Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/pagevec.h>
17#include <linux/writeback.h>
18#include <linux/slab.h>
19#include <linux/sysctl.h>
20#include <linux/cpu.h>
21#include <linux/memory.h>
22#include <linux/memremap.h>
23#include <linux/memory_hotplug.h>
24#include <linux/highmem.h>
25#include <linux/vmalloc.h>
26#include <linux/ioport.h>
27#include <linux/delay.h>
28#include <linux/migrate.h>
29#include <linux/page-isolation.h>
30#include <linux/pfn.h>
31#include <linux/suspend.h>
32#include <linux/mm_inline.h>
33#include <linux/firmware-map.h>
34#include <linux/stop_machine.h>
35#include <linux/hugetlb.h>
36#include <linux/memblock.h>
37#include <linux/compaction.h>
38#include <linux/rmap.h>
39
40#include <asm/tlbflush.h>
41
42#include "internal.h"
43#include "shuffle.h"
44
45
46/*
47 * memory_hotplug.memmap_on_memory parameter
48 */
49static bool memmap_on_memory __ro_after_init;
50#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51module_param(memmap_on_memory, bool, 0444);
52MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53#endif
54
55/*
56 * online_page_callback contains pointer to current page onlining function.
57 * Initially it is generic_online_page(). If it is required it could be
58 * changed by calling set_online_page_callback() for callback registration
59 * and restore_online_page_callback() for generic callback restore.
60 */
61
62static online_page_callback_t online_page_callback = generic_online_page;
63static DEFINE_MUTEX(online_page_callback_lock);
64
65DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
66
67void get_online_mems(void)
68{
69 percpu_down_read(&mem_hotplug_lock);
70}
71
72void put_online_mems(void)
73{
74 percpu_up_read(&mem_hotplug_lock);
75}
76
77bool movable_node_enabled = false;
78
79#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
80int mhp_default_online_type = MMOP_OFFLINE;
81#else
82int mhp_default_online_type = MMOP_ONLINE;
83#endif
84
85static int __init setup_memhp_default_state(char *str)
86{
87 const int online_type = mhp_online_type_from_str(str);
88
89 if (online_type >= 0)
90 mhp_default_online_type = online_type;
91
92 return 1;
93}
94__setup("memhp_default_state=", setup_memhp_default_state);
95
96void mem_hotplug_begin(void)
97{
98 cpus_read_lock();
99 percpu_down_write(&mem_hotplug_lock);
100}
101
102void mem_hotplug_done(void)
103{
104 percpu_up_write(&mem_hotplug_lock);
105 cpus_read_unlock();
106}
107
108u64 max_mem_size = U64_MAX;
109
110/* add this memory to iomem resource */
111static struct resource *register_memory_resource(u64 start, u64 size,
112 const char *resource_name)
113{
114 struct resource *res;
115 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
116
117 if (strcmp(resource_name, "System RAM"))
118 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
119
120 if (!mhp_range_allowed(start, size, true))
121 return ERR_PTR(-E2BIG);
122
123 /*
124 * Make sure value parsed from 'mem=' only restricts memory adding
125 * while booting, so that memory hotplug won't be impacted. Please
126 * refer to document of 'mem=' in kernel-parameters.txt for more
127 * details.
128 */
129 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
130 return ERR_PTR(-E2BIG);
131
132 /*
133 * Request ownership of the new memory range. This might be
134 * a child of an existing resource that was present but
135 * not marked as busy.
136 */
137 res = __request_region(&iomem_resource, start, size,
138 resource_name, flags);
139
140 if (!res) {
141 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
142 start, start + size);
143 return ERR_PTR(-EEXIST);
144 }
145 return res;
146}
147
148static void release_memory_resource(struct resource *res)
149{
150 if (!res)
151 return;
152 release_resource(res);
153 kfree(res);
154}
155
156#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
157static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
158 const char *reason)
159{
160 /*
161 * Disallow all operations smaller than a sub-section and only
162 * allow operations smaller than a section for
163 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
164 * enforces a larger memory_block_size_bytes() granularity for
165 * memory that will be marked online, so this check should only
166 * fire for direct arch_{add,remove}_memory() users outside of
167 * add_memory_resource().
168 */
169 unsigned long min_align;
170
171 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
172 min_align = PAGES_PER_SUBSECTION;
173 else
174 min_align = PAGES_PER_SECTION;
175 if (!IS_ALIGNED(pfn, min_align)
176 || !IS_ALIGNED(nr_pages, min_align)) {
177 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
178 reason, pfn, pfn + nr_pages - 1);
179 return -EINVAL;
180 }
181 return 0;
182}
183
184/*
185 * Return page for the valid pfn only if the page is online. All pfn
186 * walkers which rely on the fully initialized page->flags and others
187 * should use this rather than pfn_valid && pfn_to_page
188 */
189struct page *pfn_to_online_page(unsigned long pfn)
190{
191 unsigned long nr = pfn_to_section_nr(pfn);
192 struct dev_pagemap *pgmap;
193 struct mem_section *ms;
194
195 if (nr >= NR_MEM_SECTIONS)
196 return NULL;
197
198 ms = __nr_to_section(nr);
199 if (!online_section(ms))
200 return NULL;
201
202 /*
203 * Save some code text when online_section() +
204 * pfn_section_valid() are sufficient.
205 */
206 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
207 return NULL;
208
209 if (!pfn_section_valid(ms, pfn))
210 return NULL;
211
212 if (!online_device_section(ms))
213 return pfn_to_page(pfn);
214
215 /*
216 * Slowpath: when ZONE_DEVICE collides with
217 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
218 * the section may be 'offline' but 'valid'. Only
219 * get_dev_pagemap() can determine sub-section online status.
220 */
221 pgmap = get_dev_pagemap(pfn, NULL);
222 put_dev_pagemap(pgmap);
223
224 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
225 if (pgmap)
226 return NULL;
227
228 return pfn_to_page(pfn);
229}
230EXPORT_SYMBOL_GPL(pfn_to_online_page);
231
232/*
233 * Reasonably generic function for adding memory. It is
234 * expected that archs that support memory hotplug will
235 * call this function after deciding the zone to which to
236 * add the new pages.
237 */
238int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
239 struct mhp_params *params)
240{
241 const unsigned long end_pfn = pfn + nr_pages;
242 unsigned long cur_nr_pages;
243 int err;
244 struct vmem_altmap *altmap = params->altmap;
245
246 if (WARN_ON_ONCE(!params->pgprot.pgprot))
247 return -EINVAL;
248
249 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
250
251 if (altmap) {
252 /*
253 * Validate altmap is within bounds of the total request
254 */
255 if (altmap->base_pfn != pfn
256 || vmem_altmap_offset(altmap) > nr_pages) {
257 pr_warn_once("memory add fail, invalid altmap\n");
258 return -EINVAL;
259 }
260 altmap->alloc = 0;
261 }
262
263 err = check_pfn_span(pfn, nr_pages, "add");
264 if (err)
265 return err;
266
267 for (; pfn < end_pfn; pfn += cur_nr_pages) {
268 /* Select all remaining pages up to the next section boundary */
269 cur_nr_pages = min(end_pfn - pfn,
270 SECTION_ALIGN_UP(pfn + 1) - pfn);
271 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
272 if (err)
273 break;
274 cond_resched();
275 }
276 vmemmap_populate_print_last();
277 return err;
278}
279
280/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
281static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
282 unsigned long start_pfn,
283 unsigned long end_pfn)
284{
285 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
286 if (unlikely(!pfn_to_online_page(start_pfn)))
287 continue;
288
289 if (unlikely(pfn_to_nid(start_pfn) != nid))
290 continue;
291
292 if (zone != page_zone(pfn_to_page(start_pfn)))
293 continue;
294
295 return start_pfn;
296 }
297
298 return 0;
299}
300
301/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
302static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
303 unsigned long start_pfn,
304 unsigned long end_pfn)
305{
306 unsigned long pfn;
307
308 /* pfn is the end pfn of a memory section. */
309 pfn = end_pfn - 1;
310 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
311 if (unlikely(!pfn_to_online_page(pfn)))
312 continue;
313
314 if (unlikely(pfn_to_nid(pfn) != nid))
315 continue;
316
317 if (zone != page_zone(pfn_to_page(pfn)))
318 continue;
319
320 return pfn;
321 }
322
323 return 0;
324}
325
326static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
327 unsigned long end_pfn)
328{
329 unsigned long pfn;
330 int nid = zone_to_nid(zone);
331
332 if (zone->zone_start_pfn == start_pfn) {
333 /*
334 * If the section is smallest section in the zone, it need
335 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
336 * In this case, we find second smallest valid mem_section
337 * for shrinking zone.
338 */
339 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
340 zone_end_pfn(zone));
341 if (pfn) {
342 zone->spanned_pages = zone_end_pfn(zone) - pfn;
343 zone->zone_start_pfn = pfn;
344 } else {
345 zone->zone_start_pfn = 0;
346 zone->spanned_pages = 0;
347 }
348 } else if (zone_end_pfn(zone) == end_pfn) {
349 /*
350 * If the section is biggest section in the zone, it need
351 * shrink zone->spanned_pages.
352 * In this case, we find second biggest valid mem_section for
353 * shrinking zone.
354 */
355 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
356 start_pfn);
357 if (pfn)
358 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
359 else {
360 zone->zone_start_pfn = 0;
361 zone->spanned_pages = 0;
362 }
363 }
364}
365
366static void update_pgdat_span(struct pglist_data *pgdat)
367{
368 unsigned long node_start_pfn = 0, node_end_pfn = 0;
369 struct zone *zone;
370
371 for (zone = pgdat->node_zones;
372 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
373 unsigned long end_pfn = zone_end_pfn(zone);
374
375 /* No need to lock the zones, they can't change. */
376 if (!zone->spanned_pages)
377 continue;
378 if (!node_end_pfn) {
379 node_start_pfn = zone->zone_start_pfn;
380 node_end_pfn = end_pfn;
381 continue;
382 }
383
384 if (end_pfn > node_end_pfn)
385 node_end_pfn = end_pfn;
386 if (zone->zone_start_pfn < node_start_pfn)
387 node_start_pfn = zone->zone_start_pfn;
388 }
389
390 pgdat->node_start_pfn = node_start_pfn;
391 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
392}
393
394void __ref remove_pfn_range_from_zone(struct zone *zone,
395 unsigned long start_pfn,
396 unsigned long nr_pages)
397{
398 const unsigned long end_pfn = start_pfn + nr_pages;
399 struct pglist_data *pgdat = zone->zone_pgdat;
400 unsigned long pfn, cur_nr_pages;
401
402 /* Poison struct pages because they are now uninitialized again. */
403 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
404 cond_resched();
405
406 /* Select all remaining pages up to the next section boundary */
407 cur_nr_pages =
408 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
409 page_init_poison(pfn_to_page(pfn),
410 sizeof(struct page) * cur_nr_pages);
411 }
412
413#ifdef CONFIG_ZONE_DEVICE
414 /*
415 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
416 * we will not try to shrink the zones - which is okay as
417 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
418 */
419 if (zone_idx(zone) == ZONE_DEVICE)
420 return;
421#endif
422
423 clear_zone_contiguous(zone);
424
425 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
426 update_pgdat_span(pgdat);
427
428 set_zone_contiguous(zone);
429}
430
431static void __remove_section(unsigned long pfn, unsigned long nr_pages,
432 unsigned long map_offset,
433 struct vmem_altmap *altmap)
434{
435 struct mem_section *ms = __pfn_to_section(pfn);
436
437 if (WARN_ON_ONCE(!valid_section(ms)))
438 return;
439
440 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
441}
442
443/**
444 * __remove_pages() - remove sections of pages
445 * @pfn: starting pageframe (must be aligned to start of a section)
446 * @nr_pages: number of pages to remove (must be multiple of section size)
447 * @altmap: alternative device page map or %NULL if default memmap is used
448 *
449 * Generic helper function to remove section mappings and sysfs entries
450 * for the section of the memory we are removing. Caller needs to make
451 * sure that pages are marked reserved and zones are adjust properly by
452 * calling offline_pages().
453 */
454void __remove_pages(unsigned long pfn, unsigned long nr_pages,
455 struct vmem_altmap *altmap)
456{
457 const unsigned long end_pfn = pfn + nr_pages;
458 unsigned long cur_nr_pages;
459 unsigned long map_offset = 0;
460
461 map_offset = vmem_altmap_offset(altmap);
462
463 if (check_pfn_span(pfn, nr_pages, "remove"))
464 return;
465
466 for (; pfn < end_pfn; pfn += cur_nr_pages) {
467 cond_resched();
468 /* Select all remaining pages up to the next section boundary */
469 cur_nr_pages = min(end_pfn - pfn,
470 SECTION_ALIGN_UP(pfn + 1) - pfn);
471 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
472 map_offset = 0;
473 }
474}
475
476int set_online_page_callback(online_page_callback_t callback)
477{
478 int rc = -EINVAL;
479
480 get_online_mems();
481 mutex_lock(&online_page_callback_lock);
482
483 if (online_page_callback == generic_online_page) {
484 online_page_callback = callback;
485 rc = 0;
486 }
487
488 mutex_unlock(&online_page_callback_lock);
489 put_online_mems();
490
491 return rc;
492}
493EXPORT_SYMBOL_GPL(set_online_page_callback);
494
495int restore_online_page_callback(online_page_callback_t callback)
496{
497 int rc = -EINVAL;
498
499 get_online_mems();
500 mutex_lock(&online_page_callback_lock);
501
502 if (online_page_callback == callback) {
503 online_page_callback = generic_online_page;
504 rc = 0;
505 }
506
507 mutex_unlock(&online_page_callback_lock);
508 put_online_mems();
509
510 return rc;
511}
512EXPORT_SYMBOL_GPL(restore_online_page_callback);
513
514void generic_online_page(struct page *page, unsigned int order)
515{
516 /*
517 * Freeing the page with debug_pagealloc enabled will try to unmap it,
518 * so we should map it first. This is better than introducing a special
519 * case in page freeing fast path.
520 */
521 debug_pagealloc_map_pages(page, 1 << order);
522 __free_pages_core(page, order);
523 totalram_pages_add(1UL << order);
524#ifdef CONFIG_HIGHMEM
525 if (PageHighMem(page))
526 totalhigh_pages_add(1UL << order);
527#endif
528}
529EXPORT_SYMBOL_GPL(generic_online_page);
530
531static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
532{
533 const unsigned long end_pfn = start_pfn + nr_pages;
534 unsigned long pfn;
535
536 /*
537 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
538 * decide to not expose all pages to the buddy (e.g., expose them
539 * later). We account all pages as being online and belonging to this
540 * zone ("present").
541 * When using memmap_on_memory, the range might not be aligned to
542 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
543 * this and the first chunk to online will be pageblock_nr_pages.
544 */
545 for (pfn = start_pfn; pfn < end_pfn;) {
546 int order = min(MAX_ORDER - 1UL, __ffs(pfn));
547
548 (*online_page_callback)(pfn_to_page(pfn), order);
549 pfn += (1UL << order);
550 }
551
552 /* mark all involved sections as online */
553 online_mem_sections(start_pfn, end_pfn);
554}
555
556/* check which state of node_states will be changed when online memory */
557static void node_states_check_changes_online(unsigned long nr_pages,
558 struct zone *zone, struct memory_notify *arg)
559{
560 int nid = zone_to_nid(zone);
561
562 arg->status_change_nid = NUMA_NO_NODE;
563 arg->status_change_nid_normal = NUMA_NO_NODE;
564 arg->status_change_nid_high = NUMA_NO_NODE;
565
566 if (!node_state(nid, N_MEMORY))
567 arg->status_change_nid = nid;
568 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
569 arg->status_change_nid_normal = nid;
570#ifdef CONFIG_HIGHMEM
571 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
572 arg->status_change_nid_high = nid;
573#endif
574}
575
576static void node_states_set_node(int node, struct memory_notify *arg)
577{
578 if (arg->status_change_nid_normal >= 0)
579 node_set_state(node, N_NORMAL_MEMORY);
580
581 if (arg->status_change_nid_high >= 0)
582 node_set_state(node, N_HIGH_MEMORY);
583
584 if (arg->status_change_nid >= 0)
585 node_set_state(node, N_MEMORY);
586}
587
588static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
589 unsigned long nr_pages)
590{
591 unsigned long old_end_pfn = zone_end_pfn(zone);
592
593 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
594 zone->zone_start_pfn = start_pfn;
595
596 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
597}
598
599static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
600 unsigned long nr_pages)
601{
602 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
603
604 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
605 pgdat->node_start_pfn = start_pfn;
606
607 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
608
609}
610
611static void section_taint_zone_device(unsigned long pfn)
612{
613 struct mem_section *ms = __pfn_to_section(pfn);
614
615 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
616}
617
618/*
619 * Associate the pfn range with the given zone, initializing the memmaps
620 * and resizing the pgdat/zone data to span the added pages. After this
621 * call, all affected pages are PG_reserved.
622 *
623 * All aligned pageblocks are initialized to the specified migratetype
624 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
625 * zone stats (e.g., nr_isolate_pageblock) are touched.
626 */
627void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
628 unsigned long nr_pages,
629 struct vmem_altmap *altmap, int migratetype)
630{
631 struct pglist_data *pgdat = zone->zone_pgdat;
632 int nid = pgdat->node_id;
633
634 clear_zone_contiguous(zone);
635
636 if (zone_is_empty(zone))
637 init_currently_empty_zone(zone, start_pfn, nr_pages);
638 resize_zone_range(zone, start_pfn, nr_pages);
639 resize_pgdat_range(pgdat, start_pfn, nr_pages);
640
641 /*
642 * Subsection population requires care in pfn_to_online_page().
643 * Set the taint to enable the slow path detection of
644 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
645 * section.
646 */
647 if (zone_is_zone_device(zone)) {
648 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
649 section_taint_zone_device(start_pfn);
650 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
651 section_taint_zone_device(start_pfn + nr_pages);
652 }
653
654 /*
655 * TODO now we have a visible range of pages which are not associated
656 * with their zone properly. Not nice but set_pfnblock_flags_mask
657 * expects the zone spans the pfn range. All the pages in the range
658 * are reserved so nobody should be touching them so we should be safe
659 */
660 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
661 MEMINIT_HOTPLUG, altmap, migratetype);
662
663 set_zone_contiguous(zone);
664}
665
666/*
667 * Returns a default kernel memory zone for the given pfn range.
668 * If no kernel zone covers this pfn range it will automatically go
669 * to the ZONE_NORMAL.
670 */
671static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
672 unsigned long nr_pages)
673{
674 struct pglist_data *pgdat = NODE_DATA(nid);
675 int zid;
676
677 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
678 struct zone *zone = &pgdat->node_zones[zid];
679
680 if (zone_intersects(zone, start_pfn, nr_pages))
681 return zone;
682 }
683
684 return &pgdat->node_zones[ZONE_NORMAL];
685}
686
687static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
688 unsigned long nr_pages)
689{
690 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
691 nr_pages);
692 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
693 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
694 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
695
696 /*
697 * We inherit the existing zone in a simple case where zones do not
698 * overlap in the given range
699 */
700 if (in_kernel ^ in_movable)
701 return (in_kernel) ? kernel_zone : movable_zone;
702
703 /*
704 * If the range doesn't belong to any zone or two zones overlap in the
705 * given range then we use movable zone only if movable_node is
706 * enabled because we always online to a kernel zone by default.
707 */
708 return movable_node_enabled ? movable_zone : kernel_zone;
709}
710
711struct zone *zone_for_pfn_range(int online_type, int nid,
712 unsigned long start_pfn, unsigned long nr_pages)
713{
714 if (online_type == MMOP_ONLINE_KERNEL)
715 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
716
717 if (online_type == MMOP_ONLINE_MOVABLE)
718 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
719
720 return default_zone_for_pfn(nid, start_pfn, nr_pages);
721}
722
723/*
724 * This function should only be called by memory_block_{online,offline},
725 * and {online,offline}_pages.
726 */
727void adjust_present_page_count(struct zone *zone, long nr_pages)
728{
729 zone->present_pages += nr_pages;
730 zone->zone_pgdat->node_present_pages += nr_pages;
731}
732
733int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
734 struct zone *zone)
735{
736 unsigned long end_pfn = pfn + nr_pages;
737 int ret;
738
739 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
740 if (ret)
741 return ret;
742
743 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
744
745 /*
746 * It might be that the vmemmap_pages fully span sections. If that is
747 * the case, mark those sections online here as otherwise they will be
748 * left offline.
749 */
750 if (nr_pages >= PAGES_PER_SECTION)
751 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
752
753 return ret;
754}
755
756void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
757{
758 unsigned long end_pfn = pfn + nr_pages;
759
760 /*
761 * It might be that the vmemmap_pages fully span sections. If that is
762 * the case, mark those sections offline here as otherwise they will be
763 * left online.
764 */
765 if (nr_pages >= PAGES_PER_SECTION)
766 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
767
768 /*
769 * The pages associated with this vmemmap have been offlined, so
770 * we can reset its state here.
771 */
772 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
773 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
774}
775
776int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
777{
778 unsigned long flags;
779 int need_zonelists_rebuild = 0;
780 const int nid = zone_to_nid(zone);
781 int ret;
782 struct memory_notify arg;
783
784 /*
785 * {on,off}lining is constrained to full memory sections (or more
786 * precisely to memory blocks from the user space POV).
787 * memmap_on_memory is an exception because it reserves initial part
788 * of the physical memory space for vmemmaps. That space is pageblock
789 * aligned.
790 */
791 if (WARN_ON_ONCE(!nr_pages ||
792 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
793 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
794 return -EINVAL;
795
796 mem_hotplug_begin();
797
798 /* associate pfn range with the zone */
799 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
800
801 arg.start_pfn = pfn;
802 arg.nr_pages = nr_pages;
803 node_states_check_changes_online(nr_pages, zone, &arg);
804
805 ret = memory_notify(MEM_GOING_ONLINE, &arg);
806 ret = notifier_to_errno(ret);
807 if (ret)
808 goto failed_addition;
809
810 /*
811 * Fixup the number of isolated pageblocks before marking the sections
812 * onlining, such that undo_isolate_page_range() works correctly.
813 */
814 spin_lock_irqsave(&zone->lock, flags);
815 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
816 spin_unlock_irqrestore(&zone->lock, flags);
817
818 /*
819 * If this zone is not populated, then it is not in zonelist.
820 * This means the page allocator ignores this zone.
821 * So, zonelist must be updated after online.
822 */
823 if (!populated_zone(zone)) {
824 need_zonelists_rebuild = 1;
825 setup_zone_pageset(zone);
826 }
827
828 online_pages_range(pfn, nr_pages);
829 adjust_present_page_count(zone, nr_pages);
830
831 node_states_set_node(nid, &arg);
832 if (need_zonelists_rebuild)
833 build_all_zonelists(NULL);
834
835 /* Basic onlining is complete, allow allocation of onlined pages. */
836 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
837
838 /*
839 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
840 * the tail of the freelist when undoing isolation). Shuffle the whole
841 * zone to make sure the just onlined pages are properly distributed
842 * across the whole freelist - to create an initial shuffle.
843 */
844 shuffle_zone(zone);
845
846 /* reinitialise watermarks and update pcp limits */
847 init_per_zone_wmark_min();
848
849 kswapd_run(nid);
850 kcompactd_run(nid);
851
852 writeback_set_ratelimit();
853
854 memory_notify(MEM_ONLINE, &arg);
855 mem_hotplug_done();
856 return 0;
857
858failed_addition:
859 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
860 (unsigned long long) pfn << PAGE_SHIFT,
861 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
862 memory_notify(MEM_CANCEL_ONLINE, &arg);
863 remove_pfn_range_from_zone(zone, pfn, nr_pages);
864 mem_hotplug_done();
865 return ret;
866}
867#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
868
869static void reset_node_present_pages(pg_data_t *pgdat)
870{
871 struct zone *z;
872
873 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
874 z->present_pages = 0;
875
876 pgdat->node_present_pages = 0;
877}
878
879/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
880static pg_data_t __ref *hotadd_new_pgdat(int nid)
881{
882 struct pglist_data *pgdat;
883
884 pgdat = NODE_DATA(nid);
885 if (!pgdat) {
886 pgdat = arch_alloc_nodedata(nid);
887 if (!pgdat)
888 return NULL;
889
890 pgdat->per_cpu_nodestats =
891 alloc_percpu(struct per_cpu_nodestat);
892 arch_refresh_nodedata(nid, pgdat);
893 } else {
894 int cpu;
895 /*
896 * Reset the nr_zones, order and highest_zoneidx before reuse.
897 * Note that kswapd will init kswapd_highest_zoneidx properly
898 * when it starts in the near future.
899 */
900 pgdat->nr_zones = 0;
901 pgdat->kswapd_order = 0;
902 pgdat->kswapd_highest_zoneidx = 0;
903 for_each_online_cpu(cpu) {
904 struct per_cpu_nodestat *p;
905
906 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
907 memset(p, 0, sizeof(*p));
908 }
909 }
910
911 /* we can use NODE_DATA(nid) from here */
912 pgdat->node_id = nid;
913 pgdat->node_start_pfn = 0;
914
915 /* init node's zones as empty zones, we don't have any present pages.*/
916 free_area_init_core_hotplug(nid);
917
918 /*
919 * The node we allocated has no zone fallback lists. For avoiding
920 * to access not-initialized zonelist, build here.
921 */
922 build_all_zonelists(pgdat);
923
924 /*
925 * When memory is hot-added, all the memory is in offline state. So
926 * clear all zones' present_pages because they will be updated in
927 * online_pages() and offline_pages().
928 */
929 reset_node_managed_pages(pgdat);
930 reset_node_present_pages(pgdat);
931
932 return pgdat;
933}
934
935static void rollback_node_hotadd(int nid)
936{
937 pg_data_t *pgdat = NODE_DATA(nid);
938
939 arch_refresh_nodedata(nid, NULL);
940 free_percpu(pgdat->per_cpu_nodestats);
941 arch_free_nodedata(pgdat);
942}
943
944
945/*
946 * __try_online_node - online a node if offlined
947 * @nid: the node ID
948 * @set_node_online: Whether we want to online the node
949 * called by cpu_up() to online a node without onlined memory.
950 *
951 * Returns:
952 * 1 -> a new node has been allocated
953 * 0 -> the node is already online
954 * -ENOMEM -> the node could not be allocated
955 */
956static int __try_online_node(int nid, bool set_node_online)
957{
958 pg_data_t *pgdat;
959 int ret = 1;
960
961 if (node_online(nid))
962 return 0;
963
964 pgdat = hotadd_new_pgdat(nid);
965 if (!pgdat) {
966 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
967 ret = -ENOMEM;
968 goto out;
969 }
970
971 if (set_node_online) {
972 node_set_online(nid);
973 ret = register_one_node(nid);
974 BUG_ON(ret);
975 }
976out:
977 return ret;
978}
979
980/*
981 * Users of this function always want to online/register the node
982 */
983int try_online_node(int nid)
984{
985 int ret;
986
987 mem_hotplug_begin();
988 ret = __try_online_node(nid, true);
989 mem_hotplug_done();
990 return ret;
991}
992
993static int check_hotplug_memory_range(u64 start, u64 size)
994{
995 /* memory range must be block size aligned */
996 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
997 !IS_ALIGNED(size, memory_block_size_bytes())) {
998 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
999 memory_block_size_bytes(), start, size);
1000 return -EINVAL;
1001 }
1002
1003 return 0;
1004}
1005
1006static int online_memory_block(struct memory_block *mem, void *arg)
1007{
1008 mem->online_type = mhp_default_online_type;
1009 return device_online(&mem->dev);
1010}
1011
1012bool mhp_supports_memmap_on_memory(unsigned long size)
1013{
1014 unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1015 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1016 unsigned long remaining_size = size - vmemmap_size;
1017
1018 /*
1019 * Besides having arch support and the feature enabled at runtime, we
1020 * need a few more assumptions to hold true:
1021 *
1022 * a) We span a single memory block: memory onlining/offlinin;g happens
1023 * in memory block granularity. We don't want the vmemmap of online
1024 * memory blocks to reside on offline memory blocks. In the future,
1025 * we might want to support variable-sized memory blocks to make the
1026 * feature more versatile.
1027 *
1028 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1029 * to populate memory from the altmap for unrelated parts (i.e.,
1030 * other memory blocks)
1031 *
1032 * c) The vmemmap pages (and thereby the pages that will be exposed to
1033 * the buddy) have to cover full pageblocks: memory onlining/offlining
1034 * code requires applicable ranges to be page-aligned, for example, to
1035 * set the migratetypes properly.
1036 *
1037 * TODO: Although we have a check here to make sure that vmemmap pages
1038 * fully populate a PMD, it is not the right place to check for
1039 * this. A much better solution involves improving vmemmap code
1040 * to fallback to base pages when trying to populate vmemmap using
1041 * altmap as an alternative source of memory, and we do not exactly
1042 * populate a single PMD.
1043 */
1044 return memmap_on_memory &&
1045 !hugetlb_free_vmemmap_enabled &&
1046 IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1047 size == memory_block_size_bytes() &&
1048 IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1049 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1050}
1051
1052/*
1053 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1054 * and online/offline operations (triggered e.g. by sysfs).
1055 *
1056 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1057 */
1058int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1059{
1060 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1061 struct vmem_altmap mhp_altmap = {};
1062 u64 start, size;
1063 bool new_node = false;
1064 int ret;
1065
1066 start = res->start;
1067 size = resource_size(res);
1068
1069 ret = check_hotplug_memory_range(start, size);
1070 if (ret)
1071 return ret;
1072
1073 if (!node_possible(nid)) {
1074 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1075 return -EINVAL;
1076 }
1077
1078 mem_hotplug_begin();
1079
1080 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1081 memblock_add_node(start, size, nid);
1082
1083 ret = __try_online_node(nid, false);
1084 if (ret < 0)
1085 goto error;
1086 new_node = ret;
1087
1088 /*
1089 * Self hosted memmap array
1090 */
1091 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1092 if (!mhp_supports_memmap_on_memory(size)) {
1093 ret = -EINVAL;
1094 goto error;
1095 }
1096 mhp_altmap.free = PHYS_PFN(size);
1097 mhp_altmap.base_pfn = PHYS_PFN(start);
1098 params.altmap = &mhp_altmap;
1099 }
1100
1101 /* call arch's memory hotadd */
1102 ret = arch_add_memory(nid, start, size, ¶ms);
1103 if (ret < 0)
1104 goto error;
1105
1106 /* create memory block devices after memory was added */
1107 ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
1108 if (ret) {
1109 arch_remove_memory(nid, start, size, NULL);
1110 goto error;
1111 }
1112
1113 if (new_node) {
1114 /* If sysfs file of new node can't be created, cpu on the node
1115 * can't be hot-added. There is no rollback way now.
1116 * So, check by BUG_ON() to catch it reluctantly..
1117 * We online node here. We can't roll back from here.
1118 */
1119 node_set_online(nid);
1120 ret = __register_one_node(nid);
1121 BUG_ON(ret);
1122 }
1123
1124 /* link memory sections under this node.*/
1125 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1126 MEMINIT_HOTPLUG);
1127
1128 /* create new memmap entry */
1129 if (!strcmp(res->name, "System RAM"))
1130 firmware_map_add_hotplug(start, start + size, "System RAM");
1131
1132 /* device_online() will take the lock when calling online_pages() */
1133 mem_hotplug_done();
1134
1135 /*
1136 * In case we're allowed to merge the resource, flag it and trigger
1137 * merging now that adding succeeded.
1138 */
1139 if (mhp_flags & MHP_MERGE_RESOURCE)
1140 merge_system_ram_resource(res);
1141
1142 /* online pages if requested */
1143 if (mhp_default_online_type != MMOP_OFFLINE)
1144 walk_memory_blocks(start, size, NULL, online_memory_block);
1145
1146 return ret;
1147error:
1148 /* rollback pgdat allocation and others */
1149 if (new_node)
1150 rollback_node_hotadd(nid);
1151 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1152 memblock_remove(start, size);
1153 mem_hotplug_done();
1154 return ret;
1155}
1156
1157/* requires device_hotplug_lock, see add_memory_resource() */
1158int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1159{
1160 struct resource *res;
1161 int ret;
1162
1163 res = register_memory_resource(start, size, "System RAM");
1164 if (IS_ERR(res))
1165 return PTR_ERR(res);
1166
1167 ret = add_memory_resource(nid, res, mhp_flags);
1168 if (ret < 0)
1169 release_memory_resource(res);
1170 return ret;
1171}
1172
1173int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1174{
1175 int rc;
1176
1177 lock_device_hotplug();
1178 rc = __add_memory(nid, start, size, mhp_flags);
1179 unlock_device_hotplug();
1180
1181 return rc;
1182}
1183EXPORT_SYMBOL_GPL(add_memory);
1184
1185/*
1186 * Add special, driver-managed memory to the system as system RAM. Such
1187 * memory is not exposed via the raw firmware-provided memmap as system
1188 * RAM, instead, it is detected and added by a driver - during cold boot,
1189 * after a reboot, and after kexec.
1190 *
1191 * Reasons why this memory should not be used for the initial memmap of a
1192 * kexec kernel or for placing kexec images:
1193 * - The booting kernel is in charge of determining how this memory will be
1194 * used (e.g., use persistent memory as system RAM)
1195 * - Coordination with a hypervisor is required before this memory
1196 * can be used (e.g., inaccessible parts).
1197 *
1198 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1199 * memory map") are created. Also, the created memory resource is flagged
1200 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1201 * this memory as well (esp., not place kexec images onto it).
1202 *
1203 * The resource_name (visible via /proc/iomem) has to have the format
1204 * "System RAM ($DRIVER)".
1205 */
1206int add_memory_driver_managed(int nid, u64 start, u64 size,
1207 const char *resource_name, mhp_t mhp_flags)
1208{
1209 struct resource *res;
1210 int rc;
1211
1212 if (!resource_name ||
1213 strstr(resource_name, "System RAM (") != resource_name ||
1214 resource_name[strlen(resource_name) - 1] != ')')
1215 return -EINVAL;
1216
1217 lock_device_hotplug();
1218
1219 res = register_memory_resource(start, size, resource_name);
1220 if (IS_ERR(res)) {
1221 rc = PTR_ERR(res);
1222 goto out_unlock;
1223 }
1224
1225 rc = add_memory_resource(nid, res, mhp_flags);
1226 if (rc < 0)
1227 release_memory_resource(res);
1228
1229out_unlock:
1230 unlock_device_hotplug();
1231 return rc;
1232}
1233EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1234
1235/*
1236 * Platforms should define arch_get_mappable_range() that provides
1237 * maximum possible addressable physical memory range for which the
1238 * linear mapping could be created. The platform returned address
1239 * range must adhere to these following semantics.
1240 *
1241 * - range.start <= range.end
1242 * - Range includes both end points [range.start..range.end]
1243 *
1244 * There is also a fallback definition provided here, allowing the
1245 * entire possible physical address range in case any platform does
1246 * not define arch_get_mappable_range().
1247 */
1248struct range __weak arch_get_mappable_range(void)
1249{
1250 struct range mhp_range = {
1251 .start = 0UL,
1252 .end = -1ULL,
1253 };
1254 return mhp_range;
1255}
1256
1257struct range mhp_get_pluggable_range(bool need_mapping)
1258{
1259 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1260 struct range mhp_range;
1261
1262 if (need_mapping) {
1263 mhp_range = arch_get_mappable_range();
1264 if (mhp_range.start > max_phys) {
1265 mhp_range.start = 0;
1266 mhp_range.end = 0;
1267 }
1268 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1269 } else {
1270 mhp_range.start = 0;
1271 mhp_range.end = max_phys;
1272 }
1273 return mhp_range;
1274}
1275EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1276
1277bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1278{
1279 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1280 u64 end = start + size;
1281
1282 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1283 return true;
1284
1285 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1286 start, end, mhp_range.start, mhp_range.end);
1287 return false;
1288}
1289
1290#ifdef CONFIG_MEMORY_HOTREMOVE
1291/*
1292 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1293 * memory holes). When true, return the zone.
1294 */
1295struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1296 unsigned long end_pfn)
1297{
1298 unsigned long pfn, sec_end_pfn;
1299 struct zone *zone = NULL;
1300 struct page *page;
1301 int i;
1302 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1303 pfn < end_pfn;
1304 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1305 /* Make sure the memory section is present first */
1306 if (!present_section_nr(pfn_to_section_nr(pfn)))
1307 continue;
1308 for (; pfn < sec_end_pfn && pfn < end_pfn;
1309 pfn += MAX_ORDER_NR_PAGES) {
1310 i = 0;
1311 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1312 while ((i < MAX_ORDER_NR_PAGES) &&
1313 !pfn_valid_within(pfn + i))
1314 i++;
1315 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1316 continue;
1317 /* Check if we got outside of the zone */
1318 if (zone && !zone_spans_pfn(zone, pfn + i))
1319 return NULL;
1320 page = pfn_to_page(pfn + i);
1321 if (zone && page_zone(page) != zone)
1322 return NULL;
1323 zone = page_zone(page);
1324 }
1325 }
1326
1327 return zone;
1328}
1329
1330/*
1331 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1332 * non-lru movable pages and hugepages). Will skip over most unmovable
1333 * pages (esp., pages that can be skipped when offlining), but bail out on
1334 * definitely unmovable pages.
1335 *
1336 * Returns:
1337 * 0 in case a movable page is found and movable_pfn was updated.
1338 * -ENOENT in case no movable page was found.
1339 * -EBUSY in case a definitely unmovable page was found.
1340 */
1341static int scan_movable_pages(unsigned long start, unsigned long end,
1342 unsigned long *movable_pfn)
1343{
1344 unsigned long pfn;
1345
1346 for (pfn = start; pfn < end; pfn++) {
1347 struct page *page, *head;
1348 unsigned long skip;
1349
1350 if (!pfn_valid(pfn))
1351 continue;
1352 page = pfn_to_page(pfn);
1353 if (PageLRU(page))
1354 goto found;
1355 if (__PageMovable(page))
1356 goto found;
1357
1358 /*
1359 * PageOffline() pages that are not marked __PageMovable() and
1360 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1361 * definitely unmovable. If their reference count would be 0,
1362 * they could at least be skipped when offlining memory.
1363 */
1364 if (PageOffline(page) && page_count(page))
1365 return -EBUSY;
1366
1367 if (!PageHuge(page))
1368 continue;
1369 head = compound_head(page);
1370 /*
1371 * This test is racy as we hold no reference or lock. The
1372 * hugetlb page could have been free'ed and head is no longer
1373 * a hugetlb page before the following check. In such unlikely
1374 * cases false positives and negatives are possible. Calling
1375 * code must deal with these scenarios.
1376 */
1377 if (HPageMigratable(head))
1378 goto found;
1379 skip = compound_nr(head) - (page - head);
1380 pfn += skip - 1;
1381 }
1382 return -ENOENT;
1383found:
1384 *movable_pfn = pfn;
1385 return 0;
1386}
1387
1388static int
1389do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1390{
1391 unsigned long pfn;
1392 struct page *page, *head;
1393 int ret = 0;
1394 LIST_HEAD(source);
1395 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1396 DEFAULT_RATELIMIT_BURST);
1397
1398 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1399 if (!pfn_valid(pfn))
1400 continue;
1401 page = pfn_to_page(pfn);
1402 head = compound_head(page);
1403
1404 if (PageHuge(page)) {
1405 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1406 isolate_huge_page(head, &source);
1407 continue;
1408 } else if (PageTransHuge(page))
1409 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1410
1411 /*
1412 * HWPoison pages have elevated reference counts so the migration would
1413 * fail on them. It also doesn't make any sense to migrate them in the
1414 * first place. Still try to unmap such a page in case it is still mapped
1415 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1416 * the unmap as the catch all safety net).
1417 */
1418 if (PageHWPoison(page)) {
1419 if (WARN_ON(PageLRU(page)))
1420 isolate_lru_page(page);
1421 if (page_mapped(page))
1422 try_to_unmap(page, TTU_IGNORE_MLOCK);
1423 continue;
1424 }
1425
1426 if (!get_page_unless_zero(page))
1427 continue;
1428 /*
1429 * We can skip free pages. And we can deal with pages on
1430 * LRU and non-lru movable pages.
1431 */
1432 if (PageLRU(page))
1433 ret = isolate_lru_page(page);
1434 else
1435 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1436 if (!ret) { /* Success */
1437 list_add_tail(&page->lru, &source);
1438 if (!__PageMovable(page))
1439 inc_node_page_state(page, NR_ISOLATED_ANON +
1440 page_is_file_lru(page));
1441
1442 } else {
1443 if (__ratelimit(&migrate_rs)) {
1444 pr_warn("failed to isolate pfn %lx\n", pfn);
1445 dump_page(page, "isolation failed");
1446 }
1447 }
1448 put_page(page);
1449 }
1450 if (!list_empty(&source)) {
1451 nodemask_t nmask = node_states[N_MEMORY];
1452 struct migration_target_control mtc = {
1453 .nmask = &nmask,
1454 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1455 };
1456
1457 /*
1458 * We have checked that migration range is on a single zone so
1459 * we can use the nid of the first page to all the others.
1460 */
1461 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1462
1463 /*
1464 * try to allocate from a different node but reuse this node
1465 * if there are no other online nodes to be used (e.g. we are
1466 * offlining a part of the only existing node)
1467 */
1468 node_clear(mtc.nid, nmask);
1469 if (nodes_empty(nmask))
1470 node_set(mtc.nid, nmask);
1471 ret = migrate_pages(&source, alloc_migration_target, NULL,
1472 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1473 if (ret) {
1474 list_for_each_entry(page, &source, lru) {
1475 if (__ratelimit(&migrate_rs)) {
1476 pr_warn("migrating pfn %lx failed ret:%d\n",
1477 page_to_pfn(page), ret);
1478 dump_page(page, "migration failure");
1479 }
1480 }
1481 putback_movable_pages(&source);
1482 }
1483 }
1484
1485 return ret;
1486}
1487
1488static int __init cmdline_parse_movable_node(char *p)
1489{
1490 movable_node_enabled = true;
1491 return 0;
1492}
1493early_param("movable_node", cmdline_parse_movable_node);
1494
1495/* check which state of node_states will be changed when offline memory */
1496static void node_states_check_changes_offline(unsigned long nr_pages,
1497 struct zone *zone, struct memory_notify *arg)
1498{
1499 struct pglist_data *pgdat = zone->zone_pgdat;
1500 unsigned long present_pages = 0;
1501 enum zone_type zt;
1502
1503 arg->status_change_nid = NUMA_NO_NODE;
1504 arg->status_change_nid_normal = NUMA_NO_NODE;
1505 arg->status_change_nid_high = NUMA_NO_NODE;
1506
1507 /*
1508 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1509 * If the memory to be offline is within the range
1510 * [0..ZONE_NORMAL], and it is the last present memory there,
1511 * the zones in that range will become empty after the offlining,
1512 * thus we can determine that we need to clear the node from
1513 * node_states[N_NORMAL_MEMORY].
1514 */
1515 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1516 present_pages += pgdat->node_zones[zt].present_pages;
1517 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1518 arg->status_change_nid_normal = zone_to_nid(zone);
1519
1520#ifdef CONFIG_HIGHMEM
1521 /*
1522 * node_states[N_HIGH_MEMORY] contains nodes which
1523 * have normal memory or high memory.
1524 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1525 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1526 * we determine that the zones in that range become empty,
1527 * we need to clear the node for N_HIGH_MEMORY.
1528 */
1529 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1530 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1531 arg->status_change_nid_high = zone_to_nid(zone);
1532#endif
1533
1534 /*
1535 * We have accounted the pages from [0..ZONE_NORMAL), and
1536 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1537 * as well.
1538 * Here we count the possible pages from ZONE_MOVABLE.
1539 * If after having accounted all the pages, we see that the nr_pages
1540 * to be offlined is over or equal to the accounted pages,
1541 * we know that the node will become empty, and so, we can clear
1542 * it for N_MEMORY as well.
1543 */
1544 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1545
1546 if (nr_pages >= present_pages)
1547 arg->status_change_nid = zone_to_nid(zone);
1548}
1549
1550static void node_states_clear_node(int node, struct memory_notify *arg)
1551{
1552 if (arg->status_change_nid_normal >= 0)
1553 node_clear_state(node, N_NORMAL_MEMORY);
1554
1555 if (arg->status_change_nid_high >= 0)
1556 node_clear_state(node, N_HIGH_MEMORY);
1557
1558 if (arg->status_change_nid >= 0)
1559 node_clear_state(node, N_MEMORY);
1560}
1561
1562static int count_system_ram_pages_cb(unsigned long start_pfn,
1563 unsigned long nr_pages, void *data)
1564{
1565 unsigned long *nr_system_ram_pages = data;
1566
1567 *nr_system_ram_pages += nr_pages;
1568 return 0;
1569}
1570
1571int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1572{
1573 const unsigned long end_pfn = start_pfn + nr_pages;
1574 unsigned long pfn, system_ram_pages = 0;
1575 unsigned long flags;
1576 struct zone *zone;
1577 struct memory_notify arg;
1578 int ret, node;
1579 char *reason;
1580
1581 /*
1582 * {on,off}lining is constrained to full memory sections (or more
1583 * precisely to memory blocks from the user space POV).
1584 * memmap_on_memory is an exception because it reserves initial part
1585 * of the physical memory space for vmemmaps. That space is pageblock
1586 * aligned.
1587 */
1588 if (WARN_ON_ONCE(!nr_pages ||
1589 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1590 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1591 return -EINVAL;
1592
1593 mem_hotplug_begin();
1594
1595 /*
1596 * Don't allow to offline memory blocks that contain holes.
1597 * Consequently, memory blocks with holes can never get onlined
1598 * via the hotplug path - online_pages() - as hotplugged memory has
1599 * no holes. This way, we e.g., don't have to worry about marking
1600 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1601 * avoid using walk_system_ram_range() later.
1602 */
1603 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1604 count_system_ram_pages_cb);
1605 if (system_ram_pages != nr_pages) {
1606 ret = -EINVAL;
1607 reason = "memory holes";
1608 goto failed_removal;
1609 }
1610
1611 /* This makes hotplug much easier...and readable.
1612 we assume this for now. .*/
1613 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1614 if (!zone) {
1615 ret = -EINVAL;
1616 reason = "multizone range";
1617 goto failed_removal;
1618 }
1619 node = zone_to_nid(zone);
1620
1621 /*
1622 * Disable pcplists so that page isolation cannot race with freeing
1623 * in a way that pages from isolated pageblock are left on pcplists.
1624 */
1625 zone_pcp_disable(zone);
1626 lru_cache_disable();
1627
1628 /* set above range as isolated */
1629 ret = start_isolate_page_range(start_pfn, end_pfn,
1630 MIGRATE_MOVABLE,
1631 MEMORY_OFFLINE | REPORT_FAILURE);
1632 if (ret) {
1633 reason = "failure to isolate range";
1634 goto failed_removal_pcplists_disabled;
1635 }
1636
1637 arg.start_pfn = start_pfn;
1638 arg.nr_pages = nr_pages;
1639 node_states_check_changes_offline(nr_pages, zone, &arg);
1640
1641 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1642 ret = notifier_to_errno(ret);
1643 if (ret) {
1644 reason = "notifier failure";
1645 goto failed_removal_isolated;
1646 }
1647
1648 do {
1649 pfn = start_pfn;
1650 do {
1651 if (signal_pending(current)) {
1652 ret = -EINTR;
1653 reason = "signal backoff";
1654 goto failed_removal_isolated;
1655 }
1656
1657 cond_resched();
1658
1659 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1660 if (!ret) {
1661 /*
1662 * TODO: fatal migration failures should bail
1663 * out
1664 */
1665 do_migrate_range(pfn, end_pfn);
1666 }
1667 } while (!ret);
1668
1669 if (ret != -ENOENT) {
1670 reason = "unmovable page";
1671 goto failed_removal_isolated;
1672 }
1673
1674 /*
1675 * Dissolve free hugepages in the memory block before doing
1676 * offlining actually in order to make hugetlbfs's object
1677 * counting consistent.
1678 */
1679 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1680 if (ret) {
1681 reason = "failure to dissolve huge pages";
1682 goto failed_removal_isolated;
1683 }
1684
1685 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1686
1687 } while (ret);
1688
1689 /* Mark all sections offline and remove free pages from the buddy. */
1690 __offline_isolated_pages(start_pfn, end_pfn);
1691 pr_debug("Offlined Pages %ld\n", nr_pages);
1692
1693 /*
1694 * The memory sections are marked offline, and the pageblock flags
1695 * effectively stale; nobody should be touching them. Fixup the number
1696 * of isolated pageblocks, memory onlining will properly revert this.
1697 */
1698 spin_lock_irqsave(&zone->lock, flags);
1699 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1700 spin_unlock_irqrestore(&zone->lock, flags);
1701
1702 lru_cache_enable();
1703 zone_pcp_enable(zone);
1704
1705 /* removal success */
1706 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1707 adjust_present_page_count(zone, -nr_pages);
1708
1709 /* reinitialise watermarks and update pcp limits */
1710 init_per_zone_wmark_min();
1711
1712 if (!populated_zone(zone)) {
1713 zone_pcp_reset(zone);
1714 build_all_zonelists(NULL);
1715 }
1716
1717 node_states_clear_node(node, &arg);
1718 if (arg.status_change_nid >= 0) {
1719 kswapd_stop(node);
1720 kcompactd_stop(node);
1721 }
1722
1723 writeback_set_ratelimit();
1724
1725 memory_notify(MEM_OFFLINE, &arg);
1726 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1727 mem_hotplug_done();
1728 return 0;
1729
1730failed_removal_isolated:
1731 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1732 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1733failed_removal_pcplists_disabled:
1734 lru_cache_enable();
1735 zone_pcp_enable(zone);
1736failed_removal:
1737 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1738 (unsigned long long) start_pfn << PAGE_SHIFT,
1739 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1740 reason);
1741 /* pushback to free area */
1742 mem_hotplug_done();
1743 return ret;
1744}
1745
1746static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1747{
1748 int ret = !is_memblock_offlined(mem);
1749
1750 if (unlikely(ret)) {
1751 phys_addr_t beginpa, endpa;
1752
1753 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1754 endpa = beginpa + memory_block_size_bytes() - 1;
1755 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1756 &beginpa, &endpa);
1757
1758 return -EBUSY;
1759 }
1760 return 0;
1761}
1762
1763static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1764{
1765 /*
1766 * If not set, continue with the next block.
1767 */
1768 return mem->nr_vmemmap_pages;
1769}
1770
1771static int check_cpu_on_node(pg_data_t *pgdat)
1772{
1773 int cpu;
1774
1775 for_each_present_cpu(cpu) {
1776 if (cpu_to_node(cpu) == pgdat->node_id)
1777 /*
1778 * the cpu on this node isn't removed, and we can't
1779 * offline this node.
1780 */
1781 return -EBUSY;
1782 }
1783
1784 return 0;
1785}
1786
1787static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1788{
1789 int nid = *(int *)arg;
1790
1791 /*
1792 * If a memory block belongs to multiple nodes, the stored nid is not
1793 * reliable. However, such blocks are always online (e.g., cannot get
1794 * offlined) and, therefore, are still spanned by the node.
1795 */
1796 return mem->nid == nid ? -EEXIST : 0;
1797}
1798
1799/**
1800 * try_offline_node
1801 * @nid: the node ID
1802 *
1803 * Offline a node if all memory sections and cpus of the node are removed.
1804 *
1805 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1806 * and online/offline operations before this call.
1807 */
1808void try_offline_node(int nid)
1809{
1810 pg_data_t *pgdat = NODE_DATA(nid);
1811 int rc;
1812
1813 /*
1814 * If the node still spans pages (especially ZONE_DEVICE), don't
1815 * offline it. A node spans memory after move_pfn_range_to_zone(),
1816 * e.g., after the memory block was onlined.
1817 */
1818 if (pgdat->node_spanned_pages)
1819 return;
1820
1821 /*
1822 * Especially offline memory blocks might not be spanned by the
1823 * node. They will get spanned by the node once they get onlined.
1824 * However, they link to the node in sysfs and can get onlined later.
1825 */
1826 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1827 if (rc)
1828 return;
1829
1830 if (check_cpu_on_node(pgdat))
1831 return;
1832
1833 /*
1834 * all memory/cpu of this node are removed, we can offline this
1835 * node now.
1836 */
1837 node_set_offline(nid);
1838 unregister_one_node(nid);
1839}
1840EXPORT_SYMBOL(try_offline_node);
1841
1842static int __ref try_remove_memory(int nid, u64 start, u64 size)
1843{
1844 int rc = 0;
1845 struct vmem_altmap mhp_altmap = {};
1846 struct vmem_altmap *altmap = NULL;
1847 unsigned long nr_vmemmap_pages;
1848
1849 BUG_ON(check_hotplug_memory_range(start, size));
1850
1851 /*
1852 * All memory blocks must be offlined before removing memory. Check
1853 * whether all memory blocks in question are offline and return error
1854 * if this is not the case.
1855 */
1856 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1857 if (rc)
1858 return rc;
1859
1860 /*
1861 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
1862 * the same granularity it was added - a single memory block.
1863 */
1864 if (memmap_on_memory) {
1865 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
1866 get_nr_vmemmap_pages_cb);
1867 if (nr_vmemmap_pages) {
1868 if (size != memory_block_size_bytes()) {
1869 pr_warn("Refuse to remove %#llx - %#llx,"
1870 "wrong granularity\n",
1871 start, start + size);
1872 return -EINVAL;
1873 }
1874
1875 /*
1876 * Let remove_pmd_table->free_hugepage_table do the
1877 * right thing if we used vmem_altmap when hot-adding
1878 * the range.
1879 */
1880 mhp_altmap.alloc = nr_vmemmap_pages;
1881 altmap = &mhp_altmap;
1882 }
1883 }
1884
1885 /* remove memmap entry */
1886 firmware_map_remove(start, start + size, "System RAM");
1887
1888 /*
1889 * Memory block device removal under the device_hotplug_lock is
1890 * a barrier against racing online attempts.
1891 */
1892 remove_memory_block_devices(start, size);
1893
1894 mem_hotplug_begin();
1895
1896 arch_remove_memory(nid, start, size, altmap);
1897
1898 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1899 memblock_free(start, size);
1900 memblock_remove(start, size);
1901 }
1902
1903 release_mem_region_adjustable(start, size);
1904
1905 try_offline_node(nid);
1906
1907 mem_hotplug_done();
1908 return 0;
1909}
1910
1911/**
1912 * __remove_memory - Remove memory if every memory block is offline
1913 * @nid: the node ID
1914 * @start: physical address of the region to remove
1915 * @size: size of the region to remove
1916 *
1917 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1918 * and online/offline operations before this call, as required by
1919 * try_offline_node().
1920 */
1921void __remove_memory(int nid, u64 start, u64 size)
1922{
1923
1924 /*
1925 * trigger BUG() if some memory is not offlined prior to calling this
1926 * function
1927 */
1928 if (try_remove_memory(nid, start, size))
1929 BUG();
1930}
1931
1932/*
1933 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1934 * some memory is not offline
1935 */
1936int remove_memory(int nid, u64 start, u64 size)
1937{
1938 int rc;
1939
1940 lock_device_hotplug();
1941 rc = try_remove_memory(nid, start, size);
1942 unlock_device_hotplug();
1943
1944 return rc;
1945}
1946EXPORT_SYMBOL_GPL(remove_memory);
1947
1948static int try_offline_memory_block(struct memory_block *mem, void *arg)
1949{
1950 uint8_t online_type = MMOP_ONLINE_KERNEL;
1951 uint8_t **online_types = arg;
1952 struct page *page;
1953 int rc;
1954
1955 /*
1956 * Sense the online_type via the zone of the memory block. Offlining
1957 * with multiple zones within one memory block will be rejected
1958 * by offlining code ... so we don't care about that.
1959 */
1960 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
1961 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
1962 online_type = MMOP_ONLINE_MOVABLE;
1963
1964 rc = device_offline(&mem->dev);
1965 /*
1966 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
1967 * so try_reonline_memory_block() can do the right thing.
1968 */
1969 if (!rc)
1970 **online_types = online_type;
1971
1972 (*online_types)++;
1973 /* Ignore if already offline. */
1974 return rc < 0 ? rc : 0;
1975}
1976
1977static int try_reonline_memory_block(struct memory_block *mem, void *arg)
1978{
1979 uint8_t **online_types = arg;
1980 int rc;
1981
1982 if (**online_types != MMOP_OFFLINE) {
1983 mem->online_type = **online_types;
1984 rc = device_online(&mem->dev);
1985 if (rc < 0)
1986 pr_warn("%s: Failed to re-online memory: %d",
1987 __func__, rc);
1988 }
1989
1990 /* Continue processing all remaining memory blocks. */
1991 (*online_types)++;
1992 return 0;
1993}
1994
1995/*
1996 * Try to offline and remove memory. Might take a long time to finish in case
1997 * memory is still in use. Primarily useful for memory devices that logically
1998 * unplugged all memory (so it's no longer in use) and want to offline + remove
1999 * that memory.
2000 */
2001int offline_and_remove_memory(int nid, u64 start, u64 size)
2002{
2003 const unsigned long mb_count = size / memory_block_size_bytes();
2004 uint8_t *online_types, *tmp;
2005 int rc;
2006
2007 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2008 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2009 return -EINVAL;
2010
2011 /*
2012 * We'll remember the old online type of each memory block, so we can
2013 * try to revert whatever we did when offlining one memory block fails
2014 * after offlining some others succeeded.
2015 */
2016 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2017 GFP_KERNEL);
2018 if (!online_types)
2019 return -ENOMEM;
2020 /*
2021 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2022 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2023 * try_reonline_memory_block().
2024 */
2025 memset(online_types, MMOP_OFFLINE, mb_count);
2026
2027 lock_device_hotplug();
2028
2029 tmp = online_types;
2030 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2031
2032 /*
2033 * In case we succeeded to offline all memory, remove it.
2034 * This cannot fail as it cannot get onlined in the meantime.
2035 */
2036 if (!rc) {
2037 rc = try_remove_memory(nid, start, size);
2038 if (rc)
2039 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2040 }
2041
2042 /*
2043 * Rollback what we did. While memory onlining might theoretically fail
2044 * (nacked by a notifier), it barely ever happens.
2045 */
2046 if (rc) {
2047 tmp = online_types;
2048 walk_memory_blocks(start, size, &tmp,
2049 try_reonline_memory_block);
2050 }
2051 unlock_device_hotplug();
2052
2053 kfree(online_types);
2054 return rc;
2055}
2056EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2057#endif /* CONFIG_MEMORY_HOTREMOVE */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/pagevec.h>
17#include <linux/writeback.h>
18#include <linux/slab.h>
19#include <linux/sysctl.h>
20#include <linux/cpu.h>
21#include <linux/memory.h>
22#include <linux/memremap.h>
23#include <linux/memory_hotplug.h>
24#include <linux/highmem.h>
25#include <linux/vmalloc.h>
26#include <linux/ioport.h>
27#include <linux/delay.h>
28#include <linux/migrate.h>
29#include <linux/page-isolation.h>
30#include <linux/pfn.h>
31#include <linux/suspend.h>
32#include <linux/mm_inline.h>
33#include <linux/firmware-map.h>
34#include <linux/stop_machine.h>
35#include <linux/hugetlb.h>
36#include <linux/memblock.h>
37#include <linux/compaction.h>
38#include <linux/rmap.h>
39
40#include <asm/tlbflush.h>
41
42#include "internal.h"
43#include "shuffle.h"
44
45/*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52static online_page_callback_t online_page_callback = generic_online_page;
53static DEFINE_MUTEX(online_page_callback_lock);
54
55DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56
57void get_online_mems(void)
58{
59 percpu_down_read(&mem_hotplug_lock);
60}
61
62void put_online_mems(void)
63{
64 percpu_up_read(&mem_hotplug_lock);
65}
66
67bool movable_node_enabled = false;
68
69#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70int memhp_default_online_type = MMOP_OFFLINE;
71#else
72int memhp_default_online_type = MMOP_ONLINE;
73#endif
74
75static int __init setup_memhp_default_state(char *str)
76{
77 const int online_type = memhp_online_type_from_str(str);
78
79 if (online_type >= 0)
80 memhp_default_online_type = online_type;
81
82 return 1;
83}
84__setup("memhp_default_state=", setup_memhp_default_state);
85
86void mem_hotplug_begin(void)
87{
88 cpus_read_lock();
89 percpu_down_write(&mem_hotplug_lock);
90}
91
92void mem_hotplug_done(void)
93{
94 percpu_up_write(&mem_hotplug_lock);
95 cpus_read_unlock();
96}
97
98u64 max_mem_size = U64_MAX;
99
100/* add this memory to iomem resource */
101static struct resource *register_memory_resource(u64 start, u64 size,
102 const char *resource_name)
103{
104 struct resource *res;
105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106
107 if (strcmp(resource_name, "System RAM"))
108 flags |= IORESOURCE_MEM_DRIVER_MANAGED;
109
110 /*
111 * Make sure value parsed from 'mem=' only restricts memory adding
112 * while booting, so that memory hotplug won't be impacted. Please
113 * refer to document of 'mem=' in kernel-parameters.txt for more
114 * details.
115 */
116 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
117 return ERR_PTR(-E2BIG);
118
119 /*
120 * Request ownership of the new memory range. This might be
121 * a child of an existing resource that was present but
122 * not marked as busy.
123 */
124 res = __request_region(&iomem_resource, start, size,
125 resource_name, flags);
126
127 if (!res) {
128 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
129 start, start + size);
130 return ERR_PTR(-EEXIST);
131 }
132 return res;
133}
134
135static void release_memory_resource(struct resource *res)
136{
137 if (!res)
138 return;
139 release_resource(res);
140 kfree(res);
141}
142
143#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
144void get_page_bootmem(unsigned long info, struct page *page,
145 unsigned long type)
146{
147 page->freelist = (void *)type;
148 SetPagePrivate(page);
149 set_page_private(page, info);
150 page_ref_inc(page);
151}
152
153void put_page_bootmem(struct page *page)
154{
155 unsigned long type;
156
157 type = (unsigned long) page->freelist;
158 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
159 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
160
161 if (page_ref_dec_return(page) == 1) {
162 page->freelist = NULL;
163 ClearPagePrivate(page);
164 set_page_private(page, 0);
165 INIT_LIST_HEAD(&page->lru);
166 free_reserved_page(page);
167 }
168}
169
170#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
171#ifndef CONFIG_SPARSEMEM_VMEMMAP
172static void register_page_bootmem_info_section(unsigned long start_pfn)
173{
174 unsigned long mapsize, section_nr, i;
175 struct mem_section *ms;
176 struct page *page, *memmap;
177 struct mem_section_usage *usage;
178
179 section_nr = pfn_to_section_nr(start_pfn);
180 ms = __nr_to_section(section_nr);
181
182 /* Get section's memmap address */
183 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
184
185 /*
186 * Get page for the memmap's phys address
187 * XXX: need more consideration for sparse_vmemmap...
188 */
189 page = virt_to_page(memmap);
190 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
191 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
192
193 /* remember memmap's page */
194 for (i = 0; i < mapsize; i++, page++)
195 get_page_bootmem(section_nr, page, SECTION_INFO);
196
197 usage = ms->usage;
198 page = virt_to_page(usage);
199
200 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
201
202 for (i = 0; i < mapsize; i++, page++)
203 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
204
205}
206#else /* CONFIG_SPARSEMEM_VMEMMAP */
207static void register_page_bootmem_info_section(unsigned long start_pfn)
208{
209 unsigned long mapsize, section_nr, i;
210 struct mem_section *ms;
211 struct page *page, *memmap;
212 struct mem_section_usage *usage;
213
214 section_nr = pfn_to_section_nr(start_pfn);
215 ms = __nr_to_section(section_nr);
216
217 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
218
219 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
220
221 usage = ms->usage;
222 page = virt_to_page(usage);
223
224 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
225
226 for (i = 0; i < mapsize; i++, page++)
227 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
228}
229#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
230
231void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
232{
233 unsigned long i, pfn, end_pfn, nr_pages;
234 int node = pgdat->node_id;
235 struct page *page;
236
237 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
238 page = virt_to_page(pgdat);
239
240 for (i = 0; i < nr_pages; i++, page++)
241 get_page_bootmem(node, page, NODE_INFO);
242
243 pfn = pgdat->node_start_pfn;
244 end_pfn = pgdat_end_pfn(pgdat);
245
246 /* register section info */
247 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
248 /*
249 * Some platforms can assign the same pfn to multiple nodes - on
250 * node0 as well as nodeN. To avoid registering a pfn against
251 * multiple nodes we check that this pfn does not already
252 * reside in some other nodes.
253 */
254 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
255 register_page_bootmem_info_section(pfn);
256 }
257}
258#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
259
260static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
261 const char *reason)
262{
263 /*
264 * Disallow all operations smaller than a sub-section and only
265 * allow operations smaller than a section for
266 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
267 * enforces a larger memory_block_size_bytes() granularity for
268 * memory that will be marked online, so this check should only
269 * fire for direct arch_{add,remove}_memory() users outside of
270 * add_memory_resource().
271 */
272 unsigned long min_align;
273
274 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
275 min_align = PAGES_PER_SUBSECTION;
276 else
277 min_align = PAGES_PER_SECTION;
278 if (!IS_ALIGNED(pfn, min_align)
279 || !IS_ALIGNED(nr_pages, min_align)) {
280 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
281 reason, pfn, pfn + nr_pages - 1);
282 return -EINVAL;
283 }
284 return 0;
285}
286
287static int check_hotplug_memory_addressable(unsigned long pfn,
288 unsigned long nr_pages)
289{
290 const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
291
292 if (max_addr >> MAX_PHYSMEM_BITS) {
293 const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
294 WARN(1,
295 "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
296 (u64)PFN_PHYS(pfn), max_addr, max_allowed);
297 return -E2BIG;
298 }
299
300 return 0;
301}
302
303/*
304 * Reasonably generic function for adding memory. It is
305 * expected that archs that support memory hotplug will
306 * call this function after deciding the zone to which to
307 * add the new pages.
308 */
309int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
310 struct mhp_params *params)
311{
312 const unsigned long end_pfn = pfn + nr_pages;
313 unsigned long cur_nr_pages;
314 int err;
315 struct vmem_altmap *altmap = params->altmap;
316
317 if (WARN_ON_ONCE(!params->pgprot.pgprot))
318 return -EINVAL;
319
320 err = check_hotplug_memory_addressable(pfn, nr_pages);
321 if (err)
322 return err;
323
324 if (altmap) {
325 /*
326 * Validate altmap is within bounds of the total request
327 */
328 if (altmap->base_pfn != pfn
329 || vmem_altmap_offset(altmap) > nr_pages) {
330 pr_warn_once("memory add fail, invalid altmap\n");
331 return -EINVAL;
332 }
333 altmap->alloc = 0;
334 }
335
336 err = check_pfn_span(pfn, nr_pages, "add");
337 if (err)
338 return err;
339
340 for (; pfn < end_pfn; pfn += cur_nr_pages) {
341 /* Select all remaining pages up to the next section boundary */
342 cur_nr_pages = min(end_pfn - pfn,
343 SECTION_ALIGN_UP(pfn + 1) - pfn);
344 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
345 if (err)
346 break;
347 cond_resched();
348 }
349 vmemmap_populate_print_last();
350 return err;
351}
352
353#ifdef CONFIG_NUMA
354int __weak memory_add_physaddr_to_nid(u64 start)
355{
356 pr_info_once("Unknown target node for memory at 0x%llx, assuming node 0\n",
357 start);
358 return 0;
359}
360EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
361#endif
362
363/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
364static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
365 unsigned long start_pfn,
366 unsigned long end_pfn)
367{
368 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
369 if (unlikely(!pfn_to_online_page(start_pfn)))
370 continue;
371
372 if (unlikely(pfn_to_nid(start_pfn) != nid))
373 continue;
374
375 if (zone != page_zone(pfn_to_page(start_pfn)))
376 continue;
377
378 return start_pfn;
379 }
380
381 return 0;
382}
383
384/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
385static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
386 unsigned long start_pfn,
387 unsigned long end_pfn)
388{
389 unsigned long pfn;
390
391 /* pfn is the end pfn of a memory section. */
392 pfn = end_pfn - 1;
393 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
394 if (unlikely(!pfn_to_online_page(pfn)))
395 continue;
396
397 if (unlikely(pfn_to_nid(pfn) != nid))
398 continue;
399
400 if (zone != page_zone(pfn_to_page(pfn)))
401 continue;
402
403 return pfn;
404 }
405
406 return 0;
407}
408
409static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
410 unsigned long end_pfn)
411{
412 unsigned long pfn;
413 int nid = zone_to_nid(zone);
414
415 zone_span_writelock(zone);
416 if (zone->zone_start_pfn == start_pfn) {
417 /*
418 * If the section is smallest section in the zone, it need
419 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
420 * In this case, we find second smallest valid mem_section
421 * for shrinking zone.
422 */
423 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
424 zone_end_pfn(zone));
425 if (pfn) {
426 zone->spanned_pages = zone_end_pfn(zone) - pfn;
427 zone->zone_start_pfn = pfn;
428 } else {
429 zone->zone_start_pfn = 0;
430 zone->spanned_pages = 0;
431 }
432 } else if (zone_end_pfn(zone) == end_pfn) {
433 /*
434 * If the section is biggest section in the zone, it need
435 * shrink zone->spanned_pages.
436 * In this case, we find second biggest valid mem_section for
437 * shrinking zone.
438 */
439 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
440 start_pfn);
441 if (pfn)
442 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
443 else {
444 zone->zone_start_pfn = 0;
445 zone->spanned_pages = 0;
446 }
447 }
448 zone_span_writeunlock(zone);
449}
450
451static void update_pgdat_span(struct pglist_data *pgdat)
452{
453 unsigned long node_start_pfn = 0, node_end_pfn = 0;
454 struct zone *zone;
455
456 for (zone = pgdat->node_zones;
457 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
458 unsigned long zone_end_pfn = zone->zone_start_pfn +
459 zone->spanned_pages;
460
461 /* No need to lock the zones, they can't change. */
462 if (!zone->spanned_pages)
463 continue;
464 if (!node_end_pfn) {
465 node_start_pfn = zone->zone_start_pfn;
466 node_end_pfn = zone_end_pfn;
467 continue;
468 }
469
470 if (zone_end_pfn > node_end_pfn)
471 node_end_pfn = zone_end_pfn;
472 if (zone->zone_start_pfn < node_start_pfn)
473 node_start_pfn = zone->zone_start_pfn;
474 }
475
476 pgdat->node_start_pfn = node_start_pfn;
477 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
478}
479
480void __ref remove_pfn_range_from_zone(struct zone *zone,
481 unsigned long start_pfn,
482 unsigned long nr_pages)
483{
484 const unsigned long end_pfn = start_pfn + nr_pages;
485 struct pglist_data *pgdat = zone->zone_pgdat;
486 unsigned long pfn, cur_nr_pages, flags;
487
488 /* Poison struct pages because they are now uninitialized again. */
489 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
490 cond_resched();
491
492 /* Select all remaining pages up to the next section boundary */
493 cur_nr_pages =
494 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
495 page_init_poison(pfn_to_page(pfn),
496 sizeof(struct page) * cur_nr_pages);
497 }
498
499#ifdef CONFIG_ZONE_DEVICE
500 /*
501 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
502 * we will not try to shrink the zones - which is okay as
503 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
504 */
505 if (zone_idx(zone) == ZONE_DEVICE)
506 return;
507#endif
508
509 clear_zone_contiguous(zone);
510
511 pgdat_resize_lock(zone->zone_pgdat, &flags);
512 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
513 update_pgdat_span(pgdat);
514 pgdat_resize_unlock(zone->zone_pgdat, &flags);
515
516 set_zone_contiguous(zone);
517}
518
519static void __remove_section(unsigned long pfn, unsigned long nr_pages,
520 unsigned long map_offset,
521 struct vmem_altmap *altmap)
522{
523 struct mem_section *ms = __pfn_to_section(pfn);
524
525 if (WARN_ON_ONCE(!valid_section(ms)))
526 return;
527
528 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
529}
530
531/**
532 * __remove_pages() - remove sections of pages
533 * @pfn: starting pageframe (must be aligned to start of a section)
534 * @nr_pages: number of pages to remove (must be multiple of section size)
535 * @altmap: alternative device page map or %NULL if default memmap is used
536 *
537 * Generic helper function to remove section mappings and sysfs entries
538 * for the section of the memory we are removing. Caller needs to make
539 * sure that pages are marked reserved and zones are adjust properly by
540 * calling offline_pages().
541 */
542void __remove_pages(unsigned long pfn, unsigned long nr_pages,
543 struct vmem_altmap *altmap)
544{
545 const unsigned long end_pfn = pfn + nr_pages;
546 unsigned long cur_nr_pages;
547 unsigned long map_offset = 0;
548
549 map_offset = vmem_altmap_offset(altmap);
550
551 if (check_pfn_span(pfn, nr_pages, "remove"))
552 return;
553
554 for (; pfn < end_pfn; pfn += cur_nr_pages) {
555 cond_resched();
556 /* Select all remaining pages up to the next section boundary */
557 cur_nr_pages = min(end_pfn - pfn,
558 SECTION_ALIGN_UP(pfn + 1) - pfn);
559 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
560 map_offset = 0;
561 }
562}
563
564int set_online_page_callback(online_page_callback_t callback)
565{
566 int rc = -EINVAL;
567
568 get_online_mems();
569 mutex_lock(&online_page_callback_lock);
570
571 if (online_page_callback == generic_online_page) {
572 online_page_callback = callback;
573 rc = 0;
574 }
575
576 mutex_unlock(&online_page_callback_lock);
577 put_online_mems();
578
579 return rc;
580}
581EXPORT_SYMBOL_GPL(set_online_page_callback);
582
583int restore_online_page_callback(online_page_callback_t callback)
584{
585 int rc = -EINVAL;
586
587 get_online_mems();
588 mutex_lock(&online_page_callback_lock);
589
590 if (online_page_callback == callback) {
591 online_page_callback = generic_online_page;
592 rc = 0;
593 }
594
595 mutex_unlock(&online_page_callback_lock);
596 put_online_mems();
597
598 return rc;
599}
600EXPORT_SYMBOL_GPL(restore_online_page_callback);
601
602void generic_online_page(struct page *page, unsigned int order)
603{
604 /*
605 * Freeing the page with debug_pagealloc enabled will try to unmap it,
606 * so we should map it first. This is better than introducing a special
607 * case in page freeing fast path.
608 */
609 if (debug_pagealloc_enabled_static())
610 kernel_map_pages(page, 1 << order, 1);
611 __free_pages_core(page, order);
612 totalram_pages_add(1UL << order);
613#ifdef CONFIG_HIGHMEM
614 if (PageHighMem(page))
615 totalhigh_pages_add(1UL << order);
616#endif
617}
618EXPORT_SYMBOL_GPL(generic_online_page);
619
620static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
621 void *arg)
622{
623 const unsigned long end_pfn = start_pfn + nr_pages;
624 unsigned long pfn;
625 int order;
626
627 /*
628 * Online the pages. The callback might decide to keep some pages
629 * PG_reserved (to add them to the buddy later), but we still account
630 * them as being online/belonging to this zone ("present").
631 */
632 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
633 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
634 /* __free_pages_core() wants pfns to be aligned to the order */
635 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
636 order = 0;
637 (*online_page_callback)(pfn_to_page(pfn), order);
638 }
639
640 /* mark all involved sections as online */
641 online_mem_sections(start_pfn, end_pfn);
642
643 *(unsigned long *)arg += nr_pages;
644 return 0;
645}
646
647/* check which state of node_states will be changed when online memory */
648static void node_states_check_changes_online(unsigned long nr_pages,
649 struct zone *zone, struct memory_notify *arg)
650{
651 int nid = zone_to_nid(zone);
652
653 arg->status_change_nid = NUMA_NO_NODE;
654 arg->status_change_nid_normal = NUMA_NO_NODE;
655 arg->status_change_nid_high = NUMA_NO_NODE;
656
657 if (!node_state(nid, N_MEMORY))
658 arg->status_change_nid = nid;
659 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
660 arg->status_change_nid_normal = nid;
661#ifdef CONFIG_HIGHMEM
662 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
663 arg->status_change_nid_high = nid;
664#endif
665}
666
667static void node_states_set_node(int node, struct memory_notify *arg)
668{
669 if (arg->status_change_nid_normal >= 0)
670 node_set_state(node, N_NORMAL_MEMORY);
671
672 if (arg->status_change_nid_high >= 0)
673 node_set_state(node, N_HIGH_MEMORY);
674
675 if (arg->status_change_nid >= 0)
676 node_set_state(node, N_MEMORY);
677}
678
679static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
680 unsigned long nr_pages)
681{
682 unsigned long old_end_pfn = zone_end_pfn(zone);
683
684 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
685 zone->zone_start_pfn = start_pfn;
686
687 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
688}
689
690static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
691 unsigned long nr_pages)
692{
693 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
694
695 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
696 pgdat->node_start_pfn = start_pfn;
697
698 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
699
700}
701/*
702 * Associate the pfn range with the given zone, initializing the memmaps
703 * and resizing the pgdat/zone data to span the added pages. After this
704 * call, all affected pages are PG_reserved.
705 */
706void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
707 unsigned long nr_pages, struct vmem_altmap *altmap)
708{
709 struct pglist_data *pgdat = zone->zone_pgdat;
710 int nid = pgdat->node_id;
711 unsigned long flags;
712
713 clear_zone_contiguous(zone);
714
715 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
716 pgdat_resize_lock(pgdat, &flags);
717 zone_span_writelock(zone);
718 if (zone_is_empty(zone))
719 init_currently_empty_zone(zone, start_pfn, nr_pages);
720 resize_zone_range(zone, start_pfn, nr_pages);
721 zone_span_writeunlock(zone);
722 resize_pgdat_range(pgdat, start_pfn, nr_pages);
723 pgdat_resize_unlock(pgdat, &flags);
724
725 /*
726 * TODO now we have a visible range of pages which are not associated
727 * with their zone properly. Not nice but set_pfnblock_flags_mask
728 * expects the zone spans the pfn range. All the pages in the range
729 * are reserved so nobody should be touching them so we should be safe
730 */
731 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
732 MEMINIT_HOTPLUG, altmap);
733
734 set_zone_contiguous(zone);
735}
736
737/*
738 * Returns a default kernel memory zone for the given pfn range.
739 * If no kernel zone covers this pfn range it will automatically go
740 * to the ZONE_NORMAL.
741 */
742static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
743 unsigned long nr_pages)
744{
745 struct pglist_data *pgdat = NODE_DATA(nid);
746 int zid;
747
748 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
749 struct zone *zone = &pgdat->node_zones[zid];
750
751 if (zone_intersects(zone, start_pfn, nr_pages))
752 return zone;
753 }
754
755 return &pgdat->node_zones[ZONE_NORMAL];
756}
757
758static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
759 unsigned long nr_pages)
760{
761 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
762 nr_pages);
763 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
764 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
765 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
766
767 /*
768 * We inherit the existing zone in a simple case where zones do not
769 * overlap in the given range
770 */
771 if (in_kernel ^ in_movable)
772 return (in_kernel) ? kernel_zone : movable_zone;
773
774 /*
775 * If the range doesn't belong to any zone or two zones overlap in the
776 * given range then we use movable zone only if movable_node is
777 * enabled because we always online to a kernel zone by default.
778 */
779 return movable_node_enabled ? movable_zone : kernel_zone;
780}
781
782struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
783 unsigned long nr_pages)
784{
785 if (online_type == MMOP_ONLINE_KERNEL)
786 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
787
788 if (online_type == MMOP_ONLINE_MOVABLE)
789 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
790
791 return default_zone_for_pfn(nid, start_pfn, nr_pages);
792}
793
794int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
795 int online_type, int nid)
796{
797 unsigned long flags;
798 unsigned long onlined_pages = 0;
799 struct zone *zone;
800 int need_zonelists_rebuild = 0;
801 int ret;
802 struct memory_notify arg;
803
804 mem_hotplug_begin();
805
806 /* associate pfn range with the zone */
807 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
808 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
809
810 arg.start_pfn = pfn;
811 arg.nr_pages = nr_pages;
812 node_states_check_changes_online(nr_pages, zone, &arg);
813
814 ret = memory_notify(MEM_GOING_ONLINE, &arg);
815 ret = notifier_to_errno(ret);
816 if (ret)
817 goto failed_addition;
818
819 /*
820 * If this zone is not populated, then it is not in zonelist.
821 * This means the page allocator ignores this zone.
822 * So, zonelist must be updated after online.
823 */
824 if (!populated_zone(zone)) {
825 need_zonelists_rebuild = 1;
826 setup_zone_pageset(zone);
827 }
828
829 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
830 online_pages_range);
831 if (ret) {
832 /* not a single memory resource was applicable */
833 if (need_zonelists_rebuild)
834 zone_pcp_reset(zone);
835 goto failed_addition;
836 }
837
838 zone->present_pages += onlined_pages;
839
840 pgdat_resize_lock(zone->zone_pgdat, &flags);
841 zone->zone_pgdat->node_present_pages += onlined_pages;
842 pgdat_resize_unlock(zone->zone_pgdat, &flags);
843
844 /*
845 * When exposing larger, physically contiguous memory areas to the
846 * buddy, shuffling in the buddy (when freeing onlined pages, putting
847 * them either to the head or the tail of the freelist) is only helpful
848 * for maintaining the shuffle, but not for creating the initial
849 * shuffle. Shuffle the whole zone to make sure the just onlined pages
850 * are properly distributed across the whole freelist.
851 */
852 shuffle_zone(zone);
853
854 node_states_set_node(nid, &arg);
855 if (need_zonelists_rebuild)
856 build_all_zonelists(NULL);
857 zone_pcp_update(zone);
858
859 init_per_zone_wmark_min();
860
861 kswapd_run(nid);
862 kcompactd_run(nid);
863
864 writeback_set_ratelimit();
865
866 memory_notify(MEM_ONLINE, &arg);
867 mem_hotplug_done();
868 return 0;
869
870failed_addition:
871 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
872 (unsigned long long) pfn << PAGE_SHIFT,
873 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
874 memory_notify(MEM_CANCEL_ONLINE, &arg);
875 remove_pfn_range_from_zone(zone, pfn, nr_pages);
876 mem_hotplug_done();
877 return ret;
878}
879#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
880
881static void reset_node_present_pages(pg_data_t *pgdat)
882{
883 struct zone *z;
884
885 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
886 z->present_pages = 0;
887
888 pgdat->node_present_pages = 0;
889}
890
891/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
892static pg_data_t __ref *hotadd_new_pgdat(int nid)
893{
894 struct pglist_data *pgdat;
895
896 pgdat = NODE_DATA(nid);
897 if (!pgdat) {
898 pgdat = arch_alloc_nodedata(nid);
899 if (!pgdat)
900 return NULL;
901
902 pgdat->per_cpu_nodestats =
903 alloc_percpu(struct per_cpu_nodestat);
904 arch_refresh_nodedata(nid, pgdat);
905 } else {
906 int cpu;
907 /*
908 * Reset the nr_zones, order and highest_zoneidx before reuse.
909 * Note that kswapd will init kswapd_highest_zoneidx properly
910 * when it starts in the near future.
911 */
912 pgdat->nr_zones = 0;
913 pgdat->kswapd_order = 0;
914 pgdat->kswapd_highest_zoneidx = 0;
915 for_each_online_cpu(cpu) {
916 struct per_cpu_nodestat *p;
917
918 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
919 memset(p, 0, sizeof(*p));
920 }
921 }
922
923 /* we can use NODE_DATA(nid) from here */
924 pgdat->node_id = nid;
925 pgdat->node_start_pfn = 0;
926
927 /* init node's zones as empty zones, we don't have any present pages.*/
928 free_area_init_core_hotplug(nid);
929
930 /*
931 * The node we allocated has no zone fallback lists. For avoiding
932 * to access not-initialized zonelist, build here.
933 */
934 build_all_zonelists(pgdat);
935
936 /*
937 * When memory is hot-added, all the memory is in offline state. So
938 * clear all zones' present_pages because they will be updated in
939 * online_pages() and offline_pages().
940 */
941 reset_node_managed_pages(pgdat);
942 reset_node_present_pages(pgdat);
943
944 return pgdat;
945}
946
947static void rollback_node_hotadd(int nid)
948{
949 pg_data_t *pgdat = NODE_DATA(nid);
950
951 arch_refresh_nodedata(nid, NULL);
952 free_percpu(pgdat->per_cpu_nodestats);
953 arch_free_nodedata(pgdat);
954}
955
956
957/**
958 * try_online_node - online a node if offlined
959 * @nid: the node ID
960 * @set_node_online: Whether we want to online the node
961 * called by cpu_up() to online a node without onlined memory.
962 *
963 * Returns:
964 * 1 -> a new node has been allocated
965 * 0 -> the node is already online
966 * -ENOMEM -> the node could not be allocated
967 */
968static int __try_online_node(int nid, bool set_node_online)
969{
970 pg_data_t *pgdat;
971 int ret = 1;
972
973 if (node_online(nid))
974 return 0;
975
976 pgdat = hotadd_new_pgdat(nid);
977 if (!pgdat) {
978 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
979 ret = -ENOMEM;
980 goto out;
981 }
982
983 if (set_node_online) {
984 node_set_online(nid);
985 ret = register_one_node(nid);
986 BUG_ON(ret);
987 }
988out:
989 return ret;
990}
991
992/*
993 * Users of this function always want to online/register the node
994 */
995int try_online_node(int nid)
996{
997 int ret;
998
999 mem_hotplug_begin();
1000 ret = __try_online_node(nid, true);
1001 mem_hotplug_done();
1002 return ret;
1003}
1004
1005static int check_hotplug_memory_range(u64 start, u64 size)
1006{
1007 /* memory range must be block size aligned */
1008 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1009 !IS_ALIGNED(size, memory_block_size_bytes())) {
1010 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1011 memory_block_size_bytes(), start, size);
1012 return -EINVAL;
1013 }
1014
1015 return 0;
1016}
1017
1018static int online_memory_block(struct memory_block *mem, void *arg)
1019{
1020 mem->online_type = memhp_default_online_type;
1021 return device_online(&mem->dev);
1022}
1023
1024/*
1025 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1026 * and online/offline operations (triggered e.g. by sysfs).
1027 *
1028 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1029 */
1030int __ref add_memory_resource(int nid, struct resource *res)
1031{
1032 struct mhp_params params = { .pgprot = PAGE_KERNEL };
1033 u64 start, size;
1034 bool new_node = false;
1035 int ret;
1036
1037 start = res->start;
1038 size = resource_size(res);
1039
1040 ret = check_hotplug_memory_range(start, size);
1041 if (ret)
1042 return ret;
1043
1044 if (!node_possible(nid)) {
1045 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1046 return -EINVAL;
1047 }
1048
1049 mem_hotplug_begin();
1050
1051 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1052 memblock_add_node(start, size, nid);
1053
1054 ret = __try_online_node(nid, false);
1055 if (ret < 0)
1056 goto error;
1057 new_node = ret;
1058
1059 /* call arch's memory hotadd */
1060 ret = arch_add_memory(nid, start, size, ¶ms);
1061 if (ret < 0)
1062 goto error;
1063
1064 /* create memory block devices after memory was added */
1065 ret = create_memory_block_devices(start, size);
1066 if (ret) {
1067 arch_remove_memory(nid, start, size, NULL);
1068 goto error;
1069 }
1070
1071 if (new_node) {
1072 /* If sysfs file of new node can't be created, cpu on the node
1073 * can't be hot-added. There is no rollback way now.
1074 * So, check by BUG_ON() to catch it reluctantly..
1075 * We online node here. We can't roll back from here.
1076 */
1077 node_set_online(nid);
1078 ret = __register_one_node(nid);
1079 BUG_ON(ret);
1080 }
1081
1082 /* link memory sections under this node.*/
1083 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1084 MEMINIT_HOTPLUG);
1085 BUG_ON(ret);
1086
1087 /* create new memmap entry */
1088 if (!strcmp(res->name, "System RAM"))
1089 firmware_map_add_hotplug(start, start + size, "System RAM");
1090
1091 /* device_online() will take the lock when calling online_pages() */
1092 mem_hotplug_done();
1093
1094 /* online pages if requested */
1095 if (memhp_default_online_type != MMOP_OFFLINE)
1096 walk_memory_blocks(start, size, NULL, online_memory_block);
1097
1098 return ret;
1099error:
1100 /* rollback pgdat allocation and others */
1101 if (new_node)
1102 rollback_node_hotadd(nid);
1103 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1104 memblock_remove(start, size);
1105 mem_hotplug_done();
1106 return ret;
1107}
1108
1109/* requires device_hotplug_lock, see add_memory_resource() */
1110int __ref __add_memory(int nid, u64 start, u64 size)
1111{
1112 struct resource *res;
1113 int ret;
1114
1115 res = register_memory_resource(start, size, "System RAM");
1116 if (IS_ERR(res))
1117 return PTR_ERR(res);
1118
1119 ret = add_memory_resource(nid, res);
1120 if (ret < 0)
1121 release_memory_resource(res);
1122 return ret;
1123}
1124
1125int add_memory(int nid, u64 start, u64 size)
1126{
1127 int rc;
1128
1129 lock_device_hotplug();
1130 rc = __add_memory(nid, start, size);
1131 unlock_device_hotplug();
1132
1133 return rc;
1134}
1135EXPORT_SYMBOL_GPL(add_memory);
1136
1137/*
1138 * Add special, driver-managed memory to the system as system RAM. Such
1139 * memory is not exposed via the raw firmware-provided memmap as system
1140 * RAM, instead, it is detected and added by a driver - during cold boot,
1141 * after a reboot, and after kexec.
1142 *
1143 * Reasons why this memory should not be used for the initial memmap of a
1144 * kexec kernel or for placing kexec images:
1145 * - The booting kernel is in charge of determining how this memory will be
1146 * used (e.g., use persistent memory as system RAM)
1147 * - Coordination with a hypervisor is required before this memory
1148 * can be used (e.g., inaccessible parts).
1149 *
1150 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1151 * memory map") are created. Also, the created memory resource is flagged
1152 * with IORESOURCE_MEM_DRIVER_MANAGED, so in-kernel users can special-case
1153 * this memory as well (esp., not place kexec images onto it).
1154 *
1155 * The resource_name (visible via /proc/iomem) has to have the format
1156 * "System RAM ($DRIVER)".
1157 */
1158int add_memory_driver_managed(int nid, u64 start, u64 size,
1159 const char *resource_name)
1160{
1161 struct resource *res;
1162 int rc;
1163
1164 if (!resource_name ||
1165 strstr(resource_name, "System RAM (") != resource_name ||
1166 resource_name[strlen(resource_name) - 1] != ')')
1167 return -EINVAL;
1168
1169 lock_device_hotplug();
1170
1171 res = register_memory_resource(start, size, resource_name);
1172 if (IS_ERR(res)) {
1173 rc = PTR_ERR(res);
1174 goto out_unlock;
1175 }
1176
1177 rc = add_memory_resource(nid, res);
1178 if (rc < 0)
1179 release_memory_resource(res);
1180
1181out_unlock:
1182 unlock_device_hotplug();
1183 return rc;
1184}
1185EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1186
1187#ifdef CONFIG_MEMORY_HOTREMOVE
1188/*
1189 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1190 * memory holes). When true, return the zone.
1191 */
1192struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1193 unsigned long end_pfn)
1194{
1195 unsigned long pfn, sec_end_pfn;
1196 struct zone *zone = NULL;
1197 struct page *page;
1198 int i;
1199 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1200 pfn < end_pfn;
1201 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1202 /* Make sure the memory section is present first */
1203 if (!present_section_nr(pfn_to_section_nr(pfn)))
1204 continue;
1205 for (; pfn < sec_end_pfn && pfn < end_pfn;
1206 pfn += MAX_ORDER_NR_PAGES) {
1207 i = 0;
1208 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1209 while ((i < MAX_ORDER_NR_PAGES) &&
1210 !pfn_valid_within(pfn + i))
1211 i++;
1212 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1213 continue;
1214 /* Check if we got outside of the zone */
1215 if (zone && !zone_spans_pfn(zone, pfn + i))
1216 return NULL;
1217 page = pfn_to_page(pfn + i);
1218 if (zone && page_zone(page) != zone)
1219 return NULL;
1220 zone = page_zone(page);
1221 }
1222 }
1223
1224 return zone;
1225}
1226
1227/*
1228 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1229 * non-lru movable pages and hugepages). Will skip over most unmovable
1230 * pages (esp., pages that can be skipped when offlining), but bail out on
1231 * definitely unmovable pages.
1232 *
1233 * Returns:
1234 * 0 in case a movable page is found and movable_pfn was updated.
1235 * -ENOENT in case no movable page was found.
1236 * -EBUSY in case a definitely unmovable page was found.
1237 */
1238static int scan_movable_pages(unsigned long start, unsigned long end,
1239 unsigned long *movable_pfn)
1240{
1241 unsigned long pfn;
1242
1243 for (pfn = start; pfn < end; pfn++) {
1244 struct page *page, *head;
1245 unsigned long skip;
1246
1247 if (!pfn_valid(pfn))
1248 continue;
1249 page = pfn_to_page(pfn);
1250 if (PageLRU(page))
1251 goto found;
1252 if (__PageMovable(page))
1253 goto found;
1254
1255 /*
1256 * PageOffline() pages that are not marked __PageMovable() and
1257 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1258 * definitely unmovable. If their reference count would be 0,
1259 * they could at least be skipped when offlining memory.
1260 */
1261 if (PageOffline(page) && page_count(page))
1262 return -EBUSY;
1263
1264 if (!PageHuge(page))
1265 continue;
1266 head = compound_head(page);
1267 if (page_huge_active(head))
1268 goto found;
1269 skip = compound_nr(head) - (page - head);
1270 pfn += skip - 1;
1271 }
1272 return -ENOENT;
1273found:
1274 *movable_pfn = pfn;
1275 return 0;
1276}
1277
1278static struct page *new_node_page(struct page *page, unsigned long private)
1279{
1280 nodemask_t nmask = node_states[N_MEMORY];
1281 struct migration_target_control mtc = {
1282 .nid = page_to_nid(page),
1283 .nmask = &nmask,
1284 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1285 };
1286
1287 /*
1288 * try to allocate from a different node but reuse this node if there
1289 * are no other online nodes to be used (e.g. we are offlining a part
1290 * of the only existing node)
1291 */
1292 node_clear(mtc.nid, nmask);
1293 if (nodes_empty(nmask))
1294 node_set(mtc.nid, nmask);
1295
1296 return alloc_migration_target(page, (unsigned long)&mtc);
1297}
1298
1299static int
1300do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1301{
1302 unsigned long pfn;
1303 struct page *page, *head;
1304 int ret = 0;
1305 LIST_HEAD(source);
1306
1307 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1308 if (!pfn_valid(pfn))
1309 continue;
1310 page = pfn_to_page(pfn);
1311 head = compound_head(page);
1312
1313 if (PageHuge(page)) {
1314 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1315 isolate_huge_page(head, &source);
1316 continue;
1317 } else if (PageTransHuge(page))
1318 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1319
1320 /*
1321 * HWPoison pages have elevated reference counts so the migration would
1322 * fail on them. It also doesn't make any sense to migrate them in the
1323 * first place. Still try to unmap such a page in case it is still mapped
1324 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1325 * the unmap as the catch all safety net).
1326 */
1327 if (PageHWPoison(page)) {
1328 if (WARN_ON(PageLRU(page)))
1329 isolate_lru_page(page);
1330 if (page_mapped(page))
1331 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1332 continue;
1333 }
1334
1335 if (!get_page_unless_zero(page))
1336 continue;
1337 /*
1338 * We can skip free pages. And we can deal with pages on
1339 * LRU and non-lru movable pages.
1340 */
1341 if (PageLRU(page))
1342 ret = isolate_lru_page(page);
1343 else
1344 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1345 if (!ret) { /* Success */
1346 list_add_tail(&page->lru, &source);
1347 if (!__PageMovable(page))
1348 inc_node_page_state(page, NR_ISOLATED_ANON +
1349 page_is_file_lru(page));
1350
1351 } else {
1352 pr_warn("failed to isolate pfn %lx\n", pfn);
1353 dump_page(page, "isolation failed");
1354 }
1355 put_page(page);
1356 }
1357 if (!list_empty(&source)) {
1358 /* Allocate a new page from the nearest neighbor node */
1359 ret = migrate_pages(&source, new_node_page, NULL, 0,
1360 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1361 if (ret) {
1362 list_for_each_entry(page, &source, lru) {
1363 pr_warn("migrating pfn %lx failed ret:%d ",
1364 page_to_pfn(page), ret);
1365 dump_page(page, "migration failure");
1366 }
1367 putback_movable_pages(&source);
1368 }
1369 }
1370
1371 return ret;
1372}
1373
1374/* Mark all sections offline and remove all free pages from the buddy. */
1375static int
1376offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1377 void *data)
1378{
1379 unsigned long *offlined_pages = (unsigned long *)data;
1380
1381 *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1382 return 0;
1383}
1384
1385/*
1386 * Check all pages in range, recorded as memory resource, are isolated.
1387 */
1388static int
1389check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1390 void *data)
1391{
1392 return test_pages_isolated(start_pfn, start_pfn + nr_pages,
1393 MEMORY_OFFLINE);
1394}
1395
1396static int __init cmdline_parse_movable_node(char *p)
1397{
1398 movable_node_enabled = true;
1399 return 0;
1400}
1401early_param("movable_node", cmdline_parse_movable_node);
1402
1403/* check which state of node_states will be changed when offline memory */
1404static void node_states_check_changes_offline(unsigned long nr_pages,
1405 struct zone *zone, struct memory_notify *arg)
1406{
1407 struct pglist_data *pgdat = zone->zone_pgdat;
1408 unsigned long present_pages = 0;
1409 enum zone_type zt;
1410
1411 arg->status_change_nid = NUMA_NO_NODE;
1412 arg->status_change_nid_normal = NUMA_NO_NODE;
1413 arg->status_change_nid_high = NUMA_NO_NODE;
1414
1415 /*
1416 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1417 * If the memory to be offline is within the range
1418 * [0..ZONE_NORMAL], and it is the last present memory there,
1419 * the zones in that range will become empty after the offlining,
1420 * thus we can determine that we need to clear the node from
1421 * node_states[N_NORMAL_MEMORY].
1422 */
1423 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1424 present_pages += pgdat->node_zones[zt].present_pages;
1425 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1426 arg->status_change_nid_normal = zone_to_nid(zone);
1427
1428#ifdef CONFIG_HIGHMEM
1429 /*
1430 * node_states[N_HIGH_MEMORY] contains nodes which
1431 * have normal memory or high memory.
1432 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1433 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1434 * we determine that the zones in that range become empty,
1435 * we need to clear the node for N_HIGH_MEMORY.
1436 */
1437 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1438 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1439 arg->status_change_nid_high = zone_to_nid(zone);
1440#endif
1441
1442 /*
1443 * We have accounted the pages from [0..ZONE_NORMAL), and
1444 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1445 * as well.
1446 * Here we count the possible pages from ZONE_MOVABLE.
1447 * If after having accounted all the pages, we see that the nr_pages
1448 * to be offlined is over or equal to the accounted pages,
1449 * we know that the node will become empty, and so, we can clear
1450 * it for N_MEMORY as well.
1451 */
1452 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1453
1454 if (nr_pages >= present_pages)
1455 arg->status_change_nid = zone_to_nid(zone);
1456}
1457
1458static void node_states_clear_node(int node, struct memory_notify *arg)
1459{
1460 if (arg->status_change_nid_normal >= 0)
1461 node_clear_state(node, N_NORMAL_MEMORY);
1462
1463 if (arg->status_change_nid_high >= 0)
1464 node_clear_state(node, N_HIGH_MEMORY);
1465
1466 if (arg->status_change_nid >= 0)
1467 node_clear_state(node, N_MEMORY);
1468}
1469
1470static int count_system_ram_pages_cb(unsigned long start_pfn,
1471 unsigned long nr_pages, void *data)
1472{
1473 unsigned long *nr_system_ram_pages = data;
1474
1475 *nr_system_ram_pages += nr_pages;
1476 return 0;
1477}
1478
1479static int __ref __offline_pages(unsigned long start_pfn,
1480 unsigned long end_pfn)
1481{
1482 unsigned long pfn, nr_pages = 0;
1483 unsigned long offlined_pages = 0;
1484 int ret, node, nr_isolate_pageblock;
1485 unsigned long flags;
1486 struct zone *zone;
1487 struct memory_notify arg;
1488 char *reason;
1489
1490 mem_hotplug_begin();
1491
1492 /*
1493 * Don't allow to offline memory blocks that contain holes.
1494 * Consequently, memory blocks with holes can never get onlined
1495 * via the hotplug path - online_pages() - as hotplugged memory has
1496 * no holes. This way, we e.g., don't have to worry about marking
1497 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1498 * avoid using walk_system_ram_range() later.
1499 */
1500 walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages,
1501 count_system_ram_pages_cb);
1502 if (nr_pages != end_pfn - start_pfn) {
1503 ret = -EINVAL;
1504 reason = "memory holes";
1505 goto failed_removal;
1506 }
1507
1508 /* This makes hotplug much easier...and readable.
1509 we assume this for now. .*/
1510 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1511 if (!zone) {
1512 ret = -EINVAL;
1513 reason = "multizone range";
1514 goto failed_removal;
1515 }
1516 node = zone_to_nid(zone);
1517
1518 /* set above range as isolated */
1519 ret = start_isolate_page_range(start_pfn, end_pfn,
1520 MIGRATE_MOVABLE,
1521 MEMORY_OFFLINE | REPORT_FAILURE);
1522 if (ret < 0) {
1523 reason = "failure to isolate range";
1524 goto failed_removal;
1525 }
1526 nr_isolate_pageblock = ret;
1527
1528 arg.start_pfn = start_pfn;
1529 arg.nr_pages = nr_pages;
1530 node_states_check_changes_offline(nr_pages, zone, &arg);
1531
1532 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1533 ret = notifier_to_errno(ret);
1534 if (ret) {
1535 reason = "notifier failure";
1536 goto failed_removal_isolated;
1537 }
1538
1539 do {
1540 pfn = start_pfn;
1541 do {
1542 if (signal_pending(current)) {
1543 ret = -EINTR;
1544 reason = "signal backoff";
1545 goto failed_removal_isolated;
1546 }
1547
1548 cond_resched();
1549 lru_add_drain_all();
1550
1551 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1552 if (!ret) {
1553 /*
1554 * TODO: fatal migration failures should bail
1555 * out
1556 */
1557 do_migrate_range(pfn, end_pfn);
1558 }
1559 } while (!ret);
1560
1561 if (ret != -ENOENT) {
1562 reason = "unmovable page";
1563 goto failed_removal_isolated;
1564 }
1565
1566 /*
1567 * Dissolve free hugepages in the memory block before doing
1568 * offlining actually in order to make hugetlbfs's object
1569 * counting consistent.
1570 */
1571 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1572 if (ret) {
1573 reason = "failure to dissolve huge pages";
1574 goto failed_removal_isolated;
1575 }
1576 /* check again */
1577 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1578 NULL, check_pages_isolated_cb);
1579 /*
1580 * per-cpu pages are drained in start_isolate_page_range, but if
1581 * there are still pages that are not free, make sure that we
1582 * drain again, because when we isolated range we might
1583 * have raced with another thread that was adding pages to pcp
1584 * list.
1585 *
1586 * Forward progress should be still guaranteed because
1587 * pages on the pcp list can only belong to MOVABLE_ZONE
1588 * because has_unmovable_pages explicitly checks for
1589 * PageBuddy on freed pages on other zones.
1590 */
1591 if (ret)
1592 drain_all_pages(zone);
1593 } while (ret);
1594
1595 /* Ok, all of our target is isolated.
1596 We cannot do rollback at this point. */
1597 walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1598 &offlined_pages, offline_isolated_pages_cb);
1599 pr_info("Offlined Pages %ld\n", offlined_pages);
1600 /*
1601 * Onlining will reset pagetype flags and makes migrate type
1602 * MOVABLE, so just need to decrease the number of isolated
1603 * pageblocks zone counter here.
1604 */
1605 spin_lock_irqsave(&zone->lock, flags);
1606 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1607 spin_unlock_irqrestore(&zone->lock, flags);
1608
1609 /* removal success */
1610 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1611 zone->present_pages -= offlined_pages;
1612
1613 pgdat_resize_lock(zone->zone_pgdat, &flags);
1614 zone->zone_pgdat->node_present_pages -= offlined_pages;
1615 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1616
1617 init_per_zone_wmark_min();
1618
1619 if (!populated_zone(zone)) {
1620 zone_pcp_reset(zone);
1621 build_all_zonelists(NULL);
1622 } else
1623 zone_pcp_update(zone);
1624
1625 node_states_clear_node(node, &arg);
1626 if (arg.status_change_nid >= 0) {
1627 kswapd_stop(node);
1628 kcompactd_stop(node);
1629 }
1630
1631 writeback_set_ratelimit();
1632
1633 memory_notify(MEM_OFFLINE, &arg);
1634 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1635 mem_hotplug_done();
1636 return 0;
1637
1638failed_removal_isolated:
1639 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1640 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1641failed_removal:
1642 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1643 (unsigned long long) start_pfn << PAGE_SHIFT,
1644 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1645 reason);
1646 /* pushback to free area */
1647 mem_hotplug_done();
1648 return ret;
1649}
1650
1651int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1652{
1653 return __offline_pages(start_pfn, start_pfn + nr_pages);
1654}
1655
1656static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1657{
1658 int ret = !is_memblock_offlined(mem);
1659
1660 if (unlikely(ret)) {
1661 phys_addr_t beginpa, endpa;
1662
1663 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1664 endpa = beginpa + memory_block_size_bytes() - 1;
1665 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1666 &beginpa, &endpa);
1667
1668 return -EBUSY;
1669 }
1670 return 0;
1671}
1672
1673static int check_cpu_on_node(pg_data_t *pgdat)
1674{
1675 int cpu;
1676
1677 for_each_present_cpu(cpu) {
1678 if (cpu_to_node(cpu) == pgdat->node_id)
1679 /*
1680 * the cpu on this node isn't removed, and we can't
1681 * offline this node.
1682 */
1683 return -EBUSY;
1684 }
1685
1686 return 0;
1687}
1688
1689static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1690{
1691 int nid = *(int *)arg;
1692
1693 /*
1694 * If a memory block belongs to multiple nodes, the stored nid is not
1695 * reliable. However, such blocks are always online (e.g., cannot get
1696 * offlined) and, therefore, are still spanned by the node.
1697 */
1698 return mem->nid == nid ? -EEXIST : 0;
1699}
1700
1701/**
1702 * try_offline_node
1703 * @nid: the node ID
1704 *
1705 * Offline a node if all memory sections and cpus of the node are removed.
1706 *
1707 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1708 * and online/offline operations before this call.
1709 */
1710void try_offline_node(int nid)
1711{
1712 pg_data_t *pgdat = NODE_DATA(nid);
1713 int rc;
1714
1715 /*
1716 * If the node still spans pages (especially ZONE_DEVICE), don't
1717 * offline it. A node spans memory after move_pfn_range_to_zone(),
1718 * e.g., after the memory block was onlined.
1719 */
1720 if (pgdat->node_spanned_pages)
1721 return;
1722
1723 /*
1724 * Especially offline memory blocks might not be spanned by the
1725 * node. They will get spanned by the node once they get onlined.
1726 * However, they link to the node in sysfs and can get onlined later.
1727 */
1728 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1729 if (rc)
1730 return;
1731
1732 if (check_cpu_on_node(pgdat))
1733 return;
1734
1735 /*
1736 * all memory/cpu of this node are removed, we can offline this
1737 * node now.
1738 */
1739 node_set_offline(nid);
1740 unregister_one_node(nid);
1741}
1742EXPORT_SYMBOL(try_offline_node);
1743
1744static void __release_memory_resource(resource_size_t start,
1745 resource_size_t size)
1746{
1747 int ret;
1748
1749 /*
1750 * When removing memory in the same granularity as it was added,
1751 * this function never fails. It might only fail if resources
1752 * have to be adjusted or split. We'll ignore the error, as
1753 * removing of memory cannot fail.
1754 */
1755 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1756 if (ret) {
1757 resource_size_t endres = start + size - 1;
1758
1759 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1760 &start, &endres, ret);
1761 }
1762}
1763
1764static int __ref try_remove_memory(int nid, u64 start, u64 size)
1765{
1766 int rc = 0;
1767
1768 BUG_ON(check_hotplug_memory_range(start, size));
1769
1770 /*
1771 * All memory blocks must be offlined before removing memory. Check
1772 * whether all memory blocks in question are offline and return error
1773 * if this is not the case.
1774 */
1775 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1776 if (rc)
1777 return rc;
1778
1779 /* remove memmap entry */
1780 firmware_map_remove(start, start + size, "System RAM");
1781
1782 /*
1783 * Memory block device removal under the device_hotplug_lock is
1784 * a barrier against racing online attempts.
1785 */
1786 remove_memory_block_devices(start, size);
1787
1788 mem_hotplug_begin();
1789
1790 arch_remove_memory(nid, start, size, NULL);
1791
1792 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1793 memblock_free(start, size);
1794 memblock_remove(start, size);
1795 }
1796
1797 __release_memory_resource(start, size);
1798
1799 try_offline_node(nid);
1800
1801 mem_hotplug_done();
1802 return 0;
1803}
1804
1805/**
1806 * remove_memory
1807 * @nid: the node ID
1808 * @start: physical address of the region to remove
1809 * @size: size of the region to remove
1810 *
1811 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1812 * and online/offline operations before this call, as required by
1813 * try_offline_node().
1814 */
1815void __remove_memory(int nid, u64 start, u64 size)
1816{
1817
1818 /*
1819 * trigger BUG() if some memory is not offlined prior to calling this
1820 * function
1821 */
1822 if (try_remove_memory(nid, start, size))
1823 BUG();
1824}
1825
1826/*
1827 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1828 * some memory is not offline
1829 */
1830int remove_memory(int nid, u64 start, u64 size)
1831{
1832 int rc;
1833
1834 lock_device_hotplug();
1835 rc = try_remove_memory(nid, start, size);
1836 unlock_device_hotplug();
1837
1838 return rc;
1839}
1840EXPORT_SYMBOL_GPL(remove_memory);
1841
1842/*
1843 * Try to offline and remove a memory block. Might take a long time to
1844 * finish in case memory is still in use. Primarily useful for memory devices
1845 * that logically unplugged all memory (so it's no longer in use) and want to
1846 * offline + remove the memory block.
1847 */
1848int offline_and_remove_memory(int nid, u64 start, u64 size)
1849{
1850 struct memory_block *mem;
1851 int rc = -EINVAL;
1852
1853 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
1854 size != memory_block_size_bytes())
1855 return rc;
1856
1857 lock_device_hotplug();
1858 mem = find_memory_block(__pfn_to_section(PFN_DOWN(start)));
1859 if (mem)
1860 rc = device_offline(&mem->dev);
1861 /* Ignore if the device is already offline. */
1862 if (rc > 0)
1863 rc = 0;
1864
1865 /*
1866 * In case we succeeded to offline the memory block, remove it.
1867 * This cannot fail as it cannot get onlined in the meantime.
1868 */
1869 if (!rc) {
1870 rc = try_remove_memory(nid, start, size);
1871 WARN_ON_ONCE(rc);
1872 }
1873 unlock_device_hotplug();
1874
1875 return rc;
1876}
1877EXPORT_SYMBOL_GPL(offline_and_remove_memory);
1878#endif /* CONFIG_MEMORY_HOTREMOVE */