Loading...
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/lsm_hooks.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55#include <net/inet_connection_sock.h>
56#include <net/net_namespace.h>
57#include <net/netlabel.h>
58#include <linux/uaccess.h>
59#include <asm/ioctls.h>
60#include <linux/atomic.h>
61#include <linux/bitops.h>
62#include <linux/interrupt.h>
63#include <linux/netdevice.h> /* for network interface checks */
64#include <net/netlink.h>
65#include <linux/tcp.h>
66#include <linux/udp.h>
67#include <linux/dccp.h>
68#include <linux/quota.h>
69#include <linux/un.h> /* for Unix socket types */
70#include <net/af_unix.h> /* for Unix socket types */
71#include <linux/parser.h>
72#include <linux/nfs_mount.h>
73#include <net/ipv6.h>
74#include <linux/hugetlb.h>
75#include <linux/personality.h>
76#include <linux/audit.h>
77#include <linux/string.h>
78#include <linux/selinux.h>
79#include <linux/mutex.h>
80#include <linux/posix-timers.h>
81#include <linux/syslog.h>
82#include <linux/user_namespace.h>
83#include <linux/export.h>
84#include <linux/msg.h>
85#include <linux/shm.h>
86
87#include "avc.h"
88#include "objsec.h"
89#include "netif.h"
90#include "netnode.h"
91#include "netport.h"
92#include "xfrm.h"
93#include "netlabel.h"
94#include "audit.h"
95#include "avc_ss.h"
96
97/* SECMARK reference count */
98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101int selinux_enforcing;
102
103static int __init enforcing_setup(char *str)
104{
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109}
110__setup("enforcing=", enforcing_setup);
111#endif
112
113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116static int __init selinux_enabled_setup(char *str)
117{
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122}
123__setup("selinux=", selinux_enabled_setup);
124#else
125int selinux_enabled = 1;
126#endif
127
128static struct kmem_cache *sel_inode_cache;
129static struct kmem_cache *file_security_cache;
130
131/**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled. If the always_check_network
139 * policy capability is enabled, SECMARK is always considered enabled.
140 *
141 */
142static int selinux_secmark_enabled(void)
143{
144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
145}
146
147/**
148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
149 *
150 * Description:
151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
152 * (1) if any are enabled or false (0) if neither are enabled. If the
153 * always_check_network policy capability is enabled, peer labeling
154 * is always considered enabled.
155 *
156 */
157static int selinux_peerlbl_enabled(void)
158{
159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
160}
161
162static int selinux_netcache_avc_callback(u32 event)
163{
164 if (event == AVC_CALLBACK_RESET) {
165 sel_netif_flush();
166 sel_netnode_flush();
167 sel_netport_flush();
168 synchronize_net();
169 }
170 return 0;
171}
172
173/*
174 * initialise the security for the init task
175 */
176static void cred_init_security(void)
177{
178 struct cred *cred = (struct cred *) current->real_cred;
179 struct task_security_struct *tsec;
180
181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
182 if (!tsec)
183 panic("SELinux: Failed to initialize initial task.\n");
184
185 tsec->osid = tsec->sid = SECINITSID_KERNEL;
186 cred->security = tsec;
187}
188
189/*
190 * get the security ID of a set of credentials
191 */
192static inline u32 cred_sid(const struct cred *cred)
193{
194 const struct task_security_struct *tsec;
195
196 tsec = cred->security;
197 return tsec->sid;
198}
199
200/*
201 * get the objective security ID of a task
202 */
203static inline u32 task_sid(const struct task_struct *task)
204{
205 u32 sid;
206
207 rcu_read_lock();
208 sid = cred_sid(__task_cred(task));
209 rcu_read_unlock();
210 return sid;
211}
212
213/*
214 * get the subjective security ID of the current task
215 */
216static inline u32 current_sid(void)
217{
218 const struct task_security_struct *tsec = current_security();
219
220 return tsec->sid;
221}
222
223/* Allocate and free functions for each kind of security blob. */
224
225static int inode_alloc_security(struct inode *inode)
226{
227 struct inode_security_struct *isec;
228 u32 sid = current_sid();
229
230 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
231 if (!isec)
232 return -ENOMEM;
233
234 mutex_init(&isec->lock);
235 INIT_LIST_HEAD(&isec->list);
236 isec->inode = inode;
237 isec->sid = SECINITSID_UNLABELED;
238 isec->sclass = SECCLASS_FILE;
239 isec->task_sid = sid;
240 inode->i_security = isec;
241
242 return 0;
243}
244
245static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
246
247/*
248 * Try reloading inode security labels that have been marked as invalid. The
249 * @may_sleep parameter indicates when sleeping and thus reloading labels is
250 * allowed; when set to false, returns ERR_PTR(-ECHILD) when the label is
251 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
252 * when no dentry is available, set it to NULL instead.
253 */
254static int __inode_security_revalidate(struct inode *inode,
255 struct dentry *opt_dentry,
256 bool may_sleep)
257{
258 struct inode_security_struct *isec = inode->i_security;
259
260 might_sleep_if(may_sleep);
261
262 if (isec->initialized == LABEL_INVALID) {
263 if (!may_sleep)
264 return -ECHILD;
265
266 /*
267 * Try reloading the inode security label. This will fail if
268 * @opt_dentry is NULL and no dentry for this inode can be
269 * found; in that case, continue using the old label.
270 */
271 inode_doinit_with_dentry(inode, opt_dentry);
272 }
273 return 0;
274}
275
276static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
277{
278 return inode->i_security;
279}
280
281static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
282{
283 int error;
284
285 error = __inode_security_revalidate(inode, NULL, !rcu);
286 if (error)
287 return ERR_PTR(error);
288 return inode->i_security;
289}
290
291/*
292 * Get the security label of an inode.
293 */
294static struct inode_security_struct *inode_security(struct inode *inode)
295{
296 __inode_security_revalidate(inode, NULL, true);
297 return inode->i_security;
298}
299
300/*
301 * Get the security label of a dentry's backing inode.
302 */
303static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
304{
305 struct inode *inode = d_backing_inode(dentry);
306
307 __inode_security_revalidate(inode, dentry, true);
308 return inode->i_security;
309}
310
311static void inode_free_rcu(struct rcu_head *head)
312{
313 struct inode_security_struct *isec;
314
315 isec = container_of(head, struct inode_security_struct, rcu);
316 kmem_cache_free(sel_inode_cache, isec);
317}
318
319static void inode_free_security(struct inode *inode)
320{
321 struct inode_security_struct *isec = inode->i_security;
322 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
323
324 /*
325 * As not all inode security structures are in a list, we check for
326 * empty list outside of the lock to make sure that we won't waste
327 * time taking a lock doing nothing.
328 *
329 * The list_del_init() function can be safely called more than once.
330 * It should not be possible for this function to be called with
331 * concurrent list_add(), but for better safety against future changes
332 * in the code, we use list_empty_careful() here.
333 */
334 if (!list_empty_careful(&isec->list)) {
335 spin_lock(&sbsec->isec_lock);
336 list_del_init(&isec->list);
337 spin_unlock(&sbsec->isec_lock);
338 }
339
340 /*
341 * The inode may still be referenced in a path walk and
342 * a call to selinux_inode_permission() can be made
343 * after inode_free_security() is called. Ideally, the VFS
344 * wouldn't do this, but fixing that is a much harder
345 * job. For now, simply free the i_security via RCU, and
346 * leave the current inode->i_security pointer intact.
347 * The inode will be freed after the RCU grace period too.
348 */
349 call_rcu(&isec->rcu, inode_free_rcu);
350}
351
352static int file_alloc_security(struct file *file)
353{
354 struct file_security_struct *fsec;
355 u32 sid = current_sid();
356
357 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
358 if (!fsec)
359 return -ENOMEM;
360
361 fsec->sid = sid;
362 fsec->fown_sid = sid;
363 file->f_security = fsec;
364
365 return 0;
366}
367
368static void file_free_security(struct file *file)
369{
370 struct file_security_struct *fsec = file->f_security;
371 file->f_security = NULL;
372 kmem_cache_free(file_security_cache, fsec);
373}
374
375static int superblock_alloc_security(struct super_block *sb)
376{
377 struct superblock_security_struct *sbsec;
378
379 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
380 if (!sbsec)
381 return -ENOMEM;
382
383 mutex_init(&sbsec->lock);
384 INIT_LIST_HEAD(&sbsec->isec_head);
385 spin_lock_init(&sbsec->isec_lock);
386 sbsec->sb = sb;
387 sbsec->sid = SECINITSID_UNLABELED;
388 sbsec->def_sid = SECINITSID_FILE;
389 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
390 sb->s_security = sbsec;
391
392 return 0;
393}
394
395static void superblock_free_security(struct super_block *sb)
396{
397 struct superblock_security_struct *sbsec = sb->s_security;
398 sb->s_security = NULL;
399 kfree(sbsec);
400}
401
402/* The file system's label must be initialized prior to use. */
403
404static const char *labeling_behaviors[7] = {
405 "uses xattr",
406 "uses transition SIDs",
407 "uses task SIDs",
408 "uses genfs_contexts",
409 "not configured for labeling",
410 "uses mountpoint labeling",
411 "uses native labeling",
412};
413
414static inline int inode_doinit(struct inode *inode)
415{
416 return inode_doinit_with_dentry(inode, NULL);
417}
418
419enum {
420 Opt_error = -1,
421 Opt_context = 1,
422 Opt_fscontext = 2,
423 Opt_defcontext = 3,
424 Opt_rootcontext = 4,
425 Opt_labelsupport = 5,
426 Opt_nextmntopt = 6,
427};
428
429#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
430
431static const match_table_t tokens = {
432 {Opt_context, CONTEXT_STR "%s"},
433 {Opt_fscontext, FSCONTEXT_STR "%s"},
434 {Opt_defcontext, DEFCONTEXT_STR "%s"},
435 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
436 {Opt_labelsupport, LABELSUPP_STR},
437 {Opt_error, NULL},
438};
439
440#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
441
442static int may_context_mount_sb_relabel(u32 sid,
443 struct superblock_security_struct *sbsec,
444 const struct cred *cred)
445{
446 const struct task_security_struct *tsec = cred->security;
447 int rc;
448
449 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
450 FILESYSTEM__RELABELFROM, NULL);
451 if (rc)
452 return rc;
453
454 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
455 FILESYSTEM__RELABELTO, NULL);
456 return rc;
457}
458
459static int may_context_mount_inode_relabel(u32 sid,
460 struct superblock_security_struct *sbsec,
461 const struct cred *cred)
462{
463 const struct task_security_struct *tsec = cred->security;
464 int rc;
465 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
466 FILESYSTEM__RELABELFROM, NULL);
467 if (rc)
468 return rc;
469
470 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
471 FILESYSTEM__ASSOCIATE, NULL);
472 return rc;
473}
474
475static int selinux_is_sblabel_mnt(struct super_block *sb)
476{
477 struct superblock_security_struct *sbsec = sb->s_security;
478
479 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
480 sbsec->behavior == SECURITY_FS_USE_TRANS ||
481 sbsec->behavior == SECURITY_FS_USE_TASK ||
482 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
483 /* Special handling. Genfs but also in-core setxattr handler */
484 !strcmp(sb->s_type->name, "sysfs") ||
485 !strcmp(sb->s_type->name, "pstore") ||
486 !strcmp(sb->s_type->name, "debugfs") ||
487 !strcmp(sb->s_type->name, "rootfs");
488}
489
490static int sb_finish_set_opts(struct super_block *sb)
491{
492 struct superblock_security_struct *sbsec = sb->s_security;
493 struct dentry *root = sb->s_root;
494 struct inode *root_inode = d_backing_inode(root);
495 int rc = 0;
496
497 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
498 /* Make sure that the xattr handler exists and that no
499 error other than -ENODATA is returned by getxattr on
500 the root directory. -ENODATA is ok, as this may be
501 the first boot of the SELinux kernel before we have
502 assigned xattr values to the filesystem. */
503 if (!root_inode->i_op->getxattr) {
504 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
505 "xattr support\n", sb->s_id, sb->s_type->name);
506 rc = -EOPNOTSUPP;
507 goto out;
508 }
509 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
510 if (rc < 0 && rc != -ENODATA) {
511 if (rc == -EOPNOTSUPP)
512 printk(KERN_WARNING "SELinux: (dev %s, type "
513 "%s) has no security xattr handler\n",
514 sb->s_id, sb->s_type->name);
515 else
516 printk(KERN_WARNING "SELinux: (dev %s, type "
517 "%s) getxattr errno %d\n", sb->s_id,
518 sb->s_type->name, -rc);
519 goto out;
520 }
521 }
522
523 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
524 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
525 sb->s_id, sb->s_type->name);
526
527 sbsec->flags |= SE_SBINITIALIZED;
528 if (selinux_is_sblabel_mnt(sb))
529 sbsec->flags |= SBLABEL_MNT;
530
531 /* Initialize the root inode. */
532 rc = inode_doinit_with_dentry(root_inode, root);
533
534 /* Initialize any other inodes associated with the superblock, e.g.
535 inodes created prior to initial policy load or inodes created
536 during get_sb by a pseudo filesystem that directly
537 populates itself. */
538 spin_lock(&sbsec->isec_lock);
539next_inode:
540 if (!list_empty(&sbsec->isec_head)) {
541 struct inode_security_struct *isec =
542 list_entry(sbsec->isec_head.next,
543 struct inode_security_struct, list);
544 struct inode *inode = isec->inode;
545 list_del_init(&isec->list);
546 spin_unlock(&sbsec->isec_lock);
547 inode = igrab(inode);
548 if (inode) {
549 if (!IS_PRIVATE(inode))
550 inode_doinit(inode);
551 iput(inode);
552 }
553 spin_lock(&sbsec->isec_lock);
554 goto next_inode;
555 }
556 spin_unlock(&sbsec->isec_lock);
557out:
558 return rc;
559}
560
561/*
562 * This function should allow an FS to ask what it's mount security
563 * options were so it can use those later for submounts, displaying
564 * mount options, or whatever.
565 */
566static int selinux_get_mnt_opts(const struct super_block *sb,
567 struct security_mnt_opts *opts)
568{
569 int rc = 0, i;
570 struct superblock_security_struct *sbsec = sb->s_security;
571 char *context = NULL;
572 u32 len;
573 char tmp;
574
575 security_init_mnt_opts(opts);
576
577 if (!(sbsec->flags & SE_SBINITIALIZED))
578 return -EINVAL;
579
580 if (!ss_initialized)
581 return -EINVAL;
582
583 /* make sure we always check enough bits to cover the mask */
584 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
585
586 tmp = sbsec->flags & SE_MNTMASK;
587 /* count the number of mount options for this sb */
588 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
589 if (tmp & 0x01)
590 opts->num_mnt_opts++;
591 tmp >>= 1;
592 }
593 /* Check if the Label support flag is set */
594 if (sbsec->flags & SBLABEL_MNT)
595 opts->num_mnt_opts++;
596
597 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
598 if (!opts->mnt_opts) {
599 rc = -ENOMEM;
600 goto out_free;
601 }
602
603 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
604 if (!opts->mnt_opts_flags) {
605 rc = -ENOMEM;
606 goto out_free;
607 }
608
609 i = 0;
610 if (sbsec->flags & FSCONTEXT_MNT) {
611 rc = security_sid_to_context(sbsec->sid, &context, &len);
612 if (rc)
613 goto out_free;
614 opts->mnt_opts[i] = context;
615 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
616 }
617 if (sbsec->flags & CONTEXT_MNT) {
618 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
619 if (rc)
620 goto out_free;
621 opts->mnt_opts[i] = context;
622 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
623 }
624 if (sbsec->flags & DEFCONTEXT_MNT) {
625 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
626 if (rc)
627 goto out_free;
628 opts->mnt_opts[i] = context;
629 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
630 }
631 if (sbsec->flags & ROOTCONTEXT_MNT) {
632 struct dentry *root = sbsec->sb->s_root;
633 struct inode_security_struct *isec = backing_inode_security(root);
634
635 rc = security_sid_to_context(isec->sid, &context, &len);
636 if (rc)
637 goto out_free;
638 opts->mnt_opts[i] = context;
639 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
640 }
641 if (sbsec->flags & SBLABEL_MNT) {
642 opts->mnt_opts[i] = NULL;
643 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
644 }
645
646 BUG_ON(i != opts->num_mnt_opts);
647
648 return 0;
649
650out_free:
651 security_free_mnt_opts(opts);
652 return rc;
653}
654
655static int bad_option(struct superblock_security_struct *sbsec, char flag,
656 u32 old_sid, u32 new_sid)
657{
658 char mnt_flags = sbsec->flags & SE_MNTMASK;
659
660 /* check if the old mount command had the same options */
661 if (sbsec->flags & SE_SBINITIALIZED)
662 if (!(sbsec->flags & flag) ||
663 (old_sid != new_sid))
664 return 1;
665
666 /* check if we were passed the same options twice,
667 * aka someone passed context=a,context=b
668 */
669 if (!(sbsec->flags & SE_SBINITIALIZED))
670 if (mnt_flags & flag)
671 return 1;
672 return 0;
673}
674
675/*
676 * Allow filesystems with binary mount data to explicitly set mount point
677 * labeling information.
678 */
679static int selinux_set_mnt_opts(struct super_block *sb,
680 struct security_mnt_opts *opts,
681 unsigned long kern_flags,
682 unsigned long *set_kern_flags)
683{
684 const struct cred *cred = current_cred();
685 int rc = 0, i;
686 struct superblock_security_struct *sbsec = sb->s_security;
687 const char *name = sb->s_type->name;
688 struct dentry *root = sbsec->sb->s_root;
689 struct inode_security_struct *root_isec = backing_inode_security(root);
690 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
691 u32 defcontext_sid = 0;
692 char **mount_options = opts->mnt_opts;
693 int *flags = opts->mnt_opts_flags;
694 int num_opts = opts->num_mnt_opts;
695
696 mutex_lock(&sbsec->lock);
697
698 if (!ss_initialized) {
699 if (!num_opts) {
700 /* Defer initialization until selinux_complete_init,
701 after the initial policy is loaded and the security
702 server is ready to handle calls. */
703 goto out;
704 }
705 rc = -EINVAL;
706 printk(KERN_WARNING "SELinux: Unable to set superblock options "
707 "before the security server is initialized\n");
708 goto out;
709 }
710 if (kern_flags && !set_kern_flags) {
711 /* Specifying internal flags without providing a place to
712 * place the results is not allowed */
713 rc = -EINVAL;
714 goto out;
715 }
716
717 /*
718 * Binary mount data FS will come through this function twice. Once
719 * from an explicit call and once from the generic calls from the vfs.
720 * Since the generic VFS calls will not contain any security mount data
721 * we need to skip the double mount verification.
722 *
723 * This does open a hole in which we will not notice if the first
724 * mount using this sb set explict options and a second mount using
725 * this sb does not set any security options. (The first options
726 * will be used for both mounts)
727 */
728 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
729 && (num_opts == 0))
730 goto out;
731
732 /*
733 * parse the mount options, check if they are valid sids.
734 * also check if someone is trying to mount the same sb more
735 * than once with different security options.
736 */
737 for (i = 0; i < num_opts; i++) {
738 u32 sid;
739
740 if (flags[i] == SBLABEL_MNT)
741 continue;
742 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
743 if (rc) {
744 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
745 "(%s) failed for (dev %s, type %s) errno=%d\n",
746 mount_options[i], sb->s_id, name, rc);
747 goto out;
748 }
749 switch (flags[i]) {
750 case FSCONTEXT_MNT:
751 fscontext_sid = sid;
752
753 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
754 fscontext_sid))
755 goto out_double_mount;
756
757 sbsec->flags |= FSCONTEXT_MNT;
758 break;
759 case CONTEXT_MNT:
760 context_sid = sid;
761
762 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
763 context_sid))
764 goto out_double_mount;
765
766 sbsec->flags |= CONTEXT_MNT;
767 break;
768 case ROOTCONTEXT_MNT:
769 rootcontext_sid = sid;
770
771 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
772 rootcontext_sid))
773 goto out_double_mount;
774
775 sbsec->flags |= ROOTCONTEXT_MNT;
776
777 break;
778 case DEFCONTEXT_MNT:
779 defcontext_sid = sid;
780
781 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
782 defcontext_sid))
783 goto out_double_mount;
784
785 sbsec->flags |= DEFCONTEXT_MNT;
786
787 break;
788 default:
789 rc = -EINVAL;
790 goto out;
791 }
792 }
793
794 if (sbsec->flags & SE_SBINITIALIZED) {
795 /* previously mounted with options, but not on this attempt? */
796 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
797 goto out_double_mount;
798 rc = 0;
799 goto out;
800 }
801
802 if (strcmp(sb->s_type->name, "proc") == 0)
803 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
804
805 if (!strcmp(sb->s_type->name, "debugfs") ||
806 !strcmp(sb->s_type->name, "sysfs") ||
807 !strcmp(sb->s_type->name, "pstore"))
808 sbsec->flags |= SE_SBGENFS;
809
810 if (!sbsec->behavior) {
811 /*
812 * Determine the labeling behavior to use for this
813 * filesystem type.
814 */
815 rc = security_fs_use(sb);
816 if (rc) {
817 printk(KERN_WARNING
818 "%s: security_fs_use(%s) returned %d\n",
819 __func__, sb->s_type->name, rc);
820 goto out;
821 }
822 }
823 /* sets the context of the superblock for the fs being mounted. */
824 if (fscontext_sid) {
825 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
826 if (rc)
827 goto out;
828
829 sbsec->sid = fscontext_sid;
830 }
831
832 /*
833 * Switch to using mount point labeling behavior.
834 * sets the label used on all file below the mountpoint, and will set
835 * the superblock context if not already set.
836 */
837 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
838 sbsec->behavior = SECURITY_FS_USE_NATIVE;
839 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
840 }
841
842 if (context_sid) {
843 if (!fscontext_sid) {
844 rc = may_context_mount_sb_relabel(context_sid, sbsec,
845 cred);
846 if (rc)
847 goto out;
848 sbsec->sid = context_sid;
849 } else {
850 rc = may_context_mount_inode_relabel(context_sid, sbsec,
851 cred);
852 if (rc)
853 goto out;
854 }
855 if (!rootcontext_sid)
856 rootcontext_sid = context_sid;
857
858 sbsec->mntpoint_sid = context_sid;
859 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
860 }
861
862 if (rootcontext_sid) {
863 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
864 cred);
865 if (rc)
866 goto out;
867
868 root_isec->sid = rootcontext_sid;
869 root_isec->initialized = LABEL_INITIALIZED;
870 }
871
872 if (defcontext_sid) {
873 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
874 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
875 rc = -EINVAL;
876 printk(KERN_WARNING "SELinux: defcontext option is "
877 "invalid for this filesystem type\n");
878 goto out;
879 }
880
881 if (defcontext_sid != sbsec->def_sid) {
882 rc = may_context_mount_inode_relabel(defcontext_sid,
883 sbsec, cred);
884 if (rc)
885 goto out;
886 }
887
888 sbsec->def_sid = defcontext_sid;
889 }
890
891 rc = sb_finish_set_opts(sb);
892out:
893 mutex_unlock(&sbsec->lock);
894 return rc;
895out_double_mount:
896 rc = -EINVAL;
897 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
898 "security settings for (dev %s, type %s)\n", sb->s_id, name);
899 goto out;
900}
901
902static int selinux_cmp_sb_context(const struct super_block *oldsb,
903 const struct super_block *newsb)
904{
905 struct superblock_security_struct *old = oldsb->s_security;
906 struct superblock_security_struct *new = newsb->s_security;
907 char oldflags = old->flags & SE_MNTMASK;
908 char newflags = new->flags & SE_MNTMASK;
909
910 if (oldflags != newflags)
911 goto mismatch;
912 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
913 goto mismatch;
914 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
915 goto mismatch;
916 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
917 goto mismatch;
918 if (oldflags & ROOTCONTEXT_MNT) {
919 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
920 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
921 if (oldroot->sid != newroot->sid)
922 goto mismatch;
923 }
924 return 0;
925mismatch:
926 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
927 "different security settings for (dev %s, "
928 "type %s)\n", newsb->s_id, newsb->s_type->name);
929 return -EBUSY;
930}
931
932static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
933 struct super_block *newsb)
934{
935 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
936 struct superblock_security_struct *newsbsec = newsb->s_security;
937
938 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
939 int set_context = (oldsbsec->flags & CONTEXT_MNT);
940 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
941
942 /*
943 * if the parent was able to be mounted it clearly had no special lsm
944 * mount options. thus we can safely deal with this superblock later
945 */
946 if (!ss_initialized)
947 return 0;
948
949 /* how can we clone if the old one wasn't set up?? */
950 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
951
952 /* if fs is reusing a sb, make sure that the contexts match */
953 if (newsbsec->flags & SE_SBINITIALIZED)
954 return selinux_cmp_sb_context(oldsb, newsb);
955
956 mutex_lock(&newsbsec->lock);
957
958 newsbsec->flags = oldsbsec->flags;
959
960 newsbsec->sid = oldsbsec->sid;
961 newsbsec->def_sid = oldsbsec->def_sid;
962 newsbsec->behavior = oldsbsec->behavior;
963
964 if (set_context) {
965 u32 sid = oldsbsec->mntpoint_sid;
966
967 if (!set_fscontext)
968 newsbsec->sid = sid;
969 if (!set_rootcontext) {
970 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
971 newisec->sid = sid;
972 }
973 newsbsec->mntpoint_sid = sid;
974 }
975 if (set_rootcontext) {
976 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
977 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
978
979 newisec->sid = oldisec->sid;
980 }
981
982 sb_finish_set_opts(newsb);
983 mutex_unlock(&newsbsec->lock);
984 return 0;
985}
986
987static int selinux_parse_opts_str(char *options,
988 struct security_mnt_opts *opts)
989{
990 char *p;
991 char *context = NULL, *defcontext = NULL;
992 char *fscontext = NULL, *rootcontext = NULL;
993 int rc, num_mnt_opts = 0;
994
995 opts->num_mnt_opts = 0;
996
997 /* Standard string-based options. */
998 while ((p = strsep(&options, "|")) != NULL) {
999 int token;
1000 substring_t args[MAX_OPT_ARGS];
1001
1002 if (!*p)
1003 continue;
1004
1005 token = match_token(p, tokens, args);
1006
1007 switch (token) {
1008 case Opt_context:
1009 if (context || defcontext) {
1010 rc = -EINVAL;
1011 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1012 goto out_err;
1013 }
1014 context = match_strdup(&args[0]);
1015 if (!context) {
1016 rc = -ENOMEM;
1017 goto out_err;
1018 }
1019 break;
1020
1021 case Opt_fscontext:
1022 if (fscontext) {
1023 rc = -EINVAL;
1024 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1025 goto out_err;
1026 }
1027 fscontext = match_strdup(&args[0]);
1028 if (!fscontext) {
1029 rc = -ENOMEM;
1030 goto out_err;
1031 }
1032 break;
1033
1034 case Opt_rootcontext:
1035 if (rootcontext) {
1036 rc = -EINVAL;
1037 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1038 goto out_err;
1039 }
1040 rootcontext = match_strdup(&args[0]);
1041 if (!rootcontext) {
1042 rc = -ENOMEM;
1043 goto out_err;
1044 }
1045 break;
1046
1047 case Opt_defcontext:
1048 if (context || defcontext) {
1049 rc = -EINVAL;
1050 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1051 goto out_err;
1052 }
1053 defcontext = match_strdup(&args[0]);
1054 if (!defcontext) {
1055 rc = -ENOMEM;
1056 goto out_err;
1057 }
1058 break;
1059 case Opt_labelsupport:
1060 break;
1061 default:
1062 rc = -EINVAL;
1063 printk(KERN_WARNING "SELinux: unknown mount option\n");
1064 goto out_err;
1065
1066 }
1067 }
1068
1069 rc = -ENOMEM;
1070 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1071 if (!opts->mnt_opts)
1072 goto out_err;
1073
1074 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1075 if (!opts->mnt_opts_flags) {
1076 kfree(opts->mnt_opts);
1077 goto out_err;
1078 }
1079
1080 if (fscontext) {
1081 opts->mnt_opts[num_mnt_opts] = fscontext;
1082 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1083 }
1084 if (context) {
1085 opts->mnt_opts[num_mnt_opts] = context;
1086 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1087 }
1088 if (rootcontext) {
1089 opts->mnt_opts[num_mnt_opts] = rootcontext;
1090 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1091 }
1092 if (defcontext) {
1093 opts->mnt_opts[num_mnt_opts] = defcontext;
1094 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1095 }
1096
1097 opts->num_mnt_opts = num_mnt_opts;
1098 return 0;
1099
1100out_err:
1101 kfree(context);
1102 kfree(defcontext);
1103 kfree(fscontext);
1104 kfree(rootcontext);
1105 return rc;
1106}
1107/*
1108 * string mount options parsing and call set the sbsec
1109 */
1110static int superblock_doinit(struct super_block *sb, void *data)
1111{
1112 int rc = 0;
1113 char *options = data;
1114 struct security_mnt_opts opts;
1115
1116 security_init_mnt_opts(&opts);
1117
1118 if (!data)
1119 goto out;
1120
1121 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1122
1123 rc = selinux_parse_opts_str(options, &opts);
1124 if (rc)
1125 goto out_err;
1126
1127out:
1128 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1129
1130out_err:
1131 security_free_mnt_opts(&opts);
1132 return rc;
1133}
1134
1135static void selinux_write_opts(struct seq_file *m,
1136 struct security_mnt_opts *opts)
1137{
1138 int i;
1139 char *prefix;
1140
1141 for (i = 0; i < opts->num_mnt_opts; i++) {
1142 char *has_comma;
1143
1144 if (opts->mnt_opts[i])
1145 has_comma = strchr(opts->mnt_opts[i], ',');
1146 else
1147 has_comma = NULL;
1148
1149 switch (opts->mnt_opts_flags[i]) {
1150 case CONTEXT_MNT:
1151 prefix = CONTEXT_STR;
1152 break;
1153 case FSCONTEXT_MNT:
1154 prefix = FSCONTEXT_STR;
1155 break;
1156 case ROOTCONTEXT_MNT:
1157 prefix = ROOTCONTEXT_STR;
1158 break;
1159 case DEFCONTEXT_MNT:
1160 prefix = DEFCONTEXT_STR;
1161 break;
1162 case SBLABEL_MNT:
1163 seq_putc(m, ',');
1164 seq_puts(m, LABELSUPP_STR);
1165 continue;
1166 default:
1167 BUG();
1168 return;
1169 };
1170 /* we need a comma before each option */
1171 seq_putc(m, ',');
1172 seq_puts(m, prefix);
1173 if (has_comma)
1174 seq_putc(m, '\"');
1175 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1176 if (has_comma)
1177 seq_putc(m, '\"');
1178 }
1179}
1180
1181static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1182{
1183 struct security_mnt_opts opts;
1184 int rc;
1185
1186 rc = selinux_get_mnt_opts(sb, &opts);
1187 if (rc) {
1188 /* before policy load we may get EINVAL, don't show anything */
1189 if (rc == -EINVAL)
1190 rc = 0;
1191 return rc;
1192 }
1193
1194 selinux_write_opts(m, &opts);
1195
1196 security_free_mnt_opts(&opts);
1197
1198 return rc;
1199}
1200
1201static inline u16 inode_mode_to_security_class(umode_t mode)
1202{
1203 switch (mode & S_IFMT) {
1204 case S_IFSOCK:
1205 return SECCLASS_SOCK_FILE;
1206 case S_IFLNK:
1207 return SECCLASS_LNK_FILE;
1208 case S_IFREG:
1209 return SECCLASS_FILE;
1210 case S_IFBLK:
1211 return SECCLASS_BLK_FILE;
1212 case S_IFDIR:
1213 return SECCLASS_DIR;
1214 case S_IFCHR:
1215 return SECCLASS_CHR_FILE;
1216 case S_IFIFO:
1217 return SECCLASS_FIFO_FILE;
1218
1219 }
1220
1221 return SECCLASS_FILE;
1222}
1223
1224static inline int default_protocol_stream(int protocol)
1225{
1226 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1227}
1228
1229static inline int default_protocol_dgram(int protocol)
1230{
1231 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1232}
1233
1234static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1235{
1236 switch (family) {
1237 case PF_UNIX:
1238 switch (type) {
1239 case SOCK_STREAM:
1240 case SOCK_SEQPACKET:
1241 return SECCLASS_UNIX_STREAM_SOCKET;
1242 case SOCK_DGRAM:
1243 return SECCLASS_UNIX_DGRAM_SOCKET;
1244 }
1245 break;
1246 case PF_INET:
1247 case PF_INET6:
1248 switch (type) {
1249 case SOCK_STREAM:
1250 if (default_protocol_stream(protocol))
1251 return SECCLASS_TCP_SOCKET;
1252 else
1253 return SECCLASS_RAWIP_SOCKET;
1254 case SOCK_DGRAM:
1255 if (default_protocol_dgram(protocol))
1256 return SECCLASS_UDP_SOCKET;
1257 else
1258 return SECCLASS_RAWIP_SOCKET;
1259 case SOCK_DCCP:
1260 return SECCLASS_DCCP_SOCKET;
1261 default:
1262 return SECCLASS_RAWIP_SOCKET;
1263 }
1264 break;
1265 case PF_NETLINK:
1266 switch (protocol) {
1267 case NETLINK_ROUTE:
1268 return SECCLASS_NETLINK_ROUTE_SOCKET;
1269 case NETLINK_SOCK_DIAG:
1270 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1271 case NETLINK_NFLOG:
1272 return SECCLASS_NETLINK_NFLOG_SOCKET;
1273 case NETLINK_XFRM:
1274 return SECCLASS_NETLINK_XFRM_SOCKET;
1275 case NETLINK_SELINUX:
1276 return SECCLASS_NETLINK_SELINUX_SOCKET;
1277 case NETLINK_ISCSI:
1278 return SECCLASS_NETLINK_ISCSI_SOCKET;
1279 case NETLINK_AUDIT:
1280 return SECCLASS_NETLINK_AUDIT_SOCKET;
1281 case NETLINK_FIB_LOOKUP:
1282 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1283 case NETLINK_CONNECTOR:
1284 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1285 case NETLINK_NETFILTER:
1286 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1287 case NETLINK_DNRTMSG:
1288 return SECCLASS_NETLINK_DNRT_SOCKET;
1289 case NETLINK_KOBJECT_UEVENT:
1290 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1291 case NETLINK_GENERIC:
1292 return SECCLASS_NETLINK_GENERIC_SOCKET;
1293 case NETLINK_SCSITRANSPORT:
1294 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1295 case NETLINK_RDMA:
1296 return SECCLASS_NETLINK_RDMA_SOCKET;
1297 case NETLINK_CRYPTO:
1298 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1299 default:
1300 return SECCLASS_NETLINK_SOCKET;
1301 }
1302 case PF_PACKET:
1303 return SECCLASS_PACKET_SOCKET;
1304 case PF_KEY:
1305 return SECCLASS_KEY_SOCKET;
1306 case PF_APPLETALK:
1307 return SECCLASS_APPLETALK_SOCKET;
1308 }
1309
1310 return SECCLASS_SOCKET;
1311}
1312
1313static int selinux_genfs_get_sid(struct dentry *dentry,
1314 u16 tclass,
1315 u16 flags,
1316 u32 *sid)
1317{
1318 int rc;
1319 struct super_block *sb = dentry->d_inode->i_sb;
1320 char *buffer, *path;
1321
1322 buffer = (char *)__get_free_page(GFP_KERNEL);
1323 if (!buffer)
1324 return -ENOMEM;
1325
1326 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1327 if (IS_ERR(path))
1328 rc = PTR_ERR(path);
1329 else {
1330 if (flags & SE_SBPROC) {
1331 /* each process gets a /proc/PID/ entry. Strip off the
1332 * PID part to get a valid selinux labeling.
1333 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1334 while (path[1] >= '0' && path[1] <= '9') {
1335 path[1] = '/';
1336 path++;
1337 }
1338 }
1339 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1340 }
1341 free_page((unsigned long)buffer);
1342 return rc;
1343}
1344
1345/* The inode's security attributes must be initialized before first use. */
1346static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1347{
1348 struct superblock_security_struct *sbsec = NULL;
1349 struct inode_security_struct *isec = inode->i_security;
1350 u32 sid;
1351 struct dentry *dentry;
1352#define INITCONTEXTLEN 255
1353 char *context = NULL;
1354 unsigned len = 0;
1355 int rc = 0;
1356
1357 if (isec->initialized == LABEL_INITIALIZED)
1358 goto out;
1359
1360 mutex_lock(&isec->lock);
1361 if (isec->initialized == LABEL_INITIALIZED)
1362 goto out_unlock;
1363
1364 sbsec = inode->i_sb->s_security;
1365 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1366 /* Defer initialization until selinux_complete_init,
1367 after the initial policy is loaded and the security
1368 server is ready to handle calls. */
1369 spin_lock(&sbsec->isec_lock);
1370 if (list_empty(&isec->list))
1371 list_add(&isec->list, &sbsec->isec_head);
1372 spin_unlock(&sbsec->isec_lock);
1373 goto out_unlock;
1374 }
1375
1376 switch (sbsec->behavior) {
1377 case SECURITY_FS_USE_NATIVE:
1378 break;
1379 case SECURITY_FS_USE_XATTR:
1380 if (!inode->i_op->getxattr) {
1381 isec->sid = sbsec->def_sid;
1382 break;
1383 }
1384
1385 /* Need a dentry, since the xattr API requires one.
1386 Life would be simpler if we could just pass the inode. */
1387 if (opt_dentry) {
1388 /* Called from d_instantiate or d_splice_alias. */
1389 dentry = dget(opt_dentry);
1390 } else {
1391 /* Called from selinux_complete_init, try to find a dentry. */
1392 dentry = d_find_alias(inode);
1393 }
1394 if (!dentry) {
1395 /*
1396 * this is can be hit on boot when a file is accessed
1397 * before the policy is loaded. When we load policy we
1398 * may find inodes that have no dentry on the
1399 * sbsec->isec_head list. No reason to complain as these
1400 * will get fixed up the next time we go through
1401 * inode_doinit with a dentry, before these inodes could
1402 * be used again by userspace.
1403 */
1404 goto out_unlock;
1405 }
1406
1407 len = INITCONTEXTLEN;
1408 context = kmalloc(len+1, GFP_NOFS);
1409 if (!context) {
1410 rc = -ENOMEM;
1411 dput(dentry);
1412 goto out_unlock;
1413 }
1414 context[len] = '\0';
1415 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1416 context, len);
1417 if (rc == -ERANGE) {
1418 kfree(context);
1419
1420 /* Need a larger buffer. Query for the right size. */
1421 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1422 NULL, 0);
1423 if (rc < 0) {
1424 dput(dentry);
1425 goto out_unlock;
1426 }
1427 len = rc;
1428 context = kmalloc(len+1, GFP_NOFS);
1429 if (!context) {
1430 rc = -ENOMEM;
1431 dput(dentry);
1432 goto out_unlock;
1433 }
1434 context[len] = '\0';
1435 rc = inode->i_op->getxattr(dentry,
1436 XATTR_NAME_SELINUX,
1437 context, len);
1438 }
1439 dput(dentry);
1440 if (rc < 0) {
1441 if (rc != -ENODATA) {
1442 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1443 "%d for dev=%s ino=%ld\n", __func__,
1444 -rc, inode->i_sb->s_id, inode->i_ino);
1445 kfree(context);
1446 goto out_unlock;
1447 }
1448 /* Map ENODATA to the default file SID */
1449 sid = sbsec->def_sid;
1450 rc = 0;
1451 } else {
1452 rc = security_context_to_sid_default(context, rc, &sid,
1453 sbsec->def_sid,
1454 GFP_NOFS);
1455 if (rc) {
1456 char *dev = inode->i_sb->s_id;
1457 unsigned long ino = inode->i_ino;
1458
1459 if (rc == -EINVAL) {
1460 if (printk_ratelimit())
1461 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1462 "context=%s. This indicates you may need to relabel the inode or the "
1463 "filesystem in question.\n", ino, dev, context);
1464 } else {
1465 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1466 "returned %d for dev=%s ino=%ld\n",
1467 __func__, context, -rc, dev, ino);
1468 }
1469 kfree(context);
1470 /* Leave with the unlabeled SID */
1471 rc = 0;
1472 break;
1473 }
1474 }
1475 kfree(context);
1476 isec->sid = sid;
1477 break;
1478 case SECURITY_FS_USE_TASK:
1479 isec->sid = isec->task_sid;
1480 break;
1481 case SECURITY_FS_USE_TRANS:
1482 /* Default to the fs SID. */
1483 isec->sid = sbsec->sid;
1484
1485 /* Try to obtain a transition SID. */
1486 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1487 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1488 isec->sclass, NULL, &sid);
1489 if (rc)
1490 goto out_unlock;
1491 isec->sid = sid;
1492 break;
1493 case SECURITY_FS_USE_MNTPOINT:
1494 isec->sid = sbsec->mntpoint_sid;
1495 break;
1496 default:
1497 /* Default to the fs superblock SID. */
1498 isec->sid = sbsec->sid;
1499
1500 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1501 /* We must have a dentry to determine the label on
1502 * procfs inodes */
1503 if (opt_dentry)
1504 /* Called from d_instantiate or
1505 * d_splice_alias. */
1506 dentry = dget(opt_dentry);
1507 else
1508 /* Called from selinux_complete_init, try to
1509 * find a dentry. */
1510 dentry = d_find_alias(inode);
1511 /*
1512 * This can be hit on boot when a file is accessed
1513 * before the policy is loaded. When we load policy we
1514 * may find inodes that have no dentry on the
1515 * sbsec->isec_head list. No reason to complain as
1516 * these will get fixed up the next time we go through
1517 * inode_doinit() with a dentry, before these inodes
1518 * could be used again by userspace.
1519 */
1520 if (!dentry)
1521 goto out_unlock;
1522 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1523 rc = selinux_genfs_get_sid(dentry, isec->sclass,
1524 sbsec->flags, &sid);
1525 dput(dentry);
1526 if (rc)
1527 goto out_unlock;
1528 isec->sid = sid;
1529 }
1530 break;
1531 }
1532
1533 isec->initialized = LABEL_INITIALIZED;
1534
1535out_unlock:
1536 mutex_unlock(&isec->lock);
1537out:
1538 if (isec->sclass == SECCLASS_FILE)
1539 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1540 return rc;
1541}
1542
1543/* Convert a Linux signal to an access vector. */
1544static inline u32 signal_to_av(int sig)
1545{
1546 u32 perm = 0;
1547
1548 switch (sig) {
1549 case SIGCHLD:
1550 /* Commonly granted from child to parent. */
1551 perm = PROCESS__SIGCHLD;
1552 break;
1553 case SIGKILL:
1554 /* Cannot be caught or ignored */
1555 perm = PROCESS__SIGKILL;
1556 break;
1557 case SIGSTOP:
1558 /* Cannot be caught or ignored */
1559 perm = PROCESS__SIGSTOP;
1560 break;
1561 default:
1562 /* All other signals. */
1563 perm = PROCESS__SIGNAL;
1564 break;
1565 }
1566
1567 return perm;
1568}
1569
1570/*
1571 * Check permission between a pair of credentials
1572 * fork check, ptrace check, etc.
1573 */
1574static int cred_has_perm(const struct cred *actor,
1575 const struct cred *target,
1576 u32 perms)
1577{
1578 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1579
1580 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1581}
1582
1583/*
1584 * Check permission between a pair of tasks, e.g. signal checks,
1585 * fork check, ptrace check, etc.
1586 * tsk1 is the actor and tsk2 is the target
1587 * - this uses the default subjective creds of tsk1
1588 */
1589static int task_has_perm(const struct task_struct *tsk1,
1590 const struct task_struct *tsk2,
1591 u32 perms)
1592{
1593 const struct task_security_struct *__tsec1, *__tsec2;
1594 u32 sid1, sid2;
1595
1596 rcu_read_lock();
1597 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1598 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1599 rcu_read_unlock();
1600 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1601}
1602
1603/*
1604 * Check permission between current and another task, e.g. signal checks,
1605 * fork check, ptrace check, etc.
1606 * current is the actor and tsk2 is the target
1607 * - this uses current's subjective creds
1608 */
1609static int current_has_perm(const struct task_struct *tsk,
1610 u32 perms)
1611{
1612 u32 sid, tsid;
1613
1614 sid = current_sid();
1615 tsid = task_sid(tsk);
1616 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625 int cap, int audit)
1626{
1627 struct common_audit_data ad;
1628 struct av_decision avd;
1629 u16 sclass;
1630 u32 sid = cred_sid(cred);
1631 u32 av = CAP_TO_MASK(cap);
1632 int rc;
1633
1634 ad.type = LSM_AUDIT_DATA_CAP;
1635 ad.u.cap = cap;
1636
1637 switch (CAP_TO_INDEX(cap)) {
1638 case 0:
1639 sclass = SECCLASS_CAPABILITY;
1640 break;
1641 case 1:
1642 sclass = SECCLASS_CAPABILITY2;
1643 break;
1644 default:
1645 printk(KERN_ERR
1646 "SELinux: out of range capability %d\n", cap);
1647 BUG();
1648 return -EINVAL;
1649 }
1650
1651 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1652 if (audit == SECURITY_CAP_AUDIT) {
1653 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1654 if (rc2)
1655 return rc2;
1656 }
1657 return rc;
1658}
1659
1660/* Check whether a task is allowed to use a system operation. */
1661static int task_has_system(struct task_struct *tsk,
1662 u32 perms)
1663{
1664 u32 sid = task_sid(tsk);
1665
1666 return avc_has_perm(sid, SECINITSID_KERNEL,
1667 SECCLASS_SYSTEM, perms, NULL);
1668}
1669
1670/* Check whether a task has a particular permission to an inode.
1671 The 'adp' parameter is optional and allows other audit
1672 data to be passed (e.g. the dentry). */
1673static int inode_has_perm(const struct cred *cred,
1674 struct inode *inode,
1675 u32 perms,
1676 struct common_audit_data *adp)
1677{
1678 struct inode_security_struct *isec;
1679 u32 sid;
1680
1681 validate_creds(cred);
1682
1683 if (unlikely(IS_PRIVATE(inode)))
1684 return 0;
1685
1686 sid = cred_sid(cred);
1687 isec = inode->i_security;
1688
1689 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1690}
1691
1692/* Same as inode_has_perm, but pass explicit audit data containing
1693 the dentry to help the auditing code to more easily generate the
1694 pathname if needed. */
1695static inline int dentry_has_perm(const struct cred *cred,
1696 struct dentry *dentry,
1697 u32 av)
1698{
1699 struct inode *inode = d_backing_inode(dentry);
1700 struct common_audit_data ad;
1701
1702 ad.type = LSM_AUDIT_DATA_DENTRY;
1703 ad.u.dentry = dentry;
1704 __inode_security_revalidate(inode, dentry, true);
1705 return inode_has_perm(cred, inode, av, &ad);
1706}
1707
1708/* Same as inode_has_perm, but pass explicit audit data containing
1709 the path to help the auditing code to more easily generate the
1710 pathname if needed. */
1711static inline int path_has_perm(const struct cred *cred,
1712 const struct path *path,
1713 u32 av)
1714{
1715 struct inode *inode = d_backing_inode(path->dentry);
1716 struct common_audit_data ad;
1717
1718 ad.type = LSM_AUDIT_DATA_PATH;
1719 ad.u.path = *path;
1720 __inode_security_revalidate(inode, path->dentry, true);
1721 return inode_has_perm(cred, inode, av, &ad);
1722}
1723
1724/* Same as path_has_perm, but uses the inode from the file struct. */
1725static inline int file_path_has_perm(const struct cred *cred,
1726 struct file *file,
1727 u32 av)
1728{
1729 struct common_audit_data ad;
1730
1731 ad.type = LSM_AUDIT_DATA_PATH;
1732 ad.u.path = file->f_path;
1733 return inode_has_perm(cred, file_inode(file), av, &ad);
1734}
1735
1736/* Check whether a task can use an open file descriptor to
1737 access an inode in a given way. Check access to the
1738 descriptor itself, and then use dentry_has_perm to
1739 check a particular permission to the file.
1740 Access to the descriptor is implicitly granted if it
1741 has the same SID as the process. If av is zero, then
1742 access to the file is not checked, e.g. for cases
1743 where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745 struct file *file,
1746 u32 av)
1747{
1748 struct file_security_struct *fsec = file->f_security;
1749 struct inode *inode = file_inode(file);
1750 struct common_audit_data ad;
1751 u32 sid = cred_sid(cred);
1752 int rc;
1753
1754 ad.type = LSM_AUDIT_DATA_PATH;
1755 ad.u.path = file->f_path;
1756
1757 if (sid != fsec->sid) {
1758 rc = avc_has_perm(sid, fsec->sid,
1759 SECCLASS_FD,
1760 FD__USE,
1761 &ad);
1762 if (rc)
1763 goto out;
1764 }
1765
1766 /* av is zero if only checking access to the descriptor. */
1767 rc = 0;
1768 if (av)
1769 rc = inode_has_perm(cred, inode, av, &ad);
1770
1771out:
1772 return rc;
1773}
1774
1775/*
1776 * Determine the label for an inode that might be unioned.
1777 */
1778static int selinux_determine_inode_label(struct inode *dir,
1779 const struct qstr *name,
1780 u16 tclass,
1781 u32 *_new_isid)
1782{
1783 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1784 const struct inode_security_struct *dsec = inode_security(dir);
1785 const struct task_security_struct *tsec = current_security();
1786
1787 if ((sbsec->flags & SE_SBINITIALIZED) &&
1788 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1789 *_new_isid = sbsec->mntpoint_sid;
1790 } else if ((sbsec->flags & SBLABEL_MNT) &&
1791 tsec->create_sid) {
1792 *_new_isid = tsec->create_sid;
1793 } else {
1794 return security_transition_sid(tsec->sid, dsec->sid, tclass,
1795 name, _new_isid);
1796 }
1797
1798 return 0;
1799}
1800
1801/* Check whether a task can create a file. */
1802static int may_create(struct inode *dir,
1803 struct dentry *dentry,
1804 u16 tclass)
1805{
1806 const struct task_security_struct *tsec = current_security();
1807 struct inode_security_struct *dsec;
1808 struct superblock_security_struct *sbsec;
1809 u32 sid, newsid;
1810 struct common_audit_data ad;
1811 int rc;
1812
1813 dsec = inode_security(dir);
1814 sbsec = dir->i_sb->s_security;
1815
1816 sid = tsec->sid;
1817
1818 ad.type = LSM_AUDIT_DATA_DENTRY;
1819 ad.u.dentry = dentry;
1820
1821 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1822 DIR__ADD_NAME | DIR__SEARCH,
1823 &ad);
1824 if (rc)
1825 return rc;
1826
1827 rc = selinux_determine_inode_label(dir, &dentry->d_name, tclass,
1828 &newsid);
1829 if (rc)
1830 return rc;
1831
1832 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1833 if (rc)
1834 return rc;
1835
1836 return avc_has_perm(newsid, sbsec->sid,
1837 SECCLASS_FILESYSTEM,
1838 FILESYSTEM__ASSOCIATE, &ad);
1839}
1840
1841/* Check whether a task can create a key. */
1842static int may_create_key(u32 ksid,
1843 struct task_struct *ctx)
1844{
1845 u32 sid = task_sid(ctx);
1846
1847 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1848}
1849
1850#define MAY_LINK 0
1851#define MAY_UNLINK 1
1852#define MAY_RMDIR 2
1853
1854/* Check whether a task can link, unlink, or rmdir a file/directory. */
1855static int may_link(struct inode *dir,
1856 struct dentry *dentry,
1857 int kind)
1858
1859{
1860 struct inode_security_struct *dsec, *isec;
1861 struct common_audit_data ad;
1862 u32 sid = current_sid();
1863 u32 av;
1864 int rc;
1865
1866 dsec = inode_security(dir);
1867 isec = backing_inode_security(dentry);
1868
1869 ad.type = LSM_AUDIT_DATA_DENTRY;
1870 ad.u.dentry = dentry;
1871
1872 av = DIR__SEARCH;
1873 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1874 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1875 if (rc)
1876 return rc;
1877
1878 switch (kind) {
1879 case MAY_LINK:
1880 av = FILE__LINK;
1881 break;
1882 case MAY_UNLINK:
1883 av = FILE__UNLINK;
1884 break;
1885 case MAY_RMDIR:
1886 av = DIR__RMDIR;
1887 break;
1888 default:
1889 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1890 __func__, kind);
1891 return 0;
1892 }
1893
1894 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1895 return rc;
1896}
1897
1898static inline int may_rename(struct inode *old_dir,
1899 struct dentry *old_dentry,
1900 struct inode *new_dir,
1901 struct dentry *new_dentry)
1902{
1903 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1904 struct common_audit_data ad;
1905 u32 sid = current_sid();
1906 u32 av;
1907 int old_is_dir, new_is_dir;
1908 int rc;
1909
1910 old_dsec = inode_security(old_dir);
1911 old_isec = backing_inode_security(old_dentry);
1912 old_is_dir = d_is_dir(old_dentry);
1913 new_dsec = inode_security(new_dir);
1914
1915 ad.type = LSM_AUDIT_DATA_DENTRY;
1916
1917 ad.u.dentry = old_dentry;
1918 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1919 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1920 if (rc)
1921 return rc;
1922 rc = avc_has_perm(sid, old_isec->sid,
1923 old_isec->sclass, FILE__RENAME, &ad);
1924 if (rc)
1925 return rc;
1926 if (old_is_dir && new_dir != old_dir) {
1927 rc = avc_has_perm(sid, old_isec->sid,
1928 old_isec->sclass, DIR__REPARENT, &ad);
1929 if (rc)
1930 return rc;
1931 }
1932
1933 ad.u.dentry = new_dentry;
1934 av = DIR__ADD_NAME | DIR__SEARCH;
1935 if (d_is_positive(new_dentry))
1936 av |= DIR__REMOVE_NAME;
1937 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1938 if (rc)
1939 return rc;
1940 if (d_is_positive(new_dentry)) {
1941 new_isec = backing_inode_security(new_dentry);
1942 new_is_dir = d_is_dir(new_dentry);
1943 rc = avc_has_perm(sid, new_isec->sid,
1944 new_isec->sclass,
1945 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1946 if (rc)
1947 return rc;
1948 }
1949
1950 return 0;
1951}
1952
1953/* Check whether a task can perform a filesystem operation. */
1954static int superblock_has_perm(const struct cred *cred,
1955 struct super_block *sb,
1956 u32 perms,
1957 struct common_audit_data *ad)
1958{
1959 struct superblock_security_struct *sbsec;
1960 u32 sid = cred_sid(cred);
1961
1962 sbsec = sb->s_security;
1963 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1964}
1965
1966/* Convert a Linux mode and permission mask to an access vector. */
1967static inline u32 file_mask_to_av(int mode, int mask)
1968{
1969 u32 av = 0;
1970
1971 if (!S_ISDIR(mode)) {
1972 if (mask & MAY_EXEC)
1973 av |= FILE__EXECUTE;
1974 if (mask & MAY_READ)
1975 av |= FILE__READ;
1976
1977 if (mask & MAY_APPEND)
1978 av |= FILE__APPEND;
1979 else if (mask & MAY_WRITE)
1980 av |= FILE__WRITE;
1981
1982 } else {
1983 if (mask & MAY_EXEC)
1984 av |= DIR__SEARCH;
1985 if (mask & MAY_WRITE)
1986 av |= DIR__WRITE;
1987 if (mask & MAY_READ)
1988 av |= DIR__READ;
1989 }
1990
1991 return av;
1992}
1993
1994/* Convert a Linux file to an access vector. */
1995static inline u32 file_to_av(struct file *file)
1996{
1997 u32 av = 0;
1998
1999 if (file->f_mode & FMODE_READ)
2000 av |= FILE__READ;
2001 if (file->f_mode & FMODE_WRITE) {
2002 if (file->f_flags & O_APPEND)
2003 av |= FILE__APPEND;
2004 else
2005 av |= FILE__WRITE;
2006 }
2007 if (!av) {
2008 /*
2009 * Special file opened with flags 3 for ioctl-only use.
2010 */
2011 av = FILE__IOCTL;
2012 }
2013
2014 return av;
2015}
2016
2017/*
2018 * Convert a file to an access vector and include the correct open
2019 * open permission.
2020 */
2021static inline u32 open_file_to_av(struct file *file)
2022{
2023 u32 av = file_to_av(file);
2024
2025 if (selinux_policycap_openperm)
2026 av |= FILE__OPEN;
2027
2028 return av;
2029}
2030
2031/* Hook functions begin here. */
2032
2033static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2034{
2035 u32 mysid = current_sid();
2036 u32 mgrsid = task_sid(mgr);
2037
2038 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2039 BINDER__SET_CONTEXT_MGR, NULL);
2040}
2041
2042static int selinux_binder_transaction(struct task_struct *from,
2043 struct task_struct *to)
2044{
2045 u32 mysid = current_sid();
2046 u32 fromsid = task_sid(from);
2047 u32 tosid = task_sid(to);
2048 int rc;
2049
2050 if (mysid != fromsid) {
2051 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2052 BINDER__IMPERSONATE, NULL);
2053 if (rc)
2054 return rc;
2055 }
2056
2057 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2058 NULL);
2059}
2060
2061static int selinux_binder_transfer_binder(struct task_struct *from,
2062 struct task_struct *to)
2063{
2064 u32 fromsid = task_sid(from);
2065 u32 tosid = task_sid(to);
2066
2067 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2068 NULL);
2069}
2070
2071static int selinux_binder_transfer_file(struct task_struct *from,
2072 struct task_struct *to,
2073 struct file *file)
2074{
2075 u32 sid = task_sid(to);
2076 struct file_security_struct *fsec = file->f_security;
2077 struct dentry *dentry = file->f_path.dentry;
2078 struct inode_security_struct *isec = backing_inode_security(dentry);
2079 struct common_audit_data ad;
2080 int rc;
2081
2082 ad.type = LSM_AUDIT_DATA_PATH;
2083 ad.u.path = file->f_path;
2084
2085 if (sid != fsec->sid) {
2086 rc = avc_has_perm(sid, fsec->sid,
2087 SECCLASS_FD,
2088 FD__USE,
2089 &ad);
2090 if (rc)
2091 return rc;
2092 }
2093
2094 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2095 return 0;
2096
2097 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2098 &ad);
2099}
2100
2101static int selinux_ptrace_access_check(struct task_struct *child,
2102 unsigned int mode)
2103{
2104 if (mode & PTRACE_MODE_READ) {
2105 u32 sid = current_sid();
2106 u32 csid = task_sid(child);
2107 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2108 }
2109
2110 return current_has_perm(child, PROCESS__PTRACE);
2111}
2112
2113static int selinux_ptrace_traceme(struct task_struct *parent)
2114{
2115 return task_has_perm(parent, current, PROCESS__PTRACE);
2116}
2117
2118static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2119 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2120{
2121 return current_has_perm(target, PROCESS__GETCAP);
2122}
2123
2124static int selinux_capset(struct cred *new, const struct cred *old,
2125 const kernel_cap_t *effective,
2126 const kernel_cap_t *inheritable,
2127 const kernel_cap_t *permitted)
2128{
2129 return cred_has_perm(old, new, PROCESS__SETCAP);
2130}
2131
2132/*
2133 * (This comment used to live with the selinux_task_setuid hook,
2134 * which was removed).
2135 *
2136 * Since setuid only affects the current process, and since the SELinux
2137 * controls are not based on the Linux identity attributes, SELinux does not
2138 * need to control this operation. However, SELinux does control the use of
2139 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2140 */
2141
2142static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2143 int cap, int audit)
2144{
2145 return cred_has_capability(cred, cap, audit);
2146}
2147
2148static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2149{
2150 const struct cred *cred = current_cred();
2151 int rc = 0;
2152
2153 if (!sb)
2154 return 0;
2155
2156 switch (cmds) {
2157 case Q_SYNC:
2158 case Q_QUOTAON:
2159 case Q_QUOTAOFF:
2160 case Q_SETINFO:
2161 case Q_SETQUOTA:
2162 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2163 break;
2164 case Q_GETFMT:
2165 case Q_GETINFO:
2166 case Q_GETQUOTA:
2167 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2168 break;
2169 default:
2170 rc = 0; /* let the kernel handle invalid cmds */
2171 break;
2172 }
2173 return rc;
2174}
2175
2176static int selinux_quota_on(struct dentry *dentry)
2177{
2178 const struct cred *cred = current_cred();
2179
2180 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2181}
2182
2183static int selinux_syslog(int type)
2184{
2185 int rc;
2186
2187 switch (type) {
2188 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2189 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2190 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2191 break;
2192 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2193 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2194 /* Set level of messages printed to console */
2195 case SYSLOG_ACTION_CONSOLE_LEVEL:
2196 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2197 break;
2198 case SYSLOG_ACTION_CLOSE: /* Close log */
2199 case SYSLOG_ACTION_OPEN: /* Open log */
2200 case SYSLOG_ACTION_READ: /* Read from log */
2201 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2202 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2203 default:
2204 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2205 break;
2206 }
2207 return rc;
2208}
2209
2210/*
2211 * Check that a process has enough memory to allocate a new virtual
2212 * mapping. 0 means there is enough memory for the allocation to
2213 * succeed and -ENOMEM implies there is not.
2214 *
2215 * Do not audit the selinux permission check, as this is applied to all
2216 * processes that allocate mappings.
2217 */
2218static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2219{
2220 int rc, cap_sys_admin = 0;
2221
2222 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2223 SECURITY_CAP_NOAUDIT);
2224 if (rc == 0)
2225 cap_sys_admin = 1;
2226
2227 return cap_sys_admin;
2228}
2229
2230/* binprm security operations */
2231
2232static int check_nnp_nosuid(const struct linux_binprm *bprm,
2233 const struct task_security_struct *old_tsec,
2234 const struct task_security_struct *new_tsec)
2235{
2236 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2237 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2238 int rc;
2239
2240 if (!nnp && !nosuid)
2241 return 0; /* neither NNP nor nosuid */
2242
2243 if (new_tsec->sid == old_tsec->sid)
2244 return 0; /* No change in credentials */
2245
2246 /*
2247 * The only transitions we permit under NNP or nosuid
2248 * are transitions to bounded SIDs, i.e. SIDs that are
2249 * guaranteed to only be allowed a subset of the permissions
2250 * of the current SID.
2251 */
2252 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2253 if (rc) {
2254 /*
2255 * On failure, preserve the errno values for NNP vs nosuid.
2256 * NNP: Operation not permitted for caller.
2257 * nosuid: Permission denied to file.
2258 */
2259 if (nnp)
2260 return -EPERM;
2261 else
2262 return -EACCES;
2263 }
2264 return 0;
2265}
2266
2267static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2268{
2269 const struct task_security_struct *old_tsec;
2270 struct task_security_struct *new_tsec;
2271 struct inode_security_struct *isec;
2272 struct common_audit_data ad;
2273 struct inode *inode = file_inode(bprm->file);
2274 int rc;
2275
2276 /* SELinux context only depends on initial program or script and not
2277 * the script interpreter */
2278 if (bprm->cred_prepared)
2279 return 0;
2280
2281 old_tsec = current_security();
2282 new_tsec = bprm->cred->security;
2283 isec = inode_security(inode);
2284
2285 /* Default to the current task SID. */
2286 new_tsec->sid = old_tsec->sid;
2287 new_tsec->osid = old_tsec->sid;
2288
2289 /* Reset fs, key, and sock SIDs on execve. */
2290 new_tsec->create_sid = 0;
2291 new_tsec->keycreate_sid = 0;
2292 new_tsec->sockcreate_sid = 0;
2293
2294 if (old_tsec->exec_sid) {
2295 new_tsec->sid = old_tsec->exec_sid;
2296 /* Reset exec SID on execve. */
2297 new_tsec->exec_sid = 0;
2298
2299 /* Fail on NNP or nosuid if not an allowed transition. */
2300 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2301 if (rc)
2302 return rc;
2303 } else {
2304 /* Check for a default transition on this program. */
2305 rc = security_transition_sid(old_tsec->sid, isec->sid,
2306 SECCLASS_PROCESS, NULL,
2307 &new_tsec->sid);
2308 if (rc)
2309 return rc;
2310
2311 /*
2312 * Fallback to old SID on NNP or nosuid if not an allowed
2313 * transition.
2314 */
2315 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2316 if (rc)
2317 new_tsec->sid = old_tsec->sid;
2318 }
2319
2320 ad.type = LSM_AUDIT_DATA_PATH;
2321 ad.u.path = bprm->file->f_path;
2322
2323 if (new_tsec->sid == old_tsec->sid) {
2324 rc = avc_has_perm(old_tsec->sid, isec->sid,
2325 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2326 if (rc)
2327 return rc;
2328 } else {
2329 /* Check permissions for the transition. */
2330 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2331 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2332 if (rc)
2333 return rc;
2334
2335 rc = avc_has_perm(new_tsec->sid, isec->sid,
2336 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2337 if (rc)
2338 return rc;
2339
2340 /* Check for shared state */
2341 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2342 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2343 SECCLASS_PROCESS, PROCESS__SHARE,
2344 NULL);
2345 if (rc)
2346 return -EPERM;
2347 }
2348
2349 /* Make sure that anyone attempting to ptrace over a task that
2350 * changes its SID has the appropriate permit */
2351 if (bprm->unsafe &
2352 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2353 struct task_struct *tracer;
2354 struct task_security_struct *sec;
2355 u32 ptsid = 0;
2356
2357 rcu_read_lock();
2358 tracer = ptrace_parent(current);
2359 if (likely(tracer != NULL)) {
2360 sec = __task_cred(tracer)->security;
2361 ptsid = sec->sid;
2362 }
2363 rcu_read_unlock();
2364
2365 if (ptsid != 0) {
2366 rc = avc_has_perm(ptsid, new_tsec->sid,
2367 SECCLASS_PROCESS,
2368 PROCESS__PTRACE, NULL);
2369 if (rc)
2370 return -EPERM;
2371 }
2372 }
2373
2374 /* Clear any possibly unsafe personality bits on exec: */
2375 bprm->per_clear |= PER_CLEAR_ON_SETID;
2376 }
2377
2378 return 0;
2379}
2380
2381static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2382{
2383 const struct task_security_struct *tsec = current_security();
2384 u32 sid, osid;
2385 int atsecure = 0;
2386
2387 sid = tsec->sid;
2388 osid = tsec->osid;
2389
2390 if (osid != sid) {
2391 /* Enable secure mode for SIDs transitions unless
2392 the noatsecure permission is granted between
2393 the two SIDs, i.e. ahp returns 0. */
2394 atsecure = avc_has_perm(osid, sid,
2395 SECCLASS_PROCESS,
2396 PROCESS__NOATSECURE, NULL);
2397 }
2398
2399 return !!atsecure;
2400}
2401
2402static int match_file(const void *p, struct file *file, unsigned fd)
2403{
2404 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2405}
2406
2407/* Derived from fs/exec.c:flush_old_files. */
2408static inline void flush_unauthorized_files(const struct cred *cred,
2409 struct files_struct *files)
2410{
2411 struct file *file, *devnull = NULL;
2412 struct tty_struct *tty;
2413 int drop_tty = 0;
2414 unsigned n;
2415
2416 tty = get_current_tty();
2417 if (tty) {
2418 spin_lock(&tty->files_lock);
2419 if (!list_empty(&tty->tty_files)) {
2420 struct tty_file_private *file_priv;
2421
2422 /* Revalidate access to controlling tty.
2423 Use file_path_has_perm on the tty path directly
2424 rather than using file_has_perm, as this particular
2425 open file may belong to another process and we are
2426 only interested in the inode-based check here. */
2427 file_priv = list_first_entry(&tty->tty_files,
2428 struct tty_file_private, list);
2429 file = file_priv->file;
2430 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2431 drop_tty = 1;
2432 }
2433 spin_unlock(&tty->files_lock);
2434 tty_kref_put(tty);
2435 }
2436 /* Reset controlling tty. */
2437 if (drop_tty)
2438 no_tty();
2439
2440 /* Revalidate access to inherited open files. */
2441 n = iterate_fd(files, 0, match_file, cred);
2442 if (!n) /* none found? */
2443 return;
2444
2445 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2446 if (IS_ERR(devnull))
2447 devnull = NULL;
2448 /* replace all the matching ones with this */
2449 do {
2450 replace_fd(n - 1, devnull, 0);
2451 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2452 if (devnull)
2453 fput(devnull);
2454}
2455
2456/*
2457 * Prepare a process for imminent new credential changes due to exec
2458 */
2459static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2460{
2461 struct task_security_struct *new_tsec;
2462 struct rlimit *rlim, *initrlim;
2463 int rc, i;
2464
2465 new_tsec = bprm->cred->security;
2466 if (new_tsec->sid == new_tsec->osid)
2467 return;
2468
2469 /* Close files for which the new task SID is not authorized. */
2470 flush_unauthorized_files(bprm->cred, current->files);
2471
2472 /* Always clear parent death signal on SID transitions. */
2473 current->pdeath_signal = 0;
2474
2475 /* Check whether the new SID can inherit resource limits from the old
2476 * SID. If not, reset all soft limits to the lower of the current
2477 * task's hard limit and the init task's soft limit.
2478 *
2479 * Note that the setting of hard limits (even to lower them) can be
2480 * controlled by the setrlimit check. The inclusion of the init task's
2481 * soft limit into the computation is to avoid resetting soft limits
2482 * higher than the default soft limit for cases where the default is
2483 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2484 */
2485 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2486 PROCESS__RLIMITINH, NULL);
2487 if (rc) {
2488 /* protect against do_prlimit() */
2489 task_lock(current);
2490 for (i = 0; i < RLIM_NLIMITS; i++) {
2491 rlim = current->signal->rlim + i;
2492 initrlim = init_task.signal->rlim + i;
2493 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2494 }
2495 task_unlock(current);
2496 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2497 }
2498}
2499
2500/*
2501 * Clean up the process immediately after the installation of new credentials
2502 * due to exec
2503 */
2504static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2505{
2506 const struct task_security_struct *tsec = current_security();
2507 struct itimerval itimer;
2508 u32 osid, sid;
2509 int rc, i;
2510
2511 osid = tsec->osid;
2512 sid = tsec->sid;
2513
2514 if (sid == osid)
2515 return;
2516
2517 /* Check whether the new SID can inherit signal state from the old SID.
2518 * If not, clear itimers to avoid subsequent signal generation and
2519 * flush and unblock signals.
2520 *
2521 * This must occur _after_ the task SID has been updated so that any
2522 * kill done after the flush will be checked against the new SID.
2523 */
2524 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2525 if (rc) {
2526 memset(&itimer, 0, sizeof itimer);
2527 for (i = 0; i < 3; i++)
2528 do_setitimer(i, &itimer, NULL);
2529 spin_lock_irq(¤t->sighand->siglock);
2530 if (!fatal_signal_pending(current)) {
2531 flush_sigqueue(¤t->pending);
2532 flush_sigqueue(¤t->signal->shared_pending);
2533 flush_signal_handlers(current, 1);
2534 sigemptyset(¤t->blocked);
2535 recalc_sigpending();
2536 }
2537 spin_unlock_irq(¤t->sighand->siglock);
2538 }
2539
2540 /* Wake up the parent if it is waiting so that it can recheck
2541 * wait permission to the new task SID. */
2542 read_lock(&tasklist_lock);
2543 __wake_up_parent(current, current->real_parent);
2544 read_unlock(&tasklist_lock);
2545}
2546
2547/* superblock security operations */
2548
2549static int selinux_sb_alloc_security(struct super_block *sb)
2550{
2551 return superblock_alloc_security(sb);
2552}
2553
2554static void selinux_sb_free_security(struct super_block *sb)
2555{
2556 superblock_free_security(sb);
2557}
2558
2559static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2560{
2561 if (plen > olen)
2562 return 0;
2563
2564 return !memcmp(prefix, option, plen);
2565}
2566
2567static inline int selinux_option(char *option, int len)
2568{
2569 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2570 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2571 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2572 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2573 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2574}
2575
2576static inline void take_option(char **to, char *from, int *first, int len)
2577{
2578 if (!*first) {
2579 **to = ',';
2580 *to += 1;
2581 } else
2582 *first = 0;
2583 memcpy(*to, from, len);
2584 *to += len;
2585}
2586
2587static inline void take_selinux_option(char **to, char *from, int *first,
2588 int len)
2589{
2590 int current_size = 0;
2591
2592 if (!*first) {
2593 **to = '|';
2594 *to += 1;
2595 } else
2596 *first = 0;
2597
2598 while (current_size < len) {
2599 if (*from != '"') {
2600 **to = *from;
2601 *to += 1;
2602 }
2603 from += 1;
2604 current_size += 1;
2605 }
2606}
2607
2608static int selinux_sb_copy_data(char *orig, char *copy)
2609{
2610 int fnosec, fsec, rc = 0;
2611 char *in_save, *in_curr, *in_end;
2612 char *sec_curr, *nosec_save, *nosec;
2613 int open_quote = 0;
2614
2615 in_curr = orig;
2616 sec_curr = copy;
2617
2618 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2619 if (!nosec) {
2620 rc = -ENOMEM;
2621 goto out;
2622 }
2623
2624 nosec_save = nosec;
2625 fnosec = fsec = 1;
2626 in_save = in_end = orig;
2627
2628 do {
2629 if (*in_end == '"')
2630 open_quote = !open_quote;
2631 if ((*in_end == ',' && open_quote == 0) ||
2632 *in_end == '\0') {
2633 int len = in_end - in_curr;
2634
2635 if (selinux_option(in_curr, len))
2636 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2637 else
2638 take_option(&nosec, in_curr, &fnosec, len);
2639
2640 in_curr = in_end + 1;
2641 }
2642 } while (*in_end++);
2643
2644 strcpy(in_save, nosec_save);
2645 free_page((unsigned long)nosec_save);
2646out:
2647 return rc;
2648}
2649
2650static int selinux_sb_remount(struct super_block *sb, void *data)
2651{
2652 int rc, i, *flags;
2653 struct security_mnt_opts opts;
2654 char *secdata, **mount_options;
2655 struct superblock_security_struct *sbsec = sb->s_security;
2656
2657 if (!(sbsec->flags & SE_SBINITIALIZED))
2658 return 0;
2659
2660 if (!data)
2661 return 0;
2662
2663 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2664 return 0;
2665
2666 security_init_mnt_opts(&opts);
2667 secdata = alloc_secdata();
2668 if (!secdata)
2669 return -ENOMEM;
2670 rc = selinux_sb_copy_data(data, secdata);
2671 if (rc)
2672 goto out_free_secdata;
2673
2674 rc = selinux_parse_opts_str(secdata, &opts);
2675 if (rc)
2676 goto out_free_secdata;
2677
2678 mount_options = opts.mnt_opts;
2679 flags = opts.mnt_opts_flags;
2680
2681 for (i = 0; i < opts.num_mnt_opts; i++) {
2682 u32 sid;
2683
2684 if (flags[i] == SBLABEL_MNT)
2685 continue;
2686 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2687 if (rc) {
2688 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2689 "(%s) failed for (dev %s, type %s) errno=%d\n",
2690 mount_options[i], sb->s_id, sb->s_type->name, rc);
2691 goto out_free_opts;
2692 }
2693 rc = -EINVAL;
2694 switch (flags[i]) {
2695 case FSCONTEXT_MNT:
2696 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2697 goto out_bad_option;
2698 break;
2699 case CONTEXT_MNT:
2700 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2701 goto out_bad_option;
2702 break;
2703 case ROOTCONTEXT_MNT: {
2704 struct inode_security_struct *root_isec;
2705 root_isec = backing_inode_security(sb->s_root);
2706
2707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2708 goto out_bad_option;
2709 break;
2710 }
2711 case DEFCONTEXT_MNT:
2712 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2713 goto out_bad_option;
2714 break;
2715 default:
2716 goto out_free_opts;
2717 }
2718 }
2719
2720 rc = 0;
2721out_free_opts:
2722 security_free_mnt_opts(&opts);
2723out_free_secdata:
2724 free_secdata(secdata);
2725 return rc;
2726out_bad_option:
2727 printk(KERN_WARNING "SELinux: unable to change security options "
2728 "during remount (dev %s, type=%s)\n", sb->s_id,
2729 sb->s_type->name);
2730 goto out_free_opts;
2731}
2732
2733static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2734{
2735 const struct cred *cred = current_cred();
2736 struct common_audit_data ad;
2737 int rc;
2738
2739 rc = superblock_doinit(sb, data);
2740 if (rc)
2741 return rc;
2742
2743 /* Allow all mounts performed by the kernel */
2744 if (flags & MS_KERNMOUNT)
2745 return 0;
2746
2747 ad.type = LSM_AUDIT_DATA_DENTRY;
2748 ad.u.dentry = sb->s_root;
2749 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2750}
2751
2752static int selinux_sb_statfs(struct dentry *dentry)
2753{
2754 const struct cred *cred = current_cred();
2755 struct common_audit_data ad;
2756
2757 ad.type = LSM_AUDIT_DATA_DENTRY;
2758 ad.u.dentry = dentry->d_sb->s_root;
2759 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2760}
2761
2762static int selinux_mount(const char *dev_name,
2763 struct path *path,
2764 const char *type,
2765 unsigned long flags,
2766 void *data)
2767{
2768 const struct cred *cred = current_cred();
2769
2770 if (flags & MS_REMOUNT)
2771 return superblock_has_perm(cred, path->dentry->d_sb,
2772 FILESYSTEM__REMOUNT, NULL);
2773 else
2774 return path_has_perm(cred, path, FILE__MOUNTON);
2775}
2776
2777static int selinux_umount(struct vfsmount *mnt, int flags)
2778{
2779 const struct cred *cred = current_cred();
2780
2781 return superblock_has_perm(cred, mnt->mnt_sb,
2782 FILESYSTEM__UNMOUNT, NULL);
2783}
2784
2785/* inode security operations */
2786
2787static int selinux_inode_alloc_security(struct inode *inode)
2788{
2789 return inode_alloc_security(inode);
2790}
2791
2792static void selinux_inode_free_security(struct inode *inode)
2793{
2794 inode_free_security(inode);
2795}
2796
2797static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2798 struct qstr *name, void **ctx,
2799 u32 *ctxlen)
2800{
2801 u32 newsid;
2802 int rc;
2803
2804 rc = selinux_determine_inode_label(d_inode(dentry->d_parent), name,
2805 inode_mode_to_security_class(mode),
2806 &newsid);
2807 if (rc)
2808 return rc;
2809
2810 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2811}
2812
2813static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2814 const struct qstr *qstr,
2815 const char **name,
2816 void **value, size_t *len)
2817{
2818 const struct task_security_struct *tsec = current_security();
2819 struct superblock_security_struct *sbsec;
2820 u32 sid, newsid, clen;
2821 int rc;
2822 char *context;
2823
2824 sbsec = dir->i_sb->s_security;
2825
2826 sid = tsec->sid;
2827 newsid = tsec->create_sid;
2828
2829 rc = selinux_determine_inode_label(
2830 dir, qstr,
2831 inode_mode_to_security_class(inode->i_mode),
2832 &newsid);
2833 if (rc)
2834 return rc;
2835
2836 /* Possibly defer initialization to selinux_complete_init. */
2837 if (sbsec->flags & SE_SBINITIALIZED) {
2838 struct inode_security_struct *isec = inode->i_security;
2839 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2840 isec->sid = newsid;
2841 isec->initialized = LABEL_INITIALIZED;
2842 }
2843
2844 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2845 return -EOPNOTSUPP;
2846
2847 if (name)
2848 *name = XATTR_SELINUX_SUFFIX;
2849
2850 if (value && len) {
2851 rc = security_sid_to_context_force(newsid, &context, &clen);
2852 if (rc)
2853 return rc;
2854 *value = context;
2855 *len = clen;
2856 }
2857
2858 return 0;
2859}
2860
2861static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2862{
2863 return may_create(dir, dentry, SECCLASS_FILE);
2864}
2865
2866static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2867{
2868 return may_link(dir, old_dentry, MAY_LINK);
2869}
2870
2871static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2872{
2873 return may_link(dir, dentry, MAY_UNLINK);
2874}
2875
2876static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2877{
2878 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2879}
2880
2881static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2882{
2883 return may_create(dir, dentry, SECCLASS_DIR);
2884}
2885
2886static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2887{
2888 return may_link(dir, dentry, MAY_RMDIR);
2889}
2890
2891static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892{
2893 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2894}
2895
2896static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2897 struct inode *new_inode, struct dentry *new_dentry)
2898{
2899 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2900}
2901
2902static int selinux_inode_readlink(struct dentry *dentry)
2903{
2904 const struct cred *cred = current_cred();
2905
2906 return dentry_has_perm(cred, dentry, FILE__READ);
2907}
2908
2909static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2910 bool rcu)
2911{
2912 const struct cred *cred = current_cred();
2913 struct common_audit_data ad;
2914 struct inode_security_struct *isec;
2915 u32 sid;
2916
2917 validate_creds(cred);
2918
2919 ad.type = LSM_AUDIT_DATA_DENTRY;
2920 ad.u.dentry = dentry;
2921 sid = cred_sid(cred);
2922 isec = inode_security_rcu(inode, rcu);
2923 if (IS_ERR(isec))
2924 return PTR_ERR(isec);
2925
2926 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2927 rcu ? MAY_NOT_BLOCK : 0);
2928}
2929
2930static noinline int audit_inode_permission(struct inode *inode,
2931 u32 perms, u32 audited, u32 denied,
2932 int result,
2933 unsigned flags)
2934{
2935 struct common_audit_data ad;
2936 struct inode_security_struct *isec = inode->i_security;
2937 int rc;
2938
2939 ad.type = LSM_AUDIT_DATA_INODE;
2940 ad.u.inode = inode;
2941
2942 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2943 audited, denied, result, &ad, flags);
2944 if (rc)
2945 return rc;
2946 return 0;
2947}
2948
2949static int selinux_inode_permission(struct inode *inode, int mask)
2950{
2951 const struct cred *cred = current_cred();
2952 u32 perms;
2953 bool from_access;
2954 unsigned flags = mask & MAY_NOT_BLOCK;
2955 struct inode_security_struct *isec;
2956 u32 sid;
2957 struct av_decision avd;
2958 int rc, rc2;
2959 u32 audited, denied;
2960
2961 from_access = mask & MAY_ACCESS;
2962 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2963
2964 /* No permission to check. Existence test. */
2965 if (!mask)
2966 return 0;
2967
2968 validate_creds(cred);
2969
2970 if (unlikely(IS_PRIVATE(inode)))
2971 return 0;
2972
2973 perms = file_mask_to_av(inode->i_mode, mask);
2974
2975 sid = cred_sid(cred);
2976 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
2977 if (IS_ERR(isec))
2978 return PTR_ERR(isec);
2979
2980 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2981 audited = avc_audit_required(perms, &avd, rc,
2982 from_access ? FILE__AUDIT_ACCESS : 0,
2983 &denied);
2984 if (likely(!audited))
2985 return rc;
2986
2987 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2988 if (rc2)
2989 return rc2;
2990 return rc;
2991}
2992
2993static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2994{
2995 const struct cred *cred = current_cred();
2996 unsigned int ia_valid = iattr->ia_valid;
2997 __u32 av = FILE__WRITE;
2998
2999 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3000 if (ia_valid & ATTR_FORCE) {
3001 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3002 ATTR_FORCE);
3003 if (!ia_valid)
3004 return 0;
3005 }
3006
3007 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3008 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3009 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3010
3011 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3012 && !(ia_valid & ATTR_FILE))
3013 av |= FILE__OPEN;
3014
3015 return dentry_has_perm(cred, dentry, av);
3016}
3017
3018static int selinux_inode_getattr(const struct path *path)
3019{
3020 return path_has_perm(current_cred(), path, FILE__GETATTR);
3021}
3022
3023static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3024{
3025 const struct cred *cred = current_cred();
3026
3027 if (!strncmp(name, XATTR_SECURITY_PREFIX,
3028 sizeof XATTR_SECURITY_PREFIX - 1)) {
3029 if (!strcmp(name, XATTR_NAME_CAPS)) {
3030 if (!capable(CAP_SETFCAP))
3031 return -EPERM;
3032 } else if (!capable(CAP_SYS_ADMIN)) {
3033 /* A different attribute in the security namespace.
3034 Restrict to administrator. */
3035 return -EPERM;
3036 }
3037 }
3038
3039 /* Not an attribute we recognize, so just check the
3040 ordinary setattr permission. */
3041 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3042}
3043
3044static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3045 const void *value, size_t size, int flags)
3046{
3047 struct inode *inode = d_backing_inode(dentry);
3048 struct inode_security_struct *isec = backing_inode_security(dentry);
3049 struct superblock_security_struct *sbsec;
3050 struct common_audit_data ad;
3051 u32 newsid, sid = current_sid();
3052 int rc = 0;
3053
3054 if (strcmp(name, XATTR_NAME_SELINUX))
3055 return selinux_inode_setotherxattr(dentry, name);
3056
3057 sbsec = inode->i_sb->s_security;
3058 if (!(sbsec->flags & SBLABEL_MNT))
3059 return -EOPNOTSUPP;
3060
3061 if (!inode_owner_or_capable(inode))
3062 return -EPERM;
3063
3064 ad.type = LSM_AUDIT_DATA_DENTRY;
3065 ad.u.dentry = dentry;
3066
3067 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3068 FILE__RELABELFROM, &ad);
3069 if (rc)
3070 return rc;
3071
3072 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3073 if (rc == -EINVAL) {
3074 if (!capable(CAP_MAC_ADMIN)) {
3075 struct audit_buffer *ab;
3076 size_t audit_size;
3077 const char *str;
3078
3079 /* We strip a nul only if it is at the end, otherwise the
3080 * context contains a nul and we should audit that */
3081 if (value) {
3082 str = value;
3083 if (str[size - 1] == '\0')
3084 audit_size = size - 1;
3085 else
3086 audit_size = size;
3087 } else {
3088 str = "";
3089 audit_size = 0;
3090 }
3091 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3092 audit_log_format(ab, "op=setxattr invalid_context=");
3093 audit_log_n_untrustedstring(ab, value, audit_size);
3094 audit_log_end(ab);
3095
3096 return rc;
3097 }
3098 rc = security_context_to_sid_force(value, size, &newsid);
3099 }
3100 if (rc)
3101 return rc;
3102
3103 rc = avc_has_perm(sid, newsid, isec->sclass,
3104 FILE__RELABELTO, &ad);
3105 if (rc)
3106 return rc;
3107
3108 rc = security_validate_transition(isec->sid, newsid, sid,
3109 isec->sclass);
3110 if (rc)
3111 return rc;
3112
3113 return avc_has_perm(newsid,
3114 sbsec->sid,
3115 SECCLASS_FILESYSTEM,
3116 FILESYSTEM__ASSOCIATE,
3117 &ad);
3118}
3119
3120static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3121 const void *value, size_t size,
3122 int flags)
3123{
3124 struct inode *inode = d_backing_inode(dentry);
3125 struct inode_security_struct *isec = backing_inode_security(dentry);
3126 u32 newsid;
3127 int rc;
3128
3129 if (strcmp(name, XATTR_NAME_SELINUX)) {
3130 /* Not an attribute we recognize, so nothing to do. */
3131 return;
3132 }
3133
3134 rc = security_context_to_sid_force(value, size, &newsid);
3135 if (rc) {
3136 printk(KERN_ERR "SELinux: unable to map context to SID"
3137 "for (%s, %lu), rc=%d\n",
3138 inode->i_sb->s_id, inode->i_ino, -rc);
3139 return;
3140 }
3141
3142 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3143 isec->sid = newsid;
3144 isec->initialized = LABEL_INITIALIZED;
3145
3146 return;
3147}
3148
3149static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3150{
3151 const struct cred *cred = current_cred();
3152
3153 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3154}
3155
3156static int selinux_inode_listxattr(struct dentry *dentry)
3157{
3158 const struct cred *cred = current_cred();
3159
3160 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3161}
3162
3163static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3164{
3165 if (strcmp(name, XATTR_NAME_SELINUX))
3166 return selinux_inode_setotherxattr(dentry, name);
3167
3168 /* No one is allowed to remove a SELinux security label.
3169 You can change the label, but all data must be labeled. */
3170 return -EACCES;
3171}
3172
3173/*
3174 * Copy the inode security context value to the user.
3175 *
3176 * Permission check is handled by selinux_inode_getxattr hook.
3177 */
3178static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3179{
3180 u32 size;
3181 int error;
3182 char *context = NULL;
3183 struct inode_security_struct *isec = inode_security(inode);
3184
3185 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3186 return -EOPNOTSUPP;
3187
3188 /*
3189 * If the caller has CAP_MAC_ADMIN, then get the raw context
3190 * value even if it is not defined by current policy; otherwise,
3191 * use the in-core value under current policy.
3192 * Use the non-auditing forms of the permission checks since
3193 * getxattr may be called by unprivileged processes commonly
3194 * and lack of permission just means that we fall back to the
3195 * in-core context value, not a denial.
3196 */
3197 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3198 SECURITY_CAP_NOAUDIT);
3199 if (!error)
3200 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3201 SECURITY_CAP_NOAUDIT);
3202 if (!error)
3203 error = security_sid_to_context_force(isec->sid, &context,
3204 &size);
3205 else
3206 error = security_sid_to_context(isec->sid, &context, &size);
3207 if (error)
3208 return error;
3209 error = size;
3210 if (alloc) {
3211 *buffer = context;
3212 goto out_nofree;
3213 }
3214 kfree(context);
3215out_nofree:
3216 return error;
3217}
3218
3219static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3220 const void *value, size_t size, int flags)
3221{
3222 struct inode_security_struct *isec = inode_security(inode);
3223 u32 newsid;
3224 int rc;
3225
3226 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3227 return -EOPNOTSUPP;
3228
3229 if (!value || !size)
3230 return -EACCES;
3231
3232 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3233 if (rc)
3234 return rc;
3235
3236 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3237 isec->sid = newsid;
3238 isec->initialized = LABEL_INITIALIZED;
3239 return 0;
3240}
3241
3242static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3243{
3244 const int len = sizeof(XATTR_NAME_SELINUX);
3245 if (buffer && len <= buffer_size)
3246 memcpy(buffer, XATTR_NAME_SELINUX, len);
3247 return len;
3248}
3249
3250static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3251{
3252 struct inode_security_struct *isec = inode_security_novalidate(inode);
3253 *secid = isec->sid;
3254}
3255
3256/* file security operations */
3257
3258static int selinux_revalidate_file_permission(struct file *file, int mask)
3259{
3260 const struct cred *cred = current_cred();
3261 struct inode *inode = file_inode(file);
3262
3263 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3264 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3265 mask |= MAY_APPEND;
3266
3267 return file_has_perm(cred, file,
3268 file_mask_to_av(inode->i_mode, mask));
3269}
3270
3271static int selinux_file_permission(struct file *file, int mask)
3272{
3273 struct inode *inode = file_inode(file);
3274 struct file_security_struct *fsec = file->f_security;
3275 struct inode_security_struct *isec;
3276 u32 sid = current_sid();
3277
3278 if (!mask)
3279 /* No permission to check. Existence test. */
3280 return 0;
3281
3282 isec = inode_security(inode);
3283 if (sid == fsec->sid && fsec->isid == isec->sid &&
3284 fsec->pseqno == avc_policy_seqno())
3285 /* No change since file_open check. */
3286 return 0;
3287
3288 return selinux_revalidate_file_permission(file, mask);
3289}
3290
3291static int selinux_file_alloc_security(struct file *file)
3292{
3293 return file_alloc_security(file);
3294}
3295
3296static void selinux_file_free_security(struct file *file)
3297{
3298 file_free_security(file);
3299}
3300
3301/*
3302 * Check whether a task has the ioctl permission and cmd
3303 * operation to an inode.
3304 */
3305static int ioctl_has_perm(const struct cred *cred, struct file *file,
3306 u32 requested, u16 cmd)
3307{
3308 struct common_audit_data ad;
3309 struct file_security_struct *fsec = file->f_security;
3310 struct inode *inode = file_inode(file);
3311 struct inode_security_struct *isec = inode_security(inode);
3312 struct lsm_ioctlop_audit ioctl;
3313 u32 ssid = cred_sid(cred);
3314 int rc;
3315 u8 driver = cmd >> 8;
3316 u8 xperm = cmd & 0xff;
3317
3318 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3319 ad.u.op = &ioctl;
3320 ad.u.op->cmd = cmd;
3321 ad.u.op->path = file->f_path;
3322
3323 if (ssid != fsec->sid) {
3324 rc = avc_has_perm(ssid, fsec->sid,
3325 SECCLASS_FD,
3326 FD__USE,
3327 &ad);
3328 if (rc)
3329 goto out;
3330 }
3331
3332 if (unlikely(IS_PRIVATE(inode)))
3333 return 0;
3334
3335 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3336 requested, driver, xperm, &ad);
3337out:
3338 return rc;
3339}
3340
3341static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3342 unsigned long arg)
3343{
3344 const struct cred *cred = current_cred();
3345 int error = 0;
3346
3347 switch (cmd) {
3348 case FIONREAD:
3349 /* fall through */
3350 case FIBMAP:
3351 /* fall through */
3352 case FIGETBSZ:
3353 /* fall through */
3354 case FS_IOC_GETFLAGS:
3355 /* fall through */
3356 case FS_IOC_GETVERSION:
3357 error = file_has_perm(cred, file, FILE__GETATTR);
3358 break;
3359
3360 case FS_IOC_SETFLAGS:
3361 /* fall through */
3362 case FS_IOC_SETVERSION:
3363 error = file_has_perm(cred, file, FILE__SETATTR);
3364 break;
3365
3366 /* sys_ioctl() checks */
3367 case FIONBIO:
3368 /* fall through */
3369 case FIOASYNC:
3370 error = file_has_perm(cred, file, 0);
3371 break;
3372
3373 case KDSKBENT:
3374 case KDSKBSENT:
3375 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3376 SECURITY_CAP_AUDIT);
3377 break;
3378
3379 /* default case assumes that the command will go
3380 * to the file's ioctl() function.
3381 */
3382 default:
3383 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3384 }
3385 return error;
3386}
3387
3388static int default_noexec;
3389
3390static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3391{
3392 const struct cred *cred = current_cred();
3393 int rc = 0;
3394
3395 if (default_noexec &&
3396 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3397 (!shared && (prot & PROT_WRITE)))) {
3398 /*
3399 * We are making executable an anonymous mapping or a
3400 * private file mapping that will also be writable.
3401 * This has an additional check.
3402 */
3403 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3404 if (rc)
3405 goto error;
3406 }
3407
3408 if (file) {
3409 /* read access is always possible with a mapping */
3410 u32 av = FILE__READ;
3411
3412 /* write access only matters if the mapping is shared */
3413 if (shared && (prot & PROT_WRITE))
3414 av |= FILE__WRITE;
3415
3416 if (prot & PROT_EXEC)
3417 av |= FILE__EXECUTE;
3418
3419 return file_has_perm(cred, file, av);
3420 }
3421
3422error:
3423 return rc;
3424}
3425
3426static int selinux_mmap_addr(unsigned long addr)
3427{
3428 int rc = 0;
3429
3430 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3431 u32 sid = current_sid();
3432 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3433 MEMPROTECT__MMAP_ZERO, NULL);
3434 }
3435
3436 return rc;
3437}
3438
3439static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3440 unsigned long prot, unsigned long flags)
3441{
3442 if (selinux_checkreqprot)
3443 prot = reqprot;
3444
3445 return file_map_prot_check(file, prot,
3446 (flags & MAP_TYPE) == MAP_SHARED);
3447}
3448
3449static int selinux_file_mprotect(struct vm_area_struct *vma,
3450 unsigned long reqprot,
3451 unsigned long prot)
3452{
3453 const struct cred *cred = current_cred();
3454
3455 if (selinux_checkreqprot)
3456 prot = reqprot;
3457
3458 if (default_noexec &&
3459 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3460 int rc = 0;
3461 if (vma->vm_start >= vma->vm_mm->start_brk &&
3462 vma->vm_end <= vma->vm_mm->brk) {
3463 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3464 } else if (!vma->vm_file &&
3465 vma->vm_start <= vma->vm_mm->start_stack &&
3466 vma->vm_end >= vma->vm_mm->start_stack) {
3467 rc = current_has_perm(current, PROCESS__EXECSTACK);
3468 } else if (vma->vm_file && vma->anon_vma) {
3469 /*
3470 * We are making executable a file mapping that has
3471 * had some COW done. Since pages might have been
3472 * written, check ability to execute the possibly
3473 * modified content. This typically should only
3474 * occur for text relocations.
3475 */
3476 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3477 }
3478 if (rc)
3479 return rc;
3480 }
3481
3482 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3483}
3484
3485static int selinux_file_lock(struct file *file, unsigned int cmd)
3486{
3487 const struct cred *cred = current_cred();
3488
3489 return file_has_perm(cred, file, FILE__LOCK);
3490}
3491
3492static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3493 unsigned long arg)
3494{
3495 const struct cred *cred = current_cred();
3496 int err = 0;
3497
3498 switch (cmd) {
3499 case F_SETFL:
3500 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3501 err = file_has_perm(cred, file, FILE__WRITE);
3502 break;
3503 }
3504 /* fall through */
3505 case F_SETOWN:
3506 case F_SETSIG:
3507 case F_GETFL:
3508 case F_GETOWN:
3509 case F_GETSIG:
3510 case F_GETOWNER_UIDS:
3511 /* Just check FD__USE permission */
3512 err = file_has_perm(cred, file, 0);
3513 break;
3514 case F_GETLK:
3515 case F_SETLK:
3516 case F_SETLKW:
3517 case F_OFD_GETLK:
3518 case F_OFD_SETLK:
3519 case F_OFD_SETLKW:
3520#if BITS_PER_LONG == 32
3521 case F_GETLK64:
3522 case F_SETLK64:
3523 case F_SETLKW64:
3524#endif
3525 err = file_has_perm(cred, file, FILE__LOCK);
3526 break;
3527 }
3528
3529 return err;
3530}
3531
3532static void selinux_file_set_fowner(struct file *file)
3533{
3534 struct file_security_struct *fsec;
3535
3536 fsec = file->f_security;
3537 fsec->fown_sid = current_sid();
3538}
3539
3540static int selinux_file_send_sigiotask(struct task_struct *tsk,
3541 struct fown_struct *fown, int signum)
3542{
3543 struct file *file;
3544 u32 sid = task_sid(tsk);
3545 u32 perm;
3546 struct file_security_struct *fsec;
3547
3548 /* struct fown_struct is never outside the context of a struct file */
3549 file = container_of(fown, struct file, f_owner);
3550
3551 fsec = file->f_security;
3552
3553 if (!signum)
3554 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3555 else
3556 perm = signal_to_av(signum);
3557
3558 return avc_has_perm(fsec->fown_sid, sid,
3559 SECCLASS_PROCESS, perm, NULL);
3560}
3561
3562static int selinux_file_receive(struct file *file)
3563{
3564 const struct cred *cred = current_cred();
3565
3566 return file_has_perm(cred, file, file_to_av(file));
3567}
3568
3569static int selinux_file_open(struct file *file, const struct cred *cred)
3570{
3571 struct file_security_struct *fsec;
3572 struct inode_security_struct *isec;
3573
3574 fsec = file->f_security;
3575 isec = inode_security(file_inode(file));
3576 /*
3577 * Save inode label and policy sequence number
3578 * at open-time so that selinux_file_permission
3579 * can determine whether revalidation is necessary.
3580 * Task label is already saved in the file security
3581 * struct as its SID.
3582 */
3583 fsec->isid = isec->sid;
3584 fsec->pseqno = avc_policy_seqno();
3585 /*
3586 * Since the inode label or policy seqno may have changed
3587 * between the selinux_inode_permission check and the saving
3588 * of state above, recheck that access is still permitted.
3589 * Otherwise, access might never be revalidated against the
3590 * new inode label or new policy.
3591 * This check is not redundant - do not remove.
3592 */
3593 return file_path_has_perm(cred, file, open_file_to_av(file));
3594}
3595
3596/* task security operations */
3597
3598static int selinux_task_create(unsigned long clone_flags)
3599{
3600 return current_has_perm(current, PROCESS__FORK);
3601}
3602
3603/*
3604 * allocate the SELinux part of blank credentials
3605 */
3606static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3607{
3608 struct task_security_struct *tsec;
3609
3610 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3611 if (!tsec)
3612 return -ENOMEM;
3613
3614 cred->security = tsec;
3615 return 0;
3616}
3617
3618/*
3619 * detach and free the LSM part of a set of credentials
3620 */
3621static void selinux_cred_free(struct cred *cred)
3622{
3623 struct task_security_struct *tsec = cred->security;
3624
3625 /*
3626 * cred->security == NULL if security_cred_alloc_blank() or
3627 * security_prepare_creds() returned an error.
3628 */
3629 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3630 cred->security = (void *) 0x7UL;
3631 kfree(tsec);
3632}
3633
3634/*
3635 * prepare a new set of credentials for modification
3636 */
3637static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3638 gfp_t gfp)
3639{
3640 const struct task_security_struct *old_tsec;
3641 struct task_security_struct *tsec;
3642
3643 old_tsec = old->security;
3644
3645 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3646 if (!tsec)
3647 return -ENOMEM;
3648
3649 new->security = tsec;
3650 return 0;
3651}
3652
3653/*
3654 * transfer the SELinux data to a blank set of creds
3655 */
3656static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3657{
3658 const struct task_security_struct *old_tsec = old->security;
3659 struct task_security_struct *tsec = new->security;
3660
3661 *tsec = *old_tsec;
3662}
3663
3664/*
3665 * set the security data for a kernel service
3666 * - all the creation contexts are set to unlabelled
3667 */
3668static int selinux_kernel_act_as(struct cred *new, u32 secid)
3669{
3670 struct task_security_struct *tsec = new->security;
3671 u32 sid = current_sid();
3672 int ret;
3673
3674 ret = avc_has_perm(sid, secid,
3675 SECCLASS_KERNEL_SERVICE,
3676 KERNEL_SERVICE__USE_AS_OVERRIDE,
3677 NULL);
3678 if (ret == 0) {
3679 tsec->sid = secid;
3680 tsec->create_sid = 0;
3681 tsec->keycreate_sid = 0;
3682 tsec->sockcreate_sid = 0;
3683 }
3684 return ret;
3685}
3686
3687/*
3688 * set the file creation context in a security record to the same as the
3689 * objective context of the specified inode
3690 */
3691static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3692{
3693 struct inode_security_struct *isec = inode_security(inode);
3694 struct task_security_struct *tsec = new->security;
3695 u32 sid = current_sid();
3696 int ret;
3697
3698 ret = avc_has_perm(sid, isec->sid,
3699 SECCLASS_KERNEL_SERVICE,
3700 KERNEL_SERVICE__CREATE_FILES_AS,
3701 NULL);
3702
3703 if (ret == 0)
3704 tsec->create_sid = isec->sid;
3705 return ret;
3706}
3707
3708static int selinux_kernel_module_request(char *kmod_name)
3709{
3710 u32 sid;
3711 struct common_audit_data ad;
3712
3713 sid = task_sid(current);
3714
3715 ad.type = LSM_AUDIT_DATA_KMOD;
3716 ad.u.kmod_name = kmod_name;
3717
3718 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3719 SYSTEM__MODULE_REQUEST, &ad);
3720}
3721
3722static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3723{
3724 return current_has_perm(p, PROCESS__SETPGID);
3725}
3726
3727static int selinux_task_getpgid(struct task_struct *p)
3728{
3729 return current_has_perm(p, PROCESS__GETPGID);
3730}
3731
3732static int selinux_task_getsid(struct task_struct *p)
3733{
3734 return current_has_perm(p, PROCESS__GETSESSION);
3735}
3736
3737static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3738{
3739 *secid = task_sid(p);
3740}
3741
3742static int selinux_task_setnice(struct task_struct *p, int nice)
3743{
3744 return current_has_perm(p, PROCESS__SETSCHED);
3745}
3746
3747static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3748{
3749 return current_has_perm(p, PROCESS__SETSCHED);
3750}
3751
3752static int selinux_task_getioprio(struct task_struct *p)
3753{
3754 return current_has_perm(p, PROCESS__GETSCHED);
3755}
3756
3757static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3758 struct rlimit *new_rlim)
3759{
3760 struct rlimit *old_rlim = p->signal->rlim + resource;
3761
3762 /* Control the ability to change the hard limit (whether
3763 lowering or raising it), so that the hard limit can
3764 later be used as a safe reset point for the soft limit
3765 upon context transitions. See selinux_bprm_committing_creds. */
3766 if (old_rlim->rlim_max != new_rlim->rlim_max)
3767 return current_has_perm(p, PROCESS__SETRLIMIT);
3768
3769 return 0;
3770}
3771
3772static int selinux_task_setscheduler(struct task_struct *p)
3773{
3774 return current_has_perm(p, PROCESS__SETSCHED);
3775}
3776
3777static int selinux_task_getscheduler(struct task_struct *p)
3778{
3779 return current_has_perm(p, PROCESS__GETSCHED);
3780}
3781
3782static int selinux_task_movememory(struct task_struct *p)
3783{
3784 return current_has_perm(p, PROCESS__SETSCHED);
3785}
3786
3787static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3788 int sig, u32 secid)
3789{
3790 u32 perm;
3791 int rc;
3792
3793 if (!sig)
3794 perm = PROCESS__SIGNULL; /* null signal; existence test */
3795 else
3796 perm = signal_to_av(sig);
3797 if (secid)
3798 rc = avc_has_perm(secid, task_sid(p),
3799 SECCLASS_PROCESS, perm, NULL);
3800 else
3801 rc = current_has_perm(p, perm);
3802 return rc;
3803}
3804
3805static int selinux_task_wait(struct task_struct *p)
3806{
3807 return task_has_perm(p, current, PROCESS__SIGCHLD);
3808}
3809
3810static void selinux_task_to_inode(struct task_struct *p,
3811 struct inode *inode)
3812{
3813 struct inode_security_struct *isec = inode->i_security;
3814 u32 sid = task_sid(p);
3815
3816 isec->sid = sid;
3817 isec->initialized = LABEL_INITIALIZED;
3818}
3819
3820/* Returns error only if unable to parse addresses */
3821static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3822 struct common_audit_data *ad, u8 *proto)
3823{
3824 int offset, ihlen, ret = -EINVAL;
3825 struct iphdr _iph, *ih;
3826
3827 offset = skb_network_offset(skb);
3828 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3829 if (ih == NULL)
3830 goto out;
3831
3832 ihlen = ih->ihl * 4;
3833 if (ihlen < sizeof(_iph))
3834 goto out;
3835
3836 ad->u.net->v4info.saddr = ih->saddr;
3837 ad->u.net->v4info.daddr = ih->daddr;
3838 ret = 0;
3839
3840 if (proto)
3841 *proto = ih->protocol;
3842
3843 switch (ih->protocol) {
3844 case IPPROTO_TCP: {
3845 struct tcphdr _tcph, *th;
3846
3847 if (ntohs(ih->frag_off) & IP_OFFSET)
3848 break;
3849
3850 offset += ihlen;
3851 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3852 if (th == NULL)
3853 break;
3854
3855 ad->u.net->sport = th->source;
3856 ad->u.net->dport = th->dest;
3857 break;
3858 }
3859
3860 case IPPROTO_UDP: {
3861 struct udphdr _udph, *uh;
3862
3863 if (ntohs(ih->frag_off) & IP_OFFSET)
3864 break;
3865
3866 offset += ihlen;
3867 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3868 if (uh == NULL)
3869 break;
3870
3871 ad->u.net->sport = uh->source;
3872 ad->u.net->dport = uh->dest;
3873 break;
3874 }
3875
3876 case IPPROTO_DCCP: {
3877 struct dccp_hdr _dccph, *dh;
3878
3879 if (ntohs(ih->frag_off) & IP_OFFSET)
3880 break;
3881
3882 offset += ihlen;
3883 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3884 if (dh == NULL)
3885 break;
3886
3887 ad->u.net->sport = dh->dccph_sport;
3888 ad->u.net->dport = dh->dccph_dport;
3889 break;
3890 }
3891
3892 default:
3893 break;
3894 }
3895out:
3896 return ret;
3897}
3898
3899#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3900
3901/* Returns error only if unable to parse addresses */
3902static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3903 struct common_audit_data *ad, u8 *proto)
3904{
3905 u8 nexthdr;
3906 int ret = -EINVAL, offset;
3907 struct ipv6hdr _ipv6h, *ip6;
3908 __be16 frag_off;
3909
3910 offset = skb_network_offset(skb);
3911 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3912 if (ip6 == NULL)
3913 goto out;
3914
3915 ad->u.net->v6info.saddr = ip6->saddr;
3916 ad->u.net->v6info.daddr = ip6->daddr;
3917 ret = 0;
3918
3919 nexthdr = ip6->nexthdr;
3920 offset += sizeof(_ipv6h);
3921 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3922 if (offset < 0)
3923 goto out;
3924
3925 if (proto)
3926 *proto = nexthdr;
3927
3928 switch (nexthdr) {
3929 case IPPROTO_TCP: {
3930 struct tcphdr _tcph, *th;
3931
3932 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3933 if (th == NULL)
3934 break;
3935
3936 ad->u.net->sport = th->source;
3937 ad->u.net->dport = th->dest;
3938 break;
3939 }
3940
3941 case IPPROTO_UDP: {
3942 struct udphdr _udph, *uh;
3943
3944 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3945 if (uh == NULL)
3946 break;
3947
3948 ad->u.net->sport = uh->source;
3949 ad->u.net->dport = uh->dest;
3950 break;
3951 }
3952
3953 case IPPROTO_DCCP: {
3954 struct dccp_hdr _dccph, *dh;
3955
3956 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3957 if (dh == NULL)
3958 break;
3959
3960 ad->u.net->sport = dh->dccph_sport;
3961 ad->u.net->dport = dh->dccph_dport;
3962 break;
3963 }
3964
3965 /* includes fragments */
3966 default:
3967 break;
3968 }
3969out:
3970 return ret;
3971}
3972
3973#endif /* IPV6 */
3974
3975static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3976 char **_addrp, int src, u8 *proto)
3977{
3978 char *addrp;
3979 int ret;
3980
3981 switch (ad->u.net->family) {
3982 case PF_INET:
3983 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3984 if (ret)
3985 goto parse_error;
3986 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3987 &ad->u.net->v4info.daddr);
3988 goto okay;
3989
3990#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3991 case PF_INET6:
3992 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3993 if (ret)
3994 goto parse_error;
3995 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3996 &ad->u.net->v6info.daddr);
3997 goto okay;
3998#endif /* IPV6 */
3999 default:
4000 addrp = NULL;
4001 goto okay;
4002 }
4003
4004parse_error:
4005 printk(KERN_WARNING
4006 "SELinux: failure in selinux_parse_skb(),"
4007 " unable to parse packet\n");
4008 return ret;
4009
4010okay:
4011 if (_addrp)
4012 *_addrp = addrp;
4013 return 0;
4014}
4015
4016/**
4017 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4018 * @skb: the packet
4019 * @family: protocol family
4020 * @sid: the packet's peer label SID
4021 *
4022 * Description:
4023 * Check the various different forms of network peer labeling and determine
4024 * the peer label/SID for the packet; most of the magic actually occurs in
4025 * the security server function security_net_peersid_cmp(). The function
4026 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4027 * or -EACCES if @sid is invalid due to inconsistencies with the different
4028 * peer labels.
4029 *
4030 */
4031static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4032{
4033 int err;
4034 u32 xfrm_sid;
4035 u32 nlbl_sid;
4036 u32 nlbl_type;
4037
4038 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4039 if (unlikely(err))
4040 return -EACCES;
4041 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4042 if (unlikely(err))
4043 return -EACCES;
4044
4045 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4046 if (unlikely(err)) {
4047 printk(KERN_WARNING
4048 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4049 " unable to determine packet's peer label\n");
4050 return -EACCES;
4051 }
4052
4053 return 0;
4054}
4055
4056/**
4057 * selinux_conn_sid - Determine the child socket label for a connection
4058 * @sk_sid: the parent socket's SID
4059 * @skb_sid: the packet's SID
4060 * @conn_sid: the resulting connection SID
4061 *
4062 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4063 * combined with the MLS information from @skb_sid in order to create
4064 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4065 * of @sk_sid. Returns zero on success, negative values on failure.
4066 *
4067 */
4068static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4069{
4070 int err = 0;
4071
4072 if (skb_sid != SECSID_NULL)
4073 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4074 else
4075 *conn_sid = sk_sid;
4076
4077 return err;
4078}
4079
4080/* socket security operations */
4081
4082static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4083 u16 secclass, u32 *socksid)
4084{
4085 if (tsec->sockcreate_sid > SECSID_NULL) {
4086 *socksid = tsec->sockcreate_sid;
4087 return 0;
4088 }
4089
4090 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4091 socksid);
4092}
4093
4094static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4095{
4096 struct sk_security_struct *sksec = sk->sk_security;
4097 struct common_audit_data ad;
4098 struct lsm_network_audit net = {0,};
4099 u32 tsid = task_sid(task);
4100
4101 if (sksec->sid == SECINITSID_KERNEL)
4102 return 0;
4103
4104 ad.type = LSM_AUDIT_DATA_NET;
4105 ad.u.net = &net;
4106 ad.u.net->sk = sk;
4107
4108 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4109}
4110
4111static int selinux_socket_create(int family, int type,
4112 int protocol, int kern)
4113{
4114 const struct task_security_struct *tsec = current_security();
4115 u32 newsid;
4116 u16 secclass;
4117 int rc;
4118
4119 if (kern)
4120 return 0;
4121
4122 secclass = socket_type_to_security_class(family, type, protocol);
4123 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4124 if (rc)
4125 return rc;
4126
4127 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4128}
4129
4130static int selinux_socket_post_create(struct socket *sock, int family,
4131 int type, int protocol, int kern)
4132{
4133 const struct task_security_struct *tsec = current_security();
4134 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4135 struct sk_security_struct *sksec;
4136 int err = 0;
4137
4138 isec->sclass = socket_type_to_security_class(family, type, protocol);
4139
4140 if (kern)
4141 isec->sid = SECINITSID_KERNEL;
4142 else {
4143 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4144 if (err)
4145 return err;
4146 }
4147
4148 isec->initialized = LABEL_INITIALIZED;
4149
4150 if (sock->sk) {
4151 sksec = sock->sk->sk_security;
4152 sksec->sid = isec->sid;
4153 sksec->sclass = isec->sclass;
4154 err = selinux_netlbl_socket_post_create(sock->sk, family);
4155 }
4156
4157 return err;
4158}
4159
4160/* Range of port numbers used to automatically bind.
4161 Need to determine whether we should perform a name_bind
4162 permission check between the socket and the port number. */
4163
4164static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4165{
4166 struct sock *sk = sock->sk;
4167 u16 family;
4168 int err;
4169
4170 err = sock_has_perm(current, sk, SOCKET__BIND);
4171 if (err)
4172 goto out;
4173
4174 /*
4175 * If PF_INET or PF_INET6, check name_bind permission for the port.
4176 * Multiple address binding for SCTP is not supported yet: we just
4177 * check the first address now.
4178 */
4179 family = sk->sk_family;
4180 if (family == PF_INET || family == PF_INET6) {
4181 char *addrp;
4182 struct sk_security_struct *sksec = sk->sk_security;
4183 struct common_audit_data ad;
4184 struct lsm_network_audit net = {0,};
4185 struct sockaddr_in *addr4 = NULL;
4186 struct sockaddr_in6 *addr6 = NULL;
4187 unsigned short snum;
4188 u32 sid, node_perm;
4189
4190 if (family == PF_INET) {
4191 addr4 = (struct sockaddr_in *)address;
4192 snum = ntohs(addr4->sin_port);
4193 addrp = (char *)&addr4->sin_addr.s_addr;
4194 } else {
4195 addr6 = (struct sockaddr_in6 *)address;
4196 snum = ntohs(addr6->sin6_port);
4197 addrp = (char *)&addr6->sin6_addr.s6_addr;
4198 }
4199
4200 if (snum) {
4201 int low, high;
4202
4203 inet_get_local_port_range(sock_net(sk), &low, &high);
4204
4205 if (snum < max(PROT_SOCK, low) || snum > high) {
4206 err = sel_netport_sid(sk->sk_protocol,
4207 snum, &sid);
4208 if (err)
4209 goto out;
4210 ad.type = LSM_AUDIT_DATA_NET;
4211 ad.u.net = &net;
4212 ad.u.net->sport = htons(snum);
4213 ad.u.net->family = family;
4214 err = avc_has_perm(sksec->sid, sid,
4215 sksec->sclass,
4216 SOCKET__NAME_BIND, &ad);
4217 if (err)
4218 goto out;
4219 }
4220 }
4221
4222 switch (sksec->sclass) {
4223 case SECCLASS_TCP_SOCKET:
4224 node_perm = TCP_SOCKET__NODE_BIND;
4225 break;
4226
4227 case SECCLASS_UDP_SOCKET:
4228 node_perm = UDP_SOCKET__NODE_BIND;
4229 break;
4230
4231 case SECCLASS_DCCP_SOCKET:
4232 node_perm = DCCP_SOCKET__NODE_BIND;
4233 break;
4234
4235 default:
4236 node_perm = RAWIP_SOCKET__NODE_BIND;
4237 break;
4238 }
4239
4240 err = sel_netnode_sid(addrp, family, &sid);
4241 if (err)
4242 goto out;
4243
4244 ad.type = LSM_AUDIT_DATA_NET;
4245 ad.u.net = &net;
4246 ad.u.net->sport = htons(snum);
4247 ad.u.net->family = family;
4248
4249 if (family == PF_INET)
4250 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4251 else
4252 ad.u.net->v6info.saddr = addr6->sin6_addr;
4253
4254 err = avc_has_perm(sksec->sid, sid,
4255 sksec->sclass, node_perm, &ad);
4256 if (err)
4257 goto out;
4258 }
4259out:
4260 return err;
4261}
4262
4263static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4264{
4265 struct sock *sk = sock->sk;
4266 struct sk_security_struct *sksec = sk->sk_security;
4267 int err;
4268
4269 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4270 if (err)
4271 return err;
4272
4273 /*
4274 * If a TCP or DCCP socket, check name_connect permission for the port.
4275 */
4276 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4277 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4278 struct common_audit_data ad;
4279 struct lsm_network_audit net = {0,};
4280 struct sockaddr_in *addr4 = NULL;
4281 struct sockaddr_in6 *addr6 = NULL;
4282 unsigned short snum;
4283 u32 sid, perm;
4284
4285 if (sk->sk_family == PF_INET) {
4286 addr4 = (struct sockaddr_in *)address;
4287 if (addrlen < sizeof(struct sockaddr_in))
4288 return -EINVAL;
4289 snum = ntohs(addr4->sin_port);
4290 } else {
4291 addr6 = (struct sockaddr_in6 *)address;
4292 if (addrlen < SIN6_LEN_RFC2133)
4293 return -EINVAL;
4294 snum = ntohs(addr6->sin6_port);
4295 }
4296
4297 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4298 if (err)
4299 goto out;
4300
4301 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4302 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4303
4304 ad.type = LSM_AUDIT_DATA_NET;
4305 ad.u.net = &net;
4306 ad.u.net->dport = htons(snum);
4307 ad.u.net->family = sk->sk_family;
4308 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4309 if (err)
4310 goto out;
4311 }
4312
4313 err = selinux_netlbl_socket_connect(sk, address);
4314
4315out:
4316 return err;
4317}
4318
4319static int selinux_socket_listen(struct socket *sock, int backlog)
4320{
4321 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4322}
4323
4324static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4325{
4326 int err;
4327 struct inode_security_struct *isec;
4328 struct inode_security_struct *newisec;
4329
4330 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4331 if (err)
4332 return err;
4333
4334 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4335
4336 isec = inode_security_novalidate(SOCK_INODE(sock));
4337 newisec->sclass = isec->sclass;
4338 newisec->sid = isec->sid;
4339 newisec->initialized = LABEL_INITIALIZED;
4340
4341 return 0;
4342}
4343
4344static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4345 int size)
4346{
4347 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4348}
4349
4350static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4351 int size, int flags)
4352{
4353 return sock_has_perm(current, sock->sk, SOCKET__READ);
4354}
4355
4356static int selinux_socket_getsockname(struct socket *sock)
4357{
4358 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4359}
4360
4361static int selinux_socket_getpeername(struct socket *sock)
4362{
4363 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4364}
4365
4366static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4367{
4368 int err;
4369
4370 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4371 if (err)
4372 return err;
4373
4374 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4375}
4376
4377static int selinux_socket_getsockopt(struct socket *sock, int level,
4378 int optname)
4379{
4380 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4381}
4382
4383static int selinux_socket_shutdown(struct socket *sock, int how)
4384{
4385 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4386}
4387
4388static int selinux_socket_unix_stream_connect(struct sock *sock,
4389 struct sock *other,
4390 struct sock *newsk)
4391{
4392 struct sk_security_struct *sksec_sock = sock->sk_security;
4393 struct sk_security_struct *sksec_other = other->sk_security;
4394 struct sk_security_struct *sksec_new = newsk->sk_security;
4395 struct common_audit_data ad;
4396 struct lsm_network_audit net = {0,};
4397 int err;
4398
4399 ad.type = LSM_AUDIT_DATA_NET;
4400 ad.u.net = &net;
4401 ad.u.net->sk = other;
4402
4403 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4404 sksec_other->sclass,
4405 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4406 if (err)
4407 return err;
4408
4409 /* server child socket */
4410 sksec_new->peer_sid = sksec_sock->sid;
4411 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4412 &sksec_new->sid);
4413 if (err)
4414 return err;
4415
4416 /* connecting socket */
4417 sksec_sock->peer_sid = sksec_new->sid;
4418
4419 return 0;
4420}
4421
4422static int selinux_socket_unix_may_send(struct socket *sock,
4423 struct socket *other)
4424{
4425 struct sk_security_struct *ssec = sock->sk->sk_security;
4426 struct sk_security_struct *osec = other->sk->sk_security;
4427 struct common_audit_data ad;
4428 struct lsm_network_audit net = {0,};
4429
4430 ad.type = LSM_AUDIT_DATA_NET;
4431 ad.u.net = &net;
4432 ad.u.net->sk = other->sk;
4433
4434 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4435 &ad);
4436}
4437
4438static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4439 char *addrp, u16 family, u32 peer_sid,
4440 struct common_audit_data *ad)
4441{
4442 int err;
4443 u32 if_sid;
4444 u32 node_sid;
4445
4446 err = sel_netif_sid(ns, ifindex, &if_sid);
4447 if (err)
4448 return err;
4449 err = avc_has_perm(peer_sid, if_sid,
4450 SECCLASS_NETIF, NETIF__INGRESS, ad);
4451 if (err)
4452 return err;
4453
4454 err = sel_netnode_sid(addrp, family, &node_sid);
4455 if (err)
4456 return err;
4457 return avc_has_perm(peer_sid, node_sid,
4458 SECCLASS_NODE, NODE__RECVFROM, ad);
4459}
4460
4461static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4462 u16 family)
4463{
4464 int err = 0;
4465 struct sk_security_struct *sksec = sk->sk_security;
4466 u32 sk_sid = sksec->sid;
4467 struct common_audit_data ad;
4468 struct lsm_network_audit net = {0,};
4469 char *addrp;
4470
4471 ad.type = LSM_AUDIT_DATA_NET;
4472 ad.u.net = &net;
4473 ad.u.net->netif = skb->skb_iif;
4474 ad.u.net->family = family;
4475 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4476 if (err)
4477 return err;
4478
4479 if (selinux_secmark_enabled()) {
4480 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4481 PACKET__RECV, &ad);
4482 if (err)
4483 return err;
4484 }
4485
4486 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4487 if (err)
4488 return err;
4489 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4490
4491 return err;
4492}
4493
4494static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4495{
4496 int err;
4497 struct sk_security_struct *sksec = sk->sk_security;
4498 u16 family = sk->sk_family;
4499 u32 sk_sid = sksec->sid;
4500 struct common_audit_data ad;
4501 struct lsm_network_audit net = {0,};
4502 char *addrp;
4503 u8 secmark_active;
4504 u8 peerlbl_active;
4505
4506 if (family != PF_INET && family != PF_INET6)
4507 return 0;
4508
4509 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4510 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4511 family = PF_INET;
4512
4513 /* If any sort of compatibility mode is enabled then handoff processing
4514 * to the selinux_sock_rcv_skb_compat() function to deal with the
4515 * special handling. We do this in an attempt to keep this function
4516 * as fast and as clean as possible. */
4517 if (!selinux_policycap_netpeer)
4518 return selinux_sock_rcv_skb_compat(sk, skb, family);
4519
4520 secmark_active = selinux_secmark_enabled();
4521 peerlbl_active = selinux_peerlbl_enabled();
4522 if (!secmark_active && !peerlbl_active)
4523 return 0;
4524
4525 ad.type = LSM_AUDIT_DATA_NET;
4526 ad.u.net = &net;
4527 ad.u.net->netif = skb->skb_iif;
4528 ad.u.net->family = family;
4529 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4530 if (err)
4531 return err;
4532
4533 if (peerlbl_active) {
4534 u32 peer_sid;
4535
4536 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4537 if (err)
4538 return err;
4539 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4540 addrp, family, peer_sid, &ad);
4541 if (err) {
4542 selinux_netlbl_err(skb, err, 0);
4543 return err;
4544 }
4545 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4546 PEER__RECV, &ad);
4547 if (err) {
4548 selinux_netlbl_err(skb, err, 0);
4549 return err;
4550 }
4551 }
4552
4553 if (secmark_active) {
4554 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4555 PACKET__RECV, &ad);
4556 if (err)
4557 return err;
4558 }
4559
4560 return err;
4561}
4562
4563static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4564 int __user *optlen, unsigned len)
4565{
4566 int err = 0;
4567 char *scontext;
4568 u32 scontext_len;
4569 struct sk_security_struct *sksec = sock->sk->sk_security;
4570 u32 peer_sid = SECSID_NULL;
4571
4572 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4573 sksec->sclass == SECCLASS_TCP_SOCKET)
4574 peer_sid = sksec->peer_sid;
4575 if (peer_sid == SECSID_NULL)
4576 return -ENOPROTOOPT;
4577
4578 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4579 if (err)
4580 return err;
4581
4582 if (scontext_len > len) {
4583 err = -ERANGE;
4584 goto out_len;
4585 }
4586
4587 if (copy_to_user(optval, scontext, scontext_len))
4588 err = -EFAULT;
4589
4590out_len:
4591 if (put_user(scontext_len, optlen))
4592 err = -EFAULT;
4593 kfree(scontext);
4594 return err;
4595}
4596
4597static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4598{
4599 u32 peer_secid = SECSID_NULL;
4600 u16 family;
4601
4602 if (skb && skb->protocol == htons(ETH_P_IP))
4603 family = PF_INET;
4604 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4605 family = PF_INET6;
4606 else if (sock)
4607 family = sock->sk->sk_family;
4608 else
4609 goto out;
4610
4611 if (sock && family == PF_UNIX)
4612 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4613 else if (skb)
4614 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4615
4616out:
4617 *secid = peer_secid;
4618 if (peer_secid == SECSID_NULL)
4619 return -EINVAL;
4620 return 0;
4621}
4622
4623static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4624{
4625 struct sk_security_struct *sksec;
4626
4627 sksec = kzalloc(sizeof(*sksec), priority);
4628 if (!sksec)
4629 return -ENOMEM;
4630
4631 sksec->peer_sid = SECINITSID_UNLABELED;
4632 sksec->sid = SECINITSID_UNLABELED;
4633 sksec->sclass = SECCLASS_SOCKET;
4634 selinux_netlbl_sk_security_reset(sksec);
4635 sk->sk_security = sksec;
4636
4637 return 0;
4638}
4639
4640static void selinux_sk_free_security(struct sock *sk)
4641{
4642 struct sk_security_struct *sksec = sk->sk_security;
4643
4644 sk->sk_security = NULL;
4645 selinux_netlbl_sk_security_free(sksec);
4646 kfree(sksec);
4647}
4648
4649static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4650{
4651 struct sk_security_struct *sksec = sk->sk_security;
4652 struct sk_security_struct *newsksec = newsk->sk_security;
4653
4654 newsksec->sid = sksec->sid;
4655 newsksec->peer_sid = sksec->peer_sid;
4656 newsksec->sclass = sksec->sclass;
4657
4658 selinux_netlbl_sk_security_reset(newsksec);
4659}
4660
4661static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4662{
4663 if (!sk)
4664 *secid = SECINITSID_ANY_SOCKET;
4665 else {
4666 struct sk_security_struct *sksec = sk->sk_security;
4667
4668 *secid = sksec->sid;
4669 }
4670}
4671
4672static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4673{
4674 struct inode_security_struct *isec =
4675 inode_security_novalidate(SOCK_INODE(parent));
4676 struct sk_security_struct *sksec = sk->sk_security;
4677
4678 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4679 sk->sk_family == PF_UNIX)
4680 isec->sid = sksec->sid;
4681 sksec->sclass = isec->sclass;
4682}
4683
4684static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4685 struct request_sock *req)
4686{
4687 struct sk_security_struct *sksec = sk->sk_security;
4688 int err;
4689 u16 family = req->rsk_ops->family;
4690 u32 connsid;
4691 u32 peersid;
4692
4693 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4694 if (err)
4695 return err;
4696 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4697 if (err)
4698 return err;
4699 req->secid = connsid;
4700 req->peer_secid = peersid;
4701
4702 return selinux_netlbl_inet_conn_request(req, family);
4703}
4704
4705static void selinux_inet_csk_clone(struct sock *newsk,
4706 const struct request_sock *req)
4707{
4708 struct sk_security_struct *newsksec = newsk->sk_security;
4709
4710 newsksec->sid = req->secid;
4711 newsksec->peer_sid = req->peer_secid;
4712 /* NOTE: Ideally, we should also get the isec->sid for the
4713 new socket in sync, but we don't have the isec available yet.
4714 So we will wait until sock_graft to do it, by which
4715 time it will have been created and available. */
4716
4717 /* We don't need to take any sort of lock here as we are the only
4718 * thread with access to newsksec */
4719 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4720}
4721
4722static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4723{
4724 u16 family = sk->sk_family;
4725 struct sk_security_struct *sksec = sk->sk_security;
4726
4727 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4728 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4729 family = PF_INET;
4730
4731 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4732}
4733
4734static int selinux_secmark_relabel_packet(u32 sid)
4735{
4736 const struct task_security_struct *__tsec;
4737 u32 tsid;
4738
4739 __tsec = current_security();
4740 tsid = __tsec->sid;
4741
4742 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4743}
4744
4745static void selinux_secmark_refcount_inc(void)
4746{
4747 atomic_inc(&selinux_secmark_refcount);
4748}
4749
4750static void selinux_secmark_refcount_dec(void)
4751{
4752 atomic_dec(&selinux_secmark_refcount);
4753}
4754
4755static void selinux_req_classify_flow(const struct request_sock *req,
4756 struct flowi *fl)
4757{
4758 fl->flowi_secid = req->secid;
4759}
4760
4761static int selinux_tun_dev_alloc_security(void **security)
4762{
4763 struct tun_security_struct *tunsec;
4764
4765 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4766 if (!tunsec)
4767 return -ENOMEM;
4768 tunsec->sid = current_sid();
4769
4770 *security = tunsec;
4771 return 0;
4772}
4773
4774static void selinux_tun_dev_free_security(void *security)
4775{
4776 kfree(security);
4777}
4778
4779static int selinux_tun_dev_create(void)
4780{
4781 u32 sid = current_sid();
4782
4783 /* we aren't taking into account the "sockcreate" SID since the socket
4784 * that is being created here is not a socket in the traditional sense,
4785 * instead it is a private sock, accessible only to the kernel, and
4786 * representing a wide range of network traffic spanning multiple
4787 * connections unlike traditional sockets - check the TUN driver to
4788 * get a better understanding of why this socket is special */
4789
4790 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4791 NULL);
4792}
4793
4794static int selinux_tun_dev_attach_queue(void *security)
4795{
4796 struct tun_security_struct *tunsec = security;
4797
4798 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4799 TUN_SOCKET__ATTACH_QUEUE, NULL);
4800}
4801
4802static int selinux_tun_dev_attach(struct sock *sk, void *security)
4803{
4804 struct tun_security_struct *tunsec = security;
4805 struct sk_security_struct *sksec = sk->sk_security;
4806
4807 /* we don't currently perform any NetLabel based labeling here and it
4808 * isn't clear that we would want to do so anyway; while we could apply
4809 * labeling without the support of the TUN user the resulting labeled
4810 * traffic from the other end of the connection would almost certainly
4811 * cause confusion to the TUN user that had no idea network labeling
4812 * protocols were being used */
4813
4814 sksec->sid = tunsec->sid;
4815 sksec->sclass = SECCLASS_TUN_SOCKET;
4816
4817 return 0;
4818}
4819
4820static int selinux_tun_dev_open(void *security)
4821{
4822 struct tun_security_struct *tunsec = security;
4823 u32 sid = current_sid();
4824 int err;
4825
4826 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4827 TUN_SOCKET__RELABELFROM, NULL);
4828 if (err)
4829 return err;
4830 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4831 TUN_SOCKET__RELABELTO, NULL);
4832 if (err)
4833 return err;
4834 tunsec->sid = sid;
4835
4836 return 0;
4837}
4838
4839static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4840{
4841 int err = 0;
4842 u32 perm;
4843 struct nlmsghdr *nlh;
4844 struct sk_security_struct *sksec = sk->sk_security;
4845
4846 if (skb->len < NLMSG_HDRLEN) {
4847 err = -EINVAL;
4848 goto out;
4849 }
4850 nlh = nlmsg_hdr(skb);
4851
4852 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4853 if (err) {
4854 if (err == -EINVAL) {
4855 pr_warn_ratelimited("SELinux: unrecognized netlink"
4856 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
4857 " pig=%d comm=%s\n",
4858 sk->sk_protocol, nlh->nlmsg_type,
4859 secclass_map[sksec->sclass - 1].name,
4860 task_pid_nr(current), current->comm);
4861 if (!selinux_enforcing || security_get_allow_unknown())
4862 err = 0;
4863 }
4864
4865 /* Ignore */
4866 if (err == -ENOENT)
4867 err = 0;
4868 goto out;
4869 }
4870
4871 err = sock_has_perm(current, sk, perm);
4872out:
4873 return err;
4874}
4875
4876#ifdef CONFIG_NETFILTER
4877
4878static unsigned int selinux_ip_forward(struct sk_buff *skb,
4879 const struct net_device *indev,
4880 u16 family)
4881{
4882 int err;
4883 char *addrp;
4884 u32 peer_sid;
4885 struct common_audit_data ad;
4886 struct lsm_network_audit net = {0,};
4887 u8 secmark_active;
4888 u8 netlbl_active;
4889 u8 peerlbl_active;
4890
4891 if (!selinux_policycap_netpeer)
4892 return NF_ACCEPT;
4893
4894 secmark_active = selinux_secmark_enabled();
4895 netlbl_active = netlbl_enabled();
4896 peerlbl_active = selinux_peerlbl_enabled();
4897 if (!secmark_active && !peerlbl_active)
4898 return NF_ACCEPT;
4899
4900 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4901 return NF_DROP;
4902
4903 ad.type = LSM_AUDIT_DATA_NET;
4904 ad.u.net = &net;
4905 ad.u.net->netif = indev->ifindex;
4906 ad.u.net->family = family;
4907 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4908 return NF_DROP;
4909
4910 if (peerlbl_active) {
4911 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4912 addrp, family, peer_sid, &ad);
4913 if (err) {
4914 selinux_netlbl_err(skb, err, 1);
4915 return NF_DROP;
4916 }
4917 }
4918
4919 if (secmark_active)
4920 if (avc_has_perm(peer_sid, skb->secmark,
4921 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4922 return NF_DROP;
4923
4924 if (netlbl_active)
4925 /* we do this in the FORWARD path and not the POST_ROUTING
4926 * path because we want to make sure we apply the necessary
4927 * labeling before IPsec is applied so we can leverage AH
4928 * protection */
4929 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4930 return NF_DROP;
4931
4932 return NF_ACCEPT;
4933}
4934
4935static unsigned int selinux_ipv4_forward(void *priv,
4936 struct sk_buff *skb,
4937 const struct nf_hook_state *state)
4938{
4939 return selinux_ip_forward(skb, state->in, PF_INET);
4940}
4941
4942#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4943static unsigned int selinux_ipv6_forward(void *priv,
4944 struct sk_buff *skb,
4945 const struct nf_hook_state *state)
4946{
4947 return selinux_ip_forward(skb, state->in, PF_INET6);
4948}
4949#endif /* IPV6 */
4950
4951static unsigned int selinux_ip_output(struct sk_buff *skb,
4952 u16 family)
4953{
4954 struct sock *sk;
4955 u32 sid;
4956
4957 if (!netlbl_enabled())
4958 return NF_ACCEPT;
4959
4960 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4961 * because we want to make sure we apply the necessary labeling
4962 * before IPsec is applied so we can leverage AH protection */
4963 sk = skb->sk;
4964 if (sk) {
4965 struct sk_security_struct *sksec;
4966
4967 if (sk_listener(sk))
4968 /* if the socket is the listening state then this
4969 * packet is a SYN-ACK packet which means it needs to
4970 * be labeled based on the connection/request_sock and
4971 * not the parent socket. unfortunately, we can't
4972 * lookup the request_sock yet as it isn't queued on
4973 * the parent socket until after the SYN-ACK is sent.
4974 * the "solution" is to simply pass the packet as-is
4975 * as any IP option based labeling should be copied
4976 * from the initial connection request (in the IP
4977 * layer). it is far from ideal, but until we get a
4978 * security label in the packet itself this is the
4979 * best we can do. */
4980 return NF_ACCEPT;
4981
4982 /* standard practice, label using the parent socket */
4983 sksec = sk->sk_security;
4984 sid = sksec->sid;
4985 } else
4986 sid = SECINITSID_KERNEL;
4987 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4988 return NF_DROP;
4989
4990 return NF_ACCEPT;
4991}
4992
4993static unsigned int selinux_ipv4_output(void *priv,
4994 struct sk_buff *skb,
4995 const struct nf_hook_state *state)
4996{
4997 return selinux_ip_output(skb, PF_INET);
4998}
4999
5000static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5001 int ifindex,
5002 u16 family)
5003{
5004 struct sock *sk = skb_to_full_sk(skb);
5005 struct sk_security_struct *sksec;
5006 struct common_audit_data ad;
5007 struct lsm_network_audit net = {0,};
5008 char *addrp;
5009 u8 proto;
5010
5011 if (sk == NULL)
5012 return NF_ACCEPT;
5013 sksec = sk->sk_security;
5014
5015 ad.type = LSM_AUDIT_DATA_NET;
5016 ad.u.net = &net;
5017 ad.u.net->netif = ifindex;
5018 ad.u.net->family = family;
5019 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5020 return NF_DROP;
5021
5022 if (selinux_secmark_enabled())
5023 if (avc_has_perm(sksec->sid, skb->secmark,
5024 SECCLASS_PACKET, PACKET__SEND, &ad))
5025 return NF_DROP_ERR(-ECONNREFUSED);
5026
5027 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5028 return NF_DROP_ERR(-ECONNREFUSED);
5029
5030 return NF_ACCEPT;
5031}
5032
5033static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5034 const struct net_device *outdev,
5035 u16 family)
5036{
5037 u32 secmark_perm;
5038 u32 peer_sid;
5039 int ifindex = outdev->ifindex;
5040 struct sock *sk;
5041 struct common_audit_data ad;
5042 struct lsm_network_audit net = {0,};
5043 char *addrp;
5044 u8 secmark_active;
5045 u8 peerlbl_active;
5046
5047 /* If any sort of compatibility mode is enabled then handoff processing
5048 * to the selinux_ip_postroute_compat() function to deal with the
5049 * special handling. We do this in an attempt to keep this function
5050 * as fast and as clean as possible. */
5051 if (!selinux_policycap_netpeer)
5052 return selinux_ip_postroute_compat(skb, ifindex, family);
5053
5054 secmark_active = selinux_secmark_enabled();
5055 peerlbl_active = selinux_peerlbl_enabled();
5056 if (!secmark_active && !peerlbl_active)
5057 return NF_ACCEPT;
5058
5059 sk = skb_to_full_sk(skb);
5060
5061#ifdef CONFIG_XFRM
5062 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5063 * packet transformation so allow the packet to pass without any checks
5064 * since we'll have another chance to perform access control checks
5065 * when the packet is on it's final way out.
5066 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5067 * is NULL, in this case go ahead and apply access control.
5068 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5069 * TCP listening state we cannot wait until the XFRM processing
5070 * is done as we will miss out on the SA label if we do;
5071 * unfortunately, this means more work, but it is only once per
5072 * connection. */
5073 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5074 !(sk && sk_listener(sk)))
5075 return NF_ACCEPT;
5076#endif
5077
5078 if (sk == NULL) {
5079 /* Without an associated socket the packet is either coming
5080 * from the kernel or it is being forwarded; check the packet
5081 * to determine which and if the packet is being forwarded
5082 * query the packet directly to determine the security label. */
5083 if (skb->skb_iif) {
5084 secmark_perm = PACKET__FORWARD_OUT;
5085 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5086 return NF_DROP;
5087 } else {
5088 secmark_perm = PACKET__SEND;
5089 peer_sid = SECINITSID_KERNEL;
5090 }
5091 } else if (sk_listener(sk)) {
5092 /* Locally generated packet but the associated socket is in the
5093 * listening state which means this is a SYN-ACK packet. In
5094 * this particular case the correct security label is assigned
5095 * to the connection/request_sock but unfortunately we can't
5096 * query the request_sock as it isn't queued on the parent
5097 * socket until after the SYN-ACK packet is sent; the only
5098 * viable choice is to regenerate the label like we do in
5099 * selinux_inet_conn_request(). See also selinux_ip_output()
5100 * for similar problems. */
5101 u32 skb_sid;
5102 struct sk_security_struct *sksec;
5103
5104 sksec = sk->sk_security;
5105 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5106 return NF_DROP;
5107 /* At this point, if the returned skb peerlbl is SECSID_NULL
5108 * and the packet has been through at least one XFRM
5109 * transformation then we must be dealing with the "final"
5110 * form of labeled IPsec packet; since we've already applied
5111 * all of our access controls on this packet we can safely
5112 * pass the packet. */
5113 if (skb_sid == SECSID_NULL) {
5114 switch (family) {
5115 case PF_INET:
5116 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5117 return NF_ACCEPT;
5118 break;
5119 case PF_INET6:
5120 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5121 return NF_ACCEPT;
5122 break;
5123 default:
5124 return NF_DROP_ERR(-ECONNREFUSED);
5125 }
5126 }
5127 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5128 return NF_DROP;
5129 secmark_perm = PACKET__SEND;
5130 } else {
5131 /* Locally generated packet, fetch the security label from the
5132 * associated socket. */
5133 struct sk_security_struct *sksec = sk->sk_security;
5134 peer_sid = sksec->sid;
5135 secmark_perm = PACKET__SEND;
5136 }
5137
5138 ad.type = LSM_AUDIT_DATA_NET;
5139 ad.u.net = &net;
5140 ad.u.net->netif = ifindex;
5141 ad.u.net->family = family;
5142 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5143 return NF_DROP;
5144
5145 if (secmark_active)
5146 if (avc_has_perm(peer_sid, skb->secmark,
5147 SECCLASS_PACKET, secmark_perm, &ad))
5148 return NF_DROP_ERR(-ECONNREFUSED);
5149
5150 if (peerlbl_active) {
5151 u32 if_sid;
5152 u32 node_sid;
5153
5154 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5155 return NF_DROP;
5156 if (avc_has_perm(peer_sid, if_sid,
5157 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5158 return NF_DROP_ERR(-ECONNREFUSED);
5159
5160 if (sel_netnode_sid(addrp, family, &node_sid))
5161 return NF_DROP;
5162 if (avc_has_perm(peer_sid, node_sid,
5163 SECCLASS_NODE, NODE__SENDTO, &ad))
5164 return NF_DROP_ERR(-ECONNREFUSED);
5165 }
5166
5167 return NF_ACCEPT;
5168}
5169
5170static unsigned int selinux_ipv4_postroute(void *priv,
5171 struct sk_buff *skb,
5172 const struct nf_hook_state *state)
5173{
5174 return selinux_ip_postroute(skb, state->out, PF_INET);
5175}
5176
5177#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5178static unsigned int selinux_ipv6_postroute(void *priv,
5179 struct sk_buff *skb,
5180 const struct nf_hook_state *state)
5181{
5182 return selinux_ip_postroute(skb, state->out, PF_INET6);
5183}
5184#endif /* IPV6 */
5185
5186#endif /* CONFIG_NETFILTER */
5187
5188static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5189{
5190 return selinux_nlmsg_perm(sk, skb);
5191}
5192
5193static int ipc_alloc_security(struct task_struct *task,
5194 struct kern_ipc_perm *perm,
5195 u16 sclass)
5196{
5197 struct ipc_security_struct *isec;
5198 u32 sid;
5199
5200 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5201 if (!isec)
5202 return -ENOMEM;
5203
5204 sid = task_sid(task);
5205 isec->sclass = sclass;
5206 isec->sid = sid;
5207 perm->security = isec;
5208
5209 return 0;
5210}
5211
5212static void ipc_free_security(struct kern_ipc_perm *perm)
5213{
5214 struct ipc_security_struct *isec = perm->security;
5215 perm->security = NULL;
5216 kfree(isec);
5217}
5218
5219static int msg_msg_alloc_security(struct msg_msg *msg)
5220{
5221 struct msg_security_struct *msec;
5222
5223 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5224 if (!msec)
5225 return -ENOMEM;
5226
5227 msec->sid = SECINITSID_UNLABELED;
5228 msg->security = msec;
5229
5230 return 0;
5231}
5232
5233static void msg_msg_free_security(struct msg_msg *msg)
5234{
5235 struct msg_security_struct *msec = msg->security;
5236
5237 msg->security = NULL;
5238 kfree(msec);
5239}
5240
5241static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5242 u32 perms)
5243{
5244 struct ipc_security_struct *isec;
5245 struct common_audit_data ad;
5246 u32 sid = current_sid();
5247
5248 isec = ipc_perms->security;
5249
5250 ad.type = LSM_AUDIT_DATA_IPC;
5251 ad.u.ipc_id = ipc_perms->key;
5252
5253 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5254}
5255
5256static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5257{
5258 return msg_msg_alloc_security(msg);
5259}
5260
5261static void selinux_msg_msg_free_security(struct msg_msg *msg)
5262{
5263 msg_msg_free_security(msg);
5264}
5265
5266/* message queue security operations */
5267static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5268{
5269 struct ipc_security_struct *isec;
5270 struct common_audit_data ad;
5271 u32 sid = current_sid();
5272 int rc;
5273
5274 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5275 if (rc)
5276 return rc;
5277
5278 isec = msq->q_perm.security;
5279
5280 ad.type = LSM_AUDIT_DATA_IPC;
5281 ad.u.ipc_id = msq->q_perm.key;
5282
5283 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5284 MSGQ__CREATE, &ad);
5285 if (rc) {
5286 ipc_free_security(&msq->q_perm);
5287 return rc;
5288 }
5289 return 0;
5290}
5291
5292static void selinux_msg_queue_free_security(struct msg_queue *msq)
5293{
5294 ipc_free_security(&msq->q_perm);
5295}
5296
5297static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5298{
5299 struct ipc_security_struct *isec;
5300 struct common_audit_data ad;
5301 u32 sid = current_sid();
5302
5303 isec = msq->q_perm.security;
5304
5305 ad.type = LSM_AUDIT_DATA_IPC;
5306 ad.u.ipc_id = msq->q_perm.key;
5307
5308 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5309 MSGQ__ASSOCIATE, &ad);
5310}
5311
5312static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5313{
5314 int err;
5315 int perms;
5316
5317 switch (cmd) {
5318 case IPC_INFO:
5319 case MSG_INFO:
5320 /* No specific object, just general system-wide information. */
5321 return task_has_system(current, SYSTEM__IPC_INFO);
5322 case IPC_STAT:
5323 case MSG_STAT:
5324 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5325 break;
5326 case IPC_SET:
5327 perms = MSGQ__SETATTR;
5328 break;
5329 case IPC_RMID:
5330 perms = MSGQ__DESTROY;
5331 break;
5332 default:
5333 return 0;
5334 }
5335
5336 err = ipc_has_perm(&msq->q_perm, perms);
5337 return err;
5338}
5339
5340static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5341{
5342 struct ipc_security_struct *isec;
5343 struct msg_security_struct *msec;
5344 struct common_audit_data ad;
5345 u32 sid = current_sid();
5346 int rc;
5347
5348 isec = msq->q_perm.security;
5349 msec = msg->security;
5350
5351 /*
5352 * First time through, need to assign label to the message
5353 */
5354 if (msec->sid == SECINITSID_UNLABELED) {
5355 /*
5356 * Compute new sid based on current process and
5357 * message queue this message will be stored in
5358 */
5359 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5360 NULL, &msec->sid);
5361 if (rc)
5362 return rc;
5363 }
5364
5365 ad.type = LSM_AUDIT_DATA_IPC;
5366 ad.u.ipc_id = msq->q_perm.key;
5367
5368 /* Can this process write to the queue? */
5369 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5370 MSGQ__WRITE, &ad);
5371 if (!rc)
5372 /* Can this process send the message */
5373 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5374 MSG__SEND, &ad);
5375 if (!rc)
5376 /* Can the message be put in the queue? */
5377 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5378 MSGQ__ENQUEUE, &ad);
5379
5380 return rc;
5381}
5382
5383static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5384 struct task_struct *target,
5385 long type, int mode)
5386{
5387 struct ipc_security_struct *isec;
5388 struct msg_security_struct *msec;
5389 struct common_audit_data ad;
5390 u32 sid = task_sid(target);
5391 int rc;
5392
5393 isec = msq->q_perm.security;
5394 msec = msg->security;
5395
5396 ad.type = LSM_AUDIT_DATA_IPC;
5397 ad.u.ipc_id = msq->q_perm.key;
5398
5399 rc = avc_has_perm(sid, isec->sid,
5400 SECCLASS_MSGQ, MSGQ__READ, &ad);
5401 if (!rc)
5402 rc = avc_has_perm(sid, msec->sid,
5403 SECCLASS_MSG, MSG__RECEIVE, &ad);
5404 return rc;
5405}
5406
5407/* Shared Memory security operations */
5408static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5409{
5410 struct ipc_security_struct *isec;
5411 struct common_audit_data ad;
5412 u32 sid = current_sid();
5413 int rc;
5414
5415 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5416 if (rc)
5417 return rc;
5418
5419 isec = shp->shm_perm.security;
5420
5421 ad.type = LSM_AUDIT_DATA_IPC;
5422 ad.u.ipc_id = shp->shm_perm.key;
5423
5424 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5425 SHM__CREATE, &ad);
5426 if (rc) {
5427 ipc_free_security(&shp->shm_perm);
5428 return rc;
5429 }
5430 return 0;
5431}
5432
5433static void selinux_shm_free_security(struct shmid_kernel *shp)
5434{
5435 ipc_free_security(&shp->shm_perm);
5436}
5437
5438static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5439{
5440 struct ipc_security_struct *isec;
5441 struct common_audit_data ad;
5442 u32 sid = current_sid();
5443
5444 isec = shp->shm_perm.security;
5445
5446 ad.type = LSM_AUDIT_DATA_IPC;
5447 ad.u.ipc_id = shp->shm_perm.key;
5448
5449 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5450 SHM__ASSOCIATE, &ad);
5451}
5452
5453/* Note, at this point, shp is locked down */
5454static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5455{
5456 int perms;
5457 int err;
5458
5459 switch (cmd) {
5460 case IPC_INFO:
5461 case SHM_INFO:
5462 /* No specific object, just general system-wide information. */
5463 return task_has_system(current, SYSTEM__IPC_INFO);
5464 case IPC_STAT:
5465 case SHM_STAT:
5466 perms = SHM__GETATTR | SHM__ASSOCIATE;
5467 break;
5468 case IPC_SET:
5469 perms = SHM__SETATTR;
5470 break;
5471 case SHM_LOCK:
5472 case SHM_UNLOCK:
5473 perms = SHM__LOCK;
5474 break;
5475 case IPC_RMID:
5476 perms = SHM__DESTROY;
5477 break;
5478 default:
5479 return 0;
5480 }
5481
5482 err = ipc_has_perm(&shp->shm_perm, perms);
5483 return err;
5484}
5485
5486static int selinux_shm_shmat(struct shmid_kernel *shp,
5487 char __user *shmaddr, int shmflg)
5488{
5489 u32 perms;
5490
5491 if (shmflg & SHM_RDONLY)
5492 perms = SHM__READ;
5493 else
5494 perms = SHM__READ | SHM__WRITE;
5495
5496 return ipc_has_perm(&shp->shm_perm, perms);
5497}
5498
5499/* Semaphore security operations */
5500static int selinux_sem_alloc_security(struct sem_array *sma)
5501{
5502 struct ipc_security_struct *isec;
5503 struct common_audit_data ad;
5504 u32 sid = current_sid();
5505 int rc;
5506
5507 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5508 if (rc)
5509 return rc;
5510
5511 isec = sma->sem_perm.security;
5512
5513 ad.type = LSM_AUDIT_DATA_IPC;
5514 ad.u.ipc_id = sma->sem_perm.key;
5515
5516 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5517 SEM__CREATE, &ad);
5518 if (rc) {
5519 ipc_free_security(&sma->sem_perm);
5520 return rc;
5521 }
5522 return 0;
5523}
5524
5525static void selinux_sem_free_security(struct sem_array *sma)
5526{
5527 ipc_free_security(&sma->sem_perm);
5528}
5529
5530static int selinux_sem_associate(struct sem_array *sma, int semflg)
5531{
5532 struct ipc_security_struct *isec;
5533 struct common_audit_data ad;
5534 u32 sid = current_sid();
5535
5536 isec = sma->sem_perm.security;
5537
5538 ad.type = LSM_AUDIT_DATA_IPC;
5539 ad.u.ipc_id = sma->sem_perm.key;
5540
5541 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5542 SEM__ASSOCIATE, &ad);
5543}
5544
5545/* Note, at this point, sma is locked down */
5546static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5547{
5548 int err;
5549 u32 perms;
5550
5551 switch (cmd) {
5552 case IPC_INFO:
5553 case SEM_INFO:
5554 /* No specific object, just general system-wide information. */
5555 return task_has_system(current, SYSTEM__IPC_INFO);
5556 case GETPID:
5557 case GETNCNT:
5558 case GETZCNT:
5559 perms = SEM__GETATTR;
5560 break;
5561 case GETVAL:
5562 case GETALL:
5563 perms = SEM__READ;
5564 break;
5565 case SETVAL:
5566 case SETALL:
5567 perms = SEM__WRITE;
5568 break;
5569 case IPC_RMID:
5570 perms = SEM__DESTROY;
5571 break;
5572 case IPC_SET:
5573 perms = SEM__SETATTR;
5574 break;
5575 case IPC_STAT:
5576 case SEM_STAT:
5577 perms = SEM__GETATTR | SEM__ASSOCIATE;
5578 break;
5579 default:
5580 return 0;
5581 }
5582
5583 err = ipc_has_perm(&sma->sem_perm, perms);
5584 return err;
5585}
5586
5587static int selinux_sem_semop(struct sem_array *sma,
5588 struct sembuf *sops, unsigned nsops, int alter)
5589{
5590 u32 perms;
5591
5592 if (alter)
5593 perms = SEM__READ | SEM__WRITE;
5594 else
5595 perms = SEM__READ;
5596
5597 return ipc_has_perm(&sma->sem_perm, perms);
5598}
5599
5600static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5601{
5602 u32 av = 0;
5603
5604 av = 0;
5605 if (flag & S_IRUGO)
5606 av |= IPC__UNIX_READ;
5607 if (flag & S_IWUGO)
5608 av |= IPC__UNIX_WRITE;
5609
5610 if (av == 0)
5611 return 0;
5612
5613 return ipc_has_perm(ipcp, av);
5614}
5615
5616static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5617{
5618 struct ipc_security_struct *isec = ipcp->security;
5619 *secid = isec->sid;
5620}
5621
5622static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5623{
5624 if (inode)
5625 inode_doinit_with_dentry(inode, dentry);
5626}
5627
5628static int selinux_getprocattr(struct task_struct *p,
5629 char *name, char **value)
5630{
5631 const struct task_security_struct *__tsec;
5632 u32 sid;
5633 int error;
5634 unsigned len;
5635
5636 if (current != p) {
5637 error = current_has_perm(p, PROCESS__GETATTR);
5638 if (error)
5639 return error;
5640 }
5641
5642 rcu_read_lock();
5643 __tsec = __task_cred(p)->security;
5644
5645 if (!strcmp(name, "current"))
5646 sid = __tsec->sid;
5647 else if (!strcmp(name, "prev"))
5648 sid = __tsec->osid;
5649 else if (!strcmp(name, "exec"))
5650 sid = __tsec->exec_sid;
5651 else if (!strcmp(name, "fscreate"))
5652 sid = __tsec->create_sid;
5653 else if (!strcmp(name, "keycreate"))
5654 sid = __tsec->keycreate_sid;
5655 else if (!strcmp(name, "sockcreate"))
5656 sid = __tsec->sockcreate_sid;
5657 else
5658 goto invalid;
5659 rcu_read_unlock();
5660
5661 if (!sid)
5662 return 0;
5663
5664 error = security_sid_to_context(sid, value, &len);
5665 if (error)
5666 return error;
5667 return len;
5668
5669invalid:
5670 rcu_read_unlock();
5671 return -EINVAL;
5672}
5673
5674static int selinux_setprocattr(struct task_struct *p,
5675 char *name, void *value, size_t size)
5676{
5677 struct task_security_struct *tsec;
5678 struct task_struct *tracer;
5679 struct cred *new;
5680 u32 sid = 0, ptsid;
5681 int error;
5682 char *str = value;
5683
5684 if (current != p) {
5685 /* SELinux only allows a process to change its own
5686 security attributes. */
5687 return -EACCES;
5688 }
5689
5690 /*
5691 * Basic control over ability to set these attributes at all.
5692 * current == p, but we'll pass them separately in case the
5693 * above restriction is ever removed.
5694 */
5695 if (!strcmp(name, "exec"))
5696 error = current_has_perm(p, PROCESS__SETEXEC);
5697 else if (!strcmp(name, "fscreate"))
5698 error = current_has_perm(p, PROCESS__SETFSCREATE);
5699 else if (!strcmp(name, "keycreate"))
5700 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5701 else if (!strcmp(name, "sockcreate"))
5702 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5703 else if (!strcmp(name, "current"))
5704 error = current_has_perm(p, PROCESS__SETCURRENT);
5705 else
5706 error = -EINVAL;
5707 if (error)
5708 return error;
5709
5710 /* Obtain a SID for the context, if one was specified. */
5711 if (size && str[1] && str[1] != '\n') {
5712 if (str[size-1] == '\n') {
5713 str[size-1] = 0;
5714 size--;
5715 }
5716 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5717 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5718 if (!capable(CAP_MAC_ADMIN)) {
5719 struct audit_buffer *ab;
5720 size_t audit_size;
5721
5722 /* We strip a nul only if it is at the end, otherwise the
5723 * context contains a nul and we should audit that */
5724 if (str[size - 1] == '\0')
5725 audit_size = size - 1;
5726 else
5727 audit_size = size;
5728 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5729 audit_log_format(ab, "op=fscreate invalid_context=");
5730 audit_log_n_untrustedstring(ab, value, audit_size);
5731 audit_log_end(ab);
5732
5733 return error;
5734 }
5735 error = security_context_to_sid_force(value, size,
5736 &sid);
5737 }
5738 if (error)
5739 return error;
5740 }
5741
5742 new = prepare_creds();
5743 if (!new)
5744 return -ENOMEM;
5745
5746 /* Permission checking based on the specified context is
5747 performed during the actual operation (execve,
5748 open/mkdir/...), when we know the full context of the
5749 operation. See selinux_bprm_set_creds for the execve
5750 checks and may_create for the file creation checks. The
5751 operation will then fail if the context is not permitted. */
5752 tsec = new->security;
5753 if (!strcmp(name, "exec")) {
5754 tsec->exec_sid = sid;
5755 } else if (!strcmp(name, "fscreate")) {
5756 tsec->create_sid = sid;
5757 } else if (!strcmp(name, "keycreate")) {
5758 error = may_create_key(sid, p);
5759 if (error)
5760 goto abort_change;
5761 tsec->keycreate_sid = sid;
5762 } else if (!strcmp(name, "sockcreate")) {
5763 tsec->sockcreate_sid = sid;
5764 } else if (!strcmp(name, "current")) {
5765 error = -EINVAL;
5766 if (sid == 0)
5767 goto abort_change;
5768
5769 /* Only allow single threaded processes to change context */
5770 error = -EPERM;
5771 if (!current_is_single_threaded()) {
5772 error = security_bounded_transition(tsec->sid, sid);
5773 if (error)
5774 goto abort_change;
5775 }
5776
5777 /* Check permissions for the transition. */
5778 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5779 PROCESS__DYNTRANSITION, NULL);
5780 if (error)
5781 goto abort_change;
5782
5783 /* Check for ptracing, and update the task SID if ok.
5784 Otherwise, leave SID unchanged and fail. */
5785 ptsid = 0;
5786 rcu_read_lock();
5787 tracer = ptrace_parent(p);
5788 if (tracer)
5789 ptsid = task_sid(tracer);
5790 rcu_read_unlock();
5791
5792 if (tracer) {
5793 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5794 PROCESS__PTRACE, NULL);
5795 if (error)
5796 goto abort_change;
5797 }
5798
5799 tsec->sid = sid;
5800 } else {
5801 error = -EINVAL;
5802 goto abort_change;
5803 }
5804
5805 commit_creds(new);
5806 return size;
5807
5808abort_change:
5809 abort_creds(new);
5810 return error;
5811}
5812
5813static int selinux_ismaclabel(const char *name)
5814{
5815 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5816}
5817
5818static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5819{
5820 return security_sid_to_context(secid, secdata, seclen);
5821}
5822
5823static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5824{
5825 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5826}
5827
5828static void selinux_release_secctx(char *secdata, u32 seclen)
5829{
5830 kfree(secdata);
5831}
5832
5833static void selinux_inode_invalidate_secctx(struct inode *inode)
5834{
5835 struct inode_security_struct *isec = inode->i_security;
5836
5837 mutex_lock(&isec->lock);
5838 isec->initialized = LABEL_INVALID;
5839 mutex_unlock(&isec->lock);
5840}
5841
5842/*
5843 * called with inode->i_mutex locked
5844 */
5845static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5846{
5847 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5848}
5849
5850/*
5851 * called with inode->i_mutex locked
5852 */
5853static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5854{
5855 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5856}
5857
5858static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5859{
5860 int len = 0;
5861 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5862 ctx, true);
5863 if (len < 0)
5864 return len;
5865 *ctxlen = len;
5866 return 0;
5867}
5868#ifdef CONFIG_KEYS
5869
5870static int selinux_key_alloc(struct key *k, const struct cred *cred,
5871 unsigned long flags)
5872{
5873 const struct task_security_struct *tsec;
5874 struct key_security_struct *ksec;
5875
5876 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5877 if (!ksec)
5878 return -ENOMEM;
5879
5880 tsec = cred->security;
5881 if (tsec->keycreate_sid)
5882 ksec->sid = tsec->keycreate_sid;
5883 else
5884 ksec->sid = tsec->sid;
5885
5886 k->security = ksec;
5887 return 0;
5888}
5889
5890static void selinux_key_free(struct key *k)
5891{
5892 struct key_security_struct *ksec = k->security;
5893
5894 k->security = NULL;
5895 kfree(ksec);
5896}
5897
5898static int selinux_key_permission(key_ref_t key_ref,
5899 const struct cred *cred,
5900 unsigned perm)
5901{
5902 struct key *key;
5903 struct key_security_struct *ksec;
5904 u32 sid;
5905
5906 /* if no specific permissions are requested, we skip the
5907 permission check. No serious, additional covert channels
5908 appear to be created. */
5909 if (perm == 0)
5910 return 0;
5911
5912 sid = cred_sid(cred);
5913
5914 key = key_ref_to_ptr(key_ref);
5915 ksec = key->security;
5916
5917 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5918}
5919
5920static int selinux_key_getsecurity(struct key *key, char **_buffer)
5921{
5922 struct key_security_struct *ksec = key->security;
5923 char *context = NULL;
5924 unsigned len;
5925 int rc;
5926
5927 rc = security_sid_to_context(ksec->sid, &context, &len);
5928 if (!rc)
5929 rc = len;
5930 *_buffer = context;
5931 return rc;
5932}
5933
5934#endif
5935
5936static struct security_hook_list selinux_hooks[] = {
5937 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5938 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5939 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5940 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5941
5942 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5943 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5944 LSM_HOOK_INIT(capget, selinux_capget),
5945 LSM_HOOK_INIT(capset, selinux_capset),
5946 LSM_HOOK_INIT(capable, selinux_capable),
5947 LSM_HOOK_INIT(quotactl, selinux_quotactl),
5948 LSM_HOOK_INIT(quota_on, selinux_quota_on),
5949 LSM_HOOK_INIT(syslog, selinux_syslog),
5950 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5951
5952 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5953
5954 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5955 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5956 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5957 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5958
5959 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5960 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5961 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5962 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5963 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5964 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5965 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5966 LSM_HOOK_INIT(sb_mount, selinux_mount),
5967 LSM_HOOK_INIT(sb_umount, selinux_umount),
5968 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5969 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5970 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
5971
5972 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
5973
5974 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5975 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5976 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
5977 LSM_HOOK_INIT(inode_create, selinux_inode_create),
5978 LSM_HOOK_INIT(inode_link, selinux_inode_link),
5979 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5980 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5981 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5982 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5983 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5984 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5985 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5986 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5987 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5988 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5989 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5990 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5991 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5992 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5993 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5994 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5995 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5996 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5997 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5998 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
5999
6000 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6001 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6002 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6003 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6004 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6005 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6006 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6007 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6008 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6009 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6010 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6011 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6012
6013 LSM_HOOK_INIT(file_open, selinux_file_open),
6014
6015 LSM_HOOK_INIT(task_create, selinux_task_create),
6016 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6017 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6018 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6019 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6020 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6021 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6022 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6023 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6024 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6025 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6026 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6027 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6028 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6029 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6030 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6031 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6032 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6033 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6034 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6035 LSM_HOOK_INIT(task_wait, selinux_task_wait),
6036 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6037
6038 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6039 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6040
6041 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6042 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6043
6044 LSM_HOOK_INIT(msg_queue_alloc_security,
6045 selinux_msg_queue_alloc_security),
6046 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6047 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6048 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6049 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6050 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6051
6052 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6053 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6054 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6055 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6056 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6057
6058 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6059 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6060 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6061 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6062 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6063
6064 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6065
6066 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6067 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6068
6069 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6070 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6071 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6072 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6073 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6074 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6075 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6076 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6077
6078 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6079 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6080
6081 LSM_HOOK_INIT(socket_create, selinux_socket_create),
6082 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6083 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6084 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6085 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6086 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6087 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6088 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6089 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6090 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6091 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6092 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6093 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6094 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6095 LSM_HOOK_INIT(socket_getpeersec_stream,
6096 selinux_socket_getpeersec_stream),
6097 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6098 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6099 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6100 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6101 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6102 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6103 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6104 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6105 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6106 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6107 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6108 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6109 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6110 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6111 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6112 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6113 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6114 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6115 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6116
6117#ifdef CONFIG_SECURITY_NETWORK_XFRM
6118 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6119 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6120 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6121 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6122 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6123 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6124 selinux_xfrm_state_alloc_acquire),
6125 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6126 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6127 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6128 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6129 selinux_xfrm_state_pol_flow_match),
6130 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6131#endif
6132
6133#ifdef CONFIG_KEYS
6134 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6135 LSM_HOOK_INIT(key_free, selinux_key_free),
6136 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6137 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6138#endif
6139
6140#ifdef CONFIG_AUDIT
6141 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6142 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6143 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6144 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6145#endif
6146};
6147
6148static __init int selinux_init(void)
6149{
6150 if (!security_module_enable("selinux")) {
6151 selinux_enabled = 0;
6152 return 0;
6153 }
6154
6155 if (!selinux_enabled) {
6156 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6157 return 0;
6158 }
6159
6160 printk(KERN_INFO "SELinux: Initializing.\n");
6161
6162 /* Set the security state for the initial task. */
6163 cred_init_security();
6164
6165 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6166
6167 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6168 sizeof(struct inode_security_struct),
6169 0, SLAB_PANIC, NULL);
6170 file_security_cache = kmem_cache_create("selinux_file_security",
6171 sizeof(struct file_security_struct),
6172 0, SLAB_PANIC, NULL);
6173 avc_init();
6174
6175 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6176
6177 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6178 panic("SELinux: Unable to register AVC netcache callback\n");
6179
6180 if (selinux_enforcing)
6181 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6182 else
6183 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6184
6185 return 0;
6186}
6187
6188static void delayed_superblock_init(struct super_block *sb, void *unused)
6189{
6190 superblock_doinit(sb, NULL);
6191}
6192
6193void selinux_complete_init(void)
6194{
6195 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6196
6197 /* Set up any superblocks initialized prior to the policy load. */
6198 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6199 iterate_supers(delayed_superblock_init, NULL);
6200}
6201
6202/* SELinux requires early initialization in order to label
6203 all processes and objects when they are created. */
6204security_initcall(selinux_init);
6205
6206#if defined(CONFIG_NETFILTER)
6207
6208static struct nf_hook_ops selinux_nf_ops[] = {
6209 {
6210 .hook = selinux_ipv4_postroute,
6211 .pf = NFPROTO_IPV4,
6212 .hooknum = NF_INET_POST_ROUTING,
6213 .priority = NF_IP_PRI_SELINUX_LAST,
6214 },
6215 {
6216 .hook = selinux_ipv4_forward,
6217 .pf = NFPROTO_IPV4,
6218 .hooknum = NF_INET_FORWARD,
6219 .priority = NF_IP_PRI_SELINUX_FIRST,
6220 },
6221 {
6222 .hook = selinux_ipv4_output,
6223 .pf = NFPROTO_IPV4,
6224 .hooknum = NF_INET_LOCAL_OUT,
6225 .priority = NF_IP_PRI_SELINUX_FIRST,
6226 },
6227#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6228 {
6229 .hook = selinux_ipv6_postroute,
6230 .pf = NFPROTO_IPV6,
6231 .hooknum = NF_INET_POST_ROUTING,
6232 .priority = NF_IP6_PRI_SELINUX_LAST,
6233 },
6234 {
6235 .hook = selinux_ipv6_forward,
6236 .pf = NFPROTO_IPV6,
6237 .hooknum = NF_INET_FORWARD,
6238 .priority = NF_IP6_PRI_SELINUX_FIRST,
6239 },
6240#endif /* IPV6 */
6241};
6242
6243static int __init selinux_nf_ip_init(void)
6244{
6245 int err;
6246
6247 if (!selinux_enabled)
6248 return 0;
6249
6250 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6251
6252 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6253 if (err)
6254 panic("SELinux: nf_register_hooks: error %d\n", err);
6255
6256 return 0;
6257}
6258
6259__initcall(selinux_nf_ip_init);
6260
6261#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6262static void selinux_nf_ip_exit(void)
6263{
6264 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6265
6266 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6267}
6268#endif
6269
6270#else /* CONFIG_NETFILTER */
6271
6272#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6273#define selinux_nf_ip_exit()
6274#endif
6275
6276#endif /* CONFIG_NETFILTER */
6277
6278#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6279static int selinux_disabled;
6280
6281int selinux_disable(void)
6282{
6283 if (ss_initialized) {
6284 /* Not permitted after initial policy load. */
6285 return -EINVAL;
6286 }
6287
6288 if (selinux_disabled) {
6289 /* Only do this once. */
6290 return -EINVAL;
6291 }
6292
6293 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6294
6295 selinux_disabled = 1;
6296 selinux_enabled = 0;
6297
6298 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6299
6300 /* Try to destroy the avc node cache */
6301 avc_disable();
6302
6303 /* Unregister netfilter hooks. */
6304 selinux_nf_ip_exit();
6305
6306 /* Unregister selinuxfs. */
6307 exit_sel_fs();
6308
6309 return 0;
6310}
6311#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <linux/bpf.h>
89#include <linux/kernfs.h>
90#include <linux/stringhash.h> /* for hashlen_string() */
91#include <uapi/linux/mount.h>
92#include <linux/fsnotify.h>
93#include <linux/fanotify.h>
94#include <linux/io_uring.h>
95
96#include "avc.h"
97#include "objsec.h"
98#include "netif.h"
99#include "netnode.h"
100#include "netport.h"
101#include "ibpkey.h"
102#include "xfrm.h"
103#include "netlabel.h"
104#include "audit.h"
105#include "avc_ss.h"
106
107struct selinux_state selinux_state;
108
109/* SECMARK reference count */
110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
111
112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
113static int selinux_enforcing_boot __initdata;
114
115static int __init enforcing_setup(char *str)
116{
117 unsigned long enforcing;
118 if (!kstrtoul(str, 0, &enforcing))
119 selinux_enforcing_boot = enforcing ? 1 : 0;
120 return 1;
121}
122__setup("enforcing=", enforcing_setup);
123#else
124#define selinux_enforcing_boot 1
125#endif
126
127int selinux_enabled_boot __initdata = 1;
128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
129static int __init selinux_enabled_setup(char *str)
130{
131 unsigned long enabled;
132 if (!kstrtoul(str, 0, &enabled))
133 selinux_enabled_boot = enabled ? 1 : 0;
134 return 1;
135}
136__setup("selinux=", selinux_enabled_setup);
137#endif
138
139static unsigned int selinux_checkreqprot_boot =
140 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
141
142static int __init checkreqprot_setup(char *str)
143{
144 unsigned long checkreqprot;
145
146 if (!kstrtoul(str, 0, &checkreqprot)) {
147 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
148 if (checkreqprot)
149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218}
219
220/*
221 * get the security ID of a set of credentials
222 */
223static inline u32 cred_sid(const struct cred *cred)
224{
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229}
230
231/*
232 * get the objective security ID of a task
233 */
234static inline u32 task_sid_obj(const struct task_struct *task)
235{
236 u32 sid;
237
238 rcu_read_lock();
239 sid = cred_sid(__task_cred(task));
240 rcu_read_unlock();
241 return sid;
242}
243
244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
245
246/*
247 * Try reloading inode security labels that have been marked as invalid. The
248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
249 * allowed; when set to false, returns -ECHILD when the label is
250 * invalid. The @dentry parameter should be set to a dentry of the inode.
251 */
252static int __inode_security_revalidate(struct inode *inode,
253 struct dentry *dentry,
254 bool may_sleep)
255{
256 struct inode_security_struct *isec = selinux_inode(inode);
257
258 might_sleep_if(may_sleep);
259
260 if (selinux_initialized(&selinux_state) &&
261 isec->initialized != LABEL_INITIALIZED) {
262 if (!may_sleep)
263 return -ECHILD;
264
265 /*
266 * Try reloading the inode security label. This will fail if
267 * @opt_dentry is NULL and no dentry for this inode can be
268 * found; in that case, continue using the old label.
269 */
270 inode_doinit_with_dentry(inode, dentry);
271 }
272 return 0;
273}
274
275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
276{
277 return selinux_inode(inode);
278}
279
280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
281{
282 int error;
283
284 error = __inode_security_revalidate(inode, NULL, !rcu);
285 if (error)
286 return ERR_PTR(error);
287 return selinux_inode(inode);
288}
289
290/*
291 * Get the security label of an inode.
292 */
293static struct inode_security_struct *inode_security(struct inode *inode)
294{
295 __inode_security_revalidate(inode, NULL, true);
296 return selinux_inode(inode);
297}
298
299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
300{
301 struct inode *inode = d_backing_inode(dentry);
302
303 return selinux_inode(inode);
304}
305
306/*
307 * Get the security label of a dentry's backing inode.
308 */
309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
310{
311 struct inode *inode = d_backing_inode(dentry);
312
313 __inode_security_revalidate(inode, dentry, true);
314 return selinux_inode(inode);
315}
316
317static void inode_free_security(struct inode *inode)
318{
319 struct inode_security_struct *isec = selinux_inode(inode);
320 struct superblock_security_struct *sbsec;
321
322 if (!isec)
323 return;
324 sbsec = selinux_superblock(inode->i_sb);
325 /*
326 * As not all inode security structures are in a list, we check for
327 * empty list outside of the lock to make sure that we won't waste
328 * time taking a lock doing nothing.
329 *
330 * The list_del_init() function can be safely called more than once.
331 * It should not be possible for this function to be called with
332 * concurrent list_add(), but for better safety against future changes
333 * in the code, we use list_empty_careful() here.
334 */
335 if (!list_empty_careful(&isec->list)) {
336 spin_lock(&sbsec->isec_lock);
337 list_del_init(&isec->list);
338 spin_unlock(&sbsec->isec_lock);
339 }
340}
341
342struct selinux_mnt_opts {
343 u32 fscontext_sid;
344 u32 context_sid;
345 u32 rootcontext_sid;
346 u32 defcontext_sid;
347};
348
349static void selinux_free_mnt_opts(void *mnt_opts)
350{
351 kfree(mnt_opts);
352}
353
354enum {
355 Opt_error = -1,
356 Opt_context = 0,
357 Opt_defcontext = 1,
358 Opt_fscontext = 2,
359 Opt_rootcontext = 3,
360 Opt_seclabel = 4,
361};
362
363#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
364static struct {
365 const char *name;
366 int len;
367 int opt;
368 bool has_arg;
369} tokens[] = {
370 A(context, true),
371 A(fscontext, true),
372 A(defcontext, true),
373 A(rootcontext, true),
374 A(seclabel, false),
375};
376#undef A
377
378static int match_opt_prefix(char *s, int l, char **arg)
379{
380 int i;
381
382 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
383 size_t len = tokens[i].len;
384 if (len > l || memcmp(s, tokens[i].name, len))
385 continue;
386 if (tokens[i].has_arg) {
387 if (len == l || s[len] != '=')
388 continue;
389 *arg = s + len + 1;
390 } else if (len != l)
391 continue;
392 return tokens[i].opt;
393 }
394 return Opt_error;
395}
396
397#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
398
399static int may_context_mount_sb_relabel(u32 sid,
400 struct superblock_security_struct *sbsec,
401 const struct cred *cred)
402{
403 const struct task_security_struct *tsec = selinux_cred(cred);
404 int rc;
405
406 rc = avc_has_perm(&selinux_state,
407 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
408 FILESYSTEM__RELABELFROM, NULL);
409 if (rc)
410 return rc;
411
412 rc = avc_has_perm(&selinux_state,
413 tsec->sid, sid, SECCLASS_FILESYSTEM,
414 FILESYSTEM__RELABELTO, NULL);
415 return rc;
416}
417
418static int may_context_mount_inode_relabel(u32 sid,
419 struct superblock_security_struct *sbsec,
420 const struct cred *cred)
421{
422 const struct task_security_struct *tsec = selinux_cred(cred);
423 int rc;
424 rc = avc_has_perm(&selinux_state,
425 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
426 FILESYSTEM__RELABELFROM, NULL);
427 if (rc)
428 return rc;
429
430 rc = avc_has_perm(&selinux_state,
431 sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 FILESYSTEM__ASSOCIATE, NULL);
433 return rc;
434}
435
436static int selinux_is_genfs_special_handling(struct super_block *sb)
437{
438 /* Special handling. Genfs but also in-core setxattr handler */
439 return !strcmp(sb->s_type->name, "sysfs") ||
440 !strcmp(sb->s_type->name, "pstore") ||
441 !strcmp(sb->s_type->name, "debugfs") ||
442 !strcmp(sb->s_type->name, "tracefs") ||
443 !strcmp(sb->s_type->name, "rootfs") ||
444 (selinux_policycap_cgroupseclabel() &&
445 (!strcmp(sb->s_type->name, "cgroup") ||
446 !strcmp(sb->s_type->name, "cgroup2")));
447}
448
449static int selinux_is_sblabel_mnt(struct super_block *sb)
450{
451 struct superblock_security_struct *sbsec = selinux_superblock(sb);
452
453 /*
454 * IMPORTANT: Double-check logic in this function when adding a new
455 * SECURITY_FS_USE_* definition!
456 */
457 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
458
459 switch (sbsec->behavior) {
460 case SECURITY_FS_USE_XATTR:
461 case SECURITY_FS_USE_TRANS:
462 case SECURITY_FS_USE_TASK:
463 case SECURITY_FS_USE_NATIVE:
464 return 1;
465
466 case SECURITY_FS_USE_GENFS:
467 return selinux_is_genfs_special_handling(sb);
468
469 /* Never allow relabeling on context mounts */
470 case SECURITY_FS_USE_MNTPOINT:
471 case SECURITY_FS_USE_NONE:
472 default:
473 return 0;
474 }
475}
476
477static int sb_check_xattr_support(struct super_block *sb)
478{
479 struct superblock_security_struct *sbsec = selinux_superblock(sb);
480 struct dentry *root = sb->s_root;
481 struct inode *root_inode = d_backing_inode(root);
482 u32 sid;
483 int rc;
484
485 /*
486 * Make sure that the xattr handler exists and that no
487 * error other than -ENODATA is returned by getxattr on
488 * the root directory. -ENODATA is ok, as this may be
489 * the first boot of the SELinux kernel before we have
490 * assigned xattr values to the filesystem.
491 */
492 if (!(root_inode->i_opflags & IOP_XATTR)) {
493 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
494 sb->s_id, sb->s_type->name);
495 goto fallback;
496 }
497
498 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
499 if (rc < 0 && rc != -ENODATA) {
500 if (rc == -EOPNOTSUPP) {
501 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
502 sb->s_id, sb->s_type->name);
503 goto fallback;
504 } else {
505 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
506 sb->s_id, sb->s_type->name, -rc);
507 return rc;
508 }
509 }
510 return 0;
511
512fallback:
513 /* No xattr support - try to fallback to genfs if possible. */
514 rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
515 SECCLASS_DIR, &sid);
516 if (rc)
517 return -EOPNOTSUPP;
518
519 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
520 sb->s_id, sb->s_type->name);
521 sbsec->behavior = SECURITY_FS_USE_GENFS;
522 sbsec->sid = sid;
523 return 0;
524}
525
526static int sb_finish_set_opts(struct super_block *sb)
527{
528 struct superblock_security_struct *sbsec = selinux_superblock(sb);
529 struct dentry *root = sb->s_root;
530 struct inode *root_inode = d_backing_inode(root);
531 int rc = 0;
532
533 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
534 rc = sb_check_xattr_support(sb);
535 if (rc)
536 return rc;
537 }
538
539 sbsec->flags |= SE_SBINITIALIZED;
540
541 /*
542 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
543 * leave the flag untouched because sb_clone_mnt_opts might be handing
544 * us a superblock that needs the flag to be cleared.
545 */
546 if (selinux_is_sblabel_mnt(sb))
547 sbsec->flags |= SBLABEL_MNT;
548 else
549 sbsec->flags &= ~SBLABEL_MNT;
550
551 /* Initialize the root inode. */
552 rc = inode_doinit_with_dentry(root_inode, root);
553
554 /* Initialize any other inodes associated with the superblock, e.g.
555 inodes created prior to initial policy load or inodes created
556 during get_sb by a pseudo filesystem that directly
557 populates itself. */
558 spin_lock(&sbsec->isec_lock);
559 while (!list_empty(&sbsec->isec_head)) {
560 struct inode_security_struct *isec =
561 list_first_entry(&sbsec->isec_head,
562 struct inode_security_struct, list);
563 struct inode *inode = isec->inode;
564 list_del_init(&isec->list);
565 spin_unlock(&sbsec->isec_lock);
566 inode = igrab(inode);
567 if (inode) {
568 if (!IS_PRIVATE(inode))
569 inode_doinit_with_dentry(inode, NULL);
570 iput(inode);
571 }
572 spin_lock(&sbsec->isec_lock);
573 }
574 spin_unlock(&sbsec->isec_lock);
575 return rc;
576}
577
578static int bad_option(struct superblock_security_struct *sbsec, char flag,
579 u32 old_sid, u32 new_sid)
580{
581 char mnt_flags = sbsec->flags & SE_MNTMASK;
582
583 /* check if the old mount command had the same options */
584 if (sbsec->flags & SE_SBINITIALIZED)
585 if (!(sbsec->flags & flag) ||
586 (old_sid != new_sid))
587 return 1;
588
589 /* check if we were passed the same options twice,
590 * aka someone passed context=a,context=b
591 */
592 if (!(sbsec->flags & SE_SBINITIALIZED))
593 if (mnt_flags & flag)
594 return 1;
595 return 0;
596}
597
598/*
599 * Allow filesystems with binary mount data to explicitly set mount point
600 * labeling information.
601 */
602static int selinux_set_mnt_opts(struct super_block *sb,
603 void *mnt_opts,
604 unsigned long kern_flags,
605 unsigned long *set_kern_flags)
606{
607 const struct cred *cred = current_cred();
608 struct superblock_security_struct *sbsec = selinux_superblock(sb);
609 struct dentry *root = sb->s_root;
610 struct selinux_mnt_opts *opts = mnt_opts;
611 struct inode_security_struct *root_isec;
612 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
613 u32 defcontext_sid = 0;
614 int rc = 0;
615
616 mutex_lock(&sbsec->lock);
617
618 if (!selinux_initialized(&selinux_state)) {
619 if (!opts) {
620 /* Defer initialization until selinux_complete_init,
621 after the initial policy is loaded and the security
622 server is ready to handle calls. */
623 goto out;
624 }
625 rc = -EINVAL;
626 pr_warn("SELinux: Unable to set superblock options "
627 "before the security server is initialized\n");
628 goto out;
629 }
630 if (kern_flags && !set_kern_flags) {
631 /* Specifying internal flags without providing a place to
632 * place the results is not allowed */
633 rc = -EINVAL;
634 goto out;
635 }
636
637 /*
638 * Binary mount data FS will come through this function twice. Once
639 * from an explicit call and once from the generic calls from the vfs.
640 * Since the generic VFS calls will not contain any security mount data
641 * we need to skip the double mount verification.
642 *
643 * This does open a hole in which we will not notice if the first
644 * mount using this sb set explicit options and a second mount using
645 * this sb does not set any security options. (The first options
646 * will be used for both mounts)
647 */
648 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
649 && !opts)
650 goto out;
651
652 root_isec = backing_inode_security_novalidate(root);
653
654 /*
655 * parse the mount options, check if they are valid sids.
656 * also check if someone is trying to mount the same sb more
657 * than once with different security options.
658 */
659 if (opts) {
660 if (opts->fscontext_sid) {
661 fscontext_sid = opts->fscontext_sid;
662 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
663 fscontext_sid))
664 goto out_double_mount;
665 sbsec->flags |= FSCONTEXT_MNT;
666 }
667 if (opts->context_sid) {
668 context_sid = opts->context_sid;
669 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
670 context_sid))
671 goto out_double_mount;
672 sbsec->flags |= CONTEXT_MNT;
673 }
674 if (opts->rootcontext_sid) {
675 rootcontext_sid = opts->rootcontext_sid;
676 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
677 rootcontext_sid))
678 goto out_double_mount;
679 sbsec->flags |= ROOTCONTEXT_MNT;
680 }
681 if (opts->defcontext_sid) {
682 defcontext_sid = opts->defcontext_sid;
683 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
684 defcontext_sid))
685 goto out_double_mount;
686 sbsec->flags |= DEFCONTEXT_MNT;
687 }
688 }
689
690 if (sbsec->flags & SE_SBINITIALIZED) {
691 /* previously mounted with options, but not on this attempt? */
692 if ((sbsec->flags & SE_MNTMASK) && !opts)
693 goto out_double_mount;
694 rc = 0;
695 goto out;
696 }
697
698 if (strcmp(sb->s_type->name, "proc") == 0)
699 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
700
701 if (!strcmp(sb->s_type->name, "debugfs") ||
702 !strcmp(sb->s_type->name, "tracefs") ||
703 !strcmp(sb->s_type->name, "binder") ||
704 !strcmp(sb->s_type->name, "bpf") ||
705 !strcmp(sb->s_type->name, "pstore") ||
706 !strcmp(sb->s_type->name, "securityfs"))
707 sbsec->flags |= SE_SBGENFS;
708
709 if (!strcmp(sb->s_type->name, "sysfs") ||
710 !strcmp(sb->s_type->name, "cgroup") ||
711 !strcmp(sb->s_type->name, "cgroup2"))
712 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
713
714 if (!sbsec->behavior) {
715 /*
716 * Determine the labeling behavior to use for this
717 * filesystem type.
718 */
719 rc = security_fs_use(&selinux_state, sb);
720 if (rc) {
721 pr_warn("%s: security_fs_use(%s) returned %d\n",
722 __func__, sb->s_type->name, rc);
723 goto out;
724 }
725 }
726
727 /*
728 * If this is a user namespace mount and the filesystem type is not
729 * explicitly whitelisted, then no contexts are allowed on the command
730 * line and security labels must be ignored.
731 */
732 if (sb->s_user_ns != &init_user_ns &&
733 strcmp(sb->s_type->name, "tmpfs") &&
734 strcmp(sb->s_type->name, "ramfs") &&
735 strcmp(sb->s_type->name, "devpts") &&
736 strcmp(sb->s_type->name, "overlay")) {
737 if (context_sid || fscontext_sid || rootcontext_sid ||
738 defcontext_sid) {
739 rc = -EACCES;
740 goto out;
741 }
742 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
743 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
744 rc = security_transition_sid(&selinux_state,
745 current_sid(),
746 current_sid(),
747 SECCLASS_FILE, NULL,
748 &sbsec->mntpoint_sid);
749 if (rc)
750 goto out;
751 }
752 goto out_set_opts;
753 }
754
755 /* sets the context of the superblock for the fs being mounted. */
756 if (fscontext_sid) {
757 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
758 if (rc)
759 goto out;
760
761 sbsec->sid = fscontext_sid;
762 }
763
764 /*
765 * Switch to using mount point labeling behavior.
766 * sets the label used on all file below the mountpoint, and will set
767 * the superblock context if not already set.
768 */
769 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
770 sbsec->behavior = SECURITY_FS_USE_NATIVE;
771 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
772 }
773
774 if (context_sid) {
775 if (!fscontext_sid) {
776 rc = may_context_mount_sb_relabel(context_sid, sbsec,
777 cred);
778 if (rc)
779 goto out;
780 sbsec->sid = context_sid;
781 } else {
782 rc = may_context_mount_inode_relabel(context_sid, sbsec,
783 cred);
784 if (rc)
785 goto out;
786 }
787 if (!rootcontext_sid)
788 rootcontext_sid = context_sid;
789
790 sbsec->mntpoint_sid = context_sid;
791 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
792 }
793
794 if (rootcontext_sid) {
795 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
796 cred);
797 if (rc)
798 goto out;
799
800 root_isec->sid = rootcontext_sid;
801 root_isec->initialized = LABEL_INITIALIZED;
802 }
803
804 if (defcontext_sid) {
805 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
806 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
807 rc = -EINVAL;
808 pr_warn("SELinux: defcontext option is "
809 "invalid for this filesystem type\n");
810 goto out;
811 }
812
813 if (defcontext_sid != sbsec->def_sid) {
814 rc = may_context_mount_inode_relabel(defcontext_sid,
815 sbsec, cred);
816 if (rc)
817 goto out;
818 }
819
820 sbsec->def_sid = defcontext_sid;
821 }
822
823out_set_opts:
824 rc = sb_finish_set_opts(sb);
825out:
826 mutex_unlock(&sbsec->lock);
827 return rc;
828out_double_mount:
829 rc = -EINVAL;
830 pr_warn("SELinux: mount invalid. Same superblock, different "
831 "security settings for (dev %s, type %s)\n", sb->s_id,
832 sb->s_type->name);
833 goto out;
834}
835
836static int selinux_cmp_sb_context(const struct super_block *oldsb,
837 const struct super_block *newsb)
838{
839 struct superblock_security_struct *old = selinux_superblock(oldsb);
840 struct superblock_security_struct *new = selinux_superblock(newsb);
841 char oldflags = old->flags & SE_MNTMASK;
842 char newflags = new->flags & SE_MNTMASK;
843
844 if (oldflags != newflags)
845 goto mismatch;
846 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
847 goto mismatch;
848 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
849 goto mismatch;
850 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
851 goto mismatch;
852 if (oldflags & ROOTCONTEXT_MNT) {
853 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
854 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
855 if (oldroot->sid != newroot->sid)
856 goto mismatch;
857 }
858 return 0;
859mismatch:
860 pr_warn("SELinux: mount invalid. Same superblock, "
861 "different security settings for (dev %s, "
862 "type %s)\n", newsb->s_id, newsb->s_type->name);
863 return -EBUSY;
864}
865
866static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
867 struct super_block *newsb,
868 unsigned long kern_flags,
869 unsigned long *set_kern_flags)
870{
871 int rc = 0;
872 const struct superblock_security_struct *oldsbsec =
873 selinux_superblock(oldsb);
874 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
875
876 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
877 int set_context = (oldsbsec->flags & CONTEXT_MNT);
878 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
879
880 /*
881 * if the parent was able to be mounted it clearly had no special lsm
882 * mount options. thus we can safely deal with this superblock later
883 */
884 if (!selinux_initialized(&selinux_state))
885 return 0;
886
887 /*
888 * Specifying internal flags without providing a place to
889 * place the results is not allowed.
890 */
891 if (kern_flags && !set_kern_flags)
892 return -EINVAL;
893
894 /* how can we clone if the old one wasn't set up?? */
895 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
896
897 /* if fs is reusing a sb, make sure that the contexts match */
898 if (newsbsec->flags & SE_SBINITIALIZED) {
899 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
900 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
901 return selinux_cmp_sb_context(oldsb, newsb);
902 }
903
904 mutex_lock(&newsbsec->lock);
905
906 newsbsec->flags = oldsbsec->flags;
907
908 newsbsec->sid = oldsbsec->sid;
909 newsbsec->def_sid = oldsbsec->def_sid;
910 newsbsec->behavior = oldsbsec->behavior;
911
912 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
913 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
914 rc = security_fs_use(&selinux_state, newsb);
915 if (rc)
916 goto out;
917 }
918
919 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
920 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
921 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
922 }
923
924 if (set_context) {
925 u32 sid = oldsbsec->mntpoint_sid;
926
927 if (!set_fscontext)
928 newsbsec->sid = sid;
929 if (!set_rootcontext) {
930 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
931 newisec->sid = sid;
932 }
933 newsbsec->mntpoint_sid = sid;
934 }
935 if (set_rootcontext) {
936 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
937 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
938
939 newisec->sid = oldisec->sid;
940 }
941
942 sb_finish_set_opts(newsb);
943out:
944 mutex_unlock(&newsbsec->lock);
945 return rc;
946}
947
948/*
949 * NOTE: the caller is resposible for freeing the memory even if on error.
950 */
951static int selinux_add_opt(int token, const char *s, void **mnt_opts)
952{
953 struct selinux_mnt_opts *opts = *mnt_opts;
954 u32 *dst_sid;
955 int rc;
956
957 if (token == Opt_seclabel)
958 /* eaten and completely ignored */
959 return 0;
960 if (!s)
961 return -EINVAL;
962
963 if (!selinux_initialized(&selinux_state)) {
964 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
965 return -EINVAL;
966 }
967
968 if (!opts) {
969 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
970 if (!opts)
971 return -ENOMEM;
972 *mnt_opts = opts;
973 }
974
975 switch (token) {
976 case Opt_context:
977 if (opts->context_sid || opts->defcontext_sid)
978 goto err;
979 dst_sid = &opts->context_sid;
980 break;
981 case Opt_fscontext:
982 if (opts->fscontext_sid)
983 goto err;
984 dst_sid = &opts->fscontext_sid;
985 break;
986 case Opt_rootcontext:
987 if (opts->rootcontext_sid)
988 goto err;
989 dst_sid = &opts->rootcontext_sid;
990 break;
991 case Opt_defcontext:
992 if (opts->context_sid || opts->defcontext_sid)
993 goto err;
994 dst_sid = &opts->defcontext_sid;
995 break;
996 default:
997 WARN_ON(1);
998 return -EINVAL;
999 }
1000 rc = security_context_str_to_sid(&selinux_state, s, dst_sid, GFP_KERNEL);
1001 if (rc)
1002 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1003 s, rc);
1004 return rc;
1005
1006err:
1007 pr_warn(SEL_MOUNT_FAIL_MSG);
1008 return -EINVAL;
1009}
1010
1011static int show_sid(struct seq_file *m, u32 sid)
1012{
1013 char *context = NULL;
1014 u32 len;
1015 int rc;
1016
1017 rc = security_sid_to_context(&selinux_state, sid,
1018 &context, &len);
1019 if (!rc) {
1020 bool has_comma = strchr(context, ',');
1021
1022 seq_putc(m, '=');
1023 if (has_comma)
1024 seq_putc(m, '\"');
1025 seq_escape(m, context, "\"\n\\");
1026 if (has_comma)
1027 seq_putc(m, '\"');
1028 }
1029 kfree(context);
1030 return rc;
1031}
1032
1033static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1034{
1035 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1036 int rc;
1037
1038 if (!(sbsec->flags & SE_SBINITIALIZED))
1039 return 0;
1040
1041 if (!selinux_initialized(&selinux_state))
1042 return 0;
1043
1044 if (sbsec->flags & FSCONTEXT_MNT) {
1045 seq_putc(m, ',');
1046 seq_puts(m, FSCONTEXT_STR);
1047 rc = show_sid(m, sbsec->sid);
1048 if (rc)
1049 return rc;
1050 }
1051 if (sbsec->flags & CONTEXT_MNT) {
1052 seq_putc(m, ',');
1053 seq_puts(m, CONTEXT_STR);
1054 rc = show_sid(m, sbsec->mntpoint_sid);
1055 if (rc)
1056 return rc;
1057 }
1058 if (sbsec->flags & DEFCONTEXT_MNT) {
1059 seq_putc(m, ',');
1060 seq_puts(m, DEFCONTEXT_STR);
1061 rc = show_sid(m, sbsec->def_sid);
1062 if (rc)
1063 return rc;
1064 }
1065 if (sbsec->flags & ROOTCONTEXT_MNT) {
1066 struct dentry *root = sb->s_root;
1067 struct inode_security_struct *isec = backing_inode_security(root);
1068 seq_putc(m, ',');
1069 seq_puts(m, ROOTCONTEXT_STR);
1070 rc = show_sid(m, isec->sid);
1071 if (rc)
1072 return rc;
1073 }
1074 if (sbsec->flags & SBLABEL_MNT) {
1075 seq_putc(m, ',');
1076 seq_puts(m, SECLABEL_STR);
1077 }
1078 return 0;
1079}
1080
1081static inline u16 inode_mode_to_security_class(umode_t mode)
1082{
1083 switch (mode & S_IFMT) {
1084 case S_IFSOCK:
1085 return SECCLASS_SOCK_FILE;
1086 case S_IFLNK:
1087 return SECCLASS_LNK_FILE;
1088 case S_IFREG:
1089 return SECCLASS_FILE;
1090 case S_IFBLK:
1091 return SECCLASS_BLK_FILE;
1092 case S_IFDIR:
1093 return SECCLASS_DIR;
1094 case S_IFCHR:
1095 return SECCLASS_CHR_FILE;
1096 case S_IFIFO:
1097 return SECCLASS_FIFO_FILE;
1098
1099 }
1100
1101 return SECCLASS_FILE;
1102}
1103
1104static inline int default_protocol_stream(int protocol)
1105{
1106 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1107 protocol == IPPROTO_MPTCP);
1108}
1109
1110static inline int default_protocol_dgram(int protocol)
1111{
1112 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1113}
1114
1115static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1116{
1117 int extsockclass = selinux_policycap_extsockclass();
1118
1119 switch (family) {
1120 case PF_UNIX:
1121 switch (type) {
1122 case SOCK_STREAM:
1123 case SOCK_SEQPACKET:
1124 return SECCLASS_UNIX_STREAM_SOCKET;
1125 case SOCK_DGRAM:
1126 case SOCK_RAW:
1127 return SECCLASS_UNIX_DGRAM_SOCKET;
1128 }
1129 break;
1130 case PF_INET:
1131 case PF_INET6:
1132 switch (type) {
1133 case SOCK_STREAM:
1134 case SOCK_SEQPACKET:
1135 if (default_protocol_stream(protocol))
1136 return SECCLASS_TCP_SOCKET;
1137 else if (extsockclass && protocol == IPPROTO_SCTP)
1138 return SECCLASS_SCTP_SOCKET;
1139 else
1140 return SECCLASS_RAWIP_SOCKET;
1141 case SOCK_DGRAM:
1142 if (default_protocol_dgram(protocol))
1143 return SECCLASS_UDP_SOCKET;
1144 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1145 protocol == IPPROTO_ICMPV6))
1146 return SECCLASS_ICMP_SOCKET;
1147 else
1148 return SECCLASS_RAWIP_SOCKET;
1149 case SOCK_DCCP:
1150 return SECCLASS_DCCP_SOCKET;
1151 default:
1152 return SECCLASS_RAWIP_SOCKET;
1153 }
1154 break;
1155 case PF_NETLINK:
1156 switch (protocol) {
1157 case NETLINK_ROUTE:
1158 return SECCLASS_NETLINK_ROUTE_SOCKET;
1159 case NETLINK_SOCK_DIAG:
1160 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1161 case NETLINK_NFLOG:
1162 return SECCLASS_NETLINK_NFLOG_SOCKET;
1163 case NETLINK_XFRM:
1164 return SECCLASS_NETLINK_XFRM_SOCKET;
1165 case NETLINK_SELINUX:
1166 return SECCLASS_NETLINK_SELINUX_SOCKET;
1167 case NETLINK_ISCSI:
1168 return SECCLASS_NETLINK_ISCSI_SOCKET;
1169 case NETLINK_AUDIT:
1170 return SECCLASS_NETLINK_AUDIT_SOCKET;
1171 case NETLINK_FIB_LOOKUP:
1172 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1173 case NETLINK_CONNECTOR:
1174 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1175 case NETLINK_NETFILTER:
1176 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1177 case NETLINK_DNRTMSG:
1178 return SECCLASS_NETLINK_DNRT_SOCKET;
1179 case NETLINK_KOBJECT_UEVENT:
1180 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1181 case NETLINK_GENERIC:
1182 return SECCLASS_NETLINK_GENERIC_SOCKET;
1183 case NETLINK_SCSITRANSPORT:
1184 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1185 case NETLINK_RDMA:
1186 return SECCLASS_NETLINK_RDMA_SOCKET;
1187 case NETLINK_CRYPTO:
1188 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1189 default:
1190 return SECCLASS_NETLINK_SOCKET;
1191 }
1192 case PF_PACKET:
1193 return SECCLASS_PACKET_SOCKET;
1194 case PF_KEY:
1195 return SECCLASS_KEY_SOCKET;
1196 case PF_APPLETALK:
1197 return SECCLASS_APPLETALK_SOCKET;
1198 }
1199
1200 if (extsockclass) {
1201 switch (family) {
1202 case PF_AX25:
1203 return SECCLASS_AX25_SOCKET;
1204 case PF_IPX:
1205 return SECCLASS_IPX_SOCKET;
1206 case PF_NETROM:
1207 return SECCLASS_NETROM_SOCKET;
1208 case PF_ATMPVC:
1209 return SECCLASS_ATMPVC_SOCKET;
1210 case PF_X25:
1211 return SECCLASS_X25_SOCKET;
1212 case PF_ROSE:
1213 return SECCLASS_ROSE_SOCKET;
1214 case PF_DECnet:
1215 return SECCLASS_DECNET_SOCKET;
1216 case PF_ATMSVC:
1217 return SECCLASS_ATMSVC_SOCKET;
1218 case PF_RDS:
1219 return SECCLASS_RDS_SOCKET;
1220 case PF_IRDA:
1221 return SECCLASS_IRDA_SOCKET;
1222 case PF_PPPOX:
1223 return SECCLASS_PPPOX_SOCKET;
1224 case PF_LLC:
1225 return SECCLASS_LLC_SOCKET;
1226 case PF_CAN:
1227 return SECCLASS_CAN_SOCKET;
1228 case PF_TIPC:
1229 return SECCLASS_TIPC_SOCKET;
1230 case PF_BLUETOOTH:
1231 return SECCLASS_BLUETOOTH_SOCKET;
1232 case PF_IUCV:
1233 return SECCLASS_IUCV_SOCKET;
1234 case PF_RXRPC:
1235 return SECCLASS_RXRPC_SOCKET;
1236 case PF_ISDN:
1237 return SECCLASS_ISDN_SOCKET;
1238 case PF_PHONET:
1239 return SECCLASS_PHONET_SOCKET;
1240 case PF_IEEE802154:
1241 return SECCLASS_IEEE802154_SOCKET;
1242 case PF_CAIF:
1243 return SECCLASS_CAIF_SOCKET;
1244 case PF_ALG:
1245 return SECCLASS_ALG_SOCKET;
1246 case PF_NFC:
1247 return SECCLASS_NFC_SOCKET;
1248 case PF_VSOCK:
1249 return SECCLASS_VSOCK_SOCKET;
1250 case PF_KCM:
1251 return SECCLASS_KCM_SOCKET;
1252 case PF_QIPCRTR:
1253 return SECCLASS_QIPCRTR_SOCKET;
1254 case PF_SMC:
1255 return SECCLASS_SMC_SOCKET;
1256 case PF_XDP:
1257 return SECCLASS_XDP_SOCKET;
1258 case PF_MCTP:
1259 return SECCLASS_MCTP_SOCKET;
1260#if PF_MAX > 46
1261#error New address family defined, please update this function.
1262#endif
1263 }
1264 }
1265
1266 return SECCLASS_SOCKET;
1267}
1268
1269static int selinux_genfs_get_sid(struct dentry *dentry,
1270 u16 tclass,
1271 u16 flags,
1272 u32 *sid)
1273{
1274 int rc;
1275 struct super_block *sb = dentry->d_sb;
1276 char *buffer, *path;
1277
1278 buffer = (char *)__get_free_page(GFP_KERNEL);
1279 if (!buffer)
1280 return -ENOMEM;
1281
1282 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1283 if (IS_ERR(path))
1284 rc = PTR_ERR(path);
1285 else {
1286 if (flags & SE_SBPROC) {
1287 /* each process gets a /proc/PID/ entry. Strip off the
1288 * PID part to get a valid selinux labeling.
1289 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1290 while (path[1] >= '0' && path[1] <= '9') {
1291 path[1] = '/';
1292 path++;
1293 }
1294 }
1295 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1296 path, tclass, sid);
1297 if (rc == -ENOENT) {
1298 /* No match in policy, mark as unlabeled. */
1299 *sid = SECINITSID_UNLABELED;
1300 rc = 0;
1301 }
1302 }
1303 free_page((unsigned long)buffer);
1304 return rc;
1305}
1306
1307static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1308 u32 def_sid, u32 *sid)
1309{
1310#define INITCONTEXTLEN 255
1311 char *context;
1312 unsigned int len;
1313 int rc;
1314
1315 len = INITCONTEXTLEN;
1316 context = kmalloc(len + 1, GFP_NOFS);
1317 if (!context)
1318 return -ENOMEM;
1319
1320 context[len] = '\0';
1321 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1322 if (rc == -ERANGE) {
1323 kfree(context);
1324
1325 /* Need a larger buffer. Query for the right size. */
1326 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1327 if (rc < 0)
1328 return rc;
1329
1330 len = rc;
1331 context = kmalloc(len + 1, GFP_NOFS);
1332 if (!context)
1333 return -ENOMEM;
1334
1335 context[len] = '\0';
1336 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1337 context, len);
1338 }
1339 if (rc < 0) {
1340 kfree(context);
1341 if (rc != -ENODATA) {
1342 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1343 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1344 return rc;
1345 }
1346 *sid = def_sid;
1347 return 0;
1348 }
1349
1350 rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1351 def_sid, GFP_NOFS);
1352 if (rc) {
1353 char *dev = inode->i_sb->s_id;
1354 unsigned long ino = inode->i_ino;
1355
1356 if (rc == -EINVAL) {
1357 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1358 ino, dev, context);
1359 } else {
1360 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1361 __func__, context, -rc, dev, ino);
1362 }
1363 }
1364 kfree(context);
1365 return 0;
1366}
1367
1368/* The inode's security attributes must be initialized before first use. */
1369static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1370{
1371 struct superblock_security_struct *sbsec = NULL;
1372 struct inode_security_struct *isec = selinux_inode(inode);
1373 u32 task_sid, sid = 0;
1374 u16 sclass;
1375 struct dentry *dentry;
1376 int rc = 0;
1377
1378 if (isec->initialized == LABEL_INITIALIZED)
1379 return 0;
1380
1381 spin_lock(&isec->lock);
1382 if (isec->initialized == LABEL_INITIALIZED)
1383 goto out_unlock;
1384
1385 if (isec->sclass == SECCLASS_FILE)
1386 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1387
1388 sbsec = selinux_superblock(inode->i_sb);
1389 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1390 /* Defer initialization until selinux_complete_init,
1391 after the initial policy is loaded and the security
1392 server is ready to handle calls. */
1393 spin_lock(&sbsec->isec_lock);
1394 if (list_empty(&isec->list))
1395 list_add(&isec->list, &sbsec->isec_head);
1396 spin_unlock(&sbsec->isec_lock);
1397 goto out_unlock;
1398 }
1399
1400 sclass = isec->sclass;
1401 task_sid = isec->task_sid;
1402 sid = isec->sid;
1403 isec->initialized = LABEL_PENDING;
1404 spin_unlock(&isec->lock);
1405
1406 switch (sbsec->behavior) {
1407 case SECURITY_FS_USE_NATIVE:
1408 break;
1409 case SECURITY_FS_USE_XATTR:
1410 if (!(inode->i_opflags & IOP_XATTR)) {
1411 sid = sbsec->def_sid;
1412 break;
1413 }
1414 /* Need a dentry, since the xattr API requires one.
1415 Life would be simpler if we could just pass the inode. */
1416 if (opt_dentry) {
1417 /* Called from d_instantiate or d_splice_alias. */
1418 dentry = dget(opt_dentry);
1419 } else {
1420 /*
1421 * Called from selinux_complete_init, try to find a dentry.
1422 * Some filesystems really want a connected one, so try
1423 * that first. We could split SECURITY_FS_USE_XATTR in
1424 * two, depending upon that...
1425 */
1426 dentry = d_find_alias(inode);
1427 if (!dentry)
1428 dentry = d_find_any_alias(inode);
1429 }
1430 if (!dentry) {
1431 /*
1432 * this is can be hit on boot when a file is accessed
1433 * before the policy is loaded. When we load policy we
1434 * may find inodes that have no dentry on the
1435 * sbsec->isec_head list. No reason to complain as these
1436 * will get fixed up the next time we go through
1437 * inode_doinit with a dentry, before these inodes could
1438 * be used again by userspace.
1439 */
1440 goto out_invalid;
1441 }
1442
1443 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1444 &sid);
1445 dput(dentry);
1446 if (rc)
1447 goto out;
1448 break;
1449 case SECURITY_FS_USE_TASK:
1450 sid = task_sid;
1451 break;
1452 case SECURITY_FS_USE_TRANS:
1453 /* Default to the fs SID. */
1454 sid = sbsec->sid;
1455
1456 /* Try to obtain a transition SID. */
1457 rc = security_transition_sid(&selinux_state, task_sid, sid,
1458 sclass, NULL, &sid);
1459 if (rc)
1460 goto out;
1461 break;
1462 case SECURITY_FS_USE_MNTPOINT:
1463 sid = sbsec->mntpoint_sid;
1464 break;
1465 default:
1466 /* Default to the fs superblock SID. */
1467 sid = sbsec->sid;
1468
1469 if ((sbsec->flags & SE_SBGENFS) &&
1470 (!S_ISLNK(inode->i_mode) ||
1471 selinux_policycap_genfs_seclabel_symlinks())) {
1472 /* We must have a dentry to determine the label on
1473 * procfs inodes */
1474 if (opt_dentry) {
1475 /* Called from d_instantiate or
1476 * d_splice_alias. */
1477 dentry = dget(opt_dentry);
1478 } else {
1479 /* Called from selinux_complete_init, try to
1480 * find a dentry. Some filesystems really want
1481 * a connected one, so try that first.
1482 */
1483 dentry = d_find_alias(inode);
1484 if (!dentry)
1485 dentry = d_find_any_alias(inode);
1486 }
1487 /*
1488 * This can be hit on boot when a file is accessed
1489 * before the policy is loaded. When we load policy we
1490 * may find inodes that have no dentry on the
1491 * sbsec->isec_head list. No reason to complain as
1492 * these will get fixed up the next time we go through
1493 * inode_doinit() with a dentry, before these inodes
1494 * could be used again by userspace.
1495 */
1496 if (!dentry)
1497 goto out_invalid;
1498 rc = selinux_genfs_get_sid(dentry, sclass,
1499 sbsec->flags, &sid);
1500 if (rc) {
1501 dput(dentry);
1502 goto out;
1503 }
1504
1505 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1506 (inode->i_opflags & IOP_XATTR)) {
1507 rc = inode_doinit_use_xattr(inode, dentry,
1508 sid, &sid);
1509 if (rc) {
1510 dput(dentry);
1511 goto out;
1512 }
1513 }
1514 dput(dentry);
1515 }
1516 break;
1517 }
1518
1519out:
1520 spin_lock(&isec->lock);
1521 if (isec->initialized == LABEL_PENDING) {
1522 if (rc) {
1523 isec->initialized = LABEL_INVALID;
1524 goto out_unlock;
1525 }
1526 isec->initialized = LABEL_INITIALIZED;
1527 isec->sid = sid;
1528 }
1529
1530out_unlock:
1531 spin_unlock(&isec->lock);
1532 return rc;
1533
1534out_invalid:
1535 spin_lock(&isec->lock);
1536 if (isec->initialized == LABEL_PENDING) {
1537 isec->initialized = LABEL_INVALID;
1538 isec->sid = sid;
1539 }
1540 spin_unlock(&isec->lock);
1541 return 0;
1542}
1543
1544/* Convert a Linux signal to an access vector. */
1545static inline u32 signal_to_av(int sig)
1546{
1547 u32 perm = 0;
1548
1549 switch (sig) {
1550 case SIGCHLD:
1551 /* Commonly granted from child to parent. */
1552 perm = PROCESS__SIGCHLD;
1553 break;
1554 case SIGKILL:
1555 /* Cannot be caught or ignored */
1556 perm = PROCESS__SIGKILL;
1557 break;
1558 case SIGSTOP:
1559 /* Cannot be caught or ignored */
1560 perm = PROCESS__SIGSTOP;
1561 break;
1562 default:
1563 /* All other signals. */
1564 perm = PROCESS__SIGNAL;
1565 break;
1566 }
1567
1568 return perm;
1569}
1570
1571#if CAP_LAST_CAP > 63
1572#error Fix SELinux to handle capabilities > 63.
1573#endif
1574
1575/* Check whether a task is allowed to use a capability. */
1576static int cred_has_capability(const struct cred *cred,
1577 int cap, unsigned int opts, bool initns)
1578{
1579 struct common_audit_data ad;
1580 struct av_decision avd;
1581 u16 sclass;
1582 u32 sid = cred_sid(cred);
1583 u32 av = CAP_TO_MASK(cap);
1584 int rc;
1585
1586 ad.type = LSM_AUDIT_DATA_CAP;
1587 ad.u.cap = cap;
1588
1589 switch (CAP_TO_INDEX(cap)) {
1590 case 0:
1591 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1592 break;
1593 case 1:
1594 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1595 break;
1596 default:
1597 pr_err("SELinux: out of range capability %d\n", cap);
1598 BUG();
1599 return -EINVAL;
1600 }
1601
1602 rc = avc_has_perm_noaudit(&selinux_state,
1603 sid, sid, sclass, av, 0, &avd);
1604 if (!(opts & CAP_OPT_NOAUDIT)) {
1605 int rc2 = avc_audit(&selinux_state,
1606 sid, sid, sclass, av, &avd, rc, &ad);
1607 if (rc2)
1608 return rc2;
1609 }
1610 return rc;
1611}
1612
1613/* Check whether a task has a particular permission to an inode.
1614 The 'adp' parameter is optional and allows other audit
1615 data to be passed (e.g. the dentry). */
1616static int inode_has_perm(const struct cred *cred,
1617 struct inode *inode,
1618 u32 perms,
1619 struct common_audit_data *adp)
1620{
1621 struct inode_security_struct *isec;
1622 u32 sid;
1623
1624 validate_creds(cred);
1625
1626 if (unlikely(IS_PRIVATE(inode)))
1627 return 0;
1628
1629 sid = cred_sid(cred);
1630 isec = selinux_inode(inode);
1631
1632 return avc_has_perm(&selinux_state,
1633 sid, isec->sid, isec->sclass, perms, adp);
1634}
1635
1636/* Same as inode_has_perm, but pass explicit audit data containing
1637 the dentry to help the auditing code to more easily generate the
1638 pathname if needed. */
1639static inline int dentry_has_perm(const struct cred *cred,
1640 struct dentry *dentry,
1641 u32 av)
1642{
1643 struct inode *inode = d_backing_inode(dentry);
1644 struct common_audit_data ad;
1645
1646 ad.type = LSM_AUDIT_DATA_DENTRY;
1647 ad.u.dentry = dentry;
1648 __inode_security_revalidate(inode, dentry, true);
1649 return inode_has_perm(cred, inode, av, &ad);
1650}
1651
1652/* Same as inode_has_perm, but pass explicit audit data containing
1653 the path to help the auditing code to more easily generate the
1654 pathname if needed. */
1655static inline int path_has_perm(const struct cred *cred,
1656 const struct path *path,
1657 u32 av)
1658{
1659 struct inode *inode = d_backing_inode(path->dentry);
1660 struct common_audit_data ad;
1661
1662 ad.type = LSM_AUDIT_DATA_PATH;
1663 ad.u.path = *path;
1664 __inode_security_revalidate(inode, path->dentry, true);
1665 return inode_has_perm(cred, inode, av, &ad);
1666}
1667
1668/* Same as path_has_perm, but uses the inode from the file struct. */
1669static inline int file_path_has_perm(const struct cred *cred,
1670 struct file *file,
1671 u32 av)
1672{
1673 struct common_audit_data ad;
1674
1675 ad.type = LSM_AUDIT_DATA_FILE;
1676 ad.u.file = file;
1677 return inode_has_perm(cred, file_inode(file), av, &ad);
1678}
1679
1680#ifdef CONFIG_BPF_SYSCALL
1681static int bpf_fd_pass(struct file *file, u32 sid);
1682#endif
1683
1684/* Check whether a task can use an open file descriptor to
1685 access an inode in a given way. Check access to the
1686 descriptor itself, and then use dentry_has_perm to
1687 check a particular permission to the file.
1688 Access to the descriptor is implicitly granted if it
1689 has the same SID as the process. If av is zero, then
1690 access to the file is not checked, e.g. for cases
1691 where only the descriptor is affected like seek. */
1692static int file_has_perm(const struct cred *cred,
1693 struct file *file,
1694 u32 av)
1695{
1696 struct file_security_struct *fsec = selinux_file(file);
1697 struct inode *inode = file_inode(file);
1698 struct common_audit_data ad;
1699 u32 sid = cred_sid(cred);
1700 int rc;
1701
1702 ad.type = LSM_AUDIT_DATA_FILE;
1703 ad.u.file = file;
1704
1705 if (sid != fsec->sid) {
1706 rc = avc_has_perm(&selinux_state,
1707 sid, fsec->sid,
1708 SECCLASS_FD,
1709 FD__USE,
1710 &ad);
1711 if (rc)
1712 goto out;
1713 }
1714
1715#ifdef CONFIG_BPF_SYSCALL
1716 rc = bpf_fd_pass(file, cred_sid(cred));
1717 if (rc)
1718 return rc;
1719#endif
1720
1721 /* av is zero if only checking access to the descriptor. */
1722 rc = 0;
1723 if (av)
1724 rc = inode_has_perm(cred, inode, av, &ad);
1725
1726out:
1727 return rc;
1728}
1729
1730/*
1731 * Determine the label for an inode that might be unioned.
1732 */
1733static int
1734selinux_determine_inode_label(const struct task_security_struct *tsec,
1735 struct inode *dir,
1736 const struct qstr *name, u16 tclass,
1737 u32 *_new_isid)
1738{
1739 const struct superblock_security_struct *sbsec =
1740 selinux_superblock(dir->i_sb);
1741
1742 if ((sbsec->flags & SE_SBINITIALIZED) &&
1743 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1744 *_new_isid = sbsec->mntpoint_sid;
1745 } else if ((sbsec->flags & SBLABEL_MNT) &&
1746 tsec->create_sid) {
1747 *_new_isid = tsec->create_sid;
1748 } else {
1749 const struct inode_security_struct *dsec = inode_security(dir);
1750 return security_transition_sid(&selinux_state, tsec->sid,
1751 dsec->sid, tclass,
1752 name, _new_isid);
1753 }
1754
1755 return 0;
1756}
1757
1758/* Check whether a task can create a file. */
1759static int may_create(struct inode *dir,
1760 struct dentry *dentry,
1761 u16 tclass)
1762{
1763 const struct task_security_struct *tsec = selinux_cred(current_cred());
1764 struct inode_security_struct *dsec;
1765 struct superblock_security_struct *sbsec;
1766 u32 sid, newsid;
1767 struct common_audit_data ad;
1768 int rc;
1769
1770 dsec = inode_security(dir);
1771 sbsec = selinux_superblock(dir->i_sb);
1772
1773 sid = tsec->sid;
1774
1775 ad.type = LSM_AUDIT_DATA_DENTRY;
1776 ad.u.dentry = dentry;
1777
1778 rc = avc_has_perm(&selinux_state,
1779 sid, dsec->sid, SECCLASS_DIR,
1780 DIR__ADD_NAME | DIR__SEARCH,
1781 &ad);
1782 if (rc)
1783 return rc;
1784
1785 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1786 &newsid);
1787 if (rc)
1788 return rc;
1789
1790 rc = avc_has_perm(&selinux_state,
1791 sid, newsid, tclass, FILE__CREATE, &ad);
1792 if (rc)
1793 return rc;
1794
1795 return avc_has_perm(&selinux_state,
1796 newsid, sbsec->sid,
1797 SECCLASS_FILESYSTEM,
1798 FILESYSTEM__ASSOCIATE, &ad);
1799}
1800
1801#define MAY_LINK 0
1802#define MAY_UNLINK 1
1803#define MAY_RMDIR 2
1804
1805/* Check whether a task can link, unlink, or rmdir a file/directory. */
1806static int may_link(struct inode *dir,
1807 struct dentry *dentry,
1808 int kind)
1809
1810{
1811 struct inode_security_struct *dsec, *isec;
1812 struct common_audit_data ad;
1813 u32 sid = current_sid();
1814 u32 av;
1815 int rc;
1816
1817 dsec = inode_security(dir);
1818 isec = backing_inode_security(dentry);
1819
1820 ad.type = LSM_AUDIT_DATA_DENTRY;
1821 ad.u.dentry = dentry;
1822
1823 av = DIR__SEARCH;
1824 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1825 rc = avc_has_perm(&selinux_state,
1826 sid, dsec->sid, SECCLASS_DIR, av, &ad);
1827 if (rc)
1828 return rc;
1829
1830 switch (kind) {
1831 case MAY_LINK:
1832 av = FILE__LINK;
1833 break;
1834 case MAY_UNLINK:
1835 av = FILE__UNLINK;
1836 break;
1837 case MAY_RMDIR:
1838 av = DIR__RMDIR;
1839 break;
1840 default:
1841 pr_warn("SELinux: %s: unrecognized kind %d\n",
1842 __func__, kind);
1843 return 0;
1844 }
1845
1846 rc = avc_has_perm(&selinux_state,
1847 sid, isec->sid, isec->sclass, av, &ad);
1848 return rc;
1849}
1850
1851static inline int may_rename(struct inode *old_dir,
1852 struct dentry *old_dentry,
1853 struct inode *new_dir,
1854 struct dentry *new_dentry)
1855{
1856 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1857 struct common_audit_data ad;
1858 u32 sid = current_sid();
1859 u32 av;
1860 int old_is_dir, new_is_dir;
1861 int rc;
1862
1863 old_dsec = inode_security(old_dir);
1864 old_isec = backing_inode_security(old_dentry);
1865 old_is_dir = d_is_dir(old_dentry);
1866 new_dsec = inode_security(new_dir);
1867
1868 ad.type = LSM_AUDIT_DATA_DENTRY;
1869
1870 ad.u.dentry = old_dentry;
1871 rc = avc_has_perm(&selinux_state,
1872 sid, old_dsec->sid, SECCLASS_DIR,
1873 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1874 if (rc)
1875 return rc;
1876 rc = avc_has_perm(&selinux_state,
1877 sid, old_isec->sid,
1878 old_isec->sclass, FILE__RENAME, &ad);
1879 if (rc)
1880 return rc;
1881 if (old_is_dir && new_dir != old_dir) {
1882 rc = avc_has_perm(&selinux_state,
1883 sid, old_isec->sid,
1884 old_isec->sclass, DIR__REPARENT, &ad);
1885 if (rc)
1886 return rc;
1887 }
1888
1889 ad.u.dentry = new_dentry;
1890 av = DIR__ADD_NAME | DIR__SEARCH;
1891 if (d_is_positive(new_dentry))
1892 av |= DIR__REMOVE_NAME;
1893 rc = avc_has_perm(&selinux_state,
1894 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1895 if (rc)
1896 return rc;
1897 if (d_is_positive(new_dentry)) {
1898 new_isec = backing_inode_security(new_dentry);
1899 new_is_dir = d_is_dir(new_dentry);
1900 rc = avc_has_perm(&selinux_state,
1901 sid, new_isec->sid,
1902 new_isec->sclass,
1903 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1904 if (rc)
1905 return rc;
1906 }
1907
1908 return 0;
1909}
1910
1911/* Check whether a task can perform a filesystem operation. */
1912static int superblock_has_perm(const struct cred *cred,
1913 struct super_block *sb,
1914 u32 perms,
1915 struct common_audit_data *ad)
1916{
1917 struct superblock_security_struct *sbsec;
1918 u32 sid = cred_sid(cred);
1919
1920 sbsec = selinux_superblock(sb);
1921 return avc_has_perm(&selinux_state,
1922 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1923}
1924
1925/* Convert a Linux mode and permission mask to an access vector. */
1926static inline u32 file_mask_to_av(int mode, int mask)
1927{
1928 u32 av = 0;
1929
1930 if (!S_ISDIR(mode)) {
1931 if (mask & MAY_EXEC)
1932 av |= FILE__EXECUTE;
1933 if (mask & MAY_READ)
1934 av |= FILE__READ;
1935
1936 if (mask & MAY_APPEND)
1937 av |= FILE__APPEND;
1938 else if (mask & MAY_WRITE)
1939 av |= FILE__WRITE;
1940
1941 } else {
1942 if (mask & MAY_EXEC)
1943 av |= DIR__SEARCH;
1944 if (mask & MAY_WRITE)
1945 av |= DIR__WRITE;
1946 if (mask & MAY_READ)
1947 av |= DIR__READ;
1948 }
1949
1950 return av;
1951}
1952
1953/* Convert a Linux file to an access vector. */
1954static inline u32 file_to_av(struct file *file)
1955{
1956 u32 av = 0;
1957
1958 if (file->f_mode & FMODE_READ)
1959 av |= FILE__READ;
1960 if (file->f_mode & FMODE_WRITE) {
1961 if (file->f_flags & O_APPEND)
1962 av |= FILE__APPEND;
1963 else
1964 av |= FILE__WRITE;
1965 }
1966 if (!av) {
1967 /*
1968 * Special file opened with flags 3 for ioctl-only use.
1969 */
1970 av = FILE__IOCTL;
1971 }
1972
1973 return av;
1974}
1975
1976/*
1977 * Convert a file to an access vector and include the correct
1978 * open permission.
1979 */
1980static inline u32 open_file_to_av(struct file *file)
1981{
1982 u32 av = file_to_av(file);
1983 struct inode *inode = file_inode(file);
1984
1985 if (selinux_policycap_openperm() &&
1986 inode->i_sb->s_magic != SOCKFS_MAGIC)
1987 av |= FILE__OPEN;
1988
1989 return av;
1990}
1991
1992/* Hook functions begin here. */
1993
1994static int selinux_binder_set_context_mgr(const struct cred *mgr)
1995{
1996 return avc_has_perm(&selinux_state,
1997 current_sid(), cred_sid(mgr), SECCLASS_BINDER,
1998 BINDER__SET_CONTEXT_MGR, NULL);
1999}
2000
2001static int selinux_binder_transaction(const struct cred *from,
2002 const struct cred *to)
2003{
2004 u32 mysid = current_sid();
2005 u32 fromsid = cred_sid(from);
2006 u32 tosid = cred_sid(to);
2007 int rc;
2008
2009 if (mysid != fromsid) {
2010 rc = avc_has_perm(&selinux_state,
2011 mysid, fromsid, SECCLASS_BINDER,
2012 BINDER__IMPERSONATE, NULL);
2013 if (rc)
2014 return rc;
2015 }
2016
2017 return avc_has_perm(&selinux_state, fromsid, tosid,
2018 SECCLASS_BINDER, BINDER__CALL, NULL);
2019}
2020
2021static int selinux_binder_transfer_binder(const struct cred *from,
2022 const struct cred *to)
2023{
2024 return avc_has_perm(&selinux_state,
2025 cred_sid(from), cred_sid(to),
2026 SECCLASS_BINDER, BINDER__TRANSFER,
2027 NULL);
2028}
2029
2030static int selinux_binder_transfer_file(const struct cred *from,
2031 const struct cred *to,
2032 struct file *file)
2033{
2034 u32 sid = cred_sid(to);
2035 struct file_security_struct *fsec = selinux_file(file);
2036 struct dentry *dentry = file->f_path.dentry;
2037 struct inode_security_struct *isec;
2038 struct common_audit_data ad;
2039 int rc;
2040
2041 ad.type = LSM_AUDIT_DATA_PATH;
2042 ad.u.path = file->f_path;
2043
2044 if (sid != fsec->sid) {
2045 rc = avc_has_perm(&selinux_state,
2046 sid, fsec->sid,
2047 SECCLASS_FD,
2048 FD__USE,
2049 &ad);
2050 if (rc)
2051 return rc;
2052 }
2053
2054#ifdef CONFIG_BPF_SYSCALL
2055 rc = bpf_fd_pass(file, sid);
2056 if (rc)
2057 return rc;
2058#endif
2059
2060 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2061 return 0;
2062
2063 isec = backing_inode_security(dentry);
2064 return avc_has_perm(&selinux_state,
2065 sid, isec->sid, isec->sclass, file_to_av(file),
2066 &ad);
2067}
2068
2069static int selinux_ptrace_access_check(struct task_struct *child,
2070 unsigned int mode)
2071{
2072 u32 sid = current_sid();
2073 u32 csid = task_sid_obj(child);
2074
2075 if (mode & PTRACE_MODE_READ)
2076 return avc_has_perm(&selinux_state,
2077 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2078
2079 return avc_has_perm(&selinux_state,
2080 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2081}
2082
2083static int selinux_ptrace_traceme(struct task_struct *parent)
2084{
2085 return avc_has_perm(&selinux_state,
2086 task_sid_obj(parent), task_sid_obj(current),
2087 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2088}
2089
2090static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2091 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2092{
2093 return avc_has_perm(&selinux_state,
2094 current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2095 PROCESS__GETCAP, NULL);
2096}
2097
2098static int selinux_capset(struct cred *new, const struct cred *old,
2099 const kernel_cap_t *effective,
2100 const kernel_cap_t *inheritable,
2101 const kernel_cap_t *permitted)
2102{
2103 return avc_has_perm(&selinux_state,
2104 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2105 PROCESS__SETCAP, NULL);
2106}
2107
2108/*
2109 * (This comment used to live with the selinux_task_setuid hook,
2110 * which was removed).
2111 *
2112 * Since setuid only affects the current process, and since the SELinux
2113 * controls are not based on the Linux identity attributes, SELinux does not
2114 * need to control this operation. However, SELinux does control the use of
2115 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2116 */
2117
2118static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2119 int cap, unsigned int opts)
2120{
2121 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2122}
2123
2124static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2125{
2126 const struct cred *cred = current_cred();
2127 int rc = 0;
2128
2129 if (!sb)
2130 return 0;
2131
2132 switch (cmds) {
2133 case Q_SYNC:
2134 case Q_QUOTAON:
2135 case Q_QUOTAOFF:
2136 case Q_SETINFO:
2137 case Q_SETQUOTA:
2138 case Q_XQUOTAOFF:
2139 case Q_XQUOTAON:
2140 case Q_XSETQLIM:
2141 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2142 break;
2143 case Q_GETFMT:
2144 case Q_GETINFO:
2145 case Q_GETQUOTA:
2146 case Q_XGETQUOTA:
2147 case Q_XGETQSTAT:
2148 case Q_XGETQSTATV:
2149 case Q_XGETNEXTQUOTA:
2150 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2151 break;
2152 default:
2153 rc = 0; /* let the kernel handle invalid cmds */
2154 break;
2155 }
2156 return rc;
2157}
2158
2159static int selinux_quota_on(struct dentry *dentry)
2160{
2161 const struct cred *cred = current_cred();
2162
2163 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2164}
2165
2166static int selinux_syslog(int type)
2167{
2168 switch (type) {
2169 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2170 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2171 return avc_has_perm(&selinux_state,
2172 current_sid(), SECINITSID_KERNEL,
2173 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2174 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2175 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2176 /* Set level of messages printed to console */
2177 case SYSLOG_ACTION_CONSOLE_LEVEL:
2178 return avc_has_perm(&selinux_state,
2179 current_sid(), SECINITSID_KERNEL,
2180 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2181 NULL);
2182 }
2183 /* All other syslog types */
2184 return avc_has_perm(&selinux_state,
2185 current_sid(), SECINITSID_KERNEL,
2186 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2187}
2188
2189/*
2190 * Check that a process has enough memory to allocate a new virtual
2191 * mapping. 0 means there is enough memory for the allocation to
2192 * succeed and -ENOMEM implies there is not.
2193 *
2194 * Do not audit the selinux permission check, as this is applied to all
2195 * processes that allocate mappings.
2196 */
2197static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2198{
2199 int rc, cap_sys_admin = 0;
2200
2201 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2202 CAP_OPT_NOAUDIT, true);
2203 if (rc == 0)
2204 cap_sys_admin = 1;
2205
2206 return cap_sys_admin;
2207}
2208
2209/* binprm security operations */
2210
2211static u32 ptrace_parent_sid(void)
2212{
2213 u32 sid = 0;
2214 struct task_struct *tracer;
2215
2216 rcu_read_lock();
2217 tracer = ptrace_parent(current);
2218 if (tracer)
2219 sid = task_sid_obj(tracer);
2220 rcu_read_unlock();
2221
2222 return sid;
2223}
2224
2225static int check_nnp_nosuid(const struct linux_binprm *bprm,
2226 const struct task_security_struct *old_tsec,
2227 const struct task_security_struct *new_tsec)
2228{
2229 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2230 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2231 int rc;
2232 u32 av;
2233
2234 if (!nnp && !nosuid)
2235 return 0; /* neither NNP nor nosuid */
2236
2237 if (new_tsec->sid == old_tsec->sid)
2238 return 0; /* No change in credentials */
2239
2240 /*
2241 * If the policy enables the nnp_nosuid_transition policy capability,
2242 * then we permit transitions under NNP or nosuid if the
2243 * policy allows the corresponding permission between
2244 * the old and new contexts.
2245 */
2246 if (selinux_policycap_nnp_nosuid_transition()) {
2247 av = 0;
2248 if (nnp)
2249 av |= PROCESS2__NNP_TRANSITION;
2250 if (nosuid)
2251 av |= PROCESS2__NOSUID_TRANSITION;
2252 rc = avc_has_perm(&selinux_state,
2253 old_tsec->sid, new_tsec->sid,
2254 SECCLASS_PROCESS2, av, NULL);
2255 if (!rc)
2256 return 0;
2257 }
2258
2259 /*
2260 * We also permit NNP or nosuid transitions to bounded SIDs,
2261 * i.e. SIDs that are guaranteed to only be allowed a subset
2262 * of the permissions of the current SID.
2263 */
2264 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2265 new_tsec->sid);
2266 if (!rc)
2267 return 0;
2268
2269 /*
2270 * On failure, preserve the errno values for NNP vs nosuid.
2271 * NNP: Operation not permitted for caller.
2272 * nosuid: Permission denied to file.
2273 */
2274 if (nnp)
2275 return -EPERM;
2276 return -EACCES;
2277}
2278
2279static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2280{
2281 const struct task_security_struct *old_tsec;
2282 struct task_security_struct *new_tsec;
2283 struct inode_security_struct *isec;
2284 struct common_audit_data ad;
2285 struct inode *inode = file_inode(bprm->file);
2286 int rc;
2287
2288 /* SELinux context only depends on initial program or script and not
2289 * the script interpreter */
2290
2291 old_tsec = selinux_cred(current_cred());
2292 new_tsec = selinux_cred(bprm->cred);
2293 isec = inode_security(inode);
2294
2295 /* Default to the current task SID. */
2296 new_tsec->sid = old_tsec->sid;
2297 new_tsec->osid = old_tsec->sid;
2298
2299 /* Reset fs, key, and sock SIDs on execve. */
2300 new_tsec->create_sid = 0;
2301 new_tsec->keycreate_sid = 0;
2302 new_tsec->sockcreate_sid = 0;
2303
2304 if (old_tsec->exec_sid) {
2305 new_tsec->sid = old_tsec->exec_sid;
2306 /* Reset exec SID on execve. */
2307 new_tsec->exec_sid = 0;
2308
2309 /* Fail on NNP or nosuid if not an allowed transition. */
2310 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2311 if (rc)
2312 return rc;
2313 } else {
2314 /* Check for a default transition on this program. */
2315 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2316 isec->sid, SECCLASS_PROCESS, NULL,
2317 &new_tsec->sid);
2318 if (rc)
2319 return rc;
2320
2321 /*
2322 * Fallback to old SID on NNP or nosuid if not an allowed
2323 * transition.
2324 */
2325 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2326 if (rc)
2327 new_tsec->sid = old_tsec->sid;
2328 }
2329
2330 ad.type = LSM_AUDIT_DATA_FILE;
2331 ad.u.file = bprm->file;
2332
2333 if (new_tsec->sid == old_tsec->sid) {
2334 rc = avc_has_perm(&selinux_state,
2335 old_tsec->sid, isec->sid,
2336 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2337 if (rc)
2338 return rc;
2339 } else {
2340 /* Check permissions for the transition. */
2341 rc = avc_has_perm(&selinux_state,
2342 old_tsec->sid, new_tsec->sid,
2343 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2344 if (rc)
2345 return rc;
2346
2347 rc = avc_has_perm(&selinux_state,
2348 new_tsec->sid, isec->sid,
2349 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2350 if (rc)
2351 return rc;
2352
2353 /* Check for shared state */
2354 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2355 rc = avc_has_perm(&selinux_state,
2356 old_tsec->sid, new_tsec->sid,
2357 SECCLASS_PROCESS, PROCESS__SHARE,
2358 NULL);
2359 if (rc)
2360 return -EPERM;
2361 }
2362
2363 /* Make sure that anyone attempting to ptrace over a task that
2364 * changes its SID has the appropriate permit */
2365 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2366 u32 ptsid = ptrace_parent_sid();
2367 if (ptsid != 0) {
2368 rc = avc_has_perm(&selinux_state,
2369 ptsid, new_tsec->sid,
2370 SECCLASS_PROCESS,
2371 PROCESS__PTRACE, NULL);
2372 if (rc)
2373 return -EPERM;
2374 }
2375 }
2376
2377 /* Clear any possibly unsafe personality bits on exec: */
2378 bprm->per_clear |= PER_CLEAR_ON_SETID;
2379
2380 /* Enable secure mode for SIDs transitions unless
2381 the noatsecure permission is granted between
2382 the two SIDs, i.e. ahp returns 0. */
2383 rc = avc_has_perm(&selinux_state,
2384 old_tsec->sid, new_tsec->sid,
2385 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2386 NULL);
2387 bprm->secureexec |= !!rc;
2388 }
2389
2390 return 0;
2391}
2392
2393static int match_file(const void *p, struct file *file, unsigned fd)
2394{
2395 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2396}
2397
2398/* Derived from fs/exec.c:flush_old_files. */
2399static inline void flush_unauthorized_files(const struct cred *cred,
2400 struct files_struct *files)
2401{
2402 struct file *file, *devnull = NULL;
2403 struct tty_struct *tty;
2404 int drop_tty = 0;
2405 unsigned n;
2406
2407 tty = get_current_tty();
2408 if (tty) {
2409 spin_lock(&tty->files_lock);
2410 if (!list_empty(&tty->tty_files)) {
2411 struct tty_file_private *file_priv;
2412
2413 /* Revalidate access to controlling tty.
2414 Use file_path_has_perm on the tty path directly
2415 rather than using file_has_perm, as this particular
2416 open file may belong to another process and we are
2417 only interested in the inode-based check here. */
2418 file_priv = list_first_entry(&tty->tty_files,
2419 struct tty_file_private, list);
2420 file = file_priv->file;
2421 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2422 drop_tty = 1;
2423 }
2424 spin_unlock(&tty->files_lock);
2425 tty_kref_put(tty);
2426 }
2427 /* Reset controlling tty. */
2428 if (drop_tty)
2429 no_tty();
2430
2431 /* Revalidate access to inherited open files. */
2432 n = iterate_fd(files, 0, match_file, cred);
2433 if (!n) /* none found? */
2434 return;
2435
2436 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2437 if (IS_ERR(devnull))
2438 devnull = NULL;
2439 /* replace all the matching ones with this */
2440 do {
2441 replace_fd(n - 1, devnull, 0);
2442 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2443 if (devnull)
2444 fput(devnull);
2445}
2446
2447/*
2448 * Prepare a process for imminent new credential changes due to exec
2449 */
2450static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2451{
2452 struct task_security_struct *new_tsec;
2453 struct rlimit *rlim, *initrlim;
2454 int rc, i;
2455
2456 new_tsec = selinux_cred(bprm->cred);
2457 if (new_tsec->sid == new_tsec->osid)
2458 return;
2459
2460 /* Close files for which the new task SID is not authorized. */
2461 flush_unauthorized_files(bprm->cred, current->files);
2462
2463 /* Always clear parent death signal on SID transitions. */
2464 current->pdeath_signal = 0;
2465
2466 /* Check whether the new SID can inherit resource limits from the old
2467 * SID. If not, reset all soft limits to the lower of the current
2468 * task's hard limit and the init task's soft limit.
2469 *
2470 * Note that the setting of hard limits (even to lower them) can be
2471 * controlled by the setrlimit check. The inclusion of the init task's
2472 * soft limit into the computation is to avoid resetting soft limits
2473 * higher than the default soft limit for cases where the default is
2474 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2475 */
2476 rc = avc_has_perm(&selinux_state,
2477 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2478 PROCESS__RLIMITINH, NULL);
2479 if (rc) {
2480 /* protect against do_prlimit() */
2481 task_lock(current);
2482 for (i = 0; i < RLIM_NLIMITS; i++) {
2483 rlim = current->signal->rlim + i;
2484 initrlim = init_task.signal->rlim + i;
2485 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2486 }
2487 task_unlock(current);
2488 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2489 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2490 }
2491}
2492
2493/*
2494 * Clean up the process immediately after the installation of new credentials
2495 * due to exec
2496 */
2497static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2498{
2499 const struct task_security_struct *tsec = selinux_cred(current_cred());
2500 u32 osid, sid;
2501 int rc;
2502
2503 osid = tsec->osid;
2504 sid = tsec->sid;
2505
2506 if (sid == osid)
2507 return;
2508
2509 /* Check whether the new SID can inherit signal state from the old SID.
2510 * If not, clear itimers to avoid subsequent signal generation and
2511 * flush and unblock signals.
2512 *
2513 * This must occur _after_ the task SID has been updated so that any
2514 * kill done after the flush will be checked against the new SID.
2515 */
2516 rc = avc_has_perm(&selinux_state,
2517 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2518 if (rc) {
2519 clear_itimer();
2520
2521 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2522 if (!fatal_signal_pending(current)) {
2523 flush_sigqueue(¤t->pending);
2524 flush_sigqueue(¤t->signal->shared_pending);
2525 flush_signal_handlers(current, 1);
2526 sigemptyset(¤t->blocked);
2527 recalc_sigpending();
2528 }
2529 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2530 }
2531
2532 /* Wake up the parent if it is waiting so that it can recheck
2533 * wait permission to the new task SID. */
2534 read_lock(&tasklist_lock);
2535 __wake_up_parent(current, unrcu_pointer(current->real_parent));
2536 read_unlock(&tasklist_lock);
2537}
2538
2539/* superblock security operations */
2540
2541static int selinux_sb_alloc_security(struct super_block *sb)
2542{
2543 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2544
2545 mutex_init(&sbsec->lock);
2546 INIT_LIST_HEAD(&sbsec->isec_head);
2547 spin_lock_init(&sbsec->isec_lock);
2548 sbsec->sid = SECINITSID_UNLABELED;
2549 sbsec->def_sid = SECINITSID_FILE;
2550 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2551
2552 return 0;
2553}
2554
2555static inline int opt_len(const char *s)
2556{
2557 bool open_quote = false;
2558 int len;
2559 char c;
2560
2561 for (len = 0; (c = s[len]) != '\0'; len++) {
2562 if (c == '"')
2563 open_quote = !open_quote;
2564 if (c == ',' && !open_quote)
2565 break;
2566 }
2567 return len;
2568}
2569
2570static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2571{
2572 char *from = options;
2573 char *to = options;
2574 bool first = true;
2575 int rc;
2576
2577 while (1) {
2578 int len = opt_len(from);
2579 int token;
2580 char *arg = NULL;
2581
2582 token = match_opt_prefix(from, len, &arg);
2583
2584 if (token != Opt_error) {
2585 char *p, *q;
2586
2587 /* strip quotes */
2588 if (arg) {
2589 for (p = q = arg; p < from + len; p++) {
2590 char c = *p;
2591 if (c != '"')
2592 *q++ = c;
2593 }
2594 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2595 if (!arg) {
2596 rc = -ENOMEM;
2597 goto free_opt;
2598 }
2599 }
2600 rc = selinux_add_opt(token, arg, mnt_opts);
2601 kfree(arg);
2602 arg = NULL;
2603 if (unlikely(rc)) {
2604 goto free_opt;
2605 }
2606 } else {
2607 if (!first) { // copy with preceding comma
2608 from--;
2609 len++;
2610 }
2611 if (to != from)
2612 memmove(to, from, len);
2613 to += len;
2614 first = false;
2615 }
2616 if (!from[len])
2617 break;
2618 from += len + 1;
2619 }
2620 *to = '\0';
2621 return 0;
2622
2623free_opt:
2624 if (*mnt_opts) {
2625 selinux_free_mnt_opts(*mnt_opts);
2626 *mnt_opts = NULL;
2627 }
2628 return rc;
2629}
2630
2631static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2632{
2633 struct selinux_mnt_opts *opts = mnt_opts;
2634 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2635
2636 /*
2637 * Superblock not initialized (i.e. no options) - reject if any
2638 * options specified, otherwise accept.
2639 */
2640 if (!(sbsec->flags & SE_SBINITIALIZED))
2641 return opts ? 1 : 0;
2642
2643 /*
2644 * Superblock initialized and no options specified - reject if
2645 * superblock has any options set, otherwise accept.
2646 */
2647 if (!opts)
2648 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2649
2650 if (opts->fscontext_sid) {
2651 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2652 opts->fscontext_sid))
2653 return 1;
2654 }
2655 if (opts->context_sid) {
2656 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2657 opts->context_sid))
2658 return 1;
2659 }
2660 if (opts->rootcontext_sid) {
2661 struct inode_security_struct *root_isec;
2662
2663 root_isec = backing_inode_security(sb->s_root);
2664 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2665 opts->rootcontext_sid))
2666 return 1;
2667 }
2668 if (opts->defcontext_sid) {
2669 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2670 opts->defcontext_sid))
2671 return 1;
2672 }
2673 return 0;
2674}
2675
2676static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2677{
2678 struct selinux_mnt_opts *opts = mnt_opts;
2679 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2680
2681 if (!(sbsec->flags & SE_SBINITIALIZED))
2682 return 0;
2683
2684 if (!opts)
2685 return 0;
2686
2687 if (opts->fscontext_sid) {
2688 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2689 opts->fscontext_sid))
2690 goto out_bad_option;
2691 }
2692 if (opts->context_sid) {
2693 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2694 opts->context_sid))
2695 goto out_bad_option;
2696 }
2697 if (opts->rootcontext_sid) {
2698 struct inode_security_struct *root_isec;
2699 root_isec = backing_inode_security(sb->s_root);
2700 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2701 opts->rootcontext_sid))
2702 goto out_bad_option;
2703 }
2704 if (opts->defcontext_sid) {
2705 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2706 opts->defcontext_sid))
2707 goto out_bad_option;
2708 }
2709 return 0;
2710
2711out_bad_option:
2712 pr_warn("SELinux: unable to change security options "
2713 "during remount (dev %s, type=%s)\n", sb->s_id,
2714 sb->s_type->name);
2715 return -EINVAL;
2716}
2717
2718static int selinux_sb_kern_mount(struct super_block *sb)
2719{
2720 const struct cred *cred = current_cred();
2721 struct common_audit_data ad;
2722
2723 ad.type = LSM_AUDIT_DATA_DENTRY;
2724 ad.u.dentry = sb->s_root;
2725 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2726}
2727
2728static int selinux_sb_statfs(struct dentry *dentry)
2729{
2730 const struct cred *cred = current_cred();
2731 struct common_audit_data ad;
2732
2733 ad.type = LSM_AUDIT_DATA_DENTRY;
2734 ad.u.dentry = dentry->d_sb->s_root;
2735 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2736}
2737
2738static int selinux_mount(const char *dev_name,
2739 const struct path *path,
2740 const char *type,
2741 unsigned long flags,
2742 void *data)
2743{
2744 const struct cred *cred = current_cred();
2745
2746 if (flags & MS_REMOUNT)
2747 return superblock_has_perm(cred, path->dentry->d_sb,
2748 FILESYSTEM__REMOUNT, NULL);
2749 else
2750 return path_has_perm(cred, path, FILE__MOUNTON);
2751}
2752
2753static int selinux_move_mount(const struct path *from_path,
2754 const struct path *to_path)
2755{
2756 const struct cred *cred = current_cred();
2757
2758 return path_has_perm(cred, to_path, FILE__MOUNTON);
2759}
2760
2761static int selinux_umount(struct vfsmount *mnt, int flags)
2762{
2763 const struct cred *cred = current_cred();
2764
2765 return superblock_has_perm(cred, mnt->mnt_sb,
2766 FILESYSTEM__UNMOUNT, NULL);
2767}
2768
2769static int selinux_fs_context_dup(struct fs_context *fc,
2770 struct fs_context *src_fc)
2771{
2772 const struct selinux_mnt_opts *src = src_fc->security;
2773
2774 if (!src)
2775 return 0;
2776
2777 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2778 return fc->security ? 0 : -ENOMEM;
2779}
2780
2781static const struct fs_parameter_spec selinux_fs_parameters[] = {
2782 fsparam_string(CONTEXT_STR, Opt_context),
2783 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2784 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2785 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2786 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2787 {}
2788};
2789
2790static int selinux_fs_context_parse_param(struct fs_context *fc,
2791 struct fs_parameter *param)
2792{
2793 struct fs_parse_result result;
2794 int opt;
2795
2796 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2797 if (opt < 0)
2798 return opt;
2799
2800 return selinux_add_opt(opt, param->string, &fc->security);
2801}
2802
2803/* inode security operations */
2804
2805static int selinux_inode_alloc_security(struct inode *inode)
2806{
2807 struct inode_security_struct *isec = selinux_inode(inode);
2808 u32 sid = current_sid();
2809
2810 spin_lock_init(&isec->lock);
2811 INIT_LIST_HEAD(&isec->list);
2812 isec->inode = inode;
2813 isec->sid = SECINITSID_UNLABELED;
2814 isec->sclass = SECCLASS_FILE;
2815 isec->task_sid = sid;
2816 isec->initialized = LABEL_INVALID;
2817
2818 return 0;
2819}
2820
2821static void selinux_inode_free_security(struct inode *inode)
2822{
2823 inode_free_security(inode);
2824}
2825
2826static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2827 const struct qstr *name,
2828 const char **xattr_name, void **ctx,
2829 u32 *ctxlen)
2830{
2831 u32 newsid;
2832 int rc;
2833
2834 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2835 d_inode(dentry->d_parent), name,
2836 inode_mode_to_security_class(mode),
2837 &newsid);
2838 if (rc)
2839 return rc;
2840
2841 if (xattr_name)
2842 *xattr_name = XATTR_NAME_SELINUX;
2843
2844 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2845 ctxlen);
2846}
2847
2848static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2849 struct qstr *name,
2850 const struct cred *old,
2851 struct cred *new)
2852{
2853 u32 newsid;
2854 int rc;
2855 struct task_security_struct *tsec;
2856
2857 rc = selinux_determine_inode_label(selinux_cred(old),
2858 d_inode(dentry->d_parent), name,
2859 inode_mode_to_security_class(mode),
2860 &newsid);
2861 if (rc)
2862 return rc;
2863
2864 tsec = selinux_cred(new);
2865 tsec->create_sid = newsid;
2866 return 0;
2867}
2868
2869static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2870 const struct qstr *qstr,
2871 const char **name,
2872 void **value, size_t *len)
2873{
2874 const struct task_security_struct *tsec = selinux_cred(current_cred());
2875 struct superblock_security_struct *sbsec;
2876 u32 newsid, clen;
2877 int rc;
2878 char *context;
2879
2880 sbsec = selinux_superblock(dir->i_sb);
2881
2882 newsid = tsec->create_sid;
2883
2884 rc = selinux_determine_inode_label(tsec, dir, qstr,
2885 inode_mode_to_security_class(inode->i_mode),
2886 &newsid);
2887 if (rc)
2888 return rc;
2889
2890 /* Possibly defer initialization to selinux_complete_init. */
2891 if (sbsec->flags & SE_SBINITIALIZED) {
2892 struct inode_security_struct *isec = selinux_inode(inode);
2893 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2894 isec->sid = newsid;
2895 isec->initialized = LABEL_INITIALIZED;
2896 }
2897
2898 if (!selinux_initialized(&selinux_state) ||
2899 !(sbsec->flags & SBLABEL_MNT))
2900 return -EOPNOTSUPP;
2901
2902 if (name)
2903 *name = XATTR_SELINUX_SUFFIX;
2904
2905 if (value && len) {
2906 rc = security_sid_to_context_force(&selinux_state, newsid,
2907 &context, &clen);
2908 if (rc)
2909 return rc;
2910 *value = context;
2911 *len = clen;
2912 }
2913
2914 return 0;
2915}
2916
2917static int selinux_inode_init_security_anon(struct inode *inode,
2918 const struct qstr *name,
2919 const struct inode *context_inode)
2920{
2921 const struct task_security_struct *tsec = selinux_cred(current_cred());
2922 struct common_audit_data ad;
2923 struct inode_security_struct *isec;
2924 int rc;
2925
2926 if (unlikely(!selinux_initialized(&selinux_state)))
2927 return 0;
2928
2929 isec = selinux_inode(inode);
2930
2931 /*
2932 * We only get here once per ephemeral inode. The inode has
2933 * been initialized via inode_alloc_security but is otherwise
2934 * untouched.
2935 */
2936
2937 if (context_inode) {
2938 struct inode_security_struct *context_isec =
2939 selinux_inode(context_inode);
2940 if (context_isec->initialized != LABEL_INITIALIZED) {
2941 pr_err("SELinux: context_inode is not initialized");
2942 return -EACCES;
2943 }
2944
2945 isec->sclass = context_isec->sclass;
2946 isec->sid = context_isec->sid;
2947 } else {
2948 isec->sclass = SECCLASS_ANON_INODE;
2949 rc = security_transition_sid(
2950 &selinux_state, tsec->sid, tsec->sid,
2951 isec->sclass, name, &isec->sid);
2952 if (rc)
2953 return rc;
2954 }
2955
2956 isec->initialized = LABEL_INITIALIZED;
2957 /*
2958 * Now that we've initialized security, check whether we're
2959 * allowed to actually create this type of anonymous inode.
2960 */
2961
2962 ad.type = LSM_AUDIT_DATA_ANONINODE;
2963 ad.u.anonclass = name ? (const char *)name->name : "?";
2964
2965 return avc_has_perm(&selinux_state,
2966 tsec->sid,
2967 isec->sid,
2968 isec->sclass,
2969 FILE__CREATE,
2970 &ad);
2971}
2972
2973static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2974{
2975 return may_create(dir, dentry, SECCLASS_FILE);
2976}
2977
2978static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2979{
2980 return may_link(dir, old_dentry, MAY_LINK);
2981}
2982
2983static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2984{
2985 return may_link(dir, dentry, MAY_UNLINK);
2986}
2987
2988static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2989{
2990 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2991}
2992
2993static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2994{
2995 return may_create(dir, dentry, SECCLASS_DIR);
2996}
2997
2998static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2999{
3000 return may_link(dir, dentry, MAY_RMDIR);
3001}
3002
3003static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3004{
3005 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3006}
3007
3008static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3009 struct inode *new_inode, struct dentry *new_dentry)
3010{
3011 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3012}
3013
3014static int selinux_inode_readlink(struct dentry *dentry)
3015{
3016 const struct cred *cred = current_cred();
3017
3018 return dentry_has_perm(cred, dentry, FILE__READ);
3019}
3020
3021static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3022 bool rcu)
3023{
3024 const struct cred *cred = current_cred();
3025 struct common_audit_data ad;
3026 struct inode_security_struct *isec;
3027 u32 sid;
3028
3029 validate_creds(cred);
3030
3031 ad.type = LSM_AUDIT_DATA_DENTRY;
3032 ad.u.dentry = dentry;
3033 sid = cred_sid(cred);
3034 isec = inode_security_rcu(inode, rcu);
3035 if (IS_ERR(isec))
3036 return PTR_ERR(isec);
3037
3038 return avc_has_perm(&selinux_state,
3039 sid, isec->sid, isec->sclass, FILE__READ, &ad);
3040}
3041
3042static noinline int audit_inode_permission(struct inode *inode,
3043 u32 perms, u32 audited, u32 denied,
3044 int result)
3045{
3046 struct common_audit_data ad;
3047 struct inode_security_struct *isec = selinux_inode(inode);
3048
3049 ad.type = LSM_AUDIT_DATA_INODE;
3050 ad.u.inode = inode;
3051
3052 return slow_avc_audit(&selinux_state,
3053 current_sid(), isec->sid, isec->sclass, perms,
3054 audited, denied, result, &ad);
3055}
3056
3057static int selinux_inode_permission(struct inode *inode, int mask)
3058{
3059 const struct cred *cred = current_cred();
3060 u32 perms;
3061 bool from_access;
3062 bool no_block = mask & MAY_NOT_BLOCK;
3063 struct inode_security_struct *isec;
3064 u32 sid;
3065 struct av_decision avd;
3066 int rc, rc2;
3067 u32 audited, denied;
3068
3069 from_access = mask & MAY_ACCESS;
3070 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3071
3072 /* No permission to check. Existence test. */
3073 if (!mask)
3074 return 0;
3075
3076 validate_creds(cred);
3077
3078 if (unlikely(IS_PRIVATE(inode)))
3079 return 0;
3080
3081 perms = file_mask_to_av(inode->i_mode, mask);
3082
3083 sid = cred_sid(cred);
3084 isec = inode_security_rcu(inode, no_block);
3085 if (IS_ERR(isec))
3086 return PTR_ERR(isec);
3087
3088 rc = avc_has_perm_noaudit(&selinux_state,
3089 sid, isec->sid, isec->sclass, perms, 0,
3090 &avd);
3091 audited = avc_audit_required(perms, &avd, rc,
3092 from_access ? FILE__AUDIT_ACCESS : 0,
3093 &denied);
3094 if (likely(!audited))
3095 return rc;
3096
3097 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3098 if (rc2)
3099 return rc2;
3100 return rc;
3101}
3102
3103static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3104{
3105 const struct cred *cred = current_cred();
3106 struct inode *inode = d_backing_inode(dentry);
3107 unsigned int ia_valid = iattr->ia_valid;
3108 __u32 av = FILE__WRITE;
3109
3110 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3111 if (ia_valid & ATTR_FORCE) {
3112 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3113 ATTR_FORCE);
3114 if (!ia_valid)
3115 return 0;
3116 }
3117
3118 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3119 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3120 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3121
3122 if (selinux_policycap_openperm() &&
3123 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3124 (ia_valid & ATTR_SIZE) &&
3125 !(ia_valid & ATTR_FILE))
3126 av |= FILE__OPEN;
3127
3128 return dentry_has_perm(cred, dentry, av);
3129}
3130
3131static int selinux_inode_getattr(const struct path *path)
3132{
3133 return path_has_perm(current_cred(), path, FILE__GETATTR);
3134}
3135
3136static bool has_cap_mac_admin(bool audit)
3137{
3138 const struct cred *cred = current_cred();
3139 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3140
3141 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3142 return false;
3143 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3144 return false;
3145 return true;
3146}
3147
3148static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3149 struct dentry *dentry, const char *name,
3150 const void *value, size_t size, int flags)
3151{
3152 struct inode *inode = d_backing_inode(dentry);
3153 struct inode_security_struct *isec;
3154 struct superblock_security_struct *sbsec;
3155 struct common_audit_data ad;
3156 u32 newsid, sid = current_sid();
3157 int rc = 0;
3158
3159 if (strcmp(name, XATTR_NAME_SELINUX)) {
3160 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3161 if (rc)
3162 return rc;
3163
3164 /* Not an attribute we recognize, so just check the
3165 ordinary setattr permission. */
3166 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3167 }
3168
3169 if (!selinux_initialized(&selinux_state))
3170 return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3171
3172 sbsec = selinux_superblock(inode->i_sb);
3173 if (!(sbsec->flags & SBLABEL_MNT))
3174 return -EOPNOTSUPP;
3175
3176 if (!inode_owner_or_capable(mnt_userns, inode))
3177 return -EPERM;
3178
3179 ad.type = LSM_AUDIT_DATA_DENTRY;
3180 ad.u.dentry = dentry;
3181
3182 isec = backing_inode_security(dentry);
3183 rc = avc_has_perm(&selinux_state,
3184 sid, isec->sid, isec->sclass,
3185 FILE__RELABELFROM, &ad);
3186 if (rc)
3187 return rc;
3188
3189 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3190 GFP_KERNEL);
3191 if (rc == -EINVAL) {
3192 if (!has_cap_mac_admin(true)) {
3193 struct audit_buffer *ab;
3194 size_t audit_size;
3195
3196 /* We strip a nul only if it is at the end, otherwise the
3197 * context contains a nul and we should audit that */
3198 if (value) {
3199 const char *str = value;
3200
3201 if (str[size - 1] == '\0')
3202 audit_size = size - 1;
3203 else
3204 audit_size = size;
3205 } else {
3206 audit_size = 0;
3207 }
3208 ab = audit_log_start(audit_context(),
3209 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3210 if (!ab)
3211 return rc;
3212 audit_log_format(ab, "op=setxattr invalid_context=");
3213 audit_log_n_untrustedstring(ab, value, audit_size);
3214 audit_log_end(ab);
3215
3216 return rc;
3217 }
3218 rc = security_context_to_sid_force(&selinux_state, value,
3219 size, &newsid);
3220 }
3221 if (rc)
3222 return rc;
3223
3224 rc = avc_has_perm(&selinux_state,
3225 sid, newsid, isec->sclass,
3226 FILE__RELABELTO, &ad);
3227 if (rc)
3228 return rc;
3229
3230 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3231 sid, isec->sclass);
3232 if (rc)
3233 return rc;
3234
3235 return avc_has_perm(&selinux_state,
3236 newsid,
3237 sbsec->sid,
3238 SECCLASS_FILESYSTEM,
3239 FILESYSTEM__ASSOCIATE,
3240 &ad);
3241}
3242
3243static int selinux_inode_set_acl(struct user_namespace *mnt_userns,
3244 struct dentry *dentry, const char *acl_name,
3245 struct posix_acl *kacl)
3246{
3247 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3248}
3249
3250static int selinux_inode_get_acl(struct user_namespace *mnt_userns,
3251 struct dentry *dentry, const char *acl_name)
3252{
3253 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_remove_acl(struct user_namespace *mnt_userns,
3257 struct dentry *dentry, const char *acl_name)
3258{
3259 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3260}
3261
3262static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3263 const void *value, size_t size,
3264 int flags)
3265{
3266 struct inode *inode = d_backing_inode(dentry);
3267 struct inode_security_struct *isec;
3268 u32 newsid;
3269 int rc;
3270
3271 if (strcmp(name, XATTR_NAME_SELINUX)) {
3272 /* Not an attribute we recognize, so nothing to do. */
3273 return;
3274 }
3275
3276 if (!selinux_initialized(&selinux_state)) {
3277 /* If we haven't even been initialized, then we can't validate
3278 * against a policy, so leave the label as invalid. It may
3279 * resolve to a valid label on the next revalidation try if
3280 * we've since initialized.
3281 */
3282 return;
3283 }
3284
3285 rc = security_context_to_sid_force(&selinux_state, value, size,
3286 &newsid);
3287 if (rc) {
3288 pr_err("SELinux: unable to map context to SID"
3289 "for (%s, %lu), rc=%d\n",
3290 inode->i_sb->s_id, inode->i_ino, -rc);
3291 return;
3292 }
3293
3294 isec = backing_inode_security(dentry);
3295 spin_lock(&isec->lock);
3296 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3297 isec->sid = newsid;
3298 isec->initialized = LABEL_INITIALIZED;
3299 spin_unlock(&isec->lock);
3300}
3301
3302static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3303{
3304 const struct cred *cred = current_cred();
3305
3306 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3307}
3308
3309static int selinux_inode_listxattr(struct dentry *dentry)
3310{
3311 const struct cred *cred = current_cred();
3312
3313 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3314}
3315
3316static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3317 struct dentry *dentry, const char *name)
3318{
3319 if (strcmp(name, XATTR_NAME_SELINUX)) {
3320 int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3321 if (rc)
3322 return rc;
3323
3324 /* Not an attribute we recognize, so just check the
3325 ordinary setattr permission. */
3326 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3327 }
3328
3329 if (!selinux_initialized(&selinux_state))
3330 return 0;
3331
3332 /* No one is allowed to remove a SELinux security label.
3333 You can change the label, but all data must be labeled. */
3334 return -EACCES;
3335}
3336
3337static int selinux_path_notify(const struct path *path, u64 mask,
3338 unsigned int obj_type)
3339{
3340 int ret;
3341 u32 perm;
3342
3343 struct common_audit_data ad;
3344
3345 ad.type = LSM_AUDIT_DATA_PATH;
3346 ad.u.path = *path;
3347
3348 /*
3349 * Set permission needed based on the type of mark being set.
3350 * Performs an additional check for sb watches.
3351 */
3352 switch (obj_type) {
3353 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3354 perm = FILE__WATCH_MOUNT;
3355 break;
3356 case FSNOTIFY_OBJ_TYPE_SB:
3357 perm = FILE__WATCH_SB;
3358 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3359 FILESYSTEM__WATCH, &ad);
3360 if (ret)
3361 return ret;
3362 break;
3363 case FSNOTIFY_OBJ_TYPE_INODE:
3364 perm = FILE__WATCH;
3365 break;
3366 default:
3367 return -EINVAL;
3368 }
3369
3370 /* blocking watches require the file:watch_with_perm permission */
3371 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3372 perm |= FILE__WATCH_WITH_PERM;
3373
3374 /* watches on read-like events need the file:watch_reads permission */
3375 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3376 perm |= FILE__WATCH_READS;
3377
3378 return path_has_perm(current_cred(), path, perm);
3379}
3380
3381/*
3382 * Copy the inode security context value to the user.
3383 *
3384 * Permission check is handled by selinux_inode_getxattr hook.
3385 */
3386static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3387 struct inode *inode, const char *name,
3388 void **buffer, bool alloc)
3389{
3390 u32 size;
3391 int error;
3392 char *context = NULL;
3393 struct inode_security_struct *isec;
3394
3395 /*
3396 * If we're not initialized yet, then we can't validate contexts, so
3397 * just let vfs_getxattr fall back to using the on-disk xattr.
3398 */
3399 if (!selinux_initialized(&selinux_state) ||
3400 strcmp(name, XATTR_SELINUX_SUFFIX))
3401 return -EOPNOTSUPP;
3402
3403 /*
3404 * If the caller has CAP_MAC_ADMIN, then get the raw context
3405 * value even if it is not defined by current policy; otherwise,
3406 * use the in-core value under current policy.
3407 * Use the non-auditing forms of the permission checks since
3408 * getxattr may be called by unprivileged processes commonly
3409 * and lack of permission just means that we fall back to the
3410 * in-core context value, not a denial.
3411 */
3412 isec = inode_security(inode);
3413 if (has_cap_mac_admin(false))
3414 error = security_sid_to_context_force(&selinux_state,
3415 isec->sid, &context,
3416 &size);
3417 else
3418 error = security_sid_to_context(&selinux_state, isec->sid,
3419 &context, &size);
3420 if (error)
3421 return error;
3422 error = size;
3423 if (alloc) {
3424 *buffer = context;
3425 goto out_nofree;
3426 }
3427 kfree(context);
3428out_nofree:
3429 return error;
3430}
3431
3432static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3433 const void *value, size_t size, int flags)
3434{
3435 struct inode_security_struct *isec = inode_security_novalidate(inode);
3436 struct superblock_security_struct *sbsec;
3437 u32 newsid;
3438 int rc;
3439
3440 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3441 return -EOPNOTSUPP;
3442
3443 sbsec = selinux_superblock(inode->i_sb);
3444 if (!(sbsec->flags & SBLABEL_MNT))
3445 return -EOPNOTSUPP;
3446
3447 if (!value || !size)
3448 return -EACCES;
3449
3450 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3451 GFP_KERNEL);
3452 if (rc)
3453 return rc;
3454
3455 spin_lock(&isec->lock);
3456 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3457 isec->sid = newsid;
3458 isec->initialized = LABEL_INITIALIZED;
3459 spin_unlock(&isec->lock);
3460 return 0;
3461}
3462
3463static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3464{
3465 const int len = sizeof(XATTR_NAME_SELINUX);
3466
3467 if (!selinux_initialized(&selinux_state))
3468 return 0;
3469
3470 if (buffer && len <= buffer_size)
3471 memcpy(buffer, XATTR_NAME_SELINUX, len);
3472 return len;
3473}
3474
3475static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3476{
3477 struct inode_security_struct *isec = inode_security_novalidate(inode);
3478 *secid = isec->sid;
3479}
3480
3481static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3482{
3483 u32 sid;
3484 struct task_security_struct *tsec;
3485 struct cred *new_creds = *new;
3486
3487 if (new_creds == NULL) {
3488 new_creds = prepare_creds();
3489 if (!new_creds)
3490 return -ENOMEM;
3491 }
3492
3493 tsec = selinux_cred(new_creds);
3494 /* Get label from overlay inode and set it in create_sid */
3495 selinux_inode_getsecid(d_inode(src), &sid);
3496 tsec->create_sid = sid;
3497 *new = new_creds;
3498 return 0;
3499}
3500
3501static int selinux_inode_copy_up_xattr(const char *name)
3502{
3503 /* The copy_up hook above sets the initial context on an inode, but we
3504 * don't then want to overwrite it by blindly copying all the lower
3505 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3506 */
3507 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3508 return 1; /* Discard */
3509 /*
3510 * Any other attribute apart from SELINUX is not claimed, supported
3511 * by selinux.
3512 */
3513 return -EOPNOTSUPP;
3514}
3515
3516/* kernfs node operations */
3517
3518static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3519 struct kernfs_node *kn)
3520{
3521 const struct task_security_struct *tsec = selinux_cred(current_cred());
3522 u32 parent_sid, newsid, clen;
3523 int rc;
3524 char *context;
3525
3526 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3527 if (rc == -ENODATA)
3528 return 0;
3529 else if (rc < 0)
3530 return rc;
3531
3532 clen = (u32)rc;
3533 context = kmalloc(clen, GFP_KERNEL);
3534 if (!context)
3535 return -ENOMEM;
3536
3537 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3538 if (rc < 0) {
3539 kfree(context);
3540 return rc;
3541 }
3542
3543 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3544 GFP_KERNEL);
3545 kfree(context);
3546 if (rc)
3547 return rc;
3548
3549 if (tsec->create_sid) {
3550 newsid = tsec->create_sid;
3551 } else {
3552 u16 secclass = inode_mode_to_security_class(kn->mode);
3553 struct qstr q;
3554
3555 q.name = kn->name;
3556 q.hash_len = hashlen_string(kn_dir, kn->name);
3557
3558 rc = security_transition_sid(&selinux_state, tsec->sid,
3559 parent_sid, secclass, &q,
3560 &newsid);
3561 if (rc)
3562 return rc;
3563 }
3564
3565 rc = security_sid_to_context_force(&selinux_state, newsid,
3566 &context, &clen);
3567 if (rc)
3568 return rc;
3569
3570 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3571 XATTR_CREATE);
3572 kfree(context);
3573 return rc;
3574}
3575
3576
3577/* file security operations */
3578
3579static int selinux_revalidate_file_permission(struct file *file, int mask)
3580{
3581 const struct cred *cred = current_cred();
3582 struct inode *inode = file_inode(file);
3583
3584 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3585 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3586 mask |= MAY_APPEND;
3587
3588 return file_has_perm(cred, file,
3589 file_mask_to_av(inode->i_mode, mask));
3590}
3591
3592static int selinux_file_permission(struct file *file, int mask)
3593{
3594 struct inode *inode = file_inode(file);
3595 struct file_security_struct *fsec = selinux_file(file);
3596 struct inode_security_struct *isec;
3597 u32 sid = current_sid();
3598
3599 if (!mask)
3600 /* No permission to check. Existence test. */
3601 return 0;
3602
3603 isec = inode_security(inode);
3604 if (sid == fsec->sid && fsec->isid == isec->sid &&
3605 fsec->pseqno == avc_policy_seqno(&selinux_state))
3606 /* No change since file_open check. */
3607 return 0;
3608
3609 return selinux_revalidate_file_permission(file, mask);
3610}
3611
3612static int selinux_file_alloc_security(struct file *file)
3613{
3614 struct file_security_struct *fsec = selinux_file(file);
3615 u32 sid = current_sid();
3616
3617 fsec->sid = sid;
3618 fsec->fown_sid = sid;
3619
3620 return 0;
3621}
3622
3623/*
3624 * Check whether a task has the ioctl permission and cmd
3625 * operation to an inode.
3626 */
3627static int ioctl_has_perm(const struct cred *cred, struct file *file,
3628 u32 requested, u16 cmd)
3629{
3630 struct common_audit_data ad;
3631 struct file_security_struct *fsec = selinux_file(file);
3632 struct inode *inode = file_inode(file);
3633 struct inode_security_struct *isec;
3634 struct lsm_ioctlop_audit ioctl;
3635 u32 ssid = cred_sid(cred);
3636 int rc;
3637 u8 driver = cmd >> 8;
3638 u8 xperm = cmd & 0xff;
3639
3640 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3641 ad.u.op = &ioctl;
3642 ad.u.op->cmd = cmd;
3643 ad.u.op->path = file->f_path;
3644
3645 if (ssid != fsec->sid) {
3646 rc = avc_has_perm(&selinux_state,
3647 ssid, fsec->sid,
3648 SECCLASS_FD,
3649 FD__USE,
3650 &ad);
3651 if (rc)
3652 goto out;
3653 }
3654
3655 if (unlikely(IS_PRIVATE(inode)))
3656 return 0;
3657
3658 isec = inode_security(inode);
3659 rc = avc_has_extended_perms(&selinux_state,
3660 ssid, isec->sid, isec->sclass,
3661 requested, driver, xperm, &ad);
3662out:
3663 return rc;
3664}
3665
3666static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3667 unsigned long arg)
3668{
3669 const struct cred *cred = current_cred();
3670 int error = 0;
3671
3672 switch (cmd) {
3673 case FIONREAD:
3674 case FIBMAP:
3675 case FIGETBSZ:
3676 case FS_IOC_GETFLAGS:
3677 case FS_IOC_GETVERSION:
3678 error = file_has_perm(cred, file, FILE__GETATTR);
3679 break;
3680
3681 case FS_IOC_SETFLAGS:
3682 case FS_IOC_SETVERSION:
3683 error = file_has_perm(cred, file, FILE__SETATTR);
3684 break;
3685
3686 /* sys_ioctl() checks */
3687 case FIONBIO:
3688 case FIOASYNC:
3689 error = file_has_perm(cred, file, 0);
3690 break;
3691
3692 case KDSKBENT:
3693 case KDSKBSENT:
3694 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3695 CAP_OPT_NONE, true);
3696 break;
3697
3698 case FIOCLEX:
3699 case FIONCLEX:
3700 if (!selinux_policycap_ioctl_skip_cloexec())
3701 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3702 break;
3703
3704 /* default case assumes that the command will go
3705 * to the file's ioctl() function.
3706 */
3707 default:
3708 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3709 }
3710 return error;
3711}
3712
3713static int default_noexec __ro_after_init;
3714
3715static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3716{
3717 const struct cred *cred = current_cred();
3718 u32 sid = cred_sid(cred);
3719 int rc = 0;
3720
3721 if (default_noexec &&
3722 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3723 (!shared && (prot & PROT_WRITE)))) {
3724 /*
3725 * We are making executable an anonymous mapping or a
3726 * private file mapping that will also be writable.
3727 * This has an additional check.
3728 */
3729 rc = avc_has_perm(&selinux_state,
3730 sid, sid, SECCLASS_PROCESS,
3731 PROCESS__EXECMEM, NULL);
3732 if (rc)
3733 goto error;
3734 }
3735
3736 if (file) {
3737 /* read access is always possible with a mapping */
3738 u32 av = FILE__READ;
3739
3740 /* write access only matters if the mapping is shared */
3741 if (shared && (prot & PROT_WRITE))
3742 av |= FILE__WRITE;
3743
3744 if (prot & PROT_EXEC)
3745 av |= FILE__EXECUTE;
3746
3747 return file_has_perm(cred, file, av);
3748 }
3749
3750error:
3751 return rc;
3752}
3753
3754static int selinux_mmap_addr(unsigned long addr)
3755{
3756 int rc = 0;
3757
3758 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3759 u32 sid = current_sid();
3760 rc = avc_has_perm(&selinux_state,
3761 sid, sid, SECCLASS_MEMPROTECT,
3762 MEMPROTECT__MMAP_ZERO, NULL);
3763 }
3764
3765 return rc;
3766}
3767
3768static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3769 unsigned long prot, unsigned long flags)
3770{
3771 struct common_audit_data ad;
3772 int rc;
3773
3774 if (file) {
3775 ad.type = LSM_AUDIT_DATA_FILE;
3776 ad.u.file = file;
3777 rc = inode_has_perm(current_cred(), file_inode(file),
3778 FILE__MAP, &ad);
3779 if (rc)
3780 return rc;
3781 }
3782
3783 if (checkreqprot_get(&selinux_state))
3784 prot = reqprot;
3785
3786 return file_map_prot_check(file, prot,
3787 (flags & MAP_TYPE) == MAP_SHARED);
3788}
3789
3790static int selinux_file_mprotect(struct vm_area_struct *vma,
3791 unsigned long reqprot,
3792 unsigned long prot)
3793{
3794 const struct cred *cred = current_cred();
3795 u32 sid = cred_sid(cred);
3796
3797 if (checkreqprot_get(&selinux_state))
3798 prot = reqprot;
3799
3800 if (default_noexec &&
3801 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3802 int rc = 0;
3803 if (vma->vm_start >= vma->vm_mm->start_brk &&
3804 vma->vm_end <= vma->vm_mm->brk) {
3805 rc = avc_has_perm(&selinux_state,
3806 sid, sid, SECCLASS_PROCESS,
3807 PROCESS__EXECHEAP, NULL);
3808 } else if (!vma->vm_file &&
3809 ((vma->vm_start <= vma->vm_mm->start_stack &&
3810 vma->vm_end >= vma->vm_mm->start_stack) ||
3811 vma_is_stack_for_current(vma))) {
3812 rc = avc_has_perm(&selinux_state,
3813 sid, sid, SECCLASS_PROCESS,
3814 PROCESS__EXECSTACK, NULL);
3815 } else if (vma->vm_file && vma->anon_vma) {
3816 /*
3817 * We are making executable a file mapping that has
3818 * had some COW done. Since pages might have been
3819 * written, check ability to execute the possibly
3820 * modified content. This typically should only
3821 * occur for text relocations.
3822 */
3823 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3824 }
3825 if (rc)
3826 return rc;
3827 }
3828
3829 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3830}
3831
3832static int selinux_file_lock(struct file *file, unsigned int cmd)
3833{
3834 const struct cred *cred = current_cred();
3835
3836 return file_has_perm(cred, file, FILE__LOCK);
3837}
3838
3839static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3840 unsigned long arg)
3841{
3842 const struct cred *cred = current_cred();
3843 int err = 0;
3844
3845 switch (cmd) {
3846 case F_SETFL:
3847 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3848 err = file_has_perm(cred, file, FILE__WRITE);
3849 break;
3850 }
3851 fallthrough;
3852 case F_SETOWN:
3853 case F_SETSIG:
3854 case F_GETFL:
3855 case F_GETOWN:
3856 case F_GETSIG:
3857 case F_GETOWNER_UIDS:
3858 /* Just check FD__USE permission */
3859 err = file_has_perm(cred, file, 0);
3860 break;
3861 case F_GETLK:
3862 case F_SETLK:
3863 case F_SETLKW:
3864 case F_OFD_GETLK:
3865 case F_OFD_SETLK:
3866 case F_OFD_SETLKW:
3867#if BITS_PER_LONG == 32
3868 case F_GETLK64:
3869 case F_SETLK64:
3870 case F_SETLKW64:
3871#endif
3872 err = file_has_perm(cred, file, FILE__LOCK);
3873 break;
3874 }
3875
3876 return err;
3877}
3878
3879static void selinux_file_set_fowner(struct file *file)
3880{
3881 struct file_security_struct *fsec;
3882
3883 fsec = selinux_file(file);
3884 fsec->fown_sid = current_sid();
3885}
3886
3887static int selinux_file_send_sigiotask(struct task_struct *tsk,
3888 struct fown_struct *fown, int signum)
3889{
3890 struct file *file;
3891 u32 sid = task_sid_obj(tsk);
3892 u32 perm;
3893 struct file_security_struct *fsec;
3894
3895 /* struct fown_struct is never outside the context of a struct file */
3896 file = container_of(fown, struct file, f_owner);
3897
3898 fsec = selinux_file(file);
3899
3900 if (!signum)
3901 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3902 else
3903 perm = signal_to_av(signum);
3904
3905 return avc_has_perm(&selinux_state,
3906 fsec->fown_sid, sid,
3907 SECCLASS_PROCESS, perm, NULL);
3908}
3909
3910static int selinux_file_receive(struct file *file)
3911{
3912 const struct cred *cred = current_cred();
3913
3914 return file_has_perm(cred, file, file_to_av(file));
3915}
3916
3917static int selinux_file_open(struct file *file)
3918{
3919 struct file_security_struct *fsec;
3920 struct inode_security_struct *isec;
3921
3922 fsec = selinux_file(file);
3923 isec = inode_security(file_inode(file));
3924 /*
3925 * Save inode label and policy sequence number
3926 * at open-time so that selinux_file_permission
3927 * can determine whether revalidation is necessary.
3928 * Task label is already saved in the file security
3929 * struct as its SID.
3930 */
3931 fsec->isid = isec->sid;
3932 fsec->pseqno = avc_policy_seqno(&selinux_state);
3933 /*
3934 * Since the inode label or policy seqno may have changed
3935 * between the selinux_inode_permission check and the saving
3936 * of state above, recheck that access is still permitted.
3937 * Otherwise, access might never be revalidated against the
3938 * new inode label or new policy.
3939 * This check is not redundant - do not remove.
3940 */
3941 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3942}
3943
3944/* task security operations */
3945
3946static int selinux_task_alloc(struct task_struct *task,
3947 unsigned long clone_flags)
3948{
3949 u32 sid = current_sid();
3950
3951 return avc_has_perm(&selinux_state,
3952 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3953}
3954
3955/*
3956 * prepare a new set of credentials for modification
3957 */
3958static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3959 gfp_t gfp)
3960{
3961 const struct task_security_struct *old_tsec = selinux_cred(old);
3962 struct task_security_struct *tsec = selinux_cred(new);
3963
3964 *tsec = *old_tsec;
3965 return 0;
3966}
3967
3968/*
3969 * transfer the SELinux data to a blank set of creds
3970 */
3971static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3972{
3973 const struct task_security_struct *old_tsec = selinux_cred(old);
3974 struct task_security_struct *tsec = selinux_cred(new);
3975
3976 *tsec = *old_tsec;
3977}
3978
3979static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3980{
3981 *secid = cred_sid(c);
3982}
3983
3984/*
3985 * set the security data for a kernel service
3986 * - all the creation contexts are set to unlabelled
3987 */
3988static int selinux_kernel_act_as(struct cred *new, u32 secid)
3989{
3990 struct task_security_struct *tsec = selinux_cred(new);
3991 u32 sid = current_sid();
3992 int ret;
3993
3994 ret = avc_has_perm(&selinux_state,
3995 sid, secid,
3996 SECCLASS_KERNEL_SERVICE,
3997 KERNEL_SERVICE__USE_AS_OVERRIDE,
3998 NULL);
3999 if (ret == 0) {
4000 tsec->sid = secid;
4001 tsec->create_sid = 0;
4002 tsec->keycreate_sid = 0;
4003 tsec->sockcreate_sid = 0;
4004 }
4005 return ret;
4006}
4007
4008/*
4009 * set the file creation context in a security record to the same as the
4010 * objective context of the specified inode
4011 */
4012static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4013{
4014 struct inode_security_struct *isec = inode_security(inode);
4015 struct task_security_struct *tsec = selinux_cred(new);
4016 u32 sid = current_sid();
4017 int ret;
4018
4019 ret = avc_has_perm(&selinux_state,
4020 sid, isec->sid,
4021 SECCLASS_KERNEL_SERVICE,
4022 KERNEL_SERVICE__CREATE_FILES_AS,
4023 NULL);
4024
4025 if (ret == 0)
4026 tsec->create_sid = isec->sid;
4027 return ret;
4028}
4029
4030static int selinux_kernel_module_request(char *kmod_name)
4031{
4032 struct common_audit_data ad;
4033
4034 ad.type = LSM_AUDIT_DATA_KMOD;
4035 ad.u.kmod_name = kmod_name;
4036
4037 return avc_has_perm(&selinux_state,
4038 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4039 SYSTEM__MODULE_REQUEST, &ad);
4040}
4041
4042static int selinux_kernel_module_from_file(struct file *file)
4043{
4044 struct common_audit_data ad;
4045 struct inode_security_struct *isec;
4046 struct file_security_struct *fsec;
4047 u32 sid = current_sid();
4048 int rc;
4049
4050 /* init_module */
4051 if (file == NULL)
4052 return avc_has_perm(&selinux_state,
4053 sid, sid, SECCLASS_SYSTEM,
4054 SYSTEM__MODULE_LOAD, NULL);
4055
4056 /* finit_module */
4057
4058 ad.type = LSM_AUDIT_DATA_FILE;
4059 ad.u.file = file;
4060
4061 fsec = selinux_file(file);
4062 if (sid != fsec->sid) {
4063 rc = avc_has_perm(&selinux_state,
4064 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4065 if (rc)
4066 return rc;
4067 }
4068
4069 isec = inode_security(file_inode(file));
4070 return avc_has_perm(&selinux_state,
4071 sid, isec->sid, SECCLASS_SYSTEM,
4072 SYSTEM__MODULE_LOAD, &ad);
4073}
4074
4075static int selinux_kernel_read_file(struct file *file,
4076 enum kernel_read_file_id id,
4077 bool contents)
4078{
4079 int rc = 0;
4080
4081 switch (id) {
4082 case READING_MODULE:
4083 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4084 break;
4085 default:
4086 break;
4087 }
4088
4089 return rc;
4090}
4091
4092static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4093{
4094 int rc = 0;
4095
4096 switch (id) {
4097 case LOADING_MODULE:
4098 rc = selinux_kernel_module_from_file(NULL);
4099 break;
4100 default:
4101 break;
4102 }
4103
4104 return rc;
4105}
4106
4107static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4108{
4109 return avc_has_perm(&selinux_state,
4110 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4111 PROCESS__SETPGID, NULL);
4112}
4113
4114static int selinux_task_getpgid(struct task_struct *p)
4115{
4116 return avc_has_perm(&selinux_state,
4117 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4118 PROCESS__GETPGID, NULL);
4119}
4120
4121static int selinux_task_getsid(struct task_struct *p)
4122{
4123 return avc_has_perm(&selinux_state,
4124 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4125 PROCESS__GETSESSION, NULL);
4126}
4127
4128static void selinux_current_getsecid_subj(u32 *secid)
4129{
4130 *secid = current_sid();
4131}
4132
4133static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4134{
4135 *secid = task_sid_obj(p);
4136}
4137
4138static int selinux_task_setnice(struct task_struct *p, int nice)
4139{
4140 return avc_has_perm(&selinux_state,
4141 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4142 PROCESS__SETSCHED, NULL);
4143}
4144
4145static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4146{
4147 return avc_has_perm(&selinux_state,
4148 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4149 PROCESS__SETSCHED, NULL);
4150}
4151
4152static int selinux_task_getioprio(struct task_struct *p)
4153{
4154 return avc_has_perm(&selinux_state,
4155 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4156 PROCESS__GETSCHED, NULL);
4157}
4158
4159static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4160 unsigned int flags)
4161{
4162 u32 av = 0;
4163
4164 if (!flags)
4165 return 0;
4166 if (flags & LSM_PRLIMIT_WRITE)
4167 av |= PROCESS__SETRLIMIT;
4168 if (flags & LSM_PRLIMIT_READ)
4169 av |= PROCESS__GETRLIMIT;
4170 return avc_has_perm(&selinux_state,
4171 cred_sid(cred), cred_sid(tcred),
4172 SECCLASS_PROCESS, av, NULL);
4173}
4174
4175static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4176 struct rlimit *new_rlim)
4177{
4178 struct rlimit *old_rlim = p->signal->rlim + resource;
4179
4180 /* Control the ability to change the hard limit (whether
4181 lowering or raising it), so that the hard limit can
4182 later be used as a safe reset point for the soft limit
4183 upon context transitions. See selinux_bprm_committing_creds. */
4184 if (old_rlim->rlim_max != new_rlim->rlim_max)
4185 return avc_has_perm(&selinux_state,
4186 current_sid(), task_sid_obj(p),
4187 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4188
4189 return 0;
4190}
4191
4192static int selinux_task_setscheduler(struct task_struct *p)
4193{
4194 return avc_has_perm(&selinux_state,
4195 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4196 PROCESS__SETSCHED, NULL);
4197}
4198
4199static int selinux_task_getscheduler(struct task_struct *p)
4200{
4201 return avc_has_perm(&selinux_state,
4202 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4203 PROCESS__GETSCHED, NULL);
4204}
4205
4206static int selinux_task_movememory(struct task_struct *p)
4207{
4208 return avc_has_perm(&selinux_state,
4209 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4210 PROCESS__SETSCHED, NULL);
4211}
4212
4213static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4214 int sig, const struct cred *cred)
4215{
4216 u32 secid;
4217 u32 perm;
4218
4219 if (!sig)
4220 perm = PROCESS__SIGNULL; /* null signal; existence test */
4221 else
4222 perm = signal_to_av(sig);
4223 if (!cred)
4224 secid = current_sid();
4225 else
4226 secid = cred_sid(cred);
4227 return avc_has_perm(&selinux_state,
4228 secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4229}
4230
4231static void selinux_task_to_inode(struct task_struct *p,
4232 struct inode *inode)
4233{
4234 struct inode_security_struct *isec = selinux_inode(inode);
4235 u32 sid = task_sid_obj(p);
4236
4237 spin_lock(&isec->lock);
4238 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4239 isec->sid = sid;
4240 isec->initialized = LABEL_INITIALIZED;
4241 spin_unlock(&isec->lock);
4242}
4243
4244static int selinux_userns_create(const struct cred *cred)
4245{
4246 u32 sid = current_sid();
4247
4248 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_USER_NAMESPACE,
4249 USER_NAMESPACE__CREATE, NULL);
4250}
4251
4252/* Returns error only if unable to parse addresses */
4253static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4254 struct common_audit_data *ad, u8 *proto)
4255{
4256 int offset, ihlen, ret = -EINVAL;
4257 struct iphdr _iph, *ih;
4258
4259 offset = skb_network_offset(skb);
4260 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4261 if (ih == NULL)
4262 goto out;
4263
4264 ihlen = ih->ihl * 4;
4265 if (ihlen < sizeof(_iph))
4266 goto out;
4267
4268 ad->u.net->v4info.saddr = ih->saddr;
4269 ad->u.net->v4info.daddr = ih->daddr;
4270 ret = 0;
4271
4272 if (proto)
4273 *proto = ih->protocol;
4274
4275 switch (ih->protocol) {
4276 case IPPROTO_TCP: {
4277 struct tcphdr _tcph, *th;
4278
4279 if (ntohs(ih->frag_off) & IP_OFFSET)
4280 break;
4281
4282 offset += ihlen;
4283 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4284 if (th == NULL)
4285 break;
4286
4287 ad->u.net->sport = th->source;
4288 ad->u.net->dport = th->dest;
4289 break;
4290 }
4291
4292 case IPPROTO_UDP: {
4293 struct udphdr _udph, *uh;
4294
4295 if (ntohs(ih->frag_off) & IP_OFFSET)
4296 break;
4297
4298 offset += ihlen;
4299 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4300 if (uh == NULL)
4301 break;
4302
4303 ad->u.net->sport = uh->source;
4304 ad->u.net->dport = uh->dest;
4305 break;
4306 }
4307
4308 case IPPROTO_DCCP: {
4309 struct dccp_hdr _dccph, *dh;
4310
4311 if (ntohs(ih->frag_off) & IP_OFFSET)
4312 break;
4313
4314 offset += ihlen;
4315 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316 if (dh == NULL)
4317 break;
4318
4319 ad->u.net->sport = dh->dccph_sport;
4320 ad->u.net->dport = dh->dccph_dport;
4321 break;
4322 }
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325 case IPPROTO_SCTP: {
4326 struct sctphdr _sctph, *sh;
4327
4328 if (ntohs(ih->frag_off) & IP_OFFSET)
4329 break;
4330
4331 offset += ihlen;
4332 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333 if (sh == NULL)
4334 break;
4335
4336 ad->u.net->sport = sh->source;
4337 ad->u.net->dport = sh->dest;
4338 break;
4339 }
4340#endif
4341 default:
4342 break;
4343 }
4344out:
4345 return ret;
4346}
4347
4348#if IS_ENABLED(CONFIG_IPV6)
4349
4350/* Returns error only if unable to parse addresses */
4351static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4352 struct common_audit_data *ad, u8 *proto)
4353{
4354 u8 nexthdr;
4355 int ret = -EINVAL, offset;
4356 struct ipv6hdr _ipv6h, *ip6;
4357 __be16 frag_off;
4358
4359 offset = skb_network_offset(skb);
4360 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4361 if (ip6 == NULL)
4362 goto out;
4363
4364 ad->u.net->v6info.saddr = ip6->saddr;
4365 ad->u.net->v6info.daddr = ip6->daddr;
4366 ret = 0;
4367
4368 nexthdr = ip6->nexthdr;
4369 offset += sizeof(_ipv6h);
4370 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4371 if (offset < 0)
4372 goto out;
4373
4374 if (proto)
4375 *proto = nexthdr;
4376
4377 switch (nexthdr) {
4378 case IPPROTO_TCP: {
4379 struct tcphdr _tcph, *th;
4380
4381 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4382 if (th == NULL)
4383 break;
4384
4385 ad->u.net->sport = th->source;
4386 ad->u.net->dport = th->dest;
4387 break;
4388 }
4389
4390 case IPPROTO_UDP: {
4391 struct udphdr _udph, *uh;
4392
4393 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4394 if (uh == NULL)
4395 break;
4396
4397 ad->u.net->sport = uh->source;
4398 ad->u.net->dport = uh->dest;
4399 break;
4400 }
4401
4402 case IPPROTO_DCCP: {
4403 struct dccp_hdr _dccph, *dh;
4404
4405 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4406 if (dh == NULL)
4407 break;
4408
4409 ad->u.net->sport = dh->dccph_sport;
4410 ad->u.net->dport = dh->dccph_dport;
4411 break;
4412 }
4413
4414#if IS_ENABLED(CONFIG_IP_SCTP)
4415 case IPPROTO_SCTP: {
4416 struct sctphdr _sctph, *sh;
4417
4418 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4419 if (sh == NULL)
4420 break;
4421
4422 ad->u.net->sport = sh->source;
4423 ad->u.net->dport = sh->dest;
4424 break;
4425 }
4426#endif
4427 /* includes fragments */
4428 default:
4429 break;
4430 }
4431out:
4432 return ret;
4433}
4434
4435#endif /* IPV6 */
4436
4437static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4438 char **_addrp, int src, u8 *proto)
4439{
4440 char *addrp;
4441 int ret;
4442
4443 switch (ad->u.net->family) {
4444 case PF_INET:
4445 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4446 if (ret)
4447 goto parse_error;
4448 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4449 &ad->u.net->v4info.daddr);
4450 goto okay;
4451
4452#if IS_ENABLED(CONFIG_IPV6)
4453 case PF_INET6:
4454 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4455 if (ret)
4456 goto parse_error;
4457 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4458 &ad->u.net->v6info.daddr);
4459 goto okay;
4460#endif /* IPV6 */
4461 default:
4462 addrp = NULL;
4463 goto okay;
4464 }
4465
4466parse_error:
4467 pr_warn(
4468 "SELinux: failure in selinux_parse_skb(),"
4469 " unable to parse packet\n");
4470 return ret;
4471
4472okay:
4473 if (_addrp)
4474 *_addrp = addrp;
4475 return 0;
4476}
4477
4478/**
4479 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4480 * @skb: the packet
4481 * @family: protocol family
4482 * @sid: the packet's peer label SID
4483 *
4484 * Description:
4485 * Check the various different forms of network peer labeling and determine
4486 * the peer label/SID for the packet; most of the magic actually occurs in
4487 * the security server function security_net_peersid_cmp(). The function
4488 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4489 * or -EACCES if @sid is invalid due to inconsistencies with the different
4490 * peer labels.
4491 *
4492 */
4493static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4494{
4495 int err;
4496 u32 xfrm_sid;
4497 u32 nlbl_sid;
4498 u32 nlbl_type;
4499
4500 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4501 if (unlikely(err))
4502 return -EACCES;
4503 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4504 if (unlikely(err))
4505 return -EACCES;
4506
4507 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4508 nlbl_type, xfrm_sid, sid);
4509 if (unlikely(err)) {
4510 pr_warn(
4511 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4512 " unable to determine packet's peer label\n");
4513 return -EACCES;
4514 }
4515
4516 return 0;
4517}
4518
4519/**
4520 * selinux_conn_sid - Determine the child socket label for a connection
4521 * @sk_sid: the parent socket's SID
4522 * @skb_sid: the packet's SID
4523 * @conn_sid: the resulting connection SID
4524 *
4525 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4526 * combined with the MLS information from @skb_sid in order to create
4527 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4528 * of @sk_sid. Returns zero on success, negative values on failure.
4529 *
4530 */
4531static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4532{
4533 int err = 0;
4534
4535 if (skb_sid != SECSID_NULL)
4536 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4537 conn_sid);
4538 else
4539 *conn_sid = sk_sid;
4540
4541 return err;
4542}
4543
4544/* socket security operations */
4545
4546static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4547 u16 secclass, u32 *socksid)
4548{
4549 if (tsec->sockcreate_sid > SECSID_NULL) {
4550 *socksid = tsec->sockcreate_sid;
4551 return 0;
4552 }
4553
4554 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4555 secclass, NULL, socksid);
4556}
4557
4558static int sock_has_perm(struct sock *sk, u32 perms)
4559{
4560 struct sk_security_struct *sksec = sk->sk_security;
4561 struct common_audit_data ad;
4562 struct lsm_network_audit net = {0,};
4563
4564 if (sksec->sid == SECINITSID_KERNEL)
4565 return 0;
4566
4567 ad.type = LSM_AUDIT_DATA_NET;
4568 ad.u.net = &net;
4569 ad.u.net->sk = sk;
4570
4571 return avc_has_perm(&selinux_state,
4572 current_sid(), sksec->sid, sksec->sclass, perms,
4573 &ad);
4574}
4575
4576static int selinux_socket_create(int family, int type,
4577 int protocol, int kern)
4578{
4579 const struct task_security_struct *tsec = selinux_cred(current_cred());
4580 u32 newsid;
4581 u16 secclass;
4582 int rc;
4583
4584 if (kern)
4585 return 0;
4586
4587 secclass = socket_type_to_security_class(family, type, protocol);
4588 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4589 if (rc)
4590 return rc;
4591
4592 return avc_has_perm(&selinux_state,
4593 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4594}
4595
4596static int selinux_socket_post_create(struct socket *sock, int family,
4597 int type, int protocol, int kern)
4598{
4599 const struct task_security_struct *tsec = selinux_cred(current_cred());
4600 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4601 struct sk_security_struct *sksec;
4602 u16 sclass = socket_type_to_security_class(family, type, protocol);
4603 u32 sid = SECINITSID_KERNEL;
4604 int err = 0;
4605
4606 if (!kern) {
4607 err = socket_sockcreate_sid(tsec, sclass, &sid);
4608 if (err)
4609 return err;
4610 }
4611
4612 isec->sclass = sclass;
4613 isec->sid = sid;
4614 isec->initialized = LABEL_INITIALIZED;
4615
4616 if (sock->sk) {
4617 sksec = sock->sk->sk_security;
4618 sksec->sclass = sclass;
4619 sksec->sid = sid;
4620 /* Allows detection of the first association on this socket */
4621 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4622 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4623
4624 err = selinux_netlbl_socket_post_create(sock->sk, family);
4625 }
4626
4627 return err;
4628}
4629
4630static int selinux_socket_socketpair(struct socket *socka,
4631 struct socket *sockb)
4632{
4633 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4634 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4635
4636 sksec_a->peer_sid = sksec_b->sid;
4637 sksec_b->peer_sid = sksec_a->sid;
4638
4639 return 0;
4640}
4641
4642/* Range of port numbers used to automatically bind.
4643 Need to determine whether we should perform a name_bind
4644 permission check between the socket and the port number. */
4645
4646static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4647{
4648 struct sock *sk = sock->sk;
4649 struct sk_security_struct *sksec = sk->sk_security;
4650 u16 family;
4651 int err;
4652
4653 err = sock_has_perm(sk, SOCKET__BIND);
4654 if (err)
4655 goto out;
4656
4657 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4658 family = sk->sk_family;
4659 if (family == PF_INET || family == PF_INET6) {
4660 char *addrp;
4661 struct common_audit_data ad;
4662 struct lsm_network_audit net = {0,};
4663 struct sockaddr_in *addr4 = NULL;
4664 struct sockaddr_in6 *addr6 = NULL;
4665 u16 family_sa;
4666 unsigned short snum;
4667 u32 sid, node_perm;
4668
4669 /*
4670 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4671 * that validates multiple binding addresses. Because of this
4672 * need to check address->sa_family as it is possible to have
4673 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4674 */
4675 if (addrlen < offsetofend(struct sockaddr, sa_family))
4676 return -EINVAL;
4677 family_sa = address->sa_family;
4678 switch (family_sa) {
4679 case AF_UNSPEC:
4680 case AF_INET:
4681 if (addrlen < sizeof(struct sockaddr_in))
4682 return -EINVAL;
4683 addr4 = (struct sockaddr_in *)address;
4684 if (family_sa == AF_UNSPEC) {
4685 /* see __inet_bind(), we only want to allow
4686 * AF_UNSPEC if the address is INADDR_ANY
4687 */
4688 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4689 goto err_af;
4690 family_sa = AF_INET;
4691 }
4692 snum = ntohs(addr4->sin_port);
4693 addrp = (char *)&addr4->sin_addr.s_addr;
4694 break;
4695 case AF_INET6:
4696 if (addrlen < SIN6_LEN_RFC2133)
4697 return -EINVAL;
4698 addr6 = (struct sockaddr_in6 *)address;
4699 snum = ntohs(addr6->sin6_port);
4700 addrp = (char *)&addr6->sin6_addr.s6_addr;
4701 break;
4702 default:
4703 goto err_af;
4704 }
4705
4706 ad.type = LSM_AUDIT_DATA_NET;
4707 ad.u.net = &net;
4708 ad.u.net->sport = htons(snum);
4709 ad.u.net->family = family_sa;
4710
4711 if (snum) {
4712 int low, high;
4713
4714 inet_get_local_port_range(sock_net(sk), &low, &high);
4715
4716 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4717 snum < low || snum > high) {
4718 err = sel_netport_sid(sk->sk_protocol,
4719 snum, &sid);
4720 if (err)
4721 goto out;
4722 err = avc_has_perm(&selinux_state,
4723 sksec->sid, sid,
4724 sksec->sclass,
4725 SOCKET__NAME_BIND, &ad);
4726 if (err)
4727 goto out;
4728 }
4729 }
4730
4731 switch (sksec->sclass) {
4732 case SECCLASS_TCP_SOCKET:
4733 node_perm = TCP_SOCKET__NODE_BIND;
4734 break;
4735
4736 case SECCLASS_UDP_SOCKET:
4737 node_perm = UDP_SOCKET__NODE_BIND;
4738 break;
4739
4740 case SECCLASS_DCCP_SOCKET:
4741 node_perm = DCCP_SOCKET__NODE_BIND;
4742 break;
4743
4744 case SECCLASS_SCTP_SOCKET:
4745 node_perm = SCTP_SOCKET__NODE_BIND;
4746 break;
4747
4748 default:
4749 node_perm = RAWIP_SOCKET__NODE_BIND;
4750 break;
4751 }
4752
4753 err = sel_netnode_sid(addrp, family_sa, &sid);
4754 if (err)
4755 goto out;
4756
4757 if (family_sa == AF_INET)
4758 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4759 else
4760 ad.u.net->v6info.saddr = addr6->sin6_addr;
4761
4762 err = avc_has_perm(&selinux_state,
4763 sksec->sid, sid,
4764 sksec->sclass, node_perm, &ad);
4765 if (err)
4766 goto out;
4767 }
4768out:
4769 return err;
4770err_af:
4771 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4772 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4773 return -EINVAL;
4774 return -EAFNOSUPPORT;
4775}
4776
4777/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4778 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4779 */
4780static int selinux_socket_connect_helper(struct socket *sock,
4781 struct sockaddr *address, int addrlen)
4782{
4783 struct sock *sk = sock->sk;
4784 struct sk_security_struct *sksec = sk->sk_security;
4785 int err;
4786
4787 err = sock_has_perm(sk, SOCKET__CONNECT);
4788 if (err)
4789 return err;
4790 if (addrlen < offsetofend(struct sockaddr, sa_family))
4791 return -EINVAL;
4792
4793 /* connect(AF_UNSPEC) has special handling, as it is a documented
4794 * way to disconnect the socket
4795 */
4796 if (address->sa_family == AF_UNSPEC)
4797 return 0;
4798
4799 /*
4800 * If a TCP, DCCP or SCTP socket, check name_connect permission
4801 * for the port.
4802 */
4803 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4804 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4805 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4806 struct common_audit_data ad;
4807 struct lsm_network_audit net = {0,};
4808 struct sockaddr_in *addr4 = NULL;
4809 struct sockaddr_in6 *addr6 = NULL;
4810 unsigned short snum;
4811 u32 sid, perm;
4812
4813 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4814 * that validates multiple connect addresses. Because of this
4815 * need to check address->sa_family as it is possible to have
4816 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4817 */
4818 switch (address->sa_family) {
4819 case AF_INET:
4820 addr4 = (struct sockaddr_in *)address;
4821 if (addrlen < sizeof(struct sockaddr_in))
4822 return -EINVAL;
4823 snum = ntohs(addr4->sin_port);
4824 break;
4825 case AF_INET6:
4826 addr6 = (struct sockaddr_in6 *)address;
4827 if (addrlen < SIN6_LEN_RFC2133)
4828 return -EINVAL;
4829 snum = ntohs(addr6->sin6_port);
4830 break;
4831 default:
4832 /* Note that SCTP services expect -EINVAL, whereas
4833 * others expect -EAFNOSUPPORT.
4834 */
4835 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4836 return -EINVAL;
4837 else
4838 return -EAFNOSUPPORT;
4839 }
4840
4841 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4842 if (err)
4843 return err;
4844
4845 switch (sksec->sclass) {
4846 case SECCLASS_TCP_SOCKET:
4847 perm = TCP_SOCKET__NAME_CONNECT;
4848 break;
4849 case SECCLASS_DCCP_SOCKET:
4850 perm = DCCP_SOCKET__NAME_CONNECT;
4851 break;
4852 case SECCLASS_SCTP_SOCKET:
4853 perm = SCTP_SOCKET__NAME_CONNECT;
4854 break;
4855 }
4856
4857 ad.type = LSM_AUDIT_DATA_NET;
4858 ad.u.net = &net;
4859 ad.u.net->dport = htons(snum);
4860 ad.u.net->family = address->sa_family;
4861 err = avc_has_perm(&selinux_state,
4862 sksec->sid, sid, sksec->sclass, perm, &ad);
4863 if (err)
4864 return err;
4865 }
4866
4867 return 0;
4868}
4869
4870/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4871static int selinux_socket_connect(struct socket *sock,
4872 struct sockaddr *address, int addrlen)
4873{
4874 int err;
4875 struct sock *sk = sock->sk;
4876
4877 err = selinux_socket_connect_helper(sock, address, addrlen);
4878 if (err)
4879 return err;
4880
4881 return selinux_netlbl_socket_connect(sk, address);
4882}
4883
4884static int selinux_socket_listen(struct socket *sock, int backlog)
4885{
4886 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4887}
4888
4889static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4890{
4891 int err;
4892 struct inode_security_struct *isec;
4893 struct inode_security_struct *newisec;
4894 u16 sclass;
4895 u32 sid;
4896
4897 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4898 if (err)
4899 return err;
4900
4901 isec = inode_security_novalidate(SOCK_INODE(sock));
4902 spin_lock(&isec->lock);
4903 sclass = isec->sclass;
4904 sid = isec->sid;
4905 spin_unlock(&isec->lock);
4906
4907 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4908 newisec->sclass = sclass;
4909 newisec->sid = sid;
4910 newisec->initialized = LABEL_INITIALIZED;
4911
4912 return 0;
4913}
4914
4915static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4916 int size)
4917{
4918 return sock_has_perm(sock->sk, SOCKET__WRITE);
4919}
4920
4921static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4922 int size, int flags)
4923{
4924 return sock_has_perm(sock->sk, SOCKET__READ);
4925}
4926
4927static int selinux_socket_getsockname(struct socket *sock)
4928{
4929 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4930}
4931
4932static int selinux_socket_getpeername(struct socket *sock)
4933{
4934 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4935}
4936
4937static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4938{
4939 int err;
4940
4941 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4942 if (err)
4943 return err;
4944
4945 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4946}
4947
4948static int selinux_socket_getsockopt(struct socket *sock, int level,
4949 int optname)
4950{
4951 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4952}
4953
4954static int selinux_socket_shutdown(struct socket *sock, int how)
4955{
4956 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4957}
4958
4959static int selinux_socket_unix_stream_connect(struct sock *sock,
4960 struct sock *other,
4961 struct sock *newsk)
4962{
4963 struct sk_security_struct *sksec_sock = sock->sk_security;
4964 struct sk_security_struct *sksec_other = other->sk_security;
4965 struct sk_security_struct *sksec_new = newsk->sk_security;
4966 struct common_audit_data ad;
4967 struct lsm_network_audit net = {0,};
4968 int err;
4969
4970 ad.type = LSM_AUDIT_DATA_NET;
4971 ad.u.net = &net;
4972 ad.u.net->sk = other;
4973
4974 err = avc_has_perm(&selinux_state,
4975 sksec_sock->sid, sksec_other->sid,
4976 sksec_other->sclass,
4977 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4978 if (err)
4979 return err;
4980
4981 /* server child socket */
4982 sksec_new->peer_sid = sksec_sock->sid;
4983 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4984 sksec_sock->sid, &sksec_new->sid);
4985 if (err)
4986 return err;
4987
4988 /* connecting socket */
4989 sksec_sock->peer_sid = sksec_new->sid;
4990
4991 return 0;
4992}
4993
4994static int selinux_socket_unix_may_send(struct socket *sock,
4995 struct socket *other)
4996{
4997 struct sk_security_struct *ssec = sock->sk->sk_security;
4998 struct sk_security_struct *osec = other->sk->sk_security;
4999 struct common_audit_data ad;
5000 struct lsm_network_audit net = {0,};
5001
5002 ad.type = LSM_AUDIT_DATA_NET;
5003 ad.u.net = &net;
5004 ad.u.net->sk = other->sk;
5005
5006 return avc_has_perm(&selinux_state,
5007 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5008 &ad);
5009}
5010
5011static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5012 char *addrp, u16 family, u32 peer_sid,
5013 struct common_audit_data *ad)
5014{
5015 int err;
5016 u32 if_sid;
5017 u32 node_sid;
5018
5019 err = sel_netif_sid(ns, ifindex, &if_sid);
5020 if (err)
5021 return err;
5022 err = avc_has_perm(&selinux_state,
5023 peer_sid, if_sid,
5024 SECCLASS_NETIF, NETIF__INGRESS, ad);
5025 if (err)
5026 return err;
5027
5028 err = sel_netnode_sid(addrp, family, &node_sid);
5029 if (err)
5030 return err;
5031 return avc_has_perm(&selinux_state,
5032 peer_sid, node_sid,
5033 SECCLASS_NODE, NODE__RECVFROM, ad);
5034}
5035
5036static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5037 u16 family)
5038{
5039 int err = 0;
5040 struct sk_security_struct *sksec = sk->sk_security;
5041 u32 sk_sid = sksec->sid;
5042 struct common_audit_data ad;
5043 struct lsm_network_audit net = {0,};
5044 char *addrp;
5045
5046 ad.type = LSM_AUDIT_DATA_NET;
5047 ad.u.net = &net;
5048 ad.u.net->netif = skb->skb_iif;
5049 ad.u.net->family = family;
5050 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5051 if (err)
5052 return err;
5053
5054 if (selinux_secmark_enabled()) {
5055 err = avc_has_perm(&selinux_state,
5056 sk_sid, skb->secmark, SECCLASS_PACKET,
5057 PACKET__RECV, &ad);
5058 if (err)
5059 return err;
5060 }
5061
5062 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5063 if (err)
5064 return err;
5065 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5066
5067 return err;
5068}
5069
5070static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5071{
5072 int err;
5073 struct sk_security_struct *sksec = sk->sk_security;
5074 u16 family = sk->sk_family;
5075 u32 sk_sid = sksec->sid;
5076 struct common_audit_data ad;
5077 struct lsm_network_audit net = {0,};
5078 char *addrp;
5079 u8 secmark_active;
5080 u8 peerlbl_active;
5081
5082 if (family != PF_INET && family != PF_INET6)
5083 return 0;
5084
5085 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5086 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5087 family = PF_INET;
5088
5089 /* If any sort of compatibility mode is enabled then handoff processing
5090 * to the selinux_sock_rcv_skb_compat() function to deal with the
5091 * special handling. We do this in an attempt to keep this function
5092 * as fast and as clean as possible. */
5093 if (!selinux_policycap_netpeer())
5094 return selinux_sock_rcv_skb_compat(sk, skb, family);
5095
5096 secmark_active = selinux_secmark_enabled();
5097 peerlbl_active = selinux_peerlbl_enabled();
5098 if (!secmark_active && !peerlbl_active)
5099 return 0;
5100
5101 ad.type = LSM_AUDIT_DATA_NET;
5102 ad.u.net = &net;
5103 ad.u.net->netif = skb->skb_iif;
5104 ad.u.net->family = family;
5105 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5106 if (err)
5107 return err;
5108
5109 if (peerlbl_active) {
5110 u32 peer_sid;
5111
5112 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5113 if (err)
5114 return err;
5115 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5116 addrp, family, peer_sid, &ad);
5117 if (err) {
5118 selinux_netlbl_err(skb, family, err, 0);
5119 return err;
5120 }
5121 err = avc_has_perm(&selinux_state,
5122 sk_sid, peer_sid, SECCLASS_PEER,
5123 PEER__RECV, &ad);
5124 if (err) {
5125 selinux_netlbl_err(skb, family, err, 0);
5126 return err;
5127 }
5128 }
5129
5130 if (secmark_active) {
5131 err = avc_has_perm(&selinux_state,
5132 sk_sid, skb->secmark, SECCLASS_PACKET,
5133 PACKET__RECV, &ad);
5134 if (err)
5135 return err;
5136 }
5137
5138 return err;
5139}
5140
5141static int selinux_socket_getpeersec_stream(struct socket *sock,
5142 sockptr_t optval, sockptr_t optlen,
5143 unsigned int len)
5144{
5145 int err = 0;
5146 char *scontext = NULL;
5147 u32 scontext_len;
5148 struct sk_security_struct *sksec = sock->sk->sk_security;
5149 u32 peer_sid = SECSID_NULL;
5150
5151 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5152 sksec->sclass == SECCLASS_TCP_SOCKET ||
5153 sksec->sclass == SECCLASS_SCTP_SOCKET)
5154 peer_sid = sksec->peer_sid;
5155 if (peer_sid == SECSID_NULL)
5156 return -ENOPROTOOPT;
5157
5158 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5159 &scontext_len);
5160 if (err)
5161 return err;
5162 if (scontext_len > len) {
5163 err = -ERANGE;
5164 goto out_len;
5165 }
5166
5167 if (copy_to_sockptr(optval, scontext, scontext_len))
5168 err = -EFAULT;
5169out_len:
5170 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5171 err = -EFAULT;
5172 kfree(scontext);
5173 return err;
5174}
5175
5176static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5177{
5178 u32 peer_secid = SECSID_NULL;
5179 u16 family;
5180 struct inode_security_struct *isec;
5181
5182 if (skb && skb->protocol == htons(ETH_P_IP))
5183 family = PF_INET;
5184 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5185 family = PF_INET6;
5186 else if (sock)
5187 family = sock->sk->sk_family;
5188 else
5189 goto out;
5190
5191 if (sock && family == PF_UNIX) {
5192 isec = inode_security_novalidate(SOCK_INODE(sock));
5193 peer_secid = isec->sid;
5194 } else if (skb)
5195 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5196
5197out:
5198 *secid = peer_secid;
5199 if (peer_secid == SECSID_NULL)
5200 return -EINVAL;
5201 return 0;
5202}
5203
5204static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5205{
5206 struct sk_security_struct *sksec;
5207
5208 sksec = kzalloc(sizeof(*sksec), priority);
5209 if (!sksec)
5210 return -ENOMEM;
5211
5212 sksec->peer_sid = SECINITSID_UNLABELED;
5213 sksec->sid = SECINITSID_UNLABELED;
5214 sksec->sclass = SECCLASS_SOCKET;
5215 selinux_netlbl_sk_security_reset(sksec);
5216 sk->sk_security = sksec;
5217
5218 return 0;
5219}
5220
5221static void selinux_sk_free_security(struct sock *sk)
5222{
5223 struct sk_security_struct *sksec = sk->sk_security;
5224
5225 sk->sk_security = NULL;
5226 selinux_netlbl_sk_security_free(sksec);
5227 kfree(sksec);
5228}
5229
5230static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5231{
5232 struct sk_security_struct *sksec = sk->sk_security;
5233 struct sk_security_struct *newsksec = newsk->sk_security;
5234
5235 newsksec->sid = sksec->sid;
5236 newsksec->peer_sid = sksec->peer_sid;
5237 newsksec->sclass = sksec->sclass;
5238
5239 selinux_netlbl_sk_security_reset(newsksec);
5240}
5241
5242static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5243{
5244 if (!sk)
5245 *secid = SECINITSID_ANY_SOCKET;
5246 else {
5247 struct sk_security_struct *sksec = sk->sk_security;
5248
5249 *secid = sksec->sid;
5250 }
5251}
5252
5253static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5254{
5255 struct inode_security_struct *isec =
5256 inode_security_novalidate(SOCK_INODE(parent));
5257 struct sk_security_struct *sksec = sk->sk_security;
5258
5259 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5260 sk->sk_family == PF_UNIX)
5261 isec->sid = sksec->sid;
5262 sksec->sclass = isec->sclass;
5263}
5264
5265/*
5266 * Determines peer_secid for the asoc and updates socket's peer label
5267 * if it's the first association on the socket.
5268 */
5269static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5270 struct sk_buff *skb)
5271{
5272 struct sock *sk = asoc->base.sk;
5273 u16 family = sk->sk_family;
5274 struct sk_security_struct *sksec = sk->sk_security;
5275 struct common_audit_data ad;
5276 struct lsm_network_audit net = {0,};
5277 int err;
5278
5279 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5280 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5281 family = PF_INET;
5282
5283 if (selinux_peerlbl_enabled()) {
5284 asoc->peer_secid = SECSID_NULL;
5285
5286 /* This will return peer_sid = SECSID_NULL if there are
5287 * no peer labels, see security_net_peersid_resolve().
5288 */
5289 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5290 if (err)
5291 return err;
5292
5293 if (asoc->peer_secid == SECSID_NULL)
5294 asoc->peer_secid = SECINITSID_UNLABELED;
5295 } else {
5296 asoc->peer_secid = SECINITSID_UNLABELED;
5297 }
5298
5299 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5300 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5301
5302 /* Here as first association on socket. As the peer SID
5303 * was allowed by peer recv (and the netif/node checks),
5304 * then it is approved by policy and used as the primary
5305 * peer SID for getpeercon(3).
5306 */
5307 sksec->peer_sid = asoc->peer_secid;
5308 } else if (sksec->peer_sid != asoc->peer_secid) {
5309 /* Other association peer SIDs are checked to enforce
5310 * consistency among the peer SIDs.
5311 */
5312 ad.type = LSM_AUDIT_DATA_NET;
5313 ad.u.net = &net;
5314 ad.u.net->sk = asoc->base.sk;
5315 err = avc_has_perm(&selinux_state,
5316 sksec->peer_sid, asoc->peer_secid,
5317 sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5318 &ad);
5319 if (err)
5320 return err;
5321 }
5322 return 0;
5323}
5324
5325/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5326 * happens on an incoming connect(2), sctp_connectx(3) or
5327 * sctp_sendmsg(3) (with no association already present).
5328 */
5329static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5330 struct sk_buff *skb)
5331{
5332 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5333 u32 conn_sid;
5334 int err;
5335
5336 if (!selinux_policycap_extsockclass())
5337 return 0;
5338
5339 err = selinux_sctp_process_new_assoc(asoc, skb);
5340 if (err)
5341 return err;
5342
5343 /* Compute the MLS component for the connection and store
5344 * the information in asoc. This will be used by SCTP TCP type
5345 * sockets and peeled off connections as they cause a new
5346 * socket to be generated. selinux_sctp_sk_clone() will then
5347 * plug this into the new socket.
5348 */
5349 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5350 if (err)
5351 return err;
5352
5353 asoc->secid = conn_sid;
5354
5355 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5356 return selinux_netlbl_sctp_assoc_request(asoc, skb);
5357}
5358
5359/* Called when SCTP receives a COOKIE ACK chunk as the final
5360 * response to an association request (initited by us).
5361 */
5362static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5363 struct sk_buff *skb)
5364{
5365 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5366
5367 if (!selinux_policycap_extsockclass())
5368 return 0;
5369
5370 /* Inherit secid from the parent socket - this will be picked up
5371 * by selinux_sctp_sk_clone() if the association gets peeled off
5372 * into a new socket.
5373 */
5374 asoc->secid = sksec->sid;
5375
5376 return selinux_sctp_process_new_assoc(asoc, skb);
5377}
5378
5379/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5380 * based on their @optname.
5381 */
5382static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5383 struct sockaddr *address,
5384 int addrlen)
5385{
5386 int len, err = 0, walk_size = 0;
5387 void *addr_buf;
5388 struct sockaddr *addr;
5389 struct socket *sock;
5390
5391 if (!selinux_policycap_extsockclass())
5392 return 0;
5393
5394 /* Process one or more addresses that may be IPv4 or IPv6 */
5395 sock = sk->sk_socket;
5396 addr_buf = address;
5397
5398 while (walk_size < addrlen) {
5399 if (walk_size + sizeof(sa_family_t) > addrlen)
5400 return -EINVAL;
5401
5402 addr = addr_buf;
5403 switch (addr->sa_family) {
5404 case AF_UNSPEC:
5405 case AF_INET:
5406 len = sizeof(struct sockaddr_in);
5407 break;
5408 case AF_INET6:
5409 len = sizeof(struct sockaddr_in6);
5410 break;
5411 default:
5412 return -EINVAL;
5413 }
5414
5415 if (walk_size + len > addrlen)
5416 return -EINVAL;
5417
5418 err = -EINVAL;
5419 switch (optname) {
5420 /* Bind checks */
5421 case SCTP_PRIMARY_ADDR:
5422 case SCTP_SET_PEER_PRIMARY_ADDR:
5423 case SCTP_SOCKOPT_BINDX_ADD:
5424 err = selinux_socket_bind(sock, addr, len);
5425 break;
5426 /* Connect checks */
5427 case SCTP_SOCKOPT_CONNECTX:
5428 case SCTP_PARAM_SET_PRIMARY:
5429 case SCTP_PARAM_ADD_IP:
5430 case SCTP_SENDMSG_CONNECT:
5431 err = selinux_socket_connect_helper(sock, addr, len);
5432 if (err)
5433 return err;
5434
5435 /* As selinux_sctp_bind_connect() is called by the
5436 * SCTP protocol layer, the socket is already locked,
5437 * therefore selinux_netlbl_socket_connect_locked()
5438 * is called here. The situations handled are:
5439 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5440 * whenever a new IP address is added or when a new
5441 * primary address is selected.
5442 * Note that an SCTP connect(2) call happens before
5443 * the SCTP protocol layer and is handled via
5444 * selinux_socket_connect().
5445 */
5446 err = selinux_netlbl_socket_connect_locked(sk, addr);
5447 break;
5448 }
5449
5450 if (err)
5451 return err;
5452
5453 addr_buf += len;
5454 walk_size += len;
5455 }
5456
5457 return 0;
5458}
5459
5460/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5461static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5462 struct sock *newsk)
5463{
5464 struct sk_security_struct *sksec = sk->sk_security;
5465 struct sk_security_struct *newsksec = newsk->sk_security;
5466
5467 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5468 * the non-sctp clone version.
5469 */
5470 if (!selinux_policycap_extsockclass())
5471 return selinux_sk_clone_security(sk, newsk);
5472
5473 newsksec->sid = asoc->secid;
5474 newsksec->peer_sid = asoc->peer_secid;
5475 newsksec->sclass = sksec->sclass;
5476 selinux_netlbl_sctp_sk_clone(sk, newsk);
5477}
5478
5479static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5480 struct request_sock *req)
5481{
5482 struct sk_security_struct *sksec = sk->sk_security;
5483 int err;
5484 u16 family = req->rsk_ops->family;
5485 u32 connsid;
5486 u32 peersid;
5487
5488 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5489 if (err)
5490 return err;
5491 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5492 if (err)
5493 return err;
5494 req->secid = connsid;
5495 req->peer_secid = peersid;
5496
5497 return selinux_netlbl_inet_conn_request(req, family);
5498}
5499
5500static void selinux_inet_csk_clone(struct sock *newsk,
5501 const struct request_sock *req)
5502{
5503 struct sk_security_struct *newsksec = newsk->sk_security;
5504
5505 newsksec->sid = req->secid;
5506 newsksec->peer_sid = req->peer_secid;
5507 /* NOTE: Ideally, we should also get the isec->sid for the
5508 new socket in sync, but we don't have the isec available yet.
5509 So we will wait until sock_graft to do it, by which
5510 time it will have been created and available. */
5511
5512 /* We don't need to take any sort of lock here as we are the only
5513 * thread with access to newsksec */
5514 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5515}
5516
5517static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5518{
5519 u16 family = sk->sk_family;
5520 struct sk_security_struct *sksec = sk->sk_security;
5521
5522 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5523 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5524 family = PF_INET;
5525
5526 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5527}
5528
5529static int selinux_secmark_relabel_packet(u32 sid)
5530{
5531 const struct task_security_struct *__tsec;
5532 u32 tsid;
5533
5534 __tsec = selinux_cred(current_cred());
5535 tsid = __tsec->sid;
5536
5537 return avc_has_perm(&selinux_state,
5538 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5539 NULL);
5540}
5541
5542static void selinux_secmark_refcount_inc(void)
5543{
5544 atomic_inc(&selinux_secmark_refcount);
5545}
5546
5547static void selinux_secmark_refcount_dec(void)
5548{
5549 atomic_dec(&selinux_secmark_refcount);
5550}
5551
5552static void selinux_req_classify_flow(const struct request_sock *req,
5553 struct flowi_common *flic)
5554{
5555 flic->flowic_secid = req->secid;
5556}
5557
5558static int selinux_tun_dev_alloc_security(void **security)
5559{
5560 struct tun_security_struct *tunsec;
5561
5562 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5563 if (!tunsec)
5564 return -ENOMEM;
5565 tunsec->sid = current_sid();
5566
5567 *security = tunsec;
5568 return 0;
5569}
5570
5571static void selinux_tun_dev_free_security(void *security)
5572{
5573 kfree(security);
5574}
5575
5576static int selinux_tun_dev_create(void)
5577{
5578 u32 sid = current_sid();
5579
5580 /* we aren't taking into account the "sockcreate" SID since the socket
5581 * that is being created here is not a socket in the traditional sense,
5582 * instead it is a private sock, accessible only to the kernel, and
5583 * representing a wide range of network traffic spanning multiple
5584 * connections unlike traditional sockets - check the TUN driver to
5585 * get a better understanding of why this socket is special */
5586
5587 return avc_has_perm(&selinux_state,
5588 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5589 NULL);
5590}
5591
5592static int selinux_tun_dev_attach_queue(void *security)
5593{
5594 struct tun_security_struct *tunsec = security;
5595
5596 return avc_has_perm(&selinux_state,
5597 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5598 TUN_SOCKET__ATTACH_QUEUE, NULL);
5599}
5600
5601static int selinux_tun_dev_attach(struct sock *sk, void *security)
5602{
5603 struct tun_security_struct *tunsec = security;
5604 struct sk_security_struct *sksec = sk->sk_security;
5605
5606 /* we don't currently perform any NetLabel based labeling here and it
5607 * isn't clear that we would want to do so anyway; while we could apply
5608 * labeling without the support of the TUN user the resulting labeled
5609 * traffic from the other end of the connection would almost certainly
5610 * cause confusion to the TUN user that had no idea network labeling
5611 * protocols were being used */
5612
5613 sksec->sid = tunsec->sid;
5614 sksec->sclass = SECCLASS_TUN_SOCKET;
5615
5616 return 0;
5617}
5618
5619static int selinux_tun_dev_open(void *security)
5620{
5621 struct tun_security_struct *tunsec = security;
5622 u32 sid = current_sid();
5623 int err;
5624
5625 err = avc_has_perm(&selinux_state,
5626 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5627 TUN_SOCKET__RELABELFROM, NULL);
5628 if (err)
5629 return err;
5630 err = avc_has_perm(&selinux_state,
5631 sid, sid, SECCLASS_TUN_SOCKET,
5632 TUN_SOCKET__RELABELTO, NULL);
5633 if (err)
5634 return err;
5635 tunsec->sid = sid;
5636
5637 return 0;
5638}
5639
5640#ifdef CONFIG_NETFILTER
5641
5642static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5643 const struct nf_hook_state *state)
5644{
5645 int ifindex;
5646 u16 family;
5647 char *addrp;
5648 u32 peer_sid;
5649 struct common_audit_data ad;
5650 struct lsm_network_audit net = {0,};
5651 int secmark_active, peerlbl_active;
5652
5653 if (!selinux_policycap_netpeer())
5654 return NF_ACCEPT;
5655
5656 secmark_active = selinux_secmark_enabled();
5657 peerlbl_active = selinux_peerlbl_enabled();
5658 if (!secmark_active && !peerlbl_active)
5659 return NF_ACCEPT;
5660
5661 family = state->pf;
5662 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5663 return NF_DROP;
5664
5665 ifindex = state->in->ifindex;
5666 ad.type = LSM_AUDIT_DATA_NET;
5667 ad.u.net = &net;
5668 ad.u.net->netif = ifindex;
5669 ad.u.net->family = family;
5670 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5671 return NF_DROP;
5672
5673 if (peerlbl_active) {
5674 int err;
5675
5676 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5677 addrp, family, peer_sid, &ad);
5678 if (err) {
5679 selinux_netlbl_err(skb, family, err, 1);
5680 return NF_DROP;
5681 }
5682 }
5683
5684 if (secmark_active)
5685 if (avc_has_perm(&selinux_state,
5686 peer_sid, skb->secmark,
5687 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5688 return NF_DROP;
5689
5690 if (netlbl_enabled())
5691 /* we do this in the FORWARD path and not the POST_ROUTING
5692 * path because we want to make sure we apply the necessary
5693 * labeling before IPsec is applied so we can leverage AH
5694 * protection */
5695 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5696 return NF_DROP;
5697
5698 return NF_ACCEPT;
5699}
5700
5701static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5702 const struct nf_hook_state *state)
5703{
5704 struct sock *sk;
5705 u32 sid;
5706
5707 if (!netlbl_enabled())
5708 return NF_ACCEPT;
5709
5710 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5711 * because we want to make sure we apply the necessary labeling
5712 * before IPsec is applied so we can leverage AH protection */
5713 sk = skb->sk;
5714 if (sk) {
5715 struct sk_security_struct *sksec;
5716
5717 if (sk_listener(sk))
5718 /* if the socket is the listening state then this
5719 * packet is a SYN-ACK packet which means it needs to
5720 * be labeled based on the connection/request_sock and
5721 * not the parent socket. unfortunately, we can't
5722 * lookup the request_sock yet as it isn't queued on
5723 * the parent socket until after the SYN-ACK is sent.
5724 * the "solution" is to simply pass the packet as-is
5725 * as any IP option based labeling should be copied
5726 * from the initial connection request (in the IP
5727 * layer). it is far from ideal, but until we get a
5728 * security label in the packet itself this is the
5729 * best we can do. */
5730 return NF_ACCEPT;
5731
5732 /* standard practice, label using the parent socket */
5733 sksec = sk->sk_security;
5734 sid = sksec->sid;
5735 } else
5736 sid = SECINITSID_KERNEL;
5737 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5738 return NF_DROP;
5739
5740 return NF_ACCEPT;
5741}
5742
5743
5744static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5745 const struct nf_hook_state *state)
5746{
5747 struct sock *sk;
5748 struct sk_security_struct *sksec;
5749 struct common_audit_data ad;
5750 struct lsm_network_audit net = {0,};
5751 u8 proto = 0;
5752
5753 sk = skb_to_full_sk(skb);
5754 if (sk == NULL)
5755 return NF_ACCEPT;
5756 sksec = sk->sk_security;
5757
5758 ad.type = LSM_AUDIT_DATA_NET;
5759 ad.u.net = &net;
5760 ad.u.net->netif = state->out->ifindex;
5761 ad.u.net->family = state->pf;
5762 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5763 return NF_DROP;
5764
5765 if (selinux_secmark_enabled())
5766 if (avc_has_perm(&selinux_state,
5767 sksec->sid, skb->secmark,
5768 SECCLASS_PACKET, PACKET__SEND, &ad))
5769 return NF_DROP_ERR(-ECONNREFUSED);
5770
5771 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5772 return NF_DROP_ERR(-ECONNREFUSED);
5773
5774 return NF_ACCEPT;
5775}
5776
5777static unsigned int selinux_ip_postroute(void *priv,
5778 struct sk_buff *skb,
5779 const struct nf_hook_state *state)
5780{
5781 u16 family;
5782 u32 secmark_perm;
5783 u32 peer_sid;
5784 int ifindex;
5785 struct sock *sk;
5786 struct common_audit_data ad;
5787 struct lsm_network_audit net = {0,};
5788 char *addrp;
5789 int secmark_active, peerlbl_active;
5790
5791 /* If any sort of compatibility mode is enabled then handoff processing
5792 * to the selinux_ip_postroute_compat() function to deal with the
5793 * special handling. We do this in an attempt to keep this function
5794 * as fast and as clean as possible. */
5795 if (!selinux_policycap_netpeer())
5796 return selinux_ip_postroute_compat(skb, state);
5797
5798 secmark_active = selinux_secmark_enabled();
5799 peerlbl_active = selinux_peerlbl_enabled();
5800 if (!secmark_active && !peerlbl_active)
5801 return NF_ACCEPT;
5802
5803 sk = skb_to_full_sk(skb);
5804
5805#ifdef CONFIG_XFRM
5806 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5807 * packet transformation so allow the packet to pass without any checks
5808 * since we'll have another chance to perform access control checks
5809 * when the packet is on it's final way out.
5810 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5811 * is NULL, in this case go ahead and apply access control.
5812 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5813 * TCP listening state we cannot wait until the XFRM processing
5814 * is done as we will miss out on the SA label if we do;
5815 * unfortunately, this means more work, but it is only once per
5816 * connection. */
5817 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5818 !(sk && sk_listener(sk)))
5819 return NF_ACCEPT;
5820#endif
5821
5822 family = state->pf;
5823 if (sk == NULL) {
5824 /* Without an associated socket the packet is either coming
5825 * from the kernel or it is being forwarded; check the packet
5826 * to determine which and if the packet is being forwarded
5827 * query the packet directly to determine the security label. */
5828 if (skb->skb_iif) {
5829 secmark_perm = PACKET__FORWARD_OUT;
5830 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5831 return NF_DROP;
5832 } else {
5833 secmark_perm = PACKET__SEND;
5834 peer_sid = SECINITSID_KERNEL;
5835 }
5836 } else if (sk_listener(sk)) {
5837 /* Locally generated packet but the associated socket is in the
5838 * listening state which means this is a SYN-ACK packet. In
5839 * this particular case the correct security label is assigned
5840 * to the connection/request_sock but unfortunately we can't
5841 * query the request_sock as it isn't queued on the parent
5842 * socket until after the SYN-ACK packet is sent; the only
5843 * viable choice is to regenerate the label like we do in
5844 * selinux_inet_conn_request(). See also selinux_ip_output()
5845 * for similar problems. */
5846 u32 skb_sid;
5847 struct sk_security_struct *sksec;
5848
5849 sksec = sk->sk_security;
5850 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5851 return NF_DROP;
5852 /* At this point, if the returned skb peerlbl is SECSID_NULL
5853 * and the packet has been through at least one XFRM
5854 * transformation then we must be dealing with the "final"
5855 * form of labeled IPsec packet; since we've already applied
5856 * all of our access controls on this packet we can safely
5857 * pass the packet. */
5858 if (skb_sid == SECSID_NULL) {
5859 switch (family) {
5860 case PF_INET:
5861 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5862 return NF_ACCEPT;
5863 break;
5864 case PF_INET6:
5865 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5866 return NF_ACCEPT;
5867 break;
5868 default:
5869 return NF_DROP_ERR(-ECONNREFUSED);
5870 }
5871 }
5872 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5873 return NF_DROP;
5874 secmark_perm = PACKET__SEND;
5875 } else {
5876 /* Locally generated packet, fetch the security label from the
5877 * associated socket. */
5878 struct sk_security_struct *sksec = sk->sk_security;
5879 peer_sid = sksec->sid;
5880 secmark_perm = PACKET__SEND;
5881 }
5882
5883 ifindex = state->out->ifindex;
5884 ad.type = LSM_AUDIT_DATA_NET;
5885 ad.u.net = &net;
5886 ad.u.net->netif = ifindex;
5887 ad.u.net->family = family;
5888 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5889 return NF_DROP;
5890
5891 if (secmark_active)
5892 if (avc_has_perm(&selinux_state,
5893 peer_sid, skb->secmark,
5894 SECCLASS_PACKET, secmark_perm, &ad))
5895 return NF_DROP_ERR(-ECONNREFUSED);
5896
5897 if (peerlbl_active) {
5898 u32 if_sid;
5899 u32 node_sid;
5900
5901 if (sel_netif_sid(state->net, ifindex, &if_sid))
5902 return NF_DROP;
5903 if (avc_has_perm(&selinux_state,
5904 peer_sid, if_sid,
5905 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5906 return NF_DROP_ERR(-ECONNREFUSED);
5907
5908 if (sel_netnode_sid(addrp, family, &node_sid))
5909 return NF_DROP;
5910 if (avc_has_perm(&selinux_state,
5911 peer_sid, node_sid,
5912 SECCLASS_NODE, NODE__SENDTO, &ad))
5913 return NF_DROP_ERR(-ECONNREFUSED);
5914 }
5915
5916 return NF_ACCEPT;
5917}
5918#endif /* CONFIG_NETFILTER */
5919
5920static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5921{
5922 int rc = 0;
5923 unsigned int msg_len;
5924 unsigned int data_len = skb->len;
5925 unsigned char *data = skb->data;
5926 struct nlmsghdr *nlh;
5927 struct sk_security_struct *sksec = sk->sk_security;
5928 u16 sclass = sksec->sclass;
5929 u32 perm;
5930
5931 while (data_len >= nlmsg_total_size(0)) {
5932 nlh = (struct nlmsghdr *)data;
5933
5934 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5935 * users which means we can't reject skb's with bogus
5936 * length fields; our solution is to follow what
5937 * netlink_rcv_skb() does and simply skip processing at
5938 * messages with length fields that are clearly junk
5939 */
5940 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5941 return 0;
5942
5943 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5944 if (rc == 0) {
5945 rc = sock_has_perm(sk, perm);
5946 if (rc)
5947 return rc;
5948 } else if (rc == -EINVAL) {
5949 /* -EINVAL is a missing msg/perm mapping */
5950 pr_warn_ratelimited("SELinux: unrecognized netlink"
5951 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5952 " pid=%d comm=%s\n",
5953 sk->sk_protocol, nlh->nlmsg_type,
5954 secclass_map[sclass - 1].name,
5955 task_pid_nr(current), current->comm);
5956 if (enforcing_enabled(&selinux_state) &&
5957 !security_get_allow_unknown(&selinux_state))
5958 return rc;
5959 rc = 0;
5960 } else if (rc == -ENOENT) {
5961 /* -ENOENT is a missing socket/class mapping, ignore */
5962 rc = 0;
5963 } else {
5964 return rc;
5965 }
5966
5967 /* move to the next message after applying netlink padding */
5968 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5969 if (msg_len >= data_len)
5970 return 0;
5971 data_len -= msg_len;
5972 data += msg_len;
5973 }
5974
5975 return rc;
5976}
5977
5978static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5979{
5980 isec->sclass = sclass;
5981 isec->sid = current_sid();
5982}
5983
5984static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5985 u32 perms)
5986{
5987 struct ipc_security_struct *isec;
5988 struct common_audit_data ad;
5989 u32 sid = current_sid();
5990
5991 isec = selinux_ipc(ipc_perms);
5992
5993 ad.type = LSM_AUDIT_DATA_IPC;
5994 ad.u.ipc_id = ipc_perms->key;
5995
5996 return avc_has_perm(&selinux_state,
5997 sid, isec->sid, isec->sclass, perms, &ad);
5998}
5999
6000static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6001{
6002 struct msg_security_struct *msec;
6003
6004 msec = selinux_msg_msg(msg);
6005 msec->sid = SECINITSID_UNLABELED;
6006
6007 return 0;
6008}
6009
6010/* message queue security operations */
6011static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6012{
6013 struct ipc_security_struct *isec;
6014 struct common_audit_data ad;
6015 u32 sid = current_sid();
6016
6017 isec = selinux_ipc(msq);
6018 ipc_init_security(isec, SECCLASS_MSGQ);
6019
6020 ad.type = LSM_AUDIT_DATA_IPC;
6021 ad.u.ipc_id = msq->key;
6022
6023 return avc_has_perm(&selinux_state,
6024 sid, isec->sid, SECCLASS_MSGQ,
6025 MSGQ__CREATE, &ad);
6026}
6027
6028static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6029{
6030 struct ipc_security_struct *isec;
6031 struct common_audit_data ad;
6032 u32 sid = current_sid();
6033
6034 isec = selinux_ipc(msq);
6035
6036 ad.type = LSM_AUDIT_DATA_IPC;
6037 ad.u.ipc_id = msq->key;
6038
6039 return avc_has_perm(&selinux_state,
6040 sid, isec->sid, SECCLASS_MSGQ,
6041 MSGQ__ASSOCIATE, &ad);
6042}
6043
6044static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6045{
6046 int err;
6047 int perms;
6048
6049 switch (cmd) {
6050 case IPC_INFO:
6051 case MSG_INFO:
6052 /* No specific object, just general system-wide information. */
6053 return avc_has_perm(&selinux_state,
6054 current_sid(), SECINITSID_KERNEL,
6055 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6056 case IPC_STAT:
6057 case MSG_STAT:
6058 case MSG_STAT_ANY:
6059 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6060 break;
6061 case IPC_SET:
6062 perms = MSGQ__SETATTR;
6063 break;
6064 case IPC_RMID:
6065 perms = MSGQ__DESTROY;
6066 break;
6067 default:
6068 return 0;
6069 }
6070
6071 err = ipc_has_perm(msq, perms);
6072 return err;
6073}
6074
6075static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6076{
6077 struct ipc_security_struct *isec;
6078 struct msg_security_struct *msec;
6079 struct common_audit_data ad;
6080 u32 sid = current_sid();
6081 int rc;
6082
6083 isec = selinux_ipc(msq);
6084 msec = selinux_msg_msg(msg);
6085
6086 /*
6087 * First time through, need to assign label to the message
6088 */
6089 if (msec->sid == SECINITSID_UNLABELED) {
6090 /*
6091 * Compute new sid based on current process and
6092 * message queue this message will be stored in
6093 */
6094 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6095 SECCLASS_MSG, NULL, &msec->sid);
6096 if (rc)
6097 return rc;
6098 }
6099
6100 ad.type = LSM_AUDIT_DATA_IPC;
6101 ad.u.ipc_id = msq->key;
6102
6103 /* Can this process write to the queue? */
6104 rc = avc_has_perm(&selinux_state,
6105 sid, isec->sid, SECCLASS_MSGQ,
6106 MSGQ__WRITE, &ad);
6107 if (!rc)
6108 /* Can this process send the message */
6109 rc = avc_has_perm(&selinux_state,
6110 sid, msec->sid, SECCLASS_MSG,
6111 MSG__SEND, &ad);
6112 if (!rc)
6113 /* Can the message be put in the queue? */
6114 rc = avc_has_perm(&selinux_state,
6115 msec->sid, isec->sid, SECCLASS_MSGQ,
6116 MSGQ__ENQUEUE, &ad);
6117
6118 return rc;
6119}
6120
6121static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6122 struct task_struct *target,
6123 long type, int mode)
6124{
6125 struct ipc_security_struct *isec;
6126 struct msg_security_struct *msec;
6127 struct common_audit_data ad;
6128 u32 sid = task_sid_obj(target);
6129 int rc;
6130
6131 isec = selinux_ipc(msq);
6132 msec = selinux_msg_msg(msg);
6133
6134 ad.type = LSM_AUDIT_DATA_IPC;
6135 ad.u.ipc_id = msq->key;
6136
6137 rc = avc_has_perm(&selinux_state,
6138 sid, isec->sid,
6139 SECCLASS_MSGQ, MSGQ__READ, &ad);
6140 if (!rc)
6141 rc = avc_has_perm(&selinux_state,
6142 sid, msec->sid,
6143 SECCLASS_MSG, MSG__RECEIVE, &ad);
6144 return rc;
6145}
6146
6147/* Shared Memory security operations */
6148static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6149{
6150 struct ipc_security_struct *isec;
6151 struct common_audit_data ad;
6152 u32 sid = current_sid();
6153
6154 isec = selinux_ipc(shp);
6155 ipc_init_security(isec, SECCLASS_SHM);
6156
6157 ad.type = LSM_AUDIT_DATA_IPC;
6158 ad.u.ipc_id = shp->key;
6159
6160 return avc_has_perm(&selinux_state,
6161 sid, isec->sid, SECCLASS_SHM,
6162 SHM__CREATE, &ad);
6163}
6164
6165static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6166{
6167 struct ipc_security_struct *isec;
6168 struct common_audit_data ad;
6169 u32 sid = current_sid();
6170
6171 isec = selinux_ipc(shp);
6172
6173 ad.type = LSM_AUDIT_DATA_IPC;
6174 ad.u.ipc_id = shp->key;
6175
6176 return avc_has_perm(&selinux_state,
6177 sid, isec->sid, SECCLASS_SHM,
6178 SHM__ASSOCIATE, &ad);
6179}
6180
6181/* Note, at this point, shp is locked down */
6182static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6183{
6184 int perms;
6185 int err;
6186
6187 switch (cmd) {
6188 case IPC_INFO:
6189 case SHM_INFO:
6190 /* No specific object, just general system-wide information. */
6191 return avc_has_perm(&selinux_state,
6192 current_sid(), SECINITSID_KERNEL,
6193 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6194 case IPC_STAT:
6195 case SHM_STAT:
6196 case SHM_STAT_ANY:
6197 perms = SHM__GETATTR | SHM__ASSOCIATE;
6198 break;
6199 case IPC_SET:
6200 perms = SHM__SETATTR;
6201 break;
6202 case SHM_LOCK:
6203 case SHM_UNLOCK:
6204 perms = SHM__LOCK;
6205 break;
6206 case IPC_RMID:
6207 perms = SHM__DESTROY;
6208 break;
6209 default:
6210 return 0;
6211 }
6212
6213 err = ipc_has_perm(shp, perms);
6214 return err;
6215}
6216
6217static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6218 char __user *shmaddr, int shmflg)
6219{
6220 u32 perms;
6221
6222 if (shmflg & SHM_RDONLY)
6223 perms = SHM__READ;
6224 else
6225 perms = SHM__READ | SHM__WRITE;
6226
6227 return ipc_has_perm(shp, perms);
6228}
6229
6230/* Semaphore security operations */
6231static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6232{
6233 struct ipc_security_struct *isec;
6234 struct common_audit_data ad;
6235 u32 sid = current_sid();
6236
6237 isec = selinux_ipc(sma);
6238 ipc_init_security(isec, SECCLASS_SEM);
6239
6240 ad.type = LSM_AUDIT_DATA_IPC;
6241 ad.u.ipc_id = sma->key;
6242
6243 return avc_has_perm(&selinux_state,
6244 sid, isec->sid, SECCLASS_SEM,
6245 SEM__CREATE, &ad);
6246}
6247
6248static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6249{
6250 struct ipc_security_struct *isec;
6251 struct common_audit_data ad;
6252 u32 sid = current_sid();
6253
6254 isec = selinux_ipc(sma);
6255
6256 ad.type = LSM_AUDIT_DATA_IPC;
6257 ad.u.ipc_id = sma->key;
6258
6259 return avc_has_perm(&selinux_state,
6260 sid, isec->sid, SECCLASS_SEM,
6261 SEM__ASSOCIATE, &ad);
6262}
6263
6264/* Note, at this point, sma is locked down */
6265static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6266{
6267 int err;
6268 u32 perms;
6269
6270 switch (cmd) {
6271 case IPC_INFO:
6272 case SEM_INFO:
6273 /* No specific object, just general system-wide information. */
6274 return avc_has_perm(&selinux_state,
6275 current_sid(), SECINITSID_KERNEL,
6276 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6277 case GETPID:
6278 case GETNCNT:
6279 case GETZCNT:
6280 perms = SEM__GETATTR;
6281 break;
6282 case GETVAL:
6283 case GETALL:
6284 perms = SEM__READ;
6285 break;
6286 case SETVAL:
6287 case SETALL:
6288 perms = SEM__WRITE;
6289 break;
6290 case IPC_RMID:
6291 perms = SEM__DESTROY;
6292 break;
6293 case IPC_SET:
6294 perms = SEM__SETATTR;
6295 break;
6296 case IPC_STAT:
6297 case SEM_STAT:
6298 case SEM_STAT_ANY:
6299 perms = SEM__GETATTR | SEM__ASSOCIATE;
6300 break;
6301 default:
6302 return 0;
6303 }
6304
6305 err = ipc_has_perm(sma, perms);
6306 return err;
6307}
6308
6309static int selinux_sem_semop(struct kern_ipc_perm *sma,
6310 struct sembuf *sops, unsigned nsops, int alter)
6311{
6312 u32 perms;
6313
6314 if (alter)
6315 perms = SEM__READ | SEM__WRITE;
6316 else
6317 perms = SEM__READ;
6318
6319 return ipc_has_perm(sma, perms);
6320}
6321
6322static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6323{
6324 u32 av = 0;
6325
6326 av = 0;
6327 if (flag & S_IRUGO)
6328 av |= IPC__UNIX_READ;
6329 if (flag & S_IWUGO)
6330 av |= IPC__UNIX_WRITE;
6331
6332 if (av == 0)
6333 return 0;
6334
6335 return ipc_has_perm(ipcp, av);
6336}
6337
6338static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6339{
6340 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6341 *secid = isec->sid;
6342}
6343
6344static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6345{
6346 if (inode)
6347 inode_doinit_with_dentry(inode, dentry);
6348}
6349
6350static int selinux_getprocattr(struct task_struct *p,
6351 const char *name, char **value)
6352{
6353 const struct task_security_struct *__tsec;
6354 u32 sid;
6355 int error;
6356 unsigned len;
6357
6358 rcu_read_lock();
6359 __tsec = selinux_cred(__task_cred(p));
6360
6361 if (current != p) {
6362 error = avc_has_perm(&selinux_state,
6363 current_sid(), __tsec->sid,
6364 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6365 if (error)
6366 goto bad;
6367 }
6368
6369 if (!strcmp(name, "current"))
6370 sid = __tsec->sid;
6371 else if (!strcmp(name, "prev"))
6372 sid = __tsec->osid;
6373 else if (!strcmp(name, "exec"))
6374 sid = __tsec->exec_sid;
6375 else if (!strcmp(name, "fscreate"))
6376 sid = __tsec->create_sid;
6377 else if (!strcmp(name, "keycreate"))
6378 sid = __tsec->keycreate_sid;
6379 else if (!strcmp(name, "sockcreate"))
6380 sid = __tsec->sockcreate_sid;
6381 else {
6382 error = -EINVAL;
6383 goto bad;
6384 }
6385 rcu_read_unlock();
6386
6387 if (!sid)
6388 return 0;
6389
6390 error = security_sid_to_context(&selinux_state, sid, value, &len);
6391 if (error)
6392 return error;
6393 return len;
6394
6395bad:
6396 rcu_read_unlock();
6397 return error;
6398}
6399
6400static int selinux_setprocattr(const char *name, void *value, size_t size)
6401{
6402 struct task_security_struct *tsec;
6403 struct cred *new;
6404 u32 mysid = current_sid(), sid = 0, ptsid;
6405 int error;
6406 char *str = value;
6407
6408 /*
6409 * Basic control over ability to set these attributes at all.
6410 */
6411 if (!strcmp(name, "exec"))
6412 error = avc_has_perm(&selinux_state,
6413 mysid, mysid, SECCLASS_PROCESS,
6414 PROCESS__SETEXEC, NULL);
6415 else if (!strcmp(name, "fscreate"))
6416 error = avc_has_perm(&selinux_state,
6417 mysid, mysid, SECCLASS_PROCESS,
6418 PROCESS__SETFSCREATE, NULL);
6419 else if (!strcmp(name, "keycreate"))
6420 error = avc_has_perm(&selinux_state,
6421 mysid, mysid, SECCLASS_PROCESS,
6422 PROCESS__SETKEYCREATE, NULL);
6423 else if (!strcmp(name, "sockcreate"))
6424 error = avc_has_perm(&selinux_state,
6425 mysid, mysid, SECCLASS_PROCESS,
6426 PROCESS__SETSOCKCREATE, NULL);
6427 else if (!strcmp(name, "current"))
6428 error = avc_has_perm(&selinux_state,
6429 mysid, mysid, SECCLASS_PROCESS,
6430 PROCESS__SETCURRENT, NULL);
6431 else
6432 error = -EINVAL;
6433 if (error)
6434 return error;
6435
6436 /* Obtain a SID for the context, if one was specified. */
6437 if (size && str[0] && str[0] != '\n') {
6438 if (str[size-1] == '\n') {
6439 str[size-1] = 0;
6440 size--;
6441 }
6442 error = security_context_to_sid(&selinux_state, value, size,
6443 &sid, GFP_KERNEL);
6444 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6445 if (!has_cap_mac_admin(true)) {
6446 struct audit_buffer *ab;
6447 size_t audit_size;
6448
6449 /* We strip a nul only if it is at the end, otherwise the
6450 * context contains a nul and we should audit that */
6451 if (str[size - 1] == '\0')
6452 audit_size = size - 1;
6453 else
6454 audit_size = size;
6455 ab = audit_log_start(audit_context(),
6456 GFP_ATOMIC,
6457 AUDIT_SELINUX_ERR);
6458 if (!ab)
6459 return error;
6460 audit_log_format(ab, "op=fscreate invalid_context=");
6461 audit_log_n_untrustedstring(ab, value, audit_size);
6462 audit_log_end(ab);
6463
6464 return error;
6465 }
6466 error = security_context_to_sid_force(
6467 &selinux_state,
6468 value, size, &sid);
6469 }
6470 if (error)
6471 return error;
6472 }
6473
6474 new = prepare_creds();
6475 if (!new)
6476 return -ENOMEM;
6477
6478 /* Permission checking based on the specified context is
6479 performed during the actual operation (execve,
6480 open/mkdir/...), when we know the full context of the
6481 operation. See selinux_bprm_creds_for_exec for the execve
6482 checks and may_create for the file creation checks. The
6483 operation will then fail if the context is not permitted. */
6484 tsec = selinux_cred(new);
6485 if (!strcmp(name, "exec")) {
6486 tsec->exec_sid = sid;
6487 } else if (!strcmp(name, "fscreate")) {
6488 tsec->create_sid = sid;
6489 } else if (!strcmp(name, "keycreate")) {
6490 if (sid) {
6491 error = avc_has_perm(&selinux_state, mysid, sid,
6492 SECCLASS_KEY, KEY__CREATE, NULL);
6493 if (error)
6494 goto abort_change;
6495 }
6496 tsec->keycreate_sid = sid;
6497 } else if (!strcmp(name, "sockcreate")) {
6498 tsec->sockcreate_sid = sid;
6499 } else if (!strcmp(name, "current")) {
6500 error = -EINVAL;
6501 if (sid == 0)
6502 goto abort_change;
6503
6504 /* Only allow single threaded processes to change context */
6505 if (!current_is_single_threaded()) {
6506 error = security_bounded_transition(&selinux_state,
6507 tsec->sid, sid);
6508 if (error)
6509 goto abort_change;
6510 }
6511
6512 /* Check permissions for the transition. */
6513 error = avc_has_perm(&selinux_state,
6514 tsec->sid, sid, SECCLASS_PROCESS,
6515 PROCESS__DYNTRANSITION, NULL);
6516 if (error)
6517 goto abort_change;
6518
6519 /* Check for ptracing, and update the task SID if ok.
6520 Otherwise, leave SID unchanged and fail. */
6521 ptsid = ptrace_parent_sid();
6522 if (ptsid != 0) {
6523 error = avc_has_perm(&selinux_state,
6524 ptsid, sid, SECCLASS_PROCESS,
6525 PROCESS__PTRACE, NULL);
6526 if (error)
6527 goto abort_change;
6528 }
6529
6530 tsec->sid = sid;
6531 } else {
6532 error = -EINVAL;
6533 goto abort_change;
6534 }
6535
6536 commit_creds(new);
6537 return size;
6538
6539abort_change:
6540 abort_creds(new);
6541 return error;
6542}
6543
6544static int selinux_ismaclabel(const char *name)
6545{
6546 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6547}
6548
6549static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6550{
6551 return security_sid_to_context(&selinux_state, secid,
6552 secdata, seclen);
6553}
6554
6555static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6556{
6557 return security_context_to_sid(&selinux_state, secdata, seclen,
6558 secid, GFP_KERNEL);
6559}
6560
6561static void selinux_release_secctx(char *secdata, u32 seclen)
6562{
6563 kfree(secdata);
6564}
6565
6566static void selinux_inode_invalidate_secctx(struct inode *inode)
6567{
6568 struct inode_security_struct *isec = selinux_inode(inode);
6569
6570 spin_lock(&isec->lock);
6571 isec->initialized = LABEL_INVALID;
6572 spin_unlock(&isec->lock);
6573}
6574
6575/*
6576 * called with inode->i_mutex locked
6577 */
6578static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6579{
6580 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6581 ctx, ctxlen, 0);
6582 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6583 return rc == -EOPNOTSUPP ? 0 : rc;
6584}
6585
6586/*
6587 * called with inode->i_mutex locked
6588 */
6589static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6590{
6591 return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6592 ctx, ctxlen, 0);
6593}
6594
6595static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6596{
6597 int len = 0;
6598 len = selinux_inode_getsecurity(&init_user_ns, inode,
6599 XATTR_SELINUX_SUFFIX, ctx, true);
6600 if (len < 0)
6601 return len;
6602 *ctxlen = len;
6603 return 0;
6604}
6605#ifdef CONFIG_KEYS
6606
6607static int selinux_key_alloc(struct key *k, const struct cred *cred,
6608 unsigned long flags)
6609{
6610 const struct task_security_struct *tsec;
6611 struct key_security_struct *ksec;
6612
6613 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6614 if (!ksec)
6615 return -ENOMEM;
6616
6617 tsec = selinux_cred(cred);
6618 if (tsec->keycreate_sid)
6619 ksec->sid = tsec->keycreate_sid;
6620 else
6621 ksec->sid = tsec->sid;
6622
6623 k->security = ksec;
6624 return 0;
6625}
6626
6627static void selinux_key_free(struct key *k)
6628{
6629 struct key_security_struct *ksec = k->security;
6630
6631 k->security = NULL;
6632 kfree(ksec);
6633}
6634
6635static int selinux_key_permission(key_ref_t key_ref,
6636 const struct cred *cred,
6637 enum key_need_perm need_perm)
6638{
6639 struct key *key;
6640 struct key_security_struct *ksec;
6641 u32 perm, sid;
6642
6643 switch (need_perm) {
6644 case KEY_NEED_VIEW:
6645 perm = KEY__VIEW;
6646 break;
6647 case KEY_NEED_READ:
6648 perm = KEY__READ;
6649 break;
6650 case KEY_NEED_WRITE:
6651 perm = KEY__WRITE;
6652 break;
6653 case KEY_NEED_SEARCH:
6654 perm = KEY__SEARCH;
6655 break;
6656 case KEY_NEED_LINK:
6657 perm = KEY__LINK;
6658 break;
6659 case KEY_NEED_SETATTR:
6660 perm = KEY__SETATTR;
6661 break;
6662 case KEY_NEED_UNLINK:
6663 case KEY_SYSADMIN_OVERRIDE:
6664 case KEY_AUTHTOKEN_OVERRIDE:
6665 case KEY_DEFER_PERM_CHECK:
6666 return 0;
6667 default:
6668 WARN_ON(1);
6669 return -EPERM;
6670
6671 }
6672
6673 sid = cred_sid(cred);
6674 key = key_ref_to_ptr(key_ref);
6675 ksec = key->security;
6676
6677 return avc_has_perm(&selinux_state,
6678 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6679}
6680
6681static int selinux_key_getsecurity(struct key *key, char **_buffer)
6682{
6683 struct key_security_struct *ksec = key->security;
6684 char *context = NULL;
6685 unsigned len;
6686 int rc;
6687
6688 rc = security_sid_to_context(&selinux_state, ksec->sid,
6689 &context, &len);
6690 if (!rc)
6691 rc = len;
6692 *_buffer = context;
6693 return rc;
6694}
6695
6696#ifdef CONFIG_KEY_NOTIFICATIONS
6697static int selinux_watch_key(struct key *key)
6698{
6699 struct key_security_struct *ksec = key->security;
6700 u32 sid = current_sid();
6701
6702 return avc_has_perm(&selinux_state,
6703 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6704}
6705#endif
6706#endif
6707
6708#ifdef CONFIG_SECURITY_INFINIBAND
6709static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6710{
6711 struct common_audit_data ad;
6712 int err;
6713 u32 sid = 0;
6714 struct ib_security_struct *sec = ib_sec;
6715 struct lsm_ibpkey_audit ibpkey;
6716
6717 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6718 if (err)
6719 return err;
6720
6721 ad.type = LSM_AUDIT_DATA_IBPKEY;
6722 ibpkey.subnet_prefix = subnet_prefix;
6723 ibpkey.pkey = pkey_val;
6724 ad.u.ibpkey = &ibpkey;
6725 return avc_has_perm(&selinux_state,
6726 sec->sid, sid,
6727 SECCLASS_INFINIBAND_PKEY,
6728 INFINIBAND_PKEY__ACCESS, &ad);
6729}
6730
6731static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6732 u8 port_num)
6733{
6734 struct common_audit_data ad;
6735 int err;
6736 u32 sid = 0;
6737 struct ib_security_struct *sec = ib_sec;
6738 struct lsm_ibendport_audit ibendport;
6739
6740 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6741 &sid);
6742
6743 if (err)
6744 return err;
6745
6746 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6747 ibendport.dev_name = dev_name;
6748 ibendport.port = port_num;
6749 ad.u.ibendport = &ibendport;
6750 return avc_has_perm(&selinux_state,
6751 sec->sid, sid,
6752 SECCLASS_INFINIBAND_ENDPORT,
6753 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6754}
6755
6756static int selinux_ib_alloc_security(void **ib_sec)
6757{
6758 struct ib_security_struct *sec;
6759
6760 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6761 if (!sec)
6762 return -ENOMEM;
6763 sec->sid = current_sid();
6764
6765 *ib_sec = sec;
6766 return 0;
6767}
6768
6769static void selinux_ib_free_security(void *ib_sec)
6770{
6771 kfree(ib_sec);
6772}
6773#endif
6774
6775#ifdef CONFIG_BPF_SYSCALL
6776static int selinux_bpf(int cmd, union bpf_attr *attr,
6777 unsigned int size)
6778{
6779 u32 sid = current_sid();
6780 int ret;
6781
6782 switch (cmd) {
6783 case BPF_MAP_CREATE:
6784 ret = avc_has_perm(&selinux_state,
6785 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6786 NULL);
6787 break;
6788 case BPF_PROG_LOAD:
6789 ret = avc_has_perm(&selinux_state,
6790 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6791 NULL);
6792 break;
6793 default:
6794 ret = 0;
6795 break;
6796 }
6797
6798 return ret;
6799}
6800
6801static u32 bpf_map_fmode_to_av(fmode_t fmode)
6802{
6803 u32 av = 0;
6804
6805 if (fmode & FMODE_READ)
6806 av |= BPF__MAP_READ;
6807 if (fmode & FMODE_WRITE)
6808 av |= BPF__MAP_WRITE;
6809 return av;
6810}
6811
6812/* This function will check the file pass through unix socket or binder to see
6813 * if it is a bpf related object. And apply corresponding checks on the bpf
6814 * object based on the type. The bpf maps and programs, not like other files and
6815 * socket, are using a shared anonymous inode inside the kernel as their inode.
6816 * So checking that inode cannot identify if the process have privilege to
6817 * access the bpf object and that's why we have to add this additional check in
6818 * selinux_file_receive and selinux_binder_transfer_files.
6819 */
6820static int bpf_fd_pass(struct file *file, u32 sid)
6821{
6822 struct bpf_security_struct *bpfsec;
6823 struct bpf_prog *prog;
6824 struct bpf_map *map;
6825 int ret;
6826
6827 if (file->f_op == &bpf_map_fops) {
6828 map = file->private_data;
6829 bpfsec = map->security;
6830 ret = avc_has_perm(&selinux_state,
6831 sid, bpfsec->sid, SECCLASS_BPF,
6832 bpf_map_fmode_to_av(file->f_mode), NULL);
6833 if (ret)
6834 return ret;
6835 } else if (file->f_op == &bpf_prog_fops) {
6836 prog = file->private_data;
6837 bpfsec = prog->aux->security;
6838 ret = avc_has_perm(&selinux_state,
6839 sid, bpfsec->sid, SECCLASS_BPF,
6840 BPF__PROG_RUN, NULL);
6841 if (ret)
6842 return ret;
6843 }
6844 return 0;
6845}
6846
6847static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6848{
6849 u32 sid = current_sid();
6850 struct bpf_security_struct *bpfsec;
6851
6852 bpfsec = map->security;
6853 return avc_has_perm(&selinux_state,
6854 sid, bpfsec->sid, SECCLASS_BPF,
6855 bpf_map_fmode_to_av(fmode), NULL);
6856}
6857
6858static int selinux_bpf_prog(struct bpf_prog *prog)
6859{
6860 u32 sid = current_sid();
6861 struct bpf_security_struct *bpfsec;
6862
6863 bpfsec = prog->aux->security;
6864 return avc_has_perm(&selinux_state,
6865 sid, bpfsec->sid, SECCLASS_BPF,
6866 BPF__PROG_RUN, NULL);
6867}
6868
6869static int selinux_bpf_map_alloc(struct bpf_map *map)
6870{
6871 struct bpf_security_struct *bpfsec;
6872
6873 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6874 if (!bpfsec)
6875 return -ENOMEM;
6876
6877 bpfsec->sid = current_sid();
6878 map->security = bpfsec;
6879
6880 return 0;
6881}
6882
6883static void selinux_bpf_map_free(struct bpf_map *map)
6884{
6885 struct bpf_security_struct *bpfsec = map->security;
6886
6887 map->security = NULL;
6888 kfree(bpfsec);
6889}
6890
6891static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6892{
6893 struct bpf_security_struct *bpfsec;
6894
6895 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6896 if (!bpfsec)
6897 return -ENOMEM;
6898
6899 bpfsec->sid = current_sid();
6900 aux->security = bpfsec;
6901
6902 return 0;
6903}
6904
6905static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6906{
6907 struct bpf_security_struct *bpfsec = aux->security;
6908
6909 aux->security = NULL;
6910 kfree(bpfsec);
6911}
6912#endif
6913
6914struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6915 .lbs_cred = sizeof(struct task_security_struct),
6916 .lbs_file = sizeof(struct file_security_struct),
6917 .lbs_inode = sizeof(struct inode_security_struct),
6918 .lbs_ipc = sizeof(struct ipc_security_struct),
6919 .lbs_msg_msg = sizeof(struct msg_security_struct),
6920 .lbs_superblock = sizeof(struct superblock_security_struct),
6921};
6922
6923#ifdef CONFIG_PERF_EVENTS
6924static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6925{
6926 u32 requested, sid = current_sid();
6927
6928 if (type == PERF_SECURITY_OPEN)
6929 requested = PERF_EVENT__OPEN;
6930 else if (type == PERF_SECURITY_CPU)
6931 requested = PERF_EVENT__CPU;
6932 else if (type == PERF_SECURITY_KERNEL)
6933 requested = PERF_EVENT__KERNEL;
6934 else if (type == PERF_SECURITY_TRACEPOINT)
6935 requested = PERF_EVENT__TRACEPOINT;
6936 else
6937 return -EINVAL;
6938
6939 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6940 requested, NULL);
6941}
6942
6943static int selinux_perf_event_alloc(struct perf_event *event)
6944{
6945 struct perf_event_security_struct *perfsec;
6946
6947 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6948 if (!perfsec)
6949 return -ENOMEM;
6950
6951 perfsec->sid = current_sid();
6952 event->security = perfsec;
6953
6954 return 0;
6955}
6956
6957static void selinux_perf_event_free(struct perf_event *event)
6958{
6959 struct perf_event_security_struct *perfsec = event->security;
6960
6961 event->security = NULL;
6962 kfree(perfsec);
6963}
6964
6965static int selinux_perf_event_read(struct perf_event *event)
6966{
6967 struct perf_event_security_struct *perfsec = event->security;
6968 u32 sid = current_sid();
6969
6970 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6971 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6972}
6973
6974static int selinux_perf_event_write(struct perf_event *event)
6975{
6976 struct perf_event_security_struct *perfsec = event->security;
6977 u32 sid = current_sid();
6978
6979 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6980 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6981}
6982#endif
6983
6984#ifdef CONFIG_IO_URING
6985/**
6986 * selinux_uring_override_creds - check the requested cred override
6987 * @new: the target creds
6988 *
6989 * Check to see if the current task is allowed to override it's credentials
6990 * to service an io_uring operation.
6991 */
6992static int selinux_uring_override_creds(const struct cred *new)
6993{
6994 return avc_has_perm(&selinux_state, current_sid(), cred_sid(new),
6995 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
6996}
6997
6998/**
6999 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7000 *
7001 * Check to see if the current task is allowed to create a new io_uring
7002 * kernel polling thread.
7003 */
7004static int selinux_uring_sqpoll(void)
7005{
7006 int sid = current_sid();
7007
7008 return avc_has_perm(&selinux_state, sid, sid,
7009 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7010}
7011
7012/**
7013 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7014 * @ioucmd: the io_uring command structure
7015 *
7016 * Check to see if the current domain is allowed to execute an
7017 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7018 *
7019 */
7020static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7021{
7022 struct file *file = ioucmd->file;
7023 struct inode *inode = file_inode(file);
7024 struct inode_security_struct *isec = selinux_inode(inode);
7025 struct common_audit_data ad;
7026
7027 ad.type = LSM_AUDIT_DATA_FILE;
7028 ad.u.file = file;
7029
7030 return avc_has_perm(&selinux_state, current_sid(), isec->sid,
7031 SECCLASS_IO_URING, IO_URING__CMD, &ad);
7032}
7033#endif /* CONFIG_IO_URING */
7034
7035/*
7036 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7037 * 1. any hooks that don't belong to (2.) or (3.) below,
7038 * 2. hooks that both access structures allocated by other hooks, and allocate
7039 * structures that can be later accessed by other hooks (mostly "cloning"
7040 * hooks),
7041 * 3. hooks that only allocate structures that can be later accessed by other
7042 * hooks ("allocating" hooks).
7043 *
7044 * Please follow block comment delimiters in the list to keep this order.
7045 *
7046 * This ordering is needed for SELinux runtime disable to work at least somewhat
7047 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7048 * when disabling SELinux at runtime.
7049 */
7050static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7051 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7052 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7053 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7054 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7055
7056 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7057 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7058 LSM_HOOK_INIT(capget, selinux_capget),
7059 LSM_HOOK_INIT(capset, selinux_capset),
7060 LSM_HOOK_INIT(capable, selinux_capable),
7061 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7062 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7063 LSM_HOOK_INIT(syslog, selinux_syslog),
7064 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7065
7066 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7067
7068 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7069 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7070 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7071
7072 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7073 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7074 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7075 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7076 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7077 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7078 LSM_HOOK_INIT(sb_mount, selinux_mount),
7079 LSM_HOOK_INIT(sb_umount, selinux_umount),
7080 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7081 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7082
7083 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7084
7085 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7086 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7087
7088 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7089 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7090 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7091 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7092 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7093 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7094 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7095 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7096 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7097 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7098 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7099 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7100 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7101 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7102 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7103 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7104 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7105 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7106 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7107 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7108 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7109 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7110 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7111 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7112 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7113 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7114 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7115 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7116 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7117 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7118 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7119
7120 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7121
7122 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7123 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7124 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7125 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7126 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7127 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7128 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7129 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7130 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7131 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7132 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7133
7134 LSM_HOOK_INIT(file_open, selinux_file_open),
7135
7136 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7137 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7138 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7139 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7140 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7141 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7142 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7143 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7144 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7145 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7146 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7147 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7148 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7149 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7150 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7151 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7152 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7153 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7154 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7155 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7156 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7157 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7158 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7159 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7160 LSM_HOOK_INIT(userns_create, selinux_userns_create),
7161
7162 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7163 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7164
7165 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7166 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7167 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7168 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7169
7170 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7171 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7172 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7173
7174 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7175 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7176 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7177
7178 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7179
7180 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7181 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7182
7183 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7184 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7185 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7186 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7187 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7188 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7189
7190 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7191 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7192
7193 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7194 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7195 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7196 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7197 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7198 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7199 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7200 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7201 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7202 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7203 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7204 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7205 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7206 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7207 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7208 LSM_HOOK_INIT(socket_getpeersec_stream,
7209 selinux_socket_getpeersec_stream),
7210 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7211 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7212 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7213 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7214 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7215 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7216 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7217 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7218 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7219 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7220 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7221 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7222 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7223 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7224 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7225 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7226 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7227 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7228 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7229 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7230 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7231#ifdef CONFIG_SECURITY_INFINIBAND
7232 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7233 LSM_HOOK_INIT(ib_endport_manage_subnet,
7234 selinux_ib_endport_manage_subnet),
7235 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7236#endif
7237#ifdef CONFIG_SECURITY_NETWORK_XFRM
7238 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7239 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7240 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7241 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7242 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7243 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7244 selinux_xfrm_state_pol_flow_match),
7245 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7246#endif
7247
7248#ifdef CONFIG_KEYS
7249 LSM_HOOK_INIT(key_free, selinux_key_free),
7250 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7251 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7252#ifdef CONFIG_KEY_NOTIFICATIONS
7253 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7254#endif
7255#endif
7256
7257#ifdef CONFIG_AUDIT
7258 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7259 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7260 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7261#endif
7262
7263#ifdef CONFIG_BPF_SYSCALL
7264 LSM_HOOK_INIT(bpf, selinux_bpf),
7265 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7266 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7267 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7268 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7269#endif
7270
7271#ifdef CONFIG_PERF_EVENTS
7272 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7273 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7274 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7275 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7276#endif
7277
7278#ifdef CONFIG_IO_URING
7279 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7280 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7281 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7282#endif
7283
7284 /*
7285 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7286 */
7287 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7288 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7289 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7290#ifdef CONFIG_SECURITY_NETWORK_XFRM
7291 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7292#endif
7293
7294 /*
7295 * PUT "ALLOCATING" HOOKS HERE
7296 */
7297 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7298 LSM_HOOK_INIT(msg_queue_alloc_security,
7299 selinux_msg_queue_alloc_security),
7300 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7301 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7302 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7303 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7304 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7305 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7306 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7307 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7308#ifdef CONFIG_SECURITY_INFINIBAND
7309 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7310#endif
7311#ifdef CONFIG_SECURITY_NETWORK_XFRM
7312 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7313 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7314 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7315 selinux_xfrm_state_alloc_acquire),
7316#endif
7317#ifdef CONFIG_KEYS
7318 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7319#endif
7320#ifdef CONFIG_AUDIT
7321 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7322#endif
7323#ifdef CONFIG_BPF_SYSCALL
7324 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7325 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7326#endif
7327#ifdef CONFIG_PERF_EVENTS
7328 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7329#endif
7330};
7331
7332static __init int selinux_init(void)
7333{
7334 pr_info("SELinux: Initializing.\n");
7335
7336 memset(&selinux_state, 0, sizeof(selinux_state));
7337 enforcing_set(&selinux_state, selinux_enforcing_boot);
7338 if (CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE)
7339 pr_err("SELinux: CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE is non-zero. This is deprecated and will be rejected in a future kernel release.\n");
7340 checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7341 selinux_avc_init(&selinux_state.avc);
7342 mutex_init(&selinux_state.status_lock);
7343 mutex_init(&selinux_state.policy_mutex);
7344
7345 /* Set the security state for the initial task. */
7346 cred_init_security();
7347
7348 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7349
7350 avc_init();
7351
7352 avtab_cache_init();
7353
7354 ebitmap_cache_init();
7355
7356 hashtab_cache_init();
7357
7358 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7359
7360 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7361 panic("SELinux: Unable to register AVC netcache callback\n");
7362
7363 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7364 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7365
7366 if (selinux_enforcing_boot)
7367 pr_debug("SELinux: Starting in enforcing mode\n");
7368 else
7369 pr_debug("SELinux: Starting in permissive mode\n");
7370
7371 fs_validate_description("selinux", selinux_fs_parameters);
7372
7373 return 0;
7374}
7375
7376static void delayed_superblock_init(struct super_block *sb, void *unused)
7377{
7378 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7379}
7380
7381void selinux_complete_init(void)
7382{
7383 pr_debug("SELinux: Completing initialization.\n");
7384
7385 /* Set up any superblocks initialized prior to the policy load. */
7386 pr_debug("SELinux: Setting up existing superblocks.\n");
7387 iterate_supers(delayed_superblock_init, NULL);
7388}
7389
7390/* SELinux requires early initialization in order to label
7391 all processes and objects when they are created. */
7392DEFINE_LSM(selinux) = {
7393 .name = "selinux",
7394 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7395 .enabled = &selinux_enabled_boot,
7396 .blobs = &selinux_blob_sizes,
7397 .init = selinux_init,
7398};
7399
7400#if defined(CONFIG_NETFILTER)
7401
7402static const struct nf_hook_ops selinux_nf_ops[] = {
7403 {
7404 .hook = selinux_ip_postroute,
7405 .pf = NFPROTO_IPV4,
7406 .hooknum = NF_INET_POST_ROUTING,
7407 .priority = NF_IP_PRI_SELINUX_LAST,
7408 },
7409 {
7410 .hook = selinux_ip_forward,
7411 .pf = NFPROTO_IPV4,
7412 .hooknum = NF_INET_FORWARD,
7413 .priority = NF_IP_PRI_SELINUX_FIRST,
7414 },
7415 {
7416 .hook = selinux_ip_output,
7417 .pf = NFPROTO_IPV4,
7418 .hooknum = NF_INET_LOCAL_OUT,
7419 .priority = NF_IP_PRI_SELINUX_FIRST,
7420 },
7421#if IS_ENABLED(CONFIG_IPV6)
7422 {
7423 .hook = selinux_ip_postroute,
7424 .pf = NFPROTO_IPV6,
7425 .hooknum = NF_INET_POST_ROUTING,
7426 .priority = NF_IP6_PRI_SELINUX_LAST,
7427 },
7428 {
7429 .hook = selinux_ip_forward,
7430 .pf = NFPROTO_IPV6,
7431 .hooknum = NF_INET_FORWARD,
7432 .priority = NF_IP6_PRI_SELINUX_FIRST,
7433 },
7434 {
7435 .hook = selinux_ip_output,
7436 .pf = NFPROTO_IPV6,
7437 .hooknum = NF_INET_LOCAL_OUT,
7438 .priority = NF_IP6_PRI_SELINUX_FIRST,
7439 },
7440#endif /* IPV6 */
7441};
7442
7443static int __net_init selinux_nf_register(struct net *net)
7444{
7445 return nf_register_net_hooks(net, selinux_nf_ops,
7446 ARRAY_SIZE(selinux_nf_ops));
7447}
7448
7449static void __net_exit selinux_nf_unregister(struct net *net)
7450{
7451 nf_unregister_net_hooks(net, selinux_nf_ops,
7452 ARRAY_SIZE(selinux_nf_ops));
7453}
7454
7455static struct pernet_operations selinux_net_ops = {
7456 .init = selinux_nf_register,
7457 .exit = selinux_nf_unregister,
7458};
7459
7460static int __init selinux_nf_ip_init(void)
7461{
7462 int err;
7463
7464 if (!selinux_enabled_boot)
7465 return 0;
7466
7467 pr_debug("SELinux: Registering netfilter hooks\n");
7468
7469 err = register_pernet_subsys(&selinux_net_ops);
7470 if (err)
7471 panic("SELinux: register_pernet_subsys: error %d\n", err);
7472
7473 return 0;
7474}
7475__initcall(selinux_nf_ip_init);
7476
7477#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7478static void selinux_nf_ip_exit(void)
7479{
7480 pr_debug("SELinux: Unregistering netfilter hooks\n");
7481
7482 unregister_pernet_subsys(&selinux_net_ops);
7483}
7484#endif
7485
7486#else /* CONFIG_NETFILTER */
7487
7488#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7489#define selinux_nf_ip_exit()
7490#endif
7491
7492#endif /* CONFIG_NETFILTER */
7493
7494#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7495int selinux_disable(struct selinux_state *state)
7496{
7497 if (selinux_initialized(state)) {
7498 /* Not permitted after initial policy load. */
7499 return -EINVAL;
7500 }
7501
7502 if (selinux_disabled(state)) {
7503 /* Only do this once. */
7504 return -EINVAL;
7505 }
7506
7507 selinux_mark_disabled(state);
7508
7509 pr_info("SELinux: Disabled at runtime.\n");
7510
7511 /*
7512 * Unregister netfilter hooks.
7513 * Must be done before security_delete_hooks() to avoid breaking
7514 * runtime disable.
7515 */
7516 selinux_nf_ip_exit();
7517
7518 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7519
7520 /* Try to destroy the avc node cache */
7521 avc_disable();
7522
7523 /* Unregister selinuxfs. */
7524 exit_sel_fs();
7525
7526 return 0;
7527}
7528#endif