Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/pagevec.h>
17#include <linux/writeback.h>
18#include <linux/slab.h>
19#include <linux/sysctl.h>
20#include <linux/cpu.h>
21#include <linux/memory.h>
22#include <linux/memremap.h>
23#include <linux/memory_hotplug.h>
24#include <linux/highmem.h>
25#include <linux/vmalloc.h>
26#include <linux/ioport.h>
27#include <linux/delay.h>
28#include <linux/migrate.h>
29#include <linux/page-isolation.h>
30#include <linux/pfn.h>
31#include <linux/suspend.h>
32#include <linux/mm_inline.h>
33#include <linux/firmware-map.h>
34#include <linux/stop_machine.h>
35#include <linux/hugetlb.h>
36#include <linux/memblock.h>
37#include <linux/compaction.h>
38#include <linux/rmap.h>
39
40#include <asm/tlbflush.h>
41
42#include "internal.h"
43#include "shuffle.h"
44
45
46/*
47 * memory_hotplug.memmap_on_memory parameter
48 */
49static bool memmap_on_memory __ro_after_init;
50#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51module_param(memmap_on_memory, bool, 0444);
52MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53#endif
54
55/*
56 * online_page_callback contains pointer to current page onlining function.
57 * Initially it is generic_online_page(). If it is required it could be
58 * changed by calling set_online_page_callback() for callback registration
59 * and restore_online_page_callback() for generic callback restore.
60 */
61
62static online_page_callback_t online_page_callback = generic_online_page;
63static DEFINE_MUTEX(online_page_callback_lock);
64
65DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
66
67void get_online_mems(void)
68{
69 percpu_down_read(&mem_hotplug_lock);
70}
71
72void put_online_mems(void)
73{
74 percpu_up_read(&mem_hotplug_lock);
75}
76
77bool movable_node_enabled = false;
78
79#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
80int mhp_default_online_type = MMOP_OFFLINE;
81#else
82int mhp_default_online_type = MMOP_ONLINE;
83#endif
84
85static int __init setup_memhp_default_state(char *str)
86{
87 const int online_type = mhp_online_type_from_str(str);
88
89 if (online_type >= 0)
90 mhp_default_online_type = online_type;
91
92 return 1;
93}
94__setup("memhp_default_state=", setup_memhp_default_state);
95
96void mem_hotplug_begin(void)
97{
98 cpus_read_lock();
99 percpu_down_write(&mem_hotplug_lock);
100}
101
102void mem_hotplug_done(void)
103{
104 percpu_up_write(&mem_hotplug_lock);
105 cpus_read_unlock();
106}
107
108u64 max_mem_size = U64_MAX;
109
110/* add this memory to iomem resource */
111static struct resource *register_memory_resource(u64 start, u64 size,
112 const char *resource_name)
113{
114 struct resource *res;
115 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
116
117 if (strcmp(resource_name, "System RAM"))
118 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
119
120 if (!mhp_range_allowed(start, size, true))
121 return ERR_PTR(-E2BIG);
122
123 /*
124 * Make sure value parsed from 'mem=' only restricts memory adding
125 * while booting, so that memory hotplug won't be impacted. Please
126 * refer to document of 'mem=' in kernel-parameters.txt for more
127 * details.
128 */
129 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
130 return ERR_PTR(-E2BIG);
131
132 /*
133 * Request ownership of the new memory range. This might be
134 * a child of an existing resource that was present but
135 * not marked as busy.
136 */
137 res = __request_region(&iomem_resource, start, size,
138 resource_name, flags);
139
140 if (!res) {
141 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
142 start, start + size);
143 return ERR_PTR(-EEXIST);
144 }
145 return res;
146}
147
148static void release_memory_resource(struct resource *res)
149{
150 if (!res)
151 return;
152 release_resource(res);
153 kfree(res);
154}
155
156#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
157static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
158 const char *reason)
159{
160 /*
161 * Disallow all operations smaller than a sub-section and only
162 * allow operations smaller than a section for
163 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
164 * enforces a larger memory_block_size_bytes() granularity for
165 * memory that will be marked online, so this check should only
166 * fire for direct arch_{add,remove}_memory() users outside of
167 * add_memory_resource().
168 */
169 unsigned long min_align;
170
171 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
172 min_align = PAGES_PER_SUBSECTION;
173 else
174 min_align = PAGES_PER_SECTION;
175 if (!IS_ALIGNED(pfn, min_align)
176 || !IS_ALIGNED(nr_pages, min_align)) {
177 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
178 reason, pfn, pfn + nr_pages - 1);
179 return -EINVAL;
180 }
181 return 0;
182}
183
184/*
185 * Return page for the valid pfn only if the page is online. All pfn
186 * walkers which rely on the fully initialized page->flags and others
187 * should use this rather than pfn_valid && pfn_to_page
188 */
189struct page *pfn_to_online_page(unsigned long pfn)
190{
191 unsigned long nr = pfn_to_section_nr(pfn);
192 struct dev_pagemap *pgmap;
193 struct mem_section *ms;
194
195 if (nr >= NR_MEM_SECTIONS)
196 return NULL;
197
198 ms = __nr_to_section(nr);
199 if (!online_section(ms))
200 return NULL;
201
202 /*
203 * Save some code text when online_section() +
204 * pfn_section_valid() are sufficient.
205 */
206 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
207 return NULL;
208
209 if (!pfn_section_valid(ms, pfn))
210 return NULL;
211
212 if (!online_device_section(ms))
213 return pfn_to_page(pfn);
214
215 /*
216 * Slowpath: when ZONE_DEVICE collides with
217 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
218 * the section may be 'offline' but 'valid'. Only
219 * get_dev_pagemap() can determine sub-section online status.
220 */
221 pgmap = get_dev_pagemap(pfn, NULL);
222 put_dev_pagemap(pgmap);
223
224 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
225 if (pgmap)
226 return NULL;
227
228 return pfn_to_page(pfn);
229}
230EXPORT_SYMBOL_GPL(pfn_to_online_page);
231
232/*
233 * Reasonably generic function for adding memory. It is
234 * expected that archs that support memory hotplug will
235 * call this function after deciding the zone to which to
236 * add the new pages.
237 */
238int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
239 struct mhp_params *params)
240{
241 const unsigned long end_pfn = pfn + nr_pages;
242 unsigned long cur_nr_pages;
243 int err;
244 struct vmem_altmap *altmap = params->altmap;
245
246 if (WARN_ON_ONCE(!params->pgprot.pgprot))
247 return -EINVAL;
248
249 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
250
251 if (altmap) {
252 /*
253 * Validate altmap is within bounds of the total request
254 */
255 if (altmap->base_pfn != pfn
256 || vmem_altmap_offset(altmap) > nr_pages) {
257 pr_warn_once("memory add fail, invalid altmap\n");
258 return -EINVAL;
259 }
260 altmap->alloc = 0;
261 }
262
263 err = check_pfn_span(pfn, nr_pages, "add");
264 if (err)
265 return err;
266
267 for (; pfn < end_pfn; pfn += cur_nr_pages) {
268 /* Select all remaining pages up to the next section boundary */
269 cur_nr_pages = min(end_pfn - pfn,
270 SECTION_ALIGN_UP(pfn + 1) - pfn);
271 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
272 if (err)
273 break;
274 cond_resched();
275 }
276 vmemmap_populate_print_last();
277 return err;
278}
279
280/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
281static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
282 unsigned long start_pfn,
283 unsigned long end_pfn)
284{
285 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
286 if (unlikely(!pfn_to_online_page(start_pfn)))
287 continue;
288
289 if (unlikely(pfn_to_nid(start_pfn) != nid))
290 continue;
291
292 if (zone != page_zone(pfn_to_page(start_pfn)))
293 continue;
294
295 return start_pfn;
296 }
297
298 return 0;
299}
300
301/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
302static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
303 unsigned long start_pfn,
304 unsigned long end_pfn)
305{
306 unsigned long pfn;
307
308 /* pfn is the end pfn of a memory section. */
309 pfn = end_pfn - 1;
310 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
311 if (unlikely(!pfn_to_online_page(pfn)))
312 continue;
313
314 if (unlikely(pfn_to_nid(pfn) != nid))
315 continue;
316
317 if (zone != page_zone(pfn_to_page(pfn)))
318 continue;
319
320 return pfn;
321 }
322
323 return 0;
324}
325
326static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
327 unsigned long end_pfn)
328{
329 unsigned long pfn;
330 int nid = zone_to_nid(zone);
331
332 if (zone->zone_start_pfn == start_pfn) {
333 /*
334 * If the section is smallest section in the zone, it need
335 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
336 * In this case, we find second smallest valid mem_section
337 * for shrinking zone.
338 */
339 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
340 zone_end_pfn(zone));
341 if (pfn) {
342 zone->spanned_pages = zone_end_pfn(zone) - pfn;
343 zone->zone_start_pfn = pfn;
344 } else {
345 zone->zone_start_pfn = 0;
346 zone->spanned_pages = 0;
347 }
348 } else if (zone_end_pfn(zone) == end_pfn) {
349 /*
350 * If the section is biggest section in the zone, it need
351 * shrink zone->spanned_pages.
352 * In this case, we find second biggest valid mem_section for
353 * shrinking zone.
354 */
355 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
356 start_pfn);
357 if (pfn)
358 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
359 else {
360 zone->zone_start_pfn = 0;
361 zone->spanned_pages = 0;
362 }
363 }
364}
365
366static void update_pgdat_span(struct pglist_data *pgdat)
367{
368 unsigned long node_start_pfn = 0, node_end_pfn = 0;
369 struct zone *zone;
370
371 for (zone = pgdat->node_zones;
372 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
373 unsigned long end_pfn = zone_end_pfn(zone);
374
375 /* No need to lock the zones, they can't change. */
376 if (!zone->spanned_pages)
377 continue;
378 if (!node_end_pfn) {
379 node_start_pfn = zone->zone_start_pfn;
380 node_end_pfn = end_pfn;
381 continue;
382 }
383
384 if (end_pfn > node_end_pfn)
385 node_end_pfn = end_pfn;
386 if (zone->zone_start_pfn < node_start_pfn)
387 node_start_pfn = zone->zone_start_pfn;
388 }
389
390 pgdat->node_start_pfn = node_start_pfn;
391 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
392}
393
394void __ref remove_pfn_range_from_zone(struct zone *zone,
395 unsigned long start_pfn,
396 unsigned long nr_pages)
397{
398 const unsigned long end_pfn = start_pfn + nr_pages;
399 struct pglist_data *pgdat = zone->zone_pgdat;
400 unsigned long pfn, cur_nr_pages;
401
402 /* Poison struct pages because they are now uninitialized again. */
403 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
404 cond_resched();
405
406 /* Select all remaining pages up to the next section boundary */
407 cur_nr_pages =
408 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
409 page_init_poison(pfn_to_page(pfn),
410 sizeof(struct page) * cur_nr_pages);
411 }
412
413#ifdef CONFIG_ZONE_DEVICE
414 /*
415 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
416 * we will not try to shrink the zones - which is okay as
417 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
418 */
419 if (zone_idx(zone) == ZONE_DEVICE)
420 return;
421#endif
422
423 clear_zone_contiguous(zone);
424
425 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
426 update_pgdat_span(pgdat);
427
428 set_zone_contiguous(zone);
429}
430
431static void __remove_section(unsigned long pfn, unsigned long nr_pages,
432 unsigned long map_offset,
433 struct vmem_altmap *altmap)
434{
435 struct mem_section *ms = __pfn_to_section(pfn);
436
437 if (WARN_ON_ONCE(!valid_section(ms)))
438 return;
439
440 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
441}
442
443/**
444 * __remove_pages() - remove sections of pages
445 * @pfn: starting pageframe (must be aligned to start of a section)
446 * @nr_pages: number of pages to remove (must be multiple of section size)
447 * @altmap: alternative device page map or %NULL if default memmap is used
448 *
449 * Generic helper function to remove section mappings and sysfs entries
450 * for the section of the memory we are removing. Caller needs to make
451 * sure that pages are marked reserved and zones are adjust properly by
452 * calling offline_pages().
453 */
454void __remove_pages(unsigned long pfn, unsigned long nr_pages,
455 struct vmem_altmap *altmap)
456{
457 const unsigned long end_pfn = pfn + nr_pages;
458 unsigned long cur_nr_pages;
459 unsigned long map_offset = 0;
460
461 map_offset = vmem_altmap_offset(altmap);
462
463 if (check_pfn_span(pfn, nr_pages, "remove"))
464 return;
465
466 for (; pfn < end_pfn; pfn += cur_nr_pages) {
467 cond_resched();
468 /* Select all remaining pages up to the next section boundary */
469 cur_nr_pages = min(end_pfn - pfn,
470 SECTION_ALIGN_UP(pfn + 1) - pfn);
471 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
472 map_offset = 0;
473 }
474}
475
476int set_online_page_callback(online_page_callback_t callback)
477{
478 int rc = -EINVAL;
479
480 get_online_mems();
481 mutex_lock(&online_page_callback_lock);
482
483 if (online_page_callback == generic_online_page) {
484 online_page_callback = callback;
485 rc = 0;
486 }
487
488 mutex_unlock(&online_page_callback_lock);
489 put_online_mems();
490
491 return rc;
492}
493EXPORT_SYMBOL_GPL(set_online_page_callback);
494
495int restore_online_page_callback(online_page_callback_t callback)
496{
497 int rc = -EINVAL;
498
499 get_online_mems();
500 mutex_lock(&online_page_callback_lock);
501
502 if (online_page_callback == callback) {
503 online_page_callback = generic_online_page;
504 rc = 0;
505 }
506
507 mutex_unlock(&online_page_callback_lock);
508 put_online_mems();
509
510 return rc;
511}
512EXPORT_SYMBOL_GPL(restore_online_page_callback);
513
514void generic_online_page(struct page *page, unsigned int order)
515{
516 /*
517 * Freeing the page with debug_pagealloc enabled will try to unmap it,
518 * so we should map it first. This is better than introducing a special
519 * case in page freeing fast path.
520 */
521 debug_pagealloc_map_pages(page, 1 << order);
522 __free_pages_core(page, order);
523 totalram_pages_add(1UL << order);
524#ifdef CONFIG_HIGHMEM
525 if (PageHighMem(page))
526 totalhigh_pages_add(1UL << order);
527#endif
528}
529EXPORT_SYMBOL_GPL(generic_online_page);
530
531static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
532{
533 const unsigned long end_pfn = start_pfn + nr_pages;
534 unsigned long pfn;
535
536 /*
537 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
538 * decide to not expose all pages to the buddy (e.g., expose them
539 * later). We account all pages as being online and belonging to this
540 * zone ("present").
541 * When using memmap_on_memory, the range might not be aligned to
542 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
543 * this and the first chunk to online will be pageblock_nr_pages.
544 */
545 for (pfn = start_pfn; pfn < end_pfn;) {
546 int order = min(MAX_ORDER - 1UL, __ffs(pfn));
547
548 (*online_page_callback)(pfn_to_page(pfn), order);
549 pfn += (1UL << order);
550 }
551
552 /* mark all involved sections as online */
553 online_mem_sections(start_pfn, end_pfn);
554}
555
556/* check which state of node_states will be changed when online memory */
557static void node_states_check_changes_online(unsigned long nr_pages,
558 struct zone *zone, struct memory_notify *arg)
559{
560 int nid = zone_to_nid(zone);
561
562 arg->status_change_nid = NUMA_NO_NODE;
563 arg->status_change_nid_normal = NUMA_NO_NODE;
564 arg->status_change_nid_high = NUMA_NO_NODE;
565
566 if (!node_state(nid, N_MEMORY))
567 arg->status_change_nid = nid;
568 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
569 arg->status_change_nid_normal = nid;
570#ifdef CONFIG_HIGHMEM
571 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
572 arg->status_change_nid_high = nid;
573#endif
574}
575
576static void node_states_set_node(int node, struct memory_notify *arg)
577{
578 if (arg->status_change_nid_normal >= 0)
579 node_set_state(node, N_NORMAL_MEMORY);
580
581 if (arg->status_change_nid_high >= 0)
582 node_set_state(node, N_HIGH_MEMORY);
583
584 if (arg->status_change_nid >= 0)
585 node_set_state(node, N_MEMORY);
586}
587
588static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
589 unsigned long nr_pages)
590{
591 unsigned long old_end_pfn = zone_end_pfn(zone);
592
593 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
594 zone->zone_start_pfn = start_pfn;
595
596 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
597}
598
599static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
600 unsigned long nr_pages)
601{
602 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
603
604 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
605 pgdat->node_start_pfn = start_pfn;
606
607 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
608
609}
610
611static void section_taint_zone_device(unsigned long pfn)
612{
613 struct mem_section *ms = __pfn_to_section(pfn);
614
615 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
616}
617
618/*
619 * Associate the pfn range with the given zone, initializing the memmaps
620 * and resizing the pgdat/zone data to span the added pages. After this
621 * call, all affected pages are PG_reserved.
622 *
623 * All aligned pageblocks are initialized to the specified migratetype
624 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
625 * zone stats (e.g., nr_isolate_pageblock) are touched.
626 */
627void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
628 unsigned long nr_pages,
629 struct vmem_altmap *altmap, int migratetype)
630{
631 struct pglist_data *pgdat = zone->zone_pgdat;
632 int nid = pgdat->node_id;
633
634 clear_zone_contiguous(zone);
635
636 if (zone_is_empty(zone))
637 init_currently_empty_zone(zone, start_pfn, nr_pages);
638 resize_zone_range(zone, start_pfn, nr_pages);
639 resize_pgdat_range(pgdat, start_pfn, nr_pages);
640
641 /*
642 * Subsection population requires care in pfn_to_online_page().
643 * Set the taint to enable the slow path detection of
644 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
645 * section.
646 */
647 if (zone_is_zone_device(zone)) {
648 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
649 section_taint_zone_device(start_pfn);
650 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
651 section_taint_zone_device(start_pfn + nr_pages);
652 }
653
654 /*
655 * TODO now we have a visible range of pages which are not associated
656 * with their zone properly. Not nice but set_pfnblock_flags_mask
657 * expects the zone spans the pfn range. All the pages in the range
658 * are reserved so nobody should be touching them so we should be safe
659 */
660 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
661 MEMINIT_HOTPLUG, altmap, migratetype);
662
663 set_zone_contiguous(zone);
664}
665
666/*
667 * Returns a default kernel memory zone for the given pfn range.
668 * If no kernel zone covers this pfn range it will automatically go
669 * to the ZONE_NORMAL.
670 */
671static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
672 unsigned long nr_pages)
673{
674 struct pglist_data *pgdat = NODE_DATA(nid);
675 int zid;
676
677 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
678 struct zone *zone = &pgdat->node_zones[zid];
679
680 if (zone_intersects(zone, start_pfn, nr_pages))
681 return zone;
682 }
683
684 return &pgdat->node_zones[ZONE_NORMAL];
685}
686
687static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
688 unsigned long nr_pages)
689{
690 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
691 nr_pages);
692 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
693 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
694 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
695
696 /*
697 * We inherit the existing zone in a simple case where zones do not
698 * overlap in the given range
699 */
700 if (in_kernel ^ in_movable)
701 return (in_kernel) ? kernel_zone : movable_zone;
702
703 /*
704 * If the range doesn't belong to any zone or two zones overlap in the
705 * given range then we use movable zone only if movable_node is
706 * enabled because we always online to a kernel zone by default.
707 */
708 return movable_node_enabled ? movable_zone : kernel_zone;
709}
710
711struct zone *zone_for_pfn_range(int online_type, int nid,
712 unsigned long start_pfn, unsigned long nr_pages)
713{
714 if (online_type == MMOP_ONLINE_KERNEL)
715 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
716
717 if (online_type == MMOP_ONLINE_MOVABLE)
718 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
719
720 return default_zone_for_pfn(nid, start_pfn, nr_pages);
721}
722
723/*
724 * This function should only be called by memory_block_{online,offline},
725 * and {online,offline}_pages.
726 */
727void adjust_present_page_count(struct zone *zone, long nr_pages)
728{
729 zone->present_pages += nr_pages;
730 zone->zone_pgdat->node_present_pages += nr_pages;
731}
732
733int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
734 struct zone *zone)
735{
736 unsigned long end_pfn = pfn + nr_pages;
737 int ret;
738
739 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
740 if (ret)
741 return ret;
742
743 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
744
745 /*
746 * It might be that the vmemmap_pages fully span sections. If that is
747 * the case, mark those sections online here as otherwise they will be
748 * left offline.
749 */
750 if (nr_pages >= PAGES_PER_SECTION)
751 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
752
753 return ret;
754}
755
756void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
757{
758 unsigned long end_pfn = pfn + nr_pages;
759
760 /*
761 * It might be that the vmemmap_pages fully span sections. If that is
762 * the case, mark those sections offline here as otherwise they will be
763 * left online.
764 */
765 if (nr_pages >= PAGES_PER_SECTION)
766 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
767
768 /*
769 * The pages associated with this vmemmap have been offlined, so
770 * we can reset its state here.
771 */
772 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
773 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
774}
775
776int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
777{
778 unsigned long flags;
779 int need_zonelists_rebuild = 0;
780 const int nid = zone_to_nid(zone);
781 int ret;
782 struct memory_notify arg;
783
784 /*
785 * {on,off}lining is constrained to full memory sections (or more
786 * precisely to memory blocks from the user space POV).
787 * memmap_on_memory is an exception because it reserves initial part
788 * of the physical memory space for vmemmaps. That space is pageblock
789 * aligned.
790 */
791 if (WARN_ON_ONCE(!nr_pages ||
792 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
793 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
794 return -EINVAL;
795
796 mem_hotplug_begin();
797
798 /* associate pfn range with the zone */
799 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
800
801 arg.start_pfn = pfn;
802 arg.nr_pages = nr_pages;
803 node_states_check_changes_online(nr_pages, zone, &arg);
804
805 ret = memory_notify(MEM_GOING_ONLINE, &arg);
806 ret = notifier_to_errno(ret);
807 if (ret)
808 goto failed_addition;
809
810 /*
811 * Fixup the number of isolated pageblocks before marking the sections
812 * onlining, such that undo_isolate_page_range() works correctly.
813 */
814 spin_lock_irqsave(&zone->lock, flags);
815 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
816 spin_unlock_irqrestore(&zone->lock, flags);
817
818 /*
819 * If this zone is not populated, then it is not in zonelist.
820 * This means the page allocator ignores this zone.
821 * So, zonelist must be updated after online.
822 */
823 if (!populated_zone(zone)) {
824 need_zonelists_rebuild = 1;
825 setup_zone_pageset(zone);
826 }
827
828 online_pages_range(pfn, nr_pages);
829 adjust_present_page_count(zone, nr_pages);
830
831 node_states_set_node(nid, &arg);
832 if (need_zonelists_rebuild)
833 build_all_zonelists(NULL);
834
835 /* Basic onlining is complete, allow allocation of onlined pages. */
836 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
837
838 /*
839 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
840 * the tail of the freelist when undoing isolation). Shuffle the whole
841 * zone to make sure the just onlined pages are properly distributed
842 * across the whole freelist - to create an initial shuffle.
843 */
844 shuffle_zone(zone);
845
846 /* reinitialise watermarks and update pcp limits */
847 init_per_zone_wmark_min();
848
849 kswapd_run(nid);
850 kcompactd_run(nid);
851
852 writeback_set_ratelimit();
853
854 memory_notify(MEM_ONLINE, &arg);
855 mem_hotplug_done();
856 return 0;
857
858failed_addition:
859 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
860 (unsigned long long) pfn << PAGE_SHIFT,
861 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
862 memory_notify(MEM_CANCEL_ONLINE, &arg);
863 remove_pfn_range_from_zone(zone, pfn, nr_pages);
864 mem_hotplug_done();
865 return ret;
866}
867#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
868
869static void reset_node_present_pages(pg_data_t *pgdat)
870{
871 struct zone *z;
872
873 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
874 z->present_pages = 0;
875
876 pgdat->node_present_pages = 0;
877}
878
879/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
880static pg_data_t __ref *hotadd_new_pgdat(int nid)
881{
882 struct pglist_data *pgdat;
883
884 pgdat = NODE_DATA(nid);
885 if (!pgdat) {
886 pgdat = arch_alloc_nodedata(nid);
887 if (!pgdat)
888 return NULL;
889
890 pgdat->per_cpu_nodestats =
891 alloc_percpu(struct per_cpu_nodestat);
892 arch_refresh_nodedata(nid, pgdat);
893 } else {
894 int cpu;
895 /*
896 * Reset the nr_zones, order and highest_zoneidx before reuse.
897 * Note that kswapd will init kswapd_highest_zoneidx properly
898 * when it starts in the near future.
899 */
900 pgdat->nr_zones = 0;
901 pgdat->kswapd_order = 0;
902 pgdat->kswapd_highest_zoneidx = 0;
903 for_each_online_cpu(cpu) {
904 struct per_cpu_nodestat *p;
905
906 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
907 memset(p, 0, sizeof(*p));
908 }
909 }
910
911 /* we can use NODE_DATA(nid) from here */
912 pgdat->node_id = nid;
913 pgdat->node_start_pfn = 0;
914
915 /* init node's zones as empty zones, we don't have any present pages.*/
916 free_area_init_core_hotplug(nid);
917
918 /*
919 * The node we allocated has no zone fallback lists. For avoiding
920 * to access not-initialized zonelist, build here.
921 */
922 build_all_zonelists(pgdat);
923
924 /*
925 * When memory is hot-added, all the memory is in offline state. So
926 * clear all zones' present_pages because they will be updated in
927 * online_pages() and offline_pages().
928 */
929 reset_node_managed_pages(pgdat);
930 reset_node_present_pages(pgdat);
931
932 return pgdat;
933}
934
935static void rollback_node_hotadd(int nid)
936{
937 pg_data_t *pgdat = NODE_DATA(nid);
938
939 arch_refresh_nodedata(nid, NULL);
940 free_percpu(pgdat->per_cpu_nodestats);
941 arch_free_nodedata(pgdat);
942}
943
944
945/*
946 * __try_online_node - online a node if offlined
947 * @nid: the node ID
948 * @set_node_online: Whether we want to online the node
949 * called by cpu_up() to online a node without onlined memory.
950 *
951 * Returns:
952 * 1 -> a new node has been allocated
953 * 0 -> the node is already online
954 * -ENOMEM -> the node could not be allocated
955 */
956static int __try_online_node(int nid, bool set_node_online)
957{
958 pg_data_t *pgdat;
959 int ret = 1;
960
961 if (node_online(nid))
962 return 0;
963
964 pgdat = hotadd_new_pgdat(nid);
965 if (!pgdat) {
966 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
967 ret = -ENOMEM;
968 goto out;
969 }
970
971 if (set_node_online) {
972 node_set_online(nid);
973 ret = register_one_node(nid);
974 BUG_ON(ret);
975 }
976out:
977 return ret;
978}
979
980/*
981 * Users of this function always want to online/register the node
982 */
983int try_online_node(int nid)
984{
985 int ret;
986
987 mem_hotplug_begin();
988 ret = __try_online_node(nid, true);
989 mem_hotplug_done();
990 return ret;
991}
992
993static int check_hotplug_memory_range(u64 start, u64 size)
994{
995 /* memory range must be block size aligned */
996 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
997 !IS_ALIGNED(size, memory_block_size_bytes())) {
998 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
999 memory_block_size_bytes(), start, size);
1000 return -EINVAL;
1001 }
1002
1003 return 0;
1004}
1005
1006static int online_memory_block(struct memory_block *mem, void *arg)
1007{
1008 mem->online_type = mhp_default_online_type;
1009 return device_online(&mem->dev);
1010}
1011
1012bool mhp_supports_memmap_on_memory(unsigned long size)
1013{
1014 unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1015 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1016 unsigned long remaining_size = size - vmemmap_size;
1017
1018 /*
1019 * Besides having arch support and the feature enabled at runtime, we
1020 * need a few more assumptions to hold true:
1021 *
1022 * a) We span a single memory block: memory onlining/offlinin;g happens
1023 * in memory block granularity. We don't want the vmemmap of online
1024 * memory blocks to reside on offline memory blocks. In the future,
1025 * we might want to support variable-sized memory blocks to make the
1026 * feature more versatile.
1027 *
1028 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1029 * to populate memory from the altmap for unrelated parts (i.e.,
1030 * other memory blocks)
1031 *
1032 * c) The vmemmap pages (and thereby the pages that will be exposed to
1033 * the buddy) have to cover full pageblocks: memory onlining/offlining
1034 * code requires applicable ranges to be page-aligned, for example, to
1035 * set the migratetypes properly.
1036 *
1037 * TODO: Although we have a check here to make sure that vmemmap pages
1038 * fully populate a PMD, it is not the right place to check for
1039 * this. A much better solution involves improving vmemmap code
1040 * to fallback to base pages when trying to populate vmemmap using
1041 * altmap as an alternative source of memory, and we do not exactly
1042 * populate a single PMD.
1043 */
1044 return memmap_on_memory &&
1045 !hugetlb_free_vmemmap_enabled &&
1046 IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1047 size == memory_block_size_bytes() &&
1048 IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1049 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1050}
1051
1052/*
1053 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1054 * and online/offline operations (triggered e.g. by sysfs).
1055 *
1056 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1057 */
1058int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1059{
1060 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1061 struct vmem_altmap mhp_altmap = {};
1062 u64 start, size;
1063 bool new_node = false;
1064 int ret;
1065
1066 start = res->start;
1067 size = resource_size(res);
1068
1069 ret = check_hotplug_memory_range(start, size);
1070 if (ret)
1071 return ret;
1072
1073 if (!node_possible(nid)) {
1074 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1075 return -EINVAL;
1076 }
1077
1078 mem_hotplug_begin();
1079
1080 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1081 memblock_add_node(start, size, nid);
1082
1083 ret = __try_online_node(nid, false);
1084 if (ret < 0)
1085 goto error;
1086 new_node = ret;
1087
1088 /*
1089 * Self hosted memmap array
1090 */
1091 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1092 if (!mhp_supports_memmap_on_memory(size)) {
1093 ret = -EINVAL;
1094 goto error;
1095 }
1096 mhp_altmap.free = PHYS_PFN(size);
1097 mhp_altmap.base_pfn = PHYS_PFN(start);
1098 params.altmap = &mhp_altmap;
1099 }
1100
1101 /* call arch's memory hotadd */
1102 ret = arch_add_memory(nid, start, size, ¶ms);
1103 if (ret < 0)
1104 goto error;
1105
1106 /* create memory block devices after memory was added */
1107 ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
1108 if (ret) {
1109 arch_remove_memory(nid, start, size, NULL);
1110 goto error;
1111 }
1112
1113 if (new_node) {
1114 /* If sysfs file of new node can't be created, cpu on the node
1115 * can't be hot-added. There is no rollback way now.
1116 * So, check by BUG_ON() to catch it reluctantly..
1117 * We online node here. We can't roll back from here.
1118 */
1119 node_set_online(nid);
1120 ret = __register_one_node(nid);
1121 BUG_ON(ret);
1122 }
1123
1124 /* link memory sections under this node.*/
1125 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1126 MEMINIT_HOTPLUG);
1127
1128 /* create new memmap entry */
1129 if (!strcmp(res->name, "System RAM"))
1130 firmware_map_add_hotplug(start, start + size, "System RAM");
1131
1132 /* device_online() will take the lock when calling online_pages() */
1133 mem_hotplug_done();
1134
1135 /*
1136 * In case we're allowed to merge the resource, flag it and trigger
1137 * merging now that adding succeeded.
1138 */
1139 if (mhp_flags & MHP_MERGE_RESOURCE)
1140 merge_system_ram_resource(res);
1141
1142 /* online pages if requested */
1143 if (mhp_default_online_type != MMOP_OFFLINE)
1144 walk_memory_blocks(start, size, NULL, online_memory_block);
1145
1146 return ret;
1147error:
1148 /* rollback pgdat allocation and others */
1149 if (new_node)
1150 rollback_node_hotadd(nid);
1151 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1152 memblock_remove(start, size);
1153 mem_hotplug_done();
1154 return ret;
1155}
1156
1157/* requires device_hotplug_lock, see add_memory_resource() */
1158int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1159{
1160 struct resource *res;
1161 int ret;
1162
1163 res = register_memory_resource(start, size, "System RAM");
1164 if (IS_ERR(res))
1165 return PTR_ERR(res);
1166
1167 ret = add_memory_resource(nid, res, mhp_flags);
1168 if (ret < 0)
1169 release_memory_resource(res);
1170 return ret;
1171}
1172
1173int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1174{
1175 int rc;
1176
1177 lock_device_hotplug();
1178 rc = __add_memory(nid, start, size, mhp_flags);
1179 unlock_device_hotplug();
1180
1181 return rc;
1182}
1183EXPORT_SYMBOL_GPL(add_memory);
1184
1185/*
1186 * Add special, driver-managed memory to the system as system RAM. Such
1187 * memory is not exposed via the raw firmware-provided memmap as system
1188 * RAM, instead, it is detected and added by a driver - during cold boot,
1189 * after a reboot, and after kexec.
1190 *
1191 * Reasons why this memory should not be used for the initial memmap of a
1192 * kexec kernel or for placing kexec images:
1193 * - The booting kernel is in charge of determining how this memory will be
1194 * used (e.g., use persistent memory as system RAM)
1195 * - Coordination with a hypervisor is required before this memory
1196 * can be used (e.g., inaccessible parts).
1197 *
1198 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1199 * memory map") are created. Also, the created memory resource is flagged
1200 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1201 * this memory as well (esp., not place kexec images onto it).
1202 *
1203 * The resource_name (visible via /proc/iomem) has to have the format
1204 * "System RAM ($DRIVER)".
1205 */
1206int add_memory_driver_managed(int nid, u64 start, u64 size,
1207 const char *resource_name, mhp_t mhp_flags)
1208{
1209 struct resource *res;
1210 int rc;
1211
1212 if (!resource_name ||
1213 strstr(resource_name, "System RAM (") != resource_name ||
1214 resource_name[strlen(resource_name) - 1] != ')')
1215 return -EINVAL;
1216
1217 lock_device_hotplug();
1218
1219 res = register_memory_resource(start, size, resource_name);
1220 if (IS_ERR(res)) {
1221 rc = PTR_ERR(res);
1222 goto out_unlock;
1223 }
1224
1225 rc = add_memory_resource(nid, res, mhp_flags);
1226 if (rc < 0)
1227 release_memory_resource(res);
1228
1229out_unlock:
1230 unlock_device_hotplug();
1231 return rc;
1232}
1233EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1234
1235/*
1236 * Platforms should define arch_get_mappable_range() that provides
1237 * maximum possible addressable physical memory range for which the
1238 * linear mapping could be created. The platform returned address
1239 * range must adhere to these following semantics.
1240 *
1241 * - range.start <= range.end
1242 * - Range includes both end points [range.start..range.end]
1243 *
1244 * There is also a fallback definition provided here, allowing the
1245 * entire possible physical address range in case any platform does
1246 * not define arch_get_mappable_range().
1247 */
1248struct range __weak arch_get_mappable_range(void)
1249{
1250 struct range mhp_range = {
1251 .start = 0UL,
1252 .end = -1ULL,
1253 };
1254 return mhp_range;
1255}
1256
1257struct range mhp_get_pluggable_range(bool need_mapping)
1258{
1259 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1260 struct range mhp_range;
1261
1262 if (need_mapping) {
1263 mhp_range = arch_get_mappable_range();
1264 if (mhp_range.start > max_phys) {
1265 mhp_range.start = 0;
1266 mhp_range.end = 0;
1267 }
1268 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1269 } else {
1270 mhp_range.start = 0;
1271 mhp_range.end = max_phys;
1272 }
1273 return mhp_range;
1274}
1275EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1276
1277bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1278{
1279 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1280 u64 end = start + size;
1281
1282 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1283 return true;
1284
1285 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1286 start, end, mhp_range.start, mhp_range.end);
1287 return false;
1288}
1289
1290#ifdef CONFIG_MEMORY_HOTREMOVE
1291/*
1292 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1293 * memory holes). When true, return the zone.
1294 */
1295struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1296 unsigned long end_pfn)
1297{
1298 unsigned long pfn, sec_end_pfn;
1299 struct zone *zone = NULL;
1300 struct page *page;
1301 int i;
1302 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1303 pfn < end_pfn;
1304 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1305 /* Make sure the memory section is present first */
1306 if (!present_section_nr(pfn_to_section_nr(pfn)))
1307 continue;
1308 for (; pfn < sec_end_pfn && pfn < end_pfn;
1309 pfn += MAX_ORDER_NR_PAGES) {
1310 i = 0;
1311 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1312 while ((i < MAX_ORDER_NR_PAGES) &&
1313 !pfn_valid_within(pfn + i))
1314 i++;
1315 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1316 continue;
1317 /* Check if we got outside of the zone */
1318 if (zone && !zone_spans_pfn(zone, pfn + i))
1319 return NULL;
1320 page = pfn_to_page(pfn + i);
1321 if (zone && page_zone(page) != zone)
1322 return NULL;
1323 zone = page_zone(page);
1324 }
1325 }
1326
1327 return zone;
1328}
1329
1330/*
1331 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1332 * non-lru movable pages and hugepages). Will skip over most unmovable
1333 * pages (esp., pages that can be skipped when offlining), but bail out on
1334 * definitely unmovable pages.
1335 *
1336 * Returns:
1337 * 0 in case a movable page is found and movable_pfn was updated.
1338 * -ENOENT in case no movable page was found.
1339 * -EBUSY in case a definitely unmovable page was found.
1340 */
1341static int scan_movable_pages(unsigned long start, unsigned long end,
1342 unsigned long *movable_pfn)
1343{
1344 unsigned long pfn;
1345
1346 for (pfn = start; pfn < end; pfn++) {
1347 struct page *page, *head;
1348 unsigned long skip;
1349
1350 if (!pfn_valid(pfn))
1351 continue;
1352 page = pfn_to_page(pfn);
1353 if (PageLRU(page))
1354 goto found;
1355 if (__PageMovable(page))
1356 goto found;
1357
1358 /*
1359 * PageOffline() pages that are not marked __PageMovable() and
1360 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1361 * definitely unmovable. If their reference count would be 0,
1362 * they could at least be skipped when offlining memory.
1363 */
1364 if (PageOffline(page) && page_count(page))
1365 return -EBUSY;
1366
1367 if (!PageHuge(page))
1368 continue;
1369 head = compound_head(page);
1370 /*
1371 * This test is racy as we hold no reference or lock. The
1372 * hugetlb page could have been free'ed and head is no longer
1373 * a hugetlb page before the following check. In such unlikely
1374 * cases false positives and negatives are possible. Calling
1375 * code must deal with these scenarios.
1376 */
1377 if (HPageMigratable(head))
1378 goto found;
1379 skip = compound_nr(head) - (page - head);
1380 pfn += skip - 1;
1381 }
1382 return -ENOENT;
1383found:
1384 *movable_pfn = pfn;
1385 return 0;
1386}
1387
1388static int
1389do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1390{
1391 unsigned long pfn;
1392 struct page *page, *head;
1393 int ret = 0;
1394 LIST_HEAD(source);
1395 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1396 DEFAULT_RATELIMIT_BURST);
1397
1398 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1399 if (!pfn_valid(pfn))
1400 continue;
1401 page = pfn_to_page(pfn);
1402 head = compound_head(page);
1403
1404 if (PageHuge(page)) {
1405 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1406 isolate_huge_page(head, &source);
1407 continue;
1408 } else if (PageTransHuge(page))
1409 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1410
1411 /*
1412 * HWPoison pages have elevated reference counts so the migration would
1413 * fail on them. It also doesn't make any sense to migrate them in the
1414 * first place. Still try to unmap such a page in case it is still mapped
1415 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1416 * the unmap as the catch all safety net).
1417 */
1418 if (PageHWPoison(page)) {
1419 if (WARN_ON(PageLRU(page)))
1420 isolate_lru_page(page);
1421 if (page_mapped(page))
1422 try_to_unmap(page, TTU_IGNORE_MLOCK);
1423 continue;
1424 }
1425
1426 if (!get_page_unless_zero(page))
1427 continue;
1428 /*
1429 * We can skip free pages. And we can deal with pages on
1430 * LRU and non-lru movable pages.
1431 */
1432 if (PageLRU(page))
1433 ret = isolate_lru_page(page);
1434 else
1435 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1436 if (!ret) { /* Success */
1437 list_add_tail(&page->lru, &source);
1438 if (!__PageMovable(page))
1439 inc_node_page_state(page, NR_ISOLATED_ANON +
1440 page_is_file_lru(page));
1441
1442 } else {
1443 if (__ratelimit(&migrate_rs)) {
1444 pr_warn("failed to isolate pfn %lx\n", pfn);
1445 dump_page(page, "isolation failed");
1446 }
1447 }
1448 put_page(page);
1449 }
1450 if (!list_empty(&source)) {
1451 nodemask_t nmask = node_states[N_MEMORY];
1452 struct migration_target_control mtc = {
1453 .nmask = &nmask,
1454 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1455 };
1456
1457 /*
1458 * We have checked that migration range is on a single zone so
1459 * we can use the nid of the first page to all the others.
1460 */
1461 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1462
1463 /*
1464 * try to allocate from a different node but reuse this node
1465 * if there are no other online nodes to be used (e.g. we are
1466 * offlining a part of the only existing node)
1467 */
1468 node_clear(mtc.nid, nmask);
1469 if (nodes_empty(nmask))
1470 node_set(mtc.nid, nmask);
1471 ret = migrate_pages(&source, alloc_migration_target, NULL,
1472 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1473 if (ret) {
1474 list_for_each_entry(page, &source, lru) {
1475 if (__ratelimit(&migrate_rs)) {
1476 pr_warn("migrating pfn %lx failed ret:%d\n",
1477 page_to_pfn(page), ret);
1478 dump_page(page, "migration failure");
1479 }
1480 }
1481 putback_movable_pages(&source);
1482 }
1483 }
1484
1485 return ret;
1486}
1487
1488static int __init cmdline_parse_movable_node(char *p)
1489{
1490 movable_node_enabled = true;
1491 return 0;
1492}
1493early_param("movable_node", cmdline_parse_movable_node);
1494
1495/* check which state of node_states will be changed when offline memory */
1496static void node_states_check_changes_offline(unsigned long nr_pages,
1497 struct zone *zone, struct memory_notify *arg)
1498{
1499 struct pglist_data *pgdat = zone->zone_pgdat;
1500 unsigned long present_pages = 0;
1501 enum zone_type zt;
1502
1503 arg->status_change_nid = NUMA_NO_NODE;
1504 arg->status_change_nid_normal = NUMA_NO_NODE;
1505 arg->status_change_nid_high = NUMA_NO_NODE;
1506
1507 /*
1508 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1509 * If the memory to be offline is within the range
1510 * [0..ZONE_NORMAL], and it is the last present memory there,
1511 * the zones in that range will become empty after the offlining,
1512 * thus we can determine that we need to clear the node from
1513 * node_states[N_NORMAL_MEMORY].
1514 */
1515 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1516 present_pages += pgdat->node_zones[zt].present_pages;
1517 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1518 arg->status_change_nid_normal = zone_to_nid(zone);
1519
1520#ifdef CONFIG_HIGHMEM
1521 /*
1522 * node_states[N_HIGH_MEMORY] contains nodes which
1523 * have normal memory or high memory.
1524 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1525 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1526 * we determine that the zones in that range become empty,
1527 * we need to clear the node for N_HIGH_MEMORY.
1528 */
1529 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1530 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1531 arg->status_change_nid_high = zone_to_nid(zone);
1532#endif
1533
1534 /*
1535 * We have accounted the pages from [0..ZONE_NORMAL), and
1536 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1537 * as well.
1538 * Here we count the possible pages from ZONE_MOVABLE.
1539 * If after having accounted all the pages, we see that the nr_pages
1540 * to be offlined is over or equal to the accounted pages,
1541 * we know that the node will become empty, and so, we can clear
1542 * it for N_MEMORY as well.
1543 */
1544 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1545
1546 if (nr_pages >= present_pages)
1547 arg->status_change_nid = zone_to_nid(zone);
1548}
1549
1550static void node_states_clear_node(int node, struct memory_notify *arg)
1551{
1552 if (arg->status_change_nid_normal >= 0)
1553 node_clear_state(node, N_NORMAL_MEMORY);
1554
1555 if (arg->status_change_nid_high >= 0)
1556 node_clear_state(node, N_HIGH_MEMORY);
1557
1558 if (arg->status_change_nid >= 0)
1559 node_clear_state(node, N_MEMORY);
1560}
1561
1562static int count_system_ram_pages_cb(unsigned long start_pfn,
1563 unsigned long nr_pages, void *data)
1564{
1565 unsigned long *nr_system_ram_pages = data;
1566
1567 *nr_system_ram_pages += nr_pages;
1568 return 0;
1569}
1570
1571int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1572{
1573 const unsigned long end_pfn = start_pfn + nr_pages;
1574 unsigned long pfn, system_ram_pages = 0;
1575 unsigned long flags;
1576 struct zone *zone;
1577 struct memory_notify arg;
1578 int ret, node;
1579 char *reason;
1580
1581 /*
1582 * {on,off}lining is constrained to full memory sections (or more
1583 * precisely to memory blocks from the user space POV).
1584 * memmap_on_memory is an exception because it reserves initial part
1585 * of the physical memory space for vmemmaps. That space is pageblock
1586 * aligned.
1587 */
1588 if (WARN_ON_ONCE(!nr_pages ||
1589 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1590 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1591 return -EINVAL;
1592
1593 mem_hotplug_begin();
1594
1595 /*
1596 * Don't allow to offline memory blocks that contain holes.
1597 * Consequently, memory blocks with holes can never get onlined
1598 * via the hotplug path - online_pages() - as hotplugged memory has
1599 * no holes. This way, we e.g., don't have to worry about marking
1600 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1601 * avoid using walk_system_ram_range() later.
1602 */
1603 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1604 count_system_ram_pages_cb);
1605 if (system_ram_pages != nr_pages) {
1606 ret = -EINVAL;
1607 reason = "memory holes";
1608 goto failed_removal;
1609 }
1610
1611 /* This makes hotplug much easier...and readable.
1612 we assume this for now. .*/
1613 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1614 if (!zone) {
1615 ret = -EINVAL;
1616 reason = "multizone range";
1617 goto failed_removal;
1618 }
1619 node = zone_to_nid(zone);
1620
1621 /*
1622 * Disable pcplists so that page isolation cannot race with freeing
1623 * in a way that pages from isolated pageblock are left on pcplists.
1624 */
1625 zone_pcp_disable(zone);
1626 lru_cache_disable();
1627
1628 /* set above range as isolated */
1629 ret = start_isolate_page_range(start_pfn, end_pfn,
1630 MIGRATE_MOVABLE,
1631 MEMORY_OFFLINE | REPORT_FAILURE);
1632 if (ret) {
1633 reason = "failure to isolate range";
1634 goto failed_removal_pcplists_disabled;
1635 }
1636
1637 arg.start_pfn = start_pfn;
1638 arg.nr_pages = nr_pages;
1639 node_states_check_changes_offline(nr_pages, zone, &arg);
1640
1641 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1642 ret = notifier_to_errno(ret);
1643 if (ret) {
1644 reason = "notifier failure";
1645 goto failed_removal_isolated;
1646 }
1647
1648 do {
1649 pfn = start_pfn;
1650 do {
1651 if (signal_pending(current)) {
1652 ret = -EINTR;
1653 reason = "signal backoff";
1654 goto failed_removal_isolated;
1655 }
1656
1657 cond_resched();
1658
1659 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1660 if (!ret) {
1661 /*
1662 * TODO: fatal migration failures should bail
1663 * out
1664 */
1665 do_migrate_range(pfn, end_pfn);
1666 }
1667 } while (!ret);
1668
1669 if (ret != -ENOENT) {
1670 reason = "unmovable page";
1671 goto failed_removal_isolated;
1672 }
1673
1674 /*
1675 * Dissolve free hugepages in the memory block before doing
1676 * offlining actually in order to make hugetlbfs's object
1677 * counting consistent.
1678 */
1679 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1680 if (ret) {
1681 reason = "failure to dissolve huge pages";
1682 goto failed_removal_isolated;
1683 }
1684
1685 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1686
1687 } while (ret);
1688
1689 /* Mark all sections offline and remove free pages from the buddy. */
1690 __offline_isolated_pages(start_pfn, end_pfn);
1691 pr_debug("Offlined Pages %ld\n", nr_pages);
1692
1693 /*
1694 * The memory sections are marked offline, and the pageblock flags
1695 * effectively stale; nobody should be touching them. Fixup the number
1696 * of isolated pageblocks, memory onlining will properly revert this.
1697 */
1698 spin_lock_irqsave(&zone->lock, flags);
1699 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1700 spin_unlock_irqrestore(&zone->lock, flags);
1701
1702 lru_cache_enable();
1703 zone_pcp_enable(zone);
1704
1705 /* removal success */
1706 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1707 adjust_present_page_count(zone, -nr_pages);
1708
1709 /* reinitialise watermarks and update pcp limits */
1710 init_per_zone_wmark_min();
1711
1712 if (!populated_zone(zone)) {
1713 zone_pcp_reset(zone);
1714 build_all_zonelists(NULL);
1715 }
1716
1717 node_states_clear_node(node, &arg);
1718 if (arg.status_change_nid >= 0) {
1719 kswapd_stop(node);
1720 kcompactd_stop(node);
1721 }
1722
1723 writeback_set_ratelimit();
1724
1725 memory_notify(MEM_OFFLINE, &arg);
1726 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1727 mem_hotplug_done();
1728 return 0;
1729
1730failed_removal_isolated:
1731 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1732 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1733failed_removal_pcplists_disabled:
1734 lru_cache_enable();
1735 zone_pcp_enable(zone);
1736failed_removal:
1737 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1738 (unsigned long long) start_pfn << PAGE_SHIFT,
1739 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1740 reason);
1741 /* pushback to free area */
1742 mem_hotplug_done();
1743 return ret;
1744}
1745
1746static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1747{
1748 int ret = !is_memblock_offlined(mem);
1749
1750 if (unlikely(ret)) {
1751 phys_addr_t beginpa, endpa;
1752
1753 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1754 endpa = beginpa + memory_block_size_bytes() - 1;
1755 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1756 &beginpa, &endpa);
1757
1758 return -EBUSY;
1759 }
1760 return 0;
1761}
1762
1763static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1764{
1765 /*
1766 * If not set, continue with the next block.
1767 */
1768 return mem->nr_vmemmap_pages;
1769}
1770
1771static int check_cpu_on_node(pg_data_t *pgdat)
1772{
1773 int cpu;
1774
1775 for_each_present_cpu(cpu) {
1776 if (cpu_to_node(cpu) == pgdat->node_id)
1777 /*
1778 * the cpu on this node isn't removed, and we can't
1779 * offline this node.
1780 */
1781 return -EBUSY;
1782 }
1783
1784 return 0;
1785}
1786
1787static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1788{
1789 int nid = *(int *)arg;
1790
1791 /*
1792 * If a memory block belongs to multiple nodes, the stored nid is not
1793 * reliable. However, such blocks are always online (e.g., cannot get
1794 * offlined) and, therefore, are still spanned by the node.
1795 */
1796 return mem->nid == nid ? -EEXIST : 0;
1797}
1798
1799/**
1800 * try_offline_node
1801 * @nid: the node ID
1802 *
1803 * Offline a node if all memory sections and cpus of the node are removed.
1804 *
1805 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1806 * and online/offline operations before this call.
1807 */
1808void try_offline_node(int nid)
1809{
1810 pg_data_t *pgdat = NODE_DATA(nid);
1811 int rc;
1812
1813 /*
1814 * If the node still spans pages (especially ZONE_DEVICE), don't
1815 * offline it. A node spans memory after move_pfn_range_to_zone(),
1816 * e.g., after the memory block was onlined.
1817 */
1818 if (pgdat->node_spanned_pages)
1819 return;
1820
1821 /*
1822 * Especially offline memory blocks might not be spanned by the
1823 * node. They will get spanned by the node once they get onlined.
1824 * However, they link to the node in sysfs and can get onlined later.
1825 */
1826 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1827 if (rc)
1828 return;
1829
1830 if (check_cpu_on_node(pgdat))
1831 return;
1832
1833 /*
1834 * all memory/cpu of this node are removed, we can offline this
1835 * node now.
1836 */
1837 node_set_offline(nid);
1838 unregister_one_node(nid);
1839}
1840EXPORT_SYMBOL(try_offline_node);
1841
1842static int __ref try_remove_memory(int nid, u64 start, u64 size)
1843{
1844 int rc = 0;
1845 struct vmem_altmap mhp_altmap = {};
1846 struct vmem_altmap *altmap = NULL;
1847 unsigned long nr_vmemmap_pages;
1848
1849 BUG_ON(check_hotplug_memory_range(start, size));
1850
1851 /*
1852 * All memory blocks must be offlined before removing memory. Check
1853 * whether all memory blocks in question are offline and return error
1854 * if this is not the case.
1855 */
1856 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1857 if (rc)
1858 return rc;
1859
1860 /*
1861 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
1862 * the same granularity it was added - a single memory block.
1863 */
1864 if (memmap_on_memory) {
1865 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
1866 get_nr_vmemmap_pages_cb);
1867 if (nr_vmemmap_pages) {
1868 if (size != memory_block_size_bytes()) {
1869 pr_warn("Refuse to remove %#llx - %#llx,"
1870 "wrong granularity\n",
1871 start, start + size);
1872 return -EINVAL;
1873 }
1874
1875 /*
1876 * Let remove_pmd_table->free_hugepage_table do the
1877 * right thing if we used vmem_altmap when hot-adding
1878 * the range.
1879 */
1880 mhp_altmap.alloc = nr_vmemmap_pages;
1881 altmap = &mhp_altmap;
1882 }
1883 }
1884
1885 /* remove memmap entry */
1886 firmware_map_remove(start, start + size, "System RAM");
1887
1888 /*
1889 * Memory block device removal under the device_hotplug_lock is
1890 * a barrier against racing online attempts.
1891 */
1892 remove_memory_block_devices(start, size);
1893
1894 mem_hotplug_begin();
1895
1896 arch_remove_memory(nid, start, size, altmap);
1897
1898 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1899 memblock_free(start, size);
1900 memblock_remove(start, size);
1901 }
1902
1903 release_mem_region_adjustable(start, size);
1904
1905 try_offline_node(nid);
1906
1907 mem_hotplug_done();
1908 return 0;
1909}
1910
1911/**
1912 * __remove_memory - Remove memory if every memory block is offline
1913 * @nid: the node ID
1914 * @start: physical address of the region to remove
1915 * @size: size of the region to remove
1916 *
1917 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1918 * and online/offline operations before this call, as required by
1919 * try_offline_node().
1920 */
1921void __remove_memory(int nid, u64 start, u64 size)
1922{
1923
1924 /*
1925 * trigger BUG() if some memory is not offlined prior to calling this
1926 * function
1927 */
1928 if (try_remove_memory(nid, start, size))
1929 BUG();
1930}
1931
1932/*
1933 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1934 * some memory is not offline
1935 */
1936int remove_memory(int nid, u64 start, u64 size)
1937{
1938 int rc;
1939
1940 lock_device_hotplug();
1941 rc = try_remove_memory(nid, start, size);
1942 unlock_device_hotplug();
1943
1944 return rc;
1945}
1946EXPORT_SYMBOL_GPL(remove_memory);
1947
1948static int try_offline_memory_block(struct memory_block *mem, void *arg)
1949{
1950 uint8_t online_type = MMOP_ONLINE_KERNEL;
1951 uint8_t **online_types = arg;
1952 struct page *page;
1953 int rc;
1954
1955 /*
1956 * Sense the online_type via the zone of the memory block. Offlining
1957 * with multiple zones within one memory block will be rejected
1958 * by offlining code ... so we don't care about that.
1959 */
1960 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
1961 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
1962 online_type = MMOP_ONLINE_MOVABLE;
1963
1964 rc = device_offline(&mem->dev);
1965 /*
1966 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
1967 * so try_reonline_memory_block() can do the right thing.
1968 */
1969 if (!rc)
1970 **online_types = online_type;
1971
1972 (*online_types)++;
1973 /* Ignore if already offline. */
1974 return rc < 0 ? rc : 0;
1975}
1976
1977static int try_reonline_memory_block(struct memory_block *mem, void *arg)
1978{
1979 uint8_t **online_types = arg;
1980 int rc;
1981
1982 if (**online_types != MMOP_OFFLINE) {
1983 mem->online_type = **online_types;
1984 rc = device_online(&mem->dev);
1985 if (rc < 0)
1986 pr_warn("%s: Failed to re-online memory: %d",
1987 __func__, rc);
1988 }
1989
1990 /* Continue processing all remaining memory blocks. */
1991 (*online_types)++;
1992 return 0;
1993}
1994
1995/*
1996 * Try to offline and remove memory. Might take a long time to finish in case
1997 * memory is still in use. Primarily useful for memory devices that logically
1998 * unplugged all memory (so it's no longer in use) and want to offline + remove
1999 * that memory.
2000 */
2001int offline_and_remove_memory(int nid, u64 start, u64 size)
2002{
2003 const unsigned long mb_count = size / memory_block_size_bytes();
2004 uint8_t *online_types, *tmp;
2005 int rc;
2006
2007 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2008 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2009 return -EINVAL;
2010
2011 /*
2012 * We'll remember the old online type of each memory block, so we can
2013 * try to revert whatever we did when offlining one memory block fails
2014 * after offlining some others succeeded.
2015 */
2016 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2017 GFP_KERNEL);
2018 if (!online_types)
2019 return -ENOMEM;
2020 /*
2021 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2022 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2023 * try_reonline_memory_block().
2024 */
2025 memset(online_types, MMOP_OFFLINE, mb_count);
2026
2027 lock_device_hotplug();
2028
2029 tmp = online_types;
2030 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2031
2032 /*
2033 * In case we succeeded to offline all memory, remove it.
2034 * This cannot fail as it cannot get onlined in the meantime.
2035 */
2036 if (!rc) {
2037 rc = try_remove_memory(nid, start, size);
2038 if (rc)
2039 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2040 }
2041
2042 /*
2043 * Rollback what we did. While memory onlining might theoretically fail
2044 * (nacked by a notifier), it barely ever happens.
2045 */
2046 if (rc) {
2047 tmp = online_types;
2048 walk_memory_blocks(start, size, &tmp,
2049 try_reonline_memory_block);
2050 }
2051 unlock_device_hotplug();
2052
2053 kfree(online_types);
2054 return rc;
2055}
2056EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2057#endif /* CONFIG_MEMORY_HOTREMOVE */
1/*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7#include <linux/stddef.h>
8#include <linux/mm.h>
9#include <linux/swap.h>
10#include <linux/interrupt.h>
11#include <linux/pagemap.h>
12#include <linux/compiler.h>
13#include <linux/export.h>
14#include <linux/pagevec.h>
15#include <linux/writeback.h>
16#include <linux/slab.h>
17#include <linux/sysctl.h>
18#include <linux/cpu.h>
19#include <linux/memory.h>
20#include <linux/memremap.h>
21#include <linux/memory_hotplug.h>
22#include <linux/highmem.h>
23#include <linux/vmalloc.h>
24#include <linux/ioport.h>
25#include <linux/delay.h>
26#include <linux/migrate.h>
27#include <linux/page-isolation.h>
28#include <linux/pfn.h>
29#include <linux/suspend.h>
30#include <linux/mm_inline.h>
31#include <linux/firmware-map.h>
32#include <linux/stop_machine.h>
33#include <linux/hugetlb.h>
34#include <linux/memblock.h>
35#include <linux/bootmem.h>
36#include <linux/compaction.h>
37
38#include <asm/tlbflush.h>
39
40#include "internal.h"
41
42/*
43 * online_page_callback contains pointer to current page onlining function.
44 * Initially it is generic_online_page(). If it is required it could be
45 * changed by calling set_online_page_callback() for callback registration
46 * and restore_online_page_callback() for generic callback restore.
47 */
48
49static void generic_online_page(struct page *page);
50
51static online_page_callback_t online_page_callback = generic_online_page;
52static DEFINE_MUTEX(online_page_callback_lock);
53
54/* The same as the cpu_hotplug lock, but for memory hotplug. */
55static struct {
56 struct task_struct *active_writer;
57 struct mutex lock; /* Synchronizes accesses to refcount, */
58 /*
59 * Also blocks the new readers during
60 * an ongoing mem hotplug operation.
61 */
62 int refcount;
63
64#ifdef CONFIG_DEBUG_LOCK_ALLOC
65 struct lockdep_map dep_map;
66#endif
67} mem_hotplug = {
68 .active_writer = NULL,
69 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
70 .refcount = 0,
71#ifdef CONFIG_DEBUG_LOCK_ALLOC
72 .dep_map = {.name = "mem_hotplug.lock" },
73#endif
74};
75
76/* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
77#define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
78#define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
79#define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
80
81#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
82bool memhp_auto_online;
83#else
84bool memhp_auto_online = true;
85#endif
86EXPORT_SYMBOL_GPL(memhp_auto_online);
87
88static int __init setup_memhp_default_state(char *str)
89{
90 if (!strcmp(str, "online"))
91 memhp_auto_online = true;
92 else if (!strcmp(str, "offline"))
93 memhp_auto_online = false;
94
95 return 1;
96}
97__setup("memhp_default_state=", setup_memhp_default_state);
98
99void get_online_mems(void)
100{
101 might_sleep();
102 if (mem_hotplug.active_writer == current)
103 return;
104 memhp_lock_acquire_read();
105 mutex_lock(&mem_hotplug.lock);
106 mem_hotplug.refcount++;
107 mutex_unlock(&mem_hotplug.lock);
108
109}
110
111void put_online_mems(void)
112{
113 if (mem_hotplug.active_writer == current)
114 return;
115 mutex_lock(&mem_hotplug.lock);
116
117 if (WARN_ON(!mem_hotplug.refcount))
118 mem_hotplug.refcount++; /* try to fix things up */
119
120 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
121 wake_up_process(mem_hotplug.active_writer);
122 mutex_unlock(&mem_hotplug.lock);
123 memhp_lock_release();
124
125}
126
127void mem_hotplug_begin(void)
128{
129 mem_hotplug.active_writer = current;
130
131 memhp_lock_acquire();
132 for (;;) {
133 mutex_lock(&mem_hotplug.lock);
134 if (likely(!mem_hotplug.refcount))
135 break;
136 __set_current_state(TASK_UNINTERRUPTIBLE);
137 mutex_unlock(&mem_hotplug.lock);
138 schedule();
139 }
140}
141
142void mem_hotplug_done(void)
143{
144 mem_hotplug.active_writer = NULL;
145 mutex_unlock(&mem_hotplug.lock);
146 memhp_lock_release();
147}
148
149/* add this memory to iomem resource */
150static struct resource *register_memory_resource(u64 start, u64 size)
151{
152 struct resource *res;
153 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
154 if (!res)
155 return ERR_PTR(-ENOMEM);
156
157 res->name = "System RAM";
158 res->start = start;
159 res->end = start + size - 1;
160 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
161 if (request_resource(&iomem_resource, res) < 0) {
162 pr_debug("System RAM resource %pR cannot be added\n", res);
163 kfree(res);
164 return ERR_PTR(-EEXIST);
165 }
166 return res;
167}
168
169static void release_memory_resource(struct resource *res)
170{
171 if (!res)
172 return;
173 release_resource(res);
174 kfree(res);
175 return;
176}
177
178#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
179void get_page_bootmem(unsigned long info, struct page *page,
180 unsigned long type)
181{
182 page->lru.next = (struct list_head *) type;
183 SetPagePrivate(page);
184 set_page_private(page, info);
185 page_ref_inc(page);
186}
187
188void put_page_bootmem(struct page *page)
189{
190 unsigned long type;
191
192 type = (unsigned long) page->lru.next;
193 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
194 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
195
196 if (page_ref_dec_return(page) == 1) {
197 ClearPagePrivate(page);
198 set_page_private(page, 0);
199 INIT_LIST_HEAD(&page->lru);
200 free_reserved_page(page);
201 }
202}
203
204#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
205#ifndef CONFIG_SPARSEMEM_VMEMMAP
206static void register_page_bootmem_info_section(unsigned long start_pfn)
207{
208 unsigned long *usemap, mapsize, section_nr, i;
209 struct mem_section *ms;
210 struct page *page, *memmap;
211
212 section_nr = pfn_to_section_nr(start_pfn);
213 ms = __nr_to_section(section_nr);
214
215 /* Get section's memmap address */
216 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
217
218 /*
219 * Get page for the memmap's phys address
220 * XXX: need more consideration for sparse_vmemmap...
221 */
222 page = virt_to_page(memmap);
223 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
224 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
225
226 /* remember memmap's page */
227 for (i = 0; i < mapsize; i++, page++)
228 get_page_bootmem(section_nr, page, SECTION_INFO);
229
230 usemap = __nr_to_section(section_nr)->pageblock_flags;
231 page = virt_to_page(usemap);
232
233 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
234
235 for (i = 0; i < mapsize; i++, page++)
236 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
237
238}
239#else /* CONFIG_SPARSEMEM_VMEMMAP */
240static void register_page_bootmem_info_section(unsigned long start_pfn)
241{
242 unsigned long *usemap, mapsize, section_nr, i;
243 struct mem_section *ms;
244 struct page *page, *memmap;
245
246 if (!pfn_valid(start_pfn))
247 return;
248
249 section_nr = pfn_to_section_nr(start_pfn);
250 ms = __nr_to_section(section_nr);
251
252 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
253
254 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
255
256 usemap = __nr_to_section(section_nr)->pageblock_flags;
257 page = virt_to_page(usemap);
258
259 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
260
261 for (i = 0; i < mapsize; i++, page++)
262 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
263}
264#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
265
266void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
267{
268 unsigned long i, pfn, end_pfn, nr_pages;
269 int node = pgdat->node_id;
270 struct page *page;
271
272 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
273 page = virt_to_page(pgdat);
274
275 for (i = 0; i < nr_pages; i++, page++)
276 get_page_bootmem(node, page, NODE_INFO);
277
278 pfn = pgdat->node_start_pfn;
279 end_pfn = pgdat_end_pfn(pgdat);
280
281 /* register section info */
282 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
283 /*
284 * Some platforms can assign the same pfn to multiple nodes - on
285 * node0 as well as nodeN. To avoid registering a pfn against
286 * multiple nodes we check that this pfn does not already
287 * reside in some other nodes.
288 */
289 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
290 register_page_bootmem_info_section(pfn);
291 }
292}
293#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
294
295static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
296 unsigned long end_pfn)
297{
298 unsigned long old_zone_end_pfn;
299
300 zone_span_writelock(zone);
301
302 old_zone_end_pfn = zone_end_pfn(zone);
303 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
304 zone->zone_start_pfn = start_pfn;
305
306 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
307 zone->zone_start_pfn;
308
309 zone_span_writeunlock(zone);
310}
311
312static void resize_zone(struct zone *zone, unsigned long start_pfn,
313 unsigned long end_pfn)
314{
315 zone_span_writelock(zone);
316
317 if (end_pfn - start_pfn) {
318 zone->zone_start_pfn = start_pfn;
319 zone->spanned_pages = end_pfn - start_pfn;
320 } else {
321 /*
322 * make it consist as free_area_init_core(),
323 * if spanned_pages = 0, then keep start_pfn = 0
324 */
325 zone->zone_start_pfn = 0;
326 zone->spanned_pages = 0;
327 }
328
329 zone_span_writeunlock(zone);
330}
331
332static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
333 unsigned long end_pfn)
334{
335 enum zone_type zid = zone_idx(zone);
336 int nid = zone->zone_pgdat->node_id;
337 unsigned long pfn;
338
339 for (pfn = start_pfn; pfn < end_pfn; pfn++)
340 set_page_links(pfn_to_page(pfn), zid, nid, pfn);
341}
342
343/* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
344 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
345static int __ref ensure_zone_is_initialized(struct zone *zone,
346 unsigned long start_pfn, unsigned long num_pages)
347{
348 if (!zone_is_initialized(zone))
349 return init_currently_empty_zone(zone, start_pfn, num_pages);
350
351 return 0;
352}
353
354static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
355 unsigned long start_pfn, unsigned long end_pfn)
356{
357 int ret;
358 unsigned long flags;
359 unsigned long z1_start_pfn;
360
361 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
362 if (ret)
363 return ret;
364
365 pgdat_resize_lock(z1->zone_pgdat, &flags);
366
367 /* can't move pfns which are higher than @z2 */
368 if (end_pfn > zone_end_pfn(z2))
369 goto out_fail;
370 /* the move out part must be at the left most of @z2 */
371 if (start_pfn > z2->zone_start_pfn)
372 goto out_fail;
373 /* must included/overlap */
374 if (end_pfn <= z2->zone_start_pfn)
375 goto out_fail;
376
377 /* use start_pfn for z1's start_pfn if z1 is empty */
378 if (!zone_is_empty(z1))
379 z1_start_pfn = z1->zone_start_pfn;
380 else
381 z1_start_pfn = start_pfn;
382
383 resize_zone(z1, z1_start_pfn, end_pfn);
384 resize_zone(z2, end_pfn, zone_end_pfn(z2));
385
386 pgdat_resize_unlock(z1->zone_pgdat, &flags);
387
388 fix_zone_id(z1, start_pfn, end_pfn);
389
390 return 0;
391out_fail:
392 pgdat_resize_unlock(z1->zone_pgdat, &flags);
393 return -1;
394}
395
396static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
397 unsigned long start_pfn, unsigned long end_pfn)
398{
399 int ret;
400 unsigned long flags;
401 unsigned long z2_end_pfn;
402
403 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
404 if (ret)
405 return ret;
406
407 pgdat_resize_lock(z1->zone_pgdat, &flags);
408
409 /* can't move pfns which are lower than @z1 */
410 if (z1->zone_start_pfn > start_pfn)
411 goto out_fail;
412 /* the move out part mast at the right most of @z1 */
413 if (zone_end_pfn(z1) > end_pfn)
414 goto out_fail;
415 /* must included/overlap */
416 if (start_pfn >= zone_end_pfn(z1))
417 goto out_fail;
418
419 /* use end_pfn for z2's end_pfn if z2 is empty */
420 if (!zone_is_empty(z2))
421 z2_end_pfn = zone_end_pfn(z2);
422 else
423 z2_end_pfn = end_pfn;
424
425 resize_zone(z1, z1->zone_start_pfn, start_pfn);
426 resize_zone(z2, start_pfn, z2_end_pfn);
427
428 pgdat_resize_unlock(z1->zone_pgdat, &flags);
429
430 fix_zone_id(z2, start_pfn, end_pfn);
431
432 return 0;
433out_fail:
434 pgdat_resize_unlock(z1->zone_pgdat, &flags);
435 return -1;
436}
437
438static struct zone * __meminit move_pfn_range(int zone_shift,
439 unsigned long start_pfn, unsigned long end_pfn)
440{
441 struct zone *zone = page_zone(pfn_to_page(start_pfn));
442 int ret = 0;
443
444 if (zone_shift < 0)
445 ret = move_pfn_range_left(zone + zone_shift, zone,
446 start_pfn, end_pfn);
447 else if (zone_shift)
448 ret = move_pfn_range_right(zone, zone + zone_shift,
449 start_pfn, end_pfn);
450
451 if (ret)
452 return NULL;
453
454 return zone + zone_shift;
455}
456
457static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
458 unsigned long end_pfn)
459{
460 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
461
462 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
463 pgdat->node_start_pfn = start_pfn;
464
465 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
466 pgdat->node_start_pfn;
467}
468
469static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
470{
471 struct pglist_data *pgdat = zone->zone_pgdat;
472 int nr_pages = PAGES_PER_SECTION;
473 int nid = pgdat->node_id;
474 int zone_type;
475 unsigned long flags, pfn;
476 int ret;
477
478 zone_type = zone - pgdat->node_zones;
479 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
480 if (ret)
481 return ret;
482
483 pgdat_resize_lock(zone->zone_pgdat, &flags);
484 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
485 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
486 phys_start_pfn + nr_pages);
487 pgdat_resize_unlock(zone->zone_pgdat, &flags);
488 memmap_init_zone(nr_pages, nid, zone_type,
489 phys_start_pfn, MEMMAP_HOTPLUG);
490
491 /* online_page_range is called later and expects pages reserved */
492 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
493 if (!pfn_valid(pfn))
494 continue;
495
496 SetPageReserved(pfn_to_page(pfn));
497 }
498 return 0;
499}
500
501static int __meminit __add_section(int nid, struct zone *zone,
502 unsigned long phys_start_pfn)
503{
504 int ret;
505
506 if (pfn_valid(phys_start_pfn))
507 return -EEXIST;
508
509 ret = sparse_add_one_section(zone, phys_start_pfn);
510
511 if (ret < 0)
512 return ret;
513
514 ret = __add_zone(zone, phys_start_pfn);
515
516 if (ret < 0)
517 return ret;
518
519 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
520}
521
522/*
523 * Reasonably generic function for adding memory. It is
524 * expected that archs that support memory hotplug will
525 * call this function after deciding the zone to which to
526 * add the new pages.
527 */
528int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
529 unsigned long nr_pages)
530{
531 unsigned long i;
532 int err = 0;
533 int start_sec, end_sec;
534 struct vmem_altmap *altmap;
535
536 clear_zone_contiguous(zone);
537
538 /* during initialize mem_map, align hot-added range to section */
539 start_sec = pfn_to_section_nr(phys_start_pfn);
540 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
541
542 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
543 if (altmap) {
544 /*
545 * Validate altmap is within bounds of the total request
546 */
547 if (altmap->base_pfn != phys_start_pfn
548 || vmem_altmap_offset(altmap) > nr_pages) {
549 pr_warn_once("memory add fail, invalid altmap\n");
550 err = -EINVAL;
551 goto out;
552 }
553 altmap->alloc = 0;
554 }
555
556 for (i = start_sec; i <= end_sec; i++) {
557 err = __add_section(nid, zone, section_nr_to_pfn(i));
558
559 /*
560 * EEXIST is finally dealt with by ioresource collision
561 * check. see add_memory() => register_memory_resource()
562 * Warning will be printed if there is collision.
563 */
564 if (err && (err != -EEXIST))
565 break;
566 err = 0;
567 }
568 vmemmap_populate_print_last();
569out:
570 set_zone_contiguous(zone);
571 return err;
572}
573EXPORT_SYMBOL_GPL(__add_pages);
574
575#ifdef CONFIG_MEMORY_HOTREMOVE
576/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
577static int find_smallest_section_pfn(int nid, struct zone *zone,
578 unsigned long start_pfn,
579 unsigned long end_pfn)
580{
581 struct mem_section *ms;
582
583 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
584 ms = __pfn_to_section(start_pfn);
585
586 if (unlikely(!valid_section(ms)))
587 continue;
588
589 if (unlikely(pfn_to_nid(start_pfn) != nid))
590 continue;
591
592 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
593 continue;
594
595 return start_pfn;
596 }
597
598 return 0;
599}
600
601/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
602static int find_biggest_section_pfn(int nid, struct zone *zone,
603 unsigned long start_pfn,
604 unsigned long end_pfn)
605{
606 struct mem_section *ms;
607 unsigned long pfn;
608
609 /* pfn is the end pfn of a memory section. */
610 pfn = end_pfn - 1;
611 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
612 ms = __pfn_to_section(pfn);
613
614 if (unlikely(!valid_section(ms)))
615 continue;
616
617 if (unlikely(pfn_to_nid(pfn) != nid))
618 continue;
619
620 if (zone && zone != page_zone(pfn_to_page(pfn)))
621 continue;
622
623 return pfn;
624 }
625
626 return 0;
627}
628
629static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
630 unsigned long end_pfn)
631{
632 unsigned long zone_start_pfn = zone->zone_start_pfn;
633 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
634 unsigned long zone_end_pfn = z;
635 unsigned long pfn;
636 struct mem_section *ms;
637 int nid = zone_to_nid(zone);
638
639 zone_span_writelock(zone);
640 if (zone_start_pfn == start_pfn) {
641 /*
642 * If the section is smallest section in the zone, it need
643 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
644 * In this case, we find second smallest valid mem_section
645 * for shrinking zone.
646 */
647 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
648 zone_end_pfn);
649 if (pfn) {
650 zone->zone_start_pfn = pfn;
651 zone->spanned_pages = zone_end_pfn - pfn;
652 }
653 } else if (zone_end_pfn == end_pfn) {
654 /*
655 * If the section is biggest section in the zone, it need
656 * shrink zone->spanned_pages.
657 * In this case, we find second biggest valid mem_section for
658 * shrinking zone.
659 */
660 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
661 start_pfn);
662 if (pfn)
663 zone->spanned_pages = pfn - zone_start_pfn + 1;
664 }
665
666 /*
667 * The section is not biggest or smallest mem_section in the zone, it
668 * only creates a hole in the zone. So in this case, we need not
669 * change the zone. But perhaps, the zone has only hole data. Thus
670 * it check the zone has only hole or not.
671 */
672 pfn = zone_start_pfn;
673 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
674 ms = __pfn_to_section(pfn);
675
676 if (unlikely(!valid_section(ms)))
677 continue;
678
679 if (page_zone(pfn_to_page(pfn)) != zone)
680 continue;
681
682 /* If the section is current section, it continues the loop */
683 if (start_pfn == pfn)
684 continue;
685
686 /* If we find valid section, we have nothing to do */
687 zone_span_writeunlock(zone);
688 return;
689 }
690
691 /* The zone has no valid section */
692 zone->zone_start_pfn = 0;
693 zone->spanned_pages = 0;
694 zone_span_writeunlock(zone);
695}
696
697static void shrink_pgdat_span(struct pglist_data *pgdat,
698 unsigned long start_pfn, unsigned long end_pfn)
699{
700 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
701 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
702 unsigned long pgdat_end_pfn = p;
703 unsigned long pfn;
704 struct mem_section *ms;
705 int nid = pgdat->node_id;
706
707 if (pgdat_start_pfn == start_pfn) {
708 /*
709 * If the section is smallest section in the pgdat, it need
710 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
711 * In this case, we find second smallest valid mem_section
712 * for shrinking zone.
713 */
714 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
715 pgdat_end_pfn);
716 if (pfn) {
717 pgdat->node_start_pfn = pfn;
718 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
719 }
720 } else if (pgdat_end_pfn == end_pfn) {
721 /*
722 * If the section is biggest section in the pgdat, it need
723 * shrink pgdat->node_spanned_pages.
724 * In this case, we find second biggest valid mem_section for
725 * shrinking zone.
726 */
727 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
728 start_pfn);
729 if (pfn)
730 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
731 }
732
733 /*
734 * If the section is not biggest or smallest mem_section in the pgdat,
735 * it only creates a hole in the pgdat. So in this case, we need not
736 * change the pgdat.
737 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
738 * has only hole or not.
739 */
740 pfn = pgdat_start_pfn;
741 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
742 ms = __pfn_to_section(pfn);
743
744 if (unlikely(!valid_section(ms)))
745 continue;
746
747 if (pfn_to_nid(pfn) != nid)
748 continue;
749
750 /* If the section is current section, it continues the loop */
751 if (start_pfn == pfn)
752 continue;
753
754 /* If we find valid section, we have nothing to do */
755 return;
756 }
757
758 /* The pgdat has no valid section */
759 pgdat->node_start_pfn = 0;
760 pgdat->node_spanned_pages = 0;
761}
762
763static void __remove_zone(struct zone *zone, unsigned long start_pfn)
764{
765 struct pglist_data *pgdat = zone->zone_pgdat;
766 int nr_pages = PAGES_PER_SECTION;
767 int zone_type;
768 unsigned long flags;
769
770 zone_type = zone - pgdat->node_zones;
771
772 pgdat_resize_lock(zone->zone_pgdat, &flags);
773 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
774 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
775 pgdat_resize_unlock(zone->zone_pgdat, &flags);
776}
777
778static int __remove_section(struct zone *zone, struct mem_section *ms,
779 unsigned long map_offset)
780{
781 unsigned long start_pfn;
782 int scn_nr;
783 int ret = -EINVAL;
784
785 if (!valid_section(ms))
786 return ret;
787
788 ret = unregister_memory_section(ms);
789 if (ret)
790 return ret;
791
792 scn_nr = __section_nr(ms);
793 start_pfn = section_nr_to_pfn(scn_nr);
794 __remove_zone(zone, start_pfn);
795
796 sparse_remove_one_section(zone, ms, map_offset);
797 return 0;
798}
799
800/**
801 * __remove_pages() - remove sections of pages from a zone
802 * @zone: zone from which pages need to be removed
803 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
804 * @nr_pages: number of pages to remove (must be multiple of section size)
805 *
806 * Generic helper function to remove section mappings and sysfs entries
807 * for the section of the memory we are removing. Caller needs to make
808 * sure that pages are marked reserved and zones are adjust properly by
809 * calling offline_pages().
810 */
811int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
812 unsigned long nr_pages)
813{
814 unsigned long i;
815 unsigned long map_offset = 0;
816 int sections_to_remove, ret = 0;
817
818 /* In the ZONE_DEVICE case device driver owns the memory region */
819 if (is_dev_zone(zone)) {
820 struct page *page = pfn_to_page(phys_start_pfn);
821 struct vmem_altmap *altmap;
822
823 altmap = to_vmem_altmap((unsigned long) page);
824 if (altmap)
825 map_offset = vmem_altmap_offset(altmap);
826 } else {
827 resource_size_t start, size;
828
829 start = phys_start_pfn << PAGE_SHIFT;
830 size = nr_pages * PAGE_SIZE;
831
832 ret = release_mem_region_adjustable(&iomem_resource, start,
833 size);
834 if (ret) {
835 resource_size_t endres = start + size - 1;
836
837 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
838 &start, &endres, ret);
839 }
840 }
841
842 clear_zone_contiguous(zone);
843
844 /*
845 * We can only remove entire sections
846 */
847 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
848 BUG_ON(nr_pages % PAGES_PER_SECTION);
849
850 sections_to_remove = nr_pages / PAGES_PER_SECTION;
851 for (i = 0; i < sections_to_remove; i++) {
852 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
853
854 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
855 map_offset = 0;
856 if (ret)
857 break;
858 }
859
860 set_zone_contiguous(zone);
861
862 return ret;
863}
864EXPORT_SYMBOL_GPL(__remove_pages);
865#endif /* CONFIG_MEMORY_HOTREMOVE */
866
867int set_online_page_callback(online_page_callback_t callback)
868{
869 int rc = -EINVAL;
870
871 get_online_mems();
872 mutex_lock(&online_page_callback_lock);
873
874 if (online_page_callback == generic_online_page) {
875 online_page_callback = callback;
876 rc = 0;
877 }
878
879 mutex_unlock(&online_page_callback_lock);
880 put_online_mems();
881
882 return rc;
883}
884EXPORT_SYMBOL_GPL(set_online_page_callback);
885
886int restore_online_page_callback(online_page_callback_t callback)
887{
888 int rc = -EINVAL;
889
890 get_online_mems();
891 mutex_lock(&online_page_callback_lock);
892
893 if (online_page_callback == callback) {
894 online_page_callback = generic_online_page;
895 rc = 0;
896 }
897
898 mutex_unlock(&online_page_callback_lock);
899 put_online_mems();
900
901 return rc;
902}
903EXPORT_SYMBOL_GPL(restore_online_page_callback);
904
905void __online_page_set_limits(struct page *page)
906{
907}
908EXPORT_SYMBOL_GPL(__online_page_set_limits);
909
910void __online_page_increment_counters(struct page *page)
911{
912 adjust_managed_page_count(page, 1);
913}
914EXPORT_SYMBOL_GPL(__online_page_increment_counters);
915
916void __online_page_free(struct page *page)
917{
918 __free_reserved_page(page);
919}
920EXPORT_SYMBOL_GPL(__online_page_free);
921
922static void generic_online_page(struct page *page)
923{
924 __online_page_set_limits(page);
925 __online_page_increment_counters(page);
926 __online_page_free(page);
927}
928
929static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
930 void *arg)
931{
932 unsigned long i;
933 unsigned long onlined_pages = *(unsigned long *)arg;
934 struct page *page;
935 if (PageReserved(pfn_to_page(start_pfn)))
936 for (i = 0; i < nr_pages; i++) {
937 page = pfn_to_page(start_pfn + i);
938 (*online_page_callback)(page);
939 onlined_pages++;
940 }
941 *(unsigned long *)arg = onlined_pages;
942 return 0;
943}
944
945#ifdef CONFIG_MOVABLE_NODE
946/*
947 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
948 * normal memory.
949 */
950static bool can_online_high_movable(struct zone *zone)
951{
952 return true;
953}
954#else /* CONFIG_MOVABLE_NODE */
955/* ensure every online node has NORMAL memory */
956static bool can_online_high_movable(struct zone *zone)
957{
958 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
959}
960#endif /* CONFIG_MOVABLE_NODE */
961
962/* check which state of node_states will be changed when online memory */
963static void node_states_check_changes_online(unsigned long nr_pages,
964 struct zone *zone, struct memory_notify *arg)
965{
966 int nid = zone_to_nid(zone);
967 enum zone_type zone_last = ZONE_NORMAL;
968
969 /*
970 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
971 * contains nodes which have zones of 0...ZONE_NORMAL,
972 * set zone_last to ZONE_NORMAL.
973 *
974 * If we don't have HIGHMEM nor movable node,
975 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
976 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
977 */
978 if (N_MEMORY == N_NORMAL_MEMORY)
979 zone_last = ZONE_MOVABLE;
980
981 /*
982 * if the memory to be online is in a zone of 0...zone_last, and
983 * the zones of 0...zone_last don't have memory before online, we will
984 * need to set the node to node_states[N_NORMAL_MEMORY] after
985 * the memory is online.
986 */
987 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
988 arg->status_change_nid_normal = nid;
989 else
990 arg->status_change_nid_normal = -1;
991
992#ifdef CONFIG_HIGHMEM
993 /*
994 * If we have movable node, node_states[N_HIGH_MEMORY]
995 * contains nodes which have zones of 0...ZONE_HIGHMEM,
996 * set zone_last to ZONE_HIGHMEM.
997 *
998 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
999 * contains nodes which have zones of 0...ZONE_MOVABLE,
1000 * set zone_last to ZONE_MOVABLE.
1001 */
1002 zone_last = ZONE_HIGHMEM;
1003 if (N_MEMORY == N_HIGH_MEMORY)
1004 zone_last = ZONE_MOVABLE;
1005
1006 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
1007 arg->status_change_nid_high = nid;
1008 else
1009 arg->status_change_nid_high = -1;
1010#else
1011 arg->status_change_nid_high = arg->status_change_nid_normal;
1012#endif
1013
1014 /*
1015 * if the node don't have memory befor online, we will need to
1016 * set the node to node_states[N_MEMORY] after the memory
1017 * is online.
1018 */
1019 if (!node_state(nid, N_MEMORY))
1020 arg->status_change_nid = nid;
1021 else
1022 arg->status_change_nid = -1;
1023}
1024
1025static void node_states_set_node(int node, struct memory_notify *arg)
1026{
1027 if (arg->status_change_nid_normal >= 0)
1028 node_set_state(node, N_NORMAL_MEMORY);
1029
1030 if (arg->status_change_nid_high >= 0)
1031 node_set_state(node, N_HIGH_MEMORY);
1032
1033 node_set_state(node, N_MEMORY);
1034}
1035
1036bool zone_can_shift(unsigned long pfn, unsigned long nr_pages,
1037 enum zone_type target, int *zone_shift)
1038{
1039 struct zone *zone = page_zone(pfn_to_page(pfn));
1040 enum zone_type idx = zone_idx(zone);
1041 int i;
1042
1043 *zone_shift = 0;
1044
1045 if (idx < target) {
1046 /* pages must be at end of current zone */
1047 if (pfn + nr_pages != zone_end_pfn(zone))
1048 return false;
1049
1050 /* no zones in use between current zone and target */
1051 for (i = idx + 1; i < target; i++)
1052 if (zone_is_initialized(zone - idx + i))
1053 return false;
1054 }
1055
1056 if (target < idx) {
1057 /* pages must be at beginning of current zone */
1058 if (pfn != zone->zone_start_pfn)
1059 return false;
1060
1061 /* no zones in use between current zone and target */
1062 for (i = target + 1; i < idx; i++)
1063 if (zone_is_initialized(zone - idx + i))
1064 return false;
1065 }
1066
1067 *zone_shift = target - idx;
1068 return true;
1069}
1070
1071/* Must be protected by mem_hotplug_begin() */
1072int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1073{
1074 unsigned long flags;
1075 unsigned long onlined_pages = 0;
1076 struct zone *zone;
1077 int need_zonelists_rebuild = 0;
1078 int nid;
1079 int ret;
1080 struct memory_notify arg;
1081 int zone_shift = 0;
1082
1083 /*
1084 * This doesn't need a lock to do pfn_to_page().
1085 * The section can't be removed here because of the
1086 * memory_block->state_mutex.
1087 */
1088 zone = page_zone(pfn_to_page(pfn));
1089
1090 if ((zone_idx(zone) > ZONE_NORMAL ||
1091 online_type == MMOP_ONLINE_MOVABLE) &&
1092 !can_online_high_movable(zone))
1093 return -EINVAL;
1094
1095 if (online_type == MMOP_ONLINE_KERNEL) {
1096 if (!zone_can_shift(pfn, nr_pages, ZONE_NORMAL, &zone_shift))
1097 return -EINVAL;
1098 } else if (online_type == MMOP_ONLINE_MOVABLE) {
1099 if (!zone_can_shift(pfn, nr_pages, ZONE_MOVABLE, &zone_shift))
1100 return -EINVAL;
1101 }
1102
1103 zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages);
1104 if (!zone)
1105 return -EINVAL;
1106
1107 arg.start_pfn = pfn;
1108 arg.nr_pages = nr_pages;
1109 node_states_check_changes_online(nr_pages, zone, &arg);
1110
1111 nid = zone_to_nid(zone);
1112
1113 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1114 ret = notifier_to_errno(ret);
1115 if (ret)
1116 goto failed_addition;
1117
1118 /*
1119 * If this zone is not populated, then it is not in zonelist.
1120 * This means the page allocator ignores this zone.
1121 * So, zonelist must be updated after online.
1122 */
1123 mutex_lock(&zonelists_mutex);
1124 if (!populated_zone(zone)) {
1125 need_zonelists_rebuild = 1;
1126 build_all_zonelists(NULL, zone);
1127 }
1128
1129 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1130 online_pages_range);
1131 if (ret) {
1132 if (need_zonelists_rebuild)
1133 zone_pcp_reset(zone);
1134 mutex_unlock(&zonelists_mutex);
1135 goto failed_addition;
1136 }
1137
1138 zone->present_pages += onlined_pages;
1139
1140 pgdat_resize_lock(zone->zone_pgdat, &flags);
1141 zone->zone_pgdat->node_present_pages += onlined_pages;
1142 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1143
1144 if (onlined_pages) {
1145 node_states_set_node(nid, &arg);
1146 if (need_zonelists_rebuild)
1147 build_all_zonelists(NULL, NULL);
1148 else
1149 zone_pcp_update(zone);
1150 }
1151
1152 mutex_unlock(&zonelists_mutex);
1153
1154 init_per_zone_wmark_min();
1155
1156 if (onlined_pages) {
1157 kswapd_run(nid);
1158 kcompactd_run(nid);
1159 }
1160
1161 vm_total_pages = nr_free_pagecache_pages();
1162
1163 writeback_set_ratelimit();
1164
1165 if (onlined_pages)
1166 memory_notify(MEM_ONLINE, &arg);
1167 return 0;
1168
1169failed_addition:
1170 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1171 (unsigned long long) pfn << PAGE_SHIFT,
1172 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1173 memory_notify(MEM_CANCEL_ONLINE, &arg);
1174 return ret;
1175}
1176#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1177
1178static void reset_node_present_pages(pg_data_t *pgdat)
1179{
1180 struct zone *z;
1181
1182 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1183 z->present_pages = 0;
1184
1185 pgdat->node_present_pages = 0;
1186}
1187
1188/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1189static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1190{
1191 struct pglist_data *pgdat;
1192 unsigned long zones_size[MAX_NR_ZONES] = {0};
1193 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1194 unsigned long start_pfn = PFN_DOWN(start);
1195
1196 pgdat = NODE_DATA(nid);
1197 if (!pgdat) {
1198 pgdat = arch_alloc_nodedata(nid);
1199 if (!pgdat)
1200 return NULL;
1201
1202 arch_refresh_nodedata(nid, pgdat);
1203 } else {
1204 /* Reset the nr_zones, order and classzone_idx before reuse */
1205 pgdat->nr_zones = 0;
1206 pgdat->kswapd_order = 0;
1207 pgdat->kswapd_classzone_idx = 0;
1208 }
1209
1210 /* we can use NODE_DATA(nid) from here */
1211
1212 /* init node's zones as empty zones, we don't have any present pages.*/
1213 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1214 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1215
1216 /*
1217 * The node we allocated has no zone fallback lists. For avoiding
1218 * to access not-initialized zonelist, build here.
1219 */
1220 mutex_lock(&zonelists_mutex);
1221 build_all_zonelists(pgdat, NULL);
1222 mutex_unlock(&zonelists_mutex);
1223
1224 /*
1225 * zone->managed_pages is set to an approximate value in
1226 * free_area_init_core(), which will cause
1227 * /sys/device/system/node/nodeX/meminfo has wrong data.
1228 * So reset it to 0 before any memory is onlined.
1229 */
1230 reset_node_managed_pages(pgdat);
1231
1232 /*
1233 * When memory is hot-added, all the memory is in offline state. So
1234 * clear all zones' present_pages because they will be updated in
1235 * online_pages() and offline_pages().
1236 */
1237 reset_node_present_pages(pgdat);
1238
1239 return pgdat;
1240}
1241
1242static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1243{
1244 arch_refresh_nodedata(nid, NULL);
1245 free_percpu(pgdat->per_cpu_nodestats);
1246 arch_free_nodedata(pgdat);
1247 return;
1248}
1249
1250
1251/**
1252 * try_online_node - online a node if offlined
1253 *
1254 * called by cpu_up() to online a node without onlined memory.
1255 */
1256int try_online_node(int nid)
1257{
1258 pg_data_t *pgdat;
1259 int ret;
1260
1261 if (node_online(nid))
1262 return 0;
1263
1264 mem_hotplug_begin();
1265 pgdat = hotadd_new_pgdat(nid, 0);
1266 if (!pgdat) {
1267 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1268 ret = -ENOMEM;
1269 goto out;
1270 }
1271 node_set_online(nid);
1272 ret = register_one_node(nid);
1273 BUG_ON(ret);
1274
1275 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1276 mutex_lock(&zonelists_mutex);
1277 build_all_zonelists(NULL, NULL);
1278 mutex_unlock(&zonelists_mutex);
1279 }
1280
1281out:
1282 mem_hotplug_done();
1283 return ret;
1284}
1285
1286static int check_hotplug_memory_range(u64 start, u64 size)
1287{
1288 u64 start_pfn = PFN_DOWN(start);
1289 u64 nr_pages = size >> PAGE_SHIFT;
1290
1291 /* Memory range must be aligned with section */
1292 if ((start_pfn & ~PAGE_SECTION_MASK) ||
1293 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1294 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1295 (unsigned long long)start,
1296 (unsigned long long)size);
1297 return -EINVAL;
1298 }
1299
1300 return 0;
1301}
1302
1303/*
1304 * If movable zone has already been setup, newly added memory should be check.
1305 * If its address is higher than movable zone, it should be added as movable.
1306 * Without this check, movable zone may overlap with other zone.
1307 */
1308static int should_add_memory_movable(int nid, u64 start, u64 size)
1309{
1310 unsigned long start_pfn = start >> PAGE_SHIFT;
1311 pg_data_t *pgdat = NODE_DATA(nid);
1312 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1313
1314 if (zone_is_empty(movable_zone))
1315 return 0;
1316
1317 if (movable_zone->zone_start_pfn <= start_pfn)
1318 return 1;
1319
1320 return 0;
1321}
1322
1323int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1324 bool for_device)
1325{
1326#ifdef CONFIG_ZONE_DEVICE
1327 if (for_device)
1328 return ZONE_DEVICE;
1329#endif
1330 if (should_add_memory_movable(nid, start, size))
1331 return ZONE_MOVABLE;
1332
1333 return zone_default;
1334}
1335
1336static int online_memory_block(struct memory_block *mem, void *arg)
1337{
1338 return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
1339}
1340
1341/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1342int __ref add_memory_resource(int nid, struct resource *res, bool online)
1343{
1344 u64 start, size;
1345 pg_data_t *pgdat = NULL;
1346 bool new_pgdat;
1347 bool new_node;
1348 int ret;
1349
1350 start = res->start;
1351 size = resource_size(res);
1352
1353 ret = check_hotplug_memory_range(start, size);
1354 if (ret)
1355 return ret;
1356
1357 { /* Stupid hack to suppress address-never-null warning */
1358 void *p = NODE_DATA(nid);
1359 new_pgdat = !p;
1360 }
1361
1362 mem_hotplug_begin();
1363
1364 /*
1365 * Add new range to memblock so that when hotadd_new_pgdat() is called
1366 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1367 * this new range and calculate total pages correctly. The range will
1368 * be removed at hot-remove time.
1369 */
1370 memblock_add_node(start, size, nid);
1371
1372 new_node = !node_online(nid);
1373 if (new_node) {
1374 pgdat = hotadd_new_pgdat(nid, start);
1375 ret = -ENOMEM;
1376 if (!pgdat)
1377 goto error;
1378 }
1379
1380 /* call arch's memory hotadd */
1381 ret = arch_add_memory(nid, start, size, false);
1382
1383 if (ret < 0)
1384 goto error;
1385
1386 /* we online node here. we can't roll back from here. */
1387 node_set_online(nid);
1388
1389 if (new_node) {
1390 ret = register_one_node(nid);
1391 /*
1392 * If sysfs file of new node can't create, cpu on the node
1393 * can't be hot-added. There is no rollback way now.
1394 * So, check by BUG_ON() to catch it reluctantly..
1395 */
1396 BUG_ON(ret);
1397 }
1398
1399 /* create new memmap entry */
1400 firmware_map_add_hotplug(start, start + size, "System RAM");
1401
1402 /* online pages if requested */
1403 if (online)
1404 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1405 NULL, online_memory_block);
1406
1407 goto out;
1408
1409error:
1410 /* rollback pgdat allocation and others */
1411 if (new_pgdat)
1412 rollback_node_hotadd(nid, pgdat);
1413 memblock_remove(start, size);
1414
1415out:
1416 mem_hotplug_done();
1417 return ret;
1418}
1419EXPORT_SYMBOL_GPL(add_memory_resource);
1420
1421int __ref add_memory(int nid, u64 start, u64 size)
1422{
1423 struct resource *res;
1424 int ret;
1425
1426 res = register_memory_resource(start, size);
1427 if (IS_ERR(res))
1428 return PTR_ERR(res);
1429
1430 ret = add_memory_resource(nid, res, memhp_auto_online);
1431 if (ret < 0)
1432 release_memory_resource(res);
1433 return ret;
1434}
1435EXPORT_SYMBOL_GPL(add_memory);
1436
1437#ifdef CONFIG_MEMORY_HOTREMOVE
1438/*
1439 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1440 * set and the size of the free page is given by page_order(). Using this,
1441 * the function determines if the pageblock contains only free pages.
1442 * Due to buddy contraints, a free page at least the size of a pageblock will
1443 * be located at the start of the pageblock
1444 */
1445static inline int pageblock_free(struct page *page)
1446{
1447 return PageBuddy(page) && page_order(page) >= pageblock_order;
1448}
1449
1450/* Return the start of the next active pageblock after a given page */
1451static struct page *next_active_pageblock(struct page *page)
1452{
1453 /* Ensure the starting page is pageblock-aligned */
1454 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1455
1456 /* If the entire pageblock is free, move to the end of free page */
1457 if (pageblock_free(page)) {
1458 int order;
1459 /* be careful. we don't have locks, page_order can be changed.*/
1460 order = page_order(page);
1461 if ((order < MAX_ORDER) && (order >= pageblock_order))
1462 return page + (1 << order);
1463 }
1464
1465 return page + pageblock_nr_pages;
1466}
1467
1468/* Checks if this range of memory is likely to be hot-removable. */
1469bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1470{
1471 struct page *page = pfn_to_page(start_pfn);
1472 struct page *end_page = page + nr_pages;
1473
1474 /* Check the starting page of each pageblock within the range */
1475 for (; page < end_page; page = next_active_pageblock(page)) {
1476 if (!is_pageblock_removable_nolock(page))
1477 return false;
1478 cond_resched();
1479 }
1480
1481 /* All pageblocks in the memory block are likely to be hot-removable */
1482 return true;
1483}
1484
1485/*
1486 * Confirm all pages in a range [start, end) belong to the same zone.
1487 * When true, return its valid [start, end).
1488 */
1489int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1490 unsigned long *valid_start, unsigned long *valid_end)
1491{
1492 unsigned long pfn, sec_end_pfn;
1493 unsigned long start, end;
1494 struct zone *zone = NULL;
1495 struct page *page;
1496 int i;
1497 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1498 pfn < end_pfn;
1499 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1500 /* Make sure the memory section is present first */
1501 if (!present_section_nr(pfn_to_section_nr(pfn)))
1502 continue;
1503 for (; pfn < sec_end_pfn && pfn < end_pfn;
1504 pfn += MAX_ORDER_NR_PAGES) {
1505 i = 0;
1506 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1507 while ((i < MAX_ORDER_NR_PAGES) &&
1508 !pfn_valid_within(pfn + i))
1509 i++;
1510 if (i == MAX_ORDER_NR_PAGES)
1511 continue;
1512 page = pfn_to_page(pfn + i);
1513 if (zone && page_zone(page) != zone)
1514 return 0;
1515 if (!zone)
1516 start = pfn + i;
1517 zone = page_zone(page);
1518 end = pfn + MAX_ORDER_NR_PAGES;
1519 }
1520 }
1521
1522 if (zone) {
1523 *valid_start = start;
1524 *valid_end = end;
1525 return 1;
1526 } else {
1527 return 0;
1528 }
1529}
1530
1531/*
1532 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1533 * and hugepages). We scan pfn because it's much easier than scanning over
1534 * linked list. This function returns the pfn of the first found movable
1535 * page if it's found, otherwise 0.
1536 */
1537static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1538{
1539 unsigned long pfn;
1540 struct page *page;
1541 for (pfn = start; pfn < end; pfn++) {
1542 if (pfn_valid(pfn)) {
1543 page = pfn_to_page(pfn);
1544 if (PageLRU(page))
1545 return pfn;
1546 if (PageHuge(page)) {
1547 if (page_huge_active(page))
1548 return pfn;
1549 else
1550 pfn = round_up(pfn + 1,
1551 1 << compound_order(page)) - 1;
1552 }
1553 }
1554 }
1555 return 0;
1556}
1557
1558static struct page *new_node_page(struct page *page, unsigned long private,
1559 int **result)
1560{
1561 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
1562 int nid = page_to_nid(page);
1563 nodemask_t nmask = node_states[N_MEMORY];
1564 struct page *new_page = NULL;
1565
1566 /*
1567 * TODO: allocate a destination hugepage from a nearest neighbor node,
1568 * accordance with memory policy of the user process if possible. For
1569 * now as a simple work-around, we use the next node for destination.
1570 */
1571 if (PageHuge(page))
1572 return alloc_huge_page_node(page_hstate(compound_head(page)),
1573 next_node_in(nid, nmask));
1574
1575 node_clear(nid, nmask);
1576
1577 if (PageHighMem(page)
1578 || (zone_idx(page_zone(page)) == ZONE_MOVABLE))
1579 gfp_mask |= __GFP_HIGHMEM;
1580
1581 if (!nodes_empty(nmask))
1582 new_page = __alloc_pages_nodemask(gfp_mask, 0,
1583 node_zonelist(nid, gfp_mask), &nmask);
1584 if (!new_page)
1585 new_page = __alloc_pages(gfp_mask, 0,
1586 node_zonelist(nid, gfp_mask));
1587
1588 return new_page;
1589}
1590
1591#define NR_OFFLINE_AT_ONCE_PAGES (256)
1592static int
1593do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1594{
1595 unsigned long pfn;
1596 struct page *page;
1597 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1598 int not_managed = 0;
1599 int ret = 0;
1600 LIST_HEAD(source);
1601
1602 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1603 if (!pfn_valid(pfn))
1604 continue;
1605 page = pfn_to_page(pfn);
1606
1607 if (PageHuge(page)) {
1608 struct page *head = compound_head(page);
1609 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1610 if (compound_order(head) > PFN_SECTION_SHIFT) {
1611 ret = -EBUSY;
1612 break;
1613 }
1614 if (isolate_huge_page(page, &source))
1615 move_pages -= 1 << compound_order(head);
1616 continue;
1617 }
1618
1619 if (!get_page_unless_zero(page))
1620 continue;
1621 /*
1622 * We can skip free pages. And we can only deal with pages on
1623 * LRU.
1624 */
1625 ret = isolate_lru_page(page);
1626 if (!ret) { /* Success */
1627 put_page(page);
1628 list_add_tail(&page->lru, &source);
1629 move_pages--;
1630 inc_node_page_state(page, NR_ISOLATED_ANON +
1631 page_is_file_cache(page));
1632
1633 } else {
1634#ifdef CONFIG_DEBUG_VM
1635 pr_alert("removing pfn %lx from LRU failed\n", pfn);
1636 dump_page(page, "failed to remove from LRU");
1637#endif
1638 put_page(page);
1639 /* Because we don't have big zone->lock. we should
1640 check this again here. */
1641 if (page_count(page)) {
1642 not_managed++;
1643 ret = -EBUSY;
1644 break;
1645 }
1646 }
1647 }
1648 if (!list_empty(&source)) {
1649 if (not_managed) {
1650 putback_movable_pages(&source);
1651 goto out;
1652 }
1653
1654 /* Allocate a new page from the nearest neighbor node */
1655 ret = migrate_pages(&source, new_node_page, NULL, 0,
1656 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1657 if (ret)
1658 putback_movable_pages(&source);
1659 }
1660out:
1661 return ret;
1662}
1663
1664/*
1665 * remove from free_area[] and mark all as Reserved.
1666 */
1667static int
1668offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1669 void *data)
1670{
1671 __offline_isolated_pages(start, start + nr_pages);
1672 return 0;
1673}
1674
1675static void
1676offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1677{
1678 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1679 offline_isolated_pages_cb);
1680}
1681
1682/*
1683 * Check all pages in range, recoreded as memory resource, are isolated.
1684 */
1685static int
1686check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1687 void *data)
1688{
1689 int ret;
1690 long offlined = *(long *)data;
1691 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1692 offlined = nr_pages;
1693 if (!ret)
1694 *(long *)data += offlined;
1695 return ret;
1696}
1697
1698static long
1699check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1700{
1701 long offlined = 0;
1702 int ret;
1703
1704 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1705 check_pages_isolated_cb);
1706 if (ret < 0)
1707 offlined = (long)ret;
1708 return offlined;
1709}
1710
1711#ifdef CONFIG_MOVABLE_NODE
1712/*
1713 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1714 * normal memory.
1715 */
1716static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1717{
1718 return true;
1719}
1720#else /* CONFIG_MOVABLE_NODE */
1721/* ensure the node has NORMAL memory if it is still online */
1722static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1723{
1724 struct pglist_data *pgdat = zone->zone_pgdat;
1725 unsigned long present_pages = 0;
1726 enum zone_type zt;
1727
1728 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1729 present_pages += pgdat->node_zones[zt].present_pages;
1730
1731 if (present_pages > nr_pages)
1732 return true;
1733
1734 present_pages = 0;
1735 for (; zt <= ZONE_MOVABLE; zt++)
1736 present_pages += pgdat->node_zones[zt].present_pages;
1737
1738 /*
1739 * we can't offline the last normal memory until all
1740 * higher memory is offlined.
1741 */
1742 return present_pages == 0;
1743}
1744#endif /* CONFIG_MOVABLE_NODE */
1745
1746static int __init cmdline_parse_movable_node(char *p)
1747{
1748#ifdef CONFIG_MOVABLE_NODE
1749 movable_node_enabled = true;
1750#else
1751 pr_warn("movable_node option not supported\n");
1752#endif
1753 return 0;
1754}
1755early_param("movable_node", cmdline_parse_movable_node);
1756
1757/* check which state of node_states will be changed when offline memory */
1758static void node_states_check_changes_offline(unsigned long nr_pages,
1759 struct zone *zone, struct memory_notify *arg)
1760{
1761 struct pglist_data *pgdat = zone->zone_pgdat;
1762 unsigned long present_pages = 0;
1763 enum zone_type zt, zone_last = ZONE_NORMAL;
1764
1765 /*
1766 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1767 * contains nodes which have zones of 0...ZONE_NORMAL,
1768 * set zone_last to ZONE_NORMAL.
1769 *
1770 * If we don't have HIGHMEM nor movable node,
1771 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1772 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1773 */
1774 if (N_MEMORY == N_NORMAL_MEMORY)
1775 zone_last = ZONE_MOVABLE;
1776
1777 /*
1778 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1779 * If the memory to be offline is in a zone of 0...zone_last,
1780 * and it is the last present memory, 0...zone_last will
1781 * become empty after offline , thus we can determind we will
1782 * need to clear the node from node_states[N_NORMAL_MEMORY].
1783 */
1784 for (zt = 0; zt <= zone_last; zt++)
1785 present_pages += pgdat->node_zones[zt].present_pages;
1786 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1787 arg->status_change_nid_normal = zone_to_nid(zone);
1788 else
1789 arg->status_change_nid_normal = -1;
1790
1791#ifdef CONFIG_HIGHMEM
1792 /*
1793 * If we have movable node, node_states[N_HIGH_MEMORY]
1794 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1795 * set zone_last to ZONE_HIGHMEM.
1796 *
1797 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1798 * contains nodes which have zones of 0...ZONE_MOVABLE,
1799 * set zone_last to ZONE_MOVABLE.
1800 */
1801 zone_last = ZONE_HIGHMEM;
1802 if (N_MEMORY == N_HIGH_MEMORY)
1803 zone_last = ZONE_MOVABLE;
1804
1805 for (; zt <= zone_last; zt++)
1806 present_pages += pgdat->node_zones[zt].present_pages;
1807 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1808 arg->status_change_nid_high = zone_to_nid(zone);
1809 else
1810 arg->status_change_nid_high = -1;
1811#else
1812 arg->status_change_nid_high = arg->status_change_nid_normal;
1813#endif
1814
1815 /*
1816 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1817 */
1818 zone_last = ZONE_MOVABLE;
1819
1820 /*
1821 * check whether node_states[N_HIGH_MEMORY] will be changed
1822 * If we try to offline the last present @nr_pages from the node,
1823 * we can determind we will need to clear the node from
1824 * node_states[N_HIGH_MEMORY].
1825 */
1826 for (; zt <= zone_last; zt++)
1827 present_pages += pgdat->node_zones[zt].present_pages;
1828 if (nr_pages >= present_pages)
1829 arg->status_change_nid = zone_to_nid(zone);
1830 else
1831 arg->status_change_nid = -1;
1832}
1833
1834static void node_states_clear_node(int node, struct memory_notify *arg)
1835{
1836 if (arg->status_change_nid_normal >= 0)
1837 node_clear_state(node, N_NORMAL_MEMORY);
1838
1839 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1840 (arg->status_change_nid_high >= 0))
1841 node_clear_state(node, N_HIGH_MEMORY);
1842
1843 if ((N_MEMORY != N_HIGH_MEMORY) &&
1844 (arg->status_change_nid >= 0))
1845 node_clear_state(node, N_MEMORY);
1846}
1847
1848static int __ref __offline_pages(unsigned long start_pfn,
1849 unsigned long end_pfn, unsigned long timeout)
1850{
1851 unsigned long pfn, nr_pages, expire;
1852 long offlined_pages;
1853 int ret, drain, retry_max, node;
1854 unsigned long flags;
1855 unsigned long valid_start, valid_end;
1856 struct zone *zone;
1857 struct memory_notify arg;
1858
1859 /* at least, alignment against pageblock is necessary */
1860 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1861 return -EINVAL;
1862 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1863 return -EINVAL;
1864 /* This makes hotplug much easier...and readable.
1865 we assume this for now. .*/
1866 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1867 return -EINVAL;
1868
1869 zone = page_zone(pfn_to_page(valid_start));
1870 node = zone_to_nid(zone);
1871 nr_pages = end_pfn - start_pfn;
1872
1873 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1874 return -EINVAL;
1875
1876 /* set above range as isolated */
1877 ret = start_isolate_page_range(start_pfn, end_pfn,
1878 MIGRATE_MOVABLE, true);
1879 if (ret)
1880 return ret;
1881
1882 arg.start_pfn = start_pfn;
1883 arg.nr_pages = nr_pages;
1884 node_states_check_changes_offline(nr_pages, zone, &arg);
1885
1886 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1887 ret = notifier_to_errno(ret);
1888 if (ret)
1889 goto failed_removal;
1890
1891 pfn = start_pfn;
1892 expire = jiffies + timeout;
1893 drain = 0;
1894 retry_max = 5;
1895repeat:
1896 /* start memory hot removal */
1897 ret = -EAGAIN;
1898 if (time_after(jiffies, expire))
1899 goto failed_removal;
1900 ret = -EINTR;
1901 if (signal_pending(current))
1902 goto failed_removal;
1903 ret = 0;
1904 if (drain) {
1905 lru_add_drain_all();
1906 cond_resched();
1907 drain_all_pages(zone);
1908 }
1909
1910 pfn = scan_movable_pages(start_pfn, end_pfn);
1911 if (pfn) { /* We have movable pages */
1912 ret = do_migrate_range(pfn, end_pfn);
1913 if (!ret) {
1914 drain = 1;
1915 goto repeat;
1916 } else {
1917 if (ret < 0)
1918 if (--retry_max == 0)
1919 goto failed_removal;
1920 yield();
1921 drain = 1;
1922 goto repeat;
1923 }
1924 }
1925 /* drain all zone's lru pagevec, this is asynchronous... */
1926 lru_add_drain_all();
1927 yield();
1928 /* drain pcp pages, this is synchronous. */
1929 drain_all_pages(zone);
1930 /*
1931 * dissolve free hugepages in the memory block before doing offlining
1932 * actually in order to make hugetlbfs's object counting consistent.
1933 */
1934 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1935 if (ret)
1936 goto failed_removal;
1937 /* check again */
1938 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1939 if (offlined_pages < 0) {
1940 ret = -EBUSY;
1941 goto failed_removal;
1942 }
1943 pr_info("Offlined Pages %ld\n", offlined_pages);
1944 /* Ok, all of our target is isolated.
1945 We cannot do rollback at this point. */
1946 offline_isolated_pages(start_pfn, end_pfn);
1947 /* reset pagetype flags and makes migrate type to be MOVABLE */
1948 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1949 /* removal success */
1950 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1951 zone->present_pages -= offlined_pages;
1952
1953 pgdat_resize_lock(zone->zone_pgdat, &flags);
1954 zone->zone_pgdat->node_present_pages -= offlined_pages;
1955 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1956
1957 init_per_zone_wmark_min();
1958
1959 if (!populated_zone(zone)) {
1960 zone_pcp_reset(zone);
1961 mutex_lock(&zonelists_mutex);
1962 build_all_zonelists(NULL, NULL);
1963 mutex_unlock(&zonelists_mutex);
1964 } else
1965 zone_pcp_update(zone);
1966
1967 node_states_clear_node(node, &arg);
1968 if (arg.status_change_nid >= 0) {
1969 kswapd_stop(node);
1970 kcompactd_stop(node);
1971 }
1972
1973 vm_total_pages = nr_free_pagecache_pages();
1974 writeback_set_ratelimit();
1975
1976 memory_notify(MEM_OFFLINE, &arg);
1977 return 0;
1978
1979failed_removal:
1980 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1981 (unsigned long long) start_pfn << PAGE_SHIFT,
1982 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1983 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1984 /* pushback to free area */
1985 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1986 return ret;
1987}
1988
1989/* Must be protected by mem_hotplug_begin() */
1990int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1991{
1992 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1993}
1994#endif /* CONFIG_MEMORY_HOTREMOVE */
1995
1996/**
1997 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1998 * @start_pfn: start pfn of the memory range
1999 * @end_pfn: end pfn of the memory range
2000 * @arg: argument passed to func
2001 * @func: callback for each memory section walked
2002 *
2003 * This function walks through all present mem sections in range
2004 * [start_pfn, end_pfn) and call func on each mem section.
2005 *
2006 * Returns the return value of func.
2007 */
2008int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
2009 void *arg, int (*func)(struct memory_block *, void *))
2010{
2011 struct memory_block *mem = NULL;
2012 struct mem_section *section;
2013 unsigned long pfn, section_nr;
2014 int ret;
2015
2016 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2017 section_nr = pfn_to_section_nr(pfn);
2018 if (!present_section_nr(section_nr))
2019 continue;
2020
2021 section = __nr_to_section(section_nr);
2022 /* same memblock? */
2023 if (mem)
2024 if ((section_nr >= mem->start_section_nr) &&
2025 (section_nr <= mem->end_section_nr))
2026 continue;
2027
2028 mem = find_memory_block_hinted(section, mem);
2029 if (!mem)
2030 continue;
2031
2032 ret = func(mem, arg);
2033 if (ret) {
2034 kobject_put(&mem->dev.kobj);
2035 return ret;
2036 }
2037 }
2038
2039 if (mem)
2040 kobject_put(&mem->dev.kobj);
2041
2042 return 0;
2043}
2044
2045#ifdef CONFIG_MEMORY_HOTREMOVE
2046static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2047{
2048 int ret = !is_memblock_offlined(mem);
2049
2050 if (unlikely(ret)) {
2051 phys_addr_t beginpa, endpa;
2052
2053 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2054 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
2055 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2056 &beginpa, &endpa);
2057 }
2058
2059 return ret;
2060}
2061
2062static int check_cpu_on_node(pg_data_t *pgdat)
2063{
2064 int cpu;
2065
2066 for_each_present_cpu(cpu) {
2067 if (cpu_to_node(cpu) == pgdat->node_id)
2068 /*
2069 * the cpu on this node isn't removed, and we can't
2070 * offline this node.
2071 */
2072 return -EBUSY;
2073 }
2074
2075 return 0;
2076}
2077
2078static void unmap_cpu_on_node(pg_data_t *pgdat)
2079{
2080#ifdef CONFIG_ACPI_NUMA
2081 int cpu;
2082
2083 for_each_possible_cpu(cpu)
2084 if (cpu_to_node(cpu) == pgdat->node_id)
2085 numa_clear_node(cpu);
2086#endif
2087}
2088
2089static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2090{
2091 int ret;
2092
2093 ret = check_cpu_on_node(pgdat);
2094 if (ret)
2095 return ret;
2096
2097 /*
2098 * the node will be offlined when we come here, so we can clear
2099 * the cpu_to_node() now.
2100 */
2101
2102 unmap_cpu_on_node(pgdat);
2103 return 0;
2104}
2105
2106/**
2107 * try_offline_node
2108 *
2109 * Offline a node if all memory sections and cpus of the node are removed.
2110 *
2111 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2112 * and online/offline operations before this call.
2113 */
2114void try_offline_node(int nid)
2115{
2116 pg_data_t *pgdat = NODE_DATA(nid);
2117 unsigned long start_pfn = pgdat->node_start_pfn;
2118 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2119 unsigned long pfn;
2120
2121 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2122 unsigned long section_nr = pfn_to_section_nr(pfn);
2123
2124 if (!present_section_nr(section_nr))
2125 continue;
2126
2127 if (pfn_to_nid(pfn) != nid)
2128 continue;
2129
2130 /*
2131 * some memory sections of this node are not removed, and we
2132 * can't offline node now.
2133 */
2134 return;
2135 }
2136
2137 if (check_and_unmap_cpu_on_node(pgdat))
2138 return;
2139
2140 /*
2141 * all memory/cpu of this node are removed, we can offline this
2142 * node now.
2143 */
2144 node_set_offline(nid);
2145 unregister_one_node(nid);
2146}
2147EXPORT_SYMBOL(try_offline_node);
2148
2149/**
2150 * remove_memory
2151 *
2152 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2153 * and online/offline operations before this call, as required by
2154 * try_offline_node().
2155 */
2156void __ref remove_memory(int nid, u64 start, u64 size)
2157{
2158 int ret;
2159
2160 BUG_ON(check_hotplug_memory_range(start, size));
2161
2162 mem_hotplug_begin();
2163
2164 /*
2165 * All memory blocks must be offlined before removing memory. Check
2166 * whether all memory blocks in question are offline and trigger a BUG()
2167 * if this is not the case.
2168 */
2169 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2170 check_memblock_offlined_cb);
2171 if (ret)
2172 BUG();
2173
2174 /* remove memmap entry */
2175 firmware_map_remove(start, start + size, "System RAM");
2176 memblock_free(start, size);
2177 memblock_remove(start, size);
2178
2179 arch_remove_memory(start, size);
2180
2181 try_offline_node(nid);
2182
2183 mem_hotplug_done();
2184}
2185EXPORT_SYMBOL_GPL(remove_memory);
2186#endif /* CONFIG_MEMORY_HOTREMOVE */