Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/pagevec.h>
17#include <linux/writeback.h>
18#include <linux/slab.h>
19#include <linux/sysctl.h>
20#include <linux/cpu.h>
21#include <linux/memory.h>
22#include <linux/memremap.h>
23#include <linux/memory_hotplug.h>
24#include <linux/highmem.h>
25#include <linux/vmalloc.h>
26#include <linux/ioport.h>
27#include <linux/delay.h>
28#include <linux/migrate.h>
29#include <linux/page-isolation.h>
30#include <linux/pfn.h>
31#include <linux/suspend.h>
32#include <linux/mm_inline.h>
33#include <linux/firmware-map.h>
34#include <linux/stop_machine.h>
35#include <linux/hugetlb.h>
36#include <linux/memblock.h>
37#include <linux/compaction.h>
38#include <linux/rmap.h>
39
40#include <asm/tlbflush.h>
41
42#include "internal.h"
43#include "shuffle.h"
44
45
46/*
47 * memory_hotplug.memmap_on_memory parameter
48 */
49static bool memmap_on_memory __ro_after_init;
50#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51module_param(memmap_on_memory, bool, 0444);
52MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53#endif
54
55/*
56 * online_page_callback contains pointer to current page onlining function.
57 * Initially it is generic_online_page(). If it is required it could be
58 * changed by calling set_online_page_callback() for callback registration
59 * and restore_online_page_callback() for generic callback restore.
60 */
61
62static online_page_callback_t online_page_callback = generic_online_page;
63static DEFINE_MUTEX(online_page_callback_lock);
64
65DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
66
67void get_online_mems(void)
68{
69 percpu_down_read(&mem_hotplug_lock);
70}
71
72void put_online_mems(void)
73{
74 percpu_up_read(&mem_hotplug_lock);
75}
76
77bool movable_node_enabled = false;
78
79#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
80int mhp_default_online_type = MMOP_OFFLINE;
81#else
82int mhp_default_online_type = MMOP_ONLINE;
83#endif
84
85static int __init setup_memhp_default_state(char *str)
86{
87 const int online_type = mhp_online_type_from_str(str);
88
89 if (online_type >= 0)
90 mhp_default_online_type = online_type;
91
92 return 1;
93}
94__setup("memhp_default_state=", setup_memhp_default_state);
95
96void mem_hotplug_begin(void)
97{
98 cpus_read_lock();
99 percpu_down_write(&mem_hotplug_lock);
100}
101
102void mem_hotplug_done(void)
103{
104 percpu_up_write(&mem_hotplug_lock);
105 cpus_read_unlock();
106}
107
108u64 max_mem_size = U64_MAX;
109
110/* add this memory to iomem resource */
111static struct resource *register_memory_resource(u64 start, u64 size,
112 const char *resource_name)
113{
114 struct resource *res;
115 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
116
117 if (strcmp(resource_name, "System RAM"))
118 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
119
120 if (!mhp_range_allowed(start, size, true))
121 return ERR_PTR(-E2BIG);
122
123 /*
124 * Make sure value parsed from 'mem=' only restricts memory adding
125 * while booting, so that memory hotplug won't be impacted. Please
126 * refer to document of 'mem=' in kernel-parameters.txt for more
127 * details.
128 */
129 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
130 return ERR_PTR(-E2BIG);
131
132 /*
133 * Request ownership of the new memory range. This might be
134 * a child of an existing resource that was present but
135 * not marked as busy.
136 */
137 res = __request_region(&iomem_resource, start, size,
138 resource_name, flags);
139
140 if (!res) {
141 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
142 start, start + size);
143 return ERR_PTR(-EEXIST);
144 }
145 return res;
146}
147
148static void release_memory_resource(struct resource *res)
149{
150 if (!res)
151 return;
152 release_resource(res);
153 kfree(res);
154}
155
156#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
157static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
158 const char *reason)
159{
160 /*
161 * Disallow all operations smaller than a sub-section and only
162 * allow operations smaller than a section for
163 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
164 * enforces a larger memory_block_size_bytes() granularity for
165 * memory that will be marked online, so this check should only
166 * fire for direct arch_{add,remove}_memory() users outside of
167 * add_memory_resource().
168 */
169 unsigned long min_align;
170
171 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
172 min_align = PAGES_PER_SUBSECTION;
173 else
174 min_align = PAGES_PER_SECTION;
175 if (!IS_ALIGNED(pfn, min_align)
176 || !IS_ALIGNED(nr_pages, min_align)) {
177 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
178 reason, pfn, pfn + nr_pages - 1);
179 return -EINVAL;
180 }
181 return 0;
182}
183
184/*
185 * Return page for the valid pfn only if the page is online. All pfn
186 * walkers which rely on the fully initialized page->flags and others
187 * should use this rather than pfn_valid && pfn_to_page
188 */
189struct page *pfn_to_online_page(unsigned long pfn)
190{
191 unsigned long nr = pfn_to_section_nr(pfn);
192 struct dev_pagemap *pgmap;
193 struct mem_section *ms;
194
195 if (nr >= NR_MEM_SECTIONS)
196 return NULL;
197
198 ms = __nr_to_section(nr);
199 if (!online_section(ms))
200 return NULL;
201
202 /*
203 * Save some code text when online_section() +
204 * pfn_section_valid() are sufficient.
205 */
206 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
207 return NULL;
208
209 if (!pfn_section_valid(ms, pfn))
210 return NULL;
211
212 if (!online_device_section(ms))
213 return pfn_to_page(pfn);
214
215 /*
216 * Slowpath: when ZONE_DEVICE collides with
217 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
218 * the section may be 'offline' but 'valid'. Only
219 * get_dev_pagemap() can determine sub-section online status.
220 */
221 pgmap = get_dev_pagemap(pfn, NULL);
222 put_dev_pagemap(pgmap);
223
224 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
225 if (pgmap)
226 return NULL;
227
228 return pfn_to_page(pfn);
229}
230EXPORT_SYMBOL_GPL(pfn_to_online_page);
231
232/*
233 * Reasonably generic function for adding memory. It is
234 * expected that archs that support memory hotplug will
235 * call this function after deciding the zone to which to
236 * add the new pages.
237 */
238int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
239 struct mhp_params *params)
240{
241 const unsigned long end_pfn = pfn + nr_pages;
242 unsigned long cur_nr_pages;
243 int err;
244 struct vmem_altmap *altmap = params->altmap;
245
246 if (WARN_ON_ONCE(!params->pgprot.pgprot))
247 return -EINVAL;
248
249 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
250
251 if (altmap) {
252 /*
253 * Validate altmap is within bounds of the total request
254 */
255 if (altmap->base_pfn != pfn
256 || vmem_altmap_offset(altmap) > nr_pages) {
257 pr_warn_once("memory add fail, invalid altmap\n");
258 return -EINVAL;
259 }
260 altmap->alloc = 0;
261 }
262
263 err = check_pfn_span(pfn, nr_pages, "add");
264 if (err)
265 return err;
266
267 for (; pfn < end_pfn; pfn += cur_nr_pages) {
268 /* Select all remaining pages up to the next section boundary */
269 cur_nr_pages = min(end_pfn - pfn,
270 SECTION_ALIGN_UP(pfn + 1) - pfn);
271 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
272 if (err)
273 break;
274 cond_resched();
275 }
276 vmemmap_populate_print_last();
277 return err;
278}
279
280/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
281static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
282 unsigned long start_pfn,
283 unsigned long end_pfn)
284{
285 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
286 if (unlikely(!pfn_to_online_page(start_pfn)))
287 continue;
288
289 if (unlikely(pfn_to_nid(start_pfn) != nid))
290 continue;
291
292 if (zone != page_zone(pfn_to_page(start_pfn)))
293 continue;
294
295 return start_pfn;
296 }
297
298 return 0;
299}
300
301/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
302static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
303 unsigned long start_pfn,
304 unsigned long end_pfn)
305{
306 unsigned long pfn;
307
308 /* pfn is the end pfn of a memory section. */
309 pfn = end_pfn - 1;
310 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
311 if (unlikely(!pfn_to_online_page(pfn)))
312 continue;
313
314 if (unlikely(pfn_to_nid(pfn) != nid))
315 continue;
316
317 if (zone != page_zone(pfn_to_page(pfn)))
318 continue;
319
320 return pfn;
321 }
322
323 return 0;
324}
325
326static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
327 unsigned long end_pfn)
328{
329 unsigned long pfn;
330 int nid = zone_to_nid(zone);
331
332 if (zone->zone_start_pfn == start_pfn) {
333 /*
334 * If the section is smallest section in the zone, it need
335 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
336 * In this case, we find second smallest valid mem_section
337 * for shrinking zone.
338 */
339 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
340 zone_end_pfn(zone));
341 if (pfn) {
342 zone->spanned_pages = zone_end_pfn(zone) - pfn;
343 zone->zone_start_pfn = pfn;
344 } else {
345 zone->zone_start_pfn = 0;
346 zone->spanned_pages = 0;
347 }
348 } else if (zone_end_pfn(zone) == end_pfn) {
349 /*
350 * If the section is biggest section in the zone, it need
351 * shrink zone->spanned_pages.
352 * In this case, we find second biggest valid mem_section for
353 * shrinking zone.
354 */
355 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
356 start_pfn);
357 if (pfn)
358 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
359 else {
360 zone->zone_start_pfn = 0;
361 zone->spanned_pages = 0;
362 }
363 }
364}
365
366static void update_pgdat_span(struct pglist_data *pgdat)
367{
368 unsigned long node_start_pfn = 0, node_end_pfn = 0;
369 struct zone *zone;
370
371 for (zone = pgdat->node_zones;
372 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
373 unsigned long end_pfn = zone_end_pfn(zone);
374
375 /* No need to lock the zones, they can't change. */
376 if (!zone->spanned_pages)
377 continue;
378 if (!node_end_pfn) {
379 node_start_pfn = zone->zone_start_pfn;
380 node_end_pfn = end_pfn;
381 continue;
382 }
383
384 if (end_pfn > node_end_pfn)
385 node_end_pfn = end_pfn;
386 if (zone->zone_start_pfn < node_start_pfn)
387 node_start_pfn = zone->zone_start_pfn;
388 }
389
390 pgdat->node_start_pfn = node_start_pfn;
391 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
392}
393
394void __ref remove_pfn_range_from_zone(struct zone *zone,
395 unsigned long start_pfn,
396 unsigned long nr_pages)
397{
398 const unsigned long end_pfn = start_pfn + nr_pages;
399 struct pglist_data *pgdat = zone->zone_pgdat;
400 unsigned long pfn, cur_nr_pages;
401
402 /* Poison struct pages because they are now uninitialized again. */
403 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
404 cond_resched();
405
406 /* Select all remaining pages up to the next section boundary */
407 cur_nr_pages =
408 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
409 page_init_poison(pfn_to_page(pfn),
410 sizeof(struct page) * cur_nr_pages);
411 }
412
413#ifdef CONFIG_ZONE_DEVICE
414 /*
415 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
416 * we will not try to shrink the zones - which is okay as
417 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
418 */
419 if (zone_idx(zone) == ZONE_DEVICE)
420 return;
421#endif
422
423 clear_zone_contiguous(zone);
424
425 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
426 update_pgdat_span(pgdat);
427
428 set_zone_contiguous(zone);
429}
430
431static void __remove_section(unsigned long pfn, unsigned long nr_pages,
432 unsigned long map_offset,
433 struct vmem_altmap *altmap)
434{
435 struct mem_section *ms = __pfn_to_section(pfn);
436
437 if (WARN_ON_ONCE(!valid_section(ms)))
438 return;
439
440 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
441}
442
443/**
444 * __remove_pages() - remove sections of pages
445 * @pfn: starting pageframe (must be aligned to start of a section)
446 * @nr_pages: number of pages to remove (must be multiple of section size)
447 * @altmap: alternative device page map or %NULL if default memmap is used
448 *
449 * Generic helper function to remove section mappings and sysfs entries
450 * for the section of the memory we are removing. Caller needs to make
451 * sure that pages are marked reserved and zones are adjust properly by
452 * calling offline_pages().
453 */
454void __remove_pages(unsigned long pfn, unsigned long nr_pages,
455 struct vmem_altmap *altmap)
456{
457 const unsigned long end_pfn = pfn + nr_pages;
458 unsigned long cur_nr_pages;
459 unsigned long map_offset = 0;
460
461 map_offset = vmem_altmap_offset(altmap);
462
463 if (check_pfn_span(pfn, nr_pages, "remove"))
464 return;
465
466 for (; pfn < end_pfn; pfn += cur_nr_pages) {
467 cond_resched();
468 /* Select all remaining pages up to the next section boundary */
469 cur_nr_pages = min(end_pfn - pfn,
470 SECTION_ALIGN_UP(pfn + 1) - pfn);
471 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
472 map_offset = 0;
473 }
474}
475
476int set_online_page_callback(online_page_callback_t callback)
477{
478 int rc = -EINVAL;
479
480 get_online_mems();
481 mutex_lock(&online_page_callback_lock);
482
483 if (online_page_callback == generic_online_page) {
484 online_page_callback = callback;
485 rc = 0;
486 }
487
488 mutex_unlock(&online_page_callback_lock);
489 put_online_mems();
490
491 return rc;
492}
493EXPORT_SYMBOL_GPL(set_online_page_callback);
494
495int restore_online_page_callback(online_page_callback_t callback)
496{
497 int rc = -EINVAL;
498
499 get_online_mems();
500 mutex_lock(&online_page_callback_lock);
501
502 if (online_page_callback == callback) {
503 online_page_callback = generic_online_page;
504 rc = 0;
505 }
506
507 mutex_unlock(&online_page_callback_lock);
508 put_online_mems();
509
510 return rc;
511}
512EXPORT_SYMBOL_GPL(restore_online_page_callback);
513
514void generic_online_page(struct page *page, unsigned int order)
515{
516 /*
517 * Freeing the page with debug_pagealloc enabled will try to unmap it,
518 * so we should map it first. This is better than introducing a special
519 * case in page freeing fast path.
520 */
521 debug_pagealloc_map_pages(page, 1 << order);
522 __free_pages_core(page, order);
523 totalram_pages_add(1UL << order);
524#ifdef CONFIG_HIGHMEM
525 if (PageHighMem(page))
526 totalhigh_pages_add(1UL << order);
527#endif
528}
529EXPORT_SYMBOL_GPL(generic_online_page);
530
531static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
532{
533 const unsigned long end_pfn = start_pfn + nr_pages;
534 unsigned long pfn;
535
536 /*
537 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
538 * decide to not expose all pages to the buddy (e.g., expose them
539 * later). We account all pages as being online and belonging to this
540 * zone ("present").
541 * When using memmap_on_memory, the range might not be aligned to
542 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
543 * this and the first chunk to online will be pageblock_nr_pages.
544 */
545 for (pfn = start_pfn; pfn < end_pfn;) {
546 int order = min(MAX_ORDER - 1UL, __ffs(pfn));
547
548 (*online_page_callback)(pfn_to_page(pfn), order);
549 pfn += (1UL << order);
550 }
551
552 /* mark all involved sections as online */
553 online_mem_sections(start_pfn, end_pfn);
554}
555
556/* check which state of node_states will be changed when online memory */
557static void node_states_check_changes_online(unsigned long nr_pages,
558 struct zone *zone, struct memory_notify *arg)
559{
560 int nid = zone_to_nid(zone);
561
562 arg->status_change_nid = NUMA_NO_NODE;
563 arg->status_change_nid_normal = NUMA_NO_NODE;
564 arg->status_change_nid_high = NUMA_NO_NODE;
565
566 if (!node_state(nid, N_MEMORY))
567 arg->status_change_nid = nid;
568 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
569 arg->status_change_nid_normal = nid;
570#ifdef CONFIG_HIGHMEM
571 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
572 arg->status_change_nid_high = nid;
573#endif
574}
575
576static void node_states_set_node(int node, struct memory_notify *arg)
577{
578 if (arg->status_change_nid_normal >= 0)
579 node_set_state(node, N_NORMAL_MEMORY);
580
581 if (arg->status_change_nid_high >= 0)
582 node_set_state(node, N_HIGH_MEMORY);
583
584 if (arg->status_change_nid >= 0)
585 node_set_state(node, N_MEMORY);
586}
587
588static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
589 unsigned long nr_pages)
590{
591 unsigned long old_end_pfn = zone_end_pfn(zone);
592
593 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
594 zone->zone_start_pfn = start_pfn;
595
596 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
597}
598
599static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
600 unsigned long nr_pages)
601{
602 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
603
604 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
605 pgdat->node_start_pfn = start_pfn;
606
607 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
608
609}
610
611static void section_taint_zone_device(unsigned long pfn)
612{
613 struct mem_section *ms = __pfn_to_section(pfn);
614
615 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
616}
617
618/*
619 * Associate the pfn range with the given zone, initializing the memmaps
620 * and resizing the pgdat/zone data to span the added pages. After this
621 * call, all affected pages are PG_reserved.
622 *
623 * All aligned pageblocks are initialized to the specified migratetype
624 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
625 * zone stats (e.g., nr_isolate_pageblock) are touched.
626 */
627void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
628 unsigned long nr_pages,
629 struct vmem_altmap *altmap, int migratetype)
630{
631 struct pglist_data *pgdat = zone->zone_pgdat;
632 int nid = pgdat->node_id;
633
634 clear_zone_contiguous(zone);
635
636 if (zone_is_empty(zone))
637 init_currently_empty_zone(zone, start_pfn, nr_pages);
638 resize_zone_range(zone, start_pfn, nr_pages);
639 resize_pgdat_range(pgdat, start_pfn, nr_pages);
640
641 /*
642 * Subsection population requires care in pfn_to_online_page().
643 * Set the taint to enable the slow path detection of
644 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
645 * section.
646 */
647 if (zone_is_zone_device(zone)) {
648 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
649 section_taint_zone_device(start_pfn);
650 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
651 section_taint_zone_device(start_pfn + nr_pages);
652 }
653
654 /*
655 * TODO now we have a visible range of pages which are not associated
656 * with their zone properly. Not nice but set_pfnblock_flags_mask
657 * expects the zone spans the pfn range. All the pages in the range
658 * are reserved so nobody should be touching them so we should be safe
659 */
660 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
661 MEMINIT_HOTPLUG, altmap, migratetype);
662
663 set_zone_contiguous(zone);
664}
665
666/*
667 * Returns a default kernel memory zone for the given pfn range.
668 * If no kernel zone covers this pfn range it will automatically go
669 * to the ZONE_NORMAL.
670 */
671static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
672 unsigned long nr_pages)
673{
674 struct pglist_data *pgdat = NODE_DATA(nid);
675 int zid;
676
677 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
678 struct zone *zone = &pgdat->node_zones[zid];
679
680 if (zone_intersects(zone, start_pfn, nr_pages))
681 return zone;
682 }
683
684 return &pgdat->node_zones[ZONE_NORMAL];
685}
686
687static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
688 unsigned long nr_pages)
689{
690 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
691 nr_pages);
692 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
693 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
694 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
695
696 /*
697 * We inherit the existing zone in a simple case where zones do not
698 * overlap in the given range
699 */
700 if (in_kernel ^ in_movable)
701 return (in_kernel) ? kernel_zone : movable_zone;
702
703 /*
704 * If the range doesn't belong to any zone or two zones overlap in the
705 * given range then we use movable zone only if movable_node is
706 * enabled because we always online to a kernel zone by default.
707 */
708 return movable_node_enabled ? movable_zone : kernel_zone;
709}
710
711struct zone *zone_for_pfn_range(int online_type, int nid,
712 unsigned long start_pfn, unsigned long nr_pages)
713{
714 if (online_type == MMOP_ONLINE_KERNEL)
715 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
716
717 if (online_type == MMOP_ONLINE_MOVABLE)
718 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
719
720 return default_zone_for_pfn(nid, start_pfn, nr_pages);
721}
722
723/*
724 * This function should only be called by memory_block_{online,offline},
725 * and {online,offline}_pages.
726 */
727void adjust_present_page_count(struct zone *zone, long nr_pages)
728{
729 zone->present_pages += nr_pages;
730 zone->zone_pgdat->node_present_pages += nr_pages;
731}
732
733int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
734 struct zone *zone)
735{
736 unsigned long end_pfn = pfn + nr_pages;
737 int ret;
738
739 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
740 if (ret)
741 return ret;
742
743 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
744
745 /*
746 * It might be that the vmemmap_pages fully span sections. If that is
747 * the case, mark those sections online here as otherwise they will be
748 * left offline.
749 */
750 if (nr_pages >= PAGES_PER_SECTION)
751 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
752
753 return ret;
754}
755
756void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
757{
758 unsigned long end_pfn = pfn + nr_pages;
759
760 /*
761 * It might be that the vmemmap_pages fully span sections. If that is
762 * the case, mark those sections offline here as otherwise they will be
763 * left online.
764 */
765 if (nr_pages >= PAGES_PER_SECTION)
766 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
767
768 /*
769 * The pages associated with this vmemmap have been offlined, so
770 * we can reset its state here.
771 */
772 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
773 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
774}
775
776int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
777{
778 unsigned long flags;
779 int need_zonelists_rebuild = 0;
780 const int nid = zone_to_nid(zone);
781 int ret;
782 struct memory_notify arg;
783
784 /*
785 * {on,off}lining is constrained to full memory sections (or more
786 * precisely to memory blocks from the user space POV).
787 * memmap_on_memory is an exception because it reserves initial part
788 * of the physical memory space for vmemmaps. That space is pageblock
789 * aligned.
790 */
791 if (WARN_ON_ONCE(!nr_pages ||
792 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
793 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
794 return -EINVAL;
795
796 mem_hotplug_begin();
797
798 /* associate pfn range with the zone */
799 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
800
801 arg.start_pfn = pfn;
802 arg.nr_pages = nr_pages;
803 node_states_check_changes_online(nr_pages, zone, &arg);
804
805 ret = memory_notify(MEM_GOING_ONLINE, &arg);
806 ret = notifier_to_errno(ret);
807 if (ret)
808 goto failed_addition;
809
810 /*
811 * Fixup the number of isolated pageblocks before marking the sections
812 * onlining, such that undo_isolate_page_range() works correctly.
813 */
814 spin_lock_irqsave(&zone->lock, flags);
815 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
816 spin_unlock_irqrestore(&zone->lock, flags);
817
818 /*
819 * If this zone is not populated, then it is not in zonelist.
820 * This means the page allocator ignores this zone.
821 * So, zonelist must be updated after online.
822 */
823 if (!populated_zone(zone)) {
824 need_zonelists_rebuild = 1;
825 setup_zone_pageset(zone);
826 }
827
828 online_pages_range(pfn, nr_pages);
829 adjust_present_page_count(zone, nr_pages);
830
831 node_states_set_node(nid, &arg);
832 if (need_zonelists_rebuild)
833 build_all_zonelists(NULL);
834
835 /* Basic onlining is complete, allow allocation of onlined pages. */
836 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
837
838 /*
839 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
840 * the tail of the freelist when undoing isolation). Shuffle the whole
841 * zone to make sure the just onlined pages are properly distributed
842 * across the whole freelist - to create an initial shuffle.
843 */
844 shuffle_zone(zone);
845
846 /* reinitialise watermarks and update pcp limits */
847 init_per_zone_wmark_min();
848
849 kswapd_run(nid);
850 kcompactd_run(nid);
851
852 writeback_set_ratelimit();
853
854 memory_notify(MEM_ONLINE, &arg);
855 mem_hotplug_done();
856 return 0;
857
858failed_addition:
859 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
860 (unsigned long long) pfn << PAGE_SHIFT,
861 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
862 memory_notify(MEM_CANCEL_ONLINE, &arg);
863 remove_pfn_range_from_zone(zone, pfn, nr_pages);
864 mem_hotplug_done();
865 return ret;
866}
867#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
868
869static void reset_node_present_pages(pg_data_t *pgdat)
870{
871 struct zone *z;
872
873 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
874 z->present_pages = 0;
875
876 pgdat->node_present_pages = 0;
877}
878
879/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
880static pg_data_t __ref *hotadd_new_pgdat(int nid)
881{
882 struct pglist_data *pgdat;
883
884 pgdat = NODE_DATA(nid);
885 if (!pgdat) {
886 pgdat = arch_alloc_nodedata(nid);
887 if (!pgdat)
888 return NULL;
889
890 pgdat->per_cpu_nodestats =
891 alloc_percpu(struct per_cpu_nodestat);
892 arch_refresh_nodedata(nid, pgdat);
893 } else {
894 int cpu;
895 /*
896 * Reset the nr_zones, order and highest_zoneidx before reuse.
897 * Note that kswapd will init kswapd_highest_zoneidx properly
898 * when it starts in the near future.
899 */
900 pgdat->nr_zones = 0;
901 pgdat->kswapd_order = 0;
902 pgdat->kswapd_highest_zoneidx = 0;
903 for_each_online_cpu(cpu) {
904 struct per_cpu_nodestat *p;
905
906 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
907 memset(p, 0, sizeof(*p));
908 }
909 }
910
911 /* we can use NODE_DATA(nid) from here */
912 pgdat->node_id = nid;
913 pgdat->node_start_pfn = 0;
914
915 /* init node's zones as empty zones, we don't have any present pages.*/
916 free_area_init_core_hotplug(nid);
917
918 /*
919 * The node we allocated has no zone fallback lists. For avoiding
920 * to access not-initialized zonelist, build here.
921 */
922 build_all_zonelists(pgdat);
923
924 /*
925 * When memory is hot-added, all the memory is in offline state. So
926 * clear all zones' present_pages because they will be updated in
927 * online_pages() and offline_pages().
928 */
929 reset_node_managed_pages(pgdat);
930 reset_node_present_pages(pgdat);
931
932 return pgdat;
933}
934
935static void rollback_node_hotadd(int nid)
936{
937 pg_data_t *pgdat = NODE_DATA(nid);
938
939 arch_refresh_nodedata(nid, NULL);
940 free_percpu(pgdat->per_cpu_nodestats);
941 arch_free_nodedata(pgdat);
942}
943
944
945/*
946 * __try_online_node - online a node if offlined
947 * @nid: the node ID
948 * @set_node_online: Whether we want to online the node
949 * called by cpu_up() to online a node without onlined memory.
950 *
951 * Returns:
952 * 1 -> a new node has been allocated
953 * 0 -> the node is already online
954 * -ENOMEM -> the node could not be allocated
955 */
956static int __try_online_node(int nid, bool set_node_online)
957{
958 pg_data_t *pgdat;
959 int ret = 1;
960
961 if (node_online(nid))
962 return 0;
963
964 pgdat = hotadd_new_pgdat(nid);
965 if (!pgdat) {
966 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
967 ret = -ENOMEM;
968 goto out;
969 }
970
971 if (set_node_online) {
972 node_set_online(nid);
973 ret = register_one_node(nid);
974 BUG_ON(ret);
975 }
976out:
977 return ret;
978}
979
980/*
981 * Users of this function always want to online/register the node
982 */
983int try_online_node(int nid)
984{
985 int ret;
986
987 mem_hotplug_begin();
988 ret = __try_online_node(nid, true);
989 mem_hotplug_done();
990 return ret;
991}
992
993static int check_hotplug_memory_range(u64 start, u64 size)
994{
995 /* memory range must be block size aligned */
996 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
997 !IS_ALIGNED(size, memory_block_size_bytes())) {
998 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
999 memory_block_size_bytes(), start, size);
1000 return -EINVAL;
1001 }
1002
1003 return 0;
1004}
1005
1006static int online_memory_block(struct memory_block *mem, void *arg)
1007{
1008 mem->online_type = mhp_default_online_type;
1009 return device_online(&mem->dev);
1010}
1011
1012bool mhp_supports_memmap_on_memory(unsigned long size)
1013{
1014 unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1015 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1016 unsigned long remaining_size = size - vmemmap_size;
1017
1018 /*
1019 * Besides having arch support and the feature enabled at runtime, we
1020 * need a few more assumptions to hold true:
1021 *
1022 * a) We span a single memory block: memory onlining/offlinin;g happens
1023 * in memory block granularity. We don't want the vmemmap of online
1024 * memory blocks to reside on offline memory blocks. In the future,
1025 * we might want to support variable-sized memory blocks to make the
1026 * feature more versatile.
1027 *
1028 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1029 * to populate memory from the altmap for unrelated parts (i.e.,
1030 * other memory blocks)
1031 *
1032 * c) The vmemmap pages (and thereby the pages that will be exposed to
1033 * the buddy) have to cover full pageblocks: memory onlining/offlining
1034 * code requires applicable ranges to be page-aligned, for example, to
1035 * set the migratetypes properly.
1036 *
1037 * TODO: Although we have a check here to make sure that vmemmap pages
1038 * fully populate a PMD, it is not the right place to check for
1039 * this. A much better solution involves improving vmemmap code
1040 * to fallback to base pages when trying to populate vmemmap using
1041 * altmap as an alternative source of memory, and we do not exactly
1042 * populate a single PMD.
1043 */
1044 return memmap_on_memory &&
1045 !hugetlb_free_vmemmap_enabled &&
1046 IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1047 size == memory_block_size_bytes() &&
1048 IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1049 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1050}
1051
1052/*
1053 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1054 * and online/offline operations (triggered e.g. by sysfs).
1055 *
1056 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1057 */
1058int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1059{
1060 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1061 struct vmem_altmap mhp_altmap = {};
1062 u64 start, size;
1063 bool new_node = false;
1064 int ret;
1065
1066 start = res->start;
1067 size = resource_size(res);
1068
1069 ret = check_hotplug_memory_range(start, size);
1070 if (ret)
1071 return ret;
1072
1073 if (!node_possible(nid)) {
1074 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1075 return -EINVAL;
1076 }
1077
1078 mem_hotplug_begin();
1079
1080 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1081 memblock_add_node(start, size, nid);
1082
1083 ret = __try_online_node(nid, false);
1084 if (ret < 0)
1085 goto error;
1086 new_node = ret;
1087
1088 /*
1089 * Self hosted memmap array
1090 */
1091 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1092 if (!mhp_supports_memmap_on_memory(size)) {
1093 ret = -EINVAL;
1094 goto error;
1095 }
1096 mhp_altmap.free = PHYS_PFN(size);
1097 mhp_altmap.base_pfn = PHYS_PFN(start);
1098 params.altmap = &mhp_altmap;
1099 }
1100
1101 /* call arch's memory hotadd */
1102 ret = arch_add_memory(nid, start, size, ¶ms);
1103 if (ret < 0)
1104 goto error;
1105
1106 /* create memory block devices after memory was added */
1107 ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
1108 if (ret) {
1109 arch_remove_memory(nid, start, size, NULL);
1110 goto error;
1111 }
1112
1113 if (new_node) {
1114 /* If sysfs file of new node can't be created, cpu on the node
1115 * can't be hot-added. There is no rollback way now.
1116 * So, check by BUG_ON() to catch it reluctantly..
1117 * We online node here. We can't roll back from here.
1118 */
1119 node_set_online(nid);
1120 ret = __register_one_node(nid);
1121 BUG_ON(ret);
1122 }
1123
1124 /* link memory sections under this node.*/
1125 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1126 MEMINIT_HOTPLUG);
1127
1128 /* create new memmap entry */
1129 if (!strcmp(res->name, "System RAM"))
1130 firmware_map_add_hotplug(start, start + size, "System RAM");
1131
1132 /* device_online() will take the lock when calling online_pages() */
1133 mem_hotplug_done();
1134
1135 /*
1136 * In case we're allowed to merge the resource, flag it and trigger
1137 * merging now that adding succeeded.
1138 */
1139 if (mhp_flags & MHP_MERGE_RESOURCE)
1140 merge_system_ram_resource(res);
1141
1142 /* online pages if requested */
1143 if (mhp_default_online_type != MMOP_OFFLINE)
1144 walk_memory_blocks(start, size, NULL, online_memory_block);
1145
1146 return ret;
1147error:
1148 /* rollback pgdat allocation and others */
1149 if (new_node)
1150 rollback_node_hotadd(nid);
1151 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1152 memblock_remove(start, size);
1153 mem_hotplug_done();
1154 return ret;
1155}
1156
1157/* requires device_hotplug_lock, see add_memory_resource() */
1158int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1159{
1160 struct resource *res;
1161 int ret;
1162
1163 res = register_memory_resource(start, size, "System RAM");
1164 if (IS_ERR(res))
1165 return PTR_ERR(res);
1166
1167 ret = add_memory_resource(nid, res, mhp_flags);
1168 if (ret < 0)
1169 release_memory_resource(res);
1170 return ret;
1171}
1172
1173int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1174{
1175 int rc;
1176
1177 lock_device_hotplug();
1178 rc = __add_memory(nid, start, size, mhp_flags);
1179 unlock_device_hotplug();
1180
1181 return rc;
1182}
1183EXPORT_SYMBOL_GPL(add_memory);
1184
1185/*
1186 * Add special, driver-managed memory to the system as system RAM. Such
1187 * memory is not exposed via the raw firmware-provided memmap as system
1188 * RAM, instead, it is detected and added by a driver - during cold boot,
1189 * after a reboot, and after kexec.
1190 *
1191 * Reasons why this memory should not be used for the initial memmap of a
1192 * kexec kernel or for placing kexec images:
1193 * - The booting kernel is in charge of determining how this memory will be
1194 * used (e.g., use persistent memory as system RAM)
1195 * - Coordination with a hypervisor is required before this memory
1196 * can be used (e.g., inaccessible parts).
1197 *
1198 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1199 * memory map") are created. Also, the created memory resource is flagged
1200 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1201 * this memory as well (esp., not place kexec images onto it).
1202 *
1203 * The resource_name (visible via /proc/iomem) has to have the format
1204 * "System RAM ($DRIVER)".
1205 */
1206int add_memory_driver_managed(int nid, u64 start, u64 size,
1207 const char *resource_name, mhp_t mhp_flags)
1208{
1209 struct resource *res;
1210 int rc;
1211
1212 if (!resource_name ||
1213 strstr(resource_name, "System RAM (") != resource_name ||
1214 resource_name[strlen(resource_name) - 1] != ')')
1215 return -EINVAL;
1216
1217 lock_device_hotplug();
1218
1219 res = register_memory_resource(start, size, resource_name);
1220 if (IS_ERR(res)) {
1221 rc = PTR_ERR(res);
1222 goto out_unlock;
1223 }
1224
1225 rc = add_memory_resource(nid, res, mhp_flags);
1226 if (rc < 0)
1227 release_memory_resource(res);
1228
1229out_unlock:
1230 unlock_device_hotplug();
1231 return rc;
1232}
1233EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1234
1235/*
1236 * Platforms should define arch_get_mappable_range() that provides
1237 * maximum possible addressable physical memory range for which the
1238 * linear mapping could be created. The platform returned address
1239 * range must adhere to these following semantics.
1240 *
1241 * - range.start <= range.end
1242 * - Range includes both end points [range.start..range.end]
1243 *
1244 * There is also a fallback definition provided here, allowing the
1245 * entire possible physical address range in case any platform does
1246 * not define arch_get_mappable_range().
1247 */
1248struct range __weak arch_get_mappable_range(void)
1249{
1250 struct range mhp_range = {
1251 .start = 0UL,
1252 .end = -1ULL,
1253 };
1254 return mhp_range;
1255}
1256
1257struct range mhp_get_pluggable_range(bool need_mapping)
1258{
1259 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1260 struct range mhp_range;
1261
1262 if (need_mapping) {
1263 mhp_range = arch_get_mappable_range();
1264 if (mhp_range.start > max_phys) {
1265 mhp_range.start = 0;
1266 mhp_range.end = 0;
1267 }
1268 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1269 } else {
1270 mhp_range.start = 0;
1271 mhp_range.end = max_phys;
1272 }
1273 return mhp_range;
1274}
1275EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1276
1277bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1278{
1279 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1280 u64 end = start + size;
1281
1282 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1283 return true;
1284
1285 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1286 start, end, mhp_range.start, mhp_range.end);
1287 return false;
1288}
1289
1290#ifdef CONFIG_MEMORY_HOTREMOVE
1291/*
1292 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1293 * memory holes). When true, return the zone.
1294 */
1295struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1296 unsigned long end_pfn)
1297{
1298 unsigned long pfn, sec_end_pfn;
1299 struct zone *zone = NULL;
1300 struct page *page;
1301 int i;
1302 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1303 pfn < end_pfn;
1304 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1305 /* Make sure the memory section is present first */
1306 if (!present_section_nr(pfn_to_section_nr(pfn)))
1307 continue;
1308 for (; pfn < sec_end_pfn && pfn < end_pfn;
1309 pfn += MAX_ORDER_NR_PAGES) {
1310 i = 0;
1311 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1312 while ((i < MAX_ORDER_NR_PAGES) &&
1313 !pfn_valid_within(pfn + i))
1314 i++;
1315 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1316 continue;
1317 /* Check if we got outside of the zone */
1318 if (zone && !zone_spans_pfn(zone, pfn + i))
1319 return NULL;
1320 page = pfn_to_page(pfn + i);
1321 if (zone && page_zone(page) != zone)
1322 return NULL;
1323 zone = page_zone(page);
1324 }
1325 }
1326
1327 return zone;
1328}
1329
1330/*
1331 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1332 * non-lru movable pages and hugepages). Will skip over most unmovable
1333 * pages (esp., pages that can be skipped when offlining), but bail out on
1334 * definitely unmovable pages.
1335 *
1336 * Returns:
1337 * 0 in case a movable page is found and movable_pfn was updated.
1338 * -ENOENT in case no movable page was found.
1339 * -EBUSY in case a definitely unmovable page was found.
1340 */
1341static int scan_movable_pages(unsigned long start, unsigned long end,
1342 unsigned long *movable_pfn)
1343{
1344 unsigned long pfn;
1345
1346 for (pfn = start; pfn < end; pfn++) {
1347 struct page *page, *head;
1348 unsigned long skip;
1349
1350 if (!pfn_valid(pfn))
1351 continue;
1352 page = pfn_to_page(pfn);
1353 if (PageLRU(page))
1354 goto found;
1355 if (__PageMovable(page))
1356 goto found;
1357
1358 /*
1359 * PageOffline() pages that are not marked __PageMovable() and
1360 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1361 * definitely unmovable. If their reference count would be 0,
1362 * they could at least be skipped when offlining memory.
1363 */
1364 if (PageOffline(page) && page_count(page))
1365 return -EBUSY;
1366
1367 if (!PageHuge(page))
1368 continue;
1369 head = compound_head(page);
1370 /*
1371 * This test is racy as we hold no reference or lock. The
1372 * hugetlb page could have been free'ed and head is no longer
1373 * a hugetlb page before the following check. In such unlikely
1374 * cases false positives and negatives are possible. Calling
1375 * code must deal with these scenarios.
1376 */
1377 if (HPageMigratable(head))
1378 goto found;
1379 skip = compound_nr(head) - (page - head);
1380 pfn += skip - 1;
1381 }
1382 return -ENOENT;
1383found:
1384 *movable_pfn = pfn;
1385 return 0;
1386}
1387
1388static int
1389do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1390{
1391 unsigned long pfn;
1392 struct page *page, *head;
1393 int ret = 0;
1394 LIST_HEAD(source);
1395 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1396 DEFAULT_RATELIMIT_BURST);
1397
1398 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1399 if (!pfn_valid(pfn))
1400 continue;
1401 page = pfn_to_page(pfn);
1402 head = compound_head(page);
1403
1404 if (PageHuge(page)) {
1405 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1406 isolate_huge_page(head, &source);
1407 continue;
1408 } else if (PageTransHuge(page))
1409 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1410
1411 /*
1412 * HWPoison pages have elevated reference counts so the migration would
1413 * fail on them. It also doesn't make any sense to migrate them in the
1414 * first place. Still try to unmap such a page in case it is still mapped
1415 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1416 * the unmap as the catch all safety net).
1417 */
1418 if (PageHWPoison(page)) {
1419 if (WARN_ON(PageLRU(page)))
1420 isolate_lru_page(page);
1421 if (page_mapped(page))
1422 try_to_unmap(page, TTU_IGNORE_MLOCK);
1423 continue;
1424 }
1425
1426 if (!get_page_unless_zero(page))
1427 continue;
1428 /*
1429 * We can skip free pages. And we can deal with pages on
1430 * LRU and non-lru movable pages.
1431 */
1432 if (PageLRU(page))
1433 ret = isolate_lru_page(page);
1434 else
1435 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1436 if (!ret) { /* Success */
1437 list_add_tail(&page->lru, &source);
1438 if (!__PageMovable(page))
1439 inc_node_page_state(page, NR_ISOLATED_ANON +
1440 page_is_file_lru(page));
1441
1442 } else {
1443 if (__ratelimit(&migrate_rs)) {
1444 pr_warn("failed to isolate pfn %lx\n", pfn);
1445 dump_page(page, "isolation failed");
1446 }
1447 }
1448 put_page(page);
1449 }
1450 if (!list_empty(&source)) {
1451 nodemask_t nmask = node_states[N_MEMORY];
1452 struct migration_target_control mtc = {
1453 .nmask = &nmask,
1454 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1455 };
1456
1457 /*
1458 * We have checked that migration range is on a single zone so
1459 * we can use the nid of the first page to all the others.
1460 */
1461 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1462
1463 /*
1464 * try to allocate from a different node but reuse this node
1465 * if there are no other online nodes to be used (e.g. we are
1466 * offlining a part of the only existing node)
1467 */
1468 node_clear(mtc.nid, nmask);
1469 if (nodes_empty(nmask))
1470 node_set(mtc.nid, nmask);
1471 ret = migrate_pages(&source, alloc_migration_target, NULL,
1472 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1473 if (ret) {
1474 list_for_each_entry(page, &source, lru) {
1475 if (__ratelimit(&migrate_rs)) {
1476 pr_warn("migrating pfn %lx failed ret:%d\n",
1477 page_to_pfn(page), ret);
1478 dump_page(page, "migration failure");
1479 }
1480 }
1481 putback_movable_pages(&source);
1482 }
1483 }
1484
1485 return ret;
1486}
1487
1488static int __init cmdline_parse_movable_node(char *p)
1489{
1490 movable_node_enabled = true;
1491 return 0;
1492}
1493early_param("movable_node", cmdline_parse_movable_node);
1494
1495/* check which state of node_states will be changed when offline memory */
1496static void node_states_check_changes_offline(unsigned long nr_pages,
1497 struct zone *zone, struct memory_notify *arg)
1498{
1499 struct pglist_data *pgdat = zone->zone_pgdat;
1500 unsigned long present_pages = 0;
1501 enum zone_type zt;
1502
1503 arg->status_change_nid = NUMA_NO_NODE;
1504 arg->status_change_nid_normal = NUMA_NO_NODE;
1505 arg->status_change_nid_high = NUMA_NO_NODE;
1506
1507 /*
1508 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1509 * If the memory to be offline is within the range
1510 * [0..ZONE_NORMAL], and it is the last present memory there,
1511 * the zones in that range will become empty after the offlining,
1512 * thus we can determine that we need to clear the node from
1513 * node_states[N_NORMAL_MEMORY].
1514 */
1515 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1516 present_pages += pgdat->node_zones[zt].present_pages;
1517 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1518 arg->status_change_nid_normal = zone_to_nid(zone);
1519
1520#ifdef CONFIG_HIGHMEM
1521 /*
1522 * node_states[N_HIGH_MEMORY] contains nodes which
1523 * have normal memory or high memory.
1524 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1525 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1526 * we determine that the zones in that range become empty,
1527 * we need to clear the node for N_HIGH_MEMORY.
1528 */
1529 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1530 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1531 arg->status_change_nid_high = zone_to_nid(zone);
1532#endif
1533
1534 /*
1535 * We have accounted the pages from [0..ZONE_NORMAL), and
1536 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1537 * as well.
1538 * Here we count the possible pages from ZONE_MOVABLE.
1539 * If after having accounted all the pages, we see that the nr_pages
1540 * to be offlined is over or equal to the accounted pages,
1541 * we know that the node will become empty, and so, we can clear
1542 * it for N_MEMORY as well.
1543 */
1544 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1545
1546 if (nr_pages >= present_pages)
1547 arg->status_change_nid = zone_to_nid(zone);
1548}
1549
1550static void node_states_clear_node(int node, struct memory_notify *arg)
1551{
1552 if (arg->status_change_nid_normal >= 0)
1553 node_clear_state(node, N_NORMAL_MEMORY);
1554
1555 if (arg->status_change_nid_high >= 0)
1556 node_clear_state(node, N_HIGH_MEMORY);
1557
1558 if (arg->status_change_nid >= 0)
1559 node_clear_state(node, N_MEMORY);
1560}
1561
1562static int count_system_ram_pages_cb(unsigned long start_pfn,
1563 unsigned long nr_pages, void *data)
1564{
1565 unsigned long *nr_system_ram_pages = data;
1566
1567 *nr_system_ram_pages += nr_pages;
1568 return 0;
1569}
1570
1571int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1572{
1573 const unsigned long end_pfn = start_pfn + nr_pages;
1574 unsigned long pfn, system_ram_pages = 0;
1575 unsigned long flags;
1576 struct zone *zone;
1577 struct memory_notify arg;
1578 int ret, node;
1579 char *reason;
1580
1581 /*
1582 * {on,off}lining is constrained to full memory sections (or more
1583 * precisely to memory blocks from the user space POV).
1584 * memmap_on_memory is an exception because it reserves initial part
1585 * of the physical memory space for vmemmaps. That space is pageblock
1586 * aligned.
1587 */
1588 if (WARN_ON_ONCE(!nr_pages ||
1589 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1590 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1591 return -EINVAL;
1592
1593 mem_hotplug_begin();
1594
1595 /*
1596 * Don't allow to offline memory blocks that contain holes.
1597 * Consequently, memory blocks with holes can never get onlined
1598 * via the hotplug path - online_pages() - as hotplugged memory has
1599 * no holes. This way, we e.g., don't have to worry about marking
1600 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1601 * avoid using walk_system_ram_range() later.
1602 */
1603 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1604 count_system_ram_pages_cb);
1605 if (system_ram_pages != nr_pages) {
1606 ret = -EINVAL;
1607 reason = "memory holes";
1608 goto failed_removal;
1609 }
1610
1611 /* This makes hotplug much easier...and readable.
1612 we assume this for now. .*/
1613 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1614 if (!zone) {
1615 ret = -EINVAL;
1616 reason = "multizone range";
1617 goto failed_removal;
1618 }
1619 node = zone_to_nid(zone);
1620
1621 /*
1622 * Disable pcplists so that page isolation cannot race with freeing
1623 * in a way that pages from isolated pageblock are left on pcplists.
1624 */
1625 zone_pcp_disable(zone);
1626 lru_cache_disable();
1627
1628 /* set above range as isolated */
1629 ret = start_isolate_page_range(start_pfn, end_pfn,
1630 MIGRATE_MOVABLE,
1631 MEMORY_OFFLINE | REPORT_FAILURE);
1632 if (ret) {
1633 reason = "failure to isolate range";
1634 goto failed_removal_pcplists_disabled;
1635 }
1636
1637 arg.start_pfn = start_pfn;
1638 arg.nr_pages = nr_pages;
1639 node_states_check_changes_offline(nr_pages, zone, &arg);
1640
1641 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1642 ret = notifier_to_errno(ret);
1643 if (ret) {
1644 reason = "notifier failure";
1645 goto failed_removal_isolated;
1646 }
1647
1648 do {
1649 pfn = start_pfn;
1650 do {
1651 if (signal_pending(current)) {
1652 ret = -EINTR;
1653 reason = "signal backoff";
1654 goto failed_removal_isolated;
1655 }
1656
1657 cond_resched();
1658
1659 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1660 if (!ret) {
1661 /*
1662 * TODO: fatal migration failures should bail
1663 * out
1664 */
1665 do_migrate_range(pfn, end_pfn);
1666 }
1667 } while (!ret);
1668
1669 if (ret != -ENOENT) {
1670 reason = "unmovable page";
1671 goto failed_removal_isolated;
1672 }
1673
1674 /*
1675 * Dissolve free hugepages in the memory block before doing
1676 * offlining actually in order to make hugetlbfs's object
1677 * counting consistent.
1678 */
1679 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1680 if (ret) {
1681 reason = "failure to dissolve huge pages";
1682 goto failed_removal_isolated;
1683 }
1684
1685 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1686
1687 } while (ret);
1688
1689 /* Mark all sections offline and remove free pages from the buddy. */
1690 __offline_isolated_pages(start_pfn, end_pfn);
1691 pr_debug("Offlined Pages %ld\n", nr_pages);
1692
1693 /*
1694 * The memory sections are marked offline, and the pageblock flags
1695 * effectively stale; nobody should be touching them. Fixup the number
1696 * of isolated pageblocks, memory onlining will properly revert this.
1697 */
1698 spin_lock_irqsave(&zone->lock, flags);
1699 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1700 spin_unlock_irqrestore(&zone->lock, flags);
1701
1702 lru_cache_enable();
1703 zone_pcp_enable(zone);
1704
1705 /* removal success */
1706 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1707 adjust_present_page_count(zone, -nr_pages);
1708
1709 /* reinitialise watermarks and update pcp limits */
1710 init_per_zone_wmark_min();
1711
1712 if (!populated_zone(zone)) {
1713 zone_pcp_reset(zone);
1714 build_all_zonelists(NULL);
1715 }
1716
1717 node_states_clear_node(node, &arg);
1718 if (arg.status_change_nid >= 0) {
1719 kswapd_stop(node);
1720 kcompactd_stop(node);
1721 }
1722
1723 writeback_set_ratelimit();
1724
1725 memory_notify(MEM_OFFLINE, &arg);
1726 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1727 mem_hotplug_done();
1728 return 0;
1729
1730failed_removal_isolated:
1731 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1732 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1733failed_removal_pcplists_disabled:
1734 lru_cache_enable();
1735 zone_pcp_enable(zone);
1736failed_removal:
1737 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1738 (unsigned long long) start_pfn << PAGE_SHIFT,
1739 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1740 reason);
1741 /* pushback to free area */
1742 mem_hotplug_done();
1743 return ret;
1744}
1745
1746static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1747{
1748 int ret = !is_memblock_offlined(mem);
1749
1750 if (unlikely(ret)) {
1751 phys_addr_t beginpa, endpa;
1752
1753 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1754 endpa = beginpa + memory_block_size_bytes() - 1;
1755 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1756 &beginpa, &endpa);
1757
1758 return -EBUSY;
1759 }
1760 return 0;
1761}
1762
1763static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1764{
1765 /*
1766 * If not set, continue with the next block.
1767 */
1768 return mem->nr_vmemmap_pages;
1769}
1770
1771static int check_cpu_on_node(pg_data_t *pgdat)
1772{
1773 int cpu;
1774
1775 for_each_present_cpu(cpu) {
1776 if (cpu_to_node(cpu) == pgdat->node_id)
1777 /*
1778 * the cpu on this node isn't removed, and we can't
1779 * offline this node.
1780 */
1781 return -EBUSY;
1782 }
1783
1784 return 0;
1785}
1786
1787static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1788{
1789 int nid = *(int *)arg;
1790
1791 /*
1792 * If a memory block belongs to multiple nodes, the stored nid is not
1793 * reliable. However, such blocks are always online (e.g., cannot get
1794 * offlined) and, therefore, are still spanned by the node.
1795 */
1796 return mem->nid == nid ? -EEXIST : 0;
1797}
1798
1799/**
1800 * try_offline_node
1801 * @nid: the node ID
1802 *
1803 * Offline a node if all memory sections and cpus of the node are removed.
1804 *
1805 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1806 * and online/offline operations before this call.
1807 */
1808void try_offline_node(int nid)
1809{
1810 pg_data_t *pgdat = NODE_DATA(nid);
1811 int rc;
1812
1813 /*
1814 * If the node still spans pages (especially ZONE_DEVICE), don't
1815 * offline it. A node spans memory after move_pfn_range_to_zone(),
1816 * e.g., after the memory block was onlined.
1817 */
1818 if (pgdat->node_spanned_pages)
1819 return;
1820
1821 /*
1822 * Especially offline memory blocks might not be spanned by the
1823 * node. They will get spanned by the node once they get onlined.
1824 * However, they link to the node in sysfs and can get onlined later.
1825 */
1826 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1827 if (rc)
1828 return;
1829
1830 if (check_cpu_on_node(pgdat))
1831 return;
1832
1833 /*
1834 * all memory/cpu of this node are removed, we can offline this
1835 * node now.
1836 */
1837 node_set_offline(nid);
1838 unregister_one_node(nid);
1839}
1840EXPORT_SYMBOL(try_offline_node);
1841
1842static int __ref try_remove_memory(int nid, u64 start, u64 size)
1843{
1844 int rc = 0;
1845 struct vmem_altmap mhp_altmap = {};
1846 struct vmem_altmap *altmap = NULL;
1847 unsigned long nr_vmemmap_pages;
1848
1849 BUG_ON(check_hotplug_memory_range(start, size));
1850
1851 /*
1852 * All memory blocks must be offlined before removing memory. Check
1853 * whether all memory blocks in question are offline and return error
1854 * if this is not the case.
1855 */
1856 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1857 if (rc)
1858 return rc;
1859
1860 /*
1861 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
1862 * the same granularity it was added - a single memory block.
1863 */
1864 if (memmap_on_memory) {
1865 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
1866 get_nr_vmemmap_pages_cb);
1867 if (nr_vmemmap_pages) {
1868 if (size != memory_block_size_bytes()) {
1869 pr_warn("Refuse to remove %#llx - %#llx,"
1870 "wrong granularity\n",
1871 start, start + size);
1872 return -EINVAL;
1873 }
1874
1875 /*
1876 * Let remove_pmd_table->free_hugepage_table do the
1877 * right thing if we used vmem_altmap when hot-adding
1878 * the range.
1879 */
1880 mhp_altmap.alloc = nr_vmemmap_pages;
1881 altmap = &mhp_altmap;
1882 }
1883 }
1884
1885 /* remove memmap entry */
1886 firmware_map_remove(start, start + size, "System RAM");
1887
1888 /*
1889 * Memory block device removal under the device_hotplug_lock is
1890 * a barrier against racing online attempts.
1891 */
1892 remove_memory_block_devices(start, size);
1893
1894 mem_hotplug_begin();
1895
1896 arch_remove_memory(nid, start, size, altmap);
1897
1898 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1899 memblock_free(start, size);
1900 memblock_remove(start, size);
1901 }
1902
1903 release_mem_region_adjustable(start, size);
1904
1905 try_offline_node(nid);
1906
1907 mem_hotplug_done();
1908 return 0;
1909}
1910
1911/**
1912 * __remove_memory - Remove memory if every memory block is offline
1913 * @nid: the node ID
1914 * @start: physical address of the region to remove
1915 * @size: size of the region to remove
1916 *
1917 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1918 * and online/offline operations before this call, as required by
1919 * try_offline_node().
1920 */
1921void __remove_memory(int nid, u64 start, u64 size)
1922{
1923
1924 /*
1925 * trigger BUG() if some memory is not offlined prior to calling this
1926 * function
1927 */
1928 if (try_remove_memory(nid, start, size))
1929 BUG();
1930}
1931
1932/*
1933 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1934 * some memory is not offline
1935 */
1936int remove_memory(int nid, u64 start, u64 size)
1937{
1938 int rc;
1939
1940 lock_device_hotplug();
1941 rc = try_remove_memory(nid, start, size);
1942 unlock_device_hotplug();
1943
1944 return rc;
1945}
1946EXPORT_SYMBOL_GPL(remove_memory);
1947
1948static int try_offline_memory_block(struct memory_block *mem, void *arg)
1949{
1950 uint8_t online_type = MMOP_ONLINE_KERNEL;
1951 uint8_t **online_types = arg;
1952 struct page *page;
1953 int rc;
1954
1955 /*
1956 * Sense the online_type via the zone of the memory block. Offlining
1957 * with multiple zones within one memory block will be rejected
1958 * by offlining code ... so we don't care about that.
1959 */
1960 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
1961 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
1962 online_type = MMOP_ONLINE_MOVABLE;
1963
1964 rc = device_offline(&mem->dev);
1965 /*
1966 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
1967 * so try_reonline_memory_block() can do the right thing.
1968 */
1969 if (!rc)
1970 **online_types = online_type;
1971
1972 (*online_types)++;
1973 /* Ignore if already offline. */
1974 return rc < 0 ? rc : 0;
1975}
1976
1977static int try_reonline_memory_block(struct memory_block *mem, void *arg)
1978{
1979 uint8_t **online_types = arg;
1980 int rc;
1981
1982 if (**online_types != MMOP_OFFLINE) {
1983 mem->online_type = **online_types;
1984 rc = device_online(&mem->dev);
1985 if (rc < 0)
1986 pr_warn("%s: Failed to re-online memory: %d",
1987 __func__, rc);
1988 }
1989
1990 /* Continue processing all remaining memory blocks. */
1991 (*online_types)++;
1992 return 0;
1993}
1994
1995/*
1996 * Try to offline and remove memory. Might take a long time to finish in case
1997 * memory is still in use. Primarily useful for memory devices that logically
1998 * unplugged all memory (so it's no longer in use) and want to offline + remove
1999 * that memory.
2000 */
2001int offline_and_remove_memory(int nid, u64 start, u64 size)
2002{
2003 const unsigned long mb_count = size / memory_block_size_bytes();
2004 uint8_t *online_types, *tmp;
2005 int rc;
2006
2007 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2008 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2009 return -EINVAL;
2010
2011 /*
2012 * We'll remember the old online type of each memory block, so we can
2013 * try to revert whatever we did when offlining one memory block fails
2014 * after offlining some others succeeded.
2015 */
2016 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2017 GFP_KERNEL);
2018 if (!online_types)
2019 return -ENOMEM;
2020 /*
2021 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2022 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2023 * try_reonline_memory_block().
2024 */
2025 memset(online_types, MMOP_OFFLINE, mb_count);
2026
2027 lock_device_hotplug();
2028
2029 tmp = online_types;
2030 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2031
2032 /*
2033 * In case we succeeded to offline all memory, remove it.
2034 * This cannot fail as it cannot get onlined in the meantime.
2035 */
2036 if (!rc) {
2037 rc = try_remove_memory(nid, start, size);
2038 if (rc)
2039 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2040 }
2041
2042 /*
2043 * Rollback what we did. While memory onlining might theoretically fail
2044 * (nacked by a notifier), it barely ever happens.
2045 */
2046 if (rc) {
2047 tmp = online_types;
2048 walk_memory_blocks(start, size, &tmp,
2049 try_reonline_memory_block);
2050 }
2051 unlock_device_hotplug();
2052
2053 kfree(online_types);
2054 return rc;
2055}
2056EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2057#endif /* CONFIG_MEMORY_HOTREMOVE */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/writeback.h>
17#include <linux/slab.h>
18#include <linux/sysctl.h>
19#include <linux/cpu.h>
20#include <linux/memory.h>
21#include <linux/memremap.h>
22#include <linux/memory_hotplug.h>
23#include <linux/vmalloc.h>
24#include <linux/ioport.h>
25#include <linux/delay.h>
26#include <linux/migrate.h>
27#include <linux/page-isolation.h>
28#include <linux/pfn.h>
29#include <linux/suspend.h>
30#include <linux/mm_inline.h>
31#include <linux/firmware-map.h>
32#include <linux/stop_machine.h>
33#include <linux/hugetlb.h>
34#include <linux/memblock.h>
35#include <linux/compaction.h>
36#include <linux/rmap.h>
37#include <linux/module.h>
38
39#include <asm/tlbflush.h>
40
41#include "internal.h"
42#include "shuffle.h"
43
44enum {
45 MEMMAP_ON_MEMORY_DISABLE = 0,
46 MEMMAP_ON_MEMORY_ENABLE,
47 MEMMAP_ON_MEMORY_FORCE,
48};
49
50static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51
52static inline unsigned long memory_block_memmap_size(void)
53{
54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55}
56
57static inline unsigned long memory_block_memmap_on_memory_pages(void)
58{
59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60
61 /*
62 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 * vmemmap size to cover full pageblocks. That way, we can add memory
64 * even if the vmemmap size is not properly aligned, however, we might waste
65 * memory.
66 */
67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 return pageblock_align(nr_pages);
69 return nr_pages;
70}
71
72#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73/*
74 * memory_hotplug.memmap_on_memory parameter
75 */
76static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77{
78 int ret, mode;
79 bool enabled;
80
81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) {
82 mode = MEMMAP_ON_MEMORY_FORCE;
83 } else {
84 ret = kstrtobool(val, &enabled);
85 if (ret < 0)
86 return ret;
87 if (enabled)
88 mode = MEMMAP_ON_MEMORY_ENABLE;
89 else
90 mode = MEMMAP_ON_MEMORY_DISABLE;
91 }
92 *((int *)kp->arg) = mode;
93 if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95
96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 memmap_pages - PFN_UP(memory_block_memmap_size()));
98 }
99 return 0;
100}
101
102static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103{
104 int mode = *((int *)kp->arg);
105
106 if (mode == MEMMAP_ON_MEMORY_FORCE)
107 return sprintf(buffer, "force\n");
108 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109}
110
111static const struct kernel_param_ops memmap_mode_ops = {
112 .set = set_memmap_mode,
113 .get = get_memmap_mode,
114};
115module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117 "With value \"force\" it could result in memory wastage due "
118 "to memmap size limitations (Y/N/force)");
119
120static inline bool mhp_memmap_on_memory(void)
121{
122 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123}
124#else
125static inline bool mhp_memmap_on_memory(void)
126{
127 return false;
128}
129#endif
130
131enum {
132 ONLINE_POLICY_CONTIG_ZONES = 0,
133 ONLINE_POLICY_AUTO_MOVABLE,
134};
135
136static const char * const online_policy_to_str[] = {
137 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139};
140
141static int set_online_policy(const char *val, const struct kernel_param *kp)
142{
143 int ret = sysfs_match_string(online_policy_to_str, val);
144
145 if (ret < 0)
146 return ret;
147 *((int *)kp->arg) = ret;
148 return 0;
149}
150
151static int get_online_policy(char *buffer, const struct kernel_param *kp)
152{
153 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154}
155
156/*
157 * memory_hotplug.online_policy: configure online behavior when onlining without
158 * specifying a zone (MMOP_ONLINE)
159 *
160 * "contig-zones": keep zone contiguous
161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
163 */
164static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165static const struct kernel_param_ops online_policy_ops = {
166 .set = set_online_policy,
167 .get = get_online_policy,
168};
169module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170MODULE_PARM_DESC(online_policy,
171 "Set the online policy (\"contig-zones\", \"auto-movable\") "
172 "Default: \"contig-zones\"");
173
174/*
175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176 *
177 * The ratio represent an upper limit and the kernel might decide to not
178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179 * doesn't allow for more MOVABLE memory.
180 */
181static unsigned int auto_movable_ratio __read_mostly = 301;
182module_param(auto_movable_ratio, uint, 0644);
183MODULE_PARM_DESC(auto_movable_ratio,
184 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185 "in percent for \"auto-movable\" online policy. Default: 301");
186
187/*
188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189 */
190#ifdef CONFIG_NUMA
191static bool auto_movable_numa_aware __read_mostly = true;
192module_param(auto_movable_numa_aware, bool, 0644);
193MODULE_PARM_DESC(auto_movable_numa_aware,
194 "Consider numa node stats in addition to global stats in "
195 "\"auto-movable\" online policy. Default: true");
196#endif /* CONFIG_NUMA */
197
198/*
199 * online_page_callback contains pointer to current page onlining function.
200 * Initially it is generic_online_page(). If it is required it could be
201 * changed by calling set_online_page_callback() for callback registration
202 * and restore_online_page_callback() for generic callback restore.
203 */
204
205static online_page_callback_t online_page_callback = generic_online_page;
206static DEFINE_MUTEX(online_page_callback_lock);
207
208DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209
210void get_online_mems(void)
211{
212 percpu_down_read(&mem_hotplug_lock);
213}
214
215void put_online_mems(void)
216{
217 percpu_up_read(&mem_hotplug_lock);
218}
219
220bool movable_node_enabled = false;
221
222#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
223int mhp_default_online_type = MMOP_OFFLINE;
224#else
225int mhp_default_online_type = MMOP_ONLINE;
226#endif
227
228static int __init setup_memhp_default_state(char *str)
229{
230 const int online_type = mhp_online_type_from_str(str);
231
232 if (online_type >= 0)
233 mhp_default_online_type = online_type;
234
235 return 1;
236}
237__setup("memhp_default_state=", setup_memhp_default_state);
238
239void mem_hotplug_begin(void)
240{
241 cpus_read_lock();
242 percpu_down_write(&mem_hotplug_lock);
243}
244
245void mem_hotplug_done(void)
246{
247 percpu_up_write(&mem_hotplug_lock);
248 cpus_read_unlock();
249}
250
251u64 max_mem_size = U64_MAX;
252
253/* add this memory to iomem resource */
254static struct resource *register_memory_resource(u64 start, u64 size,
255 const char *resource_name)
256{
257 struct resource *res;
258 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
259
260 if (strcmp(resource_name, "System RAM"))
261 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
262
263 if (!mhp_range_allowed(start, size, true))
264 return ERR_PTR(-E2BIG);
265
266 /*
267 * Make sure value parsed from 'mem=' only restricts memory adding
268 * while booting, so that memory hotplug won't be impacted. Please
269 * refer to document of 'mem=' in kernel-parameters.txt for more
270 * details.
271 */
272 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
273 return ERR_PTR(-E2BIG);
274
275 /*
276 * Request ownership of the new memory range. This might be
277 * a child of an existing resource that was present but
278 * not marked as busy.
279 */
280 res = __request_region(&iomem_resource, start, size,
281 resource_name, flags);
282
283 if (!res) {
284 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
285 start, start + size);
286 return ERR_PTR(-EEXIST);
287 }
288 return res;
289}
290
291static void release_memory_resource(struct resource *res)
292{
293 if (!res)
294 return;
295 release_resource(res);
296 kfree(res);
297}
298
299static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
300{
301 /*
302 * Disallow all operations smaller than a sub-section and only
303 * allow operations smaller than a section for
304 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
305 * enforces a larger memory_block_size_bytes() granularity for
306 * memory that will be marked online, so this check should only
307 * fire for direct arch_{add,remove}_memory() users outside of
308 * add_memory_resource().
309 */
310 unsigned long min_align;
311
312 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
313 min_align = PAGES_PER_SUBSECTION;
314 else
315 min_align = PAGES_PER_SECTION;
316 if (!IS_ALIGNED(pfn | nr_pages, min_align))
317 return -EINVAL;
318 return 0;
319}
320
321/*
322 * Return page for the valid pfn only if the page is online. All pfn
323 * walkers which rely on the fully initialized page->flags and others
324 * should use this rather than pfn_valid && pfn_to_page
325 */
326struct page *pfn_to_online_page(unsigned long pfn)
327{
328 unsigned long nr = pfn_to_section_nr(pfn);
329 struct dev_pagemap *pgmap;
330 struct mem_section *ms;
331
332 if (nr >= NR_MEM_SECTIONS)
333 return NULL;
334
335 ms = __nr_to_section(nr);
336 if (!online_section(ms))
337 return NULL;
338
339 /*
340 * Save some code text when online_section() +
341 * pfn_section_valid() are sufficient.
342 */
343 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
344 return NULL;
345
346 if (!pfn_section_valid(ms, pfn))
347 return NULL;
348
349 if (!online_device_section(ms))
350 return pfn_to_page(pfn);
351
352 /*
353 * Slowpath: when ZONE_DEVICE collides with
354 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
355 * the section may be 'offline' but 'valid'. Only
356 * get_dev_pagemap() can determine sub-section online status.
357 */
358 pgmap = get_dev_pagemap(pfn, NULL);
359 put_dev_pagemap(pgmap);
360
361 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
362 if (pgmap)
363 return NULL;
364
365 return pfn_to_page(pfn);
366}
367EXPORT_SYMBOL_GPL(pfn_to_online_page);
368
369int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
370 struct mhp_params *params)
371{
372 const unsigned long end_pfn = pfn + nr_pages;
373 unsigned long cur_nr_pages;
374 int err;
375 struct vmem_altmap *altmap = params->altmap;
376
377 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
378 return -EINVAL;
379
380 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
381
382 if (altmap) {
383 /*
384 * Validate altmap is within bounds of the total request
385 */
386 if (altmap->base_pfn != pfn
387 || vmem_altmap_offset(altmap) > nr_pages) {
388 pr_warn_once("memory add fail, invalid altmap\n");
389 return -EINVAL;
390 }
391 altmap->alloc = 0;
392 }
393
394 if (check_pfn_span(pfn, nr_pages)) {
395 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
396 return -EINVAL;
397 }
398
399 for (; pfn < end_pfn; pfn += cur_nr_pages) {
400 /* Select all remaining pages up to the next section boundary */
401 cur_nr_pages = min(end_pfn - pfn,
402 SECTION_ALIGN_UP(pfn + 1) - pfn);
403 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
404 params->pgmap);
405 if (err)
406 break;
407 cond_resched();
408 }
409 vmemmap_populate_print_last();
410 return err;
411}
412
413/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
414static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
415 unsigned long start_pfn,
416 unsigned long end_pfn)
417{
418 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
419 if (unlikely(!pfn_to_online_page(start_pfn)))
420 continue;
421
422 if (unlikely(pfn_to_nid(start_pfn) != nid))
423 continue;
424
425 if (zone != page_zone(pfn_to_page(start_pfn)))
426 continue;
427
428 return start_pfn;
429 }
430
431 return 0;
432}
433
434/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
435static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
436 unsigned long start_pfn,
437 unsigned long end_pfn)
438{
439 unsigned long pfn;
440
441 /* pfn is the end pfn of a memory section. */
442 pfn = end_pfn - 1;
443 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
444 if (unlikely(!pfn_to_online_page(pfn)))
445 continue;
446
447 if (unlikely(pfn_to_nid(pfn) != nid))
448 continue;
449
450 if (zone != page_zone(pfn_to_page(pfn)))
451 continue;
452
453 return pfn;
454 }
455
456 return 0;
457}
458
459static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
460 unsigned long end_pfn)
461{
462 unsigned long pfn;
463 int nid = zone_to_nid(zone);
464
465 if (zone->zone_start_pfn == start_pfn) {
466 /*
467 * If the section is smallest section in the zone, it need
468 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
469 * In this case, we find second smallest valid mem_section
470 * for shrinking zone.
471 */
472 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
473 zone_end_pfn(zone));
474 if (pfn) {
475 zone->spanned_pages = zone_end_pfn(zone) - pfn;
476 zone->zone_start_pfn = pfn;
477 } else {
478 zone->zone_start_pfn = 0;
479 zone->spanned_pages = 0;
480 }
481 } else if (zone_end_pfn(zone) == end_pfn) {
482 /*
483 * If the section is biggest section in the zone, it need
484 * shrink zone->spanned_pages.
485 * In this case, we find second biggest valid mem_section for
486 * shrinking zone.
487 */
488 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
489 start_pfn);
490 if (pfn)
491 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
492 else {
493 zone->zone_start_pfn = 0;
494 zone->spanned_pages = 0;
495 }
496 }
497}
498
499static void update_pgdat_span(struct pglist_data *pgdat)
500{
501 unsigned long node_start_pfn = 0, node_end_pfn = 0;
502 struct zone *zone;
503
504 for (zone = pgdat->node_zones;
505 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
506 unsigned long end_pfn = zone_end_pfn(zone);
507
508 /* No need to lock the zones, they can't change. */
509 if (!zone->spanned_pages)
510 continue;
511 if (!node_end_pfn) {
512 node_start_pfn = zone->zone_start_pfn;
513 node_end_pfn = end_pfn;
514 continue;
515 }
516
517 if (end_pfn > node_end_pfn)
518 node_end_pfn = end_pfn;
519 if (zone->zone_start_pfn < node_start_pfn)
520 node_start_pfn = zone->zone_start_pfn;
521 }
522
523 pgdat->node_start_pfn = node_start_pfn;
524 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
525}
526
527void __ref remove_pfn_range_from_zone(struct zone *zone,
528 unsigned long start_pfn,
529 unsigned long nr_pages)
530{
531 const unsigned long end_pfn = start_pfn + nr_pages;
532 struct pglist_data *pgdat = zone->zone_pgdat;
533 unsigned long pfn, cur_nr_pages;
534
535 /* Poison struct pages because they are now uninitialized again. */
536 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
537 cond_resched();
538
539 /* Select all remaining pages up to the next section boundary */
540 cur_nr_pages =
541 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
542 page_init_poison(pfn_to_page(pfn),
543 sizeof(struct page) * cur_nr_pages);
544 }
545
546 /*
547 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
548 * we will not try to shrink the zones - which is okay as
549 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
550 */
551 if (zone_is_zone_device(zone))
552 return;
553
554 clear_zone_contiguous(zone);
555
556 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
557 update_pgdat_span(pgdat);
558
559 set_zone_contiguous(zone);
560}
561
562/**
563 * __remove_pages() - remove sections of pages
564 * @pfn: starting pageframe (must be aligned to start of a section)
565 * @nr_pages: number of pages to remove (must be multiple of section size)
566 * @altmap: alternative device page map or %NULL if default memmap is used
567 *
568 * Generic helper function to remove section mappings and sysfs entries
569 * for the section of the memory we are removing. Caller needs to make
570 * sure that pages are marked reserved and zones are adjust properly by
571 * calling offline_pages().
572 */
573void __remove_pages(unsigned long pfn, unsigned long nr_pages,
574 struct vmem_altmap *altmap)
575{
576 const unsigned long end_pfn = pfn + nr_pages;
577 unsigned long cur_nr_pages;
578
579 if (check_pfn_span(pfn, nr_pages)) {
580 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
581 return;
582 }
583
584 for (; pfn < end_pfn; pfn += cur_nr_pages) {
585 cond_resched();
586 /* Select all remaining pages up to the next section boundary */
587 cur_nr_pages = min(end_pfn - pfn,
588 SECTION_ALIGN_UP(pfn + 1) - pfn);
589 sparse_remove_section(pfn, cur_nr_pages, altmap);
590 }
591}
592
593int set_online_page_callback(online_page_callback_t callback)
594{
595 int rc = -EINVAL;
596
597 get_online_mems();
598 mutex_lock(&online_page_callback_lock);
599
600 if (online_page_callback == generic_online_page) {
601 online_page_callback = callback;
602 rc = 0;
603 }
604
605 mutex_unlock(&online_page_callback_lock);
606 put_online_mems();
607
608 return rc;
609}
610EXPORT_SYMBOL_GPL(set_online_page_callback);
611
612int restore_online_page_callback(online_page_callback_t callback)
613{
614 int rc = -EINVAL;
615
616 get_online_mems();
617 mutex_lock(&online_page_callback_lock);
618
619 if (online_page_callback == callback) {
620 online_page_callback = generic_online_page;
621 rc = 0;
622 }
623
624 mutex_unlock(&online_page_callback_lock);
625 put_online_mems();
626
627 return rc;
628}
629EXPORT_SYMBOL_GPL(restore_online_page_callback);
630
631void generic_online_page(struct page *page, unsigned int order)
632{
633 /*
634 * Freeing the page with debug_pagealloc enabled will try to unmap it,
635 * so we should map it first. This is better than introducing a special
636 * case in page freeing fast path.
637 */
638 debug_pagealloc_map_pages(page, 1 << order);
639 __free_pages_core(page, order);
640 totalram_pages_add(1UL << order);
641}
642EXPORT_SYMBOL_GPL(generic_online_page);
643
644static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
645{
646 const unsigned long end_pfn = start_pfn + nr_pages;
647 unsigned long pfn;
648
649 /*
650 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
651 * decide to not expose all pages to the buddy (e.g., expose them
652 * later). We account all pages as being online and belonging to this
653 * zone ("present").
654 * When using memmap_on_memory, the range might not be aligned to
655 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
656 * this and the first chunk to online will be pageblock_nr_pages.
657 */
658 for (pfn = start_pfn; pfn < end_pfn;) {
659 int order;
660
661 /*
662 * Free to online pages in the largest chunks alignment allows.
663 *
664 * __ffs() behaviour is undefined for 0. start == 0 is
665 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
666 * the case.
667 */
668 if (pfn)
669 order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
670 else
671 order = MAX_PAGE_ORDER;
672
673 (*online_page_callback)(pfn_to_page(pfn), order);
674 pfn += (1UL << order);
675 }
676
677 /* mark all involved sections as online */
678 online_mem_sections(start_pfn, end_pfn);
679}
680
681/* check which state of node_states will be changed when online memory */
682static void node_states_check_changes_online(unsigned long nr_pages,
683 struct zone *zone, struct memory_notify *arg)
684{
685 int nid = zone_to_nid(zone);
686
687 arg->status_change_nid = NUMA_NO_NODE;
688 arg->status_change_nid_normal = NUMA_NO_NODE;
689
690 if (!node_state(nid, N_MEMORY))
691 arg->status_change_nid = nid;
692 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
693 arg->status_change_nid_normal = nid;
694}
695
696static void node_states_set_node(int node, struct memory_notify *arg)
697{
698 if (arg->status_change_nid_normal >= 0)
699 node_set_state(node, N_NORMAL_MEMORY);
700
701 if (arg->status_change_nid >= 0)
702 node_set_state(node, N_MEMORY);
703}
704
705static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
706 unsigned long nr_pages)
707{
708 unsigned long old_end_pfn = zone_end_pfn(zone);
709
710 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
711 zone->zone_start_pfn = start_pfn;
712
713 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
714}
715
716static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
717 unsigned long nr_pages)
718{
719 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
720
721 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
722 pgdat->node_start_pfn = start_pfn;
723
724 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
725
726}
727
728#ifdef CONFIG_ZONE_DEVICE
729static void section_taint_zone_device(unsigned long pfn)
730{
731 struct mem_section *ms = __pfn_to_section(pfn);
732
733 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
734}
735#else
736static inline void section_taint_zone_device(unsigned long pfn)
737{
738}
739#endif
740
741/*
742 * Associate the pfn range with the given zone, initializing the memmaps
743 * and resizing the pgdat/zone data to span the added pages. After this
744 * call, all affected pages are PG_reserved.
745 *
746 * All aligned pageblocks are initialized to the specified migratetype
747 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
748 * zone stats (e.g., nr_isolate_pageblock) are touched.
749 */
750void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
751 unsigned long nr_pages,
752 struct vmem_altmap *altmap, int migratetype)
753{
754 struct pglist_data *pgdat = zone->zone_pgdat;
755 int nid = pgdat->node_id;
756
757 clear_zone_contiguous(zone);
758
759 if (zone_is_empty(zone))
760 init_currently_empty_zone(zone, start_pfn, nr_pages);
761 resize_zone_range(zone, start_pfn, nr_pages);
762 resize_pgdat_range(pgdat, start_pfn, nr_pages);
763
764 /*
765 * Subsection population requires care in pfn_to_online_page().
766 * Set the taint to enable the slow path detection of
767 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
768 * section.
769 */
770 if (zone_is_zone_device(zone)) {
771 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
772 section_taint_zone_device(start_pfn);
773 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
774 section_taint_zone_device(start_pfn + nr_pages);
775 }
776
777 /*
778 * TODO now we have a visible range of pages which are not associated
779 * with their zone properly. Not nice but set_pfnblock_flags_mask
780 * expects the zone spans the pfn range. All the pages in the range
781 * are reserved so nobody should be touching them so we should be safe
782 */
783 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
784 MEMINIT_HOTPLUG, altmap, migratetype);
785
786 set_zone_contiguous(zone);
787}
788
789struct auto_movable_stats {
790 unsigned long kernel_early_pages;
791 unsigned long movable_pages;
792};
793
794static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
795 struct zone *zone)
796{
797 if (zone_idx(zone) == ZONE_MOVABLE) {
798 stats->movable_pages += zone->present_pages;
799 } else {
800 stats->kernel_early_pages += zone->present_early_pages;
801#ifdef CONFIG_CMA
802 /*
803 * CMA pages (never on hotplugged memory) behave like
804 * ZONE_MOVABLE.
805 */
806 stats->movable_pages += zone->cma_pages;
807 stats->kernel_early_pages -= zone->cma_pages;
808#endif /* CONFIG_CMA */
809 }
810}
811struct auto_movable_group_stats {
812 unsigned long movable_pages;
813 unsigned long req_kernel_early_pages;
814};
815
816static int auto_movable_stats_account_group(struct memory_group *group,
817 void *arg)
818{
819 const int ratio = READ_ONCE(auto_movable_ratio);
820 struct auto_movable_group_stats *stats = arg;
821 long pages;
822
823 /*
824 * We don't support modifying the config while the auto-movable online
825 * policy is already enabled. Just avoid the division by zero below.
826 */
827 if (!ratio)
828 return 0;
829
830 /*
831 * Calculate how many early kernel pages this group requires to
832 * satisfy the configured zone ratio.
833 */
834 pages = group->present_movable_pages * 100 / ratio;
835 pages -= group->present_kernel_pages;
836
837 if (pages > 0)
838 stats->req_kernel_early_pages += pages;
839 stats->movable_pages += group->present_movable_pages;
840 return 0;
841}
842
843static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
844 unsigned long nr_pages)
845{
846 unsigned long kernel_early_pages, movable_pages;
847 struct auto_movable_group_stats group_stats = {};
848 struct auto_movable_stats stats = {};
849 pg_data_t *pgdat = NODE_DATA(nid);
850 struct zone *zone;
851 int i;
852
853 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
854 if (nid == NUMA_NO_NODE) {
855 /* TODO: cache values */
856 for_each_populated_zone(zone)
857 auto_movable_stats_account_zone(&stats, zone);
858 } else {
859 for (i = 0; i < MAX_NR_ZONES; i++) {
860 zone = pgdat->node_zones + i;
861 if (populated_zone(zone))
862 auto_movable_stats_account_zone(&stats, zone);
863 }
864 }
865
866 kernel_early_pages = stats.kernel_early_pages;
867 movable_pages = stats.movable_pages;
868
869 /*
870 * Kernel memory inside dynamic memory group allows for more MOVABLE
871 * memory within the same group. Remove the effect of all but the
872 * current group from the stats.
873 */
874 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
875 group, &group_stats);
876 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
877 return false;
878 kernel_early_pages -= group_stats.req_kernel_early_pages;
879 movable_pages -= group_stats.movable_pages;
880
881 if (group && group->is_dynamic)
882 kernel_early_pages += group->present_kernel_pages;
883
884 /*
885 * Test if we could online the given number of pages to ZONE_MOVABLE
886 * and still stay in the configured ratio.
887 */
888 movable_pages += nr_pages;
889 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
890}
891
892/*
893 * Returns a default kernel memory zone for the given pfn range.
894 * If no kernel zone covers this pfn range it will automatically go
895 * to the ZONE_NORMAL.
896 */
897static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
898 unsigned long nr_pages)
899{
900 struct pglist_data *pgdat = NODE_DATA(nid);
901 int zid;
902
903 for (zid = 0; zid < ZONE_NORMAL; zid++) {
904 struct zone *zone = &pgdat->node_zones[zid];
905
906 if (zone_intersects(zone, start_pfn, nr_pages))
907 return zone;
908 }
909
910 return &pgdat->node_zones[ZONE_NORMAL];
911}
912
913/*
914 * Determine to which zone to online memory dynamically based on user
915 * configuration and system stats. We care about the following ratio:
916 *
917 * MOVABLE : KERNEL
918 *
919 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
920 * one of the kernel zones. CMA pages inside one of the kernel zones really
921 * behaves like ZONE_MOVABLE, so we treat them accordingly.
922 *
923 * We don't allow for hotplugged memory in a KERNEL zone to increase the
924 * amount of MOVABLE memory we can have, so we end up with:
925 *
926 * MOVABLE : KERNEL_EARLY
927 *
928 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
929 * boot. We base our calculation on KERNEL_EARLY internally, because:
930 *
931 * a) Hotplugged memory in one of the kernel zones can sometimes still get
932 * hotunplugged, especially when hot(un)plugging individual memory blocks.
933 * There is no coordination across memory devices, therefore "automatic"
934 * hotunplugging, as implemented in hypervisors, could result in zone
935 * imbalances.
936 * b) Early/boot memory in one of the kernel zones can usually not get
937 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
938 * with unmovable allocations). While there are corner cases where it might
939 * still work, it is barely relevant in practice.
940 *
941 * Exceptions are dynamic memory groups, which allow for more MOVABLE
942 * memory within the same memory group -- because in that case, there is
943 * coordination within the single memory device managed by a single driver.
944 *
945 * We rely on "present pages" instead of "managed pages", as the latter is
946 * highly unreliable and dynamic in virtualized environments, and does not
947 * consider boot time allocations. For example, memory ballooning adjusts the
948 * managed pages when inflating/deflating the balloon, and balloon compaction
949 * can even migrate inflated pages between zones.
950 *
951 * Using "present pages" is better but some things to keep in mind are:
952 *
953 * a) Some memblock allocations, such as for the crashkernel area, are
954 * effectively unused by the kernel, yet they account to "present pages".
955 * Fortunately, these allocations are comparatively small in relevant setups
956 * (e.g., fraction of system memory).
957 * b) Some hotplugged memory blocks in virtualized environments, esecially
958 * hotplugged by virtio-mem, look like they are completely present, however,
959 * only parts of the memory block are actually currently usable.
960 * "present pages" is an upper limit that can get reached at runtime. As
961 * we base our calculations on KERNEL_EARLY, this is not an issue.
962 */
963static struct zone *auto_movable_zone_for_pfn(int nid,
964 struct memory_group *group,
965 unsigned long pfn,
966 unsigned long nr_pages)
967{
968 unsigned long online_pages = 0, max_pages, end_pfn;
969 struct page *page;
970
971 if (!auto_movable_ratio)
972 goto kernel_zone;
973
974 if (group && !group->is_dynamic) {
975 max_pages = group->s.max_pages;
976 online_pages = group->present_movable_pages;
977
978 /* If anything is !MOVABLE online the rest !MOVABLE. */
979 if (group->present_kernel_pages)
980 goto kernel_zone;
981 } else if (!group || group->d.unit_pages == nr_pages) {
982 max_pages = nr_pages;
983 } else {
984 max_pages = group->d.unit_pages;
985 /*
986 * Take a look at all online sections in the current unit.
987 * We can safely assume that all pages within a section belong
988 * to the same zone, because dynamic memory groups only deal
989 * with hotplugged memory.
990 */
991 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
992 end_pfn = pfn + group->d.unit_pages;
993 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
994 page = pfn_to_online_page(pfn);
995 if (!page)
996 continue;
997 /* If anything is !MOVABLE online the rest !MOVABLE. */
998 if (!is_zone_movable_page(page))
999 goto kernel_zone;
1000 online_pages += PAGES_PER_SECTION;
1001 }
1002 }
1003
1004 /*
1005 * Online MOVABLE if we could *currently* online all remaining parts
1006 * MOVABLE. We expect to (add+) online them immediately next, so if
1007 * nobody interferes, all will be MOVABLE if possible.
1008 */
1009 nr_pages = max_pages - online_pages;
1010 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1011 goto kernel_zone;
1012
1013#ifdef CONFIG_NUMA
1014 if (auto_movable_numa_aware &&
1015 !auto_movable_can_online_movable(nid, group, nr_pages))
1016 goto kernel_zone;
1017#endif /* CONFIG_NUMA */
1018
1019 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1020kernel_zone:
1021 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1022}
1023
1024static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1025 unsigned long nr_pages)
1026{
1027 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1028 nr_pages);
1029 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1030 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1031 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1032
1033 /*
1034 * We inherit the existing zone in a simple case where zones do not
1035 * overlap in the given range
1036 */
1037 if (in_kernel ^ in_movable)
1038 return (in_kernel) ? kernel_zone : movable_zone;
1039
1040 /*
1041 * If the range doesn't belong to any zone or two zones overlap in the
1042 * given range then we use movable zone only if movable_node is
1043 * enabled because we always online to a kernel zone by default.
1044 */
1045 return movable_node_enabled ? movable_zone : kernel_zone;
1046}
1047
1048struct zone *zone_for_pfn_range(int online_type, int nid,
1049 struct memory_group *group, unsigned long start_pfn,
1050 unsigned long nr_pages)
1051{
1052 if (online_type == MMOP_ONLINE_KERNEL)
1053 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1054
1055 if (online_type == MMOP_ONLINE_MOVABLE)
1056 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1057
1058 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1059 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1060
1061 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1062}
1063
1064/*
1065 * This function should only be called by memory_block_{online,offline},
1066 * and {online,offline}_pages.
1067 */
1068void adjust_present_page_count(struct page *page, struct memory_group *group,
1069 long nr_pages)
1070{
1071 struct zone *zone = page_zone(page);
1072 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1073
1074 /*
1075 * We only support onlining/offlining/adding/removing of complete
1076 * memory blocks; therefore, either all is either early or hotplugged.
1077 */
1078 if (early_section(__pfn_to_section(page_to_pfn(page))))
1079 zone->present_early_pages += nr_pages;
1080 zone->present_pages += nr_pages;
1081 zone->zone_pgdat->node_present_pages += nr_pages;
1082
1083 if (group && movable)
1084 group->present_movable_pages += nr_pages;
1085 else if (group && !movable)
1086 group->present_kernel_pages += nr_pages;
1087}
1088
1089int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1090 struct zone *zone)
1091{
1092 unsigned long end_pfn = pfn + nr_pages;
1093 int ret, i;
1094
1095 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1096 if (ret)
1097 return ret;
1098
1099 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1100
1101 for (i = 0; i < nr_pages; i++)
1102 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1103
1104 /*
1105 * It might be that the vmemmap_pages fully span sections. If that is
1106 * the case, mark those sections online here as otherwise they will be
1107 * left offline.
1108 */
1109 if (nr_pages >= PAGES_PER_SECTION)
1110 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1111
1112 return ret;
1113}
1114
1115void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1116{
1117 unsigned long end_pfn = pfn + nr_pages;
1118
1119 /*
1120 * It might be that the vmemmap_pages fully span sections. If that is
1121 * the case, mark those sections offline here as otherwise they will be
1122 * left online.
1123 */
1124 if (nr_pages >= PAGES_PER_SECTION)
1125 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1126
1127 /*
1128 * The pages associated with this vmemmap have been offlined, so
1129 * we can reset its state here.
1130 */
1131 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1132 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1133}
1134
1135/*
1136 * Must be called with mem_hotplug_lock in write mode.
1137 */
1138int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1139 struct zone *zone, struct memory_group *group)
1140{
1141 unsigned long flags;
1142 int need_zonelists_rebuild = 0;
1143 const int nid = zone_to_nid(zone);
1144 int ret;
1145 struct memory_notify arg;
1146
1147 /*
1148 * {on,off}lining is constrained to full memory sections (or more
1149 * precisely to memory blocks from the user space POV).
1150 * memmap_on_memory is an exception because it reserves initial part
1151 * of the physical memory space for vmemmaps. That space is pageblock
1152 * aligned.
1153 */
1154 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1155 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1156 return -EINVAL;
1157
1158
1159 /* associate pfn range with the zone */
1160 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1161
1162 arg.start_pfn = pfn;
1163 arg.nr_pages = nr_pages;
1164 node_states_check_changes_online(nr_pages, zone, &arg);
1165
1166 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1167 ret = notifier_to_errno(ret);
1168 if (ret)
1169 goto failed_addition;
1170
1171 /*
1172 * Fixup the number of isolated pageblocks before marking the sections
1173 * onlining, such that undo_isolate_page_range() works correctly.
1174 */
1175 spin_lock_irqsave(&zone->lock, flags);
1176 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1177 spin_unlock_irqrestore(&zone->lock, flags);
1178
1179 /*
1180 * If this zone is not populated, then it is not in zonelist.
1181 * This means the page allocator ignores this zone.
1182 * So, zonelist must be updated after online.
1183 */
1184 if (!populated_zone(zone)) {
1185 need_zonelists_rebuild = 1;
1186 setup_zone_pageset(zone);
1187 }
1188
1189 online_pages_range(pfn, nr_pages);
1190 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1191
1192 node_states_set_node(nid, &arg);
1193 if (need_zonelists_rebuild)
1194 build_all_zonelists(NULL);
1195
1196 /* Basic onlining is complete, allow allocation of onlined pages. */
1197 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1198
1199 /*
1200 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1201 * the tail of the freelist when undoing isolation). Shuffle the whole
1202 * zone to make sure the just onlined pages are properly distributed
1203 * across the whole freelist - to create an initial shuffle.
1204 */
1205 shuffle_zone(zone);
1206
1207 /* reinitialise watermarks and update pcp limits */
1208 init_per_zone_wmark_min();
1209
1210 kswapd_run(nid);
1211 kcompactd_run(nid);
1212
1213 writeback_set_ratelimit();
1214
1215 memory_notify(MEM_ONLINE, &arg);
1216 return 0;
1217
1218failed_addition:
1219 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1220 (unsigned long long) pfn << PAGE_SHIFT,
1221 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1222 memory_notify(MEM_CANCEL_ONLINE, &arg);
1223 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1224 return ret;
1225}
1226
1227/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1228static pg_data_t __ref *hotadd_init_pgdat(int nid)
1229{
1230 struct pglist_data *pgdat;
1231
1232 /*
1233 * NODE_DATA is preallocated (free_area_init) but its internal
1234 * state is not allocated completely. Add missing pieces.
1235 * Completely offline nodes stay around and they just need
1236 * reintialization.
1237 */
1238 pgdat = NODE_DATA(nid);
1239
1240 /* init node's zones as empty zones, we don't have any present pages.*/
1241 free_area_init_core_hotplug(pgdat);
1242
1243 /*
1244 * The node we allocated has no zone fallback lists. For avoiding
1245 * to access not-initialized zonelist, build here.
1246 */
1247 build_all_zonelists(pgdat);
1248
1249 return pgdat;
1250}
1251
1252/*
1253 * __try_online_node - online a node if offlined
1254 * @nid: the node ID
1255 * @set_node_online: Whether we want to online the node
1256 * called by cpu_up() to online a node without onlined memory.
1257 *
1258 * Returns:
1259 * 1 -> a new node has been allocated
1260 * 0 -> the node is already online
1261 * -ENOMEM -> the node could not be allocated
1262 */
1263static int __try_online_node(int nid, bool set_node_online)
1264{
1265 pg_data_t *pgdat;
1266 int ret = 1;
1267
1268 if (node_online(nid))
1269 return 0;
1270
1271 pgdat = hotadd_init_pgdat(nid);
1272 if (!pgdat) {
1273 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1274 ret = -ENOMEM;
1275 goto out;
1276 }
1277
1278 if (set_node_online) {
1279 node_set_online(nid);
1280 ret = register_one_node(nid);
1281 BUG_ON(ret);
1282 }
1283out:
1284 return ret;
1285}
1286
1287/*
1288 * Users of this function always want to online/register the node
1289 */
1290int try_online_node(int nid)
1291{
1292 int ret;
1293
1294 mem_hotplug_begin();
1295 ret = __try_online_node(nid, true);
1296 mem_hotplug_done();
1297 return ret;
1298}
1299
1300static int check_hotplug_memory_range(u64 start, u64 size)
1301{
1302 /* memory range must be block size aligned */
1303 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1304 !IS_ALIGNED(size, memory_block_size_bytes())) {
1305 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1306 memory_block_size_bytes(), start, size);
1307 return -EINVAL;
1308 }
1309
1310 return 0;
1311}
1312
1313static int online_memory_block(struct memory_block *mem, void *arg)
1314{
1315 mem->online_type = mhp_default_online_type;
1316 return device_online(&mem->dev);
1317}
1318
1319#ifndef arch_supports_memmap_on_memory
1320static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1321{
1322 /*
1323 * As default, we want the vmemmap to span a complete PMD such that we
1324 * can map the vmemmap using a single PMD if supported by the
1325 * architecture.
1326 */
1327 return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1328}
1329#endif
1330
1331static bool mhp_supports_memmap_on_memory(unsigned long size)
1332{
1333 unsigned long vmemmap_size = memory_block_memmap_size();
1334 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1335
1336 /*
1337 * Besides having arch support and the feature enabled at runtime, we
1338 * need a few more assumptions to hold true:
1339 *
1340 * a) We span a single memory block: memory onlining/offlinin;g happens
1341 * in memory block granularity. We don't want the vmemmap of online
1342 * memory blocks to reside on offline memory blocks. In the future,
1343 * we might want to support variable-sized memory blocks to make the
1344 * feature more versatile.
1345 *
1346 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1347 * to populate memory from the altmap for unrelated parts (i.e.,
1348 * other memory blocks)
1349 *
1350 * c) The vmemmap pages (and thereby the pages that will be exposed to
1351 * the buddy) have to cover full pageblocks: memory onlining/offlining
1352 * code requires applicable ranges to be page-aligned, for example, to
1353 * set the migratetypes properly.
1354 *
1355 * TODO: Although we have a check here to make sure that vmemmap pages
1356 * fully populate a PMD, it is not the right place to check for
1357 * this. A much better solution involves improving vmemmap code
1358 * to fallback to base pages when trying to populate vmemmap using
1359 * altmap as an alternative source of memory, and we do not exactly
1360 * populate a single PMD.
1361 */
1362 if (!mhp_memmap_on_memory() || size != memory_block_size_bytes())
1363 return false;
1364
1365 /*
1366 * Make sure the vmemmap allocation is fully contained
1367 * so that we always allocate vmemmap memory from altmap area.
1368 */
1369 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1370 return false;
1371
1372 /*
1373 * start pfn should be pageblock_nr_pages aligned for correctly
1374 * setting migrate types
1375 */
1376 if (!pageblock_aligned(memmap_pages))
1377 return false;
1378
1379 if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1380 /* No effective hotplugged memory doesn't make sense. */
1381 return false;
1382
1383 return arch_supports_memmap_on_memory(vmemmap_size);
1384}
1385
1386static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size)
1387{
1388 unsigned long memblock_size = memory_block_size_bytes();
1389 u64 cur_start;
1390
1391 /*
1392 * For memmap_on_memory, the altmaps were added on a per-memblock
1393 * basis; we have to process each individual memory block.
1394 */
1395 for (cur_start = start; cur_start < start + size;
1396 cur_start += memblock_size) {
1397 struct vmem_altmap *altmap = NULL;
1398 struct memory_block *mem;
1399
1400 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1401 if (WARN_ON_ONCE(!mem))
1402 continue;
1403
1404 altmap = mem->altmap;
1405 mem->altmap = NULL;
1406
1407 remove_memory_block_devices(cur_start, memblock_size);
1408
1409 arch_remove_memory(cur_start, memblock_size, altmap);
1410
1411 /* Verify that all vmemmap pages have actually been freed. */
1412 WARN(altmap->alloc, "Altmap not fully unmapped");
1413 kfree(altmap);
1414 }
1415}
1416
1417static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1418 u64 start, u64 size)
1419{
1420 unsigned long memblock_size = memory_block_size_bytes();
1421 u64 cur_start;
1422 int ret;
1423
1424 for (cur_start = start; cur_start < start + size;
1425 cur_start += memblock_size) {
1426 struct mhp_params params = { .pgprot =
1427 pgprot_mhp(PAGE_KERNEL) };
1428 struct vmem_altmap mhp_altmap = {
1429 .base_pfn = PHYS_PFN(cur_start),
1430 .end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1431 };
1432
1433 mhp_altmap.free = memory_block_memmap_on_memory_pages();
1434 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1435 GFP_KERNEL);
1436 if (!params.altmap) {
1437 ret = -ENOMEM;
1438 goto out;
1439 }
1440
1441 /* call arch's memory hotadd */
1442 ret = arch_add_memory(nid, cur_start, memblock_size, ¶ms);
1443 if (ret < 0) {
1444 kfree(params.altmap);
1445 goto out;
1446 }
1447
1448 /* create memory block devices after memory was added */
1449 ret = create_memory_block_devices(cur_start, memblock_size,
1450 params.altmap, group);
1451 if (ret) {
1452 arch_remove_memory(cur_start, memblock_size, NULL);
1453 kfree(params.altmap);
1454 goto out;
1455 }
1456 }
1457
1458 return 0;
1459out:
1460 if (ret && cur_start != start)
1461 remove_memory_blocks_and_altmaps(start, cur_start - start);
1462 return ret;
1463}
1464
1465/*
1466 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1467 * and online/offline operations (triggered e.g. by sysfs).
1468 *
1469 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1470 */
1471int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1472{
1473 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1474 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1475 struct memory_group *group = NULL;
1476 u64 start, size;
1477 bool new_node = false;
1478 int ret;
1479
1480 start = res->start;
1481 size = resource_size(res);
1482
1483 ret = check_hotplug_memory_range(start, size);
1484 if (ret)
1485 return ret;
1486
1487 if (mhp_flags & MHP_NID_IS_MGID) {
1488 group = memory_group_find_by_id(nid);
1489 if (!group)
1490 return -EINVAL;
1491 nid = group->nid;
1492 }
1493
1494 if (!node_possible(nid)) {
1495 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1496 return -EINVAL;
1497 }
1498
1499 mem_hotplug_begin();
1500
1501 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1502 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1503 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1504 ret = memblock_add_node(start, size, nid, memblock_flags);
1505 if (ret)
1506 goto error_mem_hotplug_end;
1507 }
1508
1509 ret = __try_online_node(nid, false);
1510 if (ret < 0)
1511 goto error;
1512 new_node = ret;
1513
1514 /*
1515 * Self hosted memmap array
1516 */
1517 if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1518 mhp_supports_memmap_on_memory(memory_block_size_bytes())) {
1519 ret = create_altmaps_and_memory_blocks(nid, group, start, size);
1520 if (ret)
1521 goto error;
1522 } else {
1523 ret = arch_add_memory(nid, start, size, ¶ms);
1524 if (ret < 0)
1525 goto error;
1526
1527 /* create memory block devices after memory was added */
1528 ret = create_memory_block_devices(start, size, NULL, group);
1529 if (ret) {
1530 arch_remove_memory(start, size, params.altmap);
1531 goto error;
1532 }
1533 }
1534
1535 if (new_node) {
1536 /* If sysfs file of new node can't be created, cpu on the node
1537 * can't be hot-added. There is no rollback way now.
1538 * So, check by BUG_ON() to catch it reluctantly..
1539 * We online node here. We can't roll back from here.
1540 */
1541 node_set_online(nid);
1542 ret = __register_one_node(nid);
1543 BUG_ON(ret);
1544 }
1545
1546 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1547 PFN_UP(start + size - 1),
1548 MEMINIT_HOTPLUG);
1549
1550 /* create new memmap entry */
1551 if (!strcmp(res->name, "System RAM"))
1552 firmware_map_add_hotplug(start, start + size, "System RAM");
1553
1554 /* device_online() will take the lock when calling online_pages() */
1555 mem_hotplug_done();
1556
1557 /*
1558 * In case we're allowed to merge the resource, flag it and trigger
1559 * merging now that adding succeeded.
1560 */
1561 if (mhp_flags & MHP_MERGE_RESOURCE)
1562 merge_system_ram_resource(res);
1563
1564 /* online pages if requested */
1565 if (mhp_default_online_type != MMOP_OFFLINE)
1566 walk_memory_blocks(start, size, NULL, online_memory_block);
1567
1568 return ret;
1569error:
1570 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1571 memblock_remove(start, size);
1572error_mem_hotplug_end:
1573 mem_hotplug_done();
1574 return ret;
1575}
1576
1577/* requires device_hotplug_lock, see add_memory_resource() */
1578int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1579{
1580 struct resource *res;
1581 int ret;
1582
1583 res = register_memory_resource(start, size, "System RAM");
1584 if (IS_ERR(res))
1585 return PTR_ERR(res);
1586
1587 ret = add_memory_resource(nid, res, mhp_flags);
1588 if (ret < 0)
1589 release_memory_resource(res);
1590 return ret;
1591}
1592
1593int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1594{
1595 int rc;
1596
1597 lock_device_hotplug();
1598 rc = __add_memory(nid, start, size, mhp_flags);
1599 unlock_device_hotplug();
1600
1601 return rc;
1602}
1603EXPORT_SYMBOL_GPL(add_memory);
1604
1605/*
1606 * Add special, driver-managed memory to the system as system RAM. Such
1607 * memory is not exposed via the raw firmware-provided memmap as system
1608 * RAM, instead, it is detected and added by a driver - during cold boot,
1609 * after a reboot, and after kexec.
1610 *
1611 * Reasons why this memory should not be used for the initial memmap of a
1612 * kexec kernel or for placing kexec images:
1613 * - The booting kernel is in charge of determining how this memory will be
1614 * used (e.g., use persistent memory as system RAM)
1615 * - Coordination with a hypervisor is required before this memory
1616 * can be used (e.g., inaccessible parts).
1617 *
1618 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1619 * memory map") are created. Also, the created memory resource is flagged
1620 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1621 * this memory as well (esp., not place kexec images onto it).
1622 *
1623 * The resource_name (visible via /proc/iomem) has to have the format
1624 * "System RAM ($DRIVER)".
1625 */
1626int add_memory_driver_managed(int nid, u64 start, u64 size,
1627 const char *resource_name, mhp_t mhp_flags)
1628{
1629 struct resource *res;
1630 int rc;
1631
1632 if (!resource_name ||
1633 strstr(resource_name, "System RAM (") != resource_name ||
1634 resource_name[strlen(resource_name) - 1] != ')')
1635 return -EINVAL;
1636
1637 lock_device_hotplug();
1638
1639 res = register_memory_resource(start, size, resource_name);
1640 if (IS_ERR(res)) {
1641 rc = PTR_ERR(res);
1642 goto out_unlock;
1643 }
1644
1645 rc = add_memory_resource(nid, res, mhp_flags);
1646 if (rc < 0)
1647 release_memory_resource(res);
1648
1649out_unlock:
1650 unlock_device_hotplug();
1651 return rc;
1652}
1653EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1654
1655/*
1656 * Platforms should define arch_get_mappable_range() that provides
1657 * maximum possible addressable physical memory range for which the
1658 * linear mapping could be created. The platform returned address
1659 * range must adhere to these following semantics.
1660 *
1661 * - range.start <= range.end
1662 * - Range includes both end points [range.start..range.end]
1663 *
1664 * There is also a fallback definition provided here, allowing the
1665 * entire possible physical address range in case any platform does
1666 * not define arch_get_mappable_range().
1667 */
1668struct range __weak arch_get_mappable_range(void)
1669{
1670 struct range mhp_range = {
1671 .start = 0UL,
1672 .end = -1ULL,
1673 };
1674 return mhp_range;
1675}
1676
1677struct range mhp_get_pluggable_range(bool need_mapping)
1678{
1679 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1680 struct range mhp_range;
1681
1682 if (need_mapping) {
1683 mhp_range = arch_get_mappable_range();
1684 if (mhp_range.start > max_phys) {
1685 mhp_range.start = 0;
1686 mhp_range.end = 0;
1687 }
1688 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1689 } else {
1690 mhp_range.start = 0;
1691 mhp_range.end = max_phys;
1692 }
1693 return mhp_range;
1694}
1695EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1696
1697bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1698{
1699 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1700 u64 end = start + size;
1701
1702 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1703 return true;
1704
1705 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1706 start, end, mhp_range.start, mhp_range.end);
1707 return false;
1708}
1709
1710#ifdef CONFIG_MEMORY_HOTREMOVE
1711/*
1712 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1713 * non-lru movable pages and hugepages). Will skip over most unmovable
1714 * pages (esp., pages that can be skipped when offlining), but bail out on
1715 * definitely unmovable pages.
1716 *
1717 * Returns:
1718 * 0 in case a movable page is found and movable_pfn was updated.
1719 * -ENOENT in case no movable page was found.
1720 * -EBUSY in case a definitely unmovable page was found.
1721 */
1722static int scan_movable_pages(unsigned long start, unsigned long end,
1723 unsigned long *movable_pfn)
1724{
1725 unsigned long pfn;
1726
1727 for (pfn = start; pfn < end; pfn++) {
1728 struct page *page, *head;
1729 unsigned long skip;
1730
1731 if (!pfn_valid(pfn))
1732 continue;
1733 page = pfn_to_page(pfn);
1734 if (PageLRU(page))
1735 goto found;
1736 if (__PageMovable(page))
1737 goto found;
1738
1739 /*
1740 * PageOffline() pages that are not marked __PageMovable() and
1741 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1742 * definitely unmovable. If their reference count would be 0,
1743 * they could at least be skipped when offlining memory.
1744 */
1745 if (PageOffline(page) && page_count(page))
1746 return -EBUSY;
1747
1748 if (!PageHuge(page))
1749 continue;
1750 head = compound_head(page);
1751 /*
1752 * This test is racy as we hold no reference or lock. The
1753 * hugetlb page could have been free'ed and head is no longer
1754 * a hugetlb page before the following check. In such unlikely
1755 * cases false positives and negatives are possible. Calling
1756 * code must deal with these scenarios.
1757 */
1758 if (HPageMigratable(head))
1759 goto found;
1760 skip = compound_nr(head) - (pfn - page_to_pfn(head));
1761 pfn += skip - 1;
1762 }
1763 return -ENOENT;
1764found:
1765 *movable_pfn = pfn;
1766 return 0;
1767}
1768
1769static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1770{
1771 unsigned long pfn;
1772 struct page *page, *head;
1773 LIST_HEAD(source);
1774 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1775 DEFAULT_RATELIMIT_BURST);
1776
1777 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1778 struct folio *folio;
1779 bool isolated;
1780
1781 if (!pfn_valid(pfn))
1782 continue;
1783 page = pfn_to_page(pfn);
1784 folio = page_folio(page);
1785 head = &folio->page;
1786
1787 if (PageHuge(page)) {
1788 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1789 isolate_hugetlb(folio, &source);
1790 continue;
1791 } else if (PageTransHuge(page))
1792 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1793
1794 /*
1795 * HWPoison pages have elevated reference counts so the migration would
1796 * fail on them. It also doesn't make any sense to migrate them in the
1797 * first place. Still try to unmap such a page in case it is still mapped
1798 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1799 * the unmap as the catch all safety net).
1800 */
1801 if (PageHWPoison(page)) {
1802 if (WARN_ON(folio_test_lru(folio)))
1803 folio_isolate_lru(folio);
1804 if (folio_mapped(folio))
1805 try_to_unmap(folio, TTU_IGNORE_MLOCK);
1806 continue;
1807 }
1808
1809 if (!get_page_unless_zero(page))
1810 continue;
1811 /*
1812 * We can skip free pages. And we can deal with pages on
1813 * LRU and non-lru movable pages.
1814 */
1815 if (PageLRU(page))
1816 isolated = isolate_lru_page(page);
1817 else
1818 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1819 if (isolated) {
1820 list_add_tail(&page->lru, &source);
1821 if (!__PageMovable(page))
1822 inc_node_page_state(page, NR_ISOLATED_ANON +
1823 page_is_file_lru(page));
1824
1825 } else {
1826 if (__ratelimit(&migrate_rs)) {
1827 pr_warn("failed to isolate pfn %lx\n", pfn);
1828 dump_page(page, "isolation failed");
1829 }
1830 }
1831 put_page(page);
1832 }
1833 if (!list_empty(&source)) {
1834 nodemask_t nmask = node_states[N_MEMORY];
1835 struct migration_target_control mtc = {
1836 .nmask = &nmask,
1837 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1838 };
1839 int ret;
1840
1841 /*
1842 * We have checked that migration range is on a single zone so
1843 * we can use the nid of the first page to all the others.
1844 */
1845 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1846
1847 /*
1848 * try to allocate from a different node but reuse this node
1849 * if there are no other online nodes to be used (e.g. we are
1850 * offlining a part of the only existing node)
1851 */
1852 node_clear(mtc.nid, nmask);
1853 if (nodes_empty(nmask))
1854 node_set(mtc.nid, nmask);
1855 ret = migrate_pages(&source, alloc_migration_target, NULL,
1856 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1857 if (ret) {
1858 list_for_each_entry(page, &source, lru) {
1859 if (__ratelimit(&migrate_rs)) {
1860 pr_warn("migrating pfn %lx failed ret:%d\n",
1861 page_to_pfn(page), ret);
1862 dump_page(page, "migration failure");
1863 }
1864 }
1865 putback_movable_pages(&source);
1866 }
1867 }
1868}
1869
1870static int __init cmdline_parse_movable_node(char *p)
1871{
1872 movable_node_enabled = true;
1873 return 0;
1874}
1875early_param("movable_node", cmdline_parse_movable_node);
1876
1877/* check which state of node_states will be changed when offline memory */
1878static void node_states_check_changes_offline(unsigned long nr_pages,
1879 struct zone *zone, struct memory_notify *arg)
1880{
1881 struct pglist_data *pgdat = zone->zone_pgdat;
1882 unsigned long present_pages = 0;
1883 enum zone_type zt;
1884
1885 arg->status_change_nid = NUMA_NO_NODE;
1886 arg->status_change_nid_normal = NUMA_NO_NODE;
1887
1888 /*
1889 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1890 * If the memory to be offline is within the range
1891 * [0..ZONE_NORMAL], and it is the last present memory there,
1892 * the zones in that range will become empty after the offlining,
1893 * thus we can determine that we need to clear the node from
1894 * node_states[N_NORMAL_MEMORY].
1895 */
1896 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1897 present_pages += pgdat->node_zones[zt].present_pages;
1898 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1899 arg->status_change_nid_normal = zone_to_nid(zone);
1900
1901 /*
1902 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1903 * does not apply as we don't support 32bit.
1904 * Here we count the possible pages from ZONE_MOVABLE.
1905 * If after having accounted all the pages, we see that the nr_pages
1906 * to be offlined is over or equal to the accounted pages,
1907 * we know that the node will become empty, and so, we can clear
1908 * it for N_MEMORY as well.
1909 */
1910 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1911
1912 if (nr_pages >= present_pages)
1913 arg->status_change_nid = zone_to_nid(zone);
1914}
1915
1916static void node_states_clear_node(int node, struct memory_notify *arg)
1917{
1918 if (arg->status_change_nid_normal >= 0)
1919 node_clear_state(node, N_NORMAL_MEMORY);
1920
1921 if (arg->status_change_nid >= 0)
1922 node_clear_state(node, N_MEMORY);
1923}
1924
1925static int count_system_ram_pages_cb(unsigned long start_pfn,
1926 unsigned long nr_pages, void *data)
1927{
1928 unsigned long *nr_system_ram_pages = data;
1929
1930 *nr_system_ram_pages += nr_pages;
1931 return 0;
1932}
1933
1934/*
1935 * Must be called with mem_hotplug_lock in write mode.
1936 */
1937int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1938 struct zone *zone, struct memory_group *group)
1939{
1940 const unsigned long end_pfn = start_pfn + nr_pages;
1941 unsigned long pfn, system_ram_pages = 0;
1942 const int node = zone_to_nid(zone);
1943 unsigned long flags;
1944 struct memory_notify arg;
1945 char *reason;
1946 int ret;
1947
1948 /*
1949 * {on,off}lining is constrained to full memory sections (or more
1950 * precisely to memory blocks from the user space POV).
1951 * memmap_on_memory is an exception because it reserves initial part
1952 * of the physical memory space for vmemmaps. That space is pageblock
1953 * aligned.
1954 */
1955 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1956 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1957 return -EINVAL;
1958
1959 /*
1960 * Don't allow to offline memory blocks that contain holes.
1961 * Consequently, memory blocks with holes can never get onlined
1962 * via the hotplug path - online_pages() - as hotplugged memory has
1963 * no holes. This way, we e.g., don't have to worry about marking
1964 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1965 * avoid using walk_system_ram_range() later.
1966 */
1967 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1968 count_system_ram_pages_cb);
1969 if (system_ram_pages != nr_pages) {
1970 ret = -EINVAL;
1971 reason = "memory holes";
1972 goto failed_removal;
1973 }
1974
1975 /*
1976 * We only support offlining of memory blocks managed by a single zone,
1977 * checked by calling code. This is just a sanity check that we might
1978 * want to remove in the future.
1979 */
1980 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1981 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1982 ret = -EINVAL;
1983 reason = "multizone range";
1984 goto failed_removal;
1985 }
1986
1987 /*
1988 * Disable pcplists so that page isolation cannot race with freeing
1989 * in a way that pages from isolated pageblock are left on pcplists.
1990 */
1991 zone_pcp_disable(zone);
1992 lru_cache_disable();
1993
1994 /* set above range as isolated */
1995 ret = start_isolate_page_range(start_pfn, end_pfn,
1996 MIGRATE_MOVABLE,
1997 MEMORY_OFFLINE | REPORT_FAILURE,
1998 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1999 if (ret) {
2000 reason = "failure to isolate range";
2001 goto failed_removal_pcplists_disabled;
2002 }
2003
2004 arg.start_pfn = start_pfn;
2005 arg.nr_pages = nr_pages;
2006 node_states_check_changes_offline(nr_pages, zone, &arg);
2007
2008 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2009 ret = notifier_to_errno(ret);
2010 if (ret) {
2011 reason = "notifier failure";
2012 goto failed_removal_isolated;
2013 }
2014
2015 do {
2016 pfn = start_pfn;
2017 do {
2018 /*
2019 * Historically we always checked for any signal and
2020 * can't limit it to fatal signals without eventually
2021 * breaking user space.
2022 */
2023 if (signal_pending(current)) {
2024 ret = -EINTR;
2025 reason = "signal backoff";
2026 goto failed_removal_isolated;
2027 }
2028
2029 cond_resched();
2030
2031 ret = scan_movable_pages(pfn, end_pfn, &pfn);
2032 if (!ret) {
2033 /*
2034 * TODO: fatal migration failures should bail
2035 * out
2036 */
2037 do_migrate_range(pfn, end_pfn);
2038 }
2039 } while (!ret);
2040
2041 if (ret != -ENOENT) {
2042 reason = "unmovable page";
2043 goto failed_removal_isolated;
2044 }
2045
2046 /*
2047 * Dissolve free hugepages in the memory block before doing
2048 * offlining actually in order to make hugetlbfs's object
2049 * counting consistent.
2050 */
2051 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
2052 if (ret) {
2053 reason = "failure to dissolve huge pages";
2054 goto failed_removal_isolated;
2055 }
2056
2057 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2058
2059 } while (ret);
2060
2061 /* Mark all sections offline and remove free pages from the buddy. */
2062 __offline_isolated_pages(start_pfn, end_pfn);
2063 pr_debug("Offlined Pages %ld\n", nr_pages);
2064
2065 /*
2066 * The memory sections are marked offline, and the pageblock flags
2067 * effectively stale; nobody should be touching them. Fixup the number
2068 * of isolated pageblocks, memory onlining will properly revert this.
2069 */
2070 spin_lock_irqsave(&zone->lock, flags);
2071 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2072 spin_unlock_irqrestore(&zone->lock, flags);
2073
2074 lru_cache_enable();
2075 zone_pcp_enable(zone);
2076
2077 /* removal success */
2078 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2079 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2080
2081 /* reinitialise watermarks and update pcp limits */
2082 init_per_zone_wmark_min();
2083
2084 /*
2085 * Make sure to mark the node as memory-less before rebuilding the zone
2086 * list. Otherwise this node would still appear in the fallback lists.
2087 */
2088 node_states_clear_node(node, &arg);
2089 if (!populated_zone(zone)) {
2090 zone_pcp_reset(zone);
2091 build_all_zonelists(NULL);
2092 }
2093
2094 if (arg.status_change_nid >= 0) {
2095 kcompactd_stop(node);
2096 kswapd_stop(node);
2097 }
2098
2099 writeback_set_ratelimit();
2100
2101 memory_notify(MEM_OFFLINE, &arg);
2102 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2103 return 0;
2104
2105failed_removal_isolated:
2106 /* pushback to free area */
2107 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2108 memory_notify(MEM_CANCEL_OFFLINE, &arg);
2109failed_removal_pcplists_disabled:
2110 lru_cache_enable();
2111 zone_pcp_enable(zone);
2112failed_removal:
2113 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2114 (unsigned long long) start_pfn << PAGE_SHIFT,
2115 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2116 reason);
2117 return ret;
2118}
2119
2120static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2121{
2122 int *nid = arg;
2123
2124 *nid = mem->nid;
2125 if (unlikely(mem->state != MEM_OFFLINE)) {
2126 phys_addr_t beginpa, endpa;
2127
2128 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2129 endpa = beginpa + memory_block_size_bytes() - 1;
2130 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2131 &beginpa, &endpa);
2132
2133 return -EBUSY;
2134 }
2135 return 0;
2136}
2137
2138static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2139{
2140 u64 *num_altmaps = (u64 *)arg;
2141
2142 if (mem->altmap)
2143 *num_altmaps += 1;
2144
2145 return 0;
2146}
2147
2148static int check_cpu_on_node(int nid)
2149{
2150 int cpu;
2151
2152 for_each_present_cpu(cpu) {
2153 if (cpu_to_node(cpu) == nid)
2154 /*
2155 * the cpu on this node isn't removed, and we can't
2156 * offline this node.
2157 */
2158 return -EBUSY;
2159 }
2160
2161 return 0;
2162}
2163
2164static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2165{
2166 int nid = *(int *)arg;
2167
2168 /*
2169 * If a memory block belongs to multiple nodes, the stored nid is not
2170 * reliable. However, such blocks are always online (e.g., cannot get
2171 * offlined) and, therefore, are still spanned by the node.
2172 */
2173 return mem->nid == nid ? -EEXIST : 0;
2174}
2175
2176/**
2177 * try_offline_node
2178 * @nid: the node ID
2179 *
2180 * Offline a node if all memory sections and cpus of the node are removed.
2181 *
2182 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2183 * and online/offline operations before this call.
2184 */
2185void try_offline_node(int nid)
2186{
2187 int rc;
2188
2189 /*
2190 * If the node still spans pages (especially ZONE_DEVICE), don't
2191 * offline it. A node spans memory after move_pfn_range_to_zone(),
2192 * e.g., after the memory block was onlined.
2193 */
2194 if (node_spanned_pages(nid))
2195 return;
2196
2197 /*
2198 * Especially offline memory blocks might not be spanned by the
2199 * node. They will get spanned by the node once they get onlined.
2200 * However, they link to the node in sysfs and can get onlined later.
2201 */
2202 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2203 if (rc)
2204 return;
2205
2206 if (check_cpu_on_node(nid))
2207 return;
2208
2209 /*
2210 * all memory/cpu of this node are removed, we can offline this
2211 * node now.
2212 */
2213 node_set_offline(nid);
2214 unregister_one_node(nid);
2215}
2216EXPORT_SYMBOL(try_offline_node);
2217
2218static int memory_blocks_have_altmaps(u64 start, u64 size)
2219{
2220 u64 num_memblocks = size / memory_block_size_bytes();
2221 u64 num_altmaps = 0;
2222
2223 if (!mhp_memmap_on_memory())
2224 return 0;
2225
2226 walk_memory_blocks(start, size, &num_altmaps,
2227 count_memory_range_altmaps_cb);
2228
2229 if (num_altmaps == 0)
2230 return 0;
2231
2232 if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2233 return -EINVAL;
2234
2235 return 1;
2236}
2237
2238static int __ref try_remove_memory(u64 start, u64 size)
2239{
2240 int rc, nid = NUMA_NO_NODE;
2241
2242 BUG_ON(check_hotplug_memory_range(start, size));
2243
2244 /*
2245 * All memory blocks must be offlined before removing memory. Check
2246 * whether all memory blocks in question are offline and return error
2247 * if this is not the case.
2248 *
2249 * While at it, determine the nid. Note that if we'd have mixed nodes,
2250 * we'd only try to offline the last determined one -- which is good
2251 * enough for the cases we care about.
2252 */
2253 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2254 if (rc)
2255 return rc;
2256
2257 /* remove memmap entry */
2258 firmware_map_remove(start, start + size, "System RAM");
2259
2260 mem_hotplug_begin();
2261
2262 rc = memory_blocks_have_altmaps(start, size);
2263 if (rc < 0) {
2264 mem_hotplug_done();
2265 return rc;
2266 } else if (!rc) {
2267 /*
2268 * Memory block device removal under the device_hotplug_lock is
2269 * a barrier against racing online attempts.
2270 * No altmaps present, do the removal directly
2271 */
2272 remove_memory_block_devices(start, size);
2273 arch_remove_memory(start, size, NULL);
2274 } else {
2275 /* all memblocks in the range have altmaps */
2276 remove_memory_blocks_and_altmaps(start, size);
2277 }
2278
2279 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2280 memblock_phys_free(start, size);
2281 memblock_remove(start, size);
2282 }
2283
2284 release_mem_region_adjustable(start, size);
2285
2286 if (nid != NUMA_NO_NODE)
2287 try_offline_node(nid);
2288
2289 mem_hotplug_done();
2290 return 0;
2291}
2292
2293/**
2294 * __remove_memory - Remove memory if every memory block is offline
2295 * @start: physical address of the region to remove
2296 * @size: size of the region to remove
2297 *
2298 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2299 * and online/offline operations before this call, as required by
2300 * try_offline_node().
2301 */
2302void __remove_memory(u64 start, u64 size)
2303{
2304
2305 /*
2306 * trigger BUG() if some memory is not offlined prior to calling this
2307 * function
2308 */
2309 if (try_remove_memory(start, size))
2310 BUG();
2311}
2312
2313/*
2314 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2315 * some memory is not offline
2316 */
2317int remove_memory(u64 start, u64 size)
2318{
2319 int rc;
2320
2321 lock_device_hotplug();
2322 rc = try_remove_memory(start, size);
2323 unlock_device_hotplug();
2324
2325 return rc;
2326}
2327EXPORT_SYMBOL_GPL(remove_memory);
2328
2329static int try_offline_memory_block(struct memory_block *mem, void *arg)
2330{
2331 uint8_t online_type = MMOP_ONLINE_KERNEL;
2332 uint8_t **online_types = arg;
2333 struct page *page;
2334 int rc;
2335
2336 /*
2337 * Sense the online_type via the zone of the memory block. Offlining
2338 * with multiple zones within one memory block will be rejected
2339 * by offlining code ... so we don't care about that.
2340 */
2341 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2342 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2343 online_type = MMOP_ONLINE_MOVABLE;
2344
2345 rc = device_offline(&mem->dev);
2346 /*
2347 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2348 * so try_reonline_memory_block() can do the right thing.
2349 */
2350 if (!rc)
2351 **online_types = online_type;
2352
2353 (*online_types)++;
2354 /* Ignore if already offline. */
2355 return rc < 0 ? rc : 0;
2356}
2357
2358static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2359{
2360 uint8_t **online_types = arg;
2361 int rc;
2362
2363 if (**online_types != MMOP_OFFLINE) {
2364 mem->online_type = **online_types;
2365 rc = device_online(&mem->dev);
2366 if (rc < 0)
2367 pr_warn("%s: Failed to re-online memory: %d",
2368 __func__, rc);
2369 }
2370
2371 /* Continue processing all remaining memory blocks. */
2372 (*online_types)++;
2373 return 0;
2374}
2375
2376/*
2377 * Try to offline and remove memory. Might take a long time to finish in case
2378 * memory is still in use. Primarily useful for memory devices that logically
2379 * unplugged all memory (so it's no longer in use) and want to offline + remove
2380 * that memory.
2381 */
2382int offline_and_remove_memory(u64 start, u64 size)
2383{
2384 const unsigned long mb_count = size / memory_block_size_bytes();
2385 uint8_t *online_types, *tmp;
2386 int rc;
2387
2388 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2389 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2390 return -EINVAL;
2391
2392 /*
2393 * We'll remember the old online type of each memory block, so we can
2394 * try to revert whatever we did when offlining one memory block fails
2395 * after offlining some others succeeded.
2396 */
2397 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2398 GFP_KERNEL);
2399 if (!online_types)
2400 return -ENOMEM;
2401 /*
2402 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2403 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2404 * try_reonline_memory_block().
2405 */
2406 memset(online_types, MMOP_OFFLINE, mb_count);
2407
2408 lock_device_hotplug();
2409
2410 tmp = online_types;
2411 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2412
2413 /*
2414 * In case we succeeded to offline all memory, remove it.
2415 * This cannot fail as it cannot get onlined in the meantime.
2416 */
2417 if (!rc) {
2418 rc = try_remove_memory(start, size);
2419 if (rc)
2420 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2421 }
2422
2423 /*
2424 * Rollback what we did. While memory onlining might theoretically fail
2425 * (nacked by a notifier), it barely ever happens.
2426 */
2427 if (rc) {
2428 tmp = online_types;
2429 walk_memory_blocks(start, size, &tmp,
2430 try_reonline_memory_block);
2431 }
2432 unlock_device_hotplug();
2433
2434 kfree(online_types);
2435 return rc;
2436}
2437EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2438#endif /* CONFIG_MEMORY_HOTREMOVE */