Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET		An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:	@(#)socket.c	1.1.93	18/02/95
   6 *
   7 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   8 *		Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  13 *					shutdown()
  14 *		Alan Cox	:	verify_area() fixes
  15 *		Alan Cox	:	Removed DDI
  16 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  17 *		Alan Cox	:	Moved a load of checks to the very
  18 *					top level.
  19 *		Alan Cox	:	Move address structures to/from user
  20 *					mode above the protocol layers.
  21 *		Rob Janssen	:	Allow 0 length sends.
  22 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  23 *					tty drivers).
  24 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  25 *		Jeff Uphoff	:	Made max number of sockets command-line
  26 *					configurable.
  27 *		Matti Aarnio	:	Made the number of sockets dynamic,
  28 *					to be allocated when needed, and mr.
  29 *					Uphoff's max is used as max to be
  30 *					allowed to allocate.
  31 *		Linus		:	Argh. removed all the socket allocation
  32 *					altogether: it's in the inode now.
  33 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  34 *					for NetROM and future kernel nfsd type
  35 *					stuff.
  36 *		Alan Cox	:	sendmsg/recvmsg basics.
  37 *		Tom Dyas	:	Export net symbols.
  38 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  39 *		Alan Cox	:	Added thread locking to sys_* calls
  40 *					for sockets. May have errors at the
  41 *					moment.
  42 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  43 *		Andi Kleen	:	Some small cleanups, optimizations,
  44 *					and fixed a copy_from_user() bug.
  45 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  47 *					protocol-independent
  48 *
 
 
 
 
 
 
 
  49 *	This module is effectively the top level interface to the BSD socket
  50 *	paradigm.
  51 *
  52 *	Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/ethtool.h>
  56#include <linux/mm.h>
  57#include <linux/socket.h>
  58#include <linux/file.h>
  59#include <linux/net.h>
  60#include <linux/interrupt.h>
  61#include <linux/thread_info.h>
  62#include <linux/rcupdate.h>
  63#include <linux/netdevice.h>
  64#include <linux/proc_fs.h>
  65#include <linux/seq_file.h>
  66#include <linux/mutex.h>
 
  67#include <linux/if_bridge.h>
 
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/termios.h>
 104#include <linux/sockios.h>
 105#include <net/busy_poll.h>
 106#include <linux/errqueue.h>
 107#include <linux/ptp_clock_kernel.h>
 108
 109#ifdef CONFIG_NET_RX_BUSY_POLL
 110unsigned int sysctl_net_busy_read __read_mostly;
 111unsigned int sysctl_net_busy_poll __read_mostly;
 112#endif
 113
 114static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 115static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 
 
 
 116static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 117
 118static int sock_close(struct inode *inode, struct file *file);
 119static __poll_t sock_poll(struct file *file,
 120			      struct poll_table_struct *wait);
 121static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 122#ifdef CONFIG_COMPAT
 123static long compat_sock_ioctl(struct file *file,
 124			      unsigned int cmd, unsigned long arg);
 125#endif
 126static int sock_fasync(int fd, struct file *filp, int on);
 127static ssize_t sock_sendpage(struct file *file, struct page *page,
 128			     int offset, size_t size, loff_t *ppos, int more);
 129static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 130				struct pipe_inode_info *pipe, size_t len,
 131				unsigned int flags);
 132
 133#ifdef CONFIG_PROC_FS
 134static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 135{
 136	struct socket *sock = f->private_data;
 137
 138	if (sock->ops->show_fdinfo)
 139		sock->ops->show_fdinfo(m, sock);
 140}
 141#else
 142#define sock_show_fdinfo NULL
 143#endif
 144
 145/*
 146 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 147 *	in the operation structures but are done directly via the socketcall() multiplexor.
 148 */
 149
 150static const struct file_operations socket_file_ops = {
 151	.owner =	THIS_MODULE,
 152	.llseek =	no_llseek,
 153	.read_iter =	sock_read_iter,
 154	.write_iter =	sock_write_iter,
 155	.poll =		sock_poll,
 156	.unlocked_ioctl = sock_ioctl,
 157#ifdef CONFIG_COMPAT
 158	.compat_ioctl = compat_sock_ioctl,
 159#endif
 160	.mmap =		sock_mmap,
 
 161	.release =	sock_close,
 162	.fasync =	sock_fasync,
 163	.sendpage =	sock_sendpage,
 164	.splice_write = generic_splice_sendpage,
 165	.splice_read =	sock_splice_read,
 166	.show_fdinfo =	sock_show_fdinfo,
 167};
 168
 169static const char * const pf_family_names[] = {
 170	[PF_UNSPEC]	= "PF_UNSPEC",
 171	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
 172	[PF_INET]	= "PF_INET",
 173	[PF_AX25]	= "PF_AX25",
 174	[PF_IPX]	= "PF_IPX",
 175	[PF_APPLETALK]	= "PF_APPLETALK",
 176	[PF_NETROM]	= "PF_NETROM",
 177	[PF_BRIDGE]	= "PF_BRIDGE",
 178	[PF_ATMPVC]	= "PF_ATMPVC",
 179	[PF_X25]	= "PF_X25",
 180	[PF_INET6]	= "PF_INET6",
 181	[PF_ROSE]	= "PF_ROSE",
 182	[PF_DECnet]	= "PF_DECnet",
 183	[PF_NETBEUI]	= "PF_NETBEUI",
 184	[PF_SECURITY]	= "PF_SECURITY",
 185	[PF_KEY]	= "PF_KEY",
 186	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
 187	[PF_PACKET]	= "PF_PACKET",
 188	[PF_ASH]	= "PF_ASH",
 189	[PF_ECONET]	= "PF_ECONET",
 190	[PF_ATMSVC]	= "PF_ATMSVC",
 191	[PF_RDS]	= "PF_RDS",
 192	[PF_SNA]	= "PF_SNA",
 193	[PF_IRDA]	= "PF_IRDA",
 194	[PF_PPPOX]	= "PF_PPPOX",
 195	[PF_WANPIPE]	= "PF_WANPIPE",
 196	[PF_LLC]	= "PF_LLC",
 197	[PF_IB]		= "PF_IB",
 198	[PF_MPLS]	= "PF_MPLS",
 199	[PF_CAN]	= "PF_CAN",
 200	[PF_TIPC]	= "PF_TIPC",
 201	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
 202	[PF_IUCV]	= "PF_IUCV",
 203	[PF_RXRPC]	= "PF_RXRPC",
 204	[PF_ISDN]	= "PF_ISDN",
 205	[PF_PHONET]	= "PF_PHONET",
 206	[PF_IEEE802154]	= "PF_IEEE802154",
 207	[PF_CAIF]	= "PF_CAIF",
 208	[PF_ALG]	= "PF_ALG",
 209	[PF_NFC]	= "PF_NFC",
 210	[PF_VSOCK]	= "PF_VSOCK",
 211	[PF_KCM]	= "PF_KCM",
 212	[PF_QIPCRTR]	= "PF_QIPCRTR",
 213	[PF_SMC]	= "PF_SMC",
 214	[PF_XDP]	= "PF_XDP",
 215};
 216
 217/*
 218 *	The protocol list. Each protocol is registered in here.
 219 */
 220
 221static DEFINE_SPINLOCK(net_family_lock);
 222static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 223
 224/*
 
 
 
 
 
 
 225 * Support routines.
 226 * Move socket addresses back and forth across the kernel/user
 227 * divide and look after the messy bits.
 228 */
 229
 230/**
 231 *	move_addr_to_kernel	-	copy a socket address into kernel space
 232 *	@uaddr: Address in user space
 233 *	@kaddr: Address in kernel space
 234 *	@ulen: Length in user space
 235 *
 236 *	The address is copied into kernel space. If the provided address is
 237 *	too long an error code of -EINVAL is returned. If the copy gives
 238 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 239 */
 240
 241int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 242{
 243	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 244		return -EINVAL;
 245	if (ulen == 0)
 246		return 0;
 247	if (copy_from_user(kaddr, uaddr, ulen))
 248		return -EFAULT;
 249	return audit_sockaddr(ulen, kaddr);
 250}
 251
 252/**
 253 *	move_addr_to_user	-	copy an address to user space
 254 *	@kaddr: kernel space address
 255 *	@klen: length of address in kernel
 256 *	@uaddr: user space address
 257 *	@ulen: pointer to user length field
 258 *
 259 *	The value pointed to by ulen on entry is the buffer length available.
 260 *	This is overwritten with the buffer space used. -EINVAL is returned
 261 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 262 *	is returned if either the buffer or the length field are not
 263 *	accessible.
 264 *	After copying the data up to the limit the user specifies, the true
 265 *	length of the data is written over the length limit the user
 266 *	specified. Zero is returned for a success.
 267 */
 268
 269static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 270			     void __user *uaddr, int __user *ulen)
 271{
 272	int err;
 273	int len;
 274
 275	BUG_ON(klen > sizeof(struct sockaddr_storage));
 276	err = get_user(len, ulen);
 277	if (err)
 278		return err;
 279	if (len > klen)
 280		len = klen;
 281	if (len < 0)
 282		return -EINVAL;
 283	if (len) {
 284		if (audit_sockaddr(klen, kaddr))
 285			return -ENOMEM;
 286		if (copy_to_user(uaddr, kaddr, len))
 287			return -EFAULT;
 288	}
 289	/*
 290	 *      "fromlen shall refer to the value before truncation.."
 291	 *                      1003.1g
 292	 */
 293	return __put_user(klen, ulen);
 294}
 295
 296static struct kmem_cache *sock_inode_cachep __ro_after_init;
 297
 298static struct inode *sock_alloc_inode(struct super_block *sb)
 299{
 300	struct socket_alloc *ei;
 
 301
 302	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 303	if (!ei)
 304		return NULL;
 305	init_waitqueue_head(&ei->socket.wq.wait);
 306	ei->socket.wq.fasync_list = NULL;
 307	ei->socket.wq.flags = 0;
 
 
 
 
 
 308
 309	ei->socket.state = SS_UNCONNECTED;
 310	ei->socket.flags = 0;
 311	ei->socket.ops = NULL;
 312	ei->socket.sk = NULL;
 313	ei->socket.file = NULL;
 314
 315	return &ei->vfs_inode;
 316}
 317
 318static void sock_free_inode(struct inode *inode)
 319{
 320	struct socket_alloc *ei;
 
 321
 322	ei = container_of(inode, struct socket_alloc, vfs_inode);
 
 
 323	kmem_cache_free(sock_inode_cachep, ei);
 324}
 325
 326static void init_once(void *foo)
 327{
 328	struct socket_alloc *ei = (struct socket_alloc *)foo;
 329
 330	inode_init_once(&ei->vfs_inode);
 331}
 332
 333static void init_inodecache(void)
 334{
 335	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 336					      sizeof(struct socket_alloc),
 337					      0,
 338					      (SLAB_HWCACHE_ALIGN |
 339					       SLAB_RECLAIM_ACCOUNT |
 340					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 341					      init_once);
 342	BUG_ON(sock_inode_cachep == NULL);
 
 
 343}
 344
 345static const struct super_operations sockfs_ops = {
 346	.alloc_inode	= sock_alloc_inode,
 347	.free_inode	= sock_free_inode,
 348	.statfs		= simple_statfs,
 349};
 350
 351/*
 352 * sockfs_dname() is called from d_path().
 353 */
 354static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 355{
 356	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 357				d_inode(dentry)->i_ino);
 358}
 359
 360static const struct dentry_operations sockfs_dentry_operations = {
 361	.d_dname  = sockfs_dname,
 362};
 363
 364static int sockfs_xattr_get(const struct xattr_handler *handler,
 365			    struct dentry *dentry, struct inode *inode,
 366			    const char *suffix, void *value, size_t size)
 367{
 368	if (value) {
 369		if (dentry->d_name.len + 1 > size)
 370			return -ERANGE;
 371		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 372	}
 373	return dentry->d_name.len + 1;
 374}
 375
 376#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 377#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 378#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 379
 380static const struct xattr_handler sockfs_xattr_handler = {
 381	.name = XATTR_NAME_SOCKPROTONAME,
 382	.get = sockfs_xattr_get,
 383};
 384
 385static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 386				     struct user_namespace *mnt_userns,
 387				     struct dentry *dentry, struct inode *inode,
 388				     const char *suffix, const void *value,
 389				     size_t size, int flags)
 390{
 391	/* Handled by LSM. */
 392	return -EAGAIN;
 393}
 394
 395static const struct xattr_handler sockfs_security_xattr_handler = {
 396	.prefix = XATTR_SECURITY_PREFIX,
 397	.set = sockfs_security_xattr_set,
 398};
 399
 400static const struct xattr_handler *sockfs_xattr_handlers[] = {
 401	&sockfs_xattr_handler,
 402	&sockfs_security_xattr_handler,
 403	NULL
 404};
 405
 406static int sockfs_init_fs_context(struct fs_context *fc)
 407{
 408	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 409	if (!ctx)
 410		return -ENOMEM;
 411	ctx->ops = &sockfs_ops;
 412	ctx->dops = &sockfs_dentry_operations;
 413	ctx->xattr = sockfs_xattr_handlers;
 414	return 0;
 415}
 416
 417static struct vfsmount *sock_mnt __read_mostly;
 418
 419static struct file_system_type sock_fs_type = {
 420	.name =		"sockfs",
 421	.init_fs_context = sockfs_init_fs_context,
 422	.kill_sb =	kill_anon_super,
 423};
 424
 425/*
 426 *	Obtains the first available file descriptor and sets it up for use.
 427 *
 428 *	These functions create file structures and maps them to fd space
 429 *	of the current process. On success it returns file descriptor
 430 *	and file struct implicitly stored in sock->file.
 431 *	Note that another thread may close file descriptor before we return
 432 *	from this function. We use the fact that now we do not refer
 433 *	to socket after mapping. If one day we will need it, this
 434 *	function will increment ref. count on file by 1.
 435 *
 436 *	In any case returned fd MAY BE not valid!
 437 *	This race condition is unavoidable
 438 *	with shared fd spaces, we cannot solve it inside kernel,
 439 *	but we take care of internal coherence yet.
 440 */
 441
 442/**
 443 *	sock_alloc_file - Bind a &socket to a &file
 444 *	@sock: socket
 445 *	@flags: file status flags
 446 *	@dname: protocol name
 447 *
 448 *	Returns the &file bound with @sock, implicitly storing it
 449 *	in sock->file. If dname is %NULL, sets to "".
 450 *	On failure the return is a ERR pointer (see linux/err.h).
 451 *	This function uses GFP_KERNEL internally.
 452 */
 453
 454struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 455{
 
 
 456	struct file *file;
 
 457
 458	if (!dname)
 459		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 
 460
 461	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 462				O_RDWR | (flags & O_NONBLOCK),
 463				&socket_file_ops);
 464	if (IS_ERR(file)) {
 465		sock_release(sock);
 466		return file;
 
 
 
 
 
 
 
 
 
 
 
 
 467	}
 468
 469	sock->file = file;
 
 
 470	file->private_data = sock;
 471	stream_open(SOCK_INODE(sock), file);
 472	return file;
 
 473}
 474EXPORT_SYMBOL(sock_alloc_file);
 475
 476static int sock_map_fd(struct socket *sock, int flags)
 477{
 478	struct file *newfile;
 479	int fd = get_unused_fd_flags(flags);
 480	if (unlikely(fd < 0)) {
 481		sock_release(sock);
 482		return fd;
 483	}
 484
 485	newfile = sock_alloc_file(sock, flags, NULL);
 486	if (!IS_ERR(newfile)) {
 487		fd_install(fd, newfile);
 488		return fd;
 489	}
 490
 491	put_unused_fd(fd);
 492	return PTR_ERR(newfile);
 493}
 
 494
 495/**
 496 *	sock_from_file - Return the &socket bounded to @file.
 497 *	@file: file
 498 *
 499 *	On failure returns %NULL.
 500 */
 501
 502struct socket *sock_from_file(struct file *file)
 503{
 504	if (file->f_op == &socket_file_ops)
 505		return file->private_data;	/* set in sock_map_fd */
 506
 
 507	return NULL;
 508}
 509EXPORT_SYMBOL(sock_from_file);
 510
 511/**
 512 *	sockfd_lookup - Go from a file number to its socket slot
 513 *	@fd: file handle
 514 *	@err: pointer to an error code return
 515 *
 516 *	The file handle passed in is locked and the socket it is bound
 517 *	to is returned. If an error occurs the err pointer is overwritten
 518 *	with a negative errno code and NULL is returned. The function checks
 519 *	for both invalid handles and passing a handle which is not a socket.
 520 *
 521 *	On a success the socket object pointer is returned.
 522 */
 523
 524struct socket *sockfd_lookup(int fd, int *err)
 525{
 526	struct file *file;
 527	struct socket *sock;
 528
 529	file = fget(fd);
 530	if (!file) {
 531		*err = -EBADF;
 532		return NULL;
 533	}
 534
 535	sock = sock_from_file(file);
 536	if (!sock) {
 537		*err = -ENOTSOCK;
 538		fput(file);
 539	}
 540	return sock;
 541}
 542EXPORT_SYMBOL(sockfd_lookup);
 543
 544static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 545{
 546	struct fd f = fdget(fd);
 547	struct socket *sock;
 548
 549	*err = -EBADF;
 550	if (f.file) {
 551		sock = sock_from_file(f.file);
 552		if (likely(sock)) {
 553			*fput_needed = f.flags & FDPUT_FPUT;
 554			return sock;
 555		}
 556		*err = -ENOTSOCK;
 557		fdput(f);
 558	}
 559	return NULL;
 560}
 561
 562static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 563				size_t size)
 564{
 565	ssize_t len;
 566	ssize_t used = 0;
 567
 568	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 569	if (len < 0)
 570		return len;
 571	used += len;
 572	if (buffer) {
 573		if (size < used)
 574			return -ERANGE;
 575		buffer += len;
 576	}
 577
 578	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 579	used += len;
 580	if (buffer) {
 581		if (size < used)
 582			return -ERANGE;
 583		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 584		buffer += len;
 585	}
 586
 587	return used;
 588}
 589
 590static int sockfs_setattr(struct user_namespace *mnt_userns,
 591			  struct dentry *dentry, struct iattr *iattr)
 592{
 593	int err = simple_setattr(&init_user_ns, dentry, iattr);
 594
 595	if (!err && (iattr->ia_valid & ATTR_UID)) {
 596		struct socket *sock = SOCKET_I(d_inode(dentry));
 597
 598		if (sock->sk)
 599			sock->sk->sk_uid = iattr->ia_uid;
 600		else
 601			err = -ENOENT;
 602	}
 603
 604	return err;
 605}
 606
 607static const struct inode_operations sockfs_inode_ops = {
 608	.listxattr = sockfs_listxattr,
 609	.setattr = sockfs_setattr,
 610};
 611
 612/**
 613 *	sock_alloc - allocate a socket
 614 *
 615 *	Allocate a new inode and socket object. The two are bound together
 616 *	and initialised. The socket is then returned. If we are out of inodes
 617 *	NULL is returned. This functions uses GFP_KERNEL internally.
 618 */
 619
 620struct socket *sock_alloc(void)
 621{
 622	struct inode *inode;
 623	struct socket *sock;
 624
 625	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 626	if (!inode)
 627		return NULL;
 628
 629	sock = SOCKET_I(inode);
 630
 
 631	inode->i_ino = get_next_ino();
 632	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 633	inode->i_uid = current_fsuid();
 634	inode->i_gid = current_fsgid();
 635	inode->i_op = &sockfs_inode_ops;
 636
 
 637	return sock;
 638}
 639EXPORT_SYMBOL(sock_alloc);
 640
 641static void __sock_release(struct socket *sock, struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642{
 643	if (sock->ops) {
 644		struct module *owner = sock->ops->owner;
 645
 646		if (inode)
 647			inode_lock(inode);
 648		sock->ops->release(sock);
 649		sock->sk = NULL;
 650		if (inode)
 651			inode_unlock(inode);
 652		sock->ops = NULL;
 653		module_put(owner);
 654	}
 655
 656	if (sock->wq.fasync_list)
 657		pr_err("%s: fasync list not empty!\n", __func__);
 
 
 
 658
 
 659	if (!sock->file) {
 660		iput(SOCK_INODE(sock));
 661		return;
 662	}
 663	sock->file = NULL;
 664}
 
 665
 666/**
 667 *	sock_release - close a socket
 668 *	@sock: socket to close
 669 *
 670 *	The socket is released from the protocol stack if it has a release
 671 *	callback, and the inode is then released if the socket is bound to
 672 *	an inode not a file.
 673 */
 674void sock_release(struct socket *sock)
 675{
 676	__sock_release(sock, NULL);
 
 
 
 
 
 
 
 677}
 678EXPORT_SYMBOL(sock_release);
 679
 680void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 
 681{
 682	u8 flags = *tx_flags;
 683
 684	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 685		flags |= SKBTX_HW_TSTAMP;
 686
 687	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 688		flags |= SKBTX_SW_TSTAMP;
 689
 690	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 691		flags |= SKBTX_SCHED_TSTAMP;
 
 
 692
 693	*tx_flags = flags;
 694}
 695EXPORT_SYMBOL(__sock_tx_timestamp);
 696
 697INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 698					   size_t));
 699INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 700					    size_t));
 701static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 702{
 703	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 704				     inet_sendmsg, sock, msg,
 705				     msg_data_left(msg));
 706	BUG_ON(ret == -EIOCBQUEUED);
 707	return ret;
 708}
 709
 710/**
 711 *	sock_sendmsg - send a message through @sock
 712 *	@sock: socket
 713 *	@msg: message to send
 714 *
 715 *	Sends @msg through @sock, passing through LSM.
 716 *	Returns the number of bytes sent, or an error code.
 717 */
 718int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 719{
 720	int err = security_socket_sendmsg(sock, msg,
 721					  msg_data_left(msg));
 
 722
 723	return err ?: sock_sendmsg_nosec(sock, msg);
 
 
 
 
 
 724}
 725EXPORT_SYMBOL(sock_sendmsg);
 726
 727/**
 728 *	kernel_sendmsg - send a message through @sock (kernel-space)
 729 *	@sock: socket
 730 *	@msg: message header
 731 *	@vec: kernel vec
 732 *	@num: vec array length
 733 *	@size: total message data size
 734 *
 735 *	Builds the message data with @vec and sends it through @sock.
 736 *	Returns the number of bytes sent, or an error code.
 737 */
 738
 739int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 740		   struct kvec *vec, size_t num, size_t size)
 741{
 742	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 743	return sock_sendmsg(sock, msg);
 
 
 
 
 
 
 
 
 744}
 745EXPORT_SYMBOL(kernel_sendmsg);
 746
 747/**
 748 *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
 749 *	@sk: sock
 750 *	@msg: message header
 751 *	@vec: output s/g array
 752 *	@num: output s/g array length
 753 *	@size: total message data size
 754 *
 755 *	Builds the message data with @vec and sends it through @sock.
 756 *	Returns the number of bytes sent, or an error code.
 757 *	Caller must hold @sk.
 758 */
 759
 760int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 761			  struct kvec *vec, size_t num, size_t size)
 762{
 763	struct socket *sock = sk->sk_socket;
 764
 765	if (!sock->ops->sendmsg_locked)
 766		return sock_no_sendmsg_locked(sk, msg, size);
 767
 768	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 769
 770	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 771}
 772EXPORT_SYMBOL(kernel_sendmsg_locked);
 773
 774static bool skb_is_err_queue(const struct sk_buff *skb)
 775{
 776	/* pkt_type of skbs enqueued on the error queue are set to
 777	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 778	 * in recvmsg, since skbs received on a local socket will never
 779	 * have a pkt_type of PACKET_OUTGOING.
 780	 */
 781	return skb->pkt_type == PACKET_OUTGOING;
 782}
 783
 784/* On transmit, software and hardware timestamps are returned independently.
 785 * As the two skb clones share the hardware timestamp, which may be updated
 786 * before the software timestamp is received, a hardware TX timestamp may be
 787 * returned only if there is no software TX timestamp. Ignore false software
 788 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 790 * hardware timestamp.
 791 */
 792static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 793{
 794	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 795}
 
 796
 797static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 798{
 799	struct scm_ts_pktinfo ts_pktinfo;
 800	struct net_device *orig_dev;
 801
 802	if (!skb_mac_header_was_set(skb))
 803		return;
 804
 805	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 806
 807	rcu_read_lock();
 808	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 809	if (orig_dev)
 810		ts_pktinfo.if_index = orig_dev->ifindex;
 811	rcu_read_unlock();
 812
 813	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 814	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 815		 sizeof(ts_pktinfo), &ts_pktinfo);
 816}
 817
 818/*
 819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 820 */
 821void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 822	struct sk_buff *skb)
 823{
 824	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 825	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 826	struct scm_timestamping_internal tss;
 827
 828	int empty = 1, false_tstamp = 0;
 829	struct skb_shared_hwtstamps *shhwtstamps =
 830		skb_hwtstamps(skb);
 831
 832	/* Race occurred between timestamp enabling and packet
 833	   receiving.  Fill in the current time for now. */
 834	if (need_software_tstamp && skb->tstamp == 0) {
 835		__net_timestamp(skb);
 836		false_tstamp = 1;
 837	}
 838
 839	if (need_software_tstamp) {
 840		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 841			if (new_tstamp) {
 842				struct __kernel_sock_timeval tv;
 843
 844				skb_get_new_timestamp(skb, &tv);
 845				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 846					 sizeof(tv), &tv);
 847			} else {
 848				struct __kernel_old_timeval tv;
 849
 850				skb_get_timestamp(skb, &tv);
 851				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 852					 sizeof(tv), &tv);
 853			}
 854		} else {
 855			if (new_tstamp) {
 856				struct __kernel_timespec ts;
 857
 858				skb_get_new_timestampns(skb, &ts);
 859				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 860					 sizeof(ts), &ts);
 861			} else {
 862				struct __kernel_old_timespec ts;
 863
 864				skb_get_timestampns(skb, &ts);
 865				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 866					 sizeof(ts), &ts);
 867			}
 868		}
 869	}
 870
 871	memset(&tss, 0, sizeof(tss));
 872	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 873	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 874		empty = 0;
 875	if (shhwtstamps &&
 876	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 877	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
 878		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
 879			ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
 880
 881		if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
 882					     tss.ts + 2)) {
 883			empty = 0;
 884
 885			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 886			    !skb_is_err_queue(skb))
 887				put_ts_pktinfo(msg, skb);
 888		}
 
 889	}
 890	if (!empty) {
 891		if (sock_flag(sk, SOCK_TSTAMP_NEW))
 892			put_cmsg_scm_timestamping64(msg, &tss);
 893		else
 894			put_cmsg_scm_timestamping(msg, &tss);
 895
 896		if (skb_is_err_queue(skb) && skb->len &&
 897		    SKB_EXT_ERR(skb)->opt_stats)
 898			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 899				 skb->len, skb->data);
 900	}
 
 
 
 901}
 902EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 903
 904void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 905	struct sk_buff *skb)
 906{
 907	int ack;
 908
 909	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 910		return;
 911	if (!skb->wifi_acked_valid)
 912		return;
 913
 914	ack = skb->wifi_acked;
 915
 916	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 917}
 918EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 919
 920static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 921				   struct sk_buff *skb)
 922{
 923	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 924		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 925			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 926}
 927
 928void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 929	struct sk_buff *skb)
 930{
 931	sock_recv_timestamp(msg, sk, skb);
 932	sock_recv_drops(msg, sk, skb);
 933}
 934EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 935
 936INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 937					   size_t, int));
 938INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 939					    size_t, int));
 940static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 941				     int flags)
 942{
 943	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 944				  inet_recvmsg, sock, msg, msg_data_left(msg),
 945				  flags);
 
 
 
 
 946}
 947
 948/**
 949 *	sock_recvmsg - receive a message from @sock
 950 *	@sock: socket
 951 *	@msg: message to receive
 952 *	@flags: message flags
 953 *
 954 *	Receives @msg from @sock, passing through LSM. Returns the total number
 955 *	of bytes received, or an error.
 956 */
 957int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 958{
 959	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 960
 961	return err ?: sock_recvmsg_nosec(sock, msg, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962}
 963EXPORT_SYMBOL(sock_recvmsg);
 964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965/**
 966 *	kernel_recvmsg - Receive a message from a socket (kernel space)
 967 *	@sock: The socket to receive the message from
 968 *	@msg: Received message
 969 *	@vec: Input s/g array for message data
 970 *	@num: Size of input s/g array
 971 *	@size: Number of bytes to read
 972 *	@flags: Message flags (MSG_DONTWAIT, etc...)
 973 *
 974 *	On return the msg structure contains the scatter/gather array passed in the
 975 *	vec argument. The array is modified so that it consists of the unfilled
 976 *	portion of the original array.
 977 *
 978 *	The returned value is the total number of bytes received, or an error.
 979 */
 980
 981int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 982		   struct kvec *vec, size_t num, size_t size, int flags)
 983{
 984	msg->msg_control_is_user = false;
 985	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 986	return sock_recvmsg(sock, msg, flags);
 
 
 
 
 
 
 
 
 
 987}
 988EXPORT_SYMBOL(kernel_recvmsg);
 989
 
 
 
 
 
 990static ssize_t sock_sendpage(struct file *file, struct page *page,
 991			     int offset, size_t size, loff_t *ppos, int more)
 992{
 993	struct socket *sock;
 994	int flags;
 995
 996	sock = file->private_data;
 997
 998	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 999	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000	flags |= more;
1001
1002	return kernel_sendpage(sock, page, offset, size, flags);
1003}
1004
1005static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006				struct pipe_inode_info *pipe, size_t len,
1007				unsigned int flags)
1008{
1009	struct socket *sock = file->private_data;
1010
1011	if (unlikely(!sock->ops->splice_read))
1012		return generic_file_splice_read(file, ppos, pipe, len, flags);
 
 
1013
1014	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015}
1016
1017static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018{
1019	struct file *file = iocb->ki_filp;
1020	struct socket *sock = file->private_data;
1021	struct msghdr msg = {.msg_iter = *to,
1022			     .msg_iocb = iocb};
1023	ssize_t res;
 
 
 
 
 
 
 
 
 
 
1024
1025	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026		msg.msg_flags = MSG_DONTWAIT;
 
 
 
 
 
1027
1028	if (iocb->ki_pos != 0)
1029		return -ESPIPE;
1030
1031	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1032		return 0;
1033
1034	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035	*to = msg.msg_iter;
1036	return res;
 
 
1037}
1038
1039static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
 
1040{
1041	struct file *file = iocb->ki_filp;
1042	struct socket *sock = file->private_data;
1043	struct msghdr msg = {.msg_iter = *from,
1044			     .msg_iocb = iocb};
1045	ssize_t res;
1046
1047	if (iocb->ki_pos != 0)
1048		return -ESPIPE;
1049
1050	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051		msg.msg_flags = MSG_DONTWAIT;
1052
 
 
 
 
 
 
 
1053	if (sock->type == SOCK_SEQPACKET)
1054		msg.msg_flags |= MSG_EOR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055
1056	res = sock_sendmsg(sock, &msg);
1057	*from = msg.msg_iter;
1058	return res;
1059}
1060
1061/*
1062 * Atomic setting of ioctl hooks to avoid race
1063 * with module unload.
1064 */
1065
1066static DEFINE_MUTEX(br_ioctl_mutex);
1067static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068
1069void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1070{
1071	mutex_lock(&br_ioctl_mutex);
1072	br_ioctl_hook = hook;
1073	mutex_unlock(&br_ioctl_mutex);
1074}
1075EXPORT_SYMBOL(brioctl_set);
1076
1077static DEFINE_MUTEX(vlan_ioctl_mutex);
1078static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079
1080void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081{
1082	mutex_lock(&vlan_ioctl_mutex);
1083	vlan_ioctl_hook = hook;
1084	mutex_unlock(&vlan_ioctl_mutex);
1085}
1086EXPORT_SYMBOL(vlan_ioctl_set);
1087
 
 
 
 
 
 
 
 
 
 
 
1088static long sock_do_ioctl(struct net *net, struct socket *sock,
1089			  unsigned int cmd, unsigned long arg)
1090{
1091	int err;
1092	void __user *argp = (void __user *)arg;
1093
1094	err = sock->ops->ioctl(sock, cmd, arg);
1095
1096	/*
1097	 * If this ioctl is unknown try to hand it down
1098	 * to the NIC driver.
1099	 */
1100	if (err != -ENOIOCTLCMD)
1101		return err;
1102
1103	if (cmd == SIOCGIFCONF) {
1104		struct ifconf ifc;
1105		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1106			return -EFAULT;
1107		rtnl_lock();
1108		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1109		rtnl_unlock();
1110		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1111			err = -EFAULT;
1112	} else if (is_socket_ioctl_cmd(cmd)) {
1113		struct ifreq ifr;
1114		bool need_copyout;
1115		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1116			return -EFAULT;
1117		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1118		if (!err && need_copyout)
1119			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1120				return -EFAULT;
1121	} else {
1122		err = -ENOTTY;
1123	}
1124	return err;
1125}
1126
1127/*
1128 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1129 *	what to do with it - that's up to the protocol still.
1130 */
1131
1132static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1133{
1134	struct socket *sock;
1135	struct sock *sk;
1136	void __user *argp = (void __user *)arg;
1137	int pid, err;
1138	struct net *net;
1139
1140	sock = file->private_data;
1141	sk = sock->sk;
1142	net = sock_net(sk);
1143	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1144		struct ifreq ifr;
1145		bool need_copyout;
1146		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1147			return -EFAULT;
1148		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1149		if (!err && need_copyout)
1150			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1151				return -EFAULT;
1152	} else
1153#ifdef CONFIG_WEXT_CORE
1154	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1155		err = wext_handle_ioctl(net, cmd, argp);
1156	} else
1157#endif
1158		switch (cmd) {
1159		case FIOSETOWN:
1160		case SIOCSPGRP:
1161			err = -EFAULT;
1162			if (get_user(pid, (int __user *)argp))
1163				break;
1164			err = f_setown(sock->file, pid, 1);
1165			break;
1166		case FIOGETOWN:
1167		case SIOCGPGRP:
1168			err = put_user(f_getown(sock->file),
1169				       (int __user *)argp);
1170			break;
1171		case SIOCGIFBR:
1172		case SIOCSIFBR:
1173		case SIOCBRADDBR:
1174		case SIOCBRDELBR:
1175			err = -ENOPKG;
1176			if (!br_ioctl_hook)
1177				request_module("bridge");
1178
1179			mutex_lock(&br_ioctl_mutex);
1180			if (br_ioctl_hook)
1181				err = br_ioctl_hook(net, cmd, argp);
1182			mutex_unlock(&br_ioctl_mutex);
1183			break;
1184		case SIOCGIFVLAN:
1185		case SIOCSIFVLAN:
1186			err = -ENOPKG;
1187			if (!vlan_ioctl_hook)
1188				request_module("8021q");
1189
1190			mutex_lock(&vlan_ioctl_mutex);
1191			if (vlan_ioctl_hook)
1192				err = vlan_ioctl_hook(net, argp);
1193			mutex_unlock(&vlan_ioctl_mutex);
1194			break;
1195		case SIOCGSKNS:
1196			err = -EPERM;
1197			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1198				break;
 
1199
1200			err = open_related_ns(&net->ns, get_net_ns);
1201			break;
1202		case SIOCGSTAMP_OLD:
1203		case SIOCGSTAMPNS_OLD:
1204			if (!sock->ops->gettstamp) {
1205				err = -ENOIOCTLCMD;
1206				break;
1207			}
1208			err = sock->ops->gettstamp(sock, argp,
1209						   cmd == SIOCGSTAMP_OLD,
1210						   !IS_ENABLED(CONFIG_64BIT));
1211			break;
1212		case SIOCGSTAMP_NEW:
1213		case SIOCGSTAMPNS_NEW:
1214			if (!sock->ops->gettstamp) {
1215				err = -ENOIOCTLCMD;
1216				break;
1217			}
1218			err = sock->ops->gettstamp(sock, argp,
1219						   cmd == SIOCGSTAMP_NEW,
1220						   false);
1221			break;
1222		default:
1223			err = sock_do_ioctl(net, sock, cmd, arg);
1224			break;
1225		}
1226	return err;
1227}
1228
1229/**
1230 *	sock_create_lite - creates a socket
1231 *	@family: protocol family (AF_INET, ...)
1232 *	@type: communication type (SOCK_STREAM, ...)
1233 *	@protocol: protocol (0, ...)
1234 *	@res: new socket
1235 *
1236 *	Creates a new socket and assigns it to @res, passing through LSM.
1237 *	The new socket initialization is not complete, see kernel_accept().
1238 *	Returns 0 or an error. On failure @res is set to %NULL.
1239 *	This function internally uses GFP_KERNEL.
1240 */
1241
1242int sock_create_lite(int family, int type, int protocol, struct socket **res)
1243{
1244	int err;
1245	struct socket *sock = NULL;
1246
1247	err = security_socket_create(family, type, protocol, 1);
1248	if (err)
1249		goto out;
1250
1251	sock = sock_alloc();
1252	if (!sock) {
1253		err = -ENOMEM;
1254		goto out;
1255	}
1256
1257	sock->type = type;
1258	err = security_socket_post_create(sock, family, type, protocol, 1);
1259	if (err)
1260		goto out_release;
1261
1262out:
1263	*res = sock;
1264	return err;
1265out_release:
1266	sock_release(sock);
1267	sock = NULL;
1268	goto out;
1269}
1270EXPORT_SYMBOL(sock_create_lite);
1271
1272/* No kernel lock held - perfect */
1273static __poll_t sock_poll(struct file *file, poll_table *wait)
1274{
1275	struct socket *sock = file->private_data;
1276	__poll_t events = poll_requested_events(wait), flag = 0;
1277
1278	if (!sock->ops->poll)
1279		return 0;
1280
1281	if (sk_can_busy_loop(sock->sk)) {
1282		/* poll once if requested by the syscall */
1283		if (events & POLL_BUSY_LOOP)
1284			sk_busy_loop(sock->sk, 1);
1285
1286		/* if this socket can poll_ll, tell the system call */
1287		flag = POLL_BUSY_LOOP;
1288	}
1289
1290	return sock->ops->poll(file, sock, wait) | flag;
 
 
 
 
1291}
1292
1293static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1294{
1295	struct socket *sock = file->private_data;
1296
1297	return sock->ops->mmap(file, sock, vma);
1298}
1299
1300static int sock_close(struct inode *inode, struct file *filp)
1301{
1302	__sock_release(SOCKET_I(inode), inode);
 
 
 
 
 
 
 
 
 
1303	return 0;
1304}
1305
1306/*
1307 *	Update the socket async list
1308 *
1309 *	Fasync_list locking strategy.
1310 *
1311 *	1. fasync_list is modified only under process context socket lock
1312 *	   i.e. under semaphore.
1313 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1314 *	   or under socket lock
1315 */
1316
1317static int sock_fasync(int fd, struct file *filp, int on)
1318{
1319	struct socket *sock = filp->private_data;
1320	struct sock *sk = sock->sk;
1321	struct socket_wq *wq = &sock->wq;
1322
1323	if (sk == NULL)
1324		return -EINVAL;
1325
1326	lock_sock(sk);
 
1327	fasync_helper(fd, filp, on, &wq->fasync_list);
1328
1329	if (!wq->fasync_list)
1330		sock_reset_flag(sk, SOCK_FASYNC);
1331	else
1332		sock_set_flag(sk, SOCK_FASYNC);
1333
1334	release_sock(sk);
1335	return 0;
1336}
1337
1338/* This function may be called only under rcu_lock */
1339
1340int sock_wake_async(struct socket_wq *wq, int how, int band)
1341{
1342	if (!wq || !wq->fasync_list)
1343		return -1;
1344
 
 
 
 
 
 
 
 
1345	switch (how) {
1346	case SOCK_WAKE_WAITD:
1347		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1348			break;
1349		goto call_kill;
1350	case SOCK_WAKE_SPACE:
1351		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1352			break;
1353		fallthrough;
1354	case SOCK_WAKE_IO:
1355call_kill:
1356		kill_fasync(&wq->fasync_list, SIGIO, band);
1357		break;
1358	case SOCK_WAKE_URG:
1359		kill_fasync(&wq->fasync_list, SIGURG, band);
1360	}
1361
1362	return 0;
1363}
1364EXPORT_SYMBOL(sock_wake_async);
1365
1366/**
1367 *	__sock_create - creates a socket
1368 *	@net: net namespace
1369 *	@family: protocol family (AF_INET, ...)
1370 *	@type: communication type (SOCK_STREAM, ...)
1371 *	@protocol: protocol (0, ...)
1372 *	@res: new socket
1373 *	@kern: boolean for kernel space sockets
1374 *
1375 *	Creates a new socket and assigns it to @res, passing through LSM.
1376 *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1377 *	be set to true if the socket resides in kernel space.
1378 *	This function internally uses GFP_KERNEL.
1379 */
1380
1381int __sock_create(struct net *net, int family, int type, int protocol,
1382			 struct socket **res, int kern)
1383{
1384	int err;
1385	struct socket *sock;
1386	const struct net_proto_family *pf;
1387
1388	/*
1389	 *      Check protocol is in range
1390	 */
1391	if (family < 0 || family >= NPROTO)
1392		return -EAFNOSUPPORT;
1393	if (type < 0 || type >= SOCK_MAX)
1394		return -EINVAL;
1395
1396	/* Compatibility.
1397
1398	   This uglymoron is moved from INET layer to here to avoid
1399	   deadlock in module load.
1400	 */
1401	if (family == PF_INET && type == SOCK_PACKET) {
1402		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1403			     current->comm);
 
 
 
 
1404		family = PF_PACKET;
1405	}
1406
1407	err = security_socket_create(family, type, protocol, kern);
1408	if (err)
1409		return err;
1410
1411	/*
1412	 *	Allocate the socket and allow the family to set things up. if
1413	 *	the protocol is 0, the family is instructed to select an appropriate
1414	 *	default.
1415	 */
1416	sock = sock_alloc();
1417	if (!sock) {
1418		net_warn_ratelimited("socket: no more sockets\n");
1419		return -ENFILE;	/* Not exactly a match, but its the
1420				   closest posix thing */
1421	}
1422
1423	sock->type = type;
1424
1425#ifdef CONFIG_MODULES
1426	/* Attempt to load a protocol module if the find failed.
1427	 *
1428	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1429	 * requested real, full-featured networking support upon configuration.
1430	 * Otherwise module support will break!
1431	 */
1432	if (rcu_access_pointer(net_families[family]) == NULL)
1433		request_module("net-pf-%d", family);
1434#endif
1435
1436	rcu_read_lock();
1437	pf = rcu_dereference(net_families[family]);
1438	err = -EAFNOSUPPORT;
1439	if (!pf)
1440		goto out_release;
1441
1442	/*
1443	 * We will call the ->create function, that possibly is in a loadable
1444	 * module, so we have to bump that loadable module refcnt first.
1445	 */
1446	if (!try_module_get(pf->owner))
1447		goto out_release;
1448
1449	/* Now protected by module ref count */
1450	rcu_read_unlock();
1451
1452	err = pf->create(net, sock, protocol, kern);
1453	if (err < 0)
1454		goto out_module_put;
1455
1456	/*
1457	 * Now to bump the refcnt of the [loadable] module that owns this
1458	 * socket at sock_release time we decrement its refcnt.
1459	 */
1460	if (!try_module_get(sock->ops->owner))
1461		goto out_module_busy;
1462
1463	/*
1464	 * Now that we're done with the ->create function, the [loadable]
1465	 * module can have its refcnt decremented
1466	 */
1467	module_put(pf->owner);
1468	err = security_socket_post_create(sock, family, type, protocol, kern);
1469	if (err)
1470		goto out_sock_release;
1471	*res = sock;
1472
1473	return 0;
1474
1475out_module_busy:
1476	err = -EAFNOSUPPORT;
1477out_module_put:
1478	sock->ops = NULL;
1479	module_put(pf->owner);
1480out_sock_release:
1481	sock_release(sock);
1482	return err;
1483
1484out_release:
1485	rcu_read_unlock();
1486	goto out_sock_release;
1487}
1488EXPORT_SYMBOL(__sock_create);
1489
1490/**
1491 *	sock_create - creates a socket
1492 *	@family: protocol family (AF_INET, ...)
1493 *	@type: communication type (SOCK_STREAM, ...)
1494 *	@protocol: protocol (0, ...)
1495 *	@res: new socket
1496 *
1497 *	A wrapper around __sock_create().
1498 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1499 */
1500
1501int sock_create(int family, int type, int protocol, struct socket **res)
1502{
1503	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1504}
1505EXPORT_SYMBOL(sock_create);
1506
1507/**
1508 *	sock_create_kern - creates a socket (kernel space)
1509 *	@net: net namespace
1510 *	@family: protocol family (AF_INET, ...)
1511 *	@type: communication type (SOCK_STREAM, ...)
1512 *	@protocol: protocol (0, ...)
1513 *	@res: new socket
1514 *
1515 *	A wrapper around __sock_create().
1516 *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1517 */
1518
1519int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1520{
1521	return __sock_create(net, family, type, protocol, res, 1);
1522}
1523EXPORT_SYMBOL(sock_create_kern);
1524
1525int __sys_socket(int family, int type, int protocol)
1526{
1527	int retval;
1528	struct socket *sock;
1529	int flags;
1530
1531	/* Check the SOCK_* constants for consistency.  */
1532	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1533	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1534	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1535	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1536
1537	flags = type & ~SOCK_TYPE_MASK;
1538	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1539		return -EINVAL;
1540	type &= SOCK_TYPE_MASK;
1541
1542	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1543		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1544
1545	retval = sock_create(family, type, protocol, &sock);
1546	if (retval < 0)
1547		return retval;
1548
1549	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1550}
 
1551
1552SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1553{
1554	return __sys_socket(family, type, protocol);
 
 
 
 
1555}
1556
1557/*
1558 *	Create a pair of connected sockets.
1559 */
1560
1561int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
 
1562{
1563	struct socket *sock1, *sock2;
1564	int fd1, fd2, err;
1565	struct file *newfile1, *newfile2;
1566	int flags;
1567
1568	flags = type & ~SOCK_TYPE_MASK;
1569	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570		return -EINVAL;
1571	type &= SOCK_TYPE_MASK;
1572
1573	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1574		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1575
1576	/*
1577	 * reserve descriptors and make sure we won't fail
1578	 * to return them to userland.
1579	 */
1580	fd1 = get_unused_fd_flags(flags);
1581	if (unlikely(fd1 < 0))
1582		return fd1;
1583
1584	fd2 = get_unused_fd_flags(flags);
1585	if (unlikely(fd2 < 0)) {
1586		put_unused_fd(fd1);
1587		return fd2;
1588	}
1589
1590	err = put_user(fd1, &usockvec[0]);
1591	if (err)
1592		goto out;
1593
1594	err = put_user(fd2, &usockvec[1]);
1595	if (err)
1596		goto out;
1597
1598	/*
1599	 * Obtain the first socket and check if the underlying protocol
1600	 * supports the socketpair call.
1601	 */
1602
1603	err = sock_create(family, type, protocol, &sock1);
1604	if (unlikely(err < 0))
1605		goto out;
1606
1607	err = sock_create(family, type, protocol, &sock2);
1608	if (unlikely(err < 0)) {
1609		sock_release(sock1);
1610		goto out;
1611	}
1612
1613	err = security_socket_socketpair(sock1, sock2);
1614	if (unlikely(err)) {
1615		sock_release(sock2);
1616		sock_release(sock1);
1617		goto out;
1618	}
1619
1620	err = sock1->ops->socketpair(sock1, sock2);
1621	if (unlikely(err < 0)) {
1622		sock_release(sock2);
1623		sock_release(sock1);
1624		goto out;
1625	}
1626
1627	newfile1 = sock_alloc_file(sock1, flags, NULL);
1628	if (IS_ERR(newfile1)) {
1629		err = PTR_ERR(newfile1);
1630		sock_release(sock2);
1631		goto out;
1632	}
1633
1634	newfile2 = sock_alloc_file(sock2, flags, NULL);
1635	if (IS_ERR(newfile2)) {
1636		err = PTR_ERR(newfile2);
1637		fput(newfile1);
 
 
1638		goto out;
1639	}
1640
1641	audit_fd_pair(fd1, fd2);
1642
1643	fd_install(fd1, newfile1);
1644	fd_install(fd2, newfile2);
1645	return 0;
 
 
1646
1647out:
1648	put_unused_fd(fd2);
1649	put_unused_fd(fd1);
 
 
 
 
 
1650	return err;
1651}
1652
1653SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1654		int __user *, usockvec)
1655{
1656	return __sys_socketpair(family, type, protocol, usockvec);
 
 
1657}
1658
1659/*
1660 *	Bind a name to a socket. Nothing much to do here since it's
1661 *	the protocol's responsibility to handle the local address.
1662 *
1663 *	We move the socket address to kernel space before we call
1664 *	the protocol layer (having also checked the address is ok).
1665 */
1666
1667int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1668{
1669	struct socket *sock;
1670	struct sockaddr_storage address;
1671	int err, fput_needed;
1672
1673	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674	if (sock) {
1675		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1676		if (!err) {
1677			err = security_socket_bind(sock,
1678						   (struct sockaddr *)&address,
1679						   addrlen);
1680			if (!err)
1681				err = sock->ops->bind(sock,
1682						      (struct sockaddr *)
1683						      &address, addrlen);
1684		}
1685		fput_light(sock->file, fput_needed);
1686	}
1687	return err;
1688}
1689
1690SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1691{
1692	return __sys_bind(fd, umyaddr, addrlen);
1693}
1694
1695/*
1696 *	Perform a listen. Basically, we allow the protocol to do anything
1697 *	necessary for a listen, and if that works, we mark the socket as
1698 *	ready for listening.
1699 */
1700
1701int __sys_listen(int fd, int backlog)
1702{
1703	struct socket *sock;
1704	int err, fput_needed;
1705	int somaxconn;
1706
1707	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708	if (sock) {
1709		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1710		if ((unsigned int)backlog > somaxconn)
1711			backlog = somaxconn;
1712
1713		err = security_socket_listen(sock, backlog);
1714		if (!err)
1715			err = sock->ops->listen(sock, backlog);
1716
1717		fput_light(sock->file, fput_needed);
1718	}
1719	return err;
1720}
1721
1722SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1723{
1724	return __sys_listen(fd, backlog);
1725}
 
 
 
 
 
 
 
1726
1727int __sys_accept4_file(struct file *file, unsigned file_flags,
1728		       struct sockaddr __user *upeer_sockaddr,
1729		       int __user *upeer_addrlen, int flags,
1730		       unsigned long nofile)
1731{
1732	struct socket *sock, *newsock;
1733	struct file *newfile;
1734	int err, len, newfd;
1735	struct sockaddr_storage address;
1736
1737	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1738		return -EINVAL;
1739
1740	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1741		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1742
1743	sock = sock_from_file(file);
1744	if (!sock) {
1745		err = -ENOTSOCK;
1746		goto out;
1747	}
1748
1749	err = -ENFILE;
1750	newsock = sock_alloc();
1751	if (!newsock)
1752		goto out;
1753
1754	newsock->type = sock->type;
1755	newsock->ops = sock->ops;
1756
1757	/*
1758	 * We don't need try_module_get here, as the listening socket (sock)
1759	 * has the protocol module (sock->ops->owner) held.
1760	 */
1761	__module_get(newsock->ops->owner);
1762
1763	newfd = __get_unused_fd_flags(flags, nofile);
1764	if (unlikely(newfd < 0)) {
1765		err = newfd;
1766		sock_release(newsock);
1767		goto out;
1768	}
1769	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1770	if (IS_ERR(newfile)) {
1771		err = PTR_ERR(newfile);
1772		put_unused_fd(newfd);
1773		goto out;
1774	}
1775
1776	err = security_socket_accept(sock, newsock);
1777	if (err)
1778		goto out_fd;
1779
1780	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1781					false);
1782	if (err < 0)
1783		goto out_fd;
1784
1785	if (upeer_sockaddr) {
1786		len = newsock->ops->getname(newsock,
1787					(struct sockaddr *)&address, 2);
1788		if (len < 0) {
1789			err = -ECONNABORTED;
1790			goto out_fd;
1791		}
1792		err = move_addr_to_user(&address,
1793					len, upeer_sockaddr, upeer_addrlen);
1794		if (err < 0)
1795			goto out_fd;
1796	}
1797
1798	/* File flags are not inherited via accept() unlike another OSes. */
1799
1800	fd_install(newfd, newfile);
1801	err = newfd;
 
 
 
1802out:
1803	return err;
1804out_fd:
1805	fput(newfile);
1806	put_unused_fd(newfd);
1807	goto out;
1808
1809}
1810
1811/*
1812 *	For accept, we attempt to create a new socket, set up the link
1813 *	with the client, wake up the client, then return the new
1814 *	connected fd. We collect the address of the connector in kernel
1815 *	space and move it to user at the very end. This is unclean because
1816 *	we open the socket then return an error.
1817 *
1818 *	1003.1g adds the ability to recvmsg() to query connection pending
1819 *	status to recvmsg. We need to add that support in a way thats
1820 *	clean when we restructure accept also.
1821 */
1822
1823int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1824		  int __user *upeer_addrlen, int flags)
1825{
1826	int ret = -EBADF;
1827	struct fd f;
1828
1829	f = fdget(fd);
1830	if (f.file) {
1831		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1832						upeer_addrlen, flags,
1833						rlimit(RLIMIT_NOFILE));
1834		fdput(f);
1835	}
1836
1837	return ret;
1838}
1839
1840SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1841		int __user *, upeer_addrlen, int, flags)
1842{
1843	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1844}
1845
1846SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1847		int __user *, upeer_addrlen)
1848{
1849	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1850}
1851
1852/*
1853 *	Attempt to connect to a socket with the server address.  The address
1854 *	is in user space so we verify it is OK and move it to kernel space.
1855 *
1856 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1857 *	break bindings
1858 *
1859 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1860 *	other SEQPACKET protocols that take time to connect() as it doesn't
1861 *	include the -EINPROGRESS status for such sockets.
1862 */
1863
1864int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1865		       int addrlen, int file_flags)
1866{
1867	struct socket *sock;
1868	int err;
 
1869
1870	sock = sock_from_file(file);
1871	if (!sock) {
1872		err = -ENOTSOCK;
1873		goto out;
1874	}
 
 
1875
1876	err =
1877	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1878	if (err)
1879		goto out;
1880
1881	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1882				 sock->file->f_flags | file_flags);
 
 
1883out:
1884	return err;
1885}
1886
1887int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1888{
1889	int ret = -EBADF;
1890	struct fd f;
1891
1892	f = fdget(fd);
1893	if (f.file) {
1894		struct sockaddr_storage address;
1895
1896		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1897		if (!ret)
1898			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1899		fdput(f);
1900	}
1901
1902	return ret;
1903}
1904
1905SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1906		int, addrlen)
1907{
1908	return __sys_connect(fd, uservaddr, addrlen);
1909}
1910
1911/*
1912 *	Get the local address ('name') of a socket object. Move the obtained
1913 *	name to user space.
1914 */
1915
1916int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1917		      int __user *usockaddr_len)
1918{
1919	struct socket *sock;
1920	struct sockaddr_storage address;
1921	int err, fput_needed;
1922
1923	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924	if (!sock)
1925		goto out;
1926
1927	err = security_socket_getsockname(sock);
1928	if (err)
1929		goto out_put;
1930
1931	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1932	if (err < 0)
1933		goto out_put;
1934        /* "err" is actually length in this case */
1935	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1936
1937out_put:
1938	fput_light(sock->file, fput_needed);
1939out:
1940	return err;
1941}
1942
1943SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1944		int __user *, usockaddr_len)
1945{
1946	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1947}
1948
1949/*
1950 *	Get the remote address ('name') of a socket object. Move the obtained
1951 *	name to user space.
1952 */
1953
1954int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1955		      int __user *usockaddr_len)
1956{
1957	struct socket *sock;
1958	struct sockaddr_storage address;
1959	int err, fput_needed;
1960
1961	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962	if (sock != NULL) {
1963		err = security_socket_getpeername(sock);
1964		if (err) {
1965			fput_light(sock->file, fput_needed);
1966			return err;
1967		}
1968
1969		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1970		if (err >= 0)
1971			/* "err" is actually length in this case */
1972			err = move_addr_to_user(&address, err, usockaddr,
 
1973						usockaddr_len);
1974		fput_light(sock->file, fput_needed);
1975	}
1976	return err;
1977}
1978
1979SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1980		int __user *, usockaddr_len)
1981{
1982	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1983}
1984
1985/*
1986 *	Send a datagram to a given address. We move the address into kernel
1987 *	space and check the user space data area is readable before invoking
1988 *	the protocol.
1989 */
1990int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1991		 struct sockaddr __user *addr,  int addr_len)
 
 
1992{
1993	struct socket *sock;
1994	struct sockaddr_storage address;
1995	int err;
1996	struct msghdr msg;
1997	struct iovec iov;
1998	int fput_needed;
1999
2000	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2001	if (unlikely(err))
2002		return err;
2003	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2004	if (!sock)
2005		goto out;
2006
 
 
2007	msg.msg_name = NULL;
 
 
2008	msg.msg_control = NULL;
2009	msg.msg_controllen = 0;
2010	msg.msg_namelen = 0;
2011	if (addr) {
2012		err = move_addr_to_kernel(addr, addr_len, &address);
2013		if (err < 0)
2014			goto out_put;
2015		msg.msg_name = (struct sockaddr *)&address;
2016		msg.msg_namelen = addr_len;
2017	}
2018	if (sock->file->f_flags & O_NONBLOCK)
2019		flags |= MSG_DONTWAIT;
2020	msg.msg_flags = flags;
2021	err = sock_sendmsg(sock, &msg);
2022
2023out_put:
2024	fput_light(sock->file, fput_needed);
2025out:
2026	return err;
2027}
2028
2029SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2030		unsigned int, flags, struct sockaddr __user *, addr,
2031		int, addr_len)
2032{
2033	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2034}
2035
2036/*
2037 *	Send a datagram down a socket.
2038 */
2039
2040SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2041		unsigned int, flags)
2042{
2043	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2044}
2045
2046/*
2047 *	Receive a frame from the socket and optionally record the address of the
2048 *	sender. We verify the buffers are writable and if needed move the
2049 *	sender address from kernel to user space.
2050 */
2051int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2052		   struct sockaddr __user *addr, int __user *addr_len)
 
 
2053{
2054	struct socket *sock;
2055	struct iovec iov;
2056	struct msghdr msg;
2057	struct sockaddr_storage address;
2058	int err, err2;
2059	int fput_needed;
2060
2061	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2062	if (unlikely(err))
2063		return err;
2064	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065	if (!sock)
2066		goto out;
2067
2068	msg.msg_control = NULL;
2069	msg.msg_controllen = 0;
2070	/* Save some cycles and don't copy the address if not needed */
2071	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2072	/* We assume all kernel code knows the size of sockaddr_storage */
2073	msg.msg_namelen = 0;
2074	msg.msg_iocb = NULL;
2075	msg.msg_flags = 0;
2076	if (sock->file->f_flags & O_NONBLOCK)
2077		flags |= MSG_DONTWAIT;
2078	err = sock_recvmsg(sock, &msg, flags);
2079
2080	if (err >= 0 && addr != NULL) {
2081		err2 = move_addr_to_user(&address,
2082					 msg.msg_namelen, addr, addr_len);
2083		if (err2 < 0)
2084			err = err2;
2085	}
2086
2087	fput_light(sock->file, fput_needed);
2088out:
2089	return err;
2090}
2091
2092SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2093		unsigned int, flags, struct sockaddr __user *, addr,
2094		int __user *, addr_len)
2095{
2096	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2097}
2098
2099/*
2100 *	Receive a datagram from a socket.
2101 */
2102
2103SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2104		unsigned int, flags)
2105{
2106	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2107}
2108
2109static bool sock_use_custom_sol_socket(const struct socket *sock)
2110{
2111	const struct sock *sk = sock->sk;
2112
2113	/* Use sock->ops->setsockopt() for MPTCP */
2114	return IS_ENABLED(CONFIG_MPTCP) &&
2115	       sk->sk_protocol == IPPROTO_MPTCP &&
2116	       sk->sk_type == SOCK_STREAM &&
2117	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2118}
2119
2120/*
2121 *	Set a socket option. Because we don't know the option lengths we have
2122 *	to pass the user mode parameter for the protocols to sort out.
2123 */
2124int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2125		int optlen)
 
2126{
2127	sockptr_t optval = USER_SOCKPTR(user_optval);
2128	char *kernel_optval = NULL;
2129	int err, fput_needed;
2130	struct socket *sock;
2131
2132	if (optlen < 0)
2133		return -EINVAL;
2134
2135	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136	if (!sock)
2137		return err;
2138
2139	err = security_socket_setsockopt(sock, level, optname);
2140	if (err)
2141		goto out_put;
2142
2143	if (!in_compat_syscall())
2144		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2145						     user_optval, &optlen,
2146						     &kernel_optval);
2147	if (err < 0)
2148		goto out_put;
2149	if (err > 0) {
2150		err = 0;
2151		goto out_put;
2152	}
2153
2154	if (kernel_optval)
2155		optval = KERNEL_SOCKPTR(kernel_optval);
2156	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2157		err = sock_setsockopt(sock, level, optname, optval, optlen);
2158	else if (unlikely(!sock->ops->setsockopt))
2159		err = -EOPNOTSUPP;
2160	else
2161		err = sock->ops->setsockopt(sock, level, optname, optval,
2162					    optlen);
2163	kfree(kernel_optval);
 
 
 
2164out_put:
2165	fput_light(sock->file, fput_needed);
 
2166	return err;
2167}
2168
2169SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2170		char __user *, optval, int, optlen)
2171{
2172	return __sys_setsockopt(fd, level, optname, optval, optlen);
2173}
2174
2175INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2176							 int optname));
2177
2178/*
2179 *	Get a socket option. Because we don't know the option lengths we have
2180 *	to pass a user mode parameter for the protocols to sort out.
2181 */
2182int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2183		int __user *optlen)
 
2184{
2185	int err, fput_needed;
2186	struct socket *sock;
2187	int max_optlen;
2188
2189	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190	if (!sock)
2191		return err;
2192
2193	err = security_socket_getsockopt(sock, level, optname);
2194	if (err)
2195		goto out_put;
2196
2197	if (!in_compat_syscall())
2198		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2199
2200	if (level == SOL_SOCKET)
2201		err = sock_getsockopt(sock, level, optname, optval, optlen);
2202	else if (unlikely(!sock->ops->getsockopt))
2203		err = -EOPNOTSUPP;
2204	else
2205		err = sock->ops->getsockopt(sock, level, optname, optval,
2206					    optlen);
2207
2208	if (!in_compat_syscall())
2209		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2210						     optval, optlen, max_optlen,
2211						     err);
2212out_put:
2213	fput_light(sock->file, fput_needed);
 
2214	return err;
2215}
2216
2217SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2218		char __user *, optval, int __user *, optlen)
2219{
2220	return __sys_getsockopt(fd, level, optname, optval, optlen);
2221}
2222
2223/*
2224 *	Shutdown a socket.
2225 */
2226
2227int __sys_shutdown_sock(struct socket *sock, int how)
2228{
2229	int err;
2230
2231	err = security_socket_shutdown(sock, how);
2232	if (!err)
2233		err = sock->ops->shutdown(sock, how);
2234
2235	return err;
2236}
2237
2238int __sys_shutdown(int fd, int how)
2239{
2240	int err, fput_needed;
2241	struct socket *sock;
2242
2243	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2244	if (sock != NULL) {
2245		err = __sys_shutdown_sock(sock, how);
 
 
2246		fput_light(sock->file, fput_needed);
2247	}
2248	return err;
2249}
2250
2251SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2252{
2253	return __sys_shutdown(fd, how);
2254}
2255
2256/* A couple of helpful macros for getting the address of the 32/64 bit
2257 * fields which are the same type (int / unsigned) on our platforms.
2258 */
2259#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2260#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2261#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2262
2263struct used_address {
2264	struct sockaddr_storage name;
2265	unsigned int name_len;
2266};
2267
2268int __copy_msghdr_from_user(struct msghdr *kmsg,
2269			    struct user_msghdr __user *umsg,
2270			    struct sockaddr __user **save_addr,
2271			    struct iovec __user **uiov, size_t *nsegs)
2272{
2273	struct user_msghdr msg;
2274	ssize_t err;
 
 
 
 
 
 
 
2275
2276	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
 
 
 
 
2277		return -EFAULT;
2278
2279	kmsg->msg_control_is_user = true;
2280	kmsg->msg_control_user = msg.msg_control;
2281	kmsg->msg_controllen = msg.msg_controllen;
2282	kmsg->msg_flags = msg.msg_flags;
2283
2284	kmsg->msg_namelen = msg.msg_namelen;
2285	if (!msg.msg_name)
2286		kmsg->msg_namelen = 0;
2287
2288	if (kmsg->msg_namelen < 0)
2289		return -EINVAL;
2290
2291	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2292		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2293
2294	if (save_addr)
2295		*save_addr = msg.msg_name;
2296
2297	if (msg.msg_name && kmsg->msg_namelen) {
2298		if (!save_addr) {
2299			err = move_addr_to_kernel(msg.msg_name,
2300						  kmsg->msg_namelen,
2301						  kmsg->msg_name);
2302			if (err < 0)
2303				return err;
2304		}
2305	} else {
2306		kmsg->msg_name = NULL;
2307		kmsg->msg_namelen = 0;
2308	}
2309
2310	if (msg.msg_iovlen > UIO_MAXIOV)
2311		return -EMSGSIZE;
2312
2313	kmsg->msg_iocb = NULL;
2314	*uiov = msg.msg_iov;
2315	*nsegs = msg.msg_iovlen;
2316	return 0;
2317}
2318
2319static int copy_msghdr_from_user(struct msghdr *kmsg,
2320				 struct user_msghdr __user *umsg,
2321				 struct sockaddr __user **save_addr,
2322				 struct iovec **iov)
2323{
2324	struct user_msghdr msg;
2325	ssize_t err;
2326
2327	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2328					&msg.msg_iovlen);
2329	if (err)
2330		return err;
2331
2332	err = import_iovec(save_addr ? READ : WRITE,
2333			    msg.msg_iov, msg.msg_iovlen,
2334			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2335	return err < 0 ? err : 0;
2336}
2337
2338static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2339			   unsigned int flags, struct used_address *used_address,
2340			   unsigned int allowed_msghdr_flags)
2341{
2342	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2343				__aligned(sizeof(__kernel_size_t));
2344	/* 20 is size of ipv6_pktinfo */
2345	unsigned char *ctl_buf = ctl;
2346	int ctl_len;
2347	ssize_t err;
2348
2349	err = -ENOBUFS;
2350
2351	if (msg_sys->msg_controllen > INT_MAX)
2352		goto out;
2353	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2354	ctl_len = msg_sys->msg_controllen;
2355	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2356		err =
2357		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2358						     sizeof(ctl));
2359		if (err)
2360			goto out;
2361		ctl_buf = msg_sys->msg_control;
2362		ctl_len = msg_sys->msg_controllen;
2363	} else if (ctl_len) {
2364		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2365			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2366		if (ctl_len > sizeof(ctl)) {
2367			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2368			if (ctl_buf == NULL)
2369				goto out;
2370		}
2371		err = -EFAULT;
2372		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
 
 
 
 
 
 
 
2373			goto out_freectl;
2374		msg_sys->msg_control = ctl_buf;
2375		msg_sys->msg_control_is_user = false;
2376	}
2377	msg_sys->msg_flags = flags;
2378
2379	if (sock->file->f_flags & O_NONBLOCK)
2380		msg_sys->msg_flags |= MSG_DONTWAIT;
2381	/*
2382	 * If this is sendmmsg() and current destination address is same as
2383	 * previously succeeded address, omit asking LSM's decision.
2384	 * used_address->name_len is initialized to UINT_MAX so that the first
2385	 * destination address never matches.
2386	 */
2387	if (used_address && msg_sys->msg_name &&
2388	    used_address->name_len == msg_sys->msg_namelen &&
2389	    !memcmp(&used_address->name, msg_sys->msg_name,
2390		    used_address->name_len)) {
2391		err = sock_sendmsg_nosec(sock, msg_sys);
2392		goto out_freectl;
2393	}
2394	err = sock_sendmsg(sock, msg_sys);
2395	/*
2396	 * If this is sendmmsg() and sending to current destination address was
2397	 * successful, remember it.
2398	 */
2399	if (used_address && err >= 0) {
2400		used_address->name_len = msg_sys->msg_namelen;
2401		if (msg_sys->msg_name)
2402			memcpy(&used_address->name, msg_sys->msg_name,
2403			       used_address->name_len);
2404	}
2405
2406out_freectl:
2407	if (ctl_buf != ctl)
2408		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
 
 
 
2409out:
2410	return err;
2411}
2412
2413int sendmsg_copy_msghdr(struct msghdr *msg,
2414			struct user_msghdr __user *umsg, unsigned flags,
2415			struct iovec **iov)
2416{
2417	int err;
2418
2419	if (flags & MSG_CMSG_COMPAT) {
2420		struct compat_msghdr __user *msg_compat;
2421
2422		msg_compat = (struct compat_msghdr __user *) umsg;
2423		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2424	} else {
2425		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2426	}
2427	if (err < 0)
2428		return err;
2429
2430	return 0;
2431}
2432
2433static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2434			 struct msghdr *msg_sys, unsigned int flags,
2435			 struct used_address *used_address,
2436			 unsigned int allowed_msghdr_flags)
2437{
2438	struct sockaddr_storage address;
2439	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2440	ssize_t err;
2441
2442	msg_sys->msg_name = &address;
2443
2444	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2445	if (err < 0)
2446		return err;
2447
2448	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2449				allowed_msghdr_flags);
2450	kfree(iov);
2451	return err;
2452}
2453
2454/*
2455 *	BSD sendmsg interface
2456 */
2457long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2458			unsigned int flags)
2459{
2460	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2461}
2462
2463long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2464		   bool forbid_cmsg_compat)
2465{
2466	int fput_needed, err;
2467	struct msghdr msg_sys;
2468	struct socket *sock;
2469
2470	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2471		return -EINVAL;
2472
2473	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2474	if (!sock)
2475		goto out;
2476
2477	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2478
2479	fput_light(sock->file, fput_needed);
2480out:
2481	return err;
2482}
2483
2484SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2485{
2486	return __sys_sendmsg(fd, msg, flags, true);
2487}
2488
2489/*
2490 *	Linux sendmmsg interface
2491 */
2492
2493int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2494		   unsigned int flags, bool forbid_cmsg_compat)
2495{
2496	int fput_needed, err, datagrams;
2497	struct socket *sock;
2498	struct mmsghdr __user *entry;
2499	struct compat_mmsghdr __user *compat_entry;
2500	struct msghdr msg_sys;
2501	struct used_address used_address;
2502	unsigned int oflags = flags;
2503
2504	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2505		return -EINVAL;
2506
2507	if (vlen > UIO_MAXIOV)
2508		vlen = UIO_MAXIOV;
2509
2510	datagrams = 0;
2511
2512	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2513	if (!sock)
2514		return err;
2515
2516	used_address.name_len = UINT_MAX;
2517	entry = mmsg;
2518	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2519	err = 0;
2520	flags |= MSG_BATCH;
2521
2522	while (datagrams < vlen) {
2523		if (datagrams == vlen - 1)
2524			flags = oflags;
2525
2526		if (MSG_CMSG_COMPAT & flags) {
2527			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2528					     &msg_sys, flags, &used_address, MSG_EOR);
2529			if (err < 0)
2530				break;
2531			err = __put_user(err, &compat_entry->msg_len);
2532			++compat_entry;
2533		} else {
2534			err = ___sys_sendmsg(sock,
2535					     (struct user_msghdr __user *)entry,
2536					     &msg_sys, flags, &used_address, MSG_EOR);
2537			if (err < 0)
2538				break;
2539			err = put_user(err, &entry->msg_len);
2540			++entry;
2541		}
2542
2543		if (err)
2544			break;
2545		++datagrams;
2546		if (msg_data_left(&msg_sys))
2547			break;
2548		cond_resched();
2549	}
2550
2551	fput_light(sock->file, fput_needed);
2552
2553	/* We only return an error if no datagrams were able to be sent */
2554	if (datagrams != 0)
2555		return datagrams;
2556
2557	return err;
2558}
2559
2560SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2561		unsigned int, vlen, unsigned int, flags)
2562{
2563	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2564}
2565
2566int recvmsg_copy_msghdr(struct msghdr *msg,
2567			struct user_msghdr __user *umsg, unsigned flags,
2568			struct sockaddr __user **uaddr,
2569			struct iovec **iov)
2570{
2571	ssize_t err;
 
 
 
 
 
 
 
 
 
 
 
 
2572
2573	if (MSG_CMSG_COMPAT & flags) {
2574		struct compat_msghdr __user *msg_compat;
 
 
 
2575
2576		msg_compat = (struct compat_msghdr __user *) umsg;
2577		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2578	} else {
2579		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
 
 
 
 
 
2580	}
2581	if (err < 0)
2582		return err;
2583
2584	return 0;
2585}
 
 
2586
2587static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2588			   struct user_msghdr __user *msg,
2589			   struct sockaddr __user *uaddr,
2590			   unsigned int flags, int nosec)
2591{
2592	struct compat_msghdr __user *msg_compat =
2593					(struct compat_msghdr __user *) msg;
2594	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2595	struct sockaddr_storage addr;
2596	unsigned long cmsg_ptr;
2597	int len;
2598	ssize_t err;
2599
2600	msg_sys->msg_name = &addr;
2601	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2602	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2603
2604	/* We assume all kernel code knows the size of sockaddr_storage */
2605	msg_sys->msg_namelen = 0;
2606
2607	if (sock->file->f_flags & O_NONBLOCK)
2608		flags |= MSG_DONTWAIT;
2609
2610	if (unlikely(nosec))
2611		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2612	else
2613		err = sock_recvmsg(sock, msg_sys, flags);
2614
2615	if (err < 0)
2616		goto out;
2617	len = err;
2618
2619	if (uaddr != NULL) {
2620		err = move_addr_to_user(&addr,
2621					msg_sys->msg_namelen, uaddr,
2622					uaddr_len);
2623		if (err < 0)
2624			goto out;
2625	}
2626	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2627			 COMPAT_FLAGS(msg));
2628	if (err)
2629		goto out;
2630	if (MSG_CMSG_COMPAT & flags)
2631		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2632				 &msg_compat->msg_controllen);
2633	else
2634		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2635				 &msg->msg_controllen);
2636	if (err)
2637		goto out;
2638	err = len;
2639out:
2640	return err;
2641}
2642
2643static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2644			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2645{
2646	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2647	/* user mode address pointers */
2648	struct sockaddr __user *uaddr;
2649	ssize_t err;
2650
2651	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2652	if (err < 0)
2653		return err;
2654
2655	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2656	kfree(iov);
 
 
2657	return err;
2658}
2659
2660/*
2661 *	BSD recvmsg interface
2662 */
2663
2664long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2665			struct user_msghdr __user *umsg,
2666			struct sockaddr __user *uaddr, unsigned int flags)
2667{
2668	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2669}
2670
2671long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2672		   bool forbid_cmsg_compat)
2673{
2674	int fput_needed, err;
2675	struct msghdr msg_sys;
2676	struct socket *sock;
2677
2678	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2679		return -EINVAL;
2680
2681	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2682	if (!sock)
2683		goto out;
2684
2685	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2686
2687	fput_light(sock->file, fput_needed);
2688out:
2689	return err;
2690}
2691
2692SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2693		unsigned int, flags)
2694{
2695	return __sys_recvmsg(fd, msg, flags, true);
2696}
2697
2698/*
2699 *     Linux recvmmsg interface
2700 */
2701
2702static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2703			  unsigned int vlen, unsigned int flags,
2704			  struct timespec64 *timeout)
2705{
2706	int fput_needed, err, datagrams;
2707	struct socket *sock;
2708	struct mmsghdr __user *entry;
2709	struct compat_mmsghdr __user *compat_entry;
2710	struct msghdr msg_sys;
2711	struct timespec64 end_time;
2712	struct timespec64 timeout64;
2713
2714	if (timeout &&
2715	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2716				    timeout->tv_nsec))
2717		return -EINVAL;
2718
2719	datagrams = 0;
2720
2721	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2722	if (!sock)
2723		return err;
2724
2725	if (likely(!(flags & MSG_ERRQUEUE))) {
2726		err = sock_error(sock->sk);
2727		if (err) {
2728			datagrams = err;
2729			goto out_put;
2730		}
2731	}
2732
2733	entry = mmsg;
2734	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2735
2736	while (datagrams < vlen) {
2737		/*
2738		 * No need to ask LSM for more than the first datagram.
2739		 */
2740		if (MSG_CMSG_COMPAT & flags) {
2741			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2742					     &msg_sys, flags & ~MSG_WAITFORONE,
2743					     datagrams);
2744			if (err < 0)
2745				break;
2746			err = __put_user(err, &compat_entry->msg_len);
2747			++compat_entry;
2748		} else {
2749			err = ___sys_recvmsg(sock,
2750					     (struct user_msghdr __user *)entry,
2751					     &msg_sys, flags & ~MSG_WAITFORONE,
2752					     datagrams);
2753			if (err < 0)
2754				break;
2755			err = put_user(err, &entry->msg_len);
2756			++entry;
2757		}
2758
2759		if (err)
2760			break;
2761		++datagrams;
2762
2763		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2764		if (flags & MSG_WAITFORONE)
2765			flags |= MSG_DONTWAIT;
2766
2767		if (timeout) {
2768			ktime_get_ts64(&timeout64);
2769			*timeout = timespec64_sub(end_time, timeout64);
2770			if (timeout->tv_sec < 0) {
2771				timeout->tv_sec = timeout->tv_nsec = 0;
2772				break;
2773			}
2774
2775			/* Timeout, return less than vlen datagrams */
2776			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2777				break;
2778		}
2779
2780		/* Out of band data, return right away */
2781		if (msg_sys.msg_flags & MSG_OOB)
2782			break;
2783		cond_resched();
2784	}
2785
2786	if (err == 0)
2787		goto out_put;
2788
2789	if (datagrams == 0) {
2790		datagrams = err;
2791		goto out_put;
2792	}
2793
2794	/*
2795	 * We may return less entries than requested (vlen) if the
2796	 * sock is non block and there aren't enough datagrams...
2797	 */
2798	if (err != -EAGAIN) {
2799		/*
2800		 * ... or  if recvmsg returns an error after we
2801		 * received some datagrams, where we record the
2802		 * error to return on the next call or if the
2803		 * app asks about it using getsockopt(SO_ERROR).
2804		 */
2805		sock->sk->sk_err = -err;
 
 
 
 
 
 
 
 
 
 
2806	}
2807out_put:
2808	fput_light(sock->file, fput_needed);
2809
2810	return datagrams;
2811}
2812
2813int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2814		   unsigned int vlen, unsigned int flags,
2815		   struct __kernel_timespec __user *timeout,
2816		   struct old_timespec32 __user *timeout32)
2817{
2818	int datagrams;
2819	struct timespec64 timeout_sys;
2820
2821	if (timeout && get_timespec64(&timeout_sys, timeout))
2822		return -EFAULT;
2823
2824	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2825		return -EFAULT;
2826
2827	if (!timeout && !timeout32)
2828		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2829
2830	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2831
2832	if (datagrams <= 0)
2833		return datagrams;
2834
2835	if (timeout && put_timespec64(&timeout_sys, timeout))
2836		datagrams = -EFAULT;
2837
2838	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2839		datagrams = -EFAULT;
2840
2841	return datagrams;
2842}
2843
2844SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2845		unsigned int, vlen, unsigned int, flags,
2846		struct __kernel_timespec __user *, timeout)
2847{
2848	if (flags & MSG_CMSG_COMPAT)
2849		return -EINVAL;
2850
2851	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2852}
2853
2854#ifdef CONFIG_COMPAT_32BIT_TIME
2855SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2856		unsigned int, vlen, unsigned int, flags,
2857		struct old_timespec32 __user *, timeout)
2858{
2859	if (flags & MSG_CMSG_COMPAT)
2860		return -EINVAL;
2861
2862	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2863}
2864#endif
2865
2866#ifdef __ARCH_WANT_SYS_SOCKETCALL
2867/* Argument list sizes for sys_socketcall */
2868#define AL(x) ((x) * sizeof(unsigned long))
2869static const unsigned char nargs[21] = {
2870	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2871	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2872	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2873	AL(4), AL(5), AL(4)
2874};
2875
2876#undef AL
2877
2878/*
2879 *	System call vectors.
2880 *
2881 *	Argument checking cleaned up. Saved 20% in size.
2882 *  This function doesn't need to set the kernel lock because
2883 *  it is set by the callees.
2884 */
2885
2886SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2887{
2888	unsigned long a[AUDITSC_ARGS];
2889	unsigned long a0, a1;
2890	int err;
2891	unsigned int len;
2892
2893	if (call < 1 || call > SYS_SENDMMSG)
2894		return -EINVAL;
2895	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2896
2897	len = nargs[call];
2898	if (len > sizeof(a))
2899		return -EINVAL;
2900
2901	/* copy_from_user should be SMP safe. */
2902	if (copy_from_user(a, args, len))
2903		return -EFAULT;
2904
2905	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2906	if (err)
2907		return err;
2908
2909	a0 = a[0];
2910	a1 = a[1];
2911
2912	switch (call) {
2913	case SYS_SOCKET:
2914		err = __sys_socket(a0, a1, a[2]);
2915		break;
2916	case SYS_BIND:
2917		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2918		break;
2919	case SYS_CONNECT:
2920		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2921		break;
2922	case SYS_LISTEN:
2923		err = __sys_listen(a0, a1);
2924		break;
2925	case SYS_ACCEPT:
2926		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2927				    (int __user *)a[2], 0);
2928		break;
2929	case SYS_GETSOCKNAME:
2930		err =
2931		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2932				      (int __user *)a[2]);
2933		break;
2934	case SYS_GETPEERNAME:
2935		err =
2936		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2937				      (int __user *)a[2]);
2938		break;
2939	case SYS_SOCKETPAIR:
2940		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2941		break;
2942	case SYS_SEND:
2943		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2944				   NULL, 0);
2945		break;
2946	case SYS_SENDTO:
2947		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2948				   (struct sockaddr __user *)a[4], a[5]);
2949		break;
2950	case SYS_RECV:
2951		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2952				     NULL, NULL);
2953		break;
2954	case SYS_RECVFROM:
2955		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2956				     (struct sockaddr __user *)a[4],
2957				     (int __user *)a[5]);
2958		break;
2959	case SYS_SHUTDOWN:
2960		err = __sys_shutdown(a0, a1);
2961		break;
2962	case SYS_SETSOCKOPT:
2963		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2964				       a[4]);
2965		break;
2966	case SYS_GETSOCKOPT:
2967		err =
2968		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2969				     (int __user *)a[4]);
2970		break;
2971	case SYS_SENDMSG:
2972		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2973				    a[2], true);
2974		break;
2975	case SYS_SENDMMSG:
2976		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2977				     a[3], true);
2978		break;
2979	case SYS_RECVMSG:
2980		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2981				    a[2], true);
2982		break;
2983	case SYS_RECVMMSG:
2984		if (IS_ENABLED(CONFIG_64BIT))
2985			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2986					     a[2], a[3],
2987					     (struct __kernel_timespec __user *)a[4],
2988					     NULL);
2989		else
2990			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2991					     a[2], a[3], NULL,
2992					     (struct old_timespec32 __user *)a[4]);
2993		break;
2994	case SYS_ACCEPT4:
2995		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2996				    (int __user *)a[2], a[3]);
2997		break;
2998	default:
2999		err = -EINVAL;
3000		break;
3001	}
3002	return err;
3003}
3004
3005#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3006
3007/**
3008 *	sock_register - add a socket protocol handler
3009 *	@ops: description of protocol
3010 *
3011 *	This function is called by a protocol handler that wants to
3012 *	advertise its address family, and have it linked into the
3013 *	socket interface. The value ops->family corresponds to the
3014 *	socket system call protocol family.
3015 */
3016int sock_register(const struct net_proto_family *ops)
3017{
3018	int err;
3019
3020	if (ops->family >= NPROTO) {
3021		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
 
3022		return -ENOBUFS;
3023	}
3024
3025	spin_lock(&net_family_lock);
3026	if (rcu_dereference_protected(net_families[ops->family],
3027				      lockdep_is_held(&net_family_lock)))
3028		err = -EEXIST;
3029	else {
3030		rcu_assign_pointer(net_families[ops->family], ops);
3031		err = 0;
3032	}
3033	spin_unlock(&net_family_lock);
3034
3035	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3036	return err;
3037}
3038EXPORT_SYMBOL(sock_register);
3039
3040/**
3041 *	sock_unregister - remove a protocol handler
3042 *	@family: protocol family to remove
3043 *
3044 *	This function is called by a protocol handler that wants to
3045 *	remove its address family, and have it unlinked from the
3046 *	new socket creation.
3047 *
3048 *	If protocol handler is a module, then it can use module reference
3049 *	counts to protect against new references. If protocol handler is not
3050 *	a module then it needs to provide its own protection in
3051 *	the ops->create routine.
3052 */
3053void sock_unregister(int family)
3054{
3055	BUG_ON(family < 0 || family >= NPROTO);
3056
3057	spin_lock(&net_family_lock);
3058	RCU_INIT_POINTER(net_families[family], NULL);
3059	spin_unlock(&net_family_lock);
3060
3061	synchronize_rcu();
3062
3063	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3064}
3065EXPORT_SYMBOL(sock_unregister);
3066
3067bool sock_is_registered(int family)
3068{
3069	return family < NPROTO && rcu_access_pointer(net_families[family]);
3070}
3071
3072static int __init sock_init(void)
3073{
3074	int err;
3075	/*
3076	 *      Initialize the network sysctl infrastructure.
3077	 */
3078	err = net_sysctl_init();
3079	if (err)
3080		goto out;
3081
3082	/*
 
 
 
 
 
 
3083	 *      Initialize skbuff SLAB cache
3084	 */
3085	skb_init();
3086
3087	/*
3088	 *      Initialize the protocols module.
3089	 */
3090
3091	init_inodecache();
3092
3093	err = register_filesystem(&sock_fs_type);
3094	if (err)
3095		goto out;
3096	sock_mnt = kern_mount(&sock_fs_type);
3097	if (IS_ERR(sock_mnt)) {
3098		err = PTR_ERR(sock_mnt);
3099		goto out_mount;
3100	}
3101
3102	/* The real protocol initialization is performed in later initcalls.
3103	 */
3104
3105#ifdef CONFIG_NETFILTER
3106	err = netfilter_init();
3107	if (err)
3108		goto out;
3109#endif
3110
3111	ptp_classifier_init();
 
 
3112
3113out:
3114	return err;
3115
3116out_mount:
3117	unregister_filesystem(&sock_fs_type);
 
3118	goto out;
3119}
3120
3121core_initcall(sock_init);	/* early initcall */
3122
3123#ifdef CONFIG_PROC_FS
3124void socket_seq_show(struct seq_file *seq)
3125{
3126	seq_printf(seq, "sockets: used %d\n",
3127		   sock_inuse_get(seq->private));
 
 
 
 
 
 
 
 
 
3128}
3129#endif				/* CONFIG_PROC_FS */
3130
3131#ifdef CONFIG_COMPAT
3132static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133{
3134	struct compat_ifconf ifc32;
3135	struct ifconf ifc;
 
 
 
 
3136	int err;
3137
3138	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3139		return -EFAULT;
3140
3141	ifc.ifc_len = ifc32.ifc_len;
3142	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3143
3144	rtnl_lock();
3145	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3146	rtnl_unlock();
3147	if (err)
3148		return err;
3149
3150	ifc32.ifc_len = ifc.ifc_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3151	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3152		return -EFAULT;
3153
3154	return 0;
3155}
3156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3157static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3158{
 
3159	compat_uptr_t uptr32;
3160	struct ifreq ifr;
3161	void __user *saved;
3162	int err;
3163
3164	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
 
3165		return -EFAULT;
3166
3167	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3168		return -EFAULT;
3169
3170	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3171	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3172
3173	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3174	if (!err) {
3175		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3176		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3177			err = -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3178	}
3179	return err;
3180}
3181
3182/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3183static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3184				 struct compat_ifreq __user *u_ifreq32)
3185{
3186	struct ifreq ifreq;
 
 
3187	u32 data32;
3188
3189	if (!is_socket_ioctl_cmd(cmd))
3190		return -ENOTTY;
3191	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3192		return -EFAULT;
3193	if (get_user(data32, &u_ifreq32->ifr_data))
3194		return -EFAULT;
3195	ifreq.ifr_data = compat_ptr(data32);
 
 
3196
3197	return dev_ioctl(net, cmd, &ifreq, NULL);
 
 
 
 
 
 
 
 
 
3198}
3199
3200static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3201			      unsigned int cmd,
3202			      struct compat_ifreq __user *uifr32)
3203{
3204	struct ifreq __user *uifr;
3205	int err;
3206
3207	/* Handle the fact that while struct ifreq has the same *layout* on
3208	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3209	 * which are handled elsewhere, it still has different *size* due to
3210	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3211	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3212	 * As a result, if the struct happens to be at the end of a page and
3213	 * the next page isn't readable/writable, we get a fault. To prevent
3214	 * that, copy back and forth to the full size.
3215	 */
3216
3217	uifr = compat_alloc_user_space(sizeof(*uifr));
3218	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3219		return -EFAULT;
3220
3221	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3222
3223	if (!err) {
3224		switch (cmd) {
3225		case SIOCGIFFLAGS:
3226		case SIOCGIFMETRIC:
3227		case SIOCGIFMTU:
3228		case SIOCGIFMEM:
3229		case SIOCGIFHWADDR:
3230		case SIOCGIFINDEX:
3231		case SIOCGIFADDR:
3232		case SIOCGIFBRDADDR:
3233		case SIOCGIFDSTADDR:
3234		case SIOCGIFNETMASK:
3235		case SIOCGIFPFLAGS:
3236		case SIOCGIFTXQLEN:
3237		case SIOCGMIIPHY:
3238		case SIOCGMIIREG:
3239		case SIOCGIFNAME:
3240			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3241				err = -EFAULT;
3242			break;
3243		}
3244	}
3245	return err;
3246}
3247
3248static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3249			struct compat_ifreq __user *uifr32)
3250{
3251	struct ifreq ifr;
3252	struct compat_ifmap __user *uifmap32;
 
3253	int err;
3254
3255	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3256	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3257	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3258	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3259	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3260	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3261	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3262	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3263	if (err)
3264		return -EFAULT;
3265
3266	err = dev_ioctl(net, cmd, &ifr, NULL);
 
 
 
3267
3268	if (cmd == SIOCGIFMAP && !err) {
3269		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3270		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3271		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3272		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3273		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3274		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3275		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3276		if (err)
3277			err = -EFAULT;
3278	}
3279	return err;
3280}
3281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3282/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3283 * for some operations; this forces use of the newer bridge-utils that
3284 * use compatible ioctls
3285 */
3286static int old_bridge_ioctl(compat_ulong_t __user *argp)
3287{
3288	compat_ulong_t tmp;
3289
3290	if (get_user(tmp, argp))
3291		return -EFAULT;
3292	if (tmp == BRCTL_GET_VERSION)
3293		return BRCTL_VERSION + 1;
3294	return -EINVAL;
3295}
3296
3297static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3298			 unsigned int cmd, unsigned long arg)
3299{
3300	void __user *argp = compat_ptr(arg);
3301	struct sock *sk = sock->sk;
3302	struct net *net = sock_net(sk);
3303
3304	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3305		return compat_ifr_data_ioctl(net, cmd, argp);
3306
3307	switch (cmd) {
3308	case SIOCSIFBR:
3309	case SIOCGIFBR:
3310		return old_bridge_ioctl(argp);
 
 
3311	case SIOCGIFCONF:
3312		return compat_dev_ifconf(net, argp);
 
 
3313	case SIOCWANDEV:
3314		return compat_siocwandev(net, argp);
3315	case SIOCGIFMAP:
3316	case SIOCSIFMAP:
3317		return compat_sioc_ifmap(net, cmd, argp);
3318	case SIOCGSTAMP_OLD:
3319	case SIOCGSTAMPNS_OLD:
3320		if (!sock->ops->gettstamp)
3321			return -ENOIOCTLCMD;
3322		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3323					    !COMPAT_USE_64BIT_TIME);
3324
3325	case SIOCETHTOOL:
3326	case SIOCBONDSLAVEINFOQUERY:
3327	case SIOCBONDINFOQUERY:
 
 
 
 
 
 
 
 
 
3328	case SIOCSHWTSTAMP:
3329	case SIOCGHWTSTAMP:
3330		return compat_ifr_data_ioctl(net, cmd, argp);
3331
3332	case FIOSETOWN:
3333	case SIOCSPGRP:
3334	case FIOGETOWN:
3335	case SIOCGPGRP:
3336	case SIOCBRADDBR:
3337	case SIOCBRDELBR:
3338	case SIOCGIFVLAN:
3339	case SIOCSIFVLAN:
3340	case SIOCGSKNS:
3341	case SIOCGSTAMP_NEW:
3342	case SIOCGSTAMPNS_NEW:
3343		return sock_ioctl(file, cmd, arg);
3344
3345	case SIOCGIFFLAGS:
3346	case SIOCSIFFLAGS:
3347	case SIOCGIFMETRIC:
3348	case SIOCSIFMETRIC:
3349	case SIOCGIFMTU:
3350	case SIOCSIFMTU:
3351	case SIOCGIFMEM:
3352	case SIOCSIFMEM:
3353	case SIOCGIFHWADDR:
3354	case SIOCSIFHWADDR:
3355	case SIOCADDMULTI:
3356	case SIOCDELMULTI:
3357	case SIOCGIFINDEX:
3358	case SIOCGIFADDR:
3359	case SIOCSIFADDR:
3360	case SIOCSIFHWBROADCAST:
3361	case SIOCDIFADDR:
3362	case SIOCGIFBRDADDR:
3363	case SIOCSIFBRDADDR:
3364	case SIOCGIFDSTADDR:
3365	case SIOCSIFDSTADDR:
3366	case SIOCGIFNETMASK:
3367	case SIOCSIFNETMASK:
3368	case SIOCSIFPFLAGS:
3369	case SIOCGIFPFLAGS:
3370	case SIOCGIFTXQLEN:
3371	case SIOCSIFTXQLEN:
3372	case SIOCBRADDIF:
3373	case SIOCBRDELIF:
3374	case SIOCGIFNAME:
3375	case SIOCSIFNAME:
3376	case SIOCGMIIPHY:
3377	case SIOCGMIIREG:
3378	case SIOCSMIIREG:
3379	case SIOCBONDENSLAVE:
3380	case SIOCBONDRELEASE:
3381	case SIOCBONDSETHWADDR:
3382	case SIOCBONDCHANGEACTIVE:
3383		return compat_ifreq_ioctl(net, sock, cmd, argp);
3384
3385	case SIOCSARP:
3386	case SIOCGARP:
3387	case SIOCDARP:
3388	case SIOCOUTQ:
3389	case SIOCOUTQNSD:
3390	case SIOCATMARK:
3391		return sock_do_ioctl(net, sock, cmd, arg);
3392	}
3393
3394	return -ENOIOCTLCMD;
3395}
3396
3397static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3398			      unsigned long arg)
3399{
3400	struct socket *sock = file->private_data;
3401	int ret = -ENOIOCTLCMD;
3402	struct sock *sk;
3403	struct net *net;
3404
3405	sk = sock->sk;
3406	net = sock_net(sk);
3407
3408	if (sock->ops->compat_ioctl)
3409		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3410
3411	if (ret == -ENOIOCTLCMD &&
3412	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3413		ret = compat_wext_handle_ioctl(net, cmd, arg);
3414
3415	if (ret == -ENOIOCTLCMD)
3416		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3417
3418	return ret;
3419}
3420#endif
3421
3422/**
3423 *	kernel_bind - bind an address to a socket (kernel space)
3424 *	@sock: socket
3425 *	@addr: address
3426 *	@addrlen: length of address
3427 *
3428 *	Returns 0 or an error.
3429 */
3430
3431int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3432{
3433	return sock->ops->bind(sock, addr, addrlen);
3434}
3435EXPORT_SYMBOL(kernel_bind);
3436
3437/**
3438 *	kernel_listen - move socket to listening state (kernel space)
3439 *	@sock: socket
3440 *	@backlog: pending connections queue size
3441 *
3442 *	Returns 0 or an error.
3443 */
3444
3445int kernel_listen(struct socket *sock, int backlog)
3446{
3447	return sock->ops->listen(sock, backlog);
3448}
3449EXPORT_SYMBOL(kernel_listen);
3450
3451/**
3452 *	kernel_accept - accept a connection (kernel space)
3453 *	@sock: listening socket
3454 *	@newsock: new connected socket
3455 *	@flags: flags
3456 *
3457 *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3458 *	If it fails, @newsock is guaranteed to be %NULL.
3459 *	Returns 0 or an error.
3460 */
3461
3462int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3463{
3464	struct sock *sk = sock->sk;
3465	int err;
3466
3467	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3468			       newsock);
3469	if (err < 0)
3470		goto done;
3471
3472	err = sock->ops->accept(sock, *newsock, flags, true);
3473	if (err < 0) {
3474		sock_release(*newsock);
3475		*newsock = NULL;
3476		goto done;
3477	}
3478
3479	(*newsock)->ops = sock->ops;
3480	__module_get((*newsock)->ops->owner);
3481
3482done:
3483	return err;
3484}
3485EXPORT_SYMBOL(kernel_accept);
3486
3487/**
3488 *	kernel_connect - connect a socket (kernel space)
3489 *	@sock: socket
3490 *	@addr: address
3491 *	@addrlen: address length
3492 *	@flags: flags (O_NONBLOCK, ...)
3493 *
3494 *	For datagram sockets, @addr is the address to which datagrams are sent
3495 *	by default, and the only address from which datagrams are received.
3496 *	For stream sockets, attempts to connect to @addr.
3497 *	Returns 0 or an error code.
3498 */
3499
3500int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3501		   int flags)
3502{
3503	return sock->ops->connect(sock, addr, addrlen, flags);
3504}
3505EXPORT_SYMBOL(kernel_connect);
3506
3507/**
3508 *	kernel_getsockname - get the address which the socket is bound (kernel space)
3509 *	@sock: socket
3510 *	@addr: address holder
3511 *
3512 * 	Fills the @addr pointer with the address which the socket is bound.
3513 *	Returns 0 or an error code.
3514 */
3515
3516int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3517{
3518	return sock->ops->getname(sock, addr, 0);
3519}
3520EXPORT_SYMBOL(kernel_getsockname);
3521
3522/**
3523 *	kernel_getpeername - get the address which the socket is connected (kernel space)
3524 *	@sock: socket
3525 *	@addr: address holder
3526 *
3527 * 	Fills the @addr pointer with the address which the socket is connected.
3528 *	Returns 0 or an error code.
3529 */
3530
3531int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3532{
3533	return sock->ops->getname(sock, addr, 1);
3534}
3535EXPORT_SYMBOL(kernel_getpeername);
3536
3537/**
3538 *	kernel_sendpage - send a &page through a socket (kernel space)
3539 *	@sock: socket
3540 *	@page: page
3541 *	@offset: page offset
3542 *	@size: total size in bytes
3543 *	@flags: flags (MSG_DONTWAIT, ...)
3544 *
3545 *	Returns the total amount sent in bytes or an error.
3546 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3547
3548int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3549		    size_t size, int flags)
3550{
3551	if (sock->ops->sendpage) {
3552		/* Warn in case the improper page to zero-copy send */
3553		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3554		return sock->ops->sendpage(sock, page, offset, size, flags);
3555	}
3556	return sock_no_sendpage(sock, page, offset, size, flags);
3557}
3558EXPORT_SYMBOL(kernel_sendpage);
3559
3560/**
3561 *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3562 *	@sk: sock
3563 *	@page: page
3564 *	@offset: page offset
3565 *	@size: total size in bytes
3566 *	@flags: flags (MSG_DONTWAIT, ...)
3567 *
3568 *	Returns the total amount sent in bytes or an error.
3569 *	Caller must hold @sk.
3570 */
3571
3572int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3573			   size_t size, int flags)
3574{
3575	struct socket *sock = sk->sk_socket;
 
3576
3577	if (sock->ops->sendpage_locked)
3578		return sock->ops->sendpage_locked(sk, page, offset, size,
3579						  flags);
3580
3581	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3582}
3583EXPORT_SYMBOL(kernel_sendpage_locked);
3584
3585/**
3586 *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3587 *	@sock: socket
3588 *	@how: connection part
3589 *
3590 *	Returns 0 or an error.
3591 */
3592
3593int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3594{
3595	return sock->ops->shutdown(sock, how);
3596}
3597EXPORT_SYMBOL(kernel_sock_shutdown);
3598
3599/**
3600 *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3601 *	@sk: socket
3602 *
3603 *	This routine returns the IP overhead imposed by a socket i.e.
3604 *	the length of the underlying IP header, depending on whether
3605 *	this is an IPv4 or IPv6 socket and the length from IP options turned
3606 *	on at the socket. Assumes that the caller has a lock on the socket.
3607 */
3608
3609u32 kernel_sock_ip_overhead(struct sock *sk)
3610{
3611	struct inet_sock *inet;
3612	struct ip_options_rcu *opt;
3613	u32 overhead = 0;
3614#if IS_ENABLED(CONFIG_IPV6)
3615	struct ipv6_pinfo *np;
3616	struct ipv6_txoptions *optv6 = NULL;
3617#endif /* IS_ENABLED(CONFIG_IPV6) */
3618
3619	if (!sk)
3620		return overhead;
3621
3622	switch (sk->sk_family) {
3623	case AF_INET:
3624		inet = inet_sk(sk);
3625		overhead += sizeof(struct iphdr);
3626		opt = rcu_dereference_protected(inet->inet_opt,
3627						sock_owned_by_user(sk));
3628		if (opt)
3629			overhead += opt->opt.optlen;
3630		return overhead;
3631#if IS_ENABLED(CONFIG_IPV6)
3632	case AF_INET6:
3633		np = inet6_sk(sk);
3634		overhead += sizeof(struct ipv6hdr);
3635		if (np)
3636			optv6 = rcu_dereference_protected(np->opt,
3637							  sock_owned_by_user(sk));
3638		if (optv6)
3639			overhead += (optv6->opt_flen + optv6->opt_nflen);
3640		return overhead;
3641#endif /* IS_ENABLED(CONFIG_IPV6) */
3642	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3643		return overhead;
3644	}
3645}
3646EXPORT_SYMBOL(kernel_sock_ip_overhead);
v3.5.6
 
   1/*
   2 * NET		An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:	@(#)socket.c	1.1.93	18/02/95
   5 *
   6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
   7 *		Ross Biro
   8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
  12 *					shutdown()
  13 *		Alan Cox	:	verify_area() fixes
  14 *		Alan Cox	:	Removed DDI
  15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
  16 *		Alan Cox	:	Moved a load of checks to the very
  17 *					top level.
  18 *		Alan Cox	:	Move address structures to/from user
  19 *					mode above the protocol layers.
  20 *		Rob Janssen	:	Allow 0 length sends.
  21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
  22 *					tty drivers).
  23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
  24 *		Jeff Uphoff	:	Made max number of sockets command-line
  25 *					configurable.
  26 *		Matti Aarnio	:	Made the number of sockets dynamic,
  27 *					to be allocated when needed, and mr.
  28 *					Uphoff's max is used as max to be
  29 *					allowed to allocate.
  30 *		Linus		:	Argh. removed all the socket allocation
  31 *					altogether: it's in the inode now.
  32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
  33 *					for NetROM and future kernel nfsd type
  34 *					stuff.
  35 *		Alan Cox	:	sendmsg/recvmsg basics.
  36 *		Tom Dyas	:	Export net symbols.
  37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
  38 *		Alan Cox	:	Added thread locking to sys_* calls
  39 *					for sockets. May have errors at the
  40 *					moment.
  41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
  42 *		Andi Kleen	:	Some small cleanups, optimizations,
  43 *					and fixed a copy_from_user() bug.
  44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
  46 *					protocol-independent
  47 *
  48 *
  49 *		This program is free software; you can redistribute it and/or
  50 *		modify it under the terms of the GNU General Public License
  51 *		as published by the Free Software Foundation; either version
  52 *		2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *	This module is effectively the top level interface to the BSD socket
  56 *	paradigm.
  57 *
  58 *	Based upon Swansea University Computer Society NET3.039
  59 */
  60
 
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/wanrouter.h>
  73#include <linux/if_bridge.h>
  74#include <linux/if_frad.h>
  75#include <linux/if_vlan.h>
 
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
 
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
 
 
 
  91
  92#include <asm/uaccess.h>
  93#include <asm/unistd.h>
  94
  95#include <net/compat.h>
  96#include <net/wext.h>
  97#include <net/cls_cgroup.h>
  98
  99#include <net/sock.h>
 100#include <linux/netfilter.h>
 101
 102#include <linux/if_tun.h>
 103#include <linux/ipv6_route.h>
 104#include <linux/route.h>
 
 105#include <linux/sockios.h>
 106#include <linux/atalk.h>
 
 
 
 
 
 
 
 107
 108static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 109static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 110			 unsigned long nr_segs, loff_t pos);
 111static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 112			  unsigned long nr_segs, loff_t pos);
 113static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 114
 115static int sock_close(struct inode *inode, struct file *file);
 116static unsigned int sock_poll(struct file *file,
 117			      struct poll_table_struct *wait);
 118static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 119#ifdef CONFIG_COMPAT
 120static long compat_sock_ioctl(struct file *file,
 121			      unsigned int cmd, unsigned long arg);
 122#endif
 123static int sock_fasync(int fd, struct file *filp, int on);
 124static ssize_t sock_sendpage(struct file *file, struct page *page,
 125			     int offset, size_t size, loff_t *ppos, int more);
 126static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 127				struct pipe_inode_info *pipe, size_t len,
 128				unsigned int flags);
 129
 
 
 
 
 
 
 
 
 
 
 
 
 130/*
 131 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 132 *	in the operation structures but are done directly via the socketcall() multiplexor.
 133 */
 134
 135static const struct file_operations socket_file_ops = {
 136	.owner =	THIS_MODULE,
 137	.llseek =	no_llseek,
 138	.aio_read =	sock_aio_read,
 139	.aio_write =	sock_aio_write,
 140	.poll =		sock_poll,
 141	.unlocked_ioctl = sock_ioctl,
 142#ifdef CONFIG_COMPAT
 143	.compat_ioctl = compat_sock_ioctl,
 144#endif
 145	.mmap =		sock_mmap,
 146	.open =		sock_no_open,	/* special open code to disallow open via /proc */
 147	.release =	sock_close,
 148	.fasync =	sock_fasync,
 149	.sendpage =	sock_sendpage,
 150	.splice_write = generic_splice_sendpage,
 151	.splice_read =	sock_splice_read,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152};
 153
 154/*
 155 *	The protocol list. Each protocol is registered in here.
 156 */
 157
 158static DEFINE_SPINLOCK(net_family_lock);
 159static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 160
 161/*
 162 *	Statistics counters of the socket lists
 163 */
 164
 165static DEFINE_PER_CPU(int, sockets_in_use);
 166
 167/*
 168 * Support routines.
 169 * Move socket addresses back and forth across the kernel/user
 170 * divide and look after the messy bits.
 171 */
 172
 173/**
 174 *	move_addr_to_kernel	-	copy a socket address into kernel space
 175 *	@uaddr: Address in user space
 176 *	@kaddr: Address in kernel space
 177 *	@ulen: Length in user space
 178 *
 179 *	The address is copied into kernel space. If the provided address is
 180 *	too long an error code of -EINVAL is returned. If the copy gives
 181 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
 182 */
 183
 184int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 185{
 186	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 187		return -EINVAL;
 188	if (ulen == 0)
 189		return 0;
 190	if (copy_from_user(kaddr, uaddr, ulen))
 191		return -EFAULT;
 192	return audit_sockaddr(ulen, kaddr);
 193}
 194
 195/**
 196 *	move_addr_to_user	-	copy an address to user space
 197 *	@kaddr: kernel space address
 198 *	@klen: length of address in kernel
 199 *	@uaddr: user space address
 200 *	@ulen: pointer to user length field
 201 *
 202 *	The value pointed to by ulen on entry is the buffer length available.
 203 *	This is overwritten with the buffer space used. -EINVAL is returned
 204 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
 205 *	is returned if either the buffer or the length field are not
 206 *	accessible.
 207 *	After copying the data up to the limit the user specifies, the true
 208 *	length of the data is written over the length limit the user
 209 *	specified. Zero is returned for a success.
 210 */
 211
 212static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 213			     void __user *uaddr, int __user *ulen)
 214{
 215	int err;
 216	int len;
 217
 
 218	err = get_user(len, ulen);
 219	if (err)
 220		return err;
 221	if (len > klen)
 222		len = klen;
 223	if (len < 0 || len > sizeof(struct sockaddr_storage))
 224		return -EINVAL;
 225	if (len) {
 226		if (audit_sockaddr(klen, kaddr))
 227			return -ENOMEM;
 228		if (copy_to_user(uaddr, kaddr, len))
 229			return -EFAULT;
 230	}
 231	/*
 232	 *      "fromlen shall refer to the value before truncation.."
 233	 *                      1003.1g
 234	 */
 235	return __put_user(klen, ulen);
 236}
 237
 238static struct kmem_cache *sock_inode_cachep __read_mostly;
 239
 240static struct inode *sock_alloc_inode(struct super_block *sb)
 241{
 242	struct socket_alloc *ei;
 243	struct socket_wq *wq;
 244
 245	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 246	if (!ei)
 247		return NULL;
 248	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 249	if (!wq) {
 250		kmem_cache_free(sock_inode_cachep, ei);
 251		return NULL;
 252	}
 253	init_waitqueue_head(&wq->wait);
 254	wq->fasync_list = NULL;
 255	RCU_INIT_POINTER(ei->socket.wq, wq);
 256
 257	ei->socket.state = SS_UNCONNECTED;
 258	ei->socket.flags = 0;
 259	ei->socket.ops = NULL;
 260	ei->socket.sk = NULL;
 261	ei->socket.file = NULL;
 262
 263	return &ei->vfs_inode;
 264}
 265
 266static void sock_destroy_inode(struct inode *inode)
 267{
 268	struct socket_alloc *ei;
 269	struct socket_wq *wq;
 270
 271	ei = container_of(inode, struct socket_alloc, vfs_inode);
 272	wq = rcu_dereference_protected(ei->socket.wq, 1);
 273	kfree_rcu(wq, rcu);
 274	kmem_cache_free(sock_inode_cachep, ei);
 275}
 276
 277static void init_once(void *foo)
 278{
 279	struct socket_alloc *ei = (struct socket_alloc *)foo;
 280
 281	inode_init_once(&ei->vfs_inode);
 282}
 283
 284static int init_inodecache(void)
 285{
 286	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 287					      sizeof(struct socket_alloc),
 288					      0,
 289					      (SLAB_HWCACHE_ALIGN |
 290					       SLAB_RECLAIM_ACCOUNT |
 291					       SLAB_MEM_SPREAD),
 292					      init_once);
 293	if (sock_inode_cachep == NULL)
 294		return -ENOMEM;
 295	return 0;
 296}
 297
 298static const struct super_operations sockfs_ops = {
 299	.alloc_inode	= sock_alloc_inode,
 300	.destroy_inode	= sock_destroy_inode,
 301	.statfs		= simple_statfs,
 302};
 303
 304/*
 305 * sockfs_dname() is called from d_path().
 306 */
 307static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 308{
 309	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 310				dentry->d_inode->i_ino);
 311}
 312
 313static const struct dentry_operations sockfs_dentry_operations = {
 314	.d_dname  = sockfs_dname,
 315};
 316
 317static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 318			 int flags, const char *dev_name, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319{
 320	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 321		&sockfs_dentry_operations, SOCKFS_MAGIC);
 
 
 
 
 
 322}
 323
 324static struct vfsmount *sock_mnt __read_mostly;
 325
 326static struct file_system_type sock_fs_type = {
 327	.name =		"sockfs",
 328	.mount =	sockfs_mount,
 329	.kill_sb =	kill_anon_super,
 330};
 331
 332/*
 333 *	Obtains the first available file descriptor and sets it up for use.
 334 *
 335 *	These functions create file structures and maps them to fd space
 336 *	of the current process. On success it returns file descriptor
 337 *	and file struct implicitly stored in sock->file.
 338 *	Note that another thread may close file descriptor before we return
 339 *	from this function. We use the fact that now we do not refer
 340 *	to socket after mapping. If one day we will need it, this
 341 *	function will increment ref. count on file by 1.
 342 *
 343 *	In any case returned fd MAY BE not valid!
 344 *	This race condition is unavoidable
 345 *	with shared fd spaces, we cannot solve it inside kernel,
 346 *	but we take care of internal coherence yet.
 347 */
 348
 349static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 350{
 351	struct qstr name = { .name = "" };
 352	struct path path;
 353	struct file *file;
 354	int fd;
 355
 356	fd = get_unused_fd_flags(flags);
 357	if (unlikely(fd < 0))
 358		return fd;
 359
 360	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 361	if (unlikely(!path.dentry)) {
 362		put_unused_fd(fd);
 363		return -ENOMEM;
 364	}
 365	path.mnt = mntget(sock_mnt);
 366
 367	d_instantiate(path.dentry, SOCK_INODE(sock));
 368	SOCK_INODE(sock)->i_fop = &socket_file_ops;
 369
 370	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 371		  &socket_file_ops);
 372	if (unlikely(!file)) {
 373		/* drop dentry, keep inode */
 374		ihold(path.dentry->d_inode);
 375		path_put(&path);
 376		put_unused_fd(fd);
 377		return -ENFILE;
 378	}
 379
 380	sock->file = file;
 381	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 382	file->f_pos = 0;
 383	file->private_data = sock;
 384
 385	*f = file;
 386	return fd;
 387}
 
 388
 389int sock_map_fd(struct socket *sock, int flags)
 390{
 391	struct file *newfile;
 392	int fd = sock_alloc_file(sock, &newfile, flags);
 
 
 
 
 393
 394	if (likely(fd >= 0))
 
 395		fd_install(fd, newfile);
 
 
 396
 397	return fd;
 
 398}
 399EXPORT_SYMBOL(sock_map_fd);
 400
 401static struct socket *sock_from_file(struct file *file, int *err)
 
 
 
 
 
 
 
 402{
 403	if (file->f_op == &socket_file_ops)
 404		return file->private_data;	/* set in sock_map_fd */
 405
 406	*err = -ENOTSOCK;
 407	return NULL;
 408}
 
 409
 410/**
 411 *	sockfd_lookup - Go from a file number to its socket slot
 412 *	@fd: file handle
 413 *	@err: pointer to an error code return
 414 *
 415 *	The file handle passed in is locked and the socket it is bound
 416 *	too is returned. If an error occurs the err pointer is overwritten
 417 *	with a negative errno code and NULL is returned. The function checks
 418 *	for both invalid handles and passing a handle which is not a socket.
 419 *
 420 *	On a success the socket object pointer is returned.
 421 */
 422
 423struct socket *sockfd_lookup(int fd, int *err)
 424{
 425	struct file *file;
 426	struct socket *sock;
 427
 428	file = fget(fd);
 429	if (!file) {
 430		*err = -EBADF;
 431		return NULL;
 432	}
 433
 434	sock = sock_from_file(file, err);
 435	if (!sock)
 
 436		fput(file);
 
 437	return sock;
 438}
 439EXPORT_SYMBOL(sockfd_lookup);
 440
 441static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 442{
 443	struct file *file;
 444	struct socket *sock;
 445
 446	*err = -EBADF;
 447	file = fget_light(fd, fput_needed);
 448	if (file) {
 449		sock = sock_from_file(file, err);
 450		if (sock)
 451			return sock;
 452		fput_light(file, *fput_needed);
 
 
 453	}
 454	return NULL;
 455}
 456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457/**
 458 *	sock_alloc	-	allocate a socket
 459 *
 460 *	Allocate a new inode and socket object. The two are bound together
 461 *	and initialised. The socket is then returned. If we are out of inodes
 462 *	NULL is returned.
 463 */
 464
 465static struct socket *sock_alloc(void)
 466{
 467	struct inode *inode;
 468	struct socket *sock;
 469
 470	inode = new_inode_pseudo(sock_mnt->mnt_sb);
 471	if (!inode)
 472		return NULL;
 473
 474	sock = SOCKET_I(inode);
 475
 476	kmemcheck_annotate_bitfield(sock, type);
 477	inode->i_ino = get_next_ino();
 478	inode->i_mode = S_IFSOCK | S_IRWXUGO;
 479	inode->i_uid = current_fsuid();
 480	inode->i_gid = current_fsgid();
 
 481
 482	this_cpu_add(sockets_in_use, 1);
 483	return sock;
 484}
 
 485
 486/*
 487 *	In theory you can't get an open on this inode, but /proc provides
 488 *	a back door. Remember to keep it shut otherwise you'll let the
 489 *	creepy crawlies in.
 490 */
 491
 492static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 493{
 494	return -ENXIO;
 495}
 496
 497const struct file_operations bad_sock_fops = {
 498	.owner = THIS_MODULE,
 499	.open = sock_no_open,
 500	.llseek = noop_llseek,
 501};
 502
 503/**
 504 *	sock_release	-	close a socket
 505 *	@sock: socket to close
 506 *
 507 *	The socket is released from the protocol stack if it has a release
 508 *	callback, and the inode is then released if the socket is bound to
 509 *	an inode not a file.
 510 */
 511
 512void sock_release(struct socket *sock)
 513{
 514	if (sock->ops) {
 515		struct module *owner = sock->ops->owner;
 516
 
 
 517		sock->ops->release(sock);
 
 
 
 518		sock->ops = NULL;
 519		module_put(owner);
 520	}
 521
 522	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 523		printk(KERN_ERR "sock_release: fasync list not empty!\n");
 524
 525	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
 526		return;
 527
 528	this_cpu_sub(sockets_in_use, 1);
 529	if (!sock->file) {
 530		iput(SOCK_INODE(sock));
 531		return;
 532	}
 533	sock->file = NULL;
 534}
 535EXPORT_SYMBOL(sock_release);
 536
 537int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
 
 
 
 
 
 
 
 
 538{
 539	*tx_flags = 0;
 540	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 541		*tx_flags |= SKBTX_HW_TSTAMP;
 542	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 543		*tx_flags |= SKBTX_SW_TSTAMP;
 544	if (sock_flag(sk, SOCK_WIFI_STATUS))
 545		*tx_flags |= SKBTX_WIFI_STATUS;
 546	return 0;
 547}
 548EXPORT_SYMBOL(sock_tx_timestamp);
 549
 550static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
 551				       struct msghdr *msg, size_t size)
 552{
 553	struct sock_iocb *si = kiocb_to_siocb(iocb);
 554
 555	sock_update_classid(sock->sk);
 
 556
 557	sock_update_netprioidx(sock->sk);
 
 558
 559	si->sock = sock;
 560	si->scm = NULL;
 561	si->msg = msg;
 562	si->size = size;
 563
 564	return sock->ops->sendmsg(iocb, sock, msg, size);
 565}
 
 566
 567static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 568				 struct msghdr *msg, size_t size)
 
 
 
 569{
 570	int err = security_socket_sendmsg(sock, msg, size);
 571
 572	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
 
 
 573}
 574
 575int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 
 
 
 
 
 
 
 
 576{
 577	struct kiocb iocb;
 578	struct sock_iocb siocb;
 579	int ret;
 580
 581	init_sync_kiocb(&iocb, NULL);
 582	iocb.private = &siocb;
 583	ret = __sock_sendmsg(&iocb, sock, msg, size);
 584	if (-EIOCBQUEUED == ret)
 585		ret = wait_on_sync_kiocb(&iocb);
 586	return ret;
 587}
 588EXPORT_SYMBOL(sock_sendmsg);
 589
 590static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 591{
 592	struct kiocb iocb;
 593	struct sock_iocb siocb;
 594	int ret;
 595
 596	init_sync_kiocb(&iocb, NULL);
 597	iocb.private = &siocb;
 598	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
 599	if (-EIOCBQUEUED == ret)
 600		ret = wait_on_sync_kiocb(&iocb);
 601	return ret;
 602}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603
 604int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 605		   struct kvec *vec, size_t num, size_t size)
 606{
 607	mm_segment_t oldfs = get_fs();
 608	int result;
 
 
 609
 610	set_fs(KERNEL_DS);
 611	/*
 612	 * the following is safe, since for compiler definitions of kvec and
 613	 * iovec are identical, yielding the same in-core layout and alignment
 
 
 
 
 
 
 
 
 614	 */
 615	msg->msg_iov = (struct iovec *)vec;
 616	msg->msg_iovlen = num;
 617	result = sock_sendmsg(sock, msg, size);
 618	set_fs(oldfs);
 619	return result;
 
 
 
 
 
 
 
 
 
 620}
 621EXPORT_SYMBOL(kernel_sendmsg);
 622
 623static int ktime2ts(ktime_t kt, struct timespec *ts)
 624{
 625	if (kt.tv64) {
 626		*ts = ktime_to_timespec(kt);
 627		return 1;
 628	} else {
 629		return 0;
 630	}
 
 
 
 
 
 
 
 
 
 
 
 631}
 632
 633/*
 634 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 635 */
 636void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 637	struct sk_buff *skb)
 638{
 639	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 640	struct timespec ts[3];
 641	int empty = 1;
 
 
 642	struct skb_shared_hwtstamps *shhwtstamps =
 643		skb_hwtstamps(skb);
 644
 645	/* Race occurred between timestamp enabling and packet
 646	   receiving.  Fill in the current time for now. */
 647	if (need_software_tstamp && skb->tstamp.tv64 == 0)
 648		__net_timestamp(skb);
 
 
 649
 650	if (need_software_tstamp) {
 651		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 652			struct timeval tv;
 653			skb_get_timestamp(skb, &tv);
 654			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 655				 sizeof(tv), &tv);
 
 
 
 
 
 
 
 
 
 656		} else {
 657			skb_get_timestampns(skb, &ts[0]);
 658			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 659				 sizeof(ts[0]), &ts[0]);
 
 
 
 
 
 
 
 
 
 
 660		}
 661	}
 662
 
 
 
 
 
 
 
 
 
 
 
 
 
 663
 664	memset(ts, 0, sizeof(ts));
 665	if (skb->tstamp.tv64 &&
 666	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
 667		skb_get_timestampns(skb, ts + 0);
 668		empty = 0;
 669	}
 670	if (shhwtstamps) {
 671		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
 672		    ktime2ts(shhwtstamps->syststamp, ts + 1))
 673			empty = 0;
 674		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
 675		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
 676			empty = 0;
 
 
 
 677	}
 678	if (!empty)
 679		put_cmsg(msg, SOL_SOCKET,
 680			 SCM_TIMESTAMPING, sizeof(ts), &ts);
 681}
 682EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 683
 684void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 685	struct sk_buff *skb)
 686{
 687	int ack;
 688
 689	if (!sock_flag(sk, SOCK_WIFI_STATUS))
 690		return;
 691	if (!skb->wifi_acked_valid)
 692		return;
 693
 694	ack = skb->wifi_acked;
 695
 696	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 697}
 698EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 699
 700static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 701				   struct sk_buff *skb)
 702{
 703	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
 704		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 705			sizeof(__u32), &skb->dropcount);
 706}
 707
 708void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 709	struct sk_buff *skb)
 710{
 711	sock_recv_timestamp(msg, sk, skb);
 712	sock_recv_drops(msg, sk, skb);
 713}
 714EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 715
 716static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
 717				       struct msghdr *msg, size_t size, int flags)
 718{
 719	struct sock_iocb *si = kiocb_to_siocb(iocb);
 720
 721	sock_update_classid(sock->sk);
 722
 723	si->sock = sock;
 724	si->scm = NULL;
 725	si->msg = msg;
 726	si->size = size;
 727	si->flags = flags;
 728
 729	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 730}
 731
 732static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 733				 struct msghdr *msg, size_t size, int flags)
 
 
 
 
 
 
 
 
 734{
 735	int err = security_socket_recvmsg(sock, msg, size, flags);
 736
 737	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
 738}
 739
 740int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 741		 size_t size, int flags)
 742{
 743	struct kiocb iocb;
 744	struct sock_iocb siocb;
 745	int ret;
 746
 747	init_sync_kiocb(&iocb, NULL);
 748	iocb.private = &siocb;
 749	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 750	if (-EIOCBQUEUED == ret)
 751		ret = wait_on_sync_kiocb(&iocb);
 752	return ret;
 753}
 754EXPORT_SYMBOL(sock_recvmsg);
 755
 756static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 757			      size_t size, int flags)
 758{
 759	struct kiocb iocb;
 760	struct sock_iocb siocb;
 761	int ret;
 762
 763	init_sync_kiocb(&iocb, NULL);
 764	iocb.private = &siocb;
 765	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
 766	if (-EIOCBQUEUED == ret)
 767		ret = wait_on_sync_kiocb(&iocb);
 768	return ret;
 769}
 770
 771/**
 772 * kernel_recvmsg - Receive a message from a socket (kernel space)
 773 * @sock:       The socket to receive the message from
 774 * @msg:        Received message
 775 * @vec:        Input s/g array for message data
 776 * @num:        Size of input s/g array
 777 * @size:       Number of bytes to read
 778 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 779 *
 780 * On return the msg structure contains the scatter/gather array passed in the
 781 * vec argument. The array is modified so that it consists of the unfilled
 782 * portion of the original array.
 783 *
 784 * The returned value is the total number of bytes received, or an error.
 785 */
 
 786int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 787		   struct kvec *vec, size_t num, size_t size, int flags)
 788{
 789	mm_segment_t oldfs = get_fs();
 790	int result;
 791
 792	set_fs(KERNEL_DS);
 793	/*
 794	 * the following is safe, since for compiler definitions of kvec and
 795	 * iovec are identical, yielding the same in-core layout and alignment
 796	 */
 797	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 798	result = sock_recvmsg(sock, msg, size, flags);
 799	set_fs(oldfs);
 800	return result;
 801}
 802EXPORT_SYMBOL(kernel_recvmsg);
 803
 804static void sock_aio_dtor(struct kiocb *iocb)
 805{
 806	kfree(iocb->private);
 807}
 808
 809static ssize_t sock_sendpage(struct file *file, struct page *page,
 810			     int offset, size_t size, loff_t *ppos, int more)
 811{
 812	struct socket *sock;
 813	int flags;
 814
 815	sock = file->private_data;
 816
 817	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 818	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 819	flags |= more;
 820
 821	return kernel_sendpage(sock, page, offset, size, flags);
 822}
 823
 824static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 825				struct pipe_inode_info *pipe, size_t len,
 826				unsigned int flags)
 827{
 828	struct socket *sock = file->private_data;
 829
 830	if (unlikely(!sock->ops->splice_read))
 831		return -EINVAL;
 832
 833	sock_update_classid(sock->sk);
 834
 835	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 836}
 837
 838static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 839					 struct sock_iocb *siocb)
 840{
 841	if (!is_sync_kiocb(iocb)) {
 842		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
 843		if (!siocb)
 844			return NULL;
 845		iocb->ki_dtor = sock_aio_dtor;
 846	}
 847
 848	siocb->kiocb = iocb;
 849	iocb->private = siocb;
 850	return siocb;
 851}
 852
 853static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 854		struct file *file, const struct iovec *iov,
 855		unsigned long nr_segs)
 856{
 
 857	struct socket *sock = file->private_data;
 858	size_t size = 0;
 859	int i;
 860
 861	for (i = 0; i < nr_segs; i++)
 862		size += iov[i].iov_len;
 863
 864	msg->msg_name = NULL;
 865	msg->msg_namelen = 0;
 866	msg->msg_control = NULL;
 867	msg->msg_controllen = 0;
 868	msg->msg_iov = (struct iovec *)iov;
 869	msg->msg_iovlen = nr_segs;
 870	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 871
 872	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 873}
 874
 875static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 876				unsigned long nr_segs, loff_t pos)
 877{
 878	struct sock_iocb siocb, *x;
 879
 880	if (pos != 0)
 881		return -ESPIPE;
 882
 883	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
 884		return 0;
 885
 886
 887	x = alloc_sock_iocb(iocb, &siocb);
 888	if (!x)
 889		return -ENOMEM;
 890	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 891}
 892
 893static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 894			struct file *file, const struct iovec *iov,
 895			unsigned long nr_segs)
 896{
 
 897	struct socket *sock = file->private_data;
 898	size_t size = 0;
 899	int i;
 
 
 
 
 900
 901	for (i = 0; i < nr_segs; i++)
 902		size += iov[i].iov_len;
 903
 904	msg->msg_name = NULL;
 905	msg->msg_namelen = 0;
 906	msg->msg_control = NULL;
 907	msg->msg_controllen = 0;
 908	msg->msg_iov = (struct iovec *)iov;
 909	msg->msg_iovlen = nr_segs;
 910	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 911	if (sock->type == SOCK_SEQPACKET)
 912		msg->msg_flags |= MSG_EOR;
 913
 914	return __sock_sendmsg(iocb, sock, msg, size);
 915}
 916
 917static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 918			  unsigned long nr_segs, loff_t pos)
 919{
 920	struct sock_iocb siocb, *x;
 921
 922	if (pos != 0)
 923		return -ESPIPE;
 924
 925	x = alloc_sock_iocb(iocb, &siocb);
 926	if (!x)
 927		return -ENOMEM;
 928
 929	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 
 
 930}
 931
 932/*
 933 * Atomic setting of ioctl hooks to avoid race
 934 * with module unload.
 935 */
 936
 937static DEFINE_MUTEX(br_ioctl_mutex);
 938static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 939
 940void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 941{
 942	mutex_lock(&br_ioctl_mutex);
 943	br_ioctl_hook = hook;
 944	mutex_unlock(&br_ioctl_mutex);
 945}
 946EXPORT_SYMBOL(brioctl_set);
 947
 948static DEFINE_MUTEX(vlan_ioctl_mutex);
 949static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 950
 951void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 952{
 953	mutex_lock(&vlan_ioctl_mutex);
 954	vlan_ioctl_hook = hook;
 955	mutex_unlock(&vlan_ioctl_mutex);
 956}
 957EXPORT_SYMBOL(vlan_ioctl_set);
 958
 959static DEFINE_MUTEX(dlci_ioctl_mutex);
 960static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 961
 962void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 963{
 964	mutex_lock(&dlci_ioctl_mutex);
 965	dlci_ioctl_hook = hook;
 966	mutex_unlock(&dlci_ioctl_mutex);
 967}
 968EXPORT_SYMBOL(dlci_ioctl_set);
 969
 970static long sock_do_ioctl(struct net *net, struct socket *sock,
 971				 unsigned int cmd, unsigned long arg)
 972{
 973	int err;
 974	void __user *argp = (void __user *)arg;
 975
 976	err = sock->ops->ioctl(sock, cmd, arg);
 977
 978	/*
 979	 * If this ioctl is unknown try to hand it down
 980	 * to the NIC driver.
 981	 */
 982	if (err == -ENOIOCTLCMD)
 983		err = dev_ioctl(net, cmd, argp);
 984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985	return err;
 986}
 987
 988/*
 989 *	With an ioctl, arg may well be a user mode pointer, but we don't know
 990 *	what to do with it - that's up to the protocol still.
 991 */
 992
 993static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 994{
 995	struct socket *sock;
 996	struct sock *sk;
 997	void __user *argp = (void __user *)arg;
 998	int pid, err;
 999	struct net *net;
1000
1001	sock = file->private_data;
1002	sk = sock->sk;
1003	net = sock_net(sk);
1004	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1005		err = dev_ioctl(net, cmd, argp);
 
 
 
 
 
 
 
1006	} else
1007#ifdef CONFIG_WEXT_CORE
1008	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1009		err = dev_ioctl(net, cmd, argp);
1010	} else
1011#endif
1012		switch (cmd) {
1013		case FIOSETOWN:
1014		case SIOCSPGRP:
1015			err = -EFAULT;
1016			if (get_user(pid, (int __user *)argp))
1017				break;
1018			err = f_setown(sock->file, pid, 1);
1019			break;
1020		case FIOGETOWN:
1021		case SIOCGPGRP:
1022			err = put_user(f_getown(sock->file),
1023				       (int __user *)argp);
1024			break;
1025		case SIOCGIFBR:
1026		case SIOCSIFBR:
1027		case SIOCBRADDBR:
1028		case SIOCBRDELBR:
1029			err = -ENOPKG;
1030			if (!br_ioctl_hook)
1031				request_module("bridge");
1032
1033			mutex_lock(&br_ioctl_mutex);
1034			if (br_ioctl_hook)
1035				err = br_ioctl_hook(net, cmd, argp);
1036			mutex_unlock(&br_ioctl_mutex);
1037			break;
1038		case SIOCGIFVLAN:
1039		case SIOCSIFVLAN:
1040			err = -ENOPKG;
1041			if (!vlan_ioctl_hook)
1042				request_module("8021q");
1043
1044			mutex_lock(&vlan_ioctl_mutex);
1045			if (vlan_ioctl_hook)
1046				err = vlan_ioctl_hook(net, argp);
1047			mutex_unlock(&vlan_ioctl_mutex);
1048			break;
1049		case SIOCADDDLCI:
1050		case SIOCDELDLCI:
1051			err = -ENOPKG;
1052			if (!dlci_ioctl_hook)
1053				request_module("dlci");
1054
1055			mutex_lock(&dlci_ioctl_mutex);
1056			if (dlci_ioctl_hook)
1057				err = dlci_ioctl_hook(cmd, argp);
1058			mutex_unlock(&dlci_ioctl_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059			break;
1060		default:
1061			err = sock_do_ioctl(net, sock, cmd, arg);
1062			break;
1063		}
1064	return err;
1065}
1066
 
 
 
 
 
 
 
 
 
 
 
 
 
1067int sock_create_lite(int family, int type, int protocol, struct socket **res)
1068{
1069	int err;
1070	struct socket *sock = NULL;
1071
1072	err = security_socket_create(family, type, protocol, 1);
1073	if (err)
1074		goto out;
1075
1076	sock = sock_alloc();
1077	if (!sock) {
1078		err = -ENOMEM;
1079		goto out;
1080	}
1081
1082	sock->type = type;
1083	err = security_socket_post_create(sock, family, type, protocol, 1);
1084	if (err)
1085		goto out_release;
1086
1087out:
1088	*res = sock;
1089	return err;
1090out_release:
1091	sock_release(sock);
1092	sock = NULL;
1093	goto out;
1094}
1095EXPORT_SYMBOL(sock_create_lite);
1096
1097/* No kernel lock held - perfect */
1098static unsigned int sock_poll(struct file *file, poll_table *wait)
1099{
1100	struct socket *sock;
 
 
 
 
 
 
 
 
 
 
 
 
 
1101
1102	/*
1103	 *      We can't return errors to poll, so it's either yes or no.
1104	 */
1105	sock = file->private_data;
1106	return sock->ops->poll(file, sock, wait);
1107}
1108
1109static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1110{
1111	struct socket *sock = file->private_data;
1112
1113	return sock->ops->mmap(file, sock, vma);
1114}
1115
1116static int sock_close(struct inode *inode, struct file *filp)
1117{
1118	/*
1119	 *      It was possible the inode is NULL we were
1120	 *      closing an unfinished socket.
1121	 */
1122
1123	if (!inode) {
1124		printk(KERN_DEBUG "sock_close: NULL inode\n");
1125		return 0;
1126	}
1127	sock_release(SOCKET_I(inode));
1128	return 0;
1129}
1130
1131/*
1132 *	Update the socket async list
1133 *
1134 *	Fasync_list locking strategy.
1135 *
1136 *	1. fasync_list is modified only under process context socket lock
1137 *	   i.e. under semaphore.
1138 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1139 *	   or under socket lock
1140 */
1141
1142static int sock_fasync(int fd, struct file *filp, int on)
1143{
1144	struct socket *sock = filp->private_data;
1145	struct sock *sk = sock->sk;
1146	struct socket_wq *wq;
1147
1148	if (sk == NULL)
1149		return -EINVAL;
1150
1151	lock_sock(sk);
1152	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1153	fasync_helper(fd, filp, on, &wq->fasync_list);
1154
1155	if (!wq->fasync_list)
1156		sock_reset_flag(sk, SOCK_FASYNC);
1157	else
1158		sock_set_flag(sk, SOCK_FASYNC);
1159
1160	release_sock(sk);
1161	return 0;
1162}
1163
1164/* This function may be called only under socket lock or callback_lock or rcu_lock */
1165
1166int sock_wake_async(struct socket *sock, int how, int band)
1167{
1168	struct socket_wq *wq;
 
1169
1170	if (!sock)
1171		return -1;
1172	rcu_read_lock();
1173	wq = rcu_dereference(sock->wq);
1174	if (!wq || !wq->fasync_list) {
1175		rcu_read_unlock();
1176		return -1;
1177	}
1178	switch (how) {
1179	case SOCK_WAKE_WAITD:
1180		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1181			break;
1182		goto call_kill;
1183	case SOCK_WAKE_SPACE:
1184		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1185			break;
1186		/* fall through */
1187	case SOCK_WAKE_IO:
1188call_kill:
1189		kill_fasync(&wq->fasync_list, SIGIO, band);
1190		break;
1191	case SOCK_WAKE_URG:
1192		kill_fasync(&wq->fasync_list, SIGURG, band);
1193	}
1194	rcu_read_unlock();
1195	return 0;
1196}
1197EXPORT_SYMBOL(sock_wake_async);
1198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199int __sock_create(struct net *net, int family, int type, int protocol,
1200			 struct socket **res, int kern)
1201{
1202	int err;
1203	struct socket *sock;
1204	const struct net_proto_family *pf;
1205
1206	/*
1207	 *      Check protocol is in range
1208	 */
1209	if (family < 0 || family >= NPROTO)
1210		return -EAFNOSUPPORT;
1211	if (type < 0 || type >= SOCK_MAX)
1212		return -EINVAL;
1213
1214	/* Compatibility.
1215
1216	   This uglymoron is moved from INET layer to here to avoid
1217	   deadlock in module load.
1218	 */
1219	if (family == PF_INET && type == SOCK_PACKET) {
1220		static int warned;
1221		if (!warned) {
1222			warned = 1;
1223			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1224			       current->comm);
1225		}
1226		family = PF_PACKET;
1227	}
1228
1229	err = security_socket_create(family, type, protocol, kern);
1230	if (err)
1231		return err;
1232
1233	/*
1234	 *	Allocate the socket and allow the family to set things up. if
1235	 *	the protocol is 0, the family is instructed to select an appropriate
1236	 *	default.
1237	 */
1238	sock = sock_alloc();
1239	if (!sock) {
1240		net_warn_ratelimited("socket: no more sockets\n");
1241		return -ENFILE;	/* Not exactly a match, but its the
1242				   closest posix thing */
1243	}
1244
1245	sock->type = type;
1246
1247#ifdef CONFIG_MODULES
1248	/* Attempt to load a protocol module if the find failed.
1249	 *
1250	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1251	 * requested real, full-featured networking support upon configuration.
1252	 * Otherwise module support will break!
1253	 */
1254	if (rcu_access_pointer(net_families[family]) == NULL)
1255		request_module("net-pf-%d", family);
1256#endif
1257
1258	rcu_read_lock();
1259	pf = rcu_dereference(net_families[family]);
1260	err = -EAFNOSUPPORT;
1261	if (!pf)
1262		goto out_release;
1263
1264	/*
1265	 * We will call the ->create function, that possibly is in a loadable
1266	 * module, so we have to bump that loadable module refcnt first.
1267	 */
1268	if (!try_module_get(pf->owner))
1269		goto out_release;
1270
1271	/* Now protected by module ref count */
1272	rcu_read_unlock();
1273
1274	err = pf->create(net, sock, protocol, kern);
1275	if (err < 0)
1276		goto out_module_put;
1277
1278	/*
1279	 * Now to bump the refcnt of the [loadable] module that owns this
1280	 * socket at sock_release time we decrement its refcnt.
1281	 */
1282	if (!try_module_get(sock->ops->owner))
1283		goto out_module_busy;
1284
1285	/*
1286	 * Now that we're done with the ->create function, the [loadable]
1287	 * module can have its refcnt decremented
1288	 */
1289	module_put(pf->owner);
1290	err = security_socket_post_create(sock, family, type, protocol, kern);
1291	if (err)
1292		goto out_sock_release;
1293	*res = sock;
1294
1295	return 0;
1296
1297out_module_busy:
1298	err = -EAFNOSUPPORT;
1299out_module_put:
1300	sock->ops = NULL;
1301	module_put(pf->owner);
1302out_sock_release:
1303	sock_release(sock);
1304	return err;
1305
1306out_release:
1307	rcu_read_unlock();
1308	goto out_sock_release;
1309}
1310EXPORT_SYMBOL(__sock_create);
1311
 
 
 
 
 
 
 
 
 
 
 
1312int sock_create(int family, int type, int protocol, struct socket **res)
1313{
1314	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1315}
1316EXPORT_SYMBOL(sock_create);
1317
1318int sock_create_kern(int family, int type, int protocol, struct socket **res)
 
 
 
 
 
 
 
 
 
 
 
 
1319{
1320	return __sock_create(&init_net, family, type, protocol, res, 1);
1321}
1322EXPORT_SYMBOL(sock_create_kern);
1323
1324SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1325{
1326	int retval;
1327	struct socket *sock;
1328	int flags;
1329
1330	/* Check the SOCK_* constants for consistency.  */
1331	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1332	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1333	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1334	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1335
1336	flags = type & ~SOCK_TYPE_MASK;
1337	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1338		return -EINVAL;
1339	type &= SOCK_TYPE_MASK;
1340
1341	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1342		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1343
1344	retval = sock_create(family, type, protocol, &sock);
1345	if (retval < 0)
1346		goto out;
1347
1348	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1349	if (retval < 0)
1350		goto out_release;
1351
1352out:
1353	/* It may be already another descriptor 8) Not kernel problem. */
1354	return retval;
1355
1356out_release:
1357	sock_release(sock);
1358	return retval;
1359}
1360
1361/*
1362 *	Create a pair of connected sockets.
1363 */
1364
1365SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1366		int __user *, usockvec)
1367{
1368	struct socket *sock1, *sock2;
1369	int fd1, fd2, err;
1370	struct file *newfile1, *newfile2;
1371	int flags;
1372
1373	flags = type & ~SOCK_TYPE_MASK;
1374	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1375		return -EINVAL;
1376	type &= SOCK_TYPE_MASK;
1377
1378	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1379		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1380
1381	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382	 * Obtain the first socket and check if the underlying protocol
1383	 * supports the socketpair call.
1384	 */
1385
1386	err = sock_create(family, type, protocol, &sock1);
1387	if (err < 0)
1388		goto out;
1389
1390	err = sock_create(family, type, protocol, &sock2);
1391	if (err < 0)
1392		goto out_release_1;
 
 
 
 
 
 
 
 
 
1393
1394	err = sock1->ops->socketpair(sock1, sock2);
1395	if (err < 0)
1396		goto out_release_both;
 
 
 
1397
1398	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1399	if (unlikely(fd1 < 0)) {
1400		err = fd1;
1401		goto out_release_both;
 
1402	}
1403
1404	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1405	if (unlikely(fd2 < 0)) {
1406		err = fd2;
1407		fput(newfile1);
1408		put_unused_fd(fd1);
1409		sock_release(sock2);
1410		goto out;
1411	}
1412
1413	audit_fd_pair(fd1, fd2);
 
1414	fd_install(fd1, newfile1);
1415	fd_install(fd2, newfile2);
1416	/* fd1 and fd2 may be already another descriptors.
1417	 * Not kernel problem.
1418	 */
1419
1420	err = put_user(fd1, &usockvec[0]);
1421	if (!err)
1422		err = put_user(fd2, &usockvec[1]);
1423	if (!err)
1424		return 0;
1425
1426	sys_close(fd2);
1427	sys_close(fd1);
1428	return err;
 
1429
1430out_release_both:
1431	sock_release(sock2);
1432out_release_1:
1433	sock_release(sock1);
1434out:
1435	return err;
1436}
1437
1438/*
1439 *	Bind a name to a socket. Nothing much to do here since it's
1440 *	the protocol's responsibility to handle the local address.
1441 *
1442 *	We move the socket address to kernel space before we call
1443 *	the protocol layer (having also checked the address is ok).
1444 */
1445
1446SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1447{
1448	struct socket *sock;
1449	struct sockaddr_storage address;
1450	int err, fput_needed;
1451
1452	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1453	if (sock) {
1454		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1455		if (err >= 0) {
1456			err = security_socket_bind(sock,
1457						   (struct sockaddr *)&address,
1458						   addrlen);
1459			if (!err)
1460				err = sock->ops->bind(sock,
1461						      (struct sockaddr *)
1462						      &address, addrlen);
1463		}
1464		fput_light(sock->file, fput_needed);
1465	}
1466	return err;
1467}
1468
 
 
 
 
 
1469/*
1470 *	Perform a listen. Basically, we allow the protocol to do anything
1471 *	necessary for a listen, and if that works, we mark the socket as
1472 *	ready for listening.
1473 */
1474
1475SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1476{
1477	struct socket *sock;
1478	int err, fput_needed;
1479	int somaxconn;
1480
1481	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1482	if (sock) {
1483		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1484		if ((unsigned int)backlog > somaxconn)
1485			backlog = somaxconn;
1486
1487		err = security_socket_listen(sock, backlog);
1488		if (!err)
1489			err = sock->ops->listen(sock, backlog);
1490
1491		fput_light(sock->file, fput_needed);
1492	}
1493	return err;
1494}
1495
1496/*
1497 *	For accept, we attempt to create a new socket, set up the link
1498 *	with the client, wake up the client, then return the new
1499 *	connected fd. We collect the address of the connector in kernel
1500 *	space and move it to user at the very end. This is unclean because
1501 *	we open the socket then return an error.
1502 *
1503 *	1003.1g adds the ability to recvmsg() to query connection pending
1504 *	status to recvmsg. We need to add that support in a way thats
1505 *	clean when we restucture accept also.
1506 */
1507
1508SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1509		int __user *, upeer_addrlen, int, flags)
 
 
1510{
1511	struct socket *sock, *newsock;
1512	struct file *newfile;
1513	int err, len, newfd, fput_needed;
1514	struct sockaddr_storage address;
1515
1516	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1517		return -EINVAL;
1518
1519	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1520		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1521
1522	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1523	if (!sock)
 
1524		goto out;
 
1525
1526	err = -ENFILE;
1527	newsock = sock_alloc();
1528	if (!newsock)
1529		goto out_put;
1530
1531	newsock->type = sock->type;
1532	newsock->ops = sock->ops;
1533
1534	/*
1535	 * We don't need try_module_get here, as the listening socket (sock)
1536	 * has the protocol module (sock->ops->owner) held.
1537	 */
1538	__module_get(newsock->ops->owner);
1539
1540	newfd = sock_alloc_file(newsock, &newfile, flags);
1541	if (unlikely(newfd < 0)) {
1542		err = newfd;
1543		sock_release(newsock);
1544		goto out_put;
 
 
 
 
 
 
1545	}
1546
1547	err = security_socket_accept(sock, newsock);
1548	if (err)
1549		goto out_fd;
1550
1551	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
 
1552	if (err < 0)
1553		goto out_fd;
1554
1555	if (upeer_sockaddr) {
1556		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1557					  &len, 2) < 0) {
 
1558			err = -ECONNABORTED;
1559			goto out_fd;
1560		}
1561		err = move_addr_to_user(&address,
1562					len, upeer_sockaddr, upeer_addrlen);
1563		if (err < 0)
1564			goto out_fd;
1565	}
1566
1567	/* File flags are not inherited via accept() unlike another OSes. */
1568
1569	fd_install(newfd, newfile);
1570	err = newfd;
1571
1572out_put:
1573	fput_light(sock->file, fput_needed);
1574out:
1575	return err;
1576out_fd:
1577	fput(newfile);
1578	put_unused_fd(newfd);
1579	goto out_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580}
1581
1582SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1583		int __user *, upeer_addrlen)
1584{
1585	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1586}
1587
1588/*
1589 *	Attempt to connect to a socket with the server address.  The address
1590 *	is in user space so we verify it is OK and move it to kernel space.
1591 *
1592 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1593 *	break bindings
1594 *
1595 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1596 *	other SEQPACKET protocols that take time to connect() as it doesn't
1597 *	include the -EINPROGRESS status for such sockets.
1598 */
1599
1600SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1601		int, addrlen)
1602{
1603	struct socket *sock;
1604	struct sockaddr_storage address;
1605	int err, fput_needed;
1606
1607	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1608	if (!sock)
 
1609		goto out;
1610	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1611	if (err < 0)
1612		goto out_put;
1613
1614	err =
1615	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1616	if (err)
1617		goto out_put;
1618
1619	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1620				 sock->file->f_flags);
1621out_put:
1622	fput_light(sock->file, fput_needed);
1623out:
1624	return err;
1625}
1626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627/*
1628 *	Get the local address ('name') of a socket object. Move the obtained
1629 *	name to user space.
1630 */
1631
1632SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1633		int __user *, usockaddr_len)
1634{
1635	struct socket *sock;
1636	struct sockaddr_storage address;
1637	int len, err, fput_needed;
1638
1639	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640	if (!sock)
1641		goto out;
1642
1643	err = security_socket_getsockname(sock);
1644	if (err)
1645		goto out_put;
1646
1647	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1648	if (err)
1649		goto out_put;
1650	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
 
1651
1652out_put:
1653	fput_light(sock->file, fput_needed);
1654out:
1655	return err;
1656}
1657
 
 
 
 
 
 
1658/*
1659 *	Get the remote address ('name') of a socket object. Move the obtained
1660 *	name to user space.
1661 */
1662
1663SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1664		int __user *, usockaddr_len)
1665{
1666	struct socket *sock;
1667	struct sockaddr_storage address;
1668	int len, err, fput_needed;
1669
1670	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1671	if (sock != NULL) {
1672		err = security_socket_getpeername(sock);
1673		if (err) {
1674			fput_light(sock->file, fput_needed);
1675			return err;
1676		}
1677
1678		err =
1679		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1680				       1);
1681		if (!err)
1682			err = move_addr_to_user(&address, len, usockaddr,
1683						usockaddr_len);
1684		fput_light(sock->file, fput_needed);
1685	}
1686	return err;
1687}
1688
 
 
 
 
 
 
1689/*
1690 *	Send a datagram to a given address. We move the address into kernel
1691 *	space and check the user space data area is readable before invoking
1692 *	the protocol.
1693 */
1694
1695SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1696		unsigned int, flags, struct sockaddr __user *, addr,
1697		int, addr_len)
1698{
1699	struct socket *sock;
1700	struct sockaddr_storage address;
1701	int err;
1702	struct msghdr msg;
1703	struct iovec iov;
1704	int fput_needed;
1705
1706	if (len > INT_MAX)
1707		len = INT_MAX;
 
1708	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1709	if (!sock)
1710		goto out;
1711
1712	iov.iov_base = buff;
1713	iov.iov_len = len;
1714	msg.msg_name = NULL;
1715	msg.msg_iov = &iov;
1716	msg.msg_iovlen = 1;
1717	msg.msg_control = NULL;
1718	msg.msg_controllen = 0;
1719	msg.msg_namelen = 0;
1720	if (addr) {
1721		err = move_addr_to_kernel(addr, addr_len, &address);
1722		if (err < 0)
1723			goto out_put;
1724		msg.msg_name = (struct sockaddr *)&address;
1725		msg.msg_namelen = addr_len;
1726	}
1727	if (sock->file->f_flags & O_NONBLOCK)
1728		flags |= MSG_DONTWAIT;
1729	msg.msg_flags = flags;
1730	err = sock_sendmsg(sock, &msg, len);
1731
1732out_put:
1733	fput_light(sock->file, fput_needed);
1734out:
1735	return err;
1736}
1737
 
 
 
 
 
 
 
1738/*
1739 *	Send a datagram down a socket.
1740 */
1741
1742SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1743		unsigned int, flags)
1744{
1745	return sys_sendto(fd, buff, len, flags, NULL, 0);
1746}
1747
1748/*
1749 *	Receive a frame from the socket and optionally record the address of the
1750 *	sender. We verify the buffers are writable and if needed move the
1751 *	sender address from kernel to user space.
1752 */
1753
1754SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1755		unsigned int, flags, struct sockaddr __user *, addr,
1756		int __user *, addr_len)
1757{
1758	struct socket *sock;
1759	struct iovec iov;
1760	struct msghdr msg;
1761	struct sockaddr_storage address;
1762	int err, err2;
1763	int fput_needed;
1764
1765	if (size > INT_MAX)
1766		size = INT_MAX;
 
1767	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1768	if (!sock)
1769		goto out;
1770
1771	msg.msg_control = NULL;
1772	msg.msg_controllen = 0;
1773	msg.msg_iovlen = 1;
1774	msg.msg_iov = &iov;
1775	iov.iov_len = size;
1776	iov.iov_base = ubuf;
1777	msg.msg_name = (struct sockaddr *)&address;
1778	msg.msg_namelen = sizeof(address);
1779	if (sock->file->f_flags & O_NONBLOCK)
1780		flags |= MSG_DONTWAIT;
1781	err = sock_recvmsg(sock, &msg, size, flags);
1782
1783	if (err >= 0 && addr != NULL) {
1784		err2 = move_addr_to_user(&address,
1785					 msg.msg_namelen, addr, addr_len);
1786		if (err2 < 0)
1787			err = err2;
1788	}
1789
1790	fput_light(sock->file, fput_needed);
1791out:
1792	return err;
1793}
1794
 
 
 
 
 
 
 
1795/*
1796 *	Receive a datagram from a socket.
1797 */
1798
1799asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1800			 unsigned int flags)
1801{
1802	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
1803}
1804
1805/*
1806 *	Set a socket option. Because we don't know the option lengths we have
1807 *	to pass the user mode parameter for the protocols to sort out.
1808 */
1809
1810SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1811		char __user *, optval, int, optlen)
1812{
 
 
1813	int err, fput_needed;
1814	struct socket *sock;
1815
1816	if (optlen < 0)
1817		return -EINVAL;
1818
1819	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1820	if (sock != NULL) {
1821		err = security_socket_setsockopt(sock, level, optname);
1822		if (err)
1823			goto out_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
1824
1825		if (level == SOL_SOCKET)
1826			err =
1827			    sock_setsockopt(sock, level, optname, optval,
 
 
 
 
 
1828					    optlen);
1829		else
1830			err =
1831			    sock->ops->setsockopt(sock, level, optname, optval,
1832						  optlen);
1833out_put:
1834		fput_light(sock->file, fput_needed);
1835	}
1836	return err;
1837}
1838
 
 
 
 
 
 
 
 
 
1839/*
1840 *	Get a socket option. Because we don't know the option lengths we have
1841 *	to pass a user mode parameter for the protocols to sort out.
1842 */
1843
1844SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1845		char __user *, optval, int __user *, optlen)
1846{
1847	int err, fput_needed;
1848	struct socket *sock;
 
1849
1850	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1851	if (sock != NULL) {
1852		err = security_socket_getsockopt(sock, level, optname);
1853		if (err)
1854			goto out_put;
 
 
 
 
 
1855
1856		if (level == SOL_SOCKET)
1857			err =
1858			    sock_getsockopt(sock, level, optname, optval,
 
 
 
1859					    optlen);
1860		else
1861			err =
1862			    sock->ops->getsockopt(sock, level, optname, optval,
1863						  optlen);
 
1864out_put:
1865		fput_light(sock->file, fput_needed);
1866	}
1867	return err;
1868}
1869
 
 
 
 
 
 
1870/*
1871 *	Shutdown a socket.
1872 */
1873
1874SYSCALL_DEFINE2(shutdown, int, fd, int, how)
 
 
 
 
 
 
 
 
 
 
 
1875{
1876	int err, fput_needed;
1877	struct socket *sock;
1878
1879	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1880	if (sock != NULL) {
1881		err = security_socket_shutdown(sock, how);
1882		if (!err)
1883			err = sock->ops->shutdown(sock, how);
1884		fput_light(sock->file, fput_needed);
1885	}
1886	return err;
1887}
1888
 
 
 
 
 
1889/* A couple of helpful macros for getting the address of the 32/64 bit
1890 * fields which are the same type (int / unsigned) on our platforms.
1891 */
1892#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1893#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1894#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1895
1896struct used_address {
1897	struct sockaddr_storage name;
1898	unsigned int name_len;
1899};
1900
1901static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1902			 struct msghdr *msg_sys, unsigned int flags,
1903			 struct used_address *used_address)
 
1904{
1905	struct compat_msghdr __user *msg_compat =
1906	    (struct compat_msghdr __user *)msg;
1907	struct sockaddr_storage address;
1908	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1909	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1910	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1911	/* 20 is size of ipv6_pktinfo */
1912	unsigned char *ctl_buf = ctl;
1913	int err, ctl_len, total_len;
1914
1915	err = -EFAULT;
1916	if (MSG_CMSG_COMPAT & flags) {
1917		if (get_compat_msghdr(msg_sys, msg_compat))
1918			return -EFAULT;
1919	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1920		return -EFAULT;
1921
1922	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1923		err = -EMSGSIZE;
1924		if (msg_sys->msg_iovlen > UIO_MAXIOV)
1925			goto out;
1926		err = -ENOMEM;
1927		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1928			      GFP_KERNEL);
1929		if (!iov)
1930			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1931	}
1932
1933	/* This will also move the address data into kernel space */
1934	if (MSG_CMSG_COMPAT & flags) {
1935		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1936	} else
1937		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1938	if (err < 0)
1939		goto out_freeiov;
1940	total_len = err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1941
1942	err = -ENOBUFS;
1943
1944	if (msg_sys->msg_controllen > INT_MAX)
1945		goto out_freeiov;
 
1946	ctl_len = msg_sys->msg_controllen;
1947	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1948		err =
1949		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1950						     sizeof(ctl));
1951		if (err)
1952			goto out_freeiov;
1953		ctl_buf = msg_sys->msg_control;
1954		ctl_len = msg_sys->msg_controllen;
1955	} else if (ctl_len) {
 
 
1956		if (ctl_len > sizeof(ctl)) {
1957			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1958			if (ctl_buf == NULL)
1959				goto out_freeiov;
1960		}
1961		err = -EFAULT;
1962		/*
1963		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1964		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1965		 * checking falls down on this.
1966		 */
1967		if (copy_from_user(ctl_buf,
1968				   (void __user __force *)msg_sys->msg_control,
1969				   ctl_len))
1970			goto out_freectl;
1971		msg_sys->msg_control = ctl_buf;
 
1972	}
1973	msg_sys->msg_flags = flags;
1974
1975	if (sock->file->f_flags & O_NONBLOCK)
1976		msg_sys->msg_flags |= MSG_DONTWAIT;
1977	/*
1978	 * If this is sendmmsg() and current destination address is same as
1979	 * previously succeeded address, omit asking LSM's decision.
1980	 * used_address->name_len is initialized to UINT_MAX so that the first
1981	 * destination address never matches.
1982	 */
1983	if (used_address && msg_sys->msg_name &&
1984	    used_address->name_len == msg_sys->msg_namelen &&
1985	    !memcmp(&used_address->name, msg_sys->msg_name,
1986		    used_address->name_len)) {
1987		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1988		goto out_freectl;
1989	}
1990	err = sock_sendmsg(sock, msg_sys, total_len);
1991	/*
1992	 * If this is sendmmsg() and sending to current destination address was
1993	 * successful, remember it.
1994	 */
1995	if (used_address && err >= 0) {
1996		used_address->name_len = msg_sys->msg_namelen;
1997		if (msg_sys->msg_name)
1998			memcpy(&used_address->name, msg_sys->msg_name,
1999			       used_address->name_len);
2000	}
2001
2002out_freectl:
2003	if (ctl_buf != ctl)
2004		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2005out_freeiov:
2006	if (iov != iovstack)
2007		kfree(iov);
2008out:
2009	return err;
2010}
2011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012/*
2013 *	BSD sendmsg interface
2014 */
 
 
 
 
 
2015
2016SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
 
2017{
2018	int fput_needed, err;
2019	struct msghdr msg_sys;
2020	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
 
 
 
2021
 
2022	if (!sock)
2023		goto out;
2024
2025	err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2026
2027	fput_light(sock->file, fput_needed);
2028out:
2029	return err;
2030}
2031
 
 
 
 
 
2032/*
2033 *	Linux sendmmsg interface
2034 */
2035
2036int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2037		   unsigned int flags)
2038{
2039	int fput_needed, err, datagrams;
2040	struct socket *sock;
2041	struct mmsghdr __user *entry;
2042	struct compat_mmsghdr __user *compat_entry;
2043	struct msghdr msg_sys;
2044	struct used_address used_address;
 
 
 
 
2045
2046	if (vlen > UIO_MAXIOV)
2047		vlen = UIO_MAXIOV;
2048
2049	datagrams = 0;
2050
2051	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2052	if (!sock)
2053		return err;
2054
2055	used_address.name_len = UINT_MAX;
2056	entry = mmsg;
2057	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2058	err = 0;
 
2059
2060	while (datagrams < vlen) {
 
 
 
2061		if (MSG_CMSG_COMPAT & flags) {
2062			err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2063					    &msg_sys, flags, &used_address);
2064			if (err < 0)
2065				break;
2066			err = __put_user(err, &compat_entry->msg_len);
2067			++compat_entry;
2068		} else {
2069			err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2070					    &msg_sys, flags, &used_address);
 
2071			if (err < 0)
2072				break;
2073			err = put_user(err, &entry->msg_len);
2074			++entry;
2075		}
2076
2077		if (err)
2078			break;
2079		++datagrams;
 
 
 
2080	}
2081
2082	fput_light(sock->file, fput_needed);
2083
2084	/* We only return an error if no datagrams were able to be sent */
2085	if (datagrams != 0)
2086		return datagrams;
2087
2088	return err;
2089}
2090
2091SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2092		unsigned int, vlen, unsigned int, flags)
2093{
2094	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2095}
2096
2097static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2098			 struct msghdr *msg_sys, unsigned int flags, int nosec)
 
 
2099{
2100	struct compat_msghdr __user *msg_compat =
2101	    (struct compat_msghdr __user *)msg;
2102	struct iovec iovstack[UIO_FASTIOV];
2103	struct iovec *iov = iovstack;
2104	unsigned long cmsg_ptr;
2105	int err, total_len, len;
2106
2107	/* kernel mode address */
2108	struct sockaddr_storage addr;
2109
2110	/* user mode address pointers */
2111	struct sockaddr __user *uaddr;
2112	int __user *uaddr_len;
2113
2114	if (MSG_CMSG_COMPAT & flags) {
2115		if (get_compat_msghdr(msg_sys, msg_compat))
2116			return -EFAULT;
2117	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2118		return -EFAULT;
2119
2120	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2121		err = -EMSGSIZE;
2122		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2123			goto out;
2124		err = -ENOMEM;
2125		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2126			      GFP_KERNEL);
2127		if (!iov)
2128			goto out;
2129	}
 
 
2130
2131	/*
2132	 *      Save the user-mode address (verify_iovec will change the
2133	 *      kernel msghdr to use the kernel address space)
2134	 */
2135
2136	uaddr = (__force void __user *)msg_sys->msg_name;
2137	uaddr_len = COMPAT_NAMELEN(msg);
2138	if (MSG_CMSG_COMPAT & flags) {
2139		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2140	} else
2141		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2142	if (err < 0)
2143		goto out_freeiov;
2144	total_len = err;
 
 
 
2145
 
2146	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2147	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2148
 
 
 
2149	if (sock->file->f_flags & O_NONBLOCK)
2150		flags |= MSG_DONTWAIT;
2151	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2152							  total_len, flags);
 
 
 
 
2153	if (err < 0)
2154		goto out_freeiov;
2155	len = err;
2156
2157	if (uaddr != NULL) {
2158		err = move_addr_to_user(&addr,
2159					msg_sys->msg_namelen, uaddr,
2160					uaddr_len);
2161		if (err < 0)
2162			goto out_freeiov;
2163	}
2164	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2165			 COMPAT_FLAGS(msg));
2166	if (err)
2167		goto out_freeiov;
2168	if (MSG_CMSG_COMPAT & flags)
2169		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2170				 &msg_compat->msg_controllen);
2171	else
2172		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2173				 &msg->msg_controllen);
2174	if (err)
2175		goto out_freeiov;
2176	err = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2177
2178out_freeiov:
2179	if (iov != iovstack)
2180		kfree(iov);
2181out:
2182	return err;
2183}
2184
2185/*
2186 *	BSD recvmsg interface
2187 */
2188
2189SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2190		unsigned int, flags)
 
 
 
 
 
 
 
2191{
2192	int fput_needed, err;
2193	struct msghdr msg_sys;
2194	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2195
 
 
 
 
2196	if (!sock)
2197		goto out;
2198
2199	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2200
2201	fput_light(sock->file, fput_needed);
2202out:
2203	return err;
2204}
2205
 
 
 
 
 
 
2206/*
2207 *     Linux recvmmsg interface
2208 */
2209
2210int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2211		   unsigned int flags, struct timespec *timeout)
 
2212{
2213	int fput_needed, err, datagrams;
2214	struct socket *sock;
2215	struct mmsghdr __user *entry;
2216	struct compat_mmsghdr __user *compat_entry;
2217	struct msghdr msg_sys;
2218	struct timespec end_time;
 
2219
2220	if (timeout &&
2221	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2222				    timeout->tv_nsec))
2223		return -EINVAL;
2224
2225	datagrams = 0;
2226
2227	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2228	if (!sock)
2229		return err;
2230
2231	err = sock_error(sock->sk);
2232	if (err)
2233		goto out_put;
 
 
 
 
2234
2235	entry = mmsg;
2236	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2237
2238	while (datagrams < vlen) {
2239		/*
2240		 * No need to ask LSM for more than the first datagram.
2241		 */
2242		if (MSG_CMSG_COMPAT & flags) {
2243			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2244					    &msg_sys, flags & ~MSG_WAITFORONE,
2245					    datagrams);
2246			if (err < 0)
2247				break;
2248			err = __put_user(err, &compat_entry->msg_len);
2249			++compat_entry;
2250		} else {
2251			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2252					    &msg_sys, flags & ~MSG_WAITFORONE,
2253					    datagrams);
 
2254			if (err < 0)
2255				break;
2256			err = put_user(err, &entry->msg_len);
2257			++entry;
2258		}
2259
2260		if (err)
2261			break;
2262		++datagrams;
2263
2264		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265		if (flags & MSG_WAITFORONE)
2266			flags |= MSG_DONTWAIT;
2267
2268		if (timeout) {
2269			ktime_get_ts(timeout);
2270			*timeout = timespec_sub(end_time, *timeout);
2271			if (timeout->tv_sec < 0) {
2272				timeout->tv_sec = timeout->tv_nsec = 0;
2273				break;
2274			}
2275
2276			/* Timeout, return less than vlen datagrams */
2277			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2278				break;
2279		}
2280
2281		/* Out of band data, return right away */
2282		if (msg_sys.msg_flags & MSG_OOB)
2283			break;
 
2284	}
2285
2286out_put:
2287	fput_light(sock->file, fput_needed);
2288
2289	if (err == 0)
2290		return datagrams;
 
 
2291
2292	if (datagrams != 0) {
 
 
 
 
2293		/*
2294		 * We may return less entries than requested (vlen) if the
2295		 * sock is non block and there aren't enough datagrams...
 
 
2296		 */
2297		if (err != -EAGAIN) {
2298			/*
2299			 * ... or  if recvmsg returns an error after we
2300			 * received some datagrams, where we record the
2301			 * error to return on the next call or if the
2302			 * app asks about it using getsockopt(SO_ERROR).
2303			 */
2304			sock->sk->sk_err = -err;
2305		}
2306
2307		return datagrams;
2308	}
 
 
2309
2310	return err;
2311}
2312
2313SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2314		unsigned int, vlen, unsigned int, flags,
2315		struct timespec __user *, timeout)
 
2316{
2317	int datagrams;
2318	struct timespec timeout_sys;
2319
2320	if (!timeout)
2321		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2322
2323	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2324		return -EFAULT;
2325
2326	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
 
 
 
2327
2328	if (datagrams > 0 &&
2329	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
 
 
 
 
 
2330		datagrams = -EFAULT;
2331
2332	return datagrams;
2333}
2334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2335#ifdef __ARCH_WANT_SYS_SOCKETCALL
2336/* Argument list sizes for sys_socketcall */
2337#define AL(x) ((x) * sizeof(unsigned long))
2338static const unsigned char nargs[21] = {
2339	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2340	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2341	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2342	AL(4), AL(5), AL(4)
2343};
2344
2345#undef AL
2346
2347/*
2348 *	System call vectors.
2349 *
2350 *	Argument checking cleaned up. Saved 20% in size.
2351 *  This function doesn't need to set the kernel lock because
2352 *  it is set by the callees.
2353 */
2354
2355SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2356{
2357	unsigned long a[6];
2358	unsigned long a0, a1;
2359	int err;
2360	unsigned int len;
2361
2362	if (call < 1 || call > SYS_SENDMMSG)
2363		return -EINVAL;
 
2364
2365	len = nargs[call];
2366	if (len > sizeof(a))
2367		return -EINVAL;
2368
2369	/* copy_from_user should be SMP safe. */
2370	if (copy_from_user(a, args, len))
2371		return -EFAULT;
2372
2373	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
 
 
2374
2375	a0 = a[0];
2376	a1 = a[1];
2377
2378	switch (call) {
2379	case SYS_SOCKET:
2380		err = sys_socket(a0, a1, a[2]);
2381		break;
2382	case SYS_BIND:
2383		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2384		break;
2385	case SYS_CONNECT:
2386		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2387		break;
2388	case SYS_LISTEN:
2389		err = sys_listen(a0, a1);
2390		break;
2391	case SYS_ACCEPT:
2392		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2393				  (int __user *)a[2], 0);
2394		break;
2395	case SYS_GETSOCKNAME:
2396		err =
2397		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2398				    (int __user *)a[2]);
2399		break;
2400	case SYS_GETPEERNAME:
2401		err =
2402		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2403				    (int __user *)a[2]);
2404		break;
2405	case SYS_SOCKETPAIR:
2406		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2407		break;
2408	case SYS_SEND:
2409		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
 
2410		break;
2411	case SYS_SENDTO:
2412		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2413				 (struct sockaddr __user *)a[4], a[5]);
2414		break;
2415	case SYS_RECV:
2416		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
 
2417		break;
2418	case SYS_RECVFROM:
2419		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2420				   (struct sockaddr __user *)a[4],
2421				   (int __user *)a[5]);
2422		break;
2423	case SYS_SHUTDOWN:
2424		err = sys_shutdown(a0, a1);
2425		break;
2426	case SYS_SETSOCKOPT:
2427		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
 
2428		break;
2429	case SYS_GETSOCKOPT:
2430		err =
2431		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2432				   (int __user *)a[4]);
2433		break;
2434	case SYS_SENDMSG:
2435		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
 
2436		break;
2437	case SYS_SENDMMSG:
2438		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
 
2439		break;
2440	case SYS_RECVMSG:
2441		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
 
2442		break;
2443	case SYS_RECVMMSG:
2444		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2445				   (struct timespec __user *)a[4]);
 
 
 
 
 
 
 
2446		break;
2447	case SYS_ACCEPT4:
2448		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2449				  (int __user *)a[2], a[3]);
2450		break;
2451	default:
2452		err = -EINVAL;
2453		break;
2454	}
2455	return err;
2456}
2457
2458#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2459
2460/**
2461 *	sock_register - add a socket protocol handler
2462 *	@ops: description of protocol
2463 *
2464 *	This function is called by a protocol handler that wants to
2465 *	advertise its address family, and have it linked into the
2466 *	socket interface. The value ops->family coresponds to the
2467 *	socket system call protocol family.
2468 */
2469int sock_register(const struct net_proto_family *ops)
2470{
2471	int err;
2472
2473	if (ops->family >= NPROTO) {
2474		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2475		       NPROTO);
2476		return -ENOBUFS;
2477	}
2478
2479	spin_lock(&net_family_lock);
2480	if (rcu_dereference_protected(net_families[ops->family],
2481				      lockdep_is_held(&net_family_lock)))
2482		err = -EEXIST;
2483	else {
2484		rcu_assign_pointer(net_families[ops->family], ops);
2485		err = 0;
2486	}
2487	spin_unlock(&net_family_lock);
2488
2489	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2490	return err;
2491}
2492EXPORT_SYMBOL(sock_register);
2493
2494/**
2495 *	sock_unregister - remove a protocol handler
2496 *	@family: protocol family to remove
2497 *
2498 *	This function is called by a protocol handler that wants to
2499 *	remove its address family, and have it unlinked from the
2500 *	new socket creation.
2501 *
2502 *	If protocol handler is a module, then it can use module reference
2503 *	counts to protect against new references. If protocol handler is not
2504 *	a module then it needs to provide its own protection in
2505 *	the ops->create routine.
2506 */
2507void sock_unregister(int family)
2508{
2509	BUG_ON(family < 0 || family >= NPROTO);
2510
2511	spin_lock(&net_family_lock);
2512	RCU_INIT_POINTER(net_families[family], NULL);
2513	spin_unlock(&net_family_lock);
2514
2515	synchronize_rcu();
2516
2517	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2518}
2519EXPORT_SYMBOL(sock_unregister);
2520
 
 
 
 
 
2521static int __init sock_init(void)
2522{
2523	int err;
2524	/*
2525	 *      Initialize the network sysctl infrastructure.
2526	 */
2527	err = net_sysctl_init();
2528	if (err)
2529		goto out;
2530
2531	/*
2532	 *      Initialize sock SLAB cache.
2533	 */
2534
2535	sk_init();
2536
2537	/*
2538	 *      Initialize skbuff SLAB cache
2539	 */
2540	skb_init();
2541
2542	/*
2543	 *      Initialize the protocols module.
2544	 */
2545
2546	init_inodecache();
2547
2548	err = register_filesystem(&sock_fs_type);
2549	if (err)
2550		goto out_fs;
2551	sock_mnt = kern_mount(&sock_fs_type);
2552	if (IS_ERR(sock_mnt)) {
2553		err = PTR_ERR(sock_mnt);
2554		goto out_mount;
2555	}
2556
2557	/* The real protocol initialization is performed in later initcalls.
2558	 */
2559
2560#ifdef CONFIG_NETFILTER
2561	netfilter_init();
 
 
2562#endif
2563
2564#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2565	skb_timestamping_init();
2566#endif
2567
2568out:
2569	return err;
2570
2571out_mount:
2572	unregister_filesystem(&sock_fs_type);
2573out_fs:
2574	goto out;
2575}
2576
2577core_initcall(sock_init);	/* early initcall */
2578
2579#ifdef CONFIG_PROC_FS
2580void socket_seq_show(struct seq_file *seq)
2581{
2582	int cpu;
2583	int counter = 0;
2584
2585	for_each_possible_cpu(cpu)
2586	    counter += per_cpu(sockets_in_use, cpu);
2587
2588	/* It can be negative, by the way. 8) */
2589	if (counter < 0)
2590		counter = 0;
2591
2592	seq_printf(seq, "sockets: used %d\n", counter);
2593}
2594#endif				/* CONFIG_PROC_FS */
2595
2596#ifdef CONFIG_COMPAT
2597static int do_siocgstamp(struct net *net, struct socket *sock,
2598			 unsigned int cmd, void __user *up)
2599{
2600	mm_segment_t old_fs = get_fs();
2601	struct timeval ktv;
2602	int err;
2603
2604	set_fs(KERNEL_DS);
2605	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2606	set_fs(old_fs);
2607	if (!err)
2608		err = compat_put_timeval(&ktv, up);
2609
2610	return err;
2611}
2612
2613static int do_siocgstampns(struct net *net, struct socket *sock,
2614			   unsigned int cmd, void __user *up)
2615{
2616	mm_segment_t old_fs = get_fs();
2617	struct timespec kts;
2618	int err;
2619
2620	set_fs(KERNEL_DS);
2621	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2622	set_fs(old_fs);
2623	if (!err)
2624		err = compat_put_timespec(&kts, up);
2625
2626	return err;
2627}
2628
2629static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2630{
2631	struct ifreq __user *uifr;
2632	int err;
2633
2634	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2635	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2636		return -EFAULT;
2637
2638	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2639	if (err)
2640		return err;
2641
2642	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2643		return -EFAULT;
2644
2645	return 0;
2646}
2647
2648static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2649{
2650	struct compat_ifconf ifc32;
2651	struct ifconf ifc;
2652	struct ifconf __user *uifc;
2653	struct compat_ifreq __user *ifr32;
2654	struct ifreq __user *ifr;
2655	unsigned int i, j;
2656	int err;
2657
2658	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2659		return -EFAULT;
2660
2661	memset(&ifc, 0, sizeof(ifc));
2662	if (ifc32.ifcbuf == 0) {
2663		ifc32.ifc_len = 0;
2664		ifc.ifc_len = 0;
2665		ifc.ifc_req = NULL;
2666		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2667	} else {
2668		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2669			sizeof(struct ifreq);
2670		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2671		ifc.ifc_len = len;
2672		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2673		ifr32 = compat_ptr(ifc32.ifcbuf);
2674		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2675			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2676				return -EFAULT;
2677			ifr++;
2678			ifr32++;
2679		}
2680	}
2681	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2682		return -EFAULT;
2683
2684	err = dev_ioctl(net, SIOCGIFCONF, uifc);
 
 
2685	if (err)
2686		return err;
2687
2688	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2689		return -EFAULT;
2690
2691	ifr = ifc.ifc_req;
2692	ifr32 = compat_ptr(ifc32.ifcbuf);
2693	for (i = 0, j = 0;
2694	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2695	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2696		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2697			return -EFAULT;
2698		ifr32++;
2699		ifr++;
2700	}
2701
2702	if (ifc32.ifcbuf == 0) {
2703		/* Translate from 64-bit structure multiple to
2704		 * a 32-bit one.
2705		 */
2706		i = ifc.ifc_len;
2707		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2708		ifc32.ifc_len = i;
2709	} else {
2710		ifc32.ifc_len = i;
2711	}
2712	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2713		return -EFAULT;
2714
2715	return 0;
2716}
2717
2718static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2719{
2720	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2721	bool convert_in = false, convert_out = false;
2722	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2723	struct ethtool_rxnfc __user *rxnfc;
2724	struct ifreq __user *ifr;
2725	u32 rule_cnt = 0, actual_rule_cnt;
2726	u32 ethcmd;
2727	u32 data;
2728	int ret;
2729
2730	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2731		return -EFAULT;
2732
2733	compat_rxnfc = compat_ptr(data);
2734
2735	if (get_user(ethcmd, &compat_rxnfc->cmd))
2736		return -EFAULT;
2737
2738	/* Most ethtool structures are defined without padding.
2739	 * Unfortunately struct ethtool_rxnfc is an exception.
2740	 */
2741	switch (ethcmd) {
2742	default:
2743		break;
2744	case ETHTOOL_GRXCLSRLALL:
2745		/* Buffer size is variable */
2746		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2747			return -EFAULT;
2748		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2749			return -ENOMEM;
2750		buf_size += rule_cnt * sizeof(u32);
2751		/* fall through */
2752	case ETHTOOL_GRXRINGS:
2753	case ETHTOOL_GRXCLSRLCNT:
2754	case ETHTOOL_GRXCLSRULE:
2755	case ETHTOOL_SRXCLSRLINS:
2756		convert_out = true;
2757		/* fall through */
2758	case ETHTOOL_SRXCLSRLDEL:
2759		buf_size += sizeof(struct ethtool_rxnfc);
2760		convert_in = true;
2761		break;
2762	}
2763
2764	ifr = compat_alloc_user_space(buf_size);
2765	rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2766
2767	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2768		return -EFAULT;
2769
2770	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2771		     &ifr->ifr_ifru.ifru_data))
2772		return -EFAULT;
2773
2774	if (convert_in) {
2775		/* We expect there to be holes between fs.m_ext and
2776		 * fs.ring_cookie and at the end of fs, but nowhere else.
2777		 */
2778		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2779			     sizeof(compat_rxnfc->fs.m_ext) !=
2780			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2781			     sizeof(rxnfc->fs.m_ext));
2782		BUILD_BUG_ON(
2783			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2784			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2785			offsetof(struct ethtool_rxnfc, fs.location) -
2786			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2787
2788		if (copy_in_user(rxnfc, compat_rxnfc,
2789				 (void *)(&rxnfc->fs.m_ext + 1) -
2790				 (void *)rxnfc) ||
2791		    copy_in_user(&rxnfc->fs.ring_cookie,
2792				 &compat_rxnfc->fs.ring_cookie,
2793				 (void *)(&rxnfc->fs.location + 1) -
2794				 (void *)&rxnfc->fs.ring_cookie) ||
2795		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2796				 sizeof(rxnfc->rule_cnt)))
2797			return -EFAULT;
2798	}
2799
2800	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2801	if (ret)
2802		return ret;
2803
2804	if (convert_out) {
2805		if (copy_in_user(compat_rxnfc, rxnfc,
2806				 (const void *)(&rxnfc->fs.m_ext + 1) -
2807				 (const void *)rxnfc) ||
2808		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2809				 &rxnfc->fs.ring_cookie,
2810				 (const void *)(&rxnfc->fs.location + 1) -
2811				 (const void *)&rxnfc->fs.ring_cookie) ||
2812		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2813				 sizeof(rxnfc->rule_cnt)))
2814			return -EFAULT;
2815
2816		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2817			/* As an optimisation, we only copy the actual
2818			 * number of rules that the underlying
2819			 * function returned.  Since Mallory might
2820			 * change the rule count in user memory, we
2821			 * check that it is less than the rule count
2822			 * originally given (as the user buffer size),
2823			 * which has been range-checked.
2824			 */
2825			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2826				return -EFAULT;
2827			if (actual_rule_cnt < rule_cnt)
2828				rule_cnt = actual_rule_cnt;
2829			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2830					 &rxnfc->rule_locs[0],
2831					 rule_cnt * sizeof(u32)))
2832				return -EFAULT;
2833		}
2834	}
2835
2836	return 0;
2837}
2838
2839static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2840{
2841	void __user *uptr;
2842	compat_uptr_t uptr32;
2843	struct ifreq __user *uifr;
 
 
2844
2845	uifr = compat_alloc_user_space(sizeof(*uifr));
2846	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2847		return -EFAULT;
2848
2849	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2850		return -EFAULT;
2851
2852	uptr = compat_ptr(uptr32);
 
2853
2854	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2855		return -EFAULT;
2856
2857	return dev_ioctl(net, SIOCWANDEV, uifr);
2858}
2859
2860static int bond_ioctl(struct net *net, unsigned int cmd,
2861			 struct compat_ifreq __user *ifr32)
2862{
2863	struct ifreq kifr;
2864	struct ifreq __user *uifr;
2865	mm_segment_t old_fs;
2866	int err;
2867	u32 data;
2868	void __user *datap;
2869
2870	switch (cmd) {
2871	case SIOCBONDENSLAVE:
2872	case SIOCBONDRELEASE:
2873	case SIOCBONDSETHWADDR:
2874	case SIOCBONDCHANGEACTIVE:
2875		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2876			return -EFAULT;
2877
2878		old_fs = get_fs();
2879		set_fs(KERNEL_DS);
2880		err = dev_ioctl(net, cmd,
2881				(struct ifreq __user __force *) &kifr);
2882		set_fs(old_fs);
2883
2884		return err;
2885	case SIOCBONDSLAVEINFOQUERY:
2886	case SIOCBONDINFOQUERY:
2887		uifr = compat_alloc_user_space(sizeof(*uifr));
2888		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2889			return -EFAULT;
2890
2891		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2892			return -EFAULT;
2893
2894		datap = compat_ptr(data);
2895		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2896			return -EFAULT;
2897
2898		return dev_ioctl(net, cmd, uifr);
2899	default:
2900		return -ENOIOCTLCMD;
2901	}
 
2902}
2903
2904static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
 
2905				 struct compat_ifreq __user *u_ifreq32)
2906{
2907	struct ifreq __user *u_ifreq64;
2908	char tmp_buf[IFNAMSIZ];
2909	void __user *data64;
2910	u32 data32;
2911
2912	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2913			   IFNAMSIZ))
 
2914		return -EFAULT;
2915	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2916		return -EFAULT;
2917	data64 = compat_ptr(data32);
2918
2919	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2920
2921	/* Don't check these user accesses, just let that get trapped
2922	 * in the ioctl handler instead.
2923	 */
2924	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2925			 IFNAMSIZ))
2926		return -EFAULT;
2927	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2928		return -EFAULT;
2929
2930	return dev_ioctl(net, cmd, u_ifreq64);
2931}
2932
2933static int dev_ifsioc(struct net *net, struct socket *sock,
2934			 unsigned int cmd, struct compat_ifreq __user *uifr32)
 
2935{
2936	struct ifreq __user *uifr;
2937	int err;
2938
 
 
 
 
 
 
 
 
 
 
2939	uifr = compat_alloc_user_space(sizeof(*uifr));
2940	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2941		return -EFAULT;
2942
2943	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2944
2945	if (!err) {
2946		switch (cmd) {
2947		case SIOCGIFFLAGS:
2948		case SIOCGIFMETRIC:
2949		case SIOCGIFMTU:
2950		case SIOCGIFMEM:
2951		case SIOCGIFHWADDR:
2952		case SIOCGIFINDEX:
2953		case SIOCGIFADDR:
2954		case SIOCGIFBRDADDR:
2955		case SIOCGIFDSTADDR:
2956		case SIOCGIFNETMASK:
2957		case SIOCGIFPFLAGS:
2958		case SIOCGIFTXQLEN:
2959		case SIOCGMIIPHY:
2960		case SIOCGMIIREG:
 
2961			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2962				err = -EFAULT;
2963			break;
2964		}
2965	}
2966	return err;
2967}
2968
2969static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2970			struct compat_ifreq __user *uifr32)
2971{
2972	struct ifreq ifr;
2973	struct compat_ifmap __user *uifmap32;
2974	mm_segment_t old_fs;
2975	int err;
2976
2977	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2978	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2979	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2980	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2981	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2982	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2983	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2984	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2985	if (err)
2986		return -EFAULT;
2987
2988	old_fs = get_fs();
2989	set_fs(KERNEL_DS);
2990	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2991	set_fs(old_fs);
2992
2993	if (cmd == SIOCGIFMAP && !err) {
2994		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2995		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2996		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2997		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2998		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2999		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3000		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3001		if (err)
3002			err = -EFAULT;
3003	}
3004	return err;
3005}
3006
3007static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3008{
3009	void __user *uptr;
3010	compat_uptr_t uptr32;
3011	struct ifreq __user *uifr;
3012
3013	uifr = compat_alloc_user_space(sizeof(*uifr));
3014	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3015		return -EFAULT;
3016
3017	if (get_user(uptr32, &uifr32->ifr_data))
3018		return -EFAULT;
3019
3020	uptr = compat_ptr(uptr32);
3021
3022	if (put_user(uptr, &uifr->ifr_data))
3023		return -EFAULT;
3024
3025	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3026}
3027
3028struct rtentry32 {
3029	u32		rt_pad1;
3030	struct sockaddr rt_dst;         /* target address               */
3031	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3032	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3033	unsigned short	rt_flags;
3034	short		rt_pad2;
3035	u32		rt_pad3;
3036	unsigned char	rt_tos;
3037	unsigned char	rt_class;
3038	short		rt_pad4;
3039	short		rt_metric;      /* +1 for binary compatibility! */
3040	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3041	u32		rt_mtu;         /* per route MTU/Window         */
3042	u32		rt_window;      /* Window clamping              */
3043	unsigned short  rt_irtt;        /* Initial RTT                  */
3044};
3045
3046struct in6_rtmsg32 {
3047	struct in6_addr		rtmsg_dst;
3048	struct in6_addr		rtmsg_src;
3049	struct in6_addr		rtmsg_gateway;
3050	u32			rtmsg_type;
3051	u16			rtmsg_dst_len;
3052	u16			rtmsg_src_len;
3053	u32			rtmsg_metric;
3054	u32			rtmsg_info;
3055	u32			rtmsg_flags;
3056	s32			rtmsg_ifindex;
3057};
3058
3059static int routing_ioctl(struct net *net, struct socket *sock,
3060			 unsigned int cmd, void __user *argp)
3061{
3062	int ret;
3063	void *r = NULL;
3064	struct in6_rtmsg r6;
3065	struct rtentry r4;
3066	char devname[16];
3067	u32 rtdev;
3068	mm_segment_t old_fs = get_fs();
3069
3070	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3071		struct in6_rtmsg32 __user *ur6 = argp;
3072		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3073			3 * sizeof(struct in6_addr));
3074		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3075		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3076		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3077		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3078		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3079		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3080		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3081
3082		r = (void *) &r6;
3083	} else { /* ipv4 */
3084		struct rtentry32 __user *ur4 = argp;
3085		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3086					3 * sizeof(struct sockaddr));
3087		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3088		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3089		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3090		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3091		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3092		ret |= __get_user(rtdev, &(ur4->rt_dev));
3093		if (rtdev) {
3094			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3095			r4.rt_dev = (char __user __force *)devname;
3096			devname[15] = 0;
3097		} else
3098			r4.rt_dev = NULL;
3099
3100		r = (void *) &r4;
3101	}
3102
3103	if (ret) {
3104		ret = -EFAULT;
3105		goto out;
3106	}
3107
3108	set_fs(KERNEL_DS);
3109	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3110	set_fs(old_fs);
3111
3112out:
3113	return ret;
3114}
3115
3116/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3117 * for some operations; this forces use of the newer bridge-utils that
3118 * use compatible ioctls
3119 */
3120static int old_bridge_ioctl(compat_ulong_t __user *argp)
3121{
3122	compat_ulong_t tmp;
3123
3124	if (get_user(tmp, argp))
3125		return -EFAULT;
3126	if (tmp == BRCTL_GET_VERSION)
3127		return BRCTL_VERSION + 1;
3128	return -EINVAL;
3129}
3130
3131static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3132			 unsigned int cmd, unsigned long arg)
3133{
3134	void __user *argp = compat_ptr(arg);
3135	struct sock *sk = sock->sk;
3136	struct net *net = sock_net(sk);
3137
3138	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3139		return siocdevprivate_ioctl(net, cmd, argp);
3140
3141	switch (cmd) {
3142	case SIOCSIFBR:
3143	case SIOCGIFBR:
3144		return old_bridge_ioctl(argp);
3145	case SIOCGIFNAME:
3146		return dev_ifname32(net, argp);
3147	case SIOCGIFCONF:
3148		return dev_ifconf(net, argp);
3149	case SIOCETHTOOL:
3150		return ethtool_ioctl(net, argp);
3151	case SIOCWANDEV:
3152		return compat_siocwandev(net, argp);
3153	case SIOCGIFMAP:
3154	case SIOCSIFMAP:
3155		return compat_sioc_ifmap(net, cmd, argp);
3156	case SIOCBONDENSLAVE:
3157	case SIOCBONDRELEASE:
3158	case SIOCBONDSETHWADDR:
 
 
 
 
 
3159	case SIOCBONDSLAVEINFOQUERY:
3160	case SIOCBONDINFOQUERY:
3161	case SIOCBONDCHANGEACTIVE:
3162		return bond_ioctl(net, cmd, argp);
3163	case SIOCADDRT:
3164	case SIOCDELRT:
3165		return routing_ioctl(net, sock, cmd, argp);
3166	case SIOCGSTAMP:
3167		return do_siocgstamp(net, sock, cmd, argp);
3168	case SIOCGSTAMPNS:
3169		return do_siocgstampns(net, sock, cmd, argp);
3170	case SIOCSHWTSTAMP:
3171		return compat_siocshwtstamp(net, argp);
 
3172
3173	case FIOSETOWN:
3174	case SIOCSPGRP:
3175	case FIOGETOWN:
3176	case SIOCGPGRP:
3177	case SIOCBRADDBR:
3178	case SIOCBRDELBR:
3179	case SIOCGIFVLAN:
3180	case SIOCSIFVLAN:
3181	case SIOCADDDLCI:
3182	case SIOCDELDLCI:
 
3183		return sock_ioctl(file, cmd, arg);
3184
3185	case SIOCGIFFLAGS:
3186	case SIOCSIFFLAGS:
3187	case SIOCGIFMETRIC:
3188	case SIOCSIFMETRIC:
3189	case SIOCGIFMTU:
3190	case SIOCSIFMTU:
3191	case SIOCGIFMEM:
3192	case SIOCSIFMEM:
3193	case SIOCGIFHWADDR:
3194	case SIOCSIFHWADDR:
3195	case SIOCADDMULTI:
3196	case SIOCDELMULTI:
3197	case SIOCGIFINDEX:
3198	case SIOCGIFADDR:
3199	case SIOCSIFADDR:
3200	case SIOCSIFHWBROADCAST:
3201	case SIOCDIFADDR:
3202	case SIOCGIFBRDADDR:
3203	case SIOCSIFBRDADDR:
3204	case SIOCGIFDSTADDR:
3205	case SIOCSIFDSTADDR:
3206	case SIOCGIFNETMASK:
3207	case SIOCSIFNETMASK:
3208	case SIOCSIFPFLAGS:
3209	case SIOCGIFPFLAGS:
3210	case SIOCGIFTXQLEN:
3211	case SIOCSIFTXQLEN:
3212	case SIOCBRADDIF:
3213	case SIOCBRDELIF:
 
3214	case SIOCSIFNAME:
3215	case SIOCGMIIPHY:
3216	case SIOCGMIIREG:
3217	case SIOCSMIIREG:
3218		return dev_ifsioc(net, sock, cmd, argp);
 
 
 
 
3219
3220	case SIOCSARP:
3221	case SIOCGARP:
3222	case SIOCDARP:
 
 
3223	case SIOCATMARK:
3224		return sock_do_ioctl(net, sock, cmd, arg);
3225	}
3226
3227	return -ENOIOCTLCMD;
3228}
3229
3230static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3231			      unsigned long arg)
3232{
3233	struct socket *sock = file->private_data;
3234	int ret = -ENOIOCTLCMD;
3235	struct sock *sk;
3236	struct net *net;
3237
3238	sk = sock->sk;
3239	net = sock_net(sk);
3240
3241	if (sock->ops->compat_ioctl)
3242		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3243
3244	if (ret == -ENOIOCTLCMD &&
3245	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3246		ret = compat_wext_handle_ioctl(net, cmd, arg);
3247
3248	if (ret == -ENOIOCTLCMD)
3249		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3250
3251	return ret;
3252}
3253#endif
3254
 
 
 
 
 
 
 
 
 
3255int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3256{
3257	return sock->ops->bind(sock, addr, addrlen);
3258}
3259EXPORT_SYMBOL(kernel_bind);
3260
 
 
 
 
 
 
 
 
3261int kernel_listen(struct socket *sock, int backlog)
3262{
3263	return sock->ops->listen(sock, backlog);
3264}
3265EXPORT_SYMBOL(kernel_listen);
3266
 
 
 
 
 
 
 
 
 
 
 
3267int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3268{
3269	struct sock *sk = sock->sk;
3270	int err;
3271
3272	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3273			       newsock);
3274	if (err < 0)
3275		goto done;
3276
3277	err = sock->ops->accept(sock, *newsock, flags);
3278	if (err < 0) {
3279		sock_release(*newsock);
3280		*newsock = NULL;
3281		goto done;
3282	}
3283
3284	(*newsock)->ops = sock->ops;
3285	__module_get((*newsock)->ops->owner);
3286
3287done:
3288	return err;
3289}
3290EXPORT_SYMBOL(kernel_accept);
3291
 
 
 
 
 
 
 
 
 
 
 
 
 
3292int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3293		   int flags)
3294{
3295	return sock->ops->connect(sock, addr, addrlen, flags);
3296}
3297EXPORT_SYMBOL(kernel_connect);
3298
3299int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3300			 int *addrlen)
 
 
 
 
 
 
 
 
3301{
3302	return sock->ops->getname(sock, addr, addrlen, 0);
3303}
3304EXPORT_SYMBOL(kernel_getsockname);
3305
3306int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3307			 int *addrlen)
 
 
 
 
 
 
 
 
3308{
3309	return sock->ops->getname(sock, addr, addrlen, 1);
3310}
3311EXPORT_SYMBOL(kernel_getpeername);
3312
3313int kernel_getsockopt(struct socket *sock, int level, int optname,
3314			char *optval, int *optlen)
3315{
3316	mm_segment_t oldfs = get_fs();
3317	char __user *uoptval;
3318	int __user *uoptlen;
3319	int err;
3320
3321	uoptval = (char __user __force *) optval;
3322	uoptlen = (int __user __force *) optlen;
3323
3324	set_fs(KERNEL_DS);
3325	if (level == SOL_SOCKET)
3326		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3327	else
3328		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3329					    uoptlen);
3330	set_fs(oldfs);
3331	return err;
3332}
3333EXPORT_SYMBOL(kernel_getsockopt);
3334
3335int kernel_setsockopt(struct socket *sock, int level, int optname,
3336			char *optval, unsigned int optlen)
3337{
3338	mm_segment_t oldfs = get_fs();
3339	char __user *uoptval;
3340	int err;
3341
3342	uoptval = (char __user __force *) optval;
3343
3344	set_fs(KERNEL_DS);
3345	if (level == SOL_SOCKET)
3346		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3347	else
3348		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3349					    optlen);
3350	set_fs(oldfs);
3351	return err;
3352}
3353EXPORT_SYMBOL(kernel_setsockopt);
3354
3355int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3356		    size_t size, int flags)
3357{
3358	sock_update_classid(sock->sk);
3359
3360	if (sock->ops->sendpage)
3361		return sock->ops->sendpage(sock, page, offset, size, flags);
3362
3363	return sock_no_sendpage(sock, page, offset, size, flags);
3364}
3365EXPORT_SYMBOL(kernel_sendpage);
3366
3367int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
3368{
3369	mm_segment_t oldfs = get_fs();
3370	int err;
3371
3372	set_fs(KERNEL_DS);
3373	err = sock->ops->ioctl(sock, cmd, arg);
3374	set_fs(oldfs);
3375
3376	return err;
3377}
3378EXPORT_SYMBOL(kernel_sock_ioctl);
 
 
 
 
 
 
 
 
3379
3380int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3381{
3382	return sock->ops->shutdown(sock, how);
3383}
3384EXPORT_SYMBOL(kernel_sock_shutdown);