Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
 
  55#include <linux/ethtool.h>
  56#include <linux/mm.h>
  57#include <linux/socket.h>
  58#include <linux/file.h>
  59#include <linux/net.h>
  60#include <linux/interrupt.h>
  61#include <linux/thread_info.h>
  62#include <linux/rcupdate.h>
  63#include <linux/netdevice.h>
  64#include <linux/proc_fs.h>
  65#include <linux/seq_file.h>
  66#include <linux/mutex.h>
  67#include <linux/if_bridge.h>
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/termios.h>
 104#include <linux/sockios.h>
 105#include <net/busy_poll.h>
 106#include <linux/errqueue.h>
 107#include <linux/ptp_clock_kernel.h>
 108
 109#ifdef CONFIG_NET_RX_BUSY_POLL
 110unsigned int sysctl_net_busy_read __read_mostly;
 111unsigned int sysctl_net_busy_poll __read_mostly;
 112#endif
 113
 114static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 115static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 116static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 117
 118static int sock_close(struct inode *inode, struct file *file);
 119static __poll_t sock_poll(struct file *file,
 120			      struct poll_table_struct *wait);
 121static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 122#ifdef CONFIG_COMPAT
 123static long compat_sock_ioctl(struct file *file,
 124			      unsigned int cmd, unsigned long arg);
 125#endif
 126static int sock_fasync(int fd, struct file *filp, int on);
 127static ssize_t sock_sendpage(struct file *file, struct page *page,
 128			     int offset, size_t size, loff_t *ppos, int more);
 129static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 130				struct pipe_inode_info *pipe, size_t len,
 131				unsigned int flags);
 132
 133#ifdef CONFIG_PROC_FS
 134static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 135{
 136	struct socket *sock = f->private_data;
 137
 138	if (sock->ops->show_fdinfo)
 139		sock->ops->show_fdinfo(m, sock);
 140}
 141#else
 142#define sock_show_fdinfo NULL
 143#endif
 144
 145/*
 146 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 147 *	in the operation structures but are done directly via the socketcall() multiplexor.
 148 */
 149
 150static const struct file_operations socket_file_ops = {
 151	.owner =	THIS_MODULE,
 152	.llseek =	no_llseek,
 153	.read_iter =	sock_read_iter,
 154	.write_iter =	sock_write_iter,
 155	.poll =		sock_poll,
 156	.unlocked_ioctl = sock_ioctl,
 157#ifdef CONFIG_COMPAT
 158	.compat_ioctl = compat_sock_ioctl,
 159#endif
 160	.mmap =		sock_mmap,
 161	.release =	sock_close,
 162	.fasync =	sock_fasync,
 163	.sendpage =	sock_sendpage,
 164	.splice_write = generic_splice_sendpage,
 165	.splice_read =	sock_splice_read,
 166	.show_fdinfo =	sock_show_fdinfo,
 167};
 168
 169static const char * const pf_family_names[] = {
 170	[PF_UNSPEC]	= "PF_UNSPEC",
 171	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
 172	[PF_INET]	= "PF_INET",
 173	[PF_AX25]	= "PF_AX25",
 174	[PF_IPX]	= "PF_IPX",
 175	[PF_APPLETALK]	= "PF_APPLETALK",
 176	[PF_NETROM]	= "PF_NETROM",
 177	[PF_BRIDGE]	= "PF_BRIDGE",
 178	[PF_ATMPVC]	= "PF_ATMPVC",
 179	[PF_X25]	= "PF_X25",
 180	[PF_INET6]	= "PF_INET6",
 181	[PF_ROSE]	= "PF_ROSE",
 182	[PF_DECnet]	= "PF_DECnet",
 183	[PF_NETBEUI]	= "PF_NETBEUI",
 184	[PF_SECURITY]	= "PF_SECURITY",
 185	[PF_KEY]	= "PF_KEY",
 186	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
 187	[PF_PACKET]	= "PF_PACKET",
 188	[PF_ASH]	= "PF_ASH",
 189	[PF_ECONET]	= "PF_ECONET",
 190	[PF_ATMSVC]	= "PF_ATMSVC",
 191	[PF_RDS]	= "PF_RDS",
 192	[PF_SNA]	= "PF_SNA",
 193	[PF_IRDA]	= "PF_IRDA",
 194	[PF_PPPOX]	= "PF_PPPOX",
 195	[PF_WANPIPE]	= "PF_WANPIPE",
 196	[PF_LLC]	= "PF_LLC",
 197	[PF_IB]		= "PF_IB",
 198	[PF_MPLS]	= "PF_MPLS",
 199	[PF_CAN]	= "PF_CAN",
 200	[PF_TIPC]	= "PF_TIPC",
 201	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
 202	[PF_IUCV]	= "PF_IUCV",
 203	[PF_RXRPC]	= "PF_RXRPC",
 204	[PF_ISDN]	= "PF_ISDN",
 205	[PF_PHONET]	= "PF_PHONET",
 206	[PF_IEEE802154]	= "PF_IEEE802154",
 207	[PF_CAIF]	= "PF_CAIF",
 208	[PF_ALG]	= "PF_ALG",
 209	[PF_NFC]	= "PF_NFC",
 210	[PF_VSOCK]	= "PF_VSOCK",
 211	[PF_KCM]	= "PF_KCM",
 212	[PF_QIPCRTR]	= "PF_QIPCRTR",
 213	[PF_SMC]	= "PF_SMC",
 214	[PF_XDP]	= "PF_XDP",
 
 215};
 216
 217/*
 218 *	The protocol list. Each protocol is registered in here.
 219 */
 220
 221static DEFINE_SPINLOCK(net_family_lock);
 222static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 223
 224/*
 225 * Support routines.
 226 * Move socket addresses back and forth across the kernel/user
 227 * divide and look after the messy bits.
 228 */
 229
 230/**
 231 *	move_addr_to_kernel	-	copy a socket address into kernel space
 232 *	@uaddr: Address in user space
 233 *	@kaddr: Address in kernel space
 234 *	@ulen: Length in user space
 235 *
 236 *	The address is copied into kernel space. If the provided address is
 237 *	too long an error code of -EINVAL is returned. If the copy gives
 238 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 239 */
 240
 241int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 242{
 243	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 244		return -EINVAL;
 245	if (ulen == 0)
 246		return 0;
 247	if (copy_from_user(kaddr, uaddr, ulen))
 248		return -EFAULT;
 249	return audit_sockaddr(ulen, kaddr);
 250}
 251
 252/**
 253 *	move_addr_to_user	-	copy an address to user space
 254 *	@kaddr: kernel space address
 255 *	@klen: length of address in kernel
 256 *	@uaddr: user space address
 257 *	@ulen: pointer to user length field
 258 *
 259 *	The value pointed to by ulen on entry is the buffer length available.
 260 *	This is overwritten with the buffer space used. -EINVAL is returned
 261 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 262 *	is returned if either the buffer or the length field are not
 263 *	accessible.
 264 *	After copying the data up to the limit the user specifies, the true
 265 *	length of the data is written over the length limit the user
 266 *	specified. Zero is returned for a success.
 267 */
 268
 269static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 270			     void __user *uaddr, int __user *ulen)
 271{
 272	int err;
 273	int len;
 274
 275	BUG_ON(klen > sizeof(struct sockaddr_storage));
 276	err = get_user(len, ulen);
 277	if (err)
 278		return err;
 279	if (len > klen)
 280		len = klen;
 281	if (len < 0)
 282		return -EINVAL;
 283	if (len) {
 284		if (audit_sockaddr(klen, kaddr))
 285			return -ENOMEM;
 286		if (copy_to_user(uaddr, kaddr, len))
 287			return -EFAULT;
 288	}
 289	/*
 290	 *      "fromlen shall refer to the value before truncation.."
 291	 *                      1003.1g
 292	 */
 293	return __put_user(klen, ulen);
 294}
 295
 296static struct kmem_cache *sock_inode_cachep __ro_after_init;
 297
 298static struct inode *sock_alloc_inode(struct super_block *sb)
 299{
 300	struct socket_alloc *ei;
 301
 302	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 303	if (!ei)
 304		return NULL;
 305	init_waitqueue_head(&ei->socket.wq.wait);
 306	ei->socket.wq.fasync_list = NULL;
 307	ei->socket.wq.flags = 0;
 308
 309	ei->socket.state = SS_UNCONNECTED;
 310	ei->socket.flags = 0;
 311	ei->socket.ops = NULL;
 312	ei->socket.sk = NULL;
 313	ei->socket.file = NULL;
 314
 315	return &ei->vfs_inode;
 316}
 317
 318static void sock_free_inode(struct inode *inode)
 319{
 320	struct socket_alloc *ei;
 321
 322	ei = container_of(inode, struct socket_alloc, vfs_inode);
 323	kmem_cache_free(sock_inode_cachep, ei);
 324}
 325
 326static void init_once(void *foo)
 327{
 328	struct socket_alloc *ei = (struct socket_alloc *)foo;
 329
 330	inode_init_once(&ei->vfs_inode);
 331}
 332
 333static void init_inodecache(void)
 334{
 335	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 336					      sizeof(struct socket_alloc),
 337					      0,
 338					      (SLAB_HWCACHE_ALIGN |
 339					       SLAB_RECLAIM_ACCOUNT |
 340					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 341					      init_once);
 342	BUG_ON(sock_inode_cachep == NULL);
 343}
 344
 345static const struct super_operations sockfs_ops = {
 346	.alloc_inode	= sock_alloc_inode,
 347	.free_inode	= sock_free_inode,
 348	.statfs		= simple_statfs,
 349};
 350
 351/*
 352 * sockfs_dname() is called from d_path().
 353 */
 354static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 355{
 356	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 357				d_inode(dentry)->i_ino);
 358}
 359
 360static const struct dentry_operations sockfs_dentry_operations = {
 361	.d_dname  = sockfs_dname,
 362};
 363
 364static int sockfs_xattr_get(const struct xattr_handler *handler,
 365			    struct dentry *dentry, struct inode *inode,
 366			    const char *suffix, void *value, size_t size)
 367{
 368	if (value) {
 369		if (dentry->d_name.len + 1 > size)
 370			return -ERANGE;
 371		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 372	}
 373	return dentry->d_name.len + 1;
 374}
 375
 376#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 377#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 378#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 379
 380static const struct xattr_handler sockfs_xattr_handler = {
 381	.name = XATTR_NAME_SOCKPROTONAME,
 382	.get = sockfs_xattr_get,
 383};
 384
 385static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 386				     struct user_namespace *mnt_userns,
 387				     struct dentry *dentry, struct inode *inode,
 388				     const char *suffix, const void *value,
 389				     size_t size, int flags)
 390{
 391	/* Handled by LSM. */
 392	return -EAGAIN;
 393}
 394
 395static const struct xattr_handler sockfs_security_xattr_handler = {
 396	.prefix = XATTR_SECURITY_PREFIX,
 397	.set = sockfs_security_xattr_set,
 398};
 399
 400static const struct xattr_handler *sockfs_xattr_handlers[] = {
 401	&sockfs_xattr_handler,
 402	&sockfs_security_xattr_handler,
 403	NULL
 404};
 405
 406static int sockfs_init_fs_context(struct fs_context *fc)
 407{
 408	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 409	if (!ctx)
 410		return -ENOMEM;
 411	ctx->ops = &sockfs_ops;
 412	ctx->dops = &sockfs_dentry_operations;
 413	ctx->xattr = sockfs_xattr_handlers;
 414	return 0;
 415}
 416
 417static struct vfsmount *sock_mnt __read_mostly;
 418
 419static struct file_system_type sock_fs_type = {
 420	.name =		"sockfs",
 421	.init_fs_context = sockfs_init_fs_context,
 422	.kill_sb =	kill_anon_super,
 423};
 424
 425/*
 426 *	Obtains the first available file descriptor and sets it up for use.
 427 *
 428 *	These functions create file structures and maps them to fd space
 429 *	of the current process. On success it returns file descriptor
 430 *	and file struct implicitly stored in sock->file.
 431 *	Note that another thread may close file descriptor before we return
 432 *	from this function. We use the fact that now we do not refer
 433 *	to socket after mapping. If one day we will need it, this
 434 *	function will increment ref. count on file by 1.
 435 *
 436 *	In any case returned fd MAY BE not valid!
 437 *	This race condition is unavoidable
 438 *	with shared fd spaces, we cannot solve it inside kernel,
 439 *	but we take care of internal coherence yet.
 440 */
 441
 442/**
 443 *	sock_alloc_file - Bind a &socket to a &file
 444 *	@sock: socket
 445 *	@flags: file status flags
 446 *	@dname: protocol name
 447 *
 448 *	Returns the &file bound with @sock, implicitly storing it
 449 *	in sock->file. If dname is %NULL, sets to "".
 450 *	On failure the return is a ERR pointer (see linux/err.h).
 451 *	This function uses GFP_KERNEL internally.
 452 */
 453
 454struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 455{
 456	struct file *file;
 457
 458	if (!dname)
 459		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 460
 461	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 462				O_RDWR | (flags & O_NONBLOCK),
 463				&socket_file_ops);
 464	if (IS_ERR(file)) {
 465		sock_release(sock);
 466		return file;
 467	}
 468
 469	sock->file = file;
 470	file->private_data = sock;
 471	stream_open(SOCK_INODE(sock), file);
 472	return file;
 473}
 474EXPORT_SYMBOL(sock_alloc_file);
 475
 476static int sock_map_fd(struct socket *sock, int flags)
 477{
 478	struct file *newfile;
 479	int fd = get_unused_fd_flags(flags);
 480	if (unlikely(fd < 0)) {
 481		sock_release(sock);
 482		return fd;
 483	}
 484
 485	newfile = sock_alloc_file(sock, flags, NULL);
 486	if (!IS_ERR(newfile)) {
 487		fd_install(fd, newfile);
 488		return fd;
 489	}
 490
 491	put_unused_fd(fd);
 492	return PTR_ERR(newfile);
 493}
 494
 495/**
 496 *	sock_from_file - Return the &socket bounded to @file.
 497 *	@file: file
 498 *
 499 *	On failure returns %NULL.
 500 */
 501
 502struct socket *sock_from_file(struct file *file)
 503{
 504	if (file->f_op == &socket_file_ops)
 505		return file->private_data;	/* set in sock_map_fd */
 506
 507	return NULL;
 508}
 509EXPORT_SYMBOL(sock_from_file);
 510
 511/**
 512 *	sockfd_lookup - Go from a file number to its socket slot
 513 *	@fd: file handle
 514 *	@err: pointer to an error code return
 515 *
 516 *	The file handle passed in is locked and the socket it is bound
 517 *	to is returned. If an error occurs the err pointer is overwritten
 518 *	with a negative errno code and NULL is returned. The function checks
 519 *	for both invalid handles and passing a handle which is not a socket.
 520 *
 521 *	On a success the socket object pointer is returned.
 522 */
 523
 524struct socket *sockfd_lookup(int fd, int *err)
 525{
 526	struct file *file;
 527	struct socket *sock;
 528
 529	file = fget(fd);
 530	if (!file) {
 531		*err = -EBADF;
 532		return NULL;
 533	}
 534
 535	sock = sock_from_file(file);
 536	if (!sock) {
 537		*err = -ENOTSOCK;
 538		fput(file);
 539	}
 540	return sock;
 541}
 542EXPORT_SYMBOL(sockfd_lookup);
 543
 544static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 545{
 546	struct fd f = fdget(fd);
 547	struct socket *sock;
 548
 549	*err = -EBADF;
 550	if (f.file) {
 551		sock = sock_from_file(f.file);
 552		if (likely(sock)) {
 553			*fput_needed = f.flags & FDPUT_FPUT;
 554			return sock;
 555		}
 556		*err = -ENOTSOCK;
 557		fdput(f);
 558	}
 559	return NULL;
 560}
 561
 562static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 563				size_t size)
 564{
 565	ssize_t len;
 566	ssize_t used = 0;
 567
 568	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 569	if (len < 0)
 570		return len;
 571	used += len;
 572	if (buffer) {
 573		if (size < used)
 574			return -ERANGE;
 575		buffer += len;
 576	}
 577
 578	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 579	used += len;
 580	if (buffer) {
 581		if (size < used)
 582			return -ERANGE;
 583		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 584		buffer += len;
 585	}
 586
 587	return used;
 588}
 589
 590static int sockfs_setattr(struct user_namespace *mnt_userns,
 591			  struct dentry *dentry, struct iattr *iattr)
 592{
 593	int err = simple_setattr(&init_user_ns, dentry, iattr);
 594
 595	if (!err && (iattr->ia_valid & ATTR_UID)) {
 596		struct socket *sock = SOCKET_I(d_inode(dentry));
 597
 598		if (sock->sk)
 599			sock->sk->sk_uid = iattr->ia_uid;
 600		else
 601			err = -ENOENT;
 602	}
 603
 604	return err;
 605}
 606
 607static const struct inode_operations sockfs_inode_ops = {
 608	.listxattr = sockfs_listxattr,
 609	.setattr = sockfs_setattr,
 610};
 611
 612/**
 613 *	sock_alloc - allocate a socket
 614 *
 615 *	Allocate a new inode and socket object. The two are bound together
 616 *	and initialised. The socket is then returned. If we are out of inodes
 617 *	NULL is returned. This functions uses GFP_KERNEL internally.
 618 */
 619
 620struct socket *sock_alloc(void)
 621{
 622	struct inode *inode;
 623	struct socket *sock;
 624
 625	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 626	if (!inode)
 627		return NULL;
 628
 629	sock = SOCKET_I(inode);
 630
 631	inode->i_ino = get_next_ino();
 632	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 633	inode->i_uid = current_fsuid();
 634	inode->i_gid = current_fsgid();
 635	inode->i_op = &sockfs_inode_ops;
 636
 637	return sock;
 638}
 639EXPORT_SYMBOL(sock_alloc);
 640
 641static void __sock_release(struct socket *sock, struct inode *inode)
 642{
 643	if (sock->ops) {
 644		struct module *owner = sock->ops->owner;
 645
 646		if (inode)
 647			inode_lock(inode);
 648		sock->ops->release(sock);
 649		sock->sk = NULL;
 650		if (inode)
 651			inode_unlock(inode);
 652		sock->ops = NULL;
 653		module_put(owner);
 654	}
 655
 656	if (sock->wq.fasync_list)
 657		pr_err("%s: fasync list not empty!\n", __func__);
 658
 659	if (!sock->file) {
 660		iput(SOCK_INODE(sock));
 661		return;
 662	}
 663	sock->file = NULL;
 664}
 665
 666/**
 667 *	sock_release - close a socket
 668 *	@sock: socket to close
 669 *
 670 *	The socket is released from the protocol stack if it has a release
 671 *	callback, and the inode is then released if the socket is bound to
 672 *	an inode not a file.
 673 */
 674void sock_release(struct socket *sock)
 675{
 676	__sock_release(sock, NULL);
 677}
 678EXPORT_SYMBOL(sock_release);
 679
 680void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 681{
 682	u8 flags = *tx_flags;
 683
 684	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 685		flags |= SKBTX_HW_TSTAMP;
 686
 
 
 
 
 
 
 
 
 
 687	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 688		flags |= SKBTX_SW_TSTAMP;
 689
 690	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 691		flags |= SKBTX_SCHED_TSTAMP;
 692
 693	*tx_flags = flags;
 694}
 695EXPORT_SYMBOL(__sock_tx_timestamp);
 696
 697INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 698					   size_t));
 699INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 700					    size_t));
 701static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 702{
 703	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 704				     inet_sendmsg, sock, msg,
 705				     msg_data_left(msg));
 706	BUG_ON(ret == -EIOCBQUEUED);
 707	return ret;
 708}
 709
 710/**
 711 *	sock_sendmsg - send a message through @sock
 712 *	@sock: socket
 713 *	@msg: message to send
 714 *
 715 *	Sends @msg through @sock, passing through LSM.
 716 *	Returns the number of bytes sent, or an error code.
 717 */
 718int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 719{
 720	int err = security_socket_sendmsg(sock, msg,
 721					  msg_data_left(msg));
 722
 723	return err ?: sock_sendmsg_nosec(sock, msg);
 724}
 725EXPORT_SYMBOL(sock_sendmsg);
 726
 727/**
 728 *	kernel_sendmsg - send a message through @sock (kernel-space)
 729 *	@sock: socket
 730 *	@msg: message header
 731 *	@vec: kernel vec
 732 *	@num: vec array length
 733 *	@size: total message data size
 734 *
 735 *	Builds the message data with @vec and sends it through @sock.
 736 *	Returns the number of bytes sent, or an error code.
 737 */
 738
 739int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 740		   struct kvec *vec, size_t num, size_t size)
 741{
 742	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 743	return sock_sendmsg(sock, msg);
 744}
 745EXPORT_SYMBOL(kernel_sendmsg);
 746
 747/**
 748 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 749 *	@sk: sock
 750 *	@msg: message header
 751 *	@vec: output s/g array
 752 *	@num: output s/g array length
 753 *	@size: total message data size
 754 *
 755 *	Builds the message data with @vec and sends it through @sock.
 756 *	Returns the number of bytes sent, or an error code.
 757 *	Caller must hold @sk.
 758 */
 759
 760int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 761			  struct kvec *vec, size_t num, size_t size)
 762{
 763	struct socket *sock = sk->sk_socket;
 764
 765	if (!sock->ops->sendmsg_locked)
 766		return sock_no_sendmsg_locked(sk, msg, size);
 767
 768	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 769
 770	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 771}
 772EXPORT_SYMBOL(kernel_sendmsg_locked);
 773
 774static bool skb_is_err_queue(const struct sk_buff *skb)
 775{
 776	/* pkt_type of skbs enqueued on the error queue are set to
 777	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 778	 * in recvmsg, since skbs received on a local socket will never
 779	 * have a pkt_type of PACKET_OUTGOING.
 780	 */
 781	return skb->pkt_type == PACKET_OUTGOING;
 782}
 783
 784/* On transmit, software and hardware timestamps are returned independently.
 785 * As the two skb clones share the hardware timestamp, which may be updated
 786 * before the software timestamp is received, a hardware TX timestamp may be
 787 * returned only if there is no software TX timestamp. Ignore false software
 788 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 790 * hardware timestamp.
 791 */
 792static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 793{
 794	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 795}
 796
 797static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798{
 799	struct scm_ts_pktinfo ts_pktinfo;
 800	struct net_device *orig_dev;
 801
 802	if (!skb_mac_header_was_set(skb))
 803		return;
 804
 805	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 806
 807	rcu_read_lock();
 808	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 809	if (orig_dev)
 810		ts_pktinfo.if_index = orig_dev->ifindex;
 811	rcu_read_unlock();
 
 
 
 812
 813	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 814	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 815		 sizeof(ts_pktinfo), &ts_pktinfo);
 816}
 817
 818/*
 819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 820 */
 821void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 822	struct sk_buff *skb)
 823{
 824	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 825	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 826	struct scm_timestamping_internal tss;
 827
 828	int empty = 1, false_tstamp = 0;
 829	struct skb_shared_hwtstamps *shhwtstamps =
 830		skb_hwtstamps(skb);
 
 
 831
 832	/* Race occurred between timestamp enabling and packet
 833	   receiving.  Fill in the current time for now. */
 834	if (need_software_tstamp && skb->tstamp == 0) {
 835		__net_timestamp(skb);
 836		false_tstamp = 1;
 837	}
 838
 839	if (need_software_tstamp) {
 840		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 841			if (new_tstamp) {
 842				struct __kernel_sock_timeval tv;
 843
 844				skb_get_new_timestamp(skb, &tv);
 845				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 846					 sizeof(tv), &tv);
 847			} else {
 848				struct __kernel_old_timeval tv;
 849
 850				skb_get_timestamp(skb, &tv);
 851				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 852					 sizeof(tv), &tv);
 853			}
 854		} else {
 855			if (new_tstamp) {
 856				struct __kernel_timespec ts;
 857
 858				skb_get_new_timestampns(skb, &ts);
 859				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 860					 sizeof(ts), &ts);
 861			} else {
 862				struct __kernel_old_timespec ts;
 863
 864				skb_get_timestampns(skb, &ts);
 865				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 866					 sizeof(ts), &ts);
 867			}
 868		}
 869	}
 870
 871	memset(&tss, 0, sizeof(tss));
 872	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 873	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 874		empty = 0;
 875	if (shhwtstamps &&
 876	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 877	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
 
 
 
 
 
 
 878		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
 879			ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
 
 880
 881		if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
 882					     tss.ts + 2)) {
 883			empty = 0;
 884
 885			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 886			    !skb_is_err_queue(skb))
 887				put_ts_pktinfo(msg, skb);
 888		}
 889	}
 890	if (!empty) {
 891		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 892			put_cmsg_scm_timestamping64(msg, &tss);
 893		else
 894			put_cmsg_scm_timestamping(msg, &tss);
 895
 896		if (skb_is_err_queue(skb) && skb->len &&
 897		    SKB_EXT_ERR(skb)->opt_stats)
 898			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 899				 skb->len, skb->data);
 900	}
 901}
 902EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 903
 904void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 905	struct sk_buff *skb)
 906{
 907	int ack;
 908
 909	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 910		return;
 911	if (!skb->wifi_acked_valid)
 912		return;
 913
 914	ack = skb->wifi_acked;
 915
 916	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 917}
 918EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 919
 920static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 921				   struct sk_buff *skb)
 922{
 923	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 924		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 925			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 926}
 927
 928void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 929	struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 930{
 931	sock_recv_timestamp(msg, sk, skb);
 932	sock_recv_drops(msg, sk, skb);
 
 933}
 934EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 935
 936INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 937					   size_t, int));
 938INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 939					    size_t, int));
 940static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 941				     int flags)
 942{
 943	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 944				  inet_recvmsg, sock, msg, msg_data_left(msg),
 945				  flags);
 946}
 947
 948/**
 949 *	sock_recvmsg - receive a message from @sock
 950 *	@sock: socket
 951 *	@msg: message to receive
 952 *	@flags: message flags
 953 *
 954 *	Receives @msg from @sock, passing through LSM. Returns the total number
 955 *	of bytes received, or an error.
 956 */
 957int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 958{
 959	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 960
 961	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 962}
 963EXPORT_SYMBOL(sock_recvmsg);
 964
 965/**
 966 *	kernel_recvmsg - Receive a message from a socket (kernel space)
 967 *	@sock: The socket to receive the message from
 968 *	@msg: Received message
 969 *	@vec: Input s/g array for message data
 970 *	@num: Size of input s/g array
 971 *	@size: Number of bytes to read
 972 *	@flags: Message flags (MSG_DONTWAIT, etc...)
 973 *
 974 *	On return the msg structure contains the scatter/gather array passed in the
 975 *	vec argument. The array is modified so that it consists of the unfilled
 976 *	portion of the original array.
 977 *
 978 *	The returned value is the total number of bytes received, or an error.
 979 */
 980
 981int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 982		   struct kvec *vec, size_t num, size_t size, int flags)
 983{
 984	msg->msg_control_is_user = false;
 985	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 986	return sock_recvmsg(sock, msg, flags);
 987}
 988EXPORT_SYMBOL(kernel_recvmsg);
 989
 990static ssize_t sock_sendpage(struct file *file, struct page *page,
 991			     int offset, size_t size, loff_t *ppos, int more)
 992{
 993	struct socket *sock;
 994	int flags;
 995
 996	sock = file->private_data;
 997
 998	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 999	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000	flags |= more;
1001
1002	return kernel_sendpage(sock, page, offset, size, flags);
1003}
1004
1005static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006				struct pipe_inode_info *pipe, size_t len,
1007				unsigned int flags)
1008{
1009	struct socket *sock = file->private_data;
1010
1011	if (unlikely(!sock->ops->splice_read))
1012		return generic_file_splice_read(file, ppos, pipe, len, flags);
1013
1014	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015}
1016
1017static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018{
1019	struct file *file = iocb->ki_filp;
1020	struct socket *sock = file->private_data;
1021	struct msghdr msg = {.msg_iter = *to,
1022			     .msg_iocb = iocb};
1023	ssize_t res;
1024
1025	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026		msg.msg_flags = MSG_DONTWAIT;
1027
1028	if (iocb->ki_pos != 0)
1029		return -ESPIPE;
1030
1031	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1032		return 0;
1033
1034	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035	*to = msg.msg_iter;
1036	return res;
1037}
1038
1039static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040{
1041	struct file *file = iocb->ki_filp;
1042	struct socket *sock = file->private_data;
1043	struct msghdr msg = {.msg_iter = *from,
1044			     .msg_iocb = iocb};
1045	ssize_t res;
1046
1047	if (iocb->ki_pos != 0)
1048		return -ESPIPE;
1049
1050	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051		msg.msg_flags = MSG_DONTWAIT;
1052
1053	if (sock->type == SOCK_SEQPACKET)
1054		msg.msg_flags |= MSG_EOR;
1055
1056	res = sock_sendmsg(sock, &msg);
1057	*from = msg.msg_iter;
1058	return res;
1059}
1060
1061/*
1062 * Atomic setting of ioctl hooks to avoid race
1063 * with module unload.
1064 */
1065
1066static DEFINE_MUTEX(br_ioctl_mutex);
1067static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068
1069void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 
 
 
 
1070{
1071	mutex_lock(&br_ioctl_mutex);
1072	br_ioctl_hook = hook;
1073	mutex_unlock(&br_ioctl_mutex);
1074}
1075EXPORT_SYMBOL(brioctl_set);
1076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077static DEFINE_MUTEX(vlan_ioctl_mutex);
1078static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079
1080void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081{
1082	mutex_lock(&vlan_ioctl_mutex);
1083	vlan_ioctl_hook = hook;
1084	mutex_unlock(&vlan_ioctl_mutex);
1085}
1086EXPORT_SYMBOL(vlan_ioctl_set);
1087
1088static long sock_do_ioctl(struct net *net, struct socket *sock,
1089			  unsigned int cmd, unsigned long arg)
1090{
 
 
1091	int err;
1092	void __user *argp = (void __user *)arg;
 
1093
1094	err = sock->ops->ioctl(sock, cmd, arg);
1095
1096	/*
1097	 * If this ioctl is unknown try to hand it down
1098	 * to the NIC driver.
1099	 */
1100	if (err != -ENOIOCTLCMD)
1101		return err;
1102
1103	if (cmd == SIOCGIFCONF) {
1104		struct ifconf ifc;
1105		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1106			return -EFAULT;
1107		rtnl_lock();
1108		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1109		rtnl_unlock();
1110		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1111			err = -EFAULT;
1112	} else if (is_socket_ioctl_cmd(cmd)) {
1113		struct ifreq ifr;
1114		bool need_copyout;
1115		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1116			return -EFAULT;
1117		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1118		if (!err && need_copyout)
1119			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1120				return -EFAULT;
1121	} else {
1122		err = -ENOTTY;
1123	}
1124	return err;
1125}
1126
1127/*
1128 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1129 *	what to do with it - that's up to the protocol still.
1130 */
1131
1132static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1133{
1134	struct socket *sock;
1135	struct sock *sk;
1136	void __user *argp = (void __user *)arg;
1137	int pid, err;
1138	struct net *net;
1139
1140	sock = file->private_data;
1141	sk = sock->sk;
1142	net = sock_net(sk);
1143	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1144		struct ifreq ifr;
 
1145		bool need_copyout;
1146		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1147			return -EFAULT;
1148		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1149		if (!err && need_copyout)
1150			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1151				return -EFAULT;
1152	} else
1153#ifdef CONFIG_WEXT_CORE
1154	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1155		err = wext_handle_ioctl(net, cmd, argp);
1156	} else
1157#endif
1158		switch (cmd) {
1159		case FIOSETOWN:
1160		case SIOCSPGRP:
1161			err = -EFAULT;
1162			if (get_user(pid, (int __user *)argp))
1163				break;
1164			err = f_setown(sock->file, pid, 1);
1165			break;
1166		case FIOGETOWN:
1167		case SIOCGPGRP:
1168			err = put_user(f_getown(sock->file),
1169				       (int __user *)argp);
1170			break;
1171		case SIOCGIFBR:
1172		case SIOCSIFBR:
1173		case SIOCBRADDBR:
1174		case SIOCBRDELBR:
1175			err = -ENOPKG;
1176			if (!br_ioctl_hook)
1177				request_module("bridge");
1178
1179			mutex_lock(&br_ioctl_mutex);
1180			if (br_ioctl_hook)
1181				err = br_ioctl_hook(net, cmd, argp);
1182			mutex_unlock(&br_ioctl_mutex);
1183			break;
1184		case SIOCGIFVLAN:
1185		case SIOCSIFVLAN:
1186			err = -ENOPKG;
1187			if (!vlan_ioctl_hook)
1188				request_module("8021q");
1189
1190			mutex_lock(&vlan_ioctl_mutex);
1191			if (vlan_ioctl_hook)
1192				err = vlan_ioctl_hook(net, argp);
1193			mutex_unlock(&vlan_ioctl_mutex);
1194			break;
1195		case SIOCGSKNS:
1196			err = -EPERM;
1197			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1198				break;
1199
1200			err = open_related_ns(&net->ns, get_net_ns);
1201			break;
1202		case SIOCGSTAMP_OLD:
1203		case SIOCGSTAMPNS_OLD:
1204			if (!sock->ops->gettstamp) {
1205				err = -ENOIOCTLCMD;
1206				break;
1207			}
1208			err = sock->ops->gettstamp(sock, argp,
1209						   cmd == SIOCGSTAMP_OLD,
1210						   !IS_ENABLED(CONFIG_64BIT));
1211			break;
1212		case SIOCGSTAMP_NEW:
1213		case SIOCGSTAMPNS_NEW:
1214			if (!sock->ops->gettstamp) {
1215				err = -ENOIOCTLCMD;
1216				break;
1217			}
1218			err = sock->ops->gettstamp(sock, argp,
1219						   cmd == SIOCGSTAMP_NEW,
1220						   false);
1221			break;
 
 
 
 
 
1222		default:
1223			err = sock_do_ioctl(net, sock, cmd, arg);
1224			break;
1225		}
1226	return err;
1227}
1228
1229/**
1230 *	sock_create_lite - creates a socket
1231 *	@family: protocol family (AF_INET, ...)
1232 *	@type: communication type (SOCK_STREAM, ...)
1233 *	@protocol: protocol (0, ...)
1234 *	@res: new socket
1235 *
1236 *	Creates a new socket and assigns it to @res, passing through LSM.
1237 *	The new socket initialization is not complete, see kernel_accept().
1238 *	Returns 0 or an error. On failure @res is set to %NULL.
1239 *	This function internally uses GFP_KERNEL.
1240 */
1241
1242int sock_create_lite(int family, int type, int protocol, struct socket **res)
1243{
1244	int err;
1245	struct socket *sock = NULL;
1246
1247	err = security_socket_create(family, type, protocol, 1);
1248	if (err)
1249		goto out;
1250
1251	sock = sock_alloc();
1252	if (!sock) {
1253		err = -ENOMEM;
1254		goto out;
1255	}
1256
1257	sock->type = type;
1258	err = security_socket_post_create(sock, family, type, protocol, 1);
1259	if (err)
1260		goto out_release;
1261
1262out:
1263	*res = sock;
1264	return err;
1265out_release:
1266	sock_release(sock);
1267	sock = NULL;
1268	goto out;
1269}
1270EXPORT_SYMBOL(sock_create_lite);
1271
1272/* No kernel lock held - perfect */
1273static __poll_t sock_poll(struct file *file, poll_table *wait)
1274{
1275	struct socket *sock = file->private_data;
1276	__poll_t events = poll_requested_events(wait), flag = 0;
1277
1278	if (!sock->ops->poll)
1279		return 0;
1280
1281	if (sk_can_busy_loop(sock->sk)) {
1282		/* poll once if requested by the syscall */
1283		if (events & POLL_BUSY_LOOP)
1284			sk_busy_loop(sock->sk, 1);
1285
1286		/* if this socket can poll_ll, tell the system call */
1287		flag = POLL_BUSY_LOOP;
1288	}
1289
1290	return sock->ops->poll(file, sock, wait) | flag;
1291}
1292
1293static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1294{
1295	struct socket *sock = file->private_data;
1296
1297	return sock->ops->mmap(file, sock, vma);
1298}
1299
1300static int sock_close(struct inode *inode, struct file *filp)
1301{
1302	__sock_release(SOCKET_I(inode), inode);
1303	return 0;
1304}
1305
1306/*
1307 *	Update the socket async list
1308 *
1309 *	Fasync_list locking strategy.
1310 *
1311 *	1. fasync_list is modified only under process context socket lock
1312 *	   i.e. under semaphore.
1313 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1314 *	   or under socket lock
1315 */
1316
1317static int sock_fasync(int fd, struct file *filp, int on)
1318{
1319	struct socket *sock = filp->private_data;
1320	struct sock *sk = sock->sk;
1321	struct socket_wq *wq = &sock->wq;
1322
1323	if (sk == NULL)
1324		return -EINVAL;
1325
1326	lock_sock(sk);
1327	fasync_helper(fd, filp, on, &wq->fasync_list);
1328
1329	if (!wq->fasync_list)
1330		sock_reset_flag(sk, SOCK_FASYNC);
1331	else
1332		sock_set_flag(sk, SOCK_FASYNC);
1333
1334	release_sock(sk);
1335	return 0;
1336}
1337
1338/* This function may be called only under rcu_lock */
1339
1340int sock_wake_async(struct socket_wq *wq, int how, int band)
1341{
1342	if (!wq || !wq->fasync_list)
1343		return -1;
1344
1345	switch (how) {
1346	case SOCK_WAKE_WAITD:
1347		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1348			break;
1349		goto call_kill;
1350	case SOCK_WAKE_SPACE:
1351		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1352			break;
1353		fallthrough;
1354	case SOCK_WAKE_IO:
1355call_kill:
1356		kill_fasync(&wq->fasync_list, SIGIO, band);
1357		break;
1358	case SOCK_WAKE_URG:
1359		kill_fasync(&wq->fasync_list, SIGURG, band);
1360	}
1361
1362	return 0;
1363}
1364EXPORT_SYMBOL(sock_wake_async);
1365
1366/**
1367 *	__sock_create - creates a socket
1368 *	@net: net namespace
1369 *	@family: protocol family (AF_INET, ...)
1370 *	@type: communication type (SOCK_STREAM, ...)
1371 *	@protocol: protocol (0, ...)
1372 *	@res: new socket
1373 *	@kern: boolean for kernel space sockets
1374 *
1375 *	Creates a new socket and assigns it to @res, passing through LSM.
1376 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1377 *	be set to true if the socket resides in kernel space.
1378 *	This function internally uses GFP_KERNEL.
1379 */
1380
1381int __sock_create(struct net *net, int family, int type, int protocol,
1382			 struct socket **res, int kern)
1383{
1384	int err;
1385	struct socket *sock;
1386	const struct net_proto_family *pf;
1387
1388	/*
1389	 *      Check protocol is in range
1390	 */
1391	if (family < 0 || family >= NPROTO)
1392		return -EAFNOSUPPORT;
1393	if (type < 0 || type >= SOCK_MAX)
1394		return -EINVAL;
1395
1396	/* Compatibility.
1397
1398	   This uglymoron is moved from INET layer to here to avoid
1399	   deadlock in module load.
1400	 */
1401	if (family == PF_INET && type == SOCK_PACKET) {
1402		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1403			     current->comm);
1404		family = PF_PACKET;
1405	}
1406
1407	err = security_socket_create(family, type, protocol, kern);
1408	if (err)
1409		return err;
1410
1411	/*
1412	 *	Allocate the socket and allow the family to set things up. if
1413	 *	the protocol is 0, the family is instructed to select an appropriate
1414	 *	default.
1415	 */
1416	sock = sock_alloc();
1417	if (!sock) {
1418		net_warn_ratelimited("socket: no more sockets\n");
1419		return -ENFILE;	/* Not exactly a match, but its the
1420				   closest posix thing */
1421	}
1422
1423	sock->type = type;
1424
1425#ifdef CONFIG_MODULES
1426	/* Attempt to load a protocol module if the find failed.
1427	 *
1428	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1429	 * requested real, full-featured networking support upon configuration.
1430	 * Otherwise module support will break!
1431	 */
1432	if (rcu_access_pointer(net_families[family]) == NULL)
1433		request_module("net-pf-%d", family);
1434#endif
1435
1436	rcu_read_lock();
1437	pf = rcu_dereference(net_families[family]);
1438	err = -EAFNOSUPPORT;
1439	if (!pf)
1440		goto out_release;
1441
1442	/*
1443	 * We will call the ->create function, that possibly is in a loadable
1444	 * module, so we have to bump that loadable module refcnt first.
1445	 */
1446	if (!try_module_get(pf->owner))
1447		goto out_release;
1448
1449	/* Now protected by module ref count */
1450	rcu_read_unlock();
1451
1452	err = pf->create(net, sock, protocol, kern);
1453	if (err < 0)
1454		goto out_module_put;
1455
1456	/*
1457	 * Now to bump the refcnt of the [loadable] module that owns this
1458	 * socket at sock_release time we decrement its refcnt.
1459	 */
1460	if (!try_module_get(sock->ops->owner))
1461		goto out_module_busy;
1462
1463	/*
1464	 * Now that we're done with the ->create function, the [loadable]
1465	 * module can have its refcnt decremented
1466	 */
1467	module_put(pf->owner);
1468	err = security_socket_post_create(sock, family, type, protocol, kern);
1469	if (err)
1470		goto out_sock_release;
1471	*res = sock;
1472
1473	return 0;
1474
1475out_module_busy:
1476	err = -EAFNOSUPPORT;
1477out_module_put:
1478	sock->ops = NULL;
1479	module_put(pf->owner);
1480out_sock_release:
1481	sock_release(sock);
1482	return err;
1483
1484out_release:
1485	rcu_read_unlock();
1486	goto out_sock_release;
1487}
1488EXPORT_SYMBOL(__sock_create);
1489
1490/**
1491 *	sock_create - creates a socket
1492 *	@family: protocol family (AF_INET, ...)
1493 *	@type: communication type (SOCK_STREAM, ...)
1494 *	@protocol: protocol (0, ...)
1495 *	@res: new socket
1496 *
1497 *	A wrapper around __sock_create().
1498 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1499 */
1500
1501int sock_create(int family, int type, int protocol, struct socket **res)
1502{
1503	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1504}
1505EXPORT_SYMBOL(sock_create);
1506
1507/**
1508 *	sock_create_kern - creates a socket (kernel space)
1509 *	@net: net namespace
1510 *	@family: protocol family (AF_INET, ...)
1511 *	@type: communication type (SOCK_STREAM, ...)
1512 *	@protocol: protocol (0, ...)
1513 *	@res: new socket
1514 *
1515 *	A wrapper around __sock_create().
1516 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1517 */
1518
1519int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1520{
1521	return __sock_create(net, family, type, protocol, res, 1);
1522}
1523EXPORT_SYMBOL(sock_create_kern);
1524
1525int __sys_socket(int family, int type, int protocol)
1526{
1527	int retval;
1528	struct socket *sock;
1529	int flags;
1530
1531	/* Check the SOCK_* constants for consistency.  */
1532	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1533	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1534	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1535	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1536
1537	flags = type & ~SOCK_TYPE_MASK;
1538	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1539		return -EINVAL;
1540	type &= SOCK_TYPE_MASK;
1541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1543		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1544
1545	retval = sock_create(family, type, protocol, &sock);
1546	if (retval < 0)
1547		return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548
1549	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1550}
1551
1552SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1553{
1554	return __sys_socket(family, type, protocol);
1555}
1556
1557/*
1558 *	Create a pair of connected sockets.
1559 */
1560
1561int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1562{
1563	struct socket *sock1, *sock2;
1564	int fd1, fd2, err;
1565	struct file *newfile1, *newfile2;
1566	int flags;
1567
1568	flags = type & ~SOCK_TYPE_MASK;
1569	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570		return -EINVAL;
1571	type &= SOCK_TYPE_MASK;
1572
1573	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1574		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1575
1576	/*
1577	 * reserve descriptors and make sure we won't fail
1578	 * to return them to userland.
1579	 */
1580	fd1 = get_unused_fd_flags(flags);
1581	if (unlikely(fd1 < 0))
1582		return fd1;
1583
1584	fd2 = get_unused_fd_flags(flags);
1585	if (unlikely(fd2 < 0)) {
1586		put_unused_fd(fd1);
1587		return fd2;
1588	}
1589
1590	err = put_user(fd1, &usockvec[0]);
1591	if (err)
1592		goto out;
1593
1594	err = put_user(fd2, &usockvec[1]);
1595	if (err)
1596		goto out;
1597
1598	/*
1599	 * Obtain the first socket and check if the underlying protocol
1600	 * supports the socketpair call.
1601	 */
1602
1603	err = sock_create(family, type, protocol, &sock1);
1604	if (unlikely(err < 0))
1605		goto out;
1606
1607	err = sock_create(family, type, protocol, &sock2);
1608	if (unlikely(err < 0)) {
1609		sock_release(sock1);
1610		goto out;
1611	}
1612
1613	err = security_socket_socketpair(sock1, sock2);
1614	if (unlikely(err)) {
1615		sock_release(sock2);
1616		sock_release(sock1);
1617		goto out;
1618	}
1619
1620	err = sock1->ops->socketpair(sock1, sock2);
1621	if (unlikely(err < 0)) {
1622		sock_release(sock2);
1623		sock_release(sock1);
1624		goto out;
1625	}
1626
1627	newfile1 = sock_alloc_file(sock1, flags, NULL);
1628	if (IS_ERR(newfile1)) {
1629		err = PTR_ERR(newfile1);
1630		sock_release(sock2);
1631		goto out;
1632	}
1633
1634	newfile2 = sock_alloc_file(sock2, flags, NULL);
1635	if (IS_ERR(newfile2)) {
1636		err = PTR_ERR(newfile2);
1637		fput(newfile1);
1638		goto out;
1639	}
1640
1641	audit_fd_pair(fd1, fd2);
1642
1643	fd_install(fd1, newfile1);
1644	fd_install(fd2, newfile2);
1645	return 0;
1646
1647out:
1648	put_unused_fd(fd2);
1649	put_unused_fd(fd1);
1650	return err;
1651}
1652
1653SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1654		int __user *, usockvec)
1655{
1656	return __sys_socketpair(family, type, protocol, usockvec);
1657}
1658
1659/*
1660 *	Bind a name to a socket. Nothing much to do here since it's
1661 *	the protocol's responsibility to handle the local address.
1662 *
1663 *	We move the socket address to kernel space before we call
1664 *	the protocol layer (having also checked the address is ok).
1665 */
1666
1667int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1668{
1669	struct socket *sock;
1670	struct sockaddr_storage address;
1671	int err, fput_needed;
1672
1673	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674	if (sock) {
1675		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1676		if (!err) {
1677			err = security_socket_bind(sock,
1678						   (struct sockaddr *)&address,
1679						   addrlen);
1680			if (!err)
1681				err = sock->ops->bind(sock,
1682						      (struct sockaddr *)
1683						      &address, addrlen);
1684		}
1685		fput_light(sock->file, fput_needed);
1686	}
1687	return err;
1688}
1689
1690SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1691{
1692	return __sys_bind(fd, umyaddr, addrlen);
1693}
1694
1695/*
1696 *	Perform a listen. Basically, we allow the protocol to do anything
1697 *	necessary for a listen, and if that works, we mark the socket as
1698 *	ready for listening.
1699 */
1700
1701int __sys_listen(int fd, int backlog)
1702{
1703	struct socket *sock;
1704	int err, fput_needed;
1705	int somaxconn;
1706
1707	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708	if (sock) {
1709		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1710		if ((unsigned int)backlog > somaxconn)
1711			backlog = somaxconn;
1712
1713		err = security_socket_listen(sock, backlog);
1714		if (!err)
1715			err = sock->ops->listen(sock, backlog);
1716
1717		fput_light(sock->file, fput_needed);
1718	}
1719	return err;
1720}
1721
1722SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1723{
1724	return __sys_listen(fd, backlog);
1725}
1726
1727int __sys_accept4_file(struct file *file, unsigned file_flags,
1728		       struct sockaddr __user *upeer_sockaddr,
1729		       int __user *upeer_addrlen, int flags,
1730		       unsigned long nofile)
1731{
1732	struct socket *sock, *newsock;
1733	struct file *newfile;
1734	int err, len, newfd;
1735	struct sockaddr_storage address;
1736
1737	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1738		return -EINVAL;
1739
1740	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1741		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1742
1743	sock = sock_from_file(file);
1744	if (!sock) {
1745		err = -ENOTSOCK;
1746		goto out;
1747	}
1748
1749	err = -ENFILE;
1750	newsock = sock_alloc();
1751	if (!newsock)
1752		goto out;
1753
1754	newsock->type = sock->type;
1755	newsock->ops = sock->ops;
1756
1757	/*
1758	 * We don't need try_module_get here, as the listening socket (sock)
1759	 * has the protocol module (sock->ops->owner) held.
1760	 */
1761	__module_get(newsock->ops->owner);
1762
1763	newfd = __get_unused_fd_flags(flags, nofile);
1764	if (unlikely(newfd < 0)) {
1765		err = newfd;
1766		sock_release(newsock);
1767		goto out;
1768	}
1769	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1770	if (IS_ERR(newfile)) {
1771		err = PTR_ERR(newfile);
1772		put_unused_fd(newfd);
1773		goto out;
1774	}
1775
1776	err = security_socket_accept(sock, newsock);
1777	if (err)
1778		goto out_fd;
1779
1780	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1781					false);
1782	if (err < 0)
1783		goto out_fd;
1784
1785	if (upeer_sockaddr) {
1786		len = newsock->ops->getname(newsock,
1787					(struct sockaddr *)&address, 2);
1788		if (len < 0) {
1789			err = -ECONNABORTED;
1790			goto out_fd;
1791		}
1792		err = move_addr_to_user(&address,
1793					len, upeer_sockaddr, upeer_addrlen);
1794		if (err < 0)
1795			goto out_fd;
1796	}
1797
1798	/* File flags are not inherited via accept() unlike another OSes. */
1799
1800	fd_install(newfd, newfile);
1801	err = newfd;
1802out:
1803	return err;
1804out_fd:
1805	fput(newfile);
1806	put_unused_fd(newfd);
1807	goto out;
1808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809}
1810
1811/*
1812 *	For accept, we attempt to create a new socket, set up the link
1813 *	with the client, wake up the client, then return the new
1814 *	connected fd. We collect the address of the connector in kernel
1815 *	space and move it to user at the very end. This is unclean because
1816 *	we open the socket then return an error.
1817 *
1818 *	1003.1g adds the ability to recvmsg() to query connection pending
1819 *	status to recvmsg. We need to add that support in a way thats
1820 *	clean when we restructure accept also.
1821 */
1822
1823int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1824		  int __user *upeer_addrlen, int flags)
1825{
1826	int ret = -EBADF;
1827	struct fd f;
1828
1829	f = fdget(fd);
1830	if (f.file) {
1831		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1832						upeer_addrlen, flags,
1833						rlimit(RLIMIT_NOFILE));
1834		fdput(f);
1835	}
1836
1837	return ret;
1838}
1839
1840SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1841		int __user *, upeer_addrlen, int, flags)
1842{
1843	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1844}
1845
1846SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1847		int __user *, upeer_addrlen)
1848{
1849	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1850}
1851
1852/*
1853 *	Attempt to connect to a socket with the server address.  The address
1854 *	is in user space so we verify it is OK and move it to kernel space.
1855 *
1856 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1857 *	break bindings
1858 *
1859 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1860 *	other SEQPACKET protocols that take time to connect() as it doesn't
1861 *	include the -EINPROGRESS status for such sockets.
1862 */
1863
1864int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1865		       int addrlen, int file_flags)
1866{
1867	struct socket *sock;
1868	int err;
1869
1870	sock = sock_from_file(file);
1871	if (!sock) {
1872		err = -ENOTSOCK;
1873		goto out;
1874	}
1875
1876	err =
1877	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1878	if (err)
1879		goto out;
1880
1881	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1882				 sock->file->f_flags | file_flags);
1883out:
1884	return err;
1885}
1886
1887int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1888{
1889	int ret = -EBADF;
1890	struct fd f;
1891
1892	f = fdget(fd);
1893	if (f.file) {
1894		struct sockaddr_storage address;
1895
1896		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1897		if (!ret)
1898			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1899		fdput(f);
1900	}
1901
1902	return ret;
1903}
1904
1905SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1906		int, addrlen)
1907{
1908	return __sys_connect(fd, uservaddr, addrlen);
1909}
1910
1911/*
1912 *	Get the local address ('name') of a socket object. Move the obtained
1913 *	name to user space.
1914 */
1915
1916int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1917		      int __user *usockaddr_len)
1918{
1919	struct socket *sock;
1920	struct sockaddr_storage address;
1921	int err, fput_needed;
1922
1923	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924	if (!sock)
1925		goto out;
1926
1927	err = security_socket_getsockname(sock);
1928	if (err)
1929		goto out_put;
1930
1931	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1932	if (err < 0)
1933		goto out_put;
1934        /* "err" is actually length in this case */
1935	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1936
1937out_put:
1938	fput_light(sock->file, fput_needed);
1939out:
1940	return err;
1941}
1942
1943SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1944		int __user *, usockaddr_len)
1945{
1946	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1947}
1948
1949/*
1950 *	Get the remote address ('name') of a socket object. Move the obtained
1951 *	name to user space.
1952 */
1953
1954int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1955		      int __user *usockaddr_len)
1956{
1957	struct socket *sock;
1958	struct sockaddr_storage address;
1959	int err, fput_needed;
1960
1961	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962	if (sock != NULL) {
1963		err = security_socket_getpeername(sock);
1964		if (err) {
1965			fput_light(sock->file, fput_needed);
1966			return err;
1967		}
1968
1969		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1970		if (err >= 0)
1971			/* "err" is actually length in this case */
1972			err = move_addr_to_user(&address, err, usockaddr,
1973						usockaddr_len);
1974		fput_light(sock->file, fput_needed);
1975	}
1976	return err;
1977}
1978
1979SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1980		int __user *, usockaddr_len)
1981{
1982	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1983}
1984
1985/*
1986 *	Send a datagram to a given address. We move the address into kernel
1987 *	space and check the user space data area is readable before invoking
1988 *	the protocol.
1989 */
1990int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1991		 struct sockaddr __user *addr,  int addr_len)
1992{
1993	struct socket *sock;
1994	struct sockaddr_storage address;
1995	int err;
1996	struct msghdr msg;
1997	struct iovec iov;
1998	int fput_needed;
1999
2000	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2001	if (unlikely(err))
2002		return err;
2003	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2004	if (!sock)
2005		goto out;
2006
2007	msg.msg_name = NULL;
2008	msg.msg_control = NULL;
2009	msg.msg_controllen = 0;
2010	msg.msg_namelen = 0;
 
2011	if (addr) {
2012		err = move_addr_to_kernel(addr, addr_len, &address);
2013		if (err < 0)
2014			goto out_put;
2015		msg.msg_name = (struct sockaddr *)&address;
2016		msg.msg_namelen = addr_len;
2017	}
2018	if (sock->file->f_flags & O_NONBLOCK)
2019		flags |= MSG_DONTWAIT;
2020	msg.msg_flags = flags;
2021	err = sock_sendmsg(sock, &msg);
2022
2023out_put:
2024	fput_light(sock->file, fput_needed);
2025out:
2026	return err;
2027}
2028
2029SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2030		unsigned int, flags, struct sockaddr __user *, addr,
2031		int, addr_len)
2032{
2033	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2034}
2035
2036/*
2037 *	Send a datagram down a socket.
2038 */
2039
2040SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2041		unsigned int, flags)
2042{
2043	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2044}
2045
2046/*
2047 *	Receive a frame from the socket and optionally record the address of the
2048 *	sender. We verify the buffers are writable and if needed move the
2049 *	sender address from kernel to user space.
2050 */
2051int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2052		   struct sockaddr __user *addr, int __user *addr_len)
2053{
 
 
 
 
 
2054	struct socket *sock;
2055	struct iovec iov;
2056	struct msghdr msg;
2057	struct sockaddr_storage address;
2058	int err, err2;
2059	int fput_needed;
2060
2061	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2062	if (unlikely(err))
2063		return err;
2064	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065	if (!sock)
2066		goto out;
2067
2068	msg.msg_control = NULL;
2069	msg.msg_controllen = 0;
2070	/* Save some cycles and don't copy the address if not needed */
2071	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2072	/* We assume all kernel code knows the size of sockaddr_storage */
2073	msg.msg_namelen = 0;
2074	msg.msg_iocb = NULL;
2075	msg.msg_flags = 0;
2076	if (sock->file->f_flags & O_NONBLOCK)
2077		flags |= MSG_DONTWAIT;
2078	err = sock_recvmsg(sock, &msg, flags);
2079
2080	if (err >= 0 && addr != NULL) {
2081		err2 = move_addr_to_user(&address,
2082					 msg.msg_namelen, addr, addr_len);
2083		if (err2 < 0)
2084			err = err2;
2085	}
2086
2087	fput_light(sock->file, fput_needed);
2088out:
2089	return err;
2090}
2091
2092SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2093		unsigned int, flags, struct sockaddr __user *, addr,
2094		int __user *, addr_len)
2095{
2096	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2097}
2098
2099/*
2100 *	Receive a datagram from a socket.
2101 */
2102
2103SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2104		unsigned int, flags)
2105{
2106	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2107}
2108
2109static bool sock_use_custom_sol_socket(const struct socket *sock)
2110{
2111	const struct sock *sk = sock->sk;
2112
2113	/* Use sock->ops->setsockopt() for MPTCP */
2114	return IS_ENABLED(CONFIG_MPTCP) &&
2115	       sk->sk_protocol == IPPROTO_MPTCP &&
2116	       sk->sk_type == SOCK_STREAM &&
2117	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2118}
2119
2120/*
2121 *	Set a socket option. Because we don't know the option lengths we have
2122 *	to pass the user mode parameter for the protocols to sort out.
2123 */
2124int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2125		int optlen)
2126{
2127	sockptr_t optval = USER_SOCKPTR(user_optval);
2128	char *kernel_optval = NULL;
2129	int err, fput_needed;
2130	struct socket *sock;
2131
2132	if (optlen < 0)
2133		return -EINVAL;
2134
2135	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136	if (!sock)
2137		return err;
2138
2139	err = security_socket_setsockopt(sock, level, optname);
2140	if (err)
2141		goto out_put;
2142
2143	if (!in_compat_syscall())
2144		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2145						     user_optval, &optlen,
2146						     &kernel_optval);
2147	if (err < 0)
2148		goto out_put;
2149	if (err > 0) {
2150		err = 0;
2151		goto out_put;
2152	}
2153
2154	if (kernel_optval)
2155		optval = KERNEL_SOCKPTR(kernel_optval);
2156	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2157		err = sock_setsockopt(sock, level, optname, optval, optlen);
2158	else if (unlikely(!sock->ops->setsockopt))
2159		err = -EOPNOTSUPP;
2160	else
2161		err = sock->ops->setsockopt(sock, level, optname, optval,
2162					    optlen);
2163	kfree(kernel_optval);
2164out_put:
2165	fput_light(sock->file, fput_needed);
2166	return err;
2167}
2168
2169SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2170		char __user *, optval, int, optlen)
2171{
2172	return __sys_setsockopt(fd, level, optname, optval, optlen);
2173}
2174
2175INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2176							 int optname));
2177
2178/*
2179 *	Get a socket option. Because we don't know the option lengths we have
2180 *	to pass a user mode parameter for the protocols to sort out.
2181 */
2182int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2183		int __user *optlen)
2184{
2185	int err, fput_needed;
2186	struct socket *sock;
2187	int max_optlen;
2188
2189	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190	if (!sock)
2191		return err;
2192
2193	err = security_socket_getsockopt(sock, level, optname);
2194	if (err)
2195		goto out_put;
2196
2197	if (!in_compat_syscall())
2198		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2199
2200	if (level == SOL_SOCKET)
2201		err = sock_getsockopt(sock, level, optname, optval, optlen);
2202	else if (unlikely(!sock->ops->getsockopt))
2203		err = -EOPNOTSUPP;
2204	else
2205		err = sock->ops->getsockopt(sock, level, optname, optval,
2206					    optlen);
2207
2208	if (!in_compat_syscall())
2209		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2210						     optval, optlen, max_optlen,
2211						     err);
2212out_put:
2213	fput_light(sock->file, fput_needed);
2214	return err;
2215}
2216
2217SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2218		char __user *, optval, int __user *, optlen)
2219{
2220	return __sys_getsockopt(fd, level, optname, optval, optlen);
2221}
2222
2223/*
2224 *	Shutdown a socket.
2225 */
2226
2227int __sys_shutdown_sock(struct socket *sock, int how)
2228{
2229	int err;
2230
2231	err = security_socket_shutdown(sock, how);
2232	if (!err)
2233		err = sock->ops->shutdown(sock, how);
2234
2235	return err;
2236}
2237
2238int __sys_shutdown(int fd, int how)
2239{
2240	int err, fput_needed;
2241	struct socket *sock;
2242
2243	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2244	if (sock != NULL) {
2245		err = __sys_shutdown_sock(sock, how);
2246		fput_light(sock->file, fput_needed);
2247	}
2248	return err;
2249}
2250
2251SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2252{
2253	return __sys_shutdown(fd, how);
2254}
2255
2256/* A couple of helpful macros for getting the address of the 32/64 bit
2257 * fields which are the same type (int / unsigned) on our platforms.
2258 */
2259#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2260#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2261#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2262
2263struct used_address {
2264	struct sockaddr_storage name;
2265	unsigned int name_len;
2266};
2267
2268int __copy_msghdr_from_user(struct msghdr *kmsg,
2269			    struct user_msghdr __user *umsg,
2270			    struct sockaddr __user **save_addr,
2271			    struct iovec __user **uiov, size_t *nsegs)
2272{
2273	struct user_msghdr msg;
2274	ssize_t err;
2275
2276	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2277		return -EFAULT;
2278
2279	kmsg->msg_control_is_user = true;
2280	kmsg->msg_control_user = msg.msg_control;
2281	kmsg->msg_controllen = msg.msg_controllen;
2282	kmsg->msg_flags = msg.msg_flags;
 
2283
2284	kmsg->msg_namelen = msg.msg_namelen;
2285	if (!msg.msg_name)
2286		kmsg->msg_namelen = 0;
2287
2288	if (kmsg->msg_namelen < 0)
2289		return -EINVAL;
2290
2291	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2292		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2293
2294	if (save_addr)
2295		*save_addr = msg.msg_name;
2296
2297	if (msg.msg_name && kmsg->msg_namelen) {
2298		if (!save_addr) {
2299			err = move_addr_to_kernel(msg.msg_name,
2300						  kmsg->msg_namelen,
2301						  kmsg->msg_name);
2302			if (err < 0)
2303				return err;
2304		}
2305	} else {
2306		kmsg->msg_name = NULL;
2307		kmsg->msg_namelen = 0;
2308	}
2309
2310	if (msg.msg_iovlen > UIO_MAXIOV)
2311		return -EMSGSIZE;
2312
2313	kmsg->msg_iocb = NULL;
2314	*uiov = msg.msg_iov;
2315	*nsegs = msg.msg_iovlen;
2316	return 0;
2317}
2318
2319static int copy_msghdr_from_user(struct msghdr *kmsg,
2320				 struct user_msghdr __user *umsg,
2321				 struct sockaddr __user **save_addr,
2322				 struct iovec **iov)
2323{
2324	struct user_msghdr msg;
2325	ssize_t err;
2326
2327	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2328					&msg.msg_iovlen);
 
 
2329	if (err)
2330		return err;
2331
2332	err = import_iovec(save_addr ? READ : WRITE,
2333			    msg.msg_iov, msg.msg_iovlen,
2334			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2335	return err < 0 ? err : 0;
2336}
2337
2338static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2339			   unsigned int flags, struct used_address *used_address,
2340			   unsigned int allowed_msghdr_flags)
2341{
2342	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2343				__aligned(sizeof(__kernel_size_t));
2344	/* 20 is size of ipv6_pktinfo */
2345	unsigned char *ctl_buf = ctl;
2346	int ctl_len;
2347	ssize_t err;
2348
2349	err = -ENOBUFS;
2350
2351	if (msg_sys->msg_controllen > INT_MAX)
2352		goto out;
2353	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2354	ctl_len = msg_sys->msg_controllen;
2355	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2356		err =
2357		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2358						     sizeof(ctl));
2359		if (err)
2360			goto out;
2361		ctl_buf = msg_sys->msg_control;
2362		ctl_len = msg_sys->msg_controllen;
2363	} else if (ctl_len) {
2364		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2365			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2366		if (ctl_len > sizeof(ctl)) {
2367			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2368			if (ctl_buf == NULL)
2369				goto out;
2370		}
2371		err = -EFAULT;
2372		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2373			goto out_freectl;
2374		msg_sys->msg_control = ctl_buf;
2375		msg_sys->msg_control_is_user = false;
2376	}
2377	msg_sys->msg_flags = flags;
2378
2379	if (sock->file->f_flags & O_NONBLOCK)
2380		msg_sys->msg_flags |= MSG_DONTWAIT;
2381	/*
2382	 * If this is sendmmsg() and current destination address is same as
2383	 * previously succeeded address, omit asking LSM's decision.
2384	 * used_address->name_len is initialized to UINT_MAX so that the first
2385	 * destination address never matches.
2386	 */
2387	if (used_address && msg_sys->msg_name &&
2388	    used_address->name_len == msg_sys->msg_namelen &&
2389	    !memcmp(&used_address->name, msg_sys->msg_name,
2390		    used_address->name_len)) {
2391		err = sock_sendmsg_nosec(sock, msg_sys);
2392		goto out_freectl;
2393	}
2394	err = sock_sendmsg(sock, msg_sys);
2395	/*
2396	 * If this is sendmmsg() and sending to current destination address was
2397	 * successful, remember it.
2398	 */
2399	if (used_address && err >= 0) {
2400		used_address->name_len = msg_sys->msg_namelen;
2401		if (msg_sys->msg_name)
2402			memcpy(&used_address->name, msg_sys->msg_name,
2403			       used_address->name_len);
2404	}
2405
2406out_freectl:
2407	if (ctl_buf != ctl)
2408		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2409out:
2410	return err;
2411}
2412
2413int sendmsg_copy_msghdr(struct msghdr *msg,
2414			struct user_msghdr __user *umsg, unsigned flags,
2415			struct iovec **iov)
2416{
2417	int err;
2418
2419	if (flags & MSG_CMSG_COMPAT) {
2420		struct compat_msghdr __user *msg_compat;
2421
2422		msg_compat = (struct compat_msghdr __user *) umsg;
2423		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2424	} else {
2425		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2426	}
2427	if (err < 0)
2428		return err;
2429
2430	return 0;
2431}
2432
2433static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2434			 struct msghdr *msg_sys, unsigned int flags,
2435			 struct used_address *used_address,
2436			 unsigned int allowed_msghdr_flags)
2437{
2438	struct sockaddr_storage address;
2439	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2440	ssize_t err;
2441
2442	msg_sys->msg_name = &address;
2443
2444	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2445	if (err < 0)
2446		return err;
2447
2448	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2449				allowed_msghdr_flags);
2450	kfree(iov);
2451	return err;
2452}
2453
2454/*
2455 *	BSD sendmsg interface
2456 */
2457long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2458			unsigned int flags)
2459{
2460	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2461}
2462
2463long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2464		   bool forbid_cmsg_compat)
2465{
2466	int fput_needed, err;
2467	struct msghdr msg_sys;
2468	struct socket *sock;
2469
2470	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2471		return -EINVAL;
2472
2473	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2474	if (!sock)
2475		goto out;
2476
2477	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2478
2479	fput_light(sock->file, fput_needed);
2480out:
2481	return err;
2482}
2483
2484SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2485{
2486	return __sys_sendmsg(fd, msg, flags, true);
2487}
2488
2489/*
2490 *	Linux sendmmsg interface
2491 */
2492
2493int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2494		   unsigned int flags, bool forbid_cmsg_compat)
2495{
2496	int fput_needed, err, datagrams;
2497	struct socket *sock;
2498	struct mmsghdr __user *entry;
2499	struct compat_mmsghdr __user *compat_entry;
2500	struct msghdr msg_sys;
2501	struct used_address used_address;
2502	unsigned int oflags = flags;
2503
2504	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2505		return -EINVAL;
2506
2507	if (vlen > UIO_MAXIOV)
2508		vlen = UIO_MAXIOV;
2509
2510	datagrams = 0;
2511
2512	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2513	if (!sock)
2514		return err;
2515
2516	used_address.name_len = UINT_MAX;
2517	entry = mmsg;
2518	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2519	err = 0;
2520	flags |= MSG_BATCH;
2521
2522	while (datagrams < vlen) {
2523		if (datagrams == vlen - 1)
2524			flags = oflags;
2525
2526		if (MSG_CMSG_COMPAT & flags) {
2527			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2528					     &msg_sys, flags, &used_address, MSG_EOR);
2529			if (err < 0)
2530				break;
2531			err = __put_user(err, &compat_entry->msg_len);
2532			++compat_entry;
2533		} else {
2534			err = ___sys_sendmsg(sock,
2535					     (struct user_msghdr __user *)entry,
2536					     &msg_sys, flags, &used_address, MSG_EOR);
2537			if (err < 0)
2538				break;
2539			err = put_user(err, &entry->msg_len);
2540			++entry;
2541		}
2542
2543		if (err)
2544			break;
2545		++datagrams;
2546		if (msg_data_left(&msg_sys))
2547			break;
2548		cond_resched();
2549	}
2550
2551	fput_light(sock->file, fput_needed);
2552
2553	/* We only return an error if no datagrams were able to be sent */
2554	if (datagrams != 0)
2555		return datagrams;
2556
2557	return err;
2558}
2559
2560SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2561		unsigned int, vlen, unsigned int, flags)
2562{
2563	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2564}
2565
2566int recvmsg_copy_msghdr(struct msghdr *msg,
2567			struct user_msghdr __user *umsg, unsigned flags,
2568			struct sockaddr __user **uaddr,
2569			struct iovec **iov)
2570{
2571	ssize_t err;
2572
2573	if (MSG_CMSG_COMPAT & flags) {
2574		struct compat_msghdr __user *msg_compat;
2575
2576		msg_compat = (struct compat_msghdr __user *) umsg;
2577		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2578	} else {
2579		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2580	}
2581	if (err < 0)
2582		return err;
2583
2584	return 0;
2585}
2586
2587static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2588			   struct user_msghdr __user *msg,
2589			   struct sockaddr __user *uaddr,
2590			   unsigned int flags, int nosec)
2591{
2592	struct compat_msghdr __user *msg_compat =
2593					(struct compat_msghdr __user *) msg;
2594	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2595	struct sockaddr_storage addr;
2596	unsigned long cmsg_ptr;
2597	int len;
2598	ssize_t err;
2599
2600	msg_sys->msg_name = &addr;
2601	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2602	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2603
2604	/* We assume all kernel code knows the size of sockaddr_storage */
2605	msg_sys->msg_namelen = 0;
2606
2607	if (sock->file->f_flags & O_NONBLOCK)
2608		flags |= MSG_DONTWAIT;
2609
2610	if (unlikely(nosec))
2611		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2612	else
2613		err = sock_recvmsg(sock, msg_sys, flags);
2614
2615	if (err < 0)
2616		goto out;
2617	len = err;
2618
2619	if (uaddr != NULL) {
2620		err = move_addr_to_user(&addr,
2621					msg_sys->msg_namelen, uaddr,
2622					uaddr_len);
2623		if (err < 0)
2624			goto out;
2625	}
2626	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2627			 COMPAT_FLAGS(msg));
2628	if (err)
2629		goto out;
2630	if (MSG_CMSG_COMPAT & flags)
2631		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2632				 &msg_compat->msg_controllen);
2633	else
2634		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2635				 &msg->msg_controllen);
2636	if (err)
2637		goto out;
2638	err = len;
2639out:
2640	return err;
2641}
2642
2643static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2644			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2645{
2646	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2647	/* user mode address pointers */
2648	struct sockaddr __user *uaddr;
2649	ssize_t err;
2650
2651	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2652	if (err < 0)
2653		return err;
2654
2655	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2656	kfree(iov);
2657	return err;
2658}
2659
2660/*
2661 *	BSD recvmsg interface
2662 */
2663
2664long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2665			struct user_msghdr __user *umsg,
2666			struct sockaddr __user *uaddr, unsigned int flags)
2667{
2668	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2669}
2670
2671long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2672		   bool forbid_cmsg_compat)
2673{
2674	int fput_needed, err;
2675	struct msghdr msg_sys;
2676	struct socket *sock;
2677
2678	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2679		return -EINVAL;
2680
2681	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2682	if (!sock)
2683		goto out;
2684
2685	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2686
2687	fput_light(sock->file, fput_needed);
2688out:
2689	return err;
2690}
2691
2692SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2693		unsigned int, flags)
2694{
2695	return __sys_recvmsg(fd, msg, flags, true);
2696}
2697
2698/*
2699 *     Linux recvmmsg interface
2700 */
2701
2702static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2703			  unsigned int vlen, unsigned int flags,
2704			  struct timespec64 *timeout)
2705{
2706	int fput_needed, err, datagrams;
2707	struct socket *sock;
2708	struct mmsghdr __user *entry;
2709	struct compat_mmsghdr __user *compat_entry;
2710	struct msghdr msg_sys;
2711	struct timespec64 end_time;
2712	struct timespec64 timeout64;
2713
2714	if (timeout &&
2715	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2716				    timeout->tv_nsec))
2717		return -EINVAL;
2718
2719	datagrams = 0;
2720
2721	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2722	if (!sock)
2723		return err;
2724
2725	if (likely(!(flags & MSG_ERRQUEUE))) {
2726		err = sock_error(sock->sk);
2727		if (err) {
2728			datagrams = err;
2729			goto out_put;
2730		}
2731	}
2732
2733	entry = mmsg;
2734	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2735
2736	while (datagrams < vlen) {
2737		/*
2738		 * No need to ask LSM for more than the first datagram.
2739		 */
2740		if (MSG_CMSG_COMPAT & flags) {
2741			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2742					     &msg_sys, flags & ~MSG_WAITFORONE,
2743					     datagrams);
2744			if (err < 0)
2745				break;
2746			err = __put_user(err, &compat_entry->msg_len);
2747			++compat_entry;
2748		} else {
2749			err = ___sys_recvmsg(sock,
2750					     (struct user_msghdr __user *)entry,
2751					     &msg_sys, flags & ~MSG_WAITFORONE,
2752					     datagrams);
2753			if (err < 0)
2754				break;
2755			err = put_user(err, &entry->msg_len);
2756			++entry;
2757		}
2758
2759		if (err)
2760			break;
2761		++datagrams;
2762
2763		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2764		if (flags & MSG_WAITFORONE)
2765			flags |= MSG_DONTWAIT;
2766
2767		if (timeout) {
2768			ktime_get_ts64(&timeout64);
2769			*timeout = timespec64_sub(end_time, timeout64);
2770			if (timeout->tv_sec < 0) {
2771				timeout->tv_sec = timeout->tv_nsec = 0;
2772				break;
2773			}
2774
2775			/* Timeout, return less than vlen datagrams */
2776			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2777				break;
2778		}
2779
2780		/* Out of band data, return right away */
2781		if (msg_sys.msg_flags & MSG_OOB)
2782			break;
2783		cond_resched();
2784	}
2785
2786	if (err == 0)
2787		goto out_put;
2788
2789	if (datagrams == 0) {
2790		datagrams = err;
2791		goto out_put;
2792	}
2793
2794	/*
2795	 * We may return less entries than requested (vlen) if the
2796	 * sock is non block and there aren't enough datagrams...
2797	 */
2798	if (err != -EAGAIN) {
2799		/*
2800		 * ... or  if recvmsg returns an error after we
2801		 * received some datagrams, where we record the
2802		 * error to return on the next call or if the
2803		 * app asks about it using getsockopt(SO_ERROR).
2804		 */
2805		sock->sk->sk_err = -err;
2806	}
2807out_put:
2808	fput_light(sock->file, fput_needed);
2809
2810	return datagrams;
2811}
2812
2813int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2814		   unsigned int vlen, unsigned int flags,
2815		   struct __kernel_timespec __user *timeout,
2816		   struct old_timespec32 __user *timeout32)
2817{
2818	int datagrams;
2819	struct timespec64 timeout_sys;
2820
2821	if (timeout && get_timespec64(&timeout_sys, timeout))
2822		return -EFAULT;
2823
2824	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2825		return -EFAULT;
2826
2827	if (!timeout && !timeout32)
2828		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2829
2830	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2831
2832	if (datagrams <= 0)
2833		return datagrams;
2834
2835	if (timeout && put_timespec64(&timeout_sys, timeout))
2836		datagrams = -EFAULT;
2837
2838	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2839		datagrams = -EFAULT;
2840
2841	return datagrams;
2842}
2843
2844SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2845		unsigned int, vlen, unsigned int, flags,
2846		struct __kernel_timespec __user *, timeout)
2847{
2848	if (flags & MSG_CMSG_COMPAT)
2849		return -EINVAL;
2850
2851	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2852}
2853
2854#ifdef CONFIG_COMPAT_32BIT_TIME
2855SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2856		unsigned int, vlen, unsigned int, flags,
2857		struct old_timespec32 __user *, timeout)
2858{
2859	if (flags & MSG_CMSG_COMPAT)
2860		return -EINVAL;
2861
2862	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2863}
2864#endif
2865
2866#ifdef __ARCH_WANT_SYS_SOCKETCALL
2867/* Argument list sizes for sys_socketcall */
2868#define AL(x) ((x) * sizeof(unsigned long))
2869static const unsigned char nargs[21] = {
2870	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2871	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2872	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2873	AL(4), AL(5), AL(4)
2874};
2875
2876#undef AL
2877
2878/*
2879 *	System call vectors.
2880 *
2881 *	Argument checking cleaned up. Saved 20% in size.
2882 *  This function doesn't need to set the kernel lock because
2883 *  it is set by the callees.
2884 */
2885
2886SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2887{
2888	unsigned long a[AUDITSC_ARGS];
2889	unsigned long a0, a1;
2890	int err;
2891	unsigned int len;
2892
2893	if (call < 1 || call > SYS_SENDMMSG)
2894		return -EINVAL;
2895	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2896
2897	len = nargs[call];
2898	if (len > sizeof(a))
2899		return -EINVAL;
2900
2901	/* copy_from_user should be SMP safe. */
2902	if (copy_from_user(a, args, len))
2903		return -EFAULT;
2904
2905	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2906	if (err)
2907		return err;
2908
2909	a0 = a[0];
2910	a1 = a[1];
2911
2912	switch (call) {
2913	case SYS_SOCKET:
2914		err = __sys_socket(a0, a1, a[2]);
2915		break;
2916	case SYS_BIND:
2917		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2918		break;
2919	case SYS_CONNECT:
2920		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2921		break;
2922	case SYS_LISTEN:
2923		err = __sys_listen(a0, a1);
2924		break;
2925	case SYS_ACCEPT:
2926		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2927				    (int __user *)a[2], 0);
2928		break;
2929	case SYS_GETSOCKNAME:
2930		err =
2931		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2932				      (int __user *)a[2]);
2933		break;
2934	case SYS_GETPEERNAME:
2935		err =
2936		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2937				      (int __user *)a[2]);
2938		break;
2939	case SYS_SOCKETPAIR:
2940		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2941		break;
2942	case SYS_SEND:
2943		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2944				   NULL, 0);
2945		break;
2946	case SYS_SENDTO:
2947		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2948				   (struct sockaddr __user *)a[4], a[5]);
2949		break;
2950	case SYS_RECV:
2951		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2952				     NULL, NULL);
2953		break;
2954	case SYS_RECVFROM:
2955		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2956				     (struct sockaddr __user *)a[4],
2957				     (int __user *)a[5]);
2958		break;
2959	case SYS_SHUTDOWN:
2960		err = __sys_shutdown(a0, a1);
2961		break;
2962	case SYS_SETSOCKOPT:
2963		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2964				       a[4]);
2965		break;
2966	case SYS_GETSOCKOPT:
2967		err =
2968		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2969				     (int __user *)a[4]);
2970		break;
2971	case SYS_SENDMSG:
2972		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2973				    a[2], true);
2974		break;
2975	case SYS_SENDMMSG:
2976		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2977				     a[3], true);
2978		break;
2979	case SYS_RECVMSG:
2980		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2981				    a[2], true);
2982		break;
2983	case SYS_RECVMMSG:
2984		if (IS_ENABLED(CONFIG_64BIT))
2985			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2986					     a[2], a[3],
2987					     (struct __kernel_timespec __user *)a[4],
2988					     NULL);
2989		else
2990			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2991					     a[2], a[3], NULL,
2992					     (struct old_timespec32 __user *)a[4]);
2993		break;
2994	case SYS_ACCEPT4:
2995		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2996				    (int __user *)a[2], a[3]);
2997		break;
2998	default:
2999		err = -EINVAL;
3000		break;
3001	}
3002	return err;
3003}
3004
3005#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3006
3007/**
3008 *	sock_register - add a socket protocol handler
3009 *	@ops: description of protocol
3010 *
3011 *	This function is called by a protocol handler that wants to
3012 *	advertise its address family, and have it linked into the
3013 *	socket interface. The value ops->family corresponds to the
3014 *	socket system call protocol family.
3015 */
3016int sock_register(const struct net_proto_family *ops)
3017{
3018	int err;
3019
3020	if (ops->family >= NPROTO) {
3021		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3022		return -ENOBUFS;
3023	}
3024
3025	spin_lock(&net_family_lock);
3026	if (rcu_dereference_protected(net_families[ops->family],
3027				      lockdep_is_held(&net_family_lock)))
3028		err = -EEXIST;
3029	else {
3030		rcu_assign_pointer(net_families[ops->family], ops);
3031		err = 0;
3032	}
3033	spin_unlock(&net_family_lock);
3034
3035	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3036	return err;
3037}
3038EXPORT_SYMBOL(sock_register);
3039
3040/**
3041 *	sock_unregister - remove a protocol handler
3042 *	@family: protocol family to remove
3043 *
3044 *	This function is called by a protocol handler that wants to
3045 *	remove its address family, and have it unlinked from the
3046 *	new socket creation.
3047 *
3048 *	If protocol handler is a module, then it can use module reference
3049 *	counts to protect against new references. If protocol handler is not
3050 *	a module then it needs to provide its own protection in
3051 *	the ops->create routine.
3052 */
3053void sock_unregister(int family)
3054{
3055	BUG_ON(family < 0 || family >= NPROTO);
3056
3057	spin_lock(&net_family_lock);
3058	RCU_INIT_POINTER(net_families[family], NULL);
3059	spin_unlock(&net_family_lock);
3060
3061	synchronize_rcu();
3062
3063	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3064}
3065EXPORT_SYMBOL(sock_unregister);
3066
3067bool sock_is_registered(int family)
3068{
3069	return family < NPROTO && rcu_access_pointer(net_families[family]);
3070}
3071
3072static int __init sock_init(void)
3073{
3074	int err;
3075	/*
3076	 *      Initialize the network sysctl infrastructure.
3077	 */
3078	err = net_sysctl_init();
3079	if (err)
3080		goto out;
3081
3082	/*
3083	 *      Initialize skbuff SLAB cache
3084	 */
3085	skb_init();
3086
3087	/*
3088	 *      Initialize the protocols module.
3089	 */
3090
3091	init_inodecache();
3092
3093	err = register_filesystem(&sock_fs_type);
3094	if (err)
3095		goto out;
3096	sock_mnt = kern_mount(&sock_fs_type);
3097	if (IS_ERR(sock_mnt)) {
3098		err = PTR_ERR(sock_mnt);
3099		goto out_mount;
3100	}
3101
3102	/* The real protocol initialization is performed in later initcalls.
3103	 */
3104
3105#ifdef CONFIG_NETFILTER
3106	err = netfilter_init();
3107	if (err)
3108		goto out;
3109#endif
3110
3111	ptp_classifier_init();
3112
3113out:
3114	return err;
3115
3116out_mount:
3117	unregister_filesystem(&sock_fs_type);
3118	goto out;
3119}
3120
3121core_initcall(sock_init);	/* early initcall */
3122
3123#ifdef CONFIG_PROC_FS
3124void socket_seq_show(struct seq_file *seq)
3125{
3126	seq_printf(seq, "sockets: used %d\n",
3127		   sock_inuse_get(seq->private));
3128}
3129#endif				/* CONFIG_PROC_FS */
3130
3131#ifdef CONFIG_COMPAT
3132static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
 
 
 
 
 
 
 
 
3133{
3134	struct compat_ifconf ifc32;
3135	struct ifconf ifc;
3136	int err;
 
 
 
 
 
 
 
 
 
3137
3138	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3139		return -EFAULT;
3140
3141	ifc.ifc_len = ifc32.ifc_len;
3142	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3143
3144	rtnl_lock();
3145	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3146	rtnl_unlock();
3147	if (err)
3148		return err;
 
 
3149
3150	ifc32.ifc_len = ifc.ifc_len;
3151	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
 
 
3152		return -EFAULT;
3153
3154	return 0;
3155}
 
3156
 
3157static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3158{
3159	compat_uptr_t uptr32;
3160	struct ifreq ifr;
3161	void __user *saved;
3162	int err;
3163
3164	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3165		return -EFAULT;
3166
3167	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3168		return -EFAULT;
3169
3170	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3171	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3172
3173	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3174	if (!err) {
3175		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3176		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3177			err = -EFAULT;
3178	}
3179	return err;
3180}
3181
3182/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3183static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3184				 struct compat_ifreq __user *u_ifreq32)
3185{
3186	struct ifreq ifreq;
3187	u32 data32;
3188
3189	if (!is_socket_ioctl_cmd(cmd))
3190		return -ENOTTY;
3191	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3192		return -EFAULT;
3193	if (get_user(data32, &u_ifreq32->ifr_data))
3194		return -EFAULT;
3195	ifreq.ifr_data = compat_ptr(data32);
3196
3197	return dev_ioctl(net, cmd, &ifreq, NULL);
3198}
3199
3200static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3201			      unsigned int cmd,
3202			      struct compat_ifreq __user *uifr32)
3203{
3204	struct ifreq __user *uifr;
3205	int err;
3206
3207	/* Handle the fact that while struct ifreq has the same *layout* on
3208	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3209	 * which are handled elsewhere, it still has different *size* due to
3210	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3211	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3212	 * As a result, if the struct happens to be at the end of a page and
3213	 * the next page isn't readable/writable, we get a fault. To prevent
3214	 * that, copy back and forth to the full size.
3215	 */
3216
3217	uifr = compat_alloc_user_space(sizeof(*uifr));
3218	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3219		return -EFAULT;
3220
3221	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3222
3223	if (!err) {
3224		switch (cmd) {
3225		case SIOCGIFFLAGS:
3226		case SIOCGIFMETRIC:
3227		case SIOCGIFMTU:
3228		case SIOCGIFMEM:
3229		case SIOCGIFHWADDR:
3230		case SIOCGIFINDEX:
3231		case SIOCGIFADDR:
3232		case SIOCGIFBRDADDR:
3233		case SIOCGIFDSTADDR:
3234		case SIOCGIFNETMASK:
3235		case SIOCGIFPFLAGS:
3236		case SIOCGIFTXQLEN:
3237		case SIOCGMIIPHY:
3238		case SIOCGMIIREG:
3239		case SIOCGIFNAME:
3240			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3241				err = -EFAULT;
3242			break;
3243		}
3244	}
3245	return err;
3246}
3247
3248static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3249			struct compat_ifreq __user *uifr32)
3250{
3251	struct ifreq ifr;
3252	struct compat_ifmap __user *uifmap32;
3253	int err;
3254
3255	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3256	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3257	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3258	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3259	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3260	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3261	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3262	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3263	if (err)
3264		return -EFAULT;
3265
3266	err = dev_ioctl(net, cmd, &ifr, NULL);
3267
3268	if (cmd == SIOCGIFMAP && !err) {
3269		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3270		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3271		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3272		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3273		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3274		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3275		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3276		if (err)
3277			err = -EFAULT;
3278	}
3279	return err;
3280}
3281
3282/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3283 * for some operations; this forces use of the newer bridge-utils that
3284 * use compatible ioctls
3285 */
3286static int old_bridge_ioctl(compat_ulong_t __user *argp)
3287{
3288	compat_ulong_t tmp;
3289
3290	if (get_user(tmp, argp))
3291		return -EFAULT;
3292	if (tmp == BRCTL_GET_VERSION)
3293		return BRCTL_VERSION + 1;
3294	return -EINVAL;
3295}
3296
3297static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3298			 unsigned int cmd, unsigned long arg)
3299{
3300	void __user *argp = compat_ptr(arg);
3301	struct sock *sk = sock->sk;
3302	struct net *net = sock_net(sk);
3303
3304	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3305		return compat_ifr_data_ioctl(net, cmd, argp);
3306
3307	switch (cmd) {
3308	case SIOCSIFBR:
3309	case SIOCGIFBR:
3310		return old_bridge_ioctl(argp);
3311	case SIOCGIFCONF:
3312		return compat_dev_ifconf(net, argp);
3313	case SIOCWANDEV:
3314		return compat_siocwandev(net, argp);
3315	case SIOCGIFMAP:
3316	case SIOCSIFMAP:
3317		return compat_sioc_ifmap(net, cmd, argp);
3318	case SIOCGSTAMP_OLD:
3319	case SIOCGSTAMPNS_OLD:
3320		if (!sock->ops->gettstamp)
3321			return -ENOIOCTLCMD;
3322		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3323					    !COMPAT_USE_64BIT_TIME);
3324
3325	case SIOCETHTOOL:
3326	case SIOCBONDSLAVEINFOQUERY:
3327	case SIOCBONDINFOQUERY:
3328	case SIOCSHWTSTAMP:
3329	case SIOCGHWTSTAMP:
3330		return compat_ifr_data_ioctl(net, cmd, argp);
3331
3332	case FIOSETOWN:
3333	case SIOCSPGRP:
3334	case FIOGETOWN:
3335	case SIOCGPGRP:
3336	case SIOCBRADDBR:
3337	case SIOCBRDELBR:
3338	case SIOCGIFVLAN:
3339	case SIOCSIFVLAN:
3340	case SIOCGSKNS:
3341	case SIOCGSTAMP_NEW:
3342	case SIOCGSTAMPNS_NEW:
 
 
 
3343		return sock_ioctl(file, cmd, arg);
3344
3345	case SIOCGIFFLAGS:
3346	case SIOCSIFFLAGS:
 
 
3347	case SIOCGIFMETRIC:
3348	case SIOCSIFMETRIC:
3349	case SIOCGIFMTU:
3350	case SIOCSIFMTU:
3351	case SIOCGIFMEM:
3352	case SIOCSIFMEM:
3353	case SIOCGIFHWADDR:
3354	case SIOCSIFHWADDR:
3355	case SIOCADDMULTI:
3356	case SIOCDELMULTI:
3357	case SIOCGIFINDEX:
3358	case SIOCGIFADDR:
3359	case SIOCSIFADDR:
3360	case SIOCSIFHWBROADCAST:
3361	case SIOCDIFADDR:
3362	case SIOCGIFBRDADDR:
3363	case SIOCSIFBRDADDR:
3364	case SIOCGIFDSTADDR:
3365	case SIOCSIFDSTADDR:
3366	case SIOCGIFNETMASK:
3367	case SIOCSIFNETMASK:
3368	case SIOCSIFPFLAGS:
3369	case SIOCGIFPFLAGS:
3370	case SIOCGIFTXQLEN:
3371	case SIOCSIFTXQLEN:
3372	case SIOCBRADDIF:
3373	case SIOCBRDELIF:
3374	case SIOCGIFNAME:
3375	case SIOCSIFNAME:
3376	case SIOCGMIIPHY:
3377	case SIOCGMIIREG:
3378	case SIOCSMIIREG:
3379	case SIOCBONDENSLAVE:
3380	case SIOCBONDRELEASE:
3381	case SIOCBONDSETHWADDR:
3382	case SIOCBONDCHANGEACTIVE:
3383		return compat_ifreq_ioctl(net, sock, cmd, argp);
3384
3385	case SIOCSARP:
3386	case SIOCGARP:
3387	case SIOCDARP:
3388	case SIOCOUTQ:
3389	case SIOCOUTQNSD:
3390	case SIOCATMARK:
3391		return sock_do_ioctl(net, sock, cmd, arg);
3392	}
3393
3394	return -ENOIOCTLCMD;
3395}
3396
3397static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3398			      unsigned long arg)
3399{
3400	struct socket *sock = file->private_data;
3401	int ret = -ENOIOCTLCMD;
3402	struct sock *sk;
3403	struct net *net;
3404
3405	sk = sock->sk;
3406	net = sock_net(sk);
3407
3408	if (sock->ops->compat_ioctl)
3409		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3410
3411	if (ret == -ENOIOCTLCMD &&
3412	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3413		ret = compat_wext_handle_ioctl(net, cmd, arg);
3414
3415	if (ret == -ENOIOCTLCMD)
3416		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3417
3418	return ret;
3419}
3420#endif
3421
3422/**
3423 *	kernel_bind - bind an address to a socket (kernel space)
3424 *	@sock: socket
3425 *	@addr: address
3426 *	@addrlen: length of address
3427 *
3428 *	Returns 0 or an error.
3429 */
3430
3431int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3432{
3433	return sock->ops->bind(sock, addr, addrlen);
3434}
3435EXPORT_SYMBOL(kernel_bind);
3436
3437/**
3438 *	kernel_listen - move socket to listening state (kernel space)
3439 *	@sock: socket
3440 *	@backlog: pending connections queue size
3441 *
3442 *	Returns 0 or an error.
3443 */
3444
3445int kernel_listen(struct socket *sock, int backlog)
3446{
3447	return sock->ops->listen(sock, backlog);
3448}
3449EXPORT_SYMBOL(kernel_listen);
3450
3451/**
3452 *	kernel_accept - accept a connection (kernel space)
3453 *	@sock: listening socket
3454 *	@newsock: new connected socket
3455 *	@flags: flags
3456 *
3457 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3458 *	If it fails, @newsock is guaranteed to be %NULL.
3459 *	Returns 0 or an error.
3460 */
3461
3462int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3463{
3464	struct sock *sk = sock->sk;
3465	int err;
3466
3467	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3468			       newsock);
3469	if (err < 0)
3470		goto done;
3471
3472	err = sock->ops->accept(sock, *newsock, flags, true);
3473	if (err < 0) {
3474		sock_release(*newsock);
3475		*newsock = NULL;
3476		goto done;
3477	}
3478
3479	(*newsock)->ops = sock->ops;
3480	__module_get((*newsock)->ops->owner);
3481
3482done:
3483	return err;
3484}
3485EXPORT_SYMBOL(kernel_accept);
3486
3487/**
3488 *	kernel_connect - connect a socket (kernel space)
3489 *	@sock: socket
3490 *	@addr: address
3491 *	@addrlen: address length
3492 *	@flags: flags (O_NONBLOCK, ...)
3493 *
3494 *	For datagram sockets, @addr is the address to which datagrams are sent
3495 *	by default, and the only address from which datagrams are received.
3496 *	For stream sockets, attempts to connect to @addr.
3497 *	Returns 0 or an error code.
3498 */
3499
3500int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3501		   int flags)
3502{
3503	return sock->ops->connect(sock, addr, addrlen, flags);
3504}
3505EXPORT_SYMBOL(kernel_connect);
3506
3507/**
3508 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3509 *	@sock: socket
3510 *	@addr: address holder
3511 *
3512 * 	Fills the @addr pointer with the address which the socket is bound.
3513 *	Returns 0 or an error code.
3514 */
3515
3516int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3517{
3518	return sock->ops->getname(sock, addr, 0);
3519}
3520EXPORT_SYMBOL(kernel_getsockname);
3521
3522/**
3523 *	kernel_getpeername - get the address which the socket is connected (kernel space)
3524 *	@sock: socket
3525 *	@addr: address holder
3526 *
3527 * 	Fills the @addr pointer with the address which the socket is connected.
3528 *	Returns 0 or an error code.
3529 */
3530
3531int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3532{
3533	return sock->ops->getname(sock, addr, 1);
3534}
3535EXPORT_SYMBOL(kernel_getpeername);
3536
3537/**
3538 *	kernel_sendpage - send a &page through a socket (kernel space)
3539 *	@sock: socket
3540 *	@page: page
3541 *	@offset: page offset
3542 *	@size: total size in bytes
3543 *	@flags: flags (MSG_DONTWAIT, ...)
3544 *
3545 *	Returns the total amount sent in bytes or an error.
3546 */
3547
3548int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3549		    size_t size, int flags)
3550{
3551	if (sock->ops->sendpage) {
3552		/* Warn in case the improper page to zero-copy send */
3553		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3554		return sock->ops->sendpage(sock, page, offset, size, flags);
3555	}
3556	return sock_no_sendpage(sock, page, offset, size, flags);
3557}
3558EXPORT_SYMBOL(kernel_sendpage);
3559
3560/**
3561 *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3562 *	@sk: sock
3563 *	@page: page
3564 *	@offset: page offset
3565 *	@size: total size in bytes
3566 *	@flags: flags (MSG_DONTWAIT, ...)
3567 *
3568 *	Returns the total amount sent in bytes or an error.
3569 *	Caller must hold @sk.
3570 */
3571
3572int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3573			   size_t size, int flags)
3574{
3575	struct socket *sock = sk->sk_socket;
3576
3577	if (sock->ops->sendpage_locked)
3578		return sock->ops->sendpage_locked(sk, page, offset, size,
3579						  flags);
3580
3581	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3582}
3583EXPORT_SYMBOL(kernel_sendpage_locked);
3584
3585/**
3586 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3587 *	@sock: socket
3588 *	@how: connection part
3589 *
3590 *	Returns 0 or an error.
3591 */
3592
3593int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3594{
3595	return sock->ops->shutdown(sock, how);
3596}
3597EXPORT_SYMBOL(kernel_sock_shutdown);
3598
3599/**
3600 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3601 *	@sk: socket
3602 *
3603 *	This routine returns the IP overhead imposed by a socket i.e.
3604 *	the length of the underlying IP header, depending on whether
3605 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3606 *	on at the socket. Assumes that the caller has a lock on the socket.
3607 */
3608
3609u32 kernel_sock_ip_overhead(struct sock *sk)
3610{
3611	struct inet_sock *inet;
3612	struct ip_options_rcu *opt;
3613	u32 overhead = 0;
3614#if IS_ENABLED(CONFIG_IPV6)
3615	struct ipv6_pinfo *np;
3616	struct ipv6_txoptions *optv6 = NULL;
3617#endif /* IS_ENABLED(CONFIG_IPV6) */
3618
3619	if (!sk)
3620		return overhead;
3621
3622	switch (sk->sk_family) {
3623	case AF_INET:
3624		inet = inet_sk(sk);
3625		overhead += sizeof(struct iphdr);
3626		opt = rcu_dereference_protected(inet->inet_opt,
3627						sock_owned_by_user(sk));
3628		if (opt)
3629			overhead += opt->opt.optlen;
3630		return overhead;
3631#if IS_ENABLED(CONFIG_IPV6)
3632	case AF_INET6:
3633		np = inet6_sk(sk);
3634		overhead += sizeof(struct ipv6hdr);
3635		if (np)
3636			optv6 = rcu_dereference_protected(np->opt,
3637							  sock_owned_by_user(sk));
3638		if (optv6)
3639			overhead += (optv6->opt_flen + optv6->opt_nflen);
3640		return overhead;
3641#endif /* IS_ENABLED(CONFIG_IPV6) */
3642	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3643		return overhead;
3644	}
3645}
3646EXPORT_SYMBOL(kernel_sock_ip_overhead);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/bpf-cgroup.h>
  56#include <linux/ethtool.h>
  57#include <linux/mm.h>
  58#include <linux/socket.h>
  59#include <linux/file.h>
  60#include <linux/net.h>
  61#include <linux/interrupt.h>
  62#include <linux/thread_info.h>
  63#include <linux/rcupdate.h>
  64#include <linux/netdevice.h>
  65#include <linux/proc_fs.h>
  66#include <linux/seq_file.h>
  67#include <linux/mutex.h>
  68#include <linux/if_bridge.h>
  69#include <linux/if_vlan.h>
  70#include <linux/ptp_classify.h>
  71#include <linux/init.h>
  72#include <linux/poll.h>
  73#include <linux/cache.h>
  74#include <linux/module.h>
  75#include <linux/highmem.h>
  76#include <linux/mount.h>
  77#include <linux/pseudo_fs.h>
  78#include <linux/security.h>
  79#include <linux/syscalls.h>
  80#include <linux/compat.h>
  81#include <linux/kmod.h>
  82#include <linux/audit.h>
  83#include <linux/wireless.h>
  84#include <linux/nsproxy.h>
  85#include <linux/magic.h>
  86#include <linux/slab.h>
  87#include <linux/xattr.h>
  88#include <linux/nospec.h>
  89#include <linux/indirect_call_wrapper.h>
  90
  91#include <linux/uaccess.h>
  92#include <asm/unistd.h>
  93
  94#include <net/compat.h>
  95#include <net/wext.h>
  96#include <net/cls_cgroup.h>
  97
  98#include <net/sock.h>
  99#include <linux/netfilter.h>
 100
 101#include <linux/if_tun.h>
 102#include <linux/ipv6_route.h>
 103#include <linux/route.h>
 104#include <linux/termios.h>
 105#include <linux/sockios.h>
 106#include <net/busy_poll.h>
 107#include <linux/errqueue.h>
 108#include <linux/ptp_clock_kernel.h>
 109
 110#ifdef CONFIG_NET_RX_BUSY_POLL
 111unsigned int sysctl_net_busy_read __read_mostly;
 112unsigned int sysctl_net_busy_poll __read_mostly;
 113#endif
 114
 115static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 116static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 117static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 118
 119static int sock_close(struct inode *inode, struct file *file);
 120static __poll_t sock_poll(struct file *file,
 121			      struct poll_table_struct *wait);
 122static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 123#ifdef CONFIG_COMPAT
 124static long compat_sock_ioctl(struct file *file,
 125			      unsigned int cmd, unsigned long arg);
 126#endif
 127static int sock_fasync(int fd, struct file *filp, int on);
 128static ssize_t sock_sendpage(struct file *file, struct page *page,
 129			     int offset, size_t size, loff_t *ppos, int more);
 130static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 131				struct pipe_inode_info *pipe, size_t len,
 132				unsigned int flags);
 133
 134#ifdef CONFIG_PROC_FS
 135static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 136{
 137	struct socket *sock = f->private_data;
 138
 139	if (sock->ops->show_fdinfo)
 140		sock->ops->show_fdinfo(m, sock);
 141}
 142#else
 143#define sock_show_fdinfo NULL
 144#endif
 145
 146/*
 147 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 148 *	in the operation structures but are done directly via the socketcall() multiplexor.
 149 */
 150
 151static const struct file_operations socket_file_ops = {
 152	.owner =	THIS_MODULE,
 153	.llseek =	no_llseek,
 154	.read_iter =	sock_read_iter,
 155	.write_iter =	sock_write_iter,
 156	.poll =		sock_poll,
 157	.unlocked_ioctl = sock_ioctl,
 158#ifdef CONFIG_COMPAT
 159	.compat_ioctl = compat_sock_ioctl,
 160#endif
 161	.mmap =		sock_mmap,
 162	.release =	sock_close,
 163	.fasync =	sock_fasync,
 164	.sendpage =	sock_sendpage,
 165	.splice_write = generic_splice_sendpage,
 166	.splice_read =	sock_splice_read,
 167	.show_fdinfo =	sock_show_fdinfo,
 168};
 169
 170static const char * const pf_family_names[] = {
 171	[PF_UNSPEC]	= "PF_UNSPEC",
 172	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
 173	[PF_INET]	= "PF_INET",
 174	[PF_AX25]	= "PF_AX25",
 175	[PF_IPX]	= "PF_IPX",
 176	[PF_APPLETALK]	= "PF_APPLETALK",
 177	[PF_NETROM]	= "PF_NETROM",
 178	[PF_BRIDGE]	= "PF_BRIDGE",
 179	[PF_ATMPVC]	= "PF_ATMPVC",
 180	[PF_X25]	= "PF_X25",
 181	[PF_INET6]	= "PF_INET6",
 182	[PF_ROSE]	= "PF_ROSE",
 183	[PF_DECnet]	= "PF_DECnet",
 184	[PF_NETBEUI]	= "PF_NETBEUI",
 185	[PF_SECURITY]	= "PF_SECURITY",
 186	[PF_KEY]	= "PF_KEY",
 187	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
 188	[PF_PACKET]	= "PF_PACKET",
 189	[PF_ASH]	= "PF_ASH",
 190	[PF_ECONET]	= "PF_ECONET",
 191	[PF_ATMSVC]	= "PF_ATMSVC",
 192	[PF_RDS]	= "PF_RDS",
 193	[PF_SNA]	= "PF_SNA",
 194	[PF_IRDA]	= "PF_IRDA",
 195	[PF_PPPOX]	= "PF_PPPOX",
 196	[PF_WANPIPE]	= "PF_WANPIPE",
 197	[PF_LLC]	= "PF_LLC",
 198	[PF_IB]		= "PF_IB",
 199	[PF_MPLS]	= "PF_MPLS",
 200	[PF_CAN]	= "PF_CAN",
 201	[PF_TIPC]	= "PF_TIPC",
 202	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
 203	[PF_IUCV]	= "PF_IUCV",
 204	[PF_RXRPC]	= "PF_RXRPC",
 205	[PF_ISDN]	= "PF_ISDN",
 206	[PF_PHONET]	= "PF_PHONET",
 207	[PF_IEEE802154]	= "PF_IEEE802154",
 208	[PF_CAIF]	= "PF_CAIF",
 209	[PF_ALG]	= "PF_ALG",
 210	[PF_NFC]	= "PF_NFC",
 211	[PF_VSOCK]	= "PF_VSOCK",
 212	[PF_KCM]	= "PF_KCM",
 213	[PF_QIPCRTR]	= "PF_QIPCRTR",
 214	[PF_SMC]	= "PF_SMC",
 215	[PF_XDP]	= "PF_XDP",
 216	[PF_MCTP]	= "PF_MCTP",
 217};
 218
 219/*
 220 *	The protocol list. Each protocol is registered in here.
 221 */
 222
 223static DEFINE_SPINLOCK(net_family_lock);
 224static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 225
 226/*
 227 * Support routines.
 228 * Move socket addresses back and forth across the kernel/user
 229 * divide and look after the messy bits.
 230 */
 231
 232/**
 233 *	move_addr_to_kernel	-	copy a socket address into kernel space
 234 *	@uaddr: Address in user space
 235 *	@kaddr: Address in kernel space
 236 *	@ulen: Length in user space
 237 *
 238 *	The address is copied into kernel space. If the provided address is
 239 *	too long an error code of -EINVAL is returned. If the copy gives
 240 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 241 */
 242
 243int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 244{
 245	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 246		return -EINVAL;
 247	if (ulen == 0)
 248		return 0;
 249	if (copy_from_user(kaddr, uaddr, ulen))
 250		return -EFAULT;
 251	return audit_sockaddr(ulen, kaddr);
 252}
 253
 254/**
 255 *	move_addr_to_user	-	copy an address to user space
 256 *	@kaddr: kernel space address
 257 *	@klen: length of address in kernel
 258 *	@uaddr: user space address
 259 *	@ulen: pointer to user length field
 260 *
 261 *	The value pointed to by ulen on entry is the buffer length available.
 262 *	This is overwritten with the buffer space used. -EINVAL is returned
 263 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 264 *	is returned if either the buffer or the length field are not
 265 *	accessible.
 266 *	After copying the data up to the limit the user specifies, the true
 267 *	length of the data is written over the length limit the user
 268 *	specified. Zero is returned for a success.
 269 */
 270
 271static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 272			     void __user *uaddr, int __user *ulen)
 273{
 274	int err;
 275	int len;
 276
 277	BUG_ON(klen > sizeof(struct sockaddr_storage));
 278	err = get_user(len, ulen);
 279	if (err)
 280		return err;
 281	if (len > klen)
 282		len = klen;
 283	if (len < 0)
 284		return -EINVAL;
 285	if (len) {
 286		if (audit_sockaddr(klen, kaddr))
 287			return -ENOMEM;
 288		if (copy_to_user(uaddr, kaddr, len))
 289			return -EFAULT;
 290	}
 291	/*
 292	 *      "fromlen shall refer to the value before truncation.."
 293	 *                      1003.1g
 294	 */
 295	return __put_user(klen, ulen);
 296}
 297
 298static struct kmem_cache *sock_inode_cachep __ro_after_init;
 299
 300static struct inode *sock_alloc_inode(struct super_block *sb)
 301{
 302	struct socket_alloc *ei;
 303
 304	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
 305	if (!ei)
 306		return NULL;
 307	init_waitqueue_head(&ei->socket.wq.wait);
 308	ei->socket.wq.fasync_list = NULL;
 309	ei->socket.wq.flags = 0;
 310
 311	ei->socket.state = SS_UNCONNECTED;
 312	ei->socket.flags = 0;
 313	ei->socket.ops = NULL;
 314	ei->socket.sk = NULL;
 315	ei->socket.file = NULL;
 316
 317	return &ei->vfs_inode;
 318}
 319
 320static void sock_free_inode(struct inode *inode)
 321{
 322	struct socket_alloc *ei;
 323
 324	ei = container_of(inode, struct socket_alloc, vfs_inode);
 325	kmem_cache_free(sock_inode_cachep, ei);
 326}
 327
 328static void init_once(void *foo)
 329{
 330	struct socket_alloc *ei = (struct socket_alloc *)foo;
 331
 332	inode_init_once(&ei->vfs_inode);
 333}
 334
 335static void init_inodecache(void)
 336{
 337	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 338					      sizeof(struct socket_alloc),
 339					      0,
 340					      (SLAB_HWCACHE_ALIGN |
 341					       SLAB_RECLAIM_ACCOUNT |
 342					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 343					      init_once);
 344	BUG_ON(sock_inode_cachep == NULL);
 345}
 346
 347static const struct super_operations sockfs_ops = {
 348	.alloc_inode	= sock_alloc_inode,
 349	.free_inode	= sock_free_inode,
 350	.statfs		= simple_statfs,
 351};
 352
 353/*
 354 * sockfs_dname() is called from d_path().
 355 */
 356static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 357{
 358	return dynamic_dname(buffer, buflen, "socket:[%lu]",
 359				d_inode(dentry)->i_ino);
 360}
 361
 362static const struct dentry_operations sockfs_dentry_operations = {
 363	.d_dname  = sockfs_dname,
 364};
 365
 366static int sockfs_xattr_get(const struct xattr_handler *handler,
 367			    struct dentry *dentry, struct inode *inode,
 368			    const char *suffix, void *value, size_t size)
 369{
 370	if (value) {
 371		if (dentry->d_name.len + 1 > size)
 372			return -ERANGE;
 373		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 374	}
 375	return dentry->d_name.len + 1;
 376}
 377
 378#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 379#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 380#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 381
 382static const struct xattr_handler sockfs_xattr_handler = {
 383	.name = XATTR_NAME_SOCKPROTONAME,
 384	.get = sockfs_xattr_get,
 385};
 386
 387static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 388				     struct user_namespace *mnt_userns,
 389				     struct dentry *dentry, struct inode *inode,
 390				     const char *suffix, const void *value,
 391				     size_t size, int flags)
 392{
 393	/* Handled by LSM. */
 394	return -EAGAIN;
 395}
 396
 397static const struct xattr_handler sockfs_security_xattr_handler = {
 398	.prefix = XATTR_SECURITY_PREFIX,
 399	.set = sockfs_security_xattr_set,
 400};
 401
 402static const struct xattr_handler *sockfs_xattr_handlers[] = {
 403	&sockfs_xattr_handler,
 404	&sockfs_security_xattr_handler,
 405	NULL
 406};
 407
 408static int sockfs_init_fs_context(struct fs_context *fc)
 409{
 410	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 411	if (!ctx)
 412		return -ENOMEM;
 413	ctx->ops = &sockfs_ops;
 414	ctx->dops = &sockfs_dentry_operations;
 415	ctx->xattr = sockfs_xattr_handlers;
 416	return 0;
 417}
 418
 419static struct vfsmount *sock_mnt __read_mostly;
 420
 421static struct file_system_type sock_fs_type = {
 422	.name =		"sockfs",
 423	.init_fs_context = sockfs_init_fs_context,
 424	.kill_sb =	kill_anon_super,
 425};
 426
 427/*
 428 *	Obtains the first available file descriptor and sets it up for use.
 429 *
 430 *	These functions create file structures and maps them to fd space
 431 *	of the current process. On success it returns file descriptor
 432 *	and file struct implicitly stored in sock->file.
 433 *	Note that another thread may close file descriptor before we return
 434 *	from this function. We use the fact that now we do not refer
 435 *	to socket after mapping. If one day we will need it, this
 436 *	function will increment ref. count on file by 1.
 437 *
 438 *	In any case returned fd MAY BE not valid!
 439 *	This race condition is unavoidable
 440 *	with shared fd spaces, we cannot solve it inside kernel,
 441 *	but we take care of internal coherence yet.
 442 */
 443
 444/**
 445 *	sock_alloc_file - Bind a &socket to a &file
 446 *	@sock: socket
 447 *	@flags: file status flags
 448 *	@dname: protocol name
 449 *
 450 *	Returns the &file bound with @sock, implicitly storing it
 451 *	in sock->file. If dname is %NULL, sets to "".
 452 *	On failure the return is a ERR pointer (see linux/err.h).
 453 *	This function uses GFP_KERNEL internally.
 454 */
 455
 456struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 457{
 458	struct file *file;
 459
 460	if (!dname)
 461		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 462
 463	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 464				O_RDWR | (flags & O_NONBLOCK),
 465				&socket_file_ops);
 466	if (IS_ERR(file)) {
 467		sock_release(sock);
 468		return file;
 469	}
 470
 471	sock->file = file;
 472	file->private_data = sock;
 473	stream_open(SOCK_INODE(sock), file);
 474	return file;
 475}
 476EXPORT_SYMBOL(sock_alloc_file);
 477
 478static int sock_map_fd(struct socket *sock, int flags)
 479{
 480	struct file *newfile;
 481	int fd = get_unused_fd_flags(flags);
 482	if (unlikely(fd < 0)) {
 483		sock_release(sock);
 484		return fd;
 485	}
 486
 487	newfile = sock_alloc_file(sock, flags, NULL);
 488	if (!IS_ERR(newfile)) {
 489		fd_install(fd, newfile);
 490		return fd;
 491	}
 492
 493	put_unused_fd(fd);
 494	return PTR_ERR(newfile);
 495}
 496
 497/**
 498 *	sock_from_file - Return the &socket bounded to @file.
 499 *	@file: file
 500 *
 501 *	On failure returns %NULL.
 502 */
 503
 504struct socket *sock_from_file(struct file *file)
 505{
 506	if (file->f_op == &socket_file_ops)
 507		return file->private_data;	/* set in sock_alloc_file */
 508
 509	return NULL;
 510}
 511EXPORT_SYMBOL(sock_from_file);
 512
 513/**
 514 *	sockfd_lookup - Go from a file number to its socket slot
 515 *	@fd: file handle
 516 *	@err: pointer to an error code return
 517 *
 518 *	The file handle passed in is locked and the socket it is bound
 519 *	to is returned. If an error occurs the err pointer is overwritten
 520 *	with a negative errno code and NULL is returned. The function checks
 521 *	for both invalid handles and passing a handle which is not a socket.
 522 *
 523 *	On a success the socket object pointer is returned.
 524 */
 525
 526struct socket *sockfd_lookup(int fd, int *err)
 527{
 528	struct file *file;
 529	struct socket *sock;
 530
 531	file = fget(fd);
 532	if (!file) {
 533		*err = -EBADF;
 534		return NULL;
 535	}
 536
 537	sock = sock_from_file(file);
 538	if (!sock) {
 539		*err = -ENOTSOCK;
 540		fput(file);
 541	}
 542	return sock;
 543}
 544EXPORT_SYMBOL(sockfd_lookup);
 545
 546static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 547{
 548	struct fd f = fdget(fd);
 549	struct socket *sock;
 550
 551	*err = -EBADF;
 552	if (f.file) {
 553		sock = sock_from_file(f.file);
 554		if (likely(sock)) {
 555			*fput_needed = f.flags & FDPUT_FPUT;
 556			return sock;
 557		}
 558		*err = -ENOTSOCK;
 559		fdput(f);
 560	}
 561	return NULL;
 562}
 563
 564static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 565				size_t size)
 566{
 567	ssize_t len;
 568	ssize_t used = 0;
 569
 570	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 571	if (len < 0)
 572		return len;
 573	used += len;
 574	if (buffer) {
 575		if (size < used)
 576			return -ERANGE;
 577		buffer += len;
 578	}
 579
 580	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 581	used += len;
 582	if (buffer) {
 583		if (size < used)
 584			return -ERANGE;
 585		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 586		buffer += len;
 587	}
 588
 589	return used;
 590}
 591
 592static int sockfs_setattr(struct user_namespace *mnt_userns,
 593			  struct dentry *dentry, struct iattr *iattr)
 594{
 595	int err = simple_setattr(&init_user_ns, dentry, iattr);
 596
 597	if (!err && (iattr->ia_valid & ATTR_UID)) {
 598		struct socket *sock = SOCKET_I(d_inode(dentry));
 599
 600		if (sock->sk)
 601			sock->sk->sk_uid = iattr->ia_uid;
 602		else
 603			err = -ENOENT;
 604	}
 605
 606	return err;
 607}
 608
 609static const struct inode_operations sockfs_inode_ops = {
 610	.listxattr = sockfs_listxattr,
 611	.setattr = sockfs_setattr,
 612};
 613
 614/**
 615 *	sock_alloc - allocate a socket
 616 *
 617 *	Allocate a new inode and socket object. The two are bound together
 618 *	and initialised. The socket is then returned. If we are out of inodes
 619 *	NULL is returned. This functions uses GFP_KERNEL internally.
 620 */
 621
 622struct socket *sock_alloc(void)
 623{
 624	struct inode *inode;
 625	struct socket *sock;
 626
 627	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 628	if (!inode)
 629		return NULL;
 630
 631	sock = SOCKET_I(inode);
 632
 633	inode->i_ino = get_next_ino();
 634	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 635	inode->i_uid = current_fsuid();
 636	inode->i_gid = current_fsgid();
 637	inode->i_op = &sockfs_inode_ops;
 638
 639	return sock;
 640}
 641EXPORT_SYMBOL(sock_alloc);
 642
 643static void __sock_release(struct socket *sock, struct inode *inode)
 644{
 645	if (sock->ops) {
 646		struct module *owner = sock->ops->owner;
 647
 648		if (inode)
 649			inode_lock(inode);
 650		sock->ops->release(sock);
 651		sock->sk = NULL;
 652		if (inode)
 653			inode_unlock(inode);
 654		sock->ops = NULL;
 655		module_put(owner);
 656	}
 657
 658	if (sock->wq.fasync_list)
 659		pr_err("%s: fasync list not empty!\n", __func__);
 660
 661	if (!sock->file) {
 662		iput(SOCK_INODE(sock));
 663		return;
 664	}
 665	sock->file = NULL;
 666}
 667
 668/**
 669 *	sock_release - close a socket
 670 *	@sock: socket to close
 671 *
 672 *	The socket is released from the protocol stack if it has a release
 673 *	callback, and the inode is then released if the socket is bound to
 674 *	an inode not a file.
 675 */
 676void sock_release(struct socket *sock)
 677{
 678	__sock_release(sock, NULL);
 679}
 680EXPORT_SYMBOL(sock_release);
 681
 682void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 683{
 684	u8 flags = *tx_flags;
 685
 686	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
 687		flags |= SKBTX_HW_TSTAMP;
 688
 689		/* PTP hardware clocks can provide a free running cycle counter
 690		 * as a time base for virtual clocks. Tell driver to use the
 691		 * free running cycle counter for timestamp if socket is bound
 692		 * to virtual clock.
 693		 */
 694		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
 695			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
 696	}
 697
 698	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 699		flags |= SKBTX_SW_TSTAMP;
 700
 701	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 702		flags |= SKBTX_SCHED_TSTAMP;
 703
 704	*tx_flags = flags;
 705}
 706EXPORT_SYMBOL(__sock_tx_timestamp);
 707
 708INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 709					   size_t));
 710INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 711					    size_t));
 712static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 713{
 714	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 715				     inet_sendmsg, sock, msg,
 716				     msg_data_left(msg));
 717	BUG_ON(ret == -EIOCBQUEUED);
 718	return ret;
 719}
 720
 721/**
 722 *	sock_sendmsg - send a message through @sock
 723 *	@sock: socket
 724 *	@msg: message to send
 725 *
 726 *	Sends @msg through @sock, passing through LSM.
 727 *	Returns the number of bytes sent, or an error code.
 728 */
 729int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 730{
 731	int err = security_socket_sendmsg(sock, msg,
 732					  msg_data_left(msg));
 733
 734	return err ?: sock_sendmsg_nosec(sock, msg);
 735}
 736EXPORT_SYMBOL(sock_sendmsg);
 737
 738/**
 739 *	kernel_sendmsg - send a message through @sock (kernel-space)
 740 *	@sock: socket
 741 *	@msg: message header
 742 *	@vec: kernel vec
 743 *	@num: vec array length
 744 *	@size: total message data size
 745 *
 746 *	Builds the message data with @vec and sends it through @sock.
 747 *	Returns the number of bytes sent, or an error code.
 748 */
 749
 750int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 751		   struct kvec *vec, size_t num, size_t size)
 752{
 753	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
 754	return sock_sendmsg(sock, msg);
 755}
 756EXPORT_SYMBOL(kernel_sendmsg);
 757
 758/**
 759 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 760 *	@sk: sock
 761 *	@msg: message header
 762 *	@vec: output s/g array
 763 *	@num: output s/g array length
 764 *	@size: total message data size
 765 *
 766 *	Builds the message data with @vec and sends it through @sock.
 767 *	Returns the number of bytes sent, or an error code.
 768 *	Caller must hold @sk.
 769 */
 770
 771int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 772			  struct kvec *vec, size_t num, size_t size)
 773{
 774	struct socket *sock = sk->sk_socket;
 775
 776	if (!sock->ops->sendmsg_locked)
 777		return sock_no_sendmsg_locked(sk, msg, size);
 778
 779	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
 780
 781	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 782}
 783EXPORT_SYMBOL(kernel_sendmsg_locked);
 784
 785static bool skb_is_err_queue(const struct sk_buff *skb)
 786{
 787	/* pkt_type of skbs enqueued on the error queue are set to
 788	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 789	 * in recvmsg, since skbs received on a local socket will never
 790	 * have a pkt_type of PACKET_OUTGOING.
 791	 */
 792	return skb->pkt_type == PACKET_OUTGOING;
 793}
 794
 795/* On transmit, software and hardware timestamps are returned independently.
 796 * As the two skb clones share the hardware timestamp, which may be updated
 797 * before the software timestamp is received, a hardware TX timestamp may be
 798 * returned only if there is no software TX timestamp. Ignore false software
 799 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 800 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 801 * hardware timestamp.
 802 */
 803static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 804{
 805	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 806}
 807
 808static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
 809{
 810	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
 811	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
 812	struct net_device *orig_dev;
 813	ktime_t hwtstamp;
 814
 815	rcu_read_lock();
 816	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 817	if (orig_dev) {
 818		*if_index = orig_dev->ifindex;
 819		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
 820	} else {
 821		hwtstamp = shhwtstamps->hwtstamp;
 822	}
 823	rcu_read_unlock();
 824
 825	return hwtstamp;
 826}
 827
 828static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
 829			   int if_index)
 830{
 831	struct scm_ts_pktinfo ts_pktinfo;
 832	struct net_device *orig_dev;
 833
 834	if (!skb_mac_header_was_set(skb))
 835		return;
 836
 837	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 838
 839	if (!if_index) {
 840		rcu_read_lock();
 841		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 842		if (orig_dev)
 843			if_index = orig_dev->ifindex;
 844		rcu_read_unlock();
 845	}
 846	ts_pktinfo.if_index = if_index;
 847
 848	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 849	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 850		 sizeof(ts_pktinfo), &ts_pktinfo);
 851}
 852
 853/*
 854 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 855 */
 856void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 857	struct sk_buff *skb)
 858{
 859	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 860	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 861	struct scm_timestamping_internal tss;
 862
 863	int empty = 1, false_tstamp = 0;
 864	struct skb_shared_hwtstamps *shhwtstamps =
 865		skb_hwtstamps(skb);
 866	int if_index;
 867	ktime_t hwtstamp;
 868
 869	/* Race occurred between timestamp enabling and packet
 870	   receiving.  Fill in the current time for now. */
 871	if (need_software_tstamp && skb->tstamp == 0) {
 872		__net_timestamp(skb);
 873		false_tstamp = 1;
 874	}
 875
 876	if (need_software_tstamp) {
 877		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 878			if (new_tstamp) {
 879				struct __kernel_sock_timeval tv;
 880
 881				skb_get_new_timestamp(skb, &tv);
 882				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 883					 sizeof(tv), &tv);
 884			} else {
 885				struct __kernel_old_timeval tv;
 886
 887				skb_get_timestamp(skb, &tv);
 888				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 889					 sizeof(tv), &tv);
 890			}
 891		} else {
 892			if (new_tstamp) {
 893				struct __kernel_timespec ts;
 894
 895				skb_get_new_timestampns(skb, &ts);
 896				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 897					 sizeof(ts), &ts);
 898			} else {
 899				struct __kernel_old_timespec ts;
 900
 901				skb_get_timestampns(skb, &ts);
 902				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 903					 sizeof(ts), &ts);
 904			}
 905		}
 906	}
 907
 908	memset(&tss, 0, sizeof(tss));
 909	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 910	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 911		empty = 0;
 912	if (shhwtstamps &&
 913	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 914	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
 915		if_index = 0;
 916		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
 917			hwtstamp = get_timestamp(sk, skb, &if_index);
 918		else
 919			hwtstamp = shhwtstamps->hwtstamp;
 920
 921		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
 922			hwtstamp = ptp_convert_timestamp(&hwtstamp,
 923							 sk->sk_bind_phc);
 924
 925		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
 
 926			empty = 0;
 927
 928			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 929			    !skb_is_err_queue(skb))
 930				put_ts_pktinfo(msg, skb, if_index);
 931		}
 932	}
 933	if (!empty) {
 934		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 935			put_cmsg_scm_timestamping64(msg, &tss);
 936		else
 937			put_cmsg_scm_timestamping(msg, &tss);
 938
 939		if (skb_is_err_queue(skb) && skb->len &&
 940		    SKB_EXT_ERR(skb)->opt_stats)
 941			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 942				 skb->len, skb->data);
 943	}
 944}
 945EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 946
 947void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 948	struct sk_buff *skb)
 949{
 950	int ack;
 951
 952	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 953		return;
 954	if (!skb->wifi_acked_valid)
 955		return;
 956
 957	ack = skb->wifi_acked;
 958
 959	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 960}
 961EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 962
 963static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 964				   struct sk_buff *skb)
 965{
 966	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 967		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 968			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 969}
 970
 971static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
 972			   struct sk_buff *skb)
 973{
 974	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
 975		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
 976		__u32 mark = skb->mark;
 977
 978		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
 979	}
 980}
 981
 982void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
 983		       struct sk_buff *skb)
 984{
 985	sock_recv_timestamp(msg, sk, skb);
 986	sock_recv_drops(msg, sk, skb);
 987	sock_recv_mark(msg, sk, skb);
 988}
 989EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
 990
 991INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 992					   size_t, int));
 993INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 994					    size_t, int));
 995static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 996				     int flags)
 997{
 998	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 999				  inet_recvmsg, sock, msg, msg_data_left(msg),
1000				  flags);
1001}
1002
1003/**
1004 *	sock_recvmsg - receive a message from @sock
1005 *	@sock: socket
1006 *	@msg: message to receive
1007 *	@flags: message flags
1008 *
1009 *	Receives @msg from @sock, passing through LSM. Returns the total number
1010 *	of bytes received, or an error.
1011 */
1012int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1013{
1014	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1015
1016	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1017}
1018EXPORT_SYMBOL(sock_recvmsg);
1019
1020/**
1021 *	kernel_recvmsg - Receive a message from a socket (kernel space)
1022 *	@sock: The socket to receive the message from
1023 *	@msg: Received message
1024 *	@vec: Input s/g array for message data
1025 *	@num: Size of input s/g array
1026 *	@size: Number of bytes to read
1027 *	@flags: Message flags (MSG_DONTWAIT, etc...)
1028 *
1029 *	On return the msg structure contains the scatter/gather array passed in the
1030 *	vec argument. The array is modified so that it consists of the unfilled
1031 *	portion of the original array.
1032 *
1033 *	The returned value is the total number of bytes received, or an error.
1034 */
1035
1036int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1037		   struct kvec *vec, size_t num, size_t size, int flags)
1038{
1039	msg->msg_control_is_user = false;
1040	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1041	return sock_recvmsg(sock, msg, flags);
1042}
1043EXPORT_SYMBOL(kernel_recvmsg);
1044
1045static ssize_t sock_sendpage(struct file *file, struct page *page,
1046			     int offset, size_t size, loff_t *ppos, int more)
1047{
1048	struct socket *sock;
1049	int flags;
1050
1051	sock = file->private_data;
1052
1053	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1054	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1055	flags |= more;
1056
1057	return kernel_sendpage(sock, page, offset, size, flags);
1058}
1059
1060static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1061				struct pipe_inode_info *pipe, size_t len,
1062				unsigned int flags)
1063{
1064	struct socket *sock = file->private_data;
1065
1066	if (unlikely(!sock->ops->splice_read))
1067		return generic_file_splice_read(file, ppos, pipe, len, flags);
1068
1069	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1070}
1071
1072static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1073{
1074	struct file *file = iocb->ki_filp;
1075	struct socket *sock = file->private_data;
1076	struct msghdr msg = {.msg_iter = *to,
1077			     .msg_iocb = iocb};
1078	ssize_t res;
1079
1080	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1081		msg.msg_flags = MSG_DONTWAIT;
1082
1083	if (iocb->ki_pos != 0)
1084		return -ESPIPE;
1085
1086	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1087		return 0;
1088
1089	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1090	*to = msg.msg_iter;
1091	return res;
1092}
1093
1094static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1095{
1096	struct file *file = iocb->ki_filp;
1097	struct socket *sock = file->private_data;
1098	struct msghdr msg = {.msg_iter = *from,
1099			     .msg_iocb = iocb};
1100	ssize_t res;
1101
1102	if (iocb->ki_pos != 0)
1103		return -ESPIPE;
1104
1105	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1106		msg.msg_flags = MSG_DONTWAIT;
1107
1108	if (sock->type == SOCK_SEQPACKET)
1109		msg.msg_flags |= MSG_EOR;
1110
1111	res = sock_sendmsg(sock, &msg);
1112	*from = msg.msg_iter;
1113	return res;
1114}
1115
1116/*
1117 * Atomic setting of ioctl hooks to avoid race
1118 * with module unload.
1119 */
1120
1121static DEFINE_MUTEX(br_ioctl_mutex);
1122static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1123			    unsigned int cmd, struct ifreq *ifr,
1124			    void __user *uarg);
1125
1126void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1127			     unsigned int cmd, struct ifreq *ifr,
1128			     void __user *uarg))
1129{
1130	mutex_lock(&br_ioctl_mutex);
1131	br_ioctl_hook = hook;
1132	mutex_unlock(&br_ioctl_mutex);
1133}
1134EXPORT_SYMBOL(brioctl_set);
1135
1136int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1137		  struct ifreq *ifr, void __user *uarg)
1138{
1139	int err = -ENOPKG;
1140
1141	if (!br_ioctl_hook)
1142		request_module("bridge");
1143
1144	mutex_lock(&br_ioctl_mutex);
1145	if (br_ioctl_hook)
1146		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1147	mutex_unlock(&br_ioctl_mutex);
1148
1149	return err;
1150}
1151
1152static DEFINE_MUTEX(vlan_ioctl_mutex);
1153static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1154
1155void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1156{
1157	mutex_lock(&vlan_ioctl_mutex);
1158	vlan_ioctl_hook = hook;
1159	mutex_unlock(&vlan_ioctl_mutex);
1160}
1161EXPORT_SYMBOL(vlan_ioctl_set);
1162
1163static long sock_do_ioctl(struct net *net, struct socket *sock,
1164			  unsigned int cmd, unsigned long arg)
1165{
1166	struct ifreq ifr;
1167	bool need_copyout;
1168	int err;
1169	void __user *argp = (void __user *)arg;
1170	void __user *data;
1171
1172	err = sock->ops->ioctl(sock, cmd, arg);
1173
1174	/*
1175	 * If this ioctl is unknown try to hand it down
1176	 * to the NIC driver.
1177	 */
1178	if (err != -ENOIOCTLCMD)
1179		return err;
1180
1181	if (!is_socket_ioctl_cmd(cmd))
1182		return -ENOTTY;
1183
1184	if (get_user_ifreq(&ifr, &data, argp))
1185		return -EFAULT;
1186	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1187	if (!err && need_copyout)
1188		if (put_user_ifreq(&ifr, argp))
 
 
 
 
 
1189			return -EFAULT;
1190
 
 
 
 
 
 
1191	return err;
1192}
1193
1194/*
1195 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1196 *	what to do with it - that's up to the protocol still.
1197 */
1198
1199static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1200{
1201	struct socket *sock;
1202	struct sock *sk;
1203	void __user *argp = (void __user *)arg;
1204	int pid, err;
1205	struct net *net;
1206
1207	sock = file->private_data;
1208	sk = sock->sk;
1209	net = sock_net(sk);
1210	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1211		struct ifreq ifr;
1212		void __user *data;
1213		bool need_copyout;
1214		if (get_user_ifreq(&ifr, &data, argp))
1215			return -EFAULT;
1216		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1217		if (!err && need_copyout)
1218			if (put_user_ifreq(&ifr, argp))
1219				return -EFAULT;
1220	} else
1221#ifdef CONFIG_WEXT_CORE
1222	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1223		err = wext_handle_ioctl(net, cmd, argp);
1224	} else
1225#endif
1226		switch (cmd) {
1227		case FIOSETOWN:
1228		case SIOCSPGRP:
1229			err = -EFAULT;
1230			if (get_user(pid, (int __user *)argp))
1231				break;
1232			err = f_setown(sock->file, pid, 1);
1233			break;
1234		case FIOGETOWN:
1235		case SIOCGPGRP:
1236			err = put_user(f_getown(sock->file),
1237				       (int __user *)argp);
1238			break;
1239		case SIOCGIFBR:
1240		case SIOCSIFBR:
1241		case SIOCBRADDBR:
1242		case SIOCBRDELBR:
1243			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
 
 
 
 
 
 
 
1244			break;
1245		case SIOCGIFVLAN:
1246		case SIOCSIFVLAN:
1247			err = -ENOPKG;
1248			if (!vlan_ioctl_hook)
1249				request_module("8021q");
1250
1251			mutex_lock(&vlan_ioctl_mutex);
1252			if (vlan_ioctl_hook)
1253				err = vlan_ioctl_hook(net, argp);
1254			mutex_unlock(&vlan_ioctl_mutex);
1255			break;
1256		case SIOCGSKNS:
1257			err = -EPERM;
1258			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1259				break;
1260
1261			err = open_related_ns(&net->ns, get_net_ns);
1262			break;
1263		case SIOCGSTAMP_OLD:
1264		case SIOCGSTAMPNS_OLD:
1265			if (!sock->ops->gettstamp) {
1266				err = -ENOIOCTLCMD;
1267				break;
1268			}
1269			err = sock->ops->gettstamp(sock, argp,
1270						   cmd == SIOCGSTAMP_OLD,
1271						   !IS_ENABLED(CONFIG_64BIT));
1272			break;
1273		case SIOCGSTAMP_NEW:
1274		case SIOCGSTAMPNS_NEW:
1275			if (!sock->ops->gettstamp) {
1276				err = -ENOIOCTLCMD;
1277				break;
1278			}
1279			err = sock->ops->gettstamp(sock, argp,
1280						   cmd == SIOCGSTAMP_NEW,
1281						   false);
1282			break;
1283
1284		case SIOCGIFCONF:
1285			err = dev_ifconf(net, argp);
1286			break;
1287
1288		default:
1289			err = sock_do_ioctl(net, sock, cmd, arg);
1290			break;
1291		}
1292	return err;
1293}
1294
1295/**
1296 *	sock_create_lite - creates a socket
1297 *	@family: protocol family (AF_INET, ...)
1298 *	@type: communication type (SOCK_STREAM, ...)
1299 *	@protocol: protocol (0, ...)
1300 *	@res: new socket
1301 *
1302 *	Creates a new socket and assigns it to @res, passing through LSM.
1303 *	The new socket initialization is not complete, see kernel_accept().
1304 *	Returns 0 or an error. On failure @res is set to %NULL.
1305 *	This function internally uses GFP_KERNEL.
1306 */
1307
1308int sock_create_lite(int family, int type, int protocol, struct socket **res)
1309{
1310	int err;
1311	struct socket *sock = NULL;
1312
1313	err = security_socket_create(family, type, protocol, 1);
1314	if (err)
1315		goto out;
1316
1317	sock = sock_alloc();
1318	if (!sock) {
1319		err = -ENOMEM;
1320		goto out;
1321	}
1322
1323	sock->type = type;
1324	err = security_socket_post_create(sock, family, type, protocol, 1);
1325	if (err)
1326		goto out_release;
1327
1328out:
1329	*res = sock;
1330	return err;
1331out_release:
1332	sock_release(sock);
1333	sock = NULL;
1334	goto out;
1335}
1336EXPORT_SYMBOL(sock_create_lite);
1337
1338/* No kernel lock held - perfect */
1339static __poll_t sock_poll(struct file *file, poll_table *wait)
1340{
1341	struct socket *sock = file->private_data;
1342	__poll_t events = poll_requested_events(wait), flag = 0;
1343
1344	if (!sock->ops->poll)
1345		return 0;
1346
1347	if (sk_can_busy_loop(sock->sk)) {
1348		/* poll once if requested by the syscall */
1349		if (events & POLL_BUSY_LOOP)
1350			sk_busy_loop(sock->sk, 1);
1351
1352		/* if this socket can poll_ll, tell the system call */
1353		flag = POLL_BUSY_LOOP;
1354	}
1355
1356	return sock->ops->poll(file, sock, wait) | flag;
1357}
1358
1359static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1360{
1361	struct socket *sock = file->private_data;
1362
1363	return sock->ops->mmap(file, sock, vma);
1364}
1365
1366static int sock_close(struct inode *inode, struct file *filp)
1367{
1368	__sock_release(SOCKET_I(inode), inode);
1369	return 0;
1370}
1371
1372/*
1373 *	Update the socket async list
1374 *
1375 *	Fasync_list locking strategy.
1376 *
1377 *	1. fasync_list is modified only under process context socket lock
1378 *	   i.e. under semaphore.
1379 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1380 *	   or under socket lock
1381 */
1382
1383static int sock_fasync(int fd, struct file *filp, int on)
1384{
1385	struct socket *sock = filp->private_data;
1386	struct sock *sk = sock->sk;
1387	struct socket_wq *wq = &sock->wq;
1388
1389	if (sk == NULL)
1390		return -EINVAL;
1391
1392	lock_sock(sk);
1393	fasync_helper(fd, filp, on, &wq->fasync_list);
1394
1395	if (!wq->fasync_list)
1396		sock_reset_flag(sk, SOCK_FASYNC);
1397	else
1398		sock_set_flag(sk, SOCK_FASYNC);
1399
1400	release_sock(sk);
1401	return 0;
1402}
1403
1404/* This function may be called only under rcu_lock */
1405
1406int sock_wake_async(struct socket_wq *wq, int how, int band)
1407{
1408	if (!wq || !wq->fasync_list)
1409		return -1;
1410
1411	switch (how) {
1412	case SOCK_WAKE_WAITD:
1413		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1414			break;
1415		goto call_kill;
1416	case SOCK_WAKE_SPACE:
1417		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1418			break;
1419		fallthrough;
1420	case SOCK_WAKE_IO:
1421call_kill:
1422		kill_fasync(&wq->fasync_list, SIGIO, band);
1423		break;
1424	case SOCK_WAKE_URG:
1425		kill_fasync(&wq->fasync_list, SIGURG, band);
1426	}
1427
1428	return 0;
1429}
1430EXPORT_SYMBOL(sock_wake_async);
1431
1432/**
1433 *	__sock_create - creates a socket
1434 *	@net: net namespace
1435 *	@family: protocol family (AF_INET, ...)
1436 *	@type: communication type (SOCK_STREAM, ...)
1437 *	@protocol: protocol (0, ...)
1438 *	@res: new socket
1439 *	@kern: boolean for kernel space sockets
1440 *
1441 *	Creates a new socket and assigns it to @res, passing through LSM.
1442 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1443 *	be set to true if the socket resides in kernel space.
1444 *	This function internally uses GFP_KERNEL.
1445 */
1446
1447int __sock_create(struct net *net, int family, int type, int protocol,
1448			 struct socket **res, int kern)
1449{
1450	int err;
1451	struct socket *sock;
1452	const struct net_proto_family *pf;
1453
1454	/*
1455	 *      Check protocol is in range
1456	 */
1457	if (family < 0 || family >= NPROTO)
1458		return -EAFNOSUPPORT;
1459	if (type < 0 || type >= SOCK_MAX)
1460		return -EINVAL;
1461
1462	/* Compatibility.
1463
1464	   This uglymoron is moved from INET layer to here to avoid
1465	   deadlock in module load.
1466	 */
1467	if (family == PF_INET && type == SOCK_PACKET) {
1468		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1469			     current->comm);
1470		family = PF_PACKET;
1471	}
1472
1473	err = security_socket_create(family, type, protocol, kern);
1474	if (err)
1475		return err;
1476
1477	/*
1478	 *	Allocate the socket and allow the family to set things up. if
1479	 *	the protocol is 0, the family is instructed to select an appropriate
1480	 *	default.
1481	 */
1482	sock = sock_alloc();
1483	if (!sock) {
1484		net_warn_ratelimited("socket: no more sockets\n");
1485		return -ENFILE;	/* Not exactly a match, but its the
1486				   closest posix thing */
1487	}
1488
1489	sock->type = type;
1490
1491#ifdef CONFIG_MODULES
1492	/* Attempt to load a protocol module if the find failed.
1493	 *
1494	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1495	 * requested real, full-featured networking support upon configuration.
1496	 * Otherwise module support will break!
1497	 */
1498	if (rcu_access_pointer(net_families[family]) == NULL)
1499		request_module("net-pf-%d", family);
1500#endif
1501
1502	rcu_read_lock();
1503	pf = rcu_dereference(net_families[family]);
1504	err = -EAFNOSUPPORT;
1505	if (!pf)
1506		goto out_release;
1507
1508	/*
1509	 * We will call the ->create function, that possibly is in a loadable
1510	 * module, so we have to bump that loadable module refcnt first.
1511	 */
1512	if (!try_module_get(pf->owner))
1513		goto out_release;
1514
1515	/* Now protected by module ref count */
1516	rcu_read_unlock();
1517
1518	err = pf->create(net, sock, protocol, kern);
1519	if (err < 0)
1520		goto out_module_put;
1521
1522	/*
1523	 * Now to bump the refcnt of the [loadable] module that owns this
1524	 * socket at sock_release time we decrement its refcnt.
1525	 */
1526	if (!try_module_get(sock->ops->owner))
1527		goto out_module_busy;
1528
1529	/*
1530	 * Now that we're done with the ->create function, the [loadable]
1531	 * module can have its refcnt decremented
1532	 */
1533	module_put(pf->owner);
1534	err = security_socket_post_create(sock, family, type, protocol, kern);
1535	if (err)
1536		goto out_sock_release;
1537	*res = sock;
1538
1539	return 0;
1540
1541out_module_busy:
1542	err = -EAFNOSUPPORT;
1543out_module_put:
1544	sock->ops = NULL;
1545	module_put(pf->owner);
1546out_sock_release:
1547	sock_release(sock);
1548	return err;
1549
1550out_release:
1551	rcu_read_unlock();
1552	goto out_sock_release;
1553}
1554EXPORT_SYMBOL(__sock_create);
1555
1556/**
1557 *	sock_create - creates a socket
1558 *	@family: protocol family (AF_INET, ...)
1559 *	@type: communication type (SOCK_STREAM, ...)
1560 *	@protocol: protocol (0, ...)
1561 *	@res: new socket
1562 *
1563 *	A wrapper around __sock_create().
1564 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1565 */
1566
1567int sock_create(int family, int type, int protocol, struct socket **res)
1568{
1569	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1570}
1571EXPORT_SYMBOL(sock_create);
1572
1573/**
1574 *	sock_create_kern - creates a socket (kernel space)
1575 *	@net: net namespace
1576 *	@family: protocol family (AF_INET, ...)
1577 *	@type: communication type (SOCK_STREAM, ...)
1578 *	@protocol: protocol (0, ...)
1579 *	@res: new socket
1580 *
1581 *	A wrapper around __sock_create().
1582 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1583 */
1584
1585int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1586{
1587	return __sock_create(net, family, type, protocol, res, 1);
1588}
1589EXPORT_SYMBOL(sock_create_kern);
1590
1591static struct socket *__sys_socket_create(int family, int type, int protocol)
1592{
 
1593	struct socket *sock;
1594	int retval;
1595
1596	/* Check the SOCK_* constants for consistency.  */
1597	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1598	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1599	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1600	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1601
1602	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1603		return ERR_PTR(-EINVAL);
 
1604	type &= SOCK_TYPE_MASK;
1605
1606	retval = sock_create(family, type, protocol, &sock);
1607	if (retval < 0)
1608		return ERR_PTR(retval);
1609
1610	return sock;
1611}
1612
1613struct file *__sys_socket_file(int family, int type, int protocol)
1614{
1615	struct socket *sock;
1616	struct file *file;
1617	int flags;
1618
1619	sock = __sys_socket_create(family, type, protocol);
1620	if (IS_ERR(sock))
1621		return ERR_CAST(sock);
1622
1623	flags = type & ~SOCK_TYPE_MASK;
1624	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1625		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1626
1627	file = sock_alloc_file(sock, flags, NULL);
1628	if (IS_ERR(file))
1629		sock_release(sock);
1630
1631	return file;
1632}
1633
1634int __sys_socket(int family, int type, int protocol)
1635{
1636	struct socket *sock;
1637	int flags;
1638
1639	sock = __sys_socket_create(family, type, protocol);
1640	if (IS_ERR(sock))
1641		return PTR_ERR(sock);
1642
1643	flags = type & ~SOCK_TYPE_MASK;
1644	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1645		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1646
1647	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1648}
1649
1650SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1651{
1652	return __sys_socket(family, type, protocol);
1653}
1654
1655/*
1656 *	Create a pair of connected sockets.
1657 */
1658
1659int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1660{
1661	struct socket *sock1, *sock2;
1662	int fd1, fd2, err;
1663	struct file *newfile1, *newfile2;
1664	int flags;
1665
1666	flags = type & ~SOCK_TYPE_MASK;
1667	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1668		return -EINVAL;
1669	type &= SOCK_TYPE_MASK;
1670
1671	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1672		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1673
1674	/*
1675	 * reserve descriptors and make sure we won't fail
1676	 * to return them to userland.
1677	 */
1678	fd1 = get_unused_fd_flags(flags);
1679	if (unlikely(fd1 < 0))
1680		return fd1;
1681
1682	fd2 = get_unused_fd_flags(flags);
1683	if (unlikely(fd2 < 0)) {
1684		put_unused_fd(fd1);
1685		return fd2;
1686	}
1687
1688	err = put_user(fd1, &usockvec[0]);
1689	if (err)
1690		goto out;
1691
1692	err = put_user(fd2, &usockvec[1]);
1693	if (err)
1694		goto out;
1695
1696	/*
1697	 * Obtain the first socket and check if the underlying protocol
1698	 * supports the socketpair call.
1699	 */
1700
1701	err = sock_create(family, type, protocol, &sock1);
1702	if (unlikely(err < 0))
1703		goto out;
1704
1705	err = sock_create(family, type, protocol, &sock2);
1706	if (unlikely(err < 0)) {
1707		sock_release(sock1);
1708		goto out;
1709	}
1710
1711	err = security_socket_socketpair(sock1, sock2);
1712	if (unlikely(err)) {
1713		sock_release(sock2);
1714		sock_release(sock1);
1715		goto out;
1716	}
1717
1718	err = sock1->ops->socketpair(sock1, sock2);
1719	if (unlikely(err < 0)) {
1720		sock_release(sock2);
1721		sock_release(sock1);
1722		goto out;
1723	}
1724
1725	newfile1 = sock_alloc_file(sock1, flags, NULL);
1726	if (IS_ERR(newfile1)) {
1727		err = PTR_ERR(newfile1);
1728		sock_release(sock2);
1729		goto out;
1730	}
1731
1732	newfile2 = sock_alloc_file(sock2, flags, NULL);
1733	if (IS_ERR(newfile2)) {
1734		err = PTR_ERR(newfile2);
1735		fput(newfile1);
1736		goto out;
1737	}
1738
1739	audit_fd_pair(fd1, fd2);
1740
1741	fd_install(fd1, newfile1);
1742	fd_install(fd2, newfile2);
1743	return 0;
1744
1745out:
1746	put_unused_fd(fd2);
1747	put_unused_fd(fd1);
1748	return err;
1749}
1750
1751SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1752		int __user *, usockvec)
1753{
1754	return __sys_socketpair(family, type, protocol, usockvec);
1755}
1756
1757/*
1758 *	Bind a name to a socket. Nothing much to do here since it's
1759 *	the protocol's responsibility to handle the local address.
1760 *
1761 *	We move the socket address to kernel space before we call
1762 *	the protocol layer (having also checked the address is ok).
1763 */
1764
1765int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1766{
1767	struct socket *sock;
1768	struct sockaddr_storage address;
1769	int err, fput_needed;
1770
1771	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772	if (sock) {
1773		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1774		if (!err) {
1775			err = security_socket_bind(sock,
1776						   (struct sockaddr *)&address,
1777						   addrlen);
1778			if (!err)
1779				err = sock->ops->bind(sock,
1780						      (struct sockaddr *)
1781						      &address, addrlen);
1782		}
1783		fput_light(sock->file, fput_needed);
1784	}
1785	return err;
1786}
1787
1788SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1789{
1790	return __sys_bind(fd, umyaddr, addrlen);
1791}
1792
1793/*
1794 *	Perform a listen. Basically, we allow the protocol to do anything
1795 *	necessary for a listen, and if that works, we mark the socket as
1796 *	ready for listening.
1797 */
1798
1799int __sys_listen(int fd, int backlog)
1800{
1801	struct socket *sock;
1802	int err, fput_needed;
1803	int somaxconn;
1804
1805	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806	if (sock) {
1807		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1808		if ((unsigned int)backlog > somaxconn)
1809			backlog = somaxconn;
1810
1811		err = security_socket_listen(sock, backlog);
1812		if (!err)
1813			err = sock->ops->listen(sock, backlog);
1814
1815		fput_light(sock->file, fput_needed);
1816	}
1817	return err;
1818}
1819
1820SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1821{
1822	return __sys_listen(fd, backlog);
1823}
1824
1825struct file *do_accept(struct file *file, unsigned file_flags,
1826		       struct sockaddr __user *upeer_sockaddr,
1827		       int __user *upeer_addrlen, int flags)
 
1828{
1829	struct socket *sock, *newsock;
1830	struct file *newfile;
1831	int err, len;
1832	struct sockaddr_storage address;
1833
 
 
 
 
 
 
1834	sock = sock_from_file(file);
1835	if (!sock)
1836		return ERR_PTR(-ENOTSOCK);
 
 
1837
 
1838	newsock = sock_alloc();
1839	if (!newsock)
1840		return ERR_PTR(-ENFILE);
1841
1842	newsock->type = sock->type;
1843	newsock->ops = sock->ops;
1844
1845	/*
1846	 * We don't need try_module_get here, as the listening socket (sock)
1847	 * has the protocol module (sock->ops->owner) held.
1848	 */
1849	__module_get(newsock->ops->owner);
1850
 
 
 
 
 
 
1851	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1852	if (IS_ERR(newfile))
1853		return newfile;
 
 
 
1854
1855	err = security_socket_accept(sock, newsock);
1856	if (err)
1857		goto out_fd;
1858
1859	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1860					false);
1861	if (err < 0)
1862		goto out_fd;
1863
1864	if (upeer_sockaddr) {
1865		len = newsock->ops->getname(newsock,
1866					(struct sockaddr *)&address, 2);
1867		if (len < 0) {
1868			err = -ECONNABORTED;
1869			goto out_fd;
1870		}
1871		err = move_addr_to_user(&address,
1872					len, upeer_sockaddr, upeer_addrlen);
1873		if (err < 0)
1874			goto out_fd;
1875	}
1876
1877	/* File flags are not inherited via accept() unlike another OSes. */
1878	return newfile;
 
 
 
 
1879out_fd:
1880	fput(newfile);
1881	return ERR_PTR(err);
1882}
1883
1884static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1885			      int __user *upeer_addrlen, int flags)
1886{
1887	struct file *newfile;
1888	int newfd;
1889
1890	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1891		return -EINVAL;
1892
1893	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1894		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1895
1896	newfd = get_unused_fd_flags(flags);
1897	if (unlikely(newfd < 0))
1898		return newfd;
1899
1900	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1901			    flags);
1902	if (IS_ERR(newfile)) {
1903		put_unused_fd(newfd);
1904		return PTR_ERR(newfile);
1905	}
1906	fd_install(newfd, newfile);
1907	return newfd;
1908}
1909
1910/*
1911 *	For accept, we attempt to create a new socket, set up the link
1912 *	with the client, wake up the client, then return the new
1913 *	connected fd. We collect the address of the connector in kernel
1914 *	space and move it to user at the very end. This is unclean because
1915 *	we open the socket then return an error.
1916 *
1917 *	1003.1g adds the ability to recvmsg() to query connection pending
1918 *	status to recvmsg. We need to add that support in a way thats
1919 *	clean when we restructure accept also.
1920 */
1921
1922int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1923		  int __user *upeer_addrlen, int flags)
1924{
1925	int ret = -EBADF;
1926	struct fd f;
1927
1928	f = fdget(fd);
1929	if (f.file) {
1930		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1931					 upeer_addrlen, flags);
 
1932		fdput(f);
1933	}
1934
1935	return ret;
1936}
1937
1938SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1939		int __user *, upeer_addrlen, int, flags)
1940{
1941	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1942}
1943
1944SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1945		int __user *, upeer_addrlen)
1946{
1947	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1948}
1949
1950/*
1951 *	Attempt to connect to a socket with the server address.  The address
1952 *	is in user space so we verify it is OK and move it to kernel space.
1953 *
1954 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1955 *	break bindings
1956 *
1957 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1958 *	other SEQPACKET protocols that take time to connect() as it doesn't
1959 *	include the -EINPROGRESS status for such sockets.
1960 */
1961
1962int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1963		       int addrlen, int file_flags)
1964{
1965	struct socket *sock;
1966	int err;
1967
1968	sock = sock_from_file(file);
1969	if (!sock) {
1970		err = -ENOTSOCK;
1971		goto out;
1972	}
1973
1974	err =
1975	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1976	if (err)
1977		goto out;
1978
1979	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1980				 sock->file->f_flags | file_flags);
1981out:
1982	return err;
1983}
1984
1985int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1986{
1987	int ret = -EBADF;
1988	struct fd f;
1989
1990	f = fdget(fd);
1991	if (f.file) {
1992		struct sockaddr_storage address;
1993
1994		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1995		if (!ret)
1996			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1997		fdput(f);
1998	}
1999
2000	return ret;
2001}
2002
2003SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2004		int, addrlen)
2005{
2006	return __sys_connect(fd, uservaddr, addrlen);
2007}
2008
2009/*
2010 *	Get the local address ('name') of a socket object. Move the obtained
2011 *	name to user space.
2012 */
2013
2014int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2015		      int __user *usockaddr_len)
2016{
2017	struct socket *sock;
2018	struct sockaddr_storage address;
2019	int err, fput_needed;
2020
2021	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2022	if (!sock)
2023		goto out;
2024
2025	err = security_socket_getsockname(sock);
2026	if (err)
2027		goto out_put;
2028
2029	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2030	if (err < 0)
2031		goto out_put;
2032	/* "err" is actually length in this case */
2033	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2034
2035out_put:
2036	fput_light(sock->file, fput_needed);
2037out:
2038	return err;
2039}
2040
2041SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2042		int __user *, usockaddr_len)
2043{
2044	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2045}
2046
2047/*
2048 *	Get the remote address ('name') of a socket object. Move the obtained
2049 *	name to user space.
2050 */
2051
2052int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2053		      int __user *usockaddr_len)
2054{
2055	struct socket *sock;
2056	struct sockaddr_storage address;
2057	int err, fput_needed;
2058
2059	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2060	if (sock != NULL) {
2061		err = security_socket_getpeername(sock);
2062		if (err) {
2063			fput_light(sock->file, fput_needed);
2064			return err;
2065		}
2066
2067		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2068		if (err >= 0)
2069			/* "err" is actually length in this case */
2070			err = move_addr_to_user(&address, err, usockaddr,
2071						usockaddr_len);
2072		fput_light(sock->file, fput_needed);
2073	}
2074	return err;
2075}
2076
2077SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2078		int __user *, usockaddr_len)
2079{
2080	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2081}
2082
2083/*
2084 *	Send a datagram to a given address. We move the address into kernel
2085 *	space and check the user space data area is readable before invoking
2086 *	the protocol.
2087 */
2088int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2089		 struct sockaddr __user *addr,  int addr_len)
2090{
2091	struct socket *sock;
2092	struct sockaddr_storage address;
2093	int err;
2094	struct msghdr msg;
2095	struct iovec iov;
2096	int fput_needed;
2097
2098	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2099	if (unlikely(err))
2100		return err;
2101	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102	if (!sock)
2103		goto out;
2104
2105	msg.msg_name = NULL;
2106	msg.msg_control = NULL;
2107	msg.msg_controllen = 0;
2108	msg.msg_namelen = 0;
2109	msg.msg_ubuf = NULL;
2110	if (addr) {
2111		err = move_addr_to_kernel(addr, addr_len, &address);
2112		if (err < 0)
2113			goto out_put;
2114		msg.msg_name = (struct sockaddr *)&address;
2115		msg.msg_namelen = addr_len;
2116	}
2117	if (sock->file->f_flags & O_NONBLOCK)
2118		flags |= MSG_DONTWAIT;
2119	msg.msg_flags = flags;
2120	err = sock_sendmsg(sock, &msg);
2121
2122out_put:
2123	fput_light(sock->file, fput_needed);
2124out:
2125	return err;
2126}
2127
2128SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2129		unsigned int, flags, struct sockaddr __user *, addr,
2130		int, addr_len)
2131{
2132	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2133}
2134
2135/*
2136 *	Send a datagram down a socket.
2137 */
2138
2139SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2140		unsigned int, flags)
2141{
2142	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2143}
2144
2145/*
2146 *	Receive a frame from the socket and optionally record the address of the
2147 *	sender. We verify the buffers are writable and if needed move the
2148 *	sender address from kernel to user space.
2149 */
2150int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2151		   struct sockaddr __user *addr, int __user *addr_len)
2152{
2153	struct sockaddr_storage address;
2154	struct msghdr msg = {
2155		/* Save some cycles and don't copy the address if not needed */
2156		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2157	};
2158	struct socket *sock;
2159	struct iovec iov;
 
 
2160	int err, err2;
2161	int fput_needed;
2162
2163	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2164	if (unlikely(err))
2165		return err;
2166	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2167	if (!sock)
2168		goto out;
2169
 
 
 
 
 
 
 
 
2170	if (sock->file->f_flags & O_NONBLOCK)
2171		flags |= MSG_DONTWAIT;
2172	err = sock_recvmsg(sock, &msg, flags);
2173
2174	if (err >= 0 && addr != NULL) {
2175		err2 = move_addr_to_user(&address,
2176					 msg.msg_namelen, addr, addr_len);
2177		if (err2 < 0)
2178			err = err2;
2179	}
2180
2181	fput_light(sock->file, fput_needed);
2182out:
2183	return err;
2184}
2185
2186SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2187		unsigned int, flags, struct sockaddr __user *, addr,
2188		int __user *, addr_len)
2189{
2190	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2191}
2192
2193/*
2194 *	Receive a datagram from a socket.
2195 */
2196
2197SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2198		unsigned int, flags)
2199{
2200	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2201}
2202
2203static bool sock_use_custom_sol_socket(const struct socket *sock)
2204{
2205	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
 
 
 
 
 
 
2206}
2207
2208/*
2209 *	Set a socket option. Because we don't know the option lengths we have
2210 *	to pass the user mode parameter for the protocols to sort out.
2211 */
2212int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2213		int optlen)
2214{
2215	sockptr_t optval = USER_SOCKPTR(user_optval);
2216	char *kernel_optval = NULL;
2217	int err, fput_needed;
2218	struct socket *sock;
2219
2220	if (optlen < 0)
2221		return -EINVAL;
2222
2223	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2224	if (!sock)
2225		return err;
2226
2227	err = security_socket_setsockopt(sock, level, optname);
2228	if (err)
2229		goto out_put;
2230
2231	if (!in_compat_syscall())
2232		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2233						     user_optval, &optlen,
2234						     &kernel_optval);
2235	if (err < 0)
2236		goto out_put;
2237	if (err > 0) {
2238		err = 0;
2239		goto out_put;
2240	}
2241
2242	if (kernel_optval)
2243		optval = KERNEL_SOCKPTR(kernel_optval);
2244	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2245		err = sock_setsockopt(sock, level, optname, optval, optlen);
2246	else if (unlikely(!sock->ops->setsockopt))
2247		err = -EOPNOTSUPP;
2248	else
2249		err = sock->ops->setsockopt(sock, level, optname, optval,
2250					    optlen);
2251	kfree(kernel_optval);
2252out_put:
2253	fput_light(sock->file, fput_needed);
2254	return err;
2255}
2256
2257SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2258		char __user *, optval, int, optlen)
2259{
2260	return __sys_setsockopt(fd, level, optname, optval, optlen);
2261}
2262
2263INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2264							 int optname));
2265
2266/*
2267 *	Get a socket option. Because we don't know the option lengths we have
2268 *	to pass a user mode parameter for the protocols to sort out.
2269 */
2270int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2271		int __user *optlen)
2272{
2273	int err, fput_needed;
2274	struct socket *sock;
2275	int max_optlen;
2276
2277	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2278	if (!sock)
2279		return err;
2280
2281	err = security_socket_getsockopt(sock, level, optname);
2282	if (err)
2283		goto out_put;
2284
2285	if (!in_compat_syscall())
2286		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2287
2288	if (level == SOL_SOCKET)
2289		err = sock_getsockopt(sock, level, optname, optval, optlen);
2290	else if (unlikely(!sock->ops->getsockopt))
2291		err = -EOPNOTSUPP;
2292	else
2293		err = sock->ops->getsockopt(sock, level, optname, optval,
2294					    optlen);
2295
2296	if (!in_compat_syscall())
2297		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2298						     optval, optlen, max_optlen,
2299						     err);
2300out_put:
2301	fput_light(sock->file, fput_needed);
2302	return err;
2303}
2304
2305SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2306		char __user *, optval, int __user *, optlen)
2307{
2308	return __sys_getsockopt(fd, level, optname, optval, optlen);
2309}
2310
2311/*
2312 *	Shutdown a socket.
2313 */
2314
2315int __sys_shutdown_sock(struct socket *sock, int how)
2316{
2317	int err;
2318
2319	err = security_socket_shutdown(sock, how);
2320	if (!err)
2321		err = sock->ops->shutdown(sock, how);
2322
2323	return err;
2324}
2325
2326int __sys_shutdown(int fd, int how)
2327{
2328	int err, fput_needed;
2329	struct socket *sock;
2330
2331	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2332	if (sock != NULL) {
2333		err = __sys_shutdown_sock(sock, how);
2334		fput_light(sock->file, fput_needed);
2335	}
2336	return err;
2337}
2338
2339SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2340{
2341	return __sys_shutdown(fd, how);
2342}
2343
2344/* A couple of helpful macros for getting the address of the 32/64 bit
2345 * fields which are the same type (int / unsigned) on our platforms.
2346 */
2347#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2348#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2349#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2350
2351struct used_address {
2352	struct sockaddr_storage name;
2353	unsigned int name_len;
2354};
2355
2356int __copy_msghdr(struct msghdr *kmsg,
2357		  struct user_msghdr *msg,
2358		  struct sockaddr __user **save_addr)
 
2359{
 
2360	ssize_t err;
2361
 
 
 
2362	kmsg->msg_control_is_user = true;
2363	kmsg->msg_get_inq = 0;
2364	kmsg->msg_control_user = msg->msg_control;
2365	kmsg->msg_controllen = msg->msg_controllen;
2366	kmsg->msg_flags = msg->msg_flags;
2367
2368	kmsg->msg_namelen = msg->msg_namelen;
2369	if (!msg->msg_name)
2370		kmsg->msg_namelen = 0;
2371
2372	if (kmsg->msg_namelen < 0)
2373		return -EINVAL;
2374
2375	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2376		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2377
2378	if (save_addr)
2379		*save_addr = msg->msg_name;
2380
2381	if (msg->msg_name && kmsg->msg_namelen) {
2382		if (!save_addr) {
2383			err = move_addr_to_kernel(msg->msg_name,
2384						  kmsg->msg_namelen,
2385						  kmsg->msg_name);
2386			if (err < 0)
2387				return err;
2388		}
2389	} else {
2390		kmsg->msg_name = NULL;
2391		kmsg->msg_namelen = 0;
2392	}
2393
2394	if (msg->msg_iovlen > UIO_MAXIOV)
2395		return -EMSGSIZE;
2396
2397	kmsg->msg_iocb = NULL;
2398	kmsg->msg_ubuf = NULL;
 
2399	return 0;
2400}
2401
2402static int copy_msghdr_from_user(struct msghdr *kmsg,
2403				 struct user_msghdr __user *umsg,
2404				 struct sockaddr __user **save_addr,
2405				 struct iovec **iov)
2406{
2407	struct user_msghdr msg;
2408	ssize_t err;
2409
2410	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2411		return -EFAULT;
2412
2413	err = __copy_msghdr(kmsg, &msg, save_addr);
2414	if (err)
2415		return err;
2416
2417	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2418			    msg.msg_iov, msg.msg_iovlen,
2419			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2420	return err < 0 ? err : 0;
2421}
2422
2423static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2424			   unsigned int flags, struct used_address *used_address,
2425			   unsigned int allowed_msghdr_flags)
2426{
2427	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2428				__aligned(sizeof(__kernel_size_t));
2429	/* 20 is size of ipv6_pktinfo */
2430	unsigned char *ctl_buf = ctl;
2431	int ctl_len;
2432	ssize_t err;
2433
2434	err = -ENOBUFS;
2435
2436	if (msg_sys->msg_controllen > INT_MAX)
2437		goto out;
2438	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2439	ctl_len = msg_sys->msg_controllen;
2440	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2441		err =
2442		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2443						     sizeof(ctl));
2444		if (err)
2445			goto out;
2446		ctl_buf = msg_sys->msg_control;
2447		ctl_len = msg_sys->msg_controllen;
2448	} else if (ctl_len) {
2449		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2450			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2451		if (ctl_len > sizeof(ctl)) {
2452			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2453			if (ctl_buf == NULL)
2454				goto out;
2455		}
2456		err = -EFAULT;
2457		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2458			goto out_freectl;
2459		msg_sys->msg_control = ctl_buf;
2460		msg_sys->msg_control_is_user = false;
2461	}
2462	msg_sys->msg_flags = flags;
2463
2464	if (sock->file->f_flags & O_NONBLOCK)
2465		msg_sys->msg_flags |= MSG_DONTWAIT;
2466	/*
2467	 * If this is sendmmsg() and current destination address is same as
2468	 * previously succeeded address, omit asking LSM's decision.
2469	 * used_address->name_len is initialized to UINT_MAX so that the first
2470	 * destination address never matches.
2471	 */
2472	if (used_address && msg_sys->msg_name &&
2473	    used_address->name_len == msg_sys->msg_namelen &&
2474	    !memcmp(&used_address->name, msg_sys->msg_name,
2475		    used_address->name_len)) {
2476		err = sock_sendmsg_nosec(sock, msg_sys);
2477		goto out_freectl;
2478	}
2479	err = sock_sendmsg(sock, msg_sys);
2480	/*
2481	 * If this is sendmmsg() and sending to current destination address was
2482	 * successful, remember it.
2483	 */
2484	if (used_address && err >= 0) {
2485		used_address->name_len = msg_sys->msg_namelen;
2486		if (msg_sys->msg_name)
2487			memcpy(&used_address->name, msg_sys->msg_name,
2488			       used_address->name_len);
2489	}
2490
2491out_freectl:
2492	if (ctl_buf != ctl)
2493		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2494out:
2495	return err;
2496}
2497
2498int sendmsg_copy_msghdr(struct msghdr *msg,
2499			struct user_msghdr __user *umsg, unsigned flags,
2500			struct iovec **iov)
2501{
2502	int err;
2503
2504	if (flags & MSG_CMSG_COMPAT) {
2505		struct compat_msghdr __user *msg_compat;
2506
2507		msg_compat = (struct compat_msghdr __user *) umsg;
2508		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2509	} else {
2510		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2511	}
2512	if (err < 0)
2513		return err;
2514
2515	return 0;
2516}
2517
2518static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2519			 struct msghdr *msg_sys, unsigned int flags,
2520			 struct used_address *used_address,
2521			 unsigned int allowed_msghdr_flags)
2522{
2523	struct sockaddr_storage address;
2524	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2525	ssize_t err;
2526
2527	msg_sys->msg_name = &address;
2528
2529	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2530	if (err < 0)
2531		return err;
2532
2533	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2534				allowed_msghdr_flags);
2535	kfree(iov);
2536	return err;
2537}
2538
2539/*
2540 *	BSD sendmsg interface
2541 */
2542long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2543			unsigned int flags)
2544{
2545	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2546}
2547
2548long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2549		   bool forbid_cmsg_compat)
2550{
2551	int fput_needed, err;
2552	struct msghdr msg_sys;
2553	struct socket *sock;
2554
2555	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2556		return -EINVAL;
2557
2558	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2559	if (!sock)
2560		goto out;
2561
2562	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2563
2564	fput_light(sock->file, fput_needed);
2565out:
2566	return err;
2567}
2568
2569SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2570{
2571	return __sys_sendmsg(fd, msg, flags, true);
2572}
2573
2574/*
2575 *	Linux sendmmsg interface
2576 */
2577
2578int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2579		   unsigned int flags, bool forbid_cmsg_compat)
2580{
2581	int fput_needed, err, datagrams;
2582	struct socket *sock;
2583	struct mmsghdr __user *entry;
2584	struct compat_mmsghdr __user *compat_entry;
2585	struct msghdr msg_sys;
2586	struct used_address used_address;
2587	unsigned int oflags = flags;
2588
2589	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2590		return -EINVAL;
2591
2592	if (vlen > UIO_MAXIOV)
2593		vlen = UIO_MAXIOV;
2594
2595	datagrams = 0;
2596
2597	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2598	if (!sock)
2599		return err;
2600
2601	used_address.name_len = UINT_MAX;
2602	entry = mmsg;
2603	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2604	err = 0;
2605	flags |= MSG_BATCH;
2606
2607	while (datagrams < vlen) {
2608		if (datagrams == vlen - 1)
2609			flags = oflags;
2610
2611		if (MSG_CMSG_COMPAT & flags) {
2612			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2613					     &msg_sys, flags, &used_address, MSG_EOR);
2614			if (err < 0)
2615				break;
2616			err = __put_user(err, &compat_entry->msg_len);
2617			++compat_entry;
2618		} else {
2619			err = ___sys_sendmsg(sock,
2620					     (struct user_msghdr __user *)entry,
2621					     &msg_sys, flags, &used_address, MSG_EOR);
2622			if (err < 0)
2623				break;
2624			err = put_user(err, &entry->msg_len);
2625			++entry;
2626		}
2627
2628		if (err)
2629			break;
2630		++datagrams;
2631		if (msg_data_left(&msg_sys))
2632			break;
2633		cond_resched();
2634	}
2635
2636	fput_light(sock->file, fput_needed);
2637
2638	/* We only return an error if no datagrams were able to be sent */
2639	if (datagrams != 0)
2640		return datagrams;
2641
2642	return err;
2643}
2644
2645SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2646		unsigned int, vlen, unsigned int, flags)
2647{
2648	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2649}
2650
2651int recvmsg_copy_msghdr(struct msghdr *msg,
2652			struct user_msghdr __user *umsg, unsigned flags,
2653			struct sockaddr __user **uaddr,
2654			struct iovec **iov)
2655{
2656	ssize_t err;
2657
2658	if (MSG_CMSG_COMPAT & flags) {
2659		struct compat_msghdr __user *msg_compat;
2660
2661		msg_compat = (struct compat_msghdr __user *) umsg;
2662		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2663	} else {
2664		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2665	}
2666	if (err < 0)
2667		return err;
2668
2669	return 0;
2670}
2671
2672static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2673			   struct user_msghdr __user *msg,
2674			   struct sockaddr __user *uaddr,
2675			   unsigned int flags, int nosec)
2676{
2677	struct compat_msghdr __user *msg_compat =
2678					(struct compat_msghdr __user *) msg;
2679	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2680	struct sockaddr_storage addr;
2681	unsigned long cmsg_ptr;
2682	int len;
2683	ssize_t err;
2684
2685	msg_sys->msg_name = &addr;
2686	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2687	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2688
2689	/* We assume all kernel code knows the size of sockaddr_storage */
2690	msg_sys->msg_namelen = 0;
2691
2692	if (sock->file->f_flags & O_NONBLOCK)
2693		flags |= MSG_DONTWAIT;
2694
2695	if (unlikely(nosec))
2696		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2697	else
2698		err = sock_recvmsg(sock, msg_sys, flags);
2699
2700	if (err < 0)
2701		goto out;
2702	len = err;
2703
2704	if (uaddr != NULL) {
2705		err = move_addr_to_user(&addr,
2706					msg_sys->msg_namelen, uaddr,
2707					uaddr_len);
2708		if (err < 0)
2709			goto out;
2710	}
2711	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2712			 COMPAT_FLAGS(msg));
2713	if (err)
2714		goto out;
2715	if (MSG_CMSG_COMPAT & flags)
2716		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2717				 &msg_compat->msg_controllen);
2718	else
2719		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2720				 &msg->msg_controllen);
2721	if (err)
2722		goto out;
2723	err = len;
2724out:
2725	return err;
2726}
2727
2728static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2729			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2730{
2731	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2732	/* user mode address pointers */
2733	struct sockaddr __user *uaddr;
2734	ssize_t err;
2735
2736	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2737	if (err < 0)
2738		return err;
2739
2740	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2741	kfree(iov);
2742	return err;
2743}
2744
2745/*
2746 *	BSD recvmsg interface
2747 */
2748
2749long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2750			struct user_msghdr __user *umsg,
2751			struct sockaddr __user *uaddr, unsigned int flags)
2752{
2753	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2754}
2755
2756long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2757		   bool forbid_cmsg_compat)
2758{
2759	int fput_needed, err;
2760	struct msghdr msg_sys;
2761	struct socket *sock;
2762
2763	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2764		return -EINVAL;
2765
2766	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2767	if (!sock)
2768		goto out;
2769
2770	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2771
2772	fput_light(sock->file, fput_needed);
2773out:
2774	return err;
2775}
2776
2777SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2778		unsigned int, flags)
2779{
2780	return __sys_recvmsg(fd, msg, flags, true);
2781}
2782
2783/*
2784 *     Linux recvmmsg interface
2785 */
2786
2787static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2788			  unsigned int vlen, unsigned int flags,
2789			  struct timespec64 *timeout)
2790{
2791	int fput_needed, err, datagrams;
2792	struct socket *sock;
2793	struct mmsghdr __user *entry;
2794	struct compat_mmsghdr __user *compat_entry;
2795	struct msghdr msg_sys;
2796	struct timespec64 end_time;
2797	struct timespec64 timeout64;
2798
2799	if (timeout &&
2800	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2801				    timeout->tv_nsec))
2802		return -EINVAL;
2803
2804	datagrams = 0;
2805
2806	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2807	if (!sock)
2808		return err;
2809
2810	if (likely(!(flags & MSG_ERRQUEUE))) {
2811		err = sock_error(sock->sk);
2812		if (err) {
2813			datagrams = err;
2814			goto out_put;
2815		}
2816	}
2817
2818	entry = mmsg;
2819	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2820
2821	while (datagrams < vlen) {
2822		/*
2823		 * No need to ask LSM for more than the first datagram.
2824		 */
2825		if (MSG_CMSG_COMPAT & flags) {
2826			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2827					     &msg_sys, flags & ~MSG_WAITFORONE,
2828					     datagrams);
2829			if (err < 0)
2830				break;
2831			err = __put_user(err, &compat_entry->msg_len);
2832			++compat_entry;
2833		} else {
2834			err = ___sys_recvmsg(sock,
2835					     (struct user_msghdr __user *)entry,
2836					     &msg_sys, flags & ~MSG_WAITFORONE,
2837					     datagrams);
2838			if (err < 0)
2839				break;
2840			err = put_user(err, &entry->msg_len);
2841			++entry;
2842		}
2843
2844		if (err)
2845			break;
2846		++datagrams;
2847
2848		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2849		if (flags & MSG_WAITFORONE)
2850			flags |= MSG_DONTWAIT;
2851
2852		if (timeout) {
2853			ktime_get_ts64(&timeout64);
2854			*timeout = timespec64_sub(end_time, timeout64);
2855			if (timeout->tv_sec < 0) {
2856				timeout->tv_sec = timeout->tv_nsec = 0;
2857				break;
2858			}
2859
2860			/* Timeout, return less than vlen datagrams */
2861			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2862				break;
2863		}
2864
2865		/* Out of band data, return right away */
2866		if (msg_sys.msg_flags & MSG_OOB)
2867			break;
2868		cond_resched();
2869	}
2870
2871	if (err == 0)
2872		goto out_put;
2873
2874	if (datagrams == 0) {
2875		datagrams = err;
2876		goto out_put;
2877	}
2878
2879	/*
2880	 * We may return less entries than requested (vlen) if the
2881	 * sock is non block and there aren't enough datagrams...
2882	 */
2883	if (err != -EAGAIN) {
2884		/*
2885		 * ... or  if recvmsg returns an error after we
2886		 * received some datagrams, where we record the
2887		 * error to return on the next call or if the
2888		 * app asks about it using getsockopt(SO_ERROR).
2889		 */
2890		sock->sk->sk_err = -err;
2891	}
2892out_put:
2893	fput_light(sock->file, fput_needed);
2894
2895	return datagrams;
2896}
2897
2898int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2899		   unsigned int vlen, unsigned int flags,
2900		   struct __kernel_timespec __user *timeout,
2901		   struct old_timespec32 __user *timeout32)
2902{
2903	int datagrams;
2904	struct timespec64 timeout_sys;
2905
2906	if (timeout && get_timespec64(&timeout_sys, timeout))
2907		return -EFAULT;
2908
2909	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2910		return -EFAULT;
2911
2912	if (!timeout && !timeout32)
2913		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2914
2915	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2916
2917	if (datagrams <= 0)
2918		return datagrams;
2919
2920	if (timeout && put_timespec64(&timeout_sys, timeout))
2921		datagrams = -EFAULT;
2922
2923	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2924		datagrams = -EFAULT;
2925
2926	return datagrams;
2927}
2928
2929SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2930		unsigned int, vlen, unsigned int, flags,
2931		struct __kernel_timespec __user *, timeout)
2932{
2933	if (flags & MSG_CMSG_COMPAT)
2934		return -EINVAL;
2935
2936	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2937}
2938
2939#ifdef CONFIG_COMPAT_32BIT_TIME
2940SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2941		unsigned int, vlen, unsigned int, flags,
2942		struct old_timespec32 __user *, timeout)
2943{
2944	if (flags & MSG_CMSG_COMPAT)
2945		return -EINVAL;
2946
2947	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2948}
2949#endif
2950
2951#ifdef __ARCH_WANT_SYS_SOCKETCALL
2952/* Argument list sizes for sys_socketcall */
2953#define AL(x) ((x) * sizeof(unsigned long))
2954static const unsigned char nargs[21] = {
2955	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2956	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2957	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2958	AL(4), AL(5), AL(4)
2959};
2960
2961#undef AL
2962
2963/*
2964 *	System call vectors.
2965 *
2966 *	Argument checking cleaned up. Saved 20% in size.
2967 *  This function doesn't need to set the kernel lock because
2968 *  it is set by the callees.
2969 */
2970
2971SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2972{
2973	unsigned long a[AUDITSC_ARGS];
2974	unsigned long a0, a1;
2975	int err;
2976	unsigned int len;
2977
2978	if (call < 1 || call > SYS_SENDMMSG)
2979		return -EINVAL;
2980	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2981
2982	len = nargs[call];
2983	if (len > sizeof(a))
2984		return -EINVAL;
2985
2986	/* copy_from_user should be SMP safe. */
2987	if (copy_from_user(a, args, len))
2988		return -EFAULT;
2989
2990	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2991	if (err)
2992		return err;
2993
2994	a0 = a[0];
2995	a1 = a[1];
2996
2997	switch (call) {
2998	case SYS_SOCKET:
2999		err = __sys_socket(a0, a1, a[2]);
3000		break;
3001	case SYS_BIND:
3002		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3003		break;
3004	case SYS_CONNECT:
3005		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3006		break;
3007	case SYS_LISTEN:
3008		err = __sys_listen(a0, a1);
3009		break;
3010	case SYS_ACCEPT:
3011		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3012				    (int __user *)a[2], 0);
3013		break;
3014	case SYS_GETSOCKNAME:
3015		err =
3016		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3017				      (int __user *)a[2]);
3018		break;
3019	case SYS_GETPEERNAME:
3020		err =
3021		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3022				      (int __user *)a[2]);
3023		break;
3024	case SYS_SOCKETPAIR:
3025		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3026		break;
3027	case SYS_SEND:
3028		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3029				   NULL, 0);
3030		break;
3031	case SYS_SENDTO:
3032		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3033				   (struct sockaddr __user *)a[4], a[5]);
3034		break;
3035	case SYS_RECV:
3036		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3037				     NULL, NULL);
3038		break;
3039	case SYS_RECVFROM:
3040		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3041				     (struct sockaddr __user *)a[4],
3042				     (int __user *)a[5]);
3043		break;
3044	case SYS_SHUTDOWN:
3045		err = __sys_shutdown(a0, a1);
3046		break;
3047	case SYS_SETSOCKOPT:
3048		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3049				       a[4]);
3050		break;
3051	case SYS_GETSOCKOPT:
3052		err =
3053		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3054				     (int __user *)a[4]);
3055		break;
3056	case SYS_SENDMSG:
3057		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3058				    a[2], true);
3059		break;
3060	case SYS_SENDMMSG:
3061		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3062				     a[3], true);
3063		break;
3064	case SYS_RECVMSG:
3065		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3066				    a[2], true);
3067		break;
3068	case SYS_RECVMMSG:
3069		if (IS_ENABLED(CONFIG_64BIT))
3070			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3071					     a[2], a[3],
3072					     (struct __kernel_timespec __user *)a[4],
3073					     NULL);
3074		else
3075			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3076					     a[2], a[3], NULL,
3077					     (struct old_timespec32 __user *)a[4]);
3078		break;
3079	case SYS_ACCEPT4:
3080		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3081				    (int __user *)a[2], a[3]);
3082		break;
3083	default:
3084		err = -EINVAL;
3085		break;
3086	}
3087	return err;
3088}
3089
3090#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3091
3092/**
3093 *	sock_register - add a socket protocol handler
3094 *	@ops: description of protocol
3095 *
3096 *	This function is called by a protocol handler that wants to
3097 *	advertise its address family, and have it linked into the
3098 *	socket interface. The value ops->family corresponds to the
3099 *	socket system call protocol family.
3100 */
3101int sock_register(const struct net_proto_family *ops)
3102{
3103	int err;
3104
3105	if (ops->family >= NPROTO) {
3106		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3107		return -ENOBUFS;
3108	}
3109
3110	spin_lock(&net_family_lock);
3111	if (rcu_dereference_protected(net_families[ops->family],
3112				      lockdep_is_held(&net_family_lock)))
3113		err = -EEXIST;
3114	else {
3115		rcu_assign_pointer(net_families[ops->family], ops);
3116		err = 0;
3117	}
3118	spin_unlock(&net_family_lock);
3119
3120	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3121	return err;
3122}
3123EXPORT_SYMBOL(sock_register);
3124
3125/**
3126 *	sock_unregister - remove a protocol handler
3127 *	@family: protocol family to remove
3128 *
3129 *	This function is called by a protocol handler that wants to
3130 *	remove its address family, and have it unlinked from the
3131 *	new socket creation.
3132 *
3133 *	If protocol handler is a module, then it can use module reference
3134 *	counts to protect against new references. If protocol handler is not
3135 *	a module then it needs to provide its own protection in
3136 *	the ops->create routine.
3137 */
3138void sock_unregister(int family)
3139{
3140	BUG_ON(family < 0 || family >= NPROTO);
3141
3142	spin_lock(&net_family_lock);
3143	RCU_INIT_POINTER(net_families[family], NULL);
3144	spin_unlock(&net_family_lock);
3145
3146	synchronize_rcu();
3147
3148	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3149}
3150EXPORT_SYMBOL(sock_unregister);
3151
3152bool sock_is_registered(int family)
3153{
3154	return family < NPROTO && rcu_access_pointer(net_families[family]);
3155}
3156
3157static int __init sock_init(void)
3158{
3159	int err;
3160	/*
3161	 *      Initialize the network sysctl infrastructure.
3162	 */
3163	err = net_sysctl_init();
3164	if (err)
3165		goto out;
3166
3167	/*
3168	 *      Initialize skbuff SLAB cache
3169	 */
3170	skb_init();
3171
3172	/*
3173	 *      Initialize the protocols module.
3174	 */
3175
3176	init_inodecache();
3177
3178	err = register_filesystem(&sock_fs_type);
3179	if (err)
3180		goto out;
3181	sock_mnt = kern_mount(&sock_fs_type);
3182	if (IS_ERR(sock_mnt)) {
3183		err = PTR_ERR(sock_mnt);
3184		goto out_mount;
3185	}
3186
3187	/* The real protocol initialization is performed in later initcalls.
3188	 */
3189
3190#ifdef CONFIG_NETFILTER
3191	err = netfilter_init();
3192	if (err)
3193		goto out;
3194#endif
3195
3196	ptp_classifier_init();
3197
3198out:
3199	return err;
3200
3201out_mount:
3202	unregister_filesystem(&sock_fs_type);
3203	goto out;
3204}
3205
3206core_initcall(sock_init);	/* early initcall */
3207
3208#ifdef CONFIG_PROC_FS
3209void socket_seq_show(struct seq_file *seq)
3210{
3211	seq_printf(seq, "sockets: used %d\n",
3212		   sock_inuse_get(seq->private));
3213}
3214#endif				/* CONFIG_PROC_FS */
3215
3216/* Handle the fact that while struct ifreq has the same *layout* on
3217 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3218 * which are handled elsewhere, it still has different *size* due to
3219 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3220 * resulting in struct ifreq being 32 and 40 bytes respectively).
3221 * As a result, if the struct happens to be at the end of a page and
3222 * the next page isn't readable/writable, we get a fault. To prevent
3223 * that, copy back and forth to the full size.
3224 */
3225int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3226{
3227	if (in_compat_syscall()) {
3228		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3229
3230		memset(ifr, 0, sizeof(*ifr));
3231		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3232			return -EFAULT;
3233
3234		if (ifrdata)
3235			*ifrdata = compat_ptr(ifr32->ifr_data);
3236
3237		return 0;
3238	}
3239
3240	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3241		return -EFAULT;
3242
3243	if (ifrdata)
3244		*ifrdata = ifr->ifr_data;
3245
3246	return 0;
3247}
3248EXPORT_SYMBOL(get_user_ifreq);
3249
3250int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3251{
3252	size_t size = sizeof(*ifr);
3253
3254	if (in_compat_syscall())
3255		size = sizeof(struct compat_ifreq);
3256
3257	if (copy_to_user(arg, ifr, size))
3258		return -EFAULT;
3259
3260	return 0;
3261}
3262EXPORT_SYMBOL(put_user_ifreq);
3263
3264#ifdef CONFIG_COMPAT
3265static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3266{
3267	compat_uptr_t uptr32;
3268	struct ifreq ifr;
3269	void __user *saved;
3270	int err;
3271
3272	if (get_user_ifreq(&ifr, NULL, uifr32))
3273		return -EFAULT;
3274
3275	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3276		return -EFAULT;
3277
3278	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3279	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3280
3281	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3282	if (!err) {
3283		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3284		if (put_user_ifreq(&ifr, uifr32))
3285			err = -EFAULT;
3286	}
3287	return err;
3288}
3289
3290/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3291static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3292				 struct compat_ifreq __user *u_ifreq32)
3293{
3294	struct ifreq ifreq;
3295	void __user *data;
3296
3297	if (!is_socket_ioctl_cmd(cmd))
3298		return -ENOTTY;
3299	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3300		return -EFAULT;
3301	ifreq.ifr_data = data;
 
 
3302
3303	return dev_ioctl(net, cmd, &ifreq, data, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3304}
3305
3306static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3307			 unsigned int cmd, unsigned long arg)
3308{
3309	void __user *argp = compat_ptr(arg);
3310	struct sock *sk = sock->sk;
3311	struct net *net = sock_net(sk);
3312
3313	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3314		return sock_ioctl(file, cmd, (unsigned long)argp);
3315
3316	switch (cmd) {
 
 
 
 
 
3317	case SIOCWANDEV:
3318		return compat_siocwandev(net, argp);
 
 
 
3319	case SIOCGSTAMP_OLD:
3320	case SIOCGSTAMPNS_OLD:
3321		if (!sock->ops->gettstamp)
3322			return -ENOIOCTLCMD;
3323		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3324					    !COMPAT_USE_64BIT_TIME);
3325
3326	case SIOCETHTOOL:
3327	case SIOCBONDSLAVEINFOQUERY:
3328	case SIOCBONDINFOQUERY:
3329	case SIOCSHWTSTAMP:
3330	case SIOCGHWTSTAMP:
3331		return compat_ifr_data_ioctl(net, cmd, argp);
3332
3333	case FIOSETOWN:
3334	case SIOCSPGRP:
3335	case FIOGETOWN:
3336	case SIOCGPGRP:
3337	case SIOCBRADDBR:
3338	case SIOCBRDELBR:
3339	case SIOCGIFVLAN:
3340	case SIOCSIFVLAN:
3341	case SIOCGSKNS:
3342	case SIOCGSTAMP_NEW:
3343	case SIOCGSTAMPNS_NEW:
3344	case SIOCGIFCONF:
3345	case SIOCSIFBR:
3346	case SIOCGIFBR:
3347		return sock_ioctl(file, cmd, arg);
3348
3349	case SIOCGIFFLAGS:
3350	case SIOCSIFFLAGS:
3351	case SIOCGIFMAP:
3352	case SIOCSIFMAP:
3353	case SIOCGIFMETRIC:
3354	case SIOCSIFMETRIC:
3355	case SIOCGIFMTU:
3356	case SIOCSIFMTU:
3357	case SIOCGIFMEM:
3358	case SIOCSIFMEM:
3359	case SIOCGIFHWADDR:
3360	case SIOCSIFHWADDR:
3361	case SIOCADDMULTI:
3362	case SIOCDELMULTI:
3363	case SIOCGIFINDEX:
3364	case SIOCGIFADDR:
3365	case SIOCSIFADDR:
3366	case SIOCSIFHWBROADCAST:
3367	case SIOCDIFADDR:
3368	case SIOCGIFBRDADDR:
3369	case SIOCSIFBRDADDR:
3370	case SIOCGIFDSTADDR:
3371	case SIOCSIFDSTADDR:
3372	case SIOCGIFNETMASK:
3373	case SIOCSIFNETMASK:
3374	case SIOCSIFPFLAGS:
3375	case SIOCGIFPFLAGS:
3376	case SIOCGIFTXQLEN:
3377	case SIOCSIFTXQLEN:
3378	case SIOCBRADDIF:
3379	case SIOCBRDELIF:
3380	case SIOCGIFNAME:
3381	case SIOCSIFNAME:
3382	case SIOCGMIIPHY:
3383	case SIOCGMIIREG:
3384	case SIOCSMIIREG:
3385	case SIOCBONDENSLAVE:
3386	case SIOCBONDRELEASE:
3387	case SIOCBONDSETHWADDR:
3388	case SIOCBONDCHANGEACTIVE:
 
 
3389	case SIOCSARP:
3390	case SIOCGARP:
3391	case SIOCDARP:
3392	case SIOCOUTQ:
3393	case SIOCOUTQNSD:
3394	case SIOCATMARK:
3395		return sock_do_ioctl(net, sock, cmd, arg);
3396	}
3397
3398	return -ENOIOCTLCMD;
3399}
3400
3401static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3402			      unsigned long arg)
3403{
3404	struct socket *sock = file->private_data;
3405	int ret = -ENOIOCTLCMD;
3406	struct sock *sk;
3407	struct net *net;
3408
3409	sk = sock->sk;
3410	net = sock_net(sk);
3411
3412	if (sock->ops->compat_ioctl)
3413		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3414
3415	if (ret == -ENOIOCTLCMD &&
3416	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3417		ret = compat_wext_handle_ioctl(net, cmd, arg);
3418
3419	if (ret == -ENOIOCTLCMD)
3420		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3421
3422	return ret;
3423}
3424#endif
3425
3426/**
3427 *	kernel_bind - bind an address to a socket (kernel space)
3428 *	@sock: socket
3429 *	@addr: address
3430 *	@addrlen: length of address
3431 *
3432 *	Returns 0 or an error.
3433 */
3434
3435int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3436{
3437	return sock->ops->bind(sock, addr, addrlen);
3438}
3439EXPORT_SYMBOL(kernel_bind);
3440
3441/**
3442 *	kernel_listen - move socket to listening state (kernel space)
3443 *	@sock: socket
3444 *	@backlog: pending connections queue size
3445 *
3446 *	Returns 0 or an error.
3447 */
3448
3449int kernel_listen(struct socket *sock, int backlog)
3450{
3451	return sock->ops->listen(sock, backlog);
3452}
3453EXPORT_SYMBOL(kernel_listen);
3454
3455/**
3456 *	kernel_accept - accept a connection (kernel space)
3457 *	@sock: listening socket
3458 *	@newsock: new connected socket
3459 *	@flags: flags
3460 *
3461 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3462 *	If it fails, @newsock is guaranteed to be %NULL.
3463 *	Returns 0 or an error.
3464 */
3465
3466int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3467{
3468	struct sock *sk = sock->sk;
3469	int err;
3470
3471	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3472			       newsock);
3473	if (err < 0)
3474		goto done;
3475
3476	err = sock->ops->accept(sock, *newsock, flags, true);
3477	if (err < 0) {
3478		sock_release(*newsock);
3479		*newsock = NULL;
3480		goto done;
3481	}
3482
3483	(*newsock)->ops = sock->ops;
3484	__module_get((*newsock)->ops->owner);
3485
3486done:
3487	return err;
3488}
3489EXPORT_SYMBOL(kernel_accept);
3490
3491/**
3492 *	kernel_connect - connect a socket (kernel space)
3493 *	@sock: socket
3494 *	@addr: address
3495 *	@addrlen: address length
3496 *	@flags: flags (O_NONBLOCK, ...)
3497 *
3498 *	For datagram sockets, @addr is the address to which datagrams are sent
3499 *	by default, and the only address from which datagrams are received.
3500 *	For stream sockets, attempts to connect to @addr.
3501 *	Returns 0 or an error code.
3502 */
3503
3504int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3505		   int flags)
3506{
3507	return sock->ops->connect(sock, addr, addrlen, flags);
3508}
3509EXPORT_SYMBOL(kernel_connect);
3510
3511/**
3512 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3513 *	@sock: socket
3514 *	@addr: address holder
3515 *
3516 * 	Fills the @addr pointer with the address which the socket is bound.
3517 *	Returns the length of the address in bytes or an error code.
3518 */
3519
3520int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3521{
3522	return sock->ops->getname(sock, addr, 0);
3523}
3524EXPORT_SYMBOL(kernel_getsockname);
3525
3526/**
3527 *	kernel_getpeername - get the address which the socket is connected (kernel space)
3528 *	@sock: socket
3529 *	@addr: address holder
3530 *
3531 * 	Fills the @addr pointer with the address which the socket is connected.
3532 *	Returns the length of the address in bytes or an error code.
3533 */
3534
3535int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3536{
3537	return sock->ops->getname(sock, addr, 1);
3538}
3539EXPORT_SYMBOL(kernel_getpeername);
3540
3541/**
3542 *	kernel_sendpage - send a &page through a socket (kernel space)
3543 *	@sock: socket
3544 *	@page: page
3545 *	@offset: page offset
3546 *	@size: total size in bytes
3547 *	@flags: flags (MSG_DONTWAIT, ...)
3548 *
3549 *	Returns the total amount sent in bytes or an error.
3550 */
3551
3552int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3553		    size_t size, int flags)
3554{
3555	if (sock->ops->sendpage) {
3556		/* Warn in case the improper page to zero-copy send */
3557		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3558		return sock->ops->sendpage(sock, page, offset, size, flags);
3559	}
3560	return sock_no_sendpage(sock, page, offset, size, flags);
3561}
3562EXPORT_SYMBOL(kernel_sendpage);
3563
3564/**
3565 *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3566 *	@sk: sock
3567 *	@page: page
3568 *	@offset: page offset
3569 *	@size: total size in bytes
3570 *	@flags: flags (MSG_DONTWAIT, ...)
3571 *
3572 *	Returns the total amount sent in bytes or an error.
3573 *	Caller must hold @sk.
3574 */
3575
3576int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3577			   size_t size, int flags)
3578{
3579	struct socket *sock = sk->sk_socket;
3580
3581	if (sock->ops->sendpage_locked)
3582		return sock->ops->sendpage_locked(sk, page, offset, size,
3583						  flags);
3584
3585	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3586}
3587EXPORT_SYMBOL(kernel_sendpage_locked);
3588
3589/**
3590 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3591 *	@sock: socket
3592 *	@how: connection part
3593 *
3594 *	Returns 0 or an error.
3595 */
3596
3597int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3598{
3599	return sock->ops->shutdown(sock, how);
3600}
3601EXPORT_SYMBOL(kernel_sock_shutdown);
3602
3603/**
3604 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3605 *	@sk: socket
3606 *
3607 *	This routine returns the IP overhead imposed by a socket i.e.
3608 *	the length of the underlying IP header, depending on whether
3609 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3610 *	on at the socket. Assumes that the caller has a lock on the socket.
3611 */
3612
3613u32 kernel_sock_ip_overhead(struct sock *sk)
3614{
3615	struct inet_sock *inet;
3616	struct ip_options_rcu *opt;
3617	u32 overhead = 0;
3618#if IS_ENABLED(CONFIG_IPV6)
3619	struct ipv6_pinfo *np;
3620	struct ipv6_txoptions *optv6 = NULL;
3621#endif /* IS_ENABLED(CONFIG_IPV6) */
3622
3623	if (!sk)
3624		return overhead;
3625
3626	switch (sk->sk_family) {
3627	case AF_INET:
3628		inet = inet_sk(sk);
3629		overhead += sizeof(struct iphdr);
3630		opt = rcu_dereference_protected(inet->inet_opt,
3631						sock_owned_by_user(sk));
3632		if (opt)
3633			overhead += opt->opt.optlen;
3634		return overhead;
3635#if IS_ENABLED(CONFIG_IPV6)
3636	case AF_INET6:
3637		np = inet6_sk(sk);
3638		overhead += sizeof(struct ipv6hdr);
3639		if (np)
3640			optv6 = rcu_dereference_protected(np->opt,
3641							  sock_owned_by_user(sk));
3642		if (optv6)
3643			overhead += (optv6->opt_flen + optv6->opt_nflen);
3644		return overhead;
3645#endif /* IS_ENABLED(CONFIG_IPV6) */
3646	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3647		return overhead;
3648	}
3649}
3650EXPORT_SYMBOL(kernel_sock_ip_overhead);