Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "ctree.h"
 
 
 
  15#include "free-space-cache.h"
  16#include "transaction.h"
  17#include "disk-io.h"
  18#include "extent_io.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
 
 
 
 
 
 
 
  24
  25#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  26#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
 
 
 
 
  27
  28struct btrfs_trim_range {
  29	u64 start;
  30	u64 bytes;
  31	struct list_head list;
  32};
  33
  34static int link_free_space(struct btrfs_free_space_ctl *ctl,
  35			   struct btrfs_free_space *info);
  36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  37			      struct btrfs_free_space *info);
  38static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  39			     struct btrfs_trans_handle *trans,
  40			     struct btrfs_io_ctl *io_ctl,
  41			     struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42
  43static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  44					       struct btrfs_path *path,
  45					       u64 offset)
  46{
  47	struct btrfs_fs_info *fs_info = root->fs_info;
  48	struct btrfs_key key;
  49	struct btrfs_key location;
  50	struct btrfs_disk_key disk_key;
  51	struct btrfs_free_space_header *header;
  52	struct extent_buffer *leaf;
  53	struct inode *inode = NULL;
  54	unsigned nofs_flag;
  55	int ret;
  56
  57	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  58	key.offset = offset;
  59	key.type = 0;
  60
  61	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  62	if (ret < 0)
  63		return ERR_PTR(ret);
  64	if (ret > 0) {
  65		btrfs_release_path(path);
  66		return ERR_PTR(-ENOENT);
  67	}
  68
  69	leaf = path->nodes[0];
  70	header = btrfs_item_ptr(leaf, path->slots[0],
  71				struct btrfs_free_space_header);
  72	btrfs_free_space_key(leaf, header, &disk_key);
  73	btrfs_disk_key_to_cpu(&location, &disk_key);
  74	btrfs_release_path(path);
  75
  76	/*
  77	 * We are often under a trans handle at this point, so we need to make
  78	 * sure NOFS is set to keep us from deadlocking.
  79	 */
  80	nofs_flag = memalloc_nofs_save();
  81	inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
  82	btrfs_release_path(path);
  83	memalloc_nofs_restore(nofs_flag);
  84	if (IS_ERR(inode))
  85		return inode;
  86
  87	mapping_set_gfp_mask(inode->i_mapping,
  88			mapping_gfp_constraint(inode->i_mapping,
  89			~(__GFP_FS | __GFP_HIGHMEM)));
  90
  91	return inode;
  92}
  93
  94struct inode *lookup_free_space_inode(
  95		struct btrfs_block_group_cache *block_group,
  96		struct btrfs_path *path)
  97{
  98	struct btrfs_fs_info *fs_info = block_group->fs_info;
  99	struct inode *inode = NULL;
 100	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 101
 102	spin_lock(&block_group->lock);
 103	if (block_group->inode)
 104		inode = igrab(block_group->inode);
 105	spin_unlock(&block_group->lock);
 106	if (inode)
 107		return inode;
 108
 109	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 110					  block_group->key.objectid);
 111	if (IS_ERR(inode))
 112		return inode;
 113
 114	spin_lock(&block_group->lock);
 115	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 116		btrfs_info(fs_info, "Old style space inode found, converting.");
 117		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 118			BTRFS_INODE_NODATACOW;
 119		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 120	}
 121
 122	if (!block_group->iref) {
 123		block_group->inode = igrab(inode);
 124		block_group->iref = 1;
 125	}
 126	spin_unlock(&block_group->lock);
 127
 128	return inode;
 129}
 130
 131static int __create_free_space_inode(struct btrfs_root *root,
 132				     struct btrfs_trans_handle *trans,
 133				     struct btrfs_path *path,
 134				     u64 ino, u64 offset)
 135{
 136	struct btrfs_key key;
 137	struct btrfs_disk_key disk_key;
 138	struct btrfs_free_space_header *header;
 139	struct btrfs_inode_item *inode_item;
 140	struct extent_buffer *leaf;
 141	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 
 
 142	int ret;
 143
 144	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 145	if (ret)
 146		return ret;
 147
 148	/* We inline crc's for the free disk space cache */
 149	if (ino != BTRFS_FREE_INO_OBJECTID)
 150		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 151
 152	leaf = path->nodes[0];
 153	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 154				    struct btrfs_inode_item);
 155	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 156	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 157			     sizeof(*inode_item));
 158	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 159	btrfs_set_inode_size(leaf, inode_item, 0);
 160	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 161	btrfs_set_inode_uid(leaf, inode_item, 0);
 162	btrfs_set_inode_gid(leaf, inode_item, 0);
 163	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 164	btrfs_set_inode_flags(leaf, inode_item, flags);
 165	btrfs_set_inode_nlink(leaf, inode_item, 1);
 166	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 167	btrfs_set_inode_block_group(leaf, inode_item, offset);
 168	btrfs_mark_buffer_dirty(leaf);
 169	btrfs_release_path(path);
 170
 171	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 172	key.offset = offset;
 173	key.type = 0;
 174	ret = btrfs_insert_empty_item(trans, root, path, &key,
 175				      sizeof(struct btrfs_free_space_header));
 176	if (ret < 0) {
 177		btrfs_release_path(path);
 178		return ret;
 179	}
 180
 181	leaf = path->nodes[0];
 182	header = btrfs_item_ptr(leaf, path->slots[0],
 183				struct btrfs_free_space_header);
 184	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 185	btrfs_set_free_space_key(leaf, header, &disk_key);
 186	btrfs_mark_buffer_dirty(leaf);
 187	btrfs_release_path(path);
 188
 189	return 0;
 190}
 191
 192int create_free_space_inode(struct btrfs_trans_handle *trans,
 193			    struct btrfs_block_group_cache *block_group,
 194			    struct btrfs_path *path)
 195{
 196	int ret;
 197	u64 ino;
 198
 199	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
 200	if (ret < 0)
 201		return ret;
 202
 203	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 204					 ino, block_group->key.objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205}
 206
 207int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 208				       struct btrfs_block_rsv *rsv)
 209{
 210	u64 needed_bytes;
 211	int ret;
 212
 213	/* 1 for slack space, 1 for updating the inode */
 214	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 215		btrfs_calc_metadata_size(fs_info, 1);
 216
 217	spin_lock(&rsv->lock);
 218	if (rsv->reserved < needed_bytes)
 219		ret = -ENOSPC;
 220	else
 221		ret = 0;
 222	spin_unlock(&rsv->lock);
 223	return ret;
 224}
 225
 226int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 227				    struct btrfs_block_group_cache *block_group,
 228				    struct inode *inode)
 229{
 230	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
 231	int ret = 0;
 232	bool locked = false;
 233
 234	if (block_group) {
 235		struct btrfs_path *path = btrfs_alloc_path();
 236
 237		if (!path) {
 238			ret = -ENOMEM;
 239			goto fail;
 240		}
 241		locked = true;
 242		mutex_lock(&trans->transaction->cache_write_mutex);
 243		if (!list_empty(&block_group->io_list)) {
 244			list_del_init(&block_group->io_list);
 245
 246			btrfs_wait_cache_io(trans, block_group, path);
 247			btrfs_put_block_group(block_group);
 248		}
 249
 250		/*
 251		 * now that we've truncated the cache away, its no longer
 252		 * setup or written
 253		 */
 254		spin_lock(&block_group->lock);
 255		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 256		spin_unlock(&block_group->lock);
 257		btrfs_free_path(path);
 258	}
 259
 260	btrfs_i_size_write(BTRFS_I(inode), 0);
 261	truncate_pagecache(inode, 0);
 
 
 
 262
 263	/*
 264	 * We skip the throttling logic for free space cache inodes, so we don't
 265	 * need to check for -EAGAIN.
 266	 */
 267	ret = btrfs_truncate_inode_items(trans, root, inode,
 268					 0, BTRFS_EXTENT_DATA_KEY);
 
 
 
 
 269	if (ret)
 270		goto fail;
 271
 272	ret = btrfs_update_inode(trans, root, inode);
 273
 274fail:
 275	if (locked)
 276		mutex_unlock(&trans->transaction->cache_write_mutex);
 277	if (ret)
 278		btrfs_abort_transaction(trans, ret);
 279
 280	return ret;
 281}
 282
 283static void readahead_cache(struct inode *inode)
 284{
 285	struct file_ra_state *ra;
 286	unsigned long last_index;
 287
 288	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 289	if (!ra)
 290		return;
 291
 292	file_ra_state_init(ra, inode->i_mapping);
 293	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 294
 295	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 296
 297	kfree(ra);
 298}
 299
 300static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 301		       int write)
 302{
 303	int num_pages;
 304	int check_crcs = 0;
 305
 306	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 307
 308	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
 309		check_crcs = 1;
 310
 311	/* Make sure we can fit our crcs and generation into the first page */
 312	if (write && check_crcs &&
 313	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 314		return -ENOSPC;
 315
 316	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 317
 318	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 319	if (!io_ctl->pages)
 320		return -ENOMEM;
 321
 322	io_ctl->num_pages = num_pages;
 323	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 324	io_ctl->check_crcs = check_crcs;
 325	io_ctl->inode = inode;
 326
 327	return 0;
 328}
 329ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 330
 331static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 332{
 333	kfree(io_ctl->pages);
 334	io_ctl->pages = NULL;
 335}
 336
 337static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 338{
 339	if (io_ctl->cur) {
 340		io_ctl->cur = NULL;
 341		io_ctl->orig = NULL;
 342	}
 343}
 344
 345static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 346{
 347	ASSERT(io_ctl->index < io_ctl->num_pages);
 348	io_ctl->page = io_ctl->pages[io_ctl->index++];
 349	io_ctl->cur = page_address(io_ctl->page);
 350	io_ctl->orig = io_ctl->cur;
 351	io_ctl->size = PAGE_SIZE;
 352	if (clear)
 353		clear_page(io_ctl->cur);
 354}
 355
 356static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 357{
 358	int i;
 359
 360	io_ctl_unmap_page(io_ctl);
 361
 362	for (i = 0; i < io_ctl->num_pages; i++) {
 363		if (io_ctl->pages[i]) {
 364			ClearPageChecked(io_ctl->pages[i]);
 
 
 
 365			unlock_page(io_ctl->pages[i]);
 366			put_page(io_ctl->pages[i]);
 367		}
 368	}
 369}
 370
 371static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 372				int uptodate)
 373{
 374	struct page *page;
 
 375	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 376	int i;
 377
 378	for (i = 0; i < io_ctl->num_pages; i++) {
 
 
 379		page = find_or_create_page(inode->i_mapping, i, mask);
 380		if (!page) {
 381			io_ctl_drop_pages(io_ctl);
 382			return -ENOMEM;
 383		}
 
 
 
 
 
 
 
 
 
 384		io_ctl->pages[i] = page;
 385		if (uptodate && !PageUptodate(page)) {
 386			btrfs_readpage(NULL, page);
 387			lock_page(page);
 
 
 
 
 
 
 388			if (!PageUptodate(page)) {
 389				btrfs_err(BTRFS_I(inode)->root->fs_info,
 390					   "error reading free space cache");
 391				io_ctl_drop_pages(io_ctl);
 392				return -EIO;
 393			}
 394		}
 395	}
 396
 397	for (i = 0; i < io_ctl->num_pages; i++) {
 398		clear_page_dirty_for_io(io_ctl->pages[i]);
 399		set_page_extent_mapped(io_ctl->pages[i]);
 400	}
 401
 402	return 0;
 403}
 404
 405static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 406{
 407	__le64 *val;
 408
 409	io_ctl_map_page(io_ctl, 1);
 410
 411	/*
 412	 * Skip the csum areas.  If we don't check crcs then we just have a
 413	 * 64bit chunk at the front of the first page.
 414	 */
 415	if (io_ctl->check_crcs) {
 416		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 417		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 418	} else {
 419		io_ctl->cur += sizeof(u64);
 420		io_ctl->size -= sizeof(u64) * 2;
 421	}
 422
 423	val = io_ctl->cur;
 424	*val = cpu_to_le64(generation);
 425	io_ctl->cur += sizeof(u64);
 426}
 427
 428static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 429{
 430	__le64 *gen;
 431
 432	/*
 433	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 434	 * chunk at the front of the first page.
 435	 */
 436	if (io_ctl->check_crcs) {
 437		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 438		io_ctl->size -= sizeof(u64) +
 439			(sizeof(u32) * io_ctl->num_pages);
 440	} else {
 441		io_ctl->cur += sizeof(u64);
 442		io_ctl->size -= sizeof(u64) * 2;
 443	}
 444
 445	gen = io_ctl->cur;
 446	if (le64_to_cpu(*gen) != generation) {
 447		btrfs_err_rl(io_ctl->fs_info,
 448			"space cache generation (%llu) does not match inode (%llu)",
 449				*gen, generation);
 450		io_ctl_unmap_page(io_ctl);
 451		return -EIO;
 452	}
 453	io_ctl->cur += sizeof(u64);
 454	return 0;
 455}
 456
 457static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 458{
 459	u32 *tmp;
 460	u32 crc = ~(u32)0;
 461	unsigned offset = 0;
 462
 463	if (!io_ctl->check_crcs) {
 464		io_ctl_unmap_page(io_ctl);
 465		return;
 466	}
 467
 468	if (index == 0)
 469		offset = sizeof(u32) * io_ctl->num_pages;
 470
 471	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 472	btrfs_crc32c_final(crc, (u8 *)&crc);
 473	io_ctl_unmap_page(io_ctl);
 474	tmp = page_address(io_ctl->pages[0]);
 475	tmp += index;
 476	*tmp = crc;
 477}
 478
 479static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 480{
 481	u32 *tmp, val;
 482	u32 crc = ~(u32)0;
 483	unsigned offset = 0;
 484
 485	if (!io_ctl->check_crcs) {
 486		io_ctl_map_page(io_ctl, 0);
 487		return 0;
 488	}
 489
 490	if (index == 0)
 491		offset = sizeof(u32) * io_ctl->num_pages;
 492
 493	tmp = page_address(io_ctl->pages[0]);
 494	tmp += index;
 495	val = *tmp;
 496
 497	io_ctl_map_page(io_ctl, 0);
 498	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 499	btrfs_crc32c_final(crc, (u8 *)&crc);
 500	if (val != crc) {
 501		btrfs_err_rl(io_ctl->fs_info,
 502			"csum mismatch on free space cache");
 503		io_ctl_unmap_page(io_ctl);
 504		return -EIO;
 505	}
 506
 507	return 0;
 508}
 509
 510static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 511			    void *bitmap)
 512{
 513	struct btrfs_free_space_entry *entry;
 514
 515	if (!io_ctl->cur)
 516		return -ENOSPC;
 517
 518	entry = io_ctl->cur;
 519	entry->offset = cpu_to_le64(offset);
 520	entry->bytes = cpu_to_le64(bytes);
 521	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 522		BTRFS_FREE_SPACE_EXTENT;
 523	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 524	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 525
 526	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 527		return 0;
 528
 529	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 530
 531	/* No more pages to map */
 532	if (io_ctl->index >= io_ctl->num_pages)
 533		return 0;
 534
 535	/* map the next page */
 536	io_ctl_map_page(io_ctl, 1);
 537	return 0;
 538}
 539
 540static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 541{
 542	if (!io_ctl->cur)
 543		return -ENOSPC;
 544
 545	/*
 546	 * If we aren't at the start of the current page, unmap this one and
 547	 * map the next one if there is any left.
 548	 */
 549	if (io_ctl->cur != io_ctl->orig) {
 550		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 551		if (io_ctl->index >= io_ctl->num_pages)
 552			return -ENOSPC;
 553		io_ctl_map_page(io_ctl, 0);
 554	}
 555
 556	copy_page(io_ctl->cur, bitmap);
 557	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 558	if (io_ctl->index < io_ctl->num_pages)
 559		io_ctl_map_page(io_ctl, 0);
 560	return 0;
 561}
 562
 563static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 564{
 565	/*
 566	 * If we're not on the boundary we know we've modified the page and we
 567	 * need to crc the page.
 568	 */
 569	if (io_ctl->cur != io_ctl->orig)
 570		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 571	else
 572		io_ctl_unmap_page(io_ctl);
 573
 574	while (io_ctl->index < io_ctl->num_pages) {
 575		io_ctl_map_page(io_ctl, 1);
 576		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 577	}
 578}
 579
 580static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 581			    struct btrfs_free_space *entry, u8 *type)
 582{
 583	struct btrfs_free_space_entry *e;
 584	int ret;
 585
 586	if (!io_ctl->cur) {
 587		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 588		if (ret)
 589			return ret;
 590	}
 591
 592	e = io_ctl->cur;
 593	entry->offset = le64_to_cpu(e->offset);
 594	entry->bytes = le64_to_cpu(e->bytes);
 595	*type = e->type;
 596	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 597	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 598
 599	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 600		return 0;
 601
 602	io_ctl_unmap_page(io_ctl);
 603
 604	return 0;
 605}
 606
 607static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 608			      struct btrfs_free_space *entry)
 609{
 610	int ret;
 611
 612	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 613	if (ret)
 614		return ret;
 615
 616	copy_page(entry->bitmap, io_ctl->cur);
 617	io_ctl_unmap_page(io_ctl);
 618
 619	return 0;
 620}
 621
 622/*
 623 * Since we attach pinned extents after the fact we can have contiguous sections
 624 * of free space that are split up in entries.  This poses a problem with the
 625 * tree logging stuff since it could have allocated across what appears to be 2
 626 * entries since we would have merged the entries when adding the pinned extents
 627 * back to the free space cache.  So run through the space cache that we just
 628 * loaded and merge contiguous entries.  This will make the log replay stuff not
 629 * blow up and it will make for nicer allocator behavior.
 630 */
 631static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 632{
 633	struct btrfs_free_space *e, *prev = NULL;
 634	struct rb_node *n;
 
 
 
 
 
 635
 636again:
 637	spin_lock(&ctl->tree_lock);
 638	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 639		e = rb_entry(n, struct btrfs_free_space, offset_index);
 640		if (!prev)
 641			goto next;
 642		if (e->bitmap || prev->bitmap)
 643			goto next;
 644		if (prev->offset + prev->bytes == e->offset) {
 645			unlink_free_space(ctl, prev);
 646			unlink_free_space(ctl, e);
 647			prev->bytes += e->bytes;
 648			kmem_cache_free(btrfs_free_space_cachep, e);
 649			link_free_space(ctl, prev);
 650			prev = NULL;
 651			spin_unlock(&ctl->tree_lock);
 652			goto again;
 653		}
 654next:
 655		prev = e;
 656	}
 657	spin_unlock(&ctl->tree_lock);
 
 
 
 
 
 
 
 
 
 
 658}
 659
 660static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 661				   struct btrfs_free_space_ctl *ctl,
 662				   struct btrfs_path *path, u64 offset)
 663{
 664	struct btrfs_fs_info *fs_info = root->fs_info;
 665	struct btrfs_free_space_header *header;
 666	struct extent_buffer *leaf;
 667	struct btrfs_io_ctl io_ctl;
 668	struct btrfs_key key;
 669	struct btrfs_free_space *e, *n;
 670	LIST_HEAD(bitmaps);
 671	u64 num_entries;
 672	u64 num_bitmaps;
 673	u64 generation;
 674	u8 type;
 675	int ret = 0;
 676
 677	/* Nothing in the space cache, goodbye */
 678	if (!i_size_read(inode))
 679		return 0;
 680
 681	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 682	key.offset = offset;
 683	key.type = 0;
 684
 685	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 686	if (ret < 0)
 687		return 0;
 688	else if (ret > 0) {
 689		btrfs_release_path(path);
 690		return 0;
 691	}
 692
 693	ret = -1;
 694
 695	leaf = path->nodes[0];
 696	header = btrfs_item_ptr(leaf, path->slots[0],
 697				struct btrfs_free_space_header);
 698	num_entries = btrfs_free_space_entries(leaf, header);
 699	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 700	generation = btrfs_free_space_generation(leaf, header);
 701	btrfs_release_path(path);
 702
 703	if (!BTRFS_I(inode)->generation) {
 704		btrfs_info(fs_info,
 705			   "the free space cache file (%llu) is invalid, skip it",
 706			   offset);
 707		return 0;
 708	}
 709
 710	if (BTRFS_I(inode)->generation != generation) {
 711		btrfs_err(fs_info,
 712			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 713			  BTRFS_I(inode)->generation, generation);
 714		return 0;
 715	}
 716
 717	if (!num_entries)
 718		return 0;
 719
 720	ret = io_ctl_init(&io_ctl, inode, 0);
 721	if (ret)
 722		return ret;
 723
 724	readahead_cache(inode);
 725
 726	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
 727	if (ret)
 728		goto out;
 729
 730	ret = io_ctl_check_crc(&io_ctl, 0);
 731	if (ret)
 732		goto free_cache;
 733
 734	ret = io_ctl_check_generation(&io_ctl, generation);
 735	if (ret)
 736		goto free_cache;
 737
 738	while (num_entries) {
 739		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 740				      GFP_NOFS);
 741		if (!e)
 
 742			goto free_cache;
 
 743
 744		ret = io_ctl_read_entry(&io_ctl, e, &type);
 745		if (ret) {
 746			kmem_cache_free(btrfs_free_space_cachep, e);
 747			goto free_cache;
 748		}
 749
 750		if (!e->bytes) {
 
 751			kmem_cache_free(btrfs_free_space_cachep, e);
 752			goto free_cache;
 753		}
 754
 755		if (type == BTRFS_FREE_SPACE_EXTENT) {
 756			spin_lock(&ctl->tree_lock);
 757			ret = link_free_space(ctl, e);
 758			spin_unlock(&ctl->tree_lock);
 759			if (ret) {
 760				btrfs_err(fs_info,
 761					"Duplicate entries in free space cache, dumping");
 762				kmem_cache_free(btrfs_free_space_cachep, e);
 763				goto free_cache;
 764			}
 765		} else {
 766			ASSERT(num_bitmaps);
 767			num_bitmaps--;
 768			e->bitmap = kmem_cache_zalloc(
 769					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 770			if (!e->bitmap) {
 
 771				kmem_cache_free(
 772					btrfs_free_space_cachep, e);
 773				goto free_cache;
 774			}
 775			spin_lock(&ctl->tree_lock);
 776			ret = link_free_space(ctl, e);
 777			ctl->total_bitmaps++;
 778			ctl->op->recalc_thresholds(ctl);
 779			spin_unlock(&ctl->tree_lock);
 780			if (ret) {
 781				btrfs_err(fs_info,
 782					"Duplicate entries in free space cache, dumping");
 783				kmem_cache_free(btrfs_free_space_cachep, e);
 784				goto free_cache;
 785			}
 786			list_add_tail(&e->list, &bitmaps);
 787		}
 788
 789		num_entries--;
 790	}
 791
 792	io_ctl_unmap_page(&io_ctl);
 793
 794	/*
 795	 * We add the bitmaps at the end of the entries in order that
 796	 * the bitmap entries are added to the cache.
 797	 */
 798	list_for_each_entry_safe(e, n, &bitmaps, list) {
 799		list_del_init(&e->list);
 800		ret = io_ctl_read_bitmap(&io_ctl, e);
 801		if (ret)
 802			goto free_cache;
 803	}
 804
 805	io_ctl_drop_pages(&io_ctl);
 806	merge_space_tree(ctl);
 807	ret = 1;
 808out:
 809	io_ctl_free(&io_ctl);
 810	return ret;
 811free_cache:
 812	io_ctl_drop_pages(&io_ctl);
 
 
 813	__btrfs_remove_free_space_cache(ctl);
 
 814	goto out;
 815}
 816
 817int load_free_space_cache(struct btrfs_block_group_cache *block_group)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818{
 819	struct btrfs_fs_info *fs_info = block_group->fs_info;
 820	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 821	struct inode *inode;
 822	struct btrfs_path *path;
 823	int ret = 0;
 824	bool matched;
 825	u64 used = btrfs_block_group_used(&block_group->item);
 
 
 
 
 
 
 
 826
 827	/*
 828	 * If this block group has been marked to be cleared for one reason or
 829	 * another then we can't trust the on disk cache, so just return.
 830	 */
 831	spin_lock(&block_group->lock);
 832	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 833		spin_unlock(&block_group->lock);
 834		return 0;
 835	}
 836	spin_unlock(&block_group->lock);
 837
 838	path = btrfs_alloc_path();
 839	if (!path)
 840		return 0;
 841	path->search_commit_root = 1;
 842	path->skip_locking = 1;
 843
 844	/*
 845	 * We must pass a path with search_commit_root set to btrfs_iget in
 846	 * order to avoid a deadlock when allocating extents for the tree root.
 847	 *
 848	 * When we are COWing an extent buffer from the tree root, when looking
 849	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 850	 * block group without its free space cache loaded. When we find one
 851	 * we must load its space cache which requires reading its free space
 852	 * cache's inode item from the root tree. If this inode item is located
 853	 * in the same leaf that we started COWing before, then we end up in
 854	 * deadlock on the extent buffer (trying to read lock it when we
 855	 * previously write locked it).
 856	 *
 857	 * It's safe to read the inode item using the commit root because
 858	 * block groups, once loaded, stay in memory forever (until they are
 859	 * removed) as well as their space caches once loaded. New block groups
 860	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 861	 * we will never try to read their inode item while the fs is mounted.
 862	 */
 863	inode = lookup_free_space_inode(block_group, path);
 864	if (IS_ERR(inode)) {
 865		btrfs_free_path(path);
 866		return 0;
 867	}
 868
 869	/* We may have converted the inode and made the cache invalid. */
 870	spin_lock(&block_group->lock);
 871	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 872		spin_unlock(&block_group->lock);
 873		btrfs_free_path(path);
 874		goto out;
 875	}
 876	spin_unlock(&block_group->lock);
 877
 878	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 879				      path, block_group->key.objectid);
 
 
 
 
 
 
 
 
 880	btrfs_free_path(path);
 881	if (ret <= 0)
 882		goto out;
 883
 884	spin_lock(&ctl->tree_lock);
 885	matched = (ctl->free_space == (block_group->key.offset - used -
 886				       block_group->bytes_super));
 887	spin_unlock(&ctl->tree_lock);
 888
 889	if (!matched) {
 890		__btrfs_remove_free_space_cache(ctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891		btrfs_warn(fs_info,
 892			   "block group %llu has wrong amount of free space",
 893			   block_group->key.objectid);
 894		ret = -1;
 895	}
 896out:
 897	if (ret < 0) {
 898		/* This cache is bogus, make sure it gets cleared */
 899		spin_lock(&block_group->lock);
 900		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 901		spin_unlock(&block_group->lock);
 902		ret = 0;
 903
 904		btrfs_warn(fs_info,
 905			   "failed to load free space cache for block group %llu, rebuilding it now",
 906			   block_group->key.objectid);
 907	}
 908
 
 
 
 909	iput(inode);
 910	return ret;
 911}
 912
 913static noinline_for_stack
 914int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 915			      struct btrfs_free_space_ctl *ctl,
 916			      struct btrfs_block_group_cache *block_group,
 917			      int *entries, int *bitmaps,
 918			      struct list_head *bitmap_list)
 919{
 920	int ret;
 921	struct btrfs_free_cluster *cluster = NULL;
 922	struct btrfs_free_cluster *cluster_locked = NULL;
 923	struct rb_node *node = rb_first(&ctl->free_space_offset);
 924	struct btrfs_trim_range *trim_entry;
 925
 926	/* Get the cluster for this block_group if it exists */
 927	if (block_group && !list_empty(&block_group->cluster_list)) {
 928		cluster = list_entry(block_group->cluster_list.next,
 929				     struct btrfs_free_cluster,
 930				     block_group_list);
 931	}
 932
 933	if (!node && cluster) {
 934		cluster_locked = cluster;
 935		spin_lock(&cluster_locked->lock);
 936		node = rb_first(&cluster->root);
 937		cluster = NULL;
 938	}
 939
 940	/* Write out the extent entries */
 941	while (node) {
 942		struct btrfs_free_space *e;
 943
 944		e = rb_entry(node, struct btrfs_free_space, offset_index);
 945		*entries += 1;
 946
 947		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 948				       e->bitmap);
 949		if (ret)
 950			goto fail;
 951
 952		if (e->bitmap) {
 953			list_add_tail(&e->list, bitmap_list);
 954			*bitmaps += 1;
 955		}
 956		node = rb_next(node);
 957		if (!node && cluster) {
 958			node = rb_first(&cluster->root);
 959			cluster_locked = cluster;
 960			spin_lock(&cluster_locked->lock);
 961			cluster = NULL;
 962		}
 963	}
 964	if (cluster_locked) {
 965		spin_unlock(&cluster_locked->lock);
 966		cluster_locked = NULL;
 967	}
 968
 969	/*
 970	 * Make sure we don't miss any range that was removed from our rbtree
 971	 * because trimming is running. Otherwise after a umount+mount (or crash
 972	 * after committing the transaction) we would leak free space and get
 973	 * an inconsistent free space cache report from fsck.
 974	 */
 975	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
 976		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
 977				       trim_entry->bytes, NULL);
 978		if (ret)
 979			goto fail;
 980		*entries += 1;
 981	}
 982
 983	return 0;
 984fail:
 985	if (cluster_locked)
 986		spin_unlock(&cluster_locked->lock);
 987	return -ENOSPC;
 988}
 989
 990static noinline_for_stack int
 991update_cache_item(struct btrfs_trans_handle *trans,
 992		  struct btrfs_root *root,
 993		  struct inode *inode,
 994		  struct btrfs_path *path, u64 offset,
 995		  int entries, int bitmaps)
 996{
 997	struct btrfs_key key;
 998	struct btrfs_free_space_header *header;
 999	struct extent_buffer *leaf;
1000	int ret;
1001
1002	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1003	key.offset = offset;
1004	key.type = 0;
1005
1006	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1007	if (ret < 0) {
1008		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1009				 EXTENT_DELALLOC, 0, 0, NULL);
1010		goto fail;
1011	}
1012	leaf = path->nodes[0];
1013	if (ret > 0) {
1014		struct btrfs_key found_key;
1015		ASSERT(path->slots[0]);
1016		path->slots[0]--;
1017		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1018		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1019		    found_key.offset != offset) {
1020			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1021					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1022					 0, NULL);
1023			btrfs_release_path(path);
1024			goto fail;
1025		}
1026	}
1027
1028	BTRFS_I(inode)->generation = trans->transid;
1029	header = btrfs_item_ptr(leaf, path->slots[0],
1030				struct btrfs_free_space_header);
1031	btrfs_set_free_space_entries(leaf, header, entries);
1032	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1033	btrfs_set_free_space_generation(leaf, header, trans->transid);
1034	btrfs_mark_buffer_dirty(leaf);
1035	btrfs_release_path(path);
1036
1037	return 0;
1038
1039fail:
1040	return -1;
1041}
1042
1043static noinline_for_stack int write_pinned_extent_entries(
1044			    struct btrfs_block_group_cache *block_group,
 
1045			    struct btrfs_io_ctl *io_ctl,
1046			    int *entries)
1047{
1048	u64 start, extent_start, extent_end, len;
1049	struct extent_io_tree *unpin = NULL;
1050	int ret;
1051
1052	if (!block_group)
1053		return 0;
1054
1055	/*
1056	 * We want to add any pinned extents to our free space cache
1057	 * so we don't leak the space
1058	 *
1059	 * We shouldn't have switched the pinned extents yet so this is the
1060	 * right one
1061	 */
1062	unpin = block_group->fs_info->pinned_extents;
1063
1064	start = block_group->key.objectid;
1065
1066	while (start < block_group->key.objectid + block_group->key.offset) {
1067		ret = find_first_extent_bit(unpin, start,
1068					    &extent_start, &extent_end,
1069					    EXTENT_DIRTY, NULL);
1070		if (ret)
1071			return 0;
1072
1073		/* This pinned extent is out of our range */
1074		if (extent_start >= block_group->key.objectid +
1075		    block_group->key.offset)
1076			return 0;
1077
1078		extent_start = max(extent_start, start);
1079		extent_end = min(block_group->key.objectid +
1080				 block_group->key.offset, extent_end + 1);
1081		len = extent_end - extent_start;
1082
1083		*entries += 1;
1084		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1085		if (ret)
1086			return -ENOSPC;
1087
1088		start = extent_end;
1089	}
1090
1091	return 0;
1092}
1093
1094static noinline_for_stack int
1095write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1096{
1097	struct btrfs_free_space *entry, *next;
1098	int ret;
1099
1100	/* Write out the bitmaps */
1101	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1102		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1103		if (ret)
1104			return -ENOSPC;
1105		list_del_init(&entry->list);
1106	}
1107
1108	return 0;
1109}
1110
1111static int flush_dirty_cache(struct inode *inode)
1112{
1113	int ret;
1114
1115	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1116	if (ret)
1117		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1118				 EXTENT_DELALLOC, 0, 0, NULL);
1119
1120	return ret;
1121}
1122
1123static void noinline_for_stack
1124cleanup_bitmap_list(struct list_head *bitmap_list)
1125{
1126	struct btrfs_free_space *entry, *next;
1127
1128	list_for_each_entry_safe(entry, next, bitmap_list, list)
1129		list_del_init(&entry->list);
1130}
1131
1132static void noinline_for_stack
1133cleanup_write_cache_enospc(struct inode *inode,
1134			   struct btrfs_io_ctl *io_ctl,
1135			   struct extent_state **cached_state)
1136{
1137	io_ctl_drop_pages(io_ctl);
1138	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1139			     i_size_read(inode) - 1, cached_state);
1140}
1141
1142static int __btrfs_wait_cache_io(struct btrfs_root *root,
1143				 struct btrfs_trans_handle *trans,
1144				 struct btrfs_block_group_cache *block_group,
1145				 struct btrfs_io_ctl *io_ctl,
1146				 struct btrfs_path *path, u64 offset)
1147{
1148	int ret;
1149	struct inode *inode = io_ctl->inode;
1150
1151	if (!inode)
1152		return 0;
1153
1154	/* Flush the dirty pages in the cache file. */
1155	ret = flush_dirty_cache(inode);
1156	if (ret)
1157		goto out;
1158
1159	/* Update the cache item to tell everyone this cache file is valid. */
1160	ret = update_cache_item(trans, root, inode, path, offset,
1161				io_ctl->entries, io_ctl->bitmaps);
1162out:
1163	io_ctl_free(io_ctl);
1164	if (ret) {
1165		invalidate_inode_pages2(inode->i_mapping);
1166		BTRFS_I(inode)->generation = 0;
1167		if (block_group) {
1168#ifdef DEBUG
1169			btrfs_err(root->fs_info,
1170				  "failed to write free space cache for block group %llu",
1171				  block_group->key.objectid);
1172#endif
1173		}
1174	}
1175	btrfs_update_inode(trans, root, inode);
1176
1177	if (block_group) {
1178		/* the dirty list is protected by the dirty_bgs_lock */
1179		spin_lock(&trans->transaction->dirty_bgs_lock);
1180
1181		/* the disk_cache_state is protected by the block group lock */
1182		spin_lock(&block_group->lock);
1183
1184		/*
1185		 * only mark this as written if we didn't get put back on
1186		 * the dirty list while waiting for IO.   Otherwise our
1187		 * cache state won't be right, and we won't get written again
1188		 */
1189		if (!ret && list_empty(&block_group->dirty_list))
1190			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1191		else if (ret)
1192			block_group->disk_cache_state = BTRFS_DC_ERROR;
1193
1194		spin_unlock(&block_group->lock);
1195		spin_unlock(&trans->transaction->dirty_bgs_lock);
1196		io_ctl->inode = NULL;
1197		iput(inode);
1198	}
1199
1200	return ret;
1201
1202}
1203
1204static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1205				    struct btrfs_trans_handle *trans,
1206				    struct btrfs_io_ctl *io_ctl,
1207				    struct btrfs_path *path)
1208{
1209	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1210}
1211
1212int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1213			struct btrfs_block_group_cache *block_group,
1214			struct btrfs_path *path)
1215{
1216	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1217				     block_group, &block_group->io_ctl,
1218				     path, block_group->key.objectid);
1219}
1220
1221/**
1222 * __btrfs_write_out_cache - write out cached info to an inode
1223 * @root - the root the inode belongs to
1224 * @ctl - the free space cache we are going to write out
1225 * @block_group - the block_group for this cache if it belongs to a block_group
1226 * @trans - the trans handle
 
 
 
1227 *
1228 * This function writes out a free space cache struct to disk for quick recovery
1229 * on mount.  This will return 0 if it was successful in writing the cache out,
1230 * or an errno if it was not.
1231 */
1232static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1233				   struct btrfs_free_space_ctl *ctl,
1234				   struct btrfs_block_group_cache *block_group,
1235				   struct btrfs_io_ctl *io_ctl,
1236				   struct btrfs_trans_handle *trans)
1237{
1238	struct extent_state *cached_state = NULL;
1239	LIST_HEAD(bitmap_list);
1240	int entries = 0;
1241	int bitmaps = 0;
1242	int ret;
1243	int must_iput = 0;
1244
1245	if (!i_size_read(inode))
1246		return -EIO;
1247
1248	WARN_ON(io_ctl->pages);
1249	ret = io_ctl_init(io_ctl, inode, 1);
1250	if (ret)
1251		return ret;
1252
1253	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1254		down_write(&block_group->data_rwsem);
1255		spin_lock(&block_group->lock);
1256		if (block_group->delalloc_bytes) {
1257			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1258			spin_unlock(&block_group->lock);
1259			up_write(&block_group->data_rwsem);
1260			BTRFS_I(inode)->generation = 0;
1261			ret = 0;
1262			must_iput = 1;
1263			goto out;
1264		}
1265		spin_unlock(&block_group->lock);
1266	}
1267
1268	/* Lock all pages first so we can lock the extent safely. */
1269	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1270	if (ret)
1271		goto out_unlock;
1272
1273	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1274			 &cached_state);
1275
1276	io_ctl_set_generation(io_ctl, trans->transid);
1277
1278	mutex_lock(&ctl->cache_writeout_mutex);
1279	/* Write out the extent entries in the free space cache */
1280	spin_lock(&ctl->tree_lock);
1281	ret = write_cache_extent_entries(io_ctl, ctl,
1282					 block_group, &entries, &bitmaps,
1283					 &bitmap_list);
1284	if (ret)
1285		goto out_nospc_locked;
1286
1287	/*
1288	 * Some spaces that are freed in the current transaction are pinned,
1289	 * they will be added into free space cache after the transaction is
1290	 * committed, we shouldn't lose them.
1291	 *
1292	 * If this changes while we are working we'll get added back to
1293	 * the dirty list and redo it.  No locking needed
1294	 */
1295	ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1296	if (ret)
1297		goto out_nospc_locked;
1298
1299	/*
1300	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1301	 * locked while doing it because a concurrent trim can be manipulating
1302	 * or freeing the bitmap.
1303	 */
1304	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1305	spin_unlock(&ctl->tree_lock);
1306	mutex_unlock(&ctl->cache_writeout_mutex);
1307	if (ret)
1308		goto out_nospc;
1309
1310	/* Zero out the rest of the pages just to make sure */
1311	io_ctl_zero_remaining_pages(io_ctl);
1312
1313	/* Everything is written out, now we dirty the pages in the file. */
1314	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1315				i_size_read(inode), &cached_state);
 
1316	if (ret)
1317		goto out_nospc;
1318
1319	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1320		up_write(&block_group->data_rwsem);
1321	/*
1322	 * Release the pages and unlock the extent, we will flush
1323	 * them out later
1324	 */
1325	io_ctl_drop_pages(io_ctl);
 
1326
1327	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1328			     i_size_read(inode) - 1, &cached_state);
1329
1330	/*
1331	 * at this point the pages are under IO and we're happy,
1332	 * The caller is responsible for waiting on them and updating the
1333	 * the cache and the inode
1334	 */
1335	io_ctl->entries = entries;
1336	io_ctl->bitmaps = bitmaps;
1337
1338	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1339	if (ret)
1340		goto out;
1341
1342	return 0;
1343
1344out:
1345	io_ctl->inode = NULL;
1346	io_ctl_free(io_ctl);
1347	if (ret) {
1348		invalidate_inode_pages2(inode->i_mapping);
1349		BTRFS_I(inode)->generation = 0;
1350	}
1351	btrfs_update_inode(trans, root, inode);
1352	if (must_iput)
1353		iput(inode);
1354	return ret;
1355
1356out_nospc_locked:
1357	cleanup_bitmap_list(&bitmap_list);
1358	spin_unlock(&ctl->tree_lock);
1359	mutex_unlock(&ctl->cache_writeout_mutex);
1360
1361out_nospc:
1362	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1363
1364out_unlock:
1365	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1366		up_write(&block_group->data_rwsem);
1367
1368	goto out;
 
 
 
 
 
 
 
 
 
 
1369}
1370
1371int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1372			  struct btrfs_block_group_cache *block_group,
1373			  struct btrfs_path *path)
1374{
1375	struct btrfs_fs_info *fs_info = trans->fs_info;
1376	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1377	struct inode *inode;
1378	int ret = 0;
1379
1380	spin_lock(&block_group->lock);
1381	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1382		spin_unlock(&block_group->lock);
1383		return 0;
1384	}
1385	spin_unlock(&block_group->lock);
1386
1387	inode = lookup_free_space_inode(block_group, path);
1388	if (IS_ERR(inode))
1389		return 0;
1390
1391	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1392				block_group, &block_group->io_ctl, trans);
1393	if (ret) {
1394#ifdef DEBUG
1395		btrfs_err(fs_info,
1396			  "failed to write free space cache for block group %llu",
1397			  block_group->key.objectid);
1398#endif
1399		spin_lock(&block_group->lock);
1400		block_group->disk_cache_state = BTRFS_DC_ERROR;
1401		spin_unlock(&block_group->lock);
1402
1403		block_group->io_ctl.inode = NULL;
1404		iput(inode);
1405	}
1406
1407	/*
1408	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1409	 * to wait for IO and put the inode
1410	 */
1411
1412	return ret;
1413}
1414
1415static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1416					  u64 offset)
1417{
1418	ASSERT(offset >= bitmap_start);
1419	offset -= bitmap_start;
1420	return (unsigned long)(div_u64(offset, unit));
1421}
1422
1423static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1424{
1425	return (unsigned long)(div_u64(bytes, unit));
1426}
1427
1428static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1429				   u64 offset)
1430{
1431	u64 bitmap_start;
1432	u64 bytes_per_bitmap;
1433
1434	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1435	bitmap_start = offset - ctl->start;
1436	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1437	bitmap_start *= bytes_per_bitmap;
1438	bitmap_start += ctl->start;
1439
1440	return bitmap_start;
1441}
1442
1443static int tree_insert_offset(struct rb_root *root, u64 offset,
1444			      struct rb_node *node, int bitmap)
1445{
1446	struct rb_node **p = &root->rb_node;
1447	struct rb_node *parent = NULL;
1448	struct btrfs_free_space *info;
1449
1450	while (*p) {
1451		parent = *p;
1452		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1453
1454		if (offset < info->offset) {
1455			p = &(*p)->rb_left;
1456		} else if (offset > info->offset) {
1457			p = &(*p)->rb_right;
1458		} else {
1459			/*
1460			 * we could have a bitmap entry and an extent entry
1461			 * share the same offset.  If this is the case, we want
1462			 * the extent entry to always be found first if we do a
1463			 * linear search through the tree, since we want to have
1464			 * the quickest allocation time, and allocating from an
1465			 * extent is faster than allocating from a bitmap.  So
1466			 * if we're inserting a bitmap and we find an entry at
1467			 * this offset, we want to go right, or after this entry
1468			 * logically.  If we are inserting an extent and we've
1469			 * found a bitmap, we want to go left, or before
1470			 * logically.
1471			 */
1472			if (bitmap) {
1473				if (info->bitmap) {
1474					WARN_ON_ONCE(1);
1475					return -EEXIST;
1476				}
1477				p = &(*p)->rb_right;
1478			} else {
1479				if (!info->bitmap) {
1480					WARN_ON_ONCE(1);
1481					return -EEXIST;
1482				}
1483				p = &(*p)->rb_left;
1484			}
1485		}
1486	}
1487
1488	rb_link_node(node, parent, p);
1489	rb_insert_color(node, root);
1490
1491	return 0;
1492}
1493
1494/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495 * searches the tree for the given offset.
1496 *
1497 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1498 * want a section that has at least bytes size and comes at or after the given
1499 * offset.
1500 */
1501static struct btrfs_free_space *
1502tree_search_offset(struct btrfs_free_space_ctl *ctl,
1503		   u64 offset, int bitmap_only, int fuzzy)
1504{
1505	struct rb_node *n = ctl->free_space_offset.rb_node;
1506	struct btrfs_free_space *entry, *prev = NULL;
1507
1508	/* find entry that is closest to the 'offset' */
1509	while (1) {
1510		if (!n) {
1511			entry = NULL;
1512			break;
1513		}
1514
1515		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1516		prev = entry;
1517
1518		if (offset < entry->offset)
1519			n = n->rb_left;
1520		else if (offset > entry->offset)
1521			n = n->rb_right;
1522		else
1523			break;
 
 
1524	}
1525
1526	if (bitmap_only) {
1527		if (!entry)
1528			return NULL;
1529		if (entry->bitmap)
1530			return entry;
1531
1532		/*
1533		 * bitmap entry and extent entry may share same offset,
1534		 * in that case, bitmap entry comes after extent entry.
1535		 */
1536		n = rb_next(n);
1537		if (!n)
1538			return NULL;
1539		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1540		if (entry->offset != offset)
1541			return NULL;
1542
1543		WARN_ON(!entry->bitmap);
1544		return entry;
1545	} else if (entry) {
1546		if (entry->bitmap) {
1547			/*
1548			 * if previous extent entry covers the offset,
1549			 * we should return it instead of the bitmap entry
1550			 */
1551			n = rb_prev(&entry->offset_index);
1552			if (n) {
1553				prev = rb_entry(n, struct btrfs_free_space,
1554						offset_index);
1555				if (!prev->bitmap &&
1556				    prev->offset + prev->bytes > offset)
1557					entry = prev;
1558			}
1559		}
1560		return entry;
1561	}
1562
1563	if (!prev)
1564		return NULL;
1565
1566	/* find last entry before the 'offset' */
1567	entry = prev;
1568	if (entry->offset > offset) {
1569		n = rb_prev(&entry->offset_index);
1570		if (n) {
1571			entry = rb_entry(n, struct btrfs_free_space,
1572					offset_index);
1573			ASSERT(entry->offset <= offset);
1574		} else {
1575			if (fuzzy)
1576				return entry;
1577			else
1578				return NULL;
1579		}
1580	}
1581
1582	if (entry->bitmap) {
1583		n = rb_prev(&entry->offset_index);
1584		if (n) {
1585			prev = rb_entry(n, struct btrfs_free_space,
1586					offset_index);
1587			if (!prev->bitmap &&
1588			    prev->offset + prev->bytes > offset)
1589				return prev;
1590		}
1591		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1592			return entry;
1593	} else if (entry->offset + entry->bytes > offset)
1594		return entry;
1595
1596	if (!fuzzy)
1597		return NULL;
1598
1599	while (1) {
 
 
 
 
1600		if (entry->bitmap) {
1601			if (entry->offset + BITS_PER_BITMAP *
1602			    ctl->unit > offset)
1603				break;
1604		} else {
1605			if (entry->offset + entry->bytes > offset)
1606				break;
1607		}
1608
1609		n = rb_next(&entry->offset_index);
1610		if (!n)
1611			return NULL;
1612		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1613	}
1614	return entry;
1615}
1616
1617static inline void
1618__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1619		    struct btrfs_free_space *info)
1620{
1621	rb_erase(&info->offset_index, &ctl->free_space_offset);
 
1622	ctl->free_extents--;
1623}
1624
1625static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1626			      struct btrfs_free_space *info)
1627{
1628	__unlink_free_space(ctl, info);
1629	ctl->free_space -= info->bytes;
 
 
1630}
1631
1632static int link_free_space(struct btrfs_free_space_ctl *ctl,
1633			   struct btrfs_free_space *info)
1634{
1635	int ret = 0;
1636
1637	ASSERT(info->bytes || info->bitmap);
1638	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1639				 &info->offset_index, (info->bitmap != NULL));
1640	if (ret)
1641		return ret;
1642
 
 
 
 
 
 
 
1643	ctl->free_space += info->bytes;
1644	ctl->free_extents++;
1645	return ret;
1646}
1647
1648static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 
1649{
1650	struct btrfs_block_group_cache *block_group = ctl->private;
1651	u64 max_bytes;
1652	u64 bitmap_bytes;
1653	u64 extent_bytes;
1654	u64 size = block_group->key.offset;
1655	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1656	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1657
1658	max_bitmaps = max_t(u64, max_bitmaps, 1);
1659
1660	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1661
1662	/*
1663	 * The goal is to keep the total amount of memory used per 1gb of space
1664	 * at or below 32k, so we need to adjust how much memory we allow to be
1665	 * used by extent based free space tracking
1666	 */
1667	if (size < SZ_1G)
1668		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1669	else
1670		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1671
1672	/*
1673	 * we want to account for 1 more bitmap than what we have so we can make
1674	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1675	 * we add more bitmaps.
1676	 */
1677	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1678
1679	if (bitmap_bytes >= max_bytes) {
1680		ctl->extents_thresh = 0;
1681		return;
1682	}
1683
1684	/*
1685	 * we want the extent entry threshold to always be at most 1/2 the max
1686	 * bytes we can have, or whatever is less than that.
1687	 */
1688	extent_bytes = max_bytes - bitmap_bytes;
1689	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1690
1691	ctl->extents_thresh =
1692		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1693}
1694
1695static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1696				       struct btrfs_free_space *info,
1697				       u64 offset, u64 bytes)
1698{
1699	unsigned long start, count;
 
1700
1701	start = offset_to_bit(info->offset, ctl->unit, offset);
1702	count = bytes_to_bits(bytes, ctl->unit);
1703	ASSERT(start + count <= BITS_PER_BITMAP);
 
1704
1705	bitmap_clear(info->bitmap, start, count);
1706
1707	info->bytes -= bytes;
1708	if (info->max_extent_size > ctl->unit)
1709		info->max_extent_size = 0;
1710}
1711
1712static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1713			      struct btrfs_free_space *info, u64 offset,
1714			      u64 bytes)
1715{
1716	__bitmap_clear_bits(ctl, info, offset, bytes);
1717	ctl->free_space -= bytes;
 
 
 
 
 
 
 
 
 
 
1718}
1719
1720static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1721			    struct btrfs_free_space *info, u64 offset,
1722			    u64 bytes)
1723{
1724	unsigned long start, count;
 
1725
1726	start = offset_to_bit(info->offset, ctl->unit, offset);
1727	count = bytes_to_bits(bytes, ctl->unit);
1728	ASSERT(start + count <= BITS_PER_BITMAP);
 
1729
1730	bitmap_set(info->bitmap, start, count);
1731
 
 
 
 
 
1732	info->bytes += bytes;
1733	ctl->free_space += bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734}
1735
1736/*
1737 * If we can not find suitable extent, we will use bytes to record
1738 * the size of the max extent.
1739 */
1740static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1741			 struct btrfs_free_space *bitmap_info, u64 *offset,
1742			 u64 *bytes, bool for_alloc)
1743{
1744	unsigned long found_bits = 0;
1745	unsigned long max_bits = 0;
1746	unsigned long bits, i;
1747	unsigned long next_zero;
1748	unsigned long extent_bits;
1749
1750	/*
1751	 * Skip searching the bitmap if we don't have a contiguous section that
1752	 * is large enough for this allocation.
1753	 */
1754	if (for_alloc &&
1755	    bitmap_info->max_extent_size &&
1756	    bitmap_info->max_extent_size < *bytes) {
1757		*bytes = bitmap_info->max_extent_size;
1758		return -1;
1759	}
1760
1761	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1762			  max_t(u64, *offset, bitmap_info->offset));
1763	bits = bytes_to_bits(*bytes, ctl->unit);
1764
1765	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1766		if (for_alloc && bits == 1) {
1767			found_bits = 1;
1768			break;
1769		}
1770		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1771					       BITS_PER_BITMAP, i);
1772		extent_bits = next_zero - i;
1773		if (extent_bits >= bits) {
1774			found_bits = extent_bits;
1775			break;
1776		} else if (extent_bits > max_bits) {
1777			max_bits = extent_bits;
1778		}
1779		i = next_zero;
1780	}
1781
1782	if (found_bits) {
1783		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1784		*bytes = (u64)(found_bits) * ctl->unit;
1785		return 0;
1786	}
1787
1788	*bytes = (u64)(max_bits) * ctl->unit;
1789	bitmap_info->max_extent_size = *bytes;
 
1790	return -1;
1791}
1792
1793static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1794{
1795	if (entry->bitmap)
1796		return entry->max_extent_size;
1797	return entry->bytes;
1798}
1799
1800/* Cache the size of the max extent in bytes */
1801static struct btrfs_free_space *
1802find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1803		unsigned long align, u64 *max_extent_size)
1804{
1805	struct btrfs_free_space *entry;
1806	struct rb_node *node;
1807	u64 tmp;
1808	u64 align_off;
1809	int ret;
1810
1811	if (!ctl->free_space_offset.rb_node)
1812		goto out;
 
 
 
 
 
 
 
 
 
 
1813
1814	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1815	if (!entry)
1816		goto out;
 
 
 
 
1817
1818	for (node = &entry->offset_index; node; node = rb_next(node)) {
1819		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 
 
 
 
 
 
1820		if (entry->bytes < *bytes) {
1821			*max_extent_size = max(get_max_extent_size(entry),
1822					       *max_extent_size);
 
 
1823			continue;
1824		}
1825
1826		/* make sure the space returned is big enough
1827		 * to match our requested alignment
1828		 */
1829		if (*bytes >= align) {
1830			tmp = entry->offset - ctl->start + align - 1;
1831			tmp = div64_u64(tmp, align);
1832			tmp = tmp * align + ctl->start;
1833			align_off = tmp - entry->offset;
1834		} else {
1835			align_off = 0;
1836			tmp = entry->offset;
1837		}
1838
 
 
 
 
 
 
 
1839		if (entry->bytes < *bytes + align_off) {
1840			*max_extent_size = max(get_max_extent_size(entry),
1841					       *max_extent_size);
1842			continue;
1843		}
1844
1845		if (entry->bitmap) {
 
1846			u64 size = *bytes;
1847
1848			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1849			if (!ret) {
1850				*offset = tmp;
1851				*bytes = size;
1852				return entry;
1853			} else {
1854				*max_extent_size =
1855					max(get_max_extent_size(entry),
1856					    *max_extent_size);
1857			}
 
 
 
 
 
 
 
 
 
1858			continue;
1859		}
1860
1861		*offset = tmp;
1862		*bytes = entry->bytes - align_off;
1863		return entry;
1864	}
1865out:
1866	return NULL;
1867}
1868
1869static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1870			   struct btrfs_free_space *info, u64 offset)
1871{
1872	info->offset = offset_to_bitmap(ctl, offset);
1873	info->bytes = 0;
 
1874	INIT_LIST_HEAD(&info->list);
1875	link_free_space(ctl, info);
1876	ctl->total_bitmaps++;
1877
1878	ctl->op->recalc_thresholds(ctl);
1879}
1880
1881static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1882			struct btrfs_free_space *bitmap_info)
1883{
1884	unlink_free_space(ctl, bitmap_info);
 
 
 
 
 
 
 
 
 
 
 
 
1885	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1886	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1887	ctl->total_bitmaps--;
1888	ctl->op->recalc_thresholds(ctl);
1889}
1890
1891static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1892			      struct btrfs_free_space *bitmap_info,
1893			      u64 *offset, u64 *bytes)
1894{
1895	u64 end;
1896	u64 search_start, search_bytes;
1897	int ret;
1898
1899again:
1900	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1901
1902	/*
1903	 * We need to search for bits in this bitmap.  We could only cover some
1904	 * of the extent in this bitmap thanks to how we add space, so we need
1905	 * to search for as much as it as we can and clear that amount, and then
1906	 * go searching for the next bit.
1907	 */
1908	search_start = *offset;
1909	search_bytes = ctl->unit;
1910	search_bytes = min(search_bytes, end - search_start + 1);
1911	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1912			    false);
1913	if (ret < 0 || search_start != *offset)
1914		return -EINVAL;
1915
1916	/* We may have found more bits than what we need */
1917	search_bytes = min(search_bytes, *bytes);
1918
1919	/* Cannot clear past the end of the bitmap */
1920	search_bytes = min(search_bytes, end - search_start + 1);
1921
1922	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1923	*offset += search_bytes;
1924	*bytes -= search_bytes;
1925
1926	if (*bytes) {
1927		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1928		if (!bitmap_info->bytes)
1929			free_bitmap(ctl, bitmap_info);
1930
1931		/*
1932		 * no entry after this bitmap, but we still have bytes to
1933		 * remove, so something has gone wrong.
1934		 */
1935		if (!next)
1936			return -EINVAL;
1937
1938		bitmap_info = rb_entry(next, struct btrfs_free_space,
1939				       offset_index);
1940
1941		/*
1942		 * if the next entry isn't a bitmap we need to return to let the
1943		 * extent stuff do its work.
1944		 */
1945		if (!bitmap_info->bitmap)
1946			return -EAGAIN;
1947
1948		/*
1949		 * Ok the next item is a bitmap, but it may not actually hold
1950		 * the information for the rest of this free space stuff, so
1951		 * look for it, and if we don't find it return so we can try
1952		 * everything over again.
1953		 */
1954		search_start = *offset;
1955		search_bytes = ctl->unit;
1956		ret = search_bitmap(ctl, bitmap_info, &search_start,
1957				    &search_bytes, false);
1958		if (ret < 0 || search_start != *offset)
1959			return -EAGAIN;
1960
1961		goto again;
1962	} else if (!bitmap_info->bytes)
1963		free_bitmap(ctl, bitmap_info);
1964
1965	return 0;
1966}
1967
1968static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1969			       struct btrfs_free_space *info, u64 offset,
1970			       u64 bytes)
1971{
1972	u64 bytes_to_set = 0;
1973	u64 end;
1974
 
 
 
 
 
 
 
 
 
 
 
 
 
1975	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1976
1977	bytes_to_set = min(end - offset, bytes);
1978
1979	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1980
1981	/*
1982	 * We set some bytes, we have no idea what the max extent size is
1983	 * anymore.
1984	 */
1985	info->max_extent_size = 0;
1986
1987	return bytes_to_set;
1988
1989}
1990
1991static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1992		      struct btrfs_free_space *info)
1993{
1994	struct btrfs_block_group_cache *block_group = ctl->private;
1995	struct btrfs_fs_info *fs_info = block_group->fs_info;
1996	bool forced = false;
1997
1998#ifdef CONFIG_BTRFS_DEBUG
1999	if (btrfs_should_fragment_free_space(block_group))
2000		forced = true;
2001#endif
2002
 
 
 
 
2003	/*
2004	 * If we are below the extents threshold then we can add this as an
2005	 * extent, and don't have to deal with the bitmap
2006	 */
2007	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2008		/*
2009		 * If this block group has some small extents we don't want to
2010		 * use up all of our free slots in the cache with them, we want
2011		 * to reserve them to larger extents, however if we have plenty
2012		 * of cache left then go ahead an dadd them, no sense in adding
2013		 * the overhead of a bitmap if we don't have to.
2014		 */
2015		if (info->bytes <= fs_info->sectorsize * 4) {
2016			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2017				return false;
2018		} else {
2019			return false;
2020		}
2021	}
2022
2023	/*
2024	 * The original block groups from mkfs can be really small, like 8
2025	 * megabytes, so don't bother with a bitmap for those entries.  However
2026	 * some block groups can be smaller than what a bitmap would cover but
2027	 * are still large enough that they could overflow the 32k memory limit,
2028	 * so allow those block groups to still be allowed to have a bitmap
2029	 * entry.
2030	 */
2031	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2032		return false;
2033
2034	return true;
2035}
2036
2037static const struct btrfs_free_space_op free_space_op = {
2038	.recalc_thresholds	= recalculate_thresholds,
2039	.use_bitmap		= use_bitmap,
2040};
2041
2042static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2043			      struct btrfs_free_space *info)
2044{
2045	struct btrfs_free_space *bitmap_info;
2046	struct btrfs_block_group_cache *block_group = NULL;
2047	int added = 0;
2048	u64 bytes, offset, bytes_added;
 
2049	int ret;
2050
2051	bytes = info->bytes;
2052	offset = info->offset;
 
2053
2054	if (!ctl->op->use_bitmap(ctl, info))
2055		return 0;
2056
2057	if (ctl->op == &free_space_op)
2058		block_group = ctl->private;
2059again:
2060	/*
2061	 * Since we link bitmaps right into the cluster we need to see if we
2062	 * have a cluster here, and if so and it has our bitmap we need to add
2063	 * the free space to that bitmap.
2064	 */
2065	if (block_group && !list_empty(&block_group->cluster_list)) {
2066		struct btrfs_free_cluster *cluster;
2067		struct rb_node *node;
2068		struct btrfs_free_space *entry;
2069
2070		cluster = list_entry(block_group->cluster_list.next,
2071				     struct btrfs_free_cluster,
2072				     block_group_list);
2073		spin_lock(&cluster->lock);
2074		node = rb_first(&cluster->root);
2075		if (!node) {
2076			spin_unlock(&cluster->lock);
2077			goto no_cluster_bitmap;
2078		}
2079
2080		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2081		if (!entry->bitmap) {
2082			spin_unlock(&cluster->lock);
2083			goto no_cluster_bitmap;
2084		}
2085
2086		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2087			bytes_added = add_bytes_to_bitmap(ctl, entry,
2088							  offset, bytes);
2089			bytes -= bytes_added;
2090			offset += bytes_added;
2091		}
2092		spin_unlock(&cluster->lock);
2093		if (!bytes) {
2094			ret = 1;
2095			goto out;
2096		}
2097	}
2098
2099no_cluster_bitmap:
2100	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2101					 1, 0);
2102	if (!bitmap_info) {
2103		ASSERT(added == 0);
2104		goto new_bitmap;
2105	}
2106
2107	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
2108	bytes -= bytes_added;
2109	offset += bytes_added;
2110	added = 0;
2111
2112	if (!bytes) {
2113		ret = 1;
2114		goto out;
2115	} else
2116		goto again;
2117
2118new_bitmap:
2119	if (info && info->bitmap) {
2120		add_new_bitmap(ctl, info, offset);
2121		added = 1;
2122		info = NULL;
2123		goto again;
2124	} else {
2125		spin_unlock(&ctl->tree_lock);
2126
2127		/* no pre-allocated info, allocate a new one */
2128		if (!info) {
2129			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2130						 GFP_NOFS);
2131			if (!info) {
2132				spin_lock(&ctl->tree_lock);
2133				ret = -ENOMEM;
2134				goto out;
2135			}
2136		}
2137
2138		/* allocate the bitmap */
2139		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2140						 GFP_NOFS);
 
2141		spin_lock(&ctl->tree_lock);
2142		if (!info->bitmap) {
2143			ret = -ENOMEM;
2144			goto out;
2145		}
2146		goto again;
2147	}
2148
2149out:
2150	if (info) {
2151		if (info->bitmap)
2152			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2153					info->bitmap);
2154		kmem_cache_free(btrfs_free_space_cachep, info);
2155	}
2156
2157	return ret;
2158}
2159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2161			  struct btrfs_free_space *info, bool update_stat)
2162{
2163	struct btrfs_free_space *left_info;
2164	struct btrfs_free_space *right_info;
2165	bool merged = false;
2166	u64 offset = info->offset;
2167	u64 bytes = info->bytes;
 
2168
2169	/*
2170	 * first we want to see if there is free space adjacent to the range we
2171	 * are adding, if there is remove that struct and add a new one to
2172	 * cover the entire range
2173	 */
2174	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2175	if (right_info && rb_prev(&right_info->offset_index))
2176		left_info = rb_entry(rb_prev(&right_info->offset_index),
2177				     struct btrfs_free_space, offset_index);
2178	else
2179		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2180
2181	if (right_info && !right_info->bitmap) {
2182		if (update_stat)
2183			unlink_free_space(ctl, right_info);
2184		else
2185			__unlink_free_space(ctl, right_info);
2186		info->bytes += right_info->bytes;
2187		kmem_cache_free(btrfs_free_space_cachep, right_info);
2188		merged = true;
2189	}
2190
 
2191	if (left_info && !left_info->bitmap &&
2192	    left_info->offset + left_info->bytes == offset) {
2193		if (update_stat)
2194			unlink_free_space(ctl, left_info);
2195		else
2196			__unlink_free_space(ctl, left_info);
2197		info->offset = left_info->offset;
2198		info->bytes += left_info->bytes;
2199		kmem_cache_free(btrfs_free_space_cachep, left_info);
2200		merged = true;
2201	}
2202
2203	return merged;
2204}
2205
2206static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2207				     struct btrfs_free_space *info,
2208				     bool update_stat)
2209{
2210	struct btrfs_free_space *bitmap;
2211	unsigned long i;
2212	unsigned long j;
2213	const u64 end = info->offset + info->bytes;
2214	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2215	u64 bytes;
2216
2217	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2218	if (!bitmap)
2219		return false;
2220
2221	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2222	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2223	if (j == i)
2224		return false;
2225	bytes = (j - i) * ctl->unit;
2226	info->bytes += bytes;
2227
2228	if (update_stat)
2229		bitmap_clear_bits(ctl, bitmap, end, bytes);
2230	else
2231		__bitmap_clear_bits(ctl, bitmap, end, bytes);
 
2232
2233	if (!bitmap->bytes)
2234		free_bitmap(ctl, bitmap);
2235
2236	return true;
2237}
2238
2239static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2240				       struct btrfs_free_space *info,
2241				       bool update_stat)
2242{
2243	struct btrfs_free_space *bitmap;
2244	u64 bitmap_offset;
2245	unsigned long i;
2246	unsigned long j;
2247	unsigned long prev_j;
2248	u64 bytes;
2249
2250	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2251	/* If we're on a boundary, try the previous logical bitmap. */
2252	if (bitmap_offset == info->offset) {
2253		if (info->offset == 0)
2254			return false;
2255		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2256	}
2257
2258	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2259	if (!bitmap)
2260		return false;
2261
2262	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2263	j = 0;
2264	prev_j = (unsigned long)-1;
2265	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2266		if (j > i)
2267			break;
2268		prev_j = j;
2269	}
2270	if (prev_j == i)
2271		return false;
2272
2273	if (prev_j == (unsigned long)-1)
2274		bytes = (i + 1) * ctl->unit;
2275	else
2276		bytes = (i - prev_j) * ctl->unit;
2277
2278	info->offset -= bytes;
2279	info->bytes += bytes;
2280
2281	if (update_stat)
2282		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2283	else
2284		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
 
2285
2286	if (!bitmap->bytes)
2287		free_bitmap(ctl, bitmap);
2288
2289	return true;
2290}
2291
2292/*
2293 * We prefer always to allocate from extent entries, both for clustered and
2294 * non-clustered allocation requests. So when attempting to add a new extent
2295 * entry, try to see if there's adjacent free space in bitmap entries, and if
2296 * there is, migrate that space from the bitmaps to the extent.
2297 * Like this we get better chances of satisfying space allocation requests
2298 * because we attempt to satisfy them based on a single cache entry, and never
2299 * on 2 or more entries - even if the entries represent a contiguous free space
2300 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2301 * ends).
2302 */
2303static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2304			      struct btrfs_free_space *info,
2305			      bool update_stat)
2306{
2307	/*
2308	 * Only work with disconnected entries, as we can change their offset,
2309	 * and must be extent entries.
2310	 */
2311	ASSERT(!info->bitmap);
2312	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2313
2314	if (ctl->total_bitmaps > 0) {
2315		bool stole_end;
2316		bool stole_front = false;
2317
2318		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2319		if (ctl->total_bitmaps > 0)
2320			stole_front = steal_from_bitmap_to_front(ctl, info,
2321								 update_stat);
2322
2323		if (stole_end || stole_front)
2324			try_merge_free_space(ctl, info, update_stat);
2325	}
2326}
2327
2328int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2329			   struct btrfs_free_space_ctl *ctl,
2330			   u64 offset, u64 bytes)
2331{
 
 
2332	struct btrfs_free_space *info;
2333	int ret = 0;
 
 
 
2334
2335	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2336	if (!info)
2337		return -ENOMEM;
2338
2339	info->offset = offset;
2340	info->bytes = bytes;
 
2341	RB_CLEAR_NODE(&info->offset_index);
 
2342
2343	spin_lock(&ctl->tree_lock);
2344
2345	if (try_merge_free_space(ctl, info, true))
2346		goto link;
2347
2348	/*
2349	 * There was no extent directly to the left or right of this new
2350	 * extent then we know we're going to have to allocate a new extent, so
2351	 * before we do that see if we need to drop this into a bitmap
2352	 */
2353	ret = insert_into_bitmap(ctl, info);
2354	if (ret < 0) {
2355		goto out;
2356	} else if (ret) {
2357		ret = 0;
2358		goto out;
2359	}
2360link:
2361	/*
2362	 * Only steal free space from adjacent bitmaps if we're sure we're not
2363	 * going to add the new free space to existing bitmap entries - because
2364	 * that would mean unnecessary work that would be reverted. Therefore
2365	 * attempt to steal space from bitmaps if we're adding an extent entry.
2366	 */
2367	steal_from_bitmap(ctl, info, true);
2368
 
 
2369	ret = link_free_space(ctl, info);
2370	if (ret)
2371		kmem_cache_free(btrfs_free_space_cachep, info);
2372out:
 
2373	spin_unlock(&ctl->tree_lock);
2374
2375	if (ret) {
2376		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2377		ASSERT(ret != -EEXIST);
2378	}
2379
 
 
 
 
 
2380	return ret;
2381}
2382
2383int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384			 u64 bytenr, u64 size)
2385{
2386	return __btrfs_add_free_space(block_group->fs_info,
2387				      block_group->free_space_ctl,
2388				      bytenr, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389}
2390
2391int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2392			    u64 offset, u64 bytes)
2393{
2394	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2395	struct btrfs_free_space *info;
2396	int ret;
2397	bool re_search = false;
2398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399	spin_lock(&ctl->tree_lock);
2400
2401again:
2402	ret = 0;
2403	if (!bytes)
2404		goto out_lock;
2405
2406	info = tree_search_offset(ctl, offset, 0, 0);
2407	if (!info) {
2408		/*
2409		 * oops didn't find an extent that matched the space we wanted
2410		 * to remove, look for a bitmap instead
2411		 */
2412		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2413					  1, 0);
2414		if (!info) {
2415			/*
2416			 * If we found a partial bit of our free space in a
2417			 * bitmap but then couldn't find the other part this may
2418			 * be a problem, so WARN about it.
2419			 */
2420			WARN_ON(re_search);
2421			goto out_lock;
2422		}
2423	}
2424
2425	re_search = false;
2426	if (!info->bitmap) {
2427		unlink_free_space(ctl, info);
2428		if (offset == info->offset) {
2429			u64 to_free = min(bytes, info->bytes);
2430
2431			info->bytes -= to_free;
2432			info->offset += to_free;
2433			if (info->bytes) {
2434				ret = link_free_space(ctl, info);
2435				WARN_ON(ret);
2436			} else {
2437				kmem_cache_free(btrfs_free_space_cachep, info);
2438			}
2439
2440			offset += to_free;
2441			bytes -= to_free;
2442			goto again;
2443		} else {
2444			u64 old_end = info->bytes + info->offset;
2445
2446			info->bytes = offset - info->offset;
2447			ret = link_free_space(ctl, info);
2448			WARN_ON(ret);
2449			if (ret)
2450				goto out_lock;
2451
2452			/* Not enough bytes in this entry to satisfy us */
2453			if (old_end < offset + bytes) {
2454				bytes -= old_end - offset;
2455				offset = old_end;
2456				goto again;
2457			} else if (old_end == offset + bytes) {
2458				/* all done */
2459				goto out_lock;
2460			}
2461			spin_unlock(&ctl->tree_lock);
2462
2463			ret = btrfs_add_free_space(block_group, offset + bytes,
2464						   old_end - (offset + bytes));
 
 
2465			WARN_ON(ret);
2466			goto out;
2467		}
2468	}
2469
2470	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2471	if (ret == -EAGAIN) {
2472		re_search = true;
2473		goto again;
2474	}
2475out_lock:
 
2476	spin_unlock(&ctl->tree_lock);
2477out:
2478	return ret;
2479}
2480
2481void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2482			   u64 bytes)
2483{
2484	struct btrfs_fs_info *fs_info = block_group->fs_info;
2485	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2486	struct btrfs_free_space *info;
2487	struct rb_node *n;
2488	int count = 0;
2489
 
 
 
 
 
 
 
 
 
 
 
 
2490	spin_lock(&ctl->tree_lock);
2491	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2492		info = rb_entry(n, struct btrfs_free_space, offset_index);
2493		if (info->bytes >= bytes && !block_group->ro)
2494			count++;
2495		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2496			   info->offset, info->bytes,
2497		       (info->bitmap) ? "yes" : "no");
2498	}
2499	spin_unlock(&ctl->tree_lock);
2500	btrfs_info(fs_info, "block group has cluster?: %s",
2501	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2502	btrfs_info(fs_info,
2503		   "%d blocks of free space at or bigger than bytes is", count);
2504}
2505
2506void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
 
2507{
2508	struct btrfs_fs_info *fs_info = block_group->fs_info;
2509	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2510
2511	spin_lock_init(&ctl->tree_lock);
2512	ctl->unit = fs_info->sectorsize;
2513	ctl->start = block_group->key.objectid;
2514	ctl->private = block_group;
2515	ctl->op = &free_space_op;
 
2516	INIT_LIST_HEAD(&ctl->trimming_ranges);
2517	mutex_init(&ctl->cache_writeout_mutex);
2518
2519	/*
2520	 * we only want to have 32k of ram per block group for keeping
2521	 * track of free space, and if we pass 1/2 of that we want to
2522	 * start converting things over to using bitmaps
2523	 */
2524	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2525}
2526
2527/*
2528 * for a given cluster, put all of its extents back into the free
2529 * space cache.  If the block group passed doesn't match the block group
2530 * pointed to by the cluster, someone else raced in and freed the
2531 * cluster already.  In that case, we just return without changing anything
2532 */
2533static int
2534__btrfs_return_cluster_to_free_space(
2535			     struct btrfs_block_group_cache *block_group,
2536			     struct btrfs_free_cluster *cluster)
2537{
2538	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2539	struct btrfs_free_space *entry;
2540	struct rb_node *node;
2541
2542	spin_lock(&cluster->lock);
2543	if (cluster->block_group != block_group)
2544		goto out;
 
 
2545
2546	cluster->block_group = NULL;
2547	cluster->window_start = 0;
2548	list_del_init(&cluster->block_group_list);
2549
2550	node = rb_first(&cluster->root);
2551	while (node) {
2552		bool bitmap;
2553
2554		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2555		node = rb_next(&entry->offset_index);
2556		rb_erase(&entry->offset_index, &cluster->root);
2557		RB_CLEAR_NODE(&entry->offset_index);
2558
2559		bitmap = (entry->bitmap != NULL);
2560		if (!bitmap) {
 
 
 
 
 
 
 
2561			try_merge_free_space(ctl, entry, false);
2562			steal_from_bitmap(ctl, entry, false);
 
 
 
 
 
 
 
2563		}
2564		tree_insert_offset(&ctl->free_space_offset,
2565				   entry->offset, &entry->offset_index, bitmap);
 
 
2566	}
2567	cluster->root = RB_ROOT;
2568
2569out:
2570	spin_unlock(&cluster->lock);
2571	btrfs_put_block_group(block_group);
2572	return 0;
2573}
2574
2575static void __btrfs_remove_free_space_cache_locked(
2576				struct btrfs_free_space_ctl *ctl)
2577{
2578	struct btrfs_free_space *info;
2579	struct rb_node *node;
2580
2581	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2582		info = rb_entry(node, struct btrfs_free_space, offset_index);
2583		if (!info->bitmap) {
2584			unlink_free_space(ctl, info);
2585			kmem_cache_free(btrfs_free_space_cachep, info);
2586		} else {
2587			free_bitmap(ctl, info);
2588		}
2589
2590		cond_resched_lock(&ctl->tree_lock);
2591	}
2592}
2593
2594void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2595{
2596	spin_lock(&ctl->tree_lock);
2597	__btrfs_remove_free_space_cache_locked(ctl);
2598	spin_unlock(&ctl->tree_lock);
2599}
2600
2601void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2602{
2603	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2604	struct btrfs_free_cluster *cluster;
2605	struct list_head *head;
2606
2607	spin_lock(&ctl->tree_lock);
2608	while ((head = block_group->cluster_list.next) !=
2609	       &block_group->cluster_list) {
2610		cluster = list_entry(head, struct btrfs_free_cluster,
2611				     block_group_list);
2612
2613		WARN_ON(cluster->block_group != block_group);
2614		__btrfs_return_cluster_to_free_space(block_group, cluster);
2615
2616		cond_resched_lock(&ctl->tree_lock);
2617	}
2618	__btrfs_remove_free_space_cache_locked(ctl);
 
2619	spin_unlock(&ctl->tree_lock);
2620
2621}
2622
2623u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624			       u64 offset, u64 bytes, u64 empty_size,
2625			       u64 *max_extent_size)
2626{
2627	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2628	struct btrfs_free_space *entry = NULL;
2629	u64 bytes_search = bytes + empty_size;
2630	u64 ret = 0;
2631	u64 align_gap = 0;
2632	u64 align_gap_len = 0;
 
 
 
 
2633
2634	spin_lock(&ctl->tree_lock);
2635	entry = find_free_space(ctl, &offset, &bytes_search,
2636				block_group->full_stripe_len, max_extent_size);
 
2637	if (!entry)
2638		goto out;
2639
2640	ret = offset;
2641	if (entry->bitmap) {
2642		bitmap_clear_bits(ctl, entry, offset, bytes);
 
 
 
 
2643		if (!entry->bytes)
2644			free_bitmap(ctl, entry);
2645	} else {
2646		unlink_free_space(ctl, entry);
2647		align_gap_len = offset - entry->offset;
2648		align_gap = entry->offset;
 
 
 
 
2649
2650		entry->offset = offset + bytes;
2651		WARN_ON(entry->bytes < bytes + align_gap_len);
2652
2653		entry->bytes -= bytes + align_gap_len;
2654		if (!entry->bytes)
2655			kmem_cache_free(btrfs_free_space_cachep, entry);
2656		else
2657			link_free_space(ctl, entry);
2658	}
2659out:
 
2660	spin_unlock(&ctl->tree_lock);
2661
2662	if (align_gap_len)
2663		__btrfs_add_free_space(block_group->fs_info, ctl,
2664				       align_gap, align_gap_len);
2665	return ret;
2666}
2667
2668/*
2669 * given a cluster, put all of its extents back into the free space
2670 * cache.  If a block group is passed, this function will only free
2671 * a cluster that belongs to the passed block group.
2672 *
2673 * Otherwise, it'll get a reference on the block group pointed to by the
2674 * cluster and remove the cluster from it.
2675 */
2676int btrfs_return_cluster_to_free_space(
2677			       struct btrfs_block_group_cache *block_group,
2678			       struct btrfs_free_cluster *cluster)
2679{
2680	struct btrfs_free_space_ctl *ctl;
2681	int ret;
2682
2683	/* first, get a safe pointer to the block group */
2684	spin_lock(&cluster->lock);
2685	if (!block_group) {
2686		block_group = cluster->block_group;
2687		if (!block_group) {
2688			spin_unlock(&cluster->lock);
2689			return 0;
2690		}
2691	} else if (cluster->block_group != block_group) {
2692		/* someone else has already freed it don't redo their work */
2693		spin_unlock(&cluster->lock);
2694		return 0;
2695	}
2696	atomic_inc(&block_group->count);
2697	spin_unlock(&cluster->lock);
2698
2699	ctl = block_group->free_space_ctl;
2700
2701	/* now return any extents the cluster had on it */
2702	spin_lock(&ctl->tree_lock);
2703	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2704	spin_unlock(&ctl->tree_lock);
2705
 
 
2706	/* finally drop our ref */
2707	btrfs_put_block_group(block_group);
2708	return ret;
2709}
2710
2711static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2712				   struct btrfs_free_cluster *cluster,
2713				   struct btrfs_free_space *entry,
2714				   u64 bytes, u64 min_start,
2715				   u64 *max_extent_size)
2716{
2717	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2718	int err;
2719	u64 search_start = cluster->window_start;
2720	u64 search_bytes = bytes;
2721	u64 ret = 0;
2722
2723	search_start = min_start;
2724	search_bytes = bytes;
2725
2726	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2727	if (err) {
2728		*max_extent_size = max(get_max_extent_size(entry),
2729				       *max_extent_size);
2730		return 0;
2731	}
2732
2733	ret = search_start;
2734	__bitmap_clear_bits(ctl, entry, ret, bytes);
2735
2736	return ret;
2737}
2738
2739/*
2740 * given a cluster, try to allocate 'bytes' from it, returns 0
2741 * if it couldn't find anything suitably large, or a logical disk offset
2742 * if things worked out
2743 */
2744u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2745			     struct btrfs_free_cluster *cluster, u64 bytes,
2746			     u64 min_start, u64 *max_extent_size)
2747{
2748	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2749	struct btrfs_free_space *entry = NULL;
2750	struct rb_node *node;
2751	u64 ret = 0;
2752
 
 
2753	spin_lock(&cluster->lock);
2754	if (bytes > cluster->max_size)
2755		goto out;
2756
2757	if (cluster->block_group != block_group)
2758		goto out;
2759
2760	node = rb_first(&cluster->root);
2761	if (!node)
2762		goto out;
2763
2764	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2765	while (1) {
2766		if (entry->bytes < bytes)
2767			*max_extent_size = max(get_max_extent_size(entry),
2768					       *max_extent_size);
2769
2770		if (entry->bytes < bytes ||
2771		    (!entry->bitmap && entry->offset < min_start)) {
2772			node = rb_next(&entry->offset_index);
2773			if (!node)
2774				break;
2775			entry = rb_entry(node, struct btrfs_free_space,
2776					 offset_index);
2777			continue;
2778		}
2779
2780		if (entry->bitmap) {
2781			ret = btrfs_alloc_from_bitmap(block_group,
2782						      cluster, entry, bytes,
2783						      cluster->window_start,
2784						      max_extent_size);
2785			if (ret == 0) {
2786				node = rb_next(&entry->offset_index);
2787				if (!node)
2788					break;
2789				entry = rb_entry(node, struct btrfs_free_space,
2790						 offset_index);
2791				continue;
2792			}
2793			cluster->window_start += bytes;
2794		} else {
2795			ret = entry->offset;
2796
2797			entry->offset += bytes;
2798			entry->bytes -= bytes;
2799		}
2800
2801		if (entry->bytes == 0)
2802			rb_erase(&entry->offset_index, &cluster->root);
2803		break;
2804	}
2805out:
2806	spin_unlock(&cluster->lock);
2807
2808	if (!ret)
2809		return 0;
2810
2811	spin_lock(&ctl->tree_lock);
2812
 
 
 
2813	ctl->free_space -= bytes;
 
 
 
 
2814	if (entry->bytes == 0) {
 
2815		ctl->free_extents--;
2816		if (entry->bitmap) {
2817			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2818					entry->bitmap);
2819			ctl->total_bitmaps--;
2820			ctl->op->recalc_thresholds(ctl);
 
 
2821		}
2822		kmem_cache_free(btrfs_free_space_cachep, entry);
2823	}
2824
 
2825	spin_unlock(&ctl->tree_lock);
2826
2827	return ret;
2828}
2829
2830static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2831				struct btrfs_free_space *entry,
2832				struct btrfs_free_cluster *cluster,
2833				u64 offset, u64 bytes,
2834				u64 cont1_bytes, u64 min_bytes)
2835{
2836	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2837	unsigned long next_zero;
2838	unsigned long i;
2839	unsigned long want_bits;
2840	unsigned long min_bits;
2841	unsigned long found_bits;
2842	unsigned long max_bits = 0;
2843	unsigned long start = 0;
2844	unsigned long total_found = 0;
2845	int ret;
2846
2847	i = offset_to_bit(entry->offset, ctl->unit,
2848			  max_t(u64, offset, entry->offset));
2849	want_bits = bytes_to_bits(bytes, ctl->unit);
2850	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2851
2852	/*
2853	 * Don't bother looking for a cluster in this bitmap if it's heavily
2854	 * fragmented.
2855	 */
2856	if (entry->max_extent_size &&
2857	    entry->max_extent_size < cont1_bytes)
2858		return -ENOSPC;
2859again:
2860	found_bits = 0;
2861	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2862		next_zero = find_next_zero_bit(entry->bitmap,
2863					       BITS_PER_BITMAP, i);
2864		if (next_zero - i >= min_bits) {
2865			found_bits = next_zero - i;
2866			if (found_bits > max_bits)
2867				max_bits = found_bits;
2868			break;
2869		}
2870		if (next_zero - i > max_bits)
2871			max_bits = next_zero - i;
2872		i = next_zero;
2873	}
2874
2875	if (!found_bits) {
2876		entry->max_extent_size = (u64)max_bits * ctl->unit;
2877		return -ENOSPC;
2878	}
2879
2880	if (!total_found) {
2881		start = i;
2882		cluster->max_size = 0;
2883	}
2884
2885	total_found += found_bits;
2886
2887	if (cluster->max_size < found_bits * ctl->unit)
2888		cluster->max_size = found_bits * ctl->unit;
2889
2890	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2891		i = next_zero + 1;
2892		goto again;
2893	}
2894
2895	cluster->window_start = start * ctl->unit + entry->offset;
2896	rb_erase(&entry->offset_index, &ctl->free_space_offset);
 
 
 
 
 
 
 
 
 
 
 
2897	ret = tree_insert_offset(&cluster->root, entry->offset,
2898				 &entry->offset_index, 1);
2899	ASSERT(!ret); /* -EEXIST; Logic error */
2900
2901	trace_btrfs_setup_cluster(block_group, cluster,
2902				  total_found * ctl->unit, 1);
2903	return 0;
2904}
2905
2906/*
2907 * This searches the block group for just extents to fill the cluster with.
2908 * Try to find a cluster with at least bytes total bytes, at least one
2909 * extent of cont1_bytes, and other clusters of at least min_bytes.
2910 */
2911static noinline int
2912setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2913			struct btrfs_free_cluster *cluster,
2914			struct list_head *bitmaps, u64 offset, u64 bytes,
2915			u64 cont1_bytes, u64 min_bytes)
2916{
2917	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2918	struct btrfs_free_space *first = NULL;
2919	struct btrfs_free_space *entry = NULL;
2920	struct btrfs_free_space *last;
2921	struct rb_node *node;
2922	u64 window_free;
2923	u64 max_extent;
2924	u64 total_size = 0;
2925
2926	entry = tree_search_offset(ctl, offset, 0, 1);
2927	if (!entry)
2928		return -ENOSPC;
2929
2930	/*
2931	 * We don't want bitmaps, so just move along until we find a normal
2932	 * extent entry.
2933	 */
2934	while (entry->bitmap || entry->bytes < min_bytes) {
2935		if (entry->bitmap && list_empty(&entry->list))
2936			list_add_tail(&entry->list, bitmaps);
2937		node = rb_next(&entry->offset_index);
2938		if (!node)
2939			return -ENOSPC;
2940		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2941	}
2942
2943	window_free = entry->bytes;
2944	max_extent = entry->bytes;
2945	first = entry;
2946	last = entry;
2947
2948	for (node = rb_next(&entry->offset_index); node;
2949	     node = rb_next(&entry->offset_index)) {
2950		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2951
2952		if (entry->bitmap) {
2953			if (list_empty(&entry->list))
2954				list_add_tail(&entry->list, bitmaps);
2955			continue;
2956		}
2957
2958		if (entry->bytes < min_bytes)
2959			continue;
2960
2961		last = entry;
2962		window_free += entry->bytes;
2963		if (entry->bytes > max_extent)
2964			max_extent = entry->bytes;
2965	}
2966
2967	if (window_free < bytes || max_extent < cont1_bytes)
2968		return -ENOSPC;
2969
2970	cluster->window_start = first->offset;
2971
2972	node = &first->offset_index;
2973
2974	/*
2975	 * now we've found our entries, pull them out of the free space
2976	 * cache and put them into the cluster rbtree
2977	 */
2978	do {
2979		int ret;
2980
2981		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2982		node = rb_next(&entry->offset_index);
2983		if (entry->bitmap || entry->bytes < min_bytes)
2984			continue;
2985
2986		rb_erase(&entry->offset_index, &ctl->free_space_offset);
 
2987		ret = tree_insert_offset(&cluster->root, entry->offset,
2988					 &entry->offset_index, 0);
2989		total_size += entry->bytes;
2990		ASSERT(!ret); /* -EEXIST; Logic error */
2991	} while (node && entry != last);
2992
2993	cluster->max_size = max_extent;
2994	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2995	return 0;
2996}
2997
2998/*
2999 * This specifically looks for bitmaps that may work in the cluster, we assume
3000 * that we have already failed to find extents that will work.
3001 */
3002static noinline int
3003setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
3004		     struct btrfs_free_cluster *cluster,
3005		     struct list_head *bitmaps, u64 offset, u64 bytes,
3006		     u64 cont1_bytes, u64 min_bytes)
3007{
3008	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3009	struct btrfs_free_space *entry = NULL;
3010	int ret = -ENOSPC;
3011	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3012
3013	if (ctl->total_bitmaps == 0)
3014		return -ENOSPC;
3015
3016	/*
3017	 * The bitmap that covers offset won't be in the list unless offset
3018	 * is just its start offset.
3019	 */
3020	if (!list_empty(bitmaps))
3021		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3022
3023	if (!entry || entry->offset != bitmap_offset) {
3024		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3025		if (entry && list_empty(&entry->list))
3026			list_add(&entry->list, bitmaps);
3027	}
3028
3029	list_for_each_entry(entry, bitmaps, list) {
3030		if (entry->bytes < bytes)
3031			continue;
3032		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3033					   bytes, cont1_bytes, min_bytes);
3034		if (!ret)
3035			return 0;
3036	}
3037
3038	/*
3039	 * The bitmaps list has all the bitmaps that record free space
3040	 * starting after offset, so no more search is required.
3041	 */
3042	return -ENOSPC;
3043}
3044
3045/*
3046 * here we try to find a cluster of blocks in a block group.  The goal
3047 * is to find at least bytes+empty_size.
3048 * We might not find them all in one contiguous area.
3049 *
3050 * returns zero and sets up cluster if things worked out, otherwise
3051 * it returns -enospc
3052 */
3053int btrfs_find_space_cluster(struct btrfs_block_group_cache *block_group,
3054			     struct btrfs_free_cluster *cluster,
3055			     u64 offset, u64 bytes, u64 empty_size)
3056{
3057	struct btrfs_fs_info *fs_info = block_group->fs_info;
3058	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3059	struct btrfs_free_space *entry, *tmp;
3060	LIST_HEAD(bitmaps);
3061	u64 min_bytes;
3062	u64 cont1_bytes;
3063	int ret;
3064
3065	/*
3066	 * Choose the minimum extent size we'll require for this
3067	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3068	 * For metadata, allow allocates with smaller extents.  For
3069	 * data, keep it dense.
3070	 */
3071	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3072		cont1_bytes = min_bytes = bytes + empty_size;
 
3073	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3074		cont1_bytes = bytes;
3075		min_bytes = fs_info->sectorsize;
3076	} else {
3077		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3078		min_bytes = fs_info->sectorsize;
3079	}
3080
3081	spin_lock(&ctl->tree_lock);
3082
3083	/*
3084	 * If we know we don't have enough space to make a cluster don't even
3085	 * bother doing all the work to try and find one.
3086	 */
3087	if (ctl->free_space < bytes) {
3088		spin_unlock(&ctl->tree_lock);
3089		return -ENOSPC;
3090	}
3091
3092	spin_lock(&cluster->lock);
3093
3094	/* someone already found a cluster, hooray */
3095	if (cluster->block_group) {
3096		ret = 0;
3097		goto out;
3098	}
3099
3100	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3101				 min_bytes);
3102
3103	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3104				      bytes + empty_size,
3105				      cont1_bytes, min_bytes);
3106	if (ret)
3107		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3108					   offset, bytes + empty_size,
3109					   cont1_bytes, min_bytes);
3110
3111	/* Clear our temporary list */
3112	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3113		list_del_init(&entry->list);
3114
3115	if (!ret) {
3116		atomic_inc(&block_group->count);
3117		list_add_tail(&cluster->block_group_list,
3118			      &block_group->cluster_list);
3119		cluster->block_group = block_group;
3120	} else {
3121		trace_btrfs_failed_cluster_setup(block_group);
3122	}
3123out:
3124	spin_unlock(&cluster->lock);
3125	spin_unlock(&ctl->tree_lock);
3126
3127	return ret;
3128}
3129
3130/*
3131 * simple code to zero out a cluster
3132 */
3133void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3134{
3135	spin_lock_init(&cluster->lock);
3136	spin_lock_init(&cluster->refill_lock);
3137	cluster->root = RB_ROOT;
3138	cluster->max_size = 0;
3139	cluster->fragmented = false;
3140	INIT_LIST_HEAD(&cluster->block_group_list);
3141	cluster->block_group = NULL;
3142}
3143
3144static int do_trimming(struct btrfs_block_group_cache *block_group,
3145		       u64 *total_trimmed, u64 start, u64 bytes,
3146		       u64 reserved_start, u64 reserved_bytes,
 
3147		       struct btrfs_trim_range *trim_entry)
3148{
3149	struct btrfs_space_info *space_info = block_group->space_info;
3150	struct btrfs_fs_info *fs_info = block_group->fs_info;
3151	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3152	int ret;
3153	int update = 0;
 
 
 
3154	u64 trimmed = 0;
3155
3156	spin_lock(&space_info->lock);
3157	spin_lock(&block_group->lock);
3158	if (!block_group->ro) {
3159		block_group->reserved += reserved_bytes;
3160		space_info->bytes_reserved += reserved_bytes;
3161		update = 1;
3162	}
3163	spin_unlock(&block_group->lock);
3164	spin_unlock(&space_info->lock);
3165
3166	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3167	if (!ret)
3168		*total_trimmed += trimmed;
 
 
3169
3170	mutex_lock(&ctl->cache_writeout_mutex);
3171	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
 
 
 
 
 
 
 
3172	list_del(&trim_entry->list);
3173	mutex_unlock(&ctl->cache_writeout_mutex);
3174
3175	if (update) {
3176		spin_lock(&space_info->lock);
3177		spin_lock(&block_group->lock);
3178		if (block_group->ro)
3179			space_info->bytes_readonly += reserved_bytes;
3180		block_group->reserved -= reserved_bytes;
3181		space_info->bytes_reserved -= reserved_bytes;
3182		spin_unlock(&block_group->lock);
3183		spin_unlock(&space_info->lock);
3184	}
3185
3186	return ret;
3187}
3188
3189static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3190			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
3191{
 
 
3192	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3193	struct btrfs_free_space *entry;
3194	struct rb_node *node;
3195	int ret = 0;
3196	u64 extent_start;
3197	u64 extent_bytes;
 
3198	u64 bytes;
 
3199
3200	while (start < end) {
3201		struct btrfs_trim_range trim_entry;
3202
3203		mutex_lock(&ctl->cache_writeout_mutex);
3204		spin_lock(&ctl->tree_lock);
3205
3206		if (ctl->free_space < minlen) {
3207			spin_unlock(&ctl->tree_lock);
3208			mutex_unlock(&ctl->cache_writeout_mutex);
3209			break;
3210		}
3211
3212		entry = tree_search_offset(ctl, start, 0, 1);
3213		if (!entry) {
3214			spin_unlock(&ctl->tree_lock);
3215			mutex_unlock(&ctl->cache_writeout_mutex);
3216			break;
3217		}
3218
3219		/* skip bitmaps */
3220		while (entry->bitmap) {
 
3221			node = rb_next(&entry->offset_index);
3222			if (!node) {
3223				spin_unlock(&ctl->tree_lock);
3224				mutex_unlock(&ctl->cache_writeout_mutex);
3225				goto out;
3226			}
3227			entry = rb_entry(node, struct btrfs_free_space,
3228					 offset_index);
3229		}
3230
3231		if (entry->offset >= end) {
3232			spin_unlock(&ctl->tree_lock);
3233			mutex_unlock(&ctl->cache_writeout_mutex);
3234			break;
3235		}
3236
3237		extent_start = entry->offset;
3238		extent_bytes = entry->bytes;
3239		start = max(start, extent_start);
3240		bytes = min(extent_start + extent_bytes, end) - start;
3241		if (bytes < minlen) {
3242			spin_unlock(&ctl->tree_lock);
3243			mutex_unlock(&ctl->cache_writeout_mutex);
3244			goto next;
3245		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3246
3247		unlink_free_space(ctl, entry);
3248		kmem_cache_free(btrfs_free_space_cachep, entry);
 
3249
3250		spin_unlock(&ctl->tree_lock);
3251		trim_entry.start = extent_start;
3252		trim_entry.bytes = extent_bytes;
3253		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3254		mutex_unlock(&ctl->cache_writeout_mutex);
3255
3256		ret = do_trimming(block_group, total_trimmed, start, bytes,
3257				  extent_start, extent_bytes, &trim_entry);
3258		if (ret)
 
 
3259			break;
 
3260next:
3261		start += bytes;
 
 
 
3262
3263		if (fatal_signal_pending(current)) {
3264			ret = -ERESTARTSYS;
3265			break;
3266		}
3267
3268		cond_resched();
3269	}
3270out:
3271	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3272}
3273
3274static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3275			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
3276{
 
 
3277	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3278	struct btrfs_free_space *entry;
3279	int ret = 0;
3280	int ret2;
3281	u64 bytes;
3282	u64 offset = offset_to_bitmap(ctl, start);
 
3283
3284	while (offset < end) {
3285		bool next_bitmap = false;
3286		struct btrfs_trim_range trim_entry;
3287
3288		mutex_lock(&ctl->cache_writeout_mutex);
3289		spin_lock(&ctl->tree_lock);
3290
3291		if (ctl->free_space < minlen) {
 
 
3292			spin_unlock(&ctl->tree_lock);
3293			mutex_unlock(&ctl->cache_writeout_mutex);
3294			break;
3295		}
3296
3297		entry = tree_search_offset(ctl, offset, 1, 0);
3298		if (!entry) {
 
 
 
 
 
 
 
 
 
3299			spin_unlock(&ctl->tree_lock);
3300			mutex_unlock(&ctl->cache_writeout_mutex);
3301			next_bitmap = true;
3302			goto next;
3303		}
3304
 
 
 
 
 
 
 
 
 
3305		bytes = minlen;
3306		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3307		if (ret2 || start >= end) {
 
 
 
 
 
 
 
 
3308			spin_unlock(&ctl->tree_lock);
3309			mutex_unlock(&ctl->cache_writeout_mutex);
3310			next_bitmap = true;
3311			goto next;
3312		}
3313
 
 
 
 
 
 
 
 
 
 
3314		bytes = min(bytes, end - start);
3315		if (bytes < minlen) {
3316			spin_unlock(&ctl->tree_lock);
3317			mutex_unlock(&ctl->cache_writeout_mutex);
3318			goto next;
3319		}
3320
3321		bitmap_clear_bits(ctl, entry, start, bytes);
 
 
 
 
 
 
 
 
 
 
 
3322		if (entry->bytes == 0)
3323			free_bitmap(ctl, entry);
3324
3325		spin_unlock(&ctl->tree_lock);
3326		trim_entry.start = start;
3327		trim_entry.bytes = bytes;
3328		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3329		mutex_unlock(&ctl->cache_writeout_mutex);
3330
3331		ret = do_trimming(block_group, total_trimmed, start, bytes,
3332				  start, bytes, &trim_entry);
3333		if (ret)
 
 
 
3334			break;
 
3335next:
3336		if (next_bitmap) {
3337			offset += BITS_PER_BITMAP * ctl->unit;
 
3338		} else {
3339			start += bytes;
3340			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3341				offset += BITS_PER_BITMAP * ctl->unit;
3342		}
 
3343
3344		if (fatal_signal_pending(current)) {
 
 
3345			ret = -ERESTARTSYS;
3346			break;
3347		}
3348
3349		cond_resched();
3350	}
3351
3352	return ret;
3353}
3354
3355void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3356{
3357	atomic_inc(&cache->trimming);
3358}
3359
3360void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3361{
3362	struct btrfs_fs_info *fs_info = block_group->fs_info;
3363	struct extent_map_tree *em_tree;
3364	struct extent_map *em;
3365	bool cleanup;
3366
3367	spin_lock(&block_group->lock);
3368	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3369		   block_group->removed);
3370	spin_unlock(&block_group->lock);
3371
3372	if (cleanup) {
3373		mutex_lock(&fs_info->chunk_mutex);
3374		em_tree = &fs_info->mapping_tree;
3375		write_lock(&em_tree->lock);
3376		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3377					   1);
3378		BUG_ON(!em); /* logic error, can't happen */
3379		remove_extent_mapping(em_tree, em);
3380		write_unlock(&em_tree->lock);
3381		mutex_unlock(&fs_info->chunk_mutex);
3382
3383		/* once for us and once for the tree */
3384		free_extent_map(em);
3385		free_extent_map(em);
3386
3387		/*
3388		 * We've left one free space entry and other tasks trimming
3389		 * this block group have left 1 entry each one. Free them.
3390		 */
3391		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3392	}
3393}
3394
3395int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3396			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3397{
 
3398	int ret;
 
 
 
3399
3400	*trimmed = 0;
3401
3402	spin_lock(&block_group->lock);
3403	if (block_group->removed) {
3404		spin_unlock(&block_group->lock);
3405		return 0;
3406	}
3407	btrfs_get_block_group_trimming(block_group);
3408	spin_unlock(&block_group->lock);
3409
3410	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3411	if (ret)
3412		goto out;
3413
3414	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
 
 
 
 
3415out:
3416	btrfs_put_block_group_trimming(block_group);
3417	return ret;
3418}
3419
3420/*
3421 * Find the left-most item in the cache tree, and then return the
3422 * smallest inode number in the item.
3423 *
3424 * Note: the returned inode number may not be the smallest one in
3425 * the tree, if the left-most item is a bitmap.
3426 */
3427u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3428{
3429	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3430	struct btrfs_free_space *entry = NULL;
3431	u64 ino = 0;
3432
3433	spin_lock(&ctl->tree_lock);
3434
3435	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3436		goto out;
3437
3438	entry = rb_entry(rb_first(&ctl->free_space_offset),
3439			 struct btrfs_free_space, offset_index);
3440
3441	if (!entry->bitmap) {
3442		ino = entry->offset;
3443
3444		unlink_free_space(ctl, entry);
3445		entry->offset++;
3446		entry->bytes--;
3447		if (!entry->bytes)
3448			kmem_cache_free(btrfs_free_space_cachep, entry);
3449		else
3450			link_free_space(ctl, entry);
3451	} else {
3452		u64 offset = 0;
3453		u64 count = 1;
3454		int ret;
3455
3456		ret = search_bitmap(ctl, entry, &offset, &count, true);
3457		/* Logic error; Should be empty if it can't find anything */
3458		ASSERT(!ret);
3459
3460		ino = offset;
3461		bitmap_clear_bits(ctl, entry, offset, 1);
3462		if (entry->bytes == 0)
3463			free_bitmap(ctl, entry);
3464	}
3465out:
3466	spin_unlock(&ctl->tree_lock);
 
 
 
3467
3468	return ino;
3469}
3470
3471struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3472				    struct btrfs_path *path)
 
3473{
3474	struct inode *inode = NULL;
3475
3476	spin_lock(&root->ino_cache_lock);
3477	if (root->ino_cache_inode)
3478		inode = igrab(root->ino_cache_inode);
3479	spin_unlock(&root->ino_cache_lock);
3480	if (inode)
3481		return inode;
3482
3483	inode = __lookup_free_space_inode(root, path, 0);
3484	if (IS_ERR(inode))
3485		return inode;
 
 
 
 
3486
3487	spin_lock(&root->ino_cache_lock);
3488	if (!btrfs_fs_closing(root->fs_info))
3489		root->ino_cache_inode = igrab(inode);
3490	spin_unlock(&root->ino_cache_lock);
3491
3492	return inode;
 
 
3493}
3494
3495int create_free_ino_inode(struct btrfs_root *root,
3496			  struct btrfs_trans_handle *trans,
3497			  struct btrfs_path *path)
3498{
3499	return __create_free_space_inode(root, trans, path,
3500					 BTRFS_FREE_INO_OBJECTID, 0);
3501}
3502
3503int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
 
3504{
3505	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3506	struct btrfs_path *path;
3507	struct inode *inode;
3508	int ret = 0;
3509	u64 root_gen = btrfs_root_generation(&root->root_item);
3510
3511	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3512		return 0;
3513
3514	/*
3515	 * If we're unmounting then just return, since this does a search on the
3516	 * normal root and not the commit root and we could deadlock.
3517	 */
3518	if (btrfs_fs_closing(fs_info))
3519		return 0;
3520
3521	path = btrfs_alloc_path();
3522	if (!path)
3523		return 0;
3524
3525	inode = lookup_free_ino_inode(root, path);
3526	if (IS_ERR(inode))
3527		goto out;
3528
3529	if (root_gen != BTRFS_I(inode)->generation)
3530		goto out_put;
 
 
3531
3532	ret = __load_free_space_cache(root, inode, ctl, path, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3533
3534	if (ret < 0)
3535		btrfs_err(fs_info,
3536			"failed to load free ino cache for root %llu",
3537			root->root_key.objectid);
3538out_put:
3539	iput(inode);
3540out:
3541	btrfs_free_path(path);
 
3542	return ret;
3543}
3544
3545int btrfs_write_out_ino_cache(struct btrfs_root *root,
3546			      struct btrfs_trans_handle *trans,
3547			      struct btrfs_path *path,
3548			      struct inode *inode)
3549{
3550	struct btrfs_fs_info *fs_info = root->fs_info;
3551	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3552	int ret;
3553	struct btrfs_io_ctl io_ctl;
3554	bool release_metadata = true;
3555
3556	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3557		return 0;
3558
3559	memset(&io_ctl, 0, sizeof(io_ctl));
3560	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3561	if (!ret) {
3562		/*
3563		 * At this point writepages() didn't error out, so our metadata
3564		 * reservation is released when the writeback finishes, at
3565		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3566		 * with or without an error.
3567		 */
3568		release_metadata = false;
3569		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3570	}
3571
3572	if (ret) {
3573		if (release_metadata)
3574			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3575					inode->i_size, true);
3576#ifdef DEBUG
3577		btrfs_err(fs_info,
3578			  "failed to write free ino cache for root %llu",
3579			  root->root_key.objectid);
3580#endif
3581	}
3582
3583	return ret;
 
 
 
3584}
3585
3586#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3587/*
3588 * Use this if you need to make a bitmap or extent entry specifically, it
3589 * doesn't do any of the merging that add_free_space does, this acts a lot like
3590 * how the free space cache loading stuff works, so you can get really weird
3591 * configurations.
3592 */
3593int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3594			      u64 offset, u64 bytes, bool bitmap)
3595{
3596	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3597	struct btrfs_free_space *info = NULL, *bitmap_info;
3598	void *map = NULL;
 
3599	u64 bytes_added;
3600	int ret;
3601
3602again:
3603	if (!info) {
3604		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3605		if (!info)
3606			return -ENOMEM;
3607	}
3608
3609	if (!bitmap) {
3610		spin_lock(&ctl->tree_lock);
3611		info->offset = offset;
3612		info->bytes = bytes;
3613		info->max_extent_size = 0;
3614		ret = link_free_space(ctl, info);
3615		spin_unlock(&ctl->tree_lock);
3616		if (ret)
3617			kmem_cache_free(btrfs_free_space_cachep, info);
3618		return ret;
3619	}
3620
3621	if (!map) {
3622		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3623		if (!map) {
3624			kmem_cache_free(btrfs_free_space_cachep, info);
3625			return -ENOMEM;
3626		}
3627	}
3628
3629	spin_lock(&ctl->tree_lock);
3630	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3631					 1, 0);
3632	if (!bitmap_info) {
3633		info->bitmap = map;
3634		map = NULL;
3635		add_new_bitmap(ctl, info, offset);
3636		bitmap_info = info;
3637		info = NULL;
3638	}
3639
3640	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
3641
3642	bytes -= bytes_added;
3643	offset += bytes_added;
3644	spin_unlock(&ctl->tree_lock);
3645
3646	if (bytes)
3647		goto again;
3648
3649	if (info)
3650		kmem_cache_free(btrfs_free_space_cachep, info);
3651	if (map)
3652		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3653	return 0;
3654}
3655
3656/*
3657 * Checks to see if the given range is in the free space cache.  This is really
3658 * just used to check the absence of space, so if there is free space in the
3659 * range at all we will return 1.
3660 */
3661int test_check_exists(struct btrfs_block_group_cache *cache,
3662		      u64 offset, u64 bytes)
3663{
3664	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3665	struct btrfs_free_space *info;
3666	int ret = 0;
3667
3668	spin_lock(&ctl->tree_lock);
3669	info = tree_search_offset(ctl, offset, 0, 0);
3670	if (!info) {
3671		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3672					  1, 0);
3673		if (!info)
3674			goto out;
3675	}
3676
3677have_info:
3678	if (info->bitmap) {
3679		u64 bit_off, bit_bytes;
3680		struct rb_node *n;
3681		struct btrfs_free_space *tmp;
3682
3683		bit_off = offset;
3684		bit_bytes = ctl->unit;
3685		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3686		if (!ret) {
3687			if (bit_off == offset) {
3688				ret = 1;
3689				goto out;
3690			} else if (bit_off > offset &&
3691				   offset + bytes > bit_off) {
3692				ret = 1;
3693				goto out;
3694			}
3695		}
3696
3697		n = rb_prev(&info->offset_index);
3698		while (n) {
3699			tmp = rb_entry(n, struct btrfs_free_space,
3700				       offset_index);
3701			if (tmp->offset + tmp->bytes < offset)
3702				break;
3703			if (offset + bytes < tmp->offset) {
3704				n = rb_prev(&tmp->offset_index);
3705				continue;
3706			}
3707			info = tmp;
3708			goto have_info;
3709		}
3710
3711		n = rb_next(&info->offset_index);
3712		while (n) {
3713			tmp = rb_entry(n, struct btrfs_free_space,
3714				       offset_index);
3715			if (offset + bytes < tmp->offset)
3716				break;
3717			if (tmp->offset + tmp->bytes < offset) {
3718				n = rb_next(&tmp->offset_index);
3719				continue;
3720			}
3721			info = tmp;
3722			goto have_info;
3723		}
3724
3725		ret = 0;
3726		goto out;
3727	}
3728
3729	if (info->offset == offset) {
3730		ret = 1;
3731		goto out;
3732	}
3733
3734	if (offset > info->offset && offset < info->offset + info->bytes)
3735		ret = 1;
3736out:
3737	spin_unlock(&ctl->tree_lock);
3738	return ret;
3739}
3740#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "ctree.h"
  15#include "fs.h"
  16#include "messages.h"
  17#include "misc.h"
  18#include "free-space-cache.h"
  19#include "transaction.h"
  20#include "disk-io.h"
  21#include "extent_io.h"
 
  22#include "volumes.h"
  23#include "space-info.h"
  24#include "delalloc-space.h"
  25#include "block-group.h"
  26#include "discard.h"
  27#include "subpage.h"
  28#include "inode-item.h"
  29#include "accessors.h"
  30#include "file-item.h"
  31#include "file.h"
  32#include "super.h"
  33
  34#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  35#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
  36#define FORCE_EXTENT_THRESHOLD	SZ_1M
  37
  38static struct kmem_cache *btrfs_free_space_cachep;
  39static struct kmem_cache *btrfs_free_space_bitmap_cachep;
  40
  41struct btrfs_trim_range {
  42	u64 start;
  43	u64 bytes;
  44	struct list_head list;
  45};
  46
  47static int link_free_space(struct btrfs_free_space_ctl *ctl,
  48			   struct btrfs_free_space *info);
  49static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  50			      struct btrfs_free_space *info, bool update_stat);
  51static int search_bitmap(struct btrfs_free_space_ctl *ctl,
  52			 struct btrfs_free_space *bitmap_info, u64 *offset,
  53			 u64 *bytes, bool for_alloc);
  54static void free_bitmap(struct btrfs_free_space_ctl *ctl,
  55			struct btrfs_free_space *bitmap_info);
  56static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  57			      struct btrfs_free_space *info, u64 offset,
  58			      u64 bytes, bool update_stats);
  59
  60static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
  61{
  62	struct btrfs_free_space *info;
  63	struct rb_node *node;
  64
  65	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
  66		info = rb_entry(node, struct btrfs_free_space, offset_index);
  67		if (!info->bitmap) {
  68			unlink_free_space(ctl, info, true);
  69			kmem_cache_free(btrfs_free_space_cachep, info);
  70		} else {
  71			free_bitmap(ctl, info);
  72		}
  73
  74		cond_resched_lock(&ctl->tree_lock);
  75	}
  76}
  77
  78static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  79					       struct btrfs_path *path,
  80					       u64 offset)
  81{
  82	struct btrfs_fs_info *fs_info = root->fs_info;
  83	struct btrfs_key key;
  84	struct btrfs_key location;
  85	struct btrfs_disk_key disk_key;
  86	struct btrfs_free_space_header *header;
  87	struct extent_buffer *leaf;
  88	struct inode *inode = NULL;
  89	unsigned nofs_flag;
  90	int ret;
  91
  92	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  93	key.offset = offset;
  94	key.type = 0;
  95
  96	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  97	if (ret < 0)
  98		return ERR_PTR(ret);
  99	if (ret > 0) {
 100		btrfs_release_path(path);
 101		return ERR_PTR(-ENOENT);
 102	}
 103
 104	leaf = path->nodes[0];
 105	header = btrfs_item_ptr(leaf, path->slots[0],
 106				struct btrfs_free_space_header);
 107	btrfs_free_space_key(leaf, header, &disk_key);
 108	btrfs_disk_key_to_cpu(&location, &disk_key);
 109	btrfs_release_path(path);
 110
 111	/*
 112	 * We are often under a trans handle at this point, so we need to make
 113	 * sure NOFS is set to keep us from deadlocking.
 114	 */
 115	nofs_flag = memalloc_nofs_save();
 116	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
 117	btrfs_release_path(path);
 118	memalloc_nofs_restore(nofs_flag);
 119	if (IS_ERR(inode))
 120		return inode;
 121
 122	mapping_set_gfp_mask(inode->i_mapping,
 123			mapping_gfp_constraint(inode->i_mapping,
 124			~(__GFP_FS | __GFP_HIGHMEM)));
 125
 126	return inode;
 127}
 128
 129struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
 
 130		struct btrfs_path *path)
 131{
 132	struct btrfs_fs_info *fs_info = block_group->fs_info;
 133	struct inode *inode = NULL;
 134	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 135
 136	spin_lock(&block_group->lock);
 137	if (block_group->inode)
 138		inode = igrab(block_group->inode);
 139	spin_unlock(&block_group->lock);
 140	if (inode)
 141		return inode;
 142
 143	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 144					  block_group->start);
 145	if (IS_ERR(inode))
 146		return inode;
 147
 148	spin_lock(&block_group->lock);
 149	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 150		btrfs_info(fs_info, "Old style space inode found, converting.");
 151		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 152			BTRFS_INODE_NODATACOW;
 153		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 154	}
 155
 156	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
 157		block_group->inode = igrab(inode);
 
 
 158	spin_unlock(&block_group->lock);
 159
 160	return inode;
 161}
 162
 163static int __create_free_space_inode(struct btrfs_root *root,
 164				     struct btrfs_trans_handle *trans,
 165				     struct btrfs_path *path,
 166				     u64 ino, u64 offset)
 167{
 168	struct btrfs_key key;
 169	struct btrfs_disk_key disk_key;
 170	struct btrfs_free_space_header *header;
 171	struct btrfs_inode_item *inode_item;
 172	struct extent_buffer *leaf;
 173	/* We inline CRCs for the free disk space cache */
 174	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
 175			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 176	int ret;
 177
 178	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 179	if (ret)
 180		return ret;
 181
 
 
 
 
 182	leaf = path->nodes[0];
 183	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 184				    struct btrfs_inode_item);
 185	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 186	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 187			     sizeof(*inode_item));
 188	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 189	btrfs_set_inode_size(leaf, inode_item, 0);
 190	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 191	btrfs_set_inode_uid(leaf, inode_item, 0);
 192	btrfs_set_inode_gid(leaf, inode_item, 0);
 193	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 194	btrfs_set_inode_flags(leaf, inode_item, flags);
 195	btrfs_set_inode_nlink(leaf, inode_item, 1);
 196	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 197	btrfs_set_inode_block_group(leaf, inode_item, offset);
 198	btrfs_mark_buffer_dirty(leaf);
 199	btrfs_release_path(path);
 200
 201	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 202	key.offset = offset;
 203	key.type = 0;
 204	ret = btrfs_insert_empty_item(trans, root, path, &key,
 205				      sizeof(struct btrfs_free_space_header));
 206	if (ret < 0) {
 207		btrfs_release_path(path);
 208		return ret;
 209	}
 210
 211	leaf = path->nodes[0];
 212	header = btrfs_item_ptr(leaf, path->slots[0],
 213				struct btrfs_free_space_header);
 214	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 215	btrfs_set_free_space_key(leaf, header, &disk_key);
 216	btrfs_mark_buffer_dirty(leaf);
 217	btrfs_release_path(path);
 218
 219	return 0;
 220}
 221
 222int create_free_space_inode(struct btrfs_trans_handle *trans,
 223			    struct btrfs_block_group *block_group,
 224			    struct btrfs_path *path)
 225{
 226	int ret;
 227	u64 ino;
 228
 229	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
 230	if (ret < 0)
 231		return ret;
 232
 233	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 234					 ino, block_group->start);
 235}
 236
 237/*
 238 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
 239 * handles lookup, otherwise it takes ownership and iputs the inode.
 240 * Don't reuse an inode pointer after passing it into this function.
 241 */
 242int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
 243				  struct inode *inode,
 244				  struct btrfs_block_group *block_group)
 245{
 246	struct btrfs_path *path;
 247	struct btrfs_key key;
 248	int ret = 0;
 249
 250	path = btrfs_alloc_path();
 251	if (!path)
 252		return -ENOMEM;
 253
 254	if (!inode)
 255		inode = lookup_free_space_inode(block_group, path);
 256	if (IS_ERR(inode)) {
 257		if (PTR_ERR(inode) != -ENOENT)
 258			ret = PTR_ERR(inode);
 259		goto out;
 260	}
 261	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 262	if (ret) {
 263		btrfs_add_delayed_iput(BTRFS_I(inode));
 264		goto out;
 265	}
 266	clear_nlink(inode);
 267	/* One for the block groups ref */
 268	spin_lock(&block_group->lock);
 269	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
 270		block_group->inode = NULL;
 271		spin_unlock(&block_group->lock);
 272		iput(inode);
 273	} else {
 274		spin_unlock(&block_group->lock);
 275	}
 276	/* One for the lookup ref */
 277	btrfs_add_delayed_iput(BTRFS_I(inode));
 278
 279	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 280	key.type = 0;
 281	key.offset = block_group->start;
 282	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
 283				-1, 1);
 284	if (ret) {
 285		if (ret > 0)
 286			ret = 0;
 287		goto out;
 288	}
 289	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
 290out:
 291	btrfs_free_path(path);
 292	return ret;
 293}
 294
 295int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 296				       struct btrfs_block_rsv *rsv)
 297{
 298	u64 needed_bytes;
 299	int ret;
 300
 301	/* 1 for slack space, 1 for updating the inode */
 302	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 303		btrfs_calc_metadata_size(fs_info, 1);
 304
 305	spin_lock(&rsv->lock);
 306	if (rsv->reserved < needed_bytes)
 307		ret = -ENOSPC;
 308	else
 309		ret = 0;
 310	spin_unlock(&rsv->lock);
 311	return ret;
 312}
 313
 314int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 315				    struct btrfs_block_group *block_group,
 316				    struct inode *vfs_inode)
 317{
 318	struct btrfs_truncate_control control = {
 319		.inode = BTRFS_I(vfs_inode),
 320		.new_size = 0,
 321		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
 322		.min_type = BTRFS_EXTENT_DATA_KEY,
 323		.clear_extent_range = true,
 324	};
 325	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
 326	struct btrfs_root *root = inode->root;
 327	struct extent_state *cached_state = NULL;
 328	int ret = 0;
 329	bool locked = false;
 330
 331	if (block_group) {
 332		struct btrfs_path *path = btrfs_alloc_path();
 333
 334		if (!path) {
 335			ret = -ENOMEM;
 336			goto fail;
 337		}
 338		locked = true;
 339		mutex_lock(&trans->transaction->cache_write_mutex);
 340		if (!list_empty(&block_group->io_list)) {
 341			list_del_init(&block_group->io_list);
 342
 343			btrfs_wait_cache_io(trans, block_group, path);
 344			btrfs_put_block_group(block_group);
 345		}
 346
 347		/*
 348		 * now that we've truncated the cache away, its no longer
 349		 * setup or written
 350		 */
 351		spin_lock(&block_group->lock);
 352		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 353		spin_unlock(&block_group->lock);
 354		btrfs_free_path(path);
 355	}
 356
 357	btrfs_i_size_write(inode, 0);
 358	truncate_pagecache(vfs_inode, 0);
 359
 360	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 361	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
 362
 363	/*
 364	 * We skip the throttling logic for free space cache inodes, so we don't
 365	 * need to check for -EAGAIN.
 366	 */
 367	ret = btrfs_truncate_inode_items(trans, root, &control);
 368
 369	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
 370	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
 371
 372	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 373	if (ret)
 374		goto fail;
 375
 376	ret = btrfs_update_inode(trans, root, inode);
 377
 378fail:
 379	if (locked)
 380		mutex_unlock(&trans->transaction->cache_write_mutex);
 381	if (ret)
 382		btrfs_abort_transaction(trans, ret);
 383
 384	return ret;
 385}
 386
 387static void readahead_cache(struct inode *inode)
 388{
 389	struct file_ra_state ra;
 390	unsigned long last_index;
 391
 392	file_ra_state_init(&ra, inode->i_mapping);
 
 
 
 
 393	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 394
 395	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
 
 
 396}
 397
 398static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 399		       int write)
 400{
 401	int num_pages;
 
 402
 403	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 404
 
 
 
 405	/* Make sure we can fit our crcs and generation into the first page */
 406	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 
 407		return -ENOSPC;
 408
 409	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 410
 411	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 412	if (!io_ctl->pages)
 413		return -ENOMEM;
 414
 415	io_ctl->num_pages = num_pages;
 416	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 
 417	io_ctl->inode = inode;
 418
 419	return 0;
 420}
 421ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 422
 423static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 424{
 425	kfree(io_ctl->pages);
 426	io_ctl->pages = NULL;
 427}
 428
 429static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 430{
 431	if (io_ctl->cur) {
 432		io_ctl->cur = NULL;
 433		io_ctl->orig = NULL;
 434	}
 435}
 436
 437static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 438{
 439	ASSERT(io_ctl->index < io_ctl->num_pages);
 440	io_ctl->page = io_ctl->pages[io_ctl->index++];
 441	io_ctl->cur = page_address(io_ctl->page);
 442	io_ctl->orig = io_ctl->cur;
 443	io_ctl->size = PAGE_SIZE;
 444	if (clear)
 445		clear_page(io_ctl->cur);
 446}
 447
 448static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 449{
 450	int i;
 451
 452	io_ctl_unmap_page(io_ctl);
 453
 454	for (i = 0; i < io_ctl->num_pages; i++) {
 455		if (io_ctl->pages[i]) {
 456			btrfs_page_clear_checked(io_ctl->fs_info,
 457					io_ctl->pages[i],
 458					page_offset(io_ctl->pages[i]),
 459					PAGE_SIZE);
 460			unlock_page(io_ctl->pages[i]);
 461			put_page(io_ctl->pages[i]);
 462		}
 463	}
 464}
 465
 466static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 
 467{
 468	struct page *page;
 469	struct inode *inode = io_ctl->inode;
 470	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 471	int i;
 472
 473	for (i = 0; i < io_ctl->num_pages; i++) {
 474		int ret;
 475
 476		page = find_or_create_page(inode->i_mapping, i, mask);
 477		if (!page) {
 478			io_ctl_drop_pages(io_ctl);
 479			return -ENOMEM;
 480		}
 481
 482		ret = set_page_extent_mapped(page);
 483		if (ret < 0) {
 484			unlock_page(page);
 485			put_page(page);
 486			io_ctl_drop_pages(io_ctl);
 487			return ret;
 488		}
 489
 490		io_ctl->pages[i] = page;
 491		if (uptodate && !PageUptodate(page)) {
 492			btrfs_read_folio(NULL, page_folio(page));
 493			lock_page(page);
 494			if (page->mapping != inode->i_mapping) {
 495				btrfs_err(BTRFS_I(inode)->root->fs_info,
 496					  "free space cache page truncated");
 497				io_ctl_drop_pages(io_ctl);
 498				return -EIO;
 499			}
 500			if (!PageUptodate(page)) {
 501				btrfs_err(BTRFS_I(inode)->root->fs_info,
 502					   "error reading free space cache");
 503				io_ctl_drop_pages(io_ctl);
 504				return -EIO;
 505			}
 506		}
 507	}
 508
 509	for (i = 0; i < io_ctl->num_pages; i++)
 510		clear_page_dirty_for_io(io_ctl->pages[i]);
 
 
 511
 512	return 0;
 513}
 514
 515static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 516{
 
 
 517	io_ctl_map_page(io_ctl, 1);
 518
 519	/*
 520	 * Skip the csum areas.  If we don't check crcs then we just have a
 521	 * 64bit chunk at the front of the first page.
 522	 */
 523	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 524	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 525
 526	put_unaligned_le64(generation, io_ctl->cur);
 
 527	io_ctl->cur += sizeof(u64);
 528}
 529
 530static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 531{
 532	u64 cache_gen;
 533
 534	/*
 535	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 536	 * chunk at the front of the first page.
 537	 */
 538	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 539	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 
 540
 541	cache_gen = get_unaligned_le64(io_ctl->cur);
 542	if (cache_gen != generation) {
 543		btrfs_err_rl(io_ctl->fs_info,
 544			"space cache generation (%llu) does not match inode (%llu)",
 545				cache_gen, generation);
 546		io_ctl_unmap_page(io_ctl);
 547		return -EIO;
 548	}
 549	io_ctl->cur += sizeof(u64);
 550	return 0;
 551}
 552
 553static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 554{
 555	u32 *tmp;
 556	u32 crc = ~(u32)0;
 557	unsigned offset = 0;
 558
 
 
 
 
 
 559	if (index == 0)
 560		offset = sizeof(u32) * io_ctl->num_pages;
 561
 562	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 563	btrfs_crc32c_final(crc, (u8 *)&crc);
 564	io_ctl_unmap_page(io_ctl);
 565	tmp = page_address(io_ctl->pages[0]);
 566	tmp += index;
 567	*tmp = crc;
 568}
 569
 570static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 571{
 572	u32 *tmp, val;
 573	u32 crc = ~(u32)0;
 574	unsigned offset = 0;
 575
 
 
 
 
 
 576	if (index == 0)
 577		offset = sizeof(u32) * io_ctl->num_pages;
 578
 579	tmp = page_address(io_ctl->pages[0]);
 580	tmp += index;
 581	val = *tmp;
 582
 583	io_ctl_map_page(io_ctl, 0);
 584	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 585	btrfs_crc32c_final(crc, (u8 *)&crc);
 586	if (val != crc) {
 587		btrfs_err_rl(io_ctl->fs_info,
 588			"csum mismatch on free space cache");
 589		io_ctl_unmap_page(io_ctl);
 590		return -EIO;
 591	}
 592
 593	return 0;
 594}
 595
 596static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 597			    void *bitmap)
 598{
 599	struct btrfs_free_space_entry *entry;
 600
 601	if (!io_ctl->cur)
 602		return -ENOSPC;
 603
 604	entry = io_ctl->cur;
 605	put_unaligned_le64(offset, &entry->offset);
 606	put_unaligned_le64(bytes, &entry->bytes);
 607	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 608		BTRFS_FREE_SPACE_EXTENT;
 609	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 610	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 611
 612	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 613		return 0;
 614
 615	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 616
 617	/* No more pages to map */
 618	if (io_ctl->index >= io_ctl->num_pages)
 619		return 0;
 620
 621	/* map the next page */
 622	io_ctl_map_page(io_ctl, 1);
 623	return 0;
 624}
 625
 626static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 627{
 628	if (!io_ctl->cur)
 629		return -ENOSPC;
 630
 631	/*
 632	 * If we aren't at the start of the current page, unmap this one and
 633	 * map the next one if there is any left.
 634	 */
 635	if (io_ctl->cur != io_ctl->orig) {
 636		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 637		if (io_ctl->index >= io_ctl->num_pages)
 638			return -ENOSPC;
 639		io_ctl_map_page(io_ctl, 0);
 640	}
 641
 642	copy_page(io_ctl->cur, bitmap);
 643	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 644	if (io_ctl->index < io_ctl->num_pages)
 645		io_ctl_map_page(io_ctl, 0);
 646	return 0;
 647}
 648
 649static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 650{
 651	/*
 652	 * If we're not on the boundary we know we've modified the page and we
 653	 * need to crc the page.
 654	 */
 655	if (io_ctl->cur != io_ctl->orig)
 656		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 657	else
 658		io_ctl_unmap_page(io_ctl);
 659
 660	while (io_ctl->index < io_ctl->num_pages) {
 661		io_ctl_map_page(io_ctl, 1);
 662		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 663	}
 664}
 665
 666static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 667			    struct btrfs_free_space *entry, u8 *type)
 668{
 669	struct btrfs_free_space_entry *e;
 670	int ret;
 671
 672	if (!io_ctl->cur) {
 673		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 674		if (ret)
 675			return ret;
 676	}
 677
 678	e = io_ctl->cur;
 679	entry->offset = get_unaligned_le64(&e->offset);
 680	entry->bytes = get_unaligned_le64(&e->bytes);
 681	*type = e->type;
 682	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 683	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 684
 685	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 686		return 0;
 687
 688	io_ctl_unmap_page(io_ctl);
 689
 690	return 0;
 691}
 692
 693static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 694			      struct btrfs_free_space *entry)
 695{
 696	int ret;
 697
 698	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 699	if (ret)
 700		return ret;
 701
 702	copy_page(entry->bitmap, io_ctl->cur);
 703	io_ctl_unmap_page(io_ctl);
 704
 705	return 0;
 706}
 707
 708static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 
 
 
 
 
 
 
 
 
 709{
 710	struct btrfs_block_group *block_group = ctl->block_group;
 711	u64 max_bytes;
 712	u64 bitmap_bytes;
 713	u64 extent_bytes;
 714	u64 size = block_group->length;
 715	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
 716	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
 717
 718	max_bitmaps = max_t(u64, max_bitmaps, 1);
 719
 720	if (ctl->total_bitmaps > max_bitmaps)
 721		btrfs_err(block_group->fs_info,
 722"invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
 723			  block_group->start, block_group->length,
 724			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
 725			  bytes_per_bg);
 726	ASSERT(ctl->total_bitmaps <= max_bitmaps);
 727
 728	/*
 729	 * We are trying to keep the total amount of memory used per 1GiB of
 730	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
 731	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
 732	 * bitmaps, we may end up using more memory than this.
 733	 */
 734	if (size < SZ_1G)
 735		max_bytes = MAX_CACHE_BYTES_PER_GIG;
 736	else
 737		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
 738
 739	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
 740
 741	/*
 742	 * we want the extent entry threshold to always be at most 1/2 the max
 743	 * bytes we can have, or whatever is less than that.
 744	 */
 745	extent_bytes = max_bytes - bitmap_bytes;
 746	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
 747
 748	ctl->extents_thresh =
 749		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
 750}
 751
 752static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 753				   struct btrfs_free_space_ctl *ctl,
 754				   struct btrfs_path *path, u64 offset)
 755{
 756	struct btrfs_fs_info *fs_info = root->fs_info;
 757	struct btrfs_free_space_header *header;
 758	struct extent_buffer *leaf;
 759	struct btrfs_io_ctl io_ctl;
 760	struct btrfs_key key;
 761	struct btrfs_free_space *e, *n;
 762	LIST_HEAD(bitmaps);
 763	u64 num_entries;
 764	u64 num_bitmaps;
 765	u64 generation;
 766	u8 type;
 767	int ret = 0;
 768
 769	/* Nothing in the space cache, goodbye */
 770	if (!i_size_read(inode))
 771		return 0;
 772
 773	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 774	key.offset = offset;
 775	key.type = 0;
 776
 777	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 778	if (ret < 0)
 779		return 0;
 780	else if (ret > 0) {
 781		btrfs_release_path(path);
 782		return 0;
 783	}
 784
 785	ret = -1;
 786
 787	leaf = path->nodes[0];
 788	header = btrfs_item_ptr(leaf, path->slots[0],
 789				struct btrfs_free_space_header);
 790	num_entries = btrfs_free_space_entries(leaf, header);
 791	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 792	generation = btrfs_free_space_generation(leaf, header);
 793	btrfs_release_path(path);
 794
 795	if (!BTRFS_I(inode)->generation) {
 796		btrfs_info(fs_info,
 797			   "the free space cache file (%llu) is invalid, skip it",
 798			   offset);
 799		return 0;
 800	}
 801
 802	if (BTRFS_I(inode)->generation != generation) {
 803		btrfs_err(fs_info,
 804			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 805			  BTRFS_I(inode)->generation, generation);
 806		return 0;
 807	}
 808
 809	if (!num_entries)
 810		return 0;
 811
 812	ret = io_ctl_init(&io_ctl, inode, 0);
 813	if (ret)
 814		return ret;
 815
 816	readahead_cache(inode);
 817
 818	ret = io_ctl_prepare_pages(&io_ctl, true);
 819	if (ret)
 820		goto out;
 821
 822	ret = io_ctl_check_crc(&io_ctl, 0);
 823	if (ret)
 824		goto free_cache;
 825
 826	ret = io_ctl_check_generation(&io_ctl, generation);
 827	if (ret)
 828		goto free_cache;
 829
 830	while (num_entries) {
 831		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 832				      GFP_NOFS);
 833		if (!e) {
 834			ret = -ENOMEM;
 835			goto free_cache;
 836		}
 837
 838		ret = io_ctl_read_entry(&io_ctl, e, &type);
 839		if (ret) {
 840			kmem_cache_free(btrfs_free_space_cachep, e);
 841			goto free_cache;
 842		}
 843
 844		if (!e->bytes) {
 845			ret = -1;
 846			kmem_cache_free(btrfs_free_space_cachep, e);
 847			goto free_cache;
 848		}
 849
 850		if (type == BTRFS_FREE_SPACE_EXTENT) {
 851			spin_lock(&ctl->tree_lock);
 852			ret = link_free_space(ctl, e);
 853			spin_unlock(&ctl->tree_lock);
 854			if (ret) {
 855				btrfs_err(fs_info,
 856					"Duplicate entries in free space cache, dumping");
 857				kmem_cache_free(btrfs_free_space_cachep, e);
 858				goto free_cache;
 859			}
 860		} else {
 861			ASSERT(num_bitmaps);
 862			num_bitmaps--;
 863			e->bitmap = kmem_cache_zalloc(
 864					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 865			if (!e->bitmap) {
 866				ret = -ENOMEM;
 867				kmem_cache_free(
 868					btrfs_free_space_cachep, e);
 869				goto free_cache;
 870			}
 871			spin_lock(&ctl->tree_lock);
 872			ret = link_free_space(ctl, e);
 873			ctl->total_bitmaps++;
 874			recalculate_thresholds(ctl);
 875			spin_unlock(&ctl->tree_lock);
 876			if (ret) {
 877				btrfs_err(fs_info,
 878					"Duplicate entries in free space cache, dumping");
 879				kmem_cache_free(btrfs_free_space_cachep, e);
 880				goto free_cache;
 881			}
 882			list_add_tail(&e->list, &bitmaps);
 883		}
 884
 885		num_entries--;
 886	}
 887
 888	io_ctl_unmap_page(&io_ctl);
 889
 890	/*
 891	 * We add the bitmaps at the end of the entries in order that
 892	 * the bitmap entries are added to the cache.
 893	 */
 894	list_for_each_entry_safe(e, n, &bitmaps, list) {
 895		list_del_init(&e->list);
 896		ret = io_ctl_read_bitmap(&io_ctl, e);
 897		if (ret)
 898			goto free_cache;
 899	}
 900
 901	io_ctl_drop_pages(&io_ctl);
 
 902	ret = 1;
 903out:
 904	io_ctl_free(&io_ctl);
 905	return ret;
 906free_cache:
 907	io_ctl_drop_pages(&io_ctl);
 908
 909	spin_lock(&ctl->tree_lock);
 910	__btrfs_remove_free_space_cache(ctl);
 911	spin_unlock(&ctl->tree_lock);
 912	goto out;
 913}
 914
 915static int copy_free_space_cache(struct btrfs_block_group *block_group,
 916				 struct btrfs_free_space_ctl *ctl)
 917{
 918	struct btrfs_free_space *info;
 919	struct rb_node *n;
 920	int ret = 0;
 921
 922	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
 923		info = rb_entry(n, struct btrfs_free_space, offset_index);
 924		if (!info->bitmap) {
 925			unlink_free_space(ctl, info, true);
 926			ret = btrfs_add_free_space(block_group, info->offset,
 927						   info->bytes);
 928			kmem_cache_free(btrfs_free_space_cachep, info);
 929		} else {
 930			u64 offset = info->offset;
 931			u64 bytes = ctl->unit;
 932
 933			while (search_bitmap(ctl, info, &offset, &bytes,
 934					     false) == 0) {
 935				ret = btrfs_add_free_space(block_group, offset,
 936							   bytes);
 937				if (ret)
 938					break;
 939				bitmap_clear_bits(ctl, info, offset, bytes, true);
 940				offset = info->offset;
 941				bytes = ctl->unit;
 942			}
 943			free_bitmap(ctl, info);
 944		}
 945		cond_resched();
 946	}
 947	return ret;
 948}
 949
 950static struct lock_class_key btrfs_free_space_inode_key;
 951
 952int load_free_space_cache(struct btrfs_block_group *block_group)
 953{
 954	struct btrfs_fs_info *fs_info = block_group->fs_info;
 955	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 956	struct btrfs_free_space_ctl tmp_ctl = {};
 957	struct inode *inode;
 958	struct btrfs_path *path;
 959	int ret = 0;
 960	bool matched;
 961	u64 used = block_group->used;
 962
 963	/*
 964	 * Because we could potentially discard our loaded free space, we want
 965	 * to load everything into a temporary structure first, and then if it's
 966	 * valid copy it all into the actual free space ctl.
 967	 */
 968	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
 969
 970	/*
 971	 * If this block group has been marked to be cleared for one reason or
 972	 * another then we can't trust the on disk cache, so just return.
 973	 */
 974	spin_lock(&block_group->lock);
 975	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 976		spin_unlock(&block_group->lock);
 977		return 0;
 978	}
 979	spin_unlock(&block_group->lock);
 980
 981	path = btrfs_alloc_path();
 982	if (!path)
 983		return 0;
 984	path->search_commit_root = 1;
 985	path->skip_locking = 1;
 986
 987	/*
 988	 * We must pass a path with search_commit_root set to btrfs_iget in
 989	 * order to avoid a deadlock when allocating extents for the tree root.
 990	 *
 991	 * When we are COWing an extent buffer from the tree root, when looking
 992	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 993	 * block group without its free space cache loaded. When we find one
 994	 * we must load its space cache which requires reading its free space
 995	 * cache's inode item from the root tree. If this inode item is located
 996	 * in the same leaf that we started COWing before, then we end up in
 997	 * deadlock on the extent buffer (trying to read lock it when we
 998	 * previously write locked it).
 999	 *
1000	 * It's safe to read the inode item using the commit root because
1001	 * block groups, once loaded, stay in memory forever (until they are
1002	 * removed) as well as their space caches once loaded. New block groups
1003	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
1004	 * we will never try to read their inode item while the fs is mounted.
1005	 */
1006	inode = lookup_free_space_inode(block_group, path);
1007	if (IS_ERR(inode)) {
1008		btrfs_free_path(path);
1009		return 0;
1010	}
1011
1012	/* We may have converted the inode and made the cache invalid. */
1013	spin_lock(&block_group->lock);
1014	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1015		spin_unlock(&block_group->lock);
1016		btrfs_free_path(path);
1017		goto out;
1018	}
1019	spin_unlock(&block_group->lock);
1020
1021	/*
1022	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1023	 * free space inodes to prevent false positives related to locks for normal
1024	 * inodes.
1025	 */
1026	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1027			  &btrfs_free_space_inode_key);
1028
1029	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1030				      path, block_group->start);
1031	btrfs_free_path(path);
1032	if (ret <= 0)
1033		goto out;
1034
1035	matched = (tmp_ctl.free_space == (block_group->length - used -
1036					  block_group->bytes_super));
 
 
1037
1038	if (matched) {
1039		ret = copy_free_space_cache(block_group, &tmp_ctl);
1040		/*
1041		 * ret == 1 means we successfully loaded the free space cache,
1042		 * so we need to re-set it here.
1043		 */
1044		if (ret == 0)
1045			ret = 1;
1046	} else {
1047		/*
1048		 * We need to call the _locked variant so we don't try to update
1049		 * the discard counters.
1050		 */
1051		spin_lock(&tmp_ctl.tree_lock);
1052		__btrfs_remove_free_space_cache(&tmp_ctl);
1053		spin_unlock(&tmp_ctl.tree_lock);
1054		btrfs_warn(fs_info,
1055			   "block group %llu has wrong amount of free space",
1056			   block_group->start);
1057		ret = -1;
1058	}
1059out:
1060	if (ret < 0) {
1061		/* This cache is bogus, make sure it gets cleared */
1062		spin_lock(&block_group->lock);
1063		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1064		spin_unlock(&block_group->lock);
1065		ret = 0;
1066
1067		btrfs_warn(fs_info,
1068			   "failed to load free space cache for block group %llu, rebuilding it now",
1069			   block_group->start);
1070	}
1071
1072	spin_lock(&ctl->tree_lock);
1073	btrfs_discard_update_discardable(block_group);
1074	spin_unlock(&ctl->tree_lock);
1075	iput(inode);
1076	return ret;
1077}
1078
1079static noinline_for_stack
1080int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1081			      struct btrfs_free_space_ctl *ctl,
1082			      struct btrfs_block_group *block_group,
1083			      int *entries, int *bitmaps,
1084			      struct list_head *bitmap_list)
1085{
1086	int ret;
1087	struct btrfs_free_cluster *cluster = NULL;
1088	struct btrfs_free_cluster *cluster_locked = NULL;
1089	struct rb_node *node = rb_first(&ctl->free_space_offset);
1090	struct btrfs_trim_range *trim_entry;
1091
1092	/* Get the cluster for this block_group if it exists */
1093	if (block_group && !list_empty(&block_group->cluster_list)) {
1094		cluster = list_entry(block_group->cluster_list.next,
1095				     struct btrfs_free_cluster,
1096				     block_group_list);
1097	}
1098
1099	if (!node && cluster) {
1100		cluster_locked = cluster;
1101		spin_lock(&cluster_locked->lock);
1102		node = rb_first(&cluster->root);
1103		cluster = NULL;
1104	}
1105
1106	/* Write out the extent entries */
1107	while (node) {
1108		struct btrfs_free_space *e;
1109
1110		e = rb_entry(node, struct btrfs_free_space, offset_index);
1111		*entries += 1;
1112
1113		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1114				       e->bitmap);
1115		if (ret)
1116			goto fail;
1117
1118		if (e->bitmap) {
1119			list_add_tail(&e->list, bitmap_list);
1120			*bitmaps += 1;
1121		}
1122		node = rb_next(node);
1123		if (!node && cluster) {
1124			node = rb_first(&cluster->root);
1125			cluster_locked = cluster;
1126			spin_lock(&cluster_locked->lock);
1127			cluster = NULL;
1128		}
1129	}
1130	if (cluster_locked) {
1131		spin_unlock(&cluster_locked->lock);
1132		cluster_locked = NULL;
1133	}
1134
1135	/*
1136	 * Make sure we don't miss any range that was removed from our rbtree
1137	 * because trimming is running. Otherwise after a umount+mount (or crash
1138	 * after committing the transaction) we would leak free space and get
1139	 * an inconsistent free space cache report from fsck.
1140	 */
1141	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1142		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1143				       trim_entry->bytes, NULL);
1144		if (ret)
1145			goto fail;
1146		*entries += 1;
1147	}
1148
1149	return 0;
1150fail:
1151	if (cluster_locked)
1152		spin_unlock(&cluster_locked->lock);
1153	return -ENOSPC;
1154}
1155
1156static noinline_for_stack int
1157update_cache_item(struct btrfs_trans_handle *trans,
1158		  struct btrfs_root *root,
1159		  struct inode *inode,
1160		  struct btrfs_path *path, u64 offset,
1161		  int entries, int bitmaps)
1162{
1163	struct btrfs_key key;
1164	struct btrfs_free_space_header *header;
1165	struct extent_buffer *leaf;
1166	int ret;
1167
1168	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1169	key.offset = offset;
1170	key.type = 0;
1171
1172	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1173	if (ret < 0) {
1174		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1175				 EXTENT_DELALLOC, NULL);
1176		goto fail;
1177	}
1178	leaf = path->nodes[0];
1179	if (ret > 0) {
1180		struct btrfs_key found_key;
1181		ASSERT(path->slots[0]);
1182		path->slots[0]--;
1183		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1184		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1185		    found_key.offset != offset) {
1186			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1187					 inode->i_size - 1, EXTENT_DELALLOC,
1188					 NULL);
1189			btrfs_release_path(path);
1190			goto fail;
1191		}
1192	}
1193
1194	BTRFS_I(inode)->generation = trans->transid;
1195	header = btrfs_item_ptr(leaf, path->slots[0],
1196				struct btrfs_free_space_header);
1197	btrfs_set_free_space_entries(leaf, header, entries);
1198	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1199	btrfs_set_free_space_generation(leaf, header, trans->transid);
1200	btrfs_mark_buffer_dirty(leaf);
1201	btrfs_release_path(path);
1202
1203	return 0;
1204
1205fail:
1206	return -1;
1207}
1208
1209static noinline_for_stack int write_pinned_extent_entries(
1210			    struct btrfs_trans_handle *trans,
1211			    struct btrfs_block_group *block_group,
1212			    struct btrfs_io_ctl *io_ctl,
1213			    int *entries)
1214{
1215	u64 start, extent_start, extent_end, len;
1216	struct extent_io_tree *unpin = NULL;
1217	int ret;
1218
1219	if (!block_group)
1220		return 0;
1221
1222	/*
1223	 * We want to add any pinned extents to our free space cache
1224	 * so we don't leak the space
1225	 *
1226	 * We shouldn't have switched the pinned extents yet so this is the
1227	 * right one
1228	 */
1229	unpin = &trans->transaction->pinned_extents;
1230
1231	start = block_group->start;
1232
1233	while (start < block_group->start + block_group->length) {
1234		ret = find_first_extent_bit(unpin, start,
1235					    &extent_start, &extent_end,
1236					    EXTENT_DIRTY, NULL);
1237		if (ret)
1238			return 0;
1239
1240		/* This pinned extent is out of our range */
1241		if (extent_start >= block_group->start + block_group->length)
 
1242			return 0;
1243
1244		extent_start = max(extent_start, start);
1245		extent_end = min(block_group->start + block_group->length,
1246				 extent_end + 1);
1247		len = extent_end - extent_start;
1248
1249		*entries += 1;
1250		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1251		if (ret)
1252			return -ENOSPC;
1253
1254		start = extent_end;
1255	}
1256
1257	return 0;
1258}
1259
1260static noinline_for_stack int
1261write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1262{
1263	struct btrfs_free_space *entry, *next;
1264	int ret;
1265
1266	/* Write out the bitmaps */
1267	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1268		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1269		if (ret)
1270			return -ENOSPC;
1271		list_del_init(&entry->list);
1272	}
1273
1274	return 0;
1275}
1276
1277static int flush_dirty_cache(struct inode *inode)
1278{
1279	int ret;
1280
1281	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1282	if (ret)
1283		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1284				 EXTENT_DELALLOC, NULL);
1285
1286	return ret;
1287}
1288
1289static void noinline_for_stack
1290cleanup_bitmap_list(struct list_head *bitmap_list)
1291{
1292	struct btrfs_free_space *entry, *next;
1293
1294	list_for_each_entry_safe(entry, next, bitmap_list, list)
1295		list_del_init(&entry->list);
1296}
1297
1298static void noinline_for_stack
1299cleanup_write_cache_enospc(struct inode *inode,
1300			   struct btrfs_io_ctl *io_ctl,
1301			   struct extent_state **cached_state)
1302{
1303	io_ctl_drop_pages(io_ctl);
1304	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1305		      cached_state);
1306}
1307
1308static int __btrfs_wait_cache_io(struct btrfs_root *root,
1309				 struct btrfs_trans_handle *trans,
1310				 struct btrfs_block_group *block_group,
1311				 struct btrfs_io_ctl *io_ctl,
1312				 struct btrfs_path *path, u64 offset)
1313{
1314	int ret;
1315	struct inode *inode = io_ctl->inode;
1316
1317	if (!inode)
1318		return 0;
1319
1320	/* Flush the dirty pages in the cache file. */
1321	ret = flush_dirty_cache(inode);
1322	if (ret)
1323		goto out;
1324
1325	/* Update the cache item to tell everyone this cache file is valid. */
1326	ret = update_cache_item(trans, root, inode, path, offset,
1327				io_ctl->entries, io_ctl->bitmaps);
1328out:
 
1329	if (ret) {
1330		invalidate_inode_pages2(inode->i_mapping);
1331		BTRFS_I(inode)->generation = 0;
1332		if (block_group)
1333			btrfs_debug(root->fs_info,
1334	  "failed to write free space cache for block group %llu error %d",
1335				  block_group->start, ret);
 
 
 
1336	}
1337	btrfs_update_inode(trans, root, BTRFS_I(inode));
1338
1339	if (block_group) {
1340		/* the dirty list is protected by the dirty_bgs_lock */
1341		spin_lock(&trans->transaction->dirty_bgs_lock);
1342
1343		/* the disk_cache_state is protected by the block group lock */
1344		spin_lock(&block_group->lock);
1345
1346		/*
1347		 * only mark this as written if we didn't get put back on
1348		 * the dirty list while waiting for IO.   Otherwise our
1349		 * cache state won't be right, and we won't get written again
1350		 */
1351		if (!ret && list_empty(&block_group->dirty_list))
1352			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1353		else if (ret)
1354			block_group->disk_cache_state = BTRFS_DC_ERROR;
1355
1356		spin_unlock(&block_group->lock);
1357		spin_unlock(&trans->transaction->dirty_bgs_lock);
1358		io_ctl->inode = NULL;
1359		iput(inode);
1360	}
1361
1362	return ret;
1363
1364}
1365
 
 
 
 
 
 
 
 
1366int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1367			struct btrfs_block_group *block_group,
1368			struct btrfs_path *path)
1369{
1370	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1371				     block_group, &block_group->io_ctl,
1372				     path, block_group->start);
1373}
1374
1375/*
1376 * Write out cached info to an inode.
1377 *
1378 * @root:        root the inode belongs to
1379 * @inode:       freespace inode we are writing out
1380 * @ctl:         free space cache we are going to write out
1381 * @block_group: block_group for this cache if it belongs to a block_group
1382 * @io_ctl:      holds context for the io
1383 * @trans:       the trans handle
1384 *
1385 * This function writes out a free space cache struct to disk for quick recovery
1386 * on mount.  This will return 0 if it was successful in writing the cache out,
1387 * or an errno if it was not.
1388 */
1389static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1390				   struct btrfs_free_space_ctl *ctl,
1391				   struct btrfs_block_group *block_group,
1392				   struct btrfs_io_ctl *io_ctl,
1393				   struct btrfs_trans_handle *trans)
1394{
1395	struct extent_state *cached_state = NULL;
1396	LIST_HEAD(bitmap_list);
1397	int entries = 0;
1398	int bitmaps = 0;
1399	int ret;
1400	int must_iput = 0;
1401
1402	if (!i_size_read(inode))
1403		return -EIO;
1404
1405	WARN_ON(io_ctl->pages);
1406	ret = io_ctl_init(io_ctl, inode, 1);
1407	if (ret)
1408		return ret;
1409
1410	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1411		down_write(&block_group->data_rwsem);
1412		spin_lock(&block_group->lock);
1413		if (block_group->delalloc_bytes) {
1414			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1415			spin_unlock(&block_group->lock);
1416			up_write(&block_group->data_rwsem);
1417			BTRFS_I(inode)->generation = 0;
1418			ret = 0;
1419			must_iput = 1;
1420			goto out;
1421		}
1422		spin_unlock(&block_group->lock);
1423	}
1424
1425	/* Lock all pages first so we can lock the extent safely. */
1426	ret = io_ctl_prepare_pages(io_ctl, false);
1427	if (ret)
1428		goto out_unlock;
1429
1430	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1431		    &cached_state);
1432
1433	io_ctl_set_generation(io_ctl, trans->transid);
1434
1435	mutex_lock(&ctl->cache_writeout_mutex);
1436	/* Write out the extent entries in the free space cache */
1437	spin_lock(&ctl->tree_lock);
1438	ret = write_cache_extent_entries(io_ctl, ctl,
1439					 block_group, &entries, &bitmaps,
1440					 &bitmap_list);
1441	if (ret)
1442		goto out_nospc_locked;
1443
1444	/*
1445	 * Some spaces that are freed in the current transaction are pinned,
1446	 * they will be added into free space cache after the transaction is
1447	 * committed, we shouldn't lose them.
1448	 *
1449	 * If this changes while we are working we'll get added back to
1450	 * the dirty list and redo it.  No locking needed
1451	 */
1452	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1453	if (ret)
1454		goto out_nospc_locked;
1455
1456	/*
1457	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1458	 * locked while doing it because a concurrent trim can be manipulating
1459	 * or freeing the bitmap.
1460	 */
1461	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1462	spin_unlock(&ctl->tree_lock);
1463	mutex_unlock(&ctl->cache_writeout_mutex);
1464	if (ret)
1465		goto out_nospc;
1466
1467	/* Zero out the rest of the pages just to make sure */
1468	io_ctl_zero_remaining_pages(io_ctl);
1469
1470	/* Everything is written out, now we dirty the pages in the file. */
1471	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1472				io_ctl->num_pages, 0, i_size_read(inode),
1473				&cached_state, false);
1474	if (ret)
1475		goto out_nospc;
1476
1477	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1478		up_write(&block_group->data_rwsem);
1479	/*
1480	 * Release the pages and unlock the extent, we will flush
1481	 * them out later
1482	 */
1483	io_ctl_drop_pages(io_ctl);
1484	io_ctl_free(io_ctl);
1485
1486	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1487		      &cached_state);
1488
1489	/*
1490	 * at this point the pages are under IO and we're happy,
1491	 * The caller is responsible for waiting on them and updating
1492	 * the cache and the inode
1493	 */
1494	io_ctl->entries = entries;
1495	io_ctl->bitmaps = bitmaps;
1496
1497	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1498	if (ret)
1499		goto out;
1500
1501	return 0;
1502
 
 
 
 
 
 
 
 
 
 
 
 
1503out_nospc_locked:
1504	cleanup_bitmap_list(&bitmap_list);
1505	spin_unlock(&ctl->tree_lock);
1506	mutex_unlock(&ctl->cache_writeout_mutex);
1507
1508out_nospc:
1509	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1510
1511out_unlock:
1512	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1513		up_write(&block_group->data_rwsem);
1514
1515out:
1516	io_ctl->inode = NULL;
1517	io_ctl_free(io_ctl);
1518	if (ret) {
1519		invalidate_inode_pages2(inode->i_mapping);
1520		BTRFS_I(inode)->generation = 0;
1521	}
1522	btrfs_update_inode(trans, root, BTRFS_I(inode));
1523	if (must_iput)
1524		iput(inode);
1525	return ret;
1526}
1527
1528int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1529			  struct btrfs_block_group *block_group,
1530			  struct btrfs_path *path)
1531{
1532	struct btrfs_fs_info *fs_info = trans->fs_info;
1533	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1534	struct inode *inode;
1535	int ret = 0;
1536
1537	spin_lock(&block_group->lock);
1538	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1539		spin_unlock(&block_group->lock);
1540		return 0;
1541	}
1542	spin_unlock(&block_group->lock);
1543
1544	inode = lookup_free_space_inode(block_group, path);
1545	if (IS_ERR(inode))
1546		return 0;
1547
1548	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1549				block_group, &block_group->io_ctl, trans);
1550	if (ret) {
1551		btrfs_debug(fs_info,
1552	  "failed to write free space cache for block group %llu error %d",
1553			  block_group->start, ret);
 
 
1554		spin_lock(&block_group->lock);
1555		block_group->disk_cache_state = BTRFS_DC_ERROR;
1556		spin_unlock(&block_group->lock);
1557
1558		block_group->io_ctl.inode = NULL;
1559		iput(inode);
1560	}
1561
1562	/*
1563	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1564	 * to wait for IO and put the inode
1565	 */
1566
1567	return ret;
1568}
1569
1570static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1571					  u64 offset)
1572{
1573	ASSERT(offset >= bitmap_start);
1574	offset -= bitmap_start;
1575	return (unsigned long)(div_u64(offset, unit));
1576}
1577
1578static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1579{
1580	return (unsigned long)(div_u64(bytes, unit));
1581}
1582
1583static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1584				   u64 offset)
1585{
1586	u64 bitmap_start;
1587	u64 bytes_per_bitmap;
1588
1589	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1590	bitmap_start = offset - ctl->start;
1591	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1592	bitmap_start *= bytes_per_bitmap;
1593	bitmap_start += ctl->start;
1594
1595	return bitmap_start;
1596}
1597
1598static int tree_insert_offset(struct rb_root *root, u64 offset,
1599			      struct rb_node *node, int bitmap)
1600{
1601	struct rb_node **p = &root->rb_node;
1602	struct rb_node *parent = NULL;
1603	struct btrfs_free_space *info;
1604
1605	while (*p) {
1606		parent = *p;
1607		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1608
1609		if (offset < info->offset) {
1610			p = &(*p)->rb_left;
1611		} else if (offset > info->offset) {
1612			p = &(*p)->rb_right;
1613		} else {
1614			/*
1615			 * we could have a bitmap entry and an extent entry
1616			 * share the same offset.  If this is the case, we want
1617			 * the extent entry to always be found first if we do a
1618			 * linear search through the tree, since we want to have
1619			 * the quickest allocation time, and allocating from an
1620			 * extent is faster than allocating from a bitmap.  So
1621			 * if we're inserting a bitmap and we find an entry at
1622			 * this offset, we want to go right, or after this entry
1623			 * logically.  If we are inserting an extent and we've
1624			 * found a bitmap, we want to go left, or before
1625			 * logically.
1626			 */
1627			if (bitmap) {
1628				if (info->bitmap) {
1629					WARN_ON_ONCE(1);
1630					return -EEXIST;
1631				}
1632				p = &(*p)->rb_right;
1633			} else {
1634				if (!info->bitmap) {
1635					WARN_ON_ONCE(1);
1636					return -EEXIST;
1637				}
1638				p = &(*p)->rb_left;
1639			}
1640		}
1641	}
1642
1643	rb_link_node(node, parent, p);
1644	rb_insert_color(node, root);
1645
1646	return 0;
1647}
1648
1649/*
1650 * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1651 * searched through the bitmap and figured out the largest ->max_extent_size,
1652 * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1653 * allocator the wrong thing, we want to use the actual real max_extent_size
1654 * we've found already if it's larger, or we want to use ->bytes.
1655 *
1656 * This matters because find_free_space() will skip entries who's ->bytes is
1657 * less than the required bytes.  So if we didn't search down this bitmap, we
1658 * may pick some previous entry that has a smaller ->max_extent_size than we
1659 * have.  For example, assume we have two entries, one that has
1660 * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1661 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1662 *  call into find_free_space(), and return with max_extent_size == 4K, because
1663 *  that first bitmap entry had ->max_extent_size set, but the second one did
1664 *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1665 *  8K contiguous range.
1666 *
1667 *  Consider the other case, we have 2 8K chunks in that second entry and still
1668 *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1669 *  allocator comes in it'll fully search our second bitmap, and this time it'll
1670 *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1671 *  right allocation the next loop through.
1672 */
1673static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1674{
1675	if (entry->bitmap && entry->max_extent_size)
1676		return entry->max_extent_size;
1677	return entry->bytes;
1678}
1679
1680/*
1681 * We want the largest entry to be leftmost, so this is inverted from what you'd
1682 * normally expect.
1683 */
1684static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1685{
1686	const struct btrfs_free_space *entry, *exist;
1687
1688	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1689	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1690	return get_max_extent_size(exist) < get_max_extent_size(entry);
1691}
1692
1693/*
1694 * searches the tree for the given offset.
1695 *
1696 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1697 * want a section that has at least bytes size and comes at or after the given
1698 * offset.
1699 */
1700static struct btrfs_free_space *
1701tree_search_offset(struct btrfs_free_space_ctl *ctl,
1702		   u64 offset, int bitmap_only, int fuzzy)
1703{
1704	struct rb_node *n = ctl->free_space_offset.rb_node;
1705	struct btrfs_free_space *entry = NULL, *prev = NULL;
1706
1707	/* find entry that is closest to the 'offset' */
1708	while (n) {
 
 
 
 
 
1709		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1710		prev = entry;
1711
1712		if (offset < entry->offset)
1713			n = n->rb_left;
1714		else if (offset > entry->offset)
1715			n = n->rb_right;
1716		else
1717			break;
1718
1719		entry = NULL;
1720	}
1721
1722	if (bitmap_only) {
1723		if (!entry)
1724			return NULL;
1725		if (entry->bitmap)
1726			return entry;
1727
1728		/*
1729		 * bitmap entry and extent entry may share same offset,
1730		 * in that case, bitmap entry comes after extent entry.
1731		 */
1732		n = rb_next(n);
1733		if (!n)
1734			return NULL;
1735		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1736		if (entry->offset != offset)
1737			return NULL;
1738
1739		WARN_ON(!entry->bitmap);
1740		return entry;
1741	} else if (entry) {
1742		if (entry->bitmap) {
1743			/*
1744			 * if previous extent entry covers the offset,
1745			 * we should return it instead of the bitmap entry
1746			 */
1747			n = rb_prev(&entry->offset_index);
1748			if (n) {
1749				prev = rb_entry(n, struct btrfs_free_space,
1750						offset_index);
1751				if (!prev->bitmap &&
1752				    prev->offset + prev->bytes > offset)
1753					entry = prev;
1754			}
1755		}
1756		return entry;
1757	}
1758
1759	if (!prev)
1760		return NULL;
1761
1762	/* find last entry before the 'offset' */
1763	entry = prev;
1764	if (entry->offset > offset) {
1765		n = rb_prev(&entry->offset_index);
1766		if (n) {
1767			entry = rb_entry(n, struct btrfs_free_space,
1768					offset_index);
1769			ASSERT(entry->offset <= offset);
1770		} else {
1771			if (fuzzy)
1772				return entry;
1773			else
1774				return NULL;
1775		}
1776	}
1777
1778	if (entry->bitmap) {
1779		n = rb_prev(&entry->offset_index);
1780		if (n) {
1781			prev = rb_entry(n, struct btrfs_free_space,
1782					offset_index);
1783			if (!prev->bitmap &&
1784			    prev->offset + prev->bytes > offset)
1785				return prev;
1786		}
1787		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1788			return entry;
1789	} else if (entry->offset + entry->bytes > offset)
1790		return entry;
1791
1792	if (!fuzzy)
1793		return NULL;
1794
1795	while (1) {
1796		n = rb_next(&entry->offset_index);
1797		if (!n)
1798			return NULL;
1799		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1800		if (entry->bitmap) {
1801			if (entry->offset + BITS_PER_BITMAP *
1802			    ctl->unit > offset)
1803				break;
1804		} else {
1805			if (entry->offset + entry->bytes > offset)
1806				break;
1807		}
 
 
 
 
 
1808	}
1809	return entry;
1810}
1811
1812static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1813				     struct btrfs_free_space *info,
1814				     bool update_stat)
1815{
1816	rb_erase(&info->offset_index, &ctl->free_space_offset);
1817	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1818	ctl->free_extents--;
 
1819
1820	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1821		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1822		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1823	}
1824
1825	if (update_stat)
1826		ctl->free_space -= info->bytes;
1827}
1828
1829static int link_free_space(struct btrfs_free_space_ctl *ctl,
1830			   struct btrfs_free_space *info)
1831{
1832	int ret = 0;
1833
1834	ASSERT(info->bytes || info->bitmap);
1835	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1836				 &info->offset_index, (info->bitmap != NULL));
1837	if (ret)
1838		return ret;
1839
1840	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1841
1842	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1843		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1844		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1845	}
1846
1847	ctl->free_space += info->bytes;
1848	ctl->free_extents++;
1849	return ret;
1850}
1851
1852static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1853				struct btrfs_free_space *info)
1854{
1855	ASSERT(info->bitmap);
 
 
 
 
 
 
 
 
 
 
1856
1857	/*
1858	 * If our entry is empty it's because we're on a cluster and we don't
1859	 * want to re-link it into our ctl bytes index.
 
1860	 */
1861	if (RB_EMPTY_NODE(&info->bytes_index))
 
 
 
 
 
 
 
 
 
 
 
 
 
1862		return;
 
 
 
 
 
 
 
 
1863
1864	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1865	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1866}
1867
1868static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1869				     struct btrfs_free_space *info,
1870				     u64 offset, u64 bytes, bool update_stat)
1871{
1872	unsigned long start, count, end;
1873	int extent_delta = -1;
1874
1875	start = offset_to_bit(info->offset, ctl->unit, offset);
1876	count = bytes_to_bits(bytes, ctl->unit);
1877	end = start + count;
1878	ASSERT(end <= BITS_PER_BITMAP);
1879
1880	bitmap_clear(info->bitmap, start, count);
1881
1882	info->bytes -= bytes;
1883	if (info->max_extent_size > ctl->unit)
1884		info->max_extent_size = 0;
 
1885
1886	relink_bitmap_entry(ctl, info);
1887
1888	if (start && test_bit(start - 1, info->bitmap))
1889		extent_delta++;
1890
1891	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1892		extent_delta++;
1893
1894	info->bitmap_extents += extent_delta;
1895	if (!btrfs_free_space_trimmed(info)) {
1896		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1897		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1898	}
1899
1900	if (update_stat)
1901		ctl->free_space -= bytes;
1902}
1903
1904static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1905			    struct btrfs_free_space *info, u64 offset,
1906			    u64 bytes)
1907{
1908	unsigned long start, count, end;
1909	int extent_delta = 1;
1910
1911	start = offset_to_bit(info->offset, ctl->unit, offset);
1912	count = bytes_to_bits(bytes, ctl->unit);
1913	end = start + count;
1914	ASSERT(end <= BITS_PER_BITMAP);
1915
1916	bitmap_set(info->bitmap, start, count);
1917
1918	/*
1919	 * We set some bytes, we have no idea what the max extent size is
1920	 * anymore.
1921	 */
1922	info->max_extent_size = 0;
1923	info->bytes += bytes;
1924	ctl->free_space += bytes;
1925
1926	relink_bitmap_entry(ctl, info);
1927
1928	if (start && test_bit(start - 1, info->bitmap))
1929		extent_delta--;
1930
1931	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1932		extent_delta--;
1933
1934	info->bitmap_extents += extent_delta;
1935	if (!btrfs_free_space_trimmed(info)) {
1936		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1937		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1938	}
1939}
1940
1941/*
1942 * If we can not find suitable extent, we will use bytes to record
1943 * the size of the max extent.
1944 */
1945static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1946			 struct btrfs_free_space *bitmap_info, u64 *offset,
1947			 u64 *bytes, bool for_alloc)
1948{
1949	unsigned long found_bits = 0;
1950	unsigned long max_bits = 0;
1951	unsigned long bits, i;
1952	unsigned long next_zero;
1953	unsigned long extent_bits;
1954
1955	/*
1956	 * Skip searching the bitmap if we don't have a contiguous section that
1957	 * is large enough for this allocation.
1958	 */
1959	if (for_alloc &&
1960	    bitmap_info->max_extent_size &&
1961	    bitmap_info->max_extent_size < *bytes) {
1962		*bytes = bitmap_info->max_extent_size;
1963		return -1;
1964	}
1965
1966	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1967			  max_t(u64, *offset, bitmap_info->offset));
1968	bits = bytes_to_bits(*bytes, ctl->unit);
1969
1970	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1971		if (for_alloc && bits == 1) {
1972			found_bits = 1;
1973			break;
1974		}
1975		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1976					       BITS_PER_BITMAP, i);
1977		extent_bits = next_zero - i;
1978		if (extent_bits >= bits) {
1979			found_bits = extent_bits;
1980			break;
1981		} else if (extent_bits > max_bits) {
1982			max_bits = extent_bits;
1983		}
1984		i = next_zero;
1985	}
1986
1987	if (found_bits) {
1988		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1989		*bytes = (u64)(found_bits) * ctl->unit;
1990		return 0;
1991	}
1992
1993	*bytes = (u64)(max_bits) * ctl->unit;
1994	bitmap_info->max_extent_size = *bytes;
1995	relink_bitmap_entry(ctl, bitmap_info);
1996	return -1;
1997}
1998
 
 
 
 
 
 
 
1999/* Cache the size of the max extent in bytes */
2000static struct btrfs_free_space *
2001find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2002		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2003{
2004	struct btrfs_free_space *entry;
2005	struct rb_node *node;
2006	u64 tmp;
2007	u64 align_off;
2008	int ret;
2009
2010	if (!ctl->free_space_offset.rb_node)
2011		goto out;
2012again:
2013	if (use_bytes_index) {
2014		node = rb_first_cached(&ctl->free_space_bytes);
2015	} else {
2016		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2017					   0, 1);
2018		if (!entry)
2019			goto out;
2020		node = &entry->offset_index;
2021	}
2022
2023	for (; node; node = rb_next(node)) {
2024		if (use_bytes_index)
2025			entry = rb_entry(node, struct btrfs_free_space,
2026					 bytes_index);
2027		else
2028			entry = rb_entry(node, struct btrfs_free_space,
2029					 offset_index);
2030
2031		/*
2032		 * If we are using the bytes index then all subsequent entries
2033		 * in this tree are going to be < bytes, so simply set the max
2034		 * extent size and exit the loop.
2035		 *
2036		 * If we're using the offset index then we need to keep going
2037		 * through the rest of the tree.
2038		 */
2039		if (entry->bytes < *bytes) {
2040			*max_extent_size = max(get_max_extent_size(entry),
2041					       *max_extent_size);
2042			if (use_bytes_index)
2043				break;
2044			continue;
2045		}
2046
2047		/* make sure the space returned is big enough
2048		 * to match our requested alignment
2049		 */
2050		if (*bytes >= align) {
2051			tmp = entry->offset - ctl->start + align - 1;
2052			tmp = div64_u64(tmp, align);
2053			tmp = tmp * align + ctl->start;
2054			align_off = tmp - entry->offset;
2055		} else {
2056			align_off = 0;
2057			tmp = entry->offset;
2058		}
2059
2060		/*
2061		 * We don't break here if we're using the bytes index because we
2062		 * may have another entry that has the correct alignment that is
2063		 * the right size, so we don't want to miss that possibility.
2064		 * At worst this adds another loop through the logic, but if we
2065		 * broke here we could prematurely ENOSPC.
2066		 */
2067		if (entry->bytes < *bytes + align_off) {
2068			*max_extent_size = max(get_max_extent_size(entry),
2069					       *max_extent_size);
2070			continue;
2071		}
2072
2073		if (entry->bitmap) {
2074			struct rb_node *old_next = rb_next(node);
2075			u64 size = *bytes;
2076
2077			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2078			if (!ret) {
2079				*offset = tmp;
2080				*bytes = size;
2081				return entry;
2082			} else {
2083				*max_extent_size =
2084					max(get_max_extent_size(entry),
2085					    *max_extent_size);
2086			}
2087
2088			/*
2089			 * The bitmap may have gotten re-arranged in the space
2090			 * index here because the max_extent_size may have been
2091			 * updated.  Start from the beginning again if this
2092			 * happened.
2093			 */
2094			if (use_bytes_index && old_next != rb_next(node))
2095				goto again;
2096			continue;
2097		}
2098
2099		*offset = tmp;
2100		*bytes = entry->bytes - align_off;
2101		return entry;
2102	}
2103out:
2104	return NULL;
2105}
2106
2107static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2108			   struct btrfs_free_space *info, u64 offset)
2109{
2110	info->offset = offset_to_bitmap(ctl, offset);
2111	info->bytes = 0;
2112	info->bitmap_extents = 0;
2113	INIT_LIST_HEAD(&info->list);
2114	link_free_space(ctl, info);
2115	ctl->total_bitmaps++;
2116	recalculate_thresholds(ctl);
 
2117}
2118
2119static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2120			struct btrfs_free_space *bitmap_info)
2121{
2122	/*
2123	 * Normally when this is called, the bitmap is completely empty. However,
2124	 * if we are blowing up the free space cache for one reason or another
2125	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2126	 * we may leave stats on the table.
2127	 */
2128	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2129		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2130			bitmap_info->bitmap_extents;
2131		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2132
2133	}
2134	unlink_free_space(ctl, bitmap_info, true);
2135	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2136	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2137	ctl->total_bitmaps--;
2138	recalculate_thresholds(ctl);
2139}
2140
2141static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2142			      struct btrfs_free_space *bitmap_info,
2143			      u64 *offset, u64 *bytes)
2144{
2145	u64 end;
2146	u64 search_start, search_bytes;
2147	int ret;
2148
2149again:
2150	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2151
2152	/*
2153	 * We need to search for bits in this bitmap.  We could only cover some
2154	 * of the extent in this bitmap thanks to how we add space, so we need
2155	 * to search for as much as it as we can and clear that amount, and then
2156	 * go searching for the next bit.
2157	 */
2158	search_start = *offset;
2159	search_bytes = ctl->unit;
2160	search_bytes = min(search_bytes, end - search_start + 1);
2161	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2162			    false);
2163	if (ret < 0 || search_start != *offset)
2164		return -EINVAL;
2165
2166	/* We may have found more bits than what we need */
2167	search_bytes = min(search_bytes, *bytes);
2168
2169	/* Cannot clear past the end of the bitmap */
2170	search_bytes = min(search_bytes, end - search_start + 1);
2171
2172	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2173	*offset += search_bytes;
2174	*bytes -= search_bytes;
2175
2176	if (*bytes) {
2177		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2178		if (!bitmap_info->bytes)
2179			free_bitmap(ctl, bitmap_info);
2180
2181		/*
2182		 * no entry after this bitmap, but we still have bytes to
2183		 * remove, so something has gone wrong.
2184		 */
2185		if (!next)
2186			return -EINVAL;
2187
2188		bitmap_info = rb_entry(next, struct btrfs_free_space,
2189				       offset_index);
2190
2191		/*
2192		 * if the next entry isn't a bitmap we need to return to let the
2193		 * extent stuff do its work.
2194		 */
2195		if (!bitmap_info->bitmap)
2196			return -EAGAIN;
2197
2198		/*
2199		 * Ok the next item is a bitmap, but it may not actually hold
2200		 * the information for the rest of this free space stuff, so
2201		 * look for it, and if we don't find it return so we can try
2202		 * everything over again.
2203		 */
2204		search_start = *offset;
2205		search_bytes = ctl->unit;
2206		ret = search_bitmap(ctl, bitmap_info, &search_start,
2207				    &search_bytes, false);
2208		if (ret < 0 || search_start != *offset)
2209			return -EAGAIN;
2210
2211		goto again;
2212	} else if (!bitmap_info->bytes)
2213		free_bitmap(ctl, bitmap_info);
2214
2215	return 0;
2216}
2217
2218static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2219			       struct btrfs_free_space *info, u64 offset,
2220			       u64 bytes, enum btrfs_trim_state trim_state)
2221{
2222	u64 bytes_to_set = 0;
2223	u64 end;
2224
2225	/*
2226	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2227	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2228	 */
2229	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2230		if (btrfs_free_space_trimmed(info)) {
2231			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2232				info->bitmap_extents;
2233			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2234		}
2235		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2236	}
2237
2238	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2239
2240	bytes_to_set = min(end - offset, bytes);
2241
2242	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2243
 
 
 
 
 
 
2244	return bytes_to_set;
2245
2246}
2247
2248static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2249		      struct btrfs_free_space *info)
2250{
2251	struct btrfs_block_group *block_group = ctl->block_group;
2252	struct btrfs_fs_info *fs_info = block_group->fs_info;
2253	bool forced = false;
2254
2255#ifdef CONFIG_BTRFS_DEBUG
2256	if (btrfs_should_fragment_free_space(block_group))
2257		forced = true;
2258#endif
2259
2260	/* This is a way to reclaim large regions from the bitmaps. */
2261	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2262		return false;
2263
2264	/*
2265	 * If we are below the extents threshold then we can add this as an
2266	 * extent, and don't have to deal with the bitmap
2267	 */
2268	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2269		/*
2270		 * If this block group has some small extents we don't want to
2271		 * use up all of our free slots in the cache with them, we want
2272		 * to reserve them to larger extents, however if we have plenty
2273		 * of cache left then go ahead an dadd them, no sense in adding
2274		 * the overhead of a bitmap if we don't have to.
2275		 */
2276		if (info->bytes <= fs_info->sectorsize * 8) {
2277			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2278				return false;
2279		} else {
2280			return false;
2281		}
2282	}
2283
2284	/*
2285	 * The original block groups from mkfs can be really small, like 8
2286	 * megabytes, so don't bother with a bitmap for those entries.  However
2287	 * some block groups can be smaller than what a bitmap would cover but
2288	 * are still large enough that they could overflow the 32k memory limit,
2289	 * so allow those block groups to still be allowed to have a bitmap
2290	 * entry.
2291	 */
2292	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2293		return false;
2294
2295	return true;
2296}
2297
2298static const struct btrfs_free_space_op free_space_op = {
 
2299	.use_bitmap		= use_bitmap,
2300};
2301
2302static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2303			      struct btrfs_free_space *info)
2304{
2305	struct btrfs_free_space *bitmap_info;
2306	struct btrfs_block_group *block_group = NULL;
2307	int added = 0;
2308	u64 bytes, offset, bytes_added;
2309	enum btrfs_trim_state trim_state;
2310	int ret;
2311
2312	bytes = info->bytes;
2313	offset = info->offset;
2314	trim_state = info->trim_state;
2315
2316	if (!ctl->op->use_bitmap(ctl, info))
2317		return 0;
2318
2319	if (ctl->op == &free_space_op)
2320		block_group = ctl->block_group;
2321again:
2322	/*
2323	 * Since we link bitmaps right into the cluster we need to see if we
2324	 * have a cluster here, and if so and it has our bitmap we need to add
2325	 * the free space to that bitmap.
2326	 */
2327	if (block_group && !list_empty(&block_group->cluster_list)) {
2328		struct btrfs_free_cluster *cluster;
2329		struct rb_node *node;
2330		struct btrfs_free_space *entry;
2331
2332		cluster = list_entry(block_group->cluster_list.next,
2333				     struct btrfs_free_cluster,
2334				     block_group_list);
2335		spin_lock(&cluster->lock);
2336		node = rb_first(&cluster->root);
2337		if (!node) {
2338			spin_unlock(&cluster->lock);
2339			goto no_cluster_bitmap;
2340		}
2341
2342		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2343		if (!entry->bitmap) {
2344			spin_unlock(&cluster->lock);
2345			goto no_cluster_bitmap;
2346		}
2347
2348		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2349			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2350							  bytes, trim_state);
2351			bytes -= bytes_added;
2352			offset += bytes_added;
2353		}
2354		spin_unlock(&cluster->lock);
2355		if (!bytes) {
2356			ret = 1;
2357			goto out;
2358		}
2359	}
2360
2361no_cluster_bitmap:
2362	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2363					 1, 0);
2364	if (!bitmap_info) {
2365		ASSERT(added == 0);
2366		goto new_bitmap;
2367	}
2368
2369	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2370					  trim_state);
2371	bytes -= bytes_added;
2372	offset += bytes_added;
2373	added = 0;
2374
2375	if (!bytes) {
2376		ret = 1;
2377		goto out;
2378	} else
2379		goto again;
2380
2381new_bitmap:
2382	if (info && info->bitmap) {
2383		add_new_bitmap(ctl, info, offset);
2384		added = 1;
2385		info = NULL;
2386		goto again;
2387	} else {
2388		spin_unlock(&ctl->tree_lock);
2389
2390		/* no pre-allocated info, allocate a new one */
2391		if (!info) {
2392			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2393						 GFP_NOFS);
2394			if (!info) {
2395				spin_lock(&ctl->tree_lock);
2396				ret = -ENOMEM;
2397				goto out;
2398			}
2399		}
2400
2401		/* allocate the bitmap */
2402		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2403						 GFP_NOFS);
2404		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2405		spin_lock(&ctl->tree_lock);
2406		if (!info->bitmap) {
2407			ret = -ENOMEM;
2408			goto out;
2409		}
2410		goto again;
2411	}
2412
2413out:
2414	if (info) {
2415		if (info->bitmap)
2416			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2417					info->bitmap);
2418		kmem_cache_free(btrfs_free_space_cachep, info);
2419	}
2420
2421	return ret;
2422}
2423
2424/*
2425 * Free space merging rules:
2426 *  1) Merge trimmed areas together
2427 *  2) Let untrimmed areas coalesce with trimmed areas
2428 *  3) Always pull neighboring regions from bitmaps
2429 *
2430 * The above rules are for when we merge free space based on btrfs_trim_state.
2431 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2432 * same reason: to promote larger extent regions which makes life easier for
2433 * find_free_extent().  Rule 2 enables coalescing based on the common path
2434 * being returning free space from btrfs_finish_extent_commit().  So when free
2435 * space is trimmed, it will prevent aggregating trimmed new region and
2436 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2437 * and provide find_free_extent() with the largest extents possible hoping for
2438 * the reuse path.
2439 */
2440static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2441			  struct btrfs_free_space *info, bool update_stat)
2442{
2443	struct btrfs_free_space *left_info = NULL;
2444	struct btrfs_free_space *right_info;
2445	bool merged = false;
2446	u64 offset = info->offset;
2447	u64 bytes = info->bytes;
2448	const bool is_trimmed = btrfs_free_space_trimmed(info);
2449
2450	/*
2451	 * first we want to see if there is free space adjacent to the range we
2452	 * are adding, if there is remove that struct and add a new one to
2453	 * cover the entire range
2454	 */
2455	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2456	if (right_info && rb_prev(&right_info->offset_index))
2457		left_info = rb_entry(rb_prev(&right_info->offset_index),
2458				     struct btrfs_free_space, offset_index);
2459	else if (!right_info)
2460		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2461
2462	/* See try_merge_free_space() comment. */
2463	if (right_info && !right_info->bitmap &&
2464	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2465		unlink_free_space(ctl, right_info, update_stat);
 
2466		info->bytes += right_info->bytes;
2467		kmem_cache_free(btrfs_free_space_cachep, right_info);
2468		merged = true;
2469	}
2470
2471	/* See try_merge_free_space() comment. */
2472	if (left_info && !left_info->bitmap &&
2473	    left_info->offset + left_info->bytes == offset &&
2474	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2475		unlink_free_space(ctl, left_info, update_stat);
 
 
2476		info->offset = left_info->offset;
2477		info->bytes += left_info->bytes;
2478		kmem_cache_free(btrfs_free_space_cachep, left_info);
2479		merged = true;
2480	}
2481
2482	return merged;
2483}
2484
2485static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2486				     struct btrfs_free_space *info,
2487				     bool update_stat)
2488{
2489	struct btrfs_free_space *bitmap;
2490	unsigned long i;
2491	unsigned long j;
2492	const u64 end = info->offset + info->bytes;
2493	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2494	u64 bytes;
2495
2496	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2497	if (!bitmap)
2498		return false;
2499
2500	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2501	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2502	if (j == i)
2503		return false;
2504	bytes = (j - i) * ctl->unit;
2505	info->bytes += bytes;
2506
2507	/* See try_merge_free_space() comment. */
2508	if (!btrfs_free_space_trimmed(bitmap))
2509		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2510
2511	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2512
2513	if (!bitmap->bytes)
2514		free_bitmap(ctl, bitmap);
2515
2516	return true;
2517}
2518
2519static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2520				       struct btrfs_free_space *info,
2521				       bool update_stat)
2522{
2523	struct btrfs_free_space *bitmap;
2524	u64 bitmap_offset;
2525	unsigned long i;
2526	unsigned long j;
2527	unsigned long prev_j;
2528	u64 bytes;
2529
2530	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2531	/* If we're on a boundary, try the previous logical bitmap. */
2532	if (bitmap_offset == info->offset) {
2533		if (info->offset == 0)
2534			return false;
2535		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2536	}
2537
2538	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2539	if (!bitmap)
2540		return false;
2541
2542	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2543	j = 0;
2544	prev_j = (unsigned long)-1;
2545	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2546		if (j > i)
2547			break;
2548		prev_j = j;
2549	}
2550	if (prev_j == i)
2551		return false;
2552
2553	if (prev_j == (unsigned long)-1)
2554		bytes = (i + 1) * ctl->unit;
2555	else
2556		bytes = (i - prev_j) * ctl->unit;
2557
2558	info->offset -= bytes;
2559	info->bytes += bytes;
2560
2561	/* See try_merge_free_space() comment. */
2562	if (!btrfs_free_space_trimmed(bitmap))
2563		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2564
2565	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2566
2567	if (!bitmap->bytes)
2568		free_bitmap(ctl, bitmap);
2569
2570	return true;
2571}
2572
2573/*
2574 * We prefer always to allocate from extent entries, both for clustered and
2575 * non-clustered allocation requests. So when attempting to add a new extent
2576 * entry, try to see if there's adjacent free space in bitmap entries, and if
2577 * there is, migrate that space from the bitmaps to the extent.
2578 * Like this we get better chances of satisfying space allocation requests
2579 * because we attempt to satisfy them based on a single cache entry, and never
2580 * on 2 or more entries - even if the entries represent a contiguous free space
2581 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2582 * ends).
2583 */
2584static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2585			      struct btrfs_free_space *info,
2586			      bool update_stat)
2587{
2588	/*
2589	 * Only work with disconnected entries, as we can change their offset,
2590	 * and must be extent entries.
2591	 */
2592	ASSERT(!info->bitmap);
2593	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2594
2595	if (ctl->total_bitmaps > 0) {
2596		bool stole_end;
2597		bool stole_front = false;
2598
2599		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2600		if (ctl->total_bitmaps > 0)
2601			stole_front = steal_from_bitmap_to_front(ctl, info,
2602								 update_stat);
2603
2604		if (stole_end || stole_front)
2605			try_merge_free_space(ctl, info, update_stat);
2606	}
2607}
2608
2609int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2610			   u64 offset, u64 bytes,
2611			   enum btrfs_trim_state trim_state)
2612{
2613	struct btrfs_fs_info *fs_info = block_group->fs_info;
2614	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2615	struct btrfs_free_space *info;
2616	int ret = 0;
2617	u64 filter_bytes = bytes;
2618
2619	ASSERT(!btrfs_is_zoned(fs_info));
2620
2621	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2622	if (!info)
2623		return -ENOMEM;
2624
2625	info->offset = offset;
2626	info->bytes = bytes;
2627	info->trim_state = trim_state;
2628	RB_CLEAR_NODE(&info->offset_index);
2629	RB_CLEAR_NODE(&info->bytes_index);
2630
2631	spin_lock(&ctl->tree_lock);
2632
2633	if (try_merge_free_space(ctl, info, true))
2634		goto link;
2635
2636	/*
2637	 * There was no extent directly to the left or right of this new
2638	 * extent then we know we're going to have to allocate a new extent, so
2639	 * before we do that see if we need to drop this into a bitmap
2640	 */
2641	ret = insert_into_bitmap(ctl, info);
2642	if (ret < 0) {
2643		goto out;
2644	} else if (ret) {
2645		ret = 0;
2646		goto out;
2647	}
2648link:
2649	/*
2650	 * Only steal free space from adjacent bitmaps if we're sure we're not
2651	 * going to add the new free space to existing bitmap entries - because
2652	 * that would mean unnecessary work that would be reverted. Therefore
2653	 * attempt to steal space from bitmaps if we're adding an extent entry.
2654	 */
2655	steal_from_bitmap(ctl, info, true);
2656
2657	filter_bytes = max(filter_bytes, info->bytes);
2658
2659	ret = link_free_space(ctl, info);
2660	if (ret)
2661		kmem_cache_free(btrfs_free_space_cachep, info);
2662out:
2663	btrfs_discard_update_discardable(block_group);
2664	spin_unlock(&ctl->tree_lock);
2665
2666	if (ret) {
2667		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2668		ASSERT(ret != -EEXIST);
2669	}
2670
2671	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2672		btrfs_discard_check_filter(block_group, filter_bytes);
2673		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2674	}
2675
2676	return ret;
2677}
2678
2679static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2680					u64 bytenr, u64 size, bool used)
2681{
2682	struct btrfs_space_info *sinfo = block_group->space_info;
2683	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2684	u64 offset = bytenr - block_group->start;
2685	u64 to_free, to_unusable;
2686	int bg_reclaim_threshold = 0;
2687	bool initial = (size == block_group->length);
2688	u64 reclaimable_unusable;
2689
2690	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2691
2692	if (!initial)
2693		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2694
2695	spin_lock(&ctl->tree_lock);
2696	if (!used)
2697		to_free = size;
2698	else if (initial)
2699		to_free = block_group->zone_capacity;
2700	else if (offset >= block_group->alloc_offset)
2701		to_free = size;
2702	else if (offset + size <= block_group->alloc_offset)
2703		to_free = 0;
2704	else
2705		to_free = offset + size - block_group->alloc_offset;
2706	to_unusable = size - to_free;
2707
2708	ctl->free_space += to_free;
2709	/*
2710	 * If the block group is read-only, we should account freed space into
2711	 * bytes_readonly.
2712	 */
2713	if (!block_group->ro)
2714		block_group->zone_unusable += to_unusable;
2715	spin_unlock(&ctl->tree_lock);
2716	if (!used) {
2717		spin_lock(&block_group->lock);
2718		block_group->alloc_offset -= size;
2719		spin_unlock(&block_group->lock);
2720	}
2721
2722	reclaimable_unusable = block_group->zone_unusable -
2723			       (block_group->length - block_group->zone_capacity);
2724	/* All the region is now unusable. Mark it as unused and reclaim */
2725	if (block_group->zone_unusable == block_group->length) {
2726		btrfs_mark_bg_unused(block_group);
2727	} else if (bg_reclaim_threshold &&
2728		   reclaimable_unusable >=
2729		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2730		btrfs_mark_bg_to_reclaim(block_group);
2731	}
2732
2733	return 0;
2734}
2735
2736int btrfs_add_free_space(struct btrfs_block_group *block_group,
2737			 u64 bytenr, u64 size)
2738{
2739	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2740
2741	if (btrfs_is_zoned(block_group->fs_info))
2742		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2743						    true);
2744
2745	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2746		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2747
2748	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2749}
2750
2751int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2752				u64 bytenr, u64 size)
2753{
2754	if (btrfs_is_zoned(block_group->fs_info))
2755		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2756						    false);
2757
2758	return btrfs_add_free_space(block_group, bytenr, size);
2759}
2760
2761/*
2762 * This is a subtle distinction because when adding free space back in general,
2763 * we want it to be added as untrimmed for async. But in the case where we add
2764 * it on loading of a block group, we want to consider it trimmed.
2765 */
2766int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2767				       u64 bytenr, u64 size)
2768{
2769	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2770
2771	if (btrfs_is_zoned(block_group->fs_info))
2772		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2773						    true);
2774
2775	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2776	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2777		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2778
2779	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2780}
2781
2782int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2783			    u64 offset, u64 bytes)
2784{
2785	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2786	struct btrfs_free_space *info;
2787	int ret;
2788	bool re_search = false;
2789
2790	if (btrfs_is_zoned(block_group->fs_info)) {
2791		/*
2792		 * This can happen with conventional zones when replaying log.
2793		 * Since the allocation info of tree-log nodes are not recorded
2794		 * to the extent-tree, calculate_alloc_pointer() failed to
2795		 * advance the allocation pointer after last allocated tree log
2796		 * node blocks.
2797		 *
2798		 * This function is called from
2799		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2800		 * Advance the pointer not to overwrite the tree-log nodes.
2801		 */
2802		if (block_group->start + block_group->alloc_offset <
2803		    offset + bytes) {
2804			block_group->alloc_offset =
2805				offset + bytes - block_group->start;
2806		}
2807		return 0;
2808	}
2809
2810	spin_lock(&ctl->tree_lock);
2811
2812again:
2813	ret = 0;
2814	if (!bytes)
2815		goto out_lock;
2816
2817	info = tree_search_offset(ctl, offset, 0, 0);
2818	if (!info) {
2819		/*
2820		 * oops didn't find an extent that matched the space we wanted
2821		 * to remove, look for a bitmap instead
2822		 */
2823		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2824					  1, 0);
2825		if (!info) {
2826			/*
2827			 * If we found a partial bit of our free space in a
2828			 * bitmap but then couldn't find the other part this may
2829			 * be a problem, so WARN about it.
2830			 */
2831			WARN_ON(re_search);
2832			goto out_lock;
2833		}
2834	}
2835
2836	re_search = false;
2837	if (!info->bitmap) {
2838		unlink_free_space(ctl, info, true);
2839		if (offset == info->offset) {
2840			u64 to_free = min(bytes, info->bytes);
2841
2842			info->bytes -= to_free;
2843			info->offset += to_free;
2844			if (info->bytes) {
2845				ret = link_free_space(ctl, info);
2846				WARN_ON(ret);
2847			} else {
2848				kmem_cache_free(btrfs_free_space_cachep, info);
2849			}
2850
2851			offset += to_free;
2852			bytes -= to_free;
2853			goto again;
2854		} else {
2855			u64 old_end = info->bytes + info->offset;
2856
2857			info->bytes = offset - info->offset;
2858			ret = link_free_space(ctl, info);
2859			WARN_ON(ret);
2860			if (ret)
2861				goto out_lock;
2862
2863			/* Not enough bytes in this entry to satisfy us */
2864			if (old_end < offset + bytes) {
2865				bytes -= old_end - offset;
2866				offset = old_end;
2867				goto again;
2868			} else if (old_end == offset + bytes) {
2869				/* all done */
2870				goto out_lock;
2871			}
2872			spin_unlock(&ctl->tree_lock);
2873
2874			ret = __btrfs_add_free_space(block_group,
2875						     offset + bytes,
2876						     old_end - (offset + bytes),
2877						     info->trim_state);
2878			WARN_ON(ret);
2879			goto out;
2880		}
2881	}
2882
2883	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2884	if (ret == -EAGAIN) {
2885		re_search = true;
2886		goto again;
2887	}
2888out_lock:
2889	btrfs_discard_update_discardable(block_group);
2890	spin_unlock(&ctl->tree_lock);
2891out:
2892	return ret;
2893}
2894
2895void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2896			   u64 bytes)
2897{
2898	struct btrfs_fs_info *fs_info = block_group->fs_info;
2899	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2900	struct btrfs_free_space *info;
2901	struct rb_node *n;
2902	int count = 0;
2903
2904	/*
2905	 * Zoned btrfs does not use free space tree and cluster. Just print
2906	 * out the free space after the allocation offset.
2907	 */
2908	if (btrfs_is_zoned(fs_info)) {
2909		btrfs_info(fs_info, "free space %llu active %d",
2910			   block_group->zone_capacity - block_group->alloc_offset,
2911			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2912				    &block_group->runtime_flags));
2913		return;
2914	}
2915
2916	spin_lock(&ctl->tree_lock);
2917	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2918		info = rb_entry(n, struct btrfs_free_space, offset_index);
2919		if (info->bytes >= bytes && !block_group->ro)
2920			count++;
2921		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2922			   info->offset, info->bytes,
2923		       (info->bitmap) ? "yes" : "no");
2924	}
2925	spin_unlock(&ctl->tree_lock);
2926	btrfs_info(fs_info, "block group has cluster?: %s",
2927	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2928	btrfs_info(fs_info,
2929		   "%d blocks of free space at or bigger than bytes is", count);
2930}
2931
2932void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2933			       struct btrfs_free_space_ctl *ctl)
2934{
2935	struct btrfs_fs_info *fs_info = block_group->fs_info;
 
2936
2937	spin_lock_init(&ctl->tree_lock);
2938	ctl->unit = fs_info->sectorsize;
2939	ctl->start = block_group->start;
2940	ctl->block_group = block_group;
2941	ctl->op = &free_space_op;
2942	ctl->free_space_bytes = RB_ROOT_CACHED;
2943	INIT_LIST_HEAD(&ctl->trimming_ranges);
2944	mutex_init(&ctl->cache_writeout_mutex);
2945
2946	/*
2947	 * we only want to have 32k of ram per block group for keeping
2948	 * track of free space, and if we pass 1/2 of that we want to
2949	 * start converting things over to using bitmaps
2950	 */
2951	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2952}
2953
2954/*
2955 * for a given cluster, put all of its extents back into the free
2956 * space cache.  If the block group passed doesn't match the block group
2957 * pointed to by the cluster, someone else raced in and freed the
2958 * cluster already.  In that case, we just return without changing anything
2959 */
2960static void __btrfs_return_cluster_to_free_space(
2961			     struct btrfs_block_group *block_group,
 
2962			     struct btrfs_free_cluster *cluster)
2963{
2964	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2965	struct btrfs_free_space *entry;
2966	struct rb_node *node;
2967
2968	spin_lock(&cluster->lock);
2969	if (cluster->block_group != block_group) {
2970		spin_unlock(&cluster->lock);
2971		return;
2972	}
2973
2974	cluster->block_group = NULL;
2975	cluster->window_start = 0;
2976	list_del_init(&cluster->block_group_list);
2977
2978	node = rb_first(&cluster->root);
2979	while (node) {
2980		bool bitmap;
2981
2982		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2983		node = rb_next(&entry->offset_index);
2984		rb_erase(&entry->offset_index, &cluster->root);
2985		RB_CLEAR_NODE(&entry->offset_index);
2986
2987		bitmap = (entry->bitmap != NULL);
2988		if (!bitmap) {
2989			/* Merging treats extents as if they were new */
2990			if (!btrfs_free_space_trimmed(entry)) {
2991				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2992				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2993					entry->bytes;
2994			}
2995
2996			try_merge_free_space(ctl, entry, false);
2997			steal_from_bitmap(ctl, entry, false);
2998
2999			/* As we insert directly, update these statistics */
3000			if (!btrfs_free_space_trimmed(entry)) {
3001				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3002				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3003					entry->bytes;
3004			}
3005		}
3006		tree_insert_offset(&ctl->free_space_offset,
3007				   entry->offset, &entry->offset_index, bitmap);
3008		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3009			      entry_less);
3010	}
3011	cluster->root = RB_ROOT;
 
 
3012	spin_unlock(&cluster->lock);
3013	btrfs_put_block_group(block_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014}
3015
3016void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
 
 
 
 
 
 
 
3017{
3018	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3019	struct btrfs_free_cluster *cluster;
3020	struct list_head *head;
3021
3022	spin_lock(&ctl->tree_lock);
3023	while ((head = block_group->cluster_list.next) !=
3024	       &block_group->cluster_list) {
3025		cluster = list_entry(head, struct btrfs_free_cluster,
3026				     block_group_list);
3027
3028		WARN_ON(cluster->block_group != block_group);
3029		__btrfs_return_cluster_to_free_space(block_group, cluster);
3030
3031		cond_resched_lock(&ctl->tree_lock);
3032	}
3033	__btrfs_remove_free_space_cache(ctl);
3034	btrfs_discard_update_discardable(block_group);
3035	spin_unlock(&ctl->tree_lock);
3036
3037}
3038
3039/*
3040 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3041 */
3042bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3043{
3044	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3045	struct btrfs_free_space *info;
3046	struct rb_node *node;
3047	bool ret = true;
3048
3049	spin_lock(&ctl->tree_lock);
3050	node = rb_first(&ctl->free_space_offset);
3051
3052	while (node) {
3053		info = rb_entry(node, struct btrfs_free_space, offset_index);
3054
3055		if (!btrfs_free_space_trimmed(info)) {
3056			ret = false;
3057			break;
3058		}
3059
3060		node = rb_next(node);
3061	}
3062
3063	spin_unlock(&ctl->tree_lock);
3064	return ret;
3065}
3066
3067u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3068			       u64 offset, u64 bytes, u64 empty_size,
3069			       u64 *max_extent_size)
3070{
3071	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3072	struct btrfs_discard_ctl *discard_ctl =
3073					&block_group->fs_info->discard_ctl;
3074	struct btrfs_free_space *entry = NULL;
3075	u64 bytes_search = bytes + empty_size;
3076	u64 ret = 0;
3077	u64 align_gap = 0;
3078	u64 align_gap_len = 0;
3079	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3080	bool use_bytes_index = (offset == block_group->start);
3081
3082	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3083
3084	spin_lock(&ctl->tree_lock);
3085	entry = find_free_space(ctl, &offset, &bytes_search,
3086				block_group->full_stripe_len, max_extent_size,
3087				use_bytes_index);
3088	if (!entry)
3089		goto out;
3090
3091	ret = offset;
3092	if (entry->bitmap) {
3093		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3094
3095		if (!btrfs_free_space_trimmed(entry))
3096			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3097
3098		if (!entry->bytes)
3099			free_bitmap(ctl, entry);
3100	} else {
3101		unlink_free_space(ctl, entry, true);
3102		align_gap_len = offset - entry->offset;
3103		align_gap = entry->offset;
3104		align_gap_trim_state = entry->trim_state;
3105
3106		if (!btrfs_free_space_trimmed(entry))
3107			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3108
3109		entry->offset = offset + bytes;
3110		WARN_ON(entry->bytes < bytes + align_gap_len);
3111
3112		entry->bytes -= bytes + align_gap_len;
3113		if (!entry->bytes)
3114			kmem_cache_free(btrfs_free_space_cachep, entry);
3115		else
3116			link_free_space(ctl, entry);
3117	}
3118out:
3119	btrfs_discard_update_discardable(block_group);
3120	spin_unlock(&ctl->tree_lock);
3121
3122	if (align_gap_len)
3123		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3124				       align_gap_trim_state);
3125	return ret;
3126}
3127
3128/*
3129 * given a cluster, put all of its extents back into the free space
3130 * cache.  If a block group is passed, this function will only free
3131 * a cluster that belongs to the passed block group.
3132 *
3133 * Otherwise, it'll get a reference on the block group pointed to by the
3134 * cluster and remove the cluster from it.
3135 */
3136void btrfs_return_cluster_to_free_space(
3137			       struct btrfs_block_group *block_group,
3138			       struct btrfs_free_cluster *cluster)
3139{
3140	struct btrfs_free_space_ctl *ctl;
 
3141
3142	/* first, get a safe pointer to the block group */
3143	spin_lock(&cluster->lock);
3144	if (!block_group) {
3145		block_group = cluster->block_group;
3146		if (!block_group) {
3147			spin_unlock(&cluster->lock);
3148			return;
3149		}
3150	} else if (cluster->block_group != block_group) {
3151		/* someone else has already freed it don't redo their work */
3152		spin_unlock(&cluster->lock);
3153		return;
3154	}
3155	btrfs_get_block_group(block_group);
3156	spin_unlock(&cluster->lock);
3157
3158	ctl = block_group->free_space_ctl;
3159
3160	/* now return any extents the cluster had on it */
3161	spin_lock(&ctl->tree_lock);
3162	__btrfs_return_cluster_to_free_space(block_group, cluster);
3163	spin_unlock(&ctl->tree_lock);
3164
3165	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3166
3167	/* finally drop our ref */
3168	btrfs_put_block_group(block_group);
 
3169}
3170
3171static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3172				   struct btrfs_free_cluster *cluster,
3173				   struct btrfs_free_space *entry,
3174				   u64 bytes, u64 min_start,
3175				   u64 *max_extent_size)
3176{
3177	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3178	int err;
3179	u64 search_start = cluster->window_start;
3180	u64 search_bytes = bytes;
3181	u64 ret = 0;
3182
3183	search_start = min_start;
3184	search_bytes = bytes;
3185
3186	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3187	if (err) {
3188		*max_extent_size = max(get_max_extent_size(entry),
3189				       *max_extent_size);
3190		return 0;
3191	}
3192
3193	ret = search_start;
3194	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3195
3196	return ret;
3197}
3198
3199/*
3200 * given a cluster, try to allocate 'bytes' from it, returns 0
3201 * if it couldn't find anything suitably large, or a logical disk offset
3202 * if things worked out
3203 */
3204u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3205			     struct btrfs_free_cluster *cluster, u64 bytes,
3206			     u64 min_start, u64 *max_extent_size)
3207{
3208	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3209	struct btrfs_discard_ctl *discard_ctl =
3210					&block_group->fs_info->discard_ctl;
3211	struct btrfs_free_space *entry = NULL;
3212	struct rb_node *node;
3213	u64 ret = 0;
3214
3215	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3216
3217	spin_lock(&cluster->lock);
3218	if (bytes > cluster->max_size)
3219		goto out;
3220
3221	if (cluster->block_group != block_group)
3222		goto out;
3223
3224	node = rb_first(&cluster->root);
3225	if (!node)
3226		goto out;
3227
3228	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3229	while (1) {
3230		if (entry->bytes < bytes)
3231			*max_extent_size = max(get_max_extent_size(entry),
3232					       *max_extent_size);
3233
3234		if (entry->bytes < bytes ||
3235		    (!entry->bitmap && entry->offset < min_start)) {
3236			node = rb_next(&entry->offset_index);
3237			if (!node)
3238				break;
3239			entry = rb_entry(node, struct btrfs_free_space,
3240					 offset_index);
3241			continue;
3242		}
3243
3244		if (entry->bitmap) {
3245			ret = btrfs_alloc_from_bitmap(block_group,
3246						      cluster, entry, bytes,
3247						      cluster->window_start,
3248						      max_extent_size);
3249			if (ret == 0) {
3250				node = rb_next(&entry->offset_index);
3251				if (!node)
3252					break;
3253				entry = rb_entry(node, struct btrfs_free_space,
3254						 offset_index);
3255				continue;
3256			}
3257			cluster->window_start += bytes;
3258		} else {
3259			ret = entry->offset;
3260
3261			entry->offset += bytes;
3262			entry->bytes -= bytes;
3263		}
3264
 
 
3265		break;
3266	}
3267out:
3268	spin_unlock(&cluster->lock);
3269
3270	if (!ret)
3271		return 0;
3272
3273	spin_lock(&ctl->tree_lock);
3274
3275	if (!btrfs_free_space_trimmed(entry))
3276		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3277
3278	ctl->free_space -= bytes;
3279	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3280		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3281
3282	spin_lock(&cluster->lock);
3283	if (entry->bytes == 0) {
3284		rb_erase(&entry->offset_index, &cluster->root);
3285		ctl->free_extents--;
3286		if (entry->bitmap) {
3287			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3288					entry->bitmap);
3289			ctl->total_bitmaps--;
3290			recalculate_thresholds(ctl);
3291		} else if (!btrfs_free_space_trimmed(entry)) {
3292			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3293		}
3294		kmem_cache_free(btrfs_free_space_cachep, entry);
3295	}
3296
3297	spin_unlock(&cluster->lock);
3298	spin_unlock(&ctl->tree_lock);
3299
3300	return ret;
3301}
3302
3303static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3304				struct btrfs_free_space *entry,
3305				struct btrfs_free_cluster *cluster,
3306				u64 offset, u64 bytes,
3307				u64 cont1_bytes, u64 min_bytes)
3308{
3309	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3310	unsigned long next_zero;
3311	unsigned long i;
3312	unsigned long want_bits;
3313	unsigned long min_bits;
3314	unsigned long found_bits;
3315	unsigned long max_bits = 0;
3316	unsigned long start = 0;
3317	unsigned long total_found = 0;
3318	int ret;
3319
3320	i = offset_to_bit(entry->offset, ctl->unit,
3321			  max_t(u64, offset, entry->offset));
3322	want_bits = bytes_to_bits(bytes, ctl->unit);
3323	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3324
3325	/*
3326	 * Don't bother looking for a cluster in this bitmap if it's heavily
3327	 * fragmented.
3328	 */
3329	if (entry->max_extent_size &&
3330	    entry->max_extent_size < cont1_bytes)
3331		return -ENOSPC;
3332again:
3333	found_bits = 0;
3334	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3335		next_zero = find_next_zero_bit(entry->bitmap,
3336					       BITS_PER_BITMAP, i);
3337		if (next_zero - i >= min_bits) {
3338			found_bits = next_zero - i;
3339			if (found_bits > max_bits)
3340				max_bits = found_bits;
3341			break;
3342		}
3343		if (next_zero - i > max_bits)
3344			max_bits = next_zero - i;
3345		i = next_zero;
3346	}
3347
3348	if (!found_bits) {
3349		entry->max_extent_size = (u64)max_bits * ctl->unit;
3350		return -ENOSPC;
3351	}
3352
3353	if (!total_found) {
3354		start = i;
3355		cluster->max_size = 0;
3356	}
3357
3358	total_found += found_bits;
3359
3360	if (cluster->max_size < found_bits * ctl->unit)
3361		cluster->max_size = found_bits * ctl->unit;
3362
3363	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3364		i = next_zero + 1;
3365		goto again;
3366	}
3367
3368	cluster->window_start = start * ctl->unit + entry->offset;
3369	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3370	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3371
3372	/*
3373	 * We need to know if we're currently on the normal space index when we
3374	 * manipulate the bitmap so that we know we need to remove and re-insert
3375	 * it into the space_index tree.  Clear the bytes_index node here so the
3376	 * bitmap manipulation helpers know not to mess with the space_index
3377	 * until this bitmap entry is added back into the normal cache.
3378	 */
3379	RB_CLEAR_NODE(&entry->bytes_index);
3380
3381	ret = tree_insert_offset(&cluster->root, entry->offset,
3382				 &entry->offset_index, 1);
3383	ASSERT(!ret); /* -EEXIST; Logic error */
3384
3385	trace_btrfs_setup_cluster(block_group, cluster,
3386				  total_found * ctl->unit, 1);
3387	return 0;
3388}
3389
3390/*
3391 * This searches the block group for just extents to fill the cluster with.
3392 * Try to find a cluster with at least bytes total bytes, at least one
3393 * extent of cont1_bytes, and other clusters of at least min_bytes.
3394 */
3395static noinline int
3396setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3397			struct btrfs_free_cluster *cluster,
3398			struct list_head *bitmaps, u64 offset, u64 bytes,
3399			u64 cont1_bytes, u64 min_bytes)
3400{
3401	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3402	struct btrfs_free_space *first = NULL;
3403	struct btrfs_free_space *entry = NULL;
3404	struct btrfs_free_space *last;
3405	struct rb_node *node;
3406	u64 window_free;
3407	u64 max_extent;
3408	u64 total_size = 0;
3409
3410	entry = tree_search_offset(ctl, offset, 0, 1);
3411	if (!entry)
3412		return -ENOSPC;
3413
3414	/*
3415	 * We don't want bitmaps, so just move along until we find a normal
3416	 * extent entry.
3417	 */
3418	while (entry->bitmap || entry->bytes < min_bytes) {
3419		if (entry->bitmap && list_empty(&entry->list))
3420			list_add_tail(&entry->list, bitmaps);
3421		node = rb_next(&entry->offset_index);
3422		if (!node)
3423			return -ENOSPC;
3424		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3425	}
3426
3427	window_free = entry->bytes;
3428	max_extent = entry->bytes;
3429	first = entry;
3430	last = entry;
3431
3432	for (node = rb_next(&entry->offset_index); node;
3433	     node = rb_next(&entry->offset_index)) {
3434		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3435
3436		if (entry->bitmap) {
3437			if (list_empty(&entry->list))
3438				list_add_tail(&entry->list, bitmaps);
3439			continue;
3440		}
3441
3442		if (entry->bytes < min_bytes)
3443			continue;
3444
3445		last = entry;
3446		window_free += entry->bytes;
3447		if (entry->bytes > max_extent)
3448			max_extent = entry->bytes;
3449	}
3450
3451	if (window_free < bytes || max_extent < cont1_bytes)
3452		return -ENOSPC;
3453
3454	cluster->window_start = first->offset;
3455
3456	node = &first->offset_index;
3457
3458	/*
3459	 * now we've found our entries, pull them out of the free space
3460	 * cache and put them into the cluster rbtree
3461	 */
3462	do {
3463		int ret;
3464
3465		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3466		node = rb_next(&entry->offset_index);
3467		if (entry->bitmap || entry->bytes < min_bytes)
3468			continue;
3469
3470		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3471		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3472		ret = tree_insert_offset(&cluster->root, entry->offset,
3473					 &entry->offset_index, 0);
3474		total_size += entry->bytes;
3475		ASSERT(!ret); /* -EEXIST; Logic error */
3476	} while (node && entry != last);
3477
3478	cluster->max_size = max_extent;
3479	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3480	return 0;
3481}
3482
3483/*
3484 * This specifically looks for bitmaps that may work in the cluster, we assume
3485 * that we have already failed to find extents that will work.
3486 */
3487static noinline int
3488setup_cluster_bitmap(struct btrfs_block_group *block_group,
3489		     struct btrfs_free_cluster *cluster,
3490		     struct list_head *bitmaps, u64 offset, u64 bytes,
3491		     u64 cont1_bytes, u64 min_bytes)
3492{
3493	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3494	struct btrfs_free_space *entry = NULL;
3495	int ret = -ENOSPC;
3496	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3497
3498	if (ctl->total_bitmaps == 0)
3499		return -ENOSPC;
3500
3501	/*
3502	 * The bitmap that covers offset won't be in the list unless offset
3503	 * is just its start offset.
3504	 */
3505	if (!list_empty(bitmaps))
3506		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3507
3508	if (!entry || entry->offset != bitmap_offset) {
3509		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3510		if (entry && list_empty(&entry->list))
3511			list_add(&entry->list, bitmaps);
3512	}
3513
3514	list_for_each_entry(entry, bitmaps, list) {
3515		if (entry->bytes < bytes)
3516			continue;
3517		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3518					   bytes, cont1_bytes, min_bytes);
3519		if (!ret)
3520			return 0;
3521	}
3522
3523	/*
3524	 * The bitmaps list has all the bitmaps that record free space
3525	 * starting after offset, so no more search is required.
3526	 */
3527	return -ENOSPC;
3528}
3529
3530/*
3531 * here we try to find a cluster of blocks in a block group.  The goal
3532 * is to find at least bytes+empty_size.
3533 * We might not find them all in one contiguous area.
3534 *
3535 * returns zero and sets up cluster if things worked out, otherwise
3536 * it returns -enospc
3537 */
3538int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3539			     struct btrfs_free_cluster *cluster,
3540			     u64 offset, u64 bytes, u64 empty_size)
3541{
3542	struct btrfs_fs_info *fs_info = block_group->fs_info;
3543	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3544	struct btrfs_free_space *entry, *tmp;
3545	LIST_HEAD(bitmaps);
3546	u64 min_bytes;
3547	u64 cont1_bytes;
3548	int ret;
3549
3550	/*
3551	 * Choose the minimum extent size we'll require for this
3552	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3553	 * For metadata, allow allocates with smaller extents.  For
3554	 * data, keep it dense.
3555	 */
3556	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3557		cont1_bytes = bytes + empty_size;
3558		min_bytes = cont1_bytes;
3559	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3560		cont1_bytes = bytes;
3561		min_bytes = fs_info->sectorsize;
3562	} else {
3563		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3564		min_bytes = fs_info->sectorsize;
3565	}
3566
3567	spin_lock(&ctl->tree_lock);
3568
3569	/*
3570	 * If we know we don't have enough space to make a cluster don't even
3571	 * bother doing all the work to try and find one.
3572	 */
3573	if (ctl->free_space < bytes) {
3574		spin_unlock(&ctl->tree_lock);
3575		return -ENOSPC;
3576	}
3577
3578	spin_lock(&cluster->lock);
3579
3580	/* someone already found a cluster, hooray */
3581	if (cluster->block_group) {
3582		ret = 0;
3583		goto out;
3584	}
3585
3586	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3587				 min_bytes);
3588
3589	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3590				      bytes + empty_size,
3591				      cont1_bytes, min_bytes);
3592	if (ret)
3593		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3594					   offset, bytes + empty_size,
3595					   cont1_bytes, min_bytes);
3596
3597	/* Clear our temporary list */
3598	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3599		list_del_init(&entry->list);
3600
3601	if (!ret) {
3602		btrfs_get_block_group(block_group);
3603		list_add_tail(&cluster->block_group_list,
3604			      &block_group->cluster_list);
3605		cluster->block_group = block_group;
3606	} else {
3607		trace_btrfs_failed_cluster_setup(block_group);
3608	}
3609out:
3610	spin_unlock(&cluster->lock);
3611	spin_unlock(&ctl->tree_lock);
3612
3613	return ret;
3614}
3615
3616/*
3617 * simple code to zero out a cluster
3618 */
3619void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3620{
3621	spin_lock_init(&cluster->lock);
3622	spin_lock_init(&cluster->refill_lock);
3623	cluster->root = RB_ROOT;
3624	cluster->max_size = 0;
3625	cluster->fragmented = false;
3626	INIT_LIST_HEAD(&cluster->block_group_list);
3627	cluster->block_group = NULL;
3628}
3629
3630static int do_trimming(struct btrfs_block_group *block_group,
3631		       u64 *total_trimmed, u64 start, u64 bytes,
3632		       u64 reserved_start, u64 reserved_bytes,
3633		       enum btrfs_trim_state reserved_trim_state,
3634		       struct btrfs_trim_range *trim_entry)
3635{
3636	struct btrfs_space_info *space_info = block_group->space_info;
3637	struct btrfs_fs_info *fs_info = block_group->fs_info;
3638	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3639	int ret;
3640	int update = 0;
3641	const u64 end = start + bytes;
3642	const u64 reserved_end = reserved_start + reserved_bytes;
3643	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3644	u64 trimmed = 0;
3645
3646	spin_lock(&space_info->lock);
3647	spin_lock(&block_group->lock);
3648	if (!block_group->ro) {
3649		block_group->reserved += reserved_bytes;
3650		space_info->bytes_reserved += reserved_bytes;
3651		update = 1;
3652	}
3653	spin_unlock(&block_group->lock);
3654	spin_unlock(&space_info->lock);
3655
3656	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3657	if (!ret) {
3658		*total_trimmed += trimmed;
3659		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3660	}
3661
3662	mutex_lock(&ctl->cache_writeout_mutex);
3663	if (reserved_start < start)
3664		__btrfs_add_free_space(block_group, reserved_start,
3665				       start - reserved_start,
3666				       reserved_trim_state);
3667	if (start + bytes < reserved_start + reserved_bytes)
3668		__btrfs_add_free_space(block_group, end, reserved_end - end,
3669				       reserved_trim_state);
3670	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3671	list_del(&trim_entry->list);
3672	mutex_unlock(&ctl->cache_writeout_mutex);
3673
3674	if (update) {
3675		spin_lock(&space_info->lock);
3676		spin_lock(&block_group->lock);
3677		if (block_group->ro)
3678			space_info->bytes_readonly += reserved_bytes;
3679		block_group->reserved -= reserved_bytes;
3680		space_info->bytes_reserved -= reserved_bytes;
3681		spin_unlock(&block_group->lock);
3682		spin_unlock(&space_info->lock);
3683	}
3684
3685	return ret;
3686}
3687
3688/*
3689 * If @async is set, then we will trim 1 region and return.
3690 */
3691static int trim_no_bitmap(struct btrfs_block_group *block_group,
3692			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3693			  bool async)
3694{
3695	struct btrfs_discard_ctl *discard_ctl =
3696					&block_group->fs_info->discard_ctl;
3697	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3698	struct btrfs_free_space *entry;
3699	struct rb_node *node;
3700	int ret = 0;
3701	u64 extent_start;
3702	u64 extent_bytes;
3703	enum btrfs_trim_state extent_trim_state;
3704	u64 bytes;
3705	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3706
3707	while (start < end) {
3708		struct btrfs_trim_range trim_entry;
3709
3710		mutex_lock(&ctl->cache_writeout_mutex);
3711		spin_lock(&ctl->tree_lock);
3712
3713		if (ctl->free_space < minlen)
3714			goto out_unlock;
 
 
 
3715
3716		entry = tree_search_offset(ctl, start, 0, 1);
3717		if (!entry)
3718			goto out_unlock;
 
 
 
3719
3720		/* Skip bitmaps and if async, already trimmed entries */
3721		while (entry->bitmap ||
3722		       (async && btrfs_free_space_trimmed(entry))) {
3723			node = rb_next(&entry->offset_index);
3724			if (!node)
3725				goto out_unlock;
 
 
 
3726			entry = rb_entry(node, struct btrfs_free_space,
3727					 offset_index);
3728		}
3729
3730		if (entry->offset >= end)
3731			goto out_unlock;
 
 
 
3732
3733		extent_start = entry->offset;
3734		extent_bytes = entry->bytes;
3735		extent_trim_state = entry->trim_state;
3736		if (async) {
3737			start = entry->offset;
3738			bytes = entry->bytes;
3739			if (bytes < minlen) {
3740				spin_unlock(&ctl->tree_lock);
3741				mutex_unlock(&ctl->cache_writeout_mutex);
3742				goto next;
3743			}
3744			unlink_free_space(ctl, entry, true);
3745			/*
3746			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3747			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3748			 * X when we come back around.  So trim it now.
3749			 */
3750			if (max_discard_size &&
3751			    bytes >= (max_discard_size +
3752				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3753				bytes = max_discard_size;
3754				extent_bytes = max_discard_size;
3755				entry->offset += max_discard_size;
3756				entry->bytes -= max_discard_size;
3757				link_free_space(ctl, entry);
3758			} else {
3759				kmem_cache_free(btrfs_free_space_cachep, entry);
3760			}
3761		} else {
3762			start = max(start, extent_start);
3763			bytes = min(extent_start + extent_bytes, end) - start;
3764			if (bytes < minlen) {
3765				spin_unlock(&ctl->tree_lock);
3766				mutex_unlock(&ctl->cache_writeout_mutex);
3767				goto next;
3768			}
3769
3770			unlink_free_space(ctl, entry, true);
3771			kmem_cache_free(btrfs_free_space_cachep, entry);
3772		}
3773
3774		spin_unlock(&ctl->tree_lock);
3775		trim_entry.start = extent_start;
3776		trim_entry.bytes = extent_bytes;
3777		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3778		mutex_unlock(&ctl->cache_writeout_mutex);
3779
3780		ret = do_trimming(block_group, total_trimmed, start, bytes,
3781				  extent_start, extent_bytes, extent_trim_state,
3782				  &trim_entry);
3783		if (ret) {
3784			block_group->discard_cursor = start + bytes;
3785			break;
3786		}
3787next:
3788		start += bytes;
3789		block_group->discard_cursor = start;
3790		if (async && *total_trimmed)
3791			break;
3792
3793		if (fatal_signal_pending(current)) {
3794			ret = -ERESTARTSYS;
3795			break;
3796		}
3797
3798		cond_resched();
3799	}
3800
3801	return ret;
3802
3803out_unlock:
3804	block_group->discard_cursor = btrfs_block_group_end(block_group);
3805	spin_unlock(&ctl->tree_lock);
3806	mutex_unlock(&ctl->cache_writeout_mutex);
3807
3808	return ret;
3809}
3810
3811/*
3812 * If we break out of trimming a bitmap prematurely, we should reset the
3813 * trimming bit.  In a rather contrieved case, it's possible to race here so
3814 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3815 *
3816 * start = start of bitmap
3817 * end = near end of bitmap
3818 *
3819 * Thread 1:			Thread 2:
3820 * trim_bitmaps(start)
3821 *				trim_bitmaps(end)
3822 *				end_trimming_bitmap()
3823 * reset_trimming_bitmap()
3824 */
3825static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3826{
3827	struct btrfs_free_space *entry;
3828
3829	spin_lock(&ctl->tree_lock);
3830	entry = tree_search_offset(ctl, offset, 1, 0);
3831	if (entry) {
3832		if (btrfs_free_space_trimmed(entry)) {
3833			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3834				entry->bitmap_extents;
3835			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3836		}
3837		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3838	}
3839
3840	spin_unlock(&ctl->tree_lock);
3841}
3842
3843static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3844				struct btrfs_free_space *entry)
3845{
3846	if (btrfs_free_space_trimming_bitmap(entry)) {
3847		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3848		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3849			entry->bitmap_extents;
3850		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3851	}
3852}
3853
3854/*
3855 * If @async is set, then we will trim 1 region and return.
3856 */
3857static int trim_bitmaps(struct btrfs_block_group *block_group,
3858			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3859			u64 maxlen, bool async)
3860{
3861	struct btrfs_discard_ctl *discard_ctl =
3862					&block_group->fs_info->discard_ctl;
3863	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3864	struct btrfs_free_space *entry;
3865	int ret = 0;
3866	int ret2;
3867	u64 bytes;
3868	u64 offset = offset_to_bitmap(ctl, start);
3869	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3870
3871	while (offset < end) {
3872		bool next_bitmap = false;
3873		struct btrfs_trim_range trim_entry;
3874
3875		mutex_lock(&ctl->cache_writeout_mutex);
3876		spin_lock(&ctl->tree_lock);
3877
3878		if (ctl->free_space < minlen) {
3879			block_group->discard_cursor =
3880				btrfs_block_group_end(block_group);
3881			spin_unlock(&ctl->tree_lock);
3882			mutex_unlock(&ctl->cache_writeout_mutex);
3883			break;
3884		}
3885
3886		entry = tree_search_offset(ctl, offset, 1, 0);
3887		/*
3888		 * Bitmaps are marked trimmed lossily now to prevent constant
3889		 * discarding of the same bitmap (the reason why we are bound
3890		 * by the filters).  So, retrim the block group bitmaps when we
3891		 * are preparing to punt to the unused_bgs list.  This uses
3892		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3893		 * which is the only discard index which sets minlen to 0.
3894		 */
3895		if (!entry || (async && minlen && start == offset &&
3896			       btrfs_free_space_trimmed(entry))) {
3897			spin_unlock(&ctl->tree_lock);
3898			mutex_unlock(&ctl->cache_writeout_mutex);
3899			next_bitmap = true;
3900			goto next;
3901		}
3902
3903		/*
3904		 * Async discard bitmap trimming begins at by setting the start
3905		 * to be key.objectid and the offset_to_bitmap() aligns to the
3906		 * start of the bitmap.  This lets us know we are fully
3907		 * scanning the bitmap rather than only some portion of it.
3908		 */
3909		if (start == offset)
3910			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3911
3912		bytes = minlen;
3913		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3914		if (ret2 || start >= end) {
3915			/*
3916			 * We lossily consider a bitmap trimmed if we only skip
3917			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3918			 */
3919			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3920				end_trimming_bitmap(ctl, entry);
3921			else
3922				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3923			spin_unlock(&ctl->tree_lock);
3924			mutex_unlock(&ctl->cache_writeout_mutex);
3925			next_bitmap = true;
3926			goto next;
3927		}
3928
3929		/*
3930		 * We already trimmed a region, but are using the locking above
3931		 * to reset the trim_state.
3932		 */
3933		if (async && *total_trimmed) {
3934			spin_unlock(&ctl->tree_lock);
3935			mutex_unlock(&ctl->cache_writeout_mutex);
3936			goto out;
3937		}
3938
3939		bytes = min(bytes, end - start);
3940		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3941			spin_unlock(&ctl->tree_lock);
3942			mutex_unlock(&ctl->cache_writeout_mutex);
3943			goto next;
3944		}
3945
3946		/*
3947		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3948		 * If X < @minlen, we won't trim X when we come back around.
3949		 * So trim it now.  We differ here from trimming extents as we
3950		 * don't keep individual state per bit.
3951		 */
3952		if (async &&
3953		    max_discard_size &&
3954		    bytes > (max_discard_size + minlen))
3955			bytes = max_discard_size;
3956
3957		bitmap_clear_bits(ctl, entry, start, bytes, true);
3958		if (entry->bytes == 0)
3959			free_bitmap(ctl, entry);
3960
3961		spin_unlock(&ctl->tree_lock);
3962		trim_entry.start = start;
3963		trim_entry.bytes = bytes;
3964		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3965		mutex_unlock(&ctl->cache_writeout_mutex);
3966
3967		ret = do_trimming(block_group, total_trimmed, start, bytes,
3968				  start, bytes, 0, &trim_entry);
3969		if (ret) {
3970			reset_trimming_bitmap(ctl, offset);
3971			block_group->discard_cursor =
3972				btrfs_block_group_end(block_group);
3973			break;
3974		}
3975next:
3976		if (next_bitmap) {
3977			offset += BITS_PER_BITMAP * ctl->unit;
3978			start = offset;
3979		} else {
3980			start += bytes;
 
 
3981		}
3982		block_group->discard_cursor = start;
3983
3984		if (fatal_signal_pending(current)) {
3985			if (start != offset)
3986				reset_trimming_bitmap(ctl, offset);
3987			ret = -ERESTARTSYS;
3988			break;
3989		}
3990
3991		cond_resched();
3992	}
3993
3994	if (offset >= end)
3995		block_group->discard_cursor = end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3996
3997out:
3998	return ret;
 
 
 
 
3999}
4000
4001int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4002			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4003{
4004	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4005	int ret;
4006	u64 rem = 0;
4007
4008	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4009
4010	*trimmed = 0;
4011
4012	spin_lock(&block_group->lock);
4013	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4014		spin_unlock(&block_group->lock);
4015		return 0;
4016	}
4017	btrfs_freeze_block_group(block_group);
4018	spin_unlock(&block_group->lock);
4019
4020	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4021	if (ret)
4022		goto out;
4023
4024	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4025	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4026	/* If we ended in the middle of a bitmap, reset the trimming flag */
4027	if (rem)
4028		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4029out:
4030	btrfs_unfreeze_block_group(block_group);
4031	return ret;
4032}
4033
4034int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4035				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4036				   bool async)
 
 
 
 
 
4037{
4038	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4039
4040	*trimmed = 0;
 
 
4041
4042	spin_lock(&block_group->lock);
4043	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4044		spin_unlock(&block_group->lock);
4045		return 0;
4046	}
4047	btrfs_freeze_block_group(block_group);
4048	spin_unlock(&block_group->lock);
4049
4050	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4051	btrfs_unfreeze_block_group(block_group);
4052
4053	return ret;
4054}
4055
4056int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4057				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4058				   u64 maxlen, bool async)
4059{
4060	int ret;
4061
4062	*trimmed = 0;
 
 
 
 
 
4063
4064	spin_lock(&block_group->lock);
4065	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4066		spin_unlock(&block_group->lock);
4067		return 0;
4068	}
4069	btrfs_freeze_block_group(block_group);
4070	spin_unlock(&block_group->lock);
4071
4072	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4073			   async);
 
 
4074
4075	btrfs_unfreeze_block_group(block_group);
4076
4077	return ret;
4078}
4079
4080bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
 
 
4081{
4082	return btrfs_super_cache_generation(fs_info->super_copy);
 
4083}
4084
4085static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4086				       struct btrfs_trans_handle *trans)
4087{
4088	struct btrfs_block_group *block_group;
4089	struct rb_node *node;
 
4090	int ret = 0;
 
4091
4092	btrfs_info(fs_info, "cleaning free space cache v1");
 
4093
4094	node = rb_first_cached(&fs_info->block_group_cache_tree);
4095	while (node) {
4096		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4097		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4098		if (ret)
4099			goto out;
4100		node = rb_next(node);
4101	}
4102out:
4103	return ret;
4104}
 
 
 
4105
4106int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4107{
4108	struct btrfs_trans_handle *trans;
4109	int ret;
4110
4111	/*
4112	 * update_super_roots will appropriately set or unset
4113	 * super_copy->cache_generation based on SPACE_CACHE and
4114	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4115	 * transaction commit whether we are enabling space cache v1 and don't
4116	 * have any other work to do, or are disabling it and removing free
4117	 * space inodes.
4118	 */
4119	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4120	if (IS_ERR(trans))
4121		return PTR_ERR(trans);
4122
4123	if (!active) {
4124		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4125		ret = cleanup_free_space_cache_v1(fs_info, trans);
4126		if (ret) {
4127			btrfs_abort_transaction(trans, ret);
4128			btrfs_end_transaction(trans);
4129			goto out;
4130		}
4131	}
4132
4133	ret = btrfs_commit_transaction(trans);
 
 
 
 
 
4134out:
4135	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4136
4137	return ret;
4138}
4139
4140int __init btrfs_free_space_init(void)
 
 
 
4141{
4142	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
4143			sizeof(struct btrfs_free_space), 0,
4144			SLAB_MEM_SPREAD, NULL);
4145	if (!btrfs_free_space_cachep)
4146		return -ENOMEM;
 
 
 
4147
4148	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4149							PAGE_SIZE, PAGE_SIZE,
4150							SLAB_MEM_SPREAD, NULL);
4151	if (!btrfs_free_space_bitmap_cachep) {
4152		kmem_cache_destroy(btrfs_free_space_cachep);
4153		return -ENOMEM;
 
 
 
 
 
4154	}
4155
4156	return 0;
4157}
 
 
 
 
 
 
 
 
4158
4159void __cold btrfs_free_space_exit(void)
4160{
4161	kmem_cache_destroy(btrfs_free_space_cachep);
4162	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4163}
4164
4165#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4166/*
4167 * Use this if you need to make a bitmap or extent entry specifically, it
4168 * doesn't do any of the merging that add_free_space does, this acts a lot like
4169 * how the free space cache loading stuff works, so you can get really weird
4170 * configurations.
4171 */
4172int test_add_free_space_entry(struct btrfs_block_group *cache,
4173			      u64 offset, u64 bytes, bool bitmap)
4174{
4175	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4176	struct btrfs_free_space *info = NULL, *bitmap_info;
4177	void *map = NULL;
4178	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4179	u64 bytes_added;
4180	int ret;
4181
4182again:
4183	if (!info) {
4184		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4185		if (!info)
4186			return -ENOMEM;
4187	}
4188
4189	if (!bitmap) {
4190		spin_lock(&ctl->tree_lock);
4191		info->offset = offset;
4192		info->bytes = bytes;
4193		info->max_extent_size = 0;
4194		ret = link_free_space(ctl, info);
4195		spin_unlock(&ctl->tree_lock);
4196		if (ret)
4197			kmem_cache_free(btrfs_free_space_cachep, info);
4198		return ret;
4199	}
4200
4201	if (!map) {
4202		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4203		if (!map) {
4204			kmem_cache_free(btrfs_free_space_cachep, info);
4205			return -ENOMEM;
4206		}
4207	}
4208
4209	spin_lock(&ctl->tree_lock);
4210	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4211					 1, 0);
4212	if (!bitmap_info) {
4213		info->bitmap = map;
4214		map = NULL;
4215		add_new_bitmap(ctl, info, offset);
4216		bitmap_info = info;
4217		info = NULL;
4218	}
4219
4220	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4221					  trim_state);
4222
4223	bytes -= bytes_added;
4224	offset += bytes_added;
4225	spin_unlock(&ctl->tree_lock);
4226
4227	if (bytes)
4228		goto again;
4229
4230	if (info)
4231		kmem_cache_free(btrfs_free_space_cachep, info);
4232	if (map)
4233		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4234	return 0;
4235}
4236
4237/*
4238 * Checks to see if the given range is in the free space cache.  This is really
4239 * just used to check the absence of space, so if there is free space in the
4240 * range at all we will return 1.
4241 */
4242int test_check_exists(struct btrfs_block_group *cache,
4243		      u64 offset, u64 bytes)
4244{
4245	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4246	struct btrfs_free_space *info;
4247	int ret = 0;
4248
4249	spin_lock(&ctl->tree_lock);
4250	info = tree_search_offset(ctl, offset, 0, 0);
4251	if (!info) {
4252		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4253					  1, 0);
4254		if (!info)
4255			goto out;
4256	}
4257
4258have_info:
4259	if (info->bitmap) {
4260		u64 bit_off, bit_bytes;
4261		struct rb_node *n;
4262		struct btrfs_free_space *tmp;
4263
4264		bit_off = offset;
4265		bit_bytes = ctl->unit;
4266		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4267		if (!ret) {
4268			if (bit_off == offset) {
4269				ret = 1;
4270				goto out;
4271			} else if (bit_off > offset &&
4272				   offset + bytes > bit_off) {
4273				ret = 1;
4274				goto out;
4275			}
4276		}
4277
4278		n = rb_prev(&info->offset_index);
4279		while (n) {
4280			tmp = rb_entry(n, struct btrfs_free_space,
4281				       offset_index);
4282			if (tmp->offset + tmp->bytes < offset)
4283				break;
4284			if (offset + bytes < tmp->offset) {
4285				n = rb_prev(&tmp->offset_index);
4286				continue;
4287			}
4288			info = tmp;
4289			goto have_info;
4290		}
4291
4292		n = rb_next(&info->offset_index);
4293		while (n) {
4294			tmp = rb_entry(n, struct btrfs_free_space,
4295				       offset_index);
4296			if (offset + bytes < tmp->offset)
4297				break;
4298			if (tmp->offset + tmp->bytes < offset) {
4299				n = rb_next(&tmp->offset_index);
4300				continue;
4301			}
4302			info = tmp;
4303			goto have_info;
4304		}
4305
4306		ret = 0;
4307		goto out;
4308	}
4309
4310	if (info->offset == offset) {
4311		ret = 1;
4312		goto out;
4313	}
4314
4315	if (offset > info->offset && offset < info->offset + info->bytes)
4316		ret = 1;
4317out:
4318	spin_unlock(&ctl->tree_lock);
4319	return ret;
4320}
4321#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */