Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/ethtool.h>
56#include <linux/mm.h>
57#include <linux/socket.h>
58#include <linux/file.h>
59#include <linux/net.h>
60#include <linux/interrupt.h>
61#include <linux/thread_info.h>
62#include <linux/rcupdate.h>
63#include <linux/netdevice.h>
64#include <linux/proc_fs.h>
65#include <linux/seq_file.h>
66#include <linux/mutex.h>
67#include <linux/if_bridge.h>
68#include <linux/if_vlan.h>
69#include <linux/ptp_classify.h>
70#include <linux/init.h>
71#include <linux/poll.h>
72#include <linux/cache.h>
73#include <linux/module.h>
74#include <linux/highmem.h>
75#include <linux/mount.h>
76#include <linux/pseudo_fs.h>
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/compat.h>
80#include <linux/kmod.h>
81#include <linux/audit.h>
82#include <linux/wireless.h>
83#include <linux/nsproxy.h>
84#include <linux/magic.h>
85#include <linux/slab.h>
86#include <linux/xattr.h>
87#include <linux/nospec.h>
88#include <linux/indirect_call_wrapper.h>
89
90#include <linux/uaccess.h>
91#include <asm/unistd.h>
92
93#include <net/compat.h>
94#include <net/wext.h>
95#include <net/cls_cgroup.h>
96
97#include <net/sock.h>
98#include <linux/netfilter.h>
99
100#include <linux/if_tun.h>
101#include <linux/ipv6_route.h>
102#include <linux/route.h>
103#include <linux/termios.h>
104#include <linux/sockios.h>
105#include <net/busy_poll.h>
106#include <linux/errqueue.h>
107#include <linux/ptp_clock_kernel.h>
108
109#ifdef CONFIG_NET_RX_BUSY_POLL
110unsigned int sysctl_net_busy_read __read_mostly;
111unsigned int sysctl_net_busy_poll __read_mostly;
112#endif
113
114static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117
118static int sock_close(struct inode *inode, struct file *file);
119static __poll_t sock_poll(struct file *file,
120 struct poll_table_struct *wait);
121static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122#ifdef CONFIG_COMPAT
123static long compat_sock_ioctl(struct file *file,
124 unsigned int cmd, unsigned long arg);
125#endif
126static int sock_fasync(int fd, struct file *filp, int on);
127static ssize_t sock_sendpage(struct file *file, struct page *page,
128 int offset, size_t size, loff_t *ppos, int more);
129static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 struct pipe_inode_info *pipe, size_t len,
131 unsigned int flags);
132
133#ifdef CONFIG_PROC_FS
134static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135{
136 struct socket *sock = f->private_data;
137
138 if (sock->ops->show_fdinfo)
139 sock->ops->show_fdinfo(m, sock);
140}
141#else
142#define sock_show_fdinfo NULL
143#endif
144
145/*
146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147 * in the operation structures but are done directly via the socketcall() multiplexor.
148 */
149
150static const struct file_operations socket_file_ops = {
151 .owner = THIS_MODULE,
152 .llseek = no_llseek,
153 .read_iter = sock_read_iter,
154 .write_iter = sock_write_iter,
155 .poll = sock_poll,
156 .unlocked_ioctl = sock_ioctl,
157#ifdef CONFIG_COMPAT
158 .compat_ioctl = compat_sock_ioctl,
159#endif
160 .mmap = sock_mmap,
161 .release = sock_close,
162 .fasync = sock_fasync,
163 .sendpage = sock_sendpage,
164 .splice_write = generic_splice_sendpage,
165 .splice_read = sock_splice_read,
166 .show_fdinfo = sock_show_fdinfo,
167};
168
169static const char * const pf_family_names[] = {
170 [PF_UNSPEC] = "PF_UNSPEC",
171 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
172 [PF_INET] = "PF_INET",
173 [PF_AX25] = "PF_AX25",
174 [PF_IPX] = "PF_IPX",
175 [PF_APPLETALK] = "PF_APPLETALK",
176 [PF_NETROM] = "PF_NETROM",
177 [PF_BRIDGE] = "PF_BRIDGE",
178 [PF_ATMPVC] = "PF_ATMPVC",
179 [PF_X25] = "PF_X25",
180 [PF_INET6] = "PF_INET6",
181 [PF_ROSE] = "PF_ROSE",
182 [PF_DECnet] = "PF_DECnet",
183 [PF_NETBEUI] = "PF_NETBEUI",
184 [PF_SECURITY] = "PF_SECURITY",
185 [PF_KEY] = "PF_KEY",
186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
187 [PF_PACKET] = "PF_PACKET",
188 [PF_ASH] = "PF_ASH",
189 [PF_ECONET] = "PF_ECONET",
190 [PF_ATMSVC] = "PF_ATMSVC",
191 [PF_RDS] = "PF_RDS",
192 [PF_SNA] = "PF_SNA",
193 [PF_IRDA] = "PF_IRDA",
194 [PF_PPPOX] = "PF_PPPOX",
195 [PF_WANPIPE] = "PF_WANPIPE",
196 [PF_LLC] = "PF_LLC",
197 [PF_IB] = "PF_IB",
198 [PF_MPLS] = "PF_MPLS",
199 [PF_CAN] = "PF_CAN",
200 [PF_TIPC] = "PF_TIPC",
201 [PF_BLUETOOTH] = "PF_BLUETOOTH",
202 [PF_IUCV] = "PF_IUCV",
203 [PF_RXRPC] = "PF_RXRPC",
204 [PF_ISDN] = "PF_ISDN",
205 [PF_PHONET] = "PF_PHONET",
206 [PF_IEEE802154] = "PF_IEEE802154",
207 [PF_CAIF] = "PF_CAIF",
208 [PF_ALG] = "PF_ALG",
209 [PF_NFC] = "PF_NFC",
210 [PF_VSOCK] = "PF_VSOCK",
211 [PF_KCM] = "PF_KCM",
212 [PF_QIPCRTR] = "PF_QIPCRTR",
213 [PF_SMC] = "PF_SMC",
214 [PF_XDP] = "PF_XDP",
215};
216
217/*
218 * The protocol list. Each protocol is registered in here.
219 */
220
221static DEFINE_SPINLOCK(net_family_lock);
222static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
223
224/*
225 * Support routines.
226 * Move socket addresses back and forth across the kernel/user
227 * divide and look after the messy bits.
228 */
229
230/**
231 * move_addr_to_kernel - copy a socket address into kernel space
232 * @uaddr: Address in user space
233 * @kaddr: Address in kernel space
234 * @ulen: Length in user space
235 *
236 * The address is copied into kernel space. If the provided address is
237 * too long an error code of -EINVAL is returned. If the copy gives
238 * invalid addresses -EFAULT is returned. On a success 0 is returned.
239 */
240
241int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
242{
243 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
244 return -EINVAL;
245 if (ulen == 0)
246 return 0;
247 if (copy_from_user(kaddr, uaddr, ulen))
248 return -EFAULT;
249 return audit_sockaddr(ulen, kaddr);
250}
251
252/**
253 * move_addr_to_user - copy an address to user space
254 * @kaddr: kernel space address
255 * @klen: length of address in kernel
256 * @uaddr: user space address
257 * @ulen: pointer to user length field
258 *
259 * The value pointed to by ulen on entry is the buffer length available.
260 * This is overwritten with the buffer space used. -EINVAL is returned
261 * if an overlong buffer is specified or a negative buffer size. -EFAULT
262 * is returned if either the buffer or the length field are not
263 * accessible.
264 * After copying the data up to the limit the user specifies, the true
265 * length of the data is written over the length limit the user
266 * specified. Zero is returned for a success.
267 */
268
269static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
270 void __user *uaddr, int __user *ulen)
271{
272 int err;
273 int len;
274
275 BUG_ON(klen > sizeof(struct sockaddr_storage));
276 err = get_user(len, ulen);
277 if (err)
278 return err;
279 if (len > klen)
280 len = klen;
281 if (len < 0)
282 return -EINVAL;
283 if (len) {
284 if (audit_sockaddr(klen, kaddr))
285 return -ENOMEM;
286 if (copy_to_user(uaddr, kaddr, len))
287 return -EFAULT;
288 }
289 /*
290 * "fromlen shall refer to the value before truncation.."
291 * 1003.1g
292 */
293 return __put_user(klen, ulen);
294}
295
296static struct kmem_cache *sock_inode_cachep __ro_after_init;
297
298static struct inode *sock_alloc_inode(struct super_block *sb)
299{
300 struct socket_alloc *ei;
301
302 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
303 if (!ei)
304 return NULL;
305 init_waitqueue_head(&ei->socket.wq.wait);
306 ei->socket.wq.fasync_list = NULL;
307 ei->socket.wq.flags = 0;
308
309 ei->socket.state = SS_UNCONNECTED;
310 ei->socket.flags = 0;
311 ei->socket.ops = NULL;
312 ei->socket.sk = NULL;
313 ei->socket.file = NULL;
314
315 return &ei->vfs_inode;
316}
317
318static void sock_free_inode(struct inode *inode)
319{
320 struct socket_alloc *ei;
321
322 ei = container_of(inode, struct socket_alloc, vfs_inode);
323 kmem_cache_free(sock_inode_cachep, ei);
324}
325
326static void init_once(void *foo)
327{
328 struct socket_alloc *ei = (struct socket_alloc *)foo;
329
330 inode_init_once(&ei->vfs_inode);
331}
332
333static void init_inodecache(void)
334{
335 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
336 sizeof(struct socket_alloc),
337 0,
338 (SLAB_HWCACHE_ALIGN |
339 SLAB_RECLAIM_ACCOUNT |
340 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
341 init_once);
342 BUG_ON(sock_inode_cachep == NULL);
343}
344
345static const struct super_operations sockfs_ops = {
346 .alloc_inode = sock_alloc_inode,
347 .free_inode = sock_free_inode,
348 .statfs = simple_statfs,
349};
350
351/*
352 * sockfs_dname() is called from d_path().
353 */
354static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
355{
356 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
357 d_inode(dentry)->i_ino);
358}
359
360static const struct dentry_operations sockfs_dentry_operations = {
361 .d_dname = sockfs_dname,
362};
363
364static int sockfs_xattr_get(const struct xattr_handler *handler,
365 struct dentry *dentry, struct inode *inode,
366 const char *suffix, void *value, size_t size)
367{
368 if (value) {
369 if (dentry->d_name.len + 1 > size)
370 return -ERANGE;
371 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
372 }
373 return dentry->d_name.len + 1;
374}
375
376#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
377#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
378#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
379
380static const struct xattr_handler sockfs_xattr_handler = {
381 .name = XATTR_NAME_SOCKPROTONAME,
382 .get = sockfs_xattr_get,
383};
384
385static int sockfs_security_xattr_set(const struct xattr_handler *handler,
386 struct user_namespace *mnt_userns,
387 struct dentry *dentry, struct inode *inode,
388 const char *suffix, const void *value,
389 size_t size, int flags)
390{
391 /* Handled by LSM. */
392 return -EAGAIN;
393}
394
395static const struct xattr_handler sockfs_security_xattr_handler = {
396 .prefix = XATTR_SECURITY_PREFIX,
397 .set = sockfs_security_xattr_set,
398};
399
400static const struct xattr_handler *sockfs_xattr_handlers[] = {
401 &sockfs_xattr_handler,
402 &sockfs_security_xattr_handler,
403 NULL
404};
405
406static int sockfs_init_fs_context(struct fs_context *fc)
407{
408 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
409 if (!ctx)
410 return -ENOMEM;
411 ctx->ops = &sockfs_ops;
412 ctx->dops = &sockfs_dentry_operations;
413 ctx->xattr = sockfs_xattr_handlers;
414 return 0;
415}
416
417static struct vfsmount *sock_mnt __read_mostly;
418
419static struct file_system_type sock_fs_type = {
420 .name = "sockfs",
421 .init_fs_context = sockfs_init_fs_context,
422 .kill_sb = kill_anon_super,
423};
424
425/*
426 * Obtains the first available file descriptor and sets it up for use.
427 *
428 * These functions create file structures and maps them to fd space
429 * of the current process. On success it returns file descriptor
430 * and file struct implicitly stored in sock->file.
431 * Note that another thread may close file descriptor before we return
432 * from this function. We use the fact that now we do not refer
433 * to socket after mapping. If one day we will need it, this
434 * function will increment ref. count on file by 1.
435 *
436 * In any case returned fd MAY BE not valid!
437 * This race condition is unavoidable
438 * with shared fd spaces, we cannot solve it inside kernel,
439 * but we take care of internal coherence yet.
440 */
441
442/**
443 * sock_alloc_file - Bind a &socket to a &file
444 * @sock: socket
445 * @flags: file status flags
446 * @dname: protocol name
447 *
448 * Returns the &file bound with @sock, implicitly storing it
449 * in sock->file. If dname is %NULL, sets to "".
450 * On failure the return is a ERR pointer (see linux/err.h).
451 * This function uses GFP_KERNEL internally.
452 */
453
454struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
455{
456 struct file *file;
457
458 if (!dname)
459 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
460
461 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
462 O_RDWR | (flags & O_NONBLOCK),
463 &socket_file_ops);
464 if (IS_ERR(file)) {
465 sock_release(sock);
466 return file;
467 }
468
469 sock->file = file;
470 file->private_data = sock;
471 stream_open(SOCK_INODE(sock), file);
472 return file;
473}
474EXPORT_SYMBOL(sock_alloc_file);
475
476static int sock_map_fd(struct socket *sock, int flags)
477{
478 struct file *newfile;
479 int fd = get_unused_fd_flags(flags);
480 if (unlikely(fd < 0)) {
481 sock_release(sock);
482 return fd;
483 }
484
485 newfile = sock_alloc_file(sock, flags, NULL);
486 if (!IS_ERR(newfile)) {
487 fd_install(fd, newfile);
488 return fd;
489 }
490
491 put_unused_fd(fd);
492 return PTR_ERR(newfile);
493}
494
495/**
496 * sock_from_file - Return the &socket bounded to @file.
497 * @file: file
498 *
499 * On failure returns %NULL.
500 */
501
502struct socket *sock_from_file(struct file *file)
503{
504 if (file->f_op == &socket_file_ops)
505 return file->private_data; /* set in sock_map_fd */
506
507 return NULL;
508}
509EXPORT_SYMBOL(sock_from_file);
510
511/**
512 * sockfd_lookup - Go from a file number to its socket slot
513 * @fd: file handle
514 * @err: pointer to an error code return
515 *
516 * The file handle passed in is locked and the socket it is bound
517 * to is returned. If an error occurs the err pointer is overwritten
518 * with a negative errno code and NULL is returned. The function checks
519 * for both invalid handles and passing a handle which is not a socket.
520 *
521 * On a success the socket object pointer is returned.
522 */
523
524struct socket *sockfd_lookup(int fd, int *err)
525{
526 struct file *file;
527 struct socket *sock;
528
529 file = fget(fd);
530 if (!file) {
531 *err = -EBADF;
532 return NULL;
533 }
534
535 sock = sock_from_file(file);
536 if (!sock) {
537 *err = -ENOTSOCK;
538 fput(file);
539 }
540 return sock;
541}
542EXPORT_SYMBOL(sockfd_lookup);
543
544static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
545{
546 struct fd f = fdget(fd);
547 struct socket *sock;
548
549 *err = -EBADF;
550 if (f.file) {
551 sock = sock_from_file(f.file);
552 if (likely(sock)) {
553 *fput_needed = f.flags & FDPUT_FPUT;
554 return sock;
555 }
556 *err = -ENOTSOCK;
557 fdput(f);
558 }
559 return NULL;
560}
561
562static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
563 size_t size)
564{
565 ssize_t len;
566 ssize_t used = 0;
567
568 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
569 if (len < 0)
570 return len;
571 used += len;
572 if (buffer) {
573 if (size < used)
574 return -ERANGE;
575 buffer += len;
576 }
577
578 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
579 used += len;
580 if (buffer) {
581 if (size < used)
582 return -ERANGE;
583 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
584 buffer += len;
585 }
586
587 return used;
588}
589
590static int sockfs_setattr(struct user_namespace *mnt_userns,
591 struct dentry *dentry, struct iattr *iattr)
592{
593 int err = simple_setattr(&init_user_ns, dentry, iattr);
594
595 if (!err && (iattr->ia_valid & ATTR_UID)) {
596 struct socket *sock = SOCKET_I(d_inode(dentry));
597
598 if (sock->sk)
599 sock->sk->sk_uid = iattr->ia_uid;
600 else
601 err = -ENOENT;
602 }
603
604 return err;
605}
606
607static const struct inode_operations sockfs_inode_ops = {
608 .listxattr = sockfs_listxattr,
609 .setattr = sockfs_setattr,
610};
611
612/**
613 * sock_alloc - allocate a socket
614 *
615 * Allocate a new inode and socket object. The two are bound together
616 * and initialised. The socket is then returned. If we are out of inodes
617 * NULL is returned. This functions uses GFP_KERNEL internally.
618 */
619
620struct socket *sock_alloc(void)
621{
622 struct inode *inode;
623 struct socket *sock;
624
625 inode = new_inode_pseudo(sock_mnt->mnt_sb);
626 if (!inode)
627 return NULL;
628
629 sock = SOCKET_I(inode);
630
631 inode->i_ino = get_next_ino();
632 inode->i_mode = S_IFSOCK | S_IRWXUGO;
633 inode->i_uid = current_fsuid();
634 inode->i_gid = current_fsgid();
635 inode->i_op = &sockfs_inode_ops;
636
637 return sock;
638}
639EXPORT_SYMBOL(sock_alloc);
640
641static void __sock_release(struct socket *sock, struct inode *inode)
642{
643 if (sock->ops) {
644 struct module *owner = sock->ops->owner;
645
646 if (inode)
647 inode_lock(inode);
648 sock->ops->release(sock);
649 sock->sk = NULL;
650 if (inode)
651 inode_unlock(inode);
652 sock->ops = NULL;
653 module_put(owner);
654 }
655
656 if (sock->wq.fasync_list)
657 pr_err("%s: fasync list not empty!\n", __func__);
658
659 if (!sock->file) {
660 iput(SOCK_INODE(sock));
661 return;
662 }
663 sock->file = NULL;
664}
665
666/**
667 * sock_release - close a socket
668 * @sock: socket to close
669 *
670 * The socket is released from the protocol stack if it has a release
671 * callback, and the inode is then released if the socket is bound to
672 * an inode not a file.
673 */
674void sock_release(struct socket *sock)
675{
676 __sock_release(sock, NULL);
677}
678EXPORT_SYMBOL(sock_release);
679
680void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
681{
682 u8 flags = *tx_flags;
683
684 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
685 flags |= SKBTX_HW_TSTAMP;
686
687 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
688 flags |= SKBTX_SW_TSTAMP;
689
690 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
691 flags |= SKBTX_SCHED_TSTAMP;
692
693 *tx_flags = flags;
694}
695EXPORT_SYMBOL(__sock_tx_timestamp);
696
697INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
698 size_t));
699INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
700 size_t));
701static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
702{
703 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
704 inet_sendmsg, sock, msg,
705 msg_data_left(msg));
706 BUG_ON(ret == -EIOCBQUEUED);
707 return ret;
708}
709
710/**
711 * sock_sendmsg - send a message through @sock
712 * @sock: socket
713 * @msg: message to send
714 *
715 * Sends @msg through @sock, passing through LSM.
716 * Returns the number of bytes sent, or an error code.
717 */
718int sock_sendmsg(struct socket *sock, struct msghdr *msg)
719{
720 int err = security_socket_sendmsg(sock, msg,
721 msg_data_left(msg));
722
723 return err ?: sock_sendmsg_nosec(sock, msg);
724}
725EXPORT_SYMBOL(sock_sendmsg);
726
727/**
728 * kernel_sendmsg - send a message through @sock (kernel-space)
729 * @sock: socket
730 * @msg: message header
731 * @vec: kernel vec
732 * @num: vec array length
733 * @size: total message data size
734 *
735 * Builds the message data with @vec and sends it through @sock.
736 * Returns the number of bytes sent, or an error code.
737 */
738
739int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
740 struct kvec *vec, size_t num, size_t size)
741{
742 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
743 return sock_sendmsg(sock, msg);
744}
745EXPORT_SYMBOL(kernel_sendmsg);
746
747/**
748 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
749 * @sk: sock
750 * @msg: message header
751 * @vec: output s/g array
752 * @num: output s/g array length
753 * @size: total message data size
754 *
755 * Builds the message data with @vec and sends it through @sock.
756 * Returns the number of bytes sent, or an error code.
757 * Caller must hold @sk.
758 */
759
760int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
761 struct kvec *vec, size_t num, size_t size)
762{
763 struct socket *sock = sk->sk_socket;
764
765 if (!sock->ops->sendmsg_locked)
766 return sock_no_sendmsg_locked(sk, msg, size);
767
768 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
769
770 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
771}
772EXPORT_SYMBOL(kernel_sendmsg_locked);
773
774static bool skb_is_err_queue(const struct sk_buff *skb)
775{
776 /* pkt_type of skbs enqueued on the error queue are set to
777 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
778 * in recvmsg, since skbs received on a local socket will never
779 * have a pkt_type of PACKET_OUTGOING.
780 */
781 return skb->pkt_type == PACKET_OUTGOING;
782}
783
784/* On transmit, software and hardware timestamps are returned independently.
785 * As the two skb clones share the hardware timestamp, which may be updated
786 * before the software timestamp is received, a hardware TX timestamp may be
787 * returned only if there is no software TX timestamp. Ignore false software
788 * timestamps, which may be made in the __sock_recv_timestamp() call when the
789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
790 * hardware timestamp.
791 */
792static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
793{
794 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
795}
796
797static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
798{
799 struct scm_ts_pktinfo ts_pktinfo;
800 struct net_device *orig_dev;
801
802 if (!skb_mac_header_was_set(skb))
803 return;
804
805 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
806
807 rcu_read_lock();
808 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
809 if (orig_dev)
810 ts_pktinfo.if_index = orig_dev->ifindex;
811 rcu_read_unlock();
812
813 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
814 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
815 sizeof(ts_pktinfo), &ts_pktinfo);
816}
817
818/*
819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
820 */
821void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
822 struct sk_buff *skb)
823{
824 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
825 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
826 struct scm_timestamping_internal tss;
827
828 int empty = 1, false_tstamp = 0;
829 struct skb_shared_hwtstamps *shhwtstamps =
830 skb_hwtstamps(skb);
831
832 /* Race occurred between timestamp enabling and packet
833 receiving. Fill in the current time for now. */
834 if (need_software_tstamp && skb->tstamp == 0) {
835 __net_timestamp(skb);
836 false_tstamp = 1;
837 }
838
839 if (need_software_tstamp) {
840 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
841 if (new_tstamp) {
842 struct __kernel_sock_timeval tv;
843
844 skb_get_new_timestamp(skb, &tv);
845 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
846 sizeof(tv), &tv);
847 } else {
848 struct __kernel_old_timeval tv;
849
850 skb_get_timestamp(skb, &tv);
851 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
852 sizeof(tv), &tv);
853 }
854 } else {
855 if (new_tstamp) {
856 struct __kernel_timespec ts;
857
858 skb_get_new_timestampns(skb, &ts);
859 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
860 sizeof(ts), &ts);
861 } else {
862 struct __kernel_old_timespec ts;
863
864 skb_get_timestampns(skb, &ts);
865 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
866 sizeof(ts), &ts);
867 }
868 }
869 }
870
871 memset(&tss, 0, sizeof(tss));
872 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
873 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
874 empty = 0;
875 if (shhwtstamps &&
876 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
877 !skb_is_swtx_tstamp(skb, false_tstamp)) {
878 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
879 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
880
881 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
882 tss.ts + 2)) {
883 empty = 0;
884
885 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
886 !skb_is_err_queue(skb))
887 put_ts_pktinfo(msg, skb);
888 }
889 }
890 if (!empty) {
891 if (sock_flag(sk, SOCK_TSTAMP_NEW))
892 put_cmsg_scm_timestamping64(msg, &tss);
893 else
894 put_cmsg_scm_timestamping(msg, &tss);
895
896 if (skb_is_err_queue(skb) && skb->len &&
897 SKB_EXT_ERR(skb)->opt_stats)
898 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
899 skb->len, skb->data);
900 }
901}
902EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
903
904void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
905 struct sk_buff *skb)
906{
907 int ack;
908
909 if (!sock_flag(sk, SOCK_WIFI_STATUS))
910 return;
911 if (!skb->wifi_acked_valid)
912 return;
913
914 ack = skb->wifi_acked;
915
916 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
917}
918EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
919
920static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
921 struct sk_buff *skb)
922{
923 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
924 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
925 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
926}
927
928void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
929 struct sk_buff *skb)
930{
931 sock_recv_timestamp(msg, sk, skb);
932 sock_recv_drops(msg, sk, skb);
933}
934EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
935
936INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
937 size_t, int));
938INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
939 size_t, int));
940static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
941 int flags)
942{
943 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
944 inet_recvmsg, sock, msg, msg_data_left(msg),
945 flags);
946}
947
948/**
949 * sock_recvmsg - receive a message from @sock
950 * @sock: socket
951 * @msg: message to receive
952 * @flags: message flags
953 *
954 * Receives @msg from @sock, passing through LSM. Returns the total number
955 * of bytes received, or an error.
956 */
957int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
958{
959 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
960
961 return err ?: sock_recvmsg_nosec(sock, msg, flags);
962}
963EXPORT_SYMBOL(sock_recvmsg);
964
965/**
966 * kernel_recvmsg - Receive a message from a socket (kernel space)
967 * @sock: The socket to receive the message from
968 * @msg: Received message
969 * @vec: Input s/g array for message data
970 * @num: Size of input s/g array
971 * @size: Number of bytes to read
972 * @flags: Message flags (MSG_DONTWAIT, etc...)
973 *
974 * On return the msg structure contains the scatter/gather array passed in the
975 * vec argument. The array is modified so that it consists of the unfilled
976 * portion of the original array.
977 *
978 * The returned value is the total number of bytes received, or an error.
979 */
980
981int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
982 struct kvec *vec, size_t num, size_t size, int flags)
983{
984 msg->msg_control_is_user = false;
985 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
986 return sock_recvmsg(sock, msg, flags);
987}
988EXPORT_SYMBOL(kernel_recvmsg);
989
990static ssize_t sock_sendpage(struct file *file, struct page *page,
991 int offset, size_t size, loff_t *ppos, int more)
992{
993 struct socket *sock;
994 int flags;
995
996 sock = file->private_data;
997
998 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
999 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000 flags |= more;
1001
1002 return kernel_sendpage(sock, page, offset, size, flags);
1003}
1004
1005static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006 struct pipe_inode_info *pipe, size_t len,
1007 unsigned int flags)
1008{
1009 struct socket *sock = file->private_data;
1010
1011 if (unlikely(!sock->ops->splice_read))
1012 return generic_file_splice_read(file, ppos, pipe, len, flags);
1013
1014 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015}
1016
1017static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018{
1019 struct file *file = iocb->ki_filp;
1020 struct socket *sock = file->private_data;
1021 struct msghdr msg = {.msg_iter = *to,
1022 .msg_iocb = iocb};
1023 ssize_t res;
1024
1025 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026 msg.msg_flags = MSG_DONTWAIT;
1027
1028 if (iocb->ki_pos != 0)
1029 return -ESPIPE;
1030
1031 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1032 return 0;
1033
1034 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035 *to = msg.msg_iter;
1036 return res;
1037}
1038
1039static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040{
1041 struct file *file = iocb->ki_filp;
1042 struct socket *sock = file->private_data;
1043 struct msghdr msg = {.msg_iter = *from,
1044 .msg_iocb = iocb};
1045 ssize_t res;
1046
1047 if (iocb->ki_pos != 0)
1048 return -ESPIPE;
1049
1050 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051 msg.msg_flags = MSG_DONTWAIT;
1052
1053 if (sock->type == SOCK_SEQPACKET)
1054 msg.msg_flags |= MSG_EOR;
1055
1056 res = sock_sendmsg(sock, &msg);
1057 *from = msg.msg_iter;
1058 return res;
1059}
1060
1061/*
1062 * Atomic setting of ioctl hooks to avoid race
1063 * with module unload.
1064 */
1065
1066static DEFINE_MUTEX(br_ioctl_mutex);
1067static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068
1069void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1070{
1071 mutex_lock(&br_ioctl_mutex);
1072 br_ioctl_hook = hook;
1073 mutex_unlock(&br_ioctl_mutex);
1074}
1075EXPORT_SYMBOL(brioctl_set);
1076
1077static DEFINE_MUTEX(vlan_ioctl_mutex);
1078static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079
1080void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081{
1082 mutex_lock(&vlan_ioctl_mutex);
1083 vlan_ioctl_hook = hook;
1084 mutex_unlock(&vlan_ioctl_mutex);
1085}
1086EXPORT_SYMBOL(vlan_ioctl_set);
1087
1088static long sock_do_ioctl(struct net *net, struct socket *sock,
1089 unsigned int cmd, unsigned long arg)
1090{
1091 int err;
1092 void __user *argp = (void __user *)arg;
1093
1094 err = sock->ops->ioctl(sock, cmd, arg);
1095
1096 /*
1097 * If this ioctl is unknown try to hand it down
1098 * to the NIC driver.
1099 */
1100 if (err != -ENOIOCTLCMD)
1101 return err;
1102
1103 if (cmd == SIOCGIFCONF) {
1104 struct ifconf ifc;
1105 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1106 return -EFAULT;
1107 rtnl_lock();
1108 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1109 rtnl_unlock();
1110 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1111 err = -EFAULT;
1112 } else if (is_socket_ioctl_cmd(cmd)) {
1113 struct ifreq ifr;
1114 bool need_copyout;
1115 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1116 return -EFAULT;
1117 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1118 if (!err && need_copyout)
1119 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1120 return -EFAULT;
1121 } else {
1122 err = -ENOTTY;
1123 }
1124 return err;
1125}
1126
1127/*
1128 * With an ioctl, arg may well be a user mode pointer, but we don't know
1129 * what to do with it - that's up to the protocol still.
1130 */
1131
1132static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1133{
1134 struct socket *sock;
1135 struct sock *sk;
1136 void __user *argp = (void __user *)arg;
1137 int pid, err;
1138 struct net *net;
1139
1140 sock = file->private_data;
1141 sk = sock->sk;
1142 net = sock_net(sk);
1143 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1144 struct ifreq ifr;
1145 bool need_copyout;
1146 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1147 return -EFAULT;
1148 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1149 if (!err && need_copyout)
1150 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1151 return -EFAULT;
1152 } else
1153#ifdef CONFIG_WEXT_CORE
1154 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1155 err = wext_handle_ioctl(net, cmd, argp);
1156 } else
1157#endif
1158 switch (cmd) {
1159 case FIOSETOWN:
1160 case SIOCSPGRP:
1161 err = -EFAULT;
1162 if (get_user(pid, (int __user *)argp))
1163 break;
1164 err = f_setown(sock->file, pid, 1);
1165 break;
1166 case FIOGETOWN:
1167 case SIOCGPGRP:
1168 err = put_user(f_getown(sock->file),
1169 (int __user *)argp);
1170 break;
1171 case SIOCGIFBR:
1172 case SIOCSIFBR:
1173 case SIOCBRADDBR:
1174 case SIOCBRDELBR:
1175 err = -ENOPKG;
1176 if (!br_ioctl_hook)
1177 request_module("bridge");
1178
1179 mutex_lock(&br_ioctl_mutex);
1180 if (br_ioctl_hook)
1181 err = br_ioctl_hook(net, cmd, argp);
1182 mutex_unlock(&br_ioctl_mutex);
1183 break;
1184 case SIOCGIFVLAN:
1185 case SIOCSIFVLAN:
1186 err = -ENOPKG;
1187 if (!vlan_ioctl_hook)
1188 request_module("8021q");
1189
1190 mutex_lock(&vlan_ioctl_mutex);
1191 if (vlan_ioctl_hook)
1192 err = vlan_ioctl_hook(net, argp);
1193 mutex_unlock(&vlan_ioctl_mutex);
1194 break;
1195 case SIOCGSKNS:
1196 err = -EPERM;
1197 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1198 break;
1199
1200 err = open_related_ns(&net->ns, get_net_ns);
1201 break;
1202 case SIOCGSTAMP_OLD:
1203 case SIOCGSTAMPNS_OLD:
1204 if (!sock->ops->gettstamp) {
1205 err = -ENOIOCTLCMD;
1206 break;
1207 }
1208 err = sock->ops->gettstamp(sock, argp,
1209 cmd == SIOCGSTAMP_OLD,
1210 !IS_ENABLED(CONFIG_64BIT));
1211 break;
1212 case SIOCGSTAMP_NEW:
1213 case SIOCGSTAMPNS_NEW:
1214 if (!sock->ops->gettstamp) {
1215 err = -ENOIOCTLCMD;
1216 break;
1217 }
1218 err = sock->ops->gettstamp(sock, argp,
1219 cmd == SIOCGSTAMP_NEW,
1220 false);
1221 break;
1222 default:
1223 err = sock_do_ioctl(net, sock, cmd, arg);
1224 break;
1225 }
1226 return err;
1227}
1228
1229/**
1230 * sock_create_lite - creates a socket
1231 * @family: protocol family (AF_INET, ...)
1232 * @type: communication type (SOCK_STREAM, ...)
1233 * @protocol: protocol (0, ...)
1234 * @res: new socket
1235 *
1236 * Creates a new socket and assigns it to @res, passing through LSM.
1237 * The new socket initialization is not complete, see kernel_accept().
1238 * Returns 0 or an error. On failure @res is set to %NULL.
1239 * This function internally uses GFP_KERNEL.
1240 */
1241
1242int sock_create_lite(int family, int type, int protocol, struct socket **res)
1243{
1244 int err;
1245 struct socket *sock = NULL;
1246
1247 err = security_socket_create(family, type, protocol, 1);
1248 if (err)
1249 goto out;
1250
1251 sock = sock_alloc();
1252 if (!sock) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
1256
1257 sock->type = type;
1258 err = security_socket_post_create(sock, family, type, protocol, 1);
1259 if (err)
1260 goto out_release;
1261
1262out:
1263 *res = sock;
1264 return err;
1265out_release:
1266 sock_release(sock);
1267 sock = NULL;
1268 goto out;
1269}
1270EXPORT_SYMBOL(sock_create_lite);
1271
1272/* No kernel lock held - perfect */
1273static __poll_t sock_poll(struct file *file, poll_table *wait)
1274{
1275 struct socket *sock = file->private_data;
1276 __poll_t events = poll_requested_events(wait), flag = 0;
1277
1278 if (!sock->ops->poll)
1279 return 0;
1280
1281 if (sk_can_busy_loop(sock->sk)) {
1282 /* poll once if requested by the syscall */
1283 if (events & POLL_BUSY_LOOP)
1284 sk_busy_loop(sock->sk, 1);
1285
1286 /* if this socket can poll_ll, tell the system call */
1287 flag = POLL_BUSY_LOOP;
1288 }
1289
1290 return sock->ops->poll(file, sock, wait) | flag;
1291}
1292
1293static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1294{
1295 struct socket *sock = file->private_data;
1296
1297 return sock->ops->mmap(file, sock, vma);
1298}
1299
1300static int sock_close(struct inode *inode, struct file *filp)
1301{
1302 __sock_release(SOCKET_I(inode), inode);
1303 return 0;
1304}
1305
1306/*
1307 * Update the socket async list
1308 *
1309 * Fasync_list locking strategy.
1310 *
1311 * 1. fasync_list is modified only under process context socket lock
1312 * i.e. under semaphore.
1313 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1314 * or under socket lock
1315 */
1316
1317static int sock_fasync(int fd, struct file *filp, int on)
1318{
1319 struct socket *sock = filp->private_data;
1320 struct sock *sk = sock->sk;
1321 struct socket_wq *wq = &sock->wq;
1322
1323 if (sk == NULL)
1324 return -EINVAL;
1325
1326 lock_sock(sk);
1327 fasync_helper(fd, filp, on, &wq->fasync_list);
1328
1329 if (!wq->fasync_list)
1330 sock_reset_flag(sk, SOCK_FASYNC);
1331 else
1332 sock_set_flag(sk, SOCK_FASYNC);
1333
1334 release_sock(sk);
1335 return 0;
1336}
1337
1338/* This function may be called only under rcu_lock */
1339
1340int sock_wake_async(struct socket_wq *wq, int how, int band)
1341{
1342 if (!wq || !wq->fasync_list)
1343 return -1;
1344
1345 switch (how) {
1346 case SOCK_WAKE_WAITD:
1347 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1348 break;
1349 goto call_kill;
1350 case SOCK_WAKE_SPACE:
1351 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1352 break;
1353 fallthrough;
1354 case SOCK_WAKE_IO:
1355call_kill:
1356 kill_fasync(&wq->fasync_list, SIGIO, band);
1357 break;
1358 case SOCK_WAKE_URG:
1359 kill_fasync(&wq->fasync_list, SIGURG, band);
1360 }
1361
1362 return 0;
1363}
1364EXPORT_SYMBOL(sock_wake_async);
1365
1366/**
1367 * __sock_create - creates a socket
1368 * @net: net namespace
1369 * @family: protocol family (AF_INET, ...)
1370 * @type: communication type (SOCK_STREAM, ...)
1371 * @protocol: protocol (0, ...)
1372 * @res: new socket
1373 * @kern: boolean for kernel space sockets
1374 *
1375 * Creates a new socket and assigns it to @res, passing through LSM.
1376 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1377 * be set to true if the socket resides in kernel space.
1378 * This function internally uses GFP_KERNEL.
1379 */
1380
1381int __sock_create(struct net *net, int family, int type, int protocol,
1382 struct socket **res, int kern)
1383{
1384 int err;
1385 struct socket *sock;
1386 const struct net_proto_family *pf;
1387
1388 /*
1389 * Check protocol is in range
1390 */
1391 if (family < 0 || family >= NPROTO)
1392 return -EAFNOSUPPORT;
1393 if (type < 0 || type >= SOCK_MAX)
1394 return -EINVAL;
1395
1396 /* Compatibility.
1397
1398 This uglymoron is moved from INET layer to here to avoid
1399 deadlock in module load.
1400 */
1401 if (family == PF_INET && type == SOCK_PACKET) {
1402 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1403 current->comm);
1404 family = PF_PACKET;
1405 }
1406
1407 err = security_socket_create(family, type, protocol, kern);
1408 if (err)
1409 return err;
1410
1411 /*
1412 * Allocate the socket and allow the family to set things up. if
1413 * the protocol is 0, the family is instructed to select an appropriate
1414 * default.
1415 */
1416 sock = sock_alloc();
1417 if (!sock) {
1418 net_warn_ratelimited("socket: no more sockets\n");
1419 return -ENFILE; /* Not exactly a match, but its the
1420 closest posix thing */
1421 }
1422
1423 sock->type = type;
1424
1425#ifdef CONFIG_MODULES
1426 /* Attempt to load a protocol module if the find failed.
1427 *
1428 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1429 * requested real, full-featured networking support upon configuration.
1430 * Otherwise module support will break!
1431 */
1432 if (rcu_access_pointer(net_families[family]) == NULL)
1433 request_module("net-pf-%d", family);
1434#endif
1435
1436 rcu_read_lock();
1437 pf = rcu_dereference(net_families[family]);
1438 err = -EAFNOSUPPORT;
1439 if (!pf)
1440 goto out_release;
1441
1442 /*
1443 * We will call the ->create function, that possibly is in a loadable
1444 * module, so we have to bump that loadable module refcnt first.
1445 */
1446 if (!try_module_get(pf->owner))
1447 goto out_release;
1448
1449 /* Now protected by module ref count */
1450 rcu_read_unlock();
1451
1452 err = pf->create(net, sock, protocol, kern);
1453 if (err < 0)
1454 goto out_module_put;
1455
1456 /*
1457 * Now to bump the refcnt of the [loadable] module that owns this
1458 * socket at sock_release time we decrement its refcnt.
1459 */
1460 if (!try_module_get(sock->ops->owner))
1461 goto out_module_busy;
1462
1463 /*
1464 * Now that we're done with the ->create function, the [loadable]
1465 * module can have its refcnt decremented
1466 */
1467 module_put(pf->owner);
1468 err = security_socket_post_create(sock, family, type, protocol, kern);
1469 if (err)
1470 goto out_sock_release;
1471 *res = sock;
1472
1473 return 0;
1474
1475out_module_busy:
1476 err = -EAFNOSUPPORT;
1477out_module_put:
1478 sock->ops = NULL;
1479 module_put(pf->owner);
1480out_sock_release:
1481 sock_release(sock);
1482 return err;
1483
1484out_release:
1485 rcu_read_unlock();
1486 goto out_sock_release;
1487}
1488EXPORT_SYMBOL(__sock_create);
1489
1490/**
1491 * sock_create - creates a socket
1492 * @family: protocol family (AF_INET, ...)
1493 * @type: communication type (SOCK_STREAM, ...)
1494 * @protocol: protocol (0, ...)
1495 * @res: new socket
1496 *
1497 * A wrapper around __sock_create().
1498 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1499 */
1500
1501int sock_create(int family, int type, int protocol, struct socket **res)
1502{
1503 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1504}
1505EXPORT_SYMBOL(sock_create);
1506
1507/**
1508 * sock_create_kern - creates a socket (kernel space)
1509 * @net: net namespace
1510 * @family: protocol family (AF_INET, ...)
1511 * @type: communication type (SOCK_STREAM, ...)
1512 * @protocol: protocol (0, ...)
1513 * @res: new socket
1514 *
1515 * A wrapper around __sock_create().
1516 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1517 */
1518
1519int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1520{
1521 return __sock_create(net, family, type, protocol, res, 1);
1522}
1523EXPORT_SYMBOL(sock_create_kern);
1524
1525int __sys_socket(int family, int type, int protocol)
1526{
1527 int retval;
1528 struct socket *sock;
1529 int flags;
1530
1531 /* Check the SOCK_* constants for consistency. */
1532 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1533 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1534 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1535 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1536
1537 flags = type & ~SOCK_TYPE_MASK;
1538 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1539 return -EINVAL;
1540 type &= SOCK_TYPE_MASK;
1541
1542 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1543 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1544
1545 retval = sock_create(family, type, protocol, &sock);
1546 if (retval < 0)
1547 return retval;
1548
1549 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1550}
1551
1552SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1553{
1554 return __sys_socket(family, type, protocol);
1555}
1556
1557/*
1558 * Create a pair of connected sockets.
1559 */
1560
1561int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1562{
1563 struct socket *sock1, *sock2;
1564 int fd1, fd2, err;
1565 struct file *newfile1, *newfile2;
1566 int flags;
1567
1568 flags = type & ~SOCK_TYPE_MASK;
1569 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570 return -EINVAL;
1571 type &= SOCK_TYPE_MASK;
1572
1573 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1574 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1575
1576 /*
1577 * reserve descriptors and make sure we won't fail
1578 * to return them to userland.
1579 */
1580 fd1 = get_unused_fd_flags(flags);
1581 if (unlikely(fd1 < 0))
1582 return fd1;
1583
1584 fd2 = get_unused_fd_flags(flags);
1585 if (unlikely(fd2 < 0)) {
1586 put_unused_fd(fd1);
1587 return fd2;
1588 }
1589
1590 err = put_user(fd1, &usockvec[0]);
1591 if (err)
1592 goto out;
1593
1594 err = put_user(fd2, &usockvec[1]);
1595 if (err)
1596 goto out;
1597
1598 /*
1599 * Obtain the first socket and check if the underlying protocol
1600 * supports the socketpair call.
1601 */
1602
1603 err = sock_create(family, type, protocol, &sock1);
1604 if (unlikely(err < 0))
1605 goto out;
1606
1607 err = sock_create(family, type, protocol, &sock2);
1608 if (unlikely(err < 0)) {
1609 sock_release(sock1);
1610 goto out;
1611 }
1612
1613 err = security_socket_socketpair(sock1, sock2);
1614 if (unlikely(err)) {
1615 sock_release(sock2);
1616 sock_release(sock1);
1617 goto out;
1618 }
1619
1620 err = sock1->ops->socketpair(sock1, sock2);
1621 if (unlikely(err < 0)) {
1622 sock_release(sock2);
1623 sock_release(sock1);
1624 goto out;
1625 }
1626
1627 newfile1 = sock_alloc_file(sock1, flags, NULL);
1628 if (IS_ERR(newfile1)) {
1629 err = PTR_ERR(newfile1);
1630 sock_release(sock2);
1631 goto out;
1632 }
1633
1634 newfile2 = sock_alloc_file(sock2, flags, NULL);
1635 if (IS_ERR(newfile2)) {
1636 err = PTR_ERR(newfile2);
1637 fput(newfile1);
1638 goto out;
1639 }
1640
1641 audit_fd_pair(fd1, fd2);
1642
1643 fd_install(fd1, newfile1);
1644 fd_install(fd2, newfile2);
1645 return 0;
1646
1647out:
1648 put_unused_fd(fd2);
1649 put_unused_fd(fd1);
1650 return err;
1651}
1652
1653SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1654 int __user *, usockvec)
1655{
1656 return __sys_socketpair(family, type, protocol, usockvec);
1657}
1658
1659/*
1660 * Bind a name to a socket. Nothing much to do here since it's
1661 * the protocol's responsibility to handle the local address.
1662 *
1663 * We move the socket address to kernel space before we call
1664 * the protocol layer (having also checked the address is ok).
1665 */
1666
1667int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1668{
1669 struct socket *sock;
1670 struct sockaddr_storage address;
1671 int err, fput_needed;
1672
1673 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 if (sock) {
1675 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1676 if (!err) {
1677 err = security_socket_bind(sock,
1678 (struct sockaddr *)&address,
1679 addrlen);
1680 if (!err)
1681 err = sock->ops->bind(sock,
1682 (struct sockaddr *)
1683 &address, addrlen);
1684 }
1685 fput_light(sock->file, fput_needed);
1686 }
1687 return err;
1688}
1689
1690SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1691{
1692 return __sys_bind(fd, umyaddr, addrlen);
1693}
1694
1695/*
1696 * Perform a listen. Basically, we allow the protocol to do anything
1697 * necessary for a listen, and if that works, we mark the socket as
1698 * ready for listening.
1699 */
1700
1701int __sys_listen(int fd, int backlog)
1702{
1703 struct socket *sock;
1704 int err, fput_needed;
1705 int somaxconn;
1706
1707 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 if (sock) {
1709 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1710 if ((unsigned int)backlog > somaxconn)
1711 backlog = somaxconn;
1712
1713 err = security_socket_listen(sock, backlog);
1714 if (!err)
1715 err = sock->ops->listen(sock, backlog);
1716
1717 fput_light(sock->file, fput_needed);
1718 }
1719 return err;
1720}
1721
1722SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1723{
1724 return __sys_listen(fd, backlog);
1725}
1726
1727int __sys_accept4_file(struct file *file, unsigned file_flags,
1728 struct sockaddr __user *upeer_sockaddr,
1729 int __user *upeer_addrlen, int flags,
1730 unsigned long nofile)
1731{
1732 struct socket *sock, *newsock;
1733 struct file *newfile;
1734 int err, len, newfd;
1735 struct sockaddr_storage address;
1736
1737 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1738 return -EINVAL;
1739
1740 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1741 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1742
1743 sock = sock_from_file(file);
1744 if (!sock) {
1745 err = -ENOTSOCK;
1746 goto out;
1747 }
1748
1749 err = -ENFILE;
1750 newsock = sock_alloc();
1751 if (!newsock)
1752 goto out;
1753
1754 newsock->type = sock->type;
1755 newsock->ops = sock->ops;
1756
1757 /*
1758 * We don't need try_module_get here, as the listening socket (sock)
1759 * has the protocol module (sock->ops->owner) held.
1760 */
1761 __module_get(newsock->ops->owner);
1762
1763 newfd = __get_unused_fd_flags(flags, nofile);
1764 if (unlikely(newfd < 0)) {
1765 err = newfd;
1766 sock_release(newsock);
1767 goto out;
1768 }
1769 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1770 if (IS_ERR(newfile)) {
1771 err = PTR_ERR(newfile);
1772 put_unused_fd(newfd);
1773 goto out;
1774 }
1775
1776 err = security_socket_accept(sock, newsock);
1777 if (err)
1778 goto out_fd;
1779
1780 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1781 false);
1782 if (err < 0)
1783 goto out_fd;
1784
1785 if (upeer_sockaddr) {
1786 len = newsock->ops->getname(newsock,
1787 (struct sockaddr *)&address, 2);
1788 if (len < 0) {
1789 err = -ECONNABORTED;
1790 goto out_fd;
1791 }
1792 err = move_addr_to_user(&address,
1793 len, upeer_sockaddr, upeer_addrlen);
1794 if (err < 0)
1795 goto out_fd;
1796 }
1797
1798 /* File flags are not inherited via accept() unlike another OSes. */
1799
1800 fd_install(newfd, newfile);
1801 err = newfd;
1802out:
1803 return err;
1804out_fd:
1805 fput(newfile);
1806 put_unused_fd(newfd);
1807 goto out;
1808
1809}
1810
1811/*
1812 * For accept, we attempt to create a new socket, set up the link
1813 * with the client, wake up the client, then return the new
1814 * connected fd. We collect the address of the connector in kernel
1815 * space and move it to user at the very end. This is unclean because
1816 * we open the socket then return an error.
1817 *
1818 * 1003.1g adds the ability to recvmsg() to query connection pending
1819 * status to recvmsg. We need to add that support in a way thats
1820 * clean when we restructure accept also.
1821 */
1822
1823int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1824 int __user *upeer_addrlen, int flags)
1825{
1826 int ret = -EBADF;
1827 struct fd f;
1828
1829 f = fdget(fd);
1830 if (f.file) {
1831 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1832 upeer_addrlen, flags,
1833 rlimit(RLIMIT_NOFILE));
1834 fdput(f);
1835 }
1836
1837 return ret;
1838}
1839
1840SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1841 int __user *, upeer_addrlen, int, flags)
1842{
1843 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1844}
1845
1846SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1847 int __user *, upeer_addrlen)
1848{
1849 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1850}
1851
1852/*
1853 * Attempt to connect to a socket with the server address. The address
1854 * is in user space so we verify it is OK and move it to kernel space.
1855 *
1856 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1857 * break bindings
1858 *
1859 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1860 * other SEQPACKET protocols that take time to connect() as it doesn't
1861 * include the -EINPROGRESS status for such sockets.
1862 */
1863
1864int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1865 int addrlen, int file_flags)
1866{
1867 struct socket *sock;
1868 int err;
1869
1870 sock = sock_from_file(file);
1871 if (!sock) {
1872 err = -ENOTSOCK;
1873 goto out;
1874 }
1875
1876 err =
1877 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1878 if (err)
1879 goto out;
1880
1881 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1882 sock->file->f_flags | file_flags);
1883out:
1884 return err;
1885}
1886
1887int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1888{
1889 int ret = -EBADF;
1890 struct fd f;
1891
1892 f = fdget(fd);
1893 if (f.file) {
1894 struct sockaddr_storage address;
1895
1896 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1897 if (!ret)
1898 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1899 fdput(f);
1900 }
1901
1902 return ret;
1903}
1904
1905SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1906 int, addrlen)
1907{
1908 return __sys_connect(fd, uservaddr, addrlen);
1909}
1910
1911/*
1912 * Get the local address ('name') of a socket object. Move the obtained
1913 * name to user space.
1914 */
1915
1916int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1917 int __user *usockaddr_len)
1918{
1919 struct socket *sock;
1920 struct sockaddr_storage address;
1921 int err, fput_needed;
1922
1923 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924 if (!sock)
1925 goto out;
1926
1927 err = security_socket_getsockname(sock);
1928 if (err)
1929 goto out_put;
1930
1931 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1932 if (err < 0)
1933 goto out_put;
1934 /* "err" is actually length in this case */
1935 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1936
1937out_put:
1938 fput_light(sock->file, fput_needed);
1939out:
1940 return err;
1941}
1942
1943SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1944 int __user *, usockaddr_len)
1945{
1946 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1947}
1948
1949/*
1950 * Get the remote address ('name') of a socket object. Move the obtained
1951 * name to user space.
1952 */
1953
1954int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1955 int __user *usockaddr_len)
1956{
1957 struct socket *sock;
1958 struct sockaddr_storage address;
1959 int err, fput_needed;
1960
1961 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962 if (sock != NULL) {
1963 err = security_socket_getpeername(sock);
1964 if (err) {
1965 fput_light(sock->file, fput_needed);
1966 return err;
1967 }
1968
1969 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1970 if (err >= 0)
1971 /* "err" is actually length in this case */
1972 err = move_addr_to_user(&address, err, usockaddr,
1973 usockaddr_len);
1974 fput_light(sock->file, fput_needed);
1975 }
1976 return err;
1977}
1978
1979SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1980 int __user *, usockaddr_len)
1981{
1982 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1983}
1984
1985/*
1986 * Send a datagram to a given address. We move the address into kernel
1987 * space and check the user space data area is readable before invoking
1988 * the protocol.
1989 */
1990int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1991 struct sockaddr __user *addr, int addr_len)
1992{
1993 struct socket *sock;
1994 struct sockaddr_storage address;
1995 int err;
1996 struct msghdr msg;
1997 struct iovec iov;
1998 int fput_needed;
1999
2000 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2001 if (unlikely(err))
2002 return err;
2003 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2004 if (!sock)
2005 goto out;
2006
2007 msg.msg_name = NULL;
2008 msg.msg_control = NULL;
2009 msg.msg_controllen = 0;
2010 msg.msg_namelen = 0;
2011 if (addr) {
2012 err = move_addr_to_kernel(addr, addr_len, &address);
2013 if (err < 0)
2014 goto out_put;
2015 msg.msg_name = (struct sockaddr *)&address;
2016 msg.msg_namelen = addr_len;
2017 }
2018 if (sock->file->f_flags & O_NONBLOCK)
2019 flags |= MSG_DONTWAIT;
2020 msg.msg_flags = flags;
2021 err = sock_sendmsg(sock, &msg);
2022
2023out_put:
2024 fput_light(sock->file, fput_needed);
2025out:
2026 return err;
2027}
2028
2029SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2030 unsigned int, flags, struct sockaddr __user *, addr,
2031 int, addr_len)
2032{
2033 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2034}
2035
2036/*
2037 * Send a datagram down a socket.
2038 */
2039
2040SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2041 unsigned int, flags)
2042{
2043 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2044}
2045
2046/*
2047 * Receive a frame from the socket and optionally record the address of the
2048 * sender. We verify the buffers are writable and if needed move the
2049 * sender address from kernel to user space.
2050 */
2051int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2052 struct sockaddr __user *addr, int __user *addr_len)
2053{
2054 struct socket *sock;
2055 struct iovec iov;
2056 struct msghdr msg;
2057 struct sockaddr_storage address;
2058 int err, err2;
2059 int fput_needed;
2060
2061 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2062 if (unlikely(err))
2063 return err;
2064 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065 if (!sock)
2066 goto out;
2067
2068 msg.msg_control = NULL;
2069 msg.msg_controllen = 0;
2070 /* Save some cycles and don't copy the address if not needed */
2071 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2072 /* We assume all kernel code knows the size of sockaddr_storage */
2073 msg.msg_namelen = 0;
2074 msg.msg_iocb = NULL;
2075 msg.msg_flags = 0;
2076 if (sock->file->f_flags & O_NONBLOCK)
2077 flags |= MSG_DONTWAIT;
2078 err = sock_recvmsg(sock, &msg, flags);
2079
2080 if (err >= 0 && addr != NULL) {
2081 err2 = move_addr_to_user(&address,
2082 msg.msg_namelen, addr, addr_len);
2083 if (err2 < 0)
2084 err = err2;
2085 }
2086
2087 fput_light(sock->file, fput_needed);
2088out:
2089 return err;
2090}
2091
2092SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2093 unsigned int, flags, struct sockaddr __user *, addr,
2094 int __user *, addr_len)
2095{
2096 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2097}
2098
2099/*
2100 * Receive a datagram from a socket.
2101 */
2102
2103SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2104 unsigned int, flags)
2105{
2106 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2107}
2108
2109static bool sock_use_custom_sol_socket(const struct socket *sock)
2110{
2111 const struct sock *sk = sock->sk;
2112
2113 /* Use sock->ops->setsockopt() for MPTCP */
2114 return IS_ENABLED(CONFIG_MPTCP) &&
2115 sk->sk_protocol == IPPROTO_MPTCP &&
2116 sk->sk_type == SOCK_STREAM &&
2117 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2118}
2119
2120/*
2121 * Set a socket option. Because we don't know the option lengths we have
2122 * to pass the user mode parameter for the protocols to sort out.
2123 */
2124int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2125 int optlen)
2126{
2127 sockptr_t optval = USER_SOCKPTR(user_optval);
2128 char *kernel_optval = NULL;
2129 int err, fput_needed;
2130 struct socket *sock;
2131
2132 if (optlen < 0)
2133 return -EINVAL;
2134
2135 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136 if (!sock)
2137 return err;
2138
2139 err = security_socket_setsockopt(sock, level, optname);
2140 if (err)
2141 goto out_put;
2142
2143 if (!in_compat_syscall())
2144 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2145 user_optval, &optlen,
2146 &kernel_optval);
2147 if (err < 0)
2148 goto out_put;
2149 if (err > 0) {
2150 err = 0;
2151 goto out_put;
2152 }
2153
2154 if (kernel_optval)
2155 optval = KERNEL_SOCKPTR(kernel_optval);
2156 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2157 err = sock_setsockopt(sock, level, optname, optval, optlen);
2158 else if (unlikely(!sock->ops->setsockopt))
2159 err = -EOPNOTSUPP;
2160 else
2161 err = sock->ops->setsockopt(sock, level, optname, optval,
2162 optlen);
2163 kfree(kernel_optval);
2164out_put:
2165 fput_light(sock->file, fput_needed);
2166 return err;
2167}
2168
2169SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2170 char __user *, optval, int, optlen)
2171{
2172 return __sys_setsockopt(fd, level, optname, optval, optlen);
2173}
2174
2175INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2176 int optname));
2177
2178/*
2179 * Get a socket option. Because we don't know the option lengths we have
2180 * to pass a user mode parameter for the protocols to sort out.
2181 */
2182int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2183 int __user *optlen)
2184{
2185 int err, fput_needed;
2186 struct socket *sock;
2187 int max_optlen;
2188
2189 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190 if (!sock)
2191 return err;
2192
2193 err = security_socket_getsockopt(sock, level, optname);
2194 if (err)
2195 goto out_put;
2196
2197 if (!in_compat_syscall())
2198 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2199
2200 if (level == SOL_SOCKET)
2201 err = sock_getsockopt(sock, level, optname, optval, optlen);
2202 else if (unlikely(!sock->ops->getsockopt))
2203 err = -EOPNOTSUPP;
2204 else
2205 err = sock->ops->getsockopt(sock, level, optname, optval,
2206 optlen);
2207
2208 if (!in_compat_syscall())
2209 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2210 optval, optlen, max_optlen,
2211 err);
2212out_put:
2213 fput_light(sock->file, fput_needed);
2214 return err;
2215}
2216
2217SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2218 char __user *, optval, int __user *, optlen)
2219{
2220 return __sys_getsockopt(fd, level, optname, optval, optlen);
2221}
2222
2223/*
2224 * Shutdown a socket.
2225 */
2226
2227int __sys_shutdown_sock(struct socket *sock, int how)
2228{
2229 int err;
2230
2231 err = security_socket_shutdown(sock, how);
2232 if (!err)
2233 err = sock->ops->shutdown(sock, how);
2234
2235 return err;
2236}
2237
2238int __sys_shutdown(int fd, int how)
2239{
2240 int err, fput_needed;
2241 struct socket *sock;
2242
2243 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2244 if (sock != NULL) {
2245 err = __sys_shutdown_sock(sock, how);
2246 fput_light(sock->file, fput_needed);
2247 }
2248 return err;
2249}
2250
2251SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2252{
2253 return __sys_shutdown(fd, how);
2254}
2255
2256/* A couple of helpful macros for getting the address of the 32/64 bit
2257 * fields which are the same type (int / unsigned) on our platforms.
2258 */
2259#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2260#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2261#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2262
2263struct used_address {
2264 struct sockaddr_storage name;
2265 unsigned int name_len;
2266};
2267
2268int __copy_msghdr_from_user(struct msghdr *kmsg,
2269 struct user_msghdr __user *umsg,
2270 struct sockaddr __user **save_addr,
2271 struct iovec __user **uiov, size_t *nsegs)
2272{
2273 struct user_msghdr msg;
2274 ssize_t err;
2275
2276 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2277 return -EFAULT;
2278
2279 kmsg->msg_control_is_user = true;
2280 kmsg->msg_control_user = msg.msg_control;
2281 kmsg->msg_controllen = msg.msg_controllen;
2282 kmsg->msg_flags = msg.msg_flags;
2283
2284 kmsg->msg_namelen = msg.msg_namelen;
2285 if (!msg.msg_name)
2286 kmsg->msg_namelen = 0;
2287
2288 if (kmsg->msg_namelen < 0)
2289 return -EINVAL;
2290
2291 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2292 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2293
2294 if (save_addr)
2295 *save_addr = msg.msg_name;
2296
2297 if (msg.msg_name && kmsg->msg_namelen) {
2298 if (!save_addr) {
2299 err = move_addr_to_kernel(msg.msg_name,
2300 kmsg->msg_namelen,
2301 kmsg->msg_name);
2302 if (err < 0)
2303 return err;
2304 }
2305 } else {
2306 kmsg->msg_name = NULL;
2307 kmsg->msg_namelen = 0;
2308 }
2309
2310 if (msg.msg_iovlen > UIO_MAXIOV)
2311 return -EMSGSIZE;
2312
2313 kmsg->msg_iocb = NULL;
2314 *uiov = msg.msg_iov;
2315 *nsegs = msg.msg_iovlen;
2316 return 0;
2317}
2318
2319static int copy_msghdr_from_user(struct msghdr *kmsg,
2320 struct user_msghdr __user *umsg,
2321 struct sockaddr __user **save_addr,
2322 struct iovec **iov)
2323{
2324 struct user_msghdr msg;
2325 ssize_t err;
2326
2327 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2328 &msg.msg_iovlen);
2329 if (err)
2330 return err;
2331
2332 err = import_iovec(save_addr ? READ : WRITE,
2333 msg.msg_iov, msg.msg_iovlen,
2334 UIO_FASTIOV, iov, &kmsg->msg_iter);
2335 return err < 0 ? err : 0;
2336}
2337
2338static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2339 unsigned int flags, struct used_address *used_address,
2340 unsigned int allowed_msghdr_flags)
2341{
2342 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2343 __aligned(sizeof(__kernel_size_t));
2344 /* 20 is size of ipv6_pktinfo */
2345 unsigned char *ctl_buf = ctl;
2346 int ctl_len;
2347 ssize_t err;
2348
2349 err = -ENOBUFS;
2350
2351 if (msg_sys->msg_controllen > INT_MAX)
2352 goto out;
2353 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2354 ctl_len = msg_sys->msg_controllen;
2355 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2356 err =
2357 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2358 sizeof(ctl));
2359 if (err)
2360 goto out;
2361 ctl_buf = msg_sys->msg_control;
2362 ctl_len = msg_sys->msg_controllen;
2363 } else if (ctl_len) {
2364 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2365 CMSG_ALIGN(sizeof(struct cmsghdr)));
2366 if (ctl_len > sizeof(ctl)) {
2367 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2368 if (ctl_buf == NULL)
2369 goto out;
2370 }
2371 err = -EFAULT;
2372 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2373 goto out_freectl;
2374 msg_sys->msg_control = ctl_buf;
2375 msg_sys->msg_control_is_user = false;
2376 }
2377 msg_sys->msg_flags = flags;
2378
2379 if (sock->file->f_flags & O_NONBLOCK)
2380 msg_sys->msg_flags |= MSG_DONTWAIT;
2381 /*
2382 * If this is sendmmsg() and current destination address is same as
2383 * previously succeeded address, omit asking LSM's decision.
2384 * used_address->name_len is initialized to UINT_MAX so that the first
2385 * destination address never matches.
2386 */
2387 if (used_address && msg_sys->msg_name &&
2388 used_address->name_len == msg_sys->msg_namelen &&
2389 !memcmp(&used_address->name, msg_sys->msg_name,
2390 used_address->name_len)) {
2391 err = sock_sendmsg_nosec(sock, msg_sys);
2392 goto out_freectl;
2393 }
2394 err = sock_sendmsg(sock, msg_sys);
2395 /*
2396 * If this is sendmmsg() and sending to current destination address was
2397 * successful, remember it.
2398 */
2399 if (used_address && err >= 0) {
2400 used_address->name_len = msg_sys->msg_namelen;
2401 if (msg_sys->msg_name)
2402 memcpy(&used_address->name, msg_sys->msg_name,
2403 used_address->name_len);
2404 }
2405
2406out_freectl:
2407 if (ctl_buf != ctl)
2408 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2409out:
2410 return err;
2411}
2412
2413int sendmsg_copy_msghdr(struct msghdr *msg,
2414 struct user_msghdr __user *umsg, unsigned flags,
2415 struct iovec **iov)
2416{
2417 int err;
2418
2419 if (flags & MSG_CMSG_COMPAT) {
2420 struct compat_msghdr __user *msg_compat;
2421
2422 msg_compat = (struct compat_msghdr __user *) umsg;
2423 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2424 } else {
2425 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2426 }
2427 if (err < 0)
2428 return err;
2429
2430 return 0;
2431}
2432
2433static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2434 struct msghdr *msg_sys, unsigned int flags,
2435 struct used_address *used_address,
2436 unsigned int allowed_msghdr_flags)
2437{
2438 struct sockaddr_storage address;
2439 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2440 ssize_t err;
2441
2442 msg_sys->msg_name = &address;
2443
2444 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2445 if (err < 0)
2446 return err;
2447
2448 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2449 allowed_msghdr_flags);
2450 kfree(iov);
2451 return err;
2452}
2453
2454/*
2455 * BSD sendmsg interface
2456 */
2457long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2458 unsigned int flags)
2459{
2460 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2461}
2462
2463long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2464 bool forbid_cmsg_compat)
2465{
2466 int fput_needed, err;
2467 struct msghdr msg_sys;
2468 struct socket *sock;
2469
2470 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2471 return -EINVAL;
2472
2473 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2474 if (!sock)
2475 goto out;
2476
2477 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2478
2479 fput_light(sock->file, fput_needed);
2480out:
2481 return err;
2482}
2483
2484SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2485{
2486 return __sys_sendmsg(fd, msg, flags, true);
2487}
2488
2489/*
2490 * Linux sendmmsg interface
2491 */
2492
2493int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2494 unsigned int flags, bool forbid_cmsg_compat)
2495{
2496 int fput_needed, err, datagrams;
2497 struct socket *sock;
2498 struct mmsghdr __user *entry;
2499 struct compat_mmsghdr __user *compat_entry;
2500 struct msghdr msg_sys;
2501 struct used_address used_address;
2502 unsigned int oflags = flags;
2503
2504 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2505 return -EINVAL;
2506
2507 if (vlen > UIO_MAXIOV)
2508 vlen = UIO_MAXIOV;
2509
2510 datagrams = 0;
2511
2512 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2513 if (!sock)
2514 return err;
2515
2516 used_address.name_len = UINT_MAX;
2517 entry = mmsg;
2518 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2519 err = 0;
2520 flags |= MSG_BATCH;
2521
2522 while (datagrams < vlen) {
2523 if (datagrams == vlen - 1)
2524 flags = oflags;
2525
2526 if (MSG_CMSG_COMPAT & flags) {
2527 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2528 &msg_sys, flags, &used_address, MSG_EOR);
2529 if (err < 0)
2530 break;
2531 err = __put_user(err, &compat_entry->msg_len);
2532 ++compat_entry;
2533 } else {
2534 err = ___sys_sendmsg(sock,
2535 (struct user_msghdr __user *)entry,
2536 &msg_sys, flags, &used_address, MSG_EOR);
2537 if (err < 0)
2538 break;
2539 err = put_user(err, &entry->msg_len);
2540 ++entry;
2541 }
2542
2543 if (err)
2544 break;
2545 ++datagrams;
2546 if (msg_data_left(&msg_sys))
2547 break;
2548 cond_resched();
2549 }
2550
2551 fput_light(sock->file, fput_needed);
2552
2553 /* We only return an error if no datagrams were able to be sent */
2554 if (datagrams != 0)
2555 return datagrams;
2556
2557 return err;
2558}
2559
2560SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2561 unsigned int, vlen, unsigned int, flags)
2562{
2563 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2564}
2565
2566int recvmsg_copy_msghdr(struct msghdr *msg,
2567 struct user_msghdr __user *umsg, unsigned flags,
2568 struct sockaddr __user **uaddr,
2569 struct iovec **iov)
2570{
2571 ssize_t err;
2572
2573 if (MSG_CMSG_COMPAT & flags) {
2574 struct compat_msghdr __user *msg_compat;
2575
2576 msg_compat = (struct compat_msghdr __user *) umsg;
2577 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2578 } else {
2579 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2580 }
2581 if (err < 0)
2582 return err;
2583
2584 return 0;
2585}
2586
2587static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2588 struct user_msghdr __user *msg,
2589 struct sockaddr __user *uaddr,
2590 unsigned int flags, int nosec)
2591{
2592 struct compat_msghdr __user *msg_compat =
2593 (struct compat_msghdr __user *) msg;
2594 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2595 struct sockaddr_storage addr;
2596 unsigned long cmsg_ptr;
2597 int len;
2598 ssize_t err;
2599
2600 msg_sys->msg_name = &addr;
2601 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2602 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2603
2604 /* We assume all kernel code knows the size of sockaddr_storage */
2605 msg_sys->msg_namelen = 0;
2606
2607 if (sock->file->f_flags & O_NONBLOCK)
2608 flags |= MSG_DONTWAIT;
2609
2610 if (unlikely(nosec))
2611 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2612 else
2613 err = sock_recvmsg(sock, msg_sys, flags);
2614
2615 if (err < 0)
2616 goto out;
2617 len = err;
2618
2619 if (uaddr != NULL) {
2620 err = move_addr_to_user(&addr,
2621 msg_sys->msg_namelen, uaddr,
2622 uaddr_len);
2623 if (err < 0)
2624 goto out;
2625 }
2626 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2627 COMPAT_FLAGS(msg));
2628 if (err)
2629 goto out;
2630 if (MSG_CMSG_COMPAT & flags)
2631 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2632 &msg_compat->msg_controllen);
2633 else
2634 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2635 &msg->msg_controllen);
2636 if (err)
2637 goto out;
2638 err = len;
2639out:
2640 return err;
2641}
2642
2643static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2644 struct msghdr *msg_sys, unsigned int flags, int nosec)
2645{
2646 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2647 /* user mode address pointers */
2648 struct sockaddr __user *uaddr;
2649 ssize_t err;
2650
2651 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2652 if (err < 0)
2653 return err;
2654
2655 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2656 kfree(iov);
2657 return err;
2658}
2659
2660/*
2661 * BSD recvmsg interface
2662 */
2663
2664long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2665 struct user_msghdr __user *umsg,
2666 struct sockaddr __user *uaddr, unsigned int flags)
2667{
2668 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2669}
2670
2671long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2672 bool forbid_cmsg_compat)
2673{
2674 int fput_needed, err;
2675 struct msghdr msg_sys;
2676 struct socket *sock;
2677
2678 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2679 return -EINVAL;
2680
2681 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2682 if (!sock)
2683 goto out;
2684
2685 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2686
2687 fput_light(sock->file, fput_needed);
2688out:
2689 return err;
2690}
2691
2692SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2693 unsigned int, flags)
2694{
2695 return __sys_recvmsg(fd, msg, flags, true);
2696}
2697
2698/*
2699 * Linux recvmmsg interface
2700 */
2701
2702static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2703 unsigned int vlen, unsigned int flags,
2704 struct timespec64 *timeout)
2705{
2706 int fput_needed, err, datagrams;
2707 struct socket *sock;
2708 struct mmsghdr __user *entry;
2709 struct compat_mmsghdr __user *compat_entry;
2710 struct msghdr msg_sys;
2711 struct timespec64 end_time;
2712 struct timespec64 timeout64;
2713
2714 if (timeout &&
2715 poll_select_set_timeout(&end_time, timeout->tv_sec,
2716 timeout->tv_nsec))
2717 return -EINVAL;
2718
2719 datagrams = 0;
2720
2721 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2722 if (!sock)
2723 return err;
2724
2725 if (likely(!(flags & MSG_ERRQUEUE))) {
2726 err = sock_error(sock->sk);
2727 if (err) {
2728 datagrams = err;
2729 goto out_put;
2730 }
2731 }
2732
2733 entry = mmsg;
2734 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2735
2736 while (datagrams < vlen) {
2737 /*
2738 * No need to ask LSM for more than the first datagram.
2739 */
2740 if (MSG_CMSG_COMPAT & flags) {
2741 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2742 &msg_sys, flags & ~MSG_WAITFORONE,
2743 datagrams);
2744 if (err < 0)
2745 break;
2746 err = __put_user(err, &compat_entry->msg_len);
2747 ++compat_entry;
2748 } else {
2749 err = ___sys_recvmsg(sock,
2750 (struct user_msghdr __user *)entry,
2751 &msg_sys, flags & ~MSG_WAITFORONE,
2752 datagrams);
2753 if (err < 0)
2754 break;
2755 err = put_user(err, &entry->msg_len);
2756 ++entry;
2757 }
2758
2759 if (err)
2760 break;
2761 ++datagrams;
2762
2763 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2764 if (flags & MSG_WAITFORONE)
2765 flags |= MSG_DONTWAIT;
2766
2767 if (timeout) {
2768 ktime_get_ts64(&timeout64);
2769 *timeout = timespec64_sub(end_time, timeout64);
2770 if (timeout->tv_sec < 0) {
2771 timeout->tv_sec = timeout->tv_nsec = 0;
2772 break;
2773 }
2774
2775 /* Timeout, return less than vlen datagrams */
2776 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2777 break;
2778 }
2779
2780 /* Out of band data, return right away */
2781 if (msg_sys.msg_flags & MSG_OOB)
2782 break;
2783 cond_resched();
2784 }
2785
2786 if (err == 0)
2787 goto out_put;
2788
2789 if (datagrams == 0) {
2790 datagrams = err;
2791 goto out_put;
2792 }
2793
2794 /*
2795 * We may return less entries than requested (vlen) if the
2796 * sock is non block and there aren't enough datagrams...
2797 */
2798 if (err != -EAGAIN) {
2799 /*
2800 * ... or if recvmsg returns an error after we
2801 * received some datagrams, where we record the
2802 * error to return on the next call or if the
2803 * app asks about it using getsockopt(SO_ERROR).
2804 */
2805 sock->sk->sk_err = -err;
2806 }
2807out_put:
2808 fput_light(sock->file, fput_needed);
2809
2810 return datagrams;
2811}
2812
2813int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2814 unsigned int vlen, unsigned int flags,
2815 struct __kernel_timespec __user *timeout,
2816 struct old_timespec32 __user *timeout32)
2817{
2818 int datagrams;
2819 struct timespec64 timeout_sys;
2820
2821 if (timeout && get_timespec64(&timeout_sys, timeout))
2822 return -EFAULT;
2823
2824 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2825 return -EFAULT;
2826
2827 if (!timeout && !timeout32)
2828 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2829
2830 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2831
2832 if (datagrams <= 0)
2833 return datagrams;
2834
2835 if (timeout && put_timespec64(&timeout_sys, timeout))
2836 datagrams = -EFAULT;
2837
2838 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2839 datagrams = -EFAULT;
2840
2841 return datagrams;
2842}
2843
2844SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2845 unsigned int, vlen, unsigned int, flags,
2846 struct __kernel_timespec __user *, timeout)
2847{
2848 if (flags & MSG_CMSG_COMPAT)
2849 return -EINVAL;
2850
2851 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2852}
2853
2854#ifdef CONFIG_COMPAT_32BIT_TIME
2855SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2856 unsigned int, vlen, unsigned int, flags,
2857 struct old_timespec32 __user *, timeout)
2858{
2859 if (flags & MSG_CMSG_COMPAT)
2860 return -EINVAL;
2861
2862 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2863}
2864#endif
2865
2866#ifdef __ARCH_WANT_SYS_SOCKETCALL
2867/* Argument list sizes for sys_socketcall */
2868#define AL(x) ((x) * sizeof(unsigned long))
2869static const unsigned char nargs[21] = {
2870 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2871 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2872 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2873 AL(4), AL(5), AL(4)
2874};
2875
2876#undef AL
2877
2878/*
2879 * System call vectors.
2880 *
2881 * Argument checking cleaned up. Saved 20% in size.
2882 * This function doesn't need to set the kernel lock because
2883 * it is set by the callees.
2884 */
2885
2886SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2887{
2888 unsigned long a[AUDITSC_ARGS];
2889 unsigned long a0, a1;
2890 int err;
2891 unsigned int len;
2892
2893 if (call < 1 || call > SYS_SENDMMSG)
2894 return -EINVAL;
2895 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2896
2897 len = nargs[call];
2898 if (len > sizeof(a))
2899 return -EINVAL;
2900
2901 /* copy_from_user should be SMP safe. */
2902 if (copy_from_user(a, args, len))
2903 return -EFAULT;
2904
2905 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2906 if (err)
2907 return err;
2908
2909 a0 = a[0];
2910 a1 = a[1];
2911
2912 switch (call) {
2913 case SYS_SOCKET:
2914 err = __sys_socket(a0, a1, a[2]);
2915 break;
2916 case SYS_BIND:
2917 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2918 break;
2919 case SYS_CONNECT:
2920 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2921 break;
2922 case SYS_LISTEN:
2923 err = __sys_listen(a0, a1);
2924 break;
2925 case SYS_ACCEPT:
2926 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2927 (int __user *)a[2], 0);
2928 break;
2929 case SYS_GETSOCKNAME:
2930 err =
2931 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2932 (int __user *)a[2]);
2933 break;
2934 case SYS_GETPEERNAME:
2935 err =
2936 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2937 (int __user *)a[2]);
2938 break;
2939 case SYS_SOCKETPAIR:
2940 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2941 break;
2942 case SYS_SEND:
2943 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2944 NULL, 0);
2945 break;
2946 case SYS_SENDTO:
2947 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2948 (struct sockaddr __user *)a[4], a[5]);
2949 break;
2950 case SYS_RECV:
2951 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2952 NULL, NULL);
2953 break;
2954 case SYS_RECVFROM:
2955 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2956 (struct sockaddr __user *)a[4],
2957 (int __user *)a[5]);
2958 break;
2959 case SYS_SHUTDOWN:
2960 err = __sys_shutdown(a0, a1);
2961 break;
2962 case SYS_SETSOCKOPT:
2963 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2964 a[4]);
2965 break;
2966 case SYS_GETSOCKOPT:
2967 err =
2968 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2969 (int __user *)a[4]);
2970 break;
2971 case SYS_SENDMSG:
2972 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2973 a[2], true);
2974 break;
2975 case SYS_SENDMMSG:
2976 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2977 a[3], true);
2978 break;
2979 case SYS_RECVMSG:
2980 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2981 a[2], true);
2982 break;
2983 case SYS_RECVMMSG:
2984 if (IS_ENABLED(CONFIG_64BIT))
2985 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2986 a[2], a[3],
2987 (struct __kernel_timespec __user *)a[4],
2988 NULL);
2989 else
2990 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2991 a[2], a[3], NULL,
2992 (struct old_timespec32 __user *)a[4]);
2993 break;
2994 case SYS_ACCEPT4:
2995 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2996 (int __user *)a[2], a[3]);
2997 break;
2998 default:
2999 err = -EINVAL;
3000 break;
3001 }
3002 return err;
3003}
3004
3005#endif /* __ARCH_WANT_SYS_SOCKETCALL */
3006
3007/**
3008 * sock_register - add a socket protocol handler
3009 * @ops: description of protocol
3010 *
3011 * This function is called by a protocol handler that wants to
3012 * advertise its address family, and have it linked into the
3013 * socket interface. The value ops->family corresponds to the
3014 * socket system call protocol family.
3015 */
3016int sock_register(const struct net_proto_family *ops)
3017{
3018 int err;
3019
3020 if (ops->family >= NPROTO) {
3021 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3022 return -ENOBUFS;
3023 }
3024
3025 spin_lock(&net_family_lock);
3026 if (rcu_dereference_protected(net_families[ops->family],
3027 lockdep_is_held(&net_family_lock)))
3028 err = -EEXIST;
3029 else {
3030 rcu_assign_pointer(net_families[ops->family], ops);
3031 err = 0;
3032 }
3033 spin_unlock(&net_family_lock);
3034
3035 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3036 return err;
3037}
3038EXPORT_SYMBOL(sock_register);
3039
3040/**
3041 * sock_unregister - remove a protocol handler
3042 * @family: protocol family to remove
3043 *
3044 * This function is called by a protocol handler that wants to
3045 * remove its address family, and have it unlinked from the
3046 * new socket creation.
3047 *
3048 * If protocol handler is a module, then it can use module reference
3049 * counts to protect against new references. If protocol handler is not
3050 * a module then it needs to provide its own protection in
3051 * the ops->create routine.
3052 */
3053void sock_unregister(int family)
3054{
3055 BUG_ON(family < 0 || family >= NPROTO);
3056
3057 spin_lock(&net_family_lock);
3058 RCU_INIT_POINTER(net_families[family], NULL);
3059 spin_unlock(&net_family_lock);
3060
3061 synchronize_rcu();
3062
3063 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3064}
3065EXPORT_SYMBOL(sock_unregister);
3066
3067bool sock_is_registered(int family)
3068{
3069 return family < NPROTO && rcu_access_pointer(net_families[family]);
3070}
3071
3072static int __init sock_init(void)
3073{
3074 int err;
3075 /*
3076 * Initialize the network sysctl infrastructure.
3077 */
3078 err = net_sysctl_init();
3079 if (err)
3080 goto out;
3081
3082 /*
3083 * Initialize skbuff SLAB cache
3084 */
3085 skb_init();
3086
3087 /*
3088 * Initialize the protocols module.
3089 */
3090
3091 init_inodecache();
3092
3093 err = register_filesystem(&sock_fs_type);
3094 if (err)
3095 goto out;
3096 sock_mnt = kern_mount(&sock_fs_type);
3097 if (IS_ERR(sock_mnt)) {
3098 err = PTR_ERR(sock_mnt);
3099 goto out_mount;
3100 }
3101
3102 /* The real protocol initialization is performed in later initcalls.
3103 */
3104
3105#ifdef CONFIG_NETFILTER
3106 err = netfilter_init();
3107 if (err)
3108 goto out;
3109#endif
3110
3111 ptp_classifier_init();
3112
3113out:
3114 return err;
3115
3116out_mount:
3117 unregister_filesystem(&sock_fs_type);
3118 goto out;
3119}
3120
3121core_initcall(sock_init); /* early initcall */
3122
3123#ifdef CONFIG_PROC_FS
3124void socket_seq_show(struct seq_file *seq)
3125{
3126 seq_printf(seq, "sockets: used %d\n",
3127 sock_inuse_get(seq->private));
3128}
3129#endif /* CONFIG_PROC_FS */
3130
3131#ifdef CONFIG_COMPAT
3132static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3133{
3134 struct compat_ifconf ifc32;
3135 struct ifconf ifc;
3136 int err;
3137
3138 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3139 return -EFAULT;
3140
3141 ifc.ifc_len = ifc32.ifc_len;
3142 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3143
3144 rtnl_lock();
3145 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3146 rtnl_unlock();
3147 if (err)
3148 return err;
3149
3150 ifc32.ifc_len = ifc.ifc_len;
3151 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3152 return -EFAULT;
3153
3154 return 0;
3155}
3156
3157static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3158{
3159 compat_uptr_t uptr32;
3160 struct ifreq ifr;
3161 void __user *saved;
3162 int err;
3163
3164 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3165 return -EFAULT;
3166
3167 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3168 return -EFAULT;
3169
3170 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3171 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3172
3173 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3174 if (!err) {
3175 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3176 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3177 err = -EFAULT;
3178 }
3179 return err;
3180}
3181
3182/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3183static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3184 struct compat_ifreq __user *u_ifreq32)
3185{
3186 struct ifreq ifreq;
3187 u32 data32;
3188
3189 if (!is_socket_ioctl_cmd(cmd))
3190 return -ENOTTY;
3191 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3192 return -EFAULT;
3193 if (get_user(data32, &u_ifreq32->ifr_data))
3194 return -EFAULT;
3195 ifreq.ifr_data = compat_ptr(data32);
3196
3197 return dev_ioctl(net, cmd, &ifreq, NULL);
3198}
3199
3200static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3201 unsigned int cmd,
3202 struct compat_ifreq __user *uifr32)
3203{
3204 struct ifreq __user *uifr;
3205 int err;
3206
3207 /* Handle the fact that while struct ifreq has the same *layout* on
3208 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3209 * which are handled elsewhere, it still has different *size* due to
3210 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3211 * resulting in struct ifreq being 32 and 40 bytes respectively).
3212 * As a result, if the struct happens to be at the end of a page and
3213 * the next page isn't readable/writable, we get a fault. To prevent
3214 * that, copy back and forth to the full size.
3215 */
3216
3217 uifr = compat_alloc_user_space(sizeof(*uifr));
3218 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3219 return -EFAULT;
3220
3221 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3222
3223 if (!err) {
3224 switch (cmd) {
3225 case SIOCGIFFLAGS:
3226 case SIOCGIFMETRIC:
3227 case SIOCGIFMTU:
3228 case SIOCGIFMEM:
3229 case SIOCGIFHWADDR:
3230 case SIOCGIFINDEX:
3231 case SIOCGIFADDR:
3232 case SIOCGIFBRDADDR:
3233 case SIOCGIFDSTADDR:
3234 case SIOCGIFNETMASK:
3235 case SIOCGIFPFLAGS:
3236 case SIOCGIFTXQLEN:
3237 case SIOCGMIIPHY:
3238 case SIOCGMIIREG:
3239 case SIOCGIFNAME:
3240 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3241 err = -EFAULT;
3242 break;
3243 }
3244 }
3245 return err;
3246}
3247
3248static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3249 struct compat_ifreq __user *uifr32)
3250{
3251 struct ifreq ifr;
3252 struct compat_ifmap __user *uifmap32;
3253 int err;
3254
3255 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3256 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3257 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3258 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3259 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3260 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3261 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3262 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3263 if (err)
3264 return -EFAULT;
3265
3266 err = dev_ioctl(net, cmd, &ifr, NULL);
3267
3268 if (cmd == SIOCGIFMAP && !err) {
3269 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3270 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3271 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3272 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3273 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3274 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3275 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3276 if (err)
3277 err = -EFAULT;
3278 }
3279 return err;
3280}
3281
3282/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3283 * for some operations; this forces use of the newer bridge-utils that
3284 * use compatible ioctls
3285 */
3286static int old_bridge_ioctl(compat_ulong_t __user *argp)
3287{
3288 compat_ulong_t tmp;
3289
3290 if (get_user(tmp, argp))
3291 return -EFAULT;
3292 if (tmp == BRCTL_GET_VERSION)
3293 return BRCTL_VERSION + 1;
3294 return -EINVAL;
3295}
3296
3297static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3298 unsigned int cmd, unsigned long arg)
3299{
3300 void __user *argp = compat_ptr(arg);
3301 struct sock *sk = sock->sk;
3302 struct net *net = sock_net(sk);
3303
3304 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3305 return compat_ifr_data_ioctl(net, cmd, argp);
3306
3307 switch (cmd) {
3308 case SIOCSIFBR:
3309 case SIOCGIFBR:
3310 return old_bridge_ioctl(argp);
3311 case SIOCGIFCONF:
3312 return compat_dev_ifconf(net, argp);
3313 case SIOCWANDEV:
3314 return compat_siocwandev(net, argp);
3315 case SIOCGIFMAP:
3316 case SIOCSIFMAP:
3317 return compat_sioc_ifmap(net, cmd, argp);
3318 case SIOCGSTAMP_OLD:
3319 case SIOCGSTAMPNS_OLD:
3320 if (!sock->ops->gettstamp)
3321 return -ENOIOCTLCMD;
3322 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3323 !COMPAT_USE_64BIT_TIME);
3324
3325 case SIOCETHTOOL:
3326 case SIOCBONDSLAVEINFOQUERY:
3327 case SIOCBONDINFOQUERY:
3328 case SIOCSHWTSTAMP:
3329 case SIOCGHWTSTAMP:
3330 return compat_ifr_data_ioctl(net, cmd, argp);
3331
3332 case FIOSETOWN:
3333 case SIOCSPGRP:
3334 case FIOGETOWN:
3335 case SIOCGPGRP:
3336 case SIOCBRADDBR:
3337 case SIOCBRDELBR:
3338 case SIOCGIFVLAN:
3339 case SIOCSIFVLAN:
3340 case SIOCGSKNS:
3341 case SIOCGSTAMP_NEW:
3342 case SIOCGSTAMPNS_NEW:
3343 return sock_ioctl(file, cmd, arg);
3344
3345 case SIOCGIFFLAGS:
3346 case SIOCSIFFLAGS:
3347 case SIOCGIFMETRIC:
3348 case SIOCSIFMETRIC:
3349 case SIOCGIFMTU:
3350 case SIOCSIFMTU:
3351 case SIOCGIFMEM:
3352 case SIOCSIFMEM:
3353 case SIOCGIFHWADDR:
3354 case SIOCSIFHWADDR:
3355 case SIOCADDMULTI:
3356 case SIOCDELMULTI:
3357 case SIOCGIFINDEX:
3358 case SIOCGIFADDR:
3359 case SIOCSIFADDR:
3360 case SIOCSIFHWBROADCAST:
3361 case SIOCDIFADDR:
3362 case SIOCGIFBRDADDR:
3363 case SIOCSIFBRDADDR:
3364 case SIOCGIFDSTADDR:
3365 case SIOCSIFDSTADDR:
3366 case SIOCGIFNETMASK:
3367 case SIOCSIFNETMASK:
3368 case SIOCSIFPFLAGS:
3369 case SIOCGIFPFLAGS:
3370 case SIOCGIFTXQLEN:
3371 case SIOCSIFTXQLEN:
3372 case SIOCBRADDIF:
3373 case SIOCBRDELIF:
3374 case SIOCGIFNAME:
3375 case SIOCSIFNAME:
3376 case SIOCGMIIPHY:
3377 case SIOCGMIIREG:
3378 case SIOCSMIIREG:
3379 case SIOCBONDENSLAVE:
3380 case SIOCBONDRELEASE:
3381 case SIOCBONDSETHWADDR:
3382 case SIOCBONDCHANGEACTIVE:
3383 return compat_ifreq_ioctl(net, sock, cmd, argp);
3384
3385 case SIOCSARP:
3386 case SIOCGARP:
3387 case SIOCDARP:
3388 case SIOCOUTQ:
3389 case SIOCOUTQNSD:
3390 case SIOCATMARK:
3391 return sock_do_ioctl(net, sock, cmd, arg);
3392 }
3393
3394 return -ENOIOCTLCMD;
3395}
3396
3397static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3398 unsigned long arg)
3399{
3400 struct socket *sock = file->private_data;
3401 int ret = -ENOIOCTLCMD;
3402 struct sock *sk;
3403 struct net *net;
3404
3405 sk = sock->sk;
3406 net = sock_net(sk);
3407
3408 if (sock->ops->compat_ioctl)
3409 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3410
3411 if (ret == -ENOIOCTLCMD &&
3412 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3413 ret = compat_wext_handle_ioctl(net, cmd, arg);
3414
3415 if (ret == -ENOIOCTLCMD)
3416 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3417
3418 return ret;
3419}
3420#endif
3421
3422/**
3423 * kernel_bind - bind an address to a socket (kernel space)
3424 * @sock: socket
3425 * @addr: address
3426 * @addrlen: length of address
3427 *
3428 * Returns 0 or an error.
3429 */
3430
3431int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3432{
3433 return sock->ops->bind(sock, addr, addrlen);
3434}
3435EXPORT_SYMBOL(kernel_bind);
3436
3437/**
3438 * kernel_listen - move socket to listening state (kernel space)
3439 * @sock: socket
3440 * @backlog: pending connections queue size
3441 *
3442 * Returns 0 or an error.
3443 */
3444
3445int kernel_listen(struct socket *sock, int backlog)
3446{
3447 return sock->ops->listen(sock, backlog);
3448}
3449EXPORT_SYMBOL(kernel_listen);
3450
3451/**
3452 * kernel_accept - accept a connection (kernel space)
3453 * @sock: listening socket
3454 * @newsock: new connected socket
3455 * @flags: flags
3456 *
3457 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3458 * If it fails, @newsock is guaranteed to be %NULL.
3459 * Returns 0 or an error.
3460 */
3461
3462int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3463{
3464 struct sock *sk = sock->sk;
3465 int err;
3466
3467 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3468 newsock);
3469 if (err < 0)
3470 goto done;
3471
3472 err = sock->ops->accept(sock, *newsock, flags, true);
3473 if (err < 0) {
3474 sock_release(*newsock);
3475 *newsock = NULL;
3476 goto done;
3477 }
3478
3479 (*newsock)->ops = sock->ops;
3480 __module_get((*newsock)->ops->owner);
3481
3482done:
3483 return err;
3484}
3485EXPORT_SYMBOL(kernel_accept);
3486
3487/**
3488 * kernel_connect - connect a socket (kernel space)
3489 * @sock: socket
3490 * @addr: address
3491 * @addrlen: address length
3492 * @flags: flags (O_NONBLOCK, ...)
3493 *
3494 * For datagram sockets, @addr is the address to which datagrams are sent
3495 * by default, and the only address from which datagrams are received.
3496 * For stream sockets, attempts to connect to @addr.
3497 * Returns 0 or an error code.
3498 */
3499
3500int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3501 int flags)
3502{
3503 return sock->ops->connect(sock, addr, addrlen, flags);
3504}
3505EXPORT_SYMBOL(kernel_connect);
3506
3507/**
3508 * kernel_getsockname - get the address which the socket is bound (kernel space)
3509 * @sock: socket
3510 * @addr: address holder
3511 *
3512 * Fills the @addr pointer with the address which the socket is bound.
3513 * Returns 0 or an error code.
3514 */
3515
3516int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3517{
3518 return sock->ops->getname(sock, addr, 0);
3519}
3520EXPORT_SYMBOL(kernel_getsockname);
3521
3522/**
3523 * kernel_getpeername - get the address which the socket is connected (kernel space)
3524 * @sock: socket
3525 * @addr: address holder
3526 *
3527 * Fills the @addr pointer with the address which the socket is connected.
3528 * Returns 0 or an error code.
3529 */
3530
3531int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3532{
3533 return sock->ops->getname(sock, addr, 1);
3534}
3535EXPORT_SYMBOL(kernel_getpeername);
3536
3537/**
3538 * kernel_sendpage - send a &page through a socket (kernel space)
3539 * @sock: socket
3540 * @page: page
3541 * @offset: page offset
3542 * @size: total size in bytes
3543 * @flags: flags (MSG_DONTWAIT, ...)
3544 *
3545 * Returns the total amount sent in bytes or an error.
3546 */
3547
3548int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3549 size_t size, int flags)
3550{
3551 if (sock->ops->sendpage) {
3552 /* Warn in case the improper page to zero-copy send */
3553 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3554 return sock->ops->sendpage(sock, page, offset, size, flags);
3555 }
3556 return sock_no_sendpage(sock, page, offset, size, flags);
3557}
3558EXPORT_SYMBOL(kernel_sendpage);
3559
3560/**
3561 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3562 * @sk: sock
3563 * @page: page
3564 * @offset: page offset
3565 * @size: total size in bytes
3566 * @flags: flags (MSG_DONTWAIT, ...)
3567 *
3568 * Returns the total amount sent in bytes or an error.
3569 * Caller must hold @sk.
3570 */
3571
3572int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3573 size_t size, int flags)
3574{
3575 struct socket *sock = sk->sk_socket;
3576
3577 if (sock->ops->sendpage_locked)
3578 return sock->ops->sendpage_locked(sk, page, offset, size,
3579 flags);
3580
3581 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3582}
3583EXPORT_SYMBOL(kernel_sendpage_locked);
3584
3585/**
3586 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3587 * @sock: socket
3588 * @how: connection part
3589 *
3590 * Returns 0 or an error.
3591 */
3592
3593int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3594{
3595 return sock->ops->shutdown(sock, how);
3596}
3597EXPORT_SYMBOL(kernel_sock_shutdown);
3598
3599/**
3600 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3601 * @sk: socket
3602 *
3603 * This routine returns the IP overhead imposed by a socket i.e.
3604 * the length of the underlying IP header, depending on whether
3605 * this is an IPv4 or IPv6 socket and the length from IP options turned
3606 * on at the socket. Assumes that the caller has a lock on the socket.
3607 */
3608
3609u32 kernel_sock_ip_overhead(struct sock *sk)
3610{
3611 struct inet_sock *inet;
3612 struct ip_options_rcu *opt;
3613 u32 overhead = 0;
3614#if IS_ENABLED(CONFIG_IPV6)
3615 struct ipv6_pinfo *np;
3616 struct ipv6_txoptions *optv6 = NULL;
3617#endif /* IS_ENABLED(CONFIG_IPV6) */
3618
3619 if (!sk)
3620 return overhead;
3621
3622 switch (sk->sk_family) {
3623 case AF_INET:
3624 inet = inet_sk(sk);
3625 overhead += sizeof(struct iphdr);
3626 opt = rcu_dereference_protected(inet->inet_opt,
3627 sock_owned_by_user(sk));
3628 if (opt)
3629 overhead += opt->opt.optlen;
3630 return overhead;
3631#if IS_ENABLED(CONFIG_IPV6)
3632 case AF_INET6:
3633 np = inet6_sk(sk);
3634 overhead += sizeof(struct ipv6hdr);
3635 if (np)
3636 optv6 = rcu_dereference_protected(np->opt,
3637 sock_owned_by_user(sk));
3638 if (optv6)
3639 overhead += (optv6->opt_flen + optv6->opt_nflen);
3640 return overhead;
3641#endif /* IS_ENABLED(CONFIG_IPV6) */
3642 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3643 return overhead;
3644 }
3645}
3646EXPORT_SYMBOL(kernel_sock_ip_overhead);
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/ptp_classify.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91#include <linux/xattr.h>
92
93#include <asm/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/sockios.h>
107#include <linux/atalk.h>
108#include <net/busy_poll.h>
109#include <linux/errqueue.h>
110
111#ifdef CONFIG_NET_RX_BUSY_POLL
112unsigned int sysctl_net_busy_read __read_mostly;
113unsigned int sysctl_net_busy_poll __read_mostly;
114#endif
115
116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120static int sock_close(struct inode *inode, struct file *file);
121static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124#ifdef CONFIG_COMPAT
125static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127#endif
128static int sock_fasync(int fd, struct file *filp, int on);
129static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135/*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147#ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149#endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156};
157
158/*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162static DEFINE_SPINLOCK(net_family_lock);
163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165/*
166 * Statistics counters of the socket lists
167 */
168
169static DEFINE_PER_CPU(int, sockets_in_use);
170
171/*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177/**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189{
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197}
198
199/**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218{
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241}
242
243static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245static struct inode *sock_alloc_inode(struct super_block *sb)
246{
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270}
271
272static void sock_destroy_inode(struct inode *inode)
273{
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281}
282
283static void init_once(void *foo)
284{
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288}
289
290static int init_inodecache(void)
291{
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
302}
303
304static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
308};
309
310/*
311 * sockfs_dname() is called from d_path().
312 */
313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314{
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
317}
318
319static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
321};
322
323static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 int flags, const char *dev_name, void *data)
325{
326 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 &sockfs_dentry_operations, SOCKFS_MAGIC);
328}
329
330static struct vfsmount *sock_mnt __read_mostly;
331
332static struct file_system_type sock_fs_type = {
333 .name = "sockfs",
334 .mount = sockfs_mount,
335 .kill_sb = kill_anon_super,
336};
337
338/*
339 * Obtains the first available file descriptor and sets it up for use.
340 *
341 * These functions create file structures and maps them to fd space
342 * of the current process. On success it returns file descriptor
343 * and file struct implicitly stored in sock->file.
344 * Note that another thread may close file descriptor before we return
345 * from this function. We use the fact that now we do not refer
346 * to socket after mapping. If one day we will need it, this
347 * function will increment ref. count on file by 1.
348 *
349 * In any case returned fd MAY BE not valid!
350 * This race condition is unavoidable
351 * with shared fd spaces, we cannot solve it inside kernel,
352 * but we take care of internal coherence yet.
353 */
354
355struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356{
357 struct qstr name = { .name = "" };
358 struct path path;
359 struct file *file;
360
361 if (dname) {
362 name.name = dname;
363 name.len = strlen(name.name);
364 } else if (sock->sk) {
365 name.name = sock->sk->sk_prot_creator->name;
366 name.len = strlen(name.name);
367 }
368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 if (unlikely(!path.dentry))
370 return ERR_PTR(-ENOMEM);
371 path.mnt = mntget(sock_mnt);
372
373 d_instantiate(path.dentry, SOCK_INODE(sock));
374
375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376 &socket_file_ops);
377 if (IS_ERR(file)) {
378 /* drop dentry, keep inode */
379 ihold(d_inode(path.dentry));
380 path_put(&path);
381 return file;
382 }
383
384 sock->file = file;
385 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 file->private_data = sock;
387 return file;
388}
389EXPORT_SYMBOL(sock_alloc_file);
390
391static int sock_map_fd(struct socket *sock, int flags)
392{
393 struct file *newfile;
394 int fd = get_unused_fd_flags(flags);
395 if (unlikely(fd < 0))
396 return fd;
397
398 newfile = sock_alloc_file(sock, flags, NULL);
399 if (likely(!IS_ERR(newfile))) {
400 fd_install(fd, newfile);
401 return fd;
402 }
403
404 put_unused_fd(fd);
405 return PTR_ERR(newfile);
406}
407
408struct socket *sock_from_file(struct file *file, int *err)
409{
410 if (file->f_op == &socket_file_ops)
411 return file->private_data; /* set in sock_map_fd */
412
413 *err = -ENOTSOCK;
414 return NULL;
415}
416EXPORT_SYMBOL(sock_from_file);
417
418/**
419 * sockfd_lookup - Go from a file number to its socket slot
420 * @fd: file handle
421 * @err: pointer to an error code return
422 *
423 * The file handle passed in is locked and the socket it is bound
424 * too is returned. If an error occurs the err pointer is overwritten
425 * with a negative errno code and NULL is returned. The function checks
426 * for both invalid handles and passing a handle which is not a socket.
427 *
428 * On a success the socket object pointer is returned.
429 */
430
431struct socket *sockfd_lookup(int fd, int *err)
432{
433 struct file *file;
434 struct socket *sock;
435
436 file = fget(fd);
437 if (!file) {
438 *err = -EBADF;
439 return NULL;
440 }
441
442 sock = sock_from_file(file, err);
443 if (!sock)
444 fput(file);
445 return sock;
446}
447EXPORT_SYMBOL(sockfd_lookup);
448
449static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
450{
451 struct fd f = fdget(fd);
452 struct socket *sock;
453
454 *err = -EBADF;
455 if (f.file) {
456 sock = sock_from_file(f.file, err);
457 if (likely(sock)) {
458 *fput_needed = f.flags;
459 return sock;
460 }
461 fdput(f);
462 }
463 return NULL;
464}
465
466#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469static ssize_t sockfs_getxattr(struct dentry *dentry,
470 const char *name, void *value, size_t size)
471{
472 const char *proto_name;
473 size_t proto_size;
474 int error;
475
476 error = -ENODATA;
477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 proto_name = dentry->d_name.name;
479 proto_size = strlen(proto_name);
480
481 if (value) {
482 error = -ERANGE;
483 if (proto_size + 1 > size)
484 goto out;
485
486 strncpy(value, proto_name, proto_size + 1);
487 }
488 error = proto_size + 1;
489 }
490
491out:
492 return error;
493}
494
495static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 size_t size)
497{
498 ssize_t len;
499 ssize_t used = 0;
500
501 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
502 if (len < 0)
503 return len;
504 used += len;
505 if (buffer) {
506 if (size < used)
507 return -ERANGE;
508 buffer += len;
509 }
510
511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 used += len;
513 if (buffer) {
514 if (size < used)
515 return -ERANGE;
516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 buffer += len;
518 }
519
520 return used;
521}
522
523static const struct inode_operations sockfs_inode_ops = {
524 .getxattr = sockfs_getxattr,
525 .listxattr = sockfs_listxattr,
526};
527
528/**
529 * sock_alloc - allocate a socket
530 *
531 * Allocate a new inode and socket object. The two are bound together
532 * and initialised. The socket is then returned. If we are out of inodes
533 * NULL is returned.
534 */
535
536struct socket *sock_alloc(void)
537{
538 struct inode *inode;
539 struct socket *sock;
540
541 inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 if (!inode)
543 return NULL;
544
545 sock = SOCKET_I(inode);
546
547 kmemcheck_annotate_bitfield(sock, type);
548 inode->i_ino = get_next_ino();
549 inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 inode->i_uid = current_fsuid();
551 inode->i_gid = current_fsgid();
552 inode->i_op = &sockfs_inode_ops;
553
554 this_cpu_add(sockets_in_use, 1);
555 return sock;
556}
557EXPORT_SYMBOL(sock_alloc);
558
559/**
560 * sock_release - close a socket
561 * @sock: socket to close
562 *
563 * The socket is released from the protocol stack if it has a release
564 * callback, and the inode is then released if the socket is bound to
565 * an inode not a file.
566 */
567
568void sock_release(struct socket *sock)
569{
570 if (sock->ops) {
571 struct module *owner = sock->ops->owner;
572
573 sock->ops->release(sock);
574 sock->ops = NULL;
575 module_put(owner);
576 }
577
578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 pr_err("%s: fasync list not empty!\n", __func__);
580
581 this_cpu_sub(sockets_in_use, 1);
582 if (!sock->file) {
583 iput(SOCK_INODE(sock));
584 return;
585 }
586 sock->file = NULL;
587}
588EXPORT_SYMBOL(sock_release);
589
590void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
591{
592 u8 flags = *tx_flags;
593
594 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
595 flags |= SKBTX_HW_TSTAMP;
596
597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
598 flags |= SKBTX_SW_TSTAMP;
599
600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
601 flags |= SKBTX_SCHED_TSTAMP;
602
603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
604 flags |= SKBTX_ACK_TSTAMP;
605
606 *tx_flags = flags;
607}
608EXPORT_SYMBOL(__sock_tx_timestamp);
609
610static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
611{
612 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
613 BUG_ON(ret == -EIOCBQUEUED);
614 return ret;
615}
616
617int sock_sendmsg(struct socket *sock, struct msghdr *msg)
618{
619 int err = security_socket_sendmsg(sock, msg,
620 msg_data_left(msg));
621
622 return err ?: sock_sendmsg_nosec(sock, msg);
623}
624EXPORT_SYMBOL(sock_sendmsg);
625
626int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
627 struct kvec *vec, size_t num, size_t size)
628{
629 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
630 return sock_sendmsg(sock, msg);
631}
632EXPORT_SYMBOL(kernel_sendmsg);
633
634/*
635 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
636 */
637void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
638 struct sk_buff *skb)
639{
640 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
641 struct scm_timestamping tss;
642 int empty = 1;
643 struct skb_shared_hwtstamps *shhwtstamps =
644 skb_hwtstamps(skb);
645
646 /* Race occurred between timestamp enabling and packet
647 receiving. Fill in the current time for now. */
648 if (need_software_tstamp && skb->tstamp.tv64 == 0)
649 __net_timestamp(skb);
650
651 if (need_software_tstamp) {
652 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
653 struct timeval tv;
654 skb_get_timestamp(skb, &tv);
655 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
656 sizeof(tv), &tv);
657 } else {
658 struct timespec ts;
659 skb_get_timestampns(skb, &ts);
660 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
661 sizeof(ts), &ts);
662 }
663 }
664
665 memset(&tss, 0, sizeof(tss));
666 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
667 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
668 empty = 0;
669 if (shhwtstamps &&
670 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
671 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
672 empty = 0;
673 if (!empty)
674 put_cmsg(msg, SOL_SOCKET,
675 SCM_TIMESTAMPING, sizeof(tss), &tss);
676}
677EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
678
679void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
680 struct sk_buff *skb)
681{
682 int ack;
683
684 if (!sock_flag(sk, SOCK_WIFI_STATUS))
685 return;
686 if (!skb->wifi_acked_valid)
687 return;
688
689 ack = skb->wifi_acked;
690
691 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
692}
693EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
694
695static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
696 struct sk_buff *skb)
697{
698 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
699 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
700 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
701}
702
703void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
704 struct sk_buff *skb)
705{
706 sock_recv_timestamp(msg, sk, skb);
707 sock_recv_drops(msg, sk, skb);
708}
709EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
710
711static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
712 size_t size, int flags)
713{
714 return sock->ops->recvmsg(sock, msg, size, flags);
715}
716
717int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
718 int flags)
719{
720 int err = security_socket_recvmsg(sock, msg, size, flags);
721
722 return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
723}
724EXPORT_SYMBOL(sock_recvmsg);
725
726/**
727 * kernel_recvmsg - Receive a message from a socket (kernel space)
728 * @sock: The socket to receive the message from
729 * @msg: Received message
730 * @vec: Input s/g array for message data
731 * @num: Size of input s/g array
732 * @size: Number of bytes to read
733 * @flags: Message flags (MSG_DONTWAIT, etc...)
734 *
735 * On return the msg structure contains the scatter/gather array passed in the
736 * vec argument. The array is modified so that it consists of the unfilled
737 * portion of the original array.
738 *
739 * The returned value is the total number of bytes received, or an error.
740 */
741int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
742 struct kvec *vec, size_t num, size_t size, int flags)
743{
744 mm_segment_t oldfs = get_fs();
745 int result;
746
747 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
748 set_fs(KERNEL_DS);
749 result = sock_recvmsg(sock, msg, size, flags);
750 set_fs(oldfs);
751 return result;
752}
753EXPORT_SYMBOL(kernel_recvmsg);
754
755static ssize_t sock_sendpage(struct file *file, struct page *page,
756 int offset, size_t size, loff_t *ppos, int more)
757{
758 struct socket *sock;
759 int flags;
760
761 sock = file->private_data;
762
763 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
764 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
765 flags |= more;
766
767 return kernel_sendpage(sock, page, offset, size, flags);
768}
769
770static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
771 struct pipe_inode_info *pipe, size_t len,
772 unsigned int flags)
773{
774 struct socket *sock = file->private_data;
775
776 if (unlikely(!sock->ops->splice_read))
777 return -EINVAL;
778
779 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
780}
781
782static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
783{
784 struct file *file = iocb->ki_filp;
785 struct socket *sock = file->private_data;
786 struct msghdr msg = {.msg_iter = *to,
787 .msg_iocb = iocb};
788 ssize_t res;
789
790 if (file->f_flags & O_NONBLOCK)
791 msg.msg_flags = MSG_DONTWAIT;
792
793 if (iocb->ki_pos != 0)
794 return -ESPIPE;
795
796 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
797 return 0;
798
799 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
800 *to = msg.msg_iter;
801 return res;
802}
803
804static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
805{
806 struct file *file = iocb->ki_filp;
807 struct socket *sock = file->private_data;
808 struct msghdr msg = {.msg_iter = *from,
809 .msg_iocb = iocb};
810 ssize_t res;
811
812 if (iocb->ki_pos != 0)
813 return -ESPIPE;
814
815 if (file->f_flags & O_NONBLOCK)
816 msg.msg_flags = MSG_DONTWAIT;
817
818 if (sock->type == SOCK_SEQPACKET)
819 msg.msg_flags |= MSG_EOR;
820
821 res = sock_sendmsg(sock, &msg);
822 *from = msg.msg_iter;
823 return res;
824}
825
826/*
827 * Atomic setting of ioctl hooks to avoid race
828 * with module unload.
829 */
830
831static DEFINE_MUTEX(br_ioctl_mutex);
832static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
833
834void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
835{
836 mutex_lock(&br_ioctl_mutex);
837 br_ioctl_hook = hook;
838 mutex_unlock(&br_ioctl_mutex);
839}
840EXPORT_SYMBOL(brioctl_set);
841
842static DEFINE_MUTEX(vlan_ioctl_mutex);
843static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
844
845void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
846{
847 mutex_lock(&vlan_ioctl_mutex);
848 vlan_ioctl_hook = hook;
849 mutex_unlock(&vlan_ioctl_mutex);
850}
851EXPORT_SYMBOL(vlan_ioctl_set);
852
853static DEFINE_MUTEX(dlci_ioctl_mutex);
854static int (*dlci_ioctl_hook) (unsigned int, void __user *);
855
856void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
857{
858 mutex_lock(&dlci_ioctl_mutex);
859 dlci_ioctl_hook = hook;
860 mutex_unlock(&dlci_ioctl_mutex);
861}
862EXPORT_SYMBOL(dlci_ioctl_set);
863
864static long sock_do_ioctl(struct net *net, struct socket *sock,
865 unsigned int cmd, unsigned long arg)
866{
867 int err;
868 void __user *argp = (void __user *)arg;
869
870 err = sock->ops->ioctl(sock, cmd, arg);
871
872 /*
873 * If this ioctl is unknown try to hand it down
874 * to the NIC driver.
875 */
876 if (err == -ENOIOCTLCMD)
877 err = dev_ioctl(net, cmd, argp);
878
879 return err;
880}
881
882/*
883 * With an ioctl, arg may well be a user mode pointer, but we don't know
884 * what to do with it - that's up to the protocol still.
885 */
886
887static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
888{
889 struct socket *sock;
890 struct sock *sk;
891 void __user *argp = (void __user *)arg;
892 int pid, err;
893 struct net *net;
894
895 sock = file->private_data;
896 sk = sock->sk;
897 net = sock_net(sk);
898 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
899 err = dev_ioctl(net, cmd, argp);
900 } else
901#ifdef CONFIG_WEXT_CORE
902 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
903 err = dev_ioctl(net, cmd, argp);
904 } else
905#endif
906 switch (cmd) {
907 case FIOSETOWN:
908 case SIOCSPGRP:
909 err = -EFAULT;
910 if (get_user(pid, (int __user *)argp))
911 break;
912 f_setown(sock->file, pid, 1);
913 err = 0;
914 break;
915 case FIOGETOWN:
916 case SIOCGPGRP:
917 err = put_user(f_getown(sock->file),
918 (int __user *)argp);
919 break;
920 case SIOCGIFBR:
921 case SIOCSIFBR:
922 case SIOCBRADDBR:
923 case SIOCBRDELBR:
924 err = -ENOPKG;
925 if (!br_ioctl_hook)
926 request_module("bridge");
927
928 mutex_lock(&br_ioctl_mutex);
929 if (br_ioctl_hook)
930 err = br_ioctl_hook(net, cmd, argp);
931 mutex_unlock(&br_ioctl_mutex);
932 break;
933 case SIOCGIFVLAN:
934 case SIOCSIFVLAN:
935 err = -ENOPKG;
936 if (!vlan_ioctl_hook)
937 request_module("8021q");
938
939 mutex_lock(&vlan_ioctl_mutex);
940 if (vlan_ioctl_hook)
941 err = vlan_ioctl_hook(net, argp);
942 mutex_unlock(&vlan_ioctl_mutex);
943 break;
944 case SIOCADDDLCI:
945 case SIOCDELDLCI:
946 err = -ENOPKG;
947 if (!dlci_ioctl_hook)
948 request_module("dlci");
949
950 mutex_lock(&dlci_ioctl_mutex);
951 if (dlci_ioctl_hook)
952 err = dlci_ioctl_hook(cmd, argp);
953 mutex_unlock(&dlci_ioctl_mutex);
954 break;
955 default:
956 err = sock_do_ioctl(net, sock, cmd, arg);
957 break;
958 }
959 return err;
960}
961
962int sock_create_lite(int family, int type, int protocol, struct socket **res)
963{
964 int err;
965 struct socket *sock = NULL;
966
967 err = security_socket_create(family, type, protocol, 1);
968 if (err)
969 goto out;
970
971 sock = sock_alloc();
972 if (!sock) {
973 err = -ENOMEM;
974 goto out;
975 }
976
977 sock->type = type;
978 err = security_socket_post_create(sock, family, type, protocol, 1);
979 if (err)
980 goto out_release;
981
982out:
983 *res = sock;
984 return err;
985out_release:
986 sock_release(sock);
987 sock = NULL;
988 goto out;
989}
990EXPORT_SYMBOL(sock_create_lite);
991
992/* No kernel lock held - perfect */
993static unsigned int sock_poll(struct file *file, poll_table *wait)
994{
995 unsigned int busy_flag = 0;
996 struct socket *sock;
997
998 /*
999 * We can't return errors to poll, so it's either yes or no.
1000 */
1001 sock = file->private_data;
1002
1003 if (sk_can_busy_loop(sock->sk)) {
1004 /* this socket can poll_ll so tell the system call */
1005 busy_flag = POLL_BUSY_LOOP;
1006
1007 /* once, only if requested by syscall */
1008 if (wait && (wait->_key & POLL_BUSY_LOOP))
1009 sk_busy_loop(sock->sk, 1);
1010 }
1011
1012 return busy_flag | sock->ops->poll(file, sock, wait);
1013}
1014
1015static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1016{
1017 struct socket *sock = file->private_data;
1018
1019 return sock->ops->mmap(file, sock, vma);
1020}
1021
1022static int sock_close(struct inode *inode, struct file *filp)
1023{
1024 sock_release(SOCKET_I(inode));
1025 return 0;
1026}
1027
1028/*
1029 * Update the socket async list
1030 *
1031 * Fasync_list locking strategy.
1032 *
1033 * 1. fasync_list is modified only under process context socket lock
1034 * i.e. under semaphore.
1035 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1036 * or under socket lock
1037 */
1038
1039static int sock_fasync(int fd, struct file *filp, int on)
1040{
1041 struct socket *sock = filp->private_data;
1042 struct sock *sk = sock->sk;
1043 struct socket_wq *wq;
1044
1045 if (sk == NULL)
1046 return -EINVAL;
1047
1048 lock_sock(sk);
1049 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1050 fasync_helper(fd, filp, on, &wq->fasync_list);
1051
1052 if (!wq->fasync_list)
1053 sock_reset_flag(sk, SOCK_FASYNC);
1054 else
1055 sock_set_flag(sk, SOCK_FASYNC);
1056
1057 release_sock(sk);
1058 return 0;
1059}
1060
1061/* This function may be called only under rcu_lock */
1062
1063int sock_wake_async(struct socket_wq *wq, int how, int band)
1064{
1065 if (!wq || !wq->fasync_list)
1066 return -1;
1067
1068 switch (how) {
1069 case SOCK_WAKE_WAITD:
1070 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1071 break;
1072 goto call_kill;
1073 case SOCK_WAKE_SPACE:
1074 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1075 break;
1076 /* fall through */
1077 case SOCK_WAKE_IO:
1078call_kill:
1079 kill_fasync(&wq->fasync_list, SIGIO, band);
1080 break;
1081 case SOCK_WAKE_URG:
1082 kill_fasync(&wq->fasync_list, SIGURG, band);
1083 }
1084
1085 return 0;
1086}
1087EXPORT_SYMBOL(sock_wake_async);
1088
1089int __sock_create(struct net *net, int family, int type, int protocol,
1090 struct socket **res, int kern)
1091{
1092 int err;
1093 struct socket *sock;
1094 const struct net_proto_family *pf;
1095
1096 /*
1097 * Check protocol is in range
1098 */
1099 if (family < 0 || family >= NPROTO)
1100 return -EAFNOSUPPORT;
1101 if (type < 0 || type >= SOCK_MAX)
1102 return -EINVAL;
1103
1104 /* Compatibility.
1105
1106 This uglymoron is moved from INET layer to here to avoid
1107 deadlock in module load.
1108 */
1109 if (family == PF_INET && type == SOCK_PACKET) {
1110 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1111 current->comm);
1112 family = PF_PACKET;
1113 }
1114
1115 err = security_socket_create(family, type, protocol, kern);
1116 if (err)
1117 return err;
1118
1119 /*
1120 * Allocate the socket and allow the family to set things up. if
1121 * the protocol is 0, the family is instructed to select an appropriate
1122 * default.
1123 */
1124 sock = sock_alloc();
1125 if (!sock) {
1126 net_warn_ratelimited("socket: no more sockets\n");
1127 return -ENFILE; /* Not exactly a match, but its the
1128 closest posix thing */
1129 }
1130
1131 sock->type = type;
1132
1133#ifdef CONFIG_MODULES
1134 /* Attempt to load a protocol module if the find failed.
1135 *
1136 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1137 * requested real, full-featured networking support upon configuration.
1138 * Otherwise module support will break!
1139 */
1140 if (rcu_access_pointer(net_families[family]) == NULL)
1141 request_module("net-pf-%d", family);
1142#endif
1143
1144 rcu_read_lock();
1145 pf = rcu_dereference(net_families[family]);
1146 err = -EAFNOSUPPORT;
1147 if (!pf)
1148 goto out_release;
1149
1150 /*
1151 * We will call the ->create function, that possibly is in a loadable
1152 * module, so we have to bump that loadable module refcnt first.
1153 */
1154 if (!try_module_get(pf->owner))
1155 goto out_release;
1156
1157 /* Now protected by module ref count */
1158 rcu_read_unlock();
1159
1160 err = pf->create(net, sock, protocol, kern);
1161 if (err < 0)
1162 goto out_module_put;
1163
1164 /*
1165 * Now to bump the refcnt of the [loadable] module that owns this
1166 * socket at sock_release time we decrement its refcnt.
1167 */
1168 if (!try_module_get(sock->ops->owner))
1169 goto out_module_busy;
1170
1171 /*
1172 * Now that we're done with the ->create function, the [loadable]
1173 * module can have its refcnt decremented
1174 */
1175 module_put(pf->owner);
1176 err = security_socket_post_create(sock, family, type, protocol, kern);
1177 if (err)
1178 goto out_sock_release;
1179 *res = sock;
1180
1181 return 0;
1182
1183out_module_busy:
1184 err = -EAFNOSUPPORT;
1185out_module_put:
1186 sock->ops = NULL;
1187 module_put(pf->owner);
1188out_sock_release:
1189 sock_release(sock);
1190 return err;
1191
1192out_release:
1193 rcu_read_unlock();
1194 goto out_sock_release;
1195}
1196EXPORT_SYMBOL(__sock_create);
1197
1198int sock_create(int family, int type, int protocol, struct socket **res)
1199{
1200 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1201}
1202EXPORT_SYMBOL(sock_create);
1203
1204int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1205{
1206 return __sock_create(net, family, type, protocol, res, 1);
1207}
1208EXPORT_SYMBOL(sock_create_kern);
1209
1210SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1211{
1212 int retval;
1213 struct socket *sock;
1214 int flags;
1215
1216 /* Check the SOCK_* constants for consistency. */
1217 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1218 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1219 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1220 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1221
1222 flags = type & ~SOCK_TYPE_MASK;
1223 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1224 return -EINVAL;
1225 type &= SOCK_TYPE_MASK;
1226
1227 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1228 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1229
1230 retval = sock_create(family, type, protocol, &sock);
1231 if (retval < 0)
1232 goto out;
1233
1234 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1235 if (retval < 0)
1236 goto out_release;
1237
1238out:
1239 /* It may be already another descriptor 8) Not kernel problem. */
1240 return retval;
1241
1242out_release:
1243 sock_release(sock);
1244 return retval;
1245}
1246
1247/*
1248 * Create a pair of connected sockets.
1249 */
1250
1251SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1252 int __user *, usockvec)
1253{
1254 struct socket *sock1, *sock2;
1255 int fd1, fd2, err;
1256 struct file *newfile1, *newfile2;
1257 int flags;
1258
1259 flags = type & ~SOCK_TYPE_MASK;
1260 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1261 return -EINVAL;
1262 type &= SOCK_TYPE_MASK;
1263
1264 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1265 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1266
1267 /*
1268 * Obtain the first socket and check if the underlying protocol
1269 * supports the socketpair call.
1270 */
1271
1272 err = sock_create(family, type, protocol, &sock1);
1273 if (err < 0)
1274 goto out;
1275
1276 err = sock_create(family, type, protocol, &sock2);
1277 if (err < 0)
1278 goto out_release_1;
1279
1280 err = sock1->ops->socketpair(sock1, sock2);
1281 if (err < 0)
1282 goto out_release_both;
1283
1284 fd1 = get_unused_fd_flags(flags);
1285 if (unlikely(fd1 < 0)) {
1286 err = fd1;
1287 goto out_release_both;
1288 }
1289
1290 fd2 = get_unused_fd_flags(flags);
1291 if (unlikely(fd2 < 0)) {
1292 err = fd2;
1293 goto out_put_unused_1;
1294 }
1295
1296 newfile1 = sock_alloc_file(sock1, flags, NULL);
1297 if (IS_ERR(newfile1)) {
1298 err = PTR_ERR(newfile1);
1299 goto out_put_unused_both;
1300 }
1301
1302 newfile2 = sock_alloc_file(sock2, flags, NULL);
1303 if (IS_ERR(newfile2)) {
1304 err = PTR_ERR(newfile2);
1305 goto out_fput_1;
1306 }
1307
1308 err = put_user(fd1, &usockvec[0]);
1309 if (err)
1310 goto out_fput_both;
1311
1312 err = put_user(fd2, &usockvec[1]);
1313 if (err)
1314 goto out_fput_both;
1315
1316 audit_fd_pair(fd1, fd2);
1317
1318 fd_install(fd1, newfile1);
1319 fd_install(fd2, newfile2);
1320 /* fd1 and fd2 may be already another descriptors.
1321 * Not kernel problem.
1322 */
1323
1324 return 0;
1325
1326out_fput_both:
1327 fput(newfile2);
1328 fput(newfile1);
1329 put_unused_fd(fd2);
1330 put_unused_fd(fd1);
1331 goto out;
1332
1333out_fput_1:
1334 fput(newfile1);
1335 put_unused_fd(fd2);
1336 put_unused_fd(fd1);
1337 sock_release(sock2);
1338 goto out;
1339
1340out_put_unused_both:
1341 put_unused_fd(fd2);
1342out_put_unused_1:
1343 put_unused_fd(fd1);
1344out_release_both:
1345 sock_release(sock2);
1346out_release_1:
1347 sock_release(sock1);
1348out:
1349 return err;
1350}
1351
1352/*
1353 * Bind a name to a socket. Nothing much to do here since it's
1354 * the protocol's responsibility to handle the local address.
1355 *
1356 * We move the socket address to kernel space before we call
1357 * the protocol layer (having also checked the address is ok).
1358 */
1359
1360SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1361{
1362 struct socket *sock;
1363 struct sockaddr_storage address;
1364 int err, fput_needed;
1365
1366 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1367 if (sock) {
1368 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1369 if (err >= 0) {
1370 err = security_socket_bind(sock,
1371 (struct sockaddr *)&address,
1372 addrlen);
1373 if (!err)
1374 err = sock->ops->bind(sock,
1375 (struct sockaddr *)
1376 &address, addrlen);
1377 }
1378 fput_light(sock->file, fput_needed);
1379 }
1380 return err;
1381}
1382
1383/*
1384 * Perform a listen. Basically, we allow the protocol to do anything
1385 * necessary for a listen, and if that works, we mark the socket as
1386 * ready for listening.
1387 */
1388
1389SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1390{
1391 struct socket *sock;
1392 int err, fput_needed;
1393 int somaxconn;
1394
1395 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1396 if (sock) {
1397 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1398 if ((unsigned int)backlog > somaxconn)
1399 backlog = somaxconn;
1400
1401 err = security_socket_listen(sock, backlog);
1402 if (!err)
1403 err = sock->ops->listen(sock, backlog);
1404
1405 fput_light(sock->file, fput_needed);
1406 }
1407 return err;
1408}
1409
1410/*
1411 * For accept, we attempt to create a new socket, set up the link
1412 * with the client, wake up the client, then return the new
1413 * connected fd. We collect the address of the connector in kernel
1414 * space and move it to user at the very end. This is unclean because
1415 * we open the socket then return an error.
1416 *
1417 * 1003.1g adds the ability to recvmsg() to query connection pending
1418 * status to recvmsg. We need to add that support in a way thats
1419 * clean when we restucture accept also.
1420 */
1421
1422SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1423 int __user *, upeer_addrlen, int, flags)
1424{
1425 struct socket *sock, *newsock;
1426 struct file *newfile;
1427 int err, len, newfd, fput_needed;
1428 struct sockaddr_storage address;
1429
1430 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1431 return -EINVAL;
1432
1433 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1434 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1435
1436 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1437 if (!sock)
1438 goto out;
1439
1440 err = -ENFILE;
1441 newsock = sock_alloc();
1442 if (!newsock)
1443 goto out_put;
1444
1445 newsock->type = sock->type;
1446 newsock->ops = sock->ops;
1447
1448 /*
1449 * We don't need try_module_get here, as the listening socket (sock)
1450 * has the protocol module (sock->ops->owner) held.
1451 */
1452 __module_get(newsock->ops->owner);
1453
1454 newfd = get_unused_fd_flags(flags);
1455 if (unlikely(newfd < 0)) {
1456 err = newfd;
1457 sock_release(newsock);
1458 goto out_put;
1459 }
1460 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1461 if (IS_ERR(newfile)) {
1462 err = PTR_ERR(newfile);
1463 put_unused_fd(newfd);
1464 sock_release(newsock);
1465 goto out_put;
1466 }
1467
1468 err = security_socket_accept(sock, newsock);
1469 if (err)
1470 goto out_fd;
1471
1472 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1473 if (err < 0)
1474 goto out_fd;
1475
1476 if (upeer_sockaddr) {
1477 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1478 &len, 2) < 0) {
1479 err = -ECONNABORTED;
1480 goto out_fd;
1481 }
1482 err = move_addr_to_user(&address,
1483 len, upeer_sockaddr, upeer_addrlen);
1484 if (err < 0)
1485 goto out_fd;
1486 }
1487
1488 /* File flags are not inherited via accept() unlike another OSes. */
1489
1490 fd_install(newfd, newfile);
1491 err = newfd;
1492
1493out_put:
1494 fput_light(sock->file, fput_needed);
1495out:
1496 return err;
1497out_fd:
1498 fput(newfile);
1499 put_unused_fd(newfd);
1500 goto out_put;
1501}
1502
1503SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1504 int __user *, upeer_addrlen)
1505{
1506 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1507}
1508
1509/*
1510 * Attempt to connect to a socket with the server address. The address
1511 * is in user space so we verify it is OK and move it to kernel space.
1512 *
1513 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1514 * break bindings
1515 *
1516 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1517 * other SEQPACKET protocols that take time to connect() as it doesn't
1518 * include the -EINPROGRESS status for such sockets.
1519 */
1520
1521SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1522 int, addrlen)
1523{
1524 struct socket *sock;
1525 struct sockaddr_storage address;
1526 int err, fput_needed;
1527
1528 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1529 if (!sock)
1530 goto out;
1531 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1532 if (err < 0)
1533 goto out_put;
1534
1535 err =
1536 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1537 if (err)
1538 goto out_put;
1539
1540 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1541 sock->file->f_flags);
1542out_put:
1543 fput_light(sock->file, fput_needed);
1544out:
1545 return err;
1546}
1547
1548/*
1549 * Get the local address ('name') of a socket object. Move the obtained
1550 * name to user space.
1551 */
1552
1553SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1554 int __user *, usockaddr_len)
1555{
1556 struct socket *sock;
1557 struct sockaddr_storage address;
1558 int len, err, fput_needed;
1559
1560 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1561 if (!sock)
1562 goto out;
1563
1564 err = security_socket_getsockname(sock);
1565 if (err)
1566 goto out_put;
1567
1568 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1569 if (err)
1570 goto out_put;
1571 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1572
1573out_put:
1574 fput_light(sock->file, fput_needed);
1575out:
1576 return err;
1577}
1578
1579/*
1580 * Get the remote address ('name') of a socket object. Move the obtained
1581 * name to user space.
1582 */
1583
1584SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1585 int __user *, usockaddr_len)
1586{
1587 struct socket *sock;
1588 struct sockaddr_storage address;
1589 int len, err, fput_needed;
1590
1591 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1592 if (sock != NULL) {
1593 err = security_socket_getpeername(sock);
1594 if (err) {
1595 fput_light(sock->file, fput_needed);
1596 return err;
1597 }
1598
1599 err =
1600 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1601 1);
1602 if (!err)
1603 err = move_addr_to_user(&address, len, usockaddr,
1604 usockaddr_len);
1605 fput_light(sock->file, fput_needed);
1606 }
1607 return err;
1608}
1609
1610/*
1611 * Send a datagram to a given address. We move the address into kernel
1612 * space and check the user space data area is readable before invoking
1613 * the protocol.
1614 */
1615
1616SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1617 unsigned int, flags, struct sockaddr __user *, addr,
1618 int, addr_len)
1619{
1620 struct socket *sock;
1621 struct sockaddr_storage address;
1622 int err;
1623 struct msghdr msg;
1624 struct iovec iov;
1625 int fput_needed;
1626
1627 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1628 if (unlikely(err))
1629 return err;
1630 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631 if (!sock)
1632 goto out;
1633
1634 msg.msg_name = NULL;
1635 msg.msg_control = NULL;
1636 msg.msg_controllen = 0;
1637 msg.msg_namelen = 0;
1638 if (addr) {
1639 err = move_addr_to_kernel(addr, addr_len, &address);
1640 if (err < 0)
1641 goto out_put;
1642 msg.msg_name = (struct sockaddr *)&address;
1643 msg.msg_namelen = addr_len;
1644 }
1645 if (sock->file->f_flags & O_NONBLOCK)
1646 flags |= MSG_DONTWAIT;
1647 msg.msg_flags = flags;
1648 err = sock_sendmsg(sock, &msg);
1649
1650out_put:
1651 fput_light(sock->file, fput_needed);
1652out:
1653 return err;
1654}
1655
1656/*
1657 * Send a datagram down a socket.
1658 */
1659
1660SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1661 unsigned int, flags)
1662{
1663 return sys_sendto(fd, buff, len, flags, NULL, 0);
1664}
1665
1666/*
1667 * Receive a frame from the socket and optionally record the address of the
1668 * sender. We verify the buffers are writable and if needed move the
1669 * sender address from kernel to user space.
1670 */
1671
1672SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1673 unsigned int, flags, struct sockaddr __user *, addr,
1674 int __user *, addr_len)
1675{
1676 struct socket *sock;
1677 struct iovec iov;
1678 struct msghdr msg;
1679 struct sockaddr_storage address;
1680 int err, err2;
1681 int fput_needed;
1682
1683 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1684 if (unlikely(err))
1685 return err;
1686 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687 if (!sock)
1688 goto out;
1689
1690 msg.msg_control = NULL;
1691 msg.msg_controllen = 0;
1692 /* Save some cycles and don't copy the address if not needed */
1693 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1694 /* We assume all kernel code knows the size of sockaddr_storage */
1695 msg.msg_namelen = 0;
1696 msg.msg_iocb = NULL;
1697 if (sock->file->f_flags & O_NONBLOCK)
1698 flags |= MSG_DONTWAIT;
1699 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1700
1701 if (err >= 0 && addr != NULL) {
1702 err2 = move_addr_to_user(&address,
1703 msg.msg_namelen, addr, addr_len);
1704 if (err2 < 0)
1705 err = err2;
1706 }
1707
1708 fput_light(sock->file, fput_needed);
1709out:
1710 return err;
1711}
1712
1713/*
1714 * Receive a datagram from a socket.
1715 */
1716
1717SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1718 unsigned int, flags)
1719{
1720 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1721}
1722
1723/*
1724 * Set a socket option. Because we don't know the option lengths we have
1725 * to pass the user mode parameter for the protocols to sort out.
1726 */
1727
1728SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1729 char __user *, optval, int, optlen)
1730{
1731 int err, fput_needed;
1732 struct socket *sock;
1733
1734 if (optlen < 0)
1735 return -EINVAL;
1736
1737 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1738 if (sock != NULL) {
1739 err = security_socket_setsockopt(sock, level, optname);
1740 if (err)
1741 goto out_put;
1742
1743 if (level == SOL_SOCKET)
1744 err =
1745 sock_setsockopt(sock, level, optname, optval,
1746 optlen);
1747 else
1748 err =
1749 sock->ops->setsockopt(sock, level, optname, optval,
1750 optlen);
1751out_put:
1752 fput_light(sock->file, fput_needed);
1753 }
1754 return err;
1755}
1756
1757/*
1758 * Get a socket option. Because we don't know the option lengths we have
1759 * to pass a user mode parameter for the protocols to sort out.
1760 */
1761
1762SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1763 char __user *, optval, int __user *, optlen)
1764{
1765 int err, fput_needed;
1766 struct socket *sock;
1767
1768 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 if (sock != NULL) {
1770 err = security_socket_getsockopt(sock, level, optname);
1771 if (err)
1772 goto out_put;
1773
1774 if (level == SOL_SOCKET)
1775 err =
1776 sock_getsockopt(sock, level, optname, optval,
1777 optlen);
1778 else
1779 err =
1780 sock->ops->getsockopt(sock, level, optname, optval,
1781 optlen);
1782out_put:
1783 fput_light(sock->file, fput_needed);
1784 }
1785 return err;
1786}
1787
1788/*
1789 * Shutdown a socket.
1790 */
1791
1792SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1793{
1794 int err, fput_needed;
1795 struct socket *sock;
1796
1797 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1798 if (sock != NULL) {
1799 err = security_socket_shutdown(sock, how);
1800 if (!err)
1801 err = sock->ops->shutdown(sock, how);
1802 fput_light(sock->file, fput_needed);
1803 }
1804 return err;
1805}
1806
1807/* A couple of helpful macros for getting the address of the 32/64 bit
1808 * fields which are the same type (int / unsigned) on our platforms.
1809 */
1810#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1811#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1812#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1813
1814struct used_address {
1815 struct sockaddr_storage name;
1816 unsigned int name_len;
1817};
1818
1819static int copy_msghdr_from_user(struct msghdr *kmsg,
1820 struct user_msghdr __user *umsg,
1821 struct sockaddr __user **save_addr,
1822 struct iovec **iov)
1823{
1824 struct sockaddr __user *uaddr;
1825 struct iovec __user *uiov;
1826 size_t nr_segs;
1827 ssize_t err;
1828
1829 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1830 __get_user(uaddr, &umsg->msg_name) ||
1831 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1832 __get_user(uiov, &umsg->msg_iov) ||
1833 __get_user(nr_segs, &umsg->msg_iovlen) ||
1834 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1835 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1836 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1837 return -EFAULT;
1838
1839 if (!uaddr)
1840 kmsg->msg_namelen = 0;
1841
1842 if (kmsg->msg_namelen < 0)
1843 return -EINVAL;
1844
1845 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1846 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1847
1848 if (save_addr)
1849 *save_addr = uaddr;
1850
1851 if (uaddr && kmsg->msg_namelen) {
1852 if (!save_addr) {
1853 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1854 kmsg->msg_name);
1855 if (err < 0)
1856 return err;
1857 }
1858 } else {
1859 kmsg->msg_name = NULL;
1860 kmsg->msg_namelen = 0;
1861 }
1862
1863 if (nr_segs > UIO_MAXIOV)
1864 return -EMSGSIZE;
1865
1866 kmsg->msg_iocb = NULL;
1867
1868 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1869 UIO_FASTIOV, iov, &kmsg->msg_iter);
1870}
1871
1872static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1873 struct msghdr *msg_sys, unsigned int flags,
1874 struct used_address *used_address,
1875 unsigned int allowed_msghdr_flags)
1876{
1877 struct compat_msghdr __user *msg_compat =
1878 (struct compat_msghdr __user *)msg;
1879 struct sockaddr_storage address;
1880 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1881 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1882 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1883 /* 20 is size of ipv6_pktinfo */
1884 unsigned char *ctl_buf = ctl;
1885 int ctl_len;
1886 ssize_t err;
1887
1888 msg_sys->msg_name = &address;
1889
1890 if (MSG_CMSG_COMPAT & flags)
1891 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1892 else
1893 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1894 if (err < 0)
1895 return err;
1896
1897 err = -ENOBUFS;
1898
1899 if (msg_sys->msg_controllen > INT_MAX)
1900 goto out_freeiov;
1901 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1902 ctl_len = msg_sys->msg_controllen;
1903 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1904 err =
1905 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1906 sizeof(ctl));
1907 if (err)
1908 goto out_freeiov;
1909 ctl_buf = msg_sys->msg_control;
1910 ctl_len = msg_sys->msg_controllen;
1911 } else if (ctl_len) {
1912 if (ctl_len > sizeof(ctl)) {
1913 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1914 if (ctl_buf == NULL)
1915 goto out_freeiov;
1916 }
1917 err = -EFAULT;
1918 /*
1919 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1920 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1921 * checking falls down on this.
1922 */
1923 if (copy_from_user(ctl_buf,
1924 (void __user __force *)msg_sys->msg_control,
1925 ctl_len))
1926 goto out_freectl;
1927 msg_sys->msg_control = ctl_buf;
1928 }
1929 msg_sys->msg_flags = flags;
1930
1931 if (sock->file->f_flags & O_NONBLOCK)
1932 msg_sys->msg_flags |= MSG_DONTWAIT;
1933 /*
1934 * If this is sendmmsg() and current destination address is same as
1935 * previously succeeded address, omit asking LSM's decision.
1936 * used_address->name_len is initialized to UINT_MAX so that the first
1937 * destination address never matches.
1938 */
1939 if (used_address && msg_sys->msg_name &&
1940 used_address->name_len == msg_sys->msg_namelen &&
1941 !memcmp(&used_address->name, msg_sys->msg_name,
1942 used_address->name_len)) {
1943 err = sock_sendmsg_nosec(sock, msg_sys);
1944 goto out_freectl;
1945 }
1946 err = sock_sendmsg(sock, msg_sys);
1947 /*
1948 * If this is sendmmsg() and sending to current destination address was
1949 * successful, remember it.
1950 */
1951 if (used_address && err >= 0) {
1952 used_address->name_len = msg_sys->msg_namelen;
1953 if (msg_sys->msg_name)
1954 memcpy(&used_address->name, msg_sys->msg_name,
1955 used_address->name_len);
1956 }
1957
1958out_freectl:
1959 if (ctl_buf != ctl)
1960 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1961out_freeiov:
1962 kfree(iov);
1963 return err;
1964}
1965
1966/*
1967 * BSD sendmsg interface
1968 */
1969
1970long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1971{
1972 int fput_needed, err;
1973 struct msghdr msg_sys;
1974 struct socket *sock;
1975
1976 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1977 if (!sock)
1978 goto out;
1979
1980 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1981
1982 fput_light(sock->file, fput_needed);
1983out:
1984 return err;
1985}
1986
1987SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1988{
1989 if (flags & MSG_CMSG_COMPAT)
1990 return -EINVAL;
1991 return __sys_sendmsg(fd, msg, flags);
1992}
1993
1994/*
1995 * Linux sendmmsg interface
1996 */
1997
1998int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1999 unsigned int flags)
2000{
2001 int fput_needed, err, datagrams;
2002 struct socket *sock;
2003 struct mmsghdr __user *entry;
2004 struct compat_mmsghdr __user *compat_entry;
2005 struct msghdr msg_sys;
2006 struct used_address used_address;
2007 unsigned int oflags = flags;
2008
2009 if (vlen > UIO_MAXIOV)
2010 vlen = UIO_MAXIOV;
2011
2012 datagrams = 0;
2013
2014 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2015 if (!sock)
2016 return err;
2017
2018 used_address.name_len = UINT_MAX;
2019 entry = mmsg;
2020 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2021 err = 0;
2022 flags |= MSG_BATCH;
2023
2024 while (datagrams < vlen) {
2025 if (datagrams == vlen - 1)
2026 flags = oflags;
2027
2028 if (MSG_CMSG_COMPAT & flags) {
2029 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2030 &msg_sys, flags, &used_address, MSG_EOR);
2031 if (err < 0)
2032 break;
2033 err = __put_user(err, &compat_entry->msg_len);
2034 ++compat_entry;
2035 } else {
2036 err = ___sys_sendmsg(sock,
2037 (struct user_msghdr __user *)entry,
2038 &msg_sys, flags, &used_address, MSG_EOR);
2039 if (err < 0)
2040 break;
2041 err = put_user(err, &entry->msg_len);
2042 ++entry;
2043 }
2044
2045 if (err)
2046 break;
2047 ++datagrams;
2048 cond_resched();
2049 }
2050
2051 fput_light(sock->file, fput_needed);
2052
2053 /* We only return an error if no datagrams were able to be sent */
2054 if (datagrams != 0)
2055 return datagrams;
2056
2057 return err;
2058}
2059
2060SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2061 unsigned int, vlen, unsigned int, flags)
2062{
2063 if (flags & MSG_CMSG_COMPAT)
2064 return -EINVAL;
2065 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2066}
2067
2068static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2069 struct msghdr *msg_sys, unsigned int flags, int nosec)
2070{
2071 struct compat_msghdr __user *msg_compat =
2072 (struct compat_msghdr __user *)msg;
2073 struct iovec iovstack[UIO_FASTIOV];
2074 struct iovec *iov = iovstack;
2075 unsigned long cmsg_ptr;
2076 int total_len, len;
2077 ssize_t err;
2078
2079 /* kernel mode address */
2080 struct sockaddr_storage addr;
2081
2082 /* user mode address pointers */
2083 struct sockaddr __user *uaddr;
2084 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2085
2086 msg_sys->msg_name = &addr;
2087
2088 if (MSG_CMSG_COMPAT & flags)
2089 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2090 else
2091 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2092 if (err < 0)
2093 return err;
2094 total_len = iov_iter_count(&msg_sys->msg_iter);
2095
2096 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2097 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2098
2099 /* We assume all kernel code knows the size of sockaddr_storage */
2100 msg_sys->msg_namelen = 0;
2101
2102 if (sock->file->f_flags & O_NONBLOCK)
2103 flags |= MSG_DONTWAIT;
2104 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2105 total_len, flags);
2106 if (err < 0)
2107 goto out_freeiov;
2108 len = err;
2109
2110 if (uaddr != NULL) {
2111 err = move_addr_to_user(&addr,
2112 msg_sys->msg_namelen, uaddr,
2113 uaddr_len);
2114 if (err < 0)
2115 goto out_freeiov;
2116 }
2117 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2118 COMPAT_FLAGS(msg));
2119 if (err)
2120 goto out_freeiov;
2121 if (MSG_CMSG_COMPAT & flags)
2122 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2123 &msg_compat->msg_controllen);
2124 else
2125 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2126 &msg->msg_controllen);
2127 if (err)
2128 goto out_freeiov;
2129 err = len;
2130
2131out_freeiov:
2132 kfree(iov);
2133 return err;
2134}
2135
2136/*
2137 * BSD recvmsg interface
2138 */
2139
2140long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2141{
2142 int fput_needed, err;
2143 struct msghdr msg_sys;
2144 struct socket *sock;
2145
2146 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2147 if (!sock)
2148 goto out;
2149
2150 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2151
2152 fput_light(sock->file, fput_needed);
2153out:
2154 return err;
2155}
2156
2157SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2158 unsigned int, flags)
2159{
2160 if (flags & MSG_CMSG_COMPAT)
2161 return -EINVAL;
2162 return __sys_recvmsg(fd, msg, flags);
2163}
2164
2165/*
2166 * Linux recvmmsg interface
2167 */
2168
2169int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2170 unsigned int flags, struct timespec *timeout)
2171{
2172 int fput_needed, err, datagrams;
2173 struct socket *sock;
2174 struct mmsghdr __user *entry;
2175 struct compat_mmsghdr __user *compat_entry;
2176 struct msghdr msg_sys;
2177 struct timespec end_time;
2178
2179 if (timeout &&
2180 poll_select_set_timeout(&end_time, timeout->tv_sec,
2181 timeout->tv_nsec))
2182 return -EINVAL;
2183
2184 datagrams = 0;
2185
2186 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187 if (!sock)
2188 return err;
2189
2190 err = sock_error(sock->sk);
2191 if (err)
2192 goto out_put;
2193
2194 entry = mmsg;
2195 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2196
2197 while (datagrams < vlen) {
2198 /*
2199 * No need to ask LSM for more than the first datagram.
2200 */
2201 if (MSG_CMSG_COMPAT & flags) {
2202 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2203 &msg_sys, flags & ~MSG_WAITFORONE,
2204 datagrams);
2205 if (err < 0)
2206 break;
2207 err = __put_user(err, &compat_entry->msg_len);
2208 ++compat_entry;
2209 } else {
2210 err = ___sys_recvmsg(sock,
2211 (struct user_msghdr __user *)entry,
2212 &msg_sys, flags & ~MSG_WAITFORONE,
2213 datagrams);
2214 if (err < 0)
2215 break;
2216 err = put_user(err, &entry->msg_len);
2217 ++entry;
2218 }
2219
2220 if (err)
2221 break;
2222 ++datagrams;
2223
2224 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2225 if (flags & MSG_WAITFORONE)
2226 flags |= MSG_DONTWAIT;
2227
2228 if (timeout) {
2229 ktime_get_ts(timeout);
2230 *timeout = timespec_sub(end_time, *timeout);
2231 if (timeout->tv_sec < 0) {
2232 timeout->tv_sec = timeout->tv_nsec = 0;
2233 break;
2234 }
2235
2236 /* Timeout, return less than vlen datagrams */
2237 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2238 break;
2239 }
2240
2241 /* Out of band data, return right away */
2242 if (msg_sys.msg_flags & MSG_OOB)
2243 break;
2244 cond_resched();
2245 }
2246
2247 if (err == 0)
2248 goto out_put;
2249
2250 if (datagrams == 0) {
2251 datagrams = err;
2252 goto out_put;
2253 }
2254
2255 /*
2256 * We may return less entries than requested (vlen) if the
2257 * sock is non block and there aren't enough datagrams...
2258 */
2259 if (err != -EAGAIN) {
2260 /*
2261 * ... or if recvmsg returns an error after we
2262 * received some datagrams, where we record the
2263 * error to return on the next call or if the
2264 * app asks about it using getsockopt(SO_ERROR).
2265 */
2266 sock->sk->sk_err = -err;
2267 }
2268out_put:
2269 fput_light(sock->file, fput_needed);
2270
2271 return datagrams;
2272}
2273
2274SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2275 unsigned int, vlen, unsigned int, flags,
2276 struct timespec __user *, timeout)
2277{
2278 int datagrams;
2279 struct timespec timeout_sys;
2280
2281 if (flags & MSG_CMSG_COMPAT)
2282 return -EINVAL;
2283
2284 if (!timeout)
2285 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2286
2287 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2288 return -EFAULT;
2289
2290 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2291
2292 if (datagrams > 0 &&
2293 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2294 datagrams = -EFAULT;
2295
2296 return datagrams;
2297}
2298
2299#ifdef __ARCH_WANT_SYS_SOCKETCALL
2300/* Argument list sizes for sys_socketcall */
2301#define AL(x) ((x) * sizeof(unsigned long))
2302static const unsigned char nargs[21] = {
2303 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2304 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2305 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2306 AL(4), AL(5), AL(4)
2307};
2308
2309#undef AL
2310
2311/*
2312 * System call vectors.
2313 *
2314 * Argument checking cleaned up. Saved 20% in size.
2315 * This function doesn't need to set the kernel lock because
2316 * it is set by the callees.
2317 */
2318
2319SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2320{
2321 unsigned long a[AUDITSC_ARGS];
2322 unsigned long a0, a1;
2323 int err;
2324 unsigned int len;
2325
2326 if (call < 1 || call > SYS_SENDMMSG)
2327 return -EINVAL;
2328
2329 len = nargs[call];
2330 if (len > sizeof(a))
2331 return -EINVAL;
2332
2333 /* copy_from_user should be SMP safe. */
2334 if (copy_from_user(a, args, len))
2335 return -EFAULT;
2336
2337 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2338 if (err)
2339 return err;
2340
2341 a0 = a[0];
2342 a1 = a[1];
2343
2344 switch (call) {
2345 case SYS_SOCKET:
2346 err = sys_socket(a0, a1, a[2]);
2347 break;
2348 case SYS_BIND:
2349 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2350 break;
2351 case SYS_CONNECT:
2352 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2353 break;
2354 case SYS_LISTEN:
2355 err = sys_listen(a0, a1);
2356 break;
2357 case SYS_ACCEPT:
2358 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2359 (int __user *)a[2], 0);
2360 break;
2361 case SYS_GETSOCKNAME:
2362 err =
2363 sys_getsockname(a0, (struct sockaddr __user *)a1,
2364 (int __user *)a[2]);
2365 break;
2366 case SYS_GETPEERNAME:
2367 err =
2368 sys_getpeername(a0, (struct sockaddr __user *)a1,
2369 (int __user *)a[2]);
2370 break;
2371 case SYS_SOCKETPAIR:
2372 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2373 break;
2374 case SYS_SEND:
2375 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2376 break;
2377 case SYS_SENDTO:
2378 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2379 (struct sockaddr __user *)a[4], a[5]);
2380 break;
2381 case SYS_RECV:
2382 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2383 break;
2384 case SYS_RECVFROM:
2385 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2386 (struct sockaddr __user *)a[4],
2387 (int __user *)a[5]);
2388 break;
2389 case SYS_SHUTDOWN:
2390 err = sys_shutdown(a0, a1);
2391 break;
2392 case SYS_SETSOCKOPT:
2393 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2394 break;
2395 case SYS_GETSOCKOPT:
2396 err =
2397 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2398 (int __user *)a[4]);
2399 break;
2400 case SYS_SENDMSG:
2401 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2402 break;
2403 case SYS_SENDMMSG:
2404 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2405 break;
2406 case SYS_RECVMSG:
2407 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2408 break;
2409 case SYS_RECVMMSG:
2410 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2411 (struct timespec __user *)a[4]);
2412 break;
2413 case SYS_ACCEPT4:
2414 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2415 (int __user *)a[2], a[3]);
2416 break;
2417 default:
2418 err = -EINVAL;
2419 break;
2420 }
2421 return err;
2422}
2423
2424#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2425
2426/**
2427 * sock_register - add a socket protocol handler
2428 * @ops: description of protocol
2429 *
2430 * This function is called by a protocol handler that wants to
2431 * advertise its address family, and have it linked into the
2432 * socket interface. The value ops->family corresponds to the
2433 * socket system call protocol family.
2434 */
2435int sock_register(const struct net_proto_family *ops)
2436{
2437 int err;
2438
2439 if (ops->family >= NPROTO) {
2440 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2441 return -ENOBUFS;
2442 }
2443
2444 spin_lock(&net_family_lock);
2445 if (rcu_dereference_protected(net_families[ops->family],
2446 lockdep_is_held(&net_family_lock)))
2447 err = -EEXIST;
2448 else {
2449 rcu_assign_pointer(net_families[ops->family], ops);
2450 err = 0;
2451 }
2452 spin_unlock(&net_family_lock);
2453
2454 pr_info("NET: Registered protocol family %d\n", ops->family);
2455 return err;
2456}
2457EXPORT_SYMBOL(sock_register);
2458
2459/**
2460 * sock_unregister - remove a protocol handler
2461 * @family: protocol family to remove
2462 *
2463 * This function is called by a protocol handler that wants to
2464 * remove its address family, and have it unlinked from the
2465 * new socket creation.
2466 *
2467 * If protocol handler is a module, then it can use module reference
2468 * counts to protect against new references. If protocol handler is not
2469 * a module then it needs to provide its own protection in
2470 * the ops->create routine.
2471 */
2472void sock_unregister(int family)
2473{
2474 BUG_ON(family < 0 || family >= NPROTO);
2475
2476 spin_lock(&net_family_lock);
2477 RCU_INIT_POINTER(net_families[family], NULL);
2478 spin_unlock(&net_family_lock);
2479
2480 synchronize_rcu();
2481
2482 pr_info("NET: Unregistered protocol family %d\n", family);
2483}
2484EXPORT_SYMBOL(sock_unregister);
2485
2486static int __init sock_init(void)
2487{
2488 int err;
2489 /*
2490 * Initialize the network sysctl infrastructure.
2491 */
2492 err = net_sysctl_init();
2493 if (err)
2494 goto out;
2495
2496 /*
2497 * Initialize skbuff SLAB cache
2498 */
2499 skb_init();
2500
2501 /*
2502 * Initialize the protocols module.
2503 */
2504
2505 init_inodecache();
2506
2507 err = register_filesystem(&sock_fs_type);
2508 if (err)
2509 goto out_fs;
2510 sock_mnt = kern_mount(&sock_fs_type);
2511 if (IS_ERR(sock_mnt)) {
2512 err = PTR_ERR(sock_mnt);
2513 goto out_mount;
2514 }
2515
2516 /* The real protocol initialization is performed in later initcalls.
2517 */
2518
2519#ifdef CONFIG_NETFILTER
2520 err = netfilter_init();
2521 if (err)
2522 goto out;
2523#endif
2524
2525 ptp_classifier_init();
2526
2527out:
2528 return err;
2529
2530out_mount:
2531 unregister_filesystem(&sock_fs_type);
2532out_fs:
2533 goto out;
2534}
2535
2536core_initcall(sock_init); /* early initcall */
2537
2538#ifdef CONFIG_PROC_FS
2539void socket_seq_show(struct seq_file *seq)
2540{
2541 int cpu;
2542 int counter = 0;
2543
2544 for_each_possible_cpu(cpu)
2545 counter += per_cpu(sockets_in_use, cpu);
2546
2547 /* It can be negative, by the way. 8) */
2548 if (counter < 0)
2549 counter = 0;
2550
2551 seq_printf(seq, "sockets: used %d\n", counter);
2552}
2553#endif /* CONFIG_PROC_FS */
2554
2555#ifdef CONFIG_COMPAT
2556static int do_siocgstamp(struct net *net, struct socket *sock,
2557 unsigned int cmd, void __user *up)
2558{
2559 mm_segment_t old_fs = get_fs();
2560 struct timeval ktv;
2561 int err;
2562
2563 set_fs(KERNEL_DS);
2564 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2565 set_fs(old_fs);
2566 if (!err)
2567 err = compat_put_timeval(&ktv, up);
2568
2569 return err;
2570}
2571
2572static int do_siocgstampns(struct net *net, struct socket *sock,
2573 unsigned int cmd, void __user *up)
2574{
2575 mm_segment_t old_fs = get_fs();
2576 struct timespec kts;
2577 int err;
2578
2579 set_fs(KERNEL_DS);
2580 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2581 set_fs(old_fs);
2582 if (!err)
2583 err = compat_put_timespec(&kts, up);
2584
2585 return err;
2586}
2587
2588static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2589{
2590 struct ifreq __user *uifr;
2591 int err;
2592
2593 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2594 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2595 return -EFAULT;
2596
2597 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2598 if (err)
2599 return err;
2600
2601 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2602 return -EFAULT;
2603
2604 return 0;
2605}
2606
2607static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2608{
2609 struct compat_ifconf ifc32;
2610 struct ifconf ifc;
2611 struct ifconf __user *uifc;
2612 struct compat_ifreq __user *ifr32;
2613 struct ifreq __user *ifr;
2614 unsigned int i, j;
2615 int err;
2616
2617 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2618 return -EFAULT;
2619
2620 memset(&ifc, 0, sizeof(ifc));
2621 if (ifc32.ifcbuf == 0) {
2622 ifc32.ifc_len = 0;
2623 ifc.ifc_len = 0;
2624 ifc.ifc_req = NULL;
2625 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2626 } else {
2627 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2628 sizeof(struct ifreq);
2629 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2630 ifc.ifc_len = len;
2631 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2632 ifr32 = compat_ptr(ifc32.ifcbuf);
2633 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2634 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2635 return -EFAULT;
2636 ifr++;
2637 ifr32++;
2638 }
2639 }
2640 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2641 return -EFAULT;
2642
2643 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2644 if (err)
2645 return err;
2646
2647 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2648 return -EFAULT;
2649
2650 ifr = ifc.ifc_req;
2651 ifr32 = compat_ptr(ifc32.ifcbuf);
2652 for (i = 0, j = 0;
2653 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2654 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2655 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2656 return -EFAULT;
2657 ifr32++;
2658 ifr++;
2659 }
2660
2661 if (ifc32.ifcbuf == 0) {
2662 /* Translate from 64-bit structure multiple to
2663 * a 32-bit one.
2664 */
2665 i = ifc.ifc_len;
2666 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2667 ifc32.ifc_len = i;
2668 } else {
2669 ifc32.ifc_len = i;
2670 }
2671 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2672 return -EFAULT;
2673
2674 return 0;
2675}
2676
2677static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2678{
2679 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2680 bool convert_in = false, convert_out = false;
2681 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2682 struct ethtool_rxnfc __user *rxnfc;
2683 struct ifreq __user *ifr;
2684 u32 rule_cnt = 0, actual_rule_cnt;
2685 u32 ethcmd;
2686 u32 data;
2687 int ret;
2688
2689 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2690 return -EFAULT;
2691
2692 compat_rxnfc = compat_ptr(data);
2693
2694 if (get_user(ethcmd, &compat_rxnfc->cmd))
2695 return -EFAULT;
2696
2697 /* Most ethtool structures are defined without padding.
2698 * Unfortunately struct ethtool_rxnfc is an exception.
2699 */
2700 switch (ethcmd) {
2701 default:
2702 break;
2703 case ETHTOOL_GRXCLSRLALL:
2704 /* Buffer size is variable */
2705 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2706 return -EFAULT;
2707 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2708 return -ENOMEM;
2709 buf_size += rule_cnt * sizeof(u32);
2710 /* fall through */
2711 case ETHTOOL_GRXRINGS:
2712 case ETHTOOL_GRXCLSRLCNT:
2713 case ETHTOOL_GRXCLSRULE:
2714 case ETHTOOL_SRXCLSRLINS:
2715 convert_out = true;
2716 /* fall through */
2717 case ETHTOOL_SRXCLSRLDEL:
2718 buf_size += sizeof(struct ethtool_rxnfc);
2719 convert_in = true;
2720 break;
2721 }
2722
2723 ifr = compat_alloc_user_space(buf_size);
2724 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2725
2726 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2727 return -EFAULT;
2728
2729 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2730 &ifr->ifr_ifru.ifru_data))
2731 return -EFAULT;
2732
2733 if (convert_in) {
2734 /* We expect there to be holes between fs.m_ext and
2735 * fs.ring_cookie and at the end of fs, but nowhere else.
2736 */
2737 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2738 sizeof(compat_rxnfc->fs.m_ext) !=
2739 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2740 sizeof(rxnfc->fs.m_ext));
2741 BUILD_BUG_ON(
2742 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2743 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2744 offsetof(struct ethtool_rxnfc, fs.location) -
2745 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2746
2747 if (copy_in_user(rxnfc, compat_rxnfc,
2748 (void __user *)(&rxnfc->fs.m_ext + 1) -
2749 (void __user *)rxnfc) ||
2750 copy_in_user(&rxnfc->fs.ring_cookie,
2751 &compat_rxnfc->fs.ring_cookie,
2752 (void __user *)(&rxnfc->fs.location + 1) -
2753 (void __user *)&rxnfc->fs.ring_cookie) ||
2754 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2755 sizeof(rxnfc->rule_cnt)))
2756 return -EFAULT;
2757 }
2758
2759 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2760 if (ret)
2761 return ret;
2762
2763 if (convert_out) {
2764 if (copy_in_user(compat_rxnfc, rxnfc,
2765 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2766 (const void __user *)rxnfc) ||
2767 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2768 &rxnfc->fs.ring_cookie,
2769 (const void __user *)(&rxnfc->fs.location + 1) -
2770 (const void __user *)&rxnfc->fs.ring_cookie) ||
2771 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2772 sizeof(rxnfc->rule_cnt)))
2773 return -EFAULT;
2774
2775 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2776 /* As an optimisation, we only copy the actual
2777 * number of rules that the underlying
2778 * function returned. Since Mallory might
2779 * change the rule count in user memory, we
2780 * check that it is less than the rule count
2781 * originally given (as the user buffer size),
2782 * which has been range-checked.
2783 */
2784 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2785 return -EFAULT;
2786 if (actual_rule_cnt < rule_cnt)
2787 rule_cnt = actual_rule_cnt;
2788 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2789 &rxnfc->rule_locs[0],
2790 rule_cnt * sizeof(u32)))
2791 return -EFAULT;
2792 }
2793 }
2794
2795 return 0;
2796}
2797
2798static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2799{
2800 void __user *uptr;
2801 compat_uptr_t uptr32;
2802 struct ifreq __user *uifr;
2803
2804 uifr = compat_alloc_user_space(sizeof(*uifr));
2805 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2806 return -EFAULT;
2807
2808 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2809 return -EFAULT;
2810
2811 uptr = compat_ptr(uptr32);
2812
2813 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2814 return -EFAULT;
2815
2816 return dev_ioctl(net, SIOCWANDEV, uifr);
2817}
2818
2819static int bond_ioctl(struct net *net, unsigned int cmd,
2820 struct compat_ifreq __user *ifr32)
2821{
2822 struct ifreq kifr;
2823 mm_segment_t old_fs;
2824 int err;
2825
2826 switch (cmd) {
2827 case SIOCBONDENSLAVE:
2828 case SIOCBONDRELEASE:
2829 case SIOCBONDSETHWADDR:
2830 case SIOCBONDCHANGEACTIVE:
2831 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2832 return -EFAULT;
2833
2834 old_fs = get_fs();
2835 set_fs(KERNEL_DS);
2836 err = dev_ioctl(net, cmd,
2837 (struct ifreq __user __force *) &kifr);
2838 set_fs(old_fs);
2839
2840 return err;
2841 default:
2842 return -ENOIOCTLCMD;
2843 }
2844}
2845
2846/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2847static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2848 struct compat_ifreq __user *u_ifreq32)
2849{
2850 struct ifreq __user *u_ifreq64;
2851 char tmp_buf[IFNAMSIZ];
2852 void __user *data64;
2853 u32 data32;
2854
2855 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2856 IFNAMSIZ))
2857 return -EFAULT;
2858 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2859 return -EFAULT;
2860 data64 = compat_ptr(data32);
2861
2862 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2863
2864 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2865 IFNAMSIZ))
2866 return -EFAULT;
2867 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2868 return -EFAULT;
2869
2870 return dev_ioctl(net, cmd, u_ifreq64);
2871}
2872
2873static int dev_ifsioc(struct net *net, struct socket *sock,
2874 unsigned int cmd, struct compat_ifreq __user *uifr32)
2875{
2876 struct ifreq __user *uifr;
2877 int err;
2878
2879 uifr = compat_alloc_user_space(sizeof(*uifr));
2880 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2881 return -EFAULT;
2882
2883 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2884
2885 if (!err) {
2886 switch (cmd) {
2887 case SIOCGIFFLAGS:
2888 case SIOCGIFMETRIC:
2889 case SIOCGIFMTU:
2890 case SIOCGIFMEM:
2891 case SIOCGIFHWADDR:
2892 case SIOCGIFINDEX:
2893 case SIOCGIFADDR:
2894 case SIOCGIFBRDADDR:
2895 case SIOCGIFDSTADDR:
2896 case SIOCGIFNETMASK:
2897 case SIOCGIFPFLAGS:
2898 case SIOCGIFTXQLEN:
2899 case SIOCGMIIPHY:
2900 case SIOCGMIIREG:
2901 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2902 err = -EFAULT;
2903 break;
2904 }
2905 }
2906 return err;
2907}
2908
2909static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2910 struct compat_ifreq __user *uifr32)
2911{
2912 struct ifreq ifr;
2913 struct compat_ifmap __user *uifmap32;
2914 mm_segment_t old_fs;
2915 int err;
2916
2917 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2918 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2919 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2920 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2921 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2922 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2923 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2924 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2925 if (err)
2926 return -EFAULT;
2927
2928 old_fs = get_fs();
2929 set_fs(KERNEL_DS);
2930 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2931 set_fs(old_fs);
2932
2933 if (cmd == SIOCGIFMAP && !err) {
2934 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2935 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2936 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2937 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2938 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2939 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2940 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2941 if (err)
2942 err = -EFAULT;
2943 }
2944 return err;
2945}
2946
2947struct rtentry32 {
2948 u32 rt_pad1;
2949 struct sockaddr rt_dst; /* target address */
2950 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2951 struct sockaddr rt_genmask; /* target network mask (IP) */
2952 unsigned short rt_flags;
2953 short rt_pad2;
2954 u32 rt_pad3;
2955 unsigned char rt_tos;
2956 unsigned char rt_class;
2957 short rt_pad4;
2958 short rt_metric; /* +1 for binary compatibility! */
2959 /* char * */ u32 rt_dev; /* forcing the device at add */
2960 u32 rt_mtu; /* per route MTU/Window */
2961 u32 rt_window; /* Window clamping */
2962 unsigned short rt_irtt; /* Initial RTT */
2963};
2964
2965struct in6_rtmsg32 {
2966 struct in6_addr rtmsg_dst;
2967 struct in6_addr rtmsg_src;
2968 struct in6_addr rtmsg_gateway;
2969 u32 rtmsg_type;
2970 u16 rtmsg_dst_len;
2971 u16 rtmsg_src_len;
2972 u32 rtmsg_metric;
2973 u32 rtmsg_info;
2974 u32 rtmsg_flags;
2975 s32 rtmsg_ifindex;
2976};
2977
2978static int routing_ioctl(struct net *net, struct socket *sock,
2979 unsigned int cmd, void __user *argp)
2980{
2981 int ret;
2982 void *r = NULL;
2983 struct in6_rtmsg r6;
2984 struct rtentry r4;
2985 char devname[16];
2986 u32 rtdev;
2987 mm_segment_t old_fs = get_fs();
2988
2989 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2990 struct in6_rtmsg32 __user *ur6 = argp;
2991 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2992 3 * sizeof(struct in6_addr));
2993 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2994 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2995 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2996 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2997 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2998 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2999 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3000
3001 r = (void *) &r6;
3002 } else { /* ipv4 */
3003 struct rtentry32 __user *ur4 = argp;
3004 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3005 3 * sizeof(struct sockaddr));
3006 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3007 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3008 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3009 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3010 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3011 ret |= get_user(rtdev, &(ur4->rt_dev));
3012 if (rtdev) {
3013 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3014 r4.rt_dev = (char __user __force *)devname;
3015 devname[15] = 0;
3016 } else
3017 r4.rt_dev = NULL;
3018
3019 r = (void *) &r4;
3020 }
3021
3022 if (ret) {
3023 ret = -EFAULT;
3024 goto out;
3025 }
3026
3027 set_fs(KERNEL_DS);
3028 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3029 set_fs(old_fs);
3030
3031out:
3032 return ret;
3033}
3034
3035/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3036 * for some operations; this forces use of the newer bridge-utils that
3037 * use compatible ioctls
3038 */
3039static int old_bridge_ioctl(compat_ulong_t __user *argp)
3040{
3041 compat_ulong_t tmp;
3042
3043 if (get_user(tmp, argp))
3044 return -EFAULT;
3045 if (tmp == BRCTL_GET_VERSION)
3046 return BRCTL_VERSION + 1;
3047 return -EINVAL;
3048}
3049
3050static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3051 unsigned int cmd, unsigned long arg)
3052{
3053 void __user *argp = compat_ptr(arg);
3054 struct sock *sk = sock->sk;
3055 struct net *net = sock_net(sk);
3056
3057 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3058 return compat_ifr_data_ioctl(net, cmd, argp);
3059
3060 switch (cmd) {
3061 case SIOCSIFBR:
3062 case SIOCGIFBR:
3063 return old_bridge_ioctl(argp);
3064 case SIOCGIFNAME:
3065 return dev_ifname32(net, argp);
3066 case SIOCGIFCONF:
3067 return dev_ifconf(net, argp);
3068 case SIOCETHTOOL:
3069 return ethtool_ioctl(net, argp);
3070 case SIOCWANDEV:
3071 return compat_siocwandev(net, argp);
3072 case SIOCGIFMAP:
3073 case SIOCSIFMAP:
3074 return compat_sioc_ifmap(net, cmd, argp);
3075 case SIOCBONDENSLAVE:
3076 case SIOCBONDRELEASE:
3077 case SIOCBONDSETHWADDR:
3078 case SIOCBONDCHANGEACTIVE:
3079 return bond_ioctl(net, cmd, argp);
3080 case SIOCADDRT:
3081 case SIOCDELRT:
3082 return routing_ioctl(net, sock, cmd, argp);
3083 case SIOCGSTAMP:
3084 return do_siocgstamp(net, sock, cmd, argp);
3085 case SIOCGSTAMPNS:
3086 return do_siocgstampns(net, sock, cmd, argp);
3087 case SIOCBONDSLAVEINFOQUERY:
3088 case SIOCBONDINFOQUERY:
3089 case SIOCSHWTSTAMP:
3090 case SIOCGHWTSTAMP:
3091 return compat_ifr_data_ioctl(net, cmd, argp);
3092
3093 case FIOSETOWN:
3094 case SIOCSPGRP:
3095 case FIOGETOWN:
3096 case SIOCGPGRP:
3097 case SIOCBRADDBR:
3098 case SIOCBRDELBR:
3099 case SIOCGIFVLAN:
3100 case SIOCSIFVLAN:
3101 case SIOCADDDLCI:
3102 case SIOCDELDLCI:
3103 return sock_ioctl(file, cmd, arg);
3104
3105 case SIOCGIFFLAGS:
3106 case SIOCSIFFLAGS:
3107 case SIOCGIFMETRIC:
3108 case SIOCSIFMETRIC:
3109 case SIOCGIFMTU:
3110 case SIOCSIFMTU:
3111 case SIOCGIFMEM:
3112 case SIOCSIFMEM:
3113 case SIOCGIFHWADDR:
3114 case SIOCSIFHWADDR:
3115 case SIOCADDMULTI:
3116 case SIOCDELMULTI:
3117 case SIOCGIFINDEX:
3118 case SIOCGIFADDR:
3119 case SIOCSIFADDR:
3120 case SIOCSIFHWBROADCAST:
3121 case SIOCDIFADDR:
3122 case SIOCGIFBRDADDR:
3123 case SIOCSIFBRDADDR:
3124 case SIOCGIFDSTADDR:
3125 case SIOCSIFDSTADDR:
3126 case SIOCGIFNETMASK:
3127 case SIOCSIFNETMASK:
3128 case SIOCSIFPFLAGS:
3129 case SIOCGIFPFLAGS:
3130 case SIOCGIFTXQLEN:
3131 case SIOCSIFTXQLEN:
3132 case SIOCBRADDIF:
3133 case SIOCBRDELIF:
3134 case SIOCSIFNAME:
3135 case SIOCGMIIPHY:
3136 case SIOCGMIIREG:
3137 case SIOCSMIIREG:
3138 return dev_ifsioc(net, sock, cmd, argp);
3139
3140 case SIOCSARP:
3141 case SIOCGARP:
3142 case SIOCDARP:
3143 case SIOCATMARK:
3144 return sock_do_ioctl(net, sock, cmd, arg);
3145 }
3146
3147 return -ENOIOCTLCMD;
3148}
3149
3150static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3151 unsigned long arg)
3152{
3153 struct socket *sock = file->private_data;
3154 int ret = -ENOIOCTLCMD;
3155 struct sock *sk;
3156 struct net *net;
3157
3158 sk = sock->sk;
3159 net = sock_net(sk);
3160
3161 if (sock->ops->compat_ioctl)
3162 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3163
3164 if (ret == -ENOIOCTLCMD &&
3165 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3166 ret = compat_wext_handle_ioctl(net, cmd, arg);
3167
3168 if (ret == -ENOIOCTLCMD)
3169 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3170
3171 return ret;
3172}
3173#endif
3174
3175int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3176{
3177 return sock->ops->bind(sock, addr, addrlen);
3178}
3179EXPORT_SYMBOL(kernel_bind);
3180
3181int kernel_listen(struct socket *sock, int backlog)
3182{
3183 return sock->ops->listen(sock, backlog);
3184}
3185EXPORT_SYMBOL(kernel_listen);
3186
3187int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3188{
3189 struct sock *sk = sock->sk;
3190 int err;
3191
3192 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3193 newsock);
3194 if (err < 0)
3195 goto done;
3196
3197 err = sock->ops->accept(sock, *newsock, flags);
3198 if (err < 0) {
3199 sock_release(*newsock);
3200 *newsock = NULL;
3201 goto done;
3202 }
3203
3204 (*newsock)->ops = sock->ops;
3205 __module_get((*newsock)->ops->owner);
3206
3207done:
3208 return err;
3209}
3210EXPORT_SYMBOL(kernel_accept);
3211
3212int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3213 int flags)
3214{
3215 return sock->ops->connect(sock, addr, addrlen, flags);
3216}
3217EXPORT_SYMBOL(kernel_connect);
3218
3219int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3220 int *addrlen)
3221{
3222 return sock->ops->getname(sock, addr, addrlen, 0);
3223}
3224EXPORT_SYMBOL(kernel_getsockname);
3225
3226int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3227 int *addrlen)
3228{
3229 return sock->ops->getname(sock, addr, addrlen, 1);
3230}
3231EXPORT_SYMBOL(kernel_getpeername);
3232
3233int kernel_getsockopt(struct socket *sock, int level, int optname,
3234 char *optval, int *optlen)
3235{
3236 mm_segment_t oldfs = get_fs();
3237 char __user *uoptval;
3238 int __user *uoptlen;
3239 int err;
3240
3241 uoptval = (char __user __force *) optval;
3242 uoptlen = (int __user __force *) optlen;
3243
3244 set_fs(KERNEL_DS);
3245 if (level == SOL_SOCKET)
3246 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3247 else
3248 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3249 uoptlen);
3250 set_fs(oldfs);
3251 return err;
3252}
3253EXPORT_SYMBOL(kernel_getsockopt);
3254
3255int kernel_setsockopt(struct socket *sock, int level, int optname,
3256 char *optval, unsigned int optlen)
3257{
3258 mm_segment_t oldfs = get_fs();
3259 char __user *uoptval;
3260 int err;
3261
3262 uoptval = (char __user __force *) optval;
3263
3264 set_fs(KERNEL_DS);
3265 if (level == SOL_SOCKET)
3266 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3267 else
3268 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3269 optlen);
3270 set_fs(oldfs);
3271 return err;
3272}
3273EXPORT_SYMBOL(kernel_setsockopt);
3274
3275int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3276 size_t size, int flags)
3277{
3278 if (sock->ops->sendpage)
3279 return sock->ops->sendpage(sock, page, offset, size, flags);
3280
3281 return sock_no_sendpage(sock, page, offset, size, flags);
3282}
3283EXPORT_SYMBOL(kernel_sendpage);
3284
3285int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3286{
3287 mm_segment_t oldfs = get_fs();
3288 int err;
3289
3290 set_fs(KERNEL_DS);
3291 err = sock->ops->ioctl(sock, cmd, arg);
3292 set_fs(oldfs);
3293
3294 return err;
3295}
3296EXPORT_SYMBOL(kernel_sock_ioctl);
3297
3298int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3299{
3300 return sock->ops->shutdown(sock, how);
3301}
3302EXPORT_SYMBOL(kernel_sock_shutdown);