Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory_hotplug.c
   4 *
   5 *  Copyright (C)
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/swap.h>
  12#include <linux/interrupt.h>
  13#include <linux/pagemap.h>
  14#include <linux/compiler.h>
  15#include <linux/export.h>
  16#include <linux/pagevec.h>
  17#include <linux/writeback.h>
  18#include <linux/slab.h>
  19#include <linux/sysctl.h>
  20#include <linux/cpu.h>
  21#include <linux/memory.h>
  22#include <linux/memremap.h>
  23#include <linux/memory_hotplug.h>
  24#include <linux/highmem.h>
  25#include <linux/vmalloc.h>
  26#include <linux/ioport.h>
  27#include <linux/delay.h>
  28#include <linux/migrate.h>
  29#include <linux/page-isolation.h>
  30#include <linux/pfn.h>
  31#include <linux/suspend.h>
  32#include <linux/mm_inline.h>
  33#include <linux/firmware-map.h>
  34#include <linux/stop_machine.h>
  35#include <linux/hugetlb.h>
  36#include <linux/memblock.h>
  37#include <linux/compaction.h>
  38#include <linux/rmap.h>
 
  39
  40#include <asm/tlbflush.h>
  41
  42#include "internal.h"
  43#include "shuffle.h"
  44
  45
  46/*
  47 * memory_hotplug.memmap_on_memory parameter
  48 */
  49static bool memmap_on_memory __ro_after_init;
  50#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
  51module_param(memmap_on_memory, bool, 0444);
  52MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
 
 
 
 
 
 
 
 
 
 
  53#endif
  54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55/*
  56 * online_page_callback contains pointer to current page onlining function.
  57 * Initially it is generic_online_page(). If it is required it could be
  58 * changed by calling set_online_page_callback() for callback registration
  59 * and restore_online_page_callback() for generic callback restore.
  60 */
  61
  62static online_page_callback_t online_page_callback = generic_online_page;
  63static DEFINE_MUTEX(online_page_callback_lock);
  64
  65DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
  66
  67void get_online_mems(void)
  68{
  69	percpu_down_read(&mem_hotplug_lock);
  70}
  71
  72void put_online_mems(void)
  73{
  74	percpu_up_read(&mem_hotplug_lock);
  75}
  76
  77bool movable_node_enabled = false;
  78
  79#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
  80int mhp_default_online_type = MMOP_OFFLINE;
  81#else
  82int mhp_default_online_type = MMOP_ONLINE;
  83#endif
  84
  85static int __init setup_memhp_default_state(char *str)
  86{
  87	const int online_type = mhp_online_type_from_str(str);
  88
  89	if (online_type >= 0)
  90		mhp_default_online_type = online_type;
  91
  92	return 1;
  93}
  94__setup("memhp_default_state=", setup_memhp_default_state);
  95
  96void mem_hotplug_begin(void)
  97{
  98	cpus_read_lock();
  99	percpu_down_write(&mem_hotplug_lock);
 100}
 101
 102void mem_hotplug_done(void)
 103{
 104	percpu_up_write(&mem_hotplug_lock);
 105	cpus_read_unlock();
 106}
 107
 108u64 max_mem_size = U64_MAX;
 109
 110/* add this memory to iomem resource */
 111static struct resource *register_memory_resource(u64 start, u64 size,
 112						 const char *resource_name)
 113{
 114	struct resource *res;
 115	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 116
 117	if (strcmp(resource_name, "System RAM"))
 118		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
 119
 120	if (!mhp_range_allowed(start, size, true))
 121		return ERR_PTR(-E2BIG);
 122
 123	/*
 124	 * Make sure value parsed from 'mem=' only restricts memory adding
 125	 * while booting, so that memory hotplug won't be impacted. Please
 126	 * refer to document of 'mem=' in kernel-parameters.txt for more
 127	 * details.
 128	 */
 129	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
 130		return ERR_PTR(-E2BIG);
 131
 132	/*
 133	 * Request ownership of the new memory range.  This might be
 134	 * a child of an existing resource that was present but
 135	 * not marked as busy.
 136	 */
 137	res = __request_region(&iomem_resource, start, size,
 138			       resource_name, flags);
 139
 140	if (!res) {
 141		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
 142				start, start + size);
 143		return ERR_PTR(-EEXIST);
 144	}
 145	return res;
 146}
 147
 148static void release_memory_resource(struct resource *res)
 149{
 150	if (!res)
 151		return;
 152	release_resource(res);
 153	kfree(res);
 154}
 155
 156#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 157static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
 158		const char *reason)
 159{
 160	/*
 161	 * Disallow all operations smaller than a sub-section and only
 162	 * allow operations smaller than a section for
 163	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
 164	 * enforces a larger memory_block_size_bytes() granularity for
 165	 * memory that will be marked online, so this check should only
 166	 * fire for direct arch_{add,remove}_memory() users outside of
 167	 * add_memory_resource().
 168	 */
 169	unsigned long min_align;
 170
 171	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
 172		min_align = PAGES_PER_SUBSECTION;
 173	else
 174		min_align = PAGES_PER_SECTION;
 175	if (!IS_ALIGNED(pfn, min_align)
 176			|| !IS_ALIGNED(nr_pages, min_align)) {
 177		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
 178				reason, pfn, pfn + nr_pages - 1);
 179		return -EINVAL;
 180	}
 181	return 0;
 182}
 183
 184/*
 185 * Return page for the valid pfn only if the page is online. All pfn
 186 * walkers which rely on the fully initialized page->flags and others
 187 * should use this rather than pfn_valid && pfn_to_page
 188 */
 189struct page *pfn_to_online_page(unsigned long pfn)
 190{
 191	unsigned long nr = pfn_to_section_nr(pfn);
 192	struct dev_pagemap *pgmap;
 193	struct mem_section *ms;
 194
 195	if (nr >= NR_MEM_SECTIONS)
 196		return NULL;
 197
 198	ms = __nr_to_section(nr);
 199	if (!online_section(ms))
 200		return NULL;
 201
 202	/*
 203	 * Save some code text when online_section() +
 204	 * pfn_section_valid() are sufficient.
 205	 */
 206	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
 207		return NULL;
 208
 209	if (!pfn_section_valid(ms, pfn))
 210		return NULL;
 211
 212	if (!online_device_section(ms))
 213		return pfn_to_page(pfn);
 214
 215	/*
 216	 * Slowpath: when ZONE_DEVICE collides with
 217	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
 218	 * the section may be 'offline' but 'valid'. Only
 219	 * get_dev_pagemap() can determine sub-section online status.
 220	 */
 221	pgmap = get_dev_pagemap(pfn, NULL);
 222	put_dev_pagemap(pgmap);
 223
 224	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
 225	if (pgmap)
 226		return NULL;
 227
 228	return pfn_to_page(pfn);
 229}
 230EXPORT_SYMBOL_GPL(pfn_to_online_page);
 231
 232/*
 233 * Reasonably generic function for adding memory.  It is
 234 * expected that archs that support memory hotplug will
 235 * call this function after deciding the zone to which to
 236 * add the new pages.
 237 */
 238int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
 239		struct mhp_params *params)
 240{
 241	const unsigned long end_pfn = pfn + nr_pages;
 242	unsigned long cur_nr_pages;
 243	int err;
 244	struct vmem_altmap *altmap = params->altmap;
 245
 246	if (WARN_ON_ONCE(!params->pgprot.pgprot))
 247		return -EINVAL;
 248
 249	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
 250
 251	if (altmap) {
 252		/*
 253		 * Validate altmap is within bounds of the total request
 254		 */
 255		if (altmap->base_pfn != pfn
 256				|| vmem_altmap_offset(altmap) > nr_pages) {
 257			pr_warn_once("memory add fail, invalid altmap\n");
 258			return -EINVAL;
 259		}
 260		altmap->alloc = 0;
 261	}
 262
 263	err = check_pfn_span(pfn, nr_pages, "add");
 264	if (err)
 265		return err;
 
 266
 267	for (; pfn < end_pfn; pfn += cur_nr_pages) {
 268		/* Select all remaining pages up to the next section boundary */
 269		cur_nr_pages = min(end_pfn - pfn,
 270				   SECTION_ALIGN_UP(pfn + 1) - pfn);
 271		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
 
 272		if (err)
 273			break;
 274		cond_resched();
 275	}
 276	vmemmap_populate_print_last();
 277	return err;
 278}
 279
 280/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 281static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 282				     unsigned long start_pfn,
 283				     unsigned long end_pfn)
 284{
 285	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
 286		if (unlikely(!pfn_to_online_page(start_pfn)))
 287			continue;
 288
 289		if (unlikely(pfn_to_nid(start_pfn) != nid))
 290			continue;
 291
 292		if (zone != page_zone(pfn_to_page(start_pfn)))
 293			continue;
 294
 295		return start_pfn;
 296	}
 297
 298	return 0;
 299}
 300
 301/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 302static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 303				    unsigned long start_pfn,
 304				    unsigned long end_pfn)
 305{
 306	unsigned long pfn;
 307
 308	/* pfn is the end pfn of a memory section. */
 309	pfn = end_pfn - 1;
 310	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
 311		if (unlikely(!pfn_to_online_page(pfn)))
 312			continue;
 313
 314		if (unlikely(pfn_to_nid(pfn) != nid))
 315			continue;
 316
 317		if (zone != page_zone(pfn_to_page(pfn)))
 318			continue;
 319
 320		return pfn;
 321	}
 322
 323	return 0;
 324}
 325
 326static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 327			     unsigned long end_pfn)
 328{
 329	unsigned long pfn;
 330	int nid = zone_to_nid(zone);
 331
 332	if (zone->zone_start_pfn == start_pfn) {
 333		/*
 334		 * If the section is smallest section in the zone, it need
 335		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 336		 * In this case, we find second smallest valid mem_section
 337		 * for shrinking zone.
 338		 */
 339		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 340						zone_end_pfn(zone));
 341		if (pfn) {
 342			zone->spanned_pages = zone_end_pfn(zone) - pfn;
 343			zone->zone_start_pfn = pfn;
 344		} else {
 345			zone->zone_start_pfn = 0;
 346			zone->spanned_pages = 0;
 347		}
 348	} else if (zone_end_pfn(zone) == end_pfn) {
 349		/*
 350		 * If the section is biggest section in the zone, it need
 351		 * shrink zone->spanned_pages.
 352		 * In this case, we find second biggest valid mem_section for
 353		 * shrinking zone.
 354		 */
 355		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
 356					       start_pfn);
 357		if (pfn)
 358			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
 359		else {
 360			zone->zone_start_pfn = 0;
 361			zone->spanned_pages = 0;
 362		}
 363	}
 364}
 365
 366static void update_pgdat_span(struct pglist_data *pgdat)
 367{
 368	unsigned long node_start_pfn = 0, node_end_pfn = 0;
 369	struct zone *zone;
 370
 371	for (zone = pgdat->node_zones;
 372	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
 373		unsigned long end_pfn = zone_end_pfn(zone);
 374
 375		/* No need to lock the zones, they can't change. */
 376		if (!zone->spanned_pages)
 377			continue;
 378		if (!node_end_pfn) {
 379			node_start_pfn = zone->zone_start_pfn;
 380			node_end_pfn = end_pfn;
 381			continue;
 382		}
 383
 384		if (end_pfn > node_end_pfn)
 385			node_end_pfn = end_pfn;
 386		if (zone->zone_start_pfn < node_start_pfn)
 387			node_start_pfn = zone->zone_start_pfn;
 388	}
 389
 390	pgdat->node_start_pfn = node_start_pfn;
 391	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
 392}
 393
 394void __ref remove_pfn_range_from_zone(struct zone *zone,
 395				      unsigned long start_pfn,
 396				      unsigned long nr_pages)
 397{
 398	const unsigned long end_pfn = start_pfn + nr_pages;
 399	struct pglist_data *pgdat = zone->zone_pgdat;
 400	unsigned long pfn, cur_nr_pages;
 401
 402	/* Poison struct pages because they are now uninitialized again. */
 403	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
 404		cond_resched();
 405
 406		/* Select all remaining pages up to the next section boundary */
 407		cur_nr_pages =
 408			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
 409		page_init_poison(pfn_to_page(pfn),
 410				 sizeof(struct page) * cur_nr_pages);
 411	}
 412
 413#ifdef CONFIG_ZONE_DEVICE
 414	/*
 415	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
 416	 * we will not try to shrink the zones - which is okay as
 417	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
 418	 */
 419	if (zone_idx(zone) == ZONE_DEVICE)
 420		return;
 421#endif
 422
 423	clear_zone_contiguous(zone);
 424
 425	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 426	update_pgdat_span(pgdat);
 427
 428	set_zone_contiguous(zone);
 429}
 430
 431static void __remove_section(unsigned long pfn, unsigned long nr_pages,
 432			     unsigned long map_offset,
 433			     struct vmem_altmap *altmap)
 434{
 435	struct mem_section *ms = __pfn_to_section(pfn);
 436
 437	if (WARN_ON_ONCE(!valid_section(ms)))
 438		return;
 439
 440	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
 441}
 442
 443/**
 444 * __remove_pages() - remove sections of pages
 445 * @pfn: starting pageframe (must be aligned to start of a section)
 446 * @nr_pages: number of pages to remove (must be multiple of section size)
 447 * @altmap: alternative device page map or %NULL if default memmap is used
 448 *
 449 * Generic helper function to remove section mappings and sysfs entries
 450 * for the section of the memory we are removing. Caller needs to make
 451 * sure that pages are marked reserved and zones are adjust properly by
 452 * calling offline_pages().
 453 */
 454void __remove_pages(unsigned long pfn, unsigned long nr_pages,
 455		    struct vmem_altmap *altmap)
 456{
 457	const unsigned long end_pfn = pfn + nr_pages;
 458	unsigned long cur_nr_pages;
 459	unsigned long map_offset = 0;
 460
 461	map_offset = vmem_altmap_offset(altmap);
 462
 463	if (check_pfn_span(pfn, nr_pages, "remove"))
 
 464		return;
 
 465
 466	for (; pfn < end_pfn; pfn += cur_nr_pages) {
 467		cond_resched();
 468		/* Select all remaining pages up to the next section boundary */
 469		cur_nr_pages = min(end_pfn - pfn,
 470				   SECTION_ALIGN_UP(pfn + 1) - pfn);
 471		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
 472		map_offset = 0;
 473	}
 474}
 475
 476int set_online_page_callback(online_page_callback_t callback)
 477{
 478	int rc = -EINVAL;
 479
 480	get_online_mems();
 481	mutex_lock(&online_page_callback_lock);
 482
 483	if (online_page_callback == generic_online_page) {
 484		online_page_callback = callback;
 485		rc = 0;
 486	}
 487
 488	mutex_unlock(&online_page_callback_lock);
 489	put_online_mems();
 490
 491	return rc;
 492}
 493EXPORT_SYMBOL_GPL(set_online_page_callback);
 494
 495int restore_online_page_callback(online_page_callback_t callback)
 496{
 497	int rc = -EINVAL;
 498
 499	get_online_mems();
 500	mutex_lock(&online_page_callback_lock);
 501
 502	if (online_page_callback == callback) {
 503		online_page_callback = generic_online_page;
 504		rc = 0;
 505	}
 506
 507	mutex_unlock(&online_page_callback_lock);
 508	put_online_mems();
 509
 510	return rc;
 511}
 512EXPORT_SYMBOL_GPL(restore_online_page_callback);
 513
 514void generic_online_page(struct page *page, unsigned int order)
 515{
 516	/*
 517	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
 518	 * so we should map it first. This is better than introducing a special
 519	 * case in page freeing fast path.
 520	 */
 521	debug_pagealloc_map_pages(page, 1 << order);
 522	__free_pages_core(page, order);
 523	totalram_pages_add(1UL << order);
 524#ifdef CONFIG_HIGHMEM
 525	if (PageHighMem(page))
 526		totalhigh_pages_add(1UL << order);
 527#endif
 528}
 529EXPORT_SYMBOL_GPL(generic_online_page);
 530
 531static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
 532{
 533	const unsigned long end_pfn = start_pfn + nr_pages;
 534	unsigned long pfn;
 535
 536	/*
 537	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
 538	 * decide to not expose all pages to the buddy (e.g., expose them
 539	 * later). We account all pages as being online and belonging to this
 540	 * zone ("present").
 541	 * When using memmap_on_memory, the range might not be aligned to
 542	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
 543	 * this and the first chunk to online will be pageblock_nr_pages.
 544	 */
 545	for (pfn = start_pfn; pfn < end_pfn;) {
 546		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
 547
 548		(*online_page_callback)(pfn_to_page(pfn), order);
 549		pfn += (1UL << order);
 550	}
 551
 552	/* mark all involved sections as online */
 553	online_mem_sections(start_pfn, end_pfn);
 554}
 555
 556/* check which state of node_states will be changed when online memory */
 557static void node_states_check_changes_online(unsigned long nr_pages,
 558	struct zone *zone, struct memory_notify *arg)
 559{
 560	int nid = zone_to_nid(zone);
 561
 562	arg->status_change_nid = NUMA_NO_NODE;
 563	arg->status_change_nid_normal = NUMA_NO_NODE;
 564	arg->status_change_nid_high = NUMA_NO_NODE;
 565
 566	if (!node_state(nid, N_MEMORY))
 567		arg->status_change_nid = nid;
 568	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 569		arg->status_change_nid_normal = nid;
 570#ifdef CONFIG_HIGHMEM
 571	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
 572		arg->status_change_nid_high = nid;
 573#endif
 574}
 575
 576static void node_states_set_node(int node, struct memory_notify *arg)
 577{
 578	if (arg->status_change_nid_normal >= 0)
 579		node_set_state(node, N_NORMAL_MEMORY);
 580
 581	if (arg->status_change_nid_high >= 0)
 582		node_set_state(node, N_HIGH_MEMORY);
 583
 584	if (arg->status_change_nid >= 0)
 585		node_set_state(node, N_MEMORY);
 586}
 587
 588static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 589		unsigned long nr_pages)
 590{
 591	unsigned long old_end_pfn = zone_end_pfn(zone);
 592
 593	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 594		zone->zone_start_pfn = start_pfn;
 595
 596	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 597}
 598
 599static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 600                                     unsigned long nr_pages)
 601{
 602	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 603
 604	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 605		pgdat->node_start_pfn = start_pfn;
 606
 607	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 608
 609}
 610
 
 611static void section_taint_zone_device(unsigned long pfn)
 612{
 613	struct mem_section *ms = __pfn_to_section(pfn);
 614
 615	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
 616}
 
 
 
 
 
 617
 618/*
 619 * Associate the pfn range with the given zone, initializing the memmaps
 620 * and resizing the pgdat/zone data to span the added pages. After this
 621 * call, all affected pages are PG_reserved.
 622 *
 623 * All aligned pageblocks are initialized to the specified migratetype
 624 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 625 * zone stats (e.g., nr_isolate_pageblock) are touched.
 626 */
 627void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 628				  unsigned long nr_pages,
 629				  struct vmem_altmap *altmap, int migratetype)
 630{
 631	struct pglist_data *pgdat = zone->zone_pgdat;
 632	int nid = pgdat->node_id;
 633
 634	clear_zone_contiguous(zone);
 635
 636	if (zone_is_empty(zone))
 637		init_currently_empty_zone(zone, start_pfn, nr_pages);
 638	resize_zone_range(zone, start_pfn, nr_pages);
 639	resize_pgdat_range(pgdat, start_pfn, nr_pages);
 640
 641	/*
 642	 * Subsection population requires care in pfn_to_online_page().
 643	 * Set the taint to enable the slow path detection of
 644	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
 645	 * section.
 646	 */
 647	if (zone_is_zone_device(zone)) {
 648		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
 649			section_taint_zone_device(start_pfn);
 650		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
 651			section_taint_zone_device(start_pfn + nr_pages);
 652	}
 653
 654	/*
 655	 * TODO now we have a visible range of pages which are not associated
 656	 * with their zone properly. Not nice but set_pfnblock_flags_mask
 657	 * expects the zone spans the pfn range. All the pages in the range
 658	 * are reserved so nobody should be touching them so we should be safe
 659	 */
 660	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
 661			 MEMINIT_HOTPLUG, altmap, migratetype);
 662
 663	set_zone_contiguous(zone);
 664}
 665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666/*
 667 * Returns a default kernel memory zone for the given pfn range.
 668 * If no kernel zone covers this pfn range it will automatically go
 669 * to the ZONE_NORMAL.
 670 */
 671static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 672		unsigned long nr_pages)
 673{
 674	struct pglist_data *pgdat = NODE_DATA(nid);
 675	int zid;
 676
 677	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
 678		struct zone *zone = &pgdat->node_zones[zid];
 679
 680		if (zone_intersects(zone, start_pfn, nr_pages))
 681			return zone;
 682	}
 683
 684	return &pgdat->node_zones[ZONE_NORMAL];
 685}
 686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 687static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 688		unsigned long nr_pages)
 689{
 690	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 691			nr_pages);
 692	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 693	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 694	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 695
 696	/*
 697	 * We inherit the existing zone in a simple case where zones do not
 698	 * overlap in the given range
 699	 */
 700	if (in_kernel ^ in_movable)
 701		return (in_kernel) ? kernel_zone : movable_zone;
 702
 703	/*
 704	 * If the range doesn't belong to any zone or two zones overlap in the
 705	 * given range then we use movable zone only if movable_node is
 706	 * enabled because we always online to a kernel zone by default.
 707	 */
 708	return movable_node_enabled ? movable_zone : kernel_zone;
 709}
 710
 711struct zone *zone_for_pfn_range(int online_type, int nid,
 712		unsigned long start_pfn, unsigned long nr_pages)
 
 713{
 714	if (online_type == MMOP_ONLINE_KERNEL)
 715		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 716
 717	if (online_type == MMOP_ONLINE_MOVABLE)
 718		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 719
 
 
 
 720	return default_zone_for_pfn(nid, start_pfn, nr_pages);
 721}
 722
 723/*
 724 * This function should only be called by memory_block_{online,offline},
 725 * and {online,offline}_pages.
 726 */
 727void adjust_present_page_count(struct zone *zone, long nr_pages)
 
 728{
 
 
 
 
 
 
 
 
 
 729	zone->present_pages += nr_pages;
 730	zone->zone_pgdat->node_present_pages += nr_pages;
 
 
 
 
 
 731}
 732
 733int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
 734			      struct zone *zone)
 735{
 736	unsigned long end_pfn = pfn + nr_pages;
 737	int ret;
 738
 739	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
 740	if (ret)
 741		return ret;
 742
 743	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
 744
 
 
 
 745	/*
 746	 * It might be that the vmemmap_pages fully span sections. If that is
 747	 * the case, mark those sections online here as otherwise they will be
 748	 * left offline.
 749	 */
 750	if (nr_pages >= PAGES_PER_SECTION)
 751	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
 752
 753	return ret;
 754}
 755
 756void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
 757{
 758	unsigned long end_pfn = pfn + nr_pages;
 759
 760	/*
 761	 * It might be that the vmemmap_pages fully span sections. If that is
 762	 * the case, mark those sections offline here as otherwise they will be
 763	 * left online.
 764	 */
 765	if (nr_pages >= PAGES_PER_SECTION)
 766		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
 767
 768        /*
 769	 * The pages associated with this vmemmap have been offlined, so
 770	 * we can reset its state here.
 771	 */
 772	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
 773	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
 774}
 775
 776int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
 
 777{
 778	unsigned long flags;
 779	int need_zonelists_rebuild = 0;
 780	const int nid = zone_to_nid(zone);
 781	int ret;
 782	struct memory_notify arg;
 783
 784	/*
 785	 * {on,off}lining is constrained to full memory sections (or more
 786	 * precisely to memory blocks from the user space POV).
 787	 * memmap_on_memory is an exception because it reserves initial part
 788	 * of the physical memory space for vmemmaps. That space is pageblock
 789	 * aligned.
 790	 */
 791	if (WARN_ON_ONCE(!nr_pages ||
 792			 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
 793			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
 794		return -EINVAL;
 795
 796	mem_hotplug_begin();
 797
 798	/* associate pfn range with the zone */
 799	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
 800
 801	arg.start_pfn = pfn;
 802	arg.nr_pages = nr_pages;
 803	node_states_check_changes_online(nr_pages, zone, &arg);
 804
 805	ret = memory_notify(MEM_GOING_ONLINE, &arg);
 806	ret = notifier_to_errno(ret);
 807	if (ret)
 808		goto failed_addition;
 809
 810	/*
 811	 * Fixup the number of isolated pageblocks before marking the sections
 812	 * onlining, such that undo_isolate_page_range() works correctly.
 813	 */
 814	spin_lock_irqsave(&zone->lock, flags);
 815	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
 816	spin_unlock_irqrestore(&zone->lock, flags);
 817
 818	/*
 819	 * If this zone is not populated, then it is not in zonelist.
 820	 * This means the page allocator ignores this zone.
 821	 * So, zonelist must be updated after online.
 822	 */
 823	if (!populated_zone(zone)) {
 824		need_zonelists_rebuild = 1;
 825		setup_zone_pageset(zone);
 826	}
 827
 828	online_pages_range(pfn, nr_pages);
 829	adjust_present_page_count(zone, nr_pages);
 830
 831	node_states_set_node(nid, &arg);
 832	if (need_zonelists_rebuild)
 833		build_all_zonelists(NULL);
 834
 835	/* Basic onlining is complete, allow allocation of onlined pages. */
 836	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
 837
 838	/*
 839	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
 840	 * the tail of the freelist when undoing isolation). Shuffle the whole
 841	 * zone to make sure the just onlined pages are properly distributed
 842	 * across the whole freelist - to create an initial shuffle.
 843	 */
 844	shuffle_zone(zone);
 845
 846	/* reinitialise watermarks and update pcp limits */
 847	init_per_zone_wmark_min();
 848
 849	kswapd_run(nid);
 850	kcompactd_run(nid);
 851
 852	writeback_set_ratelimit();
 853
 854	memory_notify(MEM_ONLINE, &arg);
 855	mem_hotplug_done();
 856	return 0;
 857
 858failed_addition:
 859	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
 860		 (unsigned long long) pfn << PAGE_SHIFT,
 861		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
 862	memory_notify(MEM_CANCEL_ONLINE, &arg);
 863	remove_pfn_range_from_zone(zone, pfn, nr_pages);
 864	mem_hotplug_done();
 865	return ret;
 866}
 867#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
 868
 869static void reset_node_present_pages(pg_data_t *pgdat)
 870{
 871	struct zone *z;
 872
 873	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 874		z->present_pages = 0;
 875
 876	pgdat->node_present_pages = 0;
 877}
 878
 879/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
 880static pg_data_t __ref *hotadd_new_pgdat(int nid)
 881{
 882	struct pglist_data *pgdat;
 883
 
 
 
 
 
 
 884	pgdat = NODE_DATA(nid);
 885	if (!pgdat) {
 886		pgdat = arch_alloc_nodedata(nid);
 887		if (!pgdat)
 888			return NULL;
 889
 890		pgdat->per_cpu_nodestats =
 891			alloc_percpu(struct per_cpu_nodestat);
 892		arch_refresh_nodedata(nid, pgdat);
 893	} else {
 894		int cpu;
 895		/*
 896		 * Reset the nr_zones, order and highest_zoneidx before reuse.
 897		 * Note that kswapd will init kswapd_highest_zoneidx properly
 898		 * when it starts in the near future.
 899		 */
 900		pgdat->nr_zones = 0;
 901		pgdat->kswapd_order = 0;
 902		pgdat->kswapd_highest_zoneidx = 0;
 903		for_each_online_cpu(cpu) {
 904			struct per_cpu_nodestat *p;
 905
 906			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 907			memset(p, 0, sizeof(*p));
 908		}
 909	}
 910
 911	/* we can use NODE_DATA(nid) from here */
 912	pgdat->node_id = nid;
 913	pgdat->node_start_pfn = 0;
 914
 915	/* init node's zones as empty zones, we don't have any present pages.*/
 916	free_area_init_core_hotplug(nid);
 917
 918	/*
 919	 * The node we allocated has no zone fallback lists. For avoiding
 920	 * to access not-initialized zonelist, build here.
 921	 */
 922	build_all_zonelists(pgdat);
 923
 924	/*
 925	 * When memory is hot-added, all the memory is in offline state. So
 926	 * clear all zones' present_pages because they will be updated in
 927	 * online_pages() and offline_pages().
 
 928	 */
 929	reset_node_managed_pages(pgdat);
 930	reset_node_present_pages(pgdat);
 931
 932	return pgdat;
 933}
 934
 935static void rollback_node_hotadd(int nid)
 936{
 937	pg_data_t *pgdat = NODE_DATA(nid);
 938
 939	arch_refresh_nodedata(nid, NULL);
 940	free_percpu(pgdat->per_cpu_nodestats);
 941	arch_free_nodedata(pgdat);
 942}
 943
 944
 945/*
 946 * __try_online_node - online a node if offlined
 947 * @nid: the node ID
 948 * @set_node_online: Whether we want to online the node
 949 * called by cpu_up() to online a node without onlined memory.
 950 *
 951 * Returns:
 952 * 1 -> a new node has been allocated
 953 * 0 -> the node is already online
 954 * -ENOMEM -> the node could not be allocated
 955 */
 956static int __try_online_node(int nid, bool set_node_online)
 957{
 958	pg_data_t *pgdat;
 959	int ret = 1;
 960
 961	if (node_online(nid))
 962		return 0;
 963
 964	pgdat = hotadd_new_pgdat(nid);
 965	if (!pgdat) {
 966		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
 967		ret = -ENOMEM;
 968		goto out;
 969	}
 970
 971	if (set_node_online) {
 972		node_set_online(nid);
 973		ret = register_one_node(nid);
 974		BUG_ON(ret);
 975	}
 976out:
 977	return ret;
 978}
 979
 980/*
 981 * Users of this function always want to online/register the node
 982 */
 983int try_online_node(int nid)
 984{
 985	int ret;
 986
 987	mem_hotplug_begin();
 988	ret =  __try_online_node(nid, true);
 989	mem_hotplug_done();
 990	return ret;
 991}
 992
 993static int check_hotplug_memory_range(u64 start, u64 size)
 994{
 995	/* memory range must be block size aligned */
 996	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
 997	    !IS_ALIGNED(size, memory_block_size_bytes())) {
 998		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
 999		       memory_block_size_bytes(), start, size);
1000		return -EINVAL;
1001	}
1002
1003	return 0;
1004}
1005
1006static int online_memory_block(struct memory_block *mem, void *arg)
1007{
1008	mem->online_type = mhp_default_online_type;
1009	return device_online(&mem->dev);
1010}
1011
1012bool mhp_supports_memmap_on_memory(unsigned long size)
1013{
1014	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1015	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1016	unsigned long remaining_size = size - vmemmap_size;
1017
1018	/*
1019	 * Besides having arch support and the feature enabled at runtime, we
1020	 * need a few more assumptions to hold true:
1021	 *
1022	 * a) We span a single memory block: memory onlining/offlinin;g happens
1023	 *    in memory block granularity. We don't want the vmemmap of online
1024	 *    memory blocks to reside on offline memory blocks. In the future,
1025	 *    we might want to support variable-sized memory blocks to make the
1026	 *    feature more versatile.
1027	 *
1028	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1029	 *    to populate memory from the altmap for unrelated parts (i.e.,
1030	 *    other memory blocks)
1031	 *
1032	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1033	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1034	 *    code requires applicable ranges to be page-aligned, for example, to
1035	 *    set the migratetypes properly.
1036	 *
1037	 * TODO: Although we have a check here to make sure that vmemmap pages
1038	 *       fully populate a PMD, it is not the right place to check for
1039	 *       this. A much better solution involves improving vmemmap code
1040	 *       to fallback to base pages when trying to populate vmemmap using
1041	 *       altmap as an alternative source of memory, and we do not exactly
1042	 *       populate a single PMD.
1043	 */
1044	return memmap_on_memory &&
1045	       !hugetlb_free_vmemmap_enabled &&
1046	       IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1047	       size == memory_block_size_bytes() &&
1048	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1049	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1050}
1051
1052/*
1053 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1054 * and online/offline operations (triggered e.g. by sysfs).
1055 *
1056 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1057 */
1058int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1059{
1060	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
 
1061	struct vmem_altmap mhp_altmap = {};
 
1062	u64 start, size;
1063	bool new_node = false;
1064	int ret;
1065
1066	start = res->start;
1067	size = resource_size(res);
1068
1069	ret = check_hotplug_memory_range(start, size);
1070	if (ret)
1071		return ret;
1072
 
 
 
 
 
 
 
1073	if (!node_possible(nid)) {
1074		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1075		return -EINVAL;
1076	}
1077
1078	mem_hotplug_begin();
1079
1080	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1081		memblock_add_node(start, size, nid);
 
 
 
 
 
1082
1083	ret = __try_online_node(nid, false);
1084	if (ret < 0)
1085		goto error;
1086	new_node = ret;
1087
1088	/*
1089	 * Self hosted memmap array
1090	 */
1091	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1092		if (!mhp_supports_memmap_on_memory(size)) {
1093			ret = -EINVAL;
1094			goto error;
1095		}
1096		mhp_altmap.free = PHYS_PFN(size);
1097		mhp_altmap.base_pfn = PHYS_PFN(start);
1098		params.altmap = &mhp_altmap;
1099	}
1100
1101	/* call arch's memory hotadd */
1102	ret = arch_add_memory(nid, start, size, &params);
1103	if (ret < 0)
1104		goto error;
1105
1106	/* create memory block devices after memory was added */
1107	ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
 
1108	if (ret) {
1109		arch_remove_memory(nid, start, size, NULL);
1110		goto error;
1111	}
1112
1113	if (new_node) {
1114		/* If sysfs file of new node can't be created, cpu on the node
1115		 * can't be hot-added. There is no rollback way now.
1116		 * So, check by BUG_ON() to catch it reluctantly..
1117		 * We online node here. We can't roll back from here.
1118		 */
1119		node_set_online(nid);
1120		ret = __register_one_node(nid);
1121		BUG_ON(ret);
1122	}
1123
1124	/* link memory sections under this node.*/
1125	link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1126			  MEMINIT_HOTPLUG);
1127
1128	/* create new memmap entry */
1129	if (!strcmp(res->name, "System RAM"))
1130		firmware_map_add_hotplug(start, start + size, "System RAM");
1131
1132	/* device_online() will take the lock when calling online_pages() */
1133	mem_hotplug_done();
1134
1135	/*
1136	 * In case we're allowed to merge the resource, flag it and trigger
1137	 * merging now that adding succeeded.
1138	 */
1139	if (mhp_flags & MHP_MERGE_RESOURCE)
1140		merge_system_ram_resource(res);
1141
1142	/* online pages if requested */
1143	if (mhp_default_online_type != MMOP_OFFLINE)
1144		walk_memory_blocks(start, size, NULL, online_memory_block);
1145
1146	return ret;
1147error:
1148	/* rollback pgdat allocation and others */
1149	if (new_node)
1150		rollback_node_hotadd(nid);
1151	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1152		memblock_remove(start, size);
 
1153	mem_hotplug_done();
1154	return ret;
1155}
1156
1157/* requires device_hotplug_lock, see add_memory_resource() */
1158int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1159{
1160	struct resource *res;
1161	int ret;
1162
1163	res = register_memory_resource(start, size, "System RAM");
1164	if (IS_ERR(res))
1165		return PTR_ERR(res);
1166
1167	ret = add_memory_resource(nid, res, mhp_flags);
1168	if (ret < 0)
1169		release_memory_resource(res);
1170	return ret;
1171}
1172
1173int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1174{
1175	int rc;
1176
1177	lock_device_hotplug();
1178	rc = __add_memory(nid, start, size, mhp_flags);
1179	unlock_device_hotplug();
1180
1181	return rc;
1182}
1183EXPORT_SYMBOL_GPL(add_memory);
1184
1185/*
1186 * Add special, driver-managed memory to the system as system RAM. Such
1187 * memory is not exposed via the raw firmware-provided memmap as system
1188 * RAM, instead, it is detected and added by a driver - during cold boot,
1189 * after a reboot, and after kexec.
1190 *
1191 * Reasons why this memory should not be used for the initial memmap of a
1192 * kexec kernel or for placing kexec images:
1193 * - The booting kernel is in charge of determining how this memory will be
1194 *   used (e.g., use persistent memory as system RAM)
1195 * - Coordination with a hypervisor is required before this memory
1196 *   can be used (e.g., inaccessible parts).
1197 *
1198 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1199 * memory map") are created. Also, the created memory resource is flagged
1200 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1201 * this memory as well (esp., not place kexec images onto it).
1202 *
1203 * The resource_name (visible via /proc/iomem) has to have the format
1204 * "System RAM ($DRIVER)".
1205 */
1206int add_memory_driver_managed(int nid, u64 start, u64 size,
1207			      const char *resource_name, mhp_t mhp_flags)
1208{
1209	struct resource *res;
1210	int rc;
1211
1212	if (!resource_name ||
1213	    strstr(resource_name, "System RAM (") != resource_name ||
1214	    resource_name[strlen(resource_name) - 1] != ')')
1215		return -EINVAL;
1216
1217	lock_device_hotplug();
1218
1219	res = register_memory_resource(start, size, resource_name);
1220	if (IS_ERR(res)) {
1221		rc = PTR_ERR(res);
1222		goto out_unlock;
1223	}
1224
1225	rc = add_memory_resource(nid, res, mhp_flags);
1226	if (rc < 0)
1227		release_memory_resource(res);
1228
1229out_unlock:
1230	unlock_device_hotplug();
1231	return rc;
1232}
1233EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1234
1235/*
1236 * Platforms should define arch_get_mappable_range() that provides
1237 * maximum possible addressable physical memory range for which the
1238 * linear mapping could be created. The platform returned address
1239 * range must adhere to these following semantics.
1240 *
1241 * - range.start <= range.end
1242 * - Range includes both end points [range.start..range.end]
1243 *
1244 * There is also a fallback definition provided here, allowing the
1245 * entire possible physical address range in case any platform does
1246 * not define arch_get_mappable_range().
1247 */
1248struct range __weak arch_get_mappable_range(void)
1249{
1250	struct range mhp_range = {
1251		.start = 0UL,
1252		.end = -1ULL,
1253	};
1254	return mhp_range;
1255}
1256
1257struct range mhp_get_pluggable_range(bool need_mapping)
1258{
1259	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1260	struct range mhp_range;
1261
1262	if (need_mapping) {
1263		mhp_range = arch_get_mappable_range();
1264		if (mhp_range.start > max_phys) {
1265			mhp_range.start = 0;
1266			mhp_range.end = 0;
1267		}
1268		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1269	} else {
1270		mhp_range.start = 0;
1271		mhp_range.end = max_phys;
1272	}
1273	return mhp_range;
1274}
1275EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1276
1277bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1278{
1279	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1280	u64 end = start + size;
1281
1282	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1283		return true;
1284
1285	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1286		start, end, mhp_range.start, mhp_range.end);
1287	return false;
1288}
1289
1290#ifdef CONFIG_MEMORY_HOTREMOVE
1291/*
1292 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1293 * memory holes). When true, return the zone.
1294 */
1295struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1296				  unsigned long end_pfn)
1297{
1298	unsigned long pfn, sec_end_pfn;
1299	struct zone *zone = NULL;
1300	struct page *page;
1301	int i;
1302	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1303	     pfn < end_pfn;
1304	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1305		/* Make sure the memory section is present first */
1306		if (!present_section_nr(pfn_to_section_nr(pfn)))
1307			continue;
1308		for (; pfn < sec_end_pfn && pfn < end_pfn;
1309		     pfn += MAX_ORDER_NR_PAGES) {
1310			i = 0;
1311			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1312			while ((i < MAX_ORDER_NR_PAGES) &&
1313				!pfn_valid_within(pfn + i))
1314				i++;
1315			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1316				continue;
1317			/* Check if we got outside of the zone */
1318			if (zone && !zone_spans_pfn(zone, pfn + i))
1319				return NULL;
1320			page = pfn_to_page(pfn + i);
1321			if (zone && page_zone(page) != zone)
1322				return NULL;
1323			zone = page_zone(page);
1324		}
1325	}
1326
1327	return zone;
1328}
1329
1330/*
1331 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1332 * non-lru movable pages and hugepages). Will skip over most unmovable
1333 * pages (esp., pages that can be skipped when offlining), but bail out on
1334 * definitely unmovable pages.
1335 *
1336 * Returns:
1337 *	0 in case a movable page is found and movable_pfn was updated.
1338 *	-ENOENT in case no movable page was found.
1339 *	-EBUSY in case a definitely unmovable page was found.
1340 */
1341static int scan_movable_pages(unsigned long start, unsigned long end,
1342			      unsigned long *movable_pfn)
1343{
1344	unsigned long pfn;
1345
1346	for (pfn = start; pfn < end; pfn++) {
1347		struct page *page, *head;
1348		unsigned long skip;
1349
1350		if (!pfn_valid(pfn))
1351			continue;
1352		page = pfn_to_page(pfn);
1353		if (PageLRU(page))
1354			goto found;
1355		if (__PageMovable(page))
1356			goto found;
1357
1358		/*
1359		 * PageOffline() pages that are not marked __PageMovable() and
1360		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1361		 * definitely unmovable. If their reference count would be 0,
1362		 * they could at least be skipped when offlining memory.
1363		 */
1364		if (PageOffline(page) && page_count(page))
1365			return -EBUSY;
1366
1367		if (!PageHuge(page))
1368			continue;
1369		head = compound_head(page);
1370		/*
1371		 * This test is racy as we hold no reference or lock.  The
1372		 * hugetlb page could have been free'ed and head is no longer
1373		 * a hugetlb page before the following check.  In such unlikely
1374		 * cases false positives and negatives are possible.  Calling
1375		 * code must deal with these scenarios.
1376		 */
1377		if (HPageMigratable(head))
1378			goto found;
1379		skip = compound_nr(head) - (page - head);
1380		pfn += skip - 1;
1381	}
1382	return -ENOENT;
1383found:
1384	*movable_pfn = pfn;
1385	return 0;
1386}
1387
1388static int
1389do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1390{
1391	unsigned long pfn;
1392	struct page *page, *head;
1393	int ret = 0;
1394	LIST_HEAD(source);
1395	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1396				      DEFAULT_RATELIMIT_BURST);
1397
1398	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 
 
1399		if (!pfn_valid(pfn))
1400			continue;
1401		page = pfn_to_page(pfn);
1402		head = compound_head(page);
 
1403
1404		if (PageHuge(page)) {
1405			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1406			isolate_huge_page(head, &source);
1407			continue;
1408		} else if (PageTransHuge(page))
1409			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1410
1411		/*
1412		 * HWPoison pages have elevated reference counts so the migration would
1413		 * fail on them. It also doesn't make any sense to migrate them in the
1414		 * first place. Still try to unmap such a page in case it is still mapped
1415		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1416		 * the unmap as the catch all safety net).
1417		 */
1418		if (PageHWPoison(page)) {
1419			if (WARN_ON(PageLRU(page)))
1420				isolate_lru_page(page);
1421			if (page_mapped(page))
1422				try_to_unmap(page, TTU_IGNORE_MLOCK);
1423			continue;
1424		}
1425
1426		if (!get_page_unless_zero(page))
1427			continue;
1428		/*
1429		 * We can skip free pages. And we can deal with pages on
1430		 * LRU and non-lru movable pages.
1431		 */
1432		if (PageLRU(page))
1433			ret = isolate_lru_page(page);
1434		else
1435			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1436		if (!ret) { /* Success */
1437			list_add_tail(&page->lru, &source);
1438			if (!__PageMovable(page))
1439				inc_node_page_state(page, NR_ISOLATED_ANON +
1440						    page_is_file_lru(page));
1441
1442		} else {
1443			if (__ratelimit(&migrate_rs)) {
1444				pr_warn("failed to isolate pfn %lx\n", pfn);
1445				dump_page(page, "isolation failed");
1446			}
1447		}
1448		put_page(page);
1449	}
1450	if (!list_empty(&source)) {
1451		nodemask_t nmask = node_states[N_MEMORY];
1452		struct migration_target_control mtc = {
1453			.nmask = &nmask,
1454			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1455		};
1456
1457		/*
1458		 * We have checked that migration range is on a single zone so
1459		 * we can use the nid of the first page to all the others.
1460		 */
1461		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1462
1463		/*
1464		 * try to allocate from a different node but reuse this node
1465		 * if there are no other online nodes to be used (e.g. we are
1466		 * offlining a part of the only existing node)
1467		 */
1468		node_clear(mtc.nid, nmask);
1469		if (nodes_empty(nmask))
1470			node_set(mtc.nid, nmask);
1471		ret = migrate_pages(&source, alloc_migration_target, NULL,
1472			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1473		if (ret) {
1474			list_for_each_entry(page, &source, lru) {
1475				if (__ratelimit(&migrate_rs)) {
1476					pr_warn("migrating pfn %lx failed ret:%d\n",
1477						page_to_pfn(page), ret);
1478					dump_page(page, "migration failure");
1479				}
1480			}
1481			putback_movable_pages(&source);
1482		}
1483	}
1484
1485	return ret;
1486}
1487
1488static int __init cmdline_parse_movable_node(char *p)
1489{
1490	movable_node_enabled = true;
1491	return 0;
1492}
1493early_param("movable_node", cmdline_parse_movable_node);
1494
1495/* check which state of node_states will be changed when offline memory */
1496static void node_states_check_changes_offline(unsigned long nr_pages,
1497		struct zone *zone, struct memory_notify *arg)
1498{
1499	struct pglist_data *pgdat = zone->zone_pgdat;
1500	unsigned long present_pages = 0;
1501	enum zone_type zt;
1502
1503	arg->status_change_nid = NUMA_NO_NODE;
1504	arg->status_change_nid_normal = NUMA_NO_NODE;
1505	arg->status_change_nid_high = NUMA_NO_NODE;
1506
1507	/*
1508	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1509	 * If the memory to be offline is within the range
1510	 * [0..ZONE_NORMAL], and it is the last present memory there,
1511	 * the zones in that range will become empty after the offlining,
1512	 * thus we can determine that we need to clear the node from
1513	 * node_states[N_NORMAL_MEMORY].
1514	 */
1515	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1516		present_pages += pgdat->node_zones[zt].present_pages;
1517	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1518		arg->status_change_nid_normal = zone_to_nid(zone);
1519
1520#ifdef CONFIG_HIGHMEM
1521	/*
1522	 * node_states[N_HIGH_MEMORY] contains nodes which
1523	 * have normal memory or high memory.
1524	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1525	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1526	 * we determine that the zones in that range become empty,
1527	 * we need to clear the node for N_HIGH_MEMORY.
1528	 */
1529	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1530	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1531		arg->status_change_nid_high = zone_to_nid(zone);
1532#endif
1533
1534	/*
1535	 * We have accounted the pages from [0..ZONE_NORMAL), and
1536	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1537	 * as well.
1538	 * Here we count the possible pages from ZONE_MOVABLE.
1539	 * If after having accounted all the pages, we see that the nr_pages
1540	 * to be offlined is over or equal to the accounted pages,
1541	 * we know that the node will become empty, and so, we can clear
1542	 * it for N_MEMORY as well.
1543	 */
1544	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1545
1546	if (nr_pages >= present_pages)
1547		arg->status_change_nid = zone_to_nid(zone);
1548}
1549
1550static void node_states_clear_node(int node, struct memory_notify *arg)
1551{
1552	if (arg->status_change_nid_normal >= 0)
1553		node_clear_state(node, N_NORMAL_MEMORY);
1554
1555	if (arg->status_change_nid_high >= 0)
1556		node_clear_state(node, N_HIGH_MEMORY);
1557
1558	if (arg->status_change_nid >= 0)
1559		node_clear_state(node, N_MEMORY);
1560}
1561
1562static int count_system_ram_pages_cb(unsigned long start_pfn,
1563				     unsigned long nr_pages, void *data)
1564{
1565	unsigned long *nr_system_ram_pages = data;
1566
1567	*nr_system_ram_pages += nr_pages;
1568	return 0;
1569}
1570
1571int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
 
1572{
1573	const unsigned long end_pfn = start_pfn + nr_pages;
1574	unsigned long pfn, system_ram_pages = 0;
 
1575	unsigned long flags;
1576	struct zone *zone;
1577	struct memory_notify arg;
1578	int ret, node;
1579	char *reason;
 
1580
1581	/*
1582	 * {on,off}lining is constrained to full memory sections (or more
1583	 * precisely to memory blocks from the user space POV).
1584	 * memmap_on_memory is an exception because it reserves initial part
1585	 * of the physical memory space for vmemmaps. That space is pageblock
1586	 * aligned.
1587	 */
1588	if (WARN_ON_ONCE(!nr_pages ||
1589			 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1590			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1591		return -EINVAL;
1592
1593	mem_hotplug_begin();
1594
1595	/*
1596	 * Don't allow to offline memory blocks that contain holes.
1597	 * Consequently, memory blocks with holes can never get onlined
1598	 * via the hotplug path - online_pages() - as hotplugged memory has
1599	 * no holes. This way, we e.g., don't have to worry about marking
1600	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1601	 * avoid using walk_system_ram_range() later.
1602	 */
1603	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1604			      count_system_ram_pages_cb);
1605	if (system_ram_pages != nr_pages) {
1606		ret = -EINVAL;
1607		reason = "memory holes";
1608		goto failed_removal;
1609	}
1610
1611	/* This makes hotplug much easier...and readable.
1612	   we assume this for now. .*/
1613	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1614	if (!zone) {
 
 
 
1615		ret = -EINVAL;
1616		reason = "multizone range";
1617		goto failed_removal;
1618	}
1619	node = zone_to_nid(zone);
1620
1621	/*
1622	 * Disable pcplists so that page isolation cannot race with freeing
1623	 * in a way that pages from isolated pageblock are left on pcplists.
1624	 */
1625	zone_pcp_disable(zone);
1626	lru_cache_disable();
1627
1628	/* set above range as isolated */
1629	ret = start_isolate_page_range(start_pfn, end_pfn,
1630				       MIGRATE_MOVABLE,
1631				       MEMORY_OFFLINE | REPORT_FAILURE);
 
1632	if (ret) {
1633		reason = "failure to isolate range";
1634		goto failed_removal_pcplists_disabled;
1635	}
1636
1637	arg.start_pfn = start_pfn;
1638	arg.nr_pages = nr_pages;
1639	node_states_check_changes_offline(nr_pages, zone, &arg);
1640
1641	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1642	ret = notifier_to_errno(ret);
1643	if (ret) {
1644		reason = "notifier failure";
1645		goto failed_removal_isolated;
1646	}
1647
1648	do {
1649		pfn = start_pfn;
1650		do {
1651			if (signal_pending(current)) {
1652				ret = -EINTR;
1653				reason = "signal backoff";
1654				goto failed_removal_isolated;
1655			}
1656
1657			cond_resched();
1658
1659			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1660			if (!ret) {
1661				/*
1662				 * TODO: fatal migration failures should bail
1663				 * out
1664				 */
1665				do_migrate_range(pfn, end_pfn);
1666			}
1667		} while (!ret);
1668
1669		if (ret != -ENOENT) {
1670			reason = "unmovable page";
1671			goto failed_removal_isolated;
1672		}
1673
1674		/*
1675		 * Dissolve free hugepages in the memory block before doing
1676		 * offlining actually in order to make hugetlbfs's object
1677		 * counting consistent.
1678		 */
1679		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1680		if (ret) {
1681			reason = "failure to dissolve huge pages";
1682			goto failed_removal_isolated;
1683		}
1684
1685		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1686
1687	} while (ret);
1688
1689	/* Mark all sections offline and remove free pages from the buddy. */
1690	__offline_isolated_pages(start_pfn, end_pfn);
1691	pr_debug("Offlined Pages %ld\n", nr_pages);
1692
1693	/*
1694	 * The memory sections are marked offline, and the pageblock flags
1695	 * effectively stale; nobody should be touching them. Fixup the number
1696	 * of isolated pageblocks, memory onlining will properly revert this.
1697	 */
1698	spin_lock_irqsave(&zone->lock, flags);
1699	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1700	spin_unlock_irqrestore(&zone->lock, flags);
1701
1702	lru_cache_enable();
1703	zone_pcp_enable(zone);
1704
1705	/* removal success */
1706	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1707	adjust_present_page_count(zone, -nr_pages);
1708
1709	/* reinitialise watermarks and update pcp limits */
1710	init_per_zone_wmark_min();
1711
1712	if (!populated_zone(zone)) {
1713		zone_pcp_reset(zone);
1714		build_all_zonelists(NULL);
1715	}
1716
1717	node_states_clear_node(node, &arg);
1718	if (arg.status_change_nid >= 0) {
1719		kswapd_stop(node);
1720		kcompactd_stop(node);
 
1721	}
1722
1723	writeback_set_ratelimit();
1724
1725	memory_notify(MEM_OFFLINE, &arg);
1726	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1727	mem_hotplug_done();
1728	return 0;
1729
1730failed_removal_isolated:
 
1731	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1732	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1733failed_removal_pcplists_disabled:
1734	lru_cache_enable();
1735	zone_pcp_enable(zone);
1736failed_removal:
1737	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1738		 (unsigned long long) start_pfn << PAGE_SHIFT,
1739		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1740		 reason);
1741	/* pushback to free area */
1742	mem_hotplug_done();
1743	return ret;
1744}
1745
1746static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1747{
1748	int ret = !is_memblock_offlined(mem);
1749
1750	if (unlikely(ret)) {
 
1751		phys_addr_t beginpa, endpa;
1752
1753		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1754		endpa = beginpa + memory_block_size_bytes() - 1;
1755		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1756			&beginpa, &endpa);
1757
1758		return -EBUSY;
1759	}
1760	return 0;
1761}
1762
1763static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1764{
1765	/*
1766	 * If not set, continue with the next block.
1767	 */
1768	return mem->nr_vmemmap_pages;
1769}
1770
1771static int check_cpu_on_node(pg_data_t *pgdat)
1772{
1773	int cpu;
1774
1775	for_each_present_cpu(cpu) {
1776		if (cpu_to_node(cpu) == pgdat->node_id)
1777			/*
1778			 * the cpu on this node isn't removed, and we can't
1779			 * offline this node.
1780			 */
1781			return -EBUSY;
1782	}
1783
1784	return 0;
1785}
1786
1787static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1788{
1789	int nid = *(int *)arg;
1790
1791	/*
1792	 * If a memory block belongs to multiple nodes, the stored nid is not
1793	 * reliable. However, such blocks are always online (e.g., cannot get
1794	 * offlined) and, therefore, are still spanned by the node.
1795	 */
1796	return mem->nid == nid ? -EEXIST : 0;
1797}
1798
1799/**
1800 * try_offline_node
1801 * @nid: the node ID
1802 *
1803 * Offline a node if all memory sections and cpus of the node are removed.
1804 *
1805 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1806 * and online/offline operations before this call.
1807 */
1808void try_offline_node(int nid)
1809{
1810	pg_data_t *pgdat = NODE_DATA(nid);
1811	int rc;
1812
1813	/*
1814	 * If the node still spans pages (especially ZONE_DEVICE), don't
1815	 * offline it. A node spans memory after move_pfn_range_to_zone(),
1816	 * e.g., after the memory block was onlined.
1817	 */
1818	if (pgdat->node_spanned_pages)
1819		return;
1820
1821	/*
1822	 * Especially offline memory blocks might not be spanned by the
1823	 * node. They will get spanned by the node once they get onlined.
1824	 * However, they link to the node in sysfs and can get onlined later.
1825	 */
1826	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1827	if (rc)
1828		return;
1829
1830	if (check_cpu_on_node(pgdat))
1831		return;
1832
1833	/*
1834	 * all memory/cpu of this node are removed, we can offline this
1835	 * node now.
1836	 */
1837	node_set_offline(nid);
1838	unregister_one_node(nid);
1839}
1840EXPORT_SYMBOL(try_offline_node);
1841
1842static int __ref try_remove_memory(int nid, u64 start, u64 size)
1843{
1844	int rc = 0;
1845	struct vmem_altmap mhp_altmap = {};
1846	struct vmem_altmap *altmap = NULL;
1847	unsigned long nr_vmemmap_pages;
 
1848
1849	BUG_ON(check_hotplug_memory_range(start, size));
1850
1851	/*
1852	 * All memory blocks must be offlined before removing memory.  Check
1853	 * whether all memory blocks in question are offline and return error
1854	 * if this is not the case.
 
 
 
 
1855	 */
1856	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1857	if (rc)
1858		return rc;
1859
1860	/*
1861	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
1862	 * the same granularity it was added - a single memory block.
1863	 */
1864	if (memmap_on_memory) {
1865		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
1866						      get_nr_vmemmap_pages_cb);
1867		if (nr_vmemmap_pages) {
1868			if (size != memory_block_size_bytes()) {
1869				pr_warn("Refuse to remove %#llx - %#llx,"
1870					"wrong granularity\n",
1871					start, start + size);
1872				return -EINVAL;
1873			}
1874
1875			/*
1876			 * Let remove_pmd_table->free_hugepage_table do the
1877			 * right thing if we used vmem_altmap when hot-adding
1878			 * the range.
1879			 */
1880			mhp_altmap.alloc = nr_vmemmap_pages;
1881			altmap = &mhp_altmap;
1882		}
1883	}
1884
1885	/* remove memmap entry */
1886	firmware_map_remove(start, start + size, "System RAM");
1887
1888	/*
1889	 * Memory block device removal under the device_hotplug_lock is
1890	 * a barrier against racing online attempts.
1891	 */
1892	remove_memory_block_devices(start, size);
1893
1894	mem_hotplug_begin();
1895
1896	arch_remove_memory(nid, start, size, altmap);
1897
1898	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1899		memblock_free(start, size);
1900		memblock_remove(start, size);
1901	}
1902
1903	release_mem_region_adjustable(start, size);
1904
1905	try_offline_node(nid);
 
1906
1907	mem_hotplug_done();
1908	return 0;
1909}
1910
1911/**
1912 * __remove_memory - Remove memory if every memory block is offline
1913 * @nid: the node ID
1914 * @start: physical address of the region to remove
1915 * @size: size of the region to remove
1916 *
1917 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1918 * and online/offline operations before this call, as required by
1919 * try_offline_node().
1920 */
1921void __remove_memory(int nid, u64 start, u64 size)
1922{
1923
1924	/*
1925	 * trigger BUG() if some memory is not offlined prior to calling this
1926	 * function
1927	 */
1928	if (try_remove_memory(nid, start, size))
1929		BUG();
1930}
1931
1932/*
1933 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1934 * some memory is not offline
1935 */
1936int remove_memory(int nid, u64 start, u64 size)
1937{
1938	int rc;
1939
1940	lock_device_hotplug();
1941	rc  = try_remove_memory(nid, start, size);
1942	unlock_device_hotplug();
1943
1944	return rc;
1945}
1946EXPORT_SYMBOL_GPL(remove_memory);
1947
1948static int try_offline_memory_block(struct memory_block *mem, void *arg)
1949{
1950	uint8_t online_type = MMOP_ONLINE_KERNEL;
1951	uint8_t **online_types = arg;
1952	struct page *page;
1953	int rc;
1954
1955	/*
1956	 * Sense the online_type via the zone of the memory block. Offlining
1957	 * with multiple zones within one memory block will be rejected
1958	 * by offlining code ... so we don't care about that.
1959	 */
1960	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
1961	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
1962		online_type = MMOP_ONLINE_MOVABLE;
1963
1964	rc = device_offline(&mem->dev);
1965	/*
1966	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
1967	 * so try_reonline_memory_block() can do the right thing.
1968	 */
1969	if (!rc)
1970		**online_types = online_type;
1971
1972	(*online_types)++;
1973	/* Ignore if already offline. */
1974	return rc < 0 ? rc : 0;
1975}
1976
1977static int try_reonline_memory_block(struct memory_block *mem, void *arg)
1978{
1979	uint8_t **online_types = arg;
1980	int rc;
1981
1982	if (**online_types != MMOP_OFFLINE) {
1983		mem->online_type = **online_types;
1984		rc = device_online(&mem->dev);
1985		if (rc < 0)
1986			pr_warn("%s: Failed to re-online memory: %d",
1987				__func__, rc);
1988	}
1989
1990	/* Continue processing all remaining memory blocks. */
1991	(*online_types)++;
1992	return 0;
1993}
1994
1995/*
1996 * Try to offline and remove memory. Might take a long time to finish in case
1997 * memory is still in use. Primarily useful for memory devices that logically
1998 * unplugged all memory (so it's no longer in use) and want to offline + remove
1999 * that memory.
2000 */
2001int offline_and_remove_memory(int nid, u64 start, u64 size)
2002{
2003	const unsigned long mb_count = size / memory_block_size_bytes();
2004	uint8_t *online_types, *tmp;
2005	int rc;
2006
2007	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2008	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2009		return -EINVAL;
2010
2011	/*
2012	 * We'll remember the old online type of each memory block, so we can
2013	 * try to revert whatever we did when offlining one memory block fails
2014	 * after offlining some others succeeded.
2015	 */
2016	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2017				     GFP_KERNEL);
2018	if (!online_types)
2019		return -ENOMEM;
2020	/*
2021	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2022	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2023	 * try_reonline_memory_block().
2024	 */
2025	memset(online_types, MMOP_OFFLINE, mb_count);
2026
2027	lock_device_hotplug();
2028
2029	tmp = online_types;
2030	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2031
2032	/*
2033	 * In case we succeeded to offline all memory, remove it.
2034	 * This cannot fail as it cannot get onlined in the meantime.
2035	 */
2036	if (!rc) {
2037		rc = try_remove_memory(nid, start, size);
2038		if (rc)
2039			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2040	}
2041
2042	/*
2043	 * Rollback what we did. While memory onlining might theoretically fail
2044	 * (nacked by a notifier), it barely ever happens.
2045	 */
2046	if (rc) {
2047		tmp = online_types;
2048		walk_memory_blocks(start, size, &tmp,
2049				   try_reonline_memory_block);
2050	}
2051	unlock_device_hotplug();
2052
2053	kfree(online_types);
2054	return rc;
2055}
2056EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2057#endif /* CONFIG_MEMORY_HOTREMOVE */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory_hotplug.c
   4 *
   5 *  Copyright (C)
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/swap.h>
  12#include <linux/interrupt.h>
  13#include <linux/pagemap.h>
  14#include <linux/compiler.h>
  15#include <linux/export.h>
  16#include <linux/pagevec.h>
  17#include <linux/writeback.h>
  18#include <linux/slab.h>
  19#include <linux/sysctl.h>
  20#include <linux/cpu.h>
  21#include <linux/memory.h>
  22#include <linux/memremap.h>
  23#include <linux/memory_hotplug.h>
 
  24#include <linux/vmalloc.h>
  25#include <linux/ioport.h>
  26#include <linux/delay.h>
  27#include <linux/migrate.h>
  28#include <linux/page-isolation.h>
  29#include <linux/pfn.h>
  30#include <linux/suspend.h>
  31#include <linux/mm_inline.h>
  32#include <linux/firmware-map.h>
  33#include <linux/stop_machine.h>
  34#include <linux/hugetlb.h>
  35#include <linux/memblock.h>
  36#include <linux/compaction.h>
  37#include <linux/rmap.h>
  38#include <linux/module.h>
  39
  40#include <asm/tlbflush.h>
  41
  42#include "internal.h"
  43#include "shuffle.h"
  44
  45#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
  46/*
  47 * memory_hotplug.memmap_on_memory parameter
  48 */
  49static bool memmap_on_memory __ro_after_init;
 
  50module_param(memmap_on_memory, bool, 0444);
  51MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
  52
  53static inline bool mhp_memmap_on_memory(void)
  54{
  55	return memmap_on_memory;
  56}
  57#else
  58static inline bool mhp_memmap_on_memory(void)
  59{
  60	return false;
  61}
  62#endif
  63
  64enum {
  65	ONLINE_POLICY_CONTIG_ZONES = 0,
  66	ONLINE_POLICY_AUTO_MOVABLE,
  67};
  68
  69static const char * const online_policy_to_str[] = {
  70	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
  71	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
  72};
  73
  74static int set_online_policy(const char *val, const struct kernel_param *kp)
  75{
  76	int ret = sysfs_match_string(online_policy_to_str, val);
  77
  78	if (ret < 0)
  79		return ret;
  80	*((int *)kp->arg) = ret;
  81	return 0;
  82}
  83
  84static int get_online_policy(char *buffer, const struct kernel_param *kp)
  85{
  86	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
  87}
  88
  89/*
  90 * memory_hotplug.online_policy: configure online behavior when onlining without
  91 * specifying a zone (MMOP_ONLINE)
  92 *
  93 * "contig-zones": keep zone contiguous
  94 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
  95 *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
  96 */
  97static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
  98static const struct kernel_param_ops online_policy_ops = {
  99	.set = set_online_policy,
 100	.get = get_online_policy,
 101};
 102module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
 103MODULE_PARM_DESC(online_policy,
 104		"Set the online policy (\"contig-zones\", \"auto-movable\") "
 105		"Default: \"contig-zones\"");
 106
 107/*
 108 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
 109 *
 110 * The ratio represent an upper limit and the kernel might decide to not
 111 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
 112 * doesn't allow for more MOVABLE memory.
 113 */
 114static unsigned int auto_movable_ratio __read_mostly = 301;
 115module_param(auto_movable_ratio, uint, 0644);
 116MODULE_PARM_DESC(auto_movable_ratio,
 117		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
 118		"in percent for \"auto-movable\" online policy. Default: 301");
 119
 120/*
 121 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
 122 */
 123#ifdef CONFIG_NUMA
 124static bool auto_movable_numa_aware __read_mostly = true;
 125module_param(auto_movable_numa_aware, bool, 0644);
 126MODULE_PARM_DESC(auto_movable_numa_aware,
 127		"Consider numa node stats in addition to global stats in "
 128		"\"auto-movable\" online policy. Default: true");
 129#endif /* CONFIG_NUMA */
 130
 131/*
 132 * online_page_callback contains pointer to current page onlining function.
 133 * Initially it is generic_online_page(). If it is required it could be
 134 * changed by calling set_online_page_callback() for callback registration
 135 * and restore_online_page_callback() for generic callback restore.
 136 */
 137
 138static online_page_callback_t online_page_callback = generic_online_page;
 139static DEFINE_MUTEX(online_page_callback_lock);
 140
 141DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
 142
 143void get_online_mems(void)
 144{
 145	percpu_down_read(&mem_hotplug_lock);
 146}
 147
 148void put_online_mems(void)
 149{
 150	percpu_up_read(&mem_hotplug_lock);
 151}
 152
 153bool movable_node_enabled = false;
 154
 155#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
 156int mhp_default_online_type = MMOP_OFFLINE;
 157#else
 158int mhp_default_online_type = MMOP_ONLINE;
 159#endif
 160
 161static int __init setup_memhp_default_state(char *str)
 162{
 163	const int online_type = mhp_online_type_from_str(str);
 164
 165	if (online_type >= 0)
 166		mhp_default_online_type = online_type;
 167
 168	return 1;
 169}
 170__setup("memhp_default_state=", setup_memhp_default_state);
 171
 172void mem_hotplug_begin(void)
 173{
 174	cpus_read_lock();
 175	percpu_down_write(&mem_hotplug_lock);
 176}
 177
 178void mem_hotplug_done(void)
 179{
 180	percpu_up_write(&mem_hotplug_lock);
 181	cpus_read_unlock();
 182}
 183
 184u64 max_mem_size = U64_MAX;
 185
 186/* add this memory to iomem resource */
 187static struct resource *register_memory_resource(u64 start, u64 size,
 188						 const char *resource_name)
 189{
 190	struct resource *res;
 191	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 192
 193	if (strcmp(resource_name, "System RAM"))
 194		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
 195
 196	if (!mhp_range_allowed(start, size, true))
 197		return ERR_PTR(-E2BIG);
 198
 199	/*
 200	 * Make sure value parsed from 'mem=' only restricts memory adding
 201	 * while booting, so that memory hotplug won't be impacted. Please
 202	 * refer to document of 'mem=' in kernel-parameters.txt for more
 203	 * details.
 204	 */
 205	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
 206		return ERR_PTR(-E2BIG);
 207
 208	/*
 209	 * Request ownership of the new memory range.  This might be
 210	 * a child of an existing resource that was present but
 211	 * not marked as busy.
 212	 */
 213	res = __request_region(&iomem_resource, start, size,
 214			       resource_name, flags);
 215
 216	if (!res) {
 217		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
 218				start, start + size);
 219		return ERR_PTR(-EEXIST);
 220	}
 221	return res;
 222}
 223
 224static void release_memory_resource(struct resource *res)
 225{
 226	if (!res)
 227		return;
 228	release_resource(res);
 229	kfree(res);
 230}
 231
 232static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
 
 
 233{
 234	/*
 235	 * Disallow all operations smaller than a sub-section and only
 236	 * allow operations smaller than a section for
 237	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
 238	 * enforces a larger memory_block_size_bytes() granularity for
 239	 * memory that will be marked online, so this check should only
 240	 * fire for direct arch_{add,remove}_memory() users outside of
 241	 * add_memory_resource().
 242	 */
 243	unsigned long min_align;
 244
 245	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
 246		min_align = PAGES_PER_SUBSECTION;
 247	else
 248		min_align = PAGES_PER_SECTION;
 249	if (!IS_ALIGNED(pfn | nr_pages, min_align))
 
 
 
 250		return -EINVAL;
 
 251	return 0;
 252}
 253
 254/*
 255 * Return page for the valid pfn only if the page is online. All pfn
 256 * walkers which rely on the fully initialized page->flags and others
 257 * should use this rather than pfn_valid && pfn_to_page
 258 */
 259struct page *pfn_to_online_page(unsigned long pfn)
 260{
 261	unsigned long nr = pfn_to_section_nr(pfn);
 262	struct dev_pagemap *pgmap;
 263	struct mem_section *ms;
 264
 265	if (nr >= NR_MEM_SECTIONS)
 266		return NULL;
 267
 268	ms = __nr_to_section(nr);
 269	if (!online_section(ms))
 270		return NULL;
 271
 272	/*
 273	 * Save some code text when online_section() +
 274	 * pfn_section_valid() are sufficient.
 275	 */
 276	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
 277		return NULL;
 278
 279	if (!pfn_section_valid(ms, pfn))
 280		return NULL;
 281
 282	if (!online_device_section(ms))
 283		return pfn_to_page(pfn);
 284
 285	/*
 286	 * Slowpath: when ZONE_DEVICE collides with
 287	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
 288	 * the section may be 'offline' but 'valid'. Only
 289	 * get_dev_pagemap() can determine sub-section online status.
 290	 */
 291	pgmap = get_dev_pagemap(pfn, NULL);
 292	put_dev_pagemap(pgmap);
 293
 294	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
 295	if (pgmap)
 296		return NULL;
 297
 298	return pfn_to_page(pfn);
 299}
 300EXPORT_SYMBOL_GPL(pfn_to_online_page);
 301
 
 
 
 
 
 
 302int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
 303		struct mhp_params *params)
 304{
 305	const unsigned long end_pfn = pfn + nr_pages;
 306	unsigned long cur_nr_pages;
 307	int err;
 308	struct vmem_altmap *altmap = params->altmap;
 309
 310	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
 311		return -EINVAL;
 312
 313	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
 314
 315	if (altmap) {
 316		/*
 317		 * Validate altmap is within bounds of the total request
 318		 */
 319		if (altmap->base_pfn != pfn
 320				|| vmem_altmap_offset(altmap) > nr_pages) {
 321			pr_warn_once("memory add fail, invalid altmap\n");
 322			return -EINVAL;
 323		}
 324		altmap->alloc = 0;
 325	}
 326
 327	if (check_pfn_span(pfn, nr_pages)) {
 328		WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
 329		return -EINVAL;
 330	}
 331
 332	for (; pfn < end_pfn; pfn += cur_nr_pages) {
 333		/* Select all remaining pages up to the next section boundary */
 334		cur_nr_pages = min(end_pfn - pfn,
 335				   SECTION_ALIGN_UP(pfn + 1) - pfn);
 336		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
 337					 params->pgmap);
 338		if (err)
 339			break;
 340		cond_resched();
 341	}
 342	vmemmap_populate_print_last();
 343	return err;
 344}
 345
 346/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 347static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 348				     unsigned long start_pfn,
 349				     unsigned long end_pfn)
 350{
 351	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
 352		if (unlikely(!pfn_to_online_page(start_pfn)))
 353			continue;
 354
 355		if (unlikely(pfn_to_nid(start_pfn) != nid))
 356			continue;
 357
 358		if (zone != page_zone(pfn_to_page(start_pfn)))
 359			continue;
 360
 361		return start_pfn;
 362	}
 363
 364	return 0;
 365}
 366
 367/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 368static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 369				    unsigned long start_pfn,
 370				    unsigned long end_pfn)
 371{
 372	unsigned long pfn;
 373
 374	/* pfn is the end pfn of a memory section. */
 375	pfn = end_pfn - 1;
 376	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
 377		if (unlikely(!pfn_to_online_page(pfn)))
 378			continue;
 379
 380		if (unlikely(pfn_to_nid(pfn) != nid))
 381			continue;
 382
 383		if (zone != page_zone(pfn_to_page(pfn)))
 384			continue;
 385
 386		return pfn;
 387	}
 388
 389	return 0;
 390}
 391
 392static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 393			     unsigned long end_pfn)
 394{
 395	unsigned long pfn;
 396	int nid = zone_to_nid(zone);
 397
 398	if (zone->zone_start_pfn == start_pfn) {
 399		/*
 400		 * If the section is smallest section in the zone, it need
 401		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 402		 * In this case, we find second smallest valid mem_section
 403		 * for shrinking zone.
 404		 */
 405		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 406						zone_end_pfn(zone));
 407		if (pfn) {
 408			zone->spanned_pages = zone_end_pfn(zone) - pfn;
 409			zone->zone_start_pfn = pfn;
 410		} else {
 411			zone->zone_start_pfn = 0;
 412			zone->spanned_pages = 0;
 413		}
 414	} else if (zone_end_pfn(zone) == end_pfn) {
 415		/*
 416		 * If the section is biggest section in the zone, it need
 417		 * shrink zone->spanned_pages.
 418		 * In this case, we find second biggest valid mem_section for
 419		 * shrinking zone.
 420		 */
 421		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
 422					       start_pfn);
 423		if (pfn)
 424			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
 425		else {
 426			zone->zone_start_pfn = 0;
 427			zone->spanned_pages = 0;
 428		}
 429	}
 430}
 431
 432static void update_pgdat_span(struct pglist_data *pgdat)
 433{
 434	unsigned long node_start_pfn = 0, node_end_pfn = 0;
 435	struct zone *zone;
 436
 437	for (zone = pgdat->node_zones;
 438	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
 439		unsigned long end_pfn = zone_end_pfn(zone);
 440
 441		/* No need to lock the zones, they can't change. */
 442		if (!zone->spanned_pages)
 443			continue;
 444		if (!node_end_pfn) {
 445			node_start_pfn = zone->zone_start_pfn;
 446			node_end_pfn = end_pfn;
 447			continue;
 448		}
 449
 450		if (end_pfn > node_end_pfn)
 451			node_end_pfn = end_pfn;
 452		if (zone->zone_start_pfn < node_start_pfn)
 453			node_start_pfn = zone->zone_start_pfn;
 454	}
 455
 456	pgdat->node_start_pfn = node_start_pfn;
 457	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
 458}
 459
 460void __ref remove_pfn_range_from_zone(struct zone *zone,
 461				      unsigned long start_pfn,
 462				      unsigned long nr_pages)
 463{
 464	const unsigned long end_pfn = start_pfn + nr_pages;
 465	struct pglist_data *pgdat = zone->zone_pgdat;
 466	unsigned long pfn, cur_nr_pages;
 467
 468	/* Poison struct pages because they are now uninitialized again. */
 469	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
 470		cond_resched();
 471
 472		/* Select all remaining pages up to the next section boundary */
 473		cur_nr_pages =
 474			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
 475		page_init_poison(pfn_to_page(pfn),
 476				 sizeof(struct page) * cur_nr_pages);
 477	}
 478
 
 479	/*
 480	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
 481	 * we will not try to shrink the zones - which is okay as
 482	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
 483	 */
 484	if (zone_is_zone_device(zone))
 485		return;
 
 486
 487	clear_zone_contiguous(zone);
 488
 489	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 490	update_pgdat_span(pgdat);
 491
 492	set_zone_contiguous(zone);
 493}
 494
 495static void __remove_section(unsigned long pfn, unsigned long nr_pages,
 496			     unsigned long map_offset,
 497			     struct vmem_altmap *altmap)
 498{
 499	struct mem_section *ms = __pfn_to_section(pfn);
 500
 501	if (WARN_ON_ONCE(!valid_section(ms)))
 502		return;
 503
 504	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
 505}
 506
 507/**
 508 * __remove_pages() - remove sections of pages
 509 * @pfn: starting pageframe (must be aligned to start of a section)
 510 * @nr_pages: number of pages to remove (must be multiple of section size)
 511 * @altmap: alternative device page map or %NULL if default memmap is used
 512 *
 513 * Generic helper function to remove section mappings and sysfs entries
 514 * for the section of the memory we are removing. Caller needs to make
 515 * sure that pages are marked reserved and zones are adjust properly by
 516 * calling offline_pages().
 517 */
 518void __remove_pages(unsigned long pfn, unsigned long nr_pages,
 519		    struct vmem_altmap *altmap)
 520{
 521	const unsigned long end_pfn = pfn + nr_pages;
 522	unsigned long cur_nr_pages;
 523	unsigned long map_offset = 0;
 524
 525	map_offset = vmem_altmap_offset(altmap);
 526
 527	if (check_pfn_span(pfn, nr_pages)) {
 528		WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
 529		return;
 530	}
 531
 532	for (; pfn < end_pfn; pfn += cur_nr_pages) {
 533		cond_resched();
 534		/* Select all remaining pages up to the next section boundary */
 535		cur_nr_pages = min(end_pfn - pfn,
 536				   SECTION_ALIGN_UP(pfn + 1) - pfn);
 537		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
 538		map_offset = 0;
 539	}
 540}
 541
 542int set_online_page_callback(online_page_callback_t callback)
 543{
 544	int rc = -EINVAL;
 545
 546	get_online_mems();
 547	mutex_lock(&online_page_callback_lock);
 548
 549	if (online_page_callback == generic_online_page) {
 550		online_page_callback = callback;
 551		rc = 0;
 552	}
 553
 554	mutex_unlock(&online_page_callback_lock);
 555	put_online_mems();
 556
 557	return rc;
 558}
 559EXPORT_SYMBOL_GPL(set_online_page_callback);
 560
 561int restore_online_page_callback(online_page_callback_t callback)
 562{
 563	int rc = -EINVAL;
 564
 565	get_online_mems();
 566	mutex_lock(&online_page_callback_lock);
 567
 568	if (online_page_callback == callback) {
 569		online_page_callback = generic_online_page;
 570		rc = 0;
 571	}
 572
 573	mutex_unlock(&online_page_callback_lock);
 574	put_online_mems();
 575
 576	return rc;
 577}
 578EXPORT_SYMBOL_GPL(restore_online_page_callback);
 579
 580void generic_online_page(struct page *page, unsigned int order)
 581{
 582	/*
 583	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
 584	 * so we should map it first. This is better than introducing a special
 585	 * case in page freeing fast path.
 586	 */
 587	debug_pagealloc_map_pages(page, 1 << order);
 588	__free_pages_core(page, order);
 589	totalram_pages_add(1UL << order);
 
 
 
 
 590}
 591EXPORT_SYMBOL_GPL(generic_online_page);
 592
 593static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
 594{
 595	const unsigned long end_pfn = start_pfn + nr_pages;
 596	unsigned long pfn;
 597
 598	/*
 599	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
 600	 * decide to not expose all pages to the buddy (e.g., expose them
 601	 * later). We account all pages as being online and belonging to this
 602	 * zone ("present").
 603	 * When using memmap_on_memory, the range might not be aligned to
 604	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
 605	 * this and the first chunk to online will be pageblock_nr_pages.
 606	 */
 607	for (pfn = start_pfn; pfn < end_pfn;) {
 608		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
 609
 610		(*online_page_callback)(pfn_to_page(pfn), order);
 611		pfn += (1UL << order);
 612	}
 613
 614	/* mark all involved sections as online */
 615	online_mem_sections(start_pfn, end_pfn);
 616}
 617
 618/* check which state of node_states will be changed when online memory */
 619static void node_states_check_changes_online(unsigned long nr_pages,
 620	struct zone *zone, struct memory_notify *arg)
 621{
 622	int nid = zone_to_nid(zone);
 623
 624	arg->status_change_nid = NUMA_NO_NODE;
 625	arg->status_change_nid_normal = NUMA_NO_NODE;
 
 626
 627	if (!node_state(nid, N_MEMORY))
 628		arg->status_change_nid = nid;
 629	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 630		arg->status_change_nid_normal = nid;
 
 
 
 
 631}
 632
 633static void node_states_set_node(int node, struct memory_notify *arg)
 634{
 635	if (arg->status_change_nid_normal >= 0)
 636		node_set_state(node, N_NORMAL_MEMORY);
 637
 
 
 
 638	if (arg->status_change_nid >= 0)
 639		node_set_state(node, N_MEMORY);
 640}
 641
 642static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 643		unsigned long nr_pages)
 644{
 645	unsigned long old_end_pfn = zone_end_pfn(zone);
 646
 647	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 648		zone->zone_start_pfn = start_pfn;
 649
 650	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 651}
 652
 653static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 654                                     unsigned long nr_pages)
 655{
 656	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 657
 658	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 659		pgdat->node_start_pfn = start_pfn;
 660
 661	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 662
 663}
 664
 665#ifdef CONFIG_ZONE_DEVICE
 666static void section_taint_zone_device(unsigned long pfn)
 667{
 668	struct mem_section *ms = __pfn_to_section(pfn);
 669
 670	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
 671}
 672#else
 673static inline void section_taint_zone_device(unsigned long pfn)
 674{
 675}
 676#endif
 677
 678/*
 679 * Associate the pfn range with the given zone, initializing the memmaps
 680 * and resizing the pgdat/zone data to span the added pages. After this
 681 * call, all affected pages are PG_reserved.
 682 *
 683 * All aligned pageblocks are initialized to the specified migratetype
 684 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 685 * zone stats (e.g., nr_isolate_pageblock) are touched.
 686 */
 687void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 688				  unsigned long nr_pages,
 689				  struct vmem_altmap *altmap, int migratetype)
 690{
 691	struct pglist_data *pgdat = zone->zone_pgdat;
 692	int nid = pgdat->node_id;
 693
 694	clear_zone_contiguous(zone);
 695
 696	if (zone_is_empty(zone))
 697		init_currently_empty_zone(zone, start_pfn, nr_pages);
 698	resize_zone_range(zone, start_pfn, nr_pages);
 699	resize_pgdat_range(pgdat, start_pfn, nr_pages);
 700
 701	/*
 702	 * Subsection population requires care in pfn_to_online_page().
 703	 * Set the taint to enable the slow path detection of
 704	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
 705	 * section.
 706	 */
 707	if (zone_is_zone_device(zone)) {
 708		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
 709			section_taint_zone_device(start_pfn);
 710		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
 711			section_taint_zone_device(start_pfn + nr_pages);
 712	}
 713
 714	/*
 715	 * TODO now we have a visible range of pages which are not associated
 716	 * with their zone properly. Not nice but set_pfnblock_flags_mask
 717	 * expects the zone spans the pfn range. All the pages in the range
 718	 * are reserved so nobody should be touching them so we should be safe
 719	 */
 720	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
 721			 MEMINIT_HOTPLUG, altmap, migratetype);
 722
 723	set_zone_contiguous(zone);
 724}
 725
 726struct auto_movable_stats {
 727	unsigned long kernel_early_pages;
 728	unsigned long movable_pages;
 729};
 730
 731static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
 732					    struct zone *zone)
 733{
 734	if (zone_idx(zone) == ZONE_MOVABLE) {
 735		stats->movable_pages += zone->present_pages;
 736	} else {
 737		stats->kernel_early_pages += zone->present_early_pages;
 738#ifdef CONFIG_CMA
 739		/*
 740		 * CMA pages (never on hotplugged memory) behave like
 741		 * ZONE_MOVABLE.
 742		 */
 743		stats->movable_pages += zone->cma_pages;
 744		stats->kernel_early_pages -= zone->cma_pages;
 745#endif /* CONFIG_CMA */
 746	}
 747}
 748struct auto_movable_group_stats {
 749	unsigned long movable_pages;
 750	unsigned long req_kernel_early_pages;
 751};
 752
 753static int auto_movable_stats_account_group(struct memory_group *group,
 754					   void *arg)
 755{
 756	const int ratio = READ_ONCE(auto_movable_ratio);
 757	struct auto_movable_group_stats *stats = arg;
 758	long pages;
 759
 760	/*
 761	 * We don't support modifying the config while the auto-movable online
 762	 * policy is already enabled. Just avoid the division by zero below.
 763	 */
 764	if (!ratio)
 765		return 0;
 766
 767	/*
 768	 * Calculate how many early kernel pages this group requires to
 769	 * satisfy the configured zone ratio.
 770	 */
 771	pages = group->present_movable_pages * 100 / ratio;
 772	pages -= group->present_kernel_pages;
 773
 774	if (pages > 0)
 775		stats->req_kernel_early_pages += pages;
 776	stats->movable_pages += group->present_movable_pages;
 777	return 0;
 778}
 779
 780static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
 781					    unsigned long nr_pages)
 782{
 783	unsigned long kernel_early_pages, movable_pages;
 784	struct auto_movable_group_stats group_stats = {};
 785	struct auto_movable_stats stats = {};
 786	pg_data_t *pgdat = NODE_DATA(nid);
 787	struct zone *zone;
 788	int i;
 789
 790	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
 791	if (nid == NUMA_NO_NODE) {
 792		/* TODO: cache values */
 793		for_each_populated_zone(zone)
 794			auto_movable_stats_account_zone(&stats, zone);
 795	} else {
 796		for (i = 0; i < MAX_NR_ZONES; i++) {
 797			zone = pgdat->node_zones + i;
 798			if (populated_zone(zone))
 799				auto_movable_stats_account_zone(&stats, zone);
 800		}
 801	}
 802
 803	kernel_early_pages = stats.kernel_early_pages;
 804	movable_pages = stats.movable_pages;
 805
 806	/*
 807	 * Kernel memory inside dynamic memory group allows for more MOVABLE
 808	 * memory within the same group. Remove the effect of all but the
 809	 * current group from the stats.
 810	 */
 811	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
 812				   group, &group_stats);
 813	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
 814		return false;
 815	kernel_early_pages -= group_stats.req_kernel_early_pages;
 816	movable_pages -= group_stats.movable_pages;
 817
 818	if (group && group->is_dynamic)
 819		kernel_early_pages += group->present_kernel_pages;
 820
 821	/*
 822	 * Test if we could online the given number of pages to ZONE_MOVABLE
 823	 * and still stay in the configured ratio.
 824	 */
 825	movable_pages += nr_pages;
 826	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
 827}
 828
 829/*
 830 * Returns a default kernel memory zone for the given pfn range.
 831 * If no kernel zone covers this pfn range it will automatically go
 832 * to the ZONE_NORMAL.
 833 */
 834static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 835		unsigned long nr_pages)
 836{
 837	struct pglist_data *pgdat = NODE_DATA(nid);
 838	int zid;
 839
 840	for (zid = 0; zid < ZONE_NORMAL; zid++) {
 841		struct zone *zone = &pgdat->node_zones[zid];
 842
 843		if (zone_intersects(zone, start_pfn, nr_pages))
 844			return zone;
 845	}
 846
 847	return &pgdat->node_zones[ZONE_NORMAL];
 848}
 849
 850/*
 851 * Determine to which zone to online memory dynamically based on user
 852 * configuration and system stats. We care about the following ratio:
 853 *
 854 *   MOVABLE : KERNEL
 855 *
 856 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
 857 * one of the kernel zones. CMA pages inside one of the kernel zones really
 858 * behaves like ZONE_MOVABLE, so we treat them accordingly.
 859 *
 860 * We don't allow for hotplugged memory in a KERNEL zone to increase the
 861 * amount of MOVABLE memory we can have, so we end up with:
 862 *
 863 *   MOVABLE : KERNEL_EARLY
 864 *
 865 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
 866 * boot. We base our calculation on KERNEL_EARLY internally, because:
 867 *
 868 * a) Hotplugged memory in one of the kernel zones can sometimes still get
 869 *    hotunplugged, especially when hot(un)plugging individual memory blocks.
 870 *    There is no coordination across memory devices, therefore "automatic"
 871 *    hotunplugging, as implemented in hypervisors, could result in zone
 872 *    imbalances.
 873 * b) Early/boot memory in one of the kernel zones can usually not get
 874 *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
 875 *    with unmovable allocations). While there are corner cases where it might
 876 *    still work, it is barely relevant in practice.
 877 *
 878 * Exceptions are dynamic memory groups, which allow for more MOVABLE
 879 * memory within the same memory group -- because in that case, there is
 880 * coordination within the single memory device managed by a single driver.
 881 *
 882 * We rely on "present pages" instead of "managed pages", as the latter is
 883 * highly unreliable and dynamic in virtualized environments, and does not
 884 * consider boot time allocations. For example, memory ballooning adjusts the
 885 * managed pages when inflating/deflating the balloon, and balloon compaction
 886 * can even migrate inflated pages between zones.
 887 *
 888 * Using "present pages" is better but some things to keep in mind are:
 889 *
 890 * a) Some memblock allocations, such as for the crashkernel area, are
 891 *    effectively unused by the kernel, yet they account to "present pages".
 892 *    Fortunately, these allocations are comparatively small in relevant setups
 893 *    (e.g., fraction of system memory).
 894 * b) Some hotplugged memory blocks in virtualized environments, esecially
 895 *    hotplugged by virtio-mem, look like they are completely present, however,
 896 *    only parts of the memory block are actually currently usable.
 897 *    "present pages" is an upper limit that can get reached at runtime. As
 898 *    we base our calculations on KERNEL_EARLY, this is not an issue.
 899 */
 900static struct zone *auto_movable_zone_for_pfn(int nid,
 901					      struct memory_group *group,
 902					      unsigned long pfn,
 903					      unsigned long nr_pages)
 904{
 905	unsigned long online_pages = 0, max_pages, end_pfn;
 906	struct page *page;
 907
 908	if (!auto_movable_ratio)
 909		goto kernel_zone;
 910
 911	if (group && !group->is_dynamic) {
 912		max_pages = group->s.max_pages;
 913		online_pages = group->present_movable_pages;
 914
 915		/* If anything is !MOVABLE online the rest !MOVABLE. */
 916		if (group->present_kernel_pages)
 917			goto kernel_zone;
 918	} else if (!group || group->d.unit_pages == nr_pages) {
 919		max_pages = nr_pages;
 920	} else {
 921		max_pages = group->d.unit_pages;
 922		/*
 923		 * Take a look at all online sections in the current unit.
 924		 * We can safely assume that all pages within a section belong
 925		 * to the same zone, because dynamic memory groups only deal
 926		 * with hotplugged memory.
 927		 */
 928		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
 929		end_pfn = pfn + group->d.unit_pages;
 930		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 931			page = pfn_to_online_page(pfn);
 932			if (!page)
 933				continue;
 934			/* If anything is !MOVABLE online the rest !MOVABLE. */
 935			if (!is_zone_movable_page(page))
 936				goto kernel_zone;
 937			online_pages += PAGES_PER_SECTION;
 938		}
 939	}
 940
 941	/*
 942	 * Online MOVABLE if we could *currently* online all remaining parts
 943	 * MOVABLE. We expect to (add+) online them immediately next, so if
 944	 * nobody interferes, all will be MOVABLE if possible.
 945	 */
 946	nr_pages = max_pages - online_pages;
 947	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
 948		goto kernel_zone;
 949
 950#ifdef CONFIG_NUMA
 951	if (auto_movable_numa_aware &&
 952	    !auto_movable_can_online_movable(nid, group, nr_pages))
 953		goto kernel_zone;
 954#endif /* CONFIG_NUMA */
 955
 956	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 957kernel_zone:
 958	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
 959}
 960
 961static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 962		unsigned long nr_pages)
 963{
 964	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 965			nr_pages);
 966	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 967	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 968	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 969
 970	/*
 971	 * We inherit the existing zone in a simple case where zones do not
 972	 * overlap in the given range
 973	 */
 974	if (in_kernel ^ in_movable)
 975		return (in_kernel) ? kernel_zone : movable_zone;
 976
 977	/*
 978	 * If the range doesn't belong to any zone or two zones overlap in the
 979	 * given range then we use movable zone only if movable_node is
 980	 * enabled because we always online to a kernel zone by default.
 981	 */
 982	return movable_node_enabled ? movable_zone : kernel_zone;
 983}
 984
 985struct zone *zone_for_pfn_range(int online_type, int nid,
 986		struct memory_group *group, unsigned long start_pfn,
 987		unsigned long nr_pages)
 988{
 989	if (online_type == MMOP_ONLINE_KERNEL)
 990		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 991
 992	if (online_type == MMOP_ONLINE_MOVABLE)
 993		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 994
 995	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
 996		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
 997
 998	return default_zone_for_pfn(nid, start_pfn, nr_pages);
 999}
1000
1001/*
1002 * This function should only be called by memory_block_{online,offline},
1003 * and {online,offline}_pages.
1004 */
1005void adjust_present_page_count(struct page *page, struct memory_group *group,
1006			       long nr_pages)
1007{
1008	struct zone *zone = page_zone(page);
1009	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1010
1011	/*
1012	 * We only support onlining/offlining/adding/removing of complete
1013	 * memory blocks; therefore, either all is either early or hotplugged.
1014	 */
1015	if (early_section(__pfn_to_section(page_to_pfn(page))))
1016		zone->present_early_pages += nr_pages;
1017	zone->present_pages += nr_pages;
1018	zone->zone_pgdat->node_present_pages += nr_pages;
1019
1020	if (group && movable)
1021		group->present_movable_pages += nr_pages;
1022	else if (group && !movable)
1023		group->present_kernel_pages += nr_pages;
1024}
1025
1026int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1027			      struct zone *zone)
1028{
1029	unsigned long end_pfn = pfn + nr_pages;
1030	int ret, i;
1031
1032	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1033	if (ret)
1034		return ret;
1035
1036	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1037
1038	for (i = 0; i < nr_pages; i++)
1039		SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1040
1041	/*
1042	 * It might be that the vmemmap_pages fully span sections. If that is
1043	 * the case, mark those sections online here as otherwise they will be
1044	 * left offline.
1045	 */
1046	if (nr_pages >= PAGES_PER_SECTION)
1047	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1048
1049	return ret;
1050}
1051
1052void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1053{
1054	unsigned long end_pfn = pfn + nr_pages;
1055
1056	/*
1057	 * It might be that the vmemmap_pages fully span sections. If that is
1058	 * the case, mark those sections offline here as otherwise they will be
1059	 * left online.
1060	 */
1061	if (nr_pages >= PAGES_PER_SECTION)
1062		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1063
1064        /*
1065	 * The pages associated with this vmemmap have been offlined, so
1066	 * we can reset its state here.
1067	 */
1068	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1069	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1070}
1071
1072int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1073		       struct zone *zone, struct memory_group *group)
1074{
1075	unsigned long flags;
1076	int need_zonelists_rebuild = 0;
1077	const int nid = zone_to_nid(zone);
1078	int ret;
1079	struct memory_notify arg;
1080
1081	/*
1082	 * {on,off}lining is constrained to full memory sections (or more
1083	 * precisely to memory blocks from the user space POV).
1084	 * memmap_on_memory is an exception because it reserves initial part
1085	 * of the physical memory space for vmemmaps. That space is pageblock
1086	 * aligned.
1087	 */
1088	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
 
1089			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1090		return -EINVAL;
1091
1092	mem_hotplug_begin();
1093
1094	/* associate pfn range with the zone */
1095	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1096
1097	arg.start_pfn = pfn;
1098	arg.nr_pages = nr_pages;
1099	node_states_check_changes_online(nr_pages, zone, &arg);
1100
1101	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1102	ret = notifier_to_errno(ret);
1103	if (ret)
1104		goto failed_addition;
1105
1106	/*
1107	 * Fixup the number of isolated pageblocks before marking the sections
1108	 * onlining, such that undo_isolate_page_range() works correctly.
1109	 */
1110	spin_lock_irqsave(&zone->lock, flags);
1111	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1112	spin_unlock_irqrestore(&zone->lock, flags);
1113
1114	/*
1115	 * If this zone is not populated, then it is not in zonelist.
1116	 * This means the page allocator ignores this zone.
1117	 * So, zonelist must be updated after online.
1118	 */
1119	if (!populated_zone(zone)) {
1120		need_zonelists_rebuild = 1;
1121		setup_zone_pageset(zone);
1122	}
1123
1124	online_pages_range(pfn, nr_pages);
1125	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1126
1127	node_states_set_node(nid, &arg);
1128	if (need_zonelists_rebuild)
1129		build_all_zonelists(NULL);
1130
1131	/* Basic onlining is complete, allow allocation of onlined pages. */
1132	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1133
1134	/*
1135	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1136	 * the tail of the freelist when undoing isolation). Shuffle the whole
1137	 * zone to make sure the just onlined pages are properly distributed
1138	 * across the whole freelist - to create an initial shuffle.
1139	 */
1140	shuffle_zone(zone);
1141
1142	/* reinitialise watermarks and update pcp limits */
1143	init_per_zone_wmark_min();
1144
1145	kswapd_run(nid);
1146	kcompactd_run(nid);
1147
1148	writeback_set_ratelimit();
1149
1150	memory_notify(MEM_ONLINE, &arg);
1151	mem_hotplug_done();
1152	return 0;
1153
1154failed_addition:
1155	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1156		 (unsigned long long) pfn << PAGE_SHIFT,
1157		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1158	memory_notify(MEM_CANCEL_ONLINE, &arg);
1159	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1160	mem_hotplug_done();
1161	return ret;
1162}
 
1163
1164static void reset_node_present_pages(pg_data_t *pgdat)
1165{
1166	struct zone *z;
1167
1168	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1169		z->present_pages = 0;
1170
1171	pgdat->node_present_pages = 0;
1172}
1173
1174/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1175static pg_data_t __ref *hotadd_init_pgdat(int nid)
1176{
1177	struct pglist_data *pgdat;
1178
1179	/*
1180	 * NODE_DATA is preallocated (free_area_init) but its internal
1181	 * state is not allocated completely. Add missing pieces.
1182	 * Completely offline nodes stay around and they just need
1183	 * reintialization.
1184	 */
1185	pgdat = NODE_DATA(nid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186
1187	/* init node's zones as empty zones, we don't have any present pages.*/
1188	free_area_init_core_hotplug(pgdat);
1189
1190	/*
1191	 * The node we allocated has no zone fallback lists. For avoiding
1192	 * to access not-initialized zonelist, build here.
1193	 */
1194	build_all_zonelists(pgdat);
1195
1196	/*
1197	 * When memory is hot-added, all the memory is in offline state. So
1198	 * clear all zones' present_pages because they will be updated in
1199	 * online_pages() and offline_pages().
1200	 * TODO: should be in free_area_init_core_hotplug?
1201	 */
1202	reset_node_managed_pages(pgdat);
1203	reset_node_present_pages(pgdat);
1204
1205	return pgdat;
1206}
1207
 
 
 
 
 
 
 
 
 
 
1208/*
1209 * __try_online_node - online a node if offlined
1210 * @nid: the node ID
1211 * @set_node_online: Whether we want to online the node
1212 * called by cpu_up() to online a node without onlined memory.
1213 *
1214 * Returns:
1215 * 1 -> a new node has been allocated
1216 * 0 -> the node is already online
1217 * -ENOMEM -> the node could not be allocated
1218 */
1219static int __try_online_node(int nid, bool set_node_online)
1220{
1221	pg_data_t *pgdat;
1222	int ret = 1;
1223
1224	if (node_online(nid))
1225		return 0;
1226
1227	pgdat = hotadd_init_pgdat(nid);
1228	if (!pgdat) {
1229		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1230		ret = -ENOMEM;
1231		goto out;
1232	}
1233
1234	if (set_node_online) {
1235		node_set_online(nid);
1236		ret = register_one_node(nid);
1237		BUG_ON(ret);
1238	}
1239out:
1240	return ret;
1241}
1242
1243/*
1244 * Users of this function always want to online/register the node
1245 */
1246int try_online_node(int nid)
1247{
1248	int ret;
1249
1250	mem_hotplug_begin();
1251	ret =  __try_online_node(nid, true);
1252	mem_hotplug_done();
1253	return ret;
1254}
1255
1256static int check_hotplug_memory_range(u64 start, u64 size)
1257{
1258	/* memory range must be block size aligned */
1259	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1260	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1261		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1262		       memory_block_size_bytes(), start, size);
1263		return -EINVAL;
1264	}
1265
1266	return 0;
1267}
1268
1269static int online_memory_block(struct memory_block *mem, void *arg)
1270{
1271	mem->online_type = mhp_default_online_type;
1272	return device_online(&mem->dev);
1273}
1274
1275bool mhp_supports_memmap_on_memory(unsigned long size)
1276{
1277	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1278	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1279	unsigned long remaining_size = size - vmemmap_size;
1280
1281	/*
1282	 * Besides having arch support and the feature enabled at runtime, we
1283	 * need a few more assumptions to hold true:
1284	 *
1285	 * a) We span a single memory block: memory onlining/offlinin;g happens
1286	 *    in memory block granularity. We don't want the vmemmap of online
1287	 *    memory blocks to reside on offline memory blocks. In the future,
1288	 *    we might want to support variable-sized memory blocks to make the
1289	 *    feature more versatile.
1290	 *
1291	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1292	 *    to populate memory from the altmap for unrelated parts (i.e.,
1293	 *    other memory blocks)
1294	 *
1295	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1296	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1297	 *    code requires applicable ranges to be page-aligned, for example, to
1298	 *    set the migratetypes properly.
1299	 *
1300	 * TODO: Although we have a check here to make sure that vmemmap pages
1301	 *       fully populate a PMD, it is not the right place to check for
1302	 *       this. A much better solution involves improving vmemmap code
1303	 *       to fallback to base pages when trying to populate vmemmap using
1304	 *       altmap as an alternative source of memory, and we do not exactly
1305	 *       populate a single PMD.
1306	 */
1307	return mhp_memmap_on_memory() &&
 
 
1308	       size == memory_block_size_bytes() &&
1309	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1310	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1311}
1312
1313/*
1314 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1315 * and online/offline operations (triggered e.g. by sysfs).
1316 *
1317 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1318 */
1319int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1320{
1321	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1322	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1323	struct vmem_altmap mhp_altmap = {};
1324	struct memory_group *group = NULL;
1325	u64 start, size;
1326	bool new_node = false;
1327	int ret;
1328
1329	start = res->start;
1330	size = resource_size(res);
1331
1332	ret = check_hotplug_memory_range(start, size);
1333	if (ret)
1334		return ret;
1335
1336	if (mhp_flags & MHP_NID_IS_MGID) {
1337		group = memory_group_find_by_id(nid);
1338		if (!group)
1339			return -EINVAL;
1340		nid = group->nid;
1341	}
1342
1343	if (!node_possible(nid)) {
1344		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1345		return -EINVAL;
1346	}
1347
1348	mem_hotplug_begin();
1349
1350	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1351		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1352			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1353		ret = memblock_add_node(start, size, nid, memblock_flags);
1354		if (ret)
1355			goto error_mem_hotplug_end;
1356	}
1357
1358	ret = __try_online_node(nid, false);
1359	if (ret < 0)
1360		goto error;
1361	new_node = ret;
1362
1363	/*
1364	 * Self hosted memmap array
1365	 */
1366	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1367		if (!mhp_supports_memmap_on_memory(size)) {
1368			ret = -EINVAL;
1369			goto error;
1370		}
1371		mhp_altmap.free = PHYS_PFN(size);
1372		mhp_altmap.base_pfn = PHYS_PFN(start);
1373		params.altmap = &mhp_altmap;
1374	}
1375
1376	/* call arch's memory hotadd */
1377	ret = arch_add_memory(nid, start, size, &params);
1378	if (ret < 0)
1379		goto error;
1380
1381	/* create memory block devices after memory was added */
1382	ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1383					  group);
1384	if (ret) {
1385		arch_remove_memory(start, size, NULL);
1386		goto error;
1387	}
1388
1389	if (new_node) {
1390		/* If sysfs file of new node can't be created, cpu on the node
1391		 * can't be hot-added. There is no rollback way now.
1392		 * So, check by BUG_ON() to catch it reluctantly..
1393		 * We online node here. We can't roll back from here.
1394		 */
1395		node_set_online(nid);
1396		ret = __register_one_node(nid);
1397		BUG_ON(ret);
1398	}
1399
1400	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1401					  PFN_UP(start + size - 1),
1402					  MEMINIT_HOTPLUG);
1403
1404	/* create new memmap entry */
1405	if (!strcmp(res->name, "System RAM"))
1406		firmware_map_add_hotplug(start, start + size, "System RAM");
1407
1408	/* device_online() will take the lock when calling online_pages() */
1409	mem_hotplug_done();
1410
1411	/*
1412	 * In case we're allowed to merge the resource, flag it and trigger
1413	 * merging now that adding succeeded.
1414	 */
1415	if (mhp_flags & MHP_MERGE_RESOURCE)
1416		merge_system_ram_resource(res);
1417
1418	/* online pages if requested */
1419	if (mhp_default_online_type != MMOP_OFFLINE)
1420		walk_memory_blocks(start, size, NULL, online_memory_block);
1421
1422	return ret;
1423error:
 
 
 
1424	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1425		memblock_remove(start, size);
1426error_mem_hotplug_end:
1427	mem_hotplug_done();
1428	return ret;
1429}
1430
1431/* requires device_hotplug_lock, see add_memory_resource() */
1432int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1433{
1434	struct resource *res;
1435	int ret;
1436
1437	res = register_memory_resource(start, size, "System RAM");
1438	if (IS_ERR(res))
1439		return PTR_ERR(res);
1440
1441	ret = add_memory_resource(nid, res, mhp_flags);
1442	if (ret < 0)
1443		release_memory_resource(res);
1444	return ret;
1445}
1446
1447int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1448{
1449	int rc;
1450
1451	lock_device_hotplug();
1452	rc = __add_memory(nid, start, size, mhp_flags);
1453	unlock_device_hotplug();
1454
1455	return rc;
1456}
1457EXPORT_SYMBOL_GPL(add_memory);
1458
1459/*
1460 * Add special, driver-managed memory to the system as system RAM. Such
1461 * memory is not exposed via the raw firmware-provided memmap as system
1462 * RAM, instead, it is detected and added by a driver - during cold boot,
1463 * after a reboot, and after kexec.
1464 *
1465 * Reasons why this memory should not be used for the initial memmap of a
1466 * kexec kernel or for placing kexec images:
1467 * - The booting kernel is in charge of determining how this memory will be
1468 *   used (e.g., use persistent memory as system RAM)
1469 * - Coordination with a hypervisor is required before this memory
1470 *   can be used (e.g., inaccessible parts).
1471 *
1472 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1473 * memory map") are created. Also, the created memory resource is flagged
1474 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1475 * this memory as well (esp., not place kexec images onto it).
1476 *
1477 * The resource_name (visible via /proc/iomem) has to have the format
1478 * "System RAM ($DRIVER)".
1479 */
1480int add_memory_driver_managed(int nid, u64 start, u64 size,
1481			      const char *resource_name, mhp_t mhp_flags)
1482{
1483	struct resource *res;
1484	int rc;
1485
1486	if (!resource_name ||
1487	    strstr(resource_name, "System RAM (") != resource_name ||
1488	    resource_name[strlen(resource_name) - 1] != ')')
1489		return -EINVAL;
1490
1491	lock_device_hotplug();
1492
1493	res = register_memory_resource(start, size, resource_name);
1494	if (IS_ERR(res)) {
1495		rc = PTR_ERR(res);
1496		goto out_unlock;
1497	}
1498
1499	rc = add_memory_resource(nid, res, mhp_flags);
1500	if (rc < 0)
1501		release_memory_resource(res);
1502
1503out_unlock:
1504	unlock_device_hotplug();
1505	return rc;
1506}
1507EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1508
1509/*
1510 * Platforms should define arch_get_mappable_range() that provides
1511 * maximum possible addressable physical memory range for which the
1512 * linear mapping could be created. The platform returned address
1513 * range must adhere to these following semantics.
1514 *
1515 * - range.start <= range.end
1516 * - Range includes both end points [range.start..range.end]
1517 *
1518 * There is also a fallback definition provided here, allowing the
1519 * entire possible physical address range in case any platform does
1520 * not define arch_get_mappable_range().
1521 */
1522struct range __weak arch_get_mappable_range(void)
1523{
1524	struct range mhp_range = {
1525		.start = 0UL,
1526		.end = -1ULL,
1527	};
1528	return mhp_range;
1529}
1530
1531struct range mhp_get_pluggable_range(bool need_mapping)
1532{
1533	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1534	struct range mhp_range;
1535
1536	if (need_mapping) {
1537		mhp_range = arch_get_mappable_range();
1538		if (mhp_range.start > max_phys) {
1539			mhp_range.start = 0;
1540			mhp_range.end = 0;
1541		}
1542		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1543	} else {
1544		mhp_range.start = 0;
1545		mhp_range.end = max_phys;
1546	}
1547	return mhp_range;
1548}
1549EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1550
1551bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1552{
1553	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1554	u64 end = start + size;
1555
1556	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1557		return true;
1558
1559	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1560		start, end, mhp_range.start, mhp_range.end);
1561	return false;
1562}
1563
1564#ifdef CONFIG_MEMORY_HOTREMOVE
1565/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1566 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1567 * non-lru movable pages and hugepages). Will skip over most unmovable
1568 * pages (esp., pages that can be skipped when offlining), but bail out on
1569 * definitely unmovable pages.
1570 *
1571 * Returns:
1572 *	0 in case a movable page is found and movable_pfn was updated.
1573 *	-ENOENT in case no movable page was found.
1574 *	-EBUSY in case a definitely unmovable page was found.
1575 */
1576static int scan_movable_pages(unsigned long start, unsigned long end,
1577			      unsigned long *movable_pfn)
1578{
1579	unsigned long pfn;
1580
1581	for (pfn = start; pfn < end; pfn++) {
1582		struct page *page, *head;
1583		unsigned long skip;
1584
1585		if (!pfn_valid(pfn))
1586			continue;
1587		page = pfn_to_page(pfn);
1588		if (PageLRU(page))
1589			goto found;
1590		if (__PageMovable(page))
1591			goto found;
1592
1593		/*
1594		 * PageOffline() pages that are not marked __PageMovable() and
1595		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1596		 * definitely unmovable. If their reference count would be 0,
1597		 * they could at least be skipped when offlining memory.
1598		 */
1599		if (PageOffline(page) && page_count(page))
1600			return -EBUSY;
1601
1602		if (!PageHuge(page))
1603			continue;
1604		head = compound_head(page);
1605		/*
1606		 * This test is racy as we hold no reference or lock.  The
1607		 * hugetlb page could have been free'ed and head is no longer
1608		 * a hugetlb page before the following check.  In such unlikely
1609		 * cases false positives and negatives are possible.  Calling
1610		 * code must deal with these scenarios.
1611		 */
1612		if (HPageMigratable(head))
1613			goto found;
1614		skip = compound_nr(head) - (page - head);
1615		pfn += skip - 1;
1616	}
1617	return -ENOENT;
1618found:
1619	*movable_pfn = pfn;
1620	return 0;
1621}
1622
1623static int
1624do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1625{
1626	unsigned long pfn;
1627	struct page *page, *head;
1628	int ret = 0;
1629	LIST_HEAD(source);
1630	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1631				      DEFAULT_RATELIMIT_BURST);
1632
1633	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1634		struct folio *folio;
1635
1636		if (!pfn_valid(pfn))
1637			continue;
1638		page = pfn_to_page(pfn);
1639		folio = page_folio(page);
1640		head = &folio->page;
1641
1642		if (PageHuge(page)) {
1643			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1644			isolate_hugetlb(head, &source);
1645			continue;
1646		} else if (PageTransHuge(page))
1647			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1648
1649		/*
1650		 * HWPoison pages have elevated reference counts so the migration would
1651		 * fail on them. It also doesn't make any sense to migrate them in the
1652		 * first place. Still try to unmap such a page in case it is still mapped
1653		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1654		 * the unmap as the catch all safety net).
1655		 */
1656		if (PageHWPoison(page)) {
1657			if (WARN_ON(folio_test_lru(folio)))
1658				folio_isolate_lru(folio);
1659			if (folio_mapped(folio))
1660				try_to_unmap(folio, TTU_IGNORE_MLOCK);
1661			continue;
1662		}
1663
1664		if (!get_page_unless_zero(page))
1665			continue;
1666		/*
1667		 * We can skip free pages. And we can deal with pages on
1668		 * LRU and non-lru movable pages.
1669		 */
1670		if (PageLRU(page))
1671			ret = isolate_lru_page(page);
1672		else
1673			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1674		if (!ret) { /* Success */
1675			list_add_tail(&page->lru, &source);
1676			if (!__PageMovable(page))
1677				inc_node_page_state(page, NR_ISOLATED_ANON +
1678						    page_is_file_lru(page));
1679
1680		} else {
1681			if (__ratelimit(&migrate_rs)) {
1682				pr_warn("failed to isolate pfn %lx\n", pfn);
1683				dump_page(page, "isolation failed");
1684			}
1685		}
1686		put_page(page);
1687	}
1688	if (!list_empty(&source)) {
1689		nodemask_t nmask = node_states[N_MEMORY];
1690		struct migration_target_control mtc = {
1691			.nmask = &nmask,
1692			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1693		};
1694
1695		/*
1696		 * We have checked that migration range is on a single zone so
1697		 * we can use the nid of the first page to all the others.
1698		 */
1699		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1700
1701		/*
1702		 * try to allocate from a different node but reuse this node
1703		 * if there are no other online nodes to be used (e.g. we are
1704		 * offlining a part of the only existing node)
1705		 */
1706		node_clear(mtc.nid, nmask);
1707		if (nodes_empty(nmask))
1708			node_set(mtc.nid, nmask);
1709		ret = migrate_pages(&source, alloc_migration_target, NULL,
1710			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1711		if (ret) {
1712			list_for_each_entry(page, &source, lru) {
1713				if (__ratelimit(&migrate_rs)) {
1714					pr_warn("migrating pfn %lx failed ret:%d\n",
1715						page_to_pfn(page), ret);
1716					dump_page(page, "migration failure");
1717				}
1718			}
1719			putback_movable_pages(&source);
1720		}
1721	}
1722
1723	return ret;
1724}
1725
1726static int __init cmdline_parse_movable_node(char *p)
1727{
1728	movable_node_enabled = true;
1729	return 0;
1730}
1731early_param("movable_node", cmdline_parse_movable_node);
1732
1733/* check which state of node_states will be changed when offline memory */
1734static void node_states_check_changes_offline(unsigned long nr_pages,
1735		struct zone *zone, struct memory_notify *arg)
1736{
1737	struct pglist_data *pgdat = zone->zone_pgdat;
1738	unsigned long present_pages = 0;
1739	enum zone_type zt;
1740
1741	arg->status_change_nid = NUMA_NO_NODE;
1742	arg->status_change_nid_normal = NUMA_NO_NODE;
 
1743
1744	/*
1745	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1746	 * If the memory to be offline is within the range
1747	 * [0..ZONE_NORMAL], and it is the last present memory there,
1748	 * the zones in that range will become empty after the offlining,
1749	 * thus we can determine that we need to clear the node from
1750	 * node_states[N_NORMAL_MEMORY].
1751	 */
1752	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1753		present_pages += pgdat->node_zones[zt].present_pages;
1754	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1755		arg->status_change_nid_normal = zone_to_nid(zone);
1756
 
1757	/*
1758	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1759	 * does not apply as we don't support 32bit.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760	 * Here we count the possible pages from ZONE_MOVABLE.
1761	 * If after having accounted all the pages, we see that the nr_pages
1762	 * to be offlined is over or equal to the accounted pages,
1763	 * we know that the node will become empty, and so, we can clear
1764	 * it for N_MEMORY as well.
1765	 */
1766	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1767
1768	if (nr_pages >= present_pages)
1769		arg->status_change_nid = zone_to_nid(zone);
1770}
1771
1772static void node_states_clear_node(int node, struct memory_notify *arg)
1773{
1774	if (arg->status_change_nid_normal >= 0)
1775		node_clear_state(node, N_NORMAL_MEMORY);
1776
 
 
 
1777	if (arg->status_change_nid >= 0)
1778		node_clear_state(node, N_MEMORY);
1779}
1780
1781static int count_system_ram_pages_cb(unsigned long start_pfn,
1782				     unsigned long nr_pages, void *data)
1783{
1784	unsigned long *nr_system_ram_pages = data;
1785
1786	*nr_system_ram_pages += nr_pages;
1787	return 0;
1788}
1789
1790int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1791			struct zone *zone, struct memory_group *group)
1792{
1793	const unsigned long end_pfn = start_pfn + nr_pages;
1794	unsigned long pfn, system_ram_pages = 0;
1795	const int node = zone_to_nid(zone);
1796	unsigned long flags;
 
1797	struct memory_notify arg;
 
1798	char *reason;
1799	int ret;
1800
1801	/*
1802	 * {on,off}lining is constrained to full memory sections (or more
1803	 * precisely to memory blocks from the user space POV).
1804	 * memmap_on_memory is an exception because it reserves initial part
1805	 * of the physical memory space for vmemmaps. That space is pageblock
1806	 * aligned.
1807	 */
1808	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
 
1809			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1810		return -EINVAL;
1811
1812	mem_hotplug_begin();
1813
1814	/*
1815	 * Don't allow to offline memory blocks that contain holes.
1816	 * Consequently, memory blocks with holes can never get onlined
1817	 * via the hotplug path - online_pages() - as hotplugged memory has
1818	 * no holes. This way, we e.g., don't have to worry about marking
1819	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1820	 * avoid using walk_system_ram_range() later.
1821	 */
1822	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1823			      count_system_ram_pages_cb);
1824	if (system_ram_pages != nr_pages) {
1825		ret = -EINVAL;
1826		reason = "memory holes";
1827		goto failed_removal;
1828	}
1829
1830	/*
1831	 * We only support offlining of memory blocks managed by a single zone,
1832	 * checked by calling code. This is just a sanity check that we might
1833	 * want to remove in the future.
1834	 */
1835	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1836			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1837		ret = -EINVAL;
1838		reason = "multizone range";
1839		goto failed_removal;
1840	}
 
1841
1842	/*
1843	 * Disable pcplists so that page isolation cannot race with freeing
1844	 * in a way that pages from isolated pageblock are left on pcplists.
1845	 */
1846	zone_pcp_disable(zone);
1847	lru_cache_disable();
1848
1849	/* set above range as isolated */
1850	ret = start_isolate_page_range(start_pfn, end_pfn,
1851				       MIGRATE_MOVABLE,
1852				       MEMORY_OFFLINE | REPORT_FAILURE,
1853				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1854	if (ret) {
1855		reason = "failure to isolate range";
1856		goto failed_removal_pcplists_disabled;
1857	}
1858
1859	arg.start_pfn = start_pfn;
1860	arg.nr_pages = nr_pages;
1861	node_states_check_changes_offline(nr_pages, zone, &arg);
1862
1863	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1864	ret = notifier_to_errno(ret);
1865	if (ret) {
1866		reason = "notifier failure";
1867		goto failed_removal_isolated;
1868	}
1869
1870	do {
1871		pfn = start_pfn;
1872		do {
1873			if (signal_pending(current)) {
1874				ret = -EINTR;
1875				reason = "signal backoff";
1876				goto failed_removal_isolated;
1877			}
1878
1879			cond_resched();
1880
1881			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1882			if (!ret) {
1883				/*
1884				 * TODO: fatal migration failures should bail
1885				 * out
1886				 */
1887				do_migrate_range(pfn, end_pfn);
1888			}
1889		} while (!ret);
1890
1891		if (ret != -ENOENT) {
1892			reason = "unmovable page";
1893			goto failed_removal_isolated;
1894		}
1895
1896		/*
1897		 * Dissolve free hugepages in the memory block before doing
1898		 * offlining actually in order to make hugetlbfs's object
1899		 * counting consistent.
1900		 */
1901		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1902		if (ret) {
1903			reason = "failure to dissolve huge pages";
1904			goto failed_removal_isolated;
1905		}
1906
1907		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1908
1909	} while (ret);
1910
1911	/* Mark all sections offline and remove free pages from the buddy. */
1912	__offline_isolated_pages(start_pfn, end_pfn);
1913	pr_debug("Offlined Pages %ld\n", nr_pages);
1914
1915	/*
1916	 * The memory sections are marked offline, and the pageblock flags
1917	 * effectively stale; nobody should be touching them. Fixup the number
1918	 * of isolated pageblocks, memory onlining will properly revert this.
1919	 */
1920	spin_lock_irqsave(&zone->lock, flags);
1921	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1922	spin_unlock_irqrestore(&zone->lock, flags);
1923
1924	lru_cache_enable();
1925	zone_pcp_enable(zone);
1926
1927	/* removal success */
1928	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1929	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1930
1931	/* reinitialise watermarks and update pcp limits */
1932	init_per_zone_wmark_min();
1933
1934	if (!populated_zone(zone)) {
1935		zone_pcp_reset(zone);
1936		build_all_zonelists(NULL);
1937	}
1938
1939	node_states_clear_node(node, &arg);
1940	if (arg.status_change_nid >= 0) {
 
1941		kcompactd_stop(node);
1942		kswapd_stop(node);
1943	}
1944
1945	writeback_set_ratelimit();
1946
1947	memory_notify(MEM_OFFLINE, &arg);
1948	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1949	mem_hotplug_done();
1950	return 0;
1951
1952failed_removal_isolated:
1953	/* pushback to free area */
1954	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1955	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1956failed_removal_pcplists_disabled:
1957	lru_cache_enable();
1958	zone_pcp_enable(zone);
1959failed_removal:
1960	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1961		 (unsigned long long) start_pfn << PAGE_SHIFT,
1962		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1963		 reason);
 
1964	mem_hotplug_done();
1965	return ret;
1966}
1967
1968static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1969{
1970	int *nid = arg;
1971
1972	*nid = mem->nid;
1973	if (unlikely(mem->state != MEM_OFFLINE)) {
1974		phys_addr_t beginpa, endpa;
1975
1976		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1977		endpa = beginpa + memory_block_size_bytes() - 1;
1978		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1979			&beginpa, &endpa);
1980
1981		return -EBUSY;
1982	}
1983	return 0;
1984}
1985
1986static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1987{
1988	/*
1989	 * If not set, continue with the next block.
1990	 */
1991	return mem->nr_vmemmap_pages;
1992}
1993
1994static int check_cpu_on_node(int nid)
1995{
1996	int cpu;
1997
1998	for_each_present_cpu(cpu) {
1999		if (cpu_to_node(cpu) == nid)
2000			/*
2001			 * the cpu on this node isn't removed, and we can't
2002			 * offline this node.
2003			 */
2004			return -EBUSY;
2005	}
2006
2007	return 0;
2008}
2009
2010static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2011{
2012	int nid = *(int *)arg;
2013
2014	/*
2015	 * If a memory block belongs to multiple nodes, the stored nid is not
2016	 * reliable. However, such blocks are always online (e.g., cannot get
2017	 * offlined) and, therefore, are still spanned by the node.
2018	 */
2019	return mem->nid == nid ? -EEXIST : 0;
2020}
2021
2022/**
2023 * try_offline_node
2024 * @nid: the node ID
2025 *
2026 * Offline a node if all memory sections and cpus of the node are removed.
2027 *
2028 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2029 * and online/offline operations before this call.
2030 */
2031void try_offline_node(int nid)
2032{
 
2033	int rc;
2034
2035	/*
2036	 * If the node still spans pages (especially ZONE_DEVICE), don't
2037	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2038	 * e.g., after the memory block was onlined.
2039	 */
2040	if (node_spanned_pages(nid))
2041		return;
2042
2043	/*
2044	 * Especially offline memory blocks might not be spanned by the
2045	 * node. They will get spanned by the node once they get onlined.
2046	 * However, they link to the node in sysfs and can get onlined later.
2047	 */
2048	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2049	if (rc)
2050		return;
2051
2052	if (check_cpu_on_node(nid))
2053		return;
2054
2055	/*
2056	 * all memory/cpu of this node are removed, we can offline this
2057	 * node now.
2058	 */
2059	node_set_offline(nid);
2060	unregister_one_node(nid);
2061}
2062EXPORT_SYMBOL(try_offline_node);
2063
2064static int __ref try_remove_memory(u64 start, u64 size)
2065{
 
2066	struct vmem_altmap mhp_altmap = {};
2067	struct vmem_altmap *altmap = NULL;
2068	unsigned long nr_vmemmap_pages;
2069	int rc = 0, nid = NUMA_NO_NODE;
2070
2071	BUG_ON(check_hotplug_memory_range(start, size));
2072
2073	/*
2074	 * All memory blocks must be offlined before removing memory.  Check
2075	 * whether all memory blocks in question are offline and return error
2076	 * if this is not the case.
2077	 *
2078	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2079	 * we'd only try to offline the last determined one -- which is good
2080	 * enough for the cases we care about.
2081	 */
2082	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2083	if (rc)
2084		return rc;
2085
2086	/*
2087	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2088	 * the same granularity it was added - a single memory block.
2089	 */
2090	if (mhp_memmap_on_memory()) {
2091		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2092						      get_nr_vmemmap_pages_cb);
2093		if (nr_vmemmap_pages) {
2094			if (size != memory_block_size_bytes()) {
2095				pr_warn("Refuse to remove %#llx - %#llx,"
2096					"wrong granularity\n",
2097					start, start + size);
2098				return -EINVAL;
2099			}
2100
2101			/*
2102			 * Let remove_pmd_table->free_hugepage_table do the
2103			 * right thing if we used vmem_altmap when hot-adding
2104			 * the range.
2105			 */
2106			mhp_altmap.alloc = nr_vmemmap_pages;
2107			altmap = &mhp_altmap;
2108		}
2109	}
2110
2111	/* remove memmap entry */
2112	firmware_map_remove(start, start + size, "System RAM");
2113
2114	/*
2115	 * Memory block device removal under the device_hotplug_lock is
2116	 * a barrier against racing online attempts.
2117	 */
2118	remove_memory_block_devices(start, size);
2119
2120	mem_hotplug_begin();
2121
2122	arch_remove_memory(start, size, altmap);
2123
2124	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2125		memblock_phys_free(start, size);
2126		memblock_remove(start, size);
2127	}
2128
2129	release_mem_region_adjustable(start, size);
2130
2131	if (nid != NUMA_NO_NODE)
2132		try_offline_node(nid);
2133
2134	mem_hotplug_done();
2135	return 0;
2136}
2137
2138/**
2139 * __remove_memory - Remove memory if every memory block is offline
 
2140 * @start: physical address of the region to remove
2141 * @size: size of the region to remove
2142 *
2143 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2144 * and online/offline operations before this call, as required by
2145 * try_offline_node().
2146 */
2147void __remove_memory(u64 start, u64 size)
2148{
2149
2150	/*
2151	 * trigger BUG() if some memory is not offlined prior to calling this
2152	 * function
2153	 */
2154	if (try_remove_memory(start, size))
2155		BUG();
2156}
2157
2158/*
2159 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2160 * some memory is not offline
2161 */
2162int remove_memory(u64 start, u64 size)
2163{
2164	int rc;
2165
2166	lock_device_hotplug();
2167	rc = try_remove_memory(start, size);
2168	unlock_device_hotplug();
2169
2170	return rc;
2171}
2172EXPORT_SYMBOL_GPL(remove_memory);
2173
2174static int try_offline_memory_block(struct memory_block *mem, void *arg)
2175{
2176	uint8_t online_type = MMOP_ONLINE_KERNEL;
2177	uint8_t **online_types = arg;
2178	struct page *page;
2179	int rc;
2180
2181	/*
2182	 * Sense the online_type via the zone of the memory block. Offlining
2183	 * with multiple zones within one memory block will be rejected
2184	 * by offlining code ... so we don't care about that.
2185	 */
2186	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2187	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2188		online_type = MMOP_ONLINE_MOVABLE;
2189
2190	rc = device_offline(&mem->dev);
2191	/*
2192	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2193	 * so try_reonline_memory_block() can do the right thing.
2194	 */
2195	if (!rc)
2196		**online_types = online_type;
2197
2198	(*online_types)++;
2199	/* Ignore if already offline. */
2200	return rc < 0 ? rc : 0;
2201}
2202
2203static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2204{
2205	uint8_t **online_types = arg;
2206	int rc;
2207
2208	if (**online_types != MMOP_OFFLINE) {
2209		mem->online_type = **online_types;
2210		rc = device_online(&mem->dev);
2211		if (rc < 0)
2212			pr_warn("%s: Failed to re-online memory: %d",
2213				__func__, rc);
2214	}
2215
2216	/* Continue processing all remaining memory blocks. */
2217	(*online_types)++;
2218	return 0;
2219}
2220
2221/*
2222 * Try to offline and remove memory. Might take a long time to finish in case
2223 * memory is still in use. Primarily useful for memory devices that logically
2224 * unplugged all memory (so it's no longer in use) and want to offline + remove
2225 * that memory.
2226 */
2227int offline_and_remove_memory(u64 start, u64 size)
2228{
2229	const unsigned long mb_count = size / memory_block_size_bytes();
2230	uint8_t *online_types, *tmp;
2231	int rc;
2232
2233	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2234	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2235		return -EINVAL;
2236
2237	/*
2238	 * We'll remember the old online type of each memory block, so we can
2239	 * try to revert whatever we did when offlining one memory block fails
2240	 * after offlining some others succeeded.
2241	 */
2242	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2243				     GFP_KERNEL);
2244	if (!online_types)
2245		return -ENOMEM;
2246	/*
2247	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2248	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2249	 * try_reonline_memory_block().
2250	 */
2251	memset(online_types, MMOP_OFFLINE, mb_count);
2252
2253	lock_device_hotplug();
2254
2255	tmp = online_types;
2256	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2257
2258	/*
2259	 * In case we succeeded to offline all memory, remove it.
2260	 * This cannot fail as it cannot get onlined in the meantime.
2261	 */
2262	if (!rc) {
2263		rc = try_remove_memory(start, size);
2264		if (rc)
2265			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2266	}
2267
2268	/*
2269	 * Rollback what we did. While memory onlining might theoretically fail
2270	 * (nacked by a notifier), it barely ever happens.
2271	 */
2272	if (rc) {
2273		tmp = online_types;
2274		walk_memory_blocks(start, size, &tmp,
2275				   try_reonline_memory_block);
2276	}
2277	unlock_device_hotplug();
2278
2279	kfree(online_types);
2280	return rc;
2281}
2282EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2283#endif /* CONFIG_MEMORY_HOTREMOVE */