Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/pagevec.h>
17#include <linux/writeback.h>
18#include <linux/slab.h>
19#include <linux/sysctl.h>
20#include <linux/cpu.h>
21#include <linux/memory.h>
22#include <linux/memremap.h>
23#include <linux/memory_hotplug.h>
24#include <linux/highmem.h>
25#include <linux/vmalloc.h>
26#include <linux/ioport.h>
27#include <linux/delay.h>
28#include <linux/migrate.h>
29#include <linux/page-isolation.h>
30#include <linux/pfn.h>
31#include <linux/suspend.h>
32#include <linux/mm_inline.h>
33#include <linux/firmware-map.h>
34#include <linux/stop_machine.h>
35#include <linux/hugetlb.h>
36#include <linux/memblock.h>
37#include <linux/compaction.h>
38#include <linux/rmap.h>
39
40#include <asm/tlbflush.h>
41
42#include "internal.h"
43#include "shuffle.h"
44
45
46/*
47 * memory_hotplug.memmap_on_memory parameter
48 */
49static bool memmap_on_memory __ro_after_init;
50#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51module_param(memmap_on_memory, bool, 0444);
52MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53#endif
54
55/*
56 * online_page_callback contains pointer to current page onlining function.
57 * Initially it is generic_online_page(). If it is required it could be
58 * changed by calling set_online_page_callback() for callback registration
59 * and restore_online_page_callback() for generic callback restore.
60 */
61
62static online_page_callback_t online_page_callback = generic_online_page;
63static DEFINE_MUTEX(online_page_callback_lock);
64
65DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
66
67void get_online_mems(void)
68{
69 percpu_down_read(&mem_hotplug_lock);
70}
71
72void put_online_mems(void)
73{
74 percpu_up_read(&mem_hotplug_lock);
75}
76
77bool movable_node_enabled = false;
78
79#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
80int mhp_default_online_type = MMOP_OFFLINE;
81#else
82int mhp_default_online_type = MMOP_ONLINE;
83#endif
84
85static int __init setup_memhp_default_state(char *str)
86{
87 const int online_type = mhp_online_type_from_str(str);
88
89 if (online_type >= 0)
90 mhp_default_online_type = online_type;
91
92 return 1;
93}
94__setup("memhp_default_state=", setup_memhp_default_state);
95
96void mem_hotplug_begin(void)
97{
98 cpus_read_lock();
99 percpu_down_write(&mem_hotplug_lock);
100}
101
102void mem_hotplug_done(void)
103{
104 percpu_up_write(&mem_hotplug_lock);
105 cpus_read_unlock();
106}
107
108u64 max_mem_size = U64_MAX;
109
110/* add this memory to iomem resource */
111static struct resource *register_memory_resource(u64 start, u64 size,
112 const char *resource_name)
113{
114 struct resource *res;
115 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
116
117 if (strcmp(resource_name, "System RAM"))
118 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
119
120 if (!mhp_range_allowed(start, size, true))
121 return ERR_PTR(-E2BIG);
122
123 /*
124 * Make sure value parsed from 'mem=' only restricts memory adding
125 * while booting, so that memory hotplug won't be impacted. Please
126 * refer to document of 'mem=' in kernel-parameters.txt for more
127 * details.
128 */
129 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
130 return ERR_PTR(-E2BIG);
131
132 /*
133 * Request ownership of the new memory range. This might be
134 * a child of an existing resource that was present but
135 * not marked as busy.
136 */
137 res = __request_region(&iomem_resource, start, size,
138 resource_name, flags);
139
140 if (!res) {
141 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
142 start, start + size);
143 return ERR_PTR(-EEXIST);
144 }
145 return res;
146}
147
148static void release_memory_resource(struct resource *res)
149{
150 if (!res)
151 return;
152 release_resource(res);
153 kfree(res);
154}
155
156#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
157static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
158 const char *reason)
159{
160 /*
161 * Disallow all operations smaller than a sub-section and only
162 * allow operations smaller than a section for
163 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
164 * enforces a larger memory_block_size_bytes() granularity for
165 * memory that will be marked online, so this check should only
166 * fire for direct arch_{add,remove}_memory() users outside of
167 * add_memory_resource().
168 */
169 unsigned long min_align;
170
171 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
172 min_align = PAGES_PER_SUBSECTION;
173 else
174 min_align = PAGES_PER_SECTION;
175 if (!IS_ALIGNED(pfn, min_align)
176 || !IS_ALIGNED(nr_pages, min_align)) {
177 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
178 reason, pfn, pfn + nr_pages - 1);
179 return -EINVAL;
180 }
181 return 0;
182}
183
184/*
185 * Return page for the valid pfn only if the page is online. All pfn
186 * walkers which rely on the fully initialized page->flags and others
187 * should use this rather than pfn_valid && pfn_to_page
188 */
189struct page *pfn_to_online_page(unsigned long pfn)
190{
191 unsigned long nr = pfn_to_section_nr(pfn);
192 struct dev_pagemap *pgmap;
193 struct mem_section *ms;
194
195 if (nr >= NR_MEM_SECTIONS)
196 return NULL;
197
198 ms = __nr_to_section(nr);
199 if (!online_section(ms))
200 return NULL;
201
202 /*
203 * Save some code text when online_section() +
204 * pfn_section_valid() are sufficient.
205 */
206 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
207 return NULL;
208
209 if (!pfn_section_valid(ms, pfn))
210 return NULL;
211
212 if (!online_device_section(ms))
213 return pfn_to_page(pfn);
214
215 /*
216 * Slowpath: when ZONE_DEVICE collides with
217 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
218 * the section may be 'offline' but 'valid'. Only
219 * get_dev_pagemap() can determine sub-section online status.
220 */
221 pgmap = get_dev_pagemap(pfn, NULL);
222 put_dev_pagemap(pgmap);
223
224 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
225 if (pgmap)
226 return NULL;
227
228 return pfn_to_page(pfn);
229}
230EXPORT_SYMBOL_GPL(pfn_to_online_page);
231
232/*
233 * Reasonably generic function for adding memory. It is
234 * expected that archs that support memory hotplug will
235 * call this function after deciding the zone to which to
236 * add the new pages.
237 */
238int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
239 struct mhp_params *params)
240{
241 const unsigned long end_pfn = pfn + nr_pages;
242 unsigned long cur_nr_pages;
243 int err;
244 struct vmem_altmap *altmap = params->altmap;
245
246 if (WARN_ON_ONCE(!params->pgprot.pgprot))
247 return -EINVAL;
248
249 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
250
251 if (altmap) {
252 /*
253 * Validate altmap is within bounds of the total request
254 */
255 if (altmap->base_pfn != pfn
256 || vmem_altmap_offset(altmap) > nr_pages) {
257 pr_warn_once("memory add fail, invalid altmap\n");
258 return -EINVAL;
259 }
260 altmap->alloc = 0;
261 }
262
263 err = check_pfn_span(pfn, nr_pages, "add");
264 if (err)
265 return err;
266
267 for (; pfn < end_pfn; pfn += cur_nr_pages) {
268 /* Select all remaining pages up to the next section boundary */
269 cur_nr_pages = min(end_pfn - pfn,
270 SECTION_ALIGN_UP(pfn + 1) - pfn);
271 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
272 if (err)
273 break;
274 cond_resched();
275 }
276 vmemmap_populate_print_last();
277 return err;
278}
279
280/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
281static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
282 unsigned long start_pfn,
283 unsigned long end_pfn)
284{
285 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
286 if (unlikely(!pfn_to_online_page(start_pfn)))
287 continue;
288
289 if (unlikely(pfn_to_nid(start_pfn) != nid))
290 continue;
291
292 if (zone != page_zone(pfn_to_page(start_pfn)))
293 continue;
294
295 return start_pfn;
296 }
297
298 return 0;
299}
300
301/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
302static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
303 unsigned long start_pfn,
304 unsigned long end_pfn)
305{
306 unsigned long pfn;
307
308 /* pfn is the end pfn of a memory section. */
309 pfn = end_pfn - 1;
310 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
311 if (unlikely(!pfn_to_online_page(pfn)))
312 continue;
313
314 if (unlikely(pfn_to_nid(pfn) != nid))
315 continue;
316
317 if (zone != page_zone(pfn_to_page(pfn)))
318 continue;
319
320 return pfn;
321 }
322
323 return 0;
324}
325
326static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
327 unsigned long end_pfn)
328{
329 unsigned long pfn;
330 int nid = zone_to_nid(zone);
331
332 if (zone->zone_start_pfn == start_pfn) {
333 /*
334 * If the section is smallest section in the zone, it need
335 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
336 * In this case, we find second smallest valid mem_section
337 * for shrinking zone.
338 */
339 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
340 zone_end_pfn(zone));
341 if (pfn) {
342 zone->spanned_pages = zone_end_pfn(zone) - pfn;
343 zone->zone_start_pfn = pfn;
344 } else {
345 zone->zone_start_pfn = 0;
346 zone->spanned_pages = 0;
347 }
348 } else if (zone_end_pfn(zone) == end_pfn) {
349 /*
350 * If the section is biggest section in the zone, it need
351 * shrink zone->spanned_pages.
352 * In this case, we find second biggest valid mem_section for
353 * shrinking zone.
354 */
355 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
356 start_pfn);
357 if (pfn)
358 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
359 else {
360 zone->zone_start_pfn = 0;
361 zone->spanned_pages = 0;
362 }
363 }
364}
365
366static void update_pgdat_span(struct pglist_data *pgdat)
367{
368 unsigned long node_start_pfn = 0, node_end_pfn = 0;
369 struct zone *zone;
370
371 for (zone = pgdat->node_zones;
372 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
373 unsigned long end_pfn = zone_end_pfn(zone);
374
375 /* No need to lock the zones, they can't change. */
376 if (!zone->spanned_pages)
377 continue;
378 if (!node_end_pfn) {
379 node_start_pfn = zone->zone_start_pfn;
380 node_end_pfn = end_pfn;
381 continue;
382 }
383
384 if (end_pfn > node_end_pfn)
385 node_end_pfn = end_pfn;
386 if (zone->zone_start_pfn < node_start_pfn)
387 node_start_pfn = zone->zone_start_pfn;
388 }
389
390 pgdat->node_start_pfn = node_start_pfn;
391 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
392}
393
394void __ref remove_pfn_range_from_zone(struct zone *zone,
395 unsigned long start_pfn,
396 unsigned long nr_pages)
397{
398 const unsigned long end_pfn = start_pfn + nr_pages;
399 struct pglist_data *pgdat = zone->zone_pgdat;
400 unsigned long pfn, cur_nr_pages;
401
402 /* Poison struct pages because they are now uninitialized again. */
403 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
404 cond_resched();
405
406 /* Select all remaining pages up to the next section boundary */
407 cur_nr_pages =
408 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
409 page_init_poison(pfn_to_page(pfn),
410 sizeof(struct page) * cur_nr_pages);
411 }
412
413#ifdef CONFIG_ZONE_DEVICE
414 /*
415 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
416 * we will not try to shrink the zones - which is okay as
417 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
418 */
419 if (zone_idx(zone) == ZONE_DEVICE)
420 return;
421#endif
422
423 clear_zone_contiguous(zone);
424
425 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
426 update_pgdat_span(pgdat);
427
428 set_zone_contiguous(zone);
429}
430
431static void __remove_section(unsigned long pfn, unsigned long nr_pages,
432 unsigned long map_offset,
433 struct vmem_altmap *altmap)
434{
435 struct mem_section *ms = __pfn_to_section(pfn);
436
437 if (WARN_ON_ONCE(!valid_section(ms)))
438 return;
439
440 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
441}
442
443/**
444 * __remove_pages() - remove sections of pages
445 * @pfn: starting pageframe (must be aligned to start of a section)
446 * @nr_pages: number of pages to remove (must be multiple of section size)
447 * @altmap: alternative device page map or %NULL if default memmap is used
448 *
449 * Generic helper function to remove section mappings and sysfs entries
450 * for the section of the memory we are removing. Caller needs to make
451 * sure that pages are marked reserved and zones are adjust properly by
452 * calling offline_pages().
453 */
454void __remove_pages(unsigned long pfn, unsigned long nr_pages,
455 struct vmem_altmap *altmap)
456{
457 const unsigned long end_pfn = pfn + nr_pages;
458 unsigned long cur_nr_pages;
459 unsigned long map_offset = 0;
460
461 map_offset = vmem_altmap_offset(altmap);
462
463 if (check_pfn_span(pfn, nr_pages, "remove"))
464 return;
465
466 for (; pfn < end_pfn; pfn += cur_nr_pages) {
467 cond_resched();
468 /* Select all remaining pages up to the next section boundary */
469 cur_nr_pages = min(end_pfn - pfn,
470 SECTION_ALIGN_UP(pfn + 1) - pfn);
471 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
472 map_offset = 0;
473 }
474}
475
476int set_online_page_callback(online_page_callback_t callback)
477{
478 int rc = -EINVAL;
479
480 get_online_mems();
481 mutex_lock(&online_page_callback_lock);
482
483 if (online_page_callback == generic_online_page) {
484 online_page_callback = callback;
485 rc = 0;
486 }
487
488 mutex_unlock(&online_page_callback_lock);
489 put_online_mems();
490
491 return rc;
492}
493EXPORT_SYMBOL_GPL(set_online_page_callback);
494
495int restore_online_page_callback(online_page_callback_t callback)
496{
497 int rc = -EINVAL;
498
499 get_online_mems();
500 mutex_lock(&online_page_callback_lock);
501
502 if (online_page_callback == callback) {
503 online_page_callback = generic_online_page;
504 rc = 0;
505 }
506
507 mutex_unlock(&online_page_callback_lock);
508 put_online_mems();
509
510 return rc;
511}
512EXPORT_SYMBOL_GPL(restore_online_page_callback);
513
514void generic_online_page(struct page *page, unsigned int order)
515{
516 /*
517 * Freeing the page with debug_pagealloc enabled will try to unmap it,
518 * so we should map it first. This is better than introducing a special
519 * case in page freeing fast path.
520 */
521 debug_pagealloc_map_pages(page, 1 << order);
522 __free_pages_core(page, order);
523 totalram_pages_add(1UL << order);
524#ifdef CONFIG_HIGHMEM
525 if (PageHighMem(page))
526 totalhigh_pages_add(1UL << order);
527#endif
528}
529EXPORT_SYMBOL_GPL(generic_online_page);
530
531static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
532{
533 const unsigned long end_pfn = start_pfn + nr_pages;
534 unsigned long pfn;
535
536 /*
537 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
538 * decide to not expose all pages to the buddy (e.g., expose them
539 * later). We account all pages as being online and belonging to this
540 * zone ("present").
541 * When using memmap_on_memory, the range might not be aligned to
542 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
543 * this and the first chunk to online will be pageblock_nr_pages.
544 */
545 for (pfn = start_pfn; pfn < end_pfn;) {
546 int order = min(MAX_ORDER - 1UL, __ffs(pfn));
547
548 (*online_page_callback)(pfn_to_page(pfn), order);
549 pfn += (1UL << order);
550 }
551
552 /* mark all involved sections as online */
553 online_mem_sections(start_pfn, end_pfn);
554}
555
556/* check which state of node_states will be changed when online memory */
557static void node_states_check_changes_online(unsigned long nr_pages,
558 struct zone *zone, struct memory_notify *arg)
559{
560 int nid = zone_to_nid(zone);
561
562 arg->status_change_nid = NUMA_NO_NODE;
563 arg->status_change_nid_normal = NUMA_NO_NODE;
564 arg->status_change_nid_high = NUMA_NO_NODE;
565
566 if (!node_state(nid, N_MEMORY))
567 arg->status_change_nid = nid;
568 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
569 arg->status_change_nid_normal = nid;
570#ifdef CONFIG_HIGHMEM
571 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
572 arg->status_change_nid_high = nid;
573#endif
574}
575
576static void node_states_set_node(int node, struct memory_notify *arg)
577{
578 if (arg->status_change_nid_normal >= 0)
579 node_set_state(node, N_NORMAL_MEMORY);
580
581 if (arg->status_change_nid_high >= 0)
582 node_set_state(node, N_HIGH_MEMORY);
583
584 if (arg->status_change_nid >= 0)
585 node_set_state(node, N_MEMORY);
586}
587
588static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
589 unsigned long nr_pages)
590{
591 unsigned long old_end_pfn = zone_end_pfn(zone);
592
593 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
594 zone->zone_start_pfn = start_pfn;
595
596 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
597}
598
599static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
600 unsigned long nr_pages)
601{
602 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
603
604 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
605 pgdat->node_start_pfn = start_pfn;
606
607 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
608
609}
610
611static void section_taint_zone_device(unsigned long pfn)
612{
613 struct mem_section *ms = __pfn_to_section(pfn);
614
615 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
616}
617
618/*
619 * Associate the pfn range with the given zone, initializing the memmaps
620 * and resizing the pgdat/zone data to span the added pages. After this
621 * call, all affected pages are PG_reserved.
622 *
623 * All aligned pageblocks are initialized to the specified migratetype
624 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
625 * zone stats (e.g., nr_isolate_pageblock) are touched.
626 */
627void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
628 unsigned long nr_pages,
629 struct vmem_altmap *altmap, int migratetype)
630{
631 struct pglist_data *pgdat = zone->zone_pgdat;
632 int nid = pgdat->node_id;
633
634 clear_zone_contiguous(zone);
635
636 if (zone_is_empty(zone))
637 init_currently_empty_zone(zone, start_pfn, nr_pages);
638 resize_zone_range(zone, start_pfn, nr_pages);
639 resize_pgdat_range(pgdat, start_pfn, nr_pages);
640
641 /*
642 * Subsection population requires care in pfn_to_online_page().
643 * Set the taint to enable the slow path detection of
644 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
645 * section.
646 */
647 if (zone_is_zone_device(zone)) {
648 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
649 section_taint_zone_device(start_pfn);
650 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
651 section_taint_zone_device(start_pfn + nr_pages);
652 }
653
654 /*
655 * TODO now we have a visible range of pages which are not associated
656 * with their zone properly. Not nice but set_pfnblock_flags_mask
657 * expects the zone spans the pfn range. All the pages in the range
658 * are reserved so nobody should be touching them so we should be safe
659 */
660 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
661 MEMINIT_HOTPLUG, altmap, migratetype);
662
663 set_zone_contiguous(zone);
664}
665
666/*
667 * Returns a default kernel memory zone for the given pfn range.
668 * If no kernel zone covers this pfn range it will automatically go
669 * to the ZONE_NORMAL.
670 */
671static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
672 unsigned long nr_pages)
673{
674 struct pglist_data *pgdat = NODE_DATA(nid);
675 int zid;
676
677 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
678 struct zone *zone = &pgdat->node_zones[zid];
679
680 if (zone_intersects(zone, start_pfn, nr_pages))
681 return zone;
682 }
683
684 return &pgdat->node_zones[ZONE_NORMAL];
685}
686
687static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
688 unsigned long nr_pages)
689{
690 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
691 nr_pages);
692 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
693 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
694 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
695
696 /*
697 * We inherit the existing zone in a simple case where zones do not
698 * overlap in the given range
699 */
700 if (in_kernel ^ in_movable)
701 return (in_kernel) ? kernel_zone : movable_zone;
702
703 /*
704 * If the range doesn't belong to any zone or two zones overlap in the
705 * given range then we use movable zone only if movable_node is
706 * enabled because we always online to a kernel zone by default.
707 */
708 return movable_node_enabled ? movable_zone : kernel_zone;
709}
710
711struct zone *zone_for_pfn_range(int online_type, int nid,
712 unsigned long start_pfn, unsigned long nr_pages)
713{
714 if (online_type == MMOP_ONLINE_KERNEL)
715 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
716
717 if (online_type == MMOP_ONLINE_MOVABLE)
718 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
719
720 return default_zone_for_pfn(nid, start_pfn, nr_pages);
721}
722
723/*
724 * This function should only be called by memory_block_{online,offline},
725 * and {online,offline}_pages.
726 */
727void adjust_present_page_count(struct zone *zone, long nr_pages)
728{
729 zone->present_pages += nr_pages;
730 zone->zone_pgdat->node_present_pages += nr_pages;
731}
732
733int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
734 struct zone *zone)
735{
736 unsigned long end_pfn = pfn + nr_pages;
737 int ret;
738
739 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
740 if (ret)
741 return ret;
742
743 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
744
745 /*
746 * It might be that the vmemmap_pages fully span sections. If that is
747 * the case, mark those sections online here as otherwise they will be
748 * left offline.
749 */
750 if (nr_pages >= PAGES_PER_SECTION)
751 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
752
753 return ret;
754}
755
756void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
757{
758 unsigned long end_pfn = pfn + nr_pages;
759
760 /*
761 * It might be that the vmemmap_pages fully span sections. If that is
762 * the case, mark those sections offline here as otherwise they will be
763 * left online.
764 */
765 if (nr_pages >= PAGES_PER_SECTION)
766 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
767
768 /*
769 * The pages associated with this vmemmap have been offlined, so
770 * we can reset its state here.
771 */
772 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
773 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
774}
775
776int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
777{
778 unsigned long flags;
779 int need_zonelists_rebuild = 0;
780 const int nid = zone_to_nid(zone);
781 int ret;
782 struct memory_notify arg;
783
784 /*
785 * {on,off}lining is constrained to full memory sections (or more
786 * precisely to memory blocks from the user space POV).
787 * memmap_on_memory is an exception because it reserves initial part
788 * of the physical memory space for vmemmaps. That space is pageblock
789 * aligned.
790 */
791 if (WARN_ON_ONCE(!nr_pages ||
792 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
793 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
794 return -EINVAL;
795
796 mem_hotplug_begin();
797
798 /* associate pfn range with the zone */
799 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
800
801 arg.start_pfn = pfn;
802 arg.nr_pages = nr_pages;
803 node_states_check_changes_online(nr_pages, zone, &arg);
804
805 ret = memory_notify(MEM_GOING_ONLINE, &arg);
806 ret = notifier_to_errno(ret);
807 if (ret)
808 goto failed_addition;
809
810 /*
811 * Fixup the number of isolated pageblocks before marking the sections
812 * onlining, such that undo_isolate_page_range() works correctly.
813 */
814 spin_lock_irqsave(&zone->lock, flags);
815 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
816 spin_unlock_irqrestore(&zone->lock, flags);
817
818 /*
819 * If this zone is not populated, then it is not in zonelist.
820 * This means the page allocator ignores this zone.
821 * So, zonelist must be updated after online.
822 */
823 if (!populated_zone(zone)) {
824 need_zonelists_rebuild = 1;
825 setup_zone_pageset(zone);
826 }
827
828 online_pages_range(pfn, nr_pages);
829 adjust_present_page_count(zone, nr_pages);
830
831 node_states_set_node(nid, &arg);
832 if (need_zonelists_rebuild)
833 build_all_zonelists(NULL);
834
835 /* Basic onlining is complete, allow allocation of onlined pages. */
836 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
837
838 /*
839 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
840 * the tail of the freelist when undoing isolation). Shuffle the whole
841 * zone to make sure the just onlined pages are properly distributed
842 * across the whole freelist - to create an initial shuffle.
843 */
844 shuffle_zone(zone);
845
846 /* reinitialise watermarks and update pcp limits */
847 init_per_zone_wmark_min();
848
849 kswapd_run(nid);
850 kcompactd_run(nid);
851
852 writeback_set_ratelimit();
853
854 memory_notify(MEM_ONLINE, &arg);
855 mem_hotplug_done();
856 return 0;
857
858failed_addition:
859 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
860 (unsigned long long) pfn << PAGE_SHIFT,
861 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
862 memory_notify(MEM_CANCEL_ONLINE, &arg);
863 remove_pfn_range_from_zone(zone, pfn, nr_pages);
864 mem_hotplug_done();
865 return ret;
866}
867#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
868
869static void reset_node_present_pages(pg_data_t *pgdat)
870{
871 struct zone *z;
872
873 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
874 z->present_pages = 0;
875
876 pgdat->node_present_pages = 0;
877}
878
879/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
880static pg_data_t __ref *hotadd_new_pgdat(int nid)
881{
882 struct pglist_data *pgdat;
883
884 pgdat = NODE_DATA(nid);
885 if (!pgdat) {
886 pgdat = arch_alloc_nodedata(nid);
887 if (!pgdat)
888 return NULL;
889
890 pgdat->per_cpu_nodestats =
891 alloc_percpu(struct per_cpu_nodestat);
892 arch_refresh_nodedata(nid, pgdat);
893 } else {
894 int cpu;
895 /*
896 * Reset the nr_zones, order and highest_zoneidx before reuse.
897 * Note that kswapd will init kswapd_highest_zoneidx properly
898 * when it starts in the near future.
899 */
900 pgdat->nr_zones = 0;
901 pgdat->kswapd_order = 0;
902 pgdat->kswapd_highest_zoneidx = 0;
903 for_each_online_cpu(cpu) {
904 struct per_cpu_nodestat *p;
905
906 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
907 memset(p, 0, sizeof(*p));
908 }
909 }
910
911 /* we can use NODE_DATA(nid) from here */
912 pgdat->node_id = nid;
913 pgdat->node_start_pfn = 0;
914
915 /* init node's zones as empty zones, we don't have any present pages.*/
916 free_area_init_core_hotplug(nid);
917
918 /*
919 * The node we allocated has no zone fallback lists. For avoiding
920 * to access not-initialized zonelist, build here.
921 */
922 build_all_zonelists(pgdat);
923
924 /*
925 * When memory is hot-added, all the memory is in offline state. So
926 * clear all zones' present_pages because they will be updated in
927 * online_pages() and offline_pages().
928 */
929 reset_node_managed_pages(pgdat);
930 reset_node_present_pages(pgdat);
931
932 return pgdat;
933}
934
935static void rollback_node_hotadd(int nid)
936{
937 pg_data_t *pgdat = NODE_DATA(nid);
938
939 arch_refresh_nodedata(nid, NULL);
940 free_percpu(pgdat->per_cpu_nodestats);
941 arch_free_nodedata(pgdat);
942}
943
944
945/*
946 * __try_online_node - online a node if offlined
947 * @nid: the node ID
948 * @set_node_online: Whether we want to online the node
949 * called by cpu_up() to online a node without onlined memory.
950 *
951 * Returns:
952 * 1 -> a new node has been allocated
953 * 0 -> the node is already online
954 * -ENOMEM -> the node could not be allocated
955 */
956static int __try_online_node(int nid, bool set_node_online)
957{
958 pg_data_t *pgdat;
959 int ret = 1;
960
961 if (node_online(nid))
962 return 0;
963
964 pgdat = hotadd_new_pgdat(nid);
965 if (!pgdat) {
966 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
967 ret = -ENOMEM;
968 goto out;
969 }
970
971 if (set_node_online) {
972 node_set_online(nid);
973 ret = register_one_node(nid);
974 BUG_ON(ret);
975 }
976out:
977 return ret;
978}
979
980/*
981 * Users of this function always want to online/register the node
982 */
983int try_online_node(int nid)
984{
985 int ret;
986
987 mem_hotplug_begin();
988 ret = __try_online_node(nid, true);
989 mem_hotplug_done();
990 return ret;
991}
992
993static int check_hotplug_memory_range(u64 start, u64 size)
994{
995 /* memory range must be block size aligned */
996 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
997 !IS_ALIGNED(size, memory_block_size_bytes())) {
998 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
999 memory_block_size_bytes(), start, size);
1000 return -EINVAL;
1001 }
1002
1003 return 0;
1004}
1005
1006static int online_memory_block(struct memory_block *mem, void *arg)
1007{
1008 mem->online_type = mhp_default_online_type;
1009 return device_online(&mem->dev);
1010}
1011
1012bool mhp_supports_memmap_on_memory(unsigned long size)
1013{
1014 unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1015 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1016 unsigned long remaining_size = size - vmemmap_size;
1017
1018 /*
1019 * Besides having arch support and the feature enabled at runtime, we
1020 * need a few more assumptions to hold true:
1021 *
1022 * a) We span a single memory block: memory onlining/offlinin;g happens
1023 * in memory block granularity. We don't want the vmemmap of online
1024 * memory blocks to reside on offline memory blocks. In the future,
1025 * we might want to support variable-sized memory blocks to make the
1026 * feature more versatile.
1027 *
1028 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1029 * to populate memory from the altmap for unrelated parts (i.e.,
1030 * other memory blocks)
1031 *
1032 * c) The vmemmap pages (and thereby the pages that will be exposed to
1033 * the buddy) have to cover full pageblocks: memory onlining/offlining
1034 * code requires applicable ranges to be page-aligned, for example, to
1035 * set the migratetypes properly.
1036 *
1037 * TODO: Although we have a check here to make sure that vmemmap pages
1038 * fully populate a PMD, it is not the right place to check for
1039 * this. A much better solution involves improving vmemmap code
1040 * to fallback to base pages when trying to populate vmemmap using
1041 * altmap as an alternative source of memory, and we do not exactly
1042 * populate a single PMD.
1043 */
1044 return memmap_on_memory &&
1045 !hugetlb_free_vmemmap_enabled &&
1046 IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1047 size == memory_block_size_bytes() &&
1048 IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1049 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1050}
1051
1052/*
1053 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1054 * and online/offline operations (triggered e.g. by sysfs).
1055 *
1056 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1057 */
1058int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1059{
1060 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1061 struct vmem_altmap mhp_altmap = {};
1062 u64 start, size;
1063 bool new_node = false;
1064 int ret;
1065
1066 start = res->start;
1067 size = resource_size(res);
1068
1069 ret = check_hotplug_memory_range(start, size);
1070 if (ret)
1071 return ret;
1072
1073 if (!node_possible(nid)) {
1074 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1075 return -EINVAL;
1076 }
1077
1078 mem_hotplug_begin();
1079
1080 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1081 memblock_add_node(start, size, nid);
1082
1083 ret = __try_online_node(nid, false);
1084 if (ret < 0)
1085 goto error;
1086 new_node = ret;
1087
1088 /*
1089 * Self hosted memmap array
1090 */
1091 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1092 if (!mhp_supports_memmap_on_memory(size)) {
1093 ret = -EINVAL;
1094 goto error;
1095 }
1096 mhp_altmap.free = PHYS_PFN(size);
1097 mhp_altmap.base_pfn = PHYS_PFN(start);
1098 params.altmap = &mhp_altmap;
1099 }
1100
1101 /* call arch's memory hotadd */
1102 ret = arch_add_memory(nid, start, size, ¶ms);
1103 if (ret < 0)
1104 goto error;
1105
1106 /* create memory block devices after memory was added */
1107 ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
1108 if (ret) {
1109 arch_remove_memory(nid, start, size, NULL);
1110 goto error;
1111 }
1112
1113 if (new_node) {
1114 /* If sysfs file of new node can't be created, cpu on the node
1115 * can't be hot-added. There is no rollback way now.
1116 * So, check by BUG_ON() to catch it reluctantly..
1117 * We online node here. We can't roll back from here.
1118 */
1119 node_set_online(nid);
1120 ret = __register_one_node(nid);
1121 BUG_ON(ret);
1122 }
1123
1124 /* link memory sections under this node.*/
1125 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1126 MEMINIT_HOTPLUG);
1127
1128 /* create new memmap entry */
1129 if (!strcmp(res->name, "System RAM"))
1130 firmware_map_add_hotplug(start, start + size, "System RAM");
1131
1132 /* device_online() will take the lock when calling online_pages() */
1133 mem_hotplug_done();
1134
1135 /*
1136 * In case we're allowed to merge the resource, flag it and trigger
1137 * merging now that adding succeeded.
1138 */
1139 if (mhp_flags & MHP_MERGE_RESOURCE)
1140 merge_system_ram_resource(res);
1141
1142 /* online pages if requested */
1143 if (mhp_default_online_type != MMOP_OFFLINE)
1144 walk_memory_blocks(start, size, NULL, online_memory_block);
1145
1146 return ret;
1147error:
1148 /* rollback pgdat allocation and others */
1149 if (new_node)
1150 rollback_node_hotadd(nid);
1151 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1152 memblock_remove(start, size);
1153 mem_hotplug_done();
1154 return ret;
1155}
1156
1157/* requires device_hotplug_lock, see add_memory_resource() */
1158int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1159{
1160 struct resource *res;
1161 int ret;
1162
1163 res = register_memory_resource(start, size, "System RAM");
1164 if (IS_ERR(res))
1165 return PTR_ERR(res);
1166
1167 ret = add_memory_resource(nid, res, mhp_flags);
1168 if (ret < 0)
1169 release_memory_resource(res);
1170 return ret;
1171}
1172
1173int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1174{
1175 int rc;
1176
1177 lock_device_hotplug();
1178 rc = __add_memory(nid, start, size, mhp_flags);
1179 unlock_device_hotplug();
1180
1181 return rc;
1182}
1183EXPORT_SYMBOL_GPL(add_memory);
1184
1185/*
1186 * Add special, driver-managed memory to the system as system RAM. Such
1187 * memory is not exposed via the raw firmware-provided memmap as system
1188 * RAM, instead, it is detected and added by a driver - during cold boot,
1189 * after a reboot, and after kexec.
1190 *
1191 * Reasons why this memory should not be used for the initial memmap of a
1192 * kexec kernel or for placing kexec images:
1193 * - The booting kernel is in charge of determining how this memory will be
1194 * used (e.g., use persistent memory as system RAM)
1195 * - Coordination with a hypervisor is required before this memory
1196 * can be used (e.g., inaccessible parts).
1197 *
1198 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1199 * memory map") are created. Also, the created memory resource is flagged
1200 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1201 * this memory as well (esp., not place kexec images onto it).
1202 *
1203 * The resource_name (visible via /proc/iomem) has to have the format
1204 * "System RAM ($DRIVER)".
1205 */
1206int add_memory_driver_managed(int nid, u64 start, u64 size,
1207 const char *resource_name, mhp_t mhp_flags)
1208{
1209 struct resource *res;
1210 int rc;
1211
1212 if (!resource_name ||
1213 strstr(resource_name, "System RAM (") != resource_name ||
1214 resource_name[strlen(resource_name) - 1] != ')')
1215 return -EINVAL;
1216
1217 lock_device_hotplug();
1218
1219 res = register_memory_resource(start, size, resource_name);
1220 if (IS_ERR(res)) {
1221 rc = PTR_ERR(res);
1222 goto out_unlock;
1223 }
1224
1225 rc = add_memory_resource(nid, res, mhp_flags);
1226 if (rc < 0)
1227 release_memory_resource(res);
1228
1229out_unlock:
1230 unlock_device_hotplug();
1231 return rc;
1232}
1233EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1234
1235/*
1236 * Platforms should define arch_get_mappable_range() that provides
1237 * maximum possible addressable physical memory range for which the
1238 * linear mapping could be created. The platform returned address
1239 * range must adhere to these following semantics.
1240 *
1241 * - range.start <= range.end
1242 * - Range includes both end points [range.start..range.end]
1243 *
1244 * There is also a fallback definition provided here, allowing the
1245 * entire possible physical address range in case any platform does
1246 * not define arch_get_mappable_range().
1247 */
1248struct range __weak arch_get_mappable_range(void)
1249{
1250 struct range mhp_range = {
1251 .start = 0UL,
1252 .end = -1ULL,
1253 };
1254 return mhp_range;
1255}
1256
1257struct range mhp_get_pluggable_range(bool need_mapping)
1258{
1259 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1260 struct range mhp_range;
1261
1262 if (need_mapping) {
1263 mhp_range = arch_get_mappable_range();
1264 if (mhp_range.start > max_phys) {
1265 mhp_range.start = 0;
1266 mhp_range.end = 0;
1267 }
1268 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1269 } else {
1270 mhp_range.start = 0;
1271 mhp_range.end = max_phys;
1272 }
1273 return mhp_range;
1274}
1275EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1276
1277bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1278{
1279 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1280 u64 end = start + size;
1281
1282 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1283 return true;
1284
1285 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1286 start, end, mhp_range.start, mhp_range.end);
1287 return false;
1288}
1289
1290#ifdef CONFIG_MEMORY_HOTREMOVE
1291/*
1292 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1293 * memory holes). When true, return the zone.
1294 */
1295struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1296 unsigned long end_pfn)
1297{
1298 unsigned long pfn, sec_end_pfn;
1299 struct zone *zone = NULL;
1300 struct page *page;
1301 int i;
1302 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1303 pfn < end_pfn;
1304 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1305 /* Make sure the memory section is present first */
1306 if (!present_section_nr(pfn_to_section_nr(pfn)))
1307 continue;
1308 for (; pfn < sec_end_pfn && pfn < end_pfn;
1309 pfn += MAX_ORDER_NR_PAGES) {
1310 i = 0;
1311 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1312 while ((i < MAX_ORDER_NR_PAGES) &&
1313 !pfn_valid_within(pfn + i))
1314 i++;
1315 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1316 continue;
1317 /* Check if we got outside of the zone */
1318 if (zone && !zone_spans_pfn(zone, pfn + i))
1319 return NULL;
1320 page = pfn_to_page(pfn + i);
1321 if (zone && page_zone(page) != zone)
1322 return NULL;
1323 zone = page_zone(page);
1324 }
1325 }
1326
1327 return zone;
1328}
1329
1330/*
1331 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1332 * non-lru movable pages and hugepages). Will skip over most unmovable
1333 * pages (esp., pages that can be skipped when offlining), but bail out on
1334 * definitely unmovable pages.
1335 *
1336 * Returns:
1337 * 0 in case a movable page is found and movable_pfn was updated.
1338 * -ENOENT in case no movable page was found.
1339 * -EBUSY in case a definitely unmovable page was found.
1340 */
1341static int scan_movable_pages(unsigned long start, unsigned long end,
1342 unsigned long *movable_pfn)
1343{
1344 unsigned long pfn;
1345
1346 for (pfn = start; pfn < end; pfn++) {
1347 struct page *page, *head;
1348 unsigned long skip;
1349
1350 if (!pfn_valid(pfn))
1351 continue;
1352 page = pfn_to_page(pfn);
1353 if (PageLRU(page))
1354 goto found;
1355 if (__PageMovable(page))
1356 goto found;
1357
1358 /*
1359 * PageOffline() pages that are not marked __PageMovable() and
1360 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1361 * definitely unmovable. If their reference count would be 0,
1362 * they could at least be skipped when offlining memory.
1363 */
1364 if (PageOffline(page) && page_count(page))
1365 return -EBUSY;
1366
1367 if (!PageHuge(page))
1368 continue;
1369 head = compound_head(page);
1370 /*
1371 * This test is racy as we hold no reference or lock. The
1372 * hugetlb page could have been free'ed and head is no longer
1373 * a hugetlb page before the following check. In such unlikely
1374 * cases false positives and negatives are possible. Calling
1375 * code must deal with these scenarios.
1376 */
1377 if (HPageMigratable(head))
1378 goto found;
1379 skip = compound_nr(head) - (page - head);
1380 pfn += skip - 1;
1381 }
1382 return -ENOENT;
1383found:
1384 *movable_pfn = pfn;
1385 return 0;
1386}
1387
1388static int
1389do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1390{
1391 unsigned long pfn;
1392 struct page *page, *head;
1393 int ret = 0;
1394 LIST_HEAD(source);
1395 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1396 DEFAULT_RATELIMIT_BURST);
1397
1398 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1399 if (!pfn_valid(pfn))
1400 continue;
1401 page = pfn_to_page(pfn);
1402 head = compound_head(page);
1403
1404 if (PageHuge(page)) {
1405 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1406 isolate_huge_page(head, &source);
1407 continue;
1408 } else if (PageTransHuge(page))
1409 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1410
1411 /*
1412 * HWPoison pages have elevated reference counts so the migration would
1413 * fail on them. It also doesn't make any sense to migrate them in the
1414 * first place. Still try to unmap such a page in case it is still mapped
1415 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1416 * the unmap as the catch all safety net).
1417 */
1418 if (PageHWPoison(page)) {
1419 if (WARN_ON(PageLRU(page)))
1420 isolate_lru_page(page);
1421 if (page_mapped(page))
1422 try_to_unmap(page, TTU_IGNORE_MLOCK);
1423 continue;
1424 }
1425
1426 if (!get_page_unless_zero(page))
1427 continue;
1428 /*
1429 * We can skip free pages. And we can deal with pages on
1430 * LRU and non-lru movable pages.
1431 */
1432 if (PageLRU(page))
1433 ret = isolate_lru_page(page);
1434 else
1435 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1436 if (!ret) { /* Success */
1437 list_add_tail(&page->lru, &source);
1438 if (!__PageMovable(page))
1439 inc_node_page_state(page, NR_ISOLATED_ANON +
1440 page_is_file_lru(page));
1441
1442 } else {
1443 if (__ratelimit(&migrate_rs)) {
1444 pr_warn("failed to isolate pfn %lx\n", pfn);
1445 dump_page(page, "isolation failed");
1446 }
1447 }
1448 put_page(page);
1449 }
1450 if (!list_empty(&source)) {
1451 nodemask_t nmask = node_states[N_MEMORY];
1452 struct migration_target_control mtc = {
1453 .nmask = &nmask,
1454 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1455 };
1456
1457 /*
1458 * We have checked that migration range is on a single zone so
1459 * we can use the nid of the first page to all the others.
1460 */
1461 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1462
1463 /*
1464 * try to allocate from a different node but reuse this node
1465 * if there are no other online nodes to be used (e.g. we are
1466 * offlining a part of the only existing node)
1467 */
1468 node_clear(mtc.nid, nmask);
1469 if (nodes_empty(nmask))
1470 node_set(mtc.nid, nmask);
1471 ret = migrate_pages(&source, alloc_migration_target, NULL,
1472 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1473 if (ret) {
1474 list_for_each_entry(page, &source, lru) {
1475 if (__ratelimit(&migrate_rs)) {
1476 pr_warn("migrating pfn %lx failed ret:%d\n",
1477 page_to_pfn(page), ret);
1478 dump_page(page, "migration failure");
1479 }
1480 }
1481 putback_movable_pages(&source);
1482 }
1483 }
1484
1485 return ret;
1486}
1487
1488static int __init cmdline_parse_movable_node(char *p)
1489{
1490 movable_node_enabled = true;
1491 return 0;
1492}
1493early_param("movable_node", cmdline_parse_movable_node);
1494
1495/* check which state of node_states will be changed when offline memory */
1496static void node_states_check_changes_offline(unsigned long nr_pages,
1497 struct zone *zone, struct memory_notify *arg)
1498{
1499 struct pglist_data *pgdat = zone->zone_pgdat;
1500 unsigned long present_pages = 0;
1501 enum zone_type zt;
1502
1503 arg->status_change_nid = NUMA_NO_NODE;
1504 arg->status_change_nid_normal = NUMA_NO_NODE;
1505 arg->status_change_nid_high = NUMA_NO_NODE;
1506
1507 /*
1508 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1509 * If the memory to be offline is within the range
1510 * [0..ZONE_NORMAL], and it is the last present memory there,
1511 * the zones in that range will become empty after the offlining,
1512 * thus we can determine that we need to clear the node from
1513 * node_states[N_NORMAL_MEMORY].
1514 */
1515 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1516 present_pages += pgdat->node_zones[zt].present_pages;
1517 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1518 arg->status_change_nid_normal = zone_to_nid(zone);
1519
1520#ifdef CONFIG_HIGHMEM
1521 /*
1522 * node_states[N_HIGH_MEMORY] contains nodes which
1523 * have normal memory or high memory.
1524 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1525 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1526 * we determine that the zones in that range become empty,
1527 * we need to clear the node for N_HIGH_MEMORY.
1528 */
1529 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1530 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1531 arg->status_change_nid_high = zone_to_nid(zone);
1532#endif
1533
1534 /*
1535 * We have accounted the pages from [0..ZONE_NORMAL), and
1536 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1537 * as well.
1538 * Here we count the possible pages from ZONE_MOVABLE.
1539 * If after having accounted all the pages, we see that the nr_pages
1540 * to be offlined is over or equal to the accounted pages,
1541 * we know that the node will become empty, and so, we can clear
1542 * it for N_MEMORY as well.
1543 */
1544 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1545
1546 if (nr_pages >= present_pages)
1547 arg->status_change_nid = zone_to_nid(zone);
1548}
1549
1550static void node_states_clear_node(int node, struct memory_notify *arg)
1551{
1552 if (arg->status_change_nid_normal >= 0)
1553 node_clear_state(node, N_NORMAL_MEMORY);
1554
1555 if (arg->status_change_nid_high >= 0)
1556 node_clear_state(node, N_HIGH_MEMORY);
1557
1558 if (arg->status_change_nid >= 0)
1559 node_clear_state(node, N_MEMORY);
1560}
1561
1562static int count_system_ram_pages_cb(unsigned long start_pfn,
1563 unsigned long nr_pages, void *data)
1564{
1565 unsigned long *nr_system_ram_pages = data;
1566
1567 *nr_system_ram_pages += nr_pages;
1568 return 0;
1569}
1570
1571int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1572{
1573 const unsigned long end_pfn = start_pfn + nr_pages;
1574 unsigned long pfn, system_ram_pages = 0;
1575 unsigned long flags;
1576 struct zone *zone;
1577 struct memory_notify arg;
1578 int ret, node;
1579 char *reason;
1580
1581 /*
1582 * {on,off}lining is constrained to full memory sections (or more
1583 * precisely to memory blocks from the user space POV).
1584 * memmap_on_memory is an exception because it reserves initial part
1585 * of the physical memory space for vmemmaps. That space is pageblock
1586 * aligned.
1587 */
1588 if (WARN_ON_ONCE(!nr_pages ||
1589 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1590 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1591 return -EINVAL;
1592
1593 mem_hotplug_begin();
1594
1595 /*
1596 * Don't allow to offline memory blocks that contain holes.
1597 * Consequently, memory blocks with holes can never get onlined
1598 * via the hotplug path - online_pages() - as hotplugged memory has
1599 * no holes. This way, we e.g., don't have to worry about marking
1600 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1601 * avoid using walk_system_ram_range() later.
1602 */
1603 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1604 count_system_ram_pages_cb);
1605 if (system_ram_pages != nr_pages) {
1606 ret = -EINVAL;
1607 reason = "memory holes";
1608 goto failed_removal;
1609 }
1610
1611 /* This makes hotplug much easier...and readable.
1612 we assume this for now. .*/
1613 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1614 if (!zone) {
1615 ret = -EINVAL;
1616 reason = "multizone range";
1617 goto failed_removal;
1618 }
1619 node = zone_to_nid(zone);
1620
1621 /*
1622 * Disable pcplists so that page isolation cannot race with freeing
1623 * in a way that pages from isolated pageblock are left on pcplists.
1624 */
1625 zone_pcp_disable(zone);
1626 lru_cache_disable();
1627
1628 /* set above range as isolated */
1629 ret = start_isolate_page_range(start_pfn, end_pfn,
1630 MIGRATE_MOVABLE,
1631 MEMORY_OFFLINE | REPORT_FAILURE);
1632 if (ret) {
1633 reason = "failure to isolate range";
1634 goto failed_removal_pcplists_disabled;
1635 }
1636
1637 arg.start_pfn = start_pfn;
1638 arg.nr_pages = nr_pages;
1639 node_states_check_changes_offline(nr_pages, zone, &arg);
1640
1641 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1642 ret = notifier_to_errno(ret);
1643 if (ret) {
1644 reason = "notifier failure";
1645 goto failed_removal_isolated;
1646 }
1647
1648 do {
1649 pfn = start_pfn;
1650 do {
1651 if (signal_pending(current)) {
1652 ret = -EINTR;
1653 reason = "signal backoff";
1654 goto failed_removal_isolated;
1655 }
1656
1657 cond_resched();
1658
1659 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1660 if (!ret) {
1661 /*
1662 * TODO: fatal migration failures should bail
1663 * out
1664 */
1665 do_migrate_range(pfn, end_pfn);
1666 }
1667 } while (!ret);
1668
1669 if (ret != -ENOENT) {
1670 reason = "unmovable page";
1671 goto failed_removal_isolated;
1672 }
1673
1674 /*
1675 * Dissolve free hugepages in the memory block before doing
1676 * offlining actually in order to make hugetlbfs's object
1677 * counting consistent.
1678 */
1679 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1680 if (ret) {
1681 reason = "failure to dissolve huge pages";
1682 goto failed_removal_isolated;
1683 }
1684
1685 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1686
1687 } while (ret);
1688
1689 /* Mark all sections offline and remove free pages from the buddy. */
1690 __offline_isolated_pages(start_pfn, end_pfn);
1691 pr_debug("Offlined Pages %ld\n", nr_pages);
1692
1693 /*
1694 * The memory sections are marked offline, and the pageblock flags
1695 * effectively stale; nobody should be touching them. Fixup the number
1696 * of isolated pageblocks, memory onlining will properly revert this.
1697 */
1698 spin_lock_irqsave(&zone->lock, flags);
1699 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1700 spin_unlock_irqrestore(&zone->lock, flags);
1701
1702 lru_cache_enable();
1703 zone_pcp_enable(zone);
1704
1705 /* removal success */
1706 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1707 adjust_present_page_count(zone, -nr_pages);
1708
1709 /* reinitialise watermarks and update pcp limits */
1710 init_per_zone_wmark_min();
1711
1712 if (!populated_zone(zone)) {
1713 zone_pcp_reset(zone);
1714 build_all_zonelists(NULL);
1715 }
1716
1717 node_states_clear_node(node, &arg);
1718 if (arg.status_change_nid >= 0) {
1719 kswapd_stop(node);
1720 kcompactd_stop(node);
1721 }
1722
1723 writeback_set_ratelimit();
1724
1725 memory_notify(MEM_OFFLINE, &arg);
1726 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1727 mem_hotplug_done();
1728 return 0;
1729
1730failed_removal_isolated:
1731 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1732 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1733failed_removal_pcplists_disabled:
1734 lru_cache_enable();
1735 zone_pcp_enable(zone);
1736failed_removal:
1737 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1738 (unsigned long long) start_pfn << PAGE_SHIFT,
1739 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1740 reason);
1741 /* pushback to free area */
1742 mem_hotplug_done();
1743 return ret;
1744}
1745
1746static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1747{
1748 int ret = !is_memblock_offlined(mem);
1749
1750 if (unlikely(ret)) {
1751 phys_addr_t beginpa, endpa;
1752
1753 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1754 endpa = beginpa + memory_block_size_bytes() - 1;
1755 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1756 &beginpa, &endpa);
1757
1758 return -EBUSY;
1759 }
1760 return 0;
1761}
1762
1763static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1764{
1765 /*
1766 * If not set, continue with the next block.
1767 */
1768 return mem->nr_vmemmap_pages;
1769}
1770
1771static int check_cpu_on_node(pg_data_t *pgdat)
1772{
1773 int cpu;
1774
1775 for_each_present_cpu(cpu) {
1776 if (cpu_to_node(cpu) == pgdat->node_id)
1777 /*
1778 * the cpu on this node isn't removed, and we can't
1779 * offline this node.
1780 */
1781 return -EBUSY;
1782 }
1783
1784 return 0;
1785}
1786
1787static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1788{
1789 int nid = *(int *)arg;
1790
1791 /*
1792 * If a memory block belongs to multiple nodes, the stored nid is not
1793 * reliable. However, such blocks are always online (e.g., cannot get
1794 * offlined) and, therefore, are still spanned by the node.
1795 */
1796 return mem->nid == nid ? -EEXIST : 0;
1797}
1798
1799/**
1800 * try_offline_node
1801 * @nid: the node ID
1802 *
1803 * Offline a node if all memory sections and cpus of the node are removed.
1804 *
1805 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1806 * and online/offline operations before this call.
1807 */
1808void try_offline_node(int nid)
1809{
1810 pg_data_t *pgdat = NODE_DATA(nid);
1811 int rc;
1812
1813 /*
1814 * If the node still spans pages (especially ZONE_DEVICE), don't
1815 * offline it. A node spans memory after move_pfn_range_to_zone(),
1816 * e.g., after the memory block was onlined.
1817 */
1818 if (pgdat->node_spanned_pages)
1819 return;
1820
1821 /*
1822 * Especially offline memory blocks might not be spanned by the
1823 * node. They will get spanned by the node once they get onlined.
1824 * However, they link to the node in sysfs and can get onlined later.
1825 */
1826 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1827 if (rc)
1828 return;
1829
1830 if (check_cpu_on_node(pgdat))
1831 return;
1832
1833 /*
1834 * all memory/cpu of this node are removed, we can offline this
1835 * node now.
1836 */
1837 node_set_offline(nid);
1838 unregister_one_node(nid);
1839}
1840EXPORT_SYMBOL(try_offline_node);
1841
1842static int __ref try_remove_memory(int nid, u64 start, u64 size)
1843{
1844 int rc = 0;
1845 struct vmem_altmap mhp_altmap = {};
1846 struct vmem_altmap *altmap = NULL;
1847 unsigned long nr_vmemmap_pages;
1848
1849 BUG_ON(check_hotplug_memory_range(start, size));
1850
1851 /*
1852 * All memory blocks must be offlined before removing memory. Check
1853 * whether all memory blocks in question are offline and return error
1854 * if this is not the case.
1855 */
1856 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1857 if (rc)
1858 return rc;
1859
1860 /*
1861 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
1862 * the same granularity it was added - a single memory block.
1863 */
1864 if (memmap_on_memory) {
1865 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
1866 get_nr_vmemmap_pages_cb);
1867 if (nr_vmemmap_pages) {
1868 if (size != memory_block_size_bytes()) {
1869 pr_warn("Refuse to remove %#llx - %#llx,"
1870 "wrong granularity\n",
1871 start, start + size);
1872 return -EINVAL;
1873 }
1874
1875 /*
1876 * Let remove_pmd_table->free_hugepage_table do the
1877 * right thing if we used vmem_altmap when hot-adding
1878 * the range.
1879 */
1880 mhp_altmap.alloc = nr_vmemmap_pages;
1881 altmap = &mhp_altmap;
1882 }
1883 }
1884
1885 /* remove memmap entry */
1886 firmware_map_remove(start, start + size, "System RAM");
1887
1888 /*
1889 * Memory block device removal under the device_hotplug_lock is
1890 * a barrier against racing online attempts.
1891 */
1892 remove_memory_block_devices(start, size);
1893
1894 mem_hotplug_begin();
1895
1896 arch_remove_memory(nid, start, size, altmap);
1897
1898 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1899 memblock_free(start, size);
1900 memblock_remove(start, size);
1901 }
1902
1903 release_mem_region_adjustable(start, size);
1904
1905 try_offline_node(nid);
1906
1907 mem_hotplug_done();
1908 return 0;
1909}
1910
1911/**
1912 * __remove_memory - Remove memory if every memory block is offline
1913 * @nid: the node ID
1914 * @start: physical address of the region to remove
1915 * @size: size of the region to remove
1916 *
1917 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1918 * and online/offline operations before this call, as required by
1919 * try_offline_node().
1920 */
1921void __remove_memory(int nid, u64 start, u64 size)
1922{
1923
1924 /*
1925 * trigger BUG() if some memory is not offlined prior to calling this
1926 * function
1927 */
1928 if (try_remove_memory(nid, start, size))
1929 BUG();
1930}
1931
1932/*
1933 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1934 * some memory is not offline
1935 */
1936int remove_memory(int nid, u64 start, u64 size)
1937{
1938 int rc;
1939
1940 lock_device_hotplug();
1941 rc = try_remove_memory(nid, start, size);
1942 unlock_device_hotplug();
1943
1944 return rc;
1945}
1946EXPORT_SYMBOL_GPL(remove_memory);
1947
1948static int try_offline_memory_block(struct memory_block *mem, void *arg)
1949{
1950 uint8_t online_type = MMOP_ONLINE_KERNEL;
1951 uint8_t **online_types = arg;
1952 struct page *page;
1953 int rc;
1954
1955 /*
1956 * Sense the online_type via the zone of the memory block. Offlining
1957 * with multiple zones within one memory block will be rejected
1958 * by offlining code ... so we don't care about that.
1959 */
1960 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
1961 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
1962 online_type = MMOP_ONLINE_MOVABLE;
1963
1964 rc = device_offline(&mem->dev);
1965 /*
1966 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
1967 * so try_reonline_memory_block() can do the right thing.
1968 */
1969 if (!rc)
1970 **online_types = online_type;
1971
1972 (*online_types)++;
1973 /* Ignore if already offline. */
1974 return rc < 0 ? rc : 0;
1975}
1976
1977static int try_reonline_memory_block(struct memory_block *mem, void *arg)
1978{
1979 uint8_t **online_types = arg;
1980 int rc;
1981
1982 if (**online_types != MMOP_OFFLINE) {
1983 mem->online_type = **online_types;
1984 rc = device_online(&mem->dev);
1985 if (rc < 0)
1986 pr_warn("%s: Failed to re-online memory: %d",
1987 __func__, rc);
1988 }
1989
1990 /* Continue processing all remaining memory blocks. */
1991 (*online_types)++;
1992 return 0;
1993}
1994
1995/*
1996 * Try to offline and remove memory. Might take a long time to finish in case
1997 * memory is still in use. Primarily useful for memory devices that logically
1998 * unplugged all memory (so it's no longer in use) and want to offline + remove
1999 * that memory.
2000 */
2001int offline_and_remove_memory(int nid, u64 start, u64 size)
2002{
2003 const unsigned long mb_count = size / memory_block_size_bytes();
2004 uint8_t *online_types, *tmp;
2005 int rc;
2006
2007 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2008 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2009 return -EINVAL;
2010
2011 /*
2012 * We'll remember the old online type of each memory block, so we can
2013 * try to revert whatever we did when offlining one memory block fails
2014 * after offlining some others succeeded.
2015 */
2016 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2017 GFP_KERNEL);
2018 if (!online_types)
2019 return -ENOMEM;
2020 /*
2021 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2022 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2023 * try_reonline_memory_block().
2024 */
2025 memset(online_types, MMOP_OFFLINE, mb_count);
2026
2027 lock_device_hotplug();
2028
2029 tmp = online_types;
2030 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2031
2032 /*
2033 * In case we succeeded to offline all memory, remove it.
2034 * This cannot fail as it cannot get onlined in the meantime.
2035 */
2036 if (!rc) {
2037 rc = try_remove_memory(nid, start, size);
2038 if (rc)
2039 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2040 }
2041
2042 /*
2043 * Rollback what we did. While memory onlining might theoretically fail
2044 * (nacked by a notifier), it barely ever happens.
2045 */
2046 if (rc) {
2047 tmp = online_types;
2048 walk_memory_blocks(start, size, &tmp,
2049 try_reonline_memory_block);
2050 }
2051 unlock_device_hotplug();
2052
2053 kfree(online_types);
2054 return rc;
2055}
2056EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2057#endif /* CONFIG_MEMORY_HOTREMOVE */
1/*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7#include <linux/stddef.h>
8#include <linux/mm.h>
9#include <linux/swap.h>
10#include <linux/interrupt.h>
11#include <linux/pagemap.h>
12#include <linux/compiler.h>
13#include <linux/export.h>
14#include <linux/pagevec.h>
15#include <linux/writeback.h>
16#include <linux/slab.h>
17#include <linux/sysctl.h>
18#include <linux/cpu.h>
19#include <linux/memory.h>
20#include <linux/memremap.h>
21#include <linux/memory_hotplug.h>
22#include <linux/highmem.h>
23#include <linux/vmalloc.h>
24#include <linux/ioport.h>
25#include <linux/delay.h>
26#include <linux/migrate.h>
27#include <linux/page-isolation.h>
28#include <linux/pfn.h>
29#include <linux/suspend.h>
30#include <linux/mm_inline.h>
31#include <linux/firmware-map.h>
32#include <linux/stop_machine.h>
33#include <linux/hugetlb.h>
34#include <linux/memblock.h>
35#include <linux/bootmem.h>
36#include <linux/compaction.h>
37
38#include <asm/tlbflush.h>
39
40#include "internal.h"
41
42/*
43 * online_page_callback contains pointer to current page onlining function.
44 * Initially it is generic_online_page(). If it is required it could be
45 * changed by calling set_online_page_callback() for callback registration
46 * and restore_online_page_callback() for generic callback restore.
47 */
48
49static void generic_online_page(struct page *page);
50
51static online_page_callback_t online_page_callback = generic_online_page;
52static DEFINE_MUTEX(online_page_callback_lock);
53
54/* The same as the cpu_hotplug lock, but for memory hotplug. */
55static struct {
56 struct task_struct *active_writer;
57 struct mutex lock; /* Synchronizes accesses to refcount, */
58 /*
59 * Also blocks the new readers during
60 * an ongoing mem hotplug operation.
61 */
62 int refcount;
63
64#ifdef CONFIG_DEBUG_LOCK_ALLOC
65 struct lockdep_map dep_map;
66#endif
67} mem_hotplug = {
68 .active_writer = NULL,
69 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
70 .refcount = 0,
71#ifdef CONFIG_DEBUG_LOCK_ALLOC
72 .dep_map = {.name = "mem_hotplug.lock" },
73#endif
74};
75
76/* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
77#define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
78#define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
79#define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
80
81bool memhp_auto_online;
82EXPORT_SYMBOL_GPL(memhp_auto_online);
83
84void get_online_mems(void)
85{
86 might_sleep();
87 if (mem_hotplug.active_writer == current)
88 return;
89 memhp_lock_acquire_read();
90 mutex_lock(&mem_hotplug.lock);
91 mem_hotplug.refcount++;
92 mutex_unlock(&mem_hotplug.lock);
93
94}
95
96void put_online_mems(void)
97{
98 if (mem_hotplug.active_writer == current)
99 return;
100 mutex_lock(&mem_hotplug.lock);
101
102 if (WARN_ON(!mem_hotplug.refcount))
103 mem_hotplug.refcount++; /* try to fix things up */
104
105 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
106 wake_up_process(mem_hotplug.active_writer);
107 mutex_unlock(&mem_hotplug.lock);
108 memhp_lock_release();
109
110}
111
112void mem_hotplug_begin(void)
113{
114 mem_hotplug.active_writer = current;
115
116 memhp_lock_acquire();
117 for (;;) {
118 mutex_lock(&mem_hotplug.lock);
119 if (likely(!mem_hotplug.refcount))
120 break;
121 __set_current_state(TASK_UNINTERRUPTIBLE);
122 mutex_unlock(&mem_hotplug.lock);
123 schedule();
124 }
125}
126
127void mem_hotplug_done(void)
128{
129 mem_hotplug.active_writer = NULL;
130 mutex_unlock(&mem_hotplug.lock);
131 memhp_lock_release();
132}
133
134/* add this memory to iomem resource */
135static struct resource *register_memory_resource(u64 start, u64 size)
136{
137 struct resource *res;
138 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
139 if (!res)
140 return ERR_PTR(-ENOMEM);
141
142 res->name = "System RAM";
143 res->start = start;
144 res->end = start + size - 1;
145 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
146 if (request_resource(&iomem_resource, res) < 0) {
147 pr_debug("System RAM resource %pR cannot be added\n", res);
148 kfree(res);
149 return ERR_PTR(-EEXIST);
150 }
151 return res;
152}
153
154static void release_memory_resource(struct resource *res)
155{
156 if (!res)
157 return;
158 release_resource(res);
159 kfree(res);
160 return;
161}
162
163#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
164void get_page_bootmem(unsigned long info, struct page *page,
165 unsigned long type)
166{
167 page->lru.next = (struct list_head *) type;
168 SetPagePrivate(page);
169 set_page_private(page, info);
170 page_ref_inc(page);
171}
172
173void put_page_bootmem(struct page *page)
174{
175 unsigned long type;
176
177 type = (unsigned long) page->lru.next;
178 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
179 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
180
181 if (page_ref_dec_return(page) == 1) {
182 ClearPagePrivate(page);
183 set_page_private(page, 0);
184 INIT_LIST_HEAD(&page->lru);
185 free_reserved_page(page);
186 }
187}
188
189#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
190#ifndef CONFIG_SPARSEMEM_VMEMMAP
191static void register_page_bootmem_info_section(unsigned long start_pfn)
192{
193 unsigned long *usemap, mapsize, section_nr, i;
194 struct mem_section *ms;
195 struct page *page, *memmap;
196
197 section_nr = pfn_to_section_nr(start_pfn);
198 ms = __nr_to_section(section_nr);
199
200 /* Get section's memmap address */
201 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
202
203 /*
204 * Get page for the memmap's phys address
205 * XXX: need more consideration for sparse_vmemmap...
206 */
207 page = virt_to_page(memmap);
208 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
209 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
210
211 /* remember memmap's page */
212 for (i = 0; i < mapsize; i++, page++)
213 get_page_bootmem(section_nr, page, SECTION_INFO);
214
215 usemap = __nr_to_section(section_nr)->pageblock_flags;
216 page = virt_to_page(usemap);
217
218 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
219
220 for (i = 0; i < mapsize; i++, page++)
221 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
222
223}
224#else /* CONFIG_SPARSEMEM_VMEMMAP */
225static void register_page_bootmem_info_section(unsigned long start_pfn)
226{
227 unsigned long *usemap, mapsize, section_nr, i;
228 struct mem_section *ms;
229 struct page *page, *memmap;
230
231 if (!pfn_valid(start_pfn))
232 return;
233
234 section_nr = pfn_to_section_nr(start_pfn);
235 ms = __nr_to_section(section_nr);
236
237 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
238
239 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
240
241 usemap = __nr_to_section(section_nr)->pageblock_flags;
242 page = virt_to_page(usemap);
243
244 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
245
246 for (i = 0; i < mapsize; i++, page++)
247 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
248}
249#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
250
251void register_page_bootmem_info_node(struct pglist_data *pgdat)
252{
253 unsigned long i, pfn, end_pfn, nr_pages;
254 int node = pgdat->node_id;
255 struct page *page;
256 struct zone *zone;
257
258 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
259 page = virt_to_page(pgdat);
260
261 for (i = 0; i < nr_pages; i++, page++)
262 get_page_bootmem(node, page, NODE_INFO);
263
264 zone = &pgdat->node_zones[0];
265 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
266 if (zone_is_initialized(zone)) {
267 nr_pages = zone->wait_table_hash_nr_entries
268 * sizeof(wait_queue_head_t);
269 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
270 page = virt_to_page(zone->wait_table);
271
272 for (i = 0; i < nr_pages; i++, page++)
273 get_page_bootmem(node, page, NODE_INFO);
274 }
275 }
276
277 pfn = pgdat->node_start_pfn;
278 end_pfn = pgdat_end_pfn(pgdat);
279
280 /* register section info */
281 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
282 /*
283 * Some platforms can assign the same pfn to multiple nodes - on
284 * node0 as well as nodeN. To avoid registering a pfn against
285 * multiple nodes we check that this pfn does not already
286 * reside in some other nodes.
287 */
288 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
289 register_page_bootmem_info_section(pfn);
290 }
291}
292#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
293
294static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
295 unsigned long end_pfn)
296{
297 unsigned long old_zone_end_pfn;
298
299 zone_span_writelock(zone);
300
301 old_zone_end_pfn = zone_end_pfn(zone);
302 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
303 zone->zone_start_pfn = start_pfn;
304
305 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
306 zone->zone_start_pfn;
307
308 zone_span_writeunlock(zone);
309}
310
311static void resize_zone(struct zone *zone, unsigned long start_pfn,
312 unsigned long end_pfn)
313{
314 zone_span_writelock(zone);
315
316 if (end_pfn - start_pfn) {
317 zone->zone_start_pfn = start_pfn;
318 zone->spanned_pages = end_pfn - start_pfn;
319 } else {
320 /*
321 * make it consist as free_area_init_core(),
322 * if spanned_pages = 0, then keep start_pfn = 0
323 */
324 zone->zone_start_pfn = 0;
325 zone->spanned_pages = 0;
326 }
327
328 zone_span_writeunlock(zone);
329}
330
331static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
332 unsigned long end_pfn)
333{
334 enum zone_type zid = zone_idx(zone);
335 int nid = zone->zone_pgdat->node_id;
336 unsigned long pfn;
337
338 for (pfn = start_pfn; pfn < end_pfn; pfn++)
339 set_page_links(pfn_to_page(pfn), zid, nid, pfn);
340}
341
342/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
343 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
344static int __ref ensure_zone_is_initialized(struct zone *zone,
345 unsigned long start_pfn, unsigned long num_pages)
346{
347 if (!zone_is_initialized(zone))
348 return init_currently_empty_zone(zone, start_pfn, num_pages);
349
350 return 0;
351}
352
353static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
354 unsigned long start_pfn, unsigned long end_pfn)
355{
356 int ret;
357 unsigned long flags;
358 unsigned long z1_start_pfn;
359
360 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
361 if (ret)
362 return ret;
363
364 pgdat_resize_lock(z1->zone_pgdat, &flags);
365
366 /* can't move pfns which are higher than @z2 */
367 if (end_pfn > zone_end_pfn(z2))
368 goto out_fail;
369 /* the move out part must be at the left most of @z2 */
370 if (start_pfn > z2->zone_start_pfn)
371 goto out_fail;
372 /* must included/overlap */
373 if (end_pfn <= z2->zone_start_pfn)
374 goto out_fail;
375
376 /* use start_pfn for z1's start_pfn if z1 is empty */
377 if (!zone_is_empty(z1))
378 z1_start_pfn = z1->zone_start_pfn;
379 else
380 z1_start_pfn = start_pfn;
381
382 resize_zone(z1, z1_start_pfn, end_pfn);
383 resize_zone(z2, end_pfn, zone_end_pfn(z2));
384
385 pgdat_resize_unlock(z1->zone_pgdat, &flags);
386
387 fix_zone_id(z1, start_pfn, end_pfn);
388
389 return 0;
390out_fail:
391 pgdat_resize_unlock(z1->zone_pgdat, &flags);
392 return -1;
393}
394
395static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
396 unsigned long start_pfn, unsigned long end_pfn)
397{
398 int ret;
399 unsigned long flags;
400 unsigned long z2_end_pfn;
401
402 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
403 if (ret)
404 return ret;
405
406 pgdat_resize_lock(z1->zone_pgdat, &flags);
407
408 /* can't move pfns which are lower than @z1 */
409 if (z1->zone_start_pfn > start_pfn)
410 goto out_fail;
411 /* the move out part mast at the right most of @z1 */
412 if (zone_end_pfn(z1) > end_pfn)
413 goto out_fail;
414 /* must included/overlap */
415 if (start_pfn >= zone_end_pfn(z1))
416 goto out_fail;
417
418 /* use end_pfn for z2's end_pfn if z2 is empty */
419 if (!zone_is_empty(z2))
420 z2_end_pfn = zone_end_pfn(z2);
421 else
422 z2_end_pfn = end_pfn;
423
424 resize_zone(z1, z1->zone_start_pfn, start_pfn);
425 resize_zone(z2, start_pfn, z2_end_pfn);
426
427 pgdat_resize_unlock(z1->zone_pgdat, &flags);
428
429 fix_zone_id(z2, start_pfn, end_pfn);
430
431 return 0;
432out_fail:
433 pgdat_resize_unlock(z1->zone_pgdat, &flags);
434 return -1;
435}
436
437static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
438 unsigned long end_pfn)
439{
440 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
441
442 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
443 pgdat->node_start_pfn = start_pfn;
444
445 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
446 pgdat->node_start_pfn;
447}
448
449static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
450{
451 struct pglist_data *pgdat = zone->zone_pgdat;
452 int nr_pages = PAGES_PER_SECTION;
453 int nid = pgdat->node_id;
454 int zone_type;
455 unsigned long flags, pfn;
456 int ret;
457
458 zone_type = zone - pgdat->node_zones;
459 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
460 if (ret)
461 return ret;
462
463 pgdat_resize_lock(zone->zone_pgdat, &flags);
464 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
465 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
466 phys_start_pfn + nr_pages);
467 pgdat_resize_unlock(zone->zone_pgdat, &flags);
468 memmap_init_zone(nr_pages, nid, zone_type,
469 phys_start_pfn, MEMMAP_HOTPLUG);
470
471 /* online_page_range is called later and expects pages reserved */
472 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
473 if (!pfn_valid(pfn))
474 continue;
475
476 SetPageReserved(pfn_to_page(pfn));
477 }
478 return 0;
479}
480
481static int __meminit __add_section(int nid, struct zone *zone,
482 unsigned long phys_start_pfn)
483{
484 int ret;
485
486 if (pfn_valid(phys_start_pfn))
487 return -EEXIST;
488
489 ret = sparse_add_one_section(zone, phys_start_pfn);
490
491 if (ret < 0)
492 return ret;
493
494 ret = __add_zone(zone, phys_start_pfn);
495
496 if (ret < 0)
497 return ret;
498
499 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
500}
501
502/*
503 * Reasonably generic function for adding memory. It is
504 * expected that archs that support memory hotplug will
505 * call this function after deciding the zone to which to
506 * add the new pages.
507 */
508int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
509 unsigned long nr_pages)
510{
511 unsigned long i;
512 int err = 0;
513 int start_sec, end_sec;
514 struct vmem_altmap *altmap;
515
516 clear_zone_contiguous(zone);
517
518 /* during initialize mem_map, align hot-added range to section */
519 start_sec = pfn_to_section_nr(phys_start_pfn);
520 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
521
522 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
523 if (altmap) {
524 /*
525 * Validate altmap is within bounds of the total request
526 */
527 if (altmap->base_pfn != phys_start_pfn
528 || vmem_altmap_offset(altmap) > nr_pages) {
529 pr_warn_once("memory add fail, invalid altmap\n");
530 err = -EINVAL;
531 goto out;
532 }
533 altmap->alloc = 0;
534 }
535
536 for (i = start_sec; i <= end_sec; i++) {
537 err = __add_section(nid, zone, section_nr_to_pfn(i));
538
539 /*
540 * EEXIST is finally dealt with by ioresource collision
541 * check. see add_memory() => register_memory_resource()
542 * Warning will be printed if there is collision.
543 */
544 if (err && (err != -EEXIST))
545 break;
546 err = 0;
547 }
548 vmemmap_populate_print_last();
549out:
550 set_zone_contiguous(zone);
551 return err;
552}
553EXPORT_SYMBOL_GPL(__add_pages);
554
555#ifdef CONFIG_MEMORY_HOTREMOVE
556/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
557static int find_smallest_section_pfn(int nid, struct zone *zone,
558 unsigned long start_pfn,
559 unsigned long end_pfn)
560{
561 struct mem_section *ms;
562
563 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
564 ms = __pfn_to_section(start_pfn);
565
566 if (unlikely(!valid_section(ms)))
567 continue;
568
569 if (unlikely(pfn_to_nid(start_pfn) != nid))
570 continue;
571
572 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
573 continue;
574
575 return start_pfn;
576 }
577
578 return 0;
579}
580
581/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
582static int find_biggest_section_pfn(int nid, struct zone *zone,
583 unsigned long start_pfn,
584 unsigned long end_pfn)
585{
586 struct mem_section *ms;
587 unsigned long pfn;
588
589 /* pfn is the end pfn of a memory section. */
590 pfn = end_pfn - 1;
591 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
592 ms = __pfn_to_section(pfn);
593
594 if (unlikely(!valid_section(ms)))
595 continue;
596
597 if (unlikely(pfn_to_nid(pfn) != nid))
598 continue;
599
600 if (zone && zone != page_zone(pfn_to_page(pfn)))
601 continue;
602
603 return pfn;
604 }
605
606 return 0;
607}
608
609static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
610 unsigned long end_pfn)
611{
612 unsigned long zone_start_pfn = zone->zone_start_pfn;
613 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
614 unsigned long zone_end_pfn = z;
615 unsigned long pfn;
616 struct mem_section *ms;
617 int nid = zone_to_nid(zone);
618
619 zone_span_writelock(zone);
620 if (zone_start_pfn == start_pfn) {
621 /*
622 * If the section is smallest section in the zone, it need
623 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
624 * In this case, we find second smallest valid mem_section
625 * for shrinking zone.
626 */
627 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
628 zone_end_pfn);
629 if (pfn) {
630 zone->zone_start_pfn = pfn;
631 zone->spanned_pages = zone_end_pfn - pfn;
632 }
633 } else if (zone_end_pfn == end_pfn) {
634 /*
635 * If the section is biggest section in the zone, it need
636 * shrink zone->spanned_pages.
637 * In this case, we find second biggest valid mem_section for
638 * shrinking zone.
639 */
640 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
641 start_pfn);
642 if (pfn)
643 zone->spanned_pages = pfn - zone_start_pfn + 1;
644 }
645
646 /*
647 * The section is not biggest or smallest mem_section in the zone, it
648 * only creates a hole in the zone. So in this case, we need not
649 * change the zone. But perhaps, the zone has only hole data. Thus
650 * it check the zone has only hole or not.
651 */
652 pfn = zone_start_pfn;
653 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
654 ms = __pfn_to_section(pfn);
655
656 if (unlikely(!valid_section(ms)))
657 continue;
658
659 if (page_zone(pfn_to_page(pfn)) != zone)
660 continue;
661
662 /* If the section is current section, it continues the loop */
663 if (start_pfn == pfn)
664 continue;
665
666 /* If we find valid section, we have nothing to do */
667 zone_span_writeunlock(zone);
668 return;
669 }
670
671 /* The zone has no valid section */
672 zone->zone_start_pfn = 0;
673 zone->spanned_pages = 0;
674 zone_span_writeunlock(zone);
675}
676
677static void shrink_pgdat_span(struct pglist_data *pgdat,
678 unsigned long start_pfn, unsigned long end_pfn)
679{
680 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
681 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
682 unsigned long pgdat_end_pfn = p;
683 unsigned long pfn;
684 struct mem_section *ms;
685 int nid = pgdat->node_id;
686
687 if (pgdat_start_pfn == start_pfn) {
688 /*
689 * If the section is smallest section in the pgdat, it need
690 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
691 * In this case, we find second smallest valid mem_section
692 * for shrinking zone.
693 */
694 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
695 pgdat_end_pfn);
696 if (pfn) {
697 pgdat->node_start_pfn = pfn;
698 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
699 }
700 } else if (pgdat_end_pfn == end_pfn) {
701 /*
702 * If the section is biggest section in the pgdat, it need
703 * shrink pgdat->node_spanned_pages.
704 * In this case, we find second biggest valid mem_section for
705 * shrinking zone.
706 */
707 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
708 start_pfn);
709 if (pfn)
710 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
711 }
712
713 /*
714 * If the section is not biggest or smallest mem_section in the pgdat,
715 * it only creates a hole in the pgdat. So in this case, we need not
716 * change the pgdat.
717 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
718 * has only hole or not.
719 */
720 pfn = pgdat_start_pfn;
721 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
722 ms = __pfn_to_section(pfn);
723
724 if (unlikely(!valid_section(ms)))
725 continue;
726
727 if (pfn_to_nid(pfn) != nid)
728 continue;
729
730 /* If the section is current section, it continues the loop */
731 if (start_pfn == pfn)
732 continue;
733
734 /* If we find valid section, we have nothing to do */
735 return;
736 }
737
738 /* The pgdat has no valid section */
739 pgdat->node_start_pfn = 0;
740 pgdat->node_spanned_pages = 0;
741}
742
743static void __remove_zone(struct zone *zone, unsigned long start_pfn)
744{
745 struct pglist_data *pgdat = zone->zone_pgdat;
746 int nr_pages = PAGES_PER_SECTION;
747 int zone_type;
748 unsigned long flags;
749
750 zone_type = zone - pgdat->node_zones;
751
752 pgdat_resize_lock(zone->zone_pgdat, &flags);
753 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
754 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
755 pgdat_resize_unlock(zone->zone_pgdat, &flags);
756}
757
758static int __remove_section(struct zone *zone, struct mem_section *ms,
759 unsigned long map_offset)
760{
761 unsigned long start_pfn;
762 int scn_nr;
763 int ret = -EINVAL;
764
765 if (!valid_section(ms))
766 return ret;
767
768 ret = unregister_memory_section(ms);
769 if (ret)
770 return ret;
771
772 scn_nr = __section_nr(ms);
773 start_pfn = section_nr_to_pfn(scn_nr);
774 __remove_zone(zone, start_pfn);
775
776 sparse_remove_one_section(zone, ms, map_offset);
777 return 0;
778}
779
780/**
781 * __remove_pages() - remove sections of pages from a zone
782 * @zone: zone from which pages need to be removed
783 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
784 * @nr_pages: number of pages to remove (must be multiple of section size)
785 *
786 * Generic helper function to remove section mappings and sysfs entries
787 * for the section of the memory we are removing. Caller needs to make
788 * sure that pages are marked reserved and zones are adjust properly by
789 * calling offline_pages().
790 */
791int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
792 unsigned long nr_pages)
793{
794 unsigned long i;
795 unsigned long map_offset = 0;
796 int sections_to_remove, ret = 0;
797
798 /* In the ZONE_DEVICE case device driver owns the memory region */
799 if (is_dev_zone(zone)) {
800 struct page *page = pfn_to_page(phys_start_pfn);
801 struct vmem_altmap *altmap;
802
803 altmap = to_vmem_altmap((unsigned long) page);
804 if (altmap)
805 map_offset = vmem_altmap_offset(altmap);
806 } else {
807 resource_size_t start, size;
808
809 start = phys_start_pfn << PAGE_SHIFT;
810 size = nr_pages * PAGE_SIZE;
811
812 ret = release_mem_region_adjustable(&iomem_resource, start,
813 size);
814 if (ret) {
815 resource_size_t endres = start + size - 1;
816
817 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
818 &start, &endres, ret);
819 }
820 }
821
822 clear_zone_contiguous(zone);
823
824 /*
825 * We can only remove entire sections
826 */
827 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
828 BUG_ON(nr_pages % PAGES_PER_SECTION);
829
830 sections_to_remove = nr_pages / PAGES_PER_SECTION;
831 for (i = 0; i < sections_to_remove; i++) {
832 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
833
834 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
835 map_offset = 0;
836 if (ret)
837 break;
838 }
839
840 set_zone_contiguous(zone);
841
842 return ret;
843}
844EXPORT_SYMBOL_GPL(__remove_pages);
845#endif /* CONFIG_MEMORY_HOTREMOVE */
846
847int set_online_page_callback(online_page_callback_t callback)
848{
849 int rc = -EINVAL;
850
851 get_online_mems();
852 mutex_lock(&online_page_callback_lock);
853
854 if (online_page_callback == generic_online_page) {
855 online_page_callback = callback;
856 rc = 0;
857 }
858
859 mutex_unlock(&online_page_callback_lock);
860 put_online_mems();
861
862 return rc;
863}
864EXPORT_SYMBOL_GPL(set_online_page_callback);
865
866int restore_online_page_callback(online_page_callback_t callback)
867{
868 int rc = -EINVAL;
869
870 get_online_mems();
871 mutex_lock(&online_page_callback_lock);
872
873 if (online_page_callback == callback) {
874 online_page_callback = generic_online_page;
875 rc = 0;
876 }
877
878 mutex_unlock(&online_page_callback_lock);
879 put_online_mems();
880
881 return rc;
882}
883EXPORT_SYMBOL_GPL(restore_online_page_callback);
884
885void __online_page_set_limits(struct page *page)
886{
887}
888EXPORT_SYMBOL_GPL(__online_page_set_limits);
889
890void __online_page_increment_counters(struct page *page)
891{
892 adjust_managed_page_count(page, 1);
893}
894EXPORT_SYMBOL_GPL(__online_page_increment_counters);
895
896void __online_page_free(struct page *page)
897{
898 __free_reserved_page(page);
899}
900EXPORT_SYMBOL_GPL(__online_page_free);
901
902static void generic_online_page(struct page *page)
903{
904 __online_page_set_limits(page);
905 __online_page_increment_counters(page);
906 __online_page_free(page);
907}
908
909static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
910 void *arg)
911{
912 unsigned long i;
913 unsigned long onlined_pages = *(unsigned long *)arg;
914 struct page *page;
915 if (PageReserved(pfn_to_page(start_pfn)))
916 for (i = 0; i < nr_pages; i++) {
917 page = pfn_to_page(start_pfn + i);
918 (*online_page_callback)(page);
919 onlined_pages++;
920 }
921 *(unsigned long *)arg = onlined_pages;
922 return 0;
923}
924
925#ifdef CONFIG_MOVABLE_NODE
926/*
927 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
928 * normal memory.
929 */
930static bool can_online_high_movable(struct zone *zone)
931{
932 return true;
933}
934#else /* CONFIG_MOVABLE_NODE */
935/* ensure every online node has NORMAL memory */
936static bool can_online_high_movable(struct zone *zone)
937{
938 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
939}
940#endif /* CONFIG_MOVABLE_NODE */
941
942/* check which state of node_states will be changed when online memory */
943static void node_states_check_changes_online(unsigned long nr_pages,
944 struct zone *zone, struct memory_notify *arg)
945{
946 int nid = zone_to_nid(zone);
947 enum zone_type zone_last = ZONE_NORMAL;
948
949 /*
950 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
951 * contains nodes which have zones of 0...ZONE_NORMAL,
952 * set zone_last to ZONE_NORMAL.
953 *
954 * If we don't have HIGHMEM nor movable node,
955 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
956 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
957 */
958 if (N_MEMORY == N_NORMAL_MEMORY)
959 zone_last = ZONE_MOVABLE;
960
961 /*
962 * if the memory to be online is in a zone of 0...zone_last, and
963 * the zones of 0...zone_last don't have memory before online, we will
964 * need to set the node to node_states[N_NORMAL_MEMORY] after
965 * the memory is online.
966 */
967 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
968 arg->status_change_nid_normal = nid;
969 else
970 arg->status_change_nid_normal = -1;
971
972#ifdef CONFIG_HIGHMEM
973 /*
974 * If we have movable node, node_states[N_HIGH_MEMORY]
975 * contains nodes which have zones of 0...ZONE_HIGHMEM,
976 * set zone_last to ZONE_HIGHMEM.
977 *
978 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
979 * contains nodes which have zones of 0...ZONE_MOVABLE,
980 * set zone_last to ZONE_MOVABLE.
981 */
982 zone_last = ZONE_HIGHMEM;
983 if (N_MEMORY == N_HIGH_MEMORY)
984 zone_last = ZONE_MOVABLE;
985
986 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
987 arg->status_change_nid_high = nid;
988 else
989 arg->status_change_nid_high = -1;
990#else
991 arg->status_change_nid_high = arg->status_change_nid_normal;
992#endif
993
994 /*
995 * if the node don't have memory befor online, we will need to
996 * set the node to node_states[N_MEMORY] after the memory
997 * is online.
998 */
999 if (!node_state(nid, N_MEMORY))
1000 arg->status_change_nid = nid;
1001 else
1002 arg->status_change_nid = -1;
1003}
1004
1005static void node_states_set_node(int node, struct memory_notify *arg)
1006{
1007 if (arg->status_change_nid_normal >= 0)
1008 node_set_state(node, N_NORMAL_MEMORY);
1009
1010 if (arg->status_change_nid_high >= 0)
1011 node_set_state(node, N_HIGH_MEMORY);
1012
1013 node_set_state(node, N_MEMORY);
1014}
1015
1016
1017/* Must be protected by mem_hotplug_begin() */
1018int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1019{
1020 unsigned long flags;
1021 unsigned long onlined_pages = 0;
1022 struct zone *zone;
1023 int need_zonelists_rebuild = 0;
1024 int nid;
1025 int ret;
1026 struct memory_notify arg;
1027
1028 /*
1029 * This doesn't need a lock to do pfn_to_page().
1030 * The section can't be removed here because of the
1031 * memory_block->state_mutex.
1032 */
1033 zone = page_zone(pfn_to_page(pfn));
1034
1035 if ((zone_idx(zone) > ZONE_NORMAL ||
1036 online_type == MMOP_ONLINE_MOVABLE) &&
1037 !can_online_high_movable(zone))
1038 return -EINVAL;
1039
1040 if (online_type == MMOP_ONLINE_KERNEL &&
1041 zone_idx(zone) == ZONE_MOVABLE) {
1042 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
1043 return -EINVAL;
1044 }
1045 if (online_type == MMOP_ONLINE_MOVABLE &&
1046 zone_idx(zone) == ZONE_MOVABLE - 1) {
1047 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
1048 return -EINVAL;
1049 }
1050
1051 /* Previous code may changed the zone of the pfn range */
1052 zone = page_zone(pfn_to_page(pfn));
1053
1054 arg.start_pfn = pfn;
1055 arg.nr_pages = nr_pages;
1056 node_states_check_changes_online(nr_pages, zone, &arg);
1057
1058 nid = zone_to_nid(zone);
1059
1060 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1061 ret = notifier_to_errno(ret);
1062 if (ret)
1063 goto failed_addition;
1064
1065 /*
1066 * If this zone is not populated, then it is not in zonelist.
1067 * This means the page allocator ignores this zone.
1068 * So, zonelist must be updated after online.
1069 */
1070 mutex_lock(&zonelists_mutex);
1071 if (!populated_zone(zone)) {
1072 need_zonelists_rebuild = 1;
1073 build_all_zonelists(NULL, zone);
1074 }
1075
1076 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1077 online_pages_range);
1078 if (ret) {
1079 if (need_zonelists_rebuild)
1080 zone_pcp_reset(zone);
1081 mutex_unlock(&zonelists_mutex);
1082 goto failed_addition;
1083 }
1084
1085 zone->present_pages += onlined_pages;
1086
1087 pgdat_resize_lock(zone->zone_pgdat, &flags);
1088 zone->zone_pgdat->node_present_pages += onlined_pages;
1089 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1090
1091 if (onlined_pages) {
1092 node_states_set_node(nid, &arg);
1093 if (need_zonelists_rebuild)
1094 build_all_zonelists(NULL, NULL);
1095 else
1096 zone_pcp_update(zone);
1097 }
1098
1099 mutex_unlock(&zonelists_mutex);
1100
1101 init_per_zone_wmark_min();
1102
1103 if (onlined_pages) {
1104 kswapd_run(nid);
1105 kcompactd_run(nid);
1106 }
1107
1108 vm_total_pages = nr_free_pagecache_pages();
1109
1110 writeback_set_ratelimit();
1111
1112 if (onlined_pages)
1113 memory_notify(MEM_ONLINE, &arg);
1114 return 0;
1115
1116failed_addition:
1117 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1118 (unsigned long long) pfn << PAGE_SHIFT,
1119 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1120 memory_notify(MEM_CANCEL_ONLINE, &arg);
1121 return ret;
1122}
1123#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1124
1125static void reset_node_present_pages(pg_data_t *pgdat)
1126{
1127 struct zone *z;
1128
1129 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1130 z->present_pages = 0;
1131
1132 pgdat->node_present_pages = 0;
1133}
1134
1135/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1136static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1137{
1138 struct pglist_data *pgdat;
1139 unsigned long zones_size[MAX_NR_ZONES] = {0};
1140 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1141 unsigned long start_pfn = PFN_DOWN(start);
1142
1143 pgdat = NODE_DATA(nid);
1144 if (!pgdat) {
1145 pgdat = arch_alloc_nodedata(nid);
1146 if (!pgdat)
1147 return NULL;
1148
1149 arch_refresh_nodedata(nid, pgdat);
1150 } else {
1151 /* Reset the nr_zones and classzone_idx to 0 before reuse */
1152 pgdat->nr_zones = 0;
1153 pgdat->classzone_idx = 0;
1154 }
1155
1156 /* we can use NODE_DATA(nid) from here */
1157
1158 /* init node's zones as empty zones, we don't have any present pages.*/
1159 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1160
1161 /*
1162 * The node we allocated has no zone fallback lists. For avoiding
1163 * to access not-initialized zonelist, build here.
1164 */
1165 mutex_lock(&zonelists_mutex);
1166 build_all_zonelists(pgdat, NULL);
1167 mutex_unlock(&zonelists_mutex);
1168
1169 /*
1170 * zone->managed_pages is set to an approximate value in
1171 * free_area_init_core(), which will cause
1172 * /sys/device/system/node/nodeX/meminfo has wrong data.
1173 * So reset it to 0 before any memory is onlined.
1174 */
1175 reset_node_managed_pages(pgdat);
1176
1177 /*
1178 * When memory is hot-added, all the memory is in offline state. So
1179 * clear all zones' present_pages because they will be updated in
1180 * online_pages() and offline_pages().
1181 */
1182 reset_node_present_pages(pgdat);
1183
1184 return pgdat;
1185}
1186
1187static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1188{
1189 arch_refresh_nodedata(nid, NULL);
1190 arch_free_nodedata(pgdat);
1191 return;
1192}
1193
1194
1195/**
1196 * try_online_node - online a node if offlined
1197 *
1198 * called by cpu_up() to online a node without onlined memory.
1199 */
1200int try_online_node(int nid)
1201{
1202 pg_data_t *pgdat;
1203 int ret;
1204
1205 if (node_online(nid))
1206 return 0;
1207
1208 mem_hotplug_begin();
1209 pgdat = hotadd_new_pgdat(nid, 0);
1210 if (!pgdat) {
1211 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1212 ret = -ENOMEM;
1213 goto out;
1214 }
1215 node_set_online(nid);
1216 ret = register_one_node(nid);
1217 BUG_ON(ret);
1218
1219 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1220 mutex_lock(&zonelists_mutex);
1221 build_all_zonelists(NULL, NULL);
1222 mutex_unlock(&zonelists_mutex);
1223 }
1224
1225out:
1226 mem_hotplug_done();
1227 return ret;
1228}
1229
1230static int check_hotplug_memory_range(u64 start, u64 size)
1231{
1232 u64 start_pfn = PFN_DOWN(start);
1233 u64 nr_pages = size >> PAGE_SHIFT;
1234
1235 /* Memory range must be aligned with section */
1236 if ((start_pfn & ~PAGE_SECTION_MASK) ||
1237 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1238 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1239 (unsigned long long)start,
1240 (unsigned long long)size);
1241 return -EINVAL;
1242 }
1243
1244 return 0;
1245}
1246
1247/*
1248 * If movable zone has already been setup, newly added memory should be check.
1249 * If its address is higher than movable zone, it should be added as movable.
1250 * Without this check, movable zone may overlap with other zone.
1251 */
1252static int should_add_memory_movable(int nid, u64 start, u64 size)
1253{
1254 unsigned long start_pfn = start >> PAGE_SHIFT;
1255 pg_data_t *pgdat = NODE_DATA(nid);
1256 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1257
1258 if (zone_is_empty(movable_zone))
1259 return 0;
1260
1261 if (movable_zone->zone_start_pfn <= start_pfn)
1262 return 1;
1263
1264 return 0;
1265}
1266
1267int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1268 bool for_device)
1269{
1270#ifdef CONFIG_ZONE_DEVICE
1271 if (for_device)
1272 return ZONE_DEVICE;
1273#endif
1274 if (should_add_memory_movable(nid, start, size))
1275 return ZONE_MOVABLE;
1276
1277 return zone_default;
1278}
1279
1280static int online_memory_block(struct memory_block *mem, void *arg)
1281{
1282 return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
1283}
1284
1285/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1286int __ref add_memory_resource(int nid, struct resource *res, bool online)
1287{
1288 u64 start, size;
1289 pg_data_t *pgdat = NULL;
1290 bool new_pgdat;
1291 bool new_node;
1292 int ret;
1293
1294 start = res->start;
1295 size = resource_size(res);
1296
1297 ret = check_hotplug_memory_range(start, size);
1298 if (ret)
1299 return ret;
1300
1301 { /* Stupid hack to suppress address-never-null warning */
1302 void *p = NODE_DATA(nid);
1303 new_pgdat = !p;
1304 }
1305
1306 mem_hotplug_begin();
1307
1308 /*
1309 * Add new range to memblock so that when hotadd_new_pgdat() is called
1310 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1311 * this new range and calculate total pages correctly. The range will
1312 * be removed at hot-remove time.
1313 */
1314 memblock_add_node(start, size, nid);
1315
1316 new_node = !node_online(nid);
1317 if (new_node) {
1318 pgdat = hotadd_new_pgdat(nid, start);
1319 ret = -ENOMEM;
1320 if (!pgdat)
1321 goto error;
1322 }
1323
1324 /* call arch's memory hotadd */
1325 ret = arch_add_memory(nid, start, size, false);
1326
1327 if (ret < 0)
1328 goto error;
1329
1330 /* we online node here. we can't roll back from here. */
1331 node_set_online(nid);
1332
1333 if (new_node) {
1334 ret = register_one_node(nid);
1335 /*
1336 * If sysfs file of new node can't create, cpu on the node
1337 * can't be hot-added. There is no rollback way now.
1338 * So, check by BUG_ON() to catch it reluctantly..
1339 */
1340 BUG_ON(ret);
1341 }
1342
1343 /* create new memmap entry */
1344 firmware_map_add_hotplug(start, start + size, "System RAM");
1345
1346 /* online pages if requested */
1347 if (online)
1348 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1349 NULL, online_memory_block);
1350
1351 goto out;
1352
1353error:
1354 /* rollback pgdat allocation and others */
1355 if (new_pgdat)
1356 rollback_node_hotadd(nid, pgdat);
1357 memblock_remove(start, size);
1358
1359out:
1360 mem_hotplug_done();
1361 return ret;
1362}
1363EXPORT_SYMBOL_GPL(add_memory_resource);
1364
1365int __ref add_memory(int nid, u64 start, u64 size)
1366{
1367 struct resource *res;
1368 int ret;
1369
1370 res = register_memory_resource(start, size);
1371 if (IS_ERR(res))
1372 return PTR_ERR(res);
1373
1374 ret = add_memory_resource(nid, res, memhp_auto_online);
1375 if (ret < 0)
1376 release_memory_resource(res);
1377 return ret;
1378}
1379EXPORT_SYMBOL_GPL(add_memory);
1380
1381#ifdef CONFIG_MEMORY_HOTREMOVE
1382/*
1383 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1384 * set and the size of the free page is given by page_order(). Using this,
1385 * the function determines if the pageblock contains only free pages.
1386 * Due to buddy contraints, a free page at least the size of a pageblock will
1387 * be located at the start of the pageblock
1388 */
1389static inline int pageblock_free(struct page *page)
1390{
1391 return PageBuddy(page) && page_order(page) >= pageblock_order;
1392}
1393
1394/* Return the start of the next active pageblock after a given page */
1395static struct page *next_active_pageblock(struct page *page)
1396{
1397 /* Ensure the starting page is pageblock-aligned */
1398 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1399
1400 /* If the entire pageblock is free, move to the end of free page */
1401 if (pageblock_free(page)) {
1402 int order;
1403 /* be careful. we don't have locks, page_order can be changed.*/
1404 order = page_order(page);
1405 if ((order < MAX_ORDER) && (order >= pageblock_order))
1406 return page + (1 << order);
1407 }
1408
1409 return page + pageblock_nr_pages;
1410}
1411
1412/* Checks if this range of memory is likely to be hot-removable. */
1413int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1414{
1415 struct page *page = pfn_to_page(start_pfn);
1416 struct page *end_page = page + nr_pages;
1417
1418 /* Check the starting page of each pageblock within the range */
1419 for (; page < end_page; page = next_active_pageblock(page)) {
1420 if (!is_pageblock_removable_nolock(page))
1421 return 0;
1422 cond_resched();
1423 }
1424
1425 /* All pageblocks in the memory block are likely to be hot-removable */
1426 return 1;
1427}
1428
1429/*
1430 * Confirm all pages in a range [start, end) is belongs to the same zone.
1431 */
1432int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1433{
1434 unsigned long pfn, sec_end_pfn;
1435 struct zone *zone = NULL;
1436 struct page *page;
1437 int i;
1438 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1439 pfn < end_pfn;
1440 pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1441 /* Make sure the memory section is present first */
1442 if (!present_section_nr(pfn_to_section_nr(pfn)))
1443 continue;
1444 for (; pfn < sec_end_pfn && pfn < end_pfn;
1445 pfn += MAX_ORDER_NR_PAGES) {
1446 i = 0;
1447 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1448 while ((i < MAX_ORDER_NR_PAGES) &&
1449 !pfn_valid_within(pfn + i))
1450 i++;
1451 if (i == MAX_ORDER_NR_PAGES)
1452 continue;
1453 page = pfn_to_page(pfn + i);
1454 if (zone && page_zone(page) != zone)
1455 return 0;
1456 zone = page_zone(page);
1457 }
1458 }
1459 return 1;
1460}
1461
1462/*
1463 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1464 * and hugepages). We scan pfn because it's much easier than scanning over
1465 * linked list. This function returns the pfn of the first found movable
1466 * page if it's found, otherwise 0.
1467 */
1468static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1469{
1470 unsigned long pfn;
1471 struct page *page;
1472 for (pfn = start; pfn < end; pfn++) {
1473 if (pfn_valid(pfn)) {
1474 page = pfn_to_page(pfn);
1475 if (PageLRU(page))
1476 return pfn;
1477 if (PageHuge(page)) {
1478 if (page_huge_active(page))
1479 return pfn;
1480 else
1481 pfn = round_up(pfn + 1,
1482 1 << compound_order(page)) - 1;
1483 }
1484 }
1485 }
1486 return 0;
1487}
1488
1489#define NR_OFFLINE_AT_ONCE_PAGES (256)
1490static int
1491do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1492{
1493 unsigned long pfn;
1494 struct page *page;
1495 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1496 int not_managed = 0;
1497 int ret = 0;
1498 LIST_HEAD(source);
1499
1500 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1501 if (!pfn_valid(pfn))
1502 continue;
1503 page = pfn_to_page(pfn);
1504
1505 if (PageHuge(page)) {
1506 struct page *head = compound_head(page);
1507 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1508 if (compound_order(head) > PFN_SECTION_SHIFT) {
1509 ret = -EBUSY;
1510 break;
1511 }
1512 if (isolate_huge_page(page, &source))
1513 move_pages -= 1 << compound_order(head);
1514 continue;
1515 }
1516
1517 if (!get_page_unless_zero(page))
1518 continue;
1519 /*
1520 * We can skip free pages. And we can only deal with pages on
1521 * LRU.
1522 */
1523 ret = isolate_lru_page(page);
1524 if (!ret) { /* Success */
1525 put_page(page);
1526 list_add_tail(&page->lru, &source);
1527 move_pages--;
1528 inc_zone_page_state(page, NR_ISOLATED_ANON +
1529 page_is_file_cache(page));
1530
1531 } else {
1532#ifdef CONFIG_DEBUG_VM
1533 pr_alert("removing pfn %lx from LRU failed\n", pfn);
1534 dump_page(page, "failed to remove from LRU");
1535#endif
1536 put_page(page);
1537 /* Because we don't have big zone->lock. we should
1538 check this again here. */
1539 if (page_count(page)) {
1540 not_managed++;
1541 ret = -EBUSY;
1542 break;
1543 }
1544 }
1545 }
1546 if (!list_empty(&source)) {
1547 if (not_managed) {
1548 putback_movable_pages(&source);
1549 goto out;
1550 }
1551
1552 /*
1553 * alloc_migrate_target should be improooooved!!
1554 * migrate_pages returns # of failed pages.
1555 */
1556 ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1557 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1558 if (ret)
1559 putback_movable_pages(&source);
1560 }
1561out:
1562 return ret;
1563}
1564
1565/*
1566 * remove from free_area[] and mark all as Reserved.
1567 */
1568static int
1569offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1570 void *data)
1571{
1572 __offline_isolated_pages(start, start + nr_pages);
1573 return 0;
1574}
1575
1576static void
1577offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1578{
1579 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1580 offline_isolated_pages_cb);
1581}
1582
1583/*
1584 * Check all pages in range, recoreded as memory resource, are isolated.
1585 */
1586static int
1587check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1588 void *data)
1589{
1590 int ret;
1591 long offlined = *(long *)data;
1592 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1593 offlined = nr_pages;
1594 if (!ret)
1595 *(long *)data += offlined;
1596 return ret;
1597}
1598
1599static long
1600check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1601{
1602 long offlined = 0;
1603 int ret;
1604
1605 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1606 check_pages_isolated_cb);
1607 if (ret < 0)
1608 offlined = (long)ret;
1609 return offlined;
1610}
1611
1612#ifdef CONFIG_MOVABLE_NODE
1613/*
1614 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1615 * normal memory.
1616 */
1617static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1618{
1619 return true;
1620}
1621#else /* CONFIG_MOVABLE_NODE */
1622/* ensure the node has NORMAL memory if it is still online */
1623static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1624{
1625 struct pglist_data *pgdat = zone->zone_pgdat;
1626 unsigned long present_pages = 0;
1627 enum zone_type zt;
1628
1629 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1630 present_pages += pgdat->node_zones[zt].present_pages;
1631
1632 if (present_pages > nr_pages)
1633 return true;
1634
1635 present_pages = 0;
1636 for (; zt <= ZONE_MOVABLE; zt++)
1637 present_pages += pgdat->node_zones[zt].present_pages;
1638
1639 /*
1640 * we can't offline the last normal memory until all
1641 * higher memory is offlined.
1642 */
1643 return present_pages == 0;
1644}
1645#endif /* CONFIG_MOVABLE_NODE */
1646
1647static int __init cmdline_parse_movable_node(char *p)
1648{
1649#ifdef CONFIG_MOVABLE_NODE
1650 /*
1651 * Memory used by the kernel cannot be hot-removed because Linux
1652 * cannot migrate the kernel pages. When memory hotplug is
1653 * enabled, we should prevent memblock from allocating memory
1654 * for the kernel.
1655 *
1656 * ACPI SRAT records all hotpluggable memory ranges. But before
1657 * SRAT is parsed, we don't know about it.
1658 *
1659 * The kernel image is loaded into memory at very early time. We
1660 * cannot prevent this anyway. So on NUMA system, we set any
1661 * node the kernel resides in as un-hotpluggable.
1662 *
1663 * Since on modern servers, one node could have double-digit
1664 * gigabytes memory, we can assume the memory around the kernel
1665 * image is also un-hotpluggable. So before SRAT is parsed, just
1666 * allocate memory near the kernel image to try the best to keep
1667 * the kernel away from hotpluggable memory.
1668 */
1669 memblock_set_bottom_up(true);
1670 movable_node_enabled = true;
1671#else
1672 pr_warn("movable_node option not supported\n");
1673#endif
1674 return 0;
1675}
1676early_param("movable_node", cmdline_parse_movable_node);
1677
1678/* check which state of node_states will be changed when offline memory */
1679static void node_states_check_changes_offline(unsigned long nr_pages,
1680 struct zone *zone, struct memory_notify *arg)
1681{
1682 struct pglist_data *pgdat = zone->zone_pgdat;
1683 unsigned long present_pages = 0;
1684 enum zone_type zt, zone_last = ZONE_NORMAL;
1685
1686 /*
1687 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1688 * contains nodes which have zones of 0...ZONE_NORMAL,
1689 * set zone_last to ZONE_NORMAL.
1690 *
1691 * If we don't have HIGHMEM nor movable node,
1692 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1693 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1694 */
1695 if (N_MEMORY == N_NORMAL_MEMORY)
1696 zone_last = ZONE_MOVABLE;
1697
1698 /*
1699 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1700 * If the memory to be offline is in a zone of 0...zone_last,
1701 * and it is the last present memory, 0...zone_last will
1702 * become empty after offline , thus we can determind we will
1703 * need to clear the node from node_states[N_NORMAL_MEMORY].
1704 */
1705 for (zt = 0; zt <= zone_last; zt++)
1706 present_pages += pgdat->node_zones[zt].present_pages;
1707 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1708 arg->status_change_nid_normal = zone_to_nid(zone);
1709 else
1710 arg->status_change_nid_normal = -1;
1711
1712#ifdef CONFIG_HIGHMEM
1713 /*
1714 * If we have movable node, node_states[N_HIGH_MEMORY]
1715 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1716 * set zone_last to ZONE_HIGHMEM.
1717 *
1718 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1719 * contains nodes which have zones of 0...ZONE_MOVABLE,
1720 * set zone_last to ZONE_MOVABLE.
1721 */
1722 zone_last = ZONE_HIGHMEM;
1723 if (N_MEMORY == N_HIGH_MEMORY)
1724 zone_last = ZONE_MOVABLE;
1725
1726 for (; zt <= zone_last; zt++)
1727 present_pages += pgdat->node_zones[zt].present_pages;
1728 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1729 arg->status_change_nid_high = zone_to_nid(zone);
1730 else
1731 arg->status_change_nid_high = -1;
1732#else
1733 arg->status_change_nid_high = arg->status_change_nid_normal;
1734#endif
1735
1736 /*
1737 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1738 */
1739 zone_last = ZONE_MOVABLE;
1740
1741 /*
1742 * check whether node_states[N_HIGH_MEMORY] will be changed
1743 * If we try to offline the last present @nr_pages from the node,
1744 * we can determind we will need to clear the node from
1745 * node_states[N_HIGH_MEMORY].
1746 */
1747 for (; zt <= zone_last; zt++)
1748 present_pages += pgdat->node_zones[zt].present_pages;
1749 if (nr_pages >= present_pages)
1750 arg->status_change_nid = zone_to_nid(zone);
1751 else
1752 arg->status_change_nid = -1;
1753}
1754
1755static void node_states_clear_node(int node, struct memory_notify *arg)
1756{
1757 if (arg->status_change_nid_normal >= 0)
1758 node_clear_state(node, N_NORMAL_MEMORY);
1759
1760 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1761 (arg->status_change_nid_high >= 0))
1762 node_clear_state(node, N_HIGH_MEMORY);
1763
1764 if ((N_MEMORY != N_HIGH_MEMORY) &&
1765 (arg->status_change_nid >= 0))
1766 node_clear_state(node, N_MEMORY);
1767}
1768
1769static int __ref __offline_pages(unsigned long start_pfn,
1770 unsigned long end_pfn, unsigned long timeout)
1771{
1772 unsigned long pfn, nr_pages, expire;
1773 long offlined_pages;
1774 int ret, drain, retry_max, node;
1775 unsigned long flags;
1776 struct zone *zone;
1777 struct memory_notify arg;
1778
1779 /* at least, alignment against pageblock is necessary */
1780 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1781 return -EINVAL;
1782 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1783 return -EINVAL;
1784 /* This makes hotplug much easier...and readable.
1785 we assume this for now. .*/
1786 if (!test_pages_in_a_zone(start_pfn, end_pfn))
1787 return -EINVAL;
1788
1789 zone = page_zone(pfn_to_page(start_pfn));
1790 node = zone_to_nid(zone);
1791 nr_pages = end_pfn - start_pfn;
1792
1793 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1794 return -EINVAL;
1795
1796 /* set above range as isolated */
1797 ret = start_isolate_page_range(start_pfn, end_pfn,
1798 MIGRATE_MOVABLE, true);
1799 if (ret)
1800 return ret;
1801
1802 arg.start_pfn = start_pfn;
1803 arg.nr_pages = nr_pages;
1804 node_states_check_changes_offline(nr_pages, zone, &arg);
1805
1806 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1807 ret = notifier_to_errno(ret);
1808 if (ret)
1809 goto failed_removal;
1810
1811 pfn = start_pfn;
1812 expire = jiffies + timeout;
1813 drain = 0;
1814 retry_max = 5;
1815repeat:
1816 /* start memory hot removal */
1817 ret = -EAGAIN;
1818 if (time_after(jiffies, expire))
1819 goto failed_removal;
1820 ret = -EINTR;
1821 if (signal_pending(current))
1822 goto failed_removal;
1823 ret = 0;
1824 if (drain) {
1825 lru_add_drain_all();
1826 cond_resched();
1827 drain_all_pages(zone);
1828 }
1829
1830 pfn = scan_movable_pages(start_pfn, end_pfn);
1831 if (pfn) { /* We have movable pages */
1832 ret = do_migrate_range(pfn, end_pfn);
1833 if (!ret) {
1834 drain = 1;
1835 goto repeat;
1836 } else {
1837 if (ret < 0)
1838 if (--retry_max == 0)
1839 goto failed_removal;
1840 yield();
1841 drain = 1;
1842 goto repeat;
1843 }
1844 }
1845 /* drain all zone's lru pagevec, this is asynchronous... */
1846 lru_add_drain_all();
1847 yield();
1848 /* drain pcp pages, this is synchronous. */
1849 drain_all_pages(zone);
1850 /*
1851 * dissolve free hugepages in the memory block before doing offlining
1852 * actually in order to make hugetlbfs's object counting consistent.
1853 */
1854 dissolve_free_huge_pages(start_pfn, end_pfn);
1855 /* check again */
1856 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1857 if (offlined_pages < 0) {
1858 ret = -EBUSY;
1859 goto failed_removal;
1860 }
1861 pr_info("Offlined Pages %ld\n", offlined_pages);
1862 /* Ok, all of our target is isolated.
1863 We cannot do rollback at this point. */
1864 offline_isolated_pages(start_pfn, end_pfn);
1865 /* reset pagetype flags and makes migrate type to be MOVABLE */
1866 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1867 /* removal success */
1868 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1869 zone->present_pages -= offlined_pages;
1870
1871 pgdat_resize_lock(zone->zone_pgdat, &flags);
1872 zone->zone_pgdat->node_present_pages -= offlined_pages;
1873 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1874
1875 init_per_zone_wmark_min();
1876
1877 if (!populated_zone(zone)) {
1878 zone_pcp_reset(zone);
1879 mutex_lock(&zonelists_mutex);
1880 build_all_zonelists(NULL, NULL);
1881 mutex_unlock(&zonelists_mutex);
1882 } else
1883 zone_pcp_update(zone);
1884
1885 node_states_clear_node(node, &arg);
1886 if (arg.status_change_nid >= 0) {
1887 kswapd_stop(node);
1888 kcompactd_stop(node);
1889 }
1890
1891 vm_total_pages = nr_free_pagecache_pages();
1892 writeback_set_ratelimit();
1893
1894 memory_notify(MEM_OFFLINE, &arg);
1895 return 0;
1896
1897failed_removal:
1898 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1899 (unsigned long long) start_pfn << PAGE_SHIFT,
1900 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1901 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1902 /* pushback to free area */
1903 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1904 return ret;
1905}
1906
1907/* Must be protected by mem_hotplug_begin() */
1908int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1909{
1910 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1911}
1912#endif /* CONFIG_MEMORY_HOTREMOVE */
1913
1914/**
1915 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1916 * @start_pfn: start pfn of the memory range
1917 * @end_pfn: end pfn of the memory range
1918 * @arg: argument passed to func
1919 * @func: callback for each memory section walked
1920 *
1921 * This function walks through all present mem sections in range
1922 * [start_pfn, end_pfn) and call func on each mem section.
1923 *
1924 * Returns the return value of func.
1925 */
1926int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1927 void *arg, int (*func)(struct memory_block *, void *))
1928{
1929 struct memory_block *mem = NULL;
1930 struct mem_section *section;
1931 unsigned long pfn, section_nr;
1932 int ret;
1933
1934 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1935 section_nr = pfn_to_section_nr(pfn);
1936 if (!present_section_nr(section_nr))
1937 continue;
1938
1939 section = __nr_to_section(section_nr);
1940 /* same memblock? */
1941 if (mem)
1942 if ((section_nr >= mem->start_section_nr) &&
1943 (section_nr <= mem->end_section_nr))
1944 continue;
1945
1946 mem = find_memory_block_hinted(section, mem);
1947 if (!mem)
1948 continue;
1949
1950 ret = func(mem, arg);
1951 if (ret) {
1952 kobject_put(&mem->dev.kobj);
1953 return ret;
1954 }
1955 }
1956
1957 if (mem)
1958 kobject_put(&mem->dev.kobj);
1959
1960 return 0;
1961}
1962
1963#ifdef CONFIG_MEMORY_HOTREMOVE
1964static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1965{
1966 int ret = !is_memblock_offlined(mem);
1967
1968 if (unlikely(ret)) {
1969 phys_addr_t beginpa, endpa;
1970
1971 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1972 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1973 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1974 &beginpa, &endpa);
1975 }
1976
1977 return ret;
1978}
1979
1980static int check_cpu_on_node(pg_data_t *pgdat)
1981{
1982 int cpu;
1983
1984 for_each_present_cpu(cpu) {
1985 if (cpu_to_node(cpu) == pgdat->node_id)
1986 /*
1987 * the cpu on this node isn't removed, and we can't
1988 * offline this node.
1989 */
1990 return -EBUSY;
1991 }
1992
1993 return 0;
1994}
1995
1996static void unmap_cpu_on_node(pg_data_t *pgdat)
1997{
1998#ifdef CONFIG_ACPI_NUMA
1999 int cpu;
2000
2001 for_each_possible_cpu(cpu)
2002 if (cpu_to_node(cpu) == pgdat->node_id)
2003 numa_clear_node(cpu);
2004#endif
2005}
2006
2007static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2008{
2009 int ret;
2010
2011 ret = check_cpu_on_node(pgdat);
2012 if (ret)
2013 return ret;
2014
2015 /*
2016 * the node will be offlined when we come here, so we can clear
2017 * the cpu_to_node() now.
2018 */
2019
2020 unmap_cpu_on_node(pgdat);
2021 return 0;
2022}
2023
2024/**
2025 * try_offline_node
2026 *
2027 * Offline a node if all memory sections and cpus of the node are removed.
2028 *
2029 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2030 * and online/offline operations before this call.
2031 */
2032void try_offline_node(int nid)
2033{
2034 pg_data_t *pgdat = NODE_DATA(nid);
2035 unsigned long start_pfn = pgdat->node_start_pfn;
2036 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2037 unsigned long pfn;
2038 int i;
2039
2040 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2041 unsigned long section_nr = pfn_to_section_nr(pfn);
2042
2043 if (!present_section_nr(section_nr))
2044 continue;
2045
2046 if (pfn_to_nid(pfn) != nid)
2047 continue;
2048
2049 /*
2050 * some memory sections of this node are not removed, and we
2051 * can't offline node now.
2052 */
2053 return;
2054 }
2055
2056 if (check_and_unmap_cpu_on_node(pgdat))
2057 return;
2058
2059 /*
2060 * all memory/cpu of this node are removed, we can offline this
2061 * node now.
2062 */
2063 node_set_offline(nid);
2064 unregister_one_node(nid);
2065
2066 /* free waittable in each zone */
2067 for (i = 0; i < MAX_NR_ZONES; i++) {
2068 struct zone *zone = pgdat->node_zones + i;
2069
2070 /*
2071 * wait_table may be allocated from boot memory,
2072 * here only free if it's allocated by vmalloc.
2073 */
2074 if (is_vmalloc_addr(zone->wait_table)) {
2075 vfree(zone->wait_table);
2076 zone->wait_table = NULL;
2077 }
2078 }
2079}
2080EXPORT_SYMBOL(try_offline_node);
2081
2082/**
2083 * remove_memory
2084 *
2085 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2086 * and online/offline operations before this call, as required by
2087 * try_offline_node().
2088 */
2089void __ref remove_memory(int nid, u64 start, u64 size)
2090{
2091 int ret;
2092
2093 BUG_ON(check_hotplug_memory_range(start, size));
2094
2095 mem_hotplug_begin();
2096
2097 /*
2098 * All memory blocks must be offlined before removing memory. Check
2099 * whether all memory blocks in question are offline and trigger a BUG()
2100 * if this is not the case.
2101 */
2102 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2103 check_memblock_offlined_cb);
2104 if (ret)
2105 BUG();
2106
2107 /* remove memmap entry */
2108 firmware_map_remove(start, start + size, "System RAM");
2109 memblock_free(start, size);
2110 memblock_remove(start, size);
2111
2112 arch_remove_memory(start, size);
2113
2114 try_offline_node(nid);
2115
2116 mem_hotplug_done();
2117}
2118EXPORT_SYMBOL_GPL(remove_memory);
2119#endif /* CONFIG_MEMORY_HOTREMOVE */