Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6#include <linux/pagemap.h>
7#include <linux/sched.h>
8#include <linux/sched/signal.h>
9#include <linux/slab.h>
10#include <linux/math64.h>
11#include <linux/ratelimit.h>
12#include <linux/error-injection.h>
13#include <linux/sched/mm.h>
14#include "ctree.h"
15#include "free-space-cache.h"
16#include "transaction.h"
17#include "disk-io.h"
18#include "extent_io.h"
19#include "inode-map.h"
20#include "volumes.h"
21#include "space-info.h"
22#include "delalloc-space.h"
23#include "block-group.h"
24
25#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
26#define MAX_CACHE_BYTES_PER_GIG SZ_32K
27
28struct btrfs_trim_range {
29 u64 start;
30 u64 bytes;
31 struct list_head list;
32};
33
34static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 struct btrfs_free_space *info);
36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 struct btrfs_free_space *info);
38static int btrfs_wait_cache_io_root(struct btrfs_root *root,
39 struct btrfs_trans_handle *trans,
40 struct btrfs_io_ctl *io_ctl,
41 struct btrfs_path *path);
42
43static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
44 struct btrfs_path *path,
45 u64 offset)
46{
47 struct btrfs_fs_info *fs_info = root->fs_info;
48 struct btrfs_key key;
49 struct btrfs_key location;
50 struct btrfs_disk_key disk_key;
51 struct btrfs_free_space_header *header;
52 struct extent_buffer *leaf;
53 struct inode *inode = NULL;
54 unsigned nofs_flag;
55 int ret;
56
57 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
58 key.offset = offset;
59 key.type = 0;
60
61 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
62 if (ret < 0)
63 return ERR_PTR(ret);
64 if (ret > 0) {
65 btrfs_release_path(path);
66 return ERR_PTR(-ENOENT);
67 }
68
69 leaf = path->nodes[0];
70 header = btrfs_item_ptr(leaf, path->slots[0],
71 struct btrfs_free_space_header);
72 btrfs_free_space_key(leaf, header, &disk_key);
73 btrfs_disk_key_to_cpu(&location, &disk_key);
74 btrfs_release_path(path);
75
76 /*
77 * We are often under a trans handle at this point, so we need to make
78 * sure NOFS is set to keep us from deadlocking.
79 */
80 nofs_flag = memalloc_nofs_save();
81 inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
82 btrfs_release_path(path);
83 memalloc_nofs_restore(nofs_flag);
84 if (IS_ERR(inode))
85 return inode;
86
87 mapping_set_gfp_mask(inode->i_mapping,
88 mapping_gfp_constraint(inode->i_mapping,
89 ~(__GFP_FS | __GFP_HIGHMEM)));
90
91 return inode;
92}
93
94struct inode *lookup_free_space_inode(
95 struct btrfs_block_group_cache *block_group,
96 struct btrfs_path *path)
97{
98 struct btrfs_fs_info *fs_info = block_group->fs_info;
99 struct inode *inode = NULL;
100 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
101
102 spin_lock(&block_group->lock);
103 if (block_group->inode)
104 inode = igrab(block_group->inode);
105 spin_unlock(&block_group->lock);
106 if (inode)
107 return inode;
108
109 inode = __lookup_free_space_inode(fs_info->tree_root, path,
110 block_group->key.objectid);
111 if (IS_ERR(inode))
112 return inode;
113
114 spin_lock(&block_group->lock);
115 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
116 btrfs_info(fs_info, "Old style space inode found, converting.");
117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 BTRFS_INODE_NODATACOW;
119 block_group->disk_cache_state = BTRFS_DC_CLEAR;
120 }
121
122 if (!block_group->iref) {
123 block_group->inode = igrab(inode);
124 block_group->iref = 1;
125 }
126 spin_unlock(&block_group->lock);
127
128 return inode;
129}
130
131static int __create_free_space_inode(struct btrfs_root *root,
132 struct btrfs_trans_handle *trans,
133 struct btrfs_path *path,
134 u64 ino, u64 offset)
135{
136 struct btrfs_key key;
137 struct btrfs_disk_key disk_key;
138 struct btrfs_free_space_header *header;
139 struct btrfs_inode_item *inode_item;
140 struct extent_buffer *leaf;
141 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 int ret;
143
144 ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 if (ret)
146 return ret;
147
148 /* We inline crc's for the free disk space cache */
149 if (ino != BTRFS_FREE_INO_OBJECTID)
150 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151
152 leaf = path->nodes[0];
153 inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_inode_item);
155 btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 memzero_extent_buffer(leaf, (unsigned long)inode_item,
157 sizeof(*inode_item));
158 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 btrfs_set_inode_size(leaf, inode_item, 0);
160 btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 btrfs_set_inode_uid(leaf, inode_item, 0);
162 btrfs_set_inode_gid(leaf, inode_item, 0);
163 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 btrfs_set_inode_flags(leaf, inode_item, flags);
165 btrfs_set_inode_nlink(leaf, inode_item, 1);
166 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 btrfs_set_inode_block_group(leaf, inode_item, offset);
168 btrfs_mark_buffer_dirty(leaf);
169 btrfs_release_path(path);
170
171 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172 key.offset = offset;
173 key.type = 0;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 sizeof(struct btrfs_free_space_header));
176 if (ret < 0) {
177 btrfs_release_path(path);
178 return ret;
179 }
180
181 leaf = path->nodes[0];
182 header = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_free_space_header);
184 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
185 btrfs_set_free_space_key(leaf, header, &disk_key);
186 btrfs_mark_buffer_dirty(leaf);
187 btrfs_release_path(path);
188
189 return 0;
190}
191
192int create_free_space_inode(struct btrfs_trans_handle *trans,
193 struct btrfs_block_group_cache *block_group,
194 struct btrfs_path *path)
195{
196 int ret;
197 u64 ino;
198
199 ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
200 if (ret < 0)
201 return ret;
202
203 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
204 ino, block_group->key.objectid);
205}
206
207int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
208 struct btrfs_block_rsv *rsv)
209{
210 u64 needed_bytes;
211 int ret;
212
213 /* 1 for slack space, 1 for updating the inode */
214 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
215 btrfs_calc_metadata_size(fs_info, 1);
216
217 spin_lock(&rsv->lock);
218 if (rsv->reserved < needed_bytes)
219 ret = -ENOSPC;
220 else
221 ret = 0;
222 spin_unlock(&rsv->lock);
223 return ret;
224}
225
226int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
227 struct btrfs_block_group_cache *block_group,
228 struct inode *inode)
229{
230 struct btrfs_root *root = BTRFS_I(inode)->root;
231 int ret = 0;
232 bool locked = false;
233
234 if (block_group) {
235 struct btrfs_path *path = btrfs_alloc_path();
236
237 if (!path) {
238 ret = -ENOMEM;
239 goto fail;
240 }
241 locked = true;
242 mutex_lock(&trans->transaction->cache_write_mutex);
243 if (!list_empty(&block_group->io_list)) {
244 list_del_init(&block_group->io_list);
245
246 btrfs_wait_cache_io(trans, block_group, path);
247 btrfs_put_block_group(block_group);
248 }
249
250 /*
251 * now that we've truncated the cache away, its no longer
252 * setup or written
253 */
254 spin_lock(&block_group->lock);
255 block_group->disk_cache_state = BTRFS_DC_CLEAR;
256 spin_unlock(&block_group->lock);
257 btrfs_free_path(path);
258 }
259
260 btrfs_i_size_write(BTRFS_I(inode), 0);
261 truncate_pagecache(inode, 0);
262
263 /*
264 * We skip the throttling logic for free space cache inodes, so we don't
265 * need to check for -EAGAIN.
266 */
267 ret = btrfs_truncate_inode_items(trans, root, inode,
268 0, BTRFS_EXTENT_DATA_KEY);
269 if (ret)
270 goto fail;
271
272 ret = btrfs_update_inode(trans, root, inode);
273
274fail:
275 if (locked)
276 mutex_unlock(&trans->transaction->cache_write_mutex);
277 if (ret)
278 btrfs_abort_transaction(trans, ret);
279
280 return ret;
281}
282
283static void readahead_cache(struct inode *inode)
284{
285 struct file_ra_state *ra;
286 unsigned long last_index;
287
288 ra = kzalloc(sizeof(*ra), GFP_NOFS);
289 if (!ra)
290 return;
291
292 file_ra_state_init(ra, inode->i_mapping);
293 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
294
295 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
296
297 kfree(ra);
298}
299
300static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
301 int write)
302{
303 int num_pages;
304 int check_crcs = 0;
305
306 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
307
308 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
309 check_crcs = 1;
310
311 /* Make sure we can fit our crcs and generation into the first page */
312 if (write && check_crcs &&
313 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
314 return -ENOSPC;
315
316 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
317
318 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
319 if (!io_ctl->pages)
320 return -ENOMEM;
321
322 io_ctl->num_pages = num_pages;
323 io_ctl->fs_info = btrfs_sb(inode->i_sb);
324 io_ctl->check_crcs = check_crcs;
325 io_ctl->inode = inode;
326
327 return 0;
328}
329ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
330
331static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
332{
333 kfree(io_ctl->pages);
334 io_ctl->pages = NULL;
335}
336
337static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
338{
339 if (io_ctl->cur) {
340 io_ctl->cur = NULL;
341 io_ctl->orig = NULL;
342 }
343}
344
345static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
346{
347 ASSERT(io_ctl->index < io_ctl->num_pages);
348 io_ctl->page = io_ctl->pages[io_ctl->index++];
349 io_ctl->cur = page_address(io_ctl->page);
350 io_ctl->orig = io_ctl->cur;
351 io_ctl->size = PAGE_SIZE;
352 if (clear)
353 clear_page(io_ctl->cur);
354}
355
356static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
357{
358 int i;
359
360 io_ctl_unmap_page(io_ctl);
361
362 for (i = 0; i < io_ctl->num_pages; i++) {
363 if (io_ctl->pages[i]) {
364 ClearPageChecked(io_ctl->pages[i]);
365 unlock_page(io_ctl->pages[i]);
366 put_page(io_ctl->pages[i]);
367 }
368 }
369}
370
371static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
372 int uptodate)
373{
374 struct page *page;
375 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
376 int i;
377
378 for (i = 0; i < io_ctl->num_pages; i++) {
379 page = find_or_create_page(inode->i_mapping, i, mask);
380 if (!page) {
381 io_ctl_drop_pages(io_ctl);
382 return -ENOMEM;
383 }
384 io_ctl->pages[i] = page;
385 if (uptodate && !PageUptodate(page)) {
386 btrfs_readpage(NULL, page);
387 lock_page(page);
388 if (!PageUptodate(page)) {
389 btrfs_err(BTRFS_I(inode)->root->fs_info,
390 "error reading free space cache");
391 io_ctl_drop_pages(io_ctl);
392 return -EIO;
393 }
394 }
395 }
396
397 for (i = 0; i < io_ctl->num_pages; i++) {
398 clear_page_dirty_for_io(io_ctl->pages[i]);
399 set_page_extent_mapped(io_ctl->pages[i]);
400 }
401
402 return 0;
403}
404
405static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
406{
407 __le64 *val;
408
409 io_ctl_map_page(io_ctl, 1);
410
411 /*
412 * Skip the csum areas. If we don't check crcs then we just have a
413 * 64bit chunk at the front of the first page.
414 */
415 if (io_ctl->check_crcs) {
416 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
417 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
418 } else {
419 io_ctl->cur += sizeof(u64);
420 io_ctl->size -= sizeof(u64) * 2;
421 }
422
423 val = io_ctl->cur;
424 *val = cpu_to_le64(generation);
425 io_ctl->cur += sizeof(u64);
426}
427
428static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
429{
430 __le64 *gen;
431
432 /*
433 * Skip the crc area. If we don't check crcs then we just have a 64bit
434 * chunk at the front of the first page.
435 */
436 if (io_ctl->check_crcs) {
437 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
438 io_ctl->size -= sizeof(u64) +
439 (sizeof(u32) * io_ctl->num_pages);
440 } else {
441 io_ctl->cur += sizeof(u64);
442 io_ctl->size -= sizeof(u64) * 2;
443 }
444
445 gen = io_ctl->cur;
446 if (le64_to_cpu(*gen) != generation) {
447 btrfs_err_rl(io_ctl->fs_info,
448 "space cache generation (%llu) does not match inode (%llu)",
449 *gen, generation);
450 io_ctl_unmap_page(io_ctl);
451 return -EIO;
452 }
453 io_ctl->cur += sizeof(u64);
454 return 0;
455}
456
457static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
458{
459 u32 *tmp;
460 u32 crc = ~(u32)0;
461 unsigned offset = 0;
462
463 if (!io_ctl->check_crcs) {
464 io_ctl_unmap_page(io_ctl);
465 return;
466 }
467
468 if (index == 0)
469 offset = sizeof(u32) * io_ctl->num_pages;
470
471 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
472 btrfs_crc32c_final(crc, (u8 *)&crc);
473 io_ctl_unmap_page(io_ctl);
474 tmp = page_address(io_ctl->pages[0]);
475 tmp += index;
476 *tmp = crc;
477}
478
479static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
480{
481 u32 *tmp, val;
482 u32 crc = ~(u32)0;
483 unsigned offset = 0;
484
485 if (!io_ctl->check_crcs) {
486 io_ctl_map_page(io_ctl, 0);
487 return 0;
488 }
489
490 if (index == 0)
491 offset = sizeof(u32) * io_ctl->num_pages;
492
493 tmp = page_address(io_ctl->pages[0]);
494 tmp += index;
495 val = *tmp;
496
497 io_ctl_map_page(io_ctl, 0);
498 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
499 btrfs_crc32c_final(crc, (u8 *)&crc);
500 if (val != crc) {
501 btrfs_err_rl(io_ctl->fs_info,
502 "csum mismatch on free space cache");
503 io_ctl_unmap_page(io_ctl);
504 return -EIO;
505 }
506
507 return 0;
508}
509
510static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
511 void *bitmap)
512{
513 struct btrfs_free_space_entry *entry;
514
515 if (!io_ctl->cur)
516 return -ENOSPC;
517
518 entry = io_ctl->cur;
519 entry->offset = cpu_to_le64(offset);
520 entry->bytes = cpu_to_le64(bytes);
521 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
522 BTRFS_FREE_SPACE_EXTENT;
523 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
524 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
525
526 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
527 return 0;
528
529 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
530
531 /* No more pages to map */
532 if (io_ctl->index >= io_ctl->num_pages)
533 return 0;
534
535 /* map the next page */
536 io_ctl_map_page(io_ctl, 1);
537 return 0;
538}
539
540static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
541{
542 if (!io_ctl->cur)
543 return -ENOSPC;
544
545 /*
546 * If we aren't at the start of the current page, unmap this one and
547 * map the next one if there is any left.
548 */
549 if (io_ctl->cur != io_ctl->orig) {
550 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
551 if (io_ctl->index >= io_ctl->num_pages)
552 return -ENOSPC;
553 io_ctl_map_page(io_ctl, 0);
554 }
555
556 copy_page(io_ctl->cur, bitmap);
557 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
558 if (io_ctl->index < io_ctl->num_pages)
559 io_ctl_map_page(io_ctl, 0);
560 return 0;
561}
562
563static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
564{
565 /*
566 * If we're not on the boundary we know we've modified the page and we
567 * need to crc the page.
568 */
569 if (io_ctl->cur != io_ctl->orig)
570 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
571 else
572 io_ctl_unmap_page(io_ctl);
573
574 while (io_ctl->index < io_ctl->num_pages) {
575 io_ctl_map_page(io_ctl, 1);
576 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
577 }
578}
579
580static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
581 struct btrfs_free_space *entry, u8 *type)
582{
583 struct btrfs_free_space_entry *e;
584 int ret;
585
586 if (!io_ctl->cur) {
587 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
588 if (ret)
589 return ret;
590 }
591
592 e = io_ctl->cur;
593 entry->offset = le64_to_cpu(e->offset);
594 entry->bytes = le64_to_cpu(e->bytes);
595 *type = e->type;
596 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
597 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
598
599 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
600 return 0;
601
602 io_ctl_unmap_page(io_ctl);
603
604 return 0;
605}
606
607static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
608 struct btrfs_free_space *entry)
609{
610 int ret;
611
612 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
613 if (ret)
614 return ret;
615
616 copy_page(entry->bitmap, io_ctl->cur);
617 io_ctl_unmap_page(io_ctl);
618
619 return 0;
620}
621
622/*
623 * Since we attach pinned extents after the fact we can have contiguous sections
624 * of free space that are split up in entries. This poses a problem with the
625 * tree logging stuff since it could have allocated across what appears to be 2
626 * entries since we would have merged the entries when adding the pinned extents
627 * back to the free space cache. So run through the space cache that we just
628 * loaded and merge contiguous entries. This will make the log replay stuff not
629 * blow up and it will make for nicer allocator behavior.
630 */
631static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
632{
633 struct btrfs_free_space *e, *prev = NULL;
634 struct rb_node *n;
635
636again:
637 spin_lock(&ctl->tree_lock);
638 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
639 e = rb_entry(n, struct btrfs_free_space, offset_index);
640 if (!prev)
641 goto next;
642 if (e->bitmap || prev->bitmap)
643 goto next;
644 if (prev->offset + prev->bytes == e->offset) {
645 unlink_free_space(ctl, prev);
646 unlink_free_space(ctl, e);
647 prev->bytes += e->bytes;
648 kmem_cache_free(btrfs_free_space_cachep, e);
649 link_free_space(ctl, prev);
650 prev = NULL;
651 spin_unlock(&ctl->tree_lock);
652 goto again;
653 }
654next:
655 prev = e;
656 }
657 spin_unlock(&ctl->tree_lock);
658}
659
660static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
661 struct btrfs_free_space_ctl *ctl,
662 struct btrfs_path *path, u64 offset)
663{
664 struct btrfs_fs_info *fs_info = root->fs_info;
665 struct btrfs_free_space_header *header;
666 struct extent_buffer *leaf;
667 struct btrfs_io_ctl io_ctl;
668 struct btrfs_key key;
669 struct btrfs_free_space *e, *n;
670 LIST_HEAD(bitmaps);
671 u64 num_entries;
672 u64 num_bitmaps;
673 u64 generation;
674 u8 type;
675 int ret = 0;
676
677 /* Nothing in the space cache, goodbye */
678 if (!i_size_read(inode))
679 return 0;
680
681 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
682 key.offset = offset;
683 key.type = 0;
684
685 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
686 if (ret < 0)
687 return 0;
688 else if (ret > 0) {
689 btrfs_release_path(path);
690 return 0;
691 }
692
693 ret = -1;
694
695 leaf = path->nodes[0];
696 header = btrfs_item_ptr(leaf, path->slots[0],
697 struct btrfs_free_space_header);
698 num_entries = btrfs_free_space_entries(leaf, header);
699 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
700 generation = btrfs_free_space_generation(leaf, header);
701 btrfs_release_path(path);
702
703 if (!BTRFS_I(inode)->generation) {
704 btrfs_info(fs_info,
705 "the free space cache file (%llu) is invalid, skip it",
706 offset);
707 return 0;
708 }
709
710 if (BTRFS_I(inode)->generation != generation) {
711 btrfs_err(fs_info,
712 "free space inode generation (%llu) did not match free space cache generation (%llu)",
713 BTRFS_I(inode)->generation, generation);
714 return 0;
715 }
716
717 if (!num_entries)
718 return 0;
719
720 ret = io_ctl_init(&io_ctl, inode, 0);
721 if (ret)
722 return ret;
723
724 readahead_cache(inode);
725
726 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
727 if (ret)
728 goto out;
729
730 ret = io_ctl_check_crc(&io_ctl, 0);
731 if (ret)
732 goto free_cache;
733
734 ret = io_ctl_check_generation(&io_ctl, generation);
735 if (ret)
736 goto free_cache;
737
738 while (num_entries) {
739 e = kmem_cache_zalloc(btrfs_free_space_cachep,
740 GFP_NOFS);
741 if (!e)
742 goto free_cache;
743
744 ret = io_ctl_read_entry(&io_ctl, e, &type);
745 if (ret) {
746 kmem_cache_free(btrfs_free_space_cachep, e);
747 goto free_cache;
748 }
749
750 if (!e->bytes) {
751 kmem_cache_free(btrfs_free_space_cachep, e);
752 goto free_cache;
753 }
754
755 if (type == BTRFS_FREE_SPACE_EXTENT) {
756 spin_lock(&ctl->tree_lock);
757 ret = link_free_space(ctl, e);
758 spin_unlock(&ctl->tree_lock);
759 if (ret) {
760 btrfs_err(fs_info,
761 "Duplicate entries in free space cache, dumping");
762 kmem_cache_free(btrfs_free_space_cachep, e);
763 goto free_cache;
764 }
765 } else {
766 ASSERT(num_bitmaps);
767 num_bitmaps--;
768 e->bitmap = kmem_cache_zalloc(
769 btrfs_free_space_bitmap_cachep, GFP_NOFS);
770 if (!e->bitmap) {
771 kmem_cache_free(
772 btrfs_free_space_cachep, e);
773 goto free_cache;
774 }
775 spin_lock(&ctl->tree_lock);
776 ret = link_free_space(ctl, e);
777 ctl->total_bitmaps++;
778 ctl->op->recalc_thresholds(ctl);
779 spin_unlock(&ctl->tree_lock);
780 if (ret) {
781 btrfs_err(fs_info,
782 "Duplicate entries in free space cache, dumping");
783 kmem_cache_free(btrfs_free_space_cachep, e);
784 goto free_cache;
785 }
786 list_add_tail(&e->list, &bitmaps);
787 }
788
789 num_entries--;
790 }
791
792 io_ctl_unmap_page(&io_ctl);
793
794 /*
795 * We add the bitmaps at the end of the entries in order that
796 * the bitmap entries are added to the cache.
797 */
798 list_for_each_entry_safe(e, n, &bitmaps, list) {
799 list_del_init(&e->list);
800 ret = io_ctl_read_bitmap(&io_ctl, e);
801 if (ret)
802 goto free_cache;
803 }
804
805 io_ctl_drop_pages(&io_ctl);
806 merge_space_tree(ctl);
807 ret = 1;
808out:
809 io_ctl_free(&io_ctl);
810 return ret;
811free_cache:
812 io_ctl_drop_pages(&io_ctl);
813 __btrfs_remove_free_space_cache(ctl);
814 goto out;
815}
816
817int load_free_space_cache(struct btrfs_block_group_cache *block_group)
818{
819 struct btrfs_fs_info *fs_info = block_group->fs_info;
820 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
821 struct inode *inode;
822 struct btrfs_path *path;
823 int ret = 0;
824 bool matched;
825 u64 used = btrfs_block_group_used(&block_group->item);
826
827 /*
828 * If this block group has been marked to be cleared for one reason or
829 * another then we can't trust the on disk cache, so just return.
830 */
831 spin_lock(&block_group->lock);
832 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
833 spin_unlock(&block_group->lock);
834 return 0;
835 }
836 spin_unlock(&block_group->lock);
837
838 path = btrfs_alloc_path();
839 if (!path)
840 return 0;
841 path->search_commit_root = 1;
842 path->skip_locking = 1;
843
844 /*
845 * We must pass a path with search_commit_root set to btrfs_iget in
846 * order to avoid a deadlock when allocating extents for the tree root.
847 *
848 * When we are COWing an extent buffer from the tree root, when looking
849 * for a free extent, at extent-tree.c:find_free_extent(), we can find
850 * block group without its free space cache loaded. When we find one
851 * we must load its space cache which requires reading its free space
852 * cache's inode item from the root tree. If this inode item is located
853 * in the same leaf that we started COWing before, then we end up in
854 * deadlock on the extent buffer (trying to read lock it when we
855 * previously write locked it).
856 *
857 * It's safe to read the inode item using the commit root because
858 * block groups, once loaded, stay in memory forever (until they are
859 * removed) as well as their space caches once loaded. New block groups
860 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
861 * we will never try to read their inode item while the fs is mounted.
862 */
863 inode = lookup_free_space_inode(block_group, path);
864 if (IS_ERR(inode)) {
865 btrfs_free_path(path);
866 return 0;
867 }
868
869 /* We may have converted the inode and made the cache invalid. */
870 spin_lock(&block_group->lock);
871 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
872 spin_unlock(&block_group->lock);
873 btrfs_free_path(path);
874 goto out;
875 }
876 spin_unlock(&block_group->lock);
877
878 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
879 path, block_group->key.objectid);
880 btrfs_free_path(path);
881 if (ret <= 0)
882 goto out;
883
884 spin_lock(&ctl->tree_lock);
885 matched = (ctl->free_space == (block_group->key.offset - used -
886 block_group->bytes_super));
887 spin_unlock(&ctl->tree_lock);
888
889 if (!matched) {
890 __btrfs_remove_free_space_cache(ctl);
891 btrfs_warn(fs_info,
892 "block group %llu has wrong amount of free space",
893 block_group->key.objectid);
894 ret = -1;
895 }
896out:
897 if (ret < 0) {
898 /* This cache is bogus, make sure it gets cleared */
899 spin_lock(&block_group->lock);
900 block_group->disk_cache_state = BTRFS_DC_CLEAR;
901 spin_unlock(&block_group->lock);
902 ret = 0;
903
904 btrfs_warn(fs_info,
905 "failed to load free space cache for block group %llu, rebuilding it now",
906 block_group->key.objectid);
907 }
908
909 iput(inode);
910 return ret;
911}
912
913static noinline_for_stack
914int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
915 struct btrfs_free_space_ctl *ctl,
916 struct btrfs_block_group_cache *block_group,
917 int *entries, int *bitmaps,
918 struct list_head *bitmap_list)
919{
920 int ret;
921 struct btrfs_free_cluster *cluster = NULL;
922 struct btrfs_free_cluster *cluster_locked = NULL;
923 struct rb_node *node = rb_first(&ctl->free_space_offset);
924 struct btrfs_trim_range *trim_entry;
925
926 /* Get the cluster for this block_group if it exists */
927 if (block_group && !list_empty(&block_group->cluster_list)) {
928 cluster = list_entry(block_group->cluster_list.next,
929 struct btrfs_free_cluster,
930 block_group_list);
931 }
932
933 if (!node && cluster) {
934 cluster_locked = cluster;
935 spin_lock(&cluster_locked->lock);
936 node = rb_first(&cluster->root);
937 cluster = NULL;
938 }
939
940 /* Write out the extent entries */
941 while (node) {
942 struct btrfs_free_space *e;
943
944 e = rb_entry(node, struct btrfs_free_space, offset_index);
945 *entries += 1;
946
947 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
948 e->bitmap);
949 if (ret)
950 goto fail;
951
952 if (e->bitmap) {
953 list_add_tail(&e->list, bitmap_list);
954 *bitmaps += 1;
955 }
956 node = rb_next(node);
957 if (!node && cluster) {
958 node = rb_first(&cluster->root);
959 cluster_locked = cluster;
960 spin_lock(&cluster_locked->lock);
961 cluster = NULL;
962 }
963 }
964 if (cluster_locked) {
965 spin_unlock(&cluster_locked->lock);
966 cluster_locked = NULL;
967 }
968
969 /*
970 * Make sure we don't miss any range that was removed from our rbtree
971 * because trimming is running. Otherwise after a umount+mount (or crash
972 * after committing the transaction) we would leak free space and get
973 * an inconsistent free space cache report from fsck.
974 */
975 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
976 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
977 trim_entry->bytes, NULL);
978 if (ret)
979 goto fail;
980 *entries += 1;
981 }
982
983 return 0;
984fail:
985 if (cluster_locked)
986 spin_unlock(&cluster_locked->lock);
987 return -ENOSPC;
988}
989
990static noinline_for_stack int
991update_cache_item(struct btrfs_trans_handle *trans,
992 struct btrfs_root *root,
993 struct inode *inode,
994 struct btrfs_path *path, u64 offset,
995 int entries, int bitmaps)
996{
997 struct btrfs_key key;
998 struct btrfs_free_space_header *header;
999 struct extent_buffer *leaf;
1000 int ret;
1001
1002 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1003 key.offset = offset;
1004 key.type = 0;
1005
1006 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1007 if (ret < 0) {
1008 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1009 EXTENT_DELALLOC, 0, 0, NULL);
1010 goto fail;
1011 }
1012 leaf = path->nodes[0];
1013 if (ret > 0) {
1014 struct btrfs_key found_key;
1015 ASSERT(path->slots[0]);
1016 path->slots[0]--;
1017 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1018 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1019 found_key.offset != offset) {
1020 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1021 inode->i_size - 1, EXTENT_DELALLOC, 0,
1022 0, NULL);
1023 btrfs_release_path(path);
1024 goto fail;
1025 }
1026 }
1027
1028 BTRFS_I(inode)->generation = trans->transid;
1029 header = btrfs_item_ptr(leaf, path->slots[0],
1030 struct btrfs_free_space_header);
1031 btrfs_set_free_space_entries(leaf, header, entries);
1032 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1033 btrfs_set_free_space_generation(leaf, header, trans->transid);
1034 btrfs_mark_buffer_dirty(leaf);
1035 btrfs_release_path(path);
1036
1037 return 0;
1038
1039fail:
1040 return -1;
1041}
1042
1043static noinline_for_stack int write_pinned_extent_entries(
1044 struct btrfs_block_group_cache *block_group,
1045 struct btrfs_io_ctl *io_ctl,
1046 int *entries)
1047{
1048 u64 start, extent_start, extent_end, len;
1049 struct extent_io_tree *unpin = NULL;
1050 int ret;
1051
1052 if (!block_group)
1053 return 0;
1054
1055 /*
1056 * We want to add any pinned extents to our free space cache
1057 * so we don't leak the space
1058 *
1059 * We shouldn't have switched the pinned extents yet so this is the
1060 * right one
1061 */
1062 unpin = block_group->fs_info->pinned_extents;
1063
1064 start = block_group->key.objectid;
1065
1066 while (start < block_group->key.objectid + block_group->key.offset) {
1067 ret = find_first_extent_bit(unpin, start,
1068 &extent_start, &extent_end,
1069 EXTENT_DIRTY, NULL);
1070 if (ret)
1071 return 0;
1072
1073 /* This pinned extent is out of our range */
1074 if (extent_start >= block_group->key.objectid +
1075 block_group->key.offset)
1076 return 0;
1077
1078 extent_start = max(extent_start, start);
1079 extent_end = min(block_group->key.objectid +
1080 block_group->key.offset, extent_end + 1);
1081 len = extent_end - extent_start;
1082
1083 *entries += 1;
1084 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1085 if (ret)
1086 return -ENOSPC;
1087
1088 start = extent_end;
1089 }
1090
1091 return 0;
1092}
1093
1094static noinline_for_stack int
1095write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1096{
1097 struct btrfs_free_space *entry, *next;
1098 int ret;
1099
1100 /* Write out the bitmaps */
1101 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1102 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1103 if (ret)
1104 return -ENOSPC;
1105 list_del_init(&entry->list);
1106 }
1107
1108 return 0;
1109}
1110
1111static int flush_dirty_cache(struct inode *inode)
1112{
1113 int ret;
1114
1115 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1116 if (ret)
1117 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1118 EXTENT_DELALLOC, 0, 0, NULL);
1119
1120 return ret;
1121}
1122
1123static void noinline_for_stack
1124cleanup_bitmap_list(struct list_head *bitmap_list)
1125{
1126 struct btrfs_free_space *entry, *next;
1127
1128 list_for_each_entry_safe(entry, next, bitmap_list, list)
1129 list_del_init(&entry->list);
1130}
1131
1132static void noinline_for_stack
1133cleanup_write_cache_enospc(struct inode *inode,
1134 struct btrfs_io_ctl *io_ctl,
1135 struct extent_state **cached_state)
1136{
1137 io_ctl_drop_pages(io_ctl);
1138 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1139 i_size_read(inode) - 1, cached_state);
1140}
1141
1142static int __btrfs_wait_cache_io(struct btrfs_root *root,
1143 struct btrfs_trans_handle *trans,
1144 struct btrfs_block_group_cache *block_group,
1145 struct btrfs_io_ctl *io_ctl,
1146 struct btrfs_path *path, u64 offset)
1147{
1148 int ret;
1149 struct inode *inode = io_ctl->inode;
1150
1151 if (!inode)
1152 return 0;
1153
1154 /* Flush the dirty pages in the cache file. */
1155 ret = flush_dirty_cache(inode);
1156 if (ret)
1157 goto out;
1158
1159 /* Update the cache item to tell everyone this cache file is valid. */
1160 ret = update_cache_item(trans, root, inode, path, offset,
1161 io_ctl->entries, io_ctl->bitmaps);
1162out:
1163 io_ctl_free(io_ctl);
1164 if (ret) {
1165 invalidate_inode_pages2(inode->i_mapping);
1166 BTRFS_I(inode)->generation = 0;
1167 if (block_group) {
1168#ifdef DEBUG
1169 btrfs_err(root->fs_info,
1170 "failed to write free space cache for block group %llu",
1171 block_group->key.objectid);
1172#endif
1173 }
1174 }
1175 btrfs_update_inode(trans, root, inode);
1176
1177 if (block_group) {
1178 /* the dirty list is protected by the dirty_bgs_lock */
1179 spin_lock(&trans->transaction->dirty_bgs_lock);
1180
1181 /* the disk_cache_state is protected by the block group lock */
1182 spin_lock(&block_group->lock);
1183
1184 /*
1185 * only mark this as written if we didn't get put back on
1186 * the dirty list while waiting for IO. Otherwise our
1187 * cache state won't be right, and we won't get written again
1188 */
1189 if (!ret && list_empty(&block_group->dirty_list))
1190 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1191 else if (ret)
1192 block_group->disk_cache_state = BTRFS_DC_ERROR;
1193
1194 spin_unlock(&block_group->lock);
1195 spin_unlock(&trans->transaction->dirty_bgs_lock);
1196 io_ctl->inode = NULL;
1197 iput(inode);
1198 }
1199
1200 return ret;
1201
1202}
1203
1204static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1205 struct btrfs_trans_handle *trans,
1206 struct btrfs_io_ctl *io_ctl,
1207 struct btrfs_path *path)
1208{
1209 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1210}
1211
1212int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1213 struct btrfs_block_group_cache *block_group,
1214 struct btrfs_path *path)
1215{
1216 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1217 block_group, &block_group->io_ctl,
1218 path, block_group->key.objectid);
1219}
1220
1221/**
1222 * __btrfs_write_out_cache - write out cached info to an inode
1223 * @root - the root the inode belongs to
1224 * @ctl - the free space cache we are going to write out
1225 * @block_group - the block_group for this cache if it belongs to a block_group
1226 * @trans - the trans handle
1227 *
1228 * This function writes out a free space cache struct to disk for quick recovery
1229 * on mount. This will return 0 if it was successful in writing the cache out,
1230 * or an errno if it was not.
1231 */
1232static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1233 struct btrfs_free_space_ctl *ctl,
1234 struct btrfs_block_group_cache *block_group,
1235 struct btrfs_io_ctl *io_ctl,
1236 struct btrfs_trans_handle *trans)
1237{
1238 struct extent_state *cached_state = NULL;
1239 LIST_HEAD(bitmap_list);
1240 int entries = 0;
1241 int bitmaps = 0;
1242 int ret;
1243 int must_iput = 0;
1244
1245 if (!i_size_read(inode))
1246 return -EIO;
1247
1248 WARN_ON(io_ctl->pages);
1249 ret = io_ctl_init(io_ctl, inode, 1);
1250 if (ret)
1251 return ret;
1252
1253 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1254 down_write(&block_group->data_rwsem);
1255 spin_lock(&block_group->lock);
1256 if (block_group->delalloc_bytes) {
1257 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1258 spin_unlock(&block_group->lock);
1259 up_write(&block_group->data_rwsem);
1260 BTRFS_I(inode)->generation = 0;
1261 ret = 0;
1262 must_iput = 1;
1263 goto out;
1264 }
1265 spin_unlock(&block_group->lock);
1266 }
1267
1268 /* Lock all pages first so we can lock the extent safely. */
1269 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1270 if (ret)
1271 goto out_unlock;
1272
1273 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1274 &cached_state);
1275
1276 io_ctl_set_generation(io_ctl, trans->transid);
1277
1278 mutex_lock(&ctl->cache_writeout_mutex);
1279 /* Write out the extent entries in the free space cache */
1280 spin_lock(&ctl->tree_lock);
1281 ret = write_cache_extent_entries(io_ctl, ctl,
1282 block_group, &entries, &bitmaps,
1283 &bitmap_list);
1284 if (ret)
1285 goto out_nospc_locked;
1286
1287 /*
1288 * Some spaces that are freed in the current transaction are pinned,
1289 * they will be added into free space cache after the transaction is
1290 * committed, we shouldn't lose them.
1291 *
1292 * If this changes while we are working we'll get added back to
1293 * the dirty list and redo it. No locking needed
1294 */
1295 ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1296 if (ret)
1297 goto out_nospc_locked;
1298
1299 /*
1300 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1301 * locked while doing it because a concurrent trim can be manipulating
1302 * or freeing the bitmap.
1303 */
1304 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1305 spin_unlock(&ctl->tree_lock);
1306 mutex_unlock(&ctl->cache_writeout_mutex);
1307 if (ret)
1308 goto out_nospc;
1309
1310 /* Zero out the rest of the pages just to make sure */
1311 io_ctl_zero_remaining_pages(io_ctl);
1312
1313 /* Everything is written out, now we dirty the pages in the file. */
1314 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1315 i_size_read(inode), &cached_state);
1316 if (ret)
1317 goto out_nospc;
1318
1319 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1320 up_write(&block_group->data_rwsem);
1321 /*
1322 * Release the pages and unlock the extent, we will flush
1323 * them out later
1324 */
1325 io_ctl_drop_pages(io_ctl);
1326
1327 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1328 i_size_read(inode) - 1, &cached_state);
1329
1330 /*
1331 * at this point the pages are under IO and we're happy,
1332 * The caller is responsible for waiting on them and updating the
1333 * the cache and the inode
1334 */
1335 io_ctl->entries = entries;
1336 io_ctl->bitmaps = bitmaps;
1337
1338 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1339 if (ret)
1340 goto out;
1341
1342 return 0;
1343
1344out:
1345 io_ctl->inode = NULL;
1346 io_ctl_free(io_ctl);
1347 if (ret) {
1348 invalidate_inode_pages2(inode->i_mapping);
1349 BTRFS_I(inode)->generation = 0;
1350 }
1351 btrfs_update_inode(trans, root, inode);
1352 if (must_iput)
1353 iput(inode);
1354 return ret;
1355
1356out_nospc_locked:
1357 cleanup_bitmap_list(&bitmap_list);
1358 spin_unlock(&ctl->tree_lock);
1359 mutex_unlock(&ctl->cache_writeout_mutex);
1360
1361out_nospc:
1362 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1363
1364out_unlock:
1365 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1366 up_write(&block_group->data_rwsem);
1367
1368 goto out;
1369}
1370
1371int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1372 struct btrfs_block_group_cache *block_group,
1373 struct btrfs_path *path)
1374{
1375 struct btrfs_fs_info *fs_info = trans->fs_info;
1376 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1377 struct inode *inode;
1378 int ret = 0;
1379
1380 spin_lock(&block_group->lock);
1381 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1382 spin_unlock(&block_group->lock);
1383 return 0;
1384 }
1385 spin_unlock(&block_group->lock);
1386
1387 inode = lookup_free_space_inode(block_group, path);
1388 if (IS_ERR(inode))
1389 return 0;
1390
1391 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1392 block_group, &block_group->io_ctl, trans);
1393 if (ret) {
1394#ifdef DEBUG
1395 btrfs_err(fs_info,
1396 "failed to write free space cache for block group %llu",
1397 block_group->key.objectid);
1398#endif
1399 spin_lock(&block_group->lock);
1400 block_group->disk_cache_state = BTRFS_DC_ERROR;
1401 spin_unlock(&block_group->lock);
1402
1403 block_group->io_ctl.inode = NULL;
1404 iput(inode);
1405 }
1406
1407 /*
1408 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1409 * to wait for IO and put the inode
1410 */
1411
1412 return ret;
1413}
1414
1415static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1416 u64 offset)
1417{
1418 ASSERT(offset >= bitmap_start);
1419 offset -= bitmap_start;
1420 return (unsigned long)(div_u64(offset, unit));
1421}
1422
1423static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1424{
1425 return (unsigned long)(div_u64(bytes, unit));
1426}
1427
1428static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1429 u64 offset)
1430{
1431 u64 bitmap_start;
1432 u64 bytes_per_bitmap;
1433
1434 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1435 bitmap_start = offset - ctl->start;
1436 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1437 bitmap_start *= bytes_per_bitmap;
1438 bitmap_start += ctl->start;
1439
1440 return bitmap_start;
1441}
1442
1443static int tree_insert_offset(struct rb_root *root, u64 offset,
1444 struct rb_node *node, int bitmap)
1445{
1446 struct rb_node **p = &root->rb_node;
1447 struct rb_node *parent = NULL;
1448 struct btrfs_free_space *info;
1449
1450 while (*p) {
1451 parent = *p;
1452 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1453
1454 if (offset < info->offset) {
1455 p = &(*p)->rb_left;
1456 } else if (offset > info->offset) {
1457 p = &(*p)->rb_right;
1458 } else {
1459 /*
1460 * we could have a bitmap entry and an extent entry
1461 * share the same offset. If this is the case, we want
1462 * the extent entry to always be found first if we do a
1463 * linear search through the tree, since we want to have
1464 * the quickest allocation time, and allocating from an
1465 * extent is faster than allocating from a bitmap. So
1466 * if we're inserting a bitmap and we find an entry at
1467 * this offset, we want to go right, or after this entry
1468 * logically. If we are inserting an extent and we've
1469 * found a bitmap, we want to go left, or before
1470 * logically.
1471 */
1472 if (bitmap) {
1473 if (info->bitmap) {
1474 WARN_ON_ONCE(1);
1475 return -EEXIST;
1476 }
1477 p = &(*p)->rb_right;
1478 } else {
1479 if (!info->bitmap) {
1480 WARN_ON_ONCE(1);
1481 return -EEXIST;
1482 }
1483 p = &(*p)->rb_left;
1484 }
1485 }
1486 }
1487
1488 rb_link_node(node, parent, p);
1489 rb_insert_color(node, root);
1490
1491 return 0;
1492}
1493
1494/*
1495 * searches the tree for the given offset.
1496 *
1497 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1498 * want a section that has at least bytes size and comes at or after the given
1499 * offset.
1500 */
1501static struct btrfs_free_space *
1502tree_search_offset(struct btrfs_free_space_ctl *ctl,
1503 u64 offset, int bitmap_only, int fuzzy)
1504{
1505 struct rb_node *n = ctl->free_space_offset.rb_node;
1506 struct btrfs_free_space *entry, *prev = NULL;
1507
1508 /* find entry that is closest to the 'offset' */
1509 while (1) {
1510 if (!n) {
1511 entry = NULL;
1512 break;
1513 }
1514
1515 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1516 prev = entry;
1517
1518 if (offset < entry->offset)
1519 n = n->rb_left;
1520 else if (offset > entry->offset)
1521 n = n->rb_right;
1522 else
1523 break;
1524 }
1525
1526 if (bitmap_only) {
1527 if (!entry)
1528 return NULL;
1529 if (entry->bitmap)
1530 return entry;
1531
1532 /*
1533 * bitmap entry and extent entry may share same offset,
1534 * in that case, bitmap entry comes after extent entry.
1535 */
1536 n = rb_next(n);
1537 if (!n)
1538 return NULL;
1539 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1540 if (entry->offset != offset)
1541 return NULL;
1542
1543 WARN_ON(!entry->bitmap);
1544 return entry;
1545 } else if (entry) {
1546 if (entry->bitmap) {
1547 /*
1548 * if previous extent entry covers the offset,
1549 * we should return it instead of the bitmap entry
1550 */
1551 n = rb_prev(&entry->offset_index);
1552 if (n) {
1553 prev = rb_entry(n, struct btrfs_free_space,
1554 offset_index);
1555 if (!prev->bitmap &&
1556 prev->offset + prev->bytes > offset)
1557 entry = prev;
1558 }
1559 }
1560 return entry;
1561 }
1562
1563 if (!prev)
1564 return NULL;
1565
1566 /* find last entry before the 'offset' */
1567 entry = prev;
1568 if (entry->offset > offset) {
1569 n = rb_prev(&entry->offset_index);
1570 if (n) {
1571 entry = rb_entry(n, struct btrfs_free_space,
1572 offset_index);
1573 ASSERT(entry->offset <= offset);
1574 } else {
1575 if (fuzzy)
1576 return entry;
1577 else
1578 return NULL;
1579 }
1580 }
1581
1582 if (entry->bitmap) {
1583 n = rb_prev(&entry->offset_index);
1584 if (n) {
1585 prev = rb_entry(n, struct btrfs_free_space,
1586 offset_index);
1587 if (!prev->bitmap &&
1588 prev->offset + prev->bytes > offset)
1589 return prev;
1590 }
1591 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1592 return entry;
1593 } else if (entry->offset + entry->bytes > offset)
1594 return entry;
1595
1596 if (!fuzzy)
1597 return NULL;
1598
1599 while (1) {
1600 if (entry->bitmap) {
1601 if (entry->offset + BITS_PER_BITMAP *
1602 ctl->unit > offset)
1603 break;
1604 } else {
1605 if (entry->offset + entry->bytes > offset)
1606 break;
1607 }
1608
1609 n = rb_next(&entry->offset_index);
1610 if (!n)
1611 return NULL;
1612 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1613 }
1614 return entry;
1615}
1616
1617static inline void
1618__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1619 struct btrfs_free_space *info)
1620{
1621 rb_erase(&info->offset_index, &ctl->free_space_offset);
1622 ctl->free_extents--;
1623}
1624
1625static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1626 struct btrfs_free_space *info)
1627{
1628 __unlink_free_space(ctl, info);
1629 ctl->free_space -= info->bytes;
1630}
1631
1632static int link_free_space(struct btrfs_free_space_ctl *ctl,
1633 struct btrfs_free_space *info)
1634{
1635 int ret = 0;
1636
1637 ASSERT(info->bytes || info->bitmap);
1638 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1639 &info->offset_index, (info->bitmap != NULL));
1640 if (ret)
1641 return ret;
1642
1643 ctl->free_space += info->bytes;
1644 ctl->free_extents++;
1645 return ret;
1646}
1647
1648static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1649{
1650 struct btrfs_block_group_cache *block_group = ctl->private;
1651 u64 max_bytes;
1652 u64 bitmap_bytes;
1653 u64 extent_bytes;
1654 u64 size = block_group->key.offset;
1655 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1656 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1657
1658 max_bitmaps = max_t(u64, max_bitmaps, 1);
1659
1660 ASSERT(ctl->total_bitmaps <= max_bitmaps);
1661
1662 /*
1663 * The goal is to keep the total amount of memory used per 1gb of space
1664 * at or below 32k, so we need to adjust how much memory we allow to be
1665 * used by extent based free space tracking
1666 */
1667 if (size < SZ_1G)
1668 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1669 else
1670 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1671
1672 /*
1673 * we want to account for 1 more bitmap than what we have so we can make
1674 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1675 * we add more bitmaps.
1676 */
1677 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1678
1679 if (bitmap_bytes >= max_bytes) {
1680 ctl->extents_thresh = 0;
1681 return;
1682 }
1683
1684 /*
1685 * we want the extent entry threshold to always be at most 1/2 the max
1686 * bytes we can have, or whatever is less than that.
1687 */
1688 extent_bytes = max_bytes - bitmap_bytes;
1689 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1690
1691 ctl->extents_thresh =
1692 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1693}
1694
1695static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1696 struct btrfs_free_space *info,
1697 u64 offset, u64 bytes)
1698{
1699 unsigned long start, count;
1700
1701 start = offset_to_bit(info->offset, ctl->unit, offset);
1702 count = bytes_to_bits(bytes, ctl->unit);
1703 ASSERT(start + count <= BITS_PER_BITMAP);
1704
1705 bitmap_clear(info->bitmap, start, count);
1706
1707 info->bytes -= bytes;
1708 if (info->max_extent_size > ctl->unit)
1709 info->max_extent_size = 0;
1710}
1711
1712static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1713 struct btrfs_free_space *info, u64 offset,
1714 u64 bytes)
1715{
1716 __bitmap_clear_bits(ctl, info, offset, bytes);
1717 ctl->free_space -= bytes;
1718}
1719
1720static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1721 struct btrfs_free_space *info, u64 offset,
1722 u64 bytes)
1723{
1724 unsigned long start, count;
1725
1726 start = offset_to_bit(info->offset, ctl->unit, offset);
1727 count = bytes_to_bits(bytes, ctl->unit);
1728 ASSERT(start + count <= BITS_PER_BITMAP);
1729
1730 bitmap_set(info->bitmap, start, count);
1731
1732 info->bytes += bytes;
1733 ctl->free_space += bytes;
1734}
1735
1736/*
1737 * If we can not find suitable extent, we will use bytes to record
1738 * the size of the max extent.
1739 */
1740static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1741 struct btrfs_free_space *bitmap_info, u64 *offset,
1742 u64 *bytes, bool for_alloc)
1743{
1744 unsigned long found_bits = 0;
1745 unsigned long max_bits = 0;
1746 unsigned long bits, i;
1747 unsigned long next_zero;
1748 unsigned long extent_bits;
1749
1750 /*
1751 * Skip searching the bitmap if we don't have a contiguous section that
1752 * is large enough for this allocation.
1753 */
1754 if (for_alloc &&
1755 bitmap_info->max_extent_size &&
1756 bitmap_info->max_extent_size < *bytes) {
1757 *bytes = bitmap_info->max_extent_size;
1758 return -1;
1759 }
1760
1761 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1762 max_t(u64, *offset, bitmap_info->offset));
1763 bits = bytes_to_bits(*bytes, ctl->unit);
1764
1765 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1766 if (for_alloc && bits == 1) {
1767 found_bits = 1;
1768 break;
1769 }
1770 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1771 BITS_PER_BITMAP, i);
1772 extent_bits = next_zero - i;
1773 if (extent_bits >= bits) {
1774 found_bits = extent_bits;
1775 break;
1776 } else if (extent_bits > max_bits) {
1777 max_bits = extent_bits;
1778 }
1779 i = next_zero;
1780 }
1781
1782 if (found_bits) {
1783 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1784 *bytes = (u64)(found_bits) * ctl->unit;
1785 return 0;
1786 }
1787
1788 *bytes = (u64)(max_bits) * ctl->unit;
1789 bitmap_info->max_extent_size = *bytes;
1790 return -1;
1791}
1792
1793static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1794{
1795 if (entry->bitmap)
1796 return entry->max_extent_size;
1797 return entry->bytes;
1798}
1799
1800/* Cache the size of the max extent in bytes */
1801static struct btrfs_free_space *
1802find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1803 unsigned long align, u64 *max_extent_size)
1804{
1805 struct btrfs_free_space *entry;
1806 struct rb_node *node;
1807 u64 tmp;
1808 u64 align_off;
1809 int ret;
1810
1811 if (!ctl->free_space_offset.rb_node)
1812 goto out;
1813
1814 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1815 if (!entry)
1816 goto out;
1817
1818 for (node = &entry->offset_index; node; node = rb_next(node)) {
1819 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1820 if (entry->bytes < *bytes) {
1821 *max_extent_size = max(get_max_extent_size(entry),
1822 *max_extent_size);
1823 continue;
1824 }
1825
1826 /* make sure the space returned is big enough
1827 * to match our requested alignment
1828 */
1829 if (*bytes >= align) {
1830 tmp = entry->offset - ctl->start + align - 1;
1831 tmp = div64_u64(tmp, align);
1832 tmp = tmp * align + ctl->start;
1833 align_off = tmp - entry->offset;
1834 } else {
1835 align_off = 0;
1836 tmp = entry->offset;
1837 }
1838
1839 if (entry->bytes < *bytes + align_off) {
1840 *max_extent_size = max(get_max_extent_size(entry),
1841 *max_extent_size);
1842 continue;
1843 }
1844
1845 if (entry->bitmap) {
1846 u64 size = *bytes;
1847
1848 ret = search_bitmap(ctl, entry, &tmp, &size, true);
1849 if (!ret) {
1850 *offset = tmp;
1851 *bytes = size;
1852 return entry;
1853 } else {
1854 *max_extent_size =
1855 max(get_max_extent_size(entry),
1856 *max_extent_size);
1857 }
1858 continue;
1859 }
1860
1861 *offset = tmp;
1862 *bytes = entry->bytes - align_off;
1863 return entry;
1864 }
1865out:
1866 return NULL;
1867}
1868
1869static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1870 struct btrfs_free_space *info, u64 offset)
1871{
1872 info->offset = offset_to_bitmap(ctl, offset);
1873 info->bytes = 0;
1874 INIT_LIST_HEAD(&info->list);
1875 link_free_space(ctl, info);
1876 ctl->total_bitmaps++;
1877
1878 ctl->op->recalc_thresholds(ctl);
1879}
1880
1881static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1882 struct btrfs_free_space *bitmap_info)
1883{
1884 unlink_free_space(ctl, bitmap_info);
1885 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1886 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1887 ctl->total_bitmaps--;
1888 ctl->op->recalc_thresholds(ctl);
1889}
1890
1891static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1892 struct btrfs_free_space *bitmap_info,
1893 u64 *offset, u64 *bytes)
1894{
1895 u64 end;
1896 u64 search_start, search_bytes;
1897 int ret;
1898
1899again:
1900 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1901
1902 /*
1903 * We need to search for bits in this bitmap. We could only cover some
1904 * of the extent in this bitmap thanks to how we add space, so we need
1905 * to search for as much as it as we can and clear that amount, and then
1906 * go searching for the next bit.
1907 */
1908 search_start = *offset;
1909 search_bytes = ctl->unit;
1910 search_bytes = min(search_bytes, end - search_start + 1);
1911 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1912 false);
1913 if (ret < 0 || search_start != *offset)
1914 return -EINVAL;
1915
1916 /* We may have found more bits than what we need */
1917 search_bytes = min(search_bytes, *bytes);
1918
1919 /* Cannot clear past the end of the bitmap */
1920 search_bytes = min(search_bytes, end - search_start + 1);
1921
1922 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1923 *offset += search_bytes;
1924 *bytes -= search_bytes;
1925
1926 if (*bytes) {
1927 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1928 if (!bitmap_info->bytes)
1929 free_bitmap(ctl, bitmap_info);
1930
1931 /*
1932 * no entry after this bitmap, but we still have bytes to
1933 * remove, so something has gone wrong.
1934 */
1935 if (!next)
1936 return -EINVAL;
1937
1938 bitmap_info = rb_entry(next, struct btrfs_free_space,
1939 offset_index);
1940
1941 /*
1942 * if the next entry isn't a bitmap we need to return to let the
1943 * extent stuff do its work.
1944 */
1945 if (!bitmap_info->bitmap)
1946 return -EAGAIN;
1947
1948 /*
1949 * Ok the next item is a bitmap, but it may not actually hold
1950 * the information for the rest of this free space stuff, so
1951 * look for it, and if we don't find it return so we can try
1952 * everything over again.
1953 */
1954 search_start = *offset;
1955 search_bytes = ctl->unit;
1956 ret = search_bitmap(ctl, bitmap_info, &search_start,
1957 &search_bytes, false);
1958 if (ret < 0 || search_start != *offset)
1959 return -EAGAIN;
1960
1961 goto again;
1962 } else if (!bitmap_info->bytes)
1963 free_bitmap(ctl, bitmap_info);
1964
1965 return 0;
1966}
1967
1968static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1969 struct btrfs_free_space *info, u64 offset,
1970 u64 bytes)
1971{
1972 u64 bytes_to_set = 0;
1973 u64 end;
1974
1975 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1976
1977 bytes_to_set = min(end - offset, bytes);
1978
1979 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1980
1981 /*
1982 * We set some bytes, we have no idea what the max extent size is
1983 * anymore.
1984 */
1985 info->max_extent_size = 0;
1986
1987 return bytes_to_set;
1988
1989}
1990
1991static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1992 struct btrfs_free_space *info)
1993{
1994 struct btrfs_block_group_cache *block_group = ctl->private;
1995 struct btrfs_fs_info *fs_info = block_group->fs_info;
1996 bool forced = false;
1997
1998#ifdef CONFIG_BTRFS_DEBUG
1999 if (btrfs_should_fragment_free_space(block_group))
2000 forced = true;
2001#endif
2002
2003 /*
2004 * If we are below the extents threshold then we can add this as an
2005 * extent, and don't have to deal with the bitmap
2006 */
2007 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2008 /*
2009 * If this block group has some small extents we don't want to
2010 * use up all of our free slots in the cache with them, we want
2011 * to reserve them to larger extents, however if we have plenty
2012 * of cache left then go ahead an dadd them, no sense in adding
2013 * the overhead of a bitmap if we don't have to.
2014 */
2015 if (info->bytes <= fs_info->sectorsize * 4) {
2016 if (ctl->free_extents * 2 <= ctl->extents_thresh)
2017 return false;
2018 } else {
2019 return false;
2020 }
2021 }
2022
2023 /*
2024 * The original block groups from mkfs can be really small, like 8
2025 * megabytes, so don't bother with a bitmap for those entries. However
2026 * some block groups can be smaller than what a bitmap would cover but
2027 * are still large enough that they could overflow the 32k memory limit,
2028 * so allow those block groups to still be allowed to have a bitmap
2029 * entry.
2030 */
2031 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2032 return false;
2033
2034 return true;
2035}
2036
2037static const struct btrfs_free_space_op free_space_op = {
2038 .recalc_thresholds = recalculate_thresholds,
2039 .use_bitmap = use_bitmap,
2040};
2041
2042static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2043 struct btrfs_free_space *info)
2044{
2045 struct btrfs_free_space *bitmap_info;
2046 struct btrfs_block_group_cache *block_group = NULL;
2047 int added = 0;
2048 u64 bytes, offset, bytes_added;
2049 int ret;
2050
2051 bytes = info->bytes;
2052 offset = info->offset;
2053
2054 if (!ctl->op->use_bitmap(ctl, info))
2055 return 0;
2056
2057 if (ctl->op == &free_space_op)
2058 block_group = ctl->private;
2059again:
2060 /*
2061 * Since we link bitmaps right into the cluster we need to see if we
2062 * have a cluster here, and if so and it has our bitmap we need to add
2063 * the free space to that bitmap.
2064 */
2065 if (block_group && !list_empty(&block_group->cluster_list)) {
2066 struct btrfs_free_cluster *cluster;
2067 struct rb_node *node;
2068 struct btrfs_free_space *entry;
2069
2070 cluster = list_entry(block_group->cluster_list.next,
2071 struct btrfs_free_cluster,
2072 block_group_list);
2073 spin_lock(&cluster->lock);
2074 node = rb_first(&cluster->root);
2075 if (!node) {
2076 spin_unlock(&cluster->lock);
2077 goto no_cluster_bitmap;
2078 }
2079
2080 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2081 if (!entry->bitmap) {
2082 spin_unlock(&cluster->lock);
2083 goto no_cluster_bitmap;
2084 }
2085
2086 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2087 bytes_added = add_bytes_to_bitmap(ctl, entry,
2088 offset, bytes);
2089 bytes -= bytes_added;
2090 offset += bytes_added;
2091 }
2092 spin_unlock(&cluster->lock);
2093 if (!bytes) {
2094 ret = 1;
2095 goto out;
2096 }
2097 }
2098
2099no_cluster_bitmap:
2100 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2101 1, 0);
2102 if (!bitmap_info) {
2103 ASSERT(added == 0);
2104 goto new_bitmap;
2105 }
2106
2107 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2108 bytes -= bytes_added;
2109 offset += bytes_added;
2110 added = 0;
2111
2112 if (!bytes) {
2113 ret = 1;
2114 goto out;
2115 } else
2116 goto again;
2117
2118new_bitmap:
2119 if (info && info->bitmap) {
2120 add_new_bitmap(ctl, info, offset);
2121 added = 1;
2122 info = NULL;
2123 goto again;
2124 } else {
2125 spin_unlock(&ctl->tree_lock);
2126
2127 /* no pre-allocated info, allocate a new one */
2128 if (!info) {
2129 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2130 GFP_NOFS);
2131 if (!info) {
2132 spin_lock(&ctl->tree_lock);
2133 ret = -ENOMEM;
2134 goto out;
2135 }
2136 }
2137
2138 /* allocate the bitmap */
2139 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2140 GFP_NOFS);
2141 spin_lock(&ctl->tree_lock);
2142 if (!info->bitmap) {
2143 ret = -ENOMEM;
2144 goto out;
2145 }
2146 goto again;
2147 }
2148
2149out:
2150 if (info) {
2151 if (info->bitmap)
2152 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2153 info->bitmap);
2154 kmem_cache_free(btrfs_free_space_cachep, info);
2155 }
2156
2157 return ret;
2158}
2159
2160static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2161 struct btrfs_free_space *info, bool update_stat)
2162{
2163 struct btrfs_free_space *left_info;
2164 struct btrfs_free_space *right_info;
2165 bool merged = false;
2166 u64 offset = info->offset;
2167 u64 bytes = info->bytes;
2168
2169 /*
2170 * first we want to see if there is free space adjacent to the range we
2171 * are adding, if there is remove that struct and add a new one to
2172 * cover the entire range
2173 */
2174 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2175 if (right_info && rb_prev(&right_info->offset_index))
2176 left_info = rb_entry(rb_prev(&right_info->offset_index),
2177 struct btrfs_free_space, offset_index);
2178 else
2179 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2180
2181 if (right_info && !right_info->bitmap) {
2182 if (update_stat)
2183 unlink_free_space(ctl, right_info);
2184 else
2185 __unlink_free_space(ctl, right_info);
2186 info->bytes += right_info->bytes;
2187 kmem_cache_free(btrfs_free_space_cachep, right_info);
2188 merged = true;
2189 }
2190
2191 if (left_info && !left_info->bitmap &&
2192 left_info->offset + left_info->bytes == offset) {
2193 if (update_stat)
2194 unlink_free_space(ctl, left_info);
2195 else
2196 __unlink_free_space(ctl, left_info);
2197 info->offset = left_info->offset;
2198 info->bytes += left_info->bytes;
2199 kmem_cache_free(btrfs_free_space_cachep, left_info);
2200 merged = true;
2201 }
2202
2203 return merged;
2204}
2205
2206static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2207 struct btrfs_free_space *info,
2208 bool update_stat)
2209{
2210 struct btrfs_free_space *bitmap;
2211 unsigned long i;
2212 unsigned long j;
2213 const u64 end = info->offset + info->bytes;
2214 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2215 u64 bytes;
2216
2217 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2218 if (!bitmap)
2219 return false;
2220
2221 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2222 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2223 if (j == i)
2224 return false;
2225 bytes = (j - i) * ctl->unit;
2226 info->bytes += bytes;
2227
2228 if (update_stat)
2229 bitmap_clear_bits(ctl, bitmap, end, bytes);
2230 else
2231 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2232
2233 if (!bitmap->bytes)
2234 free_bitmap(ctl, bitmap);
2235
2236 return true;
2237}
2238
2239static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2240 struct btrfs_free_space *info,
2241 bool update_stat)
2242{
2243 struct btrfs_free_space *bitmap;
2244 u64 bitmap_offset;
2245 unsigned long i;
2246 unsigned long j;
2247 unsigned long prev_j;
2248 u64 bytes;
2249
2250 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2251 /* If we're on a boundary, try the previous logical bitmap. */
2252 if (bitmap_offset == info->offset) {
2253 if (info->offset == 0)
2254 return false;
2255 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2256 }
2257
2258 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2259 if (!bitmap)
2260 return false;
2261
2262 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2263 j = 0;
2264 prev_j = (unsigned long)-1;
2265 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2266 if (j > i)
2267 break;
2268 prev_j = j;
2269 }
2270 if (prev_j == i)
2271 return false;
2272
2273 if (prev_j == (unsigned long)-1)
2274 bytes = (i + 1) * ctl->unit;
2275 else
2276 bytes = (i - prev_j) * ctl->unit;
2277
2278 info->offset -= bytes;
2279 info->bytes += bytes;
2280
2281 if (update_stat)
2282 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2283 else
2284 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2285
2286 if (!bitmap->bytes)
2287 free_bitmap(ctl, bitmap);
2288
2289 return true;
2290}
2291
2292/*
2293 * We prefer always to allocate from extent entries, both for clustered and
2294 * non-clustered allocation requests. So when attempting to add a new extent
2295 * entry, try to see if there's adjacent free space in bitmap entries, and if
2296 * there is, migrate that space from the bitmaps to the extent.
2297 * Like this we get better chances of satisfying space allocation requests
2298 * because we attempt to satisfy them based on a single cache entry, and never
2299 * on 2 or more entries - even if the entries represent a contiguous free space
2300 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2301 * ends).
2302 */
2303static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2304 struct btrfs_free_space *info,
2305 bool update_stat)
2306{
2307 /*
2308 * Only work with disconnected entries, as we can change their offset,
2309 * and must be extent entries.
2310 */
2311 ASSERT(!info->bitmap);
2312 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2313
2314 if (ctl->total_bitmaps > 0) {
2315 bool stole_end;
2316 bool stole_front = false;
2317
2318 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2319 if (ctl->total_bitmaps > 0)
2320 stole_front = steal_from_bitmap_to_front(ctl, info,
2321 update_stat);
2322
2323 if (stole_end || stole_front)
2324 try_merge_free_space(ctl, info, update_stat);
2325 }
2326}
2327
2328int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2329 struct btrfs_free_space_ctl *ctl,
2330 u64 offset, u64 bytes)
2331{
2332 struct btrfs_free_space *info;
2333 int ret = 0;
2334
2335 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2336 if (!info)
2337 return -ENOMEM;
2338
2339 info->offset = offset;
2340 info->bytes = bytes;
2341 RB_CLEAR_NODE(&info->offset_index);
2342
2343 spin_lock(&ctl->tree_lock);
2344
2345 if (try_merge_free_space(ctl, info, true))
2346 goto link;
2347
2348 /*
2349 * There was no extent directly to the left or right of this new
2350 * extent then we know we're going to have to allocate a new extent, so
2351 * before we do that see if we need to drop this into a bitmap
2352 */
2353 ret = insert_into_bitmap(ctl, info);
2354 if (ret < 0) {
2355 goto out;
2356 } else if (ret) {
2357 ret = 0;
2358 goto out;
2359 }
2360link:
2361 /*
2362 * Only steal free space from adjacent bitmaps if we're sure we're not
2363 * going to add the new free space to existing bitmap entries - because
2364 * that would mean unnecessary work that would be reverted. Therefore
2365 * attempt to steal space from bitmaps if we're adding an extent entry.
2366 */
2367 steal_from_bitmap(ctl, info, true);
2368
2369 ret = link_free_space(ctl, info);
2370 if (ret)
2371 kmem_cache_free(btrfs_free_space_cachep, info);
2372out:
2373 spin_unlock(&ctl->tree_lock);
2374
2375 if (ret) {
2376 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2377 ASSERT(ret != -EEXIST);
2378 }
2379
2380 return ret;
2381}
2382
2383int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
2384 u64 bytenr, u64 size)
2385{
2386 return __btrfs_add_free_space(block_group->fs_info,
2387 block_group->free_space_ctl,
2388 bytenr, size);
2389}
2390
2391int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2392 u64 offset, u64 bytes)
2393{
2394 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2395 struct btrfs_free_space *info;
2396 int ret;
2397 bool re_search = false;
2398
2399 spin_lock(&ctl->tree_lock);
2400
2401again:
2402 ret = 0;
2403 if (!bytes)
2404 goto out_lock;
2405
2406 info = tree_search_offset(ctl, offset, 0, 0);
2407 if (!info) {
2408 /*
2409 * oops didn't find an extent that matched the space we wanted
2410 * to remove, look for a bitmap instead
2411 */
2412 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2413 1, 0);
2414 if (!info) {
2415 /*
2416 * If we found a partial bit of our free space in a
2417 * bitmap but then couldn't find the other part this may
2418 * be a problem, so WARN about it.
2419 */
2420 WARN_ON(re_search);
2421 goto out_lock;
2422 }
2423 }
2424
2425 re_search = false;
2426 if (!info->bitmap) {
2427 unlink_free_space(ctl, info);
2428 if (offset == info->offset) {
2429 u64 to_free = min(bytes, info->bytes);
2430
2431 info->bytes -= to_free;
2432 info->offset += to_free;
2433 if (info->bytes) {
2434 ret = link_free_space(ctl, info);
2435 WARN_ON(ret);
2436 } else {
2437 kmem_cache_free(btrfs_free_space_cachep, info);
2438 }
2439
2440 offset += to_free;
2441 bytes -= to_free;
2442 goto again;
2443 } else {
2444 u64 old_end = info->bytes + info->offset;
2445
2446 info->bytes = offset - info->offset;
2447 ret = link_free_space(ctl, info);
2448 WARN_ON(ret);
2449 if (ret)
2450 goto out_lock;
2451
2452 /* Not enough bytes in this entry to satisfy us */
2453 if (old_end < offset + bytes) {
2454 bytes -= old_end - offset;
2455 offset = old_end;
2456 goto again;
2457 } else if (old_end == offset + bytes) {
2458 /* all done */
2459 goto out_lock;
2460 }
2461 spin_unlock(&ctl->tree_lock);
2462
2463 ret = btrfs_add_free_space(block_group, offset + bytes,
2464 old_end - (offset + bytes));
2465 WARN_ON(ret);
2466 goto out;
2467 }
2468 }
2469
2470 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2471 if (ret == -EAGAIN) {
2472 re_search = true;
2473 goto again;
2474 }
2475out_lock:
2476 spin_unlock(&ctl->tree_lock);
2477out:
2478 return ret;
2479}
2480
2481void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2482 u64 bytes)
2483{
2484 struct btrfs_fs_info *fs_info = block_group->fs_info;
2485 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2486 struct btrfs_free_space *info;
2487 struct rb_node *n;
2488 int count = 0;
2489
2490 spin_lock(&ctl->tree_lock);
2491 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2492 info = rb_entry(n, struct btrfs_free_space, offset_index);
2493 if (info->bytes >= bytes && !block_group->ro)
2494 count++;
2495 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2496 info->offset, info->bytes,
2497 (info->bitmap) ? "yes" : "no");
2498 }
2499 spin_unlock(&ctl->tree_lock);
2500 btrfs_info(fs_info, "block group has cluster?: %s",
2501 list_empty(&block_group->cluster_list) ? "no" : "yes");
2502 btrfs_info(fs_info,
2503 "%d blocks of free space at or bigger than bytes is", count);
2504}
2505
2506void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2507{
2508 struct btrfs_fs_info *fs_info = block_group->fs_info;
2509 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2510
2511 spin_lock_init(&ctl->tree_lock);
2512 ctl->unit = fs_info->sectorsize;
2513 ctl->start = block_group->key.objectid;
2514 ctl->private = block_group;
2515 ctl->op = &free_space_op;
2516 INIT_LIST_HEAD(&ctl->trimming_ranges);
2517 mutex_init(&ctl->cache_writeout_mutex);
2518
2519 /*
2520 * we only want to have 32k of ram per block group for keeping
2521 * track of free space, and if we pass 1/2 of that we want to
2522 * start converting things over to using bitmaps
2523 */
2524 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2525}
2526
2527/*
2528 * for a given cluster, put all of its extents back into the free
2529 * space cache. If the block group passed doesn't match the block group
2530 * pointed to by the cluster, someone else raced in and freed the
2531 * cluster already. In that case, we just return without changing anything
2532 */
2533static int
2534__btrfs_return_cluster_to_free_space(
2535 struct btrfs_block_group_cache *block_group,
2536 struct btrfs_free_cluster *cluster)
2537{
2538 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2539 struct btrfs_free_space *entry;
2540 struct rb_node *node;
2541
2542 spin_lock(&cluster->lock);
2543 if (cluster->block_group != block_group)
2544 goto out;
2545
2546 cluster->block_group = NULL;
2547 cluster->window_start = 0;
2548 list_del_init(&cluster->block_group_list);
2549
2550 node = rb_first(&cluster->root);
2551 while (node) {
2552 bool bitmap;
2553
2554 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2555 node = rb_next(&entry->offset_index);
2556 rb_erase(&entry->offset_index, &cluster->root);
2557 RB_CLEAR_NODE(&entry->offset_index);
2558
2559 bitmap = (entry->bitmap != NULL);
2560 if (!bitmap) {
2561 try_merge_free_space(ctl, entry, false);
2562 steal_from_bitmap(ctl, entry, false);
2563 }
2564 tree_insert_offset(&ctl->free_space_offset,
2565 entry->offset, &entry->offset_index, bitmap);
2566 }
2567 cluster->root = RB_ROOT;
2568
2569out:
2570 spin_unlock(&cluster->lock);
2571 btrfs_put_block_group(block_group);
2572 return 0;
2573}
2574
2575static void __btrfs_remove_free_space_cache_locked(
2576 struct btrfs_free_space_ctl *ctl)
2577{
2578 struct btrfs_free_space *info;
2579 struct rb_node *node;
2580
2581 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2582 info = rb_entry(node, struct btrfs_free_space, offset_index);
2583 if (!info->bitmap) {
2584 unlink_free_space(ctl, info);
2585 kmem_cache_free(btrfs_free_space_cachep, info);
2586 } else {
2587 free_bitmap(ctl, info);
2588 }
2589
2590 cond_resched_lock(&ctl->tree_lock);
2591 }
2592}
2593
2594void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2595{
2596 spin_lock(&ctl->tree_lock);
2597 __btrfs_remove_free_space_cache_locked(ctl);
2598 spin_unlock(&ctl->tree_lock);
2599}
2600
2601void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2602{
2603 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2604 struct btrfs_free_cluster *cluster;
2605 struct list_head *head;
2606
2607 spin_lock(&ctl->tree_lock);
2608 while ((head = block_group->cluster_list.next) !=
2609 &block_group->cluster_list) {
2610 cluster = list_entry(head, struct btrfs_free_cluster,
2611 block_group_list);
2612
2613 WARN_ON(cluster->block_group != block_group);
2614 __btrfs_return_cluster_to_free_space(block_group, cluster);
2615
2616 cond_resched_lock(&ctl->tree_lock);
2617 }
2618 __btrfs_remove_free_space_cache_locked(ctl);
2619 spin_unlock(&ctl->tree_lock);
2620
2621}
2622
2623u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2624 u64 offset, u64 bytes, u64 empty_size,
2625 u64 *max_extent_size)
2626{
2627 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2628 struct btrfs_free_space *entry = NULL;
2629 u64 bytes_search = bytes + empty_size;
2630 u64 ret = 0;
2631 u64 align_gap = 0;
2632 u64 align_gap_len = 0;
2633
2634 spin_lock(&ctl->tree_lock);
2635 entry = find_free_space(ctl, &offset, &bytes_search,
2636 block_group->full_stripe_len, max_extent_size);
2637 if (!entry)
2638 goto out;
2639
2640 ret = offset;
2641 if (entry->bitmap) {
2642 bitmap_clear_bits(ctl, entry, offset, bytes);
2643 if (!entry->bytes)
2644 free_bitmap(ctl, entry);
2645 } else {
2646 unlink_free_space(ctl, entry);
2647 align_gap_len = offset - entry->offset;
2648 align_gap = entry->offset;
2649
2650 entry->offset = offset + bytes;
2651 WARN_ON(entry->bytes < bytes + align_gap_len);
2652
2653 entry->bytes -= bytes + align_gap_len;
2654 if (!entry->bytes)
2655 kmem_cache_free(btrfs_free_space_cachep, entry);
2656 else
2657 link_free_space(ctl, entry);
2658 }
2659out:
2660 spin_unlock(&ctl->tree_lock);
2661
2662 if (align_gap_len)
2663 __btrfs_add_free_space(block_group->fs_info, ctl,
2664 align_gap, align_gap_len);
2665 return ret;
2666}
2667
2668/*
2669 * given a cluster, put all of its extents back into the free space
2670 * cache. If a block group is passed, this function will only free
2671 * a cluster that belongs to the passed block group.
2672 *
2673 * Otherwise, it'll get a reference on the block group pointed to by the
2674 * cluster and remove the cluster from it.
2675 */
2676int btrfs_return_cluster_to_free_space(
2677 struct btrfs_block_group_cache *block_group,
2678 struct btrfs_free_cluster *cluster)
2679{
2680 struct btrfs_free_space_ctl *ctl;
2681 int ret;
2682
2683 /* first, get a safe pointer to the block group */
2684 spin_lock(&cluster->lock);
2685 if (!block_group) {
2686 block_group = cluster->block_group;
2687 if (!block_group) {
2688 spin_unlock(&cluster->lock);
2689 return 0;
2690 }
2691 } else if (cluster->block_group != block_group) {
2692 /* someone else has already freed it don't redo their work */
2693 spin_unlock(&cluster->lock);
2694 return 0;
2695 }
2696 atomic_inc(&block_group->count);
2697 spin_unlock(&cluster->lock);
2698
2699 ctl = block_group->free_space_ctl;
2700
2701 /* now return any extents the cluster had on it */
2702 spin_lock(&ctl->tree_lock);
2703 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2704 spin_unlock(&ctl->tree_lock);
2705
2706 /* finally drop our ref */
2707 btrfs_put_block_group(block_group);
2708 return ret;
2709}
2710
2711static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2712 struct btrfs_free_cluster *cluster,
2713 struct btrfs_free_space *entry,
2714 u64 bytes, u64 min_start,
2715 u64 *max_extent_size)
2716{
2717 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2718 int err;
2719 u64 search_start = cluster->window_start;
2720 u64 search_bytes = bytes;
2721 u64 ret = 0;
2722
2723 search_start = min_start;
2724 search_bytes = bytes;
2725
2726 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2727 if (err) {
2728 *max_extent_size = max(get_max_extent_size(entry),
2729 *max_extent_size);
2730 return 0;
2731 }
2732
2733 ret = search_start;
2734 __bitmap_clear_bits(ctl, entry, ret, bytes);
2735
2736 return ret;
2737}
2738
2739/*
2740 * given a cluster, try to allocate 'bytes' from it, returns 0
2741 * if it couldn't find anything suitably large, or a logical disk offset
2742 * if things worked out
2743 */
2744u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2745 struct btrfs_free_cluster *cluster, u64 bytes,
2746 u64 min_start, u64 *max_extent_size)
2747{
2748 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2749 struct btrfs_free_space *entry = NULL;
2750 struct rb_node *node;
2751 u64 ret = 0;
2752
2753 spin_lock(&cluster->lock);
2754 if (bytes > cluster->max_size)
2755 goto out;
2756
2757 if (cluster->block_group != block_group)
2758 goto out;
2759
2760 node = rb_first(&cluster->root);
2761 if (!node)
2762 goto out;
2763
2764 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2765 while (1) {
2766 if (entry->bytes < bytes)
2767 *max_extent_size = max(get_max_extent_size(entry),
2768 *max_extent_size);
2769
2770 if (entry->bytes < bytes ||
2771 (!entry->bitmap && entry->offset < min_start)) {
2772 node = rb_next(&entry->offset_index);
2773 if (!node)
2774 break;
2775 entry = rb_entry(node, struct btrfs_free_space,
2776 offset_index);
2777 continue;
2778 }
2779
2780 if (entry->bitmap) {
2781 ret = btrfs_alloc_from_bitmap(block_group,
2782 cluster, entry, bytes,
2783 cluster->window_start,
2784 max_extent_size);
2785 if (ret == 0) {
2786 node = rb_next(&entry->offset_index);
2787 if (!node)
2788 break;
2789 entry = rb_entry(node, struct btrfs_free_space,
2790 offset_index);
2791 continue;
2792 }
2793 cluster->window_start += bytes;
2794 } else {
2795 ret = entry->offset;
2796
2797 entry->offset += bytes;
2798 entry->bytes -= bytes;
2799 }
2800
2801 if (entry->bytes == 0)
2802 rb_erase(&entry->offset_index, &cluster->root);
2803 break;
2804 }
2805out:
2806 spin_unlock(&cluster->lock);
2807
2808 if (!ret)
2809 return 0;
2810
2811 spin_lock(&ctl->tree_lock);
2812
2813 ctl->free_space -= bytes;
2814 if (entry->bytes == 0) {
2815 ctl->free_extents--;
2816 if (entry->bitmap) {
2817 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2818 entry->bitmap);
2819 ctl->total_bitmaps--;
2820 ctl->op->recalc_thresholds(ctl);
2821 }
2822 kmem_cache_free(btrfs_free_space_cachep, entry);
2823 }
2824
2825 spin_unlock(&ctl->tree_lock);
2826
2827 return ret;
2828}
2829
2830static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2831 struct btrfs_free_space *entry,
2832 struct btrfs_free_cluster *cluster,
2833 u64 offset, u64 bytes,
2834 u64 cont1_bytes, u64 min_bytes)
2835{
2836 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2837 unsigned long next_zero;
2838 unsigned long i;
2839 unsigned long want_bits;
2840 unsigned long min_bits;
2841 unsigned long found_bits;
2842 unsigned long max_bits = 0;
2843 unsigned long start = 0;
2844 unsigned long total_found = 0;
2845 int ret;
2846
2847 i = offset_to_bit(entry->offset, ctl->unit,
2848 max_t(u64, offset, entry->offset));
2849 want_bits = bytes_to_bits(bytes, ctl->unit);
2850 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2851
2852 /*
2853 * Don't bother looking for a cluster in this bitmap if it's heavily
2854 * fragmented.
2855 */
2856 if (entry->max_extent_size &&
2857 entry->max_extent_size < cont1_bytes)
2858 return -ENOSPC;
2859again:
2860 found_bits = 0;
2861 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2862 next_zero = find_next_zero_bit(entry->bitmap,
2863 BITS_PER_BITMAP, i);
2864 if (next_zero - i >= min_bits) {
2865 found_bits = next_zero - i;
2866 if (found_bits > max_bits)
2867 max_bits = found_bits;
2868 break;
2869 }
2870 if (next_zero - i > max_bits)
2871 max_bits = next_zero - i;
2872 i = next_zero;
2873 }
2874
2875 if (!found_bits) {
2876 entry->max_extent_size = (u64)max_bits * ctl->unit;
2877 return -ENOSPC;
2878 }
2879
2880 if (!total_found) {
2881 start = i;
2882 cluster->max_size = 0;
2883 }
2884
2885 total_found += found_bits;
2886
2887 if (cluster->max_size < found_bits * ctl->unit)
2888 cluster->max_size = found_bits * ctl->unit;
2889
2890 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2891 i = next_zero + 1;
2892 goto again;
2893 }
2894
2895 cluster->window_start = start * ctl->unit + entry->offset;
2896 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2897 ret = tree_insert_offset(&cluster->root, entry->offset,
2898 &entry->offset_index, 1);
2899 ASSERT(!ret); /* -EEXIST; Logic error */
2900
2901 trace_btrfs_setup_cluster(block_group, cluster,
2902 total_found * ctl->unit, 1);
2903 return 0;
2904}
2905
2906/*
2907 * This searches the block group for just extents to fill the cluster with.
2908 * Try to find a cluster with at least bytes total bytes, at least one
2909 * extent of cont1_bytes, and other clusters of at least min_bytes.
2910 */
2911static noinline int
2912setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2913 struct btrfs_free_cluster *cluster,
2914 struct list_head *bitmaps, u64 offset, u64 bytes,
2915 u64 cont1_bytes, u64 min_bytes)
2916{
2917 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2918 struct btrfs_free_space *first = NULL;
2919 struct btrfs_free_space *entry = NULL;
2920 struct btrfs_free_space *last;
2921 struct rb_node *node;
2922 u64 window_free;
2923 u64 max_extent;
2924 u64 total_size = 0;
2925
2926 entry = tree_search_offset(ctl, offset, 0, 1);
2927 if (!entry)
2928 return -ENOSPC;
2929
2930 /*
2931 * We don't want bitmaps, so just move along until we find a normal
2932 * extent entry.
2933 */
2934 while (entry->bitmap || entry->bytes < min_bytes) {
2935 if (entry->bitmap && list_empty(&entry->list))
2936 list_add_tail(&entry->list, bitmaps);
2937 node = rb_next(&entry->offset_index);
2938 if (!node)
2939 return -ENOSPC;
2940 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2941 }
2942
2943 window_free = entry->bytes;
2944 max_extent = entry->bytes;
2945 first = entry;
2946 last = entry;
2947
2948 for (node = rb_next(&entry->offset_index); node;
2949 node = rb_next(&entry->offset_index)) {
2950 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2951
2952 if (entry->bitmap) {
2953 if (list_empty(&entry->list))
2954 list_add_tail(&entry->list, bitmaps);
2955 continue;
2956 }
2957
2958 if (entry->bytes < min_bytes)
2959 continue;
2960
2961 last = entry;
2962 window_free += entry->bytes;
2963 if (entry->bytes > max_extent)
2964 max_extent = entry->bytes;
2965 }
2966
2967 if (window_free < bytes || max_extent < cont1_bytes)
2968 return -ENOSPC;
2969
2970 cluster->window_start = first->offset;
2971
2972 node = &first->offset_index;
2973
2974 /*
2975 * now we've found our entries, pull them out of the free space
2976 * cache and put them into the cluster rbtree
2977 */
2978 do {
2979 int ret;
2980
2981 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2982 node = rb_next(&entry->offset_index);
2983 if (entry->bitmap || entry->bytes < min_bytes)
2984 continue;
2985
2986 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2987 ret = tree_insert_offset(&cluster->root, entry->offset,
2988 &entry->offset_index, 0);
2989 total_size += entry->bytes;
2990 ASSERT(!ret); /* -EEXIST; Logic error */
2991 } while (node && entry != last);
2992
2993 cluster->max_size = max_extent;
2994 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2995 return 0;
2996}
2997
2998/*
2999 * This specifically looks for bitmaps that may work in the cluster, we assume
3000 * that we have already failed to find extents that will work.
3001 */
3002static noinline int
3003setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
3004 struct btrfs_free_cluster *cluster,
3005 struct list_head *bitmaps, u64 offset, u64 bytes,
3006 u64 cont1_bytes, u64 min_bytes)
3007{
3008 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3009 struct btrfs_free_space *entry = NULL;
3010 int ret = -ENOSPC;
3011 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3012
3013 if (ctl->total_bitmaps == 0)
3014 return -ENOSPC;
3015
3016 /*
3017 * The bitmap that covers offset won't be in the list unless offset
3018 * is just its start offset.
3019 */
3020 if (!list_empty(bitmaps))
3021 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3022
3023 if (!entry || entry->offset != bitmap_offset) {
3024 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3025 if (entry && list_empty(&entry->list))
3026 list_add(&entry->list, bitmaps);
3027 }
3028
3029 list_for_each_entry(entry, bitmaps, list) {
3030 if (entry->bytes < bytes)
3031 continue;
3032 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3033 bytes, cont1_bytes, min_bytes);
3034 if (!ret)
3035 return 0;
3036 }
3037
3038 /*
3039 * The bitmaps list has all the bitmaps that record free space
3040 * starting after offset, so no more search is required.
3041 */
3042 return -ENOSPC;
3043}
3044
3045/*
3046 * here we try to find a cluster of blocks in a block group. The goal
3047 * is to find at least bytes+empty_size.
3048 * We might not find them all in one contiguous area.
3049 *
3050 * returns zero and sets up cluster if things worked out, otherwise
3051 * it returns -enospc
3052 */
3053int btrfs_find_space_cluster(struct btrfs_block_group_cache *block_group,
3054 struct btrfs_free_cluster *cluster,
3055 u64 offset, u64 bytes, u64 empty_size)
3056{
3057 struct btrfs_fs_info *fs_info = block_group->fs_info;
3058 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3059 struct btrfs_free_space *entry, *tmp;
3060 LIST_HEAD(bitmaps);
3061 u64 min_bytes;
3062 u64 cont1_bytes;
3063 int ret;
3064
3065 /*
3066 * Choose the minimum extent size we'll require for this
3067 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3068 * For metadata, allow allocates with smaller extents. For
3069 * data, keep it dense.
3070 */
3071 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3072 cont1_bytes = min_bytes = bytes + empty_size;
3073 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3074 cont1_bytes = bytes;
3075 min_bytes = fs_info->sectorsize;
3076 } else {
3077 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3078 min_bytes = fs_info->sectorsize;
3079 }
3080
3081 spin_lock(&ctl->tree_lock);
3082
3083 /*
3084 * If we know we don't have enough space to make a cluster don't even
3085 * bother doing all the work to try and find one.
3086 */
3087 if (ctl->free_space < bytes) {
3088 spin_unlock(&ctl->tree_lock);
3089 return -ENOSPC;
3090 }
3091
3092 spin_lock(&cluster->lock);
3093
3094 /* someone already found a cluster, hooray */
3095 if (cluster->block_group) {
3096 ret = 0;
3097 goto out;
3098 }
3099
3100 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3101 min_bytes);
3102
3103 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3104 bytes + empty_size,
3105 cont1_bytes, min_bytes);
3106 if (ret)
3107 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3108 offset, bytes + empty_size,
3109 cont1_bytes, min_bytes);
3110
3111 /* Clear our temporary list */
3112 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3113 list_del_init(&entry->list);
3114
3115 if (!ret) {
3116 atomic_inc(&block_group->count);
3117 list_add_tail(&cluster->block_group_list,
3118 &block_group->cluster_list);
3119 cluster->block_group = block_group;
3120 } else {
3121 trace_btrfs_failed_cluster_setup(block_group);
3122 }
3123out:
3124 spin_unlock(&cluster->lock);
3125 spin_unlock(&ctl->tree_lock);
3126
3127 return ret;
3128}
3129
3130/*
3131 * simple code to zero out a cluster
3132 */
3133void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3134{
3135 spin_lock_init(&cluster->lock);
3136 spin_lock_init(&cluster->refill_lock);
3137 cluster->root = RB_ROOT;
3138 cluster->max_size = 0;
3139 cluster->fragmented = false;
3140 INIT_LIST_HEAD(&cluster->block_group_list);
3141 cluster->block_group = NULL;
3142}
3143
3144static int do_trimming(struct btrfs_block_group_cache *block_group,
3145 u64 *total_trimmed, u64 start, u64 bytes,
3146 u64 reserved_start, u64 reserved_bytes,
3147 struct btrfs_trim_range *trim_entry)
3148{
3149 struct btrfs_space_info *space_info = block_group->space_info;
3150 struct btrfs_fs_info *fs_info = block_group->fs_info;
3151 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3152 int ret;
3153 int update = 0;
3154 u64 trimmed = 0;
3155
3156 spin_lock(&space_info->lock);
3157 spin_lock(&block_group->lock);
3158 if (!block_group->ro) {
3159 block_group->reserved += reserved_bytes;
3160 space_info->bytes_reserved += reserved_bytes;
3161 update = 1;
3162 }
3163 spin_unlock(&block_group->lock);
3164 spin_unlock(&space_info->lock);
3165
3166 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3167 if (!ret)
3168 *total_trimmed += trimmed;
3169
3170 mutex_lock(&ctl->cache_writeout_mutex);
3171 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3172 list_del(&trim_entry->list);
3173 mutex_unlock(&ctl->cache_writeout_mutex);
3174
3175 if (update) {
3176 spin_lock(&space_info->lock);
3177 spin_lock(&block_group->lock);
3178 if (block_group->ro)
3179 space_info->bytes_readonly += reserved_bytes;
3180 block_group->reserved -= reserved_bytes;
3181 space_info->bytes_reserved -= reserved_bytes;
3182 spin_unlock(&block_group->lock);
3183 spin_unlock(&space_info->lock);
3184 }
3185
3186 return ret;
3187}
3188
3189static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3190 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3191{
3192 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3193 struct btrfs_free_space *entry;
3194 struct rb_node *node;
3195 int ret = 0;
3196 u64 extent_start;
3197 u64 extent_bytes;
3198 u64 bytes;
3199
3200 while (start < end) {
3201 struct btrfs_trim_range trim_entry;
3202
3203 mutex_lock(&ctl->cache_writeout_mutex);
3204 spin_lock(&ctl->tree_lock);
3205
3206 if (ctl->free_space < minlen) {
3207 spin_unlock(&ctl->tree_lock);
3208 mutex_unlock(&ctl->cache_writeout_mutex);
3209 break;
3210 }
3211
3212 entry = tree_search_offset(ctl, start, 0, 1);
3213 if (!entry) {
3214 spin_unlock(&ctl->tree_lock);
3215 mutex_unlock(&ctl->cache_writeout_mutex);
3216 break;
3217 }
3218
3219 /* skip bitmaps */
3220 while (entry->bitmap) {
3221 node = rb_next(&entry->offset_index);
3222 if (!node) {
3223 spin_unlock(&ctl->tree_lock);
3224 mutex_unlock(&ctl->cache_writeout_mutex);
3225 goto out;
3226 }
3227 entry = rb_entry(node, struct btrfs_free_space,
3228 offset_index);
3229 }
3230
3231 if (entry->offset >= end) {
3232 spin_unlock(&ctl->tree_lock);
3233 mutex_unlock(&ctl->cache_writeout_mutex);
3234 break;
3235 }
3236
3237 extent_start = entry->offset;
3238 extent_bytes = entry->bytes;
3239 start = max(start, extent_start);
3240 bytes = min(extent_start + extent_bytes, end) - start;
3241 if (bytes < minlen) {
3242 spin_unlock(&ctl->tree_lock);
3243 mutex_unlock(&ctl->cache_writeout_mutex);
3244 goto next;
3245 }
3246
3247 unlink_free_space(ctl, entry);
3248 kmem_cache_free(btrfs_free_space_cachep, entry);
3249
3250 spin_unlock(&ctl->tree_lock);
3251 trim_entry.start = extent_start;
3252 trim_entry.bytes = extent_bytes;
3253 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3254 mutex_unlock(&ctl->cache_writeout_mutex);
3255
3256 ret = do_trimming(block_group, total_trimmed, start, bytes,
3257 extent_start, extent_bytes, &trim_entry);
3258 if (ret)
3259 break;
3260next:
3261 start += bytes;
3262
3263 if (fatal_signal_pending(current)) {
3264 ret = -ERESTARTSYS;
3265 break;
3266 }
3267
3268 cond_resched();
3269 }
3270out:
3271 return ret;
3272}
3273
3274static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3275 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3276{
3277 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3278 struct btrfs_free_space *entry;
3279 int ret = 0;
3280 int ret2;
3281 u64 bytes;
3282 u64 offset = offset_to_bitmap(ctl, start);
3283
3284 while (offset < end) {
3285 bool next_bitmap = false;
3286 struct btrfs_trim_range trim_entry;
3287
3288 mutex_lock(&ctl->cache_writeout_mutex);
3289 spin_lock(&ctl->tree_lock);
3290
3291 if (ctl->free_space < minlen) {
3292 spin_unlock(&ctl->tree_lock);
3293 mutex_unlock(&ctl->cache_writeout_mutex);
3294 break;
3295 }
3296
3297 entry = tree_search_offset(ctl, offset, 1, 0);
3298 if (!entry) {
3299 spin_unlock(&ctl->tree_lock);
3300 mutex_unlock(&ctl->cache_writeout_mutex);
3301 next_bitmap = true;
3302 goto next;
3303 }
3304
3305 bytes = minlen;
3306 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3307 if (ret2 || start >= end) {
3308 spin_unlock(&ctl->tree_lock);
3309 mutex_unlock(&ctl->cache_writeout_mutex);
3310 next_bitmap = true;
3311 goto next;
3312 }
3313
3314 bytes = min(bytes, end - start);
3315 if (bytes < minlen) {
3316 spin_unlock(&ctl->tree_lock);
3317 mutex_unlock(&ctl->cache_writeout_mutex);
3318 goto next;
3319 }
3320
3321 bitmap_clear_bits(ctl, entry, start, bytes);
3322 if (entry->bytes == 0)
3323 free_bitmap(ctl, entry);
3324
3325 spin_unlock(&ctl->tree_lock);
3326 trim_entry.start = start;
3327 trim_entry.bytes = bytes;
3328 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3329 mutex_unlock(&ctl->cache_writeout_mutex);
3330
3331 ret = do_trimming(block_group, total_trimmed, start, bytes,
3332 start, bytes, &trim_entry);
3333 if (ret)
3334 break;
3335next:
3336 if (next_bitmap) {
3337 offset += BITS_PER_BITMAP * ctl->unit;
3338 } else {
3339 start += bytes;
3340 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3341 offset += BITS_PER_BITMAP * ctl->unit;
3342 }
3343
3344 if (fatal_signal_pending(current)) {
3345 ret = -ERESTARTSYS;
3346 break;
3347 }
3348
3349 cond_resched();
3350 }
3351
3352 return ret;
3353}
3354
3355void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3356{
3357 atomic_inc(&cache->trimming);
3358}
3359
3360void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3361{
3362 struct btrfs_fs_info *fs_info = block_group->fs_info;
3363 struct extent_map_tree *em_tree;
3364 struct extent_map *em;
3365 bool cleanup;
3366
3367 spin_lock(&block_group->lock);
3368 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3369 block_group->removed);
3370 spin_unlock(&block_group->lock);
3371
3372 if (cleanup) {
3373 mutex_lock(&fs_info->chunk_mutex);
3374 em_tree = &fs_info->mapping_tree;
3375 write_lock(&em_tree->lock);
3376 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3377 1);
3378 BUG_ON(!em); /* logic error, can't happen */
3379 remove_extent_mapping(em_tree, em);
3380 write_unlock(&em_tree->lock);
3381 mutex_unlock(&fs_info->chunk_mutex);
3382
3383 /* once for us and once for the tree */
3384 free_extent_map(em);
3385 free_extent_map(em);
3386
3387 /*
3388 * We've left one free space entry and other tasks trimming
3389 * this block group have left 1 entry each one. Free them.
3390 */
3391 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3392 }
3393}
3394
3395int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3396 u64 *trimmed, u64 start, u64 end, u64 minlen)
3397{
3398 int ret;
3399
3400 *trimmed = 0;
3401
3402 spin_lock(&block_group->lock);
3403 if (block_group->removed) {
3404 spin_unlock(&block_group->lock);
3405 return 0;
3406 }
3407 btrfs_get_block_group_trimming(block_group);
3408 spin_unlock(&block_group->lock);
3409
3410 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3411 if (ret)
3412 goto out;
3413
3414 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3415out:
3416 btrfs_put_block_group_trimming(block_group);
3417 return ret;
3418}
3419
3420/*
3421 * Find the left-most item in the cache tree, and then return the
3422 * smallest inode number in the item.
3423 *
3424 * Note: the returned inode number may not be the smallest one in
3425 * the tree, if the left-most item is a bitmap.
3426 */
3427u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3428{
3429 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3430 struct btrfs_free_space *entry = NULL;
3431 u64 ino = 0;
3432
3433 spin_lock(&ctl->tree_lock);
3434
3435 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3436 goto out;
3437
3438 entry = rb_entry(rb_first(&ctl->free_space_offset),
3439 struct btrfs_free_space, offset_index);
3440
3441 if (!entry->bitmap) {
3442 ino = entry->offset;
3443
3444 unlink_free_space(ctl, entry);
3445 entry->offset++;
3446 entry->bytes--;
3447 if (!entry->bytes)
3448 kmem_cache_free(btrfs_free_space_cachep, entry);
3449 else
3450 link_free_space(ctl, entry);
3451 } else {
3452 u64 offset = 0;
3453 u64 count = 1;
3454 int ret;
3455
3456 ret = search_bitmap(ctl, entry, &offset, &count, true);
3457 /* Logic error; Should be empty if it can't find anything */
3458 ASSERT(!ret);
3459
3460 ino = offset;
3461 bitmap_clear_bits(ctl, entry, offset, 1);
3462 if (entry->bytes == 0)
3463 free_bitmap(ctl, entry);
3464 }
3465out:
3466 spin_unlock(&ctl->tree_lock);
3467
3468 return ino;
3469}
3470
3471struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3472 struct btrfs_path *path)
3473{
3474 struct inode *inode = NULL;
3475
3476 spin_lock(&root->ino_cache_lock);
3477 if (root->ino_cache_inode)
3478 inode = igrab(root->ino_cache_inode);
3479 spin_unlock(&root->ino_cache_lock);
3480 if (inode)
3481 return inode;
3482
3483 inode = __lookup_free_space_inode(root, path, 0);
3484 if (IS_ERR(inode))
3485 return inode;
3486
3487 spin_lock(&root->ino_cache_lock);
3488 if (!btrfs_fs_closing(root->fs_info))
3489 root->ino_cache_inode = igrab(inode);
3490 spin_unlock(&root->ino_cache_lock);
3491
3492 return inode;
3493}
3494
3495int create_free_ino_inode(struct btrfs_root *root,
3496 struct btrfs_trans_handle *trans,
3497 struct btrfs_path *path)
3498{
3499 return __create_free_space_inode(root, trans, path,
3500 BTRFS_FREE_INO_OBJECTID, 0);
3501}
3502
3503int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3504{
3505 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3506 struct btrfs_path *path;
3507 struct inode *inode;
3508 int ret = 0;
3509 u64 root_gen = btrfs_root_generation(&root->root_item);
3510
3511 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3512 return 0;
3513
3514 /*
3515 * If we're unmounting then just return, since this does a search on the
3516 * normal root and not the commit root and we could deadlock.
3517 */
3518 if (btrfs_fs_closing(fs_info))
3519 return 0;
3520
3521 path = btrfs_alloc_path();
3522 if (!path)
3523 return 0;
3524
3525 inode = lookup_free_ino_inode(root, path);
3526 if (IS_ERR(inode))
3527 goto out;
3528
3529 if (root_gen != BTRFS_I(inode)->generation)
3530 goto out_put;
3531
3532 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3533
3534 if (ret < 0)
3535 btrfs_err(fs_info,
3536 "failed to load free ino cache for root %llu",
3537 root->root_key.objectid);
3538out_put:
3539 iput(inode);
3540out:
3541 btrfs_free_path(path);
3542 return ret;
3543}
3544
3545int btrfs_write_out_ino_cache(struct btrfs_root *root,
3546 struct btrfs_trans_handle *trans,
3547 struct btrfs_path *path,
3548 struct inode *inode)
3549{
3550 struct btrfs_fs_info *fs_info = root->fs_info;
3551 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3552 int ret;
3553 struct btrfs_io_ctl io_ctl;
3554 bool release_metadata = true;
3555
3556 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3557 return 0;
3558
3559 memset(&io_ctl, 0, sizeof(io_ctl));
3560 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3561 if (!ret) {
3562 /*
3563 * At this point writepages() didn't error out, so our metadata
3564 * reservation is released when the writeback finishes, at
3565 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3566 * with or without an error.
3567 */
3568 release_metadata = false;
3569 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3570 }
3571
3572 if (ret) {
3573 if (release_metadata)
3574 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3575 inode->i_size, true);
3576#ifdef DEBUG
3577 btrfs_err(fs_info,
3578 "failed to write free ino cache for root %llu",
3579 root->root_key.objectid);
3580#endif
3581 }
3582
3583 return ret;
3584}
3585
3586#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3587/*
3588 * Use this if you need to make a bitmap or extent entry specifically, it
3589 * doesn't do any of the merging that add_free_space does, this acts a lot like
3590 * how the free space cache loading stuff works, so you can get really weird
3591 * configurations.
3592 */
3593int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3594 u64 offset, u64 bytes, bool bitmap)
3595{
3596 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3597 struct btrfs_free_space *info = NULL, *bitmap_info;
3598 void *map = NULL;
3599 u64 bytes_added;
3600 int ret;
3601
3602again:
3603 if (!info) {
3604 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3605 if (!info)
3606 return -ENOMEM;
3607 }
3608
3609 if (!bitmap) {
3610 spin_lock(&ctl->tree_lock);
3611 info->offset = offset;
3612 info->bytes = bytes;
3613 info->max_extent_size = 0;
3614 ret = link_free_space(ctl, info);
3615 spin_unlock(&ctl->tree_lock);
3616 if (ret)
3617 kmem_cache_free(btrfs_free_space_cachep, info);
3618 return ret;
3619 }
3620
3621 if (!map) {
3622 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3623 if (!map) {
3624 kmem_cache_free(btrfs_free_space_cachep, info);
3625 return -ENOMEM;
3626 }
3627 }
3628
3629 spin_lock(&ctl->tree_lock);
3630 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3631 1, 0);
3632 if (!bitmap_info) {
3633 info->bitmap = map;
3634 map = NULL;
3635 add_new_bitmap(ctl, info, offset);
3636 bitmap_info = info;
3637 info = NULL;
3638 }
3639
3640 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3641
3642 bytes -= bytes_added;
3643 offset += bytes_added;
3644 spin_unlock(&ctl->tree_lock);
3645
3646 if (bytes)
3647 goto again;
3648
3649 if (info)
3650 kmem_cache_free(btrfs_free_space_cachep, info);
3651 if (map)
3652 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3653 return 0;
3654}
3655
3656/*
3657 * Checks to see if the given range is in the free space cache. This is really
3658 * just used to check the absence of space, so if there is free space in the
3659 * range at all we will return 1.
3660 */
3661int test_check_exists(struct btrfs_block_group_cache *cache,
3662 u64 offset, u64 bytes)
3663{
3664 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3665 struct btrfs_free_space *info;
3666 int ret = 0;
3667
3668 spin_lock(&ctl->tree_lock);
3669 info = tree_search_offset(ctl, offset, 0, 0);
3670 if (!info) {
3671 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3672 1, 0);
3673 if (!info)
3674 goto out;
3675 }
3676
3677have_info:
3678 if (info->bitmap) {
3679 u64 bit_off, bit_bytes;
3680 struct rb_node *n;
3681 struct btrfs_free_space *tmp;
3682
3683 bit_off = offset;
3684 bit_bytes = ctl->unit;
3685 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3686 if (!ret) {
3687 if (bit_off == offset) {
3688 ret = 1;
3689 goto out;
3690 } else if (bit_off > offset &&
3691 offset + bytes > bit_off) {
3692 ret = 1;
3693 goto out;
3694 }
3695 }
3696
3697 n = rb_prev(&info->offset_index);
3698 while (n) {
3699 tmp = rb_entry(n, struct btrfs_free_space,
3700 offset_index);
3701 if (tmp->offset + tmp->bytes < offset)
3702 break;
3703 if (offset + bytes < tmp->offset) {
3704 n = rb_prev(&tmp->offset_index);
3705 continue;
3706 }
3707 info = tmp;
3708 goto have_info;
3709 }
3710
3711 n = rb_next(&info->offset_index);
3712 while (n) {
3713 tmp = rb_entry(n, struct btrfs_free_space,
3714 offset_index);
3715 if (offset + bytes < tmp->offset)
3716 break;
3717 if (tmp->offset + tmp->bytes < offset) {
3718 n = rb_next(&tmp->offset_index);
3719 continue;
3720 }
3721 info = tmp;
3722 goto have_info;
3723 }
3724
3725 ret = 0;
3726 goto out;
3727 }
3728
3729 if (info->offset == offset) {
3730 ret = 1;
3731 goto out;
3732 }
3733
3734 if (offset > info->offset && offset < info->offset + info->bytes)
3735 ret = 1;
3736out:
3737 spin_unlock(&ctl->tree_lock);
3738 return ret;
3739}
3740#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6#include <linux/pagemap.h>
7#include <linux/sched.h>
8#include <linux/sched/signal.h>
9#include <linux/slab.h>
10#include <linux/math64.h>
11#include <linux/ratelimit.h>
12#include <linux/error-injection.h>
13#include <linux/sched/mm.h>
14#include <linux/string_choices.h>
15#include "ctree.h"
16#include "fs.h"
17#include "messages.h"
18#include "misc.h"
19#include "free-space-cache.h"
20#include "transaction.h"
21#include "disk-io.h"
22#include "extent_io.h"
23#include "space-info.h"
24#include "block-group.h"
25#include "discard.h"
26#include "subpage.h"
27#include "inode-item.h"
28#include "accessors.h"
29#include "file-item.h"
30#include "file.h"
31#include "super.h"
32
33#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
34#define MAX_CACHE_BYTES_PER_GIG SZ_64K
35#define FORCE_EXTENT_THRESHOLD SZ_1M
36
37static struct kmem_cache *btrfs_free_space_cachep;
38static struct kmem_cache *btrfs_free_space_bitmap_cachep;
39
40struct btrfs_trim_range {
41 u64 start;
42 u64 bytes;
43 struct list_head list;
44};
45
46static int link_free_space(struct btrfs_free_space_ctl *ctl,
47 struct btrfs_free_space *info);
48static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
49 struct btrfs_free_space *info, bool update_stat);
50static int search_bitmap(struct btrfs_free_space_ctl *ctl,
51 struct btrfs_free_space *bitmap_info, u64 *offset,
52 u64 *bytes, bool for_alloc);
53static void free_bitmap(struct btrfs_free_space_ctl *ctl,
54 struct btrfs_free_space *bitmap_info);
55static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
56 struct btrfs_free_space *info, u64 offset,
57 u64 bytes, bool update_stats);
58
59static void btrfs_crc32c_final(u32 crc, u8 *result)
60{
61 put_unaligned_le32(~crc, result);
62}
63
64static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
65{
66 struct btrfs_free_space *info;
67 struct rb_node *node;
68
69 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
70 info = rb_entry(node, struct btrfs_free_space, offset_index);
71 if (!info->bitmap) {
72 unlink_free_space(ctl, info, true);
73 kmem_cache_free(btrfs_free_space_cachep, info);
74 } else {
75 free_bitmap(ctl, info);
76 }
77
78 cond_resched_lock(&ctl->tree_lock);
79 }
80}
81
82static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
83 struct btrfs_path *path,
84 u64 offset)
85{
86 struct btrfs_key key;
87 struct btrfs_key location;
88 struct btrfs_disk_key disk_key;
89 struct btrfs_free_space_header *header;
90 struct extent_buffer *leaf;
91 struct inode *inode = NULL;
92 unsigned nofs_flag;
93 int ret;
94
95 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
96 key.offset = offset;
97 key.type = 0;
98
99 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
100 if (ret < 0)
101 return ERR_PTR(ret);
102 if (ret > 0) {
103 btrfs_release_path(path);
104 return ERR_PTR(-ENOENT);
105 }
106
107 leaf = path->nodes[0];
108 header = btrfs_item_ptr(leaf, path->slots[0],
109 struct btrfs_free_space_header);
110 btrfs_free_space_key(leaf, header, &disk_key);
111 btrfs_disk_key_to_cpu(&location, &disk_key);
112 btrfs_release_path(path);
113
114 /*
115 * We are often under a trans handle at this point, so we need to make
116 * sure NOFS is set to keep us from deadlocking.
117 */
118 nofs_flag = memalloc_nofs_save();
119 inode = btrfs_iget_path(location.objectid, root, path);
120 btrfs_release_path(path);
121 memalloc_nofs_restore(nofs_flag);
122 if (IS_ERR(inode))
123 return inode;
124
125 mapping_set_gfp_mask(inode->i_mapping,
126 mapping_gfp_constraint(inode->i_mapping,
127 ~(__GFP_FS | __GFP_HIGHMEM)));
128
129 return inode;
130}
131
132struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
133 struct btrfs_path *path)
134{
135 struct btrfs_fs_info *fs_info = block_group->fs_info;
136 struct inode *inode = NULL;
137 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
138
139 spin_lock(&block_group->lock);
140 if (block_group->inode)
141 inode = igrab(&block_group->inode->vfs_inode);
142 spin_unlock(&block_group->lock);
143 if (inode)
144 return inode;
145
146 inode = __lookup_free_space_inode(fs_info->tree_root, path,
147 block_group->start);
148 if (IS_ERR(inode))
149 return inode;
150
151 spin_lock(&block_group->lock);
152 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
153 btrfs_info(fs_info, "Old style space inode found, converting.");
154 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
155 BTRFS_INODE_NODATACOW;
156 block_group->disk_cache_state = BTRFS_DC_CLEAR;
157 }
158
159 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
160 block_group->inode = BTRFS_I(igrab(inode));
161 spin_unlock(&block_group->lock);
162
163 return inode;
164}
165
166static int __create_free_space_inode(struct btrfs_root *root,
167 struct btrfs_trans_handle *trans,
168 struct btrfs_path *path,
169 u64 ino, u64 offset)
170{
171 struct btrfs_key key;
172 struct btrfs_disk_key disk_key;
173 struct btrfs_free_space_header *header;
174 struct btrfs_inode_item *inode_item;
175 struct extent_buffer *leaf;
176 /* We inline CRCs for the free disk space cache */
177 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
178 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
179 int ret;
180
181 ret = btrfs_insert_empty_inode(trans, root, path, ino);
182 if (ret)
183 return ret;
184
185 leaf = path->nodes[0];
186 inode_item = btrfs_item_ptr(leaf, path->slots[0],
187 struct btrfs_inode_item);
188 btrfs_item_key(leaf, &disk_key, path->slots[0]);
189 memzero_extent_buffer(leaf, (unsigned long)inode_item,
190 sizeof(*inode_item));
191 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
192 btrfs_set_inode_size(leaf, inode_item, 0);
193 btrfs_set_inode_nbytes(leaf, inode_item, 0);
194 btrfs_set_inode_uid(leaf, inode_item, 0);
195 btrfs_set_inode_gid(leaf, inode_item, 0);
196 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
197 btrfs_set_inode_flags(leaf, inode_item, flags);
198 btrfs_set_inode_nlink(leaf, inode_item, 1);
199 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
200 btrfs_set_inode_block_group(leaf, inode_item, offset);
201 btrfs_mark_buffer_dirty(trans, leaf);
202 btrfs_release_path(path);
203
204 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
205 key.offset = offset;
206 key.type = 0;
207 ret = btrfs_insert_empty_item(trans, root, path, &key,
208 sizeof(struct btrfs_free_space_header));
209 if (ret < 0) {
210 btrfs_release_path(path);
211 return ret;
212 }
213
214 leaf = path->nodes[0];
215 header = btrfs_item_ptr(leaf, path->slots[0],
216 struct btrfs_free_space_header);
217 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
218 btrfs_set_free_space_key(leaf, header, &disk_key);
219 btrfs_mark_buffer_dirty(trans, leaf);
220 btrfs_release_path(path);
221
222 return 0;
223}
224
225int create_free_space_inode(struct btrfs_trans_handle *trans,
226 struct btrfs_block_group *block_group,
227 struct btrfs_path *path)
228{
229 int ret;
230 u64 ino;
231
232 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
233 if (ret < 0)
234 return ret;
235
236 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
237 ino, block_group->start);
238}
239
240/*
241 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
242 * handles lookup, otherwise it takes ownership and iputs the inode.
243 * Don't reuse an inode pointer after passing it into this function.
244 */
245int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
246 struct inode *inode,
247 struct btrfs_block_group *block_group)
248{
249 struct btrfs_path *path;
250 struct btrfs_key key;
251 int ret = 0;
252
253 path = btrfs_alloc_path();
254 if (!path)
255 return -ENOMEM;
256
257 if (!inode)
258 inode = lookup_free_space_inode(block_group, path);
259 if (IS_ERR(inode)) {
260 if (PTR_ERR(inode) != -ENOENT)
261 ret = PTR_ERR(inode);
262 goto out;
263 }
264 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
265 if (ret) {
266 btrfs_add_delayed_iput(BTRFS_I(inode));
267 goto out;
268 }
269 clear_nlink(inode);
270 /* One for the block groups ref */
271 spin_lock(&block_group->lock);
272 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
273 block_group->inode = NULL;
274 spin_unlock(&block_group->lock);
275 iput(inode);
276 } else {
277 spin_unlock(&block_group->lock);
278 }
279 /* One for the lookup ref */
280 btrfs_add_delayed_iput(BTRFS_I(inode));
281
282 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
283 key.type = 0;
284 key.offset = block_group->start;
285 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
286 -1, 1);
287 if (ret) {
288 if (ret > 0)
289 ret = 0;
290 goto out;
291 }
292 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
293out:
294 btrfs_free_path(path);
295 return ret;
296}
297
298int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
299 struct btrfs_block_group *block_group,
300 struct inode *vfs_inode)
301{
302 struct btrfs_truncate_control control = {
303 .inode = BTRFS_I(vfs_inode),
304 .new_size = 0,
305 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
306 .min_type = BTRFS_EXTENT_DATA_KEY,
307 .clear_extent_range = true,
308 };
309 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
310 struct btrfs_root *root = inode->root;
311 struct extent_state *cached_state = NULL;
312 int ret = 0;
313 bool locked = false;
314
315 if (block_group) {
316 struct btrfs_path *path = btrfs_alloc_path();
317
318 if (!path) {
319 ret = -ENOMEM;
320 goto fail;
321 }
322 locked = true;
323 mutex_lock(&trans->transaction->cache_write_mutex);
324 if (!list_empty(&block_group->io_list)) {
325 list_del_init(&block_group->io_list);
326
327 btrfs_wait_cache_io(trans, block_group, path);
328 btrfs_put_block_group(block_group);
329 }
330
331 /*
332 * now that we've truncated the cache away, its no longer
333 * setup or written
334 */
335 spin_lock(&block_group->lock);
336 block_group->disk_cache_state = BTRFS_DC_CLEAR;
337 spin_unlock(&block_group->lock);
338 btrfs_free_path(path);
339 }
340
341 btrfs_i_size_write(inode, 0);
342 truncate_pagecache(vfs_inode, 0);
343
344 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
345 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
346
347 /*
348 * We skip the throttling logic for free space cache inodes, so we don't
349 * need to check for -EAGAIN.
350 */
351 ret = btrfs_truncate_inode_items(trans, root, &control);
352
353 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
354 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
355
356 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
357 if (ret)
358 goto fail;
359
360 ret = btrfs_update_inode(trans, inode);
361
362fail:
363 if (locked)
364 mutex_unlock(&trans->transaction->cache_write_mutex);
365 if (ret)
366 btrfs_abort_transaction(trans, ret);
367
368 return ret;
369}
370
371static void readahead_cache(struct inode *inode)
372{
373 struct file_ra_state ra;
374 unsigned long last_index;
375
376 file_ra_state_init(&ra, inode->i_mapping);
377 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
378
379 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
380}
381
382static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
383 int write)
384{
385 int num_pages;
386
387 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
388
389 /* Make sure we can fit our crcs and generation into the first page */
390 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
391 return -ENOSPC;
392
393 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
394
395 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
396 if (!io_ctl->pages)
397 return -ENOMEM;
398
399 io_ctl->num_pages = num_pages;
400 io_ctl->fs_info = inode_to_fs_info(inode);
401 io_ctl->inode = inode;
402
403 return 0;
404}
405ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
406
407static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
408{
409 kfree(io_ctl->pages);
410 io_ctl->pages = NULL;
411}
412
413static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
414{
415 if (io_ctl->cur) {
416 io_ctl->cur = NULL;
417 io_ctl->orig = NULL;
418 }
419}
420
421static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
422{
423 ASSERT(io_ctl->index < io_ctl->num_pages);
424 io_ctl->page = io_ctl->pages[io_ctl->index++];
425 io_ctl->cur = page_address(io_ctl->page);
426 io_ctl->orig = io_ctl->cur;
427 io_ctl->size = PAGE_SIZE;
428 if (clear)
429 clear_page(io_ctl->cur);
430}
431
432static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
433{
434 int i;
435
436 io_ctl_unmap_page(io_ctl);
437
438 for (i = 0; i < io_ctl->num_pages; i++) {
439 if (io_ctl->pages[i]) {
440 btrfs_folio_clear_checked(io_ctl->fs_info,
441 page_folio(io_ctl->pages[i]),
442 page_offset(io_ctl->pages[i]),
443 PAGE_SIZE);
444 unlock_page(io_ctl->pages[i]);
445 put_page(io_ctl->pages[i]);
446 }
447 }
448}
449
450static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
451{
452 struct page *page;
453 struct inode *inode = io_ctl->inode;
454 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
455 int i;
456
457 for (i = 0; i < io_ctl->num_pages; i++) {
458 int ret;
459
460 page = find_or_create_page(inode->i_mapping, i, mask);
461 if (!page) {
462 io_ctl_drop_pages(io_ctl);
463 return -ENOMEM;
464 }
465
466 ret = set_page_extent_mapped(page);
467 if (ret < 0) {
468 unlock_page(page);
469 put_page(page);
470 io_ctl_drop_pages(io_ctl);
471 return ret;
472 }
473
474 io_ctl->pages[i] = page;
475 if (uptodate && !PageUptodate(page)) {
476 btrfs_read_folio(NULL, page_folio(page));
477 lock_page(page);
478 if (page->mapping != inode->i_mapping) {
479 btrfs_err(BTRFS_I(inode)->root->fs_info,
480 "free space cache page truncated");
481 io_ctl_drop_pages(io_ctl);
482 return -EIO;
483 }
484 if (!PageUptodate(page)) {
485 btrfs_err(BTRFS_I(inode)->root->fs_info,
486 "error reading free space cache");
487 io_ctl_drop_pages(io_ctl);
488 return -EIO;
489 }
490 }
491 }
492
493 for (i = 0; i < io_ctl->num_pages; i++)
494 clear_page_dirty_for_io(io_ctl->pages[i]);
495
496 return 0;
497}
498
499static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
500{
501 io_ctl_map_page(io_ctl, 1);
502
503 /*
504 * Skip the csum areas. If we don't check crcs then we just have a
505 * 64bit chunk at the front of the first page.
506 */
507 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
508 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
509
510 put_unaligned_le64(generation, io_ctl->cur);
511 io_ctl->cur += sizeof(u64);
512}
513
514static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
515{
516 u64 cache_gen;
517
518 /*
519 * Skip the crc area. If we don't check crcs then we just have a 64bit
520 * chunk at the front of the first page.
521 */
522 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
523 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
524
525 cache_gen = get_unaligned_le64(io_ctl->cur);
526 if (cache_gen != generation) {
527 btrfs_err_rl(io_ctl->fs_info,
528 "space cache generation (%llu) does not match inode (%llu)",
529 cache_gen, generation);
530 io_ctl_unmap_page(io_ctl);
531 return -EIO;
532 }
533 io_ctl->cur += sizeof(u64);
534 return 0;
535}
536
537static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
538{
539 u32 *tmp;
540 u32 crc = ~(u32)0;
541 unsigned offset = 0;
542
543 if (index == 0)
544 offset = sizeof(u32) * io_ctl->num_pages;
545
546 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
547 btrfs_crc32c_final(crc, (u8 *)&crc);
548 io_ctl_unmap_page(io_ctl);
549 tmp = page_address(io_ctl->pages[0]);
550 tmp += index;
551 *tmp = crc;
552}
553
554static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
555{
556 u32 *tmp, val;
557 u32 crc = ~(u32)0;
558 unsigned offset = 0;
559
560 if (index == 0)
561 offset = sizeof(u32) * io_ctl->num_pages;
562
563 tmp = page_address(io_ctl->pages[0]);
564 tmp += index;
565 val = *tmp;
566
567 io_ctl_map_page(io_ctl, 0);
568 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
569 btrfs_crc32c_final(crc, (u8 *)&crc);
570 if (val != crc) {
571 btrfs_err_rl(io_ctl->fs_info,
572 "csum mismatch on free space cache");
573 io_ctl_unmap_page(io_ctl);
574 return -EIO;
575 }
576
577 return 0;
578}
579
580static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
581 void *bitmap)
582{
583 struct btrfs_free_space_entry *entry;
584
585 if (!io_ctl->cur)
586 return -ENOSPC;
587
588 entry = io_ctl->cur;
589 put_unaligned_le64(offset, &entry->offset);
590 put_unaligned_le64(bytes, &entry->bytes);
591 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
592 BTRFS_FREE_SPACE_EXTENT;
593 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
594 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
595
596 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
597 return 0;
598
599 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
600
601 /* No more pages to map */
602 if (io_ctl->index >= io_ctl->num_pages)
603 return 0;
604
605 /* map the next page */
606 io_ctl_map_page(io_ctl, 1);
607 return 0;
608}
609
610static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
611{
612 if (!io_ctl->cur)
613 return -ENOSPC;
614
615 /*
616 * If we aren't at the start of the current page, unmap this one and
617 * map the next one if there is any left.
618 */
619 if (io_ctl->cur != io_ctl->orig) {
620 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
621 if (io_ctl->index >= io_ctl->num_pages)
622 return -ENOSPC;
623 io_ctl_map_page(io_ctl, 0);
624 }
625
626 copy_page(io_ctl->cur, bitmap);
627 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
628 if (io_ctl->index < io_ctl->num_pages)
629 io_ctl_map_page(io_ctl, 0);
630 return 0;
631}
632
633static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
634{
635 /*
636 * If we're not on the boundary we know we've modified the page and we
637 * need to crc the page.
638 */
639 if (io_ctl->cur != io_ctl->orig)
640 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
641 else
642 io_ctl_unmap_page(io_ctl);
643
644 while (io_ctl->index < io_ctl->num_pages) {
645 io_ctl_map_page(io_ctl, 1);
646 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
647 }
648}
649
650static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
651 struct btrfs_free_space *entry, u8 *type)
652{
653 struct btrfs_free_space_entry *e;
654 int ret;
655
656 if (!io_ctl->cur) {
657 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
658 if (ret)
659 return ret;
660 }
661
662 e = io_ctl->cur;
663 entry->offset = get_unaligned_le64(&e->offset);
664 entry->bytes = get_unaligned_le64(&e->bytes);
665 *type = e->type;
666 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
667 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
668
669 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
670 return 0;
671
672 io_ctl_unmap_page(io_ctl);
673
674 return 0;
675}
676
677static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
678 struct btrfs_free_space *entry)
679{
680 int ret;
681
682 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
683 if (ret)
684 return ret;
685
686 copy_page(entry->bitmap, io_ctl->cur);
687 io_ctl_unmap_page(io_ctl);
688
689 return 0;
690}
691
692static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
693{
694 struct btrfs_block_group *block_group = ctl->block_group;
695 u64 max_bytes;
696 u64 bitmap_bytes;
697 u64 extent_bytes;
698 u64 size = block_group->length;
699 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
700 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
701
702 max_bitmaps = max_t(u64, max_bitmaps, 1);
703
704 if (ctl->total_bitmaps > max_bitmaps)
705 btrfs_err(block_group->fs_info,
706"invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
707 block_group->start, block_group->length,
708 ctl->total_bitmaps, ctl->unit, max_bitmaps,
709 bytes_per_bg);
710 ASSERT(ctl->total_bitmaps <= max_bitmaps);
711
712 /*
713 * We are trying to keep the total amount of memory used per 1GiB of
714 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
715 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
716 * bitmaps, we may end up using more memory than this.
717 */
718 if (size < SZ_1G)
719 max_bytes = MAX_CACHE_BYTES_PER_GIG;
720 else
721 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
722
723 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
724
725 /*
726 * we want the extent entry threshold to always be at most 1/2 the max
727 * bytes we can have, or whatever is less than that.
728 */
729 extent_bytes = max_bytes - bitmap_bytes;
730 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
731
732 ctl->extents_thresh =
733 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
734}
735
736static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
737 struct btrfs_free_space_ctl *ctl,
738 struct btrfs_path *path, u64 offset)
739{
740 struct btrfs_fs_info *fs_info = root->fs_info;
741 struct btrfs_free_space_header *header;
742 struct extent_buffer *leaf;
743 struct btrfs_io_ctl io_ctl;
744 struct btrfs_key key;
745 struct btrfs_free_space *e, *n;
746 LIST_HEAD(bitmaps);
747 u64 num_entries;
748 u64 num_bitmaps;
749 u64 generation;
750 u8 type;
751 int ret = 0;
752
753 /* Nothing in the space cache, goodbye */
754 if (!i_size_read(inode))
755 return 0;
756
757 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
758 key.offset = offset;
759 key.type = 0;
760
761 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
762 if (ret < 0)
763 return 0;
764 else if (ret > 0) {
765 btrfs_release_path(path);
766 return 0;
767 }
768
769 ret = -1;
770
771 leaf = path->nodes[0];
772 header = btrfs_item_ptr(leaf, path->slots[0],
773 struct btrfs_free_space_header);
774 num_entries = btrfs_free_space_entries(leaf, header);
775 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
776 generation = btrfs_free_space_generation(leaf, header);
777 btrfs_release_path(path);
778
779 if (!BTRFS_I(inode)->generation) {
780 btrfs_info(fs_info,
781 "the free space cache file (%llu) is invalid, skip it",
782 offset);
783 return 0;
784 }
785
786 if (BTRFS_I(inode)->generation != generation) {
787 btrfs_err(fs_info,
788 "free space inode generation (%llu) did not match free space cache generation (%llu)",
789 BTRFS_I(inode)->generation, generation);
790 return 0;
791 }
792
793 if (!num_entries)
794 return 0;
795
796 ret = io_ctl_init(&io_ctl, inode, 0);
797 if (ret)
798 return ret;
799
800 readahead_cache(inode);
801
802 ret = io_ctl_prepare_pages(&io_ctl, true);
803 if (ret)
804 goto out;
805
806 ret = io_ctl_check_crc(&io_ctl, 0);
807 if (ret)
808 goto free_cache;
809
810 ret = io_ctl_check_generation(&io_ctl, generation);
811 if (ret)
812 goto free_cache;
813
814 while (num_entries) {
815 e = kmem_cache_zalloc(btrfs_free_space_cachep,
816 GFP_NOFS);
817 if (!e) {
818 ret = -ENOMEM;
819 goto free_cache;
820 }
821
822 ret = io_ctl_read_entry(&io_ctl, e, &type);
823 if (ret) {
824 kmem_cache_free(btrfs_free_space_cachep, e);
825 goto free_cache;
826 }
827
828 if (!e->bytes) {
829 ret = -1;
830 kmem_cache_free(btrfs_free_space_cachep, e);
831 goto free_cache;
832 }
833
834 if (type == BTRFS_FREE_SPACE_EXTENT) {
835 spin_lock(&ctl->tree_lock);
836 ret = link_free_space(ctl, e);
837 spin_unlock(&ctl->tree_lock);
838 if (ret) {
839 btrfs_err(fs_info,
840 "Duplicate entries in free space cache, dumping");
841 kmem_cache_free(btrfs_free_space_cachep, e);
842 goto free_cache;
843 }
844 } else {
845 ASSERT(num_bitmaps);
846 num_bitmaps--;
847 e->bitmap = kmem_cache_zalloc(
848 btrfs_free_space_bitmap_cachep, GFP_NOFS);
849 if (!e->bitmap) {
850 ret = -ENOMEM;
851 kmem_cache_free(
852 btrfs_free_space_cachep, e);
853 goto free_cache;
854 }
855 spin_lock(&ctl->tree_lock);
856 ret = link_free_space(ctl, e);
857 if (ret) {
858 spin_unlock(&ctl->tree_lock);
859 btrfs_err(fs_info,
860 "Duplicate entries in free space cache, dumping");
861 kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
862 kmem_cache_free(btrfs_free_space_cachep, e);
863 goto free_cache;
864 }
865 ctl->total_bitmaps++;
866 recalculate_thresholds(ctl);
867 spin_unlock(&ctl->tree_lock);
868 list_add_tail(&e->list, &bitmaps);
869 }
870
871 num_entries--;
872 }
873
874 io_ctl_unmap_page(&io_ctl);
875
876 /*
877 * We add the bitmaps at the end of the entries in order that
878 * the bitmap entries are added to the cache.
879 */
880 list_for_each_entry_safe(e, n, &bitmaps, list) {
881 list_del_init(&e->list);
882 ret = io_ctl_read_bitmap(&io_ctl, e);
883 if (ret)
884 goto free_cache;
885 }
886
887 io_ctl_drop_pages(&io_ctl);
888 ret = 1;
889out:
890 io_ctl_free(&io_ctl);
891 return ret;
892free_cache:
893 io_ctl_drop_pages(&io_ctl);
894
895 spin_lock(&ctl->tree_lock);
896 __btrfs_remove_free_space_cache(ctl);
897 spin_unlock(&ctl->tree_lock);
898 goto out;
899}
900
901static int copy_free_space_cache(struct btrfs_block_group *block_group,
902 struct btrfs_free_space_ctl *ctl)
903{
904 struct btrfs_free_space *info;
905 struct rb_node *n;
906 int ret = 0;
907
908 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
909 info = rb_entry(n, struct btrfs_free_space, offset_index);
910 if (!info->bitmap) {
911 const u64 offset = info->offset;
912 const u64 bytes = info->bytes;
913
914 unlink_free_space(ctl, info, true);
915 spin_unlock(&ctl->tree_lock);
916 kmem_cache_free(btrfs_free_space_cachep, info);
917 ret = btrfs_add_free_space(block_group, offset, bytes);
918 spin_lock(&ctl->tree_lock);
919 } else {
920 u64 offset = info->offset;
921 u64 bytes = ctl->unit;
922
923 ret = search_bitmap(ctl, info, &offset, &bytes, false);
924 if (ret == 0) {
925 bitmap_clear_bits(ctl, info, offset, bytes, true);
926 spin_unlock(&ctl->tree_lock);
927 ret = btrfs_add_free_space(block_group, offset,
928 bytes);
929 spin_lock(&ctl->tree_lock);
930 } else {
931 free_bitmap(ctl, info);
932 ret = 0;
933 }
934 }
935 cond_resched_lock(&ctl->tree_lock);
936 }
937 return ret;
938}
939
940static struct lock_class_key btrfs_free_space_inode_key;
941
942int load_free_space_cache(struct btrfs_block_group *block_group)
943{
944 struct btrfs_fs_info *fs_info = block_group->fs_info;
945 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
946 struct btrfs_free_space_ctl tmp_ctl = {};
947 struct inode *inode;
948 struct btrfs_path *path;
949 int ret = 0;
950 bool matched;
951 u64 used = block_group->used;
952
953 /*
954 * Because we could potentially discard our loaded free space, we want
955 * to load everything into a temporary structure first, and then if it's
956 * valid copy it all into the actual free space ctl.
957 */
958 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
959
960 /*
961 * If this block group has been marked to be cleared for one reason or
962 * another then we can't trust the on disk cache, so just return.
963 */
964 spin_lock(&block_group->lock);
965 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
966 spin_unlock(&block_group->lock);
967 return 0;
968 }
969 spin_unlock(&block_group->lock);
970
971 path = btrfs_alloc_path();
972 if (!path)
973 return 0;
974 path->search_commit_root = 1;
975 path->skip_locking = 1;
976
977 /*
978 * We must pass a path with search_commit_root set to btrfs_iget in
979 * order to avoid a deadlock when allocating extents for the tree root.
980 *
981 * When we are COWing an extent buffer from the tree root, when looking
982 * for a free extent, at extent-tree.c:find_free_extent(), we can find
983 * block group without its free space cache loaded. When we find one
984 * we must load its space cache which requires reading its free space
985 * cache's inode item from the root tree. If this inode item is located
986 * in the same leaf that we started COWing before, then we end up in
987 * deadlock on the extent buffer (trying to read lock it when we
988 * previously write locked it).
989 *
990 * It's safe to read the inode item using the commit root because
991 * block groups, once loaded, stay in memory forever (until they are
992 * removed) as well as their space caches once loaded. New block groups
993 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
994 * we will never try to read their inode item while the fs is mounted.
995 */
996 inode = lookup_free_space_inode(block_group, path);
997 if (IS_ERR(inode)) {
998 btrfs_free_path(path);
999 return 0;
1000 }
1001
1002 /* We may have converted the inode and made the cache invalid. */
1003 spin_lock(&block_group->lock);
1004 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1005 spin_unlock(&block_group->lock);
1006 btrfs_free_path(path);
1007 goto out;
1008 }
1009 spin_unlock(&block_group->lock);
1010
1011 /*
1012 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1013 * free space inodes to prevent false positives related to locks for normal
1014 * inodes.
1015 */
1016 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1017 &btrfs_free_space_inode_key);
1018
1019 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1020 path, block_group->start);
1021 btrfs_free_path(path);
1022 if (ret <= 0)
1023 goto out;
1024
1025 matched = (tmp_ctl.free_space == (block_group->length - used -
1026 block_group->bytes_super));
1027
1028 if (matched) {
1029 spin_lock(&tmp_ctl.tree_lock);
1030 ret = copy_free_space_cache(block_group, &tmp_ctl);
1031 spin_unlock(&tmp_ctl.tree_lock);
1032 /*
1033 * ret == 1 means we successfully loaded the free space cache,
1034 * so we need to re-set it here.
1035 */
1036 if (ret == 0)
1037 ret = 1;
1038 } else {
1039 /*
1040 * We need to call the _locked variant so we don't try to update
1041 * the discard counters.
1042 */
1043 spin_lock(&tmp_ctl.tree_lock);
1044 __btrfs_remove_free_space_cache(&tmp_ctl);
1045 spin_unlock(&tmp_ctl.tree_lock);
1046 btrfs_warn(fs_info,
1047 "block group %llu has wrong amount of free space",
1048 block_group->start);
1049 ret = -1;
1050 }
1051out:
1052 if (ret < 0) {
1053 /* This cache is bogus, make sure it gets cleared */
1054 spin_lock(&block_group->lock);
1055 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1056 spin_unlock(&block_group->lock);
1057 ret = 0;
1058
1059 btrfs_warn(fs_info,
1060 "failed to load free space cache for block group %llu, rebuilding it now",
1061 block_group->start);
1062 }
1063
1064 spin_lock(&ctl->tree_lock);
1065 btrfs_discard_update_discardable(block_group);
1066 spin_unlock(&ctl->tree_lock);
1067 iput(inode);
1068 return ret;
1069}
1070
1071static noinline_for_stack
1072int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1073 struct btrfs_free_space_ctl *ctl,
1074 struct btrfs_block_group *block_group,
1075 int *entries, int *bitmaps,
1076 struct list_head *bitmap_list)
1077{
1078 int ret;
1079 struct btrfs_free_cluster *cluster = NULL;
1080 struct btrfs_free_cluster *cluster_locked = NULL;
1081 struct rb_node *node = rb_first(&ctl->free_space_offset);
1082 struct btrfs_trim_range *trim_entry;
1083
1084 /* Get the cluster for this block_group if it exists */
1085 if (block_group && !list_empty(&block_group->cluster_list)) {
1086 cluster = list_entry(block_group->cluster_list.next,
1087 struct btrfs_free_cluster,
1088 block_group_list);
1089 }
1090
1091 if (!node && cluster) {
1092 cluster_locked = cluster;
1093 spin_lock(&cluster_locked->lock);
1094 node = rb_first(&cluster->root);
1095 cluster = NULL;
1096 }
1097
1098 /* Write out the extent entries */
1099 while (node) {
1100 struct btrfs_free_space *e;
1101
1102 e = rb_entry(node, struct btrfs_free_space, offset_index);
1103 *entries += 1;
1104
1105 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1106 e->bitmap);
1107 if (ret)
1108 goto fail;
1109
1110 if (e->bitmap) {
1111 list_add_tail(&e->list, bitmap_list);
1112 *bitmaps += 1;
1113 }
1114 node = rb_next(node);
1115 if (!node && cluster) {
1116 node = rb_first(&cluster->root);
1117 cluster_locked = cluster;
1118 spin_lock(&cluster_locked->lock);
1119 cluster = NULL;
1120 }
1121 }
1122 if (cluster_locked) {
1123 spin_unlock(&cluster_locked->lock);
1124 cluster_locked = NULL;
1125 }
1126
1127 /*
1128 * Make sure we don't miss any range that was removed from our rbtree
1129 * because trimming is running. Otherwise after a umount+mount (or crash
1130 * after committing the transaction) we would leak free space and get
1131 * an inconsistent free space cache report from fsck.
1132 */
1133 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1134 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1135 trim_entry->bytes, NULL);
1136 if (ret)
1137 goto fail;
1138 *entries += 1;
1139 }
1140
1141 return 0;
1142fail:
1143 if (cluster_locked)
1144 spin_unlock(&cluster_locked->lock);
1145 return -ENOSPC;
1146}
1147
1148static noinline_for_stack int
1149update_cache_item(struct btrfs_trans_handle *trans,
1150 struct btrfs_root *root,
1151 struct inode *inode,
1152 struct btrfs_path *path, u64 offset,
1153 int entries, int bitmaps)
1154{
1155 struct btrfs_key key;
1156 struct btrfs_free_space_header *header;
1157 struct extent_buffer *leaf;
1158 int ret;
1159
1160 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1161 key.offset = offset;
1162 key.type = 0;
1163
1164 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1165 if (ret < 0) {
1166 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1167 EXTENT_DELALLOC, NULL);
1168 goto fail;
1169 }
1170 leaf = path->nodes[0];
1171 if (ret > 0) {
1172 struct btrfs_key found_key;
1173 ASSERT(path->slots[0]);
1174 path->slots[0]--;
1175 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1176 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1177 found_key.offset != offset) {
1178 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1179 inode->i_size - 1, EXTENT_DELALLOC,
1180 NULL);
1181 btrfs_release_path(path);
1182 goto fail;
1183 }
1184 }
1185
1186 BTRFS_I(inode)->generation = trans->transid;
1187 header = btrfs_item_ptr(leaf, path->slots[0],
1188 struct btrfs_free_space_header);
1189 btrfs_set_free_space_entries(leaf, header, entries);
1190 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1191 btrfs_set_free_space_generation(leaf, header, trans->transid);
1192 btrfs_mark_buffer_dirty(trans, leaf);
1193 btrfs_release_path(path);
1194
1195 return 0;
1196
1197fail:
1198 return -1;
1199}
1200
1201static noinline_for_stack int write_pinned_extent_entries(
1202 struct btrfs_trans_handle *trans,
1203 struct btrfs_block_group *block_group,
1204 struct btrfs_io_ctl *io_ctl,
1205 int *entries)
1206{
1207 u64 start, extent_start, extent_end, len;
1208 struct extent_io_tree *unpin = NULL;
1209 int ret;
1210
1211 if (!block_group)
1212 return 0;
1213
1214 /*
1215 * We want to add any pinned extents to our free space cache
1216 * so we don't leak the space
1217 *
1218 * We shouldn't have switched the pinned extents yet so this is the
1219 * right one
1220 */
1221 unpin = &trans->transaction->pinned_extents;
1222
1223 start = block_group->start;
1224
1225 while (start < block_group->start + block_group->length) {
1226 if (!find_first_extent_bit(unpin, start,
1227 &extent_start, &extent_end,
1228 EXTENT_DIRTY, NULL))
1229 return 0;
1230
1231 /* This pinned extent is out of our range */
1232 if (extent_start >= block_group->start + block_group->length)
1233 return 0;
1234
1235 extent_start = max(extent_start, start);
1236 extent_end = min(block_group->start + block_group->length,
1237 extent_end + 1);
1238 len = extent_end - extent_start;
1239
1240 *entries += 1;
1241 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1242 if (ret)
1243 return -ENOSPC;
1244
1245 start = extent_end;
1246 }
1247
1248 return 0;
1249}
1250
1251static noinline_for_stack int
1252write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1253{
1254 struct btrfs_free_space *entry, *next;
1255 int ret;
1256
1257 /* Write out the bitmaps */
1258 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1259 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1260 if (ret)
1261 return -ENOSPC;
1262 list_del_init(&entry->list);
1263 }
1264
1265 return 0;
1266}
1267
1268static int flush_dirty_cache(struct inode *inode)
1269{
1270 int ret;
1271
1272 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
1273 if (ret)
1274 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1275 EXTENT_DELALLOC, NULL);
1276
1277 return ret;
1278}
1279
1280static void noinline_for_stack
1281cleanup_bitmap_list(struct list_head *bitmap_list)
1282{
1283 struct btrfs_free_space *entry, *next;
1284
1285 list_for_each_entry_safe(entry, next, bitmap_list, list)
1286 list_del_init(&entry->list);
1287}
1288
1289static void noinline_for_stack
1290cleanup_write_cache_enospc(struct inode *inode,
1291 struct btrfs_io_ctl *io_ctl,
1292 struct extent_state **cached_state)
1293{
1294 io_ctl_drop_pages(io_ctl);
1295 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1296 cached_state);
1297}
1298
1299static int __btrfs_wait_cache_io(struct btrfs_root *root,
1300 struct btrfs_trans_handle *trans,
1301 struct btrfs_block_group *block_group,
1302 struct btrfs_io_ctl *io_ctl,
1303 struct btrfs_path *path, u64 offset)
1304{
1305 int ret;
1306 struct inode *inode = io_ctl->inode;
1307
1308 if (!inode)
1309 return 0;
1310
1311 /* Flush the dirty pages in the cache file. */
1312 ret = flush_dirty_cache(inode);
1313 if (ret)
1314 goto out;
1315
1316 /* Update the cache item to tell everyone this cache file is valid. */
1317 ret = update_cache_item(trans, root, inode, path, offset,
1318 io_ctl->entries, io_ctl->bitmaps);
1319out:
1320 if (ret) {
1321 invalidate_inode_pages2(inode->i_mapping);
1322 BTRFS_I(inode)->generation = 0;
1323 if (block_group)
1324 btrfs_debug(root->fs_info,
1325 "failed to write free space cache for block group %llu error %d",
1326 block_group->start, ret);
1327 }
1328 btrfs_update_inode(trans, BTRFS_I(inode));
1329
1330 if (block_group) {
1331 /* the dirty list is protected by the dirty_bgs_lock */
1332 spin_lock(&trans->transaction->dirty_bgs_lock);
1333
1334 /* the disk_cache_state is protected by the block group lock */
1335 spin_lock(&block_group->lock);
1336
1337 /*
1338 * only mark this as written if we didn't get put back on
1339 * the dirty list while waiting for IO. Otherwise our
1340 * cache state won't be right, and we won't get written again
1341 */
1342 if (!ret && list_empty(&block_group->dirty_list))
1343 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1344 else if (ret)
1345 block_group->disk_cache_state = BTRFS_DC_ERROR;
1346
1347 spin_unlock(&block_group->lock);
1348 spin_unlock(&trans->transaction->dirty_bgs_lock);
1349 io_ctl->inode = NULL;
1350 iput(inode);
1351 }
1352
1353 return ret;
1354
1355}
1356
1357int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1358 struct btrfs_block_group *block_group,
1359 struct btrfs_path *path)
1360{
1361 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1362 block_group, &block_group->io_ctl,
1363 path, block_group->start);
1364}
1365
1366/*
1367 * Write out cached info to an inode.
1368 *
1369 * @inode: freespace inode we are writing out
1370 * @ctl: free space cache we are going to write out
1371 * @block_group: block_group for this cache if it belongs to a block_group
1372 * @io_ctl: holds context for the io
1373 * @trans: the trans handle
1374 *
1375 * This function writes out a free space cache struct to disk for quick recovery
1376 * on mount. This will return 0 if it was successful in writing the cache out,
1377 * or an errno if it was not.
1378 */
1379static int __btrfs_write_out_cache(struct inode *inode,
1380 struct btrfs_free_space_ctl *ctl,
1381 struct btrfs_block_group *block_group,
1382 struct btrfs_io_ctl *io_ctl,
1383 struct btrfs_trans_handle *trans)
1384{
1385 struct extent_state *cached_state = NULL;
1386 LIST_HEAD(bitmap_list);
1387 int entries = 0;
1388 int bitmaps = 0;
1389 int ret;
1390 int must_iput = 0;
1391 int i_size;
1392
1393 if (!i_size_read(inode))
1394 return -EIO;
1395
1396 WARN_ON(io_ctl->pages);
1397 ret = io_ctl_init(io_ctl, inode, 1);
1398 if (ret)
1399 return ret;
1400
1401 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1402 down_write(&block_group->data_rwsem);
1403 spin_lock(&block_group->lock);
1404 if (block_group->delalloc_bytes) {
1405 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1406 spin_unlock(&block_group->lock);
1407 up_write(&block_group->data_rwsem);
1408 BTRFS_I(inode)->generation = 0;
1409 ret = 0;
1410 must_iput = 1;
1411 goto out;
1412 }
1413 spin_unlock(&block_group->lock);
1414 }
1415
1416 /* Lock all pages first so we can lock the extent safely. */
1417 ret = io_ctl_prepare_pages(io_ctl, false);
1418 if (ret)
1419 goto out_unlock;
1420
1421 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1422 &cached_state);
1423
1424 io_ctl_set_generation(io_ctl, trans->transid);
1425
1426 mutex_lock(&ctl->cache_writeout_mutex);
1427 /* Write out the extent entries in the free space cache */
1428 spin_lock(&ctl->tree_lock);
1429 ret = write_cache_extent_entries(io_ctl, ctl,
1430 block_group, &entries, &bitmaps,
1431 &bitmap_list);
1432 if (ret)
1433 goto out_nospc_locked;
1434
1435 /*
1436 * Some spaces that are freed in the current transaction are pinned,
1437 * they will be added into free space cache after the transaction is
1438 * committed, we shouldn't lose them.
1439 *
1440 * If this changes while we are working we'll get added back to
1441 * the dirty list and redo it. No locking needed
1442 */
1443 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1444 if (ret)
1445 goto out_nospc_locked;
1446
1447 /*
1448 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1449 * locked while doing it because a concurrent trim can be manipulating
1450 * or freeing the bitmap.
1451 */
1452 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1453 spin_unlock(&ctl->tree_lock);
1454 mutex_unlock(&ctl->cache_writeout_mutex);
1455 if (ret)
1456 goto out_nospc;
1457
1458 /* Zero out the rest of the pages just to make sure */
1459 io_ctl_zero_remaining_pages(io_ctl);
1460
1461 /* Everything is written out, now we dirty the pages in the file. */
1462 i_size = i_size_read(inode);
1463 for (int i = 0; i < round_up(i_size, PAGE_SIZE) / PAGE_SIZE; i++) {
1464 u64 dirty_start = i * PAGE_SIZE;
1465 u64 dirty_len = min_t(u64, dirty_start + PAGE_SIZE, i_size) - dirty_start;
1466
1467 ret = btrfs_dirty_folio(BTRFS_I(inode), page_folio(io_ctl->pages[i]),
1468 dirty_start, dirty_len, &cached_state, false);
1469 if (ret < 0)
1470 goto out_nospc;
1471 }
1472
1473 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1474 up_write(&block_group->data_rwsem);
1475 /*
1476 * Release the pages and unlock the extent, we will flush
1477 * them out later
1478 */
1479 io_ctl_drop_pages(io_ctl);
1480 io_ctl_free(io_ctl);
1481
1482 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1483 &cached_state);
1484
1485 /*
1486 * at this point the pages are under IO and we're happy,
1487 * The caller is responsible for waiting on them and updating
1488 * the cache and the inode
1489 */
1490 io_ctl->entries = entries;
1491 io_ctl->bitmaps = bitmaps;
1492
1493 ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
1494 if (ret)
1495 goto out;
1496
1497 return 0;
1498
1499out_nospc_locked:
1500 cleanup_bitmap_list(&bitmap_list);
1501 spin_unlock(&ctl->tree_lock);
1502 mutex_unlock(&ctl->cache_writeout_mutex);
1503
1504out_nospc:
1505 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1506
1507out_unlock:
1508 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1509 up_write(&block_group->data_rwsem);
1510
1511out:
1512 io_ctl->inode = NULL;
1513 io_ctl_free(io_ctl);
1514 if (ret) {
1515 invalidate_inode_pages2(inode->i_mapping);
1516 BTRFS_I(inode)->generation = 0;
1517 }
1518 btrfs_update_inode(trans, BTRFS_I(inode));
1519 if (must_iput)
1520 iput(inode);
1521 return ret;
1522}
1523
1524int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1525 struct btrfs_block_group *block_group,
1526 struct btrfs_path *path)
1527{
1528 struct btrfs_fs_info *fs_info = trans->fs_info;
1529 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1530 struct inode *inode;
1531 int ret = 0;
1532
1533 spin_lock(&block_group->lock);
1534 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1535 spin_unlock(&block_group->lock);
1536 return 0;
1537 }
1538 spin_unlock(&block_group->lock);
1539
1540 inode = lookup_free_space_inode(block_group, path);
1541 if (IS_ERR(inode))
1542 return 0;
1543
1544 ret = __btrfs_write_out_cache(inode, ctl, block_group,
1545 &block_group->io_ctl, trans);
1546 if (ret) {
1547 btrfs_debug(fs_info,
1548 "failed to write free space cache for block group %llu error %d",
1549 block_group->start, ret);
1550 spin_lock(&block_group->lock);
1551 block_group->disk_cache_state = BTRFS_DC_ERROR;
1552 spin_unlock(&block_group->lock);
1553
1554 block_group->io_ctl.inode = NULL;
1555 iput(inode);
1556 }
1557
1558 /*
1559 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1560 * to wait for IO and put the inode
1561 */
1562
1563 return ret;
1564}
1565
1566static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1567 u64 offset)
1568{
1569 ASSERT(offset >= bitmap_start);
1570 offset -= bitmap_start;
1571 return (unsigned long)(div_u64(offset, unit));
1572}
1573
1574static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1575{
1576 return (unsigned long)(div_u64(bytes, unit));
1577}
1578
1579static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1580 u64 offset)
1581{
1582 u64 bitmap_start;
1583 u64 bytes_per_bitmap;
1584
1585 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1586 bitmap_start = offset - ctl->start;
1587 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1588 bitmap_start *= bytes_per_bitmap;
1589 bitmap_start += ctl->start;
1590
1591 return bitmap_start;
1592}
1593
1594static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1595 struct btrfs_free_cluster *cluster,
1596 struct btrfs_free_space *new_entry)
1597{
1598 struct rb_root *root;
1599 struct rb_node **p;
1600 struct rb_node *parent = NULL;
1601
1602 lockdep_assert_held(&ctl->tree_lock);
1603
1604 if (cluster) {
1605 lockdep_assert_held(&cluster->lock);
1606 root = &cluster->root;
1607 } else {
1608 root = &ctl->free_space_offset;
1609 }
1610
1611 p = &root->rb_node;
1612
1613 while (*p) {
1614 struct btrfs_free_space *info;
1615
1616 parent = *p;
1617 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1618
1619 if (new_entry->offset < info->offset) {
1620 p = &(*p)->rb_left;
1621 } else if (new_entry->offset > info->offset) {
1622 p = &(*p)->rb_right;
1623 } else {
1624 /*
1625 * we could have a bitmap entry and an extent entry
1626 * share the same offset. If this is the case, we want
1627 * the extent entry to always be found first if we do a
1628 * linear search through the tree, since we want to have
1629 * the quickest allocation time, and allocating from an
1630 * extent is faster than allocating from a bitmap. So
1631 * if we're inserting a bitmap and we find an entry at
1632 * this offset, we want to go right, or after this entry
1633 * logically. If we are inserting an extent and we've
1634 * found a bitmap, we want to go left, or before
1635 * logically.
1636 */
1637 if (new_entry->bitmap) {
1638 if (info->bitmap) {
1639 WARN_ON_ONCE(1);
1640 return -EEXIST;
1641 }
1642 p = &(*p)->rb_right;
1643 } else {
1644 if (!info->bitmap) {
1645 WARN_ON_ONCE(1);
1646 return -EEXIST;
1647 }
1648 p = &(*p)->rb_left;
1649 }
1650 }
1651 }
1652
1653 rb_link_node(&new_entry->offset_index, parent, p);
1654 rb_insert_color(&new_entry->offset_index, root);
1655
1656 return 0;
1657}
1658
1659/*
1660 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1661 * searched through the bitmap and figured out the largest ->max_extent_size,
1662 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1663 * allocator the wrong thing, we want to use the actual real max_extent_size
1664 * we've found already if it's larger, or we want to use ->bytes.
1665 *
1666 * This matters because find_free_space() will skip entries who's ->bytes is
1667 * less than the required bytes. So if we didn't search down this bitmap, we
1668 * may pick some previous entry that has a smaller ->max_extent_size than we
1669 * have. For example, assume we have two entries, one that has
1670 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1671 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1672 * call into find_free_space(), and return with max_extent_size == 4K, because
1673 * that first bitmap entry had ->max_extent_size set, but the second one did
1674 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1675 * 8K contiguous range.
1676 *
1677 * Consider the other case, we have 2 8K chunks in that second entry and still
1678 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1679 * allocator comes in it'll fully search our second bitmap, and this time it'll
1680 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1681 * right allocation the next loop through.
1682 */
1683static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1684{
1685 if (entry->bitmap && entry->max_extent_size)
1686 return entry->max_extent_size;
1687 return entry->bytes;
1688}
1689
1690/*
1691 * We want the largest entry to be leftmost, so this is inverted from what you'd
1692 * normally expect.
1693 */
1694static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1695{
1696 const struct btrfs_free_space *entry, *exist;
1697
1698 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1699 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1700 return get_max_extent_size(exist) < get_max_extent_size(entry);
1701}
1702
1703/*
1704 * searches the tree for the given offset.
1705 *
1706 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1707 * want a section that has at least bytes size and comes at or after the given
1708 * offset.
1709 */
1710static struct btrfs_free_space *
1711tree_search_offset(struct btrfs_free_space_ctl *ctl,
1712 u64 offset, int bitmap_only, int fuzzy)
1713{
1714 struct rb_node *n = ctl->free_space_offset.rb_node;
1715 struct btrfs_free_space *entry = NULL, *prev = NULL;
1716
1717 lockdep_assert_held(&ctl->tree_lock);
1718
1719 /* find entry that is closest to the 'offset' */
1720 while (n) {
1721 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1722 prev = entry;
1723
1724 if (offset < entry->offset)
1725 n = n->rb_left;
1726 else if (offset > entry->offset)
1727 n = n->rb_right;
1728 else
1729 break;
1730
1731 entry = NULL;
1732 }
1733
1734 if (bitmap_only) {
1735 if (!entry)
1736 return NULL;
1737 if (entry->bitmap)
1738 return entry;
1739
1740 /*
1741 * bitmap entry and extent entry may share same offset,
1742 * in that case, bitmap entry comes after extent entry.
1743 */
1744 n = rb_next(n);
1745 if (!n)
1746 return NULL;
1747 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1748 if (entry->offset != offset)
1749 return NULL;
1750
1751 WARN_ON(!entry->bitmap);
1752 return entry;
1753 } else if (entry) {
1754 if (entry->bitmap) {
1755 /*
1756 * if previous extent entry covers the offset,
1757 * we should return it instead of the bitmap entry
1758 */
1759 n = rb_prev(&entry->offset_index);
1760 if (n) {
1761 prev = rb_entry(n, struct btrfs_free_space,
1762 offset_index);
1763 if (!prev->bitmap &&
1764 prev->offset + prev->bytes > offset)
1765 entry = prev;
1766 }
1767 }
1768 return entry;
1769 }
1770
1771 if (!prev)
1772 return NULL;
1773
1774 /* find last entry before the 'offset' */
1775 entry = prev;
1776 if (entry->offset > offset) {
1777 n = rb_prev(&entry->offset_index);
1778 if (n) {
1779 entry = rb_entry(n, struct btrfs_free_space,
1780 offset_index);
1781 ASSERT(entry->offset <= offset);
1782 } else {
1783 if (fuzzy)
1784 return entry;
1785 else
1786 return NULL;
1787 }
1788 }
1789
1790 if (entry->bitmap) {
1791 n = rb_prev(&entry->offset_index);
1792 if (n) {
1793 prev = rb_entry(n, struct btrfs_free_space,
1794 offset_index);
1795 if (!prev->bitmap &&
1796 prev->offset + prev->bytes > offset)
1797 return prev;
1798 }
1799 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1800 return entry;
1801 } else if (entry->offset + entry->bytes > offset)
1802 return entry;
1803
1804 if (!fuzzy)
1805 return NULL;
1806
1807 while (1) {
1808 n = rb_next(&entry->offset_index);
1809 if (!n)
1810 return NULL;
1811 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1812 if (entry->bitmap) {
1813 if (entry->offset + BITS_PER_BITMAP *
1814 ctl->unit > offset)
1815 break;
1816 } else {
1817 if (entry->offset + entry->bytes > offset)
1818 break;
1819 }
1820 }
1821 return entry;
1822}
1823
1824static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1825 struct btrfs_free_space *info,
1826 bool update_stat)
1827{
1828 lockdep_assert_held(&ctl->tree_lock);
1829
1830 rb_erase(&info->offset_index, &ctl->free_space_offset);
1831 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1832 ctl->free_extents--;
1833
1834 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1835 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1836 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1837 }
1838
1839 if (update_stat)
1840 ctl->free_space -= info->bytes;
1841}
1842
1843static int link_free_space(struct btrfs_free_space_ctl *ctl,
1844 struct btrfs_free_space *info)
1845{
1846 int ret = 0;
1847
1848 lockdep_assert_held(&ctl->tree_lock);
1849
1850 ASSERT(info->bytes || info->bitmap);
1851 ret = tree_insert_offset(ctl, NULL, info);
1852 if (ret)
1853 return ret;
1854
1855 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1856
1857 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1858 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1859 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1860 }
1861
1862 ctl->free_space += info->bytes;
1863 ctl->free_extents++;
1864 return ret;
1865}
1866
1867static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1868 struct btrfs_free_space *info)
1869{
1870 ASSERT(info->bitmap);
1871
1872 /*
1873 * If our entry is empty it's because we're on a cluster and we don't
1874 * want to re-link it into our ctl bytes index.
1875 */
1876 if (RB_EMPTY_NODE(&info->bytes_index))
1877 return;
1878
1879 lockdep_assert_held(&ctl->tree_lock);
1880
1881 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1882 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1883}
1884
1885static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1886 struct btrfs_free_space *info,
1887 u64 offset, u64 bytes, bool update_stat)
1888{
1889 unsigned long start, count, end;
1890 int extent_delta = -1;
1891
1892 start = offset_to_bit(info->offset, ctl->unit, offset);
1893 count = bytes_to_bits(bytes, ctl->unit);
1894 end = start + count;
1895 ASSERT(end <= BITS_PER_BITMAP);
1896
1897 bitmap_clear(info->bitmap, start, count);
1898
1899 info->bytes -= bytes;
1900 if (info->max_extent_size > ctl->unit)
1901 info->max_extent_size = 0;
1902
1903 relink_bitmap_entry(ctl, info);
1904
1905 if (start && test_bit(start - 1, info->bitmap))
1906 extent_delta++;
1907
1908 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1909 extent_delta++;
1910
1911 info->bitmap_extents += extent_delta;
1912 if (!btrfs_free_space_trimmed(info)) {
1913 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1914 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1915 }
1916
1917 if (update_stat)
1918 ctl->free_space -= bytes;
1919}
1920
1921static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1922 struct btrfs_free_space *info, u64 offset,
1923 u64 bytes)
1924{
1925 unsigned long start, count, end;
1926 int extent_delta = 1;
1927
1928 start = offset_to_bit(info->offset, ctl->unit, offset);
1929 count = bytes_to_bits(bytes, ctl->unit);
1930 end = start + count;
1931 ASSERT(end <= BITS_PER_BITMAP);
1932
1933 bitmap_set(info->bitmap, start, count);
1934
1935 /*
1936 * We set some bytes, we have no idea what the max extent size is
1937 * anymore.
1938 */
1939 info->max_extent_size = 0;
1940 info->bytes += bytes;
1941 ctl->free_space += bytes;
1942
1943 relink_bitmap_entry(ctl, info);
1944
1945 if (start && test_bit(start - 1, info->bitmap))
1946 extent_delta--;
1947
1948 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1949 extent_delta--;
1950
1951 info->bitmap_extents += extent_delta;
1952 if (!btrfs_free_space_trimmed(info)) {
1953 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1954 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1955 }
1956}
1957
1958/*
1959 * If we can not find suitable extent, we will use bytes to record
1960 * the size of the max extent.
1961 */
1962static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1963 struct btrfs_free_space *bitmap_info, u64 *offset,
1964 u64 *bytes, bool for_alloc)
1965{
1966 unsigned long found_bits = 0;
1967 unsigned long max_bits = 0;
1968 unsigned long bits, i;
1969 unsigned long next_zero;
1970 unsigned long extent_bits;
1971
1972 /*
1973 * Skip searching the bitmap if we don't have a contiguous section that
1974 * is large enough for this allocation.
1975 */
1976 if (for_alloc &&
1977 bitmap_info->max_extent_size &&
1978 bitmap_info->max_extent_size < *bytes) {
1979 *bytes = bitmap_info->max_extent_size;
1980 return -1;
1981 }
1982
1983 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1984 max_t(u64, *offset, bitmap_info->offset));
1985 bits = bytes_to_bits(*bytes, ctl->unit);
1986
1987 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1988 if (for_alloc && bits == 1) {
1989 found_bits = 1;
1990 break;
1991 }
1992 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1993 BITS_PER_BITMAP, i);
1994 extent_bits = next_zero - i;
1995 if (extent_bits >= bits) {
1996 found_bits = extent_bits;
1997 break;
1998 } else if (extent_bits > max_bits) {
1999 max_bits = extent_bits;
2000 }
2001 i = next_zero;
2002 }
2003
2004 if (found_bits) {
2005 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2006 *bytes = (u64)(found_bits) * ctl->unit;
2007 return 0;
2008 }
2009
2010 *bytes = (u64)(max_bits) * ctl->unit;
2011 bitmap_info->max_extent_size = *bytes;
2012 relink_bitmap_entry(ctl, bitmap_info);
2013 return -1;
2014}
2015
2016/* Cache the size of the max extent in bytes */
2017static struct btrfs_free_space *
2018find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2019 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2020{
2021 struct btrfs_free_space *entry;
2022 struct rb_node *node;
2023 u64 tmp;
2024 u64 align_off;
2025 int ret;
2026
2027 if (!ctl->free_space_offset.rb_node)
2028 goto out;
2029again:
2030 if (use_bytes_index) {
2031 node = rb_first_cached(&ctl->free_space_bytes);
2032 } else {
2033 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2034 0, 1);
2035 if (!entry)
2036 goto out;
2037 node = &entry->offset_index;
2038 }
2039
2040 for (; node; node = rb_next(node)) {
2041 if (use_bytes_index)
2042 entry = rb_entry(node, struct btrfs_free_space,
2043 bytes_index);
2044 else
2045 entry = rb_entry(node, struct btrfs_free_space,
2046 offset_index);
2047
2048 /*
2049 * If we are using the bytes index then all subsequent entries
2050 * in this tree are going to be < bytes, so simply set the max
2051 * extent size and exit the loop.
2052 *
2053 * If we're using the offset index then we need to keep going
2054 * through the rest of the tree.
2055 */
2056 if (entry->bytes < *bytes) {
2057 *max_extent_size = max(get_max_extent_size(entry),
2058 *max_extent_size);
2059 if (use_bytes_index)
2060 break;
2061 continue;
2062 }
2063
2064 /* make sure the space returned is big enough
2065 * to match our requested alignment
2066 */
2067 if (*bytes >= align) {
2068 tmp = entry->offset - ctl->start + align - 1;
2069 tmp = div64_u64(tmp, align);
2070 tmp = tmp * align + ctl->start;
2071 align_off = tmp - entry->offset;
2072 } else {
2073 align_off = 0;
2074 tmp = entry->offset;
2075 }
2076
2077 /*
2078 * We don't break here if we're using the bytes index because we
2079 * may have another entry that has the correct alignment that is
2080 * the right size, so we don't want to miss that possibility.
2081 * At worst this adds another loop through the logic, but if we
2082 * broke here we could prematurely ENOSPC.
2083 */
2084 if (entry->bytes < *bytes + align_off) {
2085 *max_extent_size = max(get_max_extent_size(entry),
2086 *max_extent_size);
2087 continue;
2088 }
2089
2090 if (entry->bitmap) {
2091 struct rb_node *old_next = rb_next(node);
2092 u64 size = *bytes;
2093
2094 ret = search_bitmap(ctl, entry, &tmp, &size, true);
2095 if (!ret) {
2096 *offset = tmp;
2097 *bytes = size;
2098 return entry;
2099 } else {
2100 *max_extent_size =
2101 max(get_max_extent_size(entry),
2102 *max_extent_size);
2103 }
2104
2105 /*
2106 * The bitmap may have gotten re-arranged in the space
2107 * index here because the max_extent_size may have been
2108 * updated. Start from the beginning again if this
2109 * happened.
2110 */
2111 if (use_bytes_index && old_next != rb_next(node))
2112 goto again;
2113 continue;
2114 }
2115
2116 *offset = tmp;
2117 *bytes = entry->bytes - align_off;
2118 return entry;
2119 }
2120out:
2121 return NULL;
2122}
2123
2124static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2125 struct btrfs_free_space *info, u64 offset)
2126{
2127 info->offset = offset_to_bitmap(ctl, offset);
2128 info->bytes = 0;
2129 info->bitmap_extents = 0;
2130 INIT_LIST_HEAD(&info->list);
2131 link_free_space(ctl, info);
2132 ctl->total_bitmaps++;
2133 recalculate_thresholds(ctl);
2134}
2135
2136static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2137 struct btrfs_free_space *bitmap_info)
2138{
2139 /*
2140 * Normally when this is called, the bitmap is completely empty. However,
2141 * if we are blowing up the free space cache for one reason or another
2142 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2143 * we may leave stats on the table.
2144 */
2145 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2146 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2147 bitmap_info->bitmap_extents;
2148 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2149
2150 }
2151 unlink_free_space(ctl, bitmap_info, true);
2152 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2153 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2154 ctl->total_bitmaps--;
2155 recalculate_thresholds(ctl);
2156}
2157
2158static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2159 struct btrfs_free_space *bitmap_info,
2160 u64 *offset, u64 *bytes)
2161{
2162 u64 end;
2163 u64 search_start, search_bytes;
2164 int ret;
2165
2166again:
2167 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2168
2169 /*
2170 * We need to search for bits in this bitmap. We could only cover some
2171 * of the extent in this bitmap thanks to how we add space, so we need
2172 * to search for as much as it as we can and clear that amount, and then
2173 * go searching for the next bit.
2174 */
2175 search_start = *offset;
2176 search_bytes = ctl->unit;
2177 search_bytes = min(search_bytes, end - search_start + 1);
2178 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2179 false);
2180 if (ret < 0 || search_start != *offset)
2181 return -EINVAL;
2182
2183 /* We may have found more bits than what we need */
2184 search_bytes = min(search_bytes, *bytes);
2185
2186 /* Cannot clear past the end of the bitmap */
2187 search_bytes = min(search_bytes, end - search_start + 1);
2188
2189 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2190 *offset += search_bytes;
2191 *bytes -= search_bytes;
2192
2193 if (*bytes) {
2194 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2195 if (!bitmap_info->bytes)
2196 free_bitmap(ctl, bitmap_info);
2197
2198 /*
2199 * no entry after this bitmap, but we still have bytes to
2200 * remove, so something has gone wrong.
2201 */
2202 if (!next)
2203 return -EINVAL;
2204
2205 bitmap_info = rb_entry(next, struct btrfs_free_space,
2206 offset_index);
2207
2208 /*
2209 * if the next entry isn't a bitmap we need to return to let the
2210 * extent stuff do its work.
2211 */
2212 if (!bitmap_info->bitmap)
2213 return -EAGAIN;
2214
2215 /*
2216 * Ok the next item is a bitmap, but it may not actually hold
2217 * the information for the rest of this free space stuff, so
2218 * look for it, and if we don't find it return so we can try
2219 * everything over again.
2220 */
2221 search_start = *offset;
2222 search_bytes = ctl->unit;
2223 ret = search_bitmap(ctl, bitmap_info, &search_start,
2224 &search_bytes, false);
2225 if (ret < 0 || search_start != *offset)
2226 return -EAGAIN;
2227
2228 goto again;
2229 } else if (!bitmap_info->bytes)
2230 free_bitmap(ctl, bitmap_info);
2231
2232 return 0;
2233}
2234
2235static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2236 struct btrfs_free_space *info, u64 offset,
2237 u64 bytes, enum btrfs_trim_state trim_state)
2238{
2239 u64 bytes_to_set = 0;
2240 u64 end;
2241
2242 /*
2243 * This is a tradeoff to make bitmap trim state minimal. We mark the
2244 * whole bitmap untrimmed if at any point we add untrimmed regions.
2245 */
2246 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2247 if (btrfs_free_space_trimmed(info)) {
2248 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2249 info->bitmap_extents;
2250 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2251 }
2252 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2253 }
2254
2255 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2256
2257 bytes_to_set = min(end - offset, bytes);
2258
2259 btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
2260
2261 return bytes_to_set;
2262
2263}
2264
2265static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2266 struct btrfs_free_space *info)
2267{
2268 struct btrfs_block_group *block_group = ctl->block_group;
2269 struct btrfs_fs_info *fs_info = block_group->fs_info;
2270 bool forced = false;
2271
2272#ifdef CONFIG_BTRFS_DEBUG
2273 if (btrfs_should_fragment_free_space(block_group))
2274 forced = true;
2275#endif
2276
2277 /* This is a way to reclaim large regions from the bitmaps. */
2278 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2279 return false;
2280
2281 /*
2282 * If we are below the extents threshold then we can add this as an
2283 * extent, and don't have to deal with the bitmap
2284 */
2285 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2286 /*
2287 * If this block group has some small extents we don't want to
2288 * use up all of our free slots in the cache with them, we want
2289 * to reserve them to larger extents, however if we have plenty
2290 * of cache left then go ahead an dadd them, no sense in adding
2291 * the overhead of a bitmap if we don't have to.
2292 */
2293 if (info->bytes <= fs_info->sectorsize * 8) {
2294 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2295 return false;
2296 } else {
2297 return false;
2298 }
2299 }
2300
2301 /*
2302 * The original block groups from mkfs can be really small, like 8
2303 * megabytes, so don't bother with a bitmap for those entries. However
2304 * some block groups can be smaller than what a bitmap would cover but
2305 * are still large enough that they could overflow the 32k memory limit,
2306 * so allow those block groups to still be allowed to have a bitmap
2307 * entry.
2308 */
2309 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2310 return false;
2311
2312 return true;
2313}
2314
2315static const struct btrfs_free_space_op free_space_op = {
2316 .use_bitmap = use_bitmap,
2317};
2318
2319static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2320 struct btrfs_free_space *info)
2321{
2322 struct btrfs_free_space *bitmap_info;
2323 struct btrfs_block_group *block_group = NULL;
2324 int added = 0;
2325 u64 bytes, offset, bytes_added;
2326 enum btrfs_trim_state trim_state;
2327 int ret;
2328
2329 bytes = info->bytes;
2330 offset = info->offset;
2331 trim_state = info->trim_state;
2332
2333 if (!ctl->op->use_bitmap(ctl, info))
2334 return 0;
2335
2336 if (ctl->op == &free_space_op)
2337 block_group = ctl->block_group;
2338again:
2339 /*
2340 * Since we link bitmaps right into the cluster we need to see if we
2341 * have a cluster here, and if so and it has our bitmap we need to add
2342 * the free space to that bitmap.
2343 */
2344 if (block_group && !list_empty(&block_group->cluster_list)) {
2345 struct btrfs_free_cluster *cluster;
2346 struct rb_node *node;
2347 struct btrfs_free_space *entry;
2348
2349 cluster = list_entry(block_group->cluster_list.next,
2350 struct btrfs_free_cluster,
2351 block_group_list);
2352 spin_lock(&cluster->lock);
2353 node = rb_first(&cluster->root);
2354 if (!node) {
2355 spin_unlock(&cluster->lock);
2356 goto no_cluster_bitmap;
2357 }
2358
2359 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2360 if (!entry->bitmap) {
2361 spin_unlock(&cluster->lock);
2362 goto no_cluster_bitmap;
2363 }
2364
2365 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2366 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2367 bytes, trim_state);
2368 bytes -= bytes_added;
2369 offset += bytes_added;
2370 }
2371 spin_unlock(&cluster->lock);
2372 if (!bytes) {
2373 ret = 1;
2374 goto out;
2375 }
2376 }
2377
2378no_cluster_bitmap:
2379 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2380 1, 0);
2381 if (!bitmap_info) {
2382 ASSERT(added == 0);
2383 goto new_bitmap;
2384 }
2385
2386 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2387 trim_state);
2388 bytes -= bytes_added;
2389 offset += bytes_added;
2390 added = 0;
2391
2392 if (!bytes) {
2393 ret = 1;
2394 goto out;
2395 } else
2396 goto again;
2397
2398new_bitmap:
2399 if (info && info->bitmap) {
2400 add_new_bitmap(ctl, info, offset);
2401 added = 1;
2402 info = NULL;
2403 goto again;
2404 } else {
2405 spin_unlock(&ctl->tree_lock);
2406
2407 /* no pre-allocated info, allocate a new one */
2408 if (!info) {
2409 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2410 GFP_NOFS);
2411 if (!info) {
2412 spin_lock(&ctl->tree_lock);
2413 ret = -ENOMEM;
2414 goto out;
2415 }
2416 }
2417
2418 /* allocate the bitmap */
2419 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2420 GFP_NOFS);
2421 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2422 spin_lock(&ctl->tree_lock);
2423 if (!info->bitmap) {
2424 ret = -ENOMEM;
2425 goto out;
2426 }
2427 goto again;
2428 }
2429
2430out:
2431 if (info) {
2432 if (info->bitmap)
2433 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2434 info->bitmap);
2435 kmem_cache_free(btrfs_free_space_cachep, info);
2436 }
2437
2438 return ret;
2439}
2440
2441/*
2442 * Free space merging rules:
2443 * 1) Merge trimmed areas together
2444 * 2) Let untrimmed areas coalesce with trimmed areas
2445 * 3) Always pull neighboring regions from bitmaps
2446 *
2447 * The above rules are for when we merge free space based on btrfs_trim_state.
2448 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2449 * same reason: to promote larger extent regions which makes life easier for
2450 * find_free_extent(). Rule 2 enables coalescing based on the common path
2451 * being returning free space from btrfs_finish_extent_commit(). So when free
2452 * space is trimmed, it will prevent aggregating trimmed new region and
2453 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2454 * and provide find_free_extent() with the largest extents possible hoping for
2455 * the reuse path.
2456 */
2457static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2458 struct btrfs_free_space *info, bool update_stat)
2459{
2460 struct btrfs_free_space *left_info = NULL;
2461 struct btrfs_free_space *right_info;
2462 bool merged = false;
2463 u64 offset = info->offset;
2464 u64 bytes = info->bytes;
2465 const bool is_trimmed = btrfs_free_space_trimmed(info);
2466 struct rb_node *right_prev = NULL;
2467
2468 /*
2469 * first we want to see if there is free space adjacent to the range we
2470 * are adding, if there is remove that struct and add a new one to
2471 * cover the entire range
2472 */
2473 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2474 if (right_info)
2475 right_prev = rb_prev(&right_info->offset_index);
2476
2477 if (right_prev)
2478 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2479 else if (!right_info)
2480 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2481
2482 /* See try_merge_free_space() comment. */
2483 if (right_info && !right_info->bitmap &&
2484 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2485 unlink_free_space(ctl, right_info, update_stat);
2486 info->bytes += right_info->bytes;
2487 kmem_cache_free(btrfs_free_space_cachep, right_info);
2488 merged = true;
2489 }
2490
2491 /* See try_merge_free_space() comment. */
2492 if (left_info && !left_info->bitmap &&
2493 left_info->offset + left_info->bytes == offset &&
2494 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2495 unlink_free_space(ctl, left_info, update_stat);
2496 info->offset = left_info->offset;
2497 info->bytes += left_info->bytes;
2498 kmem_cache_free(btrfs_free_space_cachep, left_info);
2499 merged = true;
2500 }
2501
2502 return merged;
2503}
2504
2505static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2506 struct btrfs_free_space *info,
2507 bool update_stat)
2508{
2509 struct btrfs_free_space *bitmap;
2510 unsigned long i;
2511 unsigned long j;
2512 const u64 end = info->offset + info->bytes;
2513 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2514 u64 bytes;
2515
2516 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2517 if (!bitmap)
2518 return false;
2519
2520 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2521 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2522 if (j == i)
2523 return false;
2524 bytes = (j - i) * ctl->unit;
2525 info->bytes += bytes;
2526
2527 /* See try_merge_free_space() comment. */
2528 if (!btrfs_free_space_trimmed(bitmap))
2529 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2530
2531 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2532
2533 if (!bitmap->bytes)
2534 free_bitmap(ctl, bitmap);
2535
2536 return true;
2537}
2538
2539static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2540 struct btrfs_free_space *info,
2541 bool update_stat)
2542{
2543 struct btrfs_free_space *bitmap;
2544 u64 bitmap_offset;
2545 unsigned long i;
2546 unsigned long j;
2547 unsigned long prev_j;
2548 u64 bytes;
2549
2550 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2551 /* If we're on a boundary, try the previous logical bitmap. */
2552 if (bitmap_offset == info->offset) {
2553 if (info->offset == 0)
2554 return false;
2555 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2556 }
2557
2558 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2559 if (!bitmap)
2560 return false;
2561
2562 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2563 j = 0;
2564 prev_j = (unsigned long)-1;
2565 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2566 if (j > i)
2567 break;
2568 prev_j = j;
2569 }
2570 if (prev_j == i)
2571 return false;
2572
2573 if (prev_j == (unsigned long)-1)
2574 bytes = (i + 1) * ctl->unit;
2575 else
2576 bytes = (i - prev_j) * ctl->unit;
2577
2578 info->offset -= bytes;
2579 info->bytes += bytes;
2580
2581 /* See try_merge_free_space() comment. */
2582 if (!btrfs_free_space_trimmed(bitmap))
2583 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2584
2585 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2586
2587 if (!bitmap->bytes)
2588 free_bitmap(ctl, bitmap);
2589
2590 return true;
2591}
2592
2593/*
2594 * We prefer always to allocate from extent entries, both for clustered and
2595 * non-clustered allocation requests. So when attempting to add a new extent
2596 * entry, try to see if there's adjacent free space in bitmap entries, and if
2597 * there is, migrate that space from the bitmaps to the extent.
2598 * Like this we get better chances of satisfying space allocation requests
2599 * because we attempt to satisfy them based on a single cache entry, and never
2600 * on 2 or more entries - even if the entries represent a contiguous free space
2601 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2602 * ends).
2603 */
2604static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2605 struct btrfs_free_space *info,
2606 bool update_stat)
2607{
2608 /*
2609 * Only work with disconnected entries, as we can change their offset,
2610 * and must be extent entries.
2611 */
2612 ASSERT(!info->bitmap);
2613 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2614
2615 if (ctl->total_bitmaps > 0) {
2616 bool stole_end;
2617 bool stole_front = false;
2618
2619 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2620 if (ctl->total_bitmaps > 0)
2621 stole_front = steal_from_bitmap_to_front(ctl, info,
2622 update_stat);
2623
2624 if (stole_end || stole_front)
2625 try_merge_free_space(ctl, info, update_stat);
2626 }
2627}
2628
2629static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2630 u64 offset, u64 bytes,
2631 enum btrfs_trim_state trim_state)
2632{
2633 struct btrfs_fs_info *fs_info = block_group->fs_info;
2634 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2635 struct btrfs_free_space *info;
2636 int ret = 0;
2637 u64 filter_bytes = bytes;
2638
2639 ASSERT(!btrfs_is_zoned(fs_info));
2640
2641 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2642 if (!info)
2643 return -ENOMEM;
2644
2645 info->offset = offset;
2646 info->bytes = bytes;
2647 info->trim_state = trim_state;
2648 RB_CLEAR_NODE(&info->offset_index);
2649 RB_CLEAR_NODE(&info->bytes_index);
2650
2651 spin_lock(&ctl->tree_lock);
2652
2653 if (try_merge_free_space(ctl, info, true))
2654 goto link;
2655
2656 /*
2657 * There was no extent directly to the left or right of this new
2658 * extent then we know we're going to have to allocate a new extent, so
2659 * before we do that see if we need to drop this into a bitmap
2660 */
2661 ret = insert_into_bitmap(ctl, info);
2662 if (ret < 0) {
2663 goto out;
2664 } else if (ret) {
2665 ret = 0;
2666 goto out;
2667 }
2668link:
2669 /*
2670 * Only steal free space from adjacent bitmaps if we're sure we're not
2671 * going to add the new free space to existing bitmap entries - because
2672 * that would mean unnecessary work that would be reverted. Therefore
2673 * attempt to steal space from bitmaps if we're adding an extent entry.
2674 */
2675 steal_from_bitmap(ctl, info, true);
2676
2677 filter_bytes = max(filter_bytes, info->bytes);
2678
2679 ret = link_free_space(ctl, info);
2680 if (ret)
2681 kmem_cache_free(btrfs_free_space_cachep, info);
2682out:
2683 btrfs_discard_update_discardable(block_group);
2684 spin_unlock(&ctl->tree_lock);
2685
2686 if (ret) {
2687 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2688 ASSERT(ret != -EEXIST);
2689 }
2690
2691 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2692 btrfs_discard_check_filter(block_group, filter_bytes);
2693 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2694 }
2695
2696 return ret;
2697}
2698
2699static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2700 u64 bytenr, u64 size, bool used)
2701{
2702 struct btrfs_space_info *sinfo = block_group->space_info;
2703 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2704 u64 offset = bytenr - block_group->start;
2705 u64 to_free, to_unusable;
2706 int bg_reclaim_threshold = 0;
2707 bool initial;
2708 u64 reclaimable_unusable;
2709
2710 spin_lock(&block_group->lock);
2711
2712 initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
2713 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2714 if (!initial)
2715 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2716
2717 if (!used)
2718 to_free = size;
2719 else if (initial)
2720 to_free = block_group->zone_capacity;
2721 else if (offset >= block_group->alloc_offset)
2722 to_free = size;
2723 else if (offset + size <= block_group->alloc_offset)
2724 to_free = 0;
2725 else
2726 to_free = offset + size - block_group->alloc_offset;
2727 to_unusable = size - to_free;
2728
2729 spin_lock(&ctl->tree_lock);
2730 ctl->free_space += to_free;
2731 spin_unlock(&ctl->tree_lock);
2732 /*
2733 * If the block group is read-only, we should account freed space into
2734 * bytes_readonly.
2735 */
2736 if (!block_group->ro) {
2737 block_group->zone_unusable += to_unusable;
2738 WARN_ON(block_group->zone_unusable > block_group->length);
2739 }
2740 if (!used) {
2741 block_group->alloc_offset -= size;
2742 }
2743
2744 reclaimable_unusable = block_group->zone_unusable -
2745 (block_group->length - block_group->zone_capacity);
2746 /* All the region is now unusable. Mark it as unused and reclaim */
2747 if (block_group->zone_unusable == block_group->length) {
2748 btrfs_mark_bg_unused(block_group);
2749 } else if (bg_reclaim_threshold &&
2750 reclaimable_unusable >=
2751 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2752 btrfs_mark_bg_to_reclaim(block_group);
2753 }
2754
2755 spin_unlock(&block_group->lock);
2756
2757 return 0;
2758}
2759
2760int btrfs_add_free_space(struct btrfs_block_group *block_group,
2761 u64 bytenr, u64 size)
2762{
2763 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2764
2765 if (btrfs_is_zoned(block_group->fs_info))
2766 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2767 true);
2768
2769 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2770 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2771
2772 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2773}
2774
2775int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2776 u64 bytenr, u64 size)
2777{
2778 if (btrfs_is_zoned(block_group->fs_info))
2779 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2780 false);
2781
2782 return btrfs_add_free_space(block_group, bytenr, size);
2783}
2784
2785/*
2786 * This is a subtle distinction because when adding free space back in general,
2787 * we want it to be added as untrimmed for async. But in the case where we add
2788 * it on loading of a block group, we want to consider it trimmed.
2789 */
2790int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2791 u64 bytenr, u64 size)
2792{
2793 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2794
2795 if (btrfs_is_zoned(block_group->fs_info))
2796 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2797 true);
2798
2799 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2800 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2801 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2802
2803 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2804}
2805
2806int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2807 u64 offset, u64 bytes)
2808{
2809 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2810 struct btrfs_free_space *info;
2811 int ret;
2812 bool re_search = false;
2813
2814 if (btrfs_is_zoned(block_group->fs_info)) {
2815 /*
2816 * This can happen with conventional zones when replaying log.
2817 * Since the allocation info of tree-log nodes are not recorded
2818 * to the extent-tree, calculate_alloc_pointer() failed to
2819 * advance the allocation pointer after last allocated tree log
2820 * node blocks.
2821 *
2822 * This function is called from
2823 * btrfs_pin_extent_for_log_replay() when replaying the log.
2824 * Advance the pointer not to overwrite the tree-log nodes.
2825 */
2826 if (block_group->start + block_group->alloc_offset <
2827 offset + bytes) {
2828 block_group->alloc_offset =
2829 offset + bytes - block_group->start;
2830 }
2831 return 0;
2832 }
2833
2834 spin_lock(&ctl->tree_lock);
2835
2836again:
2837 ret = 0;
2838 if (!bytes)
2839 goto out_lock;
2840
2841 info = tree_search_offset(ctl, offset, 0, 0);
2842 if (!info) {
2843 /*
2844 * oops didn't find an extent that matched the space we wanted
2845 * to remove, look for a bitmap instead
2846 */
2847 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2848 1, 0);
2849 if (!info) {
2850 /*
2851 * If we found a partial bit of our free space in a
2852 * bitmap but then couldn't find the other part this may
2853 * be a problem, so WARN about it.
2854 */
2855 WARN_ON(re_search);
2856 goto out_lock;
2857 }
2858 }
2859
2860 re_search = false;
2861 if (!info->bitmap) {
2862 unlink_free_space(ctl, info, true);
2863 if (offset == info->offset) {
2864 u64 to_free = min(bytes, info->bytes);
2865
2866 info->bytes -= to_free;
2867 info->offset += to_free;
2868 if (info->bytes) {
2869 ret = link_free_space(ctl, info);
2870 WARN_ON(ret);
2871 } else {
2872 kmem_cache_free(btrfs_free_space_cachep, info);
2873 }
2874
2875 offset += to_free;
2876 bytes -= to_free;
2877 goto again;
2878 } else {
2879 u64 old_end = info->bytes + info->offset;
2880
2881 info->bytes = offset - info->offset;
2882 ret = link_free_space(ctl, info);
2883 WARN_ON(ret);
2884 if (ret)
2885 goto out_lock;
2886
2887 /* Not enough bytes in this entry to satisfy us */
2888 if (old_end < offset + bytes) {
2889 bytes -= old_end - offset;
2890 offset = old_end;
2891 goto again;
2892 } else if (old_end == offset + bytes) {
2893 /* all done */
2894 goto out_lock;
2895 }
2896 spin_unlock(&ctl->tree_lock);
2897
2898 ret = __btrfs_add_free_space(block_group,
2899 offset + bytes,
2900 old_end - (offset + bytes),
2901 info->trim_state);
2902 WARN_ON(ret);
2903 goto out;
2904 }
2905 }
2906
2907 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2908 if (ret == -EAGAIN) {
2909 re_search = true;
2910 goto again;
2911 }
2912out_lock:
2913 btrfs_discard_update_discardable(block_group);
2914 spin_unlock(&ctl->tree_lock);
2915out:
2916 return ret;
2917}
2918
2919void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2920 u64 bytes)
2921{
2922 struct btrfs_fs_info *fs_info = block_group->fs_info;
2923 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2924 struct btrfs_free_space *info;
2925 struct rb_node *n;
2926 int count = 0;
2927
2928 /*
2929 * Zoned btrfs does not use free space tree and cluster. Just print
2930 * out the free space after the allocation offset.
2931 */
2932 if (btrfs_is_zoned(fs_info)) {
2933 btrfs_info(fs_info, "free space %llu active %d",
2934 block_group->zone_capacity - block_group->alloc_offset,
2935 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2936 &block_group->runtime_flags));
2937 return;
2938 }
2939
2940 spin_lock(&ctl->tree_lock);
2941 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2942 info = rb_entry(n, struct btrfs_free_space, offset_index);
2943 if (info->bytes >= bytes && !block_group->ro)
2944 count++;
2945 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2946 info->offset, info->bytes, str_yes_no(info->bitmap));
2947 }
2948 spin_unlock(&ctl->tree_lock);
2949 btrfs_info(fs_info, "block group has cluster?: %s",
2950 str_no_yes(list_empty(&block_group->cluster_list)));
2951 btrfs_info(fs_info,
2952 "%d free space entries at or bigger than %llu bytes",
2953 count, bytes);
2954}
2955
2956void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2957 struct btrfs_free_space_ctl *ctl)
2958{
2959 struct btrfs_fs_info *fs_info = block_group->fs_info;
2960
2961 spin_lock_init(&ctl->tree_lock);
2962 ctl->unit = fs_info->sectorsize;
2963 ctl->start = block_group->start;
2964 ctl->block_group = block_group;
2965 ctl->op = &free_space_op;
2966 ctl->free_space_bytes = RB_ROOT_CACHED;
2967 INIT_LIST_HEAD(&ctl->trimming_ranges);
2968 mutex_init(&ctl->cache_writeout_mutex);
2969
2970 /*
2971 * we only want to have 32k of ram per block group for keeping
2972 * track of free space, and if we pass 1/2 of that we want to
2973 * start converting things over to using bitmaps
2974 */
2975 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2976}
2977
2978/*
2979 * for a given cluster, put all of its extents back into the free
2980 * space cache. If the block group passed doesn't match the block group
2981 * pointed to by the cluster, someone else raced in and freed the
2982 * cluster already. In that case, we just return without changing anything
2983 */
2984static void __btrfs_return_cluster_to_free_space(
2985 struct btrfs_block_group *block_group,
2986 struct btrfs_free_cluster *cluster)
2987{
2988 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2989 struct rb_node *node;
2990
2991 lockdep_assert_held(&ctl->tree_lock);
2992
2993 spin_lock(&cluster->lock);
2994 if (cluster->block_group != block_group) {
2995 spin_unlock(&cluster->lock);
2996 return;
2997 }
2998
2999 cluster->block_group = NULL;
3000 cluster->window_start = 0;
3001 list_del_init(&cluster->block_group_list);
3002
3003 node = rb_first(&cluster->root);
3004 while (node) {
3005 struct btrfs_free_space *entry;
3006
3007 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3008 node = rb_next(&entry->offset_index);
3009 rb_erase(&entry->offset_index, &cluster->root);
3010 RB_CLEAR_NODE(&entry->offset_index);
3011
3012 if (!entry->bitmap) {
3013 /* Merging treats extents as if they were new */
3014 if (!btrfs_free_space_trimmed(entry)) {
3015 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3016 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3017 entry->bytes;
3018 }
3019
3020 try_merge_free_space(ctl, entry, false);
3021 steal_from_bitmap(ctl, entry, false);
3022
3023 /* As we insert directly, update these statistics */
3024 if (!btrfs_free_space_trimmed(entry)) {
3025 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3026 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3027 entry->bytes;
3028 }
3029 }
3030 tree_insert_offset(ctl, NULL, entry);
3031 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3032 entry_less);
3033 }
3034 cluster->root = RB_ROOT;
3035 spin_unlock(&cluster->lock);
3036 btrfs_put_block_group(block_group);
3037}
3038
3039void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3040{
3041 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3042 struct btrfs_free_cluster *cluster;
3043 struct list_head *head;
3044
3045 spin_lock(&ctl->tree_lock);
3046 while ((head = block_group->cluster_list.next) !=
3047 &block_group->cluster_list) {
3048 cluster = list_entry(head, struct btrfs_free_cluster,
3049 block_group_list);
3050
3051 WARN_ON(cluster->block_group != block_group);
3052 __btrfs_return_cluster_to_free_space(block_group, cluster);
3053
3054 cond_resched_lock(&ctl->tree_lock);
3055 }
3056 __btrfs_remove_free_space_cache(ctl);
3057 btrfs_discard_update_discardable(block_group);
3058 spin_unlock(&ctl->tree_lock);
3059
3060}
3061
3062/*
3063 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3064 */
3065bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3066{
3067 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3068 struct btrfs_free_space *info;
3069 struct rb_node *node;
3070 bool ret = true;
3071
3072 spin_lock(&ctl->tree_lock);
3073 node = rb_first(&ctl->free_space_offset);
3074
3075 while (node) {
3076 info = rb_entry(node, struct btrfs_free_space, offset_index);
3077
3078 if (!btrfs_free_space_trimmed(info)) {
3079 ret = false;
3080 break;
3081 }
3082
3083 node = rb_next(node);
3084 }
3085
3086 spin_unlock(&ctl->tree_lock);
3087 return ret;
3088}
3089
3090u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3091 u64 offset, u64 bytes, u64 empty_size,
3092 u64 *max_extent_size)
3093{
3094 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3095 struct btrfs_discard_ctl *discard_ctl =
3096 &block_group->fs_info->discard_ctl;
3097 struct btrfs_free_space *entry = NULL;
3098 u64 bytes_search = bytes + empty_size;
3099 u64 ret = 0;
3100 u64 align_gap = 0;
3101 u64 align_gap_len = 0;
3102 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3103 bool use_bytes_index = (offset == block_group->start);
3104
3105 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3106
3107 spin_lock(&ctl->tree_lock);
3108 entry = find_free_space(ctl, &offset, &bytes_search,
3109 block_group->full_stripe_len, max_extent_size,
3110 use_bytes_index);
3111 if (!entry)
3112 goto out;
3113
3114 ret = offset;
3115 if (entry->bitmap) {
3116 bitmap_clear_bits(ctl, entry, offset, bytes, true);
3117
3118 if (!btrfs_free_space_trimmed(entry))
3119 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3120
3121 if (!entry->bytes)
3122 free_bitmap(ctl, entry);
3123 } else {
3124 unlink_free_space(ctl, entry, true);
3125 align_gap_len = offset - entry->offset;
3126 align_gap = entry->offset;
3127 align_gap_trim_state = entry->trim_state;
3128
3129 if (!btrfs_free_space_trimmed(entry))
3130 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3131
3132 entry->offset = offset + bytes;
3133 WARN_ON(entry->bytes < bytes + align_gap_len);
3134
3135 entry->bytes -= bytes + align_gap_len;
3136 if (!entry->bytes)
3137 kmem_cache_free(btrfs_free_space_cachep, entry);
3138 else
3139 link_free_space(ctl, entry);
3140 }
3141out:
3142 btrfs_discard_update_discardable(block_group);
3143 spin_unlock(&ctl->tree_lock);
3144
3145 if (align_gap_len)
3146 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
3147 align_gap_trim_state);
3148 return ret;
3149}
3150
3151/*
3152 * given a cluster, put all of its extents back into the free space
3153 * cache. If a block group is passed, this function will only free
3154 * a cluster that belongs to the passed block group.
3155 *
3156 * Otherwise, it'll get a reference on the block group pointed to by the
3157 * cluster and remove the cluster from it.
3158 */
3159void btrfs_return_cluster_to_free_space(
3160 struct btrfs_block_group *block_group,
3161 struct btrfs_free_cluster *cluster)
3162{
3163 struct btrfs_free_space_ctl *ctl;
3164
3165 /* first, get a safe pointer to the block group */
3166 spin_lock(&cluster->lock);
3167 if (!block_group) {
3168 block_group = cluster->block_group;
3169 if (!block_group) {
3170 spin_unlock(&cluster->lock);
3171 return;
3172 }
3173 } else if (cluster->block_group != block_group) {
3174 /* someone else has already freed it don't redo their work */
3175 spin_unlock(&cluster->lock);
3176 return;
3177 }
3178 btrfs_get_block_group(block_group);
3179 spin_unlock(&cluster->lock);
3180
3181 ctl = block_group->free_space_ctl;
3182
3183 /* now return any extents the cluster had on it */
3184 spin_lock(&ctl->tree_lock);
3185 __btrfs_return_cluster_to_free_space(block_group, cluster);
3186 spin_unlock(&ctl->tree_lock);
3187
3188 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3189
3190 /* finally drop our ref */
3191 btrfs_put_block_group(block_group);
3192}
3193
3194static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3195 struct btrfs_free_cluster *cluster,
3196 struct btrfs_free_space *entry,
3197 u64 bytes, u64 min_start,
3198 u64 *max_extent_size)
3199{
3200 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3201 int err;
3202 u64 search_start = cluster->window_start;
3203 u64 search_bytes = bytes;
3204 u64 ret = 0;
3205
3206 search_start = min_start;
3207 search_bytes = bytes;
3208
3209 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3210 if (err) {
3211 *max_extent_size = max(get_max_extent_size(entry),
3212 *max_extent_size);
3213 return 0;
3214 }
3215
3216 ret = search_start;
3217 bitmap_clear_bits(ctl, entry, ret, bytes, false);
3218
3219 return ret;
3220}
3221
3222/*
3223 * given a cluster, try to allocate 'bytes' from it, returns 0
3224 * if it couldn't find anything suitably large, or a logical disk offset
3225 * if things worked out
3226 */
3227u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3228 struct btrfs_free_cluster *cluster, u64 bytes,
3229 u64 min_start, u64 *max_extent_size)
3230{
3231 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3232 struct btrfs_discard_ctl *discard_ctl =
3233 &block_group->fs_info->discard_ctl;
3234 struct btrfs_free_space *entry = NULL;
3235 struct rb_node *node;
3236 u64 ret = 0;
3237
3238 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3239
3240 spin_lock(&cluster->lock);
3241 if (bytes > cluster->max_size)
3242 goto out;
3243
3244 if (cluster->block_group != block_group)
3245 goto out;
3246
3247 node = rb_first(&cluster->root);
3248 if (!node)
3249 goto out;
3250
3251 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3252 while (1) {
3253 if (entry->bytes < bytes)
3254 *max_extent_size = max(get_max_extent_size(entry),
3255 *max_extent_size);
3256
3257 if (entry->bytes < bytes ||
3258 (!entry->bitmap && entry->offset < min_start)) {
3259 node = rb_next(&entry->offset_index);
3260 if (!node)
3261 break;
3262 entry = rb_entry(node, struct btrfs_free_space,
3263 offset_index);
3264 continue;
3265 }
3266
3267 if (entry->bitmap) {
3268 ret = btrfs_alloc_from_bitmap(block_group,
3269 cluster, entry, bytes,
3270 cluster->window_start,
3271 max_extent_size);
3272 if (ret == 0) {
3273 node = rb_next(&entry->offset_index);
3274 if (!node)
3275 break;
3276 entry = rb_entry(node, struct btrfs_free_space,
3277 offset_index);
3278 continue;
3279 }
3280 cluster->window_start += bytes;
3281 } else {
3282 ret = entry->offset;
3283
3284 entry->offset += bytes;
3285 entry->bytes -= bytes;
3286 }
3287
3288 break;
3289 }
3290out:
3291 spin_unlock(&cluster->lock);
3292
3293 if (!ret)
3294 return 0;
3295
3296 spin_lock(&ctl->tree_lock);
3297
3298 if (!btrfs_free_space_trimmed(entry))
3299 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3300
3301 ctl->free_space -= bytes;
3302 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3303 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3304
3305 spin_lock(&cluster->lock);
3306 if (entry->bytes == 0) {
3307 rb_erase(&entry->offset_index, &cluster->root);
3308 ctl->free_extents--;
3309 if (entry->bitmap) {
3310 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3311 entry->bitmap);
3312 ctl->total_bitmaps--;
3313 recalculate_thresholds(ctl);
3314 } else if (!btrfs_free_space_trimmed(entry)) {
3315 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3316 }
3317 kmem_cache_free(btrfs_free_space_cachep, entry);
3318 }
3319
3320 spin_unlock(&cluster->lock);
3321 spin_unlock(&ctl->tree_lock);
3322
3323 return ret;
3324}
3325
3326static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3327 struct btrfs_free_space *entry,
3328 struct btrfs_free_cluster *cluster,
3329 u64 offset, u64 bytes,
3330 u64 cont1_bytes, u64 min_bytes)
3331{
3332 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3333 unsigned long next_zero;
3334 unsigned long i;
3335 unsigned long want_bits;
3336 unsigned long min_bits;
3337 unsigned long found_bits;
3338 unsigned long max_bits = 0;
3339 unsigned long start = 0;
3340 unsigned long total_found = 0;
3341 int ret;
3342
3343 lockdep_assert_held(&ctl->tree_lock);
3344
3345 i = offset_to_bit(entry->offset, ctl->unit,
3346 max_t(u64, offset, entry->offset));
3347 want_bits = bytes_to_bits(bytes, ctl->unit);
3348 min_bits = bytes_to_bits(min_bytes, ctl->unit);
3349
3350 /*
3351 * Don't bother looking for a cluster in this bitmap if it's heavily
3352 * fragmented.
3353 */
3354 if (entry->max_extent_size &&
3355 entry->max_extent_size < cont1_bytes)
3356 return -ENOSPC;
3357again:
3358 found_bits = 0;
3359 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3360 next_zero = find_next_zero_bit(entry->bitmap,
3361 BITS_PER_BITMAP, i);
3362 if (next_zero - i >= min_bits) {
3363 found_bits = next_zero - i;
3364 if (found_bits > max_bits)
3365 max_bits = found_bits;
3366 break;
3367 }
3368 if (next_zero - i > max_bits)
3369 max_bits = next_zero - i;
3370 i = next_zero;
3371 }
3372
3373 if (!found_bits) {
3374 entry->max_extent_size = (u64)max_bits * ctl->unit;
3375 return -ENOSPC;
3376 }
3377
3378 if (!total_found) {
3379 start = i;
3380 cluster->max_size = 0;
3381 }
3382
3383 total_found += found_bits;
3384
3385 if (cluster->max_size < found_bits * ctl->unit)
3386 cluster->max_size = found_bits * ctl->unit;
3387
3388 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3389 i = next_zero + 1;
3390 goto again;
3391 }
3392
3393 cluster->window_start = start * ctl->unit + entry->offset;
3394 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3395 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3396
3397 /*
3398 * We need to know if we're currently on the normal space index when we
3399 * manipulate the bitmap so that we know we need to remove and re-insert
3400 * it into the space_index tree. Clear the bytes_index node here so the
3401 * bitmap manipulation helpers know not to mess with the space_index
3402 * until this bitmap entry is added back into the normal cache.
3403 */
3404 RB_CLEAR_NODE(&entry->bytes_index);
3405
3406 ret = tree_insert_offset(ctl, cluster, entry);
3407 ASSERT(!ret); /* -EEXIST; Logic error */
3408
3409 trace_btrfs_setup_cluster(block_group, cluster,
3410 total_found * ctl->unit, 1);
3411 return 0;
3412}
3413
3414/*
3415 * This searches the block group for just extents to fill the cluster with.
3416 * Try to find a cluster with at least bytes total bytes, at least one
3417 * extent of cont1_bytes, and other clusters of at least min_bytes.
3418 */
3419static noinline int
3420setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3421 struct btrfs_free_cluster *cluster,
3422 struct list_head *bitmaps, u64 offset, u64 bytes,
3423 u64 cont1_bytes, u64 min_bytes)
3424{
3425 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3426 struct btrfs_free_space *first = NULL;
3427 struct btrfs_free_space *entry = NULL;
3428 struct btrfs_free_space *last;
3429 struct rb_node *node;
3430 u64 window_free;
3431 u64 max_extent;
3432 u64 total_size = 0;
3433
3434 lockdep_assert_held(&ctl->tree_lock);
3435
3436 entry = tree_search_offset(ctl, offset, 0, 1);
3437 if (!entry)
3438 return -ENOSPC;
3439
3440 /*
3441 * We don't want bitmaps, so just move along until we find a normal
3442 * extent entry.
3443 */
3444 while (entry->bitmap || entry->bytes < min_bytes) {
3445 if (entry->bitmap && list_empty(&entry->list))
3446 list_add_tail(&entry->list, bitmaps);
3447 node = rb_next(&entry->offset_index);
3448 if (!node)
3449 return -ENOSPC;
3450 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3451 }
3452
3453 window_free = entry->bytes;
3454 max_extent = entry->bytes;
3455 first = entry;
3456 last = entry;
3457
3458 for (node = rb_next(&entry->offset_index); node;
3459 node = rb_next(&entry->offset_index)) {
3460 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3461
3462 if (entry->bitmap) {
3463 if (list_empty(&entry->list))
3464 list_add_tail(&entry->list, bitmaps);
3465 continue;
3466 }
3467
3468 if (entry->bytes < min_bytes)
3469 continue;
3470
3471 last = entry;
3472 window_free += entry->bytes;
3473 if (entry->bytes > max_extent)
3474 max_extent = entry->bytes;
3475 }
3476
3477 if (window_free < bytes || max_extent < cont1_bytes)
3478 return -ENOSPC;
3479
3480 cluster->window_start = first->offset;
3481
3482 node = &first->offset_index;
3483
3484 /*
3485 * now we've found our entries, pull them out of the free space
3486 * cache and put them into the cluster rbtree
3487 */
3488 do {
3489 int ret;
3490
3491 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3492 node = rb_next(&entry->offset_index);
3493 if (entry->bitmap || entry->bytes < min_bytes)
3494 continue;
3495
3496 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3497 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3498 ret = tree_insert_offset(ctl, cluster, entry);
3499 total_size += entry->bytes;
3500 ASSERT(!ret); /* -EEXIST; Logic error */
3501 } while (node && entry != last);
3502
3503 cluster->max_size = max_extent;
3504 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3505 return 0;
3506}
3507
3508/*
3509 * This specifically looks for bitmaps that may work in the cluster, we assume
3510 * that we have already failed to find extents that will work.
3511 */
3512static noinline int
3513setup_cluster_bitmap(struct btrfs_block_group *block_group,
3514 struct btrfs_free_cluster *cluster,
3515 struct list_head *bitmaps, u64 offset, u64 bytes,
3516 u64 cont1_bytes, u64 min_bytes)
3517{
3518 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3519 struct btrfs_free_space *entry = NULL;
3520 int ret = -ENOSPC;
3521 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3522
3523 if (ctl->total_bitmaps == 0)
3524 return -ENOSPC;
3525
3526 /*
3527 * The bitmap that covers offset won't be in the list unless offset
3528 * is just its start offset.
3529 */
3530 if (!list_empty(bitmaps))
3531 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3532
3533 if (!entry || entry->offset != bitmap_offset) {
3534 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3535 if (entry && list_empty(&entry->list))
3536 list_add(&entry->list, bitmaps);
3537 }
3538
3539 list_for_each_entry(entry, bitmaps, list) {
3540 if (entry->bytes < bytes)
3541 continue;
3542 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3543 bytes, cont1_bytes, min_bytes);
3544 if (!ret)
3545 return 0;
3546 }
3547
3548 /*
3549 * The bitmaps list has all the bitmaps that record free space
3550 * starting after offset, so no more search is required.
3551 */
3552 return -ENOSPC;
3553}
3554
3555/*
3556 * here we try to find a cluster of blocks in a block group. The goal
3557 * is to find at least bytes+empty_size.
3558 * We might not find them all in one contiguous area.
3559 *
3560 * returns zero and sets up cluster if things worked out, otherwise
3561 * it returns -enospc
3562 */
3563int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3564 struct btrfs_free_cluster *cluster,
3565 u64 offset, u64 bytes, u64 empty_size)
3566{
3567 struct btrfs_fs_info *fs_info = block_group->fs_info;
3568 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3569 struct btrfs_free_space *entry, *tmp;
3570 LIST_HEAD(bitmaps);
3571 u64 min_bytes;
3572 u64 cont1_bytes;
3573 int ret;
3574
3575 /*
3576 * Choose the minimum extent size we'll require for this
3577 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3578 * For metadata, allow allocates with smaller extents. For
3579 * data, keep it dense.
3580 */
3581 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3582 cont1_bytes = bytes + empty_size;
3583 min_bytes = cont1_bytes;
3584 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3585 cont1_bytes = bytes;
3586 min_bytes = fs_info->sectorsize;
3587 } else {
3588 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3589 min_bytes = fs_info->sectorsize;
3590 }
3591
3592 spin_lock(&ctl->tree_lock);
3593
3594 /*
3595 * If we know we don't have enough space to make a cluster don't even
3596 * bother doing all the work to try and find one.
3597 */
3598 if (ctl->free_space < bytes) {
3599 spin_unlock(&ctl->tree_lock);
3600 return -ENOSPC;
3601 }
3602
3603 spin_lock(&cluster->lock);
3604
3605 /* someone already found a cluster, hooray */
3606 if (cluster->block_group) {
3607 ret = 0;
3608 goto out;
3609 }
3610
3611 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3612 min_bytes);
3613
3614 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3615 bytes + empty_size,
3616 cont1_bytes, min_bytes);
3617 if (ret)
3618 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3619 offset, bytes + empty_size,
3620 cont1_bytes, min_bytes);
3621
3622 /* Clear our temporary list */
3623 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3624 list_del_init(&entry->list);
3625
3626 if (!ret) {
3627 btrfs_get_block_group(block_group);
3628 list_add_tail(&cluster->block_group_list,
3629 &block_group->cluster_list);
3630 cluster->block_group = block_group;
3631 } else {
3632 trace_btrfs_failed_cluster_setup(block_group);
3633 }
3634out:
3635 spin_unlock(&cluster->lock);
3636 spin_unlock(&ctl->tree_lock);
3637
3638 return ret;
3639}
3640
3641/*
3642 * simple code to zero out a cluster
3643 */
3644void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3645{
3646 spin_lock_init(&cluster->lock);
3647 spin_lock_init(&cluster->refill_lock);
3648 cluster->root = RB_ROOT;
3649 cluster->max_size = 0;
3650 cluster->fragmented = false;
3651 INIT_LIST_HEAD(&cluster->block_group_list);
3652 cluster->block_group = NULL;
3653}
3654
3655static int do_trimming(struct btrfs_block_group *block_group,
3656 u64 *total_trimmed, u64 start, u64 bytes,
3657 u64 reserved_start, u64 reserved_bytes,
3658 enum btrfs_trim_state reserved_trim_state,
3659 struct btrfs_trim_range *trim_entry)
3660{
3661 struct btrfs_space_info *space_info = block_group->space_info;
3662 struct btrfs_fs_info *fs_info = block_group->fs_info;
3663 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3664 int ret;
3665 int update = 0;
3666 const u64 end = start + bytes;
3667 const u64 reserved_end = reserved_start + reserved_bytes;
3668 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3669 u64 trimmed = 0;
3670
3671 spin_lock(&space_info->lock);
3672 spin_lock(&block_group->lock);
3673 if (!block_group->ro) {
3674 block_group->reserved += reserved_bytes;
3675 space_info->bytes_reserved += reserved_bytes;
3676 update = 1;
3677 }
3678 spin_unlock(&block_group->lock);
3679 spin_unlock(&space_info->lock);
3680
3681 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3682 if (!ret) {
3683 *total_trimmed += trimmed;
3684 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3685 }
3686
3687 mutex_lock(&ctl->cache_writeout_mutex);
3688 if (reserved_start < start)
3689 __btrfs_add_free_space(block_group, reserved_start,
3690 start - reserved_start,
3691 reserved_trim_state);
3692 if (end < reserved_end)
3693 __btrfs_add_free_space(block_group, end, reserved_end - end,
3694 reserved_trim_state);
3695 __btrfs_add_free_space(block_group, start, bytes, trim_state);
3696 list_del(&trim_entry->list);
3697 mutex_unlock(&ctl->cache_writeout_mutex);
3698
3699 if (update) {
3700 spin_lock(&space_info->lock);
3701 spin_lock(&block_group->lock);
3702 if (block_group->ro)
3703 space_info->bytes_readonly += reserved_bytes;
3704 block_group->reserved -= reserved_bytes;
3705 space_info->bytes_reserved -= reserved_bytes;
3706 spin_unlock(&block_group->lock);
3707 spin_unlock(&space_info->lock);
3708 }
3709
3710 return ret;
3711}
3712
3713/*
3714 * If @async is set, then we will trim 1 region and return.
3715 */
3716static int trim_no_bitmap(struct btrfs_block_group *block_group,
3717 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3718 bool async)
3719{
3720 struct btrfs_discard_ctl *discard_ctl =
3721 &block_group->fs_info->discard_ctl;
3722 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3723 struct btrfs_free_space *entry;
3724 struct rb_node *node;
3725 int ret = 0;
3726 u64 extent_start;
3727 u64 extent_bytes;
3728 enum btrfs_trim_state extent_trim_state;
3729 u64 bytes;
3730 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3731
3732 while (start < end) {
3733 struct btrfs_trim_range trim_entry;
3734
3735 mutex_lock(&ctl->cache_writeout_mutex);
3736 spin_lock(&ctl->tree_lock);
3737
3738 if (ctl->free_space < minlen)
3739 goto out_unlock;
3740
3741 entry = tree_search_offset(ctl, start, 0, 1);
3742 if (!entry)
3743 goto out_unlock;
3744
3745 /* Skip bitmaps and if async, already trimmed entries */
3746 while (entry->bitmap ||
3747 (async && btrfs_free_space_trimmed(entry))) {
3748 node = rb_next(&entry->offset_index);
3749 if (!node)
3750 goto out_unlock;
3751 entry = rb_entry(node, struct btrfs_free_space,
3752 offset_index);
3753 }
3754
3755 if (entry->offset >= end)
3756 goto out_unlock;
3757
3758 extent_start = entry->offset;
3759 extent_bytes = entry->bytes;
3760 extent_trim_state = entry->trim_state;
3761 if (async) {
3762 start = entry->offset;
3763 bytes = entry->bytes;
3764 if (bytes < minlen) {
3765 spin_unlock(&ctl->tree_lock);
3766 mutex_unlock(&ctl->cache_writeout_mutex);
3767 goto next;
3768 }
3769 unlink_free_space(ctl, entry, true);
3770 /*
3771 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3772 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3773 * X when we come back around. So trim it now.
3774 */
3775 if (max_discard_size &&
3776 bytes >= (max_discard_size +
3777 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3778 bytes = max_discard_size;
3779 extent_bytes = max_discard_size;
3780 entry->offset += max_discard_size;
3781 entry->bytes -= max_discard_size;
3782 link_free_space(ctl, entry);
3783 } else {
3784 kmem_cache_free(btrfs_free_space_cachep, entry);
3785 }
3786 } else {
3787 start = max(start, extent_start);
3788 bytes = min(extent_start + extent_bytes, end) - start;
3789 if (bytes < minlen) {
3790 spin_unlock(&ctl->tree_lock);
3791 mutex_unlock(&ctl->cache_writeout_mutex);
3792 goto next;
3793 }
3794
3795 unlink_free_space(ctl, entry, true);
3796 kmem_cache_free(btrfs_free_space_cachep, entry);
3797 }
3798
3799 spin_unlock(&ctl->tree_lock);
3800 trim_entry.start = extent_start;
3801 trim_entry.bytes = extent_bytes;
3802 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3803 mutex_unlock(&ctl->cache_writeout_mutex);
3804
3805 ret = do_trimming(block_group, total_trimmed, start, bytes,
3806 extent_start, extent_bytes, extent_trim_state,
3807 &trim_entry);
3808 if (ret) {
3809 block_group->discard_cursor = start + bytes;
3810 break;
3811 }
3812next:
3813 start += bytes;
3814 block_group->discard_cursor = start;
3815 if (async && *total_trimmed)
3816 break;
3817
3818 if (btrfs_trim_interrupted()) {
3819 ret = -ERESTARTSYS;
3820 break;
3821 }
3822
3823 cond_resched();
3824 }
3825
3826 return ret;
3827
3828out_unlock:
3829 block_group->discard_cursor = btrfs_block_group_end(block_group);
3830 spin_unlock(&ctl->tree_lock);
3831 mutex_unlock(&ctl->cache_writeout_mutex);
3832
3833 return ret;
3834}
3835
3836/*
3837 * If we break out of trimming a bitmap prematurely, we should reset the
3838 * trimming bit. In a rather contrieved case, it's possible to race here so
3839 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3840 *
3841 * start = start of bitmap
3842 * end = near end of bitmap
3843 *
3844 * Thread 1: Thread 2:
3845 * trim_bitmaps(start)
3846 * trim_bitmaps(end)
3847 * end_trimming_bitmap()
3848 * reset_trimming_bitmap()
3849 */
3850static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3851{
3852 struct btrfs_free_space *entry;
3853
3854 spin_lock(&ctl->tree_lock);
3855 entry = tree_search_offset(ctl, offset, 1, 0);
3856 if (entry) {
3857 if (btrfs_free_space_trimmed(entry)) {
3858 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3859 entry->bitmap_extents;
3860 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3861 }
3862 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3863 }
3864
3865 spin_unlock(&ctl->tree_lock);
3866}
3867
3868static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3869 struct btrfs_free_space *entry)
3870{
3871 if (btrfs_free_space_trimming_bitmap(entry)) {
3872 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3873 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3874 entry->bitmap_extents;
3875 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3876 }
3877}
3878
3879/*
3880 * If @async is set, then we will trim 1 region and return.
3881 */
3882static int trim_bitmaps(struct btrfs_block_group *block_group,
3883 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3884 u64 maxlen, bool async)
3885{
3886 struct btrfs_discard_ctl *discard_ctl =
3887 &block_group->fs_info->discard_ctl;
3888 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3889 struct btrfs_free_space *entry;
3890 int ret = 0;
3891 int ret2;
3892 u64 bytes;
3893 u64 offset = offset_to_bitmap(ctl, start);
3894 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3895
3896 while (offset < end) {
3897 bool next_bitmap = false;
3898 struct btrfs_trim_range trim_entry;
3899
3900 mutex_lock(&ctl->cache_writeout_mutex);
3901 spin_lock(&ctl->tree_lock);
3902
3903 if (ctl->free_space < minlen) {
3904 block_group->discard_cursor =
3905 btrfs_block_group_end(block_group);
3906 spin_unlock(&ctl->tree_lock);
3907 mutex_unlock(&ctl->cache_writeout_mutex);
3908 break;
3909 }
3910
3911 entry = tree_search_offset(ctl, offset, 1, 0);
3912 /*
3913 * Bitmaps are marked trimmed lossily now to prevent constant
3914 * discarding of the same bitmap (the reason why we are bound
3915 * by the filters). So, retrim the block group bitmaps when we
3916 * are preparing to punt to the unused_bgs list. This uses
3917 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3918 * which is the only discard index which sets minlen to 0.
3919 */
3920 if (!entry || (async && minlen && start == offset &&
3921 btrfs_free_space_trimmed(entry))) {
3922 spin_unlock(&ctl->tree_lock);
3923 mutex_unlock(&ctl->cache_writeout_mutex);
3924 next_bitmap = true;
3925 goto next;
3926 }
3927
3928 /*
3929 * Async discard bitmap trimming begins at by setting the start
3930 * to be key.objectid and the offset_to_bitmap() aligns to the
3931 * start of the bitmap. This lets us know we are fully
3932 * scanning the bitmap rather than only some portion of it.
3933 */
3934 if (start == offset)
3935 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3936
3937 bytes = minlen;
3938 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3939 if (ret2 || start >= end) {
3940 /*
3941 * We lossily consider a bitmap trimmed if we only skip
3942 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3943 */
3944 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3945 end_trimming_bitmap(ctl, entry);
3946 else
3947 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3948 spin_unlock(&ctl->tree_lock);
3949 mutex_unlock(&ctl->cache_writeout_mutex);
3950 next_bitmap = true;
3951 goto next;
3952 }
3953
3954 /*
3955 * We already trimmed a region, but are using the locking above
3956 * to reset the trim_state.
3957 */
3958 if (async && *total_trimmed) {
3959 spin_unlock(&ctl->tree_lock);
3960 mutex_unlock(&ctl->cache_writeout_mutex);
3961 goto out;
3962 }
3963
3964 bytes = min(bytes, end - start);
3965 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3966 spin_unlock(&ctl->tree_lock);
3967 mutex_unlock(&ctl->cache_writeout_mutex);
3968 goto next;
3969 }
3970
3971 /*
3972 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3973 * If X < @minlen, we won't trim X when we come back around.
3974 * So trim it now. We differ here from trimming extents as we
3975 * don't keep individual state per bit.
3976 */
3977 if (async &&
3978 max_discard_size &&
3979 bytes > (max_discard_size + minlen))
3980 bytes = max_discard_size;
3981
3982 bitmap_clear_bits(ctl, entry, start, bytes, true);
3983 if (entry->bytes == 0)
3984 free_bitmap(ctl, entry);
3985
3986 spin_unlock(&ctl->tree_lock);
3987 trim_entry.start = start;
3988 trim_entry.bytes = bytes;
3989 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3990 mutex_unlock(&ctl->cache_writeout_mutex);
3991
3992 ret = do_trimming(block_group, total_trimmed, start, bytes,
3993 start, bytes, 0, &trim_entry);
3994 if (ret) {
3995 reset_trimming_bitmap(ctl, offset);
3996 block_group->discard_cursor =
3997 btrfs_block_group_end(block_group);
3998 break;
3999 }
4000next:
4001 if (next_bitmap) {
4002 offset += BITS_PER_BITMAP * ctl->unit;
4003 start = offset;
4004 } else {
4005 start += bytes;
4006 }
4007 block_group->discard_cursor = start;
4008
4009 if (btrfs_trim_interrupted()) {
4010 if (start != offset)
4011 reset_trimming_bitmap(ctl, offset);
4012 ret = -ERESTARTSYS;
4013 break;
4014 }
4015
4016 cond_resched();
4017 }
4018
4019 if (offset >= end)
4020 block_group->discard_cursor = end;
4021
4022out:
4023 return ret;
4024}
4025
4026int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4027 u64 *trimmed, u64 start, u64 end, u64 minlen)
4028{
4029 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4030 int ret;
4031 u64 rem = 0;
4032
4033 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4034
4035 *trimmed = 0;
4036
4037 spin_lock(&block_group->lock);
4038 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4039 spin_unlock(&block_group->lock);
4040 return 0;
4041 }
4042 btrfs_freeze_block_group(block_group);
4043 spin_unlock(&block_group->lock);
4044
4045 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4046 if (ret)
4047 goto out;
4048
4049 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4050 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4051 /* If we ended in the middle of a bitmap, reset the trimming flag */
4052 if (rem)
4053 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4054out:
4055 btrfs_unfreeze_block_group(block_group);
4056 return ret;
4057}
4058
4059int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4060 u64 *trimmed, u64 start, u64 end, u64 minlen,
4061 bool async)
4062{
4063 int ret;
4064
4065 *trimmed = 0;
4066
4067 spin_lock(&block_group->lock);
4068 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4069 spin_unlock(&block_group->lock);
4070 return 0;
4071 }
4072 btrfs_freeze_block_group(block_group);
4073 spin_unlock(&block_group->lock);
4074
4075 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4076 btrfs_unfreeze_block_group(block_group);
4077
4078 return ret;
4079}
4080
4081int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4082 u64 *trimmed, u64 start, u64 end, u64 minlen,
4083 u64 maxlen, bool async)
4084{
4085 int ret;
4086
4087 *trimmed = 0;
4088
4089 spin_lock(&block_group->lock);
4090 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4091 spin_unlock(&block_group->lock);
4092 return 0;
4093 }
4094 btrfs_freeze_block_group(block_group);
4095 spin_unlock(&block_group->lock);
4096
4097 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4098 async);
4099
4100 btrfs_unfreeze_block_group(block_group);
4101
4102 return ret;
4103}
4104
4105bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4106{
4107 return btrfs_super_cache_generation(fs_info->super_copy);
4108}
4109
4110static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4111 struct btrfs_trans_handle *trans)
4112{
4113 struct btrfs_block_group *block_group;
4114 struct rb_node *node;
4115 int ret = 0;
4116
4117 btrfs_info(fs_info, "cleaning free space cache v1");
4118
4119 node = rb_first_cached(&fs_info->block_group_cache_tree);
4120 while (node) {
4121 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4122 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4123 if (ret)
4124 goto out;
4125 node = rb_next(node);
4126 }
4127out:
4128 return ret;
4129}
4130
4131int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4132{
4133 struct btrfs_trans_handle *trans;
4134 int ret;
4135
4136 /*
4137 * update_super_roots will appropriately set or unset
4138 * super_copy->cache_generation based on SPACE_CACHE and
4139 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4140 * transaction commit whether we are enabling space cache v1 and don't
4141 * have any other work to do, or are disabling it and removing free
4142 * space inodes.
4143 */
4144 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4145 if (IS_ERR(trans))
4146 return PTR_ERR(trans);
4147
4148 if (!active) {
4149 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4150 ret = cleanup_free_space_cache_v1(fs_info, trans);
4151 if (ret) {
4152 btrfs_abort_transaction(trans, ret);
4153 btrfs_end_transaction(trans);
4154 goto out;
4155 }
4156 }
4157
4158 ret = btrfs_commit_transaction(trans);
4159out:
4160 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4161
4162 return ret;
4163}
4164
4165int __init btrfs_free_space_init(void)
4166{
4167 btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4168 if (!btrfs_free_space_cachep)
4169 return -ENOMEM;
4170
4171 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4172 PAGE_SIZE, PAGE_SIZE,
4173 0, NULL);
4174 if (!btrfs_free_space_bitmap_cachep) {
4175 kmem_cache_destroy(btrfs_free_space_cachep);
4176 return -ENOMEM;
4177 }
4178
4179 return 0;
4180}
4181
4182void __cold btrfs_free_space_exit(void)
4183{
4184 kmem_cache_destroy(btrfs_free_space_cachep);
4185 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4186}
4187
4188#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4189/*
4190 * Use this if you need to make a bitmap or extent entry specifically, it
4191 * doesn't do any of the merging that add_free_space does, this acts a lot like
4192 * how the free space cache loading stuff works, so you can get really weird
4193 * configurations.
4194 */
4195int test_add_free_space_entry(struct btrfs_block_group *cache,
4196 u64 offset, u64 bytes, bool bitmap)
4197{
4198 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4199 struct btrfs_free_space *info = NULL, *bitmap_info;
4200 void *map = NULL;
4201 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4202 u64 bytes_added;
4203 int ret;
4204
4205again:
4206 if (!info) {
4207 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4208 if (!info)
4209 return -ENOMEM;
4210 }
4211
4212 if (!bitmap) {
4213 spin_lock(&ctl->tree_lock);
4214 info->offset = offset;
4215 info->bytes = bytes;
4216 info->max_extent_size = 0;
4217 ret = link_free_space(ctl, info);
4218 spin_unlock(&ctl->tree_lock);
4219 if (ret)
4220 kmem_cache_free(btrfs_free_space_cachep, info);
4221 return ret;
4222 }
4223
4224 if (!map) {
4225 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4226 if (!map) {
4227 kmem_cache_free(btrfs_free_space_cachep, info);
4228 return -ENOMEM;
4229 }
4230 }
4231
4232 spin_lock(&ctl->tree_lock);
4233 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4234 1, 0);
4235 if (!bitmap_info) {
4236 info->bitmap = map;
4237 map = NULL;
4238 add_new_bitmap(ctl, info, offset);
4239 bitmap_info = info;
4240 info = NULL;
4241 }
4242
4243 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4244 trim_state);
4245
4246 bytes -= bytes_added;
4247 offset += bytes_added;
4248 spin_unlock(&ctl->tree_lock);
4249
4250 if (bytes)
4251 goto again;
4252
4253 if (info)
4254 kmem_cache_free(btrfs_free_space_cachep, info);
4255 if (map)
4256 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4257 return 0;
4258}
4259
4260/*
4261 * Checks to see if the given range is in the free space cache. This is really
4262 * just used to check the absence of space, so if there is free space in the
4263 * range at all we will return 1.
4264 */
4265int test_check_exists(struct btrfs_block_group *cache,
4266 u64 offset, u64 bytes)
4267{
4268 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4269 struct btrfs_free_space *info;
4270 int ret = 0;
4271
4272 spin_lock(&ctl->tree_lock);
4273 info = tree_search_offset(ctl, offset, 0, 0);
4274 if (!info) {
4275 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4276 1, 0);
4277 if (!info)
4278 goto out;
4279 }
4280
4281have_info:
4282 if (info->bitmap) {
4283 u64 bit_off, bit_bytes;
4284 struct rb_node *n;
4285 struct btrfs_free_space *tmp;
4286
4287 bit_off = offset;
4288 bit_bytes = ctl->unit;
4289 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4290 if (!ret) {
4291 if (bit_off == offset) {
4292 ret = 1;
4293 goto out;
4294 } else if (bit_off > offset &&
4295 offset + bytes > bit_off) {
4296 ret = 1;
4297 goto out;
4298 }
4299 }
4300
4301 n = rb_prev(&info->offset_index);
4302 while (n) {
4303 tmp = rb_entry(n, struct btrfs_free_space,
4304 offset_index);
4305 if (tmp->offset + tmp->bytes < offset)
4306 break;
4307 if (offset + bytes < tmp->offset) {
4308 n = rb_prev(&tmp->offset_index);
4309 continue;
4310 }
4311 info = tmp;
4312 goto have_info;
4313 }
4314
4315 n = rb_next(&info->offset_index);
4316 while (n) {
4317 tmp = rb_entry(n, struct btrfs_free_space,
4318 offset_index);
4319 if (offset + bytes < tmp->offset)
4320 break;
4321 if (tmp->offset + tmp->bytes < offset) {
4322 n = rb_next(&tmp->offset_index);
4323 continue;
4324 }
4325 info = tmp;
4326 goto have_info;
4327 }
4328
4329 ret = 0;
4330 goto out;
4331 }
4332
4333 if (info->offset == offset) {
4334 ret = 1;
4335 goto out;
4336 }
4337
4338 if (offset > info->offset && offset < info->offset + info->bytes)
4339 ret = 1;
4340out:
4341 spin_unlock(&ctl->tree_lock);
4342 return ret;
4343}
4344#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */