Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/ethtool.h>
56#include <linux/mm.h>
57#include <linux/socket.h>
58#include <linux/file.h>
59#include <linux/net.h>
60#include <linux/interrupt.h>
61#include <linux/thread_info.h>
62#include <linux/rcupdate.h>
63#include <linux/netdevice.h>
64#include <linux/proc_fs.h>
65#include <linux/seq_file.h>
66#include <linux/mutex.h>
67#include <linux/if_bridge.h>
68#include <linux/if_vlan.h>
69#include <linux/ptp_classify.h>
70#include <linux/init.h>
71#include <linux/poll.h>
72#include <linux/cache.h>
73#include <linux/module.h>
74#include <linux/highmem.h>
75#include <linux/mount.h>
76#include <linux/pseudo_fs.h>
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/compat.h>
80#include <linux/kmod.h>
81#include <linux/audit.h>
82#include <linux/wireless.h>
83#include <linux/nsproxy.h>
84#include <linux/magic.h>
85#include <linux/slab.h>
86#include <linux/xattr.h>
87#include <linux/nospec.h>
88#include <linux/indirect_call_wrapper.h>
89
90#include <linux/uaccess.h>
91#include <asm/unistd.h>
92
93#include <net/compat.h>
94#include <net/wext.h>
95#include <net/cls_cgroup.h>
96
97#include <net/sock.h>
98#include <linux/netfilter.h>
99
100#include <linux/if_tun.h>
101#include <linux/ipv6_route.h>
102#include <linux/route.h>
103#include <linux/termios.h>
104#include <linux/sockios.h>
105#include <net/busy_poll.h>
106#include <linux/errqueue.h>
107#include <linux/ptp_clock_kernel.h>
108
109#ifdef CONFIG_NET_RX_BUSY_POLL
110unsigned int sysctl_net_busy_read __read_mostly;
111unsigned int sysctl_net_busy_poll __read_mostly;
112#endif
113
114static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117
118static int sock_close(struct inode *inode, struct file *file);
119static __poll_t sock_poll(struct file *file,
120 struct poll_table_struct *wait);
121static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122#ifdef CONFIG_COMPAT
123static long compat_sock_ioctl(struct file *file,
124 unsigned int cmd, unsigned long arg);
125#endif
126static int sock_fasync(int fd, struct file *filp, int on);
127static ssize_t sock_sendpage(struct file *file, struct page *page,
128 int offset, size_t size, loff_t *ppos, int more);
129static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 struct pipe_inode_info *pipe, size_t len,
131 unsigned int flags);
132
133#ifdef CONFIG_PROC_FS
134static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135{
136 struct socket *sock = f->private_data;
137
138 if (sock->ops->show_fdinfo)
139 sock->ops->show_fdinfo(m, sock);
140}
141#else
142#define sock_show_fdinfo NULL
143#endif
144
145/*
146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147 * in the operation structures but are done directly via the socketcall() multiplexor.
148 */
149
150static const struct file_operations socket_file_ops = {
151 .owner = THIS_MODULE,
152 .llseek = no_llseek,
153 .read_iter = sock_read_iter,
154 .write_iter = sock_write_iter,
155 .poll = sock_poll,
156 .unlocked_ioctl = sock_ioctl,
157#ifdef CONFIG_COMPAT
158 .compat_ioctl = compat_sock_ioctl,
159#endif
160 .mmap = sock_mmap,
161 .release = sock_close,
162 .fasync = sock_fasync,
163 .sendpage = sock_sendpage,
164 .splice_write = generic_splice_sendpage,
165 .splice_read = sock_splice_read,
166 .show_fdinfo = sock_show_fdinfo,
167};
168
169static const char * const pf_family_names[] = {
170 [PF_UNSPEC] = "PF_UNSPEC",
171 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
172 [PF_INET] = "PF_INET",
173 [PF_AX25] = "PF_AX25",
174 [PF_IPX] = "PF_IPX",
175 [PF_APPLETALK] = "PF_APPLETALK",
176 [PF_NETROM] = "PF_NETROM",
177 [PF_BRIDGE] = "PF_BRIDGE",
178 [PF_ATMPVC] = "PF_ATMPVC",
179 [PF_X25] = "PF_X25",
180 [PF_INET6] = "PF_INET6",
181 [PF_ROSE] = "PF_ROSE",
182 [PF_DECnet] = "PF_DECnet",
183 [PF_NETBEUI] = "PF_NETBEUI",
184 [PF_SECURITY] = "PF_SECURITY",
185 [PF_KEY] = "PF_KEY",
186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
187 [PF_PACKET] = "PF_PACKET",
188 [PF_ASH] = "PF_ASH",
189 [PF_ECONET] = "PF_ECONET",
190 [PF_ATMSVC] = "PF_ATMSVC",
191 [PF_RDS] = "PF_RDS",
192 [PF_SNA] = "PF_SNA",
193 [PF_IRDA] = "PF_IRDA",
194 [PF_PPPOX] = "PF_PPPOX",
195 [PF_WANPIPE] = "PF_WANPIPE",
196 [PF_LLC] = "PF_LLC",
197 [PF_IB] = "PF_IB",
198 [PF_MPLS] = "PF_MPLS",
199 [PF_CAN] = "PF_CAN",
200 [PF_TIPC] = "PF_TIPC",
201 [PF_BLUETOOTH] = "PF_BLUETOOTH",
202 [PF_IUCV] = "PF_IUCV",
203 [PF_RXRPC] = "PF_RXRPC",
204 [PF_ISDN] = "PF_ISDN",
205 [PF_PHONET] = "PF_PHONET",
206 [PF_IEEE802154] = "PF_IEEE802154",
207 [PF_CAIF] = "PF_CAIF",
208 [PF_ALG] = "PF_ALG",
209 [PF_NFC] = "PF_NFC",
210 [PF_VSOCK] = "PF_VSOCK",
211 [PF_KCM] = "PF_KCM",
212 [PF_QIPCRTR] = "PF_QIPCRTR",
213 [PF_SMC] = "PF_SMC",
214 [PF_XDP] = "PF_XDP",
215};
216
217/*
218 * The protocol list. Each protocol is registered in here.
219 */
220
221static DEFINE_SPINLOCK(net_family_lock);
222static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
223
224/*
225 * Support routines.
226 * Move socket addresses back and forth across the kernel/user
227 * divide and look after the messy bits.
228 */
229
230/**
231 * move_addr_to_kernel - copy a socket address into kernel space
232 * @uaddr: Address in user space
233 * @kaddr: Address in kernel space
234 * @ulen: Length in user space
235 *
236 * The address is copied into kernel space. If the provided address is
237 * too long an error code of -EINVAL is returned. If the copy gives
238 * invalid addresses -EFAULT is returned. On a success 0 is returned.
239 */
240
241int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
242{
243 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
244 return -EINVAL;
245 if (ulen == 0)
246 return 0;
247 if (copy_from_user(kaddr, uaddr, ulen))
248 return -EFAULT;
249 return audit_sockaddr(ulen, kaddr);
250}
251
252/**
253 * move_addr_to_user - copy an address to user space
254 * @kaddr: kernel space address
255 * @klen: length of address in kernel
256 * @uaddr: user space address
257 * @ulen: pointer to user length field
258 *
259 * The value pointed to by ulen on entry is the buffer length available.
260 * This is overwritten with the buffer space used. -EINVAL is returned
261 * if an overlong buffer is specified or a negative buffer size. -EFAULT
262 * is returned if either the buffer or the length field are not
263 * accessible.
264 * After copying the data up to the limit the user specifies, the true
265 * length of the data is written over the length limit the user
266 * specified. Zero is returned for a success.
267 */
268
269static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
270 void __user *uaddr, int __user *ulen)
271{
272 int err;
273 int len;
274
275 BUG_ON(klen > sizeof(struct sockaddr_storage));
276 err = get_user(len, ulen);
277 if (err)
278 return err;
279 if (len > klen)
280 len = klen;
281 if (len < 0)
282 return -EINVAL;
283 if (len) {
284 if (audit_sockaddr(klen, kaddr))
285 return -ENOMEM;
286 if (copy_to_user(uaddr, kaddr, len))
287 return -EFAULT;
288 }
289 /*
290 * "fromlen shall refer to the value before truncation.."
291 * 1003.1g
292 */
293 return __put_user(klen, ulen);
294}
295
296static struct kmem_cache *sock_inode_cachep __ro_after_init;
297
298static struct inode *sock_alloc_inode(struct super_block *sb)
299{
300 struct socket_alloc *ei;
301
302 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
303 if (!ei)
304 return NULL;
305 init_waitqueue_head(&ei->socket.wq.wait);
306 ei->socket.wq.fasync_list = NULL;
307 ei->socket.wq.flags = 0;
308
309 ei->socket.state = SS_UNCONNECTED;
310 ei->socket.flags = 0;
311 ei->socket.ops = NULL;
312 ei->socket.sk = NULL;
313 ei->socket.file = NULL;
314
315 return &ei->vfs_inode;
316}
317
318static void sock_free_inode(struct inode *inode)
319{
320 struct socket_alloc *ei;
321
322 ei = container_of(inode, struct socket_alloc, vfs_inode);
323 kmem_cache_free(sock_inode_cachep, ei);
324}
325
326static void init_once(void *foo)
327{
328 struct socket_alloc *ei = (struct socket_alloc *)foo;
329
330 inode_init_once(&ei->vfs_inode);
331}
332
333static void init_inodecache(void)
334{
335 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
336 sizeof(struct socket_alloc),
337 0,
338 (SLAB_HWCACHE_ALIGN |
339 SLAB_RECLAIM_ACCOUNT |
340 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
341 init_once);
342 BUG_ON(sock_inode_cachep == NULL);
343}
344
345static const struct super_operations sockfs_ops = {
346 .alloc_inode = sock_alloc_inode,
347 .free_inode = sock_free_inode,
348 .statfs = simple_statfs,
349};
350
351/*
352 * sockfs_dname() is called from d_path().
353 */
354static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
355{
356 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
357 d_inode(dentry)->i_ino);
358}
359
360static const struct dentry_operations sockfs_dentry_operations = {
361 .d_dname = sockfs_dname,
362};
363
364static int sockfs_xattr_get(const struct xattr_handler *handler,
365 struct dentry *dentry, struct inode *inode,
366 const char *suffix, void *value, size_t size)
367{
368 if (value) {
369 if (dentry->d_name.len + 1 > size)
370 return -ERANGE;
371 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
372 }
373 return dentry->d_name.len + 1;
374}
375
376#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
377#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
378#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
379
380static const struct xattr_handler sockfs_xattr_handler = {
381 .name = XATTR_NAME_SOCKPROTONAME,
382 .get = sockfs_xattr_get,
383};
384
385static int sockfs_security_xattr_set(const struct xattr_handler *handler,
386 struct user_namespace *mnt_userns,
387 struct dentry *dentry, struct inode *inode,
388 const char *suffix, const void *value,
389 size_t size, int flags)
390{
391 /* Handled by LSM. */
392 return -EAGAIN;
393}
394
395static const struct xattr_handler sockfs_security_xattr_handler = {
396 .prefix = XATTR_SECURITY_PREFIX,
397 .set = sockfs_security_xattr_set,
398};
399
400static const struct xattr_handler *sockfs_xattr_handlers[] = {
401 &sockfs_xattr_handler,
402 &sockfs_security_xattr_handler,
403 NULL
404};
405
406static int sockfs_init_fs_context(struct fs_context *fc)
407{
408 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
409 if (!ctx)
410 return -ENOMEM;
411 ctx->ops = &sockfs_ops;
412 ctx->dops = &sockfs_dentry_operations;
413 ctx->xattr = sockfs_xattr_handlers;
414 return 0;
415}
416
417static struct vfsmount *sock_mnt __read_mostly;
418
419static struct file_system_type sock_fs_type = {
420 .name = "sockfs",
421 .init_fs_context = sockfs_init_fs_context,
422 .kill_sb = kill_anon_super,
423};
424
425/*
426 * Obtains the first available file descriptor and sets it up for use.
427 *
428 * These functions create file structures and maps them to fd space
429 * of the current process. On success it returns file descriptor
430 * and file struct implicitly stored in sock->file.
431 * Note that another thread may close file descriptor before we return
432 * from this function. We use the fact that now we do not refer
433 * to socket after mapping. If one day we will need it, this
434 * function will increment ref. count on file by 1.
435 *
436 * In any case returned fd MAY BE not valid!
437 * This race condition is unavoidable
438 * with shared fd spaces, we cannot solve it inside kernel,
439 * but we take care of internal coherence yet.
440 */
441
442/**
443 * sock_alloc_file - Bind a &socket to a &file
444 * @sock: socket
445 * @flags: file status flags
446 * @dname: protocol name
447 *
448 * Returns the &file bound with @sock, implicitly storing it
449 * in sock->file. If dname is %NULL, sets to "".
450 * On failure the return is a ERR pointer (see linux/err.h).
451 * This function uses GFP_KERNEL internally.
452 */
453
454struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
455{
456 struct file *file;
457
458 if (!dname)
459 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
460
461 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
462 O_RDWR | (flags & O_NONBLOCK),
463 &socket_file_ops);
464 if (IS_ERR(file)) {
465 sock_release(sock);
466 return file;
467 }
468
469 sock->file = file;
470 file->private_data = sock;
471 stream_open(SOCK_INODE(sock), file);
472 return file;
473}
474EXPORT_SYMBOL(sock_alloc_file);
475
476static int sock_map_fd(struct socket *sock, int flags)
477{
478 struct file *newfile;
479 int fd = get_unused_fd_flags(flags);
480 if (unlikely(fd < 0)) {
481 sock_release(sock);
482 return fd;
483 }
484
485 newfile = sock_alloc_file(sock, flags, NULL);
486 if (!IS_ERR(newfile)) {
487 fd_install(fd, newfile);
488 return fd;
489 }
490
491 put_unused_fd(fd);
492 return PTR_ERR(newfile);
493}
494
495/**
496 * sock_from_file - Return the &socket bounded to @file.
497 * @file: file
498 *
499 * On failure returns %NULL.
500 */
501
502struct socket *sock_from_file(struct file *file)
503{
504 if (file->f_op == &socket_file_ops)
505 return file->private_data; /* set in sock_map_fd */
506
507 return NULL;
508}
509EXPORT_SYMBOL(sock_from_file);
510
511/**
512 * sockfd_lookup - Go from a file number to its socket slot
513 * @fd: file handle
514 * @err: pointer to an error code return
515 *
516 * The file handle passed in is locked and the socket it is bound
517 * to is returned. If an error occurs the err pointer is overwritten
518 * with a negative errno code and NULL is returned. The function checks
519 * for both invalid handles and passing a handle which is not a socket.
520 *
521 * On a success the socket object pointer is returned.
522 */
523
524struct socket *sockfd_lookup(int fd, int *err)
525{
526 struct file *file;
527 struct socket *sock;
528
529 file = fget(fd);
530 if (!file) {
531 *err = -EBADF;
532 return NULL;
533 }
534
535 sock = sock_from_file(file);
536 if (!sock) {
537 *err = -ENOTSOCK;
538 fput(file);
539 }
540 return sock;
541}
542EXPORT_SYMBOL(sockfd_lookup);
543
544static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
545{
546 struct fd f = fdget(fd);
547 struct socket *sock;
548
549 *err = -EBADF;
550 if (f.file) {
551 sock = sock_from_file(f.file);
552 if (likely(sock)) {
553 *fput_needed = f.flags & FDPUT_FPUT;
554 return sock;
555 }
556 *err = -ENOTSOCK;
557 fdput(f);
558 }
559 return NULL;
560}
561
562static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
563 size_t size)
564{
565 ssize_t len;
566 ssize_t used = 0;
567
568 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
569 if (len < 0)
570 return len;
571 used += len;
572 if (buffer) {
573 if (size < used)
574 return -ERANGE;
575 buffer += len;
576 }
577
578 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
579 used += len;
580 if (buffer) {
581 if (size < used)
582 return -ERANGE;
583 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
584 buffer += len;
585 }
586
587 return used;
588}
589
590static int sockfs_setattr(struct user_namespace *mnt_userns,
591 struct dentry *dentry, struct iattr *iattr)
592{
593 int err = simple_setattr(&init_user_ns, dentry, iattr);
594
595 if (!err && (iattr->ia_valid & ATTR_UID)) {
596 struct socket *sock = SOCKET_I(d_inode(dentry));
597
598 if (sock->sk)
599 sock->sk->sk_uid = iattr->ia_uid;
600 else
601 err = -ENOENT;
602 }
603
604 return err;
605}
606
607static const struct inode_operations sockfs_inode_ops = {
608 .listxattr = sockfs_listxattr,
609 .setattr = sockfs_setattr,
610};
611
612/**
613 * sock_alloc - allocate a socket
614 *
615 * Allocate a new inode and socket object. The two are bound together
616 * and initialised. The socket is then returned. If we are out of inodes
617 * NULL is returned. This functions uses GFP_KERNEL internally.
618 */
619
620struct socket *sock_alloc(void)
621{
622 struct inode *inode;
623 struct socket *sock;
624
625 inode = new_inode_pseudo(sock_mnt->mnt_sb);
626 if (!inode)
627 return NULL;
628
629 sock = SOCKET_I(inode);
630
631 inode->i_ino = get_next_ino();
632 inode->i_mode = S_IFSOCK | S_IRWXUGO;
633 inode->i_uid = current_fsuid();
634 inode->i_gid = current_fsgid();
635 inode->i_op = &sockfs_inode_ops;
636
637 return sock;
638}
639EXPORT_SYMBOL(sock_alloc);
640
641static void __sock_release(struct socket *sock, struct inode *inode)
642{
643 if (sock->ops) {
644 struct module *owner = sock->ops->owner;
645
646 if (inode)
647 inode_lock(inode);
648 sock->ops->release(sock);
649 sock->sk = NULL;
650 if (inode)
651 inode_unlock(inode);
652 sock->ops = NULL;
653 module_put(owner);
654 }
655
656 if (sock->wq.fasync_list)
657 pr_err("%s: fasync list not empty!\n", __func__);
658
659 if (!sock->file) {
660 iput(SOCK_INODE(sock));
661 return;
662 }
663 sock->file = NULL;
664}
665
666/**
667 * sock_release - close a socket
668 * @sock: socket to close
669 *
670 * The socket is released from the protocol stack if it has a release
671 * callback, and the inode is then released if the socket is bound to
672 * an inode not a file.
673 */
674void sock_release(struct socket *sock)
675{
676 __sock_release(sock, NULL);
677}
678EXPORT_SYMBOL(sock_release);
679
680void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
681{
682 u8 flags = *tx_flags;
683
684 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
685 flags |= SKBTX_HW_TSTAMP;
686
687 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
688 flags |= SKBTX_SW_TSTAMP;
689
690 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
691 flags |= SKBTX_SCHED_TSTAMP;
692
693 *tx_flags = flags;
694}
695EXPORT_SYMBOL(__sock_tx_timestamp);
696
697INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
698 size_t));
699INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
700 size_t));
701static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
702{
703 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
704 inet_sendmsg, sock, msg,
705 msg_data_left(msg));
706 BUG_ON(ret == -EIOCBQUEUED);
707 return ret;
708}
709
710/**
711 * sock_sendmsg - send a message through @sock
712 * @sock: socket
713 * @msg: message to send
714 *
715 * Sends @msg through @sock, passing through LSM.
716 * Returns the number of bytes sent, or an error code.
717 */
718int sock_sendmsg(struct socket *sock, struct msghdr *msg)
719{
720 int err = security_socket_sendmsg(sock, msg,
721 msg_data_left(msg));
722
723 return err ?: sock_sendmsg_nosec(sock, msg);
724}
725EXPORT_SYMBOL(sock_sendmsg);
726
727/**
728 * kernel_sendmsg - send a message through @sock (kernel-space)
729 * @sock: socket
730 * @msg: message header
731 * @vec: kernel vec
732 * @num: vec array length
733 * @size: total message data size
734 *
735 * Builds the message data with @vec and sends it through @sock.
736 * Returns the number of bytes sent, or an error code.
737 */
738
739int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
740 struct kvec *vec, size_t num, size_t size)
741{
742 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
743 return sock_sendmsg(sock, msg);
744}
745EXPORT_SYMBOL(kernel_sendmsg);
746
747/**
748 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
749 * @sk: sock
750 * @msg: message header
751 * @vec: output s/g array
752 * @num: output s/g array length
753 * @size: total message data size
754 *
755 * Builds the message data with @vec and sends it through @sock.
756 * Returns the number of bytes sent, or an error code.
757 * Caller must hold @sk.
758 */
759
760int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
761 struct kvec *vec, size_t num, size_t size)
762{
763 struct socket *sock = sk->sk_socket;
764
765 if (!sock->ops->sendmsg_locked)
766 return sock_no_sendmsg_locked(sk, msg, size);
767
768 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
769
770 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
771}
772EXPORT_SYMBOL(kernel_sendmsg_locked);
773
774static bool skb_is_err_queue(const struct sk_buff *skb)
775{
776 /* pkt_type of skbs enqueued on the error queue are set to
777 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
778 * in recvmsg, since skbs received on a local socket will never
779 * have a pkt_type of PACKET_OUTGOING.
780 */
781 return skb->pkt_type == PACKET_OUTGOING;
782}
783
784/* On transmit, software and hardware timestamps are returned independently.
785 * As the two skb clones share the hardware timestamp, which may be updated
786 * before the software timestamp is received, a hardware TX timestamp may be
787 * returned only if there is no software TX timestamp. Ignore false software
788 * timestamps, which may be made in the __sock_recv_timestamp() call when the
789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
790 * hardware timestamp.
791 */
792static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
793{
794 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
795}
796
797static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
798{
799 struct scm_ts_pktinfo ts_pktinfo;
800 struct net_device *orig_dev;
801
802 if (!skb_mac_header_was_set(skb))
803 return;
804
805 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
806
807 rcu_read_lock();
808 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
809 if (orig_dev)
810 ts_pktinfo.if_index = orig_dev->ifindex;
811 rcu_read_unlock();
812
813 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
814 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
815 sizeof(ts_pktinfo), &ts_pktinfo);
816}
817
818/*
819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
820 */
821void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
822 struct sk_buff *skb)
823{
824 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
825 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
826 struct scm_timestamping_internal tss;
827
828 int empty = 1, false_tstamp = 0;
829 struct skb_shared_hwtstamps *shhwtstamps =
830 skb_hwtstamps(skb);
831
832 /* Race occurred between timestamp enabling and packet
833 receiving. Fill in the current time for now. */
834 if (need_software_tstamp && skb->tstamp == 0) {
835 __net_timestamp(skb);
836 false_tstamp = 1;
837 }
838
839 if (need_software_tstamp) {
840 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
841 if (new_tstamp) {
842 struct __kernel_sock_timeval tv;
843
844 skb_get_new_timestamp(skb, &tv);
845 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
846 sizeof(tv), &tv);
847 } else {
848 struct __kernel_old_timeval tv;
849
850 skb_get_timestamp(skb, &tv);
851 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
852 sizeof(tv), &tv);
853 }
854 } else {
855 if (new_tstamp) {
856 struct __kernel_timespec ts;
857
858 skb_get_new_timestampns(skb, &ts);
859 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
860 sizeof(ts), &ts);
861 } else {
862 struct __kernel_old_timespec ts;
863
864 skb_get_timestampns(skb, &ts);
865 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
866 sizeof(ts), &ts);
867 }
868 }
869 }
870
871 memset(&tss, 0, sizeof(tss));
872 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
873 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
874 empty = 0;
875 if (shhwtstamps &&
876 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
877 !skb_is_swtx_tstamp(skb, false_tstamp)) {
878 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
879 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
880
881 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
882 tss.ts + 2)) {
883 empty = 0;
884
885 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
886 !skb_is_err_queue(skb))
887 put_ts_pktinfo(msg, skb);
888 }
889 }
890 if (!empty) {
891 if (sock_flag(sk, SOCK_TSTAMP_NEW))
892 put_cmsg_scm_timestamping64(msg, &tss);
893 else
894 put_cmsg_scm_timestamping(msg, &tss);
895
896 if (skb_is_err_queue(skb) && skb->len &&
897 SKB_EXT_ERR(skb)->opt_stats)
898 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
899 skb->len, skb->data);
900 }
901}
902EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
903
904void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
905 struct sk_buff *skb)
906{
907 int ack;
908
909 if (!sock_flag(sk, SOCK_WIFI_STATUS))
910 return;
911 if (!skb->wifi_acked_valid)
912 return;
913
914 ack = skb->wifi_acked;
915
916 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
917}
918EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
919
920static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
921 struct sk_buff *skb)
922{
923 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
924 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
925 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
926}
927
928void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
929 struct sk_buff *skb)
930{
931 sock_recv_timestamp(msg, sk, skb);
932 sock_recv_drops(msg, sk, skb);
933}
934EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
935
936INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
937 size_t, int));
938INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
939 size_t, int));
940static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
941 int flags)
942{
943 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
944 inet_recvmsg, sock, msg, msg_data_left(msg),
945 flags);
946}
947
948/**
949 * sock_recvmsg - receive a message from @sock
950 * @sock: socket
951 * @msg: message to receive
952 * @flags: message flags
953 *
954 * Receives @msg from @sock, passing through LSM. Returns the total number
955 * of bytes received, or an error.
956 */
957int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
958{
959 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
960
961 return err ?: sock_recvmsg_nosec(sock, msg, flags);
962}
963EXPORT_SYMBOL(sock_recvmsg);
964
965/**
966 * kernel_recvmsg - Receive a message from a socket (kernel space)
967 * @sock: The socket to receive the message from
968 * @msg: Received message
969 * @vec: Input s/g array for message data
970 * @num: Size of input s/g array
971 * @size: Number of bytes to read
972 * @flags: Message flags (MSG_DONTWAIT, etc...)
973 *
974 * On return the msg structure contains the scatter/gather array passed in the
975 * vec argument. The array is modified so that it consists of the unfilled
976 * portion of the original array.
977 *
978 * The returned value is the total number of bytes received, or an error.
979 */
980
981int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
982 struct kvec *vec, size_t num, size_t size, int flags)
983{
984 msg->msg_control_is_user = false;
985 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
986 return sock_recvmsg(sock, msg, flags);
987}
988EXPORT_SYMBOL(kernel_recvmsg);
989
990static ssize_t sock_sendpage(struct file *file, struct page *page,
991 int offset, size_t size, loff_t *ppos, int more)
992{
993 struct socket *sock;
994 int flags;
995
996 sock = file->private_data;
997
998 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
999 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000 flags |= more;
1001
1002 return kernel_sendpage(sock, page, offset, size, flags);
1003}
1004
1005static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006 struct pipe_inode_info *pipe, size_t len,
1007 unsigned int flags)
1008{
1009 struct socket *sock = file->private_data;
1010
1011 if (unlikely(!sock->ops->splice_read))
1012 return generic_file_splice_read(file, ppos, pipe, len, flags);
1013
1014 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015}
1016
1017static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018{
1019 struct file *file = iocb->ki_filp;
1020 struct socket *sock = file->private_data;
1021 struct msghdr msg = {.msg_iter = *to,
1022 .msg_iocb = iocb};
1023 ssize_t res;
1024
1025 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026 msg.msg_flags = MSG_DONTWAIT;
1027
1028 if (iocb->ki_pos != 0)
1029 return -ESPIPE;
1030
1031 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1032 return 0;
1033
1034 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035 *to = msg.msg_iter;
1036 return res;
1037}
1038
1039static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040{
1041 struct file *file = iocb->ki_filp;
1042 struct socket *sock = file->private_data;
1043 struct msghdr msg = {.msg_iter = *from,
1044 .msg_iocb = iocb};
1045 ssize_t res;
1046
1047 if (iocb->ki_pos != 0)
1048 return -ESPIPE;
1049
1050 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051 msg.msg_flags = MSG_DONTWAIT;
1052
1053 if (sock->type == SOCK_SEQPACKET)
1054 msg.msg_flags |= MSG_EOR;
1055
1056 res = sock_sendmsg(sock, &msg);
1057 *from = msg.msg_iter;
1058 return res;
1059}
1060
1061/*
1062 * Atomic setting of ioctl hooks to avoid race
1063 * with module unload.
1064 */
1065
1066static DEFINE_MUTEX(br_ioctl_mutex);
1067static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068
1069void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1070{
1071 mutex_lock(&br_ioctl_mutex);
1072 br_ioctl_hook = hook;
1073 mutex_unlock(&br_ioctl_mutex);
1074}
1075EXPORT_SYMBOL(brioctl_set);
1076
1077static DEFINE_MUTEX(vlan_ioctl_mutex);
1078static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079
1080void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081{
1082 mutex_lock(&vlan_ioctl_mutex);
1083 vlan_ioctl_hook = hook;
1084 mutex_unlock(&vlan_ioctl_mutex);
1085}
1086EXPORT_SYMBOL(vlan_ioctl_set);
1087
1088static long sock_do_ioctl(struct net *net, struct socket *sock,
1089 unsigned int cmd, unsigned long arg)
1090{
1091 int err;
1092 void __user *argp = (void __user *)arg;
1093
1094 err = sock->ops->ioctl(sock, cmd, arg);
1095
1096 /*
1097 * If this ioctl is unknown try to hand it down
1098 * to the NIC driver.
1099 */
1100 if (err != -ENOIOCTLCMD)
1101 return err;
1102
1103 if (cmd == SIOCGIFCONF) {
1104 struct ifconf ifc;
1105 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1106 return -EFAULT;
1107 rtnl_lock();
1108 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1109 rtnl_unlock();
1110 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1111 err = -EFAULT;
1112 } else if (is_socket_ioctl_cmd(cmd)) {
1113 struct ifreq ifr;
1114 bool need_copyout;
1115 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1116 return -EFAULT;
1117 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1118 if (!err && need_copyout)
1119 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1120 return -EFAULT;
1121 } else {
1122 err = -ENOTTY;
1123 }
1124 return err;
1125}
1126
1127/*
1128 * With an ioctl, arg may well be a user mode pointer, but we don't know
1129 * what to do with it - that's up to the protocol still.
1130 */
1131
1132static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1133{
1134 struct socket *sock;
1135 struct sock *sk;
1136 void __user *argp = (void __user *)arg;
1137 int pid, err;
1138 struct net *net;
1139
1140 sock = file->private_data;
1141 sk = sock->sk;
1142 net = sock_net(sk);
1143 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1144 struct ifreq ifr;
1145 bool need_copyout;
1146 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1147 return -EFAULT;
1148 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1149 if (!err && need_copyout)
1150 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1151 return -EFAULT;
1152 } else
1153#ifdef CONFIG_WEXT_CORE
1154 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1155 err = wext_handle_ioctl(net, cmd, argp);
1156 } else
1157#endif
1158 switch (cmd) {
1159 case FIOSETOWN:
1160 case SIOCSPGRP:
1161 err = -EFAULT;
1162 if (get_user(pid, (int __user *)argp))
1163 break;
1164 err = f_setown(sock->file, pid, 1);
1165 break;
1166 case FIOGETOWN:
1167 case SIOCGPGRP:
1168 err = put_user(f_getown(sock->file),
1169 (int __user *)argp);
1170 break;
1171 case SIOCGIFBR:
1172 case SIOCSIFBR:
1173 case SIOCBRADDBR:
1174 case SIOCBRDELBR:
1175 err = -ENOPKG;
1176 if (!br_ioctl_hook)
1177 request_module("bridge");
1178
1179 mutex_lock(&br_ioctl_mutex);
1180 if (br_ioctl_hook)
1181 err = br_ioctl_hook(net, cmd, argp);
1182 mutex_unlock(&br_ioctl_mutex);
1183 break;
1184 case SIOCGIFVLAN:
1185 case SIOCSIFVLAN:
1186 err = -ENOPKG;
1187 if (!vlan_ioctl_hook)
1188 request_module("8021q");
1189
1190 mutex_lock(&vlan_ioctl_mutex);
1191 if (vlan_ioctl_hook)
1192 err = vlan_ioctl_hook(net, argp);
1193 mutex_unlock(&vlan_ioctl_mutex);
1194 break;
1195 case SIOCGSKNS:
1196 err = -EPERM;
1197 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1198 break;
1199
1200 err = open_related_ns(&net->ns, get_net_ns);
1201 break;
1202 case SIOCGSTAMP_OLD:
1203 case SIOCGSTAMPNS_OLD:
1204 if (!sock->ops->gettstamp) {
1205 err = -ENOIOCTLCMD;
1206 break;
1207 }
1208 err = sock->ops->gettstamp(sock, argp,
1209 cmd == SIOCGSTAMP_OLD,
1210 !IS_ENABLED(CONFIG_64BIT));
1211 break;
1212 case SIOCGSTAMP_NEW:
1213 case SIOCGSTAMPNS_NEW:
1214 if (!sock->ops->gettstamp) {
1215 err = -ENOIOCTLCMD;
1216 break;
1217 }
1218 err = sock->ops->gettstamp(sock, argp,
1219 cmd == SIOCGSTAMP_NEW,
1220 false);
1221 break;
1222 default:
1223 err = sock_do_ioctl(net, sock, cmd, arg);
1224 break;
1225 }
1226 return err;
1227}
1228
1229/**
1230 * sock_create_lite - creates a socket
1231 * @family: protocol family (AF_INET, ...)
1232 * @type: communication type (SOCK_STREAM, ...)
1233 * @protocol: protocol (0, ...)
1234 * @res: new socket
1235 *
1236 * Creates a new socket and assigns it to @res, passing through LSM.
1237 * The new socket initialization is not complete, see kernel_accept().
1238 * Returns 0 or an error. On failure @res is set to %NULL.
1239 * This function internally uses GFP_KERNEL.
1240 */
1241
1242int sock_create_lite(int family, int type, int protocol, struct socket **res)
1243{
1244 int err;
1245 struct socket *sock = NULL;
1246
1247 err = security_socket_create(family, type, protocol, 1);
1248 if (err)
1249 goto out;
1250
1251 sock = sock_alloc();
1252 if (!sock) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
1256
1257 sock->type = type;
1258 err = security_socket_post_create(sock, family, type, protocol, 1);
1259 if (err)
1260 goto out_release;
1261
1262out:
1263 *res = sock;
1264 return err;
1265out_release:
1266 sock_release(sock);
1267 sock = NULL;
1268 goto out;
1269}
1270EXPORT_SYMBOL(sock_create_lite);
1271
1272/* No kernel lock held - perfect */
1273static __poll_t sock_poll(struct file *file, poll_table *wait)
1274{
1275 struct socket *sock = file->private_data;
1276 __poll_t events = poll_requested_events(wait), flag = 0;
1277
1278 if (!sock->ops->poll)
1279 return 0;
1280
1281 if (sk_can_busy_loop(sock->sk)) {
1282 /* poll once if requested by the syscall */
1283 if (events & POLL_BUSY_LOOP)
1284 sk_busy_loop(sock->sk, 1);
1285
1286 /* if this socket can poll_ll, tell the system call */
1287 flag = POLL_BUSY_LOOP;
1288 }
1289
1290 return sock->ops->poll(file, sock, wait) | flag;
1291}
1292
1293static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1294{
1295 struct socket *sock = file->private_data;
1296
1297 return sock->ops->mmap(file, sock, vma);
1298}
1299
1300static int sock_close(struct inode *inode, struct file *filp)
1301{
1302 __sock_release(SOCKET_I(inode), inode);
1303 return 0;
1304}
1305
1306/*
1307 * Update the socket async list
1308 *
1309 * Fasync_list locking strategy.
1310 *
1311 * 1. fasync_list is modified only under process context socket lock
1312 * i.e. under semaphore.
1313 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1314 * or under socket lock
1315 */
1316
1317static int sock_fasync(int fd, struct file *filp, int on)
1318{
1319 struct socket *sock = filp->private_data;
1320 struct sock *sk = sock->sk;
1321 struct socket_wq *wq = &sock->wq;
1322
1323 if (sk == NULL)
1324 return -EINVAL;
1325
1326 lock_sock(sk);
1327 fasync_helper(fd, filp, on, &wq->fasync_list);
1328
1329 if (!wq->fasync_list)
1330 sock_reset_flag(sk, SOCK_FASYNC);
1331 else
1332 sock_set_flag(sk, SOCK_FASYNC);
1333
1334 release_sock(sk);
1335 return 0;
1336}
1337
1338/* This function may be called only under rcu_lock */
1339
1340int sock_wake_async(struct socket_wq *wq, int how, int band)
1341{
1342 if (!wq || !wq->fasync_list)
1343 return -1;
1344
1345 switch (how) {
1346 case SOCK_WAKE_WAITD:
1347 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1348 break;
1349 goto call_kill;
1350 case SOCK_WAKE_SPACE:
1351 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1352 break;
1353 fallthrough;
1354 case SOCK_WAKE_IO:
1355call_kill:
1356 kill_fasync(&wq->fasync_list, SIGIO, band);
1357 break;
1358 case SOCK_WAKE_URG:
1359 kill_fasync(&wq->fasync_list, SIGURG, band);
1360 }
1361
1362 return 0;
1363}
1364EXPORT_SYMBOL(sock_wake_async);
1365
1366/**
1367 * __sock_create - creates a socket
1368 * @net: net namespace
1369 * @family: protocol family (AF_INET, ...)
1370 * @type: communication type (SOCK_STREAM, ...)
1371 * @protocol: protocol (0, ...)
1372 * @res: new socket
1373 * @kern: boolean for kernel space sockets
1374 *
1375 * Creates a new socket and assigns it to @res, passing through LSM.
1376 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1377 * be set to true if the socket resides in kernel space.
1378 * This function internally uses GFP_KERNEL.
1379 */
1380
1381int __sock_create(struct net *net, int family, int type, int protocol,
1382 struct socket **res, int kern)
1383{
1384 int err;
1385 struct socket *sock;
1386 const struct net_proto_family *pf;
1387
1388 /*
1389 * Check protocol is in range
1390 */
1391 if (family < 0 || family >= NPROTO)
1392 return -EAFNOSUPPORT;
1393 if (type < 0 || type >= SOCK_MAX)
1394 return -EINVAL;
1395
1396 /* Compatibility.
1397
1398 This uglymoron is moved from INET layer to here to avoid
1399 deadlock in module load.
1400 */
1401 if (family == PF_INET && type == SOCK_PACKET) {
1402 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1403 current->comm);
1404 family = PF_PACKET;
1405 }
1406
1407 err = security_socket_create(family, type, protocol, kern);
1408 if (err)
1409 return err;
1410
1411 /*
1412 * Allocate the socket and allow the family to set things up. if
1413 * the protocol is 0, the family is instructed to select an appropriate
1414 * default.
1415 */
1416 sock = sock_alloc();
1417 if (!sock) {
1418 net_warn_ratelimited("socket: no more sockets\n");
1419 return -ENFILE; /* Not exactly a match, but its the
1420 closest posix thing */
1421 }
1422
1423 sock->type = type;
1424
1425#ifdef CONFIG_MODULES
1426 /* Attempt to load a protocol module if the find failed.
1427 *
1428 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1429 * requested real, full-featured networking support upon configuration.
1430 * Otherwise module support will break!
1431 */
1432 if (rcu_access_pointer(net_families[family]) == NULL)
1433 request_module("net-pf-%d", family);
1434#endif
1435
1436 rcu_read_lock();
1437 pf = rcu_dereference(net_families[family]);
1438 err = -EAFNOSUPPORT;
1439 if (!pf)
1440 goto out_release;
1441
1442 /*
1443 * We will call the ->create function, that possibly is in a loadable
1444 * module, so we have to bump that loadable module refcnt first.
1445 */
1446 if (!try_module_get(pf->owner))
1447 goto out_release;
1448
1449 /* Now protected by module ref count */
1450 rcu_read_unlock();
1451
1452 err = pf->create(net, sock, protocol, kern);
1453 if (err < 0)
1454 goto out_module_put;
1455
1456 /*
1457 * Now to bump the refcnt of the [loadable] module that owns this
1458 * socket at sock_release time we decrement its refcnt.
1459 */
1460 if (!try_module_get(sock->ops->owner))
1461 goto out_module_busy;
1462
1463 /*
1464 * Now that we're done with the ->create function, the [loadable]
1465 * module can have its refcnt decremented
1466 */
1467 module_put(pf->owner);
1468 err = security_socket_post_create(sock, family, type, protocol, kern);
1469 if (err)
1470 goto out_sock_release;
1471 *res = sock;
1472
1473 return 0;
1474
1475out_module_busy:
1476 err = -EAFNOSUPPORT;
1477out_module_put:
1478 sock->ops = NULL;
1479 module_put(pf->owner);
1480out_sock_release:
1481 sock_release(sock);
1482 return err;
1483
1484out_release:
1485 rcu_read_unlock();
1486 goto out_sock_release;
1487}
1488EXPORT_SYMBOL(__sock_create);
1489
1490/**
1491 * sock_create - creates a socket
1492 * @family: protocol family (AF_INET, ...)
1493 * @type: communication type (SOCK_STREAM, ...)
1494 * @protocol: protocol (0, ...)
1495 * @res: new socket
1496 *
1497 * A wrapper around __sock_create().
1498 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1499 */
1500
1501int sock_create(int family, int type, int protocol, struct socket **res)
1502{
1503 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1504}
1505EXPORT_SYMBOL(sock_create);
1506
1507/**
1508 * sock_create_kern - creates a socket (kernel space)
1509 * @net: net namespace
1510 * @family: protocol family (AF_INET, ...)
1511 * @type: communication type (SOCK_STREAM, ...)
1512 * @protocol: protocol (0, ...)
1513 * @res: new socket
1514 *
1515 * A wrapper around __sock_create().
1516 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1517 */
1518
1519int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1520{
1521 return __sock_create(net, family, type, protocol, res, 1);
1522}
1523EXPORT_SYMBOL(sock_create_kern);
1524
1525int __sys_socket(int family, int type, int protocol)
1526{
1527 int retval;
1528 struct socket *sock;
1529 int flags;
1530
1531 /* Check the SOCK_* constants for consistency. */
1532 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1533 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1534 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1535 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1536
1537 flags = type & ~SOCK_TYPE_MASK;
1538 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1539 return -EINVAL;
1540 type &= SOCK_TYPE_MASK;
1541
1542 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1543 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1544
1545 retval = sock_create(family, type, protocol, &sock);
1546 if (retval < 0)
1547 return retval;
1548
1549 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1550}
1551
1552SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1553{
1554 return __sys_socket(family, type, protocol);
1555}
1556
1557/*
1558 * Create a pair of connected sockets.
1559 */
1560
1561int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1562{
1563 struct socket *sock1, *sock2;
1564 int fd1, fd2, err;
1565 struct file *newfile1, *newfile2;
1566 int flags;
1567
1568 flags = type & ~SOCK_TYPE_MASK;
1569 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570 return -EINVAL;
1571 type &= SOCK_TYPE_MASK;
1572
1573 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1574 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1575
1576 /*
1577 * reserve descriptors and make sure we won't fail
1578 * to return them to userland.
1579 */
1580 fd1 = get_unused_fd_flags(flags);
1581 if (unlikely(fd1 < 0))
1582 return fd1;
1583
1584 fd2 = get_unused_fd_flags(flags);
1585 if (unlikely(fd2 < 0)) {
1586 put_unused_fd(fd1);
1587 return fd2;
1588 }
1589
1590 err = put_user(fd1, &usockvec[0]);
1591 if (err)
1592 goto out;
1593
1594 err = put_user(fd2, &usockvec[1]);
1595 if (err)
1596 goto out;
1597
1598 /*
1599 * Obtain the first socket and check if the underlying protocol
1600 * supports the socketpair call.
1601 */
1602
1603 err = sock_create(family, type, protocol, &sock1);
1604 if (unlikely(err < 0))
1605 goto out;
1606
1607 err = sock_create(family, type, protocol, &sock2);
1608 if (unlikely(err < 0)) {
1609 sock_release(sock1);
1610 goto out;
1611 }
1612
1613 err = security_socket_socketpair(sock1, sock2);
1614 if (unlikely(err)) {
1615 sock_release(sock2);
1616 sock_release(sock1);
1617 goto out;
1618 }
1619
1620 err = sock1->ops->socketpair(sock1, sock2);
1621 if (unlikely(err < 0)) {
1622 sock_release(sock2);
1623 sock_release(sock1);
1624 goto out;
1625 }
1626
1627 newfile1 = sock_alloc_file(sock1, flags, NULL);
1628 if (IS_ERR(newfile1)) {
1629 err = PTR_ERR(newfile1);
1630 sock_release(sock2);
1631 goto out;
1632 }
1633
1634 newfile2 = sock_alloc_file(sock2, flags, NULL);
1635 if (IS_ERR(newfile2)) {
1636 err = PTR_ERR(newfile2);
1637 fput(newfile1);
1638 goto out;
1639 }
1640
1641 audit_fd_pair(fd1, fd2);
1642
1643 fd_install(fd1, newfile1);
1644 fd_install(fd2, newfile2);
1645 return 0;
1646
1647out:
1648 put_unused_fd(fd2);
1649 put_unused_fd(fd1);
1650 return err;
1651}
1652
1653SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1654 int __user *, usockvec)
1655{
1656 return __sys_socketpair(family, type, protocol, usockvec);
1657}
1658
1659/*
1660 * Bind a name to a socket. Nothing much to do here since it's
1661 * the protocol's responsibility to handle the local address.
1662 *
1663 * We move the socket address to kernel space before we call
1664 * the protocol layer (having also checked the address is ok).
1665 */
1666
1667int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1668{
1669 struct socket *sock;
1670 struct sockaddr_storage address;
1671 int err, fput_needed;
1672
1673 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 if (sock) {
1675 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1676 if (!err) {
1677 err = security_socket_bind(sock,
1678 (struct sockaddr *)&address,
1679 addrlen);
1680 if (!err)
1681 err = sock->ops->bind(sock,
1682 (struct sockaddr *)
1683 &address, addrlen);
1684 }
1685 fput_light(sock->file, fput_needed);
1686 }
1687 return err;
1688}
1689
1690SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1691{
1692 return __sys_bind(fd, umyaddr, addrlen);
1693}
1694
1695/*
1696 * Perform a listen. Basically, we allow the protocol to do anything
1697 * necessary for a listen, and if that works, we mark the socket as
1698 * ready for listening.
1699 */
1700
1701int __sys_listen(int fd, int backlog)
1702{
1703 struct socket *sock;
1704 int err, fput_needed;
1705 int somaxconn;
1706
1707 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 if (sock) {
1709 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1710 if ((unsigned int)backlog > somaxconn)
1711 backlog = somaxconn;
1712
1713 err = security_socket_listen(sock, backlog);
1714 if (!err)
1715 err = sock->ops->listen(sock, backlog);
1716
1717 fput_light(sock->file, fput_needed);
1718 }
1719 return err;
1720}
1721
1722SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1723{
1724 return __sys_listen(fd, backlog);
1725}
1726
1727int __sys_accept4_file(struct file *file, unsigned file_flags,
1728 struct sockaddr __user *upeer_sockaddr,
1729 int __user *upeer_addrlen, int flags,
1730 unsigned long nofile)
1731{
1732 struct socket *sock, *newsock;
1733 struct file *newfile;
1734 int err, len, newfd;
1735 struct sockaddr_storage address;
1736
1737 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1738 return -EINVAL;
1739
1740 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1741 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1742
1743 sock = sock_from_file(file);
1744 if (!sock) {
1745 err = -ENOTSOCK;
1746 goto out;
1747 }
1748
1749 err = -ENFILE;
1750 newsock = sock_alloc();
1751 if (!newsock)
1752 goto out;
1753
1754 newsock->type = sock->type;
1755 newsock->ops = sock->ops;
1756
1757 /*
1758 * We don't need try_module_get here, as the listening socket (sock)
1759 * has the protocol module (sock->ops->owner) held.
1760 */
1761 __module_get(newsock->ops->owner);
1762
1763 newfd = __get_unused_fd_flags(flags, nofile);
1764 if (unlikely(newfd < 0)) {
1765 err = newfd;
1766 sock_release(newsock);
1767 goto out;
1768 }
1769 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1770 if (IS_ERR(newfile)) {
1771 err = PTR_ERR(newfile);
1772 put_unused_fd(newfd);
1773 goto out;
1774 }
1775
1776 err = security_socket_accept(sock, newsock);
1777 if (err)
1778 goto out_fd;
1779
1780 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1781 false);
1782 if (err < 0)
1783 goto out_fd;
1784
1785 if (upeer_sockaddr) {
1786 len = newsock->ops->getname(newsock,
1787 (struct sockaddr *)&address, 2);
1788 if (len < 0) {
1789 err = -ECONNABORTED;
1790 goto out_fd;
1791 }
1792 err = move_addr_to_user(&address,
1793 len, upeer_sockaddr, upeer_addrlen);
1794 if (err < 0)
1795 goto out_fd;
1796 }
1797
1798 /* File flags are not inherited via accept() unlike another OSes. */
1799
1800 fd_install(newfd, newfile);
1801 err = newfd;
1802out:
1803 return err;
1804out_fd:
1805 fput(newfile);
1806 put_unused_fd(newfd);
1807 goto out;
1808
1809}
1810
1811/*
1812 * For accept, we attempt to create a new socket, set up the link
1813 * with the client, wake up the client, then return the new
1814 * connected fd. We collect the address of the connector in kernel
1815 * space and move it to user at the very end. This is unclean because
1816 * we open the socket then return an error.
1817 *
1818 * 1003.1g adds the ability to recvmsg() to query connection pending
1819 * status to recvmsg. We need to add that support in a way thats
1820 * clean when we restructure accept also.
1821 */
1822
1823int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1824 int __user *upeer_addrlen, int flags)
1825{
1826 int ret = -EBADF;
1827 struct fd f;
1828
1829 f = fdget(fd);
1830 if (f.file) {
1831 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1832 upeer_addrlen, flags,
1833 rlimit(RLIMIT_NOFILE));
1834 fdput(f);
1835 }
1836
1837 return ret;
1838}
1839
1840SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1841 int __user *, upeer_addrlen, int, flags)
1842{
1843 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1844}
1845
1846SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1847 int __user *, upeer_addrlen)
1848{
1849 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1850}
1851
1852/*
1853 * Attempt to connect to a socket with the server address. The address
1854 * is in user space so we verify it is OK and move it to kernel space.
1855 *
1856 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1857 * break bindings
1858 *
1859 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1860 * other SEQPACKET protocols that take time to connect() as it doesn't
1861 * include the -EINPROGRESS status for such sockets.
1862 */
1863
1864int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1865 int addrlen, int file_flags)
1866{
1867 struct socket *sock;
1868 int err;
1869
1870 sock = sock_from_file(file);
1871 if (!sock) {
1872 err = -ENOTSOCK;
1873 goto out;
1874 }
1875
1876 err =
1877 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1878 if (err)
1879 goto out;
1880
1881 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1882 sock->file->f_flags | file_flags);
1883out:
1884 return err;
1885}
1886
1887int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1888{
1889 int ret = -EBADF;
1890 struct fd f;
1891
1892 f = fdget(fd);
1893 if (f.file) {
1894 struct sockaddr_storage address;
1895
1896 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1897 if (!ret)
1898 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1899 fdput(f);
1900 }
1901
1902 return ret;
1903}
1904
1905SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1906 int, addrlen)
1907{
1908 return __sys_connect(fd, uservaddr, addrlen);
1909}
1910
1911/*
1912 * Get the local address ('name') of a socket object. Move the obtained
1913 * name to user space.
1914 */
1915
1916int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1917 int __user *usockaddr_len)
1918{
1919 struct socket *sock;
1920 struct sockaddr_storage address;
1921 int err, fput_needed;
1922
1923 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924 if (!sock)
1925 goto out;
1926
1927 err = security_socket_getsockname(sock);
1928 if (err)
1929 goto out_put;
1930
1931 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1932 if (err < 0)
1933 goto out_put;
1934 /* "err" is actually length in this case */
1935 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1936
1937out_put:
1938 fput_light(sock->file, fput_needed);
1939out:
1940 return err;
1941}
1942
1943SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1944 int __user *, usockaddr_len)
1945{
1946 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1947}
1948
1949/*
1950 * Get the remote address ('name') of a socket object. Move the obtained
1951 * name to user space.
1952 */
1953
1954int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1955 int __user *usockaddr_len)
1956{
1957 struct socket *sock;
1958 struct sockaddr_storage address;
1959 int err, fput_needed;
1960
1961 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962 if (sock != NULL) {
1963 err = security_socket_getpeername(sock);
1964 if (err) {
1965 fput_light(sock->file, fput_needed);
1966 return err;
1967 }
1968
1969 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1970 if (err >= 0)
1971 /* "err" is actually length in this case */
1972 err = move_addr_to_user(&address, err, usockaddr,
1973 usockaddr_len);
1974 fput_light(sock->file, fput_needed);
1975 }
1976 return err;
1977}
1978
1979SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1980 int __user *, usockaddr_len)
1981{
1982 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1983}
1984
1985/*
1986 * Send a datagram to a given address. We move the address into kernel
1987 * space and check the user space data area is readable before invoking
1988 * the protocol.
1989 */
1990int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1991 struct sockaddr __user *addr, int addr_len)
1992{
1993 struct socket *sock;
1994 struct sockaddr_storage address;
1995 int err;
1996 struct msghdr msg;
1997 struct iovec iov;
1998 int fput_needed;
1999
2000 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2001 if (unlikely(err))
2002 return err;
2003 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2004 if (!sock)
2005 goto out;
2006
2007 msg.msg_name = NULL;
2008 msg.msg_control = NULL;
2009 msg.msg_controllen = 0;
2010 msg.msg_namelen = 0;
2011 if (addr) {
2012 err = move_addr_to_kernel(addr, addr_len, &address);
2013 if (err < 0)
2014 goto out_put;
2015 msg.msg_name = (struct sockaddr *)&address;
2016 msg.msg_namelen = addr_len;
2017 }
2018 if (sock->file->f_flags & O_NONBLOCK)
2019 flags |= MSG_DONTWAIT;
2020 msg.msg_flags = flags;
2021 err = sock_sendmsg(sock, &msg);
2022
2023out_put:
2024 fput_light(sock->file, fput_needed);
2025out:
2026 return err;
2027}
2028
2029SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2030 unsigned int, flags, struct sockaddr __user *, addr,
2031 int, addr_len)
2032{
2033 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2034}
2035
2036/*
2037 * Send a datagram down a socket.
2038 */
2039
2040SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2041 unsigned int, flags)
2042{
2043 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2044}
2045
2046/*
2047 * Receive a frame from the socket and optionally record the address of the
2048 * sender. We verify the buffers are writable and if needed move the
2049 * sender address from kernel to user space.
2050 */
2051int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2052 struct sockaddr __user *addr, int __user *addr_len)
2053{
2054 struct socket *sock;
2055 struct iovec iov;
2056 struct msghdr msg;
2057 struct sockaddr_storage address;
2058 int err, err2;
2059 int fput_needed;
2060
2061 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2062 if (unlikely(err))
2063 return err;
2064 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065 if (!sock)
2066 goto out;
2067
2068 msg.msg_control = NULL;
2069 msg.msg_controllen = 0;
2070 /* Save some cycles and don't copy the address if not needed */
2071 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2072 /* We assume all kernel code knows the size of sockaddr_storage */
2073 msg.msg_namelen = 0;
2074 msg.msg_iocb = NULL;
2075 msg.msg_flags = 0;
2076 if (sock->file->f_flags & O_NONBLOCK)
2077 flags |= MSG_DONTWAIT;
2078 err = sock_recvmsg(sock, &msg, flags);
2079
2080 if (err >= 0 && addr != NULL) {
2081 err2 = move_addr_to_user(&address,
2082 msg.msg_namelen, addr, addr_len);
2083 if (err2 < 0)
2084 err = err2;
2085 }
2086
2087 fput_light(sock->file, fput_needed);
2088out:
2089 return err;
2090}
2091
2092SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2093 unsigned int, flags, struct sockaddr __user *, addr,
2094 int __user *, addr_len)
2095{
2096 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2097}
2098
2099/*
2100 * Receive a datagram from a socket.
2101 */
2102
2103SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2104 unsigned int, flags)
2105{
2106 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2107}
2108
2109static bool sock_use_custom_sol_socket(const struct socket *sock)
2110{
2111 const struct sock *sk = sock->sk;
2112
2113 /* Use sock->ops->setsockopt() for MPTCP */
2114 return IS_ENABLED(CONFIG_MPTCP) &&
2115 sk->sk_protocol == IPPROTO_MPTCP &&
2116 sk->sk_type == SOCK_STREAM &&
2117 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2118}
2119
2120/*
2121 * Set a socket option. Because we don't know the option lengths we have
2122 * to pass the user mode parameter for the protocols to sort out.
2123 */
2124int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2125 int optlen)
2126{
2127 sockptr_t optval = USER_SOCKPTR(user_optval);
2128 char *kernel_optval = NULL;
2129 int err, fput_needed;
2130 struct socket *sock;
2131
2132 if (optlen < 0)
2133 return -EINVAL;
2134
2135 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136 if (!sock)
2137 return err;
2138
2139 err = security_socket_setsockopt(sock, level, optname);
2140 if (err)
2141 goto out_put;
2142
2143 if (!in_compat_syscall())
2144 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2145 user_optval, &optlen,
2146 &kernel_optval);
2147 if (err < 0)
2148 goto out_put;
2149 if (err > 0) {
2150 err = 0;
2151 goto out_put;
2152 }
2153
2154 if (kernel_optval)
2155 optval = KERNEL_SOCKPTR(kernel_optval);
2156 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2157 err = sock_setsockopt(sock, level, optname, optval, optlen);
2158 else if (unlikely(!sock->ops->setsockopt))
2159 err = -EOPNOTSUPP;
2160 else
2161 err = sock->ops->setsockopt(sock, level, optname, optval,
2162 optlen);
2163 kfree(kernel_optval);
2164out_put:
2165 fput_light(sock->file, fput_needed);
2166 return err;
2167}
2168
2169SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2170 char __user *, optval, int, optlen)
2171{
2172 return __sys_setsockopt(fd, level, optname, optval, optlen);
2173}
2174
2175INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2176 int optname));
2177
2178/*
2179 * Get a socket option. Because we don't know the option lengths we have
2180 * to pass a user mode parameter for the protocols to sort out.
2181 */
2182int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2183 int __user *optlen)
2184{
2185 int err, fput_needed;
2186 struct socket *sock;
2187 int max_optlen;
2188
2189 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190 if (!sock)
2191 return err;
2192
2193 err = security_socket_getsockopt(sock, level, optname);
2194 if (err)
2195 goto out_put;
2196
2197 if (!in_compat_syscall())
2198 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2199
2200 if (level == SOL_SOCKET)
2201 err = sock_getsockopt(sock, level, optname, optval, optlen);
2202 else if (unlikely(!sock->ops->getsockopt))
2203 err = -EOPNOTSUPP;
2204 else
2205 err = sock->ops->getsockopt(sock, level, optname, optval,
2206 optlen);
2207
2208 if (!in_compat_syscall())
2209 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2210 optval, optlen, max_optlen,
2211 err);
2212out_put:
2213 fput_light(sock->file, fput_needed);
2214 return err;
2215}
2216
2217SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2218 char __user *, optval, int __user *, optlen)
2219{
2220 return __sys_getsockopt(fd, level, optname, optval, optlen);
2221}
2222
2223/*
2224 * Shutdown a socket.
2225 */
2226
2227int __sys_shutdown_sock(struct socket *sock, int how)
2228{
2229 int err;
2230
2231 err = security_socket_shutdown(sock, how);
2232 if (!err)
2233 err = sock->ops->shutdown(sock, how);
2234
2235 return err;
2236}
2237
2238int __sys_shutdown(int fd, int how)
2239{
2240 int err, fput_needed;
2241 struct socket *sock;
2242
2243 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2244 if (sock != NULL) {
2245 err = __sys_shutdown_sock(sock, how);
2246 fput_light(sock->file, fput_needed);
2247 }
2248 return err;
2249}
2250
2251SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2252{
2253 return __sys_shutdown(fd, how);
2254}
2255
2256/* A couple of helpful macros for getting the address of the 32/64 bit
2257 * fields which are the same type (int / unsigned) on our platforms.
2258 */
2259#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2260#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2261#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2262
2263struct used_address {
2264 struct sockaddr_storage name;
2265 unsigned int name_len;
2266};
2267
2268int __copy_msghdr_from_user(struct msghdr *kmsg,
2269 struct user_msghdr __user *umsg,
2270 struct sockaddr __user **save_addr,
2271 struct iovec __user **uiov, size_t *nsegs)
2272{
2273 struct user_msghdr msg;
2274 ssize_t err;
2275
2276 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2277 return -EFAULT;
2278
2279 kmsg->msg_control_is_user = true;
2280 kmsg->msg_control_user = msg.msg_control;
2281 kmsg->msg_controllen = msg.msg_controllen;
2282 kmsg->msg_flags = msg.msg_flags;
2283
2284 kmsg->msg_namelen = msg.msg_namelen;
2285 if (!msg.msg_name)
2286 kmsg->msg_namelen = 0;
2287
2288 if (kmsg->msg_namelen < 0)
2289 return -EINVAL;
2290
2291 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2292 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2293
2294 if (save_addr)
2295 *save_addr = msg.msg_name;
2296
2297 if (msg.msg_name && kmsg->msg_namelen) {
2298 if (!save_addr) {
2299 err = move_addr_to_kernel(msg.msg_name,
2300 kmsg->msg_namelen,
2301 kmsg->msg_name);
2302 if (err < 0)
2303 return err;
2304 }
2305 } else {
2306 kmsg->msg_name = NULL;
2307 kmsg->msg_namelen = 0;
2308 }
2309
2310 if (msg.msg_iovlen > UIO_MAXIOV)
2311 return -EMSGSIZE;
2312
2313 kmsg->msg_iocb = NULL;
2314 *uiov = msg.msg_iov;
2315 *nsegs = msg.msg_iovlen;
2316 return 0;
2317}
2318
2319static int copy_msghdr_from_user(struct msghdr *kmsg,
2320 struct user_msghdr __user *umsg,
2321 struct sockaddr __user **save_addr,
2322 struct iovec **iov)
2323{
2324 struct user_msghdr msg;
2325 ssize_t err;
2326
2327 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2328 &msg.msg_iovlen);
2329 if (err)
2330 return err;
2331
2332 err = import_iovec(save_addr ? READ : WRITE,
2333 msg.msg_iov, msg.msg_iovlen,
2334 UIO_FASTIOV, iov, &kmsg->msg_iter);
2335 return err < 0 ? err : 0;
2336}
2337
2338static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2339 unsigned int flags, struct used_address *used_address,
2340 unsigned int allowed_msghdr_flags)
2341{
2342 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2343 __aligned(sizeof(__kernel_size_t));
2344 /* 20 is size of ipv6_pktinfo */
2345 unsigned char *ctl_buf = ctl;
2346 int ctl_len;
2347 ssize_t err;
2348
2349 err = -ENOBUFS;
2350
2351 if (msg_sys->msg_controllen > INT_MAX)
2352 goto out;
2353 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2354 ctl_len = msg_sys->msg_controllen;
2355 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2356 err =
2357 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2358 sizeof(ctl));
2359 if (err)
2360 goto out;
2361 ctl_buf = msg_sys->msg_control;
2362 ctl_len = msg_sys->msg_controllen;
2363 } else if (ctl_len) {
2364 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2365 CMSG_ALIGN(sizeof(struct cmsghdr)));
2366 if (ctl_len > sizeof(ctl)) {
2367 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2368 if (ctl_buf == NULL)
2369 goto out;
2370 }
2371 err = -EFAULT;
2372 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2373 goto out_freectl;
2374 msg_sys->msg_control = ctl_buf;
2375 msg_sys->msg_control_is_user = false;
2376 }
2377 msg_sys->msg_flags = flags;
2378
2379 if (sock->file->f_flags & O_NONBLOCK)
2380 msg_sys->msg_flags |= MSG_DONTWAIT;
2381 /*
2382 * If this is sendmmsg() and current destination address is same as
2383 * previously succeeded address, omit asking LSM's decision.
2384 * used_address->name_len is initialized to UINT_MAX so that the first
2385 * destination address never matches.
2386 */
2387 if (used_address && msg_sys->msg_name &&
2388 used_address->name_len == msg_sys->msg_namelen &&
2389 !memcmp(&used_address->name, msg_sys->msg_name,
2390 used_address->name_len)) {
2391 err = sock_sendmsg_nosec(sock, msg_sys);
2392 goto out_freectl;
2393 }
2394 err = sock_sendmsg(sock, msg_sys);
2395 /*
2396 * If this is sendmmsg() and sending to current destination address was
2397 * successful, remember it.
2398 */
2399 if (used_address && err >= 0) {
2400 used_address->name_len = msg_sys->msg_namelen;
2401 if (msg_sys->msg_name)
2402 memcpy(&used_address->name, msg_sys->msg_name,
2403 used_address->name_len);
2404 }
2405
2406out_freectl:
2407 if (ctl_buf != ctl)
2408 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2409out:
2410 return err;
2411}
2412
2413int sendmsg_copy_msghdr(struct msghdr *msg,
2414 struct user_msghdr __user *umsg, unsigned flags,
2415 struct iovec **iov)
2416{
2417 int err;
2418
2419 if (flags & MSG_CMSG_COMPAT) {
2420 struct compat_msghdr __user *msg_compat;
2421
2422 msg_compat = (struct compat_msghdr __user *) umsg;
2423 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2424 } else {
2425 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2426 }
2427 if (err < 0)
2428 return err;
2429
2430 return 0;
2431}
2432
2433static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2434 struct msghdr *msg_sys, unsigned int flags,
2435 struct used_address *used_address,
2436 unsigned int allowed_msghdr_flags)
2437{
2438 struct sockaddr_storage address;
2439 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2440 ssize_t err;
2441
2442 msg_sys->msg_name = &address;
2443
2444 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2445 if (err < 0)
2446 return err;
2447
2448 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2449 allowed_msghdr_flags);
2450 kfree(iov);
2451 return err;
2452}
2453
2454/*
2455 * BSD sendmsg interface
2456 */
2457long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2458 unsigned int flags)
2459{
2460 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2461}
2462
2463long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2464 bool forbid_cmsg_compat)
2465{
2466 int fput_needed, err;
2467 struct msghdr msg_sys;
2468 struct socket *sock;
2469
2470 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2471 return -EINVAL;
2472
2473 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2474 if (!sock)
2475 goto out;
2476
2477 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2478
2479 fput_light(sock->file, fput_needed);
2480out:
2481 return err;
2482}
2483
2484SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2485{
2486 return __sys_sendmsg(fd, msg, flags, true);
2487}
2488
2489/*
2490 * Linux sendmmsg interface
2491 */
2492
2493int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2494 unsigned int flags, bool forbid_cmsg_compat)
2495{
2496 int fput_needed, err, datagrams;
2497 struct socket *sock;
2498 struct mmsghdr __user *entry;
2499 struct compat_mmsghdr __user *compat_entry;
2500 struct msghdr msg_sys;
2501 struct used_address used_address;
2502 unsigned int oflags = flags;
2503
2504 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2505 return -EINVAL;
2506
2507 if (vlen > UIO_MAXIOV)
2508 vlen = UIO_MAXIOV;
2509
2510 datagrams = 0;
2511
2512 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2513 if (!sock)
2514 return err;
2515
2516 used_address.name_len = UINT_MAX;
2517 entry = mmsg;
2518 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2519 err = 0;
2520 flags |= MSG_BATCH;
2521
2522 while (datagrams < vlen) {
2523 if (datagrams == vlen - 1)
2524 flags = oflags;
2525
2526 if (MSG_CMSG_COMPAT & flags) {
2527 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2528 &msg_sys, flags, &used_address, MSG_EOR);
2529 if (err < 0)
2530 break;
2531 err = __put_user(err, &compat_entry->msg_len);
2532 ++compat_entry;
2533 } else {
2534 err = ___sys_sendmsg(sock,
2535 (struct user_msghdr __user *)entry,
2536 &msg_sys, flags, &used_address, MSG_EOR);
2537 if (err < 0)
2538 break;
2539 err = put_user(err, &entry->msg_len);
2540 ++entry;
2541 }
2542
2543 if (err)
2544 break;
2545 ++datagrams;
2546 if (msg_data_left(&msg_sys))
2547 break;
2548 cond_resched();
2549 }
2550
2551 fput_light(sock->file, fput_needed);
2552
2553 /* We only return an error if no datagrams were able to be sent */
2554 if (datagrams != 0)
2555 return datagrams;
2556
2557 return err;
2558}
2559
2560SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2561 unsigned int, vlen, unsigned int, flags)
2562{
2563 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2564}
2565
2566int recvmsg_copy_msghdr(struct msghdr *msg,
2567 struct user_msghdr __user *umsg, unsigned flags,
2568 struct sockaddr __user **uaddr,
2569 struct iovec **iov)
2570{
2571 ssize_t err;
2572
2573 if (MSG_CMSG_COMPAT & flags) {
2574 struct compat_msghdr __user *msg_compat;
2575
2576 msg_compat = (struct compat_msghdr __user *) umsg;
2577 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2578 } else {
2579 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2580 }
2581 if (err < 0)
2582 return err;
2583
2584 return 0;
2585}
2586
2587static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2588 struct user_msghdr __user *msg,
2589 struct sockaddr __user *uaddr,
2590 unsigned int flags, int nosec)
2591{
2592 struct compat_msghdr __user *msg_compat =
2593 (struct compat_msghdr __user *) msg;
2594 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2595 struct sockaddr_storage addr;
2596 unsigned long cmsg_ptr;
2597 int len;
2598 ssize_t err;
2599
2600 msg_sys->msg_name = &addr;
2601 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2602 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2603
2604 /* We assume all kernel code knows the size of sockaddr_storage */
2605 msg_sys->msg_namelen = 0;
2606
2607 if (sock->file->f_flags & O_NONBLOCK)
2608 flags |= MSG_DONTWAIT;
2609
2610 if (unlikely(nosec))
2611 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2612 else
2613 err = sock_recvmsg(sock, msg_sys, flags);
2614
2615 if (err < 0)
2616 goto out;
2617 len = err;
2618
2619 if (uaddr != NULL) {
2620 err = move_addr_to_user(&addr,
2621 msg_sys->msg_namelen, uaddr,
2622 uaddr_len);
2623 if (err < 0)
2624 goto out;
2625 }
2626 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2627 COMPAT_FLAGS(msg));
2628 if (err)
2629 goto out;
2630 if (MSG_CMSG_COMPAT & flags)
2631 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2632 &msg_compat->msg_controllen);
2633 else
2634 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2635 &msg->msg_controllen);
2636 if (err)
2637 goto out;
2638 err = len;
2639out:
2640 return err;
2641}
2642
2643static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2644 struct msghdr *msg_sys, unsigned int flags, int nosec)
2645{
2646 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2647 /* user mode address pointers */
2648 struct sockaddr __user *uaddr;
2649 ssize_t err;
2650
2651 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2652 if (err < 0)
2653 return err;
2654
2655 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2656 kfree(iov);
2657 return err;
2658}
2659
2660/*
2661 * BSD recvmsg interface
2662 */
2663
2664long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2665 struct user_msghdr __user *umsg,
2666 struct sockaddr __user *uaddr, unsigned int flags)
2667{
2668 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2669}
2670
2671long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2672 bool forbid_cmsg_compat)
2673{
2674 int fput_needed, err;
2675 struct msghdr msg_sys;
2676 struct socket *sock;
2677
2678 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2679 return -EINVAL;
2680
2681 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2682 if (!sock)
2683 goto out;
2684
2685 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2686
2687 fput_light(sock->file, fput_needed);
2688out:
2689 return err;
2690}
2691
2692SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2693 unsigned int, flags)
2694{
2695 return __sys_recvmsg(fd, msg, flags, true);
2696}
2697
2698/*
2699 * Linux recvmmsg interface
2700 */
2701
2702static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2703 unsigned int vlen, unsigned int flags,
2704 struct timespec64 *timeout)
2705{
2706 int fput_needed, err, datagrams;
2707 struct socket *sock;
2708 struct mmsghdr __user *entry;
2709 struct compat_mmsghdr __user *compat_entry;
2710 struct msghdr msg_sys;
2711 struct timespec64 end_time;
2712 struct timespec64 timeout64;
2713
2714 if (timeout &&
2715 poll_select_set_timeout(&end_time, timeout->tv_sec,
2716 timeout->tv_nsec))
2717 return -EINVAL;
2718
2719 datagrams = 0;
2720
2721 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2722 if (!sock)
2723 return err;
2724
2725 if (likely(!(flags & MSG_ERRQUEUE))) {
2726 err = sock_error(sock->sk);
2727 if (err) {
2728 datagrams = err;
2729 goto out_put;
2730 }
2731 }
2732
2733 entry = mmsg;
2734 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2735
2736 while (datagrams < vlen) {
2737 /*
2738 * No need to ask LSM for more than the first datagram.
2739 */
2740 if (MSG_CMSG_COMPAT & flags) {
2741 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2742 &msg_sys, flags & ~MSG_WAITFORONE,
2743 datagrams);
2744 if (err < 0)
2745 break;
2746 err = __put_user(err, &compat_entry->msg_len);
2747 ++compat_entry;
2748 } else {
2749 err = ___sys_recvmsg(sock,
2750 (struct user_msghdr __user *)entry,
2751 &msg_sys, flags & ~MSG_WAITFORONE,
2752 datagrams);
2753 if (err < 0)
2754 break;
2755 err = put_user(err, &entry->msg_len);
2756 ++entry;
2757 }
2758
2759 if (err)
2760 break;
2761 ++datagrams;
2762
2763 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2764 if (flags & MSG_WAITFORONE)
2765 flags |= MSG_DONTWAIT;
2766
2767 if (timeout) {
2768 ktime_get_ts64(&timeout64);
2769 *timeout = timespec64_sub(end_time, timeout64);
2770 if (timeout->tv_sec < 0) {
2771 timeout->tv_sec = timeout->tv_nsec = 0;
2772 break;
2773 }
2774
2775 /* Timeout, return less than vlen datagrams */
2776 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2777 break;
2778 }
2779
2780 /* Out of band data, return right away */
2781 if (msg_sys.msg_flags & MSG_OOB)
2782 break;
2783 cond_resched();
2784 }
2785
2786 if (err == 0)
2787 goto out_put;
2788
2789 if (datagrams == 0) {
2790 datagrams = err;
2791 goto out_put;
2792 }
2793
2794 /*
2795 * We may return less entries than requested (vlen) if the
2796 * sock is non block and there aren't enough datagrams...
2797 */
2798 if (err != -EAGAIN) {
2799 /*
2800 * ... or if recvmsg returns an error after we
2801 * received some datagrams, where we record the
2802 * error to return on the next call or if the
2803 * app asks about it using getsockopt(SO_ERROR).
2804 */
2805 sock->sk->sk_err = -err;
2806 }
2807out_put:
2808 fput_light(sock->file, fput_needed);
2809
2810 return datagrams;
2811}
2812
2813int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2814 unsigned int vlen, unsigned int flags,
2815 struct __kernel_timespec __user *timeout,
2816 struct old_timespec32 __user *timeout32)
2817{
2818 int datagrams;
2819 struct timespec64 timeout_sys;
2820
2821 if (timeout && get_timespec64(&timeout_sys, timeout))
2822 return -EFAULT;
2823
2824 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2825 return -EFAULT;
2826
2827 if (!timeout && !timeout32)
2828 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2829
2830 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2831
2832 if (datagrams <= 0)
2833 return datagrams;
2834
2835 if (timeout && put_timespec64(&timeout_sys, timeout))
2836 datagrams = -EFAULT;
2837
2838 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2839 datagrams = -EFAULT;
2840
2841 return datagrams;
2842}
2843
2844SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2845 unsigned int, vlen, unsigned int, flags,
2846 struct __kernel_timespec __user *, timeout)
2847{
2848 if (flags & MSG_CMSG_COMPAT)
2849 return -EINVAL;
2850
2851 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2852}
2853
2854#ifdef CONFIG_COMPAT_32BIT_TIME
2855SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2856 unsigned int, vlen, unsigned int, flags,
2857 struct old_timespec32 __user *, timeout)
2858{
2859 if (flags & MSG_CMSG_COMPAT)
2860 return -EINVAL;
2861
2862 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2863}
2864#endif
2865
2866#ifdef __ARCH_WANT_SYS_SOCKETCALL
2867/* Argument list sizes for sys_socketcall */
2868#define AL(x) ((x) * sizeof(unsigned long))
2869static const unsigned char nargs[21] = {
2870 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2871 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2872 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2873 AL(4), AL(5), AL(4)
2874};
2875
2876#undef AL
2877
2878/*
2879 * System call vectors.
2880 *
2881 * Argument checking cleaned up. Saved 20% in size.
2882 * This function doesn't need to set the kernel lock because
2883 * it is set by the callees.
2884 */
2885
2886SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2887{
2888 unsigned long a[AUDITSC_ARGS];
2889 unsigned long a0, a1;
2890 int err;
2891 unsigned int len;
2892
2893 if (call < 1 || call > SYS_SENDMMSG)
2894 return -EINVAL;
2895 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2896
2897 len = nargs[call];
2898 if (len > sizeof(a))
2899 return -EINVAL;
2900
2901 /* copy_from_user should be SMP safe. */
2902 if (copy_from_user(a, args, len))
2903 return -EFAULT;
2904
2905 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2906 if (err)
2907 return err;
2908
2909 a0 = a[0];
2910 a1 = a[1];
2911
2912 switch (call) {
2913 case SYS_SOCKET:
2914 err = __sys_socket(a0, a1, a[2]);
2915 break;
2916 case SYS_BIND:
2917 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2918 break;
2919 case SYS_CONNECT:
2920 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2921 break;
2922 case SYS_LISTEN:
2923 err = __sys_listen(a0, a1);
2924 break;
2925 case SYS_ACCEPT:
2926 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2927 (int __user *)a[2], 0);
2928 break;
2929 case SYS_GETSOCKNAME:
2930 err =
2931 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2932 (int __user *)a[2]);
2933 break;
2934 case SYS_GETPEERNAME:
2935 err =
2936 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2937 (int __user *)a[2]);
2938 break;
2939 case SYS_SOCKETPAIR:
2940 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2941 break;
2942 case SYS_SEND:
2943 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2944 NULL, 0);
2945 break;
2946 case SYS_SENDTO:
2947 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2948 (struct sockaddr __user *)a[4], a[5]);
2949 break;
2950 case SYS_RECV:
2951 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2952 NULL, NULL);
2953 break;
2954 case SYS_RECVFROM:
2955 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2956 (struct sockaddr __user *)a[4],
2957 (int __user *)a[5]);
2958 break;
2959 case SYS_SHUTDOWN:
2960 err = __sys_shutdown(a0, a1);
2961 break;
2962 case SYS_SETSOCKOPT:
2963 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2964 a[4]);
2965 break;
2966 case SYS_GETSOCKOPT:
2967 err =
2968 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2969 (int __user *)a[4]);
2970 break;
2971 case SYS_SENDMSG:
2972 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2973 a[2], true);
2974 break;
2975 case SYS_SENDMMSG:
2976 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2977 a[3], true);
2978 break;
2979 case SYS_RECVMSG:
2980 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2981 a[2], true);
2982 break;
2983 case SYS_RECVMMSG:
2984 if (IS_ENABLED(CONFIG_64BIT))
2985 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2986 a[2], a[3],
2987 (struct __kernel_timespec __user *)a[4],
2988 NULL);
2989 else
2990 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2991 a[2], a[3], NULL,
2992 (struct old_timespec32 __user *)a[4]);
2993 break;
2994 case SYS_ACCEPT4:
2995 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2996 (int __user *)a[2], a[3]);
2997 break;
2998 default:
2999 err = -EINVAL;
3000 break;
3001 }
3002 return err;
3003}
3004
3005#endif /* __ARCH_WANT_SYS_SOCKETCALL */
3006
3007/**
3008 * sock_register - add a socket protocol handler
3009 * @ops: description of protocol
3010 *
3011 * This function is called by a protocol handler that wants to
3012 * advertise its address family, and have it linked into the
3013 * socket interface. The value ops->family corresponds to the
3014 * socket system call protocol family.
3015 */
3016int sock_register(const struct net_proto_family *ops)
3017{
3018 int err;
3019
3020 if (ops->family >= NPROTO) {
3021 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3022 return -ENOBUFS;
3023 }
3024
3025 spin_lock(&net_family_lock);
3026 if (rcu_dereference_protected(net_families[ops->family],
3027 lockdep_is_held(&net_family_lock)))
3028 err = -EEXIST;
3029 else {
3030 rcu_assign_pointer(net_families[ops->family], ops);
3031 err = 0;
3032 }
3033 spin_unlock(&net_family_lock);
3034
3035 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3036 return err;
3037}
3038EXPORT_SYMBOL(sock_register);
3039
3040/**
3041 * sock_unregister - remove a protocol handler
3042 * @family: protocol family to remove
3043 *
3044 * This function is called by a protocol handler that wants to
3045 * remove its address family, and have it unlinked from the
3046 * new socket creation.
3047 *
3048 * If protocol handler is a module, then it can use module reference
3049 * counts to protect against new references. If protocol handler is not
3050 * a module then it needs to provide its own protection in
3051 * the ops->create routine.
3052 */
3053void sock_unregister(int family)
3054{
3055 BUG_ON(family < 0 || family >= NPROTO);
3056
3057 spin_lock(&net_family_lock);
3058 RCU_INIT_POINTER(net_families[family], NULL);
3059 spin_unlock(&net_family_lock);
3060
3061 synchronize_rcu();
3062
3063 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3064}
3065EXPORT_SYMBOL(sock_unregister);
3066
3067bool sock_is_registered(int family)
3068{
3069 return family < NPROTO && rcu_access_pointer(net_families[family]);
3070}
3071
3072static int __init sock_init(void)
3073{
3074 int err;
3075 /*
3076 * Initialize the network sysctl infrastructure.
3077 */
3078 err = net_sysctl_init();
3079 if (err)
3080 goto out;
3081
3082 /*
3083 * Initialize skbuff SLAB cache
3084 */
3085 skb_init();
3086
3087 /*
3088 * Initialize the protocols module.
3089 */
3090
3091 init_inodecache();
3092
3093 err = register_filesystem(&sock_fs_type);
3094 if (err)
3095 goto out;
3096 sock_mnt = kern_mount(&sock_fs_type);
3097 if (IS_ERR(sock_mnt)) {
3098 err = PTR_ERR(sock_mnt);
3099 goto out_mount;
3100 }
3101
3102 /* The real protocol initialization is performed in later initcalls.
3103 */
3104
3105#ifdef CONFIG_NETFILTER
3106 err = netfilter_init();
3107 if (err)
3108 goto out;
3109#endif
3110
3111 ptp_classifier_init();
3112
3113out:
3114 return err;
3115
3116out_mount:
3117 unregister_filesystem(&sock_fs_type);
3118 goto out;
3119}
3120
3121core_initcall(sock_init); /* early initcall */
3122
3123#ifdef CONFIG_PROC_FS
3124void socket_seq_show(struct seq_file *seq)
3125{
3126 seq_printf(seq, "sockets: used %d\n",
3127 sock_inuse_get(seq->private));
3128}
3129#endif /* CONFIG_PROC_FS */
3130
3131#ifdef CONFIG_COMPAT
3132static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3133{
3134 struct compat_ifconf ifc32;
3135 struct ifconf ifc;
3136 int err;
3137
3138 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3139 return -EFAULT;
3140
3141 ifc.ifc_len = ifc32.ifc_len;
3142 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3143
3144 rtnl_lock();
3145 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3146 rtnl_unlock();
3147 if (err)
3148 return err;
3149
3150 ifc32.ifc_len = ifc.ifc_len;
3151 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3152 return -EFAULT;
3153
3154 return 0;
3155}
3156
3157static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3158{
3159 compat_uptr_t uptr32;
3160 struct ifreq ifr;
3161 void __user *saved;
3162 int err;
3163
3164 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3165 return -EFAULT;
3166
3167 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3168 return -EFAULT;
3169
3170 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3171 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3172
3173 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3174 if (!err) {
3175 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3176 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3177 err = -EFAULT;
3178 }
3179 return err;
3180}
3181
3182/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3183static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3184 struct compat_ifreq __user *u_ifreq32)
3185{
3186 struct ifreq ifreq;
3187 u32 data32;
3188
3189 if (!is_socket_ioctl_cmd(cmd))
3190 return -ENOTTY;
3191 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3192 return -EFAULT;
3193 if (get_user(data32, &u_ifreq32->ifr_data))
3194 return -EFAULT;
3195 ifreq.ifr_data = compat_ptr(data32);
3196
3197 return dev_ioctl(net, cmd, &ifreq, NULL);
3198}
3199
3200static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3201 unsigned int cmd,
3202 struct compat_ifreq __user *uifr32)
3203{
3204 struct ifreq __user *uifr;
3205 int err;
3206
3207 /* Handle the fact that while struct ifreq has the same *layout* on
3208 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3209 * which are handled elsewhere, it still has different *size* due to
3210 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3211 * resulting in struct ifreq being 32 and 40 bytes respectively).
3212 * As a result, if the struct happens to be at the end of a page and
3213 * the next page isn't readable/writable, we get a fault. To prevent
3214 * that, copy back and forth to the full size.
3215 */
3216
3217 uifr = compat_alloc_user_space(sizeof(*uifr));
3218 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3219 return -EFAULT;
3220
3221 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3222
3223 if (!err) {
3224 switch (cmd) {
3225 case SIOCGIFFLAGS:
3226 case SIOCGIFMETRIC:
3227 case SIOCGIFMTU:
3228 case SIOCGIFMEM:
3229 case SIOCGIFHWADDR:
3230 case SIOCGIFINDEX:
3231 case SIOCGIFADDR:
3232 case SIOCGIFBRDADDR:
3233 case SIOCGIFDSTADDR:
3234 case SIOCGIFNETMASK:
3235 case SIOCGIFPFLAGS:
3236 case SIOCGIFTXQLEN:
3237 case SIOCGMIIPHY:
3238 case SIOCGMIIREG:
3239 case SIOCGIFNAME:
3240 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3241 err = -EFAULT;
3242 break;
3243 }
3244 }
3245 return err;
3246}
3247
3248static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3249 struct compat_ifreq __user *uifr32)
3250{
3251 struct ifreq ifr;
3252 struct compat_ifmap __user *uifmap32;
3253 int err;
3254
3255 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3256 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3257 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3258 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3259 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3260 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3261 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3262 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3263 if (err)
3264 return -EFAULT;
3265
3266 err = dev_ioctl(net, cmd, &ifr, NULL);
3267
3268 if (cmd == SIOCGIFMAP && !err) {
3269 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3270 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3271 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3272 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3273 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3274 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3275 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3276 if (err)
3277 err = -EFAULT;
3278 }
3279 return err;
3280}
3281
3282/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3283 * for some operations; this forces use of the newer bridge-utils that
3284 * use compatible ioctls
3285 */
3286static int old_bridge_ioctl(compat_ulong_t __user *argp)
3287{
3288 compat_ulong_t tmp;
3289
3290 if (get_user(tmp, argp))
3291 return -EFAULT;
3292 if (tmp == BRCTL_GET_VERSION)
3293 return BRCTL_VERSION + 1;
3294 return -EINVAL;
3295}
3296
3297static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3298 unsigned int cmd, unsigned long arg)
3299{
3300 void __user *argp = compat_ptr(arg);
3301 struct sock *sk = sock->sk;
3302 struct net *net = sock_net(sk);
3303
3304 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3305 return compat_ifr_data_ioctl(net, cmd, argp);
3306
3307 switch (cmd) {
3308 case SIOCSIFBR:
3309 case SIOCGIFBR:
3310 return old_bridge_ioctl(argp);
3311 case SIOCGIFCONF:
3312 return compat_dev_ifconf(net, argp);
3313 case SIOCWANDEV:
3314 return compat_siocwandev(net, argp);
3315 case SIOCGIFMAP:
3316 case SIOCSIFMAP:
3317 return compat_sioc_ifmap(net, cmd, argp);
3318 case SIOCGSTAMP_OLD:
3319 case SIOCGSTAMPNS_OLD:
3320 if (!sock->ops->gettstamp)
3321 return -ENOIOCTLCMD;
3322 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3323 !COMPAT_USE_64BIT_TIME);
3324
3325 case SIOCETHTOOL:
3326 case SIOCBONDSLAVEINFOQUERY:
3327 case SIOCBONDINFOQUERY:
3328 case SIOCSHWTSTAMP:
3329 case SIOCGHWTSTAMP:
3330 return compat_ifr_data_ioctl(net, cmd, argp);
3331
3332 case FIOSETOWN:
3333 case SIOCSPGRP:
3334 case FIOGETOWN:
3335 case SIOCGPGRP:
3336 case SIOCBRADDBR:
3337 case SIOCBRDELBR:
3338 case SIOCGIFVLAN:
3339 case SIOCSIFVLAN:
3340 case SIOCGSKNS:
3341 case SIOCGSTAMP_NEW:
3342 case SIOCGSTAMPNS_NEW:
3343 return sock_ioctl(file, cmd, arg);
3344
3345 case SIOCGIFFLAGS:
3346 case SIOCSIFFLAGS:
3347 case SIOCGIFMETRIC:
3348 case SIOCSIFMETRIC:
3349 case SIOCGIFMTU:
3350 case SIOCSIFMTU:
3351 case SIOCGIFMEM:
3352 case SIOCSIFMEM:
3353 case SIOCGIFHWADDR:
3354 case SIOCSIFHWADDR:
3355 case SIOCADDMULTI:
3356 case SIOCDELMULTI:
3357 case SIOCGIFINDEX:
3358 case SIOCGIFADDR:
3359 case SIOCSIFADDR:
3360 case SIOCSIFHWBROADCAST:
3361 case SIOCDIFADDR:
3362 case SIOCGIFBRDADDR:
3363 case SIOCSIFBRDADDR:
3364 case SIOCGIFDSTADDR:
3365 case SIOCSIFDSTADDR:
3366 case SIOCGIFNETMASK:
3367 case SIOCSIFNETMASK:
3368 case SIOCSIFPFLAGS:
3369 case SIOCGIFPFLAGS:
3370 case SIOCGIFTXQLEN:
3371 case SIOCSIFTXQLEN:
3372 case SIOCBRADDIF:
3373 case SIOCBRDELIF:
3374 case SIOCGIFNAME:
3375 case SIOCSIFNAME:
3376 case SIOCGMIIPHY:
3377 case SIOCGMIIREG:
3378 case SIOCSMIIREG:
3379 case SIOCBONDENSLAVE:
3380 case SIOCBONDRELEASE:
3381 case SIOCBONDSETHWADDR:
3382 case SIOCBONDCHANGEACTIVE:
3383 return compat_ifreq_ioctl(net, sock, cmd, argp);
3384
3385 case SIOCSARP:
3386 case SIOCGARP:
3387 case SIOCDARP:
3388 case SIOCOUTQ:
3389 case SIOCOUTQNSD:
3390 case SIOCATMARK:
3391 return sock_do_ioctl(net, sock, cmd, arg);
3392 }
3393
3394 return -ENOIOCTLCMD;
3395}
3396
3397static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3398 unsigned long arg)
3399{
3400 struct socket *sock = file->private_data;
3401 int ret = -ENOIOCTLCMD;
3402 struct sock *sk;
3403 struct net *net;
3404
3405 sk = sock->sk;
3406 net = sock_net(sk);
3407
3408 if (sock->ops->compat_ioctl)
3409 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3410
3411 if (ret == -ENOIOCTLCMD &&
3412 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3413 ret = compat_wext_handle_ioctl(net, cmd, arg);
3414
3415 if (ret == -ENOIOCTLCMD)
3416 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3417
3418 return ret;
3419}
3420#endif
3421
3422/**
3423 * kernel_bind - bind an address to a socket (kernel space)
3424 * @sock: socket
3425 * @addr: address
3426 * @addrlen: length of address
3427 *
3428 * Returns 0 or an error.
3429 */
3430
3431int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3432{
3433 return sock->ops->bind(sock, addr, addrlen);
3434}
3435EXPORT_SYMBOL(kernel_bind);
3436
3437/**
3438 * kernel_listen - move socket to listening state (kernel space)
3439 * @sock: socket
3440 * @backlog: pending connections queue size
3441 *
3442 * Returns 0 or an error.
3443 */
3444
3445int kernel_listen(struct socket *sock, int backlog)
3446{
3447 return sock->ops->listen(sock, backlog);
3448}
3449EXPORT_SYMBOL(kernel_listen);
3450
3451/**
3452 * kernel_accept - accept a connection (kernel space)
3453 * @sock: listening socket
3454 * @newsock: new connected socket
3455 * @flags: flags
3456 *
3457 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3458 * If it fails, @newsock is guaranteed to be %NULL.
3459 * Returns 0 or an error.
3460 */
3461
3462int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3463{
3464 struct sock *sk = sock->sk;
3465 int err;
3466
3467 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3468 newsock);
3469 if (err < 0)
3470 goto done;
3471
3472 err = sock->ops->accept(sock, *newsock, flags, true);
3473 if (err < 0) {
3474 sock_release(*newsock);
3475 *newsock = NULL;
3476 goto done;
3477 }
3478
3479 (*newsock)->ops = sock->ops;
3480 __module_get((*newsock)->ops->owner);
3481
3482done:
3483 return err;
3484}
3485EXPORT_SYMBOL(kernel_accept);
3486
3487/**
3488 * kernel_connect - connect a socket (kernel space)
3489 * @sock: socket
3490 * @addr: address
3491 * @addrlen: address length
3492 * @flags: flags (O_NONBLOCK, ...)
3493 *
3494 * For datagram sockets, @addr is the address to which datagrams are sent
3495 * by default, and the only address from which datagrams are received.
3496 * For stream sockets, attempts to connect to @addr.
3497 * Returns 0 or an error code.
3498 */
3499
3500int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3501 int flags)
3502{
3503 return sock->ops->connect(sock, addr, addrlen, flags);
3504}
3505EXPORT_SYMBOL(kernel_connect);
3506
3507/**
3508 * kernel_getsockname - get the address which the socket is bound (kernel space)
3509 * @sock: socket
3510 * @addr: address holder
3511 *
3512 * Fills the @addr pointer with the address which the socket is bound.
3513 * Returns 0 or an error code.
3514 */
3515
3516int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3517{
3518 return sock->ops->getname(sock, addr, 0);
3519}
3520EXPORT_SYMBOL(kernel_getsockname);
3521
3522/**
3523 * kernel_getpeername - get the address which the socket is connected (kernel space)
3524 * @sock: socket
3525 * @addr: address holder
3526 *
3527 * Fills the @addr pointer with the address which the socket is connected.
3528 * Returns 0 or an error code.
3529 */
3530
3531int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3532{
3533 return sock->ops->getname(sock, addr, 1);
3534}
3535EXPORT_SYMBOL(kernel_getpeername);
3536
3537/**
3538 * kernel_sendpage - send a &page through a socket (kernel space)
3539 * @sock: socket
3540 * @page: page
3541 * @offset: page offset
3542 * @size: total size in bytes
3543 * @flags: flags (MSG_DONTWAIT, ...)
3544 *
3545 * Returns the total amount sent in bytes or an error.
3546 */
3547
3548int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3549 size_t size, int flags)
3550{
3551 if (sock->ops->sendpage) {
3552 /* Warn in case the improper page to zero-copy send */
3553 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3554 return sock->ops->sendpage(sock, page, offset, size, flags);
3555 }
3556 return sock_no_sendpage(sock, page, offset, size, flags);
3557}
3558EXPORT_SYMBOL(kernel_sendpage);
3559
3560/**
3561 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3562 * @sk: sock
3563 * @page: page
3564 * @offset: page offset
3565 * @size: total size in bytes
3566 * @flags: flags (MSG_DONTWAIT, ...)
3567 *
3568 * Returns the total amount sent in bytes or an error.
3569 * Caller must hold @sk.
3570 */
3571
3572int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3573 size_t size, int flags)
3574{
3575 struct socket *sock = sk->sk_socket;
3576
3577 if (sock->ops->sendpage_locked)
3578 return sock->ops->sendpage_locked(sk, page, offset, size,
3579 flags);
3580
3581 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3582}
3583EXPORT_SYMBOL(kernel_sendpage_locked);
3584
3585/**
3586 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3587 * @sock: socket
3588 * @how: connection part
3589 *
3590 * Returns 0 or an error.
3591 */
3592
3593int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3594{
3595 return sock->ops->shutdown(sock, how);
3596}
3597EXPORT_SYMBOL(kernel_sock_shutdown);
3598
3599/**
3600 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3601 * @sk: socket
3602 *
3603 * This routine returns the IP overhead imposed by a socket i.e.
3604 * the length of the underlying IP header, depending on whether
3605 * this is an IPv4 or IPv6 socket and the length from IP options turned
3606 * on at the socket. Assumes that the caller has a lock on the socket.
3607 */
3608
3609u32 kernel_sock_ip_overhead(struct sock *sk)
3610{
3611 struct inet_sock *inet;
3612 struct ip_options_rcu *opt;
3613 u32 overhead = 0;
3614#if IS_ENABLED(CONFIG_IPV6)
3615 struct ipv6_pinfo *np;
3616 struct ipv6_txoptions *optv6 = NULL;
3617#endif /* IS_ENABLED(CONFIG_IPV6) */
3618
3619 if (!sk)
3620 return overhead;
3621
3622 switch (sk->sk_family) {
3623 case AF_INET:
3624 inet = inet_sk(sk);
3625 overhead += sizeof(struct iphdr);
3626 opt = rcu_dereference_protected(inet->inet_opt,
3627 sock_owned_by_user(sk));
3628 if (opt)
3629 overhead += opt->opt.optlen;
3630 return overhead;
3631#if IS_ENABLED(CONFIG_IPV6)
3632 case AF_INET6:
3633 np = inet6_sk(sk);
3634 overhead += sizeof(struct ipv6hdr);
3635 if (np)
3636 optv6 = rcu_dereference_protected(np->opt,
3637 sock_owned_by_user(sk));
3638 if (optv6)
3639 overhead += (optv6->opt_flen + optv6->opt_nflen);
3640 return overhead;
3641#endif /* IS_ENABLED(CONFIG_IPV6) */
3642 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3643 return overhead;
3644 }
3645}
3646EXPORT_SYMBOL(kernel_sock_ip_overhead);
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/ptp_classify.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91#include <linux/xattr.h>
92
93#include <asm/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/sockios.h>
107#include <linux/atalk.h>
108#include <net/busy_poll.h>
109
110#ifdef CONFIG_NET_RX_BUSY_POLL
111unsigned int sysctl_net_busy_read __read_mostly;
112unsigned int sysctl_net_busy_poll __read_mostly;
113#endif
114
115static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
116static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
117 unsigned long nr_segs, loff_t pos);
118static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
119 unsigned long nr_segs, loff_t pos);
120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122static int sock_close(struct inode *inode, struct file *file);
123static unsigned int sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126#ifdef CONFIG_COMPAT
127static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129#endif
130static int sock_fasync(int fd, struct file *filp, int on);
131static ssize_t sock_sendpage(struct file *file, struct page *page,
132 int offset, size_t size, loff_t *ppos, int more);
133static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 struct pipe_inode_info *pipe, size_t len,
135 unsigned int flags);
136
137/*
138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139 * in the operation structures but are done directly via the socketcall() multiplexor.
140 */
141
142static const struct file_operations socket_file_ops = {
143 .owner = THIS_MODULE,
144 .llseek = no_llseek,
145 .aio_read = sock_aio_read,
146 .aio_write = sock_aio_write,
147 .poll = sock_poll,
148 .unlocked_ioctl = sock_ioctl,
149#ifdef CONFIG_COMPAT
150 .compat_ioctl = compat_sock_ioctl,
151#endif
152 .mmap = sock_mmap,
153 .open = sock_no_open, /* special open code to disallow open via /proc */
154 .release = sock_close,
155 .fasync = sock_fasync,
156 .sendpage = sock_sendpage,
157 .splice_write = generic_splice_sendpage,
158 .splice_read = sock_splice_read,
159};
160
161/*
162 * The protocol list. Each protocol is registered in here.
163 */
164
165static DEFINE_SPINLOCK(net_family_lock);
166static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167
168/*
169 * Statistics counters of the socket lists
170 */
171
172static DEFINE_PER_CPU(int, sockets_in_use);
173
174/*
175 * Support routines.
176 * Move socket addresses back and forth across the kernel/user
177 * divide and look after the messy bits.
178 */
179
180/**
181 * move_addr_to_kernel - copy a socket address into kernel space
182 * @uaddr: Address in user space
183 * @kaddr: Address in kernel space
184 * @ulen: Length in user space
185 *
186 * The address is copied into kernel space. If the provided address is
187 * too long an error code of -EINVAL is returned. If the copy gives
188 * invalid addresses -EFAULT is returned. On a success 0 is returned.
189 */
190
191int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
192{
193 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 return -EINVAL;
195 if (ulen == 0)
196 return 0;
197 if (copy_from_user(kaddr, uaddr, ulen))
198 return -EFAULT;
199 return audit_sockaddr(ulen, kaddr);
200}
201
202/**
203 * move_addr_to_user - copy an address to user space
204 * @kaddr: kernel space address
205 * @klen: length of address in kernel
206 * @uaddr: user space address
207 * @ulen: pointer to user length field
208 *
209 * The value pointed to by ulen on entry is the buffer length available.
210 * This is overwritten with the buffer space used. -EINVAL is returned
211 * if an overlong buffer is specified or a negative buffer size. -EFAULT
212 * is returned if either the buffer or the length field are not
213 * accessible.
214 * After copying the data up to the limit the user specifies, the true
215 * length of the data is written over the length limit the user
216 * specified. Zero is returned for a success.
217 */
218
219static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
220 void __user *uaddr, int __user *ulen)
221{
222 int err;
223 int len;
224
225 BUG_ON(klen > sizeof(struct sockaddr_storage));
226 err = get_user(len, ulen);
227 if (err)
228 return err;
229 if (len > klen)
230 len = klen;
231 if (len < 0)
232 return -EINVAL;
233 if (len) {
234 if (audit_sockaddr(klen, kaddr))
235 return -ENOMEM;
236 if (copy_to_user(uaddr, kaddr, len))
237 return -EFAULT;
238 }
239 /*
240 * "fromlen shall refer to the value before truncation.."
241 * 1003.1g
242 */
243 return __put_user(klen, ulen);
244}
245
246static struct kmem_cache *sock_inode_cachep __read_mostly;
247
248static struct inode *sock_alloc_inode(struct super_block *sb)
249{
250 struct socket_alloc *ei;
251 struct socket_wq *wq;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
257 if (!wq) {
258 kmem_cache_free(sock_inode_cachep, ei);
259 return NULL;
260 }
261 init_waitqueue_head(&wq->wait);
262 wq->fasync_list = NULL;
263 RCU_INIT_POINTER(ei->socket.wq, wq);
264
265 ei->socket.state = SS_UNCONNECTED;
266 ei->socket.flags = 0;
267 ei->socket.ops = NULL;
268 ei->socket.sk = NULL;
269 ei->socket.file = NULL;
270
271 return &ei->vfs_inode;
272}
273
274static void sock_destroy_inode(struct inode *inode)
275{
276 struct socket_alloc *ei;
277 struct socket_wq *wq;
278
279 ei = container_of(inode, struct socket_alloc, vfs_inode);
280 wq = rcu_dereference_protected(ei->socket.wq, 1);
281 kfree_rcu(wq, rcu);
282 kmem_cache_free(sock_inode_cachep, ei);
283}
284
285static void init_once(void *foo)
286{
287 struct socket_alloc *ei = (struct socket_alloc *)foo;
288
289 inode_init_once(&ei->vfs_inode);
290}
291
292static int init_inodecache(void)
293{
294 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
295 sizeof(struct socket_alloc),
296 0,
297 (SLAB_HWCACHE_ALIGN |
298 SLAB_RECLAIM_ACCOUNT |
299 SLAB_MEM_SPREAD),
300 init_once);
301 if (sock_inode_cachep == NULL)
302 return -ENOMEM;
303 return 0;
304}
305
306static const struct super_operations sockfs_ops = {
307 .alloc_inode = sock_alloc_inode,
308 .destroy_inode = sock_destroy_inode,
309 .statfs = simple_statfs,
310};
311
312/*
313 * sockfs_dname() is called from d_path().
314 */
315static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
316{
317 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
318 dentry->d_inode->i_ino);
319}
320
321static const struct dentry_operations sockfs_dentry_operations = {
322 .d_dname = sockfs_dname,
323};
324
325static struct dentry *sockfs_mount(struct file_system_type *fs_type,
326 int flags, const char *dev_name, void *data)
327{
328 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
329 &sockfs_dentry_operations, SOCKFS_MAGIC);
330}
331
332static struct vfsmount *sock_mnt __read_mostly;
333
334static struct file_system_type sock_fs_type = {
335 .name = "sockfs",
336 .mount = sockfs_mount,
337 .kill_sb = kill_anon_super,
338};
339
340/*
341 * Obtains the first available file descriptor and sets it up for use.
342 *
343 * These functions create file structures and maps them to fd space
344 * of the current process. On success it returns file descriptor
345 * and file struct implicitly stored in sock->file.
346 * Note that another thread may close file descriptor before we return
347 * from this function. We use the fact that now we do not refer
348 * to socket after mapping. If one day we will need it, this
349 * function will increment ref. count on file by 1.
350 *
351 * In any case returned fd MAY BE not valid!
352 * This race condition is unavoidable
353 * with shared fd spaces, we cannot solve it inside kernel,
354 * but we take care of internal coherence yet.
355 */
356
357struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
358{
359 struct qstr name = { .name = "" };
360 struct path path;
361 struct file *file;
362
363 if (dname) {
364 name.name = dname;
365 name.len = strlen(name.name);
366 } else if (sock->sk) {
367 name.name = sock->sk->sk_prot_creator->name;
368 name.len = strlen(name.name);
369 }
370 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
371 if (unlikely(!path.dentry))
372 return ERR_PTR(-ENOMEM);
373 path.mnt = mntget(sock_mnt);
374
375 d_instantiate(path.dentry, SOCK_INODE(sock));
376 SOCK_INODE(sock)->i_fop = &socket_file_ops;
377
378 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
379 &socket_file_ops);
380 if (unlikely(IS_ERR(file))) {
381 /* drop dentry, keep inode */
382 ihold(path.dentry->d_inode);
383 path_put(&path);
384 return file;
385 }
386
387 sock->file = file;
388 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
389 file->private_data = sock;
390 return file;
391}
392EXPORT_SYMBOL(sock_alloc_file);
393
394static int sock_map_fd(struct socket *sock, int flags)
395{
396 struct file *newfile;
397 int fd = get_unused_fd_flags(flags);
398 if (unlikely(fd < 0))
399 return fd;
400
401 newfile = sock_alloc_file(sock, flags, NULL);
402 if (likely(!IS_ERR(newfile))) {
403 fd_install(fd, newfile);
404 return fd;
405 }
406
407 put_unused_fd(fd);
408 return PTR_ERR(newfile);
409}
410
411struct socket *sock_from_file(struct file *file, int *err)
412{
413 if (file->f_op == &socket_file_ops)
414 return file->private_data; /* set in sock_map_fd */
415
416 *err = -ENOTSOCK;
417 return NULL;
418}
419EXPORT_SYMBOL(sock_from_file);
420
421/**
422 * sockfd_lookup - Go from a file number to its socket slot
423 * @fd: file handle
424 * @err: pointer to an error code return
425 *
426 * The file handle passed in is locked and the socket it is bound
427 * too is returned. If an error occurs the err pointer is overwritten
428 * with a negative errno code and NULL is returned. The function checks
429 * for both invalid handles and passing a handle which is not a socket.
430 *
431 * On a success the socket object pointer is returned.
432 */
433
434struct socket *sockfd_lookup(int fd, int *err)
435{
436 struct file *file;
437 struct socket *sock;
438
439 file = fget(fd);
440 if (!file) {
441 *err = -EBADF;
442 return NULL;
443 }
444
445 sock = sock_from_file(file, err);
446 if (!sock)
447 fput(file);
448 return sock;
449}
450EXPORT_SYMBOL(sockfd_lookup);
451
452static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
453{
454 struct fd f = fdget(fd);
455 struct socket *sock;
456
457 *err = -EBADF;
458 if (f.file) {
459 sock = sock_from_file(f.file, err);
460 if (likely(sock)) {
461 *fput_needed = f.flags;
462 return sock;
463 }
464 fdput(f);
465 }
466 return NULL;
467}
468
469#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
470#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
471#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
472static ssize_t sockfs_getxattr(struct dentry *dentry,
473 const char *name, void *value, size_t size)
474{
475 const char *proto_name;
476 size_t proto_size;
477 int error;
478
479 error = -ENODATA;
480 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
481 proto_name = dentry->d_name.name;
482 proto_size = strlen(proto_name);
483
484 if (value) {
485 error = -ERANGE;
486 if (proto_size + 1 > size)
487 goto out;
488
489 strncpy(value, proto_name, proto_size + 1);
490 }
491 error = proto_size + 1;
492 }
493
494out:
495 return error;
496}
497
498static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
499 size_t size)
500{
501 ssize_t len;
502 ssize_t used = 0;
503
504 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
505 if (len < 0)
506 return len;
507 used += len;
508 if (buffer) {
509 if (size < used)
510 return -ERANGE;
511 buffer += len;
512 }
513
514 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
520 buffer += len;
521 }
522
523 return used;
524}
525
526static const struct inode_operations sockfs_inode_ops = {
527 .getxattr = sockfs_getxattr,
528 .listxattr = sockfs_listxattr,
529};
530
531/**
532 * sock_alloc - allocate a socket
533 *
534 * Allocate a new inode and socket object. The two are bound together
535 * and initialised. The socket is then returned. If we are out of inodes
536 * NULL is returned.
537 */
538
539static struct socket *sock_alloc(void)
540{
541 struct inode *inode;
542 struct socket *sock;
543
544 inode = new_inode_pseudo(sock_mnt->mnt_sb);
545 if (!inode)
546 return NULL;
547
548 sock = SOCKET_I(inode);
549
550 kmemcheck_annotate_bitfield(sock, type);
551 inode->i_ino = get_next_ino();
552 inode->i_mode = S_IFSOCK | S_IRWXUGO;
553 inode->i_uid = current_fsuid();
554 inode->i_gid = current_fsgid();
555 inode->i_op = &sockfs_inode_ops;
556
557 this_cpu_add(sockets_in_use, 1);
558 return sock;
559}
560
561/*
562 * In theory you can't get an open on this inode, but /proc provides
563 * a back door. Remember to keep it shut otherwise you'll let the
564 * creepy crawlies in.
565 */
566
567static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
568{
569 return -ENXIO;
570}
571
572const struct file_operations bad_sock_fops = {
573 .owner = THIS_MODULE,
574 .open = sock_no_open,
575 .llseek = noop_llseek,
576};
577
578/**
579 * sock_release - close a socket
580 * @sock: socket to close
581 *
582 * The socket is released from the protocol stack if it has a release
583 * callback, and the inode is then released if the socket is bound to
584 * an inode not a file.
585 */
586
587void sock_release(struct socket *sock)
588{
589 if (sock->ops) {
590 struct module *owner = sock->ops->owner;
591
592 sock->ops->release(sock);
593 sock->ops = NULL;
594 module_put(owner);
595 }
596
597 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
598 pr_err("%s: fasync list not empty!\n", __func__);
599
600 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
601 return;
602
603 this_cpu_sub(sockets_in_use, 1);
604 if (!sock->file) {
605 iput(SOCK_INODE(sock));
606 return;
607 }
608 sock->file = NULL;
609}
610EXPORT_SYMBOL(sock_release);
611
612void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
613{
614 *tx_flags = 0;
615 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
616 *tx_flags |= SKBTX_HW_TSTAMP;
617 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
618 *tx_flags |= SKBTX_SW_TSTAMP;
619 if (sock_flag(sk, SOCK_WIFI_STATUS))
620 *tx_flags |= SKBTX_WIFI_STATUS;
621}
622EXPORT_SYMBOL(sock_tx_timestamp);
623
624static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
625 struct msghdr *msg, size_t size)
626{
627 struct sock_iocb *si = kiocb_to_siocb(iocb);
628
629 si->sock = sock;
630 si->scm = NULL;
631 si->msg = msg;
632 si->size = size;
633
634 return sock->ops->sendmsg(iocb, sock, msg, size);
635}
636
637static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
638 struct msghdr *msg, size_t size)
639{
640 int err = security_socket_sendmsg(sock, msg, size);
641
642 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
643}
644
645int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
646{
647 struct kiocb iocb;
648 struct sock_iocb siocb;
649 int ret;
650
651 init_sync_kiocb(&iocb, NULL);
652 iocb.private = &siocb;
653 ret = __sock_sendmsg(&iocb, sock, msg, size);
654 if (-EIOCBQUEUED == ret)
655 ret = wait_on_sync_kiocb(&iocb);
656 return ret;
657}
658EXPORT_SYMBOL(sock_sendmsg);
659
660static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
661{
662 struct kiocb iocb;
663 struct sock_iocb siocb;
664 int ret;
665
666 init_sync_kiocb(&iocb, NULL);
667 iocb.private = &siocb;
668 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
669 if (-EIOCBQUEUED == ret)
670 ret = wait_on_sync_kiocb(&iocb);
671 return ret;
672}
673
674int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
675 struct kvec *vec, size_t num, size_t size)
676{
677 mm_segment_t oldfs = get_fs();
678 int result;
679
680 set_fs(KERNEL_DS);
681 /*
682 * the following is safe, since for compiler definitions of kvec and
683 * iovec are identical, yielding the same in-core layout and alignment
684 */
685 msg->msg_iov = (struct iovec *)vec;
686 msg->msg_iovlen = num;
687 result = sock_sendmsg(sock, msg, size);
688 set_fs(oldfs);
689 return result;
690}
691EXPORT_SYMBOL(kernel_sendmsg);
692
693/*
694 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
695 */
696void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
697 struct sk_buff *skb)
698{
699 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
700 struct timespec ts[3];
701 int empty = 1;
702 struct skb_shared_hwtstamps *shhwtstamps =
703 skb_hwtstamps(skb);
704
705 /* Race occurred between timestamp enabling and packet
706 receiving. Fill in the current time for now. */
707 if (need_software_tstamp && skb->tstamp.tv64 == 0)
708 __net_timestamp(skb);
709
710 if (need_software_tstamp) {
711 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
712 struct timeval tv;
713 skb_get_timestamp(skb, &tv);
714 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
715 sizeof(tv), &tv);
716 } else {
717 skb_get_timestampns(skb, &ts[0]);
718 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
719 sizeof(ts[0]), &ts[0]);
720 }
721 }
722
723
724 memset(ts, 0, sizeof(ts));
725 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
726 ktime_to_timespec_cond(skb->tstamp, ts + 0))
727 empty = 0;
728 if (shhwtstamps) {
729 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
730 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
731 empty = 0;
732 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
733 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
734 empty = 0;
735 }
736 if (!empty)
737 put_cmsg(msg, SOL_SOCKET,
738 SCM_TIMESTAMPING, sizeof(ts), &ts);
739}
740EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
741
742void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
743 struct sk_buff *skb)
744{
745 int ack;
746
747 if (!sock_flag(sk, SOCK_WIFI_STATUS))
748 return;
749 if (!skb->wifi_acked_valid)
750 return;
751
752 ack = skb->wifi_acked;
753
754 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
755}
756EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
757
758static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
759 struct sk_buff *skb)
760{
761 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
762 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
763 sizeof(__u32), &skb->dropcount);
764}
765
766void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
767 struct sk_buff *skb)
768{
769 sock_recv_timestamp(msg, sk, skb);
770 sock_recv_drops(msg, sk, skb);
771}
772EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
773
774static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
775 struct msghdr *msg, size_t size, int flags)
776{
777 struct sock_iocb *si = kiocb_to_siocb(iocb);
778
779 si->sock = sock;
780 si->scm = NULL;
781 si->msg = msg;
782 si->size = size;
783 si->flags = flags;
784
785 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
786}
787
788static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
789 struct msghdr *msg, size_t size, int flags)
790{
791 int err = security_socket_recvmsg(sock, msg, size, flags);
792
793 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
794}
795
796int sock_recvmsg(struct socket *sock, struct msghdr *msg,
797 size_t size, int flags)
798{
799 struct kiocb iocb;
800 struct sock_iocb siocb;
801 int ret;
802
803 init_sync_kiocb(&iocb, NULL);
804 iocb.private = &siocb;
805 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
806 if (-EIOCBQUEUED == ret)
807 ret = wait_on_sync_kiocb(&iocb);
808 return ret;
809}
810EXPORT_SYMBOL(sock_recvmsg);
811
812static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
813 size_t size, int flags)
814{
815 struct kiocb iocb;
816 struct sock_iocb siocb;
817 int ret;
818
819 init_sync_kiocb(&iocb, NULL);
820 iocb.private = &siocb;
821 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
822 if (-EIOCBQUEUED == ret)
823 ret = wait_on_sync_kiocb(&iocb);
824 return ret;
825}
826
827/**
828 * kernel_recvmsg - Receive a message from a socket (kernel space)
829 * @sock: The socket to receive the message from
830 * @msg: Received message
831 * @vec: Input s/g array for message data
832 * @num: Size of input s/g array
833 * @size: Number of bytes to read
834 * @flags: Message flags (MSG_DONTWAIT, etc...)
835 *
836 * On return the msg structure contains the scatter/gather array passed in the
837 * vec argument. The array is modified so that it consists of the unfilled
838 * portion of the original array.
839 *
840 * The returned value is the total number of bytes received, or an error.
841 */
842int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
843 struct kvec *vec, size_t num, size_t size, int flags)
844{
845 mm_segment_t oldfs = get_fs();
846 int result;
847
848 set_fs(KERNEL_DS);
849 /*
850 * the following is safe, since for compiler definitions of kvec and
851 * iovec are identical, yielding the same in-core layout and alignment
852 */
853 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
854 result = sock_recvmsg(sock, msg, size, flags);
855 set_fs(oldfs);
856 return result;
857}
858EXPORT_SYMBOL(kernel_recvmsg);
859
860static ssize_t sock_sendpage(struct file *file, struct page *page,
861 int offset, size_t size, loff_t *ppos, int more)
862{
863 struct socket *sock;
864 int flags;
865
866 sock = file->private_data;
867
868 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
869 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
870 flags |= more;
871
872 return kernel_sendpage(sock, page, offset, size, flags);
873}
874
875static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
876 struct pipe_inode_info *pipe, size_t len,
877 unsigned int flags)
878{
879 struct socket *sock = file->private_data;
880
881 if (unlikely(!sock->ops->splice_read))
882 return -EINVAL;
883
884 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
885}
886
887static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
888 struct sock_iocb *siocb)
889{
890 if (!is_sync_kiocb(iocb))
891 BUG();
892
893 siocb->kiocb = iocb;
894 iocb->private = siocb;
895 return siocb;
896}
897
898static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
899 struct file *file, const struct iovec *iov,
900 unsigned long nr_segs)
901{
902 struct socket *sock = file->private_data;
903 size_t size = 0;
904 int i;
905
906 for (i = 0; i < nr_segs; i++)
907 size += iov[i].iov_len;
908
909 msg->msg_name = NULL;
910 msg->msg_namelen = 0;
911 msg->msg_control = NULL;
912 msg->msg_controllen = 0;
913 msg->msg_iov = (struct iovec *)iov;
914 msg->msg_iovlen = nr_segs;
915 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
916
917 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
918}
919
920static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
921 unsigned long nr_segs, loff_t pos)
922{
923 struct sock_iocb siocb, *x;
924
925 if (pos != 0)
926 return -ESPIPE;
927
928 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
929 return 0;
930
931
932 x = alloc_sock_iocb(iocb, &siocb);
933 if (!x)
934 return -ENOMEM;
935 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
936}
937
938static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
939 struct file *file, const struct iovec *iov,
940 unsigned long nr_segs)
941{
942 struct socket *sock = file->private_data;
943 size_t size = 0;
944 int i;
945
946 for (i = 0; i < nr_segs; i++)
947 size += iov[i].iov_len;
948
949 msg->msg_name = NULL;
950 msg->msg_namelen = 0;
951 msg->msg_control = NULL;
952 msg->msg_controllen = 0;
953 msg->msg_iov = (struct iovec *)iov;
954 msg->msg_iovlen = nr_segs;
955 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956 if (sock->type == SOCK_SEQPACKET)
957 msg->msg_flags |= MSG_EOR;
958
959 return __sock_sendmsg(iocb, sock, msg, size);
960}
961
962static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963 unsigned long nr_segs, loff_t pos)
964{
965 struct sock_iocb siocb, *x;
966
967 if (pos != 0)
968 return -ESPIPE;
969
970 x = alloc_sock_iocb(iocb, &siocb);
971 if (!x)
972 return -ENOMEM;
973
974 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
975}
976
977/*
978 * Atomic setting of ioctl hooks to avoid race
979 * with module unload.
980 */
981
982static DEFINE_MUTEX(br_ioctl_mutex);
983static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
984
985void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
986{
987 mutex_lock(&br_ioctl_mutex);
988 br_ioctl_hook = hook;
989 mutex_unlock(&br_ioctl_mutex);
990}
991EXPORT_SYMBOL(brioctl_set);
992
993static DEFINE_MUTEX(vlan_ioctl_mutex);
994static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
995
996void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
997{
998 mutex_lock(&vlan_ioctl_mutex);
999 vlan_ioctl_hook = hook;
1000 mutex_unlock(&vlan_ioctl_mutex);
1001}
1002EXPORT_SYMBOL(vlan_ioctl_set);
1003
1004static DEFINE_MUTEX(dlci_ioctl_mutex);
1005static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006
1007void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008{
1009 mutex_lock(&dlci_ioctl_mutex);
1010 dlci_ioctl_hook = hook;
1011 mutex_unlock(&dlci_ioctl_mutex);
1012}
1013EXPORT_SYMBOL(dlci_ioctl_set);
1014
1015static long sock_do_ioctl(struct net *net, struct socket *sock,
1016 unsigned int cmd, unsigned long arg)
1017{
1018 int err;
1019 void __user *argp = (void __user *)arg;
1020
1021 err = sock->ops->ioctl(sock, cmd, arg);
1022
1023 /*
1024 * If this ioctl is unknown try to hand it down
1025 * to the NIC driver.
1026 */
1027 if (err == -ENOIOCTLCMD)
1028 err = dev_ioctl(net, cmd, argp);
1029
1030 return err;
1031}
1032
1033/*
1034 * With an ioctl, arg may well be a user mode pointer, but we don't know
1035 * what to do with it - that's up to the protocol still.
1036 */
1037
1038static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039{
1040 struct socket *sock;
1041 struct sock *sk;
1042 void __user *argp = (void __user *)arg;
1043 int pid, err;
1044 struct net *net;
1045
1046 sock = file->private_data;
1047 sk = sock->sk;
1048 net = sock_net(sk);
1049 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050 err = dev_ioctl(net, cmd, argp);
1051 } else
1052#ifdef CONFIG_WEXT_CORE
1053 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054 err = dev_ioctl(net, cmd, argp);
1055 } else
1056#endif
1057 switch (cmd) {
1058 case FIOSETOWN:
1059 case SIOCSPGRP:
1060 err = -EFAULT;
1061 if (get_user(pid, (int __user *)argp))
1062 break;
1063 err = f_setown(sock->file, pid, 1);
1064 break;
1065 case FIOGETOWN:
1066 case SIOCGPGRP:
1067 err = put_user(f_getown(sock->file),
1068 (int __user *)argp);
1069 break;
1070 case SIOCGIFBR:
1071 case SIOCSIFBR:
1072 case SIOCBRADDBR:
1073 case SIOCBRDELBR:
1074 err = -ENOPKG;
1075 if (!br_ioctl_hook)
1076 request_module("bridge");
1077
1078 mutex_lock(&br_ioctl_mutex);
1079 if (br_ioctl_hook)
1080 err = br_ioctl_hook(net, cmd, argp);
1081 mutex_unlock(&br_ioctl_mutex);
1082 break;
1083 case SIOCGIFVLAN:
1084 case SIOCSIFVLAN:
1085 err = -ENOPKG;
1086 if (!vlan_ioctl_hook)
1087 request_module("8021q");
1088
1089 mutex_lock(&vlan_ioctl_mutex);
1090 if (vlan_ioctl_hook)
1091 err = vlan_ioctl_hook(net, argp);
1092 mutex_unlock(&vlan_ioctl_mutex);
1093 break;
1094 case SIOCADDDLCI:
1095 case SIOCDELDLCI:
1096 err = -ENOPKG;
1097 if (!dlci_ioctl_hook)
1098 request_module("dlci");
1099
1100 mutex_lock(&dlci_ioctl_mutex);
1101 if (dlci_ioctl_hook)
1102 err = dlci_ioctl_hook(cmd, argp);
1103 mutex_unlock(&dlci_ioctl_mutex);
1104 break;
1105 default:
1106 err = sock_do_ioctl(net, sock, cmd, arg);
1107 break;
1108 }
1109 return err;
1110}
1111
1112int sock_create_lite(int family, int type, int protocol, struct socket **res)
1113{
1114 int err;
1115 struct socket *sock = NULL;
1116
1117 err = security_socket_create(family, type, protocol, 1);
1118 if (err)
1119 goto out;
1120
1121 sock = sock_alloc();
1122 if (!sock) {
1123 err = -ENOMEM;
1124 goto out;
1125 }
1126
1127 sock->type = type;
1128 err = security_socket_post_create(sock, family, type, protocol, 1);
1129 if (err)
1130 goto out_release;
1131
1132out:
1133 *res = sock;
1134 return err;
1135out_release:
1136 sock_release(sock);
1137 sock = NULL;
1138 goto out;
1139}
1140EXPORT_SYMBOL(sock_create_lite);
1141
1142/* No kernel lock held - perfect */
1143static unsigned int sock_poll(struct file *file, poll_table *wait)
1144{
1145 unsigned int busy_flag = 0;
1146 struct socket *sock;
1147
1148 /*
1149 * We can't return errors to poll, so it's either yes or no.
1150 */
1151 sock = file->private_data;
1152
1153 if (sk_can_busy_loop(sock->sk)) {
1154 /* this socket can poll_ll so tell the system call */
1155 busy_flag = POLL_BUSY_LOOP;
1156
1157 /* once, only if requested by syscall */
1158 if (wait && (wait->_key & POLL_BUSY_LOOP))
1159 sk_busy_loop(sock->sk, 1);
1160 }
1161
1162 return busy_flag | sock->ops->poll(file, sock, wait);
1163}
1164
1165static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1166{
1167 struct socket *sock = file->private_data;
1168
1169 return sock->ops->mmap(file, sock, vma);
1170}
1171
1172static int sock_close(struct inode *inode, struct file *filp)
1173{
1174 sock_release(SOCKET_I(inode));
1175 return 0;
1176}
1177
1178/*
1179 * Update the socket async list
1180 *
1181 * Fasync_list locking strategy.
1182 *
1183 * 1. fasync_list is modified only under process context socket lock
1184 * i.e. under semaphore.
1185 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1186 * or under socket lock
1187 */
1188
1189static int sock_fasync(int fd, struct file *filp, int on)
1190{
1191 struct socket *sock = filp->private_data;
1192 struct sock *sk = sock->sk;
1193 struct socket_wq *wq;
1194
1195 if (sk == NULL)
1196 return -EINVAL;
1197
1198 lock_sock(sk);
1199 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1200 fasync_helper(fd, filp, on, &wq->fasync_list);
1201
1202 if (!wq->fasync_list)
1203 sock_reset_flag(sk, SOCK_FASYNC);
1204 else
1205 sock_set_flag(sk, SOCK_FASYNC);
1206
1207 release_sock(sk);
1208 return 0;
1209}
1210
1211/* This function may be called only under socket lock or callback_lock or rcu_lock */
1212
1213int sock_wake_async(struct socket *sock, int how, int band)
1214{
1215 struct socket_wq *wq;
1216
1217 if (!sock)
1218 return -1;
1219 rcu_read_lock();
1220 wq = rcu_dereference(sock->wq);
1221 if (!wq || !wq->fasync_list) {
1222 rcu_read_unlock();
1223 return -1;
1224 }
1225 switch (how) {
1226 case SOCK_WAKE_WAITD:
1227 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1228 break;
1229 goto call_kill;
1230 case SOCK_WAKE_SPACE:
1231 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1232 break;
1233 /* fall through */
1234 case SOCK_WAKE_IO:
1235call_kill:
1236 kill_fasync(&wq->fasync_list, SIGIO, band);
1237 break;
1238 case SOCK_WAKE_URG:
1239 kill_fasync(&wq->fasync_list, SIGURG, band);
1240 }
1241 rcu_read_unlock();
1242 return 0;
1243}
1244EXPORT_SYMBOL(sock_wake_async);
1245
1246int __sock_create(struct net *net, int family, int type, int protocol,
1247 struct socket **res, int kern)
1248{
1249 int err;
1250 struct socket *sock;
1251 const struct net_proto_family *pf;
1252
1253 /*
1254 * Check protocol is in range
1255 */
1256 if (family < 0 || family >= NPROTO)
1257 return -EAFNOSUPPORT;
1258 if (type < 0 || type >= SOCK_MAX)
1259 return -EINVAL;
1260
1261 /* Compatibility.
1262
1263 This uglymoron is moved from INET layer to here to avoid
1264 deadlock in module load.
1265 */
1266 if (family == PF_INET && type == SOCK_PACKET) {
1267 static int warned;
1268 if (!warned) {
1269 warned = 1;
1270 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1271 current->comm);
1272 }
1273 family = PF_PACKET;
1274 }
1275
1276 err = security_socket_create(family, type, protocol, kern);
1277 if (err)
1278 return err;
1279
1280 /*
1281 * Allocate the socket and allow the family to set things up. if
1282 * the protocol is 0, the family is instructed to select an appropriate
1283 * default.
1284 */
1285 sock = sock_alloc();
1286 if (!sock) {
1287 net_warn_ratelimited("socket: no more sockets\n");
1288 return -ENFILE; /* Not exactly a match, but its the
1289 closest posix thing */
1290 }
1291
1292 sock->type = type;
1293
1294#ifdef CONFIG_MODULES
1295 /* Attempt to load a protocol module if the find failed.
1296 *
1297 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1298 * requested real, full-featured networking support upon configuration.
1299 * Otherwise module support will break!
1300 */
1301 if (rcu_access_pointer(net_families[family]) == NULL)
1302 request_module("net-pf-%d", family);
1303#endif
1304
1305 rcu_read_lock();
1306 pf = rcu_dereference(net_families[family]);
1307 err = -EAFNOSUPPORT;
1308 if (!pf)
1309 goto out_release;
1310
1311 /*
1312 * We will call the ->create function, that possibly is in a loadable
1313 * module, so we have to bump that loadable module refcnt first.
1314 */
1315 if (!try_module_get(pf->owner))
1316 goto out_release;
1317
1318 /* Now protected by module ref count */
1319 rcu_read_unlock();
1320
1321 err = pf->create(net, sock, protocol, kern);
1322 if (err < 0)
1323 goto out_module_put;
1324
1325 /*
1326 * Now to bump the refcnt of the [loadable] module that owns this
1327 * socket at sock_release time we decrement its refcnt.
1328 */
1329 if (!try_module_get(sock->ops->owner))
1330 goto out_module_busy;
1331
1332 /*
1333 * Now that we're done with the ->create function, the [loadable]
1334 * module can have its refcnt decremented
1335 */
1336 module_put(pf->owner);
1337 err = security_socket_post_create(sock, family, type, protocol, kern);
1338 if (err)
1339 goto out_sock_release;
1340 *res = sock;
1341
1342 return 0;
1343
1344out_module_busy:
1345 err = -EAFNOSUPPORT;
1346out_module_put:
1347 sock->ops = NULL;
1348 module_put(pf->owner);
1349out_sock_release:
1350 sock_release(sock);
1351 return err;
1352
1353out_release:
1354 rcu_read_unlock();
1355 goto out_sock_release;
1356}
1357EXPORT_SYMBOL(__sock_create);
1358
1359int sock_create(int family, int type, int protocol, struct socket **res)
1360{
1361 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1362}
1363EXPORT_SYMBOL(sock_create);
1364
1365int sock_create_kern(int family, int type, int protocol, struct socket **res)
1366{
1367 return __sock_create(&init_net, family, type, protocol, res, 1);
1368}
1369EXPORT_SYMBOL(sock_create_kern);
1370
1371SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1372{
1373 int retval;
1374 struct socket *sock;
1375 int flags;
1376
1377 /* Check the SOCK_* constants for consistency. */
1378 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1379 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1380 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1381 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1382
1383 flags = type & ~SOCK_TYPE_MASK;
1384 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1385 return -EINVAL;
1386 type &= SOCK_TYPE_MASK;
1387
1388 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1389 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1390
1391 retval = sock_create(family, type, protocol, &sock);
1392 if (retval < 0)
1393 goto out;
1394
1395 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1396 if (retval < 0)
1397 goto out_release;
1398
1399out:
1400 /* It may be already another descriptor 8) Not kernel problem. */
1401 return retval;
1402
1403out_release:
1404 sock_release(sock);
1405 return retval;
1406}
1407
1408/*
1409 * Create a pair of connected sockets.
1410 */
1411
1412SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1413 int __user *, usockvec)
1414{
1415 struct socket *sock1, *sock2;
1416 int fd1, fd2, err;
1417 struct file *newfile1, *newfile2;
1418 int flags;
1419
1420 flags = type & ~SOCK_TYPE_MASK;
1421 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1422 return -EINVAL;
1423 type &= SOCK_TYPE_MASK;
1424
1425 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1426 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1427
1428 /*
1429 * Obtain the first socket and check if the underlying protocol
1430 * supports the socketpair call.
1431 */
1432
1433 err = sock_create(family, type, protocol, &sock1);
1434 if (err < 0)
1435 goto out;
1436
1437 err = sock_create(family, type, protocol, &sock2);
1438 if (err < 0)
1439 goto out_release_1;
1440
1441 err = sock1->ops->socketpair(sock1, sock2);
1442 if (err < 0)
1443 goto out_release_both;
1444
1445 fd1 = get_unused_fd_flags(flags);
1446 if (unlikely(fd1 < 0)) {
1447 err = fd1;
1448 goto out_release_both;
1449 }
1450
1451 fd2 = get_unused_fd_flags(flags);
1452 if (unlikely(fd2 < 0)) {
1453 err = fd2;
1454 goto out_put_unused_1;
1455 }
1456
1457 newfile1 = sock_alloc_file(sock1, flags, NULL);
1458 if (unlikely(IS_ERR(newfile1))) {
1459 err = PTR_ERR(newfile1);
1460 goto out_put_unused_both;
1461 }
1462
1463 newfile2 = sock_alloc_file(sock2, flags, NULL);
1464 if (IS_ERR(newfile2)) {
1465 err = PTR_ERR(newfile2);
1466 goto out_fput_1;
1467 }
1468
1469 err = put_user(fd1, &usockvec[0]);
1470 if (err)
1471 goto out_fput_both;
1472
1473 err = put_user(fd2, &usockvec[1]);
1474 if (err)
1475 goto out_fput_both;
1476
1477 audit_fd_pair(fd1, fd2);
1478
1479 fd_install(fd1, newfile1);
1480 fd_install(fd2, newfile2);
1481 /* fd1 and fd2 may be already another descriptors.
1482 * Not kernel problem.
1483 */
1484
1485 return 0;
1486
1487out_fput_both:
1488 fput(newfile2);
1489 fput(newfile1);
1490 put_unused_fd(fd2);
1491 put_unused_fd(fd1);
1492 goto out;
1493
1494out_fput_1:
1495 fput(newfile1);
1496 put_unused_fd(fd2);
1497 put_unused_fd(fd1);
1498 sock_release(sock2);
1499 goto out;
1500
1501out_put_unused_both:
1502 put_unused_fd(fd2);
1503out_put_unused_1:
1504 put_unused_fd(fd1);
1505out_release_both:
1506 sock_release(sock2);
1507out_release_1:
1508 sock_release(sock1);
1509out:
1510 return err;
1511}
1512
1513/*
1514 * Bind a name to a socket. Nothing much to do here since it's
1515 * the protocol's responsibility to handle the local address.
1516 *
1517 * We move the socket address to kernel space before we call
1518 * the protocol layer (having also checked the address is ok).
1519 */
1520
1521SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1522{
1523 struct socket *sock;
1524 struct sockaddr_storage address;
1525 int err, fput_needed;
1526
1527 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528 if (sock) {
1529 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1530 if (err >= 0) {
1531 err = security_socket_bind(sock,
1532 (struct sockaddr *)&address,
1533 addrlen);
1534 if (!err)
1535 err = sock->ops->bind(sock,
1536 (struct sockaddr *)
1537 &address, addrlen);
1538 }
1539 fput_light(sock->file, fput_needed);
1540 }
1541 return err;
1542}
1543
1544/*
1545 * Perform a listen. Basically, we allow the protocol to do anything
1546 * necessary for a listen, and if that works, we mark the socket as
1547 * ready for listening.
1548 */
1549
1550SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1551{
1552 struct socket *sock;
1553 int err, fput_needed;
1554 int somaxconn;
1555
1556 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 if (sock) {
1558 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1559 if ((unsigned int)backlog > somaxconn)
1560 backlog = somaxconn;
1561
1562 err = security_socket_listen(sock, backlog);
1563 if (!err)
1564 err = sock->ops->listen(sock, backlog);
1565
1566 fput_light(sock->file, fput_needed);
1567 }
1568 return err;
1569}
1570
1571/*
1572 * For accept, we attempt to create a new socket, set up the link
1573 * with the client, wake up the client, then return the new
1574 * connected fd. We collect the address of the connector in kernel
1575 * space and move it to user at the very end. This is unclean because
1576 * we open the socket then return an error.
1577 *
1578 * 1003.1g adds the ability to recvmsg() to query connection pending
1579 * status to recvmsg. We need to add that support in a way thats
1580 * clean when we restucture accept also.
1581 */
1582
1583SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1584 int __user *, upeer_addrlen, int, flags)
1585{
1586 struct socket *sock, *newsock;
1587 struct file *newfile;
1588 int err, len, newfd, fput_needed;
1589 struct sockaddr_storage address;
1590
1591 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1592 return -EINVAL;
1593
1594 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1595 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1596
1597 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598 if (!sock)
1599 goto out;
1600
1601 err = -ENFILE;
1602 newsock = sock_alloc();
1603 if (!newsock)
1604 goto out_put;
1605
1606 newsock->type = sock->type;
1607 newsock->ops = sock->ops;
1608
1609 /*
1610 * We don't need try_module_get here, as the listening socket (sock)
1611 * has the protocol module (sock->ops->owner) held.
1612 */
1613 __module_get(newsock->ops->owner);
1614
1615 newfd = get_unused_fd_flags(flags);
1616 if (unlikely(newfd < 0)) {
1617 err = newfd;
1618 sock_release(newsock);
1619 goto out_put;
1620 }
1621 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1622 if (unlikely(IS_ERR(newfile))) {
1623 err = PTR_ERR(newfile);
1624 put_unused_fd(newfd);
1625 sock_release(newsock);
1626 goto out_put;
1627 }
1628
1629 err = security_socket_accept(sock, newsock);
1630 if (err)
1631 goto out_fd;
1632
1633 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1634 if (err < 0)
1635 goto out_fd;
1636
1637 if (upeer_sockaddr) {
1638 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1639 &len, 2) < 0) {
1640 err = -ECONNABORTED;
1641 goto out_fd;
1642 }
1643 err = move_addr_to_user(&address,
1644 len, upeer_sockaddr, upeer_addrlen);
1645 if (err < 0)
1646 goto out_fd;
1647 }
1648
1649 /* File flags are not inherited via accept() unlike another OSes. */
1650
1651 fd_install(newfd, newfile);
1652 err = newfd;
1653
1654out_put:
1655 fput_light(sock->file, fput_needed);
1656out:
1657 return err;
1658out_fd:
1659 fput(newfile);
1660 put_unused_fd(newfd);
1661 goto out_put;
1662}
1663
1664SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1665 int __user *, upeer_addrlen)
1666{
1667 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1668}
1669
1670/*
1671 * Attempt to connect to a socket with the server address. The address
1672 * is in user space so we verify it is OK and move it to kernel space.
1673 *
1674 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1675 * break bindings
1676 *
1677 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1678 * other SEQPACKET protocols that take time to connect() as it doesn't
1679 * include the -EINPROGRESS status for such sockets.
1680 */
1681
1682SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683 int, addrlen)
1684{
1685 struct socket *sock;
1686 struct sockaddr_storage address;
1687 int err, fput_needed;
1688
1689 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 if (!sock)
1691 goto out;
1692 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1693 if (err < 0)
1694 goto out_put;
1695
1696 err =
1697 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1698 if (err)
1699 goto out_put;
1700
1701 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1702 sock->file->f_flags);
1703out_put:
1704 fput_light(sock->file, fput_needed);
1705out:
1706 return err;
1707}
1708
1709/*
1710 * Get the local address ('name') of a socket object. Move the obtained
1711 * name to user space.
1712 */
1713
1714SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1715 int __user *, usockaddr_len)
1716{
1717 struct socket *sock;
1718 struct sockaddr_storage address;
1719 int len, err, fput_needed;
1720
1721 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1722 if (!sock)
1723 goto out;
1724
1725 err = security_socket_getsockname(sock);
1726 if (err)
1727 goto out_put;
1728
1729 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1730 if (err)
1731 goto out_put;
1732 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1733
1734out_put:
1735 fput_light(sock->file, fput_needed);
1736out:
1737 return err;
1738}
1739
1740/*
1741 * Get the remote address ('name') of a socket object. Move the obtained
1742 * name to user space.
1743 */
1744
1745SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746 int __user *, usockaddr_len)
1747{
1748 struct socket *sock;
1749 struct sockaddr_storage address;
1750 int len, err, fput_needed;
1751
1752 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1753 if (sock != NULL) {
1754 err = security_socket_getpeername(sock);
1755 if (err) {
1756 fput_light(sock->file, fput_needed);
1757 return err;
1758 }
1759
1760 err =
1761 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1762 1);
1763 if (!err)
1764 err = move_addr_to_user(&address, len, usockaddr,
1765 usockaddr_len);
1766 fput_light(sock->file, fput_needed);
1767 }
1768 return err;
1769}
1770
1771/*
1772 * Send a datagram to a given address. We move the address into kernel
1773 * space and check the user space data area is readable before invoking
1774 * the protocol.
1775 */
1776
1777SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1778 unsigned int, flags, struct sockaddr __user *, addr,
1779 int, addr_len)
1780{
1781 struct socket *sock;
1782 struct sockaddr_storage address;
1783 int err;
1784 struct msghdr msg;
1785 struct iovec iov;
1786 int fput_needed;
1787
1788 if (len > INT_MAX)
1789 len = INT_MAX;
1790 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791 if (!sock)
1792 goto out;
1793
1794 iov.iov_base = buff;
1795 iov.iov_len = len;
1796 msg.msg_name = NULL;
1797 msg.msg_iov = &iov;
1798 msg.msg_iovlen = 1;
1799 msg.msg_control = NULL;
1800 msg.msg_controllen = 0;
1801 msg.msg_namelen = 0;
1802 if (addr) {
1803 err = move_addr_to_kernel(addr, addr_len, &address);
1804 if (err < 0)
1805 goto out_put;
1806 msg.msg_name = (struct sockaddr *)&address;
1807 msg.msg_namelen = addr_len;
1808 }
1809 if (sock->file->f_flags & O_NONBLOCK)
1810 flags |= MSG_DONTWAIT;
1811 msg.msg_flags = flags;
1812 err = sock_sendmsg(sock, &msg, len);
1813
1814out_put:
1815 fput_light(sock->file, fput_needed);
1816out:
1817 return err;
1818}
1819
1820/*
1821 * Send a datagram down a socket.
1822 */
1823
1824SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825 unsigned int, flags)
1826{
1827 return sys_sendto(fd, buff, len, flags, NULL, 0);
1828}
1829
1830/*
1831 * Receive a frame from the socket and optionally record the address of the
1832 * sender. We verify the buffers are writable and if needed move the
1833 * sender address from kernel to user space.
1834 */
1835
1836SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837 unsigned int, flags, struct sockaddr __user *, addr,
1838 int __user *, addr_len)
1839{
1840 struct socket *sock;
1841 struct iovec iov;
1842 struct msghdr msg;
1843 struct sockaddr_storage address;
1844 int err, err2;
1845 int fput_needed;
1846
1847 if (size > INT_MAX)
1848 size = INT_MAX;
1849 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 if (!sock)
1851 goto out;
1852
1853 msg.msg_control = NULL;
1854 msg.msg_controllen = 0;
1855 msg.msg_iovlen = 1;
1856 msg.msg_iov = &iov;
1857 iov.iov_len = size;
1858 iov.iov_base = ubuf;
1859 /* Save some cycles and don't copy the address if not needed */
1860 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1861 /* We assume all kernel code knows the size of sockaddr_storage */
1862 msg.msg_namelen = 0;
1863 if (sock->file->f_flags & O_NONBLOCK)
1864 flags |= MSG_DONTWAIT;
1865 err = sock_recvmsg(sock, &msg, size, flags);
1866
1867 if (err >= 0 && addr != NULL) {
1868 err2 = move_addr_to_user(&address,
1869 msg.msg_namelen, addr, addr_len);
1870 if (err2 < 0)
1871 err = err2;
1872 }
1873
1874 fput_light(sock->file, fput_needed);
1875out:
1876 return err;
1877}
1878
1879/*
1880 * Receive a datagram from a socket.
1881 */
1882
1883SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1884 unsigned int, flags)
1885{
1886 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1887}
1888
1889/*
1890 * Set a socket option. Because we don't know the option lengths we have
1891 * to pass the user mode parameter for the protocols to sort out.
1892 */
1893
1894SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1895 char __user *, optval, int, optlen)
1896{
1897 int err, fput_needed;
1898 struct socket *sock;
1899
1900 if (optlen < 0)
1901 return -EINVAL;
1902
1903 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1904 if (sock != NULL) {
1905 err = security_socket_setsockopt(sock, level, optname);
1906 if (err)
1907 goto out_put;
1908
1909 if (level == SOL_SOCKET)
1910 err =
1911 sock_setsockopt(sock, level, optname, optval,
1912 optlen);
1913 else
1914 err =
1915 sock->ops->setsockopt(sock, level, optname, optval,
1916 optlen);
1917out_put:
1918 fput_light(sock->file, fput_needed);
1919 }
1920 return err;
1921}
1922
1923/*
1924 * Get a socket option. Because we don't know the option lengths we have
1925 * to pass a user mode parameter for the protocols to sort out.
1926 */
1927
1928SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1929 char __user *, optval, int __user *, optlen)
1930{
1931 int err, fput_needed;
1932 struct socket *sock;
1933
1934 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935 if (sock != NULL) {
1936 err = security_socket_getsockopt(sock, level, optname);
1937 if (err)
1938 goto out_put;
1939
1940 if (level == SOL_SOCKET)
1941 err =
1942 sock_getsockopt(sock, level, optname, optval,
1943 optlen);
1944 else
1945 err =
1946 sock->ops->getsockopt(sock, level, optname, optval,
1947 optlen);
1948out_put:
1949 fput_light(sock->file, fput_needed);
1950 }
1951 return err;
1952}
1953
1954/*
1955 * Shutdown a socket.
1956 */
1957
1958SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1959{
1960 int err, fput_needed;
1961 struct socket *sock;
1962
1963 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964 if (sock != NULL) {
1965 err = security_socket_shutdown(sock, how);
1966 if (!err)
1967 err = sock->ops->shutdown(sock, how);
1968 fput_light(sock->file, fput_needed);
1969 }
1970 return err;
1971}
1972
1973/* A couple of helpful macros for getting the address of the 32/64 bit
1974 * fields which are the same type (int / unsigned) on our platforms.
1975 */
1976#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1977#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1978#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1979
1980struct used_address {
1981 struct sockaddr_storage name;
1982 unsigned int name_len;
1983};
1984
1985static int copy_msghdr_from_user(struct msghdr *kmsg,
1986 struct msghdr __user *umsg)
1987{
1988 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1989 return -EFAULT;
1990
1991 if (kmsg->msg_namelen < 0)
1992 return -EINVAL;
1993
1994 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1995 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1996 return 0;
1997}
1998
1999static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2000 struct msghdr *msg_sys, unsigned int flags,
2001 struct used_address *used_address)
2002{
2003 struct compat_msghdr __user *msg_compat =
2004 (struct compat_msghdr __user *)msg;
2005 struct sockaddr_storage address;
2006 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2007 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2008 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2009 /* 20 is size of ipv6_pktinfo */
2010 unsigned char *ctl_buf = ctl;
2011 int err, ctl_len, total_len;
2012
2013 err = -EFAULT;
2014 if (MSG_CMSG_COMPAT & flags) {
2015 if (get_compat_msghdr(msg_sys, msg_compat))
2016 return -EFAULT;
2017 } else {
2018 err = copy_msghdr_from_user(msg_sys, msg);
2019 if (err)
2020 return err;
2021 }
2022
2023 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2024 err = -EMSGSIZE;
2025 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2026 goto out;
2027 err = -ENOMEM;
2028 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2029 GFP_KERNEL);
2030 if (!iov)
2031 goto out;
2032 }
2033
2034 /* This will also move the address data into kernel space */
2035 if (MSG_CMSG_COMPAT & flags) {
2036 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2037 } else
2038 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2039 if (err < 0)
2040 goto out_freeiov;
2041 total_len = err;
2042
2043 err = -ENOBUFS;
2044
2045 if (msg_sys->msg_controllen > INT_MAX)
2046 goto out_freeiov;
2047 ctl_len = msg_sys->msg_controllen;
2048 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2049 err =
2050 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2051 sizeof(ctl));
2052 if (err)
2053 goto out_freeiov;
2054 ctl_buf = msg_sys->msg_control;
2055 ctl_len = msg_sys->msg_controllen;
2056 } else if (ctl_len) {
2057 if (ctl_len > sizeof(ctl)) {
2058 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2059 if (ctl_buf == NULL)
2060 goto out_freeiov;
2061 }
2062 err = -EFAULT;
2063 /*
2064 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2065 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2066 * checking falls down on this.
2067 */
2068 if (copy_from_user(ctl_buf,
2069 (void __user __force *)msg_sys->msg_control,
2070 ctl_len))
2071 goto out_freectl;
2072 msg_sys->msg_control = ctl_buf;
2073 }
2074 msg_sys->msg_flags = flags;
2075
2076 if (sock->file->f_flags & O_NONBLOCK)
2077 msg_sys->msg_flags |= MSG_DONTWAIT;
2078 /*
2079 * If this is sendmmsg() and current destination address is same as
2080 * previously succeeded address, omit asking LSM's decision.
2081 * used_address->name_len is initialized to UINT_MAX so that the first
2082 * destination address never matches.
2083 */
2084 if (used_address && msg_sys->msg_name &&
2085 used_address->name_len == msg_sys->msg_namelen &&
2086 !memcmp(&used_address->name, msg_sys->msg_name,
2087 used_address->name_len)) {
2088 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2089 goto out_freectl;
2090 }
2091 err = sock_sendmsg(sock, msg_sys, total_len);
2092 /*
2093 * If this is sendmmsg() and sending to current destination address was
2094 * successful, remember it.
2095 */
2096 if (used_address && err >= 0) {
2097 used_address->name_len = msg_sys->msg_namelen;
2098 if (msg_sys->msg_name)
2099 memcpy(&used_address->name, msg_sys->msg_name,
2100 used_address->name_len);
2101 }
2102
2103out_freectl:
2104 if (ctl_buf != ctl)
2105 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2106out_freeiov:
2107 if (iov != iovstack)
2108 kfree(iov);
2109out:
2110 return err;
2111}
2112
2113/*
2114 * BSD sendmsg interface
2115 */
2116
2117long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2118{
2119 int fput_needed, err;
2120 struct msghdr msg_sys;
2121 struct socket *sock;
2122
2123 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2124 if (!sock)
2125 goto out;
2126
2127 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2128
2129 fput_light(sock->file, fput_needed);
2130out:
2131 return err;
2132}
2133
2134SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2135{
2136 if (flags & MSG_CMSG_COMPAT)
2137 return -EINVAL;
2138 return __sys_sendmsg(fd, msg, flags);
2139}
2140
2141/*
2142 * Linux sendmmsg interface
2143 */
2144
2145int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2146 unsigned int flags)
2147{
2148 int fput_needed, err, datagrams;
2149 struct socket *sock;
2150 struct mmsghdr __user *entry;
2151 struct compat_mmsghdr __user *compat_entry;
2152 struct msghdr msg_sys;
2153 struct used_address used_address;
2154
2155 if (vlen > UIO_MAXIOV)
2156 vlen = UIO_MAXIOV;
2157
2158 datagrams = 0;
2159
2160 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161 if (!sock)
2162 return err;
2163
2164 used_address.name_len = UINT_MAX;
2165 entry = mmsg;
2166 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2167 err = 0;
2168
2169 while (datagrams < vlen) {
2170 if (MSG_CMSG_COMPAT & flags) {
2171 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2172 &msg_sys, flags, &used_address);
2173 if (err < 0)
2174 break;
2175 err = __put_user(err, &compat_entry->msg_len);
2176 ++compat_entry;
2177 } else {
2178 err = ___sys_sendmsg(sock,
2179 (struct msghdr __user *)entry,
2180 &msg_sys, flags, &used_address);
2181 if (err < 0)
2182 break;
2183 err = put_user(err, &entry->msg_len);
2184 ++entry;
2185 }
2186
2187 if (err)
2188 break;
2189 ++datagrams;
2190 }
2191
2192 fput_light(sock->file, fput_needed);
2193
2194 /* We only return an error if no datagrams were able to be sent */
2195 if (datagrams != 0)
2196 return datagrams;
2197
2198 return err;
2199}
2200
2201SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2202 unsigned int, vlen, unsigned int, flags)
2203{
2204 if (flags & MSG_CMSG_COMPAT)
2205 return -EINVAL;
2206 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2207}
2208
2209static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2210 struct msghdr *msg_sys, unsigned int flags, int nosec)
2211{
2212 struct compat_msghdr __user *msg_compat =
2213 (struct compat_msghdr __user *)msg;
2214 struct iovec iovstack[UIO_FASTIOV];
2215 struct iovec *iov = iovstack;
2216 unsigned long cmsg_ptr;
2217 int err, total_len, len;
2218
2219 /* kernel mode address */
2220 struct sockaddr_storage addr;
2221
2222 /* user mode address pointers */
2223 struct sockaddr __user *uaddr;
2224 int __user *uaddr_len;
2225
2226 if (MSG_CMSG_COMPAT & flags) {
2227 if (get_compat_msghdr(msg_sys, msg_compat))
2228 return -EFAULT;
2229 } else {
2230 err = copy_msghdr_from_user(msg_sys, msg);
2231 if (err)
2232 return err;
2233 }
2234
2235 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2236 err = -EMSGSIZE;
2237 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2238 goto out;
2239 err = -ENOMEM;
2240 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2241 GFP_KERNEL);
2242 if (!iov)
2243 goto out;
2244 }
2245
2246 /* Save the user-mode address (verify_iovec will change the
2247 * kernel msghdr to use the kernel address space)
2248 */
2249 uaddr = (__force void __user *)msg_sys->msg_name;
2250 uaddr_len = COMPAT_NAMELEN(msg);
2251 if (MSG_CMSG_COMPAT & flags)
2252 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2253 else
2254 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2255 if (err < 0)
2256 goto out_freeiov;
2257 total_len = err;
2258
2259 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2260 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2261
2262 /* We assume all kernel code knows the size of sockaddr_storage */
2263 msg_sys->msg_namelen = 0;
2264
2265 if (sock->file->f_flags & O_NONBLOCK)
2266 flags |= MSG_DONTWAIT;
2267 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2268 total_len, flags);
2269 if (err < 0)
2270 goto out_freeiov;
2271 len = err;
2272
2273 if (uaddr != NULL) {
2274 err = move_addr_to_user(&addr,
2275 msg_sys->msg_namelen, uaddr,
2276 uaddr_len);
2277 if (err < 0)
2278 goto out_freeiov;
2279 }
2280 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2281 COMPAT_FLAGS(msg));
2282 if (err)
2283 goto out_freeiov;
2284 if (MSG_CMSG_COMPAT & flags)
2285 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2286 &msg_compat->msg_controllen);
2287 else
2288 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2289 &msg->msg_controllen);
2290 if (err)
2291 goto out_freeiov;
2292 err = len;
2293
2294out_freeiov:
2295 if (iov != iovstack)
2296 kfree(iov);
2297out:
2298 return err;
2299}
2300
2301/*
2302 * BSD recvmsg interface
2303 */
2304
2305long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2306{
2307 int fput_needed, err;
2308 struct msghdr msg_sys;
2309 struct socket *sock;
2310
2311 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2312 if (!sock)
2313 goto out;
2314
2315 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2316
2317 fput_light(sock->file, fput_needed);
2318out:
2319 return err;
2320}
2321
2322SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2323 unsigned int, flags)
2324{
2325 if (flags & MSG_CMSG_COMPAT)
2326 return -EINVAL;
2327 return __sys_recvmsg(fd, msg, flags);
2328}
2329
2330/*
2331 * Linux recvmmsg interface
2332 */
2333
2334int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2335 unsigned int flags, struct timespec *timeout)
2336{
2337 int fput_needed, err, datagrams;
2338 struct socket *sock;
2339 struct mmsghdr __user *entry;
2340 struct compat_mmsghdr __user *compat_entry;
2341 struct msghdr msg_sys;
2342 struct timespec end_time;
2343
2344 if (timeout &&
2345 poll_select_set_timeout(&end_time, timeout->tv_sec,
2346 timeout->tv_nsec))
2347 return -EINVAL;
2348
2349 datagrams = 0;
2350
2351 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2352 if (!sock)
2353 return err;
2354
2355 err = sock_error(sock->sk);
2356 if (err)
2357 goto out_put;
2358
2359 entry = mmsg;
2360 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2361
2362 while (datagrams < vlen) {
2363 /*
2364 * No need to ask LSM for more than the first datagram.
2365 */
2366 if (MSG_CMSG_COMPAT & flags) {
2367 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2368 &msg_sys, flags & ~MSG_WAITFORONE,
2369 datagrams);
2370 if (err < 0)
2371 break;
2372 err = __put_user(err, &compat_entry->msg_len);
2373 ++compat_entry;
2374 } else {
2375 err = ___sys_recvmsg(sock,
2376 (struct msghdr __user *)entry,
2377 &msg_sys, flags & ~MSG_WAITFORONE,
2378 datagrams);
2379 if (err < 0)
2380 break;
2381 err = put_user(err, &entry->msg_len);
2382 ++entry;
2383 }
2384
2385 if (err)
2386 break;
2387 ++datagrams;
2388
2389 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2390 if (flags & MSG_WAITFORONE)
2391 flags |= MSG_DONTWAIT;
2392
2393 if (timeout) {
2394 ktime_get_ts(timeout);
2395 *timeout = timespec_sub(end_time, *timeout);
2396 if (timeout->tv_sec < 0) {
2397 timeout->tv_sec = timeout->tv_nsec = 0;
2398 break;
2399 }
2400
2401 /* Timeout, return less than vlen datagrams */
2402 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2403 break;
2404 }
2405
2406 /* Out of band data, return right away */
2407 if (msg_sys.msg_flags & MSG_OOB)
2408 break;
2409 }
2410
2411out_put:
2412 fput_light(sock->file, fput_needed);
2413
2414 if (err == 0)
2415 return datagrams;
2416
2417 if (datagrams != 0) {
2418 /*
2419 * We may return less entries than requested (vlen) if the
2420 * sock is non block and there aren't enough datagrams...
2421 */
2422 if (err != -EAGAIN) {
2423 /*
2424 * ... or if recvmsg returns an error after we
2425 * received some datagrams, where we record the
2426 * error to return on the next call or if the
2427 * app asks about it using getsockopt(SO_ERROR).
2428 */
2429 sock->sk->sk_err = -err;
2430 }
2431
2432 return datagrams;
2433 }
2434
2435 return err;
2436}
2437
2438SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2439 unsigned int, vlen, unsigned int, flags,
2440 struct timespec __user *, timeout)
2441{
2442 int datagrams;
2443 struct timespec timeout_sys;
2444
2445 if (flags & MSG_CMSG_COMPAT)
2446 return -EINVAL;
2447
2448 if (!timeout)
2449 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2450
2451 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2452 return -EFAULT;
2453
2454 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2455
2456 if (datagrams > 0 &&
2457 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2458 datagrams = -EFAULT;
2459
2460 return datagrams;
2461}
2462
2463#ifdef __ARCH_WANT_SYS_SOCKETCALL
2464/* Argument list sizes for sys_socketcall */
2465#define AL(x) ((x) * sizeof(unsigned long))
2466static const unsigned char nargs[21] = {
2467 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2468 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2469 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2470 AL(4), AL(5), AL(4)
2471};
2472
2473#undef AL
2474
2475/*
2476 * System call vectors.
2477 *
2478 * Argument checking cleaned up. Saved 20% in size.
2479 * This function doesn't need to set the kernel lock because
2480 * it is set by the callees.
2481 */
2482
2483SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2484{
2485 unsigned long a[AUDITSC_ARGS];
2486 unsigned long a0, a1;
2487 int err;
2488 unsigned int len;
2489
2490 if (call < 1 || call > SYS_SENDMMSG)
2491 return -EINVAL;
2492
2493 len = nargs[call];
2494 if (len > sizeof(a))
2495 return -EINVAL;
2496
2497 /* copy_from_user should be SMP safe. */
2498 if (copy_from_user(a, args, len))
2499 return -EFAULT;
2500
2501 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2502 if (err)
2503 return err;
2504
2505 a0 = a[0];
2506 a1 = a[1];
2507
2508 switch (call) {
2509 case SYS_SOCKET:
2510 err = sys_socket(a0, a1, a[2]);
2511 break;
2512 case SYS_BIND:
2513 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2514 break;
2515 case SYS_CONNECT:
2516 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2517 break;
2518 case SYS_LISTEN:
2519 err = sys_listen(a0, a1);
2520 break;
2521 case SYS_ACCEPT:
2522 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2523 (int __user *)a[2], 0);
2524 break;
2525 case SYS_GETSOCKNAME:
2526 err =
2527 sys_getsockname(a0, (struct sockaddr __user *)a1,
2528 (int __user *)a[2]);
2529 break;
2530 case SYS_GETPEERNAME:
2531 err =
2532 sys_getpeername(a0, (struct sockaddr __user *)a1,
2533 (int __user *)a[2]);
2534 break;
2535 case SYS_SOCKETPAIR:
2536 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2537 break;
2538 case SYS_SEND:
2539 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2540 break;
2541 case SYS_SENDTO:
2542 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2543 (struct sockaddr __user *)a[4], a[5]);
2544 break;
2545 case SYS_RECV:
2546 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2547 break;
2548 case SYS_RECVFROM:
2549 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2550 (struct sockaddr __user *)a[4],
2551 (int __user *)a[5]);
2552 break;
2553 case SYS_SHUTDOWN:
2554 err = sys_shutdown(a0, a1);
2555 break;
2556 case SYS_SETSOCKOPT:
2557 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2558 break;
2559 case SYS_GETSOCKOPT:
2560 err =
2561 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2562 (int __user *)a[4]);
2563 break;
2564 case SYS_SENDMSG:
2565 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2566 break;
2567 case SYS_SENDMMSG:
2568 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2569 break;
2570 case SYS_RECVMSG:
2571 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2572 break;
2573 case SYS_RECVMMSG:
2574 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2575 (struct timespec __user *)a[4]);
2576 break;
2577 case SYS_ACCEPT4:
2578 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2579 (int __user *)a[2], a[3]);
2580 break;
2581 default:
2582 err = -EINVAL;
2583 break;
2584 }
2585 return err;
2586}
2587
2588#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2589
2590/**
2591 * sock_register - add a socket protocol handler
2592 * @ops: description of protocol
2593 *
2594 * This function is called by a protocol handler that wants to
2595 * advertise its address family, and have it linked into the
2596 * socket interface. The value ops->family coresponds to the
2597 * socket system call protocol family.
2598 */
2599int sock_register(const struct net_proto_family *ops)
2600{
2601 int err;
2602
2603 if (ops->family >= NPROTO) {
2604 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2605 return -ENOBUFS;
2606 }
2607
2608 spin_lock(&net_family_lock);
2609 if (rcu_dereference_protected(net_families[ops->family],
2610 lockdep_is_held(&net_family_lock)))
2611 err = -EEXIST;
2612 else {
2613 rcu_assign_pointer(net_families[ops->family], ops);
2614 err = 0;
2615 }
2616 spin_unlock(&net_family_lock);
2617
2618 pr_info("NET: Registered protocol family %d\n", ops->family);
2619 return err;
2620}
2621EXPORT_SYMBOL(sock_register);
2622
2623/**
2624 * sock_unregister - remove a protocol handler
2625 * @family: protocol family to remove
2626 *
2627 * This function is called by a protocol handler that wants to
2628 * remove its address family, and have it unlinked from the
2629 * new socket creation.
2630 *
2631 * If protocol handler is a module, then it can use module reference
2632 * counts to protect against new references. If protocol handler is not
2633 * a module then it needs to provide its own protection in
2634 * the ops->create routine.
2635 */
2636void sock_unregister(int family)
2637{
2638 BUG_ON(family < 0 || family >= NPROTO);
2639
2640 spin_lock(&net_family_lock);
2641 RCU_INIT_POINTER(net_families[family], NULL);
2642 spin_unlock(&net_family_lock);
2643
2644 synchronize_rcu();
2645
2646 pr_info("NET: Unregistered protocol family %d\n", family);
2647}
2648EXPORT_SYMBOL(sock_unregister);
2649
2650static int __init sock_init(void)
2651{
2652 int err;
2653 /*
2654 * Initialize the network sysctl infrastructure.
2655 */
2656 err = net_sysctl_init();
2657 if (err)
2658 goto out;
2659
2660 /*
2661 * Initialize skbuff SLAB cache
2662 */
2663 skb_init();
2664
2665 /*
2666 * Initialize the protocols module.
2667 */
2668
2669 init_inodecache();
2670
2671 err = register_filesystem(&sock_fs_type);
2672 if (err)
2673 goto out_fs;
2674 sock_mnt = kern_mount(&sock_fs_type);
2675 if (IS_ERR(sock_mnt)) {
2676 err = PTR_ERR(sock_mnt);
2677 goto out_mount;
2678 }
2679
2680 /* The real protocol initialization is performed in later initcalls.
2681 */
2682
2683#ifdef CONFIG_NETFILTER
2684 err = netfilter_init();
2685 if (err)
2686 goto out;
2687#endif
2688
2689 ptp_classifier_init();
2690
2691out:
2692 return err;
2693
2694out_mount:
2695 unregister_filesystem(&sock_fs_type);
2696out_fs:
2697 goto out;
2698}
2699
2700core_initcall(sock_init); /* early initcall */
2701
2702#ifdef CONFIG_PROC_FS
2703void socket_seq_show(struct seq_file *seq)
2704{
2705 int cpu;
2706 int counter = 0;
2707
2708 for_each_possible_cpu(cpu)
2709 counter += per_cpu(sockets_in_use, cpu);
2710
2711 /* It can be negative, by the way. 8) */
2712 if (counter < 0)
2713 counter = 0;
2714
2715 seq_printf(seq, "sockets: used %d\n", counter);
2716}
2717#endif /* CONFIG_PROC_FS */
2718
2719#ifdef CONFIG_COMPAT
2720static int do_siocgstamp(struct net *net, struct socket *sock,
2721 unsigned int cmd, void __user *up)
2722{
2723 mm_segment_t old_fs = get_fs();
2724 struct timeval ktv;
2725 int err;
2726
2727 set_fs(KERNEL_DS);
2728 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2729 set_fs(old_fs);
2730 if (!err)
2731 err = compat_put_timeval(&ktv, up);
2732
2733 return err;
2734}
2735
2736static int do_siocgstampns(struct net *net, struct socket *sock,
2737 unsigned int cmd, void __user *up)
2738{
2739 mm_segment_t old_fs = get_fs();
2740 struct timespec kts;
2741 int err;
2742
2743 set_fs(KERNEL_DS);
2744 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2745 set_fs(old_fs);
2746 if (!err)
2747 err = compat_put_timespec(&kts, up);
2748
2749 return err;
2750}
2751
2752static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2753{
2754 struct ifreq __user *uifr;
2755 int err;
2756
2757 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2758 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2759 return -EFAULT;
2760
2761 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2762 if (err)
2763 return err;
2764
2765 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2766 return -EFAULT;
2767
2768 return 0;
2769}
2770
2771static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2772{
2773 struct compat_ifconf ifc32;
2774 struct ifconf ifc;
2775 struct ifconf __user *uifc;
2776 struct compat_ifreq __user *ifr32;
2777 struct ifreq __user *ifr;
2778 unsigned int i, j;
2779 int err;
2780
2781 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2782 return -EFAULT;
2783
2784 memset(&ifc, 0, sizeof(ifc));
2785 if (ifc32.ifcbuf == 0) {
2786 ifc32.ifc_len = 0;
2787 ifc.ifc_len = 0;
2788 ifc.ifc_req = NULL;
2789 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2790 } else {
2791 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2792 sizeof(struct ifreq);
2793 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2794 ifc.ifc_len = len;
2795 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2796 ifr32 = compat_ptr(ifc32.ifcbuf);
2797 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2798 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2799 return -EFAULT;
2800 ifr++;
2801 ifr32++;
2802 }
2803 }
2804 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2805 return -EFAULT;
2806
2807 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2808 if (err)
2809 return err;
2810
2811 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2812 return -EFAULT;
2813
2814 ifr = ifc.ifc_req;
2815 ifr32 = compat_ptr(ifc32.ifcbuf);
2816 for (i = 0, j = 0;
2817 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2818 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2819 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2820 return -EFAULT;
2821 ifr32++;
2822 ifr++;
2823 }
2824
2825 if (ifc32.ifcbuf == 0) {
2826 /* Translate from 64-bit structure multiple to
2827 * a 32-bit one.
2828 */
2829 i = ifc.ifc_len;
2830 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2831 ifc32.ifc_len = i;
2832 } else {
2833 ifc32.ifc_len = i;
2834 }
2835 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2836 return -EFAULT;
2837
2838 return 0;
2839}
2840
2841static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2842{
2843 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2844 bool convert_in = false, convert_out = false;
2845 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2846 struct ethtool_rxnfc __user *rxnfc;
2847 struct ifreq __user *ifr;
2848 u32 rule_cnt = 0, actual_rule_cnt;
2849 u32 ethcmd;
2850 u32 data;
2851 int ret;
2852
2853 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2854 return -EFAULT;
2855
2856 compat_rxnfc = compat_ptr(data);
2857
2858 if (get_user(ethcmd, &compat_rxnfc->cmd))
2859 return -EFAULT;
2860
2861 /* Most ethtool structures are defined without padding.
2862 * Unfortunately struct ethtool_rxnfc is an exception.
2863 */
2864 switch (ethcmd) {
2865 default:
2866 break;
2867 case ETHTOOL_GRXCLSRLALL:
2868 /* Buffer size is variable */
2869 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2870 return -EFAULT;
2871 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2872 return -ENOMEM;
2873 buf_size += rule_cnt * sizeof(u32);
2874 /* fall through */
2875 case ETHTOOL_GRXRINGS:
2876 case ETHTOOL_GRXCLSRLCNT:
2877 case ETHTOOL_GRXCLSRULE:
2878 case ETHTOOL_SRXCLSRLINS:
2879 convert_out = true;
2880 /* fall through */
2881 case ETHTOOL_SRXCLSRLDEL:
2882 buf_size += sizeof(struct ethtool_rxnfc);
2883 convert_in = true;
2884 break;
2885 }
2886
2887 ifr = compat_alloc_user_space(buf_size);
2888 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2889
2890 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2891 return -EFAULT;
2892
2893 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2894 &ifr->ifr_ifru.ifru_data))
2895 return -EFAULT;
2896
2897 if (convert_in) {
2898 /* We expect there to be holes between fs.m_ext and
2899 * fs.ring_cookie and at the end of fs, but nowhere else.
2900 */
2901 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2902 sizeof(compat_rxnfc->fs.m_ext) !=
2903 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2904 sizeof(rxnfc->fs.m_ext));
2905 BUILD_BUG_ON(
2906 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2907 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2908 offsetof(struct ethtool_rxnfc, fs.location) -
2909 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2910
2911 if (copy_in_user(rxnfc, compat_rxnfc,
2912 (void __user *)(&rxnfc->fs.m_ext + 1) -
2913 (void __user *)rxnfc) ||
2914 copy_in_user(&rxnfc->fs.ring_cookie,
2915 &compat_rxnfc->fs.ring_cookie,
2916 (void __user *)(&rxnfc->fs.location + 1) -
2917 (void __user *)&rxnfc->fs.ring_cookie) ||
2918 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2919 sizeof(rxnfc->rule_cnt)))
2920 return -EFAULT;
2921 }
2922
2923 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2924 if (ret)
2925 return ret;
2926
2927 if (convert_out) {
2928 if (copy_in_user(compat_rxnfc, rxnfc,
2929 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2930 (const void __user *)rxnfc) ||
2931 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2932 &rxnfc->fs.ring_cookie,
2933 (const void __user *)(&rxnfc->fs.location + 1) -
2934 (const void __user *)&rxnfc->fs.ring_cookie) ||
2935 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2936 sizeof(rxnfc->rule_cnt)))
2937 return -EFAULT;
2938
2939 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2940 /* As an optimisation, we only copy the actual
2941 * number of rules that the underlying
2942 * function returned. Since Mallory might
2943 * change the rule count in user memory, we
2944 * check that it is less than the rule count
2945 * originally given (as the user buffer size),
2946 * which has been range-checked.
2947 */
2948 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2949 return -EFAULT;
2950 if (actual_rule_cnt < rule_cnt)
2951 rule_cnt = actual_rule_cnt;
2952 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2953 &rxnfc->rule_locs[0],
2954 rule_cnt * sizeof(u32)))
2955 return -EFAULT;
2956 }
2957 }
2958
2959 return 0;
2960}
2961
2962static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2963{
2964 void __user *uptr;
2965 compat_uptr_t uptr32;
2966 struct ifreq __user *uifr;
2967
2968 uifr = compat_alloc_user_space(sizeof(*uifr));
2969 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2970 return -EFAULT;
2971
2972 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2973 return -EFAULT;
2974
2975 uptr = compat_ptr(uptr32);
2976
2977 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2978 return -EFAULT;
2979
2980 return dev_ioctl(net, SIOCWANDEV, uifr);
2981}
2982
2983static int bond_ioctl(struct net *net, unsigned int cmd,
2984 struct compat_ifreq __user *ifr32)
2985{
2986 struct ifreq kifr;
2987 mm_segment_t old_fs;
2988 int err;
2989
2990 switch (cmd) {
2991 case SIOCBONDENSLAVE:
2992 case SIOCBONDRELEASE:
2993 case SIOCBONDSETHWADDR:
2994 case SIOCBONDCHANGEACTIVE:
2995 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2996 return -EFAULT;
2997
2998 old_fs = get_fs();
2999 set_fs(KERNEL_DS);
3000 err = dev_ioctl(net, cmd,
3001 (struct ifreq __user __force *) &kifr);
3002 set_fs(old_fs);
3003
3004 return err;
3005 default:
3006 return -ENOIOCTLCMD;
3007 }
3008}
3009
3010/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3011static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3012 struct compat_ifreq __user *u_ifreq32)
3013{
3014 struct ifreq __user *u_ifreq64;
3015 char tmp_buf[IFNAMSIZ];
3016 void __user *data64;
3017 u32 data32;
3018
3019 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3020 IFNAMSIZ))
3021 return -EFAULT;
3022 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3023 return -EFAULT;
3024 data64 = compat_ptr(data32);
3025
3026 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3027
3028 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3029 IFNAMSIZ))
3030 return -EFAULT;
3031 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3032 return -EFAULT;
3033
3034 return dev_ioctl(net, cmd, u_ifreq64);
3035}
3036
3037static int dev_ifsioc(struct net *net, struct socket *sock,
3038 unsigned int cmd, struct compat_ifreq __user *uifr32)
3039{
3040 struct ifreq __user *uifr;
3041 int err;
3042
3043 uifr = compat_alloc_user_space(sizeof(*uifr));
3044 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3045 return -EFAULT;
3046
3047 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3048
3049 if (!err) {
3050 switch (cmd) {
3051 case SIOCGIFFLAGS:
3052 case SIOCGIFMETRIC:
3053 case SIOCGIFMTU:
3054 case SIOCGIFMEM:
3055 case SIOCGIFHWADDR:
3056 case SIOCGIFINDEX:
3057 case SIOCGIFADDR:
3058 case SIOCGIFBRDADDR:
3059 case SIOCGIFDSTADDR:
3060 case SIOCGIFNETMASK:
3061 case SIOCGIFPFLAGS:
3062 case SIOCGIFTXQLEN:
3063 case SIOCGMIIPHY:
3064 case SIOCGMIIREG:
3065 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3066 err = -EFAULT;
3067 break;
3068 }
3069 }
3070 return err;
3071}
3072
3073static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3074 struct compat_ifreq __user *uifr32)
3075{
3076 struct ifreq ifr;
3077 struct compat_ifmap __user *uifmap32;
3078 mm_segment_t old_fs;
3079 int err;
3080
3081 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3082 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3083 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3084 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3085 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3086 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3087 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3088 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3089 if (err)
3090 return -EFAULT;
3091
3092 old_fs = get_fs();
3093 set_fs(KERNEL_DS);
3094 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3095 set_fs(old_fs);
3096
3097 if (cmd == SIOCGIFMAP && !err) {
3098 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3099 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3100 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3101 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3102 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3103 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3104 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3105 if (err)
3106 err = -EFAULT;
3107 }
3108 return err;
3109}
3110
3111struct rtentry32 {
3112 u32 rt_pad1;
3113 struct sockaddr rt_dst; /* target address */
3114 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3115 struct sockaddr rt_genmask; /* target network mask (IP) */
3116 unsigned short rt_flags;
3117 short rt_pad2;
3118 u32 rt_pad3;
3119 unsigned char rt_tos;
3120 unsigned char rt_class;
3121 short rt_pad4;
3122 short rt_metric; /* +1 for binary compatibility! */
3123 /* char * */ u32 rt_dev; /* forcing the device at add */
3124 u32 rt_mtu; /* per route MTU/Window */
3125 u32 rt_window; /* Window clamping */
3126 unsigned short rt_irtt; /* Initial RTT */
3127};
3128
3129struct in6_rtmsg32 {
3130 struct in6_addr rtmsg_dst;
3131 struct in6_addr rtmsg_src;
3132 struct in6_addr rtmsg_gateway;
3133 u32 rtmsg_type;
3134 u16 rtmsg_dst_len;
3135 u16 rtmsg_src_len;
3136 u32 rtmsg_metric;
3137 u32 rtmsg_info;
3138 u32 rtmsg_flags;
3139 s32 rtmsg_ifindex;
3140};
3141
3142static int routing_ioctl(struct net *net, struct socket *sock,
3143 unsigned int cmd, void __user *argp)
3144{
3145 int ret;
3146 void *r = NULL;
3147 struct in6_rtmsg r6;
3148 struct rtentry r4;
3149 char devname[16];
3150 u32 rtdev;
3151 mm_segment_t old_fs = get_fs();
3152
3153 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3154 struct in6_rtmsg32 __user *ur6 = argp;
3155 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3156 3 * sizeof(struct in6_addr));
3157 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3158 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3159 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3160 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3161 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3162 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3163 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3164
3165 r = (void *) &r6;
3166 } else { /* ipv4 */
3167 struct rtentry32 __user *ur4 = argp;
3168 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3169 3 * sizeof(struct sockaddr));
3170 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3171 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3172 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3173 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3174 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3175 ret |= get_user(rtdev, &(ur4->rt_dev));
3176 if (rtdev) {
3177 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3178 r4.rt_dev = (char __user __force *)devname;
3179 devname[15] = 0;
3180 } else
3181 r4.rt_dev = NULL;
3182
3183 r = (void *) &r4;
3184 }
3185
3186 if (ret) {
3187 ret = -EFAULT;
3188 goto out;
3189 }
3190
3191 set_fs(KERNEL_DS);
3192 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3193 set_fs(old_fs);
3194
3195out:
3196 return ret;
3197}
3198
3199/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3200 * for some operations; this forces use of the newer bridge-utils that
3201 * use compatible ioctls
3202 */
3203static int old_bridge_ioctl(compat_ulong_t __user *argp)
3204{
3205 compat_ulong_t tmp;
3206
3207 if (get_user(tmp, argp))
3208 return -EFAULT;
3209 if (tmp == BRCTL_GET_VERSION)
3210 return BRCTL_VERSION + 1;
3211 return -EINVAL;
3212}
3213
3214static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3215 unsigned int cmd, unsigned long arg)
3216{
3217 void __user *argp = compat_ptr(arg);
3218 struct sock *sk = sock->sk;
3219 struct net *net = sock_net(sk);
3220
3221 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3222 return compat_ifr_data_ioctl(net, cmd, argp);
3223
3224 switch (cmd) {
3225 case SIOCSIFBR:
3226 case SIOCGIFBR:
3227 return old_bridge_ioctl(argp);
3228 case SIOCGIFNAME:
3229 return dev_ifname32(net, argp);
3230 case SIOCGIFCONF:
3231 return dev_ifconf(net, argp);
3232 case SIOCETHTOOL:
3233 return ethtool_ioctl(net, argp);
3234 case SIOCWANDEV:
3235 return compat_siocwandev(net, argp);
3236 case SIOCGIFMAP:
3237 case SIOCSIFMAP:
3238 return compat_sioc_ifmap(net, cmd, argp);
3239 case SIOCBONDENSLAVE:
3240 case SIOCBONDRELEASE:
3241 case SIOCBONDSETHWADDR:
3242 case SIOCBONDCHANGEACTIVE:
3243 return bond_ioctl(net, cmd, argp);
3244 case SIOCADDRT:
3245 case SIOCDELRT:
3246 return routing_ioctl(net, sock, cmd, argp);
3247 case SIOCGSTAMP:
3248 return do_siocgstamp(net, sock, cmd, argp);
3249 case SIOCGSTAMPNS:
3250 return do_siocgstampns(net, sock, cmd, argp);
3251 case SIOCBONDSLAVEINFOQUERY:
3252 case SIOCBONDINFOQUERY:
3253 case SIOCSHWTSTAMP:
3254 case SIOCGHWTSTAMP:
3255 return compat_ifr_data_ioctl(net, cmd, argp);
3256
3257 case FIOSETOWN:
3258 case SIOCSPGRP:
3259 case FIOGETOWN:
3260 case SIOCGPGRP:
3261 case SIOCBRADDBR:
3262 case SIOCBRDELBR:
3263 case SIOCGIFVLAN:
3264 case SIOCSIFVLAN:
3265 case SIOCADDDLCI:
3266 case SIOCDELDLCI:
3267 return sock_ioctl(file, cmd, arg);
3268
3269 case SIOCGIFFLAGS:
3270 case SIOCSIFFLAGS:
3271 case SIOCGIFMETRIC:
3272 case SIOCSIFMETRIC:
3273 case SIOCGIFMTU:
3274 case SIOCSIFMTU:
3275 case SIOCGIFMEM:
3276 case SIOCSIFMEM:
3277 case SIOCGIFHWADDR:
3278 case SIOCSIFHWADDR:
3279 case SIOCADDMULTI:
3280 case SIOCDELMULTI:
3281 case SIOCGIFINDEX:
3282 case SIOCGIFADDR:
3283 case SIOCSIFADDR:
3284 case SIOCSIFHWBROADCAST:
3285 case SIOCDIFADDR:
3286 case SIOCGIFBRDADDR:
3287 case SIOCSIFBRDADDR:
3288 case SIOCGIFDSTADDR:
3289 case SIOCSIFDSTADDR:
3290 case SIOCGIFNETMASK:
3291 case SIOCSIFNETMASK:
3292 case SIOCSIFPFLAGS:
3293 case SIOCGIFPFLAGS:
3294 case SIOCGIFTXQLEN:
3295 case SIOCSIFTXQLEN:
3296 case SIOCBRADDIF:
3297 case SIOCBRDELIF:
3298 case SIOCSIFNAME:
3299 case SIOCGMIIPHY:
3300 case SIOCGMIIREG:
3301 case SIOCSMIIREG:
3302 return dev_ifsioc(net, sock, cmd, argp);
3303
3304 case SIOCSARP:
3305 case SIOCGARP:
3306 case SIOCDARP:
3307 case SIOCATMARK:
3308 return sock_do_ioctl(net, sock, cmd, arg);
3309 }
3310
3311 return -ENOIOCTLCMD;
3312}
3313
3314static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3315 unsigned long arg)
3316{
3317 struct socket *sock = file->private_data;
3318 int ret = -ENOIOCTLCMD;
3319 struct sock *sk;
3320 struct net *net;
3321
3322 sk = sock->sk;
3323 net = sock_net(sk);
3324
3325 if (sock->ops->compat_ioctl)
3326 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3327
3328 if (ret == -ENOIOCTLCMD &&
3329 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3330 ret = compat_wext_handle_ioctl(net, cmd, arg);
3331
3332 if (ret == -ENOIOCTLCMD)
3333 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3334
3335 return ret;
3336}
3337#endif
3338
3339int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3340{
3341 return sock->ops->bind(sock, addr, addrlen);
3342}
3343EXPORT_SYMBOL(kernel_bind);
3344
3345int kernel_listen(struct socket *sock, int backlog)
3346{
3347 return sock->ops->listen(sock, backlog);
3348}
3349EXPORT_SYMBOL(kernel_listen);
3350
3351int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3352{
3353 struct sock *sk = sock->sk;
3354 int err;
3355
3356 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3357 newsock);
3358 if (err < 0)
3359 goto done;
3360
3361 err = sock->ops->accept(sock, *newsock, flags);
3362 if (err < 0) {
3363 sock_release(*newsock);
3364 *newsock = NULL;
3365 goto done;
3366 }
3367
3368 (*newsock)->ops = sock->ops;
3369 __module_get((*newsock)->ops->owner);
3370
3371done:
3372 return err;
3373}
3374EXPORT_SYMBOL(kernel_accept);
3375
3376int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3377 int flags)
3378{
3379 return sock->ops->connect(sock, addr, addrlen, flags);
3380}
3381EXPORT_SYMBOL(kernel_connect);
3382
3383int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3384 int *addrlen)
3385{
3386 return sock->ops->getname(sock, addr, addrlen, 0);
3387}
3388EXPORT_SYMBOL(kernel_getsockname);
3389
3390int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3391 int *addrlen)
3392{
3393 return sock->ops->getname(sock, addr, addrlen, 1);
3394}
3395EXPORT_SYMBOL(kernel_getpeername);
3396
3397int kernel_getsockopt(struct socket *sock, int level, int optname,
3398 char *optval, int *optlen)
3399{
3400 mm_segment_t oldfs = get_fs();
3401 char __user *uoptval;
3402 int __user *uoptlen;
3403 int err;
3404
3405 uoptval = (char __user __force *) optval;
3406 uoptlen = (int __user __force *) optlen;
3407
3408 set_fs(KERNEL_DS);
3409 if (level == SOL_SOCKET)
3410 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3411 else
3412 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3413 uoptlen);
3414 set_fs(oldfs);
3415 return err;
3416}
3417EXPORT_SYMBOL(kernel_getsockopt);
3418
3419int kernel_setsockopt(struct socket *sock, int level, int optname,
3420 char *optval, unsigned int optlen)
3421{
3422 mm_segment_t oldfs = get_fs();
3423 char __user *uoptval;
3424 int err;
3425
3426 uoptval = (char __user __force *) optval;
3427
3428 set_fs(KERNEL_DS);
3429 if (level == SOL_SOCKET)
3430 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3431 else
3432 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3433 optlen);
3434 set_fs(oldfs);
3435 return err;
3436}
3437EXPORT_SYMBOL(kernel_setsockopt);
3438
3439int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3440 size_t size, int flags)
3441{
3442 if (sock->ops->sendpage)
3443 return sock->ops->sendpage(sock, page, offset, size, flags);
3444
3445 return sock_no_sendpage(sock, page, offset, size, flags);
3446}
3447EXPORT_SYMBOL(kernel_sendpage);
3448
3449int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450{
3451 mm_segment_t oldfs = get_fs();
3452 int err;
3453
3454 set_fs(KERNEL_DS);
3455 err = sock->ops->ioctl(sock, cmd, arg);
3456 set_fs(oldfs);
3457
3458 return err;
3459}
3460EXPORT_SYMBOL(kernel_sock_ioctl);
3461
3462int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463{
3464 return sock->ops->shutdown(sock, how);
3465}
3466EXPORT_SYMBOL(kernel_sock_shutdown);