Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/ethtool.h>
  56#include <linux/mm.h>
  57#include <linux/socket.h>
  58#include <linux/file.h>
  59#include <linux/net.h>
  60#include <linux/interrupt.h>
  61#include <linux/thread_info.h>
  62#include <linux/rcupdate.h>
  63#include <linux/netdevice.h>
  64#include <linux/proc_fs.h>
  65#include <linux/seq_file.h>
  66#include <linux/mutex.h>
  67#include <linux/if_bridge.h>
 
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/termios.h>
 104#include <linux/sockios.h>
 105#include <net/busy_poll.h>
 106#include <linux/errqueue.h>
 107#include <linux/ptp_clock_kernel.h>
 108
 109#ifdef CONFIG_NET_RX_BUSY_POLL
 110unsigned int sysctl_net_busy_read __read_mostly;
 111unsigned int sysctl_net_busy_poll __read_mostly;
 112#endif
 113
 114static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 115static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 116static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 117
 118static int sock_close(struct inode *inode, struct file *file);
 119static __poll_t sock_poll(struct file *file,
 120			      struct poll_table_struct *wait);
 121static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 122#ifdef CONFIG_COMPAT
 123static long compat_sock_ioctl(struct file *file,
 124			      unsigned int cmd, unsigned long arg);
 125#endif
 126static int sock_fasync(int fd, struct file *filp, int on);
 127static ssize_t sock_sendpage(struct file *file, struct page *page,
 128			     int offset, size_t size, loff_t *ppos, int more);
 129static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 130				struct pipe_inode_info *pipe, size_t len,
 131				unsigned int flags);
 132
 133#ifdef CONFIG_PROC_FS
 134static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 135{
 136	struct socket *sock = f->private_data;
 137
 138	if (sock->ops->show_fdinfo)
 139		sock->ops->show_fdinfo(m, sock);
 140}
 141#else
 142#define sock_show_fdinfo NULL
 143#endif
 144
 145/*
 146 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 147 *	in the operation structures but are done directly via the socketcall() multiplexor.
 148 */
 149
 150static const struct file_operations socket_file_ops = {
 151	.owner =	THIS_MODULE,
 152	.llseek =	no_llseek,
 153	.read_iter =	sock_read_iter,
 154	.write_iter =	sock_write_iter,
 155	.poll =		sock_poll,
 156	.unlocked_ioctl = sock_ioctl,
 157#ifdef CONFIG_COMPAT
 158	.compat_ioctl = compat_sock_ioctl,
 159#endif
 160	.mmap =		sock_mmap,
 161	.release =	sock_close,
 162	.fasync =	sock_fasync,
 163	.sendpage =	sock_sendpage,
 164	.splice_write = generic_splice_sendpage,
 165	.splice_read =	sock_splice_read,
 166	.show_fdinfo =	sock_show_fdinfo,
 167};
 168
 169static const char * const pf_family_names[] = {
 170	[PF_UNSPEC]	= "PF_UNSPEC",
 171	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
 172	[PF_INET]	= "PF_INET",
 173	[PF_AX25]	= "PF_AX25",
 174	[PF_IPX]	= "PF_IPX",
 175	[PF_APPLETALK]	= "PF_APPLETALK",
 176	[PF_NETROM]	= "PF_NETROM",
 177	[PF_BRIDGE]	= "PF_BRIDGE",
 178	[PF_ATMPVC]	= "PF_ATMPVC",
 179	[PF_X25]	= "PF_X25",
 180	[PF_INET6]	= "PF_INET6",
 181	[PF_ROSE]	= "PF_ROSE",
 182	[PF_DECnet]	= "PF_DECnet",
 183	[PF_NETBEUI]	= "PF_NETBEUI",
 184	[PF_SECURITY]	= "PF_SECURITY",
 185	[PF_KEY]	= "PF_KEY",
 186	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
 187	[PF_PACKET]	= "PF_PACKET",
 188	[PF_ASH]	= "PF_ASH",
 189	[PF_ECONET]	= "PF_ECONET",
 190	[PF_ATMSVC]	= "PF_ATMSVC",
 191	[PF_RDS]	= "PF_RDS",
 192	[PF_SNA]	= "PF_SNA",
 193	[PF_IRDA]	= "PF_IRDA",
 194	[PF_PPPOX]	= "PF_PPPOX",
 195	[PF_WANPIPE]	= "PF_WANPIPE",
 196	[PF_LLC]	= "PF_LLC",
 197	[PF_IB]		= "PF_IB",
 198	[PF_MPLS]	= "PF_MPLS",
 199	[PF_CAN]	= "PF_CAN",
 200	[PF_TIPC]	= "PF_TIPC",
 201	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
 202	[PF_IUCV]	= "PF_IUCV",
 203	[PF_RXRPC]	= "PF_RXRPC",
 204	[PF_ISDN]	= "PF_ISDN",
 205	[PF_PHONET]	= "PF_PHONET",
 206	[PF_IEEE802154]	= "PF_IEEE802154",
 207	[PF_CAIF]	= "PF_CAIF",
 208	[PF_ALG]	= "PF_ALG",
 209	[PF_NFC]	= "PF_NFC",
 210	[PF_VSOCK]	= "PF_VSOCK",
 211	[PF_KCM]	= "PF_KCM",
 212	[PF_QIPCRTR]	= "PF_QIPCRTR",
 213	[PF_SMC]	= "PF_SMC",
 214	[PF_XDP]	= "PF_XDP",
 215};
 216
 217/*
 218 *	The protocol list. Each protocol is registered in here.
 219 */
 220
 221static DEFINE_SPINLOCK(net_family_lock);
 222static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 223
 224/*
 225 * Support routines.
 226 * Move socket addresses back and forth across the kernel/user
 227 * divide and look after the messy bits.
 228 */
 229
 230/**
 231 *	move_addr_to_kernel	-	copy a socket address into kernel space
 232 *	@uaddr: Address in user space
 233 *	@kaddr: Address in kernel space
 234 *	@ulen: Length in user space
 235 *
 236 *	The address is copied into kernel space. If the provided address is
 237 *	too long an error code of -EINVAL is returned. If the copy gives
 238 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 239 */
 240
 241int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 242{
 243	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 244		return -EINVAL;
 245	if (ulen == 0)
 246		return 0;
 247	if (copy_from_user(kaddr, uaddr, ulen))
 248		return -EFAULT;
 249	return audit_sockaddr(ulen, kaddr);
 250}
 251
 252/**
 253 *	move_addr_to_user	-	copy an address to user space
 254 *	@kaddr: kernel space address
 255 *	@klen: length of address in kernel
 256 *	@uaddr: user space address
 257 *	@ulen: pointer to user length field
 258 *
 259 *	The value pointed to by ulen on entry is the buffer length available.
 260 *	This is overwritten with the buffer space used. -EINVAL is returned
 261 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 262 *	is returned if either the buffer or the length field are not
 263 *	accessible.
 264 *	After copying the data up to the limit the user specifies, the true
 265 *	length of the data is written over the length limit the user
 266 *	specified. Zero is returned for a success.
 267 */
 268
 269static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 270			     void __user *uaddr, int __user *ulen)
 271{
 272	int err;
 273	int len;
 274
 275	BUG_ON(klen > sizeof(struct sockaddr_storage));
 276	err = get_user(len, ulen);
 277	if (err)
 278		return err;
 279	if (len > klen)
 280		len = klen;
 281	if (len < 0)
 282		return -EINVAL;
 283	if (len) {
 284		if (audit_sockaddr(klen, kaddr))
 285			return -ENOMEM;
 286		if (copy_to_user(uaddr, kaddr, len))
 287			return -EFAULT;
 288	}
 289	/*
 290	 *      "fromlen shall refer to the value before truncation.."
 291	 *                      1003.1g
 292	 */
 293	return __put_user(klen, ulen);
 294}
 295
 296static struct kmem_cache *sock_inode_cachep __ro_after_init;
 297
 298static struct inode *sock_alloc_inode(struct super_block *sb)
 299{
 300	struct socket_alloc *ei;
 301
 302	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 303	if (!ei)
 304		return NULL;
 305	init_waitqueue_head(&ei->socket.wq.wait);
 306	ei->socket.wq.fasync_list = NULL;
 307	ei->socket.wq.flags = 0;
 308
 309	ei->socket.state = SS_UNCONNECTED;
 310	ei->socket.flags = 0;
 311	ei->socket.ops = NULL;
 312	ei->socket.sk = NULL;
 313	ei->socket.file = NULL;
 314
 315	return &ei->vfs_inode;
 316}
 317
 318static void sock_free_inode(struct inode *inode)
 319{
 320	struct socket_alloc *ei;
 321
 322	ei = container_of(inode, struct socket_alloc, vfs_inode);
 323	kmem_cache_free(sock_inode_cachep, ei);
 324}
 325
 326static void init_once(void *foo)
 327{
 328	struct socket_alloc *ei = (struct socket_alloc *)foo;
 329
 330	inode_init_once(&ei->vfs_inode);
 331}
 332
 333static void init_inodecache(void)
 334{
 335	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 336					      sizeof(struct socket_alloc),
 337					      0,
 338					      (SLAB_HWCACHE_ALIGN |
 339					       SLAB_RECLAIM_ACCOUNT |
 340					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 341					      init_once);
 342	BUG_ON(sock_inode_cachep == NULL);
 343}
 344
 345static const struct super_operations sockfs_ops = {
 346	.alloc_inode	= sock_alloc_inode,
 347	.free_inode	= sock_free_inode,
 348	.statfs		= simple_statfs,
 349};
 350
 351/*
 352 * sockfs_dname() is called from d_path().
 353 */
 354static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 355{
 356	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 357				d_inode(dentry)->i_ino);
 358}
 359
 360static const struct dentry_operations sockfs_dentry_operations = {
 361	.d_dname  = sockfs_dname,
 362};
 363
 364static int sockfs_xattr_get(const struct xattr_handler *handler,
 365			    struct dentry *dentry, struct inode *inode,
 366			    const char *suffix, void *value, size_t size)
 367{
 368	if (value) {
 369		if (dentry->d_name.len + 1 > size)
 370			return -ERANGE;
 371		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 372	}
 373	return dentry->d_name.len + 1;
 374}
 375
 376#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 377#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 378#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 379
 380static const struct xattr_handler sockfs_xattr_handler = {
 381	.name = XATTR_NAME_SOCKPROTONAME,
 382	.get = sockfs_xattr_get,
 383};
 384
 385static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 386				     struct user_namespace *mnt_userns,
 387				     struct dentry *dentry, struct inode *inode,
 388				     const char *suffix, const void *value,
 389				     size_t size, int flags)
 390{
 391	/* Handled by LSM. */
 392	return -EAGAIN;
 393}
 394
 395static const struct xattr_handler sockfs_security_xattr_handler = {
 396	.prefix = XATTR_SECURITY_PREFIX,
 397	.set = sockfs_security_xattr_set,
 398};
 399
 400static const struct xattr_handler *sockfs_xattr_handlers[] = {
 401	&sockfs_xattr_handler,
 402	&sockfs_security_xattr_handler,
 403	NULL
 404};
 405
 406static int sockfs_init_fs_context(struct fs_context *fc)
 407{
 408	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 409	if (!ctx)
 410		return -ENOMEM;
 411	ctx->ops = &sockfs_ops;
 412	ctx->dops = &sockfs_dentry_operations;
 413	ctx->xattr = sockfs_xattr_handlers;
 414	return 0;
 415}
 416
 417static struct vfsmount *sock_mnt __read_mostly;
 418
 419static struct file_system_type sock_fs_type = {
 420	.name =		"sockfs",
 421	.init_fs_context = sockfs_init_fs_context,
 422	.kill_sb =	kill_anon_super,
 423};
 424
 425/*
 426 *	Obtains the first available file descriptor and sets it up for use.
 427 *
 428 *	These functions create file structures and maps them to fd space
 429 *	of the current process. On success it returns file descriptor
 430 *	and file struct implicitly stored in sock->file.
 431 *	Note that another thread may close file descriptor before we return
 432 *	from this function. We use the fact that now we do not refer
 433 *	to socket after mapping. If one day we will need it, this
 434 *	function will increment ref. count on file by 1.
 435 *
 436 *	In any case returned fd MAY BE not valid!
 437 *	This race condition is unavoidable
 438 *	with shared fd spaces, we cannot solve it inside kernel,
 439 *	but we take care of internal coherence yet.
 440 */
 441
 442/**
 443 *	sock_alloc_file - Bind a &socket to a &file
 444 *	@sock: socket
 445 *	@flags: file status flags
 446 *	@dname: protocol name
 447 *
 448 *	Returns the &file bound with @sock, implicitly storing it
 449 *	in sock->file. If dname is %NULL, sets to "".
 450 *	On failure the return is a ERR pointer (see linux/err.h).
 451 *	This function uses GFP_KERNEL internally.
 452 */
 453
 454struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 455{
 456	struct file *file;
 457
 458	if (!dname)
 459		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 460
 461	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 462				O_RDWR | (flags & O_NONBLOCK),
 463				&socket_file_ops);
 464	if (IS_ERR(file)) {
 465		sock_release(sock);
 466		return file;
 467	}
 468
 469	sock->file = file;
 470	file->private_data = sock;
 471	stream_open(SOCK_INODE(sock), file);
 472	return file;
 473}
 474EXPORT_SYMBOL(sock_alloc_file);
 475
 476static int sock_map_fd(struct socket *sock, int flags)
 477{
 478	struct file *newfile;
 479	int fd = get_unused_fd_flags(flags);
 480	if (unlikely(fd < 0)) {
 481		sock_release(sock);
 482		return fd;
 483	}
 484
 485	newfile = sock_alloc_file(sock, flags, NULL);
 486	if (!IS_ERR(newfile)) {
 487		fd_install(fd, newfile);
 488		return fd;
 489	}
 490
 491	put_unused_fd(fd);
 492	return PTR_ERR(newfile);
 493}
 494
 495/**
 496 *	sock_from_file - Return the &socket bounded to @file.
 497 *	@file: file
 
 498 *
 499 *	On failure returns %NULL.
 500 */
 501
 502struct socket *sock_from_file(struct file *file)
 503{
 504	if (file->f_op == &socket_file_ops)
 505		return file->private_data;	/* set in sock_map_fd */
 506
 
 507	return NULL;
 508}
 509EXPORT_SYMBOL(sock_from_file);
 510
 511/**
 512 *	sockfd_lookup - Go from a file number to its socket slot
 513 *	@fd: file handle
 514 *	@err: pointer to an error code return
 515 *
 516 *	The file handle passed in is locked and the socket it is bound
 517 *	to is returned. If an error occurs the err pointer is overwritten
 518 *	with a negative errno code and NULL is returned. The function checks
 519 *	for both invalid handles and passing a handle which is not a socket.
 520 *
 521 *	On a success the socket object pointer is returned.
 522 */
 523
 524struct socket *sockfd_lookup(int fd, int *err)
 525{
 526	struct file *file;
 527	struct socket *sock;
 528
 529	file = fget(fd);
 530	if (!file) {
 531		*err = -EBADF;
 532		return NULL;
 533	}
 534
 535	sock = sock_from_file(file);
 536	if (!sock) {
 537		*err = -ENOTSOCK;
 538		fput(file);
 539	}
 540	return sock;
 541}
 542EXPORT_SYMBOL(sockfd_lookup);
 543
 544static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 545{
 546	struct fd f = fdget(fd);
 547	struct socket *sock;
 548
 549	*err = -EBADF;
 550	if (f.file) {
 551		sock = sock_from_file(f.file);
 552		if (likely(sock)) {
 553			*fput_needed = f.flags & FDPUT_FPUT;
 554			return sock;
 555		}
 556		*err = -ENOTSOCK;
 557		fdput(f);
 558	}
 559	return NULL;
 560}
 561
 562static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 563				size_t size)
 564{
 565	ssize_t len;
 566	ssize_t used = 0;
 567
 568	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 569	if (len < 0)
 570		return len;
 571	used += len;
 572	if (buffer) {
 573		if (size < used)
 574			return -ERANGE;
 575		buffer += len;
 576	}
 577
 578	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 579	used += len;
 580	if (buffer) {
 581		if (size < used)
 582			return -ERANGE;
 583		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 584		buffer += len;
 585	}
 586
 587	return used;
 588}
 589
 590static int sockfs_setattr(struct user_namespace *mnt_userns,
 591			  struct dentry *dentry, struct iattr *iattr)
 592{
 593	int err = simple_setattr(&init_user_ns, dentry, iattr);
 594
 595	if (!err && (iattr->ia_valid & ATTR_UID)) {
 596		struct socket *sock = SOCKET_I(d_inode(dentry));
 597
 598		if (sock->sk)
 599			sock->sk->sk_uid = iattr->ia_uid;
 600		else
 601			err = -ENOENT;
 602	}
 603
 604	return err;
 605}
 606
 607static const struct inode_operations sockfs_inode_ops = {
 608	.listxattr = sockfs_listxattr,
 609	.setattr = sockfs_setattr,
 610};
 611
 612/**
 613 *	sock_alloc - allocate a socket
 614 *
 615 *	Allocate a new inode and socket object. The two are bound together
 616 *	and initialised. The socket is then returned. If we are out of inodes
 617 *	NULL is returned. This functions uses GFP_KERNEL internally.
 618 */
 619
 620struct socket *sock_alloc(void)
 621{
 622	struct inode *inode;
 623	struct socket *sock;
 624
 625	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 626	if (!inode)
 627		return NULL;
 628
 629	sock = SOCKET_I(inode);
 630
 631	inode->i_ino = get_next_ino();
 632	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 633	inode->i_uid = current_fsuid();
 634	inode->i_gid = current_fsgid();
 635	inode->i_op = &sockfs_inode_ops;
 636
 637	return sock;
 638}
 639EXPORT_SYMBOL(sock_alloc);
 640
 641static void __sock_release(struct socket *sock, struct inode *inode)
 642{
 643	if (sock->ops) {
 644		struct module *owner = sock->ops->owner;
 645
 646		if (inode)
 647			inode_lock(inode);
 648		sock->ops->release(sock);
 649		sock->sk = NULL;
 650		if (inode)
 651			inode_unlock(inode);
 652		sock->ops = NULL;
 653		module_put(owner);
 654	}
 655
 656	if (sock->wq.fasync_list)
 657		pr_err("%s: fasync list not empty!\n", __func__);
 658
 659	if (!sock->file) {
 660		iput(SOCK_INODE(sock));
 661		return;
 662	}
 663	sock->file = NULL;
 664}
 665
 666/**
 667 *	sock_release - close a socket
 668 *	@sock: socket to close
 669 *
 670 *	The socket is released from the protocol stack if it has a release
 671 *	callback, and the inode is then released if the socket is bound to
 672 *	an inode not a file.
 673 */
 674void sock_release(struct socket *sock)
 675{
 676	__sock_release(sock, NULL);
 677}
 678EXPORT_SYMBOL(sock_release);
 679
 680void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 681{
 682	u8 flags = *tx_flags;
 683
 684	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 685		flags |= SKBTX_HW_TSTAMP;
 686
 687	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 688		flags |= SKBTX_SW_TSTAMP;
 689
 690	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 691		flags |= SKBTX_SCHED_TSTAMP;
 692
 693	*tx_flags = flags;
 694}
 695EXPORT_SYMBOL(__sock_tx_timestamp);
 696
 697INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 698					   size_t));
 699INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 700					    size_t));
 701static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 702{
 703	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 704				     inet_sendmsg, sock, msg,
 705				     msg_data_left(msg));
 706	BUG_ON(ret == -EIOCBQUEUED);
 707	return ret;
 708}
 709
 710/**
 711 *	sock_sendmsg - send a message through @sock
 712 *	@sock: socket
 713 *	@msg: message to send
 714 *
 715 *	Sends @msg through @sock, passing through LSM.
 716 *	Returns the number of bytes sent, or an error code.
 717 */
 718int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 719{
 720	int err = security_socket_sendmsg(sock, msg,
 721					  msg_data_left(msg));
 722
 723	return err ?: sock_sendmsg_nosec(sock, msg);
 724}
 725EXPORT_SYMBOL(sock_sendmsg);
 726
 727/**
 728 *	kernel_sendmsg - send a message through @sock (kernel-space)
 729 *	@sock: socket
 730 *	@msg: message header
 731 *	@vec: kernel vec
 732 *	@num: vec array length
 733 *	@size: total message data size
 734 *
 735 *	Builds the message data with @vec and sends it through @sock.
 736 *	Returns the number of bytes sent, or an error code.
 737 */
 738
 739int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 740		   struct kvec *vec, size_t num, size_t size)
 741{
 742	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 743	return sock_sendmsg(sock, msg);
 744}
 745EXPORT_SYMBOL(kernel_sendmsg);
 746
 747/**
 748 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 749 *	@sk: sock
 750 *	@msg: message header
 751 *	@vec: output s/g array
 752 *	@num: output s/g array length
 753 *	@size: total message data size
 754 *
 755 *	Builds the message data with @vec and sends it through @sock.
 756 *	Returns the number of bytes sent, or an error code.
 757 *	Caller must hold @sk.
 758 */
 759
 760int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 761			  struct kvec *vec, size_t num, size_t size)
 762{
 763	struct socket *sock = sk->sk_socket;
 764
 765	if (!sock->ops->sendmsg_locked)
 766		return sock_no_sendmsg_locked(sk, msg, size);
 767
 768	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 769
 770	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 771}
 772EXPORT_SYMBOL(kernel_sendmsg_locked);
 773
 774static bool skb_is_err_queue(const struct sk_buff *skb)
 775{
 776	/* pkt_type of skbs enqueued on the error queue are set to
 777	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 778	 * in recvmsg, since skbs received on a local socket will never
 779	 * have a pkt_type of PACKET_OUTGOING.
 780	 */
 781	return skb->pkt_type == PACKET_OUTGOING;
 782}
 783
 784/* On transmit, software and hardware timestamps are returned independently.
 785 * As the two skb clones share the hardware timestamp, which may be updated
 786 * before the software timestamp is received, a hardware TX timestamp may be
 787 * returned only if there is no software TX timestamp. Ignore false software
 788 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 790 * hardware timestamp.
 791 */
 792static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 793{
 794	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 795}
 796
 797static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 798{
 799	struct scm_ts_pktinfo ts_pktinfo;
 800	struct net_device *orig_dev;
 801
 802	if (!skb_mac_header_was_set(skb))
 803		return;
 804
 805	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 806
 807	rcu_read_lock();
 808	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 809	if (orig_dev)
 810		ts_pktinfo.if_index = orig_dev->ifindex;
 811	rcu_read_unlock();
 812
 813	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 814	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 815		 sizeof(ts_pktinfo), &ts_pktinfo);
 816}
 817
 818/*
 819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 820 */
 821void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 822	struct sk_buff *skb)
 823{
 824	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 825	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 826	struct scm_timestamping_internal tss;
 827
 828	int empty = 1, false_tstamp = 0;
 829	struct skb_shared_hwtstamps *shhwtstamps =
 830		skb_hwtstamps(skb);
 831
 832	/* Race occurred between timestamp enabling and packet
 833	   receiving.  Fill in the current time for now. */
 834	if (need_software_tstamp && skb->tstamp == 0) {
 835		__net_timestamp(skb);
 836		false_tstamp = 1;
 837	}
 838
 839	if (need_software_tstamp) {
 840		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 841			if (new_tstamp) {
 842				struct __kernel_sock_timeval tv;
 843
 844				skb_get_new_timestamp(skb, &tv);
 845				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 846					 sizeof(tv), &tv);
 847			} else {
 848				struct __kernel_old_timeval tv;
 849
 850				skb_get_timestamp(skb, &tv);
 851				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 852					 sizeof(tv), &tv);
 853			}
 854		} else {
 855			if (new_tstamp) {
 856				struct __kernel_timespec ts;
 857
 858				skb_get_new_timestampns(skb, &ts);
 859				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 860					 sizeof(ts), &ts);
 861			} else {
 862				struct __kernel_old_timespec ts;
 863
 864				skb_get_timestampns(skb, &ts);
 865				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 866					 sizeof(ts), &ts);
 867			}
 868		}
 869	}
 870
 871	memset(&tss, 0, sizeof(tss));
 872	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 873	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 874		empty = 0;
 875	if (shhwtstamps &&
 876	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 877	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
 878		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
 879			ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
 880
 881		if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
 882					     tss.ts + 2)) {
 883			empty = 0;
 884
 885			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 886			    !skb_is_err_queue(skb))
 887				put_ts_pktinfo(msg, skb);
 888		}
 889	}
 890	if (!empty) {
 891		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 892			put_cmsg_scm_timestamping64(msg, &tss);
 893		else
 894			put_cmsg_scm_timestamping(msg, &tss);
 895
 896		if (skb_is_err_queue(skb) && skb->len &&
 897		    SKB_EXT_ERR(skb)->opt_stats)
 898			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 899				 skb->len, skb->data);
 900	}
 901}
 902EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 903
 904void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 905	struct sk_buff *skb)
 906{
 907	int ack;
 908
 909	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 910		return;
 911	if (!skb->wifi_acked_valid)
 912		return;
 913
 914	ack = skb->wifi_acked;
 915
 916	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 917}
 918EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 919
 920static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 921				   struct sk_buff *skb)
 922{
 923	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 924		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 925			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 926}
 927
 928void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 929	struct sk_buff *skb)
 930{
 931	sock_recv_timestamp(msg, sk, skb);
 932	sock_recv_drops(msg, sk, skb);
 933}
 934EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 935
 936INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 937					   size_t, int));
 938INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 939					    size_t, int));
 940static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 941				     int flags)
 942{
 943	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 944				  inet_recvmsg, sock, msg, msg_data_left(msg),
 945				  flags);
 946}
 947
 948/**
 949 *	sock_recvmsg - receive a message from @sock
 950 *	@sock: socket
 951 *	@msg: message to receive
 952 *	@flags: message flags
 953 *
 954 *	Receives @msg from @sock, passing through LSM. Returns the total number
 955 *	of bytes received, or an error.
 956 */
 957int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 958{
 959	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 960
 961	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 962}
 963EXPORT_SYMBOL(sock_recvmsg);
 964
 965/**
 966 *	kernel_recvmsg - Receive a message from a socket (kernel space)
 967 *	@sock: The socket to receive the message from
 968 *	@msg: Received message
 969 *	@vec: Input s/g array for message data
 970 *	@num: Size of input s/g array
 971 *	@size: Number of bytes to read
 972 *	@flags: Message flags (MSG_DONTWAIT, etc...)
 973 *
 974 *	On return the msg structure contains the scatter/gather array passed in the
 975 *	vec argument. The array is modified so that it consists of the unfilled
 976 *	portion of the original array.
 977 *
 978 *	The returned value is the total number of bytes received, or an error.
 979 */
 980
 981int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 982		   struct kvec *vec, size_t num, size_t size, int flags)
 983{
 984	msg->msg_control_is_user = false;
 985	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 986	return sock_recvmsg(sock, msg, flags);
 987}
 988EXPORT_SYMBOL(kernel_recvmsg);
 989
 990static ssize_t sock_sendpage(struct file *file, struct page *page,
 991			     int offset, size_t size, loff_t *ppos, int more)
 992{
 993	struct socket *sock;
 994	int flags;
 995
 996	sock = file->private_data;
 997
 998	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 999	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000	flags |= more;
1001
1002	return kernel_sendpage(sock, page, offset, size, flags);
1003}
1004
1005static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006				struct pipe_inode_info *pipe, size_t len,
1007				unsigned int flags)
1008{
1009	struct socket *sock = file->private_data;
1010
1011	if (unlikely(!sock->ops->splice_read))
1012		return generic_file_splice_read(file, ppos, pipe, len, flags);
1013
1014	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015}
1016
1017static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018{
1019	struct file *file = iocb->ki_filp;
1020	struct socket *sock = file->private_data;
1021	struct msghdr msg = {.msg_iter = *to,
1022			     .msg_iocb = iocb};
1023	ssize_t res;
1024
1025	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026		msg.msg_flags = MSG_DONTWAIT;
1027
1028	if (iocb->ki_pos != 0)
1029		return -ESPIPE;
1030
1031	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1032		return 0;
1033
1034	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035	*to = msg.msg_iter;
1036	return res;
1037}
1038
1039static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040{
1041	struct file *file = iocb->ki_filp;
1042	struct socket *sock = file->private_data;
1043	struct msghdr msg = {.msg_iter = *from,
1044			     .msg_iocb = iocb};
1045	ssize_t res;
1046
1047	if (iocb->ki_pos != 0)
1048		return -ESPIPE;
1049
1050	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051		msg.msg_flags = MSG_DONTWAIT;
1052
1053	if (sock->type == SOCK_SEQPACKET)
1054		msg.msg_flags |= MSG_EOR;
1055
1056	res = sock_sendmsg(sock, &msg);
1057	*from = msg.msg_iter;
1058	return res;
1059}
1060
1061/*
1062 * Atomic setting of ioctl hooks to avoid race
1063 * with module unload.
1064 */
1065
1066static DEFINE_MUTEX(br_ioctl_mutex);
1067static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068
1069void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1070{
1071	mutex_lock(&br_ioctl_mutex);
1072	br_ioctl_hook = hook;
1073	mutex_unlock(&br_ioctl_mutex);
1074}
1075EXPORT_SYMBOL(brioctl_set);
1076
1077static DEFINE_MUTEX(vlan_ioctl_mutex);
1078static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079
1080void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081{
1082	mutex_lock(&vlan_ioctl_mutex);
1083	vlan_ioctl_hook = hook;
1084	mutex_unlock(&vlan_ioctl_mutex);
1085}
1086EXPORT_SYMBOL(vlan_ioctl_set);
1087
 
 
 
 
 
 
 
 
 
 
 
1088static long sock_do_ioctl(struct net *net, struct socket *sock,
1089			  unsigned int cmd, unsigned long arg)
1090{
1091	int err;
1092	void __user *argp = (void __user *)arg;
1093
1094	err = sock->ops->ioctl(sock, cmd, arg);
1095
1096	/*
1097	 * If this ioctl is unknown try to hand it down
1098	 * to the NIC driver.
1099	 */
1100	if (err != -ENOIOCTLCMD)
1101		return err;
1102
1103	if (cmd == SIOCGIFCONF) {
1104		struct ifconf ifc;
1105		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1106			return -EFAULT;
1107		rtnl_lock();
1108		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1109		rtnl_unlock();
1110		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1111			err = -EFAULT;
1112	} else if (is_socket_ioctl_cmd(cmd)) {
1113		struct ifreq ifr;
1114		bool need_copyout;
1115		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1116			return -EFAULT;
1117		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1118		if (!err && need_copyout)
1119			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1120				return -EFAULT;
1121	} else {
1122		err = -ENOTTY;
1123	}
1124	return err;
1125}
1126
1127/*
1128 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1129 *	what to do with it - that's up to the protocol still.
1130 */
1131
 
 
 
 
 
 
 
 
 
 
 
 
 
1132static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1133{
1134	struct socket *sock;
1135	struct sock *sk;
1136	void __user *argp = (void __user *)arg;
1137	int pid, err;
1138	struct net *net;
1139
1140	sock = file->private_data;
1141	sk = sock->sk;
1142	net = sock_net(sk);
1143	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1144		struct ifreq ifr;
1145		bool need_copyout;
1146		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1147			return -EFAULT;
1148		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1149		if (!err && need_copyout)
1150			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1151				return -EFAULT;
1152	} else
1153#ifdef CONFIG_WEXT_CORE
1154	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1155		err = wext_handle_ioctl(net, cmd, argp);
1156	} else
1157#endif
1158		switch (cmd) {
1159		case FIOSETOWN:
1160		case SIOCSPGRP:
1161			err = -EFAULT;
1162			if (get_user(pid, (int __user *)argp))
1163				break;
1164			err = f_setown(sock->file, pid, 1);
1165			break;
1166		case FIOGETOWN:
1167		case SIOCGPGRP:
1168			err = put_user(f_getown(sock->file),
1169				       (int __user *)argp);
1170			break;
1171		case SIOCGIFBR:
1172		case SIOCSIFBR:
1173		case SIOCBRADDBR:
1174		case SIOCBRDELBR:
1175			err = -ENOPKG;
1176			if (!br_ioctl_hook)
1177				request_module("bridge");
1178
1179			mutex_lock(&br_ioctl_mutex);
1180			if (br_ioctl_hook)
1181				err = br_ioctl_hook(net, cmd, argp);
1182			mutex_unlock(&br_ioctl_mutex);
1183			break;
1184		case SIOCGIFVLAN:
1185		case SIOCSIFVLAN:
1186			err = -ENOPKG;
1187			if (!vlan_ioctl_hook)
1188				request_module("8021q");
1189
1190			mutex_lock(&vlan_ioctl_mutex);
1191			if (vlan_ioctl_hook)
1192				err = vlan_ioctl_hook(net, argp);
1193			mutex_unlock(&vlan_ioctl_mutex);
1194			break;
 
 
 
 
 
 
 
 
 
 
 
1195		case SIOCGSKNS:
1196			err = -EPERM;
1197			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1198				break;
1199
1200			err = open_related_ns(&net->ns, get_net_ns);
1201			break;
1202		case SIOCGSTAMP_OLD:
1203		case SIOCGSTAMPNS_OLD:
1204			if (!sock->ops->gettstamp) {
1205				err = -ENOIOCTLCMD;
1206				break;
1207			}
1208			err = sock->ops->gettstamp(sock, argp,
1209						   cmd == SIOCGSTAMP_OLD,
1210						   !IS_ENABLED(CONFIG_64BIT));
1211			break;
1212		case SIOCGSTAMP_NEW:
1213		case SIOCGSTAMPNS_NEW:
1214			if (!sock->ops->gettstamp) {
1215				err = -ENOIOCTLCMD;
1216				break;
1217			}
1218			err = sock->ops->gettstamp(sock, argp,
1219						   cmd == SIOCGSTAMP_NEW,
1220						   false);
1221			break;
1222		default:
1223			err = sock_do_ioctl(net, sock, cmd, arg);
1224			break;
1225		}
1226	return err;
1227}
1228
1229/**
1230 *	sock_create_lite - creates a socket
1231 *	@family: protocol family (AF_INET, ...)
1232 *	@type: communication type (SOCK_STREAM, ...)
1233 *	@protocol: protocol (0, ...)
1234 *	@res: new socket
1235 *
1236 *	Creates a new socket and assigns it to @res, passing through LSM.
1237 *	The new socket initialization is not complete, see kernel_accept().
1238 *	Returns 0 or an error. On failure @res is set to %NULL.
1239 *	This function internally uses GFP_KERNEL.
1240 */
1241
1242int sock_create_lite(int family, int type, int protocol, struct socket **res)
1243{
1244	int err;
1245	struct socket *sock = NULL;
1246
1247	err = security_socket_create(family, type, protocol, 1);
1248	if (err)
1249		goto out;
1250
1251	sock = sock_alloc();
1252	if (!sock) {
1253		err = -ENOMEM;
1254		goto out;
1255	}
1256
1257	sock->type = type;
1258	err = security_socket_post_create(sock, family, type, protocol, 1);
1259	if (err)
1260		goto out_release;
1261
1262out:
1263	*res = sock;
1264	return err;
1265out_release:
1266	sock_release(sock);
1267	sock = NULL;
1268	goto out;
1269}
1270EXPORT_SYMBOL(sock_create_lite);
1271
1272/* No kernel lock held - perfect */
1273static __poll_t sock_poll(struct file *file, poll_table *wait)
1274{
1275	struct socket *sock = file->private_data;
1276	__poll_t events = poll_requested_events(wait), flag = 0;
1277
1278	if (!sock->ops->poll)
1279		return 0;
1280
1281	if (sk_can_busy_loop(sock->sk)) {
1282		/* poll once if requested by the syscall */
1283		if (events & POLL_BUSY_LOOP)
1284			sk_busy_loop(sock->sk, 1);
1285
1286		/* if this socket can poll_ll, tell the system call */
1287		flag = POLL_BUSY_LOOP;
1288	}
1289
1290	return sock->ops->poll(file, sock, wait) | flag;
1291}
1292
1293static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1294{
1295	struct socket *sock = file->private_data;
1296
1297	return sock->ops->mmap(file, sock, vma);
1298}
1299
1300static int sock_close(struct inode *inode, struct file *filp)
1301{
1302	__sock_release(SOCKET_I(inode), inode);
1303	return 0;
1304}
1305
1306/*
1307 *	Update the socket async list
1308 *
1309 *	Fasync_list locking strategy.
1310 *
1311 *	1. fasync_list is modified only under process context socket lock
1312 *	   i.e. under semaphore.
1313 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1314 *	   or under socket lock
1315 */
1316
1317static int sock_fasync(int fd, struct file *filp, int on)
1318{
1319	struct socket *sock = filp->private_data;
1320	struct sock *sk = sock->sk;
1321	struct socket_wq *wq = &sock->wq;
1322
1323	if (sk == NULL)
1324		return -EINVAL;
1325
1326	lock_sock(sk);
1327	fasync_helper(fd, filp, on, &wq->fasync_list);
1328
1329	if (!wq->fasync_list)
1330		sock_reset_flag(sk, SOCK_FASYNC);
1331	else
1332		sock_set_flag(sk, SOCK_FASYNC);
1333
1334	release_sock(sk);
1335	return 0;
1336}
1337
1338/* This function may be called only under rcu_lock */
1339
1340int sock_wake_async(struct socket_wq *wq, int how, int band)
1341{
1342	if (!wq || !wq->fasync_list)
1343		return -1;
1344
1345	switch (how) {
1346	case SOCK_WAKE_WAITD:
1347		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1348			break;
1349		goto call_kill;
1350	case SOCK_WAKE_SPACE:
1351		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1352			break;
1353		fallthrough;
1354	case SOCK_WAKE_IO:
1355call_kill:
1356		kill_fasync(&wq->fasync_list, SIGIO, band);
1357		break;
1358	case SOCK_WAKE_URG:
1359		kill_fasync(&wq->fasync_list, SIGURG, band);
1360	}
1361
1362	return 0;
1363}
1364EXPORT_SYMBOL(sock_wake_async);
1365
1366/**
1367 *	__sock_create - creates a socket
1368 *	@net: net namespace
1369 *	@family: protocol family (AF_INET, ...)
1370 *	@type: communication type (SOCK_STREAM, ...)
1371 *	@protocol: protocol (0, ...)
1372 *	@res: new socket
1373 *	@kern: boolean for kernel space sockets
1374 *
1375 *	Creates a new socket and assigns it to @res, passing through LSM.
1376 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1377 *	be set to true if the socket resides in kernel space.
1378 *	This function internally uses GFP_KERNEL.
1379 */
1380
1381int __sock_create(struct net *net, int family, int type, int protocol,
1382			 struct socket **res, int kern)
1383{
1384	int err;
1385	struct socket *sock;
1386	const struct net_proto_family *pf;
1387
1388	/*
1389	 *      Check protocol is in range
1390	 */
1391	if (family < 0 || family >= NPROTO)
1392		return -EAFNOSUPPORT;
1393	if (type < 0 || type >= SOCK_MAX)
1394		return -EINVAL;
1395
1396	/* Compatibility.
1397
1398	   This uglymoron is moved from INET layer to here to avoid
1399	   deadlock in module load.
1400	 */
1401	if (family == PF_INET && type == SOCK_PACKET) {
1402		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1403			     current->comm);
1404		family = PF_PACKET;
1405	}
1406
1407	err = security_socket_create(family, type, protocol, kern);
1408	if (err)
1409		return err;
1410
1411	/*
1412	 *	Allocate the socket and allow the family to set things up. if
1413	 *	the protocol is 0, the family is instructed to select an appropriate
1414	 *	default.
1415	 */
1416	sock = sock_alloc();
1417	if (!sock) {
1418		net_warn_ratelimited("socket: no more sockets\n");
1419		return -ENFILE;	/* Not exactly a match, but its the
1420				   closest posix thing */
1421	}
1422
1423	sock->type = type;
1424
1425#ifdef CONFIG_MODULES
1426	/* Attempt to load a protocol module if the find failed.
1427	 *
1428	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1429	 * requested real, full-featured networking support upon configuration.
1430	 * Otherwise module support will break!
1431	 */
1432	if (rcu_access_pointer(net_families[family]) == NULL)
1433		request_module("net-pf-%d", family);
1434#endif
1435
1436	rcu_read_lock();
1437	pf = rcu_dereference(net_families[family]);
1438	err = -EAFNOSUPPORT;
1439	if (!pf)
1440		goto out_release;
1441
1442	/*
1443	 * We will call the ->create function, that possibly is in a loadable
1444	 * module, so we have to bump that loadable module refcnt first.
1445	 */
1446	if (!try_module_get(pf->owner))
1447		goto out_release;
1448
1449	/* Now protected by module ref count */
1450	rcu_read_unlock();
1451
1452	err = pf->create(net, sock, protocol, kern);
1453	if (err < 0)
1454		goto out_module_put;
1455
1456	/*
1457	 * Now to bump the refcnt of the [loadable] module that owns this
1458	 * socket at sock_release time we decrement its refcnt.
1459	 */
1460	if (!try_module_get(sock->ops->owner))
1461		goto out_module_busy;
1462
1463	/*
1464	 * Now that we're done with the ->create function, the [loadable]
1465	 * module can have its refcnt decremented
1466	 */
1467	module_put(pf->owner);
1468	err = security_socket_post_create(sock, family, type, protocol, kern);
1469	if (err)
1470		goto out_sock_release;
1471	*res = sock;
1472
1473	return 0;
1474
1475out_module_busy:
1476	err = -EAFNOSUPPORT;
1477out_module_put:
1478	sock->ops = NULL;
1479	module_put(pf->owner);
1480out_sock_release:
1481	sock_release(sock);
1482	return err;
1483
1484out_release:
1485	rcu_read_unlock();
1486	goto out_sock_release;
1487}
1488EXPORT_SYMBOL(__sock_create);
1489
1490/**
1491 *	sock_create - creates a socket
1492 *	@family: protocol family (AF_INET, ...)
1493 *	@type: communication type (SOCK_STREAM, ...)
1494 *	@protocol: protocol (0, ...)
1495 *	@res: new socket
1496 *
1497 *	A wrapper around __sock_create().
1498 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1499 */
1500
1501int sock_create(int family, int type, int protocol, struct socket **res)
1502{
1503	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1504}
1505EXPORT_SYMBOL(sock_create);
1506
1507/**
1508 *	sock_create_kern - creates a socket (kernel space)
1509 *	@net: net namespace
1510 *	@family: protocol family (AF_INET, ...)
1511 *	@type: communication type (SOCK_STREAM, ...)
1512 *	@protocol: protocol (0, ...)
1513 *	@res: new socket
1514 *
1515 *	A wrapper around __sock_create().
1516 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1517 */
1518
1519int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1520{
1521	return __sock_create(net, family, type, protocol, res, 1);
1522}
1523EXPORT_SYMBOL(sock_create_kern);
1524
1525int __sys_socket(int family, int type, int protocol)
1526{
1527	int retval;
1528	struct socket *sock;
1529	int flags;
1530
1531	/* Check the SOCK_* constants for consistency.  */
1532	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1533	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1534	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1535	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1536
1537	flags = type & ~SOCK_TYPE_MASK;
1538	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1539		return -EINVAL;
1540	type &= SOCK_TYPE_MASK;
1541
1542	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1543		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1544
1545	retval = sock_create(family, type, protocol, &sock);
1546	if (retval < 0)
1547		return retval;
1548
1549	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1550}
1551
1552SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1553{
1554	return __sys_socket(family, type, protocol);
1555}
1556
1557/*
1558 *	Create a pair of connected sockets.
1559 */
1560
1561int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1562{
1563	struct socket *sock1, *sock2;
1564	int fd1, fd2, err;
1565	struct file *newfile1, *newfile2;
1566	int flags;
1567
1568	flags = type & ~SOCK_TYPE_MASK;
1569	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570		return -EINVAL;
1571	type &= SOCK_TYPE_MASK;
1572
1573	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1574		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1575
1576	/*
1577	 * reserve descriptors and make sure we won't fail
1578	 * to return them to userland.
1579	 */
1580	fd1 = get_unused_fd_flags(flags);
1581	if (unlikely(fd1 < 0))
1582		return fd1;
1583
1584	fd2 = get_unused_fd_flags(flags);
1585	if (unlikely(fd2 < 0)) {
1586		put_unused_fd(fd1);
1587		return fd2;
1588	}
1589
1590	err = put_user(fd1, &usockvec[0]);
1591	if (err)
1592		goto out;
1593
1594	err = put_user(fd2, &usockvec[1]);
1595	if (err)
1596		goto out;
1597
1598	/*
1599	 * Obtain the first socket and check if the underlying protocol
1600	 * supports the socketpair call.
1601	 */
1602
1603	err = sock_create(family, type, protocol, &sock1);
1604	if (unlikely(err < 0))
1605		goto out;
1606
1607	err = sock_create(family, type, protocol, &sock2);
1608	if (unlikely(err < 0)) {
1609		sock_release(sock1);
1610		goto out;
1611	}
1612
1613	err = security_socket_socketpair(sock1, sock2);
1614	if (unlikely(err)) {
1615		sock_release(sock2);
1616		sock_release(sock1);
1617		goto out;
1618	}
1619
1620	err = sock1->ops->socketpair(sock1, sock2);
1621	if (unlikely(err < 0)) {
1622		sock_release(sock2);
1623		sock_release(sock1);
1624		goto out;
1625	}
1626
1627	newfile1 = sock_alloc_file(sock1, flags, NULL);
1628	if (IS_ERR(newfile1)) {
1629		err = PTR_ERR(newfile1);
1630		sock_release(sock2);
1631		goto out;
1632	}
1633
1634	newfile2 = sock_alloc_file(sock2, flags, NULL);
1635	if (IS_ERR(newfile2)) {
1636		err = PTR_ERR(newfile2);
1637		fput(newfile1);
1638		goto out;
1639	}
1640
1641	audit_fd_pair(fd1, fd2);
1642
1643	fd_install(fd1, newfile1);
1644	fd_install(fd2, newfile2);
1645	return 0;
1646
1647out:
1648	put_unused_fd(fd2);
1649	put_unused_fd(fd1);
1650	return err;
1651}
1652
1653SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1654		int __user *, usockvec)
1655{
1656	return __sys_socketpair(family, type, protocol, usockvec);
1657}
1658
1659/*
1660 *	Bind a name to a socket. Nothing much to do here since it's
1661 *	the protocol's responsibility to handle the local address.
1662 *
1663 *	We move the socket address to kernel space before we call
1664 *	the protocol layer (having also checked the address is ok).
1665 */
1666
1667int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1668{
1669	struct socket *sock;
1670	struct sockaddr_storage address;
1671	int err, fput_needed;
1672
1673	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674	if (sock) {
1675		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1676		if (!err) {
1677			err = security_socket_bind(sock,
1678						   (struct sockaddr *)&address,
1679						   addrlen);
1680			if (!err)
1681				err = sock->ops->bind(sock,
1682						      (struct sockaddr *)
1683						      &address, addrlen);
1684		}
1685		fput_light(sock->file, fput_needed);
1686	}
1687	return err;
1688}
1689
1690SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1691{
1692	return __sys_bind(fd, umyaddr, addrlen);
1693}
1694
1695/*
1696 *	Perform a listen. Basically, we allow the protocol to do anything
1697 *	necessary for a listen, and if that works, we mark the socket as
1698 *	ready for listening.
1699 */
1700
1701int __sys_listen(int fd, int backlog)
1702{
1703	struct socket *sock;
1704	int err, fput_needed;
1705	int somaxconn;
1706
1707	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708	if (sock) {
1709		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1710		if ((unsigned int)backlog > somaxconn)
1711			backlog = somaxconn;
1712
1713		err = security_socket_listen(sock, backlog);
1714		if (!err)
1715			err = sock->ops->listen(sock, backlog);
1716
1717		fput_light(sock->file, fput_needed);
1718	}
1719	return err;
1720}
1721
1722SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1723{
1724	return __sys_listen(fd, backlog);
1725}
1726
1727int __sys_accept4_file(struct file *file, unsigned file_flags,
1728		       struct sockaddr __user *upeer_sockaddr,
1729		       int __user *upeer_addrlen, int flags,
1730		       unsigned long nofile)
1731{
1732	struct socket *sock, *newsock;
1733	struct file *newfile;
1734	int err, len, newfd;
1735	struct sockaddr_storage address;
1736
1737	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1738		return -EINVAL;
1739
1740	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1741		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1742
1743	sock = sock_from_file(file);
1744	if (!sock) {
1745		err = -ENOTSOCK;
1746		goto out;
1747	}
1748
1749	err = -ENFILE;
1750	newsock = sock_alloc();
1751	if (!newsock)
1752		goto out;
1753
1754	newsock->type = sock->type;
1755	newsock->ops = sock->ops;
1756
1757	/*
1758	 * We don't need try_module_get here, as the listening socket (sock)
1759	 * has the protocol module (sock->ops->owner) held.
1760	 */
1761	__module_get(newsock->ops->owner);
1762
1763	newfd = __get_unused_fd_flags(flags, nofile);
1764	if (unlikely(newfd < 0)) {
1765		err = newfd;
1766		sock_release(newsock);
1767		goto out;
1768	}
1769	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1770	if (IS_ERR(newfile)) {
1771		err = PTR_ERR(newfile);
1772		put_unused_fd(newfd);
1773		goto out;
1774	}
1775
1776	err = security_socket_accept(sock, newsock);
1777	if (err)
1778		goto out_fd;
1779
1780	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1781					false);
1782	if (err < 0)
1783		goto out_fd;
1784
1785	if (upeer_sockaddr) {
1786		len = newsock->ops->getname(newsock,
1787					(struct sockaddr *)&address, 2);
1788		if (len < 0) {
1789			err = -ECONNABORTED;
1790			goto out_fd;
1791		}
1792		err = move_addr_to_user(&address,
1793					len, upeer_sockaddr, upeer_addrlen);
1794		if (err < 0)
1795			goto out_fd;
1796	}
1797
1798	/* File flags are not inherited via accept() unlike another OSes. */
1799
1800	fd_install(newfd, newfile);
1801	err = newfd;
1802out:
1803	return err;
1804out_fd:
1805	fput(newfile);
1806	put_unused_fd(newfd);
1807	goto out;
1808
1809}
1810
1811/*
1812 *	For accept, we attempt to create a new socket, set up the link
1813 *	with the client, wake up the client, then return the new
1814 *	connected fd. We collect the address of the connector in kernel
1815 *	space and move it to user at the very end. This is unclean because
1816 *	we open the socket then return an error.
1817 *
1818 *	1003.1g adds the ability to recvmsg() to query connection pending
1819 *	status to recvmsg. We need to add that support in a way thats
1820 *	clean when we restructure accept also.
1821 */
1822
1823int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1824		  int __user *upeer_addrlen, int flags)
1825{
1826	int ret = -EBADF;
1827	struct fd f;
1828
1829	f = fdget(fd);
1830	if (f.file) {
1831		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1832						upeer_addrlen, flags,
1833						rlimit(RLIMIT_NOFILE));
1834		fdput(f);
1835	}
1836
1837	return ret;
1838}
1839
1840SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1841		int __user *, upeer_addrlen, int, flags)
1842{
1843	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1844}
1845
1846SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1847		int __user *, upeer_addrlen)
1848{
1849	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1850}
1851
1852/*
1853 *	Attempt to connect to a socket with the server address.  The address
1854 *	is in user space so we verify it is OK and move it to kernel space.
1855 *
1856 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1857 *	break bindings
1858 *
1859 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1860 *	other SEQPACKET protocols that take time to connect() as it doesn't
1861 *	include the -EINPROGRESS status for such sockets.
1862 */
1863
1864int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1865		       int addrlen, int file_flags)
1866{
1867	struct socket *sock;
1868	int err;
1869
1870	sock = sock_from_file(file);
1871	if (!sock) {
1872		err = -ENOTSOCK;
1873		goto out;
1874	}
1875
1876	err =
1877	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1878	if (err)
1879		goto out;
1880
1881	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1882				 sock->file->f_flags | file_flags);
1883out:
1884	return err;
1885}
1886
1887int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1888{
1889	int ret = -EBADF;
1890	struct fd f;
1891
1892	f = fdget(fd);
1893	if (f.file) {
1894		struct sockaddr_storage address;
1895
1896		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1897		if (!ret)
1898			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1899		fdput(f);
1900	}
1901
1902	return ret;
1903}
1904
1905SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1906		int, addrlen)
1907{
1908	return __sys_connect(fd, uservaddr, addrlen);
1909}
1910
1911/*
1912 *	Get the local address ('name') of a socket object. Move the obtained
1913 *	name to user space.
1914 */
1915
1916int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1917		      int __user *usockaddr_len)
1918{
1919	struct socket *sock;
1920	struct sockaddr_storage address;
1921	int err, fput_needed;
1922
1923	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924	if (!sock)
1925		goto out;
1926
1927	err = security_socket_getsockname(sock);
1928	if (err)
1929		goto out_put;
1930
1931	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1932	if (err < 0)
1933		goto out_put;
1934        /* "err" is actually length in this case */
1935	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1936
1937out_put:
1938	fput_light(sock->file, fput_needed);
1939out:
1940	return err;
1941}
1942
1943SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1944		int __user *, usockaddr_len)
1945{
1946	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1947}
1948
1949/*
1950 *	Get the remote address ('name') of a socket object. Move the obtained
1951 *	name to user space.
1952 */
1953
1954int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1955		      int __user *usockaddr_len)
1956{
1957	struct socket *sock;
1958	struct sockaddr_storage address;
1959	int err, fput_needed;
1960
1961	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962	if (sock != NULL) {
1963		err = security_socket_getpeername(sock);
1964		if (err) {
1965			fput_light(sock->file, fput_needed);
1966			return err;
1967		}
1968
1969		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1970		if (err >= 0)
1971			/* "err" is actually length in this case */
1972			err = move_addr_to_user(&address, err, usockaddr,
1973						usockaddr_len);
1974		fput_light(sock->file, fput_needed);
1975	}
1976	return err;
1977}
1978
1979SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1980		int __user *, usockaddr_len)
1981{
1982	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1983}
1984
1985/*
1986 *	Send a datagram to a given address. We move the address into kernel
1987 *	space and check the user space data area is readable before invoking
1988 *	the protocol.
1989 */
1990int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1991		 struct sockaddr __user *addr,  int addr_len)
1992{
1993	struct socket *sock;
1994	struct sockaddr_storage address;
1995	int err;
1996	struct msghdr msg;
1997	struct iovec iov;
1998	int fput_needed;
1999
2000	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2001	if (unlikely(err))
2002		return err;
2003	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2004	if (!sock)
2005		goto out;
2006
2007	msg.msg_name = NULL;
2008	msg.msg_control = NULL;
2009	msg.msg_controllen = 0;
2010	msg.msg_namelen = 0;
2011	if (addr) {
2012		err = move_addr_to_kernel(addr, addr_len, &address);
2013		if (err < 0)
2014			goto out_put;
2015		msg.msg_name = (struct sockaddr *)&address;
2016		msg.msg_namelen = addr_len;
2017	}
2018	if (sock->file->f_flags & O_NONBLOCK)
2019		flags |= MSG_DONTWAIT;
2020	msg.msg_flags = flags;
2021	err = sock_sendmsg(sock, &msg);
2022
2023out_put:
2024	fput_light(sock->file, fput_needed);
2025out:
2026	return err;
2027}
2028
2029SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2030		unsigned int, flags, struct sockaddr __user *, addr,
2031		int, addr_len)
2032{
2033	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2034}
2035
2036/*
2037 *	Send a datagram down a socket.
2038 */
2039
2040SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2041		unsigned int, flags)
2042{
2043	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2044}
2045
2046/*
2047 *	Receive a frame from the socket and optionally record the address of the
2048 *	sender. We verify the buffers are writable and if needed move the
2049 *	sender address from kernel to user space.
2050 */
2051int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2052		   struct sockaddr __user *addr, int __user *addr_len)
2053{
2054	struct socket *sock;
2055	struct iovec iov;
2056	struct msghdr msg;
2057	struct sockaddr_storage address;
2058	int err, err2;
2059	int fput_needed;
2060
2061	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2062	if (unlikely(err))
2063		return err;
2064	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065	if (!sock)
2066		goto out;
2067
2068	msg.msg_control = NULL;
2069	msg.msg_controllen = 0;
2070	/* Save some cycles and don't copy the address if not needed */
2071	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2072	/* We assume all kernel code knows the size of sockaddr_storage */
2073	msg.msg_namelen = 0;
2074	msg.msg_iocb = NULL;
2075	msg.msg_flags = 0;
2076	if (sock->file->f_flags & O_NONBLOCK)
2077		flags |= MSG_DONTWAIT;
2078	err = sock_recvmsg(sock, &msg, flags);
2079
2080	if (err >= 0 && addr != NULL) {
2081		err2 = move_addr_to_user(&address,
2082					 msg.msg_namelen, addr, addr_len);
2083		if (err2 < 0)
2084			err = err2;
2085	}
2086
2087	fput_light(sock->file, fput_needed);
2088out:
2089	return err;
2090}
2091
2092SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2093		unsigned int, flags, struct sockaddr __user *, addr,
2094		int __user *, addr_len)
2095{
2096	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2097}
2098
2099/*
2100 *	Receive a datagram from a socket.
2101 */
2102
2103SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2104		unsigned int, flags)
2105{
2106	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2107}
2108
2109static bool sock_use_custom_sol_socket(const struct socket *sock)
2110{
2111	const struct sock *sk = sock->sk;
2112
2113	/* Use sock->ops->setsockopt() for MPTCP */
2114	return IS_ENABLED(CONFIG_MPTCP) &&
2115	       sk->sk_protocol == IPPROTO_MPTCP &&
2116	       sk->sk_type == SOCK_STREAM &&
2117	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2118}
2119
2120/*
2121 *	Set a socket option. Because we don't know the option lengths we have
2122 *	to pass the user mode parameter for the protocols to sort out.
2123 */
2124int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2125		int optlen)
2126{
2127	sockptr_t optval = USER_SOCKPTR(user_optval);
2128	char *kernel_optval = NULL;
2129	int err, fput_needed;
2130	struct socket *sock;
2131
2132	if (optlen < 0)
2133		return -EINVAL;
2134
2135	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136	if (!sock)
2137		return err;
2138
2139	err = security_socket_setsockopt(sock, level, optname);
2140	if (err)
2141		goto out_put;
2142
2143	if (!in_compat_syscall())
2144		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2145						     user_optval, &optlen,
2146						     &kernel_optval);
2147	if (err < 0)
2148		goto out_put;
2149	if (err > 0) {
2150		err = 0;
2151		goto out_put;
2152	}
2153
2154	if (kernel_optval)
2155		optval = KERNEL_SOCKPTR(kernel_optval);
2156	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2157		err = sock_setsockopt(sock, level, optname, optval, optlen);
2158	else if (unlikely(!sock->ops->setsockopt))
2159		err = -EOPNOTSUPP;
2160	else
2161		err = sock->ops->setsockopt(sock, level, optname, optval,
2162					    optlen);
2163	kfree(kernel_optval);
2164out_put:
2165	fput_light(sock->file, fput_needed);
2166	return err;
2167}
2168
2169SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2170		char __user *, optval, int, optlen)
2171{
2172	return __sys_setsockopt(fd, level, optname, optval, optlen);
2173}
2174
2175INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2176							 int optname));
2177
2178/*
2179 *	Get a socket option. Because we don't know the option lengths we have
2180 *	to pass a user mode parameter for the protocols to sort out.
2181 */
2182int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2183		int __user *optlen)
2184{
2185	int err, fput_needed;
2186	struct socket *sock;
2187	int max_optlen;
2188
2189	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190	if (!sock)
2191		return err;
2192
2193	err = security_socket_getsockopt(sock, level, optname);
2194	if (err)
2195		goto out_put;
2196
2197	if (!in_compat_syscall())
2198		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2199
2200	if (level == SOL_SOCKET)
2201		err = sock_getsockopt(sock, level, optname, optval, optlen);
2202	else if (unlikely(!sock->ops->getsockopt))
2203		err = -EOPNOTSUPP;
2204	else
2205		err = sock->ops->getsockopt(sock, level, optname, optval,
2206					    optlen);
2207
2208	if (!in_compat_syscall())
2209		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2210						     optval, optlen, max_optlen,
2211						     err);
2212out_put:
2213	fput_light(sock->file, fput_needed);
2214	return err;
2215}
2216
2217SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2218		char __user *, optval, int __user *, optlen)
2219{
2220	return __sys_getsockopt(fd, level, optname, optval, optlen);
2221}
2222
2223/*
2224 *	Shutdown a socket.
2225 */
2226
2227int __sys_shutdown_sock(struct socket *sock, int how)
2228{
2229	int err;
2230
2231	err = security_socket_shutdown(sock, how);
2232	if (!err)
2233		err = sock->ops->shutdown(sock, how);
2234
2235	return err;
2236}
2237
2238int __sys_shutdown(int fd, int how)
2239{
2240	int err, fput_needed;
2241	struct socket *sock;
2242
2243	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2244	if (sock != NULL) {
2245		err = __sys_shutdown_sock(sock, how);
 
 
2246		fput_light(sock->file, fput_needed);
2247	}
2248	return err;
2249}
2250
2251SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2252{
2253	return __sys_shutdown(fd, how);
2254}
2255
2256/* A couple of helpful macros for getting the address of the 32/64 bit
2257 * fields which are the same type (int / unsigned) on our platforms.
2258 */
2259#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2260#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2261#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2262
2263struct used_address {
2264	struct sockaddr_storage name;
2265	unsigned int name_len;
2266};
2267
2268int __copy_msghdr_from_user(struct msghdr *kmsg,
2269			    struct user_msghdr __user *umsg,
2270			    struct sockaddr __user **save_addr,
2271			    struct iovec __user **uiov, size_t *nsegs)
2272{
2273	struct user_msghdr msg;
2274	ssize_t err;
2275
2276	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2277		return -EFAULT;
2278
2279	kmsg->msg_control_is_user = true;
2280	kmsg->msg_control_user = msg.msg_control;
2281	kmsg->msg_controllen = msg.msg_controllen;
2282	kmsg->msg_flags = msg.msg_flags;
2283
2284	kmsg->msg_namelen = msg.msg_namelen;
2285	if (!msg.msg_name)
2286		kmsg->msg_namelen = 0;
2287
2288	if (kmsg->msg_namelen < 0)
2289		return -EINVAL;
2290
2291	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2292		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2293
2294	if (save_addr)
2295		*save_addr = msg.msg_name;
2296
2297	if (msg.msg_name && kmsg->msg_namelen) {
2298		if (!save_addr) {
2299			err = move_addr_to_kernel(msg.msg_name,
2300						  kmsg->msg_namelen,
2301						  kmsg->msg_name);
2302			if (err < 0)
2303				return err;
2304		}
2305	} else {
2306		kmsg->msg_name = NULL;
2307		kmsg->msg_namelen = 0;
2308	}
2309
2310	if (msg.msg_iovlen > UIO_MAXIOV)
2311		return -EMSGSIZE;
2312
2313	kmsg->msg_iocb = NULL;
2314	*uiov = msg.msg_iov;
2315	*nsegs = msg.msg_iovlen;
2316	return 0;
2317}
2318
2319static int copy_msghdr_from_user(struct msghdr *kmsg,
2320				 struct user_msghdr __user *umsg,
2321				 struct sockaddr __user **save_addr,
2322				 struct iovec **iov)
2323{
2324	struct user_msghdr msg;
2325	ssize_t err;
2326
2327	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2328					&msg.msg_iovlen);
2329	if (err)
2330		return err;
2331
2332	err = import_iovec(save_addr ? READ : WRITE,
2333			    msg.msg_iov, msg.msg_iovlen,
2334			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2335	return err < 0 ? err : 0;
2336}
2337
2338static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2339			   unsigned int flags, struct used_address *used_address,
2340			   unsigned int allowed_msghdr_flags)
2341{
2342	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2343				__aligned(sizeof(__kernel_size_t));
2344	/* 20 is size of ipv6_pktinfo */
2345	unsigned char *ctl_buf = ctl;
2346	int ctl_len;
2347	ssize_t err;
2348
2349	err = -ENOBUFS;
2350
2351	if (msg_sys->msg_controllen > INT_MAX)
2352		goto out;
2353	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2354	ctl_len = msg_sys->msg_controllen;
2355	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2356		err =
2357		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2358						     sizeof(ctl));
2359		if (err)
2360			goto out;
2361		ctl_buf = msg_sys->msg_control;
2362		ctl_len = msg_sys->msg_controllen;
2363	} else if (ctl_len) {
2364		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2365			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2366		if (ctl_len > sizeof(ctl)) {
2367			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2368			if (ctl_buf == NULL)
2369				goto out;
2370		}
2371		err = -EFAULT;
2372		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2373			goto out_freectl;
2374		msg_sys->msg_control = ctl_buf;
2375		msg_sys->msg_control_is_user = false;
2376	}
2377	msg_sys->msg_flags = flags;
2378
2379	if (sock->file->f_flags & O_NONBLOCK)
2380		msg_sys->msg_flags |= MSG_DONTWAIT;
2381	/*
2382	 * If this is sendmmsg() and current destination address is same as
2383	 * previously succeeded address, omit asking LSM's decision.
2384	 * used_address->name_len is initialized to UINT_MAX so that the first
2385	 * destination address never matches.
2386	 */
2387	if (used_address && msg_sys->msg_name &&
2388	    used_address->name_len == msg_sys->msg_namelen &&
2389	    !memcmp(&used_address->name, msg_sys->msg_name,
2390		    used_address->name_len)) {
2391		err = sock_sendmsg_nosec(sock, msg_sys);
2392		goto out_freectl;
2393	}
2394	err = sock_sendmsg(sock, msg_sys);
2395	/*
2396	 * If this is sendmmsg() and sending to current destination address was
2397	 * successful, remember it.
2398	 */
2399	if (used_address && err >= 0) {
2400		used_address->name_len = msg_sys->msg_namelen;
2401		if (msg_sys->msg_name)
2402			memcpy(&used_address->name, msg_sys->msg_name,
2403			       used_address->name_len);
2404	}
2405
2406out_freectl:
2407	if (ctl_buf != ctl)
2408		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2409out:
2410	return err;
2411}
2412
2413int sendmsg_copy_msghdr(struct msghdr *msg,
2414			struct user_msghdr __user *umsg, unsigned flags,
2415			struct iovec **iov)
2416{
2417	int err;
2418
2419	if (flags & MSG_CMSG_COMPAT) {
2420		struct compat_msghdr __user *msg_compat;
2421
2422		msg_compat = (struct compat_msghdr __user *) umsg;
2423		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2424	} else {
2425		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2426	}
2427	if (err < 0)
2428		return err;
2429
2430	return 0;
2431}
2432
2433static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2434			 struct msghdr *msg_sys, unsigned int flags,
2435			 struct used_address *used_address,
2436			 unsigned int allowed_msghdr_flags)
2437{
2438	struct sockaddr_storage address;
2439	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2440	ssize_t err;
2441
2442	msg_sys->msg_name = &address;
2443
2444	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2445	if (err < 0)
2446		return err;
2447
2448	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2449				allowed_msghdr_flags);
2450	kfree(iov);
2451	return err;
2452}
2453
2454/*
2455 *	BSD sendmsg interface
2456 */
2457long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2458			unsigned int flags)
2459{
 
 
 
 
2460	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2461}
2462
2463long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2464		   bool forbid_cmsg_compat)
2465{
2466	int fput_needed, err;
2467	struct msghdr msg_sys;
2468	struct socket *sock;
2469
2470	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2471		return -EINVAL;
2472
2473	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2474	if (!sock)
2475		goto out;
2476
2477	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2478
2479	fput_light(sock->file, fput_needed);
2480out:
2481	return err;
2482}
2483
2484SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2485{
2486	return __sys_sendmsg(fd, msg, flags, true);
2487}
2488
2489/*
2490 *	Linux sendmmsg interface
2491 */
2492
2493int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2494		   unsigned int flags, bool forbid_cmsg_compat)
2495{
2496	int fput_needed, err, datagrams;
2497	struct socket *sock;
2498	struct mmsghdr __user *entry;
2499	struct compat_mmsghdr __user *compat_entry;
2500	struct msghdr msg_sys;
2501	struct used_address used_address;
2502	unsigned int oflags = flags;
2503
2504	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2505		return -EINVAL;
2506
2507	if (vlen > UIO_MAXIOV)
2508		vlen = UIO_MAXIOV;
2509
2510	datagrams = 0;
2511
2512	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2513	if (!sock)
2514		return err;
2515
2516	used_address.name_len = UINT_MAX;
2517	entry = mmsg;
2518	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2519	err = 0;
2520	flags |= MSG_BATCH;
2521
2522	while (datagrams < vlen) {
2523		if (datagrams == vlen - 1)
2524			flags = oflags;
2525
2526		if (MSG_CMSG_COMPAT & flags) {
2527			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2528					     &msg_sys, flags, &used_address, MSG_EOR);
2529			if (err < 0)
2530				break;
2531			err = __put_user(err, &compat_entry->msg_len);
2532			++compat_entry;
2533		} else {
2534			err = ___sys_sendmsg(sock,
2535					     (struct user_msghdr __user *)entry,
2536					     &msg_sys, flags, &used_address, MSG_EOR);
2537			if (err < 0)
2538				break;
2539			err = put_user(err, &entry->msg_len);
2540			++entry;
2541		}
2542
2543		if (err)
2544			break;
2545		++datagrams;
2546		if (msg_data_left(&msg_sys))
2547			break;
2548		cond_resched();
2549	}
2550
2551	fput_light(sock->file, fput_needed);
2552
2553	/* We only return an error if no datagrams were able to be sent */
2554	if (datagrams != 0)
2555		return datagrams;
2556
2557	return err;
2558}
2559
2560SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2561		unsigned int, vlen, unsigned int, flags)
2562{
2563	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2564}
2565
2566int recvmsg_copy_msghdr(struct msghdr *msg,
2567			struct user_msghdr __user *umsg, unsigned flags,
2568			struct sockaddr __user **uaddr,
2569			struct iovec **iov)
2570{
2571	ssize_t err;
2572
2573	if (MSG_CMSG_COMPAT & flags) {
2574		struct compat_msghdr __user *msg_compat;
2575
2576		msg_compat = (struct compat_msghdr __user *) umsg;
2577		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2578	} else {
2579		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2580	}
2581	if (err < 0)
2582		return err;
2583
2584	return 0;
2585}
2586
2587static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2588			   struct user_msghdr __user *msg,
2589			   struct sockaddr __user *uaddr,
2590			   unsigned int flags, int nosec)
2591{
2592	struct compat_msghdr __user *msg_compat =
2593					(struct compat_msghdr __user *) msg;
2594	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2595	struct sockaddr_storage addr;
2596	unsigned long cmsg_ptr;
2597	int len;
2598	ssize_t err;
2599
2600	msg_sys->msg_name = &addr;
2601	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2602	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2603
2604	/* We assume all kernel code knows the size of sockaddr_storage */
2605	msg_sys->msg_namelen = 0;
2606
2607	if (sock->file->f_flags & O_NONBLOCK)
2608		flags |= MSG_DONTWAIT;
2609
2610	if (unlikely(nosec))
2611		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2612	else
2613		err = sock_recvmsg(sock, msg_sys, flags);
2614
2615	if (err < 0)
2616		goto out;
2617	len = err;
2618
2619	if (uaddr != NULL) {
2620		err = move_addr_to_user(&addr,
2621					msg_sys->msg_namelen, uaddr,
2622					uaddr_len);
2623		if (err < 0)
2624			goto out;
2625	}
2626	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2627			 COMPAT_FLAGS(msg));
2628	if (err)
2629		goto out;
2630	if (MSG_CMSG_COMPAT & flags)
2631		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2632				 &msg_compat->msg_controllen);
2633	else
2634		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2635				 &msg->msg_controllen);
2636	if (err)
2637		goto out;
2638	err = len;
2639out:
2640	return err;
2641}
2642
2643static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2644			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2645{
2646	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2647	/* user mode address pointers */
2648	struct sockaddr __user *uaddr;
2649	ssize_t err;
2650
2651	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2652	if (err < 0)
2653		return err;
2654
2655	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2656	kfree(iov);
2657	return err;
2658}
2659
2660/*
2661 *	BSD recvmsg interface
2662 */
2663
2664long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2665			struct user_msghdr __user *umsg,
2666			struct sockaddr __user *uaddr, unsigned int flags)
2667{
 
 
 
 
2668	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2669}
2670
2671long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2672		   bool forbid_cmsg_compat)
2673{
2674	int fput_needed, err;
2675	struct msghdr msg_sys;
2676	struct socket *sock;
2677
2678	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2679		return -EINVAL;
2680
2681	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2682	if (!sock)
2683		goto out;
2684
2685	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2686
2687	fput_light(sock->file, fput_needed);
2688out:
2689	return err;
2690}
2691
2692SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2693		unsigned int, flags)
2694{
2695	return __sys_recvmsg(fd, msg, flags, true);
2696}
2697
2698/*
2699 *     Linux recvmmsg interface
2700 */
2701
2702static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2703			  unsigned int vlen, unsigned int flags,
2704			  struct timespec64 *timeout)
2705{
2706	int fput_needed, err, datagrams;
2707	struct socket *sock;
2708	struct mmsghdr __user *entry;
2709	struct compat_mmsghdr __user *compat_entry;
2710	struct msghdr msg_sys;
2711	struct timespec64 end_time;
2712	struct timespec64 timeout64;
2713
2714	if (timeout &&
2715	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2716				    timeout->tv_nsec))
2717		return -EINVAL;
2718
2719	datagrams = 0;
2720
2721	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2722	if (!sock)
2723		return err;
2724
2725	if (likely(!(flags & MSG_ERRQUEUE))) {
2726		err = sock_error(sock->sk);
2727		if (err) {
2728			datagrams = err;
2729			goto out_put;
2730		}
2731	}
2732
2733	entry = mmsg;
2734	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2735
2736	while (datagrams < vlen) {
2737		/*
2738		 * No need to ask LSM for more than the first datagram.
2739		 */
2740		if (MSG_CMSG_COMPAT & flags) {
2741			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2742					     &msg_sys, flags & ~MSG_WAITFORONE,
2743					     datagrams);
2744			if (err < 0)
2745				break;
2746			err = __put_user(err, &compat_entry->msg_len);
2747			++compat_entry;
2748		} else {
2749			err = ___sys_recvmsg(sock,
2750					     (struct user_msghdr __user *)entry,
2751					     &msg_sys, flags & ~MSG_WAITFORONE,
2752					     datagrams);
2753			if (err < 0)
2754				break;
2755			err = put_user(err, &entry->msg_len);
2756			++entry;
2757		}
2758
2759		if (err)
2760			break;
2761		++datagrams;
2762
2763		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2764		if (flags & MSG_WAITFORONE)
2765			flags |= MSG_DONTWAIT;
2766
2767		if (timeout) {
2768			ktime_get_ts64(&timeout64);
2769			*timeout = timespec64_sub(end_time, timeout64);
2770			if (timeout->tv_sec < 0) {
2771				timeout->tv_sec = timeout->tv_nsec = 0;
2772				break;
2773			}
2774
2775			/* Timeout, return less than vlen datagrams */
2776			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2777				break;
2778		}
2779
2780		/* Out of band data, return right away */
2781		if (msg_sys.msg_flags & MSG_OOB)
2782			break;
2783		cond_resched();
2784	}
2785
2786	if (err == 0)
2787		goto out_put;
2788
2789	if (datagrams == 0) {
2790		datagrams = err;
2791		goto out_put;
2792	}
2793
2794	/*
2795	 * We may return less entries than requested (vlen) if the
2796	 * sock is non block and there aren't enough datagrams...
2797	 */
2798	if (err != -EAGAIN) {
2799		/*
2800		 * ... or  if recvmsg returns an error after we
2801		 * received some datagrams, where we record the
2802		 * error to return on the next call or if the
2803		 * app asks about it using getsockopt(SO_ERROR).
2804		 */
2805		sock->sk->sk_err = -err;
2806	}
2807out_put:
2808	fput_light(sock->file, fput_needed);
2809
2810	return datagrams;
2811}
2812
2813int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2814		   unsigned int vlen, unsigned int flags,
2815		   struct __kernel_timespec __user *timeout,
2816		   struct old_timespec32 __user *timeout32)
2817{
2818	int datagrams;
2819	struct timespec64 timeout_sys;
2820
2821	if (timeout && get_timespec64(&timeout_sys, timeout))
2822		return -EFAULT;
2823
2824	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2825		return -EFAULT;
2826
2827	if (!timeout && !timeout32)
2828		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2829
2830	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2831
2832	if (datagrams <= 0)
2833		return datagrams;
2834
2835	if (timeout && put_timespec64(&timeout_sys, timeout))
2836		datagrams = -EFAULT;
2837
2838	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2839		datagrams = -EFAULT;
2840
2841	return datagrams;
2842}
2843
2844SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2845		unsigned int, vlen, unsigned int, flags,
2846		struct __kernel_timespec __user *, timeout)
2847{
2848	if (flags & MSG_CMSG_COMPAT)
2849		return -EINVAL;
2850
2851	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2852}
2853
2854#ifdef CONFIG_COMPAT_32BIT_TIME
2855SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2856		unsigned int, vlen, unsigned int, flags,
2857		struct old_timespec32 __user *, timeout)
2858{
2859	if (flags & MSG_CMSG_COMPAT)
2860		return -EINVAL;
2861
2862	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2863}
2864#endif
2865
2866#ifdef __ARCH_WANT_SYS_SOCKETCALL
2867/* Argument list sizes for sys_socketcall */
2868#define AL(x) ((x) * sizeof(unsigned long))
2869static const unsigned char nargs[21] = {
2870	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2871	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2872	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2873	AL(4), AL(5), AL(4)
2874};
2875
2876#undef AL
2877
2878/*
2879 *	System call vectors.
2880 *
2881 *	Argument checking cleaned up. Saved 20% in size.
2882 *  This function doesn't need to set the kernel lock because
2883 *  it is set by the callees.
2884 */
2885
2886SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2887{
2888	unsigned long a[AUDITSC_ARGS];
2889	unsigned long a0, a1;
2890	int err;
2891	unsigned int len;
2892
2893	if (call < 1 || call > SYS_SENDMMSG)
2894		return -EINVAL;
2895	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2896
2897	len = nargs[call];
2898	if (len > sizeof(a))
2899		return -EINVAL;
2900
2901	/* copy_from_user should be SMP safe. */
2902	if (copy_from_user(a, args, len))
2903		return -EFAULT;
2904
2905	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2906	if (err)
2907		return err;
2908
2909	a0 = a[0];
2910	a1 = a[1];
2911
2912	switch (call) {
2913	case SYS_SOCKET:
2914		err = __sys_socket(a0, a1, a[2]);
2915		break;
2916	case SYS_BIND:
2917		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2918		break;
2919	case SYS_CONNECT:
2920		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2921		break;
2922	case SYS_LISTEN:
2923		err = __sys_listen(a0, a1);
2924		break;
2925	case SYS_ACCEPT:
2926		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2927				    (int __user *)a[2], 0);
2928		break;
2929	case SYS_GETSOCKNAME:
2930		err =
2931		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2932				      (int __user *)a[2]);
2933		break;
2934	case SYS_GETPEERNAME:
2935		err =
2936		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2937				      (int __user *)a[2]);
2938		break;
2939	case SYS_SOCKETPAIR:
2940		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2941		break;
2942	case SYS_SEND:
2943		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2944				   NULL, 0);
2945		break;
2946	case SYS_SENDTO:
2947		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2948				   (struct sockaddr __user *)a[4], a[5]);
2949		break;
2950	case SYS_RECV:
2951		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2952				     NULL, NULL);
2953		break;
2954	case SYS_RECVFROM:
2955		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2956				     (struct sockaddr __user *)a[4],
2957				     (int __user *)a[5]);
2958		break;
2959	case SYS_SHUTDOWN:
2960		err = __sys_shutdown(a0, a1);
2961		break;
2962	case SYS_SETSOCKOPT:
2963		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2964				       a[4]);
2965		break;
2966	case SYS_GETSOCKOPT:
2967		err =
2968		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2969				     (int __user *)a[4]);
2970		break;
2971	case SYS_SENDMSG:
2972		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2973				    a[2], true);
2974		break;
2975	case SYS_SENDMMSG:
2976		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2977				     a[3], true);
2978		break;
2979	case SYS_RECVMSG:
2980		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2981				    a[2], true);
2982		break;
2983	case SYS_RECVMMSG:
2984		if (IS_ENABLED(CONFIG_64BIT))
2985			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2986					     a[2], a[3],
2987					     (struct __kernel_timespec __user *)a[4],
2988					     NULL);
2989		else
2990			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2991					     a[2], a[3], NULL,
2992					     (struct old_timespec32 __user *)a[4]);
2993		break;
2994	case SYS_ACCEPT4:
2995		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2996				    (int __user *)a[2], a[3]);
2997		break;
2998	default:
2999		err = -EINVAL;
3000		break;
3001	}
3002	return err;
3003}
3004
3005#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3006
3007/**
3008 *	sock_register - add a socket protocol handler
3009 *	@ops: description of protocol
3010 *
3011 *	This function is called by a protocol handler that wants to
3012 *	advertise its address family, and have it linked into the
3013 *	socket interface. The value ops->family corresponds to the
3014 *	socket system call protocol family.
3015 */
3016int sock_register(const struct net_proto_family *ops)
3017{
3018	int err;
3019
3020	if (ops->family >= NPROTO) {
3021		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3022		return -ENOBUFS;
3023	}
3024
3025	spin_lock(&net_family_lock);
3026	if (rcu_dereference_protected(net_families[ops->family],
3027				      lockdep_is_held(&net_family_lock)))
3028		err = -EEXIST;
3029	else {
3030		rcu_assign_pointer(net_families[ops->family], ops);
3031		err = 0;
3032	}
3033	spin_unlock(&net_family_lock);
3034
3035	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3036	return err;
3037}
3038EXPORT_SYMBOL(sock_register);
3039
3040/**
3041 *	sock_unregister - remove a protocol handler
3042 *	@family: protocol family to remove
3043 *
3044 *	This function is called by a protocol handler that wants to
3045 *	remove its address family, and have it unlinked from the
3046 *	new socket creation.
3047 *
3048 *	If protocol handler is a module, then it can use module reference
3049 *	counts to protect against new references. If protocol handler is not
3050 *	a module then it needs to provide its own protection in
3051 *	the ops->create routine.
3052 */
3053void sock_unregister(int family)
3054{
3055	BUG_ON(family < 0 || family >= NPROTO);
3056
3057	spin_lock(&net_family_lock);
3058	RCU_INIT_POINTER(net_families[family], NULL);
3059	spin_unlock(&net_family_lock);
3060
3061	synchronize_rcu();
3062
3063	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3064}
3065EXPORT_SYMBOL(sock_unregister);
3066
3067bool sock_is_registered(int family)
3068{
3069	return family < NPROTO && rcu_access_pointer(net_families[family]);
3070}
3071
3072static int __init sock_init(void)
3073{
3074	int err;
3075	/*
3076	 *      Initialize the network sysctl infrastructure.
3077	 */
3078	err = net_sysctl_init();
3079	if (err)
3080		goto out;
3081
3082	/*
3083	 *      Initialize skbuff SLAB cache
3084	 */
3085	skb_init();
3086
3087	/*
3088	 *      Initialize the protocols module.
3089	 */
3090
3091	init_inodecache();
3092
3093	err = register_filesystem(&sock_fs_type);
3094	if (err)
3095		goto out;
3096	sock_mnt = kern_mount(&sock_fs_type);
3097	if (IS_ERR(sock_mnt)) {
3098		err = PTR_ERR(sock_mnt);
3099		goto out_mount;
3100	}
3101
3102	/* The real protocol initialization is performed in later initcalls.
3103	 */
3104
3105#ifdef CONFIG_NETFILTER
3106	err = netfilter_init();
3107	if (err)
3108		goto out;
3109#endif
3110
3111	ptp_classifier_init();
3112
3113out:
3114	return err;
3115
3116out_mount:
3117	unregister_filesystem(&sock_fs_type);
3118	goto out;
3119}
3120
3121core_initcall(sock_init);	/* early initcall */
3122
3123#ifdef CONFIG_PROC_FS
3124void socket_seq_show(struct seq_file *seq)
3125{
3126	seq_printf(seq, "sockets: used %d\n",
3127		   sock_inuse_get(seq->private));
3128}
3129#endif				/* CONFIG_PROC_FS */
3130
3131#ifdef CONFIG_COMPAT
3132static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3133{
3134	struct compat_ifconf ifc32;
3135	struct ifconf ifc;
3136	int err;
3137
3138	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3139		return -EFAULT;
3140
3141	ifc.ifc_len = ifc32.ifc_len;
3142	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3143
3144	rtnl_lock();
3145	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3146	rtnl_unlock();
3147	if (err)
3148		return err;
3149
3150	ifc32.ifc_len = ifc.ifc_len;
3151	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3152		return -EFAULT;
3153
3154	return 0;
3155}
3156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3157static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3158{
3159	compat_uptr_t uptr32;
3160	struct ifreq ifr;
3161	void __user *saved;
3162	int err;
3163
3164	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3165		return -EFAULT;
3166
3167	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3168		return -EFAULT;
3169
3170	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3171	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3172
3173	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3174	if (!err) {
3175		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3176		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3177			err = -EFAULT;
3178	}
3179	return err;
3180}
3181
3182/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3183static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3184				 struct compat_ifreq __user *u_ifreq32)
3185{
3186	struct ifreq ifreq;
3187	u32 data32;
3188
3189	if (!is_socket_ioctl_cmd(cmd))
3190		return -ENOTTY;
3191	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3192		return -EFAULT;
3193	if (get_user(data32, &u_ifreq32->ifr_data))
3194		return -EFAULT;
3195	ifreq.ifr_data = compat_ptr(data32);
3196
3197	return dev_ioctl(net, cmd, &ifreq, NULL);
3198}
3199
3200static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3201			      unsigned int cmd,
3202			      struct compat_ifreq __user *uifr32)
3203{
3204	struct ifreq __user *uifr;
3205	int err;
3206
3207	/* Handle the fact that while struct ifreq has the same *layout* on
3208	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3209	 * which are handled elsewhere, it still has different *size* due to
3210	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3211	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3212	 * As a result, if the struct happens to be at the end of a page and
3213	 * the next page isn't readable/writable, we get a fault. To prevent
3214	 * that, copy back and forth to the full size.
3215	 */
3216
3217	uifr = compat_alloc_user_space(sizeof(*uifr));
3218	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3219		return -EFAULT;
3220
3221	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3222
3223	if (!err) {
3224		switch (cmd) {
3225		case SIOCGIFFLAGS:
3226		case SIOCGIFMETRIC:
3227		case SIOCGIFMTU:
3228		case SIOCGIFMEM:
3229		case SIOCGIFHWADDR:
3230		case SIOCGIFINDEX:
3231		case SIOCGIFADDR:
3232		case SIOCGIFBRDADDR:
3233		case SIOCGIFDSTADDR:
3234		case SIOCGIFNETMASK:
3235		case SIOCGIFPFLAGS:
3236		case SIOCGIFTXQLEN:
3237		case SIOCGMIIPHY:
3238		case SIOCGMIIREG:
3239		case SIOCGIFNAME:
3240			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3241				err = -EFAULT;
3242			break;
3243		}
3244	}
3245	return err;
3246}
3247
3248static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3249			struct compat_ifreq __user *uifr32)
3250{
3251	struct ifreq ifr;
3252	struct compat_ifmap __user *uifmap32;
3253	int err;
3254
3255	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3256	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3257	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3258	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3259	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3260	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3261	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3262	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3263	if (err)
3264		return -EFAULT;
3265
3266	err = dev_ioctl(net, cmd, &ifr, NULL);
3267
3268	if (cmd == SIOCGIFMAP && !err) {
3269		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3270		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3271		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3272		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3273		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3274		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3275		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3276		if (err)
3277			err = -EFAULT;
3278	}
3279	return err;
3280}
3281
3282/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3283 * for some operations; this forces use of the newer bridge-utils that
3284 * use compatible ioctls
3285 */
3286static int old_bridge_ioctl(compat_ulong_t __user *argp)
3287{
3288	compat_ulong_t tmp;
3289
3290	if (get_user(tmp, argp))
3291		return -EFAULT;
3292	if (tmp == BRCTL_GET_VERSION)
3293		return BRCTL_VERSION + 1;
3294	return -EINVAL;
3295}
3296
3297static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3298			 unsigned int cmd, unsigned long arg)
3299{
3300	void __user *argp = compat_ptr(arg);
3301	struct sock *sk = sock->sk;
3302	struct net *net = sock_net(sk);
3303
3304	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3305		return compat_ifr_data_ioctl(net, cmd, argp);
3306
3307	switch (cmd) {
3308	case SIOCSIFBR:
3309	case SIOCGIFBR:
3310		return old_bridge_ioctl(argp);
3311	case SIOCGIFCONF:
3312		return compat_dev_ifconf(net, argp);
 
 
3313	case SIOCWANDEV:
3314		return compat_siocwandev(net, argp);
3315	case SIOCGIFMAP:
3316	case SIOCSIFMAP:
3317		return compat_sioc_ifmap(net, cmd, argp);
3318	case SIOCGSTAMP_OLD:
3319	case SIOCGSTAMPNS_OLD:
3320		if (!sock->ops->gettstamp)
3321			return -ENOIOCTLCMD;
3322		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3323					    !COMPAT_USE_64BIT_TIME);
3324
3325	case SIOCETHTOOL:
3326	case SIOCBONDSLAVEINFOQUERY:
3327	case SIOCBONDINFOQUERY:
3328	case SIOCSHWTSTAMP:
3329	case SIOCGHWTSTAMP:
3330		return compat_ifr_data_ioctl(net, cmd, argp);
3331
3332	case FIOSETOWN:
3333	case SIOCSPGRP:
3334	case FIOGETOWN:
3335	case SIOCGPGRP:
3336	case SIOCBRADDBR:
3337	case SIOCBRDELBR:
3338	case SIOCGIFVLAN:
3339	case SIOCSIFVLAN:
 
 
3340	case SIOCGSKNS:
3341	case SIOCGSTAMP_NEW:
3342	case SIOCGSTAMPNS_NEW:
3343		return sock_ioctl(file, cmd, arg);
3344
3345	case SIOCGIFFLAGS:
3346	case SIOCSIFFLAGS:
3347	case SIOCGIFMETRIC:
3348	case SIOCSIFMETRIC:
3349	case SIOCGIFMTU:
3350	case SIOCSIFMTU:
3351	case SIOCGIFMEM:
3352	case SIOCSIFMEM:
3353	case SIOCGIFHWADDR:
3354	case SIOCSIFHWADDR:
3355	case SIOCADDMULTI:
3356	case SIOCDELMULTI:
3357	case SIOCGIFINDEX:
3358	case SIOCGIFADDR:
3359	case SIOCSIFADDR:
3360	case SIOCSIFHWBROADCAST:
3361	case SIOCDIFADDR:
3362	case SIOCGIFBRDADDR:
3363	case SIOCSIFBRDADDR:
3364	case SIOCGIFDSTADDR:
3365	case SIOCSIFDSTADDR:
3366	case SIOCGIFNETMASK:
3367	case SIOCSIFNETMASK:
3368	case SIOCSIFPFLAGS:
3369	case SIOCGIFPFLAGS:
3370	case SIOCGIFTXQLEN:
3371	case SIOCSIFTXQLEN:
3372	case SIOCBRADDIF:
3373	case SIOCBRDELIF:
3374	case SIOCGIFNAME:
3375	case SIOCSIFNAME:
3376	case SIOCGMIIPHY:
3377	case SIOCGMIIREG:
3378	case SIOCSMIIREG:
3379	case SIOCBONDENSLAVE:
3380	case SIOCBONDRELEASE:
3381	case SIOCBONDSETHWADDR:
3382	case SIOCBONDCHANGEACTIVE:
3383		return compat_ifreq_ioctl(net, sock, cmd, argp);
3384
3385	case SIOCSARP:
3386	case SIOCGARP:
3387	case SIOCDARP:
3388	case SIOCOUTQ:
3389	case SIOCOUTQNSD:
3390	case SIOCATMARK:
3391		return sock_do_ioctl(net, sock, cmd, arg);
3392	}
3393
3394	return -ENOIOCTLCMD;
3395}
3396
3397static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3398			      unsigned long arg)
3399{
3400	struct socket *sock = file->private_data;
3401	int ret = -ENOIOCTLCMD;
3402	struct sock *sk;
3403	struct net *net;
3404
3405	sk = sock->sk;
3406	net = sock_net(sk);
3407
3408	if (sock->ops->compat_ioctl)
3409		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3410
3411	if (ret == -ENOIOCTLCMD &&
3412	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3413		ret = compat_wext_handle_ioctl(net, cmd, arg);
3414
3415	if (ret == -ENOIOCTLCMD)
3416		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3417
3418	return ret;
3419}
3420#endif
3421
3422/**
3423 *	kernel_bind - bind an address to a socket (kernel space)
3424 *	@sock: socket
3425 *	@addr: address
3426 *	@addrlen: length of address
3427 *
3428 *	Returns 0 or an error.
3429 */
3430
3431int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3432{
3433	return sock->ops->bind(sock, addr, addrlen);
3434}
3435EXPORT_SYMBOL(kernel_bind);
3436
3437/**
3438 *	kernel_listen - move socket to listening state (kernel space)
3439 *	@sock: socket
3440 *	@backlog: pending connections queue size
3441 *
3442 *	Returns 0 or an error.
3443 */
3444
3445int kernel_listen(struct socket *sock, int backlog)
3446{
3447	return sock->ops->listen(sock, backlog);
3448}
3449EXPORT_SYMBOL(kernel_listen);
3450
3451/**
3452 *	kernel_accept - accept a connection (kernel space)
3453 *	@sock: listening socket
3454 *	@newsock: new connected socket
3455 *	@flags: flags
3456 *
3457 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3458 *	If it fails, @newsock is guaranteed to be %NULL.
3459 *	Returns 0 or an error.
3460 */
3461
3462int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3463{
3464	struct sock *sk = sock->sk;
3465	int err;
3466
3467	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3468			       newsock);
3469	if (err < 0)
3470		goto done;
3471
3472	err = sock->ops->accept(sock, *newsock, flags, true);
3473	if (err < 0) {
3474		sock_release(*newsock);
3475		*newsock = NULL;
3476		goto done;
3477	}
3478
3479	(*newsock)->ops = sock->ops;
3480	__module_get((*newsock)->ops->owner);
3481
3482done:
3483	return err;
3484}
3485EXPORT_SYMBOL(kernel_accept);
3486
3487/**
3488 *	kernel_connect - connect a socket (kernel space)
3489 *	@sock: socket
3490 *	@addr: address
3491 *	@addrlen: address length
3492 *	@flags: flags (O_NONBLOCK, ...)
3493 *
3494 *	For datagram sockets, @addr is the address to which datagrams are sent
3495 *	by default, and the only address from which datagrams are received.
3496 *	For stream sockets, attempts to connect to @addr.
3497 *	Returns 0 or an error code.
3498 */
3499
3500int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3501		   int flags)
3502{
3503	return sock->ops->connect(sock, addr, addrlen, flags);
3504}
3505EXPORT_SYMBOL(kernel_connect);
3506
3507/**
3508 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3509 *	@sock: socket
3510 *	@addr: address holder
3511 *
3512 * 	Fills the @addr pointer with the address which the socket is bound.
3513 *	Returns 0 or an error code.
3514 */
3515
3516int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3517{
3518	return sock->ops->getname(sock, addr, 0);
3519}
3520EXPORT_SYMBOL(kernel_getsockname);
3521
3522/**
3523 *	kernel_getpeername - get the address which the socket is connected (kernel space)
3524 *	@sock: socket
3525 *	@addr: address holder
3526 *
3527 * 	Fills the @addr pointer with the address which the socket is connected.
3528 *	Returns 0 or an error code.
3529 */
3530
3531int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3532{
3533	return sock->ops->getname(sock, addr, 1);
3534}
3535EXPORT_SYMBOL(kernel_getpeername);
3536
3537/**
3538 *	kernel_sendpage - send a &page through a socket (kernel space)
3539 *	@sock: socket
3540 *	@page: page
3541 *	@offset: page offset
3542 *	@size: total size in bytes
3543 *	@flags: flags (MSG_DONTWAIT, ...)
3544 *
3545 *	Returns the total amount sent in bytes or an error.
3546 */
3547
3548int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3549		    size_t size, int flags)
3550{
3551	if (sock->ops->sendpage) {
3552		/* Warn in case the improper page to zero-copy send */
3553		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3554		return sock->ops->sendpage(sock, page, offset, size, flags);
3555	}
3556	return sock_no_sendpage(sock, page, offset, size, flags);
3557}
3558EXPORT_SYMBOL(kernel_sendpage);
3559
3560/**
3561 *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3562 *	@sk: sock
3563 *	@page: page
3564 *	@offset: page offset
3565 *	@size: total size in bytes
3566 *	@flags: flags (MSG_DONTWAIT, ...)
3567 *
3568 *	Returns the total amount sent in bytes or an error.
3569 *	Caller must hold @sk.
3570 */
3571
3572int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3573			   size_t size, int flags)
3574{
3575	struct socket *sock = sk->sk_socket;
3576
3577	if (sock->ops->sendpage_locked)
3578		return sock->ops->sendpage_locked(sk, page, offset, size,
3579						  flags);
3580
3581	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3582}
3583EXPORT_SYMBOL(kernel_sendpage_locked);
3584
3585/**
3586 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3587 *	@sock: socket
3588 *	@how: connection part
3589 *
3590 *	Returns 0 or an error.
3591 */
3592
3593int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3594{
3595	return sock->ops->shutdown(sock, how);
3596}
3597EXPORT_SYMBOL(kernel_sock_shutdown);
3598
3599/**
3600 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3601 *	@sk: socket
3602 *
3603 *	This routine returns the IP overhead imposed by a socket i.e.
3604 *	the length of the underlying IP header, depending on whether
3605 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3606 *	on at the socket. Assumes that the caller has a lock on the socket.
3607 */
3608
3609u32 kernel_sock_ip_overhead(struct sock *sk)
3610{
3611	struct inet_sock *inet;
3612	struct ip_options_rcu *opt;
3613	u32 overhead = 0;
3614#if IS_ENABLED(CONFIG_IPV6)
3615	struct ipv6_pinfo *np;
3616	struct ipv6_txoptions *optv6 = NULL;
3617#endif /* IS_ENABLED(CONFIG_IPV6) */
3618
3619	if (!sk)
3620		return overhead;
3621
3622	switch (sk->sk_family) {
3623	case AF_INET:
3624		inet = inet_sk(sk);
3625		overhead += sizeof(struct iphdr);
3626		opt = rcu_dereference_protected(inet->inet_opt,
3627						sock_owned_by_user(sk));
3628		if (opt)
3629			overhead += opt->opt.optlen;
3630		return overhead;
3631#if IS_ENABLED(CONFIG_IPV6)
3632	case AF_INET6:
3633		np = inet6_sk(sk);
3634		overhead += sizeof(struct ipv6hdr);
3635		if (np)
3636			optv6 = rcu_dereference_protected(np->opt,
3637							  sock_owned_by_user(sk));
3638		if (optv6)
3639			overhead += (optv6->opt_flen + optv6->opt_nflen);
3640		return overhead;
3641#endif /* IS_ENABLED(CONFIG_IPV6) */
3642	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3643		return overhead;
3644	}
3645}
3646EXPORT_SYMBOL(kernel_sock_ip_overhead);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
 
  55#include <linux/mm.h>
  56#include <linux/socket.h>
  57#include <linux/file.h>
  58#include <linux/net.h>
  59#include <linux/interrupt.h>
  60#include <linux/thread_info.h>
  61#include <linux/rcupdate.h>
  62#include <linux/netdevice.h>
  63#include <linux/proc_fs.h>
  64#include <linux/seq_file.h>
  65#include <linux/mutex.h>
  66#include <linux/if_bridge.h>
  67#include <linux/if_frad.h>
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/termios.h>
 104#include <linux/sockios.h>
 105#include <net/busy_poll.h>
 106#include <linux/errqueue.h>
 
 107
 108#ifdef CONFIG_NET_RX_BUSY_POLL
 109unsigned int sysctl_net_busy_read __read_mostly;
 110unsigned int sysctl_net_busy_poll __read_mostly;
 111#endif
 112
 113static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 114static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 115static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 116
 117static int sock_close(struct inode *inode, struct file *file);
 118static __poll_t sock_poll(struct file *file,
 119			      struct poll_table_struct *wait);
 120static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 121#ifdef CONFIG_COMPAT
 122static long compat_sock_ioctl(struct file *file,
 123			      unsigned int cmd, unsigned long arg);
 124#endif
 125static int sock_fasync(int fd, struct file *filp, int on);
 126static ssize_t sock_sendpage(struct file *file, struct page *page,
 127			     int offset, size_t size, loff_t *ppos, int more);
 128static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 129				struct pipe_inode_info *pipe, size_t len,
 130				unsigned int flags);
 131
 132#ifdef CONFIG_PROC_FS
 133static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 134{
 135	struct socket *sock = f->private_data;
 136
 137	if (sock->ops->show_fdinfo)
 138		sock->ops->show_fdinfo(m, sock);
 139}
 140#else
 141#define sock_show_fdinfo NULL
 142#endif
 143
 144/*
 145 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 146 *	in the operation structures but are done directly via the socketcall() multiplexor.
 147 */
 148
 149static const struct file_operations socket_file_ops = {
 150	.owner =	THIS_MODULE,
 151	.llseek =	no_llseek,
 152	.read_iter =	sock_read_iter,
 153	.write_iter =	sock_write_iter,
 154	.poll =		sock_poll,
 155	.unlocked_ioctl = sock_ioctl,
 156#ifdef CONFIG_COMPAT
 157	.compat_ioctl = compat_sock_ioctl,
 158#endif
 159	.mmap =		sock_mmap,
 160	.release =	sock_close,
 161	.fasync =	sock_fasync,
 162	.sendpage =	sock_sendpage,
 163	.splice_write = generic_splice_sendpage,
 164	.splice_read =	sock_splice_read,
 165	.show_fdinfo =	sock_show_fdinfo,
 166};
 167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168/*
 169 *	The protocol list. Each protocol is registered in here.
 170 */
 171
 172static DEFINE_SPINLOCK(net_family_lock);
 173static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 174
 175/*
 176 * Support routines.
 177 * Move socket addresses back and forth across the kernel/user
 178 * divide and look after the messy bits.
 179 */
 180
 181/**
 182 *	move_addr_to_kernel	-	copy a socket address into kernel space
 183 *	@uaddr: Address in user space
 184 *	@kaddr: Address in kernel space
 185 *	@ulen: Length in user space
 186 *
 187 *	The address is copied into kernel space. If the provided address is
 188 *	too long an error code of -EINVAL is returned. If the copy gives
 189 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 190 */
 191
 192int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 193{
 194	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 195		return -EINVAL;
 196	if (ulen == 0)
 197		return 0;
 198	if (copy_from_user(kaddr, uaddr, ulen))
 199		return -EFAULT;
 200	return audit_sockaddr(ulen, kaddr);
 201}
 202
 203/**
 204 *	move_addr_to_user	-	copy an address to user space
 205 *	@kaddr: kernel space address
 206 *	@klen: length of address in kernel
 207 *	@uaddr: user space address
 208 *	@ulen: pointer to user length field
 209 *
 210 *	The value pointed to by ulen on entry is the buffer length available.
 211 *	This is overwritten with the buffer space used. -EINVAL is returned
 212 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 213 *	is returned if either the buffer or the length field are not
 214 *	accessible.
 215 *	After copying the data up to the limit the user specifies, the true
 216 *	length of the data is written over the length limit the user
 217 *	specified. Zero is returned for a success.
 218 */
 219
 220static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 221			     void __user *uaddr, int __user *ulen)
 222{
 223	int err;
 224	int len;
 225
 226	BUG_ON(klen > sizeof(struct sockaddr_storage));
 227	err = get_user(len, ulen);
 228	if (err)
 229		return err;
 230	if (len > klen)
 231		len = klen;
 232	if (len < 0)
 233		return -EINVAL;
 234	if (len) {
 235		if (audit_sockaddr(klen, kaddr))
 236			return -ENOMEM;
 237		if (copy_to_user(uaddr, kaddr, len))
 238			return -EFAULT;
 239	}
 240	/*
 241	 *      "fromlen shall refer to the value before truncation.."
 242	 *                      1003.1g
 243	 */
 244	return __put_user(klen, ulen);
 245}
 246
 247static struct kmem_cache *sock_inode_cachep __ro_after_init;
 248
 249static struct inode *sock_alloc_inode(struct super_block *sb)
 250{
 251	struct socket_alloc *ei;
 252
 253	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 254	if (!ei)
 255		return NULL;
 256	init_waitqueue_head(&ei->socket.wq.wait);
 257	ei->socket.wq.fasync_list = NULL;
 258	ei->socket.wq.flags = 0;
 259
 260	ei->socket.state = SS_UNCONNECTED;
 261	ei->socket.flags = 0;
 262	ei->socket.ops = NULL;
 263	ei->socket.sk = NULL;
 264	ei->socket.file = NULL;
 265
 266	return &ei->vfs_inode;
 267}
 268
 269static void sock_free_inode(struct inode *inode)
 270{
 271	struct socket_alloc *ei;
 272
 273	ei = container_of(inode, struct socket_alloc, vfs_inode);
 274	kmem_cache_free(sock_inode_cachep, ei);
 275}
 276
 277static void init_once(void *foo)
 278{
 279	struct socket_alloc *ei = (struct socket_alloc *)foo;
 280
 281	inode_init_once(&ei->vfs_inode);
 282}
 283
 284static void init_inodecache(void)
 285{
 286	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 287					      sizeof(struct socket_alloc),
 288					      0,
 289					      (SLAB_HWCACHE_ALIGN |
 290					       SLAB_RECLAIM_ACCOUNT |
 291					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 292					      init_once);
 293	BUG_ON(sock_inode_cachep == NULL);
 294}
 295
 296static const struct super_operations sockfs_ops = {
 297	.alloc_inode	= sock_alloc_inode,
 298	.free_inode	= sock_free_inode,
 299	.statfs		= simple_statfs,
 300};
 301
 302/*
 303 * sockfs_dname() is called from d_path().
 304 */
 305static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 306{
 307	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 308				d_inode(dentry)->i_ino);
 309}
 310
 311static const struct dentry_operations sockfs_dentry_operations = {
 312	.d_dname  = sockfs_dname,
 313};
 314
 315static int sockfs_xattr_get(const struct xattr_handler *handler,
 316			    struct dentry *dentry, struct inode *inode,
 317			    const char *suffix, void *value, size_t size)
 318{
 319	if (value) {
 320		if (dentry->d_name.len + 1 > size)
 321			return -ERANGE;
 322		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 323	}
 324	return dentry->d_name.len + 1;
 325}
 326
 327#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 328#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 329#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 330
 331static const struct xattr_handler sockfs_xattr_handler = {
 332	.name = XATTR_NAME_SOCKPROTONAME,
 333	.get = sockfs_xattr_get,
 334};
 335
 336static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 
 337				     struct dentry *dentry, struct inode *inode,
 338				     const char *suffix, const void *value,
 339				     size_t size, int flags)
 340{
 341	/* Handled by LSM. */
 342	return -EAGAIN;
 343}
 344
 345static const struct xattr_handler sockfs_security_xattr_handler = {
 346	.prefix = XATTR_SECURITY_PREFIX,
 347	.set = sockfs_security_xattr_set,
 348};
 349
 350static const struct xattr_handler *sockfs_xattr_handlers[] = {
 351	&sockfs_xattr_handler,
 352	&sockfs_security_xattr_handler,
 353	NULL
 354};
 355
 356static int sockfs_init_fs_context(struct fs_context *fc)
 357{
 358	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 359	if (!ctx)
 360		return -ENOMEM;
 361	ctx->ops = &sockfs_ops;
 362	ctx->dops = &sockfs_dentry_operations;
 363	ctx->xattr = sockfs_xattr_handlers;
 364	return 0;
 365}
 366
 367static struct vfsmount *sock_mnt __read_mostly;
 368
 369static struct file_system_type sock_fs_type = {
 370	.name =		"sockfs",
 371	.init_fs_context = sockfs_init_fs_context,
 372	.kill_sb =	kill_anon_super,
 373};
 374
 375/*
 376 *	Obtains the first available file descriptor and sets it up for use.
 377 *
 378 *	These functions create file structures and maps them to fd space
 379 *	of the current process. On success it returns file descriptor
 380 *	and file struct implicitly stored in sock->file.
 381 *	Note that another thread may close file descriptor before we return
 382 *	from this function. We use the fact that now we do not refer
 383 *	to socket after mapping. If one day we will need it, this
 384 *	function will increment ref. count on file by 1.
 385 *
 386 *	In any case returned fd MAY BE not valid!
 387 *	This race condition is unavoidable
 388 *	with shared fd spaces, we cannot solve it inside kernel,
 389 *	but we take care of internal coherence yet.
 390 */
 391
 392/**
 393 *	sock_alloc_file - Bind a &socket to a &file
 394 *	@sock: socket
 395 *	@flags: file status flags
 396 *	@dname: protocol name
 397 *
 398 *	Returns the &file bound with @sock, implicitly storing it
 399 *	in sock->file. If dname is %NULL, sets to "".
 400 *	On failure the return is a ERR pointer (see linux/err.h).
 401 *	This function uses GFP_KERNEL internally.
 402 */
 403
 404struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 405{
 406	struct file *file;
 407
 408	if (!dname)
 409		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 410
 411	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 412				O_RDWR | (flags & O_NONBLOCK),
 413				&socket_file_ops);
 414	if (IS_ERR(file)) {
 415		sock_release(sock);
 416		return file;
 417	}
 418
 419	sock->file = file;
 420	file->private_data = sock;
 421	stream_open(SOCK_INODE(sock), file);
 422	return file;
 423}
 424EXPORT_SYMBOL(sock_alloc_file);
 425
 426static int sock_map_fd(struct socket *sock, int flags)
 427{
 428	struct file *newfile;
 429	int fd = get_unused_fd_flags(flags);
 430	if (unlikely(fd < 0)) {
 431		sock_release(sock);
 432		return fd;
 433	}
 434
 435	newfile = sock_alloc_file(sock, flags, NULL);
 436	if (!IS_ERR(newfile)) {
 437		fd_install(fd, newfile);
 438		return fd;
 439	}
 440
 441	put_unused_fd(fd);
 442	return PTR_ERR(newfile);
 443}
 444
 445/**
 446 *	sock_from_file - Return the &socket bounded to @file.
 447 *	@file: file
 448 *	@err: pointer to an error code return
 449 *
 450 *	On failure returns %NULL and assigns -ENOTSOCK to @err.
 451 */
 452
 453struct socket *sock_from_file(struct file *file, int *err)
 454{
 455	if (file->f_op == &socket_file_ops)
 456		return file->private_data;	/* set in sock_map_fd */
 457
 458	*err = -ENOTSOCK;
 459	return NULL;
 460}
 461EXPORT_SYMBOL(sock_from_file);
 462
 463/**
 464 *	sockfd_lookup - Go from a file number to its socket slot
 465 *	@fd: file handle
 466 *	@err: pointer to an error code return
 467 *
 468 *	The file handle passed in is locked and the socket it is bound
 469 *	to is returned. If an error occurs the err pointer is overwritten
 470 *	with a negative errno code and NULL is returned. The function checks
 471 *	for both invalid handles and passing a handle which is not a socket.
 472 *
 473 *	On a success the socket object pointer is returned.
 474 */
 475
 476struct socket *sockfd_lookup(int fd, int *err)
 477{
 478	struct file *file;
 479	struct socket *sock;
 480
 481	file = fget(fd);
 482	if (!file) {
 483		*err = -EBADF;
 484		return NULL;
 485	}
 486
 487	sock = sock_from_file(file, err);
 488	if (!sock)
 
 489		fput(file);
 
 490	return sock;
 491}
 492EXPORT_SYMBOL(sockfd_lookup);
 493
 494static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 495{
 496	struct fd f = fdget(fd);
 497	struct socket *sock;
 498
 499	*err = -EBADF;
 500	if (f.file) {
 501		sock = sock_from_file(f.file, err);
 502		if (likely(sock)) {
 503			*fput_needed = f.flags & FDPUT_FPUT;
 504			return sock;
 505		}
 
 506		fdput(f);
 507	}
 508	return NULL;
 509}
 510
 511static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 512				size_t size)
 513{
 514	ssize_t len;
 515	ssize_t used = 0;
 516
 517	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 518	if (len < 0)
 519		return len;
 520	used += len;
 521	if (buffer) {
 522		if (size < used)
 523			return -ERANGE;
 524		buffer += len;
 525	}
 526
 527	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 528	used += len;
 529	if (buffer) {
 530		if (size < used)
 531			return -ERANGE;
 532		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 533		buffer += len;
 534	}
 535
 536	return used;
 537}
 538
 539static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 
 540{
 541	int err = simple_setattr(dentry, iattr);
 542
 543	if (!err && (iattr->ia_valid & ATTR_UID)) {
 544		struct socket *sock = SOCKET_I(d_inode(dentry));
 545
 546		if (sock->sk)
 547			sock->sk->sk_uid = iattr->ia_uid;
 548		else
 549			err = -ENOENT;
 550	}
 551
 552	return err;
 553}
 554
 555static const struct inode_operations sockfs_inode_ops = {
 556	.listxattr = sockfs_listxattr,
 557	.setattr = sockfs_setattr,
 558};
 559
 560/**
 561 *	sock_alloc - allocate a socket
 562 *
 563 *	Allocate a new inode and socket object. The two are bound together
 564 *	and initialised. The socket is then returned. If we are out of inodes
 565 *	NULL is returned. This functions uses GFP_KERNEL internally.
 566 */
 567
 568struct socket *sock_alloc(void)
 569{
 570	struct inode *inode;
 571	struct socket *sock;
 572
 573	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 574	if (!inode)
 575		return NULL;
 576
 577	sock = SOCKET_I(inode);
 578
 579	inode->i_ino = get_next_ino();
 580	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 581	inode->i_uid = current_fsuid();
 582	inode->i_gid = current_fsgid();
 583	inode->i_op = &sockfs_inode_ops;
 584
 585	return sock;
 586}
 587EXPORT_SYMBOL(sock_alloc);
 588
 589static void __sock_release(struct socket *sock, struct inode *inode)
 590{
 591	if (sock->ops) {
 592		struct module *owner = sock->ops->owner;
 593
 594		if (inode)
 595			inode_lock(inode);
 596		sock->ops->release(sock);
 597		sock->sk = NULL;
 598		if (inode)
 599			inode_unlock(inode);
 600		sock->ops = NULL;
 601		module_put(owner);
 602	}
 603
 604	if (sock->wq.fasync_list)
 605		pr_err("%s: fasync list not empty!\n", __func__);
 606
 607	if (!sock->file) {
 608		iput(SOCK_INODE(sock));
 609		return;
 610	}
 611	sock->file = NULL;
 612}
 613
 614/**
 615 *	sock_release - close a socket
 616 *	@sock: socket to close
 617 *
 618 *	The socket is released from the protocol stack if it has a release
 619 *	callback, and the inode is then released if the socket is bound to
 620 *	an inode not a file.
 621 */
 622void sock_release(struct socket *sock)
 623{
 624	__sock_release(sock, NULL);
 625}
 626EXPORT_SYMBOL(sock_release);
 627
 628void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 629{
 630	u8 flags = *tx_flags;
 631
 632	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 633		flags |= SKBTX_HW_TSTAMP;
 634
 635	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 636		flags |= SKBTX_SW_TSTAMP;
 637
 638	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 639		flags |= SKBTX_SCHED_TSTAMP;
 640
 641	*tx_flags = flags;
 642}
 643EXPORT_SYMBOL(__sock_tx_timestamp);
 644
 645INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 646					   size_t));
 647INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 648					    size_t));
 649static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 650{
 651	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 652				     inet_sendmsg, sock, msg,
 653				     msg_data_left(msg));
 654	BUG_ON(ret == -EIOCBQUEUED);
 655	return ret;
 656}
 657
 658/**
 659 *	sock_sendmsg - send a message through @sock
 660 *	@sock: socket
 661 *	@msg: message to send
 662 *
 663 *	Sends @msg through @sock, passing through LSM.
 664 *	Returns the number of bytes sent, or an error code.
 665 */
 666int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 667{
 668	int err = security_socket_sendmsg(sock, msg,
 669					  msg_data_left(msg));
 670
 671	return err ?: sock_sendmsg_nosec(sock, msg);
 672}
 673EXPORT_SYMBOL(sock_sendmsg);
 674
 675/**
 676 *	kernel_sendmsg - send a message through @sock (kernel-space)
 677 *	@sock: socket
 678 *	@msg: message header
 679 *	@vec: kernel vec
 680 *	@num: vec array length
 681 *	@size: total message data size
 682 *
 683 *	Builds the message data with @vec and sends it through @sock.
 684 *	Returns the number of bytes sent, or an error code.
 685 */
 686
 687int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 688		   struct kvec *vec, size_t num, size_t size)
 689{
 690	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 691	return sock_sendmsg(sock, msg);
 692}
 693EXPORT_SYMBOL(kernel_sendmsg);
 694
 695/**
 696 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 697 *	@sk: sock
 698 *	@msg: message header
 699 *	@vec: output s/g array
 700 *	@num: output s/g array length
 701 *	@size: total message data size
 702 *
 703 *	Builds the message data with @vec and sends it through @sock.
 704 *	Returns the number of bytes sent, or an error code.
 705 *	Caller must hold @sk.
 706 */
 707
 708int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 709			  struct kvec *vec, size_t num, size_t size)
 710{
 711	struct socket *sock = sk->sk_socket;
 712
 713	if (!sock->ops->sendmsg_locked)
 714		return sock_no_sendmsg_locked(sk, msg, size);
 715
 716	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 717
 718	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 719}
 720EXPORT_SYMBOL(kernel_sendmsg_locked);
 721
 722static bool skb_is_err_queue(const struct sk_buff *skb)
 723{
 724	/* pkt_type of skbs enqueued on the error queue are set to
 725	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 726	 * in recvmsg, since skbs received on a local socket will never
 727	 * have a pkt_type of PACKET_OUTGOING.
 728	 */
 729	return skb->pkt_type == PACKET_OUTGOING;
 730}
 731
 732/* On transmit, software and hardware timestamps are returned independently.
 733 * As the two skb clones share the hardware timestamp, which may be updated
 734 * before the software timestamp is received, a hardware TX timestamp may be
 735 * returned only if there is no software TX timestamp. Ignore false software
 736 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 737 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 738 * hardware timestamp.
 739 */
 740static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 741{
 742	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 743}
 744
 745static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 746{
 747	struct scm_ts_pktinfo ts_pktinfo;
 748	struct net_device *orig_dev;
 749
 750	if (!skb_mac_header_was_set(skb))
 751		return;
 752
 753	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 754
 755	rcu_read_lock();
 756	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 757	if (orig_dev)
 758		ts_pktinfo.if_index = orig_dev->ifindex;
 759	rcu_read_unlock();
 760
 761	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 762	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 763		 sizeof(ts_pktinfo), &ts_pktinfo);
 764}
 765
 766/*
 767 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 768 */
 769void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 770	struct sk_buff *skb)
 771{
 772	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 773	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 774	struct scm_timestamping_internal tss;
 775
 776	int empty = 1, false_tstamp = 0;
 777	struct skb_shared_hwtstamps *shhwtstamps =
 778		skb_hwtstamps(skb);
 779
 780	/* Race occurred between timestamp enabling and packet
 781	   receiving.  Fill in the current time for now. */
 782	if (need_software_tstamp && skb->tstamp == 0) {
 783		__net_timestamp(skb);
 784		false_tstamp = 1;
 785	}
 786
 787	if (need_software_tstamp) {
 788		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 789			if (new_tstamp) {
 790				struct __kernel_sock_timeval tv;
 791
 792				skb_get_new_timestamp(skb, &tv);
 793				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 794					 sizeof(tv), &tv);
 795			} else {
 796				struct __kernel_old_timeval tv;
 797
 798				skb_get_timestamp(skb, &tv);
 799				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 800					 sizeof(tv), &tv);
 801			}
 802		} else {
 803			if (new_tstamp) {
 804				struct __kernel_timespec ts;
 805
 806				skb_get_new_timestampns(skb, &ts);
 807				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 808					 sizeof(ts), &ts);
 809			} else {
 810				struct __kernel_old_timespec ts;
 811
 812				skb_get_timestampns(skb, &ts);
 813				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 814					 sizeof(ts), &ts);
 815			}
 816		}
 817	}
 818
 819	memset(&tss, 0, sizeof(tss));
 820	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 821	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 822		empty = 0;
 823	if (shhwtstamps &&
 824	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 825	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
 826	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 827		empty = 0;
 828		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 829		    !skb_is_err_queue(skb))
 830			put_ts_pktinfo(msg, skb);
 
 
 
 
 
 
 831	}
 832	if (!empty) {
 833		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 834			put_cmsg_scm_timestamping64(msg, &tss);
 835		else
 836			put_cmsg_scm_timestamping(msg, &tss);
 837
 838		if (skb_is_err_queue(skb) && skb->len &&
 839		    SKB_EXT_ERR(skb)->opt_stats)
 840			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 841				 skb->len, skb->data);
 842	}
 843}
 844EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 845
 846void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 847	struct sk_buff *skb)
 848{
 849	int ack;
 850
 851	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 852		return;
 853	if (!skb->wifi_acked_valid)
 854		return;
 855
 856	ack = skb->wifi_acked;
 857
 858	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 859}
 860EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 861
 862static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 863				   struct sk_buff *skb)
 864{
 865	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 866		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 867			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 868}
 869
 870void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 871	struct sk_buff *skb)
 872{
 873	sock_recv_timestamp(msg, sk, skb);
 874	sock_recv_drops(msg, sk, skb);
 875}
 876EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 877
 878INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 879					   size_t, int));
 880INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 881					    size_t, int));
 882static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 883				     int flags)
 884{
 885	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 886				  inet_recvmsg, sock, msg, msg_data_left(msg),
 887				  flags);
 888}
 889
 890/**
 891 *	sock_recvmsg - receive a message from @sock
 892 *	@sock: socket
 893 *	@msg: message to receive
 894 *	@flags: message flags
 895 *
 896 *	Receives @msg from @sock, passing through LSM. Returns the total number
 897 *	of bytes received, or an error.
 898 */
 899int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 900{
 901	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 902
 903	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 904}
 905EXPORT_SYMBOL(sock_recvmsg);
 906
 907/**
 908 *	kernel_recvmsg - Receive a message from a socket (kernel space)
 909 *	@sock: The socket to receive the message from
 910 *	@msg: Received message
 911 *	@vec: Input s/g array for message data
 912 *	@num: Size of input s/g array
 913 *	@size: Number of bytes to read
 914 *	@flags: Message flags (MSG_DONTWAIT, etc...)
 915 *
 916 *	On return the msg structure contains the scatter/gather array passed in the
 917 *	vec argument. The array is modified so that it consists of the unfilled
 918 *	portion of the original array.
 919 *
 920 *	The returned value is the total number of bytes received, or an error.
 921 */
 922
 923int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 924		   struct kvec *vec, size_t num, size_t size, int flags)
 925{
 926	msg->msg_control_is_user = false;
 927	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 928	return sock_recvmsg(sock, msg, flags);
 929}
 930EXPORT_SYMBOL(kernel_recvmsg);
 931
 932static ssize_t sock_sendpage(struct file *file, struct page *page,
 933			     int offset, size_t size, loff_t *ppos, int more)
 934{
 935	struct socket *sock;
 936	int flags;
 937
 938	sock = file->private_data;
 939
 940	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 941	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 942	flags |= more;
 943
 944	return kernel_sendpage(sock, page, offset, size, flags);
 945}
 946
 947static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 948				struct pipe_inode_info *pipe, size_t len,
 949				unsigned int flags)
 950{
 951	struct socket *sock = file->private_data;
 952
 953	if (unlikely(!sock->ops->splice_read))
 954		return generic_file_splice_read(file, ppos, pipe, len, flags);
 955
 956	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 957}
 958
 959static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 960{
 961	struct file *file = iocb->ki_filp;
 962	struct socket *sock = file->private_data;
 963	struct msghdr msg = {.msg_iter = *to,
 964			     .msg_iocb = iocb};
 965	ssize_t res;
 966
 967	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
 968		msg.msg_flags = MSG_DONTWAIT;
 969
 970	if (iocb->ki_pos != 0)
 971		return -ESPIPE;
 972
 973	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
 974		return 0;
 975
 976	res = sock_recvmsg(sock, &msg, msg.msg_flags);
 977	*to = msg.msg_iter;
 978	return res;
 979}
 980
 981static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 982{
 983	struct file *file = iocb->ki_filp;
 984	struct socket *sock = file->private_data;
 985	struct msghdr msg = {.msg_iter = *from,
 986			     .msg_iocb = iocb};
 987	ssize_t res;
 988
 989	if (iocb->ki_pos != 0)
 990		return -ESPIPE;
 991
 992	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
 993		msg.msg_flags = MSG_DONTWAIT;
 994
 995	if (sock->type == SOCK_SEQPACKET)
 996		msg.msg_flags |= MSG_EOR;
 997
 998	res = sock_sendmsg(sock, &msg);
 999	*from = msg.msg_iter;
1000	return res;
1001}
1002
1003/*
1004 * Atomic setting of ioctl hooks to avoid race
1005 * with module unload.
1006 */
1007
1008static DEFINE_MUTEX(br_ioctl_mutex);
1009static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1010
1011void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1012{
1013	mutex_lock(&br_ioctl_mutex);
1014	br_ioctl_hook = hook;
1015	mutex_unlock(&br_ioctl_mutex);
1016}
1017EXPORT_SYMBOL(brioctl_set);
1018
1019static DEFINE_MUTEX(vlan_ioctl_mutex);
1020static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1021
1022void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1023{
1024	mutex_lock(&vlan_ioctl_mutex);
1025	vlan_ioctl_hook = hook;
1026	mutex_unlock(&vlan_ioctl_mutex);
1027}
1028EXPORT_SYMBOL(vlan_ioctl_set);
1029
1030static DEFINE_MUTEX(dlci_ioctl_mutex);
1031static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1032
1033void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1034{
1035	mutex_lock(&dlci_ioctl_mutex);
1036	dlci_ioctl_hook = hook;
1037	mutex_unlock(&dlci_ioctl_mutex);
1038}
1039EXPORT_SYMBOL(dlci_ioctl_set);
1040
1041static long sock_do_ioctl(struct net *net, struct socket *sock,
1042			  unsigned int cmd, unsigned long arg)
1043{
1044	int err;
1045	void __user *argp = (void __user *)arg;
1046
1047	err = sock->ops->ioctl(sock, cmd, arg);
1048
1049	/*
1050	 * If this ioctl is unknown try to hand it down
1051	 * to the NIC driver.
1052	 */
1053	if (err != -ENOIOCTLCMD)
1054		return err;
1055
1056	if (cmd == SIOCGIFCONF) {
1057		struct ifconf ifc;
1058		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1059			return -EFAULT;
1060		rtnl_lock();
1061		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1062		rtnl_unlock();
1063		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1064			err = -EFAULT;
1065	} else {
1066		struct ifreq ifr;
1067		bool need_copyout;
1068		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1069			return -EFAULT;
1070		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1071		if (!err && need_copyout)
1072			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1073				return -EFAULT;
 
 
1074	}
1075	return err;
1076}
1077
1078/*
1079 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1080 *	what to do with it - that's up to the protocol still.
1081 */
1082
1083/**
1084 *	get_net_ns - increment the refcount of the network namespace
1085 *	@ns: common namespace (net)
1086 *
1087 *	Returns the net's common namespace.
1088 */
1089
1090struct ns_common *get_net_ns(struct ns_common *ns)
1091{
1092	return &get_net(container_of(ns, struct net, ns))->ns;
1093}
1094EXPORT_SYMBOL_GPL(get_net_ns);
1095
1096static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1097{
1098	struct socket *sock;
1099	struct sock *sk;
1100	void __user *argp = (void __user *)arg;
1101	int pid, err;
1102	struct net *net;
1103
1104	sock = file->private_data;
1105	sk = sock->sk;
1106	net = sock_net(sk);
1107	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1108		struct ifreq ifr;
1109		bool need_copyout;
1110		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1111			return -EFAULT;
1112		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1113		if (!err && need_copyout)
1114			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1115				return -EFAULT;
1116	} else
1117#ifdef CONFIG_WEXT_CORE
1118	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1119		err = wext_handle_ioctl(net, cmd, argp);
1120	} else
1121#endif
1122		switch (cmd) {
1123		case FIOSETOWN:
1124		case SIOCSPGRP:
1125			err = -EFAULT;
1126			if (get_user(pid, (int __user *)argp))
1127				break;
1128			err = f_setown(sock->file, pid, 1);
1129			break;
1130		case FIOGETOWN:
1131		case SIOCGPGRP:
1132			err = put_user(f_getown(sock->file),
1133				       (int __user *)argp);
1134			break;
1135		case SIOCGIFBR:
1136		case SIOCSIFBR:
1137		case SIOCBRADDBR:
1138		case SIOCBRDELBR:
1139			err = -ENOPKG;
1140			if (!br_ioctl_hook)
1141				request_module("bridge");
1142
1143			mutex_lock(&br_ioctl_mutex);
1144			if (br_ioctl_hook)
1145				err = br_ioctl_hook(net, cmd, argp);
1146			mutex_unlock(&br_ioctl_mutex);
1147			break;
1148		case SIOCGIFVLAN:
1149		case SIOCSIFVLAN:
1150			err = -ENOPKG;
1151			if (!vlan_ioctl_hook)
1152				request_module("8021q");
1153
1154			mutex_lock(&vlan_ioctl_mutex);
1155			if (vlan_ioctl_hook)
1156				err = vlan_ioctl_hook(net, argp);
1157			mutex_unlock(&vlan_ioctl_mutex);
1158			break;
1159		case SIOCADDDLCI:
1160		case SIOCDELDLCI:
1161			err = -ENOPKG;
1162			if (!dlci_ioctl_hook)
1163				request_module("dlci");
1164
1165			mutex_lock(&dlci_ioctl_mutex);
1166			if (dlci_ioctl_hook)
1167				err = dlci_ioctl_hook(cmd, argp);
1168			mutex_unlock(&dlci_ioctl_mutex);
1169			break;
1170		case SIOCGSKNS:
1171			err = -EPERM;
1172			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1173				break;
1174
1175			err = open_related_ns(&net->ns, get_net_ns);
1176			break;
1177		case SIOCGSTAMP_OLD:
1178		case SIOCGSTAMPNS_OLD:
1179			if (!sock->ops->gettstamp) {
1180				err = -ENOIOCTLCMD;
1181				break;
1182			}
1183			err = sock->ops->gettstamp(sock, argp,
1184						   cmd == SIOCGSTAMP_OLD,
1185						   !IS_ENABLED(CONFIG_64BIT));
1186			break;
1187		case SIOCGSTAMP_NEW:
1188		case SIOCGSTAMPNS_NEW:
1189			if (!sock->ops->gettstamp) {
1190				err = -ENOIOCTLCMD;
1191				break;
1192			}
1193			err = sock->ops->gettstamp(sock, argp,
1194						   cmd == SIOCGSTAMP_NEW,
1195						   false);
1196			break;
1197		default:
1198			err = sock_do_ioctl(net, sock, cmd, arg);
1199			break;
1200		}
1201	return err;
1202}
1203
1204/**
1205 *	sock_create_lite - creates a socket
1206 *	@family: protocol family (AF_INET, ...)
1207 *	@type: communication type (SOCK_STREAM, ...)
1208 *	@protocol: protocol (0, ...)
1209 *	@res: new socket
1210 *
1211 *	Creates a new socket and assigns it to @res, passing through LSM.
1212 *	The new socket initialization is not complete, see kernel_accept().
1213 *	Returns 0 or an error. On failure @res is set to %NULL.
1214 *	This function internally uses GFP_KERNEL.
1215 */
1216
1217int sock_create_lite(int family, int type, int protocol, struct socket **res)
1218{
1219	int err;
1220	struct socket *sock = NULL;
1221
1222	err = security_socket_create(family, type, protocol, 1);
1223	if (err)
1224		goto out;
1225
1226	sock = sock_alloc();
1227	if (!sock) {
1228		err = -ENOMEM;
1229		goto out;
1230	}
1231
1232	sock->type = type;
1233	err = security_socket_post_create(sock, family, type, protocol, 1);
1234	if (err)
1235		goto out_release;
1236
1237out:
1238	*res = sock;
1239	return err;
1240out_release:
1241	sock_release(sock);
1242	sock = NULL;
1243	goto out;
1244}
1245EXPORT_SYMBOL(sock_create_lite);
1246
1247/* No kernel lock held - perfect */
1248static __poll_t sock_poll(struct file *file, poll_table *wait)
1249{
1250	struct socket *sock = file->private_data;
1251	__poll_t events = poll_requested_events(wait), flag = 0;
1252
1253	if (!sock->ops->poll)
1254		return 0;
1255
1256	if (sk_can_busy_loop(sock->sk)) {
1257		/* poll once if requested by the syscall */
1258		if (events & POLL_BUSY_LOOP)
1259			sk_busy_loop(sock->sk, 1);
1260
1261		/* if this socket can poll_ll, tell the system call */
1262		flag = POLL_BUSY_LOOP;
1263	}
1264
1265	return sock->ops->poll(file, sock, wait) | flag;
1266}
1267
1268static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1269{
1270	struct socket *sock = file->private_data;
1271
1272	return sock->ops->mmap(file, sock, vma);
1273}
1274
1275static int sock_close(struct inode *inode, struct file *filp)
1276{
1277	__sock_release(SOCKET_I(inode), inode);
1278	return 0;
1279}
1280
1281/*
1282 *	Update the socket async list
1283 *
1284 *	Fasync_list locking strategy.
1285 *
1286 *	1. fasync_list is modified only under process context socket lock
1287 *	   i.e. under semaphore.
1288 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1289 *	   or under socket lock
1290 */
1291
1292static int sock_fasync(int fd, struct file *filp, int on)
1293{
1294	struct socket *sock = filp->private_data;
1295	struct sock *sk = sock->sk;
1296	struct socket_wq *wq = &sock->wq;
1297
1298	if (sk == NULL)
1299		return -EINVAL;
1300
1301	lock_sock(sk);
1302	fasync_helper(fd, filp, on, &wq->fasync_list);
1303
1304	if (!wq->fasync_list)
1305		sock_reset_flag(sk, SOCK_FASYNC);
1306	else
1307		sock_set_flag(sk, SOCK_FASYNC);
1308
1309	release_sock(sk);
1310	return 0;
1311}
1312
1313/* This function may be called only under rcu_lock */
1314
1315int sock_wake_async(struct socket_wq *wq, int how, int band)
1316{
1317	if (!wq || !wq->fasync_list)
1318		return -1;
1319
1320	switch (how) {
1321	case SOCK_WAKE_WAITD:
1322		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1323			break;
1324		goto call_kill;
1325	case SOCK_WAKE_SPACE:
1326		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1327			break;
1328		fallthrough;
1329	case SOCK_WAKE_IO:
1330call_kill:
1331		kill_fasync(&wq->fasync_list, SIGIO, band);
1332		break;
1333	case SOCK_WAKE_URG:
1334		kill_fasync(&wq->fasync_list, SIGURG, band);
1335	}
1336
1337	return 0;
1338}
1339EXPORT_SYMBOL(sock_wake_async);
1340
1341/**
1342 *	__sock_create - creates a socket
1343 *	@net: net namespace
1344 *	@family: protocol family (AF_INET, ...)
1345 *	@type: communication type (SOCK_STREAM, ...)
1346 *	@protocol: protocol (0, ...)
1347 *	@res: new socket
1348 *	@kern: boolean for kernel space sockets
1349 *
1350 *	Creates a new socket and assigns it to @res, passing through LSM.
1351 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1352 *	be set to true if the socket resides in kernel space.
1353 *	This function internally uses GFP_KERNEL.
1354 */
1355
1356int __sock_create(struct net *net, int family, int type, int protocol,
1357			 struct socket **res, int kern)
1358{
1359	int err;
1360	struct socket *sock;
1361	const struct net_proto_family *pf;
1362
1363	/*
1364	 *      Check protocol is in range
1365	 */
1366	if (family < 0 || family >= NPROTO)
1367		return -EAFNOSUPPORT;
1368	if (type < 0 || type >= SOCK_MAX)
1369		return -EINVAL;
1370
1371	/* Compatibility.
1372
1373	   This uglymoron is moved from INET layer to here to avoid
1374	   deadlock in module load.
1375	 */
1376	if (family == PF_INET && type == SOCK_PACKET) {
1377		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1378			     current->comm);
1379		family = PF_PACKET;
1380	}
1381
1382	err = security_socket_create(family, type, protocol, kern);
1383	if (err)
1384		return err;
1385
1386	/*
1387	 *	Allocate the socket and allow the family to set things up. if
1388	 *	the protocol is 0, the family is instructed to select an appropriate
1389	 *	default.
1390	 */
1391	sock = sock_alloc();
1392	if (!sock) {
1393		net_warn_ratelimited("socket: no more sockets\n");
1394		return -ENFILE;	/* Not exactly a match, but its the
1395				   closest posix thing */
1396	}
1397
1398	sock->type = type;
1399
1400#ifdef CONFIG_MODULES
1401	/* Attempt to load a protocol module if the find failed.
1402	 *
1403	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1404	 * requested real, full-featured networking support upon configuration.
1405	 * Otherwise module support will break!
1406	 */
1407	if (rcu_access_pointer(net_families[family]) == NULL)
1408		request_module("net-pf-%d", family);
1409#endif
1410
1411	rcu_read_lock();
1412	pf = rcu_dereference(net_families[family]);
1413	err = -EAFNOSUPPORT;
1414	if (!pf)
1415		goto out_release;
1416
1417	/*
1418	 * We will call the ->create function, that possibly is in a loadable
1419	 * module, so we have to bump that loadable module refcnt first.
1420	 */
1421	if (!try_module_get(pf->owner))
1422		goto out_release;
1423
1424	/* Now protected by module ref count */
1425	rcu_read_unlock();
1426
1427	err = pf->create(net, sock, protocol, kern);
1428	if (err < 0)
1429		goto out_module_put;
1430
1431	/*
1432	 * Now to bump the refcnt of the [loadable] module that owns this
1433	 * socket at sock_release time we decrement its refcnt.
1434	 */
1435	if (!try_module_get(sock->ops->owner))
1436		goto out_module_busy;
1437
1438	/*
1439	 * Now that we're done with the ->create function, the [loadable]
1440	 * module can have its refcnt decremented
1441	 */
1442	module_put(pf->owner);
1443	err = security_socket_post_create(sock, family, type, protocol, kern);
1444	if (err)
1445		goto out_sock_release;
1446	*res = sock;
1447
1448	return 0;
1449
1450out_module_busy:
1451	err = -EAFNOSUPPORT;
1452out_module_put:
1453	sock->ops = NULL;
1454	module_put(pf->owner);
1455out_sock_release:
1456	sock_release(sock);
1457	return err;
1458
1459out_release:
1460	rcu_read_unlock();
1461	goto out_sock_release;
1462}
1463EXPORT_SYMBOL(__sock_create);
1464
1465/**
1466 *	sock_create - creates a socket
1467 *	@family: protocol family (AF_INET, ...)
1468 *	@type: communication type (SOCK_STREAM, ...)
1469 *	@protocol: protocol (0, ...)
1470 *	@res: new socket
1471 *
1472 *	A wrapper around __sock_create().
1473 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1474 */
1475
1476int sock_create(int family, int type, int protocol, struct socket **res)
1477{
1478	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1479}
1480EXPORT_SYMBOL(sock_create);
1481
1482/**
1483 *	sock_create_kern - creates a socket (kernel space)
1484 *	@net: net namespace
1485 *	@family: protocol family (AF_INET, ...)
1486 *	@type: communication type (SOCK_STREAM, ...)
1487 *	@protocol: protocol (0, ...)
1488 *	@res: new socket
1489 *
1490 *	A wrapper around __sock_create().
1491 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1492 */
1493
1494int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1495{
1496	return __sock_create(net, family, type, protocol, res, 1);
1497}
1498EXPORT_SYMBOL(sock_create_kern);
1499
1500int __sys_socket(int family, int type, int protocol)
1501{
1502	int retval;
1503	struct socket *sock;
1504	int flags;
1505
1506	/* Check the SOCK_* constants for consistency.  */
1507	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1508	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1509	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1510	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1511
1512	flags = type & ~SOCK_TYPE_MASK;
1513	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1514		return -EINVAL;
1515	type &= SOCK_TYPE_MASK;
1516
1517	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1518		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1519
1520	retval = sock_create(family, type, protocol, &sock);
1521	if (retval < 0)
1522		return retval;
1523
1524	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1525}
1526
1527SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1528{
1529	return __sys_socket(family, type, protocol);
1530}
1531
1532/*
1533 *	Create a pair of connected sockets.
1534 */
1535
1536int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1537{
1538	struct socket *sock1, *sock2;
1539	int fd1, fd2, err;
1540	struct file *newfile1, *newfile2;
1541	int flags;
1542
1543	flags = type & ~SOCK_TYPE_MASK;
1544	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1545		return -EINVAL;
1546	type &= SOCK_TYPE_MASK;
1547
1548	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1549		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1550
1551	/*
1552	 * reserve descriptors and make sure we won't fail
1553	 * to return them to userland.
1554	 */
1555	fd1 = get_unused_fd_flags(flags);
1556	if (unlikely(fd1 < 0))
1557		return fd1;
1558
1559	fd2 = get_unused_fd_flags(flags);
1560	if (unlikely(fd2 < 0)) {
1561		put_unused_fd(fd1);
1562		return fd2;
1563	}
1564
1565	err = put_user(fd1, &usockvec[0]);
1566	if (err)
1567		goto out;
1568
1569	err = put_user(fd2, &usockvec[1]);
1570	if (err)
1571		goto out;
1572
1573	/*
1574	 * Obtain the first socket and check if the underlying protocol
1575	 * supports the socketpair call.
1576	 */
1577
1578	err = sock_create(family, type, protocol, &sock1);
1579	if (unlikely(err < 0))
1580		goto out;
1581
1582	err = sock_create(family, type, protocol, &sock2);
1583	if (unlikely(err < 0)) {
1584		sock_release(sock1);
1585		goto out;
1586	}
1587
1588	err = security_socket_socketpair(sock1, sock2);
1589	if (unlikely(err)) {
1590		sock_release(sock2);
1591		sock_release(sock1);
1592		goto out;
1593	}
1594
1595	err = sock1->ops->socketpair(sock1, sock2);
1596	if (unlikely(err < 0)) {
1597		sock_release(sock2);
1598		sock_release(sock1);
1599		goto out;
1600	}
1601
1602	newfile1 = sock_alloc_file(sock1, flags, NULL);
1603	if (IS_ERR(newfile1)) {
1604		err = PTR_ERR(newfile1);
1605		sock_release(sock2);
1606		goto out;
1607	}
1608
1609	newfile2 = sock_alloc_file(sock2, flags, NULL);
1610	if (IS_ERR(newfile2)) {
1611		err = PTR_ERR(newfile2);
1612		fput(newfile1);
1613		goto out;
1614	}
1615
1616	audit_fd_pair(fd1, fd2);
1617
1618	fd_install(fd1, newfile1);
1619	fd_install(fd2, newfile2);
1620	return 0;
1621
1622out:
1623	put_unused_fd(fd2);
1624	put_unused_fd(fd1);
1625	return err;
1626}
1627
1628SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1629		int __user *, usockvec)
1630{
1631	return __sys_socketpair(family, type, protocol, usockvec);
1632}
1633
1634/*
1635 *	Bind a name to a socket. Nothing much to do here since it's
1636 *	the protocol's responsibility to handle the local address.
1637 *
1638 *	We move the socket address to kernel space before we call
1639 *	the protocol layer (having also checked the address is ok).
1640 */
1641
1642int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1643{
1644	struct socket *sock;
1645	struct sockaddr_storage address;
1646	int err, fput_needed;
1647
1648	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649	if (sock) {
1650		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1651		if (!err) {
1652			err = security_socket_bind(sock,
1653						   (struct sockaddr *)&address,
1654						   addrlen);
1655			if (!err)
1656				err = sock->ops->bind(sock,
1657						      (struct sockaddr *)
1658						      &address, addrlen);
1659		}
1660		fput_light(sock->file, fput_needed);
1661	}
1662	return err;
1663}
1664
1665SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1666{
1667	return __sys_bind(fd, umyaddr, addrlen);
1668}
1669
1670/*
1671 *	Perform a listen. Basically, we allow the protocol to do anything
1672 *	necessary for a listen, and if that works, we mark the socket as
1673 *	ready for listening.
1674 */
1675
1676int __sys_listen(int fd, int backlog)
1677{
1678	struct socket *sock;
1679	int err, fput_needed;
1680	int somaxconn;
1681
1682	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1683	if (sock) {
1684		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1685		if ((unsigned int)backlog > somaxconn)
1686			backlog = somaxconn;
1687
1688		err = security_socket_listen(sock, backlog);
1689		if (!err)
1690			err = sock->ops->listen(sock, backlog);
1691
1692		fput_light(sock->file, fput_needed);
1693	}
1694	return err;
1695}
1696
1697SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1698{
1699	return __sys_listen(fd, backlog);
1700}
1701
1702int __sys_accept4_file(struct file *file, unsigned file_flags,
1703		       struct sockaddr __user *upeer_sockaddr,
1704		       int __user *upeer_addrlen, int flags,
1705		       unsigned long nofile)
1706{
1707	struct socket *sock, *newsock;
1708	struct file *newfile;
1709	int err, len, newfd;
1710	struct sockaddr_storage address;
1711
1712	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1713		return -EINVAL;
1714
1715	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1716		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1717
1718	sock = sock_from_file(file, &err);
1719	if (!sock)
 
1720		goto out;
 
1721
1722	err = -ENFILE;
1723	newsock = sock_alloc();
1724	if (!newsock)
1725		goto out;
1726
1727	newsock->type = sock->type;
1728	newsock->ops = sock->ops;
1729
1730	/*
1731	 * We don't need try_module_get here, as the listening socket (sock)
1732	 * has the protocol module (sock->ops->owner) held.
1733	 */
1734	__module_get(newsock->ops->owner);
1735
1736	newfd = __get_unused_fd_flags(flags, nofile);
1737	if (unlikely(newfd < 0)) {
1738		err = newfd;
1739		sock_release(newsock);
1740		goto out;
1741	}
1742	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1743	if (IS_ERR(newfile)) {
1744		err = PTR_ERR(newfile);
1745		put_unused_fd(newfd);
1746		goto out;
1747	}
1748
1749	err = security_socket_accept(sock, newsock);
1750	if (err)
1751		goto out_fd;
1752
1753	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1754					false);
1755	if (err < 0)
1756		goto out_fd;
1757
1758	if (upeer_sockaddr) {
1759		len = newsock->ops->getname(newsock,
1760					(struct sockaddr *)&address, 2);
1761		if (len < 0) {
1762			err = -ECONNABORTED;
1763			goto out_fd;
1764		}
1765		err = move_addr_to_user(&address,
1766					len, upeer_sockaddr, upeer_addrlen);
1767		if (err < 0)
1768			goto out_fd;
1769	}
1770
1771	/* File flags are not inherited via accept() unlike another OSes. */
1772
1773	fd_install(newfd, newfile);
1774	err = newfd;
1775out:
1776	return err;
1777out_fd:
1778	fput(newfile);
1779	put_unused_fd(newfd);
1780	goto out;
1781
1782}
1783
1784/*
1785 *	For accept, we attempt to create a new socket, set up the link
1786 *	with the client, wake up the client, then return the new
1787 *	connected fd. We collect the address of the connector in kernel
1788 *	space and move it to user at the very end. This is unclean because
1789 *	we open the socket then return an error.
1790 *
1791 *	1003.1g adds the ability to recvmsg() to query connection pending
1792 *	status to recvmsg. We need to add that support in a way thats
1793 *	clean when we restructure accept also.
1794 */
1795
1796int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1797		  int __user *upeer_addrlen, int flags)
1798{
1799	int ret = -EBADF;
1800	struct fd f;
1801
1802	f = fdget(fd);
1803	if (f.file) {
1804		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1805						upeer_addrlen, flags,
1806						rlimit(RLIMIT_NOFILE));
1807		fdput(f);
1808	}
1809
1810	return ret;
1811}
1812
1813SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1814		int __user *, upeer_addrlen, int, flags)
1815{
1816	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1817}
1818
1819SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1820		int __user *, upeer_addrlen)
1821{
1822	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1823}
1824
1825/*
1826 *	Attempt to connect to a socket with the server address.  The address
1827 *	is in user space so we verify it is OK and move it to kernel space.
1828 *
1829 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1830 *	break bindings
1831 *
1832 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1833 *	other SEQPACKET protocols that take time to connect() as it doesn't
1834 *	include the -EINPROGRESS status for such sockets.
1835 */
1836
1837int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1838		       int addrlen, int file_flags)
1839{
1840	struct socket *sock;
1841	int err;
1842
1843	sock = sock_from_file(file, &err);
1844	if (!sock)
 
1845		goto out;
 
1846
1847	err =
1848	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1849	if (err)
1850		goto out;
1851
1852	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1853				 sock->file->f_flags | file_flags);
1854out:
1855	return err;
1856}
1857
1858int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1859{
1860	int ret = -EBADF;
1861	struct fd f;
1862
1863	f = fdget(fd);
1864	if (f.file) {
1865		struct sockaddr_storage address;
1866
1867		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1868		if (!ret)
1869			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1870		fdput(f);
1871	}
1872
1873	return ret;
1874}
1875
1876SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1877		int, addrlen)
1878{
1879	return __sys_connect(fd, uservaddr, addrlen);
1880}
1881
1882/*
1883 *	Get the local address ('name') of a socket object. Move the obtained
1884 *	name to user space.
1885 */
1886
1887int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1888		      int __user *usockaddr_len)
1889{
1890	struct socket *sock;
1891	struct sockaddr_storage address;
1892	int err, fput_needed;
1893
1894	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1895	if (!sock)
1896		goto out;
1897
1898	err = security_socket_getsockname(sock);
1899	if (err)
1900		goto out_put;
1901
1902	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1903	if (err < 0)
1904		goto out_put;
1905        /* "err" is actually length in this case */
1906	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1907
1908out_put:
1909	fput_light(sock->file, fput_needed);
1910out:
1911	return err;
1912}
1913
1914SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1915		int __user *, usockaddr_len)
1916{
1917	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1918}
1919
1920/*
1921 *	Get the remote address ('name') of a socket object. Move the obtained
1922 *	name to user space.
1923 */
1924
1925int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1926		      int __user *usockaddr_len)
1927{
1928	struct socket *sock;
1929	struct sockaddr_storage address;
1930	int err, fput_needed;
1931
1932	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1933	if (sock != NULL) {
1934		err = security_socket_getpeername(sock);
1935		if (err) {
1936			fput_light(sock->file, fput_needed);
1937			return err;
1938		}
1939
1940		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1941		if (err >= 0)
1942			/* "err" is actually length in this case */
1943			err = move_addr_to_user(&address, err, usockaddr,
1944						usockaddr_len);
1945		fput_light(sock->file, fput_needed);
1946	}
1947	return err;
1948}
1949
1950SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1951		int __user *, usockaddr_len)
1952{
1953	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1954}
1955
1956/*
1957 *	Send a datagram to a given address. We move the address into kernel
1958 *	space and check the user space data area is readable before invoking
1959 *	the protocol.
1960 */
1961int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1962		 struct sockaddr __user *addr,  int addr_len)
1963{
1964	struct socket *sock;
1965	struct sockaddr_storage address;
1966	int err;
1967	struct msghdr msg;
1968	struct iovec iov;
1969	int fput_needed;
1970
1971	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1972	if (unlikely(err))
1973		return err;
1974	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1975	if (!sock)
1976		goto out;
1977
1978	msg.msg_name = NULL;
1979	msg.msg_control = NULL;
1980	msg.msg_controllen = 0;
1981	msg.msg_namelen = 0;
1982	if (addr) {
1983		err = move_addr_to_kernel(addr, addr_len, &address);
1984		if (err < 0)
1985			goto out_put;
1986		msg.msg_name = (struct sockaddr *)&address;
1987		msg.msg_namelen = addr_len;
1988	}
1989	if (sock->file->f_flags & O_NONBLOCK)
1990		flags |= MSG_DONTWAIT;
1991	msg.msg_flags = flags;
1992	err = sock_sendmsg(sock, &msg);
1993
1994out_put:
1995	fput_light(sock->file, fput_needed);
1996out:
1997	return err;
1998}
1999
2000SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2001		unsigned int, flags, struct sockaddr __user *, addr,
2002		int, addr_len)
2003{
2004	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2005}
2006
2007/*
2008 *	Send a datagram down a socket.
2009 */
2010
2011SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2012		unsigned int, flags)
2013{
2014	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2015}
2016
2017/*
2018 *	Receive a frame from the socket and optionally record the address of the
2019 *	sender. We verify the buffers are writable and if needed move the
2020 *	sender address from kernel to user space.
2021 */
2022int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2023		   struct sockaddr __user *addr, int __user *addr_len)
2024{
2025	struct socket *sock;
2026	struct iovec iov;
2027	struct msghdr msg;
2028	struct sockaddr_storage address;
2029	int err, err2;
2030	int fput_needed;
2031
2032	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2033	if (unlikely(err))
2034		return err;
2035	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2036	if (!sock)
2037		goto out;
2038
2039	msg.msg_control = NULL;
2040	msg.msg_controllen = 0;
2041	/* Save some cycles and don't copy the address if not needed */
2042	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2043	/* We assume all kernel code knows the size of sockaddr_storage */
2044	msg.msg_namelen = 0;
2045	msg.msg_iocb = NULL;
2046	msg.msg_flags = 0;
2047	if (sock->file->f_flags & O_NONBLOCK)
2048		flags |= MSG_DONTWAIT;
2049	err = sock_recvmsg(sock, &msg, flags);
2050
2051	if (err >= 0 && addr != NULL) {
2052		err2 = move_addr_to_user(&address,
2053					 msg.msg_namelen, addr, addr_len);
2054		if (err2 < 0)
2055			err = err2;
2056	}
2057
2058	fput_light(sock->file, fput_needed);
2059out:
2060	return err;
2061}
2062
2063SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2064		unsigned int, flags, struct sockaddr __user *, addr,
2065		int __user *, addr_len)
2066{
2067	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2068}
2069
2070/*
2071 *	Receive a datagram from a socket.
2072 */
2073
2074SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2075		unsigned int, flags)
2076{
2077	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2078}
2079
2080static bool sock_use_custom_sol_socket(const struct socket *sock)
2081{
2082	const struct sock *sk = sock->sk;
2083
2084	/* Use sock->ops->setsockopt() for MPTCP */
2085	return IS_ENABLED(CONFIG_MPTCP) &&
2086	       sk->sk_protocol == IPPROTO_MPTCP &&
2087	       sk->sk_type == SOCK_STREAM &&
2088	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2089}
2090
2091/*
2092 *	Set a socket option. Because we don't know the option lengths we have
2093 *	to pass the user mode parameter for the protocols to sort out.
2094 */
2095int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2096		int optlen)
2097{
2098	sockptr_t optval = USER_SOCKPTR(user_optval);
2099	char *kernel_optval = NULL;
2100	int err, fput_needed;
2101	struct socket *sock;
2102
2103	if (optlen < 0)
2104		return -EINVAL;
2105
2106	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2107	if (!sock)
2108		return err;
2109
2110	err = security_socket_setsockopt(sock, level, optname);
2111	if (err)
2112		goto out_put;
2113
2114	if (!in_compat_syscall())
2115		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2116						     user_optval, &optlen,
2117						     &kernel_optval);
2118	if (err < 0)
2119		goto out_put;
2120	if (err > 0) {
2121		err = 0;
2122		goto out_put;
2123	}
2124
2125	if (kernel_optval)
2126		optval = KERNEL_SOCKPTR(kernel_optval);
2127	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2128		err = sock_setsockopt(sock, level, optname, optval, optlen);
2129	else if (unlikely(!sock->ops->setsockopt))
2130		err = -EOPNOTSUPP;
2131	else
2132		err = sock->ops->setsockopt(sock, level, optname, optval,
2133					    optlen);
2134	kfree(kernel_optval);
2135out_put:
2136	fput_light(sock->file, fput_needed);
2137	return err;
2138}
2139
2140SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2141		char __user *, optval, int, optlen)
2142{
2143	return __sys_setsockopt(fd, level, optname, optval, optlen);
2144}
2145
 
 
 
2146/*
2147 *	Get a socket option. Because we don't know the option lengths we have
2148 *	to pass a user mode parameter for the protocols to sort out.
2149 */
2150int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2151		int __user *optlen)
2152{
2153	int err, fput_needed;
2154	struct socket *sock;
2155	int max_optlen;
2156
2157	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2158	if (!sock)
2159		return err;
2160
2161	err = security_socket_getsockopt(sock, level, optname);
2162	if (err)
2163		goto out_put;
2164
2165	if (!in_compat_syscall())
2166		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2167
2168	if (level == SOL_SOCKET)
2169		err = sock_getsockopt(sock, level, optname, optval, optlen);
2170	else if (unlikely(!sock->ops->getsockopt))
2171		err = -EOPNOTSUPP;
2172	else
2173		err = sock->ops->getsockopt(sock, level, optname, optval,
2174					    optlen);
2175
2176	if (!in_compat_syscall())
2177		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2178						     optval, optlen, max_optlen,
2179						     err);
2180out_put:
2181	fput_light(sock->file, fput_needed);
2182	return err;
2183}
2184
2185SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2186		char __user *, optval, int __user *, optlen)
2187{
2188	return __sys_getsockopt(fd, level, optname, optval, optlen);
2189}
2190
2191/*
2192 *	Shutdown a socket.
2193 */
2194
 
 
 
 
 
 
 
 
 
 
 
2195int __sys_shutdown(int fd, int how)
2196{
2197	int err, fput_needed;
2198	struct socket *sock;
2199
2200	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2201	if (sock != NULL) {
2202		err = security_socket_shutdown(sock, how);
2203		if (!err)
2204			err = sock->ops->shutdown(sock, how);
2205		fput_light(sock->file, fput_needed);
2206	}
2207	return err;
2208}
2209
2210SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2211{
2212	return __sys_shutdown(fd, how);
2213}
2214
2215/* A couple of helpful macros for getting the address of the 32/64 bit
2216 * fields which are the same type (int / unsigned) on our platforms.
2217 */
2218#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2219#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2220#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2221
2222struct used_address {
2223	struct sockaddr_storage name;
2224	unsigned int name_len;
2225};
2226
2227int __copy_msghdr_from_user(struct msghdr *kmsg,
2228			    struct user_msghdr __user *umsg,
2229			    struct sockaddr __user **save_addr,
2230			    struct iovec __user **uiov, size_t *nsegs)
2231{
2232	struct user_msghdr msg;
2233	ssize_t err;
2234
2235	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2236		return -EFAULT;
2237
2238	kmsg->msg_control_is_user = true;
2239	kmsg->msg_control_user = msg.msg_control;
2240	kmsg->msg_controllen = msg.msg_controllen;
2241	kmsg->msg_flags = msg.msg_flags;
2242
2243	kmsg->msg_namelen = msg.msg_namelen;
2244	if (!msg.msg_name)
2245		kmsg->msg_namelen = 0;
2246
2247	if (kmsg->msg_namelen < 0)
2248		return -EINVAL;
2249
2250	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2251		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2252
2253	if (save_addr)
2254		*save_addr = msg.msg_name;
2255
2256	if (msg.msg_name && kmsg->msg_namelen) {
2257		if (!save_addr) {
2258			err = move_addr_to_kernel(msg.msg_name,
2259						  kmsg->msg_namelen,
2260						  kmsg->msg_name);
2261			if (err < 0)
2262				return err;
2263		}
2264	} else {
2265		kmsg->msg_name = NULL;
2266		kmsg->msg_namelen = 0;
2267	}
2268
2269	if (msg.msg_iovlen > UIO_MAXIOV)
2270		return -EMSGSIZE;
2271
2272	kmsg->msg_iocb = NULL;
2273	*uiov = msg.msg_iov;
2274	*nsegs = msg.msg_iovlen;
2275	return 0;
2276}
2277
2278static int copy_msghdr_from_user(struct msghdr *kmsg,
2279				 struct user_msghdr __user *umsg,
2280				 struct sockaddr __user **save_addr,
2281				 struct iovec **iov)
2282{
2283	struct user_msghdr msg;
2284	ssize_t err;
2285
2286	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2287					&msg.msg_iovlen);
2288	if (err)
2289		return err;
2290
2291	err = import_iovec(save_addr ? READ : WRITE,
2292			    msg.msg_iov, msg.msg_iovlen,
2293			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2294	return err < 0 ? err : 0;
2295}
2296
2297static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2298			   unsigned int flags, struct used_address *used_address,
2299			   unsigned int allowed_msghdr_flags)
2300{
2301	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2302				__aligned(sizeof(__kernel_size_t));
2303	/* 20 is size of ipv6_pktinfo */
2304	unsigned char *ctl_buf = ctl;
2305	int ctl_len;
2306	ssize_t err;
2307
2308	err = -ENOBUFS;
2309
2310	if (msg_sys->msg_controllen > INT_MAX)
2311		goto out;
2312	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2313	ctl_len = msg_sys->msg_controllen;
2314	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2315		err =
2316		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2317						     sizeof(ctl));
2318		if (err)
2319			goto out;
2320		ctl_buf = msg_sys->msg_control;
2321		ctl_len = msg_sys->msg_controllen;
2322	} else if (ctl_len) {
2323		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2324			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2325		if (ctl_len > sizeof(ctl)) {
2326			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2327			if (ctl_buf == NULL)
2328				goto out;
2329		}
2330		err = -EFAULT;
2331		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2332			goto out_freectl;
2333		msg_sys->msg_control = ctl_buf;
2334		msg_sys->msg_control_is_user = false;
2335	}
2336	msg_sys->msg_flags = flags;
2337
2338	if (sock->file->f_flags & O_NONBLOCK)
2339		msg_sys->msg_flags |= MSG_DONTWAIT;
2340	/*
2341	 * If this is sendmmsg() and current destination address is same as
2342	 * previously succeeded address, omit asking LSM's decision.
2343	 * used_address->name_len is initialized to UINT_MAX so that the first
2344	 * destination address never matches.
2345	 */
2346	if (used_address && msg_sys->msg_name &&
2347	    used_address->name_len == msg_sys->msg_namelen &&
2348	    !memcmp(&used_address->name, msg_sys->msg_name,
2349		    used_address->name_len)) {
2350		err = sock_sendmsg_nosec(sock, msg_sys);
2351		goto out_freectl;
2352	}
2353	err = sock_sendmsg(sock, msg_sys);
2354	/*
2355	 * If this is sendmmsg() and sending to current destination address was
2356	 * successful, remember it.
2357	 */
2358	if (used_address && err >= 0) {
2359		used_address->name_len = msg_sys->msg_namelen;
2360		if (msg_sys->msg_name)
2361			memcpy(&used_address->name, msg_sys->msg_name,
2362			       used_address->name_len);
2363	}
2364
2365out_freectl:
2366	if (ctl_buf != ctl)
2367		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2368out:
2369	return err;
2370}
2371
2372int sendmsg_copy_msghdr(struct msghdr *msg,
2373			struct user_msghdr __user *umsg, unsigned flags,
2374			struct iovec **iov)
2375{
2376	int err;
2377
2378	if (flags & MSG_CMSG_COMPAT) {
2379		struct compat_msghdr __user *msg_compat;
2380
2381		msg_compat = (struct compat_msghdr __user *) umsg;
2382		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2383	} else {
2384		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2385	}
2386	if (err < 0)
2387		return err;
2388
2389	return 0;
2390}
2391
2392static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2393			 struct msghdr *msg_sys, unsigned int flags,
2394			 struct used_address *used_address,
2395			 unsigned int allowed_msghdr_flags)
2396{
2397	struct sockaddr_storage address;
2398	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2399	ssize_t err;
2400
2401	msg_sys->msg_name = &address;
2402
2403	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2404	if (err < 0)
2405		return err;
2406
2407	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2408				allowed_msghdr_flags);
2409	kfree(iov);
2410	return err;
2411}
2412
2413/*
2414 *	BSD sendmsg interface
2415 */
2416long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2417			unsigned int flags)
2418{
2419	/* disallow ancillary data requests from this path */
2420	if (msg->msg_control || msg->msg_controllen)
2421		return -EINVAL;
2422
2423	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2424}
2425
2426long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2427		   bool forbid_cmsg_compat)
2428{
2429	int fput_needed, err;
2430	struct msghdr msg_sys;
2431	struct socket *sock;
2432
2433	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2434		return -EINVAL;
2435
2436	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2437	if (!sock)
2438		goto out;
2439
2440	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2441
2442	fput_light(sock->file, fput_needed);
2443out:
2444	return err;
2445}
2446
2447SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2448{
2449	return __sys_sendmsg(fd, msg, flags, true);
2450}
2451
2452/*
2453 *	Linux sendmmsg interface
2454 */
2455
2456int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2457		   unsigned int flags, bool forbid_cmsg_compat)
2458{
2459	int fput_needed, err, datagrams;
2460	struct socket *sock;
2461	struct mmsghdr __user *entry;
2462	struct compat_mmsghdr __user *compat_entry;
2463	struct msghdr msg_sys;
2464	struct used_address used_address;
2465	unsigned int oflags = flags;
2466
2467	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2468		return -EINVAL;
2469
2470	if (vlen > UIO_MAXIOV)
2471		vlen = UIO_MAXIOV;
2472
2473	datagrams = 0;
2474
2475	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2476	if (!sock)
2477		return err;
2478
2479	used_address.name_len = UINT_MAX;
2480	entry = mmsg;
2481	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2482	err = 0;
2483	flags |= MSG_BATCH;
2484
2485	while (datagrams < vlen) {
2486		if (datagrams == vlen - 1)
2487			flags = oflags;
2488
2489		if (MSG_CMSG_COMPAT & flags) {
2490			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2491					     &msg_sys, flags, &used_address, MSG_EOR);
2492			if (err < 0)
2493				break;
2494			err = __put_user(err, &compat_entry->msg_len);
2495			++compat_entry;
2496		} else {
2497			err = ___sys_sendmsg(sock,
2498					     (struct user_msghdr __user *)entry,
2499					     &msg_sys, flags, &used_address, MSG_EOR);
2500			if (err < 0)
2501				break;
2502			err = put_user(err, &entry->msg_len);
2503			++entry;
2504		}
2505
2506		if (err)
2507			break;
2508		++datagrams;
2509		if (msg_data_left(&msg_sys))
2510			break;
2511		cond_resched();
2512	}
2513
2514	fput_light(sock->file, fput_needed);
2515
2516	/* We only return an error if no datagrams were able to be sent */
2517	if (datagrams != 0)
2518		return datagrams;
2519
2520	return err;
2521}
2522
2523SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2524		unsigned int, vlen, unsigned int, flags)
2525{
2526	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2527}
2528
2529int recvmsg_copy_msghdr(struct msghdr *msg,
2530			struct user_msghdr __user *umsg, unsigned flags,
2531			struct sockaddr __user **uaddr,
2532			struct iovec **iov)
2533{
2534	ssize_t err;
2535
2536	if (MSG_CMSG_COMPAT & flags) {
2537		struct compat_msghdr __user *msg_compat;
2538
2539		msg_compat = (struct compat_msghdr __user *) umsg;
2540		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2541	} else {
2542		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2543	}
2544	if (err < 0)
2545		return err;
2546
2547	return 0;
2548}
2549
2550static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2551			   struct user_msghdr __user *msg,
2552			   struct sockaddr __user *uaddr,
2553			   unsigned int flags, int nosec)
2554{
2555	struct compat_msghdr __user *msg_compat =
2556					(struct compat_msghdr __user *) msg;
2557	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2558	struct sockaddr_storage addr;
2559	unsigned long cmsg_ptr;
2560	int len;
2561	ssize_t err;
2562
2563	msg_sys->msg_name = &addr;
2564	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2565	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2566
2567	/* We assume all kernel code knows the size of sockaddr_storage */
2568	msg_sys->msg_namelen = 0;
2569
2570	if (sock->file->f_flags & O_NONBLOCK)
2571		flags |= MSG_DONTWAIT;
2572
2573	if (unlikely(nosec))
2574		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2575	else
2576		err = sock_recvmsg(sock, msg_sys, flags);
2577
2578	if (err < 0)
2579		goto out;
2580	len = err;
2581
2582	if (uaddr != NULL) {
2583		err = move_addr_to_user(&addr,
2584					msg_sys->msg_namelen, uaddr,
2585					uaddr_len);
2586		if (err < 0)
2587			goto out;
2588	}
2589	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2590			 COMPAT_FLAGS(msg));
2591	if (err)
2592		goto out;
2593	if (MSG_CMSG_COMPAT & flags)
2594		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2595				 &msg_compat->msg_controllen);
2596	else
2597		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2598				 &msg->msg_controllen);
2599	if (err)
2600		goto out;
2601	err = len;
2602out:
2603	return err;
2604}
2605
2606static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2607			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2608{
2609	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2610	/* user mode address pointers */
2611	struct sockaddr __user *uaddr;
2612	ssize_t err;
2613
2614	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2615	if (err < 0)
2616		return err;
2617
2618	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2619	kfree(iov);
2620	return err;
2621}
2622
2623/*
2624 *	BSD recvmsg interface
2625 */
2626
2627long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2628			struct user_msghdr __user *umsg,
2629			struct sockaddr __user *uaddr, unsigned int flags)
2630{
2631	/* disallow ancillary data requests from this path */
2632	if (msg->msg_control || msg->msg_controllen)
2633		return -EINVAL;
2634
2635	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2636}
2637
2638long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2639		   bool forbid_cmsg_compat)
2640{
2641	int fput_needed, err;
2642	struct msghdr msg_sys;
2643	struct socket *sock;
2644
2645	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2646		return -EINVAL;
2647
2648	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2649	if (!sock)
2650		goto out;
2651
2652	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2653
2654	fput_light(sock->file, fput_needed);
2655out:
2656	return err;
2657}
2658
2659SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2660		unsigned int, flags)
2661{
2662	return __sys_recvmsg(fd, msg, flags, true);
2663}
2664
2665/*
2666 *     Linux recvmmsg interface
2667 */
2668
2669static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2670			  unsigned int vlen, unsigned int flags,
2671			  struct timespec64 *timeout)
2672{
2673	int fput_needed, err, datagrams;
2674	struct socket *sock;
2675	struct mmsghdr __user *entry;
2676	struct compat_mmsghdr __user *compat_entry;
2677	struct msghdr msg_sys;
2678	struct timespec64 end_time;
2679	struct timespec64 timeout64;
2680
2681	if (timeout &&
2682	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2683				    timeout->tv_nsec))
2684		return -EINVAL;
2685
2686	datagrams = 0;
2687
2688	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2689	if (!sock)
2690		return err;
2691
2692	if (likely(!(flags & MSG_ERRQUEUE))) {
2693		err = sock_error(sock->sk);
2694		if (err) {
2695			datagrams = err;
2696			goto out_put;
2697		}
2698	}
2699
2700	entry = mmsg;
2701	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2702
2703	while (datagrams < vlen) {
2704		/*
2705		 * No need to ask LSM for more than the first datagram.
2706		 */
2707		if (MSG_CMSG_COMPAT & flags) {
2708			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2709					     &msg_sys, flags & ~MSG_WAITFORONE,
2710					     datagrams);
2711			if (err < 0)
2712				break;
2713			err = __put_user(err, &compat_entry->msg_len);
2714			++compat_entry;
2715		} else {
2716			err = ___sys_recvmsg(sock,
2717					     (struct user_msghdr __user *)entry,
2718					     &msg_sys, flags & ~MSG_WAITFORONE,
2719					     datagrams);
2720			if (err < 0)
2721				break;
2722			err = put_user(err, &entry->msg_len);
2723			++entry;
2724		}
2725
2726		if (err)
2727			break;
2728		++datagrams;
2729
2730		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2731		if (flags & MSG_WAITFORONE)
2732			flags |= MSG_DONTWAIT;
2733
2734		if (timeout) {
2735			ktime_get_ts64(&timeout64);
2736			*timeout = timespec64_sub(end_time, timeout64);
2737			if (timeout->tv_sec < 0) {
2738				timeout->tv_sec = timeout->tv_nsec = 0;
2739				break;
2740			}
2741
2742			/* Timeout, return less than vlen datagrams */
2743			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2744				break;
2745		}
2746
2747		/* Out of band data, return right away */
2748		if (msg_sys.msg_flags & MSG_OOB)
2749			break;
2750		cond_resched();
2751	}
2752
2753	if (err == 0)
2754		goto out_put;
2755
2756	if (datagrams == 0) {
2757		datagrams = err;
2758		goto out_put;
2759	}
2760
2761	/*
2762	 * We may return less entries than requested (vlen) if the
2763	 * sock is non block and there aren't enough datagrams...
2764	 */
2765	if (err != -EAGAIN) {
2766		/*
2767		 * ... or  if recvmsg returns an error after we
2768		 * received some datagrams, where we record the
2769		 * error to return on the next call or if the
2770		 * app asks about it using getsockopt(SO_ERROR).
2771		 */
2772		sock->sk->sk_err = -err;
2773	}
2774out_put:
2775	fput_light(sock->file, fput_needed);
2776
2777	return datagrams;
2778}
2779
2780int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2781		   unsigned int vlen, unsigned int flags,
2782		   struct __kernel_timespec __user *timeout,
2783		   struct old_timespec32 __user *timeout32)
2784{
2785	int datagrams;
2786	struct timespec64 timeout_sys;
2787
2788	if (timeout && get_timespec64(&timeout_sys, timeout))
2789		return -EFAULT;
2790
2791	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2792		return -EFAULT;
2793
2794	if (!timeout && !timeout32)
2795		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2796
2797	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2798
2799	if (datagrams <= 0)
2800		return datagrams;
2801
2802	if (timeout && put_timespec64(&timeout_sys, timeout))
2803		datagrams = -EFAULT;
2804
2805	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2806		datagrams = -EFAULT;
2807
2808	return datagrams;
2809}
2810
2811SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2812		unsigned int, vlen, unsigned int, flags,
2813		struct __kernel_timespec __user *, timeout)
2814{
2815	if (flags & MSG_CMSG_COMPAT)
2816		return -EINVAL;
2817
2818	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2819}
2820
2821#ifdef CONFIG_COMPAT_32BIT_TIME
2822SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2823		unsigned int, vlen, unsigned int, flags,
2824		struct old_timespec32 __user *, timeout)
2825{
2826	if (flags & MSG_CMSG_COMPAT)
2827		return -EINVAL;
2828
2829	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2830}
2831#endif
2832
2833#ifdef __ARCH_WANT_SYS_SOCKETCALL
2834/* Argument list sizes for sys_socketcall */
2835#define AL(x) ((x) * sizeof(unsigned long))
2836static const unsigned char nargs[21] = {
2837	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2838	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2839	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2840	AL(4), AL(5), AL(4)
2841};
2842
2843#undef AL
2844
2845/*
2846 *	System call vectors.
2847 *
2848 *	Argument checking cleaned up. Saved 20% in size.
2849 *  This function doesn't need to set the kernel lock because
2850 *  it is set by the callees.
2851 */
2852
2853SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2854{
2855	unsigned long a[AUDITSC_ARGS];
2856	unsigned long a0, a1;
2857	int err;
2858	unsigned int len;
2859
2860	if (call < 1 || call > SYS_SENDMMSG)
2861		return -EINVAL;
2862	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2863
2864	len = nargs[call];
2865	if (len > sizeof(a))
2866		return -EINVAL;
2867
2868	/* copy_from_user should be SMP safe. */
2869	if (copy_from_user(a, args, len))
2870		return -EFAULT;
2871
2872	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2873	if (err)
2874		return err;
2875
2876	a0 = a[0];
2877	a1 = a[1];
2878
2879	switch (call) {
2880	case SYS_SOCKET:
2881		err = __sys_socket(a0, a1, a[2]);
2882		break;
2883	case SYS_BIND:
2884		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2885		break;
2886	case SYS_CONNECT:
2887		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2888		break;
2889	case SYS_LISTEN:
2890		err = __sys_listen(a0, a1);
2891		break;
2892	case SYS_ACCEPT:
2893		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2894				    (int __user *)a[2], 0);
2895		break;
2896	case SYS_GETSOCKNAME:
2897		err =
2898		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2899				      (int __user *)a[2]);
2900		break;
2901	case SYS_GETPEERNAME:
2902		err =
2903		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2904				      (int __user *)a[2]);
2905		break;
2906	case SYS_SOCKETPAIR:
2907		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2908		break;
2909	case SYS_SEND:
2910		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2911				   NULL, 0);
2912		break;
2913	case SYS_SENDTO:
2914		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2915				   (struct sockaddr __user *)a[4], a[5]);
2916		break;
2917	case SYS_RECV:
2918		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2919				     NULL, NULL);
2920		break;
2921	case SYS_RECVFROM:
2922		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2923				     (struct sockaddr __user *)a[4],
2924				     (int __user *)a[5]);
2925		break;
2926	case SYS_SHUTDOWN:
2927		err = __sys_shutdown(a0, a1);
2928		break;
2929	case SYS_SETSOCKOPT:
2930		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2931				       a[4]);
2932		break;
2933	case SYS_GETSOCKOPT:
2934		err =
2935		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2936				     (int __user *)a[4]);
2937		break;
2938	case SYS_SENDMSG:
2939		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2940				    a[2], true);
2941		break;
2942	case SYS_SENDMMSG:
2943		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2944				     a[3], true);
2945		break;
2946	case SYS_RECVMSG:
2947		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2948				    a[2], true);
2949		break;
2950	case SYS_RECVMMSG:
2951		if (IS_ENABLED(CONFIG_64BIT))
2952			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2953					     a[2], a[3],
2954					     (struct __kernel_timespec __user *)a[4],
2955					     NULL);
2956		else
2957			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2958					     a[2], a[3], NULL,
2959					     (struct old_timespec32 __user *)a[4]);
2960		break;
2961	case SYS_ACCEPT4:
2962		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2963				    (int __user *)a[2], a[3]);
2964		break;
2965	default:
2966		err = -EINVAL;
2967		break;
2968	}
2969	return err;
2970}
2971
2972#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2973
2974/**
2975 *	sock_register - add a socket protocol handler
2976 *	@ops: description of protocol
2977 *
2978 *	This function is called by a protocol handler that wants to
2979 *	advertise its address family, and have it linked into the
2980 *	socket interface. The value ops->family corresponds to the
2981 *	socket system call protocol family.
2982 */
2983int sock_register(const struct net_proto_family *ops)
2984{
2985	int err;
2986
2987	if (ops->family >= NPROTO) {
2988		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2989		return -ENOBUFS;
2990	}
2991
2992	spin_lock(&net_family_lock);
2993	if (rcu_dereference_protected(net_families[ops->family],
2994				      lockdep_is_held(&net_family_lock)))
2995		err = -EEXIST;
2996	else {
2997		rcu_assign_pointer(net_families[ops->family], ops);
2998		err = 0;
2999	}
3000	spin_unlock(&net_family_lock);
3001
3002	pr_info("NET: Registered protocol family %d\n", ops->family);
3003	return err;
3004}
3005EXPORT_SYMBOL(sock_register);
3006
3007/**
3008 *	sock_unregister - remove a protocol handler
3009 *	@family: protocol family to remove
3010 *
3011 *	This function is called by a protocol handler that wants to
3012 *	remove its address family, and have it unlinked from the
3013 *	new socket creation.
3014 *
3015 *	If protocol handler is a module, then it can use module reference
3016 *	counts to protect against new references. If protocol handler is not
3017 *	a module then it needs to provide its own protection in
3018 *	the ops->create routine.
3019 */
3020void sock_unregister(int family)
3021{
3022	BUG_ON(family < 0 || family >= NPROTO);
3023
3024	spin_lock(&net_family_lock);
3025	RCU_INIT_POINTER(net_families[family], NULL);
3026	spin_unlock(&net_family_lock);
3027
3028	synchronize_rcu();
3029
3030	pr_info("NET: Unregistered protocol family %d\n", family);
3031}
3032EXPORT_SYMBOL(sock_unregister);
3033
3034bool sock_is_registered(int family)
3035{
3036	return family < NPROTO && rcu_access_pointer(net_families[family]);
3037}
3038
3039static int __init sock_init(void)
3040{
3041	int err;
3042	/*
3043	 *      Initialize the network sysctl infrastructure.
3044	 */
3045	err = net_sysctl_init();
3046	if (err)
3047		goto out;
3048
3049	/*
3050	 *      Initialize skbuff SLAB cache
3051	 */
3052	skb_init();
3053
3054	/*
3055	 *      Initialize the protocols module.
3056	 */
3057
3058	init_inodecache();
3059
3060	err = register_filesystem(&sock_fs_type);
3061	if (err)
3062		goto out;
3063	sock_mnt = kern_mount(&sock_fs_type);
3064	if (IS_ERR(sock_mnt)) {
3065		err = PTR_ERR(sock_mnt);
3066		goto out_mount;
3067	}
3068
3069	/* The real protocol initialization is performed in later initcalls.
3070	 */
3071
3072#ifdef CONFIG_NETFILTER
3073	err = netfilter_init();
3074	if (err)
3075		goto out;
3076#endif
3077
3078	ptp_classifier_init();
3079
3080out:
3081	return err;
3082
3083out_mount:
3084	unregister_filesystem(&sock_fs_type);
3085	goto out;
3086}
3087
3088core_initcall(sock_init);	/* early initcall */
3089
3090#ifdef CONFIG_PROC_FS
3091void socket_seq_show(struct seq_file *seq)
3092{
3093	seq_printf(seq, "sockets: used %d\n",
3094		   sock_inuse_get(seq->private));
3095}
3096#endif				/* CONFIG_PROC_FS */
3097
3098#ifdef CONFIG_COMPAT
3099static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3100{
3101	struct compat_ifconf ifc32;
3102	struct ifconf ifc;
3103	int err;
3104
3105	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3106		return -EFAULT;
3107
3108	ifc.ifc_len = ifc32.ifc_len;
3109	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3110
3111	rtnl_lock();
3112	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3113	rtnl_unlock();
3114	if (err)
3115		return err;
3116
3117	ifc32.ifc_len = ifc.ifc_len;
3118	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3119		return -EFAULT;
3120
3121	return 0;
3122}
3123
3124static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3125{
3126	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3127	bool convert_in = false, convert_out = false;
3128	size_t buf_size = 0;
3129	struct ethtool_rxnfc __user *rxnfc = NULL;
3130	struct ifreq ifr;
3131	u32 rule_cnt = 0, actual_rule_cnt;
3132	u32 ethcmd;
3133	u32 data;
3134	int ret;
3135
3136	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3137		return -EFAULT;
3138
3139	compat_rxnfc = compat_ptr(data);
3140
3141	if (get_user(ethcmd, &compat_rxnfc->cmd))
3142		return -EFAULT;
3143
3144	/* Most ethtool structures are defined without padding.
3145	 * Unfortunately struct ethtool_rxnfc is an exception.
3146	 */
3147	switch (ethcmd) {
3148	default:
3149		break;
3150	case ETHTOOL_GRXCLSRLALL:
3151		/* Buffer size is variable */
3152		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3153			return -EFAULT;
3154		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3155			return -ENOMEM;
3156		buf_size += rule_cnt * sizeof(u32);
3157		fallthrough;
3158	case ETHTOOL_GRXRINGS:
3159	case ETHTOOL_GRXCLSRLCNT:
3160	case ETHTOOL_GRXCLSRULE:
3161	case ETHTOOL_SRXCLSRLINS:
3162		convert_out = true;
3163		fallthrough;
3164	case ETHTOOL_SRXCLSRLDEL:
3165		buf_size += sizeof(struct ethtool_rxnfc);
3166		convert_in = true;
3167		rxnfc = compat_alloc_user_space(buf_size);
3168		break;
3169	}
3170
3171	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3172		return -EFAULT;
3173
3174	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3175
3176	if (convert_in) {
3177		/* We expect there to be holes between fs.m_ext and
3178		 * fs.ring_cookie and at the end of fs, but nowhere else.
3179		 */
3180		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3181			     sizeof(compat_rxnfc->fs.m_ext) !=
3182			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3183			     sizeof(rxnfc->fs.m_ext));
3184		BUILD_BUG_ON(
3185			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3186			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3187			offsetof(struct ethtool_rxnfc, fs.location) -
3188			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3189
3190		if (copy_in_user(rxnfc, compat_rxnfc,
3191				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3192				 (void __user *)rxnfc) ||
3193		    copy_in_user(&rxnfc->fs.ring_cookie,
3194				 &compat_rxnfc->fs.ring_cookie,
3195				 (void __user *)(&rxnfc->fs.location + 1) -
3196				 (void __user *)&rxnfc->fs.ring_cookie))
3197			return -EFAULT;
3198		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3199			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3200				return -EFAULT;
3201		} else if (copy_in_user(&rxnfc->rule_cnt,
3202					&compat_rxnfc->rule_cnt,
3203					sizeof(rxnfc->rule_cnt)))
3204			return -EFAULT;
3205	}
3206
3207	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3208	if (ret)
3209		return ret;
3210
3211	if (convert_out) {
3212		if (copy_in_user(compat_rxnfc, rxnfc,
3213				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3214				 (const void __user *)rxnfc) ||
3215		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3216				 &rxnfc->fs.ring_cookie,
3217				 (const void __user *)(&rxnfc->fs.location + 1) -
3218				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3219		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3220				 sizeof(rxnfc->rule_cnt)))
3221			return -EFAULT;
3222
3223		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3224			/* As an optimisation, we only copy the actual
3225			 * number of rules that the underlying
3226			 * function returned.  Since Mallory might
3227			 * change the rule count in user memory, we
3228			 * check that it is less than the rule count
3229			 * originally given (as the user buffer size),
3230			 * which has been range-checked.
3231			 */
3232			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3233				return -EFAULT;
3234			if (actual_rule_cnt < rule_cnt)
3235				rule_cnt = actual_rule_cnt;
3236			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3237					 &rxnfc->rule_locs[0],
3238					 rule_cnt * sizeof(u32)))
3239				return -EFAULT;
3240		}
3241	}
3242
3243	return 0;
3244}
3245
3246static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3247{
3248	compat_uptr_t uptr32;
3249	struct ifreq ifr;
3250	void __user *saved;
3251	int err;
3252
3253	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3254		return -EFAULT;
3255
3256	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3257		return -EFAULT;
3258
3259	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3260	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3261
3262	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3263	if (!err) {
3264		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3265		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3266			err = -EFAULT;
3267	}
3268	return err;
3269}
3270
3271/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3272static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3273				 struct compat_ifreq __user *u_ifreq32)
3274{
3275	struct ifreq ifreq;
3276	u32 data32;
3277
 
 
3278	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3279		return -EFAULT;
3280	if (get_user(data32, &u_ifreq32->ifr_data))
3281		return -EFAULT;
3282	ifreq.ifr_data = compat_ptr(data32);
3283
3284	return dev_ioctl(net, cmd, &ifreq, NULL);
3285}
3286
3287static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3288			      unsigned int cmd,
3289			      struct compat_ifreq __user *uifr32)
3290{
3291	struct ifreq __user *uifr;
3292	int err;
3293
3294	/* Handle the fact that while struct ifreq has the same *layout* on
3295	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3296	 * which are handled elsewhere, it still has different *size* due to
3297	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3298	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3299	 * As a result, if the struct happens to be at the end of a page and
3300	 * the next page isn't readable/writable, we get a fault. To prevent
3301	 * that, copy back and forth to the full size.
3302	 */
3303
3304	uifr = compat_alloc_user_space(sizeof(*uifr));
3305	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3306		return -EFAULT;
3307
3308	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3309
3310	if (!err) {
3311		switch (cmd) {
3312		case SIOCGIFFLAGS:
3313		case SIOCGIFMETRIC:
3314		case SIOCGIFMTU:
3315		case SIOCGIFMEM:
3316		case SIOCGIFHWADDR:
3317		case SIOCGIFINDEX:
3318		case SIOCGIFADDR:
3319		case SIOCGIFBRDADDR:
3320		case SIOCGIFDSTADDR:
3321		case SIOCGIFNETMASK:
3322		case SIOCGIFPFLAGS:
3323		case SIOCGIFTXQLEN:
3324		case SIOCGMIIPHY:
3325		case SIOCGMIIREG:
3326		case SIOCGIFNAME:
3327			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3328				err = -EFAULT;
3329			break;
3330		}
3331	}
3332	return err;
3333}
3334
3335static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3336			struct compat_ifreq __user *uifr32)
3337{
3338	struct ifreq ifr;
3339	struct compat_ifmap __user *uifmap32;
3340	int err;
3341
3342	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3343	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3344	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3345	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3346	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3347	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3348	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3349	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3350	if (err)
3351		return -EFAULT;
3352
3353	err = dev_ioctl(net, cmd, &ifr, NULL);
3354
3355	if (cmd == SIOCGIFMAP && !err) {
3356		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3357		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3358		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3359		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3360		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3361		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3362		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3363		if (err)
3364			err = -EFAULT;
3365	}
3366	return err;
3367}
3368
3369/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3370 * for some operations; this forces use of the newer bridge-utils that
3371 * use compatible ioctls
3372 */
3373static int old_bridge_ioctl(compat_ulong_t __user *argp)
3374{
3375	compat_ulong_t tmp;
3376
3377	if (get_user(tmp, argp))
3378		return -EFAULT;
3379	if (tmp == BRCTL_GET_VERSION)
3380		return BRCTL_VERSION + 1;
3381	return -EINVAL;
3382}
3383
3384static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3385			 unsigned int cmd, unsigned long arg)
3386{
3387	void __user *argp = compat_ptr(arg);
3388	struct sock *sk = sock->sk;
3389	struct net *net = sock_net(sk);
3390
3391	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3392		return compat_ifr_data_ioctl(net, cmd, argp);
3393
3394	switch (cmd) {
3395	case SIOCSIFBR:
3396	case SIOCGIFBR:
3397		return old_bridge_ioctl(argp);
3398	case SIOCGIFCONF:
3399		return compat_dev_ifconf(net, argp);
3400	case SIOCETHTOOL:
3401		return ethtool_ioctl(net, argp);
3402	case SIOCWANDEV:
3403		return compat_siocwandev(net, argp);
3404	case SIOCGIFMAP:
3405	case SIOCSIFMAP:
3406		return compat_sioc_ifmap(net, cmd, argp);
3407	case SIOCGSTAMP_OLD:
3408	case SIOCGSTAMPNS_OLD:
3409		if (!sock->ops->gettstamp)
3410			return -ENOIOCTLCMD;
3411		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3412					    !COMPAT_USE_64BIT_TIME);
3413
 
3414	case SIOCBONDSLAVEINFOQUERY:
3415	case SIOCBONDINFOQUERY:
3416	case SIOCSHWTSTAMP:
3417	case SIOCGHWTSTAMP:
3418		return compat_ifr_data_ioctl(net, cmd, argp);
3419
3420	case FIOSETOWN:
3421	case SIOCSPGRP:
3422	case FIOGETOWN:
3423	case SIOCGPGRP:
3424	case SIOCBRADDBR:
3425	case SIOCBRDELBR:
3426	case SIOCGIFVLAN:
3427	case SIOCSIFVLAN:
3428	case SIOCADDDLCI:
3429	case SIOCDELDLCI:
3430	case SIOCGSKNS:
3431	case SIOCGSTAMP_NEW:
3432	case SIOCGSTAMPNS_NEW:
3433		return sock_ioctl(file, cmd, arg);
3434
3435	case SIOCGIFFLAGS:
3436	case SIOCSIFFLAGS:
3437	case SIOCGIFMETRIC:
3438	case SIOCSIFMETRIC:
3439	case SIOCGIFMTU:
3440	case SIOCSIFMTU:
3441	case SIOCGIFMEM:
3442	case SIOCSIFMEM:
3443	case SIOCGIFHWADDR:
3444	case SIOCSIFHWADDR:
3445	case SIOCADDMULTI:
3446	case SIOCDELMULTI:
3447	case SIOCGIFINDEX:
3448	case SIOCGIFADDR:
3449	case SIOCSIFADDR:
3450	case SIOCSIFHWBROADCAST:
3451	case SIOCDIFADDR:
3452	case SIOCGIFBRDADDR:
3453	case SIOCSIFBRDADDR:
3454	case SIOCGIFDSTADDR:
3455	case SIOCSIFDSTADDR:
3456	case SIOCGIFNETMASK:
3457	case SIOCSIFNETMASK:
3458	case SIOCSIFPFLAGS:
3459	case SIOCGIFPFLAGS:
3460	case SIOCGIFTXQLEN:
3461	case SIOCSIFTXQLEN:
3462	case SIOCBRADDIF:
3463	case SIOCBRDELIF:
3464	case SIOCGIFNAME:
3465	case SIOCSIFNAME:
3466	case SIOCGMIIPHY:
3467	case SIOCGMIIREG:
3468	case SIOCSMIIREG:
3469	case SIOCBONDENSLAVE:
3470	case SIOCBONDRELEASE:
3471	case SIOCBONDSETHWADDR:
3472	case SIOCBONDCHANGEACTIVE:
3473		return compat_ifreq_ioctl(net, sock, cmd, argp);
3474
3475	case SIOCSARP:
3476	case SIOCGARP:
3477	case SIOCDARP:
3478	case SIOCOUTQ:
3479	case SIOCOUTQNSD:
3480	case SIOCATMARK:
3481		return sock_do_ioctl(net, sock, cmd, arg);
3482	}
3483
3484	return -ENOIOCTLCMD;
3485}
3486
3487static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3488			      unsigned long arg)
3489{
3490	struct socket *sock = file->private_data;
3491	int ret = -ENOIOCTLCMD;
3492	struct sock *sk;
3493	struct net *net;
3494
3495	sk = sock->sk;
3496	net = sock_net(sk);
3497
3498	if (sock->ops->compat_ioctl)
3499		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3500
3501	if (ret == -ENOIOCTLCMD &&
3502	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3503		ret = compat_wext_handle_ioctl(net, cmd, arg);
3504
3505	if (ret == -ENOIOCTLCMD)
3506		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3507
3508	return ret;
3509}
3510#endif
3511
3512/**
3513 *	kernel_bind - bind an address to a socket (kernel space)
3514 *	@sock: socket
3515 *	@addr: address
3516 *	@addrlen: length of address
3517 *
3518 *	Returns 0 or an error.
3519 */
3520
3521int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3522{
3523	return sock->ops->bind(sock, addr, addrlen);
3524}
3525EXPORT_SYMBOL(kernel_bind);
3526
3527/**
3528 *	kernel_listen - move socket to listening state (kernel space)
3529 *	@sock: socket
3530 *	@backlog: pending connections queue size
3531 *
3532 *	Returns 0 or an error.
3533 */
3534
3535int kernel_listen(struct socket *sock, int backlog)
3536{
3537	return sock->ops->listen(sock, backlog);
3538}
3539EXPORT_SYMBOL(kernel_listen);
3540
3541/**
3542 *	kernel_accept - accept a connection (kernel space)
3543 *	@sock: listening socket
3544 *	@newsock: new connected socket
3545 *	@flags: flags
3546 *
3547 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3548 *	If it fails, @newsock is guaranteed to be %NULL.
3549 *	Returns 0 or an error.
3550 */
3551
3552int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3553{
3554	struct sock *sk = sock->sk;
3555	int err;
3556
3557	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3558			       newsock);
3559	if (err < 0)
3560		goto done;
3561
3562	err = sock->ops->accept(sock, *newsock, flags, true);
3563	if (err < 0) {
3564		sock_release(*newsock);
3565		*newsock = NULL;
3566		goto done;
3567	}
3568
3569	(*newsock)->ops = sock->ops;
3570	__module_get((*newsock)->ops->owner);
3571
3572done:
3573	return err;
3574}
3575EXPORT_SYMBOL(kernel_accept);
3576
3577/**
3578 *	kernel_connect - connect a socket (kernel space)
3579 *	@sock: socket
3580 *	@addr: address
3581 *	@addrlen: address length
3582 *	@flags: flags (O_NONBLOCK, ...)
3583 *
3584 *	For datagram sockets, @addr is the addres to which datagrams are sent
3585 *	by default, and the only address from which datagrams are received.
3586 *	For stream sockets, attempts to connect to @addr.
3587 *	Returns 0 or an error code.
3588 */
3589
3590int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3591		   int flags)
3592{
3593	return sock->ops->connect(sock, addr, addrlen, flags);
3594}
3595EXPORT_SYMBOL(kernel_connect);
3596
3597/**
3598 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3599 *	@sock: socket
3600 *	@addr: address holder
3601 *
3602 * 	Fills the @addr pointer with the address which the socket is bound.
3603 *	Returns 0 or an error code.
3604 */
3605
3606int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3607{
3608	return sock->ops->getname(sock, addr, 0);
3609}
3610EXPORT_SYMBOL(kernel_getsockname);
3611
3612/**
3613 *	kernel_getpeername - get the address which the socket is connected (kernel space)
3614 *	@sock: socket
3615 *	@addr: address holder
3616 *
3617 * 	Fills the @addr pointer with the address which the socket is connected.
3618 *	Returns 0 or an error code.
3619 */
3620
3621int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3622{
3623	return sock->ops->getname(sock, addr, 1);
3624}
3625EXPORT_SYMBOL(kernel_getpeername);
3626
3627/**
3628 *	kernel_sendpage - send a &page through a socket (kernel space)
3629 *	@sock: socket
3630 *	@page: page
3631 *	@offset: page offset
3632 *	@size: total size in bytes
3633 *	@flags: flags (MSG_DONTWAIT, ...)
3634 *
3635 *	Returns the total amount sent in bytes or an error.
3636 */
3637
3638int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3639		    size_t size, int flags)
3640{
3641	if (sock->ops->sendpage) {
3642		/* Warn in case the improper page to zero-copy send */
3643		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3644		return sock->ops->sendpage(sock, page, offset, size, flags);
3645	}
3646	return sock_no_sendpage(sock, page, offset, size, flags);
3647}
3648EXPORT_SYMBOL(kernel_sendpage);
3649
3650/**
3651 *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3652 *	@sk: sock
3653 *	@page: page
3654 *	@offset: page offset
3655 *	@size: total size in bytes
3656 *	@flags: flags (MSG_DONTWAIT, ...)
3657 *
3658 *	Returns the total amount sent in bytes or an error.
3659 *	Caller must hold @sk.
3660 */
3661
3662int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3663			   size_t size, int flags)
3664{
3665	struct socket *sock = sk->sk_socket;
3666
3667	if (sock->ops->sendpage_locked)
3668		return sock->ops->sendpage_locked(sk, page, offset, size,
3669						  flags);
3670
3671	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3672}
3673EXPORT_SYMBOL(kernel_sendpage_locked);
3674
3675/**
3676 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3677 *	@sock: socket
3678 *	@how: connection part
3679 *
3680 *	Returns 0 or an error.
3681 */
3682
3683int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3684{
3685	return sock->ops->shutdown(sock, how);
3686}
3687EXPORT_SYMBOL(kernel_sock_shutdown);
3688
3689/**
3690 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3691 *	@sk: socket
3692 *
3693 *	This routine returns the IP overhead imposed by a socket i.e.
3694 *	the length of the underlying IP header, depending on whether
3695 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3696 *	on at the socket. Assumes that the caller has a lock on the socket.
3697 */
3698
3699u32 kernel_sock_ip_overhead(struct sock *sk)
3700{
3701	struct inet_sock *inet;
3702	struct ip_options_rcu *opt;
3703	u32 overhead = 0;
3704#if IS_ENABLED(CONFIG_IPV6)
3705	struct ipv6_pinfo *np;
3706	struct ipv6_txoptions *optv6 = NULL;
3707#endif /* IS_ENABLED(CONFIG_IPV6) */
3708
3709	if (!sk)
3710		return overhead;
3711
3712	switch (sk->sk_family) {
3713	case AF_INET:
3714		inet = inet_sk(sk);
3715		overhead += sizeof(struct iphdr);
3716		opt = rcu_dereference_protected(inet->inet_opt,
3717						sock_owned_by_user(sk));
3718		if (opt)
3719			overhead += opt->opt.optlen;
3720		return overhead;
3721#if IS_ENABLED(CONFIG_IPV6)
3722	case AF_INET6:
3723		np = inet6_sk(sk);
3724		overhead += sizeof(struct ipv6hdr);
3725		if (np)
3726			optv6 = rcu_dereference_protected(np->opt,
3727							  sock_owned_by_user(sk));
3728		if (optv6)
3729			overhead += (optv6->opt_flen + optv6->opt_nflen);
3730		return overhead;
3731#endif /* IS_ENABLED(CONFIG_IPV6) */
3732	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3733		return overhead;
3734	}
3735}
3736EXPORT_SYMBOL(kernel_sock_ip_overhead);