Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/ethtool.h>
56#include <linux/mm.h>
57#include <linux/socket.h>
58#include <linux/file.h>
59#include <linux/net.h>
60#include <linux/interrupt.h>
61#include <linux/thread_info.h>
62#include <linux/rcupdate.h>
63#include <linux/netdevice.h>
64#include <linux/proc_fs.h>
65#include <linux/seq_file.h>
66#include <linux/mutex.h>
67#include <linux/if_bridge.h>
68#include <linux/if_vlan.h>
69#include <linux/ptp_classify.h>
70#include <linux/init.h>
71#include <linux/poll.h>
72#include <linux/cache.h>
73#include <linux/module.h>
74#include <linux/highmem.h>
75#include <linux/mount.h>
76#include <linux/pseudo_fs.h>
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/compat.h>
80#include <linux/kmod.h>
81#include <linux/audit.h>
82#include <linux/wireless.h>
83#include <linux/nsproxy.h>
84#include <linux/magic.h>
85#include <linux/slab.h>
86#include <linux/xattr.h>
87#include <linux/nospec.h>
88#include <linux/indirect_call_wrapper.h>
89
90#include <linux/uaccess.h>
91#include <asm/unistd.h>
92
93#include <net/compat.h>
94#include <net/wext.h>
95#include <net/cls_cgroup.h>
96
97#include <net/sock.h>
98#include <linux/netfilter.h>
99
100#include <linux/if_tun.h>
101#include <linux/ipv6_route.h>
102#include <linux/route.h>
103#include <linux/termios.h>
104#include <linux/sockios.h>
105#include <net/busy_poll.h>
106#include <linux/errqueue.h>
107#include <linux/ptp_clock_kernel.h>
108
109#ifdef CONFIG_NET_RX_BUSY_POLL
110unsigned int sysctl_net_busy_read __read_mostly;
111unsigned int sysctl_net_busy_poll __read_mostly;
112#endif
113
114static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117
118static int sock_close(struct inode *inode, struct file *file);
119static __poll_t sock_poll(struct file *file,
120 struct poll_table_struct *wait);
121static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122#ifdef CONFIG_COMPAT
123static long compat_sock_ioctl(struct file *file,
124 unsigned int cmd, unsigned long arg);
125#endif
126static int sock_fasync(int fd, struct file *filp, int on);
127static ssize_t sock_sendpage(struct file *file, struct page *page,
128 int offset, size_t size, loff_t *ppos, int more);
129static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 struct pipe_inode_info *pipe, size_t len,
131 unsigned int flags);
132
133#ifdef CONFIG_PROC_FS
134static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135{
136 struct socket *sock = f->private_data;
137
138 if (sock->ops->show_fdinfo)
139 sock->ops->show_fdinfo(m, sock);
140}
141#else
142#define sock_show_fdinfo NULL
143#endif
144
145/*
146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147 * in the operation structures but are done directly via the socketcall() multiplexor.
148 */
149
150static const struct file_operations socket_file_ops = {
151 .owner = THIS_MODULE,
152 .llseek = no_llseek,
153 .read_iter = sock_read_iter,
154 .write_iter = sock_write_iter,
155 .poll = sock_poll,
156 .unlocked_ioctl = sock_ioctl,
157#ifdef CONFIG_COMPAT
158 .compat_ioctl = compat_sock_ioctl,
159#endif
160 .mmap = sock_mmap,
161 .release = sock_close,
162 .fasync = sock_fasync,
163 .sendpage = sock_sendpage,
164 .splice_write = generic_splice_sendpage,
165 .splice_read = sock_splice_read,
166 .show_fdinfo = sock_show_fdinfo,
167};
168
169static const char * const pf_family_names[] = {
170 [PF_UNSPEC] = "PF_UNSPEC",
171 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
172 [PF_INET] = "PF_INET",
173 [PF_AX25] = "PF_AX25",
174 [PF_IPX] = "PF_IPX",
175 [PF_APPLETALK] = "PF_APPLETALK",
176 [PF_NETROM] = "PF_NETROM",
177 [PF_BRIDGE] = "PF_BRIDGE",
178 [PF_ATMPVC] = "PF_ATMPVC",
179 [PF_X25] = "PF_X25",
180 [PF_INET6] = "PF_INET6",
181 [PF_ROSE] = "PF_ROSE",
182 [PF_DECnet] = "PF_DECnet",
183 [PF_NETBEUI] = "PF_NETBEUI",
184 [PF_SECURITY] = "PF_SECURITY",
185 [PF_KEY] = "PF_KEY",
186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
187 [PF_PACKET] = "PF_PACKET",
188 [PF_ASH] = "PF_ASH",
189 [PF_ECONET] = "PF_ECONET",
190 [PF_ATMSVC] = "PF_ATMSVC",
191 [PF_RDS] = "PF_RDS",
192 [PF_SNA] = "PF_SNA",
193 [PF_IRDA] = "PF_IRDA",
194 [PF_PPPOX] = "PF_PPPOX",
195 [PF_WANPIPE] = "PF_WANPIPE",
196 [PF_LLC] = "PF_LLC",
197 [PF_IB] = "PF_IB",
198 [PF_MPLS] = "PF_MPLS",
199 [PF_CAN] = "PF_CAN",
200 [PF_TIPC] = "PF_TIPC",
201 [PF_BLUETOOTH] = "PF_BLUETOOTH",
202 [PF_IUCV] = "PF_IUCV",
203 [PF_RXRPC] = "PF_RXRPC",
204 [PF_ISDN] = "PF_ISDN",
205 [PF_PHONET] = "PF_PHONET",
206 [PF_IEEE802154] = "PF_IEEE802154",
207 [PF_CAIF] = "PF_CAIF",
208 [PF_ALG] = "PF_ALG",
209 [PF_NFC] = "PF_NFC",
210 [PF_VSOCK] = "PF_VSOCK",
211 [PF_KCM] = "PF_KCM",
212 [PF_QIPCRTR] = "PF_QIPCRTR",
213 [PF_SMC] = "PF_SMC",
214 [PF_XDP] = "PF_XDP",
215};
216
217/*
218 * The protocol list. Each protocol is registered in here.
219 */
220
221static DEFINE_SPINLOCK(net_family_lock);
222static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
223
224/*
225 * Support routines.
226 * Move socket addresses back and forth across the kernel/user
227 * divide and look after the messy bits.
228 */
229
230/**
231 * move_addr_to_kernel - copy a socket address into kernel space
232 * @uaddr: Address in user space
233 * @kaddr: Address in kernel space
234 * @ulen: Length in user space
235 *
236 * The address is copied into kernel space. If the provided address is
237 * too long an error code of -EINVAL is returned. If the copy gives
238 * invalid addresses -EFAULT is returned. On a success 0 is returned.
239 */
240
241int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
242{
243 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
244 return -EINVAL;
245 if (ulen == 0)
246 return 0;
247 if (copy_from_user(kaddr, uaddr, ulen))
248 return -EFAULT;
249 return audit_sockaddr(ulen, kaddr);
250}
251
252/**
253 * move_addr_to_user - copy an address to user space
254 * @kaddr: kernel space address
255 * @klen: length of address in kernel
256 * @uaddr: user space address
257 * @ulen: pointer to user length field
258 *
259 * The value pointed to by ulen on entry is the buffer length available.
260 * This is overwritten with the buffer space used. -EINVAL is returned
261 * if an overlong buffer is specified or a negative buffer size. -EFAULT
262 * is returned if either the buffer or the length field are not
263 * accessible.
264 * After copying the data up to the limit the user specifies, the true
265 * length of the data is written over the length limit the user
266 * specified. Zero is returned for a success.
267 */
268
269static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
270 void __user *uaddr, int __user *ulen)
271{
272 int err;
273 int len;
274
275 BUG_ON(klen > sizeof(struct sockaddr_storage));
276 err = get_user(len, ulen);
277 if (err)
278 return err;
279 if (len > klen)
280 len = klen;
281 if (len < 0)
282 return -EINVAL;
283 if (len) {
284 if (audit_sockaddr(klen, kaddr))
285 return -ENOMEM;
286 if (copy_to_user(uaddr, kaddr, len))
287 return -EFAULT;
288 }
289 /*
290 * "fromlen shall refer to the value before truncation.."
291 * 1003.1g
292 */
293 return __put_user(klen, ulen);
294}
295
296static struct kmem_cache *sock_inode_cachep __ro_after_init;
297
298static struct inode *sock_alloc_inode(struct super_block *sb)
299{
300 struct socket_alloc *ei;
301
302 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
303 if (!ei)
304 return NULL;
305 init_waitqueue_head(&ei->socket.wq.wait);
306 ei->socket.wq.fasync_list = NULL;
307 ei->socket.wq.flags = 0;
308
309 ei->socket.state = SS_UNCONNECTED;
310 ei->socket.flags = 0;
311 ei->socket.ops = NULL;
312 ei->socket.sk = NULL;
313 ei->socket.file = NULL;
314
315 return &ei->vfs_inode;
316}
317
318static void sock_free_inode(struct inode *inode)
319{
320 struct socket_alloc *ei;
321
322 ei = container_of(inode, struct socket_alloc, vfs_inode);
323 kmem_cache_free(sock_inode_cachep, ei);
324}
325
326static void init_once(void *foo)
327{
328 struct socket_alloc *ei = (struct socket_alloc *)foo;
329
330 inode_init_once(&ei->vfs_inode);
331}
332
333static void init_inodecache(void)
334{
335 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
336 sizeof(struct socket_alloc),
337 0,
338 (SLAB_HWCACHE_ALIGN |
339 SLAB_RECLAIM_ACCOUNT |
340 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
341 init_once);
342 BUG_ON(sock_inode_cachep == NULL);
343}
344
345static const struct super_operations sockfs_ops = {
346 .alloc_inode = sock_alloc_inode,
347 .free_inode = sock_free_inode,
348 .statfs = simple_statfs,
349};
350
351/*
352 * sockfs_dname() is called from d_path().
353 */
354static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
355{
356 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
357 d_inode(dentry)->i_ino);
358}
359
360static const struct dentry_operations sockfs_dentry_operations = {
361 .d_dname = sockfs_dname,
362};
363
364static int sockfs_xattr_get(const struct xattr_handler *handler,
365 struct dentry *dentry, struct inode *inode,
366 const char *suffix, void *value, size_t size)
367{
368 if (value) {
369 if (dentry->d_name.len + 1 > size)
370 return -ERANGE;
371 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
372 }
373 return dentry->d_name.len + 1;
374}
375
376#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
377#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
378#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
379
380static const struct xattr_handler sockfs_xattr_handler = {
381 .name = XATTR_NAME_SOCKPROTONAME,
382 .get = sockfs_xattr_get,
383};
384
385static int sockfs_security_xattr_set(const struct xattr_handler *handler,
386 struct user_namespace *mnt_userns,
387 struct dentry *dentry, struct inode *inode,
388 const char *suffix, const void *value,
389 size_t size, int flags)
390{
391 /* Handled by LSM. */
392 return -EAGAIN;
393}
394
395static const struct xattr_handler sockfs_security_xattr_handler = {
396 .prefix = XATTR_SECURITY_PREFIX,
397 .set = sockfs_security_xattr_set,
398};
399
400static const struct xattr_handler *sockfs_xattr_handlers[] = {
401 &sockfs_xattr_handler,
402 &sockfs_security_xattr_handler,
403 NULL
404};
405
406static int sockfs_init_fs_context(struct fs_context *fc)
407{
408 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
409 if (!ctx)
410 return -ENOMEM;
411 ctx->ops = &sockfs_ops;
412 ctx->dops = &sockfs_dentry_operations;
413 ctx->xattr = sockfs_xattr_handlers;
414 return 0;
415}
416
417static struct vfsmount *sock_mnt __read_mostly;
418
419static struct file_system_type sock_fs_type = {
420 .name = "sockfs",
421 .init_fs_context = sockfs_init_fs_context,
422 .kill_sb = kill_anon_super,
423};
424
425/*
426 * Obtains the first available file descriptor and sets it up for use.
427 *
428 * These functions create file structures and maps them to fd space
429 * of the current process. On success it returns file descriptor
430 * and file struct implicitly stored in sock->file.
431 * Note that another thread may close file descriptor before we return
432 * from this function. We use the fact that now we do not refer
433 * to socket after mapping. If one day we will need it, this
434 * function will increment ref. count on file by 1.
435 *
436 * In any case returned fd MAY BE not valid!
437 * This race condition is unavoidable
438 * with shared fd spaces, we cannot solve it inside kernel,
439 * but we take care of internal coherence yet.
440 */
441
442/**
443 * sock_alloc_file - Bind a &socket to a &file
444 * @sock: socket
445 * @flags: file status flags
446 * @dname: protocol name
447 *
448 * Returns the &file bound with @sock, implicitly storing it
449 * in sock->file. If dname is %NULL, sets to "".
450 * On failure the return is a ERR pointer (see linux/err.h).
451 * This function uses GFP_KERNEL internally.
452 */
453
454struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
455{
456 struct file *file;
457
458 if (!dname)
459 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
460
461 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
462 O_RDWR | (flags & O_NONBLOCK),
463 &socket_file_ops);
464 if (IS_ERR(file)) {
465 sock_release(sock);
466 return file;
467 }
468
469 sock->file = file;
470 file->private_data = sock;
471 stream_open(SOCK_INODE(sock), file);
472 return file;
473}
474EXPORT_SYMBOL(sock_alloc_file);
475
476static int sock_map_fd(struct socket *sock, int flags)
477{
478 struct file *newfile;
479 int fd = get_unused_fd_flags(flags);
480 if (unlikely(fd < 0)) {
481 sock_release(sock);
482 return fd;
483 }
484
485 newfile = sock_alloc_file(sock, flags, NULL);
486 if (!IS_ERR(newfile)) {
487 fd_install(fd, newfile);
488 return fd;
489 }
490
491 put_unused_fd(fd);
492 return PTR_ERR(newfile);
493}
494
495/**
496 * sock_from_file - Return the &socket bounded to @file.
497 * @file: file
498 *
499 * On failure returns %NULL.
500 */
501
502struct socket *sock_from_file(struct file *file)
503{
504 if (file->f_op == &socket_file_ops)
505 return file->private_data; /* set in sock_map_fd */
506
507 return NULL;
508}
509EXPORT_SYMBOL(sock_from_file);
510
511/**
512 * sockfd_lookup - Go from a file number to its socket slot
513 * @fd: file handle
514 * @err: pointer to an error code return
515 *
516 * The file handle passed in is locked and the socket it is bound
517 * to is returned. If an error occurs the err pointer is overwritten
518 * with a negative errno code and NULL is returned. The function checks
519 * for both invalid handles and passing a handle which is not a socket.
520 *
521 * On a success the socket object pointer is returned.
522 */
523
524struct socket *sockfd_lookup(int fd, int *err)
525{
526 struct file *file;
527 struct socket *sock;
528
529 file = fget(fd);
530 if (!file) {
531 *err = -EBADF;
532 return NULL;
533 }
534
535 sock = sock_from_file(file);
536 if (!sock) {
537 *err = -ENOTSOCK;
538 fput(file);
539 }
540 return sock;
541}
542EXPORT_SYMBOL(sockfd_lookup);
543
544static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
545{
546 struct fd f = fdget(fd);
547 struct socket *sock;
548
549 *err = -EBADF;
550 if (f.file) {
551 sock = sock_from_file(f.file);
552 if (likely(sock)) {
553 *fput_needed = f.flags & FDPUT_FPUT;
554 return sock;
555 }
556 *err = -ENOTSOCK;
557 fdput(f);
558 }
559 return NULL;
560}
561
562static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
563 size_t size)
564{
565 ssize_t len;
566 ssize_t used = 0;
567
568 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
569 if (len < 0)
570 return len;
571 used += len;
572 if (buffer) {
573 if (size < used)
574 return -ERANGE;
575 buffer += len;
576 }
577
578 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
579 used += len;
580 if (buffer) {
581 if (size < used)
582 return -ERANGE;
583 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
584 buffer += len;
585 }
586
587 return used;
588}
589
590static int sockfs_setattr(struct user_namespace *mnt_userns,
591 struct dentry *dentry, struct iattr *iattr)
592{
593 int err = simple_setattr(&init_user_ns, dentry, iattr);
594
595 if (!err && (iattr->ia_valid & ATTR_UID)) {
596 struct socket *sock = SOCKET_I(d_inode(dentry));
597
598 if (sock->sk)
599 sock->sk->sk_uid = iattr->ia_uid;
600 else
601 err = -ENOENT;
602 }
603
604 return err;
605}
606
607static const struct inode_operations sockfs_inode_ops = {
608 .listxattr = sockfs_listxattr,
609 .setattr = sockfs_setattr,
610};
611
612/**
613 * sock_alloc - allocate a socket
614 *
615 * Allocate a new inode and socket object. The two are bound together
616 * and initialised. The socket is then returned. If we are out of inodes
617 * NULL is returned. This functions uses GFP_KERNEL internally.
618 */
619
620struct socket *sock_alloc(void)
621{
622 struct inode *inode;
623 struct socket *sock;
624
625 inode = new_inode_pseudo(sock_mnt->mnt_sb);
626 if (!inode)
627 return NULL;
628
629 sock = SOCKET_I(inode);
630
631 inode->i_ino = get_next_ino();
632 inode->i_mode = S_IFSOCK | S_IRWXUGO;
633 inode->i_uid = current_fsuid();
634 inode->i_gid = current_fsgid();
635 inode->i_op = &sockfs_inode_ops;
636
637 return sock;
638}
639EXPORT_SYMBOL(sock_alloc);
640
641static void __sock_release(struct socket *sock, struct inode *inode)
642{
643 if (sock->ops) {
644 struct module *owner = sock->ops->owner;
645
646 if (inode)
647 inode_lock(inode);
648 sock->ops->release(sock);
649 sock->sk = NULL;
650 if (inode)
651 inode_unlock(inode);
652 sock->ops = NULL;
653 module_put(owner);
654 }
655
656 if (sock->wq.fasync_list)
657 pr_err("%s: fasync list not empty!\n", __func__);
658
659 if (!sock->file) {
660 iput(SOCK_INODE(sock));
661 return;
662 }
663 sock->file = NULL;
664}
665
666/**
667 * sock_release - close a socket
668 * @sock: socket to close
669 *
670 * The socket is released from the protocol stack if it has a release
671 * callback, and the inode is then released if the socket is bound to
672 * an inode not a file.
673 */
674void sock_release(struct socket *sock)
675{
676 __sock_release(sock, NULL);
677}
678EXPORT_SYMBOL(sock_release);
679
680void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
681{
682 u8 flags = *tx_flags;
683
684 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
685 flags |= SKBTX_HW_TSTAMP;
686
687 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
688 flags |= SKBTX_SW_TSTAMP;
689
690 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
691 flags |= SKBTX_SCHED_TSTAMP;
692
693 *tx_flags = flags;
694}
695EXPORT_SYMBOL(__sock_tx_timestamp);
696
697INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
698 size_t));
699INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
700 size_t));
701static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
702{
703 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
704 inet_sendmsg, sock, msg,
705 msg_data_left(msg));
706 BUG_ON(ret == -EIOCBQUEUED);
707 return ret;
708}
709
710/**
711 * sock_sendmsg - send a message through @sock
712 * @sock: socket
713 * @msg: message to send
714 *
715 * Sends @msg through @sock, passing through LSM.
716 * Returns the number of bytes sent, or an error code.
717 */
718int sock_sendmsg(struct socket *sock, struct msghdr *msg)
719{
720 int err = security_socket_sendmsg(sock, msg,
721 msg_data_left(msg));
722
723 return err ?: sock_sendmsg_nosec(sock, msg);
724}
725EXPORT_SYMBOL(sock_sendmsg);
726
727/**
728 * kernel_sendmsg - send a message through @sock (kernel-space)
729 * @sock: socket
730 * @msg: message header
731 * @vec: kernel vec
732 * @num: vec array length
733 * @size: total message data size
734 *
735 * Builds the message data with @vec and sends it through @sock.
736 * Returns the number of bytes sent, or an error code.
737 */
738
739int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
740 struct kvec *vec, size_t num, size_t size)
741{
742 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
743 return sock_sendmsg(sock, msg);
744}
745EXPORT_SYMBOL(kernel_sendmsg);
746
747/**
748 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
749 * @sk: sock
750 * @msg: message header
751 * @vec: output s/g array
752 * @num: output s/g array length
753 * @size: total message data size
754 *
755 * Builds the message data with @vec and sends it through @sock.
756 * Returns the number of bytes sent, or an error code.
757 * Caller must hold @sk.
758 */
759
760int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
761 struct kvec *vec, size_t num, size_t size)
762{
763 struct socket *sock = sk->sk_socket;
764
765 if (!sock->ops->sendmsg_locked)
766 return sock_no_sendmsg_locked(sk, msg, size);
767
768 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
769
770 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
771}
772EXPORT_SYMBOL(kernel_sendmsg_locked);
773
774static bool skb_is_err_queue(const struct sk_buff *skb)
775{
776 /* pkt_type of skbs enqueued on the error queue are set to
777 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
778 * in recvmsg, since skbs received on a local socket will never
779 * have a pkt_type of PACKET_OUTGOING.
780 */
781 return skb->pkt_type == PACKET_OUTGOING;
782}
783
784/* On transmit, software and hardware timestamps are returned independently.
785 * As the two skb clones share the hardware timestamp, which may be updated
786 * before the software timestamp is received, a hardware TX timestamp may be
787 * returned only if there is no software TX timestamp. Ignore false software
788 * timestamps, which may be made in the __sock_recv_timestamp() call when the
789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
790 * hardware timestamp.
791 */
792static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
793{
794 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
795}
796
797static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
798{
799 struct scm_ts_pktinfo ts_pktinfo;
800 struct net_device *orig_dev;
801
802 if (!skb_mac_header_was_set(skb))
803 return;
804
805 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
806
807 rcu_read_lock();
808 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
809 if (orig_dev)
810 ts_pktinfo.if_index = orig_dev->ifindex;
811 rcu_read_unlock();
812
813 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
814 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
815 sizeof(ts_pktinfo), &ts_pktinfo);
816}
817
818/*
819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
820 */
821void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
822 struct sk_buff *skb)
823{
824 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
825 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
826 struct scm_timestamping_internal tss;
827
828 int empty = 1, false_tstamp = 0;
829 struct skb_shared_hwtstamps *shhwtstamps =
830 skb_hwtstamps(skb);
831
832 /* Race occurred between timestamp enabling and packet
833 receiving. Fill in the current time for now. */
834 if (need_software_tstamp && skb->tstamp == 0) {
835 __net_timestamp(skb);
836 false_tstamp = 1;
837 }
838
839 if (need_software_tstamp) {
840 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
841 if (new_tstamp) {
842 struct __kernel_sock_timeval tv;
843
844 skb_get_new_timestamp(skb, &tv);
845 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
846 sizeof(tv), &tv);
847 } else {
848 struct __kernel_old_timeval tv;
849
850 skb_get_timestamp(skb, &tv);
851 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
852 sizeof(tv), &tv);
853 }
854 } else {
855 if (new_tstamp) {
856 struct __kernel_timespec ts;
857
858 skb_get_new_timestampns(skb, &ts);
859 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
860 sizeof(ts), &ts);
861 } else {
862 struct __kernel_old_timespec ts;
863
864 skb_get_timestampns(skb, &ts);
865 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
866 sizeof(ts), &ts);
867 }
868 }
869 }
870
871 memset(&tss, 0, sizeof(tss));
872 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
873 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
874 empty = 0;
875 if (shhwtstamps &&
876 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
877 !skb_is_swtx_tstamp(skb, false_tstamp)) {
878 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
879 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
880
881 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
882 tss.ts + 2)) {
883 empty = 0;
884
885 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
886 !skb_is_err_queue(skb))
887 put_ts_pktinfo(msg, skb);
888 }
889 }
890 if (!empty) {
891 if (sock_flag(sk, SOCK_TSTAMP_NEW))
892 put_cmsg_scm_timestamping64(msg, &tss);
893 else
894 put_cmsg_scm_timestamping(msg, &tss);
895
896 if (skb_is_err_queue(skb) && skb->len &&
897 SKB_EXT_ERR(skb)->opt_stats)
898 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
899 skb->len, skb->data);
900 }
901}
902EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
903
904void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
905 struct sk_buff *skb)
906{
907 int ack;
908
909 if (!sock_flag(sk, SOCK_WIFI_STATUS))
910 return;
911 if (!skb->wifi_acked_valid)
912 return;
913
914 ack = skb->wifi_acked;
915
916 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
917}
918EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
919
920static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
921 struct sk_buff *skb)
922{
923 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
924 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
925 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
926}
927
928void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
929 struct sk_buff *skb)
930{
931 sock_recv_timestamp(msg, sk, skb);
932 sock_recv_drops(msg, sk, skb);
933}
934EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
935
936INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
937 size_t, int));
938INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
939 size_t, int));
940static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
941 int flags)
942{
943 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
944 inet_recvmsg, sock, msg, msg_data_left(msg),
945 flags);
946}
947
948/**
949 * sock_recvmsg - receive a message from @sock
950 * @sock: socket
951 * @msg: message to receive
952 * @flags: message flags
953 *
954 * Receives @msg from @sock, passing through LSM. Returns the total number
955 * of bytes received, or an error.
956 */
957int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
958{
959 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
960
961 return err ?: sock_recvmsg_nosec(sock, msg, flags);
962}
963EXPORT_SYMBOL(sock_recvmsg);
964
965/**
966 * kernel_recvmsg - Receive a message from a socket (kernel space)
967 * @sock: The socket to receive the message from
968 * @msg: Received message
969 * @vec: Input s/g array for message data
970 * @num: Size of input s/g array
971 * @size: Number of bytes to read
972 * @flags: Message flags (MSG_DONTWAIT, etc...)
973 *
974 * On return the msg structure contains the scatter/gather array passed in the
975 * vec argument. The array is modified so that it consists of the unfilled
976 * portion of the original array.
977 *
978 * The returned value is the total number of bytes received, or an error.
979 */
980
981int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
982 struct kvec *vec, size_t num, size_t size, int flags)
983{
984 msg->msg_control_is_user = false;
985 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
986 return sock_recvmsg(sock, msg, flags);
987}
988EXPORT_SYMBOL(kernel_recvmsg);
989
990static ssize_t sock_sendpage(struct file *file, struct page *page,
991 int offset, size_t size, loff_t *ppos, int more)
992{
993 struct socket *sock;
994 int flags;
995
996 sock = file->private_data;
997
998 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
999 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000 flags |= more;
1001
1002 return kernel_sendpage(sock, page, offset, size, flags);
1003}
1004
1005static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006 struct pipe_inode_info *pipe, size_t len,
1007 unsigned int flags)
1008{
1009 struct socket *sock = file->private_data;
1010
1011 if (unlikely(!sock->ops->splice_read))
1012 return generic_file_splice_read(file, ppos, pipe, len, flags);
1013
1014 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015}
1016
1017static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018{
1019 struct file *file = iocb->ki_filp;
1020 struct socket *sock = file->private_data;
1021 struct msghdr msg = {.msg_iter = *to,
1022 .msg_iocb = iocb};
1023 ssize_t res;
1024
1025 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026 msg.msg_flags = MSG_DONTWAIT;
1027
1028 if (iocb->ki_pos != 0)
1029 return -ESPIPE;
1030
1031 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1032 return 0;
1033
1034 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035 *to = msg.msg_iter;
1036 return res;
1037}
1038
1039static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040{
1041 struct file *file = iocb->ki_filp;
1042 struct socket *sock = file->private_data;
1043 struct msghdr msg = {.msg_iter = *from,
1044 .msg_iocb = iocb};
1045 ssize_t res;
1046
1047 if (iocb->ki_pos != 0)
1048 return -ESPIPE;
1049
1050 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051 msg.msg_flags = MSG_DONTWAIT;
1052
1053 if (sock->type == SOCK_SEQPACKET)
1054 msg.msg_flags |= MSG_EOR;
1055
1056 res = sock_sendmsg(sock, &msg);
1057 *from = msg.msg_iter;
1058 return res;
1059}
1060
1061/*
1062 * Atomic setting of ioctl hooks to avoid race
1063 * with module unload.
1064 */
1065
1066static DEFINE_MUTEX(br_ioctl_mutex);
1067static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068
1069void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1070{
1071 mutex_lock(&br_ioctl_mutex);
1072 br_ioctl_hook = hook;
1073 mutex_unlock(&br_ioctl_mutex);
1074}
1075EXPORT_SYMBOL(brioctl_set);
1076
1077static DEFINE_MUTEX(vlan_ioctl_mutex);
1078static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079
1080void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081{
1082 mutex_lock(&vlan_ioctl_mutex);
1083 vlan_ioctl_hook = hook;
1084 mutex_unlock(&vlan_ioctl_mutex);
1085}
1086EXPORT_SYMBOL(vlan_ioctl_set);
1087
1088static long sock_do_ioctl(struct net *net, struct socket *sock,
1089 unsigned int cmd, unsigned long arg)
1090{
1091 int err;
1092 void __user *argp = (void __user *)arg;
1093
1094 err = sock->ops->ioctl(sock, cmd, arg);
1095
1096 /*
1097 * If this ioctl is unknown try to hand it down
1098 * to the NIC driver.
1099 */
1100 if (err != -ENOIOCTLCMD)
1101 return err;
1102
1103 if (cmd == SIOCGIFCONF) {
1104 struct ifconf ifc;
1105 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1106 return -EFAULT;
1107 rtnl_lock();
1108 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1109 rtnl_unlock();
1110 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1111 err = -EFAULT;
1112 } else if (is_socket_ioctl_cmd(cmd)) {
1113 struct ifreq ifr;
1114 bool need_copyout;
1115 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1116 return -EFAULT;
1117 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1118 if (!err && need_copyout)
1119 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1120 return -EFAULT;
1121 } else {
1122 err = -ENOTTY;
1123 }
1124 return err;
1125}
1126
1127/*
1128 * With an ioctl, arg may well be a user mode pointer, but we don't know
1129 * what to do with it - that's up to the protocol still.
1130 */
1131
1132static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1133{
1134 struct socket *sock;
1135 struct sock *sk;
1136 void __user *argp = (void __user *)arg;
1137 int pid, err;
1138 struct net *net;
1139
1140 sock = file->private_data;
1141 sk = sock->sk;
1142 net = sock_net(sk);
1143 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1144 struct ifreq ifr;
1145 bool need_copyout;
1146 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1147 return -EFAULT;
1148 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1149 if (!err && need_copyout)
1150 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1151 return -EFAULT;
1152 } else
1153#ifdef CONFIG_WEXT_CORE
1154 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1155 err = wext_handle_ioctl(net, cmd, argp);
1156 } else
1157#endif
1158 switch (cmd) {
1159 case FIOSETOWN:
1160 case SIOCSPGRP:
1161 err = -EFAULT;
1162 if (get_user(pid, (int __user *)argp))
1163 break;
1164 err = f_setown(sock->file, pid, 1);
1165 break;
1166 case FIOGETOWN:
1167 case SIOCGPGRP:
1168 err = put_user(f_getown(sock->file),
1169 (int __user *)argp);
1170 break;
1171 case SIOCGIFBR:
1172 case SIOCSIFBR:
1173 case SIOCBRADDBR:
1174 case SIOCBRDELBR:
1175 err = -ENOPKG;
1176 if (!br_ioctl_hook)
1177 request_module("bridge");
1178
1179 mutex_lock(&br_ioctl_mutex);
1180 if (br_ioctl_hook)
1181 err = br_ioctl_hook(net, cmd, argp);
1182 mutex_unlock(&br_ioctl_mutex);
1183 break;
1184 case SIOCGIFVLAN:
1185 case SIOCSIFVLAN:
1186 err = -ENOPKG;
1187 if (!vlan_ioctl_hook)
1188 request_module("8021q");
1189
1190 mutex_lock(&vlan_ioctl_mutex);
1191 if (vlan_ioctl_hook)
1192 err = vlan_ioctl_hook(net, argp);
1193 mutex_unlock(&vlan_ioctl_mutex);
1194 break;
1195 case SIOCGSKNS:
1196 err = -EPERM;
1197 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1198 break;
1199
1200 err = open_related_ns(&net->ns, get_net_ns);
1201 break;
1202 case SIOCGSTAMP_OLD:
1203 case SIOCGSTAMPNS_OLD:
1204 if (!sock->ops->gettstamp) {
1205 err = -ENOIOCTLCMD;
1206 break;
1207 }
1208 err = sock->ops->gettstamp(sock, argp,
1209 cmd == SIOCGSTAMP_OLD,
1210 !IS_ENABLED(CONFIG_64BIT));
1211 break;
1212 case SIOCGSTAMP_NEW:
1213 case SIOCGSTAMPNS_NEW:
1214 if (!sock->ops->gettstamp) {
1215 err = -ENOIOCTLCMD;
1216 break;
1217 }
1218 err = sock->ops->gettstamp(sock, argp,
1219 cmd == SIOCGSTAMP_NEW,
1220 false);
1221 break;
1222 default:
1223 err = sock_do_ioctl(net, sock, cmd, arg);
1224 break;
1225 }
1226 return err;
1227}
1228
1229/**
1230 * sock_create_lite - creates a socket
1231 * @family: protocol family (AF_INET, ...)
1232 * @type: communication type (SOCK_STREAM, ...)
1233 * @protocol: protocol (0, ...)
1234 * @res: new socket
1235 *
1236 * Creates a new socket and assigns it to @res, passing through LSM.
1237 * The new socket initialization is not complete, see kernel_accept().
1238 * Returns 0 or an error. On failure @res is set to %NULL.
1239 * This function internally uses GFP_KERNEL.
1240 */
1241
1242int sock_create_lite(int family, int type, int protocol, struct socket **res)
1243{
1244 int err;
1245 struct socket *sock = NULL;
1246
1247 err = security_socket_create(family, type, protocol, 1);
1248 if (err)
1249 goto out;
1250
1251 sock = sock_alloc();
1252 if (!sock) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
1256
1257 sock->type = type;
1258 err = security_socket_post_create(sock, family, type, protocol, 1);
1259 if (err)
1260 goto out_release;
1261
1262out:
1263 *res = sock;
1264 return err;
1265out_release:
1266 sock_release(sock);
1267 sock = NULL;
1268 goto out;
1269}
1270EXPORT_SYMBOL(sock_create_lite);
1271
1272/* No kernel lock held - perfect */
1273static __poll_t sock_poll(struct file *file, poll_table *wait)
1274{
1275 struct socket *sock = file->private_data;
1276 __poll_t events = poll_requested_events(wait), flag = 0;
1277
1278 if (!sock->ops->poll)
1279 return 0;
1280
1281 if (sk_can_busy_loop(sock->sk)) {
1282 /* poll once if requested by the syscall */
1283 if (events & POLL_BUSY_LOOP)
1284 sk_busy_loop(sock->sk, 1);
1285
1286 /* if this socket can poll_ll, tell the system call */
1287 flag = POLL_BUSY_LOOP;
1288 }
1289
1290 return sock->ops->poll(file, sock, wait) | flag;
1291}
1292
1293static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1294{
1295 struct socket *sock = file->private_data;
1296
1297 return sock->ops->mmap(file, sock, vma);
1298}
1299
1300static int sock_close(struct inode *inode, struct file *filp)
1301{
1302 __sock_release(SOCKET_I(inode), inode);
1303 return 0;
1304}
1305
1306/*
1307 * Update the socket async list
1308 *
1309 * Fasync_list locking strategy.
1310 *
1311 * 1. fasync_list is modified only under process context socket lock
1312 * i.e. under semaphore.
1313 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1314 * or under socket lock
1315 */
1316
1317static int sock_fasync(int fd, struct file *filp, int on)
1318{
1319 struct socket *sock = filp->private_data;
1320 struct sock *sk = sock->sk;
1321 struct socket_wq *wq = &sock->wq;
1322
1323 if (sk == NULL)
1324 return -EINVAL;
1325
1326 lock_sock(sk);
1327 fasync_helper(fd, filp, on, &wq->fasync_list);
1328
1329 if (!wq->fasync_list)
1330 sock_reset_flag(sk, SOCK_FASYNC);
1331 else
1332 sock_set_flag(sk, SOCK_FASYNC);
1333
1334 release_sock(sk);
1335 return 0;
1336}
1337
1338/* This function may be called only under rcu_lock */
1339
1340int sock_wake_async(struct socket_wq *wq, int how, int band)
1341{
1342 if (!wq || !wq->fasync_list)
1343 return -1;
1344
1345 switch (how) {
1346 case SOCK_WAKE_WAITD:
1347 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1348 break;
1349 goto call_kill;
1350 case SOCK_WAKE_SPACE:
1351 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1352 break;
1353 fallthrough;
1354 case SOCK_WAKE_IO:
1355call_kill:
1356 kill_fasync(&wq->fasync_list, SIGIO, band);
1357 break;
1358 case SOCK_WAKE_URG:
1359 kill_fasync(&wq->fasync_list, SIGURG, band);
1360 }
1361
1362 return 0;
1363}
1364EXPORT_SYMBOL(sock_wake_async);
1365
1366/**
1367 * __sock_create - creates a socket
1368 * @net: net namespace
1369 * @family: protocol family (AF_INET, ...)
1370 * @type: communication type (SOCK_STREAM, ...)
1371 * @protocol: protocol (0, ...)
1372 * @res: new socket
1373 * @kern: boolean for kernel space sockets
1374 *
1375 * Creates a new socket and assigns it to @res, passing through LSM.
1376 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1377 * be set to true if the socket resides in kernel space.
1378 * This function internally uses GFP_KERNEL.
1379 */
1380
1381int __sock_create(struct net *net, int family, int type, int protocol,
1382 struct socket **res, int kern)
1383{
1384 int err;
1385 struct socket *sock;
1386 const struct net_proto_family *pf;
1387
1388 /*
1389 * Check protocol is in range
1390 */
1391 if (family < 0 || family >= NPROTO)
1392 return -EAFNOSUPPORT;
1393 if (type < 0 || type >= SOCK_MAX)
1394 return -EINVAL;
1395
1396 /* Compatibility.
1397
1398 This uglymoron is moved from INET layer to here to avoid
1399 deadlock in module load.
1400 */
1401 if (family == PF_INET && type == SOCK_PACKET) {
1402 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1403 current->comm);
1404 family = PF_PACKET;
1405 }
1406
1407 err = security_socket_create(family, type, protocol, kern);
1408 if (err)
1409 return err;
1410
1411 /*
1412 * Allocate the socket and allow the family to set things up. if
1413 * the protocol is 0, the family is instructed to select an appropriate
1414 * default.
1415 */
1416 sock = sock_alloc();
1417 if (!sock) {
1418 net_warn_ratelimited("socket: no more sockets\n");
1419 return -ENFILE; /* Not exactly a match, but its the
1420 closest posix thing */
1421 }
1422
1423 sock->type = type;
1424
1425#ifdef CONFIG_MODULES
1426 /* Attempt to load a protocol module if the find failed.
1427 *
1428 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1429 * requested real, full-featured networking support upon configuration.
1430 * Otherwise module support will break!
1431 */
1432 if (rcu_access_pointer(net_families[family]) == NULL)
1433 request_module("net-pf-%d", family);
1434#endif
1435
1436 rcu_read_lock();
1437 pf = rcu_dereference(net_families[family]);
1438 err = -EAFNOSUPPORT;
1439 if (!pf)
1440 goto out_release;
1441
1442 /*
1443 * We will call the ->create function, that possibly is in a loadable
1444 * module, so we have to bump that loadable module refcnt first.
1445 */
1446 if (!try_module_get(pf->owner))
1447 goto out_release;
1448
1449 /* Now protected by module ref count */
1450 rcu_read_unlock();
1451
1452 err = pf->create(net, sock, protocol, kern);
1453 if (err < 0)
1454 goto out_module_put;
1455
1456 /*
1457 * Now to bump the refcnt of the [loadable] module that owns this
1458 * socket at sock_release time we decrement its refcnt.
1459 */
1460 if (!try_module_get(sock->ops->owner))
1461 goto out_module_busy;
1462
1463 /*
1464 * Now that we're done with the ->create function, the [loadable]
1465 * module can have its refcnt decremented
1466 */
1467 module_put(pf->owner);
1468 err = security_socket_post_create(sock, family, type, protocol, kern);
1469 if (err)
1470 goto out_sock_release;
1471 *res = sock;
1472
1473 return 0;
1474
1475out_module_busy:
1476 err = -EAFNOSUPPORT;
1477out_module_put:
1478 sock->ops = NULL;
1479 module_put(pf->owner);
1480out_sock_release:
1481 sock_release(sock);
1482 return err;
1483
1484out_release:
1485 rcu_read_unlock();
1486 goto out_sock_release;
1487}
1488EXPORT_SYMBOL(__sock_create);
1489
1490/**
1491 * sock_create - creates a socket
1492 * @family: protocol family (AF_INET, ...)
1493 * @type: communication type (SOCK_STREAM, ...)
1494 * @protocol: protocol (0, ...)
1495 * @res: new socket
1496 *
1497 * A wrapper around __sock_create().
1498 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1499 */
1500
1501int sock_create(int family, int type, int protocol, struct socket **res)
1502{
1503 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1504}
1505EXPORT_SYMBOL(sock_create);
1506
1507/**
1508 * sock_create_kern - creates a socket (kernel space)
1509 * @net: net namespace
1510 * @family: protocol family (AF_INET, ...)
1511 * @type: communication type (SOCK_STREAM, ...)
1512 * @protocol: protocol (0, ...)
1513 * @res: new socket
1514 *
1515 * A wrapper around __sock_create().
1516 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1517 */
1518
1519int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1520{
1521 return __sock_create(net, family, type, protocol, res, 1);
1522}
1523EXPORT_SYMBOL(sock_create_kern);
1524
1525int __sys_socket(int family, int type, int protocol)
1526{
1527 int retval;
1528 struct socket *sock;
1529 int flags;
1530
1531 /* Check the SOCK_* constants for consistency. */
1532 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1533 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1534 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1535 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1536
1537 flags = type & ~SOCK_TYPE_MASK;
1538 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1539 return -EINVAL;
1540 type &= SOCK_TYPE_MASK;
1541
1542 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1543 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1544
1545 retval = sock_create(family, type, protocol, &sock);
1546 if (retval < 0)
1547 return retval;
1548
1549 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1550}
1551
1552SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1553{
1554 return __sys_socket(family, type, protocol);
1555}
1556
1557/*
1558 * Create a pair of connected sockets.
1559 */
1560
1561int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1562{
1563 struct socket *sock1, *sock2;
1564 int fd1, fd2, err;
1565 struct file *newfile1, *newfile2;
1566 int flags;
1567
1568 flags = type & ~SOCK_TYPE_MASK;
1569 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570 return -EINVAL;
1571 type &= SOCK_TYPE_MASK;
1572
1573 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1574 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1575
1576 /*
1577 * reserve descriptors and make sure we won't fail
1578 * to return them to userland.
1579 */
1580 fd1 = get_unused_fd_flags(flags);
1581 if (unlikely(fd1 < 0))
1582 return fd1;
1583
1584 fd2 = get_unused_fd_flags(flags);
1585 if (unlikely(fd2 < 0)) {
1586 put_unused_fd(fd1);
1587 return fd2;
1588 }
1589
1590 err = put_user(fd1, &usockvec[0]);
1591 if (err)
1592 goto out;
1593
1594 err = put_user(fd2, &usockvec[1]);
1595 if (err)
1596 goto out;
1597
1598 /*
1599 * Obtain the first socket and check if the underlying protocol
1600 * supports the socketpair call.
1601 */
1602
1603 err = sock_create(family, type, protocol, &sock1);
1604 if (unlikely(err < 0))
1605 goto out;
1606
1607 err = sock_create(family, type, protocol, &sock2);
1608 if (unlikely(err < 0)) {
1609 sock_release(sock1);
1610 goto out;
1611 }
1612
1613 err = security_socket_socketpair(sock1, sock2);
1614 if (unlikely(err)) {
1615 sock_release(sock2);
1616 sock_release(sock1);
1617 goto out;
1618 }
1619
1620 err = sock1->ops->socketpair(sock1, sock2);
1621 if (unlikely(err < 0)) {
1622 sock_release(sock2);
1623 sock_release(sock1);
1624 goto out;
1625 }
1626
1627 newfile1 = sock_alloc_file(sock1, flags, NULL);
1628 if (IS_ERR(newfile1)) {
1629 err = PTR_ERR(newfile1);
1630 sock_release(sock2);
1631 goto out;
1632 }
1633
1634 newfile2 = sock_alloc_file(sock2, flags, NULL);
1635 if (IS_ERR(newfile2)) {
1636 err = PTR_ERR(newfile2);
1637 fput(newfile1);
1638 goto out;
1639 }
1640
1641 audit_fd_pair(fd1, fd2);
1642
1643 fd_install(fd1, newfile1);
1644 fd_install(fd2, newfile2);
1645 return 0;
1646
1647out:
1648 put_unused_fd(fd2);
1649 put_unused_fd(fd1);
1650 return err;
1651}
1652
1653SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1654 int __user *, usockvec)
1655{
1656 return __sys_socketpair(family, type, protocol, usockvec);
1657}
1658
1659/*
1660 * Bind a name to a socket. Nothing much to do here since it's
1661 * the protocol's responsibility to handle the local address.
1662 *
1663 * We move the socket address to kernel space before we call
1664 * the protocol layer (having also checked the address is ok).
1665 */
1666
1667int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1668{
1669 struct socket *sock;
1670 struct sockaddr_storage address;
1671 int err, fput_needed;
1672
1673 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 if (sock) {
1675 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1676 if (!err) {
1677 err = security_socket_bind(sock,
1678 (struct sockaddr *)&address,
1679 addrlen);
1680 if (!err)
1681 err = sock->ops->bind(sock,
1682 (struct sockaddr *)
1683 &address, addrlen);
1684 }
1685 fput_light(sock->file, fput_needed);
1686 }
1687 return err;
1688}
1689
1690SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1691{
1692 return __sys_bind(fd, umyaddr, addrlen);
1693}
1694
1695/*
1696 * Perform a listen. Basically, we allow the protocol to do anything
1697 * necessary for a listen, and if that works, we mark the socket as
1698 * ready for listening.
1699 */
1700
1701int __sys_listen(int fd, int backlog)
1702{
1703 struct socket *sock;
1704 int err, fput_needed;
1705 int somaxconn;
1706
1707 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 if (sock) {
1709 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1710 if ((unsigned int)backlog > somaxconn)
1711 backlog = somaxconn;
1712
1713 err = security_socket_listen(sock, backlog);
1714 if (!err)
1715 err = sock->ops->listen(sock, backlog);
1716
1717 fput_light(sock->file, fput_needed);
1718 }
1719 return err;
1720}
1721
1722SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1723{
1724 return __sys_listen(fd, backlog);
1725}
1726
1727int __sys_accept4_file(struct file *file, unsigned file_flags,
1728 struct sockaddr __user *upeer_sockaddr,
1729 int __user *upeer_addrlen, int flags,
1730 unsigned long nofile)
1731{
1732 struct socket *sock, *newsock;
1733 struct file *newfile;
1734 int err, len, newfd;
1735 struct sockaddr_storage address;
1736
1737 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1738 return -EINVAL;
1739
1740 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1741 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1742
1743 sock = sock_from_file(file);
1744 if (!sock) {
1745 err = -ENOTSOCK;
1746 goto out;
1747 }
1748
1749 err = -ENFILE;
1750 newsock = sock_alloc();
1751 if (!newsock)
1752 goto out;
1753
1754 newsock->type = sock->type;
1755 newsock->ops = sock->ops;
1756
1757 /*
1758 * We don't need try_module_get here, as the listening socket (sock)
1759 * has the protocol module (sock->ops->owner) held.
1760 */
1761 __module_get(newsock->ops->owner);
1762
1763 newfd = __get_unused_fd_flags(flags, nofile);
1764 if (unlikely(newfd < 0)) {
1765 err = newfd;
1766 sock_release(newsock);
1767 goto out;
1768 }
1769 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1770 if (IS_ERR(newfile)) {
1771 err = PTR_ERR(newfile);
1772 put_unused_fd(newfd);
1773 goto out;
1774 }
1775
1776 err = security_socket_accept(sock, newsock);
1777 if (err)
1778 goto out_fd;
1779
1780 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1781 false);
1782 if (err < 0)
1783 goto out_fd;
1784
1785 if (upeer_sockaddr) {
1786 len = newsock->ops->getname(newsock,
1787 (struct sockaddr *)&address, 2);
1788 if (len < 0) {
1789 err = -ECONNABORTED;
1790 goto out_fd;
1791 }
1792 err = move_addr_to_user(&address,
1793 len, upeer_sockaddr, upeer_addrlen);
1794 if (err < 0)
1795 goto out_fd;
1796 }
1797
1798 /* File flags are not inherited via accept() unlike another OSes. */
1799
1800 fd_install(newfd, newfile);
1801 err = newfd;
1802out:
1803 return err;
1804out_fd:
1805 fput(newfile);
1806 put_unused_fd(newfd);
1807 goto out;
1808
1809}
1810
1811/*
1812 * For accept, we attempt to create a new socket, set up the link
1813 * with the client, wake up the client, then return the new
1814 * connected fd. We collect the address of the connector in kernel
1815 * space and move it to user at the very end. This is unclean because
1816 * we open the socket then return an error.
1817 *
1818 * 1003.1g adds the ability to recvmsg() to query connection pending
1819 * status to recvmsg. We need to add that support in a way thats
1820 * clean when we restructure accept also.
1821 */
1822
1823int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1824 int __user *upeer_addrlen, int flags)
1825{
1826 int ret = -EBADF;
1827 struct fd f;
1828
1829 f = fdget(fd);
1830 if (f.file) {
1831 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1832 upeer_addrlen, flags,
1833 rlimit(RLIMIT_NOFILE));
1834 fdput(f);
1835 }
1836
1837 return ret;
1838}
1839
1840SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1841 int __user *, upeer_addrlen, int, flags)
1842{
1843 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1844}
1845
1846SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1847 int __user *, upeer_addrlen)
1848{
1849 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1850}
1851
1852/*
1853 * Attempt to connect to a socket with the server address. The address
1854 * is in user space so we verify it is OK and move it to kernel space.
1855 *
1856 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1857 * break bindings
1858 *
1859 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1860 * other SEQPACKET protocols that take time to connect() as it doesn't
1861 * include the -EINPROGRESS status for such sockets.
1862 */
1863
1864int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1865 int addrlen, int file_flags)
1866{
1867 struct socket *sock;
1868 int err;
1869
1870 sock = sock_from_file(file);
1871 if (!sock) {
1872 err = -ENOTSOCK;
1873 goto out;
1874 }
1875
1876 err =
1877 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1878 if (err)
1879 goto out;
1880
1881 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1882 sock->file->f_flags | file_flags);
1883out:
1884 return err;
1885}
1886
1887int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1888{
1889 int ret = -EBADF;
1890 struct fd f;
1891
1892 f = fdget(fd);
1893 if (f.file) {
1894 struct sockaddr_storage address;
1895
1896 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1897 if (!ret)
1898 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1899 fdput(f);
1900 }
1901
1902 return ret;
1903}
1904
1905SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1906 int, addrlen)
1907{
1908 return __sys_connect(fd, uservaddr, addrlen);
1909}
1910
1911/*
1912 * Get the local address ('name') of a socket object. Move the obtained
1913 * name to user space.
1914 */
1915
1916int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1917 int __user *usockaddr_len)
1918{
1919 struct socket *sock;
1920 struct sockaddr_storage address;
1921 int err, fput_needed;
1922
1923 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924 if (!sock)
1925 goto out;
1926
1927 err = security_socket_getsockname(sock);
1928 if (err)
1929 goto out_put;
1930
1931 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1932 if (err < 0)
1933 goto out_put;
1934 /* "err" is actually length in this case */
1935 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1936
1937out_put:
1938 fput_light(sock->file, fput_needed);
1939out:
1940 return err;
1941}
1942
1943SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1944 int __user *, usockaddr_len)
1945{
1946 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1947}
1948
1949/*
1950 * Get the remote address ('name') of a socket object. Move the obtained
1951 * name to user space.
1952 */
1953
1954int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1955 int __user *usockaddr_len)
1956{
1957 struct socket *sock;
1958 struct sockaddr_storage address;
1959 int err, fput_needed;
1960
1961 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962 if (sock != NULL) {
1963 err = security_socket_getpeername(sock);
1964 if (err) {
1965 fput_light(sock->file, fput_needed);
1966 return err;
1967 }
1968
1969 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1970 if (err >= 0)
1971 /* "err" is actually length in this case */
1972 err = move_addr_to_user(&address, err, usockaddr,
1973 usockaddr_len);
1974 fput_light(sock->file, fput_needed);
1975 }
1976 return err;
1977}
1978
1979SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1980 int __user *, usockaddr_len)
1981{
1982 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1983}
1984
1985/*
1986 * Send a datagram to a given address. We move the address into kernel
1987 * space and check the user space data area is readable before invoking
1988 * the protocol.
1989 */
1990int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1991 struct sockaddr __user *addr, int addr_len)
1992{
1993 struct socket *sock;
1994 struct sockaddr_storage address;
1995 int err;
1996 struct msghdr msg;
1997 struct iovec iov;
1998 int fput_needed;
1999
2000 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2001 if (unlikely(err))
2002 return err;
2003 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2004 if (!sock)
2005 goto out;
2006
2007 msg.msg_name = NULL;
2008 msg.msg_control = NULL;
2009 msg.msg_controllen = 0;
2010 msg.msg_namelen = 0;
2011 if (addr) {
2012 err = move_addr_to_kernel(addr, addr_len, &address);
2013 if (err < 0)
2014 goto out_put;
2015 msg.msg_name = (struct sockaddr *)&address;
2016 msg.msg_namelen = addr_len;
2017 }
2018 if (sock->file->f_flags & O_NONBLOCK)
2019 flags |= MSG_DONTWAIT;
2020 msg.msg_flags = flags;
2021 err = sock_sendmsg(sock, &msg);
2022
2023out_put:
2024 fput_light(sock->file, fput_needed);
2025out:
2026 return err;
2027}
2028
2029SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2030 unsigned int, flags, struct sockaddr __user *, addr,
2031 int, addr_len)
2032{
2033 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2034}
2035
2036/*
2037 * Send a datagram down a socket.
2038 */
2039
2040SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2041 unsigned int, flags)
2042{
2043 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2044}
2045
2046/*
2047 * Receive a frame from the socket and optionally record the address of the
2048 * sender. We verify the buffers are writable and if needed move the
2049 * sender address from kernel to user space.
2050 */
2051int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2052 struct sockaddr __user *addr, int __user *addr_len)
2053{
2054 struct socket *sock;
2055 struct iovec iov;
2056 struct msghdr msg;
2057 struct sockaddr_storage address;
2058 int err, err2;
2059 int fput_needed;
2060
2061 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2062 if (unlikely(err))
2063 return err;
2064 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065 if (!sock)
2066 goto out;
2067
2068 msg.msg_control = NULL;
2069 msg.msg_controllen = 0;
2070 /* Save some cycles and don't copy the address if not needed */
2071 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2072 /* We assume all kernel code knows the size of sockaddr_storage */
2073 msg.msg_namelen = 0;
2074 msg.msg_iocb = NULL;
2075 msg.msg_flags = 0;
2076 if (sock->file->f_flags & O_NONBLOCK)
2077 flags |= MSG_DONTWAIT;
2078 err = sock_recvmsg(sock, &msg, flags);
2079
2080 if (err >= 0 && addr != NULL) {
2081 err2 = move_addr_to_user(&address,
2082 msg.msg_namelen, addr, addr_len);
2083 if (err2 < 0)
2084 err = err2;
2085 }
2086
2087 fput_light(sock->file, fput_needed);
2088out:
2089 return err;
2090}
2091
2092SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2093 unsigned int, flags, struct sockaddr __user *, addr,
2094 int __user *, addr_len)
2095{
2096 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2097}
2098
2099/*
2100 * Receive a datagram from a socket.
2101 */
2102
2103SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2104 unsigned int, flags)
2105{
2106 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2107}
2108
2109static bool sock_use_custom_sol_socket(const struct socket *sock)
2110{
2111 const struct sock *sk = sock->sk;
2112
2113 /* Use sock->ops->setsockopt() for MPTCP */
2114 return IS_ENABLED(CONFIG_MPTCP) &&
2115 sk->sk_protocol == IPPROTO_MPTCP &&
2116 sk->sk_type == SOCK_STREAM &&
2117 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2118}
2119
2120/*
2121 * Set a socket option. Because we don't know the option lengths we have
2122 * to pass the user mode parameter for the protocols to sort out.
2123 */
2124int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2125 int optlen)
2126{
2127 sockptr_t optval = USER_SOCKPTR(user_optval);
2128 char *kernel_optval = NULL;
2129 int err, fput_needed;
2130 struct socket *sock;
2131
2132 if (optlen < 0)
2133 return -EINVAL;
2134
2135 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136 if (!sock)
2137 return err;
2138
2139 err = security_socket_setsockopt(sock, level, optname);
2140 if (err)
2141 goto out_put;
2142
2143 if (!in_compat_syscall())
2144 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2145 user_optval, &optlen,
2146 &kernel_optval);
2147 if (err < 0)
2148 goto out_put;
2149 if (err > 0) {
2150 err = 0;
2151 goto out_put;
2152 }
2153
2154 if (kernel_optval)
2155 optval = KERNEL_SOCKPTR(kernel_optval);
2156 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2157 err = sock_setsockopt(sock, level, optname, optval, optlen);
2158 else if (unlikely(!sock->ops->setsockopt))
2159 err = -EOPNOTSUPP;
2160 else
2161 err = sock->ops->setsockopt(sock, level, optname, optval,
2162 optlen);
2163 kfree(kernel_optval);
2164out_put:
2165 fput_light(sock->file, fput_needed);
2166 return err;
2167}
2168
2169SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2170 char __user *, optval, int, optlen)
2171{
2172 return __sys_setsockopt(fd, level, optname, optval, optlen);
2173}
2174
2175INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2176 int optname));
2177
2178/*
2179 * Get a socket option. Because we don't know the option lengths we have
2180 * to pass a user mode parameter for the protocols to sort out.
2181 */
2182int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2183 int __user *optlen)
2184{
2185 int err, fput_needed;
2186 struct socket *sock;
2187 int max_optlen;
2188
2189 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190 if (!sock)
2191 return err;
2192
2193 err = security_socket_getsockopt(sock, level, optname);
2194 if (err)
2195 goto out_put;
2196
2197 if (!in_compat_syscall())
2198 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2199
2200 if (level == SOL_SOCKET)
2201 err = sock_getsockopt(sock, level, optname, optval, optlen);
2202 else if (unlikely(!sock->ops->getsockopt))
2203 err = -EOPNOTSUPP;
2204 else
2205 err = sock->ops->getsockopt(sock, level, optname, optval,
2206 optlen);
2207
2208 if (!in_compat_syscall())
2209 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2210 optval, optlen, max_optlen,
2211 err);
2212out_put:
2213 fput_light(sock->file, fput_needed);
2214 return err;
2215}
2216
2217SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2218 char __user *, optval, int __user *, optlen)
2219{
2220 return __sys_getsockopt(fd, level, optname, optval, optlen);
2221}
2222
2223/*
2224 * Shutdown a socket.
2225 */
2226
2227int __sys_shutdown_sock(struct socket *sock, int how)
2228{
2229 int err;
2230
2231 err = security_socket_shutdown(sock, how);
2232 if (!err)
2233 err = sock->ops->shutdown(sock, how);
2234
2235 return err;
2236}
2237
2238int __sys_shutdown(int fd, int how)
2239{
2240 int err, fput_needed;
2241 struct socket *sock;
2242
2243 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2244 if (sock != NULL) {
2245 err = __sys_shutdown_sock(sock, how);
2246 fput_light(sock->file, fput_needed);
2247 }
2248 return err;
2249}
2250
2251SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2252{
2253 return __sys_shutdown(fd, how);
2254}
2255
2256/* A couple of helpful macros for getting the address of the 32/64 bit
2257 * fields which are the same type (int / unsigned) on our platforms.
2258 */
2259#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2260#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2261#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2262
2263struct used_address {
2264 struct sockaddr_storage name;
2265 unsigned int name_len;
2266};
2267
2268int __copy_msghdr_from_user(struct msghdr *kmsg,
2269 struct user_msghdr __user *umsg,
2270 struct sockaddr __user **save_addr,
2271 struct iovec __user **uiov, size_t *nsegs)
2272{
2273 struct user_msghdr msg;
2274 ssize_t err;
2275
2276 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2277 return -EFAULT;
2278
2279 kmsg->msg_control_is_user = true;
2280 kmsg->msg_control_user = msg.msg_control;
2281 kmsg->msg_controllen = msg.msg_controllen;
2282 kmsg->msg_flags = msg.msg_flags;
2283
2284 kmsg->msg_namelen = msg.msg_namelen;
2285 if (!msg.msg_name)
2286 kmsg->msg_namelen = 0;
2287
2288 if (kmsg->msg_namelen < 0)
2289 return -EINVAL;
2290
2291 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2292 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2293
2294 if (save_addr)
2295 *save_addr = msg.msg_name;
2296
2297 if (msg.msg_name && kmsg->msg_namelen) {
2298 if (!save_addr) {
2299 err = move_addr_to_kernel(msg.msg_name,
2300 kmsg->msg_namelen,
2301 kmsg->msg_name);
2302 if (err < 0)
2303 return err;
2304 }
2305 } else {
2306 kmsg->msg_name = NULL;
2307 kmsg->msg_namelen = 0;
2308 }
2309
2310 if (msg.msg_iovlen > UIO_MAXIOV)
2311 return -EMSGSIZE;
2312
2313 kmsg->msg_iocb = NULL;
2314 *uiov = msg.msg_iov;
2315 *nsegs = msg.msg_iovlen;
2316 return 0;
2317}
2318
2319static int copy_msghdr_from_user(struct msghdr *kmsg,
2320 struct user_msghdr __user *umsg,
2321 struct sockaddr __user **save_addr,
2322 struct iovec **iov)
2323{
2324 struct user_msghdr msg;
2325 ssize_t err;
2326
2327 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2328 &msg.msg_iovlen);
2329 if (err)
2330 return err;
2331
2332 err = import_iovec(save_addr ? READ : WRITE,
2333 msg.msg_iov, msg.msg_iovlen,
2334 UIO_FASTIOV, iov, &kmsg->msg_iter);
2335 return err < 0 ? err : 0;
2336}
2337
2338static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2339 unsigned int flags, struct used_address *used_address,
2340 unsigned int allowed_msghdr_flags)
2341{
2342 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2343 __aligned(sizeof(__kernel_size_t));
2344 /* 20 is size of ipv6_pktinfo */
2345 unsigned char *ctl_buf = ctl;
2346 int ctl_len;
2347 ssize_t err;
2348
2349 err = -ENOBUFS;
2350
2351 if (msg_sys->msg_controllen > INT_MAX)
2352 goto out;
2353 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2354 ctl_len = msg_sys->msg_controllen;
2355 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2356 err =
2357 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2358 sizeof(ctl));
2359 if (err)
2360 goto out;
2361 ctl_buf = msg_sys->msg_control;
2362 ctl_len = msg_sys->msg_controllen;
2363 } else if (ctl_len) {
2364 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2365 CMSG_ALIGN(sizeof(struct cmsghdr)));
2366 if (ctl_len > sizeof(ctl)) {
2367 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2368 if (ctl_buf == NULL)
2369 goto out;
2370 }
2371 err = -EFAULT;
2372 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2373 goto out_freectl;
2374 msg_sys->msg_control = ctl_buf;
2375 msg_sys->msg_control_is_user = false;
2376 }
2377 msg_sys->msg_flags = flags;
2378
2379 if (sock->file->f_flags & O_NONBLOCK)
2380 msg_sys->msg_flags |= MSG_DONTWAIT;
2381 /*
2382 * If this is sendmmsg() and current destination address is same as
2383 * previously succeeded address, omit asking LSM's decision.
2384 * used_address->name_len is initialized to UINT_MAX so that the first
2385 * destination address never matches.
2386 */
2387 if (used_address && msg_sys->msg_name &&
2388 used_address->name_len == msg_sys->msg_namelen &&
2389 !memcmp(&used_address->name, msg_sys->msg_name,
2390 used_address->name_len)) {
2391 err = sock_sendmsg_nosec(sock, msg_sys);
2392 goto out_freectl;
2393 }
2394 err = sock_sendmsg(sock, msg_sys);
2395 /*
2396 * If this is sendmmsg() and sending to current destination address was
2397 * successful, remember it.
2398 */
2399 if (used_address && err >= 0) {
2400 used_address->name_len = msg_sys->msg_namelen;
2401 if (msg_sys->msg_name)
2402 memcpy(&used_address->name, msg_sys->msg_name,
2403 used_address->name_len);
2404 }
2405
2406out_freectl:
2407 if (ctl_buf != ctl)
2408 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2409out:
2410 return err;
2411}
2412
2413int sendmsg_copy_msghdr(struct msghdr *msg,
2414 struct user_msghdr __user *umsg, unsigned flags,
2415 struct iovec **iov)
2416{
2417 int err;
2418
2419 if (flags & MSG_CMSG_COMPAT) {
2420 struct compat_msghdr __user *msg_compat;
2421
2422 msg_compat = (struct compat_msghdr __user *) umsg;
2423 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2424 } else {
2425 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2426 }
2427 if (err < 0)
2428 return err;
2429
2430 return 0;
2431}
2432
2433static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2434 struct msghdr *msg_sys, unsigned int flags,
2435 struct used_address *used_address,
2436 unsigned int allowed_msghdr_flags)
2437{
2438 struct sockaddr_storage address;
2439 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2440 ssize_t err;
2441
2442 msg_sys->msg_name = &address;
2443
2444 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2445 if (err < 0)
2446 return err;
2447
2448 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2449 allowed_msghdr_flags);
2450 kfree(iov);
2451 return err;
2452}
2453
2454/*
2455 * BSD sendmsg interface
2456 */
2457long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2458 unsigned int flags)
2459{
2460 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2461}
2462
2463long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2464 bool forbid_cmsg_compat)
2465{
2466 int fput_needed, err;
2467 struct msghdr msg_sys;
2468 struct socket *sock;
2469
2470 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2471 return -EINVAL;
2472
2473 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2474 if (!sock)
2475 goto out;
2476
2477 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2478
2479 fput_light(sock->file, fput_needed);
2480out:
2481 return err;
2482}
2483
2484SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2485{
2486 return __sys_sendmsg(fd, msg, flags, true);
2487}
2488
2489/*
2490 * Linux sendmmsg interface
2491 */
2492
2493int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2494 unsigned int flags, bool forbid_cmsg_compat)
2495{
2496 int fput_needed, err, datagrams;
2497 struct socket *sock;
2498 struct mmsghdr __user *entry;
2499 struct compat_mmsghdr __user *compat_entry;
2500 struct msghdr msg_sys;
2501 struct used_address used_address;
2502 unsigned int oflags = flags;
2503
2504 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2505 return -EINVAL;
2506
2507 if (vlen > UIO_MAXIOV)
2508 vlen = UIO_MAXIOV;
2509
2510 datagrams = 0;
2511
2512 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2513 if (!sock)
2514 return err;
2515
2516 used_address.name_len = UINT_MAX;
2517 entry = mmsg;
2518 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2519 err = 0;
2520 flags |= MSG_BATCH;
2521
2522 while (datagrams < vlen) {
2523 if (datagrams == vlen - 1)
2524 flags = oflags;
2525
2526 if (MSG_CMSG_COMPAT & flags) {
2527 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2528 &msg_sys, flags, &used_address, MSG_EOR);
2529 if (err < 0)
2530 break;
2531 err = __put_user(err, &compat_entry->msg_len);
2532 ++compat_entry;
2533 } else {
2534 err = ___sys_sendmsg(sock,
2535 (struct user_msghdr __user *)entry,
2536 &msg_sys, flags, &used_address, MSG_EOR);
2537 if (err < 0)
2538 break;
2539 err = put_user(err, &entry->msg_len);
2540 ++entry;
2541 }
2542
2543 if (err)
2544 break;
2545 ++datagrams;
2546 if (msg_data_left(&msg_sys))
2547 break;
2548 cond_resched();
2549 }
2550
2551 fput_light(sock->file, fput_needed);
2552
2553 /* We only return an error if no datagrams were able to be sent */
2554 if (datagrams != 0)
2555 return datagrams;
2556
2557 return err;
2558}
2559
2560SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2561 unsigned int, vlen, unsigned int, flags)
2562{
2563 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2564}
2565
2566int recvmsg_copy_msghdr(struct msghdr *msg,
2567 struct user_msghdr __user *umsg, unsigned flags,
2568 struct sockaddr __user **uaddr,
2569 struct iovec **iov)
2570{
2571 ssize_t err;
2572
2573 if (MSG_CMSG_COMPAT & flags) {
2574 struct compat_msghdr __user *msg_compat;
2575
2576 msg_compat = (struct compat_msghdr __user *) umsg;
2577 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2578 } else {
2579 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2580 }
2581 if (err < 0)
2582 return err;
2583
2584 return 0;
2585}
2586
2587static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2588 struct user_msghdr __user *msg,
2589 struct sockaddr __user *uaddr,
2590 unsigned int flags, int nosec)
2591{
2592 struct compat_msghdr __user *msg_compat =
2593 (struct compat_msghdr __user *) msg;
2594 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2595 struct sockaddr_storage addr;
2596 unsigned long cmsg_ptr;
2597 int len;
2598 ssize_t err;
2599
2600 msg_sys->msg_name = &addr;
2601 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2602 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2603
2604 /* We assume all kernel code knows the size of sockaddr_storage */
2605 msg_sys->msg_namelen = 0;
2606
2607 if (sock->file->f_flags & O_NONBLOCK)
2608 flags |= MSG_DONTWAIT;
2609
2610 if (unlikely(nosec))
2611 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2612 else
2613 err = sock_recvmsg(sock, msg_sys, flags);
2614
2615 if (err < 0)
2616 goto out;
2617 len = err;
2618
2619 if (uaddr != NULL) {
2620 err = move_addr_to_user(&addr,
2621 msg_sys->msg_namelen, uaddr,
2622 uaddr_len);
2623 if (err < 0)
2624 goto out;
2625 }
2626 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2627 COMPAT_FLAGS(msg));
2628 if (err)
2629 goto out;
2630 if (MSG_CMSG_COMPAT & flags)
2631 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2632 &msg_compat->msg_controllen);
2633 else
2634 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2635 &msg->msg_controllen);
2636 if (err)
2637 goto out;
2638 err = len;
2639out:
2640 return err;
2641}
2642
2643static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2644 struct msghdr *msg_sys, unsigned int flags, int nosec)
2645{
2646 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2647 /* user mode address pointers */
2648 struct sockaddr __user *uaddr;
2649 ssize_t err;
2650
2651 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2652 if (err < 0)
2653 return err;
2654
2655 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2656 kfree(iov);
2657 return err;
2658}
2659
2660/*
2661 * BSD recvmsg interface
2662 */
2663
2664long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2665 struct user_msghdr __user *umsg,
2666 struct sockaddr __user *uaddr, unsigned int flags)
2667{
2668 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2669}
2670
2671long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2672 bool forbid_cmsg_compat)
2673{
2674 int fput_needed, err;
2675 struct msghdr msg_sys;
2676 struct socket *sock;
2677
2678 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2679 return -EINVAL;
2680
2681 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2682 if (!sock)
2683 goto out;
2684
2685 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2686
2687 fput_light(sock->file, fput_needed);
2688out:
2689 return err;
2690}
2691
2692SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2693 unsigned int, flags)
2694{
2695 return __sys_recvmsg(fd, msg, flags, true);
2696}
2697
2698/*
2699 * Linux recvmmsg interface
2700 */
2701
2702static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2703 unsigned int vlen, unsigned int flags,
2704 struct timespec64 *timeout)
2705{
2706 int fput_needed, err, datagrams;
2707 struct socket *sock;
2708 struct mmsghdr __user *entry;
2709 struct compat_mmsghdr __user *compat_entry;
2710 struct msghdr msg_sys;
2711 struct timespec64 end_time;
2712 struct timespec64 timeout64;
2713
2714 if (timeout &&
2715 poll_select_set_timeout(&end_time, timeout->tv_sec,
2716 timeout->tv_nsec))
2717 return -EINVAL;
2718
2719 datagrams = 0;
2720
2721 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2722 if (!sock)
2723 return err;
2724
2725 if (likely(!(flags & MSG_ERRQUEUE))) {
2726 err = sock_error(sock->sk);
2727 if (err) {
2728 datagrams = err;
2729 goto out_put;
2730 }
2731 }
2732
2733 entry = mmsg;
2734 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2735
2736 while (datagrams < vlen) {
2737 /*
2738 * No need to ask LSM for more than the first datagram.
2739 */
2740 if (MSG_CMSG_COMPAT & flags) {
2741 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2742 &msg_sys, flags & ~MSG_WAITFORONE,
2743 datagrams);
2744 if (err < 0)
2745 break;
2746 err = __put_user(err, &compat_entry->msg_len);
2747 ++compat_entry;
2748 } else {
2749 err = ___sys_recvmsg(sock,
2750 (struct user_msghdr __user *)entry,
2751 &msg_sys, flags & ~MSG_WAITFORONE,
2752 datagrams);
2753 if (err < 0)
2754 break;
2755 err = put_user(err, &entry->msg_len);
2756 ++entry;
2757 }
2758
2759 if (err)
2760 break;
2761 ++datagrams;
2762
2763 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2764 if (flags & MSG_WAITFORONE)
2765 flags |= MSG_DONTWAIT;
2766
2767 if (timeout) {
2768 ktime_get_ts64(&timeout64);
2769 *timeout = timespec64_sub(end_time, timeout64);
2770 if (timeout->tv_sec < 0) {
2771 timeout->tv_sec = timeout->tv_nsec = 0;
2772 break;
2773 }
2774
2775 /* Timeout, return less than vlen datagrams */
2776 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2777 break;
2778 }
2779
2780 /* Out of band data, return right away */
2781 if (msg_sys.msg_flags & MSG_OOB)
2782 break;
2783 cond_resched();
2784 }
2785
2786 if (err == 0)
2787 goto out_put;
2788
2789 if (datagrams == 0) {
2790 datagrams = err;
2791 goto out_put;
2792 }
2793
2794 /*
2795 * We may return less entries than requested (vlen) if the
2796 * sock is non block and there aren't enough datagrams...
2797 */
2798 if (err != -EAGAIN) {
2799 /*
2800 * ... or if recvmsg returns an error after we
2801 * received some datagrams, where we record the
2802 * error to return on the next call or if the
2803 * app asks about it using getsockopt(SO_ERROR).
2804 */
2805 sock->sk->sk_err = -err;
2806 }
2807out_put:
2808 fput_light(sock->file, fput_needed);
2809
2810 return datagrams;
2811}
2812
2813int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2814 unsigned int vlen, unsigned int flags,
2815 struct __kernel_timespec __user *timeout,
2816 struct old_timespec32 __user *timeout32)
2817{
2818 int datagrams;
2819 struct timespec64 timeout_sys;
2820
2821 if (timeout && get_timespec64(&timeout_sys, timeout))
2822 return -EFAULT;
2823
2824 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2825 return -EFAULT;
2826
2827 if (!timeout && !timeout32)
2828 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2829
2830 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2831
2832 if (datagrams <= 0)
2833 return datagrams;
2834
2835 if (timeout && put_timespec64(&timeout_sys, timeout))
2836 datagrams = -EFAULT;
2837
2838 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2839 datagrams = -EFAULT;
2840
2841 return datagrams;
2842}
2843
2844SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2845 unsigned int, vlen, unsigned int, flags,
2846 struct __kernel_timespec __user *, timeout)
2847{
2848 if (flags & MSG_CMSG_COMPAT)
2849 return -EINVAL;
2850
2851 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2852}
2853
2854#ifdef CONFIG_COMPAT_32BIT_TIME
2855SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2856 unsigned int, vlen, unsigned int, flags,
2857 struct old_timespec32 __user *, timeout)
2858{
2859 if (flags & MSG_CMSG_COMPAT)
2860 return -EINVAL;
2861
2862 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2863}
2864#endif
2865
2866#ifdef __ARCH_WANT_SYS_SOCKETCALL
2867/* Argument list sizes for sys_socketcall */
2868#define AL(x) ((x) * sizeof(unsigned long))
2869static const unsigned char nargs[21] = {
2870 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2871 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2872 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2873 AL(4), AL(5), AL(4)
2874};
2875
2876#undef AL
2877
2878/*
2879 * System call vectors.
2880 *
2881 * Argument checking cleaned up. Saved 20% in size.
2882 * This function doesn't need to set the kernel lock because
2883 * it is set by the callees.
2884 */
2885
2886SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2887{
2888 unsigned long a[AUDITSC_ARGS];
2889 unsigned long a0, a1;
2890 int err;
2891 unsigned int len;
2892
2893 if (call < 1 || call > SYS_SENDMMSG)
2894 return -EINVAL;
2895 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2896
2897 len = nargs[call];
2898 if (len > sizeof(a))
2899 return -EINVAL;
2900
2901 /* copy_from_user should be SMP safe. */
2902 if (copy_from_user(a, args, len))
2903 return -EFAULT;
2904
2905 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2906 if (err)
2907 return err;
2908
2909 a0 = a[0];
2910 a1 = a[1];
2911
2912 switch (call) {
2913 case SYS_SOCKET:
2914 err = __sys_socket(a0, a1, a[2]);
2915 break;
2916 case SYS_BIND:
2917 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2918 break;
2919 case SYS_CONNECT:
2920 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2921 break;
2922 case SYS_LISTEN:
2923 err = __sys_listen(a0, a1);
2924 break;
2925 case SYS_ACCEPT:
2926 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2927 (int __user *)a[2], 0);
2928 break;
2929 case SYS_GETSOCKNAME:
2930 err =
2931 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2932 (int __user *)a[2]);
2933 break;
2934 case SYS_GETPEERNAME:
2935 err =
2936 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2937 (int __user *)a[2]);
2938 break;
2939 case SYS_SOCKETPAIR:
2940 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2941 break;
2942 case SYS_SEND:
2943 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2944 NULL, 0);
2945 break;
2946 case SYS_SENDTO:
2947 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2948 (struct sockaddr __user *)a[4], a[5]);
2949 break;
2950 case SYS_RECV:
2951 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2952 NULL, NULL);
2953 break;
2954 case SYS_RECVFROM:
2955 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2956 (struct sockaddr __user *)a[4],
2957 (int __user *)a[5]);
2958 break;
2959 case SYS_SHUTDOWN:
2960 err = __sys_shutdown(a0, a1);
2961 break;
2962 case SYS_SETSOCKOPT:
2963 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2964 a[4]);
2965 break;
2966 case SYS_GETSOCKOPT:
2967 err =
2968 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2969 (int __user *)a[4]);
2970 break;
2971 case SYS_SENDMSG:
2972 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2973 a[2], true);
2974 break;
2975 case SYS_SENDMMSG:
2976 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2977 a[3], true);
2978 break;
2979 case SYS_RECVMSG:
2980 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2981 a[2], true);
2982 break;
2983 case SYS_RECVMMSG:
2984 if (IS_ENABLED(CONFIG_64BIT))
2985 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2986 a[2], a[3],
2987 (struct __kernel_timespec __user *)a[4],
2988 NULL);
2989 else
2990 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2991 a[2], a[3], NULL,
2992 (struct old_timespec32 __user *)a[4]);
2993 break;
2994 case SYS_ACCEPT4:
2995 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2996 (int __user *)a[2], a[3]);
2997 break;
2998 default:
2999 err = -EINVAL;
3000 break;
3001 }
3002 return err;
3003}
3004
3005#endif /* __ARCH_WANT_SYS_SOCKETCALL */
3006
3007/**
3008 * sock_register - add a socket protocol handler
3009 * @ops: description of protocol
3010 *
3011 * This function is called by a protocol handler that wants to
3012 * advertise its address family, and have it linked into the
3013 * socket interface. The value ops->family corresponds to the
3014 * socket system call protocol family.
3015 */
3016int sock_register(const struct net_proto_family *ops)
3017{
3018 int err;
3019
3020 if (ops->family >= NPROTO) {
3021 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3022 return -ENOBUFS;
3023 }
3024
3025 spin_lock(&net_family_lock);
3026 if (rcu_dereference_protected(net_families[ops->family],
3027 lockdep_is_held(&net_family_lock)))
3028 err = -EEXIST;
3029 else {
3030 rcu_assign_pointer(net_families[ops->family], ops);
3031 err = 0;
3032 }
3033 spin_unlock(&net_family_lock);
3034
3035 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3036 return err;
3037}
3038EXPORT_SYMBOL(sock_register);
3039
3040/**
3041 * sock_unregister - remove a protocol handler
3042 * @family: protocol family to remove
3043 *
3044 * This function is called by a protocol handler that wants to
3045 * remove its address family, and have it unlinked from the
3046 * new socket creation.
3047 *
3048 * If protocol handler is a module, then it can use module reference
3049 * counts to protect against new references. If protocol handler is not
3050 * a module then it needs to provide its own protection in
3051 * the ops->create routine.
3052 */
3053void sock_unregister(int family)
3054{
3055 BUG_ON(family < 0 || family >= NPROTO);
3056
3057 spin_lock(&net_family_lock);
3058 RCU_INIT_POINTER(net_families[family], NULL);
3059 spin_unlock(&net_family_lock);
3060
3061 synchronize_rcu();
3062
3063 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3064}
3065EXPORT_SYMBOL(sock_unregister);
3066
3067bool sock_is_registered(int family)
3068{
3069 return family < NPROTO && rcu_access_pointer(net_families[family]);
3070}
3071
3072static int __init sock_init(void)
3073{
3074 int err;
3075 /*
3076 * Initialize the network sysctl infrastructure.
3077 */
3078 err = net_sysctl_init();
3079 if (err)
3080 goto out;
3081
3082 /*
3083 * Initialize skbuff SLAB cache
3084 */
3085 skb_init();
3086
3087 /*
3088 * Initialize the protocols module.
3089 */
3090
3091 init_inodecache();
3092
3093 err = register_filesystem(&sock_fs_type);
3094 if (err)
3095 goto out;
3096 sock_mnt = kern_mount(&sock_fs_type);
3097 if (IS_ERR(sock_mnt)) {
3098 err = PTR_ERR(sock_mnt);
3099 goto out_mount;
3100 }
3101
3102 /* The real protocol initialization is performed in later initcalls.
3103 */
3104
3105#ifdef CONFIG_NETFILTER
3106 err = netfilter_init();
3107 if (err)
3108 goto out;
3109#endif
3110
3111 ptp_classifier_init();
3112
3113out:
3114 return err;
3115
3116out_mount:
3117 unregister_filesystem(&sock_fs_type);
3118 goto out;
3119}
3120
3121core_initcall(sock_init); /* early initcall */
3122
3123#ifdef CONFIG_PROC_FS
3124void socket_seq_show(struct seq_file *seq)
3125{
3126 seq_printf(seq, "sockets: used %d\n",
3127 sock_inuse_get(seq->private));
3128}
3129#endif /* CONFIG_PROC_FS */
3130
3131#ifdef CONFIG_COMPAT
3132static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3133{
3134 struct compat_ifconf ifc32;
3135 struct ifconf ifc;
3136 int err;
3137
3138 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3139 return -EFAULT;
3140
3141 ifc.ifc_len = ifc32.ifc_len;
3142 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3143
3144 rtnl_lock();
3145 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3146 rtnl_unlock();
3147 if (err)
3148 return err;
3149
3150 ifc32.ifc_len = ifc.ifc_len;
3151 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3152 return -EFAULT;
3153
3154 return 0;
3155}
3156
3157static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3158{
3159 compat_uptr_t uptr32;
3160 struct ifreq ifr;
3161 void __user *saved;
3162 int err;
3163
3164 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3165 return -EFAULT;
3166
3167 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3168 return -EFAULT;
3169
3170 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3171 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3172
3173 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3174 if (!err) {
3175 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3176 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3177 err = -EFAULT;
3178 }
3179 return err;
3180}
3181
3182/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3183static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3184 struct compat_ifreq __user *u_ifreq32)
3185{
3186 struct ifreq ifreq;
3187 u32 data32;
3188
3189 if (!is_socket_ioctl_cmd(cmd))
3190 return -ENOTTY;
3191 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3192 return -EFAULT;
3193 if (get_user(data32, &u_ifreq32->ifr_data))
3194 return -EFAULT;
3195 ifreq.ifr_data = compat_ptr(data32);
3196
3197 return dev_ioctl(net, cmd, &ifreq, NULL);
3198}
3199
3200static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3201 unsigned int cmd,
3202 struct compat_ifreq __user *uifr32)
3203{
3204 struct ifreq __user *uifr;
3205 int err;
3206
3207 /* Handle the fact that while struct ifreq has the same *layout* on
3208 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3209 * which are handled elsewhere, it still has different *size* due to
3210 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3211 * resulting in struct ifreq being 32 and 40 bytes respectively).
3212 * As a result, if the struct happens to be at the end of a page and
3213 * the next page isn't readable/writable, we get a fault. To prevent
3214 * that, copy back and forth to the full size.
3215 */
3216
3217 uifr = compat_alloc_user_space(sizeof(*uifr));
3218 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3219 return -EFAULT;
3220
3221 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3222
3223 if (!err) {
3224 switch (cmd) {
3225 case SIOCGIFFLAGS:
3226 case SIOCGIFMETRIC:
3227 case SIOCGIFMTU:
3228 case SIOCGIFMEM:
3229 case SIOCGIFHWADDR:
3230 case SIOCGIFINDEX:
3231 case SIOCGIFADDR:
3232 case SIOCGIFBRDADDR:
3233 case SIOCGIFDSTADDR:
3234 case SIOCGIFNETMASK:
3235 case SIOCGIFPFLAGS:
3236 case SIOCGIFTXQLEN:
3237 case SIOCGMIIPHY:
3238 case SIOCGMIIREG:
3239 case SIOCGIFNAME:
3240 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3241 err = -EFAULT;
3242 break;
3243 }
3244 }
3245 return err;
3246}
3247
3248static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3249 struct compat_ifreq __user *uifr32)
3250{
3251 struct ifreq ifr;
3252 struct compat_ifmap __user *uifmap32;
3253 int err;
3254
3255 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3256 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3257 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3258 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3259 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3260 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3261 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3262 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3263 if (err)
3264 return -EFAULT;
3265
3266 err = dev_ioctl(net, cmd, &ifr, NULL);
3267
3268 if (cmd == SIOCGIFMAP && !err) {
3269 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3270 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3271 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3272 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3273 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3274 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3275 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3276 if (err)
3277 err = -EFAULT;
3278 }
3279 return err;
3280}
3281
3282/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3283 * for some operations; this forces use of the newer bridge-utils that
3284 * use compatible ioctls
3285 */
3286static int old_bridge_ioctl(compat_ulong_t __user *argp)
3287{
3288 compat_ulong_t tmp;
3289
3290 if (get_user(tmp, argp))
3291 return -EFAULT;
3292 if (tmp == BRCTL_GET_VERSION)
3293 return BRCTL_VERSION + 1;
3294 return -EINVAL;
3295}
3296
3297static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3298 unsigned int cmd, unsigned long arg)
3299{
3300 void __user *argp = compat_ptr(arg);
3301 struct sock *sk = sock->sk;
3302 struct net *net = sock_net(sk);
3303
3304 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3305 return compat_ifr_data_ioctl(net, cmd, argp);
3306
3307 switch (cmd) {
3308 case SIOCSIFBR:
3309 case SIOCGIFBR:
3310 return old_bridge_ioctl(argp);
3311 case SIOCGIFCONF:
3312 return compat_dev_ifconf(net, argp);
3313 case SIOCWANDEV:
3314 return compat_siocwandev(net, argp);
3315 case SIOCGIFMAP:
3316 case SIOCSIFMAP:
3317 return compat_sioc_ifmap(net, cmd, argp);
3318 case SIOCGSTAMP_OLD:
3319 case SIOCGSTAMPNS_OLD:
3320 if (!sock->ops->gettstamp)
3321 return -ENOIOCTLCMD;
3322 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3323 !COMPAT_USE_64BIT_TIME);
3324
3325 case SIOCETHTOOL:
3326 case SIOCBONDSLAVEINFOQUERY:
3327 case SIOCBONDINFOQUERY:
3328 case SIOCSHWTSTAMP:
3329 case SIOCGHWTSTAMP:
3330 return compat_ifr_data_ioctl(net, cmd, argp);
3331
3332 case FIOSETOWN:
3333 case SIOCSPGRP:
3334 case FIOGETOWN:
3335 case SIOCGPGRP:
3336 case SIOCBRADDBR:
3337 case SIOCBRDELBR:
3338 case SIOCGIFVLAN:
3339 case SIOCSIFVLAN:
3340 case SIOCGSKNS:
3341 case SIOCGSTAMP_NEW:
3342 case SIOCGSTAMPNS_NEW:
3343 return sock_ioctl(file, cmd, arg);
3344
3345 case SIOCGIFFLAGS:
3346 case SIOCSIFFLAGS:
3347 case SIOCGIFMETRIC:
3348 case SIOCSIFMETRIC:
3349 case SIOCGIFMTU:
3350 case SIOCSIFMTU:
3351 case SIOCGIFMEM:
3352 case SIOCSIFMEM:
3353 case SIOCGIFHWADDR:
3354 case SIOCSIFHWADDR:
3355 case SIOCADDMULTI:
3356 case SIOCDELMULTI:
3357 case SIOCGIFINDEX:
3358 case SIOCGIFADDR:
3359 case SIOCSIFADDR:
3360 case SIOCSIFHWBROADCAST:
3361 case SIOCDIFADDR:
3362 case SIOCGIFBRDADDR:
3363 case SIOCSIFBRDADDR:
3364 case SIOCGIFDSTADDR:
3365 case SIOCSIFDSTADDR:
3366 case SIOCGIFNETMASK:
3367 case SIOCSIFNETMASK:
3368 case SIOCSIFPFLAGS:
3369 case SIOCGIFPFLAGS:
3370 case SIOCGIFTXQLEN:
3371 case SIOCSIFTXQLEN:
3372 case SIOCBRADDIF:
3373 case SIOCBRDELIF:
3374 case SIOCGIFNAME:
3375 case SIOCSIFNAME:
3376 case SIOCGMIIPHY:
3377 case SIOCGMIIREG:
3378 case SIOCSMIIREG:
3379 case SIOCBONDENSLAVE:
3380 case SIOCBONDRELEASE:
3381 case SIOCBONDSETHWADDR:
3382 case SIOCBONDCHANGEACTIVE:
3383 return compat_ifreq_ioctl(net, sock, cmd, argp);
3384
3385 case SIOCSARP:
3386 case SIOCGARP:
3387 case SIOCDARP:
3388 case SIOCOUTQ:
3389 case SIOCOUTQNSD:
3390 case SIOCATMARK:
3391 return sock_do_ioctl(net, sock, cmd, arg);
3392 }
3393
3394 return -ENOIOCTLCMD;
3395}
3396
3397static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3398 unsigned long arg)
3399{
3400 struct socket *sock = file->private_data;
3401 int ret = -ENOIOCTLCMD;
3402 struct sock *sk;
3403 struct net *net;
3404
3405 sk = sock->sk;
3406 net = sock_net(sk);
3407
3408 if (sock->ops->compat_ioctl)
3409 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3410
3411 if (ret == -ENOIOCTLCMD &&
3412 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3413 ret = compat_wext_handle_ioctl(net, cmd, arg);
3414
3415 if (ret == -ENOIOCTLCMD)
3416 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3417
3418 return ret;
3419}
3420#endif
3421
3422/**
3423 * kernel_bind - bind an address to a socket (kernel space)
3424 * @sock: socket
3425 * @addr: address
3426 * @addrlen: length of address
3427 *
3428 * Returns 0 or an error.
3429 */
3430
3431int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3432{
3433 return sock->ops->bind(sock, addr, addrlen);
3434}
3435EXPORT_SYMBOL(kernel_bind);
3436
3437/**
3438 * kernel_listen - move socket to listening state (kernel space)
3439 * @sock: socket
3440 * @backlog: pending connections queue size
3441 *
3442 * Returns 0 or an error.
3443 */
3444
3445int kernel_listen(struct socket *sock, int backlog)
3446{
3447 return sock->ops->listen(sock, backlog);
3448}
3449EXPORT_SYMBOL(kernel_listen);
3450
3451/**
3452 * kernel_accept - accept a connection (kernel space)
3453 * @sock: listening socket
3454 * @newsock: new connected socket
3455 * @flags: flags
3456 *
3457 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3458 * If it fails, @newsock is guaranteed to be %NULL.
3459 * Returns 0 or an error.
3460 */
3461
3462int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3463{
3464 struct sock *sk = sock->sk;
3465 int err;
3466
3467 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3468 newsock);
3469 if (err < 0)
3470 goto done;
3471
3472 err = sock->ops->accept(sock, *newsock, flags, true);
3473 if (err < 0) {
3474 sock_release(*newsock);
3475 *newsock = NULL;
3476 goto done;
3477 }
3478
3479 (*newsock)->ops = sock->ops;
3480 __module_get((*newsock)->ops->owner);
3481
3482done:
3483 return err;
3484}
3485EXPORT_SYMBOL(kernel_accept);
3486
3487/**
3488 * kernel_connect - connect a socket (kernel space)
3489 * @sock: socket
3490 * @addr: address
3491 * @addrlen: address length
3492 * @flags: flags (O_NONBLOCK, ...)
3493 *
3494 * For datagram sockets, @addr is the address to which datagrams are sent
3495 * by default, and the only address from which datagrams are received.
3496 * For stream sockets, attempts to connect to @addr.
3497 * Returns 0 or an error code.
3498 */
3499
3500int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3501 int flags)
3502{
3503 return sock->ops->connect(sock, addr, addrlen, flags);
3504}
3505EXPORT_SYMBOL(kernel_connect);
3506
3507/**
3508 * kernel_getsockname - get the address which the socket is bound (kernel space)
3509 * @sock: socket
3510 * @addr: address holder
3511 *
3512 * Fills the @addr pointer with the address which the socket is bound.
3513 * Returns 0 or an error code.
3514 */
3515
3516int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3517{
3518 return sock->ops->getname(sock, addr, 0);
3519}
3520EXPORT_SYMBOL(kernel_getsockname);
3521
3522/**
3523 * kernel_getpeername - get the address which the socket is connected (kernel space)
3524 * @sock: socket
3525 * @addr: address holder
3526 *
3527 * Fills the @addr pointer with the address which the socket is connected.
3528 * Returns 0 or an error code.
3529 */
3530
3531int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3532{
3533 return sock->ops->getname(sock, addr, 1);
3534}
3535EXPORT_SYMBOL(kernel_getpeername);
3536
3537/**
3538 * kernel_sendpage - send a &page through a socket (kernel space)
3539 * @sock: socket
3540 * @page: page
3541 * @offset: page offset
3542 * @size: total size in bytes
3543 * @flags: flags (MSG_DONTWAIT, ...)
3544 *
3545 * Returns the total amount sent in bytes or an error.
3546 */
3547
3548int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3549 size_t size, int flags)
3550{
3551 if (sock->ops->sendpage) {
3552 /* Warn in case the improper page to zero-copy send */
3553 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3554 return sock->ops->sendpage(sock, page, offset, size, flags);
3555 }
3556 return sock_no_sendpage(sock, page, offset, size, flags);
3557}
3558EXPORT_SYMBOL(kernel_sendpage);
3559
3560/**
3561 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3562 * @sk: sock
3563 * @page: page
3564 * @offset: page offset
3565 * @size: total size in bytes
3566 * @flags: flags (MSG_DONTWAIT, ...)
3567 *
3568 * Returns the total amount sent in bytes or an error.
3569 * Caller must hold @sk.
3570 */
3571
3572int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3573 size_t size, int flags)
3574{
3575 struct socket *sock = sk->sk_socket;
3576
3577 if (sock->ops->sendpage_locked)
3578 return sock->ops->sendpage_locked(sk, page, offset, size,
3579 flags);
3580
3581 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3582}
3583EXPORT_SYMBOL(kernel_sendpage_locked);
3584
3585/**
3586 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3587 * @sock: socket
3588 * @how: connection part
3589 *
3590 * Returns 0 or an error.
3591 */
3592
3593int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3594{
3595 return sock->ops->shutdown(sock, how);
3596}
3597EXPORT_SYMBOL(kernel_sock_shutdown);
3598
3599/**
3600 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3601 * @sk: socket
3602 *
3603 * This routine returns the IP overhead imposed by a socket i.e.
3604 * the length of the underlying IP header, depending on whether
3605 * this is an IPv4 or IPv6 socket and the length from IP options turned
3606 * on at the socket. Assumes that the caller has a lock on the socket.
3607 */
3608
3609u32 kernel_sock_ip_overhead(struct sock *sk)
3610{
3611 struct inet_sock *inet;
3612 struct ip_options_rcu *opt;
3613 u32 overhead = 0;
3614#if IS_ENABLED(CONFIG_IPV6)
3615 struct ipv6_pinfo *np;
3616 struct ipv6_txoptions *optv6 = NULL;
3617#endif /* IS_ENABLED(CONFIG_IPV6) */
3618
3619 if (!sk)
3620 return overhead;
3621
3622 switch (sk->sk_family) {
3623 case AF_INET:
3624 inet = inet_sk(sk);
3625 overhead += sizeof(struct iphdr);
3626 opt = rcu_dereference_protected(inet->inet_opt,
3627 sock_owned_by_user(sk));
3628 if (opt)
3629 overhead += opt->opt.optlen;
3630 return overhead;
3631#if IS_ENABLED(CONFIG_IPV6)
3632 case AF_INET6:
3633 np = inet6_sk(sk);
3634 overhead += sizeof(struct ipv6hdr);
3635 if (np)
3636 optv6 = rcu_dereference_protected(np->opt,
3637 sock_owned_by_user(sk));
3638 if (optv6)
3639 overhead += (optv6->opt_flen + optv6->opt_nflen);
3640 return overhead;
3641#endif /* IS_ENABLED(CONFIG_IPV6) */
3642 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3643 return overhead;
3644 }
3645}
3646EXPORT_SYMBOL(kernel_sock_ip_overhead);
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/ptp_classify.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91#include <linux/xattr.h>
92
93#include <linux/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/sockios.h>
107#include <net/busy_poll.h>
108#include <linux/errqueue.h>
109
110#ifdef CONFIG_NET_RX_BUSY_POLL
111unsigned int sysctl_net_busy_read __read_mostly;
112unsigned int sysctl_net_busy_poll __read_mostly;
113#endif
114
115static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118
119static int sock_close(struct inode *inode, struct file *file);
120static __poll_t sock_poll(struct file *file,
121 struct poll_table_struct *wait);
122static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123#ifdef CONFIG_COMPAT
124static long compat_sock_ioctl(struct file *file,
125 unsigned int cmd, unsigned long arg);
126#endif
127static int sock_fasync(int fd, struct file *filp, int on);
128static ssize_t sock_sendpage(struct file *file, struct page *page,
129 int offset, size_t size, loff_t *ppos, int more);
130static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 struct pipe_inode_info *pipe, size_t len,
132 unsigned int flags);
133
134/*
135 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
136 * in the operation structures but are done directly via the socketcall() multiplexor.
137 */
138
139static const struct file_operations socket_file_ops = {
140 .owner = THIS_MODULE,
141 .llseek = no_llseek,
142 .read_iter = sock_read_iter,
143 .write_iter = sock_write_iter,
144 .poll = sock_poll,
145 .unlocked_ioctl = sock_ioctl,
146#ifdef CONFIG_COMPAT
147 .compat_ioctl = compat_sock_ioctl,
148#endif
149 .mmap = sock_mmap,
150 .release = sock_close,
151 .fasync = sock_fasync,
152 .sendpage = sock_sendpage,
153 .splice_write = generic_splice_sendpage,
154 .splice_read = sock_splice_read,
155};
156
157/*
158 * The protocol list. Each protocol is registered in here.
159 */
160
161static DEFINE_SPINLOCK(net_family_lock);
162static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
163
164/*
165 * Support routines.
166 * Move socket addresses back and forth across the kernel/user
167 * divide and look after the messy bits.
168 */
169
170/**
171 * move_addr_to_kernel - copy a socket address into kernel space
172 * @uaddr: Address in user space
173 * @kaddr: Address in kernel space
174 * @ulen: Length in user space
175 *
176 * The address is copied into kernel space. If the provided address is
177 * too long an error code of -EINVAL is returned. If the copy gives
178 * invalid addresses -EFAULT is returned. On a success 0 is returned.
179 */
180
181int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
182{
183 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
184 return -EINVAL;
185 if (ulen == 0)
186 return 0;
187 if (copy_from_user(kaddr, uaddr, ulen))
188 return -EFAULT;
189 return audit_sockaddr(ulen, kaddr);
190}
191
192/**
193 * move_addr_to_user - copy an address to user space
194 * @kaddr: kernel space address
195 * @klen: length of address in kernel
196 * @uaddr: user space address
197 * @ulen: pointer to user length field
198 *
199 * The value pointed to by ulen on entry is the buffer length available.
200 * This is overwritten with the buffer space used. -EINVAL is returned
201 * if an overlong buffer is specified or a negative buffer size. -EFAULT
202 * is returned if either the buffer or the length field are not
203 * accessible.
204 * After copying the data up to the limit the user specifies, the true
205 * length of the data is written over the length limit the user
206 * specified. Zero is returned for a success.
207 */
208
209static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
210 void __user *uaddr, int __user *ulen)
211{
212 int err;
213 int len;
214
215 BUG_ON(klen > sizeof(struct sockaddr_storage));
216 err = get_user(len, ulen);
217 if (err)
218 return err;
219 if (len > klen)
220 len = klen;
221 if (len < 0)
222 return -EINVAL;
223 if (len) {
224 if (audit_sockaddr(klen, kaddr))
225 return -ENOMEM;
226 if (copy_to_user(uaddr, kaddr, len))
227 return -EFAULT;
228 }
229 /*
230 * "fromlen shall refer to the value before truncation.."
231 * 1003.1g
232 */
233 return __put_user(klen, ulen);
234}
235
236static struct kmem_cache *sock_inode_cachep __ro_after_init;
237
238static struct inode *sock_alloc_inode(struct super_block *sb)
239{
240 struct socket_alloc *ei;
241 struct socket_wq *wq;
242
243 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
244 if (!ei)
245 return NULL;
246 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
247 if (!wq) {
248 kmem_cache_free(sock_inode_cachep, ei);
249 return NULL;
250 }
251 init_waitqueue_head(&wq->wait);
252 wq->fasync_list = NULL;
253 wq->flags = 0;
254 RCU_INIT_POINTER(ei->socket.wq, wq);
255
256 ei->socket.state = SS_UNCONNECTED;
257 ei->socket.flags = 0;
258 ei->socket.ops = NULL;
259 ei->socket.sk = NULL;
260 ei->socket.file = NULL;
261
262 return &ei->vfs_inode;
263}
264
265static void sock_destroy_inode(struct inode *inode)
266{
267 struct socket_alloc *ei;
268 struct socket_wq *wq;
269
270 ei = container_of(inode, struct socket_alloc, vfs_inode);
271 wq = rcu_dereference_protected(ei->socket.wq, 1);
272 kfree_rcu(wq, rcu);
273 kmem_cache_free(sock_inode_cachep, ei);
274}
275
276static void init_once(void *foo)
277{
278 struct socket_alloc *ei = (struct socket_alloc *)foo;
279
280 inode_init_once(&ei->vfs_inode);
281}
282
283static void init_inodecache(void)
284{
285 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
286 sizeof(struct socket_alloc),
287 0,
288 (SLAB_HWCACHE_ALIGN |
289 SLAB_RECLAIM_ACCOUNT |
290 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
291 init_once);
292 BUG_ON(sock_inode_cachep == NULL);
293}
294
295static const struct super_operations sockfs_ops = {
296 .alloc_inode = sock_alloc_inode,
297 .destroy_inode = sock_destroy_inode,
298 .statfs = simple_statfs,
299};
300
301/*
302 * sockfs_dname() is called from d_path().
303 */
304static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
305{
306 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
307 d_inode(dentry)->i_ino);
308}
309
310static const struct dentry_operations sockfs_dentry_operations = {
311 .d_dname = sockfs_dname,
312};
313
314static int sockfs_xattr_get(const struct xattr_handler *handler,
315 struct dentry *dentry, struct inode *inode,
316 const char *suffix, void *value, size_t size)
317{
318 if (value) {
319 if (dentry->d_name.len + 1 > size)
320 return -ERANGE;
321 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
322 }
323 return dentry->d_name.len + 1;
324}
325
326#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
327#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
328#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329
330static const struct xattr_handler sockfs_xattr_handler = {
331 .name = XATTR_NAME_SOCKPROTONAME,
332 .get = sockfs_xattr_get,
333};
334
335static int sockfs_security_xattr_set(const struct xattr_handler *handler,
336 struct dentry *dentry, struct inode *inode,
337 const char *suffix, const void *value,
338 size_t size, int flags)
339{
340 /* Handled by LSM. */
341 return -EAGAIN;
342}
343
344static const struct xattr_handler sockfs_security_xattr_handler = {
345 .prefix = XATTR_SECURITY_PREFIX,
346 .set = sockfs_security_xattr_set,
347};
348
349static const struct xattr_handler *sockfs_xattr_handlers[] = {
350 &sockfs_xattr_handler,
351 &sockfs_security_xattr_handler,
352 NULL
353};
354
355static struct dentry *sockfs_mount(struct file_system_type *fs_type,
356 int flags, const char *dev_name, void *data)
357{
358 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
359 sockfs_xattr_handlers,
360 &sockfs_dentry_operations, SOCKFS_MAGIC);
361}
362
363static struct vfsmount *sock_mnt __read_mostly;
364
365static struct file_system_type sock_fs_type = {
366 .name = "sockfs",
367 .mount = sockfs_mount,
368 .kill_sb = kill_anon_super,
369};
370
371/*
372 * Obtains the first available file descriptor and sets it up for use.
373 *
374 * These functions create file structures and maps them to fd space
375 * of the current process. On success it returns file descriptor
376 * and file struct implicitly stored in sock->file.
377 * Note that another thread may close file descriptor before we return
378 * from this function. We use the fact that now we do not refer
379 * to socket after mapping. If one day we will need it, this
380 * function will increment ref. count on file by 1.
381 *
382 * In any case returned fd MAY BE not valid!
383 * This race condition is unavoidable
384 * with shared fd spaces, we cannot solve it inside kernel,
385 * but we take care of internal coherence yet.
386 */
387
388struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
389{
390 struct qstr name = { .name = "" };
391 struct path path;
392 struct file *file;
393
394 if (dname) {
395 name.name = dname;
396 name.len = strlen(name.name);
397 } else if (sock->sk) {
398 name.name = sock->sk->sk_prot_creator->name;
399 name.len = strlen(name.name);
400 }
401 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
402 if (unlikely(!path.dentry)) {
403 sock_release(sock);
404 return ERR_PTR(-ENOMEM);
405 }
406 path.mnt = mntget(sock_mnt);
407
408 d_instantiate(path.dentry, SOCK_INODE(sock));
409
410 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
411 &socket_file_ops);
412 if (IS_ERR(file)) {
413 /* drop dentry, keep inode for a bit */
414 ihold(d_inode(path.dentry));
415 path_put(&path);
416 /* ... and now kill it properly */
417 sock_release(sock);
418 return file;
419 }
420
421 sock->file = file;
422 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
423 file->private_data = sock;
424 return file;
425}
426EXPORT_SYMBOL(sock_alloc_file);
427
428static int sock_map_fd(struct socket *sock, int flags)
429{
430 struct file *newfile;
431 int fd = get_unused_fd_flags(flags);
432 if (unlikely(fd < 0)) {
433 sock_release(sock);
434 return fd;
435 }
436
437 newfile = sock_alloc_file(sock, flags, NULL);
438 if (likely(!IS_ERR(newfile))) {
439 fd_install(fd, newfile);
440 return fd;
441 }
442
443 put_unused_fd(fd);
444 return PTR_ERR(newfile);
445}
446
447struct socket *sock_from_file(struct file *file, int *err)
448{
449 if (file->f_op == &socket_file_ops)
450 return file->private_data; /* set in sock_map_fd */
451
452 *err = -ENOTSOCK;
453 return NULL;
454}
455EXPORT_SYMBOL(sock_from_file);
456
457/**
458 * sockfd_lookup - Go from a file number to its socket slot
459 * @fd: file handle
460 * @err: pointer to an error code return
461 *
462 * The file handle passed in is locked and the socket it is bound
463 * to is returned. If an error occurs the err pointer is overwritten
464 * with a negative errno code and NULL is returned. The function checks
465 * for both invalid handles and passing a handle which is not a socket.
466 *
467 * On a success the socket object pointer is returned.
468 */
469
470struct socket *sockfd_lookup(int fd, int *err)
471{
472 struct file *file;
473 struct socket *sock;
474
475 file = fget(fd);
476 if (!file) {
477 *err = -EBADF;
478 return NULL;
479 }
480
481 sock = sock_from_file(file, err);
482 if (!sock)
483 fput(file);
484 return sock;
485}
486EXPORT_SYMBOL(sockfd_lookup);
487
488static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
489{
490 struct fd f = fdget(fd);
491 struct socket *sock;
492
493 *err = -EBADF;
494 if (f.file) {
495 sock = sock_from_file(f.file, err);
496 if (likely(sock)) {
497 *fput_needed = f.flags;
498 return sock;
499 }
500 fdput(f);
501 }
502 return NULL;
503}
504
505static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
506 size_t size)
507{
508 ssize_t len;
509 ssize_t used = 0;
510
511 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
512 if (len < 0)
513 return len;
514 used += len;
515 if (buffer) {
516 if (size < used)
517 return -ERANGE;
518 buffer += len;
519 }
520
521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
522 used += len;
523 if (buffer) {
524 if (size < used)
525 return -ERANGE;
526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
527 buffer += len;
528 }
529
530 return used;
531}
532
533static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
534{
535 int err = simple_setattr(dentry, iattr);
536
537 if (!err && (iattr->ia_valid & ATTR_UID)) {
538 struct socket *sock = SOCKET_I(d_inode(dentry));
539
540 sock->sk->sk_uid = iattr->ia_uid;
541 }
542
543 return err;
544}
545
546static const struct inode_operations sockfs_inode_ops = {
547 .listxattr = sockfs_listxattr,
548 .setattr = sockfs_setattr,
549};
550
551/**
552 * sock_alloc - allocate a socket
553 *
554 * Allocate a new inode and socket object. The two are bound together
555 * and initialised. The socket is then returned. If we are out of inodes
556 * NULL is returned.
557 */
558
559struct socket *sock_alloc(void)
560{
561 struct inode *inode;
562 struct socket *sock;
563
564 inode = new_inode_pseudo(sock_mnt->mnt_sb);
565 if (!inode)
566 return NULL;
567
568 sock = SOCKET_I(inode);
569
570 inode->i_ino = get_next_ino();
571 inode->i_mode = S_IFSOCK | S_IRWXUGO;
572 inode->i_uid = current_fsuid();
573 inode->i_gid = current_fsgid();
574 inode->i_op = &sockfs_inode_ops;
575
576 return sock;
577}
578EXPORT_SYMBOL(sock_alloc);
579
580/**
581 * sock_release - close a socket
582 * @sock: socket to close
583 *
584 * The socket is released from the protocol stack if it has a release
585 * callback, and the inode is then released if the socket is bound to
586 * an inode not a file.
587 */
588
589void sock_release(struct socket *sock)
590{
591 if (sock->ops) {
592 struct module *owner = sock->ops->owner;
593
594 sock->ops->release(sock);
595 sock->ops = NULL;
596 module_put(owner);
597 }
598
599 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
600 pr_err("%s: fasync list not empty!\n", __func__);
601
602 if (!sock->file) {
603 iput(SOCK_INODE(sock));
604 return;
605 }
606 sock->file = NULL;
607}
608EXPORT_SYMBOL(sock_release);
609
610void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
611{
612 u8 flags = *tx_flags;
613
614 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
615 flags |= SKBTX_HW_TSTAMP;
616
617 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
618 flags |= SKBTX_SW_TSTAMP;
619
620 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
621 flags |= SKBTX_SCHED_TSTAMP;
622
623 *tx_flags = flags;
624}
625EXPORT_SYMBOL(__sock_tx_timestamp);
626
627static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
628{
629 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
630 BUG_ON(ret == -EIOCBQUEUED);
631 return ret;
632}
633
634int sock_sendmsg(struct socket *sock, struct msghdr *msg)
635{
636 int err = security_socket_sendmsg(sock, msg,
637 msg_data_left(msg));
638
639 return err ?: sock_sendmsg_nosec(sock, msg);
640}
641EXPORT_SYMBOL(sock_sendmsg);
642
643int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
644 struct kvec *vec, size_t num, size_t size)
645{
646 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
647 return sock_sendmsg(sock, msg);
648}
649EXPORT_SYMBOL(kernel_sendmsg);
650
651int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
652 struct kvec *vec, size_t num, size_t size)
653{
654 struct socket *sock = sk->sk_socket;
655
656 if (!sock->ops->sendmsg_locked)
657 return sock_no_sendmsg_locked(sk, msg, size);
658
659 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
660
661 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
662}
663EXPORT_SYMBOL(kernel_sendmsg_locked);
664
665static bool skb_is_err_queue(const struct sk_buff *skb)
666{
667 /* pkt_type of skbs enqueued on the error queue are set to
668 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
669 * in recvmsg, since skbs received on a local socket will never
670 * have a pkt_type of PACKET_OUTGOING.
671 */
672 return skb->pkt_type == PACKET_OUTGOING;
673}
674
675/* On transmit, software and hardware timestamps are returned independently.
676 * As the two skb clones share the hardware timestamp, which may be updated
677 * before the software timestamp is received, a hardware TX timestamp may be
678 * returned only if there is no software TX timestamp. Ignore false software
679 * timestamps, which may be made in the __sock_recv_timestamp() call when the
680 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
681 * hardware timestamp.
682 */
683static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
684{
685 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
686}
687
688static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
689{
690 struct scm_ts_pktinfo ts_pktinfo;
691 struct net_device *orig_dev;
692
693 if (!skb_mac_header_was_set(skb))
694 return;
695
696 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
697
698 rcu_read_lock();
699 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
700 if (orig_dev)
701 ts_pktinfo.if_index = orig_dev->ifindex;
702 rcu_read_unlock();
703
704 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
705 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
706 sizeof(ts_pktinfo), &ts_pktinfo);
707}
708
709/*
710 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
711 */
712void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
713 struct sk_buff *skb)
714{
715 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
716 struct scm_timestamping tss;
717 int empty = 1, false_tstamp = 0;
718 struct skb_shared_hwtstamps *shhwtstamps =
719 skb_hwtstamps(skb);
720
721 /* Race occurred between timestamp enabling and packet
722 receiving. Fill in the current time for now. */
723 if (need_software_tstamp && skb->tstamp == 0) {
724 __net_timestamp(skb);
725 false_tstamp = 1;
726 }
727
728 if (need_software_tstamp) {
729 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
730 struct timeval tv;
731 skb_get_timestamp(skb, &tv);
732 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
733 sizeof(tv), &tv);
734 } else {
735 struct timespec ts;
736 skb_get_timestampns(skb, &ts);
737 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
738 sizeof(ts), &ts);
739 }
740 }
741
742 memset(&tss, 0, sizeof(tss));
743 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
744 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
745 empty = 0;
746 if (shhwtstamps &&
747 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
748 !skb_is_swtx_tstamp(skb, false_tstamp) &&
749 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
750 empty = 0;
751 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
752 !skb_is_err_queue(skb))
753 put_ts_pktinfo(msg, skb);
754 }
755 if (!empty) {
756 put_cmsg(msg, SOL_SOCKET,
757 SCM_TIMESTAMPING, sizeof(tss), &tss);
758
759 if (skb_is_err_queue(skb) && skb->len &&
760 SKB_EXT_ERR(skb)->opt_stats)
761 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
762 skb->len, skb->data);
763 }
764}
765EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
766
767void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
768 struct sk_buff *skb)
769{
770 int ack;
771
772 if (!sock_flag(sk, SOCK_WIFI_STATUS))
773 return;
774 if (!skb->wifi_acked_valid)
775 return;
776
777 ack = skb->wifi_acked;
778
779 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
780}
781EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
782
783static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
784 struct sk_buff *skb)
785{
786 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
787 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
788 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
789}
790
791void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
792 struct sk_buff *skb)
793{
794 sock_recv_timestamp(msg, sk, skb);
795 sock_recv_drops(msg, sk, skb);
796}
797EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
798
799static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
800 int flags)
801{
802 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
803}
804
805int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
806{
807 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
808
809 return err ?: sock_recvmsg_nosec(sock, msg, flags);
810}
811EXPORT_SYMBOL(sock_recvmsg);
812
813/**
814 * kernel_recvmsg - Receive a message from a socket (kernel space)
815 * @sock: The socket to receive the message from
816 * @msg: Received message
817 * @vec: Input s/g array for message data
818 * @num: Size of input s/g array
819 * @size: Number of bytes to read
820 * @flags: Message flags (MSG_DONTWAIT, etc...)
821 *
822 * On return the msg structure contains the scatter/gather array passed in the
823 * vec argument. The array is modified so that it consists of the unfilled
824 * portion of the original array.
825 *
826 * The returned value is the total number of bytes received, or an error.
827 */
828int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
829 struct kvec *vec, size_t num, size_t size, int flags)
830{
831 mm_segment_t oldfs = get_fs();
832 int result;
833
834 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
835 set_fs(KERNEL_DS);
836 result = sock_recvmsg(sock, msg, flags);
837 set_fs(oldfs);
838 return result;
839}
840EXPORT_SYMBOL(kernel_recvmsg);
841
842static ssize_t sock_sendpage(struct file *file, struct page *page,
843 int offset, size_t size, loff_t *ppos, int more)
844{
845 struct socket *sock;
846 int flags;
847
848 sock = file->private_data;
849
850 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
851 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
852 flags |= more;
853
854 return kernel_sendpage(sock, page, offset, size, flags);
855}
856
857static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
858 struct pipe_inode_info *pipe, size_t len,
859 unsigned int flags)
860{
861 struct socket *sock = file->private_data;
862
863 if (unlikely(!sock->ops->splice_read))
864 return -EINVAL;
865
866 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
867}
868
869static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
870{
871 struct file *file = iocb->ki_filp;
872 struct socket *sock = file->private_data;
873 struct msghdr msg = {.msg_iter = *to,
874 .msg_iocb = iocb};
875 ssize_t res;
876
877 if (file->f_flags & O_NONBLOCK)
878 msg.msg_flags = MSG_DONTWAIT;
879
880 if (iocb->ki_pos != 0)
881 return -ESPIPE;
882
883 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
884 return 0;
885
886 res = sock_recvmsg(sock, &msg, msg.msg_flags);
887 *to = msg.msg_iter;
888 return res;
889}
890
891static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
892{
893 struct file *file = iocb->ki_filp;
894 struct socket *sock = file->private_data;
895 struct msghdr msg = {.msg_iter = *from,
896 .msg_iocb = iocb};
897 ssize_t res;
898
899 if (iocb->ki_pos != 0)
900 return -ESPIPE;
901
902 if (file->f_flags & O_NONBLOCK)
903 msg.msg_flags = MSG_DONTWAIT;
904
905 if (sock->type == SOCK_SEQPACKET)
906 msg.msg_flags |= MSG_EOR;
907
908 res = sock_sendmsg(sock, &msg);
909 *from = msg.msg_iter;
910 return res;
911}
912
913/*
914 * Atomic setting of ioctl hooks to avoid race
915 * with module unload.
916 */
917
918static DEFINE_MUTEX(br_ioctl_mutex);
919static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
920
921void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
922{
923 mutex_lock(&br_ioctl_mutex);
924 br_ioctl_hook = hook;
925 mutex_unlock(&br_ioctl_mutex);
926}
927EXPORT_SYMBOL(brioctl_set);
928
929static DEFINE_MUTEX(vlan_ioctl_mutex);
930static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
931
932void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
933{
934 mutex_lock(&vlan_ioctl_mutex);
935 vlan_ioctl_hook = hook;
936 mutex_unlock(&vlan_ioctl_mutex);
937}
938EXPORT_SYMBOL(vlan_ioctl_set);
939
940static DEFINE_MUTEX(dlci_ioctl_mutex);
941static int (*dlci_ioctl_hook) (unsigned int, void __user *);
942
943void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
944{
945 mutex_lock(&dlci_ioctl_mutex);
946 dlci_ioctl_hook = hook;
947 mutex_unlock(&dlci_ioctl_mutex);
948}
949EXPORT_SYMBOL(dlci_ioctl_set);
950
951static long sock_do_ioctl(struct net *net, struct socket *sock,
952 unsigned int cmd, unsigned long arg)
953{
954 int err;
955 void __user *argp = (void __user *)arg;
956
957 err = sock->ops->ioctl(sock, cmd, arg);
958
959 /*
960 * If this ioctl is unknown try to hand it down
961 * to the NIC driver.
962 */
963 if (err != -ENOIOCTLCMD)
964 return err;
965
966 if (cmd == SIOCGIFCONF) {
967 struct ifconf ifc;
968 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
969 return -EFAULT;
970 rtnl_lock();
971 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
972 rtnl_unlock();
973 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
974 err = -EFAULT;
975 } else {
976 struct ifreq ifr;
977 bool need_copyout;
978 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
979 return -EFAULT;
980 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
981 if (!err && need_copyout)
982 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
983 return -EFAULT;
984 }
985 return err;
986}
987
988/*
989 * With an ioctl, arg may well be a user mode pointer, but we don't know
990 * what to do with it - that's up to the protocol still.
991 */
992
993struct ns_common *get_net_ns(struct ns_common *ns)
994{
995 return &get_net(container_of(ns, struct net, ns))->ns;
996}
997EXPORT_SYMBOL_GPL(get_net_ns);
998
999static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1000{
1001 struct socket *sock;
1002 struct sock *sk;
1003 void __user *argp = (void __user *)arg;
1004 int pid, err;
1005 struct net *net;
1006
1007 sock = file->private_data;
1008 sk = sock->sk;
1009 net = sock_net(sk);
1010 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1011 struct ifreq ifr;
1012 bool need_copyout;
1013 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1014 return -EFAULT;
1015 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1016 if (!err && need_copyout)
1017 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1018 return -EFAULT;
1019 } else
1020#ifdef CONFIG_WEXT_CORE
1021 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1022 err = wext_handle_ioctl(net, cmd, argp);
1023 } else
1024#endif
1025 switch (cmd) {
1026 case FIOSETOWN:
1027 case SIOCSPGRP:
1028 err = -EFAULT;
1029 if (get_user(pid, (int __user *)argp))
1030 break;
1031 err = f_setown(sock->file, pid, 1);
1032 break;
1033 case FIOGETOWN:
1034 case SIOCGPGRP:
1035 err = put_user(f_getown(sock->file),
1036 (int __user *)argp);
1037 break;
1038 case SIOCGIFBR:
1039 case SIOCSIFBR:
1040 case SIOCBRADDBR:
1041 case SIOCBRDELBR:
1042 err = -ENOPKG;
1043 if (!br_ioctl_hook)
1044 request_module("bridge");
1045
1046 mutex_lock(&br_ioctl_mutex);
1047 if (br_ioctl_hook)
1048 err = br_ioctl_hook(net, cmd, argp);
1049 mutex_unlock(&br_ioctl_mutex);
1050 break;
1051 case SIOCGIFVLAN:
1052 case SIOCSIFVLAN:
1053 err = -ENOPKG;
1054 if (!vlan_ioctl_hook)
1055 request_module("8021q");
1056
1057 mutex_lock(&vlan_ioctl_mutex);
1058 if (vlan_ioctl_hook)
1059 err = vlan_ioctl_hook(net, argp);
1060 mutex_unlock(&vlan_ioctl_mutex);
1061 break;
1062 case SIOCADDDLCI:
1063 case SIOCDELDLCI:
1064 err = -ENOPKG;
1065 if (!dlci_ioctl_hook)
1066 request_module("dlci");
1067
1068 mutex_lock(&dlci_ioctl_mutex);
1069 if (dlci_ioctl_hook)
1070 err = dlci_ioctl_hook(cmd, argp);
1071 mutex_unlock(&dlci_ioctl_mutex);
1072 break;
1073 case SIOCGSKNS:
1074 err = -EPERM;
1075 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1076 break;
1077
1078 err = open_related_ns(&net->ns, get_net_ns);
1079 break;
1080 default:
1081 err = sock_do_ioctl(net, sock, cmd, arg);
1082 break;
1083 }
1084 return err;
1085}
1086
1087int sock_create_lite(int family, int type, int protocol, struct socket **res)
1088{
1089 int err;
1090 struct socket *sock = NULL;
1091
1092 err = security_socket_create(family, type, protocol, 1);
1093 if (err)
1094 goto out;
1095
1096 sock = sock_alloc();
1097 if (!sock) {
1098 err = -ENOMEM;
1099 goto out;
1100 }
1101
1102 sock->type = type;
1103 err = security_socket_post_create(sock, family, type, protocol, 1);
1104 if (err)
1105 goto out_release;
1106
1107out:
1108 *res = sock;
1109 return err;
1110out_release:
1111 sock_release(sock);
1112 sock = NULL;
1113 goto out;
1114}
1115EXPORT_SYMBOL(sock_create_lite);
1116
1117/* No kernel lock held - perfect */
1118static __poll_t sock_poll(struct file *file, poll_table *wait)
1119{
1120 __poll_t busy_flag = 0;
1121 struct socket *sock;
1122
1123 /*
1124 * We can't return errors to poll, so it's either yes or no.
1125 */
1126 sock = file->private_data;
1127
1128 if (sk_can_busy_loop(sock->sk)) {
1129 /* this socket can poll_ll so tell the system call */
1130 busy_flag = POLL_BUSY_LOOP;
1131
1132 /* once, only if requested by syscall */
1133 if (wait && (wait->_key & POLL_BUSY_LOOP))
1134 sk_busy_loop(sock->sk, 1);
1135 }
1136
1137 return busy_flag | sock->ops->poll(file, sock, wait);
1138}
1139
1140static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1141{
1142 struct socket *sock = file->private_data;
1143
1144 return sock->ops->mmap(file, sock, vma);
1145}
1146
1147static int sock_close(struct inode *inode, struct file *filp)
1148{
1149 sock_release(SOCKET_I(inode));
1150 return 0;
1151}
1152
1153/*
1154 * Update the socket async list
1155 *
1156 * Fasync_list locking strategy.
1157 *
1158 * 1. fasync_list is modified only under process context socket lock
1159 * i.e. under semaphore.
1160 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1161 * or under socket lock
1162 */
1163
1164static int sock_fasync(int fd, struct file *filp, int on)
1165{
1166 struct socket *sock = filp->private_data;
1167 struct sock *sk = sock->sk;
1168 struct socket_wq *wq;
1169
1170 if (sk == NULL)
1171 return -EINVAL;
1172
1173 lock_sock(sk);
1174 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1175 fasync_helper(fd, filp, on, &wq->fasync_list);
1176
1177 if (!wq->fasync_list)
1178 sock_reset_flag(sk, SOCK_FASYNC);
1179 else
1180 sock_set_flag(sk, SOCK_FASYNC);
1181
1182 release_sock(sk);
1183 return 0;
1184}
1185
1186/* This function may be called only under rcu_lock */
1187
1188int sock_wake_async(struct socket_wq *wq, int how, int band)
1189{
1190 if (!wq || !wq->fasync_list)
1191 return -1;
1192
1193 switch (how) {
1194 case SOCK_WAKE_WAITD:
1195 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1196 break;
1197 goto call_kill;
1198 case SOCK_WAKE_SPACE:
1199 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1200 break;
1201 /* fall through */
1202 case SOCK_WAKE_IO:
1203call_kill:
1204 kill_fasync(&wq->fasync_list, SIGIO, band);
1205 break;
1206 case SOCK_WAKE_URG:
1207 kill_fasync(&wq->fasync_list, SIGURG, band);
1208 }
1209
1210 return 0;
1211}
1212EXPORT_SYMBOL(sock_wake_async);
1213
1214int __sock_create(struct net *net, int family, int type, int protocol,
1215 struct socket **res, int kern)
1216{
1217 int err;
1218 struct socket *sock;
1219 const struct net_proto_family *pf;
1220
1221 /*
1222 * Check protocol is in range
1223 */
1224 if (family < 0 || family >= NPROTO)
1225 return -EAFNOSUPPORT;
1226 if (type < 0 || type >= SOCK_MAX)
1227 return -EINVAL;
1228
1229 /* Compatibility.
1230
1231 This uglymoron is moved from INET layer to here to avoid
1232 deadlock in module load.
1233 */
1234 if (family == PF_INET && type == SOCK_PACKET) {
1235 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1236 current->comm);
1237 family = PF_PACKET;
1238 }
1239
1240 err = security_socket_create(family, type, protocol, kern);
1241 if (err)
1242 return err;
1243
1244 /*
1245 * Allocate the socket and allow the family to set things up. if
1246 * the protocol is 0, the family is instructed to select an appropriate
1247 * default.
1248 */
1249 sock = sock_alloc();
1250 if (!sock) {
1251 net_warn_ratelimited("socket: no more sockets\n");
1252 return -ENFILE; /* Not exactly a match, but its the
1253 closest posix thing */
1254 }
1255
1256 sock->type = type;
1257
1258#ifdef CONFIG_MODULES
1259 /* Attempt to load a protocol module if the find failed.
1260 *
1261 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1262 * requested real, full-featured networking support upon configuration.
1263 * Otherwise module support will break!
1264 */
1265 if (rcu_access_pointer(net_families[family]) == NULL)
1266 request_module("net-pf-%d", family);
1267#endif
1268
1269 rcu_read_lock();
1270 pf = rcu_dereference(net_families[family]);
1271 err = -EAFNOSUPPORT;
1272 if (!pf)
1273 goto out_release;
1274
1275 /*
1276 * We will call the ->create function, that possibly is in a loadable
1277 * module, so we have to bump that loadable module refcnt first.
1278 */
1279 if (!try_module_get(pf->owner))
1280 goto out_release;
1281
1282 /* Now protected by module ref count */
1283 rcu_read_unlock();
1284
1285 err = pf->create(net, sock, protocol, kern);
1286 if (err < 0)
1287 goto out_module_put;
1288
1289 /*
1290 * Now to bump the refcnt of the [loadable] module that owns this
1291 * socket at sock_release time we decrement its refcnt.
1292 */
1293 if (!try_module_get(sock->ops->owner))
1294 goto out_module_busy;
1295
1296 /*
1297 * Now that we're done with the ->create function, the [loadable]
1298 * module can have its refcnt decremented
1299 */
1300 module_put(pf->owner);
1301 err = security_socket_post_create(sock, family, type, protocol, kern);
1302 if (err)
1303 goto out_sock_release;
1304 *res = sock;
1305
1306 return 0;
1307
1308out_module_busy:
1309 err = -EAFNOSUPPORT;
1310out_module_put:
1311 sock->ops = NULL;
1312 module_put(pf->owner);
1313out_sock_release:
1314 sock_release(sock);
1315 return err;
1316
1317out_release:
1318 rcu_read_unlock();
1319 goto out_sock_release;
1320}
1321EXPORT_SYMBOL(__sock_create);
1322
1323int sock_create(int family, int type, int protocol, struct socket **res)
1324{
1325 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1326}
1327EXPORT_SYMBOL(sock_create);
1328
1329int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1330{
1331 return __sock_create(net, family, type, protocol, res, 1);
1332}
1333EXPORT_SYMBOL(sock_create_kern);
1334
1335int __sys_socket(int family, int type, int protocol)
1336{
1337 int retval;
1338 struct socket *sock;
1339 int flags;
1340
1341 /* Check the SOCK_* constants for consistency. */
1342 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1343 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1344 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1345 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1346
1347 flags = type & ~SOCK_TYPE_MASK;
1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349 return -EINVAL;
1350 type &= SOCK_TYPE_MASK;
1351
1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354
1355 retval = sock_create(family, type, protocol, &sock);
1356 if (retval < 0)
1357 return retval;
1358
1359 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1360}
1361
1362SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1363{
1364 return __sys_socket(family, type, protocol);
1365}
1366
1367/*
1368 * Create a pair of connected sockets.
1369 */
1370
1371int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1372{
1373 struct socket *sock1, *sock2;
1374 int fd1, fd2, err;
1375 struct file *newfile1, *newfile2;
1376 int flags;
1377
1378 flags = type & ~SOCK_TYPE_MASK;
1379 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1380 return -EINVAL;
1381 type &= SOCK_TYPE_MASK;
1382
1383 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1384 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1385
1386 /*
1387 * reserve descriptors and make sure we won't fail
1388 * to return them to userland.
1389 */
1390 fd1 = get_unused_fd_flags(flags);
1391 if (unlikely(fd1 < 0))
1392 return fd1;
1393
1394 fd2 = get_unused_fd_flags(flags);
1395 if (unlikely(fd2 < 0)) {
1396 put_unused_fd(fd1);
1397 return fd2;
1398 }
1399
1400 err = put_user(fd1, &usockvec[0]);
1401 if (err)
1402 goto out;
1403
1404 err = put_user(fd2, &usockvec[1]);
1405 if (err)
1406 goto out;
1407
1408 /*
1409 * Obtain the first socket and check if the underlying protocol
1410 * supports the socketpair call.
1411 */
1412
1413 err = sock_create(family, type, protocol, &sock1);
1414 if (unlikely(err < 0))
1415 goto out;
1416
1417 err = sock_create(family, type, protocol, &sock2);
1418 if (unlikely(err < 0)) {
1419 sock_release(sock1);
1420 goto out;
1421 }
1422
1423 err = sock1->ops->socketpair(sock1, sock2);
1424 if (unlikely(err < 0)) {
1425 sock_release(sock2);
1426 sock_release(sock1);
1427 goto out;
1428 }
1429
1430 newfile1 = sock_alloc_file(sock1, flags, NULL);
1431 if (IS_ERR(newfile1)) {
1432 err = PTR_ERR(newfile1);
1433 sock_release(sock2);
1434 goto out;
1435 }
1436
1437 newfile2 = sock_alloc_file(sock2, flags, NULL);
1438 if (IS_ERR(newfile2)) {
1439 err = PTR_ERR(newfile2);
1440 fput(newfile1);
1441 goto out;
1442 }
1443
1444 audit_fd_pair(fd1, fd2);
1445
1446 fd_install(fd1, newfile1);
1447 fd_install(fd2, newfile2);
1448 return 0;
1449
1450out:
1451 put_unused_fd(fd2);
1452 put_unused_fd(fd1);
1453 return err;
1454}
1455
1456SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1457 int __user *, usockvec)
1458{
1459 return __sys_socketpair(family, type, protocol, usockvec);
1460}
1461
1462/*
1463 * Bind a name to a socket. Nothing much to do here since it's
1464 * the protocol's responsibility to handle the local address.
1465 *
1466 * We move the socket address to kernel space before we call
1467 * the protocol layer (having also checked the address is ok).
1468 */
1469
1470int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1471{
1472 struct socket *sock;
1473 struct sockaddr_storage address;
1474 int err, fput_needed;
1475
1476 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1477 if (sock) {
1478 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1479 if (err >= 0) {
1480 err = security_socket_bind(sock,
1481 (struct sockaddr *)&address,
1482 addrlen);
1483 if (!err)
1484 err = sock->ops->bind(sock,
1485 (struct sockaddr *)
1486 &address, addrlen);
1487 }
1488 fput_light(sock->file, fput_needed);
1489 }
1490 return err;
1491}
1492
1493SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1494{
1495 return __sys_bind(fd, umyaddr, addrlen);
1496}
1497
1498/*
1499 * Perform a listen. Basically, we allow the protocol to do anything
1500 * necessary for a listen, and if that works, we mark the socket as
1501 * ready for listening.
1502 */
1503
1504int __sys_listen(int fd, int backlog)
1505{
1506 struct socket *sock;
1507 int err, fput_needed;
1508 int somaxconn;
1509
1510 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511 if (sock) {
1512 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1513 if ((unsigned int)backlog > somaxconn)
1514 backlog = somaxconn;
1515
1516 err = security_socket_listen(sock, backlog);
1517 if (!err)
1518 err = sock->ops->listen(sock, backlog);
1519
1520 fput_light(sock->file, fput_needed);
1521 }
1522 return err;
1523}
1524
1525SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1526{
1527 return __sys_listen(fd, backlog);
1528}
1529
1530/*
1531 * For accept, we attempt to create a new socket, set up the link
1532 * with the client, wake up the client, then return the new
1533 * connected fd. We collect the address of the connector in kernel
1534 * space and move it to user at the very end. This is unclean because
1535 * we open the socket then return an error.
1536 *
1537 * 1003.1g adds the ability to recvmsg() to query connection pending
1538 * status to recvmsg. We need to add that support in a way thats
1539 * clean when we restructure accept also.
1540 */
1541
1542int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1543 int __user *upeer_addrlen, int flags)
1544{
1545 struct socket *sock, *newsock;
1546 struct file *newfile;
1547 int err, len, newfd, fput_needed;
1548 struct sockaddr_storage address;
1549
1550 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551 return -EINVAL;
1552
1553 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1554 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1555
1556 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 if (!sock)
1558 goto out;
1559
1560 err = -ENFILE;
1561 newsock = sock_alloc();
1562 if (!newsock)
1563 goto out_put;
1564
1565 newsock->type = sock->type;
1566 newsock->ops = sock->ops;
1567
1568 /*
1569 * We don't need try_module_get here, as the listening socket (sock)
1570 * has the protocol module (sock->ops->owner) held.
1571 */
1572 __module_get(newsock->ops->owner);
1573
1574 newfd = get_unused_fd_flags(flags);
1575 if (unlikely(newfd < 0)) {
1576 err = newfd;
1577 sock_release(newsock);
1578 goto out_put;
1579 }
1580 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1581 if (IS_ERR(newfile)) {
1582 err = PTR_ERR(newfile);
1583 put_unused_fd(newfd);
1584 goto out_put;
1585 }
1586
1587 err = security_socket_accept(sock, newsock);
1588 if (err)
1589 goto out_fd;
1590
1591 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1592 if (err < 0)
1593 goto out_fd;
1594
1595 if (upeer_sockaddr) {
1596 len = newsock->ops->getname(newsock,
1597 (struct sockaddr *)&address, 2);
1598 if (len < 0) {
1599 err = -ECONNABORTED;
1600 goto out_fd;
1601 }
1602 err = move_addr_to_user(&address,
1603 len, upeer_sockaddr, upeer_addrlen);
1604 if (err < 0)
1605 goto out_fd;
1606 }
1607
1608 /* File flags are not inherited via accept() unlike another OSes. */
1609
1610 fd_install(newfd, newfile);
1611 err = newfd;
1612
1613out_put:
1614 fput_light(sock->file, fput_needed);
1615out:
1616 return err;
1617out_fd:
1618 fput(newfile);
1619 put_unused_fd(newfd);
1620 goto out_put;
1621}
1622
1623SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1624 int __user *, upeer_addrlen, int, flags)
1625{
1626 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1627}
1628
1629SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1630 int __user *, upeer_addrlen)
1631{
1632 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1633}
1634
1635/*
1636 * Attempt to connect to a socket with the server address. The address
1637 * is in user space so we verify it is OK and move it to kernel space.
1638 *
1639 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1640 * break bindings
1641 *
1642 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1643 * other SEQPACKET protocols that take time to connect() as it doesn't
1644 * include the -EINPROGRESS status for such sockets.
1645 */
1646
1647int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1648{
1649 struct socket *sock;
1650 struct sockaddr_storage address;
1651 int err, fput_needed;
1652
1653 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654 if (!sock)
1655 goto out;
1656 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1657 if (err < 0)
1658 goto out_put;
1659
1660 err =
1661 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1662 if (err)
1663 goto out_put;
1664
1665 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1666 sock->file->f_flags);
1667out_put:
1668 fput_light(sock->file, fput_needed);
1669out:
1670 return err;
1671}
1672
1673SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1674 int, addrlen)
1675{
1676 return __sys_connect(fd, uservaddr, addrlen);
1677}
1678
1679/*
1680 * Get the local address ('name') of a socket object. Move the obtained
1681 * name to user space.
1682 */
1683
1684int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1685 int __user *usockaddr_len)
1686{
1687 struct socket *sock;
1688 struct sockaddr_storage address;
1689 int err, fput_needed;
1690
1691 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1692 if (!sock)
1693 goto out;
1694
1695 err = security_socket_getsockname(sock);
1696 if (err)
1697 goto out_put;
1698
1699 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1700 if (err < 0)
1701 goto out_put;
1702 /* "err" is actually length in this case */
1703 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1704
1705out_put:
1706 fput_light(sock->file, fput_needed);
1707out:
1708 return err;
1709}
1710
1711SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1712 int __user *, usockaddr_len)
1713{
1714 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1715}
1716
1717/*
1718 * Get the remote address ('name') of a socket object. Move the obtained
1719 * name to user space.
1720 */
1721
1722int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1723 int __user *usockaddr_len)
1724{
1725 struct socket *sock;
1726 struct sockaddr_storage address;
1727 int err, fput_needed;
1728
1729 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730 if (sock != NULL) {
1731 err = security_socket_getpeername(sock);
1732 if (err) {
1733 fput_light(sock->file, fput_needed);
1734 return err;
1735 }
1736
1737 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1738 if (err >= 0)
1739 /* "err" is actually length in this case */
1740 err = move_addr_to_user(&address, err, usockaddr,
1741 usockaddr_len);
1742 fput_light(sock->file, fput_needed);
1743 }
1744 return err;
1745}
1746
1747SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1748 int __user *, usockaddr_len)
1749{
1750 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1751}
1752
1753/*
1754 * Send a datagram to a given address. We move the address into kernel
1755 * space and check the user space data area is readable before invoking
1756 * the protocol.
1757 */
1758int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1759 struct sockaddr __user *addr, int addr_len)
1760{
1761 struct socket *sock;
1762 struct sockaddr_storage address;
1763 int err;
1764 struct msghdr msg;
1765 struct iovec iov;
1766 int fput_needed;
1767
1768 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1769 if (unlikely(err))
1770 return err;
1771 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 if (!sock)
1773 goto out;
1774
1775 msg.msg_name = NULL;
1776 msg.msg_control = NULL;
1777 msg.msg_controllen = 0;
1778 msg.msg_namelen = 0;
1779 if (addr) {
1780 err = move_addr_to_kernel(addr, addr_len, &address);
1781 if (err < 0)
1782 goto out_put;
1783 msg.msg_name = (struct sockaddr *)&address;
1784 msg.msg_namelen = addr_len;
1785 }
1786 if (sock->file->f_flags & O_NONBLOCK)
1787 flags |= MSG_DONTWAIT;
1788 msg.msg_flags = flags;
1789 err = sock_sendmsg(sock, &msg);
1790
1791out_put:
1792 fput_light(sock->file, fput_needed);
1793out:
1794 return err;
1795}
1796
1797SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1798 unsigned int, flags, struct sockaddr __user *, addr,
1799 int, addr_len)
1800{
1801 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1802}
1803
1804/*
1805 * Send a datagram down a socket.
1806 */
1807
1808SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1809 unsigned int, flags)
1810{
1811 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1812}
1813
1814/*
1815 * Receive a frame from the socket and optionally record the address of the
1816 * sender. We verify the buffers are writable and if needed move the
1817 * sender address from kernel to user space.
1818 */
1819int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1820 struct sockaddr __user *addr, int __user *addr_len)
1821{
1822 struct socket *sock;
1823 struct iovec iov;
1824 struct msghdr msg;
1825 struct sockaddr_storage address;
1826 int err, err2;
1827 int fput_needed;
1828
1829 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1830 if (unlikely(err))
1831 return err;
1832 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1833 if (!sock)
1834 goto out;
1835
1836 msg.msg_control = NULL;
1837 msg.msg_controllen = 0;
1838 /* Save some cycles and don't copy the address if not needed */
1839 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1840 /* We assume all kernel code knows the size of sockaddr_storage */
1841 msg.msg_namelen = 0;
1842 msg.msg_iocb = NULL;
1843 msg.msg_flags = 0;
1844 if (sock->file->f_flags & O_NONBLOCK)
1845 flags |= MSG_DONTWAIT;
1846 err = sock_recvmsg(sock, &msg, flags);
1847
1848 if (err >= 0 && addr != NULL) {
1849 err2 = move_addr_to_user(&address,
1850 msg.msg_namelen, addr, addr_len);
1851 if (err2 < 0)
1852 err = err2;
1853 }
1854
1855 fput_light(sock->file, fput_needed);
1856out:
1857 return err;
1858}
1859
1860SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1861 unsigned int, flags, struct sockaddr __user *, addr,
1862 int __user *, addr_len)
1863{
1864 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1865}
1866
1867/*
1868 * Receive a datagram from a socket.
1869 */
1870
1871SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1872 unsigned int, flags)
1873{
1874 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1875}
1876
1877/*
1878 * Set a socket option. Because we don't know the option lengths we have
1879 * to pass the user mode parameter for the protocols to sort out.
1880 */
1881
1882static int __sys_setsockopt(int fd, int level, int optname,
1883 char __user *optval, int optlen)
1884{
1885 int err, fput_needed;
1886 struct socket *sock;
1887
1888 if (optlen < 0)
1889 return -EINVAL;
1890
1891 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1892 if (sock != NULL) {
1893 err = security_socket_setsockopt(sock, level, optname);
1894 if (err)
1895 goto out_put;
1896
1897 if (level == SOL_SOCKET)
1898 err =
1899 sock_setsockopt(sock, level, optname, optval,
1900 optlen);
1901 else
1902 err =
1903 sock->ops->setsockopt(sock, level, optname, optval,
1904 optlen);
1905out_put:
1906 fput_light(sock->file, fput_needed);
1907 }
1908 return err;
1909}
1910
1911SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1912 char __user *, optval, int, optlen)
1913{
1914 return __sys_setsockopt(fd, level, optname, optval, optlen);
1915}
1916
1917/*
1918 * Get a socket option. Because we don't know the option lengths we have
1919 * to pass a user mode parameter for the protocols to sort out.
1920 */
1921
1922static int __sys_getsockopt(int fd, int level, int optname,
1923 char __user *optval, int __user *optlen)
1924{
1925 int err, fput_needed;
1926 struct socket *sock;
1927
1928 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1929 if (sock != NULL) {
1930 err = security_socket_getsockopt(sock, level, optname);
1931 if (err)
1932 goto out_put;
1933
1934 if (level == SOL_SOCKET)
1935 err =
1936 sock_getsockopt(sock, level, optname, optval,
1937 optlen);
1938 else
1939 err =
1940 sock->ops->getsockopt(sock, level, optname, optval,
1941 optlen);
1942out_put:
1943 fput_light(sock->file, fput_needed);
1944 }
1945 return err;
1946}
1947
1948SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1949 char __user *, optval, int __user *, optlen)
1950{
1951 return __sys_getsockopt(fd, level, optname, optval, optlen);
1952}
1953
1954/*
1955 * Shutdown a socket.
1956 */
1957
1958int __sys_shutdown(int fd, int how)
1959{
1960 int err, fput_needed;
1961 struct socket *sock;
1962
1963 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964 if (sock != NULL) {
1965 err = security_socket_shutdown(sock, how);
1966 if (!err)
1967 err = sock->ops->shutdown(sock, how);
1968 fput_light(sock->file, fput_needed);
1969 }
1970 return err;
1971}
1972
1973SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1974{
1975 return __sys_shutdown(fd, how);
1976}
1977
1978/* A couple of helpful macros for getting the address of the 32/64 bit
1979 * fields which are the same type (int / unsigned) on our platforms.
1980 */
1981#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1982#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1983#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1984
1985struct used_address {
1986 struct sockaddr_storage name;
1987 unsigned int name_len;
1988};
1989
1990static int copy_msghdr_from_user(struct msghdr *kmsg,
1991 struct user_msghdr __user *umsg,
1992 struct sockaddr __user **save_addr,
1993 struct iovec **iov)
1994{
1995 struct user_msghdr msg;
1996 ssize_t err;
1997
1998 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1999 return -EFAULT;
2000
2001 kmsg->msg_control = (void __force *)msg.msg_control;
2002 kmsg->msg_controllen = msg.msg_controllen;
2003 kmsg->msg_flags = msg.msg_flags;
2004
2005 kmsg->msg_namelen = msg.msg_namelen;
2006 if (!msg.msg_name)
2007 kmsg->msg_namelen = 0;
2008
2009 if (kmsg->msg_namelen < 0)
2010 return -EINVAL;
2011
2012 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2013 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2014
2015 if (save_addr)
2016 *save_addr = msg.msg_name;
2017
2018 if (msg.msg_name && kmsg->msg_namelen) {
2019 if (!save_addr) {
2020 err = move_addr_to_kernel(msg.msg_name,
2021 kmsg->msg_namelen,
2022 kmsg->msg_name);
2023 if (err < 0)
2024 return err;
2025 }
2026 } else {
2027 kmsg->msg_name = NULL;
2028 kmsg->msg_namelen = 0;
2029 }
2030
2031 if (msg.msg_iovlen > UIO_MAXIOV)
2032 return -EMSGSIZE;
2033
2034 kmsg->msg_iocb = NULL;
2035
2036 return import_iovec(save_addr ? READ : WRITE,
2037 msg.msg_iov, msg.msg_iovlen,
2038 UIO_FASTIOV, iov, &kmsg->msg_iter);
2039}
2040
2041static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2042 struct msghdr *msg_sys, unsigned int flags,
2043 struct used_address *used_address,
2044 unsigned int allowed_msghdr_flags)
2045{
2046 struct compat_msghdr __user *msg_compat =
2047 (struct compat_msghdr __user *)msg;
2048 struct sockaddr_storage address;
2049 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2050 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2051 __aligned(sizeof(__kernel_size_t));
2052 /* 20 is size of ipv6_pktinfo */
2053 unsigned char *ctl_buf = ctl;
2054 int ctl_len;
2055 ssize_t err;
2056
2057 msg_sys->msg_name = &address;
2058
2059 if (MSG_CMSG_COMPAT & flags)
2060 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2061 else
2062 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2063 if (err < 0)
2064 return err;
2065
2066 err = -ENOBUFS;
2067
2068 if (msg_sys->msg_controllen > INT_MAX)
2069 goto out_freeiov;
2070 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2071 ctl_len = msg_sys->msg_controllen;
2072 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2073 err =
2074 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2075 sizeof(ctl));
2076 if (err)
2077 goto out_freeiov;
2078 ctl_buf = msg_sys->msg_control;
2079 ctl_len = msg_sys->msg_controllen;
2080 } else if (ctl_len) {
2081 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2082 CMSG_ALIGN(sizeof(struct cmsghdr)));
2083 if (ctl_len > sizeof(ctl)) {
2084 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2085 if (ctl_buf == NULL)
2086 goto out_freeiov;
2087 }
2088 err = -EFAULT;
2089 /*
2090 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2091 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2092 * checking falls down on this.
2093 */
2094 if (copy_from_user(ctl_buf,
2095 (void __user __force *)msg_sys->msg_control,
2096 ctl_len))
2097 goto out_freectl;
2098 msg_sys->msg_control = ctl_buf;
2099 }
2100 msg_sys->msg_flags = flags;
2101
2102 if (sock->file->f_flags & O_NONBLOCK)
2103 msg_sys->msg_flags |= MSG_DONTWAIT;
2104 /*
2105 * If this is sendmmsg() and current destination address is same as
2106 * previously succeeded address, omit asking LSM's decision.
2107 * used_address->name_len is initialized to UINT_MAX so that the first
2108 * destination address never matches.
2109 */
2110 if (used_address && msg_sys->msg_name &&
2111 used_address->name_len == msg_sys->msg_namelen &&
2112 !memcmp(&used_address->name, msg_sys->msg_name,
2113 used_address->name_len)) {
2114 err = sock_sendmsg_nosec(sock, msg_sys);
2115 goto out_freectl;
2116 }
2117 err = sock_sendmsg(sock, msg_sys);
2118 /*
2119 * If this is sendmmsg() and sending to current destination address was
2120 * successful, remember it.
2121 */
2122 if (used_address && err >= 0) {
2123 used_address->name_len = msg_sys->msg_namelen;
2124 if (msg_sys->msg_name)
2125 memcpy(&used_address->name, msg_sys->msg_name,
2126 used_address->name_len);
2127 }
2128
2129out_freectl:
2130 if (ctl_buf != ctl)
2131 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2132out_freeiov:
2133 kfree(iov);
2134 return err;
2135}
2136
2137/*
2138 * BSD sendmsg interface
2139 */
2140
2141long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2142 bool forbid_cmsg_compat)
2143{
2144 int fput_needed, err;
2145 struct msghdr msg_sys;
2146 struct socket *sock;
2147
2148 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2149 return -EINVAL;
2150
2151 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2152 if (!sock)
2153 goto out;
2154
2155 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2156
2157 fput_light(sock->file, fput_needed);
2158out:
2159 return err;
2160}
2161
2162SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2163{
2164 return __sys_sendmsg(fd, msg, flags, true);
2165}
2166
2167/*
2168 * Linux sendmmsg interface
2169 */
2170
2171int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2172 unsigned int flags, bool forbid_cmsg_compat)
2173{
2174 int fput_needed, err, datagrams;
2175 struct socket *sock;
2176 struct mmsghdr __user *entry;
2177 struct compat_mmsghdr __user *compat_entry;
2178 struct msghdr msg_sys;
2179 struct used_address used_address;
2180 unsigned int oflags = flags;
2181
2182 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2183 return -EINVAL;
2184
2185 if (vlen > UIO_MAXIOV)
2186 vlen = UIO_MAXIOV;
2187
2188 datagrams = 0;
2189
2190 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2191 if (!sock)
2192 return err;
2193
2194 used_address.name_len = UINT_MAX;
2195 entry = mmsg;
2196 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2197 err = 0;
2198 flags |= MSG_BATCH;
2199
2200 while (datagrams < vlen) {
2201 if (datagrams == vlen - 1)
2202 flags = oflags;
2203
2204 if (MSG_CMSG_COMPAT & flags) {
2205 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2206 &msg_sys, flags, &used_address, MSG_EOR);
2207 if (err < 0)
2208 break;
2209 err = __put_user(err, &compat_entry->msg_len);
2210 ++compat_entry;
2211 } else {
2212 err = ___sys_sendmsg(sock,
2213 (struct user_msghdr __user *)entry,
2214 &msg_sys, flags, &used_address, MSG_EOR);
2215 if (err < 0)
2216 break;
2217 err = put_user(err, &entry->msg_len);
2218 ++entry;
2219 }
2220
2221 if (err)
2222 break;
2223 ++datagrams;
2224 if (msg_data_left(&msg_sys))
2225 break;
2226 cond_resched();
2227 }
2228
2229 fput_light(sock->file, fput_needed);
2230
2231 /* We only return an error if no datagrams were able to be sent */
2232 if (datagrams != 0)
2233 return datagrams;
2234
2235 return err;
2236}
2237
2238SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2239 unsigned int, vlen, unsigned int, flags)
2240{
2241 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2242}
2243
2244static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2245 struct msghdr *msg_sys, unsigned int flags, int nosec)
2246{
2247 struct compat_msghdr __user *msg_compat =
2248 (struct compat_msghdr __user *)msg;
2249 struct iovec iovstack[UIO_FASTIOV];
2250 struct iovec *iov = iovstack;
2251 unsigned long cmsg_ptr;
2252 int len;
2253 ssize_t err;
2254
2255 /* kernel mode address */
2256 struct sockaddr_storage addr;
2257
2258 /* user mode address pointers */
2259 struct sockaddr __user *uaddr;
2260 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2261
2262 msg_sys->msg_name = &addr;
2263
2264 if (MSG_CMSG_COMPAT & flags)
2265 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2266 else
2267 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2268 if (err < 0)
2269 return err;
2270
2271 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2272 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2273
2274 /* We assume all kernel code knows the size of sockaddr_storage */
2275 msg_sys->msg_namelen = 0;
2276
2277 if (sock->file->f_flags & O_NONBLOCK)
2278 flags |= MSG_DONTWAIT;
2279 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2280 if (err < 0)
2281 goto out_freeiov;
2282 len = err;
2283
2284 if (uaddr != NULL) {
2285 err = move_addr_to_user(&addr,
2286 msg_sys->msg_namelen, uaddr,
2287 uaddr_len);
2288 if (err < 0)
2289 goto out_freeiov;
2290 }
2291 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2292 COMPAT_FLAGS(msg));
2293 if (err)
2294 goto out_freeiov;
2295 if (MSG_CMSG_COMPAT & flags)
2296 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2297 &msg_compat->msg_controllen);
2298 else
2299 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2300 &msg->msg_controllen);
2301 if (err)
2302 goto out_freeiov;
2303 err = len;
2304
2305out_freeiov:
2306 kfree(iov);
2307 return err;
2308}
2309
2310/*
2311 * BSD recvmsg interface
2312 */
2313
2314long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2315 bool forbid_cmsg_compat)
2316{
2317 int fput_needed, err;
2318 struct msghdr msg_sys;
2319 struct socket *sock;
2320
2321 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2322 return -EINVAL;
2323
2324 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2325 if (!sock)
2326 goto out;
2327
2328 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2329
2330 fput_light(sock->file, fput_needed);
2331out:
2332 return err;
2333}
2334
2335SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2336 unsigned int, flags)
2337{
2338 return __sys_recvmsg(fd, msg, flags, true);
2339}
2340
2341/*
2342 * Linux recvmmsg interface
2343 */
2344
2345int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2346 unsigned int flags, struct timespec *timeout)
2347{
2348 int fput_needed, err, datagrams;
2349 struct socket *sock;
2350 struct mmsghdr __user *entry;
2351 struct compat_mmsghdr __user *compat_entry;
2352 struct msghdr msg_sys;
2353 struct timespec64 end_time;
2354 struct timespec64 timeout64;
2355
2356 if (timeout &&
2357 poll_select_set_timeout(&end_time, timeout->tv_sec,
2358 timeout->tv_nsec))
2359 return -EINVAL;
2360
2361 datagrams = 0;
2362
2363 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2364 if (!sock)
2365 return err;
2366
2367 if (likely(!(flags & MSG_ERRQUEUE))) {
2368 err = sock_error(sock->sk);
2369 if (err) {
2370 datagrams = err;
2371 goto out_put;
2372 }
2373 }
2374
2375 entry = mmsg;
2376 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2377
2378 while (datagrams < vlen) {
2379 /*
2380 * No need to ask LSM for more than the first datagram.
2381 */
2382 if (MSG_CMSG_COMPAT & flags) {
2383 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2384 &msg_sys, flags & ~MSG_WAITFORONE,
2385 datagrams);
2386 if (err < 0)
2387 break;
2388 err = __put_user(err, &compat_entry->msg_len);
2389 ++compat_entry;
2390 } else {
2391 err = ___sys_recvmsg(sock,
2392 (struct user_msghdr __user *)entry,
2393 &msg_sys, flags & ~MSG_WAITFORONE,
2394 datagrams);
2395 if (err < 0)
2396 break;
2397 err = put_user(err, &entry->msg_len);
2398 ++entry;
2399 }
2400
2401 if (err)
2402 break;
2403 ++datagrams;
2404
2405 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2406 if (flags & MSG_WAITFORONE)
2407 flags |= MSG_DONTWAIT;
2408
2409 if (timeout) {
2410 ktime_get_ts64(&timeout64);
2411 *timeout = timespec64_to_timespec(
2412 timespec64_sub(end_time, timeout64));
2413 if (timeout->tv_sec < 0) {
2414 timeout->tv_sec = timeout->tv_nsec = 0;
2415 break;
2416 }
2417
2418 /* Timeout, return less than vlen datagrams */
2419 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2420 break;
2421 }
2422
2423 /* Out of band data, return right away */
2424 if (msg_sys.msg_flags & MSG_OOB)
2425 break;
2426 cond_resched();
2427 }
2428
2429 if (err == 0)
2430 goto out_put;
2431
2432 if (datagrams == 0) {
2433 datagrams = err;
2434 goto out_put;
2435 }
2436
2437 /*
2438 * We may return less entries than requested (vlen) if the
2439 * sock is non block and there aren't enough datagrams...
2440 */
2441 if (err != -EAGAIN) {
2442 /*
2443 * ... or if recvmsg returns an error after we
2444 * received some datagrams, where we record the
2445 * error to return on the next call or if the
2446 * app asks about it using getsockopt(SO_ERROR).
2447 */
2448 sock->sk->sk_err = -err;
2449 }
2450out_put:
2451 fput_light(sock->file, fput_needed);
2452
2453 return datagrams;
2454}
2455
2456static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2457 unsigned int vlen, unsigned int flags,
2458 struct timespec __user *timeout)
2459{
2460 int datagrams;
2461 struct timespec timeout_sys;
2462
2463 if (flags & MSG_CMSG_COMPAT)
2464 return -EINVAL;
2465
2466 if (!timeout)
2467 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2468
2469 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2470 return -EFAULT;
2471
2472 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2473
2474 if (datagrams > 0 &&
2475 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2476 datagrams = -EFAULT;
2477
2478 return datagrams;
2479}
2480
2481SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2482 unsigned int, vlen, unsigned int, flags,
2483 struct timespec __user *, timeout)
2484{
2485 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2486}
2487
2488#ifdef __ARCH_WANT_SYS_SOCKETCALL
2489/* Argument list sizes for sys_socketcall */
2490#define AL(x) ((x) * sizeof(unsigned long))
2491static const unsigned char nargs[21] = {
2492 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2493 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2494 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2495 AL(4), AL(5), AL(4)
2496};
2497
2498#undef AL
2499
2500/*
2501 * System call vectors.
2502 *
2503 * Argument checking cleaned up. Saved 20% in size.
2504 * This function doesn't need to set the kernel lock because
2505 * it is set by the callees.
2506 */
2507
2508SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2509{
2510 unsigned long a[AUDITSC_ARGS];
2511 unsigned long a0, a1;
2512 int err;
2513 unsigned int len;
2514
2515 if (call < 1 || call > SYS_SENDMMSG)
2516 return -EINVAL;
2517
2518 len = nargs[call];
2519 if (len > sizeof(a))
2520 return -EINVAL;
2521
2522 /* copy_from_user should be SMP safe. */
2523 if (copy_from_user(a, args, len))
2524 return -EFAULT;
2525
2526 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2527 if (err)
2528 return err;
2529
2530 a0 = a[0];
2531 a1 = a[1];
2532
2533 switch (call) {
2534 case SYS_SOCKET:
2535 err = __sys_socket(a0, a1, a[2]);
2536 break;
2537 case SYS_BIND:
2538 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2539 break;
2540 case SYS_CONNECT:
2541 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2542 break;
2543 case SYS_LISTEN:
2544 err = __sys_listen(a0, a1);
2545 break;
2546 case SYS_ACCEPT:
2547 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2548 (int __user *)a[2], 0);
2549 break;
2550 case SYS_GETSOCKNAME:
2551 err =
2552 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2553 (int __user *)a[2]);
2554 break;
2555 case SYS_GETPEERNAME:
2556 err =
2557 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2558 (int __user *)a[2]);
2559 break;
2560 case SYS_SOCKETPAIR:
2561 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2562 break;
2563 case SYS_SEND:
2564 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2565 NULL, 0);
2566 break;
2567 case SYS_SENDTO:
2568 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2569 (struct sockaddr __user *)a[4], a[5]);
2570 break;
2571 case SYS_RECV:
2572 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2573 NULL, NULL);
2574 break;
2575 case SYS_RECVFROM:
2576 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2577 (struct sockaddr __user *)a[4],
2578 (int __user *)a[5]);
2579 break;
2580 case SYS_SHUTDOWN:
2581 err = __sys_shutdown(a0, a1);
2582 break;
2583 case SYS_SETSOCKOPT:
2584 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2585 a[4]);
2586 break;
2587 case SYS_GETSOCKOPT:
2588 err =
2589 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2590 (int __user *)a[4]);
2591 break;
2592 case SYS_SENDMSG:
2593 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2594 a[2], true);
2595 break;
2596 case SYS_SENDMMSG:
2597 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2598 a[3], true);
2599 break;
2600 case SYS_RECVMSG:
2601 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2602 a[2], true);
2603 break;
2604 case SYS_RECVMMSG:
2605 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2606 a[3], (struct timespec __user *)a[4]);
2607 break;
2608 case SYS_ACCEPT4:
2609 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2610 (int __user *)a[2], a[3]);
2611 break;
2612 default:
2613 err = -EINVAL;
2614 break;
2615 }
2616 return err;
2617}
2618
2619#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2620
2621/**
2622 * sock_register - add a socket protocol handler
2623 * @ops: description of protocol
2624 *
2625 * This function is called by a protocol handler that wants to
2626 * advertise its address family, and have it linked into the
2627 * socket interface. The value ops->family corresponds to the
2628 * socket system call protocol family.
2629 */
2630int sock_register(const struct net_proto_family *ops)
2631{
2632 int err;
2633
2634 if (ops->family >= NPROTO) {
2635 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2636 return -ENOBUFS;
2637 }
2638
2639 spin_lock(&net_family_lock);
2640 if (rcu_dereference_protected(net_families[ops->family],
2641 lockdep_is_held(&net_family_lock)))
2642 err = -EEXIST;
2643 else {
2644 rcu_assign_pointer(net_families[ops->family], ops);
2645 err = 0;
2646 }
2647 spin_unlock(&net_family_lock);
2648
2649 pr_info("NET: Registered protocol family %d\n", ops->family);
2650 return err;
2651}
2652EXPORT_SYMBOL(sock_register);
2653
2654/**
2655 * sock_unregister - remove a protocol handler
2656 * @family: protocol family to remove
2657 *
2658 * This function is called by a protocol handler that wants to
2659 * remove its address family, and have it unlinked from the
2660 * new socket creation.
2661 *
2662 * If protocol handler is a module, then it can use module reference
2663 * counts to protect against new references. If protocol handler is not
2664 * a module then it needs to provide its own protection in
2665 * the ops->create routine.
2666 */
2667void sock_unregister(int family)
2668{
2669 BUG_ON(family < 0 || family >= NPROTO);
2670
2671 spin_lock(&net_family_lock);
2672 RCU_INIT_POINTER(net_families[family], NULL);
2673 spin_unlock(&net_family_lock);
2674
2675 synchronize_rcu();
2676
2677 pr_info("NET: Unregistered protocol family %d\n", family);
2678}
2679EXPORT_SYMBOL(sock_unregister);
2680
2681bool sock_is_registered(int family)
2682{
2683 return family < NPROTO && rcu_access_pointer(net_families[family]);
2684}
2685
2686static int __init sock_init(void)
2687{
2688 int err;
2689 /*
2690 * Initialize the network sysctl infrastructure.
2691 */
2692 err = net_sysctl_init();
2693 if (err)
2694 goto out;
2695
2696 /*
2697 * Initialize skbuff SLAB cache
2698 */
2699 skb_init();
2700
2701 /*
2702 * Initialize the protocols module.
2703 */
2704
2705 init_inodecache();
2706
2707 err = register_filesystem(&sock_fs_type);
2708 if (err)
2709 goto out_fs;
2710 sock_mnt = kern_mount(&sock_fs_type);
2711 if (IS_ERR(sock_mnt)) {
2712 err = PTR_ERR(sock_mnt);
2713 goto out_mount;
2714 }
2715
2716 /* The real protocol initialization is performed in later initcalls.
2717 */
2718
2719#ifdef CONFIG_NETFILTER
2720 err = netfilter_init();
2721 if (err)
2722 goto out;
2723#endif
2724
2725 ptp_classifier_init();
2726
2727out:
2728 return err;
2729
2730out_mount:
2731 unregister_filesystem(&sock_fs_type);
2732out_fs:
2733 goto out;
2734}
2735
2736core_initcall(sock_init); /* early initcall */
2737
2738#ifdef CONFIG_PROC_FS
2739void socket_seq_show(struct seq_file *seq)
2740{
2741 seq_printf(seq, "sockets: used %d\n",
2742 sock_inuse_get(seq->private));
2743}
2744#endif /* CONFIG_PROC_FS */
2745
2746#ifdef CONFIG_COMPAT
2747static int do_siocgstamp(struct net *net, struct socket *sock,
2748 unsigned int cmd, void __user *up)
2749{
2750 mm_segment_t old_fs = get_fs();
2751 struct timeval ktv;
2752 int err;
2753
2754 set_fs(KERNEL_DS);
2755 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2756 set_fs(old_fs);
2757 if (!err)
2758 err = compat_put_timeval(&ktv, up);
2759
2760 return err;
2761}
2762
2763static int do_siocgstampns(struct net *net, struct socket *sock,
2764 unsigned int cmd, void __user *up)
2765{
2766 mm_segment_t old_fs = get_fs();
2767 struct timespec kts;
2768 int err;
2769
2770 set_fs(KERNEL_DS);
2771 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2772 set_fs(old_fs);
2773 if (!err)
2774 err = compat_put_timespec(&kts, up);
2775
2776 return err;
2777}
2778
2779static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2780{
2781 struct compat_ifconf ifc32;
2782 struct ifconf ifc;
2783 int err;
2784
2785 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2786 return -EFAULT;
2787
2788 ifc.ifc_len = ifc32.ifc_len;
2789 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2790
2791 rtnl_lock();
2792 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2793 rtnl_unlock();
2794 if (err)
2795 return err;
2796
2797 ifc32.ifc_len = ifc.ifc_len;
2798 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2799 return -EFAULT;
2800
2801 return 0;
2802}
2803
2804static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2805{
2806 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2807 bool convert_in = false, convert_out = false;
2808 size_t buf_size = 0;
2809 struct ethtool_rxnfc __user *rxnfc = NULL;
2810 struct ifreq ifr;
2811 u32 rule_cnt = 0, actual_rule_cnt;
2812 u32 ethcmd;
2813 u32 data;
2814 int ret;
2815
2816 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2817 return -EFAULT;
2818
2819 compat_rxnfc = compat_ptr(data);
2820
2821 if (get_user(ethcmd, &compat_rxnfc->cmd))
2822 return -EFAULT;
2823
2824 /* Most ethtool structures are defined without padding.
2825 * Unfortunately struct ethtool_rxnfc is an exception.
2826 */
2827 switch (ethcmd) {
2828 default:
2829 break;
2830 case ETHTOOL_GRXCLSRLALL:
2831 /* Buffer size is variable */
2832 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2833 return -EFAULT;
2834 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2835 return -ENOMEM;
2836 buf_size += rule_cnt * sizeof(u32);
2837 /* fall through */
2838 case ETHTOOL_GRXRINGS:
2839 case ETHTOOL_GRXCLSRLCNT:
2840 case ETHTOOL_GRXCLSRULE:
2841 case ETHTOOL_SRXCLSRLINS:
2842 convert_out = true;
2843 /* fall through */
2844 case ETHTOOL_SRXCLSRLDEL:
2845 buf_size += sizeof(struct ethtool_rxnfc);
2846 convert_in = true;
2847 rxnfc = compat_alloc_user_space(buf_size);
2848 break;
2849 }
2850
2851 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2852 return -EFAULT;
2853
2854 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2855
2856 if (convert_in) {
2857 /* We expect there to be holes between fs.m_ext and
2858 * fs.ring_cookie and at the end of fs, but nowhere else.
2859 */
2860 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2861 sizeof(compat_rxnfc->fs.m_ext) !=
2862 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2863 sizeof(rxnfc->fs.m_ext));
2864 BUILD_BUG_ON(
2865 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2866 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2867 offsetof(struct ethtool_rxnfc, fs.location) -
2868 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2869
2870 if (copy_in_user(rxnfc, compat_rxnfc,
2871 (void __user *)(&rxnfc->fs.m_ext + 1) -
2872 (void __user *)rxnfc) ||
2873 copy_in_user(&rxnfc->fs.ring_cookie,
2874 &compat_rxnfc->fs.ring_cookie,
2875 (void __user *)(&rxnfc->fs.location + 1) -
2876 (void __user *)&rxnfc->fs.ring_cookie) ||
2877 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2878 sizeof(rxnfc->rule_cnt)))
2879 return -EFAULT;
2880 }
2881
2882 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2883 if (ret)
2884 return ret;
2885
2886 if (convert_out) {
2887 if (copy_in_user(compat_rxnfc, rxnfc,
2888 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2889 (const void __user *)rxnfc) ||
2890 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2891 &rxnfc->fs.ring_cookie,
2892 (const void __user *)(&rxnfc->fs.location + 1) -
2893 (const void __user *)&rxnfc->fs.ring_cookie) ||
2894 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2895 sizeof(rxnfc->rule_cnt)))
2896 return -EFAULT;
2897
2898 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2899 /* As an optimisation, we only copy the actual
2900 * number of rules that the underlying
2901 * function returned. Since Mallory might
2902 * change the rule count in user memory, we
2903 * check that it is less than the rule count
2904 * originally given (as the user buffer size),
2905 * which has been range-checked.
2906 */
2907 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2908 return -EFAULT;
2909 if (actual_rule_cnt < rule_cnt)
2910 rule_cnt = actual_rule_cnt;
2911 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2912 &rxnfc->rule_locs[0],
2913 rule_cnt * sizeof(u32)))
2914 return -EFAULT;
2915 }
2916 }
2917
2918 return 0;
2919}
2920
2921static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2922{
2923 compat_uptr_t uptr32;
2924 struct ifreq ifr;
2925 void __user *saved;
2926 int err;
2927
2928 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2929 return -EFAULT;
2930
2931 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2932 return -EFAULT;
2933
2934 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2935 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2936
2937 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2938 if (!err) {
2939 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2940 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2941 err = -EFAULT;
2942 }
2943 return err;
2944}
2945
2946/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2947static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2948 struct compat_ifreq __user *u_ifreq32)
2949{
2950 struct ifreq ifreq;
2951 u32 data32;
2952
2953 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2954 return -EFAULT;
2955 if (get_user(data32, &u_ifreq32->ifr_data))
2956 return -EFAULT;
2957 ifreq.ifr_data = compat_ptr(data32);
2958
2959 return dev_ioctl(net, cmd, &ifreq, NULL);
2960}
2961
2962static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2963 struct compat_ifreq __user *uifr32)
2964{
2965 struct ifreq ifr;
2966 struct compat_ifmap __user *uifmap32;
2967 int err;
2968
2969 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2970 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2971 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2972 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2973 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2974 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2975 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2976 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2977 if (err)
2978 return -EFAULT;
2979
2980 err = dev_ioctl(net, cmd, &ifr, NULL);
2981
2982 if (cmd == SIOCGIFMAP && !err) {
2983 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2984 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2985 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2986 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2987 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2988 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2989 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2990 if (err)
2991 err = -EFAULT;
2992 }
2993 return err;
2994}
2995
2996struct rtentry32 {
2997 u32 rt_pad1;
2998 struct sockaddr rt_dst; /* target address */
2999 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3000 struct sockaddr rt_genmask; /* target network mask (IP) */
3001 unsigned short rt_flags;
3002 short rt_pad2;
3003 u32 rt_pad3;
3004 unsigned char rt_tos;
3005 unsigned char rt_class;
3006 short rt_pad4;
3007 short rt_metric; /* +1 for binary compatibility! */
3008 /* char * */ u32 rt_dev; /* forcing the device at add */
3009 u32 rt_mtu; /* per route MTU/Window */
3010 u32 rt_window; /* Window clamping */
3011 unsigned short rt_irtt; /* Initial RTT */
3012};
3013
3014struct in6_rtmsg32 {
3015 struct in6_addr rtmsg_dst;
3016 struct in6_addr rtmsg_src;
3017 struct in6_addr rtmsg_gateway;
3018 u32 rtmsg_type;
3019 u16 rtmsg_dst_len;
3020 u16 rtmsg_src_len;
3021 u32 rtmsg_metric;
3022 u32 rtmsg_info;
3023 u32 rtmsg_flags;
3024 s32 rtmsg_ifindex;
3025};
3026
3027static int routing_ioctl(struct net *net, struct socket *sock,
3028 unsigned int cmd, void __user *argp)
3029{
3030 int ret;
3031 void *r = NULL;
3032 struct in6_rtmsg r6;
3033 struct rtentry r4;
3034 char devname[16];
3035 u32 rtdev;
3036 mm_segment_t old_fs = get_fs();
3037
3038 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3039 struct in6_rtmsg32 __user *ur6 = argp;
3040 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3041 3 * sizeof(struct in6_addr));
3042 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3043 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3044 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3045 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3046 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3047 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3048 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3049
3050 r = (void *) &r6;
3051 } else { /* ipv4 */
3052 struct rtentry32 __user *ur4 = argp;
3053 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3054 3 * sizeof(struct sockaddr));
3055 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3056 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3057 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3058 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3059 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3060 ret |= get_user(rtdev, &(ur4->rt_dev));
3061 if (rtdev) {
3062 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3063 r4.rt_dev = (char __user __force *)devname;
3064 devname[15] = 0;
3065 } else
3066 r4.rt_dev = NULL;
3067
3068 r = (void *) &r4;
3069 }
3070
3071 if (ret) {
3072 ret = -EFAULT;
3073 goto out;
3074 }
3075
3076 set_fs(KERNEL_DS);
3077 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3078 set_fs(old_fs);
3079
3080out:
3081 return ret;
3082}
3083
3084/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3085 * for some operations; this forces use of the newer bridge-utils that
3086 * use compatible ioctls
3087 */
3088static int old_bridge_ioctl(compat_ulong_t __user *argp)
3089{
3090 compat_ulong_t tmp;
3091
3092 if (get_user(tmp, argp))
3093 return -EFAULT;
3094 if (tmp == BRCTL_GET_VERSION)
3095 return BRCTL_VERSION + 1;
3096 return -EINVAL;
3097}
3098
3099static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3100 unsigned int cmd, unsigned long arg)
3101{
3102 void __user *argp = compat_ptr(arg);
3103 struct sock *sk = sock->sk;
3104 struct net *net = sock_net(sk);
3105
3106 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3107 return compat_ifr_data_ioctl(net, cmd, argp);
3108
3109 switch (cmd) {
3110 case SIOCSIFBR:
3111 case SIOCGIFBR:
3112 return old_bridge_ioctl(argp);
3113 case SIOCGIFCONF:
3114 return compat_dev_ifconf(net, argp);
3115 case SIOCETHTOOL:
3116 return ethtool_ioctl(net, argp);
3117 case SIOCWANDEV:
3118 return compat_siocwandev(net, argp);
3119 case SIOCGIFMAP:
3120 case SIOCSIFMAP:
3121 return compat_sioc_ifmap(net, cmd, argp);
3122 case SIOCADDRT:
3123 case SIOCDELRT:
3124 return routing_ioctl(net, sock, cmd, argp);
3125 case SIOCGSTAMP:
3126 return do_siocgstamp(net, sock, cmd, argp);
3127 case SIOCGSTAMPNS:
3128 return do_siocgstampns(net, sock, cmd, argp);
3129 case SIOCBONDSLAVEINFOQUERY:
3130 case SIOCBONDINFOQUERY:
3131 case SIOCSHWTSTAMP:
3132 case SIOCGHWTSTAMP:
3133 return compat_ifr_data_ioctl(net, cmd, argp);
3134
3135 case FIOSETOWN:
3136 case SIOCSPGRP:
3137 case FIOGETOWN:
3138 case SIOCGPGRP:
3139 case SIOCBRADDBR:
3140 case SIOCBRDELBR:
3141 case SIOCGIFVLAN:
3142 case SIOCSIFVLAN:
3143 case SIOCADDDLCI:
3144 case SIOCDELDLCI:
3145 case SIOCGSKNS:
3146 return sock_ioctl(file, cmd, arg);
3147
3148 case SIOCGIFFLAGS:
3149 case SIOCSIFFLAGS:
3150 case SIOCGIFMETRIC:
3151 case SIOCSIFMETRIC:
3152 case SIOCGIFMTU:
3153 case SIOCSIFMTU:
3154 case SIOCGIFMEM:
3155 case SIOCSIFMEM:
3156 case SIOCGIFHWADDR:
3157 case SIOCSIFHWADDR:
3158 case SIOCADDMULTI:
3159 case SIOCDELMULTI:
3160 case SIOCGIFINDEX:
3161 case SIOCGIFADDR:
3162 case SIOCSIFADDR:
3163 case SIOCSIFHWBROADCAST:
3164 case SIOCDIFADDR:
3165 case SIOCGIFBRDADDR:
3166 case SIOCSIFBRDADDR:
3167 case SIOCGIFDSTADDR:
3168 case SIOCSIFDSTADDR:
3169 case SIOCGIFNETMASK:
3170 case SIOCSIFNETMASK:
3171 case SIOCSIFPFLAGS:
3172 case SIOCGIFPFLAGS:
3173 case SIOCGIFTXQLEN:
3174 case SIOCSIFTXQLEN:
3175 case SIOCBRADDIF:
3176 case SIOCBRDELIF:
3177 case SIOCSIFNAME:
3178 case SIOCGMIIPHY:
3179 case SIOCGMIIREG:
3180 case SIOCSMIIREG:
3181 case SIOCSARP:
3182 case SIOCGARP:
3183 case SIOCDARP:
3184 case SIOCATMARK:
3185 case SIOCBONDENSLAVE:
3186 case SIOCBONDRELEASE:
3187 case SIOCBONDSETHWADDR:
3188 case SIOCBONDCHANGEACTIVE:
3189 case SIOCGIFNAME:
3190 return sock_do_ioctl(net, sock, cmd, arg);
3191 }
3192
3193 return -ENOIOCTLCMD;
3194}
3195
3196static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3197 unsigned long arg)
3198{
3199 struct socket *sock = file->private_data;
3200 int ret = -ENOIOCTLCMD;
3201 struct sock *sk;
3202 struct net *net;
3203
3204 sk = sock->sk;
3205 net = sock_net(sk);
3206
3207 if (sock->ops->compat_ioctl)
3208 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3209
3210 if (ret == -ENOIOCTLCMD &&
3211 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3212 ret = compat_wext_handle_ioctl(net, cmd, arg);
3213
3214 if (ret == -ENOIOCTLCMD)
3215 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3216
3217 return ret;
3218}
3219#endif
3220
3221int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3222{
3223 return sock->ops->bind(sock, addr, addrlen);
3224}
3225EXPORT_SYMBOL(kernel_bind);
3226
3227int kernel_listen(struct socket *sock, int backlog)
3228{
3229 return sock->ops->listen(sock, backlog);
3230}
3231EXPORT_SYMBOL(kernel_listen);
3232
3233int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3234{
3235 struct sock *sk = sock->sk;
3236 int err;
3237
3238 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3239 newsock);
3240 if (err < 0)
3241 goto done;
3242
3243 err = sock->ops->accept(sock, *newsock, flags, true);
3244 if (err < 0) {
3245 sock_release(*newsock);
3246 *newsock = NULL;
3247 goto done;
3248 }
3249
3250 (*newsock)->ops = sock->ops;
3251 __module_get((*newsock)->ops->owner);
3252
3253done:
3254 return err;
3255}
3256EXPORT_SYMBOL(kernel_accept);
3257
3258int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3259 int flags)
3260{
3261 return sock->ops->connect(sock, addr, addrlen, flags);
3262}
3263EXPORT_SYMBOL(kernel_connect);
3264
3265int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3266{
3267 return sock->ops->getname(sock, addr, 0);
3268}
3269EXPORT_SYMBOL(kernel_getsockname);
3270
3271int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3272{
3273 return sock->ops->getname(sock, addr, 1);
3274}
3275EXPORT_SYMBOL(kernel_getpeername);
3276
3277int kernel_getsockopt(struct socket *sock, int level, int optname,
3278 char *optval, int *optlen)
3279{
3280 mm_segment_t oldfs = get_fs();
3281 char __user *uoptval;
3282 int __user *uoptlen;
3283 int err;
3284
3285 uoptval = (char __user __force *) optval;
3286 uoptlen = (int __user __force *) optlen;
3287
3288 set_fs(KERNEL_DS);
3289 if (level == SOL_SOCKET)
3290 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3291 else
3292 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3293 uoptlen);
3294 set_fs(oldfs);
3295 return err;
3296}
3297EXPORT_SYMBOL(kernel_getsockopt);
3298
3299int kernel_setsockopt(struct socket *sock, int level, int optname,
3300 char *optval, unsigned int optlen)
3301{
3302 mm_segment_t oldfs = get_fs();
3303 char __user *uoptval;
3304 int err;
3305
3306 uoptval = (char __user __force *) optval;
3307
3308 set_fs(KERNEL_DS);
3309 if (level == SOL_SOCKET)
3310 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3311 else
3312 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3313 optlen);
3314 set_fs(oldfs);
3315 return err;
3316}
3317EXPORT_SYMBOL(kernel_setsockopt);
3318
3319int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3320 size_t size, int flags)
3321{
3322 if (sock->ops->sendpage)
3323 return sock->ops->sendpage(sock, page, offset, size, flags);
3324
3325 return sock_no_sendpage(sock, page, offset, size, flags);
3326}
3327EXPORT_SYMBOL(kernel_sendpage);
3328
3329int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3330 size_t size, int flags)
3331{
3332 struct socket *sock = sk->sk_socket;
3333
3334 if (sock->ops->sendpage_locked)
3335 return sock->ops->sendpage_locked(sk, page, offset, size,
3336 flags);
3337
3338 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3339}
3340EXPORT_SYMBOL(kernel_sendpage_locked);
3341
3342int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3343{
3344 return sock->ops->shutdown(sock, how);
3345}
3346EXPORT_SYMBOL(kernel_sock_shutdown);
3347
3348/* This routine returns the IP overhead imposed by a socket i.e.
3349 * the length of the underlying IP header, depending on whether
3350 * this is an IPv4 or IPv6 socket and the length from IP options turned
3351 * on at the socket. Assumes that the caller has a lock on the socket.
3352 */
3353u32 kernel_sock_ip_overhead(struct sock *sk)
3354{
3355 struct inet_sock *inet;
3356 struct ip_options_rcu *opt;
3357 u32 overhead = 0;
3358#if IS_ENABLED(CONFIG_IPV6)
3359 struct ipv6_pinfo *np;
3360 struct ipv6_txoptions *optv6 = NULL;
3361#endif /* IS_ENABLED(CONFIG_IPV6) */
3362
3363 if (!sk)
3364 return overhead;
3365
3366 switch (sk->sk_family) {
3367 case AF_INET:
3368 inet = inet_sk(sk);
3369 overhead += sizeof(struct iphdr);
3370 opt = rcu_dereference_protected(inet->inet_opt,
3371 sock_owned_by_user(sk));
3372 if (opt)
3373 overhead += opt->opt.optlen;
3374 return overhead;
3375#if IS_ENABLED(CONFIG_IPV6)
3376 case AF_INET6:
3377 np = inet6_sk(sk);
3378 overhead += sizeof(struct ipv6hdr);
3379 if (np)
3380 optv6 = rcu_dereference_protected(np->opt,
3381 sock_owned_by_user(sk));
3382 if (optv6)
3383 overhead += (optv6->opt_flen + optv6->opt_nflen);
3384 return overhead;
3385#endif /* IS_ENABLED(CONFIG_IPV6) */
3386 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3387 return overhead;
3388 }
3389}
3390EXPORT_SYMBOL(kernel_sock_ip_overhead);