, filename);
 609		goto out;
 610	}
 611
 612	dso = machine__findnew_module_dso(machine, &m, filename);
 613	if (dso == NULL)
 614		goto out;
 615
 616	map = map__new2(start, dso, MAP__FUNCTION);
 617	if (map == NULL)
 618		goto out;
 619
 620	map_groups__insert(&machine->kmaps, map);
 621
 622	/* Put the map here because map_groups__insert alread got it */
 623	map__put(map);
 624out:
 625	/* put the dso here, corresponding to  machine__findnew_module_dso */
 626	dso__put(dso);
 627	free(m.name);
 628	return map;
 629}
 630
 631size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 632{
 633	struct rb_node *nd;
 634	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 635
 636	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 637		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 638		ret += __dsos__fprintf(&pos->dsos.head, fp);
 639	}
 640
 641	return ret;
 642}
 643
 644size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 645				     bool (skip)(struct dso *dso, int parm), int parm)
 646{
 647	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 648}
 649
 650size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 651				     bool (skip)(struct dso *dso, int parm), int parm)
 652{
 653	struct rb_node *nd;
 654	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 655
 656	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
 657		struct machine *pos = rb_entry(nd, struct machine, rb_node);
 658		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 659	}
 660	return ret;
 661}
 662
 663size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 664{
 665	int i;
 666	size_t printed = 0;
 667	struct dso *kdso = machine__kernel_map(machine)->dso;
 668
 669	if (kdso->has_build_id) {
 670		char filename[PATH_MAX];
 671		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
 
 672			printed += fprintf(fp, "[0] %s\n", filename);
 673	}
 674
 675	for (i = 0; i < vmlinux_path__nr_entries; ++i)
 676		printed += fprintf(fp, "[%d] %s\n",
 677				   i + kdso->has_build_id, vmlinux_path[i]);
 678
 679	return printed;
 680}
 681
 682size_t machine__fprintf(struct machine *machine, FILE *fp)
 683{
 684	size_t ret = 0;
 685	struct rb_node *nd;
 
 
 686
 687	pthread_rwlock_rdlock(&machine->threads_lock);
 
 688
 689	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
 690		struct thread *pos = rb_entry(nd, struct thread, rb_node);
 691
 692		ret += thread__fprintf(pos, fp);
 693	}
 
 
 
 694
 695	pthread_rwlock_unlock(&machine->threads_lock);
 
 696
 
 
 697	return ret;
 698}
 699
 700static struct dso *machine__get_kernel(struct machine *machine)
 701{
 702	const char *vmlinux_name = NULL;
 703	struct dso *kernel;
 704
 705	if (machine__is_host(machine)) {
 706		vmlinux_name = symbol_conf.vmlinux_name;
 707		if (!vmlinux_name)
 708			vmlinux_name = "[kernel.kallsyms]";
 709
 710		kernel = machine__findnew_kernel(machine, vmlinux_name,
 711						 "[kernel]", DSO_TYPE_KERNEL);
 712	} else {
 713		char bf[PATH_MAX];
 714
 715		if (machine__is_default_guest(machine))
 716			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 717		if (!vmlinux_name)
 718			vmlinux_name = machine__mmap_name(machine, bf,
 719							  sizeof(bf));
 720
 721		kernel = machine__findnew_kernel(machine, vmlinux_name,
 722						 "[guest.kernel]",
 723						 DSO_TYPE_GUEST_KERNEL);
 724	}
 725
 726	if (kernel != NULL && (!kernel->has_build_id))
 727		dso__read_running_kernel_build_id(kernel, machine);
 728
 729	return kernel;
 730}
 731
 732struct process_args {
 733	u64 start;
 734};
 735
 736static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 737					   size_t bufsz)
 738{
 739	if (machine__is_default_guest(machine))
 740		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 741	else
 742		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 743}
 744
 745const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 746
 747/* Figure out the start address of kernel map from /proc/kallsyms.
 748 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 749 * symbol_name if it's not that important.
 750 */
 751static u64 machine__get_running_kernel_start(struct machine *machine,
 752					     const char **symbol_name)
 
 753{
 754	char filename[PATH_MAX];
 755	int i;
 756	const char *name;
 757	u64 addr = 0;
 758
 759	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 760
 761	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 762		return 0;
 763
 764	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 765		addr = kallsyms__get_function_start(filename, name);
 766		if (addr)
 767			break;
 768	}
 769
 
 
 
 770	if (symbol_name)
 771		*symbol_name = name;
 772
 773	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774}
 775
 776int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
 777{
 778	enum map_type type;
 779	u64 start = machine__get_running_kernel_start(machine, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780
 781	/* In case of renewal the kernel map, destroy previous one */
 782	machine__destroy_kernel_maps(machine);
 
 
 
 
 
 
 
 
 
 
 783
 784	for (type = 0; type < MAP__NR_TYPES; ++type) {
 785		struct kmap *kmap;
 786		struct map *map;
 787
 788		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
 789		if (machine->vmlinux_maps[type] == NULL)
 790			return -1;
 
 791
 792		machine->vmlinux_maps[type]->map_ip =
 793			machine->vmlinux_maps[type]->unmap_ip =
 794				identity__map_ip;
 795		map = __machine__kernel_map(machine, type);
 796		kmap = map__kmap(map);
 797		if (!kmap)
 798			return -1;
 799
 800		kmap->kmaps = &machine->kmaps;
 801		map_groups__insert(&machine->kmaps, map);
 802	}
 803
 
 
 
 804	return 0;
 805}
 806
 807void machine__destroy_kernel_maps(struct machine *machine)
 
 808{
 809	enum map_type type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810
 811	for (type = 0; type < MAP__NR_TYPES; ++type) {
 812		struct kmap *kmap;
 813		struct map *map = __machine__kernel_map(machine, type);
 814
 815		if (map == NULL)
 816			continue;
 
 
 817
 818		kmap = map__kmap(map);
 819		map_groups__remove(&machine->kmaps, map);
 820		if (kmap && kmap->ref_reloc_sym) {
 821			/*
 822			 * ref_reloc_sym is shared among all maps, so free just
 823			 * on one of them.
 824			 */
 825			if (type == MAP__FUNCTION) {
 826				zfree((char **)&kmap->ref_reloc_sym->name);
 827				zfree(&kmap->ref_reloc_sym);
 828			} else
 829				kmap->ref_reloc_sym = NULL;
 830		}
 831
 832		map__put(machine->vmlinux_maps[type]);
 833		machine->vmlinux_maps[type] = NULL;
 
 
 
 834	}
 
 
 835}
 836
 837int machines__create_guest_kernel_maps(struct machines *machines)
 838{
 839	int ret = 0;
 840	struct dirent **namelist = NULL;
 841	int i, items = 0;
 842	char path[PATH_MAX];
 843	pid_t pid;
 844	char *endp;
 845
 846	if (symbol_conf.default_guest_vmlinux_name ||
 847	    symbol_conf.default_guest_modules ||
 848	    symbol_conf.default_guest_kallsyms) {
 849		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
 850	}
 851
 852	if (symbol_conf.guestmount) {
 853		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
 854		if (items <= 0)
 855			return -ENOENT;
 856		for (i = 0; i < items; i++) {
 857			if (!isdigit(namelist[i]->d_name[0])) {
 858				/* Filter out . and .. */
 859				continue;
 860			}
 861			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
 862			if ((*endp != '\0') ||
 863			    (endp == namelist[i]->d_name) ||
 864			    (errno == ERANGE)) {
 865				pr_debug("invalid directory (%s). Skipping.\n",
 866					 namelist[i]->d_name);
 867				continue;
 868			}
 869			sprintf(path, "%s/%s/proc/kallsyms",
 870				symbol_conf.guestmount,
 871				namelist[i]->d_name);
 872			ret = access(path, R_OK);
 873			if (ret) {
 874				pr_debug("Can't access file %s\n", path);
 875				goto failure;
 876			}
 877			machines__create_kernel_maps(machines, pid);
 878		}
 879failure:
 880		free(namelist);
 881	}
 882
 883	return ret;
 884}
 885
 886void machines__destroy_kernel_maps(struct machines *machines)
 887{
 888	struct rb_node *next = rb_first(&machines->guests);
 889
 890	machine__destroy_kernel_maps(&machines->host);
 891
 892	while (next) {
 893		struct machine *pos = rb_entry(next, struct machine, rb_node);
 894
 895		next = rb_next(&pos->rb_node);
 896		rb_erase(&pos->rb_node, &machines->guests);
 897		machine__delete(pos);
 898	}
 899}
 900
 901int machines__create_kernel_maps(struct machines *machines, pid_t pid)
 902{
 903	struct machine *machine = machines__findnew(machines, pid);
 904
 905	if (machine == NULL)
 906		return -1;
 907
 908	return machine__create_kernel_maps(machine);
 909}
 910
 911int machine__load_kallsyms(struct machine *machine, const char *filename,
 912			   enum map_type type, symbol_filter_t filter)
 913{
 914	struct map *map = machine__kernel_map(machine);
 915	int ret = dso__load_kallsyms(map->dso, filename, map, filter);
 916
 917	if (ret > 0) {
 918		dso__set_loaded(map->dso, type);
 919		/*
 920		 * Since /proc/kallsyms will have multiple sessions for the
 921		 * kernel, with modules between them, fixup the end of all
 922		 * sections.
 923		 */
 924		__map_groups__fixup_end(&machine->kmaps, type);
 925	}
 926
 927	return ret;
 928}
 929
 930int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
 931			       symbol_filter_t filter)
 932{
 933	struct map *map = machine__kernel_map(machine);
 934	int ret = dso__load_vmlinux_path(map->dso, map, filter);
 935
 936	if (ret > 0)
 937		dso__set_loaded(map->dso, type);
 938
 939	return ret;
 940}
 941
 942static void map_groups__fixup_end(struct map_groups *mg)
 943{
 944	int i;
 945	for (i = 0; i < MAP__NR_TYPES; ++i)
 946		__map_groups__fixup_end(mg, i);
 947}
 948
 949static char *get_kernel_version(const char *root_dir)
 950{
 951	char version[PATH_MAX];
 952	FILE *file;
 953	char *name, *tmp;
 954	const char *prefix = "Linux version ";
 955
 956	sprintf(version, "%s/proc/version", root_dir);
 957	file = fopen(version, "r");
 958	if (!file)
 959		return NULL;
 960
 961	version[0] = '\0';
 962	tmp = fgets(version, sizeof(version), file);
 963	fclose(file);
 
 
 964
 965	name = strstr(version, prefix);
 966	if (!name)
 967		return NULL;
 968	name += strlen(prefix);
 969	tmp = strchr(name, ' ');
 970	if (tmp)
 971		*tmp = '\0';
 972
 973	return strdup(name);
 974}
 975
 976static bool is_kmod_dso(struct dso *dso)
 977{
 978	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
 979	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
 980}
 981
 982static int map_groups__set_module_path(struct map_groups *mg, const char *path,
 983				       struct kmod_path *m)
 984{
 985	struct map *map;
 986	char *long_name;
 
 987
 988	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
 989	if (map == NULL)
 990		return 0;
 991
 992	long_name = strdup(path);
 993	if (long_name == NULL)
 994		return -ENOMEM;
 995
 996	dso__set_long_name(map->dso, long_name, true);
 997	dso__kernel_module_get_build_id(map->dso, "");
 998
 999	/*
1000	 * Full name could reveal us kmod compression, so
1001	 * we need to update the symtab_type if needed.
1002	 */
1003	if (m->comp && is_kmod_dso(map->dso))
1004		map->dso->symtab_type++;
 
 
1005
1006	return 0;
1007}
1008
1009static int map_groups__set_modules_path_dir(struct map_groups *mg,
1010				const char *dir_name, int depth)
1011{
1012	struct dirent *dent;
1013	DIR *dir = opendir(dir_name);
1014	int ret = 0;
1015
1016	if (!dir) {
1017		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1018		return -1;
1019	}
1020
1021	while ((dent = readdir(dir)) != NULL) {
1022		char path[PATH_MAX];
1023		struct stat st;
1024
1025		/*sshfs might return bad dent->d_type, so we have to stat*/
1026		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1027		if (stat(path, &st))
1028			continue;
1029
1030		if (S_ISDIR(st.st_mode)) {
1031			if (!strcmp(dent->d_name, ".") ||
1032			    !strcmp(dent->d_name, ".."))
1033				continue;
1034
1035			/* Do not follow top-level source and build symlinks */
1036			if (depth == 0) {
1037				if (!strcmp(dent->d_name, "source") ||
1038				    !strcmp(dent->d_name, "build"))
1039					continue;
1040			}
1041
1042			ret = map_groups__set_modules_path_dir(mg, path,
1043							       depth + 1);
1044			if (ret < 0)
1045				goto out;
1046		} else {
1047			struct kmod_path m;
1048
1049			ret = kmod_path__parse_name(&m, dent->d_name);
1050			if (ret)
1051				goto out;
1052
1053			if (m.kmod)
1054				ret = map_groups__set_module_path(mg, path, &m);
1055
1056			free(m.name);
1057
1058			if (ret)
1059				goto out;
1060		}
1061	}
1062
1063out:
1064	closedir(dir);
1065	return ret;
1066}
1067
1068static int machine__set_modules_path(struct machine *machine)
1069{
1070	char *version;
1071	char modules_path[PATH_MAX];
1072
1073	version = get_kernel_version(machine->root_dir);
1074	if (!version)
1075		return -1;
1076
1077	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1078		 machine->root_dir, version);
1079	free(version);
1080
1081	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1082}
 
 
 
 
 
 
1083
1084static int machine__create_module(void *arg, const char *name, u64 start)
 
1085{
1086	struct machine *machine = arg;
1087	struct map *map;
1088
 
 
 
1089	map = machine__findnew_module_map(machine, start, name);
1090	if (map == NULL)
1091		return -1;
 
1092
1093	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1094
1095	return 0;
1096}
1097
1098static int machine__create_modules(struct machine *machine)
1099{
1100	const char *modules;
1101	char path[PATH_MAX];
1102
1103	if (machine__is_default_guest(machine)) {
1104		modules = symbol_conf.default_guest_modules;
1105	} else {
1106		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1107		modules = path;
1108	}
1109
1110	if (symbol__restricted_filename(modules, "/proc/modules"))
1111		return -1;
1112
1113	if (modules__parse(modules, machine, machine__create_module))
1114		return -1;
1115
1116	if (!machine__set_modules_path(machine))
1117		return 0;
1118
1119	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1120
1121	return 0;
1122}
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124int machine__create_kernel_maps(struct machine *machine)
1125{
1126	struct dso *kernel = machine__get_kernel(machine);
1127	const char *name;
1128	u64 addr = machine__get_running_kernel_start(machine, &name);
 
1129	int ret;
1130
1131	if (!addr || kernel == NULL)
1132		return -1;
1133
1134	ret = __machine__create_kernel_maps(machine, kernel);
1135	dso__put(kernel);
1136	if (ret < 0)
1137		return -1;
1138
1139	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1140		if (machine__is_host(machine))
1141			pr_debug("Problems creating module maps, "
1142				 "continuing anyway...\n");
1143		else
1144			pr_debug("Problems creating module maps for guest %d, "
1145				 "continuing anyway...\n", machine->pid);
1146	}
1147
1148	/*
1149	 * Now that we have all the maps created, just set the ->end of them:
1150	 */
1151	map_groups__fixup_end(&machine->kmaps);
 
 
 
1152
1153	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1154					     addr)) {
1155		machine__destroy_kernel_maps(machine);
1156		return -1;
 
1157	}
1158
1159	return 0;
1160}
1161
1162static void machine__set_kernel_mmap_len(struct machine *machine,
1163					 union perf_event *event)
1164{
1165	int i;
 
 
1166
1167	for (i = 0; i < MAP__NR_TYPES; i++) {
1168		machine->vmlinux_maps[i]->start = event->mmap.start;
1169		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1170						   event->mmap.len);
1171		/*
1172		 * Be a bit paranoid here, some perf.data file came with
1173		 * a zero sized synthesized MMAP event for the kernel.
1174		 */
1175		if (machine->vmlinux_maps[i]->end == 0)
1176			machine->vmlinux_maps[i]->end = ~0ULL;
1177	}
1178}
1179
1180static bool machine__uses_kcore(struct machine *machine)
1181{
1182	struct dso *dso;
1183
1184	list_for_each_entry(dso, &machine->dsos.head, node) {
1185		if (dso__is_kcore(dso))
1186			return true;
1187	}
1188
1189	return false;
1190}
1191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192static int machine__process_kernel_mmap_event(struct machine *machine,
1193					      union perf_event *event)
1194{
1195	struct map *map;
1196	char kmmap_prefix[PATH_MAX];
1197	enum dso_kernel_type kernel_type;
1198	bool is_kernel_mmap;
1199
1200	/* If we have maps from kcore then we do not need or want any others */
1201	if (machine__uses_kcore(machine))
1202		return 0;
1203
1204	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1205	if (machine__is_host(machine))
1206		kernel_type = DSO_TYPE_KERNEL;
1207	else
1208		kernel_type = DSO_TYPE_GUEST_KERNEL;
1209
1210	is_kernel_mmap = memcmp(event->mmap.filename,
1211				kmmap_prefix,
1212				strlen(kmmap_prefix) - 1) == 0;
1213	if (event->mmap.filename[0] == '/' ||
1214	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1215		map = machine__findnew_module_map(machine, event->mmap.start,
1216						  event->mmap.filename);
1217		if (map == NULL)
1218			goto out_problem;
1219
1220		map->end = map->start + event->mmap.len;
1221	} else if (is_kernel_mmap) {
1222		const char *symbol_name = (event->mmap.filename +
1223				strlen(kmmap_prefix));
1224		/*
1225		 * Should be there already, from the build-id table in
1226		 * the header.
1227		 */
1228		struct dso *kernel = NULL;
1229		struct dso *dso;
1230
1231		pthread_rwlock_rdlock(&machine->dsos.lock);
1232
1233		list_for_each_entry(dso, &machine->dsos.head, node) {
1234
1235			/*
1236			 * The cpumode passed to is_kernel_module is not the
1237			 * cpumode of *this* event. If we insist on passing
1238			 * correct cpumode to is_kernel_module, we should
1239			 * record the cpumode when we adding this dso to the
1240			 * linked list.
1241			 *
1242			 * However we don't really need passing correct
1243			 * cpumode.  We know the correct cpumode must be kernel
1244			 * mode (if not, we should not link it onto kernel_dsos
1245			 * list).
1246			 *
1247			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1248			 * is_kernel_module() treats it as a kernel cpumode.
1249			 */
1250
1251			if (!dso->kernel ||
1252			    is_kernel_module(dso->long_name,
1253					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1254				continue;
1255
1256
1257			kernel = dso;
1258			break;
1259		}
1260
1261		pthread_rwlock_unlock(&machine->dsos.lock);
1262
1263		if (kernel == NULL)
1264			kernel = machine__findnew_dso(machine, kmmap_prefix);
1265		if (kernel == NULL)
1266			goto out_problem;
1267
1268		kernel->kernel = kernel_type;
1269		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1270			dso__put(kernel);
1271			goto out_problem;
1272		}
1273
1274		if (strstr(kernel->long_name, "vmlinux"))
1275			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1276
1277		machine__set_kernel_mmap_len(machine, event);
 
1278
1279		/*
1280		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1281		 * symbol. Effectively having zero here means that at record
1282		 * time /proc/sys/kernel/kptr_restrict was non zero.
1283		 */
1284		if (event->mmap.pgoff != 0) {
1285			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1286							 symbol_name,
1287							 event->mmap.pgoff);
1288		}
1289
1290		if (machine__is_default_guest(machine)) {
1291			/*
1292			 * preload dso of guest kernel and modules
1293			 */
1294			dso__load(kernel, machine__kernel_map(machine), NULL);
1295		}
 
 
1296	}
1297	return 0;
1298out_problem:
1299	return -1;
1300}
1301
1302int machine__process_mmap2_event(struct machine *machine,
1303				 union perf_event *event,
1304				 struct perf_sample *sample)
1305{
1306	struct thread *thread;
1307	struct map *map;
1308	enum map_type type;
1309	int ret = 0;
1310
1311	if (dump_trace)
1312		perf_event__fprintf_mmap2(event, stdout);
1313
1314	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1315	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1316		ret = machine__process_kernel_mmap_event(machine, event);
1317		if (ret < 0)
1318			goto out_problem;
1319		return 0;
1320	}
1321
1322	thread = machine__findnew_thread(machine, event->mmap2.pid,
1323					event->mmap2.tid);
1324	if (thread == NULL)
1325		goto out_problem;
1326
1327	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1328		type = MAP__VARIABLE;
1329	else
1330		type = MAP__FUNCTION;
1331
1332	map = map__new(machine, event->mmap2.start,
1333			event->mmap2.len, event->mmap2.pgoff,
1334			event->mmap2.pid, event->mmap2.maj,
1335			event->mmap2.min, event->mmap2.ino,
1336			event->mmap2.ino_generation,
1337			event->mmap2.prot,
1338			event->mmap2.flags,
1339			event->mmap2.filename, type, thread);
1340
1341	if (map == NULL)
1342		goto out_problem_map;
1343
1344	thread__insert_map(thread, map);
 
 
 
1345	thread__put(thread);
1346	map__put(map);
1347	return 0;
1348
 
 
1349out_problem_map:
1350	thread__put(thread);
1351out_problem:
1352	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1353	return 0;
1354}
1355
1356int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1357				struct perf_sample *sample)
1358{
1359	struct thread *thread;
1360	struct map *map;
1361	enum map_type type;
1362	int ret = 0;
1363
1364	if (dump_trace)
1365		perf_event__fprintf_mmap(event, stdout);
1366
1367	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1368	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1369		ret = machine__process_kernel_mmap_event(machine, event);
1370		if (ret < 0)
1371			goto out_problem;
1372		return 0;
1373	}
1374
1375	thread = machine__findnew_thread(machine, event->mmap.pid,
1376					 event->mmap.tid);
1377	if (thread == NULL)
1378		goto out_problem;
1379
1380	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1381		type = MAP__VARIABLE;
1382	else
1383		type = MAP__FUNCTION;
1384
1385	map = map__new(machine, event->mmap.start,
1386			event->mmap.len, event->mmap.pgoff,
1387			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1388			event->mmap.filename,
1389			type, thread);
1390
1391	if (map == NULL)
1392		goto out_problem_map;
1393
1394	thread__insert_map(thread, map);
 
 
 
1395	thread__put(thread);
1396	map__put(map);
1397	return 0;
1398
 
 
1399out_problem_map:
1400	thread__put(thread);
1401out_problem:
1402	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1403	return 0;
1404}
1405
1406static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1407{
1408	if (machine->last_match == th)
1409		machine->last_match = NULL;
 
 
1410
1411	BUG_ON(atomic_read(&th->refcnt) == 0);
1412	if (lock)
1413		pthread_rwlock_wrlock(&machine->threads_lock);
1414	rb_erase_init(&th->rb_node, &machine->threads);
 
 
 
1415	RB_CLEAR_NODE(&th->rb_node);
 
1416	/*
1417	 * Move it first to the dead_threads list, then drop the reference,
1418	 * if this is the last reference, then the thread__delete destructor
1419	 * will be called and we will remove it from the dead_threads list.
1420	 */
1421	list_add_tail(&th->node, &machine->dead_threads);
 
 
 
 
 
 
 
 
1422	if (lock)
1423		pthread_rwlock_unlock(&machine->threads_lock);
1424	thread__put(th);
1425}
1426
1427void machine__remove_thread(struct machine *machine, struct thread *th)
1428{
1429	return __machine__remove_thread(machine, th, true);
1430}
1431
1432int machine__process_fork_event(struct machine *machine, union perf_event *event,
1433				struct perf_sample *sample)
1434{
1435	struct thread *thread = machine__find_thread(machine,
1436						     event->fork.pid,
1437						     event->fork.tid);
1438	struct thread *parent = machine__findnew_thread(machine,
1439							event->fork.ppid,
1440							event->fork.ptid);
 
1441	int err = 0;
1442
1443	if (dump_trace)
1444		perf_event__fprintf_task(event, stdout);
1445
1446	/*
1447	 * There may be an existing thread that is not actually the parent,
1448	 * either because we are processing events out of order, or because the
1449	 * (fork) event that would have removed the thread was lost. Assume the
1450	 * latter case and continue on as best we can.
1451	 */
1452	if (parent->pid_ != (pid_t)event->fork.ppid) {
1453		dump_printf("removing erroneous parent thread %d/%d\n",
1454			    parent->pid_, parent->tid);
1455		machine__remove_thread(machine, parent);
1456		thread__put(parent);
1457		parent = machine__findnew_thread(machine, event->fork.ppid,
1458						 event->fork.ptid);
1459	}
1460
1461	/* if a thread currently exists for the thread id remove it */
1462	if (thread != NULL) {
1463		machine__remove_thread(machine, thread);
1464		thread__put(thread);
1465	}
1466
1467	thread = machine__findnew_thread(machine, event->fork.pid,
1468					 event->fork.tid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469
1470	if (thread == NULL || parent == NULL ||
1471	    thread__fork(thread, parent, sample->time) < 0) {
1472		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1473		err = -1;
1474	}
1475	thread__put(thread);
1476	thread__put(parent);
1477
1478	return err;
1479}
1480
1481int machine__process_exit_event(struct machine *machine, union perf_event *event,
1482				struct perf_sample *sample __maybe_unused)
1483{
1484	struct thread *thread = machine__find_thread(machine,
1485						     event->fork.pid,
1486						     event->fork.tid);
1487
1488	if (dump_trace)
1489		perf_event__fprintf_task(event, stdout);
1490
1491	if (thread != NULL) {
1492		thread__exited(thread);
1493		thread__put(thread);
1494	}
1495
1496	return 0;
1497}
1498
1499int machine__process_event(struct machine *machine, union perf_event *event,
1500			   struct perf_sample *sample)
1501{
1502	int ret;
1503
1504	switch (event->header.type) {
1505	case PERF_RECORD_COMM:
1506		ret = machine__process_comm_event(machine, event, sample); break;
1507	case PERF_RECORD_MMAP:
1508		ret = machine__process_mmap_event(machine, event, sample); break;
 
 
1509	case PERF_RECORD_MMAP2:
1510		ret = machine__process_mmap2_event(machine, event, sample); break;
1511	case PERF_RECORD_FORK:
1512		ret = machine__process_fork_event(machine, event, sample); break;
1513	case PERF_RECORD_EXIT:
1514		ret = machine__process_exit_event(machine, event, sample); break;
1515	case PERF_RECORD_LOST:
1516		ret = machine__process_lost_event(machine, event, sample); break;
1517	case PERF_RECORD_AUX:
1518		ret = machine__process_aux_event(machine, event); break;
1519	case PERF_RECORD_ITRACE_START:
1520		ret = machine__process_itrace_start_event(machine, event); break;
1521	case PERF_RECORD_LOST_SAMPLES:
1522		ret = machine__process_lost_samples_event(machine, event, sample); break;
1523	case PERF_RECORD_SWITCH:
1524	case PERF_RECORD_SWITCH_CPU_WIDE:
1525		ret = machine__process_switch_event(machine, event); break;
 
 
 
 
1526	default:
1527		ret = -1;
1528		break;
1529	}
1530
1531	return ret;
1532}
1533
1534static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1535{
1536	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1537		return 1;
1538	return 0;
1539}
1540
1541static void ip__resolve_ams(struct thread *thread,
1542			    struct addr_map_symbol *ams,
1543			    u64 ip)
1544{
1545	struct addr_location al;
1546
1547	memset(&al, 0, sizeof(al));
1548	/*
1549	 * We cannot use the header.misc hint to determine whether a
1550	 * branch stack address is user, kernel, guest, hypervisor.
1551	 * Branches may straddle the kernel/user/hypervisor boundaries.
1552	 * Thus, we have to try consecutively until we find a match
1553	 * or else, the symbol is unknown
1554	 */
1555	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1556
1557	ams->addr = ip;
1558	ams->al_addr = al.addr;
1559	ams->sym = al.sym;
1560	ams->map = al.map;
 
1561}
1562
1563static void ip__resolve_data(struct thread *thread,
1564			     u8 m, struct addr_map_symbol *ams, u64 addr)
 
1565{
1566	struct addr_location al;
1567
1568	memset(&al, 0, sizeof(al));
1569
1570	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1571	if (al.map == NULL) {
1572		/*
1573		 * some shared data regions have execute bit set which puts
1574		 * their mapping in the MAP__FUNCTION type array.
1575		 * Check there as a fallback option before dropping the sample.
1576		 */
1577		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1578	}
1579
1580	ams->addr = addr;
1581	ams->al_addr = al.addr;
1582	ams->sym = al.sym;
1583	ams->map = al.map;
 
1584}
1585
1586struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1587				     struct addr_location *al)
1588{
1589	struct mem_info *mi = zalloc(sizeof(*mi));
1590
1591	if (!mi)
1592		return NULL;
1593
1594	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1595	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
 
1596	mi->data_src.val = sample->data_src;
1597
1598	return mi;
1599}
1600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601static int add_callchain_ip(struct thread *thread,
 
1602			    struct symbol **parent,
1603			    struct addr_location *root_al,
1604			    u8 *cpumode,
1605			    u64 ip)
 
 
 
 
1606{
1607	struct addr_location al;
 
 
 
1608
1609	al.filtered = 0;
1610	al.sym = NULL;
1611	if (!cpumode) {
1612		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1613						   ip, &al);
1614	} else {
1615		if (ip >= PERF_CONTEXT_MAX) {
1616			switch (ip) {
1617			case PERF_CONTEXT_HV:
1618				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1619				break;
1620			case PERF_CONTEXT_KERNEL:
1621				*cpumode = PERF_RECORD_MISC_KERNEL;
1622				break;
1623			case PERF_CONTEXT_USER:
1624				*cpumode = PERF_RECORD_MISC_USER;
1625				break;
1626			default:
1627				pr_debug("invalid callchain context: "
1628					 "%"PRId64"\n", (s64) ip);
1629				/*
1630				 * It seems the callchain is corrupted.
1631				 * Discard all.
1632				 */
1633				callchain_cursor_reset(&callchain_cursor);
1634				return 1;
1635			}
1636			return 0;
1637		}
1638		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1639					   ip, &al);
1640	}
1641
1642	if (al.sym != NULL) {
1643		if (sort__has_parent && !*parent &&
1644		    symbol__match_regex(al.sym, &parent_regex))
1645			*parent = al.sym;
1646		else if (have_ignore_callees && root_al &&
1647		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1648			/* Treat this symbol as the root,
1649			   forgetting its callees. */
1650			*root_al = al;
1651			callchain_cursor_reset(&callchain_cursor);
1652		}
1653	}
1654
1655	if (symbol_conf.hide_unresolved && al.sym == NULL)
1656		return 0;
1657	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
 
 
 
 
 
 
 
 
 
1658}
1659
1660struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1661					   struct addr_location *al)
1662{
1663	unsigned int i;
1664	const struct branch_stack *bs = sample->branch_stack;
1665	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1666
1667	if (!bi)
1668		return NULL;
1669
1670	for (i = 0; i < bs->nr; i++) {
1671		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1672		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1673		bi[i].flags = bs->entries[i].flags;
1674	}
1675	return bi;
1676}
1677
 
 
 
 
 
 
 
 
 
 
 
 
1678#define CHASHSZ 127
1679#define CHASHBITS 7
1680#define NO_ENTRY 0xff
1681
1682#define PERF_MAX_BRANCH_DEPTH 127
1683
1684/* Remove loops. */
1685static int remove_loops(struct branch_entry *l, int nr)
 
1686{
1687	int i, j, off;
1688	unsigned char chash[CHASHSZ];
1689
1690	memset(chash, NO_ENTRY, sizeof(chash));
1691
1692	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1693
1694	for (i = 0; i < nr; i++) {
1695		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1696
1697		/* no collision handling for now */
1698		if (chash[h] == NO_ENTRY) {
1699			chash[h] = i;
1700		} else if (l[chash[h]].from == l[i].from) {
1701			bool is_loop = true;
1702			/* check if it is a real loop */
1703			off = 0;
1704			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1705				if (l[j].from != l[i + off].from) {
1706					is_loop = false;
1707					break;
1708				}
1709			if (is_loop) {
1710				memmove(l + i, l + i + off,
1711					(nr - (i + off)) * sizeof(*l));
 
 
 
 
 
 
 
 
 
 
1712				nr -= off;
1713			}
1714		}
1715	}
1716	return nr;
1717}
1718
1719/*
1720 * Recolve LBR callstack chain sample
1721 * Return:
1722 * 1 on success get LBR callchain information
1723 * 0 no available LBR callchain information, should try fp
1724 * negative error code on other errors.
1725 */
1726static int resolve_lbr_callchain_sample(struct thread *thread,
 
1727					struct perf_sample *sample,
1728					struct symbol **parent,
1729					struct addr_location *root_al,
1730					int max_stack)
1731{
1732	struct ip_callchain *chain = sample->callchain;
1733	int chain_nr = min(max_stack, (int)chain->nr);
1734	u8 cpumode = PERF_RECORD_MISC_USER;
1735	int i, j, err;
1736	u64 ip;
1737
1738	for (i = 0; i < chain_nr; i++) {
1739		if (chain->ips[i] == PERF_CONTEXT_USER)
1740			break;
1741	}
1742
1743	/* LBR only affects the user callchain */
1744	if (i != chain_nr) {
1745		struct branch_stack *lbr_stack = sample->branch_stack;
1746		int lbr_nr = lbr_stack->nr;
 
 
1747		/*
1748		 * LBR callstack can only get user call chain.
1749		 * The mix_chain_nr is kernel call chain
1750		 * number plus LBR user call chain number.
1751		 * i is kernel call chain number,
1752		 * 1 is PERF_CONTEXT_USER,
1753		 * lbr_nr + 1 is the user call chain number.
1754		 * For details, please refer to the comments
1755		 * in callchain__printf
1756		 */
1757		int mix_chain_nr = i + 1 + lbr_nr + 1;
1758
1759		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1760			pr_warning("corrupted callchain. skipping...\n");
1761			return 0;
1762		}
1763
1764		for (j = 0; j < mix_chain_nr; j++) {
1765			if (callchain_param.order == ORDER_CALLEE) {
1766				if (j < i + 1)
1767					ip = chain->ips[j];
1768				else if (j > i + 1)
1769					ip = lbr_stack->entries[j - i - 2].from;
1770				else
 
 
 
1771					ip = lbr_stack->entries[0].to;
 
 
 
 
 
1772			} else {
1773				if (j < lbr_nr)
1774					ip = lbr_stack->entries[lbr_nr - j - 1].from;
 
 
 
 
1775				else if (j > lbr_nr)
1776					ip = chain->ips[i + 1 - (j - lbr_nr)];
1777				else
1778					ip = lbr_stack->entries[0].to;
 
 
 
 
 
1779			}
1780
1781			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
 
 
 
1782			if (err)
1783				return (err < 0) ? err : 0;
1784		}
1785		return 1;
1786	}
1787
1788	return 0;
1789}
1790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1791static int thread__resolve_callchain_sample(struct thread *thread,
1792					    struct perf_evsel *evsel,
 
1793					    struct perf_sample *sample,
1794					    struct symbol **parent,
1795					    struct addr_location *root_al,
1796					    int max_stack)
1797{
1798	struct branch_stack *branch = sample->branch_stack;
1799	struct ip_callchain *chain = sample->callchain;
1800	int chain_nr = min(max_stack, (int)chain->nr);
1801	u8 cpumode = PERF_RECORD_MISC_USER;
1802	int i, j, err;
1803	int skip_idx = -1;
1804	int first_call = 0;
1805
1806	callchain_cursor_reset(&callchain_cursor);
 
1807
1808	if (has_branch_callstack(evsel)) {
1809		err = resolve_lbr_callchain_sample(thread, sample, parent,
1810						   root_al, max_stack);
1811		if (err)
1812			return (err < 0) ? err : 0;
1813	}
1814
1815	/*
1816	 * Based on DWARF debug information, some architectures skip
1817	 * a callchain entry saved by the kernel.
1818	 */
1819	if (chain->nr < PERF_MAX_STACK_DEPTH)
1820		skip_idx = arch_skip_callchain_idx(thread, chain);
1821
1822	/*
1823	 * Add branches to call stack for easier browsing. This gives
1824	 * more context for a sample than just the callers.
1825	 *
1826	 * This uses individual histograms of paths compared to the
1827	 * aggregated histograms the normal LBR mode uses.
1828	 *
1829	 * Limitations for now:
1830	 * - No extra filters
1831	 * - No annotations (should annotate somehow)
1832	 */
1833
1834	if (branch && callchain_param.branch_callstack) {
1835		int nr = min(max_stack, (int)branch->nr);
1836		struct branch_entry be[nr];
 
1837
1838		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1839			pr_warning("corrupted branch chain. skipping...\n");
1840			goto check_calls;
1841		}
1842
1843		for (i = 0; i < nr; i++) {
1844			if (callchain_param.order == ORDER_CALLEE) {
1845				be[i] = branch->entries[i];
 
 
 
 
1846				/*
1847				 * Check for overlap into the callchain.
1848				 * The return address is one off compared to
1849				 * the branch entry. To adjust for this
1850				 * assume the calling instruction is not longer
1851				 * than 8 bytes.
1852				 */
1853				if (i == skip_idx ||
1854				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1855					first_call++;
1856				else if (be[i].from < chain->ips[first_call] &&
1857				    be[i].from >= chain->ips[first_call] - 8)
1858					first_call++;
1859			} else
1860				be[i] = branch->entries[branch->nr - i - 1];
1861		}
1862
1863		nr = remove_loops(be, nr);
 
1864
1865		for (i = 0; i < nr; i++) {
1866			err = add_callchain_ip(thread, parent, root_al,
1867					       NULL, be[i].to);
 
 
 
 
1868			if (!err)
1869				err = add_callchain_ip(thread, parent, root_al,
1870						       NULL, be[i].from);
 
 
1871			if (err == -EINVAL)
1872				break;
1873			if (err)
1874				return err;
1875		}
 
 
 
 
1876		chain_nr -= nr;
1877	}
1878
1879check_calls:
1880	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1881		pr_warning("corrupted callchain. skipping...\n");
1882		return 0;
 
 
1883	}
1884
1885	for (i = first_call; i < chain_nr; i++) {
1886		u64 ip;
1887
1888		if (callchain_param.order == ORDER_CALLEE)
1889			j = i;
1890		else
1891			j = chain->nr - i - 1;
1892
1893#ifdef HAVE_SKIP_CALLCHAIN_IDX
1894		if (j == skip_idx)
1895			continue;
1896#endif
1897		ip = chain->ips[j];
 
 
 
 
 
 
 
 
 
1898
1899		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
 
 
1900
1901		if (err)
1902			return (err < 0) ? err : 0;
1903	}
1904
1905	return 0;
1906}
1907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908static int unwind_entry(struct unwind_entry *entry, void *arg)
1909{
1910	struct callchain_cursor *cursor = arg;
 
 
1911
1912	if (symbol_conf.hide_unresolved && entry->sym == NULL)
1913		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1914	return callchain_cursor_append(cursor, entry->ip,
1915				       entry->map, entry->sym);
 
1916}
1917
1918int thread__resolve_callchain(struct thread *thread,
1919			      struct perf_evsel *evsel,
1920			      struct perf_sample *sample,
1921			      struct symbol **parent,
1922			      struct addr_location *root_al,
1923			      int max_stack)
1924{
1925	int ret = thread__resolve_callchain_sample(thread, evsel,
1926						   sample, parent,
1927						   root_al, max_stack);
1928	if (ret)
1929		return ret;
1930
1931	/* Can we do dwarf post unwind? */
1932	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1933	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1934		return 0;
1935
1936	/* Bail out if nothing was captured. */
1937	if ((!sample->user_regs.regs) ||
1938	    (!sample->user_stack.size))
1939		return 0;
1940
1941	return unwind__get_entries(unwind_entry, &callchain_cursor,
1942				   thread, sample, max_stack);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1943
 
1944}
1945
1946int machine__for_each_thread(struct machine *machine,
1947			     int (*fn)(struct thread *thread, void *p),
1948			     void *priv)
1949{
 
1950	struct rb_node *nd;
1951	struct thread *thread;
1952	int rc = 0;
 
1953
1954	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1955		thread = rb_entry(nd, struct thread, rb_node);
1956		rc = fn(thread, priv);
1957		if (rc != 0)
1958			return rc;
1959	}
 
 
 
1960
1961	list_for_each_entry(thread, &machine->dead_threads, node) {
1962		rc = fn(thread, priv);
1963		if (rc != 0)
1964			return rc;
 
1965	}
1966	return rc;
1967}
1968
1969int machines__for_each_thread(struct machines *machines,
1970			      int (*fn)(struct thread *thread, void *p),
1971			      void *priv)
1972{
1973	struct rb_node *nd;
1974	int rc = 0;
1975
1976	rc = machine__for_each_thread(&machines->host, fn, priv);
1977	if (rc != 0)
1978		return rc;
1979
1980	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1981		struct machine *machine = rb_entry(nd, struct machine, rb_node);
1982
1983		rc = machine__for_each_thread(machine, fn, priv);
1984		if (rc != 0)
1985			return rc;
1986	}
1987	return rc;
1988}
1989
1990int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1991				  struct target *target, struct thread_map *threads,
1992				  perf_event__handler_t process, bool data_mmap,
1993				  unsigned int proc_map_timeout)
1994{
1995	if (target__has_task(target))
1996		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1997	else if (target__has_cpu(target))
1998		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1999	/* command specified */
2000	return 0;
2001}
2002
2003pid_t machine__get_current_tid(struct machine *machine, int cpu)
2004{
2005	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
 
 
2006		return -1;
2007
2008	return machine->current_tid[cpu];
2009}
2010
2011int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2012			     pid_t tid)
2013{
2014	struct thread *thread;
 
2015
2016	if (cpu < 0)
2017		return -EINVAL;
2018
2019	if (!machine->current_tid) {
2020		int i;
2021
2022		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2023		if (!machine->current_tid)
2024			return -ENOMEM;
2025		for (i = 0; i < MAX_NR_CPUS; i++)
2026			machine->current_tid[i] = -1;
2027	}
2028
2029	if (cpu >= MAX_NR_CPUS) {
2030		pr_err("Requested CPU %d too large. ", cpu);
2031		pr_err("Consider raising MAX_NR_CPUS\n");
2032		return -EINVAL;
2033	}
2034
2035	machine->current_tid[cpu] = tid;
2036
2037	thread = machine__findnew_thread(machine, pid, tid);
2038	if (!thread)
2039		return -ENOMEM;
2040
2041	thread->cpu = cpu;
2042	thread__put(thread);
2043
2044	return 0;
2045}
2046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2047int machine__get_kernel_start(struct machine *machine)
2048{
2049	struct map *map = machine__kernel_map(machine);
2050	int err = 0;
2051
2052	/*
2053	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2054	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2055	 * all addresses including kernel addresses are less than 2^32.  In
2056	 * that case (32-bit system), if the kernel mapping is unknown, all
2057	 * addresses will be assumed to be in user space - see
2058	 * machine__kernel_ip().
2059	 */
2060	machine->kernel_start = 1ULL << 63;
2061	if (map) {
2062		err = map__load(map, machine->symbol_filter);
2063		if (map->start)
 
 
 
 
 
2064			machine->kernel_start = map->start;
2065	}
2066	return err;
2067}
2068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2070{
2071	return dsos__findnew(&machine->dsos, filename);
2072}
2073
2074char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2075{
2076	struct machine *machine = vmachine;
2077	struct map *map;
2078	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2079
2080	if (sym == NULL)
2081		return NULL;
2082
2083	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2084	*addrp = map->unmap_ip(map, sym->start);
2085	return sym->name;
2086}