Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
 
  14#include "ctree.h"
  15#include "free-space-cache.h"
  16#include "transaction.h"
  17#include "disk-io.h"
  18#include "extent_io.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
 
  24
  25#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  26#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
 
  27
  28struct btrfs_trim_range {
  29	u64 start;
  30	u64 bytes;
  31	struct list_head list;
  32};
  33
  34static int link_free_space(struct btrfs_free_space_ctl *ctl,
  35			   struct btrfs_free_space *info);
  36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  37			      struct btrfs_free_space *info);
  38static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  39			     struct btrfs_trans_handle *trans,
  40			     struct btrfs_io_ctl *io_ctl,
  41			     struct btrfs_path *path);
 
 
 
 
  42
  43static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  44					       struct btrfs_path *path,
  45					       u64 offset)
  46{
  47	struct btrfs_fs_info *fs_info = root->fs_info;
  48	struct btrfs_key key;
  49	struct btrfs_key location;
  50	struct btrfs_disk_key disk_key;
  51	struct btrfs_free_space_header *header;
  52	struct extent_buffer *leaf;
  53	struct inode *inode = NULL;
  54	unsigned nofs_flag;
  55	int ret;
  56
  57	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  58	key.offset = offset;
  59	key.type = 0;
  60
  61	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  62	if (ret < 0)
  63		return ERR_PTR(ret);
  64	if (ret > 0) {
  65		btrfs_release_path(path);
  66		return ERR_PTR(-ENOENT);
  67	}
  68
  69	leaf = path->nodes[0];
  70	header = btrfs_item_ptr(leaf, path->slots[0],
  71				struct btrfs_free_space_header);
  72	btrfs_free_space_key(leaf, header, &disk_key);
  73	btrfs_disk_key_to_cpu(&location, &disk_key);
  74	btrfs_release_path(path);
  75
  76	/*
  77	 * We are often under a trans handle at this point, so we need to make
  78	 * sure NOFS is set to keep us from deadlocking.
  79	 */
  80	nofs_flag = memalloc_nofs_save();
  81	inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
  82	btrfs_release_path(path);
  83	memalloc_nofs_restore(nofs_flag);
  84	if (IS_ERR(inode))
  85		return inode;
  86
  87	mapping_set_gfp_mask(inode->i_mapping,
  88			mapping_gfp_constraint(inode->i_mapping,
  89			~(__GFP_FS | __GFP_HIGHMEM)));
  90
  91	return inode;
  92}
  93
  94struct inode *lookup_free_space_inode(
  95		struct btrfs_block_group_cache *block_group,
  96		struct btrfs_path *path)
  97{
  98	struct btrfs_fs_info *fs_info = block_group->fs_info;
  99	struct inode *inode = NULL;
 100	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 101
 102	spin_lock(&block_group->lock);
 103	if (block_group->inode)
 104		inode = igrab(block_group->inode);
 105	spin_unlock(&block_group->lock);
 106	if (inode)
 107		return inode;
 108
 109	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 110					  block_group->key.objectid);
 111	if (IS_ERR(inode))
 112		return inode;
 113
 114	spin_lock(&block_group->lock);
 115	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 116		btrfs_info(fs_info, "Old style space inode found, converting.");
 117		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 118			BTRFS_INODE_NODATACOW;
 119		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 120	}
 121
 122	if (!block_group->iref) {
 123		block_group->inode = igrab(inode);
 124		block_group->iref = 1;
 125	}
 126	spin_unlock(&block_group->lock);
 127
 128	return inode;
 129}
 130
 131static int __create_free_space_inode(struct btrfs_root *root,
 132				     struct btrfs_trans_handle *trans,
 133				     struct btrfs_path *path,
 134				     u64 ino, u64 offset)
 135{
 136	struct btrfs_key key;
 137	struct btrfs_disk_key disk_key;
 138	struct btrfs_free_space_header *header;
 139	struct btrfs_inode_item *inode_item;
 140	struct extent_buffer *leaf;
 141	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 
 
 142	int ret;
 143
 144	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 145	if (ret)
 146		return ret;
 147
 148	/* We inline crc's for the free disk space cache */
 149	if (ino != BTRFS_FREE_INO_OBJECTID)
 150		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 151
 152	leaf = path->nodes[0];
 153	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 154				    struct btrfs_inode_item);
 155	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 156	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 157			     sizeof(*inode_item));
 158	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 159	btrfs_set_inode_size(leaf, inode_item, 0);
 160	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 161	btrfs_set_inode_uid(leaf, inode_item, 0);
 162	btrfs_set_inode_gid(leaf, inode_item, 0);
 163	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 164	btrfs_set_inode_flags(leaf, inode_item, flags);
 165	btrfs_set_inode_nlink(leaf, inode_item, 1);
 166	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 167	btrfs_set_inode_block_group(leaf, inode_item, offset);
 168	btrfs_mark_buffer_dirty(leaf);
 169	btrfs_release_path(path);
 170
 171	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 172	key.offset = offset;
 173	key.type = 0;
 174	ret = btrfs_insert_empty_item(trans, root, path, &key,
 175				      sizeof(struct btrfs_free_space_header));
 176	if (ret < 0) {
 177		btrfs_release_path(path);
 178		return ret;
 179	}
 180
 181	leaf = path->nodes[0];
 182	header = btrfs_item_ptr(leaf, path->slots[0],
 183				struct btrfs_free_space_header);
 184	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 185	btrfs_set_free_space_key(leaf, header, &disk_key);
 186	btrfs_mark_buffer_dirty(leaf);
 187	btrfs_release_path(path);
 188
 189	return 0;
 190}
 191
 192int create_free_space_inode(struct btrfs_trans_handle *trans,
 193			    struct btrfs_block_group_cache *block_group,
 194			    struct btrfs_path *path)
 195{
 196	int ret;
 197	u64 ino;
 198
 199	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
 200	if (ret < 0)
 201		return ret;
 202
 203	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 204					 ino, block_group->key.objectid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205}
 206
 207int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 208				       struct btrfs_block_rsv *rsv)
 209{
 210	u64 needed_bytes;
 211	int ret;
 212
 213	/* 1 for slack space, 1 for updating the inode */
 214	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 215		btrfs_calc_metadata_size(fs_info, 1);
 216
 217	spin_lock(&rsv->lock);
 218	if (rsv->reserved < needed_bytes)
 219		ret = -ENOSPC;
 220	else
 221		ret = 0;
 222	spin_unlock(&rsv->lock);
 223	return ret;
 224}
 225
 226int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 227				    struct btrfs_block_group_cache *block_group,
 228				    struct inode *inode)
 229{
 230	struct btrfs_root *root = BTRFS_I(inode)->root;
 231	int ret = 0;
 232	bool locked = false;
 233
 234	if (block_group) {
 235		struct btrfs_path *path = btrfs_alloc_path();
 236
 237		if (!path) {
 238			ret = -ENOMEM;
 239			goto fail;
 240		}
 241		locked = true;
 242		mutex_lock(&trans->transaction->cache_write_mutex);
 243		if (!list_empty(&block_group->io_list)) {
 244			list_del_init(&block_group->io_list);
 245
 246			btrfs_wait_cache_io(trans, block_group, path);
 247			btrfs_put_block_group(block_group);
 248		}
 249
 250		/*
 251		 * now that we've truncated the cache away, its no longer
 252		 * setup or written
 253		 */
 254		spin_lock(&block_group->lock);
 255		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 256		spin_unlock(&block_group->lock);
 257		btrfs_free_path(path);
 258	}
 259
 260	btrfs_i_size_write(BTRFS_I(inode), 0);
 261	truncate_pagecache(inode, 0);
 262
 263	/*
 264	 * We skip the throttling logic for free space cache inodes, so we don't
 265	 * need to check for -EAGAIN.
 266	 */
 267	ret = btrfs_truncate_inode_items(trans, root, inode,
 268					 0, BTRFS_EXTENT_DATA_KEY);
 269	if (ret)
 270		goto fail;
 271
 272	ret = btrfs_update_inode(trans, root, inode);
 273
 274fail:
 275	if (locked)
 276		mutex_unlock(&trans->transaction->cache_write_mutex);
 277	if (ret)
 278		btrfs_abort_transaction(trans, ret);
 279
 280	return ret;
 281}
 282
 283static void readahead_cache(struct inode *inode)
 284{
 285	struct file_ra_state *ra;
 286	unsigned long last_index;
 287
 288	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 289	if (!ra)
 290		return;
 291
 292	file_ra_state_init(ra, inode->i_mapping);
 293	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 294
 295	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 296
 297	kfree(ra);
 298}
 299
 300static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 301		       int write)
 302{
 303	int num_pages;
 304	int check_crcs = 0;
 305
 306	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 307
 308	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
 309		check_crcs = 1;
 310
 311	/* Make sure we can fit our crcs and generation into the first page */
 312	if (write && check_crcs &&
 313	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 314		return -ENOSPC;
 315
 316	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 317
 318	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 319	if (!io_ctl->pages)
 320		return -ENOMEM;
 321
 322	io_ctl->num_pages = num_pages;
 323	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 324	io_ctl->check_crcs = check_crcs;
 325	io_ctl->inode = inode;
 326
 327	return 0;
 328}
 329ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 330
 331static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 332{
 333	kfree(io_ctl->pages);
 334	io_ctl->pages = NULL;
 335}
 336
 337static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 338{
 339	if (io_ctl->cur) {
 340		io_ctl->cur = NULL;
 341		io_ctl->orig = NULL;
 342	}
 343}
 344
 345static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 346{
 347	ASSERT(io_ctl->index < io_ctl->num_pages);
 348	io_ctl->page = io_ctl->pages[io_ctl->index++];
 349	io_ctl->cur = page_address(io_ctl->page);
 350	io_ctl->orig = io_ctl->cur;
 351	io_ctl->size = PAGE_SIZE;
 352	if (clear)
 353		clear_page(io_ctl->cur);
 354}
 355
 356static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 357{
 358	int i;
 359
 360	io_ctl_unmap_page(io_ctl);
 361
 362	for (i = 0; i < io_ctl->num_pages; i++) {
 363		if (io_ctl->pages[i]) {
 364			ClearPageChecked(io_ctl->pages[i]);
 365			unlock_page(io_ctl->pages[i]);
 366			put_page(io_ctl->pages[i]);
 367		}
 368	}
 369}
 370
 371static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 372				int uptodate)
 373{
 374	struct page *page;
 
 375	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 376	int i;
 377
 378	for (i = 0; i < io_ctl->num_pages; i++) {
 
 
 379		page = find_or_create_page(inode->i_mapping, i, mask);
 380		if (!page) {
 381			io_ctl_drop_pages(io_ctl);
 382			return -ENOMEM;
 383		}
 
 
 
 
 
 
 
 
 
 384		io_ctl->pages[i] = page;
 385		if (uptodate && !PageUptodate(page)) {
 386			btrfs_readpage(NULL, page);
 387			lock_page(page);
 
 
 
 
 
 
 388			if (!PageUptodate(page)) {
 389				btrfs_err(BTRFS_I(inode)->root->fs_info,
 390					   "error reading free space cache");
 391				io_ctl_drop_pages(io_ctl);
 392				return -EIO;
 393			}
 394		}
 395	}
 396
 397	for (i = 0; i < io_ctl->num_pages; i++) {
 398		clear_page_dirty_for_io(io_ctl->pages[i]);
 399		set_page_extent_mapped(io_ctl->pages[i]);
 400	}
 401
 402	return 0;
 403}
 404
 405static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 406{
 407	__le64 *val;
 408
 409	io_ctl_map_page(io_ctl, 1);
 410
 411	/*
 412	 * Skip the csum areas.  If we don't check crcs then we just have a
 413	 * 64bit chunk at the front of the first page.
 414	 */
 415	if (io_ctl->check_crcs) {
 416		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 417		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 418	} else {
 419		io_ctl->cur += sizeof(u64);
 420		io_ctl->size -= sizeof(u64) * 2;
 421	}
 422
 423	val = io_ctl->cur;
 424	*val = cpu_to_le64(generation);
 425	io_ctl->cur += sizeof(u64);
 426}
 427
 428static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 429{
 430	__le64 *gen;
 431
 432	/*
 433	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 434	 * chunk at the front of the first page.
 435	 */
 436	if (io_ctl->check_crcs) {
 437		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 438		io_ctl->size -= sizeof(u64) +
 439			(sizeof(u32) * io_ctl->num_pages);
 440	} else {
 441		io_ctl->cur += sizeof(u64);
 442		io_ctl->size -= sizeof(u64) * 2;
 443	}
 444
 445	gen = io_ctl->cur;
 446	if (le64_to_cpu(*gen) != generation) {
 447		btrfs_err_rl(io_ctl->fs_info,
 448			"space cache generation (%llu) does not match inode (%llu)",
 449				*gen, generation);
 450		io_ctl_unmap_page(io_ctl);
 451		return -EIO;
 452	}
 453	io_ctl->cur += sizeof(u64);
 454	return 0;
 455}
 456
 457static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 458{
 459	u32 *tmp;
 460	u32 crc = ~(u32)0;
 461	unsigned offset = 0;
 462
 463	if (!io_ctl->check_crcs) {
 464		io_ctl_unmap_page(io_ctl);
 465		return;
 466	}
 467
 468	if (index == 0)
 469		offset = sizeof(u32) * io_ctl->num_pages;
 470
 471	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 472	btrfs_crc32c_final(crc, (u8 *)&crc);
 473	io_ctl_unmap_page(io_ctl);
 474	tmp = page_address(io_ctl->pages[0]);
 475	tmp += index;
 476	*tmp = crc;
 477}
 478
 479static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 480{
 481	u32 *tmp, val;
 482	u32 crc = ~(u32)0;
 483	unsigned offset = 0;
 484
 485	if (!io_ctl->check_crcs) {
 486		io_ctl_map_page(io_ctl, 0);
 487		return 0;
 488	}
 489
 490	if (index == 0)
 491		offset = sizeof(u32) * io_ctl->num_pages;
 492
 493	tmp = page_address(io_ctl->pages[0]);
 494	tmp += index;
 495	val = *tmp;
 496
 497	io_ctl_map_page(io_ctl, 0);
 498	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 499	btrfs_crc32c_final(crc, (u8 *)&crc);
 500	if (val != crc) {
 501		btrfs_err_rl(io_ctl->fs_info,
 502			"csum mismatch on free space cache");
 503		io_ctl_unmap_page(io_ctl);
 504		return -EIO;
 505	}
 506
 507	return 0;
 508}
 509
 510static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 511			    void *bitmap)
 512{
 513	struct btrfs_free_space_entry *entry;
 514
 515	if (!io_ctl->cur)
 516		return -ENOSPC;
 517
 518	entry = io_ctl->cur;
 519	entry->offset = cpu_to_le64(offset);
 520	entry->bytes = cpu_to_le64(bytes);
 521	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 522		BTRFS_FREE_SPACE_EXTENT;
 523	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 524	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 525
 526	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 527		return 0;
 528
 529	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 530
 531	/* No more pages to map */
 532	if (io_ctl->index >= io_ctl->num_pages)
 533		return 0;
 534
 535	/* map the next page */
 536	io_ctl_map_page(io_ctl, 1);
 537	return 0;
 538}
 539
 540static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 541{
 542	if (!io_ctl->cur)
 543		return -ENOSPC;
 544
 545	/*
 546	 * If we aren't at the start of the current page, unmap this one and
 547	 * map the next one if there is any left.
 548	 */
 549	if (io_ctl->cur != io_ctl->orig) {
 550		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 551		if (io_ctl->index >= io_ctl->num_pages)
 552			return -ENOSPC;
 553		io_ctl_map_page(io_ctl, 0);
 554	}
 555
 556	copy_page(io_ctl->cur, bitmap);
 557	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 558	if (io_ctl->index < io_ctl->num_pages)
 559		io_ctl_map_page(io_ctl, 0);
 560	return 0;
 561}
 562
 563static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 564{
 565	/*
 566	 * If we're not on the boundary we know we've modified the page and we
 567	 * need to crc the page.
 568	 */
 569	if (io_ctl->cur != io_ctl->orig)
 570		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 571	else
 572		io_ctl_unmap_page(io_ctl);
 573
 574	while (io_ctl->index < io_ctl->num_pages) {
 575		io_ctl_map_page(io_ctl, 1);
 576		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 577	}
 578}
 579
 580static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 581			    struct btrfs_free_space *entry, u8 *type)
 582{
 583	struct btrfs_free_space_entry *e;
 584	int ret;
 585
 586	if (!io_ctl->cur) {
 587		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 588		if (ret)
 589			return ret;
 590	}
 591
 592	e = io_ctl->cur;
 593	entry->offset = le64_to_cpu(e->offset);
 594	entry->bytes = le64_to_cpu(e->bytes);
 595	*type = e->type;
 596	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 597	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 598
 599	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 600		return 0;
 601
 602	io_ctl_unmap_page(io_ctl);
 603
 604	return 0;
 605}
 606
 607static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 608			      struct btrfs_free_space *entry)
 609{
 610	int ret;
 611
 612	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 613	if (ret)
 614		return ret;
 615
 616	copy_page(entry->bitmap, io_ctl->cur);
 617	io_ctl_unmap_page(io_ctl);
 618
 619	return 0;
 620}
 621
 622/*
 623 * Since we attach pinned extents after the fact we can have contiguous sections
 624 * of free space that are split up in entries.  This poses a problem with the
 625 * tree logging stuff since it could have allocated across what appears to be 2
 626 * entries since we would have merged the entries when adding the pinned extents
 627 * back to the free space cache.  So run through the space cache that we just
 628 * loaded and merge contiguous entries.  This will make the log replay stuff not
 629 * blow up and it will make for nicer allocator behavior.
 630 */
 631static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 632{
 633	struct btrfs_free_space *e, *prev = NULL;
 634	struct rb_node *n;
 
 
 
 
 
 635
 636again:
 637	spin_lock(&ctl->tree_lock);
 638	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 639		e = rb_entry(n, struct btrfs_free_space, offset_index);
 640		if (!prev)
 641			goto next;
 642		if (e->bitmap || prev->bitmap)
 643			goto next;
 644		if (prev->offset + prev->bytes == e->offset) {
 645			unlink_free_space(ctl, prev);
 646			unlink_free_space(ctl, e);
 647			prev->bytes += e->bytes;
 648			kmem_cache_free(btrfs_free_space_cachep, e);
 649			link_free_space(ctl, prev);
 650			prev = NULL;
 651			spin_unlock(&ctl->tree_lock);
 652			goto again;
 653		}
 654next:
 655		prev = e;
 656	}
 657	spin_unlock(&ctl->tree_lock);
 
 
 
 
 658}
 659
 660static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 661				   struct btrfs_free_space_ctl *ctl,
 662				   struct btrfs_path *path, u64 offset)
 663{
 664	struct btrfs_fs_info *fs_info = root->fs_info;
 665	struct btrfs_free_space_header *header;
 666	struct extent_buffer *leaf;
 667	struct btrfs_io_ctl io_ctl;
 668	struct btrfs_key key;
 669	struct btrfs_free_space *e, *n;
 670	LIST_HEAD(bitmaps);
 671	u64 num_entries;
 672	u64 num_bitmaps;
 673	u64 generation;
 674	u8 type;
 675	int ret = 0;
 676
 677	/* Nothing in the space cache, goodbye */
 678	if (!i_size_read(inode))
 679		return 0;
 680
 681	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 682	key.offset = offset;
 683	key.type = 0;
 684
 685	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 686	if (ret < 0)
 687		return 0;
 688	else if (ret > 0) {
 689		btrfs_release_path(path);
 690		return 0;
 691	}
 692
 693	ret = -1;
 694
 695	leaf = path->nodes[0];
 696	header = btrfs_item_ptr(leaf, path->slots[0],
 697				struct btrfs_free_space_header);
 698	num_entries = btrfs_free_space_entries(leaf, header);
 699	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 700	generation = btrfs_free_space_generation(leaf, header);
 701	btrfs_release_path(path);
 702
 703	if (!BTRFS_I(inode)->generation) {
 704		btrfs_info(fs_info,
 705			   "the free space cache file (%llu) is invalid, skip it",
 706			   offset);
 707		return 0;
 708	}
 709
 710	if (BTRFS_I(inode)->generation != generation) {
 711		btrfs_err(fs_info,
 712			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 713			  BTRFS_I(inode)->generation, generation);
 714		return 0;
 715	}
 716
 717	if (!num_entries)
 718		return 0;
 719
 720	ret = io_ctl_init(&io_ctl, inode, 0);
 721	if (ret)
 722		return ret;
 723
 724	readahead_cache(inode);
 725
 726	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
 727	if (ret)
 728		goto out;
 729
 730	ret = io_ctl_check_crc(&io_ctl, 0);
 731	if (ret)
 732		goto free_cache;
 733
 734	ret = io_ctl_check_generation(&io_ctl, generation);
 735	if (ret)
 736		goto free_cache;
 737
 738	while (num_entries) {
 739		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 740				      GFP_NOFS);
 741		if (!e)
 
 742			goto free_cache;
 
 743
 744		ret = io_ctl_read_entry(&io_ctl, e, &type);
 745		if (ret) {
 746			kmem_cache_free(btrfs_free_space_cachep, e);
 747			goto free_cache;
 748		}
 749
 750		if (!e->bytes) {
 
 751			kmem_cache_free(btrfs_free_space_cachep, e);
 752			goto free_cache;
 753		}
 754
 755		if (type == BTRFS_FREE_SPACE_EXTENT) {
 756			spin_lock(&ctl->tree_lock);
 757			ret = link_free_space(ctl, e);
 758			spin_unlock(&ctl->tree_lock);
 759			if (ret) {
 760				btrfs_err(fs_info,
 761					"Duplicate entries in free space cache, dumping");
 762				kmem_cache_free(btrfs_free_space_cachep, e);
 763				goto free_cache;
 764			}
 765		} else {
 766			ASSERT(num_bitmaps);
 767			num_bitmaps--;
 768			e->bitmap = kmem_cache_zalloc(
 769					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 770			if (!e->bitmap) {
 
 771				kmem_cache_free(
 772					btrfs_free_space_cachep, e);
 773				goto free_cache;
 774			}
 775			spin_lock(&ctl->tree_lock);
 776			ret = link_free_space(ctl, e);
 777			ctl->total_bitmaps++;
 778			ctl->op->recalc_thresholds(ctl);
 779			spin_unlock(&ctl->tree_lock);
 780			if (ret) {
 781				btrfs_err(fs_info,
 782					"Duplicate entries in free space cache, dumping");
 783				kmem_cache_free(btrfs_free_space_cachep, e);
 784				goto free_cache;
 785			}
 786			list_add_tail(&e->list, &bitmaps);
 787		}
 788
 789		num_entries--;
 790	}
 791
 792	io_ctl_unmap_page(&io_ctl);
 793
 794	/*
 795	 * We add the bitmaps at the end of the entries in order that
 796	 * the bitmap entries are added to the cache.
 797	 */
 798	list_for_each_entry_safe(e, n, &bitmaps, list) {
 799		list_del_init(&e->list);
 800		ret = io_ctl_read_bitmap(&io_ctl, e);
 801		if (ret)
 802			goto free_cache;
 803	}
 804
 805	io_ctl_drop_pages(&io_ctl);
 806	merge_space_tree(ctl);
 807	ret = 1;
 808out:
 809	io_ctl_free(&io_ctl);
 810	return ret;
 811free_cache:
 812	io_ctl_drop_pages(&io_ctl);
 813	__btrfs_remove_free_space_cache(ctl);
 814	goto out;
 815}
 816
 817int load_free_space_cache(struct btrfs_block_group_cache *block_group)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818{
 819	struct btrfs_fs_info *fs_info = block_group->fs_info;
 820	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 821	struct inode *inode;
 822	struct btrfs_path *path;
 823	int ret = 0;
 824	bool matched;
 825	u64 used = btrfs_block_group_used(&block_group->item);
 
 
 
 
 
 
 
 826
 827	/*
 828	 * If this block group has been marked to be cleared for one reason or
 829	 * another then we can't trust the on disk cache, so just return.
 830	 */
 831	spin_lock(&block_group->lock);
 832	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 833		spin_unlock(&block_group->lock);
 834		return 0;
 835	}
 836	spin_unlock(&block_group->lock);
 837
 838	path = btrfs_alloc_path();
 839	if (!path)
 840		return 0;
 841	path->search_commit_root = 1;
 842	path->skip_locking = 1;
 843
 844	/*
 845	 * We must pass a path with search_commit_root set to btrfs_iget in
 846	 * order to avoid a deadlock when allocating extents for the tree root.
 847	 *
 848	 * When we are COWing an extent buffer from the tree root, when looking
 849	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 850	 * block group without its free space cache loaded. When we find one
 851	 * we must load its space cache which requires reading its free space
 852	 * cache's inode item from the root tree. If this inode item is located
 853	 * in the same leaf that we started COWing before, then we end up in
 854	 * deadlock on the extent buffer (trying to read lock it when we
 855	 * previously write locked it).
 856	 *
 857	 * It's safe to read the inode item using the commit root because
 858	 * block groups, once loaded, stay in memory forever (until they are
 859	 * removed) as well as their space caches once loaded. New block groups
 860	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 861	 * we will never try to read their inode item while the fs is mounted.
 862	 */
 863	inode = lookup_free_space_inode(block_group, path);
 864	if (IS_ERR(inode)) {
 865		btrfs_free_path(path);
 866		return 0;
 867	}
 868
 869	/* We may have converted the inode and made the cache invalid. */
 870	spin_lock(&block_group->lock);
 871	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 872		spin_unlock(&block_group->lock);
 873		btrfs_free_path(path);
 874		goto out;
 875	}
 876	spin_unlock(&block_group->lock);
 877
 878	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 879				      path, block_group->key.objectid);
 880	btrfs_free_path(path);
 881	if (ret <= 0)
 882		goto out;
 883
 884	spin_lock(&ctl->tree_lock);
 885	matched = (ctl->free_space == (block_group->key.offset - used -
 886				       block_group->bytes_super));
 887	spin_unlock(&ctl->tree_lock);
 888
 889	if (!matched) {
 890		__btrfs_remove_free_space_cache(ctl);
 
 
 
 
 
 
 
 
 891		btrfs_warn(fs_info,
 892			   "block group %llu has wrong amount of free space",
 893			   block_group->key.objectid);
 894		ret = -1;
 895	}
 896out:
 897	if (ret < 0) {
 898		/* This cache is bogus, make sure it gets cleared */
 899		spin_lock(&block_group->lock);
 900		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 901		spin_unlock(&block_group->lock);
 902		ret = 0;
 903
 904		btrfs_warn(fs_info,
 905			   "failed to load free space cache for block group %llu, rebuilding it now",
 906			   block_group->key.objectid);
 907	}
 908
 
 
 
 909	iput(inode);
 910	return ret;
 911}
 912
 913static noinline_for_stack
 914int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 915			      struct btrfs_free_space_ctl *ctl,
 916			      struct btrfs_block_group_cache *block_group,
 917			      int *entries, int *bitmaps,
 918			      struct list_head *bitmap_list)
 919{
 920	int ret;
 921	struct btrfs_free_cluster *cluster = NULL;
 922	struct btrfs_free_cluster *cluster_locked = NULL;
 923	struct rb_node *node = rb_first(&ctl->free_space_offset);
 924	struct btrfs_trim_range *trim_entry;
 925
 926	/* Get the cluster for this block_group if it exists */
 927	if (block_group && !list_empty(&block_group->cluster_list)) {
 928		cluster = list_entry(block_group->cluster_list.next,
 929				     struct btrfs_free_cluster,
 930				     block_group_list);
 931	}
 932
 933	if (!node && cluster) {
 934		cluster_locked = cluster;
 935		spin_lock(&cluster_locked->lock);
 936		node = rb_first(&cluster->root);
 937		cluster = NULL;
 938	}
 939
 940	/* Write out the extent entries */
 941	while (node) {
 942		struct btrfs_free_space *e;
 943
 944		e = rb_entry(node, struct btrfs_free_space, offset_index);
 945		*entries += 1;
 946
 947		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 948				       e->bitmap);
 949		if (ret)
 950			goto fail;
 951
 952		if (e->bitmap) {
 953			list_add_tail(&e->list, bitmap_list);
 954			*bitmaps += 1;
 955		}
 956		node = rb_next(node);
 957		if (!node && cluster) {
 958			node = rb_first(&cluster->root);
 959			cluster_locked = cluster;
 960			spin_lock(&cluster_locked->lock);
 961			cluster = NULL;
 962		}
 963	}
 964	if (cluster_locked) {
 965		spin_unlock(&cluster_locked->lock);
 966		cluster_locked = NULL;
 967	}
 968
 969	/*
 970	 * Make sure we don't miss any range that was removed from our rbtree
 971	 * because trimming is running. Otherwise after a umount+mount (or crash
 972	 * after committing the transaction) we would leak free space and get
 973	 * an inconsistent free space cache report from fsck.
 974	 */
 975	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
 976		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
 977				       trim_entry->bytes, NULL);
 978		if (ret)
 979			goto fail;
 980		*entries += 1;
 981	}
 982
 983	return 0;
 984fail:
 985	if (cluster_locked)
 986		spin_unlock(&cluster_locked->lock);
 987	return -ENOSPC;
 988}
 989
 990static noinline_for_stack int
 991update_cache_item(struct btrfs_trans_handle *trans,
 992		  struct btrfs_root *root,
 993		  struct inode *inode,
 994		  struct btrfs_path *path, u64 offset,
 995		  int entries, int bitmaps)
 996{
 997	struct btrfs_key key;
 998	struct btrfs_free_space_header *header;
 999	struct extent_buffer *leaf;
1000	int ret;
1001
1002	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1003	key.offset = offset;
1004	key.type = 0;
1005
1006	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1007	if (ret < 0) {
1008		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1009				 EXTENT_DELALLOC, 0, 0, NULL);
1010		goto fail;
1011	}
1012	leaf = path->nodes[0];
1013	if (ret > 0) {
1014		struct btrfs_key found_key;
1015		ASSERT(path->slots[0]);
1016		path->slots[0]--;
1017		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1018		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1019		    found_key.offset != offset) {
1020			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1021					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1022					 0, NULL);
1023			btrfs_release_path(path);
1024			goto fail;
1025		}
1026	}
1027
1028	BTRFS_I(inode)->generation = trans->transid;
1029	header = btrfs_item_ptr(leaf, path->slots[0],
1030				struct btrfs_free_space_header);
1031	btrfs_set_free_space_entries(leaf, header, entries);
1032	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1033	btrfs_set_free_space_generation(leaf, header, trans->transid);
1034	btrfs_mark_buffer_dirty(leaf);
1035	btrfs_release_path(path);
1036
1037	return 0;
1038
1039fail:
1040	return -1;
1041}
1042
1043static noinline_for_stack int write_pinned_extent_entries(
1044			    struct btrfs_block_group_cache *block_group,
 
1045			    struct btrfs_io_ctl *io_ctl,
1046			    int *entries)
1047{
1048	u64 start, extent_start, extent_end, len;
1049	struct extent_io_tree *unpin = NULL;
1050	int ret;
1051
1052	if (!block_group)
1053		return 0;
1054
1055	/*
1056	 * We want to add any pinned extents to our free space cache
1057	 * so we don't leak the space
1058	 *
1059	 * We shouldn't have switched the pinned extents yet so this is the
1060	 * right one
1061	 */
1062	unpin = block_group->fs_info->pinned_extents;
1063
1064	start = block_group->key.objectid;
1065
1066	while (start < block_group->key.objectid + block_group->key.offset) {
1067		ret = find_first_extent_bit(unpin, start,
1068					    &extent_start, &extent_end,
1069					    EXTENT_DIRTY, NULL);
1070		if (ret)
1071			return 0;
1072
1073		/* This pinned extent is out of our range */
1074		if (extent_start >= block_group->key.objectid +
1075		    block_group->key.offset)
1076			return 0;
1077
1078		extent_start = max(extent_start, start);
1079		extent_end = min(block_group->key.objectid +
1080				 block_group->key.offset, extent_end + 1);
1081		len = extent_end - extent_start;
1082
1083		*entries += 1;
1084		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1085		if (ret)
1086			return -ENOSPC;
1087
1088		start = extent_end;
1089	}
1090
1091	return 0;
1092}
1093
1094static noinline_for_stack int
1095write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1096{
1097	struct btrfs_free_space *entry, *next;
1098	int ret;
1099
1100	/* Write out the bitmaps */
1101	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1102		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1103		if (ret)
1104			return -ENOSPC;
1105		list_del_init(&entry->list);
1106	}
1107
1108	return 0;
1109}
1110
1111static int flush_dirty_cache(struct inode *inode)
1112{
1113	int ret;
1114
1115	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1116	if (ret)
1117		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1118				 EXTENT_DELALLOC, 0, 0, NULL);
1119
1120	return ret;
1121}
1122
1123static void noinline_for_stack
1124cleanup_bitmap_list(struct list_head *bitmap_list)
1125{
1126	struct btrfs_free_space *entry, *next;
1127
1128	list_for_each_entry_safe(entry, next, bitmap_list, list)
1129		list_del_init(&entry->list);
1130}
1131
1132static void noinline_for_stack
1133cleanup_write_cache_enospc(struct inode *inode,
1134			   struct btrfs_io_ctl *io_ctl,
1135			   struct extent_state **cached_state)
1136{
1137	io_ctl_drop_pages(io_ctl);
1138	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1139			     i_size_read(inode) - 1, cached_state);
1140}
1141
1142static int __btrfs_wait_cache_io(struct btrfs_root *root,
1143				 struct btrfs_trans_handle *trans,
1144				 struct btrfs_block_group_cache *block_group,
1145				 struct btrfs_io_ctl *io_ctl,
1146				 struct btrfs_path *path, u64 offset)
1147{
1148	int ret;
1149	struct inode *inode = io_ctl->inode;
1150
1151	if (!inode)
1152		return 0;
1153
1154	/* Flush the dirty pages in the cache file. */
1155	ret = flush_dirty_cache(inode);
1156	if (ret)
1157		goto out;
1158
1159	/* Update the cache item to tell everyone this cache file is valid. */
1160	ret = update_cache_item(trans, root, inode, path, offset,
1161				io_ctl->entries, io_ctl->bitmaps);
1162out:
1163	io_ctl_free(io_ctl);
1164	if (ret) {
1165		invalidate_inode_pages2(inode->i_mapping);
1166		BTRFS_I(inode)->generation = 0;
1167		if (block_group) {
1168#ifdef DEBUG
1169			btrfs_err(root->fs_info,
1170				  "failed to write free space cache for block group %llu",
1171				  block_group->key.objectid);
1172#endif
1173		}
1174	}
1175	btrfs_update_inode(trans, root, inode);
1176
1177	if (block_group) {
1178		/* the dirty list is protected by the dirty_bgs_lock */
1179		spin_lock(&trans->transaction->dirty_bgs_lock);
1180
1181		/* the disk_cache_state is protected by the block group lock */
1182		spin_lock(&block_group->lock);
1183
1184		/*
1185		 * only mark this as written if we didn't get put back on
1186		 * the dirty list while waiting for IO.   Otherwise our
1187		 * cache state won't be right, and we won't get written again
1188		 */
1189		if (!ret && list_empty(&block_group->dirty_list))
1190			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1191		else if (ret)
1192			block_group->disk_cache_state = BTRFS_DC_ERROR;
1193
1194		spin_unlock(&block_group->lock);
1195		spin_unlock(&trans->transaction->dirty_bgs_lock);
1196		io_ctl->inode = NULL;
1197		iput(inode);
1198	}
1199
1200	return ret;
1201
1202}
1203
1204static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1205				    struct btrfs_trans_handle *trans,
1206				    struct btrfs_io_ctl *io_ctl,
1207				    struct btrfs_path *path)
1208{
1209	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1210}
1211
1212int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1213			struct btrfs_block_group_cache *block_group,
1214			struct btrfs_path *path)
1215{
1216	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1217				     block_group, &block_group->io_ctl,
1218				     path, block_group->key.objectid);
1219}
1220
1221/**
1222 * __btrfs_write_out_cache - write out cached info to an inode
1223 * @root - the root the inode belongs to
1224 * @ctl - the free space cache we are going to write out
1225 * @block_group - the block_group for this cache if it belongs to a block_group
1226 * @trans - the trans handle
 
 
 
1227 *
1228 * This function writes out a free space cache struct to disk for quick recovery
1229 * on mount.  This will return 0 if it was successful in writing the cache out,
1230 * or an errno if it was not.
1231 */
1232static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1233				   struct btrfs_free_space_ctl *ctl,
1234				   struct btrfs_block_group_cache *block_group,
1235				   struct btrfs_io_ctl *io_ctl,
1236				   struct btrfs_trans_handle *trans)
1237{
1238	struct extent_state *cached_state = NULL;
1239	LIST_HEAD(bitmap_list);
1240	int entries = 0;
1241	int bitmaps = 0;
1242	int ret;
1243	int must_iput = 0;
1244
1245	if (!i_size_read(inode))
1246		return -EIO;
1247
1248	WARN_ON(io_ctl->pages);
1249	ret = io_ctl_init(io_ctl, inode, 1);
1250	if (ret)
1251		return ret;
1252
1253	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1254		down_write(&block_group->data_rwsem);
1255		spin_lock(&block_group->lock);
1256		if (block_group->delalloc_bytes) {
1257			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1258			spin_unlock(&block_group->lock);
1259			up_write(&block_group->data_rwsem);
1260			BTRFS_I(inode)->generation = 0;
1261			ret = 0;
1262			must_iput = 1;
1263			goto out;
1264		}
1265		spin_unlock(&block_group->lock);
1266	}
1267
1268	/* Lock all pages first so we can lock the extent safely. */
1269	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1270	if (ret)
1271		goto out_unlock;
1272
1273	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1274			 &cached_state);
1275
1276	io_ctl_set_generation(io_ctl, trans->transid);
1277
1278	mutex_lock(&ctl->cache_writeout_mutex);
1279	/* Write out the extent entries in the free space cache */
1280	spin_lock(&ctl->tree_lock);
1281	ret = write_cache_extent_entries(io_ctl, ctl,
1282					 block_group, &entries, &bitmaps,
1283					 &bitmap_list);
1284	if (ret)
1285		goto out_nospc_locked;
1286
1287	/*
1288	 * Some spaces that are freed in the current transaction are pinned,
1289	 * they will be added into free space cache after the transaction is
1290	 * committed, we shouldn't lose them.
1291	 *
1292	 * If this changes while we are working we'll get added back to
1293	 * the dirty list and redo it.  No locking needed
1294	 */
1295	ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1296	if (ret)
1297		goto out_nospc_locked;
1298
1299	/*
1300	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1301	 * locked while doing it because a concurrent trim can be manipulating
1302	 * or freeing the bitmap.
1303	 */
1304	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1305	spin_unlock(&ctl->tree_lock);
1306	mutex_unlock(&ctl->cache_writeout_mutex);
1307	if (ret)
1308		goto out_nospc;
1309
1310	/* Zero out the rest of the pages just to make sure */
1311	io_ctl_zero_remaining_pages(io_ctl);
1312
1313	/* Everything is written out, now we dirty the pages in the file. */
1314	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1315				i_size_read(inode), &cached_state);
 
1316	if (ret)
1317		goto out_nospc;
1318
1319	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1320		up_write(&block_group->data_rwsem);
1321	/*
1322	 * Release the pages and unlock the extent, we will flush
1323	 * them out later
1324	 */
1325	io_ctl_drop_pages(io_ctl);
 
1326
1327	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1328			     i_size_read(inode) - 1, &cached_state);
1329
1330	/*
1331	 * at this point the pages are under IO and we're happy,
1332	 * The caller is responsible for waiting on them and updating the
1333	 * the cache and the inode
1334	 */
1335	io_ctl->entries = entries;
1336	io_ctl->bitmaps = bitmaps;
1337
1338	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1339	if (ret)
1340		goto out;
1341
1342	return 0;
1343
1344out:
1345	io_ctl->inode = NULL;
1346	io_ctl_free(io_ctl);
1347	if (ret) {
1348		invalidate_inode_pages2(inode->i_mapping);
1349		BTRFS_I(inode)->generation = 0;
1350	}
1351	btrfs_update_inode(trans, root, inode);
1352	if (must_iput)
1353		iput(inode);
1354	return ret;
1355
1356out_nospc_locked:
1357	cleanup_bitmap_list(&bitmap_list);
1358	spin_unlock(&ctl->tree_lock);
1359	mutex_unlock(&ctl->cache_writeout_mutex);
1360
1361out_nospc:
1362	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1363
1364out_unlock:
1365	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1366		up_write(&block_group->data_rwsem);
1367
1368	goto out;
 
 
 
 
 
 
 
 
 
 
1369}
1370
1371int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1372			  struct btrfs_block_group_cache *block_group,
1373			  struct btrfs_path *path)
1374{
1375	struct btrfs_fs_info *fs_info = trans->fs_info;
1376	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1377	struct inode *inode;
1378	int ret = 0;
1379
1380	spin_lock(&block_group->lock);
1381	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1382		spin_unlock(&block_group->lock);
1383		return 0;
1384	}
1385	spin_unlock(&block_group->lock);
1386
1387	inode = lookup_free_space_inode(block_group, path);
1388	if (IS_ERR(inode))
1389		return 0;
1390
1391	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1392				block_group, &block_group->io_ctl, trans);
1393	if (ret) {
1394#ifdef DEBUG
1395		btrfs_err(fs_info,
1396			  "failed to write free space cache for block group %llu",
1397			  block_group->key.objectid);
1398#endif
1399		spin_lock(&block_group->lock);
1400		block_group->disk_cache_state = BTRFS_DC_ERROR;
1401		spin_unlock(&block_group->lock);
1402
1403		block_group->io_ctl.inode = NULL;
1404		iput(inode);
1405	}
1406
1407	/*
1408	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1409	 * to wait for IO and put the inode
1410	 */
1411
1412	return ret;
1413}
1414
1415static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1416					  u64 offset)
1417{
1418	ASSERT(offset >= bitmap_start);
1419	offset -= bitmap_start;
1420	return (unsigned long)(div_u64(offset, unit));
1421}
1422
1423static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1424{
1425	return (unsigned long)(div_u64(bytes, unit));
1426}
1427
1428static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1429				   u64 offset)
1430{
1431	u64 bitmap_start;
1432	u64 bytes_per_bitmap;
1433
1434	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1435	bitmap_start = offset - ctl->start;
1436	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1437	bitmap_start *= bytes_per_bitmap;
1438	bitmap_start += ctl->start;
1439
1440	return bitmap_start;
1441}
1442
1443static int tree_insert_offset(struct rb_root *root, u64 offset,
1444			      struct rb_node *node, int bitmap)
1445{
1446	struct rb_node **p = &root->rb_node;
1447	struct rb_node *parent = NULL;
1448	struct btrfs_free_space *info;
1449
1450	while (*p) {
1451		parent = *p;
1452		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1453
1454		if (offset < info->offset) {
1455			p = &(*p)->rb_left;
1456		} else if (offset > info->offset) {
1457			p = &(*p)->rb_right;
1458		} else {
1459			/*
1460			 * we could have a bitmap entry and an extent entry
1461			 * share the same offset.  If this is the case, we want
1462			 * the extent entry to always be found first if we do a
1463			 * linear search through the tree, since we want to have
1464			 * the quickest allocation time, and allocating from an
1465			 * extent is faster than allocating from a bitmap.  So
1466			 * if we're inserting a bitmap and we find an entry at
1467			 * this offset, we want to go right, or after this entry
1468			 * logically.  If we are inserting an extent and we've
1469			 * found a bitmap, we want to go left, or before
1470			 * logically.
1471			 */
1472			if (bitmap) {
1473				if (info->bitmap) {
1474					WARN_ON_ONCE(1);
1475					return -EEXIST;
1476				}
1477				p = &(*p)->rb_right;
1478			} else {
1479				if (!info->bitmap) {
1480					WARN_ON_ONCE(1);
1481					return -EEXIST;
1482				}
1483				p = &(*p)->rb_left;
1484			}
1485		}
1486	}
1487
1488	rb_link_node(node, parent, p);
1489	rb_insert_color(node, root);
1490
1491	return 0;
1492}
1493
1494/*
1495 * searches the tree for the given offset.
1496 *
1497 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1498 * want a section that has at least bytes size and comes at or after the given
1499 * offset.
1500 */
1501static struct btrfs_free_space *
1502tree_search_offset(struct btrfs_free_space_ctl *ctl,
1503		   u64 offset, int bitmap_only, int fuzzy)
1504{
1505	struct rb_node *n = ctl->free_space_offset.rb_node;
1506	struct btrfs_free_space *entry, *prev = NULL;
1507
1508	/* find entry that is closest to the 'offset' */
1509	while (1) {
1510		if (!n) {
1511			entry = NULL;
1512			break;
1513		}
1514
1515		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1516		prev = entry;
1517
1518		if (offset < entry->offset)
1519			n = n->rb_left;
1520		else if (offset > entry->offset)
1521			n = n->rb_right;
1522		else
1523			break;
1524	}
1525
1526	if (bitmap_only) {
1527		if (!entry)
1528			return NULL;
1529		if (entry->bitmap)
1530			return entry;
1531
1532		/*
1533		 * bitmap entry and extent entry may share same offset,
1534		 * in that case, bitmap entry comes after extent entry.
1535		 */
1536		n = rb_next(n);
1537		if (!n)
1538			return NULL;
1539		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1540		if (entry->offset != offset)
1541			return NULL;
1542
1543		WARN_ON(!entry->bitmap);
1544		return entry;
1545	} else if (entry) {
1546		if (entry->bitmap) {
1547			/*
1548			 * if previous extent entry covers the offset,
1549			 * we should return it instead of the bitmap entry
1550			 */
1551			n = rb_prev(&entry->offset_index);
1552			if (n) {
1553				prev = rb_entry(n, struct btrfs_free_space,
1554						offset_index);
1555				if (!prev->bitmap &&
1556				    prev->offset + prev->bytes > offset)
1557					entry = prev;
1558			}
1559		}
1560		return entry;
1561	}
1562
1563	if (!prev)
1564		return NULL;
1565
1566	/* find last entry before the 'offset' */
1567	entry = prev;
1568	if (entry->offset > offset) {
1569		n = rb_prev(&entry->offset_index);
1570		if (n) {
1571			entry = rb_entry(n, struct btrfs_free_space,
1572					offset_index);
1573			ASSERT(entry->offset <= offset);
1574		} else {
1575			if (fuzzy)
1576				return entry;
1577			else
1578				return NULL;
1579		}
1580	}
1581
1582	if (entry->bitmap) {
1583		n = rb_prev(&entry->offset_index);
1584		if (n) {
1585			prev = rb_entry(n, struct btrfs_free_space,
1586					offset_index);
1587			if (!prev->bitmap &&
1588			    prev->offset + prev->bytes > offset)
1589				return prev;
1590		}
1591		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1592			return entry;
1593	} else if (entry->offset + entry->bytes > offset)
1594		return entry;
1595
1596	if (!fuzzy)
1597		return NULL;
1598
1599	while (1) {
1600		if (entry->bitmap) {
1601			if (entry->offset + BITS_PER_BITMAP *
1602			    ctl->unit > offset)
1603				break;
1604		} else {
1605			if (entry->offset + entry->bytes > offset)
1606				break;
1607		}
1608
1609		n = rb_next(&entry->offset_index);
1610		if (!n)
1611			return NULL;
1612		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1613	}
1614	return entry;
1615}
1616
1617static inline void
1618__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1619		    struct btrfs_free_space *info)
1620{
1621	rb_erase(&info->offset_index, &ctl->free_space_offset);
1622	ctl->free_extents--;
 
 
 
 
 
1623}
1624
1625static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1626			      struct btrfs_free_space *info)
1627{
1628	__unlink_free_space(ctl, info);
1629	ctl->free_space -= info->bytes;
1630}
1631
1632static int link_free_space(struct btrfs_free_space_ctl *ctl,
1633			   struct btrfs_free_space *info)
1634{
1635	int ret = 0;
1636
1637	ASSERT(info->bytes || info->bitmap);
1638	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1639				 &info->offset_index, (info->bitmap != NULL));
1640	if (ret)
1641		return ret;
1642
 
 
 
 
 
1643	ctl->free_space += info->bytes;
1644	ctl->free_extents++;
1645	return ret;
1646}
1647
1648static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1649{
1650	struct btrfs_block_group_cache *block_group = ctl->private;
1651	u64 max_bytes;
1652	u64 bitmap_bytes;
1653	u64 extent_bytes;
1654	u64 size = block_group->key.offset;
1655	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1656	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1657
1658	max_bitmaps = max_t(u64, max_bitmaps, 1);
1659
1660	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1661
1662	/*
1663	 * The goal is to keep the total amount of memory used per 1gb of space
1664	 * at or below 32k, so we need to adjust how much memory we allow to be
1665	 * used by extent based free space tracking
1666	 */
1667	if (size < SZ_1G)
1668		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1669	else
1670		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1671
1672	/*
1673	 * we want to account for 1 more bitmap than what we have so we can make
1674	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1675	 * we add more bitmaps.
1676	 */
1677	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1678
1679	if (bitmap_bytes >= max_bytes) {
1680		ctl->extents_thresh = 0;
1681		return;
1682	}
1683
1684	/*
1685	 * we want the extent entry threshold to always be at most 1/2 the max
1686	 * bytes we can have, or whatever is less than that.
1687	 */
1688	extent_bytes = max_bytes - bitmap_bytes;
1689	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1690
1691	ctl->extents_thresh =
1692		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1693}
1694
1695static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1696				       struct btrfs_free_space *info,
1697				       u64 offset, u64 bytes)
1698{
1699	unsigned long start, count;
 
1700
1701	start = offset_to_bit(info->offset, ctl->unit, offset);
1702	count = bytes_to_bits(bytes, ctl->unit);
1703	ASSERT(start + count <= BITS_PER_BITMAP);
 
1704
1705	bitmap_clear(info->bitmap, start, count);
1706
1707	info->bytes -= bytes;
1708	if (info->max_extent_size > ctl->unit)
1709		info->max_extent_size = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1710}
1711
1712static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1713			      struct btrfs_free_space *info, u64 offset,
1714			      u64 bytes)
1715{
1716	__bitmap_clear_bits(ctl, info, offset, bytes);
1717	ctl->free_space -= bytes;
1718}
1719
1720static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1721			    struct btrfs_free_space *info, u64 offset,
1722			    u64 bytes)
1723{
1724	unsigned long start, count;
 
1725
1726	start = offset_to_bit(info->offset, ctl->unit, offset);
1727	count = bytes_to_bits(bytes, ctl->unit);
1728	ASSERT(start + count <= BITS_PER_BITMAP);
 
1729
1730	bitmap_set(info->bitmap, start, count);
1731
1732	info->bytes += bytes;
1733	ctl->free_space += bytes;
 
 
 
 
 
 
 
 
 
 
 
 
1734}
1735
1736/*
1737 * If we can not find suitable extent, we will use bytes to record
1738 * the size of the max extent.
1739 */
1740static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1741			 struct btrfs_free_space *bitmap_info, u64 *offset,
1742			 u64 *bytes, bool for_alloc)
1743{
1744	unsigned long found_bits = 0;
1745	unsigned long max_bits = 0;
1746	unsigned long bits, i;
1747	unsigned long next_zero;
1748	unsigned long extent_bits;
1749
1750	/*
1751	 * Skip searching the bitmap if we don't have a contiguous section that
1752	 * is large enough for this allocation.
1753	 */
1754	if (for_alloc &&
1755	    bitmap_info->max_extent_size &&
1756	    bitmap_info->max_extent_size < *bytes) {
1757		*bytes = bitmap_info->max_extent_size;
1758		return -1;
1759	}
1760
1761	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1762			  max_t(u64, *offset, bitmap_info->offset));
1763	bits = bytes_to_bits(*bytes, ctl->unit);
1764
1765	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1766		if (for_alloc && bits == 1) {
1767			found_bits = 1;
1768			break;
1769		}
1770		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1771					       BITS_PER_BITMAP, i);
1772		extent_bits = next_zero - i;
1773		if (extent_bits >= bits) {
1774			found_bits = extent_bits;
1775			break;
1776		} else if (extent_bits > max_bits) {
1777			max_bits = extent_bits;
1778		}
1779		i = next_zero;
1780	}
1781
1782	if (found_bits) {
1783		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1784		*bytes = (u64)(found_bits) * ctl->unit;
1785		return 0;
1786	}
1787
1788	*bytes = (u64)(max_bits) * ctl->unit;
1789	bitmap_info->max_extent_size = *bytes;
1790	return -1;
1791}
1792
1793static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1794{
1795	if (entry->bitmap)
1796		return entry->max_extent_size;
1797	return entry->bytes;
1798}
1799
1800/* Cache the size of the max extent in bytes */
1801static struct btrfs_free_space *
1802find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1803		unsigned long align, u64 *max_extent_size)
1804{
1805	struct btrfs_free_space *entry;
1806	struct rb_node *node;
1807	u64 tmp;
1808	u64 align_off;
1809	int ret;
1810
1811	if (!ctl->free_space_offset.rb_node)
1812		goto out;
1813
1814	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1815	if (!entry)
1816		goto out;
1817
1818	for (node = &entry->offset_index; node; node = rb_next(node)) {
1819		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1820		if (entry->bytes < *bytes) {
1821			*max_extent_size = max(get_max_extent_size(entry),
1822					       *max_extent_size);
1823			continue;
1824		}
1825
1826		/* make sure the space returned is big enough
1827		 * to match our requested alignment
1828		 */
1829		if (*bytes >= align) {
1830			tmp = entry->offset - ctl->start + align - 1;
1831			tmp = div64_u64(tmp, align);
1832			tmp = tmp * align + ctl->start;
1833			align_off = tmp - entry->offset;
1834		} else {
1835			align_off = 0;
1836			tmp = entry->offset;
1837		}
1838
1839		if (entry->bytes < *bytes + align_off) {
1840			*max_extent_size = max(get_max_extent_size(entry),
1841					       *max_extent_size);
1842			continue;
1843		}
1844
1845		if (entry->bitmap) {
1846			u64 size = *bytes;
1847
1848			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1849			if (!ret) {
1850				*offset = tmp;
1851				*bytes = size;
1852				return entry;
1853			} else {
1854				*max_extent_size =
1855					max(get_max_extent_size(entry),
1856					    *max_extent_size);
1857			}
1858			continue;
1859		}
1860
1861		*offset = tmp;
1862		*bytes = entry->bytes - align_off;
1863		return entry;
1864	}
1865out:
1866	return NULL;
1867}
1868
1869static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1870			   struct btrfs_free_space *info, u64 offset)
1871{
1872	info->offset = offset_to_bitmap(ctl, offset);
1873	info->bytes = 0;
 
1874	INIT_LIST_HEAD(&info->list);
1875	link_free_space(ctl, info);
1876	ctl->total_bitmaps++;
1877
1878	ctl->op->recalc_thresholds(ctl);
1879}
1880
1881static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1882			struct btrfs_free_space *bitmap_info)
1883{
 
 
 
 
 
 
 
 
 
 
 
 
1884	unlink_free_space(ctl, bitmap_info);
1885	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1886	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1887	ctl->total_bitmaps--;
1888	ctl->op->recalc_thresholds(ctl);
1889}
1890
1891static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1892			      struct btrfs_free_space *bitmap_info,
1893			      u64 *offset, u64 *bytes)
1894{
1895	u64 end;
1896	u64 search_start, search_bytes;
1897	int ret;
1898
1899again:
1900	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1901
1902	/*
1903	 * We need to search for bits in this bitmap.  We could only cover some
1904	 * of the extent in this bitmap thanks to how we add space, so we need
1905	 * to search for as much as it as we can and clear that amount, and then
1906	 * go searching for the next bit.
1907	 */
1908	search_start = *offset;
1909	search_bytes = ctl->unit;
1910	search_bytes = min(search_bytes, end - search_start + 1);
1911	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1912			    false);
1913	if (ret < 0 || search_start != *offset)
1914		return -EINVAL;
1915
1916	/* We may have found more bits than what we need */
1917	search_bytes = min(search_bytes, *bytes);
1918
1919	/* Cannot clear past the end of the bitmap */
1920	search_bytes = min(search_bytes, end - search_start + 1);
1921
1922	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1923	*offset += search_bytes;
1924	*bytes -= search_bytes;
1925
1926	if (*bytes) {
1927		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1928		if (!bitmap_info->bytes)
1929			free_bitmap(ctl, bitmap_info);
1930
1931		/*
1932		 * no entry after this bitmap, but we still have bytes to
1933		 * remove, so something has gone wrong.
1934		 */
1935		if (!next)
1936			return -EINVAL;
1937
1938		bitmap_info = rb_entry(next, struct btrfs_free_space,
1939				       offset_index);
1940
1941		/*
1942		 * if the next entry isn't a bitmap we need to return to let the
1943		 * extent stuff do its work.
1944		 */
1945		if (!bitmap_info->bitmap)
1946			return -EAGAIN;
1947
1948		/*
1949		 * Ok the next item is a bitmap, but it may not actually hold
1950		 * the information for the rest of this free space stuff, so
1951		 * look for it, and if we don't find it return so we can try
1952		 * everything over again.
1953		 */
1954		search_start = *offset;
1955		search_bytes = ctl->unit;
1956		ret = search_bitmap(ctl, bitmap_info, &search_start,
1957				    &search_bytes, false);
1958		if (ret < 0 || search_start != *offset)
1959			return -EAGAIN;
1960
1961		goto again;
1962	} else if (!bitmap_info->bytes)
1963		free_bitmap(ctl, bitmap_info);
1964
1965	return 0;
1966}
1967
1968static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1969			       struct btrfs_free_space *info, u64 offset,
1970			       u64 bytes)
1971{
1972	u64 bytes_to_set = 0;
1973	u64 end;
1974
 
 
 
 
 
 
 
 
 
 
 
 
 
1975	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1976
1977	bytes_to_set = min(end - offset, bytes);
1978
1979	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1980
1981	/*
1982	 * We set some bytes, we have no idea what the max extent size is
1983	 * anymore.
1984	 */
1985	info->max_extent_size = 0;
1986
1987	return bytes_to_set;
1988
1989}
1990
1991static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1992		      struct btrfs_free_space *info)
1993{
1994	struct btrfs_block_group_cache *block_group = ctl->private;
1995	struct btrfs_fs_info *fs_info = block_group->fs_info;
1996	bool forced = false;
1997
1998#ifdef CONFIG_BTRFS_DEBUG
1999	if (btrfs_should_fragment_free_space(block_group))
2000		forced = true;
2001#endif
2002
 
 
 
 
2003	/*
2004	 * If we are below the extents threshold then we can add this as an
2005	 * extent, and don't have to deal with the bitmap
2006	 */
2007	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2008		/*
2009		 * If this block group has some small extents we don't want to
2010		 * use up all of our free slots in the cache with them, we want
2011		 * to reserve them to larger extents, however if we have plenty
2012		 * of cache left then go ahead an dadd them, no sense in adding
2013		 * the overhead of a bitmap if we don't have to.
2014		 */
2015		if (info->bytes <= fs_info->sectorsize * 4) {
2016			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2017				return false;
2018		} else {
2019			return false;
2020		}
2021	}
2022
2023	/*
2024	 * The original block groups from mkfs can be really small, like 8
2025	 * megabytes, so don't bother with a bitmap for those entries.  However
2026	 * some block groups can be smaller than what a bitmap would cover but
2027	 * are still large enough that they could overflow the 32k memory limit,
2028	 * so allow those block groups to still be allowed to have a bitmap
2029	 * entry.
2030	 */
2031	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2032		return false;
2033
2034	return true;
2035}
2036
2037static const struct btrfs_free_space_op free_space_op = {
2038	.recalc_thresholds	= recalculate_thresholds,
2039	.use_bitmap		= use_bitmap,
2040};
2041
2042static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2043			      struct btrfs_free_space *info)
2044{
2045	struct btrfs_free_space *bitmap_info;
2046	struct btrfs_block_group_cache *block_group = NULL;
2047	int added = 0;
2048	u64 bytes, offset, bytes_added;
 
2049	int ret;
2050
2051	bytes = info->bytes;
2052	offset = info->offset;
 
2053
2054	if (!ctl->op->use_bitmap(ctl, info))
2055		return 0;
2056
2057	if (ctl->op == &free_space_op)
2058		block_group = ctl->private;
2059again:
2060	/*
2061	 * Since we link bitmaps right into the cluster we need to see if we
2062	 * have a cluster here, and if so and it has our bitmap we need to add
2063	 * the free space to that bitmap.
2064	 */
2065	if (block_group && !list_empty(&block_group->cluster_list)) {
2066		struct btrfs_free_cluster *cluster;
2067		struct rb_node *node;
2068		struct btrfs_free_space *entry;
2069
2070		cluster = list_entry(block_group->cluster_list.next,
2071				     struct btrfs_free_cluster,
2072				     block_group_list);
2073		spin_lock(&cluster->lock);
2074		node = rb_first(&cluster->root);
2075		if (!node) {
2076			spin_unlock(&cluster->lock);
2077			goto no_cluster_bitmap;
2078		}
2079
2080		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2081		if (!entry->bitmap) {
2082			spin_unlock(&cluster->lock);
2083			goto no_cluster_bitmap;
2084		}
2085
2086		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2087			bytes_added = add_bytes_to_bitmap(ctl, entry,
2088							  offset, bytes);
2089			bytes -= bytes_added;
2090			offset += bytes_added;
2091		}
2092		spin_unlock(&cluster->lock);
2093		if (!bytes) {
2094			ret = 1;
2095			goto out;
2096		}
2097	}
2098
2099no_cluster_bitmap:
2100	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2101					 1, 0);
2102	if (!bitmap_info) {
2103		ASSERT(added == 0);
2104		goto new_bitmap;
2105	}
2106
2107	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
2108	bytes -= bytes_added;
2109	offset += bytes_added;
2110	added = 0;
2111
2112	if (!bytes) {
2113		ret = 1;
2114		goto out;
2115	} else
2116		goto again;
2117
2118new_bitmap:
2119	if (info && info->bitmap) {
2120		add_new_bitmap(ctl, info, offset);
2121		added = 1;
2122		info = NULL;
2123		goto again;
2124	} else {
2125		spin_unlock(&ctl->tree_lock);
2126
2127		/* no pre-allocated info, allocate a new one */
2128		if (!info) {
2129			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2130						 GFP_NOFS);
2131			if (!info) {
2132				spin_lock(&ctl->tree_lock);
2133				ret = -ENOMEM;
2134				goto out;
2135			}
2136		}
2137
2138		/* allocate the bitmap */
2139		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2140						 GFP_NOFS);
 
2141		spin_lock(&ctl->tree_lock);
2142		if (!info->bitmap) {
2143			ret = -ENOMEM;
2144			goto out;
2145		}
2146		goto again;
2147	}
2148
2149out:
2150	if (info) {
2151		if (info->bitmap)
2152			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2153					info->bitmap);
2154		kmem_cache_free(btrfs_free_space_cachep, info);
2155	}
2156
2157	return ret;
2158}
2159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2161			  struct btrfs_free_space *info, bool update_stat)
2162{
2163	struct btrfs_free_space *left_info;
2164	struct btrfs_free_space *right_info;
2165	bool merged = false;
2166	u64 offset = info->offset;
2167	u64 bytes = info->bytes;
 
2168
2169	/*
2170	 * first we want to see if there is free space adjacent to the range we
2171	 * are adding, if there is remove that struct and add a new one to
2172	 * cover the entire range
2173	 */
2174	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2175	if (right_info && rb_prev(&right_info->offset_index))
2176		left_info = rb_entry(rb_prev(&right_info->offset_index),
2177				     struct btrfs_free_space, offset_index);
2178	else
2179		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2180
2181	if (right_info && !right_info->bitmap) {
 
 
2182		if (update_stat)
2183			unlink_free_space(ctl, right_info);
2184		else
2185			__unlink_free_space(ctl, right_info);
2186		info->bytes += right_info->bytes;
2187		kmem_cache_free(btrfs_free_space_cachep, right_info);
2188		merged = true;
2189	}
2190
 
2191	if (left_info && !left_info->bitmap &&
2192	    left_info->offset + left_info->bytes == offset) {
 
2193		if (update_stat)
2194			unlink_free_space(ctl, left_info);
2195		else
2196			__unlink_free_space(ctl, left_info);
2197		info->offset = left_info->offset;
2198		info->bytes += left_info->bytes;
2199		kmem_cache_free(btrfs_free_space_cachep, left_info);
2200		merged = true;
2201	}
2202
2203	return merged;
2204}
2205
2206static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2207				     struct btrfs_free_space *info,
2208				     bool update_stat)
2209{
2210	struct btrfs_free_space *bitmap;
2211	unsigned long i;
2212	unsigned long j;
2213	const u64 end = info->offset + info->bytes;
2214	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2215	u64 bytes;
2216
2217	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2218	if (!bitmap)
2219		return false;
2220
2221	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2222	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2223	if (j == i)
2224		return false;
2225	bytes = (j - i) * ctl->unit;
2226	info->bytes += bytes;
2227
 
 
 
 
2228	if (update_stat)
2229		bitmap_clear_bits(ctl, bitmap, end, bytes);
2230	else
2231		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2232
2233	if (!bitmap->bytes)
2234		free_bitmap(ctl, bitmap);
2235
2236	return true;
2237}
2238
2239static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2240				       struct btrfs_free_space *info,
2241				       bool update_stat)
2242{
2243	struct btrfs_free_space *bitmap;
2244	u64 bitmap_offset;
2245	unsigned long i;
2246	unsigned long j;
2247	unsigned long prev_j;
2248	u64 bytes;
2249
2250	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2251	/* If we're on a boundary, try the previous logical bitmap. */
2252	if (bitmap_offset == info->offset) {
2253		if (info->offset == 0)
2254			return false;
2255		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2256	}
2257
2258	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2259	if (!bitmap)
2260		return false;
2261
2262	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2263	j = 0;
2264	prev_j = (unsigned long)-1;
2265	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2266		if (j > i)
2267			break;
2268		prev_j = j;
2269	}
2270	if (prev_j == i)
2271		return false;
2272
2273	if (prev_j == (unsigned long)-1)
2274		bytes = (i + 1) * ctl->unit;
2275	else
2276		bytes = (i - prev_j) * ctl->unit;
2277
2278	info->offset -= bytes;
2279	info->bytes += bytes;
2280
 
 
 
 
2281	if (update_stat)
2282		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2283	else
2284		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2285
2286	if (!bitmap->bytes)
2287		free_bitmap(ctl, bitmap);
2288
2289	return true;
2290}
2291
2292/*
2293 * We prefer always to allocate from extent entries, both for clustered and
2294 * non-clustered allocation requests. So when attempting to add a new extent
2295 * entry, try to see if there's adjacent free space in bitmap entries, and if
2296 * there is, migrate that space from the bitmaps to the extent.
2297 * Like this we get better chances of satisfying space allocation requests
2298 * because we attempt to satisfy them based on a single cache entry, and never
2299 * on 2 or more entries - even if the entries represent a contiguous free space
2300 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2301 * ends).
2302 */
2303static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2304			      struct btrfs_free_space *info,
2305			      bool update_stat)
2306{
2307	/*
2308	 * Only work with disconnected entries, as we can change their offset,
2309	 * and must be extent entries.
2310	 */
2311	ASSERT(!info->bitmap);
2312	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2313
2314	if (ctl->total_bitmaps > 0) {
2315		bool stole_end;
2316		bool stole_front = false;
2317
2318		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2319		if (ctl->total_bitmaps > 0)
2320			stole_front = steal_from_bitmap_to_front(ctl, info,
2321								 update_stat);
2322
2323		if (stole_end || stole_front)
2324			try_merge_free_space(ctl, info, update_stat);
2325	}
2326}
2327
2328int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2329			   struct btrfs_free_space_ctl *ctl,
2330			   u64 offset, u64 bytes)
 
2331{
 
2332	struct btrfs_free_space *info;
2333	int ret = 0;
 
 
 
2334
2335	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2336	if (!info)
2337		return -ENOMEM;
2338
2339	info->offset = offset;
2340	info->bytes = bytes;
 
2341	RB_CLEAR_NODE(&info->offset_index);
2342
2343	spin_lock(&ctl->tree_lock);
2344
2345	if (try_merge_free_space(ctl, info, true))
2346		goto link;
2347
2348	/*
2349	 * There was no extent directly to the left or right of this new
2350	 * extent then we know we're going to have to allocate a new extent, so
2351	 * before we do that see if we need to drop this into a bitmap
2352	 */
2353	ret = insert_into_bitmap(ctl, info);
2354	if (ret < 0) {
2355		goto out;
2356	} else if (ret) {
2357		ret = 0;
2358		goto out;
2359	}
2360link:
2361	/*
2362	 * Only steal free space from adjacent bitmaps if we're sure we're not
2363	 * going to add the new free space to existing bitmap entries - because
2364	 * that would mean unnecessary work that would be reverted. Therefore
2365	 * attempt to steal space from bitmaps if we're adding an extent entry.
2366	 */
2367	steal_from_bitmap(ctl, info, true);
2368
 
 
2369	ret = link_free_space(ctl, info);
2370	if (ret)
2371		kmem_cache_free(btrfs_free_space_cachep, info);
2372out:
 
2373	spin_unlock(&ctl->tree_lock);
2374
2375	if (ret) {
2376		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2377		ASSERT(ret != -EEXIST);
2378	}
2379
 
 
 
 
 
2380	return ret;
2381}
2382
2383int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384			 u64 bytenr, u64 size)
2385{
 
 
 
 
 
 
 
 
 
2386	return __btrfs_add_free_space(block_group->fs_info,
2387				      block_group->free_space_ctl,
2388				      bytenr, size);
 
 
 
 
 
 
 
 
 
 
2389}
2390
2391int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2392			    u64 offset, u64 bytes)
2393{
2394	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2395	struct btrfs_free_space *info;
2396	int ret;
2397	bool re_search = false;
2398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399	spin_lock(&ctl->tree_lock);
2400
2401again:
2402	ret = 0;
2403	if (!bytes)
2404		goto out_lock;
2405
2406	info = tree_search_offset(ctl, offset, 0, 0);
2407	if (!info) {
2408		/*
2409		 * oops didn't find an extent that matched the space we wanted
2410		 * to remove, look for a bitmap instead
2411		 */
2412		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2413					  1, 0);
2414		if (!info) {
2415			/*
2416			 * If we found a partial bit of our free space in a
2417			 * bitmap but then couldn't find the other part this may
2418			 * be a problem, so WARN about it.
2419			 */
2420			WARN_ON(re_search);
2421			goto out_lock;
2422		}
2423	}
2424
2425	re_search = false;
2426	if (!info->bitmap) {
2427		unlink_free_space(ctl, info);
2428		if (offset == info->offset) {
2429			u64 to_free = min(bytes, info->bytes);
2430
2431			info->bytes -= to_free;
2432			info->offset += to_free;
2433			if (info->bytes) {
2434				ret = link_free_space(ctl, info);
2435				WARN_ON(ret);
2436			} else {
2437				kmem_cache_free(btrfs_free_space_cachep, info);
2438			}
2439
2440			offset += to_free;
2441			bytes -= to_free;
2442			goto again;
2443		} else {
2444			u64 old_end = info->bytes + info->offset;
2445
2446			info->bytes = offset - info->offset;
2447			ret = link_free_space(ctl, info);
2448			WARN_ON(ret);
2449			if (ret)
2450				goto out_lock;
2451
2452			/* Not enough bytes in this entry to satisfy us */
2453			if (old_end < offset + bytes) {
2454				bytes -= old_end - offset;
2455				offset = old_end;
2456				goto again;
2457			} else if (old_end == offset + bytes) {
2458				/* all done */
2459				goto out_lock;
2460			}
2461			spin_unlock(&ctl->tree_lock);
2462
2463			ret = btrfs_add_free_space(block_group, offset + bytes,
2464						   old_end - (offset + bytes));
 
 
2465			WARN_ON(ret);
2466			goto out;
2467		}
2468	}
2469
2470	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2471	if (ret == -EAGAIN) {
2472		re_search = true;
2473		goto again;
2474	}
2475out_lock:
 
2476	spin_unlock(&ctl->tree_lock);
2477out:
2478	return ret;
2479}
2480
2481void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2482			   u64 bytes)
2483{
2484	struct btrfs_fs_info *fs_info = block_group->fs_info;
2485	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2486	struct btrfs_free_space *info;
2487	struct rb_node *n;
2488	int count = 0;
2489
 
 
 
 
 
 
 
 
 
 
2490	spin_lock(&ctl->tree_lock);
2491	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2492		info = rb_entry(n, struct btrfs_free_space, offset_index);
2493		if (info->bytes >= bytes && !block_group->ro)
2494			count++;
2495		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2496			   info->offset, info->bytes,
2497		       (info->bitmap) ? "yes" : "no");
2498	}
2499	spin_unlock(&ctl->tree_lock);
2500	btrfs_info(fs_info, "block group has cluster?: %s",
2501	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2502	btrfs_info(fs_info,
2503		   "%d blocks of free space at or bigger than bytes is", count);
2504}
2505
2506void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
 
2507{
2508	struct btrfs_fs_info *fs_info = block_group->fs_info;
2509	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2510
2511	spin_lock_init(&ctl->tree_lock);
2512	ctl->unit = fs_info->sectorsize;
2513	ctl->start = block_group->key.objectid;
2514	ctl->private = block_group;
2515	ctl->op = &free_space_op;
2516	INIT_LIST_HEAD(&ctl->trimming_ranges);
2517	mutex_init(&ctl->cache_writeout_mutex);
2518
2519	/*
2520	 * we only want to have 32k of ram per block group for keeping
2521	 * track of free space, and if we pass 1/2 of that we want to
2522	 * start converting things over to using bitmaps
2523	 */
2524	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2525}
2526
2527/*
2528 * for a given cluster, put all of its extents back into the free
2529 * space cache.  If the block group passed doesn't match the block group
2530 * pointed to by the cluster, someone else raced in and freed the
2531 * cluster already.  In that case, we just return without changing anything
2532 */
2533static int
2534__btrfs_return_cluster_to_free_space(
2535			     struct btrfs_block_group_cache *block_group,
2536			     struct btrfs_free_cluster *cluster)
2537{
2538	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2539	struct btrfs_free_space *entry;
2540	struct rb_node *node;
2541
2542	spin_lock(&cluster->lock);
2543	if (cluster->block_group != block_group)
2544		goto out;
 
 
2545
2546	cluster->block_group = NULL;
2547	cluster->window_start = 0;
2548	list_del_init(&cluster->block_group_list);
2549
2550	node = rb_first(&cluster->root);
2551	while (node) {
2552		bool bitmap;
2553
2554		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2555		node = rb_next(&entry->offset_index);
2556		rb_erase(&entry->offset_index, &cluster->root);
2557		RB_CLEAR_NODE(&entry->offset_index);
2558
2559		bitmap = (entry->bitmap != NULL);
2560		if (!bitmap) {
 
 
 
 
 
 
 
2561			try_merge_free_space(ctl, entry, false);
2562			steal_from_bitmap(ctl, entry, false);
 
 
 
 
 
 
 
2563		}
2564		tree_insert_offset(&ctl->free_space_offset,
2565				   entry->offset, &entry->offset_index, bitmap);
2566	}
2567	cluster->root = RB_ROOT;
2568
2569out:
2570	spin_unlock(&cluster->lock);
2571	btrfs_put_block_group(block_group);
2572	return 0;
2573}
2574
2575static void __btrfs_remove_free_space_cache_locked(
2576				struct btrfs_free_space_ctl *ctl)
2577{
2578	struct btrfs_free_space *info;
2579	struct rb_node *node;
2580
2581	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2582		info = rb_entry(node, struct btrfs_free_space, offset_index);
2583		if (!info->bitmap) {
2584			unlink_free_space(ctl, info);
2585			kmem_cache_free(btrfs_free_space_cachep, info);
2586		} else {
2587			free_bitmap(ctl, info);
2588		}
2589
2590		cond_resched_lock(&ctl->tree_lock);
2591	}
2592}
2593
2594void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2595{
2596	spin_lock(&ctl->tree_lock);
2597	__btrfs_remove_free_space_cache_locked(ctl);
 
 
2598	spin_unlock(&ctl->tree_lock);
2599}
2600
2601void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2602{
2603	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2604	struct btrfs_free_cluster *cluster;
2605	struct list_head *head;
2606
2607	spin_lock(&ctl->tree_lock);
2608	while ((head = block_group->cluster_list.next) !=
2609	       &block_group->cluster_list) {
2610		cluster = list_entry(head, struct btrfs_free_cluster,
2611				     block_group_list);
2612
2613		WARN_ON(cluster->block_group != block_group);
2614		__btrfs_return_cluster_to_free_space(block_group, cluster);
2615
2616		cond_resched_lock(&ctl->tree_lock);
2617	}
2618	__btrfs_remove_free_space_cache_locked(ctl);
 
2619	spin_unlock(&ctl->tree_lock);
2620
2621}
2622
2623u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624			       u64 offset, u64 bytes, u64 empty_size,
2625			       u64 *max_extent_size)
2626{
2627	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2628	struct btrfs_free_space *entry = NULL;
2629	u64 bytes_search = bytes + empty_size;
2630	u64 ret = 0;
2631	u64 align_gap = 0;
2632	u64 align_gap_len = 0;
 
 
 
2633
2634	spin_lock(&ctl->tree_lock);
2635	entry = find_free_space(ctl, &offset, &bytes_search,
2636				block_group->full_stripe_len, max_extent_size);
2637	if (!entry)
2638		goto out;
2639
2640	ret = offset;
2641	if (entry->bitmap) {
2642		bitmap_clear_bits(ctl, entry, offset, bytes);
 
 
 
 
2643		if (!entry->bytes)
2644			free_bitmap(ctl, entry);
2645	} else {
2646		unlink_free_space(ctl, entry);
2647		align_gap_len = offset - entry->offset;
2648		align_gap = entry->offset;
 
 
 
 
2649
2650		entry->offset = offset + bytes;
2651		WARN_ON(entry->bytes < bytes + align_gap_len);
2652
2653		entry->bytes -= bytes + align_gap_len;
2654		if (!entry->bytes)
2655			kmem_cache_free(btrfs_free_space_cachep, entry);
2656		else
2657			link_free_space(ctl, entry);
2658	}
2659out:
 
2660	spin_unlock(&ctl->tree_lock);
2661
2662	if (align_gap_len)
2663		__btrfs_add_free_space(block_group->fs_info, ctl,
2664				       align_gap, align_gap_len);
 
2665	return ret;
2666}
2667
2668/*
2669 * given a cluster, put all of its extents back into the free space
2670 * cache.  If a block group is passed, this function will only free
2671 * a cluster that belongs to the passed block group.
2672 *
2673 * Otherwise, it'll get a reference on the block group pointed to by the
2674 * cluster and remove the cluster from it.
2675 */
2676int btrfs_return_cluster_to_free_space(
2677			       struct btrfs_block_group_cache *block_group,
2678			       struct btrfs_free_cluster *cluster)
2679{
2680	struct btrfs_free_space_ctl *ctl;
2681	int ret;
2682
2683	/* first, get a safe pointer to the block group */
2684	spin_lock(&cluster->lock);
2685	if (!block_group) {
2686		block_group = cluster->block_group;
2687		if (!block_group) {
2688			spin_unlock(&cluster->lock);
2689			return 0;
2690		}
2691	} else if (cluster->block_group != block_group) {
2692		/* someone else has already freed it don't redo their work */
2693		spin_unlock(&cluster->lock);
2694		return 0;
2695	}
2696	atomic_inc(&block_group->count);
2697	spin_unlock(&cluster->lock);
2698
2699	ctl = block_group->free_space_ctl;
2700
2701	/* now return any extents the cluster had on it */
2702	spin_lock(&ctl->tree_lock);
2703	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2704	spin_unlock(&ctl->tree_lock);
2705
 
 
2706	/* finally drop our ref */
2707	btrfs_put_block_group(block_group);
2708	return ret;
2709}
2710
2711static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2712				   struct btrfs_free_cluster *cluster,
2713				   struct btrfs_free_space *entry,
2714				   u64 bytes, u64 min_start,
2715				   u64 *max_extent_size)
2716{
2717	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2718	int err;
2719	u64 search_start = cluster->window_start;
2720	u64 search_bytes = bytes;
2721	u64 ret = 0;
2722
2723	search_start = min_start;
2724	search_bytes = bytes;
2725
2726	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2727	if (err) {
2728		*max_extent_size = max(get_max_extent_size(entry),
2729				       *max_extent_size);
2730		return 0;
2731	}
2732
2733	ret = search_start;
2734	__bitmap_clear_bits(ctl, entry, ret, bytes);
2735
2736	return ret;
2737}
2738
2739/*
2740 * given a cluster, try to allocate 'bytes' from it, returns 0
2741 * if it couldn't find anything suitably large, or a logical disk offset
2742 * if things worked out
2743 */
2744u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2745			     struct btrfs_free_cluster *cluster, u64 bytes,
2746			     u64 min_start, u64 *max_extent_size)
2747{
2748	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2749	struct btrfs_free_space *entry = NULL;
2750	struct rb_node *node;
2751	u64 ret = 0;
2752
 
 
2753	spin_lock(&cluster->lock);
2754	if (bytes > cluster->max_size)
2755		goto out;
2756
2757	if (cluster->block_group != block_group)
2758		goto out;
2759
2760	node = rb_first(&cluster->root);
2761	if (!node)
2762		goto out;
2763
2764	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2765	while (1) {
2766		if (entry->bytes < bytes)
2767			*max_extent_size = max(get_max_extent_size(entry),
2768					       *max_extent_size);
2769
2770		if (entry->bytes < bytes ||
2771		    (!entry->bitmap && entry->offset < min_start)) {
2772			node = rb_next(&entry->offset_index);
2773			if (!node)
2774				break;
2775			entry = rb_entry(node, struct btrfs_free_space,
2776					 offset_index);
2777			continue;
2778		}
2779
2780		if (entry->bitmap) {
2781			ret = btrfs_alloc_from_bitmap(block_group,
2782						      cluster, entry, bytes,
2783						      cluster->window_start,
2784						      max_extent_size);
2785			if (ret == 0) {
2786				node = rb_next(&entry->offset_index);
2787				if (!node)
2788					break;
2789				entry = rb_entry(node, struct btrfs_free_space,
2790						 offset_index);
2791				continue;
2792			}
2793			cluster->window_start += bytes;
2794		} else {
2795			ret = entry->offset;
2796
2797			entry->offset += bytes;
2798			entry->bytes -= bytes;
2799		}
2800
2801		if (entry->bytes == 0)
2802			rb_erase(&entry->offset_index, &cluster->root);
2803		break;
2804	}
2805out:
2806	spin_unlock(&cluster->lock);
2807
2808	if (!ret)
2809		return 0;
2810
2811	spin_lock(&ctl->tree_lock);
2812
 
 
 
2813	ctl->free_space -= bytes;
 
 
 
 
2814	if (entry->bytes == 0) {
 
2815		ctl->free_extents--;
2816		if (entry->bitmap) {
2817			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2818					entry->bitmap);
2819			ctl->total_bitmaps--;
2820			ctl->op->recalc_thresholds(ctl);
 
 
2821		}
2822		kmem_cache_free(btrfs_free_space_cachep, entry);
2823	}
2824
 
2825	spin_unlock(&ctl->tree_lock);
2826
2827	return ret;
2828}
2829
2830static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2831				struct btrfs_free_space *entry,
2832				struct btrfs_free_cluster *cluster,
2833				u64 offset, u64 bytes,
2834				u64 cont1_bytes, u64 min_bytes)
2835{
2836	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2837	unsigned long next_zero;
2838	unsigned long i;
2839	unsigned long want_bits;
2840	unsigned long min_bits;
2841	unsigned long found_bits;
2842	unsigned long max_bits = 0;
2843	unsigned long start = 0;
2844	unsigned long total_found = 0;
2845	int ret;
2846
2847	i = offset_to_bit(entry->offset, ctl->unit,
2848			  max_t(u64, offset, entry->offset));
2849	want_bits = bytes_to_bits(bytes, ctl->unit);
2850	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2851
2852	/*
2853	 * Don't bother looking for a cluster in this bitmap if it's heavily
2854	 * fragmented.
2855	 */
2856	if (entry->max_extent_size &&
2857	    entry->max_extent_size < cont1_bytes)
2858		return -ENOSPC;
2859again:
2860	found_bits = 0;
2861	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2862		next_zero = find_next_zero_bit(entry->bitmap,
2863					       BITS_PER_BITMAP, i);
2864		if (next_zero - i >= min_bits) {
2865			found_bits = next_zero - i;
2866			if (found_bits > max_bits)
2867				max_bits = found_bits;
2868			break;
2869		}
2870		if (next_zero - i > max_bits)
2871			max_bits = next_zero - i;
2872		i = next_zero;
2873	}
2874
2875	if (!found_bits) {
2876		entry->max_extent_size = (u64)max_bits * ctl->unit;
2877		return -ENOSPC;
2878	}
2879
2880	if (!total_found) {
2881		start = i;
2882		cluster->max_size = 0;
2883	}
2884
2885	total_found += found_bits;
2886
2887	if (cluster->max_size < found_bits * ctl->unit)
2888		cluster->max_size = found_bits * ctl->unit;
2889
2890	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2891		i = next_zero + 1;
2892		goto again;
2893	}
2894
2895	cluster->window_start = start * ctl->unit + entry->offset;
2896	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2897	ret = tree_insert_offset(&cluster->root, entry->offset,
2898				 &entry->offset_index, 1);
2899	ASSERT(!ret); /* -EEXIST; Logic error */
2900
2901	trace_btrfs_setup_cluster(block_group, cluster,
2902				  total_found * ctl->unit, 1);
2903	return 0;
2904}
2905
2906/*
2907 * This searches the block group for just extents to fill the cluster with.
2908 * Try to find a cluster with at least bytes total bytes, at least one
2909 * extent of cont1_bytes, and other clusters of at least min_bytes.
2910 */
2911static noinline int
2912setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2913			struct btrfs_free_cluster *cluster,
2914			struct list_head *bitmaps, u64 offset, u64 bytes,
2915			u64 cont1_bytes, u64 min_bytes)
2916{
2917	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2918	struct btrfs_free_space *first = NULL;
2919	struct btrfs_free_space *entry = NULL;
2920	struct btrfs_free_space *last;
2921	struct rb_node *node;
2922	u64 window_free;
2923	u64 max_extent;
2924	u64 total_size = 0;
2925
2926	entry = tree_search_offset(ctl, offset, 0, 1);
2927	if (!entry)
2928		return -ENOSPC;
2929
2930	/*
2931	 * We don't want bitmaps, so just move along until we find a normal
2932	 * extent entry.
2933	 */
2934	while (entry->bitmap || entry->bytes < min_bytes) {
2935		if (entry->bitmap && list_empty(&entry->list))
2936			list_add_tail(&entry->list, bitmaps);
2937		node = rb_next(&entry->offset_index);
2938		if (!node)
2939			return -ENOSPC;
2940		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2941	}
2942
2943	window_free = entry->bytes;
2944	max_extent = entry->bytes;
2945	first = entry;
2946	last = entry;
2947
2948	for (node = rb_next(&entry->offset_index); node;
2949	     node = rb_next(&entry->offset_index)) {
2950		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2951
2952		if (entry->bitmap) {
2953			if (list_empty(&entry->list))
2954				list_add_tail(&entry->list, bitmaps);
2955			continue;
2956		}
2957
2958		if (entry->bytes < min_bytes)
2959			continue;
2960
2961		last = entry;
2962		window_free += entry->bytes;
2963		if (entry->bytes > max_extent)
2964			max_extent = entry->bytes;
2965	}
2966
2967	if (window_free < bytes || max_extent < cont1_bytes)
2968		return -ENOSPC;
2969
2970	cluster->window_start = first->offset;
2971
2972	node = &first->offset_index;
2973
2974	/*
2975	 * now we've found our entries, pull them out of the free space
2976	 * cache and put them into the cluster rbtree
2977	 */
2978	do {
2979		int ret;
2980
2981		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2982		node = rb_next(&entry->offset_index);
2983		if (entry->bitmap || entry->bytes < min_bytes)
2984			continue;
2985
2986		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2987		ret = tree_insert_offset(&cluster->root, entry->offset,
2988					 &entry->offset_index, 0);
2989		total_size += entry->bytes;
2990		ASSERT(!ret); /* -EEXIST; Logic error */
2991	} while (node && entry != last);
2992
2993	cluster->max_size = max_extent;
2994	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2995	return 0;
2996}
2997
2998/*
2999 * This specifically looks for bitmaps that may work in the cluster, we assume
3000 * that we have already failed to find extents that will work.
3001 */
3002static noinline int
3003setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
3004		     struct btrfs_free_cluster *cluster,
3005		     struct list_head *bitmaps, u64 offset, u64 bytes,
3006		     u64 cont1_bytes, u64 min_bytes)
3007{
3008	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3009	struct btrfs_free_space *entry = NULL;
3010	int ret = -ENOSPC;
3011	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3012
3013	if (ctl->total_bitmaps == 0)
3014		return -ENOSPC;
3015
3016	/*
3017	 * The bitmap that covers offset won't be in the list unless offset
3018	 * is just its start offset.
3019	 */
3020	if (!list_empty(bitmaps))
3021		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3022
3023	if (!entry || entry->offset != bitmap_offset) {
3024		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3025		if (entry && list_empty(&entry->list))
3026			list_add(&entry->list, bitmaps);
3027	}
3028
3029	list_for_each_entry(entry, bitmaps, list) {
3030		if (entry->bytes < bytes)
3031			continue;
3032		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3033					   bytes, cont1_bytes, min_bytes);
3034		if (!ret)
3035			return 0;
3036	}
3037
3038	/*
3039	 * The bitmaps list has all the bitmaps that record free space
3040	 * starting after offset, so no more search is required.
3041	 */
3042	return -ENOSPC;
3043}
3044
3045/*
3046 * here we try to find a cluster of blocks in a block group.  The goal
3047 * is to find at least bytes+empty_size.
3048 * We might not find them all in one contiguous area.
3049 *
3050 * returns zero and sets up cluster if things worked out, otherwise
3051 * it returns -enospc
3052 */
3053int btrfs_find_space_cluster(struct btrfs_block_group_cache *block_group,
3054			     struct btrfs_free_cluster *cluster,
3055			     u64 offset, u64 bytes, u64 empty_size)
3056{
3057	struct btrfs_fs_info *fs_info = block_group->fs_info;
3058	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3059	struct btrfs_free_space *entry, *tmp;
3060	LIST_HEAD(bitmaps);
3061	u64 min_bytes;
3062	u64 cont1_bytes;
3063	int ret;
3064
3065	/*
3066	 * Choose the minimum extent size we'll require for this
3067	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3068	 * For metadata, allow allocates with smaller extents.  For
3069	 * data, keep it dense.
3070	 */
3071	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3072		cont1_bytes = min_bytes = bytes + empty_size;
3073	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3074		cont1_bytes = bytes;
3075		min_bytes = fs_info->sectorsize;
3076	} else {
3077		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3078		min_bytes = fs_info->sectorsize;
3079	}
3080
3081	spin_lock(&ctl->tree_lock);
3082
3083	/*
3084	 * If we know we don't have enough space to make a cluster don't even
3085	 * bother doing all the work to try and find one.
3086	 */
3087	if (ctl->free_space < bytes) {
3088		spin_unlock(&ctl->tree_lock);
3089		return -ENOSPC;
3090	}
3091
3092	spin_lock(&cluster->lock);
3093
3094	/* someone already found a cluster, hooray */
3095	if (cluster->block_group) {
3096		ret = 0;
3097		goto out;
3098	}
3099
3100	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3101				 min_bytes);
3102
3103	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3104				      bytes + empty_size,
3105				      cont1_bytes, min_bytes);
3106	if (ret)
3107		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3108					   offset, bytes + empty_size,
3109					   cont1_bytes, min_bytes);
3110
3111	/* Clear our temporary list */
3112	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3113		list_del_init(&entry->list);
3114
3115	if (!ret) {
3116		atomic_inc(&block_group->count);
3117		list_add_tail(&cluster->block_group_list,
3118			      &block_group->cluster_list);
3119		cluster->block_group = block_group;
3120	} else {
3121		trace_btrfs_failed_cluster_setup(block_group);
3122	}
3123out:
3124	spin_unlock(&cluster->lock);
3125	spin_unlock(&ctl->tree_lock);
3126
3127	return ret;
3128}
3129
3130/*
3131 * simple code to zero out a cluster
3132 */
3133void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3134{
3135	spin_lock_init(&cluster->lock);
3136	spin_lock_init(&cluster->refill_lock);
3137	cluster->root = RB_ROOT;
3138	cluster->max_size = 0;
3139	cluster->fragmented = false;
3140	INIT_LIST_HEAD(&cluster->block_group_list);
3141	cluster->block_group = NULL;
3142}
3143
3144static int do_trimming(struct btrfs_block_group_cache *block_group,
3145		       u64 *total_trimmed, u64 start, u64 bytes,
3146		       u64 reserved_start, u64 reserved_bytes,
 
3147		       struct btrfs_trim_range *trim_entry)
3148{
3149	struct btrfs_space_info *space_info = block_group->space_info;
3150	struct btrfs_fs_info *fs_info = block_group->fs_info;
3151	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3152	int ret;
3153	int update = 0;
 
 
 
3154	u64 trimmed = 0;
3155
3156	spin_lock(&space_info->lock);
3157	spin_lock(&block_group->lock);
3158	if (!block_group->ro) {
3159		block_group->reserved += reserved_bytes;
3160		space_info->bytes_reserved += reserved_bytes;
3161		update = 1;
3162	}
3163	spin_unlock(&block_group->lock);
3164	spin_unlock(&space_info->lock);
3165
3166	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3167	if (!ret)
3168		*total_trimmed += trimmed;
 
 
3169
3170	mutex_lock(&ctl->cache_writeout_mutex);
3171	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
 
 
 
 
 
 
 
3172	list_del(&trim_entry->list);
3173	mutex_unlock(&ctl->cache_writeout_mutex);
3174
3175	if (update) {
3176		spin_lock(&space_info->lock);
3177		spin_lock(&block_group->lock);
3178		if (block_group->ro)
3179			space_info->bytes_readonly += reserved_bytes;
3180		block_group->reserved -= reserved_bytes;
3181		space_info->bytes_reserved -= reserved_bytes;
3182		spin_unlock(&block_group->lock);
3183		spin_unlock(&space_info->lock);
3184	}
3185
3186	return ret;
3187}
3188
3189static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3190			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
3191{
 
 
3192	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3193	struct btrfs_free_space *entry;
3194	struct rb_node *node;
3195	int ret = 0;
3196	u64 extent_start;
3197	u64 extent_bytes;
 
3198	u64 bytes;
 
3199
3200	while (start < end) {
3201		struct btrfs_trim_range trim_entry;
3202
3203		mutex_lock(&ctl->cache_writeout_mutex);
3204		spin_lock(&ctl->tree_lock);
3205
3206		if (ctl->free_space < minlen) {
3207			spin_unlock(&ctl->tree_lock);
3208			mutex_unlock(&ctl->cache_writeout_mutex);
3209			break;
3210		}
3211
3212		entry = tree_search_offset(ctl, start, 0, 1);
3213		if (!entry) {
3214			spin_unlock(&ctl->tree_lock);
3215			mutex_unlock(&ctl->cache_writeout_mutex);
3216			break;
3217		}
3218
3219		/* skip bitmaps */
3220		while (entry->bitmap) {
 
3221			node = rb_next(&entry->offset_index);
3222			if (!node) {
3223				spin_unlock(&ctl->tree_lock);
3224				mutex_unlock(&ctl->cache_writeout_mutex);
3225				goto out;
3226			}
3227			entry = rb_entry(node, struct btrfs_free_space,
3228					 offset_index);
3229		}
3230
3231		if (entry->offset >= end) {
3232			spin_unlock(&ctl->tree_lock);
3233			mutex_unlock(&ctl->cache_writeout_mutex);
3234			break;
3235		}
3236
3237		extent_start = entry->offset;
3238		extent_bytes = entry->bytes;
3239		start = max(start, extent_start);
3240		bytes = min(extent_start + extent_bytes, end) - start;
3241		if (bytes < minlen) {
3242			spin_unlock(&ctl->tree_lock);
3243			mutex_unlock(&ctl->cache_writeout_mutex);
3244			goto next;
3245		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3246
3247		unlink_free_space(ctl, entry);
3248		kmem_cache_free(btrfs_free_space_cachep, entry);
 
3249
3250		spin_unlock(&ctl->tree_lock);
3251		trim_entry.start = extent_start;
3252		trim_entry.bytes = extent_bytes;
3253		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3254		mutex_unlock(&ctl->cache_writeout_mutex);
3255
3256		ret = do_trimming(block_group, total_trimmed, start, bytes,
3257				  extent_start, extent_bytes, &trim_entry);
3258		if (ret)
 
 
3259			break;
 
3260next:
3261		start += bytes;
 
 
 
3262
3263		if (fatal_signal_pending(current)) {
3264			ret = -ERESTARTSYS;
3265			break;
3266		}
3267
3268		cond_resched();
3269	}
3270out:
 
 
 
 
 
 
 
3271	return ret;
3272}
3273
3274static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3275			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
3276{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3277	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3278	struct btrfs_free_space *entry;
3279	int ret = 0;
3280	int ret2;
3281	u64 bytes;
3282	u64 offset = offset_to_bitmap(ctl, start);
 
3283
3284	while (offset < end) {
3285		bool next_bitmap = false;
3286		struct btrfs_trim_range trim_entry;
3287
3288		mutex_lock(&ctl->cache_writeout_mutex);
3289		spin_lock(&ctl->tree_lock);
3290
3291		if (ctl->free_space < minlen) {
 
 
3292			spin_unlock(&ctl->tree_lock);
3293			mutex_unlock(&ctl->cache_writeout_mutex);
3294			break;
3295		}
3296
3297		entry = tree_search_offset(ctl, offset, 1, 0);
3298		if (!entry) {
 
 
 
 
 
 
 
 
 
3299			spin_unlock(&ctl->tree_lock);
3300			mutex_unlock(&ctl->cache_writeout_mutex);
3301			next_bitmap = true;
3302			goto next;
3303		}
3304
 
 
 
 
 
 
 
 
 
3305		bytes = minlen;
3306		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3307		if (ret2 || start >= end) {
 
 
 
 
 
 
 
 
3308			spin_unlock(&ctl->tree_lock);
3309			mutex_unlock(&ctl->cache_writeout_mutex);
3310			next_bitmap = true;
3311			goto next;
3312		}
3313
 
 
 
 
 
 
 
 
 
 
3314		bytes = min(bytes, end - start);
3315		if (bytes < minlen) {
3316			spin_unlock(&ctl->tree_lock);
3317			mutex_unlock(&ctl->cache_writeout_mutex);
3318			goto next;
3319		}
3320
 
 
 
 
 
 
 
 
 
 
 
3321		bitmap_clear_bits(ctl, entry, start, bytes);
3322		if (entry->bytes == 0)
3323			free_bitmap(ctl, entry);
3324
3325		spin_unlock(&ctl->tree_lock);
3326		trim_entry.start = start;
3327		trim_entry.bytes = bytes;
3328		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3329		mutex_unlock(&ctl->cache_writeout_mutex);
3330
3331		ret = do_trimming(block_group, total_trimmed, start, bytes,
3332				  start, bytes, &trim_entry);
3333		if (ret)
 
 
 
3334			break;
 
3335next:
3336		if (next_bitmap) {
3337			offset += BITS_PER_BITMAP * ctl->unit;
 
3338		} else {
3339			start += bytes;
3340			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3341				offset += BITS_PER_BITMAP * ctl->unit;
3342		}
 
3343
3344		if (fatal_signal_pending(current)) {
 
 
3345			ret = -ERESTARTSYS;
3346			break;
3347		}
3348
3349		cond_resched();
3350	}
3351
3352	return ret;
3353}
3354
3355void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3356{
3357	atomic_inc(&cache->trimming);
3358}
3359
3360void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3361{
3362	struct btrfs_fs_info *fs_info = block_group->fs_info;
3363	struct extent_map_tree *em_tree;
3364	struct extent_map *em;
3365	bool cleanup;
3366
3367	spin_lock(&block_group->lock);
3368	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3369		   block_group->removed);
3370	spin_unlock(&block_group->lock);
3371
3372	if (cleanup) {
3373		mutex_lock(&fs_info->chunk_mutex);
3374		em_tree = &fs_info->mapping_tree;
3375		write_lock(&em_tree->lock);
3376		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3377					   1);
3378		BUG_ON(!em); /* logic error, can't happen */
3379		remove_extent_mapping(em_tree, em);
3380		write_unlock(&em_tree->lock);
3381		mutex_unlock(&fs_info->chunk_mutex);
3382
3383		/* once for us and once for the tree */
3384		free_extent_map(em);
3385		free_extent_map(em);
3386
3387		/*
3388		 * We've left one free space entry and other tasks trimming
3389		 * this block group have left 1 entry each one. Free them.
3390		 */
3391		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3392	}
3393}
3394
3395int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3396			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3397{
 
3398	int ret;
 
 
 
3399
3400	*trimmed = 0;
3401
3402	spin_lock(&block_group->lock);
3403	if (block_group->removed) {
3404		spin_unlock(&block_group->lock);
3405		return 0;
3406	}
3407	btrfs_get_block_group_trimming(block_group);
3408	spin_unlock(&block_group->lock);
3409
3410	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3411	if (ret)
3412		goto out;
3413
3414	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
 
 
 
 
3415out:
3416	btrfs_put_block_group_trimming(block_group);
3417	return ret;
3418}
3419
3420/*
3421 * Find the left-most item in the cache tree, and then return the
3422 * smallest inode number in the item.
3423 *
3424 * Note: the returned inode number may not be the smallest one in
3425 * the tree, if the left-most item is a bitmap.
3426 */
3427u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3428{
3429	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3430	struct btrfs_free_space *entry = NULL;
3431	u64 ino = 0;
3432
3433	spin_lock(&ctl->tree_lock);
3434
3435	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3436		goto out;
3437
3438	entry = rb_entry(rb_first(&ctl->free_space_offset),
3439			 struct btrfs_free_space, offset_index);
3440
3441	if (!entry->bitmap) {
3442		ino = entry->offset;
3443
3444		unlink_free_space(ctl, entry);
3445		entry->offset++;
3446		entry->bytes--;
3447		if (!entry->bytes)
3448			kmem_cache_free(btrfs_free_space_cachep, entry);
3449		else
3450			link_free_space(ctl, entry);
3451	} else {
3452		u64 offset = 0;
3453		u64 count = 1;
3454		int ret;
3455
3456		ret = search_bitmap(ctl, entry, &offset, &count, true);
3457		/* Logic error; Should be empty if it can't find anything */
3458		ASSERT(!ret);
3459
3460		ino = offset;
3461		bitmap_clear_bits(ctl, entry, offset, 1);
3462		if (entry->bytes == 0)
3463			free_bitmap(ctl, entry);
3464	}
3465out:
3466	spin_unlock(&ctl->tree_lock);
3467
3468	return ino;
 
 
 
3469}
3470
3471struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3472				    struct btrfs_path *path)
 
3473{
3474	struct inode *inode = NULL;
3475
3476	spin_lock(&root->ino_cache_lock);
3477	if (root->ino_cache_inode)
3478		inode = igrab(root->ino_cache_inode);
3479	spin_unlock(&root->ino_cache_lock);
3480	if (inode)
3481		return inode;
3482
3483	inode = __lookup_free_space_inode(root, path, 0);
3484	if (IS_ERR(inode))
3485		return inode;
 
 
 
 
3486
3487	spin_lock(&root->ino_cache_lock);
3488	if (!btrfs_fs_closing(root->fs_info))
3489		root->ino_cache_inode = igrab(inode);
3490	spin_unlock(&root->ino_cache_lock);
3491
3492	return inode;
 
 
3493}
3494
3495int create_free_ino_inode(struct btrfs_root *root,
3496			  struct btrfs_trans_handle *trans,
3497			  struct btrfs_path *path)
3498{
3499	return __create_free_space_inode(root, trans, path,
3500					 BTRFS_FREE_INO_OBJECTID, 0);
3501}
3502
3503int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
 
3504{
3505	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3506	struct btrfs_path *path;
3507	struct inode *inode;
3508	int ret = 0;
3509	u64 root_gen = btrfs_root_generation(&root->root_item);
3510
3511	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3512		return 0;
3513
3514	/*
3515	 * If we're unmounting then just return, since this does a search on the
3516	 * normal root and not the commit root and we could deadlock.
3517	 */
3518	if (btrfs_fs_closing(fs_info))
3519		return 0;
3520
3521	path = btrfs_alloc_path();
3522	if (!path)
3523		return 0;
3524
3525	inode = lookup_free_ino_inode(root, path);
3526	if (IS_ERR(inode))
3527		goto out;
3528
3529	if (root_gen != BTRFS_I(inode)->generation)
3530		goto out_put;
3531
3532	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3533
3534	if (ret < 0)
3535		btrfs_err(fs_info,
3536			"failed to load free ino cache for root %llu",
3537			root->root_key.objectid);
3538out_put:
3539	iput(inode);
 
 
3540out:
3541	btrfs_free_path(path);
3542	return ret;
3543}
3544
3545int btrfs_write_out_ino_cache(struct btrfs_root *root,
3546			      struct btrfs_trans_handle *trans,
3547			      struct btrfs_path *path,
3548			      struct inode *inode)
3549{
3550	struct btrfs_fs_info *fs_info = root->fs_info;
3551	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3552	int ret;
3553	struct btrfs_io_ctl io_ctl;
3554	bool release_metadata = true;
3555
3556	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3557		return 0;
 
 
 
 
 
 
 
 
 
3558
3559	memset(&io_ctl, 0, sizeof(io_ctl));
3560	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3561	if (!ret) {
3562		/*
3563		 * At this point writepages() didn't error out, so our metadata
3564		 * reservation is released when the writeback finishes, at
3565		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3566		 * with or without an error.
3567		 */
3568		release_metadata = false;
3569		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3570	}
3571
3572	if (ret) {
3573		if (release_metadata)
3574			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3575					inode->i_size, true);
3576#ifdef DEBUG
3577		btrfs_err(fs_info,
3578			  "failed to write free ino cache for root %llu",
3579			  root->root_key.objectid);
3580#endif
3581	}
3582
3583	return ret;
3584}
3585
3586#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3587/*
3588 * Use this if you need to make a bitmap or extent entry specifically, it
3589 * doesn't do any of the merging that add_free_space does, this acts a lot like
3590 * how the free space cache loading stuff works, so you can get really weird
3591 * configurations.
3592 */
3593int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3594			      u64 offset, u64 bytes, bool bitmap)
3595{
3596	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3597	struct btrfs_free_space *info = NULL, *bitmap_info;
3598	void *map = NULL;
 
3599	u64 bytes_added;
3600	int ret;
3601
3602again:
3603	if (!info) {
3604		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3605		if (!info)
3606			return -ENOMEM;
3607	}
3608
3609	if (!bitmap) {
3610		spin_lock(&ctl->tree_lock);
3611		info->offset = offset;
3612		info->bytes = bytes;
3613		info->max_extent_size = 0;
3614		ret = link_free_space(ctl, info);
3615		spin_unlock(&ctl->tree_lock);
3616		if (ret)
3617			kmem_cache_free(btrfs_free_space_cachep, info);
3618		return ret;
3619	}
3620
3621	if (!map) {
3622		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3623		if (!map) {
3624			kmem_cache_free(btrfs_free_space_cachep, info);
3625			return -ENOMEM;
3626		}
3627	}
3628
3629	spin_lock(&ctl->tree_lock);
3630	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3631					 1, 0);
3632	if (!bitmap_info) {
3633		info->bitmap = map;
3634		map = NULL;
3635		add_new_bitmap(ctl, info, offset);
3636		bitmap_info = info;
3637		info = NULL;
3638	}
3639
3640	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
3641
3642	bytes -= bytes_added;
3643	offset += bytes_added;
3644	spin_unlock(&ctl->tree_lock);
3645
3646	if (bytes)
3647		goto again;
3648
3649	if (info)
3650		kmem_cache_free(btrfs_free_space_cachep, info);
3651	if (map)
3652		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3653	return 0;
3654}
3655
3656/*
3657 * Checks to see if the given range is in the free space cache.  This is really
3658 * just used to check the absence of space, so if there is free space in the
3659 * range at all we will return 1.
3660 */
3661int test_check_exists(struct btrfs_block_group_cache *cache,
3662		      u64 offset, u64 bytes)
3663{
3664	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3665	struct btrfs_free_space *info;
3666	int ret = 0;
3667
3668	spin_lock(&ctl->tree_lock);
3669	info = tree_search_offset(ctl, offset, 0, 0);
3670	if (!info) {
3671		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3672					  1, 0);
3673		if (!info)
3674			goto out;
3675	}
3676
3677have_info:
3678	if (info->bitmap) {
3679		u64 bit_off, bit_bytes;
3680		struct rb_node *n;
3681		struct btrfs_free_space *tmp;
3682
3683		bit_off = offset;
3684		bit_bytes = ctl->unit;
3685		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3686		if (!ret) {
3687			if (bit_off == offset) {
3688				ret = 1;
3689				goto out;
3690			} else if (bit_off > offset &&
3691				   offset + bytes > bit_off) {
3692				ret = 1;
3693				goto out;
3694			}
3695		}
3696
3697		n = rb_prev(&info->offset_index);
3698		while (n) {
3699			tmp = rb_entry(n, struct btrfs_free_space,
3700				       offset_index);
3701			if (tmp->offset + tmp->bytes < offset)
3702				break;
3703			if (offset + bytes < tmp->offset) {
3704				n = rb_prev(&tmp->offset_index);
3705				continue;
3706			}
3707			info = tmp;
3708			goto have_info;
3709		}
3710
3711		n = rb_next(&info->offset_index);
3712		while (n) {
3713			tmp = rb_entry(n, struct btrfs_free_space,
3714				       offset_index);
3715			if (offset + bytes < tmp->offset)
3716				break;
3717			if (tmp->offset + tmp->bytes < offset) {
3718				n = rb_next(&tmp->offset_index);
3719				continue;
3720			}
3721			info = tmp;
3722			goto have_info;
3723		}
3724
3725		ret = 0;
3726		goto out;
3727	}
3728
3729	if (info->offset == offset) {
3730		ret = 1;
3731		goto out;
3732	}
3733
3734	if (offset > info->offset && offset < info->offset + info->bytes)
3735		ret = 1;
3736out:
3737	spin_unlock(&ctl->tree_lock);
3738	return ret;
3739}
3740#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "misc.h"
  15#include "ctree.h"
  16#include "free-space-cache.h"
  17#include "transaction.h"
  18#include "disk-io.h"
  19#include "extent_io.h"
 
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
  24#include "discard.h"
  25
  26#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  27#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
  28#define FORCE_EXTENT_THRESHOLD	SZ_1M
  29
  30struct btrfs_trim_range {
  31	u64 start;
  32	u64 bytes;
  33	struct list_head list;
  34};
  35
  36static int link_free_space(struct btrfs_free_space_ctl *ctl,
  37			   struct btrfs_free_space *info);
  38static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  39			      struct btrfs_free_space *info);
  40static int search_bitmap(struct btrfs_free_space_ctl *ctl,
  41			 struct btrfs_free_space *bitmap_info, u64 *offset,
  42			 u64 *bytes, bool for_alloc);
  43static void free_bitmap(struct btrfs_free_space_ctl *ctl,
  44			struct btrfs_free_space *bitmap_info);
  45static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  46			      struct btrfs_free_space *info, u64 offset,
  47			      u64 bytes);
  48
  49static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  50					       struct btrfs_path *path,
  51					       u64 offset)
  52{
  53	struct btrfs_fs_info *fs_info = root->fs_info;
  54	struct btrfs_key key;
  55	struct btrfs_key location;
  56	struct btrfs_disk_key disk_key;
  57	struct btrfs_free_space_header *header;
  58	struct extent_buffer *leaf;
  59	struct inode *inode = NULL;
  60	unsigned nofs_flag;
  61	int ret;
  62
  63	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  64	key.offset = offset;
  65	key.type = 0;
  66
  67	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  68	if (ret < 0)
  69		return ERR_PTR(ret);
  70	if (ret > 0) {
  71		btrfs_release_path(path);
  72		return ERR_PTR(-ENOENT);
  73	}
  74
  75	leaf = path->nodes[0];
  76	header = btrfs_item_ptr(leaf, path->slots[0],
  77				struct btrfs_free_space_header);
  78	btrfs_free_space_key(leaf, header, &disk_key);
  79	btrfs_disk_key_to_cpu(&location, &disk_key);
  80	btrfs_release_path(path);
  81
  82	/*
  83	 * We are often under a trans handle at this point, so we need to make
  84	 * sure NOFS is set to keep us from deadlocking.
  85	 */
  86	nofs_flag = memalloc_nofs_save();
  87	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
  88	btrfs_release_path(path);
  89	memalloc_nofs_restore(nofs_flag);
  90	if (IS_ERR(inode))
  91		return inode;
  92
  93	mapping_set_gfp_mask(inode->i_mapping,
  94			mapping_gfp_constraint(inode->i_mapping,
  95			~(__GFP_FS | __GFP_HIGHMEM)));
  96
  97	return inode;
  98}
  99
 100struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
 
 101		struct btrfs_path *path)
 102{
 103	struct btrfs_fs_info *fs_info = block_group->fs_info;
 104	struct inode *inode = NULL;
 105	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 106
 107	spin_lock(&block_group->lock);
 108	if (block_group->inode)
 109		inode = igrab(block_group->inode);
 110	spin_unlock(&block_group->lock);
 111	if (inode)
 112		return inode;
 113
 114	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 115					  block_group->start);
 116	if (IS_ERR(inode))
 117		return inode;
 118
 119	spin_lock(&block_group->lock);
 120	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 121		btrfs_info(fs_info, "Old style space inode found, converting.");
 122		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 123			BTRFS_INODE_NODATACOW;
 124		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 125	}
 126
 127	if (!block_group->iref) {
 128		block_group->inode = igrab(inode);
 129		block_group->iref = 1;
 130	}
 131	spin_unlock(&block_group->lock);
 132
 133	return inode;
 134}
 135
 136static int __create_free_space_inode(struct btrfs_root *root,
 137				     struct btrfs_trans_handle *trans,
 138				     struct btrfs_path *path,
 139				     u64 ino, u64 offset)
 140{
 141	struct btrfs_key key;
 142	struct btrfs_disk_key disk_key;
 143	struct btrfs_free_space_header *header;
 144	struct btrfs_inode_item *inode_item;
 145	struct extent_buffer *leaf;
 146	/* We inline CRCs for the free disk space cache */
 147	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
 148			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 149	int ret;
 150
 151	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 152	if (ret)
 153		return ret;
 154
 
 
 
 
 155	leaf = path->nodes[0];
 156	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 157				    struct btrfs_inode_item);
 158	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 159	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 160			     sizeof(*inode_item));
 161	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 162	btrfs_set_inode_size(leaf, inode_item, 0);
 163	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 164	btrfs_set_inode_uid(leaf, inode_item, 0);
 165	btrfs_set_inode_gid(leaf, inode_item, 0);
 166	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 167	btrfs_set_inode_flags(leaf, inode_item, flags);
 168	btrfs_set_inode_nlink(leaf, inode_item, 1);
 169	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 170	btrfs_set_inode_block_group(leaf, inode_item, offset);
 171	btrfs_mark_buffer_dirty(leaf);
 172	btrfs_release_path(path);
 173
 174	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 175	key.offset = offset;
 176	key.type = 0;
 177	ret = btrfs_insert_empty_item(trans, root, path, &key,
 178				      sizeof(struct btrfs_free_space_header));
 179	if (ret < 0) {
 180		btrfs_release_path(path);
 181		return ret;
 182	}
 183
 184	leaf = path->nodes[0];
 185	header = btrfs_item_ptr(leaf, path->slots[0],
 186				struct btrfs_free_space_header);
 187	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 188	btrfs_set_free_space_key(leaf, header, &disk_key);
 189	btrfs_mark_buffer_dirty(leaf);
 190	btrfs_release_path(path);
 191
 192	return 0;
 193}
 194
 195int create_free_space_inode(struct btrfs_trans_handle *trans,
 196			    struct btrfs_block_group *block_group,
 197			    struct btrfs_path *path)
 198{
 199	int ret;
 200	u64 ino;
 201
 202	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
 203	if (ret < 0)
 204		return ret;
 205
 206	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 207					 ino, block_group->start);
 208}
 209
 210/*
 211 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
 212 * handles lookup, otherwise it takes ownership and iputs the inode.
 213 * Don't reuse an inode pointer after passing it into this function.
 214 */
 215int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
 216				  struct inode *inode,
 217				  struct btrfs_block_group *block_group)
 218{
 219	struct btrfs_path *path;
 220	struct btrfs_key key;
 221	int ret = 0;
 222
 223	path = btrfs_alloc_path();
 224	if (!path)
 225		return -ENOMEM;
 226
 227	if (!inode)
 228		inode = lookup_free_space_inode(block_group, path);
 229	if (IS_ERR(inode)) {
 230		if (PTR_ERR(inode) != -ENOENT)
 231			ret = PTR_ERR(inode);
 232		goto out;
 233	}
 234	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 235	if (ret) {
 236		btrfs_add_delayed_iput(inode);
 237		goto out;
 238	}
 239	clear_nlink(inode);
 240	/* One for the block groups ref */
 241	spin_lock(&block_group->lock);
 242	if (block_group->iref) {
 243		block_group->iref = 0;
 244		block_group->inode = NULL;
 245		spin_unlock(&block_group->lock);
 246		iput(inode);
 247	} else {
 248		spin_unlock(&block_group->lock);
 249	}
 250	/* One for the lookup ref */
 251	btrfs_add_delayed_iput(inode);
 252
 253	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 254	key.type = 0;
 255	key.offset = block_group->start;
 256	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
 257				-1, 1);
 258	if (ret) {
 259		if (ret > 0)
 260			ret = 0;
 261		goto out;
 262	}
 263	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
 264out:
 265	btrfs_free_path(path);
 266	return ret;
 267}
 268
 269int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 270				       struct btrfs_block_rsv *rsv)
 271{
 272	u64 needed_bytes;
 273	int ret;
 274
 275	/* 1 for slack space, 1 for updating the inode */
 276	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 277		btrfs_calc_metadata_size(fs_info, 1);
 278
 279	spin_lock(&rsv->lock);
 280	if (rsv->reserved < needed_bytes)
 281		ret = -ENOSPC;
 282	else
 283		ret = 0;
 284	spin_unlock(&rsv->lock);
 285	return ret;
 286}
 287
 288int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 289				    struct btrfs_block_group *block_group,
 290				    struct inode *inode)
 291{
 292	struct btrfs_root *root = BTRFS_I(inode)->root;
 293	int ret = 0;
 294	bool locked = false;
 295
 296	if (block_group) {
 297		struct btrfs_path *path = btrfs_alloc_path();
 298
 299		if (!path) {
 300			ret = -ENOMEM;
 301			goto fail;
 302		}
 303		locked = true;
 304		mutex_lock(&trans->transaction->cache_write_mutex);
 305		if (!list_empty(&block_group->io_list)) {
 306			list_del_init(&block_group->io_list);
 307
 308			btrfs_wait_cache_io(trans, block_group, path);
 309			btrfs_put_block_group(block_group);
 310		}
 311
 312		/*
 313		 * now that we've truncated the cache away, its no longer
 314		 * setup or written
 315		 */
 316		spin_lock(&block_group->lock);
 317		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 318		spin_unlock(&block_group->lock);
 319		btrfs_free_path(path);
 320	}
 321
 322	btrfs_i_size_write(BTRFS_I(inode), 0);
 323	truncate_pagecache(inode, 0);
 324
 325	/*
 326	 * We skip the throttling logic for free space cache inodes, so we don't
 327	 * need to check for -EAGAIN.
 328	 */
 329	ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
 330					 0, BTRFS_EXTENT_DATA_KEY, NULL);
 331	if (ret)
 332		goto fail;
 333
 334	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 335
 336fail:
 337	if (locked)
 338		mutex_unlock(&trans->transaction->cache_write_mutex);
 339	if (ret)
 340		btrfs_abort_transaction(trans, ret);
 341
 342	return ret;
 343}
 344
 345static void readahead_cache(struct inode *inode)
 346{
 347	struct file_ra_state *ra;
 348	unsigned long last_index;
 349
 350	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 351	if (!ra)
 352		return;
 353
 354	file_ra_state_init(ra, inode->i_mapping);
 355	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 356
 357	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 358
 359	kfree(ra);
 360}
 361
 362static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 363		       int write)
 364{
 365	int num_pages;
 
 366
 367	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 368
 
 
 
 369	/* Make sure we can fit our crcs and generation into the first page */
 370	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 
 371		return -ENOSPC;
 372
 373	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 374
 375	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 376	if (!io_ctl->pages)
 377		return -ENOMEM;
 378
 379	io_ctl->num_pages = num_pages;
 380	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 
 381	io_ctl->inode = inode;
 382
 383	return 0;
 384}
 385ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 386
 387static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 388{
 389	kfree(io_ctl->pages);
 390	io_ctl->pages = NULL;
 391}
 392
 393static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 394{
 395	if (io_ctl->cur) {
 396		io_ctl->cur = NULL;
 397		io_ctl->orig = NULL;
 398	}
 399}
 400
 401static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 402{
 403	ASSERT(io_ctl->index < io_ctl->num_pages);
 404	io_ctl->page = io_ctl->pages[io_ctl->index++];
 405	io_ctl->cur = page_address(io_ctl->page);
 406	io_ctl->orig = io_ctl->cur;
 407	io_ctl->size = PAGE_SIZE;
 408	if (clear)
 409		clear_page(io_ctl->cur);
 410}
 411
 412static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 413{
 414	int i;
 415
 416	io_ctl_unmap_page(io_ctl);
 417
 418	for (i = 0; i < io_ctl->num_pages; i++) {
 419		if (io_ctl->pages[i]) {
 420			ClearPageChecked(io_ctl->pages[i]);
 421			unlock_page(io_ctl->pages[i]);
 422			put_page(io_ctl->pages[i]);
 423		}
 424	}
 425}
 426
 427static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 
 428{
 429	struct page *page;
 430	struct inode *inode = io_ctl->inode;
 431	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 432	int i;
 433
 434	for (i = 0; i < io_ctl->num_pages; i++) {
 435		int ret;
 436
 437		page = find_or_create_page(inode->i_mapping, i, mask);
 438		if (!page) {
 439			io_ctl_drop_pages(io_ctl);
 440			return -ENOMEM;
 441		}
 442
 443		ret = set_page_extent_mapped(page);
 444		if (ret < 0) {
 445			unlock_page(page);
 446			put_page(page);
 447			io_ctl_drop_pages(io_ctl);
 448			return ret;
 449		}
 450
 451		io_ctl->pages[i] = page;
 452		if (uptodate && !PageUptodate(page)) {
 453			btrfs_readpage(NULL, page);
 454			lock_page(page);
 455			if (page->mapping != inode->i_mapping) {
 456				btrfs_err(BTRFS_I(inode)->root->fs_info,
 457					  "free space cache page truncated");
 458				io_ctl_drop_pages(io_ctl);
 459				return -EIO;
 460			}
 461			if (!PageUptodate(page)) {
 462				btrfs_err(BTRFS_I(inode)->root->fs_info,
 463					   "error reading free space cache");
 464				io_ctl_drop_pages(io_ctl);
 465				return -EIO;
 466			}
 467		}
 468	}
 469
 470	for (i = 0; i < io_ctl->num_pages; i++)
 471		clear_page_dirty_for_io(io_ctl->pages[i]);
 
 
 472
 473	return 0;
 474}
 475
 476static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 477{
 
 
 478	io_ctl_map_page(io_ctl, 1);
 479
 480	/*
 481	 * Skip the csum areas.  If we don't check crcs then we just have a
 482	 * 64bit chunk at the front of the first page.
 483	 */
 484	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 485	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 486
 487	put_unaligned_le64(generation, io_ctl->cur);
 
 488	io_ctl->cur += sizeof(u64);
 489}
 490
 491static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 492{
 493	u64 cache_gen;
 494
 495	/*
 496	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 497	 * chunk at the front of the first page.
 498	 */
 499	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 500	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 
 
 
 
 
 
 501
 502	cache_gen = get_unaligned_le64(io_ctl->cur);
 503	if (cache_gen != generation) {
 504		btrfs_err_rl(io_ctl->fs_info,
 505			"space cache generation (%llu) does not match inode (%llu)",
 506				cache_gen, generation);
 507		io_ctl_unmap_page(io_ctl);
 508		return -EIO;
 509	}
 510	io_ctl->cur += sizeof(u64);
 511	return 0;
 512}
 513
 514static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 515{
 516	u32 *tmp;
 517	u32 crc = ~(u32)0;
 518	unsigned offset = 0;
 519
 
 
 
 
 
 520	if (index == 0)
 521		offset = sizeof(u32) * io_ctl->num_pages;
 522
 523	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 524	btrfs_crc32c_final(crc, (u8 *)&crc);
 525	io_ctl_unmap_page(io_ctl);
 526	tmp = page_address(io_ctl->pages[0]);
 527	tmp += index;
 528	*tmp = crc;
 529}
 530
 531static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 532{
 533	u32 *tmp, val;
 534	u32 crc = ~(u32)0;
 535	unsigned offset = 0;
 536
 
 
 
 
 
 537	if (index == 0)
 538		offset = sizeof(u32) * io_ctl->num_pages;
 539
 540	tmp = page_address(io_ctl->pages[0]);
 541	tmp += index;
 542	val = *tmp;
 543
 544	io_ctl_map_page(io_ctl, 0);
 545	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 546	btrfs_crc32c_final(crc, (u8 *)&crc);
 547	if (val != crc) {
 548		btrfs_err_rl(io_ctl->fs_info,
 549			"csum mismatch on free space cache");
 550		io_ctl_unmap_page(io_ctl);
 551		return -EIO;
 552	}
 553
 554	return 0;
 555}
 556
 557static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 558			    void *bitmap)
 559{
 560	struct btrfs_free_space_entry *entry;
 561
 562	if (!io_ctl->cur)
 563		return -ENOSPC;
 564
 565	entry = io_ctl->cur;
 566	put_unaligned_le64(offset, &entry->offset);
 567	put_unaligned_le64(bytes, &entry->bytes);
 568	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 569		BTRFS_FREE_SPACE_EXTENT;
 570	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 571	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 572
 573	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 574		return 0;
 575
 576	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 577
 578	/* No more pages to map */
 579	if (io_ctl->index >= io_ctl->num_pages)
 580		return 0;
 581
 582	/* map the next page */
 583	io_ctl_map_page(io_ctl, 1);
 584	return 0;
 585}
 586
 587static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 588{
 589	if (!io_ctl->cur)
 590		return -ENOSPC;
 591
 592	/*
 593	 * If we aren't at the start of the current page, unmap this one and
 594	 * map the next one if there is any left.
 595	 */
 596	if (io_ctl->cur != io_ctl->orig) {
 597		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 598		if (io_ctl->index >= io_ctl->num_pages)
 599			return -ENOSPC;
 600		io_ctl_map_page(io_ctl, 0);
 601	}
 602
 603	copy_page(io_ctl->cur, bitmap);
 604	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 605	if (io_ctl->index < io_ctl->num_pages)
 606		io_ctl_map_page(io_ctl, 0);
 607	return 0;
 608}
 609
 610static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 611{
 612	/*
 613	 * If we're not on the boundary we know we've modified the page and we
 614	 * need to crc the page.
 615	 */
 616	if (io_ctl->cur != io_ctl->orig)
 617		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 618	else
 619		io_ctl_unmap_page(io_ctl);
 620
 621	while (io_ctl->index < io_ctl->num_pages) {
 622		io_ctl_map_page(io_ctl, 1);
 623		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 624	}
 625}
 626
 627static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 628			    struct btrfs_free_space *entry, u8 *type)
 629{
 630	struct btrfs_free_space_entry *e;
 631	int ret;
 632
 633	if (!io_ctl->cur) {
 634		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 635		if (ret)
 636			return ret;
 637	}
 638
 639	e = io_ctl->cur;
 640	entry->offset = get_unaligned_le64(&e->offset);
 641	entry->bytes = get_unaligned_le64(&e->bytes);
 642	*type = e->type;
 643	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 644	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 645
 646	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 647		return 0;
 648
 649	io_ctl_unmap_page(io_ctl);
 650
 651	return 0;
 652}
 653
 654static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 655			      struct btrfs_free_space *entry)
 656{
 657	int ret;
 658
 659	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 660	if (ret)
 661		return ret;
 662
 663	copy_page(entry->bitmap, io_ctl->cur);
 664	io_ctl_unmap_page(io_ctl);
 665
 666	return 0;
 667}
 668
 669static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 
 
 
 
 
 
 
 
 
 670{
 671	struct btrfs_block_group *block_group = ctl->private;
 672	u64 max_bytes;
 673	u64 bitmap_bytes;
 674	u64 extent_bytes;
 675	u64 size = block_group->length;
 676	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
 677	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
 678
 679	max_bitmaps = max_t(u64, max_bitmaps, 1);
 680
 681	ASSERT(ctl->total_bitmaps <= max_bitmaps);
 682
 683	/*
 684	 * We are trying to keep the total amount of memory used per 1GiB of
 685	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
 686	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
 687	 * bitmaps, we may end up using more memory than this.
 688	 */
 689	if (size < SZ_1G)
 690		max_bytes = MAX_CACHE_BYTES_PER_GIG;
 691	else
 692		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
 693
 694	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
 695
 696	/*
 697	 * we want the extent entry threshold to always be at most 1/2 the max
 698	 * bytes we can have, or whatever is less than that.
 699	 */
 700	extent_bytes = max_bytes - bitmap_bytes;
 701	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
 702
 703	ctl->extents_thresh =
 704		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
 705}
 706
 707static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 708				   struct btrfs_free_space_ctl *ctl,
 709				   struct btrfs_path *path, u64 offset)
 710{
 711	struct btrfs_fs_info *fs_info = root->fs_info;
 712	struct btrfs_free_space_header *header;
 713	struct extent_buffer *leaf;
 714	struct btrfs_io_ctl io_ctl;
 715	struct btrfs_key key;
 716	struct btrfs_free_space *e, *n;
 717	LIST_HEAD(bitmaps);
 718	u64 num_entries;
 719	u64 num_bitmaps;
 720	u64 generation;
 721	u8 type;
 722	int ret = 0;
 723
 724	/* Nothing in the space cache, goodbye */
 725	if (!i_size_read(inode))
 726		return 0;
 727
 728	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 729	key.offset = offset;
 730	key.type = 0;
 731
 732	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 733	if (ret < 0)
 734		return 0;
 735	else if (ret > 0) {
 736		btrfs_release_path(path);
 737		return 0;
 738	}
 739
 740	ret = -1;
 741
 742	leaf = path->nodes[0];
 743	header = btrfs_item_ptr(leaf, path->slots[0],
 744				struct btrfs_free_space_header);
 745	num_entries = btrfs_free_space_entries(leaf, header);
 746	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 747	generation = btrfs_free_space_generation(leaf, header);
 748	btrfs_release_path(path);
 749
 750	if (!BTRFS_I(inode)->generation) {
 751		btrfs_info(fs_info,
 752			   "the free space cache file (%llu) is invalid, skip it",
 753			   offset);
 754		return 0;
 755	}
 756
 757	if (BTRFS_I(inode)->generation != generation) {
 758		btrfs_err(fs_info,
 759			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 760			  BTRFS_I(inode)->generation, generation);
 761		return 0;
 762	}
 763
 764	if (!num_entries)
 765		return 0;
 766
 767	ret = io_ctl_init(&io_ctl, inode, 0);
 768	if (ret)
 769		return ret;
 770
 771	readahead_cache(inode);
 772
 773	ret = io_ctl_prepare_pages(&io_ctl, true);
 774	if (ret)
 775		goto out;
 776
 777	ret = io_ctl_check_crc(&io_ctl, 0);
 778	if (ret)
 779		goto free_cache;
 780
 781	ret = io_ctl_check_generation(&io_ctl, generation);
 782	if (ret)
 783		goto free_cache;
 784
 785	while (num_entries) {
 786		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 787				      GFP_NOFS);
 788		if (!e) {
 789			ret = -ENOMEM;
 790			goto free_cache;
 791		}
 792
 793		ret = io_ctl_read_entry(&io_ctl, e, &type);
 794		if (ret) {
 795			kmem_cache_free(btrfs_free_space_cachep, e);
 796			goto free_cache;
 797		}
 798
 799		if (!e->bytes) {
 800			ret = -1;
 801			kmem_cache_free(btrfs_free_space_cachep, e);
 802			goto free_cache;
 803		}
 804
 805		if (type == BTRFS_FREE_SPACE_EXTENT) {
 806			spin_lock(&ctl->tree_lock);
 807			ret = link_free_space(ctl, e);
 808			spin_unlock(&ctl->tree_lock);
 809			if (ret) {
 810				btrfs_err(fs_info,
 811					"Duplicate entries in free space cache, dumping");
 812				kmem_cache_free(btrfs_free_space_cachep, e);
 813				goto free_cache;
 814			}
 815		} else {
 816			ASSERT(num_bitmaps);
 817			num_bitmaps--;
 818			e->bitmap = kmem_cache_zalloc(
 819					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 820			if (!e->bitmap) {
 821				ret = -ENOMEM;
 822				kmem_cache_free(
 823					btrfs_free_space_cachep, e);
 824				goto free_cache;
 825			}
 826			spin_lock(&ctl->tree_lock);
 827			ret = link_free_space(ctl, e);
 828			ctl->total_bitmaps++;
 829			recalculate_thresholds(ctl);
 830			spin_unlock(&ctl->tree_lock);
 831			if (ret) {
 832				btrfs_err(fs_info,
 833					"Duplicate entries in free space cache, dumping");
 834				kmem_cache_free(btrfs_free_space_cachep, e);
 835				goto free_cache;
 836			}
 837			list_add_tail(&e->list, &bitmaps);
 838		}
 839
 840		num_entries--;
 841	}
 842
 843	io_ctl_unmap_page(&io_ctl);
 844
 845	/*
 846	 * We add the bitmaps at the end of the entries in order that
 847	 * the bitmap entries are added to the cache.
 848	 */
 849	list_for_each_entry_safe(e, n, &bitmaps, list) {
 850		list_del_init(&e->list);
 851		ret = io_ctl_read_bitmap(&io_ctl, e);
 852		if (ret)
 853			goto free_cache;
 854	}
 855
 856	io_ctl_drop_pages(&io_ctl);
 
 857	ret = 1;
 858out:
 859	io_ctl_free(&io_ctl);
 860	return ret;
 861free_cache:
 862	io_ctl_drop_pages(&io_ctl);
 863	__btrfs_remove_free_space_cache(ctl);
 864	goto out;
 865}
 866
 867static int copy_free_space_cache(struct btrfs_block_group *block_group,
 868				 struct btrfs_free_space_ctl *ctl)
 869{
 870	struct btrfs_free_space *info;
 871	struct rb_node *n;
 872	int ret = 0;
 873
 874	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
 875		info = rb_entry(n, struct btrfs_free_space, offset_index);
 876		if (!info->bitmap) {
 877			unlink_free_space(ctl, info);
 878			ret = btrfs_add_free_space(block_group, info->offset,
 879						   info->bytes);
 880			kmem_cache_free(btrfs_free_space_cachep, info);
 881		} else {
 882			u64 offset = info->offset;
 883			u64 bytes = ctl->unit;
 884
 885			while (search_bitmap(ctl, info, &offset, &bytes,
 886					     false) == 0) {
 887				ret = btrfs_add_free_space(block_group, offset,
 888							   bytes);
 889				if (ret)
 890					break;
 891				bitmap_clear_bits(ctl, info, offset, bytes);
 892				offset = info->offset;
 893				bytes = ctl->unit;
 894			}
 895			free_bitmap(ctl, info);
 896		}
 897		cond_resched();
 898	}
 899	return ret;
 900}
 901
 902int load_free_space_cache(struct btrfs_block_group *block_group)
 903{
 904	struct btrfs_fs_info *fs_info = block_group->fs_info;
 905	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 906	struct btrfs_free_space_ctl tmp_ctl = {};
 907	struct inode *inode;
 908	struct btrfs_path *path;
 909	int ret = 0;
 910	bool matched;
 911	u64 used = block_group->used;
 912
 913	/*
 914	 * Because we could potentially discard our loaded free space, we want
 915	 * to load everything into a temporary structure first, and then if it's
 916	 * valid copy it all into the actual free space ctl.
 917	 */
 918	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
 919
 920	/*
 921	 * If this block group has been marked to be cleared for one reason or
 922	 * another then we can't trust the on disk cache, so just return.
 923	 */
 924	spin_lock(&block_group->lock);
 925	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 926		spin_unlock(&block_group->lock);
 927		return 0;
 928	}
 929	spin_unlock(&block_group->lock);
 930
 931	path = btrfs_alloc_path();
 932	if (!path)
 933		return 0;
 934	path->search_commit_root = 1;
 935	path->skip_locking = 1;
 936
 937	/*
 938	 * We must pass a path with search_commit_root set to btrfs_iget in
 939	 * order to avoid a deadlock when allocating extents for the tree root.
 940	 *
 941	 * When we are COWing an extent buffer from the tree root, when looking
 942	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 943	 * block group without its free space cache loaded. When we find one
 944	 * we must load its space cache which requires reading its free space
 945	 * cache's inode item from the root tree. If this inode item is located
 946	 * in the same leaf that we started COWing before, then we end up in
 947	 * deadlock on the extent buffer (trying to read lock it when we
 948	 * previously write locked it).
 949	 *
 950	 * It's safe to read the inode item using the commit root because
 951	 * block groups, once loaded, stay in memory forever (until they are
 952	 * removed) as well as their space caches once loaded. New block groups
 953	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 954	 * we will never try to read their inode item while the fs is mounted.
 955	 */
 956	inode = lookup_free_space_inode(block_group, path);
 957	if (IS_ERR(inode)) {
 958		btrfs_free_path(path);
 959		return 0;
 960	}
 961
 962	/* We may have converted the inode and made the cache invalid. */
 963	spin_lock(&block_group->lock);
 964	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 965		spin_unlock(&block_group->lock);
 966		btrfs_free_path(path);
 967		goto out;
 968	}
 969	spin_unlock(&block_group->lock);
 970
 971	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
 972				      path, block_group->start);
 973	btrfs_free_path(path);
 974	if (ret <= 0)
 975		goto out;
 976
 977	matched = (tmp_ctl.free_space == (block_group->length - used -
 978					  block_group->bytes_super));
 
 
 979
 980	if (matched) {
 981		ret = copy_free_space_cache(block_group, &tmp_ctl);
 982		/*
 983		 * ret == 1 means we successfully loaded the free space cache,
 984		 * so we need to re-set it here.
 985		 */
 986		if (ret == 0)
 987			ret = 1;
 988	} else {
 989		__btrfs_remove_free_space_cache(&tmp_ctl);
 990		btrfs_warn(fs_info,
 991			   "block group %llu has wrong amount of free space",
 992			   block_group->start);
 993		ret = -1;
 994	}
 995out:
 996	if (ret < 0) {
 997		/* This cache is bogus, make sure it gets cleared */
 998		spin_lock(&block_group->lock);
 999		block_group->disk_cache_state = BTRFS_DC_CLEAR;
1000		spin_unlock(&block_group->lock);
1001		ret = 0;
1002
1003		btrfs_warn(fs_info,
1004			   "failed to load free space cache for block group %llu, rebuilding it now",
1005			   block_group->start);
1006	}
1007
1008	spin_lock(&ctl->tree_lock);
1009	btrfs_discard_update_discardable(block_group);
1010	spin_unlock(&ctl->tree_lock);
1011	iput(inode);
1012	return ret;
1013}
1014
1015static noinline_for_stack
1016int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1017			      struct btrfs_free_space_ctl *ctl,
1018			      struct btrfs_block_group *block_group,
1019			      int *entries, int *bitmaps,
1020			      struct list_head *bitmap_list)
1021{
1022	int ret;
1023	struct btrfs_free_cluster *cluster = NULL;
1024	struct btrfs_free_cluster *cluster_locked = NULL;
1025	struct rb_node *node = rb_first(&ctl->free_space_offset);
1026	struct btrfs_trim_range *trim_entry;
1027
1028	/* Get the cluster for this block_group if it exists */
1029	if (block_group && !list_empty(&block_group->cluster_list)) {
1030		cluster = list_entry(block_group->cluster_list.next,
1031				     struct btrfs_free_cluster,
1032				     block_group_list);
1033	}
1034
1035	if (!node && cluster) {
1036		cluster_locked = cluster;
1037		spin_lock(&cluster_locked->lock);
1038		node = rb_first(&cluster->root);
1039		cluster = NULL;
1040	}
1041
1042	/* Write out the extent entries */
1043	while (node) {
1044		struct btrfs_free_space *e;
1045
1046		e = rb_entry(node, struct btrfs_free_space, offset_index);
1047		*entries += 1;
1048
1049		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1050				       e->bitmap);
1051		if (ret)
1052			goto fail;
1053
1054		if (e->bitmap) {
1055			list_add_tail(&e->list, bitmap_list);
1056			*bitmaps += 1;
1057		}
1058		node = rb_next(node);
1059		if (!node && cluster) {
1060			node = rb_first(&cluster->root);
1061			cluster_locked = cluster;
1062			spin_lock(&cluster_locked->lock);
1063			cluster = NULL;
1064		}
1065	}
1066	if (cluster_locked) {
1067		spin_unlock(&cluster_locked->lock);
1068		cluster_locked = NULL;
1069	}
1070
1071	/*
1072	 * Make sure we don't miss any range that was removed from our rbtree
1073	 * because trimming is running. Otherwise after a umount+mount (or crash
1074	 * after committing the transaction) we would leak free space and get
1075	 * an inconsistent free space cache report from fsck.
1076	 */
1077	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1078		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1079				       trim_entry->bytes, NULL);
1080		if (ret)
1081			goto fail;
1082		*entries += 1;
1083	}
1084
1085	return 0;
1086fail:
1087	if (cluster_locked)
1088		spin_unlock(&cluster_locked->lock);
1089	return -ENOSPC;
1090}
1091
1092static noinline_for_stack int
1093update_cache_item(struct btrfs_trans_handle *trans,
1094		  struct btrfs_root *root,
1095		  struct inode *inode,
1096		  struct btrfs_path *path, u64 offset,
1097		  int entries, int bitmaps)
1098{
1099	struct btrfs_key key;
1100	struct btrfs_free_space_header *header;
1101	struct extent_buffer *leaf;
1102	int ret;
1103
1104	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1105	key.offset = offset;
1106	key.type = 0;
1107
1108	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1109	if (ret < 0) {
1110		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1111				 EXTENT_DELALLOC, 0, 0, NULL);
1112		goto fail;
1113	}
1114	leaf = path->nodes[0];
1115	if (ret > 0) {
1116		struct btrfs_key found_key;
1117		ASSERT(path->slots[0]);
1118		path->slots[0]--;
1119		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1120		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1121		    found_key.offset != offset) {
1122			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1123					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1124					 0, NULL);
1125			btrfs_release_path(path);
1126			goto fail;
1127		}
1128	}
1129
1130	BTRFS_I(inode)->generation = trans->transid;
1131	header = btrfs_item_ptr(leaf, path->slots[0],
1132				struct btrfs_free_space_header);
1133	btrfs_set_free_space_entries(leaf, header, entries);
1134	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1135	btrfs_set_free_space_generation(leaf, header, trans->transid);
1136	btrfs_mark_buffer_dirty(leaf);
1137	btrfs_release_path(path);
1138
1139	return 0;
1140
1141fail:
1142	return -1;
1143}
1144
1145static noinline_for_stack int write_pinned_extent_entries(
1146			    struct btrfs_trans_handle *trans,
1147			    struct btrfs_block_group *block_group,
1148			    struct btrfs_io_ctl *io_ctl,
1149			    int *entries)
1150{
1151	u64 start, extent_start, extent_end, len;
1152	struct extent_io_tree *unpin = NULL;
1153	int ret;
1154
1155	if (!block_group)
1156		return 0;
1157
1158	/*
1159	 * We want to add any pinned extents to our free space cache
1160	 * so we don't leak the space
1161	 *
1162	 * We shouldn't have switched the pinned extents yet so this is the
1163	 * right one
1164	 */
1165	unpin = &trans->transaction->pinned_extents;
1166
1167	start = block_group->start;
1168
1169	while (start < block_group->start + block_group->length) {
1170		ret = find_first_extent_bit(unpin, start,
1171					    &extent_start, &extent_end,
1172					    EXTENT_DIRTY, NULL);
1173		if (ret)
1174			return 0;
1175
1176		/* This pinned extent is out of our range */
1177		if (extent_start >= block_group->start + block_group->length)
 
1178			return 0;
1179
1180		extent_start = max(extent_start, start);
1181		extent_end = min(block_group->start + block_group->length,
1182				 extent_end + 1);
1183		len = extent_end - extent_start;
1184
1185		*entries += 1;
1186		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1187		if (ret)
1188			return -ENOSPC;
1189
1190		start = extent_end;
1191	}
1192
1193	return 0;
1194}
1195
1196static noinline_for_stack int
1197write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1198{
1199	struct btrfs_free_space *entry, *next;
1200	int ret;
1201
1202	/* Write out the bitmaps */
1203	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1204		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1205		if (ret)
1206			return -ENOSPC;
1207		list_del_init(&entry->list);
1208	}
1209
1210	return 0;
1211}
1212
1213static int flush_dirty_cache(struct inode *inode)
1214{
1215	int ret;
1216
1217	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1218	if (ret)
1219		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1220				 EXTENT_DELALLOC, 0, 0, NULL);
1221
1222	return ret;
1223}
1224
1225static void noinline_for_stack
1226cleanup_bitmap_list(struct list_head *bitmap_list)
1227{
1228	struct btrfs_free_space *entry, *next;
1229
1230	list_for_each_entry_safe(entry, next, bitmap_list, list)
1231		list_del_init(&entry->list);
1232}
1233
1234static void noinline_for_stack
1235cleanup_write_cache_enospc(struct inode *inode,
1236			   struct btrfs_io_ctl *io_ctl,
1237			   struct extent_state **cached_state)
1238{
1239	io_ctl_drop_pages(io_ctl);
1240	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1241			     i_size_read(inode) - 1, cached_state);
1242}
1243
1244static int __btrfs_wait_cache_io(struct btrfs_root *root,
1245				 struct btrfs_trans_handle *trans,
1246				 struct btrfs_block_group *block_group,
1247				 struct btrfs_io_ctl *io_ctl,
1248				 struct btrfs_path *path, u64 offset)
1249{
1250	int ret;
1251	struct inode *inode = io_ctl->inode;
1252
1253	if (!inode)
1254		return 0;
1255
1256	/* Flush the dirty pages in the cache file. */
1257	ret = flush_dirty_cache(inode);
1258	if (ret)
1259		goto out;
1260
1261	/* Update the cache item to tell everyone this cache file is valid. */
1262	ret = update_cache_item(trans, root, inode, path, offset,
1263				io_ctl->entries, io_ctl->bitmaps);
1264out:
 
1265	if (ret) {
1266		invalidate_inode_pages2(inode->i_mapping);
1267		BTRFS_I(inode)->generation = 0;
1268		if (block_group)
1269			btrfs_debug(root->fs_info,
1270	  "failed to write free space cache for block group %llu error %d",
1271				  block_group->start, ret);
 
 
 
1272	}
1273	btrfs_update_inode(trans, root, BTRFS_I(inode));
1274
1275	if (block_group) {
1276		/* the dirty list is protected by the dirty_bgs_lock */
1277		spin_lock(&trans->transaction->dirty_bgs_lock);
1278
1279		/* the disk_cache_state is protected by the block group lock */
1280		spin_lock(&block_group->lock);
1281
1282		/*
1283		 * only mark this as written if we didn't get put back on
1284		 * the dirty list while waiting for IO.   Otherwise our
1285		 * cache state won't be right, and we won't get written again
1286		 */
1287		if (!ret && list_empty(&block_group->dirty_list))
1288			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1289		else if (ret)
1290			block_group->disk_cache_state = BTRFS_DC_ERROR;
1291
1292		spin_unlock(&block_group->lock);
1293		spin_unlock(&trans->transaction->dirty_bgs_lock);
1294		io_ctl->inode = NULL;
1295		iput(inode);
1296	}
1297
1298	return ret;
1299
1300}
1301
 
 
 
 
 
 
 
 
1302int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1303			struct btrfs_block_group *block_group,
1304			struct btrfs_path *path)
1305{
1306	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1307				     block_group, &block_group->io_ctl,
1308				     path, block_group->start);
1309}
1310
1311/**
1312 * Write out cached info to an inode
1313 *
1314 * @root:        root the inode belongs to
1315 * @inode:       freespace inode we are writing out
1316 * @ctl:         free space cache we are going to write out
1317 * @block_group: block_group for this cache if it belongs to a block_group
1318 * @io_ctl:      holds context for the io
1319 * @trans:       the trans handle
1320 *
1321 * This function writes out a free space cache struct to disk for quick recovery
1322 * on mount.  This will return 0 if it was successful in writing the cache out,
1323 * or an errno if it was not.
1324 */
1325static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1326				   struct btrfs_free_space_ctl *ctl,
1327				   struct btrfs_block_group *block_group,
1328				   struct btrfs_io_ctl *io_ctl,
1329				   struct btrfs_trans_handle *trans)
1330{
1331	struct extent_state *cached_state = NULL;
1332	LIST_HEAD(bitmap_list);
1333	int entries = 0;
1334	int bitmaps = 0;
1335	int ret;
1336	int must_iput = 0;
1337
1338	if (!i_size_read(inode))
1339		return -EIO;
1340
1341	WARN_ON(io_ctl->pages);
1342	ret = io_ctl_init(io_ctl, inode, 1);
1343	if (ret)
1344		return ret;
1345
1346	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1347		down_write(&block_group->data_rwsem);
1348		spin_lock(&block_group->lock);
1349		if (block_group->delalloc_bytes) {
1350			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1351			spin_unlock(&block_group->lock);
1352			up_write(&block_group->data_rwsem);
1353			BTRFS_I(inode)->generation = 0;
1354			ret = 0;
1355			must_iput = 1;
1356			goto out;
1357		}
1358		spin_unlock(&block_group->lock);
1359	}
1360
1361	/* Lock all pages first so we can lock the extent safely. */
1362	ret = io_ctl_prepare_pages(io_ctl, false);
1363	if (ret)
1364		goto out_unlock;
1365
1366	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1367			 &cached_state);
1368
1369	io_ctl_set_generation(io_ctl, trans->transid);
1370
1371	mutex_lock(&ctl->cache_writeout_mutex);
1372	/* Write out the extent entries in the free space cache */
1373	spin_lock(&ctl->tree_lock);
1374	ret = write_cache_extent_entries(io_ctl, ctl,
1375					 block_group, &entries, &bitmaps,
1376					 &bitmap_list);
1377	if (ret)
1378		goto out_nospc_locked;
1379
1380	/*
1381	 * Some spaces that are freed in the current transaction are pinned,
1382	 * they will be added into free space cache after the transaction is
1383	 * committed, we shouldn't lose them.
1384	 *
1385	 * If this changes while we are working we'll get added back to
1386	 * the dirty list and redo it.  No locking needed
1387	 */
1388	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1389	if (ret)
1390		goto out_nospc_locked;
1391
1392	/*
1393	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1394	 * locked while doing it because a concurrent trim can be manipulating
1395	 * or freeing the bitmap.
1396	 */
1397	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1398	spin_unlock(&ctl->tree_lock);
1399	mutex_unlock(&ctl->cache_writeout_mutex);
1400	if (ret)
1401		goto out_nospc;
1402
1403	/* Zero out the rest of the pages just to make sure */
1404	io_ctl_zero_remaining_pages(io_ctl);
1405
1406	/* Everything is written out, now we dirty the pages in the file. */
1407	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1408				io_ctl->num_pages, 0, i_size_read(inode),
1409				&cached_state, false);
1410	if (ret)
1411		goto out_nospc;
1412
1413	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1414		up_write(&block_group->data_rwsem);
1415	/*
1416	 * Release the pages and unlock the extent, we will flush
1417	 * them out later
1418	 */
1419	io_ctl_drop_pages(io_ctl);
1420	io_ctl_free(io_ctl);
1421
1422	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1423			     i_size_read(inode) - 1, &cached_state);
1424
1425	/*
1426	 * at this point the pages are under IO and we're happy,
1427	 * The caller is responsible for waiting on them and updating
1428	 * the cache and the inode
1429	 */
1430	io_ctl->entries = entries;
1431	io_ctl->bitmaps = bitmaps;
1432
1433	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1434	if (ret)
1435		goto out;
1436
1437	return 0;
1438
 
 
 
 
 
 
 
 
 
 
 
 
1439out_nospc_locked:
1440	cleanup_bitmap_list(&bitmap_list);
1441	spin_unlock(&ctl->tree_lock);
1442	mutex_unlock(&ctl->cache_writeout_mutex);
1443
1444out_nospc:
1445	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1446
1447out_unlock:
1448	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1449		up_write(&block_group->data_rwsem);
1450
1451out:
1452	io_ctl->inode = NULL;
1453	io_ctl_free(io_ctl);
1454	if (ret) {
1455		invalidate_inode_pages2(inode->i_mapping);
1456		BTRFS_I(inode)->generation = 0;
1457	}
1458	btrfs_update_inode(trans, root, BTRFS_I(inode));
1459	if (must_iput)
1460		iput(inode);
1461	return ret;
1462}
1463
1464int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1465			  struct btrfs_block_group *block_group,
1466			  struct btrfs_path *path)
1467{
1468	struct btrfs_fs_info *fs_info = trans->fs_info;
1469	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1470	struct inode *inode;
1471	int ret = 0;
1472
1473	spin_lock(&block_group->lock);
1474	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1475		spin_unlock(&block_group->lock);
1476		return 0;
1477	}
1478	spin_unlock(&block_group->lock);
1479
1480	inode = lookup_free_space_inode(block_group, path);
1481	if (IS_ERR(inode))
1482		return 0;
1483
1484	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1485				block_group, &block_group->io_ctl, trans);
1486	if (ret) {
1487		btrfs_debug(fs_info,
1488	  "failed to write free space cache for block group %llu error %d",
1489			  block_group->start, ret);
 
 
1490		spin_lock(&block_group->lock);
1491		block_group->disk_cache_state = BTRFS_DC_ERROR;
1492		spin_unlock(&block_group->lock);
1493
1494		block_group->io_ctl.inode = NULL;
1495		iput(inode);
1496	}
1497
1498	/*
1499	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1500	 * to wait for IO and put the inode
1501	 */
1502
1503	return ret;
1504}
1505
1506static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1507					  u64 offset)
1508{
1509	ASSERT(offset >= bitmap_start);
1510	offset -= bitmap_start;
1511	return (unsigned long)(div_u64(offset, unit));
1512}
1513
1514static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1515{
1516	return (unsigned long)(div_u64(bytes, unit));
1517}
1518
1519static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1520				   u64 offset)
1521{
1522	u64 bitmap_start;
1523	u64 bytes_per_bitmap;
1524
1525	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1526	bitmap_start = offset - ctl->start;
1527	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1528	bitmap_start *= bytes_per_bitmap;
1529	bitmap_start += ctl->start;
1530
1531	return bitmap_start;
1532}
1533
1534static int tree_insert_offset(struct rb_root *root, u64 offset,
1535			      struct rb_node *node, int bitmap)
1536{
1537	struct rb_node **p = &root->rb_node;
1538	struct rb_node *parent = NULL;
1539	struct btrfs_free_space *info;
1540
1541	while (*p) {
1542		parent = *p;
1543		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1544
1545		if (offset < info->offset) {
1546			p = &(*p)->rb_left;
1547		} else if (offset > info->offset) {
1548			p = &(*p)->rb_right;
1549		} else {
1550			/*
1551			 * we could have a bitmap entry and an extent entry
1552			 * share the same offset.  If this is the case, we want
1553			 * the extent entry to always be found first if we do a
1554			 * linear search through the tree, since we want to have
1555			 * the quickest allocation time, and allocating from an
1556			 * extent is faster than allocating from a bitmap.  So
1557			 * if we're inserting a bitmap and we find an entry at
1558			 * this offset, we want to go right, or after this entry
1559			 * logically.  If we are inserting an extent and we've
1560			 * found a bitmap, we want to go left, or before
1561			 * logically.
1562			 */
1563			if (bitmap) {
1564				if (info->bitmap) {
1565					WARN_ON_ONCE(1);
1566					return -EEXIST;
1567				}
1568				p = &(*p)->rb_right;
1569			} else {
1570				if (!info->bitmap) {
1571					WARN_ON_ONCE(1);
1572					return -EEXIST;
1573				}
1574				p = &(*p)->rb_left;
1575			}
1576		}
1577	}
1578
1579	rb_link_node(node, parent, p);
1580	rb_insert_color(node, root);
1581
1582	return 0;
1583}
1584
1585/*
1586 * searches the tree for the given offset.
1587 *
1588 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1589 * want a section that has at least bytes size and comes at or after the given
1590 * offset.
1591 */
1592static struct btrfs_free_space *
1593tree_search_offset(struct btrfs_free_space_ctl *ctl,
1594		   u64 offset, int bitmap_only, int fuzzy)
1595{
1596	struct rb_node *n = ctl->free_space_offset.rb_node;
1597	struct btrfs_free_space *entry, *prev = NULL;
1598
1599	/* find entry that is closest to the 'offset' */
1600	while (1) {
1601		if (!n) {
1602			entry = NULL;
1603			break;
1604		}
1605
1606		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1607		prev = entry;
1608
1609		if (offset < entry->offset)
1610			n = n->rb_left;
1611		else if (offset > entry->offset)
1612			n = n->rb_right;
1613		else
1614			break;
1615	}
1616
1617	if (bitmap_only) {
1618		if (!entry)
1619			return NULL;
1620		if (entry->bitmap)
1621			return entry;
1622
1623		/*
1624		 * bitmap entry and extent entry may share same offset,
1625		 * in that case, bitmap entry comes after extent entry.
1626		 */
1627		n = rb_next(n);
1628		if (!n)
1629			return NULL;
1630		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1631		if (entry->offset != offset)
1632			return NULL;
1633
1634		WARN_ON(!entry->bitmap);
1635		return entry;
1636	} else if (entry) {
1637		if (entry->bitmap) {
1638			/*
1639			 * if previous extent entry covers the offset,
1640			 * we should return it instead of the bitmap entry
1641			 */
1642			n = rb_prev(&entry->offset_index);
1643			if (n) {
1644				prev = rb_entry(n, struct btrfs_free_space,
1645						offset_index);
1646				if (!prev->bitmap &&
1647				    prev->offset + prev->bytes > offset)
1648					entry = prev;
1649			}
1650		}
1651		return entry;
1652	}
1653
1654	if (!prev)
1655		return NULL;
1656
1657	/* find last entry before the 'offset' */
1658	entry = prev;
1659	if (entry->offset > offset) {
1660		n = rb_prev(&entry->offset_index);
1661		if (n) {
1662			entry = rb_entry(n, struct btrfs_free_space,
1663					offset_index);
1664			ASSERT(entry->offset <= offset);
1665		} else {
1666			if (fuzzy)
1667				return entry;
1668			else
1669				return NULL;
1670		}
1671	}
1672
1673	if (entry->bitmap) {
1674		n = rb_prev(&entry->offset_index);
1675		if (n) {
1676			prev = rb_entry(n, struct btrfs_free_space,
1677					offset_index);
1678			if (!prev->bitmap &&
1679			    prev->offset + prev->bytes > offset)
1680				return prev;
1681		}
1682		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1683			return entry;
1684	} else if (entry->offset + entry->bytes > offset)
1685		return entry;
1686
1687	if (!fuzzy)
1688		return NULL;
1689
1690	while (1) {
1691		if (entry->bitmap) {
1692			if (entry->offset + BITS_PER_BITMAP *
1693			    ctl->unit > offset)
1694				break;
1695		} else {
1696			if (entry->offset + entry->bytes > offset)
1697				break;
1698		}
1699
1700		n = rb_next(&entry->offset_index);
1701		if (!n)
1702			return NULL;
1703		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1704	}
1705	return entry;
1706}
1707
1708static inline void
1709__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1710		    struct btrfs_free_space *info)
1711{
1712	rb_erase(&info->offset_index, &ctl->free_space_offset);
1713	ctl->free_extents--;
1714
1715	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1716		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1717		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1718	}
1719}
1720
1721static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1722			      struct btrfs_free_space *info)
1723{
1724	__unlink_free_space(ctl, info);
1725	ctl->free_space -= info->bytes;
1726}
1727
1728static int link_free_space(struct btrfs_free_space_ctl *ctl,
1729			   struct btrfs_free_space *info)
1730{
1731	int ret = 0;
1732
1733	ASSERT(info->bytes || info->bitmap);
1734	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1735				 &info->offset_index, (info->bitmap != NULL));
1736	if (ret)
1737		return ret;
1738
1739	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1740		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1741		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1742	}
1743
1744	ctl->free_space += info->bytes;
1745	ctl->free_extents++;
1746	return ret;
1747}
1748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1750				       struct btrfs_free_space *info,
1751				       u64 offset, u64 bytes)
1752{
1753	unsigned long start, count, end;
1754	int extent_delta = -1;
1755
1756	start = offset_to_bit(info->offset, ctl->unit, offset);
1757	count = bytes_to_bits(bytes, ctl->unit);
1758	end = start + count;
1759	ASSERT(end <= BITS_PER_BITMAP);
1760
1761	bitmap_clear(info->bitmap, start, count);
1762
1763	info->bytes -= bytes;
1764	if (info->max_extent_size > ctl->unit)
1765		info->max_extent_size = 0;
1766
1767	if (start && test_bit(start - 1, info->bitmap))
1768		extent_delta++;
1769
1770	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1771		extent_delta++;
1772
1773	info->bitmap_extents += extent_delta;
1774	if (!btrfs_free_space_trimmed(info)) {
1775		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1776		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1777	}
1778}
1779
1780static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1781			      struct btrfs_free_space *info, u64 offset,
1782			      u64 bytes)
1783{
1784	__bitmap_clear_bits(ctl, info, offset, bytes);
1785	ctl->free_space -= bytes;
1786}
1787
1788static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1789			    struct btrfs_free_space *info, u64 offset,
1790			    u64 bytes)
1791{
1792	unsigned long start, count, end;
1793	int extent_delta = 1;
1794
1795	start = offset_to_bit(info->offset, ctl->unit, offset);
1796	count = bytes_to_bits(bytes, ctl->unit);
1797	end = start + count;
1798	ASSERT(end <= BITS_PER_BITMAP);
1799
1800	bitmap_set(info->bitmap, start, count);
1801
1802	info->bytes += bytes;
1803	ctl->free_space += bytes;
1804
1805	if (start && test_bit(start - 1, info->bitmap))
1806		extent_delta--;
1807
1808	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1809		extent_delta--;
1810
1811	info->bitmap_extents += extent_delta;
1812	if (!btrfs_free_space_trimmed(info)) {
1813		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1814		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1815	}
1816}
1817
1818/*
1819 * If we can not find suitable extent, we will use bytes to record
1820 * the size of the max extent.
1821 */
1822static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1823			 struct btrfs_free_space *bitmap_info, u64 *offset,
1824			 u64 *bytes, bool for_alloc)
1825{
1826	unsigned long found_bits = 0;
1827	unsigned long max_bits = 0;
1828	unsigned long bits, i;
1829	unsigned long next_zero;
1830	unsigned long extent_bits;
1831
1832	/*
1833	 * Skip searching the bitmap if we don't have a contiguous section that
1834	 * is large enough for this allocation.
1835	 */
1836	if (for_alloc &&
1837	    bitmap_info->max_extent_size &&
1838	    bitmap_info->max_extent_size < *bytes) {
1839		*bytes = bitmap_info->max_extent_size;
1840		return -1;
1841	}
1842
1843	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1844			  max_t(u64, *offset, bitmap_info->offset));
1845	bits = bytes_to_bits(*bytes, ctl->unit);
1846
1847	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1848		if (for_alloc && bits == 1) {
1849			found_bits = 1;
1850			break;
1851		}
1852		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1853					       BITS_PER_BITMAP, i);
1854		extent_bits = next_zero - i;
1855		if (extent_bits >= bits) {
1856			found_bits = extent_bits;
1857			break;
1858		} else if (extent_bits > max_bits) {
1859			max_bits = extent_bits;
1860		}
1861		i = next_zero;
1862	}
1863
1864	if (found_bits) {
1865		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1866		*bytes = (u64)(found_bits) * ctl->unit;
1867		return 0;
1868	}
1869
1870	*bytes = (u64)(max_bits) * ctl->unit;
1871	bitmap_info->max_extent_size = *bytes;
1872	return -1;
1873}
1874
1875static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1876{
1877	if (entry->bitmap)
1878		return entry->max_extent_size;
1879	return entry->bytes;
1880}
1881
1882/* Cache the size of the max extent in bytes */
1883static struct btrfs_free_space *
1884find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1885		unsigned long align, u64 *max_extent_size)
1886{
1887	struct btrfs_free_space *entry;
1888	struct rb_node *node;
1889	u64 tmp;
1890	u64 align_off;
1891	int ret;
1892
1893	if (!ctl->free_space_offset.rb_node)
1894		goto out;
1895
1896	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1897	if (!entry)
1898		goto out;
1899
1900	for (node = &entry->offset_index; node; node = rb_next(node)) {
1901		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1902		if (entry->bytes < *bytes) {
1903			*max_extent_size = max(get_max_extent_size(entry),
1904					       *max_extent_size);
1905			continue;
1906		}
1907
1908		/* make sure the space returned is big enough
1909		 * to match our requested alignment
1910		 */
1911		if (*bytes >= align) {
1912			tmp = entry->offset - ctl->start + align - 1;
1913			tmp = div64_u64(tmp, align);
1914			tmp = tmp * align + ctl->start;
1915			align_off = tmp - entry->offset;
1916		} else {
1917			align_off = 0;
1918			tmp = entry->offset;
1919		}
1920
1921		if (entry->bytes < *bytes + align_off) {
1922			*max_extent_size = max(get_max_extent_size(entry),
1923					       *max_extent_size);
1924			continue;
1925		}
1926
1927		if (entry->bitmap) {
1928			u64 size = *bytes;
1929
1930			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1931			if (!ret) {
1932				*offset = tmp;
1933				*bytes = size;
1934				return entry;
1935			} else {
1936				*max_extent_size =
1937					max(get_max_extent_size(entry),
1938					    *max_extent_size);
1939			}
1940			continue;
1941		}
1942
1943		*offset = tmp;
1944		*bytes = entry->bytes - align_off;
1945		return entry;
1946	}
1947out:
1948	return NULL;
1949}
1950
1951static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1952			   struct btrfs_free_space *info, u64 offset)
1953{
1954	info->offset = offset_to_bitmap(ctl, offset);
1955	info->bytes = 0;
1956	info->bitmap_extents = 0;
1957	INIT_LIST_HEAD(&info->list);
1958	link_free_space(ctl, info);
1959	ctl->total_bitmaps++;
1960	recalculate_thresholds(ctl);
 
1961}
1962
1963static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1964			struct btrfs_free_space *bitmap_info)
1965{
1966	/*
1967	 * Normally when this is called, the bitmap is completely empty. However,
1968	 * if we are blowing up the free space cache for one reason or another
1969	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1970	 * we may leave stats on the table.
1971	 */
1972	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1973		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1974			bitmap_info->bitmap_extents;
1975		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1976
1977	}
1978	unlink_free_space(ctl, bitmap_info);
1979	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1980	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1981	ctl->total_bitmaps--;
1982	recalculate_thresholds(ctl);
1983}
1984
1985static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1986			      struct btrfs_free_space *bitmap_info,
1987			      u64 *offset, u64 *bytes)
1988{
1989	u64 end;
1990	u64 search_start, search_bytes;
1991	int ret;
1992
1993again:
1994	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1995
1996	/*
1997	 * We need to search for bits in this bitmap.  We could only cover some
1998	 * of the extent in this bitmap thanks to how we add space, so we need
1999	 * to search for as much as it as we can and clear that amount, and then
2000	 * go searching for the next bit.
2001	 */
2002	search_start = *offset;
2003	search_bytes = ctl->unit;
2004	search_bytes = min(search_bytes, end - search_start + 1);
2005	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2006			    false);
2007	if (ret < 0 || search_start != *offset)
2008		return -EINVAL;
2009
2010	/* We may have found more bits than what we need */
2011	search_bytes = min(search_bytes, *bytes);
2012
2013	/* Cannot clear past the end of the bitmap */
2014	search_bytes = min(search_bytes, end - search_start + 1);
2015
2016	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2017	*offset += search_bytes;
2018	*bytes -= search_bytes;
2019
2020	if (*bytes) {
2021		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2022		if (!bitmap_info->bytes)
2023			free_bitmap(ctl, bitmap_info);
2024
2025		/*
2026		 * no entry after this bitmap, but we still have bytes to
2027		 * remove, so something has gone wrong.
2028		 */
2029		if (!next)
2030			return -EINVAL;
2031
2032		bitmap_info = rb_entry(next, struct btrfs_free_space,
2033				       offset_index);
2034
2035		/*
2036		 * if the next entry isn't a bitmap we need to return to let the
2037		 * extent stuff do its work.
2038		 */
2039		if (!bitmap_info->bitmap)
2040			return -EAGAIN;
2041
2042		/*
2043		 * Ok the next item is a bitmap, but it may not actually hold
2044		 * the information for the rest of this free space stuff, so
2045		 * look for it, and if we don't find it return so we can try
2046		 * everything over again.
2047		 */
2048		search_start = *offset;
2049		search_bytes = ctl->unit;
2050		ret = search_bitmap(ctl, bitmap_info, &search_start,
2051				    &search_bytes, false);
2052		if (ret < 0 || search_start != *offset)
2053			return -EAGAIN;
2054
2055		goto again;
2056	} else if (!bitmap_info->bytes)
2057		free_bitmap(ctl, bitmap_info);
2058
2059	return 0;
2060}
2061
2062static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2063			       struct btrfs_free_space *info, u64 offset,
2064			       u64 bytes, enum btrfs_trim_state trim_state)
2065{
2066	u64 bytes_to_set = 0;
2067	u64 end;
2068
2069	/*
2070	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2071	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2072	 */
2073	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2074		if (btrfs_free_space_trimmed(info)) {
2075			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2076				info->bitmap_extents;
2077			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2078		}
2079		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2080	}
2081
2082	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2083
2084	bytes_to_set = min(end - offset, bytes);
2085
2086	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2087
2088	/*
2089	 * We set some bytes, we have no idea what the max extent size is
2090	 * anymore.
2091	 */
2092	info->max_extent_size = 0;
2093
2094	return bytes_to_set;
2095
2096}
2097
2098static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2099		      struct btrfs_free_space *info)
2100{
2101	struct btrfs_block_group *block_group = ctl->private;
2102	struct btrfs_fs_info *fs_info = block_group->fs_info;
2103	bool forced = false;
2104
2105#ifdef CONFIG_BTRFS_DEBUG
2106	if (btrfs_should_fragment_free_space(block_group))
2107		forced = true;
2108#endif
2109
2110	/* This is a way to reclaim large regions from the bitmaps. */
2111	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2112		return false;
2113
2114	/*
2115	 * If we are below the extents threshold then we can add this as an
2116	 * extent, and don't have to deal with the bitmap
2117	 */
2118	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2119		/*
2120		 * If this block group has some small extents we don't want to
2121		 * use up all of our free slots in the cache with them, we want
2122		 * to reserve them to larger extents, however if we have plenty
2123		 * of cache left then go ahead an dadd them, no sense in adding
2124		 * the overhead of a bitmap if we don't have to.
2125		 */
2126		if (info->bytes <= fs_info->sectorsize * 8) {
2127			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2128				return false;
2129		} else {
2130			return false;
2131		}
2132	}
2133
2134	/*
2135	 * The original block groups from mkfs can be really small, like 8
2136	 * megabytes, so don't bother with a bitmap for those entries.  However
2137	 * some block groups can be smaller than what a bitmap would cover but
2138	 * are still large enough that they could overflow the 32k memory limit,
2139	 * so allow those block groups to still be allowed to have a bitmap
2140	 * entry.
2141	 */
2142	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2143		return false;
2144
2145	return true;
2146}
2147
2148static const struct btrfs_free_space_op free_space_op = {
 
2149	.use_bitmap		= use_bitmap,
2150};
2151
2152static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2153			      struct btrfs_free_space *info)
2154{
2155	struct btrfs_free_space *bitmap_info;
2156	struct btrfs_block_group *block_group = NULL;
2157	int added = 0;
2158	u64 bytes, offset, bytes_added;
2159	enum btrfs_trim_state trim_state;
2160	int ret;
2161
2162	bytes = info->bytes;
2163	offset = info->offset;
2164	trim_state = info->trim_state;
2165
2166	if (!ctl->op->use_bitmap(ctl, info))
2167		return 0;
2168
2169	if (ctl->op == &free_space_op)
2170		block_group = ctl->private;
2171again:
2172	/*
2173	 * Since we link bitmaps right into the cluster we need to see if we
2174	 * have a cluster here, and if so and it has our bitmap we need to add
2175	 * the free space to that bitmap.
2176	 */
2177	if (block_group && !list_empty(&block_group->cluster_list)) {
2178		struct btrfs_free_cluster *cluster;
2179		struct rb_node *node;
2180		struct btrfs_free_space *entry;
2181
2182		cluster = list_entry(block_group->cluster_list.next,
2183				     struct btrfs_free_cluster,
2184				     block_group_list);
2185		spin_lock(&cluster->lock);
2186		node = rb_first(&cluster->root);
2187		if (!node) {
2188			spin_unlock(&cluster->lock);
2189			goto no_cluster_bitmap;
2190		}
2191
2192		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2193		if (!entry->bitmap) {
2194			spin_unlock(&cluster->lock);
2195			goto no_cluster_bitmap;
2196		}
2197
2198		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2199			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2200							  bytes, trim_state);
2201			bytes -= bytes_added;
2202			offset += bytes_added;
2203		}
2204		spin_unlock(&cluster->lock);
2205		if (!bytes) {
2206			ret = 1;
2207			goto out;
2208		}
2209	}
2210
2211no_cluster_bitmap:
2212	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2213					 1, 0);
2214	if (!bitmap_info) {
2215		ASSERT(added == 0);
2216		goto new_bitmap;
2217	}
2218
2219	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2220					  trim_state);
2221	bytes -= bytes_added;
2222	offset += bytes_added;
2223	added = 0;
2224
2225	if (!bytes) {
2226		ret = 1;
2227		goto out;
2228	} else
2229		goto again;
2230
2231new_bitmap:
2232	if (info && info->bitmap) {
2233		add_new_bitmap(ctl, info, offset);
2234		added = 1;
2235		info = NULL;
2236		goto again;
2237	} else {
2238		spin_unlock(&ctl->tree_lock);
2239
2240		/* no pre-allocated info, allocate a new one */
2241		if (!info) {
2242			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2243						 GFP_NOFS);
2244			if (!info) {
2245				spin_lock(&ctl->tree_lock);
2246				ret = -ENOMEM;
2247				goto out;
2248			}
2249		}
2250
2251		/* allocate the bitmap */
2252		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2253						 GFP_NOFS);
2254		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2255		spin_lock(&ctl->tree_lock);
2256		if (!info->bitmap) {
2257			ret = -ENOMEM;
2258			goto out;
2259		}
2260		goto again;
2261	}
2262
2263out:
2264	if (info) {
2265		if (info->bitmap)
2266			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2267					info->bitmap);
2268		kmem_cache_free(btrfs_free_space_cachep, info);
2269	}
2270
2271	return ret;
2272}
2273
2274/*
2275 * Free space merging rules:
2276 *  1) Merge trimmed areas together
2277 *  2) Let untrimmed areas coalesce with trimmed areas
2278 *  3) Always pull neighboring regions from bitmaps
2279 *
2280 * The above rules are for when we merge free space based on btrfs_trim_state.
2281 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2282 * same reason: to promote larger extent regions which makes life easier for
2283 * find_free_extent().  Rule 2 enables coalescing based on the common path
2284 * being returning free space from btrfs_finish_extent_commit().  So when free
2285 * space is trimmed, it will prevent aggregating trimmed new region and
2286 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2287 * and provide find_free_extent() with the largest extents possible hoping for
2288 * the reuse path.
2289 */
2290static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2291			  struct btrfs_free_space *info, bool update_stat)
2292{
2293	struct btrfs_free_space *left_info = NULL;
2294	struct btrfs_free_space *right_info;
2295	bool merged = false;
2296	u64 offset = info->offset;
2297	u64 bytes = info->bytes;
2298	const bool is_trimmed = btrfs_free_space_trimmed(info);
2299
2300	/*
2301	 * first we want to see if there is free space adjacent to the range we
2302	 * are adding, if there is remove that struct and add a new one to
2303	 * cover the entire range
2304	 */
2305	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2306	if (right_info && rb_prev(&right_info->offset_index))
2307		left_info = rb_entry(rb_prev(&right_info->offset_index),
2308				     struct btrfs_free_space, offset_index);
2309	else if (!right_info)
2310		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2311
2312	/* See try_merge_free_space() comment. */
2313	if (right_info && !right_info->bitmap &&
2314	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2315		if (update_stat)
2316			unlink_free_space(ctl, right_info);
2317		else
2318			__unlink_free_space(ctl, right_info);
2319		info->bytes += right_info->bytes;
2320		kmem_cache_free(btrfs_free_space_cachep, right_info);
2321		merged = true;
2322	}
2323
2324	/* See try_merge_free_space() comment. */
2325	if (left_info && !left_info->bitmap &&
2326	    left_info->offset + left_info->bytes == offset &&
2327	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2328		if (update_stat)
2329			unlink_free_space(ctl, left_info);
2330		else
2331			__unlink_free_space(ctl, left_info);
2332		info->offset = left_info->offset;
2333		info->bytes += left_info->bytes;
2334		kmem_cache_free(btrfs_free_space_cachep, left_info);
2335		merged = true;
2336	}
2337
2338	return merged;
2339}
2340
2341static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2342				     struct btrfs_free_space *info,
2343				     bool update_stat)
2344{
2345	struct btrfs_free_space *bitmap;
2346	unsigned long i;
2347	unsigned long j;
2348	const u64 end = info->offset + info->bytes;
2349	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2350	u64 bytes;
2351
2352	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2353	if (!bitmap)
2354		return false;
2355
2356	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2357	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2358	if (j == i)
2359		return false;
2360	bytes = (j - i) * ctl->unit;
2361	info->bytes += bytes;
2362
2363	/* See try_merge_free_space() comment. */
2364	if (!btrfs_free_space_trimmed(bitmap))
2365		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2366
2367	if (update_stat)
2368		bitmap_clear_bits(ctl, bitmap, end, bytes);
2369	else
2370		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2371
2372	if (!bitmap->bytes)
2373		free_bitmap(ctl, bitmap);
2374
2375	return true;
2376}
2377
2378static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2379				       struct btrfs_free_space *info,
2380				       bool update_stat)
2381{
2382	struct btrfs_free_space *bitmap;
2383	u64 bitmap_offset;
2384	unsigned long i;
2385	unsigned long j;
2386	unsigned long prev_j;
2387	u64 bytes;
2388
2389	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2390	/* If we're on a boundary, try the previous logical bitmap. */
2391	if (bitmap_offset == info->offset) {
2392		if (info->offset == 0)
2393			return false;
2394		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2395	}
2396
2397	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2398	if (!bitmap)
2399		return false;
2400
2401	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2402	j = 0;
2403	prev_j = (unsigned long)-1;
2404	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2405		if (j > i)
2406			break;
2407		prev_j = j;
2408	}
2409	if (prev_j == i)
2410		return false;
2411
2412	if (prev_j == (unsigned long)-1)
2413		bytes = (i + 1) * ctl->unit;
2414	else
2415		bytes = (i - prev_j) * ctl->unit;
2416
2417	info->offset -= bytes;
2418	info->bytes += bytes;
2419
2420	/* See try_merge_free_space() comment. */
2421	if (!btrfs_free_space_trimmed(bitmap))
2422		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2423
2424	if (update_stat)
2425		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2426	else
2427		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2428
2429	if (!bitmap->bytes)
2430		free_bitmap(ctl, bitmap);
2431
2432	return true;
2433}
2434
2435/*
2436 * We prefer always to allocate from extent entries, both for clustered and
2437 * non-clustered allocation requests. So when attempting to add a new extent
2438 * entry, try to see if there's adjacent free space in bitmap entries, and if
2439 * there is, migrate that space from the bitmaps to the extent.
2440 * Like this we get better chances of satisfying space allocation requests
2441 * because we attempt to satisfy them based on a single cache entry, and never
2442 * on 2 or more entries - even if the entries represent a contiguous free space
2443 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2444 * ends).
2445 */
2446static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2447			      struct btrfs_free_space *info,
2448			      bool update_stat)
2449{
2450	/*
2451	 * Only work with disconnected entries, as we can change their offset,
2452	 * and must be extent entries.
2453	 */
2454	ASSERT(!info->bitmap);
2455	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2456
2457	if (ctl->total_bitmaps > 0) {
2458		bool stole_end;
2459		bool stole_front = false;
2460
2461		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2462		if (ctl->total_bitmaps > 0)
2463			stole_front = steal_from_bitmap_to_front(ctl, info,
2464								 update_stat);
2465
2466		if (stole_end || stole_front)
2467			try_merge_free_space(ctl, info, update_stat);
2468	}
2469}
2470
2471int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2472			   struct btrfs_free_space_ctl *ctl,
2473			   u64 offset, u64 bytes,
2474			   enum btrfs_trim_state trim_state)
2475{
2476	struct btrfs_block_group *block_group = ctl->private;
2477	struct btrfs_free_space *info;
2478	int ret = 0;
2479	u64 filter_bytes = bytes;
2480
2481	ASSERT(!btrfs_is_zoned(fs_info));
2482
2483	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2484	if (!info)
2485		return -ENOMEM;
2486
2487	info->offset = offset;
2488	info->bytes = bytes;
2489	info->trim_state = trim_state;
2490	RB_CLEAR_NODE(&info->offset_index);
2491
2492	spin_lock(&ctl->tree_lock);
2493
2494	if (try_merge_free_space(ctl, info, true))
2495		goto link;
2496
2497	/*
2498	 * There was no extent directly to the left or right of this new
2499	 * extent then we know we're going to have to allocate a new extent, so
2500	 * before we do that see if we need to drop this into a bitmap
2501	 */
2502	ret = insert_into_bitmap(ctl, info);
2503	if (ret < 0) {
2504		goto out;
2505	} else if (ret) {
2506		ret = 0;
2507		goto out;
2508	}
2509link:
2510	/*
2511	 * Only steal free space from adjacent bitmaps if we're sure we're not
2512	 * going to add the new free space to existing bitmap entries - because
2513	 * that would mean unnecessary work that would be reverted. Therefore
2514	 * attempt to steal space from bitmaps if we're adding an extent entry.
2515	 */
2516	steal_from_bitmap(ctl, info, true);
2517
2518	filter_bytes = max(filter_bytes, info->bytes);
2519
2520	ret = link_free_space(ctl, info);
2521	if (ret)
2522		kmem_cache_free(btrfs_free_space_cachep, info);
2523out:
2524	btrfs_discard_update_discardable(block_group);
2525	spin_unlock(&ctl->tree_lock);
2526
2527	if (ret) {
2528		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2529		ASSERT(ret != -EEXIST);
2530	}
2531
2532	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2533		btrfs_discard_check_filter(block_group, filter_bytes);
2534		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2535	}
2536
2537	return ret;
2538}
2539
2540static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2541					u64 bytenr, u64 size, bool used)
2542{
2543	struct btrfs_fs_info *fs_info = block_group->fs_info;
2544	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2545	u64 offset = bytenr - block_group->start;
2546	u64 to_free, to_unusable;
2547
2548	spin_lock(&ctl->tree_lock);
2549	if (!used)
2550		to_free = size;
2551	else if (offset >= block_group->alloc_offset)
2552		to_free = size;
2553	else if (offset + size <= block_group->alloc_offset)
2554		to_free = 0;
2555	else
2556		to_free = offset + size - block_group->alloc_offset;
2557	to_unusable = size - to_free;
2558
2559	ctl->free_space += to_free;
2560	/*
2561	 * If the block group is read-only, we should account freed space into
2562	 * bytes_readonly.
2563	 */
2564	if (!block_group->ro)
2565		block_group->zone_unusable += to_unusable;
2566	spin_unlock(&ctl->tree_lock);
2567	if (!used) {
2568		spin_lock(&block_group->lock);
2569		block_group->alloc_offset -= size;
2570		spin_unlock(&block_group->lock);
2571	}
2572
2573	/* All the region is now unusable. Mark it as unused and reclaim */
2574	if (block_group->zone_unusable == block_group->length) {
2575		btrfs_mark_bg_unused(block_group);
2576	} else if (block_group->zone_unusable >=
2577		   div_factor_fine(block_group->length,
2578				   fs_info->bg_reclaim_threshold)) {
2579		btrfs_mark_bg_to_reclaim(block_group);
2580	}
2581
2582	return 0;
2583}
2584
2585int btrfs_add_free_space(struct btrfs_block_group *block_group,
2586			 u64 bytenr, u64 size)
2587{
2588	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2589
2590	if (btrfs_is_zoned(block_group->fs_info))
2591		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2592						    true);
2593
2594	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2595		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2596
2597	return __btrfs_add_free_space(block_group->fs_info,
2598				      block_group->free_space_ctl,
2599				      bytenr, size, trim_state);
2600}
2601
2602int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2603				u64 bytenr, u64 size)
2604{
2605	if (btrfs_is_zoned(block_group->fs_info))
2606		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2607						    false);
2608
2609	return btrfs_add_free_space(block_group, bytenr, size);
2610}
2611
2612/*
2613 * This is a subtle distinction because when adding free space back in general,
2614 * we want it to be added as untrimmed for async. But in the case where we add
2615 * it on loading of a block group, we want to consider it trimmed.
2616 */
2617int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2618				       u64 bytenr, u64 size)
2619{
2620	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2621
2622	if (btrfs_is_zoned(block_group->fs_info))
2623		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2624						    true);
2625
2626	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2627	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2628		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2629
2630	return __btrfs_add_free_space(block_group->fs_info,
2631				      block_group->free_space_ctl,
2632				      bytenr, size, trim_state);
2633}
2634
2635int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2636			    u64 offset, u64 bytes)
2637{
2638	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2639	struct btrfs_free_space *info;
2640	int ret;
2641	bool re_search = false;
2642
2643	if (btrfs_is_zoned(block_group->fs_info)) {
2644		/*
2645		 * This can happen with conventional zones when replaying log.
2646		 * Since the allocation info of tree-log nodes are not recorded
2647		 * to the extent-tree, calculate_alloc_pointer() failed to
2648		 * advance the allocation pointer after last allocated tree log
2649		 * node blocks.
2650		 *
2651		 * This function is called from
2652		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2653		 * Advance the pointer not to overwrite the tree-log nodes.
2654		 */
2655		if (block_group->start + block_group->alloc_offset <
2656		    offset + bytes) {
2657			block_group->alloc_offset =
2658				offset + bytes - block_group->start;
2659		}
2660		return 0;
2661	}
2662
2663	spin_lock(&ctl->tree_lock);
2664
2665again:
2666	ret = 0;
2667	if (!bytes)
2668		goto out_lock;
2669
2670	info = tree_search_offset(ctl, offset, 0, 0);
2671	if (!info) {
2672		/*
2673		 * oops didn't find an extent that matched the space we wanted
2674		 * to remove, look for a bitmap instead
2675		 */
2676		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2677					  1, 0);
2678		if (!info) {
2679			/*
2680			 * If we found a partial bit of our free space in a
2681			 * bitmap but then couldn't find the other part this may
2682			 * be a problem, so WARN about it.
2683			 */
2684			WARN_ON(re_search);
2685			goto out_lock;
2686		}
2687	}
2688
2689	re_search = false;
2690	if (!info->bitmap) {
2691		unlink_free_space(ctl, info);
2692		if (offset == info->offset) {
2693			u64 to_free = min(bytes, info->bytes);
2694
2695			info->bytes -= to_free;
2696			info->offset += to_free;
2697			if (info->bytes) {
2698				ret = link_free_space(ctl, info);
2699				WARN_ON(ret);
2700			} else {
2701				kmem_cache_free(btrfs_free_space_cachep, info);
2702			}
2703
2704			offset += to_free;
2705			bytes -= to_free;
2706			goto again;
2707		} else {
2708			u64 old_end = info->bytes + info->offset;
2709
2710			info->bytes = offset - info->offset;
2711			ret = link_free_space(ctl, info);
2712			WARN_ON(ret);
2713			if (ret)
2714				goto out_lock;
2715
2716			/* Not enough bytes in this entry to satisfy us */
2717			if (old_end < offset + bytes) {
2718				bytes -= old_end - offset;
2719				offset = old_end;
2720				goto again;
2721			} else if (old_end == offset + bytes) {
2722				/* all done */
2723				goto out_lock;
2724			}
2725			spin_unlock(&ctl->tree_lock);
2726
2727			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2728						     offset + bytes,
2729						     old_end - (offset + bytes),
2730						     info->trim_state);
2731			WARN_ON(ret);
2732			goto out;
2733		}
2734	}
2735
2736	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2737	if (ret == -EAGAIN) {
2738		re_search = true;
2739		goto again;
2740	}
2741out_lock:
2742	btrfs_discard_update_discardable(block_group);
2743	spin_unlock(&ctl->tree_lock);
2744out:
2745	return ret;
2746}
2747
2748void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2749			   u64 bytes)
2750{
2751	struct btrfs_fs_info *fs_info = block_group->fs_info;
2752	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2753	struct btrfs_free_space *info;
2754	struct rb_node *n;
2755	int count = 0;
2756
2757	/*
2758	 * Zoned btrfs does not use free space tree and cluster. Just print
2759	 * out the free space after the allocation offset.
2760	 */
2761	if (btrfs_is_zoned(fs_info)) {
2762		btrfs_info(fs_info, "free space %llu",
2763			   block_group->length - block_group->alloc_offset);
2764		return;
2765	}
2766
2767	spin_lock(&ctl->tree_lock);
2768	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2769		info = rb_entry(n, struct btrfs_free_space, offset_index);
2770		if (info->bytes >= bytes && !block_group->ro)
2771			count++;
2772		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2773			   info->offset, info->bytes,
2774		       (info->bitmap) ? "yes" : "no");
2775	}
2776	spin_unlock(&ctl->tree_lock);
2777	btrfs_info(fs_info, "block group has cluster?: %s",
2778	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2779	btrfs_info(fs_info,
2780		   "%d blocks of free space at or bigger than bytes is", count);
2781}
2782
2783void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2784			       struct btrfs_free_space_ctl *ctl)
2785{
2786	struct btrfs_fs_info *fs_info = block_group->fs_info;
 
2787
2788	spin_lock_init(&ctl->tree_lock);
2789	ctl->unit = fs_info->sectorsize;
2790	ctl->start = block_group->start;
2791	ctl->private = block_group;
2792	ctl->op = &free_space_op;
2793	INIT_LIST_HEAD(&ctl->trimming_ranges);
2794	mutex_init(&ctl->cache_writeout_mutex);
2795
2796	/*
2797	 * we only want to have 32k of ram per block group for keeping
2798	 * track of free space, and if we pass 1/2 of that we want to
2799	 * start converting things over to using bitmaps
2800	 */
2801	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2802}
2803
2804/*
2805 * for a given cluster, put all of its extents back into the free
2806 * space cache.  If the block group passed doesn't match the block group
2807 * pointed to by the cluster, someone else raced in and freed the
2808 * cluster already.  In that case, we just return without changing anything
2809 */
2810static void __btrfs_return_cluster_to_free_space(
2811			     struct btrfs_block_group *block_group,
 
2812			     struct btrfs_free_cluster *cluster)
2813{
2814	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2815	struct btrfs_free_space *entry;
2816	struct rb_node *node;
2817
2818	spin_lock(&cluster->lock);
2819	if (cluster->block_group != block_group) {
2820		spin_unlock(&cluster->lock);
2821		return;
2822	}
2823
2824	cluster->block_group = NULL;
2825	cluster->window_start = 0;
2826	list_del_init(&cluster->block_group_list);
2827
2828	node = rb_first(&cluster->root);
2829	while (node) {
2830		bool bitmap;
2831
2832		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2833		node = rb_next(&entry->offset_index);
2834		rb_erase(&entry->offset_index, &cluster->root);
2835		RB_CLEAR_NODE(&entry->offset_index);
2836
2837		bitmap = (entry->bitmap != NULL);
2838		if (!bitmap) {
2839			/* Merging treats extents as if they were new */
2840			if (!btrfs_free_space_trimmed(entry)) {
2841				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2842				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2843					entry->bytes;
2844			}
2845
2846			try_merge_free_space(ctl, entry, false);
2847			steal_from_bitmap(ctl, entry, false);
2848
2849			/* As we insert directly, update these statistics */
2850			if (!btrfs_free_space_trimmed(entry)) {
2851				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2852				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2853					entry->bytes;
2854			}
2855		}
2856		tree_insert_offset(&ctl->free_space_offset,
2857				   entry->offset, &entry->offset_index, bitmap);
2858	}
2859	cluster->root = RB_ROOT;
 
 
2860	spin_unlock(&cluster->lock);
2861	btrfs_put_block_group(block_group);
 
2862}
2863
2864static void __btrfs_remove_free_space_cache_locked(
2865				struct btrfs_free_space_ctl *ctl)
2866{
2867	struct btrfs_free_space *info;
2868	struct rb_node *node;
2869
2870	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2871		info = rb_entry(node, struct btrfs_free_space, offset_index);
2872		if (!info->bitmap) {
2873			unlink_free_space(ctl, info);
2874			kmem_cache_free(btrfs_free_space_cachep, info);
2875		} else {
2876			free_bitmap(ctl, info);
2877		}
2878
2879		cond_resched_lock(&ctl->tree_lock);
2880	}
2881}
2882
2883void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2884{
2885	spin_lock(&ctl->tree_lock);
2886	__btrfs_remove_free_space_cache_locked(ctl);
2887	if (ctl->private)
2888		btrfs_discard_update_discardable(ctl->private);
2889	spin_unlock(&ctl->tree_lock);
2890}
2891
2892void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2893{
2894	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2895	struct btrfs_free_cluster *cluster;
2896	struct list_head *head;
2897
2898	spin_lock(&ctl->tree_lock);
2899	while ((head = block_group->cluster_list.next) !=
2900	       &block_group->cluster_list) {
2901		cluster = list_entry(head, struct btrfs_free_cluster,
2902				     block_group_list);
2903
2904		WARN_ON(cluster->block_group != block_group);
2905		__btrfs_return_cluster_to_free_space(block_group, cluster);
2906
2907		cond_resched_lock(&ctl->tree_lock);
2908	}
2909	__btrfs_remove_free_space_cache_locked(ctl);
2910	btrfs_discard_update_discardable(block_group);
2911	spin_unlock(&ctl->tree_lock);
2912
2913}
2914
2915/**
2916 * btrfs_is_free_space_trimmed - see if everything is trimmed
2917 * @block_group: block_group of interest
2918 *
2919 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2920 */
2921bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2922{
2923	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2924	struct btrfs_free_space *info;
2925	struct rb_node *node;
2926	bool ret = true;
2927
2928	spin_lock(&ctl->tree_lock);
2929	node = rb_first(&ctl->free_space_offset);
2930
2931	while (node) {
2932		info = rb_entry(node, struct btrfs_free_space, offset_index);
2933
2934		if (!btrfs_free_space_trimmed(info)) {
2935			ret = false;
2936			break;
2937		}
2938
2939		node = rb_next(node);
2940	}
2941
2942	spin_unlock(&ctl->tree_lock);
2943	return ret;
2944}
2945
2946u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2947			       u64 offset, u64 bytes, u64 empty_size,
2948			       u64 *max_extent_size)
2949{
2950	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2951	struct btrfs_discard_ctl *discard_ctl =
2952					&block_group->fs_info->discard_ctl;
2953	struct btrfs_free_space *entry = NULL;
2954	u64 bytes_search = bytes + empty_size;
2955	u64 ret = 0;
2956	u64 align_gap = 0;
2957	u64 align_gap_len = 0;
2958	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2959
2960	ASSERT(!btrfs_is_zoned(block_group->fs_info));
2961
2962	spin_lock(&ctl->tree_lock);
2963	entry = find_free_space(ctl, &offset, &bytes_search,
2964				block_group->full_stripe_len, max_extent_size);
2965	if (!entry)
2966		goto out;
2967
2968	ret = offset;
2969	if (entry->bitmap) {
2970		bitmap_clear_bits(ctl, entry, offset, bytes);
2971
2972		if (!btrfs_free_space_trimmed(entry))
2973			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2974
2975		if (!entry->bytes)
2976			free_bitmap(ctl, entry);
2977	} else {
2978		unlink_free_space(ctl, entry);
2979		align_gap_len = offset - entry->offset;
2980		align_gap = entry->offset;
2981		align_gap_trim_state = entry->trim_state;
2982
2983		if (!btrfs_free_space_trimmed(entry))
2984			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2985
2986		entry->offset = offset + bytes;
2987		WARN_ON(entry->bytes < bytes + align_gap_len);
2988
2989		entry->bytes -= bytes + align_gap_len;
2990		if (!entry->bytes)
2991			kmem_cache_free(btrfs_free_space_cachep, entry);
2992		else
2993			link_free_space(ctl, entry);
2994	}
2995out:
2996	btrfs_discard_update_discardable(block_group);
2997	spin_unlock(&ctl->tree_lock);
2998
2999	if (align_gap_len)
3000		__btrfs_add_free_space(block_group->fs_info, ctl,
3001				       align_gap, align_gap_len,
3002				       align_gap_trim_state);
3003	return ret;
3004}
3005
3006/*
3007 * given a cluster, put all of its extents back into the free space
3008 * cache.  If a block group is passed, this function will only free
3009 * a cluster that belongs to the passed block group.
3010 *
3011 * Otherwise, it'll get a reference on the block group pointed to by the
3012 * cluster and remove the cluster from it.
3013 */
3014void btrfs_return_cluster_to_free_space(
3015			       struct btrfs_block_group *block_group,
3016			       struct btrfs_free_cluster *cluster)
3017{
3018	struct btrfs_free_space_ctl *ctl;
 
3019
3020	/* first, get a safe pointer to the block group */
3021	spin_lock(&cluster->lock);
3022	if (!block_group) {
3023		block_group = cluster->block_group;
3024		if (!block_group) {
3025			spin_unlock(&cluster->lock);
3026			return;
3027		}
3028	} else if (cluster->block_group != block_group) {
3029		/* someone else has already freed it don't redo their work */
3030		spin_unlock(&cluster->lock);
3031		return;
3032	}
3033	btrfs_get_block_group(block_group);
3034	spin_unlock(&cluster->lock);
3035
3036	ctl = block_group->free_space_ctl;
3037
3038	/* now return any extents the cluster had on it */
3039	spin_lock(&ctl->tree_lock);
3040	__btrfs_return_cluster_to_free_space(block_group, cluster);
3041	spin_unlock(&ctl->tree_lock);
3042
3043	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3044
3045	/* finally drop our ref */
3046	btrfs_put_block_group(block_group);
 
3047}
3048
3049static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3050				   struct btrfs_free_cluster *cluster,
3051				   struct btrfs_free_space *entry,
3052				   u64 bytes, u64 min_start,
3053				   u64 *max_extent_size)
3054{
3055	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3056	int err;
3057	u64 search_start = cluster->window_start;
3058	u64 search_bytes = bytes;
3059	u64 ret = 0;
3060
3061	search_start = min_start;
3062	search_bytes = bytes;
3063
3064	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3065	if (err) {
3066		*max_extent_size = max(get_max_extent_size(entry),
3067				       *max_extent_size);
3068		return 0;
3069	}
3070
3071	ret = search_start;
3072	__bitmap_clear_bits(ctl, entry, ret, bytes);
3073
3074	return ret;
3075}
3076
3077/*
3078 * given a cluster, try to allocate 'bytes' from it, returns 0
3079 * if it couldn't find anything suitably large, or a logical disk offset
3080 * if things worked out
3081 */
3082u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3083			     struct btrfs_free_cluster *cluster, u64 bytes,
3084			     u64 min_start, u64 *max_extent_size)
3085{
3086	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3087	struct btrfs_discard_ctl *discard_ctl =
3088					&block_group->fs_info->discard_ctl;
3089	struct btrfs_free_space *entry = NULL;
3090	struct rb_node *node;
3091	u64 ret = 0;
3092
3093	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3094
3095	spin_lock(&cluster->lock);
3096	if (bytes > cluster->max_size)
3097		goto out;
3098
3099	if (cluster->block_group != block_group)
3100		goto out;
3101
3102	node = rb_first(&cluster->root);
3103	if (!node)
3104		goto out;
3105
3106	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3107	while (1) {
3108		if (entry->bytes < bytes)
3109			*max_extent_size = max(get_max_extent_size(entry),
3110					       *max_extent_size);
3111
3112		if (entry->bytes < bytes ||
3113		    (!entry->bitmap && entry->offset < min_start)) {
3114			node = rb_next(&entry->offset_index);
3115			if (!node)
3116				break;
3117			entry = rb_entry(node, struct btrfs_free_space,
3118					 offset_index);
3119			continue;
3120		}
3121
3122		if (entry->bitmap) {
3123			ret = btrfs_alloc_from_bitmap(block_group,
3124						      cluster, entry, bytes,
3125						      cluster->window_start,
3126						      max_extent_size);
3127			if (ret == 0) {
3128				node = rb_next(&entry->offset_index);
3129				if (!node)
3130					break;
3131				entry = rb_entry(node, struct btrfs_free_space,
3132						 offset_index);
3133				continue;
3134			}
3135			cluster->window_start += bytes;
3136		} else {
3137			ret = entry->offset;
3138
3139			entry->offset += bytes;
3140			entry->bytes -= bytes;
3141		}
3142
 
 
3143		break;
3144	}
3145out:
3146	spin_unlock(&cluster->lock);
3147
3148	if (!ret)
3149		return 0;
3150
3151	spin_lock(&ctl->tree_lock);
3152
3153	if (!btrfs_free_space_trimmed(entry))
3154		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3155
3156	ctl->free_space -= bytes;
3157	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3158		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3159
3160	spin_lock(&cluster->lock);
3161	if (entry->bytes == 0) {
3162		rb_erase(&entry->offset_index, &cluster->root);
3163		ctl->free_extents--;
3164		if (entry->bitmap) {
3165			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3166					entry->bitmap);
3167			ctl->total_bitmaps--;
3168			recalculate_thresholds(ctl);
3169		} else if (!btrfs_free_space_trimmed(entry)) {
3170			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3171		}
3172		kmem_cache_free(btrfs_free_space_cachep, entry);
3173	}
3174
3175	spin_unlock(&cluster->lock);
3176	spin_unlock(&ctl->tree_lock);
3177
3178	return ret;
3179}
3180
3181static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3182				struct btrfs_free_space *entry,
3183				struct btrfs_free_cluster *cluster,
3184				u64 offset, u64 bytes,
3185				u64 cont1_bytes, u64 min_bytes)
3186{
3187	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3188	unsigned long next_zero;
3189	unsigned long i;
3190	unsigned long want_bits;
3191	unsigned long min_bits;
3192	unsigned long found_bits;
3193	unsigned long max_bits = 0;
3194	unsigned long start = 0;
3195	unsigned long total_found = 0;
3196	int ret;
3197
3198	i = offset_to_bit(entry->offset, ctl->unit,
3199			  max_t(u64, offset, entry->offset));
3200	want_bits = bytes_to_bits(bytes, ctl->unit);
3201	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3202
3203	/*
3204	 * Don't bother looking for a cluster in this bitmap if it's heavily
3205	 * fragmented.
3206	 */
3207	if (entry->max_extent_size &&
3208	    entry->max_extent_size < cont1_bytes)
3209		return -ENOSPC;
3210again:
3211	found_bits = 0;
3212	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3213		next_zero = find_next_zero_bit(entry->bitmap,
3214					       BITS_PER_BITMAP, i);
3215		if (next_zero - i >= min_bits) {
3216			found_bits = next_zero - i;
3217			if (found_bits > max_bits)
3218				max_bits = found_bits;
3219			break;
3220		}
3221		if (next_zero - i > max_bits)
3222			max_bits = next_zero - i;
3223		i = next_zero;
3224	}
3225
3226	if (!found_bits) {
3227		entry->max_extent_size = (u64)max_bits * ctl->unit;
3228		return -ENOSPC;
3229	}
3230
3231	if (!total_found) {
3232		start = i;
3233		cluster->max_size = 0;
3234	}
3235
3236	total_found += found_bits;
3237
3238	if (cluster->max_size < found_bits * ctl->unit)
3239		cluster->max_size = found_bits * ctl->unit;
3240
3241	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3242		i = next_zero + 1;
3243		goto again;
3244	}
3245
3246	cluster->window_start = start * ctl->unit + entry->offset;
3247	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3248	ret = tree_insert_offset(&cluster->root, entry->offset,
3249				 &entry->offset_index, 1);
3250	ASSERT(!ret); /* -EEXIST; Logic error */
3251
3252	trace_btrfs_setup_cluster(block_group, cluster,
3253				  total_found * ctl->unit, 1);
3254	return 0;
3255}
3256
3257/*
3258 * This searches the block group for just extents to fill the cluster with.
3259 * Try to find a cluster with at least bytes total bytes, at least one
3260 * extent of cont1_bytes, and other clusters of at least min_bytes.
3261 */
3262static noinline int
3263setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3264			struct btrfs_free_cluster *cluster,
3265			struct list_head *bitmaps, u64 offset, u64 bytes,
3266			u64 cont1_bytes, u64 min_bytes)
3267{
3268	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3269	struct btrfs_free_space *first = NULL;
3270	struct btrfs_free_space *entry = NULL;
3271	struct btrfs_free_space *last;
3272	struct rb_node *node;
3273	u64 window_free;
3274	u64 max_extent;
3275	u64 total_size = 0;
3276
3277	entry = tree_search_offset(ctl, offset, 0, 1);
3278	if (!entry)
3279		return -ENOSPC;
3280
3281	/*
3282	 * We don't want bitmaps, so just move along until we find a normal
3283	 * extent entry.
3284	 */
3285	while (entry->bitmap || entry->bytes < min_bytes) {
3286		if (entry->bitmap && list_empty(&entry->list))
3287			list_add_tail(&entry->list, bitmaps);
3288		node = rb_next(&entry->offset_index);
3289		if (!node)
3290			return -ENOSPC;
3291		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3292	}
3293
3294	window_free = entry->bytes;
3295	max_extent = entry->bytes;
3296	first = entry;
3297	last = entry;
3298
3299	for (node = rb_next(&entry->offset_index); node;
3300	     node = rb_next(&entry->offset_index)) {
3301		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3302
3303		if (entry->bitmap) {
3304			if (list_empty(&entry->list))
3305				list_add_tail(&entry->list, bitmaps);
3306			continue;
3307		}
3308
3309		if (entry->bytes < min_bytes)
3310			continue;
3311
3312		last = entry;
3313		window_free += entry->bytes;
3314		if (entry->bytes > max_extent)
3315			max_extent = entry->bytes;
3316	}
3317
3318	if (window_free < bytes || max_extent < cont1_bytes)
3319		return -ENOSPC;
3320
3321	cluster->window_start = first->offset;
3322
3323	node = &first->offset_index;
3324
3325	/*
3326	 * now we've found our entries, pull them out of the free space
3327	 * cache and put them into the cluster rbtree
3328	 */
3329	do {
3330		int ret;
3331
3332		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3333		node = rb_next(&entry->offset_index);
3334		if (entry->bitmap || entry->bytes < min_bytes)
3335			continue;
3336
3337		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3338		ret = tree_insert_offset(&cluster->root, entry->offset,
3339					 &entry->offset_index, 0);
3340		total_size += entry->bytes;
3341		ASSERT(!ret); /* -EEXIST; Logic error */
3342	} while (node && entry != last);
3343
3344	cluster->max_size = max_extent;
3345	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3346	return 0;
3347}
3348
3349/*
3350 * This specifically looks for bitmaps that may work in the cluster, we assume
3351 * that we have already failed to find extents that will work.
3352 */
3353static noinline int
3354setup_cluster_bitmap(struct btrfs_block_group *block_group,
3355		     struct btrfs_free_cluster *cluster,
3356		     struct list_head *bitmaps, u64 offset, u64 bytes,
3357		     u64 cont1_bytes, u64 min_bytes)
3358{
3359	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3360	struct btrfs_free_space *entry = NULL;
3361	int ret = -ENOSPC;
3362	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3363
3364	if (ctl->total_bitmaps == 0)
3365		return -ENOSPC;
3366
3367	/*
3368	 * The bitmap that covers offset won't be in the list unless offset
3369	 * is just its start offset.
3370	 */
3371	if (!list_empty(bitmaps))
3372		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3373
3374	if (!entry || entry->offset != bitmap_offset) {
3375		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3376		if (entry && list_empty(&entry->list))
3377			list_add(&entry->list, bitmaps);
3378	}
3379
3380	list_for_each_entry(entry, bitmaps, list) {
3381		if (entry->bytes < bytes)
3382			continue;
3383		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3384					   bytes, cont1_bytes, min_bytes);
3385		if (!ret)
3386			return 0;
3387	}
3388
3389	/*
3390	 * The bitmaps list has all the bitmaps that record free space
3391	 * starting after offset, so no more search is required.
3392	 */
3393	return -ENOSPC;
3394}
3395
3396/*
3397 * here we try to find a cluster of blocks in a block group.  The goal
3398 * is to find at least bytes+empty_size.
3399 * We might not find them all in one contiguous area.
3400 *
3401 * returns zero and sets up cluster if things worked out, otherwise
3402 * it returns -enospc
3403 */
3404int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3405			     struct btrfs_free_cluster *cluster,
3406			     u64 offset, u64 bytes, u64 empty_size)
3407{
3408	struct btrfs_fs_info *fs_info = block_group->fs_info;
3409	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3410	struct btrfs_free_space *entry, *tmp;
3411	LIST_HEAD(bitmaps);
3412	u64 min_bytes;
3413	u64 cont1_bytes;
3414	int ret;
3415
3416	/*
3417	 * Choose the minimum extent size we'll require for this
3418	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3419	 * For metadata, allow allocates with smaller extents.  For
3420	 * data, keep it dense.
3421	 */
3422	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3423		cont1_bytes = min_bytes = bytes + empty_size;
3424	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3425		cont1_bytes = bytes;
3426		min_bytes = fs_info->sectorsize;
3427	} else {
3428		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3429		min_bytes = fs_info->sectorsize;
3430	}
3431
3432	spin_lock(&ctl->tree_lock);
3433
3434	/*
3435	 * If we know we don't have enough space to make a cluster don't even
3436	 * bother doing all the work to try and find one.
3437	 */
3438	if (ctl->free_space < bytes) {
3439		spin_unlock(&ctl->tree_lock);
3440		return -ENOSPC;
3441	}
3442
3443	spin_lock(&cluster->lock);
3444
3445	/* someone already found a cluster, hooray */
3446	if (cluster->block_group) {
3447		ret = 0;
3448		goto out;
3449	}
3450
3451	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3452				 min_bytes);
3453
3454	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3455				      bytes + empty_size,
3456				      cont1_bytes, min_bytes);
3457	if (ret)
3458		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3459					   offset, bytes + empty_size,
3460					   cont1_bytes, min_bytes);
3461
3462	/* Clear our temporary list */
3463	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3464		list_del_init(&entry->list);
3465
3466	if (!ret) {
3467		btrfs_get_block_group(block_group);
3468		list_add_tail(&cluster->block_group_list,
3469			      &block_group->cluster_list);
3470		cluster->block_group = block_group;
3471	} else {
3472		trace_btrfs_failed_cluster_setup(block_group);
3473	}
3474out:
3475	spin_unlock(&cluster->lock);
3476	spin_unlock(&ctl->tree_lock);
3477
3478	return ret;
3479}
3480
3481/*
3482 * simple code to zero out a cluster
3483 */
3484void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3485{
3486	spin_lock_init(&cluster->lock);
3487	spin_lock_init(&cluster->refill_lock);
3488	cluster->root = RB_ROOT;
3489	cluster->max_size = 0;
3490	cluster->fragmented = false;
3491	INIT_LIST_HEAD(&cluster->block_group_list);
3492	cluster->block_group = NULL;
3493}
3494
3495static int do_trimming(struct btrfs_block_group *block_group,
3496		       u64 *total_trimmed, u64 start, u64 bytes,
3497		       u64 reserved_start, u64 reserved_bytes,
3498		       enum btrfs_trim_state reserved_trim_state,
3499		       struct btrfs_trim_range *trim_entry)
3500{
3501	struct btrfs_space_info *space_info = block_group->space_info;
3502	struct btrfs_fs_info *fs_info = block_group->fs_info;
3503	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3504	int ret;
3505	int update = 0;
3506	const u64 end = start + bytes;
3507	const u64 reserved_end = reserved_start + reserved_bytes;
3508	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3509	u64 trimmed = 0;
3510
3511	spin_lock(&space_info->lock);
3512	spin_lock(&block_group->lock);
3513	if (!block_group->ro) {
3514		block_group->reserved += reserved_bytes;
3515		space_info->bytes_reserved += reserved_bytes;
3516		update = 1;
3517	}
3518	spin_unlock(&block_group->lock);
3519	spin_unlock(&space_info->lock);
3520
3521	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3522	if (!ret) {
3523		*total_trimmed += trimmed;
3524		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3525	}
3526
3527	mutex_lock(&ctl->cache_writeout_mutex);
3528	if (reserved_start < start)
3529		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3530				       start - reserved_start,
3531				       reserved_trim_state);
3532	if (start + bytes < reserved_start + reserved_bytes)
3533		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3534				       reserved_trim_state);
3535	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3536	list_del(&trim_entry->list);
3537	mutex_unlock(&ctl->cache_writeout_mutex);
3538
3539	if (update) {
3540		spin_lock(&space_info->lock);
3541		spin_lock(&block_group->lock);
3542		if (block_group->ro)
3543			space_info->bytes_readonly += reserved_bytes;
3544		block_group->reserved -= reserved_bytes;
3545		space_info->bytes_reserved -= reserved_bytes;
3546		spin_unlock(&block_group->lock);
3547		spin_unlock(&space_info->lock);
3548	}
3549
3550	return ret;
3551}
3552
3553/*
3554 * If @async is set, then we will trim 1 region and return.
3555 */
3556static int trim_no_bitmap(struct btrfs_block_group *block_group,
3557			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3558			  bool async)
3559{
3560	struct btrfs_discard_ctl *discard_ctl =
3561					&block_group->fs_info->discard_ctl;
3562	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3563	struct btrfs_free_space *entry;
3564	struct rb_node *node;
3565	int ret = 0;
3566	u64 extent_start;
3567	u64 extent_bytes;
3568	enum btrfs_trim_state extent_trim_state;
3569	u64 bytes;
3570	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3571
3572	while (start < end) {
3573		struct btrfs_trim_range trim_entry;
3574
3575		mutex_lock(&ctl->cache_writeout_mutex);
3576		spin_lock(&ctl->tree_lock);
3577
3578		if (ctl->free_space < minlen)
3579			goto out_unlock;
 
 
 
3580
3581		entry = tree_search_offset(ctl, start, 0, 1);
3582		if (!entry)
3583			goto out_unlock;
 
 
 
3584
3585		/* Skip bitmaps and if async, already trimmed entries */
3586		while (entry->bitmap ||
3587		       (async && btrfs_free_space_trimmed(entry))) {
3588			node = rb_next(&entry->offset_index);
3589			if (!node)
3590				goto out_unlock;
 
 
 
3591			entry = rb_entry(node, struct btrfs_free_space,
3592					 offset_index);
3593		}
3594
3595		if (entry->offset >= end)
3596			goto out_unlock;
 
 
 
3597
3598		extent_start = entry->offset;
3599		extent_bytes = entry->bytes;
3600		extent_trim_state = entry->trim_state;
3601		if (async) {
3602			start = entry->offset;
3603			bytes = entry->bytes;
3604			if (bytes < minlen) {
3605				spin_unlock(&ctl->tree_lock);
3606				mutex_unlock(&ctl->cache_writeout_mutex);
3607				goto next;
3608			}
3609			unlink_free_space(ctl, entry);
3610			/*
3611			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3612			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3613			 * X when we come back around.  So trim it now.
3614			 */
3615			if (max_discard_size &&
3616			    bytes >= (max_discard_size +
3617				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3618				bytes = max_discard_size;
3619				extent_bytes = max_discard_size;
3620				entry->offset += max_discard_size;
3621				entry->bytes -= max_discard_size;
3622				link_free_space(ctl, entry);
3623			} else {
3624				kmem_cache_free(btrfs_free_space_cachep, entry);
3625			}
3626		} else {
3627			start = max(start, extent_start);
3628			bytes = min(extent_start + extent_bytes, end) - start;
3629			if (bytes < minlen) {
3630				spin_unlock(&ctl->tree_lock);
3631				mutex_unlock(&ctl->cache_writeout_mutex);
3632				goto next;
3633			}
3634
3635			unlink_free_space(ctl, entry);
3636			kmem_cache_free(btrfs_free_space_cachep, entry);
3637		}
3638
3639		spin_unlock(&ctl->tree_lock);
3640		trim_entry.start = extent_start;
3641		trim_entry.bytes = extent_bytes;
3642		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3643		mutex_unlock(&ctl->cache_writeout_mutex);
3644
3645		ret = do_trimming(block_group, total_trimmed, start, bytes,
3646				  extent_start, extent_bytes, extent_trim_state,
3647				  &trim_entry);
3648		if (ret) {
3649			block_group->discard_cursor = start + bytes;
3650			break;
3651		}
3652next:
3653		start += bytes;
3654		block_group->discard_cursor = start;
3655		if (async && *total_trimmed)
3656			break;
3657
3658		if (fatal_signal_pending(current)) {
3659			ret = -ERESTARTSYS;
3660			break;
3661		}
3662
3663		cond_resched();
3664	}
3665
3666	return ret;
3667
3668out_unlock:
3669	block_group->discard_cursor = btrfs_block_group_end(block_group);
3670	spin_unlock(&ctl->tree_lock);
3671	mutex_unlock(&ctl->cache_writeout_mutex);
3672
3673	return ret;
3674}
3675
3676/*
3677 * If we break out of trimming a bitmap prematurely, we should reset the
3678 * trimming bit.  In a rather contrieved case, it's possible to race here so
3679 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3680 *
3681 * start = start of bitmap
3682 * end = near end of bitmap
3683 *
3684 * Thread 1:			Thread 2:
3685 * trim_bitmaps(start)
3686 *				trim_bitmaps(end)
3687 *				end_trimming_bitmap()
3688 * reset_trimming_bitmap()
3689 */
3690static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3691{
3692	struct btrfs_free_space *entry;
3693
3694	spin_lock(&ctl->tree_lock);
3695	entry = tree_search_offset(ctl, offset, 1, 0);
3696	if (entry) {
3697		if (btrfs_free_space_trimmed(entry)) {
3698			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3699				entry->bitmap_extents;
3700			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3701		}
3702		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3703	}
3704
3705	spin_unlock(&ctl->tree_lock);
3706}
3707
3708static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3709				struct btrfs_free_space *entry)
3710{
3711	if (btrfs_free_space_trimming_bitmap(entry)) {
3712		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3713		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3714			entry->bitmap_extents;
3715		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3716	}
3717}
3718
3719/*
3720 * If @async is set, then we will trim 1 region and return.
3721 */
3722static int trim_bitmaps(struct btrfs_block_group *block_group,
3723			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3724			u64 maxlen, bool async)
3725{
3726	struct btrfs_discard_ctl *discard_ctl =
3727					&block_group->fs_info->discard_ctl;
3728	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3729	struct btrfs_free_space *entry;
3730	int ret = 0;
3731	int ret2;
3732	u64 bytes;
3733	u64 offset = offset_to_bitmap(ctl, start);
3734	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3735
3736	while (offset < end) {
3737		bool next_bitmap = false;
3738		struct btrfs_trim_range trim_entry;
3739
3740		mutex_lock(&ctl->cache_writeout_mutex);
3741		spin_lock(&ctl->tree_lock);
3742
3743		if (ctl->free_space < minlen) {
3744			block_group->discard_cursor =
3745				btrfs_block_group_end(block_group);
3746			spin_unlock(&ctl->tree_lock);
3747			mutex_unlock(&ctl->cache_writeout_mutex);
3748			break;
3749		}
3750
3751		entry = tree_search_offset(ctl, offset, 1, 0);
3752		/*
3753		 * Bitmaps are marked trimmed lossily now to prevent constant
3754		 * discarding of the same bitmap (the reason why we are bound
3755		 * by the filters).  So, retrim the block group bitmaps when we
3756		 * are preparing to punt to the unused_bgs list.  This uses
3757		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3758		 * which is the only discard index which sets minlen to 0.
3759		 */
3760		if (!entry || (async && minlen && start == offset &&
3761			       btrfs_free_space_trimmed(entry))) {
3762			spin_unlock(&ctl->tree_lock);
3763			mutex_unlock(&ctl->cache_writeout_mutex);
3764			next_bitmap = true;
3765			goto next;
3766		}
3767
3768		/*
3769		 * Async discard bitmap trimming begins at by setting the start
3770		 * to be key.objectid and the offset_to_bitmap() aligns to the
3771		 * start of the bitmap.  This lets us know we are fully
3772		 * scanning the bitmap rather than only some portion of it.
3773		 */
3774		if (start == offset)
3775			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3776
3777		bytes = minlen;
3778		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3779		if (ret2 || start >= end) {
3780			/*
3781			 * We lossily consider a bitmap trimmed if we only skip
3782			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3783			 */
3784			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3785				end_trimming_bitmap(ctl, entry);
3786			else
3787				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3788			spin_unlock(&ctl->tree_lock);
3789			mutex_unlock(&ctl->cache_writeout_mutex);
3790			next_bitmap = true;
3791			goto next;
3792		}
3793
3794		/*
3795		 * We already trimmed a region, but are using the locking above
3796		 * to reset the trim_state.
3797		 */
3798		if (async && *total_trimmed) {
3799			spin_unlock(&ctl->tree_lock);
3800			mutex_unlock(&ctl->cache_writeout_mutex);
3801			goto out;
3802		}
3803
3804		bytes = min(bytes, end - start);
3805		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3806			spin_unlock(&ctl->tree_lock);
3807			mutex_unlock(&ctl->cache_writeout_mutex);
3808			goto next;
3809		}
3810
3811		/*
3812		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3813		 * If X < @minlen, we won't trim X when we come back around.
3814		 * So trim it now.  We differ here from trimming extents as we
3815		 * don't keep individual state per bit.
3816		 */
3817		if (async &&
3818		    max_discard_size &&
3819		    bytes > (max_discard_size + minlen))
3820			bytes = max_discard_size;
3821
3822		bitmap_clear_bits(ctl, entry, start, bytes);
3823		if (entry->bytes == 0)
3824			free_bitmap(ctl, entry);
3825
3826		spin_unlock(&ctl->tree_lock);
3827		trim_entry.start = start;
3828		trim_entry.bytes = bytes;
3829		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3830		mutex_unlock(&ctl->cache_writeout_mutex);
3831
3832		ret = do_trimming(block_group, total_trimmed, start, bytes,
3833				  start, bytes, 0, &trim_entry);
3834		if (ret) {
3835			reset_trimming_bitmap(ctl, offset);
3836			block_group->discard_cursor =
3837				btrfs_block_group_end(block_group);
3838			break;
3839		}
3840next:
3841		if (next_bitmap) {
3842			offset += BITS_PER_BITMAP * ctl->unit;
3843			start = offset;
3844		} else {
3845			start += bytes;
 
 
3846		}
3847		block_group->discard_cursor = start;
3848
3849		if (fatal_signal_pending(current)) {
3850			if (start != offset)
3851				reset_trimming_bitmap(ctl, offset);
3852			ret = -ERESTARTSYS;
3853			break;
3854		}
3855
3856		cond_resched();
3857	}
3858
3859	if (offset >= end)
3860		block_group->discard_cursor = end;
 
 
 
 
 
3861
3862out:
3863	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3864}
3865
3866int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3867			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3868{
3869	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3870	int ret;
3871	u64 rem = 0;
3872
3873	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3874
3875	*trimmed = 0;
3876
3877	spin_lock(&block_group->lock);
3878	if (block_group->removed) {
3879		spin_unlock(&block_group->lock);
3880		return 0;
3881	}
3882	btrfs_freeze_block_group(block_group);
3883	spin_unlock(&block_group->lock);
3884
3885	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3886	if (ret)
3887		goto out;
3888
3889	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3890	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3891	/* If we ended in the middle of a bitmap, reset the trimming flag */
3892	if (rem)
3893		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3894out:
3895	btrfs_unfreeze_block_group(block_group);
3896	return ret;
3897}
3898
3899int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3900				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3901				   bool async)
 
 
 
 
 
3902{
3903	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3904
3905	*trimmed = 0;
 
 
3906
3907	spin_lock(&block_group->lock);
3908	if (block_group->removed) {
3909		spin_unlock(&block_group->lock);
3910		return 0;
3911	}
3912	btrfs_freeze_block_group(block_group);
3913	spin_unlock(&block_group->lock);
3914
3915	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3916	btrfs_unfreeze_block_group(block_group);
3917
3918	return ret;
3919}
3920
3921int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3922				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3923				   u64 maxlen, bool async)
3924{
3925	int ret;
3926
3927	*trimmed = 0;
 
 
 
 
 
3928
3929	spin_lock(&block_group->lock);
3930	if (block_group->removed) {
3931		spin_unlock(&block_group->lock);
3932		return 0;
3933	}
3934	btrfs_freeze_block_group(block_group);
3935	spin_unlock(&block_group->lock);
3936
3937	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3938			   async);
 
 
3939
3940	btrfs_unfreeze_block_group(block_group);
3941
3942	return ret;
3943}
3944
3945bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
 
 
3946{
3947	return btrfs_super_cache_generation(fs_info->super_copy);
 
3948}
3949
3950static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
3951				       struct btrfs_trans_handle *trans)
3952{
3953	struct btrfs_block_group *block_group;
3954	struct rb_node *node;
 
3955	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3956
3957	btrfs_info(fs_info, "cleaning free space cache v1");
3958
3959	node = rb_first(&fs_info->block_group_cache_tree);
3960	while (node) {
3961		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
3962		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
3963		if (ret)
3964			goto out;
3965		node = rb_next(node);
3966	}
3967out:
 
3968	return ret;
3969}
3970
3971int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
 
 
 
3972{
3973	struct btrfs_trans_handle *trans;
 
3974	int ret;
 
 
3975
3976	/*
3977	 * update_super_roots will appropriately set or unset
3978	 * super_copy->cache_generation based on SPACE_CACHE and
3979	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
3980	 * transaction commit whether we are enabling space cache v1 and don't
3981	 * have any other work to do, or are disabling it and removing free
3982	 * space inodes.
3983	 */
3984	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3985	if (IS_ERR(trans))
3986		return PTR_ERR(trans);
3987
3988	if (!active) {
3989		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
3990		ret = cleanup_free_space_cache_v1(fs_info, trans);
3991		if (ret) {
3992			btrfs_abort_transaction(trans, ret);
3993			btrfs_end_transaction(trans);
3994			goto out;
3995		}
 
 
 
3996	}
3997
3998	ret = btrfs_commit_transaction(trans);
3999out:
4000	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
 
 
 
 
 
 
 
4001
4002	return ret;
4003}
4004
4005#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4006/*
4007 * Use this if you need to make a bitmap or extent entry specifically, it
4008 * doesn't do any of the merging that add_free_space does, this acts a lot like
4009 * how the free space cache loading stuff works, so you can get really weird
4010 * configurations.
4011 */
4012int test_add_free_space_entry(struct btrfs_block_group *cache,
4013			      u64 offset, u64 bytes, bool bitmap)
4014{
4015	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4016	struct btrfs_free_space *info = NULL, *bitmap_info;
4017	void *map = NULL;
4018	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4019	u64 bytes_added;
4020	int ret;
4021
4022again:
4023	if (!info) {
4024		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4025		if (!info)
4026			return -ENOMEM;
4027	}
4028
4029	if (!bitmap) {
4030		spin_lock(&ctl->tree_lock);
4031		info->offset = offset;
4032		info->bytes = bytes;
4033		info->max_extent_size = 0;
4034		ret = link_free_space(ctl, info);
4035		spin_unlock(&ctl->tree_lock);
4036		if (ret)
4037			kmem_cache_free(btrfs_free_space_cachep, info);
4038		return ret;
4039	}
4040
4041	if (!map) {
4042		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4043		if (!map) {
4044			kmem_cache_free(btrfs_free_space_cachep, info);
4045			return -ENOMEM;
4046		}
4047	}
4048
4049	spin_lock(&ctl->tree_lock);
4050	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4051					 1, 0);
4052	if (!bitmap_info) {
4053		info->bitmap = map;
4054		map = NULL;
4055		add_new_bitmap(ctl, info, offset);
4056		bitmap_info = info;
4057		info = NULL;
4058	}
4059
4060	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4061					  trim_state);
4062
4063	bytes -= bytes_added;
4064	offset += bytes_added;
4065	spin_unlock(&ctl->tree_lock);
4066
4067	if (bytes)
4068		goto again;
4069
4070	if (info)
4071		kmem_cache_free(btrfs_free_space_cachep, info);
4072	if (map)
4073		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4074	return 0;
4075}
4076
4077/*
4078 * Checks to see if the given range is in the free space cache.  This is really
4079 * just used to check the absence of space, so if there is free space in the
4080 * range at all we will return 1.
4081 */
4082int test_check_exists(struct btrfs_block_group *cache,
4083		      u64 offset, u64 bytes)
4084{
4085	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4086	struct btrfs_free_space *info;
4087	int ret = 0;
4088
4089	spin_lock(&ctl->tree_lock);
4090	info = tree_search_offset(ctl, offset, 0, 0);
4091	if (!info) {
4092		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4093					  1, 0);
4094		if (!info)
4095			goto out;
4096	}
4097
4098have_info:
4099	if (info->bitmap) {
4100		u64 bit_off, bit_bytes;
4101		struct rb_node *n;
4102		struct btrfs_free_space *tmp;
4103
4104		bit_off = offset;
4105		bit_bytes = ctl->unit;
4106		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4107		if (!ret) {
4108			if (bit_off == offset) {
4109				ret = 1;
4110				goto out;
4111			} else if (bit_off > offset &&
4112				   offset + bytes > bit_off) {
4113				ret = 1;
4114				goto out;
4115			}
4116		}
4117
4118		n = rb_prev(&info->offset_index);
4119		while (n) {
4120			tmp = rb_entry(n, struct btrfs_free_space,
4121				       offset_index);
4122			if (tmp->offset + tmp->bytes < offset)
4123				break;
4124			if (offset + bytes < tmp->offset) {
4125				n = rb_prev(&tmp->offset_index);
4126				continue;
4127			}
4128			info = tmp;
4129			goto have_info;
4130		}
4131
4132		n = rb_next(&info->offset_index);
4133		while (n) {
4134			tmp = rb_entry(n, struct btrfs_free_space,
4135				       offset_index);
4136			if (offset + bytes < tmp->offset)
4137				break;
4138			if (tmp->offset + tmp->bytes < offset) {
4139				n = rb_next(&tmp->offset_index);
4140				continue;
4141			}
4142			info = tmp;
4143			goto have_info;
4144		}
4145
4146		ret = 0;
4147		goto out;
4148	}
4149
4150	if (info->offset == offset) {
4151		ret = 1;
4152		goto out;
4153	}
4154
4155	if (offset > info->offset && offset < info->offset + info->bytes)
4156		ret = 1;
4157out:
4158	spin_unlock(&ctl->tree_lock);
4159	return ret;
4160}
4161#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */