Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
 
 
 
 
 
 
 
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/ethtool.h>
  56#include <linux/mm.h>
  57#include <linux/socket.h>
  58#include <linux/file.h>
  59#include <linux/net.h>
  60#include <linux/interrupt.h>
  61#include <linux/thread_info.h>
  62#include <linux/rcupdate.h>
  63#include <linux/netdevice.h>
  64#include <linux/proc_fs.h>
  65#include <linux/seq_file.h>
  66#include <linux/mutex.h>
  67#include <linux/if_bridge.h>
 
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/termios.h>
 104#include <linux/sockios.h>
 105#include <net/busy_poll.h>
 106#include <linux/errqueue.h>
 107#include <linux/ptp_clock_kernel.h>
 108
 109#ifdef CONFIG_NET_RX_BUSY_POLL
 110unsigned int sysctl_net_busy_read __read_mostly;
 111unsigned int sysctl_net_busy_poll __read_mostly;
 112#endif
 113
 114static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 115static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 116static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 117
 118static int sock_close(struct inode *inode, struct file *file);
 119static __poll_t sock_poll(struct file *file,
 120			      struct poll_table_struct *wait);
 121static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 122#ifdef CONFIG_COMPAT
 123static long compat_sock_ioctl(struct file *file,
 124			      unsigned int cmd, unsigned long arg);
 125#endif
 126static int sock_fasync(int fd, struct file *filp, int on);
 127static ssize_t sock_sendpage(struct file *file, struct page *page,
 128			     int offset, size_t size, loff_t *ppos, int more);
 129static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 130				struct pipe_inode_info *pipe, size_t len,
 131				unsigned int flags);
 132
 133#ifdef CONFIG_PROC_FS
 134static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 135{
 136	struct socket *sock = f->private_data;
 137
 138	if (sock->ops->show_fdinfo)
 139		sock->ops->show_fdinfo(m, sock);
 140}
 141#else
 142#define sock_show_fdinfo NULL
 143#endif
 144
 145/*
 146 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 147 *	in the operation structures but are done directly via the socketcall() multiplexor.
 148 */
 149
 150static const struct file_operations socket_file_ops = {
 151	.owner =	THIS_MODULE,
 152	.llseek =	no_llseek,
 153	.read_iter =	sock_read_iter,
 154	.write_iter =	sock_write_iter,
 155	.poll =		sock_poll,
 156	.unlocked_ioctl = sock_ioctl,
 157#ifdef CONFIG_COMPAT
 158	.compat_ioctl = compat_sock_ioctl,
 159#endif
 160	.mmap =		sock_mmap,
 161	.release =	sock_close,
 162	.fasync =	sock_fasync,
 163	.sendpage =	sock_sendpage,
 164	.splice_write = generic_splice_sendpage,
 165	.splice_read =	sock_splice_read,
 166	.show_fdinfo =	sock_show_fdinfo,
 167};
 168
 169static const char * const pf_family_names[] = {
 170	[PF_UNSPEC]	= "PF_UNSPEC",
 171	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
 172	[PF_INET]	= "PF_INET",
 173	[PF_AX25]	= "PF_AX25",
 174	[PF_IPX]	= "PF_IPX",
 175	[PF_APPLETALK]	= "PF_APPLETALK",
 176	[PF_NETROM]	= "PF_NETROM",
 177	[PF_BRIDGE]	= "PF_BRIDGE",
 178	[PF_ATMPVC]	= "PF_ATMPVC",
 179	[PF_X25]	= "PF_X25",
 180	[PF_INET6]	= "PF_INET6",
 181	[PF_ROSE]	= "PF_ROSE",
 182	[PF_DECnet]	= "PF_DECnet",
 183	[PF_NETBEUI]	= "PF_NETBEUI",
 184	[PF_SECURITY]	= "PF_SECURITY",
 185	[PF_KEY]	= "PF_KEY",
 186	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
 187	[PF_PACKET]	= "PF_PACKET",
 188	[PF_ASH]	= "PF_ASH",
 189	[PF_ECONET]	= "PF_ECONET",
 190	[PF_ATMSVC]	= "PF_ATMSVC",
 191	[PF_RDS]	= "PF_RDS",
 192	[PF_SNA]	= "PF_SNA",
 193	[PF_IRDA]	= "PF_IRDA",
 194	[PF_PPPOX]	= "PF_PPPOX",
 195	[PF_WANPIPE]	= "PF_WANPIPE",
 196	[PF_LLC]	= "PF_LLC",
 197	[PF_IB]		= "PF_IB",
 198	[PF_MPLS]	= "PF_MPLS",
 199	[PF_CAN]	= "PF_CAN",
 200	[PF_TIPC]	= "PF_TIPC",
 201	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
 202	[PF_IUCV]	= "PF_IUCV",
 203	[PF_RXRPC]	= "PF_RXRPC",
 204	[PF_ISDN]	= "PF_ISDN",
 205	[PF_PHONET]	= "PF_PHONET",
 206	[PF_IEEE802154]	= "PF_IEEE802154",
 207	[PF_CAIF]	= "PF_CAIF",
 208	[PF_ALG]	= "PF_ALG",
 209	[PF_NFC]	= "PF_NFC",
 210	[PF_VSOCK]	= "PF_VSOCK",
 211	[PF_KCM]	= "PF_KCM",
 212	[PF_QIPCRTR]	= "PF_QIPCRTR",
 213	[PF_SMC]	= "PF_SMC",
 214	[PF_XDP]	= "PF_XDP",
 215};
 216
 217/*
 218 *	The protocol list. Each protocol is registered in here.
 219 */
 220
 221static DEFINE_SPINLOCK(net_family_lock);
 222static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 223
 224/*
 225 * Support routines.
 226 * Move socket addresses back and forth across the kernel/user
 227 * divide and look after the messy bits.
 228 */
 229
 230/**
 231 *	move_addr_to_kernel	-	copy a socket address into kernel space
 232 *	@uaddr: Address in user space
 233 *	@kaddr: Address in kernel space
 234 *	@ulen: Length in user space
 235 *
 236 *	The address is copied into kernel space. If the provided address is
 237 *	too long an error code of -EINVAL is returned. If the copy gives
 238 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 239 */
 240
 241int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 242{
 243	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 244		return -EINVAL;
 245	if (ulen == 0)
 246		return 0;
 247	if (copy_from_user(kaddr, uaddr, ulen))
 248		return -EFAULT;
 249	return audit_sockaddr(ulen, kaddr);
 250}
 251
 252/**
 253 *	move_addr_to_user	-	copy an address to user space
 254 *	@kaddr: kernel space address
 255 *	@klen: length of address in kernel
 256 *	@uaddr: user space address
 257 *	@ulen: pointer to user length field
 258 *
 259 *	The value pointed to by ulen on entry is the buffer length available.
 260 *	This is overwritten with the buffer space used. -EINVAL is returned
 261 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 262 *	is returned if either the buffer or the length field are not
 263 *	accessible.
 264 *	After copying the data up to the limit the user specifies, the true
 265 *	length of the data is written over the length limit the user
 266 *	specified. Zero is returned for a success.
 267 */
 268
 269static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 270			     void __user *uaddr, int __user *ulen)
 271{
 272	int err;
 273	int len;
 274
 275	BUG_ON(klen > sizeof(struct sockaddr_storage));
 276	err = get_user(len, ulen);
 277	if (err)
 278		return err;
 279	if (len > klen)
 280		len = klen;
 281	if (len < 0)
 282		return -EINVAL;
 283	if (len) {
 284		if (audit_sockaddr(klen, kaddr))
 285			return -ENOMEM;
 286		if (copy_to_user(uaddr, kaddr, len))
 287			return -EFAULT;
 288	}
 289	/*
 290	 *      "fromlen shall refer to the value before truncation.."
 291	 *                      1003.1g
 292	 */
 293	return __put_user(klen, ulen);
 294}
 295
 296static struct kmem_cache *sock_inode_cachep __ro_after_init;
 297
 298static struct inode *sock_alloc_inode(struct super_block *sb)
 299{
 300	struct socket_alloc *ei;
 
 301
 302	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 303	if (!ei)
 304		return NULL;
 305	init_waitqueue_head(&ei->socket.wq.wait);
 306	ei->socket.wq.fasync_list = NULL;
 307	ei->socket.wq.flags = 0;
 
 
 
 
 
 
 308
 309	ei->socket.state = SS_UNCONNECTED;
 310	ei->socket.flags = 0;
 311	ei->socket.ops = NULL;
 312	ei->socket.sk = NULL;
 313	ei->socket.file = NULL;
 314
 315	return &ei->vfs_inode;
 316}
 317
 318static void sock_free_inode(struct inode *inode)
 319{
 320	struct socket_alloc *ei;
 
 321
 322	ei = container_of(inode, struct socket_alloc, vfs_inode);
 
 
 323	kmem_cache_free(sock_inode_cachep, ei);
 324}
 325
 326static void init_once(void *foo)
 327{
 328	struct socket_alloc *ei = (struct socket_alloc *)foo;
 329
 330	inode_init_once(&ei->vfs_inode);
 331}
 332
 333static void init_inodecache(void)
 334{
 335	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 336					      sizeof(struct socket_alloc),
 337					      0,
 338					      (SLAB_HWCACHE_ALIGN |
 339					       SLAB_RECLAIM_ACCOUNT |
 340					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 341					      init_once);
 342	BUG_ON(sock_inode_cachep == NULL);
 343}
 344
 345static const struct super_operations sockfs_ops = {
 346	.alloc_inode	= sock_alloc_inode,
 347	.free_inode	= sock_free_inode,
 348	.statfs		= simple_statfs,
 349};
 350
 351/*
 352 * sockfs_dname() is called from d_path().
 353 */
 354static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 355{
 356	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 357				d_inode(dentry)->i_ino);
 358}
 359
 360static const struct dentry_operations sockfs_dentry_operations = {
 361	.d_dname  = sockfs_dname,
 362};
 363
 364static int sockfs_xattr_get(const struct xattr_handler *handler,
 365			    struct dentry *dentry, struct inode *inode,
 366			    const char *suffix, void *value, size_t size)
 367{
 368	if (value) {
 369		if (dentry->d_name.len + 1 > size)
 370			return -ERANGE;
 371		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 372	}
 373	return dentry->d_name.len + 1;
 374}
 375
 376#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 377#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 378#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 379
 380static const struct xattr_handler sockfs_xattr_handler = {
 381	.name = XATTR_NAME_SOCKPROTONAME,
 382	.get = sockfs_xattr_get,
 383};
 384
 385static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 386				     struct user_namespace *mnt_userns,
 387				     struct dentry *dentry, struct inode *inode,
 388				     const char *suffix, const void *value,
 389				     size_t size, int flags)
 390{
 391	/* Handled by LSM. */
 392	return -EAGAIN;
 393}
 394
 395static const struct xattr_handler sockfs_security_xattr_handler = {
 396	.prefix = XATTR_SECURITY_PREFIX,
 397	.set = sockfs_security_xattr_set,
 398};
 399
 400static const struct xattr_handler *sockfs_xattr_handlers[] = {
 401	&sockfs_xattr_handler,
 402	&sockfs_security_xattr_handler,
 403	NULL
 404};
 405
 406static int sockfs_init_fs_context(struct fs_context *fc)
 
 407{
 408	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 409	if (!ctx)
 410		return -ENOMEM;
 411	ctx->ops = &sockfs_ops;
 412	ctx->dops = &sockfs_dentry_operations;
 413	ctx->xattr = sockfs_xattr_handlers;
 414	return 0;
 415}
 416
 417static struct vfsmount *sock_mnt __read_mostly;
 418
 419static struct file_system_type sock_fs_type = {
 420	.name =		"sockfs",
 421	.init_fs_context = sockfs_init_fs_context,
 422	.kill_sb =	kill_anon_super,
 423};
 424
 425/*
 426 *	Obtains the first available file descriptor and sets it up for use.
 427 *
 428 *	These functions create file structures and maps them to fd space
 429 *	of the current process. On success it returns file descriptor
 430 *	and file struct implicitly stored in sock->file.
 431 *	Note that another thread may close file descriptor before we return
 432 *	from this function. We use the fact that now we do not refer
 433 *	to socket after mapping. If one day we will need it, this
 434 *	function will increment ref. count on file by 1.
 435 *
 436 *	In any case returned fd MAY BE not valid!
 437 *	This race condition is unavoidable
 438 *	with shared fd spaces, we cannot solve it inside kernel,
 439 *	but we take care of internal coherence yet.
 440 */
 441
 442/**
 443 *	sock_alloc_file - Bind a &socket to a &file
 444 *	@sock: socket
 445 *	@flags: file status flags
 446 *	@dname: protocol name
 447 *
 448 *	Returns the &file bound with @sock, implicitly storing it
 449 *	in sock->file. If dname is %NULL, sets to "".
 450 *	On failure the return is a ERR pointer (see linux/err.h).
 451 *	This function uses GFP_KERNEL internally.
 452 */
 453
 454struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 455{
 
 
 456	struct file *file;
 457
 458	if (!dname)
 459		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 
 
 
 
 
 
 
 
 
 
 
 460
 461	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 462				O_RDWR | (flags & O_NONBLOCK),
 463				&socket_file_ops);
 
 464	if (IS_ERR(file)) {
 
 
 
 
 465		sock_release(sock);
 466		return file;
 467	}
 468
 469	sock->file = file;
 
 470	file->private_data = sock;
 471	stream_open(SOCK_INODE(sock), file);
 472	return file;
 473}
 474EXPORT_SYMBOL(sock_alloc_file);
 475
 476static int sock_map_fd(struct socket *sock, int flags)
 477{
 478	struct file *newfile;
 479	int fd = get_unused_fd_flags(flags);
 480	if (unlikely(fd < 0)) {
 481		sock_release(sock);
 482		return fd;
 483	}
 484
 485	newfile = sock_alloc_file(sock, flags, NULL);
 486	if (!IS_ERR(newfile)) {
 487		fd_install(fd, newfile);
 488		return fd;
 489	}
 490
 491	put_unused_fd(fd);
 492	return PTR_ERR(newfile);
 493}
 494
 495/**
 496 *	sock_from_file - Return the &socket bounded to @file.
 497 *	@file: file
 498 *
 499 *	On failure returns %NULL.
 500 */
 501
 502struct socket *sock_from_file(struct file *file)
 503{
 504	if (file->f_op == &socket_file_ops)
 505		return file->private_data;	/* set in sock_map_fd */
 506
 
 507	return NULL;
 508}
 509EXPORT_SYMBOL(sock_from_file);
 510
 511/**
 512 *	sockfd_lookup - Go from a file number to its socket slot
 513 *	@fd: file handle
 514 *	@err: pointer to an error code return
 515 *
 516 *	The file handle passed in is locked and the socket it is bound
 517 *	to is returned. If an error occurs the err pointer is overwritten
 518 *	with a negative errno code and NULL is returned. The function checks
 519 *	for both invalid handles and passing a handle which is not a socket.
 520 *
 521 *	On a success the socket object pointer is returned.
 522 */
 523
 524struct socket *sockfd_lookup(int fd, int *err)
 525{
 526	struct file *file;
 527	struct socket *sock;
 528
 529	file = fget(fd);
 530	if (!file) {
 531		*err = -EBADF;
 532		return NULL;
 533	}
 534
 535	sock = sock_from_file(file);
 536	if (!sock) {
 537		*err = -ENOTSOCK;
 538		fput(file);
 539	}
 540	return sock;
 541}
 542EXPORT_SYMBOL(sockfd_lookup);
 543
 544static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 545{
 546	struct fd f = fdget(fd);
 547	struct socket *sock;
 548
 549	*err = -EBADF;
 550	if (f.file) {
 551		sock = sock_from_file(f.file);
 552		if (likely(sock)) {
 553			*fput_needed = f.flags & FDPUT_FPUT;
 554			return sock;
 555		}
 556		*err = -ENOTSOCK;
 557		fdput(f);
 558	}
 559	return NULL;
 560}
 561
 562static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 563				size_t size)
 564{
 565	ssize_t len;
 566	ssize_t used = 0;
 567
 568	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 569	if (len < 0)
 570		return len;
 571	used += len;
 572	if (buffer) {
 573		if (size < used)
 574			return -ERANGE;
 575		buffer += len;
 576	}
 577
 578	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 579	used += len;
 580	if (buffer) {
 581		if (size < used)
 582			return -ERANGE;
 583		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 584		buffer += len;
 585	}
 586
 587	return used;
 588}
 589
 590static int sockfs_setattr(struct user_namespace *mnt_userns,
 591			  struct dentry *dentry, struct iattr *iattr)
 592{
 593	int err = simple_setattr(&init_user_ns, dentry, iattr);
 594
 595	if (!err && (iattr->ia_valid & ATTR_UID)) {
 596		struct socket *sock = SOCKET_I(d_inode(dentry));
 597
 598		if (sock->sk)
 599			sock->sk->sk_uid = iattr->ia_uid;
 600		else
 601			err = -ENOENT;
 602	}
 603
 604	return err;
 605}
 606
 607static const struct inode_operations sockfs_inode_ops = {
 608	.listxattr = sockfs_listxattr,
 609	.setattr = sockfs_setattr,
 610};
 611
 612/**
 613 *	sock_alloc - allocate a socket
 614 *
 615 *	Allocate a new inode and socket object. The two are bound together
 616 *	and initialised. The socket is then returned. If we are out of inodes
 617 *	NULL is returned. This functions uses GFP_KERNEL internally.
 618 */
 619
 620struct socket *sock_alloc(void)
 621{
 622	struct inode *inode;
 623	struct socket *sock;
 624
 625	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 626	if (!inode)
 627		return NULL;
 628
 629	sock = SOCKET_I(inode);
 630
 631	inode->i_ino = get_next_ino();
 632	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 633	inode->i_uid = current_fsuid();
 634	inode->i_gid = current_fsgid();
 635	inode->i_op = &sockfs_inode_ops;
 636
 637	return sock;
 638}
 639EXPORT_SYMBOL(sock_alloc);
 640
 641static void __sock_release(struct socket *sock, struct inode *inode)
 
 
 
 
 
 
 
 
 
 642{
 643	if (sock->ops) {
 644		struct module *owner = sock->ops->owner;
 645
 646		if (inode)
 647			inode_lock(inode);
 648		sock->ops->release(sock);
 649		sock->sk = NULL;
 650		if (inode)
 651			inode_unlock(inode);
 652		sock->ops = NULL;
 653		module_put(owner);
 654	}
 655
 656	if (sock->wq.fasync_list)
 657		pr_err("%s: fasync list not empty!\n", __func__);
 658
 659	if (!sock->file) {
 660		iput(SOCK_INODE(sock));
 661		return;
 662	}
 663	sock->file = NULL;
 664}
 665
 666/**
 667 *	sock_release - close a socket
 668 *	@sock: socket to close
 669 *
 670 *	The socket is released from the protocol stack if it has a release
 671 *	callback, and the inode is then released if the socket is bound to
 672 *	an inode not a file.
 673 */
 674void sock_release(struct socket *sock)
 675{
 676	__sock_release(sock, NULL);
 677}
 678EXPORT_SYMBOL(sock_release);
 679
 680void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 681{
 682	u8 flags = *tx_flags;
 683
 684	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 685		flags |= SKBTX_HW_TSTAMP;
 686
 687	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 688		flags |= SKBTX_SW_TSTAMP;
 689
 690	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 691		flags |= SKBTX_SCHED_TSTAMP;
 692
 693	*tx_flags = flags;
 694}
 695EXPORT_SYMBOL(__sock_tx_timestamp);
 696
 697INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 698					   size_t));
 699INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 700					    size_t));
 701static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 702{
 703	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 704				     inet_sendmsg, sock, msg,
 705				     msg_data_left(msg));
 706	BUG_ON(ret == -EIOCBQUEUED);
 707	return ret;
 708}
 709
 710/**
 711 *	sock_sendmsg - send a message through @sock
 712 *	@sock: socket
 713 *	@msg: message to send
 714 *
 715 *	Sends @msg through @sock, passing through LSM.
 716 *	Returns the number of bytes sent, or an error code.
 717 */
 718int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 719{
 720	int err = security_socket_sendmsg(sock, msg,
 721					  msg_data_left(msg));
 722
 723	return err ?: sock_sendmsg_nosec(sock, msg);
 724}
 725EXPORT_SYMBOL(sock_sendmsg);
 726
 727/**
 728 *	kernel_sendmsg - send a message through @sock (kernel-space)
 729 *	@sock: socket
 730 *	@msg: message header
 731 *	@vec: kernel vec
 732 *	@num: vec array length
 733 *	@size: total message data size
 734 *
 735 *	Builds the message data with @vec and sends it through @sock.
 736 *	Returns the number of bytes sent, or an error code.
 737 */
 738
 739int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 740		   struct kvec *vec, size_t num, size_t size)
 741{
 742	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 743	return sock_sendmsg(sock, msg);
 744}
 745EXPORT_SYMBOL(kernel_sendmsg);
 746
 747/**
 748 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 749 *	@sk: sock
 750 *	@msg: message header
 751 *	@vec: output s/g array
 752 *	@num: output s/g array length
 753 *	@size: total message data size
 754 *
 755 *	Builds the message data with @vec and sends it through @sock.
 756 *	Returns the number of bytes sent, or an error code.
 757 *	Caller must hold @sk.
 758 */
 759
 760int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 761			  struct kvec *vec, size_t num, size_t size)
 762{
 763	struct socket *sock = sk->sk_socket;
 764
 765	if (!sock->ops->sendmsg_locked)
 766		return sock_no_sendmsg_locked(sk, msg, size);
 767
 768	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 769
 770	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 771}
 772EXPORT_SYMBOL(kernel_sendmsg_locked);
 773
 774static bool skb_is_err_queue(const struct sk_buff *skb)
 775{
 776	/* pkt_type of skbs enqueued on the error queue are set to
 777	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 778	 * in recvmsg, since skbs received on a local socket will never
 779	 * have a pkt_type of PACKET_OUTGOING.
 780	 */
 781	return skb->pkt_type == PACKET_OUTGOING;
 782}
 783
 784/* On transmit, software and hardware timestamps are returned independently.
 785 * As the two skb clones share the hardware timestamp, which may be updated
 786 * before the software timestamp is received, a hardware TX timestamp may be
 787 * returned only if there is no software TX timestamp. Ignore false software
 788 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 790 * hardware timestamp.
 791 */
 792static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 793{
 794	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 795}
 796
 797static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 798{
 799	struct scm_ts_pktinfo ts_pktinfo;
 800	struct net_device *orig_dev;
 801
 802	if (!skb_mac_header_was_set(skb))
 803		return;
 804
 805	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 806
 807	rcu_read_lock();
 808	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 809	if (orig_dev)
 810		ts_pktinfo.if_index = orig_dev->ifindex;
 811	rcu_read_unlock();
 812
 813	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 814	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 815		 sizeof(ts_pktinfo), &ts_pktinfo);
 816}
 817
 818/*
 819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 820 */
 821void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 822	struct sk_buff *skb)
 823{
 824	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 825	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 826	struct scm_timestamping_internal tss;
 827
 828	int empty = 1, false_tstamp = 0;
 829	struct skb_shared_hwtstamps *shhwtstamps =
 830		skb_hwtstamps(skb);
 831
 832	/* Race occurred between timestamp enabling and packet
 833	   receiving.  Fill in the current time for now. */
 834	if (need_software_tstamp && skb->tstamp == 0) {
 835		__net_timestamp(skb);
 836		false_tstamp = 1;
 837	}
 838
 839	if (need_software_tstamp) {
 840		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 841			if (new_tstamp) {
 842				struct __kernel_sock_timeval tv;
 843
 844				skb_get_new_timestamp(skb, &tv);
 845				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 846					 sizeof(tv), &tv);
 847			} else {
 848				struct __kernel_old_timeval tv;
 849
 850				skb_get_timestamp(skb, &tv);
 851				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 852					 sizeof(tv), &tv);
 853			}
 854		} else {
 855			if (new_tstamp) {
 856				struct __kernel_timespec ts;
 857
 858				skb_get_new_timestampns(skb, &ts);
 859				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 860					 sizeof(ts), &ts);
 861			} else {
 862				struct __kernel_old_timespec ts;
 863
 864				skb_get_timestampns(skb, &ts);
 865				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 866					 sizeof(ts), &ts);
 867			}
 868		}
 869	}
 870
 871	memset(&tss, 0, sizeof(tss));
 872	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 873	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 874		empty = 0;
 875	if (shhwtstamps &&
 876	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 877	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
 878		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
 879			ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
 880
 881		if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
 882					     tss.ts + 2)) {
 883			empty = 0;
 884
 885			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 886			    !skb_is_err_queue(skb))
 887				put_ts_pktinfo(msg, skb);
 888		}
 889	}
 890	if (!empty) {
 891		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 892			put_cmsg_scm_timestamping64(msg, &tss);
 893		else
 894			put_cmsg_scm_timestamping(msg, &tss);
 895
 896		if (skb_is_err_queue(skb) && skb->len &&
 897		    SKB_EXT_ERR(skb)->opt_stats)
 898			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 899				 skb->len, skb->data);
 900	}
 901}
 902EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 903
 904void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 905	struct sk_buff *skb)
 906{
 907	int ack;
 908
 909	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 910		return;
 911	if (!skb->wifi_acked_valid)
 912		return;
 913
 914	ack = skb->wifi_acked;
 915
 916	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 917}
 918EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 919
 920static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 921				   struct sk_buff *skb)
 922{
 923	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 924		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 925			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 926}
 927
 928void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 929	struct sk_buff *skb)
 930{
 931	sock_recv_timestamp(msg, sk, skb);
 932	sock_recv_drops(msg, sk, skb);
 933}
 934EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 935
 936INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 937					   size_t, int));
 938INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 939					    size_t, int));
 940static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 941				     int flags)
 942{
 943	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 944				  inet_recvmsg, sock, msg, msg_data_left(msg),
 945				  flags);
 946}
 947
 948/**
 949 *	sock_recvmsg - receive a message from @sock
 950 *	@sock: socket
 951 *	@msg: message to receive
 952 *	@flags: message flags
 953 *
 954 *	Receives @msg from @sock, passing through LSM. Returns the total number
 955 *	of bytes received, or an error.
 956 */
 957int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 958{
 959	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 960
 961	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 962}
 963EXPORT_SYMBOL(sock_recvmsg);
 964
 965/**
 966 *	kernel_recvmsg - Receive a message from a socket (kernel space)
 967 *	@sock: The socket to receive the message from
 968 *	@msg: Received message
 969 *	@vec: Input s/g array for message data
 970 *	@num: Size of input s/g array
 971 *	@size: Number of bytes to read
 972 *	@flags: Message flags (MSG_DONTWAIT, etc...)
 973 *
 974 *	On return the msg structure contains the scatter/gather array passed in the
 975 *	vec argument. The array is modified so that it consists of the unfilled
 976 *	portion of the original array.
 977 *
 978 *	The returned value is the total number of bytes received, or an error.
 979 */
 980
 981int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 982		   struct kvec *vec, size_t num, size_t size, int flags)
 983{
 984	msg->msg_control_is_user = false;
 985	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 986	return sock_recvmsg(sock, msg, flags);
 
 
 
 
 
 987}
 988EXPORT_SYMBOL(kernel_recvmsg);
 989
 990static ssize_t sock_sendpage(struct file *file, struct page *page,
 991			     int offset, size_t size, loff_t *ppos, int more)
 992{
 993	struct socket *sock;
 994	int flags;
 995
 996	sock = file->private_data;
 997
 998	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 999	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000	flags |= more;
1001
1002	return kernel_sendpage(sock, page, offset, size, flags);
1003}
1004
1005static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006				struct pipe_inode_info *pipe, size_t len,
1007				unsigned int flags)
1008{
1009	struct socket *sock = file->private_data;
1010
1011	if (unlikely(!sock->ops->splice_read))
1012		return generic_file_splice_read(file, ppos, pipe, len, flags);
1013
1014	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015}
1016
1017static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018{
1019	struct file *file = iocb->ki_filp;
1020	struct socket *sock = file->private_data;
1021	struct msghdr msg = {.msg_iter = *to,
1022			     .msg_iocb = iocb};
1023	ssize_t res;
1024
1025	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026		msg.msg_flags = MSG_DONTWAIT;
1027
1028	if (iocb->ki_pos != 0)
1029		return -ESPIPE;
1030
1031	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1032		return 0;
1033
1034	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035	*to = msg.msg_iter;
1036	return res;
1037}
1038
1039static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040{
1041	struct file *file = iocb->ki_filp;
1042	struct socket *sock = file->private_data;
1043	struct msghdr msg = {.msg_iter = *from,
1044			     .msg_iocb = iocb};
1045	ssize_t res;
1046
1047	if (iocb->ki_pos != 0)
1048		return -ESPIPE;
1049
1050	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051		msg.msg_flags = MSG_DONTWAIT;
1052
1053	if (sock->type == SOCK_SEQPACKET)
1054		msg.msg_flags |= MSG_EOR;
1055
1056	res = sock_sendmsg(sock, &msg);
1057	*from = msg.msg_iter;
1058	return res;
1059}
1060
1061/*
1062 * Atomic setting of ioctl hooks to avoid race
1063 * with module unload.
1064 */
1065
1066static DEFINE_MUTEX(br_ioctl_mutex);
1067static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068
1069void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1070{
1071	mutex_lock(&br_ioctl_mutex);
1072	br_ioctl_hook = hook;
1073	mutex_unlock(&br_ioctl_mutex);
1074}
1075EXPORT_SYMBOL(brioctl_set);
1076
1077static DEFINE_MUTEX(vlan_ioctl_mutex);
1078static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079
1080void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081{
1082	mutex_lock(&vlan_ioctl_mutex);
1083	vlan_ioctl_hook = hook;
1084	mutex_unlock(&vlan_ioctl_mutex);
1085}
1086EXPORT_SYMBOL(vlan_ioctl_set);
1087
 
 
 
 
 
 
 
 
 
 
 
1088static long sock_do_ioctl(struct net *net, struct socket *sock,
1089			  unsigned int cmd, unsigned long arg)
1090{
1091	int err;
1092	void __user *argp = (void __user *)arg;
1093
1094	err = sock->ops->ioctl(sock, cmd, arg);
1095
1096	/*
1097	 * If this ioctl is unknown try to hand it down
1098	 * to the NIC driver.
1099	 */
1100	if (err != -ENOIOCTLCMD)
1101		return err;
1102
1103	if (cmd == SIOCGIFCONF) {
1104		struct ifconf ifc;
1105		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1106			return -EFAULT;
1107		rtnl_lock();
1108		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1109		rtnl_unlock();
1110		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1111			err = -EFAULT;
1112	} else if (is_socket_ioctl_cmd(cmd)) {
1113		struct ifreq ifr;
1114		bool need_copyout;
1115		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1116			return -EFAULT;
1117		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1118		if (!err && need_copyout)
1119			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1120				return -EFAULT;
1121	} else {
1122		err = -ENOTTY;
1123	}
1124	return err;
1125}
1126
1127/*
1128 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1129 *	what to do with it - that's up to the protocol still.
1130 */
1131
 
 
 
 
 
 
1132static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1133{
1134	struct socket *sock;
1135	struct sock *sk;
1136	void __user *argp = (void __user *)arg;
1137	int pid, err;
1138	struct net *net;
1139
1140	sock = file->private_data;
1141	sk = sock->sk;
1142	net = sock_net(sk);
1143	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1144		struct ifreq ifr;
1145		bool need_copyout;
1146		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1147			return -EFAULT;
1148		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1149		if (!err && need_copyout)
1150			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1151				return -EFAULT;
1152	} else
1153#ifdef CONFIG_WEXT_CORE
1154	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1155		err = wext_handle_ioctl(net, cmd, argp);
1156	} else
1157#endif
1158		switch (cmd) {
1159		case FIOSETOWN:
1160		case SIOCSPGRP:
1161			err = -EFAULT;
1162			if (get_user(pid, (int __user *)argp))
1163				break;
1164			err = f_setown(sock->file, pid, 1);
1165			break;
1166		case FIOGETOWN:
1167		case SIOCGPGRP:
1168			err = put_user(f_getown(sock->file),
1169				       (int __user *)argp);
1170			break;
1171		case SIOCGIFBR:
1172		case SIOCSIFBR:
1173		case SIOCBRADDBR:
1174		case SIOCBRDELBR:
1175			err = -ENOPKG;
1176			if (!br_ioctl_hook)
1177				request_module("bridge");
1178
1179			mutex_lock(&br_ioctl_mutex);
1180			if (br_ioctl_hook)
1181				err = br_ioctl_hook(net, cmd, argp);
1182			mutex_unlock(&br_ioctl_mutex);
1183			break;
1184		case SIOCGIFVLAN:
1185		case SIOCSIFVLAN:
1186			err = -ENOPKG;
1187			if (!vlan_ioctl_hook)
1188				request_module("8021q");
1189
1190			mutex_lock(&vlan_ioctl_mutex);
1191			if (vlan_ioctl_hook)
1192				err = vlan_ioctl_hook(net, argp);
1193			mutex_unlock(&vlan_ioctl_mutex);
1194			break;
 
 
 
 
 
 
 
 
 
 
 
1195		case SIOCGSKNS:
1196			err = -EPERM;
1197			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1198				break;
1199
1200			err = open_related_ns(&net->ns, get_net_ns);
1201			break;
1202		case SIOCGSTAMP_OLD:
1203		case SIOCGSTAMPNS_OLD:
1204			if (!sock->ops->gettstamp) {
1205				err = -ENOIOCTLCMD;
1206				break;
1207			}
1208			err = sock->ops->gettstamp(sock, argp,
1209						   cmd == SIOCGSTAMP_OLD,
1210						   !IS_ENABLED(CONFIG_64BIT));
1211			break;
1212		case SIOCGSTAMP_NEW:
1213		case SIOCGSTAMPNS_NEW:
1214			if (!sock->ops->gettstamp) {
1215				err = -ENOIOCTLCMD;
1216				break;
1217			}
1218			err = sock->ops->gettstamp(sock, argp,
1219						   cmd == SIOCGSTAMP_NEW,
1220						   false);
1221			break;
1222		default:
1223			err = sock_do_ioctl(net, sock, cmd, arg);
1224			break;
1225		}
1226	return err;
1227}
1228
1229/**
1230 *	sock_create_lite - creates a socket
1231 *	@family: protocol family (AF_INET, ...)
1232 *	@type: communication type (SOCK_STREAM, ...)
1233 *	@protocol: protocol (0, ...)
1234 *	@res: new socket
1235 *
1236 *	Creates a new socket and assigns it to @res, passing through LSM.
1237 *	The new socket initialization is not complete, see kernel_accept().
1238 *	Returns 0 or an error. On failure @res is set to %NULL.
1239 *	This function internally uses GFP_KERNEL.
1240 */
1241
1242int sock_create_lite(int family, int type, int protocol, struct socket **res)
1243{
1244	int err;
1245	struct socket *sock = NULL;
1246
1247	err = security_socket_create(family, type, protocol, 1);
1248	if (err)
1249		goto out;
1250
1251	sock = sock_alloc();
1252	if (!sock) {
1253		err = -ENOMEM;
1254		goto out;
1255	}
1256
1257	sock->type = type;
1258	err = security_socket_post_create(sock, family, type, protocol, 1);
1259	if (err)
1260		goto out_release;
1261
1262out:
1263	*res = sock;
1264	return err;
1265out_release:
1266	sock_release(sock);
1267	sock = NULL;
1268	goto out;
1269}
1270EXPORT_SYMBOL(sock_create_lite);
1271
1272/* No kernel lock held - perfect */
1273static __poll_t sock_poll(struct file *file, poll_table *wait)
1274{
1275	struct socket *sock = file->private_data;
1276	__poll_t events = poll_requested_events(wait), flag = 0;
1277
1278	if (!sock->ops->poll)
1279		return 0;
 
 
1280
1281	if (sk_can_busy_loop(sock->sk)) {
1282		/* poll once if requested by the syscall */
1283		if (events & POLL_BUSY_LOOP)
1284			sk_busy_loop(sock->sk, 1);
1285
1286		/* if this socket can poll_ll, tell the system call */
1287		flag = POLL_BUSY_LOOP;
 
1288	}
1289
1290	return sock->ops->poll(file, sock, wait) | flag;
1291}
1292
1293static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1294{
1295	struct socket *sock = file->private_data;
1296
1297	return sock->ops->mmap(file, sock, vma);
1298}
1299
1300static int sock_close(struct inode *inode, struct file *filp)
1301{
1302	__sock_release(SOCKET_I(inode), inode);
1303	return 0;
1304}
1305
1306/*
1307 *	Update the socket async list
1308 *
1309 *	Fasync_list locking strategy.
1310 *
1311 *	1. fasync_list is modified only under process context socket lock
1312 *	   i.e. under semaphore.
1313 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1314 *	   or under socket lock
1315 */
1316
1317static int sock_fasync(int fd, struct file *filp, int on)
1318{
1319	struct socket *sock = filp->private_data;
1320	struct sock *sk = sock->sk;
1321	struct socket_wq *wq = &sock->wq;
1322
1323	if (sk == NULL)
1324		return -EINVAL;
1325
1326	lock_sock(sk);
 
1327	fasync_helper(fd, filp, on, &wq->fasync_list);
1328
1329	if (!wq->fasync_list)
1330		sock_reset_flag(sk, SOCK_FASYNC);
1331	else
1332		sock_set_flag(sk, SOCK_FASYNC);
1333
1334	release_sock(sk);
1335	return 0;
1336}
1337
1338/* This function may be called only under rcu_lock */
1339
1340int sock_wake_async(struct socket_wq *wq, int how, int band)
1341{
1342	if (!wq || !wq->fasync_list)
1343		return -1;
1344
1345	switch (how) {
1346	case SOCK_WAKE_WAITD:
1347		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1348			break;
1349		goto call_kill;
1350	case SOCK_WAKE_SPACE:
1351		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1352			break;
1353		fallthrough;
1354	case SOCK_WAKE_IO:
1355call_kill:
1356		kill_fasync(&wq->fasync_list, SIGIO, band);
1357		break;
1358	case SOCK_WAKE_URG:
1359		kill_fasync(&wq->fasync_list, SIGURG, band);
1360	}
1361
1362	return 0;
1363}
1364EXPORT_SYMBOL(sock_wake_async);
1365
1366/**
1367 *	__sock_create - creates a socket
1368 *	@net: net namespace
1369 *	@family: protocol family (AF_INET, ...)
1370 *	@type: communication type (SOCK_STREAM, ...)
1371 *	@protocol: protocol (0, ...)
1372 *	@res: new socket
1373 *	@kern: boolean for kernel space sockets
1374 *
1375 *	Creates a new socket and assigns it to @res, passing through LSM.
1376 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1377 *	be set to true if the socket resides in kernel space.
1378 *	This function internally uses GFP_KERNEL.
1379 */
1380
1381int __sock_create(struct net *net, int family, int type, int protocol,
1382			 struct socket **res, int kern)
1383{
1384	int err;
1385	struct socket *sock;
1386	const struct net_proto_family *pf;
1387
1388	/*
1389	 *      Check protocol is in range
1390	 */
1391	if (family < 0 || family >= NPROTO)
1392		return -EAFNOSUPPORT;
1393	if (type < 0 || type >= SOCK_MAX)
1394		return -EINVAL;
1395
1396	/* Compatibility.
1397
1398	   This uglymoron is moved from INET layer to here to avoid
1399	   deadlock in module load.
1400	 */
1401	if (family == PF_INET && type == SOCK_PACKET) {
1402		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1403			     current->comm);
1404		family = PF_PACKET;
1405	}
1406
1407	err = security_socket_create(family, type, protocol, kern);
1408	if (err)
1409		return err;
1410
1411	/*
1412	 *	Allocate the socket and allow the family to set things up. if
1413	 *	the protocol is 0, the family is instructed to select an appropriate
1414	 *	default.
1415	 */
1416	sock = sock_alloc();
1417	if (!sock) {
1418		net_warn_ratelimited("socket: no more sockets\n");
1419		return -ENFILE;	/* Not exactly a match, but its the
1420				   closest posix thing */
1421	}
1422
1423	sock->type = type;
1424
1425#ifdef CONFIG_MODULES
1426	/* Attempt to load a protocol module if the find failed.
1427	 *
1428	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1429	 * requested real, full-featured networking support upon configuration.
1430	 * Otherwise module support will break!
1431	 */
1432	if (rcu_access_pointer(net_families[family]) == NULL)
1433		request_module("net-pf-%d", family);
1434#endif
1435
1436	rcu_read_lock();
1437	pf = rcu_dereference(net_families[family]);
1438	err = -EAFNOSUPPORT;
1439	if (!pf)
1440		goto out_release;
1441
1442	/*
1443	 * We will call the ->create function, that possibly is in a loadable
1444	 * module, so we have to bump that loadable module refcnt first.
1445	 */
1446	if (!try_module_get(pf->owner))
1447		goto out_release;
1448
1449	/* Now protected by module ref count */
1450	rcu_read_unlock();
1451
1452	err = pf->create(net, sock, protocol, kern);
1453	if (err < 0)
1454		goto out_module_put;
1455
1456	/*
1457	 * Now to bump the refcnt of the [loadable] module that owns this
1458	 * socket at sock_release time we decrement its refcnt.
1459	 */
1460	if (!try_module_get(sock->ops->owner))
1461		goto out_module_busy;
1462
1463	/*
1464	 * Now that we're done with the ->create function, the [loadable]
1465	 * module can have its refcnt decremented
1466	 */
1467	module_put(pf->owner);
1468	err = security_socket_post_create(sock, family, type, protocol, kern);
1469	if (err)
1470		goto out_sock_release;
1471	*res = sock;
1472
1473	return 0;
1474
1475out_module_busy:
1476	err = -EAFNOSUPPORT;
1477out_module_put:
1478	sock->ops = NULL;
1479	module_put(pf->owner);
1480out_sock_release:
1481	sock_release(sock);
1482	return err;
1483
1484out_release:
1485	rcu_read_unlock();
1486	goto out_sock_release;
1487}
1488EXPORT_SYMBOL(__sock_create);
1489
1490/**
1491 *	sock_create - creates a socket
1492 *	@family: protocol family (AF_INET, ...)
1493 *	@type: communication type (SOCK_STREAM, ...)
1494 *	@protocol: protocol (0, ...)
1495 *	@res: new socket
1496 *
1497 *	A wrapper around __sock_create().
1498 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1499 */
1500
1501int sock_create(int family, int type, int protocol, struct socket **res)
1502{
1503	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1504}
1505EXPORT_SYMBOL(sock_create);
1506
1507/**
1508 *	sock_create_kern - creates a socket (kernel space)
1509 *	@net: net namespace
1510 *	@family: protocol family (AF_INET, ...)
1511 *	@type: communication type (SOCK_STREAM, ...)
1512 *	@protocol: protocol (0, ...)
1513 *	@res: new socket
1514 *
1515 *	A wrapper around __sock_create().
1516 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1517 */
1518
1519int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1520{
1521	return __sock_create(net, family, type, protocol, res, 1);
1522}
1523EXPORT_SYMBOL(sock_create_kern);
1524
1525int __sys_socket(int family, int type, int protocol)
1526{
1527	int retval;
1528	struct socket *sock;
1529	int flags;
1530
1531	/* Check the SOCK_* constants for consistency.  */
1532	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1533	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1534	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1535	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1536
1537	flags = type & ~SOCK_TYPE_MASK;
1538	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1539		return -EINVAL;
1540	type &= SOCK_TYPE_MASK;
1541
1542	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1543		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1544
1545	retval = sock_create(family, type, protocol, &sock);
1546	if (retval < 0)
1547		return retval;
1548
1549	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1550}
1551
1552SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1553{
1554	return __sys_socket(family, type, protocol);
1555}
1556
1557/*
1558 *	Create a pair of connected sockets.
1559 */
1560
1561int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1562{
1563	struct socket *sock1, *sock2;
1564	int fd1, fd2, err;
1565	struct file *newfile1, *newfile2;
1566	int flags;
1567
1568	flags = type & ~SOCK_TYPE_MASK;
1569	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570		return -EINVAL;
1571	type &= SOCK_TYPE_MASK;
1572
1573	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1574		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1575
1576	/*
1577	 * reserve descriptors and make sure we won't fail
1578	 * to return them to userland.
1579	 */
1580	fd1 = get_unused_fd_flags(flags);
1581	if (unlikely(fd1 < 0))
1582		return fd1;
1583
1584	fd2 = get_unused_fd_flags(flags);
1585	if (unlikely(fd2 < 0)) {
1586		put_unused_fd(fd1);
1587		return fd2;
1588	}
1589
1590	err = put_user(fd1, &usockvec[0]);
1591	if (err)
1592		goto out;
1593
1594	err = put_user(fd2, &usockvec[1]);
1595	if (err)
1596		goto out;
1597
1598	/*
1599	 * Obtain the first socket and check if the underlying protocol
1600	 * supports the socketpair call.
1601	 */
1602
1603	err = sock_create(family, type, protocol, &sock1);
1604	if (unlikely(err < 0))
1605		goto out;
1606
1607	err = sock_create(family, type, protocol, &sock2);
1608	if (unlikely(err < 0)) {
1609		sock_release(sock1);
1610		goto out;
1611	}
1612
1613	err = security_socket_socketpair(sock1, sock2);
1614	if (unlikely(err)) {
1615		sock_release(sock2);
1616		sock_release(sock1);
1617		goto out;
1618	}
1619
1620	err = sock1->ops->socketpair(sock1, sock2);
1621	if (unlikely(err < 0)) {
1622		sock_release(sock2);
1623		sock_release(sock1);
1624		goto out;
1625	}
1626
1627	newfile1 = sock_alloc_file(sock1, flags, NULL);
1628	if (IS_ERR(newfile1)) {
1629		err = PTR_ERR(newfile1);
1630		sock_release(sock2);
1631		goto out;
1632	}
1633
1634	newfile2 = sock_alloc_file(sock2, flags, NULL);
1635	if (IS_ERR(newfile2)) {
1636		err = PTR_ERR(newfile2);
1637		fput(newfile1);
1638		goto out;
1639	}
1640
1641	audit_fd_pair(fd1, fd2);
1642
1643	fd_install(fd1, newfile1);
1644	fd_install(fd2, newfile2);
1645	return 0;
1646
1647out:
1648	put_unused_fd(fd2);
1649	put_unused_fd(fd1);
1650	return err;
1651}
1652
1653SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1654		int __user *, usockvec)
1655{
1656	return __sys_socketpair(family, type, protocol, usockvec);
1657}
1658
1659/*
1660 *	Bind a name to a socket. Nothing much to do here since it's
1661 *	the protocol's responsibility to handle the local address.
1662 *
1663 *	We move the socket address to kernel space before we call
1664 *	the protocol layer (having also checked the address is ok).
1665 */
1666
1667int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1668{
1669	struct socket *sock;
1670	struct sockaddr_storage address;
1671	int err, fput_needed;
1672
1673	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674	if (sock) {
1675		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1676		if (!err) {
1677			err = security_socket_bind(sock,
1678						   (struct sockaddr *)&address,
1679						   addrlen);
1680			if (!err)
1681				err = sock->ops->bind(sock,
1682						      (struct sockaddr *)
1683						      &address, addrlen);
1684		}
1685		fput_light(sock->file, fput_needed);
1686	}
1687	return err;
1688}
1689
1690SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1691{
1692	return __sys_bind(fd, umyaddr, addrlen);
1693}
1694
1695/*
1696 *	Perform a listen. Basically, we allow the protocol to do anything
1697 *	necessary for a listen, and if that works, we mark the socket as
1698 *	ready for listening.
1699 */
1700
1701int __sys_listen(int fd, int backlog)
1702{
1703	struct socket *sock;
1704	int err, fput_needed;
1705	int somaxconn;
1706
1707	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708	if (sock) {
1709		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1710		if ((unsigned int)backlog > somaxconn)
1711			backlog = somaxconn;
1712
1713		err = security_socket_listen(sock, backlog);
1714		if (!err)
1715			err = sock->ops->listen(sock, backlog);
1716
1717		fput_light(sock->file, fput_needed);
1718	}
1719	return err;
1720}
1721
1722SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1723{
1724	return __sys_listen(fd, backlog);
1725}
1726
1727int __sys_accept4_file(struct file *file, unsigned file_flags,
1728		       struct sockaddr __user *upeer_sockaddr,
1729		       int __user *upeer_addrlen, int flags,
1730		       unsigned long nofile)
 
 
 
 
 
 
 
 
 
 
1731{
1732	struct socket *sock, *newsock;
1733	struct file *newfile;
1734	int err, len, newfd;
1735	struct sockaddr_storage address;
1736
1737	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1738		return -EINVAL;
1739
1740	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1741		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1742
1743	sock = sock_from_file(file);
1744	if (!sock) {
1745		err = -ENOTSOCK;
1746		goto out;
1747	}
1748
1749	err = -ENFILE;
1750	newsock = sock_alloc();
1751	if (!newsock)
1752		goto out;
1753
1754	newsock->type = sock->type;
1755	newsock->ops = sock->ops;
1756
1757	/*
1758	 * We don't need try_module_get here, as the listening socket (sock)
1759	 * has the protocol module (sock->ops->owner) held.
1760	 */
1761	__module_get(newsock->ops->owner);
1762
1763	newfd = __get_unused_fd_flags(flags, nofile);
1764	if (unlikely(newfd < 0)) {
1765		err = newfd;
1766		sock_release(newsock);
1767		goto out;
1768	}
1769	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1770	if (IS_ERR(newfile)) {
1771		err = PTR_ERR(newfile);
1772		put_unused_fd(newfd);
1773		goto out;
1774	}
1775
1776	err = security_socket_accept(sock, newsock);
1777	if (err)
1778		goto out_fd;
1779
1780	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1781					false);
1782	if (err < 0)
1783		goto out_fd;
1784
1785	if (upeer_sockaddr) {
1786		len = newsock->ops->getname(newsock,
1787					(struct sockaddr *)&address, 2);
1788		if (len < 0) {
1789			err = -ECONNABORTED;
1790			goto out_fd;
1791		}
1792		err = move_addr_to_user(&address,
1793					len, upeer_sockaddr, upeer_addrlen);
1794		if (err < 0)
1795			goto out_fd;
1796	}
1797
1798	/* File flags are not inherited via accept() unlike another OSes. */
1799
1800	fd_install(newfd, newfile);
1801	err = newfd;
 
 
 
1802out:
1803	return err;
1804out_fd:
1805	fput(newfile);
1806	put_unused_fd(newfd);
1807	goto out;
1808
1809}
1810
1811/*
1812 *	For accept, we attempt to create a new socket, set up the link
1813 *	with the client, wake up the client, then return the new
1814 *	connected fd. We collect the address of the connector in kernel
1815 *	space and move it to user at the very end. This is unclean because
1816 *	we open the socket then return an error.
1817 *
1818 *	1003.1g adds the ability to recvmsg() to query connection pending
1819 *	status to recvmsg. We need to add that support in a way thats
1820 *	clean when we restructure accept also.
1821 */
1822
1823int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1824		  int __user *upeer_addrlen, int flags)
1825{
1826	int ret = -EBADF;
1827	struct fd f;
1828
1829	f = fdget(fd);
1830	if (f.file) {
1831		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1832						upeer_addrlen, flags,
1833						rlimit(RLIMIT_NOFILE));
1834		fdput(f);
1835	}
1836
1837	return ret;
1838}
1839
1840SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1841		int __user *, upeer_addrlen, int, flags)
1842{
1843	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1844}
1845
1846SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1847		int __user *, upeer_addrlen)
1848{
1849	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1850}
1851
1852/*
1853 *	Attempt to connect to a socket with the server address.  The address
1854 *	is in user space so we verify it is OK and move it to kernel space.
1855 *
1856 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1857 *	break bindings
1858 *
1859 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1860 *	other SEQPACKET protocols that take time to connect() as it doesn't
1861 *	include the -EINPROGRESS status for such sockets.
1862 */
1863
1864int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1865		       int addrlen, int file_flags)
1866{
1867	struct socket *sock;
1868	int err;
 
1869
1870	sock = sock_from_file(file);
1871	if (!sock) {
1872		err = -ENOTSOCK;
1873		goto out;
1874	}
 
 
1875
1876	err =
1877	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1878	if (err)
1879		goto out;
1880
1881	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1882				 sock->file->f_flags | file_flags);
 
 
1883out:
1884	return err;
1885}
1886
1887int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1888{
1889	int ret = -EBADF;
1890	struct fd f;
1891
1892	f = fdget(fd);
1893	if (f.file) {
1894		struct sockaddr_storage address;
1895
1896		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1897		if (!ret)
1898			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1899		fdput(f);
1900	}
1901
1902	return ret;
1903}
1904
1905SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1906		int, addrlen)
1907{
1908	return __sys_connect(fd, uservaddr, addrlen);
1909}
1910
1911/*
1912 *	Get the local address ('name') of a socket object. Move the obtained
1913 *	name to user space.
1914 */
1915
1916int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1917		      int __user *usockaddr_len)
1918{
1919	struct socket *sock;
1920	struct sockaddr_storage address;
1921	int err, fput_needed;
1922
1923	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924	if (!sock)
1925		goto out;
1926
1927	err = security_socket_getsockname(sock);
1928	if (err)
1929		goto out_put;
1930
1931	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1932	if (err < 0)
1933		goto out_put;
1934        /* "err" is actually length in this case */
1935	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1936
1937out_put:
1938	fput_light(sock->file, fput_needed);
1939out:
1940	return err;
1941}
1942
1943SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1944		int __user *, usockaddr_len)
1945{
1946	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1947}
1948
1949/*
1950 *	Get the remote address ('name') of a socket object. Move the obtained
1951 *	name to user space.
1952 */
1953
1954int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1955		      int __user *usockaddr_len)
1956{
1957	struct socket *sock;
1958	struct sockaddr_storage address;
1959	int err, fput_needed;
1960
1961	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962	if (sock != NULL) {
1963		err = security_socket_getpeername(sock);
1964		if (err) {
1965			fput_light(sock->file, fput_needed);
1966			return err;
1967		}
1968
1969		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1970		if (err >= 0)
1971			/* "err" is actually length in this case */
1972			err = move_addr_to_user(&address, err, usockaddr,
1973						usockaddr_len);
1974		fput_light(sock->file, fput_needed);
1975	}
1976	return err;
1977}
1978
1979SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1980		int __user *, usockaddr_len)
1981{
1982	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1983}
1984
1985/*
1986 *	Send a datagram to a given address. We move the address into kernel
1987 *	space and check the user space data area is readable before invoking
1988 *	the protocol.
1989 */
1990int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1991		 struct sockaddr __user *addr,  int addr_len)
1992{
1993	struct socket *sock;
1994	struct sockaddr_storage address;
1995	int err;
1996	struct msghdr msg;
1997	struct iovec iov;
1998	int fput_needed;
1999
2000	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2001	if (unlikely(err))
2002		return err;
2003	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2004	if (!sock)
2005		goto out;
2006
2007	msg.msg_name = NULL;
2008	msg.msg_control = NULL;
2009	msg.msg_controllen = 0;
2010	msg.msg_namelen = 0;
2011	if (addr) {
2012		err = move_addr_to_kernel(addr, addr_len, &address);
2013		if (err < 0)
2014			goto out_put;
2015		msg.msg_name = (struct sockaddr *)&address;
2016		msg.msg_namelen = addr_len;
2017	}
2018	if (sock->file->f_flags & O_NONBLOCK)
2019		flags |= MSG_DONTWAIT;
2020	msg.msg_flags = flags;
2021	err = sock_sendmsg(sock, &msg);
2022
2023out_put:
2024	fput_light(sock->file, fput_needed);
2025out:
2026	return err;
2027}
2028
2029SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2030		unsigned int, flags, struct sockaddr __user *, addr,
2031		int, addr_len)
2032{
2033	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2034}
2035
2036/*
2037 *	Send a datagram down a socket.
2038 */
2039
2040SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2041		unsigned int, flags)
2042{
2043	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2044}
2045
2046/*
2047 *	Receive a frame from the socket and optionally record the address of the
2048 *	sender. We verify the buffers are writable and if needed move the
2049 *	sender address from kernel to user space.
2050 */
2051int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2052		   struct sockaddr __user *addr, int __user *addr_len)
2053{
2054	struct socket *sock;
2055	struct iovec iov;
2056	struct msghdr msg;
2057	struct sockaddr_storage address;
2058	int err, err2;
2059	int fput_needed;
2060
2061	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2062	if (unlikely(err))
2063		return err;
2064	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065	if (!sock)
2066		goto out;
2067
2068	msg.msg_control = NULL;
2069	msg.msg_controllen = 0;
2070	/* Save some cycles and don't copy the address if not needed */
2071	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2072	/* We assume all kernel code knows the size of sockaddr_storage */
2073	msg.msg_namelen = 0;
2074	msg.msg_iocb = NULL;
2075	msg.msg_flags = 0;
2076	if (sock->file->f_flags & O_NONBLOCK)
2077		flags |= MSG_DONTWAIT;
2078	err = sock_recvmsg(sock, &msg, flags);
2079
2080	if (err >= 0 && addr != NULL) {
2081		err2 = move_addr_to_user(&address,
2082					 msg.msg_namelen, addr, addr_len);
2083		if (err2 < 0)
2084			err = err2;
2085	}
2086
2087	fput_light(sock->file, fput_needed);
2088out:
2089	return err;
2090}
2091
2092SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2093		unsigned int, flags, struct sockaddr __user *, addr,
2094		int __user *, addr_len)
2095{
2096	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2097}
2098
2099/*
2100 *	Receive a datagram from a socket.
2101 */
2102
2103SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2104		unsigned int, flags)
2105{
2106	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2107}
2108
2109static bool sock_use_custom_sol_socket(const struct socket *sock)
2110{
2111	const struct sock *sk = sock->sk;
2112
2113	/* Use sock->ops->setsockopt() for MPTCP */
2114	return IS_ENABLED(CONFIG_MPTCP) &&
2115	       sk->sk_protocol == IPPROTO_MPTCP &&
2116	       sk->sk_type == SOCK_STREAM &&
2117	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2118}
2119
2120/*
2121 *	Set a socket option. Because we don't know the option lengths we have
2122 *	to pass the user mode parameter for the protocols to sort out.
2123 */
2124int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2125		int optlen)
 
2126{
2127	sockptr_t optval = USER_SOCKPTR(user_optval);
2128	char *kernel_optval = NULL;
2129	int err, fput_needed;
2130	struct socket *sock;
2131
2132	if (optlen < 0)
2133		return -EINVAL;
2134
2135	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136	if (!sock)
2137		return err;
2138
2139	err = security_socket_setsockopt(sock, level, optname);
2140	if (err)
2141		goto out_put;
2142
2143	if (!in_compat_syscall())
2144		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2145						     user_optval, &optlen,
2146						     &kernel_optval);
2147	if (err < 0)
2148		goto out_put;
2149	if (err > 0) {
2150		err = 0;
2151		goto out_put;
2152	}
2153
2154	if (kernel_optval)
2155		optval = KERNEL_SOCKPTR(kernel_optval);
2156	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2157		err = sock_setsockopt(sock, level, optname, optval, optlen);
2158	else if (unlikely(!sock->ops->setsockopt))
2159		err = -EOPNOTSUPP;
2160	else
2161		err = sock->ops->setsockopt(sock, level, optname, optval,
2162					    optlen);
2163	kfree(kernel_optval);
 
 
 
2164out_put:
2165	fput_light(sock->file, fput_needed);
 
2166	return err;
2167}
2168
2169SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2170		char __user *, optval, int, optlen)
2171{
2172	return __sys_setsockopt(fd, level, optname, optval, optlen);
2173}
2174
2175INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2176							 int optname));
2177
2178/*
2179 *	Get a socket option. Because we don't know the option lengths we have
2180 *	to pass a user mode parameter for the protocols to sort out.
2181 */
2182int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2183		int __user *optlen)
 
2184{
2185	int err, fput_needed;
2186	struct socket *sock;
2187	int max_optlen;
2188
2189	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190	if (!sock)
2191		return err;
2192
2193	err = security_socket_getsockopt(sock, level, optname);
2194	if (err)
2195		goto out_put;
2196
2197	if (!in_compat_syscall())
2198		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2199
2200	if (level == SOL_SOCKET)
2201		err = sock_getsockopt(sock, level, optname, optval, optlen);
2202	else if (unlikely(!sock->ops->getsockopt))
2203		err = -EOPNOTSUPP;
2204	else
2205		err = sock->ops->getsockopt(sock, level, optname, optval,
2206					    optlen);
2207
2208	if (!in_compat_syscall())
2209		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2210						     optval, optlen, max_optlen,
2211						     err);
2212out_put:
2213	fput_light(sock->file, fput_needed);
 
2214	return err;
2215}
2216
2217SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2218		char __user *, optval, int __user *, optlen)
2219{
2220	return __sys_getsockopt(fd, level, optname, optval, optlen);
2221}
2222
2223/*
2224 *	Shutdown a socket.
2225 */
2226
2227int __sys_shutdown_sock(struct socket *sock, int how)
2228{
2229	int err;
2230
2231	err = security_socket_shutdown(sock, how);
2232	if (!err)
2233		err = sock->ops->shutdown(sock, how);
2234
2235	return err;
2236}
2237
2238int __sys_shutdown(int fd, int how)
2239{
2240	int err, fput_needed;
2241	struct socket *sock;
2242
2243	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2244	if (sock != NULL) {
2245		err = __sys_shutdown_sock(sock, how);
 
 
2246		fput_light(sock->file, fput_needed);
2247	}
2248	return err;
2249}
2250
2251SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2252{
2253	return __sys_shutdown(fd, how);
2254}
2255
2256/* A couple of helpful macros for getting the address of the 32/64 bit
2257 * fields which are the same type (int / unsigned) on our platforms.
2258 */
2259#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2260#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2261#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2262
2263struct used_address {
2264	struct sockaddr_storage name;
2265	unsigned int name_len;
2266};
2267
2268int __copy_msghdr_from_user(struct msghdr *kmsg,
2269			    struct user_msghdr __user *umsg,
2270			    struct sockaddr __user **save_addr,
2271			    struct iovec __user **uiov, size_t *nsegs)
2272{
2273	struct user_msghdr msg;
2274	ssize_t err;
2275
2276	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2277		return -EFAULT;
2278
2279	kmsg->msg_control_is_user = true;
2280	kmsg->msg_control_user = msg.msg_control;
2281	kmsg->msg_controllen = msg.msg_controllen;
2282	kmsg->msg_flags = msg.msg_flags;
2283
2284	kmsg->msg_namelen = msg.msg_namelen;
2285	if (!msg.msg_name)
2286		kmsg->msg_namelen = 0;
2287
2288	if (kmsg->msg_namelen < 0)
2289		return -EINVAL;
2290
2291	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2292		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2293
2294	if (save_addr)
2295		*save_addr = msg.msg_name;
2296
2297	if (msg.msg_name && kmsg->msg_namelen) {
2298		if (!save_addr) {
2299			err = move_addr_to_kernel(msg.msg_name,
2300						  kmsg->msg_namelen,
2301						  kmsg->msg_name);
2302			if (err < 0)
2303				return err;
2304		}
2305	} else {
2306		kmsg->msg_name = NULL;
2307		kmsg->msg_namelen = 0;
2308	}
2309
2310	if (msg.msg_iovlen > UIO_MAXIOV)
2311		return -EMSGSIZE;
2312
2313	kmsg->msg_iocb = NULL;
2314	*uiov = msg.msg_iov;
2315	*nsegs = msg.msg_iovlen;
2316	return 0;
2317}
2318
2319static int copy_msghdr_from_user(struct msghdr *kmsg,
2320				 struct user_msghdr __user *umsg,
2321				 struct sockaddr __user **save_addr,
2322				 struct iovec **iov)
2323{
2324	struct user_msghdr msg;
2325	ssize_t err;
2326
2327	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2328					&msg.msg_iovlen);
2329	if (err)
2330		return err;
2331
2332	err = import_iovec(save_addr ? READ : WRITE,
2333			    msg.msg_iov, msg.msg_iovlen,
2334			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2335	return err < 0 ? err : 0;
2336}
2337
2338static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2339			   unsigned int flags, struct used_address *used_address,
2340			   unsigned int allowed_msghdr_flags)
 
2341{
 
 
 
 
2342	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2343				__aligned(sizeof(__kernel_size_t));
2344	/* 20 is size of ipv6_pktinfo */
2345	unsigned char *ctl_buf = ctl;
2346	int ctl_len;
2347	ssize_t err;
2348
 
 
 
 
 
 
 
 
 
2349	err = -ENOBUFS;
2350
2351	if (msg_sys->msg_controllen > INT_MAX)
2352		goto out;
2353	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2354	ctl_len = msg_sys->msg_controllen;
2355	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2356		err =
2357		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2358						     sizeof(ctl));
2359		if (err)
2360			goto out;
2361		ctl_buf = msg_sys->msg_control;
2362		ctl_len = msg_sys->msg_controllen;
2363	} else if (ctl_len) {
2364		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2365			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2366		if (ctl_len > sizeof(ctl)) {
2367			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2368			if (ctl_buf == NULL)
2369				goto out;
2370		}
2371		err = -EFAULT;
2372		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
 
 
 
 
 
 
 
2373			goto out_freectl;
2374		msg_sys->msg_control = ctl_buf;
2375		msg_sys->msg_control_is_user = false;
2376	}
2377	msg_sys->msg_flags = flags;
2378
2379	if (sock->file->f_flags & O_NONBLOCK)
2380		msg_sys->msg_flags |= MSG_DONTWAIT;
2381	/*
2382	 * If this is sendmmsg() and current destination address is same as
2383	 * previously succeeded address, omit asking LSM's decision.
2384	 * used_address->name_len is initialized to UINT_MAX so that the first
2385	 * destination address never matches.
2386	 */
2387	if (used_address && msg_sys->msg_name &&
2388	    used_address->name_len == msg_sys->msg_namelen &&
2389	    !memcmp(&used_address->name, msg_sys->msg_name,
2390		    used_address->name_len)) {
2391		err = sock_sendmsg_nosec(sock, msg_sys);
2392		goto out_freectl;
2393	}
2394	err = sock_sendmsg(sock, msg_sys);
2395	/*
2396	 * If this is sendmmsg() and sending to current destination address was
2397	 * successful, remember it.
2398	 */
2399	if (used_address && err >= 0) {
2400		used_address->name_len = msg_sys->msg_namelen;
2401		if (msg_sys->msg_name)
2402			memcpy(&used_address->name, msg_sys->msg_name,
2403			       used_address->name_len);
2404	}
2405
2406out_freectl:
2407	if (ctl_buf != ctl)
2408		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2409out:
2410	return err;
2411}
2412
2413int sendmsg_copy_msghdr(struct msghdr *msg,
2414			struct user_msghdr __user *umsg, unsigned flags,
2415			struct iovec **iov)
2416{
2417	int err;
2418
2419	if (flags & MSG_CMSG_COMPAT) {
2420		struct compat_msghdr __user *msg_compat;
2421
2422		msg_compat = (struct compat_msghdr __user *) umsg;
2423		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2424	} else {
2425		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2426	}
2427	if (err < 0)
2428		return err;
2429
2430	return 0;
2431}
2432
2433static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2434			 struct msghdr *msg_sys, unsigned int flags,
2435			 struct used_address *used_address,
2436			 unsigned int allowed_msghdr_flags)
2437{
2438	struct sockaddr_storage address;
2439	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2440	ssize_t err;
2441
2442	msg_sys->msg_name = &address;
2443
2444	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2445	if (err < 0)
2446		return err;
2447
2448	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2449				allowed_msghdr_flags);
2450	kfree(iov);
2451	return err;
2452}
2453
2454/*
2455 *	BSD sendmsg interface
2456 */
2457long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2458			unsigned int flags)
2459{
2460	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2461}
2462
2463long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2464		   bool forbid_cmsg_compat)
2465{
2466	int fput_needed, err;
2467	struct msghdr msg_sys;
2468	struct socket *sock;
2469
2470	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2471		return -EINVAL;
2472
2473	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2474	if (!sock)
2475		goto out;
2476
2477	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2478
2479	fput_light(sock->file, fput_needed);
2480out:
2481	return err;
2482}
2483
2484SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2485{
2486	return __sys_sendmsg(fd, msg, flags, true);
2487}
2488
2489/*
2490 *	Linux sendmmsg interface
2491 */
2492
2493int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2494		   unsigned int flags, bool forbid_cmsg_compat)
2495{
2496	int fput_needed, err, datagrams;
2497	struct socket *sock;
2498	struct mmsghdr __user *entry;
2499	struct compat_mmsghdr __user *compat_entry;
2500	struct msghdr msg_sys;
2501	struct used_address used_address;
2502	unsigned int oflags = flags;
2503
2504	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2505		return -EINVAL;
2506
2507	if (vlen > UIO_MAXIOV)
2508		vlen = UIO_MAXIOV;
2509
2510	datagrams = 0;
2511
2512	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2513	if (!sock)
2514		return err;
2515
2516	used_address.name_len = UINT_MAX;
2517	entry = mmsg;
2518	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2519	err = 0;
2520	flags |= MSG_BATCH;
2521
2522	while (datagrams < vlen) {
2523		if (datagrams == vlen - 1)
2524			flags = oflags;
2525
2526		if (MSG_CMSG_COMPAT & flags) {
2527			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2528					     &msg_sys, flags, &used_address, MSG_EOR);
2529			if (err < 0)
2530				break;
2531			err = __put_user(err, &compat_entry->msg_len);
2532			++compat_entry;
2533		} else {
2534			err = ___sys_sendmsg(sock,
2535					     (struct user_msghdr __user *)entry,
2536					     &msg_sys, flags, &used_address, MSG_EOR);
2537			if (err < 0)
2538				break;
2539			err = put_user(err, &entry->msg_len);
2540			++entry;
2541		}
2542
2543		if (err)
2544			break;
2545		++datagrams;
2546		if (msg_data_left(&msg_sys))
2547			break;
2548		cond_resched();
2549	}
2550
2551	fput_light(sock->file, fput_needed);
2552
2553	/* We only return an error if no datagrams were able to be sent */
2554	if (datagrams != 0)
2555		return datagrams;
2556
2557	return err;
2558}
2559
2560SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2561		unsigned int, vlen, unsigned int, flags)
2562{
2563	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2564}
2565
2566int recvmsg_copy_msghdr(struct msghdr *msg,
2567			struct user_msghdr __user *umsg, unsigned flags,
2568			struct sockaddr __user **uaddr,
2569			struct iovec **iov)
2570{
2571	ssize_t err;
2572
2573	if (MSG_CMSG_COMPAT & flags) {
2574		struct compat_msghdr __user *msg_compat;
2575
2576		msg_compat = (struct compat_msghdr __user *) umsg;
2577		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2578	} else {
2579		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2580	}
2581	if (err < 0)
2582		return err;
2583
2584	return 0;
2585}
2586
2587static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2588			   struct user_msghdr __user *msg,
2589			   struct sockaddr __user *uaddr,
2590			   unsigned int flags, int nosec)
2591{
2592	struct compat_msghdr __user *msg_compat =
2593					(struct compat_msghdr __user *) msg;
2594	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2595	struct sockaddr_storage addr;
2596	unsigned long cmsg_ptr;
2597	int len;
2598	ssize_t err;
2599
 
 
 
 
 
 
 
2600	msg_sys->msg_name = &addr;
 
 
 
 
 
 
 
 
2601	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2602	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2603
2604	/* We assume all kernel code knows the size of sockaddr_storage */
2605	msg_sys->msg_namelen = 0;
2606
2607	if (sock->file->f_flags & O_NONBLOCK)
2608		flags |= MSG_DONTWAIT;
2609
2610	if (unlikely(nosec))
2611		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2612	else
2613		err = sock_recvmsg(sock, msg_sys, flags);
2614
2615	if (err < 0)
2616		goto out;
2617	len = err;
2618
2619	if (uaddr != NULL) {
2620		err = move_addr_to_user(&addr,
2621					msg_sys->msg_namelen, uaddr,
2622					uaddr_len);
2623		if (err < 0)
2624			goto out;
2625	}
2626	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2627			 COMPAT_FLAGS(msg));
2628	if (err)
2629		goto out;
2630	if (MSG_CMSG_COMPAT & flags)
2631		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2632				 &msg_compat->msg_controllen);
2633	else
2634		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2635				 &msg->msg_controllen);
2636	if (err)
2637		goto out;
2638	err = len;
2639out:
2640	return err;
2641}
2642
2643static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2644			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2645{
2646	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2647	/* user mode address pointers */
2648	struct sockaddr __user *uaddr;
2649	ssize_t err;
2650
2651	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2652	if (err < 0)
2653		return err;
2654
2655	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2656	kfree(iov);
2657	return err;
2658}
2659
2660/*
2661 *	BSD recvmsg interface
2662 */
2663
2664long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2665			struct user_msghdr __user *umsg,
2666			struct sockaddr __user *uaddr, unsigned int flags)
2667{
2668	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2669}
2670
2671long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2672		   bool forbid_cmsg_compat)
2673{
2674	int fput_needed, err;
2675	struct msghdr msg_sys;
2676	struct socket *sock;
2677
2678	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2679		return -EINVAL;
2680
2681	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2682	if (!sock)
2683		goto out;
2684
2685	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2686
2687	fput_light(sock->file, fput_needed);
2688out:
2689	return err;
2690}
2691
2692SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2693		unsigned int, flags)
2694{
2695	return __sys_recvmsg(fd, msg, flags, true);
2696}
2697
2698/*
2699 *     Linux recvmmsg interface
2700 */
2701
2702static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2703			  unsigned int vlen, unsigned int flags,
2704			  struct timespec64 *timeout)
2705{
2706	int fput_needed, err, datagrams;
2707	struct socket *sock;
2708	struct mmsghdr __user *entry;
2709	struct compat_mmsghdr __user *compat_entry;
2710	struct msghdr msg_sys;
2711	struct timespec64 end_time;
2712	struct timespec64 timeout64;
2713
2714	if (timeout &&
2715	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2716				    timeout->tv_nsec))
2717		return -EINVAL;
2718
2719	datagrams = 0;
2720
2721	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2722	if (!sock)
2723		return err;
2724
2725	if (likely(!(flags & MSG_ERRQUEUE))) {
2726		err = sock_error(sock->sk);
2727		if (err) {
2728			datagrams = err;
2729			goto out_put;
2730		}
2731	}
2732
2733	entry = mmsg;
2734	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2735
2736	while (datagrams < vlen) {
2737		/*
2738		 * No need to ask LSM for more than the first datagram.
2739		 */
2740		if (MSG_CMSG_COMPAT & flags) {
2741			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2742					     &msg_sys, flags & ~MSG_WAITFORONE,
2743					     datagrams);
2744			if (err < 0)
2745				break;
2746			err = __put_user(err, &compat_entry->msg_len);
2747			++compat_entry;
2748		} else {
2749			err = ___sys_recvmsg(sock,
2750					     (struct user_msghdr __user *)entry,
2751					     &msg_sys, flags & ~MSG_WAITFORONE,
2752					     datagrams);
2753			if (err < 0)
2754				break;
2755			err = put_user(err, &entry->msg_len);
2756			++entry;
2757		}
2758
2759		if (err)
2760			break;
2761		++datagrams;
2762
2763		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2764		if (flags & MSG_WAITFORONE)
2765			flags |= MSG_DONTWAIT;
2766
2767		if (timeout) {
2768			ktime_get_ts64(&timeout64);
2769			*timeout = timespec64_sub(end_time, timeout64);
 
2770			if (timeout->tv_sec < 0) {
2771				timeout->tv_sec = timeout->tv_nsec = 0;
2772				break;
2773			}
2774
2775			/* Timeout, return less than vlen datagrams */
2776			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2777				break;
2778		}
2779
2780		/* Out of band data, return right away */
2781		if (msg_sys.msg_flags & MSG_OOB)
2782			break;
2783		cond_resched();
2784	}
2785
2786	if (err == 0)
2787		goto out_put;
2788
2789	if (datagrams == 0) {
2790		datagrams = err;
2791		goto out_put;
2792	}
2793
2794	/*
2795	 * We may return less entries than requested (vlen) if the
2796	 * sock is non block and there aren't enough datagrams...
2797	 */
2798	if (err != -EAGAIN) {
2799		/*
2800		 * ... or  if recvmsg returns an error after we
2801		 * received some datagrams, where we record the
2802		 * error to return on the next call or if the
2803		 * app asks about it using getsockopt(SO_ERROR).
2804		 */
2805		sock->sk->sk_err = -err;
2806	}
2807out_put:
2808	fput_light(sock->file, fput_needed);
2809
2810	return datagrams;
2811}
2812
2813int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2814		   unsigned int vlen, unsigned int flags,
2815		   struct __kernel_timespec __user *timeout,
2816		   struct old_timespec32 __user *timeout32)
2817{
2818	int datagrams;
2819	struct timespec64 timeout_sys;
2820
2821	if (timeout && get_timespec64(&timeout_sys, timeout))
2822		return -EFAULT;
2823
2824	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2825		return -EFAULT;
2826
2827	if (!timeout && !timeout32)
2828		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2829
2830	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
 
2831
2832	if (datagrams <= 0)
2833		return datagrams;
2834
2835	if (timeout && put_timespec64(&timeout_sys, timeout))
2836		datagrams = -EFAULT;
2837
2838	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
 
2839		datagrams = -EFAULT;
2840
2841	return datagrams;
2842}
2843
2844SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2845		unsigned int, vlen, unsigned int, flags,
2846		struct __kernel_timespec __user *, timeout)
2847{
2848	if (flags & MSG_CMSG_COMPAT)
2849		return -EINVAL;
2850
2851	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2852}
2853
2854#ifdef CONFIG_COMPAT_32BIT_TIME
2855SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2856		unsigned int, vlen, unsigned int, flags,
2857		struct old_timespec32 __user *, timeout)
2858{
2859	if (flags & MSG_CMSG_COMPAT)
2860		return -EINVAL;
2861
2862	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2863}
2864#endif
2865
2866#ifdef __ARCH_WANT_SYS_SOCKETCALL
2867/* Argument list sizes for sys_socketcall */
2868#define AL(x) ((x) * sizeof(unsigned long))
2869static const unsigned char nargs[21] = {
2870	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2871	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2872	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2873	AL(4), AL(5), AL(4)
2874};
2875
2876#undef AL
2877
2878/*
2879 *	System call vectors.
2880 *
2881 *	Argument checking cleaned up. Saved 20% in size.
2882 *  This function doesn't need to set the kernel lock because
2883 *  it is set by the callees.
2884 */
2885
2886SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2887{
2888	unsigned long a[AUDITSC_ARGS];
2889	unsigned long a0, a1;
2890	int err;
2891	unsigned int len;
2892
2893	if (call < 1 || call > SYS_SENDMMSG)
2894		return -EINVAL;
2895	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2896
2897	len = nargs[call];
2898	if (len > sizeof(a))
2899		return -EINVAL;
2900
2901	/* copy_from_user should be SMP safe. */
2902	if (copy_from_user(a, args, len))
2903		return -EFAULT;
2904
2905	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2906	if (err)
2907		return err;
2908
2909	a0 = a[0];
2910	a1 = a[1];
2911
2912	switch (call) {
2913	case SYS_SOCKET:
2914		err = __sys_socket(a0, a1, a[2]);
2915		break;
2916	case SYS_BIND:
2917		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2918		break;
2919	case SYS_CONNECT:
2920		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2921		break;
2922	case SYS_LISTEN:
2923		err = __sys_listen(a0, a1);
2924		break;
2925	case SYS_ACCEPT:
2926		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2927				    (int __user *)a[2], 0);
2928		break;
2929	case SYS_GETSOCKNAME:
2930		err =
2931		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2932				      (int __user *)a[2]);
2933		break;
2934	case SYS_GETPEERNAME:
2935		err =
2936		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2937				      (int __user *)a[2]);
2938		break;
2939	case SYS_SOCKETPAIR:
2940		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2941		break;
2942	case SYS_SEND:
2943		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2944				   NULL, 0);
2945		break;
2946	case SYS_SENDTO:
2947		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2948				   (struct sockaddr __user *)a[4], a[5]);
2949		break;
2950	case SYS_RECV:
2951		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2952				     NULL, NULL);
2953		break;
2954	case SYS_RECVFROM:
2955		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2956				     (struct sockaddr __user *)a[4],
2957				     (int __user *)a[5]);
2958		break;
2959	case SYS_SHUTDOWN:
2960		err = __sys_shutdown(a0, a1);
2961		break;
2962	case SYS_SETSOCKOPT:
2963		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2964				       a[4]);
2965		break;
2966	case SYS_GETSOCKOPT:
2967		err =
2968		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2969				     (int __user *)a[4]);
2970		break;
2971	case SYS_SENDMSG:
2972		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2973				    a[2], true);
2974		break;
2975	case SYS_SENDMMSG:
2976		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2977				     a[3], true);
2978		break;
2979	case SYS_RECVMSG:
2980		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2981				    a[2], true);
2982		break;
2983	case SYS_RECVMMSG:
2984		if (IS_ENABLED(CONFIG_64BIT))
2985			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2986					     a[2], a[3],
2987					     (struct __kernel_timespec __user *)a[4],
2988					     NULL);
2989		else
2990			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2991					     a[2], a[3], NULL,
2992					     (struct old_timespec32 __user *)a[4]);
2993		break;
2994	case SYS_ACCEPT4:
2995		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2996				    (int __user *)a[2], a[3]);
2997		break;
2998	default:
2999		err = -EINVAL;
3000		break;
3001	}
3002	return err;
3003}
3004
3005#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3006
3007/**
3008 *	sock_register - add a socket protocol handler
3009 *	@ops: description of protocol
3010 *
3011 *	This function is called by a protocol handler that wants to
3012 *	advertise its address family, and have it linked into the
3013 *	socket interface. The value ops->family corresponds to the
3014 *	socket system call protocol family.
3015 */
3016int sock_register(const struct net_proto_family *ops)
3017{
3018	int err;
3019
3020	if (ops->family >= NPROTO) {
3021		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3022		return -ENOBUFS;
3023	}
3024
3025	spin_lock(&net_family_lock);
3026	if (rcu_dereference_protected(net_families[ops->family],
3027				      lockdep_is_held(&net_family_lock)))
3028		err = -EEXIST;
3029	else {
3030		rcu_assign_pointer(net_families[ops->family], ops);
3031		err = 0;
3032	}
3033	spin_unlock(&net_family_lock);
3034
3035	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3036	return err;
3037}
3038EXPORT_SYMBOL(sock_register);
3039
3040/**
3041 *	sock_unregister - remove a protocol handler
3042 *	@family: protocol family to remove
3043 *
3044 *	This function is called by a protocol handler that wants to
3045 *	remove its address family, and have it unlinked from the
3046 *	new socket creation.
3047 *
3048 *	If protocol handler is a module, then it can use module reference
3049 *	counts to protect against new references. If protocol handler is not
3050 *	a module then it needs to provide its own protection in
3051 *	the ops->create routine.
3052 */
3053void sock_unregister(int family)
3054{
3055	BUG_ON(family < 0 || family >= NPROTO);
3056
3057	spin_lock(&net_family_lock);
3058	RCU_INIT_POINTER(net_families[family], NULL);
3059	spin_unlock(&net_family_lock);
3060
3061	synchronize_rcu();
3062
3063	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3064}
3065EXPORT_SYMBOL(sock_unregister);
3066
3067bool sock_is_registered(int family)
3068{
3069	return family < NPROTO && rcu_access_pointer(net_families[family]);
3070}
3071
3072static int __init sock_init(void)
3073{
3074	int err;
3075	/*
3076	 *      Initialize the network sysctl infrastructure.
3077	 */
3078	err = net_sysctl_init();
3079	if (err)
3080		goto out;
3081
3082	/*
3083	 *      Initialize skbuff SLAB cache
3084	 */
3085	skb_init();
3086
3087	/*
3088	 *      Initialize the protocols module.
3089	 */
3090
3091	init_inodecache();
3092
3093	err = register_filesystem(&sock_fs_type);
3094	if (err)
3095		goto out;
3096	sock_mnt = kern_mount(&sock_fs_type);
3097	if (IS_ERR(sock_mnt)) {
3098		err = PTR_ERR(sock_mnt);
3099		goto out_mount;
3100	}
3101
3102	/* The real protocol initialization is performed in later initcalls.
3103	 */
3104
3105#ifdef CONFIG_NETFILTER
3106	err = netfilter_init();
3107	if (err)
3108		goto out;
3109#endif
3110
3111	ptp_classifier_init();
3112
3113out:
3114	return err;
3115
3116out_mount:
3117	unregister_filesystem(&sock_fs_type);
 
3118	goto out;
3119}
3120
3121core_initcall(sock_init);	/* early initcall */
3122
3123#ifdef CONFIG_PROC_FS
3124void socket_seq_show(struct seq_file *seq)
3125{
3126	seq_printf(seq, "sockets: used %d\n",
3127		   sock_inuse_get(seq->private));
3128}
3129#endif				/* CONFIG_PROC_FS */
3130
3131#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3132static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3133{
3134	struct compat_ifconf ifc32;
3135	struct ifconf ifc;
3136	int err;
3137
3138	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3139		return -EFAULT;
3140
3141	ifc.ifc_len = ifc32.ifc_len;
3142	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3143
3144	rtnl_lock();
3145	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3146	rtnl_unlock();
3147	if (err)
3148		return err;
3149
3150	ifc32.ifc_len = ifc.ifc_len;
3151	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3152		return -EFAULT;
3153
3154	return 0;
3155}
3156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3157static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3158{
3159	compat_uptr_t uptr32;
3160	struct ifreq ifr;
3161	void __user *saved;
3162	int err;
3163
3164	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3165		return -EFAULT;
3166
3167	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3168		return -EFAULT;
3169
3170	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3171	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3172
3173	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3174	if (!err) {
3175		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3176		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3177			err = -EFAULT;
3178	}
3179	return err;
3180}
3181
3182/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3183static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3184				 struct compat_ifreq __user *u_ifreq32)
3185{
3186	struct ifreq ifreq;
3187	u32 data32;
3188
3189	if (!is_socket_ioctl_cmd(cmd))
3190		return -ENOTTY;
3191	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3192		return -EFAULT;
3193	if (get_user(data32, &u_ifreq32->ifr_data))
3194		return -EFAULT;
3195	ifreq.ifr_data = compat_ptr(data32);
3196
3197	return dev_ioctl(net, cmd, &ifreq, NULL);
3198}
3199
3200static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3201			      unsigned int cmd,
3202			      struct compat_ifreq __user *uifr32)
3203{
3204	struct ifreq __user *uifr;
3205	int err;
3206
3207	/* Handle the fact that while struct ifreq has the same *layout* on
3208	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3209	 * which are handled elsewhere, it still has different *size* due to
3210	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3211	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3212	 * As a result, if the struct happens to be at the end of a page and
3213	 * the next page isn't readable/writable, we get a fault. To prevent
3214	 * that, copy back and forth to the full size.
3215	 */
3216
3217	uifr = compat_alloc_user_space(sizeof(*uifr));
3218	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3219		return -EFAULT;
3220
3221	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3222
3223	if (!err) {
3224		switch (cmd) {
3225		case SIOCGIFFLAGS:
3226		case SIOCGIFMETRIC:
3227		case SIOCGIFMTU:
3228		case SIOCGIFMEM:
3229		case SIOCGIFHWADDR:
3230		case SIOCGIFINDEX:
3231		case SIOCGIFADDR:
3232		case SIOCGIFBRDADDR:
3233		case SIOCGIFDSTADDR:
3234		case SIOCGIFNETMASK:
3235		case SIOCGIFPFLAGS:
3236		case SIOCGIFTXQLEN:
3237		case SIOCGMIIPHY:
3238		case SIOCGMIIREG:
3239		case SIOCGIFNAME:
3240			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3241				err = -EFAULT;
3242			break;
3243		}
3244	}
3245	return err;
3246}
3247
3248static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3249			struct compat_ifreq __user *uifr32)
3250{
3251	struct ifreq ifr;
3252	struct compat_ifmap __user *uifmap32;
3253	int err;
3254
3255	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3256	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3257	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3258	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3259	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3260	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3261	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3262	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3263	if (err)
3264		return -EFAULT;
3265
3266	err = dev_ioctl(net, cmd, &ifr, NULL);
3267
3268	if (cmd == SIOCGIFMAP && !err) {
3269		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3270		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3271		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3272		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3273		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3274		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3275		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3276		if (err)
3277			err = -EFAULT;
3278	}
3279	return err;
3280}
3281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3282/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3283 * for some operations; this forces use of the newer bridge-utils that
3284 * use compatible ioctls
3285 */
3286static int old_bridge_ioctl(compat_ulong_t __user *argp)
3287{
3288	compat_ulong_t tmp;
3289
3290	if (get_user(tmp, argp))
3291		return -EFAULT;
3292	if (tmp == BRCTL_GET_VERSION)
3293		return BRCTL_VERSION + 1;
3294	return -EINVAL;
3295}
3296
3297static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3298			 unsigned int cmd, unsigned long arg)
3299{
3300	void __user *argp = compat_ptr(arg);
3301	struct sock *sk = sock->sk;
3302	struct net *net = sock_net(sk);
3303
3304	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3305		return compat_ifr_data_ioctl(net, cmd, argp);
3306
3307	switch (cmd) {
3308	case SIOCSIFBR:
3309	case SIOCGIFBR:
3310		return old_bridge_ioctl(argp);
3311	case SIOCGIFCONF:
3312		return compat_dev_ifconf(net, argp);
 
 
3313	case SIOCWANDEV:
3314		return compat_siocwandev(net, argp);
3315	case SIOCGIFMAP:
3316	case SIOCSIFMAP:
3317		return compat_sioc_ifmap(net, cmd, argp);
3318	case SIOCGSTAMP_OLD:
3319	case SIOCGSTAMPNS_OLD:
3320		if (!sock->ops->gettstamp)
3321			return -ENOIOCTLCMD;
3322		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3323					    !COMPAT_USE_64BIT_TIME);
3324
3325	case SIOCETHTOOL:
3326	case SIOCBONDSLAVEINFOQUERY:
3327	case SIOCBONDINFOQUERY:
3328	case SIOCSHWTSTAMP:
3329	case SIOCGHWTSTAMP:
3330		return compat_ifr_data_ioctl(net, cmd, argp);
3331
3332	case FIOSETOWN:
3333	case SIOCSPGRP:
3334	case FIOGETOWN:
3335	case SIOCGPGRP:
3336	case SIOCBRADDBR:
3337	case SIOCBRDELBR:
3338	case SIOCGIFVLAN:
3339	case SIOCSIFVLAN:
 
 
3340	case SIOCGSKNS:
3341	case SIOCGSTAMP_NEW:
3342	case SIOCGSTAMPNS_NEW:
3343		return sock_ioctl(file, cmd, arg);
3344
3345	case SIOCGIFFLAGS:
3346	case SIOCSIFFLAGS:
3347	case SIOCGIFMETRIC:
3348	case SIOCSIFMETRIC:
3349	case SIOCGIFMTU:
3350	case SIOCSIFMTU:
3351	case SIOCGIFMEM:
3352	case SIOCSIFMEM:
3353	case SIOCGIFHWADDR:
3354	case SIOCSIFHWADDR:
3355	case SIOCADDMULTI:
3356	case SIOCDELMULTI:
3357	case SIOCGIFINDEX:
3358	case SIOCGIFADDR:
3359	case SIOCSIFADDR:
3360	case SIOCSIFHWBROADCAST:
3361	case SIOCDIFADDR:
3362	case SIOCGIFBRDADDR:
3363	case SIOCSIFBRDADDR:
3364	case SIOCGIFDSTADDR:
3365	case SIOCSIFDSTADDR:
3366	case SIOCGIFNETMASK:
3367	case SIOCSIFNETMASK:
3368	case SIOCSIFPFLAGS:
3369	case SIOCGIFPFLAGS:
3370	case SIOCGIFTXQLEN:
3371	case SIOCSIFTXQLEN:
3372	case SIOCBRADDIF:
3373	case SIOCBRDELIF:
3374	case SIOCGIFNAME:
3375	case SIOCSIFNAME:
3376	case SIOCGMIIPHY:
3377	case SIOCGMIIREG:
3378	case SIOCSMIIREG:
3379	case SIOCBONDENSLAVE:
3380	case SIOCBONDRELEASE:
3381	case SIOCBONDSETHWADDR:
3382	case SIOCBONDCHANGEACTIVE:
3383		return compat_ifreq_ioctl(net, sock, cmd, argp);
3384
3385	case SIOCSARP:
3386	case SIOCGARP:
3387	case SIOCDARP:
3388	case SIOCOUTQ:
3389	case SIOCOUTQNSD:
3390	case SIOCATMARK:
 
 
 
 
 
3391		return sock_do_ioctl(net, sock, cmd, arg);
3392	}
3393
3394	return -ENOIOCTLCMD;
3395}
3396
3397static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3398			      unsigned long arg)
3399{
3400	struct socket *sock = file->private_data;
3401	int ret = -ENOIOCTLCMD;
3402	struct sock *sk;
3403	struct net *net;
3404
3405	sk = sock->sk;
3406	net = sock_net(sk);
3407
3408	if (sock->ops->compat_ioctl)
3409		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3410
3411	if (ret == -ENOIOCTLCMD &&
3412	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3413		ret = compat_wext_handle_ioctl(net, cmd, arg);
3414
3415	if (ret == -ENOIOCTLCMD)
3416		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3417
3418	return ret;
3419}
3420#endif
3421
3422/**
3423 *	kernel_bind - bind an address to a socket (kernel space)
3424 *	@sock: socket
3425 *	@addr: address
3426 *	@addrlen: length of address
3427 *
3428 *	Returns 0 or an error.
3429 */
3430
3431int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3432{
3433	return sock->ops->bind(sock, addr, addrlen);
3434}
3435EXPORT_SYMBOL(kernel_bind);
3436
3437/**
3438 *	kernel_listen - move socket to listening state (kernel space)
3439 *	@sock: socket
3440 *	@backlog: pending connections queue size
3441 *
3442 *	Returns 0 or an error.
3443 */
3444
3445int kernel_listen(struct socket *sock, int backlog)
3446{
3447	return sock->ops->listen(sock, backlog);
3448}
3449EXPORT_SYMBOL(kernel_listen);
3450
3451/**
3452 *	kernel_accept - accept a connection (kernel space)
3453 *	@sock: listening socket
3454 *	@newsock: new connected socket
3455 *	@flags: flags
3456 *
3457 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3458 *	If it fails, @newsock is guaranteed to be %NULL.
3459 *	Returns 0 or an error.
3460 */
3461
3462int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3463{
3464	struct sock *sk = sock->sk;
3465	int err;
3466
3467	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3468			       newsock);
3469	if (err < 0)
3470		goto done;
3471
3472	err = sock->ops->accept(sock, *newsock, flags, true);
3473	if (err < 0) {
3474		sock_release(*newsock);
3475		*newsock = NULL;
3476		goto done;
3477	}
3478
3479	(*newsock)->ops = sock->ops;
3480	__module_get((*newsock)->ops->owner);
3481
3482done:
3483	return err;
3484}
3485EXPORT_SYMBOL(kernel_accept);
3486
3487/**
3488 *	kernel_connect - connect a socket (kernel space)
3489 *	@sock: socket
3490 *	@addr: address
3491 *	@addrlen: address length
3492 *	@flags: flags (O_NONBLOCK, ...)
3493 *
3494 *	For datagram sockets, @addr is the address to which datagrams are sent
3495 *	by default, and the only address from which datagrams are received.
3496 *	For stream sockets, attempts to connect to @addr.
3497 *	Returns 0 or an error code.
3498 */
3499
3500int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3501		   int flags)
3502{
3503	return sock->ops->connect(sock, addr, addrlen, flags);
3504}
3505EXPORT_SYMBOL(kernel_connect);
3506
3507/**
3508 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3509 *	@sock: socket
3510 *	@addr: address holder
3511 *
3512 * 	Fills the @addr pointer with the address which the socket is bound.
3513 *	Returns 0 or an error code.
3514 */
3515
3516int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3517{
3518	return sock->ops->getname(sock, addr, 0);
3519}
3520EXPORT_SYMBOL(kernel_getsockname);
3521
3522/**
3523 *	kernel_getpeername - get the address which the socket is connected (kernel space)
3524 *	@sock: socket
3525 *	@addr: address holder
3526 *
3527 * 	Fills the @addr pointer with the address which the socket is connected.
3528 *	Returns 0 or an error code.
3529 */
3530
3531int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3532{
3533	return sock->ops->getname(sock, addr, 1);
3534}
3535EXPORT_SYMBOL(kernel_getpeername);
3536
3537/**
3538 *	kernel_sendpage - send a &page through a socket (kernel space)
3539 *	@sock: socket
3540 *	@page: page
3541 *	@offset: page offset
3542 *	@size: total size in bytes
3543 *	@flags: flags (MSG_DONTWAIT, ...)
3544 *
3545 *	Returns the total amount sent in bytes or an error.
3546 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3547
3548int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3549		    size_t size, int flags)
3550{
3551	if (sock->ops->sendpage) {
3552		/* Warn in case the improper page to zero-copy send */
3553		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3554		return sock->ops->sendpage(sock, page, offset, size, flags);
3555	}
3556	return sock_no_sendpage(sock, page, offset, size, flags);
3557}
3558EXPORT_SYMBOL(kernel_sendpage);
3559
3560/**
3561 *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3562 *	@sk: sock
3563 *	@page: page
3564 *	@offset: page offset
3565 *	@size: total size in bytes
3566 *	@flags: flags (MSG_DONTWAIT, ...)
3567 *
3568 *	Returns the total amount sent in bytes or an error.
3569 *	Caller must hold @sk.
3570 */
3571
3572int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3573			   size_t size, int flags)
3574{
3575	struct socket *sock = sk->sk_socket;
3576
3577	if (sock->ops->sendpage_locked)
3578		return sock->ops->sendpage_locked(sk, page, offset, size,
3579						  flags);
3580
3581	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3582}
3583EXPORT_SYMBOL(kernel_sendpage_locked);
3584
3585/**
3586 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3587 *	@sock: socket
3588 *	@how: connection part
3589 *
3590 *	Returns 0 or an error.
3591 */
3592
3593int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3594{
3595	return sock->ops->shutdown(sock, how);
3596}
3597EXPORT_SYMBOL(kernel_sock_shutdown);
3598
3599/**
3600 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3601 *	@sk: socket
3602 *
3603 *	This routine returns the IP overhead imposed by a socket i.e.
3604 *	the length of the underlying IP header, depending on whether
3605 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3606 *	on at the socket. Assumes that the caller has a lock on the socket.
3607 */
3608
3609u32 kernel_sock_ip_overhead(struct sock *sk)
3610{
3611	struct inet_sock *inet;
3612	struct ip_options_rcu *opt;
3613	u32 overhead = 0;
3614#if IS_ENABLED(CONFIG_IPV6)
3615	struct ipv6_pinfo *np;
3616	struct ipv6_txoptions *optv6 = NULL;
3617#endif /* IS_ENABLED(CONFIG_IPV6) */
3618
3619	if (!sk)
3620		return overhead;
3621
3622	switch (sk->sk_family) {
3623	case AF_INET:
3624		inet = inet_sk(sk);
3625		overhead += sizeof(struct iphdr);
3626		opt = rcu_dereference_protected(inet->inet_opt,
3627						sock_owned_by_user(sk));
3628		if (opt)
3629			overhead += opt->opt.optlen;
3630		return overhead;
3631#if IS_ENABLED(CONFIG_IPV6)
3632	case AF_INET6:
3633		np = inet6_sk(sk);
3634		overhead += sizeof(struct ipv6hdr);
3635		if (np)
3636			optv6 = rcu_dereference_protected(np->opt,
3637							  sock_owned_by_user(sk));
3638		if (optv6)
3639			overhead += (optv6->opt_flen + optv6->opt_nflen);
3640		return overhead;
3641#endif /* IS_ENABLED(CONFIG_IPV6) */
3642	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3643		return overhead;
3644	}
3645}
3646EXPORT_SYMBOL(kernel_sock_ip_overhead);
v4.17
 
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
 
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
 
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
 
 
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 
 106#include <linux/sockios.h>
 107#include <net/busy_poll.h>
 108#include <linux/errqueue.h>
 
 109
 110#ifdef CONFIG_NET_RX_BUSY_POLL
 111unsigned int sysctl_net_busy_read __read_mostly;
 112unsigned int sysctl_net_busy_poll __read_mostly;
 113#endif
 114
 115static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 116static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 117static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 118
 119static int sock_close(struct inode *inode, struct file *file);
 120static __poll_t sock_poll(struct file *file,
 121			      struct poll_table_struct *wait);
 122static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 123#ifdef CONFIG_COMPAT
 124static long compat_sock_ioctl(struct file *file,
 125			      unsigned int cmd, unsigned long arg);
 126#endif
 127static int sock_fasync(int fd, struct file *filp, int on);
 128static ssize_t sock_sendpage(struct file *file, struct page *page,
 129			     int offset, size_t size, loff_t *ppos, int more);
 130static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 131				struct pipe_inode_info *pipe, size_t len,
 132				unsigned int flags);
 133
 
 
 
 
 
 
 
 
 
 
 
 
 134/*
 135 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 136 *	in the operation structures but are done directly via the socketcall() multiplexor.
 137 */
 138
 139static const struct file_operations socket_file_ops = {
 140	.owner =	THIS_MODULE,
 141	.llseek =	no_llseek,
 142	.read_iter =	sock_read_iter,
 143	.write_iter =	sock_write_iter,
 144	.poll =		sock_poll,
 145	.unlocked_ioctl = sock_ioctl,
 146#ifdef CONFIG_COMPAT
 147	.compat_ioctl = compat_sock_ioctl,
 148#endif
 149	.mmap =		sock_mmap,
 150	.release =	sock_close,
 151	.fasync =	sock_fasync,
 152	.sendpage =	sock_sendpage,
 153	.splice_write = generic_splice_sendpage,
 154	.splice_read =	sock_splice_read,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155};
 156
 157/*
 158 *	The protocol list. Each protocol is registered in here.
 159 */
 160
 161static DEFINE_SPINLOCK(net_family_lock);
 162static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 163
 164/*
 165 * Support routines.
 166 * Move socket addresses back and forth across the kernel/user
 167 * divide and look after the messy bits.
 168 */
 169
 170/**
 171 *	move_addr_to_kernel	-	copy a socket address into kernel space
 172 *	@uaddr: Address in user space
 173 *	@kaddr: Address in kernel space
 174 *	@ulen: Length in user space
 175 *
 176 *	The address is copied into kernel space. If the provided address is
 177 *	too long an error code of -EINVAL is returned. If the copy gives
 178 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 179 */
 180
 181int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 182{
 183	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 184		return -EINVAL;
 185	if (ulen == 0)
 186		return 0;
 187	if (copy_from_user(kaddr, uaddr, ulen))
 188		return -EFAULT;
 189	return audit_sockaddr(ulen, kaddr);
 190}
 191
 192/**
 193 *	move_addr_to_user	-	copy an address to user space
 194 *	@kaddr: kernel space address
 195 *	@klen: length of address in kernel
 196 *	@uaddr: user space address
 197 *	@ulen: pointer to user length field
 198 *
 199 *	The value pointed to by ulen on entry is the buffer length available.
 200 *	This is overwritten with the buffer space used. -EINVAL is returned
 201 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 202 *	is returned if either the buffer or the length field are not
 203 *	accessible.
 204 *	After copying the data up to the limit the user specifies, the true
 205 *	length of the data is written over the length limit the user
 206 *	specified. Zero is returned for a success.
 207 */
 208
 209static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 210			     void __user *uaddr, int __user *ulen)
 211{
 212	int err;
 213	int len;
 214
 215	BUG_ON(klen > sizeof(struct sockaddr_storage));
 216	err = get_user(len, ulen);
 217	if (err)
 218		return err;
 219	if (len > klen)
 220		len = klen;
 221	if (len < 0)
 222		return -EINVAL;
 223	if (len) {
 224		if (audit_sockaddr(klen, kaddr))
 225			return -ENOMEM;
 226		if (copy_to_user(uaddr, kaddr, len))
 227			return -EFAULT;
 228	}
 229	/*
 230	 *      "fromlen shall refer to the value before truncation.."
 231	 *                      1003.1g
 232	 */
 233	return __put_user(klen, ulen);
 234}
 235
 236static struct kmem_cache *sock_inode_cachep __ro_after_init;
 237
 238static struct inode *sock_alloc_inode(struct super_block *sb)
 239{
 240	struct socket_alloc *ei;
 241	struct socket_wq *wq;
 242
 243	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 244	if (!ei)
 245		return NULL;
 246	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 247	if (!wq) {
 248		kmem_cache_free(sock_inode_cachep, ei);
 249		return NULL;
 250	}
 251	init_waitqueue_head(&wq->wait);
 252	wq->fasync_list = NULL;
 253	wq->flags = 0;
 254	RCU_INIT_POINTER(ei->socket.wq, wq);
 255
 256	ei->socket.state = SS_UNCONNECTED;
 257	ei->socket.flags = 0;
 258	ei->socket.ops = NULL;
 259	ei->socket.sk = NULL;
 260	ei->socket.file = NULL;
 261
 262	return &ei->vfs_inode;
 263}
 264
 265static void sock_destroy_inode(struct inode *inode)
 266{
 267	struct socket_alloc *ei;
 268	struct socket_wq *wq;
 269
 270	ei = container_of(inode, struct socket_alloc, vfs_inode);
 271	wq = rcu_dereference_protected(ei->socket.wq, 1);
 272	kfree_rcu(wq, rcu);
 273	kmem_cache_free(sock_inode_cachep, ei);
 274}
 275
 276static void init_once(void *foo)
 277{
 278	struct socket_alloc *ei = (struct socket_alloc *)foo;
 279
 280	inode_init_once(&ei->vfs_inode);
 281}
 282
 283static void init_inodecache(void)
 284{
 285	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 286					      sizeof(struct socket_alloc),
 287					      0,
 288					      (SLAB_HWCACHE_ALIGN |
 289					       SLAB_RECLAIM_ACCOUNT |
 290					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 291					      init_once);
 292	BUG_ON(sock_inode_cachep == NULL);
 293}
 294
 295static const struct super_operations sockfs_ops = {
 296	.alloc_inode	= sock_alloc_inode,
 297	.destroy_inode	= sock_destroy_inode,
 298	.statfs		= simple_statfs,
 299};
 300
 301/*
 302 * sockfs_dname() is called from d_path().
 303 */
 304static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 305{
 306	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 307				d_inode(dentry)->i_ino);
 308}
 309
 310static const struct dentry_operations sockfs_dentry_operations = {
 311	.d_dname  = sockfs_dname,
 312};
 313
 314static int sockfs_xattr_get(const struct xattr_handler *handler,
 315			    struct dentry *dentry, struct inode *inode,
 316			    const char *suffix, void *value, size_t size)
 317{
 318	if (value) {
 319		if (dentry->d_name.len + 1 > size)
 320			return -ERANGE;
 321		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 322	}
 323	return dentry->d_name.len + 1;
 324}
 325
 326#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 327#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 328#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 329
 330static const struct xattr_handler sockfs_xattr_handler = {
 331	.name = XATTR_NAME_SOCKPROTONAME,
 332	.get = sockfs_xattr_get,
 333};
 334
 335static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 
 336				     struct dentry *dentry, struct inode *inode,
 337				     const char *suffix, const void *value,
 338				     size_t size, int flags)
 339{
 340	/* Handled by LSM. */
 341	return -EAGAIN;
 342}
 343
 344static const struct xattr_handler sockfs_security_xattr_handler = {
 345	.prefix = XATTR_SECURITY_PREFIX,
 346	.set = sockfs_security_xattr_set,
 347};
 348
 349static const struct xattr_handler *sockfs_xattr_handlers[] = {
 350	&sockfs_xattr_handler,
 351	&sockfs_security_xattr_handler,
 352	NULL
 353};
 354
 355static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 356			 int flags, const char *dev_name, void *data)
 357{
 358	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 359				  sockfs_xattr_handlers,
 360				  &sockfs_dentry_operations, SOCKFS_MAGIC);
 
 
 
 
 361}
 362
 363static struct vfsmount *sock_mnt __read_mostly;
 364
 365static struct file_system_type sock_fs_type = {
 366	.name =		"sockfs",
 367	.mount =	sockfs_mount,
 368	.kill_sb =	kill_anon_super,
 369};
 370
 371/*
 372 *	Obtains the first available file descriptor and sets it up for use.
 373 *
 374 *	These functions create file structures and maps them to fd space
 375 *	of the current process. On success it returns file descriptor
 376 *	and file struct implicitly stored in sock->file.
 377 *	Note that another thread may close file descriptor before we return
 378 *	from this function. We use the fact that now we do not refer
 379 *	to socket after mapping. If one day we will need it, this
 380 *	function will increment ref. count on file by 1.
 381 *
 382 *	In any case returned fd MAY BE not valid!
 383 *	This race condition is unavoidable
 384 *	with shared fd spaces, we cannot solve it inside kernel,
 385 *	but we take care of internal coherence yet.
 386 */
 387
 
 
 
 
 
 
 
 
 
 
 
 
 388struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 389{
 390	struct qstr name = { .name = "" };
 391	struct path path;
 392	struct file *file;
 393
 394	if (dname) {
 395		name.name = dname;
 396		name.len = strlen(name.name);
 397	} else if (sock->sk) {
 398		name.name = sock->sk->sk_prot_creator->name;
 399		name.len = strlen(name.name);
 400	}
 401	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 402	if (unlikely(!path.dentry)) {
 403		sock_release(sock);
 404		return ERR_PTR(-ENOMEM);
 405	}
 406	path.mnt = mntget(sock_mnt);
 407
 408	d_instantiate(path.dentry, SOCK_INODE(sock));
 409
 410	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 411		  &socket_file_ops);
 412	if (IS_ERR(file)) {
 413		/* drop dentry, keep inode for a bit */
 414		ihold(d_inode(path.dentry));
 415		path_put(&path);
 416		/* ... and now kill it properly */
 417		sock_release(sock);
 418		return file;
 419	}
 420
 421	sock->file = file;
 422	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 423	file->private_data = sock;
 
 424	return file;
 425}
 426EXPORT_SYMBOL(sock_alloc_file);
 427
 428static int sock_map_fd(struct socket *sock, int flags)
 429{
 430	struct file *newfile;
 431	int fd = get_unused_fd_flags(flags);
 432	if (unlikely(fd < 0)) {
 433		sock_release(sock);
 434		return fd;
 435	}
 436
 437	newfile = sock_alloc_file(sock, flags, NULL);
 438	if (likely(!IS_ERR(newfile))) {
 439		fd_install(fd, newfile);
 440		return fd;
 441	}
 442
 443	put_unused_fd(fd);
 444	return PTR_ERR(newfile);
 445}
 446
 447struct socket *sock_from_file(struct file *file, int *err)
 
 
 
 
 
 
 
 448{
 449	if (file->f_op == &socket_file_ops)
 450		return file->private_data;	/* set in sock_map_fd */
 451
 452	*err = -ENOTSOCK;
 453	return NULL;
 454}
 455EXPORT_SYMBOL(sock_from_file);
 456
 457/**
 458 *	sockfd_lookup - Go from a file number to its socket slot
 459 *	@fd: file handle
 460 *	@err: pointer to an error code return
 461 *
 462 *	The file handle passed in is locked and the socket it is bound
 463 *	to is returned. If an error occurs the err pointer is overwritten
 464 *	with a negative errno code and NULL is returned. The function checks
 465 *	for both invalid handles and passing a handle which is not a socket.
 466 *
 467 *	On a success the socket object pointer is returned.
 468 */
 469
 470struct socket *sockfd_lookup(int fd, int *err)
 471{
 472	struct file *file;
 473	struct socket *sock;
 474
 475	file = fget(fd);
 476	if (!file) {
 477		*err = -EBADF;
 478		return NULL;
 479	}
 480
 481	sock = sock_from_file(file, err);
 482	if (!sock)
 
 483		fput(file);
 
 484	return sock;
 485}
 486EXPORT_SYMBOL(sockfd_lookup);
 487
 488static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 489{
 490	struct fd f = fdget(fd);
 491	struct socket *sock;
 492
 493	*err = -EBADF;
 494	if (f.file) {
 495		sock = sock_from_file(f.file, err);
 496		if (likely(sock)) {
 497			*fput_needed = f.flags;
 498			return sock;
 499		}
 
 500		fdput(f);
 501	}
 502	return NULL;
 503}
 504
 505static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 506				size_t size)
 507{
 508	ssize_t len;
 509	ssize_t used = 0;
 510
 511	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 512	if (len < 0)
 513		return len;
 514	used += len;
 515	if (buffer) {
 516		if (size < used)
 517			return -ERANGE;
 518		buffer += len;
 519	}
 520
 521	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 522	used += len;
 523	if (buffer) {
 524		if (size < used)
 525			return -ERANGE;
 526		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 527		buffer += len;
 528	}
 529
 530	return used;
 531}
 532
 533static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 
 534{
 535	int err = simple_setattr(dentry, iattr);
 536
 537	if (!err && (iattr->ia_valid & ATTR_UID)) {
 538		struct socket *sock = SOCKET_I(d_inode(dentry));
 539
 540		sock->sk->sk_uid = iattr->ia_uid;
 
 
 
 541	}
 542
 543	return err;
 544}
 545
 546static const struct inode_operations sockfs_inode_ops = {
 547	.listxattr = sockfs_listxattr,
 548	.setattr = sockfs_setattr,
 549};
 550
 551/**
 552 *	sock_alloc	-	allocate a socket
 553 *
 554 *	Allocate a new inode and socket object. The two are bound together
 555 *	and initialised. The socket is then returned. If we are out of inodes
 556 *	NULL is returned.
 557 */
 558
 559struct socket *sock_alloc(void)
 560{
 561	struct inode *inode;
 562	struct socket *sock;
 563
 564	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 565	if (!inode)
 566		return NULL;
 567
 568	sock = SOCKET_I(inode);
 569
 570	inode->i_ino = get_next_ino();
 571	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 572	inode->i_uid = current_fsuid();
 573	inode->i_gid = current_fsgid();
 574	inode->i_op = &sockfs_inode_ops;
 575
 576	return sock;
 577}
 578EXPORT_SYMBOL(sock_alloc);
 579
 580/**
 581 *	sock_release	-	close a socket
 582 *	@sock: socket to close
 583 *
 584 *	The socket is released from the protocol stack if it has a release
 585 *	callback, and the inode is then released if the socket is bound to
 586 *	an inode not a file.
 587 */
 588
 589void sock_release(struct socket *sock)
 590{
 591	if (sock->ops) {
 592		struct module *owner = sock->ops->owner;
 593
 
 
 594		sock->ops->release(sock);
 
 
 
 595		sock->ops = NULL;
 596		module_put(owner);
 597	}
 598
 599	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 600		pr_err("%s: fasync list not empty!\n", __func__);
 601
 602	if (!sock->file) {
 603		iput(SOCK_INODE(sock));
 604		return;
 605	}
 606	sock->file = NULL;
 607}
 
 
 
 
 
 
 
 
 
 
 
 
 
 608EXPORT_SYMBOL(sock_release);
 609
 610void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 611{
 612	u8 flags = *tx_flags;
 613
 614	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 615		flags |= SKBTX_HW_TSTAMP;
 616
 617	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 618		flags |= SKBTX_SW_TSTAMP;
 619
 620	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 621		flags |= SKBTX_SCHED_TSTAMP;
 622
 623	*tx_flags = flags;
 624}
 625EXPORT_SYMBOL(__sock_tx_timestamp);
 626
 
 
 
 
 627static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 628{
 629	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 
 
 630	BUG_ON(ret == -EIOCBQUEUED);
 631	return ret;
 632}
 633
 
 
 
 
 
 
 
 
 634int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 635{
 636	int err = security_socket_sendmsg(sock, msg,
 637					  msg_data_left(msg));
 638
 639	return err ?: sock_sendmsg_nosec(sock, msg);
 640}
 641EXPORT_SYMBOL(sock_sendmsg);
 642
 
 
 
 
 
 
 
 
 
 
 
 
 643int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 644		   struct kvec *vec, size_t num, size_t size)
 645{
 646	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 647	return sock_sendmsg(sock, msg);
 648}
 649EXPORT_SYMBOL(kernel_sendmsg);
 650
 
 
 
 
 
 
 
 
 
 
 
 
 
 651int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 652			  struct kvec *vec, size_t num, size_t size)
 653{
 654	struct socket *sock = sk->sk_socket;
 655
 656	if (!sock->ops->sendmsg_locked)
 657		return sock_no_sendmsg_locked(sk, msg, size);
 658
 659	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 660
 661	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 662}
 663EXPORT_SYMBOL(kernel_sendmsg_locked);
 664
 665static bool skb_is_err_queue(const struct sk_buff *skb)
 666{
 667	/* pkt_type of skbs enqueued on the error queue are set to
 668	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 669	 * in recvmsg, since skbs received on a local socket will never
 670	 * have a pkt_type of PACKET_OUTGOING.
 671	 */
 672	return skb->pkt_type == PACKET_OUTGOING;
 673}
 674
 675/* On transmit, software and hardware timestamps are returned independently.
 676 * As the two skb clones share the hardware timestamp, which may be updated
 677 * before the software timestamp is received, a hardware TX timestamp may be
 678 * returned only if there is no software TX timestamp. Ignore false software
 679 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 680 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
 681 * hardware timestamp.
 682 */
 683static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 684{
 685	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 686}
 687
 688static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 689{
 690	struct scm_ts_pktinfo ts_pktinfo;
 691	struct net_device *orig_dev;
 692
 693	if (!skb_mac_header_was_set(skb))
 694		return;
 695
 696	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 697
 698	rcu_read_lock();
 699	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 700	if (orig_dev)
 701		ts_pktinfo.if_index = orig_dev->ifindex;
 702	rcu_read_unlock();
 703
 704	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 705	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 706		 sizeof(ts_pktinfo), &ts_pktinfo);
 707}
 708
 709/*
 710 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 711 */
 712void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 713	struct sk_buff *skb)
 714{
 715	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 716	struct scm_timestamping tss;
 
 
 717	int empty = 1, false_tstamp = 0;
 718	struct skb_shared_hwtstamps *shhwtstamps =
 719		skb_hwtstamps(skb);
 720
 721	/* Race occurred between timestamp enabling and packet
 722	   receiving.  Fill in the current time for now. */
 723	if (need_software_tstamp && skb->tstamp == 0) {
 724		__net_timestamp(skb);
 725		false_tstamp = 1;
 726	}
 727
 728	if (need_software_tstamp) {
 729		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 730			struct timeval tv;
 731			skb_get_timestamp(skb, &tv);
 732			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 733				 sizeof(tv), &tv);
 
 
 
 
 
 
 
 
 
 734		} else {
 735			struct timespec ts;
 736			skb_get_timestampns(skb, &ts);
 737			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 738				 sizeof(ts), &ts);
 
 
 
 
 
 
 
 
 
 739		}
 740	}
 741
 742	memset(&tss, 0, sizeof(tss));
 743	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 744	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 745		empty = 0;
 746	if (shhwtstamps &&
 747	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 748	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
 749	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 750		empty = 0;
 751		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 752		    !skb_is_err_queue(skb))
 753			put_ts_pktinfo(msg, skb);
 
 
 
 
 
 
 754	}
 755	if (!empty) {
 756		put_cmsg(msg, SOL_SOCKET,
 757			 SCM_TIMESTAMPING, sizeof(tss), &tss);
 
 
 758
 759		if (skb_is_err_queue(skb) && skb->len &&
 760		    SKB_EXT_ERR(skb)->opt_stats)
 761			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 762				 skb->len, skb->data);
 763	}
 764}
 765EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 766
 767void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 768	struct sk_buff *skb)
 769{
 770	int ack;
 771
 772	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 773		return;
 774	if (!skb->wifi_acked_valid)
 775		return;
 776
 777	ack = skb->wifi_acked;
 778
 779	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 780}
 781EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 782
 783static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 784				   struct sk_buff *skb)
 785{
 786	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 787		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 788			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 789}
 790
 791void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 792	struct sk_buff *skb)
 793{
 794	sock_recv_timestamp(msg, sk, skb);
 795	sock_recv_drops(msg, sk, skb);
 796}
 797EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 798
 
 
 
 
 799static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 800				     int flags)
 801{
 802	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 
 
 803}
 804
 
 
 
 
 
 
 
 
 
 805int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 806{
 807	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 808
 809	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 810}
 811EXPORT_SYMBOL(sock_recvmsg);
 812
 813/**
 814 * kernel_recvmsg - Receive a message from a socket (kernel space)
 815 * @sock:       The socket to receive the message from
 816 * @msg:        Received message
 817 * @vec:        Input s/g array for message data
 818 * @num:        Size of input s/g array
 819 * @size:       Number of bytes to read
 820 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 821 *
 822 * On return the msg structure contains the scatter/gather array passed in the
 823 * vec argument. The array is modified so that it consists of the unfilled
 824 * portion of the original array.
 825 *
 826 * The returned value is the total number of bytes received, or an error.
 827 */
 
 828int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 829		   struct kvec *vec, size_t num, size_t size, int flags)
 830{
 831	mm_segment_t oldfs = get_fs();
 832	int result;
 833
 834	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 835	set_fs(KERNEL_DS);
 836	result = sock_recvmsg(sock, msg, flags);
 837	set_fs(oldfs);
 838	return result;
 839}
 840EXPORT_SYMBOL(kernel_recvmsg);
 841
 842static ssize_t sock_sendpage(struct file *file, struct page *page,
 843			     int offset, size_t size, loff_t *ppos, int more)
 844{
 845	struct socket *sock;
 846	int flags;
 847
 848	sock = file->private_data;
 849
 850	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 851	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 852	flags |= more;
 853
 854	return kernel_sendpage(sock, page, offset, size, flags);
 855}
 856
 857static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 858				struct pipe_inode_info *pipe, size_t len,
 859				unsigned int flags)
 860{
 861	struct socket *sock = file->private_data;
 862
 863	if (unlikely(!sock->ops->splice_read))
 864		return -EINVAL;
 865
 866	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 867}
 868
 869static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 870{
 871	struct file *file = iocb->ki_filp;
 872	struct socket *sock = file->private_data;
 873	struct msghdr msg = {.msg_iter = *to,
 874			     .msg_iocb = iocb};
 875	ssize_t res;
 876
 877	if (file->f_flags & O_NONBLOCK)
 878		msg.msg_flags = MSG_DONTWAIT;
 879
 880	if (iocb->ki_pos != 0)
 881		return -ESPIPE;
 882
 883	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 884		return 0;
 885
 886	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 887	*to = msg.msg_iter;
 888	return res;
 889}
 890
 891static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 892{
 893	struct file *file = iocb->ki_filp;
 894	struct socket *sock = file->private_data;
 895	struct msghdr msg = {.msg_iter = *from,
 896			     .msg_iocb = iocb};
 897	ssize_t res;
 898
 899	if (iocb->ki_pos != 0)
 900		return -ESPIPE;
 901
 902	if (file->f_flags & O_NONBLOCK)
 903		msg.msg_flags = MSG_DONTWAIT;
 904
 905	if (sock->type == SOCK_SEQPACKET)
 906		msg.msg_flags |= MSG_EOR;
 907
 908	res = sock_sendmsg(sock, &msg);
 909	*from = msg.msg_iter;
 910	return res;
 911}
 912
 913/*
 914 * Atomic setting of ioctl hooks to avoid race
 915 * with module unload.
 916 */
 917
 918static DEFINE_MUTEX(br_ioctl_mutex);
 919static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 920
 921void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 922{
 923	mutex_lock(&br_ioctl_mutex);
 924	br_ioctl_hook = hook;
 925	mutex_unlock(&br_ioctl_mutex);
 926}
 927EXPORT_SYMBOL(brioctl_set);
 928
 929static DEFINE_MUTEX(vlan_ioctl_mutex);
 930static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 931
 932void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 933{
 934	mutex_lock(&vlan_ioctl_mutex);
 935	vlan_ioctl_hook = hook;
 936	mutex_unlock(&vlan_ioctl_mutex);
 937}
 938EXPORT_SYMBOL(vlan_ioctl_set);
 939
 940static DEFINE_MUTEX(dlci_ioctl_mutex);
 941static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 942
 943void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 944{
 945	mutex_lock(&dlci_ioctl_mutex);
 946	dlci_ioctl_hook = hook;
 947	mutex_unlock(&dlci_ioctl_mutex);
 948}
 949EXPORT_SYMBOL(dlci_ioctl_set);
 950
 951static long sock_do_ioctl(struct net *net, struct socket *sock,
 952				 unsigned int cmd, unsigned long arg)
 953{
 954	int err;
 955	void __user *argp = (void __user *)arg;
 956
 957	err = sock->ops->ioctl(sock, cmd, arg);
 958
 959	/*
 960	 * If this ioctl is unknown try to hand it down
 961	 * to the NIC driver.
 962	 */
 963	if (err != -ENOIOCTLCMD)
 964		return err;
 965
 966	if (cmd == SIOCGIFCONF) {
 967		struct ifconf ifc;
 968		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
 969			return -EFAULT;
 970		rtnl_lock();
 971		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
 972		rtnl_unlock();
 973		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
 974			err = -EFAULT;
 975	} else {
 976		struct ifreq ifr;
 977		bool need_copyout;
 978		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
 979			return -EFAULT;
 980		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
 981		if (!err && need_copyout)
 982			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
 983				return -EFAULT;
 
 
 984	}
 985	return err;
 986}
 987
 988/*
 989 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 990 *	what to do with it - that's up to the protocol still.
 991 */
 992
 993struct ns_common *get_net_ns(struct ns_common *ns)
 994{
 995	return &get_net(container_of(ns, struct net, ns))->ns;
 996}
 997EXPORT_SYMBOL_GPL(get_net_ns);
 998
 999static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1000{
1001	struct socket *sock;
1002	struct sock *sk;
1003	void __user *argp = (void __user *)arg;
1004	int pid, err;
1005	struct net *net;
1006
1007	sock = file->private_data;
1008	sk = sock->sk;
1009	net = sock_net(sk);
1010	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1011		struct ifreq ifr;
1012		bool need_copyout;
1013		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1014			return -EFAULT;
1015		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1016		if (!err && need_copyout)
1017			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1018				return -EFAULT;
1019	} else
1020#ifdef CONFIG_WEXT_CORE
1021	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1022		err = wext_handle_ioctl(net, cmd, argp);
1023	} else
1024#endif
1025		switch (cmd) {
1026		case FIOSETOWN:
1027		case SIOCSPGRP:
1028			err = -EFAULT;
1029			if (get_user(pid, (int __user *)argp))
1030				break;
1031			err = f_setown(sock->file, pid, 1);
1032			break;
1033		case FIOGETOWN:
1034		case SIOCGPGRP:
1035			err = put_user(f_getown(sock->file),
1036				       (int __user *)argp);
1037			break;
1038		case SIOCGIFBR:
1039		case SIOCSIFBR:
1040		case SIOCBRADDBR:
1041		case SIOCBRDELBR:
1042			err = -ENOPKG;
1043			if (!br_ioctl_hook)
1044				request_module("bridge");
1045
1046			mutex_lock(&br_ioctl_mutex);
1047			if (br_ioctl_hook)
1048				err = br_ioctl_hook(net, cmd, argp);
1049			mutex_unlock(&br_ioctl_mutex);
1050			break;
1051		case SIOCGIFVLAN:
1052		case SIOCSIFVLAN:
1053			err = -ENOPKG;
1054			if (!vlan_ioctl_hook)
1055				request_module("8021q");
1056
1057			mutex_lock(&vlan_ioctl_mutex);
1058			if (vlan_ioctl_hook)
1059				err = vlan_ioctl_hook(net, argp);
1060			mutex_unlock(&vlan_ioctl_mutex);
1061			break;
1062		case SIOCADDDLCI:
1063		case SIOCDELDLCI:
1064			err = -ENOPKG;
1065			if (!dlci_ioctl_hook)
1066				request_module("dlci");
1067
1068			mutex_lock(&dlci_ioctl_mutex);
1069			if (dlci_ioctl_hook)
1070				err = dlci_ioctl_hook(cmd, argp);
1071			mutex_unlock(&dlci_ioctl_mutex);
1072			break;
1073		case SIOCGSKNS:
1074			err = -EPERM;
1075			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1076				break;
1077
1078			err = open_related_ns(&net->ns, get_net_ns);
1079			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080		default:
1081			err = sock_do_ioctl(net, sock, cmd, arg);
1082			break;
1083		}
1084	return err;
1085}
1086
 
 
 
 
 
 
 
 
 
 
 
 
 
1087int sock_create_lite(int family, int type, int protocol, struct socket **res)
1088{
1089	int err;
1090	struct socket *sock = NULL;
1091
1092	err = security_socket_create(family, type, protocol, 1);
1093	if (err)
1094		goto out;
1095
1096	sock = sock_alloc();
1097	if (!sock) {
1098		err = -ENOMEM;
1099		goto out;
1100	}
1101
1102	sock->type = type;
1103	err = security_socket_post_create(sock, family, type, protocol, 1);
1104	if (err)
1105		goto out_release;
1106
1107out:
1108	*res = sock;
1109	return err;
1110out_release:
1111	sock_release(sock);
1112	sock = NULL;
1113	goto out;
1114}
1115EXPORT_SYMBOL(sock_create_lite);
1116
1117/* No kernel lock held - perfect */
1118static __poll_t sock_poll(struct file *file, poll_table *wait)
1119{
1120	__poll_t busy_flag = 0;
1121	struct socket *sock;
1122
1123	/*
1124	 *      We can't return errors to poll, so it's either yes or no.
1125	 */
1126	sock = file->private_data;
1127
1128	if (sk_can_busy_loop(sock->sk)) {
1129		/* this socket can poll_ll so tell the system call */
1130		busy_flag = POLL_BUSY_LOOP;
 
1131
1132		/* once, only if requested by syscall */
1133		if (wait && (wait->_key & POLL_BUSY_LOOP))
1134			sk_busy_loop(sock->sk, 1);
1135	}
1136
1137	return busy_flag | sock->ops->poll(file, sock, wait);
1138}
1139
1140static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1141{
1142	struct socket *sock = file->private_data;
1143
1144	return sock->ops->mmap(file, sock, vma);
1145}
1146
1147static int sock_close(struct inode *inode, struct file *filp)
1148{
1149	sock_release(SOCKET_I(inode));
1150	return 0;
1151}
1152
1153/*
1154 *	Update the socket async list
1155 *
1156 *	Fasync_list locking strategy.
1157 *
1158 *	1. fasync_list is modified only under process context socket lock
1159 *	   i.e. under semaphore.
1160 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1161 *	   or under socket lock
1162 */
1163
1164static int sock_fasync(int fd, struct file *filp, int on)
1165{
1166	struct socket *sock = filp->private_data;
1167	struct sock *sk = sock->sk;
1168	struct socket_wq *wq;
1169
1170	if (sk == NULL)
1171		return -EINVAL;
1172
1173	lock_sock(sk);
1174	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1175	fasync_helper(fd, filp, on, &wq->fasync_list);
1176
1177	if (!wq->fasync_list)
1178		sock_reset_flag(sk, SOCK_FASYNC);
1179	else
1180		sock_set_flag(sk, SOCK_FASYNC);
1181
1182	release_sock(sk);
1183	return 0;
1184}
1185
1186/* This function may be called only under rcu_lock */
1187
1188int sock_wake_async(struct socket_wq *wq, int how, int band)
1189{
1190	if (!wq || !wq->fasync_list)
1191		return -1;
1192
1193	switch (how) {
1194	case SOCK_WAKE_WAITD:
1195		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1196			break;
1197		goto call_kill;
1198	case SOCK_WAKE_SPACE:
1199		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1200			break;
1201		/* fall through */
1202	case SOCK_WAKE_IO:
1203call_kill:
1204		kill_fasync(&wq->fasync_list, SIGIO, band);
1205		break;
1206	case SOCK_WAKE_URG:
1207		kill_fasync(&wq->fasync_list, SIGURG, band);
1208	}
1209
1210	return 0;
1211}
1212EXPORT_SYMBOL(sock_wake_async);
1213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214int __sock_create(struct net *net, int family, int type, int protocol,
1215			 struct socket **res, int kern)
1216{
1217	int err;
1218	struct socket *sock;
1219	const struct net_proto_family *pf;
1220
1221	/*
1222	 *      Check protocol is in range
1223	 */
1224	if (family < 0 || family >= NPROTO)
1225		return -EAFNOSUPPORT;
1226	if (type < 0 || type >= SOCK_MAX)
1227		return -EINVAL;
1228
1229	/* Compatibility.
1230
1231	   This uglymoron is moved from INET layer to here to avoid
1232	   deadlock in module load.
1233	 */
1234	if (family == PF_INET && type == SOCK_PACKET) {
1235		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1236			     current->comm);
1237		family = PF_PACKET;
1238	}
1239
1240	err = security_socket_create(family, type, protocol, kern);
1241	if (err)
1242		return err;
1243
1244	/*
1245	 *	Allocate the socket and allow the family to set things up. if
1246	 *	the protocol is 0, the family is instructed to select an appropriate
1247	 *	default.
1248	 */
1249	sock = sock_alloc();
1250	if (!sock) {
1251		net_warn_ratelimited("socket: no more sockets\n");
1252		return -ENFILE;	/* Not exactly a match, but its the
1253				   closest posix thing */
1254	}
1255
1256	sock->type = type;
1257
1258#ifdef CONFIG_MODULES
1259	/* Attempt to load a protocol module if the find failed.
1260	 *
1261	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1262	 * requested real, full-featured networking support upon configuration.
1263	 * Otherwise module support will break!
1264	 */
1265	if (rcu_access_pointer(net_families[family]) == NULL)
1266		request_module("net-pf-%d", family);
1267#endif
1268
1269	rcu_read_lock();
1270	pf = rcu_dereference(net_families[family]);
1271	err = -EAFNOSUPPORT;
1272	if (!pf)
1273		goto out_release;
1274
1275	/*
1276	 * We will call the ->create function, that possibly is in a loadable
1277	 * module, so we have to bump that loadable module refcnt first.
1278	 */
1279	if (!try_module_get(pf->owner))
1280		goto out_release;
1281
1282	/* Now protected by module ref count */
1283	rcu_read_unlock();
1284
1285	err = pf->create(net, sock, protocol, kern);
1286	if (err < 0)
1287		goto out_module_put;
1288
1289	/*
1290	 * Now to bump the refcnt of the [loadable] module that owns this
1291	 * socket at sock_release time we decrement its refcnt.
1292	 */
1293	if (!try_module_get(sock->ops->owner))
1294		goto out_module_busy;
1295
1296	/*
1297	 * Now that we're done with the ->create function, the [loadable]
1298	 * module can have its refcnt decremented
1299	 */
1300	module_put(pf->owner);
1301	err = security_socket_post_create(sock, family, type, protocol, kern);
1302	if (err)
1303		goto out_sock_release;
1304	*res = sock;
1305
1306	return 0;
1307
1308out_module_busy:
1309	err = -EAFNOSUPPORT;
1310out_module_put:
1311	sock->ops = NULL;
1312	module_put(pf->owner);
1313out_sock_release:
1314	sock_release(sock);
1315	return err;
1316
1317out_release:
1318	rcu_read_unlock();
1319	goto out_sock_release;
1320}
1321EXPORT_SYMBOL(__sock_create);
1322
 
 
 
 
 
 
 
 
 
 
 
1323int sock_create(int family, int type, int protocol, struct socket **res)
1324{
1325	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1326}
1327EXPORT_SYMBOL(sock_create);
1328
 
 
 
 
 
 
 
 
 
 
 
 
1329int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1330{
1331	return __sock_create(net, family, type, protocol, res, 1);
1332}
1333EXPORT_SYMBOL(sock_create_kern);
1334
1335int __sys_socket(int family, int type, int protocol)
1336{
1337	int retval;
1338	struct socket *sock;
1339	int flags;
1340
1341	/* Check the SOCK_* constants for consistency.  */
1342	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1343	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1344	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1345	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1346
1347	flags = type & ~SOCK_TYPE_MASK;
1348	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349		return -EINVAL;
1350	type &= SOCK_TYPE_MASK;
1351
1352	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354
1355	retval = sock_create(family, type, protocol, &sock);
1356	if (retval < 0)
1357		return retval;
1358
1359	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1360}
1361
1362SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1363{
1364	return __sys_socket(family, type, protocol);
1365}
1366
1367/*
1368 *	Create a pair of connected sockets.
1369 */
1370
1371int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1372{
1373	struct socket *sock1, *sock2;
1374	int fd1, fd2, err;
1375	struct file *newfile1, *newfile2;
1376	int flags;
1377
1378	flags = type & ~SOCK_TYPE_MASK;
1379	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1380		return -EINVAL;
1381	type &= SOCK_TYPE_MASK;
1382
1383	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1384		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1385
1386	/*
1387	 * reserve descriptors and make sure we won't fail
1388	 * to return them to userland.
1389	 */
1390	fd1 = get_unused_fd_flags(flags);
1391	if (unlikely(fd1 < 0))
1392		return fd1;
1393
1394	fd2 = get_unused_fd_flags(flags);
1395	if (unlikely(fd2 < 0)) {
1396		put_unused_fd(fd1);
1397		return fd2;
1398	}
1399
1400	err = put_user(fd1, &usockvec[0]);
1401	if (err)
1402		goto out;
1403
1404	err = put_user(fd2, &usockvec[1]);
1405	if (err)
1406		goto out;
1407
1408	/*
1409	 * Obtain the first socket and check if the underlying protocol
1410	 * supports the socketpair call.
1411	 */
1412
1413	err = sock_create(family, type, protocol, &sock1);
1414	if (unlikely(err < 0))
1415		goto out;
1416
1417	err = sock_create(family, type, protocol, &sock2);
1418	if (unlikely(err < 0)) {
1419		sock_release(sock1);
1420		goto out;
1421	}
1422
 
 
 
 
 
 
 
1423	err = sock1->ops->socketpair(sock1, sock2);
1424	if (unlikely(err < 0)) {
1425		sock_release(sock2);
1426		sock_release(sock1);
1427		goto out;
1428	}
1429
1430	newfile1 = sock_alloc_file(sock1, flags, NULL);
1431	if (IS_ERR(newfile1)) {
1432		err = PTR_ERR(newfile1);
1433		sock_release(sock2);
1434		goto out;
1435	}
1436
1437	newfile2 = sock_alloc_file(sock2, flags, NULL);
1438	if (IS_ERR(newfile2)) {
1439		err = PTR_ERR(newfile2);
1440		fput(newfile1);
1441		goto out;
1442	}
1443
1444	audit_fd_pair(fd1, fd2);
1445
1446	fd_install(fd1, newfile1);
1447	fd_install(fd2, newfile2);
1448	return 0;
1449
1450out:
1451	put_unused_fd(fd2);
1452	put_unused_fd(fd1);
1453	return err;
1454}
1455
1456SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1457		int __user *, usockvec)
1458{
1459	return __sys_socketpair(family, type, protocol, usockvec);
1460}
1461
1462/*
1463 *	Bind a name to a socket. Nothing much to do here since it's
1464 *	the protocol's responsibility to handle the local address.
1465 *
1466 *	We move the socket address to kernel space before we call
1467 *	the protocol layer (having also checked the address is ok).
1468 */
1469
1470int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1471{
1472	struct socket *sock;
1473	struct sockaddr_storage address;
1474	int err, fput_needed;
1475
1476	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1477	if (sock) {
1478		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1479		if (err >= 0) {
1480			err = security_socket_bind(sock,
1481						   (struct sockaddr *)&address,
1482						   addrlen);
1483			if (!err)
1484				err = sock->ops->bind(sock,
1485						      (struct sockaddr *)
1486						      &address, addrlen);
1487		}
1488		fput_light(sock->file, fput_needed);
1489	}
1490	return err;
1491}
1492
1493SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1494{
1495	return __sys_bind(fd, umyaddr, addrlen);
1496}
1497
1498/*
1499 *	Perform a listen. Basically, we allow the protocol to do anything
1500 *	necessary for a listen, and if that works, we mark the socket as
1501 *	ready for listening.
1502 */
1503
1504int __sys_listen(int fd, int backlog)
1505{
1506	struct socket *sock;
1507	int err, fput_needed;
1508	int somaxconn;
1509
1510	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511	if (sock) {
1512		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1513		if ((unsigned int)backlog > somaxconn)
1514			backlog = somaxconn;
1515
1516		err = security_socket_listen(sock, backlog);
1517		if (!err)
1518			err = sock->ops->listen(sock, backlog);
1519
1520		fput_light(sock->file, fput_needed);
1521	}
1522	return err;
1523}
1524
1525SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1526{
1527	return __sys_listen(fd, backlog);
1528}
1529
1530/*
1531 *	For accept, we attempt to create a new socket, set up the link
1532 *	with the client, wake up the client, then return the new
1533 *	connected fd. We collect the address of the connector in kernel
1534 *	space and move it to user at the very end. This is unclean because
1535 *	we open the socket then return an error.
1536 *
1537 *	1003.1g adds the ability to recvmsg() to query connection pending
1538 *	status to recvmsg. We need to add that support in a way thats
1539 *	clean when we restructure accept also.
1540 */
1541
1542int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1543		  int __user *upeer_addrlen, int flags)
1544{
1545	struct socket *sock, *newsock;
1546	struct file *newfile;
1547	int err, len, newfd, fput_needed;
1548	struct sockaddr_storage address;
1549
1550	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551		return -EINVAL;
1552
1553	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1554		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1555
1556	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557	if (!sock)
 
1558		goto out;
 
1559
1560	err = -ENFILE;
1561	newsock = sock_alloc();
1562	if (!newsock)
1563		goto out_put;
1564
1565	newsock->type = sock->type;
1566	newsock->ops = sock->ops;
1567
1568	/*
1569	 * We don't need try_module_get here, as the listening socket (sock)
1570	 * has the protocol module (sock->ops->owner) held.
1571	 */
1572	__module_get(newsock->ops->owner);
1573
1574	newfd = get_unused_fd_flags(flags);
1575	if (unlikely(newfd < 0)) {
1576		err = newfd;
1577		sock_release(newsock);
1578		goto out_put;
1579	}
1580	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1581	if (IS_ERR(newfile)) {
1582		err = PTR_ERR(newfile);
1583		put_unused_fd(newfd);
1584		goto out_put;
1585	}
1586
1587	err = security_socket_accept(sock, newsock);
1588	if (err)
1589		goto out_fd;
1590
1591	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
 
1592	if (err < 0)
1593		goto out_fd;
1594
1595	if (upeer_sockaddr) {
1596		len = newsock->ops->getname(newsock,
1597					(struct sockaddr *)&address, 2);
1598		if (len < 0) {
1599			err = -ECONNABORTED;
1600			goto out_fd;
1601		}
1602		err = move_addr_to_user(&address,
1603					len, upeer_sockaddr, upeer_addrlen);
1604		if (err < 0)
1605			goto out_fd;
1606	}
1607
1608	/* File flags are not inherited via accept() unlike another OSes. */
1609
1610	fd_install(newfd, newfile);
1611	err = newfd;
1612
1613out_put:
1614	fput_light(sock->file, fput_needed);
1615out:
1616	return err;
1617out_fd:
1618	fput(newfile);
1619	put_unused_fd(newfd);
1620	goto out_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621}
1622
1623SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1624		int __user *, upeer_addrlen, int, flags)
1625{
1626	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1627}
1628
1629SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1630		int __user *, upeer_addrlen)
1631{
1632	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1633}
1634
1635/*
1636 *	Attempt to connect to a socket with the server address.  The address
1637 *	is in user space so we verify it is OK and move it to kernel space.
1638 *
1639 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1640 *	break bindings
1641 *
1642 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1643 *	other SEQPACKET protocols that take time to connect() as it doesn't
1644 *	include the -EINPROGRESS status for such sockets.
1645 */
1646
1647int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
 
1648{
1649	struct socket *sock;
1650	struct sockaddr_storage address;
1651	int err, fput_needed;
1652
1653	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654	if (!sock)
 
1655		goto out;
1656	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1657	if (err < 0)
1658		goto out_put;
1659
1660	err =
1661	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1662	if (err)
1663		goto out_put;
1664
1665	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1666				 sock->file->f_flags);
1667out_put:
1668	fput_light(sock->file, fput_needed);
1669out:
1670	return err;
1671}
1672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1674		int, addrlen)
1675{
1676	return __sys_connect(fd, uservaddr, addrlen);
1677}
1678
1679/*
1680 *	Get the local address ('name') of a socket object. Move the obtained
1681 *	name to user space.
1682 */
1683
1684int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1685		      int __user *usockaddr_len)
1686{
1687	struct socket *sock;
1688	struct sockaddr_storage address;
1689	int err, fput_needed;
1690
1691	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1692	if (!sock)
1693		goto out;
1694
1695	err = security_socket_getsockname(sock);
1696	if (err)
1697		goto out_put;
1698
1699	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1700	if (err < 0)
1701		goto out_put;
1702        /* "err" is actually length in this case */
1703	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1704
1705out_put:
1706	fput_light(sock->file, fput_needed);
1707out:
1708	return err;
1709}
1710
1711SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1712		int __user *, usockaddr_len)
1713{
1714	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1715}
1716
1717/*
1718 *	Get the remote address ('name') of a socket object. Move the obtained
1719 *	name to user space.
1720 */
1721
1722int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1723		      int __user *usockaddr_len)
1724{
1725	struct socket *sock;
1726	struct sockaddr_storage address;
1727	int err, fput_needed;
1728
1729	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730	if (sock != NULL) {
1731		err = security_socket_getpeername(sock);
1732		if (err) {
1733			fput_light(sock->file, fput_needed);
1734			return err;
1735		}
1736
1737		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1738		if (err >= 0)
1739			/* "err" is actually length in this case */
1740			err = move_addr_to_user(&address, err, usockaddr,
1741						usockaddr_len);
1742		fput_light(sock->file, fput_needed);
1743	}
1744	return err;
1745}
1746
1747SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1748		int __user *, usockaddr_len)
1749{
1750	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1751}
1752
1753/*
1754 *	Send a datagram to a given address. We move the address into kernel
1755 *	space and check the user space data area is readable before invoking
1756 *	the protocol.
1757 */
1758int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1759		 struct sockaddr __user *addr,  int addr_len)
1760{
1761	struct socket *sock;
1762	struct sockaddr_storage address;
1763	int err;
1764	struct msghdr msg;
1765	struct iovec iov;
1766	int fput_needed;
1767
1768	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1769	if (unlikely(err))
1770		return err;
1771	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772	if (!sock)
1773		goto out;
1774
1775	msg.msg_name = NULL;
1776	msg.msg_control = NULL;
1777	msg.msg_controllen = 0;
1778	msg.msg_namelen = 0;
1779	if (addr) {
1780		err = move_addr_to_kernel(addr, addr_len, &address);
1781		if (err < 0)
1782			goto out_put;
1783		msg.msg_name = (struct sockaddr *)&address;
1784		msg.msg_namelen = addr_len;
1785	}
1786	if (sock->file->f_flags & O_NONBLOCK)
1787		flags |= MSG_DONTWAIT;
1788	msg.msg_flags = flags;
1789	err = sock_sendmsg(sock, &msg);
1790
1791out_put:
1792	fput_light(sock->file, fput_needed);
1793out:
1794	return err;
1795}
1796
1797SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1798		unsigned int, flags, struct sockaddr __user *, addr,
1799		int, addr_len)
1800{
1801	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1802}
1803
1804/*
1805 *	Send a datagram down a socket.
1806 */
1807
1808SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1809		unsigned int, flags)
1810{
1811	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1812}
1813
1814/*
1815 *	Receive a frame from the socket and optionally record the address of the
1816 *	sender. We verify the buffers are writable and if needed move the
1817 *	sender address from kernel to user space.
1818 */
1819int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1820		   struct sockaddr __user *addr, int __user *addr_len)
1821{
1822	struct socket *sock;
1823	struct iovec iov;
1824	struct msghdr msg;
1825	struct sockaddr_storage address;
1826	int err, err2;
1827	int fput_needed;
1828
1829	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1830	if (unlikely(err))
1831		return err;
1832	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1833	if (!sock)
1834		goto out;
1835
1836	msg.msg_control = NULL;
1837	msg.msg_controllen = 0;
1838	/* Save some cycles and don't copy the address if not needed */
1839	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1840	/* We assume all kernel code knows the size of sockaddr_storage */
1841	msg.msg_namelen = 0;
1842	msg.msg_iocb = NULL;
1843	msg.msg_flags = 0;
1844	if (sock->file->f_flags & O_NONBLOCK)
1845		flags |= MSG_DONTWAIT;
1846	err = sock_recvmsg(sock, &msg, flags);
1847
1848	if (err >= 0 && addr != NULL) {
1849		err2 = move_addr_to_user(&address,
1850					 msg.msg_namelen, addr, addr_len);
1851		if (err2 < 0)
1852			err = err2;
1853	}
1854
1855	fput_light(sock->file, fput_needed);
1856out:
1857	return err;
1858}
1859
1860SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1861		unsigned int, flags, struct sockaddr __user *, addr,
1862		int __user *, addr_len)
1863{
1864	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1865}
1866
1867/*
1868 *	Receive a datagram from a socket.
1869 */
1870
1871SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1872		unsigned int, flags)
1873{
1874	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1875}
1876
 
 
 
 
 
 
 
 
 
 
 
1877/*
1878 *	Set a socket option. Because we don't know the option lengths we have
1879 *	to pass the user mode parameter for the protocols to sort out.
1880 */
1881
1882static int __sys_setsockopt(int fd, int level, int optname,
1883			    char __user *optval, int optlen)
1884{
 
 
1885	int err, fput_needed;
1886	struct socket *sock;
1887
1888	if (optlen < 0)
1889		return -EINVAL;
1890
1891	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1892	if (sock != NULL) {
1893		err = security_socket_setsockopt(sock, level, optname);
1894		if (err)
1895			goto out_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
1896
1897		if (level == SOL_SOCKET)
1898			err =
1899			    sock_setsockopt(sock, level, optname, optval,
 
 
 
 
 
1900					    optlen);
1901		else
1902			err =
1903			    sock->ops->setsockopt(sock, level, optname, optval,
1904						  optlen);
1905out_put:
1906		fput_light(sock->file, fput_needed);
1907	}
1908	return err;
1909}
1910
1911SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1912		char __user *, optval, int, optlen)
1913{
1914	return __sys_setsockopt(fd, level, optname, optval, optlen);
1915}
1916
 
 
 
1917/*
1918 *	Get a socket option. Because we don't know the option lengths we have
1919 *	to pass a user mode parameter for the protocols to sort out.
1920 */
1921
1922static int __sys_getsockopt(int fd, int level, int optname,
1923			    char __user *optval, int __user *optlen)
1924{
1925	int err, fput_needed;
1926	struct socket *sock;
 
1927
1928	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1929	if (sock != NULL) {
1930		err = security_socket_getsockopt(sock, level, optname);
1931		if (err)
1932			goto out_put;
 
 
 
 
 
1933
1934		if (level == SOL_SOCKET)
1935			err =
1936			    sock_getsockopt(sock, level, optname, optval,
 
 
 
1937					    optlen);
1938		else
1939			err =
1940			    sock->ops->getsockopt(sock, level, optname, optval,
1941						  optlen);
 
1942out_put:
1943		fput_light(sock->file, fput_needed);
1944	}
1945	return err;
1946}
1947
1948SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1949		char __user *, optval, int __user *, optlen)
1950{
1951	return __sys_getsockopt(fd, level, optname, optval, optlen);
1952}
1953
1954/*
1955 *	Shutdown a socket.
1956 */
1957
 
 
 
 
 
 
 
 
 
 
 
1958int __sys_shutdown(int fd, int how)
1959{
1960	int err, fput_needed;
1961	struct socket *sock;
1962
1963	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964	if (sock != NULL) {
1965		err = security_socket_shutdown(sock, how);
1966		if (!err)
1967			err = sock->ops->shutdown(sock, how);
1968		fput_light(sock->file, fput_needed);
1969	}
1970	return err;
1971}
1972
1973SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1974{
1975	return __sys_shutdown(fd, how);
1976}
1977
1978/* A couple of helpful macros for getting the address of the 32/64 bit
1979 * fields which are the same type (int / unsigned) on our platforms.
1980 */
1981#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1982#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1983#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1984
1985struct used_address {
1986	struct sockaddr_storage name;
1987	unsigned int name_len;
1988};
1989
1990static int copy_msghdr_from_user(struct msghdr *kmsg,
1991				 struct user_msghdr __user *umsg,
1992				 struct sockaddr __user **save_addr,
1993				 struct iovec **iov)
1994{
1995	struct user_msghdr msg;
1996	ssize_t err;
1997
1998	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1999		return -EFAULT;
2000
2001	kmsg->msg_control = (void __force *)msg.msg_control;
 
2002	kmsg->msg_controllen = msg.msg_controllen;
2003	kmsg->msg_flags = msg.msg_flags;
2004
2005	kmsg->msg_namelen = msg.msg_namelen;
2006	if (!msg.msg_name)
2007		kmsg->msg_namelen = 0;
2008
2009	if (kmsg->msg_namelen < 0)
2010		return -EINVAL;
2011
2012	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2013		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2014
2015	if (save_addr)
2016		*save_addr = msg.msg_name;
2017
2018	if (msg.msg_name && kmsg->msg_namelen) {
2019		if (!save_addr) {
2020			err = move_addr_to_kernel(msg.msg_name,
2021						  kmsg->msg_namelen,
2022						  kmsg->msg_name);
2023			if (err < 0)
2024				return err;
2025		}
2026	} else {
2027		kmsg->msg_name = NULL;
2028		kmsg->msg_namelen = 0;
2029	}
2030
2031	if (msg.msg_iovlen > UIO_MAXIOV)
2032		return -EMSGSIZE;
2033
2034	kmsg->msg_iocb = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2035
2036	return import_iovec(save_addr ? READ : WRITE,
2037			    msg.msg_iov, msg.msg_iovlen,
2038			    UIO_FASTIOV, iov, &kmsg->msg_iter);
 
2039}
2040
2041static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2042			 struct msghdr *msg_sys, unsigned int flags,
2043			 struct used_address *used_address,
2044			 unsigned int allowed_msghdr_flags)
2045{
2046	struct compat_msghdr __user *msg_compat =
2047	    (struct compat_msghdr __user *)msg;
2048	struct sockaddr_storage address;
2049	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2050	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2051				__aligned(sizeof(__kernel_size_t));
2052	/* 20 is size of ipv6_pktinfo */
2053	unsigned char *ctl_buf = ctl;
2054	int ctl_len;
2055	ssize_t err;
2056
2057	msg_sys->msg_name = &address;
2058
2059	if (MSG_CMSG_COMPAT & flags)
2060		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2061	else
2062		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2063	if (err < 0)
2064		return err;
2065
2066	err = -ENOBUFS;
2067
2068	if (msg_sys->msg_controllen > INT_MAX)
2069		goto out_freeiov;
2070	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2071	ctl_len = msg_sys->msg_controllen;
2072	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2073		err =
2074		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2075						     sizeof(ctl));
2076		if (err)
2077			goto out_freeiov;
2078		ctl_buf = msg_sys->msg_control;
2079		ctl_len = msg_sys->msg_controllen;
2080	} else if (ctl_len) {
2081		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2082			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2083		if (ctl_len > sizeof(ctl)) {
2084			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2085			if (ctl_buf == NULL)
2086				goto out_freeiov;
2087		}
2088		err = -EFAULT;
2089		/*
2090		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2091		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2092		 * checking falls down on this.
2093		 */
2094		if (copy_from_user(ctl_buf,
2095				   (void __user __force *)msg_sys->msg_control,
2096				   ctl_len))
2097			goto out_freectl;
2098		msg_sys->msg_control = ctl_buf;
 
2099	}
2100	msg_sys->msg_flags = flags;
2101
2102	if (sock->file->f_flags & O_NONBLOCK)
2103		msg_sys->msg_flags |= MSG_DONTWAIT;
2104	/*
2105	 * If this is sendmmsg() and current destination address is same as
2106	 * previously succeeded address, omit asking LSM's decision.
2107	 * used_address->name_len is initialized to UINT_MAX so that the first
2108	 * destination address never matches.
2109	 */
2110	if (used_address && msg_sys->msg_name &&
2111	    used_address->name_len == msg_sys->msg_namelen &&
2112	    !memcmp(&used_address->name, msg_sys->msg_name,
2113		    used_address->name_len)) {
2114		err = sock_sendmsg_nosec(sock, msg_sys);
2115		goto out_freectl;
2116	}
2117	err = sock_sendmsg(sock, msg_sys);
2118	/*
2119	 * If this is sendmmsg() and sending to current destination address was
2120	 * successful, remember it.
2121	 */
2122	if (used_address && err >= 0) {
2123		used_address->name_len = msg_sys->msg_namelen;
2124		if (msg_sys->msg_name)
2125			memcpy(&used_address->name, msg_sys->msg_name,
2126			       used_address->name_len);
2127	}
2128
2129out_freectl:
2130	if (ctl_buf != ctl)
2131		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2132out_freeiov:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133	kfree(iov);
2134	return err;
2135}
2136
2137/*
2138 *	BSD sendmsg interface
2139 */
 
 
 
 
 
2140
2141long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2142		   bool forbid_cmsg_compat)
2143{
2144	int fput_needed, err;
2145	struct msghdr msg_sys;
2146	struct socket *sock;
2147
2148	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2149		return -EINVAL;
2150
2151	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2152	if (!sock)
2153		goto out;
2154
2155	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2156
2157	fput_light(sock->file, fput_needed);
2158out:
2159	return err;
2160}
2161
2162SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2163{
2164	return __sys_sendmsg(fd, msg, flags, true);
2165}
2166
2167/*
2168 *	Linux sendmmsg interface
2169 */
2170
2171int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2172		   unsigned int flags, bool forbid_cmsg_compat)
2173{
2174	int fput_needed, err, datagrams;
2175	struct socket *sock;
2176	struct mmsghdr __user *entry;
2177	struct compat_mmsghdr __user *compat_entry;
2178	struct msghdr msg_sys;
2179	struct used_address used_address;
2180	unsigned int oflags = flags;
2181
2182	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2183		return -EINVAL;
2184
2185	if (vlen > UIO_MAXIOV)
2186		vlen = UIO_MAXIOV;
2187
2188	datagrams = 0;
2189
2190	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191	if (!sock)
2192		return err;
2193
2194	used_address.name_len = UINT_MAX;
2195	entry = mmsg;
2196	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2197	err = 0;
2198	flags |= MSG_BATCH;
2199
2200	while (datagrams < vlen) {
2201		if (datagrams == vlen - 1)
2202			flags = oflags;
2203
2204		if (MSG_CMSG_COMPAT & flags) {
2205			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2206					     &msg_sys, flags, &used_address, MSG_EOR);
2207			if (err < 0)
2208				break;
2209			err = __put_user(err, &compat_entry->msg_len);
2210			++compat_entry;
2211		} else {
2212			err = ___sys_sendmsg(sock,
2213					     (struct user_msghdr __user *)entry,
2214					     &msg_sys, flags, &used_address, MSG_EOR);
2215			if (err < 0)
2216				break;
2217			err = put_user(err, &entry->msg_len);
2218			++entry;
2219		}
2220
2221		if (err)
2222			break;
2223		++datagrams;
2224		if (msg_data_left(&msg_sys))
2225			break;
2226		cond_resched();
2227	}
2228
2229	fput_light(sock->file, fput_needed);
2230
2231	/* We only return an error if no datagrams were able to be sent */
2232	if (datagrams != 0)
2233		return datagrams;
2234
2235	return err;
2236}
2237
2238SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2239		unsigned int, vlen, unsigned int, flags)
2240{
2241	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2242}
2243
2244static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2245			 struct msghdr *msg_sys, unsigned int flags, int nosec)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246{
2247	struct compat_msghdr __user *msg_compat =
2248	    (struct compat_msghdr __user *)msg;
2249	struct iovec iovstack[UIO_FASTIOV];
2250	struct iovec *iov = iovstack;
2251	unsigned long cmsg_ptr;
2252	int len;
2253	ssize_t err;
2254
2255	/* kernel mode address */
2256	struct sockaddr_storage addr;
2257
2258	/* user mode address pointers */
2259	struct sockaddr __user *uaddr;
2260	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2261
2262	msg_sys->msg_name = &addr;
2263
2264	if (MSG_CMSG_COMPAT & flags)
2265		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2266	else
2267		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2268	if (err < 0)
2269		return err;
2270
2271	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2272	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2273
2274	/* We assume all kernel code knows the size of sockaddr_storage */
2275	msg_sys->msg_namelen = 0;
2276
2277	if (sock->file->f_flags & O_NONBLOCK)
2278		flags |= MSG_DONTWAIT;
2279	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
 
 
 
 
 
2280	if (err < 0)
2281		goto out_freeiov;
2282	len = err;
2283
2284	if (uaddr != NULL) {
2285		err = move_addr_to_user(&addr,
2286					msg_sys->msg_namelen, uaddr,
2287					uaddr_len);
2288		if (err < 0)
2289			goto out_freeiov;
2290	}
2291	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2292			 COMPAT_FLAGS(msg));
2293	if (err)
2294		goto out_freeiov;
2295	if (MSG_CMSG_COMPAT & flags)
2296		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2297				 &msg_compat->msg_controllen);
2298	else
2299		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2300				 &msg->msg_controllen);
2301	if (err)
2302		goto out_freeiov;
2303	err = len;
 
 
 
2304
2305out_freeiov:
 
 
 
 
 
 
 
 
 
 
 
 
2306	kfree(iov);
2307	return err;
2308}
2309
2310/*
2311 *	BSD recvmsg interface
2312 */
2313
 
 
 
 
 
 
 
2314long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2315		   bool forbid_cmsg_compat)
2316{
2317	int fput_needed, err;
2318	struct msghdr msg_sys;
2319	struct socket *sock;
2320
2321	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2322		return -EINVAL;
2323
2324	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2325	if (!sock)
2326		goto out;
2327
2328	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2329
2330	fput_light(sock->file, fput_needed);
2331out:
2332	return err;
2333}
2334
2335SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2336		unsigned int, flags)
2337{
2338	return __sys_recvmsg(fd, msg, flags, true);
2339}
2340
2341/*
2342 *     Linux recvmmsg interface
2343 */
2344
2345int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2346		   unsigned int flags, struct timespec *timeout)
 
2347{
2348	int fput_needed, err, datagrams;
2349	struct socket *sock;
2350	struct mmsghdr __user *entry;
2351	struct compat_mmsghdr __user *compat_entry;
2352	struct msghdr msg_sys;
2353	struct timespec64 end_time;
2354	struct timespec64 timeout64;
2355
2356	if (timeout &&
2357	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2358				    timeout->tv_nsec))
2359		return -EINVAL;
2360
2361	datagrams = 0;
2362
2363	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2364	if (!sock)
2365		return err;
2366
2367	if (likely(!(flags & MSG_ERRQUEUE))) {
2368		err = sock_error(sock->sk);
2369		if (err) {
2370			datagrams = err;
2371			goto out_put;
2372		}
2373	}
2374
2375	entry = mmsg;
2376	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2377
2378	while (datagrams < vlen) {
2379		/*
2380		 * No need to ask LSM for more than the first datagram.
2381		 */
2382		if (MSG_CMSG_COMPAT & flags) {
2383			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2384					     &msg_sys, flags & ~MSG_WAITFORONE,
2385					     datagrams);
2386			if (err < 0)
2387				break;
2388			err = __put_user(err, &compat_entry->msg_len);
2389			++compat_entry;
2390		} else {
2391			err = ___sys_recvmsg(sock,
2392					     (struct user_msghdr __user *)entry,
2393					     &msg_sys, flags & ~MSG_WAITFORONE,
2394					     datagrams);
2395			if (err < 0)
2396				break;
2397			err = put_user(err, &entry->msg_len);
2398			++entry;
2399		}
2400
2401		if (err)
2402			break;
2403		++datagrams;
2404
2405		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2406		if (flags & MSG_WAITFORONE)
2407			flags |= MSG_DONTWAIT;
2408
2409		if (timeout) {
2410			ktime_get_ts64(&timeout64);
2411			*timeout = timespec64_to_timespec(
2412					timespec64_sub(end_time, timeout64));
2413			if (timeout->tv_sec < 0) {
2414				timeout->tv_sec = timeout->tv_nsec = 0;
2415				break;
2416			}
2417
2418			/* Timeout, return less than vlen datagrams */
2419			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2420				break;
2421		}
2422
2423		/* Out of band data, return right away */
2424		if (msg_sys.msg_flags & MSG_OOB)
2425			break;
2426		cond_resched();
2427	}
2428
2429	if (err == 0)
2430		goto out_put;
2431
2432	if (datagrams == 0) {
2433		datagrams = err;
2434		goto out_put;
2435	}
2436
2437	/*
2438	 * We may return less entries than requested (vlen) if the
2439	 * sock is non block and there aren't enough datagrams...
2440	 */
2441	if (err != -EAGAIN) {
2442		/*
2443		 * ... or  if recvmsg returns an error after we
2444		 * received some datagrams, where we record the
2445		 * error to return on the next call or if the
2446		 * app asks about it using getsockopt(SO_ERROR).
2447		 */
2448		sock->sk->sk_err = -err;
2449	}
2450out_put:
2451	fput_light(sock->file, fput_needed);
2452
2453	return datagrams;
2454}
2455
2456static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2457			   unsigned int vlen, unsigned int flags,
2458			   struct timespec __user *timeout)
 
2459{
2460	int datagrams;
2461	struct timespec timeout_sys;
 
 
 
 
 
 
2462
2463	if (flags & MSG_CMSG_COMPAT)
2464		return -EINVAL;
2465
2466	if (!timeout)
2467		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2468
2469	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2470		return -EFAULT;
2471
2472	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
 
2473
2474	if (datagrams > 0 &&
2475	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2476		datagrams = -EFAULT;
2477
2478	return datagrams;
2479}
2480
2481SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2482		unsigned int, vlen, unsigned int, flags,
2483		struct timespec __user *, timeout)
2484{
2485	return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
 
 
 
2486}
2487
 
 
 
 
 
 
 
 
 
 
 
 
2488#ifdef __ARCH_WANT_SYS_SOCKETCALL
2489/* Argument list sizes for sys_socketcall */
2490#define AL(x) ((x) * sizeof(unsigned long))
2491static const unsigned char nargs[21] = {
2492	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2493	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2494	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2495	AL(4), AL(5), AL(4)
2496};
2497
2498#undef AL
2499
2500/*
2501 *	System call vectors.
2502 *
2503 *	Argument checking cleaned up. Saved 20% in size.
2504 *  This function doesn't need to set the kernel lock because
2505 *  it is set by the callees.
2506 */
2507
2508SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2509{
2510	unsigned long a[AUDITSC_ARGS];
2511	unsigned long a0, a1;
2512	int err;
2513	unsigned int len;
2514
2515	if (call < 1 || call > SYS_SENDMMSG)
2516		return -EINVAL;
 
2517
2518	len = nargs[call];
2519	if (len > sizeof(a))
2520		return -EINVAL;
2521
2522	/* copy_from_user should be SMP safe. */
2523	if (copy_from_user(a, args, len))
2524		return -EFAULT;
2525
2526	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2527	if (err)
2528		return err;
2529
2530	a0 = a[0];
2531	a1 = a[1];
2532
2533	switch (call) {
2534	case SYS_SOCKET:
2535		err = __sys_socket(a0, a1, a[2]);
2536		break;
2537	case SYS_BIND:
2538		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2539		break;
2540	case SYS_CONNECT:
2541		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2542		break;
2543	case SYS_LISTEN:
2544		err = __sys_listen(a0, a1);
2545		break;
2546	case SYS_ACCEPT:
2547		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2548				    (int __user *)a[2], 0);
2549		break;
2550	case SYS_GETSOCKNAME:
2551		err =
2552		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2553				      (int __user *)a[2]);
2554		break;
2555	case SYS_GETPEERNAME:
2556		err =
2557		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2558				      (int __user *)a[2]);
2559		break;
2560	case SYS_SOCKETPAIR:
2561		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2562		break;
2563	case SYS_SEND:
2564		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2565				   NULL, 0);
2566		break;
2567	case SYS_SENDTO:
2568		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2569				   (struct sockaddr __user *)a[4], a[5]);
2570		break;
2571	case SYS_RECV:
2572		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2573				     NULL, NULL);
2574		break;
2575	case SYS_RECVFROM:
2576		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2577				     (struct sockaddr __user *)a[4],
2578				     (int __user *)a[5]);
2579		break;
2580	case SYS_SHUTDOWN:
2581		err = __sys_shutdown(a0, a1);
2582		break;
2583	case SYS_SETSOCKOPT:
2584		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2585				       a[4]);
2586		break;
2587	case SYS_GETSOCKOPT:
2588		err =
2589		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2590				     (int __user *)a[4]);
2591		break;
2592	case SYS_SENDMSG:
2593		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2594				    a[2], true);
2595		break;
2596	case SYS_SENDMMSG:
2597		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2598				     a[3], true);
2599		break;
2600	case SYS_RECVMSG:
2601		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2602				    a[2], true);
2603		break;
2604	case SYS_RECVMMSG:
2605		err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2606				      a[3], (struct timespec __user *)a[4]);
 
 
 
 
 
 
 
2607		break;
2608	case SYS_ACCEPT4:
2609		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2610				    (int __user *)a[2], a[3]);
2611		break;
2612	default:
2613		err = -EINVAL;
2614		break;
2615	}
2616	return err;
2617}
2618
2619#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2620
2621/**
2622 *	sock_register - add a socket protocol handler
2623 *	@ops: description of protocol
2624 *
2625 *	This function is called by a protocol handler that wants to
2626 *	advertise its address family, and have it linked into the
2627 *	socket interface. The value ops->family corresponds to the
2628 *	socket system call protocol family.
2629 */
2630int sock_register(const struct net_proto_family *ops)
2631{
2632	int err;
2633
2634	if (ops->family >= NPROTO) {
2635		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2636		return -ENOBUFS;
2637	}
2638
2639	spin_lock(&net_family_lock);
2640	if (rcu_dereference_protected(net_families[ops->family],
2641				      lockdep_is_held(&net_family_lock)))
2642		err = -EEXIST;
2643	else {
2644		rcu_assign_pointer(net_families[ops->family], ops);
2645		err = 0;
2646	}
2647	spin_unlock(&net_family_lock);
2648
2649	pr_info("NET: Registered protocol family %d\n", ops->family);
2650	return err;
2651}
2652EXPORT_SYMBOL(sock_register);
2653
2654/**
2655 *	sock_unregister - remove a protocol handler
2656 *	@family: protocol family to remove
2657 *
2658 *	This function is called by a protocol handler that wants to
2659 *	remove its address family, and have it unlinked from the
2660 *	new socket creation.
2661 *
2662 *	If protocol handler is a module, then it can use module reference
2663 *	counts to protect against new references. If protocol handler is not
2664 *	a module then it needs to provide its own protection in
2665 *	the ops->create routine.
2666 */
2667void sock_unregister(int family)
2668{
2669	BUG_ON(family < 0 || family >= NPROTO);
2670
2671	spin_lock(&net_family_lock);
2672	RCU_INIT_POINTER(net_families[family], NULL);
2673	spin_unlock(&net_family_lock);
2674
2675	synchronize_rcu();
2676
2677	pr_info("NET: Unregistered protocol family %d\n", family);
2678}
2679EXPORT_SYMBOL(sock_unregister);
2680
2681bool sock_is_registered(int family)
2682{
2683	return family < NPROTO && rcu_access_pointer(net_families[family]);
2684}
2685
2686static int __init sock_init(void)
2687{
2688	int err;
2689	/*
2690	 *      Initialize the network sysctl infrastructure.
2691	 */
2692	err = net_sysctl_init();
2693	if (err)
2694		goto out;
2695
2696	/*
2697	 *      Initialize skbuff SLAB cache
2698	 */
2699	skb_init();
2700
2701	/*
2702	 *      Initialize the protocols module.
2703	 */
2704
2705	init_inodecache();
2706
2707	err = register_filesystem(&sock_fs_type);
2708	if (err)
2709		goto out_fs;
2710	sock_mnt = kern_mount(&sock_fs_type);
2711	if (IS_ERR(sock_mnt)) {
2712		err = PTR_ERR(sock_mnt);
2713		goto out_mount;
2714	}
2715
2716	/* The real protocol initialization is performed in later initcalls.
2717	 */
2718
2719#ifdef CONFIG_NETFILTER
2720	err = netfilter_init();
2721	if (err)
2722		goto out;
2723#endif
2724
2725	ptp_classifier_init();
2726
2727out:
2728	return err;
2729
2730out_mount:
2731	unregister_filesystem(&sock_fs_type);
2732out_fs:
2733	goto out;
2734}
2735
2736core_initcall(sock_init);	/* early initcall */
2737
2738#ifdef CONFIG_PROC_FS
2739void socket_seq_show(struct seq_file *seq)
2740{
2741	seq_printf(seq, "sockets: used %d\n",
2742		   sock_inuse_get(seq->private));
2743}
2744#endif				/* CONFIG_PROC_FS */
2745
2746#ifdef CONFIG_COMPAT
2747static int do_siocgstamp(struct net *net, struct socket *sock,
2748			 unsigned int cmd, void __user *up)
2749{
2750	mm_segment_t old_fs = get_fs();
2751	struct timeval ktv;
2752	int err;
2753
2754	set_fs(KERNEL_DS);
2755	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2756	set_fs(old_fs);
2757	if (!err)
2758		err = compat_put_timeval(&ktv, up);
2759
2760	return err;
2761}
2762
2763static int do_siocgstampns(struct net *net, struct socket *sock,
2764			   unsigned int cmd, void __user *up)
2765{
2766	mm_segment_t old_fs = get_fs();
2767	struct timespec kts;
2768	int err;
2769
2770	set_fs(KERNEL_DS);
2771	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2772	set_fs(old_fs);
2773	if (!err)
2774		err = compat_put_timespec(&kts, up);
2775
2776	return err;
2777}
2778
2779static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2780{
2781	struct compat_ifconf ifc32;
2782	struct ifconf ifc;
2783	int err;
2784
2785	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2786		return -EFAULT;
2787
2788	ifc.ifc_len = ifc32.ifc_len;
2789	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2790
2791	rtnl_lock();
2792	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2793	rtnl_unlock();
2794	if (err)
2795		return err;
2796
2797	ifc32.ifc_len = ifc.ifc_len;
2798	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2799		return -EFAULT;
2800
2801	return 0;
2802}
2803
2804static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2805{
2806	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2807	bool convert_in = false, convert_out = false;
2808	size_t buf_size = 0;
2809	struct ethtool_rxnfc __user *rxnfc = NULL;
2810	struct ifreq ifr;
2811	u32 rule_cnt = 0, actual_rule_cnt;
2812	u32 ethcmd;
2813	u32 data;
2814	int ret;
2815
2816	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2817		return -EFAULT;
2818
2819	compat_rxnfc = compat_ptr(data);
2820
2821	if (get_user(ethcmd, &compat_rxnfc->cmd))
2822		return -EFAULT;
2823
2824	/* Most ethtool structures are defined without padding.
2825	 * Unfortunately struct ethtool_rxnfc is an exception.
2826	 */
2827	switch (ethcmd) {
2828	default:
2829		break;
2830	case ETHTOOL_GRXCLSRLALL:
2831		/* Buffer size is variable */
2832		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2833			return -EFAULT;
2834		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2835			return -ENOMEM;
2836		buf_size += rule_cnt * sizeof(u32);
2837		/* fall through */
2838	case ETHTOOL_GRXRINGS:
2839	case ETHTOOL_GRXCLSRLCNT:
2840	case ETHTOOL_GRXCLSRULE:
2841	case ETHTOOL_SRXCLSRLINS:
2842		convert_out = true;
2843		/* fall through */
2844	case ETHTOOL_SRXCLSRLDEL:
2845		buf_size += sizeof(struct ethtool_rxnfc);
2846		convert_in = true;
2847		rxnfc = compat_alloc_user_space(buf_size);
2848		break;
2849	}
2850
2851	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2852		return -EFAULT;
2853
2854	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2855
2856	if (convert_in) {
2857		/* We expect there to be holes between fs.m_ext and
2858		 * fs.ring_cookie and at the end of fs, but nowhere else.
2859		 */
2860		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2861			     sizeof(compat_rxnfc->fs.m_ext) !=
2862			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2863			     sizeof(rxnfc->fs.m_ext));
2864		BUILD_BUG_ON(
2865			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2866			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2867			offsetof(struct ethtool_rxnfc, fs.location) -
2868			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2869
2870		if (copy_in_user(rxnfc, compat_rxnfc,
2871				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2872				 (void __user *)rxnfc) ||
2873		    copy_in_user(&rxnfc->fs.ring_cookie,
2874				 &compat_rxnfc->fs.ring_cookie,
2875				 (void __user *)(&rxnfc->fs.location + 1) -
2876				 (void __user *)&rxnfc->fs.ring_cookie) ||
2877		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2878				 sizeof(rxnfc->rule_cnt)))
2879			return -EFAULT;
2880	}
2881
2882	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2883	if (ret)
2884		return ret;
2885
2886	if (convert_out) {
2887		if (copy_in_user(compat_rxnfc, rxnfc,
2888				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2889				 (const void __user *)rxnfc) ||
2890		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2891				 &rxnfc->fs.ring_cookie,
2892				 (const void __user *)(&rxnfc->fs.location + 1) -
2893				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2894		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2895				 sizeof(rxnfc->rule_cnt)))
2896			return -EFAULT;
2897
2898		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2899			/* As an optimisation, we only copy the actual
2900			 * number of rules that the underlying
2901			 * function returned.  Since Mallory might
2902			 * change the rule count in user memory, we
2903			 * check that it is less than the rule count
2904			 * originally given (as the user buffer size),
2905			 * which has been range-checked.
2906			 */
2907			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2908				return -EFAULT;
2909			if (actual_rule_cnt < rule_cnt)
2910				rule_cnt = actual_rule_cnt;
2911			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2912					 &rxnfc->rule_locs[0],
2913					 rule_cnt * sizeof(u32)))
2914				return -EFAULT;
2915		}
2916	}
2917
2918	return 0;
2919}
2920
2921static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2922{
2923	compat_uptr_t uptr32;
2924	struct ifreq ifr;
2925	void __user *saved;
2926	int err;
2927
2928	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2929		return -EFAULT;
2930
2931	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2932		return -EFAULT;
2933
2934	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2935	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2936
2937	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2938	if (!err) {
2939		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2940		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2941			err = -EFAULT;
2942	}
2943	return err;
2944}
2945
2946/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2947static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2948				 struct compat_ifreq __user *u_ifreq32)
2949{
2950	struct ifreq ifreq;
2951	u32 data32;
2952
 
 
2953	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2954		return -EFAULT;
2955	if (get_user(data32, &u_ifreq32->ifr_data))
2956		return -EFAULT;
2957	ifreq.ifr_data = compat_ptr(data32);
2958
2959	return dev_ioctl(net, cmd, &ifreq, NULL);
2960}
2961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2962static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2963			struct compat_ifreq __user *uifr32)
2964{
2965	struct ifreq ifr;
2966	struct compat_ifmap __user *uifmap32;
2967	int err;
2968
2969	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2970	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2971	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2972	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2973	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2974	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2975	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2976	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2977	if (err)
2978		return -EFAULT;
2979
2980	err = dev_ioctl(net, cmd, &ifr, NULL);
2981
2982	if (cmd == SIOCGIFMAP && !err) {
2983		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2984		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2985		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2986		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2987		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2988		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2989		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2990		if (err)
2991			err = -EFAULT;
2992	}
2993	return err;
2994}
2995
2996struct rtentry32 {
2997	u32		rt_pad1;
2998	struct sockaddr rt_dst;         /* target address               */
2999	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3000	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3001	unsigned short	rt_flags;
3002	short		rt_pad2;
3003	u32		rt_pad3;
3004	unsigned char	rt_tos;
3005	unsigned char	rt_class;
3006	short		rt_pad4;
3007	short		rt_metric;      /* +1 for binary compatibility! */
3008	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3009	u32		rt_mtu;         /* per route MTU/Window         */
3010	u32		rt_window;      /* Window clamping              */
3011	unsigned short  rt_irtt;        /* Initial RTT                  */
3012};
3013
3014struct in6_rtmsg32 {
3015	struct in6_addr		rtmsg_dst;
3016	struct in6_addr		rtmsg_src;
3017	struct in6_addr		rtmsg_gateway;
3018	u32			rtmsg_type;
3019	u16			rtmsg_dst_len;
3020	u16			rtmsg_src_len;
3021	u32			rtmsg_metric;
3022	u32			rtmsg_info;
3023	u32			rtmsg_flags;
3024	s32			rtmsg_ifindex;
3025};
3026
3027static int routing_ioctl(struct net *net, struct socket *sock,
3028			 unsigned int cmd, void __user *argp)
3029{
3030	int ret;
3031	void *r = NULL;
3032	struct in6_rtmsg r6;
3033	struct rtentry r4;
3034	char devname[16];
3035	u32 rtdev;
3036	mm_segment_t old_fs = get_fs();
3037
3038	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3039		struct in6_rtmsg32 __user *ur6 = argp;
3040		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3041			3 * sizeof(struct in6_addr));
3042		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3043		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3044		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3045		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3046		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3047		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3048		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3049
3050		r = (void *) &r6;
3051	} else { /* ipv4 */
3052		struct rtentry32 __user *ur4 = argp;
3053		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3054					3 * sizeof(struct sockaddr));
3055		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3056		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3057		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3058		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3059		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3060		ret |= get_user(rtdev, &(ur4->rt_dev));
3061		if (rtdev) {
3062			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3063			r4.rt_dev = (char __user __force *)devname;
3064			devname[15] = 0;
3065		} else
3066			r4.rt_dev = NULL;
3067
3068		r = (void *) &r4;
3069	}
3070
3071	if (ret) {
3072		ret = -EFAULT;
3073		goto out;
3074	}
3075
3076	set_fs(KERNEL_DS);
3077	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3078	set_fs(old_fs);
3079
3080out:
3081	return ret;
3082}
3083
3084/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3085 * for some operations; this forces use of the newer bridge-utils that
3086 * use compatible ioctls
3087 */
3088static int old_bridge_ioctl(compat_ulong_t __user *argp)
3089{
3090	compat_ulong_t tmp;
3091
3092	if (get_user(tmp, argp))
3093		return -EFAULT;
3094	if (tmp == BRCTL_GET_VERSION)
3095		return BRCTL_VERSION + 1;
3096	return -EINVAL;
3097}
3098
3099static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3100			 unsigned int cmd, unsigned long arg)
3101{
3102	void __user *argp = compat_ptr(arg);
3103	struct sock *sk = sock->sk;
3104	struct net *net = sock_net(sk);
3105
3106	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3107		return compat_ifr_data_ioctl(net, cmd, argp);
3108
3109	switch (cmd) {
3110	case SIOCSIFBR:
3111	case SIOCGIFBR:
3112		return old_bridge_ioctl(argp);
3113	case SIOCGIFCONF:
3114		return compat_dev_ifconf(net, argp);
3115	case SIOCETHTOOL:
3116		return ethtool_ioctl(net, argp);
3117	case SIOCWANDEV:
3118		return compat_siocwandev(net, argp);
3119	case SIOCGIFMAP:
3120	case SIOCSIFMAP:
3121		return compat_sioc_ifmap(net, cmd, argp);
3122	case SIOCADDRT:
3123	case SIOCDELRT:
3124		return routing_ioctl(net, sock, cmd, argp);
3125	case SIOCGSTAMP:
3126		return do_siocgstamp(net, sock, cmd, argp);
3127	case SIOCGSTAMPNS:
3128		return do_siocgstampns(net, sock, cmd, argp);
 
3129	case SIOCBONDSLAVEINFOQUERY:
3130	case SIOCBONDINFOQUERY:
3131	case SIOCSHWTSTAMP:
3132	case SIOCGHWTSTAMP:
3133		return compat_ifr_data_ioctl(net, cmd, argp);
3134
3135	case FIOSETOWN:
3136	case SIOCSPGRP:
3137	case FIOGETOWN:
3138	case SIOCGPGRP:
3139	case SIOCBRADDBR:
3140	case SIOCBRDELBR:
3141	case SIOCGIFVLAN:
3142	case SIOCSIFVLAN:
3143	case SIOCADDDLCI:
3144	case SIOCDELDLCI:
3145	case SIOCGSKNS:
 
 
3146		return sock_ioctl(file, cmd, arg);
3147
3148	case SIOCGIFFLAGS:
3149	case SIOCSIFFLAGS:
3150	case SIOCGIFMETRIC:
3151	case SIOCSIFMETRIC:
3152	case SIOCGIFMTU:
3153	case SIOCSIFMTU:
3154	case SIOCGIFMEM:
3155	case SIOCSIFMEM:
3156	case SIOCGIFHWADDR:
3157	case SIOCSIFHWADDR:
3158	case SIOCADDMULTI:
3159	case SIOCDELMULTI:
3160	case SIOCGIFINDEX:
3161	case SIOCGIFADDR:
3162	case SIOCSIFADDR:
3163	case SIOCSIFHWBROADCAST:
3164	case SIOCDIFADDR:
3165	case SIOCGIFBRDADDR:
3166	case SIOCSIFBRDADDR:
3167	case SIOCGIFDSTADDR:
3168	case SIOCSIFDSTADDR:
3169	case SIOCGIFNETMASK:
3170	case SIOCSIFNETMASK:
3171	case SIOCSIFPFLAGS:
3172	case SIOCGIFPFLAGS:
3173	case SIOCGIFTXQLEN:
3174	case SIOCSIFTXQLEN:
3175	case SIOCBRADDIF:
3176	case SIOCBRDELIF:
 
3177	case SIOCSIFNAME:
3178	case SIOCGMIIPHY:
3179	case SIOCGMIIREG:
3180	case SIOCSMIIREG:
 
 
 
 
 
 
3181	case SIOCSARP:
3182	case SIOCGARP:
3183	case SIOCDARP:
 
 
3184	case SIOCATMARK:
3185	case SIOCBONDENSLAVE:
3186	case SIOCBONDRELEASE:
3187	case SIOCBONDSETHWADDR:
3188	case SIOCBONDCHANGEACTIVE:
3189	case SIOCGIFNAME:
3190		return sock_do_ioctl(net, sock, cmd, arg);
3191	}
3192
3193	return -ENOIOCTLCMD;
3194}
3195
3196static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3197			      unsigned long arg)
3198{
3199	struct socket *sock = file->private_data;
3200	int ret = -ENOIOCTLCMD;
3201	struct sock *sk;
3202	struct net *net;
3203
3204	sk = sock->sk;
3205	net = sock_net(sk);
3206
3207	if (sock->ops->compat_ioctl)
3208		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3209
3210	if (ret == -ENOIOCTLCMD &&
3211	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3212		ret = compat_wext_handle_ioctl(net, cmd, arg);
3213
3214	if (ret == -ENOIOCTLCMD)
3215		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3216
3217	return ret;
3218}
3219#endif
3220
 
 
 
 
 
 
 
 
 
3221int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3222{
3223	return sock->ops->bind(sock, addr, addrlen);
3224}
3225EXPORT_SYMBOL(kernel_bind);
3226
 
 
 
 
 
 
 
 
3227int kernel_listen(struct socket *sock, int backlog)
3228{
3229	return sock->ops->listen(sock, backlog);
3230}
3231EXPORT_SYMBOL(kernel_listen);
3232
 
 
 
 
 
 
 
 
 
 
 
3233int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3234{
3235	struct sock *sk = sock->sk;
3236	int err;
3237
3238	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3239			       newsock);
3240	if (err < 0)
3241		goto done;
3242
3243	err = sock->ops->accept(sock, *newsock, flags, true);
3244	if (err < 0) {
3245		sock_release(*newsock);
3246		*newsock = NULL;
3247		goto done;
3248	}
3249
3250	(*newsock)->ops = sock->ops;
3251	__module_get((*newsock)->ops->owner);
3252
3253done:
3254	return err;
3255}
3256EXPORT_SYMBOL(kernel_accept);
3257
 
 
 
 
 
 
 
 
 
 
 
 
 
3258int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3259		   int flags)
3260{
3261	return sock->ops->connect(sock, addr, addrlen, flags);
3262}
3263EXPORT_SYMBOL(kernel_connect);
3264
 
 
 
 
 
 
 
 
 
3265int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3266{
3267	return sock->ops->getname(sock, addr, 0);
3268}
3269EXPORT_SYMBOL(kernel_getsockname);
3270
 
 
 
 
 
 
 
 
 
3271int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3272{
3273	return sock->ops->getname(sock, addr, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278			char *optval, int *optlen)
3279{
3280	mm_segment_t oldfs = get_fs();
3281	char __user *uoptval;
3282	int __user *uoptlen;
3283	int err;
3284
3285	uoptval = (char __user __force *) optval;
3286	uoptlen = (int __user __force *) optlen;
3287
3288	set_fs(KERNEL_DS);
3289	if (level == SOL_SOCKET)
3290		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291	else
3292		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293					    uoptlen);
3294	set_fs(oldfs);
3295	return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300			char *optval, unsigned int optlen)
3301{
3302	mm_segment_t oldfs = get_fs();
3303	char __user *uoptval;
3304	int err;
3305
3306	uoptval = (char __user __force *) optval;
3307
3308	set_fs(KERNEL_DS);
3309	if (level == SOL_SOCKET)
3310		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311	else
3312		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313					    optlen);
3314	set_fs(oldfs);
3315	return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320		    size_t size, int flags)
3321{
3322	if (sock->ops->sendpage)
 
 
3323		return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325	return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
 
 
 
 
 
 
 
 
 
 
 
 
3329int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3330			   size_t size, int flags)
3331{
3332	struct socket *sock = sk->sk_socket;
3333
3334	if (sock->ops->sendpage_locked)
3335		return sock->ops->sendpage_locked(sk, page, offset, size,
3336						  flags);
3337
3338	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3339}
3340EXPORT_SYMBOL(kernel_sendpage_locked);
3341
 
 
 
 
 
 
 
 
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344	return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
3347
3348/* This routine returns the IP overhead imposed by a socket i.e.
3349 * the length of the underlying IP header, depending on whether
3350 * this is an IPv4 or IPv6 socket and the length from IP options turned
3351 * on at the socket. Assumes that the caller has a lock on the socket.
 
 
 
 
3352 */
 
3353u32 kernel_sock_ip_overhead(struct sock *sk)
3354{
3355	struct inet_sock *inet;
3356	struct ip_options_rcu *opt;
3357	u32 overhead = 0;
3358#if IS_ENABLED(CONFIG_IPV6)
3359	struct ipv6_pinfo *np;
3360	struct ipv6_txoptions *optv6 = NULL;
3361#endif /* IS_ENABLED(CONFIG_IPV6) */
3362
3363	if (!sk)
3364		return overhead;
3365
3366	switch (sk->sk_family) {
3367	case AF_INET:
3368		inet = inet_sk(sk);
3369		overhead += sizeof(struct iphdr);
3370		opt = rcu_dereference_protected(inet->inet_opt,
3371						sock_owned_by_user(sk));
3372		if (opt)
3373			overhead += opt->opt.optlen;
3374		return overhead;
3375#if IS_ENABLED(CONFIG_IPV6)
3376	case AF_INET6:
3377		np = inet6_sk(sk);
3378		overhead += sizeof(struct ipv6hdr);
3379		if (np)
3380			optv6 = rcu_dereference_protected(np->opt,
3381							  sock_owned_by_user(sk));
3382		if (optv6)
3383			overhead += (optv6->opt_flen + optv6->opt_nflen);
3384		return overhead;
3385#endif /* IS_ENABLED(CONFIG_IPV6) */
3386	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3387		return overhead;
3388	}
3389}
3390EXPORT_SYMBOL(kernel_sock_ip_overhead);