Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6#include <linux/pagemap.h>
7#include <linux/sched.h>
8#include <linux/sched/signal.h>
9#include <linux/slab.h>
10#include <linux/math64.h>
11#include <linux/ratelimit.h>
12#include <linux/error-injection.h>
13#include <linux/sched/mm.h>
14#include "ctree.h"
15#include "free-space-cache.h"
16#include "transaction.h"
17#include "disk-io.h"
18#include "extent_io.h"
19#include "inode-map.h"
20#include "volumes.h"
21#include "space-info.h"
22#include "delalloc-space.h"
23#include "block-group.h"
24
25#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
26#define MAX_CACHE_BYTES_PER_GIG SZ_32K
27
28struct btrfs_trim_range {
29 u64 start;
30 u64 bytes;
31 struct list_head list;
32};
33
34static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 struct btrfs_free_space *info);
36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 struct btrfs_free_space *info);
38static int btrfs_wait_cache_io_root(struct btrfs_root *root,
39 struct btrfs_trans_handle *trans,
40 struct btrfs_io_ctl *io_ctl,
41 struct btrfs_path *path);
42
43static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
44 struct btrfs_path *path,
45 u64 offset)
46{
47 struct btrfs_fs_info *fs_info = root->fs_info;
48 struct btrfs_key key;
49 struct btrfs_key location;
50 struct btrfs_disk_key disk_key;
51 struct btrfs_free_space_header *header;
52 struct extent_buffer *leaf;
53 struct inode *inode = NULL;
54 unsigned nofs_flag;
55 int ret;
56
57 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
58 key.offset = offset;
59 key.type = 0;
60
61 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
62 if (ret < 0)
63 return ERR_PTR(ret);
64 if (ret > 0) {
65 btrfs_release_path(path);
66 return ERR_PTR(-ENOENT);
67 }
68
69 leaf = path->nodes[0];
70 header = btrfs_item_ptr(leaf, path->slots[0],
71 struct btrfs_free_space_header);
72 btrfs_free_space_key(leaf, header, &disk_key);
73 btrfs_disk_key_to_cpu(&location, &disk_key);
74 btrfs_release_path(path);
75
76 /*
77 * We are often under a trans handle at this point, so we need to make
78 * sure NOFS is set to keep us from deadlocking.
79 */
80 nofs_flag = memalloc_nofs_save();
81 inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
82 btrfs_release_path(path);
83 memalloc_nofs_restore(nofs_flag);
84 if (IS_ERR(inode))
85 return inode;
86
87 mapping_set_gfp_mask(inode->i_mapping,
88 mapping_gfp_constraint(inode->i_mapping,
89 ~(__GFP_FS | __GFP_HIGHMEM)));
90
91 return inode;
92}
93
94struct inode *lookup_free_space_inode(
95 struct btrfs_block_group_cache *block_group,
96 struct btrfs_path *path)
97{
98 struct btrfs_fs_info *fs_info = block_group->fs_info;
99 struct inode *inode = NULL;
100 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
101
102 spin_lock(&block_group->lock);
103 if (block_group->inode)
104 inode = igrab(block_group->inode);
105 spin_unlock(&block_group->lock);
106 if (inode)
107 return inode;
108
109 inode = __lookup_free_space_inode(fs_info->tree_root, path,
110 block_group->key.objectid);
111 if (IS_ERR(inode))
112 return inode;
113
114 spin_lock(&block_group->lock);
115 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
116 btrfs_info(fs_info, "Old style space inode found, converting.");
117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 BTRFS_INODE_NODATACOW;
119 block_group->disk_cache_state = BTRFS_DC_CLEAR;
120 }
121
122 if (!block_group->iref) {
123 block_group->inode = igrab(inode);
124 block_group->iref = 1;
125 }
126 spin_unlock(&block_group->lock);
127
128 return inode;
129}
130
131static int __create_free_space_inode(struct btrfs_root *root,
132 struct btrfs_trans_handle *trans,
133 struct btrfs_path *path,
134 u64 ino, u64 offset)
135{
136 struct btrfs_key key;
137 struct btrfs_disk_key disk_key;
138 struct btrfs_free_space_header *header;
139 struct btrfs_inode_item *inode_item;
140 struct extent_buffer *leaf;
141 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 int ret;
143
144 ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 if (ret)
146 return ret;
147
148 /* We inline crc's for the free disk space cache */
149 if (ino != BTRFS_FREE_INO_OBJECTID)
150 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151
152 leaf = path->nodes[0];
153 inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_inode_item);
155 btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 memzero_extent_buffer(leaf, (unsigned long)inode_item,
157 sizeof(*inode_item));
158 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 btrfs_set_inode_size(leaf, inode_item, 0);
160 btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 btrfs_set_inode_uid(leaf, inode_item, 0);
162 btrfs_set_inode_gid(leaf, inode_item, 0);
163 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 btrfs_set_inode_flags(leaf, inode_item, flags);
165 btrfs_set_inode_nlink(leaf, inode_item, 1);
166 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 btrfs_set_inode_block_group(leaf, inode_item, offset);
168 btrfs_mark_buffer_dirty(leaf);
169 btrfs_release_path(path);
170
171 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172 key.offset = offset;
173 key.type = 0;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 sizeof(struct btrfs_free_space_header));
176 if (ret < 0) {
177 btrfs_release_path(path);
178 return ret;
179 }
180
181 leaf = path->nodes[0];
182 header = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_free_space_header);
184 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
185 btrfs_set_free_space_key(leaf, header, &disk_key);
186 btrfs_mark_buffer_dirty(leaf);
187 btrfs_release_path(path);
188
189 return 0;
190}
191
192int create_free_space_inode(struct btrfs_trans_handle *trans,
193 struct btrfs_block_group_cache *block_group,
194 struct btrfs_path *path)
195{
196 int ret;
197 u64 ino;
198
199 ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
200 if (ret < 0)
201 return ret;
202
203 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
204 ino, block_group->key.objectid);
205}
206
207int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
208 struct btrfs_block_rsv *rsv)
209{
210 u64 needed_bytes;
211 int ret;
212
213 /* 1 for slack space, 1 for updating the inode */
214 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
215 btrfs_calc_metadata_size(fs_info, 1);
216
217 spin_lock(&rsv->lock);
218 if (rsv->reserved < needed_bytes)
219 ret = -ENOSPC;
220 else
221 ret = 0;
222 spin_unlock(&rsv->lock);
223 return ret;
224}
225
226int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
227 struct btrfs_block_group_cache *block_group,
228 struct inode *inode)
229{
230 struct btrfs_root *root = BTRFS_I(inode)->root;
231 int ret = 0;
232 bool locked = false;
233
234 if (block_group) {
235 struct btrfs_path *path = btrfs_alloc_path();
236
237 if (!path) {
238 ret = -ENOMEM;
239 goto fail;
240 }
241 locked = true;
242 mutex_lock(&trans->transaction->cache_write_mutex);
243 if (!list_empty(&block_group->io_list)) {
244 list_del_init(&block_group->io_list);
245
246 btrfs_wait_cache_io(trans, block_group, path);
247 btrfs_put_block_group(block_group);
248 }
249
250 /*
251 * now that we've truncated the cache away, its no longer
252 * setup or written
253 */
254 spin_lock(&block_group->lock);
255 block_group->disk_cache_state = BTRFS_DC_CLEAR;
256 spin_unlock(&block_group->lock);
257 btrfs_free_path(path);
258 }
259
260 btrfs_i_size_write(BTRFS_I(inode), 0);
261 truncate_pagecache(inode, 0);
262
263 /*
264 * We skip the throttling logic for free space cache inodes, so we don't
265 * need to check for -EAGAIN.
266 */
267 ret = btrfs_truncate_inode_items(trans, root, inode,
268 0, BTRFS_EXTENT_DATA_KEY);
269 if (ret)
270 goto fail;
271
272 ret = btrfs_update_inode(trans, root, inode);
273
274fail:
275 if (locked)
276 mutex_unlock(&trans->transaction->cache_write_mutex);
277 if (ret)
278 btrfs_abort_transaction(trans, ret);
279
280 return ret;
281}
282
283static void readahead_cache(struct inode *inode)
284{
285 struct file_ra_state *ra;
286 unsigned long last_index;
287
288 ra = kzalloc(sizeof(*ra), GFP_NOFS);
289 if (!ra)
290 return;
291
292 file_ra_state_init(ra, inode->i_mapping);
293 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
294
295 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
296
297 kfree(ra);
298}
299
300static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
301 int write)
302{
303 int num_pages;
304 int check_crcs = 0;
305
306 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
307
308 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
309 check_crcs = 1;
310
311 /* Make sure we can fit our crcs and generation into the first page */
312 if (write && check_crcs &&
313 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
314 return -ENOSPC;
315
316 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
317
318 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
319 if (!io_ctl->pages)
320 return -ENOMEM;
321
322 io_ctl->num_pages = num_pages;
323 io_ctl->fs_info = btrfs_sb(inode->i_sb);
324 io_ctl->check_crcs = check_crcs;
325 io_ctl->inode = inode;
326
327 return 0;
328}
329ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
330
331static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
332{
333 kfree(io_ctl->pages);
334 io_ctl->pages = NULL;
335}
336
337static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
338{
339 if (io_ctl->cur) {
340 io_ctl->cur = NULL;
341 io_ctl->orig = NULL;
342 }
343}
344
345static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
346{
347 ASSERT(io_ctl->index < io_ctl->num_pages);
348 io_ctl->page = io_ctl->pages[io_ctl->index++];
349 io_ctl->cur = page_address(io_ctl->page);
350 io_ctl->orig = io_ctl->cur;
351 io_ctl->size = PAGE_SIZE;
352 if (clear)
353 clear_page(io_ctl->cur);
354}
355
356static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
357{
358 int i;
359
360 io_ctl_unmap_page(io_ctl);
361
362 for (i = 0; i < io_ctl->num_pages; i++) {
363 if (io_ctl->pages[i]) {
364 ClearPageChecked(io_ctl->pages[i]);
365 unlock_page(io_ctl->pages[i]);
366 put_page(io_ctl->pages[i]);
367 }
368 }
369}
370
371static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
372 int uptodate)
373{
374 struct page *page;
375 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
376 int i;
377
378 for (i = 0; i < io_ctl->num_pages; i++) {
379 page = find_or_create_page(inode->i_mapping, i, mask);
380 if (!page) {
381 io_ctl_drop_pages(io_ctl);
382 return -ENOMEM;
383 }
384 io_ctl->pages[i] = page;
385 if (uptodate && !PageUptodate(page)) {
386 btrfs_readpage(NULL, page);
387 lock_page(page);
388 if (!PageUptodate(page)) {
389 btrfs_err(BTRFS_I(inode)->root->fs_info,
390 "error reading free space cache");
391 io_ctl_drop_pages(io_ctl);
392 return -EIO;
393 }
394 }
395 }
396
397 for (i = 0; i < io_ctl->num_pages; i++) {
398 clear_page_dirty_for_io(io_ctl->pages[i]);
399 set_page_extent_mapped(io_ctl->pages[i]);
400 }
401
402 return 0;
403}
404
405static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
406{
407 __le64 *val;
408
409 io_ctl_map_page(io_ctl, 1);
410
411 /*
412 * Skip the csum areas. If we don't check crcs then we just have a
413 * 64bit chunk at the front of the first page.
414 */
415 if (io_ctl->check_crcs) {
416 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
417 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
418 } else {
419 io_ctl->cur += sizeof(u64);
420 io_ctl->size -= sizeof(u64) * 2;
421 }
422
423 val = io_ctl->cur;
424 *val = cpu_to_le64(generation);
425 io_ctl->cur += sizeof(u64);
426}
427
428static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
429{
430 __le64 *gen;
431
432 /*
433 * Skip the crc area. If we don't check crcs then we just have a 64bit
434 * chunk at the front of the first page.
435 */
436 if (io_ctl->check_crcs) {
437 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
438 io_ctl->size -= sizeof(u64) +
439 (sizeof(u32) * io_ctl->num_pages);
440 } else {
441 io_ctl->cur += sizeof(u64);
442 io_ctl->size -= sizeof(u64) * 2;
443 }
444
445 gen = io_ctl->cur;
446 if (le64_to_cpu(*gen) != generation) {
447 btrfs_err_rl(io_ctl->fs_info,
448 "space cache generation (%llu) does not match inode (%llu)",
449 *gen, generation);
450 io_ctl_unmap_page(io_ctl);
451 return -EIO;
452 }
453 io_ctl->cur += sizeof(u64);
454 return 0;
455}
456
457static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
458{
459 u32 *tmp;
460 u32 crc = ~(u32)0;
461 unsigned offset = 0;
462
463 if (!io_ctl->check_crcs) {
464 io_ctl_unmap_page(io_ctl);
465 return;
466 }
467
468 if (index == 0)
469 offset = sizeof(u32) * io_ctl->num_pages;
470
471 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
472 btrfs_crc32c_final(crc, (u8 *)&crc);
473 io_ctl_unmap_page(io_ctl);
474 tmp = page_address(io_ctl->pages[0]);
475 tmp += index;
476 *tmp = crc;
477}
478
479static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
480{
481 u32 *tmp, val;
482 u32 crc = ~(u32)0;
483 unsigned offset = 0;
484
485 if (!io_ctl->check_crcs) {
486 io_ctl_map_page(io_ctl, 0);
487 return 0;
488 }
489
490 if (index == 0)
491 offset = sizeof(u32) * io_ctl->num_pages;
492
493 tmp = page_address(io_ctl->pages[0]);
494 tmp += index;
495 val = *tmp;
496
497 io_ctl_map_page(io_ctl, 0);
498 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
499 btrfs_crc32c_final(crc, (u8 *)&crc);
500 if (val != crc) {
501 btrfs_err_rl(io_ctl->fs_info,
502 "csum mismatch on free space cache");
503 io_ctl_unmap_page(io_ctl);
504 return -EIO;
505 }
506
507 return 0;
508}
509
510static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
511 void *bitmap)
512{
513 struct btrfs_free_space_entry *entry;
514
515 if (!io_ctl->cur)
516 return -ENOSPC;
517
518 entry = io_ctl->cur;
519 entry->offset = cpu_to_le64(offset);
520 entry->bytes = cpu_to_le64(bytes);
521 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
522 BTRFS_FREE_SPACE_EXTENT;
523 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
524 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
525
526 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
527 return 0;
528
529 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
530
531 /* No more pages to map */
532 if (io_ctl->index >= io_ctl->num_pages)
533 return 0;
534
535 /* map the next page */
536 io_ctl_map_page(io_ctl, 1);
537 return 0;
538}
539
540static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
541{
542 if (!io_ctl->cur)
543 return -ENOSPC;
544
545 /*
546 * If we aren't at the start of the current page, unmap this one and
547 * map the next one if there is any left.
548 */
549 if (io_ctl->cur != io_ctl->orig) {
550 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
551 if (io_ctl->index >= io_ctl->num_pages)
552 return -ENOSPC;
553 io_ctl_map_page(io_ctl, 0);
554 }
555
556 copy_page(io_ctl->cur, bitmap);
557 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
558 if (io_ctl->index < io_ctl->num_pages)
559 io_ctl_map_page(io_ctl, 0);
560 return 0;
561}
562
563static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
564{
565 /*
566 * If we're not on the boundary we know we've modified the page and we
567 * need to crc the page.
568 */
569 if (io_ctl->cur != io_ctl->orig)
570 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
571 else
572 io_ctl_unmap_page(io_ctl);
573
574 while (io_ctl->index < io_ctl->num_pages) {
575 io_ctl_map_page(io_ctl, 1);
576 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
577 }
578}
579
580static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
581 struct btrfs_free_space *entry, u8 *type)
582{
583 struct btrfs_free_space_entry *e;
584 int ret;
585
586 if (!io_ctl->cur) {
587 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
588 if (ret)
589 return ret;
590 }
591
592 e = io_ctl->cur;
593 entry->offset = le64_to_cpu(e->offset);
594 entry->bytes = le64_to_cpu(e->bytes);
595 *type = e->type;
596 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
597 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
598
599 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
600 return 0;
601
602 io_ctl_unmap_page(io_ctl);
603
604 return 0;
605}
606
607static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
608 struct btrfs_free_space *entry)
609{
610 int ret;
611
612 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
613 if (ret)
614 return ret;
615
616 copy_page(entry->bitmap, io_ctl->cur);
617 io_ctl_unmap_page(io_ctl);
618
619 return 0;
620}
621
622/*
623 * Since we attach pinned extents after the fact we can have contiguous sections
624 * of free space that are split up in entries. This poses a problem with the
625 * tree logging stuff since it could have allocated across what appears to be 2
626 * entries since we would have merged the entries when adding the pinned extents
627 * back to the free space cache. So run through the space cache that we just
628 * loaded and merge contiguous entries. This will make the log replay stuff not
629 * blow up and it will make for nicer allocator behavior.
630 */
631static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
632{
633 struct btrfs_free_space *e, *prev = NULL;
634 struct rb_node *n;
635
636again:
637 spin_lock(&ctl->tree_lock);
638 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
639 e = rb_entry(n, struct btrfs_free_space, offset_index);
640 if (!prev)
641 goto next;
642 if (e->bitmap || prev->bitmap)
643 goto next;
644 if (prev->offset + prev->bytes == e->offset) {
645 unlink_free_space(ctl, prev);
646 unlink_free_space(ctl, e);
647 prev->bytes += e->bytes;
648 kmem_cache_free(btrfs_free_space_cachep, e);
649 link_free_space(ctl, prev);
650 prev = NULL;
651 spin_unlock(&ctl->tree_lock);
652 goto again;
653 }
654next:
655 prev = e;
656 }
657 spin_unlock(&ctl->tree_lock);
658}
659
660static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
661 struct btrfs_free_space_ctl *ctl,
662 struct btrfs_path *path, u64 offset)
663{
664 struct btrfs_fs_info *fs_info = root->fs_info;
665 struct btrfs_free_space_header *header;
666 struct extent_buffer *leaf;
667 struct btrfs_io_ctl io_ctl;
668 struct btrfs_key key;
669 struct btrfs_free_space *e, *n;
670 LIST_HEAD(bitmaps);
671 u64 num_entries;
672 u64 num_bitmaps;
673 u64 generation;
674 u8 type;
675 int ret = 0;
676
677 /* Nothing in the space cache, goodbye */
678 if (!i_size_read(inode))
679 return 0;
680
681 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
682 key.offset = offset;
683 key.type = 0;
684
685 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
686 if (ret < 0)
687 return 0;
688 else if (ret > 0) {
689 btrfs_release_path(path);
690 return 0;
691 }
692
693 ret = -1;
694
695 leaf = path->nodes[0];
696 header = btrfs_item_ptr(leaf, path->slots[0],
697 struct btrfs_free_space_header);
698 num_entries = btrfs_free_space_entries(leaf, header);
699 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
700 generation = btrfs_free_space_generation(leaf, header);
701 btrfs_release_path(path);
702
703 if (!BTRFS_I(inode)->generation) {
704 btrfs_info(fs_info,
705 "the free space cache file (%llu) is invalid, skip it",
706 offset);
707 return 0;
708 }
709
710 if (BTRFS_I(inode)->generation != generation) {
711 btrfs_err(fs_info,
712 "free space inode generation (%llu) did not match free space cache generation (%llu)",
713 BTRFS_I(inode)->generation, generation);
714 return 0;
715 }
716
717 if (!num_entries)
718 return 0;
719
720 ret = io_ctl_init(&io_ctl, inode, 0);
721 if (ret)
722 return ret;
723
724 readahead_cache(inode);
725
726 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
727 if (ret)
728 goto out;
729
730 ret = io_ctl_check_crc(&io_ctl, 0);
731 if (ret)
732 goto free_cache;
733
734 ret = io_ctl_check_generation(&io_ctl, generation);
735 if (ret)
736 goto free_cache;
737
738 while (num_entries) {
739 e = kmem_cache_zalloc(btrfs_free_space_cachep,
740 GFP_NOFS);
741 if (!e)
742 goto free_cache;
743
744 ret = io_ctl_read_entry(&io_ctl, e, &type);
745 if (ret) {
746 kmem_cache_free(btrfs_free_space_cachep, e);
747 goto free_cache;
748 }
749
750 if (!e->bytes) {
751 kmem_cache_free(btrfs_free_space_cachep, e);
752 goto free_cache;
753 }
754
755 if (type == BTRFS_FREE_SPACE_EXTENT) {
756 spin_lock(&ctl->tree_lock);
757 ret = link_free_space(ctl, e);
758 spin_unlock(&ctl->tree_lock);
759 if (ret) {
760 btrfs_err(fs_info,
761 "Duplicate entries in free space cache, dumping");
762 kmem_cache_free(btrfs_free_space_cachep, e);
763 goto free_cache;
764 }
765 } else {
766 ASSERT(num_bitmaps);
767 num_bitmaps--;
768 e->bitmap = kmem_cache_zalloc(
769 btrfs_free_space_bitmap_cachep, GFP_NOFS);
770 if (!e->bitmap) {
771 kmem_cache_free(
772 btrfs_free_space_cachep, e);
773 goto free_cache;
774 }
775 spin_lock(&ctl->tree_lock);
776 ret = link_free_space(ctl, e);
777 ctl->total_bitmaps++;
778 ctl->op->recalc_thresholds(ctl);
779 spin_unlock(&ctl->tree_lock);
780 if (ret) {
781 btrfs_err(fs_info,
782 "Duplicate entries in free space cache, dumping");
783 kmem_cache_free(btrfs_free_space_cachep, e);
784 goto free_cache;
785 }
786 list_add_tail(&e->list, &bitmaps);
787 }
788
789 num_entries--;
790 }
791
792 io_ctl_unmap_page(&io_ctl);
793
794 /*
795 * We add the bitmaps at the end of the entries in order that
796 * the bitmap entries are added to the cache.
797 */
798 list_for_each_entry_safe(e, n, &bitmaps, list) {
799 list_del_init(&e->list);
800 ret = io_ctl_read_bitmap(&io_ctl, e);
801 if (ret)
802 goto free_cache;
803 }
804
805 io_ctl_drop_pages(&io_ctl);
806 merge_space_tree(ctl);
807 ret = 1;
808out:
809 io_ctl_free(&io_ctl);
810 return ret;
811free_cache:
812 io_ctl_drop_pages(&io_ctl);
813 __btrfs_remove_free_space_cache(ctl);
814 goto out;
815}
816
817int load_free_space_cache(struct btrfs_block_group_cache *block_group)
818{
819 struct btrfs_fs_info *fs_info = block_group->fs_info;
820 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
821 struct inode *inode;
822 struct btrfs_path *path;
823 int ret = 0;
824 bool matched;
825 u64 used = btrfs_block_group_used(&block_group->item);
826
827 /*
828 * If this block group has been marked to be cleared for one reason or
829 * another then we can't trust the on disk cache, so just return.
830 */
831 spin_lock(&block_group->lock);
832 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
833 spin_unlock(&block_group->lock);
834 return 0;
835 }
836 spin_unlock(&block_group->lock);
837
838 path = btrfs_alloc_path();
839 if (!path)
840 return 0;
841 path->search_commit_root = 1;
842 path->skip_locking = 1;
843
844 /*
845 * We must pass a path with search_commit_root set to btrfs_iget in
846 * order to avoid a deadlock when allocating extents for the tree root.
847 *
848 * When we are COWing an extent buffer from the tree root, when looking
849 * for a free extent, at extent-tree.c:find_free_extent(), we can find
850 * block group without its free space cache loaded. When we find one
851 * we must load its space cache which requires reading its free space
852 * cache's inode item from the root tree. If this inode item is located
853 * in the same leaf that we started COWing before, then we end up in
854 * deadlock on the extent buffer (trying to read lock it when we
855 * previously write locked it).
856 *
857 * It's safe to read the inode item using the commit root because
858 * block groups, once loaded, stay in memory forever (until they are
859 * removed) as well as their space caches once loaded. New block groups
860 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
861 * we will never try to read their inode item while the fs is mounted.
862 */
863 inode = lookup_free_space_inode(block_group, path);
864 if (IS_ERR(inode)) {
865 btrfs_free_path(path);
866 return 0;
867 }
868
869 /* We may have converted the inode and made the cache invalid. */
870 spin_lock(&block_group->lock);
871 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
872 spin_unlock(&block_group->lock);
873 btrfs_free_path(path);
874 goto out;
875 }
876 spin_unlock(&block_group->lock);
877
878 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
879 path, block_group->key.objectid);
880 btrfs_free_path(path);
881 if (ret <= 0)
882 goto out;
883
884 spin_lock(&ctl->tree_lock);
885 matched = (ctl->free_space == (block_group->key.offset - used -
886 block_group->bytes_super));
887 spin_unlock(&ctl->tree_lock);
888
889 if (!matched) {
890 __btrfs_remove_free_space_cache(ctl);
891 btrfs_warn(fs_info,
892 "block group %llu has wrong amount of free space",
893 block_group->key.objectid);
894 ret = -1;
895 }
896out:
897 if (ret < 0) {
898 /* This cache is bogus, make sure it gets cleared */
899 spin_lock(&block_group->lock);
900 block_group->disk_cache_state = BTRFS_DC_CLEAR;
901 spin_unlock(&block_group->lock);
902 ret = 0;
903
904 btrfs_warn(fs_info,
905 "failed to load free space cache for block group %llu, rebuilding it now",
906 block_group->key.objectid);
907 }
908
909 iput(inode);
910 return ret;
911}
912
913static noinline_for_stack
914int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
915 struct btrfs_free_space_ctl *ctl,
916 struct btrfs_block_group_cache *block_group,
917 int *entries, int *bitmaps,
918 struct list_head *bitmap_list)
919{
920 int ret;
921 struct btrfs_free_cluster *cluster = NULL;
922 struct btrfs_free_cluster *cluster_locked = NULL;
923 struct rb_node *node = rb_first(&ctl->free_space_offset);
924 struct btrfs_trim_range *trim_entry;
925
926 /* Get the cluster for this block_group if it exists */
927 if (block_group && !list_empty(&block_group->cluster_list)) {
928 cluster = list_entry(block_group->cluster_list.next,
929 struct btrfs_free_cluster,
930 block_group_list);
931 }
932
933 if (!node && cluster) {
934 cluster_locked = cluster;
935 spin_lock(&cluster_locked->lock);
936 node = rb_first(&cluster->root);
937 cluster = NULL;
938 }
939
940 /* Write out the extent entries */
941 while (node) {
942 struct btrfs_free_space *e;
943
944 e = rb_entry(node, struct btrfs_free_space, offset_index);
945 *entries += 1;
946
947 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
948 e->bitmap);
949 if (ret)
950 goto fail;
951
952 if (e->bitmap) {
953 list_add_tail(&e->list, bitmap_list);
954 *bitmaps += 1;
955 }
956 node = rb_next(node);
957 if (!node && cluster) {
958 node = rb_first(&cluster->root);
959 cluster_locked = cluster;
960 spin_lock(&cluster_locked->lock);
961 cluster = NULL;
962 }
963 }
964 if (cluster_locked) {
965 spin_unlock(&cluster_locked->lock);
966 cluster_locked = NULL;
967 }
968
969 /*
970 * Make sure we don't miss any range that was removed from our rbtree
971 * because trimming is running. Otherwise after a umount+mount (or crash
972 * after committing the transaction) we would leak free space and get
973 * an inconsistent free space cache report from fsck.
974 */
975 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
976 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
977 trim_entry->bytes, NULL);
978 if (ret)
979 goto fail;
980 *entries += 1;
981 }
982
983 return 0;
984fail:
985 if (cluster_locked)
986 spin_unlock(&cluster_locked->lock);
987 return -ENOSPC;
988}
989
990static noinline_for_stack int
991update_cache_item(struct btrfs_trans_handle *trans,
992 struct btrfs_root *root,
993 struct inode *inode,
994 struct btrfs_path *path, u64 offset,
995 int entries, int bitmaps)
996{
997 struct btrfs_key key;
998 struct btrfs_free_space_header *header;
999 struct extent_buffer *leaf;
1000 int ret;
1001
1002 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1003 key.offset = offset;
1004 key.type = 0;
1005
1006 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1007 if (ret < 0) {
1008 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1009 EXTENT_DELALLOC, 0, 0, NULL);
1010 goto fail;
1011 }
1012 leaf = path->nodes[0];
1013 if (ret > 0) {
1014 struct btrfs_key found_key;
1015 ASSERT(path->slots[0]);
1016 path->slots[0]--;
1017 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1018 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1019 found_key.offset != offset) {
1020 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1021 inode->i_size - 1, EXTENT_DELALLOC, 0,
1022 0, NULL);
1023 btrfs_release_path(path);
1024 goto fail;
1025 }
1026 }
1027
1028 BTRFS_I(inode)->generation = trans->transid;
1029 header = btrfs_item_ptr(leaf, path->slots[0],
1030 struct btrfs_free_space_header);
1031 btrfs_set_free_space_entries(leaf, header, entries);
1032 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1033 btrfs_set_free_space_generation(leaf, header, trans->transid);
1034 btrfs_mark_buffer_dirty(leaf);
1035 btrfs_release_path(path);
1036
1037 return 0;
1038
1039fail:
1040 return -1;
1041}
1042
1043static noinline_for_stack int write_pinned_extent_entries(
1044 struct btrfs_block_group_cache *block_group,
1045 struct btrfs_io_ctl *io_ctl,
1046 int *entries)
1047{
1048 u64 start, extent_start, extent_end, len;
1049 struct extent_io_tree *unpin = NULL;
1050 int ret;
1051
1052 if (!block_group)
1053 return 0;
1054
1055 /*
1056 * We want to add any pinned extents to our free space cache
1057 * so we don't leak the space
1058 *
1059 * We shouldn't have switched the pinned extents yet so this is the
1060 * right one
1061 */
1062 unpin = block_group->fs_info->pinned_extents;
1063
1064 start = block_group->key.objectid;
1065
1066 while (start < block_group->key.objectid + block_group->key.offset) {
1067 ret = find_first_extent_bit(unpin, start,
1068 &extent_start, &extent_end,
1069 EXTENT_DIRTY, NULL);
1070 if (ret)
1071 return 0;
1072
1073 /* This pinned extent is out of our range */
1074 if (extent_start >= block_group->key.objectid +
1075 block_group->key.offset)
1076 return 0;
1077
1078 extent_start = max(extent_start, start);
1079 extent_end = min(block_group->key.objectid +
1080 block_group->key.offset, extent_end + 1);
1081 len = extent_end - extent_start;
1082
1083 *entries += 1;
1084 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1085 if (ret)
1086 return -ENOSPC;
1087
1088 start = extent_end;
1089 }
1090
1091 return 0;
1092}
1093
1094static noinline_for_stack int
1095write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1096{
1097 struct btrfs_free_space *entry, *next;
1098 int ret;
1099
1100 /* Write out the bitmaps */
1101 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1102 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1103 if (ret)
1104 return -ENOSPC;
1105 list_del_init(&entry->list);
1106 }
1107
1108 return 0;
1109}
1110
1111static int flush_dirty_cache(struct inode *inode)
1112{
1113 int ret;
1114
1115 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1116 if (ret)
1117 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1118 EXTENT_DELALLOC, 0, 0, NULL);
1119
1120 return ret;
1121}
1122
1123static void noinline_for_stack
1124cleanup_bitmap_list(struct list_head *bitmap_list)
1125{
1126 struct btrfs_free_space *entry, *next;
1127
1128 list_for_each_entry_safe(entry, next, bitmap_list, list)
1129 list_del_init(&entry->list);
1130}
1131
1132static void noinline_for_stack
1133cleanup_write_cache_enospc(struct inode *inode,
1134 struct btrfs_io_ctl *io_ctl,
1135 struct extent_state **cached_state)
1136{
1137 io_ctl_drop_pages(io_ctl);
1138 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1139 i_size_read(inode) - 1, cached_state);
1140}
1141
1142static int __btrfs_wait_cache_io(struct btrfs_root *root,
1143 struct btrfs_trans_handle *trans,
1144 struct btrfs_block_group_cache *block_group,
1145 struct btrfs_io_ctl *io_ctl,
1146 struct btrfs_path *path, u64 offset)
1147{
1148 int ret;
1149 struct inode *inode = io_ctl->inode;
1150
1151 if (!inode)
1152 return 0;
1153
1154 /* Flush the dirty pages in the cache file. */
1155 ret = flush_dirty_cache(inode);
1156 if (ret)
1157 goto out;
1158
1159 /* Update the cache item to tell everyone this cache file is valid. */
1160 ret = update_cache_item(trans, root, inode, path, offset,
1161 io_ctl->entries, io_ctl->bitmaps);
1162out:
1163 io_ctl_free(io_ctl);
1164 if (ret) {
1165 invalidate_inode_pages2(inode->i_mapping);
1166 BTRFS_I(inode)->generation = 0;
1167 if (block_group) {
1168#ifdef DEBUG
1169 btrfs_err(root->fs_info,
1170 "failed to write free space cache for block group %llu",
1171 block_group->key.objectid);
1172#endif
1173 }
1174 }
1175 btrfs_update_inode(trans, root, inode);
1176
1177 if (block_group) {
1178 /* the dirty list is protected by the dirty_bgs_lock */
1179 spin_lock(&trans->transaction->dirty_bgs_lock);
1180
1181 /* the disk_cache_state is protected by the block group lock */
1182 spin_lock(&block_group->lock);
1183
1184 /*
1185 * only mark this as written if we didn't get put back on
1186 * the dirty list while waiting for IO. Otherwise our
1187 * cache state won't be right, and we won't get written again
1188 */
1189 if (!ret && list_empty(&block_group->dirty_list))
1190 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1191 else if (ret)
1192 block_group->disk_cache_state = BTRFS_DC_ERROR;
1193
1194 spin_unlock(&block_group->lock);
1195 spin_unlock(&trans->transaction->dirty_bgs_lock);
1196 io_ctl->inode = NULL;
1197 iput(inode);
1198 }
1199
1200 return ret;
1201
1202}
1203
1204static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1205 struct btrfs_trans_handle *trans,
1206 struct btrfs_io_ctl *io_ctl,
1207 struct btrfs_path *path)
1208{
1209 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1210}
1211
1212int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1213 struct btrfs_block_group_cache *block_group,
1214 struct btrfs_path *path)
1215{
1216 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1217 block_group, &block_group->io_ctl,
1218 path, block_group->key.objectid);
1219}
1220
1221/**
1222 * __btrfs_write_out_cache - write out cached info to an inode
1223 * @root - the root the inode belongs to
1224 * @ctl - the free space cache we are going to write out
1225 * @block_group - the block_group for this cache if it belongs to a block_group
1226 * @trans - the trans handle
1227 *
1228 * This function writes out a free space cache struct to disk for quick recovery
1229 * on mount. This will return 0 if it was successful in writing the cache out,
1230 * or an errno if it was not.
1231 */
1232static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1233 struct btrfs_free_space_ctl *ctl,
1234 struct btrfs_block_group_cache *block_group,
1235 struct btrfs_io_ctl *io_ctl,
1236 struct btrfs_trans_handle *trans)
1237{
1238 struct extent_state *cached_state = NULL;
1239 LIST_HEAD(bitmap_list);
1240 int entries = 0;
1241 int bitmaps = 0;
1242 int ret;
1243 int must_iput = 0;
1244
1245 if (!i_size_read(inode))
1246 return -EIO;
1247
1248 WARN_ON(io_ctl->pages);
1249 ret = io_ctl_init(io_ctl, inode, 1);
1250 if (ret)
1251 return ret;
1252
1253 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1254 down_write(&block_group->data_rwsem);
1255 spin_lock(&block_group->lock);
1256 if (block_group->delalloc_bytes) {
1257 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1258 spin_unlock(&block_group->lock);
1259 up_write(&block_group->data_rwsem);
1260 BTRFS_I(inode)->generation = 0;
1261 ret = 0;
1262 must_iput = 1;
1263 goto out;
1264 }
1265 spin_unlock(&block_group->lock);
1266 }
1267
1268 /* Lock all pages first so we can lock the extent safely. */
1269 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1270 if (ret)
1271 goto out_unlock;
1272
1273 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1274 &cached_state);
1275
1276 io_ctl_set_generation(io_ctl, trans->transid);
1277
1278 mutex_lock(&ctl->cache_writeout_mutex);
1279 /* Write out the extent entries in the free space cache */
1280 spin_lock(&ctl->tree_lock);
1281 ret = write_cache_extent_entries(io_ctl, ctl,
1282 block_group, &entries, &bitmaps,
1283 &bitmap_list);
1284 if (ret)
1285 goto out_nospc_locked;
1286
1287 /*
1288 * Some spaces that are freed in the current transaction are pinned,
1289 * they will be added into free space cache after the transaction is
1290 * committed, we shouldn't lose them.
1291 *
1292 * If this changes while we are working we'll get added back to
1293 * the dirty list and redo it. No locking needed
1294 */
1295 ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1296 if (ret)
1297 goto out_nospc_locked;
1298
1299 /*
1300 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1301 * locked while doing it because a concurrent trim can be manipulating
1302 * or freeing the bitmap.
1303 */
1304 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1305 spin_unlock(&ctl->tree_lock);
1306 mutex_unlock(&ctl->cache_writeout_mutex);
1307 if (ret)
1308 goto out_nospc;
1309
1310 /* Zero out the rest of the pages just to make sure */
1311 io_ctl_zero_remaining_pages(io_ctl);
1312
1313 /* Everything is written out, now we dirty the pages in the file. */
1314 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1315 i_size_read(inode), &cached_state);
1316 if (ret)
1317 goto out_nospc;
1318
1319 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1320 up_write(&block_group->data_rwsem);
1321 /*
1322 * Release the pages and unlock the extent, we will flush
1323 * them out later
1324 */
1325 io_ctl_drop_pages(io_ctl);
1326
1327 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1328 i_size_read(inode) - 1, &cached_state);
1329
1330 /*
1331 * at this point the pages are under IO and we're happy,
1332 * The caller is responsible for waiting on them and updating the
1333 * the cache and the inode
1334 */
1335 io_ctl->entries = entries;
1336 io_ctl->bitmaps = bitmaps;
1337
1338 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1339 if (ret)
1340 goto out;
1341
1342 return 0;
1343
1344out:
1345 io_ctl->inode = NULL;
1346 io_ctl_free(io_ctl);
1347 if (ret) {
1348 invalidate_inode_pages2(inode->i_mapping);
1349 BTRFS_I(inode)->generation = 0;
1350 }
1351 btrfs_update_inode(trans, root, inode);
1352 if (must_iput)
1353 iput(inode);
1354 return ret;
1355
1356out_nospc_locked:
1357 cleanup_bitmap_list(&bitmap_list);
1358 spin_unlock(&ctl->tree_lock);
1359 mutex_unlock(&ctl->cache_writeout_mutex);
1360
1361out_nospc:
1362 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1363
1364out_unlock:
1365 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1366 up_write(&block_group->data_rwsem);
1367
1368 goto out;
1369}
1370
1371int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1372 struct btrfs_block_group_cache *block_group,
1373 struct btrfs_path *path)
1374{
1375 struct btrfs_fs_info *fs_info = trans->fs_info;
1376 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1377 struct inode *inode;
1378 int ret = 0;
1379
1380 spin_lock(&block_group->lock);
1381 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1382 spin_unlock(&block_group->lock);
1383 return 0;
1384 }
1385 spin_unlock(&block_group->lock);
1386
1387 inode = lookup_free_space_inode(block_group, path);
1388 if (IS_ERR(inode))
1389 return 0;
1390
1391 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1392 block_group, &block_group->io_ctl, trans);
1393 if (ret) {
1394#ifdef DEBUG
1395 btrfs_err(fs_info,
1396 "failed to write free space cache for block group %llu",
1397 block_group->key.objectid);
1398#endif
1399 spin_lock(&block_group->lock);
1400 block_group->disk_cache_state = BTRFS_DC_ERROR;
1401 spin_unlock(&block_group->lock);
1402
1403 block_group->io_ctl.inode = NULL;
1404 iput(inode);
1405 }
1406
1407 /*
1408 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1409 * to wait for IO and put the inode
1410 */
1411
1412 return ret;
1413}
1414
1415static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1416 u64 offset)
1417{
1418 ASSERT(offset >= bitmap_start);
1419 offset -= bitmap_start;
1420 return (unsigned long)(div_u64(offset, unit));
1421}
1422
1423static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1424{
1425 return (unsigned long)(div_u64(bytes, unit));
1426}
1427
1428static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1429 u64 offset)
1430{
1431 u64 bitmap_start;
1432 u64 bytes_per_bitmap;
1433
1434 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1435 bitmap_start = offset - ctl->start;
1436 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1437 bitmap_start *= bytes_per_bitmap;
1438 bitmap_start += ctl->start;
1439
1440 return bitmap_start;
1441}
1442
1443static int tree_insert_offset(struct rb_root *root, u64 offset,
1444 struct rb_node *node, int bitmap)
1445{
1446 struct rb_node **p = &root->rb_node;
1447 struct rb_node *parent = NULL;
1448 struct btrfs_free_space *info;
1449
1450 while (*p) {
1451 parent = *p;
1452 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1453
1454 if (offset < info->offset) {
1455 p = &(*p)->rb_left;
1456 } else if (offset > info->offset) {
1457 p = &(*p)->rb_right;
1458 } else {
1459 /*
1460 * we could have a bitmap entry and an extent entry
1461 * share the same offset. If this is the case, we want
1462 * the extent entry to always be found first if we do a
1463 * linear search through the tree, since we want to have
1464 * the quickest allocation time, and allocating from an
1465 * extent is faster than allocating from a bitmap. So
1466 * if we're inserting a bitmap and we find an entry at
1467 * this offset, we want to go right, or after this entry
1468 * logically. If we are inserting an extent and we've
1469 * found a bitmap, we want to go left, or before
1470 * logically.
1471 */
1472 if (bitmap) {
1473 if (info->bitmap) {
1474 WARN_ON_ONCE(1);
1475 return -EEXIST;
1476 }
1477 p = &(*p)->rb_right;
1478 } else {
1479 if (!info->bitmap) {
1480 WARN_ON_ONCE(1);
1481 return -EEXIST;
1482 }
1483 p = &(*p)->rb_left;
1484 }
1485 }
1486 }
1487
1488 rb_link_node(node, parent, p);
1489 rb_insert_color(node, root);
1490
1491 return 0;
1492}
1493
1494/*
1495 * searches the tree for the given offset.
1496 *
1497 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1498 * want a section that has at least bytes size and comes at or after the given
1499 * offset.
1500 */
1501static struct btrfs_free_space *
1502tree_search_offset(struct btrfs_free_space_ctl *ctl,
1503 u64 offset, int bitmap_only, int fuzzy)
1504{
1505 struct rb_node *n = ctl->free_space_offset.rb_node;
1506 struct btrfs_free_space *entry, *prev = NULL;
1507
1508 /* find entry that is closest to the 'offset' */
1509 while (1) {
1510 if (!n) {
1511 entry = NULL;
1512 break;
1513 }
1514
1515 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1516 prev = entry;
1517
1518 if (offset < entry->offset)
1519 n = n->rb_left;
1520 else if (offset > entry->offset)
1521 n = n->rb_right;
1522 else
1523 break;
1524 }
1525
1526 if (bitmap_only) {
1527 if (!entry)
1528 return NULL;
1529 if (entry->bitmap)
1530 return entry;
1531
1532 /*
1533 * bitmap entry and extent entry may share same offset,
1534 * in that case, bitmap entry comes after extent entry.
1535 */
1536 n = rb_next(n);
1537 if (!n)
1538 return NULL;
1539 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1540 if (entry->offset != offset)
1541 return NULL;
1542
1543 WARN_ON(!entry->bitmap);
1544 return entry;
1545 } else if (entry) {
1546 if (entry->bitmap) {
1547 /*
1548 * if previous extent entry covers the offset,
1549 * we should return it instead of the bitmap entry
1550 */
1551 n = rb_prev(&entry->offset_index);
1552 if (n) {
1553 prev = rb_entry(n, struct btrfs_free_space,
1554 offset_index);
1555 if (!prev->bitmap &&
1556 prev->offset + prev->bytes > offset)
1557 entry = prev;
1558 }
1559 }
1560 return entry;
1561 }
1562
1563 if (!prev)
1564 return NULL;
1565
1566 /* find last entry before the 'offset' */
1567 entry = prev;
1568 if (entry->offset > offset) {
1569 n = rb_prev(&entry->offset_index);
1570 if (n) {
1571 entry = rb_entry(n, struct btrfs_free_space,
1572 offset_index);
1573 ASSERT(entry->offset <= offset);
1574 } else {
1575 if (fuzzy)
1576 return entry;
1577 else
1578 return NULL;
1579 }
1580 }
1581
1582 if (entry->bitmap) {
1583 n = rb_prev(&entry->offset_index);
1584 if (n) {
1585 prev = rb_entry(n, struct btrfs_free_space,
1586 offset_index);
1587 if (!prev->bitmap &&
1588 prev->offset + prev->bytes > offset)
1589 return prev;
1590 }
1591 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1592 return entry;
1593 } else if (entry->offset + entry->bytes > offset)
1594 return entry;
1595
1596 if (!fuzzy)
1597 return NULL;
1598
1599 while (1) {
1600 if (entry->bitmap) {
1601 if (entry->offset + BITS_PER_BITMAP *
1602 ctl->unit > offset)
1603 break;
1604 } else {
1605 if (entry->offset + entry->bytes > offset)
1606 break;
1607 }
1608
1609 n = rb_next(&entry->offset_index);
1610 if (!n)
1611 return NULL;
1612 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1613 }
1614 return entry;
1615}
1616
1617static inline void
1618__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1619 struct btrfs_free_space *info)
1620{
1621 rb_erase(&info->offset_index, &ctl->free_space_offset);
1622 ctl->free_extents--;
1623}
1624
1625static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1626 struct btrfs_free_space *info)
1627{
1628 __unlink_free_space(ctl, info);
1629 ctl->free_space -= info->bytes;
1630}
1631
1632static int link_free_space(struct btrfs_free_space_ctl *ctl,
1633 struct btrfs_free_space *info)
1634{
1635 int ret = 0;
1636
1637 ASSERT(info->bytes || info->bitmap);
1638 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1639 &info->offset_index, (info->bitmap != NULL));
1640 if (ret)
1641 return ret;
1642
1643 ctl->free_space += info->bytes;
1644 ctl->free_extents++;
1645 return ret;
1646}
1647
1648static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1649{
1650 struct btrfs_block_group_cache *block_group = ctl->private;
1651 u64 max_bytes;
1652 u64 bitmap_bytes;
1653 u64 extent_bytes;
1654 u64 size = block_group->key.offset;
1655 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1656 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1657
1658 max_bitmaps = max_t(u64, max_bitmaps, 1);
1659
1660 ASSERT(ctl->total_bitmaps <= max_bitmaps);
1661
1662 /*
1663 * The goal is to keep the total amount of memory used per 1gb of space
1664 * at or below 32k, so we need to adjust how much memory we allow to be
1665 * used by extent based free space tracking
1666 */
1667 if (size < SZ_1G)
1668 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1669 else
1670 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1671
1672 /*
1673 * we want to account for 1 more bitmap than what we have so we can make
1674 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1675 * we add more bitmaps.
1676 */
1677 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1678
1679 if (bitmap_bytes >= max_bytes) {
1680 ctl->extents_thresh = 0;
1681 return;
1682 }
1683
1684 /*
1685 * we want the extent entry threshold to always be at most 1/2 the max
1686 * bytes we can have, or whatever is less than that.
1687 */
1688 extent_bytes = max_bytes - bitmap_bytes;
1689 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1690
1691 ctl->extents_thresh =
1692 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1693}
1694
1695static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1696 struct btrfs_free_space *info,
1697 u64 offset, u64 bytes)
1698{
1699 unsigned long start, count;
1700
1701 start = offset_to_bit(info->offset, ctl->unit, offset);
1702 count = bytes_to_bits(bytes, ctl->unit);
1703 ASSERT(start + count <= BITS_PER_BITMAP);
1704
1705 bitmap_clear(info->bitmap, start, count);
1706
1707 info->bytes -= bytes;
1708 if (info->max_extent_size > ctl->unit)
1709 info->max_extent_size = 0;
1710}
1711
1712static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1713 struct btrfs_free_space *info, u64 offset,
1714 u64 bytes)
1715{
1716 __bitmap_clear_bits(ctl, info, offset, bytes);
1717 ctl->free_space -= bytes;
1718}
1719
1720static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1721 struct btrfs_free_space *info, u64 offset,
1722 u64 bytes)
1723{
1724 unsigned long start, count;
1725
1726 start = offset_to_bit(info->offset, ctl->unit, offset);
1727 count = bytes_to_bits(bytes, ctl->unit);
1728 ASSERT(start + count <= BITS_PER_BITMAP);
1729
1730 bitmap_set(info->bitmap, start, count);
1731
1732 info->bytes += bytes;
1733 ctl->free_space += bytes;
1734}
1735
1736/*
1737 * If we can not find suitable extent, we will use bytes to record
1738 * the size of the max extent.
1739 */
1740static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1741 struct btrfs_free_space *bitmap_info, u64 *offset,
1742 u64 *bytes, bool for_alloc)
1743{
1744 unsigned long found_bits = 0;
1745 unsigned long max_bits = 0;
1746 unsigned long bits, i;
1747 unsigned long next_zero;
1748 unsigned long extent_bits;
1749
1750 /*
1751 * Skip searching the bitmap if we don't have a contiguous section that
1752 * is large enough for this allocation.
1753 */
1754 if (for_alloc &&
1755 bitmap_info->max_extent_size &&
1756 bitmap_info->max_extent_size < *bytes) {
1757 *bytes = bitmap_info->max_extent_size;
1758 return -1;
1759 }
1760
1761 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1762 max_t(u64, *offset, bitmap_info->offset));
1763 bits = bytes_to_bits(*bytes, ctl->unit);
1764
1765 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1766 if (for_alloc && bits == 1) {
1767 found_bits = 1;
1768 break;
1769 }
1770 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1771 BITS_PER_BITMAP, i);
1772 extent_bits = next_zero - i;
1773 if (extent_bits >= bits) {
1774 found_bits = extent_bits;
1775 break;
1776 } else if (extent_bits > max_bits) {
1777 max_bits = extent_bits;
1778 }
1779 i = next_zero;
1780 }
1781
1782 if (found_bits) {
1783 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1784 *bytes = (u64)(found_bits) * ctl->unit;
1785 return 0;
1786 }
1787
1788 *bytes = (u64)(max_bits) * ctl->unit;
1789 bitmap_info->max_extent_size = *bytes;
1790 return -1;
1791}
1792
1793static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1794{
1795 if (entry->bitmap)
1796 return entry->max_extent_size;
1797 return entry->bytes;
1798}
1799
1800/* Cache the size of the max extent in bytes */
1801static struct btrfs_free_space *
1802find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1803 unsigned long align, u64 *max_extent_size)
1804{
1805 struct btrfs_free_space *entry;
1806 struct rb_node *node;
1807 u64 tmp;
1808 u64 align_off;
1809 int ret;
1810
1811 if (!ctl->free_space_offset.rb_node)
1812 goto out;
1813
1814 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1815 if (!entry)
1816 goto out;
1817
1818 for (node = &entry->offset_index; node; node = rb_next(node)) {
1819 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1820 if (entry->bytes < *bytes) {
1821 *max_extent_size = max(get_max_extent_size(entry),
1822 *max_extent_size);
1823 continue;
1824 }
1825
1826 /* make sure the space returned is big enough
1827 * to match our requested alignment
1828 */
1829 if (*bytes >= align) {
1830 tmp = entry->offset - ctl->start + align - 1;
1831 tmp = div64_u64(tmp, align);
1832 tmp = tmp * align + ctl->start;
1833 align_off = tmp - entry->offset;
1834 } else {
1835 align_off = 0;
1836 tmp = entry->offset;
1837 }
1838
1839 if (entry->bytes < *bytes + align_off) {
1840 *max_extent_size = max(get_max_extent_size(entry),
1841 *max_extent_size);
1842 continue;
1843 }
1844
1845 if (entry->bitmap) {
1846 u64 size = *bytes;
1847
1848 ret = search_bitmap(ctl, entry, &tmp, &size, true);
1849 if (!ret) {
1850 *offset = tmp;
1851 *bytes = size;
1852 return entry;
1853 } else {
1854 *max_extent_size =
1855 max(get_max_extent_size(entry),
1856 *max_extent_size);
1857 }
1858 continue;
1859 }
1860
1861 *offset = tmp;
1862 *bytes = entry->bytes - align_off;
1863 return entry;
1864 }
1865out:
1866 return NULL;
1867}
1868
1869static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1870 struct btrfs_free_space *info, u64 offset)
1871{
1872 info->offset = offset_to_bitmap(ctl, offset);
1873 info->bytes = 0;
1874 INIT_LIST_HEAD(&info->list);
1875 link_free_space(ctl, info);
1876 ctl->total_bitmaps++;
1877
1878 ctl->op->recalc_thresholds(ctl);
1879}
1880
1881static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1882 struct btrfs_free_space *bitmap_info)
1883{
1884 unlink_free_space(ctl, bitmap_info);
1885 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1886 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1887 ctl->total_bitmaps--;
1888 ctl->op->recalc_thresholds(ctl);
1889}
1890
1891static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1892 struct btrfs_free_space *bitmap_info,
1893 u64 *offset, u64 *bytes)
1894{
1895 u64 end;
1896 u64 search_start, search_bytes;
1897 int ret;
1898
1899again:
1900 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1901
1902 /*
1903 * We need to search for bits in this bitmap. We could only cover some
1904 * of the extent in this bitmap thanks to how we add space, so we need
1905 * to search for as much as it as we can and clear that amount, and then
1906 * go searching for the next bit.
1907 */
1908 search_start = *offset;
1909 search_bytes = ctl->unit;
1910 search_bytes = min(search_bytes, end - search_start + 1);
1911 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1912 false);
1913 if (ret < 0 || search_start != *offset)
1914 return -EINVAL;
1915
1916 /* We may have found more bits than what we need */
1917 search_bytes = min(search_bytes, *bytes);
1918
1919 /* Cannot clear past the end of the bitmap */
1920 search_bytes = min(search_bytes, end - search_start + 1);
1921
1922 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1923 *offset += search_bytes;
1924 *bytes -= search_bytes;
1925
1926 if (*bytes) {
1927 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1928 if (!bitmap_info->bytes)
1929 free_bitmap(ctl, bitmap_info);
1930
1931 /*
1932 * no entry after this bitmap, but we still have bytes to
1933 * remove, so something has gone wrong.
1934 */
1935 if (!next)
1936 return -EINVAL;
1937
1938 bitmap_info = rb_entry(next, struct btrfs_free_space,
1939 offset_index);
1940
1941 /*
1942 * if the next entry isn't a bitmap we need to return to let the
1943 * extent stuff do its work.
1944 */
1945 if (!bitmap_info->bitmap)
1946 return -EAGAIN;
1947
1948 /*
1949 * Ok the next item is a bitmap, but it may not actually hold
1950 * the information for the rest of this free space stuff, so
1951 * look for it, and if we don't find it return so we can try
1952 * everything over again.
1953 */
1954 search_start = *offset;
1955 search_bytes = ctl->unit;
1956 ret = search_bitmap(ctl, bitmap_info, &search_start,
1957 &search_bytes, false);
1958 if (ret < 0 || search_start != *offset)
1959 return -EAGAIN;
1960
1961 goto again;
1962 } else if (!bitmap_info->bytes)
1963 free_bitmap(ctl, bitmap_info);
1964
1965 return 0;
1966}
1967
1968static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1969 struct btrfs_free_space *info, u64 offset,
1970 u64 bytes)
1971{
1972 u64 bytes_to_set = 0;
1973 u64 end;
1974
1975 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1976
1977 bytes_to_set = min(end - offset, bytes);
1978
1979 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1980
1981 /*
1982 * We set some bytes, we have no idea what the max extent size is
1983 * anymore.
1984 */
1985 info->max_extent_size = 0;
1986
1987 return bytes_to_set;
1988
1989}
1990
1991static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1992 struct btrfs_free_space *info)
1993{
1994 struct btrfs_block_group_cache *block_group = ctl->private;
1995 struct btrfs_fs_info *fs_info = block_group->fs_info;
1996 bool forced = false;
1997
1998#ifdef CONFIG_BTRFS_DEBUG
1999 if (btrfs_should_fragment_free_space(block_group))
2000 forced = true;
2001#endif
2002
2003 /*
2004 * If we are below the extents threshold then we can add this as an
2005 * extent, and don't have to deal with the bitmap
2006 */
2007 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2008 /*
2009 * If this block group has some small extents we don't want to
2010 * use up all of our free slots in the cache with them, we want
2011 * to reserve them to larger extents, however if we have plenty
2012 * of cache left then go ahead an dadd them, no sense in adding
2013 * the overhead of a bitmap if we don't have to.
2014 */
2015 if (info->bytes <= fs_info->sectorsize * 4) {
2016 if (ctl->free_extents * 2 <= ctl->extents_thresh)
2017 return false;
2018 } else {
2019 return false;
2020 }
2021 }
2022
2023 /*
2024 * The original block groups from mkfs can be really small, like 8
2025 * megabytes, so don't bother with a bitmap for those entries. However
2026 * some block groups can be smaller than what a bitmap would cover but
2027 * are still large enough that they could overflow the 32k memory limit,
2028 * so allow those block groups to still be allowed to have a bitmap
2029 * entry.
2030 */
2031 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2032 return false;
2033
2034 return true;
2035}
2036
2037static const struct btrfs_free_space_op free_space_op = {
2038 .recalc_thresholds = recalculate_thresholds,
2039 .use_bitmap = use_bitmap,
2040};
2041
2042static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2043 struct btrfs_free_space *info)
2044{
2045 struct btrfs_free_space *bitmap_info;
2046 struct btrfs_block_group_cache *block_group = NULL;
2047 int added = 0;
2048 u64 bytes, offset, bytes_added;
2049 int ret;
2050
2051 bytes = info->bytes;
2052 offset = info->offset;
2053
2054 if (!ctl->op->use_bitmap(ctl, info))
2055 return 0;
2056
2057 if (ctl->op == &free_space_op)
2058 block_group = ctl->private;
2059again:
2060 /*
2061 * Since we link bitmaps right into the cluster we need to see if we
2062 * have a cluster here, and if so and it has our bitmap we need to add
2063 * the free space to that bitmap.
2064 */
2065 if (block_group && !list_empty(&block_group->cluster_list)) {
2066 struct btrfs_free_cluster *cluster;
2067 struct rb_node *node;
2068 struct btrfs_free_space *entry;
2069
2070 cluster = list_entry(block_group->cluster_list.next,
2071 struct btrfs_free_cluster,
2072 block_group_list);
2073 spin_lock(&cluster->lock);
2074 node = rb_first(&cluster->root);
2075 if (!node) {
2076 spin_unlock(&cluster->lock);
2077 goto no_cluster_bitmap;
2078 }
2079
2080 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2081 if (!entry->bitmap) {
2082 spin_unlock(&cluster->lock);
2083 goto no_cluster_bitmap;
2084 }
2085
2086 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2087 bytes_added = add_bytes_to_bitmap(ctl, entry,
2088 offset, bytes);
2089 bytes -= bytes_added;
2090 offset += bytes_added;
2091 }
2092 spin_unlock(&cluster->lock);
2093 if (!bytes) {
2094 ret = 1;
2095 goto out;
2096 }
2097 }
2098
2099no_cluster_bitmap:
2100 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2101 1, 0);
2102 if (!bitmap_info) {
2103 ASSERT(added == 0);
2104 goto new_bitmap;
2105 }
2106
2107 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2108 bytes -= bytes_added;
2109 offset += bytes_added;
2110 added = 0;
2111
2112 if (!bytes) {
2113 ret = 1;
2114 goto out;
2115 } else
2116 goto again;
2117
2118new_bitmap:
2119 if (info && info->bitmap) {
2120 add_new_bitmap(ctl, info, offset);
2121 added = 1;
2122 info = NULL;
2123 goto again;
2124 } else {
2125 spin_unlock(&ctl->tree_lock);
2126
2127 /* no pre-allocated info, allocate a new one */
2128 if (!info) {
2129 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2130 GFP_NOFS);
2131 if (!info) {
2132 spin_lock(&ctl->tree_lock);
2133 ret = -ENOMEM;
2134 goto out;
2135 }
2136 }
2137
2138 /* allocate the bitmap */
2139 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2140 GFP_NOFS);
2141 spin_lock(&ctl->tree_lock);
2142 if (!info->bitmap) {
2143 ret = -ENOMEM;
2144 goto out;
2145 }
2146 goto again;
2147 }
2148
2149out:
2150 if (info) {
2151 if (info->bitmap)
2152 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2153 info->bitmap);
2154 kmem_cache_free(btrfs_free_space_cachep, info);
2155 }
2156
2157 return ret;
2158}
2159
2160static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2161 struct btrfs_free_space *info, bool update_stat)
2162{
2163 struct btrfs_free_space *left_info;
2164 struct btrfs_free_space *right_info;
2165 bool merged = false;
2166 u64 offset = info->offset;
2167 u64 bytes = info->bytes;
2168
2169 /*
2170 * first we want to see if there is free space adjacent to the range we
2171 * are adding, if there is remove that struct and add a new one to
2172 * cover the entire range
2173 */
2174 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2175 if (right_info && rb_prev(&right_info->offset_index))
2176 left_info = rb_entry(rb_prev(&right_info->offset_index),
2177 struct btrfs_free_space, offset_index);
2178 else
2179 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2180
2181 if (right_info && !right_info->bitmap) {
2182 if (update_stat)
2183 unlink_free_space(ctl, right_info);
2184 else
2185 __unlink_free_space(ctl, right_info);
2186 info->bytes += right_info->bytes;
2187 kmem_cache_free(btrfs_free_space_cachep, right_info);
2188 merged = true;
2189 }
2190
2191 if (left_info && !left_info->bitmap &&
2192 left_info->offset + left_info->bytes == offset) {
2193 if (update_stat)
2194 unlink_free_space(ctl, left_info);
2195 else
2196 __unlink_free_space(ctl, left_info);
2197 info->offset = left_info->offset;
2198 info->bytes += left_info->bytes;
2199 kmem_cache_free(btrfs_free_space_cachep, left_info);
2200 merged = true;
2201 }
2202
2203 return merged;
2204}
2205
2206static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2207 struct btrfs_free_space *info,
2208 bool update_stat)
2209{
2210 struct btrfs_free_space *bitmap;
2211 unsigned long i;
2212 unsigned long j;
2213 const u64 end = info->offset + info->bytes;
2214 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2215 u64 bytes;
2216
2217 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2218 if (!bitmap)
2219 return false;
2220
2221 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2222 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2223 if (j == i)
2224 return false;
2225 bytes = (j - i) * ctl->unit;
2226 info->bytes += bytes;
2227
2228 if (update_stat)
2229 bitmap_clear_bits(ctl, bitmap, end, bytes);
2230 else
2231 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2232
2233 if (!bitmap->bytes)
2234 free_bitmap(ctl, bitmap);
2235
2236 return true;
2237}
2238
2239static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2240 struct btrfs_free_space *info,
2241 bool update_stat)
2242{
2243 struct btrfs_free_space *bitmap;
2244 u64 bitmap_offset;
2245 unsigned long i;
2246 unsigned long j;
2247 unsigned long prev_j;
2248 u64 bytes;
2249
2250 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2251 /* If we're on a boundary, try the previous logical bitmap. */
2252 if (bitmap_offset == info->offset) {
2253 if (info->offset == 0)
2254 return false;
2255 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2256 }
2257
2258 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2259 if (!bitmap)
2260 return false;
2261
2262 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2263 j = 0;
2264 prev_j = (unsigned long)-1;
2265 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2266 if (j > i)
2267 break;
2268 prev_j = j;
2269 }
2270 if (prev_j == i)
2271 return false;
2272
2273 if (prev_j == (unsigned long)-1)
2274 bytes = (i + 1) * ctl->unit;
2275 else
2276 bytes = (i - prev_j) * ctl->unit;
2277
2278 info->offset -= bytes;
2279 info->bytes += bytes;
2280
2281 if (update_stat)
2282 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2283 else
2284 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2285
2286 if (!bitmap->bytes)
2287 free_bitmap(ctl, bitmap);
2288
2289 return true;
2290}
2291
2292/*
2293 * We prefer always to allocate from extent entries, both for clustered and
2294 * non-clustered allocation requests. So when attempting to add a new extent
2295 * entry, try to see if there's adjacent free space in bitmap entries, and if
2296 * there is, migrate that space from the bitmaps to the extent.
2297 * Like this we get better chances of satisfying space allocation requests
2298 * because we attempt to satisfy them based on a single cache entry, and never
2299 * on 2 or more entries - even if the entries represent a contiguous free space
2300 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2301 * ends).
2302 */
2303static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2304 struct btrfs_free_space *info,
2305 bool update_stat)
2306{
2307 /*
2308 * Only work with disconnected entries, as we can change their offset,
2309 * and must be extent entries.
2310 */
2311 ASSERT(!info->bitmap);
2312 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2313
2314 if (ctl->total_bitmaps > 0) {
2315 bool stole_end;
2316 bool stole_front = false;
2317
2318 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2319 if (ctl->total_bitmaps > 0)
2320 stole_front = steal_from_bitmap_to_front(ctl, info,
2321 update_stat);
2322
2323 if (stole_end || stole_front)
2324 try_merge_free_space(ctl, info, update_stat);
2325 }
2326}
2327
2328int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2329 struct btrfs_free_space_ctl *ctl,
2330 u64 offset, u64 bytes)
2331{
2332 struct btrfs_free_space *info;
2333 int ret = 0;
2334
2335 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2336 if (!info)
2337 return -ENOMEM;
2338
2339 info->offset = offset;
2340 info->bytes = bytes;
2341 RB_CLEAR_NODE(&info->offset_index);
2342
2343 spin_lock(&ctl->tree_lock);
2344
2345 if (try_merge_free_space(ctl, info, true))
2346 goto link;
2347
2348 /*
2349 * There was no extent directly to the left or right of this new
2350 * extent then we know we're going to have to allocate a new extent, so
2351 * before we do that see if we need to drop this into a bitmap
2352 */
2353 ret = insert_into_bitmap(ctl, info);
2354 if (ret < 0) {
2355 goto out;
2356 } else if (ret) {
2357 ret = 0;
2358 goto out;
2359 }
2360link:
2361 /*
2362 * Only steal free space from adjacent bitmaps if we're sure we're not
2363 * going to add the new free space to existing bitmap entries - because
2364 * that would mean unnecessary work that would be reverted. Therefore
2365 * attempt to steal space from bitmaps if we're adding an extent entry.
2366 */
2367 steal_from_bitmap(ctl, info, true);
2368
2369 ret = link_free_space(ctl, info);
2370 if (ret)
2371 kmem_cache_free(btrfs_free_space_cachep, info);
2372out:
2373 spin_unlock(&ctl->tree_lock);
2374
2375 if (ret) {
2376 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2377 ASSERT(ret != -EEXIST);
2378 }
2379
2380 return ret;
2381}
2382
2383int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
2384 u64 bytenr, u64 size)
2385{
2386 return __btrfs_add_free_space(block_group->fs_info,
2387 block_group->free_space_ctl,
2388 bytenr, size);
2389}
2390
2391int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2392 u64 offset, u64 bytes)
2393{
2394 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2395 struct btrfs_free_space *info;
2396 int ret;
2397 bool re_search = false;
2398
2399 spin_lock(&ctl->tree_lock);
2400
2401again:
2402 ret = 0;
2403 if (!bytes)
2404 goto out_lock;
2405
2406 info = tree_search_offset(ctl, offset, 0, 0);
2407 if (!info) {
2408 /*
2409 * oops didn't find an extent that matched the space we wanted
2410 * to remove, look for a bitmap instead
2411 */
2412 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2413 1, 0);
2414 if (!info) {
2415 /*
2416 * If we found a partial bit of our free space in a
2417 * bitmap but then couldn't find the other part this may
2418 * be a problem, so WARN about it.
2419 */
2420 WARN_ON(re_search);
2421 goto out_lock;
2422 }
2423 }
2424
2425 re_search = false;
2426 if (!info->bitmap) {
2427 unlink_free_space(ctl, info);
2428 if (offset == info->offset) {
2429 u64 to_free = min(bytes, info->bytes);
2430
2431 info->bytes -= to_free;
2432 info->offset += to_free;
2433 if (info->bytes) {
2434 ret = link_free_space(ctl, info);
2435 WARN_ON(ret);
2436 } else {
2437 kmem_cache_free(btrfs_free_space_cachep, info);
2438 }
2439
2440 offset += to_free;
2441 bytes -= to_free;
2442 goto again;
2443 } else {
2444 u64 old_end = info->bytes + info->offset;
2445
2446 info->bytes = offset - info->offset;
2447 ret = link_free_space(ctl, info);
2448 WARN_ON(ret);
2449 if (ret)
2450 goto out_lock;
2451
2452 /* Not enough bytes in this entry to satisfy us */
2453 if (old_end < offset + bytes) {
2454 bytes -= old_end - offset;
2455 offset = old_end;
2456 goto again;
2457 } else if (old_end == offset + bytes) {
2458 /* all done */
2459 goto out_lock;
2460 }
2461 spin_unlock(&ctl->tree_lock);
2462
2463 ret = btrfs_add_free_space(block_group, offset + bytes,
2464 old_end - (offset + bytes));
2465 WARN_ON(ret);
2466 goto out;
2467 }
2468 }
2469
2470 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2471 if (ret == -EAGAIN) {
2472 re_search = true;
2473 goto again;
2474 }
2475out_lock:
2476 spin_unlock(&ctl->tree_lock);
2477out:
2478 return ret;
2479}
2480
2481void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2482 u64 bytes)
2483{
2484 struct btrfs_fs_info *fs_info = block_group->fs_info;
2485 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2486 struct btrfs_free_space *info;
2487 struct rb_node *n;
2488 int count = 0;
2489
2490 spin_lock(&ctl->tree_lock);
2491 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2492 info = rb_entry(n, struct btrfs_free_space, offset_index);
2493 if (info->bytes >= bytes && !block_group->ro)
2494 count++;
2495 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2496 info->offset, info->bytes,
2497 (info->bitmap) ? "yes" : "no");
2498 }
2499 spin_unlock(&ctl->tree_lock);
2500 btrfs_info(fs_info, "block group has cluster?: %s",
2501 list_empty(&block_group->cluster_list) ? "no" : "yes");
2502 btrfs_info(fs_info,
2503 "%d blocks of free space at or bigger than bytes is", count);
2504}
2505
2506void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2507{
2508 struct btrfs_fs_info *fs_info = block_group->fs_info;
2509 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2510
2511 spin_lock_init(&ctl->tree_lock);
2512 ctl->unit = fs_info->sectorsize;
2513 ctl->start = block_group->key.objectid;
2514 ctl->private = block_group;
2515 ctl->op = &free_space_op;
2516 INIT_LIST_HEAD(&ctl->trimming_ranges);
2517 mutex_init(&ctl->cache_writeout_mutex);
2518
2519 /*
2520 * we only want to have 32k of ram per block group for keeping
2521 * track of free space, and if we pass 1/2 of that we want to
2522 * start converting things over to using bitmaps
2523 */
2524 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2525}
2526
2527/*
2528 * for a given cluster, put all of its extents back into the free
2529 * space cache. If the block group passed doesn't match the block group
2530 * pointed to by the cluster, someone else raced in and freed the
2531 * cluster already. In that case, we just return without changing anything
2532 */
2533static int
2534__btrfs_return_cluster_to_free_space(
2535 struct btrfs_block_group_cache *block_group,
2536 struct btrfs_free_cluster *cluster)
2537{
2538 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2539 struct btrfs_free_space *entry;
2540 struct rb_node *node;
2541
2542 spin_lock(&cluster->lock);
2543 if (cluster->block_group != block_group)
2544 goto out;
2545
2546 cluster->block_group = NULL;
2547 cluster->window_start = 0;
2548 list_del_init(&cluster->block_group_list);
2549
2550 node = rb_first(&cluster->root);
2551 while (node) {
2552 bool bitmap;
2553
2554 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2555 node = rb_next(&entry->offset_index);
2556 rb_erase(&entry->offset_index, &cluster->root);
2557 RB_CLEAR_NODE(&entry->offset_index);
2558
2559 bitmap = (entry->bitmap != NULL);
2560 if (!bitmap) {
2561 try_merge_free_space(ctl, entry, false);
2562 steal_from_bitmap(ctl, entry, false);
2563 }
2564 tree_insert_offset(&ctl->free_space_offset,
2565 entry->offset, &entry->offset_index, bitmap);
2566 }
2567 cluster->root = RB_ROOT;
2568
2569out:
2570 spin_unlock(&cluster->lock);
2571 btrfs_put_block_group(block_group);
2572 return 0;
2573}
2574
2575static void __btrfs_remove_free_space_cache_locked(
2576 struct btrfs_free_space_ctl *ctl)
2577{
2578 struct btrfs_free_space *info;
2579 struct rb_node *node;
2580
2581 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2582 info = rb_entry(node, struct btrfs_free_space, offset_index);
2583 if (!info->bitmap) {
2584 unlink_free_space(ctl, info);
2585 kmem_cache_free(btrfs_free_space_cachep, info);
2586 } else {
2587 free_bitmap(ctl, info);
2588 }
2589
2590 cond_resched_lock(&ctl->tree_lock);
2591 }
2592}
2593
2594void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2595{
2596 spin_lock(&ctl->tree_lock);
2597 __btrfs_remove_free_space_cache_locked(ctl);
2598 spin_unlock(&ctl->tree_lock);
2599}
2600
2601void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2602{
2603 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2604 struct btrfs_free_cluster *cluster;
2605 struct list_head *head;
2606
2607 spin_lock(&ctl->tree_lock);
2608 while ((head = block_group->cluster_list.next) !=
2609 &block_group->cluster_list) {
2610 cluster = list_entry(head, struct btrfs_free_cluster,
2611 block_group_list);
2612
2613 WARN_ON(cluster->block_group != block_group);
2614 __btrfs_return_cluster_to_free_space(block_group, cluster);
2615
2616 cond_resched_lock(&ctl->tree_lock);
2617 }
2618 __btrfs_remove_free_space_cache_locked(ctl);
2619 spin_unlock(&ctl->tree_lock);
2620
2621}
2622
2623u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2624 u64 offset, u64 bytes, u64 empty_size,
2625 u64 *max_extent_size)
2626{
2627 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2628 struct btrfs_free_space *entry = NULL;
2629 u64 bytes_search = bytes + empty_size;
2630 u64 ret = 0;
2631 u64 align_gap = 0;
2632 u64 align_gap_len = 0;
2633
2634 spin_lock(&ctl->tree_lock);
2635 entry = find_free_space(ctl, &offset, &bytes_search,
2636 block_group->full_stripe_len, max_extent_size);
2637 if (!entry)
2638 goto out;
2639
2640 ret = offset;
2641 if (entry->bitmap) {
2642 bitmap_clear_bits(ctl, entry, offset, bytes);
2643 if (!entry->bytes)
2644 free_bitmap(ctl, entry);
2645 } else {
2646 unlink_free_space(ctl, entry);
2647 align_gap_len = offset - entry->offset;
2648 align_gap = entry->offset;
2649
2650 entry->offset = offset + bytes;
2651 WARN_ON(entry->bytes < bytes + align_gap_len);
2652
2653 entry->bytes -= bytes + align_gap_len;
2654 if (!entry->bytes)
2655 kmem_cache_free(btrfs_free_space_cachep, entry);
2656 else
2657 link_free_space(ctl, entry);
2658 }
2659out:
2660 spin_unlock(&ctl->tree_lock);
2661
2662 if (align_gap_len)
2663 __btrfs_add_free_space(block_group->fs_info, ctl,
2664 align_gap, align_gap_len);
2665 return ret;
2666}
2667
2668/*
2669 * given a cluster, put all of its extents back into the free space
2670 * cache. If a block group is passed, this function will only free
2671 * a cluster that belongs to the passed block group.
2672 *
2673 * Otherwise, it'll get a reference on the block group pointed to by the
2674 * cluster and remove the cluster from it.
2675 */
2676int btrfs_return_cluster_to_free_space(
2677 struct btrfs_block_group_cache *block_group,
2678 struct btrfs_free_cluster *cluster)
2679{
2680 struct btrfs_free_space_ctl *ctl;
2681 int ret;
2682
2683 /* first, get a safe pointer to the block group */
2684 spin_lock(&cluster->lock);
2685 if (!block_group) {
2686 block_group = cluster->block_group;
2687 if (!block_group) {
2688 spin_unlock(&cluster->lock);
2689 return 0;
2690 }
2691 } else if (cluster->block_group != block_group) {
2692 /* someone else has already freed it don't redo their work */
2693 spin_unlock(&cluster->lock);
2694 return 0;
2695 }
2696 atomic_inc(&block_group->count);
2697 spin_unlock(&cluster->lock);
2698
2699 ctl = block_group->free_space_ctl;
2700
2701 /* now return any extents the cluster had on it */
2702 spin_lock(&ctl->tree_lock);
2703 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2704 spin_unlock(&ctl->tree_lock);
2705
2706 /* finally drop our ref */
2707 btrfs_put_block_group(block_group);
2708 return ret;
2709}
2710
2711static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2712 struct btrfs_free_cluster *cluster,
2713 struct btrfs_free_space *entry,
2714 u64 bytes, u64 min_start,
2715 u64 *max_extent_size)
2716{
2717 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2718 int err;
2719 u64 search_start = cluster->window_start;
2720 u64 search_bytes = bytes;
2721 u64 ret = 0;
2722
2723 search_start = min_start;
2724 search_bytes = bytes;
2725
2726 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2727 if (err) {
2728 *max_extent_size = max(get_max_extent_size(entry),
2729 *max_extent_size);
2730 return 0;
2731 }
2732
2733 ret = search_start;
2734 __bitmap_clear_bits(ctl, entry, ret, bytes);
2735
2736 return ret;
2737}
2738
2739/*
2740 * given a cluster, try to allocate 'bytes' from it, returns 0
2741 * if it couldn't find anything suitably large, or a logical disk offset
2742 * if things worked out
2743 */
2744u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2745 struct btrfs_free_cluster *cluster, u64 bytes,
2746 u64 min_start, u64 *max_extent_size)
2747{
2748 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2749 struct btrfs_free_space *entry = NULL;
2750 struct rb_node *node;
2751 u64 ret = 0;
2752
2753 spin_lock(&cluster->lock);
2754 if (bytes > cluster->max_size)
2755 goto out;
2756
2757 if (cluster->block_group != block_group)
2758 goto out;
2759
2760 node = rb_first(&cluster->root);
2761 if (!node)
2762 goto out;
2763
2764 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2765 while (1) {
2766 if (entry->bytes < bytes)
2767 *max_extent_size = max(get_max_extent_size(entry),
2768 *max_extent_size);
2769
2770 if (entry->bytes < bytes ||
2771 (!entry->bitmap && entry->offset < min_start)) {
2772 node = rb_next(&entry->offset_index);
2773 if (!node)
2774 break;
2775 entry = rb_entry(node, struct btrfs_free_space,
2776 offset_index);
2777 continue;
2778 }
2779
2780 if (entry->bitmap) {
2781 ret = btrfs_alloc_from_bitmap(block_group,
2782 cluster, entry, bytes,
2783 cluster->window_start,
2784 max_extent_size);
2785 if (ret == 0) {
2786 node = rb_next(&entry->offset_index);
2787 if (!node)
2788 break;
2789 entry = rb_entry(node, struct btrfs_free_space,
2790 offset_index);
2791 continue;
2792 }
2793 cluster->window_start += bytes;
2794 } else {
2795 ret = entry->offset;
2796
2797 entry->offset += bytes;
2798 entry->bytes -= bytes;
2799 }
2800
2801 if (entry->bytes == 0)
2802 rb_erase(&entry->offset_index, &cluster->root);
2803 break;
2804 }
2805out:
2806 spin_unlock(&cluster->lock);
2807
2808 if (!ret)
2809 return 0;
2810
2811 spin_lock(&ctl->tree_lock);
2812
2813 ctl->free_space -= bytes;
2814 if (entry->bytes == 0) {
2815 ctl->free_extents--;
2816 if (entry->bitmap) {
2817 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2818 entry->bitmap);
2819 ctl->total_bitmaps--;
2820 ctl->op->recalc_thresholds(ctl);
2821 }
2822 kmem_cache_free(btrfs_free_space_cachep, entry);
2823 }
2824
2825 spin_unlock(&ctl->tree_lock);
2826
2827 return ret;
2828}
2829
2830static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2831 struct btrfs_free_space *entry,
2832 struct btrfs_free_cluster *cluster,
2833 u64 offset, u64 bytes,
2834 u64 cont1_bytes, u64 min_bytes)
2835{
2836 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2837 unsigned long next_zero;
2838 unsigned long i;
2839 unsigned long want_bits;
2840 unsigned long min_bits;
2841 unsigned long found_bits;
2842 unsigned long max_bits = 0;
2843 unsigned long start = 0;
2844 unsigned long total_found = 0;
2845 int ret;
2846
2847 i = offset_to_bit(entry->offset, ctl->unit,
2848 max_t(u64, offset, entry->offset));
2849 want_bits = bytes_to_bits(bytes, ctl->unit);
2850 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2851
2852 /*
2853 * Don't bother looking for a cluster in this bitmap if it's heavily
2854 * fragmented.
2855 */
2856 if (entry->max_extent_size &&
2857 entry->max_extent_size < cont1_bytes)
2858 return -ENOSPC;
2859again:
2860 found_bits = 0;
2861 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2862 next_zero = find_next_zero_bit(entry->bitmap,
2863 BITS_PER_BITMAP, i);
2864 if (next_zero - i >= min_bits) {
2865 found_bits = next_zero - i;
2866 if (found_bits > max_bits)
2867 max_bits = found_bits;
2868 break;
2869 }
2870 if (next_zero - i > max_bits)
2871 max_bits = next_zero - i;
2872 i = next_zero;
2873 }
2874
2875 if (!found_bits) {
2876 entry->max_extent_size = (u64)max_bits * ctl->unit;
2877 return -ENOSPC;
2878 }
2879
2880 if (!total_found) {
2881 start = i;
2882 cluster->max_size = 0;
2883 }
2884
2885 total_found += found_bits;
2886
2887 if (cluster->max_size < found_bits * ctl->unit)
2888 cluster->max_size = found_bits * ctl->unit;
2889
2890 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2891 i = next_zero + 1;
2892 goto again;
2893 }
2894
2895 cluster->window_start = start * ctl->unit + entry->offset;
2896 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2897 ret = tree_insert_offset(&cluster->root, entry->offset,
2898 &entry->offset_index, 1);
2899 ASSERT(!ret); /* -EEXIST; Logic error */
2900
2901 trace_btrfs_setup_cluster(block_group, cluster,
2902 total_found * ctl->unit, 1);
2903 return 0;
2904}
2905
2906/*
2907 * This searches the block group for just extents to fill the cluster with.
2908 * Try to find a cluster with at least bytes total bytes, at least one
2909 * extent of cont1_bytes, and other clusters of at least min_bytes.
2910 */
2911static noinline int
2912setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2913 struct btrfs_free_cluster *cluster,
2914 struct list_head *bitmaps, u64 offset, u64 bytes,
2915 u64 cont1_bytes, u64 min_bytes)
2916{
2917 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2918 struct btrfs_free_space *first = NULL;
2919 struct btrfs_free_space *entry = NULL;
2920 struct btrfs_free_space *last;
2921 struct rb_node *node;
2922 u64 window_free;
2923 u64 max_extent;
2924 u64 total_size = 0;
2925
2926 entry = tree_search_offset(ctl, offset, 0, 1);
2927 if (!entry)
2928 return -ENOSPC;
2929
2930 /*
2931 * We don't want bitmaps, so just move along until we find a normal
2932 * extent entry.
2933 */
2934 while (entry->bitmap || entry->bytes < min_bytes) {
2935 if (entry->bitmap && list_empty(&entry->list))
2936 list_add_tail(&entry->list, bitmaps);
2937 node = rb_next(&entry->offset_index);
2938 if (!node)
2939 return -ENOSPC;
2940 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2941 }
2942
2943 window_free = entry->bytes;
2944 max_extent = entry->bytes;
2945 first = entry;
2946 last = entry;
2947
2948 for (node = rb_next(&entry->offset_index); node;
2949 node = rb_next(&entry->offset_index)) {
2950 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2951
2952 if (entry->bitmap) {
2953 if (list_empty(&entry->list))
2954 list_add_tail(&entry->list, bitmaps);
2955 continue;
2956 }
2957
2958 if (entry->bytes < min_bytes)
2959 continue;
2960
2961 last = entry;
2962 window_free += entry->bytes;
2963 if (entry->bytes > max_extent)
2964 max_extent = entry->bytes;
2965 }
2966
2967 if (window_free < bytes || max_extent < cont1_bytes)
2968 return -ENOSPC;
2969
2970 cluster->window_start = first->offset;
2971
2972 node = &first->offset_index;
2973
2974 /*
2975 * now we've found our entries, pull them out of the free space
2976 * cache and put them into the cluster rbtree
2977 */
2978 do {
2979 int ret;
2980
2981 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2982 node = rb_next(&entry->offset_index);
2983 if (entry->bitmap || entry->bytes < min_bytes)
2984 continue;
2985
2986 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2987 ret = tree_insert_offset(&cluster->root, entry->offset,
2988 &entry->offset_index, 0);
2989 total_size += entry->bytes;
2990 ASSERT(!ret); /* -EEXIST; Logic error */
2991 } while (node && entry != last);
2992
2993 cluster->max_size = max_extent;
2994 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2995 return 0;
2996}
2997
2998/*
2999 * This specifically looks for bitmaps that may work in the cluster, we assume
3000 * that we have already failed to find extents that will work.
3001 */
3002static noinline int
3003setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
3004 struct btrfs_free_cluster *cluster,
3005 struct list_head *bitmaps, u64 offset, u64 bytes,
3006 u64 cont1_bytes, u64 min_bytes)
3007{
3008 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3009 struct btrfs_free_space *entry = NULL;
3010 int ret = -ENOSPC;
3011 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3012
3013 if (ctl->total_bitmaps == 0)
3014 return -ENOSPC;
3015
3016 /*
3017 * The bitmap that covers offset won't be in the list unless offset
3018 * is just its start offset.
3019 */
3020 if (!list_empty(bitmaps))
3021 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3022
3023 if (!entry || entry->offset != bitmap_offset) {
3024 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3025 if (entry && list_empty(&entry->list))
3026 list_add(&entry->list, bitmaps);
3027 }
3028
3029 list_for_each_entry(entry, bitmaps, list) {
3030 if (entry->bytes < bytes)
3031 continue;
3032 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3033 bytes, cont1_bytes, min_bytes);
3034 if (!ret)
3035 return 0;
3036 }
3037
3038 /*
3039 * The bitmaps list has all the bitmaps that record free space
3040 * starting after offset, so no more search is required.
3041 */
3042 return -ENOSPC;
3043}
3044
3045/*
3046 * here we try to find a cluster of blocks in a block group. The goal
3047 * is to find at least bytes+empty_size.
3048 * We might not find them all in one contiguous area.
3049 *
3050 * returns zero and sets up cluster if things worked out, otherwise
3051 * it returns -enospc
3052 */
3053int btrfs_find_space_cluster(struct btrfs_block_group_cache *block_group,
3054 struct btrfs_free_cluster *cluster,
3055 u64 offset, u64 bytes, u64 empty_size)
3056{
3057 struct btrfs_fs_info *fs_info = block_group->fs_info;
3058 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3059 struct btrfs_free_space *entry, *tmp;
3060 LIST_HEAD(bitmaps);
3061 u64 min_bytes;
3062 u64 cont1_bytes;
3063 int ret;
3064
3065 /*
3066 * Choose the minimum extent size we'll require for this
3067 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3068 * For metadata, allow allocates with smaller extents. For
3069 * data, keep it dense.
3070 */
3071 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3072 cont1_bytes = min_bytes = bytes + empty_size;
3073 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3074 cont1_bytes = bytes;
3075 min_bytes = fs_info->sectorsize;
3076 } else {
3077 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3078 min_bytes = fs_info->sectorsize;
3079 }
3080
3081 spin_lock(&ctl->tree_lock);
3082
3083 /*
3084 * If we know we don't have enough space to make a cluster don't even
3085 * bother doing all the work to try and find one.
3086 */
3087 if (ctl->free_space < bytes) {
3088 spin_unlock(&ctl->tree_lock);
3089 return -ENOSPC;
3090 }
3091
3092 spin_lock(&cluster->lock);
3093
3094 /* someone already found a cluster, hooray */
3095 if (cluster->block_group) {
3096 ret = 0;
3097 goto out;
3098 }
3099
3100 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3101 min_bytes);
3102
3103 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3104 bytes + empty_size,
3105 cont1_bytes, min_bytes);
3106 if (ret)
3107 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3108 offset, bytes + empty_size,
3109 cont1_bytes, min_bytes);
3110
3111 /* Clear our temporary list */
3112 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3113 list_del_init(&entry->list);
3114
3115 if (!ret) {
3116 atomic_inc(&block_group->count);
3117 list_add_tail(&cluster->block_group_list,
3118 &block_group->cluster_list);
3119 cluster->block_group = block_group;
3120 } else {
3121 trace_btrfs_failed_cluster_setup(block_group);
3122 }
3123out:
3124 spin_unlock(&cluster->lock);
3125 spin_unlock(&ctl->tree_lock);
3126
3127 return ret;
3128}
3129
3130/*
3131 * simple code to zero out a cluster
3132 */
3133void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3134{
3135 spin_lock_init(&cluster->lock);
3136 spin_lock_init(&cluster->refill_lock);
3137 cluster->root = RB_ROOT;
3138 cluster->max_size = 0;
3139 cluster->fragmented = false;
3140 INIT_LIST_HEAD(&cluster->block_group_list);
3141 cluster->block_group = NULL;
3142}
3143
3144static int do_trimming(struct btrfs_block_group_cache *block_group,
3145 u64 *total_trimmed, u64 start, u64 bytes,
3146 u64 reserved_start, u64 reserved_bytes,
3147 struct btrfs_trim_range *trim_entry)
3148{
3149 struct btrfs_space_info *space_info = block_group->space_info;
3150 struct btrfs_fs_info *fs_info = block_group->fs_info;
3151 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3152 int ret;
3153 int update = 0;
3154 u64 trimmed = 0;
3155
3156 spin_lock(&space_info->lock);
3157 spin_lock(&block_group->lock);
3158 if (!block_group->ro) {
3159 block_group->reserved += reserved_bytes;
3160 space_info->bytes_reserved += reserved_bytes;
3161 update = 1;
3162 }
3163 spin_unlock(&block_group->lock);
3164 spin_unlock(&space_info->lock);
3165
3166 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3167 if (!ret)
3168 *total_trimmed += trimmed;
3169
3170 mutex_lock(&ctl->cache_writeout_mutex);
3171 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3172 list_del(&trim_entry->list);
3173 mutex_unlock(&ctl->cache_writeout_mutex);
3174
3175 if (update) {
3176 spin_lock(&space_info->lock);
3177 spin_lock(&block_group->lock);
3178 if (block_group->ro)
3179 space_info->bytes_readonly += reserved_bytes;
3180 block_group->reserved -= reserved_bytes;
3181 space_info->bytes_reserved -= reserved_bytes;
3182 spin_unlock(&block_group->lock);
3183 spin_unlock(&space_info->lock);
3184 }
3185
3186 return ret;
3187}
3188
3189static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3190 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3191{
3192 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3193 struct btrfs_free_space *entry;
3194 struct rb_node *node;
3195 int ret = 0;
3196 u64 extent_start;
3197 u64 extent_bytes;
3198 u64 bytes;
3199
3200 while (start < end) {
3201 struct btrfs_trim_range trim_entry;
3202
3203 mutex_lock(&ctl->cache_writeout_mutex);
3204 spin_lock(&ctl->tree_lock);
3205
3206 if (ctl->free_space < minlen) {
3207 spin_unlock(&ctl->tree_lock);
3208 mutex_unlock(&ctl->cache_writeout_mutex);
3209 break;
3210 }
3211
3212 entry = tree_search_offset(ctl, start, 0, 1);
3213 if (!entry) {
3214 spin_unlock(&ctl->tree_lock);
3215 mutex_unlock(&ctl->cache_writeout_mutex);
3216 break;
3217 }
3218
3219 /* skip bitmaps */
3220 while (entry->bitmap) {
3221 node = rb_next(&entry->offset_index);
3222 if (!node) {
3223 spin_unlock(&ctl->tree_lock);
3224 mutex_unlock(&ctl->cache_writeout_mutex);
3225 goto out;
3226 }
3227 entry = rb_entry(node, struct btrfs_free_space,
3228 offset_index);
3229 }
3230
3231 if (entry->offset >= end) {
3232 spin_unlock(&ctl->tree_lock);
3233 mutex_unlock(&ctl->cache_writeout_mutex);
3234 break;
3235 }
3236
3237 extent_start = entry->offset;
3238 extent_bytes = entry->bytes;
3239 start = max(start, extent_start);
3240 bytes = min(extent_start + extent_bytes, end) - start;
3241 if (bytes < minlen) {
3242 spin_unlock(&ctl->tree_lock);
3243 mutex_unlock(&ctl->cache_writeout_mutex);
3244 goto next;
3245 }
3246
3247 unlink_free_space(ctl, entry);
3248 kmem_cache_free(btrfs_free_space_cachep, entry);
3249
3250 spin_unlock(&ctl->tree_lock);
3251 trim_entry.start = extent_start;
3252 trim_entry.bytes = extent_bytes;
3253 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3254 mutex_unlock(&ctl->cache_writeout_mutex);
3255
3256 ret = do_trimming(block_group, total_trimmed, start, bytes,
3257 extent_start, extent_bytes, &trim_entry);
3258 if (ret)
3259 break;
3260next:
3261 start += bytes;
3262
3263 if (fatal_signal_pending(current)) {
3264 ret = -ERESTARTSYS;
3265 break;
3266 }
3267
3268 cond_resched();
3269 }
3270out:
3271 return ret;
3272}
3273
3274static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3275 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3276{
3277 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3278 struct btrfs_free_space *entry;
3279 int ret = 0;
3280 int ret2;
3281 u64 bytes;
3282 u64 offset = offset_to_bitmap(ctl, start);
3283
3284 while (offset < end) {
3285 bool next_bitmap = false;
3286 struct btrfs_trim_range trim_entry;
3287
3288 mutex_lock(&ctl->cache_writeout_mutex);
3289 spin_lock(&ctl->tree_lock);
3290
3291 if (ctl->free_space < minlen) {
3292 spin_unlock(&ctl->tree_lock);
3293 mutex_unlock(&ctl->cache_writeout_mutex);
3294 break;
3295 }
3296
3297 entry = tree_search_offset(ctl, offset, 1, 0);
3298 if (!entry) {
3299 spin_unlock(&ctl->tree_lock);
3300 mutex_unlock(&ctl->cache_writeout_mutex);
3301 next_bitmap = true;
3302 goto next;
3303 }
3304
3305 bytes = minlen;
3306 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3307 if (ret2 || start >= end) {
3308 spin_unlock(&ctl->tree_lock);
3309 mutex_unlock(&ctl->cache_writeout_mutex);
3310 next_bitmap = true;
3311 goto next;
3312 }
3313
3314 bytes = min(bytes, end - start);
3315 if (bytes < minlen) {
3316 spin_unlock(&ctl->tree_lock);
3317 mutex_unlock(&ctl->cache_writeout_mutex);
3318 goto next;
3319 }
3320
3321 bitmap_clear_bits(ctl, entry, start, bytes);
3322 if (entry->bytes == 0)
3323 free_bitmap(ctl, entry);
3324
3325 spin_unlock(&ctl->tree_lock);
3326 trim_entry.start = start;
3327 trim_entry.bytes = bytes;
3328 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3329 mutex_unlock(&ctl->cache_writeout_mutex);
3330
3331 ret = do_trimming(block_group, total_trimmed, start, bytes,
3332 start, bytes, &trim_entry);
3333 if (ret)
3334 break;
3335next:
3336 if (next_bitmap) {
3337 offset += BITS_PER_BITMAP * ctl->unit;
3338 } else {
3339 start += bytes;
3340 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3341 offset += BITS_PER_BITMAP * ctl->unit;
3342 }
3343
3344 if (fatal_signal_pending(current)) {
3345 ret = -ERESTARTSYS;
3346 break;
3347 }
3348
3349 cond_resched();
3350 }
3351
3352 return ret;
3353}
3354
3355void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3356{
3357 atomic_inc(&cache->trimming);
3358}
3359
3360void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3361{
3362 struct btrfs_fs_info *fs_info = block_group->fs_info;
3363 struct extent_map_tree *em_tree;
3364 struct extent_map *em;
3365 bool cleanup;
3366
3367 spin_lock(&block_group->lock);
3368 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3369 block_group->removed);
3370 spin_unlock(&block_group->lock);
3371
3372 if (cleanup) {
3373 mutex_lock(&fs_info->chunk_mutex);
3374 em_tree = &fs_info->mapping_tree;
3375 write_lock(&em_tree->lock);
3376 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3377 1);
3378 BUG_ON(!em); /* logic error, can't happen */
3379 remove_extent_mapping(em_tree, em);
3380 write_unlock(&em_tree->lock);
3381 mutex_unlock(&fs_info->chunk_mutex);
3382
3383 /* once for us and once for the tree */
3384 free_extent_map(em);
3385 free_extent_map(em);
3386
3387 /*
3388 * We've left one free space entry and other tasks trimming
3389 * this block group have left 1 entry each one. Free them.
3390 */
3391 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3392 }
3393}
3394
3395int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3396 u64 *trimmed, u64 start, u64 end, u64 minlen)
3397{
3398 int ret;
3399
3400 *trimmed = 0;
3401
3402 spin_lock(&block_group->lock);
3403 if (block_group->removed) {
3404 spin_unlock(&block_group->lock);
3405 return 0;
3406 }
3407 btrfs_get_block_group_trimming(block_group);
3408 spin_unlock(&block_group->lock);
3409
3410 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3411 if (ret)
3412 goto out;
3413
3414 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3415out:
3416 btrfs_put_block_group_trimming(block_group);
3417 return ret;
3418}
3419
3420/*
3421 * Find the left-most item in the cache tree, and then return the
3422 * smallest inode number in the item.
3423 *
3424 * Note: the returned inode number may not be the smallest one in
3425 * the tree, if the left-most item is a bitmap.
3426 */
3427u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3428{
3429 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3430 struct btrfs_free_space *entry = NULL;
3431 u64 ino = 0;
3432
3433 spin_lock(&ctl->tree_lock);
3434
3435 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3436 goto out;
3437
3438 entry = rb_entry(rb_first(&ctl->free_space_offset),
3439 struct btrfs_free_space, offset_index);
3440
3441 if (!entry->bitmap) {
3442 ino = entry->offset;
3443
3444 unlink_free_space(ctl, entry);
3445 entry->offset++;
3446 entry->bytes--;
3447 if (!entry->bytes)
3448 kmem_cache_free(btrfs_free_space_cachep, entry);
3449 else
3450 link_free_space(ctl, entry);
3451 } else {
3452 u64 offset = 0;
3453 u64 count = 1;
3454 int ret;
3455
3456 ret = search_bitmap(ctl, entry, &offset, &count, true);
3457 /* Logic error; Should be empty if it can't find anything */
3458 ASSERT(!ret);
3459
3460 ino = offset;
3461 bitmap_clear_bits(ctl, entry, offset, 1);
3462 if (entry->bytes == 0)
3463 free_bitmap(ctl, entry);
3464 }
3465out:
3466 spin_unlock(&ctl->tree_lock);
3467
3468 return ino;
3469}
3470
3471struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3472 struct btrfs_path *path)
3473{
3474 struct inode *inode = NULL;
3475
3476 spin_lock(&root->ino_cache_lock);
3477 if (root->ino_cache_inode)
3478 inode = igrab(root->ino_cache_inode);
3479 spin_unlock(&root->ino_cache_lock);
3480 if (inode)
3481 return inode;
3482
3483 inode = __lookup_free_space_inode(root, path, 0);
3484 if (IS_ERR(inode))
3485 return inode;
3486
3487 spin_lock(&root->ino_cache_lock);
3488 if (!btrfs_fs_closing(root->fs_info))
3489 root->ino_cache_inode = igrab(inode);
3490 spin_unlock(&root->ino_cache_lock);
3491
3492 return inode;
3493}
3494
3495int create_free_ino_inode(struct btrfs_root *root,
3496 struct btrfs_trans_handle *trans,
3497 struct btrfs_path *path)
3498{
3499 return __create_free_space_inode(root, trans, path,
3500 BTRFS_FREE_INO_OBJECTID, 0);
3501}
3502
3503int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3504{
3505 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3506 struct btrfs_path *path;
3507 struct inode *inode;
3508 int ret = 0;
3509 u64 root_gen = btrfs_root_generation(&root->root_item);
3510
3511 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3512 return 0;
3513
3514 /*
3515 * If we're unmounting then just return, since this does a search on the
3516 * normal root and not the commit root and we could deadlock.
3517 */
3518 if (btrfs_fs_closing(fs_info))
3519 return 0;
3520
3521 path = btrfs_alloc_path();
3522 if (!path)
3523 return 0;
3524
3525 inode = lookup_free_ino_inode(root, path);
3526 if (IS_ERR(inode))
3527 goto out;
3528
3529 if (root_gen != BTRFS_I(inode)->generation)
3530 goto out_put;
3531
3532 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3533
3534 if (ret < 0)
3535 btrfs_err(fs_info,
3536 "failed to load free ino cache for root %llu",
3537 root->root_key.objectid);
3538out_put:
3539 iput(inode);
3540out:
3541 btrfs_free_path(path);
3542 return ret;
3543}
3544
3545int btrfs_write_out_ino_cache(struct btrfs_root *root,
3546 struct btrfs_trans_handle *trans,
3547 struct btrfs_path *path,
3548 struct inode *inode)
3549{
3550 struct btrfs_fs_info *fs_info = root->fs_info;
3551 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3552 int ret;
3553 struct btrfs_io_ctl io_ctl;
3554 bool release_metadata = true;
3555
3556 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3557 return 0;
3558
3559 memset(&io_ctl, 0, sizeof(io_ctl));
3560 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3561 if (!ret) {
3562 /*
3563 * At this point writepages() didn't error out, so our metadata
3564 * reservation is released when the writeback finishes, at
3565 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3566 * with or without an error.
3567 */
3568 release_metadata = false;
3569 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3570 }
3571
3572 if (ret) {
3573 if (release_metadata)
3574 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3575 inode->i_size, true);
3576#ifdef DEBUG
3577 btrfs_err(fs_info,
3578 "failed to write free ino cache for root %llu",
3579 root->root_key.objectid);
3580#endif
3581 }
3582
3583 return ret;
3584}
3585
3586#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3587/*
3588 * Use this if you need to make a bitmap or extent entry specifically, it
3589 * doesn't do any of the merging that add_free_space does, this acts a lot like
3590 * how the free space cache loading stuff works, so you can get really weird
3591 * configurations.
3592 */
3593int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3594 u64 offset, u64 bytes, bool bitmap)
3595{
3596 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3597 struct btrfs_free_space *info = NULL, *bitmap_info;
3598 void *map = NULL;
3599 u64 bytes_added;
3600 int ret;
3601
3602again:
3603 if (!info) {
3604 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3605 if (!info)
3606 return -ENOMEM;
3607 }
3608
3609 if (!bitmap) {
3610 spin_lock(&ctl->tree_lock);
3611 info->offset = offset;
3612 info->bytes = bytes;
3613 info->max_extent_size = 0;
3614 ret = link_free_space(ctl, info);
3615 spin_unlock(&ctl->tree_lock);
3616 if (ret)
3617 kmem_cache_free(btrfs_free_space_cachep, info);
3618 return ret;
3619 }
3620
3621 if (!map) {
3622 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3623 if (!map) {
3624 kmem_cache_free(btrfs_free_space_cachep, info);
3625 return -ENOMEM;
3626 }
3627 }
3628
3629 spin_lock(&ctl->tree_lock);
3630 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3631 1, 0);
3632 if (!bitmap_info) {
3633 info->bitmap = map;
3634 map = NULL;
3635 add_new_bitmap(ctl, info, offset);
3636 bitmap_info = info;
3637 info = NULL;
3638 }
3639
3640 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3641
3642 bytes -= bytes_added;
3643 offset += bytes_added;
3644 spin_unlock(&ctl->tree_lock);
3645
3646 if (bytes)
3647 goto again;
3648
3649 if (info)
3650 kmem_cache_free(btrfs_free_space_cachep, info);
3651 if (map)
3652 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3653 return 0;
3654}
3655
3656/*
3657 * Checks to see if the given range is in the free space cache. This is really
3658 * just used to check the absence of space, so if there is free space in the
3659 * range at all we will return 1.
3660 */
3661int test_check_exists(struct btrfs_block_group_cache *cache,
3662 u64 offset, u64 bytes)
3663{
3664 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3665 struct btrfs_free_space *info;
3666 int ret = 0;
3667
3668 spin_lock(&ctl->tree_lock);
3669 info = tree_search_offset(ctl, offset, 0, 0);
3670 if (!info) {
3671 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3672 1, 0);
3673 if (!info)
3674 goto out;
3675 }
3676
3677have_info:
3678 if (info->bitmap) {
3679 u64 bit_off, bit_bytes;
3680 struct rb_node *n;
3681 struct btrfs_free_space *tmp;
3682
3683 bit_off = offset;
3684 bit_bytes = ctl->unit;
3685 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3686 if (!ret) {
3687 if (bit_off == offset) {
3688 ret = 1;
3689 goto out;
3690 } else if (bit_off > offset &&
3691 offset + bytes > bit_off) {
3692 ret = 1;
3693 goto out;
3694 }
3695 }
3696
3697 n = rb_prev(&info->offset_index);
3698 while (n) {
3699 tmp = rb_entry(n, struct btrfs_free_space,
3700 offset_index);
3701 if (tmp->offset + tmp->bytes < offset)
3702 break;
3703 if (offset + bytes < tmp->offset) {
3704 n = rb_prev(&tmp->offset_index);
3705 continue;
3706 }
3707 info = tmp;
3708 goto have_info;
3709 }
3710
3711 n = rb_next(&info->offset_index);
3712 while (n) {
3713 tmp = rb_entry(n, struct btrfs_free_space,
3714 offset_index);
3715 if (offset + bytes < tmp->offset)
3716 break;
3717 if (tmp->offset + tmp->bytes < offset) {
3718 n = rb_next(&tmp->offset_index);
3719 continue;
3720 }
3721 info = tmp;
3722 goto have_info;
3723 }
3724
3725 ret = 0;
3726 goto out;
3727 }
3728
3729 if (info->offset == offset) {
3730 ret = 1;
3731 goto out;
3732 }
3733
3734 if (offset > info->offset && offset < info->offset + info->bytes)
3735 ret = 1;
3736out:
3737 spin_unlock(&ctl->tree_lock);
3738 return ret;
3739}
3740#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6#include <linux/pagemap.h>
7#include <linux/sched.h>
8#include <linux/sched/signal.h>
9#include <linux/slab.h>
10#include <linux/math64.h>
11#include <linux/ratelimit.h>
12#include <linux/error-injection.h>
13#include <linux/sched/mm.h>
14#include "ctree.h"
15#include "fs.h"
16#include "messages.h"
17#include "misc.h"
18#include "free-space-cache.h"
19#include "transaction.h"
20#include "disk-io.h"
21#include "extent_io.h"
22#include "volumes.h"
23#include "space-info.h"
24#include "delalloc-space.h"
25#include "block-group.h"
26#include "discard.h"
27#include "subpage.h"
28#include "inode-item.h"
29#include "accessors.h"
30#include "file-item.h"
31#include "file.h"
32#include "super.h"
33
34#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
35#define MAX_CACHE_BYTES_PER_GIG SZ_64K
36#define FORCE_EXTENT_THRESHOLD SZ_1M
37
38static struct kmem_cache *btrfs_free_space_cachep;
39static struct kmem_cache *btrfs_free_space_bitmap_cachep;
40
41struct btrfs_trim_range {
42 u64 start;
43 u64 bytes;
44 struct list_head list;
45};
46
47static int link_free_space(struct btrfs_free_space_ctl *ctl,
48 struct btrfs_free_space *info);
49static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
50 struct btrfs_free_space *info, bool update_stat);
51static int search_bitmap(struct btrfs_free_space_ctl *ctl,
52 struct btrfs_free_space *bitmap_info, u64 *offset,
53 u64 *bytes, bool for_alloc);
54static void free_bitmap(struct btrfs_free_space_ctl *ctl,
55 struct btrfs_free_space *bitmap_info);
56static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
57 struct btrfs_free_space *info, u64 offset,
58 u64 bytes, bool update_stats);
59
60static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
61{
62 struct btrfs_free_space *info;
63 struct rb_node *node;
64
65 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
66 info = rb_entry(node, struct btrfs_free_space, offset_index);
67 if (!info->bitmap) {
68 unlink_free_space(ctl, info, true);
69 kmem_cache_free(btrfs_free_space_cachep, info);
70 } else {
71 free_bitmap(ctl, info);
72 }
73
74 cond_resched_lock(&ctl->tree_lock);
75 }
76}
77
78static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
79 struct btrfs_path *path,
80 u64 offset)
81{
82 struct btrfs_fs_info *fs_info = root->fs_info;
83 struct btrfs_key key;
84 struct btrfs_key location;
85 struct btrfs_disk_key disk_key;
86 struct btrfs_free_space_header *header;
87 struct extent_buffer *leaf;
88 struct inode *inode = NULL;
89 unsigned nofs_flag;
90 int ret;
91
92 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
93 key.offset = offset;
94 key.type = 0;
95
96 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
97 if (ret < 0)
98 return ERR_PTR(ret);
99 if (ret > 0) {
100 btrfs_release_path(path);
101 return ERR_PTR(-ENOENT);
102 }
103
104 leaf = path->nodes[0];
105 header = btrfs_item_ptr(leaf, path->slots[0],
106 struct btrfs_free_space_header);
107 btrfs_free_space_key(leaf, header, &disk_key);
108 btrfs_disk_key_to_cpu(&location, &disk_key);
109 btrfs_release_path(path);
110
111 /*
112 * We are often under a trans handle at this point, so we need to make
113 * sure NOFS is set to keep us from deadlocking.
114 */
115 nofs_flag = memalloc_nofs_save();
116 inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
117 btrfs_release_path(path);
118 memalloc_nofs_restore(nofs_flag);
119 if (IS_ERR(inode))
120 return inode;
121
122 mapping_set_gfp_mask(inode->i_mapping,
123 mapping_gfp_constraint(inode->i_mapping,
124 ~(__GFP_FS | __GFP_HIGHMEM)));
125
126 return inode;
127}
128
129struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
130 struct btrfs_path *path)
131{
132 struct btrfs_fs_info *fs_info = block_group->fs_info;
133 struct inode *inode = NULL;
134 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
135
136 spin_lock(&block_group->lock);
137 if (block_group->inode)
138 inode = igrab(block_group->inode);
139 spin_unlock(&block_group->lock);
140 if (inode)
141 return inode;
142
143 inode = __lookup_free_space_inode(fs_info->tree_root, path,
144 block_group->start);
145 if (IS_ERR(inode))
146 return inode;
147
148 spin_lock(&block_group->lock);
149 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
150 btrfs_info(fs_info, "Old style space inode found, converting.");
151 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
152 BTRFS_INODE_NODATACOW;
153 block_group->disk_cache_state = BTRFS_DC_CLEAR;
154 }
155
156 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
157 block_group->inode = igrab(inode);
158 spin_unlock(&block_group->lock);
159
160 return inode;
161}
162
163static int __create_free_space_inode(struct btrfs_root *root,
164 struct btrfs_trans_handle *trans,
165 struct btrfs_path *path,
166 u64 ino, u64 offset)
167{
168 struct btrfs_key key;
169 struct btrfs_disk_key disk_key;
170 struct btrfs_free_space_header *header;
171 struct btrfs_inode_item *inode_item;
172 struct extent_buffer *leaf;
173 /* We inline CRCs for the free disk space cache */
174 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
175 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
176 int ret;
177
178 ret = btrfs_insert_empty_inode(trans, root, path, ino);
179 if (ret)
180 return ret;
181
182 leaf = path->nodes[0];
183 inode_item = btrfs_item_ptr(leaf, path->slots[0],
184 struct btrfs_inode_item);
185 btrfs_item_key(leaf, &disk_key, path->slots[0]);
186 memzero_extent_buffer(leaf, (unsigned long)inode_item,
187 sizeof(*inode_item));
188 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
189 btrfs_set_inode_size(leaf, inode_item, 0);
190 btrfs_set_inode_nbytes(leaf, inode_item, 0);
191 btrfs_set_inode_uid(leaf, inode_item, 0);
192 btrfs_set_inode_gid(leaf, inode_item, 0);
193 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
194 btrfs_set_inode_flags(leaf, inode_item, flags);
195 btrfs_set_inode_nlink(leaf, inode_item, 1);
196 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
197 btrfs_set_inode_block_group(leaf, inode_item, offset);
198 btrfs_mark_buffer_dirty(leaf);
199 btrfs_release_path(path);
200
201 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
202 key.offset = offset;
203 key.type = 0;
204 ret = btrfs_insert_empty_item(trans, root, path, &key,
205 sizeof(struct btrfs_free_space_header));
206 if (ret < 0) {
207 btrfs_release_path(path);
208 return ret;
209 }
210
211 leaf = path->nodes[0];
212 header = btrfs_item_ptr(leaf, path->slots[0],
213 struct btrfs_free_space_header);
214 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
215 btrfs_set_free_space_key(leaf, header, &disk_key);
216 btrfs_mark_buffer_dirty(leaf);
217 btrfs_release_path(path);
218
219 return 0;
220}
221
222int create_free_space_inode(struct btrfs_trans_handle *trans,
223 struct btrfs_block_group *block_group,
224 struct btrfs_path *path)
225{
226 int ret;
227 u64 ino;
228
229 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
230 if (ret < 0)
231 return ret;
232
233 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
234 ino, block_group->start);
235}
236
237/*
238 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
239 * handles lookup, otherwise it takes ownership and iputs the inode.
240 * Don't reuse an inode pointer after passing it into this function.
241 */
242int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
243 struct inode *inode,
244 struct btrfs_block_group *block_group)
245{
246 struct btrfs_path *path;
247 struct btrfs_key key;
248 int ret = 0;
249
250 path = btrfs_alloc_path();
251 if (!path)
252 return -ENOMEM;
253
254 if (!inode)
255 inode = lookup_free_space_inode(block_group, path);
256 if (IS_ERR(inode)) {
257 if (PTR_ERR(inode) != -ENOENT)
258 ret = PTR_ERR(inode);
259 goto out;
260 }
261 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
262 if (ret) {
263 btrfs_add_delayed_iput(BTRFS_I(inode));
264 goto out;
265 }
266 clear_nlink(inode);
267 /* One for the block groups ref */
268 spin_lock(&block_group->lock);
269 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
270 block_group->inode = NULL;
271 spin_unlock(&block_group->lock);
272 iput(inode);
273 } else {
274 spin_unlock(&block_group->lock);
275 }
276 /* One for the lookup ref */
277 btrfs_add_delayed_iput(BTRFS_I(inode));
278
279 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
280 key.type = 0;
281 key.offset = block_group->start;
282 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
283 -1, 1);
284 if (ret) {
285 if (ret > 0)
286 ret = 0;
287 goto out;
288 }
289 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
290out:
291 btrfs_free_path(path);
292 return ret;
293}
294
295int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
296 struct btrfs_block_rsv *rsv)
297{
298 u64 needed_bytes;
299 int ret;
300
301 /* 1 for slack space, 1 for updating the inode */
302 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
303 btrfs_calc_metadata_size(fs_info, 1);
304
305 spin_lock(&rsv->lock);
306 if (rsv->reserved < needed_bytes)
307 ret = -ENOSPC;
308 else
309 ret = 0;
310 spin_unlock(&rsv->lock);
311 return ret;
312}
313
314int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
315 struct btrfs_block_group *block_group,
316 struct inode *vfs_inode)
317{
318 struct btrfs_truncate_control control = {
319 .inode = BTRFS_I(vfs_inode),
320 .new_size = 0,
321 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
322 .min_type = BTRFS_EXTENT_DATA_KEY,
323 .clear_extent_range = true,
324 };
325 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
326 struct btrfs_root *root = inode->root;
327 struct extent_state *cached_state = NULL;
328 int ret = 0;
329 bool locked = false;
330
331 if (block_group) {
332 struct btrfs_path *path = btrfs_alloc_path();
333
334 if (!path) {
335 ret = -ENOMEM;
336 goto fail;
337 }
338 locked = true;
339 mutex_lock(&trans->transaction->cache_write_mutex);
340 if (!list_empty(&block_group->io_list)) {
341 list_del_init(&block_group->io_list);
342
343 btrfs_wait_cache_io(trans, block_group, path);
344 btrfs_put_block_group(block_group);
345 }
346
347 /*
348 * now that we've truncated the cache away, its no longer
349 * setup or written
350 */
351 spin_lock(&block_group->lock);
352 block_group->disk_cache_state = BTRFS_DC_CLEAR;
353 spin_unlock(&block_group->lock);
354 btrfs_free_path(path);
355 }
356
357 btrfs_i_size_write(inode, 0);
358 truncate_pagecache(vfs_inode, 0);
359
360 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
361 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
362
363 /*
364 * We skip the throttling logic for free space cache inodes, so we don't
365 * need to check for -EAGAIN.
366 */
367 ret = btrfs_truncate_inode_items(trans, root, &control);
368
369 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
370 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
371
372 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
373 if (ret)
374 goto fail;
375
376 ret = btrfs_update_inode(trans, root, inode);
377
378fail:
379 if (locked)
380 mutex_unlock(&trans->transaction->cache_write_mutex);
381 if (ret)
382 btrfs_abort_transaction(trans, ret);
383
384 return ret;
385}
386
387static void readahead_cache(struct inode *inode)
388{
389 struct file_ra_state ra;
390 unsigned long last_index;
391
392 file_ra_state_init(&ra, inode->i_mapping);
393 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
394
395 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
396}
397
398static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
399 int write)
400{
401 int num_pages;
402
403 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
404
405 /* Make sure we can fit our crcs and generation into the first page */
406 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
407 return -ENOSPC;
408
409 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
410
411 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
412 if (!io_ctl->pages)
413 return -ENOMEM;
414
415 io_ctl->num_pages = num_pages;
416 io_ctl->fs_info = btrfs_sb(inode->i_sb);
417 io_ctl->inode = inode;
418
419 return 0;
420}
421ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
422
423static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
424{
425 kfree(io_ctl->pages);
426 io_ctl->pages = NULL;
427}
428
429static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
430{
431 if (io_ctl->cur) {
432 io_ctl->cur = NULL;
433 io_ctl->orig = NULL;
434 }
435}
436
437static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
438{
439 ASSERT(io_ctl->index < io_ctl->num_pages);
440 io_ctl->page = io_ctl->pages[io_ctl->index++];
441 io_ctl->cur = page_address(io_ctl->page);
442 io_ctl->orig = io_ctl->cur;
443 io_ctl->size = PAGE_SIZE;
444 if (clear)
445 clear_page(io_ctl->cur);
446}
447
448static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
449{
450 int i;
451
452 io_ctl_unmap_page(io_ctl);
453
454 for (i = 0; i < io_ctl->num_pages; i++) {
455 if (io_ctl->pages[i]) {
456 btrfs_page_clear_checked(io_ctl->fs_info,
457 io_ctl->pages[i],
458 page_offset(io_ctl->pages[i]),
459 PAGE_SIZE);
460 unlock_page(io_ctl->pages[i]);
461 put_page(io_ctl->pages[i]);
462 }
463 }
464}
465
466static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
467{
468 struct page *page;
469 struct inode *inode = io_ctl->inode;
470 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
471 int i;
472
473 for (i = 0; i < io_ctl->num_pages; i++) {
474 int ret;
475
476 page = find_or_create_page(inode->i_mapping, i, mask);
477 if (!page) {
478 io_ctl_drop_pages(io_ctl);
479 return -ENOMEM;
480 }
481
482 ret = set_page_extent_mapped(page);
483 if (ret < 0) {
484 unlock_page(page);
485 put_page(page);
486 io_ctl_drop_pages(io_ctl);
487 return ret;
488 }
489
490 io_ctl->pages[i] = page;
491 if (uptodate && !PageUptodate(page)) {
492 btrfs_read_folio(NULL, page_folio(page));
493 lock_page(page);
494 if (page->mapping != inode->i_mapping) {
495 btrfs_err(BTRFS_I(inode)->root->fs_info,
496 "free space cache page truncated");
497 io_ctl_drop_pages(io_ctl);
498 return -EIO;
499 }
500 if (!PageUptodate(page)) {
501 btrfs_err(BTRFS_I(inode)->root->fs_info,
502 "error reading free space cache");
503 io_ctl_drop_pages(io_ctl);
504 return -EIO;
505 }
506 }
507 }
508
509 for (i = 0; i < io_ctl->num_pages; i++)
510 clear_page_dirty_for_io(io_ctl->pages[i]);
511
512 return 0;
513}
514
515static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
516{
517 io_ctl_map_page(io_ctl, 1);
518
519 /*
520 * Skip the csum areas. If we don't check crcs then we just have a
521 * 64bit chunk at the front of the first page.
522 */
523 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
524 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
525
526 put_unaligned_le64(generation, io_ctl->cur);
527 io_ctl->cur += sizeof(u64);
528}
529
530static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
531{
532 u64 cache_gen;
533
534 /*
535 * Skip the crc area. If we don't check crcs then we just have a 64bit
536 * chunk at the front of the first page.
537 */
538 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
539 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
540
541 cache_gen = get_unaligned_le64(io_ctl->cur);
542 if (cache_gen != generation) {
543 btrfs_err_rl(io_ctl->fs_info,
544 "space cache generation (%llu) does not match inode (%llu)",
545 cache_gen, generation);
546 io_ctl_unmap_page(io_ctl);
547 return -EIO;
548 }
549 io_ctl->cur += sizeof(u64);
550 return 0;
551}
552
553static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
554{
555 u32 *tmp;
556 u32 crc = ~(u32)0;
557 unsigned offset = 0;
558
559 if (index == 0)
560 offset = sizeof(u32) * io_ctl->num_pages;
561
562 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
563 btrfs_crc32c_final(crc, (u8 *)&crc);
564 io_ctl_unmap_page(io_ctl);
565 tmp = page_address(io_ctl->pages[0]);
566 tmp += index;
567 *tmp = crc;
568}
569
570static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
571{
572 u32 *tmp, val;
573 u32 crc = ~(u32)0;
574 unsigned offset = 0;
575
576 if (index == 0)
577 offset = sizeof(u32) * io_ctl->num_pages;
578
579 tmp = page_address(io_ctl->pages[0]);
580 tmp += index;
581 val = *tmp;
582
583 io_ctl_map_page(io_ctl, 0);
584 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
585 btrfs_crc32c_final(crc, (u8 *)&crc);
586 if (val != crc) {
587 btrfs_err_rl(io_ctl->fs_info,
588 "csum mismatch on free space cache");
589 io_ctl_unmap_page(io_ctl);
590 return -EIO;
591 }
592
593 return 0;
594}
595
596static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
597 void *bitmap)
598{
599 struct btrfs_free_space_entry *entry;
600
601 if (!io_ctl->cur)
602 return -ENOSPC;
603
604 entry = io_ctl->cur;
605 put_unaligned_le64(offset, &entry->offset);
606 put_unaligned_le64(bytes, &entry->bytes);
607 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
608 BTRFS_FREE_SPACE_EXTENT;
609 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
610 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
611
612 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
613 return 0;
614
615 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
616
617 /* No more pages to map */
618 if (io_ctl->index >= io_ctl->num_pages)
619 return 0;
620
621 /* map the next page */
622 io_ctl_map_page(io_ctl, 1);
623 return 0;
624}
625
626static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
627{
628 if (!io_ctl->cur)
629 return -ENOSPC;
630
631 /*
632 * If we aren't at the start of the current page, unmap this one and
633 * map the next one if there is any left.
634 */
635 if (io_ctl->cur != io_ctl->orig) {
636 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
637 if (io_ctl->index >= io_ctl->num_pages)
638 return -ENOSPC;
639 io_ctl_map_page(io_ctl, 0);
640 }
641
642 copy_page(io_ctl->cur, bitmap);
643 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
644 if (io_ctl->index < io_ctl->num_pages)
645 io_ctl_map_page(io_ctl, 0);
646 return 0;
647}
648
649static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
650{
651 /*
652 * If we're not on the boundary we know we've modified the page and we
653 * need to crc the page.
654 */
655 if (io_ctl->cur != io_ctl->orig)
656 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
657 else
658 io_ctl_unmap_page(io_ctl);
659
660 while (io_ctl->index < io_ctl->num_pages) {
661 io_ctl_map_page(io_ctl, 1);
662 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
663 }
664}
665
666static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
667 struct btrfs_free_space *entry, u8 *type)
668{
669 struct btrfs_free_space_entry *e;
670 int ret;
671
672 if (!io_ctl->cur) {
673 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
674 if (ret)
675 return ret;
676 }
677
678 e = io_ctl->cur;
679 entry->offset = get_unaligned_le64(&e->offset);
680 entry->bytes = get_unaligned_le64(&e->bytes);
681 *type = e->type;
682 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
683 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
684
685 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
686 return 0;
687
688 io_ctl_unmap_page(io_ctl);
689
690 return 0;
691}
692
693static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
694 struct btrfs_free_space *entry)
695{
696 int ret;
697
698 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
699 if (ret)
700 return ret;
701
702 copy_page(entry->bitmap, io_ctl->cur);
703 io_ctl_unmap_page(io_ctl);
704
705 return 0;
706}
707
708static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
709{
710 struct btrfs_block_group *block_group = ctl->block_group;
711 u64 max_bytes;
712 u64 bitmap_bytes;
713 u64 extent_bytes;
714 u64 size = block_group->length;
715 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
716 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
717
718 max_bitmaps = max_t(u64, max_bitmaps, 1);
719
720 if (ctl->total_bitmaps > max_bitmaps)
721 btrfs_err(block_group->fs_info,
722"invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
723 block_group->start, block_group->length,
724 ctl->total_bitmaps, ctl->unit, max_bitmaps,
725 bytes_per_bg);
726 ASSERT(ctl->total_bitmaps <= max_bitmaps);
727
728 /*
729 * We are trying to keep the total amount of memory used per 1GiB of
730 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
731 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
732 * bitmaps, we may end up using more memory than this.
733 */
734 if (size < SZ_1G)
735 max_bytes = MAX_CACHE_BYTES_PER_GIG;
736 else
737 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
738
739 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
740
741 /*
742 * we want the extent entry threshold to always be at most 1/2 the max
743 * bytes we can have, or whatever is less than that.
744 */
745 extent_bytes = max_bytes - bitmap_bytes;
746 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
747
748 ctl->extents_thresh =
749 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
750}
751
752static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
753 struct btrfs_free_space_ctl *ctl,
754 struct btrfs_path *path, u64 offset)
755{
756 struct btrfs_fs_info *fs_info = root->fs_info;
757 struct btrfs_free_space_header *header;
758 struct extent_buffer *leaf;
759 struct btrfs_io_ctl io_ctl;
760 struct btrfs_key key;
761 struct btrfs_free_space *e, *n;
762 LIST_HEAD(bitmaps);
763 u64 num_entries;
764 u64 num_bitmaps;
765 u64 generation;
766 u8 type;
767 int ret = 0;
768
769 /* Nothing in the space cache, goodbye */
770 if (!i_size_read(inode))
771 return 0;
772
773 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
774 key.offset = offset;
775 key.type = 0;
776
777 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
778 if (ret < 0)
779 return 0;
780 else if (ret > 0) {
781 btrfs_release_path(path);
782 return 0;
783 }
784
785 ret = -1;
786
787 leaf = path->nodes[0];
788 header = btrfs_item_ptr(leaf, path->slots[0],
789 struct btrfs_free_space_header);
790 num_entries = btrfs_free_space_entries(leaf, header);
791 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
792 generation = btrfs_free_space_generation(leaf, header);
793 btrfs_release_path(path);
794
795 if (!BTRFS_I(inode)->generation) {
796 btrfs_info(fs_info,
797 "the free space cache file (%llu) is invalid, skip it",
798 offset);
799 return 0;
800 }
801
802 if (BTRFS_I(inode)->generation != generation) {
803 btrfs_err(fs_info,
804 "free space inode generation (%llu) did not match free space cache generation (%llu)",
805 BTRFS_I(inode)->generation, generation);
806 return 0;
807 }
808
809 if (!num_entries)
810 return 0;
811
812 ret = io_ctl_init(&io_ctl, inode, 0);
813 if (ret)
814 return ret;
815
816 readahead_cache(inode);
817
818 ret = io_ctl_prepare_pages(&io_ctl, true);
819 if (ret)
820 goto out;
821
822 ret = io_ctl_check_crc(&io_ctl, 0);
823 if (ret)
824 goto free_cache;
825
826 ret = io_ctl_check_generation(&io_ctl, generation);
827 if (ret)
828 goto free_cache;
829
830 while (num_entries) {
831 e = kmem_cache_zalloc(btrfs_free_space_cachep,
832 GFP_NOFS);
833 if (!e) {
834 ret = -ENOMEM;
835 goto free_cache;
836 }
837
838 ret = io_ctl_read_entry(&io_ctl, e, &type);
839 if (ret) {
840 kmem_cache_free(btrfs_free_space_cachep, e);
841 goto free_cache;
842 }
843
844 if (!e->bytes) {
845 ret = -1;
846 kmem_cache_free(btrfs_free_space_cachep, e);
847 goto free_cache;
848 }
849
850 if (type == BTRFS_FREE_SPACE_EXTENT) {
851 spin_lock(&ctl->tree_lock);
852 ret = link_free_space(ctl, e);
853 spin_unlock(&ctl->tree_lock);
854 if (ret) {
855 btrfs_err(fs_info,
856 "Duplicate entries in free space cache, dumping");
857 kmem_cache_free(btrfs_free_space_cachep, e);
858 goto free_cache;
859 }
860 } else {
861 ASSERT(num_bitmaps);
862 num_bitmaps--;
863 e->bitmap = kmem_cache_zalloc(
864 btrfs_free_space_bitmap_cachep, GFP_NOFS);
865 if (!e->bitmap) {
866 ret = -ENOMEM;
867 kmem_cache_free(
868 btrfs_free_space_cachep, e);
869 goto free_cache;
870 }
871 spin_lock(&ctl->tree_lock);
872 ret = link_free_space(ctl, e);
873 ctl->total_bitmaps++;
874 recalculate_thresholds(ctl);
875 spin_unlock(&ctl->tree_lock);
876 if (ret) {
877 btrfs_err(fs_info,
878 "Duplicate entries in free space cache, dumping");
879 kmem_cache_free(btrfs_free_space_cachep, e);
880 goto free_cache;
881 }
882 list_add_tail(&e->list, &bitmaps);
883 }
884
885 num_entries--;
886 }
887
888 io_ctl_unmap_page(&io_ctl);
889
890 /*
891 * We add the bitmaps at the end of the entries in order that
892 * the bitmap entries are added to the cache.
893 */
894 list_for_each_entry_safe(e, n, &bitmaps, list) {
895 list_del_init(&e->list);
896 ret = io_ctl_read_bitmap(&io_ctl, e);
897 if (ret)
898 goto free_cache;
899 }
900
901 io_ctl_drop_pages(&io_ctl);
902 ret = 1;
903out:
904 io_ctl_free(&io_ctl);
905 return ret;
906free_cache:
907 io_ctl_drop_pages(&io_ctl);
908
909 spin_lock(&ctl->tree_lock);
910 __btrfs_remove_free_space_cache(ctl);
911 spin_unlock(&ctl->tree_lock);
912 goto out;
913}
914
915static int copy_free_space_cache(struct btrfs_block_group *block_group,
916 struct btrfs_free_space_ctl *ctl)
917{
918 struct btrfs_free_space *info;
919 struct rb_node *n;
920 int ret = 0;
921
922 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
923 info = rb_entry(n, struct btrfs_free_space, offset_index);
924 if (!info->bitmap) {
925 unlink_free_space(ctl, info, true);
926 ret = btrfs_add_free_space(block_group, info->offset,
927 info->bytes);
928 kmem_cache_free(btrfs_free_space_cachep, info);
929 } else {
930 u64 offset = info->offset;
931 u64 bytes = ctl->unit;
932
933 while (search_bitmap(ctl, info, &offset, &bytes,
934 false) == 0) {
935 ret = btrfs_add_free_space(block_group, offset,
936 bytes);
937 if (ret)
938 break;
939 bitmap_clear_bits(ctl, info, offset, bytes, true);
940 offset = info->offset;
941 bytes = ctl->unit;
942 }
943 free_bitmap(ctl, info);
944 }
945 cond_resched();
946 }
947 return ret;
948}
949
950static struct lock_class_key btrfs_free_space_inode_key;
951
952int load_free_space_cache(struct btrfs_block_group *block_group)
953{
954 struct btrfs_fs_info *fs_info = block_group->fs_info;
955 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
956 struct btrfs_free_space_ctl tmp_ctl = {};
957 struct inode *inode;
958 struct btrfs_path *path;
959 int ret = 0;
960 bool matched;
961 u64 used = block_group->used;
962
963 /*
964 * Because we could potentially discard our loaded free space, we want
965 * to load everything into a temporary structure first, and then if it's
966 * valid copy it all into the actual free space ctl.
967 */
968 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
969
970 /*
971 * If this block group has been marked to be cleared for one reason or
972 * another then we can't trust the on disk cache, so just return.
973 */
974 spin_lock(&block_group->lock);
975 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
976 spin_unlock(&block_group->lock);
977 return 0;
978 }
979 spin_unlock(&block_group->lock);
980
981 path = btrfs_alloc_path();
982 if (!path)
983 return 0;
984 path->search_commit_root = 1;
985 path->skip_locking = 1;
986
987 /*
988 * We must pass a path with search_commit_root set to btrfs_iget in
989 * order to avoid a deadlock when allocating extents for the tree root.
990 *
991 * When we are COWing an extent buffer from the tree root, when looking
992 * for a free extent, at extent-tree.c:find_free_extent(), we can find
993 * block group without its free space cache loaded. When we find one
994 * we must load its space cache which requires reading its free space
995 * cache's inode item from the root tree. If this inode item is located
996 * in the same leaf that we started COWing before, then we end up in
997 * deadlock on the extent buffer (trying to read lock it when we
998 * previously write locked it).
999 *
1000 * It's safe to read the inode item using the commit root because
1001 * block groups, once loaded, stay in memory forever (until they are
1002 * removed) as well as their space caches once loaded. New block groups
1003 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
1004 * we will never try to read their inode item while the fs is mounted.
1005 */
1006 inode = lookup_free_space_inode(block_group, path);
1007 if (IS_ERR(inode)) {
1008 btrfs_free_path(path);
1009 return 0;
1010 }
1011
1012 /* We may have converted the inode and made the cache invalid. */
1013 spin_lock(&block_group->lock);
1014 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1015 spin_unlock(&block_group->lock);
1016 btrfs_free_path(path);
1017 goto out;
1018 }
1019 spin_unlock(&block_group->lock);
1020
1021 /*
1022 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1023 * free space inodes to prevent false positives related to locks for normal
1024 * inodes.
1025 */
1026 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1027 &btrfs_free_space_inode_key);
1028
1029 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1030 path, block_group->start);
1031 btrfs_free_path(path);
1032 if (ret <= 0)
1033 goto out;
1034
1035 matched = (tmp_ctl.free_space == (block_group->length - used -
1036 block_group->bytes_super));
1037
1038 if (matched) {
1039 ret = copy_free_space_cache(block_group, &tmp_ctl);
1040 /*
1041 * ret == 1 means we successfully loaded the free space cache,
1042 * so we need to re-set it here.
1043 */
1044 if (ret == 0)
1045 ret = 1;
1046 } else {
1047 /*
1048 * We need to call the _locked variant so we don't try to update
1049 * the discard counters.
1050 */
1051 spin_lock(&tmp_ctl.tree_lock);
1052 __btrfs_remove_free_space_cache(&tmp_ctl);
1053 spin_unlock(&tmp_ctl.tree_lock);
1054 btrfs_warn(fs_info,
1055 "block group %llu has wrong amount of free space",
1056 block_group->start);
1057 ret = -1;
1058 }
1059out:
1060 if (ret < 0) {
1061 /* This cache is bogus, make sure it gets cleared */
1062 spin_lock(&block_group->lock);
1063 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1064 spin_unlock(&block_group->lock);
1065 ret = 0;
1066
1067 btrfs_warn(fs_info,
1068 "failed to load free space cache for block group %llu, rebuilding it now",
1069 block_group->start);
1070 }
1071
1072 spin_lock(&ctl->tree_lock);
1073 btrfs_discard_update_discardable(block_group);
1074 spin_unlock(&ctl->tree_lock);
1075 iput(inode);
1076 return ret;
1077}
1078
1079static noinline_for_stack
1080int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1081 struct btrfs_free_space_ctl *ctl,
1082 struct btrfs_block_group *block_group,
1083 int *entries, int *bitmaps,
1084 struct list_head *bitmap_list)
1085{
1086 int ret;
1087 struct btrfs_free_cluster *cluster = NULL;
1088 struct btrfs_free_cluster *cluster_locked = NULL;
1089 struct rb_node *node = rb_first(&ctl->free_space_offset);
1090 struct btrfs_trim_range *trim_entry;
1091
1092 /* Get the cluster for this block_group if it exists */
1093 if (block_group && !list_empty(&block_group->cluster_list)) {
1094 cluster = list_entry(block_group->cluster_list.next,
1095 struct btrfs_free_cluster,
1096 block_group_list);
1097 }
1098
1099 if (!node && cluster) {
1100 cluster_locked = cluster;
1101 spin_lock(&cluster_locked->lock);
1102 node = rb_first(&cluster->root);
1103 cluster = NULL;
1104 }
1105
1106 /* Write out the extent entries */
1107 while (node) {
1108 struct btrfs_free_space *e;
1109
1110 e = rb_entry(node, struct btrfs_free_space, offset_index);
1111 *entries += 1;
1112
1113 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1114 e->bitmap);
1115 if (ret)
1116 goto fail;
1117
1118 if (e->bitmap) {
1119 list_add_tail(&e->list, bitmap_list);
1120 *bitmaps += 1;
1121 }
1122 node = rb_next(node);
1123 if (!node && cluster) {
1124 node = rb_first(&cluster->root);
1125 cluster_locked = cluster;
1126 spin_lock(&cluster_locked->lock);
1127 cluster = NULL;
1128 }
1129 }
1130 if (cluster_locked) {
1131 spin_unlock(&cluster_locked->lock);
1132 cluster_locked = NULL;
1133 }
1134
1135 /*
1136 * Make sure we don't miss any range that was removed from our rbtree
1137 * because trimming is running. Otherwise after a umount+mount (or crash
1138 * after committing the transaction) we would leak free space and get
1139 * an inconsistent free space cache report from fsck.
1140 */
1141 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1142 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1143 trim_entry->bytes, NULL);
1144 if (ret)
1145 goto fail;
1146 *entries += 1;
1147 }
1148
1149 return 0;
1150fail:
1151 if (cluster_locked)
1152 spin_unlock(&cluster_locked->lock);
1153 return -ENOSPC;
1154}
1155
1156static noinline_for_stack int
1157update_cache_item(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root,
1159 struct inode *inode,
1160 struct btrfs_path *path, u64 offset,
1161 int entries, int bitmaps)
1162{
1163 struct btrfs_key key;
1164 struct btrfs_free_space_header *header;
1165 struct extent_buffer *leaf;
1166 int ret;
1167
1168 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1169 key.offset = offset;
1170 key.type = 0;
1171
1172 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1173 if (ret < 0) {
1174 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1175 EXTENT_DELALLOC, NULL);
1176 goto fail;
1177 }
1178 leaf = path->nodes[0];
1179 if (ret > 0) {
1180 struct btrfs_key found_key;
1181 ASSERT(path->slots[0]);
1182 path->slots[0]--;
1183 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1184 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1185 found_key.offset != offset) {
1186 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1187 inode->i_size - 1, EXTENT_DELALLOC,
1188 NULL);
1189 btrfs_release_path(path);
1190 goto fail;
1191 }
1192 }
1193
1194 BTRFS_I(inode)->generation = trans->transid;
1195 header = btrfs_item_ptr(leaf, path->slots[0],
1196 struct btrfs_free_space_header);
1197 btrfs_set_free_space_entries(leaf, header, entries);
1198 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1199 btrfs_set_free_space_generation(leaf, header, trans->transid);
1200 btrfs_mark_buffer_dirty(leaf);
1201 btrfs_release_path(path);
1202
1203 return 0;
1204
1205fail:
1206 return -1;
1207}
1208
1209static noinline_for_stack int write_pinned_extent_entries(
1210 struct btrfs_trans_handle *trans,
1211 struct btrfs_block_group *block_group,
1212 struct btrfs_io_ctl *io_ctl,
1213 int *entries)
1214{
1215 u64 start, extent_start, extent_end, len;
1216 struct extent_io_tree *unpin = NULL;
1217 int ret;
1218
1219 if (!block_group)
1220 return 0;
1221
1222 /*
1223 * We want to add any pinned extents to our free space cache
1224 * so we don't leak the space
1225 *
1226 * We shouldn't have switched the pinned extents yet so this is the
1227 * right one
1228 */
1229 unpin = &trans->transaction->pinned_extents;
1230
1231 start = block_group->start;
1232
1233 while (start < block_group->start + block_group->length) {
1234 ret = find_first_extent_bit(unpin, start,
1235 &extent_start, &extent_end,
1236 EXTENT_DIRTY, NULL);
1237 if (ret)
1238 return 0;
1239
1240 /* This pinned extent is out of our range */
1241 if (extent_start >= block_group->start + block_group->length)
1242 return 0;
1243
1244 extent_start = max(extent_start, start);
1245 extent_end = min(block_group->start + block_group->length,
1246 extent_end + 1);
1247 len = extent_end - extent_start;
1248
1249 *entries += 1;
1250 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1251 if (ret)
1252 return -ENOSPC;
1253
1254 start = extent_end;
1255 }
1256
1257 return 0;
1258}
1259
1260static noinline_for_stack int
1261write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1262{
1263 struct btrfs_free_space *entry, *next;
1264 int ret;
1265
1266 /* Write out the bitmaps */
1267 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1268 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1269 if (ret)
1270 return -ENOSPC;
1271 list_del_init(&entry->list);
1272 }
1273
1274 return 0;
1275}
1276
1277static int flush_dirty_cache(struct inode *inode)
1278{
1279 int ret;
1280
1281 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1282 if (ret)
1283 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1284 EXTENT_DELALLOC, NULL);
1285
1286 return ret;
1287}
1288
1289static void noinline_for_stack
1290cleanup_bitmap_list(struct list_head *bitmap_list)
1291{
1292 struct btrfs_free_space *entry, *next;
1293
1294 list_for_each_entry_safe(entry, next, bitmap_list, list)
1295 list_del_init(&entry->list);
1296}
1297
1298static void noinline_for_stack
1299cleanup_write_cache_enospc(struct inode *inode,
1300 struct btrfs_io_ctl *io_ctl,
1301 struct extent_state **cached_state)
1302{
1303 io_ctl_drop_pages(io_ctl);
1304 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1305 cached_state);
1306}
1307
1308static int __btrfs_wait_cache_io(struct btrfs_root *root,
1309 struct btrfs_trans_handle *trans,
1310 struct btrfs_block_group *block_group,
1311 struct btrfs_io_ctl *io_ctl,
1312 struct btrfs_path *path, u64 offset)
1313{
1314 int ret;
1315 struct inode *inode = io_ctl->inode;
1316
1317 if (!inode)
1318 return 0;
1319
1320 /* Flush the dirty pages in the cache file. */
1321 ret = flush_dirty_cache(inode);
1322 if (ret)
1323 goto out;
1324
1325 /* Update the cache item to tell everyone this cache file is valid. */
1326 ret = update_cache_item(trans, root, inode, path, offset,
1327 io_ctl->entries, io_ctl->bitmaps);
1328out:
1329 if (ret) {
1330 invalidate_inode_pages2(inode->i_mapping);
1331 BTRFS_I(inode)->generation = 0;
1332 if (block_group)
1333 btrfs_debug(root->fs_info,
1334 "failed to write free space cache for block group %llu error %d",
1335 block_group->start, ret);
1336 }
1337 btrfs_update_inode(trans, root, BTRFS_I(inode));
1338
1339 if (block_group) {
1340 /* the dirty list is protected by the dirty_bgs_lock */
1341 spin_lock(&trans->transaction->dirty_bgs_lock);
1342
1343 /* the disk_cache_state is protected by the block group lock */
1344 spin_lock(&block_group->lock);
1345
1346 /*
1347 * only mark this as written if we didn't get put back on
1348 * the dirty list while waiting for IO. Otherwise our
1349 * cache state won't be right, and we won't get written again
1350 */
1351 if (!ret && list_empty(&block_group->dirty_list))
1352 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1353 else if (ret)
1354 block_group->disk_cache_state = BTRFS_DC_ERROR;
1355
1356 spin_unlock(&block_group->lock);
1357 spin_unlock(&trans->transaction->dirty_bgs_lock);
1358 io_ctl->inode = NULL;
1359 iput(inode);
1360 }
1361
1362 return ret;
1363
1364}
1365
1366int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1367 struct btrfs_block_group *block_group,
1368 struct btrfs_path *path)
1369{
1370 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1371 block_group, &block_group->io_ctl,
1372 path, block_group->start);
1373}
1374
1375/*
1376 * Write out cached info to an inode.
1377 *
1378 * @root: root the inode belongs to
1379 * @inode: freespace inode we are writing out
1380 * @ctl: free space cache we are going to write out
1381 * @block_group: block_group for this cache if it belongs to a block_group
1382 * @io_ctl: holds context for the io
1383 * @trans: the trans handle
1384 *
1385 * This function writes out a free space cache struct to disk for quick recovery
1386 * on mount. This will return 0 if it was successful in writing the cache out,
1387 * or an errno if it was not.
1388 */
1389static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1390 struct btrfs_free_space_ctl *ctl,
1391 struct btrfs_block_group *block_group,
1392 struct btrfs_io_ctl *io_ctl,
1393 struct btrfs_trans_handle *trans)
1394{
1395 struct extent_state *cached_state = NULL;
1396 LIST_HEAD(bitmap_list);
1397 int entries = 0;
1398 int bitmaps = 0;
1399 int ret;
1400 int must_iput = 0;
1401
1402 if (!i_size_read(inode))
1403 return -EIO;
1404
1405 WARN_ON(io_ctl->pages);
1406 ret = io_ctl_init(io_ctl, inode, 1);
1407 if (ret)
1408 return ret;
1409
1410 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1411 down_write(&block_group->data_rwsem);
1412 spin_lock(&block_group->lock);
1413 if (block_group->delalloc_bytes) {
1414 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1415 spin_unlock(&block_group->lock);
1416 up_write(&block_group->data_rwsem);
1417 BTRFS_I(inode)->generation = 0;
1418 ret = 0;
1419 must_iput = 1;
1420 goto out;
1421 }
1422 spin_unlock(&block_group->lock);
1423 }
1424
1425 /* Lock all pages first so we can lock the extent safely. */
1426 ret = io_ctl_prepare_pages(io_ctl, false);
1427 if (ret)
1428 goto out_unlock;
1429
1430 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1431 &cached_state);
1432
1433 io_ctl_set_generation(io_ctl, trans->transid);
1434
1435 mutex_lock(&ctl->cache_writeout_mutex);
1436 /* Write out the extent entries in the free space cache */
1437 spin_lock(&ctl->tree_lock);
1438 ret = write_cache_extent_entries(io_ctl, ctl,
1439 block_group, &entries, &bitmaps,
1440 &bitmap_list);
1441 if (ret)
1442 goto out_nospc_locked;
1443
1444 /*
1445 * Some spaces that are freed in the current transaction are pinned,
1446 * they will be added into free space cache after the transaction is
1447 * committed, we shouldn't lose them.
1448 *
1449 * If this changes while we are working we'll get added back to
1450 * the dirty list and redo it. No locking needed
1451 */
1452 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1453 if (ret)
1454 goto out_nospc_locked;
1455
1456 /*
1457 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1458 * locked while doing it because a concurrent trim can be manipulating
1459 * or freeing the bitmap.
1460 */
1461 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1462 spin_unlock(&ctl->tree_lock);
1463 mutex_unlock(&ctl->cache_writeout_mutex);
1464 if (ret)
1465 goto out_nospc;
1466
1467 /* Zero out the rest of the pages just to make sure */
1468 io_ctl_zero_remaining_pages(io_ctl);
1469
1470 /* Everything is written out, now we dirty the pages in the file. */
1471 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1472 io_ctl->num_pages, 0, i_size_read(inode),
1473 &cached_state, false);
1474 if (ret)
1475 goto out_nospc;
1476
1477 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1478 up_write(&block_group->data_rwsem);
1479 /*
1480 * Release the pages and unlock the extent, we will flush
1481 * them out later
1482 */
1483 io_ctl_drop_pages(io_ctl);
1484 io_ctl_free(io_ctl);
1485
1486 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1487 &cached_state);
1488
1489 /*
1490 * at this point the pages are under IO and we're happy,
1491 * The caller is responsible for waiting on them and updating
1492 * the cache and the inode
1493 */
1494 io_ctl->entries = entries;
1495 io_ctl->bitmaps = bitmaps;
1496
1497 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1498 if (ret)
1499 goto out;
1500
1501 return 0;
1502
1503out_nospc_locked:
1504 cleanup_bitmap_list(&bitmap_list);
1505 spin_unlock(&ctl->tree_lock);
1506 mutex_unlock(&ctl->cache_writeout_mutex);
1507
1508out_nospc:
1509 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1510
1511out_unlock:
1512 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1513 up_write(&block_group->data_rwsem);
1514
1515out:
1516 io_ctl->inode = NULL;
1517 io_ctl_free(io_ctl);
1518 if (ret) {
1519 invalidate_inode_pages2(inode->i_mapping);
1520 BTRFS_I(inode)->generation = 0;
1521 }
1522 btrfs_update_inode(trans, root, BTRFS_I(inode));
1523 if (must_iput)
1524 iput(inode);
1525 return ret;
1526}
1527
1528int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1529 struct btrfs_block_group *block_group,
1530 struct btrfs_path *path)
1531{
1532 struct btrfs_fs_info *fs_info = trans->fs_info;
1533 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1534 struct inode *inode;
1535 int ret = 0;
1536
1537 spin_lock(&block_group->lock);
1538 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1539 spin_unlock(&block_group->lock);
1540 return 0;
1541 }
1542 spin_unlock(&block_group->lock);
1543
1544 inode = lookup_free_space_inode(block_group, path);
1545 if (IS_ERR(inode))
1546 return 0;
1547
1548 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1549 block_group, &block_group->io_ctl, trans);
1550 if (ret) {
1551 btrfs_debug(fs_info,
1552 "failed to write free space cache for block group %llu error %d",
1553 block_group->start, ret);
1554 spin_lock(&block_group->lock);
1555 block_group->disk_cache_state = BTRFS_DC_ERROR;
1556 spin_unlock(&block_group->lock);
1557
1558 block_group->io_ctl.inode = NULL;
1559 iput(inode);
1560 }
1561
1562 /*
1563 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1564 * to wait for IO and put the inode
1565 */
1566
1567 return ret;
1568}
1569
1570static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1571 u64 offset)
1572{
1573 ASSERT(offset >= bitmap_start);
1574 offset -= bitmap_start;
1575 return (unsigned long)(div_u64(offset, unit));
1576}
1577
1578static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1579{
1580 return (unsigned long)(div_u64(bytes, unit));
1581}
1582
1583static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1584 u64 offset)
1585{
1586 u64 bitmap_start;
1587 u64 bytes_per_bitmap;
1588
1589 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1590 bitmap_start = offset - ctl->start;
1591 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1592 bitmap_start *= bytes_per_bitmap;
1593 bitmap_start += ctl->start;
1594
1595 return bitmap_start;
1596}
1597
1598static int tree_insert_offset(struct rb_root *root, u64 offset,
1599 struct rb_node *node, int bitmap)
1600{
1601 struct rb_node **p = &root->rb_node;
1602 struct rb_node *parent = NULL;
1603 struct btrfs_free_space *info;
1604
1605 while (*p) {
1606 parent = *p;
1607 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1608
1609 if (offset < info->offset) {
1610 p = &(*p)->rb_left;
1611 } else if (offset > info->offset) {
1612 p = &(*p)->rb_right;
1613 } else {
1614 /*
1615 * we could have a bitmap entry and an extent entry
1616 * share the same offset. If this is the case, we want
1617 * the extent entry to always be found first if we do a
1618 * linear search through the tree, since we want to have
1619 * the quickest allocation time, and allocating from an
1620 * extent is faster than allocating from a bitmap. So
1621 * if we're inserting a bitmap and we find an entry at
1622 * this offset, we want to go right, or after this entry
1623 * logically. If we are inserting an extent and we've
1624 * found a bitmap, we want to go left, or before
1625 * logically.
1626 */
1627 if (bitmap) {
1628 if (info->bitmap) {
1629 WARN_ON_ONCE(1);
1630 return -EEXIST;
1631 }
1632 p = &(*p)->rb_right;
1633 } else {
1634 if (!info->bitmap) {
1635 WARN_ON_ONCE(1);
1636 return -EEXIST;
1637 }
1638 p = &(*p)->rb_left;
1639 }
1640 }
1641 }
1642
1643 rb_link_node(node, parent, p);
1644 rb_insert_color(node, root);
1645
1646 return 0;
1647}
1648
1649/*
1650 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1651 * searched through the bitmap and figured out the largest ->max_extent_size,
1652 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1653 * allocator the wrong thing, we want to use the actual real max_extent_size
1654 * we've found already if it's larger, or we want to use ->bytes.
1655 *
1656 * This matters because find_free_space() will skip entries who's ->bytes is
1657 * less than the required bytes. So if we didn't search down this bitmap, we
1658 * may pick some previous entry that has a smaller ->max_extent_size than we
1659 * have. For example, assume we have two entries, one that has
1660 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1661 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1662 * call into find_free_space(), and return with max_extent_size == 4K, because
1663 * that first bitmap entry had ->max_extent_size set, but the second one did
1664 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1665 * 8K contiguous range.
1666 *
1667 * Consider the other case, we have 2 8K chunks in that second entry and still
1668 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1669 * allocator comes in it'll fully search our second bitmap, and this time it'll
1670 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1671 * right allocation the next loop through.
1672 */
1673static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1674{
1675 if (entry->bitmap && entry->max_extent_size)
1676 return entry->max_extent_size;
1677 return entry->bytes;
1678}
1679
1680/*
1681 * We want the largest entry to be leftmost, so this is inverted from what you'd
1682 * normally expect.
1683 */
1684static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1685{
1686 const struct btrfs_free_space *entry, *exist;
1687
1688 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1689 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1690 return get_max_extent_size(exist) < get_max_extent_size(entry);
1691}
1692
1693/*
1694 * searches the tree for the given offset.
1695 *
1696 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1697 * want a section that has at least bytes size and comes at or after the given
1698 * offset.
1699 */
1700static struct btrfs_free_space *
1701tree_search_offset(struct btrfs_free_space_ctl *ctl,
1702 u64 offset, int bitmap_only, int fuzzy)
1703{
1704 struct rb_node *n = ctl->free_space_offset.rb_node;
1705 struct btrfs_free_space *entry = NULL, *prev = NULL;
1706
1707 /* find entry that is closest to the 'offset' */
1708 while (n) {
1709 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1710 prev = entry;
1711
1712 if (offset < entry->offset)
1713 n = n->rb_left;
1714 else if (offset > entry->offset)
1715 n = n->rb_right;
1716 else
1717 break;
1718
1719 entry = NULL;
1720 }
1721
1722 if (bitmap_only) {
1723 if (!entry)
1724 return NULL;
1725 if (entry->bitmap)
1726 return entry;
1727
1728 /*
1729 * bitmap entry and extent entry may share same offset,
1730 * in that case, bitmap entry comes after extent entry.
1731 */
1732 n = rb_next(n);
1733 if (!n)
1734 return NULL;
1735 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1736 if (entry->offset != offset)
1737 return NULL;
1738
1739 WARN_ON(!entry->bitmap);
1740 return entry;
1741 } else if (entry) {
1742 if (entry->bitmap) {
1743 /*
1744 * if previous extent entry covers the offset,
1745 * we should return it instead of the bitmap entry
1746 */
1747 n = rb_prev(&entry->offset_index);
1748 if (n) {
1749 prev = rb_entry(n, struct btrfs_free_space,
1750 offset_index);
1751 if (!prev->bitmap &&
1752 prev->offset + prev->bytes > offset)
1753 entry = prev;
1754 }
1755 }
1756 return entry;
1757 }
1758
1759 if (!prev)
1760 return NULL;
1761
1762 /* find last entry before the 'offset' */
1763 entry = prev;
1764 if (entry->offset > offset) {
1765 n = rb_prev(&entry->offset_index);
1766 if (n) {
1767 entry = rb_entry(n, struct btrfs_free_space,
1768 offset_index);
1769 ASSERT(entry->offset <= offset);
1770 } else {
1771 if (fuzzy)
1772 return entry;
1773 else
1774 return NULL;
1775 }
1776 }
1777
1778 if (entry->bitmap) {
1779 n = rb_prev(&entry->offset_index);
1780 if (n) {
1781 prev = rb_entry(n, struct btrfs_free_space,
1782 offset_index);
1783 if (!prev->bitmap &&
1784 prev->offset + prev->bytes > offset)
1785 return prev;
1786 }
1787 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1788 return entry;
1789 } else if (entry->offset + entry->bytes > offset)
1790 return entry;
1791
1792 if (!fuzzy)
1793 return NULL;
1794
1795 while (1) {
1796 n = rb_next(&entry->offset_index);
1797 if (!n)
1798 return NULL;
1799 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1800 if (entry->bitmap) {
1801 if (entry->offset + BITS_PER_BITMAP *
1802 ctl->unit > offset)
1803 break;
1804 } else {
1805 if (entry->offset + entry->bytes > offset)
1806 break;
1807 }
1808 }
1809 return entry;
1810}
1811
1812static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1813 struct btrfs_free_space *info,
1814 bool update_stat)
1815{
1816 rb_erase(&info->offset_index, &ctl->free_space_offset);
1817 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1818 ctl->free_extents--;
1819
1820 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1821 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1822 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1823 }
1824
1825 if (update_stat)
1826 ctl->free_space -= info->bytes;
1827}
1828
1829static int link_free_space(struct btrfs_free_space_ctl *ctl,
1830 struct btrfs_free_space *info)
1831{
1832 int ret = 0;
1833
1834 ASSERT(info->bytes || info->bitmap);
1835 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1836 &info->offset_index, (info->bitmap != NULL));
1837 if (ret)
1838 return ret;
1839
1840 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1841
1842 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1843 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1844 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1845 }
1846
1847 ctl->free_space += info->bytes;
1848 ctl->free_extents++;
1849 return ret;
1850}
1851
1852static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1853 struct btrfs_free_space *info)
1854{
1855 ASSERT(info->bitmap);
1856
1857 /*
1858 * If our entry is empty it's because we're on a cluster and we don't
1859 * want to re-link it into our ctl bytes index.
1860 */
1861 if (RB_EMPTY_NODE(&info->bytes_index))
1862 return;
1863
1864 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1865 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1866}
1867
1868static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1869 struct btrfs_free_space *info,
1870 u64 offset, u64 bytes, bool update_stat)
1871{
1872 unsigned long start, count, end;
1873 int extent_delta = -1;
1874
1875 start = offset_to_bit(info->offset, ctl->unit, offset);
1876 count = bytes_to_bits(bytes, ctl->unit);
1877 end = start + count;
1878 ASSERT(end <= BITS_PER_BITMAP);
1879
1880 bitmap_clear(info->bitmap, start, count);
1881
1882 info->bytes -= bytes;
1883 if (info->max_extent_size > ctl->unit)
1884 info->max_extent_size = 0;
1885
1886 relink_bitmap_entry(ctl, info);
1887
1888 if (start && test_bit(start - 1, info->bitmap))
1889 extent_delta++;
1890
1891 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1892 extent_delta++;
1893
1894 info->bitmap_extents += extent_delta;
1895 if (!btrfs_free_space_trimmed(info)) {
1896 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1897 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1898 }
1899
1900 if (update_stat)
1901 ctl->free_space -= bytes;
1902}
1903
1904static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1905 struct btrfs_free_space *info, u64 offset,
1906 u64 bytes)
1907{
1908 unsigned long start, count, end;
1909 int extent_delta = 1;
1910
1911 start = offset_to_bit(info->offset, ctl->unit, offset);
1912 count = bytes_to_bits(bytes, ctl->unit);
1913 end = start + count;
1914 ASSERT(end <= BITS_PER_BITMAP);
1915
1916 bitmap_set(info->bitmap, start, count);
1917
1918 /*
1919 * We set some bytes, we have no idea what the max extent size is
1920 * anymore.
1921 */
1922 info->max_extent_size = 0;
1923 info->bytes += bytes;
1924 ctl->free_space += bytes;
1925
1926 relink_bitmap_entry(ctl, info);
1927
1928 if (start && test_bit(start - 1, info->bitmap))
1929 extent_delta--;
1930
1931 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1932 extent_delta--;
1933
1934 info->bitmap_extents += extent_delta;
1935 if (!btrfs_free_space_trimmed(info)) {
1936 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1937 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1938 }
1939}
1940
1941/*
1942 * If we can not find suitable extent, we will use bytes to record
1943 * the size of the max extent.
1944 */
1945static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1946 struct btrfs_free_space *bitmap_info, u64 *offset,
1947 u64 *bytes, bool for_alloc)
1948{
1949 unsigned long found_bits = 0;
1950 unsigned long max_bits = 0;
1951 unsigned long bits, i;
1952 unsigned long next_zero;
1953 unsigned long extent_bits;
1954
1955 /*
1956 * Skip searching the bitmap if we don't have a contiguous section that
1957 * is large enough for this allocation.
1958 */
1959 if (for_alloc &&
1960 bitmap_info->max_extent_size &&
1961 bitmap_info->max_extent_size < *bytes) {
1962 *bytes = bitmap_info->max_extent_size;
1963 return -1;
1964 }
1965
1966 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1967 max_t(u64, *offset, bitmap_info->offset));
1968 bits = bytes_to_bits(*bytes, ctl->unit);
1969
1970 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1971 if (for_alloc && bits == 1) {
1972 found_bits = 1;
1973 break;
1974 }
1975 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1976 BITS_PER_BITMAP, i);
1977 extent_bits = next_zero - i;
1978 if (extent_bits >= bits) {
1979 found_bits = extent_bits;
1980 break;
1981 } else if (extent_bits > max_bits) {
1982 max_bits = extent_bits;
1983 }
1984 i = next_zero;
1985 }
1986
1987 if (found_bits) {
1988 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1989 *bytes = (u64)(found_bits) * ctl->unit;
1990 return 0;
1991 }
1992
1993 *bytes = (u64)(max_bits) * ctl->unit;
1994 bitmap_info->max_extent_size = *bytes;
1995 relink_bitmap_entry(ctl, bitmap_info);
1996 return -1;
1997}
1998
1999/* Cache the size of the max extent in bytes */
2000static struct btrfs_free_space *
2001find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2002 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2003{
2004 struct btrfs_free_space *entry;
2005 struct rb_node *node;
2006 u64 tmp;
2007 u64 align_off;
2008 int ret;
2009
2010 if (!ctl->free_space_offset.rb_node)
2011 goto out;
2012again:
2013 if (use_bytes_index) {
2014 node = rb_first_cached(&ctl->free_space_bytes);
2015 } else {
2016 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2017 0, 1);
2018 if (!entry)
2019 goto out;
2020 node = &entry->offset_index;
2021 }
2022
2023 for (; node; node = rb_next(node)) {
2024 if (use_bytes_index)
2025 entry = rb_entry(node, struct btrfs_free_space,
2026 bytes_index);
2027 else
2028 entry = rb_entry(node, struct btrfs_free_space,
2029 offset_index);
2030
2031 /*
2032 * If we are using the bytes index then all subsequent entries
2033 * in this tree are going to be < bytes, so simply set the max
2034 * extent size and exit the loop.
2035 *
2036 * If we're using the offset index then we need to keep going
2037 * through the rest of the tree.
2038 */
2039 if (entry->bytes < *bytes) {
2040 *max_extent_size = max(get_max_extent_size(entry),
2041 *max_extent_size);
2042 if (use_bytes_index)
2043 break;
2044 continue;
2045 }
2046
2047 /* make sure the space returned is big enough
2048 * to match our requested alignment
2049 */
2050 if (*bytes >= align) {
2051 tmp = entry->offset - ctl->start + align - 1;
2052 tmp = div64_u64(tmp, align);
2053 tmp = tmp * align + ctl->start;
2054 align_off = tmp - entry->offset;
2055 } else {
2056 align_off = 0;
2057 tmp = entry->offset;
2058 }
2059
2060 /*
2061 * We don't break here if we're using the bytes index because we
2062 * may have another entry that has the correct alignment that is
2063 * the right size, so we don't want to miss that possibility.
2064 * At worst this adds another loop through the logic, but if we
2065 * broke here we could prematurely ENOSPC.
2066 */
2067 if (entry->bytes < *bytes + align_off) {
2068 *max_extent_size = max(get_max_extent_size(entry),
2069 *max_extent_size);
2070 continue;
2071 }
2072
2073 if (entry->bitmap) {
2074 struct rb_node *old_next = rb_next(node);
2075 u64 size = *bytes;
2076
2077 ret = search_bitmap(ctl, entry, &tmp, &size, true);
2078 if (!ret) {
2079 *offset = tmp;
2080 *bytes = size;
2081 return entry;
2082 } else {
2083 *max_extent_size =
2084 max(get_max_extent_size(entry),
2085 *max_extent_size);
2086 }
2087
2088 /*
2089 * The bitmap may have gotten re-arranged in the space
2090 * index here because the max_extent_size may have been
2091 * updated. Start from the beginning again if this
2092 * happened.
2093 */
2094 if (use_bytes_index && old_next != rb_next(node))
2095 goto again;
2096 continue;
2097 }
2098
2099 *offset = tmp;
2100 *bytes = entry->bytes - align_off;
2101 return entry;
2102 }
2103out:
2104 return NULL;
2105}
2106
2107static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2108 struct btrfs_free_space *info, u64 offset)
2109{
2110 info->offset = offset_to_bitmap(ctl, offset);
2111 info->bytes = 0;
2112 info->bitmap_extents = 0;
2113 INIT_LIST_HEAD(&info->list);
2114 link_free_space(ctl, info);
2115 ctl->total_bitmaps++;
2116 recalculate_thresholds(ctl);
2117}
2118
2119static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2120 struct btrfs_free_space *bitmap_info)
2121{
2122 /*
2123 * Normally when this is called, the bitmap is completely empty. However,
2124 * if we are blowing up the free space cache for one reason or another
2125 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2126 * we may leave stats on the table.
2127 */
2128 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2129 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2130 bitmap_info->bitmap_extents;
2131 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2132
2133 }
2134 unlink_free_space(ctl, bitmap_info, true);
2135 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2136 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2137 ctl->total_bitmaps--;
2138 recalculate_thresholds(ctl);
2139}
2140
2141static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2142 struct btrfs_free_space *bitmap_info,
2143 u64 *offset, u64 *bytes)
2144{
2145 u64 end;
2146 u64 search_start, search_bytes;
2147 int ret;
2148
2149again:
2150 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2151
2152 /*
2153 * We need to search for bits in this bitmap. We could only cover some
2154 * of the extent in this bitmap thanks to how we add space, so we need
2155 * to search for as much as it as we can and clear that amount, and then
2156 * go searching for the next bit.
2157 */
2158 search_start = *offset;
2159 search_bytes = ctl->unit;
2160 search_bytes = min(search_bytes, end - search_start + 1);
2161 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2162 false);
2163 if (ret < 0 || search_start != *offset)
2164 return -EINVAL;
2165
2166 /* We may have found more bits than what we need */
2167 search_bytes = min(search_bytes, *bytes);
2168
2169 /* Cannot clear past the end of the bitmap */
2170 search_bytes = min(search_bytes, end - search_start + 1);
2171
2172 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2173 *offset += search_bytes;
2174 *bytes -= search_bytes;
2175
2176 if (*bytes) {
2177 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2178 if (!bitmap_info->bytes)
2179 free_bitmap(ctl, bitmap_info);
2180
2181 /*
2182 * no entry after this bitmap, but we still have bytes to
2183 * remove, so something has gone wrong.
2184 */
2185 if (!next)
2186 return -EINVAL;
2187
2188 bitmap_info = rb_entry(next, struct btrfs_free_space,
2189 offset_index);
2190
2191 /*
2192 * if the next entry isn't a bitmap we need to return to let the
2193 * extent stuff do its work.
2194 */
2195 if (!bitmap_info->bitmap)
2196 return -EAGAIN;
2197
2198 /*
2199 * Ok the next item is a bitmap, but it may not actually hold
2200 * the information for the rest of this free space stuff, so
2201 * look for it, and if we don't find it return so we can try
2202 * everything over again.
2203 */
2204 search_start = *offset;
2205 search_bytes = ctl->unit;
2206 ret = search_bitmap(ctl, bitmap_info, &search_start,
2207 &search_bytes, false);
2208 if (ret < 0 || search_start != *offset)
2209 return -EAGAIN;
2210
2211 goto again;
2212 } else if (!bitmap_info->bytes)
2213 free_bitmap(ctl, bitmap_info);
2214
2215 return 0;
2216}
2217
2218static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2219 struct btrfs_free_space *info, u64 offset,
2220 u64 bytes, enum btrfs_trim_state trim_state)
2221{
2222 u64 bytes_to_set = 0;
2223 u64 end;
2224
2225 /*
2226 * This is a tradeoff to make bitmap trim state minimal. We mark the
2227 * whole bitmap untrimmed if at any point we add untrimmed regions.
2228 */
2229 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2230 if (btrfs_free_space_trimmed(info)) {
2231 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2232 info->bitmap_extents;
2233 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2234 }
2235 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2236 }
2237
2238 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2239
2240 bytes_to_set = min(end - offset, bytes);
2241
2242 bitmap_set_bits(ctl, info, offset, bytes_to_set);
2243
2244 return bytes_to_set;
2245
2246}
2247
2248static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2249 struct btrfs_free_space *info)
2250{
2251 struct btrfs_block_group *block_group = ctl->block_group;
2252 struct btrfs_fs_info *fs_info = block_group->fs_info;
2253 bool forced = false;
2254
2255#ifdef CONFIG_BTRFS_DEBUG
2256 if (btrfs_should_fragment_free_space(block_group))
2257 forced = true;
2258#endif
2259
2260 /* This is a way to reclaim large regions from the bitmaps. */
2261 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2262 return false;
2263
2264 /*
2265 * If we are below the extents threshold then we can add this as an
2266 * extent, and don't have to deal with the bitmap
2267 */
2268 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2269 /*
2270 * If this block group has some small extents we don't want to
2271 * use up all of our free slots in the cache with them, we want
2272 * to reserve them to larger extents, however if we have plenty
2273 * of cache left then go ahead an dadd them, no sense in adding
2274 * the overhead of a bitmap if we don't have to.
2275 */
2276 if (info->bytes <= fs_info->sectorsize * 8) {
2277 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2278 return false;
2279 } else {
2280 return false;
2281 }
2282 }
2283
2284 /*
2285 * The original block groups from mkfs can be really small, like 8
2286 * megabytes, so don't bother with a bitmap for those entries. However
2287 * some block groups can be smaller than what a bitmap would cover but
2288 * are still large enough that they could overflow the 32k memory limit,
2289 * so allow those block groups to still be allowed to have a bitmap
2290 * entry.
2291 */
2292 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2293 return false;
2294
2295 return true;
2296}
2297
2298static const struct btrfs_free_space_op free_space_op = {
2299 .use_bitmap = use_bitmap,
2300};
2301
2302static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2303 struct btrfs_free_space *info)
2304{
2305 struct btrfs_free_space *bitmap_info;
2306 struct btrfs_block_group *block_group = NULL;
2307 int added = 0;
2308 u64 bytes, offset, bytes_added;
2309 enum btrfs_trim_state trim_state;
2310 int ret;
2311
2312 bytes = info->bytes;
2313 offset = info->offset;
2314 trim_state = info->trim_state;
2315
2316 if (!ctl->op->use_bitmap(ctl, info))
2317 return 0;
2318
2319 if (ctl->op == &free_space_op)
2320 block_group = ctl->block_group;
2321again:
2322 /*
2323 * Since we link bitmaps right into the cluster we need to see if we
2324 * have a cluster here, and if so and it has our bitmap we need to add
2325 * the free space to that bitmap.
2326 */
2327 if (block_group && !list_empty(&block_group->cluster_list)) {
2328 struct btrfs_free_cluster *cluster;
2329 struct rb_node *node;
2330 struct btrfs_free_space *entry;
2331
2332 cluster = list_entry(block_group->cluster_list.next,
2333 struct btrfs_free_cluster,
2334 block_group_list);
2335 spin_lock(&cluster->lock);
2336 node = rb_first(&cluster->root);
2337 if (!node) {
2338 spin_unlock(&cluster->lock);
2339 goto no_cluster_bitmap;
2340 }
2341
2342 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2343 if (!entry->bitmap) {
2344 spin_unlock(&cluster->lock);
2345 goto no_cluster_bitmap;
2346 }
2347
2348 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2349 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2350 bytes, trim_state);
2351 bytes -= bytes_added;
2352 offset += bytes_added;
2353 }
2354 spin_unlock(&cluster->lock);
2355 if (!bytes) {
2356 ret = 1;
2357 goto out;
2358 }
2359 }
2360
2361no_cluster_bitmap:
2362 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2363 1, 0);
2364 if (!bitmap_info) {
2365 ASSERT(added == 0);
2366 goto new_bitmap;
2367 }
2368
2369 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2370 trim_state);
2371 bytes -= bytes_added;
2372 offset += bytes_added;
2373 added = 0;
2374
2375 if (!bytes) {
2376 ret = 1;
2377 goto out;
2378 } else
2379 goto again;
2380
2381new_bitmap:
2382 if (info && info->bitmap) {
2383 add_new_bitmap(ctl, info, offset);
2384 added = 1;
2385 info = NULL;
2386 goto again;
2387 } else {
2388 spin_unlock(&ctl->tree_lock);
2389
2390 /* no pre-allocated info, allocate a new one */
2391 if (!info) {
2392 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2393 GFP_NOFS);
2394 if (!info) {
2395 spin_lock(&ctl->tree_lock);
2396 ret = -ENOMEM;
2397 goto out;
2398 }
2399 }
2400
2401 /* allocate the bitmap */
2402 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2403 GFP_NOFS);
2404 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2405 spin_lock(&ctl->tree_lock);
2406 if (!info->bitmap) {
2407 ret = -ENOMEM;
2408 goto out;
2409 }
2410 goto again;
2411 }
2412
2413out:
2414 if (info) {
2415 if (info->bitmap)
2416 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2417 info->bitmap);
2418 kmem_cache_free(btrfs_free_space_cachep, info);
2419 }
2420
2421 return ret;
2422}
2423
2424/*
2425 * Free space merging rules:
2426 * 1) Merge trimmed areas together
2427 * 2) Let untrimmed areas coalesce with trimmed areas
2428 * 3) Always pull neighboring regions from bitmaps
2429 *
2430 * The above rules are for when we merge free space based on btrfs_trim_state.
2431 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2432 * same reason: to promote larger extent regions which makes life easier for
2433 * find_free_extent(). Rule 2 enables coalescing based on the common path
2434 * being returning free space from btrfs_finish_extent_commit(). So when free
2435 * space is trimmed, it will prevent aggregating trimmed new region and
2436 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2437 * and provide find_free_extent() with the largest extents possible hoping for
2438 * the reuse path.
2439 */
2440static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2441 struct btrfs_free_space *info, bool update_stat)
2442{
2443 struct btrfs_free_space *left_info = NULL;
2444 struct btrfs_free_space *right_info;
2445 bool merged = false;
2446 u64 offset = info->offset;
2447 u64 bytes = info->bytes;
2448 const bool is_trimmed = btrfs_free_space_trimmed(info);
2449
2450 /*
2451 * first we want to see if there is free space adjacent to the range we
2452 * are adding, if there is remove that struct and add a new one to
2453 * cover the entire range
2454 */
2455 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2456 if (right_info && rb_prev(&right_info->offset_index))
2457 left_info = rb_entry(rb_prev(&right_info->offset_index),
2458 struct btrfs_free_space, offset_index);
2459 else if (!right_info)
2460 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2461
2462 /* See try_merge_free_space() comment. */
2463 if (right_info && !right_info->bitmap &&
2464 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2465 unlink_free_space(ctl, right_info, update_stat);
2466 info->bytes += right_info->bytes;
2467 kmem_cache_free(btrfs_free_space_cachep, right_info);
2468 merged = true;
2469 }
2470
2471 /* See try_merge_free_space() comment. */
2472 if (left_info && !left_info->bitmap &&
2473 left_info->offset + left_info->bytes == offset &&
2474 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2475 unlink_free_space(ctl, left_info, update_stat);
2476 info->offset = left_info->offset;
2477 info->bytes += left_info->bytes;
2478 kmem_cache_free(btrfs_free_space_cachep, left_info);
2479 merged = true;
2480 }
2481
2482 return merged;
2483}
2484
2485static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2486 struct btrfs_free_space *info,
2487 bool update_stat)
2488{
2489 struct btrfs_free_space *bitmap;
2490 unsigned long i;
2491 unsigned long j;
2492 const u64 end = info->offset + info->bytes;
2493 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2494 u64 bytes;
2495
2496 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2497 if (!bitmap)
2498 return false;
2499
2500 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2501 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2502 if (j == i)
2503 return false;
2504 bytes = (j - i) * ctl->unit;
2505 info->bytes += bytes;
2506
2507 /* See try_merge_free_space() comment. */
2508 if (!btrfs_free_space_trimmed(bitmap))
2509 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2510
2511 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2512
2513 if (!bitmap->bytes)
2514 free_bitmap(ctl, bitmap);
2515
2516 return true;
2517}
2518
2519static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2520 struct btrfs_free_space *info,
2521 bool update_stat)
2522{
2523 struct btrfs_free_space *bitmap;
2524 u64 bitmap_offset;
2525 unsigned long i;
2526 unsigned long j;
2527 unsigned long prev_j;
2528 u64 bytes;
2529
2530 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2531 /* If we're on a boundary, try the previous logical bitmap. */
2532 if (bitmap_offset == info->offset) {
2533 if (info->offset == 0)
2534 return false;
2535 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2536 }
2537
2538 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2539 if (!bitmap)
2540 return false;
2541
2542 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2543 j = 0;
2544 prev_j = (unsigned long)-1;
2545 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2546 if (j > i)
2547 break;
2548 prev_j = j;
2549 }
2550 if (prev_j == i)
2551 return false;
2552
2553 if (prev_j == (unsigned long)-1)
2554 bytes = (i + 1) * ctl->unit;
2555 else
2556 bytes = (i - prev_j) * ctl->unit;
2557
2558 info->offset -= bytes;
2559 info->bytes += bytes;
2560
2561 /* See try_merge_free_space() comment. */
2562 if (!btrfs_free_space_trimmed(bitmap))
2563 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2564
2565 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2566
2567 if (!bitmap->bytes)
2568 free_bitmap(ctl, bitmap);
2569
2570 return true;
2571}
2572
2573/*
2574 * We prefer always to allocate from extent entries, both for clustered and
2575 * non-clustered allocation requests. So when attempting to add a new extent
2576 * entry, try to see if there's adjacent free space in bitmap entries, and if
2577 * there is, migrate that space from the bitmaps to the extent.
2578 * Like this we get better chances of satisfying space allocation requests
2579 * because we attempt to satisfy them based on a single cache entry, and never
2580 * on 2 or more entries - even if the entries represent a contiguous free space
2581 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2582 * ends).
2583 */
2584static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2585 struct btrfs_free_space *info,
2586 bool update_stat)
2587{
2588 /*
2589 * Only work with disconnected entries, as we can change their offset,
2590 * and must be extent entries.
2591 */
2592 ASSERT(!info->bitmap);
2593 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2594
2595 if (ctl->total_bitmaps > 0) {
2596 bool stole_end;
2597 bool stole_front = false;
2598
2599 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2600 if (ctl->total_bitmaps > 0)
2601 stole_front = steal_from_bitmap_to_front(ctl, info,
2602 update_stat);
2603
2604 if (stole_end || stole_front)
2605 try_merge_free_space(ctl, info, update_stat);
2606 }
2607}
2608
2609int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2610 u64 offset, u64 bytes,
2611 enum btrfs_trim_state trim_state)
2612{
2613 struct btrfs_fs_info *fs_info = block_group->fs_info;
2614 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2615 struct btrfs_free_space *info;
2616 int ret = 0;
2617 u64 filter_bytes = bytes;
2618
2619 ASSERT(!btrfs_is_zoned(fs_info));
2620
2621 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2622 if (!info)
2623 return -ENOMEM;
2624
2625 info->offset = offset;
2626 info->bytes = bytes;
2627 info->trim_state = trim_state;
2628 RB_CLEAR_NODE(&info->offset_index);
2629 RB_CLEAR_NODE(&info->bytes_index);
2630
2631 spin_lock(&ctl->tree_lock);
2632
2633 if (try_merge_free_space(ctl, info, true))
2634 goto link;
2635
2636 /*
2637 * There was no extent directly to the left or right of this new
2638 * extent then we know we're going to have to allocate a new extent, so
2639 * before we do that see if we need to drop this into a bitmap
2640 */
2641 ret = insert_into_bitmap(ctl, info);
2642 if (ret < 0) {
2643 goto out;
2644 } else if (ret) {
2645 ret = 0;
2646 goto out;
2647 }
2648link:
2649 /*
2650 * Only steal free space from adjacent bitmaps if we're sure we're not
2651 * going to add the new free space to existing bitmap entries - because
2652 * that would mean unnecessary work that would be reverted. Therefore
2653 * attempt to steal space from bitmaps if we're adding an extent entry.
2654 */
2655 steal_from_bitmap(ctl, info, true);
2656
2657 filter_bytes = max(filter_bytes, info->bytes);
2658
2659 ret = link_free_space(ctl, info);
2660 if (ret)
2661 kmem_cache_free(btrfs_free_space_cachep, info);
2662out:
2663 btrfs_discard_update_discardable(block_group);
2664 spin_unlock(&ctl->tree_lock);
2665
2666 if (ret) {
2667 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2668 ASSERT(ret != -EEXIST);
2669 }
2670
2671 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2672 btrfs_discard_check_filter(block_group, filter_bytes);
2673 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2674 }
2675
2676 return ret;
2677}
2678
2679static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2680 u64 bytenr, u64 size, bool used)
2681{
2682 struct btrfs_space_info *sinfo = block_group->space_info;
2683 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2684 u64 offset = bytenr - block_group->start;
2685 u64 to_free, to_unusable;
2686 int bg_reclaim_threshold = 0;
2687 bool initial = (size == block_group->length);
2688 u64 reclaimable_unusable;
2689
2690 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2691
2692 if (!initial)
2693 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2694
2695 spin_lock(&ctl->tree_lock);
2696 if (!used)
2697 to_free = size;
2698 else if (initial)
2699 to_free = block_group->zone_capacity;
2700 else if (offset >= block_group->alloc_offset)
2701 to_free = size;
2702 else if (offset + size <= block_group->alloc_offset)
2703 to_free = 0;
2704 else
2705 to_free = offset + size - block_group->alloc_offset;
2706 to_unusable = size - to_free;
2707
2708 ctl->free_space += to_free;
2709 /*
2710 * If the block group is read-only, we should account freed space into
2711 * bytes_readonly.
2712 */
2713 if (!block_group->ro)
2714 block_group->zone_unusable += to_unusable;
2715 spin_unlock(&ctl->tree_lock);
2716 if (!used) {
2717 spin_lock(&block_group->lock);
2718 block_group->alloc_offset -= size;
2719 spin_unlock(&block_group->lock);
2720 }
2721
2722 reclaimable_unusable = block_group->zone_unusable -
2723 (block_group->length - block_group->zone_capacity);
2724 /* All the region is now unusable. Mark it as unused and reclaim */
2725 if (block_group->zone_unusable == block_group->length) {
2726 btrfs_mark_bg_unused(block_group);
2727 } else if (bg_reclaim_threshold &&
2728 reclaimable_unusable >=
2729 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2730 btrfs_mark_bg_to_reclaim(block_group);
2731 }
2732
2733 return 0;
2734}
2735
2736int btrfs_add_free_space(struct btrfs_block_group *block_group,
2737 u64 bytenr, u64 size)
2738{
2739 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2740
2741 if (btrfs_is_zoned(block_group->fs_info))
2742 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2743 true);
2744
2745 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2746 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2747
2748 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2749}
2750
2751int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2752 u64 bytenr, u64 size)
2753{
2754 if (btrfs_is_zoned(block_group->fs_info))
2755 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2756 false);
2757
2758 return btrfs_add_free_space(block_group, bytenr, size);
2759}
2760
2761/*
2762 * This is a subtle distinction because when adding free space back in general,
2763 * we want it to be added as untrimmed for async. But in the case where we add
2764 * it on loading of a block group, we want to consider it trimmed.
2765 */
2766int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2767 u64 bytenr, u64 size)
2768{
2769 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2770
2771 if (btrfs_is_zoned(block_group->fs_info))
2772 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2773 true);
2774
2775 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2776 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2777 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2778
2779 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2780}
2781
2782int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2783 u64 offset, u64 bytes)
2784{
2785 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2786 struct btrfs_free_space *info;
2787 int ret;
2788 bool re_search = false;
2789
2790 if (btrfs_is_zoned(block_group->fs_info)) {
2791 /*
2792 * This can happen with conventional zones when replaying log.
2793 * Since the allocation info of tree-log nodes are not recorded
2794 * to the extent-tree, calculate_alloc_pointer() failed to
2795 * advance the allocation pointer after last allocated tree log
2796 * node blocks.
2797 *
2798 * This function is called from
2799 * btrfs_pin_extent_for_log_replay() when replaying the log.
2800 * Advance the pointer not to overwrite the tree-log nodes.
2801 */
2802 if (block_group->start + block_group->alloc_offset <
2803 offset + bytes) {
2804 block_group->alloc_offset =
2805 offset + bytes - block_group->start;
2806 }
2807 return 0;
2808 }
2809
2810 spin_lock(&ctl->tree_lock);
2811
2812again:
2813 ret = 0;
2814 if (!bytes)
2815 goto out_lock;
2816
2817 info = tree_search_offset(ctl, offset, 0, 0);
2818 if (!info) {
2819 /*
2820 * oops didn't find an extent that matched the space we wanted
2821 * to remove, look for a bitmap instead
2822 */
2823 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2824 1, 0);
2825 if (!info) {
2826 /*
2827 * If we found a partial bit of our free space in a
2828 * bitmap but then couldn't find the other part this may
2829 * be a problem, so WARN about it.
2830 */
2831 WARN_ON(re_search);
2832 goto out_lock;
2833 }
2834 }
2835
2836 re_search = false;
2837 if (!info->bitmap) {
2838 unlink_free_space(ctl, info, true);
2839 if (offset == info->offset) {
2840 u64 to_free = min(bytes, info->bytes);
2841
2842 info->bytes -= to_free;
2843 info->offset += to_free;
2844 if (info->bytes) {
2845 ret = link_free_space(ctl, info);
2846 WARN_ON(ret);
2847 } else {
2848 kmem_cache_free(btrfs_free_space_cachep, info);
2849 }
2850
2851 offset += to_free;
2852 bytes -= to_free;
2853 goto again;
2854 } else {
2855 u64 old_end = info->bytes + info->offset;
2856
2857 info->bytes = offset - info->offset;
2858 ret = link_free_space(ctl, info);
2859 WARN_ON(ret);
2860 if (ret)
2861 goto out_lock;
2862
2863 /* Not enough bytes in this entry to satisfy us */
2864 if (old_end < offset + bytes) {
2865 bytes -= old_end - offset;
2866 offset = old_end;
2867 goto again;
2868 } else if (old_end == offset + bytes) {
2869 /* all done */
2870 goto out_lock;
2871 }
2872 spin_unlock(&ctl->tree_lock);
2873
2874 ret = __btrfs_add_free_space(block_group,
2875 offset + bytes,
2876 old_end - (offset + bytes),
2877 info->trim_state);
2878 WARN_ON(ret);
2879 goto out;
2880 }
2881 }
2882
2883 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2884 if (ret == -EAGAIN) {
2885 re_search = true;
2886 goto again;
2887 }
2888out_lock:
2889 btrfs_discard_update_discardable(block_group);
2890 spin_unlock(&ctl->tree_lock);
2891out:
2892 return ret;
2893}
2894
2895void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2896 u64 bytes)
2897{
2898 struct btrfs_fs_info *fs_info = block_group->fs_info;
2899 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2900 struct btrfs_free_space *info;
2901 struct rb_node *n;
2902 int count = 0;
2903
2904 /*
2905 * Zoned btrfs does not use free space tree and cluster. Just print
2906 * out the free space after the allocation offset.
2907 */
2908 if (btrfs_is_zoned(fs_info)) {
2909 btrfs_info(fs_info, "free space %llu active %d",
2910 block_group->zone_capacity - block_group->alloc_offset,
2911 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2912 &block_group->runtime_flags));
2913 return;
2914 }
2915
2916 spin_lock(&ctl->tree_lock);
2917 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2918 info = rb_entry(n, struct btrfs_free_space, offset_index);
2919 if (info->bytes >= bytes && !block_group->ro)
2920 count++;
2921 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2922 info->offset, info->bytes,
2923 (info->bitmap) ? "yes" : "no");
2924 }
2925 spin_unlock(&ctl->tree_lock);
2926 btrfs_info(fs_info, "block group has cluster?: %s",
2927 list_empty(&block_group->cluster_list) ? "no" : "yes");
2928 btrfs_info(fs_info,
2929 "%d blocks of free space at or bigger than bytes is", count);
2930}
2931
2932void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2933 struct btrfs_free_space_ctl *ctl)
2934{
2935 struct btrfs_fs_info *fs_info = block_group->fs_info;
2936
2937 spin_lock_init(&ctl->tree_lock);
2938 ctl->unit = fs_info->sectorsize;
2939 ctl->start = block_group->start;
2940 ctl->block_group = block_group;
2941 ctl->op = &free_space_op;
2942 ctl->free_space_bytes = RB_ROOT_CACHED;
2943 INIT_LIST_HEAD(&ctl->trimming_ranges);
2944 mutex_init(&ctl->cache_writeout_mutex);
2945
2946 /*
2947 * we only want to have 32k of ram per block group for keeping
2948 * track of free space, and if we pass 1/2 of that we want to
2949 * start converting things over to using bitmaps
2950 */
2951 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2952}
2953
2954/*
2955 * for a given cluster, put all of its extents back into the free
2956 * space cache. If the block group passed doesn't match the block group
2957 * pointed to by the cluster, someone else raced in and freed the
2958 * cluster already. In that case, we just return without changing anything
2959 */
2960static void __btrfs_return_cluster_to_free_space(
2961 struct btrfs_block_group *block_group,
2962 struct btrfs_free_cluster *cluster)
2963{
2964 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2965 struct btrfs_free_space *entry;
2966 struct rb_node *node;
2967
2968 spin_lock(&cluster->lock);
2969 if (cluster->block_group != block_group) {
2970 spin_unlock(&cluster->lock);
2971 return;
2972 }
2973
2974 cluster->block_group = NULL;
2975 cluster->window_start = 0;
2976 list_del_init(&cluster->block_group_list);
2977
2978 node = rb_first(&cluster->root);
2979 while (node) {
2980 bool bitmap;
2981
2982 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2983 node = rb_next(&entry->offset_index);
2984 rb_erase(&entry->offset_index, &cluster->root);
2985 RB_CLEAR_NODE(&entry->offset_index);
2986
2987 bitmap = (entry->bitmap != NULL);
2988 if (!bitmap) {
2989 /* Merging treats extents as if they were new */
2990 if (!btrfs_free_space_trimmed(entry)) {
2991 ctl->discardable_extents[BTRFS_STAT_CURR]--;
2992 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2993 entry->bytes;
2994 }
2995
2996 try_merge_free_space(ctl, entry, false);
2997 steal_from_bitmap(ctl, entry, false);
2998
2999 /* As we insert directly, update these statistics */
3000 if (!btrfs_free_space_trimmed(entry)) {
3001 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3002 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3003 entry->bytes;
3004 }
3005 }
3006 tree_insert_offset(&ctl->free_space_offset,
3007 entry->offset, &entry->offset_index, bitmap);
3008 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3009 entry_less);
3010 }
3011 cluster->root = RB_ROOT;
3012 spin_unlock(&cluster->lock);
3013 btrfs_put_block_group(block_group);
3014}
3015
3016void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3017{
3018 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3019 struct btrfs_free_cluster *cluster;
3020 struct list_head *head;
3021
3022 spin_lock(&ctl->tree_lock);
3023 while ((head = block_group->cluster_list.next) !=
3024 &block_group->cluster_list) {
3025 cluster = list_entry(head, struct btrfs_free_cluster,
3026 block_group_list);
3027
3028 WARN_ON(cluster->block_group != block_group);
3029 __btrfs_return_cluster_to_free_space(block_group, cluster);
3030
3031 cond_resched_lock(&ctl->tree_lock);
3032 }
3033 __btrfs_remove_free_space_cache(ctl);
3034 btrfs_discard_update_discardable(block_group);
3035 spin_unlock(&ctl->tree_lock);
3036
3037}
3038
3039/*
3040 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3041 */
3042bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3043{
3044 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3045 struct btrfs_free_space *info;
3046 struct rb_node *node;
3047 bool ret = true;
3048
3049 spin_lock(&ctl->tree_lock);
3050 node = rb_first(&ctl->free_space_offset);
3051
3052 while (node) {
3053 info = rb_entry(node, struct btrfs_free_space, offset_index);
3054
3055 if (!btrfs_free_space_trimmed(info)) {
3056 ret = false;
3057 break;
3058 }
3059
3060 node = rb_next(node);
3061 }
3062
3063 spin_unlock(&ctl->tree_lock);
3064 return ret;
3065}
3066
3067u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3068 u64 offset, u64 bytes, u64 empty_size,
3069 u64 *max_extent_size)
3070{
3071 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3072 struct btrfs_discard_ctl *discard_ctl =
3073 &block_group->fs_info->discard_ctl;
3074 struct btrfs_free_space *entry = NULL;
3075 u64 bytes_search = bytes + empty_size;
3076 u64 ret = 0;
3077 u64 align_gap = 0;
3078 u64 align_gap_len = 0;
3079 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3080 bool use_bytes_index = (offset == block_group->start);
3081
3082 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3083
3084 spin_lock(&ctl->tree_lock);
3085 entry = find_free_space(ctl, &offset, &bytes_search,
3086 block_group->full_stripe_len, max_extent_size,
3087 use_bytes_index);
3088 if (!entry)
3089 goto out;
3090
3091 ret = offset;
3092 if (entry->bitmap) {
3093 bitmap_clear_bits(ctl, entry, offset, bytes, true);
3094
3095 if (!btrfs_free_space_trimmed(entry))
3096 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3097
3098 if (!entry->bytes)
3099 free_bitmap(ctl, entry);
3100 } else {
3101 unlink_free_space(ctl, entry, true);
3102 align_gap_len = offset - entry->offset;
3103 align_gap = entry->offset;
3104 align_gap_trim_state = entry->trim_state;
3105
3106 if (!btrfs_free_space_trimmed(entry))
3107 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3108
3109 entry->offset = offset + bytes;
3110 WARN_ON(entry->bytes < bytes + align_gap_len);
3111
3112 entry->bytes -= bytes + align_gap_len;
3113 if (!entry->bytes)
3114 kmem_cache_free(btrfs_free_space_cachep, entry);
3115 else
3116 link_free_space(ctl, entry);
3117 }
3118out:
3119 btrfs_discard_update_discardable(block_group);
3120 spin_unlock(&ctl->tree_lock);
3121
3122 if (align_gap_len)
3123 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
3124 align_gap_trim_state);
3125 return ret;
3126}
3127
3128/*
3129 * given a cluster, put all of its extents back into the free space
3130 * cache. If a block group is passed, this function will only free
3131 * a cluster that belongs to the passed block group.
3132 *
3133 * Otherwise, it'll get a reference on the block group pointed to by the
3134 * cluster and remove the cluster from it.
3135 */
3136void btrfs_return_cluster_to_free_space(
3137 struct btrfs_block_group *block_group,
3138 struct btrfs_free_cluster *cluster)
3139{
3140 struct btrfs_free_space_ctl *ctl;
3141
3142 /* first, get a safe pointer to the block group */
3143 spin_lock(&cluster->lock);
3144 if (!block_group) {
3145 block_group = cluster->block_group;
3146 if (!block_group) {
3147 spin_unlock(&cluster->lock);
3148 return;
3149 }
3150 } else if (cluster->block_group != block_group) {
3151 /* someone else has already freed it don't redo their work */
3152 spin_unlock(&cluster->lock);
3153 return;
3154 }
3155 btrfs_get_block_group(block_group);
3156 spin_unlock(&cluster->lock);
3157
3158 ctl = block_group->free_space_ctl;
3159
3160 /* now return any extents the cluster had on it */
3161 spin_lock(&ctl->tree_lock);
3162 __btrfs_return_cluster_to_free_space(block_group, cluster);
3163 spin_unlock(&ctl->tree_lock);
3164
3165 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3166
3167 /* finally drop our ref */
3168 btrfs_put_block_group(block_group);
3169}
3170
3171static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3172 struct btrfs_free_cluster *cluster,
3173 struct btrfs_free_space *entry,
3174 u64 bytes, u64 min_start,
3175 u64 *max_extent_size)
3176{
3177 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3178 int err;
3179 u64 search_start = cluster->window_start;
3180 u64 search_bytes = bytes;
3181 u64 ret = 0;
3182
3183 search_start = min_start;
3184 search_bytes = bytes;
3185
3186 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3187 if (err) {
3188 *max_extent_size = max(get_max_extent_size(entry),
3189 *max_extent_size);
3190 return 0;
3191 }
3192
3193 ret = search_start;
3194 bitmap_clear_bits(ctl, entry, ret, bytes, false);
3195
3196 return ret;
3197}
3198
3199/*
3200 * given a cluster, try to allocate 'bytes' from it, returns 0
3201 * if it couldn't find anything suitably large, or a logical disk offset
3202 * if things worked out
3203 */
3204u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3205 struct btrfs_free_cluster *cluster, u64 bytes,
3206 u64 min_start, u64 *max_extent_size)
3207{
3208 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3209 struct btrfs_discard_ctl *discard_ctl =
3210 &block_group->fs_info->discard_ctl;
3211 struct btrfs_free_space *entry = NULL;
3212 struct rb_node *node;
3213 u64 ret = 0;
3214
3215 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3216
3217 spin_lock(&cluster->lock);
3218 if (bytes > cluster->max_size)
3219 goto out;
3220
3221 if (cluster->block_group != block_group)
3222 goto out;
3223
3224 node = rb_first(&cluster->root);
3225 if (!node)
3226 goto out;
3227
3228 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3229 while (1) {
3230 if (entry->bytes < bytes)
3231 *max_extent_size = max(get_max_extent_size(entry),
3232 *max_extent_size);
3233
3234 if (entry->bytes < bytes ||
3235 (!entry->bitmap && entry->offset < min_start)) {
3236 node = rb_next(&entry->offset_index);
3237 if (!node)
3238 break;
3239 entry = rb_entry(node, struct btrfs_free_space,
3240 offset_index);
3241 continue;
3242 }
3243
3244 if (entry->bitmap) {
3245 ret = btrfs_alloc_from_bitmap(block_group,
3246 cluster, entry, bytes,
3247 cluster->window_start,
3248 max_extent_size);
3249 if (ret == 0) {
3250 node = rb_next(&entry->offset_index);
3251 if (!node)
3252 break;
3253 entry = rb_entry(node, struct btrfs_free_space,
3254 offset_index);
3255 continue;
3256 }
3257 cluster->window_start += bytes;
3258 } else {
3259 ret = entry->offset;
3260
3261 entry->offset += bytes;
3262 entry->bytes -= bytes;
3263 }
3264
3265 break;
3266 }
3267out:
3268 spin_unlock(&cluster->lock);
3269
3270 if (!ret)
3271 return 0;
3272
3273 spin_lock(&ctl->tree_lock);
3274
3275 if (!btrfs_free_space_trimmed(entry))
3276 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3277
3278 ctl->free_space -= bytes;
3279 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3280 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3281
3282 spin_lock(&cluster->lock);
3283 if (entry->bytes == 0) {
3284 rb_erase(&entry->offset_index, &cluster->root);
3285 ctl->free_extents--;
3286 if (entry->bitmap) {
3287 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3288 entry->bitmap);
3289 ctl->total_bitmaps--;
3290 recalculate_thresholds(ctl);
3291 } else if (!btrfs_free_space_trimmed(entry)) {
3292 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3293 }
3294 kmem_cache_free(btrfs_free_space_cachep, entry);
3295 }
3296
3297 spin_unlock(&cluster->lock);
3298 spin_unlock(&ctl->tree_lock);
3299
3300 return ret;
3301}
3302
3303static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3304 struct btrfs_free_space *entry,
3305 struct btrfs_free_cluster *cluster,
3306 u64 offset, u64 bytes,
3307 u64 cont1_bytes, u64 min_bytes)
3308{
3309 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3310 unsigned long next_zero;
3311 unsigned long i;
3312 unsigned long want_bits;
3313 unsigned long min_bits;
3314 unsigned long found_bits;
3315 unsigned long max_bits = 0;
3316 unsigned long start = 0;
3317 unsigned long total_found = 0;
3318 int ret;
3319
3320 i = offset_to_bit(entry->offset, ctl->unit,
3321 max_t(u64, offset, entry->offset));
3322 want_bits = bytes_to_bits(bytes, ctl->unit);
3323 min_bits = bytes_to_bits(min_bytes, ctl->unit);
3324
3325 /*
3326 * Don't bother looking for a cluster in this bitmap if it's heavily
3327 * fragmented.
3328 */
3329 if (entry->max_extent_size &&
3330 entry->max_extent_size < cont1_bytes)
3331 return -ENOSPC;
3332again:
3333 found_bits = 0;
3334 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3335 next_zero = find_next_zero_bit(entry->bitmap,
3336 BITS_PER_BITMAP, i);
3337 if (next_zero - i >= min_bits) {
3338 found_bits = next_zero - i;
3339 if (found_bits > max_bits)
3340 max_bits = found_bits;
3341 break;
3342 }
3343 if (next_zero - i > max_bits)
3344 max_bits = next_zero - i;
3345 i = next_zero;
3346 }
3347
3348 if (!found_bits) {
3349 entry->max_extent_size = (u64)max_bits * ctl->unit;
3350 return -ENOSPC;
3351 }
3352
3353 if (!total_found) {
3354 start = i;
3355 cluster->max_size = 0;
3356 }
3357
3358 total_found += found_bits;
3359
3360 if (cluster->max_size < found_bits * ctl->unit)
3361 cluster->max_size = found_bits * ctl->unit;
3362
3363 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3364 i = next_zero + 1;
3365 goto again;
3366 }
3367
3368 cluster->window_start = start * ctl->unit + entry->offset;
3369 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3370 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3371
3372 /*
3373 * We need to know if we're currently on the normal space index when we
3374 * manipulate the bitmap so that we know we need to remove and re-insert
3375 * it into the space_index tree. Clear the bytes_index node here so the
3376 * bitmap manipulation helpers know not to mess with the space_index
3377 * until this bitmap entry is added back into the normal cache.
3378 */
3379 RB_CLEAR_NODE(&entry->bytes_index);
3380
3381 ret = tree_insert_offset(&cluster->root, entry->offset,
3382 &entry->offset_index, 1);
3383 ASSERT(!ret); /* -EEXIST; Logic error */
3384
3385 trace_btrfs_setup_cluster(block_group, cluster,
3386 total_found * ctl->unit, 1);
3387 return 0;
3388}
3389
3390/*
3391 * This searches the block group for just extents to fill the cluster with.
3392 * Try to find a cluster with at least bytes total bytes, at least one
3393 * extent of cont1_bytes, and other clusters of at least min_bytes.
3394 */
3395static noinline int
3396setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3397 struct btrfs_free_cluster *cluster,
3398 struct list_head *bitmaps, u64 offset, u64 bytes,
3399 u64 cont1_bytes, u64 min_bytes)
3400{
3401 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3402 struct btrfs_free_space *first = NULL;
3403 struct btrfs_free_space *entry = NULL;
3404 struct btrfs_free_space *last;
3405 struct rb_node *node;
3406 u64 window_free;
3407 u64 max_extent;
3408 u64 total_size = 0;
3409
3410 entry = tree_search_offset(ctl, offset, 0, 1);
3411 if (!entry)
3412 return -ENOSPC;
3413
3414 /*
3415 * We don't want bitmaps, so just move along until we find a normal
3416 * extent entry.
3417 */
3418 while (entry->bitmap || entry->bytes < min_bytes) {
3419 if (entry->bitmap && list_empty(&entry->list))
3420 list_add_tail(&entry->list, bitmaps);
3421 node = rb_next(&entry->offset_index);
3422 if (!node)
3423 return -ENOSPC;
3424 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3425 }
3426
3427 window_free = entry->bytes;
3428 max_extent = entry->bytes;
3429 first = entry;
3430 last = entry;
3431
3432 for (node = rb_next(&entry->offset_index); node;
3433 node = rb_next(&entry->offset_index)) {
3434 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3435
3436 if (entry->bitmap) {
3437 if (list_empty(&entry->list))
3438 list_add_tail(&entry->list, bitmaps);
3439 continue;
3440 }
3441
3442 if (entry->bytes < min_bytes)
3443 continue;
3444
3445 last = entry;
3446 window_free += entry->bytes;
3447 if (entry->bytes > max_extent)
3448 max_extent = entry->bytes;
3449 }
3450
3451 if (window_free < bytes || max_extent < cont1_bytes)
3452 return -ENOSPC;
3453
3454 cluster->window_start = first->offset;
3455
3456 node = &first->offset_index;
3457
3458 /*
3459 * now we've found our entries, pull them out of the free space
3460 * cache and put them into the cluster rbtree
3461 */
3462 do {
3463 int ret;
3464
3465 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3466 node = rb_next(&entry->offset_index);
3467 if (entry->bitmap || entry->bytes < min_bytes)
3468 continue;
3469
3470 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3471 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3472 ret = tree_insert_offset(&cluster->root, entry->offset,
3473 &entry->offset_index, 0);
3474 total_size += entry->bytes;
3475 ASSERT(!ret); /* -EEXIST; Logic error */
3476 } while (node && entry != last);
3477
3478 cluster->max_size = max_extent;
3479 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3480 return 0;
3481}
3482
3483/*
3484 * This specifically looks for bitmaps that may work in the cluster, we assume
3485 * that we have already failed to find extents that will work.
3486 */
3487static noinline int
3488setup_cluster_bitmap(struct btrfs_block_group *block_group,
3489 struct btrfs_free_cluster *cluster,
3490 struct list_head *bitmaps, u64 offset, u64 bytes,
3491 u64 cont1_bytes, u64 min_bytes)
3492{
3493 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3494 struct btrfs_free_space *entry = NULL;
3495 int ret = -ENOSPC;
3496 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3497
3498 if (ctl->total_bitmaps == 0)
3499 return -ENOSPC;
3500
3501 /*
3502 * The bitmap that covers offset won't be in the list unless offset
3503 * is just its start offset.
3504 */
3505 if (!list_empty(bitmaps))
3506 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3507
3508 if (!entry || entry->offset != bitmap_offset) {
3509 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3510 if (entry && list_empty(&entry->list))
3511 list_add(&entry->list, bitmaps);
3512 }
3513
3514 list_for_each_entry(entry, bitmaps, list) {
3515 if (entry->bytes < bytes)
3516 continue;
3517 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3518 bytes, cont1_bytes, min_bytes);
3519 if (!ret)
3520 return 0;
3521 }
3522
3523 /*
3524 * The bitmaps list has all the bitmaps that record free space
3525 * starting after offset, so no more search is required.
3526 */
3527 return -ENOSPC;
3528}
3529
3530/*
3531 * here we try to find a cluster of blocks in a block group. The goal
3532 * is to find at least bytes+empty_size.
3533 * We might not find them all in one contiguous area.
3534 *
3535 * returns zero and sets up cluster if things worked out, otherwise
3536 * it returns -enospc
3537 */
3538int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3539 struct btrfs_free_cluster *cluster,
3540 u64 offset, u64 bytes, u64 empty_size)
3541{
3542 struct btrfs_fs_info *fs_info = block_group->fs_info;
3543 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3544 struct btrfs_free_space *entry, *tmp;
3545 LIST_HEAD(bitmaps);
3546 u64 min_bytes;
3547 u64 cont1_bytes;
3548 int ret;
3549
3550 /*
3551 * Choose the minimum extent size we'll require for this
3552 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3553 * For metadata, allow allocates with smaller extents. For
3554 * data, keep it dense.
3555 */
3556 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3557 cont1_bytes = bytes + empty_size;
3558 min_bytes = cont1_bytes;
3559 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3560 cont1_bytes = bytes;
3561 min_bytes = fs_info->sectorsize;
3562 } else {
3563 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3564 min_bytes = fs_info->sectorsize;
3565 }
3566
3567 spin_lock(&ctl->tree_lock);
3568
3569 /*
3570 * If we know we don't have enough space to make a cluster don't even
3571 * bother doing all the work to try and find one.
3572 */
3573 if (ctl->free_space < bytes) {
3574 spin_unlock(&ctl->tree_lock);
3575 return -ENOSPC;
3576 }
3577
3578 spin_lock(&cluster->lock);
3579
3580 /* someone already found a cluster, hooray */
3581 if (cluster->block_group) {
3582 ret = 0;
3583 goto out;
3584 }
3585
3586 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3587 min_bytes);
3588
3589 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3590 bytes + empty_size,
3591 cont1_bytes, min_bytes);
3592 if (ret)
3593 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3594 offset, bytes + empty_size,
3595 cont1_bytes, min_bytes);
3596
3597 /* Clear our temporary list */
3598 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3599 list_del_init(&entry->list);
3600
3601 if (!ret) {
3602 btrfs_get_block_group(block_group);
3603 list_add_tail(&cluster->block_group_list,
3604 &block_group->cluster_list);
3605 cluster->block_group = block_group;
3606 } else {
3607 trace_btrfs_failed_cluster_setup(block_group);
3608 }
3609out:
3610 spin_unlock(&cluster->lock);
3611 spin_unlock(&ctl->tree_lock);
3612
3613 return ret;
3614}
3615
3616/*
3617 * simple code to zero out a cluster
3618 */
3619void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3620{
3621 spin_lock_init(&cluster->lock);
3622 spin_lock_init(&cluster->refill_lock);
3623 cluster->root = RB_ROOT;
3624 cluster->max_size = 0;
3625 cluster->fragmented = false;
3626 INIT_LIST_HEAD(&cluster->block_group_list);
3627 cluster->block_group = NULL;
3628}
3629
3630static int do_trimming(struct btrfs_block_group *block_group,
3631 u64 *total_trimmed, u64 start, u64 bytes,
3632 u64 reserved_start, u64 reserved_bytes,
3633 enum btrfs_trim_state reserved_trim_state,
3634 struct btrfs_trim_range *trim_entry)
3635{
3636 struct btrfs_space_info *space_info = block_group->space_info;
3637 struct btrfs_fs_info *fs_info = block_group->fs_info;
3638 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3639 int ret;
3640 int update = 0;
3641 const u64 end = start + bytes;
3642 const u64 reserved_end = reserved_start + reserved_bytes;
3643 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3644 u64 trimmed = 0;
3645
3646 spin_lock(&space_info->lock);
3647 spin_lock(&block_group->lock);
3648 if (!block_group->ro) {
3649 block_group->reserved += reserved_bytes;
3650 space_info->bytes_reserved += reserved_bytes;
3651 update = 1;
3652 }
3653 spin_unlock(&block_group->lock);
3654 spin_unlock(&space_info->lock);
3655
3656 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3657 if (!ret) {
3658 *total_trimmed += trimmed;
3659 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3660 }
3661
3662 mutex_lock(&ctl->cache_writeout_mutex);
3663 if (reserved_start < start)
3664 __btrfs_add_free_space(block_group, reserved_start,
3665 start - reserved_start,
3666 reserved_trim_state);
3667 if (start + bytes < reserved_start + reserved_bytes)
3668 __btrfs_add_free_space(block_group, end, reserved_end - end,
3669 reserved_trim_state);
3670 __btrfs_add_free_space(block_group, start, bytes, trim_state);
3671 list_del(&trim_entry->list);
3672 mutex_unlock(&ctl->cache_writeout_mutex);
3673
3674 if (update) {
3675 spin_lock(&space_info->lock);
3676 spin_lock(&block_group->lock);
3677 if (block_group->ro)
3678 space_info->bytes_readonly += reserved_bytes;
3679 block_group->reserved -= reserved_bytes;
3680 space_info->bytes_reserved -= reserved_bytes;
3681 spin_unlock(&block_group->lock);
3682 spin_unlock(&space_info->lock);
3683 }
3684
3685 return ret;
3686}
3687
3688/*
3689 * If @async is set, then we will trim 1 region and return.
3690 */
3691static int trim_no_bitmap(struct btrfs_block_group *block_group,
3692 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3693 bool async)
3694{
3695 struct btrfs_discard_ctl *discard_ctl =
3696 &block_group->fs_info->discard_ctl;
3697 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3698 struct btrfs_free_space *entry;
3699 struct rb_node *node;
3700 int ret = 0;
3701 u64 extent_start;
3702 u64 extent_bytes;
3703 enum btrfs_trim_state extent_trim_state;
3704 u64 bytes;
3705 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3706
3707 while (start < end) {
3708 struct btrfs_trim_range trim_entry;
3709
3710 mutex_lock(&ctl->cache_writeout_mutex);
3711 spin_lock(&ctl->tree_lock);
3712
3713 if (ctl->free_space < minlen)
3714 goto out_unlock;
3715
3716 entry = tree_search_offset(ctl, start, 0, 1);
3717 if (!entry)
3718 goto out_unlock;
3719
3720 /* Skip bitmaps and if async, already trimmed entries */
3721 while (entry->bitmap ||
3722 (async && btrfs_free_space_trimmed(entry))) {
3723 node = rb_next(&entry->offset_index);
3724 if (!node)
3725 goto out_unlock;
3726 entry = rb_entry(node, struct btrfs_free_space,
3727 offset_index);
3728 }
3729
3730 if (entry->offset >= end)
3731 goto out_unlock;
3732
3733 extent_start = entry->offset;
3734 extent_bytes = entry->bytes;
3735 extent_trim_state = entry->trim_state;
3736 if (async) {
3737 start = entry->offset;
3738 bytes = entry->bytes;
3739 if (bytes < minlen) {
3740 spin_unlock(&ctl->tree_lock);
3741 mutex_unlock(&ctl->cache_writeout_mutex);
3742 goto next;
3743 }
3744 unlink_free_space(ctl, entry, true);
3745 /*
3746 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3747 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3748 * X when we come back around. So trim it now.
3749 */
3750 if (max_discard_size &&
3751 bytes >= (max_discard_size +
3752 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3753 bytes = max_discard_size;
3754 extent_bytes = max_discard_size;
3755 entry->offset += max_discard_size;
3756 entry->bytes -= max_discard_size;
3757 link_free_space(ctl, entry);
3758 } else {
3759 kmem_cache_free(btrfs_free_space_cachep, entry);
3760 }
3761 } else {
3762 start = max(start, extent_start);
3763 bytes = min(extent_start + extent_bytes, end) - start;
3764 if (bytes < minlen) {
3765 spin_unlock(&ctl->tree_lock);
3766 mutex_unlock(&ctl->cache_writeout_mutex);
3767 goto next;
3768 }
3769
3770 unlink_free_space(ctl, entry, true);
3771 kmem_cache_free(btrfs_free_space_cachep, entry);
3772 }
3773
3774 spin_unlock(&ctl->tree_lock);
3775 trim_entry.start = extent_start;
3776 trim_entry.bytes = extent_bytes;
3777 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3778 mutex_unlock(&ctl->cache_writeout_mutex);
3779
3780 ret = do_trimming(block_group, total_trimmed, start, bytes,
3781 extent_start, extent_bytes, extent_trim_state,
3782 &trim_entry);
3783 if (ret) {
3784 block_group->discard_cursor = start + bytes;
3785 break;
3786 }
3787next:
3788 start += bytes;
3789 block_group->discard_cursor = start;
3790 if (async && *total_trimmed)
3791 break;
3792
3793 if (fatal_signal_pending(current)) {
3794 ret = -ERESTARTSYS;
3795 break;
3796 }
3797
3798 cond_resched();
3799 }
3800
3801 return ret;
3802
3803out_unlock:
3804 block_group->discard_cursor = btrfs_block_group_end(block_group);
3805 spin_unlock(&ctl->tree_lock);
3806 mutex_unlock(&ctl->cache_writeout_mutex);
3807
3808 return ret;
3809}
3810
3811/*
3812 * If we break out of trimming a bitmap prematurely, we should reset the
3813 * trimming bit. In a rather contrieved case, it's possible to race here so
3814 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3815 *
3816 * start = start of bitmap
3817 * end = near end of bitmap
3818 *
3819 * Thread 1: Thread 2:
3820 * trim_bitmaps(start)
3821 * trim_bitmaps(end)
3822 * end_trimming_bitmap()
3823 * reset_trimming_bitmap()
3824 */
3825static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3826{
3827 struct btrfs_free_space *entry;
3828
3829 spin_lock(&ctl->tree_lock);
3830 entry = tree_search_offset(ctl, offset, 1, 0);
3831 if (entry) {
3832 if (btrfs_free_space_trimmed(entry)) {
3833 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3834 entry->bitmap_extents;
3835 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3836 }
3837 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3838 }
3839
3840 spin_unlock(&ctl->tree_lock);
3841}
3842
3843static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3844 struct btrfs_free_space *entry)
3845{
3846 if (btrfs_free_space_trimming_bitmap(entry)) {
3847 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3848 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3849 entry->bitmap_extents;
3850 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3851 }
3852}
3853
3854/*
3855 * If @async is set, then we will trim 1 region and return.
3856 */
3857static int trim_bitmaps(struct btrfs_block_group *block_group,
3858 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3859 u64 maxlen, bool async)
3860{
3861 struct btrfs_discard_ctl *discard_ctl =
3862 &block_group->fs_info->discard_ctl;
3863 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3864 struct btrfs_free_space *entry;
3865 int ret = 0;
3866 int ret2;
3867 u64 bytes;
3868 u64 offset = offset_to_bitmap(ctl, start);
3869 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3870
3871 while (offset < end) {
3872 bool next_bitmap = false;
3873 struct btrfs_trim_range trim_entry;
3874
3875 mutex_lock(&ctl->cache_writeout_mutex);
3876 spin_lock(&ctl->tree_lock);
3877
3878 if (ctl->free_space < minlen) {
3879 block_group->discard_cursor =
3880 btrfs_block_group_end(block_group);
3881 spin_unlock(&ctl->tree_lock);
3882 mutex_unlock(&ctl->cache_writeout_mutex);
3883 break;
3884 }
3885
3886 entry = tree_search_offset(ctl, offset, 1, 0);
3887 /*
3888 * Bitmaps are marked trimmed lossily now to prevent constant
3889 * discarding of the same bitmap (the reason why we are bound
3890 * by the filters). So, retrim the block group bitmaps when we
3891 * are preparing to punt to the unused_bgs list. This uses
3892 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3893 * which is the only discard index which sets minlen to 0.
3894 */
3895 if (!entry || (async && minlen && start == offset &&
3896 btrfs_free_space_trimmed(entry))) {
3897 spin_unlock(&ctl->tree_lock);
3898 mutex_unlock(&ctl->cache_writeout_mutex);
3899 next_bitmap = true;
3900 goto next;
3901 }
3902
3903 /*
3904 * Async discard bitmap trimming begins at by setting the start
3905 * to be key.objectid and the offset_to_bitmap() aligns to the
3906 * start of the bitmap. This lets us know we are fully
3907 * scanning the bitmap rather than only some portion of it.
3908 */
3909 if (start == offset)
3910 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3911
3912 bytes = minlen;
3913 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3914 if (ret2 || start >= end) {
3915 /*
3916 * We lossily consider a bitmap trimmed if we only skip
3917 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3918 */
3919 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3920 end_trimming_bitmap(ctl, entry);
3921 else
3922 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3923 spin_unlock(&ctl->tree_lock);
3924 mutex_unlock(&ctl->cache_writeout_mutex);
3925 next_bitmap = true;
3926 goto next;
3927 }
3928
3929 /*
3930 * We already trimmed a region, but are using the locking above
3931 * to reset the trim_state.
3932 */
3933 if (async && *total_trimmed) {
3934 spin_unlock(&ctl->tree_lock);
3935 mutex_unlock(&ctl->cache_writeout_mutex);
3936 goto out;
3937 }
3938
3939 bytes = min(bytes, end - start);
3940 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3941 spin_unlock(&ctl->tree_lock);
3942 mutex_unlock(&ctl->cache_writeout_mutex);
3943 goto next;
3944 }
3945
3946 /*
3947 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3948 * If X < @minlen, we won't trim X when we come back around.
3949 * So trim it now. We differ here from trimming extents as we
3950 * don't keep individual state per bit.
3951 */
3952 if (async &&
3953 max_discard_size &&
3954 bytes > (max_discard_size + minlen))
3955 bytes = max_discard_size;
3956
3957 bitmap_clear_bits(ctl, entry, start, bytes, true);
3958 if (entry->bytes == 0)
3959 free_bitmap(ctl, entry);
3960
3961 spin_unlock(&ctl->tree_lock);
3962 trim_entry.start = start;
3963 trim_entry.bytes = bytes;
3964 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3965 mutex_unlock(&ctl->cache_writeout_mutex);
3966
3967 ret = do_trimming(block_group, total_trimmed, start, bytes,
3968 start, bytes, 0, &trim_entry);
3969 if (ret) {
3970 reset_trimming_bitmap(ctl, offset);
3971 block_group->discard_cursor =
3972 btrfs_block_group_end(block_group);
3973 break;
3974 }
3975next:
3976 if (next_bitmap) {
3977 offset += BITS_PER_BITMAP * ctl->unit;
3978 start = offset;
3979 } else {
3980 start += bytes;
3981 }
3982 block_group->discard_cursor = start;
3983
3984 if (fatal_signal_pending(current)) {
3985 if (start != offset)
3986 reset_trimming_bitmap(ctl, offset);
3987 ret = -ERESTARTSYS;
3988 break;
3989 }
3990
3991 cond_resched();
3992 }
3993
3994 if (offset >= end)
3995 block_group->discard_cursor = end;
3996
3997out:
3998 return ret;
3999}
4000
4001int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4002 u64 *trimmed, u64 start, u64 end, u64 minlen)
4003{
4004 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4005 int ret;
4006 u64 rem = 0;
4007
4008 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4009
4010 *trimmed = 0;
4011
4012 spin_lock(&block_group->lock);
4013 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4014 spin_unlock(&block_group->lock);
4015 return 0;
4016 }
4017 btrfs_freeze_block_group(block_group);
4018 spin_unlock(&block_group->lock);
4019
4020 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4021 if (ret)
4022 goto out;
4023
4024 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4025 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4026 /* If we ended in the middle of a bitmap, reset the trimming flag */
4027 if (rem)
4028 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4029out:
4030 btrfs_unfreeze_block_group(block_group);
4031 return ret;
4032}
4033
4034int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4035 u64 *trimmed, u64 start, u64 end, u64 minlen,
4036 bool async)
4037{
4038 int ret;
4039
4040 *trimmed = 0;
4041
4042 spin_lock(&block_group->lock);
4043 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4044 spin_unlock(&block_group->lock);
4045 return 0;
4046 }
4047 btrfs_freeze_block_group(block_group);
4048 spin_unlock(&block_group->lock);
4049
4050 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4051 btrfs_unfreeze_block_group(block_group);
4052
4053 return ret;
4054}
4055
4056int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4057 u64 *trimmed, u64 start, u64 end, u64 minlen,
4058 u64 maxlen, bool async)
4059{
4060 int ret;
4061
4062 *trimmed = 0;
4063
4064 spin_lock(&block_group->lock);
4065 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4066 spin_unlock(&block_group->lock);
4067 return 0;
4068 }
4069 btrfs_freeze_block_group(block_group);
4070 spin_unlock(&block_group->lock);
4071
4072 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4073 async);
4074
4075 btrfs_unfreeze_block_group(block_group);
4076
4077 return ret;
4078}
4079
4080bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4081{
4082 return btrfs_super_cache_generation(fs_info->super_copy);
4083}
4084
4085static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4086 struct btrfs_trans_handle *trans)
4087{
4088 struct btrfs_block_group *block_group;
4089 struct rb_node *node;
4090 int ret = 0;
4091
4092 btrfs_info(fs_info, "cleaning free space cache v1");
4093
4094 node = rb_first_cached(&fs_info->block_group_cache_tree);
4095 while (node) {
4096 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4097 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4098 if (ret)
4099 goto out;
4100 node = rb_next(node);
4101 }
4102out:
4103 return ret;
4104}
4105
4106int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4107{
4108 struct btrfs_trans_handle *trans;
4109 int ret;
4110
4111 /*
4112 * update_super_roots will appropriately set or unset
4113 * super_copy->cache_generation based on SPACE_CACHE and
4114 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4115 * transaction commit whether we are enabling space cache v1 and don't
4116 * have any other work to do, or are disabling it and removing free
4117 * space inodes.
4118 */
4119 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4120 if (IS_ERR(trans))
4121 return PTR_ERR(trans);
4122
4123 if (!active) {
4124 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4125 ret = cleanup_free_space_cache_v1(fs_info, trans);
4126 if (ret) {
4127 btrfs_abort_transaction(trans, ret);
4128 btrfs_end_transaction(trans);
4129 goto out;
4130 }
4131 }
4132
4133 ret = btrfs_commit_transaction(trans);
4134out:
4135 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4136
4137 return ret;
4138}
4139
4140int __init btrfs_free_space_init(void)
4141{
4142 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
4143 sizeof(struct btrfs_free_space), 0,
4144 SLAB_MEM_SPREAD, NULL);
4145 if (!btrfs_free_space_cachep)
4146 return -ENOMEM;
4147
4148 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4149 PAGE_SIZE, PAGE_SIZE,
4150 SLAB_MEM_SPREAD, NULL);
4151 if (!btrfs_free_space_bitmap_cachep) {
4152 kmem_cache_destroy(btrfs_free_space_cachep);
4153 return -ENOMEM;
4154 }
4155
4156 return 0;
4157}
4158
4159void __cold btrfs_free_space_exit(void)
4160{
4161 kmem_cache_destroy(btrfs_free_space_cachep);
4162 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4163}
4164
4165#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4166/*
4167 * Use this if you need to make a bitmap or extent entry specifically, it
4168 * doesn't do any of the merging that add_free_space does, this acts a lot like
4169 * how the free space cache loading stuff works, so you can get really weird
4170 * configurations.
4171 */
4172int test_add_free_space_entry(struct btrfs_block_group *cache,
4173 u64 offset, u64 bytes, bool bitmap)
4174{
4175 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4176 struct btrfs_free_space *info = NULL, *bitmap_info;
4177 void *map = NULL;
4178 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4179 u64 bytes_added;
4180 int ret;
4181
4182again:
4183 if (!info) {
4184 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4185 if (!info)
4186 return -ENOMEM;
4187 }
4188
4189 if (!bitmap) {
4190 spin_lock(&ctl->tree_lock);
4191 info->offset = offset;
4192 info->bytes = bytes;
4193 info->max_extent_size = 0;
4194 ret = link_free_space(ctl, info);
4195 spin_unlock(&ctl->tree_lock);
4196 if (ret)
4197 kmem_cache_free(btrfs_free_space_cachep, info);
4198 return ret;
4199 }
4200
4201 if (!map) {
4202 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4203 if (!map) {
4204 kmem_cache_free(btrfs_free_space_cachep, info);
4205 return -ENOMEM;
4206 }
4207 }
4208
4209 spin_lock(&ctl->tree_lock);
4210 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4211 1, 0);
4212 if (!bitmap_info) {
4213 info->bitmap = map;
4214 map = NULL;
4215 add_new_bitmap(ctl, info, offset);
4216 bitmap_info = info;
4217 info = NULL;
4218 }
4219
4220 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4221 trim_state);
4222
4223 bytes -= bytes_added;
4224 offset += bytes_added;
4225 spin_unlock(&ctl->tree_lock);
4226
4227 if (bytes)
4228 goto again;
4229
4230 if (info)
4231 kmem_cache_free(btrfs_free_space_cachep, info);
4232 if (map)
4233 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4234 return 0;
4235}
4236
4237/*
4238 * Checks to see if the given range is in the free space cache. This is really
4239 * just used to check the absence of space, so if there is free space in the
4240 * range at all we will return 1.
4241 */
4242int test_check_exists(struct btrfs_block_group *cache,
4243 u64 offset, u64 bytes)
4244{
4245 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4246 struct btrfs_free_space *info;
4247 int ret = 0;
4248
4249 spin_lock(&ctl->tree_lock);
4250 info = tree_search_offset(ctl, offset, 0, 0);
4251 if (!info) {
4252 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4253 1, 0);
4254 if (!info)
4255 goto out;
4256 }
4257
4258have_info:
4259 if (info->bitmap) {
4260 u64 bit_off, bit_bytes;
4261 struct rb_node *n;
4262 struct btrfs_free_space *tmp;
4263
4264 bit_off = offset;
4265 bit_bytes = ctl->unit;
4266 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4267 if (!ret) {
4268 if (bit_off == offset) {
4269 ret = 1;
4270 goto out;
4271 } else if (bit_off > offset &&
4272 offset + bytes > bit_off) {
4273 ret = 1;
4274 goto out;
4275 }
4276 }
4277
4278 n = rb_prev(&info->offset_index);
4279 while (n) {
4280 tmp = rb_entry(n, struct btrfs_free_space,
4281 offset_index);
4282 if (tmp->offset + tmp->bytes < offset)
4283 break;
4284 if (offset + bytes < tmp->offset) {
4285 n = rb_prev(&tmp->offset_index);
4286 continue;
4287 }
4288 info = tmp;
4289 goto have_info;
4290 }
4291
4292 n = rb_next(&info->offset_index);
4293 while (n) {
4294 tmp = rb_entry(n, struct btrfs_free_space,
4295 offset_index);
4296 if (offset + bytes < tmp->offset)
4297 break;
4298 if (tmp->offset + tmp->bytes < offset) {
4299 n = rb_next(&tmp->offset_index);
4300 continue;
4301 }
4302 info = tmp;
4303 goto have_info;
4304 }
4305
4306 ret = 0;
4307 goto out;
4308 }
4309
4310 if (info->offset == offset) {
4311 ret = 1;
4312 goto out;
4313 }
4314
4315 if (offset > info->offset && offset < info->offset + info->bytes)
4316 ret = 1;
4317out:
4318 spin_unlock(&ctl->tree_lock);
4319 return ret;
4320}
4321#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */