Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "ctree.h"
  15#include "free-space-cache.h"
  16#include "transaction.h"
  17#include "disk-io.h"
  18#include "extent_io.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
  24
  25#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  26#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
  27
  28struct btrfs_trim_range {
  29	u64 start;
  30	u64 bytes;
  31	struct list_head list;
  32};
  33
  34static int link_free_space(struct btrfs_free_space_ctl *ctl,
  35			   struct btrfs_free_space *info);
  36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  37			      struct btrfs_free_space *info);
  38static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  39			     struct btrfs_trans_handle *trans,
  40			     struct btrfs_io_ctl *io_ctl,
  41			     struct btrfs_path *path);
  42
  43static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  44					       struct btrfs_path *path,
  45					       u64 offset)
  46{
  47	struct btrfs_fs_info *fs_info = root->fs_info;
  48	struct btrfs_key key;
  49	struct btrfs_key location;
  50	struct btrfs_disk_key disk_key;
  51	struct btrfs_free_space_header *header;
  52	struct extent_buffer *leaf;
  53	struct inode *inode = NULL;
  54	unsigned nofs_flag;
  55	int ret;
  56
  57	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  58	key.offset = offset;
  59	key.type = 0;
  60
  61	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  62	if (ret < 0)
  63		return ERR_PTR(ret);
  64	if (ret > 0) {
  65		btrfs_release_path(path);
  66		return ERR_PTR(-ENOENT);
  67	}
  68
  69	leaf = path->nodes[0];
  70	header = btrfs_item_ptr(leaf, path->slots[0],
  71				struct btrfs_free_space_header);
  72	btrfs_free_space_key(leaf, header, &disk_key);
  73	btrfs_disk_key_to_cpu(&location, &disk_key);
  74	btrfs_release_path(path);
  75
  76	/*
  77	 * We are often under a trans handle at this point, so we need to make
  78	 * sure NOFS is set to keep us from deadlocking.
  79	 */
  80	nofs_flag = memalloc_nofs_save();
  81	inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
  82	btrfs_release_path(path);
  83	memalloc_nofs_restore(nofs_flag);
  84	if (IS_ERR(inode))
  85		return inode;
 
 
 
 
  86
  87	mapping_set_gfp_mask(inode->i_mapping,
  88			mapping_gfp_constraint(inode->i_mapping,
  89			~(__GFP_FS | __GFP_HIGHMEM)));
  90
  91	return inode;
  92}
  93
  94struct inode *lookup_free_space_inode(
  95		struct btrfs_block_group_cache *block_group,
  96		struct btrfs_path *path)
  97{
  98	struct btrfs_fs_info *fs_info = block_group->fs_info;
  99	struct inode *inode = NULL;
 100	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 101
 102	spin_lock(&block_group->lock);
 103	if (block_group->inode)
 104		inode = igrab(block_group->inode);
 105	spin_unlock(&block_group->lock);
 106	if (inode)
 107		return inode;
 108
 109	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 110					  block_group->key.objectid);
 111	if (IS_ERR(inode))
 112		return inode;
 113
 114	spin_lock(&block_group->lock);
 115	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 116		btrfs_info(fs_info, "Old style space inode found, converting.");
 
 117		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 118			BTRFS_INODE_NODATACOW;
 119		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 120	}
 121
 122	if (!block_group->iref) {
 123		block_group->inode = igrab(inode);
 124		block_group->iref = 1;
 125	}
 126	spin_unlock(&block_group->lock);
 127
 128	return inode;
 129}
 130
 131static int __create_free_space_inode(struct btrfs_root *root,
 132				     struct btrfs_trans_handle *trans,
 133				     struct btrfs_path *path,
 134				     u64 ino, u64 offset)
 135{
 136	struct btrfs_key key;
 137	struct btrfs_disk_key disk_key;
 138	struct btrfs_free_space_header *header;
 139	struct btrfs_inode_item *inode_item;
 140	struct extent_buffer *leaf;
 141	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 142	int ret;
 143
 144	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 145	if (ret)
 146		return ret;
 147
 148	/* We inline crc's for the free disk space cache */
 149	if (ino != BTRFS_FREE_INO_OBJECTID)
 150		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 151
 152	leaf = path->nodes[0];
 153	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 154				    struct btrfs_inode_item);
 155	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 156	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 157			     sizeof(*inode_item));
 158	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 159	btrfs_set_inode_size(leaf, inode_item, 0);
 160	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 161	btrfs_set_inode_uid(leaf, inode_item, 0);
 162	btrfs_set_inode_gid(leaf, inode_item, 0);
 163	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 164	btrfs_set_inode_flags(leaf, inode_item, flags);
 165	btrfs_set_inode_nlink(leaf, inode_item, 1);
 166	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 167	btrfs_set_inode_block_group(leaf, inode_item, offset);
 168	btrfs_mark_buffer_dirty(leaf);
 169	btrfs_release_path(path);
 170
 171	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 172	key.offset = offset;
 173	key.type = 0;
 
 174	ret = btrfs_insert_empty_item(trans, root, path, &key,
 175				      sizeof(struct btrfs_free_space_header));
 176	if (ret < 0) {
 177		btrfs_release_path(path);
 178		return ret;
 179	}
 180
 181	leaf = path->nodes[0];
 182	header = btrfs_item_ptr(leaf, path->slots[0],
 183				struct btrfs_free_space_header);
 184	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 185	btrfs_set_free_space_key(leaf, header, &disk_key);
 186	btrfs_mark_buffer_dirty(leaf);
 187	btrfs_release_path(path);
 188
 189	return 0;
 190}
 191
 192int create_free_space_inode(struct btrfs_trans_handle *trans,
 
 193			    struct btrfs_block_group_cache *block_group,
 194			    struct btrfs_path *path)
 195{
 196	int ret;
 197	u64 ino;
 198
 199	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
 200	if (ret < 0)
 201		return ret;
 202
 203	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 204					 ino, block_group->key.objectid);
 205}
 206
 207int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 208				       struct btrfs_block_rsv *rsv)
 209{
 210	u64 needed_bytes;
 211	int ret;
 212
 213	/* 1 for slack space, 1 for updating the inode */
 214	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 215		btrfs_calc_metadata_size(fs_info, 1);
 216
 217	spin_lock(&rsv->lock);
 218	if (rsv->reserved < needed_bytes)
 219		ret = -ENOSPC;
 220	else
 221		ret = 0;
 222	spin_unlock(&rsv->lock);
 223	return ret;
 224}
 225
 226int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 227				    struct btrfs_block_group_cache *block_group,
 228				    struct inode *inode)
 229{
 230	struct btrfs_root *root = BTRFS_I(inode)->root;
 231	int ret = 0;
 232	bool locked = false;
 233
 234	if (block_group) {
 235		struct btrfs_path *path = btrfs_alloc_path();
 236
 237		if (!path) {
 238			ret = -ENOMEM;
 239			goto fail;
 240		}
 241		locked = true;
 242		mutex_lock(&trans->transaction->cache_write_mutex);
 243		if (!list_empty(&block_group->io_list)) {
 244			list_del_init(&block_group->io_list);
 245
 246			btrfs_wait_cache_io(trans, block_group, path);
 247			btrfs_put_block_group(block_group);
 248		}
 249
 250		/*
 251		 * now that we've truncated the cache away, its no longer
 252		 * setup or written
 253		 */
 254		spin_lock(&block_group->lock);
 255		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 256		spin_unlock(&block_group->lock);
 257		btrfs_free_path(path);
 258	}
 259
 260	btrfs_i_size_write(BTRFS_I(inode), 0);
 261	truncate_pagecache(inode, 0);
 262
 263	/*
 264	 * We skip the throttling logic for free space cache inodes, so we don't
 265	 * need to check for -EAGAIN.
 266	 */
 267	ret = btrfs_truncate_inode_items(trans, root, inode,
 268					 0, BTRFS_EXTENT_DATA_KEY);
 269	if (ret)
 270		goto fail;
 
 
 271
 272	ret = btrfs_update_inode(trans, root, inode);
 273
 274fail:
 275	if (locked)
 276		mutex_unlock(&trans->transaction->cache_write_mutex);
 277	if (ret)
 278		btrfs_abort_transaction(trans, ret);
 279
 280	return ret;
 281}
 282
 283static void readahead_cache(struct inode *inode)
 284{
 285	struct file_ra_state *ra;
 286	unsigned long last_index;
 287
 288	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 289	if (!ra)
 290		return;
 291
 292	file_ra_state_init(ra, inode->i_mapping);
 293	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 294
 295	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 296
 297	kfree(ra);
 
 
 298}
 299
 300static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 301		       int write)
 302{
 
 
 
 
 303	int num_pages;
 304	int check_crcs = 0;
 305
 306	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 307
 308	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
 309		check_crcs = 1;
 310
 311	/* Make sure we can fit our crcs and generation into the first page */
 312	if (write && check_crcs &&
 313	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 314		return -ENOSPC;
 315
 316	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 317
 318	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 
 
 
 
 
 
 
 319	if (!io_ctl->pages)
 320		return -ENOMEM;
 321
 322	io_ctl->num_pages = num_pages;
 323	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 324	io_ctl->check_crcs = check_crcs;
 325	io_ctl->inode = inode;
 326
 327	return 0;
 328}
 329ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 330
 331static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 332{
 333	kfree(io_ctl->pages);
 334	io_ctl->pages = NULL;
 335}
 336
 337static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 338{
 339	if (io_ctl->cur) {
 
 340		io_ctl->cur = NULL;
 341		io_ctl->orig = NULL;
 342	}
 343}
 344
 345static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 346{
 347	ASSERT(io_ctl->index < io_ctl->num_pages);
 348	io_ctl->page = io_ctl->pages[io_ctl->index++];
 349	io_ctl->cur = page_address(io_ctl->page);
 350	io_ctl->orig = io_ctl->cur;
 351	io_ctl->size = PAGE_SIZE;
 352	if (clear)
 353		clear_page(io_ctl->cur);
 354}
 355
 356static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 357{
 358	int i;
 359
 360	io_ctl_unmap_page(io_ctl);
 361
 362	for (i = 0; i < io_ctl->num_pages; i++) {
 363		if (io_ctl->pages[i]) {
 364			ClearPageChecked(io_ctl->pages[i]);
 365			unlock_page(io_ctl->pages[i]);
 366			put_page(io_ctl->pages[i]);
 367		}
 368	}
 369}
 370
 371static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 372				int uptodate)
 373{
 374	struct page *page;
 375	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 376	int i;
 377
 378	for (i = 0; i < io_ctl->num_pages; i++) {
 379		page = find_or_create_page(inode->i_mapping, i, mask);
 380		if (!page) {
 381			io_ctl_drop_pages(io_ctl);
 382			return -ENOMEM;
 383		}
 384		io_ctl->pages[i] = page;
 385		if (uptodate && !PageUptodate(page)) {
 386			btrfs_readpage(NULL, page);
 387			lock_page(page);
 388			if (!PageUptodate(page)) {
 389				btrfs_err(BTRFS_I(inode)->root->fs_info,
 390					   "error reading free space cache");
 391				io_ctl_drop_pages(io_ctl);
 392				return -EIO;
 393			}
 394		}
 395	}
 396
 397	for (i = 0; i < io_ctl->num_pages; i++) {
 398		clear_page_dirty_for_io(io_ctl->pages[i]);
 399		set_page_extent_mapped(io_ctl->pages[i]);
 400	}
 401
 402	return 0;
 403}
 404
 405static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 406{
 407	__le64 *val;
 408
 409	io_ctl_map_page(io_ctl, 1);
 410
 411	/*
 412	 * Skip the csum areas.  If we don't check crcs then we just have a
 413	 * 64bit chunk at the front of the first page.
 414	 */
 415	if (io_ctl->check_crcs) {
 416		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 417		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 418	} else {
 419		io_ctl->cur += sizeof(u64);
 420		io_ctl->size -= sizeof(u64) * 2;
 421	}
 422
 423	val = io_ctl->cur;
 424	*val = cpu_to_le64(generation);
 425	io_ctl->cur += sizeof(u64);
 426}
 427
 428static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 429{
 430	__le64 *gen;
 431
 432	/*
 433	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 434	 * chunk at the front of the first page.
 435	 */
 436	if (io_ctl->check_crcs) {
 437		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 438		io_ctl->size -= sizeof(u64) +
 439			(sizeof(u32) * io_ctl->num_pages);
 440	} else {
 441		io_ctl->cur += sizeof(u64);
 442		io_ctl->size -= sizeof(u64) * 2;
 443	}
 444
 445	gen = io_ctl->cur;
 446	if (le64_to_cpu(*gen) != generation) {
 447		btrfs_err_rl(io_ctl->fs_info,
 448			"space cache generation (%llu) does not match inode (%llu)",
 449				*gen, generation);
 450		io_ctl_unmap_page(io_ctl);
 451		return -EIO;
 452	}
 453	io_ctl->cur += sizeof(u64);
 454	return 0;
 455}
 456
 457static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 458{
 459	u32 *tmp;
 460	u32 crc = ~(u32)0;
 461	unsigned offset = 0;
 462
 463	if (!io_ctl->check_crcs) {
 464		io_ctl_unmap_page(io_ctl);
 465		return;
 466	}
 467
 468	if (index == 0)
 469		offset = sizeof(u32) * io_ctl->num_pages;
 470
 471	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 472	btrfs_crc32c_final(crc, (u8 *)&crc);
 
 473	io_ctl_unmap_page(io_ctl);
 474	tmp = page_address(io_ctl->pages[0]);
 475	tmp += index;
 476	*tmp = crc;
 
 477}
 478
 479static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 480{
 481	u32 *tmp, val;
 482	u32 crc = ~(u32)0;
 483	unsigned offset = 0;
 484
 485	if (!io_ctl->check_crcs) {
 486		io_ctl_map_page(io_ctl, 0);
 487		return 0;
 488	}
 489
 490	if (index == 0)
 491		offset = sizeof(u32) * io_ctl->num_pages;
 492
 493	tmp = page_address(io_ctl->pages[0]);
 494	tmp += index;
 495	val = *tmp;
 
 496
 497	io_ctl_map_page(io_ctl, 0);
 498	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 499	btrfs_crc32c_final(crc, (u8 *)&crc);
 
 500	if (val != crc) {
 501		btrfs_err_rl(io_ctl->fs_info,
 502			"csum mismatch on free space cache");
 503		io_ctl_unmap_page(io_ctl);
 504		return -EIO;
 505	}
 506
 507	return 0;
 508}
 509
 510static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 511			    void *bitmap)
 512{
 513	struct btrfs_free_space_entry *entry;
 514
 515	if (!io_ctl->cur)
 516		return -ENOSPC;
 517
 518	entry = io_ctl->cur;
 519	entry->offset = cpu_to_le64(offset);
 520	entry->bytes = cpu_to_le64(bytes);
 521	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 522		BTRFS_FREE_SPACE_EXTENT;
 523	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 524	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 525
 526	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 527		return 0;
 528
 529	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 530
 531	/* No more pages to map */
 532	if (io_ctl->index >= io_ctl->num_pages)
 533		return 0;
 534
 535	/* map the next page */
 536	io_ctl_map_page(io_ctl, 1);
 537	return 0;
 538}
 539
 540static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 541{
 542	if (!io_ctl->cur)
 543		return -ENOSPC;
 544
 545	/*
 546	 * If we aren't at the start of the current page, unmap this one and
 547	 * map the next one if there is any left.
 548	 */
 549	if (io_ctl->cur != io_ctl->orig) {
 550		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 551		if (io_ctl->index >= io_ctl->num_pages)
 552			return -ENOSPC;
 553		io_ctl_map_page(io_ctl, 0);
 554	}
 555
 556	copy_page(io_ctl->cur, bitmap);
 557	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 558	if (io_ctl->index < io_ctl->num_pages)
 559		io_ctl_map_page(io_ctl, 0);
 560	return 0;
 561}
 562
 563static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 564{
 565	/*
 566	 * If we're not on the boundary we know we've modified the page and we
 567	 * need to crc the page.
 568	 */
 569	if (io_ctl->cur != io_ctl->orig)
 570		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 571	else
 572		io_ctl_unmap_page(io_ctl);
 573
 574	while (io_ctl->index < io_ctl->num_pages) {
 575		io_ctl_map_page(io_ctl, 1);
 576		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 577	}
 578}
 579
 580static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 581			    struct btrfs_free_space *entry, u8 *type)
 582{
 583	struct btrfs_free_space_entry *e;
 584	int ret;
 585
 586	if (!io_ctl->cur) {
 587		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 588		if (ret)
 589			return ret;
 590	}
 591
 592	e = io_ctl->cur;
 593	entry->offset = le64_to_cpu(e->offset);
 594	entry->bytes = le64_to_cpu(e->bytes);
 595	*type = e->type;
 596	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 597	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 598
 599	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 600		return 0;
 601
 602	io_ctl_unmap_page(io_ctl);
 603
 604	return 0;
 605}
 606
 607static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 608			      struct btrfs_free_space *entry)
 609{
 610	int ret;
 611
 612	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 613	if (ret)
 614		return ret;
 615
 616	copy_page(entry->bitmap, io_ctl->cur);
 617	io_ctl_unmap_page(io_ctl);
 618
 619	return 0;
 620}
 621
 622/*
 623 * Since we attach pinned extents after the fact we can have contiguous sections
 624 * of free space that are split up in entries.  This poses a problem with the
 625 * tree logging stuff since it could have allocated across what appears to be 2
 626 * entries since we would have merged the entries when adding the pinned extents
 627 * back to the free space cache.  So run through the space cache that we just
 628 * loaded and merge contiguous entries.  This will make the log replay stuff not
 629 * blow up and it will make for nicer allocator behavior.
 630 */
 631static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 632{
 633	struct btrfs_free_space *e, *prev = NULL;
 634	struct rb_node *n;
 635
 636again:
 637	spin_lock(&ctl->tree_lock);
 638	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 639		e = rb_entry(n, struct btrfs_free_space, offset_index);
 640		if (!prev)
 641			goto next;
 642		if (e->bitmap || prev->bitmap)
 643			goto next;
 644		if (prev->offset + prev->bytes == e->offset) {
 645			unlink_free_space(ctl, prev);
 646			unlink_free_space(ctl, e);
 647			prev->bytes += e->bytes;
 648			kmem_cache_free(btrfs_free_space_cachep, e);
 649			link_free_space(ctl, prev);
 650			prev = NULL;
 651			spin_unlock(&ctl->tree_lock);
 652			goto again;
 653		}
 654next:
 655		prev = e;
 656	}
 657	spin_unlock(&ctl->tree_lock);
 658}
 659
 660static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 661				   struct btrfs_free_space_ctl *ctl,
 662				   struct btrfs_path *path, u64 offset)
 663{
 664	struct btrfs_fs_info *fs_info = root->fs_info;
 665	struct btrfs_free_space_header *header;
 666	struct extent_buffer *leaf;
 667	struct btrfs_io_ctl io_ctl;
 668	struct btrfs_key key;
 669	struct btrfs_free_space *e, *n;
 670	LIST_HEAD(bitmaps);
 671	u64 num_entries;
 672	u64 num_bitmaps;
 673	u64 generation;
 674	u8 type;
 675	int ret = 0;
 676
 
 
 677	/* Nothing in the space cache, goodbye */
 678	if (!i_size_read(inode))
 679		return 0;
 680
 681	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 682	key.offset = offset;
 683	key.type = 0;
 684
 685	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 686	if (ret < 0)
 687		return 0;
 688	else if (ret > 0) {
 689		btrfs_release_path(path);
 690		return 0;
 691	}
 692
 693	ret = -1;
 694
 695	leaf = path->nodes[0];
 696	header = btrfs_item_ptr(leaf, path->slots[0],
 697				struct btrfs_free_space_header);
 698	num_entries = btrfs_free_space_entries(leaf, header);
 699	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 700	generation = btrfs_free_space_generation(leaf, header);
 701	btrfs_release_path(path);
 702
 703	if (!BTRFS_I(inode)->generation) {
 704		btrfs_info(fs_info,
 705			   "the free space cache file (%llu) is invalid, skip it",
 706			   offset);
 707		return 0;
 708	}
 709
 710	if (BTRFS_I(inode)->generation != generation) {
 711		btrfs_err(fs_info,
 712			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 713			  BTRFS_I(inode)->generation, generation);
 
 714		return 0;
 715	}
 716
 717	if (!num_entries)
 718		return 0;
 719
 720	ret = io_ctl_init(&io_ctl, inode, 0);
 721	if (ret)
 722		return ret;
 723
 724	readahead_cache(inode);
 
 
 725
 726	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
 727	if (ret)
 728		goto out;
 729
 730	ret = io_ctl_check_crc(&io_ctl, 0);
 731	if (ret)
 732		goto free_cache;
 733
 734	ret = io_ctl_check_generation(&io_ctl, generation);
 735	if (ret)
 736		goto free_cache;
 737
 738	while (num_entries) {
 739		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 740				      GFP_NOFS);
 741		if (!e)
 742			goto free_cache;
 743
 744		ret = io_ctl_read_entry(&io_ctl, e, &type);
 745		if (ret) {
 746			kmem_cache_free(btrfs_free_space_cachep, e);
 747			goto free_cache;
 748		}
 749
 750		if (!e->bytes) {
 751			kmem_cache_free(btrfs_free_space_cachep, e);
 752			goto free_cache;
 753		}
 754
 755		if (type == BTRFS_FREE_SPACE_EXTENT) {
 756			spin_lock(&ctl->tree_lock);
 757			ret = link_free_space(ctl, e);
 758			spin_unlock(&ctl->tree_lock);
 759			if (ret) {
 760				btrfs_err(fs_info,
 761					"Duplicate entries in free space cache, dumping");
 762				kmem_cache_free(btrfs_free_space_cachep, e);
 763				goto free_cache;
 764			}
 765		} else {
 766			ASSERT(num_bitmaps);
 767			num_bitmaps--;
 768			e->bitmap = kmem_cache_zalloc(
 769					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 770			if (!e->bitmap) {
 771				kmem_cache_free(
 772					btrfs_free_space_cachep, e);
 773				goto free_cache;
 774			}
 775			spin_lock(&ctl->tree_lock);
 776			ret = link_free_space(ctl, e);
 777			ctl->total_bitmaps++;
 778			ctl->op->recalc_thresholds(ctl);
 779			spin_unlock(&ctl->tree_lock);
 780			if (ret) {
 781				btrfs_err(fs_info,
 782					"Duplicate entries in free space cache, dumping");
 783				kmem_cache_free(btrfs_free_space_cachep, e);
 784				goto free_cache;
 785			}
 786			list_add_tail(&e->list, &bitmaps);
 787		}
 788
 789		num_entries--;
 790	}
 791
 792	io_ctl_unmap_page(&io_ctl);
 793
 794	/*
 795	 * We add the bitmaps at the end of the entries in order that
 796	 * the bitmap entries are added to the cache.
 797	 */
 798	list_for_each_entry_safe(e, n, &bitmaps, list) {
 799		list_del_init(&e->list);
 800		ret = io_ctl_read_bitmap(&io_ctl, e);
 801		if (ret)
 802			goto free_cache;
 803	}
 804
 805	io_ctl_drop_pages(&io_ctl);
 806	merge_space_tree(ctl);
 807	ret = 1;
 808out:
 809	io_ctl_free(&io_ctl);
 810	return ret;
 811free_cache:
 812	io_ctl_drop_pages(&io_ctl);
 813	__btrfs_remove_free_space_cache(ctl);
 814	goto out;
 815}
 816
 817int load_free_space_cache(struct btrfs_block_group_cache *block_group)
 
 818{
 819	struct btrfs_fs_info *fs_info = block_group->fs_info;
 820	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 821	struct inode *inode;
 822	struct btrfs_path *path;
 823	int ret = 0;
 824	bool matched;
 825	u64 used = btrfs_block_group_used(&block_group->item);
 826
 827	/*
 828	 * If this block group has been marked to be cleared for one reason or
 829	 * another then we can't trust the on disk cache, so just return.
 830	 */
 831	spin_lock(&block_group->lock);
 832	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 833		spin_unlock(&block_group->lock);
 834		return 0;
 835	}
 836	spin_unlock(&block_group->lock);
 837
 838	path = btrfs_alloc_path();
 839	if (!path)
 840		return 0;
 841	path->search_commit_root = 1;
 842	path->skip_locking = 1;
 843
 844	/*
 845	 * We must pass a path with search_commit_root set to btrfs_iget in
 846	 * order to avoid a deadlock when allocating extents for the tree root.
 847	 *
 848	 * When we are COWing an extent buffer from the tree root, when looking
 849	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 850	 * block group without its free space cache loaded. When we find one
 851	 * we must load its space cache which requires reading its free space
 852	 * cache's inode item from the root tree. If this inode item is located
 853	 * in the same leaf that we started COWing before, then we end up in
 854	 * deadlock on the extent buffer (trying to read lock it when we
 855	 * previously write locked it).
 856	 *
 857	 * It's safe to read the inode item using the commit root because
 858	 * block groups, once loaded, stay in memory forever (until they are
 859	 * removed) as well as their space caches once loaded. New block groups
 860	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 861	 * we will never try to read their inode item while the fs is mounted.
 862	 */
 863	inode = lookup_free_space_inode(block_group, path);
 864	if (IS_ERR(inode)) {
 865		btrfs_free_path(path);
 866		return 0;
 867	}
 868
 869	/* We may have converted the inode and made the cache invalid. */
 870	spin_lock(&block_group->lock);
 871	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 872		spin_unlock(&block_group->lock);
 873		btrfs_free_path(path);
 874		goto out;
 875	}
 876	spin_unlock(&block_group->lock);
 877
 878	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 879				      path, block_group->key.objectid);
 880	btrfs_free_path(path);
 881	if (ret <= 0)
 882		goto out;
 883
 884	spin_lock(&ctl->tree_lock);
 885	matched = (ctl->free_space == (block_group->key.offset - used -
 886				       block_group->bytes_super));
 887	spin_unlock(&ctl->tree_lock);
 888
 889	if (!matched) {
 890		__btrfs_remove_free_space_cache(ctl);
 891		btrfs_warn(fs_info,
 892			   "block group %llu has wrong amount of free space",
 893			   block_group->key.objectid);
 894		ret = -1;
 895	}
 896out:
 897	if (ret < 0) {
 898		/* This cache is bogus, make sure it gets cleared */
 899		spin_lock(&block_group->lock);
 900		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 901		spin_unlock(&block_group->lock);
 902		ret = 0;
 903
 904		btrfs_warn(fs_info,
 905			   "failed to load free space cache for block group %llu, rebuilding it now",
 906			   block_group->key.objectid);
 907	}
 908
 909	iput(inode);
 910	return ret;
 911}
 912
 913static noinline_for_stack
 914int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 915			      struct btrfs_free_space_ctl *ctl,
 916			      struct btrfs_block_group_cache *block_group,
 917			      int *entries, int *bitmaps,
 918			      struct list_head *bitmap_list)
 
 
 
 
 
 
 
 
 
 
 
 
 919{
 920	int ret;
 
 
 
 
 921	struct btrfs_free_cluster *cluster = NULL;
 922	struct btrfs_free_cluster *cluster_locked = NULL;
 923	struct rb_node *node = rb_first(&ctl->free_space_offset);
 924	struct btrfs_trim_range *trim_entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925
 926	/* Get the cluster for this block_group if it exists */
 927	if (block_group && !list_empty(&block_group->cluster_list)) {
 928		cluster = list_entry(block_group->cluster_list.next,
 929				     struct btrfs_free_cluster,
 930				     block_group_list);
 931	}
 932
 
 
 
 
 
 
 
 933	if (!node && cluster) {
 934		cluster_locked = cluster;
 935		spin_lock(&cluster_locked->lock);
 936		node = rb_first(&cluster->root);
 937		cluster = NULL;
 938	}
 939
 
 
 
 
 
 
 
 940	/* Write out the extent entries */
 941	while (node) {
 942		struct btrfs_free_space *e;
 943
 944		e = rb_entry(node, struct btrfs_free_space, offset_index);
 945		*entries += 1;
 946
 947		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 948				       e->bitmap);
 949		if (ret)
 950			goto fail;
 951
 952		if (e->bitmap) {
 953			list_add_tail(&e->list, bitmap_list);
 954			*bitmaps += 1;
 955		}
 956		node = rb_next(node);
 957		if (!node && cluster) {
 958			node = rb_first(&cluster->root);
 959			cluster_locked = cluster;
 960			spin_lock(&cluster_locked->lock);
 961			cluster = NULL;
 962		}
 963	}
 964	if (cluster_locked) {
 965		spin_unlock(&cluster_locked->lock);
 966		cluster_locked = NULL;
 967	}
 968
 969	/*
 970	 * Make sure we don't miss any range that was removed from our rbtree
 971	 * because trimming is running. Otherwise after a umount+mount (or crash
 972	 * after committing the transaction) we would leak free space and get
 973	 * an inconsistent free space cache report from fsck.
 974	 */
 975	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
 976		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
 977				       trim_entry->bytes, NULL);
 978		if (ret)
 979			goto fail;
 980		*entries += 1;
 981	}
 982
 983	return 0;
 984fail:
 985	if (cluster_locked)
 986		spin_unlock(&cluster_locked->lock);
 987	return -ENOSPC;
 988}
 989
 990static noinline_for_stack int
 991update_cache_item(struct btrfs_trans_handle *trans,
 992		  struct btrfs_root *root,
 993		  struct inode *inode,
 994		  struct btrfs_path *path, u64 offset,
 995		  int entries, int bitmaps)
 996{
 997	struct btrfs_key key;
 998	struct btrfs_free_space_header *header;
 999	struct extent_buffer *leaf;
1000	int ret;
1001
1002	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1003	key.offset = offset;
1004	key.type = 0;
1005
1006	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1007	if (ret < 0) {
1008		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1009				 EXTENT_DELALLOC, 0, 0, NULL);
1010		goto fail;
1011	}
1012	leaf = path->nodes[0];
1013	if (ret > 0) {
1014		struct btrfs_key found_key;
1015		ASSERT(path->slots[0]);
1016		path->slots[0]--;
1017		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1018		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1019		    found_key.offset != offset) {
1020			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1021					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1022					 0, NULL);
1023			btrfs_release_path(path);
1024			goto fail;
1025		}
1026	}
1027
1028	BTRFS_I(inode)->generation = trans->transid;
1029	header = btrfs_item_ptr(leaf, path->slots[0],
1030				struct btrfs_free_space_header);
1031	btrfs_set_free_space_entries(leaf, header, entries);
1032	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1033	btrfs_set_free_space_generation(leaf, header, trans->transid);
1034	btrfs_mark_buffer_dirty(leaf);
1035	btrfs_release_path(path);
1036
1037	return 0;
1038
1039fail:
1040	return -1;
1041}
1042
1043static noinline_for_stack int write_pinned_extent_entries(
1044			    struct btrfs_block_group_cache *block_group,
1045			    struct btrfs_io_ctl *io_ctl,
1046			    int *entries)
1047{
1048	u64 start, extent_start, extent_end, len;
1049	struct extent_io_tree *unpin = NULL;
1050	int ret;
1051
1052	if (!block_group)
1053		return 0;
1054
1055	/*
1056	 * We want to add any pinned extents to our free space cache
1057	 * so we don't leak the space
1058	 *
1059	 * We shouldn't have switched the pinned extents yet so this is the
1060	 * right one
1061	 */
1062	unpin = block_group->fs_info->pinned_extents;
1063
1064	start = block_group->key.objectid;
 
1065
1066	while (start < block_group->key.objectid + block_group->key.offset) {
 
1067		ret = find_first_extent_bit(unpin, start,
1068					    &extent_start, &extent_end,
1069					    EXTENT_DIRTY, NULL);
1070		if (ret)
1071			return 0;
 
 
1072
1073		/* This pinned extent is out of our range */
1074		if (extent_start >= block_group->key.objectid +
1075		    block_group->key.offset)
1076			return 0;
1077
1078		extent_start = max(extent_start, start);
1079		extent_end = min(block_group->key.objectid +
1080				 block_group->key.offset, extent_end + 1);
1081		len = extent_end - extent_start;
1082
1083		*entries += 1;
1084		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1085		if (ret)
1086			return -ENOSPC;
1087
1088		start = extent_end;
1089	}
1090
1091	return 0;
1092}
1093
1094static noinline_for_stack int
1095write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1096{
1097	struct btrfs_free_space *entry, *next;
1098	int ret;
1099
1100	/* Write out the bitmaps */
1101	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1102		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
 
 
 
1103		if (ret)
1104			return -ENOSPC;
1105		list_del_init(&entry->list);
1106	}
1107
1108	return 0;
1109}
1110
1111static int flush_dirty_cache(struct inode *inode)
1112{
1113	int ret;
1114
1115	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1116	if (ret)
1117		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1118				 EXTENT_DELALLOC, 0, 0, NULL);
1119
1120	return ret;
1121}
1122
1123static void noinline_for_stack
1124cleanup_bitmap_list(struct list_head *bitmap_list)
1125{
1126	struct btrfs_free_space *entry, *next;
1127
1128	list_for_each_entry_safe(entry, next, bitmap_list, list)
1129		list_del_init(&entry->list);
1130}
1131
1132static void noinline_for_stack
1133cleanup_write_cache_enospc(struct inode *inode,
1134			   struct btrfs_io_ctl *io_ctl,
1135			   struct extent_state **cached_state)
1136{
1137	io_ctl_drop_pages(io_ctl);
1138	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1139			     i_size_read(inode) - 1, cached_state);
1140}
1141
1142static int __btrfs_wait_cache_io(struct btrfs_root *root,
1143				 struct btrfs_trans_handle *trans,
1144				 struct btrfs_block_group_cache *block_group,
1145				 struct btrfs_io_ctl *io_ctl,
1146				 struct btrfs_path *path, u64 offset)
1147{
1148	int ret;
1149	struct inode *inode = io_ctl->inode;
1150
1151	if (!inode)
1152		return 0;
1153
1154	/* Flush the dirty pages in the cache file. */
1155	ret = flush_dirty_cache(inode);
1156	if (ret)
1157		goto out;
1158
1159	/* Update the cache item to tell everyone this cache file is valid. */
1160	ret = update_cache_item(trans, root, inode, path, offset,
1161				io_ctl->entries, io_ctl->bitmaps);
1162out:
1163	io_ctl_free(io_ctl);
1164	if (ret) {
1165		invalidate_inode_pages2(inode->i_mapping);
1166		BTRFS_I(inode)->generation = 0;
1167		if (block_group) {
1168#ifdef DEBUG
1169			btrfs_err(root->fs_info,
1170				  "failed to write free space cache for block group %llu",
1171				  block_group->key.objectid);
1172#endif
1173		}
1174	}
1175	btrfs_update_inode(trans, root, inode);
1176
1177	if (block_group) {
1178		/* the dirty list is protected by the dirty_bgs_lock */
1179		spin_lock(&trans->transaction->dirty_bgs_lock);
1180
1181		/* the disk_cache_state is protected by the block group lock */
1182		spin_lock(&block_group->lock);
1183
1184		/*
1185		 * only mark this as written if we didn't get put back on
1186		 * the dirty list while waiting for IO.   Otherwise our
1187		 * cache state won't be right, and we won't get written again
1188		 */
1189		if (!ret && list_empty(&block_group->dirty_list))
1190			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1191		else if (ret)
1192			block_group->disk_cache_state = BTRFS_DC_ERROR;
1193
1194		spin_unlock(&block_group->lock);
1195		spin_unlock(&trans->transaction->dirty_bgs_lock);
1196		io_ctl->inode = NULL;
1197		iput(inode);
 
 
1198	}
1199
1200	return ret;
1201
1202}
1203
1204static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1205				    struct btrfs_trans_handle *trans,
1206				    struct btrfs_io_ctl *io_ctl,
1207				    struct btrfs_path *path)
1208{
1209	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1210}
1211
1212int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1213			struct btrfs_block_group_cache *block_group,
1214			struct btrfs_path *path)
1215{
1216	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1217				     block_group, &block_group->io_ctl,
1218				     path, block_group->key.objectid);
1219}
1220
1221/**
1222 * __btrfs_write_out_cache - write out cached info to an inode
1223 * @root - the root the inode belongs to
1224 * @ctl - the free space cache we are going to write out
1225 * @block_group - the block_group for this cache if it belongs to a block_group
1226 * @trans - the trans handle
1227 *
1228 * This function writes out a free space cache struct to disk for quick recovery
1229 * on mount.  This will return 0 if it was successful in writing the cache out,
1230 * or an errno if it was not.
1231 */
1232static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1233				   struct btrfs_free_space_ctl *ctl,
1234				   struct btrfs_block_group_cache *block_group,
1235				   struct btrfs_io_ctl *io_ctl,
1236				   struct btrfs_trans_handle *trans)
1237{
1238	struct extent_state *cached_state = NULL;
1239	LIST_HEAD(bitmap_list);
1240	int entries = 0;
1241	int bitmaps = 0;
1242	int ret;
1243	int must_iput = 0;
1244
1245	if (!i_size_read(inode))
1246		return -EIO;
1247
1248	WARN_ON(io_ctl->pages);
1249	ret = io_ctl_init(io_ctl, inode, 1);
1250	if (ret)
1251		return ret;
1252
1253	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1254		down_write(&block_group->data_rwsem);
1255		spin_lock(&block_group->lock);
1256		if (block_group->delalloc_bytes) {
1257			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1258			spin_unlock(&block_group->lock);
1259			up_write(&block_group->data_rwsem);
1260			BTRFS_I(inode)->generation = 0;
1261			ret = 0;
1262			must_iput = 1;
1263			goto out;
1264		}
1265		spin_unlock(&block_group->lock);
1266	}
1267
1268	/* Lock all pages first so we can lock the extent safely. */
1269	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1270	if (ret)
1271		goto out_unlock;
1272
1273	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1274			 &cached_state);
1275
1276	io_ctl_set_generation(io_ctl, trans->transid);
1277
1278	mutex_lock(&ctl->cache_writeout_mutex);
1279	/* Write out the extent entries in the free space cache */
1280	spin_lock(&ctl->tree_lock);
1281	ret = write_cache_extent_entries(io_ctl, ctl,
1282					 block_group, &entries, &bitmaps,
1283					 &bitmap_list);
1284	if (ret)
1285		goto out_nospc_locked;
1286
1287	/*
1288	 * Some spaces that are freed in the current transaction are pinned,
1289	 * they will be added into free space cache after the transaction is
1290	 * committed, we shouldn't lose them.
1291	 *
1292	 * If this changes while we are working we'll get added back to
1293	 * the dirty list and redo it.  No locking needed
1294	 */
1295	ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1296	if (ret)
1297		goto out_nospc_locked;
1298
1299	/*
1300	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1301	 * locked while doing it because a concurrent trim can be manipulating
1302	 * or freeing the bitmap.
1303	 */
1304	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1305	spin_unlock(&ctl->tree_lock);
1306	mutex_unlock(&ctl->cache_writeout_mutex);
1307	if (ret)
1308		goto out_nospc;
1309
1310	/* Zero out the rest of the pages just to make sure */
1311	io_ctl_zero_remaining_pages(io_ctl);
1312
1313	/* Everything is written out, now we dirty the pages in the file. */
1314	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1315				i_size_read(inode), &cached_state);
1316	if (ret)
1317		goto out_nospc;
1318
1319	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1320		up_write(&block_group->data_rwsem);
1321	/*
1322	 * Release the pages and unlock the extent, we will flush
1323	 * them out later
1324	 */
1325	io_ctl_drop_pages(io_ctl);
1326
1327	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1328			     i_size_read(inode) - 1, &cached_state);
1329
1330	/*
1331	 * at this point the pages are under IO and we're happy,
1332	 * The caller is responsible for waiting on them and updating the
1333	 * the cache and the inode
1334	 */
1335	io_ctl->entries = entries;
1336	io_ctl->bitmaps = bitmaps;
1337
1338	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1339	if (ret)
1340		goto out;
1341
1342	return 0;
1343
 
1344out:
1345	io_ctl->inode = NULL;
1346	io_ctl_free(io_ctl);
1347	if (ret) {
1348		invalidate_inode_pages2(inode->i_mapping);
1349		BTRFS_I(inode)->generation = 0;
1350	}
1351	btrfs_update_inode(trans, root, inode);
1352	if (must_iput)
1353		iput(inode);
1354	return ret;
1355
1356out_nospc_locked:
1357	cleanup_bitmap_list(&bitmap_list);
1358	spin_unlock(&ctl->tree_lock);
1359	mutex_unlock(&ctl->cache_writeout_mutex);
1360
1361out_nospc:
1362	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1363
1364out_unlock:
1365	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1366		up_write(&block_group->data_rwsem);
1367
 
 
1368	goto out;
1369}
1370
1371int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
 
1372			  struct btrfs_block_group_cache *block_group,
1373			  struct btrfs_path *path)
1374{
1375	struct btrfs_fs_info *fs_info = trans->fs_info;
1376	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1377	struct inode *inode;
1378	int ret = 0;
1379
 
 
1380	spin_lock(&block_group->lock);
1381	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1382		spin_unlock(&block_group->lock);
1383		return 0;
1384	}
1385	spin_unlock(&block_group->lock);
1386
1387	inode = lookup_free_space_inode(block_group, path);
1388	if (IS_ERR(inode))
1389		return 0;
1390
1391	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1392				block_group, &block_group->io_ctl, trans);
1393	if (ret) {
1394#ifdef DEBUG
1395		btrfs_err(fs_info,
1396			  "failed to write free space cache for block group %llu",
1397			  block_group->key.objectid);
1398#endif
1399		spin_lock(&block_group->lock);
1400		block_group->disk_cache_state = BTRFS_DC_ERROR;
1401		spin_unlock(&block_group->lock);
1402
1403		block_group->io_ctl.inode = NULL;
1404		iput(inode);
 
 
 
1405	}
1406
1407	/*
1408	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1409	 * to wait for IO and put the inode
1410	 */
1411
1412	return ret;
1413}
1414
1415static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1416					  u64 offset)
1417{
1418	ASSERT(offset >= bitmap_start);
1419	offset -= bitmap_start;
1420	return (unsigned long)(div_u64(offset, unit));
1421}
1422
1423static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1424{
1425	return (unsigned long)(div_u64(bytes, unit));
1426}
1427
1428static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1429				   u64 offset)
1430{
1431	u64 bitmap_start;
1432	u64 bytes_per_bitmap;
1433
1434	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1435	bitmap_start = offset - ctl->start;
1436	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1437	bitmap_start *= bytes_per_bitmap;
1438	bitmap_start += ctl->start;
1439
1440	return bitmap_start;
1441}
1442
1443static int tree_insert_offset(struct rb_root *root, u64 offset,
1444			      struct rb_node *node, int bitmap)
1445{
1446	struct rb_node **p = &root->rb_node;
1447	struct rb_node *parent = NULL;
1448	struct btrfs_free_space *info;
1449
1450	while (*p) {
1451		parent = *p;
1452		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1453
1454		if (offset < info->offset) {
1455			p = &(*p)->rb_left;
1456		} else if (offset > info->offset) {
1457			p = &(*p)->rb_right;
1458		} else {
1459			/*
1460			 * we could have a bitmap entry and an extent entry
1461			 * share the same offset.  If this is the case, we want
1462			 * the extent entry to always be found first if we do a
1463			 * linear search through the tree, since we want to have
1464			 * the quickest allocation time, and allocating from an
1465			 * extent is faster than allocating from a bitmap.  So
1466			 * if we're inserting a bitmap and we find an entry at
1467			 * this offset, we want to go right, or after this entry
1468			 * logically.  If we are inserting an extent and we've
1469			 * found a bitmap, we want to go left, or before
1470			 * logically.
1471			 */
1472			if (bitmap) {
1473				if (info->bitmap) {
1474					WARN_ON_ONCE(1);
1475					return -EEXIST;
1476				}
1477				p = &(*p)->rb_right;
1478			} else {
1479				if (!info->bitmap) {
1480					WARN_ON_ONCE(1);
1481					return -EEXIST;
1482				}
1483				p = &(*p)->rb_left;
1484			}
1485		}
1486	}
1487
1488	rb_link_node(node, parent, p);
1489	rb_insert_color(node, root);
1490
1491	return 0;
1492}
1493
1494/*
1495 * searches the tree for the given offset.
1496 *
1497 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1498 * want a section that has at least bytes size and comes at or after the given
1499 * offset.
1500 */
1501static struct btrfs_free_space *
1502tree_search_offset(struct btrfs_free_space_ctl *ctl,
1503		   u64 offset, int bitmap_only, int fuzzy)
1504{
1505	struct rb_node *n = ctl->free_space_offset.rb_node;
1506	struct btrfs_free_space *entry, *prev = NULL;
1507
1508	/* find entry that is closest to the 'offset' */
1509	while (1) {
1510		if (!n) {
1511			entry = NULL;
1512			break;
1513		}
1514
1515		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1516		prev = entry;
1517
1518		if (offset < entry->offset)
1519			n = n->rb_left;
1520		else if (offset > entry->offset)
1521			n = n->rb_right;
1522		else
1523			break;
1524	}
1525
1526	if (bitmap_only) {
1527		if (!entry)
1528			return NULL;
1529		if (entry->bitmap)
1530			return entry;
1531
1532		/*
1533		 * bitmap entry and extent entry may share same offset,
1534		 * in that case, bitmap entry comes after extent entry.
1535		 */
1536		n = rb_next(n);
1537		if (!n)
1538			return NULL;
1539		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1540		if (entry->offset != offset)
1541			return NULL;
1542
1543		WARN_ON(!entry->bitmap);
1544		return entry;
1545	} else if (entry) {
1546		if (entry->bitmap) {
1547			/*
1548			 * if previous extent entry covers the offset,
1549			 * we should return it instead of the bitmap entry
1550			 */
1551			n = rb_prev(&entry->offset_index);
1552			if (n) {
1553				prev = rb_entry(n, struct btrfs_free_space,
1554						offset_index);
1555				if (!prev->bitmap &&
1556				    prev->offset + prev->bytes > offset)
1557					entry = prev;
1558			}
1559		}
1560		return entry;
1561	}
1562
1563	if (!prev)
1564		return NULL;
1565
1566	/* find last entry before the 'offset' */
1567	entry = prev;
1568	if (entry->offset > offset) {
1569		n = rb_prev(&entry->offset_index);
1570		if (n) {
1571			entry = rb_entry(n, struct btrfs_free_space,
1572					offset_index);
1573			ASSERT(entry->offset <= offset);
1574		} else {
1575			if (fuzzy)
1576				return entry;
1577			else
1578				return NULL;
1579		}
1580	}
1581
1582	if (entry->bitmap) {
1583		n = rb_prev(&entry->offset_index);
1584		if (n) {
1585			prev = rb_entry(n, struct btrfs_free_space,
1586					offset_index);
1587			if (!prev->bitmap &&
1588			    prev->offset + prev->bytes > offset)
1589				return prev;
1590		}
1591		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1592			return entry;
1593	} else if (entry->offset + entry->bytes > offset)
1594		return entry;
1595
1596	if (!fuzzy)
1597		return NULL;
1598
1599	while (1) {
1600		if (entry->bitmap) {
1601			if (entry->offset + BITS_PER_BITMAP *
1602			    ctl->unit > offset)
1603				break;
1604		} else {
1605			if (entry->offset + entry->bytes > offset)
1606				break;
1607		}
1608
1609		n = rb_next(&entry->offset_index);
1610		if (!n)
1611			return NULL;
1612		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1613	}
1614	return entry;
1615}
1616
1617static inline void
1618__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1619		    struct btrfs_free_space *info)
1620{
1621	rb_erase(&info->offset_index, &ctl->free_space_offset);
1622	ctl->free_extents--;
1623}
1624
1625static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1626			      struct btrfs_free_space *info)
1627{
1628	__unlink_free_space(ctl, info);
1629	ctl->free_space -= info->bytes;
1630}
1631
1632static int link_free_space(struct btrfs_free_space_ctl *ctl,
1633			   struct btrfs_free_space *info)
1634{
1635	int ret = 0;
1636
1637	ASSERT(info->bytes || info->bitmap);
1638	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1639				 &info->offset_index, (info->bitmap != NULL));
1640	if (ret)
1641		return ret;
1642
1643	ctl->free_space += info->bytes;
1644	ctl->free_extents++;
1645	return ret;
1646}
1647
1648static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1649{
1650	struct btrfs_block_group_cache *block_group = ctl->private;
1651	u64 max_bytes;
1652	u64 bitmap_bytes;
1653	u64 extent_bytes;
1654	u64 size = block_group->key.offset;
1655	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1656	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1657
1658	max_bitmaps = max_t(u64, max_bitmaps, 1);
1659
1660	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1661
1662	/*
1663	 * The goal is to keep the total amount of memory used per 1gb of space
1664	 * at or below 32k, so we need to adjust how much memory we allow to be
1665	 * used by extent based free space tracking
1666	 */
1667	if (size < SZ_1G)
1668		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1669	else
1670		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
 
1671
1672	/*
1673	 * we want to account for 1 more bitmap than what we have so we can make
1674	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1675	 * we add more bitmaps.
1676	 */
1677	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1678
1679	if (bitmap_bytes >= max_bytes) {
1680		ctl->extents_thresh = 0;
1681		return;
1682	}
1683
1684	/*
1685	 * we want the extent entry threshold to always be at most 1/2 the max
1686	 * bytes we can have, or whatever is less than that.
1687	 */
1688	extent_bytes = max_bytes - bitmap_bytes;
1689	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1690
1691	ctl->extents_thresh =
1692		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1693}
1694
1695static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1696				       struct btrfs_free_space *info,
1697				       u64 offset, u64 bytes)
1698{
1699	unsigned long start, count;
1700
1701	start = offset_to_bit(info->offset, ctl->unit, offset);
1702	count = bytes_to_bits(bytes, ctl->unit);
1703	ASSERT(start + count <= BITS_PER_BITMAP);
1704
1705	bitmap_clear(info->bitmap, start, count);
1706
1707	info->bytes -= bytes;
1708	if (info->max_extent_size > ctl->unit)
1709		info->max_extent_size = 0;
1710}
1711
1712static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1713			      struct btrfs_free_space *info, u64 offset,
1714			      u64 bytes)
1715{
1716	__bitmap_clear_bits(ctl, info, offset, bytes);
1717	ctl->free_space -= bytes;
1718}
1719
1720static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1721			    struct btrfs_free_space *info, u64 offset,
1722			    u64 bytes)
1723{
1724	unsigned long start, count;
1725
1726	start = offset_to_bit(info->offset, ctl->unit, offset);
1727	count = bytes_to_bits(bytes, ctl->unit);
1728	ASSERT(start + count <= BITS_PER_BITMAP);
1729
1730	bitmap_set(info->bitmap, start, count);
1731
1732	info->bytes += bytes;
1733	ctl->free_space += bytes;
1734}
1735
1736/*
1737 * If we can not find suitable extent, we will use bytes to record
1738 * the size of the max extent.
1739 */
1740static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1741			 struct btrfs_free_space *bitmap_info, u64 *offset,
1742			 u64 *bytes, bool for_alloc)
1743{
1744	unsigned long found_bits = 0;
1745	unsigned long max_bits = 0;
1746	unsigned long bits, i;
1747	unsigned long next_zero;
1748	unsigned long extent_bits;
1749
1750	/*
1751	 * Skip searching the bitmap if we don't have a contiguous section that
1752	 * is large enough for this allocation.
1753	 */
1754	if (for_alloc &&
1755	    bitmap_info->max_extent_size &&
1756	    bitmap_info->max_extent_size < *bytes) {
1757		*bytes = bitmap_info->max_extent_size;
1758		return -1;
1759	}
1760
1761	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1762			  max_t(u64, *offset, bitmap_info->offset));
1763	bits = bytes_to_bits(*bytes, ctl->unit);
1764
1765	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1766		if (for_alloc && bits == 1) {
1767			found_bits = 1;
1768			break;
1769		}
1770		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1771					       BITS_PER_BITMAP, i);
1772		extent_bits = next_zero - i;
1773		if (extent_bits >= bits) {
1774			found_bits = extent_bits;
1775			break;
1776		} else if (extent_bits > max_bits) {
1777			max_bits = extent_bits;
1778		}
1779		i = next_zero;
1780	}
1781
1782	if (found_bits) {
1783		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1784		*bytes = (u64)(found_bits) * ctl->unit;
1785		return 0;
1786	}
1787
1788	*bytes = (u64)(max_bits) * ctl->unit;
1789	bitmap_info->max_extent_size = *bytes;
1790	return -1;
1791}
1792
1793static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1794{
1795	if (entry->bitmap)
1796		return entry->max_extent_size;
1797	return entry->bytes;
1798}
1799
1800/* Cache the size of the max extent in bytes */
1801static struct btrfs_free_space *
1802find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1803		unsigned long align, u64 *max_extent_size)
1804{
1805	struct btrfs_free_space *entry;
1806	struct rb_node *node;
1807	u64 tmp;
1808	u64 align_off;
1809	int ret;
1810
1811	if (!ctl->free_space_offset.rb_node)
1812		goto out;
1813
1814	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1815	if (!entry)
1816		goto out;
1817
1818	for (node = &entry->offset_index; node; node = rb_next(node)) {
1819		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1820		if (entry->bytes < *bytes) {
1821			*max_extent_size = max(get_max_extent_size(entry),
1822					       *max_extent_size);
1823			continue;
1824		}
1825
1826		/* make sure the space returned is big enough
1827		 * to match our requested alignment
1828		 */
1829		if (*bytes >= align) {
1830			tmp = entry->offset - ctl->start + align - 1;
1831			tmp = div64_u64(tmp, align);
1832			tmp = tmp * align + ctl->start;
1833			align_off = tmp - entry->offset;
1834		} else {
1835			align_off = 0;
1836			tmp = entry->offset;
1837		}
1838
1839		if (entry->bytes < *bytes + align_off) {
1840			*max_extent_size = max(get_max_extent_size(entry),
1841					       *max_extent_size);
1842			continue;
1843		}
1844
1845		if (entry->bitmap) {
1846			u64 size = *bytes;
1847
1848			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1849			if (!ret) {
1850				*offset = tmp;
1851				*bytes = size;
1852				return entry;
1853			} else {
1854				*max_extent_size =
1855					max(get_max_extent_size(entry),
1856					    *max_extent_size);
1857			}
1858			continue;
1859		}
1860
1861		*offset = tmp;
1862		*bytes = entry->bytes - align_off;
1863		return entry;
1864	}
1865out:
1866	return NULL;
1867}
1868
1869static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1870			   struct btrfs_free_space *info, u64 offset)
1871{
1872	info->offset = offset_to_bitmap(ctl, offset);
1873	info->bytes = 0;
1874	INIT_LIST_HEAD(&info->list);
1875	link_free_space(ctl, info);
1876	ctl->total_bitmaps++;
1877
1878	ctl->op->recalc_thresholds(ctl);
1879}
1880
1881static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1882			struct btrfs_free_space *bitmap_info)
1883{
1884	unlink_free_space(ctl, bitmap_info);
1885	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1886	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1887	ctl->total_bitmaps--;
1888	ctl->op->recalc_thresholds(ctl);
1889}
1890
1891static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1892			      struct btrfs_free_space *bitmap_info,
1893			      u64 *offset, u64 *bytes)
1894{
1895	u64 end;
1896	u64 search_start, search_bytes;
1897	int ret;
1898
1899again:
1900	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1901
1902	/*
1903	 * We need to search for bits in this bitmap.  We could only cover some
1904	 * of the extent in this bitmap thanks to how we add space, so we need
1905	 * to search for as much as it as we can and clear that amount, and then
1906	 * go searching for the next bit.
1907	 */
1908	search_start = *offset;
1909	search_bytes = ctl->unit;
1910	search_bytes = min(search_bytes, end - search_start + 1);
1911	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1912			    false);
1913	if (ret < 0 || search_start != *offset)
1914		return -EINVAL;
1915
1916	/* We may have found more bits than what we need */
1917	search_bytes = min(search_bytes, *bytes);
1918
1919	/* Cannot clear past the end of the bitmap */
1920	search_bytes = min(search_bytes, end - search_start + 1);
1921
1922	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1923	*offset += search_bytes;
1924	*bytes -= search_bytes;
1925
1926	if (*bytes) {
1927		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1928		if (!bitmap_info->bytes)
1929			free_bitmap(ctl, bitmap_info);
1930
1931		/*
1932		 * no entry after this bitmap, but we still have bytes to
1933		 * remove, so something has gone wrong.
1934		 */
1935		if (!next)
1936			return -EINVAL;
1937
1938		bitmap_info = rb_entry(next, struct btrfs_free_space,
1939				       offset_index);
1940
1941		/*
1942		 * if the next entry isn't a bitmap we need to return to let the
1943		 * extent stuff do its work.
1944		 */
1945		if (!bitmap_info->bitmap)
1946			return -EAGAIN;
1947
1948		/*
1949		 * Ok the next item is a bitmap, but it may not actually hold
1950		 * the information for the rest of this free space stuff, so
1951		 * look for it, and if we don't find it return so we can try
1952		 * everything over again.
1953		 */
1954		search_start = *offset;
1955		search_bytes = ctl->unit;
1956		ret = search_bitmap(ctl, bitmap_info, &search_start,
1957				    &search_bytes, false);
1958		if (ret < 0 || search_start != *offset)
1959			return -EAGAIN;
1960
1961		goto again;
1962	} else if (!bitmap_info->bytes)
1963		free_bitmap(ctl, bitmap_info);
1964
1965	return 0;
1966}
1967
1968static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1969			       struct btrfs_free_space *info, u64 offset,
1970			       u64 bytes)
1971{
1972	u64 bytes_to_set = 0;
1973	u64 end;
1974
1975	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1976
1977	bytes_to_set = min(end - offset, bytes);
1978
1979	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1980
1981	/*
1982	 * We set some bytes, we have no idea what the max extent size is
1983	 * anymore.
1984	 */
1985	info->max_extent_size = 0;
1986
1987	return bytes_to_set;
1988
1989}
1990
1991static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1992		      struct btrfs_free_space *info)
1993{
1994	struct btrfs_block_group_cache *block_group = ctl->private;
1995	struct btrfs_fs_info *fs_info = block_group->fs_info;
1996	bool forced = false;
1997
1998#ifdef CONFIG_BTRFS_DEBUG
1999	if (btrfs_should_fragment_free_space(block_group))
2000		forced = true;
2001#endif
2002
2003	/*
2004	 * If we are below the extents threshold then we can add this as an
2005	 * extent, and don't have to deal with the bitmap
2006	 */
2007	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2008		/*
2009		 * If this block group has some small extents we don't want to
2010		 * use up all of our free slots in the cache with them, we want
2011		 * to reserve them to larger extents, however if we have plenty
2012		 * of cache left then go ahead an dadd them, no sense in adding
2013		 * the overhead of a bitmap if we don't have to.
2014		 */
2015		if (info->bytes <= fs_info->sectorsize * 4) {
2016			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2017				return false;
2018		} else {
2019			return false;
2020		}
2021	}
2022
2023	/*
2024	 * The original block groups from mkfs can be really small, like 8
2025	 * megabytes, so don't bother with a bitmap for those entries.  However
2026	 * some block groups can be smaller than what a bitmap would cover but
2027	 * are still large enough that they could overflow the 32k memory limit,
2028	 * so allow those block groups to still be allowed to have a bitmap
2029	 * entry.
2030	 */
2031	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2032		return false;
2033
2034	return true;
2035}
2036
2037static const struct btrfs_free_space_op free_space_op = {
2038	.recalc_thresholds	= recalculate_thresholds,
2039	.use_bitmap		= use_bitmap,
2040};
2041
2042static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2043			      struct btrfs_free_space *info)
2044{
2045	struct btrfs_free_space *bitmap_info;
2046	struct btrfs_block_group_cache *block_group = NULL;
2047	int added = 0;
2048	u64 bytes, offset, bytes_added;
2049	int ret;
2050
2051	bytes = info->bytes;
2052	offset = info->offset;
2053
2054	if (!ctl->op->use_bitmap(ctl, info))
2055		return 0;
2056
2057	if (ctl->op == &free_space_op)
2058		block_group = ctl->private;
2059again:
2060	/*
2061	 * Since we link bitmaps right into the cluster we need to see if we
2062	 * have a cluster here, and if so and it has our bitmap we need to add
2063	 * the free space to that bitmap.
2064	 */
2065	if (block_group && !list_empty(&block_group->cluster_list)) {
2066		struct btrfs_free_cluster *cluster;
2067		struct rb_node *node;
2068		struct btrfs_free_space *entry;
2069
2070		cluster = list_entry(block_group->cluster_list.next,
2071				     struct btrfs_free_cluster,
2072				     block_group_list);
2073		spin_lock(&cluster->lock);
2074		node = rb_first(&cluster->root);
2075		if (!node) {
2076			spin_unlock(&cluster->lock);
2077			goto no_cluster_bitmap;
2078		}
2079
2080		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2081		if (!entry->bitmap) {
2082			spin_unlock(&cluster->lock);
2083			goto no_cluster_bitmap;
2084		}
2085
2086		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2087			bytes_added = add_bytes_to_bitmap(ctl, entry,
2088							  offset, bytes);
2089			bytes -= bytes_added;
2090			offset += bytes_added;
2091		}
2092		spin_unlock(&cluster->lock);
2093		if (!bytes) {
2094			ret = 1;
2095			goto out;
2096		}
2097	}
2098
2099no_cluster_bitmap:
2100	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2101					 1, 0);
2102	if (!bitmap_info) {
2103		ASSERT(added == 0);
2104		goto new_bitmap;
2105	}
2106
2107	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2108	bytes -= bytes_added;
2109	offset += bytes_added;
2110	added = 0;
2111
2112	if (!bytes) {
2113		ret = 1;
2114		goto out;
2115	} else
2116		goto again;
2117
2118new_bitmap:
2119	if (info && info->bitmap) {
2120		add_new_bitmap(ctl, info, offset);
2121		added = 1;
2122		info = NULL;
2123		goto again;
2124	} else {
2125		spin_unlock(&ctl->tree_lock);
2126
2127		/* no pre-allocated info, allocate a new one */
2128		if (!info) {
2129			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2130						 GFP_NOFS);
2131			if (!info) {
2132				spin_lock(&ctl->tree_lock);
2133				ret = -ENOMEM;
2134				goto out;
2135			}
2136		}
2137
2138		/* allocate the bitmap */
2139		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2140						 GFP_NOFS);
2141		spin_lock(&ctl->tree_lock);
2142		if (!info->bitmap) {
2143			ret = -ENOMEM;
2144			goto out;
2145		}
2146		goto again;
2147	}
2148
2149out:
2150	if (info) {
2151		if (info->bitmap)
2152			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2153					info->bitmap);
2154		kmem_cache_free(btrfs_free_space_cachep, info);
2155	}
2156
2157	return ret;
2158}
2159
2160static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2161			  struct btrfs_free_space *info, bool update_stat)
2162{
2163	struct btrfs_free_space *left_info;
2164	struct btrfs_free_space *right_info;
2165	bool merged = false;
2166	u64 offset = info->offset;
2167	u64 bytes = info->bytes;
2168
2169	/*
2170	 * first we want to see if there is free space adjacent to the range we
2171	 * are adding, if there is remove that struct and add a new one to
2172	 * cover the entire range
2173	 */
2174	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2175	if (right_info && rb_prev(&right_info->offset_index))
2176		left_info = rb_entry(rb_prev(&right_info->offset_index),
2177				     struct btrfs_free_space, offset_index);
2178	else
2179		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2180
2181	if (right_info && !right_info->bitmap) {
2182		if (update_stat)
2183			unlink_free_space(ctl, right_info);
2184		else
2185			__unlink_free_space(ctl, right_info);
2186		info->bytes += right_info->bytes;
2187		kmem_cache_free(btrfs_free_space_cachep, right_info);
2188		merged = true;
2189	}
2190
2191	if (left_info && !left_info->bitmap &&
2192	    left_info->offset + left_info->bytes == offset) {
2193		if (update_stat)
2194			unlink_free_space(ctl, left_info);
2195		else
2196			__unlink_free_space(ctl, left_info);
2197		info->offset = left_info->offset;
2198		info->bytes += left_info->bytes;
2199		kmem_cache_free(btrfs_free_space_cachep, left_info);
2200		merged = true;
2201	}
2202
2203	return merged;
2204}
2205
2206static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2207				     struct btrfs_free_space *info,
2208				     bool update_stat)
2209{
2210	struct btrfs_free_space *bitmap;
2211	unsigned long i;
2212	unsigned long j;
2213	const u64 end = info->offset + info->bytes;
2214	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2215	u64 bytes;
2216
2217	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2218	if (!bitmap)
2219		return false;
2220
2221	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2222	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2223	if (j == i)
2224		return false;
2225	bytes = (j - i) * ctl->unit;
2226	info->bytes += bytes;
2227
2228	if (update_stat)
2229		bitmap_clear_bits(ctl, bitmap, end, bytes);
2230	else
2231		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2232
2233	if (!bitmap->bytes)
2234		free_bitmap(ctl, bitmap);
2235
2236	return true;
2237}
2238
2239static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2240				       struct btrfs_free_space *info,
2241				       bool update_stat)
2242{
2243	struct btrfs_free_space *bitmap;
2244	u64 bitmap_offset;
2245	unsigned long i;
2246	unsigned long j;
2247	unsigned long prev_j;
2248	u64 bytes;
2249
2250	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2251	/* If we're on a boundary, try the previous logical bitmap. */
2252	if (bitmap_offset == info->offset) {
2253		if (info->offset == 0)
2254			return false;
2255		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2256	}
2257
2258	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2259	if (!bitmap)
2260		return false;
2261
2262	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2263	j = 0;
2264	prev_j = (unsigned long)-1;
2265	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2266		if (j > i)
2267			break;
2268		prev_j = j;
2269	}
2270	if (prev_j == i)
2271		return false;
2272
2273	if (prev_j == (unsigned long)-1)
2274		bytes = (i + 1) * ctl->unit;
2275	else
2276		bytes = (i - prev_j) * ctl->unit;
2277
2278	info->offset -= bytes;
2279	info->bytes += bytes;
2280
2281	if (update_stat)
2282		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2283	else
2284		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2285
2286	if (!bitmap->bytes)
2287		free_bitmap(ctl, bitmap);
2288
2289	return true;
2290}
2291
2292/*
2293 * We prefer always to allocate from extent entries, both for clustered and
2294 * non-clustered allocation requests. So when attempting to add a new extent
2295 * entry, try to see if there's adjacent free space in bitmap entries, and if
2296 * there is, migrate that space from the bitmaps to the extent.
2297 * Like this we get better chances of satisfying space allocation requests
2298 * because we attempt to satisfy them based on a single cache entry, and never
2299 * on 2 or more entries - even if the entries represent a contiguous free space
2300 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2301 * ends).
2302 */
2303static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2304			      struct btrfs_free_space *info,
2305			      bool update_stat)
2306{
2307	/*
2308	 * Only work with disconnected entries, as we can change their offset,
2309	 * and must be extent entries.
2310	 */
2311	ASSERT(!info->bitmap);
2312	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2313
2314	if (ctl->total_bitmaps > 0) {
2315		bool stole_end;
2316		bool stole_front = false;
2317
2318		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2319		if (ctl->total_bitmaps > 0)
2320			stole_front = steal_from_bitmap_to_front(ctl, info,
2321								 update_stat);
2322
2323		if (stole_end || stole_front)
2324			try_merge_free_space(ctl, info, update_stat);
2325	}
2326}
2327
2328int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2329			   struct btrfs_free_space_ctl *ctl,
2330			   u64 offset, u64 bytes)
2331{
2332	struct btrfs_free_space *info;
2333	int ret = 0;
2334
2335	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2336	if (!info)
2337		return -ENOMEM;
2338
2339	info->offset = offset;
2340	info->bytes = bytes;
2341	RB_CLEAR_NODE(&info->offset_index);
2342
2343	spin_lock(&ctl->tree_lock);
2344
2345	if (try_merge_free_space(ctl, info, true))
2346		goto link;
2347
2348	/*
2349	 * There was no extent directly to the left or right of this new
2350	 * extent then we know we're going to have to allocate a new extent, so
2351	 * before we do that see if we need to drop this into a bitmap
2352	 */
2353	ret = insert_into_bitmap(ctl, info);
2354	if (ret < 0) {
2355		goto out;
2356	} else if (ret) {
2357		ret = 0;
2358		goto out;
2359	}
2360link:
2361	/*
2362	 * Only steal free space from adjacent bitmaps if we're sure we're not
2363	 * going to add the new free space to existing bitmap entries - because
2364	 * that would mean unnecessary work that would be reverted. Therefore
2365	 * attempt to steal space from bitmaps if we're adding an extent entry.
2366	 */
2367	steal_from_bitmap(ctl, info, true);
2368
2369	ret = link_free_space(ctl, info);
2370	if (ret)
2371		kmem_cache_free(btrfs_free_space_cachep, info);
2372out:
2373	spin_unlock(&ctl->tree_lock);
2374
2375	if (ret) {
2376		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2377		ASSERT(ret != -EEXIST);
2378	}
2379
2380	return ret;
2381}
2382
2383int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
2384			 u64 bytenr, u64 size)
2385{
2386	return __btrfs_add_free_space(block_group->fs_info,
2387				      block_group->free_space_ctl,
2388				      bytenr, size);
2389}
2390
2391int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2392			    u64 offset, u64 bytes)
2393{
2394	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2395	struct btrfs_free_space *info;
2396	int ret;
2397	bool re_search = false;
2398
2399	spin_lock(&ctl->tree_lock);
2400
2401again:
2402	ret = 0;
2403	if (!bytes)
2404		goto out_lock;
2405
2406	info = tree_search_offset(ctl, offset, 0, 0);
2407	if (!info) {
2408		/*
2409		 * oops didn't find an extent that matched the space we wanted
2410		 * to remove, look for a bitmap instead
2411		 */
2412		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2413					  1, 0);
2414		if (!info) {
2415			/*
2416			 * If we found a partial bit of our free space in a
2417			 * bitmap but then couldn't find the other part this may
2418			 * be a problem, so WARN about it.
2419			 */
2420			WARN_ON(re_search);
2421			goto out_lock;
2422		}
2423	}
2424
2425	re_search = false;
2426	if (!info->bitmap) {
2427		unlink_free_space(ctl, info);
2428		if (offset == info->offset) {
2429			u64 to_free = min(bytes, info->bytes);
2430
2431			info->bytes -= to_free;
2432			info->offset += to_free;
2433			if (info->bytes) {
2434				ret = link_free_space(ctl, info);
2435				WARN_ON(ret);
2436			} else {
2437				kmem_cache_free(btrfs_free_space_cachep, info);
2438			}
2439
2440			offset += to_free;
2441			bytes -= to_free;
2442			goto again;
2443		} else {
2444			u64 old_end = info->bytes + info->offset;
2445
2446			info->bytes = offset - info->offset;
2447			ret = link_free_space(ctl, info);
2448			WARN_ON(ret);
2449			if (ret)
2450				goto out_lock;
2451
2452			/* Not enough bytes in this entry to satisfy us */
2453			if (old_end < offset + bytes) {
2454				bytes -= old_end - offset;
2455				offset = old_end;
2456				goto again;
2457			} else if (old_end == offset + bytes) {
2458				/* all done */
2459				goto out_lock;
2460			}
2461			spin_unlock(&ctl->tree_lock);
2462
2463			ret = btrfs_add_free_space(block_group, offset + bytes,
2464						   old_end - (offset + bytes));
2465			WARN_ON(ret);
2466			goto out;
2467		}
2468	}
2469
2470	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2471	if (ret == -EAGAIN) {
2472		re_search = true;
2473		goto again;
2474	}
2475out_lock:
2476	spin_unlock(&ctl->tree_lock);
2477out:
2478	return ret;
2479}
2480
2481void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2482			   u64 bytes)
2483{
2484	struct btrfs_fs_info *fs_info = block_group->fs_info;
2485	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2486	struct btrfs_free_space *info;
2487	struct rb_node *n;
2488	int count = 0;
2489
2490	spin_lock(&ctl->tree_lock);
2491	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2492		info = rb_entry(n, struct btrfs_free_space, offset_index);
2493		if (info->bytes >= bytes && !block_group->ro)
2494			count++;
2495		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
 
2496			   info->offset, info->bytes,
2497		       (info->bitmap) ? "yes" : "no");
2498	}
2499	spin_unlock(&ctl->tree_lock);
2500	btrfs_info(fs_info, "block group has cluster?: %s",
2501	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2502	btrfs_info(fs_info,
2503		   "%d blocks of free space at or bigger than bytes is", count);
2504}
2505
2506void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2507{
2508	struct btrfs_fs_info *fs_info = block_group->fs_info;
2509	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2510
2511	spin_lock_init(&ctl->tree_lock);
2512	ctl->unit = fs_info->sectorsize;
2513	ctl->start = block_group->key.objectid;
2514	ctl->private = block_group;
2515	ctl->op = &free_space_op;
2516	INIT_LIST_HEAD(&ctl->trimming_ranges);
2517	mutex_init(&ctl->cache_writeout_mutex);
2518
2519	/*
2520	 * we only want to have 32k of ram per block group for keeping
2521	 * track of free space, and if we pass 1/2 of that we want to
2522	 * start converting things over to using bitmaps
2523	 */
2524	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
 
2525}
2526
2527/*
2528 * for a given cluster, put all of its extents back into the free
2529 * space cache.  If the block group passed doesn't match the block group
2530 * pointed to by the cluster, someone else raced in and freed the
2531 * cluster already.  In that case, we just return without changing anything
2532 */
2533static int
2534__btrfs_return_cluster_to_free_space(
2535			     struct btrfs_block_group_cache *block_group,
2536			     struct btrfs_free_cluster *cluster)
2537{
2538	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2539	struct btrfs_free_space *entry;
2540	struct rb_node *node;
2541
2542	spin_lock(&cluster->lock);
2543	if (cluster->block_group != block_group)
2544		goto out;
2545
2546	cluster->block_group = NULL;
2547	cluster->window_start = 0;
2548	list_del_init(&cluster->block_group_list);
2549
2550	node = rb_first(&cluster->root);
2551	while (node) {
2552		bool bitmap;
2553
2554		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2555		node = rb_next(&entry->offset_index);
2556		rb_erase(&entry->offset_index, &cluster->root);
2557		RB_CLEAR_NODE(&entry->offset_index);
2558
2559		bitmap = (entry->bitmap != NULL);
2560		if (!bitmap) {
2561			try_merge_free_space(ctl, entry, false);
2562			steal_from_bitmap(ctl, entry, false);
2563		}
2564		tree_insert_offset(&ctl->free_space_offset,
2565				   entry->offset, &entry->offset_index, bitmap);
2566	}
2567	cluster->root = RB_ROOT;
2568
2569out:
2570	spin_unlock(&cluster->lock);
2571	btrfs_put_block_group(block_group);
2572	return 0;
2573}
2574
2575static void __btrfs_remove_free_space_cache_locked(
2576				struct btrfs_free_space_ctl *ctl)
2577{
2578	struct btrfs_free_space *info;
2579	struct rb_node *node;
2580
2581	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2582		info = rb_entry(node, struct btrfs_free_space, offset_index);
2583		if (!info->bitmap) {
2584			unlink_free_space(ctl, info);
2585			kmem_cache_free(btrfs_free_space_cachep, info);
2586		} else {
2587			free_bitmap(ctl, info);
2588		}
2589
2590		cond_resched_lock(&ctl->tree_lock);
 
 
 
2591	}
2592}
2593
2594void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2595{
2596	spin_lock(&ctl->tree_lock);
2597	__btrfs_remove_free_space_cache_locked(ctl);
2598	spin_unlock(&ctl->tree_lock);
2599}
2600
2601void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2602{
2603	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2604	struct btrfs_free_cluster *cluster;
2605	struct list_head *head;
2606
2607	spin_lock(&ctl->tree_lock);
2608	while ((head = block_group->cluster_list.next) !=
2609	       &block_group->cluster_list) {
2610		cluster = list_entry(head, struct btrfs_free_cluster,
2611				     block_group_list);
2612
2613		WARN_ON(cluster->block_group != block_group);
2614		__btrfs_return_cluster_to_free_space(block_group, cluster);
2615
2616		cond_resched_lock(&ctl->tree_lock);
 
 
 
2617	}
2618	__btrfs_remove_free_space_cache_locked(ctl);
2619	spin_unlock(&ctl->tree_lock);
2620
2621}
2622
2623u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2624			       u64 offset, u64 bytes, u64 empty_size,
2625			       u64 *max_extent_size)
2626{
2627	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2628	struct btrfs_free_space *entry = NULL;
2629	u64 bytes_search = bytes + empty_size;
2630	u64 ret = 0;
2631	u64 align_gap = 0;
2632	u64 align_gap_len = 0;
2633
2634	spin_lock(&ctl->tree_lock);
2635	entry = find_free_space(ctl, &offset, &bytes_search,
2636				block_group->full_stripe_len, max_extent_size);
2637	if (!entry)
2638		goto out;
2639
2640	ret = offset;
2641	if (entry->bitmap) {
2642		bitmap_clear_bits(ctl, entry, offset, bytes);
2643		if (!entry->bytes)
2644			free_bitmap(ctl, entry);
2645	} else {
2646		unlink_free_space(ctl, entry);
2647		align_gap_len = offset - entry->offset;
2648		align_gap = entry->offset;
2649
2650		entry->offset = offset + bytes;
2651		WARN_ON(entry->bytes < bytes + align_gap_len);
2652
2653		entry->bytes -= bytes + align_gap_len;
2654		if (!entry->bytes)
2655			kmem_cache_free(btrfs_free_space_cachep, entry);
2656		else
2657			link_free_space(ctl, entry);
2658	}
2659out:
2660	spin_unlock(&ctl->tree_lock);
2661
2662	if (align_gap_len)
2663		__btrfs_add_free_space(block_group->fs_info, ctl,
2664				       align_gap, align_gap_len);
2665	return ret;
2666}
2667
2668/*
2669 * given a cluster, put all of its extents back into the free space
2670 * cache.  If a block group is passed, this function will only free
2671 * a cluster that belongs to the passed block group.
2672 *
2673 * Otherwise, it'll get a reference on the block group pointed to by the
2674 * cluster and remove the cluster from it.
2675 */
2676int btrfs_return_cluster_to_free_space(
2677			       struct btrfs_block_group_cache *block_group,
2678			       struct btrfs_free_cluster *cluster)
2679{
2680	struct btrfs_free_space_ctl *ctl;
2681	int ret;
2682
2683	/* first, get a safe pointer to the block group */
2684	spin_lock(&cluster->lock);
2685	if (!block_group) {
2686		block_group = cluster->block_group;
2687		if (!block_group) {
2688			spin_unlock(&cluster->lock);
2689			return 0;
2690		}
2691	} else if (cluster->block_group != block_group) {
2692		/* someone else has already freed it don't redo their work */
2693		spin_unlock(&cluster->lock);
2694		return 0;
2695	}
2696	atomic_inc(&block_group->count);
2697	spin_unlock(&cluster->lock);
2698
2699	ctl = block_group->free_space_ctl;
2700
2701	/* now return any extents the cluster had on it */
2702	spin_lock(&ctl->tree_lock);
2703	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2704	spin_unlock(&ctl->tree_lock);
2705
2706	/* finally drop our ref */
2707	btrfs_put_block_group(block_group);
2708	return ret;
2709}
2710
2711static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2712				   struct btrfs_free_cluster *cluster,
2713				   struct btrfs_free_space *entry,
2714				   u64 bytes, u64 min_start,
2715				   u64 *max_extent_size)
2716{
2717	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2718	int err;
2719	u64 search_start = cluster->window_start;
2720	u64 search_bytes = bytes;
2721	u64 ret = 0;
2722
2723	search_start = min_start;
2724	search_bytes = bytes;
2725
2726	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2727	if (err) {
2728		*max_extent_size = max(get_max_extent_size(entry),
2729				       *max_extent_size);
2730		return 0;
2731	}
2732
2733	ret = search_start;
2734	__bitmap_clear_bits(ctl, entry, ret, bytes);
2735
2736	return ret;
2737}
2738
2739/*
2740 * given a cluster, try to allocate 'bytes' from it, returns 0
2741 * if it couldn't find anything suitably large, or a logical disk offset
2742 * if things worked out
2743 */
2744u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2745			     struct btrfs_free_cluster *cluster, u64 bytes,
2746			     u64 min_start, u64 *max_extent_size)
2747{
2748	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2749	struct btrfs_free_space *entry = NULL;
2750	struct rb_node *node;
2751	u64 ret = 0;
2752
2753	spin_lock(&cluster->lock);
2754	if (bytes > cluster->max_size)
2755		goto out;
2756
2757	if (cluster->block_group != block_group)
2758		goto out;
2759
2760	node = rb_first(&cluster->root);
2761	if (!node)
2762		goto out;
2763
2764	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2765	while (1) {
2766		if (entry->bytes < bytes)
2767			*max_extent_size = max(get_max_extent_size(entry),
2768					       *max_extent_size);
2769
2770		if (entry->bytes < bytes ||
2771		    (!entry->bitmap && entry->offset < min_start)) {
2772			node = rb_next(&entry->offset_index);
2773			if (!node)
2774				break;
2775			entry = rb_entry(node, struct btrfs_free_space,
2776					 offset_index);
2777			continue;
2778		}
2779
2780		if (entry->bitmap) {
2781			ret = btrfs_alloc_from_bitmap(block_group,
2782						      cluster, entry, bytes,
2783						      cluster->window_start,
2784						      max_extent_size);
2785			if (ret == 0) {
2786				node = rb_next(&entry->offset_index);
2787				if (!node)
2788					break;
2789				entry = rb_entry(node, struct btrfs_free_space,
2790						 offset_index);
2791				continue;
2792			}
2793			cluster->window_start += bytes;
2794		} else {
2795			ret = entry->offset;
2796
2797			entry->offset += bytes;
2798			entry->bytes -= bytes;
2799		}
2800
2801		if (entry->bytes == 0)
2802			rb_erase(&entry->offset_index, &cluster->root);
2803		break;
2804	}
2805out:
2806	spin_unlock(&cluster->lock);
2807
2808	if (!ret)
2809		return 0;
2810
2811	spin_lock(&ctl->tree_lock);
2812
2813	ctl->free_space -= bytes;
2814	if (entry->bytes == 0) {
2815		ctl->free_extents--;
2816		if (entry->bitmap) {
2817			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2818					entry->bitmap);
2819			ctl->total_bitmaps--;
2820			ctl->op->recalc_thresholds(ctl);
2821		}
2822		kmem_cache_free(btrfs_free_space_cachep, entry);
2823	}
2824
2825	spin_unlock(&ctl->tree_lock);
2826
2827	return ret;
2828}
2829
2830static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2831				struct btrfs_free_space *entry,
2832				struct btrfs_free_cluster *cluster,
2833				u64 offset, u64 bytes,
2834				u64 cont1_bytes, u64 min_bytes)
2835{
2836	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2837	unsigned long next_zero;
2838	unsigned long i;
2839	unsigned long want_bits;
2840	unsigned long min_bits;
2841	unsigned long found_bits;
2842	unsigned long max_bits = 0;
2843	unsigned long start = 0;
2844	unsigned long total_found = 0;
2845	int ret;
2846
2847	i = offset_to_bit(entry->offset, ctl->unit,
2848			  max_t(u64, offset, entry->offset));
2849	want_bits = bytes_to_bits(bytes, ctl->unit);
2850	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2851
2852	/*
2853	 * Don't bother looking for a cluster in this bitmap if it's heavily
2854	 * fragmented.
2855	 */
2856	if (entry->max_extent_size &&
2857	    entry->max_extent_size < cont1_bytes)
2858		return -ENOSPC;
2859again:
2860	found_bits = 0;
2861	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2862		next_zero = find_next_zero_bit(entry->bitmap,
2863					       BITS_PER_BITMAP, i);
2864		if (next_zero - i >= min_bits) {
2865			found_bits = next_zero - i;
2866			if (found_bits > max_bits)
2867				max_bits = found_bits;
2868			break;
2869		}
2870		if (next_zero - i > max_bits)
2871			max_bits = next_zero - i;
2872		i = next_zero;
2873	}
2874
2875	if (!found_bits) {
2876		entry->max_extent_size = (u64)max_bits * ctl->unit;
2877		return -ENOSPC;
2878	}
2879
2880	if (!total_found) {
2881		start = i;
2882		cluster->max_size = 0;
2883	}
2884
2885	total_found += found_bits;
2886
2887	if (cluster->max_size < found_bits * ctl->unit)
2888		cluster->max_size = found_bits * ctl->unit;
2889
2890	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2891		i = next_zero + 1;
2892		goto again;
2893	}
2894
2895	cluster->window_start = start * ctl->unit + entry->offset;
2896	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2897	ret = tree_insert_offset(&cluster->root, entry->offset,
2898				 &entry->offset_index, 1);
2899	ASSERT(!ret); /* -EEXIST; Logic error */
2900
2901	trace_btrfs_setup_cluster(block_group, cluster,
2902				  total_found * ctl->unit, 1);
2903	return 0;
2904}
2905
2906/*
2907 * This searches the block group for just extents to fill the cluster with.
2908 * Try to find a cluster with at least bytes total bytes, at least one
2909 * extent of cont1_bytes, and other clusters of at least min_bytes.
2910 */
2911static noinline int
2912setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2913			struct btrfs_free_cluster *cluster,
2914			struct list_head *bitmaps, u64 offset, u64 bytes,
2915			u64 cont1_bytes, u64 min_bytes)
2916{
2917	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2918	struct btrfs_free_space *first = NULL;
2919	struct btrfs_free_space *entry = NULL;
2920	struct btrfs_free_space *last;
2921	struct rb_node *node;
2922	u64 window_free;
2923	u64 max_extent;
2924	u64 total_size = 0;
2925
2926	entry = tree_search_offset(ctl, offset, 0, 1);
2927	if (!entry)
2928		return -ENOSPC;
2929
2930	/*
2931	 * We don't want bitmaps, so just move along until we find a normal
2932	 * extent entry.
2933	 */
2934	while (entry->bitmap || entry->bytes < min_bytes) {
2935		if (entry->bitmap && list_empty(&entry->list))
2936			list_add_tail(&entry->list, bitmaps);
2937		node = rb_next(&entry->offset_index);
2938		if (!node)
2939			return -ENOSPC;
2940		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2941	}
2942
2943	window_free = entry->bytes;
2944	max_extent = entry->bytes;
2945	first = entry;
2946	last = entry;
2947
2948	for (node = rb_next(&entry->offset_index); node;
2949	     node = rb_next(&entry->offset_index)) {
2950		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2951
2952		if (entry->bitmap) {
2953			if (list_empty(&entry->list))
2954				list_add_tail(&entry->list, bitmaps);
2955			continue;
2956		}
2957
2958		if (entry->bytes < min_bytes)
2959			continue;
2960
2961		last = entry;
2962		window_free += entry->bytes;
2963		if (entry->bytes > max_extent)
2964			max_extent = entry->bytes;
2965	}
2966
2967	if (window_free < bytes || max_extent < cont1_bytes)
2968		return -ENOSPC;
2969
2970	cluster->window_start = first->offset;
2971
2972	node = &first->offset_index;
2973
2974	/*
2975	 * now we've found our entries, pull them out of the free space
2976	 * cache and put them into the cluster rbtree
2977	 */
2978	do {
2979		int ret;
2980
2981		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2982		node = rb_next(&entry->offset_index);
2983		if (entry->bitmap || entry->bytes < min_bytes)
2984			continue;
2985
2986		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2987		ret = tree_insert_offset(&cluster->root, entry->offset,
2988					 &entry->offset_index, 0);
2989		total_size += entry->bytes;
2990		ASSERT(!ret); /* -EEXIST; Logic error */
2991	} while (node && entry != last);
2992
2993	cluster->max_size = max_extent;
2994	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2995	return 0;
2996}
2997
2998/*
2999 * This specifically looks for bitmaps that may work in the cluster, we assume
3000 * that we have already failed to find extents that will work.
3001 */
3002static noinline int
3003setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
3004		     struct btrfs_free_cluster *cluster,
3005		     struct list_head *bitmaps, u64 offset, u64 bytes,
3006		     u64 cont1_bytes, u64 min_bytes)
3007{
3008	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3009	struct btrfs_free_space *entry = NULL;
3010	int ret = -ENOSPC;
3011	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3012
3013	if (ctl->total_bitmaps == 0)
3014		return -ENOSPC;
3015
3016	/*
3017	 * The bitmap that covers offset won't be in the list unless offset
3018	 * is just its start offset.
3019	 */
3020	if (!list_empty(bitmaps))
3021		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3022
3023	if (!entry || entry->offset != bitmap_offset) {
3024		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3025		if (entry && list_empty(&entry->list))
3026			list_add(&entry->list, bitmaps);
3027	}
3028
3029	list_for_each_entry(entry, bitmaps, list) {
3030		if (entry->bytes < bytes)
3031			continue;
3032		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3033					   bytes, cont1_bytes, min_bytes);
3034		if (!ret)
3035			return 0;
3036	}
3037
3038	/*
3039	 * The bitmaps list has all the bitmaps that record free space
3040	 * starting after offset, so no more search is required.
3041	 */
3042	return -ENOSPC;
3043}
3044
3045/*
3046 * here we try to find a cluster of blocks in a block group.  The goal
3047 * is to find at least bytes+empty_size.
3048 * We might not find them all in one contiguous area.
3049 *
3050 * returns zero and sets up cluster if things worked out, otherwise
3051 * it returns -enospc
3052 */
3053int btrfs_find_space_cluster(struct btrfs_block_group_cache *block_group,
 
3054			     struct btrfs_free_cluster *cluster,
3055			     u64 offset, u64 bytes, u64 empty_size)
3056{
3057	struct btrfs_fs_info *fs_info = block_group->fs_info;
3058	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3059	struct btrfs_free_space *entry, *tmp;
3060	LIST_HEAD(bitmaps);
3061	u64 min_bytes;
3062	u64 cont1_bytes;
3063	int ret;
3064
3065	/*
3066	 * Choose the minimum extent size we'll require for this
3067	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3068	 * For metadata, allow allocates with smaller extents.  For
3069	 * data, keep it dense.
3070	 */
3071	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3072		cont1_bytes = min_bytes = bytes + empty_size;
3073	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3074		cont1_bytes = bytes;
3075		min_bytes = fs_info->sectorsize;
3076	} else {
3077		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3078		min_bytes = fs_info->sectorsize;
3079	}
3080
3081	spin_lock(&ctl->tree_lock);
3082
3083	/*
3084	 * If we know we don't have enough space to make a cluster don't even
3085	 * bother doing all the work to try and find one.
3086	 */
3087	if (ctl->free_space < bytes) {
3088		spin_unlock(&ctl->tree_lock);
3089		return -ENOSPC;
3090	}
3091
3092	spin_lock(&cluster->lock);
3093
3094	/* someone already found a cluster, hooray */
3095	if (cluster->block_group) {
3096		ret = 0;
3097		goto out;
3098	}
3099
3100	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3101				 min_bytes);
3102
 
3103	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3104				      bytes + empty_size,
3105				      cont1_bytes, min_bytes);
3106	if (ret)
3107		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3108					   offset, bytes + empty_size,
3109					   cont1_bytes, min_bytes);
3110
3111	/* Clear our temporary list */
3112	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3113		list_del_init(&entry->list);
3114
3115	if (!ret) {
3116		atomic_inc(&block_group->count);
3117		list_add_tail(&cluster->block_group_list,
3118			      &block_group->cluster_list);
3119		cluster->block_group = block_group;
3120	} else {
3121		trace_btrfs_failed_cluster_setup(block_group);
3122	}
3123out:
3124	spin_unlock(&cluster->lock);
3125	spin_unlock(&ctl->tree_lock);
3126
3127	return ret;
3128}
3129
3130/*
3131 * simple code to zero out a cluster
3132 */
3133void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3134{
3135	spin_lock_init(&cluster->lock);
3136	spin_lock_init(&cluster->refill_lock);
3137	cluster->root = RB_ROOT;
3138	cluster->max_size = 0;
3139	cluster->fragmented = false;
3140	INIT_LIST_HEAD(&cluster->block_group_list);
3141	cluster->block_group = NULL;
3142}
3143
3144static int do_trimming(struct btrfs_block_group_cache *block_group,
3145		       u64 *total_trimmed, u64 start, u64 bytes,
3146		       u64 reserved_start, u64 reserved_bytes,
3147		       struct btrfs_trim_range *trim_entry)
3148{
3149	struct btrfs_space_info *space_info = block_group->space_info;
3150	struct btrfs_fs_info *fs_info = block_group->fs_info;
3151	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3152	int ret;
3153	int update = 0;
3154	u64 trimmed = 0;
3155
3156	spin_lock(&space_info->lock);
3157	spin_lock(&block_group->lock);
3158	if (!block_group->ro) {
3159		block_group->reserved += reserved_bytes;
3160		space_info->bytes_reserved += reserved_bytes;
3161		update = 1;
3162	}
3163	spin_unlock(&block_group->lock);
3164	spin_unlock(&space_info->lock);
3165
3166	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
 
3167	if (!ret)
3168		*total_trimmed += trimmed;
3169
3170	mutex_lock(&ctl->cache_writeout_mutex);
3171	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3172	list_del(&trim_entry->list);
3173	mutex_unlock(&ctl->cache_writeout_mutex);
3174
3175	if (update) {
3176		spin_lock(&space_info->lock);
3177		spin_lock(&block_group->lock);
3178		if (block_group->ro)
3179			space_info->bytes_readonly += reserved_bytes;
3180		block_group->reserved -= reserved_bytes;
3181		space_info->bytes_reserved -= reserved_bytes;
3182		spin_unlock(&block_group->lock);
3183		spin_unlock(&space_info->lock);
 
3184	}
3185
3186	return ret;
3187}
3188
3189static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3190			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3191{
3192	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3193	struct btrfs_free_space *entry;
3194	struct rb_node *node;
3195	int ret = 0;
3196	u64 extent_start;
3197	u64 extent_bytes;
3198	u64 bytes;
3199
3200	while (start < end) {
3201		struct btrfs_trim_range trim_entry;
3202
3203		mutex_lock(&ctl->cache_writeout_mutex);
3204		spin_lock(&ctl->tree_lock);
3205
3206		if (ctl->free_space < minlen) {
3207			spin_unlock(&ctl->tree_lock);
3208			mutex_unlock(&ctl->cache_writeout_mutex);
3209			break;
3210		}
3211
3212		entry = tree_search_offset(ctl, start, 0, 1);
3213		if (!entry) {
3214			spin_unlock(&ctl->tree_lock);
3215			mutex_unlock(&ctl->cache_writeout_mutex);
3216			break;
3217		}
3218
3219		/* skip bitmaps */
3220		while (entry->bitmap) {
3221			node = rb_next(&entry->offset_index);
3222			if (!node) {
3223				spin_unlock(&ctl->tree_lock);
3224				mutex_unlock(&ctl->cache_writeout_mutex);
3225				goto out;
3226			}
3227			entry = rb_entry(node, struct btrfs_free_space,
3228					 offset_index);
3229		}
3230
3231		if (entry->offset >= end) {
3232			spin_unlock(&ctl->tree_lock);
3233			mutex_unlock(&ctl->cache_writeout_mutex);
3234			break;
3235		}
3236
3237		extent_start = entry->offset;
3238		extent_bytes = entry->bytes;
3239		start = max(start, extent_start);
3240		bytes = min(extent_start + extent_bytes, end) - start;
3241		if (bytes < minlen) {
3242			spin_unlock(&ctl->tree_lock);
3243			mutex_unlock(&ctl->cache_writeout_mutex);
3244			goto next;
3245		}
3246
3247		unlink_free_space(ctl, entry);
3248		kmem_cache_free(btrfs_free_space_cachep, entry);
3249
3250		spin_unlock(&ctl->tree_lock);
3251		trim_entry.start = extent_start;
3252		trim_entry.bytes = extent_bytes;
3253		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3254		mutex_unlock(&ctl->cache_writeout_mutex);
3255
3256		ret = do_trimming(block_group, total_trimmed, start, bytes,
3257				  extent_start, extent_bytes, &trim_entry);
3258		if (ret)
3259			break;
3260next:
3261		start += bytes;
3262
3263		if (fatal_signal_pending(current)) {
3264			ret = -ERESTARTSYS;
3265			break;
3266		}
3267
3268		cond_resched();
3269	}
3270out:
3271	return ret;
3272}
3273
3274static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3275			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3276{
3277	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3278	struct btrfs_free_space *entry;
3279	int ret = 0;
3280	int ret2;
3281	u64 bytes;
3282	u64 offset = offset_to_bitmap(ctl, start);
3283
3284	while (offset < end) {
3285		bool next_bitmap = false;
3286		struct btrfs_trim_range trim_entry;
3287
3288		mutex_lock(&ctl->cache_writeout_mutex);
3289		spin_lock(&ctl->tree_lock);
3290
3291		if (ctl->free_space < minlen) {
3292			spin_unlock(&ctl->tree_lock);
3293			mutex_unlock(&ctl->cache_writeout_mutex);
3294			break;
3295		}
3296
3297		entry = tree_search_offset(ctl, offset, 1, 0);
3298		if (!entry) {
3299			spin_unlock(&ctl->tree_lock);
3300			mutex_unlock(&ctl->cache_writeout_mutex);
3301			next_bitmap = true;
3302			goto next;
3303		}
3304
3305		bytes = minlen;
3306		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3307		if (ret2 || start >= end) {
3308			spin_unlock(&ctl->tree_lock);
3309			mutex_unlock(&ctl->cache_writeout_mutex);
3310			next_bitmap = true;
3311			goto next;
3312		}
3313
3314		bytes = min(bytes, end - start);
3315		if (bytes < minlen) {
3316			spin_unlock(&ctl->tree_lock);
3317			mutex_unlock(&ctl->cache_writeout_mutex);
3318			goto next;
3319		}
3320
3321		bitmap_clear_bits(ctl, entry, start, bytes);
3322		if (entry->bytes == 0)
3323			free_bitmap(ctl, entry);
3324
3325		spin_unlock(&ctl->tree_lock);
3326		trim_entry.start = start;
3327		trim_entry.bytes = bytes;
3328		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3329		mutex_unlock(&ctl->cache_writeout_mutex);
3330
3331		ret = do_trimming(block_group, total_trimmed, start, bytes,
3332				  start, bytes, &trim_entry);
3333		if (ret)
3334			break;
3335next:
3336		if (next_bitmap) {
3337			offset += BITS_PER_BITMAP * ctl->unit;
3338		} else {
3339			start += bytes;
3340			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3341				offset += BITS_PER_BITMAP * ctl->unit;
3342		}
3343
3344		if (fatal_signal_pending(current)) {
3345			ret = -ERESTARTSYS;
3346			break;
3347		}
3348
3349		cond_resched();
3350	}
3351
3352	return ret;
3353}
3354
3355void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3356{
3357	atomic_inc(&cache->trimming);
3358}
3359
3360void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3361{
3362	struct btrfs_fs_info *fs_info = block_group->fs_info;
3363	struct extent_map_tree *em_tree;
3364	struct extent_map *em;
3365	bool cleanup;
3366
3367	spin_lock(&block_group->lock);
3368	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3369		   block_group->removed);
3370	spin_unlock(&block_group->lock);
3371
3372	if (cleanup) {
3373		mutex_lock(&fs_info->chunk_mutex);
3374		em_tree = &fs_info->mapping_tree;
3375		write_lock(&em_tree->lock);
3376		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3377					   1);
3378		BUG_ON(!em); /* logic error, can't happen */
3379		remove_extent_mapping(em_tree, em);
3380		write_unlock(&em_tree->lock);
3381		mutex_unlock(&fs_info->chunk_mutex);
3382
3383		/* once for us and once for the tree */
3384		free_extent_map(em);
3385		free_extent_map(em);
3386
3387		/*
3388		 * We've left one free space entry and other tasks trimming
3389		 * this block group have left 1 entry each one. Free them.
3390		 */
3391		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3392	}
3393}
3394
3395int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3396			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3397{
3398	int ret;
3399
3400	*trimmed = 0;
3401
3402	spin_lock(&block_group->lock);
3403	if (block_group->removed) {
3404		spin_unlock(&block_group->lock);
3405		return 0;
3406	}
3407	btrfs_get_block_group_trimming(block_group);
3408	spin_unlock(&block_group->lock);
3409
3410	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3411	if (ret)
3412		goto out;
3413
3414	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3415out:
3416	btrfs_put_block_group_trimming(block_group);
3417	return ret;
3418}
3419
3420/*
3421 * Find the left-most item in the cache tree, and then return the
3422 * smallest inode number in the item.
3423 *
3424 * Note: the returned inode number may not be the smallest one in
3425 * the tree, if the left-most item is a bitmap.
3426 */
3427u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3428{
3429	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3430	struct btrfs_free_space *entry = NULL;
3431	u64 ino = 0;
3432
3433	spin_lock(&ctl->tree_lock);
3434
3435	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3436		goto out;
3437
3438	entry = rb_entry(rb_first(&ctl->free_space_offset),
3439			 struct btrfs_free_space, offset_index);
3440
3441	if (!entry->bitmap) {
3442		ino = entry->offset;
3443
3444		unlink_free_space(ctl, entry);
3445		entry->offset++;
3446		entry->bytes--;
3447		if (!entry->bytes)
3448			kmem_cache_free(btrfs_free_space_cachep, entry);
3449		else
3450			link_free_space(ctl, entry);
3451	} else {
3452		u64 offset = 0;
3453		u64 count = 1;
3454		int ret;
3455
3456		ret = search_bitmap(ctl, entry, &offset, &count, true);
3457		/* Logic error; Should be empty if it can't find anything */
3458		ASSERT(!ret);
3459
3460		ino = offset;
3461		bitmap_clear_bits(ctl, entry, offset, 1);
3462		if (entry->bytes == 0)
3463			free_bitmap(ctl, entry);
3464	}
3465out:
3466	spin_unlock(&ctl->tree_lock);
3467
3468	return ino;
3469}
3470
3471struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3472				    struct btrfs_path *path)
3473{
3474	struct inode *inode = NULL;
3475
3476	spin_lock(&root->ino_cache_lock);
3477	if (root->ino_cache_inode)
3478		inode = igrab(root->ino_cache_inode);
3479	spin_unlock(&root->ino_cache_lock);
3480	if (inode)
3481		return inode;
3482
3483	inode = __lookup_free_space_inode(root, path, 0);
3484	if (IS_ERR(inode))
3485		return inode;
3486
3487	spin_lock(&root->ino_cache_lock);
3488	if (!btrfs_fs_closing(root->fs_info))
3489		root->ino_cache_inode = igrab(inode);
3490	spin_unlock(&root->ino_cache_lock);
3491
3492	return inode;
3493}
3494
3495int create_free_ino_inode(struct btrfs_root *root,
3496			  struct btrfs_trans_handle *trans,
3497			  struct btrfs_path *path)
3498{
3499	return __create_free_space_inode(root, trans, path,
3500					 BTRFS_FREE_INO_OBJECTID, 0);
3501}
3502
3503int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3504{
3505	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3506	struct btrfs_path *path;
3507	struct inode *inode;
3508	int ret = 0;
3509	u64 root_gen = btrfs_root_generation(&root->root_item);
3510
3511	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3512		return 0;
3513
3514	/*
3515	 * If we're unmounting then just return, since this does a search on the
3516	 * normal root and not the commit root and we could deadlock.
3517	 */
3518	if (btrfs_fs_closing(fs_info))
3519		return 0;
3520
3521	path = btrfs_alloc_path();
3522	if (!path)
3523		return 0;
3524
3525	inode = lookup_free_ino_inode(root, path);
3526	if (IS_ERR(inode))
3527		goto out;
3528
3529	if (root_gen != BTRFS_I(inode)->generation)
3530		goto out_put;
3531
3532	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3533
3534	if (ret < 0)
3535		btrfs_err(fs_info,
3536			"failed to load free ino cache for root %llu",
3537			root->root_key.objectid);
3538out_put:
3539	iput(inode);
3540out:
3541	btrfs_free_path(path);
3542	return ret;
3543}
3544
3545int btrfs_write_out_ino_cache(struct btrfs_root *root,
3546			      struct btrfs_trans_handle *trans,
3547			      struct btrfs_path *path,
3548			      struct inode *inode)
3549{
3550	struct btrfs_fs_info *fs_info = root->fs_info;
3551	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3552	int ret;
3553	struct btrfs_io_ctl io_ctl;
3554	bool release_metadata = true;
3555
3556	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3557		return 0;
3558
3559	memset(&io_ctl, 0, sizeof(io_ctl));
3560	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3561	if (!ret) {
3562		/*
3563		 * At this point writepages() didn't error out, so our metadata
3564		 * reservation is released when the writeback finishes, at
3565		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3566		 * with or without an error.
3567		 */
3568		release_metadata = false;
3569		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3570	}
3571
3572	if (ret) {
3573		if (release_metadata)
3574			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3575					inode->i_size, true);
3576#ifdef DEBUG
3577		btrfs_err(fs_info,
3578			  "failed to write free ino cache for root %llu",
3579			  root->root_key.objectid);
3580#endif
3581	}
3582
3583	return ret;
3584}
3585
3586#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3587/*
3588 * Use this if you need to make a bitmap or extent entry specifically, it
3589 * doesn't do any of the merging that add_free_space does, this acts a lot like
3590 * how the free space cache loading stuff works, so you can get really weird
3591 * configurations.
3592 */
3593int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3594			      u64 offset, u64 bytes, bool bitmap)
3595{
3596	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3597	struct btrfs_free_space *info = NULL, *bitmap_info;
3598	void *map = NULL;
3599	u64 bytes_added;
3600	int ret;
3601
3602again:
3603	if (!info) {
3604		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3605		if (!info)
3606			return -ENOMEM;
3607	}
3608
3609	if (!bitmap) {
3610		spin_lock(&ctl->tree_lock);
3611		info->offset = offset;
3612		info->bytes = bytes;
3613		info->max_extent_size = 0;
3614		ret = link_free_space(ctl, info);
3615		spin_unlock(&ctl->tree_lock);
3616		if (ret)
3617			kmem_cache_free(btrfs_free_space_cachep, info);
3618		return ret;
3619	}
3620
3621	if (!map) {
3622		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3623		if (!map) {
3624			kmem_cache_free(btrfs_free_space_cachep, info);
3625			return -ENOMEM;
3626		}
3627	}
3628
3629	spin_lock(&ctl->tree_lock);
3630	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3631					 1, 0);
3632	if (!bitmap_info) {
3633		info->bitmap = map;
3634		map = NULL;
3635		add_new_bitmap(ctl, info, offset);
3636		bitmap_info = info;
3637		info = NULL;
3638	}
3639
3640	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3641
3642	bytes -= bytes_added;
3643	offset += bytes_added;
3644	spin_unlock(&ctl->tree_lock);
3645
3646	if (bytes)
3647		goto again;
3648
3649	if (info)
3650		kmem_cache_free(btrfs_free_space_cachep, info);
3651	if (map)
3652		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3653	return 0;
3654}
3655
3656/*
3657 * Checks to see if the given range is in the free space cache.  This is really
3658 * just used to check the absence of space, so if there is free space in the
3659 * range at all we will return 1.
3660 */
3661int test_check_exists(struct btrfs_block_group_cache *cache,
3662		      u64 offset, u64 bytes)
3663{
3664	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3665	struct btrfs_free_space *info;
3666	int ret = 0;
3667
3668	spin_lock(&ctl->tree_lock);
3669	info = tree_search_offset(ctl, offset, 0, 0);
3670	if (!info) {
3671		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3672					  1, 0);
3673		if (!info)
3674			goto out;
3675	}
3676
3677have_info:
3678	if (info->bitmap) {
3679		u64 bit_off, bit_bytes;
3680		struct rb_node *n;
3681		struct btrfs_free_space *tmp;
3682
3683		bit_off = offset;
3684		bit_bytes = ctl->unit;
3685		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3686		if (!ret) {
3687			if (bit_off == offset) {
3688				ret = 1;
3689				goto out;
3690			} else if (bit_off > offset &&
3691				   offset + bytes > bit_off) {
3692				ret = 1;
3693				goto out;
3694			}
3695		}
3696
3697		n = rb_prev(&info->offset_index);
3698		while (n) {
3699			tmp = rb_entry(n, struct btrfs_free_space,
3700				       offset_index);
3701			if (tmp->offset + tmp->bytes < offset)
3702				break;
3703			if (offset + bytes < tmp->offset) {
3704				n = rb_prev(&tmp->offset_index);
3705				continue;
3706			}
3707			info = tmp;
3708			goto have_info;
3709		}
3710
3711		n = rb_next(&info->offset_index);
3712		while (n) {
3713			tmp = rb_entry(n, struct btrfs_free_space,
3714				       offset_index);
3715			if (offset + bytes < tmp->offset)
3716				break;
3717			if (tmp->offset + tmp->bytes < offset) {
3718				n = rb_next(&tmp->offset_index);
3719				continue;
3720			}
3721			info = tmp;
3722			goto have_info;
3723		}
3724
3725		ret = 0;
3726		goto out;
3727	}
3728
3729	if (info->offset == offset) {
3730		ret = 1;
3731		goto out;
3732	}
3733
3734	if (offset > info->offset && offset < info->offset + info->bytes)
3735		ret = 1;
3736out:
3737	spin_unlock(&ctl->tree_lock);
3738	return ret;
3739}
3740#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
v3.15
 
   1/*
   2 * Copyright (C) 2008 Red Hat.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/pagemap.h>
  20#include <linux/sched.h>
 
  21#include <linux/slab.h>
  22#include <linux/math64.h>
  23#include <linux/ratelimit.h>
 
 
  24#include "ctree.h"
  25#include "free-space-cache.h"
  26#include "transaction.h"
  27#include "disk-io.h"
  28#include "extent_io.h"
  29#include "inode-map.h"
 
 
 
 
 
 
 
  30
  31#define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
  32#define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
 
 
 
  33
  34static int link_free_space(struct btrfs_free_space_ctl *ctl,
  35			   struct btrfs_free_space *info);
  36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  37			      struct btrfs_free_space *info);
 
 
 
 
  38
  39static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  40					       struct btrfs_path *path,
  41					       u64 offset)
  42{
 
  43	struct btrfs_key key;
  44	struct btrfs_key location;
  45	struct btrfs_disk_key disk_key;
  46	struct btrfs_free_space_header *header;
  47	struct extent_buffer *leaf;
  48	struct inode *inode = NULL;
 
  49	int ret;
  50
  51	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  52	key.offset = offset;
  53	key.type = 0;
  54
  55	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  56	if (ret < 0)
  57		return ERR_PTR(ret);
  58	if (ret > 0) {
  59		btrfs_release_path(path);
  60		return ERR_PTR(-ENOENT);
  61	}
  62
  63	leaf = path->nodes[0];
  64	header = btrfs_item_ptr(leaf, path->slots[0],
  65				struct btrfs_free_space_header);
  66	btrfs_free_space_key(leaf, header, &disk_key);
  67	btrfs_disk_key_to_cpu(&location, &disk_key);
  68	btrfs_release_path(path);
  69
  70	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
  71	if (!inode)
  72		return ERR_PTR(-ENOENT);
 
 
 
 
 
  73	if (IS_ERR(inode))
  74		return inode;
  75	if (is_bad_inode(inode)) {
  76		iput(inode);
  77		return ERR_PTR(-ENOENT);
  78	}
  79
  80	mapping_set_gfp_mask(inode->i_mapping,
  81			mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
 
  82
  83	return inode;
  84}
  85
  86struct inode *lookup_free_space_inode(struct btrfs_root *root,
  87				      struct btrfs_block_group_cache
  88				      *block_group, struct btrfs_path *path)
  89{
 
  90	struct inode *inode = NULL;
  91	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
  92
  93	spin_lock(&block_group->lock);
  94	if (block_group->inode)
  95		inode = igrab(block_group->inode);
  96	spin_unlock(&block_group->lock);
  97	if (inode)
  98		return inode;
  99
 100	inode = __lookup_free_space_inode(root, path,
 101					  block_group->key.objectid);
 102	if (IS_ERR(inode))
 103		return inode;
 104
 105	spin_lock(&block_group->lock);
 106	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 107		btrfs_info(root->fs_info,
 108			"Old style space inode found, converting.");
 109		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 110			BTRFS_INODE_NODATACOW;
 111		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 112	}
 113
 114	if (!block_group->iref) {
 115		block_group->inode = igrab(inode);
 116		block_group->iref = 1;
 117	}
 118	spin_unlock(&block_group->lock);
 119
 120	return inode;
 121}
 122
 123static int __create_free_space_inode(struct btrfs_root *root,
 124				     struct btrfs_trans_handle *trans,
 125				     struct btrfs_path *path,
 126				     u64 ino, u64 offset)
 127{
 128	struct btrfs_key key;
 129	struct btrfs_disk_key disk_key;
 130	struct btrfs_free_space_header *header;
 131	struct btrfs_inode_item *inode_item;
 132	struct extent_buffer *leaf;
 133	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 134	int ret;
 135
 136	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 137	if (ret)
 138		return ret;
 139
 140	/* We inline crc's for the free disk space cache */
 141	if (ino != BTRFS_FREE_INO_OBJECTID)
 142		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 143
 144	leaf = path->nodes[0];
 145	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 146				    struct btrfs_inode_item);
 147	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 148	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
 149			     sizeof(*inode_item));
 150	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 151	btrfs_set_inode_size(leaf, inode_item, 0);
 152	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 153	btrfs_set_inode_uid(leaf, inode_item, 0);
 154	btrfs_set_inode_gid(leaf, inode_item, 0);
 155	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 156	btrfs_set_inode_flags(leaf, inode_item, flags);
 157	btrfs_set_inode_nlink(leaf, inode_item, 1);
 158	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 159	btrfs_set_inode_block_group(leaf, inode_item, offset);
 160	btrfs_mark_buffer_dirty(leaf);
 161	btrfs_release_path(path);
 162
 163	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 164	key.offset = offset;
 165	key.type = 0;
 166
 167	ret = btrfs_insert_empty_item(trans, root, path, &key,
 168				      sizeof(struct btrfs_free_space_header));
 169	if (ret < 0) {
 170		btrfs_release_path(path);
 171		return ret;
 172	}
 
 173	leaf = path->nodes[0];
 174	header = btrfs_item_ptr(leaf, path->slots[0],
 175				struct btrfs_free_space_header);
 176	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
 177	btrfs_set_free_space_key(leaf, header, &disk_key);
 178	btrfs_mark_buffer_dirty(leaf);
 179	btrfs_release_path(path);
 180
 181	return 0;
 182}
 183
 184int create_free_space_inode(struct btrfs_root *root,
 185			    struct btrfs_trans_handle *trans,
 186			    struct btrfs_block_group_cache *block_group,
 187			    struct btrfs_path *path)
 188{
 189	int ret;
 190	u64 ino;
 191
 192	ret = btrfs_find_free_objectid(root, &ino);
 193	if (ret < 0)
 194		return ret;
 195
 196	return __create_free_space_inode(root, trans, path, ino,
 197					 block_group->key.objectid);
 198}
 199
 200int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
 201				       struct btrfs_block_rsv *rsv)
 202{
 203	u64 needed_bytes;
 204	int ret;
 205
 206	/* 1 for slack space, 1 for updating the inode */
 207	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
 208		btrfs_calc_trans_metadata_size(root, 1);
 209
 210	spin_lock(&rsv->lock);
 211	if (rsv->reserved < needed_bytes)
 212		ret = -ENOSPC;
 213	else
 214		ret = 0;
 215	spin_unlock(&rsv->lock);
 216	return ret;
 217}
 218
 219int btrfs_truncate_free_space_cache(struct btrfs_root *root,
 220				    struct btrfs_trans_handle *trans,
 221				    struct inode *inode)
 222{
 
 223	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224
 225	btrfs_i_size_write(inode, 0);
 226	truncate_pagecache(inode, 0);
 227
 228	/*
 229	 * We don't need an orphan item because truncating the free space cache
 230	 * will never be split across transactions.
 231	 */
 232	ret = btrfs_truncate_inode_items(trans, root, inode,
 233					 0, BTRFS_EXTENT_DATA_KEY);
 234	if (ret) {
 235		btrfs_abort_transaction(trans, root, ret);
 236		return ret;
 237	}
 238
 239	ret = btrfs_update_inode(trans, root, inode);
 
 
 
 
 240	if (ret)
 241		btrfs_abort_transaction(trans, root, ret);
 242
 243	return ret;
 244}
 245
 246static int readahead_cache(struct inode *inode)
 247{
 248	struct file_ra_state *ra;
 249	unsigned long last_index;
 250
 251	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 252	if (!ra)
 253		return -ENOMEM;
 254
 255	file_ra_state_init(ra, inode->i_mapping);
 256	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 257
 258	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 259
 260	kfree(ra);
 261
 262	return 0;
 263}
 264
 265struct io_ctl {
 266	void *cur, *orig;
 267	struct page *page;
 268	struct page **pages;
 269	struct btrfs_root *root;
 270	unsigned long size;
 271	int index;
 272	int num_pages;
 273	unsigned check_crcs:1;
 274};
 
 
 
 
 
 
 
 
 
 
 
 275
 276static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
 277		       struct btrfs_root *root)
 278{
 279	memset(io_ctl, 0, sizeof(struct io_ctl));
 280	io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
 281		PAGE_CACHE_SHIFT;
 282	io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
 283				GFP_NOFS);
 284	if (!io_ctl->pages)
 285		return -ENOMEM;
 286	io_ctl->root = root;
 287	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
 288		io_ctl->check_crcs = 1;
 
 
 
 289	return 0;
 290}
 
 291
 292static void io_ctl_free(struct io_ctl *io_ctl)
 293{
 294	kfree(io_ctl->pages);
 
 295}
 296
 297static void io_ctl_unmap_page(struct io_ctl *io_ctl)
 298{
 299	if (io_ctl->cur) {
 300		kunmap(io_ctl->page);
 301		io_ctl->cur = NULL;
 302		io_ctl->orig = NULL;
 303	}
 304}
 305
 306static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
 307{
 308	ASSERT(io_ctl->index < io_ctl->num_pages);
 309	io_ctl->page = io_ctl->pages[io_ctl->index++];
 310	io_ctl->cur = kmap(io_ctl->page);
 311	io_ctl->orig = io_ctl->cur;
 312	io_ctl->size = PAGE_CACHE_SIZE;
 313	if (clear)
 314		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
 315}
 316
 317static void io_ctl_drop_pages(struct io_ctl *io_ctl)
 318{
 319	int i;
 320
 321	io_ctl_unmap_page(io_ctl);
 322
 323	for (i = 0; i < io_ctl->num_pages; i++) {
 324		if (io_ctl->pages[i]) {
 325			ClearPageChecked(io_ctl->pages[i]);
 326			unlock_page(io_ctl->pages[i]);
 327			page_cache_release(io_ctl->pages[i]);
 328		}
 329	}
 330}
 331
 332static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
 333				int uptodate)
 334{
 335	struct page *page;
 336	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 337	int i;
 338
 339	for (i = 0; i < io_ctl->num_pages; i++) {
 340		page = find_or_create_page(inode->i_mapping, i, mask);
 341		if (!page) {
 342			io_ctl_drop_pages(io_ctl);
 343			return -ENOMEM;
 344		}
 345		io_ctl->pages[i] = page;
 346		if (uptodate && !PageUptodate(page)) {
 347			btrfs_readpage(NULL, page);
 348			lock_page(page);
 349			if (!PageUptodate(page)) {
 350				btrfs_err(BTRFS_I(inode)->root->fs_info,
 351					   "error reading free space cache");
 352				io_ctl_drop_pages(io_ctl);
 353				return -EIO;
 354			}
 355		}
 356	}
 357
 358	for (i = 0; i < io_ctl->num_pages; i++) {
 359		clear_page_dirty_for_io(io_ctl->pages[i]);
 360		set_page_extent_mapped(io_ctl->pages[i]);
 361	}
 362
 363	return 0;
 364}
 365
 366static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
 367{
 368	__le64 *val;
 369
 370	io_ctl_map_page(io_ctl, 1);
 371
 372	/*
 373	 * Skip the csum areas.  If we don't check crcs then we just have a
 374	 * 64bit chunk at the front of the first page.
 375	 */
 376	if (io_ctl->check_crcs) {
 377		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 378		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 379	} else {
 380		io_ctl->cur += sizeof(u64);
 381		io_ctl->size -= sizeof(u64) * 2;
 382	}
 383
 384	val = io_ctl->cur;
 385	*val = cpu_to_le64(generation);
 386	io_ctl->cur += sizeof(u64);
 387}
 388
 389static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
 390{
 391	__le64 *gen;
 392
 393	/*
 394	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 395	 * chunk at the front of the first page.
 396	 */
 397	if (io_ctl->check_crcs) {
 398		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 399		io_ctl->size -= sizeof(u64) +
 400			(sizeof(u32) * io_ctl->num_pages);
 401	} else {
 402		io_ctl->cur += sizeof(u64);
 403		io_ctl->size -= sizeof(u64) * 2;
 404	}
 405
 406	gen = io_ctl->cur;
 407	if (le64_to_cpu(*gen) != generation) {
 408		printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
 409				   "(%Lu) does not match inode (%Lu)\n", *gen,
 410				   generation);
 411		io_ctl_unmap_page(io_ctl);
 412		return -EIO;
 413	}
 414	io_ctl->cur += sizeof(u64);
 415	return 0;
 416}
 417
 418static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
 419{
 420	u32 *tmp;
 421	u32 crc = ~(u32)0;
 422	unsigned offset = 0;
 423
 424	if (!io_ctl->check_crcs) {
 425		io_ctl_unmap_page(io_ctl);
 426		return;
 427	}
 428
 429	if (index == 0)
 430		offset = sizeof(u32) * io_ctl->num_pages;
 431
 432	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
 433			      PAGE_CACHE_SIZE - offset);
 434	btrfs_csum_final(crc, (char *)&crc);
 435	io_ctl_unmap_page(io_ctl);
 436	tmp = kmap(io_ctl->pages[0]);
 437	tmp += index;
 438	*tmp = crc;
 439	kunmap(io_ctl->pages[0]);
 440}
 441
 442static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
 443{
 444	u32 *tmp, val;
 445	u32 crc = ~(u32)0;
 446	unsigned offset = 0;
 447
 448	if (!io_ctl->check_crcs) {
 449		io_ctl_map_page(io_ctl, 0);
 450		return 0;
 451	}
 452
 453	if (index == 0)
 454		offset = sizeof(u32) * io_ctl->num_pages;
 455
 456	tmp = kmap(io_ctl->pages[0]);
 457	tmp += index;
 458	val = *tmp;
 459	kunmap(io_ctl->pages[0]);
 460
 461	io_ctl_map_page(io_ctl, 0);
 462	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
 463			      PAGE_CACHE_SIZE - offset);
 464	btrfs_csum_final(crc, (char *)&crc);
 465	if (val != crc) {
 466		printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
 467				   "space cache\n");
 468		io_ctl_unmap_page(io_ctl);
 469		return -EIO;
 470	}
 471
 472	return 0;
 473}
 474
 475static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
 476			    void *bitmap)
 477{
 478	struct btrfs_free_space_entry *entry;
 479
 480	if (!io_ctl->cur)
 481		return -ENOSPC;
 482
 483	entry = io_ctl->cur;
 484	entry->offset = cpu_to_le64(offset);
 485	entry->bytes = cpu_to_le64(bytes);
 486	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 487		BTRFS_FREE_SPACE_EXTENT;
 488	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 489	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 490
 491	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 492		return 0;
 493
 494	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 495
 496	/* No more pages to map */
 497	if (io_ctl->index >= io_ctl->num_pages)
 498		return 0;
 499
 500	/* map the next page */
 501	io_ctl_map_page(io_ctl, 1);
 502	return 0;
 503}
 504
 505static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
 506{
 507	if (!io_ctl->cur)
 508		return -ENOSPC;
 509
 510	/*
 511	 * If we aren't at the start of the current page, unmap this one and
 512	 * map the next one if there is any left.
 513	 */
 514	if (io_ctl->cur != io_ctl->orig) {
 515		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 516		if (io_ctl->index >= io_ctl->num_pages)
 517			return -ENOSPC;
 518		io_ctl_map_page(io_ctl, 0);
 519	}
 520
 521	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
 522	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 523	if (io_ctl->index < io_ctl->num_pages)
 524		io_ctl_map_page(io_ctl, 0);
 525	return 0;
 526}
 527
 528static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
 529{
 530	/*
 531	 * If we're not on the boundary we know we've modified the page and we
 532	 * need to crc the page.
 533	 */
 534	if (io_ctl->cur != io_ctl->orig)
 535		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 536	else
 537		io_ctl_unmap_page(io_ctl);
 538
 539	while (io_ctl->index < io_ctl->num_pages) {
 540		io_ctl_map_page(io_ctl, 1);
 541		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 542	}
 543}
 544
 545static int io_ctl_read_entry(struct io_ctl *io_ctl,
 546			    struct btrfs_free_space *entry, u8 *type)
 547{
 548	struct btrfs_free_space_entry *e;
 549	int ret;
 550
 551	if (!io_ctl->cur) {
 552		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 553		if (ret)
 554			return ret;
 555	}
 556
 557	e = io_ctl->cur;
 558	entry->offset = le64_to_cpu(e->offset);
 559	entry->bytes = le64_to_cpu(e->bytes);
 560	*type = e->type;
 561	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 562	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 563
 564	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 565		return 0;
 566
 567	io_ctl_unmap_page(io_ctl);
 568
 569	return 0;
 570}
 571
 572static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
 573			      struct btrfs_free_space *entry)
 574{
 575	int ret;
 576
 577	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 578	if (ret)
 579		return ret;
 580
 581	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
 582	io_ctl_unmap_page(io_ctl);
 583
 584	return 0;
 585}
 586
 587/*
 588 * Since we attach pinned extents after the fact we can have contiguous sections
 589 * of free space that are split up in entries.  This poses a problem with the
 590 * tree logging stuff since it could have allocated across what appears to be 2
 591 * entries since we would have merged the entries when adding the pinned extents
 592 * back to the free space cache.  So run through the space cache that we just
 593 * loaded and merge contiguous entries.  This will make the log replay stuff not
 594 * blow up and it will make for nicer allocator behavior.
 595 */
 596static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 597{
 598	struct btrfs_free_space *e, *prev = NULL;
 599	struct rb_node *n;
 600
 601again:
 602	spin_lock(&ctl->tree_lock);
 603	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 604		e = rb_entry(n, struct btrfs_free_space, offset_index);
 605		if (!prev)
 606			goto next;
 607		if (e->bitmap || prev->bitmap)
 608			goto next;
 609		if (prev->offset + prev->bytes == e->offset) {
 610			unlink_free_space(ctl, prev);
 611			unlink_free_space(ctl, e);
 612			prev->bytes += e->bytes;
 613			kmem_cache_free(btrfs_free_space_cachep, e);
 614			link_free_space(ctl, prev);
 615			prev = NULL;
 616			spin_unlock(&ctl->tree_lock);
 617			goto again;
 618		}
 619next:
 620		prev = e;
 621	}
 622	spin_unlock(&ctl->tree_lock);
 623}
 624
 625static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 626				   struct btrfs_free_space_ctl *ctl,
 627				   struct btrfs_path *path, u64 offset)
 628{
 
 629	struct btrfs_free_space_header *header;
 630	struct extent_buffer *leaf;
 631	struct io_ctl io_ctl;
 632	struct btrfs_key key;
 633	struct btrfs_free_space *e, *n;
 634	struct list_head bitmaps;
 635	u64 num_entries;
 636	u64 num_bitmaps;
 637	u64 generation;
 638	u8 type;
 639	int ret = 0;
 640
 641	INIT_LIST_HEAD(&bitmaps);
 642
 643	/* Nothing in the space cache, goodbye */
 644	if (!i_size_read(inode))
 645		return 0;
 646
 647	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 648	key.offset = offset;
 649	key.type = 0;
 650
 651	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 652	if (ret < 0)
 653		return 0;
 654	else if (ret > 0) {
 655		btrfs_release_path(path);
 656		return 0;
 657	}
 658
 659	ret = -1;
 660
 661	leaf = path->nodes[0];
 662	header = btrfs_item_ptr(leaf, path->slots[0],
 663				struct btrfs_free_space_header);
 664	num_entries = btrfs_free_space_entries(leaf, header);
 665	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 666	generation = btrfs_free_space_generation(leaf, header);
 667	btrfs_release_path(path);
 668
 
 
 
 
 
 
 
 669	if (BTRFS_I(inode)->generation != generation) {
 670		btrfs_err(root->fs_info,
 671			"free space inode generation (%llu) "
 672			"did not match free space cache generation (%llu)",
 673			BTRFS_I(inode)->generation, generation);
 674		return 0;
 675	}
 676
 677	if (!num_entries)
 678		return 0;
 679
 680	ret = io_ctl_init(&io_ctl, inode, root);
 681	if (ret)
 682		return ret;
 683
 684	ret = readahead_cache(inode);
 685	if (ret)
 686		goto out;
 687
 688	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
 689	if (ret)
 690		goto out;
 691
 692	ret = io_ctl_check_crc(&io_ctl, 0);
 693	if (ret)
 694		goto free_cache;
 695
 696	ret = io_ctl_check_generation(&io_ctl, generation);
 697	if (ret)
 698		goto free_cache;
 699
 700	while (num_entries) {
 701		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 702				      GFP_NOFS);
 703		if (!e)
 704			goto free_cache;
 705
 706		ret = io_ctl_read_entry(&io_ctl, e, &type);
 707		if (ret) {
 708			kmem_cache_free(btrfs_free_space_cachep, e);
 709			goto free_cache;
 710		}
 711
 712		if (!e->bytes) {
 713			kmem_cache_free(btrfs_free_space_cachep, e);
 714			goto free_cache;
 715		}
 716
 717		if (type == BTRFS_FREE_SPACE_EXTENT) {
 718			spin_lock(&ctl->tree_lock);
 719			ret = link_free_space(ctl, e);
 720			spin_unlock(&ctl->tree_lock);
 721			if (ret) {
 722				btrfs_err(root->fs_info,
 723					"Duplicate entries in free space cache, dumping");
 724				kmem_cache_free(btrfs_free_space_cachep, e);
 725				goto free_cache;
 726			}
 727		} else {
 728			ASSERT(num_bitmaps);
 729			num_bitmaps--;
 730			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
 
 731			if (!e->bitmap) {
 732				kmem_cache_free(
 733					btrfs_free_space_cachep, e);
 734				goto free_cache;
 735			}
 736			spin_lock(&ctl->tree_lock);
 737			ret = link_free_space(ctl, e);
 738			ctl->total_bitmaps++;
 739			ctl->op->recalc_thresholds(ctl);
 740			spin_unlock(&ctl->tree_lock);
 741			if (ret) {
 742				btrfs_err(root->fs_info,
 743					"Duplicate entries in free space cache, dumping");
 744				kmem_cache_free(btrfs_free_space_cachep, e);
 745				goto free_cache;
 746			}
 747			list_add_tail(&e->list, &bitmaps);
 748		}
 749
 750		num_entries--;
 751	}
 752
 753	io_ctl_unmap_page(&io_ctl);
 754
 755	/*
 756	 * We add the bitmaps at the end of the entries in order that
 757	 * the bitmap entries are added to the cache.
 758	 */
 759	list_for_each_entry_safe(e, n, &bitmaps, list) {
 760		list_del_init(&e->list);
 761		ret = io_ctl_read_bitmap(&io_ctl, e);
 762		if (ret)
 763			goto free_cache;
 764	}
 765
 766	io_ctl_drop_pages(&io_ctl);
 767	merge_space_tree(ctl);
 768	ret = 1;
 769out:
 770	io_ctl_free(&io_ctl);
 771	return ret;
 772free_cache:
 773	io_ctl_drop_pages(&io_ctl);
 774	__btrfs_remove_free_space_cache(ctl);
 775	goto out;
 776}
 777
 778int load_free_space_cache(struct btrfs_fs_info *fs_info,
 779			  struct btrfs_block_group_cache *block_group)
 780{
 
 781	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 782	struct btrfs_root *root = fs_info->tree_root;
 783	struct inode *inode;
 784	struct btrfs_path *path;
 785	int ret = 0;
 786	bool matched;
 787	u64 used = btrfs_block_group_used(&block_group->item);
 788
 789	/*
 790	 * If this block group has been marked to be cleared for one reason or
 791	 * another then we can't trust the on disk cache, so just return.
 792	 */
 793	spin_lock(&block_group->lock);
 794	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 795		spin_unlock(&block_group->lock);
 796		return 0;
 797	}
 798	spin_unlock(&block_group->lock);
 799
 800	path = btrfs_alloc_path();
 801	if (!path)
 802		return 0;
 803	path->search_commit_root = 1;
 804	path->skip_locking = 1;
 805
 806	inode = lookup_free_space_inode(root, block_group, path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 807	if (IS_ERR(inode)) {
 808		btrfs_free_path(path);
 809		return 0;
 810	}
 811
 812	/* We may have converted the inode and made the cache invalid. */
 813	spin_lock(&block_group->lock);
 814	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 815		spin_unlock(&block_group->lock);
 816		btrfs_free_path(path);
 817		goto out;
 818	}
 819	spin_unlock(&block_group->lock);
 820
 821	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 822				      path, block_group->key.objectid);
 823	btrfs_free_path(path);
 824	if (ret <= 0)
 825		goto out;
 826
 827	spin_lock(&ctl->tree_lock);
 828	matched = (ctl->free_space == (block_group->key.offset - used -
 829				       block_group->bytes_super));
 830	spin_unlock(&ctl->tree_lock);
 831
 832	if (!matched) {
 833		__btrfs_remove_free_space_cache(ctl);
 834		btrfs_err(fs_info, "block group %llu has wrong amount of free space",
 835			block_group->key.objectid);
 
 836		ret = -1;
 837	}
 838out:
 839	if (ret < 0) {
 840		/* This cache is bogus, make sure it gets cleared */
 841		spin_lock(&block_group->lock);
 842		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 843		spin_unlock(&block_group->lock);
 844		ret = 0;
 845
 846		btrfs_err(fs_info, "failed to load free space cache for block group %llu",
 847			block_group->key.objectid);
 
 848	}
 849
 850	iput(inode);
 851	return ret;
 852}
 853
 854/**
 855 * __btrfs_write_out_cache - write out cached info to an inode
 856 * @root - the root the inode belongs to
 857 * @ctl - the free space cache we are going to write out
 858 * @block_group - the block_group for this cache if it belongs to a block_group
 859 * @trans - the trans handle
 860 * @path - the path to use
 861 * @offset - the offset for the key we'll insert
 862 *
 863 * This function writes out a free space cache struct to disk for quick recovery
 864 * on mount.  This will return 0 if it was successfull in writing the cache out,
 865 * and -1 if it was not.
 866 */
 867static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
 868				   struct btrfs_free_space_ctl *ctl,
 869				   struct btrfs_block_group_cache *block_group,
 870				   struct btrfs_trans_handle *trans,
 871				   struct btrfs_path *path, u64 offset)
 872{
 873	struct btrfs_free_space_header *header;
 874	struct extent_buffer *leaf;
 875	struct rb_node *node;
 876	struct list_head *pos, *n;
 877	struct extent_state *cached_state = NULL;
 878	struct btrfs_free_cluster *cluster = NULL;
 879	struct extent_io_tree *unpin = NULL;
 880	struct io_ctl io_ctl;
 881	struct list_head bitmap_list;
 882	struct btrfs_key key;
 883	u64 start, extent_start, extent_end, len;
 884	int entries = 0;
 885	int bitmaps = 0;
 886	int ret;
 887	int err = -1;
 888
 889	INIT_LIST_HEAD(&bitmap_list);
 890
 891	if (!i_size_read(inode))
 892		return -1;
 893
 894	ret = io_ctl_init(&io_ctl, inode, root);
 895	if (ret)
 896		return -1;
 897
 898	/* Get the cluster for this block_group if it exists */
 899	if (block_group && !list_empty(&block_group->cluster_list))
 900		cluster = list_entry(block_group->cluster_list.next,
 901				     struct btrfs_free_cluster,
 902				     block_group_list);
 
 903
 904	/* Lock all pages first so we can lock the extent safely. */
 905	io_ctl_prepare_pages(&io_ctl, inode, 0);
 906
 907	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
 908			 0, &cached_state);
 909
 910	node = rb_first(&ctl->free_space_offset);
 911	if (!node && cluster) {
 
 
 912		node = rb_first(&cluster->root);
 913		cluster = NULL;
 914	}
 915
 916	/* Make sure we can fit our crcs into the first page */
 917	if (io_ctl.check_crcs &&
 918	    (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
 919		goto out_nospc;
 920
 921	io_ctl_set_generation(&io_ctl, trans->transid);
 922
 923	/* Write out the extent entries */
 924	while (node) {
 925		struct btrfs_free_space *e;
 926
 927		e = rb_entry(node, struct btrfs_free_space, offset_index);
 928		entries++;
 929
 930		ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
 931				       e->bitmap);
 932		if (ret)
 933			goto out_nospc;
 934
 935		if (e->bitmap) {
 936			list_add_tail(&e->list, &bitmap_list);
 937			bitmaps++;
 938		}
 939		node = rb_next(node);
 940		if (!node && cluster) {
 941			node = rb_first(&cluster->root);
 
 
 942			cluster = NULL;
 943		}
 944	}
 
 
 
 
 945
 946	/*
 947	 * We want to add any pinned extents to our free space cache
 948	 * so we don't leak the space
 
 
 949	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950
 951	/*
 
 
 
 952	 * We shouldn't have switched the pinned extents yet so this is the
 953	 * right one
 954	 */
 955	unpin = root->fs_info->pinned_extents;
 956
 957	if (block_group)
 958		start = block_group->key.objectid;
 959
 960	while (block_group && (start < block_group->key.objectid +
 961			       block_group->key.offset)) {
 962		ret = find_first_extent_bit(unpin, start,
 963					    &extent_start, &extent_end,
 964					    EXTENT_DIRTY, NULL);
 965		if (ret) {
 966			ret = 0;
 967			break;
 968		}
 969
 970		/* This pinned extent is out of our range */
 971		if (extent_start >= block_group->key.objectid +
 972		    block_group->key.offset)
 973			break;
 974
 975		extent_start = max(extent_start, start);
 976		extent_end = min(block_group->key.objectid +
 977				 block_group->key.offset, extent_end + 1);
 978		len = extent_end - extent_start;
 979
 980		entries++;
 981		ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
 982		if (ret)
 983			goto out_nospc;
 984
 985		start = extent_end;
 986	}
 987
 
 
 
 
 
 
 
 
 
 988	/* Write out the bitmaps */
 989	list_for_each_safe(pos, n, &bitmap_list) {
 990		struct btrfs_free_space *entry =
 991			list_entry(pos, struct btrfs_free_space, list);
 992
 993		ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
 994		if (ret)
 995			goto out_nospc;
 996		list_del_init(&entry->list);
 997	}
 998
 999	/* Zero out the rest of the pages just to make sure */
1000	io_ctl_zero_remaining_pages(&io_ctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001
1002	ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1003				0, i_size_read(inode), &cached_state);
1004	io_ctl_drop_pages(&io_ctl);
 
 
 
1005	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1006			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
 
1007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008	if (ret)
1009		goto out;
1010
1011	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
 
 
 
 
1012	if (ret) {
1013		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1014				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1015				 GFP_NOFS);
1016		goto out;
 
 
 
 
 
1017	}
 
 
 
 
 
 
 
 
1018
1019	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1020	key.offset = offset;
1021	key.type = 0;
 
 
 
 
 
 
1022
1023	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1024	if (ret < 0) {
1025		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1026				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1027				 GFP_NOFS);
1028		goto out;
1029	}
1030	leaf = path->nodes[0];
1031	if (ret > 0) {
1032		struct btrfs_key found_key;
1033		ASSERT(path->slots[0]);
1034		path->slots[0]--;
1035		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1036		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1037		    found_key.offset != offset) {
1038			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1039					 inode->i_size - 1,
1040					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1041					 NULL, GFP_NOFS);
1042			btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043			goto out;
1044		}
 
1045	}
1046
1047	BTRFS_I(inode)->generation = trans->transid;
1048	header = btrfs_item_ptr(leaf, path->slots[0],
1049				struct btrfs_free_space_header);
1050	btrfs_set_free_space_entries(leaf, header, entries);
1051	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1052	btrfs_set_free_space_generation(leaf, header, trans->transid);
1053	btrfs_mark_buffer_dirty(leaf);
1054	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055
1056	err = 0;
1057out:
1058	io_ctl_free(&io_ctl);
1059	if (err) {
 
1060		invalidate_inode_pages2(inode->i_mapping);
1061		BTRFS_I(inode)->generation = 0;
1062	}
1063	btrfs_update_inode(trans, root, inode);
1064	return err;
 
 
 
 
 
 
 
1065
1066out_nospc:
1067	list_for_each_safe(pos, n, &bitmap_list) {
1068		struct btrfs_free_space *entry =
1069			list_entry(pos, struct btrfs_free_space, list);
1070		list_del_init(&entry->list);
1071	}
1072	io_ctl_drop_pages(&io_ctl);
1073	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1074			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1075	goto out;
1076}
1077
1078int btrfs_write_out_cache(struct btrfs_root *root,
1079			  struct btrfs_trans_handle *trans,
1080			  struct btrfs_block_group_cache *block_group,
1081			  struct btrfs_path *path)
1082{
 
1083	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1084	struct inode *inode;
1085	int ret = 0;
1086
1087	root = root->fs_info->tree_root;
1088
1089	spin_lock(&block_group->lock);
1090	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1091		spin_unlock(&block_group->lock);
1092		return 0;
1093	}
1094	spin_unlock(&block_group->lock);
1095
1096	inode = lookup_free_space_inode(root, block_group, path);
1097	if (IS_ERR(inode))
1098		return 0;
1099
1100	ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1101				      path, block_group->key.objectid);
1102	if (ret) {
 
 
 
 
 
1103		spin_lock(&block_group->lock);
1104		block_group->disk_cache_state = BTRFS_DC_ERROR;
1105		spin_unlock(&block_group->lock);
1106		ret = 0;
1107#ifdef DEBUG
1108		btrfs_err(root->fs_info,
1109			"failed to write free space cache for block group %llu",
1110			block_group->key.objectid);
1111#endif
1112	}
1113
1114	iput(inode);
 
 
 
 
1115	return ret;
1116}
1117
1118static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1119					  u64 offset)
1120{
1121	ASSERT(offset >= bitmap_start);
1122	offset -= bitmap_start;
1123	return (unsigned long)(div_u64(offset, unit));
1124}
1125
1126static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1127{
1128	return (unsigned long)(div_u64(bytes, unit));
1129}
1130
1131static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1132				   u64 offset)
1133{
1134	u64 bitmap_start;
1135	u64 bytes_per_bitmap;
1136
1137	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1138	bitmap_start = offset - ctl->start;
1139	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1140	bitmap_start *= bytes_per_bitmap;
1141	bitmap_start += ctl->start;
1142
1143	return bitmap_start;
1144}
1145
1146static int tree_insert_offset(struct rb_root *root, u64 offset,
1147			      struct rb_node *node, int bitmap)
1148{
1149	struct rb_node **p = &root->rb_node;
1150	struct rb_node *parent = NULL;
1151	struct btrfs_free_space *info;
1152
1153	while (*p) {
1154		parent = *p;
1155		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1156
1157		if (offset < info->offset) {
1158			p = &(*p)->rb_left;
1159		} else if (offset > info->offset) {
1160			p = &(*p)->rb_right;
1161		} else {
1162			/*
1163			 * we could have a bitmap entry and an extent entry
1164			 * share the same offset.  If this is the case, we want
1165			 * the extent entry to always be found first if we do a
1166			 * linear search through the tree, since we want to have
1167			 * the quickest allocation time, and allocating from an
1168			 * extent is faster than allocating from a bitmap.  So
1169			 * if we're inserting a bitmap and we find an entry at
1170			 * this offset, we want to go right, or after this entry
1171			 * logically.  If we are inserting an extent and we've
1172			 * found a bitmap, we want to go left, or before
1173			 * logically.
1174			 */
1175			if (bitmap) {
1176				if (info->bitmap) {
1177					WARN_ON_ONCE(1);
1178					return -EEXIST;
1179				}
1180				p = &(*p)->rb_right;
1181			} else {
1182				if (!info->bitmap) {
1183					WARN_ON_ONCE(1);
1184					return -EEXIST;
1185				}
1186				p = &(*p)->rb_left;
1187			}
1188		}
1189	}
1190
1191	rb_link_node(node, parent, p);
1192	rb_insert_color(node, root);
1193
1194	return 0;
1195}
1196
1197/*
1198 * searches the tree for the given offset.
1199 *
1200 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1201 * want a section that has at least bytes size and comes at or after the given
1202 * offset.
1203 */
1204static struct btrfs_free_space *
1205tree_search_offset(struct btrfs_free_space_ctl *ctl,
1206		   u64 offset, int bitmap_only, int fuzzy)
1207{
1208	struct rb_node *n = ctl->free_space_offset.rb_node;
1209	struct btrfs_free_space *entry, *prev = NULL;
1210
1211	/* find entry that is closest to the 'offset' */
1212	while (1) {
1213		if (!n) {
1214			entry = NULL;
1215			break;
1216		}
1217
1218		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1219		prev = entry;
1220
1221		if (offset < entry->offset)
1222			n = n->rb_left;
1223		else if (offset > entry->offset)
1224			n = n->rb_right;
1225		else
1226			break;
1227	}
1228
1229	if (bitmap_only) {
1230		if (!entry)
1231			return NULL;
1232		if (entry->bitmap)
1233			return entry;
1234
1235		/*
1236		 * bitmap entry and extent entry may share same offset,
1237		 * in that case, bitmap entry comes after extent entry.
1238		 */
1239		n = rb_next(n);
1240		if (!n)
1241			return NULL;
1242		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1243		if (entry->offset != offset)
1244			return NULL;
1245
1246		WARN_ON(!entry->bitmap);
1247		return entry;
1248	} else if (entry) {
1249		if (entry->bitmap) {
1250			/*
1251			 * if previous extent entry covers the offset,
1252			 * we should return it instead of the bitmap entry
1253			 */
1254			n = rb_prev(&entry->offset_index);
1255			if (n) {
1256				prev = rb_entry(n, struct btrfs_free_space,
1257						offset_index);
1258				if (!prev->bitmap &&
1259				    prev->offset + prev->bytes > offset)
1260					entry = prev;
1261			}
1262		}
1263		return entry;
1264	}
1265
1266	if (!prev)
1267		return NULL;
1268
1269	/* find last entry before the 'offset' */
1270	entry = prev;
1271	if (entry->offset > offset) {
1272		n = rb_prev(&entry->offset_index);
1273		if (n) {
1274			entry = rb_entry(n, struct btrfs_free_space,
1275					offset_index);
1276			ASSERT(entry->offset <= offset);
1277		} else {
1278			if (fuzzy)
1279				return entry;
1280			else
1281				return NULL;
1282		}
1283	}
1284
1285	if (entry->bitmap) {
1286		n = rb_prev(&entry->offset_index);
1287		if (n) {
1288			prev = rb_entry(n, struct btrfs_free_space,
1289					offset_index);
1290			if (!prev->bitmap &&
1291			    prev->offset + prev->bytes > offset)
1292				return prev;
1293		}
1294		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1295			return entry;
1296	} else if (entry->offset + entry->bytes > offset)
1297		return entry;
1298
1299	if (!fuzzy)
1300		return NULL;
1301
1302	while (1) {
1303		if (entry->bitmap) {
1304			if (entry->offset + BITS_PER_BITMAP *
1305			    ctl->unit > offset)
1306				break;
1307		} else {
1308			if (entry->offset + entry->bytes > offset)
1309				break;
1310		}
1311
1312		n = rb_next(&entry->offset_index);
1313		if (!n)
1314			return NULL;
1315		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1316	}
1317	return entry;
1318}
1319
1320static inline void
1321__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1322		    struct btrfs_free_space *info)
1323{
1324	rb_erase(&info->offset_index, &ctl->free_space_offset);
1325	ctl->free_extents--;
1326}
1327
1328static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1329			      struct btrfs_free_space *info)
1330{
1331	__unlink_free_space(ctl, info);
1332	ctl->free_space -= info->bytes;
1333}
1334
1335static int link_free_space(struct btrfs_free_space_ctl *ctl,
1336			   struct btrfs_free_space *info)
1337{
1338	int ret = 0;
1339
1340	ASSERT(info->bytes || info->bitmap);
1341	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1342				 &info->offset_index, (info->bitmap != NULL));
1343	if (ret)
1344		return ret;
1345
1346	ctl->free_space += info->bytes;
1347	ctl->free_extents++;
1348	return ret;
1349}
1350
1351static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1352{
1353	struct btrfs_block_group_cache *block_group = ctl->private;
1354	u64 max_bytes;
1355	u64 bitmap_bytes;
1356	u64 extent_bytes;
1357	u64 size = block_group->key.offset;
1358	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1359	int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1360
1361	max_bitmaps = max(max_bitmaps, 1);
1362
1363	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1364
1365	/*
1366	 * The goal is to keep the total amount of memory used per 1gb of space
1367	 * at or below 32k, so we need to adjust how much memory we allow to be
1368	 * used by extent based free space tracking
1369	 */
1370	if (size < 1024 * 1024 * 1024)
1371		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1372	else
1373		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1374			div64_u64(size, 1024 * 1024 * 1024);
1375
1376	/*
1377	 * we want to account for 1 more bitmap than what we have so we can make
1378	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1379	 * we add more bitmaps.
1380	 */
1381	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1382
1383	if (bitmap_bytes >= max_bytes) {
1384		ctl->extents_thresh = 0;
1385		return;
1386	}
1387
1388	/*
1389	 * we want the extent entry threshold to always be at most 1/2 the maxw
1390	 * bytes we can have, or whatever is less than that.
1391	 */
1392	extent_bytes = max_bytes - bitmap_bytes;
1393	extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1394
1395	ctl->extents_thresh =
1396		div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1397}
1398
1399static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1400				       struct btrfs_free_space *info,
1401				       u64 offset, u64 bytes)
1402{
1403	unsigned long start, count;
1404
1405	start = offset_to_bit(info->offset, ctl->unit, offset);
1406	count = bytes_to_bits(bytes, ctl->unit);
1407	ASSERT(start + count <= BITS_PER_BITMAP);
1408
1409	bitmap_clear(info->bitmap, start, count);
1410
1411	info->bytes -= bytes;
 
 
1412}
1413
1414static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1415			      struct btrfs_free_space *info, u64 offset,
1416			      u64 bytes)
1417{
1418	__bitmap_clear_bits(ctl, info, offset, bytes);
1419	ctl->free_space -= bytes;
1420}
1421
1422static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1423			    struct btrfs_free_space *info, u64 offset,
1424			    u64 bytes)
1425{
1426	unsigned long start, count;
1427
1428	start = offset_to_bit(info->offset, ctl->unit, offset);
1429	count = bytes_to_bits(bytes, ctl->unit);
1430	ASSERT(start + count <= BITS_PER_BITMAP);
1431
1432	bitmap_set(info->bitmap, start, count);
1433
1434	info->bytes += bytes;
1435	ctl->free_space += bytes;
1436}
1437
1438/*
1439 * If we can not find suitable extent, we will use bytes to record
1440 * the size of the max extent.
1441 */
1442static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1443			 struct btrfs_free_space *bitmap_info, u64 *offset,
1444			 u64 *bytes)
1445{
1446	unsigned long found_bits = 0;
1447	unsigned long max_bits = 0;
1448	unsigned long bits, i;
1449	unsigned long next_zero;
1450	unsigned long extent_bits;
1451
 
 
 
 
 
 
 
 
 
 
 
1452	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1453			  max_t(u64, *offset, bitmap_info->offset));
1454	bits = bytes_to_bits(*bytes, ctl->unit);
1455
1456	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
 
 
 
 
1457		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1458					       BITS_PER_BITMAP, i);
1459		extent_bits = next_zero - i;
1460		if (extent_bits >= bits) {
1461			found_bits = extent_bits;
1462			break;
1463		} else if (extent_bits > max_bits) {
1464			max_bits = extent_bits;
1465		}
1466		i = next_zero;
1467	}
1468
1469	if (found_bits) {
1470		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1471		*bytes = (u64)(found_bits) * ctl->unit;
1472		return 0;
1473	}
1474
1475	*bytes = (u64)(max_bits) * ctl->unit;
 
1476	return -1;
1477}
1478
 
 
 
 
 
 
 
1479/* Cache the size of the max extent in bytes */
1480static struct btrfs_free_space *
1481find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1482		unsigned long align, u64 *max_extent_size)
1483{
1484	struct btrfs_free_space *entry;
1485	struct rb_node *node;
1486	u64 tmp;
1487	u64 align_off;
1488	int ret;
1489
1490	if (!ctl->free_space_offset.rb_node)
1491		goto out;
1492
1493	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1494	if (!entry)
1495		goto out;
1496
1497	for (node = &entry->offset_index; node; node = rb_next(node)) {
1498		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1499		if (entry->bytes < *bytes) {
1500			if (entry->bytes > *max_extent_size)
1501				*max_extent_size = entry->bytes;
1502			continue;
1503		}
1504
1505		/* make sure the space returned is big enough
1506		 * to match our requested alignment
1507		 */
1508		if (*bytes >= align) {
1509			tmp = entry->offset - ctl->start + align - 1;
1510			do_div(tmp, align);
1511			tmp = tmp * align + ctl->start;
1512			align_off = tmp - entry->offset;
1513		} else {
1514			align_off = 0;
1515			tmp = entry->offset;
1516		}
1517
1518		if (entry->bytes < *bytes + align_off) {
1519			if (entry->bytes > *max_extent_size)
1520				*max_extent_size = entry->bytes;
1521			continue;
1522		}
1523
1524		if (entry->bitmap) {
1525			u64 size = *bytes;
1526
1527			ret = search_bitmap(ctl, entry, &tmp, &size);
1528			if (!ret) {
1529				*offset = tmp;
1530				*bytes = size;
1531				return entry;
1532			} else if (size > *max_extent_size) {
1533				*max_extent_size = size;
 
 
1534			}
1535			continue;
1536		}
1537
1538		*offset = tmp;
1539		*bytes = entry->bytes - align_off;
1540		return entry;
1541	}
1542out:
1543	return NULL;
1544}
1545
1546static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1547			   struct btrfs_free_space *info, u64 offset)
1548{
1549	info->offset = offset_to_bitmap(ctl, offset);
1550	info->bytes = 0;
1551	INIT_LIST_HEAD(&info->list);
1552	link_free_space(ctl, info);
1553	ctl->total_bitmaps++;
1554
1555	ctl->op->recalc_thresholds(ctl);
1556}
1557
1558static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1559			struct btrfs_free_space *bitmap_info)
1560{
1561	unlink_free_space(ctl, bitmap_info);
1562	kfree(bitmap_info->bitmap);
1563	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1564	ctl->total_bitmaps--;
1565	ctl->op->recalc_thresholds(ctl);
1566}
1567
1568static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1569			      struct btrfs_free_space *bitmap_info,
1570			      u64 *offset, u64 *bytes)
1571{
1572	u64 end;
1573	u64 search_start, search_bytes;
1574	int ret;
1575
1576again:
1577	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1578
1579	/*
1580	 * We need to search for bits in this bitmap.  We could only cover some
1581	 * of the extent in this bitmap thanks to how we add space, so we need
1582	 * to search for as much as it as we can and clear that amount, and then
1583	 * go searching for the next bit.
1584	 */
1585	search_start = *offset;
1586	search_bytes = ctl->unit;
1587	search_bytes = min(search_bytes, end - search_start + 1);
1588	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
 
1589	if (ret < 0 || search_start != *offset)
1590		return -EINVAL;
1591
1592	/* We may have found more bits than what we need */
1593	search_bytes = min(search_bytes, *bytes);
1594
1595	/* Cannot clear past the end of the bitmap */
1596	search_bytes = min(search_bytes, end - search_start + 1);
1597
1598	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1599	*offset += search_bytes;
1600	*bytes -= search_bytes;
1601
1602	if (*bytes) {
1603		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1604		if (!bitmap_info->bytes)
1605			free_bitmap(ctl, bitmap_info);
1606
1607		/*
1608		 * no entry after this bitmap, but we still have bytes to
1609		 * remove, so something has gone wrong.
1610		 */
1611		if (!next)
1612			return -EINVAL;
1613
1614		bitmap_info = rb_entry(next, struct btrfs_free_space,
1615				       offset_index);
1616
1617		/*
1618		 * if the next entry isn't a bitmap we need to return to let the
1619		 * extent stuff do its work.
1620		 */
1621		if (!bitmap_info->bitmap)
1622			return -EAGAIN;
1623
1624		/*
1625		 * Ok the next item is a bitmap, but it may not actually hold
1626		 * the information for the rest of this free space stuff, so
1627		 * look for it, and if we don't find it return so we can try
1628		 * everything over again.
1629		 */
1630		search_start = *offset;
1631		search_bytes = ctl->unit;
1632		ret = search_bitmap(ctl, bitmap_info, &search_start,
1633				    &search_bytes);
1634		if (ret < 0 || search_start != *offset)
1635			return -EAGAIN;
1636
1637		goto again;
1638	} else if (!bitmap_info->bytes)
1639		free_bitmap(ctl, bitmap_info);
1640
1641	return 0;
1642}
1643
1644static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1645			       struct btrfs_free_space *info, u64 offset,
1646			       u64 bytes)
1647{
1648	u64 bytes_to_set = 0;
1649	u64 end;
1650
1651	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1652
1653	bytes_to_set = min(end - offset, bytes);
1654
1655	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1656
 
 
 
 
 
 
1657	return bytes_to_set;
1658
1659}
1660
1661static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1662		      struct btrfs_free_space *info)
1663{
1664	struct btrfs_block_group_cache *block_group = ctl->private;
 
 
 
 
 
 
 
1665
1666	/*
1667	 * If we are below the extents threshold then we can add this as an
1668	 * extent, and don't have to deal with the bitmap
1669	 */
1670	if (ctl->free_extents < ctl->extents_thresh) {
1671		/*
1672		 * If this block group has some small extents we don't want to
1673		 * use up all of our free slots in the cache with them, we want
1674		 * to reserve them to larger extents, however if we have plent
1675		 * of cache left then go ahead an dadd them, no sense in adding
1676		 * the overhead of a bitmap if we don't have to.
1677		 */
1678		if (info->bytes <= block_group->sectorsize * 4) {
1679			if (ctl->free_extents * 2 <= ctl->extents_thresh)
1680				return false;
1681		} else {
1682			return false;
1683		}
1684	}
1685
1686	/*
1687	 * The original block groups from mkfs can be really small, like 8
1688	 * megabytes, so don't bother with a bitmap for those entries.  However
1689	 * some block groups can be smaller than what a bitmap would cover but
1690	 * are still large enough that they could overflow the 32k memory limit,
1691	 * so allow those block groups to still be allowed to have a bitmap
1692	 * entry.
1693	 */
1694	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1695		return false;
1696
1697	return true;
1698}
1699
1700static struct btrfs_free_space_op free_space_op = {
1701	.recalc_thresholds	= recalculate_thresholds,
1702	.use_bitmap		= use_bitmap,
1703};
1704
1705static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1706			      struct btrfs_free_space *info)
1707{
1708	struct btrfs_free_space *bitmap_info;
1709	struct btrfs_block_group_cache *block_group = NULL;
1710	int added = 0;
1711	u64 bytes, offset, bytes_added;
1712	int ret;
1713
1714	bytes = info->bytes;
1715	offset = info->offset;
1716
1717	if (!ctl->op->use_bitmap(ctl, info))
1718		return 0;
1719
1720	if (ctl->op == &free_space_op)
1721		block_group = ctl->private;
1722again:
1723	/*
1724	 * Since we link bitmaps right into the cluster we need to see if we
1725	 * have a cluster here, and if so and it has our bitmap we need to add
1726	 * the free space to that bitmap.
1727	 */
1728	if (block_group && !list_empty(&block_group->cluster_list)) {
1729		struct btrfs_free_cluster *cluster;
1730		struct rb_node *node;
1731		struct btrfs_free_space *entry;
1732
1733		cluster = list_entry(block_group->cluster_list.next,
1734				     struct btrfs_free_cluster,
1735				     block_group_list);
1736		spin_lock(&cluster->lock);
1737		node = rb_first(&cluster->root);
1738		if (!node) {
1739			spin_unlock(&cluster->lock);
1740			goto no_cluster_bitmap;
1741		}
1742
1743		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1744		if (!entry->bitmap) {
1745			spin_unlock(&cluster->lock);
1746			goto no_cluster_bitmap;
1747		}
1748
1749		if (entry->offset == offset_to_bitmap(ctl, offset)) {
1750			bytes_added = add_bytes_to_bitmap(ctl, entry,
1751							  offset, bytes);
1752			bytes -= bytes_added;
1753			offset += bytes_added;
1754		}
1755		spin_unlock(&cluster->lock);
1756		if (!bytes) {
1757			ret = 1;
1758			goto out;
1759		}
1760	}
1761
1762no_cluster_bitmap:
1763	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1764					 1, 0);
1765	if (!bitmap_info) {
1766		ASSERT(added == 0);
1767		goto new_bitmap;
1768	}
1769
1770	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1771	bytes -= bytes_added;
1772	offset += bytes_added;
1773	added = 0;
1774
1775	if (!bytes) {
1776		ret = 1;
1777		goto out;
1778	} else
1779		goto again;
1780
1781new_bitmap:
1782	if (info && info->bitmap) {
1783		add_new_bitmap(ctl, info, offset);
1784		added = 1;
1785		info = NULL;
1786		goto again;
1787	} else {
1788		spin_unlock(&ctl->tree_lock);
1789
1790		/* no pre-allocated info, allocate a new one */
1791		if (!info) {
1792			info = kmem_cache_zalloc(btrfs_free_space_cachep,
1793						 GFP_NOFS);
1794			if (!info) {
1795				spin_lock(&ctl->tree_lock);
1796				ret = -ENOMEM;
1797				goto out;
1798			}
1799		}
1800
1801		/* allocate the bitmap */
1802		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
 
1803		spin_lock(&ctl->tree_lock);
1804		if (!info->bitmap) {
1805			ret = -ENOMEM;
1806			goto out;
1807		}
1808		goto again;
1809	}
1810
1811out:
1812	if (info) {
1813		if (info->bitmap)
1814			kfree(info->bitmap);
 
1815		kmem_cache_free(btrfs_free_space_cachep, info);
1816	}
1817
1818	return ret;
1819}
1820
1821static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1822			  struct btrfs_free_space *info, bool update_stat)
1823{
1824	struct btrfs_free_space *left_info;
1825	struct btrfs_free_space *right_info;
1826	bool merged = false;
1827	u64 offset = info->offset;
1828	u64 bytes = info->bytes;
1829
1830	/*
1831	 * first we want to see if there is free space adjacent to the range we
1832	 * are adding, if there is remove that struct and add a new one to
1833	 * cover the entire range
1834	 */
1835	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1836	if (right_info && rb_prev(&right_info->offset_index))
1837		left_info = rb_entry(rb_prev(&right_info->offset_index),
1838				     struct btrfs_free_space, offset_index);
1839	else
1840		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1841
1842	if (right_info && !right_info->bitmap) {
1843		if (update_stat)
1844			unlink_free_space(ctl, right_info);
1845		else
1846			__unlink_free_space(ctl, right_info);
1847		info->bytes += right_info->bytes;
1848		kmem_cache_free(btrfs_free_space_cachep, right_info);
1849		merged = true;
1850	}
1851
1852	if (left_info && !left_info->bitmap &&
1853	    left_info->offset + left_info->bytes == offset) {
1854		if (update_stat)
1855			unlink_free_space(ctl, left_info);
1856		else
1857			__unlink_free_space(ctl, left_info);
1858		info->offset = left_info->offset;
1859		info->bytes += left_info->bytes;
1860		kmem_cache_free(btrfs_free_space_cachep, left_info);
1861		merged = true;
1862	}
1863
1864	return merged;
1865}
1866
1867int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868			   u64 offset, u64 bytes)
1869{
1870	struct btrfs_free_space *info;
1871	int ret = 0;
1872
1873	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1874	if (!info)
1875		return -ENOMEM;
1876
1877	info->offset = offset;
1878	info->bytes = bytes;
 
1879
1880	spin_lock(&ctl->tree_lock);
1881
1882	if (try_merge_free_space(ctl, info, true))
1883		goto link;
1884
1885	/*
1886	 * There was no extent directly to the left or right of this new
1887	 * extent then we know we're going to have to allocate a new extent, so
1888	 * before we do that see if we need to drop this into a bitmap
1889	 */
1890	ret = insert_into_bitmap(ctl, info);
1891	if (ret < 0) {
1892		goto out;
1893	} else if (ret) {
1894		ret = 0;
1895		goto out;
1896	}
1897link:
 
 
 
 
 
 
 
 
1898	ret = link_free_space(ctl, info);
1899	if (ret)
1900		kmem_cache_free(btrfs_free_space_cachep, info);
1901out:
1902	spin_unlock(&ctl->tree_lock);
1903
1904	if (ret) {
1905		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
1906		ASSERT(ret != -EEXIST);
1907	}
1908
1909	return ret;
1910}
1911
 
 
 
 
 
 
 
 
1912int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1913			    u64 offset, u64 bytes)
1914{
1915	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1916	struct btrfs_free_space *info;
1917	int ret;
1918	bool re_search = false;
1919
1920	spin_lock(&ctl->tree_lock);
1921
1922again:
1923	ret = 0;
1924	if (!bytes)
1925		goto out_lock;
1926
1927	info = tree_search_offset(ctl, offset, 0, 0);
1928	if (!info) {
1929		/*
1930		 * oops didn't find an extent that matched the space we wanted
1931		 * to remove, look for a bitmap instead
1932		 */
1933		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1934					  1, 0);
1935		if (!info) {
1936			/*
1937			 * If we found a partial bit of our free space in a
1938			 * bitmap but then couldn't find the other part this may
1939			 * be a problem, so WARN about it.
1940			 */
1941			WARN_ON(re_search);
1942			goto out_lock;
1943		}
1944	}
1945
1946	re_search = false;
1947	if (!info->bitmap) {
1948		unlink_free_space(ctl, info);
1949		if (offset == info->offset) {
1950			u64 to_free = min(bytes, info->bytes);
1951
1952			info->bytes -= to_free;
1953			info->offset += to_free;
1954			if (info->bytes) {
1955				ret = link_free_space(ctl, info);
1956				WARN_ON(ret);
1957			} else {
1958				kmem_cache_free(btrfs_free_space_cachep, info);
1959			}
1960
1961			offset += to_free;
1962			bytes -= to_free;
1963			goto again;
1964		} else {
1965			u64 old_end = info->bytes + info->offset;
1966
1967			info->bytes = offset - info->offset;
1968			ret = link_free_space(ctl, info);
1969			WARN_ON(ret);
1970			if (ret)
1971				goto out_lock;
1972
1973			/* Not enough bytes in this entry to satisfy us */
1974			if (old_end < offset + bytes) {
1975				bytes -= old_end - offset;
1976				offset = old_end;
1977				goto again;
1978			} else if (old_end == offset + bytes) {
1979				/* all done */
1980				goto out_lock;
1981			}
1982			spin_unlock(&ctl->tree_lock);
1983
1984			ret = btrfs_add_free_space(block_group, offset + bytes,
1985						   old_end - (offset + bytes));
1986			WARN_ON(ret);
1987			goto out;
1988		}
1989	}
1990
1991	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1992	if (ret == -EAGAIN) {
1993		re_search = true;
1994		goto again;
1995	}
1996out_lock:
1997	spin_unlock(&ctl->tree_lock);
1998out:
1999	return ret;
2000}
2001
2002void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2003			   u64 bytes)
2004{
 
2005	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2006	struct btrfs_free_space *info;
2007	struct rb_node *n;
2008	int count = 0;
2009
 
2010	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2011		info = rb_entry(n, struct btrfs_free_space, offset_index);
2012		if (info->bytes >= bytes && !block_group->ro)
2013			count++;
2014		btrfs_crit(block_group->fs_info,
2015			   "entry offset %llu, bytes %llu, bitmap %s",
2016			   info->offset, info->bytes,
2017		       (info->bitmap) ? "yes" : "no");
2018	}
2019	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
 
2020	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2021	btrfs_info(block_group->fs_info,
2022		   "%d blocks of free space at or bigger than bytes is", count);
2023}
2024
2025void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2026{
 
2027	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2028
2029	spin_lock_init(&ctl->tree_lock);
2030	ctl->unit = block_group->sectorsize;
2031	ctl->start = block_group->key.objectid;
2032	ctl->private = block_group;
2033	ctl->op = &free_space_op;
 
 
2034
2035	/*
2036	 * we only want to have 32k of ram per block group for keeping
2037	 * track of free space, and if we pass 1/2 of that we want to
2038	 * start converting things over to using bitmaps
2039	 */
2040	ctl->extents_thresh = ((1024 * 32) / 2) /
2041				sizeof(struct btrfs_free_space);
2042}
2043
2044/*
2045 * for a given cluster, put all of its extents back into the free
2046 * space cache.  If the block group passed doesn't match the block group
2047 * pointed to by the cluster, someone else raced in and freed the
2048 * cluster already.  In that case, we just return without changing anything
2049 */
2050static int
2051__btrfs_return_cluster_to_free_space(
2052			     struct btrfs_block_group_cache *block_group,
2053			     struct btrfs_free_cluster *cluster)
2054{
2055	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2056	struct btrfs_free_space *entry;
2057	struct rb_node *node;
2058
2059	spin_lock(&cluster->lock);
2060	if (cluster->block_group != block_group)
2061		goto out;
2062
2063	cluster->block_group = NULL;
2064	cluster->window_start = 0;
2065	list_del_init(&cluster->block_group_list);
2066
2067	node = rb_first(&cluster->root);
2068	while (node) {
2069		bool bitmap;
2070
2071		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2072		node = rb_next(&entry->offset_index);
2073		rb_erase(&entry->offset_index, &cluster->root);
 
2074
2075		bitmap = (entry->bitmap != NULL);
2076		if (!bitmap)
2077			try_merge_free_space(ctl, entry, false);
 
 
2078		tree_insert_offset(&ctl->free_space_offset,
2079				   entry->offset, &entry->offset_index, bitmap);
2080	}
2081	cluster->root = RB_ROOT;
2082
2083out:
2084	spin_unlock(&cluster->lock);
2085	btrfs_put_block_group(block_group);
2086	return 0;
2087}
2088
2089static void __btrfs_remove_free_space_cache_locked(
2090				struct btrfs_free_space_ctl *ctl)
2091{
2092	struct btrfs_free_space *info;
2093	struct rb_node *node;
2094
2095	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2096		info = rb_entry(node, struct btrfs_free_space, offset_index);
2097		if (!info->bitmap) {
2098			unlink_free_space(ctl, info);
2099			kmem_cache_free(btrfs_free_space_cachep, info);
2100		} else {
2101			free_bitmap(ctl, info);
2102		}
2103		if (need_resched()) {
2104			spin_unlock(&ctl->tree_lock);
2105			cond_resched();
2106			spin_lock(&ctl->tree_lock);
2107		}
2108	}
2109}
2110
2111void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2112{
2113	spin_lock(&ctl->tree_lock);
2114	__btrfs_remove_free_space_cache_locked(ctl);
2115	spin_unlock(&ctl->tree_lock);
2116}
2117
2118void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2119{
2120	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2121	struct btrfs_free_cluster *cluster;
2122	struct list_head *head;
2123
2124	spin_lock(&ctl->tree_lock);
2125	while ((head = block_group->cluster_list.next) !=
2126	       &block_group->cluster_list) {
2127		cluster = list_entry(head, struct btrfs_free_cluster,
2128				     block_group_list);
2129
2130		WARN_ON(cluster->block_group != block_group);
2131		__btrfs_return_cluster_to_free_space(block_group, cluster);
2132		if (need_resched()) {
2133			spin_unlock(&ctl->tree_lock);
2134			cond_resched();
2135			spin_lock(&ctl->tree_lock);
2136		}
2137	}
2138	__btrfs_remove_free_space_cache_locked(ctl);
2139	spin_unlock(&ctl->tree_lock);
2140
2141}
2142
2143u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2144			       u64 offset, u64 bytes, u64 empty_size,
2145			       u64 *max_extent_size)
2146{
2147	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2148	struct btrfs_free_space *entry = NULL;
2149	u64 bytes_search = bytes + empty_size;
2150	u64 ret = 0;
2151	u64 align_gap = 0;
2152	u64 align_gap_len = 0;
2153
2154	spin_lock(&ctl->tree_lock);
2155	entry = find_free_space(ctl, &offset, &bytes_search,
2156				block_group->full_stripe_len, max_extent_size);
2157	if (!entry)
2158		goto out;
2159
2160	ret = offset;
2161	if (entry->bitmap) {
2162		bitmap_clear_bits(ctl, entry, offset, bytes);
2163		if (!entry->bytes)
2164			free_bitmap(ctl, entry);
2165	} else {
2166		unlink_free_space(ctl, entry);
2167		align_gap_len = offset - entry->offset;
2168		align_gap = entry->offset;
2169
2170		entry->offset = offset + bytes;
2171		WARN_ON(entry->bytes < bytes + align_gap_len);
2172
2173		entry->bytes -= bytes + align_gap_len;
2174		if (!entry->bytes)
2175			kmem_cache_free(btrfs_free_space_cachep, entry);
2176		else
2177			link_free_space(ctl, entry);
2178	}
2179out:
2180	spin_unlock(&ctl->tree_lock);
2181
2182	if (align_gap_len)
2183		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
 
2184	return ret;
2185}
2186
2187/*
2188 * given a cluster, put all of its extents back into the free space
2189 * cache.  If a block group is passed, this function will only free
2190 * a cluster that belongs to the passed block group.
2191 *
2192 * Otherwise, it'll get a reference on the block group pointed to by the
2193 * cluster and remove the cluster from it.
2194 */
2195int btrfs_return_cluster_to_free_space(
2196			       struct btrfs_block_group_cache *block_group,
2197			       struct btrfs_free_cluster *cluster)
2198{
2199	struct btrfs_free_space_ctl *ctl;
2200	int ret;
2201
2202	/* first, get a safe pointer to the block group */
2203	spin_lock(&cluster->lock);
2204	if (!block_group) {
2205		block_group = cluster->block_group;
2206		if (!block_group) {
2207			spin_unlock(&cluster->lock);
2208			return 0;
2209		}
2210	} else if (cluster->block_group != block_group) {
2211		/* someone else has already freed it don't redo their work */
2212		spin_unlock(&cluster->lock);
2213		return 0;
2214	}
2215	atomic_inc(&block_group->count);
2216	spin_unlock(&cluster->lock);
2217
2218	ctl = block_group->free_space_ctl;
2219
2220	/* now return any extents the cluster had on it */
2221	spin_lock(&ctl->tree_lock);
2222	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2223	spin_unlock(&ctl->tree_lock);
2224
2225	/* finally drop our ref */
2226	btrfs_put_block_group(block_group);
2227	return ret;
2228}
2229
2230static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2231				   struct btrfs_free_cluster *cluster,
2232				   struct btrfs_free_space *entry,
2233				   u64 bytes, u64 min_start,
2234				   u64 *max_extent_size)
2235{
2236	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2237	int err;
2238	u64 search_start = cluster->window_start;
2239	u64 search_bytes = bytes;
2240	u64 ret = 0;
2241
2242	search_start = min_start;
2243	search_bytes = bytes;
2244
2245	err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2246	if (err) {
2247		if (search_bytes > *max_extent_size)
2248			*max_extent_size = search_bytes;
2249		return 0;
2250	}
2251
2252	ret = search_start;
2253	__bitmap_clear_bits(ctl, entry, ret, bytes);
2254
2255	return ret;
2256}
2257
2258/*
2259 * given a cluster, try to allocate 'bytes' from it, returns 0
2260 * if it couldn't find anything suitably large, or a logical disk offset
2261 * if things worked out
2262 */
2263u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2264			     struct btrfs_free_cluster *cluster, u64 bytes,
2265			     u64 min_start, u64 *max_extent_size)
2266{
2267	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2268	struct btrfs_free_space *entry = NULL;
2269	struct rb_node *node;
2270	u64 ret = 0;
2271
2272	spin_lock(&cluster->lock);
2273	if (bytes > cluster->max_size)
2274		goto out;
2275
2276	if (cluster->block_group != block_group)
2277		goto out;
2278
2279	node = rb_first(&cluster->root);
2280	if (!node)
2281		goto out;
2282
2283	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2284	while (1) {
2285		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2286			*max_extent_size = entry->bytes;
 
2287
2288		if (entry->bytes < bytes ||
2289		    (!entry->bitmap && entry->offset < min_start)) {
2290			node = rb_next(&entry->offset_index);
2291			if (!node)
2292				break;
2293			entry = rb_entry(node, struct btrfs_free_space,
2294					 offset_index);
2295			continue;
2296		}
2297
2298		if (entry->bitmap) {
2299			ret = btrfs_alloc_from_bitmap(block_group,
2300						      cluster, entry, bytes,
2301						      cluster->window_start,
2302						      max_extent_size);
2303			if (ret == 0) {
2304				node = rb_next(&entry->offset_index);
2305				if (!node)
2306					break;
2307				entry = rb_entry(node, struct btrfs_free_space,
2308						 offset_index);
2309				continue;
2310			}
2311			cluster->window_start += bytes;
2312		} else {
2313			ret = entry->offset;
2314
2315			entry->offset += bytes;
2316			entry->bytes -= bytes;
2317		}
2318
2319		if (entry->bytes == 0)
2320			rb_erase(&entry->offset_index, &cluster->root);
2321		break;
2322	}
2323out:
2324	spin_unlock(&cluster->lock);
2325
2326	if (!ret)
2327		return 0;
2328
2329	spin_lock(&ctl->tree_lock);
2330
2331	ctl->free_space -= bytes;
2332	if (entry->bytes == 0) {
2333		ctl->free_extents--;
2334		if (entry->bitmap) {
2335			kfree(entry->bitmap);
 
2336			ctl->total_bitmaps--;
2337			ctl->op->recalc_thresholds(ctl);
2338		}
2339		kmem_cache_free(btrfs_free_space_cachep, entry);
2340	}
2341
2342	spin_unlock(&ctl->tree_lock);
2343
2344	return ret;
2345}
2346
2347static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2348				struct btrfs_free_space *entry,
2349				struct btrfs_free_cluster *cluster,
2350				u64 offset, u64 bytes,
2351				u64 cont1_bytes, u64 min_bytes)
2352{
2353	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2354	unsigned long next_zero;
2355	unsigned long i;
2356	unsigned long want_bits;
2357	unsigned long min_bits;
2358	unsigned long found_bits;
 
2359	unsigned long start = 0;
2360	unsigned long total_found = 0;
2361	int ret;
2362
2363	i = offset_to_bit(entry->offset, ctl->unit,
2364			  max_t(u64, offset, entry->offset));
2365	want_bits = bytes_to_bits(bytes, ctl->unit);
2366	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2367
 
 
 
 
 
 
 
2368again:
2369	found_bits = 0;
2370	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2371		next_zero = find_next_zero_bit(entry->bitmap,
2372					       BITS_PER_BITMAP, i);
2373		if (next_zero - i >= min_bits) {
2374			found_bits = next_zero - i;
 
 
2375			break;
2376		}
 
 
2377		i = next_zero;
2378	}
2379
2380	if (!found_bits)
 
2381		return -ENOSPC;
 
2382
2383	if (!total_found) {
2384		start = i;
2385		cluster->max_size = 0;
2386	}
2387
2388	total_found += found_bits;
2389
2390	if (cluster->max_size < found_bits * ctl->unit)
2391		cluster->max_size = found_bits * ctl->unit;
2392
2393	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2394		i = next_zero + 1;
2395		goto again;
2396	}
2397
2398	cluster->window_start = start * ctl->unit + entry->offset;
2399	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2400	ret = tree_insert_offset(&cluster->root, entry->offset,
2401				 &entry->offset_index, 1);
2402	ASSERT(!ret); /* -EEXIST; Logic error */
2403
2404	trace_btrfs_setup_cluster(block_group, cluster,
2405				  total_found * ctl->unit, 1);
2406	return 0;
2407}
2408
2409/*
2410 * This searches the block group for just extents to fill the cluster with.
2411 * Try to find a cluster with at least bytes total bytes, at least one
2412 * extent of cont1_bytes, and other clusters of at least min_bytes.
2413 */
2414static noinline int
2415setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2416			struct btrfs_free_cluster *cluster,
2417			struct list_head *bitmaps, u64 offset, u64 bytes,
2418			u64 cont1_bytes, u64 min_bytes)
2419{
2420	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2421	struct btrfs_free_space *first = NULL;
2422	struct btrfs_free_space *entry = NULL;
2423	struct btrfs_free_space *last;
2424	struct rb_node *node;
2425	u64 window_free;
2426	u64 max_extent;
2427	u64 total_size = 0;
2428
2429	entry = tree_search_offset(ctl, offset, 0, 1);
2430	if (!entry)
2431		return -ENOSPC;
2432
2433	/*
2434	 * We don't want bitmaps, so just move along until we find a normal
2435	 * extent entry.
2436	 */
2437	while (entry->bitmap || entry->bytes < min_bytes) {
2438		if (entry->bitmap && list_empty(&entry->list))
2439			list_add_tail(&entry->list, bitmaps);
2440		node = rb_next(&entry->offset_index);
2441		if (!node)
2442			return -ENOSPC;
2443		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2444	}
2445
2446	window_free = entry->bytes;
2447	max_extent = entry->bytes;
2448	first = entry;
2449	last = entry;
2450
2451	for (node = rb_next(&entry->offset_index); node;
2452	     node = rb_next(&entry->offset_index)) {
2453		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2454
2455		if (entry->bitmap) {
2456			if (list_empty(&entry->list))
2457				list_add_tail(&entry->list, bitmaps);
2458			continue;
2459		}
2460
2461		if (entry->bytes < min_bytes)
2462			continue;
2463
2464		last = entry;
2465		window_free += entry->bytes;
2466		if (entry->bytes > max_extent)
2467			max_extent = entry->bytes;
2468	}
2469
2470	if (window_free < bytes || max_extent < cont1_bytes)
2471		return -ENOSPC;
2472
2473	cluster->window_start = first->offset;
2474
2475	node = &first->offset_index;
2476
2477	/*
2478	 * now we've found our entries, pull them out of the free space
2479	 * cache and put them into the cluster rbtree
2480	 */
2481	do {
2482		int ret;
2483
2484		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2485		node = rb_next(&entry->offset_index);
2486		if (entry->bitmap || entry->bytes < min_bytes)
2487			continue;
2488
2489		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2490		ret = tree_insert_offset(&cluster->root, entry->offset,
2491					 &entry->offset_index, 0);
2492		total_size += entry->bytes;
2493		ASSERT(!ret); /* -EEXIST; Logic error */
2494	} while (node && entry != last);
2495
2496	cluster->max_size = max_extent;
2497	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2498	return 0;
2499}
2500
2501/*
2502 * This specifically looks for bitmaps that may work in the cluster, we assume
2503 * that we have already failed to find extents that will work.
2504 */
2505static noinline int
2506setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2507		     struct btrfs_free_cluster *cluster,
2508		     struct list_head *bitmaps, u64 offset, u64 bytes,
2509		     u64 cont1_bytes, u64 min_bytes)
2510{
2511	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2512	struct btrfs_free_space *entry;
2513	int ret = -ENOSPC;
2514	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2515
2516	if (ctl->total_bitmaps == 0)
2517		return -ENOSPC;
2518
2519	/*
2520	 * The bitmap that covers offset won't be in the list unless offset
2521	 * is just its start offset.
2522	 */
2523	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2524	if (entry->offset != bitmap_offset) {
 
 
2525		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2526		if (entry && list_empty(&entry->list))
2527			list_add(&entry->list, bitmaps);
2528	}
2529
2530	list_for_each_entry(entry, bitmaps, list) {
2531		if (entry->bytes < bytes)
2532			continue;
2533		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2534					   bytes, cont1_bytes, min_bytes);
2535		if (!ret)
2536			return 0;
2537	}
2538
2539	/*
2540	 * The bitmaps list has all the bitmaps that record free space
2541	 * starting after offset, so no more search is required.
2542	 */
2543	return -ENOSPC;
2544}
2545
2546/*
2547 * here we try to find a cluster of blocks in a block group.  The goal
2548 * is to find at least bytes+empty_size.
2549 * We might not find them all in one contiguous area.
2550 *
2551 * returns zero and sets up cluster if things worked out, otherwise
2552 * it returns -enospc
2553 */
2554int btrfs_find_space_cluster(struct btrfs_root *root,
2555			     struct btrfs_block_group_cache *block_group,
2556			     struct btrfs_free_cluster *cluster,
2557			     u64 offset, u64 bytes, u64 empty_size)
2558{
 
2559	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2560	struct btrfs_free_space *entry, *tmp;
2561	LIST_HEAD(bitmaps);
2562	u64 min_bytes;
2563	u64 cont1_bytes;
2564	int ret;
2565
2566	/*
2567	 * Choose the minimum extent size we'll require for this
2568	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2569	 * For metadata, allow allocates with smaller extents.  For
2570	 * data, keep it dense.
2571	 */
2572	if (btrfs_test_opt(root, SSD_SPREAD)) {
2573		cont1_bytes = min_bytes = bytes + empty_size;
2574	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2575		cont1_bytes = bytes;
2576		min_bytes = block_group->sectorsize;
2577	} else {
2578		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2579		min_bytes = block_group->sectorsize;
2580	}
2581
2582	spin_lock(&ctl->tree_lock);
2583
2584	/*
2585	 * If we know we don't have enough space to make a cluster don't even
2586	 * bother doing all the work to try and find one.
2587	 */
2588	if (ctl->free_space < bytes) {
2589		spin_unlock(&ctl->tree_lock);
2590		return -ENOSPC;
2591	}
2592
2593	spin_lock(&cluster->lock);
2594
2595	/* someone already found a cluster, hooray */
2596	if (cluster->block_group) {
2597		ret = 0;
2598		goto out;
2599	}
2600
2601	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2602				 min_bytes);
2603
2604	INIT_LIST_HEAD(&bitmaps);
2605	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2606				      bytes + empty_size,
2607				      cont1_bytes, min_bytes);
2608	if (ret)
2609		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2610					   offset, bytes + empty_size,
2611					   cont1_bytes, min_bytes);
2612
2613	/* Clear our temporary list */
2614	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2615		list_del_init(&entry->list);
2616
2617	if (!ret) {
2618		atomic_inc(&block_group->count);
2619		list_add_tail(&cluster->block_group_list,
2620			      &block_group->cluster_list);
2621		cluster->block_group = block_group;
2622	} else {
2623		trace_btrfs_failed_cluster_setup(block_group);
2624	}
2625out:
2626	spin_unlock(&cluster->lock);
2627	spin_unlock(&ctl->tree_lock);
2628
2629	return ret;
2630}
2631
2632/*
2633 * simple code to zero out a cluster
2634 */
2635void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2636{
2637	spin_lock_init(&cluster->lock);
2638	spin_lock_init(&cluster->refill_lock);
2639	cluster->root = RB_ROOT;
2640	cluster->max_size = 0;
 
2641	INIT_LIST_HEAD(&cluster->block_group_list);
2642	cluster->block_group = NULL;
2643}
2644
2645static int do_trimming(struct btrfs_block_group_cache *block_group,
2646		       u64 *total_trimmed, u64 start, u64 bytes,
2647		       u64 reserved_start, u64 reserved_bytes)
 
2648{
2649	struct btrfs_space_info *space_info = block_group->space_info;
2650	struct btrfs_fs_info *fs_info = block_group->fs_info;
 
2651	int ret;
2652	int update = 0;
2653	u64 trimmed = 0;
2654
2655	spin_lock(&space_info->lock);
2656	spin_lock(&block_group->lock);
2657	if (!block_group->ro) {
2658		block_group->reserved += reserved_bytes;
2659		space_info->bytes_reserved += reserved_bytes;
2660		update = 1;
2661	}
2662	spin_unlock(&block_group->lock);
2663	spin_unlock(&space_info->lock);
2664
2665	ret = btrfs_error_discard_extent(fs_info->extent_root,
2666					 start, bytes, &trimmed);
2667	if (!ret)
2668		*total_trimmed += trimmed;
2669
 
2670	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
 
 
2671
2672	if (update) {
2673		spin_lock(&space_info->lock);
2674		spin_lock(&block_group->lock);
2675		if (block_group->ro)
2676			space_info->bytes_readonly += reserved_bytes;
2677		block_group->reserved -= reserved_bytes;
2678		space_info->bytes_reserved -= reserved_bytes;
 
2679		spin_unlock(&space_info->lock);
2680		spin_unlock(&block_group->lock);
2681	}
2682
2683	return ret;
2684}
2685
2686static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2687			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2688{
2689	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2690	struct btrfs_free_space *entry;
2691	struct rb_node *node;
2692	int ret = 0;
2693	u64 extent_start;
2694	u64 extent_bytes;
2695	u64 bytes;
2696
2697	while (start < end) {
 
 
 
2698		spin_lock(&ctl->tree_lock);
2699
2700		if (ctl->free_space < minlen) {
2701			spin_unlock(&ctl->tree_lock);
 
2702			break;
2703		}
2704
2705		entry = tree_search_offset(ctl, start, 0, 1);
2706		if (!entry) {
2707			spin_unlock(&ctl->tree_lock);
 
2708			break;
2709		}
2710
2711		/* skip bitmaps */
2712		while (entry->bitmap) {
2713			node = rb_next(&entry->offset_index);
2714			if (!node) {
2715				spin_unlock(&ctl->tree_lock);
 
2716				goto out;
2717			}
2718			entry = rb_entry(node, struct btrfs_free_space,
2719					 offset_index);
2720		}
2721
2722		if (entry->offset >= end) {
2723			spin_unlock(&ctl->tree_lock);
 
2724			break;
2725		}
2726
2727		extent_start = entry->offset;
2728		extent_bytes = entry->bytes;
2729		start = max(start, extent_start);
2730		bytes = min(extent_start + extent_bytes, end) - start;
2731		if (bytes < minlen) {
2732			spin_unlock(&ctl->tree_lock);
 
2733			goto next;
2734		}
2735
2736		unlink_free_space(ctl, entry);
2737		kmem_cache_free(btrfs_free_space_cachep, entry);
2738
2739		spin_unlock(&ctl->tree_lock);
 
 
 
 
2740
2741		ret = do_trimming(block_group, total_trimmed, start, bytes,
2742				  extent_start, extent_bytes);
2743		if (ret)
2744			break;
2745next:
2746		start += bytes;
2747
2748		if (fatal_signal_pending(current)) {
2749			ret = -ERESTARTSYS;
2750			break;
2751		}
2752
2753		cond_resched();
2754	}
2755out:
2756	return ret;
2757}
2758
2759static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2760			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2761{
2762	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2763	struct btrfs_free_space *entry;
2764	int ret = 0;
2765	int ret2;
2766	u64 bytes;
2767	u64 offset = offset_to_bitmap(ctl, start);
2768
2769	while (offset < end) {
2770		bool next_bitmap = false;
 
2771
 
2772		spin_lock(&ctl->tree_lock);
2773
2774		if (ctl->free_space < minlen) {
2775			spin_unlock(&ctl->tree_lock);
 
2776			break;
2777		}
2778
2779		entry = tree_search_offset(ctl, offset, 1, 0);
2780		if (!entry) {
2781			spin_unlock(&ctl->tree_lock);
 
2782			next_bitmap = true;
2783			goto next;
2784		}
2785
2786		bytes = minlen;
2787		ret2 = search_bitmap(ctl, entry, &start, &bytes);
2788		if (ret2 || start >= end) {
2789			spin_unlock(&ctl->tree_lock);
 
2790			next_bitmap = true;
2791			goto next;
2792		}
2793
2794		bytes = min(bytes, end - start);
2795		if (bytes < minlen) {
2796			spin_unlock(&ctl->tree_lock);
 
2797			goto next;
2798		}
2799
2800		bitmap_clear_bits(ctl, entry, start, bytes);
2801		if (entry->bytes == 0)
2802			free_bitmap(ctl, entry);
2803
2804		spin_unlock(&ctl->tree_lock);
 
 
 
 
2805
2806		ret = do_trimming(block_group, total_trimmed, start, bytes,
2807				  start, bytes);
2808		if (ret)
2809			break;
2810next:
2811		if (next_bitmap) {
2812			offset += BITS_PER_BITMAP * ctl->unit;
2813		} else {
2814			start += bytes;
2815			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2816				offset += BITS_PER_BITMAP * ctl->unit;
2817		}
2818
2819		if (fatal_signal_pending(current)) {
2820			ret = -ERESTARTSYS;
2821			break;
2822		}
2823
2824		cond_resched();
2825	}
2826
2827	return ret;
2828}
2829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2830int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2831			   u64 *trimmed, u64 start, u64 end, u64 minlen)
2832{
2833	int ret;
2834
2835	*trimmed = 0;
2836
 
 
 
 
 
 
 
 
2837	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2838	if (ret)
2839		return ret;
2840
2841	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2842
 
2843	return ret;
2844}
2845
2846/*
2847 * Find the left-most item in the cache tree, and then return the
2848 * smallest inode number in the item.
2849 *
2850 * Note: the returned inode number may not be the smallest one in
2851 * the tree, if the left-most item is a bitmap.
2852 */
2853u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2854{
2855	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2856	struct btrfs_free_space *entry = NULL;
2857	u64 ino = 0;
2858
2859	spin_lock(&ctl->tree_lock);
2860
2861	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2862		goto out;
2863
2864	entry = rb_entry(rb_first(&ctl->free_space_offset),
2865			 struct btrfs_free_space, offset_index);
2866
2867	if (!entry->bitmap) {
2868		ino = entry->offset;
2869
2870		unlink_free_space(ctl, entry);
2871		entry->offset++;
2872		entry->bytes--;
2873		if (!entry->bytes)
2874			kmem_cache_free(btrfs_free_space_cachep, entry);
2875		else
2876			link_free_space(ctl, entry);
2877	} else {
2878		u64 offset = 0;
2879		u64 count = 1;
2880		int ret;
2881
2882		ret = search_bitmap(ctl, entry, &offset, &count);
2883		/* Logic error; Should be empty if it can't find anything */
2884		ASSERT(!ret);
2885
2886		ino = offset;
2887		bitmap_clear_bits(ctl, entry, offset, 1);
2888		if (entry->bytes == 0)
2889			free_bitmap(ctl, entry);
2890	}
2891out:
2892	spin_unlock(&ctl->tree_lock);
2893
2894	return ino;
2895}
2896
2897struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2898				    struct btrfs_path *path)
2899{
2900	struct inode *inode = NULL;
2901
2902	spin_lock(&root->cache_lock);
2903	if (root->cache_inode)
2904		inode = igrab(root->cache_inode);
2905	spin_unlock(&root->cache_lock);
2906	if (inode)
2907		return inode;
2908
2909	inode = __lookup_free_space_inode(root, path, 0);
2910	if (IS_ERR(inode))
2911		return inode;
2912
2913	spin_lock(&root->cache_lock);
2914	if (!btrfs_fs_closing(root->fs_info))
2915		root->cache_inode = igrab(inode);
2916	spin_unlock(&root->cache_lock);
2917
2918	return inode;
2919}
2920
2921int create_free_ino_inode(struct btrfs_root *root,
2922			  struct btrfs_trans_handle *trans,
2923			  struct btrfs_path *path)
2924{
2925	return __create_free_space_inode(root, trans, path,
2926					 BTRFS_FREE_INO_OBJECTID, 0);
2927}
2928
2929int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2930{
2931	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2932	struct btrfs_path *path;
2933	struct inode *inode;
2934	int ret = 0;
2935	u64 root_gen = btrfs_root_generation(&root->root_item);
2936
2937	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2938		return 0;
2939
2940	/*
2941	 * If we're unmounting then just return, since this does a search on the
2942	 * normal root and not the commit root and we could deadlock.
2943	 */
2944	if (btrfs_fs_closing(fs_info))
2945		return 0;
2946
2947	path = btrfs_alloc_path();
2948	if (!path)
2949		return 0;
2950
2951	inode = lookup_free_ino_inode(root, path);
2952	if (IS_ERR(inode))
2953		goto out;
2954
2955	if (root_gen != BTRFS_I(inode)->generation)
2956		goto out_put;
2957
2958	ret = __load_free_space_cache(root, inode, ctl, path, 0);
2959
2960	if (ret < 0)
2961		btrfs_err(fs_info,
2962			"failed to load free ino cache for root %llu",
2963			root->root_key.objectid);
2964out_put:
2965	iput(inode);
2966out:
2967	btrfs_free_path(path);
2968	return ret;
2969}
2970
2971int btrfs_write_out_ino_cache(struct btrfs_root *root,
2972			      struct btrfs_trans_handle *trans,
2973			      struct btrfs_path *path,
2974			      struct inode *inode)
2975{
 
2976	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2977	int ret;
 
 
2978
2979	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2980		return 0;
2981
2982	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
 
 
 
 
 
 
 
 
 
 
 
 
2983	if (ret) {
2984		btrfs_delalloc_release_metadata(inode, inode->i_size);
 
 
2985#ifdef DEBUG
2986		btrfs_err(root->fs_info,
2987			"failed to write free ino cache for root %llu",
2988			root->root_key.objectid);
2989#endif
2990	}
2991
2992	return ret;
2993}
2994
2995#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2996/*
2997 * Use this if you need to make a bitmap or extent entry specifically, it
2998 * doesn't do any of the merging that add_free_space does, this acts a lot like
2999 * how the free space cache loading stuff works, so you can get really weird
3000 * configurations.
3001 */
3002int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3003			      u64 offset, u64 bytes, bool bitmap)
3004{
3005	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3006	struct btrfs_free_space *info = NULL, *bitmap_info;
3007	void *map = NULL;
3008	u64 bytes_added;
3009	int ret;
3010
3011again:
3012	if (!info) {
3013		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3014		if (!info)
3015			return -ENOMEM;
3016	}
3017
3018	if (!bitmap) {
3019		spin_lock(&ctl->tree_lock);
3020		info->offset = offset;
3021		info->bytes = bytes;
 
3022		ret = link_free_space(ctl, info);
3023		spin_unlock(&ctl->tree_lock);
3024		if (ret)
3025			kmem_cache_free(btrfs_free_space_cachep, info);
3026		return ret;
3027	}
3028
3029	if (!map) {
3030		map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3031		if (!map) {
3032			kmem_cache_free(btrfs_free_space_cachep, info);
3033			return -ENOMEM;
3034		}
3035	}
3036
3037	spin_lock(&ctl->tree_lock);
3038	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3039					 1, 0);
3040	if (!bitmap_info) {
3041		info->bitmap = map;
3042		map = NULL;
3043		add_new_bitmap(ctl, info, offset);
3044		bitmap_info = info;
 
3045	}
3046
3047	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
3048	bytes -= bytes_added;
3049	offset += bytes_added;
3050	spin_unlock(&ctl->tree_lock);
3051
3052	if (bytes)
3053		goto again;
3054
 
 
3055	if (map)
3056		kfree(map);
3057	return 0;
3058}
3059
3060/*
3061 * Checks to see if the given range is in the free space cache.  This is really
3062 * just used to check the absence of space, so if there is free space in the
3063 * range at all we will return 1.
3064 */
3065int test_check_exists(struct btrfs_block_group_cache *cache,
3066		      u64 offset, u64 bytes)
3067{
3068	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3069	struct btrfs_free_space *info;
3070	int ret = 0;
3071
3072	spin_lock(&ctl->tree_lock);
3073	info = tree_search_offset(ctl, offset, 0, 0);
3074	if (!info) {
3075		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3076					  1, 0);
3077		if (!info)
3078			goto out;
3079	}
3080
3081have_info:
3082	if (info->bitmap) {
3083		u64 bit_off, bit_bytes;
3084		struct rb_node *n;
3085		struct btrfs_free_space *tmp;
3086
3087		bit_off = offset;
3088		bit_bytes = ctl->unit;
3089		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3090		if (!ret) {
3091			if (bit_off == offset) {
3092				ret = 1;
3093				goto out;
3094			} else if (bit_off > offset &&
3095				   offset + bytes > bit_off) {
3096				ret = 1;
3097				goto out;
3098			}
3099		}
3100
3101		n = rb_prev(&info->offset_index);
3102		while (n) {
3103			tmp = rb_entry(n, struct btrfs_free_space,
3104				       offset_index);
3105			if (tmp->offset + tmp->bytes < offset)
3106				break;
3107			if (offset + bytes < tmp->offset) {
3108				n = rb_prev(&info->offset_index);
3109				continue;
3110			}
3111			info = tmp;
3112			goto have_info;
3113		}
3114
3115		n = rb_next(&info->offset_index);
3116		while (n) {
3117			tmp = rb_entry(n, struct btrfs_free_space,
3118				       offset_index);
3119			if (offset + bytes < tmp->offset)
3120				break;
3121			if (tmp->offset + tmp->bytes < offset) {
3122				n = rb_next(&info->offset_index);
3123				continue;
3124			}
3125			info = tmp;
3126			goto have_info;
3127		}
3128
 
3129		goto out;
3130	}
3131
3132	if (info->offset == offset) {
3133		ret = 1;
3134		goto out;
3135	}
3136
3137	if (offset > info->offset && offset < info->offset + info->bytes)
3138		ret = 1;
3139out:
3140	spin_unlock(&ctl->tree_lock);
3141	return ret;
3142}
3143#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */