Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "ctree.h"
 
 
 
  15#include "free-space-cache.h"
  16#include "transaction.h"
  17#include "disk-io.h"
  18#include "extent_io.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
 
 
 
 
 
 
 
  24
  25#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  26#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
 
 
 
 
  27
  28struct btrfs_trim_range {
  29	u64 start;
  30	u64 bytes;
  31	struct list_head list;
  32};
  33
  34static int link_free_space(struct btrfs_free_space_ctl *ctl,
  35			   struct btrfs_free_space *info);
  36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  37			      struct btrfs_free_space *info);
  38static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  39			     struct btrfs_trans_handle *trans,
  40			     struct btrfs_io_ctl *io_ctl,
  41			     struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42
  43static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  44					       struct btrfs_path *path,
  45					       u64 offset)
  46{
  47	struct btrfs_fs_info *fs_info = root->fs_info;
  48	struct btrfs_key key;
  49	struct btrfs_key location;
  50	struct btrfs_disk_key disk_key;
  51	struct btrfs_free_space_header *header;
  52	struct extent_buffer *leaf;
  53	struct inode *inode = NULL;
  54	unsigned nofs_flag;
  55	int ret;
  56
  57	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  58	key.offset = offset;
  59	key.type = 0;
  60
  61	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  62	if (ret < 0)
  63		return ERR_PTR(ret);
  64	if (ret > 0) {
  65		btrfs_release_path(path);
  66		return ERR_PTR(-ENOENT);
  67	}
  68
  69	leaf = path->nodes[0];
  70	header = btrfs_item_ptr(leaf, path->slots[0],
  71				struct btrfs_free_space_header);
  72	btrfs_free_space_key(leaf, header, &disk_key);
  73	btrfs_disk_key_to_cpu(&location, &disk_key);
  74	btrfs_release_path(path);
  75
  76	/*
  77	 * We are often under a trans handle at this point, so we need to make
  78	 * sure NOFS is set to keep us from deadlocking.
  79	 */
  80	nofs_flag = memalloc_nofs_save();
  81	inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
  82	btrfs_release_path(path);
  83	memalloc_nofs_restore(nofs_flag);
  84	if (IS_ERR(inode))
  85		return inode;
  86
  87	mapping_set_gfp_mask(inode->i_mapping,
  88			mapping_gfp_constraint(inode->i_mapping,
  89			~(__GFP_FS | __GFP_HIGHMEM)));
  90
  91	return inode;
  92}
  93
  94struct inode *lookup_free_space_inode(
  95		struct btrfs_block_group_cache *block_group,
  96		struct btrfs_path *path)
  97{
  98	struct btrfs_fs_info *fs_info = block_group->fs_info;
  99	struct inode *inode = NULL;
 100	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 101
 102	spin_lock(&block_group->lock);
 103	if (block_group->inode)
 104		inode = igrab(block_group->inode);
 105	spin_unlock(&block_group->lock);
 106	if (inode)
 107		return inode;
 108
 109	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 110					  block_group->key.objectid);
 111	if (IS_ERR(inode))
 112		return inode;
 113
 114	spin_lock(&block_group->lock);
 115	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 116		btrfs_info(fs_info, "Old style space inode found, converting.");
 117		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 118			BTRFS_INODE_NODATACOW;
 119		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 120	}
 121
 122	if (!block_group->iref) {
 123		block_group->inode = igrab(inode);
 124		block_group->iref = 1;
 125	}
 126	spin_unlock(&block_group->lock);
 127
 128	return inode;
 129}
 130
 131static int __create_free_space_inode(struct btrfs_root *root,
 132				     struct btrfs_trans_handle *trans,
 133				     struct btrfs_path *path,
 134				     u64 ino, u64 offset)
 135{
 136	struct btrfs_key key;
 137	struct btrfs_disk_key disk_key;
 138	struct btrfs_free_space_header *header;
 139	struct btrfs_inode_item *inode_item;
 140	struct extent_buffer *leaf;
 141	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 
 
 142	int ret;
 143
 144	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 145	if (ret)
 146		return ret;
 147
 148	/* We inline crc's for the free disk space cache */
 149	if (ino != BTRFS_FREE_INO_OBJECTID)
 150		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 151
 152	leaf = path->nodes[0];
 153	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 154				    struct btrfs_inode_item);
 155	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 156	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 157			     sizeof(*inode_item));
 158	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 159	btrfs_set_inode_size(leaf, inode_item, 0);
 160	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 161	btrfs_set_inode_uid(leaf, inode_item, 0);
 162	btrfs_set_inode_gid(leaf, inode_item, 0);
 163	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 164	btrfs_set_inode_flags(leaf, inode_item, flags);
 165	btrfs_set_inode_nlink(leaf, inode_item, 1);
 166	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 167	btrfs_set_inode_block_group(leaf, inode_item, offset);
 168	btrfs_mark_buffer_dirty(leaf);
 169	btrfs_release_path(path);
 170
 171	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 172	key.offset = offset;
 173	key.type = 0;
 174	ret = btrfs_insert_empty_item(trans, root, path, &key,
 175				      sizeof(struct btrfs_free_space_header));
 176	if (ret < 0) {
 177		btrfs_release_path(path);
 178		return ret;
 179	}
 180
 181	leaf = path->nodes[0];
 182	header = btrfs_item_ptr(leaf, path->slots[0],
 183				struct btrfs_free_space_header);
 184	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 185	btrfs_set_free_space_key(leaf, header, &disk_key);
 186	btrfs_mark_buffer_dirty(leaf);
 187	btrfs_release_path(path);
 188
 189	return 0;
 190}
 191
 192int create_free_space_inode(struct btrfs_trans_handle *trans,
 193			    struct btrfs_block_group_cache *block_group,
 194			    struct btrfs_path *path)
 195{
 196	int ret;
 197	u64 ino;
 198
 199	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
 200	if (ret < 0)
 201		return ret;
 202
 203	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 204					 ino, block_group->key.objectid);
 205}
 206
 207int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 208				       struct btrfs_block_rsv *rsv)
 
 
 
 
 
 
 209{
 210	u64 needed_bytes;
 211	int ret;
 
 212
 213	/* 1 for slack space, 1 for updating the inode */
 214	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 215		btrfs_calc_metadata_size(fs_info, 1);
 216
 217	spin_lock(&rsv->lock);
 218	if (rsv->reserved < needed_bytes)
 219		ret = -ENOSPC;
 220	else
 221		ret = 0;
 222	spin_unlock(&rsv->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223	return ret;
 224}
 225
 226int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 227				    struct btrfs_block_group_cache *block_group,
 228				    struct inode *inode)
 229{
 230	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
 
 
 
 
 
 
 
 231	int ret = 0;
 232	bool locked = false;
 233
 234	if (block_group) {
 235		struct btrfs_path *path = btrfs_alloc_path();
 236
 237		if (!path) {
 238			ret = -ENOMEM;
 239			goto fail;
 240		}
 241		locked = true;
 242		mutex_lock(&trans->transaction->cache_write_mutex);
 243		if (!list_empty(&block_group->io_list)) {
 244			list_del_init(&block_group->io_list);
 245
 246			btrfs_wait_cache_io(trans, block_group, path);
 247			btrfs_put_block_group(block_group);
 248		}
 249
 250		/*
 251		 * now that we've truncated the cache away, its no longer
 252		 * setup or written
 253		 */
 254		spin_lock(&block_group->lock);
 255		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 256		spin_unlock(&block_group->lock);
 257		btrfs_free_path(path);
 258	}
 259
 260	btrfs_i_size_write(BTRFS_I(inode), 0);
 261	truncate_pagecache(inode, 0);
 
 
 
 262
 263	/*
 264	 * We skip the throttling logic for free space cache inodes, so we don't
 265	 * need to check for -EAGAIN.
 266	 */
 267	ret = btrfs_truncate_inode_items(trans, root, inode,
 268					 0, BTRFS_EXTENT_DATA_KEY);
 
 
 
 
 269	if (ret)
 270		goto fail;
 271
 272	ret = btrfs_update_inode(trans, root, inode);
 273
 274fail:
 275	if (locked)
 276		mutex_unlock(&trans->transaction->cache_write_mutex);
 277	if (ret)
 278		btrfs_abort_transaction(trans, ret);
 279
 280	return ret;
 281}
 282
 283static void readahead_cache(struct inode *inode)
 284{
 285	struct file_ra_state *ra;
 286	unsigned long last_index;
 287
 288	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 289	if (!ra)
 290		return;
 291
 292	file_ra_state_init(ra, inode->i_mapping);
 293	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 294
 295	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 296
 297	kfree(ra);
 298}
 299
 300static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 301		       int write)
 302{
 303	int num_pages;
 304	int check_crcs = 0;
 305
 306	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 307
 308	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
 309		check_crcs = 1;
 310
 311	/* Make sure we can fit our crcs and generation into the first page */
 312	if (write && check_crcs &&
 313	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 314		return -ENOSPC;
 315
 316	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 317
 318	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 319	if (!io_ctl->pages)
 320		return -ENOMEM;
 321
 322	io_ctl->num_pages = num_pages;
 323	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 324	io_ctl->check_crcs = check_crcs;
 325	io_ctl->inode = inode;
 326
 327	return 0;
 328}
 329ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 330
 331static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 332{
 333	kfree(io_ctl->pages);
 334	io_ctl->pages = NULL;
 335}
 336
 337static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 338{
 339	if (io_ctl->cur) {
 340		io_ctl->cur = NULL;
 341		io_ctl->orig = NULL;
 342	}
 343}
 344
 345static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 346{
 347	ASSERT(io_ctl->index < io_ctl->num_pages);
 348	io_ctl->page = io_ctl->pages[io_ctl->index++];
 349	io_ctl->cur = page_address(io_ctl->page);
 350	io_ctl->orig = io_ctl->cur;
 351	io_ctl->size = PAGE_SIZE;
 352	if (clear)
 353		clear_page(io_ctl->cur);
 354}
 355
 356static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 357{
 358	int i;
 359
 360	io_ctl_unmap_page(io_ctl);
 361
 362	for (i = 0; i < io_ctl->num_pages; i++) {
 363		if (io_ctl->pages[i]) {
 364			ClearPageChecked(io_ctl->pages[i]);
 
 
 
 365			unlock_page(io_ctl->pages[i]);
 366			put_page(io_ctl->pages[i]);
 367		}
 368	}
 369}
 370
 371static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 372				int uptodate)
 373{
 374	struct page *page;
 
 375	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 376	int i;
 377
 378	for (i = 0; i < io_ctl->num_pages; i++) {
 
 
 379		page = find_or_create_page(inode->i_mapping, i, mask);
 380		if (!page) {
 381			io_ctl_drop_pages(io_ctl);
 382			return -ENOMEM;
 383		}
 
 
 
 
 
 
 
 
 
 384		io_ctl->pages[i] = page;
 385		if (uptodate && !PageUptodate(page)) {
 386			btrfs_readpage(NULL, page);
 387			lock_page(page);
 
 
 
 
 
 
 388			if (!PageUptodate(page)) {
 389				btrfs_err(BTRFS_I(inode)->root->fs_info,
 390					   "error reading free space cache");
 391				io_ctl_drop_pages(io_ctl);
 392				return -EIO;
 393			}
 394		}
 395	}
 396
 397	for (i = 0; i < io_ctl->num_pages; i++) {
 398		clear_page_dirty_for_io(io_ctl->pages[i]);
 399		set_page_extent_mapped(io_ctl->pages[i]);
 400	}
 401
 402	return 0;
 403}
 404
 405static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 406{
 407	__le64 *val;
 408
 409	io_ctl_map_page(io_ctl, 1);
 410
 411	/*
 412	 * Skip the csum areas.  If we don't check crcs then we just have a
 413	 * 64bit chunk at the front of the first page.
 414	 */
 415	if (io_ctl->check_crcs) {
 416		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 417		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 418	} else {
 419		io_ctl->cur += sizeof(u64);
 420		io_ctl->size -= sizeof(u64) * 2;
 421	}
 422
 423	val = io_ctl->cur;
 424	*val = cpu_to_le64(generation);
 425	io_ctl->cur += sizeof(u64);
 426}
 427
 428static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 429{
 430	__le64 *gen;
 431
 432	/*
 433	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 434	 * chunk at the front of the first page.
 435	 */
 436	if (io_ctl->check_crcs) {
 437		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 438		io_ctl->size -= sizeof(u64) +
 439			(sizeof(u32) * io_ctl->num_pages);
 440	} else {
 441		io_ctl->cur += sizeof(u64);
 442		io_ctl->size -= sizeof(u64) * 2;
 443	}
 444
 445	gen = io_ctl->cur;
 446	if (le64_to_cpu(*gen) != generation) {
 447		btrfs_err_rl(io_ctl->fs_info,
 448			"space cache generation (%llu) does not match inode (%llu)",
 449				*gen, generation);
 450		io_ctl_unmap_page(io_ctl);
 451		return -EIO;
 452	}
 453	io_ctl->cur += sizeof(u64);
 454	return 0;
 455}
 456
 457static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 458{
 459	u32 *tmp;
 460	u32 crc = ~(u32)0;
 461	unsigned offset = 0;
 462
 463	if (!io_ctl->check_crcs) {
 464		io_ctl_unmap_page(io_ctl);
 465		return;
 466	}
 467
 468	if (index == 0)
 469		offset = sizeof(u32) * io_ctl->num_pages;
 470
 471	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 472	btrfs_crc32c_final(crc, (u8 *)&crc);
 473	io_ctl_unmap_page(io_ctl);
 474	tmp = page_address(io_ctl->pages[0]);
 475	tmp += index;
 476	*tmp = crc;
 477}
 478
 479static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 480{
 481	u32 *tmp, val;
 482	u32 crc = ~(u32)0;
 483	unsigned offset = 0;
 484
 485	if (!io_ctl->check_crcs) {
 486		io_ctl_map_page(io_ctl, 0);
 487		return 0;
 488	}
 489
 490	if (index == 0)
 491		offset = sizeof(u32) * io_ctl->num_pages;
 492
 493	tmp = page_address(io_ctl->pages[0]);
 494	tmp += index;
 495	val = *tmp;
 496
 497	io_ctl_map_page(io_ctl, 0);
 498	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 499	btrfs_crc32c_final(crc, (u8 *)&crc);
 500	if (val != crc) {
 501		btrfs_err_rl(io_ctl->fs_info,
 502			"csum mismatch on free space cache");
 503		io_ctl_unmap_page(io_ctl);
 504		return -EIO;
 505	}
 506
 507	return 0;
 508}
 509
 510static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 511			    void *bitmap)
 512{
 513	struct btrfs_free_space_entry *entry;
 514
 515	if (!io_ctl->cur)
 516		return -ENOSPC;
 517
 518	entry = io_ctl->cur;
 519	entry->offset = cpu_to_le64(offset);
 520	entry->bytes = cpu_to_le64(bytes);
 521	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 522		BTRFS_FREE_SPACE_EXTENT;
 523	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 524	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 525
 526	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 527		return 0;
 528
 529	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 530
 531	/* No more pages to map */
 532	if (io_ctl->index >= io_ctl->num_pages)
 533		return 0;
 534
 535	/* map the next page */
 536	io_ctl_map_page(io_ctl, 1);
 537	return 0;
 538}
 539
 540static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 541{
 542	if (!io_ctl->cur)
 543		return -ENOSPC;
 544
 545	/*
 546	 * If we aren't at the start of the current page, unmap this one and
 547	 * map the next one if there is any left.
 548	 */
 549	if (io_ctl->cur != io_ctl->orig) {
 550		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 551		if (io_ctl->index >= io_ctl->num_pages)
 552			return -ENOSPC;
 553		io_ctl_map_page(io_ctl, 0);
 554	}
 555
 556	copy_page(io_ctl->cur, bitmap);
 557	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 558	if (io_ctl->index < io_ctl->num_pages)
 559		io_ctl_map_page(io_ctl, 0);
 560	return 0;
 561}
 562
 563static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 564{
 565	/*
 566	 * If we're not on the boundary we know we've modified the page and we
 567	 * need to crc the page.
 568	 */
 569	if (io_ctl->cur != io_ctl->orig)
 570		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 571	else
 572		io_ctl_unmap_page(io_ctl);
 573
 574	while (io_ctl->index < io_ctl->num_pages) {
 575		io_ctl_map_page(io_ctl, 1);
 576		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 577	}
 578}
 579
 580static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 581			    struct btrfs_free_space *entry, u8 *type)
 582{
 583	struct btrfs_free_space_entry *e;
 584	int ret;
 585
 586	if (!io_ctl->cur) {
 587		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 588		if (ret)
 589			return ret;
 590	}
 591
 592	e = io_ctl->cur;
 593	entry->offset = le64_to_cpu(e->offset);
 594	entry->bytes = le64_to_cpu(e->bytes);
 595	*type = e->type;
 596	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 597	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 598
 599	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 600		return 0;
 601
 602	io_ctl_unmap_page(io_ctl);
 603
 604	return 0;
 605}
 606
 607static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 608			      struct btrfs_free_space *entry)
 609{
 610	int ret;
 611
 612	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 613	if (ret)
 614		return ret;
 615
 616	copy_page(entry->bitmap, io_ctl->cur);
 617	io_ctl_unmap_page(io_ctl);
 618
 619	return 0;
 620}
 621
 622/*
 623 * Since we attach pinned extents after the fact we can have contiguous sections
 624 * of free space that are split up in entries.  This poses a problem with the
 625 * tree logging stuff since it could have allocated across what appears to be 2
 626 * entries since we would have merged the entries when adding the pinned extents
 627 * back to the free space cache.  So run through the space cache that we just
 628 * loaded and merge contiguous entries.  This will make the log replay stuff not
 629 * blow up and it will make for nicer allocator behavior.
 630 */
 631static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 632{
 633	struct btrfs_free_space *e, *prev = NULL;
 634	struct rb_node *n;
 
 
 
 
 
 635
 636again:
 637	spin_lock(&ctl->tree_lock);
 638	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 639		e = rb_entry(n, struct btrfs_free_space, offset_index);
 640		if (!prev)
 641			goto next;
 642		if (e->bitmap || prev->bitmap)
 643			goto next;
 644		if (prev->offset + prev->bytes == e->offset) {
 645			unlink_free_space(ctl, prev);
 646			unlink_free_space(ctl, e);
 647			prev->bytes += e->bytes;
 648			kmem_cache_free(btrfs_free_space_cachep, e);
 649			link_free_space(ctl, prev);
 650			prev = NULL;
 651			spin_unlock(&ctl->tree_lock);
 652			goto again;
 653		}
 654next:
 655		prev = e;
 656	}
 657	spin_unlock(&ctl->tree_lock);
 
 
 
 
 
 
 
 
 
 
 658}
 659
 660static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 661				   struct btrfs_free_space_ctl *ctl,
 662				   struct btrfs_path *path, u64 offset)
 663{
 664	struct btrfs_fs_info *fs_info = root->fs_info;
 665	struct btrfs_free_space_header *header;
 666	struct extent_buffer *leaf;
 667	struct btrfs_io_ctl io_ctl;
 668	struct btrfs_key key;
 669	struct btrfs_free_space *e, *n;
 670	LIST_HEAD(bitmaps);
 671	u64 num_entries;
 672	u64 num_bitmaps;
 673	u64 generation;
 674	u8 type;
 675	int ret = 0;
 676
 677	/* Nothing in the space cache, goodbye */
 678	if (!i_size_read(inode))
 679		return 0;
 680
 681	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 682	key.offset = offset;
 683	key.type = 0;
 684
 685	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 686	if (ret < 0)
 687		return 0;
 688	else if (ret > 0) {
 689		btrfs_release_path(path);
 690		return 0;
 691	}
 692
 693	ret = -1;
 694
 695	leaf = path->nodes[0];
 696	header = btrfs_item_ptr(leaf, path->slots[0],
 697				struct btrfs_free_space_header);
 698	num_entries = btrfs_free_space_entries(leaf, header);
 699	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 700	generation = btrfs_free_space_generation(leaf, header);
 701	btrfs_release_path(path);
 702
 703	if (!BTRFS_I(inode)->generation) {
 704		btrfs_info(fs_info,
 705			   "the free space cache file (%llu) is invalid, skip it",
 706			   offset);
 707		return 0;
 708	}
 709
 710	if (BTRFS_I(inode)->generation != generation) {
 711		btrfs_err(fs_info,
 712			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 713			  BTRFS_I(inode)->generation, generation);
 714		return 0;
 715	}
 716
 717	if (!num_entries)
 718		return 0;
 719
 720	ret = io_ctl_init(&io_ctl, inode, 0);
 721	if (ret)
 722		return ret;
 723
 724	readahead_cache(inode);
 725
 726	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
 727	if (ret)
 728		goto out;
 729
 730	ret = io_ctl_check_crc(&io_ctl, 0);
 731	if (ret)
 732		goto free_cache;
 733
 734	ret = io_ctl_check_generation(&io_ctl, generation);
 735	if (ret)
 736		goto free_cache;
 737
 738	while (num_entries) {
 739		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 740				      GFP_NOFS);
 741		if (!e)
 
 742			goto free_cache;
 
 743
 744		ret = io_ctl_read_entry(&io_ctl, e, &type);
 745		if (ret) {
 746			kmem_cache_free(btrfs_free_space_cachep, e);
 747			goto free_cache;
 748		}
 749
 750		if (!e->bytes) {
 
 751			kmem_cache_free(btrfs_free_space_cachep, e);
 752			goto free_cache;
 753		}
 754
 755		if (type == BTRFS_FREE_SPACE_EXTENT) {
 756			spin_lock(&ctl->tree_lock);
 757			ret = link_free_space(ctl, e);
 758			spin_unlock(&ctl->tree_lock);
 759			if (ret) {
 760				btrfs_err(fs_info,
 761					"Duplicate entries in free space cache, dumping");
 762				kmem_cache_free(btrfs_free_space_cachep, e);
 763				goto free_cache;
 764			}
 765		} else {
 766			ASSERT(num_bitmaps);
 767			num_bitmaps--;
 768			e->bitmap = kmem_cache_zalloc(
 769					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 770			if (!e->bitmap) {
 
 771				kmem_cache_free(
 772					btrfs_free_space_cachep, e);
 773				goto free_cache;
 774			}
 775			spin_lock(&ctl->tree_lock);
 776			ret = link_free_space(ctl, e);
 777			ctl->total_bitmaps++;
 778			ctl->op->recalc_thresholds(ctl);
 779			spin_unlock(&ctl->tree_lock);
 780			if (ret) {
 
 781				btrfs_err(fs_info,
 782					"Duplicate entries in free space cache, dumping");
 783				kmem_cache_free(btrfs_free_space_cachep, e);
 784				goto free_cache;
 785			}
 
 
 
 786			list_add_tail(&e->list, &bitmaps);
 787		}
 788
 789		num_entries--;
 790	}
 791
 792	io_ctl_unmap_page(&io_ctl);
 793
 794	/*
 795	 * We add the bitmaps at the end of the entries in order that
 796	 * the bitmap entries are added to the cache.
 797	 */
 798	list_for_each_entry_safe(e, n, &bitmaps, list) {
 799		list_del_init(&e->list);
 800		ret = io_ctl_read_bitmap(&io_ctl, e);
 801		if (ret)
 802			goto free_cache;
 803	}
 804
 805	io_ctl_drop_pages(&io_ctl);
 806	merge_space_tree(ctl);
 807	ret = 1;
 808out:
 809	io_ctl_free(&io_ctl);
 810	return ret;
 811free_cache:
 812	io_ctl_drop_pages(&io_ctl);
 
 
 813	__btrfs_remove_free_space_cache(ctl);
 
 814	goto out;
 815}
 816
 817int load_free_space_cache(struct btrfs_block_group_cache *block_group)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818{
 819	struct btrfs_fs_info *fs_info = block_group->fs_info;
 820	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 821	struct inode *inode;
 822	struct btrfs_path *path;
 823	int ret = 0;
 824	bool matched;
 825	u64 used = btrfs_block_group_used(&block_group->item);
 
 
 
 
 
 
 
 826
 827	/*
 828	 * If this block group has been marked to be cleared for one reason or
 829	 * another then we can't trust the on disk cache, so just return.
 830	 */
 831	spin_lock(&block_group->lock);
 832	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 833		spin_unlock(&block_group->lock);
 834		return 0;
 835	}
 836	spin_unlock(&block_group->lock);
 837
 838	path = btrfs_alloc_path();
 839	if (!path)
 840		return 0;
 841	path->search_commit_root = 1;
 842	path->skip_locking = 1;
 843
 844	/*
 845	 * We must pass a path with search_commit_root set to btrfs_iget in
 846	 * order to avoid a deadlock when allocating extents for the tree root.
 847	 *
 848	 * When we are COWing an extent buffer from the tree root, when looking
 849	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 850	 * block group without its free space cache loaded. When we find one
 851	 * we must load its space cache which requires reading its free space
 852	 * cache's inode item from the root tree. If this inode item is located
 853	 * in the same leaf that we started COWing before, then we end up in
 854	 * deadlock on the extent buffer (trying to read lock it when we
 855	 * previously write locked it).
 856	 *
 857	 * It's safe to read the inode item using the commit root because
 858	 * block groups, once loaded, stay in memory forever (until they are
 859	 * removed) as well as their space caches once loaded. New block groups
 860	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 861	 * we will never try to read their inode item while the fs is mounted.
 862	 */
 863	inode = lookup_free_space_inode(block_group, path);
 864	if (IS_ERR(inode)) {
 865		btrfs_free_path(path);
 866		return 0;
 867	}
 868
 869	/* We may have converted the inode and made the cache invalid. */
 870	spin_lock(&block_group->lock);
 871	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 872		spin_unlock(&block_group->lock);
 873		btrfs_free_path(path);
 874		goto out;
 875	}
 876	spin_unlock(&block_group->lock);
 877
 878	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 879				      path, block_group->key.objectid);
 
 
 
 
 
 
 
 
 880	btrfs_free_path(path);
 881	if (ret <= 0)
 882		goto out;
 883
 884	spin_lock(&ctl->tree_lock);
 885	matched = (ctl->free_space == (block_group->key.offset - used -
 886				       block_group->bytes_super));
 887	spin_unlock(&ctl->tree_lock);
 888
 889	if (!matched) {
 890		__btrfs_remove_free_space_cache(ctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891		btrfs_warn(fs_info,
 892			   "block group %llu has wrong amount of free space",
 893			   block_group->key.objectid);
 894		ret = -1;
 895	}
 896out:
 897	if (ret < 0) {
 898		/* This cache is bogus, make sure it gets cleared */
 899		spin_lock(&block_group->lock);
 900		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 901		spin_unlock(&block_group->lock);
 902		ret = 0;
 903
 904		btrfs_warn(fs_info,
 905			   "failed to load free space cache for block group %llu, rebuilding it now",
 906			   block_group->key.objectid);
 907	}
 908
 
 
 
 909	iput(inode);
 910	return ret;
 911}
 912
 913static noinline_for_stack
 914int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 915			      struct btrfs_free_space_ctl *ctl,
 916			      struct btrfs_block_group_cache *block_group,
 917			      int *entries, int *bitmaps,
 918			      struct list_head *bitmap_list)
 919{
 920	int ret;
 921	struct btrfs_free_cluster *cluster = NULL;
 922	struct btrfs_free_cluster *cluster_locked = NULL;
 923	struct rb_node *node = rb_first(&ctl->free_space_offset);
 924	struct btrfs_trim_range *trim_entry;
 925
 926	/* Get the cluster for this block_group if it exists */
 927	if (block_group && !list_empty(&block_group->cluster_list)) {
 928		cluster = list_entry(block_group->cluster_list.next,
 929				     struct btrfs_free_cluster,
 930				     block_group_list);
 931	}
 932
 933	if (!node && cluster) {
 934		cluster_locked = cluster;
 935		spin_lock(&cluster_locked->lock);
 936		node = rb_first(&cluster->root);
 937		cluster = NULL;
 938	}
 939
 940	/* Write out the extent entries */
 941	while (node) {
 942		struct btrfs_free_space *e;
 943
 944		e = rb_entry(node, struct btrfs_free_space, offset_index);
 945		*entries += 1;
 946
 947		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 948				       e->bitmap);
 949		if (ret)
 950			goto fail;
 951
 952		if (e->bitmap) {
 953			list_add_tail(&e->list, bitmap_list);
 954			*bitmaps += 1;
 955		}
 956		node = rb_next(node);
 957		if (!node && cluster) {
 958			node = rb_first(&cluster->root);
 959			cluster_locked = cluster;
 960			spin_lock(&cluster_locked->lock);
 961			cluster = NULL;
 962		}
 963	}
 964	if (cluster_locked) {
 965		spin_unlock(&cluster_locked->lock);
 966		cluster_locked = NULL;
 967	}
 968
 969	/*
 970	 * Make sure we don't miss any range that was removed from our rbtree
 971	 * because trimming is running. Otherwise after a umount+mount (or crash
 972	 * after committing the transaction) we would leak free space and get
 973	 * an inconsistent free space cache report from fsck.
 974	 */
 975	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
 976		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
 977				       trim_entry->bytes, NULL);
 978		if (ret)
 979			goto fail;
 980		*entries += 1;
 981	}
 982
 983	return 0;
 984fail:
 985	if (cluster_locked)
 986		spin_unlock(&cluster_locked->lock);
 987	return -ENOSPC;
 988}
 989
 990static noinline_for_stack int
 991update_cache_item(struct btrfs_trans_handle *trans,
 992		  struct btrfs_root *root,
 993		  struct inode *inode,
 994		  struct btrfs_path *path, u64 offset,
 995		  int entries, int bitmaps)
 996{
 997	struct btrfs_key key;
 998	struct btrfs_free_space_header *header;
 999	struct extent_buffer *leaf;
1000	int ret;
1001
1002	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1003	key.offset = offset;
1004	key.type = 0;
1005
1006	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1007	if (ret < 0) {
1008		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1009				 EXTENT_DELALLOC, 0, 0, NULL);
1010		goto fail;
1011	}
1012	leaf = path->nodes[0];
1013	if (ret > 0) {
1014		struct btrfs_key found_key;
1015		ASSERT(path->slots[0]);
1016		path->slots[0]--;
1017		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1018		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1019		    found_key.offset != offset) {
1020			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1021					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1022					 0, NULL);
1023			btrfs_release_path(path);
1024			goto fail;
1025		}
1026	}
1027
1028	BTRFS_I(inode)->generation = trans->transid;
1029	header = btrfs_item_ptr(leaf, path->slots[0],
1030				struct btrfs_free_space_header);
1031	btrfs_set_free_space_entries(leaf, header, entries);
1032	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1033	btrfs_set_free_space_generation(leaf, header, trans->transid);
1034	btrfs_mark_buffer_dirty(leaf);
1035	btrfs_release_path(path);
1036
1037	return 0;
1038
1039fail:
1040	return -1;
1041}
1042
1043static noinline_for_stack int write_pinned_extent_entries(
1044			    struct btrfs_block_group_cache *block_group,
 
1045			    struct btrfs_io_ctl *io_ctl,
1046			    int *entries)
1047{
1048	u64 start, extent_start, extent_end, len;
1049	struct extent_io_tree *unpin = NULL;
1050	int ret;
1051
1052	if (!block_group)
1053		return 0;
1054
1055	/*
1056	 * We want to add any pinned extents to our free space cache
1057	 * so we don't leak the space
1058	 *
1059	 * We shouldn't have switched the pinned extents yet so this is the
1060	 * right one
1061	 */
1062	unpin = block_group->fs_info->pinned_extents;
1063
1064	start = block_group->key.objectid;
1065
1066	while (start < block_group->key.objectid + block_group->key.offset) {
1067		ret = find_first_extent_bit(unpin, start,
1068					    &extent_start, &extent_end,
1069					    EXTENT_DIRTY, NULL);
1070		if (ret)
1071			return 0;
1072
1073		/* This pinned extent is out of our range */
1074		if (extent_start >= block_group->key.objectid +
1075		    block_group->key.offset)
1076			return 0;
1077
1078		extent_start = max(extent_start, start);
1079		extent_end = min(block_group->key.objectid +
1080				 block_group->key.offset, extent_end + 1);
1081		len = extent_end - extent_start;
1082
1083		*entries += 1;
1084		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1085		if (ret)
1086			return -ENOSPC;
1087
1088		start = extent_end;
1089	}
1090
1091	return 0;
1092}
1093
1094static noinline_for_stack int
1095write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1096{
1097	struct btrfs_free_space *entry, *next;
1098	int ret;
1099
1100	/* Write out the bitmaps */
1101	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1102		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1103		if (ret)
1104			return -ENOSPC;
1105		list_del_init(&entry->list);
1106	}
1107
1108	return 0;
1109}
1110
1111static int flush_dirty_cache(struct inode *inode)
1112{
1113	int ret;
1114
1115	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1116	if (ret)
1117		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1118				 EXTENT_DELALLOC, 0, 0, NULL);
1119
1120	return ret;
1121}
1122
1123static void noinline_for_stack
1124cleanup_bitmap_list(struct list_head *bitmap_list)
1125{
1126	struct btrfs_free_space *entry, *next;
1127
1128	list_for_each_entry_safe(entry, next, bitmap_list, list)
1129		list_del_init(&entry->list);
1130}
1131
1132static void noinline_for_stack
1133cleanup_write_cache_enospc(struct inode *inode,
1134			   struct btrfs_io_ctl *io_ctl,
1135			   struct extent_state **cached_state)
1136{
1137	io_ctl_drop_pages(io_ctl);
1138	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1139			     i_size_read(inode) - 1, cached_state);
1140}
1141
1142static int __btrfs_wait_cache_io(struct btrfs_root *root,
1143				 struct btrfs_trans_handle *trans,
1144				 struct btrfs_block_group_cache *block_group,
1145				 struct btrfs_io_ctl *io_ctl,
1146				 struct btrfs_path *path, u64 offset)
1147{
1148	int ret;
1149	struct inode *inode = io_ctl->inode;
1150
1151	if (!inode)
1152		return 0;
1153
1154	/* Flush the dirty pages in the cache file. */
1155	ret = flush_dirty_cache(inode);
1156	if (ret)
1157		goto out;
1158
1159	/* Update the cache item to tell everyone this cache file is valid. */
1160	ret = update_cache_item(trans, root, inode, path, offset,
1161				io_ctl->entries, io_ctl->bitmaps);
1162out:
1163	io_ctl_free(io_ctl);
1164	if (ret) {
1165		invalidate_inode_pages2(inode->i_mapping);
1166		BTRFS_I(inode)->generation = 0;
1167		if (block_group) {
1168#ifdef DEBUG
1169			btrfs_err(root->fs_info,
1170				  "failed to write free space cache for block group %llu",
1171				  block_group->key.objectid);
1172#endif
1173		}
1174	}
1175	btrfs_update_inode(trans, root, inode);
1176
1177	if (block_group) {
1178		/* the dirty list is protected by the dirty_bgs_lock */
1179		spin_lock(&trans->transaction->dirty_bgs_lock);
1180
1181		/* the disk_cache_state is protected by the block group lock */
1182		spin_lock(&block_group->lock);
1183
1184		/*
1185		 * only mark this as written if we didn't get put back on
1186		 * the dirty list while waiting for IO.   Otherwise our
1187		 * cache state won't be right, and we won't get written again
1188		 */
1189		if (!ret && list_empty(&block_group->dirty_list))
1190			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1191		else if (ret)
1192			block_group->disk_cache_state = BTRFS_DC_ERROR;
1193
1194		spin_unlock(&block_group->lock);
1195		spin_unlock(&trans->transaction->dirty_bgs_lock);
1196		io_ctl->inode = NULL;
1197		iput(inode);
1198	}
1199
1200	return ret;
1201
1202}
1203
1204static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1205				    struct btrfs_trans_handle *trans,
1206				    struct btrfs_io_ctl *io_ctl,
1207				    struct btrfs_path *path)
1208{
1209	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1210}
1211
1212int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1213			struct btrfs_block_group_cache *block_group,
1214			struct btrfs_path *path)
1215{
1216	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1217				     block_group, &block_group->io_ctl,
1218				     path, block_group->key.objectid);
1219}
1220
1221/**
1222 * __btrfs_write_out_cache - write out cached info to an inode
1223 * @root - the root the inode belongs to
1224 * @ctl - the free space cache we are going to write out
1225 * @block_group - the block_group for this cache if it belongs to a block_group
1226 * @trans - the trans handle
 
 
1227 *
1228 * This function writes out a free space cache struct to disk for quick recovery
1229 * on mount.  This will return 0 if it was successful in writing the cache out,
1230 * or an errno if it was not.
1231 */
1232static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1233				   struct btrfs_free_space_ctl *ctl,
1234				   struct btrfs_block_group_cache *block_group,
1235				   struct btrfs_io_ctl *io_ctl,
1236				   struct btrfs_trans_handle *trans)
1237{
1238	struct extent_state *cached_state = NULL;
1239	LIST_HEAD(bitmap_list);
1240	int entries = 0;
1241	int bitmaps = 0;
1242	int ret;
1243	int must_iput = 0;
1244
1245	if (!i_size_read(inode))
1246		return -EIO;
1247
1248	WARN_ON(io_ctl->pages);
1249	ret = io_ctl_init(io_ctl, inode, 1);
1250	if (ret)
1251		return ret;
1252
1253	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1254		down_write(&block_group->data_rwsem);
1255		spin_lock(&block_group->lock);
1256		if (block_group->delalloc_bytes) {
1257			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1258			spin_unlock(&block_group->lock);
1259			up_write(&block_group->data_rwsem);
1260			BTRFS_I(inode)->generation = 0;
1261			ret = 0;
1262			must_iput = 1;
1263			goto out;
1264		}
1265		spin_unlock(&block_group->lock);
1266	}
1267
1268	/* Lock all pages first so we can lock the extent safely. */
1269	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1270	if (ret)
1271		goto out_unlock;
1272
1273	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1274			 &cached_state);
1275
1276	io_ctl_set_generation(io_ctl, trans->transid);
1277
1278	mutex_lock(&ctl->cache_writeout_mutex);
1279	/* Write out the extent entries in the free space cache */
1280	spin_lock(&ctl->tree_lock);
1281	ret = write_cache_extent_entries(io_ctl, ctl,
1282					 block_group, &entries, &bitmaps,
1283					 &bitmap_list);
1284	if (ret)
1285		goto out_nospc_locked;
1286
1287	/*
1288	 * Some spaces that are freed in the current transaction are pinned,
1289	 * they will be added into free space cache after the transaction is
1290	 * committed, we shouldn't lose them.
1291	 *
1292	 * If this changes while we are working we'll get added back to
1293	 * the dirty list and redo it.  No locking needed
1294	 */
1295	ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1296	if (ret)
1297		goto out_nospc_locked;
1298
1299	/*
1300	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1301	 * locked while doing it because a concurrent trim can be manipulating
1302	 * or freeing the bitmap.
1303	 */
1304	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1305	spin_unlock(&ctl->tree_lock);
1306	mutex_unlock(&ctl->cache_writeout_mutex);
1307	if (ret)
1308		goto out_nospc;
1309
1310	/* Zero out the rest of the pages just to make sure */
1311	io_ctl_zero_remaining_pages(io_ctl);
1312
1313	/* Everything is written out, now we dirty the pages in the file. */
1314	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1315				i_size_read(inode), &cached_state);
 
1316	if (ret)
1317		goto out_nospc;
1318
1319	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1320		up_write(&block_group->data_rwsem);
1321	/*
1322	 * Release the pages and unlock the extent, we will flush
1323	 * them out later
1324	 */
1325	io_ctl_drop_pages(io_ctl);
 
1326
1327	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1328			     i_size_read(inode) - 1, &cached_state);
1329
1330	/*
1331	 * at this point the pages are under IO and we're happy,
1332	 * The caller is responsible for waiting on them and updating the
1333	 * the cache and the inode
1334	 */
1335	io_ctl->entries = entries;
1336	io_ctl->bitmaps = bitmaps;
1337
1338	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1339	if (ret)
1340		goto out;
1341
1342	return 0;
1343
1344out:
1345	io_ctl->inode = NULL;
1346	io_ctl_free(io_ctl);
1347	if (ret) {
1348		invalidate_inode_pages2(inode->i_mapping);
1349		BTRFS_I(inode)->generation = 0;
1350	}
1351	btrfs_update_inode(trans, root, inode);
1352	if (must_iput)
1353		iput(inode);
1354	return ret;
1355
1356out_nospc_locked:
1357	cleanup_bitmap_list(&bitmap_list);
1358	spin_unlock(&ctl->tree_lock);
1359	mutex_unlock(&ctl->cache_writeout_mutex);
1360
1361out_nospc:
1362	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1363
1364out_unlock:
1365	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1366		up_write(&block_group->data_rwsem);
1367
1368	goto out;
 
 
 
 
 
 
 
 
 
 
1369}
1370
1371int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1372			  struct btrfs_block_group_cache *block_group,
1373			  struct btrfs_path *path)
1374{
1375	struct btrfs_fs_info *fs_info = trans->fs_info;
1376	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1377	struct inode *inode;
1378	int ret = 0;
1379
1380	spin_lock(&block_group->lock);
1381	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1382		spin_unlock(&block_group->lock);
1383		return 0;
1384	}
1385	spin_unlock(&block_group->lock);
1386
1387	inode = lookup_free_space_inode(block_group, path);
1388	if (IS_ERR(inode))
1389		return 0;
1390
1391	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1392				block_group, &block_group->io_ctl, trans);
1393	if (ret) {
1394#ifdef DEBUG
1395		btrfs_err(fs_info,
1396			  "failed to write free space cache for block group %llu",
1397			  block_group->key.objectid);
1398#endif
1399		spin_lock(&block_group->lock);
1400		block_group->disk_cache_state = BTRFS_DC_ERROR;
1401		spin_unlock(&block_group->lock);
1402
1403		block_group->io_ctl.inode = NULL;
1404		iput(inode);
1405	}
1406
1407	/*
1408	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1409	 * to wait for IO and put the inode
1410	 */
1411
1412	return ret;
1413}
1414
1415static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1416					  u64 offset)
1417{
1418	ASSERT(offset >= bitmap_start);
1419	offset -= bitmap_start;
1420	return (unsigned long)(div_u64(offset, unit));
1421}
1422
1423static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1424{
1425	return (unsigned long)(div_u64(bytes, unit));
1426}
1427
1428static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1429				   u64 offset)
1430{
1431	u64 bitmap_start;
1432	u64 bytes_per_bitmap;
1433
1434	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1435	bitmap_start = offset - ctl->start;
1436	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1437	bitmap_start *= bytes_per_bitmap;
1438	bitmap_start += ctl->start;
1439
1440	return bitmap_start;
1441}
1442
1443static int tree_insert_offset(struct rb_root *root, u64 offset,
1444			      struct rb_node *node, int bitmap)
 
1445{
1446	struct rb_node **p = &root->rb_node;
 
1447	struct rb_node *parent = NULL;
1448	struct btrfs_free_space *info;
 
 
 
 
 
 
 
 
 
 
1449
1450	while (*p) {
 
 
1451		parent = *p;
1452		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1453
1454		if (offset < info->offset) {
1455			p = &(*p)->rb_left;
1456		} else if (offset > info->offset) {
1457			p = &(*p)->rb_right;
1458		} else {
1459			/*
1460			 * we could have a bitmap entry and an extent entry
1461			 * share the same offset.  If this is the case, we want
1462			 * the extent entry to always be found first if we do a
1463			 * linear search through the tree, since we want to have
1464			 * the quickest allocation time, and allocating from an
1465			 * extent is faster than allocating from a bitmap.  So
1466			 * if we're inserting a bitmap and we find an entry at
1467			 * this offset, we want to go right, or after this entry
1468			 * logically.  If we are inserting an extent and we've
1469			 * found a bitmap, we want to go left, or before
1470			 * logically.
1471			 */
1472			if (bitmap) {
1473				if (info->bitmap) {
1474					WARN_ON_ONCE(1);
1475					return -EEXIST;
1476				}
1477				p = &(*p)->rb_right;
1478			} else {
1479				if (!info->bitmap) {
1480					WARN_ON_ONCE(1);
1481					return -EEXIST;
1482				}
1483				p = &(*p)->rb_left;
1484			}
1485		}
1486	}
1487
1488	rb_link_node(node, parent, p);
1489	rb_insert_color(node, root);
1490
1491	return 0;
1492}
1493
1494/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495 * searches the tree for the given offset.
1496 *
1497 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1498 * want a section that has at least bytes size and comes at or after the given
1499 * offset.
1500 */
1501static struct btrfs_free_space *
1502tree_search_offset(struct btrfs_free_space_ctl *ctl,
1503		   u64 offset, int bitmap_only, int fuzzy)
1504{
1505	struct rb_node *n = ctl->free_space_offset.rb_node;
1506	struct btrfs_free_space *entry, *prev = NULL;
1507
1508	/* find entry that is closest to the 'offset' */
1509	while (1) {
1510		if (!n) {
1511			entry = NULL;
1512			break;
1513		}
1514
 
 
1515		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1516		prev = entry;
1517
1518		if (offset < entry->offset)
1519			n = n->rb_left;
1520		else if (offset > entry->offset)
1521			n = n->rb_right;
1522		else
1523			break;
 
 
1524	}
1525
1526	if (bitmap_only) {
1527		if (!entry)
1528			return NULL;
1529		if (entry->bitmap)
1530			return entry;
1531
1532		/*
1533		 * bitmap entry and extent entry may share same offset,
1534		 * in that case, bitmap entry comes after extent entry.
1535		 */
1536		n = rb_next(n);
1537		if (!n)
1538			return NULL;
1539		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1540		if (entry->offset != offset)
1541			return NULL;
1542
1543		WARN_ON(!entry->bitmap);
1544		return entry;
1545	} else if (entry) {
1546		if (entry->bitmap) {
1547			/*
1548			 * if previous extent entry covers the offset,
1549			 * we should return it instead of the bitmap entry
1550			 */
1551			n = rb_prev(&entry->offset_index);
1552			if (n) {
1553				prev = rb_entry(n, struct btrfs_free_space,
1554						offset_index);
1555				if (!prev->bitmap &&
1556				    prev->offset + prev->bytes > offset)
1557					entry = prev;
1558			}
1559		}
1560		return entry;
1561	}
1562
1563	if (!prev)
1564		return NULL;
1565
1566	/* find last entry before the 'offset' */
1567	entry = prev;
1568	if (entry->offset > offset) {
1569		n = rb_prev(&entry->offset_index);
1570		if (n) {
1571			entry = rb_entry(n, struct btrfs_free_space,
1572					offset_index);
1573			ASSERT(entry->offset <= offset);
1574		} else {
1575			if (fuzzy)
1576				return entry;
1577			else
1578				return NULL;
1579		}
1580	}
1581
1582	if (entry->bitmap) {
1583		n = rb_prev(&entry->offset_index);
1584		if (n) {
1585			prev = rb_entry(n, struct btrfs_free_space,
1586					offset_index);
1587			if (!prev->bitmap &&
1588			    prev->offset + prev->bytes > offset)
1589				return prev;
1590		}
1591		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1592			return entry;
1593	} else if (entry->offset + entry->bytes > offset)
1594		return entry;
1595
1596	if (!fuzzy)
1597		return NULL;
1598
1599	while (1) {
 
 
 
 
1600		if (entry->bitmap) {
1601			if (entry->offset + BITS_PER_BITMAP *
1602			    ctl->unit > offset)
1603				break;
1604		} else {
1605			if (entry->offset + entry->bytes > offset)
1606				break;
1607		}
1608
1609		n = rb_next(&entry->offset_index);
1610		if (!n)
1611			return NULL;
1612		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1613	}
1614	return entry;
1615}
1616
1617static inline void
1618__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1619		    struct btrfs_free_space *info)
1620{
 
 
1621	rb_erase(&info->offset_index, &ctl->free_space_offset);
 
1622	ctl->free_extents--;
1623}
1624
1625static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1626			      struct btrfs_free_space *info)
1627{
1628	__unlink_free_space(ctl, info);
1629	ctl->free_space -= info->bytes;
 
 
1630}
1631
1632static int link_free_space(struct btrfs_free_space_ctl *ctl,
1633			   struct btrfs_free_space *info)
1634{
1635	int ret = 0;
1636
 
 
1637	ASSERT(info->bytes || info->bitmap);
1638	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1639				 &info->offset_index, (info->bitmap != NULL));
1640	if (ret)
1641		return ret;
1642
 
 
 
 
 
 
 
1643	ctl->free_space += info->bytes;
1644	ctl->free_extents++;
1645	return ret;
1646}
1647
1648static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 
1649{
1650	struct btrfs_block_group_cache *block_group = ctl->private;
1651	u64 max_bytes;
1652	u64 bitmap_bytes;
1653	u64 extent_bytes;
1654	u64 size = block_group->key.offset;
1655	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1656	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1657
1658	max_bitmaps = max_t(u64, max_bitmaps, 1);
1659
1660	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1661
1662	/*
1663	 * The goal is to keep the total amount of memory used per 1gb of space
1664	 * at or below 32k, so we need to adjust how much memory we allow to be
1665	 * used by extent based free space tracking
1666	 */
1667	if (size < SZ_1G)
1668		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1669	else
1670		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1671
1672	/*
1673	 * we want to account for 1 more bitmap than what we have so we can make
1674	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1675	 * we add more bitmaps.
1676	 */
1677	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1678
1679	if (bitmap_bytes >= max_bytes) {
1680		ctl->extents_thresh = 0;
1681		return;
1682	}
1683
1684	/*
1685	 * we want the extent entry threshold to always be at most 1/2 the max
1686	 * bytes we can have, or whatever is less than that.
1687	 */
1688	extent_bytes = max_bytes - bitmap_bytes;
1689	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1690
1691	ctl->extents_thresh =
1692		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1693}
1694
1695static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1696				       struct btrfs_free_space *info,
1697				       u64 offset, u64 bytes)
1698{
1699	unsigned long start, count;
 
1700
1701	start = offset_to_bit(info->offset, ctl->unit, offset);
1702	count = bytes_to_bits(bytes, ctl->unit);
1703	ASSERT(start + count <= BITS_PER_BITMAP);
 
1704
1705	bitmap_clear(info->bitmap, start, count);
1706
1707	info->bytes -= bytes;
1708	if (info->max_extent_size > ctl->unit)
1709		info->max_extent_size = 0;
1710}
1711
1712static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1713			      struct btrfs_free_space *info, u64 offset,
1714			      u64 bytes)
1715{
1716	__bitmap_clear_bits(ctl, info, offset, bytes);
1717	ctl->free_space -= bytes;
 
 
 
 
 
 
 
 
 
 
1718}
1719
1720static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1721			    struct btrfs_free_space *info, u64 offset,
1722			    u64 bytes)
1723{
1724	unsigned long start, count;
 
1725
1726	start = offset_to_bit(info->offset, ctl->unit, offset);
1727	count = bytes_to_bits(bytes, ctl->unit);
1728	ASSERT(start + count <= BITS_PER_BITMAP);
 
1729
1730	bitmap_set(info->bitmap, start, count);
1731
 
 
 
 
 
1732	info->bytes += bytes;
1733	ctl->free_space += bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734}
1735
1736/*
1737 * If we can not find suitable extent, we will use bytes to record
1738 * the size of the max extent.
1739 */
1740static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1741			 struct btrfs_free_space *bitmap_info, u64 *offset,
1742			 u64 *bytes, bool for_alloc)
1743{
1744	unsigned long found_bits = 0;
1745	unsigned long max_bits = 0;
1746	unsigned long bits, i;
1747	unsigned long next_zero;
1748	unsigned long extent_bits;
1749
1750	/*
1751	 * Skip searching the bitmap if we don't have a contiguous section that
1752	 * is large enough for this allocation.
1753	 */
1754	if (for_alloc &&
1755	    bitmap_info->max_extent_size &&
1756	    bitmap_info->max_extent_size < *bytes) {
1757		*bytes = bitmap_info->max_extent_size;
1758		return -1;
1759	}
1760
1761	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1762			  max_t(u64, *offset, bitmap_info->offset));
1763	bits = bytes_to_bits(*bytes, ctl->unit);
1764
1765	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1766		if (for_alloc && bits == 1) {
1767			found_bits = 1;
1768			break;
1769		}
1770		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1771					       BITS_PER_BITMAP, i);
1772		extent_bits = next_zero - i;
1773		if (extent_bits >= bits) {
1774			found_bits = extent_bits;
1775			break;
1776		} else if (extent_bits > max_bits) {
1777			max_bits = extent_bits;
1778		}
1779		i = next_zero;
1780	}
1781
1782	if (found_bits) {
1783		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1784		*bytes = (u64)(found_bits) * ctl->unit;
1785		return 0;
1786	}
1787
1788	*bytes = (u64)(max_bits) * ctl->unit;
1789	bitmap_info->max_extent_size = *bytes;
 
1790	return -1;
1791}
1792
1793static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1794{
1795	if (entry->bitmap)
1796		return entry->max_extent_size;
1797	return entry->bytes;
1798}
1799
1800/* Cache the size of the max extent in bytes */
1801static struct btrfs_free_space *
1802find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1803		unsigned long align, u64 *max_extent_size)
1804{
1805	struct btrfs_free_space *entry;
1806	struct rb_node *node;
1807	u64 tmp;
1808	u64 align_off;
1809	int ret;
1810
1811	if (!ctl->free_space_offset.rb_node)
1812		goto out;
 
 
 
 
 
 
 
 
 
 
1813
1814	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1815	if (!entry)
1816		goto out;
 
 
 
 
1817
1818	for (node = &entry->offset_index; node; node = rb_next(node)) {
1819		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 
 
 
 
 
 
1820		if (entry->bytes < *bytes) {
1821			*max_extent_size = max(get_max_extent_size(entry),
1822					       *max_extent_size);
 
 
1823			continue;
1824		}
1825
1826		/* make sure the space returned is big enough
1827		 * to match our requested alignment
1828		 */
1829		if (*bytes >= align) {
1830			tmp = entry->offset - ctl->start + align - 1;
1831			tmp = div64_u64(tmp, align);
1832			tmp = tmp * align + ctl->start;
1833			align_off = tmp - entry->offset;
1834		} else {
1835			align_off = 0;
1836			tmp = entry->offset;
1837		}
1838
 
 
 
 
 
 
 
1839		if (entry->bytes < *bytes + align_off) {
1840			*max_extent_size = max(get_max_extent_size(entry),
1841					       *max_extent_size);
1842			continue;
1843		}
1844
1845		if (entry->bitmap) {
 
1846			u64 size = *bytes;
1847
1848			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1849			if (!ret) {
1850				*offset = tmp;
1851				*bytes = size;
1852				return entry;
1853			} else {
1854				*max_extent_size =
1855					max(get_max_extent_size(entry),
1856					    *max_extent_size);
1857			}
 
 
 
 
 
 
 
 
 
1858			continue;
1859		}
1860
1861		*offset = tmp;
1862		*bytes = entry->bytes - align_off;
1863		return entry;
1864	}
1865out:
1866	return NULL;
1867}
1868
1869static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1870			   struct btrfs_free_space *info, u64 offset)
1871{
1872	info->offset = offset_to_bitmap(ctl, offset);
1873	info->bytes = 0;
 
1874	INIT_LIST_HEAD(&info->list);
1875	link_free_space(ctl, info);
1876	ctl->total_bitmaps++;
1877
1878	ctl->op->recalc_thresholds(ctl);
1879}
1880
1881static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1882			struct btrfs_free_space *bitmap_info)
1883{
1884	unlink_free_space(ctl, bitmap_info);
 
 
 
 
 
 
 
 
 
 
 
 
1885	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1886	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1887	ctl->total_bitmaps--;
1888	ctl->op->recalc_thresholds(ctl);
1889}
1890
1891static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1892			      struct btrfs_free_space *bitmap_info,
1893			      u64 *offset, u64 *bytes)
1894{
1895	u64 end;
1896	u64 search_start, search_bytes;
1897	int ret;
1898
1899again:
1900	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1901
1902	/*
1903	 * We need to search for bits in this bitmap.  We could only cover some
1904	 * of the extent in this bitmap thanks to how we add space, so we need
1905	 * to search for as much as it as we can and clear that amount, and then
1906	 * go searching for the next bit.
1907	 */
1908	search_start = *offset;
1909	search_bytes = ctl->unit;
1910	search_bytes = min(search_bytes, end - search_start + 1);
1911	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1912			    false);
1913	if (ret < 0 || search_start != *offset)
1914		return -EINVAL;
1915
1916	/* We may have found more bits than what we need */
1917	search_bytes = min(search_bytes, *bytes);
1918
1919	/* Cannot clear past the end of the bitmap */
1920	search_bytes = min(search_bytes, end - search_start + 1);
1921
1922	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1923	*offset += search_bytes;
1924	*bytes -= search_bytes;
1925
1926	if (*bytes) {
1927		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1928		if (!bitmap_info->bytes)
1929			free_bitmap(ctl, bitmap_info);
1930
1931		/*
1932		 * no entry after this bitmap, but we still have bytes to
1933		 * remove, so something has gone wrong.
1934		 */
1935		if (!next)
1936			return -EINVAL;
1937
1938		bitmap_info = rb_entry(next, struct btrfs_free_space,
1939				       offset_index);
1940
1941		/*
1942		 * if the next entry isn't a bitmap we need to return to let the
1943		 * extent stuff do its work.
1944		 */
1945		if (!bitmap_info->bitmap)
1946			return -EAGAIN;
1947
1948		/*
1949		 * Ok the next item is a bitmap, but it may not actually hold
1950		 * the information for the rest of this free space stuff, so
1951		 * look for it, and if we don't find it return so we can try
1952		 * everything over again.
1953		 */
1954		search_start = *offset;
1955		search_bytes = ctl->unit;
1956		ret = search_bitmap(ctl, bitmap_info, &search_start,
1957				    &search_bytes, false);
1958		if (ret < 0 || search_start != *offset)
1959			return -EAGAIN;
1960
1961		goto again;
1962	} else if (!bitmap_info->bytes)
1963		free_bitmap(ctl, bitmap_info);
1964
1965	return 0;
1966}
1967
1968static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1969			       struct btrfs_free_space *info, u64 offset,
1970			       u64 bytes)
1971{
1972	u64 bytes_to_set = 0;
1973	u64 end;
1974
 
 
 
 
 
 
 
 
 
 
 
 
 
1975	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1976
1977	bytes_to_set = min(end - offset, bytes);
1978
1979	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1980
1981	/*
1982	 * We set some bytes, we have no idea what the max extent size is
1983	 * anymore.
1984	 */
1985	info->max_extent_size = 0;
1986
1987	return bytes_to_set;
1988
1989}
1990
1991static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1992		      struct btrfs_free_space *info)
1993{
1994	struct btrfs_block_group_cache *block_group = ctl->private;
1995	struct btrfs_fs_info *fs_info = block_group->fs_info;
1996	bool forced = false;
1997
1998#ifdef CONFIG_BTRFS_DEBUG
1999	if (btrfs_should_fragment_free_space(block_group))
2000		forced = true;
2001#endif
2002
 
 
 
 
2003	/*
2004	 * If we are below the extents threshold then we can add this as an
2005	 * extent, and don't have to deal with the bitmap
2006	 */
2007	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2008		/*
2009		 * If this block group has some small extents we don't want to
2010		 * use up all of our free slots in the cache with them, we want
2011		 * to reserve them to larger extents, however if we have plenty
2012		 * of cache left then go ahead an dadd them, no sense in adding
2013		 * the overhead of a bitmap if we don't have to.
2014		 */
2015		if (info->bytes <= fs_info->sectorsize * 4) {
2016			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2017				return false;
2018		} else {
2019			return false;
2020		}
2021	}
2022
2023	/*
2024	 * The original block groups from mkfs can be really small, like 8
2025	 * megabytes, so don't bother with a bitmap for those entries.  However
2026	 * some block groups can be smaller than what a bitmap would cover but
2027	 * are still large enough that they could overflow the 32k memory limit,
2028	 * so allow those block groups to still be allowed to have a bitmap
2029	 * entry.
2030	 */
2031	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2032		return false;
2033
2034	return true;
2035}
2036
2037static const struct btrfs_free_space_op free_space_op = {
2038	.recalc_thresholds	= recalculate_thresholds,
2039	.use_bitmap		= use_bitmap,
2040};
2041
2042static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2043			      struct btrfs_free_space *info)
2044{
2045	struct btrfs_free_space *bitmap_info;
2046	struct btrfs_block_group_cache *block_group = NULL;
2047	int added = 0;
2048	u64 bytes, offset, bytes_added;
 
2049	int ret;
2050
2051	bytes = info->bytes;
2052	offset = info->offset;
 
2053
2054	if (!ctl->op->use_bitmap(ctl, info))
2055		return 0;
2056
2057	if (ctl->op == &free_space_op)
2058		block_group = ctl->private;
2059again:
2060	/*
2061	 * Since we link bitmaps right into the cluster we need to see if we
2062	 * have a cluster here, and if so and it has our bitmap we need to add
2063	 * the free space to that bitmap.
2064	 */
2065	if (block_group && !list_empty(&block_group->cluster_list)) {
2066		struct btrfs_free_cluster *cluster;
2067		struct rb_node *node;
2068		struct btrfs_free_space *entry;
2069
2070		cluster = list_entry(block_group->cluster_list.next,
2071				     struct btrfs_free_cluster,
2072				     block_group_list);
2073		spin_lock(&cluster->lock);
2074		node = rb_first(&cluster->root);
2075		if (!node) {
2076			spin_unlock(&cluster->lock);
2077			goto no_cluster_bitmap;
2078		}
2079
2080		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2081		if (!entry->bitmap) {
2082			spin_unlock(&cluster->lock);
2083			goto no_cluster_bitmap;
2084		}
2085
2086		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2087			bytes_added = add_bytes_to_bitmap(ctl, entry,
2088							  offset, bytes);
2089			bytes -= bytes_added;
2090			offset += bytes_added;
2091		}
2092		spin_unlock(&cluster->lock);
2093		if (!bytes) {
2094			ret = 1;
2095			goto out;
2096		}
2097	}
2098
2099no_cluster_bitmap:
2100	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2101					 1, 0);
2102	if (!bitmap_info) {
2103		ASSERT(added == 0);
2104		goto new_bitmap;
2105	}
2106
2107	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
2108	bytes -= bytes_added;
2109	offset += bytes_added;
2110	added = 0;
2111
2112	if (!bytes) {
2113		ret = 1;
2114		goto out;
2115	} else
2116		goto again;
2117
2118new_bitmap:
2119	if (info && info->bitmap) {
2120		add_new_bitmap(ctl, info, offset);
2121		added = 1;
2122		info = NULL;
2123		goto again;
2124	} else {
2125		spin_unlock(&ctl->tree_lock);
2126
2127		/* no pre-allocated info, allocate a new one */
2128		if (!info) {
2129			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2130						 GFP_NOFS);
2131			if (!info) {
2132				spin_lock(&ctl->tree_lock);
2133				ret = -ENOMEM;
2134				goto out;
2135			}
2136		}
2137
2138		/* allocate the bitmap */
2139		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2140						 GFP_NOFS);
 
2141		spin_lock(&ctl->tree_lock);
2142		if (!info->bitmap) {
2143			ret = -ENOMEM;
2144			goto out;
2145		}
2146		goto again;
2147	}
2148
2149out:
2150	if (info) {
2151		if (info->bitmap)
2152			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2153					info->bitmap);
2154		kmem_cache_free(btrfs_free_space_cachep, info);
2155	}
2156
2157	return ret;
2158}
2159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2161			  struct btrfs_free_space *info, bool update_stat)
2162{
2163	struct btrfs_free_space *left_info;
2164	struct btrfs_free_space *right_info;
2165	bool merged = false;
2166	u64 offset = info->offset;
2167	u64 bytes = info->bytes;
 
 
2168
2169	/*
2170	 * first we want to see if there is free space adjacent to the range we
2171	 * are adding, if there is remove that struct and add a new one to
2172	 * cover the entire range
2173	 */
2174	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2175	if (right_info && rb_prev(&right_info->offset_index))
2176		left_info = rb_entry(rb_prev(&right_info->offset_index),
2177				     struct btrfs_free_space, offset_index);
2178	else
 
 
2179		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2180
2181	if (right_info && !right_info->bitmap) {
2182		if (update_stat)
2183			unlink_free_space(ctl, right_info);
2184		else
2185			__unlink_free_space(ctl, right_info);
2186		info->bytes += right_info->bytes;
2187		kmem_cache_free(btrfs_free_space_cachep, right_info);
2188		merged = true;
2189	}
2190
 
2191	if (left_info && !left_info->bitmap &&
2192	    left_info->offset + left_info->bytes == offset) {
2193		if (update_stat)
2194			unlink_free_space(ctl, left_info);
2195		else
2196			__unlink_free_space(ctl, left_info);
2197		info->offset = left_info->offset;
2198		info->bytes += left_info->bytes;
2199		kmem_cache_free(btrfs_free_space_cachep, left_info);
2200		merged = true;
2201	}
2202
2203	return merged;
2204}
2205
2206static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2207				     struct btrfs_free_space *info,
2208				     bool update_stat)
2209{
2210	struct btrfs_free_space *bitmap;
2211	unsigned long i;
2212	unsigned long j;
2213	const u64 end = info->offset + info->bytes;
2214	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2215	u64 bytes;
2216
2217	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2218	if (!bitmap)
2219		return false;
2220
2221	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2222	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2223	if (j == i)
2224		return false;
2225	bytes = (j - i) * ctl->unit;
2226	info->bytes += bytes;
2227
2228	if (update_stat)
2229		bitmap_clear_bits(ctl, bitmap, end, bytes);
2230	else
2231		__bitmap_clear_bits(ctl, bitmap, end, bytes);
 
2232
2233	if (!bitmap->bytes)
2234		free_bitmap(ctl, bitmap);
2235
2236	return true;
2237}
2238
2239static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2240				       struct btrfs_free_space *info,
2241				       bool update_stat)
2242{
2243	struct btrfs_free_space *bitmap;
2244	u64 bitmap_offset;
2245	unsigned long i;
2246	unsigned long j;
2247	unsigned long prev_j;
2248	u64 bytes;
2249
2250	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2251	/* If we're on a boundary, try the previous logical bitmap. */
2252	if (bitmap_offset == info->offset) {
2253		if (info->offset == 0)
2254			return false;
2255		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2256	}
2257
2258	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2259	if (!bitmap)
2260		return false;
2261
2262	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2263	j = 0;
2264	prev_j = (unsigned long)-1;
2265	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2266		if (j > i)
2267			break;
2268		prev_j = j;
2269	}
2270	if (prev_j == i)
2271		return false;
2272
2273	if (prev_j == (unsigned long)-1)
2274		bytes = (i + 1) * ctl->unit;
2275	else
2276		bytes = (i - prev_j) * ctl->unit;
2277
2278	info->offset -= bytes;
2279	info->bytes += bytes;
2280
2281	if (update_stat)
2282		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2283	else
2284		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
 
2285
2286	if (!bitmap->bytes)
2287		free_bitmap(ctl, bitmap);
2288
2289	return true;
2290}
2291
2292/*
2293 * We prefer always to allocate from extent entries, both for clustered and
2294 * non-clustered allocation requests. So when attempting to add a new extent
2295 * entry, try to see if there's adjacent free space in bitmap entries, and if
2296 * there is, migrate that space from the bitmaps to the extent.
2297 * Like this we get better chances of satisfying space allocation requests
2298 * because we attempt to satisfy them based on a single cache entry, and never
2299 * on 2 or more entries - even if the entries represent a contiguous free space
2300 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2301 * ends).
2302 */
2303static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2304			      struct btrfs_free_space *info,
2305			      bool update_stat)
2306{
2307	/*
2308	 * Only work with disconnected entries, as we can change their offset,
2309	 * and must be extent entries.
2310	 */
2311	ASSERT(!info->bitmap);
2312	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2313
2314	if (ctl->total_bitmaps > 0) {
2315		bool stole_end;
2316		bool stole_front = false;
2317
2318		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2319		if (ctl->total_bitmaps > 0)
2320			stole_front = steal_from_bitmap_to_front(ctl, info,
2321								 update_stat);
2322
2323		if (stole_end || stole_front)
2324			try_merge_free_space(ctl, info, update_stat);
2325	}
2326}
2327
2328int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2329			   struct btrfs_free_space_ctl *ctl,
2330			   u64 offset, u64 bytes)
2331{
 
 
2332	struct btrfs_free_space *info;
2333	int ret = 0;
 
 
 
2334
2335	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2336	if (!info)
2337		return -ENOMEM;
2338
2339	info->offset = offset;
2340	info->bytes = bytes;
 
2341	RB_CLEAR_NODE(&info->offset_index);
 
2342
2343	spin_lock(&ctl->tree_lock);
2344
2345	if (try_merge_free_space(ctl, info, true))
2346		goto link;
2347
2348	/*
2349	 * There was no extent directly to the left or right of this new
2350	 * extent then we know we're going to have to allocate a new extent, so
2351	 * before we do that see if we need to drop this into a bitmap
2352	 */
2353	ret = insert_into_bitmap(ctl, info);
2354	if (ret < 0) {
2355		goto out;
2356	} else if (ret) {
2357		ret = 0;
2358		goto out;
2359	}
2360link:
2361	/*
2362	 * Only steal free space from adjacent bitmaps if we're sure we're not
2363	 * going to add the new free space to existing bitmap entries - because
2364	 * that would mean unnecessary work that would be reverted. Therefore
2365	 * attempt to steal space from bitmaps if we're adding an extent entry.
2366	 */
2367	steal_from_bitmap(ctl, info, true);
2368
 
 
2369	ret = link_free_space(ctl, info);
2370	if (ret)
2371		kmem_cache_free(btrfs_free_space_cachep, info);
2372out:
 
2373	spin_unlock(&ctl->tree_lock);
2374
2375	if (ret) {
2376		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2377		ASSERT(ret != -EEXIST);
2378	}
2379
 
 
 
 
 
2380	return ret;
2381}
2382
2383int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384			 u64 bytenr, u64 size)
2385{
2386	return __btrfs_add_free_space(block_group->fs_info,
2387				      block_group->free_space_ctl,
2388				      bytenr, size);
 
 
 
 
 
 
 
2389}
2390
2391int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2392			    u64 offset, u64 bytes)
2393{
2394	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2395	struct btrfs_free_space *info;
2396	int ret;
2397	bool re_search = false;
2398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399	spin_lock(&ctl->tree_lock);
2400
2401again:
2402	ret = 0;
2403	if (!bytes)
2404		goto out_lock;
2405
2406	info = tree_search_offset(ctl, offset, 0, 0);
2407	if (!info) {
2408		/*
2409		 * oops didn't find an extent that matched the space we wanted
2410		 * to remove, look for a bitmap instead
2411		 */
2412		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2413					  1, 0);
2414		if (!info) {
2415			/*
2416			 * If we found a partial bit of our free space in a
2417			 * bitmap but then couldn't find the other part this may
2418			 * be a problem, so WARN about it.
2419			 */
2420			WARN_ON(re_search);
2421			goto out_lock;
2422		}
2423	}
2424
2425	re_search = false;
2426	if (!info->bitmap) {
2427		unlink_free_space(ctl, info);
2428		if (offset == info->offset) {
2429			u64 to_free = min(bytes, info->bytes);
2430
2431			info->bytes -= to_free;
2432			info->offset += to_free;
2433			if (info->bytes) {
2434				ret = link_free_space(ctl, info);
2435				WARN_ON(ret);
2436			} else {
2437				kmem_cache_free(btrfs_free_space_cachep, info);
2438			}
2439
2440			offset += to_free;
2441			bytes -= to_free;
2442			goto again;
2443		} else {
2444			u64 old_end = info->bytes + info->offset;
2445
2446			info->bytes = offset - info->offset;
2447			ret = link_free_space(ctl, info);
2448			WARN_ON(ret);
2449			if (ret)
2450				goto out_lock;
2451
2452			/* Not enough bytes in this entry to satisfy us */
2453			if (old_end < offset + bytes) {
2454				bytes -= old_end - offset;
2455				offset = old_end;
2456				goto again;
2457			} else if (old_end == offset + bytes) {
2458				/* all done */
2459				goto out_lock;
2460			}
2461			spin_unlock(&ctl->tree_lock);
2462
2463			ret = btrfs_add_free_space(block_group, offset + bytes,
2464						   old_end - (offset + bytes));
 
 
2465			WARN_ON(ret);
2466			goto out;
2467		}
2468	}
2469
2470	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2471	if (ret == -EAGAIN) {
2472		re_search = true;
2473		goto again;
2474	}
2475out_lock:
 
2476	spin_unlock(&ctl->tree_lock);
2477out:
2478	return ret;
2479}
2480
2481void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2482			   u64 bytes)
2483{
2484	struct btrfs_fs_info *fs_info = block_group->fs_info;
2485	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2486	struct btrfs_free_space *info;
2487	struct rb_node *n;
2488	int count = 0;
2489
 
 
 
 
 
 
 
 
 
 
 
 
2490	spin_lock(&ctl->tree_lock);
2491	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2492		info = rb_entry(n, struct btrfs_free_space, offset_index);
2493		if (info->bytes >= bytes && !block_group->ro)
2494			count++;
2495		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2496			   info->offset, info->bytes,
2497		       (info->bitmap) ? "yes" : "no");
2498	}
2499	spin_unlock(&ctl->tree_lock);
2500	btrfs_info(fs_info, "block group has cluster?: %s",
2501	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2502	btrfs_info(fs_info,
2503		   "%d blocks of free space at or bigger than bytes is", count);
 
2504}
2505
2506void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
 
2507{
2508	struct btrfs_fs_info *fs_info = block_group->fs_info;
2509	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2510
2511	spin_lock_init(&ctl->tree_lock);
2512	ctl->unit = fs_info->sectorsize;
2513	ctl->start = block_group->key.objectid;
2514	ctl->private = block_group;
2515	ctl->op = &free_space_op;
 
2516	INIT_LIST_HEAD(&ctl->trimming_ranges);
2517	mutex_init(&ctl->cache_writeout_mutex);
2518
2519	/*
2520	 * we only want to have 32k of ram per block group for keeping
2521	 * track of free space, and if we pass 1/2 of that we want to
2522	 * start converting things over to using bitmaps
2523	 */
2524	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2525}
2526
2527/*
2528 * for a given cluster, put all of its extents back into the free
2529 * space cache.  If the block group passed doesn't match the block group
2530 * pointed to by the cluster, someone else raced in and freed the
2531 * cluster already.  In that case, we just return without changing anything
2532 */
2533static int
2534__btrfs_return_cluster_to_free_space(
2535			     struct btrfs_block_group_cache *block_group,
2536			     struct btrfs_free_cluster *cluster)
2537{
2538	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2539	struct btrfs_free_space *entry;
2540	struct rb_node *node;
2541
 
 
2542	spin_lock(&cluster->lock);
2543	if (cluster->block_group != block_group)
2544		goto out;
 
 
2545
2546	cluster->block_group = NULL;
2547	cluster->window_start = 0;
2548	list_del_init(&cluster->block_group_list);
2549
2550	node = rb_first(&cluster->root);
2551	while (node) {
2552		bool bitmap;
2553
2554		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2555		node = rb_next(&entry->offset_index);
2556		rb_erase(&entry->offset_index, &cluster->root);
2557		RB_CLEAR_NODE(&entry->offset_index);
2558
2559		bitmap = (entry->bitmap != NULL);
2560		if (!bitmap) {
 
 
 
 
 
 
2561			try_merge_free_space(ctl, entry, false);
2562			steal_from_bitmap(ctl, entry, false);
 
 
 
 
 
 
 
2563		}
2564		tree_insert_offset(&ctl->free_space_offset,
2565				   entry->offset, &entry->offset_index, bitmap);
 
2566	}
2567	cluster->root = RB_ROOT;
2568
2569out:
2570	spin_unlock(&cluster->lock);
2571	btrfs_put_block_group(block_group);
2572	return 0;
2573}
2574
2575static void __btrfs_remove_free_space_cache_locked(
2576				struct btrfs_free_space_ctl *ctl)
2577{
2578	struct btrfs_free_space *info;
2579	struct rb_node *node;
2580
2581	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2582		info = rb_entry(node, struct btrfs_free_space, offset_index);
2583		if (!info->bitmap) {
2584			unlink_free_space(ctl, info);
2585			kmem_cache_free(btrfs_free_space_cachep, info);
2586		} else {
2587			free_bitmap(ctl, info);
2588		}
2589
2590		cond_resched_lock(&ctl->tree_lock);
2591	}
2592}
2593
2594void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2595{
2596	spin_lock(&ctl->tree_lock);
2597	__btrfs_remove_free_space_cache_locked(ctl);
2598	spin_unlock(&ctl->tree_lock);
2599}
2600
2601void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2602{
2603	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2604	struct btrfs_free_cluster *cluster;
2605	struct list_head *head;
2606
2607	spin_lock(&ctl->tree_lock);
2608	while ((head = block_group->cluster_list.next) !=
2609	       &block_group->cluster_list) {
2610		cluster = list_entry(head, struct btrfs_free_cluster,
2611				     block_group_list);
2612
2613		WARN_ON(cluster->block_group != block_group);
2614		__btrfs_return_cluster_to_free_space(block_group, cluster);
2615
2616		cond_resched_lock(&ctl->tree_lock);
2617	}
2618	__btrfs_remove_free_space_cache_locked(ctl);
 
2619	spin_unlock(&ctl->tree_lock);
2620
2621}
2622
2623u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624			       u64 offset, u64 bytes, u64 empty_size,
2625			       u64 *max_extent_size)
2626{
2627	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2628	struct btrfs_free_space *entry = NULL;
2629	u64 bytes_search = bytes + empty_size;
2630	u64 ret = 0;
2631	u64 align_gap = 0;
2632	u64 align_gap_len = 0;
 
 
 
 
2633
2634	spin_lock(&ctl->tree_lock);
2635	entry = find_free_space(ctl, &offset, &bytes_search,
2636				block_group->full_stripe_len, max_extent_size);
 
2637	if (!entry)
2638		goto out;
2639
2640	ret = offset;
2641	if (entry->bitmap) {
2642		bitmap_clear_bits(ctl, entry, offset, bytes);
 
 
 
 
2643		if (!entry->bytes)
2644			free_bitmap(ctl, entry);
2645	} else {
2646		unlink_free_space(ctl, entry);
2647		align_gap_len = offset - entry->offset;
2648		align_gap = entry->offset;
 
 
 
 
2649
2650		entry->offset = offset + bytes;
2651		WARN_ON(entry->bytes < bytes + align_gap_len);
2652
2653		entry->bytes -= bytes + align_gap_len;
2654		if (!entry->bytes)
2655			kmem_cache_free(btrfs_free_space_cachep, entry);
2656		else
2657			link_free_space(ctl, entry);
2658	}
2659out:
 
2660	spin_unlock(&ctl->tree_lock);
2661
2662	if (align_gap_len)
2663		__btrfs_add_free_space(block_group->fs_info, ctl,
2664				       align_gap, align_gap_len);
2665	return ret;
2666}
2667
2668/*
2669 * given a cluster, put all of its extents back into the free space
2670 * cache.  If a block group is passed, this function will only free
2671 * a cluster that belongs to the passed block group.
2672 *
2673 * Otherwise, it'll get a reference on the block group pointed to by the
2674 * cluster and remove the cluster from it.
2675 */
2676int btrfs_return_cluster_to_free_space(
2677			       struct btrfs_block_group_cache *block_group,
2678			       struct btrfs_free_cluster *cluster)
2679{
2680	struct btrfs_free_space_ctl *ctl;
2681	int ret;
2682
2683	/* first, get a safe pointer to the block group */
2684	spin_lock(&cluster->lock);
2685	if (!block_group) {
2686		block_group = cluster->block_group;
2687		if (!block_group) {
2688			spin_unlock(&cluster->lock);
2689			return 0;
2690		}
2691	} else if (cluster->block_group != block_group) {
2692		/* someone else has already freed it don't redo their work */
2693		spin_unlock(&cluster->lock);
2694		return 0;
2695	}
2696	atomic_inc(&block_group->count);
2697	spin_unlock(&cluster->lock);
2698
2699	ctl = block_group->free_space_ctl;
2700
2701	/* now return any extents the cluster had on it */
2702	spin_lock(&ctl->tree_lock);
2703	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2704	spin_unlock(&ctl->tree_lock);
2705
 
 
2706	/* finally drop our ref */
2707	btrfs_put_block_group(block_group);
2708	return ret;
2709}
2710
2711static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2712				   struct btrfs_free_cluster *cluster,
2713				   struct btrfs_free_space *entry,
2714				   u64 bytes, u64 min_start,
2715				   u64 *max_extent_size)
2716{
2717	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2718	int err;
2719	u64 search_start = cluster->window_start;
2720	u64 search_bytes = bytes;
2721	u64 ret = 0;
2722
2723	search_start = min_start;
2724	search_bytes = bytes;
2725
2726	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2727	if (err) {
2728		*max_extent_size = max(get_max_extent_size(entry),
2729				       *max_extent_size);
2730		return 0;
2731	}
2732
2733	ret = search_start;
2734	__bitmap_clear_bits(ctl, entry, ret, bytes);
2735
2736	return ret;
2737}
2738
2739/*
2740 * given a cluster, try to allocate 'bytes' from it, returns 0
2741 * if it couldn't find anything suitably large, or a logical disk offset
2742 * if things worked out
2743 */
2744u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2745			     struct btrfs_free_cluster *cluster, u64 bytes,
2746			     u64 min_start, u64 *max_extent_size)
2747{
2748	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2749	struct btrfs_free_space *entry = NULL;
2750	struct rb_node *node;
2751	u64 ret = 0;
2752
 
 
2753	spin_lock(&cluster->lock);
2754	if (bytes > cluster->max_size)
2755		goto out;
2756
2757	if (cluster->block_group != block_group)
2758		goto out;
2759
2760	node = rb_first(&cluster->root);
2761	if (!node)
2762		goto out;
2763
2764	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2765	while (1) {
2766		if (entry->bytes < bytes)
2767			*max_extent_size = max(get_max_extent_size(entry),
2768					       *max_extent_size);
2769
2770		if (entry->bytes < bytes ||
2771		    (!entry->bitmap && entry->offset < min_start)) {
2772			node = rb_next(&entry->offset_index);
2773			if (!node)
2774				break;
2775			entry = rb_entry(node, struct btrfs_free_space,
2776					 offset_index);
2777			continue;
2778		}
2779
2780		if (entry->bitmap) {
2781			ret = btrfs_alloc_from_bitmap(block_group,
2782						      cluster, entry, bytes,
2783						      cluster->window_start,
2784						      max_extent_size);
2785			if (ret == 0) {
2786				node = rb_next(&entry->offset_index);
2787				if (!node)
2788					break;
2789				entry = rb_entry(node, struct btrfs_free_space,
2790						 offset_index);
2791				continue;
2792			}
2793			cluster->window_start += bytes;
2794		} else {
2795			ret = entry->offset;
2796
2797			entry->offset += bytes;
2798			entry->bytes -= bytes;
2799		}
2800
2801		if (entry->bytes == 0)
2802			rb_erase(&entry->offset_index, &cluster->root);
2803		break;
2804	}
2805out:
2806	spin_unlock(&cluster->lock);
2807
2808	if (!ret)
2809		return 0;
2810
2811	spin_lock(&ctl->tree_lock);
2812
 
 
 
2813	ctl->free_space -= bytes;
 
 
 
 
2814	if (entry->bytes == 0) {
 
2815		ctl->free_extents--;
2816		if (entry->bitmap) {
2817			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2818					entry->bitmap);
2819			ctl->total_bitmaps--;
2820			ctl->op->recalc_thresholds(ctl);
 
 
2821		}
2822		kmem_cache_free(btrfs_free_space_cachep, entry);
2823	}
2824
 
2825	spin_unlock(&ctl->tree_lock);
2826
2827	return ret;
2828}
2829
2830static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2831				struct btrfs_free_space *entry,
2832				struct btrfs_free_cluster *cluster,
2833				u64 offset, u64 bytes,
2834				u64 cont1_bytes, u64 min_bytes)
2835{
2836	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2837	unsigned long next_zero;
2838	unsigned long i;
2839	unsigned long want_bits;
2840	unsigned long min_bits;
2841	unsigned long found_bits;
2842	unsigned long max_bits = 0;
2843	unsigned long start = 0;
2844	unsigned long total_found = 0;
2845	int ret;
2846
 
 
2847	i = offset_to_bit(entry->offset, ctl->unit,
2848			  max_t(u64, offset, entry->offset));
2849	want_bits = bytes_to_bits(bytes, ctl->unit);
2850	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2851
2852	/*
2853	 * Don't bother looking for a cluster in this bitmap if it's heavily
2854	 * fragmented.
2855	 */
2856	if (entry->max_extent_size &&
2857	    entry->max_extent_size < cont1_bytes)
2858		return -ENOSPC;
2859again:
2860	found_bits = 0;
2861	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2862		next_zero = find_next_zero_bit(entry->bitmap,
2863					       BITS_PER_BITMAP, i);
2864		if (next_zero - i >= min_bits) {
2865			found_bits = next_zero - i;
2866			if (found_bits > max_bits)
2867				max_bits = found_bits;
2868			break;
2869		}
2870		if (next_zero - i > max_bits)
2871			max_bits = next_zero - i;
2872		i = next_zero;
2873	}
2874
2875	if (!found_bits) {
2876		entry->max_extent_size = (u64)max_bits * ctl->unit;
2877		return -ENOSPC;
2878	}
2879
2880	if (!total_found) {
2881		start = i;
2882		cluster->max_size = 0;
2883	}
2884
2885	total_found += found_bits;
2886
2887	if (cluster->max_size < found_bits * ctl->unit)
2888		cluster->max_size = found_bits * ctl->unit;
2889
2890	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2891		i = next_zero + 1;
2892		goto again;
2893	}
2894
2895	cluster->window_start = start * ctl->unit + entry->offset;
2896	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2897	ret = tree_insert_offset(&cluster->root, entry->offset,
2898				 &entry->offset_index, 1);
 
 
 
 
 
 
 
 
 
 
2899	ASSERT(!ret); /* -EEXIST; Logic error */
2900
2901	trace_btrfs_setup_cluster(block_group, cluster,
2902				  total_found * ctl->unit, 1);
2903	return 0;
2904}
2905
2906/*
2907 * This searches the block group for just extents to fill the cluster with.
2908 * Try to find a cluster with at least bytes total bytes, at least one
2909 * extent of cont1_bytes, and other clusters of at least min_bytes.
2910 */
2911static noinline int
2912setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2913			struct btrfs_free_cluster *cluster,
2914			struct list_head *bitmaps, u64 offset, u64 bytes,
2915			u64 cont1_bytes, u64 min_bytes)
2916{
2917	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2918	struct btrfs_free_space *first = NULL;
2919	struct btrfs_free_space *entry = NULL;
2920	struct btrfs_free_space *last;
2921	struct rb_node *node;
2922	u64 window_free;
2923	u64 max_extent;
2924	u64 total_size = 0;
2925
 
 
2926	entry = tree_search_offset(ctl, offset, 0, 1);
2927	if (!entry)
2928		return -ENOSPC;
2929
2930	/*
2931	 * We don't want bitmaps, so just move along until we find a normal
2932	 * extent entry.
2933	 */
2934	while (entry->bitmap || entry->bytes < min_bytes) {
2935		if (entry->bitmap && list_empty(&entry->list))
2936			list_add_tail(&entry->list, bitmaps);
2937		node = rb_next(&entry->offset_index);
2938		if (!node)
2939			return -ENOSPC;
2940		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2941	}
2942
2943	window_free = entry->bytes;
2944	max_extent = entry->bytes;
2945	first = entry;
2946	last = entry;
2947
2948	for (node = rb_next(&entry->offset_index); node;
2949	     node = rb_next(&entry->offset_index)) {
2950		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2951
2952		if (entry->bitmap) {
2953			if (list_empty(&entry->list))
2954				list_add_tail(&entry->list, bitmaps);
2955			continue;
2956		}
2957
2958		if (entry->bytes < min_bytes)
2959			continue;
2960
2961		last = entry;
2962		window_free += entry->bytes;
2963		if (entry->bytes > max_extent)
2964			max_extent = entry->bytes;
2965	}
2966
2967	if (window_free < bytes || max_extent < cont1_bytes)
2968		return -ENOSPC;
2969
2970	cluster->window_start = first->offset;
2971
2972	node = &first->offset_index;
2973
2974	/*
2975	 * now we've found our entries, pull them out of the free space
2976	 * cache and put them into the cluster rbtree
2977	 */
2978	do {
2979		int ret;
2980
2981		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2982		node = rb_next(&entry->offset_index);
2983		if (entry->bitmap || entry->bytes < min_bytes)
2984			continue;
2985
2986		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2987		ret = tree_insert_offset(&cluster->root, entry->offset,
2988					 &entry->offset_index, 0);
2989		total_size += entry->bytes;
2990		ASSERT(!ret); /* -EEXIST; Logic error */
2991	} while (node && entry != last);
2992
2993	cluster->max_size = max_extent;
2994	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2995	return 0;
2996}
2997
2998/*
2999 * This specifically looks for bitmaps that may work in the cluster, we assume
3000 * that we have already failed to find extents that will work.
3001 */
3002static noinline int
3003setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
3004		     struct btrfs_free_cluster *cluster,
3005		     struct list_head *bitmaps, u64 offset, u64 bytes,
3006		     u64 cont1_bytes, u64 min_bytes)
3007{
3008	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3009	struct btrfs_free_space *entry = NULL;
3010	int ret = -ENOSPC;
3011	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3012
3013	if (ctl->total_bitmaps == 0)
3014		return -ENOSPC;
3015
3016	/*
3017	 * The bitmap that covers offset won't be in the list unless offset
3018	 * is just its start offset.
3019	 */
3020	if (!list_empty(bitmaps))
3021		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3022
3023	if (!entry || entry->offset != bitmap_offset) {
3024		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3025		if (entry && list_empty(&entry->list))
3026			list_add(&entry->list, bitmaps);
3027	}
3028
3029	list_for_each_entry(entry, bitmaps, list) {
3030		if (entry->bytes < bytes)
3031			continue;
3032		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3033					   bytes, cont1_bytes, min_bytes);
3034		if (!ret)
3035			return 0;
3036	}
3037
3038	/*
3039	 * The bitmaps list has all the bitmaps that record free space
3040	 * starting after offset, so no more search is required.
3041	 */
3042	return -ENOSPC;
3043}
3044
3045/*
3046 * here we try to find a cluster of blocks in a block group.  The goal
3047 * is to find at least bytes+empty_size.
3048 * We might not find them all in one contiguous area.
3049 *
3050 * returns zero and sets up cluster if things worked out, otherwise
3051 * it returns -enospc
3052 */
3053int btrfs_find_space_cluster(struct btrfs_block_group_cache *block_group,
3054			     struct btrfs_free_cluster *cluster,
3055			     u64 offset, u64 bytes, u64 empty_size)
3056{
3057	struct btrfs_fs_info *fs_info = block_group->fs_info;
3058	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3059	struct btrfs_free_space *entry, *tmp;
3060	LIST_HEAD(bitmaps);
3061	u64 min_bytes;
3062	u64 cont1_bytes;
3063	int ret;
3064
3065	/*
3066	 * Choose the minimum extent size we'll require for this
3067	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3068	 * For metadata, allow allocates with smaller extents.  For
3069	 * data, keep it dense.
3070	 */
3071	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3072		cont1_bytes = min_bytes = bytes + empty_size;
 
3073	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3074		cont1_bytes = bytes;
3075		min_bytes = fs_info->sectorsize;
3076	} else {
3077		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3078		min_bytes = fs_info->sectorsize;
3079	}
3080
3081	spin_lock(&ctl->tree_lock);
3082
3083	/*
3084	 * If we know we don't have enough space to make a cluster don't even
3085	 * bother doing all the work to try and find one.
3086	 */
3087	if (ctl->free_space < bytes) {
3088		spin_unlock(&ctl->tree_lock);
3089		return -ENOSPC;
3090	}
3091
3092	spin_lock(&cluster->lock);
3093
3094	/* someone already found a cluster, hooray */
3095	if (cluster->block_group) {
3096		ret = 0;
3097		goto out;
3098	}
3099
3100	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3101				 min_bytes);
3102
3103	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3104				      bytes + empty_size,
3105				      cont1_bytes, min_bytes);
3106	if (ret)
3107		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3108					   offset, bytes + empty_size,
3109					   cont1_bytes, min_bytes);
3110
3111	/* Clear our temporary list */
3112	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3113		list_del_init(&entry->list);
3114
3115	if (!ret) {
3116		atomic_inc(&block_group->count);
3117		list_add_tail(&cluster->block_group_list,
3118			      &block_group->cluster_list);
3119		cluster->block_group = block_group;
3120	} else {
3121		trace_btrfs_failed_cluster_setup(block_group);
3122	}
3123out:
3124	spin_unlock(&cluster->lock);
3125	spin_unlock(&ctl->tree_lock);
3126
3127	return ret;
3128}
3129
3130/*
3131 * simple code to zero out a cluster
3132 */
3133void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3134{
3135	spin_lock_init(&cluster->lock);
3136	spin_lock_init(&cluster->refill_lock);
3137	cluster->root = RB_ROOT;
3138	cluster->max_size = 0;
3139	cluster->fragmented = false;
3140	INIT_LIST_HEAD(&cluster->block_group_list);
3141	cluster->block_group = NULL;
3142}
3143
3144static int do_trimming(struct btrfs_block_group_cache *block_group,
3145		       u64 *total_trimmed, u64 start, u64 bytes,
3146		       u64 reserved_start, u64 reserved_bytes,
 
3147		       struct btrfs_trim_range *trim_entry)
3148{
3149	struct btrfs_space_info *space_info = block_group->space_info;
3150	struct btrfs_fs_info *fs_info = block_group->fs_info;
3151	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3152	int ret;
3153	int update = 0;
 
 
 
3154	u64 trimmed = 0;
3155
3156	spin_lock(&space_info->lock);
3157	spin_lock(&block_group->lock);
3158	if (!block_group->ro) {
3159		block_group->reserved += reserved_bytes;
3160		space_info->bytes_reserved += reserved_bytes;
3161		update = 1;
3162	}
3163	spin_unlock(&block_group->lock);
3164	spin_unlock(&space_info->lock);
3165
3166	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3167	if (!ret)
3168		*total_trimmed += trimmed;
 
 
3169
3170	mutex_lock(&ctl->cache_writeout_mutex);
3171	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
 
 
 
 
 
 
 
3172	list_del(&trim_entry->list);
3173	mutex_unlock(&ctl->cache_writeout_mutex);
3174
3175	if (update) {
3176		spin_lock(&space_info->lock);
3177		spin_lock(&block_group->lock);
3178		if (block_group->ro)
3179			space_info->bytes_readonly += reserved_bytes;
3180		block_group->reserved -= reserved_bytes;
3181		space_info->bytes_reserved -= reserved_bytes;
3182		spin_unlock(&block_group->lock);
3183		spin_unlock(&space_info->lock);
3184	}
3185
3186	return ret;
3187}
3188
3189static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3190			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
3191{
 
 
3192	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3193	struct btrfs_free_space *entry;
3194	struct rb_node *node;
3195	int ret = 0;
3196	u64 extent_start;
3197	u64 extent_bytes;
 
3198	u64 bytes;
 
3199
3200	while (start < end) {
3201		struct btrfs_trim_range trim_entry;
3202
3203		mutex_lock(&ctl->cache_writeout_mutex);
3204		spin_lock(&ctl->tree_lock);
3205
3206		if (ctl->free_space < minlen) {
3207			spin_unlock(&ctl->tree_lock);
3208			mutex_unlock(&ctl->cache_writeout_mutex);
3209			break;
3210		}
3211
3212		entry = tree_search_offset(ctl, start, 0, 1);
3213		if (!entry) {
3214			spin_unlock(&ctl->tree_lock);
3215			mutex_unlock(&ctl->cache_writeout_mutex);
3216			break;
3217		}
3218
3219		/* skip bitmaps */
3220		while (entry->bitmap) {
 
3221			node = rb_next(&entry->offset_index);
3222			if (!node) {
3223				spin_unlock(&ctl->tree_lock);
3224				mutex_unlock(&ctl->cache_writeout_mutex);
3225				goto out;
3226			}
3227			entry = rb_entry(node, struct btrfs_free_space,
3228					 offset_index);
3229		}
3230
3231		if (entry->offset >= end) {
3232			spin_unlock(&ctl->tree_lock);
3233			mutex_unlock(&ctl->cache_writeout_mutex);
3234			break;
3235		}
3236
3237		extent_start = entry->offset;
3238		extent_bytes = entry->bytes;
3239		start = max(start, extent_start);
3240		bytes = min(extent_start + extent_bytes, end) - start;
3241		if (bytes < minlen) {
3242			spin_unlock(&ctl->tree_lock);
3243			mutex_unlock(&ctl->cache_writeout_mutex);
3244			goto next;
3245		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3246
3247		unlink_free_space(ctl, entry);
3248		kmem_cache_free(btrfs_free_space_cachep, entry);
 
3249
3250		spin_unlock(&ctl->tree_lock);
3251		trim_entry.start = extent_start;
3252		trim_entry.bytes = extent_bytes;
3253		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3254		mutex_unlock(&ctl->cache_writeout_mutex);
3255
3256		ret = do_trimming(block_group, total_trimmed, start, bytes,
3257				  extent_start, extent_bytes, &trim_entry);
3258		if (ret)
 
 
3259			break;
 
3260next:
3261		start += bytes;
 
 
 
3262
3263		if (fatal_signal_pending(current)) {
3264			ret = -ERESTARTSYS;
3265			break;
3266		}
3267
3268		cond_resched();
3269	}
3270out:
 
 
 
 
 
 
 
3271	return ret;
3272}
3273
3274static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3275			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
3276{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3277	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3278	struct btrfs_free_space *entry;
3279	int ret = 0;
3280	int ret2;
3281	u64 bytes;
3282	u64 offset = offset_to_bitmap(ctl, start);
 
3283
3284	while (offset < end) {
3285		bool next_bitmap = false;
3286		struct btrfs_trim_range trim_entry;
3287
3288		mutex_lock(&ctl->cache_writeout_mutex);
3289		spin_lock(&ctl->tree_lock);
3290
3291		if (ctl->free_space < minlen) {
 
 
3292			spin_unlock(&ctl->tree_lock);
3293			mutex_unlock(&ctl->cache_writeout_mutex);
3294			break;
3295		}
3296
3297		entry = tree_search_offset(ctl, offset, 1, 0);
3298		if (!entry) {
 
 
 
 
 
 
 
 
 
3299			spin_unlock(&ctl->tree_lock);
3300			mutex_unlock(&ctl->cache_writeout_mutex);
3301			next_bitmap = true;
3302			goto next;
3303		}
3304
 
 
 
 
 
 
 
 
 
3305		bytes = minlen;
3306		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3307		if (ret2 || start >= end) {
 
 
 
 
 
 
 
 
3308			spin_unlock(&ctl->tree_lock);
3309			mutex_unlock(&ctl->cache_writeout_mutex);
3310			next_bitmap = true;
3311			goto next;
3312		}
3313
 
 
 
 
 
 
 
 
 
 
3314		bytes = min(bytes, end - start);
3315		if (bytes < minlen) {
3316			spin_unlock(&ctl->tree_lock);
3317			mutex_unlock(&ctl->cache_writeout_mutex);
3318			goto next;
3319		}
3320
3321		bitmap_clear_bits(ctl, entry, start, bytes);
 
 
 
 
 
 
 
 
 
 
 
3322		if (entry->bytes == 0)
3323			free_bitmap(ctl, entry);
3324
3325		spin_unlock(&ctl->tree_lock);
3326		trim_entry.start = start;
3327		trim_entry.bytes = bytes;
3328		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3329		mutex_unlock(&ctl->cache_writeout_mutex);
3330
3331		ret = do_trimming(block_group, total_trimmed, start, bytes,
3332				  start, bytes, &trim_entry);
3333		if (ret)
 
 
 
3334			break;
 
3335next:
3336		if (next_bitmap) {
3337			offset += BITS_PER_BITMAP * ctl->unit;
 
3338		} else {
3339			start += bytes;
3340			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3341				offset += BITS_PER_BITMAP * ctl->unit;
3342		}
 
3343
3344		if (fatal_signal_pending(current)) {
 
 
3345			ret = -ERESTARTSYS;
3346			break;
3347		}
3348
3349		cond_resched();
3350	}
3351
3352	return ret;
3353}
3354
3355void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3356{
3357	atomic_inc(&cache->trimming);
3358}
3359
3360void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3361{
3362	struct btrfs_fs_info *fs_info = block_group->fs_info;
3363	struct extent_map_tree *em_tree;
3364	struct extent_map *em;
3365	bool cleanup;
3366
3367	spin_lock(&block_group->lock);
3368	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3369		   block_group->removed);
3370	spin_unlock(&block_group->lock);
3371
3372	if (cleanup) {
3373		mutex_lock(&fs_info->chunk_mutex);
3374		em_tree = &fs_info->mapping_tree;
3375		write_lock(&em_tree->lock);
3376		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3377					   1);
3378		BUG_ON(!em); /* logic error, can't happen */
3379		remove_extent_mapping(em_tree, em);
3380		write_unlock(&em_tree->lock);
3381		mutex_unlock(&fs_info->chunk_mutex);
3382
3383		/* once for us and once for the tree */
3384		free_extent_map(em);
3385		free_extent_map(em);
3386
3387		/*
3388		 * We've left one free space entry and other tasks trimming
3389		 * this block group have left 1 entry each one. Free them.
3390		 */
3391		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3392	}
3393}
3394
3395int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3396			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3397{
 
3398	int ret;
 
 
 
3399
3400	*trimmed = 0;
3401
3402	spin_lock(&block_group->lock);
3403	if (block_group->removed) {
3404		spin_unlock(&block_group->lock);
3405		return 0;
3406	}
3407	btrfs_get_block_group_trimming(block_group);
3408	spin_unlock(&block_group->lock);
3409
3410	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3411	if (ret)
3412		goto out;
3413
3414	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
 
 
 
 
3415out:
3416	btrfs_put_block_group_trimming(block_group);
3417	return ret;
3418}
3419
3420/*
3421 * Find the left-most item in the cache tree, and then return the
3422 * smallest inode number in the item.
3423 *
3424 * Note: the returned inode number may not be the smallest one in
3425 * the tree, if the left-most item is a bitmap.
3426 */
3427u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3428{
3429	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3430	struct btrfs_free_space *entry = NULL;
3431	u64 ino = 0;
3432
3433	spin_lock(&ctl->tree_lock);
3434
3435	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3436		goto out;
3437
3438	entry = rb_entry(rb_first(&ctl->free_space_offset),
3439			 struct btrfs_free_space, offset_index);
3440
3441	if (!entry->bitmap) {
3442		ino = entry->offset;
3443
3444		unlink_free_space(ctl, entry);
3445		entry->offset++;
3446		entry->bytes--;
3447		if (!entry->bytes)
3448			kmem_cache_free(btrfs_free_space_cachep, entry);
3449		else
3450			link_free_space(ctl, entry);
3451	} else {
3452		u64 offset = 0;
3453		u64 count = 1;
3454		int ret;
3455
3456		ret = search_bitmap(ctl, entry, &offset, &count, true);
3457		/* Logic error; Should be empty if it can't find anything */
3458		ASSERT(!ret);
3459
3460		ino = offset;
3461		bitmap_clear_bits(ctl, entry, offset, 1);
3462		if (entry->bytes == 0)
3463			free_bitmap(ctl, entry);
3464	}
3465out:
3466	spin_unlock(&ctl->tree_lock);
 
 
 
3467
3468	return ino;
3469}
3470
3471struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3472				    struct btrfs_path *path)
 
3473{
3474	struct inode *inode = NULL;
3475
3476	spin_lock(&root->ino_cache_lock);
3477	if (root->ino_cache_inode)
3478		inode = igrab(root->ino_cache_inode);
3479	spin_unlock(&root->ino_cache_lock);
3480	if (inode)
3481		return inode;
3482
3483	inode = __lookup_free_space_inode(root, path, 0);
3484	if (IS_ERR(inode))
3485		return inode;
 
 
 
 
3486
3487	spin_lock(&root->ino_cache_lock);
3488	if (!btrfs_fs_closing(root->fs_info))
3489		root->ino_cache_inode = igrab(inode);
3490	spin_unlock(&root->ino_cache_lock);
3491
3492	return inode;
 
 
3493}
3494
3495int create_free_ino_inode(struct btrfs_root *root,
3496			  struct btrfs_trans_handle *trans,
3497			  struct btrfs_path *path)
3498{
3499	return __create_free_space_inode(root, trans, path,
3500					 BTRFS_FREE_INO_OBJECTID, 0);
3501}
3502
3503int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
 
3504{
3505	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3506	struct btrfs_path *path;
3507	struct inode *inode;
3508	int ret = 0;
3509	u64 root_gen = btrfs_root_generation(&root->root_item);
3510
3511	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3512		return 0;
3513
3514	/*
3515	 * If we're unmounting then just return, since this does a search on the
3516	 * normal root and not the commit root and we could deadlock.
3517	 */
3518	if (btrfs_fs_closing(fs_info))
3519		return 0;
3520
3521	path = btrfs_alloc_path();
3522	if (!path)
3523		return 0;
3524
3525	inode = lookup_free_ino_inode(root, path);
3526	if (IS_ERR(inode))
3527		goto out;
 
 
 
 
3528
3529	if (root_gen != BTRFS_I(inode)->generation)
3530		goto out_put;
 
 
3531
3532	ret = __load_free_space_cache(root, inode, ctl, path, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3533
3534	if (ret < 0)
3535		btrfs_err(fs_info,
3536			"failed to load free ino cache for root %llu",
3537			root->root_key.objectid);
3538out_put:
3539	iput(inode);
3540out:
3541	btrfs_free_path(path);
 
3542	return ret;
3543}
3544
3545int btrfs_write_out_ino_cache(struct btrfs_root *root,
3546			      struct btrfs_trans_handle *trans,
3547			      struct btrfs_path *path,
3548			      struct inode *inode)
3549{
3550	struct btrfs_fs_info *fs_info = root->fs_info;
3551	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3552	int ret;
3553	struct btrfs_io_ctl io_ctl;
3554	bool release_metadata = true;
3555
3556	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3557		return 0;
3558
3559	memset(&io_ctl, 0, sizeof(io_ctl));
3560	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3561	if (!ret) {
3562		/*
3563		 * At this point writepages() didn't error out, so our metadata
3564		 * reservation is released when the writeback finishes, at
3565		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3566		 * with or without an error.
3567		 */
3568		release_metadata = false;
3569		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3570	}
3571
3572	if (ret) {
3573		if (release_metadata)
3574			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3575					inode->i_size, true);
3576#ifdef DEBUG
3577		btrfs_err(fs_info,
3578			  "failed to write free ino cache for root %llu",
3579			  root->root_key.objectid);
3580#endif
3581	}
3582
3583	return ret;
 
 
 
3584}
3585
3586#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3587/*
3588 * Use this if you need to make a bitmap or extent entry specifically, it
3589 * doesn't do any of the merging that add_free_space does, this acts a lot like
3590 * how the free space cache loading stuff works, so you can get really weird
3591 * configurations.
3592 */
3593int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3594			      u64 offset, u64 bytes, bool bitmap)
3595{
3596	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3597	struct btrfs_free_space *info = NULL, *bitmap_info;
3598	void *map = NULL;
 
3599	u64 bytes_added;
3600	int ret;
3601
3602again:
3603	if (!info) {
3604		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3605		if (!info)
3606			return -ENOMEM;
3607	}
3608
3609	if (!bitmap) {
3610		spin_lock(&ctl->tree_lock);
3611		info->offset = offset;
3612		info->bytes = bytes;
3613		info->max_extent_size = 0;
3614		ret = link_free_space(ctl, info);
3615		spin_unlock(&ctl->tree_lock);
3616		if (ret)
3617			kmem_cache_free(btrfs_free_space_cachep, info);
3618		return ret;
3619	}
3620
3621	if (!map) {
3622		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3623		if (!map) {
3624			kmem_cache_free(btrfs_free_space_cachep, info);
3625			return -ENOMEM;
3626		}
3627	}
3628
3629	spin_lock(&ctl->tree_lock);
3630	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3631					 1, 0);
3632	if (!bitmap_info) {
3633		info->bitmap = map;
3634		map = NULL;
3635		add_new_bitmap(ctl, info, offset);
3636		bitmap_info = info;
3637		info = NULL;
3638	}
3639
3640	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
3641
3642	bytes -= bytes_added;
3643	offset += bytes_added;
3644	spin_unlock(&ctl->tree_lock);
3645
3646	if (bytes)
3647		goto again;
3648
3649	if (info)
3650		kmem_cache_free(btrfs_free_space_cachep, info);
3651	if (map)
3652		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3653	return 0;
3654}
3655
3656/*
3657 * Checks to see if the given range is in the free space cache.  This is really
3658 * just used to check the absence of space, so if there is free space in the
3659 * range at all we will return 1.
3660 */
3661int test_check_exists(struct btrfs_block_group_cache *cache,
3662		      u64 offset, u64 bytes)
3663{
3664	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3665	struct btrfs_free_space *info;
3666	int ret = 0;
3667
3668	spin_lock(&ctl->tree_lock);
3669	info = tree_search_offset(ctl, offset, 0, 0);
3670	if (!info) {
3671		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3672					  1, 0);
3673		if (!info)
3674			goto out;
3675	}
3676
3677have_info:
3678	if (info->bitmap) {
3679		u64 bit_off, bit_bytes;
3680		struct rb_node *n;
3681		struct btrfs_free_space *tmp;
3682
3683		bit_off = offset;
3684		bit_bytes = ctl->unit;
3685		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3686		if (!ret) {
3687			if (bit_off == offset) {
3688				ret = 1;
3689				goto out;
3690			} else if (bit_off > offset &&
3691				   offset + bytes > bit_off) {
3692				ret = 1;
3693				goto out;
3694			}
3695		}
3696
3697		n = rb_prev(&info->offset_index);
3698		while (n) {
3699			tmp = rb_entry(n, struct btrfs_free_space,
3700				       offset_index);
3701			if (tmp->offset + tmp->bytes < offset)
3702				break;
3703			if (offset + bytes < tmp->offset) {
3704				n = rb_prev(&tmp->offset_index);
3705				continue;
3706			}
3707			info = tmp;
3708			goto have_info;
3709		}
3710
3711		n = rb_next(&info->offset_index);
3712		while (n) {
3713			tmp = rb_entry(n, struct btrfs_free_space,
3714				       offset_index);
3715			if (offset + bytes < tmp->offset)
3716				break;
3717			if (tmp->offset + tmp->bytes < offset) {
3718				n = rb_next(&tmp->offset_index);
3719				continue;
3720			}
3721			info = tmp;
3722			goto have_info;
3723		}
3724
3725		ret = 0;
3726		goto out;
3727	}
3728
3729	if (info->offset == offset) {
3730		ret = 1;
3731		goto out;
3732	}
3733
3734	if (offset > info->offset && offset < info->offset + info->bytes)
3735		ret = 1;
3736out:
3737	spin_unlock(&ctl->tree_lock);
3738	return ret;
3739}
3740#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "ctree.h"
  15#include "fs.h"
  16#include "messages.h"
  17#include "misc.h"
  18#include "free-space-cache.h"
  19#include "transaction.h"
  20#include "disk-io.h"
  21#include "extent_io.h"
 
  22#include "volumes.h"
  23#include "space-info.h"
  24#include "delalloc-space.h"
  25#include "block-group.h"
  26#include "discard.h"
  27#include "subpage.h"
  28#include "inode-item.h"
  29#include "accessors.h"
  30#include "file-item.h"
  31#include "file.h"
  32#include "super.h"
  33
  34#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  35#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
  36#define FORCE_EXTENT_THRESHOLD	SZ_1M
  37
  38static struct kmem_cache *btrfs_free_space_cachep;
  39static struct kmem_cache *btrfs_free_space_bitmap_cachep;
  40
  41struct btrfs_trim_range {
  42	u64 start;
  43	u64 bytes;
  44	struct list_head list;
  45};
  46
  47static int link_free_space(struct btrfs_free_space_ctl *ctl,
  48			   struct btrfs_free_space *info);
  49static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  50			      struct btrfs_free_space *info, bool update_stat);
  51static int search_bitmap(struct btrfs_free_space_ctl *ctl,
  52			 struct btrfs_free_space *bitmap_info, u64 *offset,
  53			 u64 *bytes, bool for_alloc);
  54static void free_bitmap(struct btrfs_free_space_ctl *ctl,
  55			struct btrfs_free_space *bitmap_info);
  56static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  57			      struct btrfs_free_space *info, u64 offset,
  58			      u64 bytes, bool update_stats);
  59
  60static void btrfs_crc32c_final(u32 crc, u8 *result)
  61{
  62	put_unaligned_le32(~crc, result);
  63}
  64
  65static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
  66{
  67	struct btrfs_free_space *info;
  68	struct rb_node *node;
  69
  70	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
  71		info = rb_entry(node, struct btrfs_free_space, offset_index);
  72		if (!info->bitmap) {
  73			unlink_free_space(ctl, info, true);
  74			kmem_cache_free(btrfs_free_space_cachep, info);
  75		} else {
  76			free_bitmap(ctl, info);
  77		}
  78
  79		cond_resched_lock(&ctl->tree_lock);
  80	}
  81}
  82
  83static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  84					       struct btrfs_path *path,
  85					       u64 offset)
  86{
  87	struct btrfs_fs_info *fs_info = root->fs_info;
  88	struct btrfs_key key;
  89	struct btrfs_key location;
  90	struct btrfs_disk_key disk_key;
  91	struct btrfs_free_space_header *header;
  92	struct extent_buffer *leaf;
  93	struct inode *inode = NULL;
  94	unsigned nofs_flag;
  95	int ret;
  96
  97	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  98	key.offset = offset;
  99	key.type = 0;
 100
 101	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 102	if (ret < 0)
 103		return ERR_PTR(ret);
 104	if (ret > 0) {
 105		btrfs_release_path(path);
 106		return ERR_PTR(-ENOENT);
 107	}
 108
 109	leaf = path->nodes[0];
 110	header = btrfs_item_ptr(leaf, path->slots[0],
 111				struct btrfs_free_space_header);
 112	btrfs_free_space_key(leaf, header, &disk_key);
 113	btrfs_disk_key_to_cpu(&location, &disk_key);
 114	btrfs_release_path(path);
 115
 116	/*
 117	 * We are often under a trans handle at this point, so we need to make
 118	 * sure NOFS is set to keep us from deadlocking.
 119	 */
 120	nofs_flag = memalloc_nofs_save();
 121	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
 122	btrfs_release_path(path);
 123	memalloc_nofs_restore(nofs_flag);
 124	if (IS_ERR(inode))
 125		return inode;
 126
 127	mapping_set_gfp_mask(inode->i_mapping,
 128			mapping_gfp_constraint(inode->i_mapping,
 129			~(__GFP_FS | __GFP_HIGHMEM)));
 130
 131	return inode;
 132}
 133
 134struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
 
 135		struct btrfs_path *path)
 136{
 137	struct btrfs_fs_info *fs_info = block_group->fs_info;
 138	struct inode *inode = NULL;
 139	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 140
 141	spin_lock(&block_group->lock);
 142	if (block_group->inode)
 143		inode = igrab(block_group->inode);
 144	spin_unlock(&block_group->lock);
 145	if (inode)
 146		return inode;
 147
 148	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 149					  block_group->start);
 150	if (IS_ERR(inode))
 151		return inode;
 152
 153	spin_lock(&block_group->lock);
 154	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 155		btrfs_info(fs_info, "Old style space inode found, converting.");
 156		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 157			BTRFS_INODE_NODATACOW;
 158		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 159	}
 160
 161	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
 162		block_group->inode = igrab(inode);
 
 
 163	spin_unlock(&block_group->lock);
 164
 165	return inode;
 166}
 167
 168static int __create_free_space_inode(struct btrfs_root *root,
 169				     struct btrfs_trans_handle *trans,
 170				     struct btrfs_path *path,
 171				     u64 ino, u64 offset)
 172{
 173	struct btrfs_key key;
 174	struct btrfs_disk_key disk_key;
 175	struct btrfs_free_space_header *header;
 176	struct btrfs_inode_item *inode_item;
 177	struct extent_buffer *leaf;
 178	/* We inline CRCs for the free disk space cache */
 179	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
 180			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 181	int ret;
 182
 183	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 184	if (ret)
 185		return ret;
 186
 
 
 
 
 187	leaf = path->nodes[0];
 188	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 189				    struct btrfs_inode_item);
 190	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 191	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 192			     sizeof(*inode_item));
 193	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 194	btrfs_set_inode_size(leaf, inode_item, 0);
 195	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 196	btrfs_set_inode_uid(leaf, inode_item, 0);
 197	btrfs_set_inode_gid(leaf, inode_item, 0);
 198	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 199	btrfs_set_inode_flags(leaf, inode_item, flags);
 200	btrfs_set_inode_nlink(leaf, inode_item, 1);
 201	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 202	btrfs_set_inode_block_group(leaf, inode_item, offset);
 203	btrfs_mark_buffer_dirty(trans, leaf);
 204	btrfs_release_path(path);
 205
 206	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 207	key.offset = offset;
 208	key.type = 0;
 209	ret = btrfs_insert_empty_item(trans, root, path, &key,
 210				      sizeof(struct btrfs_free_space_header));
 211	if (ret < 0) {
 212		btrfs_release_path(path);
 213		return ret;
 214	}
 215
 216	leaf = path->nodes[0];
 217	header = btrfs_item_ptr(leaf, path->slots[0],
 218				struct btrfs_free_space_header);
 219	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 220	btrfs_set_free_space_key(leaf, header, &disk_key);
 221	btrfs_mark_buffer_dirty(trans, leaf);
 222	btrfs_release_path(path);
 223
 224	return 0;
 225}
 226
 227int create_free_space_inode(struct btrfs_trans_handle *trans,
 228			    struct btrfs_block_group *block_group,
 229			    struct btrfs_path *path)
 230{
 231	int ret;
 232	u64 ino;
 233
 234	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
 235	if (ret < 0)
 236		return ret;
 237
 238	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 239					 ino, block_group->start);
 240}
 241
 242/*
 243 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
 244 * handles lookup, otherwise it takes ownership and iputs the inode.
 245 * Don't reuse an inode pointer after passing it into this function.
 246 */
 247int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
 248				  struct inode *inode,
 249				  struct btrfs_block_group *block_group)
 250{
 251	struct btrfs_path *path;
 252	struct btrfs_key key;
 253	int ret = 0;
 254
 255	path = btrfs_alloc_path();
 256	if (!path)
 257		return -ENOMEM;
 258
 259	if (!inode)
 260		inode = lookup_free_space_inode(block_group, path);
 261	if (IS_ERR(inode)) {
 262		if (PTR_ERR(inode) != -ENOENT)
 263			ret = PTR_ERR(inode);
 264		goto out;
 265	}
 266	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 267	if (ret) {
 268		btrfs_add_delayed_iput(BTRFS_I(inode));
 269		goto out;
 270	}
 271	clear_nlink(inode);
 272	/* One for the block groups ref */
 273	spin_lock(&block_group->lock);
 274	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
 275		block_group->inode = NULL;
 276		spin_unlock(&block_group->lock);
 277		iput(inode);
 278	} else {
 279		spin_unlock(&block_group->lock);
 280	}
 281	/* One for the lookup ref */
 282	btrfs_add_delayed_iput(BTRFS_I(inode));
 283
 284	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 285	key.type = 0;
 286	key.offset = block_group->start;
 287	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
 288				-1, 1);
 289	if (ret) {
 290		if (ret > 0)
 291			ret = 0;
 292		goto out;
 293	}
 294	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
 295out:
 296	btrfs_free_path(path);
 297	return ret;
 298}
 299
 300int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 301				    struct btrfs_block_group *block_group,
 302				    struct inode *vfs_inode)
 303{
 304	struct btrfs_truncate_control control = {
 305		.inode = BTRFS_I(vfs_inode),
 306		.new_size = 0,
 307		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
 308		.min_type = BTRFS_EXTENT_DATA_KEY,
 309		.clear_extent_range = true,
 310	};
 311	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
 312	struct btrfs_root *root = inode->root;
 313	struct extent_state *cached_state = NULL;
 314	int ret = 0;
 315	bool locked = false;
 316
 317	if (block_group) {
 318		struct btrfs_path *path = btrfs_alloc_path();
 319
 320		if (!path) {
 321			ret = -ENOMEM;
 322			goto fail;
 323		}
 324		locked = true;
 325		mutex_lock(&trans->transaction->cache_write_mutex);
 326		if (!list_empty(&block_group->io_list)) {
 327			list_del_init(&block_group->io_list);
 328
 329			btrfs_wait_cache_io(trans, block_group, path);
 330			btrfs_put_block_group(block_group);
 331		}
 332
 333		/*
 334		 * now that we've truncated the cache away, its no longer
 335		 * setup or written
 336		 */
 337		spin_lock(&block_group->lock);
 338		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 339		spin_unlock(&block_group->lock);
 340		btrfs_free_path(path);
 341	}
 342
 343	btrfs_i_size_write(inode, 0);
 344	truncate_pagecache(vfs_inode, 0);
 345
 346	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 347	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
 348
 349	/*
 350	 * We skip the throttling logic for free space cache inodes, so we don't
 351	 * need to check for -EAGAIN.
 352	 */
 353	ret = btrfs_truncate_inode_items(trans, root, &control);
 354
 355	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
 356	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
 357
 358	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 359	if (ret)
 360		goto fail;
 361
 362	ret = btrfs_update_inode(trans, inode);
 363
 364fail:
 365	if (locked)
 366		mutex_unlock(&trans->transaction->cache_write_mutex);
 367	if (ret)
 368		btrfs_abort_transaction(trans, ret);
 369
 370	return ret;
 371}
 372
 373static void readahead_cache(struct inode *inode)
 374{
 375	struct file_ra_state ra;
 376	unsigned long last_index;
 377
 378	file_ra_state_init(&ra, inode->i_mapping);
 
 
 
 
 379	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 380
 381	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
 
 
 382}
 383
 384static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 385		       int write)
 386{
 387	int num_pages;
 
 388
 389	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 390
 
 
 
 391	/* Make sure we can fit our crcs and generation into the first page */
 392	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 
 393		return -ENOSPC;
 394
 395	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 396
 397	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 398	if (!io_ctl->pages)
 399		return -ENOMEM;
 400
 401	io_ctl->num_pages = num_pages;
 402	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 
 403	io_ctl->inode = inode;
 404
 405	return 0;
 406}
 407ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 408
 409static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 410{
 411	kfree(io_ctl->pages);
 412	io_ctl->pages = NULL;
 413}
 414
 415static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 416{
 417	if (io_ctl->cur) {
 418		io_ctl->cur = NULL;
 419		io_ctl->orig = NULL;
 420	}
 421}
 422
 423static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 424{
 425	ASSERT(io_ctl->index < io_ctl->num_pages);
 426	io_ctl->page = io_ctl->pages[io_ctl->index++];
 427	io_ctl->cur = page_address(io_ctl->page);
 428	io_ctl->orig = io_ctl->cur;
 429	io_ctl->size = PAGE_SIZE;
 430	if (clear)
 431		clear_page(io_ctl->cur);
 432}
 433
 434static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 435{
 436	int i;
 437
 438	io_ctl_unmap_page(io_ctl);
 439
 440	for (i = 0; i < io_ctl->num_pages; i++) {
 441		if (io_ctl->pages[i]) {
 442			btrfs_folio_clear_checked(io_ctl->fs_info,
 443					page_folio(io_ctl->pages[i]),
 444					page_offset(io_ctl->pages[i]),
 445					PAGE_SIZE);
 446			unlock_page(io_ctl->pages[i]);
 447			put_page(io_ctl->pages[i]);
 448		}
 449	}
 450}
 451
 452static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 
 453{
 454	struct page *page;
 455	struct inode *inode = io_ctl->inode;
 456	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 457	int i;
 458
 459	for (i = 0; i < io_ctl->num_pages; i++) {
 460		int ret;
 461
 462		page = find_or_create_page(inode->i_mapping, i, mask);
 463		if (!page) {
 464			io_ctl_drop_pages(io_ctl);
 465			return -ENOMEM;
 466		}
 467
 468		ret = set_page_extent_mapped(page);
 469		if (ret < 0) {
 470			unlock_page(page);
 471			put_page(page);
 472			io_ctl_drop_pages(io_ctl);
 473			return ret;
 474		}
 475
 476		io_ctl->pages[i] = page;
 477		if (uptodate && !PageUptodate(page)) {
 478			btrfs_read_folio(NULL, page_folio(page));
 479			lock_page(page);
 480			if (page->mapping != inode->i_mapping) {
 481				btrfs_err(BTRFS_I(inode)->root->fs_info,
 482					  "free space cache page truncated");
 483				io_ctl_drop_pages(io_ctl);
 484				return -EIO;
 485			}
 486			if (!PageUptodate(page)) {
 487				btrfs_err(BTRFS_I(inode)->root->fs_info,
 488					   "error reading free space cache");
 489				io_ctl_drop_pages(io_ctl);
 490				return -EIO;
 491			}
 492		}
 493	}
 494
 495	for (i = 0; i < io_ctl->num_pages; i++)
 496		clear_page_dirty_for_io(io_ctl->pages[i]);
 
 
 497
 498	return 0;
 499}
 500
 501static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 502{
 
 
 503	io_ctl_map_page(io_ctl, 1);
 504
 505	/*
 506	 * Skip the csum areas.  If we don't check crcs then we just have a
 507	 * 64bit chunk at the front of the first page.
 508	 */
 509	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 510	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 511
 512	put_unaligned_le64(generation, io_ctl->cur);
 
 513	io_ctl->cur += sizeof(u64);
 514}
 515
 516static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 517{
 518	u64 cache_gen;
 519
 520	/*
 521	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 522	 * chunk at the front of the first page.
 523	 */
 524	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 525	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 
 526
 527	cache_gen = get_unaligned_le64(io_ctl->cur);
 528	if (cache_gen != generation) {
 529		btrfs_err_rl(io_ctl->fs_info,
 530			"space cache generation (%llu) does not match inode (%llu)",
 531				cache_gen, generation);
 532		io_ctl_unmap_page(io_ctl);
 533		return -EIO;
 534	}
 535	io_ctl->cur += sizeof(u64);
 536	return 0;
 537}
 538
 539static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 540{
 541	u32 *tmp;
 542	u32 crc = ~(u32)0;
 543	unsigned offset = 0;
 544
 
 
 
 
 
 545	if (index == 0)
 546		offset = sizeof(u32) * io_ctl->num_pages;
 547
 548	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 549	btrfs_crc32c_final(crc, (u8 *)&crc);
 550	io_ctl_unmap_page(io_ctl);
 551	tmp = page_address(io_ctl->pages[0]);
 552	tmp += index;
 553	*tmp = crc;
 554}
 555
 556static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 557{
 558	u32 *tmp, val;
 559	u32 crc = ~(u32)0;
 560	unsigned offset = 0;
 561
 
 
 
 
 
 562	if (index == 0)
 563		offset = sizeof(u32) * io_ctl->num_pages;
 564
 565	tmp = page_address(io_ctl->pages[0]);
 566	tmp += index;
 567	val = *tmp;
 568
 569	io_ctl_map_page(io_ctl, 0);
 570	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 571	btrfs_crc32c_final(crc, (u8 *)&crc);
 572	if (val != crc) {
 573		btrfs_err_rl(io_ctl->fs_info,
 574			"csum mismatch on free space cache");
 575		io_ctl_unmap_page(io_ctl);
 576		return -EIO;
 577	}
 578
 579	return 0;
 580}
 581
 582static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 583			    void *bitmap)
 584{
 585	struct btrfs_free_space_entry *entry;
 586
 587	if (!io_ctl->cur)
 588		return -ENOSPC;
 589
 590	entry = io_ctl->cur;
 591	put_unaligned_le64(offset, &entry->offset);
 592	put_unaligned_le64(bytes, &entry->bytes);
 593	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 594		BTRFS_FREE_SPACE_EXTENT;
 595	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 596	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 597
 598	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 599		return 0;
 600
 601	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 602
 603	/* No more pages to map */
 604	if (io_ctl->index >= io_ctl->num_pages)
 605		return 0;
 606
 607	/* map the next page */
 608	io_ctl_map_page(io_ctl, 1);
 609	return 0;
 610}
 611
 612static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 613{
 614	if (!io_ctl->cur)
 615		return -ENOSPC;
 616
 617	/*
 618	 * If we aren't at the start of the current page, unmap this one and
 619	 * map the next one if there is any left.
 620	 */
 621	if (io_ctl->cur != io_ctl->orig) {
 622		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 623		if (io_ctl->index >= io_ctl->num_pages)
 624			return -ENOSPC;
 625		io_ctl_map_page(io_ctl, 0);
 626	}
 627
 628	copy_page(io_ctl->cur, bitmap);
 629	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 630	if (io_ctl->index < io_ctl->num_pages)
 631		io_ctl_map_page(io_ctl, 0);
 632	return 0;
 633}
 634
 635static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 636{
 637	/*
 638	 * If we're not on the boundary we know we've modified the page and we
 639	 * need to crc the page.
 640	 */
 641	if (io_ctl->cur != io_ctl->orig)
 642		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 643	else
 644		io_ctl_unmap_page(io_ctl);
 645
 646	while (io_ctl->index < io_ctl->num_pages) {
 647		io_ctl_map_page(io_ctl, 1);
 648		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 649	}
 650}
 651
 652static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 653			    struct btrfs_free_space *entry, u8 *type)
 654{
 655	struct btrfs_free_space_entry *e;
 656	int ret;
 657
 658	if (!io_ctl->cur) {
 659		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 660		if (ret)
 661			return ret;
 662	}
 663
 664	e = io_ctl->cur;
 665	entry->offset = get_unaligned_le64(&e->offset);
 666	entry->bytes = get_unaligned_le64(&e->bytes);
 667	*type = e->type;
 668	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 669	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 670
 671	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 672		return 0;
 673
 674	io_ctl_unmap_page(io_ctl);
 675
 676	return 0;
 677}
 678
 679static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 680			      struct btrfs_free_space *entry)
 681{
 682	int ret;
 683
 684	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 685	if (ret)
 686		return ret;
 687
 688	copy_page(entry->bitmap, io_ctl->cur);
 689	io_ctl_unmap_page(io_ctl);
 690
 691	return 0;
 692}
 693
 694static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 
 
 
 
 
 
 
 
 
 695{
 696	struct btrfs_block_group *block_group = ctl->block_group;
 697	u64 max_bytes;
 698	u64 bitmap_bytes;
 699	u64 extent_bytes;
 700	u64 size = block_group->length;
 701	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
 702	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
 703
 704	max_bitmaps = max_t(u64, max_bitmaps, 1);
 705
 706	if (ctl->total_bitmaps > max_bitmaps)
 707		btrfs_err(block_group->fs_info,
 708"invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
 709			  block_group->start, block_group->length,
 710			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
 711			  bytes_per_bg);
 712	ASSERT(ctl->total_bitmaps <= max_bitmaps);
 713
 714	/*
 715	 * We are trying to keep the total amount of memory used per 1GiB of
 716	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
 717	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
 718	 * bitmaps, we may end up using more memory than this.
 719	 */
 720	if (size < SZ_1G)
 721		max_bytes = MAX_CACHE_BYTES_PER_GIG;
 722	else
 723		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
 724
 725	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
 726
 727	/*
 728	 * we want the extent entry threshold to always be at most 1/2 the max
 729	 * bytes we can have, or whatever is less than that.
 730	 */
 731	extent_bytes = max_bytes - bitmap_bytes;
 732	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
 733
 734	ctl->extents_thresh =
 735		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
 736}
 737
 738static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 739				   struct btrfs_free_space_ctl *ctl,
 740				   struct btrfs_path *path, u64 offset)
 741{
 742	struct btrfs_fs_info *fs_info = root->fs_info;
 743	struct btrfs_free_space_header *header;
 744	struct extent_buffer *leaf;
 745	struct btrfs_io_ctl io_ctl;
 746	struct btrfs_key key;
 747	struct btrfs_free_space *e, *n;
 748	LIST_HEAD(bitmaps);
 749	u64 num_entries;
 750	u64 num_bitmaps;
 751	u64 generation;
 752	u8 type;
 753	int ret = 0;
 754
 755	/* Nothing in the space cache, goodbye */
 756	if (!i_size_read(inode))
 757		return 0;
 758
 759	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 760	key.offset = offset;
 761	key.type = 0;
 762
 763	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 764	if (ret < 0)
 765		return 0;
 766	else if (ret > 0) {
 767		btrfs_release_path(path);
 768		return 0;
 769	}
 770
 771	ret = -1;
 772
 773	leaf = path->nodes[0];
 774	header = btrfs_item_ptr(leaf, path->slots[0],
 775				struct btrfs_free_space_header);
 776	num_entries = btrfs_free_space_entries(leaf, header);
 777	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 778	generation = btrfs_free_space_generation(leaf, header);
 779	btrfs_release_path(path);
 780
 781	if (!BTRFS_I(inode)->generation) {
 782		btrfs_info(fs_info,
 783			   "the free space cache file (%llu) is invalid, skip it",
 784			   offset);
 785		return 0;
 786	}
 787
 788	if (BTRFS_I(inode)->generation != generation) {
 789		btrfs_err(fs_info,
 790			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 791			  BTRFS_I(inode)->generation, generation);
 792		return 0;
 793	}
 794
 795	if (!num_entries)
 796		return 0;
 797
 798	ret = io_ctl_init(&io_ctl, inode, 0);
 799	if (ret)
 800		return ret;
 801
 802	readahead_cache(inode);
 803
 804	ret = io_ctl_prepare_pages(&io_ctl, true);
 805	if (ret)
 806		goto out;
 807
 808	ret = io_ctl_check_crc(&io_ctl, 0);
 809	if (ret)
 810		goto free_cache;
 811
 812	ret = io_ctl_check_generation(&io_ctl, generation);
 813	if (ret)
 814		goto free_cache;
 815
 816	while (num_entries) {
 817		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 818				      GFP_NOFS);
 819		if (!e) {
 820			ret = -ENOMEM;
 821			goto free_cache;
 822		}
 823
 824		ret = io_ctl_read_entry(&io_ctl, e, &type);
 825		if (ret) {
 826			kmem_cache_free(btrfs_free_space_cachep, e);
 827			goto free_cache;
 828		}
 829
 830		if (!e->bytes) {
 831			ret = -1;
 832			kmem_cache_free(btrfs_free_space_cachep, e);
 833			goto free_cache;
 834		}
 835
 836		if (type == BTRFS_FREE_SPACE_EXTENT) {
 837			spin_lock(&ctl->tree_lock);
 838			ret = link_free_space(ctl, e);
 839			spin_unlock(&ctl->tree_lock);
 840			if (ret) {
 841				btrfs_err(fs_info,
 842					"Duplicate entries in free space cache, dumping");
 843				kmem_cache_free(btrfs_free_space_cachep, e);
 844				goto free_cache;
 845			}
 846		} else {
 847			ASSERT(num_bitmaps);
 848			num_bitmaps--;
 849			e->bitmap = kmem_cache_zalloc(
 850					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 851			if (!e->bitmap) {
 852				ret = -ENOMEM;
 853				kmem_cache_free(
 854					btrfs_free_space_cachep, e);
 855				goto free_cache;
 856			}
 857			spin_lock(&ctl->tree_lock);
 858			ret = link_free_space(ctl, e);
 
 
 
 859			if (ret) {
 860				spin_unlock(&ctl->tree_lock);
 861				btrfs_err(fs_info,
 862					"Duplicate entries in free space cache, dumping");
 863				kmem_cache_free(btrfs_free_space_cachep, e);
 864				goto free_cache;
 865			}
 866			ctl->total_bitmaps++;
 867			recalculate_thresholds(ctl);
 868			spin_unlock(&ctl->tree_lock);
 869			list_add_tail(&e->list, &bitmaps);
 870		}
 871
 872		num_entries--;
 873	}
 874
 875	io_ctl_unmap_page(&io_ctl);
 876
 877	/*
 878	 * We add the bitmaps at the end of the entries in order that
 879	 * the bitmap entries are added to the cache.
 880	 */
 881	list_for_each_entry_safe(e, n, &bitmaps, list) {
 882		list_del_init(&e->list);
 883		ret = io_ctl_read_bitmap(&io_ctl, e);
 884		if (ret)
 885			goto free_cache;
 886	}
 887
 888	io_ctl_drop_pages(&io_ctl);
 
 889	ret = 1;
 890out:
 891	io_ctl_free(&io_ctl);
 892	return ret;
 893free_cache:
 894	io_ctl_drop_pages(&io_ctl);
 895
 896	spin_lock(&ctl->tree_lock);
 897	__btrfs_remove_free_space_cache(ctl);
 898	spin_unlock(&ctl->tree_lock);
 899	goto out;
 900}
 901
 902static int copy_free_space_cache(struct btrfs_block_group *block_group,
 903				 struct btrfs_free_space_ctl *ctl)
 904{
 905	struct btrfs_free_space *info;
 906	struct rb_node *n;
 907	int ret = 0;
 908
 909	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
 910		info = rb_entry(n, struct btrfs_free_space, offset_index);
 911		if (!info->bitmap) {
 912			const u64 offset = info->offset;
 913			const u64 bytes = info->bytes;
 914
 915			unlink_free_space(ctl, info, true);
 916			spin_unlock(&ctl->tree_lock);
 917			kmem_cache_free(btrfs_free_space_cachep, info);
 918			ret = btrfs_add_free_space(block_group, offset, bytes);
 919			spin_lock(&ctl->tree_lock);
 920		} else {
 921			u64 offset = info->offset;
 922			u64 bytes = ctl->unit;
 923
 924			ret = search_bitmap(ctl, info, &offset, &bytes, false);
 925			if (ret == 0) {
 926				bitmap_clear_bits(ctl, info, offset, bytes, true);
 927				spin_unlock(&ctl->tree_lock);
 928				ret = btrfs_add_free_space(block_group, offset,
 929							   bytes);
 930				spin_lock(&ctl->tree_lock);
 931			} else {
 932				free_bitmap(ctl, info);
 933				ret = 0;
 934			}
 935		}
 936		cond_resched_lock(&ctl->tree_lock);
 937	}
 938	return ret;
 939}
 940
 941static struct lock_class_key btrfs_free_space_inode_key;
 942
 943int load_free_space_cache(struct btrfs_block_group *block_group)
 944{
 945	struct btrfs_fs_info *fs_info = block_group->fs_info;
 946	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 947	struct btrfs_free_space_ctl tmp_ctl = {};
 948	struct inode *inode;
 949	struct btrfs_path *path;
 950	int ret = 0;
 951	bool matched;
 952	u64 used = block_group->used;
 953
 954	/*
 955	 * Because we could potentially discard our loaded free space, we want
 956	 * to load everything into a temporary structure first, and then if it's
 957	 * valid copy it all into the actual free space ctl.
 958	 */
 959	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
 960
 961	/*
 962	 * If this block group has been marked to be cleared for one reason or
 963	 * another then we can't trust the on disk cache, so just return.
 964	 */
 965	spin_lock(&block_group->lock);
 966	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 967		spin_unlock(&block_group->lock);
 968		return 0;
 969	}
 970	spin_unlock(&block_group->lock);
 971
 972	path = btrfs_alloc_path();
 973	if (!path)
 974		return 0;
 975	path->search_commit_root = 1;
 976	path->skip_locking = 1;
 977
 978	/*
 979	 * We must pass a path with search_commit_root set to btrfs_iget in
 980	 * order to avoid a deadlock when allocating extents for the tree root.
 981	 *
 982	 * When we are COWing an extent buffer from the tree root, when looking
 983	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 984	 * block group without its free space cache loaded. When we find one
 985	 * we must load its space cache which requires reading its free space
 986	 * cache's inode item from the root tree. If this inode item is located
 987	 * in the same leaf that we started COWing before, then we end up in
 988	 * deadlock on the extent buffer (trying to read lock it when we
 989	 * previously write locked it).
 990	 *
 991	 * It's safe to read the inode item using the commit root because
 992	 * block groups, once loaded, stay in memory forever (until they are
 993	 * removed) as well as their space caches once loaded. New block groups
 994	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 995	 * we will never try to read their inode item while the fs is mounted.
 996	 */
 997	inode = lookup_free_space_inode(block_group, path);
 998	if (IS_ERR(inode)) {
 999		btrfs_free_path(path);
1000		return 0;
1001	}
1002
1003	/* We may have converted the inode and made the cache invalid. */
1004	spin_lock(&block_group->lock);
1005	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1006		spin_unlock(&block_group->lock);
1007		btrfs_free_path(path);
1008		goto out;
1009	}
1010	spin_unlock(&block_group->lock);
1011
1012	/*
1013	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1014	 * free space inodes to prevent false positives related to locks for normal
1015	 * inodes.
1016	 */
1017	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1018			  &btrfs_free_space_inode_key);
1019
1020	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1021				      path, block_group->start);
1022	btrfs_free_path(path);
1023	if (ret <= 0)
1024		goto out;
1025
1026	matched = (tmp_ctl.free_space == (block_group->length - used -
1027					  block_group->bytes_super));
 
 
1028
1029	if (matched) {
1030		spin_lock(&tmp_ctl.tree_lock);
1031		ret = copy_free_space_cache(block_group, &tmp_ctl);
1032		spin_unlock(&tmp_ctl.tree_lock);
1033		/*
1034		 * ret == 1 means we successfully loaded the free space cache,
1035		 * so we need to re-set it here.
1036		 */
1037		if (ret == 0)
1038			ret = 1;
1039	} else {
1040		/*
1041		 * We need to call the _locked variant so we don't try to update
1042		 * the discard counters.
1043		 */
1044		spin_lock(&tmp_ctl.tree_lock);
1045		__btrfs_remove_free_space_cache(&tmp_ctl);
1046		spin_unlock(&tmp_ctl.tree_lock);
1047		btrfs_warn(fs_info,
1048			   "block group %llu has wrong amount of free space",
1049			   block_group->start);
1050		ret = -1;
1051	}
1052out:
1053	if (ret < 0) {
1054		/* This cache is bogus, make sure it gets cleared */
1055		spin_lock(&block_group->lock);
1056		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1057		spin_unlock(&block_group->lock);
1058		ret = 0;
1059
1060		btrfs_warn(fs_info,
1061			   "failed to load free space cache for block group %llu, rebuilding it now",
1062			   block_group->start);
1063	}
1064
1065	spin_lock(&ctl->tree_lock);
1066	btrfs_discard_update_discardable(block_group);
1067	spin_unlock(&ctl->tree_lock);
1068	iput(inode);
1069	return ret;
1070}
1071
1072static noinline_for_stack
1073int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1074			      struct btrfs_free_space_ctl *ctl,
1075			      struct btrfs_block_group *block_group,
1076			      int *entries, int *bitmaps,
1077			      struct list_head *bitmap_list)
1078{
1079	int ret;
1080	struct btrfs_free_cluster *cluster = NULL;
1081	struct btrfs_free_cluster *cluster_locked = NULL;
1082	struct rb_node *node = rb_first(&ctl->free_space_offset);
1083	struct btrfs_trim_range *trim_entry;
1084
1085	/* Get the cluster for this block_group if it exists */
1086	if (block_group && !list_empty(&block_group->cluster_list)) {
1087		cluster = list_entry(block_group->cluster_list.next,
1088				     struct btrfs_free_cluster,
1089				     block_group_list);
1090	}
1091
1092	if (!node && cluster) {
1093		cluster_locked = cluster;
1094		spin_lock(&cluster_locked->lock);
1095		node = rb_first(&cluster->root);
1096		cluster = NULL;
1097	}
1098
1099	/* Write out the extent entries */
1100	while (node) {
1101		struct btrfs_free_space *e;
1102
1103		e = rb_entry(node, struct btrfs_free_space, offset_index);
1104		*entries += 1;
1105
1106		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1107				       e->bitmap);
1108		if (ret)
1109			goto fail;
1110
1111		if (e->bitmap) {
1112			list_add_tail(&e->list, bitmap_list);
1113			*bitmaps += 1;
1114		}
1115		node = rb_next(node);
1116		if (!node && cluster) {
1117			node = rb_first(&cluster->root);
1118			cluster_locked = cluster;
1119			spin_lock(&cluster_locked->lock);
1120			cluster = NULL;
1121		}
1122	}
1123	if (cluster_locked) {
1124		spin_unlock(&cluster_locked->lock);
1125		cluster_locked = NULL;
1126	}
1127
1128	/*
1129	 * Make sure we don't miss any range that was removed from our rbtree
1130	 * because trimming is running. Otherwise after a umount+mount (or crash
1131	 * after committing the transaction) we would leak free space and get
1132	 * an inconsistent free space cache report from fsck.
1133	 */
1134	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1135		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1136				       trim_entry->bytes, NULL);
1137		if (ret)
1138			goto fail;
1139		*entries += 1;
1140	}
1141
1142	return 0;
1143fail:
1144	if (cluster_locked)
1145		spin_unlock(&cluster_locked->lock);
1146	return -ENOSPC;
1147}
1148
1149static noinline_for_stack int
1150update_cache_item(struct btrfs_trans_handle *trans,
1151		  struct btrfs_root *root,
1152		  struct inode *inode,
1153		  struct btrfs_path *path, u64 offset,
1154		  int entries, int bitmaps)
1155{
1156	struct btrfs_key key;
1157	struct btrfs_free_space_header *header;
1158	struct extent_buffer *leaf;
1159	int ret;
1160
1161	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1162	key.offset = offset;
1163	key.type = 0;
1164
1165	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1166	if (ret < 0) {
1167		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1168				 EXTENT_DELALLOC, NULL);
1169		goto fail;
1170	}
1171	leaf = path->nodes[0];
1172	if (ret > 0) {
1173		struct btrfs_key found_key;
1174		ASSERT(path->slots[0]);
1175		path->slots[0]--;
1176		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1177		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1178		    found_key.offset != offset) {
1179			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1180					 inode->i_size - 1, EXTENT_DELALLOC,
1181					 NULL);
1182			btrfs_release_path(path);
1183			goto fail;
1184		}
1185	}
1186
1187	BTRFS_I(inode)->generation = trans->transid;
1188	header = btrfs_item_ptr(leaf, path->slots[0],
1189				struct btrfs_free_space_header);
1190	btrfs_set_free_space_entries(leaf, header, entries);
1191	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1192	btrfs_set_free_space_generation(leaf, header, trans->transid);
1193	btrfs_mark_buffer_dirty(trans, leaf);
1194	btrfs_release_path(path);
1195
1196	return 0;
1197
1198fail:
1199	return -1;
1200}
1201
1202static noinline_for_stack int write_pinned_extent_entries(
1203			    struct btrfs_trans_handle *trans,
1204			    struct btrfs_block_group *block_group,
1205			    struct btrfs_io_ctl *io_ctl,
1206			    int *entries)
1207{
1208	u64 start, extent_start, extent_end, len;
1209	struct extent_io_tree *unpin = NULL;
1210	int ret;
1211
1212	if (!block_group)
1213		return 0;
1214
1215	/*
1216	 * We want to add any pinned extents to our free space cache
1217	 * so we don't leak the space
1218	 *
1219	 * We shouldn't have switched the pinned extents yet so this is the
1220	 * right one
1221	 */
1222	unpin = &trans->transaction->pinned_extents;
1223
1224	start = block_group->start;
1225
1226	while (start < block_group->start + block_group->length) {
1227		if (!find_first_extent_bit(unpin, start,
1228					   &extent_start, &extent_end,
1229					   EXTENT_DIRTY, NULL))
 
1230			return 0;
1231
1232		/* This pinned extent is out of our range */
1233		if (extent_start >= block_group->start + block_group->length)
 
1234			return 0;
1235
1236		extent_start = max(extent_start, start);
1237		extent_end = min(block_group->start + block_group->length,
1238				 extent_end + 1);
1239		len = extent_end - extent_start;
1240
1241		*entries += 1;
1242		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1243		if (ret)
1244			return -ENOSPC;
1245
1246		start = extent_end;
1247	}
1248
1249	return 0;
1250}
1251
1252static noinline_for_stack int
1253write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1254{
1255	struct btrfs_free_space *entry, *next;
1256	int ret;
1257
1258	/* Write out the bitmaps */
1259	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1260		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1261		if (ret)
1262			return -ENOSPC;
1263		list_del_init(&entry->list);
1264	}
1265
1266	return 0;
1267}
1268
1269static int flush_dirty_cache(struct inode *inode)
1270{
1271	int ret;
1272
1273	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1274	if (ret)
1275		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1276				 EXTENT_DELALLOC, NULL);
1277
1278	return ret;
1279}
1280
1281static void noinline_for_stack
1282cleanup_bitmap_list(struct list_head *bitmap_list)
1283{
1284	struct btrfs_free_space *entry, *next;
1285
1286	list_for_each_entry_safe(entry, next, bitmap_list, list)
1287		list_del_init(&entry->list);
1288}
1289
1290static void noinline_for_stack
1291cleanup_write_cache_enospc(struct inode *inode,
1292			   struct btrfs_io_ctl *io_ctl,
1293			   struct extent_state **cached_state)
1294{
1295	io_ctl_drop_pages(io_ctl);
1296	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1297		      cached_state);
1298}
1299
1300static int __btrfs_wait_cache_io(struct btrfs_root *root,
1301				 struct btrfs_trans_handle *trans,
1302				 struct btrfs_block_group *block_group,
1303				 struct btrfs_io_ctl *io_ctl,
1304				 struct btrfs_path *path, u64 offset)
1305{
1306	int ret;
1307	struct inode *inode = io_ctl->inode;
1308
1309	if (!inode)
1310		return 0;
1311
1312	/* Flush the dirty pages in the cache file. */
1313	ret = flush_dirty_cache(inode);
1314	if (ret)
1315		goto out;
1316
1317	/* Update the cache item to tell everyone this cache file is valid. */
1318	ret = update_cache_item(trans, root, inode, path, offset,
1319				io_ctl->entries, io_ctl->bitmaps);
1320out:
 
1321	if (ret) {
1322		invalidate_inode_pages2(inode->i_mapping);
1323		BTRFS_I(inode)->generation = 0;
1324		if (block_group)
1325			btrfs_debug(root->fs_info,
1326	  "failed to write free space cache for block group %llu error %d",
1327				  block_group->start, ret);
 
 
 
1328	}
1329	btrfs_update_inode(trans, BTRFS_I(inode));
1330
1331	if (block_group) {
1332		/* the dirty list is protected by the dirty_bgs_lock */
1333		spin_lock(&trans->transaction->dirty_bgs_lock);
1334
1335		/* the disk_cache_state is protected by the block group lock */
1336		spin_lock(&block_group->lock);
1337
1338		/*
1339		 * only mark this as written if we didn't get put back on
1340		 * the dirty list while waiting for IO.   Otherwise our
1341		 * cache state won't be right, and we won't get written again
1342		 */
1343		if (!ret && list_empty(&block_group->dirty_list))
1344			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1345		else if (ret)
1346			block_group->disk_cache_state = BTRFS_DC_ERROR;
1347
1348		spin_unlock(&block_group->lock);
1349		spin_unlock(&trans->transaction->dirty_bgs_lock);
1350		io_ctl->inode = NULL;
1351		iput(inode);
1352	}
1353
1354	return ret;
1355
1356}
1357
 
 
 
 
 
 
 
 
1358int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1359			struct btrfs_block_group *block_group,
1360			struct btrfs_path *path)
1361{
1362	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1363				     block_group, &block_group->io_ctl,
1364				     path, block_group->start);
1365}
1366
1367/*
1368 * Write out cached info to an inode.
1369 *
1370 * @inode:       freespace inode we are writing out
1371 * @ctl:         free space cache we are going to write out
1372 * @block_group: block_group for this cache if it belongs to a block_group
1373 * @io_ctl:      holds context for the io
1374 * @trans:       the trans handle
1375 *
1376 * This function writes out a free space cache struct to disk for quick recovery
1377 * on mount.  This will return 0 if it was successful in writing the cache out,
1378 * or an errno if it was not.
1379 */
1380static int __btrfs_write_out_cache(struct inode *inode,
1381				   struct btrfs_free_space_ctl *ctl,
1382				   struct btrfs_block_group *block_group,
1383				   struct btrfs_io_ctl *io_ctl,
1384				   struct btrfs_trans_handle *trans)
1385{
1386	struct extent_state *cached_state = NULL;
1387	LIST_HEAD(bitmap_list);
1388	int entries = 0;
1389	int bitmaps = 0;
1390	int ret;
1391	int must_iput = 0;
1392
1393	if (!i_size_read(inode))
1394		return -EIO;
1395
1396	WARN_ON(io_ctl->pages);
1397	ret = io_ctl_init(io_ctl, inode, 1);
1398	if (ret)
1399		return ret;
1400
1401	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1402		down_write(&block_group->data_rwsem);
1403		spin_lock(&block_group->lock);
1404		if (block_group->delalloc_bytes) {
1405			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1406			spin_unlock(&block_group->lock);
1407			up_write(&block_group->data_rwsem);
1408			BTRFS_I(inode)->generation = 0;
1409			ret = 0;
1410			must_iput = 1;
1411			goto out;
1412		}
1413		spin_unlock(&block_group->lock);
1414	}
1415
1416	/* Lock all pages first so we can lock the extent safely. */
1417	ret = io_ctl_prepare_pages(io_ctl, false);
1418	if (ret)
1419		goto out_unlock;
1420
1421	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1422		    &cached_state);
1423
1424	io_ctl_set_generation(io_ctl, trans->transid);
1425
1426	mutex_lock(&ctl->cache_writeout_mutex);
1427	/* Write out the extent entries in the free space cache */
1428	spin_lock(&ctl->tree_lock);
1429	ret = write_cache_extent_entries(io_ctl, ctl,
1430					 block_group, &entries, &bitmaps,
1431					 &bitmap_list);
1432	if (ret)
1433		goto out_nospc_locked;
1434
1435	/*
1436	 * Some spaces that are freed in the current transaction are pinned,
1437	 * they will be added into free space cache after the transaction is
1438	 * committed, we shouldn't lose them.
1439	 *
1440	 * If this changes while we are working we'll get added back to
1441	 * the dirty list and redo it.  No locking needed
1442	 */
1443	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1444	if (ret)
1445		goto out_nospc_locked;
1446
1447	/*
1448	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1449	 * locked while doing it because a concurrent trim can be manipulating
1450	 * or freeing the bitmap.
1451	 */
1452	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1453	spin_unlock(&ctl->tree_lock);
1454	mutex_unlock(&ctl->cache_writeout_mutex);
1455	if (ret)
1456		goto out_nospc;
1457
1458	/* Zero out the rest of the pages just to make sure */
1459	io_ctl_zero_remaining_pages(io_ctl);
1460
1461	/* Everything is written out, now we dirty the pages in the file. */
1462	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1463				io_ctl->num_pages, 0, i_size_read(inode),
1464				&cached_state, false);
1465	if (ret)
1466		goto out_nospc;
1467
1468	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1469		up_write(&block_group->data_rwsem);
1470	/*
1471	 * Release the pages and unlock the extent, we will flush
1472	 * them out later
1473	 */
1474	io_ctl_drop_pages(io_ctl);
1475	io_ctl_free(io_ctl);
1476
1477	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1478		      &cached_state);
1479
1480	/*
1481	 * at this point the pages are under IO and we're happy,
1482	 * The caller is responsible for waiting on them and updating
1483	 * the cache and the inode
1484	 */
1485	io_ctl->entries = entries;
1486	io_ctl->bitmaps = bitmaps;
1487
1488	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1489	if (ret)
1490		goto out;
1491
1492	return 0;
1493
 
 
 
 
 
 
 
 
 
 
 
 
1494out_nospc_locked:
1495	cleanup_bitmap_list(&bitmap_list);
1496	spin_unlock(&ctl->tree_lock);
1497	mutex_unlock(&ctl->cache_writeout_mutex);
1498
1499out_nospc:
1500	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1501
1502out_unlock:
1503	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1504		up_write(&block_group->data_rwsem);
1505
1506out:
1507	io_ctl->inode = NULL;
1508	io_ctl_free(io_ctl);
1509	if (ret) {
1510		invalidate_inode_pages2(inode->i_mapping);
1511		BTRFS_I(inode)->generation = 0;
1512	}
1513	btrfs_update_inode(trans, BTRFS_I(inode));
1514	if (must_iput)
1515		iput(inode);
1516	return ret;
1517}
1518
1519int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1520			  struct btrfs_block_group *block_group,
1521			  struct btrfs_path *path)
1522{
1523	struct btrfs_fs_info *fs_info = trans->fs_info;
1524	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1525	struct inode *inode;
1526	int ret = 0;
1527
1528	spin_lock(&block_group->lock);
1529	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1530		spin_unlock(&block_group->lock);
1531		return 0;
1532	}
1533	spin_unlock(&block_group->lock);
1534
1535	inode = lookup_free_space_inode(block_group, path);
1536	if (IS_ERR(inode))
1537		return 0;
1538
1539	ret = __btrfs_write_out_cache(inode, ctl, block_group,
1540				      &block_group->io_ctl, trans);
1541	if (ret) {
1542		btrfs_debug(fs_info,
1543	  "failed to write free space cache for block group %llu error %d",
1544			  block_group->start, ret);
 
 
1545		spin_lock(&block_group->lock);
1546		block_group->disk_cache_state = BTRFS_DC_ERROR;
1547		spin_unlock(&block_group->lock);
1548
1549		block_group->io_ctl.inode = NULL;
1550		iput(inode);
1551	}
1552
1553	/*
1554	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1555	 * to wait for IO and put the inode
1556	 */
1557
1558	return ret;
1559}
1560
1561static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1562					  u64 offset)
1563{
1564	ASSERT(offset >= bitmap_start);
1565	offset -= bitmap_start;
1566	return (unsigned long)(div_u64(offset, unit));
1567}
1568
1569static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1570{
1571	return (unsigned long)(div_u64(bytes, unit));
1572}
1573
1574static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1575				   u64 offset)
1576{
1577	u64 bitmap_start;
1578	u64 bytes_per_bitmap;
1579
1580	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1581	bitmap_start = offset - ctl->start;
1582	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1583	bitmap_start *= bytes_per_bitmap;
1584	bitmap_start += ctl->start;
1585
1586	return bitmap_start;
1587}
1588
1589static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1590			      struct btrfs_free_cluster *cluster,
1591			      struct btrfs_free_space *new_entry)
1592{
1593	struct rb_root *root;
1594	struct rb_node **p;
1595	struct rb_node *parent = NULL;
1596
1597	lockdep_assert_held(&ctl->tree_lock);
1598
1599	if (cluster) {
1600		lockdep_assert_held(&cluster->lock);
1601		root = &cluster->root;
1602	} else {
1603		root = &ctl->free_space_offset;
1604	}
1605
1606	p = &root->rb_node;
1607
1608	while (*p) {
1609		struct btrfs_free_space *info;
1610
1611		parent = *p;
1612		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1613
1614		if (new_entry->offset < info->offset) {
1615			p = &(*p)->rb_left;
1616		} else if (new_entry->offset > info->offset) {
1617			p = &(*p)->rb_right;
1618		} else {
1619			/*
1620			 * we could have a bitmap entry and an extent entry
1621			 * share the same offset.  If this is the case, we want
1622			 * the extent entry to always be found first if we do a
1623			 * linear search through the tree, since we want to have
1624			 * the quickest allocation time, and allocating from an
1625			 * extent is faster than allocating from a bitmap.  So
1626			 * if we're inserting a bitmap and we find an entry at
1627			 * this offset, we want to go right, or after this entry
1628			 * logically.  If we are inserting an extent and we've
1629			 * found a bitmap, we want to go left, or before
1630			 * logically.
1631			 */
1632			if (new_entry->bitmap) {
1633				if (info->bitmap) {
1634					WARN_ON_ONCE(1);
1635					return -EEXIST;
1636				}
1637				p = &(*p)->rb_right;
1638			} else {
1639				if (!info->bitmap) {
1640					WARN_ON_ONCE(1);
1641					return -EEXIST;
1642				}
1643				p = &(*p)->rb_left;
1644			}
1645		}
1646	}
1647
1648	rb_link_node(&new_entry->offset_index, parent, p);
1649	rb_insert_color(&new_entry->offset_index, root);
1650
1651	return 0;
1652}
1653
1654/*
1655 * This is a little subtle.  We *only* have ->max_extent_size set if we actually
1656 * searched through the bitmap and figured out the largest ->max_extent_size,
1657 * otherwise it's 0.  In the case that it's 0 we don't want to tell the
1658 * allocator the wrong thing, we want to use the actual real max_extent_size
1659 * we've found already if it's larger, or we want to use ->bytes.
1660 *
1661 * This matters because find_free_space() will skip entries who's ->bytes is
1662 * less than the required bytes.  So if we didn't search down this bitmap, we
1663 * may pick some previous entry that has a smaller ->max_extent_size than we
1664 * have.  For example, assume we have two entries, one that has
1665 * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
1666 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
1667 *  call into find_free_space(), and return with max_extent_size == 4K, because
1668 *  that first bitmap entry had ->max_extent_size set, but the second one did
1669 *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
1670 *  8K contiguous range.
1671 *
1672 *  Consider the other case, we have 2 8K chunks in that second entry and still
1673 *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
1674 *  allocator comes in it'll fully search our second bitmap, and this time it'll
1675 *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
1676 *  right allocation the next loop through.
1677 */
1678static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1679{
1680	if (entry->bitmap && entry->max_extent_size)
1681		return entry->max_extent_size;
1682	return entry->bytes;
1683}
1684
1685/*
1686 * We want the largest entry to be leftmost, so this is inverted from what you'd
1687 * normally expect.
1688 */
1689static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1690{
1691	const struct btrfs_free_space *entry, *exist;
1692
1693	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1694	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1695	return get_max_extent_size(exist) < get_max_extent_size(entry);
1696}
1697
1698/*
1699 * searches the tree for the given offset.
1700 *
1701 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1702 * want a section that has at least bytes size and comes at or after the given
1703 * offset.
1704 */
1705static struct btrfs_free_space *
1706tree_search_offset(struct btrfs_free_space_ctl *ctl,
1707		   u64 offset, int bitmap_only, int fuzzy)
1708{
1709	struct rb_node *n = ctl->free_space_offset.rb_node;
1710	struct btrfs_free_space *entry = NULL, *prev = NULL;
1711
1712	lockdep_assert_held(&ctl->tree_lock);
 
 
 
 
 
1713
1714	/* find entry that is closest to the 'offset' */
1715	while (n) {
1716		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1717		prev = entry;
1718
1719		if (offset < entry->offset)
1720			n = n->rb_left;
1721		else if (offset > entry->offset)
1722			n = n->rb_right;
1723		else
1724			break;
1725
1726		entry = NULL;
1727	}
1728
1729	if (bitmap_only) {
1730		if (!entry)
1731			return NULL;
1732		if (entry->bitmap)
1733			return entry;
1734
1735		/*
1736		 * bitmap entry and extent entry may share same offset,
1737		 * in that case, bitmap entry comes after extent entry.
1738		 */
1739		n = rb_next(n);
1740		if (!n)
1741			return NULL;
1742		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1743		if (entry->offset != offset)
1744			return NULL;
1745
1746		WARN_ON(!entry->bitmap);
1747		return entry;
1748	} else if (entry) {
1749		if (entry->bitmap) {
1750			/*
1751			 * if previous extent entry covers the offset,
1752			 * we should return it instead of the bitmap entry
1753			 */
1754			n = rb_prev(&entry->offset_index);
1755			if (n) {
1756				prev = rb_entry(n, struct btrfs_free_space,
1757						offset_index);
1758				if (!prev->bitmap &&
1759				    prev->offset + prev->bytes > offset)
1760					entry = prev;
1761			}
1762		}
1763		return entry;
1764	}
1765
1766	if (!prev)
1767		return NULL;
1768
1769	/* find last entry before the 'offset' */
1770	entry = prev;
1771	if (entry->offset > offset) {
1772		n = rb_prev(&entry->offset_index);
1773		if (n) {
1774			entry = rb_entry(n, struct btrfs_free_space,
1775					offset_index);
1776			ASSERT(entry->offset <= offset);
1777		} else {
1778			if (fuzzy)
1779				return entry;
1780			else
1781				return NULL;
1782		}
1783	}
1784
1785	if (entry->bitmap) {
1786		n = rb_prev(&entry->offset_index);
1787		if (n) {
1788			prev = rb_entry(n, struct btrfs_free_space,
1789					offset_index);
1790			if (!prev->bitmap &&
1791			    prev->offset + prev->bytes > offset)
1792				return prev;
1793		}
1794		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1795			return entry;
1796	} else if (entry->offset + entry->bytes > offset)
1797		return entry;
1798
1799	if (!fuzzy)
1800		return NULL;
1801
1802	while (1) {
1803		n = rb_next(&entry->offset_index);
1804		if (!n)
1805			return NULL;
1806		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1807		if (entry->bitmap) {
1808			if (entry->offset + BITS_PER_BITMAP *
1809			    ctl->unit > offset)
1810				break;
1811		} else {
1812			if (entry->offset + entry->bytes > offset)
1813				break;
1814		}
 
 
 
 
 
1815	}
1816	return entry;
1817}
1818
1819static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1820				     struct btrfs_free_space *info,
1821				     bool update_stat)
1822{
1823	lockdep_assert_held(&ctl->tree_lock);
1824
1825	rb_erase(&info->offset_index, &ctl->free_space_offset);
1826	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1827	ctl->free_extents--;
 
1828
1829	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1830		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1831		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1832	}
1833
1834	if (update_stat)
1835		ctl->free_space -= info->bytes;
1836}
1837
1838static int link_free_space(struct btrfs_free_space_ctl *ctl,
1839			   struct btrfs_free_space *info)
1840{
1841	int ret = 0;
1842
1843	lockdep_assert_held(&ctl->tree_lock);
1844
1845	ASSERT(info->bytes || info->bitmap);
1846	ret = tree_insert_offset(ctl, NULL, info);
 
1847	if (ret)
1848		return ret;
1849
1850	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1851
1852	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1853		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1854		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1855	}
1856
1857	ctl->free_space += info->bytes;
1858	ctl->free_extents++;
1859	return ret;
1860}
1861
1862static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1863				struct btrfs_free_space *info)
1864{
1865	ASSERT(info->bitmap);
 
 
 
 
 
 
 
 
 
 
1866
1867	/*
1868	 * If our entry is empty it's because we're on a cluster and we don't
1869	 * want to re-link it into our ctl bytes index.
 
1870	 */
1871	if (RB_EMPTY_NODE(&info->bytes_index))
 
 
 
 
 
 
 
 
 
 
 
 
 
1872		return;
 
1873
1874	lockdep_assert_held(&ctl->tree_lock);
 
 
 
 
 
1875
1876	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1877	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1878}
1879
1880static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1881				     struct btrfs_free_space *info,
1882				     u64 offset, u64 bytes, bool update_stat)
1883{
1884	unsigned long start, count, end;
1885	int extent_delta = -1;
1886
1887	start = offset_to_bit(info->offset, ctl->unit, offset);
1888	count = bytes_to_bits(bytes, ctl->unit);
1889	end = start + count;
1890	ASSERT(end <= BITS_PER_BITMAP);
1891
1892	bitmap_clear(info->bitmap, start, count);
1893
1894	info->bytes -= bytes;
1895	if (info->max_extent_size > ctl->unit)
1896		info->max_extent_size = 0;
 
1897
1898	relink_bitmap_entry(ctl, info);
1899
1900	if (start && test_bit(start - 1, info->bitmap))
1901		extent_delta++;
1902
1903	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1904		extent_delta++;
1905
1906	info->bitmap_extents += extent_delta;
1907	if (!btrfs_free_space_trimmed(info)) {
1908		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1909		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1910	}
1911
1912	if (update_stat)
1913		ctl->free_space -= bytes;
1914}
1915
1916static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1917			    struct btrfs_free_space *info, u64 offset,
1918			    u64 bytes)
1919{
1920	unsigned long start, count, end;
1921	int extent_delta = 1;
1922
1923	start = offset_to_bit(info->offset, ctl->unit, offset);
1924	count = bytes_to_bits(bytes, ctl->unit);
1925	end = start + count;
1926	ASSERT(end <= BITS_PER_BITMAP);
1927
1928	bitmap_set(info->bitmap, start, count);
1929
1930	/*
1931	 * We set some bytes, we have no idea what the max extent size is
1932	 * anymore.
1933	 */
1934	info->max_extent_size = 0;
1935	info->bytes += bytes;
1936	ctl->free_space += bytes;
1937
1938	relink_bitmap_entry(ctl, info);
1939
1940	if (start && test_bit(start - 1, info->bitmap))
1941		extent_delta--;
1942
1943	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1944		extent_delta--;
1945
1946	info->bitmap_extents += extent_delta;
1947	if (!btrfs_free_space_trimmed(info)) {
1948		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1949		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1950	}
1951}
1952
1953/*
1954 * If we can not find suitable extent, we will use bytes to record
1955 * the size of the max extent.
1956 */
1957static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1958			 struct btrfs_free_space *bitmap_info, u64 *offset,
1959			 u64 *bytes, bool for_alloc)
1960{
1961	unsigned long found_bits = 0;
1962	unsigned long max_bits = 0;
1963	unsigned long bits, i;
1964	unsigned long next_zero;
1965	unsigned long extent_bits;
1966
1967	/*
1968	 * Skip searching the bitmap if we don't have a contiguous section that
1969	 * is large enough for this allocation.
1970	 */
1971	if (for_alloc &&
1972	    bitmap_info->max_extent_size &&
1973	    bitmap_info->max_extent_size < *bytes) {
1974		*bytes = bitmap_info->max_extent_size;
1975		return -1;
1976	}
1977
1978	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1979			  max_t(u64, *offset, bitmap_info->offset));
1980	bits = bytes_to_bits(*bytes, ctl->unit);
1981
1982	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1983		if (for_alloc && bits == 1) {
1984			found_bits = 1;
1985			break;
1986		}
1987		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1988					       BITS_PER_BITMAP, i);
1989		extent_bits = next_zero - i;
1990		if (extent_bits >= bits) {
1991			found_bits = extent_bits;
1992			break;
1993		} else if (extent_bits > max_bits) {
1994			max_bits = extent_bits;
1995		}
1996		i = next_zero;
1997	}
1998
1999	if (found_bits) {
2000		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2001		*bytes = (u64)(found_bits) * ctl->unit;
2002		return 0;
2003	}
2004
2005	*bytes = (u64)(max_bits) * ctl->unit;
2006	bitmap_info->max_extent_size = *bytes;
2007	relink_bitmap_entry(ctl, bitmap_info);
2008	return -1;
2009}
2010
 
 
 
 
 
 
 
2011/* Cache the size of the max extent in bytes */
2012static struct btrfs_free_space *
2013find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2014		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2015{
2016	struct btrfs_free_space *entry;
2017	struct rb_node *node;
2018	u64 tmp;
2019	u64 align_off;
2020	int ret;
2021
2022	if (!ctl->free_space_offset.rb_node)
2023		goto out;
2024again:
2025	if (use_bytes_index) {
2026		node = rb_first_cached(&ctl->free_space_bytes);
2027	} else {
2028		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2029					   0, 1);
2030		if (!entry)
2031			goto out;
2032		node = &entry->offset_index;
2033	}
2034
2035	for (; node; node = rb_next(node)) {
2036		if (use_bytes_index)
2037			entry = rb_entry(node, struct btrfs_free_space,
2038					 bytes_index);
2039		else
2040			entry = rb_entry(node, struct btrfs_free_space,
2041					 offset_index);
2042
2043		/*
2044		 * If we are using the bytes index then all subsequent entries
2045		 * in this tree are going to be < bytes, so simply set the max
2046		 * extent size and exit the loop.
2047		 *
2048		 * If we're using the offset index then we need to keep going
2049		 * through the rest of the tree.
2050		 */
2051		if (entry->bytes < *bytes) {
2052			*max_extent_size = max(get_max_extent_size(entry),
2053					       *max_extent_size);
2054			if (use_bytes_index)
2055				break;
2056			continue;
2057		}
2058
2059		/* make sure the space returned is big enough
2060		 * to match our requested alignment
2061		 */
2062		if (*bytes >= align) {
2063			tmp = entry->offset - ctl->start + align - 1;
2064			tmp = div64_u64(tmp, align);
2065			tmp = tmp * align + ctl->start;
2066			align_off = tmp - entry->offset;
2067		} else {
2068			align_off = 0;
2069			tmp = entry->offset;
2070		}
2071
2072		/*
2073		 * We don't break here if we're using the bytes index because we
2074		 * may have another entry that has the correct alignment that is
2075		 * the right size, so we don't want to miss that possibility.
2076		 * At worst this adds another loop through the logic, but if we
2077		 * broke here we could prematurely ENOSPC.
2078		 */
2079		if (entry->bytes < *bytes + align_off) {
2080			*max_extent_size = max(get_max_extent_size(entry),
2081					       *max_extent_size);
2082			continue;
2083		}
2084
2085		if (entry->bitmap) {
2086			struct rb_node *old_next = rb_next(node);
2087			u64 size = *bytes;
2088
2089			ret = search_bitmap(ctl, entry, &tmp, &size, true);
2090			if (!ret) {
2091				*offset = tmp;
2092				*bytes = size;
2093				return entry;
2094			} else {
2095				*max_extent_size =
2096					max(get_max_extent_size(entry),
2097					    *max_extent_size);
2098			}
2099
2100			/*
2101			 * The bitmap may have gotten re-arranged in the space
2102			 * index here because the max_extent_size may have been
2103			 * updated.  Start from the beginning again if this
2104			 * happened.
2105			 */
2106			if (use_bytes_index && old_next != rb_next(node))
2107				goto again;
2108			continue;
2109		}
2110
2111		*offset = tmp;
2112		*bytes = entry->bytes - align_off;
2113		return entry;
2114	}
2115out:
2116	return NULL;
2117}
2118
2119static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2120			   struct btrfs_free_space *info, u64 offset)
2121{
2122	info->offset = offset_to_bitmap(ctl, offset);
2123	info->bytes = 0;
2124	info->bitmap_extents = 0;
2125	INIT_LIST_HEAD(&info->list);
2126	link_free_space(ctl, info);
2127	ctl->total_bitmaps++;
2128	recalculate_thresholds(ctl);
 
2129}
2130
2131static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2132			struct btrfs_free_space *bitmap_info)
2133{
2134	/*
2135	 * Normally when this is called, the bitmap is completely empty. However,
2136	 * if we are blowing up the free space cache for one reason or another
2137	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2138	 * we may leave stats on the table.
2139	 */
2140	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2141		ctl->discardable_extents[BTRFS_STAT_CURR] -=
2142			bitmap_info->bitmap_extents;
2143		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2144
2145	}
2146	unlink_free_space(ctl, bitmap_info, true);
2147	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2148	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2149	ctl->total_bitmaps--;
2150	recalculate_thresholds(ctl);
2151}
2152
2153static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2154			      struct btrfs_free_space *bitmap_info,
2155			      u64 *offset, u64 *bytes)
2156{
2157	u64 end;
2158	u64 search_start, search_bytes;
2159	int ret;
2160
2161again:
2162	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2163
2164	/*
2165	 * We need to search for bits in this bitmap.  We could only cover some
2166	 * of the extent in this bitmap thanks to how we add space, so we need
2167	 * to search for as much as it as we can and clear that amount, and then
2168	 * go searching for the next bit.
2169	 */
2170	search_start = *offset;
2171	search_bytes = ctl->unit;
2172	search_bytes = min(search_bytes, end - search_start + 1);
2173	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2174			    false);
2175	if (ret < 0 || search_start != *offset)
2176		return -EINVAL;
2177
2178	/* We may have found more bits than what we need */
2179	search_bytes = min(search_bytes, *bytes);
2180
2181	/* Cannot clear past the end of the bitmap */
2182	search_bytes = min(search_bytes, end - search_start + 1);
2183
2184	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2185	*offset += search_bytes;
2186	*bytes -= search_bytes;
2187
2188	if (*bytes) {
2189		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2190		if (!bitmap_info->bytes)
2191			free_bitmap(ctl, bitmap_info);
2192
2193		/*
2194		 * no entry after this bitmap, but we still have bytes to
2195		 * remove, so something has gone wrong.
2196		 */
2197		if (!next)
2198			return -EINVAL;
2199
2200		bitmap_info = rb_entry(next, struct btrfs_free_space,
2201				       offset_index);
2202
2203		/*
2204		 * if the next entry isn't a bitmap we need to return to let the
2205		 * extent stuff do its work.
2206		 */
2207		if (!bitmap_info->bitmap)
2208			return -EAGAIN;
2209
2210		/*
2211		 * Ok the next item is a bitmap, but it may not actually hold
2212		 * the information for the rest of this free space stuff, so
2213		 * look for it, and if we don't find it return so we can try
2214		 * everything over again.
2215		 */
2216		search_start = *offset;
2217		search_bytes = ctl->unit;
2218		ret = search_bitmap(ctl, bitmap_info, &search_start,
2219				    &search_bytes, false);
2220		if (ret < 0 || search_start != *offset)
2221			return -EAGAIN;
2222
2223		goto again;
2224	} else if (!bitmap_info->bytes)
2225		free_bitmap(ctl, bitmap_info);
2226
2227	return 0;
2228}
2229
2230static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2231			       struct btrfs_free_space *info, u64 offset,
2232			       u64 bytes, enum btrfs_trim_state trim_state)
2233{
2234	u64 bytes_to_set = 0;
2235	u64 end;
2236
2237	/*
2238	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2239	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2240	 */
2241	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2242		if (btrfs_free_space_trimmed(info)) {
2243			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2244				info->bitmap_extents;
2245			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2246		}
2247		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2248	}
2249
2250	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2251
2252	bytes_to_set = min(end - offset, bytes);
2253
2254	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2255
 
 
 
 
 
 
2256	return bytes_to_set;
2257
2258}
2259
2260static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2261		      struct btrfs_free_space *info)
2262{
2263	struct btrfs_block_group *block_group = ctl->block_group;
2264	struct btrfs_fs_info *fs_info = block_group->fs_info;
2265	bool forced = false;
2266
2267#ifdef CONFIG_BTRFS_DEBUG
2268	if (btrfs_should_fragment_free_space(block_group))
2269		forced = true;
2270#endif
2271
2272	/* This is a way to reclaim large regions from the bitmaps. */
2273	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2274		return false;
2275
2276	/*
2277	 * If we are below the extents threshold then we can add this as an
2278	 * extent, and don't have to deal with the bitmap
2279	 */
2280	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2281		/*
2282		 * If this block group has some small extents we don't want to
2283		 * use up all of our free slots in the cache with them, we want
2284		 * to reserve them to larger extents, however if we have plenty
2285		 * of cache left then go ahead an dadd them, no sense in adding
2286		 * the overhead of a bitmap if we don't have to.
2287		 */
2288		if (info->bytes <= fs_info->sectorsize * 8) {
2289			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2290				return false;
2291		} else {
2292			return false;
2293		}
2294	}
2295
2296	/*
2297	 * The original block groups from mkfs can be really small, like 8
2298	 * megabytes, so don't bother with a bitmap for those entries.  However
2299	 * some block groups can be smaller than what a bitmap would cover but
2300	 * are still large enough that they could overflow the 32k memory limit,
2301	 * so allow those block groups to still be allowed to have a bitmap
2302	 * entry.
2303	 */
2304	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2305		return false;
2306
2307	return true;
2308}
2309
2310static const struct btrfs_free_space_op free_space_op = {
 
2311	.use_bitmap		= use_bitmap,
2312};
2313
2314static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2315			      struct btrfs_free_space *info)
2316{
2317	struct btrfs_free_space *bitmap_info;
2318	struct btrfs_block_group *block_group = NULL;
2319	int added = 0;
2320	u64 bytes, offset, bytes_added;
2321	enum btrfs_trim_state trim_state;
2322	int ret;
2323
2324	bytes = info->bytes;
2325	offset = info->offset;
2326	trim_state = info->trim_state;
2327
2328	if (!ctl->op->use_bitmap(ctl, info))
2329		return 0;
2330
2331	if (ctl->op == &free_space_op)
2332		block_group = ctl->block_group;
2333again:
2334	/*
2335	 * Since we link bitmaps right into the cluster we need to see if we
2336	 * have a cluster here, and if so and it has our bitmap we need to add
2337	 * the free space to that bitmap.
2338	 */
2339	if (block_group && !list_empty(&block_group->cluster_list)) {
2340		struct btrfs_free_cluster *cluster;
2341		struct rb_node *node;
2342		struct btrfs_free_space *entry;
2343
2344		cluster = list_entry(block_group->cluster_list.next,
2345				     struct btrfs_free_cluster,
2346				     block_group_list);
2347		spin_lock(&cluster->lock);
2348		node = rb_first(&cluster->root);
2349		if (!node) {
2350			spin_unlock(&cluster->lock);
2351			goto no_cluster_bitmap;
2352		}
2353
2354		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2355		if (!entry->bitmap) {
2356			spin_unlock(&cluster->lock);
2357			goto no_cluster_bitmap;
2358		}
2359
2360		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2361			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2362							  bytes, trim_state);
2363			bytes -= bytes_added;
2364			offset += bytes_added;
2365		}
2366		spin_unlock(&cluster->lock);
2367		if (!bytes) {
2368			ret = 1;
2369			goto out;
2370		}
2371	}
2372
2373no_cluster_bitmap:
2374	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2375					 1, 0);
2376	if (!bitmap_info) {
2377		ASSERT(added == 0);
2378		goto new_bitmap;
2379	}
2380
2381	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2382					  trim_state);
2383	bytes -= bytes_added;
2384	offset += bytes_added;
2385	added = 0;
2386
2387	if (!bytes) {
2388		ret = 1;
2389		goto out;
2390	} else
2391		goto again;
2392
2393new_bitmap:
2394	if (info && info->bitmap) {
2395		add_new_bitmap(ctl, info, offset);
2396		added = 1;
2397		info = NULL;
2398		goto again;
2399	} else {
2400		spin_unlock(&ctl->tree_lock);
2401
2402		/* no pre-allocated info, allocate a new one */
2403		if (!info) {
2404			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2405						 GFP_NOFS);
2406			if (!info) {
2407				spin_lock(&ctl->tree_lock);
2408				ret = -ENOMEM;
2409				goto out;
2410			}
2411		}
2412
2413		/* allocate the bitmap */
2414		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2415						 GFP_NOFS);
2416		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2417		spin_lock(&ctl->tree_lock);
2418		if (!info->bitmap) {
2419			ret = -ENOMEM;
2420			goto out;
2421		}
2422		goto again;
2423	}
2424
2425out:
2426	if (info) {
2427		if (info->bitmap)
2428			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2429					info->bitmap);
2430		kmem_cache_free(btrfs_free_space_cachep, info);
2431	}
2432
2433	return ret;
2434}
2435
2436/*
2437 * Free space merging rules:
2438 *  1) Merge trimmed areas together
2439 *  2) Let untrimmed areas coalesce with trimmed areas
2440 *  3) Always pull neighboring regions from bitmaps
2441 *
2442 * The above rules are for when we merge free space based on btrfs_trim_state.
2443 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2444 * same reason: to promote larger extent regions which makes life easier for
2445 * find_free_extent().  Rule 2 enables coalescing based on the common path
2446 * being returning free space from btrfs_finish_extent_commit().  So when free
2447 * space is trimmed, it will prevent aggregating trimmed new region and
2448 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2449 * and provide find_free_extent() with the largest extents possible hoping for
2450 * the reuse path.
2451 */
2452static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2453			  struct btrfs_free_space *info, bool update_stat)
2454{
2455	struct btrfs_free_space *left_info = NULL;
2456	struct btrfs_free_space *right_info;
2457	bool merged = false;
2458	u64 offset = info->offset;
2459	u64 bytes = info->bytes;
2460	const bool is_trimmed = btrfs_free_space_trimmed(info);
2461	struct rb_node *right_prev = NULL;
2462
2463	/*
2464	 * first we want to see if there is free space adjacent to the range we
2465	 * are adding, if there is remove that struct and add a new one to
2466	 * cover the entire range
2467	 */
2468	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2469	if (right_info)
2470		right_prev = rb_prev(&right_info->offset_index);
2471
2472	if (right_prev)
2473		left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2474	else if (!right_info)
2475		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2476
2477	/* See try_merge_free_space() comment. */
2478	if (right_info && !right_info->bitmap &&
2479	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2480		unlink_free_space(ctl, right_info, update_stat);
 
2481		info->bytes += right_info->bytes;
2482		kmem_cache_free(btrfs_free_space_cachep, right_info);
2483		merged = true;
2484	}
2485
2486	/* See try_merge_free_space() comment. */
2487	if (left_info && !left_info->bitmap &&
2488	    left_info->offset + left_info->bytes == offset &&
2489	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2490		unlink_free_space(ctl, left_info, update_stat);
 
 
2491		info->offset = left_info->offset;
2492		info->bytes += left_info->bytes;
2493		kmem_cache_free(btrfs_free_space_cachep, left_info);
2494		merged = true;
2495	}
2496
2497	return merged;
2498}
2499
2500static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2501				     struct btrfs_free_space *info,
2502				     bool update_stat)
2503{
2504	struct btrfs_free_space *bitmap;
2505	unsigned long i;
2506	unsigned long j;
2507	const u64 end = info->offset + info->bytes;
2508	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2509	u64 bytes;
2510
2511	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2512	if (!bitmap)
2513		return false;
2514
2515	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2516	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2517	if (j == i)
2518		return false;
2519	bytes = (j - i) * ctl->unit;
2520	info->bytes += bytes;
2521
2522	/* See try_merge_free_space() comment. */
2523	if (!btrfs_free_space_trimmed(bitmap))
2524		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2525
2526	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2527
2528	if (!bitmap->bytes)
2529		free_bitmap(ctl, bitmap);
2530
2531	return true;
2532}
2533
2534static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2535				       struct btrfs_free_space *info,
2536				       bool update_stat)
2537{
2538	struct btrfs_free_space *bitmap;
2539	u64 bitmap_offset;
2540	unsigned long i;
2541	unsigned long j;
2542	unsigned long prev_j;
2543	u64 bytes;
2544
2545	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2546	/* If we're on a boundary, try the previous logical bitmap. */
2547	if (bitmap_offset == info->offset) {
2548		if (info->offset == 0)
2549			return false;
2550		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2551	}
2552
2553	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2554	if (!bitmap)
2555		return false;
2556
2557	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2558	j = 0;
2559	prev_j = (unsigned long)-1;
2560	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2561		if (j > i)
2562			break;
2563		prev_j = j;
2564	}
2565	if (prev_j == i)
2566		return false;
2567
2568	if (prev_j == (unsigned long)-1)
2569		bytes = (i + 1) * ctl->unit;
2570	else
2571		bytes = (i - prev_j) * ctl->unit;
2572
2573	info->offset -= bytes;
2574	info->bytes += bytes;
2575
2576	/* See try_merge_free_space() comment. */
2577	if (!btrfs_free_space_trimmed(bitmap))
2578		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2579
2580	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2581
2582	if (!bitmap->bytes)
2583		free_bitmap(ctl, bitmap);
2584
2585	return true;
2586}
2587
2588/*
2589 * We prefer always to allocate from extent entries, both for clustered and
2590 * non-clustered allocation requests. So when attempting to add a new extent
2591 * entry, try to see if there's adjacent free space in bitmap entries, and if
2592 * there is, migrate that space from the bitmaps to the extent.
2593 * Like this we get better chances of satisfying space allocation requests
2594 * because we attempt to satisfy them based on a single cache entry, and never
2595 * on 2 or more entries - even if the entries represent a contiguous free space
2596 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2597 * ends).
2598 */
2599static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2600			      struct btrfs_free_space *info,
2601			      bool update_stat)
2602{
2603	/*
2604	 * Only work with disconnected entries, as we can change their offset,
2605	 * and must be extent entries.
2606	 */
2607	ASSERT(!info->bitmap);
2608	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2609
2610	if (ctl->total_bitmaps > 0) {
2611		bool stole_end;
2612		bool stole_front = false;
2613
2614		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2615		if (ctl->total_bitmaps > 0)
2616			stole_front = steal_from_bitmap_to_front(ctl, info,
2617								 update_stat);
2618
2619		if (stole_end || stole_front)
2620			try_merge_free_space(ctl, info, update_stat);
2621	}
2622}
2623
2624int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2625			   u64 offset, u64 bytes,
2626			   enum btrfs_trim_state trim_state)
2627{
2628	struct btrfs_fs_info *fs_info = block_group->fs_info;
2629	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2630	struct btrfs_free_space *info;
2631	int ret = 0;
2632	u64 filter_bytes = bytes;
2633
2634	ASSERT(!btrfs_is_zoned(fs_info));
2635
2636	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2637	if (!info)
2638		return -ENOMEM;
2639
2640	info->offset = offset;
2641	info->bytes = bytes;
2642	info->trim_state = trim_state;
2643	RB_CLEAR_NODE(&info->offset_index);
2644	RB_CLEAR_NODE(&info->bytes_index);
2645
2646	spin_lock(&ctl->tree_lock);
2647
2648	if (try_merge_free_space(ctl, info, true))
2649		goto link;
2650
2651	/*
2652	 * There was no extent directly to the left or right of this new
2653	 * extent then we know we're going to have to allocate a new extent, so
2654	 * before we do that see if we need to drop this into a bitmap
2655	 */
2656	ret = insert_into_bitmap(ctl, info);
2657	if (ret < 0) {
2658		goto out;
2659	} else if (ret) {
2660		ret = 0;
2661		goto out;
2662	}
2663link:
2664	/*
2665	 * Only steal free space from adjacent bitmaps if we're sure we're not
2666	 * going to add the new free space to existing bitmap entries - because
2667	 * that would mean unnecessary work that would be reverted. Therefore
2668	 * attempt to steal space from bitmaps if we're adding an extent entry.
2669	 */
2670	steal_from_bitmap(ctl, info, true);
2671
2672	filter_bytes = max(filter_bytes, info->bytes);
2673
2674	ret = link_free_space(ctl, info);
2675	if (ret)
2676		kmem_cache_free(btrfs_free_space_cachep, info);
2677out:
2678	btrfs_discard_update_discardable(block_group);
2679	spin_unlock(&ctl->tree_lock);
2680
2681	if (ret) {
2682		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2683		ASSERT(ret != -EEXIST);
2684	}
2685
2686	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2687		btrfs_discard_check_filter(block_group, filter_bytes);
2688		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2689	}
2690
2691	return ret;
2692}
2693
2694static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2695					u64 bytenr, u64 size, bool used)
2696{
2697	struct btrfs_space_info *sinfo = block_group->space_info;
2698	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2699	u64 offset = bytenr - block_group->start;
2700	u64 to_free, to_unusable;
2701	int bg_reclaim_threshold = 0;
2702	bool initial = (size == block_group->length);
2703	u64 reclaimable_unusable;
2704
2705	WARN_ON(!initial && offset + size > block_group->zone_capacity);
2706
2707	if (!initial)
2708		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2709
2710	spin_lock(&ctl->tree_lock);
2711	if (!used)
2712		to_free = size;
2713	else if (initial)
2714		to_free = block_group->zone_capacity;
2715	else if (offset >= block_group->alloc_offset)
2716		to_free = size;
2717	else if (offset + size <= block_group->alloc_offset)
2718		to_free = 0;
2719	else
2720		to_free = offset + size - block_group->alloc_offset;
2721	to_unusable = size - to_free;
2722
2723	ctl->free_space += to_free;
2724	/*
2725	 * If the block group is read-only, we should account freed space into
2726	 * bytes_readonly.
2727	 */
2728	if (!block_group->ro)
2729		block_group->zone_unusable += to_unusable;
2730	spin_unlock(&ctl->tree_lock);
2731	if (!used) {
2732		spin_lock(&block_group->lock);
2733		block_group->alloc_offset -= size;
2734		spin_unlock(&block_group->lock);
2735	}
2736
2737	reclaimable_unusable = block_group->zone_unusable -
2738			       (block_group->length - block_group->zone_capacity);
2739	/* All the region is now unusable. Mark it as unused and reclaim */
2740	if (block_group->zone_unusable == block_group->length) {
2741		btrfs_mark_bg_unused(block_group);
2742	} else if (bg_reclaim_threshold &&
2743		   reclaimable_unusable >=
2744		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2745		btrfs_mark_bg_to_reclaim(block_group);
2746	}
2747
2748	return 0;
2749}
2750
2751int btrfs_add_free_space(struct btrfs_block_group *block_group,
2752			 u64 bytenr, u64 size)
2753{
2754	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2755
2756	if (btrfs_is_zoned(block_group->fs_info))
2757		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2758						    true);
2759
2760	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2761		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2762
2763	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2764}
2765
2766int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2767				u64 bytenr, u64 size)
2768{
2769	if (btrfs_is_zoned(block_group->fs_info))
2770		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2771						    false);
2772
2773	return btrfs_add_free_space(block_group, bytenr, size);
2774}
2775
2776/*
2777 * This is a subtle distinction because when adding free space back in general,
2778 * we want it to be added as untrimmed for async. But in the case where we add
2779 * it on loading of a block group, we want to consider it trimmed.
2780 */
2781int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2782				       u64 bytenr, u64 size)
2783{
2784	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2785
2786	if (btrfs_is_zoned(block_group->fs_info))
2787		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2788						    true);
2789
2790	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2791	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2792		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2793
2794	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2795}
2796
2797int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2798			    u64 offset, u64 bytes)
2799{
2800	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2801	struct btrfs_free_space *info;
2802	int ret;
2803	bool re_search = false;
2804
2805	if (btrfs_is_zoned(block_group->fs_info)) {
2806		/*
2807		 * This can happen with conventional zones when replaying log.
2808		 * Since the allocation info of tree-log nodes are not recorded
2809		 * to the extent-tree, calculate_alloc_pointer() failed to
2810		 * advance the allocation pointer after last allocated tree log
2811		 * node blocks.
2812		 *
2813		 * This function is called from
2814		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2815		 * Advance the pointer not to overwrite the tree-log nodes.
2816		 */
2817		if (block_group->start + block_group->alloc_offset <
2818		    offset + bytes) {
2819			block_group->alloc_offset =
2820				offset + bytes - block_group->start;
2821		}
2822		return 0;
2823	}
2824
2825	spin_lock(&ctl->tree_lock);
2826
2827again:
2828	ret = 0;
2829	if (!bytes)
2830		goto out_lock;
2831
2832	info = tree_search_offset(ctl, offset, 0, 0);
2833	if (!info) {
2834		/*
2835		 * oops didn't find an extent that matched the space we wanted
2836		 * to remove, look for a bitmap instead
2837		 */
2838		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2839					  1, 0);
2840		if (!info) {
2841			/*
2842			 * If we found a partial bit of our free space in a
2843			 * bitmap but then couldn't find the other part this may
2844			 * be a problem, so WARN about it.
2845			 */
2846			WARN_ON(re_search);
2847			goto out_lock;
2848		}
2849	}
2850
2851	re_search = false;
2852	if (!info->bitmap) {
2853		unlink_free_space(ctl, info, true);
2854		if (offset == info->offset) {
2855			u64 to_free = min(bytes, info->bytes);
2856
2857			info->bytes -= to_free;
2858			info->offset += to_free;
2859			if (info->bytes) {
2860				ret = link_free_space(ctl, info);
2861				WARN_ON(ret);
2862			} else {
2863				kmem_cache_free(btrfs_free_space_cachep, info);
2864			}
2865
2866			offset += to_free;
2867			bytes -= to_free;
2868			goto again;
2869		} else {
2870			u64 old_end = info->bytes + info->offset;
2871
2872			info->bytes = offset - info->offset;
2873			ret = link_free_space(ctl, info);
2874			WARN_ON(ret);
2875			if (ret)
2876				goto out_lock;
2877
2878			/* Not enough bytes in this entry to satisfy us */
2879			if (old_end < offset + bytes) {
2880				bytes -= old_end - offset;
2881				offset = old_end;
2882				goto again;
2883			} else if (old_end == offset + bytes) {
2884				/* all done */
2885				goto out_lock;
2886			}
2887			spin_unlock(&ctl->tree_lock);
2888
2889			ret = __btrfs_add_free_space(block_group,
2890						     offset + bytes,
2891						     old_end - (offset + bytes),
2892						     info->trim_state);
2893			WARN_ON(ret);
2894			goto out;
2895		}
2896	}
2897
2898	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2899	if (ret == -EAGAIN) {
2900		re_search = true;
2901		goto again;
2902	}
2903out_lock:
2904	btrfs_discard_update_discardable(block_group);
2905	spin_unlock(&ctl->tree_lock);
2906out:
2907	return ret;
2908}
2909
2910void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2911			   u64 bytes)
2912{
2913	struct btrfs_fs_info *fs_info = block_group->fs_info;
2914	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2915	struct btrfs_free_space *info;
2916	struct rb_node *n;
2917	int count = 0;
2918
2919	/*
2920	 * Zoned btrfs does not use free space tree and cluster. Just print
2921	 * out the free space after the allocation offset.
2922	 */
2923	if (btrfs_is_zoned(fs_info)) {
2924		btrfs_info(fs_info, "free space %llu active %d",
2925			   block_group->zone_capacity - block_group->alloc_offset,
2926			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2927				    &block_group->runtime_flags));
2928		return;
2929	}
2930
2931	spin_lock(&ctl->tree_lock);
2932	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2933		info = rb_entry(n, struct btrfs_free_space, offset_index);
2934		if (info->bytes >= bytes && !block_group->ro)
2935			count++;
2936		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2937			   info->offset, info->bytes,
2938		       (info->bitmap) ? "yes" : "no");
2939	}
2940	spin_unlock(&ctl->tree_lock);
2941	btrfs_info(fs_info, "block group has cluster?: %s",
2942	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2943	btrfs_info(fs_info,
2944		   "%d free space entries at or bigger than %llu bytes",
2945		   count, bytes);
2946}
2947
2948void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2949			       struct btrfs_free_space_ctl *ctl)
2950{
2951	struct btrfs_fs_info *fs_info = block_group->fs_info;
 
2952
2953	spin_lock_init(&ctl->tree_lock);
2954	ctl->unit = fs_info->sectorsize;
2955	ctl->start = block_group->start;
2956	ctl->block_group = block_group;
2957	ctl->op = &free_space_op;
2958	ctl->free_space_bytes = RB_ROOT_CACHED;
2959	INIT_LIST_HEAD(&ctl->trimming_ranges);
2960	mutex_init(&ctl->cache_writeout_mutex);
2961
2962	/*
2963	 * we only want to have 32k of ram per block group for keeping
2964	 * track of free space, and if we pass 1/2 of that we want to
2965	 * start converting things over to using bitmaps
2966	 */
2967	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2968}
2969
2970/*
2971 * for a given cluster, put all of its extents back into the free
2972 * space cache.  If the block group passed doesn't match the block group
2973 * pointed to by the cluster, someone else raced in and freed the
2974 * cluster already.  In that case, we just return without changing anything
2975 */
2976static void __btrfs_return_cluster_to_free_space(
2977			     struct btrfs_block_group *block_group,
 
2978			     struct btrfs_free_cluster *cluster)
2979{
2980	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
2981	struct rb_node *node;
2982
2983	lockdep_assert_held(&ctl->tree_lock);
2984
2985	spin_lock(&cluster->lock);
2986	if (cluster->block_group != block_group) {
2987		spin_unlock(&cluster->lock);
2988		return;
2989	}
2990
2991	cluster->block_group = NULL;
2992	cluster->window_start = 0;
2993	list_del_init(&cluster->block_group_list);
2994
2995	node = rb_first(&cluster->root);
2996	while (node) {
2997		struct btrfs_free_space *entry;
2998
2999		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3000		node = rb_next(&entry->offset_index);
3001		rb_erase(&entry->offset_index, &cluster->root);
3002		RB_CLEAR_NODE(&entry->offset_index);
3003
3004		if (!entry->bitmap) {
3005			/* Merging treats extents as if they were new */
3006			if (!btrfs_free_space_trimmed(entry)) {
3007				ctl->discardable_extents[BTRFS_STAT_CURR]--;
3008				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3009					entry->bytes;
3010			}
3011
3012			try_merge_free_space(ctl, entry, false);
3013			steal_from_bitmap(ctl, entry, false);
3014
3015			/* As we insert directly, update these statistics */
3016			if (!btrfs_free_space_trimmed(entry)) {
3017				ctl->discardable_extents[BTRFS_STAT_CURR]++;
3018				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3019					entry->bytes;
3020			}
3021		}
3022		tree_insert_offset(ctl, NULL, entry);
3023		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3024			      entry_less);
3025	}
3026	cluster->root = RB_ROOT;
 
 
3027	spin_unlock(&cluster->lock);
3028	btrfs_put_block_group(block_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3029}
3030
3031void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
 
 
 
 
 
 
 
3032{
3033	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3034	struct btrfs_free_cluster *cluster;
3035	struct list_head *head;
3036
3037	spin_lock(&ctl->tree_lock);
3038	while ((head = block_group->cluster_list.next) !=
3039	       &block_group->cluster_list) {
3040		cluster = list_entry(head, struct btrfs_free_cluster,
3041				     block_group_list);
3042
3043		WARN_ON(cluster->block_group != block_group);
3044		__btrfs_return_cluster_to_free_space(block_group, cluster);
3045
3046		cond_resched_lock(&ctl->tree_lock);
3047	}
3048	__btrfs_remove_free_space_cache(ctl);
3049	btrfs_discard_update_discardable(block_group);
3050	spin_unlock(&ctl->tree_lock);
3051
3052}
3053
3054/*
3055 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3056 */
3057bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3058{
3059	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3060	struct btrfs_free_space *info;
3061	struct rb_node *node;
3062	bool ret = true;
3063
3064	spin_lock(&ctl->tree_lock);
3065	node = rb_first(&ctl->free_space_offset);
3066
3067	while (node) {
3068		info = rb_entry(node, struct btrfs_free_space, offset_index);
3069
3070		if (!btrfs_free_space_trimmed(info)) {
3071			ret = false;
3072			break;
3073		}
3074
3075		node = rb_next(node);
3076	}
3077
3078	spin_unlock(&ctl->tree_lock);
3079	return ret;
3080}
3081
3082u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3083			       u64 offset, u64 bytes, u64 empty_size,
3084			       u64 *max_extent_size)
3085{
3086	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3087	struct btrfs_discard_ctl *discard_ctl =
3088					&block_group->fs_info->discard_ctl;
3089	struct btrfs_free_space *entry = NULL;
3090	u64 bytes_search = bytes + empty_size;
3091	u64 ret = 0;
3092	u64 align_gap = 0;
3093	u64 align_gap_len = 0;
3094	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3095	bool use_bytes_index = (offset == block_group->start);
3096
3097	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3098
3099	spin_lock(&ctl->tree_lock);
3100	entry = find_free_space(ctl, &offset, &bytes_search,
3101				block_group->full_stripe_len, max_extent_size,
3102				use_bytes_index);
3103	if (!entry)
3104		goto out;
3105
3106	ret = offset;
3107	if (entry->bitmap) {
3108		bitmap_clear_bits(ctl, entry, offset, bytes, true);
3109
3110		if (!btrfs_free_space_trimmed(entry))
3111			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3112
3113		if (!entry->bytes)
3114			free_bitmap(ctl, entry);
3115	} else {
3116		unlink_free_space(ctl, entry, true);
3117		align_gap_len = offset - entry->offset;
3118		align_gap = entry->offset;
3119		align_gap_trim_state = entry->trim_state;
3120
3121		if (!btrfs_free_space_trimmed(entry))
3122			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3123
3124		entry->offset = offset + bytes;
3125		WARN_ON(entry->bytes < bytes + align_gap_len);
3126
3127		entry->bytes -= bytes + align_gap_len;
3128		if (!entry->bytes)
3129			kmem_cache_free(btrfs_free_space_cachep, entry);
3130		else
3131			link_free_space(ctl, entry);
3132	}
3133out:
3134	btrfs_discard_update_discardable(block_group);
3135	spin_unlock(&ctl->tree_lock);
3136
3137	if (align_gap_len)
3138		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
3139				       align_gap_trim_state);
3140	return ret;
3141}
3142
3143/*
3144 * given a cluster, put all of its extents back into the free space
3145 * cache.  If a block group is passed, this function will only free
3146 * a cluster that belongs to the passed block group.
3147 *
3148 * Otherwise, it'll get a reference on the block group pointed to by the
3149 * cluster and remove the cluster from it.
3150 */
3151void btrfs_return_cluster_to_free_space(
3152			       struct btrfs_block_group *block_group,
3153			       struct btrfs_free_cluster *cluster)
3154{
3155	struct btrfs_free_space_ctl *ctl;
 
3156
3157	/* first, get a safe pointer to the block group */
3158	spin_lock(&cluster->lock);
3159	if (!block_group) {
3160		block_group = cluster->block_group;
3161		if (!block_group) {
3162			spin_unlock(&cluster->lock);
3163			return;
3164		}
3165	} else if (cluster->block_group != block_group) {
3166		/* someone else has already freed it don't redo their work */
3167		spin_unlock(&cluster->lock);
3168		return;
3169	}
3170	btrfs_get_block_group(block_group);
3171	spin_unlock(&cluster->lock);
3172
3173	ctl = block_group->free_space_ctl;
3174
3175	/* now return any extents the cluster had on it */
3176	spin_lock(&ctl->tree_lock);
3177	__btrfs_return_cluster_to_free_space(block_group, cluster);
3178	spin_unlock(&ctl->tree_lock);
3179
3180	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3181
3182	/* finally drop our ref */
3183	btrfs_put_block_group(block_group);
 
3184}
3185
3186static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3187				   struct btrfs_free_cluster *cluster,
3188				   struct btrfs_free_space *entry,
3189				   u64 bytes, u64 min_start,
3190				   u64 *max_extent_size)
3191{
3192	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3193	int err;
3194	u64 search_start = cluster->window_start;
3195	u64 search_bytes = bytes;
3196	u64 ret = 0;
3197
3198	search_start = min_start;
3199	search_bytes = bytes;
3200
3201	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3202	if (err) {
3203		*max_extent_size = max(get_max_extent_size(entry),
3204				       *max_extent_size);
3205		return 0;
3206	}
3207
3208	ret = search_start;
3209	bitmap_clear_bits(ctl, entry, ret, bytes, false);
3210
3211	return ret;
3212}
3213
3214/*
3215 * given a cluster, try to allocate 'bytes' from it, returns 0
3216 * if it couldn't find anything suitably large, or a logical disk offset
3217 * if things worked out
3218 */
3219u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3220			     struct btrfs_free_cluster *cluster, u64 bytes,
3221			     u64 min_start, u64 *max_extent_size)
3222{
3223	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3224	struct btrfs_discard_ctl *discard_ctl =
3225					&block_group->fs_info->discard_ctl;
3226	struct btrfs_free_space *entry = NULL;
3227	struct rb_node *node;
3228	u64 ret = 0;
3229
3230	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3231
3232	spin_lock(&cluster->lock);
3233	if (bytes > cluster->max_size)
3234		goto out;
3235
3236	if (cluster->block_group != block_group)
3237		goto out;
3238
3239	node = rb_first(&cluster->root);
3240	if (!node)
3241		goto out;
3242
3243	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3244	while (1) {
3245		if (entry->bytes < bytes)
3246			*max_extent_size = max(get_max_extent_size(entry),
3247					       *max_extent_size);
3248
3249		if (entry->bytes < bytes ||
3250		    (!entry->bitmap && entry->offset < min_start)) {
3251			node = rb_next(&entry->offset_index);
3252			if (!node)
3253				break;
3254			entry = rb_entry(node, struct btrfs_free_space,
3255					 offset_index);
3256			continue;
3257		}
3258
3259		if (entry->bitmap) {
3260			ret = btrfs_alloc_from_bitmap(block_group,
3261						      cluster, entry, bytes,
3262						      cluster->window_start,
3263						      max_extent_size);
3264			if (ret == 0) {
3265				node = rb_next(&entry->offset_index);
3266				if (!node)
3267					break;
3268				entry = rb_entry(node, struct btrfs_free_space,
3269						 offset_index);
3270				continue;
3271			}
3272			cluster->window_start += bytes;
3273		} else {
3274			ret = entry->offset;
3275
3276			entry->offset += bytes;
3277			entry->bytes -= bytes;
3278		}
3279
 
 
3280		break;
3281	}
3282out:
3283	spin_unlock(&cluster->lock);
3284
3285	if (!ret)
3286		return 0;
3287
3288	spin_lock(&ctl->tree_lock);
3289
3290	if (!btrfs_free_space_trimmed(entry))
3291		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3292
3293	ctl->free_space -= bytes;
3294	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3295		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3296
3297	spin_lock(&cluster->lock);
3298	if (entry->bytes == 0) {
3299		rb_erase(&entry->offset_index, &cluster->root);
3300		ctl->free_extents--;
3301		if (entry->bitmap) {
3302			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3303					entry->bitmap);
3304			ctl->total_bitmaps--;
3305			recalculate_thresholds(ctl);
3306		} else if (!btrfs_free_space_trimmed(entry)) {
3307			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3308		}
3309		kmem_cache_free(btrfs_free_space_cachep, entry);
3310	}
3311
3312	spin_unlock(&cluster->lock);
3313	spin_unlock(&ctl->tree_lock);
3314
3315	return ret;
3316}
3317
3318static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3319				struct btrfs_free_space *entry,
3320				struct btrfs_free_cluster *cluster,
3321				u64 offset, u64 bytes,
3322				u64 cont1_bytes, u64 min_bytes)
3323{
3324	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3325	unsigned long next_zero;
3326	unsigned long i;
3327	unsigned long want_bits;
3328	unsigned long min_bits;
3329	unsigned long found_bits;
3330	unsigned long max_bits = 0;
3331	unsigned long start = 0;
3332	unsigned long total_found = 0;
3333	int ret;
3334
3335	lockdep_assert_held(&ctl->tree_lock);
3336
3337	i = offset_to_bit(entry->offset, ctl->unit,
3338			  max_t(u64, offset, entry->offset));
3339	want_bits = bytes_to_bits(bytes, ctl->unit);
3340	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3341
3342	/*
3343	 * Don't bother looking for a cluster in this bitmap if it's heavily
3344	 * fragmented.
3345	 */
3346	if (entry->max_extent_size &&
3347	    entry->max_extent_size < cont1_bytes)
3348		return -ENOSPC;
3349again:
3350	found_bits = 0;
3351	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3352		next_zero = find_next_zero_bit(entry->bitmap,
3353					       BITS_PER_BITMAP, i);
3354		if (next_zero - i >= min_bits) {
3355			found_bits = next_zero - i;
3356			if (found_bits > max_bits)
3357				max_bits = found_bits;
3358			break;
3359		}
3360		if (next_zero - i > max_bits)
3361			max_bits = next_zero - i;
3362		i = next_zero;
3363	}
3364
3365	if (!found_bits) {
3366		entry->max_extent_size = (u64)max_bits * ctl->unit;
3367		return -ENOSPC;
3368	}
3369
3370	if (!total_found) {
3371		start = i;
3372		cluster->max_size = 0;
3373	}
3374
3375	total_found += found_bits;
3376
3377	if (cluster->max_size < found_bits * ctl->unit)
3378		cluster->max_size = found_bits * ctl->unit;
3379
3380	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3381		i = next_zero + 1;
3382		goto again;
3383	}
3384
3385	cluster->window_start = start * ctl->unit + entry->offset;
3386	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3387	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3388
3389	/*
3390	 * We need to know if we're currently on the normal space index when we
3391	 * manipulate the bitmap so that we know we need to remove and re-insert
3392	 * it into the space_index tree.  Clear the bytes_index node here so the
3393	 * bitmap manipulation helpers know not to mess with the space_index
3394	 * until this bitmap entry is added back into the normal cache.
3395	 */
3396	RB_CLEAR_NODE(&entry->bytes_index);
3397
3398	ret = tree_insert_offset(ctl, cluster, entry);
3399	ASSERT(!ret); /* -EEXIST; Logic error */
3400
3401	trace_btrfs_setup_cluster(block_group, cluster,
3402				  total_found * ctl->unit, 1);
3403	return 0;
3404}
3405
3406/*
3407 * This searches the block group for just extents to fill the cluster with.
3408 * Try to find a cluster with at least bytes total bytes, at least one
3409 * extent of cont1_bytes, and other clusters of at least min_bytes.
3410 */
3411static noinline int
3412setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3413			struct btrfs_free_cluster *cluster,
3414			struct list_head *bitmaps, u64 offset, u64 bytes,
3415			u64 cont1_bytes, u64 min_bytes)
3416{
3417	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3418	struct btrfs_free_space *first = NULL;
3419	struct btrfs_free_space *entry = NULL;
3420	struct btrfs_free_space *last;
3421	struct rb_node *node;
3422	u64 window_free;
3423	u64 max_extent;
3424	u64 total_size = 0;
3425
3426	lockdep_assert_held(&ctl->tree_lock);
3427
3428	entry = tree_search_offset(ctl, offset, 0, 1);
3429	if (!entry)
3430		return -ENOSPC;
3431
3432	/*
3433	 * We don't want bitmaps, so just move along until we find a normal
3434	 * extent entry.
3435	 */
3436	while (entry->bitmap || entry->bytes < min_bytes) {
3437		if (entry->bitmap && list_empty(&entry->list))
3438			list_add_tail(&entry->list, bitmaps);
3439		node = rb_next(&entry->offset_index);
3440		if (!node)
3441			return -ENOSPC;
3442		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3443	}
3444
3445	window_free = entry->bytes;
3446	max_extent = entry->bytes;
3447	first = entry;
3448	last = entry;
3449
3450	for (node = rb_next(&entry->offset_index); node;
3451	     node = rb_next(&entry->offset_index)) {
3452		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3453
3454		if (entry->bitmap) {
3455			if (list_empty(&entry->list))
3456				list_add_tail(&entry->list, bitmaps);
3457			continue;
3458		}
3459
3460		if (entry->bytes < min_bytes)
3461			continue;
3462
3463		last = entry;
3464		window_free += entry->bytes;
3465		if (entry->bytes > max_extent)
3466			max_extent = entry->bytes;
3467	}
3468
3469	if (window_free < bytes || max_extent < cont1_bytes)
3470		return -ENOSPC;
3471
3472	cluster->window_start = first->offset;
3473
3474	node = &first->offset_index;
3475
3476	/*
3477	 * now we've found our entries, pull them out of the free space
3478	 * cache and put them into the cluster rbtree
3479	 */
3480	do {
3481		int ret;
3482
3483		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3484		node = rb_next(&entry->offset_index);
3485		if (entry->bitmap || entry->bytes < min_bytes)
3486			continue;
3487
3488		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3489		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3490		ret = tree_insert_offset(ctl, cluster, entry);
3491		total_size += entry->bytes;
3492		ASSERT(!ret); /* -EEXIST; Logic error */
3493	} while (node && entry != last);
3494
3495	cluster->max_size = max_extent;
3496	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3497	return 0;
3498}
3499
3500/*
3501 * This specifically looks for bitmaps that may work in the cluster, we assume
3502 * that we have already failed to find extents that will work.
3503 */
3504static noinline int
3505setup_cluster_bitmap(struct btrfs_block_group *block_group,
3506		     struct btrfs_free_cluster *cluster,
3507		     struct list_head *bitmaps, u64 offset, u64 bytes,
3508		     u64 cont1_bytes, u64 min_bytes)
3509{
3510	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3511	struct btrfs_free_space *entry = NULL;
3512	int ret = -ENOSPC;
3513	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3514
3515	if (ctl->total_bitmaps == 0)
3516		return -ENOSPC;
3517
3518	/*
3519	 * The bitmap that covers offset won't be in the list unless offset
3520	 * is just its start offset.
3521	 */
3522	if (!list_empty(bitmaps))
3523		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3524
3525	if (!entry || entry->offset != bitmap_offset) {
3526		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3527		if (entry && list_empty(&entry->list))
3528			list_add(&entry->list, bitmaps);
3529	}
3530
3531	list_for_each_entry(entry, bitmaps, list) {
3532		if (entry->bytes < bytes)
3533			continue;
3534		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3535					   bytes, cont1_bytes, min_bytes);
3536		if (!ret)
3537			return 0;
3538	}
3539
3540	/*
3541	 * The bitmaps list has all the bitmaps that record free space
3542	 * starting after offset, so no more search is required.
3543	 */
3544	return -ENOSPC;
3545}
3546
3547/*
3548 * here we try to find a cluster of blocks in a block group.  The goal
3549 * is to find at least bytes+empty_size.
3550 * We might not find them all in one contiguous area.
3551 *
3552 * returns zero and sets up cluster if things worked out, otherwise
3553 * it returns -enospc
3554 */
3555int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3556			     struct btrfs_free_cluster *cluster,
3557			     u64 offset, u64 bytes, u64 empty_size)
3558{
3559	struct btrfs_fs_info *fs_info = block_group->fs_info;
3560	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3561	struct btrfs_free_space *entry, *tmp;
3562	LIST_HEAD(bitmaps);
3563	u64 min_bytes;
3564	u64 cont1_bytes;
3565	int ret;
3566
3567	/*
3568	 * Choose the minimum extent size we'll require for this
3569	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3570	 * For metadata, allow allocates with smaller extents.  For
3571	 * data, keep it dense.
3572	 */
3573	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3574		cont1_bytes = bytes + empty_size;
3575		min_bytes = cont1_bytes;
3576	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3577		cont1_bytes = bytes;
3578		min_bytes = fs_info->sectorsize;
3579	} else {
3580		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3581		min_bytes = fs_info->sectorsize;
3582	}
3583
3584	spin_lock(&ctl->tree_lock);
3585
3586	/*
3587	 * If we know we don't have enough space to make a cluster don't even
3588	 * bother doing all the work to try and find one.
3589	 */
3590	if (ctl->free_space < bytes) {
3591		spin_unlock(&ctl->tree_lock);
3592		return -ENOSPC;
3593	}
3594
3595	spin_lock(&cluster->lock);
3596
3597	/* someone already found a cluster, hooray */
3598	if (cluster->block_group) {
3599		ret = 0;
3600		goto out;
3601	}
3602
3603	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3604				 min_bytes);
3605
3606	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3607				      bytes + empty_size,
3608				      cont1_bytes, min_bytes);
3609	if (ret)
3610		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3611					   offset, bytes + empty_size,
3612					   cont1_bytes, min_bytes);
3613
3614	/* Clear our temporary list */
3615	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3616		list_del_init(&entry->list);
3617
3618	if (!ret) {
3619		btrfs_get_block_group(block_group);
3620		list_add_tail(&cluster->block_group_list,
3621			      &block_group->cluster_list);
3622		cluster->block_group = block_group;
3623	} else {
3624		trace_btrfs_failed_cluster_setup(block_group);
3625	}
3626out:
3627	spin_unlock(&cluster->lock);
3628	spin_unlock(&ctl->tree_lock);
3629
3630	return ret;
3631}
3632
3633/*
3634 * simple code to zero out a cluster
3635 */
3636void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3637{
3638	spin_lock_init(&cluster->lock);
3639	spin_lock_init(&cluster->refill_lock);
3640	cluster->root = RB_ROOT;
3641	cluster->max_size = 0;
3642	cluster->fragmented = false;
3643	INIT_LIST_HEAD(&cluster->block_group_list);
3644	cluster->block_group = NULL;
3645}
3646
3647static int do_trimming(struct btrfs_block_group *block_group,
3648		       u64 *total_trimmed, u64 start, u64 bytes,
3649		       u64 reserved_start, u64 reserved_bytes,
3650		       enum btrfs_trim_state reserved_trim_state,
3651		       struct btrfs_trim_range *trim_entry)
3652{
3653	struct btrfs_space_info *space_info = block_group->space_info;
3654	struct btrfs_fs_info *fs_info = block_group->fs_info;
3655	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3656	int ret;
3657	int update = 0;
3658	const u64 end = start + bytes;
3659	const u64 reserved_end = reserved_start + reserved_bytes;
3660	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3661	u64 trimmed = 0;
3662
3663	spin_lock(&space_info->lock);
3664	spin_lock(&block_group->lock);
3665	if (!block_group->ro) {
3666		block_group->reserved += reserved_bytes;
3667		space_info->bytes_reserved += reserved_bytes;
3668		update = 1;
3669	}
3670	spin_unlock(&block_group->lock);
3671	spin_unlock(&space_info->lock);
3672
3673	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3674	if (!ret) {
3675		*total_trimmed += trimmed;
3676		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3677	}
3678
3679	mutex_lock(&ctl->cache_writeout_mutex);
3680	if (reserved_start < start)
3681		__btrfs_add_free_space(block_group, reserved_start,
3682				       start - reserved_start,
3683				       reserved_trim_state);
3684	if (end < reserved_end)
3685		__btrfs_add_free_space(block_group, end, reserved_end - end,
3686				       reserved_trim_state);
3687	__btrfs_add_free_space(block_group, start, bytes, trim_state);
3688	list_del(&trim_entry->list);
3689	mutex_unlock(&ctl->cache_writeout_mutex);
3690
3691	if (update) {
3692		spin_lock(&space_info->lock);
3693		spin_lock(&block_group->lock);
3694		if (block_group->ro)
3695			space_info->bytes_readonly += reserved_bytes;
3696		block_group->reserved -= reserved_bytes;
3697		space_info->bytes_reserved -= reserved_bytes;
3698		spin_unlock(&block_group->lock);
3699		spin_unlock(&space_info->lock);
3700	}
3701
3702	return ret;
3703}
3704
3705/*
3706 * If @async is set, then we will trim 1 region and return.
3707 */
3708static int trim_no_bitmap(struct btrfs_block_group *block_group,
3709			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3710			  bool async)
3711{
3712	struct btrfs_discard_ctl *discard_ctl =
3713					&block_group->fs_info->discard_ctl;
3714	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3715	struct btrfs_free_space *entry;
3716	struct rb_node *node;
3717	int ret = 0;
3718	u64 extent_start;
3719	u64 extent_bytes;
3720	enum btrfs_trim_state extent_trim_state;
3721	u64 bytes;
3722	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3723
3724	while (start < end) {
3725		struct btrfs_trim_range trim_entry;
3726
3727		mutex_lock(&ctl->cache_writeout_mutex);
3728		spin_lock(&ctl->tree_lock);
3729
3730		if (ctl->free_space < minlen)
3731			goto out_unlock;
 
 
 
3732
3733		entry = tree_search_offset(ctl, start, 0, 1);
3734		if (!entry)
3735			goto out_unlock;
 
 
 
3736
3737		/* Skip bitmaps and if async, already trimmed entries */
3738		while (entry->bitmap ||
3739		       (async && btrfs_free_space_trimmed(entry))) {
3740			node = rb_next(&entry->offset_index);
3741			if (!node)
3742				goto out_unlock;
 
 
 
3743			entry = rb_entry(node, struct btrfs_free_space,
3744					 offset_index);
3745		}
3746
3747		if (entry->offset >= end)
3748			goto out_unlock;
 
 
 
3749
3750		extent_start = entry->offset;
3751		extent_bytes = entry->bytes;
3752		extent_trim_state = entry->trim_state;
3753		if (async) {
3754			start = entry->offset;
3755			bytes = entry->bytes;
3756			if (bytes < minlen) {
3757				spin_unlock(&ctl->tree_lock);
3758				mutex_unlock(&ctl->cache_writeout_mutex);
3759				goto next;
3760			}
3761			unlink_free_space(ctl, entry, true);
3762			/*
3763			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3764			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3765			 * X when we come back around.  So trim it now.
3766			 */
3767			if (max_discard_size &&
3768			    bytes >= (max_discard_size +
3769				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3770				bytes = max_discard_size;
3771				extent_bytes = max_discard_size;
3772				entry->offset += max_discard_size;
3773				entry->bytes -= max_discard_size;
3774				link_free_space(ctl, entry);
3775			} else {
3776				kmem_cache_free(btrfs_free_space_cachep, entry);
3777			}
3778		} else {
3779			start = max(start, extent_start);
3780			bytes = min(extent_start + extent_bytes, end) - start;
3781			if (bytes < minlen) {
3782				spin_unlock(&ctl->tree_lock);
3783				mutex_unlock(&ctl->cache_writeout_mutex);
3784				goto next;
3785			}
3786
3787			unlink_free_space(ctl, entry, true);
3788			kmem_cache_free(btrfs_free_space_cachep, entry);
3789		}
3790
3791		spin_unlock(&ctl->tree_lock);
3792		trim_entry.start = extent_start;
3793		trim_entry.bytes = extent_bytes;
3794		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3795		mutex_unlock(&ctl->cache_writeout_mutex);
3796
3797		ret = do_trimming(block_group, total_trimmed, start, bytes,
3798				  extent_start, extent_bytes, extent_trim_state,
3799				  &trim_entry);
3800		if (ret) {
3801			block_group->discard_cursor = start + bytes;
3802			break;
3803		}
3804next:
3805		start += bytes;
3806		block_group->discard_cursor = start;
3807		if (async && *total_trimmed)
3808			break;
3809
3810		if (fatal_signal_pending(current)) {
3811			ret = -ERESTARTSYS;
3812			break;
3813		}
3814
3815		cond_resched();
3816	}
3817
3818	return ret;
3819
3820out_unlock:
3821	block_group->discard_cursor = btrfs_block_group_end(block_group);
3822	spin_unlock(&ctl->tree_lock);
3823	mutex_unlock(&ctl->cache_writeout_mutex);
3824
3825	return ret;
3826}
3827
3828/*
3829 * If we break out of trimming a bitmap prematurely, we should reset the
3830 * trimming bit.  In a rather contrieved case, it's possible to race here so
3831 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3832 *
3833 * start = start of bitmap
3834 * end = near end of bitmap
3835 *
3836 * Thread 1:			Thread 2:
3837 * trim_bitmaps(start)
3838 *				trim_bitmaps(end)
3839 *				end_trimming_bitmap()
3840 * reset_trimming_bitmap()
3841 */
3842static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3843{
3844	struct btrfs_free_space *entry;
3845
3846	spin_lock(&ctl->tree_lock);
3847	entry = tree_search_offset(ctl, offset, 1, 0);
3848	if (entry) {
3849		if (btrfs_free_space_trimmed(entry)) {
3850			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3851				entry->bitmap_extents;
3852			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3853		}
3854		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3855	}
3856
3857	spin_unlock(&ctl->tree_lock);
3858}
3859
3860static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3861				struct btrfs_free_space *entry)
3862{
3863	if (btrfs_free_space_trimming_bitmap(entry)) {
3864		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3865		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3866			entry->bitmap_extents;
3867		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3868	}
3869}
3870
3871/*
3872 * If @async is set, then we will trim 1 region and return.
3873 */
3874static int trim_bitmaps(struct btrfs_block_group *block_group,
3875			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3876			u64 maxlen, bool async)
3877{
3878	struct btrfs_discard_ctl *discard_ctl =
3879					&block_group->fs_info->discard_ctl;
3880	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3881	struct btrfs_free_space *entry;
3882	int ret = 0;
3883	int ret2;
3884	u64 bytes;
3885	u64 offset = offset_to_bitmap(ctl, start);
3886	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3887
3888	while (offset < end) {
3889		bool next_bitmap = false;
3890		struct btrfs_trim_range trim_entry;
3891
3892		mutex_lock(&ctl->cache_writeout_mutex);
3893		spin_lock(&ctl->tree_lock);
3894
3895		if (ctl->free_space < minlen) {
3896			block_group->discard_cursor =
3897				btrfs_block_group_end(block_group);
3898			spin_unlock(&ctl->tree_lock);
3899			mutex_unlock(&ctl->cache_writeout_mutex);
3900			break;
3901		}
3902
3903		entry = tree_search_offset(ctl, offset, 1, 0);
3904		/*
3905		 * Bitmaps are marked trimmed lossily now to prevent constant
3906		 * discarding of the same bitmap (the reason why we are bound
3907		 * by the filters).  So, retrim the block group bitmaps when we
3908		 * are preparing to punt to the unused_bgs list.  This uses
3909		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3910		 * which is the only discard index which sets minlen to 0.
3911		 */
3912		if (!entry || (async && minlen && start == offset &&
3913			       btrfs_free_space_trimmed(entry))) {
3914			spin_unlock(&ctl->tree_lock);
3915			mutex_unlock(&ctl->cache_writeout_mutex);
3916			next_bitmap = true;
3917			goto next;
3918		}
3919
3920		/*
3921		 * Async discard bitmap trimming begins at by setting the start
3922		 * to be key.objectid and the offset_to_bitmap() aligns to the
3923		 * start of the bitmap.  This lets us know we are fully
3924		 * scanning the bitmap rather than only some portion of it.
3925		 */
3926		if (start == offset)
3927			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3928
3929		bytes = minlen;
3930		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3931		if (ret2 || start >= end) {
3932			/*
3933			 * We lossily consider a bitmap trimmed if we only skip
3934			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3935			 */
3936			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3937				end_trimming_bitmap(ctl, entry);
3938			else
3939				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3940			spin_unlock(&ctl->tree_lock);
3941			mutex_unlock(&ctl->cache_writeout_mutex);
3942			next_bitmap = true;
3943			goto next;
3944		}
3945
3946		/*
3947		 * We already trimmed a region, but are using the locking above
3948		 * to reset the trim_state.
3949		 */
3950		if (async && *total_trimmed) {
3951			spin_unlock(&ctl->tree_lock);
3952			mutex_unlock(&ctl->cache_writeout_mutex);
3953			goto out;
3954		}
3955
3956		bytes = min(bytes, end - start);
3957		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3958			spin_unlock(&ctl->tree_lock);
3959			mutex_unlock(&ctl->cache_writeout_mutex);
3960			goto next;
3961		}
3962
3963		/*
3964		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3965		 * If X < @minlen, we won't trim X when we come back around.
3966		 * So trim it now.  We differ here from trimming extents as we
3967		 * don't keep individual state per bit.
3968		 */
3969		if (async &&
3970		    max_discard_size &&
3971		    bytes > (max_discard_size + minlen))
3972			bytes = max_discard_size;
3973
3974		bitmap_clear_bits(ctl, entry, start, bytes, true);
3975		if (entry->bytes == 0)
3976			free_bitmap(ctl, entry);
3977
3978		spin_unlock(&ctl->tree_lock);
3979		trim_entry.start = start;
3980		trim_entry.bytes = bytes;
3981		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3982		mutex_unlock(&ctl->cache_writeout_mutex);
3983
3984		ret = do_trimming(block_group, total_trimmed, start, bytes,
3985				  start, bytes, 0, &trim_entry);
3986		if (ret) {
3987			reset_trimming_bitmap(ctl, offset);
3988			block_group->discard_cursor =
3989				btrfs_block_group_end(block_group);
3990			break;
3991		}
3992next:
3993		if (next_bitmap) {
3994			offset += BITS_PER_BITMAP * ctl->unit;
3995			start = offset;
3996		} else {
3997			start += bytes;
 
 
3998		}
3999		block_group->discard_cursor = start;
4000
4001		if (fatal_signal_pending(current)) {
4002			if (start != offset)
4003				reset_trimming_bitmap(ctl, offset);
4004			ret = -ERESTARTSYS;
4005			break;
4006		}
4007
4008		cond_resched();
4009	}
4010
4011	if (offset >= end)
4012		block_group->discard_cursor = end;
4013
4014out:
4015	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4016}
4017
4018int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4019			   u64 *trimmed, u64 start, u64 end, u64 minlen)
4020{
4021	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4022	int ret;
4023	u64 rem = 0;
4024
4025	ASSERT(!btrfs_is_zoned(block_group->fs_info));
4026
4027	*trimmed = 0;
4028
4029	spin_lock(&block_group->lock);
4030	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4031		spin_unlock(&block_group->lock);
4032		return 0;
4033	}
4034	btrfs_freeze_block_group(block_group);
4035	spin_unlock(&block_group->lock);
4036
4037	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4038	if (ret)
4039		goto out;
4040
4041	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4042	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4043	/* If we ended in the middle of a bitmap, reset the trimming flag */
4044	if (rem)
4045		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4046out:
4047	btrfs_unfreeze_block_group(block_group);
4048	return ret;
4049}
4050
4051int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4052				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4053				   bool async)
 
 
 
 
 
4054{
4055	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4056
4057	*trimmed = 0;
 
 
4058
4059	spin_lock(&block_group->lock);
4060	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4061		spin_unlock(&block_group->lock);
4062		return 0;
4063	}
4064	btrfs_freeze_block_group(block_group);
4065	spin_unlock(&block_group->lock);
4066
4067	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4068	btrfs_unfreeze_block_group(block_group);
4069
4070	return ret;
4071}
4072
4073int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4074				   u64 *trimmed, u64 start, u64 end, u64 minlen,
4075				   u64 maxlen, bool async)
4076{
4077	int ret;
4078
4079	*trimmed = 0;
 
 
 
 
 
4080
4081	spin_lock(&block_group->lock);
4082	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4083		spin_unlock(&block_group->lock);
4084		return 0;
4085	}
4086	btrfs_freeze_block_group(block_group);
4087	spin_unlock(&block_group->lock);
4088
4089	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4090			   async);
 
 
4091
4092	btrfs_unfreeze_block_group(block_group);
4093
4094	return ret;
4095}
4096
4097bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
 
 
4098{
4099	return btrfs_super_cache_generation(fs_info->super_copy);
 
4100}
4101
4102static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4103				       struct btrfs_trans_handle *trans)
4104{
4105	struct btrfs_block_group *block_group;
4106	struct rb_node *node;
 
4107	int ret = 0;
 
4108
4109	btrfs_info(fs_info, "cleaning free space cache v1");
 
 
 
 
 
 
 
 
4110
4111	node = rb_first_cached(&fs_info->block_group_cache_tree);
4112	while (node) {
4113		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4114		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4115		if (ret)
4116			goto out;
4117		node = rb_next(node);
4118	}
4119out:
4120	return ret;
4121}
4122
4123int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4124{
4125	struct btrfs_trans_handle *trans;
4126	int ret;
4127
4128	/*
4129	 * update_super_roots will appropriately set or unset
4130	 * super_copy->cache_generation based on SPACE_CACHE and
4131	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4132	 * transaction commit whether we are enabling space cache v1 and don't
4133	 * have any other work to do, or are disabling it and removing free
4134	 * space inodes.
4135	 */
4136	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4137	if (IS_ERR(trans))
4138		return PTR_ERR(trans);
4139
4140	if (!active) {
4141		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4142		ret = cleanup_free_space_cache_v1(fs_info, trans);
4143		if (ret) {
4144			btrfs_abort_transaction(trans, ret);
4145			btrfs_end_transaction(trans);
4146			goto out;
4147		}
4148	}
4149
4150	ret = btrfs_commit_transaction(trans);
 
 
 
 
 
4151out:
4152	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4153
4154	return ret;
4155}
4156
4157int __init btrfs_free_space_init(void)
 
 
 
4158{
4159	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
4160			sizeof(struct btrfs_free_space), 0,
4161			SLAB_MEM_SPREAD, NULL);
4162	if (!btrfs_free_space_cachep)
4163		return -ENOMEM;
 
 
 
4164
4165	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4166							PAGE_SIZE, PAGE_SIZE,
4167							SLAB_MEM_SPREAD, NULL);
4168	if (!btrfs_free_space_bitmap_cachep) {
4169		kmem_cache_destroy(btrfs_free_space_cachep);
4170		return -ENOMEM;
 
 
 
 
 
4171	}
4172
4173	return 0;
4174}
 
 
 
 
 
 
 
 
4175
4176void __cold btrfs_free_space_exit(void)
4177{
4178	kmem_cache_destroy(btrfs_free_space_cachep);
4179	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4180}
4181
4182#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4183/*
4184 * Use this if you need to make a bitmap or extent entry specifically, it
4185 * doesn't do any of the merging that add_free_space does, this acts a lot like
4186 * how the free space cache loading stuff works, so you can get really weird
4187 * configurations.
4188 */
4189int test_add_free_space_entry(struct btrfs_block_group *cache,
4190			      u64 offset, u64 bytes, bool bitmap)
4191{
4192	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4193	struct btrfs_free_space *info = NULL, *bitmap_info;
4194	void *map = NULL;
4195	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4196	u64 bytes_added;
4197	int ret;
4198
4199again:
4200	if (!info) {
4201		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4202		if (!info)
4203			return -ENOMEM;
4204	}
4205
4206	if (!bitmap) {
4207		spin_lock(&ctl->tree_lock);
4208		info->offset = offset;
4209		info->bytes = bytes;
4210		info->max_extent_size = 0;
4211		ret = link_free_space(ctl, info);
4212		spin_unlock(&ctl->tree_lock);
4213		if (ret)
4214			kmem_cache_free(btrfs_free_space_cachep, info);
4215		return ret;
4216	}
4217
4218	if (!map) {
4219		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4220		if (!map) {
4221			kmem_cache_free(btrfs_free_space_cachep, info);
4222			return -ENOMEM;
4223		}
4224	}
4225
4226	spin_lock(&ctl->tree_lock);
4227	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4228					 1, 0);
4229	if (!bitmap_info) {
4230		info->bitmap = map;
4231		map = NULL;
4232		add_new_bitmap(ctl, info, offset);
4233		bitmap_info = info;
4234		info = NULL;
4235	}
4236
4237	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4238					  trim_state);
4239
4240	bytes -= bytes_added;
4241	offset += bytes_added;
4242	spin_unlock(&ctl->tree_lock);
4243
4244	if (bytes)
4245		goto again;
4246
4247	if (info)
4248		kmem_cache_free(btrfs_free_space_cachep, info);
4249	if (map)
4250		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4251	return 0;
4252}
4253
4254/*
4255 * Checks to see if the given range is in the free space cache.  This is really
4256 * just used to check the absence of space, so if there is free space in the
4257 * range at all we will return 1.
4258 */
4259int test_check_exists(struct btrfs_block_group *cache,
4260		      u64 offset, u64 bytes)
4261{
4262	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4263	struct btrfs_free_space *info;
4264	int ret = 0;
4265
4266	spin_lock(&ctl->tree_lock);
4267	info = tree_search_offset(ctl, offset, 0, 0);
4268	if (!info) {
4269		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4270					  1, 0);
4271		if (!info)
4272			goto out;
4273	}
4274
4275have_info:
4276	if (info->bitmap) {
4277		u64 bit_off, bit_bytes;
4278		struct rb_node *n;
4279		struct btrfs_free_space *tmp;
4280
4281		bit_off = offset;
4282		bit_bytes = ctl->unit;
4283		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4284		if (!ret) {
4285			if (bit_off == offset) {
4286				ret = 1;
4287				goto out;
4288			} else if (bit_off > offset &&
4289				   offset + bytes > bit_off) {
4290				ret = 1;
4291				goto out;
4292			}
4293		}
4294
4295		n = rb_prev(&info->offset_index);
4296		while (n) {
4297			tmp = rb_entry(n, struct btrfs_free_space,
4298				       offset_index);
4299			if (tmp->offset + tmp->bytes < offset)
4300				break;
4301			if (offset + bytes < tmp->offset) {
4302				n = rb_prev(&tmp->offset_index);
4303				continue;
4304			}
4305			info = tmp;
4306			goto have_info;
4307		}
4308
4309		n = rb_next(&info->offset_index);
4310		while (n) {
4311			tmp = rb_entry(n, struct btrfs_free_space,
4312				       offset_index);
4313			if (offset + bytes < tmp->offset)
4314				break;
4315			if (tmp->offset + tmp->bytes < offset) {
4316				n = rb_next(&tmp->offset_index);
4317				continue;
4318			}
4319			info = tmp;
4320			goto have_info;
4321		}
4322
4323		ret = 0;
4324		goto out;
4325	}
4326
4327	if (info->offset == offset) {
4328		ret = 1;
4329		goto out;
4330	}
4331
4332	if (offset > info->offset && offset < info->offset + info->bytes)
4333		ret = 1;
4334out:
4335	spin_unlock(&ctl->tree_lock);
4336	return ret;
4337}
4338#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */