Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "ctree.h"
  15#include "free-space-cache.h"
  16#include "transaction.h"
  17#include "disk-io.h"
  18#include "extent_io.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
 
  24
  25#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  26#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
 
  27
  28struct btrfs_trim_range {
  29	u64 start;
  30	u64 bytes;
  31	struct list_head list;
  32};
  33
 
 
  34static int link_free_space(struct btrfs_free_space_ctl *ctl,
  35			   struct btrfs_free_space *info);
  36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  37			      struct btrfs_free_space *info);
  38static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  39			     struct btrfs_trans_handle *trans,
  40			     struct btrfs_io_ctl *io_ctl,
  41			     struct btrfs_path *path);
  42
  43static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  44					       struct btrfs_path *path,
  45					       u64 offset)
  46{
  47	struct btrfs_fs_info *fs_info = root->fs_info;
  48	struct btrfs_key key;
  49	struct btrfs_key location;
  50	struct btrfs_disk_key disk_key;
  51	struct btrfs_free_space_header *header;
  52	struct extent_buffer *leaf;
  53	struct inode *inode = NULL;
  54	unsigned nofs_flag;
  55	int ret;
  56
  57	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  58	key.offset = offset;
  59	key.type = 0;
  60
  61	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  62	if (ret < 0)
  63		return ERR_PTR(ret);
  64	if (ret > 0) {
  65		btrfs_release_path(path);
  66		return ERR_PTR(-ENOENT);
  67	}
  68
  69	leaf = path->nodes[0];
  70	header = btrfs_item_ptr(leaf, path->slots[0],
  71				struct btrfs_free_space_header);
  72	btrfs_free_space_key(leaf, header, &disk_key);
  73	btrfs_disk_key_to_cpu(&location, &disk_key);
  74	btrfs_release_path(path);
  75
  76	/*
  77	 * We are often under a trans handle at this point, so we need to make
  78	 * sure NOFS is set to keep us from deadlocking.
  79	 */
  80	nofs_flag = memalloc_nofs_save();
  81	inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
  82	btrfs_release_path(path);
  83	memalloc_nofs_restore(nofs_flag);
  84	if (IS_ERR(inode))
  85		return inode;
  86
  87	mapping_set_gfp_mask(inode->i_mapping,
  88			mapping_gfp_constraint(inode->i_mapping,
  89			~(__GFP_FS | __GFP_HIGHMEM)));
  90
  91	return inode;
  92}
  93
  94struct inode *lookup_free_space_inode(
  95		struct btrfs_block_group_cache *block_group,
  96		struct btrfs_path *path)
  97{
  98	struct btrfs_fs_info *fs_info = block_group->fs_info;
  99	struct inode *inode = NULL;
 100	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 101
 102	spin_lock(&block_group->lock);
 103	if (block_group->inode)
 104		inode = igrab(block_group->inode);
 105	spin_unlock(&block_group->lock);
 106	if (inode)
 107		return inode;
 108
 109	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 110					  block_group->key.objectid);
 111	if (IS_ERR(inode))
 112		return inode;
 113
 114	spin_lock(&block_group->lock);
 115	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 116		btrfs_info(fs_info, "Old style space inode found, converting.");
 117		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 118			BTRFS_INODE_NODATACOW;
 119		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 120	}
 121
 122	if (!block_group->iref) {
 123		block_group->inode = igrab(inode);
 124		block_group->iref = 1;
 125	}
 126	spin_unlock(&block_group->lock);
 127
 128	return inode;
 129}
 130
 131static int __create_free_space_inode(struct btrfs_root *root,
 132				     struct btrfs_trans_handle *trans,
 133				     struct btrfs_path *path,
 134				     u64 ino, u64 offset)
 135{
 136	struct btrfs_key key;
 137	struct btrfs_disk_key disk_key;
 138	struct btrfs_free_space_header *header;
 139	struct btrfs_inode_item *inode_item;
 140	struct extent_buffer *leaf;
 141	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 142	int ret;
 143
 144	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 145	if (ret)
 146		return ret;
 147
 148	/* We inline crc's for the free disk space cache */
 149	if (ino != BTRFS_FREE_INO_OBJECTID)
 150		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 151
 152	leaf = path->nodes[0];
 153	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 154				    struct btrfs_inode_item);
 155	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 156	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 157			     sizeof(*inode_item));
 158	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 159	btrfs_set_inode_size(leaf, inode_item, 0);
 160	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 161	btrfs_set_inode_uid(leaf, inode_item, 0);
 162	btrfs_set_inode_gid(leaf, inode_item, 0);
 163	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 164	btrfs_set_inode_flags(leaf, inode_item, flags);
 165	btrfs_set_inode_nlink(leaf, inode_item, 1);
 166	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 167	btrfs_set_inode_block_group(leaf, inode_item, offset);
 168	btrfs_mark_buffer_dirty(leaf);
 169	btrfs_release_path(path);
 170
 171	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 172	key.offset = offset;
 173	key.type = 0;
 174	ret = btrfs_insert_empty_item(trans, root, path, &key,
 175				      sizeof(struct btrfs_free_space_header));
 176	if (ret < 0) {
 177		btrfs_release_path(path);
 178		return ret;
 179	}
 180
 181	leaf = path->nodes[0];
 182	header = btrfs_item_ptr(leaf, path->slots[0],
 183				struct btrfs_free_space_header);
 184	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 185	btrfs_set_free_space_key(leaf, header, &disk_key);
 186	btrfs_mark_buffer_dirty(leaf);
 187	btrfs_release_path(path);
 188
 189	return 0;
 190}
 191
 192int create_free_space_inode(struct btrfs_trans_handle *trans,
 193			    struct btrfs_block_group_cache *block_group,
 194			    struct btrfs_path *path)
 195{
 196	int ret;
 197	u64 ino;
 198
 199	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
 200	if (ret < 0)
 201		return ret;
 202
 203	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 204					 ino, block_group->key.objectid);
 205}
 206
 207int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 208				       struct btrfs_block_rsv *rsv)
 209{
 210	u64 needed_bytes;
 211	int ret;
 212
 213	/* 1 for slack space, 1 for updating the inode */
 214	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 215		btrfs_calc_metadata_size(fs_info, 1);
 216
 217	spin_lock(&rsv->lock);
 218	if (rsv->reserved < needed_bytes)
 219		ret = -ENOSPC;
 220	else
 221		ret = 0;
 222	spin_unlock(&rsv->lock);
 223	return ret;
 224}
 225
 226int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 227				    struct btrfs_block_group_cache *block_group,
 228				    struct inode *inode)
 229{
 230	struct btrfs_root *root = BTRFS_I(inode)->root;
 231	int ret = 0;
 232	bool locked = false;
 233
 234	if (block_group) {
 235		struct btrfs_path *path = btrfs_alloc_path();
 236
 237		if (!path) {
 238			ret = -ENOMEM;
 239			goto fail;
 240		}
 241		locked = true;
 242		mutex_lock(&trans->transaction->cache_write_mutex);
 243		if (!list_empty(&block_group->io_list)) {
 244			list_del_init(&block_group->io_list);
 245
 246			btrfs_wait_cache_io(trans, block_group, path);
 247			btrfs_put_block_group(block_group);
 248		}
 249
 250		/*
 251		 * now that we've truncated the cache away, its no longer
 252		 * setup or written
 253		 */
 254		spin_lock(&block_group->lock);
 255		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 256		spin_unlock(&block_group->lock);
 257		btrfs_free_path(path);
 258	}
 259
 260	btrfs_i_size_write(BTRFS_I(inode), 0);
 261	truncate_pagecache(inode, 0);
 262
 263	/*
 264	 * We skip the throttling logic for free space cache inodes, so we don't
 265	 * need to check for -EAGAIN.
 266	 */
 267	ret = btrfs_truncate_inode_items(trans, root, inode,
 268					 0, BTRFS_EXTENT_DATA_KEY);
 269	if (ret)
 270		goto fail;
 271
 272	ret = btrfs_update_inode(trans, root, inode);
 273
 274fail:
 275	if (locked)
 276		mutex_unlock(&trans->transaction->cache_write_mutex);
 277	if (ret)
 278		btrfs_abort_transaction(trans, ret);
 279
 280	return ret;
 281}
 282
 283static void readahead_cache(struct inode *inode)
 284{
 285	struct file_ra_state *ra;
 286	unsigned long last_index;
 287
 288	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 289	if (!ra)
 290		return;
 291
 292	file_ra_state_init(ra, inode->i_mapping);
 293	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 294
 295	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 296
 297	kfree(ra);
 298}
 299
 300static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 301		       int write)
 302{
 303	int num_pages;
 304	int check_crcs = 0;
 305
 306	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 307
 308	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
 309		check_crcs = 1;
 310
 311	/* Make sure we can fit our crcs and generation into the first page */
 312	if (write && check_crcs &&
 313	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 314		return -ENOSPC;
 315
 316	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 317
 318	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 319	if (!io_ctl->pages)
 320		return -ENOMEM;
 321
 322	io_ctl->num_pages = num_pages;
 323	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 324	io_ctl->check_crcs = check_crcs;
 325	io_ctl->inode = inode;
 326
 327	return 0;
 328}
 329ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 330
 331static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 332{
 333	kfree(io_ctl->pages);
 334	io_ctl->pages = NULL;
 335}
 336
 337static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 338{
 339	if (io_ctl->cur) {
 340		io_ctl->cur = NULL;
 341		io_ctl->orig = NULL;
 342	}
 343}
 344
 345static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 346{
 347	ASSERT(io_ctl->index < io_ctl->num_pages);
 348	io_ctl->page = io_ctl->pages[io_ctl->index++];
 349	io_ctl->cur = page_address(io_ctl->page);
 350	io_ctl->orig = io_ctl->cur;
 351	io_ctl->size = PAGE_SIZE;
 352	if (clear)
 353		clear_page(io_ctl->cur);
 354}
 355
 356static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 357{
 358	int i;
 359
 360	io_ctl_unmap_page(io_ctl);
 361
 362	for (i = 0; i < io_ctl->num_pages; i++) {
 363		if (io_ctl->pages[i]) {
 364			ClearPageChecked(io_ctl->pages[i]);
 365			unlock_page(io_ctl->pages[i]);
 366			put_page(io_ctl->pages[i]);
 367		}
 368	}
 369}
 370
 371static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 372				int uptodate)
 373{
 374	struct page *page;
 
 375	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 376	int i;
 377
 378	for (i = 0; i < io_ctl->num_pages; i++) {
 379		page = find_or_create_page(inode->i_mapping, i, mask);
 380		if (!page) {
 381			io_ctl_drop_pages(io_ctl);
 382			return -ENOMEM;
 383		}
 384		io_ctl->pages[i] = page;
 385		if (uptodate && !PageUptodate(page)) {
 386			btrfs_readpage(NULL, page);
 387			lock_page(page);
 
 
 
 
 
 
 388			if (!PageUptodate(page)) {
 389				btrfs_err(BTRFS_I(inode)->root->fs_info,
 390					   "error reading free space cache");
 391				io_ctl_drop_pages(io_ctl);
 392				return -EIO;
 393			}
 394		}
 395	}
 396
 397	for (i = 0; i < io_ctl->num_pages; i++) {
 398		clear_page_dirty_for_io(io_ctl->pages[i]);
 399		set_page_extent_mapped(io_ctl->pages[i]);
 400	}
 401
 402	return 0;
 403}
 404
 405static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 406{
 407	__le64 *val;
 408
 409	io_ctl_map_page(io_ctl, 1);
 410
 411	/*
 412	 * Skip the csum areas.  If we don't check crcs then we just have a
 413	 * 64bit chunk at the front of the first page.
 414	 */
 415	if (io_ctl->check_crcs) {
 416		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 417		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 418	} else {
 419		io_ctl->cur += sizeof(u64);
 420		io_ctl->size -= sizeof(u64) * 2;
 421	}
 422
 423	val = io_ctl->cur;
 424	*val = cpu_to_le64(generation);
 425	io_ctl->cur += sizeof(u64);
 426}
 427
 428static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 429{
 430	__le64 *gen;
 431
 432	/*
 433	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 434	 * chunk at the front of the first page.
 435	 */
 436	if (io_ctl->check_crcs) {
 437		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 438		io_ctl->size -= sizeof(u64) +
 439			(sizeof(u32) * io_ctl->num_pages);
 440	} else {
 441		io_ctl->cur += sizeof(u64);
 442		io_ctl->size -= sizeof(u64) * 2;
 443	}
 444
 445	gen = io_ctl->cur;
 446	if (le64_to_cpu(*gen) != generation) {
 447		btrfs_err_rl(io_ctl->fs_info,
 448			"space cache generation (%llu) does not match inode (%llu)",
 449				*gen, generation);
 450		io_ctl_unmap_page(io_ctl);
 451		return -EIO;
 452	}
 453	io_ctl->cur += sizeof(u64);
 454	return 0;
 455}
 456
 457static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 458{
 459	u32 *tmp;
 460	u32 crc = ~(u32)0;
 461	unsigned offset = 0;
 462
 463	if (!io_ctl->check_crcs) {
 464		io_ctl_unmap_page(io_ctl);
 465		return;
 466	}
 467
 468	if (index == 0)
 469		offset = sizeof(u32) * io_ctl->num_pages;
 470
 471	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 472	btrfs_crc32c_final(crc, (u8 *)&crc);
 473	io_ctl_unmap_page(io_ctl);
 474	tmp = page_address(io_ctl->pages[0]);
 475	tmp += index;
 476	*tmp = crc;
 477}
 478
 479static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 480{
 481	u32 *tmp, val;
 482	u32 crc = ~(u32)0;
 483	unsigned offset = 0;
 484
 485	if (!io_ctl->check_crcs) {
 486		io_ctl_map_page(io_ctl, 0);
 487		return 0;
 488	}
 489
 490	if (index == 0)
 491		offset = sizeof(u32) * io_ctl->num_pages;
 492
 493	tmp = page_address(io_ctl->pages[0]);
 494	tmp += index;
 495	val = *tmp;
 496
 497	io_ctl_map_page(io_ctl, 0);
 498	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 499	btrfs_crc32c_final(crc, (u8 *)&crc);
 500	if (val != crc) {
 501		btrfs_err_rl(io_ctl->fs_info,
 502			"csum mismatch on free space cache");
 503		io_ctl_unmap_page(io_ctl);
 504		return -EIO;
 505	}
 506
 507	return 0;
 508}
 509
 510static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 511			    void *bitmap)
 512{
 513	struct btrfs_free_space_entry *entry;
 514
 515	if (!io_ctl->cur)
 516		return -ENOSPC;
 517
 518	entry = io_ctl->cur;
 519	entry->offset = cpu_to_le64(offset);
 520	entry->bytes = cpu_to_le64(bytes);
 521	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 522		BTRFS_FREE_SPACE_EXTENT;
 523	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 524	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 525
 526	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 527		return 0;
 528
 529	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 530
 531	/* No more pages to map */
 532	if (io_ctl->index >= io_ctl->num_pages)
 533		return 0;
 534
 535	/* map the next page */
 536	io_ctl_map_page(io_ctl, 1);
 537	return 0;
 538}
 539
 540static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 541{
 542	if (!io_ctl->cur)
 543		return -ENOSPC;
 544
 545	/*
 546	 * If we aren't at the start of the current page, unmap this one and
 547	 * map the next one if there is any left.
 548	 */
 549	if (io_ctl->cur != io_ctl->orig) {
 550		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 551		if (io_ctl->index >= io_ctl->num_pages)
 552			return -ENOSPC;
 553		io_ctl_map_page(io_ctl, 0);
 554	}
 555
 556	copy_page(io_ctl->cur, bitmap);
 557	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 558	if (io_ctl->index < io_ctl->num_pages)
 559		io_ctl_map_page(io_ctl, 0);
 560	return 0;
 561}
 562
 563static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 564{
 565	/*
 566	 * If we're not on the boundary we know we've modified the page and we
 567	 * need to crc the page.
 568	 */
 569	if (io_ctl->cur != io_ctl->orig)
 570		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 571	else
 572		io_ctl_unmap_page(io_ctl);
 573
 574	while (io_ctl->index < io_ctl->num_pages) {
 575		io_ctl_map_page(io_ctl, 1);
 576		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 577	}
 578}
 579
 580static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 581			    struct btrfs_free_space *entry, u8 *type)
 582{
 583	struct btrfs_free_space_entry *e;
 584	int ret;
 585
 586	if (!io_ctl->cur) {
 587		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 588		if (ret)
 589			return ret;
 590	}
 591
 592	e = io_ctl->cur;
 593	entry->offset = le64_to_cpu(e->offset);
 594	entry->bytes = le64_to_cpu(e->bytes);
 595	*type = e->type;
 596	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 597	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 598
 599	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 600		return 0;
 601
 602	io_ctl_unmap_page(io_ctl);
 603
 604	return 0;
 605}
 606
 607static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 608			      struct btrfs_free_space *entry)
 609{
 610	int ret;
 611
 612	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 613	if (ret)
 614		return ret;
 615
 616	copy_page(entry->bitmap, io_ctl->cur);
 617	io_ctl_unmap_page(io_ctl);
 618
 619	return 0;
 620}
 621
 622/*
 623 * Since we attach pinned extents after the fact we can have contiguous sections
 624 * of free space that are split up in entries.  This poses a problem with the
 625 * tree logging stuff since it could have allocated across what appears to be 2
 626 * entries since we would have merged the entries when adding the pinned extents
 627 * back to the free space cache.  So run through the space cache that we just
 628 * loaded and merge contiguous entries.  This will make the log replay stuff not
 629 * blow up and it will make for nicer allocator behavior.
 630 */
 631static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 632{
 633	struct btrfs_free_space *e, *prev = NULL;
 634	struct rb_node *n;
 635
 636again:
 637	spin_lock(&ctl->tree_lock);
 638	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 639		e = rb_entry(n, struct btrfs_free_space, offset_index);
 640		if (!prev)
 641			goto next;
 642		if (e->bitmap || prev->bitmap)
 643			goto next;
 644		if (prev->offset + prev->bytes == e->offset) {
 645			unlink_free_space(ctl, prev);
 646			unlink_free_space(ctl, e);
 647			prev->bytes += e->bytes;
 648			kmem_cache_free(btrfs_free_space_cachep, e);
 649			link_free_space(ctl, prev);
 650			prev = NULL;
 651			spin_unlock(&ctl->tree_lock);
 652			goto again;
 653		}
 654next:
 655		prev = e;
 656	}
 657	spin_unlock(&ctl->tree_lock);
 658}
 659
 660static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 661				   struct btrfs_free_space_ctl *ctl,
 662				   struct btrfs_path *path, u64 offset)
 663{
 664	struct btrfs_fs_info *fs_info = root->fs_info;
 665	struct btrfs_free_space_header *header;
 666	struct extent_buffer *leaf;
 667	struct btrfs_io_ctl io_ctl;
 668	struct btrfs_key key;
 669	struct btrfs_free_space *e, *n;
 670	LIST_HEAD(bitmaps);
 671	u64 num_entries;
 672	u64 num_bitmaps;
 673	u64 generation;
 674	u8 type;
 675	int ret = 0;
 676
 677	/* Nothing in the space cache, goodbye */
 678	if (!i_size_read(inode))
 679		return 0;
 680
 681	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 682	key.offset = offset;
 683	key.type = 0;
 684
 685	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 686	if (ret < 0)
 687		return 0;
 688	else if (ret > 0) {
 689		btrfs_release_path(path);
 690		return 0;
 691	}
 692
 693	ret = -1;
 694
 695	leaf = path->nodes[0];
 696	header = btrfs_item_ptr(leaf, path->slots[0],
 697				struct btrfs_free_space_header);
 698	num_entries = btrfs_free_space_entries(leaf, header);
 699	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 700	generation = btrfs_free_space_generation(leaf, header);
 701	btrfs_release_path(path);
 702
 703	if (!BTRFS_I(inode)->generation) {
 704		btrfs_info(fs_info,
 705			   "the free space cache file (%llu) is invalid, skip it",
 706			   offset);
 707		return 0;
 708	}
 709
 710	if (BTRFS_I(inode)->generation != generation) {
 711		btrfs_err(fs_info,
 712			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 713			  BTRFS_I(inode)->generation, generation);
 714		return 0;
 715	}
 716
 717	if (!num_entries)
 718		return 0;
 719
 720	ret = io_ctl_init(&io_ctl, inode, 0);
 721	if (ret)
 722		return ret;
 723
 724	readahead_cache(inode);
 725
 726	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
 727	if (ret)
 728		goto out;
 729
 730	ret = io_ctl_check_crc(&io_ctl, 0);
 731	if (ret)
 732		goto free_cache;
 733
 734	ret = io_ctl_check_generation(&io_ctl, generation);
 735	if (ret)
 736		goto free_cache;
 737
 738	while (num_entries) {
 739		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 740				      GFP_NOFS);
 741		if (!e)
 742			goto free_cache;
 743
 744		ret = io_ctl_read_entry(&io_ctl, e, &type);
 745		if (ret) {
 746			kmem_cache_free(btrfs_free_space_cachep, e);
 747			goto free_cache;
 748		}
 749
 
 
 
 
 
 
 
 
 
 
 750		if (!e->bytes) {
 751			kmem_cache_free(btrfs_free_space_cachep, e);
 752			goto free_cache;
 753		}
 754
 755		if (type == BTRFS_FREE_SPACE_EXTENT) {
 756			spin_lock(&ctl->tree_lock);
 757			ret = link_free_space(ctl, e);
 758			spin_unlock(&ctl->tree_lock);
 759			if (ret) {
 760				btrfs_err(fs_info,
 761					"Duplicate entries in free space cache, dumping");
 762				kmem_cache_free(btrfs_free_space_cachep, e);
 763				goto free_cache;
 764			}
 765		} else {
 766			ASSERT(num_bitmaps);
 767			num_bitmaps--;
 768			e->bitmap = kmem_cache_zalloc(
 769					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 770			if (!e->bitmap) {
 771				kmem_cache_free(
 772					btrfs_free_space_cachep, e);
 773				goto free_cache;
 774			}
 775			spin_lock(&ctl->tree_lock);
 776			ret = link_free_space(ctl, e);
 777			ctl->total_bitmaps++;
 778			ctl->op->recalc_thresholds(ctl);
 779			spin_unlock(&ctl->tree_lock);
 780			if (ret) {
 781				btrfs_err(fs_info,
 782					"Duplicate entries in free space cache, dumping");
 783				kmem_cache_free(btrfs_free_space_cachep, e);
 784				goto free_cache;
 785			}
 786			list_add_tail(&e->list, &bitmaps);
 787		}
 788
 789		num_entries--;
 790	}
 791
 792	io_ctl_unmap_page(&io_ctl);
 793
 794	/*
 795	 * We add the bitmaps at the end of the entries in order that
 796	 * the bitmap entries are added to the cache.
 797	 */
 798	list_for_each_entry_safe(e, n, &bitmaps, list) {
 799		list_del_init(&e->list);
 800		ret = io_ctl_read_bitmap(&io_ctl, e);
 801		if (ret)
 802			goto free_cache;
 
 
 
 
 
 
 803	}
 804
 805	io_ctl_drop_pages(&io_ctl);
 806	merge_space_tree(ctl);
 807	ret = 1;
 808out:
 
 809	io_ctl_free(&io_ctl);
 810	return ret;
 811free_cache:
 812	io_ctl_drop_pages(&io_ctl);
 813	__btrfs_remove_free_space_cache(ctl);
 814	goto out;
 815}
 816
 817int load_free_space_cache(struct btrfs_block_group_cache *block_group)
 818{
 819	struct btrfs_fs_info *fs_info = block_group->fs_info;
 820	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 821	struct inode *inode;
 822	struct btrfs_path *path;
 823	int ret = 0;
 824	bool matched;
 825	u64 used = btrfs_block_group_used(&block_group->item);
 826
 827	/*
 828	 * If this block group has been marked to be cleared for one reason or
 829	 * another then we can't trust the on disk cache, so just return.
 830	 */
 831	spin_lock(&block_group->lock);
 832	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 833		spin_unlock(&block_group->lock);
 834		return 0;
 835	}
 836	spin_unlock(&block_group->lock);
 837
 838	path = btrfs_alloc_path();
 839	if (!path)
 840		return 0;
 841	path->search_commit_root = 1;
 842	path->skip_locking = 1;
 843
 844	/*
 845	 * We must pass a path with search_commit_root set to btrfs_iget in
 846	 * order to avoid a deadlock when allocating extents for the tree root.
 847	 *
 848	 * When we are COWing an extent buffer from the tree root, when looking
 849	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 850	 * block group without its free space cache loaded. When we find one
 851	 * we must load its space cache which requires reading its free space
 852	 * cache's inode item from the root tree. If this inode item is located
 853	 * in the same leaf that we started COWing before, then we end up in
 854	 * deadlock on the extent buffer (trying to read lock it when we
 855	 * previously write locked it).
 856	 *
 857	 * It's safe to read the inode item using the commit root because
 858	 * block groups, once loaded, stay in memory forever (until they are
 859	 * removed) as well as their space caches once loaded. New block groups
 860	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 861	 * we will never try to read their inode item while the fs is mounted.
 862	 */
 863	inode = lookup_free_space_inode(block_group, path);
 864	if (IS_ERR(inode)) {
 865		btrfs_free_path(path);
 866		return 0;
 867	}
 868
 869	/* We may have converted the inode and made the cache invalid. */
 870	spin_lock(&block_group->lock);
 871	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 872		spin_unlock(&block_group->lock);
 873		btrfs_free_path(path);
 874		goto out;
 875	}
 876	spin_unlock(&block_group->lock);
 877
 878	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 879				      path, block_group->key.objectid);
 880	btrfs_free_path(path);
 881	if (ret <= 0)
 882		goto out;
 883
 884	spin_lock(&ctl->tree_lock);
 885	matched = (ctl->free_space == (block_group->key.offset - used -
 886				       block_group->bytes_super));
 887	spin_unlock(&ctl->tree_lock);
 888
 889	if (!matched) {
 890		__btrfs_remove_free_space_cache(ctl);
 891		btrfs_warn(fs_info,
 892			   "block group %llu has wrong amount of free space",
 893			   block_group->key.objectid);
 894		ret = -1;
 895	}
 896out:
 897	if (ret < 0) {
 898		/* This cache is bogus, make sure it gets cleared */
 899		spin_lock(&block_group->lock);
 900		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 901		spin_unlock(&block_group->lock);
 902		ret = 0;
 903
 904		btrfs_warn(fs_info,
 905			   "failed to load free space cache for block group %llu, rebuilding it now",
 906			   block_group->key.objectid);
 907	}
 908
 909	iput(inode);
 910	return ret;
 911}
 912
 913static noinline_for_stack
 914int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 915			      struct btrfs_free_space_ctl *ctl,
 916			      struct btrfs_block_group_cache *block_group,
 917			      int *entries, int *bitmaps,
 918			      struct list_head *bitmap_list)
 919{
 920	int ret;
 921	struct btrfs_free_cluster *cluster = NULL;
 922	struct btrfs_free_cluster *cluster_locked = NULL;
 923	struct rb_node *node = rb_first(&ctl->free_space_offset);
 924	struct btrfs_trim_range *trim_entry;
 925
 926	/* Get the cluster for this block_group if it exists */
 927	if (block_group && !list_empty(&block_group->cluster_list)) {
 928		cluster = list_entry(block_group->cluster_list.next,
 929				     struct btrfs_free_cluster,
 930				     block_group_list);
 931	}
 932
 933	if (!node && cluster) {
 934		cluster_locked = cluster;
 935		spin_lock(&cluster_locked->lock);
 936		node = rb_first(&cluster->root);
 937		cluster = NULL;
 938	}
 939
 940	/* Write out the extent entries */
 941	while (node) {
 942		struct btrfs_free_space *e;
 943
 944		e = rb_entry(node, struct btrfs_free_space, offset_index);
 945		*entries += 1;
 946
 947		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 948				       e->bitmap);
 949		if (ret)
 950			goto fail;
 951
 952		if (e->bitmap) {
 953			list_add_tail(&e->list, bitmap_list);
 954			*bitmaps += 1;
 955		}
 956		node = rb_next(node);
 957		if (!node && cluster) {
 958			node = rb_first(&cluster->root);
 959			cluster_locked = cluster;
 960			spin_lock(&cluster_locked->lock);
 961			cluster = NULL;
 962		}
 963	}
 964	if (cluster_locked) {
 965		spin_unlock(&cluster_locked->lock);
 966		cluster_locked = NULL;
 967	}
 968
 969	/*
 970	 * Make sure we don't miss any range that was removed from our rbtree
 971	 * because trimming is running. Otherwise after a umount+mount (or crash
 972	 * after committing the transaction) we would leak free space and get
 973	 * an inconsistent free space cache report from fsck.
 974	 */
 975	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
 976		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
 977				       trim_entry->bytes, NULL);
 978		if (ret)
 979			goto fail;
 980		*entries += 1;
 981	}
 982
 983	return 0;
 984fail:
 985	if (cluster_locked)
 986		spin_unlock(&cluster_locked->lock);
 987	return -ENOSPC;
 988}
 989
 990static noinline_for_stack int
 991update_cache_item(struct btrfs_trans_handle *trans,
 992		  struct btrfs_root *root,
 993		  struct inode *inode,
 994		  struct btrfs_path *path, u64 offset,
 995		  int entries, int bitmaps)
 996{
 997	struct btrfs_key key;
 998	struct btrfs_free_space_header *header;
 999	struct extent_buffer *leaf;
1000	int ret;
1001
1002	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1003	key.offset = offset;
1004	key.type = 0;
1005
1006	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1007	if (ret < 0) {
1008		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1009				 EXTENT_DELALLOC, 0, 0, NULL);
1010		goto fail;
1011	}
1012	leaf = path->nodes[0];
1013	if (ret > 0) {
1014		struct btrfs_key found_key;
1015		ASSERT(path->slots[0]);
1016		path->slots[0]--;
1017		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1018		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1019		    found_key.offset != offset) {
1020			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1021					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1022					 0, NULL);
1023			btrfs_release_path(path);
1024			goto fail;
1025		}
1026	}
1027
1028	BTRFS_I(inode)->generation = trans->transid;
1029	header = btrfs_item_ptr(leaf, path->slots[0],
1030				struct btrfs_free_space_header);
1031	btrfs_set_free_space_entries(leaf, header, entries);
1032	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1033	btrfs_set_free_space_generation(leaf, header, trans->transid);
1034	btrfs_mark_buffer_dirty(leaf);
1035	btrfs_release_path(path);
1036
1037	return 0;
1038
1039fail:
1040	return -1;
1041}
1042
1043static noinline_for_stack int write_pinned_extent_entries(
1044			    struct btrfs_block_group_cache *block_group,
 
1045			    struct btrfs_io_ctl *io_ctl,
1046			    int *entries)
1047{
1048	u64 start, extent_start, extent_end, len;
1049	struct extent_io_tree *unpin = NULL;
1050	int ret;
1051
1052	if (!block_group)
1053		return 0;
1054
1055	/*
1056	 * We want to add any pinned extents to our free space cache
1057	 * so we don't leak the space
1058	 *
1059	 * We shouldn't have switched the pinned extents yet so this is the
1060	 * right one
1061	 */
1062	unpin = block_group->fs_info->pinned_extents;
1063
1064	start = block_group->key.objectid;
1065
1066	while (start < block_group->key.objectid + block_group->key.offset) {
1067		ret = find_first_extent_bit(unpin, start,
1068					    &extent_start, &extent_end,
1069					    EXTENT_DIRTY, NULL);
1070		if (ret)
1071			return 0;
1072
1073		/* This pinned extent is out of our range */
1074		if (extent_start >= block_group->key.objectid +
1075		    block_group->key.offset)
1076			return 0;
1077
1078		extent_start = max(extent_start, start);
1079		extent_end = min(block_group->key.objectid +
1080				 block_group->key.offset, extent_end + 1);
1081		len = extent_end - extent_start;
1082
1083		*entries += 1;
1084		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1085		if (ret)
1086			return -ENOSPC;
1087
1088		start = extent_end;
1089	}
1090
1091	return 0;
1092}
1093
1094static noinline_for_stack int
1095write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1096{
1097	struct btrfs_free_space *entry, *next;
1098	int ret;
1099
1100	/* Write out the bitmaps */
1101	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1102		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1103		if (ret)
1104			return -ENOSPC;
1105		list_del_init(&entry->list);
1106	}
1107
1108	return 0;
1109}
1110
1111static int flush_dirty_cache(struct inode *inode)
1112{
1113	int ret;
1114
1115	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1116	if (ret)
1117		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1118				 EXTENT_DELALLOC, 0, 0, NULL);
1119
1120	return ret;
1121}
1122
1123static void noinline_for_stack
1124cleanup_bitmap_list(struct list_head *bitmap_list)
1125{
1126	struct btrfs_free_space *entry, *next;
1127
1128	list_for_each_entry_safe(entry, next, bitmap_list, list)
1129		list_del_init(&entry->list);
1130}
1131
1132static void noinline_for_stack
1133cleanup_write_cache_enospc(struct inode *inode,
1134			   struct btrfs_io_ctl *io_ctl,
1135			   struct extent_state **cached_state)
1136{
1137	io_ctl_drop_pages(io_ctl);
1138	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1139			     i_size_read(inode) - 1, cached_state);
1140}
1141
1142static int __btrfs_wait_cache_io(struct btrfs_root *root,
1143				 struct btrfs_trans_handle *trans,
1144				 struct btrfs_block_group_cache *block_group,
1145				 struct btrfs_io_ctl *io_ctl,
1146				 struct btrfs_path *path, u64 offset)
1147{
1148	int ret;
1149	struct inode *inode = io_ctl->inode;
1150
1151	if (!inode)
1152		return 0;
1153
1154	/* Flush the dirty pages in the cache file. */
1155	ret = flush_dirty_cache(inode);
1156	if (ret)
1157		goto out;
1158
1159	/* Update the cache item to tell everyone this cache file is valid. */
1160	ret = update_cache_item(trans, root, inode, path, offset,
1161				io_ctl->entries, io_ctl->bitmaps);
1162out:
1163	io_ctl_free(io_ctl);
1164	if (ret) {
1165		invalidate_inode_pages2(inode->i_mapping);
1166		BTRFS_I(inode)->generation = 0;
1167		if (block_group) {
1168#ifdef DEBUG
1169			btrfs_err(root->fs_info,
1170				  "failed to write free space cache for block group %llu",
1171				  block_group->key.objectid);
1172#endif
1173		}
1174	}
1175	btrfs_update_inode(trans, root, inode);
1176
1177	if (block_group) {
1178		/* the dirty list is protected by the dirty_bgs_lock */
1179		spin_lock(&trans->transaction->dirty_bgs_lock);
1180
1181		/* the disk_cache_state is protected by the block group lock */
1182		spin_lock(&block_group->lock);
1183
1184		/*
1185		 * only mark this as written if we didn't get put back on
1186		 * the dirty list while waiting for IO.   Otherwise our
1187		 * cache state won't be right, and we won't get written again
1188		 */
1189		if (!ret && list_empty(&block_group->dirty_list))
1190			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1191		else if (ret)
1192			block_group->disk_cache_state = BTRFS_DC_ERROR;
1193
1194		spin_unlock(&block_group->lock);
1195		spin_unlock(&trans->transaction->dirty_bgs_lock);
1196		io_ctl->inode = NULL;
1197		iput(inode);
1198	}
1199
1200	return ret;
1201
1202}
1203
1204static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1205				    struct btrfs_trans_handle *trans,
1206				    struct btrfs_io_ctl *io_ctl,
1207				    struct btrfs_path *path)
1208{
1209	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1210}
1211
1212int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1213			struct btrfs_block_group_cache *block_group,
1214			struct btrfs_path *path)
1215{
1216	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1217				     block_group, &block_group->io_ctl,
1218				     path, block_group->key.objectid);
1219}
1220
1221/**
1222 * __btrfs_write_out_cache - write out cached info to an inode
1223 * @root - the root the inode belongs to
1224 * @ctl - the free space cache we are going to write out
1225 * @block_group - the block_group for this cache if it belongs to a block_group
1226 * @trans - the trans handle
1227 *
1228 * This function writes out a free space cache struct to disk for quick recovery
1229 * on mount.  This will return 0 if it was successful in writing the cache out,
1230 * or an errno if it was not.
1231 */
1232static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1233				   struct btrfs_free_space_ctl *ctl,
1234				   struct btrfs_block_group_cache *block_group,
1235				   struct btrfs_io_ctl *io_ctl,
1236				   struct btrfs_trans_handle *trans)
1237{
1238	struct extent_state *cached_state = NULL;
1239	LIST_HEAD(bitmap_list);
1240	int entries = 0;
1241	int bitmaps = 0;
1242	int ret;
1243	int must_iput = 0;
1244
1245	if (!i_size_read(inode))
1246		return -EIO;
1247
1248	WARN_ON(io_ctl->pages);
1249	ret = io_ctl_init(io_ctl, inode, 1);
1250	if (ret)
1251		return ret;
1252
1253	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1254		down_write(&block_group->data_rwsem);
1255		spin_lock(&block_group->lock);
1256		if (block_group->delalloc_bytes) {
1257			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1258			spin_unlock(&block_group->lock);
1259			up_write(&block_group->data_rwsem);
1260			BTRFS_I(inode)->generation = 0;
1261			ret = 0;
1262			must_iput = 1;
1263			goto out;
1264		}
1265		spin_unlock(&block_group->lock);
1266	}
1267
1268	/* Lock all pages first so we can lock the extent safely. */
1269	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1270	if (ret)
1271		goto out_unlock;
1272
1273	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1274			 &cached_state);
1275
1276	io_ctl_set_generation(io_ctl, trans->transid);
1277
1278	mutex_lock(&ctl->cache_writeout_mutex);
1279	/* Write out the extent entries in the free space cache */
1280	spin_lock(&ctl->tree_lock);
1281	ret = write_cache_extent_entries(io_ctl, ctl,
1282					 block_group, &entries, &bitmaps,
1283					 &bitmap_list);
1284	if (ret)
1285		goto out_nospc_locked;
1286
1287	/*
1288	 * Some spaces that are freed in the current transaction are pinned,
1289	 * they will be added into free space cache after the transaction is
1290	 * committed, we shouldn't lose them.
1291	 *
1292	 * If this changes while we are working we'll get added back to
1293	 * the dirty list and redo it.  No locking needed
1294	 */
1295	ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
1296	if (ret)
1297		goto out_nospc_locked;
1298
1299	/*
1300	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1301	 * locked while doing it because a concurrent trim can be manipulating
1302	 * or freeing the bitmap.
1303	 */
1304	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1305	spin_unlock(&ctl->tree_lock);
1306	mutex_unlock(&ctl->cache_writeout_mutex);
1307	if (ret)
1308		goto out_nospc;
1309
1310	/* Zero out the rest of the pages just to make sure */
1311	io_ctl_zero_remaining_pages(io_ctl);
1312
1313	/* Everything is written out, now we dirty the pages in the file. */
1314	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1315				i_size_read(inode), &cached_state);
 
1316	if (ret)
1317		goto out_nospc;
1318
1319	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1320		up_write(&block_group->data_rwsem);
1321	/*
1322	 * Release the pages and unlock the extent, we will flush
1323	 * them out later
1324	 */
1325	io_ctl_drop_pages(io_ctl);
 
1326
1327	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1328			     i_size_read(inode) - 1, &cached_state);
1329
1330	/*
1331	 * at this point the pages are under IO and we're happy,
1332	 * The caller is responsible for waiting on them and updating the
1333	 * the cache and the inode
1334	 */
1335	io_ctl->entries = entries;
1336	io_ctl->bitmaps = bitmaps;
1337
1338	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1339	if (ret)
1340		goto out;
1341
1342	return 0;
1343
1344out:
1345	io_ctl->inode = NULL;
1346	io_ctl_free(io_ctl);
1347	if (ret) {
1348		invalidate_inode_pages2(inode->i_mapping);
1349		BTRFS_I(inode)->generation = 0;
1350	}
1351	btrfs_update_inode(trans, root, inode);
1352	if (must_iput)
1353		iput(inode);
1354	return ret;
1355
1356out_nospc_locked:
1357	cleanup_bitmap_list(&bitmap_list);
1358	spin_unlock(&ctl->tree_lock);
1359	mutex_unlock(&ctl->cache_writeout_mutex);
1360
1361out_nospc:
1362	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1363
1364out_unlock:
1365	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1366		up_write(&block_group->data_rwsem);
1367
1368	goto out;
 
 
 
 
 
 
 
 
 
 
1369}
1370
1371int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1372			  struct btrfs_block_group_cache *block_group,
1373			  struct btrfs_path *path)
1374{
1375	struct btrfs_fs_info *fs_info = trans->fs_info;
1376	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1377	struct inode *inode;
1378	int ret = 0;
1379
1380	spin_lock(&block_group->lock);
1381	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1382		spin_unlock(&block_group->lock);
1383		return 0;
1384	}
1385	spin_unlock(&block_group->lock);
1386
1387	inode = lookup_free_space_inode(block_group, path);
1388	if (IS_ERR(inode))
1389		return 0;
1390
1391	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1392				block_group, &block_group->io_ctl, trans);
1393	if (ret) {
1394#ifdef DEBUG
1395		btrfs_err(fs_info,
1396			  "failed to write free space cache for block group %llu",
1397			  block_group->key.objectid);
1398#endif
1399		spin_lock(&block_group->lock);
1400		block_group->disk_cache_state = BTRFS_DC_ERROR;
1401		spin_unlock(&block_group->lock);
1402
1403		block_group->io_ctl.inode = NULL;
1404		iput(inode);
1405	}
1406
1407	/*
1408	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1409	 * to wait for IO and put the inode
1410	 */
1411
1412	return ret;
1413}
1414
1415static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1416					  u64 offset)
1417{
1418	ASSERT(offset >= bitmap_start);
1419	offset -= bitmap_start;
1420	return (unsigned long)(div_u64(offset, unit));
1421}
1422
1423static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1424{
1425	return (unsigned long)(div_u64(bytes, unit));
1426}
1427
1428static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1429				   u64 offset)
1430{
1431	u64 bitmap_start;
1432	u64 bytes_per_bitmap;
1433
1434	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1435	bitmap_start = offset - ctl->start;
1436	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1437	bitmap_start *= bytes_per_bitmap;
1438	bitmap_start += ctl->start;
1439
1440	return bitmap_start;
1441}
1442
1443static int tree_insert_offset(struct rb_root *root, u64 offset,
1444			      struct rb_node *node, int bitmap)
1445{
1446	struct rb_node **p = &root->rb_node;
1447	struct rb_node *parent = NULL;
1448	struct btrfs_free_space *info;
1449
1450	while (*p) {
1451		parent = *p;
1452		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1453
1454		if (offset < info->offset) {
1455			p = &(*p)->rb_left;
1456		} else if (offset > info->offset) {
1457			p = &(*p)->rb_right;
1458		} else {
1459			/*
1460			 * we could have a bitmap entry and an extent entry
1461			 * share the same offset.  If this is the case, we want
1462			 * the extent entry to always be found first if we do a
1463			 * linear search through the tree, since we want to have
1464			 * the quickest allocation time, and allocating from an
1465			 * extent is faster than allocating from a bitmap.  So
1466			 * if we're inserting a bitmap and we find an entry at
1467			 * this offset, we want to go right, or after this entry
1468			 * logically.  If we are inserting an extent and we've
1469			 * found a bitmap, we want to go left, or before
1470			 * logically.
1471			 */
1472			if (bitmap) {
1473				if (info->bitmap) {
1474					WARN_ON_ONCE(1);
1475					return -EEXIST;
1476				}
1477				p = &(*p)->rb_right;
1478			} else {
1479				if (!info->bitmap) {
1480					WARN_ON_ONCE(1);
1481					return -EEXIST;
1482				}
1483				p = &(*p)->rb_left;
1484			}
1485		}
1486	}
1487
1488	rb_link_node(node, parent, p);
1489	rb_insert_color(node, root);
1490
1491	return 0;
1492}
1493
1494/*
1495 * searches the tree for the given offset.
1496 *
1497 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1498 * want a section that has at least bytes size and comes at or after the given
1499 * offset.
1500 */
1501static struct btrfs_free_space *
1502tree_search_offset(struct btrfs_free_space_ctl *ctl,
1503		   u64 offset, int bitmap_only, int fuzzy)
1504{
1505	struct rb_node *n = ctl->free_space_offset.rb_node;
1506	struct btrfs_free_space *entry, *prev = NULL;
1507
1508	/* find entry that is closest to the 'offset' */
1509	while (1) {
1510		if (!n) {
1511			entry = NULL;
1512			break;
1513		}
1514
1515		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1516		prev = entry;
1517
1518		if (offset < entry->offset)
1519			n = n->rb_left;
1520		else if (offset > entry->offset)
1521			n = n->rb_right;
1522		else
1523			break;
1524	}
1525
1526	if (bitmap_only) {
1527		if (!entry)
1528			return NULL;
1529		if (entry->bitmap)
1530			return entry;
1531
1532		/*
1533		 * bitmap entry and extent entry may share same offset,
1534		 * in that case, bitmap entry comes after extent entry.
1535		 */
1536		n = rb_next(n);
1537		if (!n)
1538			return NULL;
1539		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1540		if (entry->offset != offset)
1541			return NULL;
1542
1543		WARN_ON(!entry->bitmap);
1544		return entry;
1545	} else if (entry) {
1546		if (entry->bitmap) {
1547			/*
1548			 * if previous extent entry covers the offset,
1549			 * we should return it instead of the bitmap entry
1550			 */
1551			n = rb_prev(&entry->offset_index);
1552			if (n) {
1553				prev = rb_entry(n, struct btrfs_free_space,
1554						offset_index);
1555				if (!prev->bitmap &&
1556				    prev->offset + prev->bytes > offset)
1557					entry = prev;
1558			}
1559		}
1560		return entry;
1561	}
1562
1563	if (!prev)
1564		return NULL;
1565
1566	/* find last entry before the 'offset' */
1567	entry = prev;
1568	if (entry->offset > offset) {
1569		n = rb_prev(&entry->offset_index);
1570		if (n) {
1571			entry = rb_entry(n, struct btrfs_free_space,
1572					offset_index);
1573			ASSERT(entry->offset <= offset);
1574		} else {
1575			if (fuzzy)
1576				return entry;
1577			else
1578				return NULL;
1579		}
1580	}
1581
1582	if (entry->bitmap) {
1583		n = rb_prev(&entry->offset_index);
1584		if (n) {
1585			prev = rb_entry(n, struct btrfs_free_space,
1586					offset_index);
1587			if (!prev->bitmap &&
1588			    prev->offset + prev->bytes > offset)
1589				return prev;
1590		}
1591		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1592			return entry;
1593	} else if (entry->offset + entry->bytes > offset)
1594		return entry;
1595
1596	if (!fuzzy)
1597		return NULL;
1598
1599	while (1) {
1600		if (entry->bitmap) {
1601			if (entry->offset + BITS_PER_BITMAP *
1602			    ctl->unit > offset)
1603				break;
1604		} else {
1605			if (entry->offset + entry->bytes > offset)
1606				break;
1607		}
1608
1609		n = rb_next(&entry->offset_index);
1610		if (!n)
1611			return NULL;
1612		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1613	}
1614	return entry;
1615}
1616
1617static inline void
1618__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1619		    struct btrfs_free_space *info)
1620{
1621	rb_erase(&info->offset_index, &ctl->free_space_offset);
1622	ctl->free_extents--;
 
 
 
 
 
1623}
1624
1625static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1626			      struct btrfs_free_space *info)
1627{
1628	__unlink_free_space(ctl, info);
1629	ctl->free_space -= info->bytes;
1630}
1631
1632static int link_free_space(struct btrfs_free_space_ctl *ctl,
1633			   struct btrfs_free_space *info)
1634{
1635	int ret = 0;
1636
1637	ASSERT(info->bytes || info->bitmap);
1638	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1639				 &info->offset_index, (info->bitmap != NULL));
1640	if (ret)
1641		return ret;
1642
 
 
 
 
 
1643	ctl->free_space += info->bytes;
1644	ctl->free_extents++;
1645	return ret;
1646}
1647
1648static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1649{
1650	struct btrfs_block_group_cache *block_group = ctl->private;
1651	u64 max_bytes;
1652	u64 bitmap_bytes;
1653	u64 extent_bytes;
1654	u64 size = block_group->key.offset;
1655	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1656	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1657
1658	max_bitmaps = max_t(u64, max_bitmaps, 1);
1659
1660	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1661
1662	/*
1663	 * The goal is to keep the total amount of memory used per 1gb of space
1664	 * at or below 32k, so we need to adjust how much memory we allow to be
1665	 * used by extent based free space tracking
 
1666	 */
1667	if (size < SZ_1G)
1668		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1669	else
1670		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1671
1672	/*
1673	 * we want to account for 1 more bitmap than what we have so we can make
1674	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1675	 * we add more bitmaps.
1676	 */
1677	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1678
1679	if (bitmap_bytes >= max_bytes) {
1680		ctl->extents_thresh = 0;
1681		return;
1682	}
1683
1684	/*
1685	 * we want the extent entry threshold to always be at most 1/2 the max
1686	 * bytes we can have, or whatever is less than that.
1687	 */
1688	extent_bytes = max_bytes - bitmap_bytes;
1689	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1690
1691	ctl->extents_thresh =
1692		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1693}
1694
1695static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1696				       struct btrfs_free_space *info,
1697				       u64 offset, u64 bytes)
1698{
1699	unsigned long start, count;
 
1700
1701	start = offset_to_bit(info->offset, ctl->unit, offset);
1702	count = bytes_to_bits(bytes, ctl->unit);
1703	ASSERT(start + count <= BITS_PER_BITMAP);
 
1704
1705	bitmap_clear(info->bitmap, start, count);
1706
1707	info->bytes -= bytes;
1708	if (info->max_extent_size > ctl->unit)
1709		info->max_extent_size = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1710}
1711
1712static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1713			      struct btrfs_free_space *info, u64 offset,
1714			      u64 bytes)
1715{
1716	__bitmap_clear_bits(ctl, info, offset, bytes);
1717	ctl->free_space -= bytes;
1718}
1719
1720static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1721			    struct btrfs_free_space *info, u64 offset,
1722			    u64 bytes)
1723{
1724	unsigned long start, count;
 
1725
1726	start = offset_to_bit(info->offset, ctl->unit, offset);
1727	count = bytes_to_bits(bytes, ctl->unit);
1728	ASSERT(start + count <= BITS_PER_BITMAP);
 
1729
1730	bitmap_set(info->bitmap, start, count);
1731
1732	info->bytes += bytes;
1733	ctl->free_space += bytes;
 
 
 
 
 
 
 
 
 
 
 
 
1734}
1735
1736/*
1737 * If we can not find suitable extent, we will use bytes to record
1738 * the size of the max extent.
1739 */
1740static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1741			 struct btrfs_free_space *bitmap_info, u64 *offset,
1742			 u64 *bytes, bool for_alloc)
1743{
1744	unsigned long found_bits = 0;
1745	unsigned long max_bits = 0;
1746	unsigned long bits, i;
1747	unsigned long next_zero;
1748	unsigned long extent_bits;
1749
1750	/*
1751	 * Skip searching the bitmap if we don't have a contiguous section that
1752	 * is large enough for this allocation.
1753	 */
1754	if (for_alloc &&
1755	    bitmap_info->max_extent_size &&
1756	    bitmap_info->max_extent_size < *bytes) {
1757		*bytes = bitmap_info->max_extent_size;
1758		return -1;
1759	}
1760
1761	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1762			  max_t(u64, *offset, bitmap_info->offset));
1763	bits = bytes_to_bits(*bytes, ctl->unit);
1764
1765	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1766		if (for_alloc && bits == 1) {
1767			found_bits = 1;
1768			break;
1769		}
1770		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1771					       BITS_PER_BITMAP, i);
1772		extent_bits = next_zero - i;
1773		if (extent_bits >= bits) {
1774			found_bits = extent_bits;
1775			break;
1776		} else if (extent_bits > max_bits) {
1777			max_bits = extent_bits;
1778		}
1779		i = next_zero;
1780	}
1781
1782	if (found_bits) {
1783		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1784		*bytes = (u64)(found_bits) * ctl->unit;
1785		return 0;
1786	}
1787
1788	*bytes = (u64)(max_bits) * ctl->unit;
1789	bitmap_info->max_extent_size = *bytes;
1790	return -1;
1791}
1792
1793static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1794{
1795	if (entry->bitmap)
1796		return entry->max_extent_size;
1797	return entry->bytes;
1798}
1799
1800/* Cache the size of the max extent in bytes */
1801static struct btrfs_free_space *
1802find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1803		unsigned long align, u64 *max_extent_size)
1804{
1805	struct btrfs_free_space *entry;
1806	struct rb_node *node;
1807	u64 tmp;
1808	u64 align_off;
1809	int ret;
1810
1811	if (!ctl->free_space_offset.rb_node)
1812		goto out;
1813
1814	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1815	if (!entry)
1816		goto out;
1817
1818	for (node = &entry->offset_index; node; node = rb_next(node)) {
1819		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1820		if (entry->bytes < *bytes) {
1821			*max_extent_size = max(get_max_extent_size(entry),
1822					       *max_extent_size);
1823			continue;
1824		}
1825
1826		/* make sure the space returned is big enough
1827		 * to match our requested alignment
1828		 */
1829		if (*bytes >= align) {
1830			tmp = entry->offset - ctl->start + align - 1;
1831			tmp = div64_u64(tmp, align);
1832			tmp = tmp * align + ctl->start;
1833			align_off = tmp - entry->offset;
1834		} else {
1835			align_off = 0;
1836			tmp = entry->offset;
1837		}
1838
1839		if (entry->bytes < *bytes + align_off) {
1840			*max_extent_size = max(get_max_extent_size(entry),
1841					       *max_extent_size);
1842			continue;
1843		}
1844
1845		if (entry->bitmap) {
1846			u64 size = *bytes;
1847
1848			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1849			if (!ret) {
1850				*offset = tmp;
1851				*bytes = size;
1852				return entry;
1853			} else {
1854				*max_extent_size =
1855					max(get_max_extent_size(entry),
1856					    *max_extent_size);
1857			}
1858			continue;
1859		}
1860
1861		*offset = tmp;
1862		*bytes = entry->bytes - align_off;
1863		return entry;
1864	}
1865out:
1866	return NULL;
1867}
1868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1869static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1870			   struct btrfs_free_space *info, u64 offset)
1871{
1872	info->offset = offset_to_bitmap(ctl, offset);
1873	info->bytes = 0;
 
1874	INIT_LIST_HEAD(&info->list);
1875	link_free_space(ctl, info);
1876	ctl->total_bitmaps++;
1877
1878	ctl->op->recalc_thresholds(ctl);
1879}
1880
1881static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1882			struct btrfs_free_space *bitmap_info)
1883{
 
 
 
 
 
 
 
 
 
 
 
 
1884	unlink_free_space(ctl, bitmap_info);
1885	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1886	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1887	ctl->total_bitmaps--;
1888	ctl->op->recalc_thresholds(ctl);
1889}
1890
1891static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1892			      struct btrfs_free_space *bitmap_info,
1893			      u64 *offset, u64 *bytes)
1894{
1895	u64 end;
1896	u64 search_start, search_bytes;
1897	int ret;
1898
1899again:
1900	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1901
1902	/*
1903	 * We need to search for bits in this bitmap.  We could only cover some
1904	 * of the extent in this bitmap thanks to how we add space, so we need
1905	 * to search for as much as it as we can and clear that amount, and then
1906	 * go searching for the next bit.
1907	 */
1908	search_start = *offset;
1909	search_bytes = ctl->unit;
1910	search_bytes = min(search_bytes, end - search_start + 1);
1911	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1912			    false);
1913	if (ret < 0 || search_start != *offset)
1914		return -EINVAL;
1915
1916	/* We may have found more bits than what we need */
1917	search_bytes = min(search_bytes, *bytes);
1918
1919	/* Cannot clear past the end of the bitmap */
1920	search_bytes = min(search_bytes, end - search_start + 1);
1921
1922	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1923	*offset += search_bytes;
1924	*bytes -= search_bytes;
1925
1926	if (*bytes) {
1927		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1928		if (!bitmap_info->bytes)
1929			free_bitmap(ctl, bitmap_info);
1930
1931		/*
1932		 * no entry after this bitmap, but we still have bytes to
1933		 * remove, so something has gone wrong.
1934		 */
1935		if (!next)
1936			return -EINVAL;
1937
1938		bitmap_info = rb_entry(next, struct btrfs_free_space,
1939				       offset_index);
1940
1941		/*
1942		 * if the next entry isn't a bitmap we need to return to let the
1943		 * extent stuff do its work.
1944		 */
1945		if (!bitmap_info->bitmap)
1946			return -EAGAIN;
1947
1948		/*
1949		 * Ok the next item is a bitmap, but it may not actually hold
1950		 * the information for the rest of this free space stuff, so
1951		 * look for it, and if we don't find it return so we can try
1952		 * everything over again.
1953		 */
1954		search_start = *offset;
1955		search_bytes = ctl->unit;
1956		ret = search_bitmap(ctl, bitmap_info, &search_start,
1957				    &search_bytes, false);
1958		if (ret < 0 || search_start != *offset)
1959			return -EAGAIN;
1960
1961		goto again;
1962	} else if (!bitmap_info->bytes)
1963		free_bitmap(ctl, bitmap_info);
1964
1965	return 0;
1966}
1967
1968static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1969			       struct btrfs_free_space *info, u64 offset,
1970			       u64 bytes)
1971{
1972	u64 bytes_to_set = 0;
1973	u64 end;
1974
 
 
 
 
 
 
 
 
 
 
 
 
 
1975	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1976
1977	bytes_to_set = min(end - offset, bytes);
1978
1979	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1980
1981	/*
1982	 * We set some bytes, we have no idea what the max extent size is
1983	 * anymore.
1984	 */
1985	info->max_extent_size = 0;
1986
1987	return bytes_to_set;
1988
1989}
1990
1991static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1992		      struct btrfs_free_space *info)
1993{
1994	struct btrfs_block_group_cache *block_group = ctl->private;
1995	struct btrfs_fs_info *fs_info = block_group->fs_info;
1996	bool forced = false;
1997
1998#ifdef CONFIG_BTRFS_DEBUG
1999	if (btrfs_should_fragment_free_space(block_group))
2000		forced = true;
2001#endif
2002
 
 
 
 
2003	/*
2004	 * If we are below the extents threshold then we can add this as an
2005	 * extent, and don't have to deal with the bitmap
2006	 */
2007	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2008		/*
2009		 * If this block group has some small extents we don't want to
2010		 * use up all of our free slots in the cache with them, we want
2011		 * to reserve them to larger extents, however if we have plenty
2012		 * of cache left then go ahead an dadd them, no sense in adding
2013		 * the overhead of a bitmap if we don't have to.
2014		 */
2015		if (info->bytes <= fs_info->sectorsize * 4) {
2016			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2017				return false;
2018		} else {
2019			return false;
2020		}
2021	}
2022
2023	/*
2024	 * The original block groups from mkfs can be really small, like 8
2025	 * megabytes, so don't bother with a bitmap for those entries.  However
2026	 * some block groups can be smaller than what a bitmap would cover but
2027	 * are still large enough that they could overflow the 32k memory limit,
2028	 * so allow those block groups to still be allowed to have a bitmap
2029	 * entry.
2030	 */
2031	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2032		return false;
2033
2034	return true;
2035}
2036
2037static const struct btrfs_free_space_op free_space_op = {
2038	.recalc_thresholds	= recalculate_thresholds,
2039	.use_bitmap		= use_bitmap,
2040};
2041
2042static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2043			      struct btrfs_free_space *info)
2044{
2045	struct btrfs_free_space *bitmap_info;
2046	struct btrfs_block_group_cache *block_group = NULL;
2047	int added = 0;
2048	u64 bytes, offset, bytes_added;
 
2049	int ret;
2050
2051	bytes = info->bytes;
2052	offset = info->offset;
 
2053
2054	if (!ctl->op->use_bitmap(ctl, info))
2055		return 0;
2056
2057	if (ctl->op == &free_space_op)
2058		block_group = ctl->private;
2059again:
2060	/*
2061	 * Since we link bitmaps right into the cluster we need to see if we
2062	 * have a cluster here, and if so and it has our bitmap we need to add
2063	 * the free space to that bitmap.
2064	 */
2065	if (block_group && !list_empty(&block_group->cluster_list)) {
2066		struct btrfs_free_cluster *cluster;
2067		struct rb_node *node;
2068		struct btrfs_free_space *entry;
2069
2070		cluster = list_entry(block_group->cluster_list.next,
2071				     struct btrfs_free_cluster,
2072				     block_group_list);
2073		spin_lock(&cluster->lock);
2074		node = rb_first(&cluster->root);
2075		if (!node) {
2076			spin_unlock(&cluster->lock);
2077			goto no_cluster_bitmap;
2078		}
2079
2080		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2081		if (!entry->bitmap) {
2082			spin_unlock(&cluster->lock);
2083			goto no_cluster_bitmap;
2084		}
2085
2086		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2087			bytes_added = add_bytes_to_bitmap(ctl, entry,
2088							  offset, bytes);
2089			bytes -= bytes_added;
2090			offset += bytes_added;
2091		}
2092		spin_unlock(&cluster->lock);
2093		if (!bytes) {
2094			ret = 1;
2095			goto out;
2096		}
2097	}
2098
2099no_cluster_bitmap:
2100	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2101					 1, 0);
2102	if (!bitmap_info) {
2103		ASSERT(added == 0);
2104		goto new_bitmap;
2105	}
2106
2107	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
2108	bytes -= bytes_added;
2109	offset += bytes_added;
2110	added = 0;
2111
2112	if (!bytes) {
2113		ret = 1;
2114		goto out;
2115	} else
2116		goto again;
2117
2118new_bitmap:
2119	if (info && info->bitmap) {
2120		add_new_bitmap(ctl, info, offset);
2121		added = 1;
2122		info = NULL;
2123		goto again;
2124	} else {
2125		spin_unlock(&ctl->tree_lock);
2126
2127		/* no pre-allocated info, allocate a new one */
2128		if (!info) {
2129			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2130						 GFP_NOFS);
2131			if (!info) {
2132				spin_lock(&ctl->tree_lock);
2133				ret = -ENOMEM;
2134				goto out;
2135			}
2136		}
2137
2138		/* allocate the bitmap */
2139		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2140						 GFP_NOFS);
 
2141		spin_lock(&ctl->tree_lock);
2142		if (!info->bitmap) {
2143			ret = -ENOMEM;
2144			goto out;
2145		}
2146		goto again;
2147	}
2148
2149out:
2150	if (info) {
2151		if (info->bitmap)
2152			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2153					info->bitmap);
2154		kmem_cache_free(btrfs_free_space_cachep, info);
2155	}
2156
2157	return ret;
2158}
2159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2161			  struct btrfs_free_space *info, bool update_stat)
2162{
2163	struct btrfs_free_space *left_info;
2164	struct btrfs_free_space *right_info;
2165	bool merged = false;
2166	u64 offset = info->offset;
2167	u64 bytes = info->bytes;
 
2168
2169	/*
2170	 * first we want to see if there is free space adjacent to the range we
2171	 * are adding, if there is remove that struct and add a new one to
2172	 * cover the entire range
2173	 */
2174	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2175	if (right_info && rb_prev(&right_info->offset_index))
2176		left_info = rb_entry(rb_prev(&right_info->offset_index),
2177				     struct btrfs_free_space, offset_index);
2178	else
2179		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2180
2181	if (right_info && !right_info->bitmap) {
 
 
2182		if (update_stat)
2183			unlink_free_space(ctl, right_info);
2184		else
2185			__unlink_free_space(ctl, right_info);
2186		info->bytes += right_info->bytes;
2187		kmem_cache_free(btrfs_free_space_cachep, right_info);
2188		merged = true;
2189	}
2190
 
2191	if (left_info && !left_info->bitmap &&
2192	    left_info->offset + left_info->bytes == offset) {
 
2193		if (update_stat)
2194			unlink_free_space(ctl, left_info);
2195		else
2196			__unlink_free_space(ctl, left_info);
2197		info->offset = left_info->offset;
2198		info->bytes += left_info->bytes;
2199		kmem_cache_free(btrfs_free_space_cachep, left_info);
2200		merged = true;
2201	}
2202
2203	return merged;
2204}
2205
2206static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2207				     struct btrfs_free_space *info,
2208				     bool update_stat)
2209{
2210	struct btrfs_free_space *bitmap;
2211	unsigned long i;
2212	unsigned long j;
2213	const u64 end = info->offset + info->bytes;
2214	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2215	u64 bytes;
2216
2217	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2218	if (!bitmap)
2219		return false;
2220
2221	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2222	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2223	if (j == i)
2224		return false;
2225	bytes = (j - i) * ctl->unit;
2226	info->bytes += bytes;
2227
 
 
 
 
2228	if (update_stat)
2229		bitmap_clear_bits(ctl, bitmap, end, bytes);
2230	else
2231		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2232
2233	if (!bitmap->bytes)
2234		free_bitmap(ctl, bitmap);
2235
2236	return true;
2237}
2238
2239static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2240				       struct btrfs_free_space *info,
2241				       bool update_stat)
2242{
2243	struct btrfs_free_space *bitmap;
2244	u64 bitmap_offset;
2245	unsigned long i;
2246	unsigned long j;
2247	unsigned long prev_j;
2248	u64 bytes;
2249
2250	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2251	/* If we're on a boundary, try the previous logical bitmap. */
2252	if (bitmap_offset == info->offset) {
2253		if (info->offset == 0)
2254			return false;
2255		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2256	}
2257
2258	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2259	if (!bitmap)
2260		return false;
2261
2262	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2263	j = 0;
2264	prev_j = (unsigned long)-1;
2265	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2266		if (j > i)
2267			break;
2268		prev_j = j;
2269	}
2270	if (prev_j == i)
2271		return false;
2272
2273	if (prev_j == (unsigned long)-1)
2274		bytes = (i + 1) * ctl->unit;
2275	else
2276		bytes = (i - prev_j) * ctl->unit;
2277
2278	info->offset -= bytes;
2279	info->bytes += bytes;
2280
 
 
 
 
2281	if (update_stat)
2282		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2283	else
2284		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2285
2286	if (!bitmap->bytes)
2287		free_bitmap(ctl, bitmap);
2288
2289	return true;
2290}
2291
2292/*
2293 * We prefer always to allocate from extent entries, both for clustered and
2294 * non-clustered allocation requests. So when attempting to add a new extent
2295 * entry, try to see if there's adjacent free space in bitmap entries, and if
2296 * there is, migrate that space from the bitmaps to the extent.
2297 * Like this we get better chances of satisfying space allocation requests
2298 * because we attempt to satisfy them based on a single cache entry, and never
2299 * on 2 or more entries - even if the entries represent a contiguous free space
2300 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2301 * ends).
2302 */
2303static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2304			      struct btrfs_free_space *info,
2305			      bool update_stat)
2306{
2307	/*
2308	 * Only work with disconnected entries, as we can change their offset,
2309	 * and must be extent entries.
2310	 */
2311	ASSERT(!info->bitmap);
2312	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2313
2314	if (ctl->total_bitmaps > 0) {
2315		bool stole_end;
2316		bool stole_front = false;
2317
2318		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2319		if (ctl->total_bitmaps > 0)
2320			stole_front = steal_from_bitmap_to_front(ctl, info,
2321								 update_stat);
2322
2323		if (stole_end || stole_front)
2324			try_merge_free_space(ctl, info, update_stat);
2325	}
2326}
2327
2328int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2329			   struct btrfs_free_space_ctl *ctl,
2330			   u64 offset, u64 bytes)
 
2331{
 
2332	struct btrfs_free_space *info;
2333	int ret = 0;
 
2334
2335	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2336	if (!info)
2337		return -ENOMEM;
2338
2339	info->offset = offset;
2340	info->bytes = bytes;
 
2341	RB_CLEAR_NODE(&info->offset_index);
2342
2343	spin_lock(&ctl->tree_lock);
2344
2345	if (try_merge_free_space(ctl, info, true))
2346		goto link;
2347
2348	/*
2349	 * There was no extent directly to the left or right of this new
2350	 * extent then we know we're going to have to allocate a new extent, so
2351	 * before we do that see if we need to drop this into a bitmap
2352	 */
2353	ret = insert_into_bitmap(ctl, info);
2354	if (ret < 0) {
2355		goto out;
2356	} else if (ret) {
2357		ret = 0;
2358		goto out;
2359	}
2360link:
2361	/*
2362	 * Only steal free space from adjacent bitmaps if we're sure we're not
2363	 * going to add the new free space to existing bitmap entries - because
2364	 * that would mean unnecessary work that would be reverted. Therefore
2365	 * attempt to steal space from bitmaps if we're adding an extent entry.
2366	 */
2367	steal_from_bitmap(ctl, info, true);
2368
 
 
2369	ret = link_free_space(ctl, info);
2370	if (ret)
2371		kmem_cache_free(btrfs_free_space_cachep, info);
2372out:
 
2373	spin_unlock(&ctl->tree_lock);
2374
2375	if (ret) {
2376		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2377		ASSERT(ret != -EEXIST);
2378	}
2379
 
 
 
 
 
2380	return ret;
2381}
2382
2383int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
2384			 u64 bytenr, u64 size)
2385{
 
 
 
 
 
2386	return __btrfs_add_free_space(block_group->fs_info,
2387				      block_group->free_space_ctl,
2388				      bytenr, size);
2389}
2390
2391int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2392			    u64 offset, u64 bytes)
2393{
2394	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2395	struct btrfs_free_space *info;
2396	int ret;
2397	bool re_search = false;
2398
2399	spin_lock(&ctl->tree_lock);
2400
2401again:
2402	ret = 0;
2403	if (!bytes)
2404		goto out_lock;
2405
2406	info = tree_search_offset(ctl, offset, 0, 0);
2407	if (!info) {
2408		/*
2409		 * oops didn't find an extent that matched the space we wanted
2410		 * to remove, look for a bitmap instead
2411		 */
2412		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2413					  1, 0);
2414		if (!info) {
2415			/*
2416			 * If we found a partial bit of our free space in a
2417			 * bitmap but then couldn't find the other part this may
2418			 * be a problem, so WARN about it.
2419			 */
2420			WARN_ON(re_search);
2421			goto out_lock;
2422		}
2423	}
2424
2425	re_search = false;
2426	if (!info->bitmap) {
2427		unlink_free_space(ctl, info);
2428		if (offset == info->offset) {
2429			u64 to_free = min(bytes, info->bytes);
2430
2431			info->bytes -= to_free;
2432			info->offset += to_free;
2433			if (info->bytes) {
2434				ret = link_free_space(ctl, info);
2435				WARN_ON(ret);
2436			} else {
2437				kmem_cache_free(btrfs_free_space_cachep, info);
2438			}
2439
2440			offset += to_free;
2441			bytes -= to_free;
2442			goto again;
2443		} else {
2444			u64 old_end = info->bytes + info->offset;
2445
2446			info->bytes = offset - info->offset;
2447			ret = link_free_space(ctl, info);
2448			WARN_ON(ret);
2449			if (ret)
2450				goto out_lock;
2451
2452			/* Not enough bytes in this entry to satisfy us */
2453			if (old_end < offset + bytes) {
2454				bytes -= old_end - offset;
2455				offset = old_end;
2456				goto again;
2457			} else if (old_end == offset + bytes) {
2458				/* all done */
2459				goto out_lock;
2460			}
2461			spin_unlock(&ctl->tree_lock);
2462
2463			ret = btrfs_add_free_space(block_group, offset + bytes,
2464						   old_end - (offset + bytes));
 
 
2465			WARN_ON(ret);
2466			goto out;
2467		}
2468	}
2469
2470	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2471	if (ret == -EAGAIN) {
2472		re_search = true;
2473		goto again;
2474	}
2475out_lock:
 
2476	spin_unlock(&ctl->tree_lock);
2477out:
2478	return ret;
2479}
2480
2481void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2482			   u64 bytes)
2483{
2484	struct btrfs_fs_info *fs_info = block_group->fs_info;
2485	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2486	struct btrfs_free_space *info;
2487	struct rb_node *n;
2488	int count = 0;
2489
2490	spin_lock(&ctl->tree_lock);
2491	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2492		info = rb_entry(n, struct btrfs_free_space, offset_index);
2493		if (info->bytes >= bytes && !block_group->ro)
2494			count++;
2495		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2496			   info->offset, info->bytes,
2497		       (info->bitmap) ? "yes" : "no");
2498	}
2499	spin_unlock(&ctl->tree_lock);
2500	btrfs_info(fs_info, "block group has cluster?: %s",
2501	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2502	btrfs_info(fs_info,
2503		   "%d blocks of free space at or bigger than bytes is", count);
2504}
2505
2506void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2507{
2508	struct btrfs_fs_info *fs_info = block_group->fs_info;
2509	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2510
2511	spin_lock_init(&ctl->tree_lock);
2512	ctl->unit = fs_info->sectorsize;
2513	ctl->start = block_group->key.objectid;
2514	ctl->private = block_group;
2515	ctl->op = &free_space_op;
2516	INIT_LIST_HEAD(&ctl->trimming_ranges);
2517	mutex_init(&ctl->cache_writeout_mutex);
2518
2519	/*
2520	 * we only want to have 32k of ram per block group for keeping
2521	 * track of free space, and if we pass 1/2 of that we want to
2522	 * start converting things over to using bitmaps
2523	 */
2524	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2525}
2526
2527/*
2528 * for a given cluster, put all of its extents back into the free
2529 * space cache.  If the block group passed doesn't match the block group
2530 * pointed to by the cluster, someone else raced in and freed the
2531 * cluster already.  In that case, we just return without changing anything
2532 */
2533static int
2534__btrfs_return_cluster_to_free_space(
2535			     struct btrfs_block_group_cache *block_group,
2536			     struct btrfs_free_cluster *cluster)
2537{
2538	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2539	struct btrfs_free_space *entry;
2540	struct rb_node *node;
2541
2542	spin_lock(&cluster->lock);
2543	if (cluster->block_group != block_group)
2544		goto out;
2545
2546	cluster->block_group = NULL;
2547	cluster->window_start = 0;
2548	list_del_init(&cluster->block_group_list);
2549
2550	node = rb_first(&cluster->root);
2551	while (node) {
2552		bool bitmap;
2553
2554		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2555		node = rb_next(&entry->offset_index);
2556		rb_erase(&entry->offset_index, &cluster->root);
2557		RB_CLEAR_NODE(&entry->offset_index);
2558
2559		bitmap = (entry->bitmap != NULL);
2560		if (!bitmap) {
 
 
 
 
 
 
 
2561			try_merge_free_space(ctl, entry, false);
2562			steal_from_bitmap(ctl, entry, false);
 
 
 
 
 
 
 
2563		}
2564		tree_insert_offset(&ctl->free_space_offset,
2565				   entry->offset, &entry->offset_index, bitmap);
2566	}
2567	cluster->root = RB_ROOT;
2568
2569out:
2570	spin_unlock(&cluster->lock);
2571	btrfs_put_block_group(block_group);
2572	return 0;
2573}
2574
2575static void __btrfs_remove_free_space_cache_locked(
2576				struct btrfs_free_space_ctl *ctl)
2577{
2578	struct btrfs_free_space *info;
2579	struct rb_node *node;
2580
2581	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2582		info = rb_entry(node, struct btrfs_free_space, offset_index);
2583		if (!info->bitmap) {
2584			unlink_free_space(ctl, info);
2585			kmem_cache_free(btrfs_free_space_cachep, info);
2586		} else {
2587			free_bitmap(ctl, info);
2588		}
2589
2590		cond_resched_lock(&ctl->tree_lock);
2591	}
2592}
2593
2594void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2595{
2596	spin_lock(&ctl->tree_lock);
2597	__btrfs_remove_free_space_cache_locked(ctl);
 
 
2598	spin_unlock(&ctl->tree_lock);
2599}
2600
2601void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2602{
2603	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2604	struct btrfs_free_cluster *cluster;
2605	struct list_head *head;
2606
2607	spin_lock(&ctl->tree_lock);
2608	while ((head = block_group->cluster_list.next) !=
2609	       &block_group->cluster_list) {
2610		cluster = list_entry(head, struct btrfs_free_cluster,
2611				     block_group_list);
2612
2613		WARN_ON(cluster->block_group != block_group);
2614		__btrfs_return_cluster_to_free_space(block_group, cluster);
2615
2616		cond_resched_lock(&ctl->tree_lock);
2617	}
2618	__btrfs_remove_free_space_cache_locked(ctl);
 
2619	spin_unlock(&ctl->tree_lock);
2620
2621}
2622
2623u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2624			       u64 offset, u64 bytes, u64 empty_size,
2625			       u64 *max_extent_size)
2626{
2627	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2628	struct btrfs_free_space *entry = NULL;
2629	u64 bytes_search = bytes + empty_size;
2630	u64 ret = 0;
2631	u64 align_gap = 0;
2632	u64 align_gap_len = 0;
 
2633
2634	spin_lock(&ctl->tree_lock);
2635	entry = find_free_space(ctl, &offset, &bytes_search,
2636				block_group->full_stripe_len, max_extent_size);
2637	if (!entry)
2638		goto out;
2639
2640	ret = offset;
2641	if (entry->bitmap) {
2642		bitmap_clear_bits(ctl, entry, offset, bytes);
 
 
 
 
2643		if (!entry->bytes)
2644			free_bitmap(ctl, entry);
2645	} else {
2646		unlink_free_space(ctl, entry);
2647		align_gap_len = offset - entry->offset;
2648		align_gap = entry->offset;
 
 
 
 
2649
2650		entry->offset = offset + bytes;
2651		WARN_ON(entry->bytes < bytes + align_gap_len);
2652
2653		entry->bytes -= bytes + align_gap_len;
2654		if (!entry->bytes)
2655			kmem_cache_free(btrfs_free_space_cachep, entry);
2656		else
2657			link_free_space(ctl, entry);
2658	}
2659out:
 
2660	spin_unlock(&ctl->tree_lock);
2661
2662	if (align_gap_len)
2663		__btrfs_add_free_space(block_group->fs_info, ctl,
2664				       align_gap, align_gap_len);
 
2665	return ret;
2666}
2667
2668/*
2669 * given a cluster, put all of its extents back into the free space
2670 * cache.  If a block group is passed, this function will only free
2671 * a cluster that belongs to the passed block group.
2672 *
2673 * Otherwise, it'll get a reference on the block group pointed to by the
2674 * cluster and remove the cluster from it.
2675 */
2676int btrfs_return_cluster_to_free_space(
2677			       struct btrfs_block_group_cache *block_group,
2678			       struct btrfs_free_cluster *cluster)
2679{
2680	struct btrfs_free_space_ctl *ctl;
2681	int ret;
2682
2683	/* first, get a safe pointer to the block group */
2684	spin_lock(&cluster->lock);
2685	if (!block_group) {
2686		block_group = cluster->block_group;
2687		if (!block_group) {
2688			spin_unlock(&cluster->lock);
2689			return 0;
2690		}
2691	} else if (cluster->block_group != block_group) {
2692		/* someone else has already freed it don't redo their work */
2693		spin_unlock(&cluster->lock);
2694		return 0;
2695	}
2696	atomic_inc(&block_group->count);
2697	spin_unlock(&cluster->lock);
2698
2699	ctl = block_group->free_space_ctl;
2700
2701	/* now return any extents the cluster had on it */
2702	spin_lock(&ctl->tree_lock);
2703	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2704	spin_unlock(&ctl->tree_lock);
2705
 
 
2706	/* finally drop our ref */
2707	btrfs_put_block_group(block_group);
2708	return ret;
2709}
2710
2711static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2712				   struct btrfs_free_cluster *cluster,
2713				   struct btrfs_free_space *entry,
2714				   u64 bytes, u64 min_start,
2715				   u64 *max_extent_size)
2716{
2717	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2718	int err;
2719	u64 search_start = cluster->window_start;
2720	u64 search_bytes = bytes;
2721	u64 ret = 0;
2722
2723	search_start = min_start;
2724	search_bytes = bytes;
2725
2726	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2727	if (err) {
2728		*max_extent_size = max(get_max_extent_size(entry),
2729				       *max_extent_size);
2730		return 0;
2731	}
2732
2733	ret = search_start;
2734	__bitmap_clear_bits(ctl, entry, ret, bytes);
2735
2736	return ret;
2737}
2738
2739/*
2740 * given a cluster, try to allocate 'bytes' from it, returns 0
2741 * if it couldn't find anything suitably large, or a logical disk offset
2742 * if things worked out
2743 */
2744u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2745			     struct btrfs_free_cluster *cluster, u64 bytes,
2746			     u64 min_start, u64 *max_extent_size)
2747{
2748	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 
 
2749	struct btrfs_free_space *entry = NULL;
2750	struct rb_node *node;
2751	u64 ret = 0;
2752
2753	spin_lock(&cluster->lock);
2754	if (bytes > cluster->max_size)
2755		goto out;
2756
2757	if (cluster->block_group != block_group)
2758		goto out;
2759
2760	node = rb_first(&cluster->root);
2761	if (!node)
2762		goto out;
2763
2764	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2765	while (1) {
2766		if (entry->bytes < bytes)
2767			*max_extent_size = max(get_max_extent_size(entry),
2768					       *max_extent_size);
2769
2770		if (entry->bytes < bytes ||
2771		    (!entry->bitmap && entry->offset < min_start)) {
2772			node = rb_next(&entry->offset_index);
2773			if (!node)
2774				break;
2775			entry = rb_entry(node, struct btrfs_free_space,
2776					 offset_index);
2777			continue;
2778		}
2779
2780		if (entry->bitmap) {
2781			ret = btrfs_alloc_from_bitmap(block_group,
2782						      cluster, entry, bytes,
2783						      cluster->window_start,
2784						      max_extent_size);
2785			if (ret == 0) {
2786				node = rb_next(&entry->offset_index);
2787				if (!node)
2788					break;
2789				entry = rb_entry(node, struct btrfs_free_space,
2790						 offset_index);
2791				continue;
2792			}
2793			cluster->window_start += bytes;
2794		} else {
2795			ret = entry->offset;
2796
2797			entry->offset += bytes;
2798			entry->bytes -= bytes;
2799		}
2800
2801		if (entry->bytes == 0)
2802			rb_erase(&entry->offset_index, &cluster->root);
2803		break;
2804	}
2805out:
2806	spin_unlock(&cluster->lock);
2807
2808	if (!ret)
2809		return 0;
2810
2811	spin_lock(&ctl->tree_lock);
2812
 
 
 
2813	ctl->free_space -= bytes;
 
 
2814	if (entry->bytes == 0) {
2815		ctl->free_extents--;
2816		if (entry->bitmap) {
2817			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2818					entry->bitmap);
2819			ctl->total_bitmaps--;
2820			ctl->op->recalc_thresholds(ctl);
 
 
2821		}
2822		kmem_cache_free(btrfs_free_space_cachep, entry);
2823	}
2824
2825	spin_unlock(&ctl->tree_lock);
2826
2827	return ret;
2828}
2829
2830static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2831				struct btrfs_free_space *entry,
2832				struct btrfs_free_cluster *cluster,
2833				u64 offset, u64 bytes,
2834				u64 cont1_bytes, u64 min_bytes)
2835{
2836	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2837	unsigned long next_zero;
2838	unsigned long i;
2839	unsigned long want_bits;
2840	unsigned long min_bits;
2841	unsigned long found_bits;
2842	unsigned long max_bits = 0;
2843	unsigned long start = 0;
2844	unsigned long total_found = 0;
2845	int ret;
2846
2847	i = offset_to_bit(entry->offset, ctl->unit,
2848			  max_t(u64, offset, entry->offset));
2849	want_bits = bytes_to_bits(bytes, ctl->unit);
2850	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2851
2852	/*
2853	 * Don't bother looking for a cluster in this bitmap if it's heavily
2854	 * fragmented.
2855	 */
2856	if (entry->max_extent_size &&
2857	    entry->max_extent_size < cont1_bytes)
2858		return -ENOSPC;
2859again:
2860	found_bits = 0;
2861	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2862		next_zero = find_next_zero_bit(entry->bitmap,
2863					       BITS_PER_BITMAP, i);
2864		if (next_zero - i >= min_bits) {
2865			found_bits = next_zero - i;
2866			if (found_bits > max_bits)
2867				max_bits = found_bits;
2868			break;
2869		}
2870		if (next_zero - i > max_bits)
2871			max_bits = next_zero - i;
2872		i = next_zero;
2873	}
2874
2875	if (!found_bits) {
2876		entry->max_extent_size = (u64)max_bits * ctl->unit;
2877		return -ENOSPC;
2878	}
2879
2880	if (!total_found) {
2881		start = i;
2882		cluster->max_size = 0;
2883	}
2884
2885	total_found += found_bits;
2886
2887	if (cluster->max_size < found_bits * ctl->unit)
2888		cluster->max_size = found_bits * ctl->unit;
2889
2890	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2891		i = next_zero + 1;
2892		goto again;
2893	}
2894
2895	cluster->window_start = start * ctl->unit + entry->offset;
2896	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2897	ret = tree_insert_offset(&cluster->root, entry->offset,
2898				 &entry->offset_index, 1);
2899	ASSERT(!ret); /* -EEXIST; Logic error */
2900
2901	trace_btrfs_setup_cluster(block_group, cluster,
2902				  total_found * ctl->unit, 1);
2903	return 0;
2904}
2905
2906/*
2907 * This searches the block group for just extents to fill the cluster with.
2908 * Try to find a cluster with at least bytes total bytes, at least one
2909 * extent of cont1_bytes, and other clusters of at least min_bytes.
2910 */
2911static noinline int
2912setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2913			struct btrfs_free_cluster *cluster,
2914			struct list_head *bitmaps, u64 offset, u64 bytes,
2915			u64 cont1_bytes, u64 min_bytes)
2916{
2917	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2918	struct btrfs_free_space *first = NULL;
2919	struct btrfs_free_space *entry = NULL;
2920	struct btrfs_free_space *last;
2921	struct rb_node *node;
2922	u64 window_free;
2923	u64 max_extent;
2924	u64 total_size = 0;
2925
2926	entry = tree_search_offset(ctl, offset, 0, 1);
2927	if (!entry)
2928		return -ENOSPC;
2929
2930	/*
2931	 * We don't want bitmaps, so just move along until we find a normal
2932	 * extent entry.
2933	 */
2934	while (entry->bitmap || entry->bytes < min_bytes) {
2935		if (entry->bitmap && list_empty(&entry->list))
2936			list_add_tail(&entry->list, bitmaps);
2937		node = rb_next(&entry->offset_index);
2938		if (!node)
2939			return -ENOSPC;
2940		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2941	}
2942
2943	window_free = entry->bytes;
2944	max_extent = entry->bytes;
2945	first = entry;
2946	last = entry;
2947
2948	for (node = rb_next(&entry->offset_index); node;
2949	     node = rb_next(&entry->offset_index)) {
2950		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2951
2952		if (entry->bitmap) {
2953			if (list_empty(&entry->list))
2954				list_add_tail(&entry->list, bitmaps);
2955			continue;
2956		}
2957
2958		if (entry->bytes < min_bytes)
2959			continue;
2960
2961		last = entry;
2962		window_free += entry->bytes;
2963		if (entry->bytes > max_extent)
2964			max_extent = entry->bytes;
2965	}
2966
2967	if (window_free < bytes || max_extent < cont1_bytes)
2968		return -ENOSPC;
2969
2970	cluster->window_start = first->offset;
2971
2972	node = &first->offset_index;
2973
2974	/*
2975	 * now we've found our entries, pull them out of the free space
2976	 * cache and put them into the cluster rbtree
2977	 */
2978	do {
2979		int ret;
2980
2981		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2982		node = rb_next(&entry->offset_index);
2983		if (entry->bitmap || entry->bytes < min_bytes)
2984			continue;
2985
2986		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2987		ret = tree_insert_offset(&cluster->root, entry->offset,
2988					 &entry->offset_index, 0);
2989		total_size += entry->bytes;
2990		ASSERT(!ret); /* -EEXIST; Logic error */
2991	} while (node && entry != last);
2992
2993	cluster->max_size = max_extent;
2994	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2995	return 0;
2996}
2997
2998/*
2999 * This specifically looks for bitmaps that may work in the cluster, we assume
3000 * that we have already failed to find extents that will work.
3001 */
3002static noinline int
3003setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
3004		     struct btrfs_free_cluster *cluster,
3005		     struct list_head *bitmaps, u64 offset, u64 bytes,
3006		     u64 cont1_bytes, u64 min_bytes)
3007{
3008	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3009	struct btrfs_free_space *entry = NULL;
3010	int ret = -ENOSPC;
3011	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3012
3013	if (ctl->total_bitmaps == 0)
3014		return -ENOSPC;
3015
3016	/*
3017	 * The bitmap that covers offset won't be in the list unless offset
3018	 * is just its start offset.
3019	 */
3020	if (!list_empty(bitmaps))
3021		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3022
3023	if (!entry || entry->offset != bitmap_offset) {
3024		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3025		if (entry && list_empty(&entry->list))
3026			list_add(&entry->list, bitmaps);
3027	}
3028
3029	list_for_each_entry(entry, bitmaps, list) {
3030		if (entry->bytes < bytes)
3031			continue;
3032		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3033					   bytes, cont1_bytes, min_bytes);
3034		if (!ret)
3035			return 0;
3036	}
3037
3038	/*
3039	 * The bitmaps list has all the bitmaps that record free space
3040	 * starting after offset, so no more search is required.
3041	 */
3042	return -ENOSPC;
3043}
3044
3045/*
3046 * here we try to find a cluster of blocks in a block group.  The goal
3047 * is to find at least bytes+empty_size.
3048 * We might not find them all in one contiguous area.
3049 *
3050 * returns zero and sets up cluster if things worked out, otherwise
3051 * it returns -enospc
3052 */
3053int btrfs_find_space_cluster(struct btrfs_block_group_cache *block_group,
3054			     struct btrfs_free_cluster *cluster,
3055			     u64 offset, u64 bytes, u64 empty_size)
3056{
3057	struct btrfs_fs_info *fs_info = block_group->fs_info;
3058	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3059	struct btrfs_free_space *entry, *tmp;
3060	LIST_HEAD(bitmaps);
3061	u64 min_bytes;
3062	u64 cont1_bytes;
3063	int ret;
3064
3065	/*
3066	 * Choose the minimum extent size we'll require for this
3067	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3068	 * For metadata, allow allocates with smaller extents.  For
3069	 * data, keep it dense.
3070	 */
3071	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3072		cont1_bytes = min_bytes = bytes + empty_size;
3073	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3074		cont1_bytes = bytes;
3075		min_bytes = fs_info->sectorsize;
3076	} else {
3077		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3078		min_bytes = fs_info->sectorsize;
3079	}
3080
3081	spin_lock(&ctl->tree_lock);
3082
3083	/*
3084	 * If we know we don't have enough space to make a cluster don't even
3085	 * bother doing all the work to try and find one.
3086	 */
3087	if (ctl->free_space < bytes) {
3088		spin_unlock(&ctl->tree_lock);
3089		return -ENOSPC;
3090	}
3091
3092	spin_lock(&cluster->lock);
3093
3094	/* someone already found a cluster, hooray */
3095	if (cluster->block_group) {
3096		ret = 0;
3097		goto out;
3098	}
3099
3100	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3101				 min_bytes);
3102
3103	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3104				      bytes + empty_size,
3105				      cont1_bytes, min_bytes);
3106	if (ret)
3107		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3108					   offset, bytes + empty_size,
3109					   cont1_bytes, min_bytes);
3110
3111	/* Clear our temporary list */
3112	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3113		list_del_init(&entry->list);
3114
3115	if (!ret) {
3116		atomic_inc(&block_group->count);
3117		list_add_tail(&cluster->block_group_list,
3118			      &block_group->cluster_list);
3119		cluster->block_group = block_group;
3120	} else {
3121		trace_btrfs_failed_cluster_setup(block_group);
3122	}
3123out:
3124	spin_unlock(&cluster->lock);
3125	spin_unlock(&ctl->tree_lock);
3126
3127	return ret;
3128}
3129
3130/*
3131 * simple code to zero out a cluster
3132 */
3133void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3134{
3135	spin_lock_init(&cluster->lock);
3136	spin_lock_init(&cluster->refill_lock);
3137	cluster->root = RB_ROOT;
3138	cluster->max_size = 0;
3139	cluster->fragmented = false;
3140	INIT_LIST_HEAD(&cluster->block_group_list);
3141	cluster->block_group = NULL;
3142}
3143
3144static int do_trimming(struct btrfs_block_group_cache *block_group,
3145		       u64 *total_trimmed, u64 start, u64 bytes,
3146		       u64 reserved_start, u64 reserved_bytes,
 
3147		       struct btrfs_trim_range *trim_entry)
3148{
3149	struct btrfs_space_info *space_info = block_group->space_info;
3150	struct btrfs_fs_info *fs_info = block_group->fs_info;
3151	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3152	int ret;
3153	int update = 0;
 
 
 
3154	u64 trimmed = 0;
3155
3156	spin_lock(&space_info->lock);
3157	spin_lock(&block_group->lock);
3158	if (!block_group->ro) {
3159		block_group->reserved += reserved_bytes;
3160		space_info->bytes_reserved += reserved_bytes;
3161		update = 1;
3162	}
3163	spin_unlock(&block_group->lock);
3164	spin_unlock(&space_info->lock);
3165
3166	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3167	if (!ret)
3168		*total_trimmed += trimmed;
 
 
3169
3170	mutex_lock(&ctl->cache_writeout_mutex);
3171	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
 
 
 
 
 
 
 
3172	list_del(&trim_entry->list);
3173	mutex_unlock(&ctl->cache_writeout_mutex);
3174
3175	if (update) {
3176		spin_lock(&space_info->lock);
3177		spin_lock(&block_group->lock);
3178		if (block_group->ro)
3179			space_info->bytes_readonly += reserved_bytes;
3180		block_group->reserved -= reserved_bytes;
3181		space_info->bytes_reserved -= reserved_bytes;
3182		spin_unlock(&block_group->lock);
3183		spin_unlock(&space_info->lock);
3184	}
3185
3186	return ret;
3187}
3188
3189static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3190			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
 
 
 
 
3191{
 
 
3192	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3193	struct btrfs_free_space *entry;
3194	struct rb_node *node;
3195	int ret = 0;
3196	u64 extent_start;
3197	u64 extent_bytes;
 
3198	u64 bytes;
 
3199
3200	while (start < end) {
3201		struct btrfs_trim_range trim_entry;
3202
3203		mutex_lock(&ctl->cache_writeout_mutex);
3204		spin_lock(&ctl->tree_lock);
3205
3206		if (ctl->free_space < minlen) {
3207			spin_unlock(&ctl->tree_lock);
3208			mutex_unlock(&ctl->cache_writeout_mutex);
3209			break;
3210		}
3211
3212		entry = tree_search_offset(ctl, start, 0, 1);
3213		if (!entry) {
3214			spin_unlock(&ctl->tree_lock);
3215			mutex_unlock(&ctl->cache_writeout_mutex);
3216			break;
3217		}
3218
3219		/* skip bitmaps */
3220		while (entry->bitmap) {
 
3221			node = rb_next(&entry->offset_index);
3222			if (!node) {
3223				spin_unlock(&ctl->tree_lock);
3224				mutex_unlock(&ctl->cache_writeout_mutex);
3225				goto out;
3226			}
3227			entry = rb_entry(node, struct btrfs_free_space,
3228					 offset_index);
3229		}
3230
3231		if (entry->offset >= end) {
3232			spin_unlock(&ctl->tree_lock);
3233			mutex_unlock(&ctl->cache_writeout_mutex);
3234			break;
3235		}
3236
3237		extent_start = entry->offset;
3238		extent_bytes = entry->bytes;
3239		start = max(start, extent_start);
3240		bytes = min(extent_start + extent_bytes, end) - start;
3241		if (bytes < minlen) {
3242			spin_unlock(&ctl->tree_lock);
3243			mutex_unlock(&ctl->cache_writeout_mutex);
3244			goto next;
3245		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3246
3247		unlink_free_space(ctl, entry);
3248		kmem_cache_free(btrfs_free_space_cachep, entry);
 
3249
3250		spin_unlock(&ctl->tree_lock);
3251		trim_entry.start = extent_start;
3252		trim_entry.bytes = extent_bytes;
3253		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3254		mutex_unlock(&ctl->cache_writeout_mutex);
3255
3256		ret = do_trimming(block_group, total_trimmed, start, bytes,
3257				  extent_start, extent_bytes, &trim_entry);
3258		if (ret)
 
 
3259			break;
 
3260next:
3261		start += bytes;
 
 
 
3262
3263		if (fatal_signal_pending(current)) {
3264			ret = -ERESTARTSYS;
3265			break;
3266		}
3267
3268		cond_resched();
3269	}
3270out:
3271	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3272}
3273
3274static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3275			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3276{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3277	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3278	struct btrfs_free_space *entry;
3279	int ret = 0;
3280	int ret2;
3281	u64 bytes;
3282	u64 offset = offset_to_bitmap(ctl, start);
 
3283
3284	while (offset < end) {
3285		bool next_bitmap = false;
3286		struct btrfs_trim_range trim_entry;
3287
3288		mutex_lock(&ctl->cache_writeout_mutex);
3289		spin_lock(&ctl->tree_lock);
3290
3291		if (ctl->free_space < minlen) {
 
 
3292			spin_unlock(&ctl->tree_lock);
3293			mutex_unlock(&ctl->cache_writeout_mutex);
3294			break;
3295		}
3296
3297		entry = tree_search_offset(ctl, offset, 1, 0);
3298		if (!entry) {
 
 
 
 
 
 
 
 
 
3299			spin_unlock(&ctl->tree_lock);
3300			mutex_unlock(&ctl->cache_writeout_mutex);
3301			next_bitmap = true;
3302			goto next;
3303		}
3304
 
 
 
 
 
 
 
 
 
3305		bytes = minlen;
3306		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3307		if (ret2 || start >= end) {
 
 
 
 
 
 
 
 
3308			spin_unlock(&ctl->tree_lock);
3309			mutex_unlock(&ctl->cache_writeout_mutex);
3310			next_bitmap = true;
3311			goto next;
3312		}
3313
 
 
 
 
 
 
 
 
 
 
3314		bytes = min(bytes, end - start);
3315		if (bytes < minlen) {
3316			spin_unlock(&ctl->tree_lock);
3317			mutex_unlock(&ctl->cache_writeout_mutex);
3318			goto next;
3319		}
3320
 
 
 
 
 
 
 
 
 
 
 
3321		bitmap_clear_bits(ctl, entry, start, bytes);
3322		if (entry->bytes == 0)
3323			free_bitmap(ctl, entry);
3324
3325		spin_unlock(&ctl->tree_lock);
3326		trim_entry.start = start;
3327		trim_entry.bytes = bytes;
3328		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3329		mutex_unlock(&ctl->cache_writeout_mutex);
3330
3331		ret = do_trimming(block_group, total_trimmed, start, bytes,
3332				  start, bytes, &trim_entry);
3333		if (ret)
 
 
 
3334			break;
 
3335next:
3336		if (next_bitmap) {
3337			offset += BITS_PER_BITMAP * ctl->unit;
 
3338		} else {
3339			start += bytes;
3340			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3341				offset += BITS_PER_BITMAP * ctl->unit;
3342		}
 
3343
3344		if (fatal_signal_pending(current)) {
 
 
3345			ret = -ERESTARTSYS;
3346			break;
3347		}
3348
3349		cond_resched();
3350	}
3351
 
 
 
 
3352	return ret;
3353}
3354
3355void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
 
3356{
3357	atomic_inc(&cache->trimming);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3358}
3359
3360void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
 
 
3361{
3362	struct btrfs_fs_info *fs_info = block_group->fs_info;
3363	struct extent_map_tree *em_tree;
3364	struct extent_map *em;
3365	bool cleanup;
3366
3367	spin_lock(&block_group->lock);
3368	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3369		   block_group->removed);
 
 
 
3370	spin_unlock(&block_group->lock);
3371
3372	if (cleanup) {
3373		mutex_lock(&fs_info->chunk_mutex);
3374		em_tree = &fs_info->mapping_tree;
3375		write_lock(&em_tree->lock);
3376		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3377					   1);
3378		BUG_ON(!em); /* logic error, can't happen */
3379		remove_extent_mapping(em_tree, em);
3380		write_unlock(&em_tree->lock);
3381		mutex_unlock(&fs_info->chunk_mutex);
3382
3383		/* once for us and once for the tree */
3384		free_extent_map(em);
3385		free_extent_map(em);
3386
3387		/*
3388		 * We've left one free space entry and other tasks trimming
3389		 * this block group have left 1 entry each one. Free them.
3390		 */
3391		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3392	}
3393}
3394
3395int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3396			   u64 *trimmed, u64 start, u64 end, u64 minlen)
 
3397{
3398	int ret;
3399
3400	*trimmed = 0;
3401
3402	spin_lock(&block_group->lock);
3403	if (block_group->removed) {
3404		spin_unlock(&block_group->lock);
3405		return 0;
3406	}
3407	btrfs_get_block_group_trimming(block_group);
3408	spin_unlock(&block_group->lock);
3409
3410	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3411	if (ret)
3412		goto out;
 
3413
3414	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3415out:
3416	btrfs_put_block_group_trimming(block_group);
3417	return ret;
3418}
3419
3420/*
3421 * Find the left-most item in the cache tree, and then return the
3422 * smallest inode number in the item.
3423 *
3424 * Note: the returned inode number may not be the smallest one in
3425 * the tree, if the left-most item is a bitmap.
3426 */
3427u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3428{
3429	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3430	struct btrfs_free_space *entry = NULL;
3431	u64 ino = 0;
3432
3433	spin_lock(&ctl->tree_lock);
3434
3435	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3436		goto out;
3437
3438	entry = rb_entry(rb_first(&ctl->free_space_offset),
3439			 struct btrfs_free_space, offset_index);
3440
3441	if (!entry->bitmap) {
3442		ino = entry->offset;
3443
3444		unlink_free_space(ctl, entry);
3445		entry->offset++;
3446		entry->bytes--;
3447		if (!entry->bytes)
3448			kmem_cache_free(btrfs_free_space_cachep, entry);
3449		else
3450			link_free_space(ctl, entry);
3451	} else {
3452		u64 offset = 0;
3453		u64 count = 1;
3454		int ret;
3455
3456		ret = search_bitmap(ctl, entry, &offset, &count, true);
3457		/* Logic error; Should be empty if it can't find anything */
3458		ASSERT(!ret);
3459
3460		ino = offset;
3461		bitmap_clear_bits(ctl, entry, offset, 1);
3462		if (entry->bytes == 0)
3463			free_bitmap(ctl, entry);
3464	}
3465out:
3466	spin_unlock(&ctl->tree_lock);
3467
3468	return ino;
3469}
3470
3471struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3472				    struct btrfs_path *path)
3473{
3474	struct inode *inode = NULL;
3475
3476	spin_lock(&root->ino_cache_lock);
3477	if (root->ino_cache_inode)
3478		inode = igrab(root->ino_cache_inode);
3479	spin_unlock(&root->ino_cache_lock);
3480	if (inode)
3481		return inode;
3482
3483	inode = __lookup_free_space_inode(root, path, 0);
3484	if (IS_ERR(inode))
3485		return inode;
3486
3487	spin_lock(&root->ino_cache_lock);
3488	if (!btrfs_fs_closing(root->fs_info))
3489		root->ino_cache_inode = igrab(inode);
3490	spin_unlock(&root->ino_cache_lock);
3491
3492	return inode;
3493}
3494
3495int create_free_ino_inode(struct btrfs_root *root,
3496			  struct btrfs_trans_handle *trans,
3497			  struct btrfs_path *path)
3498{
3499	return __create_free_space_inode(root, trans, path,
3500					 BTRFS_FREE_INO_OBJECTID, 0);
3501}
3502
3503int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3504{
3505	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3506	struct btrfs_path *path;
3507	struct inode *inode;
3508	int ret = 0;
3509	u64 root_gen = btrfs_root_generation(&root->root_item);
3510
3511	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3512		return 0;
3513
3514	/*
3515	 * If we're unmounting then just return, since this does a search on the
3516	 * normal root and not the commit root and we could deadlock.
3517	 */
3518	if (btrfs_fs_closing(fs_info))
3519		return 0;
3520
3521	path = btrfs_alloc_path();
3522	if (!path)
3523		return 0;
3524
3525	inode = lookup_free_ino_inode(root, path);
3526	if (IS_ERR(inode))
3527		goto out;
3528
3529	if (root_gen != BTRFS_I(inode)->generation)
3530		goto out_put;
3531
3532	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3533
3534	if (ret < 0)
3535		btrfs_err(fs_info,
3536			"failed to load free ino cache for root %llu",
3537			root->root_key.objectid);
3538out_put:
3539	iput(inode);
3540out:
3541	btrfs_free_path(path);
3542	return ret;
3543}
3544
3545int btrfs_write_out_ino_cache(struct btrfs_root *root,
3546			      struct btrfs_trans_handle *trans,
3547			      struct btrfs_path *path,
3548			      struct inode *inode)
3549{
3550	struct btrfs_fs_info *fs_info = root->fs_info;
3551	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3552	int ret;
3553	struct btrfs_io_ctl io_ctl;
3554	bool release_metadata = true;
3555
3556	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3557		return 0;
3558
3559	memset(&io_ctl, 0, sizeof(io_ctl));
3560	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3561	if (!ret) {
3562		/*
3563		 * At this point writepages() didn't error out, so our metadata
3564		 * reservation is released when the writeback finishes, at
3565		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3566		 * with or without an error.
3567		 */
3568		release_metadata = false;
3569		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3570	}
3571
3572	if (ret) {
3573		if (release_metadata)
3574			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3575					inode->i_size, true);
3576#ifdef DEBUG
3577		btrfs_err(fs_info,
3578			  "failed to write free ino cache for root %llu",
3579			  root->root_key.objectid);
3580#endif
3581	}
3582
3583	return ret;
3584}
3585
3586#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3587/*
3588 * Use this if you need to make a bitmap or extent entry specifically, it
3589 * doesn't do any of the merging that add_free_space does, this acts a lot like
3590 * how the free space cache loading stuff works, so you can get really weird
3591 * configurations.
3592 */
3593int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3594			      u64 offset, u64 bytes, bool bitmap)
3595{
3596	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3597	struct btrfs_free_space *info = NULL, *bitmap_info;
3598	void *map = NULL;
 
3599	u64 bytes_added;
3600	int ret;
3601
3602again:
3603	if (!info) {
3604		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3605		if (!info)
3606			return -ENOMEM;
3607	}
3608
3609	if (!bitmap) {
3610		spin_lock(&ctl->tree_lock);
3611		info->offset = offset;
3612		info->bytes = bytes;
3613		info->max_extent_size = 0;
3614		ret = link_free_space(ctl, info);
3615		spin_unlock(&ctl->tree_lock);
3616		if (ret)
3617			kmem_cache_free(btrfs_free_space_cachep, info);
3618		return ret;
3619	}
3620
3621	if (!map) {
3622		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3623		if (!map) {
3624			kmem_cache_free(btrfs_free_space_cachep, info);
3625			return -ENOMEM;
3626		}
3627	}
3628
3629	spin_lock(&ctl->tree_lock);
3630	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3631					 1, 0);
3632	if (!bitmap_info) {
3633		info->bitmap = map;
3634		map = NULL;
3635		add_new_bitmap(ctl, info, offset);
3636		bitmap_info = info;
3637		info = NULL;
3638	}
3639
3640	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
 
3641
3642	bytes -= bytes_added;
3643	offset += bytes_added;
3644	spin_unlock(&ctl->tree_lock);
3645
3646	if (bytes)
3647		goto again;
3648
3649	if (info)
3650		kmem_cache_free(btrfs_free_space_cachep, info);
3651	if (map)
3652		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3653	return 0;
3654}
3655
3656/*
3657 * Checks to see if the given range is in the free space cache.  This is really
3658 * just used to check the absence of space, so if there is free space in the
3659 * range at all we will return 1.
3660 */
3661int test_check_exists(struct btrfs_block_group_cache *cache,
3662		      u64 offset, u64 bytes)
3663{
3664	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3665	struct btrfs_free_space *info;
3666	int ret = 0;
3667
3668	spin_lock(&ctl->tree_lock);
3669	info = tree_search_offset(ctl, offset, 0, 0);
3670	if (!info) {
3671		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3672					  1, 0);
3673		if (!info)
3674			goto out;
3675	}
3676
3677have_info:
3678	if (info->bitmap) {
3679		u64 bit_off, bit_bytes;
3680		struct rb_node *n;
3681		struct btrfs_free_space *tmp;
3682
3683		bit_off = offset;
3684		bit_bytes = ctl->unit;
3685		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3686		if (!ret) {
3687			if (bit_off == offset) {
3688				ret = 1;
3689				goto out;
3690			} else if (bit_off > offset &&
3691				   offset + bytes > bit_off) {
3692				ret = 1;
3693				goto out;
3694			}
3695		}
3696
3697		n = rb_prev(&info->offset_index);
3698		while (n) {
3699			tmp = rb_entry(n, struct btrfs_free_space,
3700				       offset_index);
3701			if (tmp->offset + tmp->bytes < offset)
3702				break;
3703			if (offset + bytes < tmp->offset) {
3704				n = rb_prev(&tmp->offset_index);
3705				continue;
3706			}
3707			info = tmp;
3708			goto have_info;
3709		}
3710
3711		n = rb_next(&info->offset_index);
3712		while (n) {
3713			tmp = rb_entry(n, struct btrfs_free_space,
3714				       offset_index);
3715			if (offset + bytes < tmp->offset)
3716				break;
3717			if (tmp->offset + tmp->bytes < offset) {
3718				n = rb_next(&tmp->offset_index);
3719				continue;
3720			}
3721			info = tmp;
3722			goto have_info;
3723		}
3724
3725		ret = 0;
3726		goto out;
3727	}
3728
3729	if (info->offset == offset) {
3730		ret = 1;
3731		goto out;
3732	}
3733
3734	if (offset > info->offset && offset < info->offset + info->bytes)
3735		ret = 1;
3736out:
3737	spin_unlock(&ctl->tree_lock);
3738	return ret;
3739}
3740#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "ctree.h"
  15#include "free-space-cache.h"
  16#include "transaction.h"
  17#include "disk-io.h"
  18#include "extent_io.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
  24#include "discard.h"
  25
  26#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
  27#define MAX_CACHE_BYTES_PER_GIG	SZ_64K
  28#define FORCE_EXTENT_THRESHOLD	SZ_1M
  29
  30struct btrfs_trim_range {
  31	u64 start;
  32	u64 bytes;
  33	struct list_head list;
  34};
  35
  36static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
  37				struct btrfs_free_space *bitmap_info);
  38static int link_free_space(struct btrfs_free_space_ctl *ctl,
  39			   struct btrfs_free_space *info);
  40static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  41			      struct btrfs_free_space *info);
  42static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  43			     struct btrfs_trans_handle *trans,
  44			     struct btrfs_io_ctl *io_ctl,
  45			     struct btrfs_path *path);
  46
  47static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  48					       struct btrfs_path *path,
  49					       u64 offset)
  50{
  51	struct btrfs_fs_info *fs_info = root->fs_info;
  52	struct btrfs_key key;
  53	struct btrfs_key location;
  54	struct btrfs_disk_key disk_key;
  55	struct btrfs_free_space_header *header;
  56	struct extent_buffer *leaf;
  57	struct inode *inode = NULL;
  58	unsigned nofs_flag;
  59	int ret;
  60
  61	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  62	key.offset = offset;
  63	key.type = 0;
  64
  65	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  66	if (ret < 0)
  67		return ERR_PTR(ret);
  68	if (ret > 0) {
  69		btrfs_release_path(path);
  70		return ERR_PTR(-ENOENT);
  71	}
  72
  73	leaf = path->nodes[0];
  74	header = btrfs_item_ptr(leaf, path->slots[0],
  75				struct btrfs_free_space_header);
  76	btrfs_free_space_key(leaf, header, &disk_key);
  77	btrfs_disk_key_to_cpu(&location, &disk_key);
  78	btrfs_release_path(path);
  79
  80	/*
  81	 * We are often under a trans handle at this point, so we need to make
  82	 * sure NOFS is set to keep us from deadlocking.
  83	 */
  84	nofs_flag = memalloc_nofs_save();
  85	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
  86	btrfs_release_path(path);
  87	memalloc_nofs_restore(nofs_flag);
  88	if (IS_ERR(inode))
  89		return inode;
  90
  91	mapping_set_gfp_mask(inode->i_mapping,
  92			mapping_gfp_constraint(inode->i_mapping,
  93			~(__GFP_FS | __GFP_HIGHMEM)));
  94
  95	return inode;
  96}
  97
  98struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
 
  99		struct btrfs_path *path)
 100{
 101	struct btrfs_fs_info *fs_info = block_group->fs_info;
 102	struct inode *inode = NULL;
 103	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 104
 105	spin_lock(&block_group->lock);
 106	if (block_group->inode)
 107		inode = igrab(block_group->inode);
 108	spin_unlock(&block_group->lock);
 109	if (inode)
 110		return inode;
 111
 112	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 113					  block_group->start);
 114	if (IS_ERR(inode))
 115		return inode;
 116
 117	spin_lock(&block_group->lock);
 118	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 119		btrfs_info(fs_info, "Old style space inode found, converting.");
 120		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 121			BTRFS_INODE_NODATACOW;
 122		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 123	}
 124
 125	if (!block_group->iref) {
 126		block_group->inode = igrab(inode);
 127		block_group->iref = 1;
 128	}
 129	spin_unlock(&block_group->lock);
 130
 131	return inode;
 132}
 133
 134static int __create_free_space_inode(struct btrfs_root *root,
 135				     struct btrfs_trans_handle *trans,
 136				     struct btrfs_path *path,
 137				     u64 ino, u64 offset)
 138{
 139	struct btrfs_key key;
 140	struct btrfs_disk_key disk_key;
 141	struct btrfs_free_space_header *header;
 142	struct btrfs_inode_item *inode_item;
 143	struct extent_buffer *leaf;
 144	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 145	int ret;
 146
 147	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 148	if (ret)
 149		return ret;
 150
 151	/* We inline crc's for the free disk space cache */
 152	if (ino != BTRFS_FREE_INO_OBJECTID)
 153		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 154
 155	leaf = path->nodes[0];
 156	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 157				    struct btrfs_inode_item);
 158	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 159	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 160			     sizeof(*inode_item));
 161	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 162	btrfs_set_inode_size(leaf, inode_item, 0);
 163	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 164	btrfs_set_inode_uid(leaf, inode_item, 0);
 165	btrfs_set_inode_gid(leaf, inode_item, 0);
 166	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 167	btrfs_set_inode_flags(leaf, inode_item, flags);
 168	btrfs_set_inode_nlink(leaf, inode_item, 1);
 169	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 170	btrfs_set_inode_block_group(leaf, inode_item, offset);
 171	btrfs_mark_buffer_dirty(leaf);
 172	btrfs_release_path(path);
 173
 174	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 175	key.offset = offset;
 176	key.type = 0;
 177	ret = btrfs_insert_empty_item(trans, root, path, &key,
 178				      sizeof(struct btrfs_free_space_header));
 179	if (ret < 0) {
 180		btrfs_release_path(path);
 181		return ret;
 182	}
 183
 184	leaf = path->nodes[0];
 185	header = btrfs_item_ptr(leaf, path->slots[0],
 186				struct btrfs_free_space_header);
 187	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 188	btrfs_set_free_space_key(leaf, header, &disk_key);
 189	btrfs_mark_buffer_dirty(leaf);
 190	btrfs_release_path(path);
 191
 192	return 0;
 193}
 194
 195int create_free_space_inode(struct btrfs_trans_handle *trans,
 196			    struct btrfs_block_group *block_group,
 197			    struct btrfs_path *path)
 198{
 199	int ret;
 200	u64 ino;
 201
 202	ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
 203	if (ret < 0)
 204		return ret;
 205
 206	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 207					 ino, block_group->start);
 208}
 209
 210int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 211				       struct btrfs_block_rsv *rsv)
 212{
 213	u64 needed_bytes;
 214	int ret;
 215
 216	/* 1 for slack space, 1 for updating the inode */
 217	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 218		btrfs_calc_metadata_size(fs_info, 1);
 219
 220	spin_lock(&rsv->lock);
 221	if (rsv->reserved < needed_bytes)
 222		ret = -ENOSPC;
 223	else
 224		ret = 0;
 225	spin_unlock(&rsv->lock);
 226	return ret;
 227}
 228
 229int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 230				    struct btrfs_block_group *block_group,
 231				    struct inode *inode)
 232{
 233	struct btrfs_root *root = BTRFS_I(inode)->root;
 234	int ret = 0;
 235	bool locked = false;
 236
 237	if (block_group) {
 238		struct btrfs_path *path = btrfs_alloc_path();
 239
 240		if (!path) {
 241			ret = -ENOMEM;
 242			goto fail;
 243		}
 244		locked = true;
 245		mutex_lock(&trans->transaction->cache_write_mutex);
 246		if (!list_empty(&block_group->io_list)) {
 247			list_del_init(&block_group->io_list);
 248
 249			btrfs_wait_cache_io(trans, block_group, path);
 250			btrfs_put_block_group(block_group);
 251		}
 252
 253		/*
 254		 * now that we've truncated the cache away, its no longer
 255		 * setup or written
 256		 */
 257		spin_lock(&block_group->lock);
 258		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 259		spin_unlock(&block_group->lock);
 260		btrfs_free_path(path);
 261	}
 262
 263	btrfs_i_size_write(BTRFS_I(inode), 0);
 264	truncate_pagecache(inode, 0);
 265
 266	/*
 267	 * We skip the throttling logic for free space cache inodes, so we don't
 268	 * need to check for -EAGAIN.
 269	 */
 270	ret = btrfs_truncate_inode_items(trans, root, inode,
 271					 0, BTRFS_EXTENT_DATA_KEY);
 272	if (ret)
 273		goto fail;
 274
 275	ret = btrfs_update_inode(trans, root, inode);
 276
 277fail:
 278	if (locked)
 279		mutex_unlock(&trans->transaction->cache_write_mutex);
 280	if (ret)
 281		btrfs_abort_transaction(trans, ret);
 282
 283	return ret;
 284}
 285
 286static void readahead_cache(struct inode *inode)
 287{
 288	struct file_ra_state *ra;
 289	unsigned long last_index;
 290
 291	ra = kzalloc(sizeof(*ra), GFP_NOFS);
 292	if (!ra)
 293		return;
 294
 295	file_ra_state_init(ra, inode->i_mapping);
 296	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 297
 298	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 299
 300	kfree(ra);
 301}
 302
 303static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 304		       int write)
 305{
 306	int num_pages;
 307	int check_crcs = 0;
 308
 309	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 310
 311	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
 312		check_crcs = 1;
 313
 314	/* Make sure we can fit our crcs and generation into the first page */
 315	if (write && check_crcs &&
 316	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 317		return -ENOSPC;
 318
 319	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 320
 321	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 322	if (!io_ctl->pages)
 323		return -ENOMEM;
 324
 325	io_ctl->num_pages = num_pages;
 326	io_ctl->fs_info = btrfs_sb(inode->i_sb);
 327	io_ctl->check_crcs = check_crcs;
 328	io_ctl->inode = inode;
 329
 330	return 0;
 331}
 332ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 333
 334static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 335{
 336	kfree(io_ctl->pages);
 337	io_ctl->pages = NULL;
 338}
 339
 340static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 341{
 342	if (io_ctl->cur) {
 343		io_ctl->cur = NULL;
 344		io_ctl->orig = NULL;
 345	}
 346}
 347
 348static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 349{
 350	ASSERT(io_ctl->index < io_ctl->num_pages);
 351	io_ctl->page = io_ctl->pages[io_ctl->index++];
 352	io_ctl->cur = page_address(io_ctl->page);
 353	io_ctl->orig = io_ctl->cur;
 354	io_ctl->size = PAGE_SIZE;
 355	if (clear)
 356		clear_page(io_ctl->cur);
 357}
 358
 359static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 360{
 361	int i;
 362
 363	io_ctl_unmap_page(io_ctl);
 364
 365	for (i = 0; i < io_ctl->num_pages; i++) {
 366		if (io_ctl->pages[i]) {
 367			ClearPageChecked(io_ctl->pages[i]);
 368			unlock_page(io_ctl->pages[i]);
 369			put_page(io_ctl->pages[i]);
 370		}
 371	}
 372}
 373
 374static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 
 375{
 376	struct page *page;
 377	struct inode *inode = io_ctl->inode;
 378	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 379	int i;
 380
 381	for (i = 0; i < io_ctl->num_pages; i++) {
 382		page = find_or_create_page(inode->i_mapping, i, mask);
 383		if (!page) {
 384			io_ctl_drop_pages(io_ctl);
 385			return -ENOMEM;
 386		}
 387		io_ctl->pages[i] = page;
 388		if (uptodate && !PageUptodate(page)) {
 389			btrfs_readpage(NULL, page);
 390			lock_page(page);
 391			if (page->mapping != inode->i_mapping) {
 392				btrfs_err(BTRFS_I(inode)->root->fs_info,
 393					  "free space cache page truncated");
 394				io_ctl_drop_pages(io_ctl);
 395				return -EIO;
 396			}
 397			if (!PageUptodate(page)) {
 398				btrfs_err(BTRFS_I(inode)->root->fs_info,
 399					   "error reading free space cache");
 400				io_ctl_drop_pages(io_ctl);
 401				return -EIO;
 402			}
 403		}
 404	}
 405
 406	for (i = 0; i < io_ctl->num_pages; i++) {
 407		clear_page_dirty_for_io(io_ctl->pages[i]);
 408		set_page_extent_mapped(io_ctl->pages[i]);
 409	}
 410
 411	return 0;
 412}
 413
 414static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 415{
 416	__le64 *val;
 417
 418	io_ctl_map_page(io_ctl, 1);
 419
 420	/*
 421	 * Skip the csum areas.  If we don't check crcs then we just have a
 422	 * 64bit chunk at the front of the first page.
 423	 */
 424	if (io_ctl->check_crcs) {
 425		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 426		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 427	} else {
 428		io_ctl->cur += sizeof(u64);
 429		io_ctl->size -= sizeof(u64) * 2;
 430	}
 431
 432	val = io_ctl->cur;
 433	*val = cpu_to_le64(generation);
 434	io_ctl->cur += sizeof(u64);
 435}
 436
 437static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 438{
 439	__le64 *gen;
 440
 441	/*
 442	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 443	 * chunk at the front of the first page.
 444	 */
 445	if (io_ctl->check_crcs) {
 446		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 447		io_ctl->size -= sizeof(u64) +
 448			(sizeof(u32) * io_ctl->num_pages);
 449	} else {
 450		io_ctl->cur += sizeof(u64);
 451		io_ctl->size -= sizeof(u64) * 2;
 452	}
 453
 454	gen = io_ctl->cur;
 455	if (le64_to_cpu(*gen) != generation) {
 456		btrfs_err_rl(io_ctl->fs_info,
 457			"space cache generation (%llu) does not match inode (%llu)",
 458				*gen, generation);
 459		io_ctl_unmap_page(io_ctl);
 460		return -EIO;
 461	}
 462	io_ctl->cur += sizeof(u64);
 463	return 0;
 464}
 465
 466static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 467{
 468	u32 *tmp;
 469	u32 crc = ~(u32)0;
 470	unsigned offset = 0;
 471
 472	if (!io_ctl->check_crcs) {
 473		io_ctl_unmap_page(io_ctl);
 474		return;
 475	}
 476
 477	if (index == 0)
 478		offset = sizeof(u32) * io_ctl->num_pages;
 479
 480	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 481	btrfs_crc32c_final(crc, (u8 *)&crc);
 482	io_ctl_unmap_page(io_ctl);
 483	tmp = page_address(io_ctl->pages[0]);
 484	tmp += index;
 485	*tmp = crc;
 486}
 487
 488static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 489{
 490	u32 *tmp, val;
 491	u32 crc = ~(u32)0;
 492	unsigned offset = 0;
 493
 494	if (!io_ctl->check_crcs) {
 495		io_ctl_map_page(io_ctl, 0);
 496		return 0;
 497	}
 498
 499	if (index == 0)
 500		offset = sizeof(u32) * io_ctl->num_pages;
 501
 502	tmp = page_address(io_ctl->pages[0]);
 503	tmp += index;
 504	val = *tmp;
 505
 506	io_ctl_map_page(io_ctl, 0);
 507	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 508	btrfs_crc32c_final(crc, (u8 *)&crc);
 509	if (val != crc) {
 510		btrfs_err_rl(io_ctl->fs_info,
 511			"csum mismatch on free space cache");
 512		io_ctl_unmap_page(io_ctl);
 513		return -EIO;
 514	}
 515
 516	return 0;
 517}
 518
 519static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 520			    void *bitmap)
 521{
 522	struct btrfs_free_space_entry *entry;
 523
 524	if (!io_ctl->cur)
 525		return -ENOSPC;
 526
 527	entry = io_ctl->cur;
 528	entry->offset = cpu_to_le64(offset);
 529	entry->bytes = cpu_to_le64(bytes);
 530	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 531		BTRFS_FREE_SPACE_EXTENT;
 532	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 533	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 534
 535	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 536		return 0;
 537
 538	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 539
 540	/* No more pages to map */
 541	if (io_ctl->index >= io_ctl->num_pages)
 542		return 0;
 543
 544	/* map the next page */
 545	io_ctl_map_page(io_ctl, 1);
 546	return 0;
 547}
 548
 549static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 550{
 551	if (!io_ctl->cur)
 552		return -ENOSPC;
 553
 554	/*
 555	 * If we aren't at the start of the current page, unmap this one and
 556	 * map the next one if there is any left.
 557	 */
 558	if (io_ctl->cur != io_ctl->orig) {
 559		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 560		if (io_ctl->index >= io_ctl->num_pages)
 561			return -ENOSPC;
 562		io_ctl_map_page(io_ctl, 0);
 563	}
 564
 565	copy_page(io_ctl->cur, bitmap);
 566	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 567	if (io_ctl->index < io_ctl->num_pages)
 568		io_ctl_map_page(io_ctl, 0);
 569	return 0;
 570}
 571
 572static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 573{
 574	/*
 575	 * If we're not on the boundary we know we've modified the page and we
 576	 * need to crc the page.
 577	 */
 578	if (io_ctl->cur != io_ctl->orig)
 579		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 580	else
 581		io_ctl_unmap_page(io_ctl);
 582
 583	while (io_ctl->index < io_ctl->num_pages) {
 584		io_ctl_map_page(io_ctl, 1);
 585		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 586	}
 587}
 588
 589static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 590			    struct btrfs_free_space *entry, u8 *type)
 591{
 592	struct btrfs_free_space_entry *e;
 593	int ret;
 594
 595	if (!io_ctl->cur) {
 596		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 597		if (ret)
 598			return ret;
 599	}
 600
 601	e = io_ctl->cur;
 602	entry->offset = le64_to_cpu(e->offset);
 603	entry->bytes = le64_to_cpu(e->bytes);
 604	*type = e->type;
 605	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 606	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 607
 608	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 609		return 0;
 610
 611	io_ctl_unmap_page(io_ctl);
 612
 613	return 0;
 614}
 615
 616static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 617			      struct btrfs_free_space *entry)
 618{
 619	int ret;
 620
 621	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 622	if (ret)
 623		return ret;
 624
 625	copy_page(entry->bitmap, io_ctl->cur);
 626	io_ctl_unmap_page(io_ctl);
 627
 628	return 0;
 629}
 630
 631/*
 632 * Since we attach pinned extents after the fact we can have contiguous sections
 633 * of free space that are split up in entries.  This poses a problem with the
 634 * tree logging stuff since it could have allocated across what appears to be 2
 635 * entries since we would have merged the entries when adding the pinned extents
 636 * back to the free space cache.  So run through the space cache that we just
 637 * loaded and merge contiguous entries.  This will make the log replay stuff not
 638 * blow up and it will make for nicer allocator behavior.
 639 */
 640static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 641{
 642	struct btrfs_free_space *e, *prev = NULL;
 643	struct rb_node *n;
 644
 645again:
 646	spin_lock(&ctl->tree_lock);
 647	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 648		e = rb_entry(n, struct btrfs_free_space, offset_index);
 649		if (!prev)
 650			goto next;
 651		if (e->bitmap || prev->bitmap)
 652			goto next;
 653		if (prev->offset + prev->bytes == e->offset) {
 654			unlink_free_space(ctl, prev);
 655			unlink_free_space(ctl, e);
 656			prev->bytes += e->bytes;
 657			kmem_cache_free(btrfs_free_space_cachep, e);
 658			link_free_space(ctl, prev);
 659			prev = NULL;
 660			spin_unlock(&ctl->tree_lock);
 661			goto again;
 662		}
 663next:
 664		prev = e;
 665	}
 666	spin_unlock(&ctl->tree_lock);
 667}
 668
 669static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 670				   struct btrfs_free_space_ctl *ctl,
 671				   struct btrfs_path *path, u64 offset)
 672{
 673	struct btrfs_fs_info *fs_info = root->fs_info;
 674	struct btrfs_free_space_header *header;
 675	struct extent_buffer *leaf;
 676	struct btrfs_io_ctl io_ctl;
 677	struct btrfs_key key;
 678	struct btrfs_free_space *e, *n;
 679	LIST_HEAD(bitmaps);
 680	u64 num_entries;
 681	u64 num_bitmaps;
 682	u64 generation;
 683	u8 type;
 684	int ret = 0;
 685
 686	/* Nothing in the space cache, goodbye */
 687	if (!i_size_read(inode))
 688		return 0;
 689
 690	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 691	key.offset = offset;
 692	key.type = 0;
 693
 694	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 695	if (ret < 0)
 696		return 0;
 697	else if (ret > 0) {
 698		btrfs_release_path(path);
 699		return 0;
 700	}
 701
 702	ret = -1;
 703
 704	leaf = path->nodes[0];
 705	header = btrfs_item_ptr(leaf, path->slots[0],
 706				struct btrfs_free_space_header);
 707	num_entries = btrfs_free_space_entries(leaf, header);
 708	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 709	generation = btrfs_free_space_generation(leaf, header);
 710	btrfs_release_path(path);
 711
 712	if (!BTRFS_I(inode)->generation) {
 713		btrfs_info(fs_info,
 714			   "the free space cache file (%llu) is invalid, skip it",
 715			   offset);
 716		return 0;
 717	}
 718
 719	if (BTRFS_I(inode)->generation != generation) {
 720		btrfs_err(fs_info,
 721			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 722			  BTRFS_I(inode)->generation, generation);
 723		return 0;
 724	}
 725
 726	if (!num_entries)
 727		return 0;
 728
 729	ret = io_ctl_init(&io_ctl, inode, 0);
 730	if (ret)
 731		return ret;
 732
 733	readahead_cache(inode);
 734
 735	ret = io_ctl_prepare_pages(&io_ctl, true);
 736	if (ret)
 737		goto out;
 738
 739	ret = io_ctl_check_crc(&io_ctl, 0);
 740	if (ret)
 741		goto free_cache;
 742
 743	ret = io_ctl_check_generation(&io_ctl, generation);
 744	if (ret)
 745		goto free_cache;
 746
 747	while (num_entries) {
 748		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 749				      GFP_NOFS);
 750		if (!e)
 751			goto free_cache;
 752
 753		ret = io_ctl_read_entry(&io_ctl, e, &type);
 754		if (ret) {
 755			kmem_cache_free(btrfs_free_space_cachep, e);
 756			goto free_cache;
 757		}
 758
 759		/*
 760		 * Sync discard ensures that the free space cache is always
 761		 * trimmed.  So when reading this in, the state should reflect
 762		 * that.  We also do this for async as a stop gap for lack of
 763		 * persistence.
 764		 */
 765		if (btrfs_test_opt(fs_info, DISCARD_SYNC) ||
 766		    btrfs_test_opt(fs_info, DISCARD_ASYNC))
 767			e->trim_state = BTRFS_TRIM_STATE_TRIMMED;
 768
 769		if (!e->bytes) {
 770			kmem_cache_free(btrfs_free_space_cachep, e);
 771			goto free_cache;
 772		}
 773
 774		if (type == BTRFS_FREE_SPACE_EXTENT) {
 775			spin_lock(&ctl->tree_lock);
 776			ret = link_free_space(ctl, e);
 777			spin_unlock(&ctl->tree_lock);
 778			if (ret) {
 779				btrfs_err(fs_info,
 780					"Duplicate entries in free space cache, dumping");
 781				kmem_cache_free(btrfs_free_space_cachep, e);
 782				goto free_cache;
 783			}
 784		} else {
 785			ASSERT(num_bitmaps);
 786			num_bitmaps--;
 787			e->bitmap = kmem_cache_zalloc(
 788					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 789			if (!e->bitmap) {
 790				kmem_cache_free(
 791					btrfs_free_space_cachep, e);
 792				goto free_cache;
 793			}
 794			spin_lock(&ctl->tree_lock);
 795			ret = link_free_space(ctl, e);
 796			ctl->total_bitmaps++;
 797			ctl->op->recalc_thresholds(ctl);
 798			spin_unlock(&ctl->tree_lock);
 799			if (ret) {
 800				btrfs_err(fs_info,
 801					"Duplicate entries in free space cache, dumping");
 802				kmem_cache_free(btrfs_free_space_cachep, e);
 803				goto free_cache;
 804			}
 805			list_add_tail(&e->list, &bitmaps);
 806		}
 807
 808		num_entries--;
 809	}
 810
 811	io_ctl_unmap_page(&io_ctl);
 812
 813	/*
 814	 * We add the bitmaps at the end of the entries in order that
 815	 * the bitmap entries are added to the cache.
 816	 */
 817	list_for_each_entry_safe(e, n, &bitmaps, list) {
 818		list_del_init(&e->list);
 819		ret = io_ctl_read_bitmap(&io_ctl, e);
 820		if (ret)
 821			goto free_cache;
 822		e->bitmap_extents = count_bitmap_extents(ctl, e);
 823		if (!btrfs_free_space_trimmed(e)) {
 824			ctl->discardable_extents[BTRFS_STAT_CURR] +=
 825				e->bitmap_extents;
 826			ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes;
 827		}
 828	}
 829
 830	io_ctl_drop_pages(&io_ctl);
 831	merge_space_tree(ctl);
 832	ret = 1;
 833out:
 834	btrfs_discard_update_discardable(ctl->private, ctl);
 835	io_ctl_free(&io_ctl);
 836	return ret;
 837free_cache:
 838	io_ctl_drop_pages(&io_ctl);
 839	__btrfs_remove_free_space_cache(ctl);
 840	goto out;
 841}
 842
 843int load_free_space_cache(struct btrfs_block_group *block_group)
 844{
 845	struct btrfs_fs_info *fs_info = block_group->fs_info;
 846	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 847	struct inode *inode;
 848	struct btrfs_path *path;
 849	int ret = 0;
 850	bool matched;
 851	u64 used = block_group->used;
 852
 853	/*
 854	 * If this block group has been marked to be cleared for one reason or
 855	 * another then we can't trust the on disk cache, so just return.
 856	 */
 857	spin_lock(&block_group->lock);
 858	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 859		spin_unlock(&block_group->lock);
 860		return 0;
 861	}
 862	spin_unlock(&block_group->lock);
 863
 864	path = btrfs_alloc_path();
 865	if (!path)
 866		return 0;
 867	path->search_commit_root = 1;
 868	path->skip_locking = 1;
 869
 870	/*
 871	 * We must pass a path with search_commit_root set to btrfs_iget in
 872	 * order to avoid a deadlock when allocating extents for the tree root.
 873	 *
 874	 * When we are COWing an extent buffer from the tree root, when looking
 875	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 876	 * block group without its free space cache loaded. When we find one
 877	 * we must load its space cache which requires reading its free space
 878	 * cache's inode item from the root tree. If this inode item is located
 879	 * in the same leaf that we started COWing before, then we end up in
 880	 * deadlock on the extent buffer (trying to read lock it when we
 881	 * previously write locked it).
 882	 *
 883	 * It's safe to read the inode item using the commit root because
 884	 * block groups, once loaded, stay in memory forever (until they are
 885	 * removed) as well as their space caches once loaded. New block groups
 886	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 887	 * we will never try to read their inode item while the fs is mounted.
 888	 */
 889	inode = lookup_free_space_inode(block_group, path);
 890	if (IS_ERR(inode)) {
 891		btrfs_free_path(path);
 892		return 0;
 893	}
 894
 895	/* We may have converted the inode and made the cache invalid. */
 896	spin_lock(&block_group->lock);
 897	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 898		spin_unlock(&block_group->lock);
 899		btrfs_free_path(path);
 900		goto out;
 901	}
 902	spin_unlock(&block_group->lock);
 903
 904	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 905				      path, block_group->start);
 906	btrfs_free_path(path);
 907	if (ret <= 0)
 908		goto out;
 909
 910	spin_lock(&ctl->tree_lock);
 911	matched = (ctl->free_space == (block_group->length - used -
 912				       block_group->bytes_super));
 913	spin_unlock(&ctl->tree_lock);
 914
 915	if (!matched) {
 916		__btrfs_remove_free_space_cache(ctl);
 917		btrfs_warn(fs_info,
 918			   "block group %llu has wrong amount of free space",
 919			   block_group->start);
 920		ret = -1;
 921	}
 922out:
 923	if (ret < 0) {
 924		/* This cache is bogus, make sure it gets cleared */
 925		spin_lock(&block_group->lock);
 926		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 927		spin_unlock(&block_group->lock);
 928		ret = 0;
 929
 930		btrfs_warn(fs_info,
 931			   "failed to load free space cache for block group %llu, rebuilding it now",
 932			   block_group->start);
 933	}
 934
 935	iput(inode);
 936	return ret;
 937}
 938
 939static noinline_for_stack
 940int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 941			      struct btrfs_free_space_ctl *ctl,
 942			      struct btrfs_block_group *block_group,
 943			      int *entries, int *bitmaps,
 944			      struct list_head *bitmap_list)
 945{
 946	int ret;
 947	struct btrfs_free_cluster *cluster = NULL;
 948	struct btrfs_free_cluster *cluster_locked = NULL;
 949	struct rb_node *node = rb_first(&ctl->free_space_offset);
 950	struct btrfs_trim_range *trim_entry;
 951
 952	/* Get the cluster for this block_group if it exists */
 953	if (block_group && !list_empty(&block_group->cluster_list)) {
 954		cluster = list_entry(block_group->cluster_list.next,
 955				     struct btrfs_free_cluster,
 956				     block_group_list);
 957	}
 958
 959	if (!node && cluster) {
 960		cluster_locked = cluster;
 961		spin_lock(&cluster_locked->lock);
 962		node = rb_first(&cluster->root);
 963		cluster = NULL;
 964	}
 965
 966	/* Write out the extent entries */
 967	while (node) {
 968		struct btrfs_free_space *e;
 969
 970		e = rb_entry(node, struct btrfs_free_space, offset_index);
 971		*entries += 1;
 972
 973		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 974				       e->bitmap);
 975		if (ret)
 976			goto fail;
 977
 978		if (e->bitmap) {
 979			list_add_tail(&e->list, bitmap_list);
 980			*bitmaps += 1;
 981		}
 982		node = rb_next(node);
 983		if (!node && cluster) {
 984			node = rb_first(&cluster->root);
 985			cluster_locked = cluster;
 986			spin_lock(&cluster_locked->lock);
 987			cluster = NULL;
 988		}
 989	}
 990	if (cluster_locked) {
 991		spin_unlock(&cluster_locked->lock);
 992		cluster_locked = NULL;
 993	}
 994
 995	/*
 996	 * Make sure we don't miss any range that was removed from our rbtree
 997	 * because trimming is running. Otherwise after a umount+mount (or crash
 998	 * after committing the transaction) we would leak free space and get
 999	 * an inconsistent free space cache report from fsck.
1000	 */
1001	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1002		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1003				       trim_entry->bytes, NULL);
1004		if (ret)
1005			goto fail;
1006		*entries += 1;
1007	}
1008
1009	return 0;
1010fail:
1011	if (cluster_locked)
1012		spin_unlock(&cluster_locked->lock);
1013	return -ENOSPC;
1014}
1015
1016static noinline_for_stack int
1017update_cache_item(struct btrfs_trans_handle *trans,
1018		  struct btrfs_root *root,
1019		  struct inode *inode,
1020		  struct btrfs_path *path, u64 offset,
1021		  int entries, int bitmaps)
1022{
1023	struct btrfs_key key;
1024	struct btrfs_free_space_header *header;
1025	struct extent_buffer *leaf;
1026	int ret;
1027
1028	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1029	key.offset = offset;
1030	key.type = 0;
1031
1032	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1033	if (ret < 0) {
1034		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1035				 EXTENT_DELALLOC, 0, 0, NULL);
1036		goto fail;
1037	}
1038	leaf = path->nodes[0];
1039	if (ret > 0) {
1040		struct btrfs_key found_key;
1041		ASSERT(path->slots[0]);
1042		path->slots[0]--;
1043		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1044		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1045		    found_key.offset != offset) {
1046			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1047					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1048					 0, NULL);
1049			btrfs_release_path(path);
1050			goto fail;
1051		}
1052	}
1053
1054	BTRFS_I(inode)->generation = trans->transid;
1055	header = btrfs_item_ptr(leaf, path->slots[0],
1056				struct btrfs_free_space_header);
1057	btrfs_set_free_space_entries(leaf, header, entries);
1058	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1059	btrfs_set_free_space_generation(leaf, header, trans->transid);
1060	btrfs_mark_buffer_dirty(leaf);
1061	btrfs_release_path(path);
1062
1063	return 0;
1064
1065fail:
1066	return -1;
1067}
1068
1069static noinline_for_stack int write_pinned_extent_entries(
1070			    struct btrfs_trans_handle *trans,
1071			    struct btrfs_block_group *block_group,
1072			    struct btrfs_io_ctl *io_ctl,
1073			    int *entries)
1074{
1075	u64 start, extent_start, extent_end, len;
1076	struct extent_io_tree *unpin = NULL;
1077	int ret;
1078
1079	if (!block_group)
1080		return 0;
1081
1082	/*
1083	 * We want to add any pinned extents to our free space cache
1084	 * so we don't leak the space
1085	 *
1086	 * We shouldn't have switched the pinned extents yet so this is the
1087	 * right one
1088	 */
1089	unpin = &trans->transaction->pinned_extents;
1090
1091	start = block_group->start;
1092
1093	while (start < block_group->start + block_group->length) {
1094		ret = find_first_extent_bit(unpin, start,
1095					    &extent_start, &extent_end,
1096					    EXTENT_DIRTY, NULL);
1097		if (ret)
1098			return 0;
1099
1100		/* This pinned extent is out of our range */
1101		if (extent_start >= block_group->start + block_group->length)
 
1102			return 0;
1103
1104		extent_start = max(extent_start, start);
1105		extent_end = min(block_group->start + block_group->length,
1106				 extent_end + 1);
1107		len = extent_end - extent_start;
1108
1109		*entries += 1;
1110		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1111		if (ret)
1112			return -ENOSPC;
1113
1114		start = extent_end;
1115	}
1116
1117	return 0;
1118}
1119
1120static noinline_for_stack int
1121write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1122{
1123	struct btrfs_free_space *entry, *next;
1124	int ret;
1125
1126	/* Write out the bitmaps */
1127	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1128		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1129		if (ret)
1130			return -ENOSPC;
1131		list_del_init(&entry->list);
1132	}
1133
1134	return 0;
1135}
1136
1137static int flush_dirty_cache(struct inode *inode)
1138{
1139	int ret;
1140
1141	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1142	if (ret)
1143		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1144				 EXTENT_DELALLOC, 0, 0, NULL);
1145
1146	return ret;
1147}
1148
1149static void noinline_for_stack
1150cleanup_bitmap_list(struct list_head *bitmap_list)
1151{
1152	struct btrfs_free_space *entry, *next;
1153
1154	list_for_each_entry_safe(entry, next, bitmap_list, list)
1155		list_del_init(&entry->list);
1156}
1157
1158static void noinline_for_stack
1159cleanup_write_cache_enospc(struct inode *inode,
1160			   struct btrfs_io_ctl *io_ctl,
1161			   struct extent_state **cached_state)
1162{
1163	io_ctl_drop_pages(io_ctl);
1164	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1165			     i_size_read(inode) - 1, cached_state);
1166}
1167
1168static int __btrfs_wait_cache_io(struct btrfs_root *root,
1169				 struct btrfs_trans_handle *trans,
1170				 struct btrfs_block_group *block_group,
1171				 struct btrfs_io_ctl *io_ctl,
1172				 struct btrfs_path *path, u64 offset)
1173{
1174	int ret;
1175	struct inode *inode = io_ctl->inode;
1176
1177	if (!inode)
1178		return 0;
1179
1180	/* Flush the dirty pages in the cache file. */
1181	ret = flush_dirty_cache(inode);
1182	if (ret)
1183		goto out;
1184
1185	/* Update the cache item to tell everyone this cache file is valid. */
1186	ret = update_cache_item(trans, root, inode, path, offset,
1187				io_ctl->entries, io_ctl->bitmaps);
1188out:
 
1189	if (ret) {
1190		invalidate_inode_pages2(inode->i_mapping);
1191		BTRFS_I(inode)->generation = 0;
1192		if (block_group)
1193			btrfs_debug(root->fs_info,
1194	  "failed to write free space cache for block group %llu error %d",
1195				  block_group->start, ret);
 
 
 
1196	}
1197	btrfs_update_inode(trans, root, inode);
1198
1199	if (block_group) {
1200		/* the dirty list is protected by the dirty_bgs_lock */
1201		spin_lock(&trans->transaction->dirty_bgs_lock);
1202
1203		/* the disk_cache_state is protected by the block group lock */
1204		spin_lock(&block_group->lock);
1205
1206		/*
1207		 * only mark this as written if we didn't get put back on
1208		 * the dirty list while waiting for IO.   Otherwise our
1209		 * cache state won't be right, and we won't get written again
1210		 */
1211		if (!ret && list_empty(&block_group->dirty_list))
1212			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1213		else if (ret)
1214			block_group->disk_cache_state = BTRFS_DC_ERROR;
1215
1216		spin_unlock(&block_group->lock);
1217		spin_unlock(&trans->transaction->dirty_bgs_lock);
1218		io_ctl->inode = NULL;
1219		iput(inode);
1220	}
1221
1222	return ret;
1223
1224}
1225
1226static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1227				    struct btrfs_trans_handle *trans,
1228				    struct btrfs_io_ctl *io_ctl,
1229				    struct btrfs_path *path)
1230{
1231	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1232}
1233
1234int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1235			struct btrfs_block_group *block_group,
1236			struct btrfs_path *path)
1237{
1238	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1239				     block_group, &block_group->io_ctl,
1240				     path, block_group->start);
1241}
1242
1243/**
1244 * __btrfs_write_out_cache - write out cached info to an inode
1245 * @root - the root the inode belongs to
1246 * @ctl - the free space cache we are going to write out
1247 * @block_group - the block_group for this cache if it belongs to a block_group
1248 * @trans - the trans handle
1249 *
1250 * This function writes out a free space cache struct to disk for quick recovery
1251 * on mount.  This will return 0 if it was successful in writing the cache out,
1252 * or an errno if it was not.
1253 */
1254static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1255				   struct btrfs_free_space_ctl *ctl,
1256				   struct btrfs_block_group *block_group,
1257				   struct btrfs_io_ctl *io_ctl,
1258				   struct btrfs_trans_handle *trans)
1259{
1260	struct extent_state *cached_state = NULL;
1261	LIST_HEAD(bitmap_list);
1262	int entries = 0;
1263	int bitmaps = 0;
1264	int ret;
1265	int must_iput = 0;
1266
1267	if (!i_size_read(inode))
1268		return -EIO;
1269
1270	WARN_ON(io_ctl->pages);
1271	ret = io_ctl_init(io_ctl, inode, 1);
1272	if (ret)
1273		return ret;
1274
1275	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1276		down_write(&block_group->data_rwsem);
1277		spin_lock(&block_group->lock);
1278		if (block_group->delalloc_bytes) {
1279			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1280			spin_unlock(&block_group->lock);
1281			up_write(&block_group->data_rwsem);
1282			BTRFS_I(inode)->generation = 0;
1283			ret = 0;
1284			must_iput = 1;
1285			goto out;
1286		}
1287		spin_unlock(&block_group->lock);
1288	}
1289
1290	/* Lock all pages first so we can lock the extent safely. */
1291	ret = io_ctl_prepare_pages(io_ctl, false);
1292	if (ret)
1293		goto out_unlock;
1294
1295	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1296			 &cached_state);
1297
1298	io_ctl_set_generation(io_ctl, trans->transid);
1299
1300	mutex_lock(&ctl->cache_writeout_mutex);
1301	/* Write out the extent entries in the free space cache */
1302	spin_lock(&ctl->tree_lock);
1303	ret = write_cache_extent_entries(io_ctl, ctl,
1304					 block_group, &entries, &bitmaps,
1305					 &bitmap_list);
1306	if (ret)
1307		goto out_nospc_locked;
1308
1309	/*
1310	 * Some spaces that are freed in the current transaction are pinned,
1311	 * they will be added into free space cache after the transaction is
1312	 * committed, we shouldn't lose them.
1313	 *
1314	 * If this changes while we are working we'll get added back to
1315	 * the dirty list and redo it.  No locking needed
1316	 */
1317	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1318	if (ret)
1319		goto out_nospc_locked;
1320
1321	/*
1322	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1323	 * locked while doing it because a concurrent trim can be manipulating
1324	 * or freeing the bitmap.
1325	 */
1326	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1327	spin_unlock(&ctl->tree_lock);
1328	mutex_unlock(&ctl->cache_writeout_mutex);
1329	if (ret)
1330		goto out_nospc;
1331
1332	/* Zero out the rest of the pages just to make sure */
1333	io_ctl_zero_remaining_pages(io_ctl);
1334
1335	/* Everything is written out, now we dirty the pages in the file. */
1336	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1337				io_ctl->num_pages, 0, i_size_read(inode),
1338				&cached_state);
1339	if (ret)
1340		goto out_nospc;
1341
1342	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1343		up_write(&block_group->data_rwsem);
1344	/*
1345	 * Release the pages and unlock the extent, we will flush
1346	 * them out later
1347	 */
1348	io_ctl_drop_pages(io_ctl);
1349	io_ctl_free(io_ctl);
1350
1351	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1352			     i_size_read(inode) - 1, &cached_state);
1353
1354	/*
1355	 * at this point the pages are under IO and we're happy,
1356	 * The caller is responsible for waiting on them and updating the
1357	 * the cache and the inode
1358	 */
1359	io_ctl->entries = entries;
1360	io_ctl->bitmaps = bitmaps;
1361
1362	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1363	if (ret)
1364		goto out;
1365
1366	return 0;
1367
 
 
 
 
 
 
 
 
 
 
 
 
1368out_nospc_locked:
1369	cleanup_bitmap_list(&bitmap_list);
1370	spin_unlock(&ctl->tree_lock);
1371	mutex_unlock(&ctl->cache_writeout_mutex);
1372
1373out_nospc:
1374	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1375
1376out_unlock:
1377	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1378		up_write(&block_group->data_rwsem);
1379
1380out:
1381	io_ctl->inode = NULL;
1382	io_ctl_free(io_ctl);
1383	if (ret) {
1384		invalidate_inode_pages2(inode->i_mapping);
1385		BTRFS_I(inode)->generation = 0;
1386	}
1387	btrfs_update_inode(trans, root, inode);
1388	if (must_iput)
1389		iput(inode);
1390	return ret;
1391}
1392
1393int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1394			  struct btrfs_block_group *block_group,
1395			  struct btrfs_path *path)
1396{
1397	struct btrfs_fs_info *fs_info = trans->fs_info;
1398	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1399	struct inode *inode;
1400	int ret = 0;
1401
1402	spin_lock(&block_group->lock);
1403	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1404		spin_unlock(&block_group->lock);
1405		return 0;
1406	}
1407	spin_unlock(&block_group->lock);
1408
1409	inode = lookup_free_space_inode(block_group, path);
1410	if (IS_ERR(inode))
1411		return 0;
1412
1413	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1414				block_group, &block_group->io_ctl, trans);
1415	if (ret) {
1416		btrfs_debug(fs_info,
1417	  "failed to write free space cache for block group %llu error %d",
1418			  block_group->start, ret);
 
 
1419		spin_lock(&block_group->lock);
1420		block_group->disk_cache_state = BTRFS_DC_ERROR;
1421		spin_unlock(&block_group->lock);
1422
1423		block_group->io_ctl.inode = NULL;
1424		iput(inode);
1425	}
1426
1427	/*
1428	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1429	 * to wait for IO and put the inode
1430	 */
1431
1432	return ret;
1433}
1434
1435static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1436					  u64 offset)
1437{
1438	ASSERT(offset >= bitmap_start);
1439	offset -= bitmap_start;
1440	return (unsigned long)(div_u64(offset, unit));
1441}
1442
1443static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1444{
1445	return (unsigned long)(div_u64(bytes, unit));
1446}
1447
1448static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1449				   u64 offset)
1450{
1451	u64 bitmap_start;
1452	u64 bytes_per_bitmap;
1453
1454	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1455	bitmap_start = offset - ctl->start;
1456	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1457	bitmap_start *= bytes_per_bitmap;
1458	bitmap_start += ctl->start;
1459
1460	return bitmap_start;
1461}
1462
1463static int tree_insert_offset(struct rb_root *root, u64 offset,
1464			      struct rb_node *node, int bitmap)
1465{
1466	struct rb_node **p = &root->rb_node;
1467	struct rb_node *parent = NULL;
1468	struct btrfs_free_space *info;
1469
1470	while (*p) {
1471		parent = *p;
1472		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1473
1474		if (offset < info->offset) {
1475			p = &(*p)->rb_left;
1476		} else if (offset > info->offset) {
1477			p = &(*p)->rb_right;
1478		} else {
1479			/*
1480			 * we could have a bitmap entry and an extent entry
1481			 * share the same offset.  If this is the case, we want
1482			 * the extent entry to always be found first if we do a
1483			 * linear search through the tree, since we want to have
1484			 * the quickest allocation time, and allocating from an
1485			 * extent is faster than allocating from a bitmap.  So
1486			 * if we're inserting a bitmap and we find an entry at
1487			 * this offset, we want to go right, or after this entry
1488			 * logically.  If we are inserting an extent and we've
1489			 * found a bitmap, we want to go left, or before
1490			 * logically.
1491			 */
1492			if (bitmap) {
1493				if (info->bitmap) {
1494					WARN_ON_ONCE(1);
1495					return -EEXIST;
1496				}
1497				p = &(*p)->rb_right;
1498			} else {
1499				if (!info->bitmap) {
1500					WARN_ON_ONCE(1);
1501					return -EEXIST;
1502				}
1503				p = &(*p)->rb_left;
1504			}
1505		}
1506	}
1507
1508	rb_link_node(node, parent, p);
1509	rb_insert_color(node, root);
1510
1511	return 0;
1512}
1513
1514/*
1515 * searches the tree for the given offset.
1516 *
1517 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1518 * want a section that has at least bytes size and comes at or after the given
1519 * offset.
1520 */
1521static struct btrfs_free_space *
1522tree_search_offset(struct btrfs_free_space_ctl *ctl,
1523		   u64 offset, int bitmap_only, int fuzzy)
1524{
1525	struct rb_node *n = ctl->free_space_offset.rb_node;
1526	struct btrfs_free_space *entry, *prev = NULL;
1527
1528	/* find entry that is closest to the 'offset' */
1529	while (1) {
1530		if (!n) {
1531			entry = NULL;
1532			break;
1533		}
1534
1535		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1536		prev = entry;
1537
1538		if (offset < entry->offset)
1539			n = n->rb_left;
1540		else if (offset > entry->offset)
1541			n = n->rb_right;
1542		else
1543			break;
1544	}
1545
1546	if (bitmap_only) {
1547		if (!entry)
1548			return NULL;
1549		if (entry->bitmap)
1550			return entry;
1551
1552		/*
1553		 * bitmap entry and extent entry may share same offset,
1554		 * in that case, bitmap entry comes after extent entry.
1555		 */
1556		n = rb_next(n);
1557		if (!n)
1558			return NULL;
1559		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1560		if (entry->offset != offset)
1561			return NULL;
1562
1563		WARN_ON(!entry->bitmap);
1564		return entry;
1565	} else if (entry) {
1566		if (entry->bitmap) {
1567			/*
1568			 * if previous extent entry covers the offset,
1569			 * we should return it instead of the bitmap entry
1570			 */
1571			n = rb_prev(&entry->offset_index);
1572			if (n) {
1573				prev = rb_entry(n, struct btrfs_free_space,
1574						offset_index);
1575				if (!prev->bitmap &&
1576				    prev->offset + prev->bytes > offset)
1577					entry = prev;
1578			}
1579		}
1580		return entry;
1581	}
1582
1583	if (!prev)
1584		return NULL;
1585
1586	/* find last entry before the 'offset' */
1587	entry = prev;
1588	if (entry->offset > offset) {
1589		n = rb_prev(&entry->offset_index);
1590		if (n) {
1591			entry = rb_entry(n, struct btrfs_free_space,
1592					offset_index);
1593			ASSERT(entry->offset <= offset);
1594		} else {
1595			if (fuzzy)
1596				return entry;
1597			else
1598				return NULL;
1599		}
1600	}
1601
1602	if (entry->bitmap) {
1603		n = rb_prev(&entry->offset_index);
1604		if (n) {
1605			prev = rb_entry(n, struct btrfs_free_space,
1606					offset_index);
1607			if (!prev->bitmap &&
1608			    prev->offset + prev->bytes > offset)
1609				return prev;
1610		}
1611		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1612			return entry;
1613	} else if (entry->offset + entry->bytes > offset)
1614		return entry;
1615
1616	if (!fuzzy)
1617		return NULL;
1618
1619	while (1) {
1620		if (entry->bitmap) {
1621			if (entry->offset + BITS_PER_BITMAP *
1622			    ctl->unit > offset)
1623				break;
1624		} else {
1625			if (entry->offset + entry->bytes > offset)
1626				break;
1627		}
1628
1629		n = rb_next(&entry->offset_index);
1630		if (!n)
1631			return NULL;
1632		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1633	}
1634	return entry;
1635}
1636
1637static inline void
1638__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1639		    struct btrfs_free_space *info)
1640{
1641	rb_erase(&info->offset_index, &ctl->free_space_offset);
1642	ctl->free_extents--;
1643
1644	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1645		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1646		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1647	}
1648}
1649
1650static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1651			      struct btrfs_free_space *info)
1652{
1653	__unlink_free_space(ctl, info);
1654	ctl->free_space -= info->bytes;
1655}
1656
1657static int link_free_space(struct btrfs_free_space_ctl *ctl,
1658			   struct btrfs_free_space *info)
1659{
1660	int ret = 0;
1661
1662	ASSERT(info->bytes || info->bitmap);
1663	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1664				 &info->offset_index, (info->bitmap != NULL));
1665	if (ret)
1666		return ret;
1667
1668	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1669		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1670		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1671	}
1672
1673	ctl->free_space += info->bytes;
1674	ctl->free_extents++;
1675	return ret;
1676}
1677
1678static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1679{
1680	struct btrfs_block_group *block_group = ctl->private;
1681	u64 max_bytes;
1682	u64 bitmap_bytes;
1683	u64 extent_bytes;
1684	u64 size = block_group->length;
1685	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1686	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1687
1688	max_bitmaps = max_t(u64, max_bitmaps, 1);
1689
1690	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1691
1692	/*
1693	 * We are trying to keep the total amount of memory used per 1GiB of
1694	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
1695	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
1696	 * bitmaps, we may end up using more memory than this.
1697	 */
1698	if (size < SZ_1G)
1699		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1700	else
1701		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1702
1703	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
 
 
 
 
 
 
 
 
 
 
1704
1705	/*
1706	 * we want the extent entry threshold to always be at most 1/2 the max
1707	 * bytes we can have, or whatever is less than that.
1708	 */
1709	extent_bytes = max_bytes - bitmap_bytes;
1710	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1711
1712	ctl->extents_thresh =
1713		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1714}
1715
1716static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1717				       struct btrfs_free_space *info,
1718				       u64 offset, u64 bytes)
1719{
1720	unsigned long start, count, end;
1721	int extent_delta = -1;
1722
1723	start = offset_to_bit(info->offset, ctl->unit, offset);
1724	count = bytes_to_bits(bytes, ctl->unit);
1725	end = start + count;
1726	ASSERT(end <= BITS_PER_BITMAP);
1727
1728	bitmap_clear(info->bitmap, start, count);
1729
1730	info->bytes -= bytes;
1731	if (info->max_extent_size > ctl->unit)
1732		info->max_extent_size = 0;
1733
1734	if (start && test_bit(start - 1, info->bitmap))
1735		extent_delta++;
1736
1737	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1738		extent_delta++;
1739
1740	info->bitmap_extents += extent_delta;
1741	if (!btrfs_free_space_trimmed(info)) {
1742		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1743		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1744	}
1745}
1746
1747static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1748			      struct btrfs_free_space *info, u64 offset,
1749			      u64 bytes)
1750{
1751	__bitmap_clear_bits(ctl, info, offset, bytes);
1752	ctl->free_space -= bytes;
1753}
1754
1755static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1756			    struct btrfs_free_space *info, u64 offset,
1757			    u64 bytes)
1758{
1759	unsigned long start, count, end;
1760	int extent_delta = 1;
1761
1762	start = offset_to_bit(info->offset, ctl->unit, offset);
1763	count = bytes_to_bits(bytes, ctl->unit);
1764	end = start + count;
1765	ASSERT(end <= BITS_PER_BITMAP);
1766
1767	bitmap_set(info->bitmap, start, count);
1768
1769	info->bytes += bytes;
1770	ctl->free_space += bytes;
1771
1772	if (start && test_bit(start - 1, info->bitmap))
1773		extent_delta--;
1774
1775	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1776		extent_delta--;
1777
1778	info->bitmap_extents += extent_delta;
1779	if (!btrfs_free_space_trimmed(info)) {
1780		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1781		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1782	}
1783}
1784
1785/*
1786 * If we can not find suitable extent, we will use bytes to record
1787 * the size of the max extent.
1788 */
1789static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1790			 struct btrfs_free_space *bitmap_info, u64 *offset,
1791			 u64 *bytes, bool for_alloc)
1792{
1793	unsigned long found_bits = 0;
1794	unsigned long max_bits = 0;
1795	unsigned long bits, i;
1796	unsigned long next_zero;
1797	unsigned long extent_bits;
1798
1799	/*
1800	 * Skip searching the bitmap if we don't have a contiguous section that
1801	 * is large enough for this allocation.
1802	 */
1803	if (for_alloc &&
1804	    bitmap_info->max_extent_size &&
1805	    bitmap_info->max_extent_size < *bytes) {
1806		*bytes = bitmap_info->max_extent_size;
1807		return -1;
1808	}
1809
1810	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1811			  max_t(u64, *offset, bitmap_info->offset));
1812	bits = bytes_to_bits(*bytes, ctl->unit);
1813
1814	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1815		if (for_alloc && bits == 1) {
1816			found_bits = 1;
1817			break;
1818		}
1819		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1820					       BITS_PER_BITMAP, i);
1821		extent_bits = next_zero - i;
1822		if (extent_bits >= bits) {
1823			found_bits = extent_bits;
1824			break;
1825		} else if (extent_bits > max_bits) {
1826			max_bits = extent_bits;
1827		}
1828		i = next_zero;
1829	}
1830
1831	if (found_bits) {
1832		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1833		*bytes = (u64)(found_bits) * ctl->unit;
1834		return 0;
1835	}
1836
1837	*bytes = (u64)(max_bits) * ctl->unit;
1838	bitmap_info->max_extent_size = *bytes;
1839	return -1;
1840}
1841
1842static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1843{
1844	if (entry->bitmap)
1845		return entry->max_extent_size;
1846	return entry->bytes;
1847}
1848
1849/* Cache the size of the max extent in bytes */
1850static struct btrfs_free_space *
1851find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1852		unsigned long align, u64 *max_extent_size)
1853{
1854	struct btrfs_free_space *entry;
1855	struct rb_node *node;
1856	u64 tmp;
1857	u64 align_off;
1858	int ret;
1859
1860	if (!ctl->free_space_offset.rb_node)
1861		goto out;
1862
1863	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1864	if (!entry)
1865		goto out;
1866
1867	for (node = &entry->offset_index; node; node = rb_next(node)) {
1868		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1869		if (entry->bytes < *bytes) {
1870			*max_extent_size = max(get_max_extent_size(entry),
1871					       *max_extent_size);
1872			continue;
1873		}
1874
1875		/* make sure the space returned is big enough
1876		 * to match our requested alignment
1877		 */
1878		if (*bytes >= align) {
1879			tmp = entry->offset - ctl->start + align - 1;
1880			tmp = div64_u64(tmp, align);
1881			tmp = tmp * align + ctl->start;
1882			align_off = tmp - entry->offset;
1883		} else {
1884			align_off = 0;
1885			tmp = entry->offset;
1886		}
1887
1888		if (entry->bytes < *bytes + align_off) {
1889			*max_extent_size = max(get_max_extent_size(entry),
1890					       *max_extent_size);
1891			continue;
1892		}
1893
1894		if (entry->bitmap) {
1895			u64 size = *bytes;
1896
1897			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1898			if (!ret) {
1899				*offset = tmp;
1900				*bytes = size;
1901				return entry;
1902			} else {
1903				*max_extent_size =
1904					max(get_max_extent_size(entry),
1905					    *max_extent_size);
1906			}
1907			continue;
1908		}
1909
1910		*offset = tmp;
1911		*bytes = entry->bytes - align_off;
1912		return entry;
1913	}
1914out:
1915	return NULL;
1916}
1917
1918static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
1919				struct btrfs_free_space *bitmap_info)
1920{
1921	struct btrfs_block_group *block_group = ctl->private;
1922	u64 bytes = bitmap_info->bytes;
1923	unsigned int rs, re;
1924	int count = 0;
1925
1926	if (!block_group || !bytes)
1927		return count;
1928
1929	bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0,
1930				   BITS_PER_BITMAP) {
1931		bytes -= (rs - re) * ctl->unit;
1932		count++;
1933
1934		if (!bytes)
1935			break;
1936	}
1937
1938	return count;
1939}
1940
1941static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1942			   struct btrfs_free_space *info, u64 offset)
1943{
1944	info->offset = offset_to_bitmap(ctl, offset);
1945	info->bytes = 0;
1946	info->bitmap_extents = 0;
1947	INIT_LIST_HEAD(&info->list);
1948	link_free_space(ctl, info);
1949	ctl->total_bitmaps++;
1950
1951	ctl->op->recalc_thresholds(ctl);
1952}
1953
1954static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1955			struct btrfs_free_space *bitmap_info)
1956{
1957	/*
1958	 * Normally when this is called, the bitmap is completely empty. However,
1959	 * if we are blowing up the free space cache for one reason or another
1960	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1961	 * we may leave stats on the table.
1962	 */
1963	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1964		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1965			bitmap_info->bitmap_extents;
1966		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1967
1968	}
1969	unlink_free_space(ctl, bitmap_info);
1970	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1971	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1972	ctl->total_bitmaps--;
1973	ctl->op->recalc_thresholds(ctl);
1974}
1975
1976static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1977			      struct btrfs_free_space *bitmap_info,
1978			      u64 *offset, u64 *bytes)
1979{
1980	u64 end;
1981	u64 search_start, search_bytes;
1982	int ret;
1983
1984again:
1985	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1986
1987	/*
1988	 * We need to search for bits in this bitmap.  We could only cover some
1989	 * of the extent in this bitmap thanks to how we add space, so we need
1990	 * to search for as much as it as we can and clear that amount, and then
1991	 * go searching for the next bit.
1992	 */
1993	search_start = *offset;
1994	search_bytes = ctl->unit;
1995	search_bytes = min(search_bytes, end - search_start + 1);
1996	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1997			    false);
1998	if (ret < 0 || search_start != *offset)
1999		return -EINVAL;
2000
2001	/* We may have found more bits than what we need */
2002	search_bytes = min(search_bytes, *bytes);
2003
2004	/* Cannot clear past the end of the bitmap */
2005	search_bytes = min(search_bytes, end - search_start + 1);
2006
2007	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2008	*offset += search_bytes;
2009	*bytes -= search_bytes;
2010
2011	if (*bytes) {
2012		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2013		if (!bitmap_info->bytes)
2014			free_bitmap(ctl, bitmap_info);
2015
2016		/*
2017		 * no entry after this bitmap, but we still have bytes to
2018		 * remove, so something has gone wrong.
2019		 */
2020		if (!next)
2021			return -EINVAL;
2022
2023		bitmap_info = rb_entry(next, struct btrfs_free_space,
2024				       offset_index);
2025
2026		/*
2027		 * if the next entry isn't a bitmap we need to return to let the
2028		 * extent stuff do its work.
2029		 */
2030		if (!bitmap_info->bitmap)
2031			return -EAGAIN;
2032
2033		/*
2034		 * Ok the next item is a bitmap, but it may not actually hold
2035		 * the information for the rest of this free space stuff, so
2036		 * look for it, and if we don't find it return so we can try
2037		 * everything over again.
2038		 */
2039		search_start = *offset;
2040		search_bytes = ctl->unit;
2041		ret = search_bitmap(ctl, bitmap_info, &search_start,
2042				    &search_bytes, false);
2043		if (ret < 0 || search_start != *offset)
2044			return -EAGAIN;
2045
2046		goto again;
2047	} else if (!bitmap_info->bytes)
2048		free_bitmap(ctl, bitmap_info);
2049
2050	return 0;
2051}
2052
2053static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2054			       struct btrfs_free_space *info, u64 offset,
2055			       u64 bytes, enum btrfs_trim_state trim_state)
2056{
2057	u64 bytes_to_set = 0;
2058	u64 end;
2059
2060	/*
2061	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2062	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2063	 */
2064	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2065		if (btrfs_free_space_trimmed(info)) {
2066			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2067				info->bitmap_extents;
2068			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2069		}
2070		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2071	}
2072
2073	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2074
2075	bytes_to_set = min(end - offset, bytes);
2076
2077	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2078
2079	/*
2080	 * We set some bytes, we have no idea what the max extent size is
2081	 * anymore.
2082	 */
2083	info->max_extent_size = 0;
2084
2085	return bytes_to_set;
2086
2087}
2088
2089static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2090		      struct btrfs_free_space *info)
2091{
2092	struct btrfs_block_group *block_group = ctl->private;
2093	struct btrfs_fs_info *fs_info = block_group->fs_info;
2094	bool forced = false;
2095
2096#ifdef CONFIG_BTRFS_DEBUG
2097	if (btrfs_should_fragment_free_space(block_group))
2098		forced = true;
2099#endif
2100
2101	/* This is a way to reclaim large regions from the bitmaps. */
2102	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2103		return false;
2104
2105	/*
2106	 * If we are below the extents threshold then we can add this as an
2107	 * extent, and don't have to deal with the bitmap
2108	 */
2109	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2110		/*
2111		 * If this block group has some small extents we don't want to
2112		 * use up all of our free slots in the cache with them, we want
2113		 * to reserve them to larger extents, however if we have plenty
2114		 * of cache left then go ahead an dadd them, no sense in adding
2115		 * the overhead of a bitmap if we don't have to.
2116		 */
2117		if (info->bytes <= fs_info->sectorsize * 8) {
2118			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2119				return false;
2120		} else {
2121			return false;
2122		}
2123	}
2124
2125	/*
2126	 * The original block groups from mkfs can be really small, like 8
2127	 * megabytes, so don't bother with a bitmap for those entries.  However
2128	 * some block groups can be smaller than what a bitmap would cover but
2129	 * are still large enough that they could overflow the 32k memory limit,
2130	 * so allow those block groups to still be allowed to have a bitmap
2131	 * entry.
2132	 */
2133	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2134		return false;
2135
2136	return true;
2137}
2138
2139static const struct btrfs_free_space_op free_space_op = {
2140	.recalc_thresholds	= recalculate_thresholds,
2141	.use_bitmap		= use_bitmap,
2142};
2143
2144static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2145			      struct btrfs_free_space *info)
2146{
2147	struct btrfs_free_space *bitmap_info;
2148	struct btrfs_block_group *block_group = NULL;
2149	int added = 0;
2150	u64 bytes, offset, bytes_added;
2151	enum btrfs_trim_state trim_state;
2152	int ret;
2153
2154	bytes = info->bytes;
2155	offset = info->offset;
2156	trim_state = info->trim_state;
2157
2158	if (!ctl->op->use_bitmap(ctl, info))
2159		return 0;
2160
2161	if (ctl->op == &free_space_op)
2162		block_group = ctl->private;
2163again:
2164	/*
2165	 * Since we link bitmaps right into the cluster we need to see if we
2166	 * have a cluster here, and if so and it has our bitmap we need to add
2167	 * the free space to that bitmap.
2168	 */
2169	if (block_group && !list_empty(&block_group->cluster_list)) {
2170		struct btrfs_free_cluster *cluster;
2171		struct rb_node *node;
2172		struct btrfs_free_space *entry;
2173
2174		cluster = list_entry(block_group->cluster_list.next,
2175				     struct btrfs_free_cluster,
2176				     block_group_list);
2177		spin_lock(&cluster->lock);
2178		node = rb_first(&cluster->root);
2179		if (!node) {
2180			spin_unlock(&cluster->lock);
2181			goto no_cluster_bitmap;
2182		}
2183
2184		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2185		if (!entry->bitmap) {
2186			spin_unlock(&cluster->lock);
2187			goto no_cluster_bitmap;
2188		}
2189
2190		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2191			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2192							  bytes, trim_state);
2193			bytes -= bytes_added;
2194			offset += bytes_added;
2195		}
2196		spin_unlock(&cluster->lock);
2197		if (!bytes) {
2198			ret = 1;
2199			goto out;
2200		}
2201	}
2202
2203no_cluster_bitmap:
2204	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2205					 1, 0);
2206	if (!bitmap_info) {
2207		ASSERT(added == 0);
2208		goto new_bitmap;
2209	}
2210
2211	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2212					  trim_state);
2213	bytes -= bytes_added;
2214	offset += bytes_added;
2215	added = 0;
2216
2217	if (!bytes) {
2218		ret = 1;
2219		goto out;
2220	} else
2221		goto again;
2222
2223new_bitmap:
2224	if (info && info->bitmap) {
2225		add_new_bitmap(ctl, info, offset);
2226		added = 1;
2227		info = NULL;
2228		goto again;
2229	} else {
2230		spin_unlock(&ctl->tree_lock);
2231
2232		/* no pre-allocated info, allocate a new one */
2233		if (!info) {
2234			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2235						 GFP_NOFS);
2236			if (!info) {
2237				spin_lock(&ctl->tree_lock);
2238				ret = -ENOMEM;
2239				goto out;
2240			}
2241		}
2242
2243		/* allocate the bitmap */
2244		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2245						 GFP_NOFS);
2246		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2247		spin_lock(&ctl->tree_lock);
2248		if (!info->bitmap) {
2249			ret = -ENOMEM;
2250			goto out;
2251		}
2252		goto again;
2253	}
2254
2255out:
2256	if (info) {
2257		if (info->bitmap)
2258			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2259					info->bitmap);
2260		kmem_cache_free(btrfs_free_space_cachep, info);
2261	}
2262
2263	return ret;
2264}
2265
2266/*
2267 * Free space merging rules:
2268 *  1) Merge trimmed areas together
2269 *  2) Let untrimmed areas coalesce with trimmed areas
2270 *  3) Always pull neighboring regions from bitmaps
2271 *
2272 * The above rules are for when we merge free space based on btrfs_trim_state.
2273 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2274 * same reason: to promote larger extent regions which makes life easier for
2275 * find_free_extent().  Rule 2 enables coalescing based on the common path
2276 * being returning free space from btrfs_finish_extent_commit().  So when free
2277 * space is trimmed, it will prevent aggregating trimmed new region and
2278 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2279 * and provide find_free_extent() with the largest extents possible hoping for
2280 * the reuse path.
2281 */
2282static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2283			  struct btrfs_free_space *info, bool update_stat)
2284{
2285	struct btrfs_free_space *left_info = NULL;
2286	struct btrfs_free_space *right_info;
2287	bool merged = false;
2288	u64 offset = info->offset;
2289	u64 bytes = info->bytes;
2290	const bool is_trimmed = btrfs_free_space_trimmed(info);
2291
2292	/*
2293	 * first we want to see if there is free space adjacent to the range we
2294	 * are adding, if there is remove that struct and add a new one to
2295	 * cover the entire range
2296	 */
2297	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2298	if (right_info && rb_prev(&right_info->offset_index))
2299		left_info = rb_entry(rb_prev(&right_info->offset_index),
2300				     struct btrfs_free_space, offset_index);
2301	else if (!right_info)
2302		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2303
2304	/* See try_merge_free_space() comment. */
2305	if (right_info && !right_info->bitmap &&
2306	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2307		if (update_stat)
2308			unlink_free_space(ctl, right_info);
2309		else
2310			__unlink_free_space(ctl, right_info);
2311		info->bytes += right_info->bytes;
2312		kmem_cache_free(btrfs_free_space_cachep, right_info);
2313		merged = true;
2314	}
2315
2316	/* See try_merge_free_space() comment. */
2317	if (left_info && !left_info->bitmap &&
2318	    left_info->offset + left_info->bytes == offset &&
2319	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2320		if (update_stat)
2321			unlink_free_space(ctl, left_info);
2322		else
2323			__unlink_free_space(ctl, left_info);
2324		info->offset = left_info->offset;
2325		info->bytes += left_info->bytes;
2326		kmem_cache_free(btrfs_free_space_cachep, left_info);
2327		merged = true;
2328	}
2329
2330	return merged;
2331}
2332
2333static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2334				     struct btrfs_free_space *info,
2335				     bool update_stat)
2336{
2337	struct btrfs_free_space *bitmap;
2338	unsigned long i;
2339	unsigned long j;
2340	const u64 end = info->offset + info->bytes;
2341	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2342	u64 bytes;
2343
2344	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2345	if (!bitmap)
2346		return false;
2347
2348	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2349	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2350	if (j == i)
2351		return false;
2352	bytes = (j - i) * ctl->unit;
2353	info->bytes += bytes;
2354
2355	/* See try_merge_free_space() comment. */
2356	if (!btrfs_free_space_trimmed(bitmap))
2357		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2358
2359	if (update_stat)
2360		bitmap_clear_bits(ctl, bitmap, end, bytes);
2361	else
2362		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2363
2364	if (!bitmap->bytes)
2365		free_bitmap(ctl, bitmap);
2366
2367	return true;
2368}
2369
2370static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2371				       struct btrfs_free_space *info,
2372				       bool update_stat)
2373{
2374	struct btrfs_free_space *bitmap;
2375	u64 bitmap_offset;
2376	unsigned long i;
2377	unsigned long j;
2378	unsigned long prev_j;
2379	u64 bytes;
2380
2381	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2382	/* If we're on a boundary, try the previous logical bitmap. */
2383	if (bitmap_offset == info->offset) {
2384		if (info->offset == 0)
2385			return false;
2386		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2387	}
2388
2389	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2390	if (!bitmap)
2391		return false;
2392
2393	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2394	j = 0;
2395	prev_j = (unsigned long)-1;
2396	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2397		if (j > i)
2398			break;
2399		prev_j = j;
2400	}
2401	if (prev_j == i)
2402		return false;
2403
2404	if (prev_j == (unsigned long)-1)
2405		bytes = (i + 1) * ctl->unit;
2406	else
2407		bytes = (i - prev_j) * ctl->unit;
2408
2409	info->offset -= bytes;
2410	info->bytes += bytes;
2411
2412	/* See try_merge_free_space() comment. */
2413	if (!btrfs_free_space_trimmed(bitmap))
2414		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2415
2416	if (update_stat)
2417		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2418	else
2419		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2420
2421	if (!bitmap->bytes)
2422		free_bitmap(ctl, bitmap);
2423
2424	return true;
2425}
2426
2427/*
2428 * We prefer always to allocate from extent entries, both for clustered and
2429 * non-clustered allocation requests. So when attempting to add a new extent
2430 * entry, try to see if there's adjacent free space in bitmap entries, and if
2431 * there is, migrate that space from the bitmaps to the extent.
2432 * Like this we get better chances of satisfying space allocation requests
2433 * because we attempt to satisfy them based on a single cache entry, and never
2434 * on 2 or more entries - even if the entries represent a contiguous free space
2435 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2436 * ends).
2437 */
2438static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2439			      struct btrfs_free_space *info,
2440			      bool update_stat)
2441{
2442	/*
2443	 * Only work with disconnected entries, as we can change their offset,
2444	 * and must be extent entries.
2445	 */
2446	ASSERT(!info->bitmap);
2447	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2448
2449	if (ctl->total_bitmaps > 0) {
2450		bool stole_end;
2451		bool stole_front = false;
2452
2453		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2454		if (ctl->total_bitmaps > 0)
2455			stole_front = steal_from_bitmap_to_front(ctl, info,
2456								 update_stat);
2457
2458		if (stole_end || stole_front)
2459			try_merge_free_space(ctl, info, update_stat);
2460	}
2461}
2462
2463int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2464			   struct btrfs_free_space_ctl *ctl,
2465			   u64 offset, u64 bytes,
2466			   enum btrfs_trim_state trim_state)
2467{
2468	struct btrfs_block_group *block_group = ctl->private;
2469	struct btrfs_free_space *info;
2470	int ret = 0;
2471	u64 filter_bytes = bytes;
2472
2473	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2474	if (!info)
2475		return -ENOMEM;
2476
2477	info->offset = offset;
2478	info->bytes = bytes;
2479	info->trim_state = trim_state;
2480	RB_CLEAR_NODE(&info->offset_index);
2481
2482	spin_lock(&ctl->tree_lock);
2483
2484	if (try_merge_free_space(ctl, info, true))
2485		goto link;
2486
2487	/*
2488	 * There was no extent directly to the left or right of this new
2489	 * extent then we know we're going to have to allocate a new extent, so
2490	 * before we do that see if we need to drop this into a bitmap
2491	 */
2492	ret = insert_into_bitmap(ctl, info);
2493	if (ret < 0) {
2494		goto out;
2495	} else if (ret) {
2496		ret = 0;
2497		goto out;
2498	}
2499link:
2500	/*
2501	 * Only steal free space from adjacent bitmaps if we're sure we're not
2502	 * going to add the new free space to existing bitmap entries - because
2503	 * that would mean unnecessary work that would be reverted. Therefore
2504	 * attempt to steal space from bitmaps if we're adding an extent entry.
2505	 */
2506	steal_from_bitmap(ctl, info, true);
2507
2508	filter_bytes = max(filter_bytes, info->bytes);
2509
2510	ret = link_free_space(ctl, info);
2511	if (ret)
2512		kmem_cache_free(btrfs_free_space_cachep, info);
2513out:
2514	btrfs_discard_update_discardable(block_group, ctl);
2515	spin_unlock(&ctl->tree_lock);
2516
2517	if (ret) {
2518		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2519		ASSERT(ret != -EEXIST);
2520	}
2521
2522	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2523		btrfs_discard_check_filter(block_group, filter_bytes);
2524		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2525	}
2526
2527	return ret;
2528}
2529
2530int btrfs_add_free_space(struct btrfs_block_group *block_group,
2531			 u64 bytenr, u64 size)
2532{
2533	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2534
2535	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2536		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2537
2538	return __btrfs_add_free_space(block_group->fs_info,
2539				      block_group->free_space_ctl,
2540				      bytenr, size, trim_state);
2541}
2542
2543/*
2544 * This is a subtle distinction because when adding free space back in general,
2545 * we want it to be added as untrimmed for async. But in the case where we add
2546 * it on loading of a block group, we want to consider it trimmed.
2547 */
2548int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2549				       u64 bytenr, u64 size)
2550{
2551	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2552
2553	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2554	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2555		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2556
2557	return __btrfs_add_free_space(block_group->fs_info,
2558				      block_group->free_space_ctl,
2559				      bytenr, size, trim_state);
2560}
2561
2562int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2563			    u64 offset, u64 bytes)
2564{
2565	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2566	struct btrfs_free_space *info;
2567	int ret;
2568	bool re_search = false;
2569
2570	spin_lock(&ctl->tree_lock);
2571
2572again:
2573	ret = 0;
2574	if (!bytes)
2575		goto out_lock;
2576
2577	info = tree_search_offset(ctl, offset, 0, 0);
2578	if (!info) {
2579		/*
2580		 * oops didn't find an extent that matched the space we wanted
2581		 * to remove, look for a bitmap instead
2582		 */
2583		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2584					  1, 0);
2585		if (!info) {
2586			/*
2587			 * If we found a partial bit of our free space in a
2588			 * bitmap but then couldn't find the other part this may
2589			 * be a problem, so WARN about it.
2590			 */
2591			WARN_ON(re_search);
2592			goto out_lock;
2593		}
2594	}
2595
2596	re_search = false;
2597	if (!info->bitmap) {
2598		unlink_free_space(ctl, info);
2599		if (offset == info->offset) {
2600			u64 to_free = min(bytes, info->bytes);
2601
2602			info->bytes -= to_free;
2603			info->offset += to_free;
2604			if (info->bytes) {
2605				ret = link_free_space(ctl, info);
2606				WARN_ON(ret);
2607			} else {
2608				kmem_cache_free(btrfs_free_space_cachep, info);
2609			}
2610
2611			offset += to_free;
2612			bytes -= to_free;
2613			goto again;
2614		} else {
2615			u64 old_end = info->bytes + info->offset;
2616
2617			info->bytes = offset - info->offset;
2618			ret = link_free_space(ctl, info);
2619			WARN_ON(ret);
2620			if (ret)
2621				goto out_lock;
2622
2623			/* Not enough bytes in this entry to satisfy us */
2624			if (old_end < offset + bytes) {
2625				bytes -= old_end - offset;
2626				offset = old_end;
2627				goto again;
2628			} else if (old_end == offset + bytes) {
2629				/* all done */
2630				goto out_lock;
2631			}
2632			spin_unlock(&ctl->tree_lock);
2633
2634			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2635						     offset + bytes,
2636						     old_end - (offset + bytes),
2637						     info->trim_state);
2638			WARN_ON(ret);
2639			goto out;
2640		}
2641	}
2642
2643	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2644	if (ret == -EAGAIN) {
2645		re_search = true;
2646		goto again;
2647	}
2648out_lock:
2649	btrfs_discard_update_discardable(block_group, ctl);
2650	spin_unlock(&ctl->tree_lock);
2651out:
2652	return ret;
2653}
2654
2655void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2656			   u64 bytes)
2657{
2658	struct btrfs_fs_info *fs_info = block_group->fs_info;
2659	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2660	struct btrfs_free_space *info;
2661	struct rb_node *n;
2662	int count = 0;
2663
2664	spin_lock(&ctl->tree_lock);
2665	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2666		info = rb_entry(n, struct btrfs_free_space, offset_index);
2667		if (info->bytes >= bytes && !block_group->ro)
2668			count++;
2669		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2670			   info->offset, info->bytes,
2671		       (info->bitmap) ? "yes" : "no");
2672	}
2673	spin_unlock(&ctl->tree_lock);
2674	btrfs_info(fs_info, "block group has cluster?: %s",
2675	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2676	btrfs_info(fs_info,
2677		   "%d blocks of free space at or bigger than bytes is", count);
2678}
2679
2680void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
2681{
2682	struct btrfs_fs_info *fs_info = block_group->fs_info;
2683	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2684
2685	spin_lock_init(&ctl->tree_lock);
2686	ctl->unit = fs_info->sectorsize;
2687	ctl->start = block_group->start;
2688	ctl->private = block_group;
2689	ctl->op = &free_space_op;
2690	INIT_LIST_HEAD(&ctl->trimming_ranges);
2691	mutex_init(&ctl->cache_writeout_mutex);
2692
2693	/*
2694	 * we only want to have 32k of ram per block group for keeping
2695	 * track of free space, and if we pass 1/2 of that we want to
2696	 * start converting things over to using bitmaps
2697	 */
2698	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2699}
2700
2701/*
2702 * for a given cluster, put all of its extents back into the free
2703 * space cache.  If the block group passed doesn't match the block group
2704 * pointed to by the cluster, someone else raced in and freed the
2705 * cluster already.  In that case, we just return without changing anything
2706 */
2707static void __btrfs_return_cluster_to_free_space(
2708			     struct btrfs_block_group *block_group,
 
2709			     struct btrfs_free_cluster *cluster)
2710{
2711	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2712	struct btrfs_free_space *entry;
2713	struct rb_node *node;
2714
2715	spin_lock(&cluster->lock);
2716	if (cluster->block_group != block_group)
2717		goto out;
2718
2719	cluster->block_group = NULL;
2720	cluster->window_start = 0;
2721	list_del_init(&cluster->block_group_list);
2722
2723	node = rb_first(&cluster->root);
2724	while (node) {
2725		bool bitmap;
2726
2727		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2728		node = rb_next(&entry->offset_index);
2729		rb_erase(&entry->offset_index, &cluster->root);
2730		RB_CLEAR_NODE(&entry->offset_index);
2731
2732		bitmap = (entry->bitmap != NULL);
2733		if (!bitmap) {
2734			/* Merging treats extents as if they were new */
2735			if (!btrfs_free_space_trimmed(entry)) {
2736				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2737				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2738					entry->bytes;
2739			}
2740
2741			try_merge_free_space(ctl, entry, false);
2742			steal_from_bitmap(ctl, entry, false);
2743
2744			/* As we insert directly, update these statistics */
2745			if (!btrfs_free_space_trimmed(entry)) {
2746				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2747				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2748					entry->bytes;
2749			}
2750		}
2751		tree_insert_offset(&ctl->free_space_offset,
2752				   entry->offset, &entry->offset_index, bitmap);
2753	}
2754	cluster->root = RB_ROOT;
2755
2756out:
2757	spin_unlock(&cluster->lock);
2758	btrfs_put_block_group(block_group);
 
2759}
2760
2761static void __btrfs_remove_free_space_cache_locked(
2762				struct btrfs_free_space_ctl *ctl)
2763{
2764	struct btrfs_free_space *info;
2765	struct rb_node *node;
2766
2767	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2768		info = rb_entry(node, struct btrfs_free_space, offset_index);
2769		if (!info->bitmap) {
2770			unlink_free_space(ctl, info);
2771			kmem_cache_free(btrfs_free_space_cachep, info);
2772		} else {
2773			free_bitmap(ctl, info);
2774		}
2775
2776		cond_resched_lock(&ctl->tree_lock);
2777	}
2778}
2779
2780void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2781{
2782	spin_lock(&ctl->tree_lock);
2783	__btrfs_remove_free_space_cache_locked(ctl);
2784	if (ctl->private)
2785		btrfs_discard_update_discardable(ctl->private, ctl);
2786	spin_unlock(&ctl->tree_lock);
2787}
2788
2789void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2790{
2791	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2792	struct btrfs_free_cluster *cluster;
2793	struct list_head *head;
2794
2795	spin_lock(&ctl->tree_lock);
2796	while ((head = block_group->cluster_list.next) !=
2797	       &block_group->cluster_list) {
2798		cluster = list_entry(head, struct btrfs_free_cluster,
2799				     block_group_list);
2800
2801		WARN_ON(cluster->block_group != block_group);
2802		__btrfs_return_cluster_to_free_space(block_group, cluster);
2803
2804		cond_resched_lock(&ctl->tree_lock);
2805	}
2806	__btrfs_remove_free_space_cache_locked(ctl);
2807	btrfs_discard_update_discardable(block_group, ctl);
2808	spin_unlock(&ctl->tree_lock);
2809
2810}
2811
2812/**
2813 * btrfs_is_free_space_trimmed - see if everything is trimmed
2814 * @block_group: block_group of interest
2815 *
2816 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2817 */
2818bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2819{
2820	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2821	struct btrfs_free_space *info;
2822	struct rb_node *node;
2823	bool ret = true;
2824
2825	spin_lock(&ctl->tree_lock);
2826	node = rb_first(&ctl->free_space_offset);
2827
2828	while (node) {
2829		info = rb_entry(node, struct btrfs_free_space, offset_index);
2830
2831		if (!btrfs_free_space_trimmed(info)) {
2832			ret = false;
2833			break;
2834		}
2835
2836		node = rb_next(node);
2837	}
2838
2839	spin_unlock(&ctl->tree_lock);
2840	return ret;
2841}
2842
2843u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2844			       u64 offset, u64 bytes, u64 empty_size,
2845			       u64 *max_extent_size)
2846{
2847	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2848	struct btrfs_discard_ctl *discard_ctl =
2849					&block_group->fs_info->discard_ctl;
2850	struct btrfs_free_space *entry = NULL;
2851	u64 bytes_search = bytes + empty_size;
2852	u64 ret = 0;
2853	u64 align_gap = 0;
2854	u64 align_gap_len = 0;
2855	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2856
2857	spin_lock(&ctl->tree_lock);
2858	entry = find_free_space(ctl, &offset, &bytes_search,
2859				block_group->full_stripe_len, max_extent_size);
2860	if (!entry)
2861		goto out;
2862
2863	ret = offset;
2864	if (entry->bitmap) {
2865		bitmap_clear_bits(ctl, entry, offset, bytes);
2866
2867		if (!btrfs_free_space_trimmed(entry))
2868			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2869
2870		if (!entry->bytes)
2871			free_bitmap(ctl, entry);
2872	} else {
2873		unlink_free_space(ctl, entry);
2874		align_gap_len = offset - entry->offset;
2875		align_gap = entry->offset;
2876		align_gap_trim_state = entry->trim_state;
2877
2878		if (!btrfs_free_space_trimmed(entry))
2879			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2880
2881		entry->offset = offset + bytes;
2882		WARN_ON(entry->bytes < bytes + align_gap_len);
2883
2884		entry->bytes -= bytes + align_gap_len;
2885		if (!entry->bytes)
2886			kmem_cache_free(btrfs_free_space_cachep, entry);
2887		else
2888			link_free_space(ctl, entry);
2889	}
2890out:
2891	btrfs_discard_update_discardable(block_group, ctl);
2892	spin_unlock(&ctl->tree_lock);
2893
2894	if (align_gap_len)
2895		__btrfs_add_free_space(block_group->fs_info, ctl,
2896				       align_gap, align_gap_len,
2897				       align_gap_trim_state);
2898	return ret;
2899}
2900
2901/*
2902 * given a cluster, put all of its extents back into the free space
2903 * cache.  If a block group is passed, this function will only free
2904 * a cluster that belongs to the passed block group.
2905 *
2906 * Otherwise, it'll get a reference on the block group pointed to by the
2907 * cluster and remove the cluster from it.
2908 */
2909void btrfs_return_cluster_to_free_space(
2910			       struct btrfs_block_group *block_group,
2911			       struct btrfs_free_cluster *cluster)
2912{
2913	struct btrfs_free_space_ctl *ctl;
 
2914
2915	/* first, get a safe pointer to the block group */
2916	spin_lock(&cluster->lock);
2917	if (!block_group) {
2918		block_group = cluster->block_group;
2919		if (!block_group) {
2920			spin_unlock(&cluster->lock);
2921			return;
2922		}
2923	} else if (cluster->block_group != block_group) {
2924		/* someone else has already freed it don't redo their work */
2925		spin_unlock(&cluster->lock);
2926		return;
2927	}
2928	btrfs_get_block_group(block_group);
2929	spin_unlock(&cluster->lock);
2930
2931	ctl = block_group->free_space_ctl;
2932
2933	/* now return any extents the cluster had on it */
2934	spin_lock(&ctl->tree_lock);
2935	__btrfs_return_cluster_to_free_space(block_group, cluster);
2936	spin_unlock(&ctl->tree_lock);
2937
2938	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
2939
2940	/* finally drop our ref */
2941	btrfs_put_block_group(block_group);
 
2942}
2943
2944static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2945				   struct btrfs_free_cluster *cluster,
2946				   struct btrfs_free_space *entry,
2947				   u64 bytes, u64 min_start,
2948				   u64 *max_extent_size)
2949{
2950	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2951	int err;
2952	u64 search_start = cluster->window_start;
2953	u64 search_bytes = bytes;
2954	u64 ret = 0;
2955
2956	search_start = min_start;
2957	search_bytes = bytes;
2958
2959	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2960	if (err) {
2961		*max_extent_size = max(get_max_extent_size(entry),
2962				       *max_extent_size);
2963		return 0;
2964	}
2965
2966	ret = search_start;
2967	__bitmap_clear_bits(ctl, entry, ret, bytes);
2968
2969	return ret;
2970}
2971
2972/*
2973 * given a cluster, try to allocate 'bytes' from it, returns 0
2974 * if it couldn't find anything suitably large, or a logical disk offset
2975 * if things worked out
2976 */
2977u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2978			     struct btrfs_free_cluster *cluster, u64 bytes,
2979			     u64 min_start, u64 *max_extent_size)
2980{
2981	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2982	struct btrfs_discard_ctl *discard_ctl =
2983					&block_group->fs_info->discard_ctl;
2984	struct btrfs_free_space *entry = NULL;
2985	struct rb_node *node;
2986	u64 ret = 0;
2987
2988	spin_lock(&cluster->lock);
2989	if (bytes > cluster->max_size)
2990		goto out;
2991
2992	if (cluster->block_group != block_group)
2993		goto out;
2994
2995	node = rb_first(&cluster->root);
2996	if (!node)
2997		goto out;
2998
2999	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3000	while (1) {
3001		if (entry->bytes < bytes)
3002			*max_extent_size = max(get_max_extent_size(entry),
3003					       *max_extent_size);
3004
3005		if (entry->bytes < bytes ||
3006		    (!entry->bitmap && entry->offset < min_start)) {
3007			node = rb_next(&entry->offset_index);
3008			if (!node)
3009				break;
3010			entry = rb_entry(node, struct btrfs_free_space,
3011					 offset_index);
3012			continue;
3013		}
3014
3015		if (entry->bitmap) {
3016			ret = btrfs_alloc_from_bitmap(block_group,
3017						      cluster, entry, bytes,
3018						      cluster->window_start,
3019						      max_extent_size);
3020			if (ret == 0) {
3021				node = rb_next(&entry->offset_index);
3022				if (!node)
3023					break;
3024				entry = rb_entry(node, struct btrfs_free_space,
3025						 offset_index);
3026				continue;
3027			}
3028			cluster->window_start += bytes;
3029		} else {
3030			ret = entry->offset;
3031
3032			entry->offset += bytes;
3033			entry->bytes -= bytes;
3034		}
3035
3036		if (entry->bytes == 0)
3037			rb_erase(&entry->offset_index, &cluster->root);
3038		break;
3039	}
3040out:
3041	spin_unlock(&cluster->lock);
3042
3043	if (!ret)
3044		return 0;
3045
3046	spin_lock(&ctl->tree_lock);
3047
3048	if (!btrfs_free_space_trimmed(entry))
3049		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3050
3051	ctl->free_space -= bytes;
3052	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3053		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3054	if (entry->bytes == 0) {
3055		ctl->free_extents--;
3056		if (entry->bitmap) {
3057			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3058					entry->bitmap);
3059			ctl->total_bitmaps--;
3060			ctl->op->recalc_thresholds(ctl);
3061		} else if (!btrfs_free_space_trimmed(entry)) {
3062			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3063		}
3064		kmem_cache_free(btrfs_free_space_cachep, entry);
3065	}
3066
3067	spin_unlock(&ctl->tree_lock);
3068
3069	return ret;
3070}
3071
3072static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3073				struct btrfs_free_space *entry,
3074				struct btrfs_free_cluster *cluster,
3075				u64 offset, u64 bytes,
3076				u64 cont1_bytes, u64 min_bytes)
3077{
3078	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3079	unsigned long next_zero;
3080	unsigned long i;
3081	unsigned long want_bits;
3082	unsigned long min_bits;
3083	unsigned long found_bits;
3084	unsigned long max_bits = 0;
3085	unsigned long start = 0;
3086	unsigned long total_found = 0;
3087	int ret;
3088
3089	i = offset_to_bit(entry->offset, ctl->unit,
3090			  max_t(u64, offset, entry->offset));
3091	want_bits = bytes_to_bits(bytes, ctl->unit);
3092	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3093
3094	/*
3095	 * Don't bother looking for a cluster in this bitmap if it's heavily
3096	 * fragmented.
3097	 */
3098	if (entry->max_extent_size &&
3099	    entry->max_extent_size < cont1_bytes)
3100		return -ENOSPC;
3101again:
3102	found_bits = 0;
3103	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3104		next_zero = find_next_zero_bit(entry->bitmap,
3105					       BITS_PER_BITMAP, i);
3106		if (next_zero - i >= min_bits) {
3107			found_bits = next_zero - i;
3108			if (found_bits > max_bits)
3109				max_bits = found_bits;
3110			break;
3111		}
3112		if (next_zero - i > max_bits)
3113			max_bits = next_zero - i;
3114		i = next_zero;
3115	}
3116
3117	if (!found_bits) {
3118		entry->max_extent_size = (u64)max_bits * ctl->unit;
3119		return -ENOSPC;
3120	}
3121
3122	if (!total_found) {
3123		start = i;
3124		cluster->max_size = 0;
3125	}
3126
3127	total_found += found_bits;
3128
3129	if (cluster->max_size < found_bits * ctl->unit)
3130		cluster->max_size = found_bits * ctl->unit;
3131
3132	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3133		i = next_zero + 1;
3134		goto again;
3135	}
3136
3137	cluster->window_start = start * ctl->unit + entry->offset;
3138	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3139	ret = tree_insert_offset(&cluster->root, entry->offset,
3140				 &entry->offset_index, 1);
3141	ASSERT(!ret); /* -EEXIST; Logic error */
3142
3143	trace_btrfs_setup_cluster(block_group, cluster,
3144				  total_found * ctl->unit, 1);
3145	return 0;
3146}
3147
3148/*
3149 * This searches the block group for just extents to fill the cluster with.
3150 * Try to find a cluster with at least bytes total bytes, at least one
3151 * extent of cont1_bytes, and other clusters of at least min_bytes.
3152 */
3153static noinline int
3154setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3155			struct btrfs_free_cluster *cluster,
3156			struct list_head *bitmaps, u64 offset, u64 bytes,
3157			u64 cont1_bytes, u64 min_bytes)
3158{
3159	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3160	struct btrfs_free_space *first = NULL;
3161	struct btrfs_free_space *entry = NULL;
3162	struct btrfs_free_space *last;
3163	struct rb_node *node;
3164	u64 window_free;
3165	u64 max_extent;
3166	u64 total_size = 0;
3167
3168	entry = tree_search_offset(ctl, offset, 0, 1);
3169	if (!entry)
3170		return -ENOSPC;
3171
3172	/*
3173	 * We don't want bitmaps, so just move along until we find a normal
3174	 * extent entry.
3175	 */
3176	while (entry->bitmap || entry->bytes < min_bytes) {
3177		if (entry->bitmap && list_empty(&entry->list))
3178			list_add_tail(&entry->list, bitmaps);
3179		node = rb_next(&entry->offset_index);
3180		if (!node)
3181			return -ENOSPC;
3182		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3183	}
3184
3185	window_free = entry->bytes;
3186	max_extent = entry->bytes;
3187	first = entry;
3188	last = entry;
3189
3190	for (node = rb_next(&entry->offset_index); node;
3191	     node = rb_next(&entry->offset_index)) {
3192		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3193
3194		if (entry->bitmap) {
3195			if (list_empty(&entry->list))
3196				list_add_tail(&entry->list, bitmaps);
3197			continue;
3198		}
3199
3200		if (entry->bytes < min_bytes)
3201			continue;
3202
3203		last = entry;
3204		window_free += entry->bytes;
3205		if (entry->bytes > max_extent)
3206			max_extent = entry->bytes;
3207	}
3208
3209	if (window_free < bytes || max_extent < cont1_bytes)
3210		return -ENOSPC;
3211
3212	cluster->window_start = first->offset;
3213
3214	node = &first->offset_index;
3215
3216	/*
3217	 * now we've found our entries, pull them out of the free space
3218	 * cache and put them into the cluster rbtree
3219	 */
3220	do {
3221		int ret;
3222
3223		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3224		node = rb_next(&entry->offset_index);
3225		if (entry->bitmap || entry->bytes < min_bytes)
3226			continue;
3227
3228		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3229		ret = tree_insert_offset(&cluster->root, entry->offset,
3230					 &entry->offset_index, 0);
3231		total_size += entry->bytes;
3232		ASSERT(!ret); /* -EEXIST; Logic error */
3233	} while (node && entry != last);
3234
3235	cluster->max_size = max_extent;
3236	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3237	return 0;
3238}
3239
3240/*
3241 * This specifically looks for bitmaps that may work in the cluster, we assume
3242 * that we have already failed to find extents that will work.
3243 */
3244static noinline int
3245setup_cluster_bitmap(struct btrfs_block_group *block_group,
3246		     struct btrfs_free_cluster *cluster,
3247		     struct list_head *bitmaps, u64 offset, u64 bytes,
3248		     u64 cont1_bytes, u64 min_bytes)
3249{
3250	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3251	struct btrfs_free_space *entry = NULL;
3252	int ret = -ENOSPC;
3253	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3254
3255	if (ctl->total_bitmaps == 0)
3256		return -ENOSPC;
3257
3258	/*
3259	 * The bitmap that covers offset won't be in the list unless offset
3260	 * is just its start offset.
3261	 */
3262	if (!list_empty(bitmaps))
3263		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3264
3265	if (!entry || entry->offset != bitmap_offset) {
3266		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3267		if (entry && list_empty(&entry->list))
3268			list_add(&entry->list, bitmaps);
3269	}
3270
3271	list_for_each_entry(entry, bitmaps, list) {
3272		if (entry->bytes < bytes)
3273			continue;
3274		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3275					   bytes, cont1_bytes, min_bytes);
3276		if (!ret)
3277			return 0;
3278	}
3279
3280	/*
3281	 * The bitmaps list has all the bitmaps that record free space
3282	 * starting after offset, so no more search is required.
3283	 */
3284	return -ENOSPC;
3285}
3286
3287/*
3288 * here we try to find a cluster of blocks in a block group.  The goal
3289 * is to find at least bytes+empty_size.
3290 * We might not find them all in one contiguous area.
3291 *
3292 * returns zero and sets up cluster if things worked out, otherwise
3293 * it returns -enospc
3294 */
3295int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3296			     struct btrfs_free_cluster *cluster,
3297			     u64 offset, u64 bytes, u64 empty_size)
3298{
3299	struct btrfs_fs_info *fs_info = block_group->fs_info;
3300	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3301	struct btrfs_free_space *entry, *tmp;
3302	LIST_HEAD(bitmaps);
3303	u64 min_bytes;
3304	u64 cont1_bytes;
3305	int ret;
3306
3307	/*
3308	 * Choose the minimum extent size we'll require for this
3309	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3310	 * For metadata, allow allocates with smaller extents.  For
3311	 * data, keep it dense.
3312	 */
3313	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3314		cont1_bytes = min_bytes = bytes + empty_size;
3315	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3316		cont1_bytes = bytes;
3317		min_bytes = fs_info->sectorsize;
3318	} else {
3319		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3320		min_bytes = fs_info->sectorsize;
3321	}
3322
3323	spin_lock(&ctl->tree_lock);
3324
3325	/*
3326	 * If we know we don't have enough space to make a cluster don't even
3327	 * bother doing all the work to try and find one.
3328	 */
3329	if (ctl->free_space < bytes) {
3330		spin_unlock(&ctl->tree_lock);
3331		return -ENOSPC;
3332	}
3333
3334	spin_lock(&cluster->lock);
3335
3336	/* someone already found a cluster, hooray */
3337	if (cluster->block_group) {
3338		ret = 0;
3339		goto out;
3340	}
3341
3342	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3343				 min_bytes);
3344
3345	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3346				      bytes + empty_size,
3347				      cont1_bytes, min_bytes);
3348	if (ret)
3349		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3350					   offset, bytes + empty_size,
3351					   cont1_bytes, min_bytes);
3352
3353	/* Clear our temporary list */
3354	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3355		list_del_init(&entry->list);
3356
3357	if (!ret) {
3358		btrfs_get_block_group(block_group);
3359		list_add_tail(&cluster->block_group_list,
3360			      &block_group->cluster_list);
3361		cluster->block_group = block_group;
3362	} else {
3363		trace_btrfs_failed_cluster_setup(block_group);
3364	}
3365out:
3366	spin_unlock(&cluster->lock);
3367	spin_unlock(&ctl->tree_lock);
3368
3369	return ret;
3370}
3371
3372/*
3373 * simple code to zero out a cluster
3374 */
3375void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3376{
3377	spin_lock_init(&cluster->lock);
3378	spin_lock_init(&cluster->refill_lock);
3379	cluster->root = RB_ROOT;
3380	cluster->max_size = 0;
3381	cluster->fragmented = false;
3382	INIT_LIST_HEAD(&cluster->block_group_list);
3383	cluster->block_group = NULL;
3384}
3385
3386static int do_trimming(struct btrfs_block_group *block_group,
3387		       u64 *total_trimmed, u64 start, u64 bytes,
3388		       u64 reserved_start, u64 reserved_bytes,
3389		       enum btrfs_trim_state reserved_trim_state,
3390		       struct btrfs_trim_range *trim_entry)
3391{
3392	struct btrfs_space_info *space_info = block_group->space_info;
3393	struct btrfs_fs_info *fs_info = block_group->fs_info;
3394	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3395	int ret;
3396	int update = 0;
3397	const u64 end = start + bytes;
3398	const u64 reserved_end = reserved_start + reserved_bytes;
3399	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3400	u64 trimmed = 0;
3401
3402	spin_lock(&space_info->lock);
3403	spin_lock(&block_group->lock);
3404	if (!block_group->ro) {
3405		block_group->reserved += reserved_bytes;
3406		space_info->bytes_reserved += reserved_bytes;
3407		update = 1;
3408	}
3409	spin_unlock(&block_group->lock);
3410	spin_unlock(&space_info->lock);
3411
3412	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3413	if (!ret) {
3414		*total_trimmed += trimmed;
3415		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3416	}
3417
3418	mutex_lock(&ctl->cache_writeout_mutex);
3419	if (reserved_start < start)
3420		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3421				       start - reserved_start,
3422				       reserved_trim_state);
3423	if (start + bytes < reserved_start + reserved_bytes)
3424		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3425				       reserved_trim_state);
3426	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3427	list_del(&trim_entry->list);
3428	mutex_unlock(&ctl->cache_writeout_mutex);
3429
3430	if (update) {
3431		spin_lock(&space_info->lock);
3432		spin_lock(&block_group->lock);
3433		if (block_group->ro)
3434			space_info->bytes_readonly += reserved_bytes;
3435		block_group->reserved -= reserved_bytes;
3436		space_info->bytes_reserved -= reserved_bytes;
3437		spin_unlock(&block_group->lock);
3438		spin_unlock(&space_info->lock);
3439	}
3440
3441	return ret;
3442}
3443
3444/*
3445 * If @async is set, then we will trim 1 region and return.
3446 */
3447static int trim_no_bitmap(struct btrfs_block_group *block_group,
3448			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3449			  bool async)
3450{
3451	struct btrfs_discard_ctl *discard_ctl =
3452					&block_group->fs_info->discard_ctl;
3453	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3454	struct btrfs_free_space *entry;
3455	struct rb_node *node;
3456	int ret = 0;
3457	u64 extent_start;
3458	u64 extent_bytes;
3459	enum btrfs_trim_state extent_trim_state;
3460	u64 bytes;
3461	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3462
3463	while (start < end) {
3464		struct btrfs_trim_range trim_entry;
3465
3466		mutex_lock(&ctl->cache_writeout_mutex);
3467		spin_lock(&ctl->tree_lock);
3468
3469		if (ctl->free_space < minlen)
3470			goto out_unlock;
 
 
 
3471
3472		entry = tree_search_offset(ctl, start, 0, 1);
3473		if (!entry)
3474			goto out_unlock;
 
 
 
3475
3476		/* Skip bitmaps and if async, already trimmed entries */
3477		while (entry->bitmap ||
3478		       (async && btrfs_free_space_trimmed(entry))) {
3479			node = rb_next(&entry->offset_index);
3480			if (!node)
3481				goto out_unlock;
 
 
 
3482			entry = rb_entry(node, struct btrfs_free_space,
3483					 offset_index);
3484		}
3485
3486		if (entry->offset >= end)
3487			goto out_unlock;
 
 
 
3488
3489		extent_start = entry->offset;
3490		extent_bytes = entry->bytes;
3491		extent_trim_state = entry->trim_state;
3492		if (async) {
3493			start = entry->offset;
3494			bytes = entry->bytes;
3495			if (bytes < minlen) {
3496				spin_unlock(&ctl->tree_lock);
3497				mutex_unlock(&ctl->cache_writeout_mutex);
3498				goto next;
3499			}
3500			unlink_free_space(ctl, entry);
3501			/*
3502			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3503			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3504			 * X when we come back around.  So trim it now.
3505			 */
3506			if (max_discard_size &&
3507			    bytes >= (max_discard_size +
3508				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3509				bytes = max_discard_size;
3510				extent_bytes = max_discard_size;
3511				entry->offset += max_discard_size;
3512				entry->bytes -= max_discard_size;
3513				link_free_space(ctl, entry);
3514			} else {
3515				kmem_cache_free(btrfs_free_space_cachep, entry);
3516			}
3517		} else {
3518			start = max(start, extent_start);
3519			bytes = min(extent_start + extent_bytes, end) - start;
3520			if (bytes < minlen) {
3521				spin_unlock(&ctl->tree_lock);
3522				mutex_unlock(&ctl->cache_writeout_mutex);
3523				goto next;
3524			}
3525
3526			unlink_free_space(ctl, entry);
3527			kmem_cache_free(btrfs_free_space_cachep, entry);
3528		}
3529
3530		spin_unlock(&ctl->tree_lock);
3531		trim_entry.start = extent_start;
3532		trim_entry.bytes = extent_bytes;
3533		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3534		mutex_unlock(&ctl->cache_writeout_mutex);
3535
3536		ret = do_trimming(block_group, total_trimmed, start, bytes,
3537				  extent_start, extent_bytes, extent_trim_state,
3538				  &trim_entry);
3539		if (ret) {
3540			block_group->discard_cursor = start + bytes;
3541			break;
3542		}
3543next:
3544		start += bytes;
3545		block_group->discard_cursor = start;
3546		if (async && *total_trimmed)
3547			break;
3548
3549		if (fatal_signal_pending(current)) {
3550			ret = -ERESTARTSYS;
3551			break;
3552		}
3553
3554		cond_resched();
3555	}
3556
3557	return ret;
3558
3559out_unlock:
3560	block_group->discard_cursor = btrfs_block_group_end(block_group);
3561	spin_unlock(&ctl->tree_lock);
3562	mutex_unlock(&ctl->cache_writeout_mutex);
3563
3564	return ret;
3565}
3566
3567/*
3568 * If we break out of trimming a bitmap prematurely, we should reset the
3569 * trimming bit.  In a rather contrieved case, it's possible to race here so
3570 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3571 *
3572 * start = start of bitmap
3573 * end = near end of bitmap
3574 *
3575 * Thread 1:			Thread 2:
3576 * trim_bitmaps(start)
3577 *				trim_bitmaps(end)
3578 *				end_trimming_bitmap()
3579 * reset_trimming_bitmap()
3580 */
3581static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3582{
3583	struct btrfs_free_space *entry;
3584
3585	spin_lock(&ctl->tree_lock);
3586	entry = tree_search_offset(ctl, offset, 1, 0);
3587	if (entry) {
3588		if (btrfs_free_space_trimmed(entry)) {
3589			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3590				entry->bitmap_extents;
3591			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3592		}
3593		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3594	}
3595
3596	spin_unlock(&ctl->tree_lock);
3597}
3598
3599static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3600				struct btrfs_free_space *entry)
3601{
3602	if (btrfs_free_space_trimming_bitmap(entry)) {
3603		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3604		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3605			entry->bitmap_extents;
3606		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3607	}
3608}
3609
3610/*
3611 * If @async is set, then we will trim 1 region and return.
3612 */
3613static int trim_bitmaps(struct btrfs_block_group *block_group,
3614			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3615			u64 maxlen, bool async)
3616{
3617	struct btrfs_discard_ctl *discard_ctl =
3618					&block_group->fs_info->discard_ctl;
3619	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3620	struct btrfs_free_space *entry;
3621	int ret = 0;
3622	int ret2;
3623	u64 bytes;
3624	u64 offset = offset_to_bitmap(ctl, start);
3625	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3626
3627	while (offset < end) {
3628		bool next_bitmap = false;
3629		struct btrfs_trim_range trim_entry;
3630
3631		mutex_lock(&ctl->cache_writeout_mutex);
3632		spin_lock(&ctl->tree_lock);
3633
3634		if (ctl->free_space < minlen) {
3635			block_group->discard_cursor =
3636				btrfs_block_group_end(block_group);
3637			spin_unlock(&ctl->tree_lock);
3638			mutex_unlock(&ctl->cache_writeout_mutex);
3639			break;
3640		}
3641
3642		entry = tree_search_offset(ctl, offset, 1, 0);
3643		/*
3644		 * Bitmaps are marked trimmed lossily now to prevent constant
3645		 * discarding of the same bitmap (the reason why we are bound
3646		 * by the filters).  So, retrim the block group bitmaps when we
3647		 * are preparing to punt to the unused_bgs list.  This uses
3648		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3649		 * which is the only discard index which sets minlen to 0.
3650		 */
3651		if (!entry || (async && minlen && start == offset &&
3652			       btrfs_free_space_trimmed(entry))) {
3653			spin_unlock(&ctl->tree_lock);
3654			mutex_unlock(&ctl->cache_writeout_mutex);
3655			next_bitmap = true;
3656			goto next;
3657		}
3658
3659		/*
3660		 * Async discard bitmap trimming begins at by setting the start
3661		 * to be key.objectid and the offset_to_bitmap() aligns to the
3662		 * start of the bitmap.  This lets us know we are fully
3663		 * scanning the bitmap rather than only some portion of it.
3664		 */
3665		if (start == offset)
3666			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3667
3668		bytes = minlen;
3669		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3670		if (ret2 || start >= end) {
3671			/*
3672			 * We lossily consider a bitmap trimmed if we only skip
3673			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3674			 */
3675			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3676				end_trimming_bitmap(ctl, entry);
3677			else
3678				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3679			spin_unlock(&ctl->tree_lock);
3680			mutex_unlock(&ctl->cache_writeout_mutex);
3681			next_bitmap = true;
3682			goto next;
3683		}
3684
3685		/*
3686		 * We already trimmed a region, but are using the locking above
3687		 * to reset the trim_state.
3688		 */
3689		if (async && *total_trimmed) {
3690			spin_unlock(&ctl->tree_lock);
3691			mutex_unlock(&ctl->cache_writeout_mutex);
3692			goto out;
3693		}
3694
3695		bytes = min(bytes, end - start);
3696		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3697			spin_unlock(&ctl->tree_lock);
3698			mutex_unlock(&ctl->cache_writeout_mutex);
3699			goto next;
3700		}
3701
3702		/*
3703		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3704		 * If X < @minlen, we won't trim X when we come back around.
3705		 * So trim it now.  We differ here from trimming extents as we
3706		 * don't keep individual state per bit.
3707		 */
3708		if (async &&
3709		    max_discard_size &&
3710		    bytes > (max_discard_size + minlen))
3711			bytes = max_discard_size;
3712
3713		bitmap_clear_bits(ctl, entry, start, bytes);
3714		if (entry->bytes == 0)
3715			free_bitmap(ctl, entry);
3716
3717		spin_unlock(&ctl->tree_lock);
3718		trim_entry.start = start;
3719		trim_entry.bytes = bytes;
3720		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3721		mutex_unlock(&ctl->cache_writeout_mutex);
3722
3723		ret = do_trimming(block_group, total_trimmed, start, bytes,
3724				  start, bytes, 0, &trim_entry);
3725		if (ret) {
3726			reset_trimming_bitmap(ctl, offset);
3727			block_group->discard_cursor =
3728				btrfs_block_group_end(block_group);
3729			break;
3730		}
3731next:
3732		if (next_bitmap) {
3733			offset += BITS_PER_BITMAP * ctl->unit;
3734			start = offset;
3735		} else {
3736			start += bytes;
 
 
3737		}
3738		block_group->discard_cursor = start;
3739
3740		if (fatal_signal_pending(current)) {
3741			if (start != offset)
3742				reset_trimming_bitmap(ctl, offset);
3743			ret = -ERESTARTSYS;
3744			break;
3745		}
3746
3747		cond_resched();
3748	}
3749
3750	if (offset >= end)
3751		block_group->discard_cursor = end;
3752
3753out:
3754	return ret;
3755}
3756
3757int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3758			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3759{
3760	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3761	int ret;
3762	u64 rem = 0;
3763
3764	*trimmed = 0;
3765
3766	spin_lock(&block_group->lock);
3767	if (block_group->removed) {
3768		spin_unlock(&block_group->lock);
3769		return 0;
3770	}
3771	btrfs_freeze_block_group(block_group);
3772	spin_unlock(&block_group->lock);
3773
3774	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3775	if (ret)
3776		goto out;
3777
3778	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3779	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3780	/* If we ended in the middle of a bitmap, reset the trimming flag */
3781	if (rem)
3782		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3783out:
3784	btrfs_unfreeze_block_group(block_group);
3785	return ret;
3786}
3787
3788int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3789				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3790				   bool async)
3791{
3792	int ret;
3793
3794	*trimmed = 0;
 
3795
3796	spin_lock(&block_group->lock);
3797	if (block_group->removed) {
3798		spin_unlock(&block_group->lock);
3799		return 0;
3800	}
3801	btrfs_freeze_block_group(block_group);
3802	spin_unlock(&block_group->lock);
3803
3804	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3805	btrfs_unfreeze_block_group(block_group);
 
 
 
 
 
 
 
 
 
 
 
 
3806
3807	return ret;
 
 
 
 
 
3808}
3809
3810int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3811				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3812				   u64 maxlen, bool async)
3813{
3814	int ret;
3815
3816	*trimmed = 0;
3817
3818	spin_lock(&block_group->lock);
3819	if (block_group->removed) {
3820		spin_unlock(&block_group->lock);
3821		return 0;
3822	}
3823	btrfs_freeze_block_group(block_group);
3824	spin_unlock(&block_group->lock);
3825
3826	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3827			   async);
3828
3829	btrfs_unfreeze_block_group(block_group);
3830
 
 
 
3831	return ret;
3832}
3833
3834/*
3835 * Find the left-most item in the cache tree, and then return the
3836 * smallest inode number in the item.
3837 *
3838 * Note: the returned inode number may not be the smallest one in
3839 * the tree, if the left-most item is a bitmap.
3840 */
3841u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3842{
3843	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3844	struct btrfs_free_space *entry = NULL;
3845	u64 ino = 0;
3846
3847	spin_lock(&ctl->tree_lock);
3848
3849	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3850		goto out;
3851
3852	entry = rb_entry(rb_first(&ctl->free_space_offset),
3853			 struct btrfs_free_space, offset_index);
3854
3855	if (!entry->bitmap) {
3856		ino = entry->offset;
3857
3858		unlink_free_space(ctl, entry);
3859		entry->offset++;
3860		entry->bytes--;
3861		if (!entry->bytes)
3862			kmem_cache_free(btrfs_free_space_cachep, entry);
3863		else
3864			link_free_space(ctl, entry);
3865	} else {
3866		u64 offset = 0;
3867		u64 count = 1;
3868		int ret;
3869
3870		ret = search_bitmap(ctl, entry, &offset, &count, true);
3871		/* Logic error; Should be empty if it can't find anything */
3872		ASSERT(!ret);
3873
3874		ino = offset;
3875		bitmap_clear_bits(ctl, entry, offset, 1);
3876		if (entry->bytes == 0)
3877			free_bitmap(ctl, entry);
3878	}
3879out:
3880	spin_unlock(&ctl->tree_lock);
3881
3882	return ino;
3883}
3884
3885struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3886				    struct btrfs_path *path)
3887{
3888	struct inode *inode = NULL;
3889
3890	spin_lock(&root->ino_cache_lock);
3891	if (root->ino_cache_inode)
3892		inode = igrab(root->ino_cache_inode);
3893	spin_unlock(&root->ino_cache_lock);
3894	if (inode)
3895		return inode;
3896
3897	inode = __lookup_free_space_inode(root, path, 0);
3898	if (IS_ERR(inode))
3899		return inode;
3900
3901	spin_lock(&root->ino_cache_lock);
3902	if (!btrfs_fs_closing(root->fs_info))
3903		root->ino_cache_inode = igrab(inode);
3904	spin_unlock(&root->ino_cache_lock);
3905
3906	return inode;
3907}
3908
3909int create_free_ino_inode(struct btrfs_root *root,
3910			  struct btrfs_trans_handle *trans,
3911			  struct btrfs_path *path)
3912{
3913	return __create_free_space_inode(root, trans, path,
3914					 BTRFS_FREE_INO_OBJECTID, 0);
3915}
3916
3917int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3918{
3919	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3920	struct btrfs_path *path;
3921	struct inode *inode;
3922	int ret = 0;
3923	u64 root_gen = btrfs_root_generation(&root->root_item);
3924
3925	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3926		return 0;
3927
3928	/*
3929	 * If we're unmounting then just return, since this does a search on the
3930	 * normal root and not the commit root and we could deadlock.
3931	 */
3932	if (btrfs_fs_closing(fs_info))
3933		return 0;
3934
3935	path = btrfs_alloc_path();
3936	if (!path)
3937		return 0;
3938
3939	inode = lookup_free_ino_inode(root, path);
3940	if (IS_ERR(inode))
3941		goto out;
3942
3943	if (root_gen != BTRFS_I(inode)->generation)
3944		goto out_put;
3945
3946	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3947
3948	if (ret < 0)
3949		btrfs_err(fs_info,
3950			"failed to load free ino cache for root %llu",
3951			root->root_key.objectid);
3952out_put:
3953	iput(inode);
3954out:
3955	btrfs_free_path(path);
3956	return ret;
3957}
3958
3959int btrfs_write_out_ino_cache(struct btrfs_root *root,
3960			      struct btrfs_trans_handle *trans,
3961			      struct btrfs_path *path,
3962			      struct inode *inode)
3963{
3964	struct btrfs_fs_info *fs_info = root->fs_info;
3965	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3966	int ret;
3967	struct btrfs_io_ctl io_ctl;
3968	bool release_metadata = true;
3969
3970	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3971		return 0;
3972
3973	memset(&io_ctl, 0, sizeof(io_ctl));
3974	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3975	if (!ret) {
3976		/*
3977		 * At this point writepages() didn't error out, so our metadata
3978		 * reservation is released when the writeback finishes, at
3979		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3980		 * with or without an error.
3981		 */
3982		release_metadata = false;
3983		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3984	}
3985
3986	if (ret) {
3987		if (release_metadata)
3988			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3989					inode->i_size, true);
3990		btrfs_debug(fs_info,
3991			  "failed to write free ino cache for root %llu error %d",
3992			  root->root_key.objectid, ret);
 
 
3993	}
3994
3995	return ret;
3996}
3997
3998#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3999/*
4000 * Use this if you need to make a bitmap or extent entry specifically, it
4001 * doesn't do any of the merging that add_free_space does, this acts a lot like
4002 * how the free space cache loading stuff works, so you can get really weird
4003 * configurations.
4004 */
4005int test_add_free_space_entry(struct btrfs_block_group *cache,
4006			      u64 offset, u64 bytes, bool bitmap)
4007{
4008	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4009	struct btrfs_free_space *info = NULL, *bitmap_info;
4010	void *map = NULL;
4011	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4012	u64 bytes_added;
4013	int ret;
4014
4015again:
4016	if (!info) {
4017		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4018		if (!info)
4019			return -ENOMEM;
4020	}
4021
4022	if (!bitmap) {
4023		spin_lock(&ctl->tree_lock);
4024		info->offset = offset;
4025		info->bytes = bytes;
4026		info->max_extent_size = 0;
4027		ret = link_free_space(ctl, info);
4028		spin_unlock(&ctl->tree_lock);
4029		if (ret)
4030			kmem_cache_free(btrfs_free_space_cachep, info);
4031		return ret;
4032	}
4033
4034	if (!map) {
4035		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4036		if (!map) {
4037			kmem_cache_free(btrfs_free_space_cachep, info);
4038			return -ENOMEM;
4039		}
4040	}
4041
4042	spin_lock(&ctl->tree_lock);
4043	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4044					 1, 0);
4045	if (!bitmap_info) {
4046		info->bitmap = map;
4047		map = NULL;
4048		add_new_bitmap(ctl, info, offset);
4049		bitmap_info = info;
4050		info = NULL;
4051	}
4052
4053	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4054					  trim_state);
4055
4056	bytes -= bytes_added;
4057	offset += bytes_added;
4058	spin_unlock(&ctl->tree_lock);
4059
4060	if (bytes)
4061		goto again;
4062
4063	if (info)
4064		kmem_cache_free(btrfs_free_space_cachep, info);
4065	if (map)
4066		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4067	return 0;
4068}
4069
4070/*
4071 * Checks to see if the given range is in the free space cache.  This is really
4072 * just used to check the absence of space, so if there is free space in the
4073 * range at all we will return 1.
4074 */
4075int test_check_exists(struct btrfs_block_group *cache,
4076		      u64 offset, u64 bytes)
4077{
4078	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4079	struct btrfs_free_space *info;
4080	int ret = 0;
4081
4082	spin_lock(&ctl->tree_lock);
4083	info = tree_search_offset(ctl, offset, 0, 0);
4084	if (!info) {
4085		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4086					  1, 0);
4087		if (!info)
4088			goto out;
4089	}
4090
4091have_info:
4092	if (info->bitmap) {
4093		u64 bit_off, bit_bytes;
4094		struct rb_node *n;
4095		struct btrfs_free_space *tmp;
4096
4097		bit_off = offset;
4098		bit_bytes = ctl->unit;
4099		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4100		if (!ret) {
4101			if (bit_off == offset) {
4102				ret = 1;
4103				goto out;
4104			} else if (bit_off > offset &&
4105				   offset + bytes > bit_off) {
4106				ret = 1;
4107				goto out;
4108			}
4109		}
4110
4111		n = rb_prev(&info->offset_index);
4112		while (n) {
4113			tmp = rb_entry(n, struct btrfs_free_space,
4114				       offset_index);
4115			if (tmp->offset + tmp->bytes < offset)
4116				break;
4117			if (offset + bytes < tmp->offset) {
4118				n = rb_prev(&tmp->offset_index);
4119				continue;
4120			}
4121			info = tmp;
4122			goto have_info;
4123		}
4124
4125		n = rb_next(&info->offset_index);
4126		while (n) {
4127			tmp = rb_entry(n, struct btrfs_free_space,
4128				       offset_index);
4129			if (offset + bytes < tmp->offset)
4130				break;
4131			if (tmp->offset + tmp->bytes < offset) {
4132				n = rb_next(&tmp->offset_index);
4133				continue;
4134			}
4135			info = tmp;
4136			goto have_info;
4137		}
4138
4139		ret = 0;
4140		goto out;
4141	}
4142
4143	if (info->offset == offset) {
4144		ret = 1;
4145		goto out;
4146	}
4147
4148	if (offset > info->offset && offset < info->offset + info->bytes)
4149		ret = 1;
4150out:
4151	spin_unlock(&ctl->tree_lock);
4152	return ret;
4153}
4154#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */