Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory_hotplug.c
   4 *
   5 *  Copyright (C)
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/swap.h>
  12#include <linux/interrupt.h>
  13#include <linux/pagemap.h>
  14#include <linux/compiler.h>
  15#include <linux/export.h>
  16#include <linux/pagevec.h>
  17#include <linux/writeback.h>
  18#include <linux/slab.h>
  19#include <linux/sysctl.h>
  20#include <linux/cpu.h>
  21#include <linux/memory.h>
  22#include <linux/memremap.h>
  23#include <linux/memory_hotplug.h>
  24#include <linux/highmem.h>
  25#include <linux/vmalloc.h>
  26#include <linux/ioport.h>
  27#include <linux/delay.h>
  28#include <linux/migrate.h>
  29#include <linux/page-isolation.h>
  30#include <linux/pfn.h>
  31#include <linux/suspend.h>
  32#include <linux/mm_inline.h>
  33#include <linux/firmware-map.h>
  34#include <linux/stop_machine.h>
  35#include <linux/hugetlb.h>
  36#include <linux/memblock.h>
  37#include <linux/compaction.h>
  38#include <linux/rmap.h>
  39
  40#include <asm/tlbflush.h>
  41
  42#include "internal.h"
  43#include "shuffle.h"
  44
  45
  46/*
  47 * memory_hotplug.memmap_on_memory parameter
  48 */
  49static bool memmap_on_memory __ro_after_init;
  50#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
  51module_param(memmap_on_memory, bool, 0444);
  52MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
  53#endif
  54
  55/*
  56 * online_page_callback contains pointer to current page onlining function.
  57 * Initially it is generic_online_page(). If it is required it could be
  58 * changed by calling set_online_page_callback() for callback registration
  59 * and restore_online_page_callback() for generic callback restore.
  60 */
  61
 
 
  62static online_page_callback_t online_page_callback = generic_online_page;
  63static DEFINE_MUTEX(online_page_callback_lock);
  64
  65DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
  66
  67void get_online_mems(void)
  68{
  69	percpu_down_read(&mem_hotplug_lock);
  70}
  71
  72void put_online_mems(void)
  73{
  74	percpu_up_read(&mem_hotplug_lock);
  75}
  76
  77bool movable_node_enabled = false;
  78
  79#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
  80int mhp_default_online_type = MMOP_OFFLINE;
  81#else
  82int mhp_default_online_type = MMOP_ONLINE;
  83#endif
  84
  85static int __init setup_memhp_default_state(char *str)
  86{
  87	const int online_type = mhp_online_type_from_str(str);
  88
  89	if (online_type >= 0)
  90		mhp_default_online_type = online_type;
  91
  92	return 1;
 
 
 
 
 
 
 
 
 
  93}
  94__setup("memhp_default_state=", setup_memhp_default_state);
  95
  96void mem_hotplug_begin(void)
  97{
  98	cpus_read_lock();
  99	percpu_down_write(&mem_hotplug_lock);
 
 
 
 100}
 101
 102void mem_hotplug_done(void)
 
 
 103{
 104	percpu_up_write(&mem_hotplug_lock);
 105	cpus_read_unlock();
 
 
 106}
 107
 108u64 max_mem_size = U64_MAX;
 
 
 109
 110/* add this memory to iomem resource */
 111static struct resource *register_memory_resource(u64 start, u64 size,
 112						 const char *resource_name)
 
 
 
 
 
 
 
 
 
 
 
 
 113{
 114	struct resource *res;
 115	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 
 116
 117	if (strcmp(resource_name, "System RAM"))
 118		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
 119
 120	if (!mhp_range_allowed(start, size, true))
 121		return ERR_PTR(-E2BIG);
 122
 123	/*
 124	 * Make sure value parsed from 'mem=' only restricts memory adding
 125	 * while booting, so that memory hotplug won't be impacted. Please
 126	 * refer to document of 'mem=' in kernel-parameters.txt for more
 127	 * details.
 128	 */
 129	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
 130		return ERR_PTR(-E2BIG);
 
 131
 132	/*
 133	 * Request ownership of the new memory range.  This might be
 134	 * a child of an existing resource that was present but
 135	 * not marked as busy.
 136	 */
 137	res = __request_region(&iomem_resource, start, size,
 138			       resource_name, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139
 140	if (!res) {
 141		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
 142				start, start + size);
 143		return ERR_PTR(-EEXIST);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144	}
 145	return res;
 146}
 
 147
 148static void release_memory_resource(struct resource *res)
 
 149{
 150	if (!res)
 151		return;
 152	release_resource(res);
 153	kfree(res);
 
 
 
 
 
 
 
 
 154}
 155
 156#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 157static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
 158		const char *reason)
 159{
 160	/*
 161	 * Disallow all operations smaller than a sub-section and only
 162	 * allow operations smaller than a section for
 163	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
 164	 * enforces a larger memory_block_size_bytes() granularity for
 165	 * memory that will be marked online, so this check should only
 166	 * fire for direct arch_{add,remove}_memory() users outside of
 167	 * add_memory_resource().
 168	 */
 169	unsigned long min_align;
 170
 171	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
 172		min_align = PAGES_PER_SUBSECTION;
 173	else
 174		min_align = PAGES_PER_SECTION;
 175	if (!IS_ALIGNED(pfn, min_align)
 176			|| !IS_ALIGNED(nr_pages, min_align)) {
 177		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
 178				reason, pfn, pfn + nr_pages - 1);
 179		return -EINVAL;
 
 180	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181	return 0;
 182}
 183
 184/*
 185 * Return page for the valid pfn only if the page is online. All pfn
 186 * walkers which rely on the fully initialized page->flags and others
 187 * should use this rather than pfn_valid && pfn_to_page
 188 */
 189struct page *pfn_to_online_page(unsigned long pfn)
 190{
 191	unsigned long nr = pfn_to_section_nr(pfn);
 192	struct dev_pagemap *pgmap;
 193	struct mem_section *ms;
 194
 195	if (nr >= NR_MEM_SECTIONS)
 196		return NULL;
 
 197
 198	ms = __nr_to_section(nr);
 199	if (!online_section(ms))
 200		return NULL;
 201
 202	/*
 203	 * Save some code text when online_section() +
 204	 * pfn_section_valid() are sufficient.
 205	 */
 206	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
 207		return NULL;
 
 
 
 
 
 
 
 
 
 208
 209	if (!pfn_section_valid(ms, pfn))
 210		return NULL;
 211
 212	if (!online_device_section(ms))
 213		return pfn_to_page(pfn);
 214
 215	/*
 216	 * Slowpath: when ZONE_DEVICE collides with
 217	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
 218	 * the section may be 'offline' but 'valid'. Only
 219	 * get_dev_pagemap() can determine sub-section online status.
 220	 */
 221	pgmap = get_dev_pagemap(pfn, NULL);
 222	put_dev_pagemap(pgmap);
 223
 224	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
 225	if (pgmap)
 226		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227
 228	return pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229}
 230EXPORT_SYMBOL_GPL(pfn_to_online_page);
 231
 232/*
 233 * Reasonably generic function for adding memory.  It is
 234 * expected that archs that support memory hotplug will
 235 * call this function after deciding the zone to which to
 236 * add the new pages.
 237 */
 238int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
 239		struct mhp_params *params)
 240{
 241	const unsigned long end_pfn = pfn + nr_pages;
 242	unsigned long cur_nr_pages;
 243	int err;
 244	struct vmem_altmap *altmap = params->altmap;
 245
 246	if (WARN_ON_ONCE(!params->pgprot.pgprot))
 247		return -EINVAL;
 248
 249	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
 
 250
 251	if (altmap) {
 252		/*
 253		 * Validate altmap is within bounds of the total request
 
 
 254		 */
 255		if (altmap->base_pfn != pfn
 256				|| vmem_altmap_offset(altmap) > nr_pages) {
 257			pr_warn_once("memory add fail, invalid altmap\n");
 258			return -EINVAL;
 259		}
 260		altmap->alloc = 0;
 261	}
 262
 263	err = check_pfn_span(pfn, nr_pages, "add");
 264	if (err)
 265		return err;
 266
 267	for (; pfn < end_pfn; pfn += cur_nr_pages) {
 268		/* Select all remaining pages up to the next section boundary */
 269		cur_nr_pages = min(end_pfn - pfn,
 270				   SECTION_ALIGN_UP(pfn + 1) - pfn);
 271		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
 272		if (err)
 273			break;
 274		cond_resched();
 275	}
 276	vmemmap_populate_print_last();
 277	return err;
 278}
 
 279
 
 280/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 281static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 282				     unsigned long start_pfn,
 283				     unsigned long end_pfn)
 284{
 285	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
 286		if (unlikely(!pfn_to_online_page(start_pfn)))
 
 
 
 
 287			continue;
 288
 289		if (unlikely(pfn_to_nid(start_pfn) != nid))
 290			continue;
 291
 292		if (zone != page_zone(pfn_to_page(start_pfn)))
 293			continue;
 294
 295		return start_pfn;
 296	}
 297
 298	return 0;
 299}
 300
 301/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 302static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 303				    unsigned long start_pfn,
 304				    unsigned long end_pfn)
 305{
 
 306	unsigned long pfn;
 307
 308	/* pfn is the end pfn of a memory section. */
 309	pfn = end_pfn - 1;
 310	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
 311		if (unlikely(!pfn_to_online_page(pfn)))
 
 
 312			continue;
 313
 314		if (unlikely(pfn_to_nid(pfn) != nid))
 315			continue;
 316
 317		if (zone != page_zone(pfn_to_page(pfn)))
 318			continue;
 319
 320		return pfn;
 321	}
 322
 323	return 0;
 324}
 325
 326static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 327			     unsigned long end_pfn)
 328{
 
 
 
 329	unsigned long pfn;
 
 330	int nid = zone_to_nid(zone);
 331
 332	if (zone->zone_start_pfn == start_pfn) {
 
 333		/*
 334		 * If the section is smallest section in the zone, it need
 335		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 336		 * In this case, we find second smallest valid mem_section
 337		 * for shrinking zone.
 338		 */
 339		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 340						zone_end_pfn(zone));
 341		if (pfn) {
 342			zone->spanned_pages = zone_end_pfn(zone) - pfn;
 343			zone->zone_start_pfn = pfn;
 344		} else {
 345			zone->zone_start_pfn = 0;
 346			zone->spanned_pages = 0;
 347		}
 348	} else if (zone_end_pfn(zone) == end_pfn) {
 349		/*
 350		 * If the section is biggest section in the zone, it need
 351		 * shrink zone->spanned_pages.
 352		 * In this case, we find second biggest valid mem_section for
 353		 * shrinking zone.
 354		 */
 355		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
 356					       start_pfn);
 357		if (pfn)
 358			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
 359		else {
 360			zone->zone_start_pfn = 0;
 361			zone->spanned_pages = 0;
 362		}
 363	}
 364}
 365
 366static void update_pgdat_span(struct pglist_data *pgdat)
 367{
 368	unsigned long node_start_pfn = 0, node_end_pfn = 0;
 369	struct zone *zone;
 
 
 
 
 
 370
 371	for (zone = pgdat->node_zones;
 372	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
 373		unsigned long end_pfn = zone_end_pfn(zone);
 374
 375		/* No need to lock the zones, they can't change. */
 376		if (!zone->spanned_pages)
 377			continue;
 378		if (!node_end_pfn) {
 379			node_start_pfn = zone->zone_start_pfn;
 380			node_end_pfn = end_pfn;
 381			continue;
 382		}
 383
 384		if (end_pfn > node_end_pfn)
 385			node_end_pfn = end_pfn;
 386		if (zone->zone_start_pfn < node_start_pfn)
 387			node_start_pfn = zone->zone_start_pfn;
 388	}
 389
 390	pgdat->node_start_pfn = node_start_pfn;
 391	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
 
 
 392}
 393
 394void __ref remove_pfn_range_from_zone(struct zone *zone,
 395				      unsigned long start_pfn,
 396				      unsigned long nr_pages)
 397{
 398	const unsigned long end_pfn = start_pfn + nr_pages;
 399	struct pglist_data *pgdat = zone->zone_pgdat;
 400	unsigned long pfn, cur_nr_pages;
 401
 402	/* Poison struct pages because they are now uninitialized again. */
 403	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
 404		cond_resched();
 405
 406		/* Select all remaining pages up to the next section boundary */
 407		cur_nr_pages =
 408			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
 409		page_init_poison(pfn_to_page(pfn),
 410				 sizeof(struct page) * cur_nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411	}
 412
 413#ifdef CONFIG_ZONE_DEVICE
 414	/*
 415	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
 416	 * we will not try to shrink the zones - which is okay as
 417	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
 
 
 418	 */
 419	if (zone_idx(zone) == ZONE_DEVICE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420		return;
 421#endif
 422
 423	clear_zone_contiguous(zone);
 
 
 
 424
 425	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 426	update_pgdat_span(pgdat);
 
 
 
 
 
 
 427
 428	set_zone_contiguous(zone);
 
 
 
 429}
 430
 431static void __remove_section(unsigned long pfn, unsigned long nr_pages,
 432			     unsigned long map_offset,
 433			     struct vmem_altmap *altmap)
 434{
 435	struct mem_section *ms = __pfn_to_section(pfn);
 
 
 436
 437	if (WARN_ON_ONCE(!valid_section(ms)))
 438		return;
 
 
 
 
 439
 440	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
 
 
 
 
 
 441}
 442
 443/**
 444 * __remove_pages() - remove sections of pages
 445 * @pfn: starting pageframe (must be aligned to start of a section)
 
 446 * @nr_pages: number of pages to remove (must be multiple of section size)
 447 * @altmap: alternative device page map or %NULL if default memmap is used
 448 *
 449 * Generic helper function to remove section mappings and sysfs entries
 450 * for the section of the memory we are removing. Caller needs to make
 451 * sure that pages are marked reserved and zones are adjust properly by
 452 * calling offline_pages().
 453 */
 454void __remove_pages(unsigned long pfn, unsigned long nr_pages,
 455		    struct vmem_altmap *altmap)
 456{
 457	const unsigned long end_pfn = pfn + nr_pages;
 458	unsigned long cur_nr_pages;
 459	unsigned long map_offset = 0;
 
 460
 461	map_offset = vmem_altmap_offset(altmap);
 
 
 
 
 462
 463	if (check_pfn_span(pfn, nr_pages, "remove"))
 464		return;
 
 
 
 465
 466	for (; pfn < end_pfn; pfn += cur_nr_pages) {
 467		cond_resched();
 468		/* Select all remaining pages up to the next section boundary */
 469		cur_nr_pages = min(end_pfn - pfn,
 470				   SECTION_ALIGN_UP(pfn + 1) - pfn);
 471		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
 472		map_offset = 0;
 
 
 
 473	}
 
 474}
 
 
 475
 476int set_online_page_callback(online_page_callback_t callback)
 477{
 478	int rc = -EINVAL;
 479
 480	get_online_mems();
 481	mutex_lock(&online_page_callback_lock);
 482
 483	if (online_page_callback == generic_online_page) {
 484		online_page_callback = callback;
 485		rc = 0;
 486	}
 487
 488	mutex_unlock(&online_page_callback_lock);
 489	put_online_mems();
 490
 491	return rc;
 492}
 493EXPORT_SYMBOL_GPL(set_online_page_callback);
 494
 495int restore_online_page_callback(online_page_callback_t callback)
 496{
 497	int rc = -EINVAL;
 498
 499	get_online_mems();
 500	mutex_lock(&online_page_callback_lock);
 501
 502	if (online_page_callback == callback) {
 503		online_page_callback = generic_online_page;
 504		rc = 0;
 505	}
 506
 507	mutex_unlock(&online_page_callback_lock);
 508	put_online_mems();
 509
 510	return rc;
 511}
 512EXPORT_SYMBOL_GPL(restore_online_page_callback);
 513
 514void generic_online_page(struct page *page, unsigned int order)
 515{
 516	/*
 517	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
 518	 * so we should map it first. This is better than introducing a special
 519	 * case in page freeing fast path.
 520	 */
 521	debug_pagealloc_map_pages(page, 1 << order);
 522	__free_pages_core(page, order);
 523	totalram_pages_add(1UL << order);
 524#ifdef CONFIG_HIGHMEM
 525	if (PageHighMem(page))
 526		totalhigh_pages_add(1UL << order);
 527#endif
 528}
 529EXPORT_SYMBOL_GPL(generic_online_page);
 530
 531static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
 532{
 533	const unsigned long end_pfn = start_pfn + nr_pages;
 534	unsigned long pfn;
 535
 536	/*
 537	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
 538	 * decide to not expose all pages to the buddy (e.g., expose them
 539	 * later). We account all pages as being online and belonging to this
 540	 * zone ("present").
 541	 * When using memmap_on_memory, the range might not be aligned to
 542	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
 543	 * this and the first chunk to online will be pageblock_nr_pages.
 544	 */
 545	for (pfn = start_pfn; pfn < end_pfn;) {
 546		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
 547
 548		(*online_page_callback)(pfn_to_page(pfn), order);
 549		pfn += (1UL << order);
 550	}
 551
 552	/* mark all involved sections as online */
 553	online_mem_sections(start_pfn, end_pfn);
 554}
 
 555
 556/* check which state of node_states will be changed when online memory */
 557static void node_states_check_changes_online(unsigned long nr_pages,
 558	struct zone *zone, struct memory_notify *arg)
 559{
 560	int nid = zone_to_nid(zone);
 561
 562	arg->status_change_nid = NUMA_NO_NODE;
 563	arg->status_change_nid_normal = NUMA_NO_NODE;
 564	arg->status_change_nid_high = NUMA_NO_NODE;
 565
 566	if (!node_state(nid, N_MEMORY))
 567		arg->status_change_nid = nid;
 568	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 569		arg->status_change_nid_normal = nid;
 570#ifdef CONFIG_HIGHMEM
 571	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
 572		arg->status_change_nid_high = nid;
 573#endif
 574}
 
 575
 576static void node_states_set_node(int node, struct memory_notify *arg)
 577{
 578	if (arg->status_change_nid_normal >= 0)
 579		node_set_state(node, N_NORMAL_MEMORY);
 580
 581	if (arg->status_change_nid_high >= 0)
 582		node_set_state(node, N_HIGH_MEMORY);
 583
 584	if (arg->status_change_nid >= 0)
 585		node_set_state(node, N_MEMORY);
 586}
 587
 588static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 589		unsigned long nr_pages)
 590{
 591	unsigned long old_end_pfn = zone_end_pfn(zone);
 592
 593	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 594		zone->zone_start_pfn = start_pfn;
 595
 596	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 597}
 598
 599static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 600                                     unsigned long nr_pages)
 601{
 602	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 603
 604	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 605		pgdat->node_start_pfn = start_pfn;
 606
 607	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 608
 609}
 610
 611static void section_taint_zone_device(unsigned long pfn)
 612{
 613	struct mem_section *ms = __pfn_to_section(pfn);
 614
 615	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
 616}
 617
 
 618/*
 619 * Associate the pfn range with the given zone, initializing the memmaps
 620 * and resizing the pgdat/zone data to span the added pages. After this
 621 * call, all affected pages are PG_reserved.
 622 *
 623 * All aligned pageblocks are initialized to the specified migratetype
 624 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 625 * zone stats (e.g., nr_isolate_pageblock) are touched.
 626 */
 627void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 628				  unsigned long nr_pages,
 629				  struct vmem_altmap *altmap, int migratetype)
 630{
 631	struct pglist_data *pgdat = zone->zone_pgdat;
 632	int nid = pgdat->node_id;
 633
 634	clear_zone_contiguous(zone);
 635
 636	if (zone_is_empty(zone))
 637		init_currently_empty_zone(zone, start_pfn, nr_pages);
 638	resize_zone_range(zone, start_pfn, nr_pages);
 639	resize_pgdat_range(pgdat, start_pfn, nr_pages);
 640
 641	/*
 642	 * Subsection population requires care in pfn_to_online_page().
 643	 * Set the taint to enable the slow path detection of
 644	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
 645	 * section.
 646	 */
 647	if (zone_is_zone_device(zone)) {
 648		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
 649			section_taint_zone_device(start_pfn);
 650		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
 651			section_taint_zone_device(start_pfn + nr_pages);
 652	}
 653
 654	/*
 655	 * TODO now we have a visible range of pages which are not associated
 656	 * with their zone properly. Not nice but set_pfnblock_flags_mask
 657	 * expects the zone spans the pfn range. All the pages in the range
 658	 * are reserved so nobody should be touching them so we should be safe
 659	 */
 660	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
 661			 MEMINIT_HOTPLUG, altmap, migratetype);
 662
 663	set_zone_contiguous(zone);
 664}
 665
 666/*
 667 * Returns a default kernel memory zone for the given pfn range.
 668 * If no kernel zone covers this pfn range it will automatically go
 669 * to the ZONE_NORMAL.
 670 */
 671static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 672		unsigned long nr_pages)
 673{
 674	struct pglist_data *pgdat = NODE_DATA(nid);
 675	int zid;
 676
 677	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
 678		struct zone *zone = &pgdat->node_zones[zid];
 679
 680		if (zone_intersects(zone, start_pfn, nr_pages))
 681			return zone;
 682	}
 683
 684	return &pgdat->node_zones[ZONE_NORMAL];
 685}
 
 686
 687static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 688		unsigned long nr_pages)
 
 689{
 690	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 691			nr_pages);
 692	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 693	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 694	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 695
 696	/*
 697	 * We inherit the existing zone in a simple case where zones do not
 698	 * overlap in the given range
 
 
 
 
 
 699	 */
 700	if (in_kernel ^ in_movable)
 701		return (in_kernel) ? kernel_zone : movable_zone;
 702
 703	/*
 704	 * If the range doesn't belong to any zone or two zones overlap in the
 705	 * given range then we use movable zone only if movable_node is
 706	 * enabled because we always online to a kernel zone by default.
 
 707	 */
 708	return movable_node_enabled ? movable_zone : kernel_zone;
 709}
 710
 711struct zone *zone_for_pfn_range(int online_type, int nid,
 712		unsigned long start_pfn, unsigned long nr_pages)
 713{
 714	if (online_type == MMOP_ONLINE_KERNEL)
 715		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 716
 717	if (online_type == MMOP_ONLINE_MOVABLE)
 718		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 719
 720	return default_zone_for_pfn(nid, start_pfn, nr_pages);
 721}
 722
 723/*
 724 * This function should only be called by memory_block_{online,offline},
 725 * and {online,offline}_pages.
 726 */
 727void adjust_present_page_count(struct zone *zone, long nr_pages)
 728{
 729	zone->present_pages += nr_pages;
 730	zone->zone_pgdat->node_present_pages += nr_pages;
 731}
 732
 733int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
 734			      struct zone *zone)
 735{
 736	unsigned long end_pfn = pfn + nr_pages;
 737	int ret;
 738
 739	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
 740	if (ret)
 741		return ret;
 
 
 
 
 
 
 
 
 
 
 742
 743	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
 
 
 
 
 
 
 744
 745	/*
 746	 * It might be that the vmemmap_pages fully span sections. If that is
 747	 * the case, mark those sections online here as otherwise they will be
 748	 * left offline.
 749	 */
 750	if (nr_pages >= PAGES_PER_SECTION)
 751	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
 752
 753	return ret;
 754}
 755
 756void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
 757{
 758	unsigned long end_pfn = pfn + nr_pages;
 
 759
 760	/*
 761	 * It might be that the vmemmap_pages fully span sections. If that is
 762	 * the case, mark those sections offline here as otherwise they will be
 763	 * left online.
 764	 */
 765	if (nr_pages >= PAGES_PER_SECTION)
 766		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
 767
 768        /*
 769	 * The pages associated with this vmemmap have been offlined, so
 770	 * we can reset its state here.
 771	 */
 772	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
 773	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
 774}
 775
 776int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
 
 777{
 778	unsigned long flags;
 
 
 779	int need_zonelists_rebuild = 0;
 780	const int nid = zone_to_nid(zone);
 781	int ret;
 782	struct memory_notify arg;
 783
 
 784	/*
 785	 * {on,off}lining is constrained to full memory sections (or more
 786	 * precisely to memory blocks from the user space POV).
 787	 * memmap_on_memory is an exception because it reserves initial part
 788	 * of the physical memory space for vmemmaps. That space is pageblock
 789	 * aligned.
 790	 */
 791	if (WARN_ON_ONCE(!nr_pages ||
 792			 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
 793			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
 794		return -EINVAL;
 
 795
 796	mem_hotplug_begin();
 
 
 
 
 
 
 
 
 
 
 
 797
 798	/* associate pfn range with the zone */
 799	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
 800
 801	arg.start_pfn = pfn;
 802	arg.nr_pages = nr_pages;
 803	node_states_check_changes_online(nr_pages, zone, &arg);
 804
 
 
 805	ret = memory_notify(MEM_GOING_ONLINE, &arg);
 806	ret = notifier_to_errno(ret);
 807	if (ret)
 808		goto failed_addition;
 809
 810	/*
 811	 * Fixup the number of isolated pageblocks before marking the sections
 812	 * onlining, such that undo_isolate_page_range() works correctly.
 813	 */
 814	spin_lock_irqsave(&zone->lock, flags);
 815	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
 816	spin_unlock_irqrestore(&zone->lock, flags);
 817
 818	/*
 819	 * If this zone is not populated, then it is not in zonelist.
 820	 * This means the page allocator ignores this zone.
 821	 * So, zonelist must be updated after online.
 822	 */
 
 823	if (!populated_zone(zone)) {
 824		need_zonelists_rebuild = 1;
 825		setup_zone_pageset(zone);
 826	}
 827
 828	online_pages_range(pfn, nr_pages);
 829	adjust_present_page_count(zone, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 830
 831	node_states_set_node(nid, &arg);
 832	if (need_zonelists_rebuild)
 833		build_all_zonelists(NULL);
 834
 835	/* Basic onlining is complete, allow allocation of onlined pages. */
 836	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
 
 
 
 
 
 
 
 
 
 837
 838	/*
 839	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
 840	 * the tail of the freelist when undoing isolation). Shuffle the whole
 841	 * zone to make sure the just onlined pages are properly distributed
 842	 * across the whole freelist - to create an initial shuffle.
 843	 */
 844	shuffle_zone(zone);
 845
 846	/* reinitialise watermarks and update pcp limits */
 847	init_per_zone_wmark_min();
 848
 849	kswapd_run(nid);
 850	kcompactd_run(nid);
 
 
 851
 852	writeback_set_ratelimit();
 853
 854	memory_notify(MEM_ONLINE, &arg);
 855	mem_hotplug_done();
 856	return 0;
 857
 858failed_addition:
 859	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
 860		 (unsigned long long) pfn << PAGE_SHIFT,
 861		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
 862	memory_notify(MEM_CANCEL_ONLINE, &arg);
 863	remove_pfn_range_from_zone(zone, pfn, nr_pages);
 864	mem_hotplug_done();
 865	return ret;
 866}
 867#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
 868
 869static void reset_node_present_pages(pg_data_t *pgdat)
 870{
 871	struct zone *z;
 872
 873	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 874		z->present_pages = 0;
 875
 876	pgdat->node_present_pages = 0;
 877}
 878
 879/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
 880static pg_data_t __ref *hotadd_new_pgdat(int nid)
 881{
 882	struct pglist_data *pgdat;
 
 
 
 883
 884	pgdat = NODE_DATA(nid);
 885	if (!pgdat) {
 886		pgdat = arch_alloc_nodedata(nid);
 887		if (!pgdat)
 888			return NULL;
 889
 890		pgdat->per_cpu_nodestats =
 891			alloc_percpu(struct per_cpu_nodestat);
 892		arch_refresh_nodedata(nid, pgdat);
 893	} else {
 894		int cpu;
 895		/*
 896		 * Reset the nr_zones, order and highest_zoneidx before reuse.
 897		 * Note that kswapd will init kswapd_highest_zoneidx properly
 898		 * when it starts in the near future.
 899		 */
 900		pgdat->nr_zones = 0;
 901		pgdat->kswapd_order = 0;
 902		pgdat->kswapd_highest_zoneidx = 0;
 903		for_each_online_cpu(cpu) {
 904			struct per_cpu_nodestat *p;
 905
 906			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 907			memset(p, 0, sizeof(*p));
 908		}
 909	}
 910
 911	/* we can use NODE_DATA(nid) from here */
 912	pgdat->node_id = nid;
 913	pgdat->node_start_pfn = 0;
 914
 915	/* init node's zones as empty zones, we don't have any present pages.*/
 916	free_area_init_core_hotplug(nid);
 917
 918	/*
 919	 * The node we allocated has no zone fallback lists. For avoiding
 920	 * to access not-initialized zonelist, build here.
 921	 */
 922	build_all_zonelists(pgdat);
 923
 924	/*
 925	 * When memory is hot-added, all the memory is in offline state. So
 926	 * clear all zones' present_pages because they will be updated in
 927	 * online_pages() and offline_pages().
 928	 */
 929	reset_node_managed_pages(pgdat);
 930	reset_node_present_pages(pgdat);
 931
 932	return pgdat;
 933}
 934
 935static void rollback_node_hotadd(int nid)
 936{
 937	pg_data_t *pgdat = NODE_DATA(nid);
 938
 939	arch_refresh_nodedata(nid, NULL);
 940	free_percpu(pgdat->per_cpu_nodestats);
 941	arch_free_nodedata(pgdat);
 
 942}
 943
 944
 945/*
 946 * __try_online_node - online a node if offlined
 947 * @nid: the node ID
 948 * @set_node_online: Whether we want to online the node
 949 * called by cpu_up() to online a node without onlined memory.
 950 *
 951 * Returns:
 952 * 1 -> a new node has been allocated
 953 * 0 -> the node is already online
 954 * -ENOMEM -> the node could not be allocated
 955 */
 956static int __try_online_node(int nid, bool set_node_online)
 957{
 958	pg_data_t *pgdat;
 959	int ret = 1;
 960
 961	if (node_online(nid))
 962		return 0;
 963
 964	pgdat = hotadd_new_pgdat(nid);
 
 965	if (!pgdat) {
 966		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
 967		ret = -ENOMEM;
 968		goto out;
 969	}
 970
 971	if (set_node_online) {
 972		node_set_online(nid);
 973		ret = register_one_node(nid);
 974		BUG_ON(ret);
 
 
 
 975	}
 976out:
 977	return ret;
 978}
 979
 980/*
 981 * Users of this function always want to online/register the node
 982 */
 983int try_online_node(int nid)
 984{
 985	int ret;
 986
 987	mem_hotplug_begin();
 988	ret =  __try_online_node(nid, true);
 989	mem_hotplug_done();
 990	return ret;
 991}
 992
 993static int check_hotplug_memory_range(u64 start, u64 size)
 994{
 995	/* memory range must be block size aligned */
 996	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
 997	    !IS_ALIGNED(size, memory_block_size_bytes())) {
 998		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
 999		       memory_block_size_bytes(), start, size);
 
 
 
 
1000		return -EINVAL;
1001	}
1002
1003	return 0;
1004}
1005
1006static int online_memory_block(struct memory_block *mem, void *arg)
1007{
1008	mem->online_type = mhp_default_online_type;
1009	return device_online(&mem->dev);
1010}
1011
1012bool mhp_supports_memmap_on_memory(unsigned long size)
1013{
1014	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1015	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1016	unsigned long remaining_size = size - vmemmap_size;
1017
1018	/*
1019	 * Besides having arch support and the feature enabled at runtime, we
1020	 * need a few more assumptions to hold true:
1021	 *
1022	 * a) We span a single memory block: memory onlining/offlinin;g happens
1023	 *    in memory block granularity. We don't want the vmemmap of online
1024	 *    memory blocks to reside on offline memory blocks. In the future,
1025	 *    we might want to support variable-sized memory blocks to make the
1026	 *    feature more versatile.
1027	 *
1028	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1029	 *    to populate memory from the altmap for unrelated parts (i.e.,
1030	 *    other memory blocks)
1031	 *
1032	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1033	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1034	 *    code requires applicable ranges to be page-aligned, for example, to
1035	 *    set the migratetypes properly.
1036	 *
1037	 * TODO: Although we have a check here to make sure that vmemmap pages
1038	 *       fully populate a PMD, it is not the right place to check for
1039	 *       this. A much better solution involves improving vmemmap code
1040	 *       to fallback to base pages when trying to populate vmemmap using
1041	 *       altmap as an alternative source of memory, and we do not exactly
1042	 *       populate a single PMD.
1043	 */
1044	return memmap_on_memory &&
1045	       !hugetlb_free_vmemmap_enabled &&
1046	       IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1047	       size == memory_block_size_bytes() &&
1048	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1049	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1050}
1051
1052/*
1053 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1054 * and online/offline operations (triggered e.g. by sysfs).
1055 *
1056 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1057 */
1058int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1059{
1060	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1061	struct vmem_altmap mhp_altmap = {};
1062	u64 start, size;
1063	bool new_node = false;
1064	int ret;
1065
1066	start = res->start;
1067	size = resource_size(res);
1068
1069	ret = check_hotplug_memory_range(start, size);
1070	if (ret)
1071		return ret;
1072
1073	if (!node_possible(nid)) {
1074		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1075		return -EINVAL;
1076	}
1077
1078	mem_hotplug_begin();
1079
1080	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1081		memblock_add_node(start, size, nid);
 
 
1082
1083	ret = __try_online_node(nid, false);
1084	if (ret < 0)
1085		goto error;
1086	new_node = ret;
1087
1088	/*
1089	 * Self hosted memmap array
1090	 */
1091	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1092		if (!mhp_supports_memmap_on_memory(size)) {
1093			ret = -EINVAL;
1094			goto error;
1095		}
1096		mhp_altmap.free = PHYS_PFN(size);
1097		mhp_altmap.base_pfn = PHYS_PFN(start);
1098		params.altmap = &mhp_altmap;
1099	}
1100
1101	/* call arch's memory hotadd */
1102	ret = arch_add_memory(nid, start, size, &params);
 
1103	if (ret < 0)
1104		goto error;
1105
1106	/* create memory block devices after memory was added */
1107	ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
1108	if (ret) {
1109		arch_remove_memory(nid, start, size, NULL);
1110		goto error;
1111	}
1112
1113	if (new_node) {
1114		/* If sysfs file of new node can't be created, cpu on the node
 
 
1115		 * can't be hot-added. There is no rollback way now.
1116		 * So, check by BUG_ON() to catch it reluctantly..
1117		 * We online node here. We can't roll back from here.
1118		 */
1119		node_set_online(nid);
1120		ret = __register_one_node(nid);
1121		BUG_ON(ret);
1122	}
1123
1124	/* link memory sections under this node.*/
1125	link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1126			  MEMINIT_HOTPLUG);
1127
1128	/* create new memmap entry */
1129	if (!strcmp(res->name, "System RAM"))
1130		firmware_map_add_hotplug(start, start + size, "System RAM");
1131
1132	/* device_online() will take the lock when calling online_pages() */
1133	mem_hotplug_done();
1134
1135	/*
1136	 * In case we're allowed to merge the resource, flag it and trigger
1137	 * merging now that adding succeeded.
1138	 */
1139	if (mhp_flags & MHP_MERGE_RESOURCE)
1140		merge_system_ram_resource(res);
1141
1142	/* online pages if requested */
1143	if (mhp_default_online_type != MMOP_OFFLINE)
1144		walk_memory_blocks(start, size, NULL, online_memory_block);
1145
1146	return ret;
1147error:
1148	/* rollback pgdat allocation and others */
1149	if (new_node)
1150		rollback_node_hotadd(nid);
1151	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1152		memblock_remove(start, size);
1153	mem_hotplug_done();
1154	return ret;
1155}
1156
1157/* requires device_hotplug_lock, see add_memory_resource() */
1158int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1159{
1160	struct resource *res;
1161	int ret;
1162
1163	res = register_memory_resource(start, size, "System RAM");
1164	if (IS_ERR(res))
1165		return PTR_ERR(res);
1166
1167	ret = add_memory_resource(nid, res, mhp_flags);
1168	if (ret < 0)
1169		release_memory_resource(res);
1170	return ret;
1171}
1172
1173int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1174{
1175	int rc;
1176
1177	lock_device_hotplug();
1178	rc = __add_memory(nid, start, size, mhp_flags);
1179	unlock_device_hotplug();
1180
1181	return rc;
1182}
1183EXPORT_SYMBOL_GPL(add_memory);
1184
 
1185/*
1186 * Add special, driver-managed memory to the system as system RAM. Such
1187 * memory is not exposed via the raw firmware-provided memmap as system
1188 * RAM, instead, it is detected and added by a driver - during cold boot,
1189 * after a reboot, and after kexec.
1190 *
1191 * Reasons why this memory should not be used for the initial memmap of a
1192 * kexec kernel or for placing kexec images:
1193 * - The booting kernel is in charge of determining how this memory will be
1194 *   used (e.g., use persistent memory as system RAM)
1195 * - Coordination with a hypervisor is required before this memory
1196 *   can be used (e.g., inaccessible parts).
1197 *
1198 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1199 * memory map") are created. Also, the created memory resource is flagged
1200 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1201 * this memory as well (esp., not place kexec images onto it).
1202 *
1203 * The resource_name (visible via /proc/iomem) has to have the format
1204 * "System RAM ($DRIVER)".
1205 */
1206int add_memory_driver_managed(int nid, u64 start, u64 size,
1207			      const char *resource_name, mhp_t mhp_flags)
1208{
1209	struct resource *res;
1210	int rc;
1211
1212	if (!resource_name ||
1213	    strstr(resource_name, "System RAM (") != resource_name ||
1214	    resource_name[strlen(resource_name) - 1] != ')')
1215		return -EINVAL;
1216
1217	lock_device_hotplug();
1218
1219	res = register_memory_resource(start, size, resource_name);
1220	if (IS_ERR(res)) {
1221		rc = PTR_ERR(res);
1222		goto out_unlock;
1223	}
1224
1225	rc = add_memory_resource(nid, res, mhp_flags);
1226	if (rc < 0)
1227		release_memory_resource(res);
1228
1229out_unlock:
1230	unlock_device_hotplug();
1231	return rc;
1232}
1233EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1234
1235/*
1236 * Platforms should define arch_get_mappable_range() that provides
1237 * maximum possible addressable physical memory range for which the
1238 * linear mapping could be created. The platform returned address
1239 * range must adhere to these following semantics.
1240 *
1241 * - range.start <= range.end
1242 * - Range includes both end points [range.start..range.end]
1243 *
1244 * There is also a fallback definition provided here, allowing the
1245 * entire possible physical address range in case any platform does
1246 * not define arch_get_mappable_range().
1247 */
1248struct range __weak arch_get_mappable_range(void)
1249{
1250	struct range mhp_range = {
1251		.start = 0UL,
1252		.end = -1ULL,
1253	};
1254	return mhp_range;
1255}
1256
1257struct range mhp_get_pluggable_range(bool need_mapping)
 
1258{
1259	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1260	struct range mhp_range;
1261
1262	if (need_mapping) {
1263		mhp_range = arch_get_mappable_range();
1264		if (mhp_range.start > max_phys) {
1265			mhp_range.start = 0;
1266			mhp_range.end = 0;
1267		}
1268		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1269	} else {
1270		mhp_range.start = 0;
1271		mhp_range.end = max_phys;
1272	}
1273	return mhp_range;
 
1274}
1275EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1276
1277bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
 
1278{
1279	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1280	u64 end = start + size;
1281
1282	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1283		return true;
 
 
 
 
1284
1285	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1286		start, end, mhp_range.start, mhp_range.end);
1287	return false;
1288}
1289
1290#ifdef CONFIG_MEMORY_HOTREMOVE
1291/*
1292 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1293 * memory holes). When true, return the zone.
1294 */
1295struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1296				  unsigned long end_pfn)
1297{
1298	unsigned long pfn, sec_end_pfn;
1299	struct zone *zone = NULL;
1300	struct page *page;
1301	int i;
1302	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1303	     pfn < end_pfn;
1304	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1305		/* Make sure the memory section is present first */
1306		if (!present_section_nr(pfn_to_section_nr(pfn)))
 
 
 
1307			continue;
1308		for (; pfn < sec_end_pfn && pfn < end_pfn;
1309		     pfn += MAX_ORDER_NR_PAGES) {
1310			i = 0;
1311			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1312			while ((i < MAX_ORDER_NR_PAGES) &&
1313				!pfn_valid_within(pfn + i))
1314				i++;
1315			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1316				continue;
1317			/* Check if we got outside of the zone */
1318			if (zone && !zone_spans_pfn(zone, pfn + i))
1319				return NULL;
1320			page = pfn_to_page(pfn + i);
1321			if (zone && page_zone(page) != zone)
1322				return NULL;
1323			zone = page_zone(page);
1324		}
1325	}
1326
1327	return zone;
1328}
1329
1330/*
1331 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1332 * non-lru movable pages and hugepages). Will skip over most unmovable
1333 * pages (esp., pages that can be skipped when offlining), but bail out on
1334 * definitely unmovable pages.
1335 *
1336 * Returns:
1337 *	0 in case a movable page is found and movable_pfn was updated.
1338 *	-ENOENT in case no movable page was found.
1339 *	-EBUSY in case a definitely unmovable page was found.
1340 */
1341static int scan_movable_pages(unsigned long start, unsigned long end,
1342			      unsigned long *movable_pfn)
1343{
1344	unsigned long pfn;
1345
1346	for (pfn = start; pfn < end; pfn++) {
1347		struct page *page, *head;
1348		unsigned long skip;
1349
1350		if (!pfn_valid(pfn))
1351			continue;
1352		page = pfn_to_page(pfn);
1353		if (PageLRU(page))
1354			goto found;
1355		if (__PageMovable(page))
1356			goto found;
1357
1358		/*
1359		 * PageOffline() pages that are not marked __PageMovable() and
1360		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1361		 * definitely unmovable. If their reference count would be 0,
1362		 * they could at least be skipped when offlining memory.
1363		 */
1364		if (PageOffline(page) && page_count(page))
1365			return -EBUSY;
1366
1367		if (!PageHuge(page))
1368			continue;
1369		head = compound_head(page);
1370		/*
1371		 * This test is racy as we hold no reference or lock.  The
1372		 * hugetlb page could have been free'ed and head is no longer
1373		 * a hugetlb page before the following check.  In such unlikely
1374		 * cases false positives and negatives are possible.  Calling
1375		 * code must deal with these scenarios.
1376		 */
1377		if (HPageMigratable(head))
1378			goto found;
1379		skip = compound_nr(head) - (page - head);
1380		pfn += skip - 1;
1381	}
1382	return -ENOENT;
1383found:
1384	*movable_pfn = pfn;
1385	return 0;
1386}
1387
 
1388static int
1389do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1390{
1391	unsigned long pfn;
1392	struct page *page, *head;
 
 
1393	int ret = 0;
1394	LIST_HEAD(source);
1395	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1396				      DEFAULT_RATELIMIT_BURST);
1397
1398	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1399		if (!pfn_valid(pfn))
1400			continue;
1401		page = pfn_to_page(pfn);
1402		head = compound_head(page);
1403
1404		if (PageHuge(page)) {
1405			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1406			isolate_huge_page(head, &source);
1407			continue;
1408		} else if (PageTransHuge(page))
1409			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1410
1411		/*
1412		 * HWPoison pages have elevated reference counts so the migration would
1413		 * fail on them. It also doesn't make any sense to migrate them in the
1414		 * first place. Still try to unmap such a page in case it is still mapped
1415		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1416		 * the unmap as the catch all safety net).
1417		 */
1418		if (PageHWPoison(page)) {
1419			if (WARN_ON(PageLRU(page)))
1420				isolate_lru_page(page);
1421			if (page_mapped(page))
1422				try_to_unmap(page, TTU_IGNORE_MLOCK);
1423			continue;
1424		}
1425
1426		if (!get_page_unless_zero(page))
1427			continue;
1428		/*
1429		 * We can skip free pages. And we can deal with pages on
1430		 * LRU and non-lru movable pages.
1431		 */
1432		if (PageLRU(page))
1433			ret = isolate_lru_page(page);
1434		else
1435			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1436		if (!ret) { /* Success */
 
1437			list_add_tail(&page->lru, &source);
1438			if (!__PageMovable(page))
1439				inc_node_page_state(page, NR_ISOLATED_ANON +
1440						    page_is_file_lru(page));
1441
1442		} else {
1443			if (__ratelimit(&migrate_rs)) {
1444				pr_warn("failed to isolate pfn %lx\n", pfn);
1445				dump_page(page, "isolation failed");
 
 
 
 
 
 
 
 
 
1446			}
1447		}
1448		put_page(page);
1449	}
1450	if (!list_empty(&source)) {
1451		nodemask_t nmask = node_states[N_MEMORY];
1452		struct migration_target_control mtc = {
1453			.nmask = &nmask,
1454			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1455		};
1456
1457		/*
1458		 * We have checked that migration range is on a single zone so
1459		 * we can use the nid of the first page to all the others.
1460		 */
1461		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1462
1463		/*
1464		 * try to allocate from a different node but reuse this node
1465		 * if there are no other online nodes to be used (e.g. we are
1466		 * offlining a part of the only existing node)
1467		 */
1468		node_clear(mtc.nid, nmask);
1469		if (nodes_empty(nmask))
1470			node_set(mtc.nid, nmask);
1471		ret = migrate_pages(&source, alloc_migration_target, NULL,
1472			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1473		if (ret) {
1474			list_for_each_entry(page, &source, lru) {
1475				if (__ratelimit(&migrate_rs)) {
1476					pr_warn("migrating pfn %lx failed ret:%d\n",
1477						page_to_pfn(page), ret);
1478					dump_page(page, "migration failure");
1479				}
1480			}
1481			putback_movable_pages(&source);
1482		}
1483	}
 
 
 
1484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485	return ret;
1486}
1487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488static int __init cmdline_parse_movable_node(char *p)
1489{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490	movable_node_enabled = true;
 
 
 
1491	return 0;
1492}
1493early_param("movable_node", cmdline_parse_movable_node);
1494
1495/* check which state of node_states will be changed when offline memory */
1496static void node_states_check_changes_offline(unsigned long nr_pages,
1497		struct zone *zone, struct memory_notify *arg)
1498{
1499	struct pglist_data *pgdat = zone->zone_pgdat;
1500	unsigned long present_pages = 0;
1501	enum zone_type zt;
1502
1503	arg->status_change_nid = NUMA_NO_NODE;
1504	arg->status_change_nid_normal = NUMA_NO_NODE;
1505	arg->status_change_nid_high = NUMA_NO_NODE;
 
 
 
 
 
 
 
 
1506
1507	/*
1508	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1509	 * If the memory to be offline is within the range
1510	 * [0..ZONE_NORMAL], and it is the last present memory there,
1511	 * the zones in that range will become empty after the offlining,
1512	 * thus we can determine that we need to clear the node from
1513	 * node_states[N_NORMAL_MEMORY].
1514	 */
1515	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1516		present_pages += pgdat->node_zones[zt].present_pages;
1517	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1518		arg->status_change_nid_normal = zone_to_nid(zone);
 
 
1519
1520#ifdef CONFIG_HIGHMEM
1521	/*
1522	 * node_states[N_HIGH_MEMORY] contains nodes which
1523	 * have normal memory or high memory.
1524	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1525	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1526	 * we determine that the zones in that range become empty,
1527	 * we need to clear the node for N_HIGH_MEMORY.
1528	 */
1529	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1530	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
 
 
 
 
 
 
1531		arg->status_change_nid_high = zone_to_nid(zone);
 
 
 
 
1532#endif
1533
1534	/*
1535	 * We have accounted the pages from [0..ZONE_NORMAL), and
1536	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1537	 * as well.
1538	 * Here we count the possible pages from ZONE_MOVABLE.
1539	 * If after having accounted all the pages, we see that the nr_pages
1540	 * to be offlined is over or equal to the accounted pages,
1541	 * we know that the node will become empty, and so, we can clear
1542	 * it for N_MEMORY as well.
1543	 */
1544	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1545
 
 
 
 
 
 
 
 
1546	if (nr_pages >= present_pages)
1547		arg->status_change_nid = zone_to_nid(zone);
 
 
1548}
1549
1550static void node_states_clear_node(int node, struct memory_notify *arg)
1551{
1552	if (arg->status_change_nid_normal >= 0)
1553		node_clear_state(node, N_NORMAL_MEMORY);
1554
1555	if (arg->status_change_nid_high >= 0)
 
1556		node_clear_state(node, N_HIGH_MEMORY);
1557
1558	if (arg->status_change_nid >= 0)
 
1559		node_clear_state(node, N_MEMORY);
1560}
1561
1562static int count_system_ram_pages_cb(unsigned long start_pfn,
1563				     unsigned long nr_pages, void *data)
1564{
1565	unsigned long *nr_system_ram_pages = data;
1566
1567	*nr_system_ram_pages += nr_pages;
1568	return 0;
1569}
1570
1571int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1572{
1573	const unsigned long end_pfn = start_pfn + nr_pages;
1574	unsigned long pfn, system_ram_pages = 0;
 
1575	unsigned long flags;
1576	struct zone *zone;
1577	struct memory_notify arg;
1578	int ret, node;
1579	char *reason;
1580
1581	/*
1582	 * {on,off}lining is constrained to full memory sections (or more
1583	 * precisely to memory blocks from the user space POV).
1584	 * memmap_on_memory is an exception because it reserves initial part
1585	 * of the physical memory space for vmemmaps. That space is pageblock
1586	 * aligned.
1587	 */
1588	if (WARN_ON_ONCE(!nr_pages ||
1589			 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1590			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1591		return -EINVAL;
1592
1593	mem_hotplug_begin();
1594
1595	/*
1596	 * Don't allow to offline memory blocks that contain holes.
1597	 * Consequently, memory blocks with holes can never get onlined
1598	 * via the hotplug path - online_pages() - as hotplugged memory has
1599	 * no holes. This way, we e.g., don't have to worry about marking
1600	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1601	 * avoid using walk_system_ram_range() later.
1602	 */
1603	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1604			      count_system_ram_pages_cb);
1605	if (system_ram_pages != nr_pages) {
1606		ret = -EINVAL;
1607		reason = "memory holes";
1608		goto failed_removal;
1609	}
1610
1611	/* This makes hotplug much easier...and readable.
1612	   we assume this for now. .*/
1613	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1614	if (!zone) {
1615		ret = -EINVAL;
1616		reason = "multizone range";
1617		goto failed_removal;
1618	}
1619	node = zone_to_nid(zone);
 
1620
1621	/*
1622	 * Disable pcplists so that page isolation cannot race with freeing
1623	 * in a way that pages from isolated pageblock are left on pcplists.
1624	 */
1625	zone_pcp_disable(zone);
1626	lru_cache_disable();
1627
1628	/* set above range as isolated */
1629	ret = start_isolate_page_range(start_pfn, end_pfn,
1630				       MIGRATE_MOVABLE,
1631				       MEMORY_OFFLINE | REPORT_FAILURE);
1632	if (ret) {
1633		reason = "failure to isolate range";
1634		goto failed_removal_pcplists_disabled;
1635	}
1636
1637	arg.start_pfn = start_pfn;
1638	arg.nr_pages = nr_pages;
1639	node_states_check_changes_offline(nr_pages, zone, &arg);
1640
1641	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1642	ret = notifier_to_errno(ret);
1643	if (ret) {
1644		reason = "notifier failure";
1645		goto failed_removal_isolated;
1646	}
1647
1648	do {
1649		pfn = start_pfn;
1650		do {
1651			if (signal_pending(current)) {
1652				ret = -EINTR;
1653				reason = "signal backoff";
1654				goto failed_removal_isolated;
1655			}
1656
1657			cond_resched();
1658
1659			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1660			if (!ret) {
1661				/*
1662				 * TODO: fatal migration failures should bail
1663				 * out
1664				 */
1665				do_migrate_range(pfn, end_pfn);
1666			}
1667		} while (!ret);
1668
1669		if (ret != -ENOENT) {
1670			reason = "unmovable page";
1671			goto failed_removal_isolated;
1672		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673
1674		/*
1675		 * Dissolve free hugepages in the memory block before doing
1676		 * offlining actually in order to make hugetlbfs's object
1677		 * counting consistent.
1678		 */
1679		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1680		if (ret) {
1681			reason = "failure to dissolve huge pages";
1682			goto failed_removal_isolated;
 
 
 
 
1683		}
1684
1685		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1686
1687	} while (ret);
1688
1689	/* Mark all sections offline and remove free pages from the buddy. */
1690	__offline_isolated_pages(start_pfn, end_pfn);
1691	pr_debug("Offlined Pages %ld\n", nr_pages);
1692
1693	/*
1694	 * The memory sections are marked offline, and the pageblock flags
1695	 * effectively stale; nobody should be touching them. Fixup the number
1696	 * of isolated pageblocks, memory onlining will properly revert this.
1697	 */
1698	spin_lock_irqsave(&zone->lock, flags);
1699	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1700	spin_unlock_irqrestore(&zone->lock, flags);
1701
1702	lru_cache_enable();
1703	zone_pcp_enable(zone);
1704
 
 
1705	/* removal success */
1706	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1707	adjust_present_page_count(zone, -nr_pages);
 
 
 
 
1708
1709	/* reinitialise watermarks and update pcp limits */
1710	init_per_zone_wmark_min();
1711
1712	if (!populated_zone(zone)) {
1713		zone_pcp_reset(zone);
1714		build_all_zonelists(NULL);
1715	}
 
 
 
1716
1717	node_states_clear_node(node, &arg);
1718	if (arg.status_change_nid >= 0) {
1719		kswapd_stop(node);
1720		kcompactd_stop(node);
1721	}
1722
 
1723	writeback_set_ratelimit();
1724
1725	memory_notify(MEM_OFFLINE, &arg);
1726	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1727	mem_hotplug_done();
1728	return 0;
1729
1730failed_removal_isolated:
1731	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1732	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1733failed_removal_pcplists_disabled:
1734	lru_cache_enable();
1735	zone_pcp_enable(zone);
1736failed_removal:
1737	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1738		 (unsigned long long) start_pfn << PAGE_SHIFT,
1739		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1740		 reason);
1741	/* pushback to free area */
1742	mem_hotplug_done();
 
 
 
1743	return ret;
1744}
1745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1746static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1747{
1748	int ret = !is_memblock_offlined(mem);
1749
1750	if (unlikely(ret)) {
1751		phys_addr_t beginpa, endpa;
1752
1753		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1754		endpa = beginpa + memory_block_size_bytes() - 1;
1755		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
 
1756			&beginpa, &endpa);
1757
1758		return -EBUSY;
1759	}
1760	return 0;
1761}
1762
1763static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1764{
1765	/*
1766	 * If not set, continue with the next block.
1767	 */
1768	return mem->nr_vmemmap_pages;
1769}
1770
1771static int check_cpu_on_node(pg_data_t *pgdat)
1772{
1773	int cpu;
1774
1775	for_each_present_cpu(cpu) {
1776		if (cpu_to_node(cpu) == pgdat->node_id)
1777			/*
1778			 * the cpu on this node isn't removed, and we can't
1779			 * offline this node.
1780			 */
1781			return -EBUSY;
1782	}
1783
1784	return 0;
1785}
1786
1787static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
 
 
 
 
 
 
 
 
 
 
 
1788{
1789	int nid = *(int *)arg;
 
 
 
 
1790
1791	/*
1792	 * If a memory block belongs to multiple nodes, the stored nid is not
1793	 * reliable. However, such blocks are always online (e.g., cannot get
1794	 * offlined) and, therefore, are still spanned by the node.
1795	 */
1796	return mem->nid == nid ? -EEXIST : 0;
 
 
1797}
1798
1799/**
1800 * try_offline_node
1801 * @nid: the node ID
1802 *
1803 * Offline a node if all memory sections and cpus of the node are removed.
1804 *
1805 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1806 * and online/offline operations before this call.
1807 */
1808void try_offline_node(int nid)
1809{
1810	pg_data_t *pgdat = NODE_DATA(nid);
1811	int rc;
 
 
 
 
1812
1813	/*
1814	 * If the node still spans pages (especially ZONE_DEVICE), don't
1815	 * offline it. A node spans memory after move_pfn_range_to_zone(),
1816	 * e.g., after the memory block was onlined.
1817	 */
1818	if (pgdat->node_spanned_pages)
1819		return;
1820
1821	/*
1822	 * Especially offline memory blocks might not be spanned by the
1823	 * node. They will get spanned by the node once they get onlined.
1824	 * However, they link to the node in sysfs and can get onlined later.
1825	 */
1826	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1827	if (rc)
 
 
 
1828		return;
 
1829
1830	if (check_cpu_on_node(pgdat))
1831		return;
1832
1833	/*
1834	 * all memory/cpu of this node are removed, we can offline this
1835	 * node now.
1836	 */
1837	node_set_offline(nid);
1838	unregister_one_node(nid);
1839}
1840EXPORT_SYMBOL(try_offline_node);
1841
1842static int __ref try_remove_memory(int nid, u64 start, u64 size)
1843{
1844	int rc = 0;
1845	struct vmem_altmap mhp_altmap = {};
1846	struct vmem_altmap *altmap = NULL;
1847	unsigned long nr_vmemmap_pages;
1848
1849	BUG_ON(check_hotplug_memory_range(start, size));
 
 
1850
1851	/*
1852	 * All memory blocks must be offlined before removing memory.  Check
1853	 * whether all memory blocks in question are offline and return error
1854	 * if this is not the case.
1855	 */
1856	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1857	if (rc)
1858		return rc;
1859
1860	/*
1861	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
1862	 * the same granularity it was added - a single memory block.
1863	 */
1864	if (memmap_on_memory) {
1865		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
1866						      get_nr_vmemmap_pages_cb);
1867		if (nr_vmemmap_pages) {
1868			if (size != memory_block_size_bytes()) {
1869				pr_warn("Refuse to remove %#llx - %#llx,"
1870					"wrong granularity\n",
1871					start, start + size);
1872				return -EINVAL;
1873			}
1874
1875			/*
1876			 * Let remove_pmd_table->free_hugepage_table do the
1877			 * right thing if we used vmem_altmap when hot-adding
1878			 * the range.
1879			 */
1880			mhp_altmap.alloc = nr_vmemmap_pages;
1881			altmap = &mhp_altmap;
1882		}
1883	}
1884
1885	/* remove memmap entry */
1886	firmware_map_remove(start, start + size, "System RAM");
1887
1888	/*
1889	 * Memory block device removal under the device_hotplug_lock is
1890	 * a barrier against racing online attempts.
 
 
 
1891	 */
1892	remove_memory_block_devices(start, size);
1893
1894	mem_hotplug_begin();
1895
1896	arch_remove_memory(nid, start, size, altmap);
1897
1898	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1899		memblock_free(start, size);
1900		memblock_remove(start, size);
1901	}
1902
1903	release_mem_region_adjustable(start, size);
1904
1905	try_offline_node(nid);
1906
1907	mem_hotplug_done();
1908	return 0;
1909}
 
1910
1911/**
1912 * __remove_memory - Remove memory if every memory block is offline
1913 * @nid: the node ID
1914 * @start: physical address of the region to remove
1915 * @size: size of the region to remove
1916 *
1917 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1918 * and online/offline operations before this call, as required by
1919 * try_offline_node().
1920 */
1921void __remove_memory(int nid, u64 start, u64 size)
1922{
 
1923
1924	/*
1925	 * trigger BUG() if some memory is not offlined prior to calling this
1926	 * function
1927	 */
1928	if (try_remove_memory(nid, start, size))
1929		BUG();
1930}
1931
1932/*
1933 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1934 * some memory is not offline
1935 */
1936int remove_memory(int nid, u64 start, u64 size)
1937{
1938	int rc;
1939
1940	lock_device_hotplug();
1941	rc  = try_remove_memory(nid, start, size);
1942	unlock_device_hotplug();
1943
1944	return rc;
1945}
1946EXPORT_SYMBOL_GPL(remove_memory);
1947
1948static int try_offline_memory_block(struct memory_block *mem, void *arg)
1949{
1950	uint8_t online_type = MMOP_ONLINE_KERNEL;
1951	uint8_t **online_types = arg;
1952	struct page *page;
1953	int rc;
1954
1955	/*
1956	 * Sense the online_type via the zone of the memory block. Offlining
1957	 * with multiple zones within one memory block will be rejected
1958	 * by offlining code ... so we don't care about that.
1959	 */
1960	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
1961	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
1962		online_type = MMOP_ONLINE_MOVABLE;
1963
1964	rc = device_offline(&mem->dev);
1965	/*
1966	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
1967	 * so try_reonline_memory_block() can do the right thing.
1968	 */
1969	if (!rc)
1970		**online_types = online_type;
1971
1972	(*online_types)++;
1973	/* Ignore if already offline. */
1974	return rc < 0 ? rc : 0;
1975}
1976
1977static int try_reonline_memory_block(struct memory_block *mem, void *arg)
1978{
1979	uint8_t **online_types = arg;
1980	int rc;
1981
1982	if (**online_types != MMOP_OFFLINE) {
1983		mem->online_type = **online_types;
1984		rc = device_online(&mem->dev);
1985		if (rc < 0)
1986			pr_warn("%s: Failed to re-online memory: %d",
1987				__func__, rc);
1988	}
1989
1990	/* Continue processing all remaining memory blocks. */
1991	(*online_types)++;
1992	return 0;
1993}
1994
1995/*
1996 * Try to offline and remove memory. Might take a long time to finish in case
1997 * memory is still in use. Primarily useful for memory devices that logically
1998 * unplugged all memory (so it's no longer in use) and want to offline + remove
1999 * that memory.
2000 */
2001int offline_and_remove_memory(int nid, u64 start, u64 size)
2002{
2003	const unsigned long mb_count = size / memory_block_size_bytes();
2004	uint8_t *online_types, *tmp;
2005	int rc;
2006
2007	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2008	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2009		return -EINVAL;
2010
2011	/*
2012	 * We'll remember the old online type of each memory block, so we can
2013	 * try to revert whatever we did when offlining one memory block fails
2014	 * after offlining some others succeeded.
2015	 */
2016	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2017				     GFP_KERNEL);
2018	if (!online_types)
2019		return -ENOMEM;
2020	/*
2021	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2022	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2023	 * try_reonline_memory_block().
2024	 */
2025	memset(online_types, MMOP_OFFLINE, mb_count);
2026
2027	lock_device_hotplug();
2028
2029	tmp = online_types;
2030	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2031
2032	/*
2033	 * In case we succeeded to offline all memory, remove it.
2034	 * This cannot fail as it cannot get onlined in the meantime.
2035	 */
2036	if (!rc) {
2037		rc = try_remove_memory(nid, start, size);
2038		if (rc)
2039			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2040	}
2041
2042	/*
2043	 * Rollback what we did. While memory onlining might theoretically fail
2044	 * (nacked by a notifier), it barely ever happens.
2045	 */
2046	if (rc) {
2047		tmp = online_types;
2048		walk_memory_blocks(start, size, &tmp,
2049				   try_reonline_memory_block);
2050	}
2051	unlock_device_hotplug();
2052
2053	kfree(online_types);
2054	return rc;
2055}
2056EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2057#endif /* CONFIG_MEMORY_HOTREMOVE */
v3.15
 
   1/*
   2 *  linux/mm/memory_hotplug.c
   3 *
   4 *  Copyright (C)
   5 */
   6
   7#include <linux/stddef.h>
   8#include <linux/mm.h>
 
   9#include <linux/swap.h>
  10#include <linux/interrupt.h>
  11#include <linux/pagemap.h>
  12#include <linux/compiler.h>
  13#include <linux/export.h>
  14#include <linux/pagevec.h>
  15#include <linux/writeback.h>
  16#include <linux/slab.h>
  17#include <linux/sysctl.h>
  18#include <linux/cpu.h>
  19#include <linux/memory.h>
 
  20#include <linux/memory_hotplug.h>
  21#include <linux/highmem.h>
  22#include <linux/vmalloc.h>
  23#include <linux/ioport.h>
  24#include <linux/delay.h>
  25#include <linux/migrate.h>
  26#include <linux/page-isolation.h>
  27#include <linux/pfn.h>
  28#include <linux/suspend.h>
  29#include <linux/mm_inline.h>
  30#include <linux/firmware-map.h>
  31#include <linux/stop_machine.h>
  32#include <linux/hugetlb.h>
  33#include <linux/memblock.h>
 
 
  34
  35#include <asm/tlbflush.h>
  36
  37#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
  38
  39/*
  40 * online_page_callback contains pointer to current page onlining function.
  41 * Initially it is generic_online_page(). If it is required it could be
  42 * changed by calling set_online_page_callback() for callback registration
  43 * and restore_online_page_callback() for generic callback restore.
  44 */
  45
  46static void generic_online_page(struct page *page);
  47
  48static online_page_callback_t online_page_callback = generic_online_page;
 
  49
  50DEFINE_MUTEX(mem_hotplug_mutex);
  51
  52void lock_memory_hotplug(void)
  53{
  54	mutex_lock(&mem_hotplug_mutex);
  55}
  56
  57void unlock_memory_hotplug(void)
  58{
  59	mutex_unlock(&mem_hotplug_mutex);
  60}
  61
 
  62
  63/* add this memory to iomem resource */
  64static struct resource *register_memory_resource(u64 start, u64 size)
 
 
 
 
 
  65{
  66	struct resource *res;
  67	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
  68	BUG_ON(!res);
 
  69
  70	res->name = "System RAM";
  71	res->start = start;
  72	res->end = start + size - 1;
  73	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  74	if (request_resource(&iomem_resource, res) < 0) {
  75		pr_debug("System RAM resource %pR cannot be added\n", res);
  76		kfree(res);
  77		res = NULL;
  78	}
  79	return res;
  80}
 
  81
  82static void release_memory_resource(struct resource *res)
  83{
  84	if (!res)
  85		return;
  86	release_resource(res);
  87	kfree(res);
  88	return;
  89}
  90
  91#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
  92void get_page_bootmem(unsigned long info,  struct page *page,
  93		      unsigned long type)
  94{
  95	page->lru.next = (struct list_head *) type;
  96	SetPagePrivate(page);
  97	set_page_private(page, info);
  98	atomic_inc(&page->_count);
  99}
 100
 101void put_page_bootmem(struct page *page)
 102{
 103	unsigned long type;
 104
 105	type = (unsigned long) page->lru.next;
 106	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 107	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 108
 109	if (atomic_dec_return(&page->_count) == 1) {
 110		ClearPagePrivate(page);
 111		set_page_private(page, 0);
 112		INIT_LIST_HEAD(&page->lru);
 113		free_reserved_page(page);
 114	}
 115}
 116
 117#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
 118#ifndef CONFIG_SPARSEMEM_VMEMMAP
 119static void register_page_bootmem_info_section(unsigned long start_pfn)
 120{
 121	unsigned long *usemap, mapsize, section_nr, i;
 122	struct mem_section *ms;
 123	struct page *page, *memmap;
 124
 125	section_nr = pfn_to_section_nr(start_pfn);
 126	ms = __nr_to_section(section_nr);
 127
 128	/* Get section's memmap address */
 129	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 130
 131	/*
 132	 * Get page for the memmap's phys address
 133	 * XXX: need more consideration for sparse_vmemmap...
 
 
 134	 */
 135	page = virt_to_page(memmap);
 136	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
 137	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
 138
 139	/* remember memmap's page */
 140	for (i = 0; i < mapsize; i++, page++)
 141		get_page_bootmem(section_nr, page, SECTION_INFO);
 142
 143	usemap = __nr_to_section(section_nr)->pageblock_flags;
 144	page = virt_to_page(usemap);
 145
 146	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 147
 148	for (i = 0; i < mapsize; i++, page++)
 149		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 150
 151}
 152#else /* CONFIG_SPARSEMEM_VMEMMAP */
 153static void register_page_bootmem_info_section(unsigned long start_pfn)
 154{
 155	unsigned long *usemap, mapsize, section_nr, i;
 156	struct mem_section *ms;
 157	struct page *page, *memmap;
 158
 159	if (!pfn_valid(start_pfn))
 160		return;
 161
 162	section_nr = pfn_to_section_nr(start_pfn);
 163	ms = __nr_to_section(section_nr);
 164
 165	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 166
 167	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
 168
 169	usemap = __nr_to_section(section_nr)->pageblock_flags;
 170	page = virt_to_page(usemap);
 171
 172	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
 173
 174	for (i = 0; i < mapsize; i++, page++)
 175		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 176}
 177#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 178
 179void register_page_bootmem_info_node(struct pglist_data *pgdat)
 180{
 181	unsigned long i, pfn, end_pfn, nr_pages;
 182	int node = pgdat->node_id;
 183	struct page *page;
 184	struct zone *zone;
 185
 186	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
 187	page = virt_to_page(pgdat);
 188
 189	for (i = 0; i < nr_pages; i++, page++)
 190		get_page_bootmem(node, page, NODE_INFO);
 191
 192	zone = &pgdat->node_zones[0];
 193	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
 194		if (zone_is_initialized(zone)) {
 195			nr_pages = zone->wait_table_hash_nr_entries
 196				* sizeof(wait_queue_head_t);
 197			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
 198			page = virt_to_page(zone->wait_table);
 199
 200			for (i = 0; i < nr_pages; i++, page++)
 201				get_page_bootmem(node, page, NODE_INFO);
 202		}
 203	}
 204
 205	pfn = pgdat->node_start_pfn;
 206	end_pfn = pgdat_end_pfn(pgdat);
 207
 208	/* register section info */
 209	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 210		/*
 211		 * Some platforms can assign the same pfn to multiple nodes - on
 212		 * node0 as well as nodeN.  To avoid registering a pfn against
 213		 * multiple nodes we check that this pfn does not already
 214		 * reside in some other nodes.
 215		 */
 216		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
 217			register_page_bootmem_info_section(pfn);
 218	}
 
 219}
 220#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
 221
 222static void grow_zone_span(struct zone *zone, unsigned long start_pfn,
 223			   unsigned long end_pfn)
 224{
 225	unsigned long old_zone_end_pfn;
 226
 227	zone_span_writelock(zone);
 228
 229	old_zone_end_pfn = zone_end_pfn(zone);
 230	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 231		zone->zone_start_pfn = start_pfn;
 232
 233	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
 234				zone->zone_start_pfn;
 235
 236	zone_span_writeunlock(zone);
 237}
 238
 239static void resize_zone(struct zone *zone, unsigned long start_pfn,
 240		unsigned long end_pfn)
 
 241{
 242	zone_span_writelock(zone);
 
 
 
 
 
 
 
 
 
 243
 244	if (end_pfn - start_pfn) {
 245		zone->zone_start_pfn = start_pfn;
 246		zone->spanned_pages = end_pfn - start_pfn;
 247	} else {
 248		/*
 249		 * make it consist as free_area_init_core(),
 250		 * if spanned_pages = 0, then keep start_pfn = 0
 251		 */
 252		zone->zone_start_pfn = 0;
 253		zone->spanned_pages = 0;
 254	}
 255
 256	zone_span_writeunlock(zone);
 257}
 258
 259static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
 260		unsigned long end_pfn)
 261{
 262	enum zone_type zid = zone_idx(zone);
 263	int nid = zone->zone_pgdat->node_id;
 264	unsigned long pfn;
 265
 266	for (pfn = start_pfn; pfn < end_pfn; pfn++)
 267		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
 268}
 269
 270/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
 271 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
 272static int __ref ensure_zone_is_initialized(struct zone *zone,
 273			unsigned long start_pfn, unsigned long num_pages)
 274{
 275	if (!zone_is_initialized(zone))
 276		return init_currently_empty_zone(zone, start_pfn, num_pages,
 277						 MEMMAP_HOTPLUG);
 278	return 0;
 279}
 280
 281static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
 282		unsigned long start_pfn, unsigned long end_pfn)
 
 
 
 
 283{
 284	int ret;
 285	unsigned long flags;
 286	unsigned long z1_start_pfn;
 287
 288	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
 289	if (ret)
 290		return ret;
 291
 292	pgdat_resize_lock(z1->zone_pgdat, &flags);
 
 
 293
 294	/* can't move pfns which are higher than @z2 */
 295	if (end_pfn > zone_end_pfn(z2))
 296		goto out_fail;
 297	/* the move out part must be at the left most of @z2 */
 298	if (start_pfn > z2->zone_start_pfn)
 299		goto out_fail;
 300	/* must included/overlap */
 301	if (end_pfn <= z2->zone_start_pfn)
 302		goto out_fail;
 303
 304	/* use start_pfn for z1's start_pfn if z1 is empty */
 305	if (!zone_is_empty(z1))
 306		z1_start_pfn = z1->zone_start_pfn;
 307	else
 308		z1_start_pfn = start_pfn;
 309
 310	resize_zone(z1, z1_start_pfn, end_pfn);
 311	resize_zone(z2, end_pfn, zone_end_pfn(z2));
 312
 313	pgdat_resize_unlock(z1->zone_pgdat, &flags);
 
 314
 315	fix_zone_id(z1, start_pfn, end_pfn);
 
 
 
 
 
 
 
 316
 317	return 0;
 318out_fail:
 319	pgdat_resize_unlock(z1->zone_pgdat, &flags);
 320	return -1;
 321}
 322
 323static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
 324		unsigned long start_pfn, unsigned long end_pfn)
 325{
 326	int ret;
 327	unsigned long flags;
 328	unsigned long z2_end_pfn;
 329
 330	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
 331	if (ret)
 332		return ret;
 333
 334	pgdat_resize_lock(z1->zone_pgdat, &flags);
 335
 336	/* can't move pfns which are lower than @z1 */
 337	if (z1->zone_start_pfn > start_pfn)
 338		goto out_fail;
 339	/* the move out part mast at the right most of @z1 */
 340	if (zone_end_pfn(z1) >  end_pfn)
 341		goto out_fail;
 342	/* must included/overlap */
 343	if (start_pfn >= zone_end_pfn(z1))
 344		goto out_fail;
 345
 346	/* use end_pfn for z2's end_pfn if z2 is empty */
 347	if (!zone_is_empty(z2))
 348		z2_end_pfn = zone_end_pfn(z2);
 349	else
 350		z2_end_pfn = end_pfn;
 351
 352	resize_zone(z1, z1->zone_start_pfn, start_pfn);
 353	resize_zone(z2, start_pfn, z2_end_pfn);
 354
 355	pgdat_resize_unlock(z1->zone_pgdat, &flags);
 356
 357	fix_zone_id(z2, start_pfn, end_pfn);
 358
 359	return 0;
 360out_fail:
 361	pgdat_resize_unlock(z1->zone_pgdat, &flags);
 362	return -1;
 363}
 364
 365static void grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
 366			    unsigned long end_pfn)
 367{
 368	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
 369
 370	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 371		pgdat->node_start_pfn = start_pfn;
 372
 373	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
 374					pgdat->node_start_pfn;
 375}
 376
 377static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
 378{
 379	struct pglist_data *pgdat = zone->zone_pgdat;
 380	int nr_pages = PAGES_PER_SECTION;
 381	int nid = pgdat->node_id;
 382	int zone_type;
 383	unsigned long flags;
 384	int ret;
 385
 386	zone_type = zone - pgdat->node_zones;
 387	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
 388	if (ret)
 389		return ret;
 390
 391	pgdat_resize_lock(zone->zone_pgdat, &flags);
 392	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
 393	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
 394			phys_start_pfn + nr_pages);
 395	pgdat_resize_unlock(zone->zone_pgdat, &flags);
 396	memmap_init_zone(nr_pages, nid, zone_type,
 397			 phys_start_pfn, MEMMAP_HOTPLUG);
 398	return 0;
 399}
 400
 401static int __meminit __add_section(int nid, struct zone *zone,
 402					unsigned long phys_start_pfn)
 403{
 404	int ret;
 405
 406	if (pfn_valid(phys_start_pfn))
 407		return -EEXIST;
 408
 409	ret = sparse_add_one_section(zone, phys_start_pfn);
 410
 411	if (ret < 0)
 412		return ret;
 413
 414	ret = __add_zone(zone, phys_start_pfn);
 415
 416	if (ret < 0)
 417		return ret;
 418
 419	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
 420}
 
 421
 422/*
 423 * Reasonably generic function for adding memory.  It is
 424 * expected that archs that support memory hotplug will
 425 * call this function after deciding the zone to which to
 426 * add the new pages.
 427 */
 428int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
 429			unsigned long nr_pages)
 430{
 431	unsigned long i;
 432	int err = 0;
 433	int start_sec, end_sec;
 434	/* during initialize mem_map, align hot-added range to section */
 435	start_sec = pfn_to_section_nr(phys_start_pfn);
 436	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
 
 437
 438	for (i = start_sec; i <= end_sec; i++) {
 439		err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
 440
 
 441		/*
 442		 * EEXIST is finally dealt with by ioresource collision
 443		 * check. see add_memory() => register_memory_resource()
 444		 * Warning will be printed if there is collision.
 445		 */
 446		if (err && (err != -EEXIST))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447			break;
 448		err = 0;
 449	}
 450
 451	return err;
 452}
 453EXPORT_SYMBOL_GPL(__add_pages);
 454
 455#ifdef CONFIG_MEMORY_HOTREMOVE
 456/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 457static int find_smallest_section_pfn(int nid, struct zone *zone,
 458				     unsigned long start_pfn,
 459				     unsigned long end_pfn)
 460{
 461	struct mem_section *ms;
 462
 463	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
 464		ms = __pfn_to_section(start_pfn);
 465
 466		if (unlikely(!valid_section(ms)))
 467			continue;
 468
 469		if (unlikely(pfn_to_nid(start_pfn) != nid))
 470			continue;
 471
 472		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
 473			continue;
 474
 475		return start_pfn;
 476	}
 477
 478	return 0;
 479}
 480
 481/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 482static int find_biggest_section_pfn(int nid, struct zone *zone,
 483				    unsigned long start_pfn,
 484				    unsigned long end_pfn)
 485{
 486	struct mem_section *ms;
 487	unsigned long pfn;
 488
 489	/* pfn is the end pfn of a memory section. */
 490	pfn = end_pfn - 1;
 491	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
 492		ms = __pfn_to_section(pfn);
 493
 494		if (unlikely(!valid_section(ms)))
 495			continue;
 496
 497		if (unlikely(pfn_to_nid(pfn) != nid))
 498			continue;
 499
 500		if (zone && zone != page_zone(pfn_to_page(pfn)))
 501			continue;
 502
 503		return pfn;
 504	}
 505
 506	return 0;
 507}
 508
 509static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 510			     unsigned long end_pfn)
 511{
 512	unsigned long zone_start_pfn = zone->zone_start_pfn;
 513	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
 514	unsigned long zone_end_pfn = z;
 515	unsigned long pfn;
 516	struct mem_section *ms;
 517	int nid = zone_to_nid(zone);
 518
 519	zone_span_writelock(zone);
 520	if (zone_start_pfn == start_pfn) {
 521		/*
 522		 * If the section is smallest section in the zone, it need
 523		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 524		 * In this case, we find second smallest valid mem_section
 525		 * for shrinking zone.
 526		 */
 527		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 528						zone_end_pfn);
 529		if (pfn) {
 
 530			zone->zone_start_pfn = pfn;
 531			zone->spanned_pages = zone_end_pfn - pfn;
 
 
 532		}
 533	} else if (zone_end_pfn == end_pfn) {
 534		/*
 535		 * If the section is biggest section in the zone, it need
 536		 * shrink zone->spanned_pages.
 537		 * In this case, we find second biggest valid mem_section for
 538		 * shrinking zone.
 539		 */
 540		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
 541					       start_pfn);
 542		if (pfn)
 543			zone->spanned_pages = pfn - zone_start_pfn + 1;
 
 
 
 
 544	}
 
 545
 546	/*
 547	 * The section is not biggest or smallest mem_section in the zone, it
 548	 * only creates a hole in the zone. So in this case, we need not
 549	 * change the zone. But perhaps, the zone has only hole data. Thus
 550	 * it check the zone has only hole or not.
 551	 */
 552	pfn = zone_start_pfn;
 553	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
 554		ms = __pfn_to_section(pfn);
 555
 556		if (unlikely(!valid_section(ms)))
 557			continue;
 
 558
 559		if (page_zone(pfn_to_page(pfn)) != zone)
 
 560			continue;
 561
 562		 /* If the section is current section, it continues the loop */
 563		if (start_pfn == pfn)
 564			continue;
 
 565
 566		/* If we find valid section, we have nothing to do */
 567		zone_span_writeunlock(zone);
 568		return;
 
 569	}
 570
 571	/* The zone has no valid section */
 572	zone->zone_start_pfn = 0;
 573	zone->spanned_pages = 0;
 574	zone_span_writeunlock(zone);
 575}
 576
 577static void shrink_pgdat_span(struct pglist_data *pgdat,
 578			      unsigned long start_pfn, unsigned long end_pfn)
 579{
 580	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
 581	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
 582	unsigned long pgdat_end_pfn = p;
 583	unsigned long pfn;
 584	struct mem_section *ms;
 585	int nid = pgdat->node_id;
 
 
 586
 587	if (pgdat_start_pfn == start_pfn) {
 588		/*
 589		 * If the section is smallest section in the pgdat, it need
 590		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
 591		 * In this case, we find second smallest valid mem_section
 592		 * for shrinking zone.
 593		 */
 594		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
 595						pgdat_end_pfn);
 596		if (pfn) {
 597			pgdat->node_start_pfn = pfn;
 598			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
 599		}
 600	} else if (pgdat_end_pfn == end_pfn) {
 601		/*
 602		 * If the section is biggest section in the pgdat, it need
 603		 * shrink pgdat->node_spanned_pages.
 604		 * In this case, we find second biggest valid mem_section for
 605		 * shrinking zone.
 606		 */
 607		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
 608					       start_pfn);
 609		if (pfn)
 610			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
 611	}
 612
 
 613	/*
 614	 * If the section is not biggest or smallest mem_section in the pgdat,
 615	 * it only creates a hole in the pgdat. So in this case, we need not
 616	 * change the pgdat.
 617	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
 618	 * has only hole or not.
 619	 */
 620	pfn = pgdat_start_pfn;
 621	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
 622		ms = __pfn_to_section(pfn);
 623
 624		if (unlikely(!valid_section(ms)))
 625			continue;
 626
 627		if (pfn_to_nid(pfn) != nid)
 628			continue;
 629
 630		 /* If the section is current section, it continues the loop */
 631		if (start_pfn == pfn)
 632			continue;
 633
 634		/* If we find valid section, we have nothing to do */
 635		return;
 636	}
 637
 638	/* The pgdat has no valid section */
 639	pgdat->node_start_pfn = 0;
 640	pgdat->node_spanned_pages = 0;
 641}
 642
 643static void __remove_zone(struct zone *zone, unsigned long start_pfn)
 644{
 645	struct pglist_data *pgdat = zone->zone_pgdat;
 646	int nr_pages = PAGES_PER_SECTION;
 647	int zone_type;
 648	unsigned long flags;
 649
 650	zone_type = zone - pgdat->node_zones;
 651
 652	pgdat_resize_lock(zone->zone_pgdat, &flags);
 653	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 654	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
 655	pgdat_resize_unlock(zone->zone_pgdat, &flags);
 656}
 657
 658static int __remove_section(struct zone *zone, struct mem_section *ms)
 
 
 659{
 660	unsigned long start_pfn;
 661	int scn_nr;
 662	int ret = -EINVAL;
 663
 664	if (!valid_section(ms))
 665		return ret;
 666
 667	ret = unregister_memory_section(ms);
 668	if (ret)
 669		return ret;
 670
 671	scn_nr = __section_nr(ms);
 672	start_pfn = section_nr_to_pfn(scn_nr);
 673	__remove_zone(zone, start_pfn);
 674
 675	sparse_remove_one_section(zone, ms);
 676	return 0;
 677}
 678
 679/**
 680 * __remove_pages() - remove sections of pages from a zone
 681 * @zone: zone from which pages need to be removed
 682 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
 683 * @nr_pages: number of pages to remove (must be multiple of section size)
 
 684 *
 685 * Generic helper function to remove section mappings and sysfs entries
 686 * for the section of the memory we are removing. Caller needs to make
 687 * sure that pages are marked reserved and zones are adjust properly by
 688 * calling offline_pages().
 689 */
 690int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
 691		 unsigned long nr_pages)
 692{
 693	unsigned long i;
 694	int sections_to_remove;
 695	resource_size_t start, size;
 696	int ret = 0;
 697
 698	/*
 699	 * We can only remove entire sections
 700	 */
 701	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
 702	BUG_ON(nr_pages % PAGES_PER_SECTION);
 703
 704	start = phys_start_pfn << PAGE_SHIFT;
 705	size = nr_pages * PAGE_SIZE;
 706	ret = release_mem_region_adjustable(&iomem_resource, start, size);
 707	if (ret) {
 708		resource_size_t endres = start + size - 1;
 709
 710		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
 711				&start, &endres, ret);
 712	}
 713
 714	sections_to_remove = nr_pages / PAGES_PER_SECTION;
 715	for (i = 0; i < sections_to_remove; i++) {
 716		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
 717		ret = __remove_section(zone, __pfn_to_section(pfn));
 718		if (ret)
 719			break;
 720	}
 721	return ret;
 722}
 723EXPORT_SYMBOL_GPL(__remove_pages);
 724#endif /* CONFIG_MEMORY_HOTREMOVE */
 725
 726int set_online_page_callback(online_page_callback_t callback)
 727{
 728	int rc = -EINVAL;
 729
 730	lock_memory_hotplug();
 
 731
 732	if (online_page_callback == generic_online_page) {
 733		online_page_callback = callback;
 734		rc = 0;
 735	}
 736
 737	unlock_memory_hotplug();
 
 738
 739	return rc;
 740}
 741EXPORT_SYMBOL_GPL(set_online_page_callback);
 742
 743int restore_online_page_callback(online_page_callback_t callback)
 744{
 745	int rc = -EINVAL;
 746
 747	lock_memory_hotplug();
 
 748
 749	if (online_page_callback == callback) {
 750		online_page_callback = generic_online_page;
 751		rc = 0;
 752	}
 753
 754	unlock_memory_hotplug();
 
 755
 756	return rc;
 757}
 758EXPORT_SYMBOL_GPL(restore_online_page_callback);
 759
 760void __online_page_set_limits(struct page *page)
 761{
 
 
 
 
 
 
 
 
 
 
 
 
 762}
 763EXPORT_SYMBOL_GPL(__online_page_set_limits);
 764
 765void __online_page_increment_counters(struct page *page)
 766{
 767	adjust_managed_page_count(page, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768}
 769EXPORT_SYMBOL_GPL(__online_page_increment_counters);
 770
 771void __online_page_free(struct page *page)
 
 
 772{
 773	__free_reserved_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 774}
 775EXPORT_SYMBOL_GPL(__online_page_free);
 776
 777static void generic_online_page(struct page *page)
 778{
 779	__online_page_set_limits(page);
 780	__online_page_increment_counters(page);
 781	__online_page_free(page);
 
 
 
 
 
 782}
 783
 784static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
 785			void *arg)
 786{
 787	unsigned long i;
 788	unsigned long onlined_pages = *(unsigned long *)arg;
 789	struct page *page;
 790	if (PageReserved(pfn_to_page(start_pfn)))
 791		for (i = 0; i < nr_pages; i++) {
 792			page = pfn_to_page(start_pfn + i);
 793			(*online_page_callback)(page);
 794			onlined_pages++;
 795		}
 796	*(unsigned long *)arg = onlined_pages;
 797	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798}
 799
 800#ifdef CONFIG_MOVABLE_NODE
 801/*
 802 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
 803 * normal memory.
 
 
 
 
 
 804 */
 805static bool can_online_high_movable(struct zone *zone)
 
 
 806{
 807	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808}
 809#else /* CONFIG_MOVABLE_NODE */
 810/* ensure every online node has NORMAL memory */
 811static bool can_online_high_movable(struct zone *zone)
 
 
 
 
 
 812{
 813	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
 
 
 
 
 
 
 
 
 
 
 814}
 815#endif /* CONFIG_MOVABLE_NODE */
 816
 817/* check which state of node_states will be changed when online memory */
 818static void node_states_check_changes_online(unsigned long nr_pages,
 819	struct zone *zone, struct memory_notify *arg)
 820{
 821	int nid = zone_to_nid(zone);
 822	enum zone_type zone_last = ZONE_NORMAL;
 
 
 
 823
 824	/*
 825	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
 826	 * contains nodes which have zones of 0...ZONE_NORMAL,
 827	 * set zone_last to ZONE_NORMAL.
 828	 *
 829	 * If we don't have HIGHMEM nor movable node,
 830	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
 831	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
 832	 */
 833	if (N_MEMORY == N_NORMAL_MEMORY)
 834		zone_last = ZONE_MOVABLE;
 835
 836	/*
 837	 * if the memory to be online is in a zone of 0...zone_last, and
 838	 * the zones of 0...zone_last don't have memory before online, we will
 839	 * need to set the node to node_states[N_NORMAL_MEMORY] after
 840	 * the memory is online.
 841	 */
 842	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
 843		arg->status_change_nid_normal = nid;
 844	else
 845		arg->status_change_nid_normal = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846
 847#ifdef CONFIG_HIGHMEM
 848	/*
 849	 * If we have movable node, node_states[N_HIGH_MEMORY]
 850	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
 851	 * set zone_last to ZONE_HIGHMEM.
 852	 *
 853	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
 854	 * contains nodes which have zones of 0...ZONE_MOVABLE,
 855	 * set zone_last to ZONE_MOVABLE.
 856	 */
 857	zone_last = ZONE_HIGHMEM;
 858	if (N_MEMORY == N_HIGH_MEMORY)
 859		zone_last = ZONE_MOVABLE;
 860
 861	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
 862		arg->status_change_nid_high = nid;
 863	else
 864		arg->status_change_nid_high = -1;
 865#else
 866	arg->status_change_nid_high = arg->status_change_nid_normal;
 867#endif
 868
 869	/*
 870	 * if the node don't have memory befor online, we will need to
 871	 * set the node to node_states[N_MEMORY] after the memory
 872	 * is online.
 873	 */
 874	if (!node_state(nid, N_MEMORY))
 875		arg->status_change_nid = nid;
 876	else
 877		arg->status_change_nid = -1;
 878}
 879
 880static void node_states_set_node(int node, struct memory_notify *arg)
 881{
 882	if (arg->status_change_nid_normal >= 0)
 883		node_set_state(node, N_NORMAL_MEMORY);
 884
 885	if (arg->status_change_nid_high >= 0)
 886		node_set_state(node, N_HIGH_MEMORY);
 
 
 
 
 
 887
 888	node_set_state(node, N_MEMORY);
 
 
 
 
 
 889}
 890
 891
 892int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
 893{
 894	unsigned long flags;
 895	unsigned long onlined_pages = 0;
 896	struct zone *zone;
 897	int need_zonelists_rebuild = 0;
 898	int nid;
 899	int ret;
 900	struct memory_notify arg;
 901
 902	lock_memory_hotplug();
 903	/*
 904	 * This doesn't need a lock to do pfn_to_page().
 905	 * The section can't be removed here because of the
 906	 * memory_block->state_mutex.
 907	 */
 908	zone = page_zone(pfn_to_page(pfn));
 909
 910	if ((zone_idx(zone) > ZONE_NORMAL || online_type == ONLINE_MOVABLE) &&
 911	    !can_online_high_movable(zone)) {
 912		unlock_memory_hotplug();
 913		return -EINVAL;
 914	}
 915
 916	if (online_type == ONLINE_KERNEL && zone_idx(zone) == ZONE_MOVABLE) {
 917		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) {
 918			unlock_memory_hotplug();
 919			return -EINVAL;
 920		}
 921	}
 922	if (online_type == ONLINE_MOVABLE && zone_idx(zone) == ZONE_MOVABLE - 1) {
 923		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) {
 924			unlock_memory_hotplug();
 925			return -EINVAL;
 926		}
 927	}
 928
 929	/* Previous code may changed the zone of the pfn range */
 930	zone = page_zone(pfn_to_page(pfn));
 931
 932	arg.start_pfn = pfn;
 933	arg.nr_pages = nr_pages;
 934	node_states_check_changes_online(nr_pages, zone, &arg);
 935
 936	nid = pfn_to_nid(pfn);
 937
 938	ret = memory_notify(MEM_GOING_ONLINE, &arg);
 939	ret = notifier_to_errno(ret);
 940	if (ret) {
 941		memory_notify(MEM_CANCEL_ONLINE, &arg);
 942		unlock_memory_hotplug();
 943		return ret;
 944	}
 
 
 
 
 
 
 945	/*
 946	 * If this zone is not populated, then it is not in zonelist.
 947	 * This means the page allocator ignores this zone.
 948	 * So, zonelist must be updated after online.
 949	 */
 950	mutex_lock(&zonelists_mutex);
 951	if (!populated_zone(zone)) {
 952		need_zonelists_rebuild = 1;
 953		build_all_zonelists(NULL, zone);
 954	}
 955
 956	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
 957		online_pages_range);
 958	if (ret) {
 959		if (need_zonelists_rebuild)
 960			zone_pcp_reset(zone);
 961		mutex_unlock(&zonelists_mutex);
 962		printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
 963		       (unsigned long long) pfn << PAGE_SHIFT,
 964		       (((unsigned long long) pfn + nr_pages)
 965			    << PAGE_SHIFT) - 1);
 966		memory_notify(MEM_CANCEL_ONLINE, &arg);
 967		unlock_memory_hotplug();
 968		return ret;
 969	}
 970
 971	zone->present_pages += onlined_pages;
 
 
 972
 973	pgdat_resize_lock(zone->zone_pgdat, &flags);
 974	zone->zone_pgdat->node_present_pages += onlined_pages;
 975	pgdat_resize_unlock(zone->zone_pgdat, &flags);
 976
 977	if (onlined_pages) {
 978		node_states_set_node(zone_to_nid(zone), &arg);
 979		if (need_zonelists_rebuild)
 980			build_all_zonelists(NULL, NULL);
 981		else
 982			zone_pcp_update(zone);
 983	}
 984
 985	mutex_unlock(&zonelists_mutex);
 
 
 
 
 
 
 986
 
 987	init_per_zone_wmark_min();
 988
 989	if (onlined_pages)
 990		kswapd_run(zone_to_nid(zone));
 991
 992	vm_total_pages = nr_free_pagecache_pages();
 993
 994	writeback_set_ratelimit();
 995
 996	if (onlined_pages)
 997		memory_notify(MEM_ONLINE, &arg);
 998	unlock_memory_hotplug();
 999
1000	return 0;
 
 
 
 
 
 
 
1001}
1002#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1003
 
 
 
 
 
 
 
 
 
 
1004/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1005static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1006{
1007	struct pglist_data *pgdat;
1008	unsigned long zones_size[MAX_NR_ZONES] = {0};
1009	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1010	unsigned long start_pfn = start >> PAGE_SHIFT;
1011
1012	pgdat = NODE_DATA(nid);
1013	if (!pgdat) {
1014		pgdat = arch_alloc_nodedata(nid);
1015		if (!pgdat)
1016			return NULL;
1017
 
 
1018		arch_refresh_nodedata(nid, pgdat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019	}
1020
1021	/* we can use NODE_DATA(nid) from here */
 
 
1022
1023	/* init node's zones as empty zones, we don't have any present pages.*/
1024	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1025
1026	/*
1027	 * The node we allocated has no zone fallback lists. For avoiding
1028	 * to access not-initialized zonelist, build here.
1029	 */
1030	mutex_lock(&zonelists_mutex);
1031	build_all_zonelists(pgdat, NULL);
1032	mutex_unlock(&zonelists_mutex);
 
 
 
 
 
 
1033
1034	return pgdat;
1035}
1036
1037static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1038{
 
 
1039	arch_refresh_nodedata(nid, NULL);
 
1040	arch_free_nodedata(pgdat);
1041	return;
1042}
1043
1044
1045/**
1046 * try_online_node - online a node if offlined
 
 
 
1047 *
1048 * called by cpu_up() to online a node without onlined memory.
 
 
 
1049 */
1050int try_online_node(int nid)
1051{
1052	pg_data_t	*pgdat;
1053	int	ret;
1054
1055	if (node_online(nid))
1056		return 0;
1057
1058	lock_memory_hotplug();
1059	pgdat = hotadd_new_pgdat(nid, 0);
1060	if (!pgdat) {
1061		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1062		ret = -ENOMEM;
1063		goto out;
1064	}
1065	node_set_online(nid);
1066	ret = register_one_node(nid);
1067	BUG_ON(ret);
1068
1069	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1070		mutex_lock(&zonelists_mutex);
1071		build_all_zonelists(NULL, NULL);
1072		mutex_unlock(&zonelists_mutex);
1073	}
 
 
 
 
 
 
 
 
 
 
1074
1075out:
1076	unlock_memory_hotplug();
 
1077	return ret;
1078}
1079
1080static int check_hotplug_memory_range(u64 start, u64 size)
1081{
1082	u64 start_pfn = start >> PAGE_SHIFT;
1083	u64 nr_pages = size >> PAGE_SHIFT;
1084
1085	/* Memory range must be aligned with section */
1086	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1087	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1088		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1089				(unsigned long long)start,
1090				(unsigned long long)size);
1091		return -EINVAL;
1092	}
1093
1094	return 0;
1095}
1096
1097/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1098int __ref add_memory(int nid, u64 start, u64 size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099{
1100	pg_data_t *pgdat = NULL;
1101	bool new_pgdat;
1102	bool new_node;
1103	struct resource *res;
1104	int ret;
1105
 
 
 
1106	ret = check_hotplug_memory_range(start, size);
1107	if (ret)
1108		return ret;
1109
1110	res = register_memory_resource(start, size);
1111	ret = -EEXIST;
1112	if (!res)
1113		return ret;
 
 
1114
1115	{	/* Stupid hack to suppress address-never-null warning */
1116		void *p = NODE_DATA(nid);
1117		new_pgdat = !p;
1118	}
1119
1120	lock_memory_hotplug();
 
 
 
1121
1122	new_node = !node_online(nid);
1123	if (new_node) {
1124		pgdat = hotadd_new_pgdat(nid, start);
1125		ret = -ENOMEM;
1126		if (!pgdat)
 
1127			goto error;
 
 
 
 
1128	}
1129
1130	/* call arch's memory hotadd */
1131	ret = arch_add_memory(nid, start, size);
1132
1133	if (ret < 0)
1134		goto error;
1135
1136	/* we online node here. we can't roll back from here. */
1137	node_set_online(nid);
 
 
 
 
1138
1139	if (new_node) {
1140		ret = register_one_node(nid);
1141		/*
1142		 * If sysfs file of new node can't create, cpu on the node
1143		 * can't be hot-added. There is no rollback way now.
1144		 * So, check by BUG_ON() to catch it reluctantly..
 
1145		 */
 
 
1146		BUG_ON(ret);
1147	}
1148
 
 
 
 
1149	/* create new memmap entry */
1150	firmware_map_add_hotplug(start, start + size, "System RAM");
 
 
 
 
 
 
 
 
 
 
 
1151
1152	goto out;
 
 
1153
 
1154error:
1155	/* rollback pgdat allocation and others */
1156	if (new_pgdat)
1157		rollback_node_hotadd(nid, pgdat);
1158	release_memory_resource(res);
 
 
 
 
1159
1160out:
1161	unlock_memory_hotplug();
 
 
 
 
 
 
 
 
 
 
 
1162	return ret;
1163}
 
 
 
 
 
 
 
 
 
 
 
1164EXPORT_SYMBOL_GPL(add_memory);
1165
1166#ifdef CONFIG_MEMORY_HOTREMOVE
1167/*
1168 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1169 * set and the size of the free page is given by page_order(). Using this,
1170 * the function determines if the pageblock contains only free pages.
1171 * Due to buddy contraints, a free page at least the size of a pageblock will
1172 * be located at the start of the pageblock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173 */
1174static inline int pageblock_free(struct page *page)
1175{
1176	return PageBuddy(page) && page_order(page) >= pageblock_order;
 
 
 
 
1177}
1178
1179/* Return the start of the next active pageblock after a given page */
1180static struct page *next_active_pageblock(struct page *page)
1181{
1182	/* Ensure the starting page is pageblock-aligned */
1183	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1184
1185	/* If the entire pageblock is free, move to the end of free page */
1186	if (pageblock_free(page)) {
1187		int order;
1188		/* be careful. we don't have locks, page_order can be changed.*/
1189		order = page_order(page);
1190		if ((order < MAX_ORDER) && (order >= pageblock_order))
1191			return page + (1 << order);
 
 
 
1192	}
1193
1194	return page + pageblock_nr_pages;
1195}
 
1196
1197/* Checks if this range of memory is likely to be hot-removable. */
1198int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1199{
1200	struct page *page = pfn_to_page(start_pfn);
1201	struct page *end_page = page + nr_pages;
1202
1203	/* Check the starting page of each pageblock within the range */
1204	for (; page < end_page; page = next_active_pageblock(page)) {
1205		if (!is_pageblock_removable_nolock(page))
1206			return 0;
1207		cond_resched();
1208	}
1209
1210	/* All pageblocks in the memory block are likely to be hot-removable */
1211	return 1;
 
1212}
1213
 
1214/*
1215 * Confirm all pages in a range [start, end) is belongs to the same zone.
 
1216 */
1217static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
 
1218{
1219	unsigned long pfn;
1220	struct zone *zone = NULL;
1221	struct page *page;
1222	int i;
1223	for (pfn = start_pfn;
1224	     pfn < end_pfn;
1225	     pfn += MAX_ORDER_NR_PAGES) {
1226		i = 0;
1227		/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1228		while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1229			i++;
1230		if (i == MAX_ORDER_NR_PAGES)
1231			continue;
1232		page = pfn_to_page(pfn + i);
1233		if (zone && page_zone(page) != zone)
1234			return 0;
1235		zone = page_zone(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
1236	}
1237	return 1;
 
1238}
1239
1240/*
1241 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1242 * and hugepages). We scan pfn because it's much easier than scanning over
1243 * linked list. This function returns the pfn of the first found movable
1244 * page if it's found, otherwise 0.
 
 
 
 
 
1245 */
1246static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
 
1247{
1248	unsigned long pfn;
1249	struct page *page;
1250	for (pfn = start; pfn < end; pfn++) {
1251		if (pfn_valid(pfn)) {
1252			page = pfn_to_page(pfn);
1253			if (PageLRU(page))
1254				return pfn;
1255			if (PageHuge(page)) {
1256				if (is_hugepage_active(page))
1257					return pfn;
1258				else
1259					pfn = round_up(pfn + 1,
1260						1 << compound_order(page)) - 1;
1261			}
1262		}
1263	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264	return 0;
1265}
1266
1267#define NR_OFFLINE_AT_ONCE_PAGES	(256)
1268static int
1269do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1270{
1271	unsigned long pfn;
1272	struct page *page;
1273	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1274	int not_managed = 0;
1275	int ret = 0;
1276	LIST_HEAD(source);
 
 
1277
1278	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1279		if (!pfn_valid(pfn))
1280			continue;
1281		page = pfn_to_page(pfn);
 
1282
1283		if (PageHuge(page)) {
1284			struct page *head = compound_head(page);
1285			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1286			if (compound_order(head) > PFN_SECTION_SHIFT) {
1287				ret = -EBUSY;
1288				break;
1289			}
1290			if (isolate_huge_page(page, &source))
1291				move_pages -= 1 << compound_order(head);
 
 
 
 
 
 
 
 
 
 
1292			continue;
1293		}
1294
1295		if (!get_page_unless_zero(page))
1296			continue;
1297		/*
1298		 * We can skip free pages. And we can only deal with pages on
1299		 * LRU.
1300		 */
1301		ret = isolate_lru_page(page);
 
 
 
1302		if (!ret) { /* Success */
1303			put_page(page);
1304			list_add_tail(&page->lru, &source);
1305			move_pages--;
1306			inc_zone_page_state(page, NR_ISOLATED_ANON +
1307					    page_is_file_cache(page));
1308
1309		} else {
1310#ifdef CONFIG_DEBUG_VM
1311			printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1312			       pfn);
1313			dump_page(page, "failed to remove from LRU");
1314#endif
1315			put_page(page);
1316			/* Because we don't have big zone->lock. we should
1317			   check this again here. */
1318			if (page_count(page)) {
1319				not_managed++;
1320				ret = -EBUSY;
1321				break;
1322			}
1323		}
 
1324	}
1325	if (!list_empty(&source)) {
1326		if (not_managed) {
1327			putback_movable_pages(&source);
1328			goto out;
1329		}
 
 
 
 
 
 
 
1330
1331		/*
1332		 * alloc_migrate_target should be improooooved!!
1333		 * migrate_pages returns # of failed pages.
 
1334		 */
1335		ret = migrate_pages(&source, alloc_migrate_target, 0,
1336					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1337		if (ret)
 
 
 
 
 
 
 
 
 
 
1338			putback_movable_pages(&source);
 
1339	}
1340out:
1341	return ret;
1342}
1343
1344/*
1345 * remove from free_area[] and mark all as Reserved.
1346 */
1347static int
1348offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1349			void *data)
1350{
1351	__offline_isolated_pages(start, start + nr_pages);
1352	return 0;
1353}
1354
1355static void
1356offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1357{
1358	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1359				offline_isolated_pages_cb);
1360}
1361
1362/*
1363 * Check all pages in range, recoreded as memory resource, are isolated.
1364 */
1365static int
1366check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1367			void *data)
1368{
1369	int ret;
1370	long offlined = *(long *)data;
1371	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1372	offlined = nr_pages;
1373	if (!ret)
1374		*(long *)data += offlined;
1375	return ret;
1376}
1377
1378static long
1379check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1380{
1381	long offlined = 0;
1382	int ret;
1383
1384	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1385			check_pages_isolated_cb);
1386	if (ret < 0)
1387		offlined = (long)ret;
1388	return offlined;
1389}
1390
1391#ifdef CONFIG_MOVABLE_NODE
1392/*
1393 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1394 * normal memory.
1395 */
1396static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1397{
1398	return true;
1399}
1400#else /* CONFIG_MOVABLE_NODE */
1401/* ensure the node has NORMAL memory if it is still online */
1402static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1403{
1404	struct pglist_data *pgdat = zone->zone_pgdat;
1405	unsigned long present_pages = 0;
1406	enum zone_type zt;
1407
1408	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1409		present_pages += pgdat->node_zones[zt].present_pages;
1410
1411	if (present_pages > nr_pages)
1412		return true;
1413
1414	present_pages = 0;
1415	for (; zt <= ZONE_MOVABLE; zt++)
1416		present_pages += pgdat->node_zones[zt].present_pages;
1417
1418	/*
1419	 * we can't offline the last normal memory until all
1420	 * higher memory is offlined.
1421	 */
1422	return present_pages == 0;
1423}
1424#endif /* CONFIG_MOVABLE_NODE */
1425
1426static int __init cmdline_parse_movable_node(char *p)
1427{
1428#ifdef CONFIG_MOVABLE_NODE
1429	/*
1430	 * Memory used by the kernel cannot be hot-removed because Linux
1431	 * cannot migrate the kernel pages. When memory hotplug is
1432	 * enabled, we should prevent memblock from allocating memory
1433	 * for the kernel.
1434	 *
1435	 * ACPI SRAT records all hotpluggable memory ranges. But before
1436	 * SRAT is parsed, we don't know about it.
1437	 *
1438	 * The kernel image is loaded into memory at very early time. We
1439	 * cannot prevent this anyway. So on NUMA system, we set any
1440	 * node the kernel resides in as un-hotpluggable.
1441	 *
1442	 * Since on modern servers, one node could have double-digit
1443	 * gigabytes memory, we can assume the memory around the kernel
1444	 * image is also un-hotpluggable. So before SRAT is parsed, just
1445	 * allocate memory near the kernel image to try the best to keep
1446	 * the kernel away from hotpluggable memory.
1447	 */
1448	memblock_set_bottom_up(true);
1449	movable_node_enabled = true;
1450#else
1451	pr_warn("movable_node option not supported\n");
1452#endif
1453	return 0;
1454}
1455early_param("movable_node", cmdline_parse_movable_node);
1456
1457/* check which state of node_states will be changed when offline memory */
1458static void node_states_check_changes_offline(unsigned long nr_pages,
1459		struct zone *zone, struct memory_notify *arg)
1460{
1461	struct pglist_data *pgdat = zone->zone_pgdat;
1462	unsigned long present_pages = 0;
1463	enum zone_type zt, zone_last = ZONE_NORMAL;
1464
1465	/*
1466	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1467	 * contains nodes which have zones of 0...ZONE_NORMAL,
1468	 * set zone_last to ZONE_NORMAL.
1469	 *
1470	 * If we don't have HIGHMEM nor movable node,
1471	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1472	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1473	 */
1474	if (N_MEMORY == N_NORMAL_MEMORY)
1475		zone_last = ZONE_MOVABLE;
1476
1477	/*
1478	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1479	 * If the memory to be offline is in a zone of 0...zone_last,
1480	 * and it is the last present memory, 0...zone_last will
1481	 * become empty after offline , thus we can determind we will
1482	 * need to clear the node from node_states[N_NORMAL_MEMORY].
 
1483	 */
1484	for (zt = 0; zt <= zone_last; zt++)
1485		present_pages += pgdat->node_zones[zt].present_pages;
1486	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1487		arg->status_change_nid_normal = zone_to_nid(zone);
1488	else
1489		arg->status_change_nid_normal = -1;
1490
1491#ifdef CONFIG_HIGHMEM
1492	/*
1493	 * If we have movable node, node_states[N_HIGH_MEMORY]
1494	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1495	 * set zone_last to ZONE_HIGHMEM.
1496	 *
1497	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1498	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1499	 * set zone_last to ZONE_MOVABLE.
1500	 */
1501	zone_last = ZONE_HIGHMEM;
1502	if (N_MEMORY == N_HIGH_MEMORY)
1503		zone_last = ZONE_MOVABLE;
1504
1505	for (; zt <= zone_last; zt++)
1506		present_pages += pgdat->node_zones[zt].present_pages;
1507	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1508		arg->status_change_nid_high = zone_to_nid(zone);
1509	else
1510		arg->status_change_nid_high = -1;
1511#else
1512	arg->status_change_nid_high = arg->status_change_nid_normal;
1513#endif
1514
1515	/*
1516	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
 
 
 
 
 
 
 
1517	 */
1518	zone_last = ZONE_MOVABLE;
1519
1520	/*
1521	 * check whether node_states[N_HIGH_MEMORY] will be changed
1522	 * If we try to offline the last present @nr_pages from the node,
1523	 * we can determind we will need to clear the node from
1524	 * node_states[N_HIGH_MEMORY].
1525	 */
1526	for (; zt <= zone_last; zt++)
1527		present_pages += pgdat->node_zones[zt].present_pages;
1528	if (nr_pages >= present_pages)
1529		arg->status_change_nid = zone_to_nid(zone);
1530	else
1531		arg->status_change_nid = -1;
1532}
1533
1534static void node_states_clear_node(int node, struct memory_notify *arg)
1535{
1536	if (arg->status_change_nid_normal >= 0)
1537		node_clear_state(node, N_NORMAL_MEMORY);
1538
1539	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1540	    (arg->status_change_nid_high >= 0))
1541		node_clear_state(node, N_HIGH_MEMORY);
1542
1543	if ((N_MEMORY != N_HIGH_MEMORY) &&
1544	    (arg->status_change_nid >= 0))
1545		node_clear_state(node, N_MEMORY);
1546}
1547
1548static int __ref __offline_pages(unsigned long start_pfn,
1549		  unsigned long end_pfn, unsigned long timeout)
 
 
 
 
 
 
 
 
1550{
1551	unsigned long pfn, nr_pages, expire;
1552	long offlined_pages;
1553	int ret, drain, retry_max, node;
1554	unsigned long flags;
1555	struct zone *zone;
1556	struct memory_notify arg;
 
 
1557
1558	/* at least, alignment against pageblock is necessary */
1559	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1560		return -EINVAL;
1561	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
 
 
 
 
 
 
1562		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563	/* This makes hotplug much easier...and readable.
1564	   we assume this for now. .*/
1565	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1566		return -EINVAL;
1567
1568	lock_memory_hotplug();
1569
1570	zone = page_zone(pfn_to_page(start_pfn));
1571	node = zone_to_nid(zone);
1572	nr_pages = end_pfn - start_pfn;
1573
1574	ret = -EINVAL;
1575	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1576		goto out;
 
 
 
1577
1578	/* set above range as isolated */
1579	ret = start_isolate_page_range(start_pfn, end_pfn,
1580				       MIGRATE_MOVABLE, true);
1581	if (ret)
1582		goto out;
 
 
 
1583
1584	arg.start_pfn = start_pfn;
1585	arg.nr_pages = nr_pages;
1586	node_states_check_changes_offline(nr_pages, zone, &arg);
1587
1588	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1589	ret = notifier_to_errno(ret);
1590	if (ret)
1591		goto failed_removal;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592
1593	pfn = start_pfn;
1594	expire = jiffies + timeout;
1595	drain = 0;
1596	retry_max = 5;
1597repeat:
1598	/* start memory hot removal */
1599	ret = -EAGAIN;
1600	if (time_after(jiffies, expire))
1601		goto failed_removal;
1602	ret = -EINTR;
1603	if (signal_pending(current))
1604		goto failed_removal;
1605	ret = 0;
1606	if (drain) {
1607		lru_add_drain_all();
1608		cond_resched();
1609		drain_all_pages();
1610	}
1611
1612	pfn = scan_movable_pages(start_pfn, end_pfn);
1613	if (pfn) { /* We have movable pages */
1614		ret = do_migrate_range(pfn, end_pfn);
1615		if (!ret) {
1616			drain = 1;
1617			goto repeat;
1618		} else {
1619			if (ret < 0)
1620				if (--retry_max == 0)
1621					goto failed_removal;
1622			yield();
1623			drain = 1;
1624			goto repeat;
1625		}
1626	}
1627	/* drain all zone's lru pagevec, this is asynchronous... */
1628	lru_add_drain_all();
1629	yield();
1630	/* drain pcp pages, this is synchronous. */
1631	drain_all_pages();
1632	/*
1633	 * dissolve free hugepages in the memory block before doing offlining
1634	 * actually in order to make hugetlbfs's object counting consistent.
1635	 */
1636	dissolve_free_huge_pages(start_pfn, end_pfn);
1637	/* check again */
1638	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1639	if (offlined_pages < 0) {
1640		ret = -EBUSY;
1641		goto failed_removal;
1642	}
1643	printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1644	/* Ok, all of our target is isolated.
1645	   We cannot do rollback at this point. */
1646	offline_isolated_pages(start_pfn, end_pfn);
1647	/* reset pagetype flags and makes migrate type to be MOVABLE */
1648	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1649	/* removal success */
1650	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1651	zone->present_pages -= offlined_pages;
1652
1653	pgdat_resize_lock(zone->zone_pgdat, &flags);
1654	zone->zone_pgdat->node_present_pages -= offlined_pages;
1655	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1656
 
1657	init_per_zone_wmark_min();
1658
1659	if (!populated_zone(zone)) {
1660		zone_pcp_reset(zone);
1661		mutex_lock(&zonelists_mutex);
1662		build_all_zonelists(NULL, NULL);
1663		mutex_unlock(&zonelists_mutex);
1664	} else
1665		zone_pcp_update(zone);
1666
1667	node_states_clear_node(node, &arg);
1668	if (arg.status_change_nid >= 0)
1669		kswapd_stop(node);
 
 
1670
1671	vm_total_pages = nr_free_pagecache_pages();
1672	writeback_set_ratelimit();
1673
1674	memory_notify(MEM_OFFLINE, &arg);
1675	unlock_memory_hotplug();
 
1676	return 0;
1677
 
 
 
 
 
 
1678failed_removal:
1679	printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1680	       (unsigned long long) start_pfn << PAGE_SHIFT,
1681	       ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1682	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1683	/* pushback to free area */
1684	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1685
1686out:
1687	unlock_memory_hotplug();
1688	return ret;
1689}
1690
1691int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1692{
1693	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1694}
1695#endif /* CONFIG_MEMORY_HOTREMOVE */
1696
1697/**
1698 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1699 * @start_pfn: start pfn of the memory range
1700 * @end_pfn: end pfn of the memory range
1701 * @arg: argument passed to func
1702 * @func: callback for each memory section walked
1703 *
1704 * This function walks through all present mem sections in range
1705 * [start_pfn, end_pfn) and call func on each mem section.
1706 *
1707 * Returns the return value of func.
1708 */
1709int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1710		void *arg, int (*func)(struct memory_block *, void *))
1711{
1712	struct memory_block *mem = NULL;
1713	struct mem_section *section;
1714	unsigned long pfn, section_nr;
1715	int ret;
1716
1717	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1718		section_nr = pfn_to_section_nr(pfn);
1719		if (!present_section_nr(section_nr))
1720			continue;
1721
1722		section = __nr_to_section(section_nr);
1723		/* same memblock? */
1724		if (mem)
1725			if ((section_nr >= mem->start_section_nr) &&
1726			    (section_nr <= mem->end_section_nr))
1727				continue;
1728
1729		mem = find_memory_block_hinted(section, mem);
1730		if (!mem)
1731			continue;
1732
1733		ret = func(mem, arg);
1734		if (ret) {
1735			kobject_put(&mem->dev.kobj);
1736			return ret;
1737		}
1738	}
1739
1740	if (mem)
1741		kobject_put(&mem->dev.kobj);
1742
1743	return 0;
1744}
1745
1746#ifdef CONFIG_MEMORY_HOTREMOVE
1747static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1748{
1749	int ret = !is_memblock_offlined(mem);
1750
1751	if (unlikely(ret)) {
1752		phys_addr_t beginpa, endpa;
1753
1754		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1755		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1756		pr_warn("removing memory fails, because memory "
1757			"[%pa-%pa] is onlined\n",
1758			&beginpa, &endpa);
 
 
1759	}
 
 
1760
1761	return ret;
 
 
 
 
 
1762}
1763
1764static int check_cpu_on_node(pg_data_t *pgdat)
1765{
1766	int cpu;
1767
1768	for_each_present_cpu(cpu) {
1769		if (cpu_to_node(cpu) == pgdat->node_id)
1770			/*
1771			 * the cpu on this node isn't removed, and we can't
1772			 * offline this node.
1773			 */
1774			return -EBUSY;
1775	}
1776
1777	return 0;
1778}
1779
1780static void unmap_cpu_on_node(pg_data_t *pgdat)
1781{
1782#ifdef CONFIG_ACPI_NUMA
1783	int cpu;
1784
1785	for_each_possible_cpu(cpu)
1786		if (cpu_to_node(cpu) == pgdat->node_id)
1787			numa_clear_node(cpu);
1788#endif
1789}
1790
1791static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1792{
1793	int ret;
1794
1795	ret = check_cpu_on_node(pgdat);
1796	if (ret)
1797		return ret;
1798
1799	/*
1800	 * the node will be offlined when we come here, so we can clear
1801	 * the cpu_to_node() now.
 
1802	 */
1803
1804	unmap_cpu_on_node(pgdat);
1805	return 0;
1806}
1807
1808/**
1809 * try_offline_node
 
1810 *
1811 * Offline a node if all memory sections and cpus of the node are removed.
1812 *
1813 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1814 * and online/offline operations before this call.
1815 */
1816void try_offline_node(int nid)
1817{
1818	pg_data_t *pgdat = NODE_DATA(nid);
1819	unsigned long start_pfn = pgdat->node_start_pfn;
1820	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1821	unsigned long pfn;
1822	struct page *pgdat_page = virt_to_page(pgdat);
1823	int i;
1824
1825	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1826		unsigned long section_nr = pfn_to_section_nr(pfn);
 
 
 
 
 
1827
1828		if (!present_section_nr(section_nr))
1829			continue;
1830
1831		if (pfn_to_nid(pfn) != nid)
1832			continue;
1833
1834		/*
1835		 * some memory sections of this node are not removed, and we
1836		 * can't offline node now.
1837		 */
1838		return;
1839	}
1840
1841	if (check_and_unmap_cpu_on_node(pgdat))
1842		return;
1843
1844	/*
1845	 * all memory/cpu of this node are removed, we can offline this
1846	 * node now.
1847	 */
1848	node_set_offline(nid);
1849	unregister_one_node(nid);
 
 
1850
1851	if (!PageSlab(pgdat_page) && !PageCompound(pgdat_page))
1852		/* node data is allocated from boot memory */
1853		return;
 
 
 
1854
1855	/* free waittable in each zone */
1856	for (i = 0; i < MAX_NR_ZONES; i++) {
1857		struct zone *zone = pgdat->node_zones + i;
1858
1859		/*
1860		 * wait_table may be allocated from boot memory,
1861		 * here only free if it's allocated by vmalloc.
1862		 */
1863		if (is_vmalloc_addr(zone->wait_table))
1864			vfree(zone->wait_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865	}
1866
 
 
 
1867	/*
1868	 * Since there is no way to guarentee the address of pgdat/zone is not
1869	 * on stack of any kernel threads or used by other kernel objects
1870	 * without reference counting or other symchronizing method, do not
1871	 * reset node_data and free pgdat here. Just reset it to 0 and reuse
1872	 * the memory when the node is online again.
1873	 */
1874	memset(pgdat, 0, sizeof(*pgdat));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875}
1876EXPORT_SYMBOL(try_offline_node);
1877
1878/**
1879 * remove_memory
 
 
 
1880 *
1881 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1882 * and online/offline operations before this call, as required by
1883 * try_offline_node().
1884 */
1885void __ref remove_memory(int nid, u64 start, u64 size)
1886{
1887	int ret;
1888
1889	BUG_ON(check_hotplug_memory_range(start, size));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890
1891	lock_memory_hotplug();
 
 
 
 
 
1892
1893	/*
1894	 * All memory blocks must be offlined before removing memory.  Check
1895	 * whether all memory blocks in question are offline and trigger a BUG()
1896	 * if this is not the case.
 
 
 
 
 
 
 
 
 
1897	 */
1898	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1899				check_memblock_offlined_cb);
1900	if (ret) {
1901		unlock_memory_hotplug();
1902		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903	}
1904
1905	/* remove memmap entry */
1906	firmware_map_remove(start, start + size, "System RAM");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1907
1908	arch_remove_memory(start, size);
 
 
 
 
 
 
 
 
1909
1910	try_offline_node(nid);
 
 
 
 
 
 
 
 
 
1911
1912	unlock_memory_hotplug();
 
1913}
1914EXPORT_SYMBOL_GPL(remove_memory);
1915#endif /* CONFIG_MEMORY_HOTREMOVE */