Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v4.6
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  55#include <net/inet_connection_sock.h>
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>	/* for network interface checks */
  64#include <net/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
  68#include <linux/quota.h>
  69#include <linux/un.h>		/* for Unix socket types */
  70#include <net/af_unix.h>	/* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
  83#include <linux/export.h>
  84#include <linux/msg.h>
  85#include <linux/shm.h>
  86
  87#include "avc.h"
  88#include "objsec.h"
  89#include "netif.h"
  90#include "netnode.h"
  91#include "netport.h"
  92#include "xfrm.h"
  93#include "netlabel.h"
  94#include "audit.h"
  95#include "avc_ss.h"
  96
  97/* SECMARK reference count */
  98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
  99
 100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 101int selinux_enforcing;
 102
 103static int __init enforcing_setup(char *str)
 104{
 105	unsigned long enforcing;
 106	if (!kstrtoul(str, 0, &enforcing))
 107		selinux_enforcing = enforcing ? 1 : 0;
 108	return 1;
 109}
 110__setup("enforcing=", enforcing_setup);
 111#endif
 112
 113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 115
 116static int __init selinux_enabled_setup(char *str)
 117{
 118	unsigned long enabled;
 119	if (!kstrtoul(str, 0, &enabled))
 120		selinux_enabled = enabled ? 1 : 0;
 121	return 1;
 122}
 123__setup("selinux=", selinux_enabled_setup);
 124#else
 125int selinux_enabled = 1;
 126#endif
 127
 128static struct kmem_cache *sel_inode_cache;
 129static struct kmem_cache *file_security_cache;
 130
 131/**
 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 133 *
 134 * Description:
 135 * This function checks the SECMARK reference counter to see if any SECMARK
 136 * targets are currently configured, if the reference counter is greater than
 137 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 138 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 139 * policy capability is enabled, SECMARK is always considered enabled.
 140 *
 141 */
 142static int selinux_secmark_enabled(void)
 143{
 144	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 145}
 146
 147/**
 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 149 *
 150 * Description:
 151 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 152 * (1) if any are enabled or false (0) if neither are enabled.  If the
 153 * always_check_network policy capability is enabled, peer labeling
 154 * is always considered enabled.
 155 *
 156 */
 157static int selinux_peerlbl_enabled(void)
 158{
 159	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 160}
 161
 162static int selinux_netcache_avc_callback(u32 event)
 163{
 164	if (event == AVC_CALLBACK_RESET) {
 165		sel_netif_flush();
 166		sel_netnode_flush();
 167		sel_netport_flush();
 168		synchronize_net();
 169	}
 170	return 0;
 171}
 172
 173/*
 174 * initialise the security for the init task
 175 */
 176static void cred_init_security(void)
 177{
 178	struct cred *cred = (struct cred *) current->real_cred;
 179	struct task_security_struct *tsec;
 180
 181	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 182	if (!tsec)
 183		panic("SELinux:  Failed to initialize initial task.\n");
 184
 185	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 186	cred->security = tsec;
 187}
 188
 189/*
 190 * get the security ID of a set of credentials
 191 */
 192static inline u32 cred_sid(const struct cred *cred)
 193{
 194	const struct task_security_struct *tsec;
 195
 196	tsec = cred->security;
 197	return tsec->sid;
 198}
 199
 200/*
 201 * get the objective security ID of a task
 202 */
 203static inline u32 task_sid(const struct task_struct *task)
 204{
 205	u32 sid;
 206
 207	rcu_read_lock();
 208	sid = cred_sid(__task_cred(task));
 209	rcu_read_unlock();
 210	return sid;
 211}
 212
 213/*
 214 * get the subjective security ID of the current task
 215 */
 216static inline u32 current_sid(void)
 217{
 218	const struct task_security_struct *tsec = current_security();
 219
 220	return tsec->sid;
 221}
 222
 223/* Allocate and free functions for each kind of security blob. */
 224
 225static int inode_alloc_security(struct inode *inode)
 226{
 227	struct inode_security_struct *isec;
 228	u32 sid = current_sid();
 229
 230	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 231	if (!isec)
 232		return -ENOMEM;
 233
 234	mutex_init(&isec->lock);
 235	INIT_LIST_HEAD(&isec->list);
 236	isec->inode = inode;
 237	isec->sid = SECINITSID_UNLABELED;
 238	isec->sclass = SECCLASS_FILE;
 239	isec->task_sid = sid;
 
 240	inode->i_security = isec;
 241
 242	return 0;
 243}
 244
 245static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 246
 247/*
 248 * Try reloading inode security labels that have been marked as invalid.  The
 249 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 250 * allowed; when set to false, returns ERR_PTR(-ECHILD) when the label is
 251 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 252 * when no dentry is available, set it to NULL instead.
 253 */
 254static int __inode_security_revalidate(struct inode *inode,
 255				       struct dentry *opt_dentry,
 256				       bool may_sleep)
 257{
 258	struct inode_security_struct *isec = inode->i_security;
 259
 260	might_sleep_if(may_sleep);
 261
 262	if (isec->initialized == LABEL_INVALID) {
 263		if (!may_sleep)
 264			return -ECHILD;
 265
 266		/*
 267		 * Try reloading the inode security label.  This will fail if
 268		 * @opt_dentry is NULL and no dentry for this inode can be
 269		 * found; in that case, continue using the old label.
 270		 */
 271		inode_doinit_with_dentry(inode, opt_dentry);
 272	}
 273	return 0;
 274}
 275
 276static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 277{
 278	return inode->i_security;
 279}
 280
 281static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 282{
 283	int error;
 284
 285	error = __inode_security_revalidate(inode, NULL, !rcu);
 286	if (error)
 287		return ERR_PTR(error);
 288	return inode->i_security;
 289}
 290
 291/*
 292 * Get the security label of an inode.
 293 */
 294static struct inode_security_struct *inode_security(struct inode *inode)
 295{
 296	__inode_security_revalidate(inode, NULL, true);
 297	return inode->i_security;
 298}
 299
 
 
 
 
 
 
 
 300/*
 301 * Get the security label of a dentry's backing inode.
 302 */
 303static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 304{
 305	struct inode *inode = d_backing_inode(dentry);
 306
 307	__inode_security_revalidate(inode, dentry, true);
 308	return inode->i_security;
 309}
 310
 311static void inode_free_rcu(struct rcu_head *head)
 312{
 313	struct inode_security_struct *isec;
 314
 315	isec = container_of(head, struct inode_security_struct, rcu);
 316	kmem_cache_free(sel_inode_cache, isec);
 317}
 318
 319static void inode_free_security(struct inode *inode)
 320{
 321	struct inode_security_struct *isec = inode->i_security;
 322	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 323
 324	/*
 325	 * As not all inode security structures are in a list, we check for
 326	 * empty list outside of the lock to make sure that we won't waste
 327	 * time taking a lock doing nothing.
 328	 *
 329	 * The list_del_init() function can be safely called more than once.
 330	 * It should not be possible for this function to be called with
 331	 * concurrent list_add(), but for better safety against future changes
 332	 * in the code, we use list_empty_careful() here.
 333	 */
 334	if (!list_empty_careful(&isec->list)) {
 335		spin_lock(&sbsec->isec_lock);
 336		list_del_init(&isec->list);
 337		spin_unlock(&sbsec->isec_lock);
 338	}
 339
 340	/*
 341	 * The inode may still be referenced in a path walk and
 342	 * a call to selinux_inode_permission() can be made
 343	 * after inode_free_security() is called. Ideally, the VFS
 344	 * wouldn't do this, but fixing that is a much harder
 345	 * job. For now, simply free the i_security via RCU, and
 346	 * leave the current inode->i_security pointer intact.
 347	 * The inode will be freed after the RCU grace period too.
 348	 */
 349	call_rcu(&isec->rcu, inode_free_rcu);
 350}
 351
 352static int file_alloc_security(struct file *file)
 353{
 354	struct file_security_struct *fsec;
 355	u32 sid = current_sid();
 356
 357	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 358	if (!fsec)
 359		return -ENOMEM;
 360
 361	fsec->sid = sid;
 362	fsec->fown_sid = sid;
 363	file->f_security = fsec;
 364
 365	return 0;
 366}
 367
 368static void file_free_security(struct file *file)
 369{
 370	struct file_security_struct *fsec = file->f_security;
 371	file->f_security = NULL;
 372	kmem_cache_free(file_security_cache, fsec);
 373}
 374
 375static int superblock_alloc_security(struct super_block *sb)
 376{
 377	struct superblock_security_struct *sbsec;
 378
 379	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 380	if (!sbsec)
 381		return -ENOMEM;
 382
 383	mutex_init(&sbsec->lock);
 384	INIT_LIST_HEAD(&sbsec->isec_head);
 385	spin_lock_init(&sbsec->isec_lock);
 386	sbsec->sb = sb;
 387	sbsec->sid = SECINITSID_UNLABELED;
 388	sbsec->def_sid = SECINITSID_FILE;
 389	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 390	sb->s_security = sbsec;
 391
 392	return 0;
 393}
 394
 395static void superblock_free_security(struct super_block *sb)
 396{
 397	struct superblock_security_struct *sbsec = sb->s_security;
 398	sb->s_security = NULL;
 399	kfree(sbsec);
 400}
 401
 402/* The file system's label must be initialized prior to use. */
 403
 404static const char *labeling_behaviors[7] = {
 405	"uses xattr",
 406	"uses transition SIDs",
 407	"uses task SIDs",
 408	"uses genfs_contexts",
 409	"not configured for labeling",
 410	"uses mountpoint labeling",
 411	"uses native labeling",
 412};
 413
 414static inline int inode_doinit(struct inode *inode)
 415{
 416	return inode_doinit_with_dentry(inode, NULL);
 417}
 418
 419enum {
 420	Opt_error = -1,
 421	Opt_context = 1,
 422	Opt_fscontext = 2,
 423	Opt_defcontext = 3,
 424	Opt_rootcontext = 4,
 425	Opt_labelsupport = 5,
 426	Opt_nextmntopt = 6,
 427};
 428
 429#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 430
 431static const match_table_t tokens = {
 432	{Opt_context, CONTEXT_STR "%s"},
 433	{Opt_fscontext, FSCONTEXT_STR "%s"},
 434	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 435	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 436	{Opt_labelsupport, LABELSUPP_STR},
 437	{Opt_error, NULL},
 438};
 439
 440#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 441
 442static int may_context_mount_sb_relabel(u32 sid,
 443			struct superblock_security_struct *sbsec,
 444			const struct cred *cred)
 445{
 446	const struct task_security_struct *tsec = cred->security;
 447	int rc;
 448
 449	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 450			  FILESYSTEM__RELABELFROM, NULL);
 451	if (rc)
 452		return rc;
 453
 454	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 455			  FILESYSTEM__RELABELTO, NULL);
 456	return rc;
 457}
 458
 459static int may_context_mount_inode_relabel(u32 sid,
 460			struct superblock_security_struct *sbsec,
 461			const struct cred *cred)
 462{
 463	const struct task_security_struct *tsec = cred->security;
 464	int rc;
 465	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 466			  FILESYSTEM__RELABELFROM, NULL);
 467	if (rc)
 468		return rc;
 469
 470	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 471			  FILESYSTEM__ASSOCIATE, NULL);
 472	return rc;
 473}
 474
 475static int selinux_is_sblabel_mnt(struct super_block *sb)
 476{
 477	struct superblock_security_struct *sbsec = sb->s_security;
 478
 479	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 480		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 481		sbsec->behavior == SECURITY_FS_USE_TASK ||
 482		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 483		/* Special handling. Genfs but also in-core setxattr handler */
 484		!strcmp(sb->s_type->name, "sysfs") ||
 485		!strcmp(sb->s_type->name, "pstore") ||
 486		!strcmp(sb->s_type->name, "debugfs") ||
 487		!strcmp(sb->s_type->name, "rootfs");
 488}
 489
 490static int sb_finish_set_opts(struct super_block *sb)
 491{
 492	struct superblock_security_struct *sbsec = sb->s_security;
 493	struct dentry *root = sb->s_root;
 494	struct inode *root_inode = d_backing_inode(root);
 495	int rc = 0;
 496
 497	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 498		/* Make sure that the xattr handler exists and that no
 499		   error other than -ENODATA is returned by getxattr on
 500		   the root directory.  -ENODATA is ok, as this may be
 501		   the first boot of the SELinux kernel before we have
 502		   assigned xattr values to the filesystem. */
 503		if (!root_inode->i_op->getxattr) {
 504			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 505			       "xattr support\n", sb->s_id, sb->s_type->name);
 506			rc = -EOPNOTSUPP;
 507			goto out;
 508		}
 509		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 
 510		if (rc < 0 && rc != -ENODATA) {
 511			if (rc == -EOPNOTSUPP)
 512				printk(KERN_WARNING "SELinux: (dev %s, type "
 513				       "%s) has no security xattr handler\n",
 514				       sb->s_id, sb->s_type->name);
 515			else
 516				printk(KERN_WARNING "SELinux: (dev %s, type "
 517				       "%s) getxattr errno %d\n", sb->s_id,
 518				       sb->s_type->name, -rc);
 519			goto out;
 520		}
 521	}
 522
 523	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 524		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 525		       sb->s_id, sb->s_type->name);
 526
 527	sbsec->flags |= SE_SBINITIALIZED;
 528	if (selinux_is_sblabel_mnt(sb))
 529		sbsec->flags |= SBLABEL_MNT;
 530
 531	/* Initialize the root inode. */
 532	rc = inode_doinit_with_dentry(root_inode, root);
 533
 534	/* Initialize any other inodes associated with the superblock, e.g.
 535	   inodes created prior to initial policy load or inodes created
 536	   during get_sb by a pseudo filesystem that directly
 537	   populates itself. */
 538	spin_lock(&sbsec->isec_lock);
 539next_inode:
 540	if (!list_empty(&sbsec->isec_head)) {
 541		struct inode_security_struct *isec =
 542				list_entry(sbsec->isec_head.next,
 543					   struct inode_security_struct, list);
 544		struct inode *inode = isec->inode;
 545		list_del_init(&isec->list);
 546		spin_unlock(&sbsec->isec_lock);
 547		inode = igrab(inode);
 548		if (inode) {
 549			if (!IS_PRIVATE(inode))
 550				inode_doinit(inode);
 551			iput(inode);
 552		}
 553		spin_lock(&sbsec->isec_lock);
 554		goto next_inode;
 555	}
 556	spin_unlock(&sbsec->isec_lock);
 557out:
 558	return rc;
 559}
 560
 561/*
 562 * This function should allow an FS to ask what it's mount security
 563 * options were so it can use those later for submounts, displaying
 564 * mount options, or whatever.
 565 */
 566static int selinux_get_mnt_opts(const struct super_block *sb,
 567				struct security_mnt_opts *opts)
 568{
 569	int rc = 0, i;
 570	struct superblock_security_struct *sbsec = sb->s_security;
 571	char *context = NULL;
 572	u32 len;
 573	char tmp;
 574
 575	security_init_mnt_opts(opts);
 576
 577	if (!(sbsec->flags & SE_SBINITIALIZED))
 578		return -EINVAL;
 579
 580	if (!ss_initialized)
 581		return -EINVAL;
 582
 583	/* make sure we always check enough bits to cover the mask */
 584	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 585
 586	tmp = sbsec->flags & SE_MNTMASK;
 587	/* count the number of mount options for this sb */
 588	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 589		if (tmp & 0x01)
 590			opts->num_mnt_opts++;
 591		tmp >>= 1;
 592	}
 593	/* Check if the Label support flag is set */
 594	if (sbsec->flags & SBLABEL_MNT)
 595		opts->num_mnt_opts++;
 596
 597	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 598	if (!opts->mnt_opts) {
 599		rc = -ENOMEM;
 600		goto out_free;
 601	}
 602
 603	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 604	if (!opts->mnt_opts_flags) {
 605		rc = -ENOMEM;
 606		goto out_free;
 607	}
 608
 609	i = 0;
 610	if (sbsec->flags & FSCONTEXT_MNT) {
 611		rc = security_sid_to_context(sbsec->sid, &context, &len);
 612		if (rc)
 613			goto out_free;
 614		opts->mnt_opts[i] = context;
 615		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 616	}
 617	if (sbsec->flags & CONTEXT_MNT) {
 618		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 619		if (rc)
 620			goto out_free;
 621		opts->mnt_opts[i] = context;
 622		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 623	}
 624	if (sbsec->flags & DEFCONTEXT_MNT) {
 625		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 626		if (rc)
 627			goto out_free;
 628		opts->mnt_opts[i] = context;
 629		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 630	}
 631	if (sbsec->flags & ROOTCONTEXT_MNT) {
 632		struct dentry *root = sbsec->sb->s_root;
 633		struct inode_security_struct *isec = backing_inode_security(root);
 634
 635		rc = security_sid_to_context(isec->sid, &context, &len);
 636		if (rc)
 637			goto out_free;
 638		opts->mnt_opts[i] = context;
 639		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 640	}
 641	if (sbsec->flags & SBLABEL_MNT) {
 642		opts->mnt_opts[i] = NULL;
 643		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 644	}
 645
 646	BUG_ON(i != opts->num_mnt_opts);
 647
 648	return 0;
 649
 650out_free:
 651	security_free_mnt_opts(opts);
 652	return rc;
 653}
 654
 655static int bad_option(struct superblock_security_struct *sbsec, char flag,
 656		      u32 old_sid, u32 new_sid)
 657{
 658	char mnt_flags = sbsec->flags & SE_MNTMASK;
 659
 660	/* check if the old mount command had the same options */
 661	if (sbsec->flags & SE_SBINITIALIZED)
 662		if (!(sbsec->flags & flag) ||
 663		    (old_sid != new_sid))
 664			return 1;
 665
 666	/* check if we were passed the same options twice,
 667	 * aka someone passed context=a,context=b
 668	 */
 669	if (!(sbsec->flags & SE_SBINITIALIZED))
 670		if (mnt_flags & flag)
 671			return 1;
 672	return 0;
 673}
 674
 675/*
 676 * Allow filesystems with binary mount data to explicitly set mount point
 677 * labeling information.
 678 */
 679static int selinux_set_mnt_opts(struct super_block *sb,
 680				struct security_mnt_opts *opts,
 681				unsigned long kern_flags,
 682				unsigned long *set_kern_flags)
 683{
 684	const struct cred *cred = current_cred();
 685	int rc = 0, i;
 686	struct superblock_security_struct *sbsec = sb->s_security;
 687	const char *name = sb->s_type->name;
 688	struct dentry *root = sbsec->sb->s_root;
 689	struct inode_security_struct *root_isec = backing_inode_security(root);
 690	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 691	u32 defcontext_sid = 0;
 692	char **mount_options = opts->mnt_opts;
 693	int *flags = opts->mnt_opts_flags;
 694	int num_opts = opts->num_mnt_opts;
 695
 696	mutex_lock(&sbsec->lock);
 697
 698	if (!ss_initialized) {
 699		if (!num_opts) {
 700			/* Defer initialization until selinux_complete_init,
 701			   after the initial policy is loaded and the security
 702			   server is ready to handle calls. */
 703			goto out;
 704		}
 705		rc = -EINVAL;
 706		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 707			"before the security server is initialized\n");
 708		goto out;
 709	}
 710	if (kern_flags && !set_kern_flags) {
 711		/* Specifying internal flags without providing a place to
 712		 * place the results is not allowed */
 713		rc = -EINVAL;
 714		goto out;
 715	}
 716
 717	/*
 718	 * Binary mount data FS will come through this function twice.  Once
 719	 * from an explicit call and once from the generic calls from the vfs.
 720	 * Since the generic VFS calls will not contain any security mount data
 721	 * we need to skip the double mount verification.
 722	 *
 723	 * This does open a hole in which we will not notice if the first
 724	 * mount using this sb set explict options and a second mount using
 725	 * this sb does not set any security options.  (The first options
 726	 * will be used for both mounts)
 727	 */
 728	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 729	    && (num_opts == 0))
 730		goto out;
 731
 
 
 732	/*
 733	 * parse the mount options, check if they are valid sids.
 734	 * also check if someone is trying to mount the same sb more
 735	 * than once with different security options.
 736	 */
 737	for (i = 0; i < num_opts; i++) {
 738		u32 sid;
 739
 740		if (flags[i] == SBLABEL_MNT)
 741			continue;
 742		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
 743		if (rc) {
 744			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 745			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 746			       mount_options[i], sb->s_id, name, rc);
 747			goto out;
 748		}
 749		switch (flags[i]) {
 750		case FSCONTEXT_MNT:
 751			fscontext_sid = sid;
 752
 753			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 754					fscontext_sid))
 755				goto out_double_mount;
 756
 757			sbsec->flags |= FSCONTEXT_MNT;
 758			break;
 759		case CONTEXT_MNT:
 760			context_sid = sid;
 761
 762			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 763					context_sid))
 764				goto out_double_mount;
 765
 766			sbsec->flags |= CONTEXT_MNT;
 767			break;
 768		case ROOTCONTEXT_MNT:
 769			rootcontext_sid = sid;
 770
 771			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 772					rootcontext_sid))
 773				goto out_double_mount;
 774
 775			sbsec->flags |= ROOTCONTEXT_MNT;
 776
 777			break;
 778		case DEFCONTEXT_MNT:
 779			defcontext_sid = sid;
 780
 781			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 782					defcontext_sid))
 783				goto out_double_mount;
 784
 785			sbsec->flags |= DEFCONTEXT_MNT;
 786
 787			break;
 788		default:
 789			rc = -EINVAL;
 790			goto out;
 791		}
 792	}
 793
 794	if (sbsec->flags & SE_SBINITIALIZED) {
 795		/* previously mounted with options, but not on this attempt? */
 796		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 797			goto out_double_mount;
 798		rc = 0;
 799		goto out;
 800	}
 801
 802	if (strcmp(sb->s_type->name, "proc") == 0)
 803		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 804
 805	if (!strcmp(sb->s_type->name, "debugfs") ||
 806	    !strcmp(sb->s_type->name, "sysfs") ||
 807	    !strcmp(sb->s_type->name, "pstore"))
 808		sbsec->flags |= SE_SBGENFS;
 809
 810	if (!sbsec->behavior) {
 811		/*
 812		 * Determine the labeling behavior to use for this
 813		 * filesystem type.
 814		 */
 815		rc = security_fs_use(sb);
 816		if (rc) {
 817			printk(KERN_WARNING
 818				"%s: security_fs_use(%s) returned %d\n",
 819					__func__, sb->s_type->name, rc);
 820			goto out;
 821		}
 822	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	/* sets the context of the superblock for the fs being mounted. */
 824	if (fscontext_sid) {
 825		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 826		if (rc)
 827			goto out;
 828
 829		sbsec->sid = fscontext_sid;
 830	}
 831
 832	/*
 833	 * Switch to using mount point labeling behavior.
 834	 * sets the label used on all file below the mountpoint, and will set
 835	 * the superblock context if not already set.
 836	 */
 837	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 838		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 839		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 840	}
 841
 842	if (context_sid) {
 843		if (!fscontext_sid) {
 844			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 845							  cred);
 846			if (rc)
 847				goto out;
 848			sbsec->sid = context_sid;
 849		} else {
 850			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 851							     cred);
 852			if (rc)
 853				goto out;
 854		}
 855		if (!rootcontext_sid)
 856			rootcontext_sid = context_sid;
 857
 858		sbsec->mntpoint_sid = context_sid;
 859		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 860	}
 861
 862	if (rootcontext_sid) {
 863		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 864						     cred);
 865		if (rc)
 866			goto out;
 867
 868		root_isec->sid = rootcontext_sid;
 869		root_isec->initialized = LABEL_INITIALIZED;
 870	}
 871
 872	if (defcontext_sid) {
 873		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 874			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 875			rc = -EINVAL;
 876			printk(KERN_WARNING "SELinux: defcontext option is "
 877			       "invalid for this filesystem type\n");
 878			goto out;
 879		}
 880
 881		if (defcontext_sid != sbsec->def_sid) {
 882			rc = may_context_mount_inode_relabel(defcontext_sid,
 883							     sbsec, cred);
 884			if (rc)
 885				goto out;
 886		}
 887
 888		sbsec->def_sid = defcontext_sid;
 889	}
 890
 
 891	rc = sb_finish_set_opts(sb);
 892out:
 893	mutex_unlock(&sbsec->lock);
 894	return rc;
 895out_double_mount:
 896	rc = -EINVAL;
 897	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 898	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 899	goto out;
 900}
 901
 902static int selinux_cmp_sb_context(const struct super_block *oldsb,
 903				    const struct super_block *newsb)
 904{
 905	struct superblock_security_struct *old = oldsb->s_security;
 906	struct superblock_security_struct *new = newsb->s_security;
 907	char oldflags = old->flags & SE_MNTMASK;
 908	char newflags = new->flags & SE_MNTMASK;
 909
 910	if (oldflags != newflags)
 911		goto mismatch;
 912	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 913		goto mismatch;
 914	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 915		goto mismatch;
 916	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 917		goto mismatch;
 918	if (oldflags & ROOTCONTEXT_MNT) {
 919		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 920		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 921		if (oldroot->sid != newroot->sid)
 922			goto mismatch;
 923	}
 924	return 0;
 925mismatch:
 926	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 927			    "different security settings for (dev %s, "
 928			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 929	return -EBUSY;
 930}
 931
 932static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 933					struct super_block *newsb)
 934{
 935	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 936	struct superblock_security_struct *newsbsec = newsb->s_security;
 937
 938	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 939	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 940	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 941
 942	/*
 943	 * if the parent was able to be mounted it clearly had no special lsm
 944	 * mount options.  thus we can safely deal with this superblock later
 945	 */
 946	if (!ss_initialized)
 947		return 0;
 948
 949	/* how can we clone if the old one wasn't set up?? */
 950	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 951
 952	/* if fs is reusing a sb, make sure that the contexts match */
 953	if (newsbsec->flags & SE_SBINITIALIZED)
 954		return selinux_cmp_sb_context(oldsb, newsb);
 955
 956	mutex_lock(&newsbsec->lock);
 957
 958	newsbsec->flags = oldsbsec->flags;
 959
 960	newsbsec->sid = oldsbsec->sid;
 961	newsbsec->def_sid = oldsbsec->def_sid;
 962	newsbsec->behavior = oldsbsec->behavior;
 963
 964	if (set_context) {
 965		u32 sid = oldsbsec->mntpoint_sid;
 966
 967		if (!set_fscontext)
 968			newsbsec->sid = sid;
 969		if (!set_rootcontext) {
 970			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 971			newisec->sid = sid;
 972		}
 973		newsbsec->mntpoint_sid = sid;
 974	}
 975	if (set_rootcontext) {
 976		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 977		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 978
 979		newisec->sid = oldisec->sid;
 980	}
 981
 982	sb_finish_set_opts(newsb);
 983	mutex_unlock(&newsbsec->lock);
 984	return 0;
 985}
 986
 987static int selinux_parse_opts_str(char *options,
 988				  struct security_mnt_opts *opts)
 989{
 990	char *p;
 991	char *context = NULL, *defcontext = NULL;
 992	char *fscontext = NULL, *rootcontext = NULL;
 993	int rc, num_mnt_opts = 0;
 994
 995	opts->num_mnt_opts = 0;
 996
 997	/* Standard string-based options. */
 998	while ((p = strsep(&options, "|")) != NULL) {
 999		int token;
1000		substring_t args[MAX_OPT_ARGS];
1001
1002		if (!*p)
1003			continue;
1004
1005		token = match_token(p, tokens, args);
1006
1007		switch (token) {
1008		case Opt_context:
1009			if (context || defcontext) {
1010				rc = -EINVAL;
1011				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1012				goto out_err;
1013			}
1014			context = match_strdup(&args[0]);
1015			if (!context) {
1016				rc = -ENOMEM;
1017				goto out_err;
1018			}
1019			break;
1020
1021		case Opt_fscontext:
1022			if (fscontext) {
1023				rc = -EINVAL;
1024				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1025				goto out_err;
1026			}
1027			fscontext = match_strdup(&args[0]);
1028			if (!fscontext) {
1029				rc = -ENOMEM;
1030				goto out_err;
1031			}
1032			break;
1033
1034		case Opt_rootcontext:
1035			if (rootcontext) {
1036				rc = -EINVAL;
1037				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1038				goto out_err;
1039			}
1040			rootcontext = match_strdup(&args[0]);
1041			if (!rootcontext) {
1042				rc = -ENOMEM;
1043				goto out_err;
1044			}
1045			break;
1046
1047		case Opt_defcontext:
1048			if (context || defcontext) {
1049				rc = -EINVAL;
1050				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1051				goto out_err;
1052			}
1053			defcontext = match_strdup(&args[0]);
1054			if (!defcontext) {
1055				rc = -ENOMEM;
1056				goto out_err;
1057			}
1058			break;
1059		case Opt_labelsupport:
1060			break;
1061		default:
1062			rc = -EINVAL;
1063			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1064			goto out_err;
1065
1066		}
1067	}
1068
1069	rc = -ENOMEM;
1070	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1071	if (!opts->mnt_opts)
1072		goto out_err;
1073
1074	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
 
1075	if (!opts->mnt_opts_flags) {
1076		kfree(opts->mnt_opts);
1077		goto out_err;
1078	}
1079
1080	if (fscontext) {
1081		opts->mnt_opts[num_mnt_opts] = fscontext;
1082		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1083	}
1084	if (context) {
1085		opts->mnt_opts[num_mnt_opts] = context;
1086		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1087	}
1088	if (rootcontext) {
1089		opts->mnt_opts[num_mnt_opts] = rootcontext;
1090		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1091	}
1092	if (defcontext) {
1093		opts->mnt_opts[num_mnt_opts] = defcontext;
1094		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1095	}
1096
1097	opts->num_mnt_opts = num_mnt_opts;
1098	return 0;
1099
1100out_err:
1101	kfree(context);
1102	kfree(defcontext);
1103	kfree(fscontext);
1104	kfree(rootcontext);
1105	return rc;
1106}
1107/*
1108 * string mount options parsing and call set the sbsec
1109 */
1110static int superblock_doinit(struct super_block *sb, void *data)
1111{
1112	int rc = 0;
1113	char *options = data;
1114	struct security_mnt_opts opts;
1115
1116	security_init_mnt_opts(&opts);
1117
1118	if (!data)
1119		goto out;
1120
1121	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1122
1123	rc = selinux_parse_opts_str(options, &opts);
1124	if (rc)
1125		goto out_err;
1126
1127out:
1128	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1129
1130out_err:
1131	security_free_mnt_opts(&opts);
1132	return rc;
1133}
1134
1135static void selinux_write_opts(struct seq_file *m,
1136			       struct security_mnt_opts *opts)
1137{
1138	int i;
1139	char *prefix;
1140
1141	for (i = 0; i < opts->num_mnt_opts; i++) {
1142		char *has_comma;
1143
1144		if (opts->mnt_opts[i])
1145			has_comma = strchr(opts->mnt_opts[i], ',');
1146		else
1147			has_comma = NULL;
1148
1149		switch (opts->mnt_opts_flags[i]) {
1150		case CONTEXT_MNT:
1151			prefix = CONTEXT_STR;
1152			break;
1153		case FSCONTEXT_MNT:
1154			prefix = FSCONTEXT_STR;
1155			break;
1156		case ROOTCONTEXT_MNT:
1157			prefix = ROOTCONTEXT_STR;
1158			break;
1159		case DEFCONTEXT_MNT:
1160			prefix = DEFCONTEXT_STR;
1161			break;
1162		case SBLABEL_MNT:
1163			seq_putc(m, ',');
1164			seq_puts(m, LABELSUPP_STR);
1165			continue;
1166		default:
1167			BUG();
1168			return;
1169		};
1170		/* we need a comma before each option */
1171		seq_putc(m, ',');
1172		seq_puts(m, prefix);
1173		if (has_comma)
1174			seq_putc(m, '\"');
1175		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1176		if (has_comma)
1177			seq_putc(m, '\"');
1178	}
1179}
1180
1181static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1182{
1183	struct security_mnt_opts opts;
1184	int rc;
1185
1186	rc = selinux_get_mnt_opts(sb, &opts);
1187	if (rc) {
1188		/* before policy load we may get EINVAL, don't show anything */
1189		if (rc == -EINVAL)
1190			rc = 0;
1191		return rc;
1192	}
1193
1194	selinux_write_opts(m, &opts);
1195
1196	security_free_mnt_opts(&opts);
1197
1198	return rc;
1199}
1200
1201static inline u16 inode_mode_to_security_class(umode_t mode)
1202{
1203	switch (mode & S_IFMT) {
1204	case S_IFSOCK:
1205		return SECCLASS_SOCK_FILE;
1206	case S_IFLNK:
1207		return SECCLASS_LNK_FILE;
1208	case S_IFREG:
1209		return SECCLASS_FILE;
1210	case S_IFBLK:
1211		return SECCLASS_BLK_FILE;
1212	case S_IFDIR:
1213		return SECCLASS_DIR;
1214	case S_IFCHR:
1215		return SECCLASS_CHR_FILE;
1216	case S_IFIFO:
1217		return SECCLASS_FIFO_FILE;
1218
1219	}
1220
1221	return SECCLASS_FILE;
1222}
1223
1224static inline int default_protocol_stream(int protocol)
1225{
1226	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1227}
1228
1229static inline int default_protocol_dgram(int protocol)
1230{
1231	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1232}
1233
1234static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1235{
1236	switch (family) {
1237	case PF_UNIX:
1238		switch (type) {
1239		case SOCK_STREAM:
1240		case SOCK_SEQPACKET:
1241			return SECCLASS_UNIX_STREAM_SOCKET;
1242		case SOCK_DGRAM:
1243			return SECCLASS_UNIX_DGRAM_SOCKET;
1244		}
1245		break;
1246	case PF_INET:
1247	case PF_INET6:
1248		switch (type) {
1249		case SOCK_STREAM:
1250			if (default_protocol_stream(protocol))
1251				return SECCLASS_TCP_SOCKET;
1252			else
1253				return SECCLASS_RAWIP_SOCKET;
1254		case SOCK_DGRAM:
1255			if (default_protocol_dgram(protocol))
1256				return SECCLASS_UDP_SOCKET;
1257			else
1258				return SECCLASS_RAWIP_SOCKET;
1259		case SOCK_DCCP:
1260			return SECCLASS_DCCP_SOCKET;
1261		default:
1262			return SECCLASS_RAWIP_SOCKET;
1263		}
1264		break;
1265	case PF_NETLINK:
1266		switch (protocol) {
1267		case NETLINK_ROUTE:
1268			return SECCLASS_NETLINK_ROUTE_SOCKET;
1269		case NETLINK_SOCK_DIAG:
1270			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1271		case NETLINK_NFLOG:
1272			return SECCLASS_NETLINK_NFLOG_SOCKET;
1273		case NETLINK_XFRM:
1274			return SECCLASS_NETLINK_XFRM_SOCKET;
1275		case NETLINK_SELINUX:
1276			return SECCLASS_NETLINK_SELINUX_SOCKET;
1277		case NETLINK_ISCSI:
1278			return SECCLASS_NETLINK_ISCSI_SOCKET;
1279		case NETLINK_AUDIT:
1280			return SECCLASS_NETLINK_AUDIT_SOCKET;
1281		case NETLINK_FIB_LOOKUP:
1282			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1283		case NETLINK_CONNECTOR:
1284			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1285		case NETLINK_NETFILTER:
1286			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1287		case NETLINK_DNRTMSG:
1288			return SECCLASS_NETLINK_DNRT_SOCKET;
1289		case NETLINK_KOBJECT_UEVENT:
1290			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1291		case NETLINK_GENERIC:
1292			return SECCLASS_NETLINK_GENERIC_SOCKET;
1293		case NETLINK_SCSITRANSPORT:
1294			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1295		case NETLINK_RDMA:
1296			return SECCLASS_NETLINK_RDMA_SOCKET;
1297		case NETLINK_CRYPTO:
1298			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1299		default:
1300			return SECCLASS_NETLINK_SOCKET;
1301		}
1302	case PF_PACKET:
1303		return SECCLASS_PACKET_SOCKET;
1304	case PF_KEY:
1305		return SECCLASS_KEY_SOCKET;
1306	case PF_APPLETALK:
1307		return SECCLASS_APPLETALK_SOCKET;
1308	}
1309
1310	return SECCLASS_SOCKET;
1311}
1312
1313static int selinux_genfs_get_sid(struct dentry *dentry,
1314				 u16 tclass,
1315				 u16 flags,
1316				 u32 *sid)
1317{
1318	int rc;
1319	struct super_block *sb = dentry->d_inode->i_sb;
1320	char *buffer, *path;
1321
1322	buffer = (char *)__get_free_page(GFP_KERNEL);
1323	if (!buffer)
1324		return -ENOMEM;
1325
1326	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1327	if (IS_ERR(path))
1328		rc = PTR_ERR(path);
1329	else {
1330		if (flags & SE_SBPROC) {
1331			/* each process gets a /proc/PID/ entry. Strip off the
1332			 * PID part to get a valid selinux labeling.
1333			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1334			while (path[1] >= '0' && path[1] <= '9') {
1335				path[1] = '/';
1336				path++;
1337			}
1338		}
1339		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1340	}
1341	free_page((unsigned long)buffer);
1342	return rc;
1343}
1344
1345/* The inode's security attributes must be initialized before first use. */
1346static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1347{
1348	struct superblock_security_struct *sbsec = NULL;
1349	struct inode_security_struct *isec = inode->i_security;
1350	u32 sid;
 
1351	struct dentry *dentry;
1352#define INITCONTEXTLEN 255
1353	char *context = NULL;
1354	unsigned len = 0;
1355	int rc = 0;
1356
1357	if (isec->initialized == LABEL_INITIALIZED)
1358		goto out;
1359
1360	mutex_lock(&isec->lock);
1361	if (isec->initialized == LABEL_INITIALIZED)
1362		goto out_unlock;
1363
 
 
 
1364	sbsec = inode->i_sb->s_security;
1365	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1366		/* Defer initialization until selinux_complete_init,
1367		   after the initial policy is loaded and the security
1368		   server is ready to handle calls. */
1369		spin_lock(&sbsec->isec_lock);
1370		if (list_empty(&isec->list))
1371			list_add(&isec->list, &sbsec->isec_head);
1372		spin_unlock(&sbsec->isec_lock);
1373		goto out_unlock;
1374	}
1375
 
 
 
 
 
 
1376	switch (sbsec->behavior) {
1377	case SECURITY_FS_USE_NATIVE:
1378		break;
1379	case SECURITY_FS_USE_XATTR:
1380		if (!inode->i_op->getxattr) {
1381			isec->sid = sbsec->def_sid;
1382			break;
1383		}
1384
1385		/* Need a dentry, since the xattr API requires one.
1386		   Life would be simpler if we could just pass the inode. */
1387		if (opt_dentry) {
1388			/* Called from d_instantiate or d_splice_alias. */
1389			dentry = dget(opt_dentry);
1390		} else {
1391			/* Called from selinux_complete_init, try to find a dentry. */
1392			dentry = d_find_alias(inode);
1393		}
1394		if (!dentry) {
1395			/*
1396			 * this is can be hit on boot when a file is accessed
1397			 * before the policy is loaded.  When we load policy we
1398			 * may find inodes that have no dentry on the
1399			 * sbsec->isec_head list.  No reason to complain as these
1400			 * will get fixed up the next time we go through
1401			 * inode_doinit with a dentry, before these inodes could
1402			 * be used again by userspace.
1403			 */
1404			goto out_unlock;
1405		}
1406
1407		len = INITCONTEXTLEN;
1408		context = kmalloc(len+1, GFP_NOFS);
1409		if (!context) {
1410			rc = -ENOMEM;
1411			dput(dentry);
1412			goto out_unlock;
1413		}
1414		context[len] = '\0';
1415		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1416					   context, len);
1417		if (rc == -ERANGE) {
1418			kfree(context);
1419
1420			/* Need a larger buffer.  Query for the right size. */
1421			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1422						   NULL, 0);
1423			if (rc < 0) {
1424				dput(dentry);
1425				goto out_unlock;
1426			}
1427			len = rc;
1428			context = kmalloc(len+1, GFP_NOFS);
1429			if (!context) {
1430				rc = -ENOMEM;
1431				dput(dentry);
1432				goto out_unlock;
1433			}
1434			context[len] = '\0';
1435			rc = inode->i_op->getxattr(dentry,
1436						   XATTR_NAME_SELINUX,
1437						   context, len);
1438		}
1439		dput(dentry);
1440		if (rc < 0) {
1441			if (rc != -ENODATA) {
1442				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1443				       "%d for dev=%s ino=%ld\n", __func__,
1444				       -rc, inode->i_sb->s_id, inode->i_ino);
1445				kfree(context);
1446				goto out_unlock;
1447			}
1448			/* Map ENODATA to the default file SID */
1449			sid = sbsec->def_sid;
1450			rc = 0;
1451		} else {
1452			rc = security_context_to_sid_default(context, rc, &sid,
1453							     sbsec->def_sid,
1454							     GFP_NOFS);
1455			if (rc) {
1456				char *dev = inode->i_sb->s_id;
1457				unsigned long ino = inode->i_ino;
1458
1459				if (rc == -EINVAL) {
1460					if (printk_ratelimit())
1461						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1462							"context=%s.  This indicates you may need to relabel the inode or the "
1463							"filesystem in question.\n", ino, dev, context);
1464				} else {
1465					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1466					       "returned %d for dev=%s ino=%ld\n",
1467					       __func__, context, -rc, dev, ino);
1468				}
1469				kfree(context);
1470				/* Leave with the unlabeled SID */
1471				rc = 0;
1472				break;
1473			}
1474		}
1475		kfree(context);
1476		isec->sid = sid;
1477		break;
1478	case SECURITY_FS_USE_TASK:
1479		isec->sid = isec->task_sid;
1480		break;
1481	case SECURITY_FS_USE_TRANS:
1482		/* Default to the fs SID. */
1483		isec->sid = sbsec->sid;
1484
1485		/* Try to obtain a transition SID. */
1486		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1487		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1488					     isec->sclass, NULL, &sid);
1489		if (rc)
1490			goto out_unlock;
1491		isec->sid = sid;
1492		break;
1493	case SECURITY_FS_USE_MNTPOINT:
1494		isec->sid = sbsec->mntpoint_sid;
1495		break;
1496	default:
1497		/* Default to the fs superblock SID. */
1498		isec->sid = sbsec->sid;
1499
1500		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1501			/* We must have a dentry to determine the label on
1502			 * procfs inodes */
1503			if (opt_dentry)
1504				/* Called from d_instantiate or
1505				 * d_splice_alias. */
1506				dentry = dget(opt_dentry);
1507			else
1508				/* Called from selinux_complete_init, try to
1509				 * find a dentry. */
1510				dentry = d_find_alias(inode);
1511			/*
1512			 * This can be hit on boot when a file is accessed
1513			 * before the policy is loaded.  When we load policy we
1514			 * may find inodes that have no dentry on the
1515			 * sbsec->isec_head list.  No reason to complain as
1516			 * these will get fixed up the next time we go through
1517			 * inode_doinit() with a dentry, before these inodes
1518			 * could be used again by userspace.
1519			 */
1520			if (!dentry)
1521				goto out_unlock;
1522			isec->sclass = inode_mode_to_security_class(inode->i_mode);
1523			rc = selinux_genfs_get_sid(dentry, isec->sclass,
1524						   sbsec->flags, &sid);
1525			dput(dentry);
1526			if (rc)
1527				goto out_unlock;
1528			isec->sid = sid;
1529		}
1530		break;
1531	}
1532
1533	isec->initialized = LABEL_INITIALIZED;
 
 
 
 
 
 
 
 
 
 
1534
1535out_unlock:
1536	mutex_unlock(&isec->lock);
1537out:
1538	if (isec->sclass == SECCLASS_FILE)
1539		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1540	return rc;
1541}
1542
1543/* Convert a Linux signal to an access vector. */
1544static inline u32 signal_to_av(int sig)
1545{
1546	u32 perm = 0;
1547
1548	switch (sig) {
1549	case SIGCHLD:
1550		/* Commonly granted from child to parent. */
1551		perm = PROCESS__SIGCHLD;
1552		break;
1553	case SIGKILL:
1554		/* Cannot be caught or ignored */
1555		perm = PROCESS__SIGKILL;
1556		break;
1557	case SIGSTOP:
1558		/* Cannot be caught or ignored */
1559		perm = PROCESS__SIGSTOP;
1560		break;
1561	default:
1562		/* All other signals. */
1563		perm = PROCESS__SIGNAL;
1564		break;
1565	}
1566
1567	return perm;
1568}
1569
1570/*
1571 * Check permission between a pair of credentials
1572 * fork check, ptrace check, etc.
1573 */
1574static int cred_has_perm(const struct cred *actor,
1575			 const struct cred *target,
1576			 u32 perms)
1577{
1578	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1579
1580	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1581}
1582
1583/*
1584 * Check permission between a pair of tasks, e.g. signal checks,
1585 * fork check, ptrace check, etc.
1586 * tsk1 is the actor and tsk2 is the target
1587 * - this uses the default subjective creds of tsk1
1588 */
1589static int task_has_perm(const struct task_struct *tsk1,
1590			 const struct task_struct *tsk2,
1591			 u32 perms)
1592{
1593	const struct task_security_struct *__tsec1, *__tsec2;
1594	u32 sid1, sid2;
1595
1596	rcu_read_lock();
1597	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1598	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1599	rcu_read_unlock();
1600	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1601}
1602
1603/*
1604 * Check permission between current and another task, e.g. signal checks,
1605 * fork check, ptrace check, etc.
1606 * current is the actor and tsk2 is the target
1607 * - this uses current's subjective creds
1608 */
1609static int current_has_perm(const struct task_struct *tsk,
1610			    u32 perms)
1611{
1612	u32 sid, tsid;
1613
1614	sid = current_sid();
1615	tsid = task_sid(tsk);
1616	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625			       int cap, int audit)
1626{
1627	struct common_audit_data ad;
1628	struct av_decision avd;
1629	u16 sclass;
1630	u32 sid = cred_sid(cred);
1631	u32 av = CAP_TO_MASK(cap);
1632	int rc;
1633
1634	ad.type = LSM_AUDIT_DATA_CAP;
1635	ad.u.cap = cap;
1636
1637	switch (CAP_TO_INDEX(cap)) {
1638	case 0:
1639		sclass = SECCLASS_CAPABILITY;
1640		break;
1641	case 1:
1642		sclass = SECCLASS_CAPABILITY2;
1643		break;
1644	default:
1645		printk(KERN_ERR
1646		       "SELinux:  out of range capability %d\n", cap);
1647		BUG();
1648		return -EINVAL;
1649	}
1650
1651	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1652	if (audit == SECURITY_CAP_AUDIT) {
1653		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1654		if (rc2)
1655			return rc2;
1656	}
1657	return rc;
1658}
1659
1660/* Check whether a task is allowed to use a system operation. */
1661static int task_has_system(struct task_struct *tsk,
1662			   u32 perms)
1663{
1664	u32 sid = task_sid(tsk);
1665
1666	return avc_has_perm(sid, SECINITSID_KERNEL,
1667			    SECCLASS_SYSTEM, perms, NULL);
1668}
1669
1670/* Check whether a task has a particular permission to an inode.
1671   The 'adp' parameter is optional and allows other audit
1672   data to be passed (e.g. the dentry). */
1673static int inode_has_perm(const struct cred *cred,
1674			  struct inode *inode,
1675			  u32 perms,
1676			  struct common_audit_data *adp)
1677{
1678	struct inode_security_struct *isec;
1679	u32 sid;
1680
1681	validate_creds(cred);
1682
1683	if (unlikely(IS_PRIVATE(inode)))
1684		return 0;
1685
1686	sid = cred_sid(cred);
1687	isec = inode->i_security;
1688
1689	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1690}
1691
1692/* Same as inode_has_perm, but pass explicit audit data containing
1693   the dentry to help the auditing code to more easily generate the
1694   pathname if needed. */
1695static inline int dentry_has_perm(const struct cred *cred,
1696				  struct dentry *dentry,
1697				  u32 av)
1698{
1699	struct inode *inode = d_backing_inode(dentry);
1700	struct common_audit_data ad;
1701
1702	ad.type = LSM_AUDIT_DATA_DENTRY;
1703	ad.u.dentry = dentry;
1704	__inode_security_revalidate(inode, dentry, true);
1705	return inode_has_perm(cred, inode, av, &ad);
1706}
1707
1708/* Same as inode_has_perm, but pass explicit audit data containing
1709   the path to help the auditing code to more easily generate the
1710   pathname if needed. */
1711static inline int path_has_perm(const struct cred *cred,
1712				const struct path *path,
1713				u32 av)
1714{
1715	struct inode *inode = d_backing_inode(path->dentry);
1716	struct common_audit_data ad;
1717
1718	ad.type = LSM_AUDIT_DATA_PATH;
1719	ad.u.path = *path;
1720	__inode_security_revalidate(inode, path->dentry, true);
1721	return inode_has_perm(cred, inode, av, &ad);
1722}
1723
1724/* Same as path_has_perm, but uses the inode from the file struct. */
1725static inline int file_path_has_perm(const struct cred *cred,
1726				     struct file *file,
1727				     u32 av)
1728{
1729	struct common_audit_data ad;
1730
1731	ad.type = LSM_AUDIT_DATA_PATH;
1732	ad.u.path = file->f_path;
1733	return inode_has_perm(cred, file_inode(file), av, &ad);
1734}
1735
1736/* Check whether a task can use an open file descriptor to
1737   access an inode in a given way.  Check access to the
1738   descriptor itself, and then use dentry_has_perm to
1739   check a particular permission to the file.
1740   Access to the descriptor is implicitly granted if it
1741   has the same SID as the process.  If av is zero, then
1742   access to the file is not checked, e.g. for cases
1743   where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745			 struct file *file,
1746			 u32 av)
1747{
1748	struct file_security_struct *fsec = file->f_security;
1749	struct inode *inode = file_inode(file);
1750	struct common_audit_data ad;
1751	u32 sid = cred_sid(cred);
1752	int rc;
1753
1754	ad.type = LSM_AUDIT_DATA_PATH;
1755	ad.u.path = file->f_path;
1756
1757	if (sid != fsec->sid) {
1758		rc = avc_has_perm(sid, fsec->sid,
1759				  SECCLASS_FD,
1760				  FD__USE,
1761				  &ad);
1762		if (rc)
1763			goto out;
1764	}
1765
1766	/* av is zero if only checking access to the descriptor. */
1767	rc = 0;
1768	if (av)
1769		rc = inode_has_perm(cred, inode, av, &ad);
1770
1771out:
1772	return rc;
1773}
1774
1775/*
1776 * Determine the label for an inode that might be unioned.
1777 */
1778static int selinux_determine_inode_label(struct inode *dir,
1779					 const struct qstr *name,
1780					 u16 tclass,
1781					 u32 *_new_isid)
 
1782{
1783	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1784	const struct inode_security_struct *dsec = inode_security(dir);
1785	const struct task_security_struct *tsec = current_security();
1786
1787	if ((sbsec->flags & SE_SBINITIALIZED) &&
1788	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1789		*_new_isid = sbsec->mntpoint_sid;
1790	} else if ((sbsec->flags & SBLABEL_MNT) &&
1791		   tsec->create_sid) {
1792		*_new_isid = tsec->create_sid;
1793	} else {
 
1794		return security_transition_sid(tsec->sid, dsec->sid, tclass,
1795					       name, _new_isid);
1796	}
1797
1798	return 0;
1799}
1800
1801/* Check whether a task can create a file. */
1802static int may_create(struct inode *dir,
1803		      struct dentry *dentry,
1804		      u16 tclass)
1805{
1806	const struct task_security_struct *tsec = current_security();
1807	struct inode_security_struct *dsec;
1808	struct superblock_security_struct *sbsec;
1809	u32 sid, newsid;
1810	struct common_audit_data ad;
1811	int rc;
1812
1813	dsec = inode_security(dir);
1814	sbsec = dir->i_sb->s_security;
1815
1816	sid = tsec->sid;
1817
1818	ad.type = LSM_AUDIT_DATA_DENTRY;
1819	ad.u.dentry = dentry;
1820
1821	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1822			  DIR__ADD_NAME | DIR__SEARCH,
1823			  &ad);
1824	if (rc)
1825		return rc;
1826
1827	rc = selinux_determine_inode_label(dir, &dentry->d_name, tclass,
1828					   &newsid);
1829	if (rc)
1830		return rc;
1831
1832	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1833	if (rc)
1834		return rc;
1835
1836	return avc_has_perm(newsid, sbsec->sid,
1837			    SECCLASS_FILESYSTEM,
1838			    FILESYSTEM__ASSOCIATE, &ad);
1839}
1840
1841/* Check whether a task can create a key. */
1842static int may_create_key(u32 ksid,
1843			  struct task_struct *ctx)
1844{
1845	u32 sid = task_sid(ctx);
1846
1847	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1848}
1849
1850#define MAY_LINK	0
1851#define MAY_UNLINK	1
1852#define MAY_RMDIR	2
1853
1854/* Check whether a task can link, unlink, or rmdir a file/directory. */
1855static int may_link(struct inode *dir,
1856		    struct dentry *dentry,
1857		    int kind)
1858
1859{
1860	struct inode_security_struct *dsec, *isec;
1861	struct common_audit_data ad;
1862	u32 sid = current_sid();
1863	u32 av;
1864	int rc;
1865
1866	dsec = inode_security(dir);
1867	isec = backing_inode_security(dentry);
1868
1869	ad.type = LSM_AUDIT_DATA_DENTRY;
1870	ad.u.dentry = dentry;
1871
1872	av = DIR__SEARCH;
1873	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1874	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1875	if (rc)
1876		return rc;
1877
1878	switch (kind) {
1879	case MAY_LINK:
1880		av = FILE__LINK;
1881		break;
1882	case MAY_UNLINK:
1883		av = FILE__UNLINK;
1884		break;
1885	case MAY_RMDIR:
1886		av = DIR__RMDIR;
1887		break;
1888	default:
1889		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1890			__func__, kind);
1891		return 0;
1892	}
1893
1894	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1895	return rc;
1896}
1897
1898static inline int may_rename(struct inode *old_dir,
1899			     struct dentry *old_dentry,
1900			     struct inode *new_dir,
1901			     struct dentry *new_dentry)
1902{
1903	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1904	struct common_audit_data ad;
1905	u32 sid = current_sid();
1906	u32 av;
1907	int old_is_dir, new_is_dir;
1908	int rc;
1909
1910	old_dsec = inode_security(old_dir);
1911	old_isec = backing_inode_security(old_dentry);
1912	old_is_dir = d_is_dir(old_dentry);
1913	new_dsec = inode_security(new_dir);
1914
1915	ad.type = LSM_AUDIT_DATA_DENTRY;
1916
1917	ad.u.dentry = old_dentry;
1918	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1919			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1920	if (rc)
1921		return rc;
1922	rc = avc_has_perm(sid, old_isec->sid,
1923			  old_isec->sclass, FILE__RENAME, &ad);
1924	if (rc)
1925		return rc;
1926	if (old_is_dir && new_dir != old_dir) {
1927		rc = avc_has_perm(sid, old_isec->sid,
1928				  old_isec->sclass, DIR__REPARENT, &ad);
1929		if (rc)
1930			return rc;
1931	}
1932
1933	ad.u.dentry = new_dentry;
1934	av = DIR__ADD_NAME | DIR__SEARCH;
1935	if (d_is_positive(new_dentry))
1936		av |= DIR__REMOVE_NAME;
1937	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1938	if (rc)
1939		return rc;
1940	if (d_is_positive(new_dentry)) {
1941		new_isec = backing_inode_security(new_dentry);
1942		new_is_dir = d_is_dir(new_dentry);
1943		rc = avc_has_perm(sid, new_isec->sid,
1944				  new_isec->sclass,
1945				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1946		if (rc)
1947			return rc;
1948	}
1949
1950	return 0;
1951}
1952
1953/* Check whether a task can perform a filesystem operation. */
1954static int superblock_has_perm(const struct cred *cred,
1955			       struct super_block *sb,
1956			       u32 perms,
1957			       struct common_audit_data *ad)
1958{
1959	struct superblock_security_struct *sbsec;
1960	u32 sid = cred_sid(cred);
1961
1962	sbsec = sb->s_security;
1963	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1964}
1965
1966/* Convert a Linux mode and permission mask to an access vector. */
1967static inline u32 file_mask_to_av(int mode, int mask)
1968{
1969	u32 av = 0;
1970
1971	if (!S_ISDIR(mode)) {
1972		if (mask & MAY_EXEC)
1973			av |= FILE__EXECUTE;
1974		if (mask & MAY_READ)
1975			av |= FILE__READ;
1976
1977		if (mask & MAY_APPEND)
1978			av |= FILE__APPEND;
1979		else if (mask & MAY_WRITE)
1980			av |= FILE__WRITE;
1981
1982	} else {
1983		if (mask & MAY_EXEC)
1984			av |= DIR__SEARCH;
1985		if (mask & MAY_WRITE)
1986			av |= DIR__WRITE;
1987		if (mask & MAY_READ)
1988			av |= DIR__READ;
1989	}
1990
1991	return av;
1992}
1993
1994/* Convert a Linux file to an access vector. */
1995static inline u32 file_to_av(struct file *file)
1996{
1997	u32 av = 0;
1998
1999	if (file->f_mode & FMODE_READ)
2000		av |= FILE__READ;
2001	if (file->f_mode & FMODE_WRITE) {
2002		if (file->f_flags & O_APPEND)
2003			av |= FILE__APPEND;
2004		else
2005			av |= FILE__WRITE;
2006	}
2007	if (!av) {
2008		/*
2009		 * Special file opened with flags 3 for ioctl-only use.
2010		 */
2011		av = FILE__IOCTL;
2012	}
2013
2014	return av;
2015}
2016
2017/*
2018 * Convert a file to an access vector and include the correct open
2019 * open permission.
2020 */
2021static inline u32 open_file_to_av(struct file *file)
2022{
2023	u32 av = file_to_av(file);
2024
2025	if (selinux_policycap_openperm)
2026		av |= FILE__OPEN;
2027
2028	return av;
2029}
2030
2031/* Hook functions begin here. */
2032
2033static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2034{
2035	u32 mysid = current_sid();
2036	u32 mgrsid = task_sid(mgr);
2037
2038	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2039			    BINDER__SET_CONTEXT_MGR, NULL);
2040}
2041
2042static int selinux_binder_transaction(struct task_struct *from,
2043				      struct task_struct *to)
2044{
2045	u32 mysid = current_sid();
2046	u32 fromsid = task_sid(from);
2047	u32 tosid = task_sid(to);
2048	int rc;
2049
2050	if (mysid != fromsid) {
2051		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2052				  BINDER__IMPERSONATE, NULL);
2053		if (rc)
2054			return rc;
2055	}
2056
2057	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2058			    NULL);
2059}
2060
2061static int selinux_binder_transfer_binder(struct task_struct *from,
2062					  struct task_struct *to)
2063{
2064	u32 fromsid = task_sid(from);
2065	u32 tosid = task_sid(to);
2066
2067	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2068			    NULL);
2069}
2070
2071static int selinux_binder_transfer_file(struct task_struct *from,
2072					struct task_struct *to,
2073					struct file *file)
2074{
2075	u32 sid = task_sid(to);
2076	struct file_security_struct *fsec = file->f_security;
2077	struct dentry *dentry = file->f_path.dentry;
2078	struct inode_security_struct *isec = backing_inode_security(dentry);
2079	struct common_audit_data ad;
2080	int rc;
2081
2082	ad.type = LSM_AUDIT_DATA_PATH;
2083	ad.u.path = file->f_path;
2084
2085	if (sid != fsec->sid) {
2086		rc = avc_has_perm(sid, fsec->sid,
2087				  SECCLASS_FD,
2088				  FD__USE,
2089				  &ad);
2090		if (rc)
2091			return rc;
2092	}
2093
2094	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2095		return 0;
2096
 
2097	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2098			    &ad);
2099}
2100
2101static int selinux_ptrace_access_check(struct task_struct *child,
2102				     unsigned int mode)
2103{
2104	if (mode & PTRACE_MODE_READ) {
2105		u32 sid = current_sid();
2106		u32 csid = task_sid(child);
2107		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2108	}
2109
2110	return current_has_perm(child, PROCESS__PTRACE);
2111}
2112
2113static int selinux_ptrace_traceme(struct task_struct *parent)
2114{
2115	return task_has_perm(parent, current, PROCESS__PTRACE);
2116}
2117
2118static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2119			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2120{
2121	return current_has_perm(target, PROCESS__GETCAP);
2122}
2123
2124static int selinux_capset(struct cred *new, const struct cred *old,
2125			  const kernel_cap_t *effective,
2126			  const kernel_cap_t *inheritable,
2127			  const kernel_cap_t *permitted)
2128{
2129	return cred_has_perm(old, new, PROCESS__SETCAP);
2130}
2131
2132/*
2133 * (This comment used to live with the selinux_task_setuid hook,
2134 * which was removed).
2135 *
2136 * Since setuid only affects the current process, and since the SELinux
2137 * controls are not based on the Linux identity attributes, SELinux does not
2138 * need to control this operation.  However, SELinux does control the use of
2139 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2140 */
2141
2142static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2143			   int cap, int audit)
2144{
2145	return cred_has_capability(cred, cap, audit);
2146}
2147
2148static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2149{
2150	const struct cred *cred = current_cred();
2151	int rc = 0;
2152
2153	if (!sb)
2154		return 0;
2155
2156	switch (cmds) {
2157	case Q_SYNC:
2158	case Q_QUOTAON:
2159	case Q_QUOTAOFF:
2160	case Q_SETINFO:
2161	case Q_SETQUOTA:
2162		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2163		break;
2164	case Q_GETFMT:
2165	case Q_GETINFO:
2166	case Q_GETQUOTA:
2167		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2168		break;
2169	default:
2170		rc = 0;  /* let the kernel handle invalid cmds */
2171		break;
2172	}
2173	return rc;
2174}
2175
2176static int selinux_quota_on(struct dentry *dentry)
2177{
2178	const struct cred *cred = current_cred();
2179
2180	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2181}
2182
2183static int selinux_syslog(int type)
2184{
2185	int rc;
2186
2187	switch (type) {
2188	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2189	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2190		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2191		break;
2192	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2193	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2194	/* Set level of messages printed to console */
2195	case SYSLOG_ACTION_CONSOLE_LEVEL:
2196		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2197		break;
2198	case SYSLOG_ACTION_CLOSE:	/* Close log */
2199	case SYSLOG_ACTION_OPEN:	/* Open log */
2200	case SYSLOG_ACTION_READ:	/* Read from log */
2201	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2202	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2203	default:
2204		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2205		break;
2206	}
2207	return rc;
2208}
2209
2210/*
2211 * Check that a process has enough memory to allocate a new virtual
2212 * mapping. 0 means there is enough memory for the allocation to
2213 * succeed and -ENOMEM implies there is not.
2214 *
2215 * Do not audit the selinux permission check, as this is applied to all
2216 * processes that allocate mappings.
2217 */
2218static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2219{
2220	int rc, cap_sys_admin = 0;
2221
2222	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2223					SECURITY_CAP_NOAUDIT);
2224	if (rc == 0)
2225		cap_sys_admin = 1;
2226
2227	return cap_sys_admin;
2228}
2229
2230/* binprm security operations */
2231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232static int check_nnp_nosuid(const struct linux_binprm *bprm,
2233			    const struct task_security_struct *old_tsec,
2234			    const struct task_security_struct *new_tsec)
2235{
2236	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2237	int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2238	int rc;
2239
2240	if (!nnp && !nosuid)
2241		return 0; /* neither NNP nor nosuid */
2242
2243	if (new_tsec->sid == old_tsec->sid)
2244		return 0; /* No change in credentials */
2245
2246	/*
2247	 * The only transitions we permit under NNP or nosuid
2248	 * are transitions to bounded SIDs, i.e. SIDs that are
2249	 * guaranteed to only be allowed a subset of the permissions
2250	 * of the current SID.
2251	 */
2252	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2253	if (rc) {
2254		/*
2255		 * On failure, preserve the errno values for NNP vs nosuid.
2256		 * NNP:  Operation not permitted for caller.
2257		 * nosuid:  Permission denied to file.
2258		 */
2259		if (nnp)
2260			return -EPERM;
2261		else
2262			return -EACCES;
2263	}
2264	return 0;
2265}
2266
2267static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2268{
2269	const struct task_security_struct *old_tsec;
2270	struct task_security_struct *new_tsec;
2271	struct inode_security_struct *isec;
2272	struct common_audit_data ad;
2273	struct inode *inode = file_inode(bprm->file);
2274	int rc;
2275
2276	/* SELinux context only depends on initial program or script and not
2277	 * the script interpreter */
2278	if (bprm->cred_prepared)
2279		return 0;
2280
2281	old_tsec = current_security();
2282	new_tsec = bprm->cred->security;
2283	isec = inode_security(inode);
2284
2285	/* Default to the current task SID. */
2286	new_tsec->sid = old_tsec->sid;
2287	new_tsec->osid = old_tsec->sid;
2288
2289	/* Reset fs, key, and sock SIDs on execve. */
2290	new_tsec->create_sid = 0;
2291	new_tsec->keycreate_sid = 0;
2292	new_tsec->sockcreate_sid = 0;
2293
2294	if (old_tsec->exec_sid) {
2295		new_tsec->sid = old_tsec->exec_sid;
2296		/* Reset exec SID on execve. */
2297		new_tsec->exec_sid = 0;
2298
2299		/* Fail on NNP or nosuid if not an allowed transition. */
2300		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2301		if (rc)
2302			return rc;
2303	} else {
2304		/* Check for a default transition on this program. */
2305		rc = security_transition_sid(old_tsec->sid, isec->sid,
2306					     SECCLASS_PROCESS, NULL,
2307					     &new_tsec->sid);
2308		if (rc)
2309			return rc;
2310
2311		/*
2312		 * Fallback to old SID on NNP or nosuid if not an allowed
2313		 * transition.
2314		 */
2315		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2316		if (rc)
2317			new_tsec->sid = old_tsec->sid;
2318	}
2319
2320	ad.type = LSM_AUDIT_DATA_PATH;
2321	ad.u.path = bprm->file->f_path;
2322
2323	if (new_tsec->sid == old_tsec->sid) {
2324		rc = avc_has_perm(old_tsec->sid, isec->sid,
2325				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2326		if (rc)
2327			return rc;
2328	} else {
2329		/* Check permissions for the transition. */
2330		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2331				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2332		if (rc)
2333			return rc;
2334
2335		rc = avc_has_perm(new_tsec->sid, isec->sid,
2336				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2337		if (rc)
2338			return rc;
2339
2340		/* Check for shared state */
2341		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2342			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2343					  SECCLASS_PROCESS, PROCESS__SHARE,
2344					  NULL);
2345			if (rc)
2346				return -EPERM;
2347		}
2348
2349		/* Make sure that anyone attempting to ptrace over a task that
2350		 * changes its SID has the appropriate permit */
2351		if (bprm->unsafe &
2352		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2353			struct task_struct *tracer;
2354			struct task_security_struct *sec;
2355			u32 ptsid = 0;
2356
2357			rcu_read_lock();
2358			tracer = ptrace_parent(current);
2359			if (likely(tracer != NULL)) {
2360				sec = __task_cred(tracer)->security;
2361				ptsid = sec->sid;
2362			}
2363			rcu_read_unlock();
2364
2365			if (ptsid != 0) {
2366				rc = avc_has_perm(ptsid, new_tsec->sid,
2367						  SECCLASS_PROCESS,
2368						  PROCESS__PTRACE, NULL);
2369				if (rc)
2370					return -EPERM;
2371			}
2372		}
2373
2374		/* Clear any possibly unsafe personality bits on exec: */
2375		bprm->per_clear |= PER_CLEAR_ON_SETID;
2376	}
2377
2378	return 0;
2379}
2380
2381static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2382{
2383	const struct task_security_struct *tsec = current_security();
2384	u32 sid, osid;
2385	int atsecure = 0;
2386
2387	sid = tsec->sid;
2388	osid = tsec->osid;
2389
2390	if (osid != sid) {
2391		/* Enable secure mode for SIDs transitions unless
2392		   the noatsecure permission is granted between
2393		   the two SIDs, i.e. ahp returns 0. */
2394		atsecure = avc_has_perm(osid, sid,
2395					SECCLASS_PROCESS,
2396					PROCESS__NOATSECURE, NULL);
2397	}
2398
2399	return !!atsecure;
2400}
2401
2402static int match_file(const void *p, struct file *file, unsigned fd)
2403{
2404	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2405}
2406
2407/* Derived from fs/exec.c:flush_old_files. */
2408static inline void flush_unauthorized_files(const struct cred *cred,
2409					    struct files_struct *files)
2410{
2411	struct file *file, *devnull = NULL;
2412	struct tty_struct *tty;
2413	int drop_tty = 0;
2414	unsigned n;
2415
2416	tty = get_current_tty();
2417	if (tty) {
2418		spin_lock(&tty->files_lock);
2419		if (!list_empty(&tty->tty_files)) {
2420			struct tty_file_private *file_priv;
2421
2422			/* Revalidate access to controlling tty.
2423			   Use file_path_has_perm on the tty path directly
2424			   rather than using file_has_perm, as this particular
2425			   open file may belong to another process and we are
2426			   only interested in the inode-based check here. */
2427			file_priv = list_first_entry(&tty->tty_files,
2428						struct tty_file_private, list);
2429			file = file_priv->file;
2430			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2431				drop_tty = 1;
2432		}
2433		spin_unlock(&tty->files_lock);
2434		tty_kref_put(tty);
2435	}
2436	/* Reset controlling tty. */
2437	if (drop_tty)
2438		no_tty();
2439
2440	/* Revalidate access to inherited open files. */
2441	n = iterate_fd(files, 0, match_file, cred);
2442	if (!n) /* none found? */
2443		return;
2444
2445	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2446	if (IS_ERR(devnull))
2447		devnull = NULL;
2448	/* replace all the matching ones with this */
2449	do {
2450		replace_fd(n - 1, devnull, 0);
2451	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2452	if (devnull)
2453		fput(devnull);
2454}
2455
2456/*
2457 * Prepare a process for imminent new credential changes due to exec
2458 */
2459static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2460{
2461	struct task_security_struct *new_tsec;
2462	struct rlimit *rlim, *initrlim;
2463	int rc, i;
2464
2465	new_tsec = bprm->cred->security;
2466	if (new_tsec->sid == new_tsec->osid)
2467		return;
2468
2469	/* Close files for which the new task SID is not authorized. */
2470	flush_unauthorized_files(bprm->cred, current->files);
2471
2472	/* Always clear parent death signal on SID transitions. */
2473	current->pdeath_signal = 0;
2474
2475	/* Check whether the new SID can inherit resource limits from the old
2476	 * SID.  If not, reset all soft limits to the lower of the current
2477	 * task's hard limit and the init task's soft limit.
2478	 *
2479	 * Note that the setting of hard limits (even to lower them) can be
2480	 * controlled by the setrlimit check.  The inclusion of the init task's
2481	 * soft limit into the computation is to avoid resetting soft limits
2482	 * higher than the default soft limit for cases where the default is
2483	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2484	 */
2485	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2486			  PROCESS__RLIMITINH, NULL);
2487	if (rc) {
2488		/* protect against do_prlimit() */
2489		task_lock(current);
2490		for (i = 0; i < RLIM_NLIMITS; i++) {
2491			rlim = current->signal->rlim + i;
2492			initrlim = init_task.signal->rlim + i;
2493			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2494		}
2495		task_unlock(current);
2496		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
 
2497	}
2498}
2499
2500/*
2501 * Clean up the process immediately after the installation of new credentials
2502 * due to exec
2503 */
2504static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2505{
2506	const struct task_security_struct *tsec = current_security();
2507	struct itimerval itimer;
2508	u32 osid, sid;
2509	int rc, i;
2510
2511	osid = tsec->osid;
2512	sid = tsec->sid;
2513
2514	if (sid == osid)
2515		return;
2516
2517	/* Check whether the new SID can inherit signal state from the old SID.
2518	 * If not, clear itimers to avoid subsequent signal generation and
2519	 * flush and unblock signals.
2520	 *
2521	 * This must occur _after_ the task SID has been updated so that any
2522	 * kill done after the flush will be checked against the new SID.
2523	 */
2524	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2525	if (rc) {
2526		memset(&itimer, 0, sizeof itimer);
2527		for (i = 0; i < 3; i++)
2528			do_setitimer(i, &itimer, NULL);
 
 
2529		spin_lock_irq(&current->sighand->siglock);
2530		if (!fatal_signal_pending(current)) {
2531			flush_sigqueue(&current->pending);
2532			flush_sigqueue(&current->signal->shared_pending);
2533			flush_signal_handlers(current, 1);
2534			sigemptyset(&current->blocked);
2535			recalc_sigpending();
2536		}
2537		spin_unlock_irq(&current->sighand->siglock);
2538	}
2539
2540	/* Wake up the parent if it is waiting so that it can recheck
2541	 * wait permission to the new task SID. */
2542	read_lock(&tasklist_lock);
2543	__wake_up_parent(current, current->real_parent);
2544	read_unlock(&tasklist_lock);
2545}
2546
2547/* superblock security operations */
2548
2549static int selinux_sb_alloc_security(struct super_block *sb)
2550{
2551	return superblock_alloc_security(sb);
2552}
2553
2554static void selinux_sb_free_security(struct super_block *sb)
2555{
2556	superblock_free_security(sb);
2557}
2558
2559static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2560{
2561	if (plen > olen)
2562		return 0;
2563
2564	return !memcmp(prefix, option, plen);
2565}
2566
2567static inline int selinux_option(char *option, int len)
2568{
2569	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2570		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2571		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2572		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2573		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2574}
2575
2576static inline void take_option(char **to, char *from, int *first, int len)
2577{
2578	if (!*first) {
2579		**to = ',';
2580		*to += 1;
2581	} else
2582		*first = 0;
2583	memcpy(*to, from, len);
2584	*to += len;
2585}
2586
2587static inline void take_selinux_option(char **to, char *from, int *first,
2588				       int len)
2589{
2590	int current_size = 0;
2591
2592	if (!*first) {
2593		**to = '|';
2594		*to += 1;
2595	} else
2596		*first = 0;
2597
2598	while (current_size < len) {
2599		if (*from != '"') {
2600			**to = *from;
2601			*to += 1;
2602		}
2603		from += 1;
2604		current_size += 1;
2605	}
2606}
2607
2608static int selinux_sb_copy_data(char *orig, char *copy)
2609{
2610	int fnosec, fsec, rc = 0;
2611	char *in_save, *in_curr, *in_end;
2612	char *sec_curr, *nosec_save, *nosec;
2613	int open_quote = 0;
2614
2615	in_curr = orig;
2616	sec_curr = copy;
2617
2618	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2619	if (!nosec) {
2620		rc = -ENOMEM;
2621		goto out;
2622	}
2623
2624	nosec_save = nosec;
2625	fnosec = fsec = 1;
2626	in_save = in_end = orig;
2627
2628	do {
2629		if (*in_end == '"')
2630			open_quote = !open_quote;
2631		if ((*in_end == ',' && open_quote == 0) ||
2632				*in_end == '\0') {
2633			int len = in_end - in_curr;
2634
2635			if (selinux_option(in_curr, len))
2636				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2637			else
2638				take_option(&nosec, in_curr, &fnosec, len);
2639
2640			in_curr = in_end + 1;
2641		}
2642	} while (*in_end++);
2643
2644	strcpy(in_save, nosec_save);
2645	free_page((unsigned long)nosec_save);
2646out:
2647	return rc;
2648}
2649
2650static int selinux_sb_remount(struct super_block *sb, void *data)
2651{
2652	int rc, i, *flags;
2653	struct security_mnt_opts opts;
2654	char *secdata, **mount_options;
2655	struct superblock_security_struct *sbsec = sb->s_security;
2656
2657	if (!(sbsec->flags & SE_SBINITIALIZED))
2658		return 0;
2659
2660	if (!data)
2661		return 0;
2662
2663	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2664		return 0;
2665
2666	security_init_mnt_opts(&opts);
2667	secdata = alloc_secdata();
2668	if (!secdata)
2669		return -ENOMEM;
2670	rc = selinux_sb_copy_data(data, secdata);
2671	if (rc)
2672		goto out_free_secdata;
2673
2674	rc = selinux_parse_opts_str(secdata, &opts);
2675	if (rc)
2676		goto out_free_secdata;
2677
2678	mount_options = opts.mnt_opts;
2679	flags = opts.mnt_opts_flags;
2680
2681	for (i = 0; i < opts.num_mnt_opts; i++) {
2682		u32 sid;
2683
2684		if (flags[i] == SBLABEL_MNT)
2685			continue;
2686		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2687		if (rc) {
2688			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2689			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2690			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2691			goto out_free_opts;
2692		}
2693		rc = -EINVAL;
2694		switch (flags[i]) {
2695		case FSCONTEXT_MNT:
2696			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2697				goto out_bad_option;
2698			break;
2699		case CONTEXT_MNT:
2700			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2701				goto out_bad_option;
2702			break;
2703		case ROOTCONTEXT_MNT: {
2704			struct inode_security_struct *root_isec;
2705			root_isec = backing_inode_security(sb->s_root);
2706
2707			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2708				goto out_bad_option;
2709			break;
2710		}
2711		case DEFCONTEXT_MNT:
2712			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2713				goto out_bad_option;
2714			break;
2715		default:
2716			goto out_free_opts;
2717		}
2718	}
2719
2720	rc = 0;
2721out_free_opts:
2722	security_free_mnt_opts(&opts);
2723out_free_secdata:
2724	free_secdata(secdata);
2725	return rc;
2726out_bad_option:
2727	printk(KERN_WARNING "SELinux: unable to change security options "
2728	       "during remount (dev %s, type=%s)\n", sb->s_id,
2729	       sb->s_type->name);
2730	goto out_free_opts;
2731}
2732
2733static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2734{
2735	const struct cred *cred = current_cred();
2736	struct common_audit_data ad;
2737	int rc;
2738
2739	rc = superblock_doinit(sb, data);
2740	if (rc)
2741		return rc;
2742
2743	/* Allow all mounts performed by the kernel */
2744	if (flags & MS_KERNMOUNT)
2745		return 0;
2746
2747	ad.type = LSM_AUDIT_DATA_DENTRY;
2748	ad.u.dentry = sb->s_root;
2749	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2750}
2751
2752static int selinux_sb_statfs(struct dentry *dentry)
2753{
2754	const struct cred *cred = current_cred();
2755	struct common_audit_data ad;
2756
2757	ad.type = LSM_AUDIT_DATA_DENTRY;
2758	ad.u.dentry = dentry->d_sb->s_root;
2759	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2760}
2761
2762static int selinux_mount(const char *dev_name,
2763			 struct path *path,
2764			 const char *type,
2765			 unsigned long flags,
2766			 void *data)
2767{
2768	const struct cred *cred = current_cred();
2769
2770	if (flags & MS_REMOUNT)
2771		return superblock_has_perm(cred, path->dentry->d_sb,
2772					   FILESYSTEM__REMOUNT, NULL);
2773	else
2774		return path_has_perm(cred, path, FILE__MOUNTON);
2775}
2776
2777static int selinux_umount(struct vfsmount *mnt, int flags)
2778{
2779	const struct cred *cred = current_cred();
2780
2781	return superblock_has_perm(cred, mnt->mnt_sb,
2782				   FILESYSTEM__UNMOUNT, NULL);
2783}
2784
2785/* inode security operations */
2786
2787static int selinux_inode_alloc_security(struct inode *inode)
2788{
2789	return inode_alloc_security(inode);
2790}
2791
2792static void selinux_inode_free_security(struct inode *inode)
2793{
2794	inode_free_security(inode);
2795}
2796
2797static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2798					struct qstr *name, void **ctx,
2799					u32 *ctxlen)
2800{
2801	u32 newsid;
2802	int rc;
2803
2804	rc = selinux_determine_inode_label(d_inode(dentry->d_parent), name,
 
2805					   inode_mode_to_security_class(mode),
2806					   &newsid);
2807	if (rc)
2808		return rc;
2809
2810	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2811}
2812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2813static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2814				       const struct qstr *qstr,
2815				       const char **name,
2816				       void **value, size_t *len)
2817{
2818	const struct task_security_struct *tsec = current_security();
2819	struct superblock_security_struct *sbsec;
2820	u32 sid, newsid, clen;
2821	int rc;
2822	char *context;
2823
2824	sbsec = dir->i_sb->s_security;
2825
2826	sid = tsec->sid;
2827	newsid = tsec->create_sid;
2828
2829	rc = selinux_determine_inode_label(
2830		dir, qstr,
2831		inode_mode_to_security_class(inode->i_mode),
2832		&newsid);
2833	if (rc)
2834		return rc;
2835
2836	/* Possibly defer initialization to selinux_complete_init. */
2837	if (sbsec->flags & SE_SBINITIALIZED) {
2838		struct inode_security_struct *isec = inode->i_security;
2839		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2840		isec->sid = newsid;
2841		isec->initialized = LABEL_INITIALIZED;
2842	}
2843
2844	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2845		return -EOPNOTSUPP;
2846
2847	if (name)
2848		*name = XATTR_SELINUX_SUFFIX;
2849
2850	if (value && len) {
2851		rc = security_sid_to_context_force(newsid, &context, &clen);
2852		if (rc)
2853			return rc;
2854		*value = context;
2855		*len = clen;
2856	}
2857
2858	return 0;
2859}
2860
2861static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2862{
2863	return may_create(dir, dentry, SECCLASS_FILE);
2864}
2865
2866static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2867{
2868	return may_link(dir, old_dentry, MAY_LINK);
2869}
2870
2871static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2872{
2873	return may_link(dir, dentry, MAY_UNLINK);
2874}
2875
2876static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2877{
2878	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2879}
2880
2881static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2882{
2883	return may_create(dir, dentry, SECCLASS_DIR);
2884}
2885
2886static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2887{
2888	return may_link(dir, dentry, MAY_RMDIR);
2889}
2890
2891static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892{
2893	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2894}
2895
2896static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2897				struct inode *new_inode, struct dentry *new_dentry)
2898{
2899	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2900}
2901
2902static int selinux_inode_readlink(struct dentry *dentry)
2903{
2904	const struct cred *cred = current_cred();
2905
2906	return dentry_has_perm(cred, dentry, FILE__READ);
2907}
2908
2909static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2910				     bool rcu)
2911{
2912	const struct cred *cred = current_cred();
2913	struct common_audit_data ad;
2914	struct inode_security_struct *isec;
2915	u32 sid;
2916
2917	validate_creds(cred);
2918
2919	ad.type = LSM_AUDIT_DATA_DENTRY;
2920	ad.u.dentry = dentry;
2921	sid = cred_sid(cred);
2922	isec = inode_security_rcu(inode, rcu);
2923	if (IS_ERR(isec))
2924		return PTR_ERR(isec);
2925
2926	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2927				  rcu ? MAY_NOT_BLOCK : 0);
2928}
2929
2930static noinline int audit_inode_permission(struct inode *inode,
2931					   u32 perms, u32 audited, u32 denied,
2932					   int result,
2933					   unsigned flags)
2934{
2935	struct common_audit_data ad;
2936	struct inode_security_struct *isec = inode->i_security;
2937	int rc;
2938
2939	ad.type = LSM_AUDIT_DATA_INODE;
2940	ad.u.inode = inode;
2941
2942	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2943			    audited, denied, result, &ad, flags);
2944	if (rc)
2945		return rc;
2946	return 0;
2947}
2948
2949static int selinux_inode_permission(struct inode *inode, int mask)
2950{
2951	const struct cred *cred = current_cred();
2952	u32 perms;
2953	bool from_access;
2954	unsigned flags = mask & MAY_NOT_BLOCK;
2955	struct inode_security_struct *isec;
2956	u32 sid;
2957	struct av_decision avd;
2958	int rc, rc2;
2959	u32 audited, denied;
2960
2961	from_access = mask & MAY_ACCESS;
2962	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2963
2964	/* No permission to check.  Existence test. */
2965	if (!mask)
2966		return 0;
2967
2968	validate_creds(cred);
2969
2970	if (unlikely(IS_PRIVATE(inode)))
2971		return 0;
2972
2973	perms = file_mask_to_av(inode->i_mode, mask);
2974
2975	sid = cred_sid(cred);
2976	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
2977	if (IS_ERR(isec))
2978		return PTR_ERR(isec);
2979
2980	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2981	audited = avc_audit_required(perms, &avd, rc,
2982				     from_access ? FILE__AUDIT_ACCESS : 0,
2983				     &denied);
2984	if (likely(!audited))
2985		return rc;
2986
2987	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2988	if (rc2)
2989		return rc2;
2990	return rc;
2991}
2992
2993static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2994{
2995	const struct cred *cred = current_cred();
2996	unsigned int ia_valid = iattr->ia_valid;
2997	__u32 av = FILE__WRITE;
2998
2999	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3000	if (ia_valid & ATTR_FORCE) {
3001		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3002			      ATTR_FORCE);
3003		if (!ia_valid)
3004			return 0;
3005	}
3006
3007	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3008			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3009		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3010
3011	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3012			&& !(ia_valid & ATTR_FILE))
3013		av |= FILE__OPEN;
3014
3015	return dentry_has_perm(cred, dentry, av);
3016}
3017
3018static int selinux_inode_getattr(const struct path *path)
3019{
3020	return path_has_perm(current_cred(), path, FILE__GETATTR);
3021}
3022
3023static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3024{
3025	const struct cred *cred = current_cred();
3026
3027	if (!strncmp(name, XATTR_SECURITY_PREFIX,
3028		     sizeof XATTR_SECURITY_PREFIX - 1)) {
3029		if (!strcmp(name, XATTR_NAME_CAPS)) {
3030			if (!capable(CAP_SETFCAP))
3031				return -EPERM;
3032		} else if (!capable(CAP_SYS_ADMIN)) {
3033			/* A different attribute in the security namespace.
3034			   Restrict to administrator. */
3035			return -EPERM;
3036		}
3037	}
3038
3039	/* Not an attribute we recognize, so just check the
3040	   ordinary setattr permission. */
3041	return dentry_has_perm(cred, dentry, FILE__SETATTR);
3042}
3043
3044static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3045				  const void *value, size_t size, int flags)
3046{
3047	struct inode *inode = d_backing_inode(dentry);
3048	struct inode_security_struct *isec = backing_inode_security(dentry);
3049	struct superblock_security_struct *sbsec;
3050	struct common_audit_data ad;
3051	u32 newsid, sid = current_sid();
3052	int rc = 0;
3053
3054	if (strcmp(name, XATTR_NAME_SELINUX))
3055		return selinux_inode_setotherxattr(dentry, name);
3056
3057	sbsec = inode->i_sb->s_security;
3058	if (!(sbsec->flags & SBLABEL_MNT))
3059		return -EOPNOTSUPP;
3060
3061	if (!inode_owner_or_capable(inode))
3062		return -EPERM;
3063
3064	ad.type = LSM_AUDIT_DATA_DENTRY;
3065	ad.u.dentry = dentry;
3066
 
3067	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3068			  FILE__RELABELFROM, &ad);
3069	if (rc)
3070		return rc;
3071
3072	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3073	if (rc == -EINVAL) {
3074		if (!capable(CAP_MAC_ADMIN)) {
3075			struct audit_buffer *ab;
3076			size_t audit_size;
3077			const char *str;
3078
3079			/* We strip a nul only if it is at the end, otherwise the
3080			 * context contains a nul and we should audit that */
3081			if (value) {
3082				str = value;
3083				if (str[size - 1] == '\0')
3084					audit_size = size - 1;
3085				else
3086					audit_size = size;
3087			} else {
3088				str = "";
3089				audit_size = 0;
3090			}
3091			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3092			audit_log_format(ab, "op=setxattr invalid_context=");
3093			audit_log_n_untrustedstring(ab, value, audit_size);
3094			audit_log_end(ab);
3095
3096			return rc;
3097		}
3098		rc = security_context_to_sid_force(value, size, &newsid);
3099	}
3100	if (rc)
3101		return rc;
3102
3103	rc = avc_has_perm(sid, newsid, isec->sclass,
3104			  FILE__RELABELTO, &ad);
3105	if (rc)
3106		return rc;
3107
3108	rc = security_validate_transition(isec->sid, newsid, sid,
3109					  isec->sclass);
3110	if (rc)
3111		return rc;
3112
3113	return avc_has_perm(newsid,
3114			    sbsec->sid,
3115			    SECCLASS_FILESYSTEM,
3116			    FILESYSTEM__ASSOCIATE,
3117			    &ad);
3118}
3119
3120static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3121					const void *value, size_t size,
3122					int flags)
3123{
3124	struct inode *inode = d_backing_inode(dentry);
3125	struct inode_security_struct *isec = backing_inode_security(dentry);
3126	u32 newsid;
3127	int rc;
3128
3129	if (strcmp(name, XATTR_NAME_SELINUX)) {
3130		/* Not an attribute we recognize, so nothing to do. */
3131		return;
3132	}
3133
3134	rc = security_context_to_sid_force(value, size, &newsid);
3135	if (rc) {
3136		printk(KERN_ERR "SELinux:  unable to map context to SID"
3137		       "for (%s, %lu), rc=%d\n",
3138		       inode->i_sb->s_id, inode->i_ino, -rc);
3139		return;
3140	}
3141
 
 
3142	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3143	isec->sid = newsid;
3144	isec->initialized = LABEL_INITIALIZED;
 
3145
3146	return;
3147}
3148
3149static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3150{
3151	const struct cred *cred = current_cred();
3152
3153	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3154}
3155
3156static int selinux_inode_listxattr(struct dentry *dentry)
3157{
3158	const struct cred *cred = current_cred();
3159
3160	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3161}
3162
3163static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3164{
3165	if (strcmp(name, XATTR_NAME_SELINUX))
3166		return selinux_inode_setotherxattr(dentry, name);
3167
3168	/* No one is allowed to remove a SELinux security label.
3169	   You can change the label, but all data must be labeled. */
3170	return -EACCES;
3171}
3172
3173/*
3174 * Copy the inode security context value to the user.
3175 *
3176 * Permission check is handled by selinux_inode_getxattr hook.
3177 */
3178static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3179{
3180	u32 size;
3181	int error;
3182	char *context = NULL;
3183	struct inode_security_struct *isec = inode_security(inode);
3184
3185	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3186		return -EOPNOTSUPP;
3187
3188	/*
3189	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3190	 * value even if it is not defined by current policy; otherwise,
3191	 * use the in-core value under current policy.
3192	 * Use the non-auditing forms of the permission checks since
3193	 * getxattr may be called by unprivileged processes commonly
3194	 * and lack of permission just means that we fall back to the
3195	 * in-core context value, not a denial.
3196	 */
3197	error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3198			    SECURITY_CAP_NOAUDIT);
3199	if (!error)
3200		error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3201					    SECURITY_CAP_NOAUDIT);
 
3202	if (!error)
3203		error = security_sid_to_context_force(isec->sid, &context,
3204						      &size);
3205	else
3206		error = security_sid_to_context(isec->sid, &context, &size);
3207	if (error)
3208		return error;
3209	error = size;
3210	if (alloc) {
3211		*buffer = context;
3212		goto out_nofree;
3213	}
3214	kfree(context);
3215out_nofree:
3216	return error;
3217}
3218
3219static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3220				     const void *value, size_t size, int flags)
3221{
3222	struct inode_security_struct *isec = inode_security(inode);
3223	u32 newsid;
3224	int rc;
3225
3226	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3227		return -EOPNOTSUPP;
3228
3229	if (!value || !size)
3230		return -EACCES;
3231
3232	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3233	if (rc)
3234		return rc;
3235
 
3236	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3237	isec->sid = newsid;
3238	isec->initialized = LABEL_INITIALIZED;
 
3239	return 0;
3240}
3241
3242static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3243{
3244	const int len = sizeof(XATTR_NAME_SELINUX);
3245	if (buffer && len <= buffer_size)
3246		memcpy(buffer, XATTR_NAME_SELINUX, len);
3247	return len;
3248}
3249
3250static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3251{
3252	struct inode_security_struct *isec = inode_security_novalidate(inode);
3253	*secid = isec->sid;
3254}
3255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3256/* file security operations */
3257
3258static int selinux_revalidate_file_permission(struct file *file, int mask)
3259{
3260	const struct cred *cred = current_cred();
3261	struct inode *inode = file_inode(file);
3262
3263	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3264	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3265		mask |= MAY_APPEND;
3266
3267	return file_has_perm(cred, file,
3268			     file_mask_to_av(inode->i_mode, mask));
3269}
3270
3271static int selinux_file_permission(struct file *file, int mask)
3272{
3273	struct inode *inode = file_inode(file);
3274	struct file_security_struct *fsec = file->f_security;
3275	struct inode_security_struct *isec;
3276	u32 sid = current_sid();
3277
3278	if (!mask)
3279		/* No permission to check.  Existence test. */
3280		return 0;
3281
3282	isec = inode_security(inode);
3283	if (sid == fsec->sid && fsec->isid == isec->sid &&
3284	    fsec->pseqno == avc_policy_seqno())
3285		/* No change since file_open check. */
3286		return 0;
3287
3288	return selinux_revalidate_file_permission(file, mask);
3289}
3290
3291static int selinux_file_alloc_security(struct file *file)
3292{
3293	return file_alloc_security(file);
3294}
3295
3296static void selinux_file_free_security(struct file *file)
3297{
3298	file_free_security(file);
3299}
3300
3301/*
3302 * Check whether a task has the ioctl permission and cmd
3303 * operation to an inode.
3304 */
3305static int ioctl_has_perm(const struct cred *cred, struct file *file,
3306		u32 requested, u16 cmd)
3307{
3308	struct common_audit_data ad;
3309	struct file_security_struct *fsec = file->f_security;
3310	struct inode *inode = file_inode(file);
3311	struct inode_security_struct *isec = inode_security(inode);
3312	struct lsm_ioctlop_audit ioctl;
3313	u32 ssid = cred_sid(cred);
3314	int rc;
3315	u8 driver = cmd >> 8;
3316	u8 xperm = cmd & 0xff;
3317
3318	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3319	ad.u.op = &ioctl;
3320	ad.u.op->cmd = cmd;
3321	ad.u.op->path = file->f_path;
3322
3323	if (ssid != fsec->sid) {
3324		rc = avc_has_perm(ssid, fsec->sid,
3325				SECCLASS_FD,
3326				FD__USE,
3327				&ad);
3328		if (rc)
3329			goto out;
3330	}
3331
3332	if (unlikely(IS_PRIVATE(inode)))
3333		return 0;
3334
 
3335	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3336			requested, driver, xperm, &ad);
3337out:
3338	return rc;
3339}
3340
3341static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3342			      unsigned long arg)
3343{
3344	const struct cred *cred = current_cred();
3345	int error = 0;
3346
3347	switch (cmd) {
3348	case FIONREAD:
3349	/* fall through */
3350	case FIBMAP:
3351	/* fall through */
3352	case FIGETBSZ:
3353	/* fall through */
3354	case FS_IOC_GETFLAGS:
3355	/* fall through */
3356	case FS_IOC_GETVERSION:
3357		error = file_has_perm(cred, file, FILE__GETATTR);
3358		break;
3359
3360	case FS_IOC_SETFLAGS:
3361	/* fall through */
3362	case FS_IOC_SETVERSION:
3363		error = file_has_perm(cred, file, FILE__SETATTR);
3364		break;
3365
3366	/* sys_ioctl() checks */
3367	case FIONBIO:
3368	/* fall through */
3369	case FIOASYNC:
3370		error = file_has_perm(cred, file, 0);
3371		break;
3372
3373	case KDSKBENT:
3374	case KDSKBSENT:
3375		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3376					    SECURITY_CAP_AUDIT);
3377		break;
3378
3379	/* default case assumes that the command will go
3380	 * to the file's ioctl() function.
3381	 */
3382	default:
3383		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3384	}
3385	return error;
3386}
3387
3388static int default_noexec;
3389
3390static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3391{
3392	const struct cred *cred = current_cred();
3393	int rc = 0;
3394
3395	if (default_noexec &&
3396	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3397				   (!shared && (prot & PROT_WRITE)))) {
3398		/*
3399		 * We are making executable an anonymous mapping or a
3400		 * private file mapping that will also be writable.
3401		 * This has an additional check.
3402		 */
3403		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3404		if (rc)
3405			goto error;
3406	}
3407
3408	if (file) {
3409		/* read access is always possible with a mapping */
3410		u32 av = FILE__READ;
3411
3412		/* write access only matters if the mapping is shared */
3413		if (shared && (prot & PROT_WRITE))
3414			av |= FILE__WRITE;
3415
3416		if (prot & PROT_EXEC)
3417			av |= FILE__EXECUTE;
3418
3419		return file_has_perm(cred, file, av);
3420	}
3421
3422error:
3423	return rc;
3424}
3425
3426static int selinux_mmap_addr(unsigned long addr)
3427{
3428	int rc = 0;
3429
3430	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3431		u32 sid = current_sid();
3432		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3433				  MEMPROTECT__MMAP_ZERO, NULL);
3434	}
3435
3436	return rc;
3437}
3438
3439static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3440			     unsigned long prot, unsigned long flags)
3441{
3442	if (selinux_checkreqprot)
3443		prot = reqprot;
3444
3445	return file_map_prot_check(file, prot,
3446				   (flags & MAP_TYPE) == MAP_SHARED);
3447}
3448
3449static int selinux_file_mprotect(struct vm_area_struct *vma,
3450				 unsigned long reqprot,
3451				 unsigned long prot)
3452{
3453	const struct cred *cred = current_cred();
3454
3455	if (selinux_checkreqprot)
3456		prot = reqprot;
3457
3458	if (default_noexec &&
3459	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3460		int rc = 0;
3461		if (vma->vm_start >= vma->vm_mm->start_brk &&
3462		    vma->vm_end <= vma->vm_mm->brk) {
3463			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3464		} else if (!vma->vm_file &&
3465			   vma->vm_start <= vma->vm_mm->start_stack &&
3466			   vma->vm_end >= vma->vm_mm->start_stack) {
 
3467			rc = current_has_perm(current, PROCESS__EXECSTACK);
3468		} else if (vma->vm_file && vma->anon_vma) {
3469			/*
3470			 * We are making executable a file mapping that has
3471			 * had some COW done. Since pages might have been
3472			 * written, check ability to execute the possibly
3473			 * modified content.  This typically should only
3474			 * occur for text relocations.
3475			 */
3476			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3477		}
3478		if (rc)
3479			return rc;
3480	}
3481
3482	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3483}
3484
3485static int selinux_file_lock(struct file *file, unsigned int cmd)
3486{
3487	const struct cred *cred = current_cred();
3488
3489	return file_has_perm(cred, file, FILE__LOCK);
3490}
3491
3492static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3493			      unsigned long arg)
3494{
3495	const struct cred *cred = current_cred();
3496	int err = 0;
3497
3498	switch (cmd) {
3499	case F_SETFL:
3500		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3501			err = file_has_perm(cred, file, FILE__WRITE);
3502			break;
3503		}
3504		/* fall through */
3505	case F_SETOWN:
3506	case F_SETSIG:
3507	case F_GETFL:
3508	case F_GETOWN:
3509	case F_GETSIG:
3510	case F_GETOWNER_UIDS:
3511		/* Just check FD__USE permission */
3512		err = file_has_perm(cred, file, 0);
3513		break;
3514	case F_GETLK:
3515	case F_SETLK:
3516	case F_SETLKW:
3517	case F_OFD_GETLK:
3518	case F_OFD_SETLK:
3519	case F_OFD_SETLKW:
3520#if BITS_PER_LONG == 32
3521	case F_GETLK64:
3522	case F_SETLK64:
3523	case F_SETLKW64:
3524#endif
3525		err = file_has_perm(cred, file, FILE__LOCK);
3526		break;
3527	}
3528
3529	return err;
3530}
3531
3532static void selinux_file_set_fowner(struct file *file)
3533{
3534	struct file_security_struct *fsec;
3535
3536	fsec = file->f_security;
3537	fsec->fown_sid = current_sid();
3538}
3539
3540static int selinux_file_send_sigiotask(struct task_struct *tsk,
3541				       struct fown_struct *fown, int signum)
3542{
3543	struct file *file;
3544	u32 sid = task_sid(tsk);
3545	u32 perm;
3546	struct file_security_struct *fsec;
3547
3548	/* struct fown_struct is never outside the context of a struct file */
3549	file = container_of(fown, struct file, f_owner);
3550
3551	fsec = file->f_security;
3552
3553	if (!signum)
3554		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3555	else
3556		perm = signal_to_av(signum);
3557
3558	return avc_has_perm(fsec->fown_sid, sid,
3559			    SECCLASS_PROCESS, perm, NULL);
3560}
3561
3562static int selinux_file_receive(struct file *file)
3563{
3564	const struct cred *cred = current_cred();
3565
3566	return file_has_perm(cred, file, file_to_av(file));
3567}
3568
3569static int selinux_file_open(struct file *file, const struct cred *cred)
3570{
3571	struct file_security_struct *fsec;
3572	struct inode_security_struct *isec;
3573
3574	fsec = file->f_security;
3575	isec = inode_security(file_inode(file));
3576	/*
3577	 * Save inode label and policy sequence number
3578	 * at open-time so that selinux_file_permission
3579	 * can determine whether revalidation is necessary.
3580	 * Task label is already saved in the file security
3581	 * struct as its SID.
3582	 */
3583	fsec->isid = isec->sid;
3584	fsec->pseqno = avc_policy_seqno();
3585	/*
3586	 * Since the inode label or policy seqno may have changed
3587	 * between the selinux_inode_permission check and the saving
3588	 * of state above, recheck that access is still permitted.
3589	 * Otherwise, access might never be revalidated against the
3590	 * new inode label or new policy.
3591	 * This check is not redundant - do not remove.
3592	 */
3593	return file_path_has_perm(cred, file, open_file_to_av(file));
3594}
3595
3596/* task security operations */
3597
3598static int selinux_task_create(unsigned long clone_flags)
3599{
3600	return current_has_perm(current, PROCESS__FORK);
3601}
3602
3603/*
3604 * allocate the SELinux part of blank credentials
3605 */
3606static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3607{
3608	struct task_security_struct *tsec;
3609
3610	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3611	if (!tsec)
3612		return -ENOMEM;
3613
3614	cred->security = tsec;
3615	return 0;
3616}
3617
3618/*
3619 * detach and free the LSM part of a set of credentials
3620 */
3621static void selinux_cred_free(struct cred *cred)
3622{
3623	struct task_security_struct *tsec = cred->security;
3624
3625	/*
3626	 * cred->security == NULL if security_cred_alloc_blank() or
3627	 * security_prepare_creds() returned an error.
3628	 */
3629	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3630	cred->security = (void *) 0x7UL;
3631	kfree(tsec);
3632}
3633
3634/*
3635 * prepare a new set of credentials for modification
3636 */
3637static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3638				gfp_t gfp)
3639{
3640	const struct task_security_struct *old_tsec;
3641	struct task_security_struct *tsec;
3642
3643	old_tsec = old->security;
3644
3645	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3646	if (!tsec)
3647		return -ENOMEM;
3648
3649	new->security = tsec;
3650	return 0;
3651}
3652
3653/*
3654 * transfer the SELinux data to a blank set of creds
3655 */
3656static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3657{
3658	const struct task_security_struct *old_tsec = old->security;
3659	struct task_security_struct *tsec = new->security;
3660
3661	*tsec = *old_tsec;
3662}
3663
3664/*
3665 * set the security data for a kernel service
3666 * - all the creation contexts are set to unlabelled
3667 */
3668static int selinux_kernel_act_as(struct cred *new, u32 secid)
3669{
3670	struct task_security_struct *tsec = new->security;
3671	u32 sid = current_sid();
3672	int ret;
3673
3674	ret = avc_has_perm(sid, secid,
3675			   SECCLASS_KERNEL_SERVICE,
3676			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3677			   NULL);
3678	if (ret == 0) {
3679		tsec->sid = secid;
3680		tsec->create_sid = 0;
3681		tsec->keycreate_sid = 0;
3682		tsec->sockcreate_sid = 0;
3683	}
3684	return ret;
3685}
3686
3687/*
3688 * set the file creation context in a security record to the same as the
3689 * objective context of the specified inode
3690 */
3691static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3692{
3693	struct inode_security_struct *isec = inode_security(inode);
3694	struct task_security_struct *tsec = new->security;
3695	u32 sid = current_sid();
3696	int ret;
3697
3698	ret = avc_has_perm(sid, isec->sid,
3699			   SECCLASS_KERNEL_SERVICE,
3700			   KERNEL_SERVICE__CREATE_FILES_AS,
3701			   NULL);
3702
3703	if (ret == 0)
3704		tsec->create_sid = isec->sid;
3705	return ret;
3706}
3707
3708static int selinux_kernel_module_request(char *kmod_name)
3709{
3710	u32 sid;
3711	struct common_audit_data ad;
3712
3713	sid = task_sid(current);
3714
3715	ad.type = LSM_AUDIT_DATA_KMOD;
3716	ad.u.kmod_name = kmod_name;
3717
3718	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3719			    SYSTEM__MODULE_REQUEST, &ad);
3720}
3721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3722static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3723{
3724	return current_has_perm(p, PROCESS__SETPGID);
3725}
3726
3727static int selinux_task_getpgid(struct task_struct *p)
3728{
3729	return current_has_perm(p, PROCESS__GETPGID);
3730}
3731
3732static int selinux_task_getsid(struct task_struct *p)
3733{
3734	return current_has_perm(p, PROCESS__GETSESSION);
3735}
3736
3737static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3738{
3739	*secid = task_sid(p);
3740}
3741
3742static int selinux_task_setnice(struct task_struct *p, int nice)
3743{
3744	return current_has_perm(p, PROCESS__SETSCHED);
3745}
3746
3747static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3748{
3749	return current_has_perm(p, PROCESS__SETSCHED);
3750}
3751
3752static int selinux_task_getioprio(struct task_struct *p)
3753{
3754	return current_has_perm(p, PROCESS__GETSCHED);
3755}
3756
3757static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3758		struct rlimit *new_rlim)
3759{
3760	struct rlimit *old_rlim = p->signal->rlim + resource;
3761
3762	/* Control the ability to change the hard limit (whether
3763	   lowering or raising it), so that the hard limit can
3764	   later be used as a safe reset point for the soft limit
3765	   upon context transitions.  See selinux_bprm_committing_creds. */
3766	if (old_rlim->rlim_max != new_rlim->rlim_max)
3767		return current_has_perm(p, PROCESS__SETRLIMIT);
3768
3769	return 0;
3770}
3771
3772static int selinux_task_setscheduler(struct task_struct *p)
3773{
3774	return current_has_perm(p, PROCESS__SETSCHED);
3775}
3776
3777static int selinux_task_getscheduler(struct task_struct *p)
3778{
3779	return current_has_perm(p, PROCESS__GETSCHED);
3780}
3781
3782static int selinux_task_movememory(struct task_struct *p)
3783{
3784	return current_has_perm(p, PROCESS__SETSCHED);
3785}
3786
3787static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3788				int sig, u32 secid)
3789{
3790	u32 perm;
3791	int rc;
3792
3793	if (!sig)
3794		perm = PROCESS__SIGNULL; /* null signal; existence test */
3795	else
3796		perm = signal_to_av(sig);
3797	if (secid)
3798		rc = avc_has_perm(secid, task_sid(p),
3799				  SECCLASS_PROCESS, perm, NULL);
3800	else
3801		rc = current_has_perm(p, perm);
3802	return rc;
3803}
3804
3805static int selinux_task_wait(struct task_struct *p)
3806{
3807	return task_has_perm(p, current, PROCESS__SIGCHLD);
3808}
3809
3810static void selinux_task_to_inode(struct task_struct *p,
3811				  struct inode *inode)
3812{
3813	struct inode_security_struct *isec = inode->i_security;
3814	u32 sid = task_sid(p);
3815
 
 
3816	isec->sid = sid;
3817	isec->initialized = LABEL_INITIALIZED;
 
3818}
3819
3820/* Returns error only if unable to parse addresses */
3821static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3822			struct common_audit_data *ad, u8 *proto)
3823{
3824	int offset, ihlen, ret = -EINVAL;
3825	struct iphdr _iph, *ih;
3826
3827	offset = skb_network_offset(skb);
3828	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3829	if (ih == NULL)
3830		goto out;
3831
3832	ihlen = ih->ihl * 4;
3833	if (ihlen < sizeof(_iph))
3834		goto out;
3835
3836	ad->u.net->v4info.saddr = ih->saddr;
3837	ad->u.net->v4info.daddr = ih->daddr;
3838	ret = 0;
3839
3840	if (proto)
3841		*proto = ih->protocol;
3842
3843	switch (ih->protocol) {
3844	case IPPROTO_TCP: {
3845		struct tcphdr _tcph, *th;
3846
3847		if (ntohs(ih->frag_off) & IP_OFFSET)
3848			break;
3849
3850		offset += ihlen;
3851		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3852		if (th == NULL)
3853			break;
3854
3855		ad->u.net->sport = th->source;
3856		ad->u.net->dport = th->dest;
3857		break;
3858	}
3859
3860	case IPPROTO_UDP: {
3861		struct udphdr _udph, *uh;
3862
3863		if (ntohs(ih->frag_off) & IP_OFFSET)
3864			break;
3865
3866		offset += ihlen;
3867		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3868		if (uh == NULL)
3869			break;
3870
3871		ad->u.net->sport = uh->source;
3872		ad->u.net->dport = uh->dest;
3873		break;
3874	}
3875
3876	case IPPROTO_DCCP: {
3877		struct dccp_hdr _dccph, *dh;
3878
3879		if (ntohs(ih->frag_off) & IP_OFFSET)
3880			break;
3881
3882		offset += ihlen;
3883		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3884		if (dh == NULL)
3885			break;
3886
3887		ad->u.net->sport = dh->dccph_sport;
3888		ad->u.net->dport = dh->dccph_dport;
3889		break;
3890	}
3891
3892	default:
3893		break;
3894	}
3895out:
3896	return ret;
3897}
3898
3899#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3900
3901/* Returns error only if unable to parse addresses */
3902static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3903			struct common_audit_data *ad, u8 *proto)
3904{
3905	u8 nexthdr;
3906	int ret = -EINVAL, offset;
3907	struct ipv6hdr _ipv6h, *ip6;
3908	__be16 frag_off;
3909
3910	offset = skb_network_offset(skb);
3911	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3912	if (ip6 == NULL)
3913		goto out;
3914
3915	ad->u.net->v6info.saddr = ip6->saddr;
3916	ad->u.net->v6info.daddr = ip6->daddr;
3917	ret = 0;
3918
3919	nexthdr = ip6->nexthdr;
3920	offset += sizeof(_ipv6h);
3921	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3922	if (offset < 0)
3923		goto out;
3924
3925	if (proto)
3926		*proto = nexthdr;
3927
3928	switch (nexthdr) {
3929	case IPPROTO_TCP: {
3930		struct tcphdr _tcph, *th;
3931
3932		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3933		if (th == NULL)
3934			break;
3935
3936		ad->u.net->sport = th->source;
3937		ad->u.net->dport = th->dest;
3938		break;
3939	}
3940
3941	case IPPROTO_UDP: {
3942		struct udphdr _udph, *uh;
3943
3944		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3945		if (uh == NULL)
3946			break;
3947
3948		ad->u.net->sport = uh->source;
3949		ad->u.net->dport = uh->dest;
3950		break;
3951	}
3952
3953	case IPPROTO_DCCP: {
3954		struct dccp_hdr _dccph, *dh;
3955
3956		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3957		if (dh == NULL)
3958			break;
3959
3960		ad->u.net->sport = dh->dccph_sport;
3961		ad->u.net->dport = dh->dccph_dport;
3962		break;
3963	}
3964
3965	/* includes fragments */
3966	default:
3967		break;
3968	}
3969out:
3970	return ret;
3971}
3972
3973#endif /* IPV6 */
3974
3975static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3976			     char **_addrp, int src, u8 *proto)
3977{
3978	char *addrp;
3979	int ret;
3980
3981	switch (ad->u.net->family) {
3982	case PF_INET:
3983		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3984		if (ret)
3985			goto parse_error;
3986		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3987				       &ad->u.net->v4info.daddr);
3988		goto okay;
3989
3990#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3991	case PF_INET6:
3992		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3993		if (ret)
3994			goto parse_error;
3995		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3996				       &ad->u.net->v6info.daddr);
3997		goto okay;
3998#endif	/* IPV6 */
3999	default:
4000		addrp = NULL;
4001		goto okay;
4002	}
4003
4004parse_error:
4005	printk(KERN_WARNING
4006	       "SELinux: failure in selinux_parse_skb(),"
4007	       " unable to parse packet\n");
4008	return ret;
4009
4010okay:
4011	if (_addrp)
4012		*_addrp = addrp;
4013	return 0;
4014}
4015
4016/**
4017 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4018 * @skb: the packet
4019 * @family: protocol family
4020 * @sid: the packet's peer label SID
4021 *
4022 * Description:
4023 * Check the various different forms of network peer labeling and determine
4024 * the peer label/SID for the packet; most of the magic actually occurs in
4025 * the security server function security_net_peersid_cmp().  The function
4026 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4027 * or -EACCES if @sid is invalid due to inconsistencies with the different
4028 * peer labels.
4029 *
4030 */
4031static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4032{
4033	int err;
4034	u32 xfrm_sid;
4035	u32 nlbl_sid;
4036	u32 nlbl_type;
4037
4038	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4039	if (unlikely(err))
4040		return -EACCES;
4041	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4042	if (unlikely(err))
4043		return -EACCES;
4044
4045	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4046	if (unlikely(err)) {
4047		printk(KERN_WARNING
4048		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4049		       " unable to determine packet's peer label\n");
4050		return -EACCES;
4051	}
4052
4053	return 0;
4054}
4055
4056/**
4057 * selinux_conn_sid - Determine the child socket label for a connection
4058 * @sk_sid: the parent socket's SID
4059 * @skb_sid: the packet's SID
4060 * @conn_sid: the resulting connection SID
4061 *
4062 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4063 * combined with the MLS information from @skb_sid in order to create
4064 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4065 * of @sk_sid.  Returns zero on success, negative values on failure.
4066 *
4067 */
4068static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4069{
4070	int err = 0;
4071
4072	if (skb_sid != SECSID_NULL)
4073		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4074	else
4075		*conn_sid = sk_sid;
4076
4077	return err;
4078}
4079
4080/* socket security operations */
4081
4082static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4083				 u16 secclass, u32 *socksid)
4084{
4085	if (tsec->sockcreate_sid > SECSID_NULL) {
4086		*socksid = tsec->sockcreate_sid;
4087		return 0;
4088	}
4089
4090	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4091				       socksid);
4092}
4093
4094static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4095{
4096	struct sk_security_struct *sksec = sk->sk_security;
4097	struct common_audit_data ad;
4098	struct lsm_network_audit net = {0,};
4099	u32 tsid = task_sid(task);
4100
4101	if (sksec->sid == SECINITSID_KERNEL)
4102		return 0;
4103
4104	ad.type = LSM_AUDIT_DATA_NET;
4105	ad.u.net = &net;
4106	ad.u.net->sk = sk;
4107
4108	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4109}
4110
4111static int selinux_socket_create(int family, int type,
4112				 int protocol, int kern)
4113{
4114	const struct task_security_struct *tsec = current_security();
4115	u32 newsid;
4116	u16 secclass;
4117	int rc;
4118
4119	if (kern)
4120		return 0;
4121
4122	secclass = socket_type_to_security_class(family, type, protocol);
4123	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4124	if (rc)
4125		return rc;
4126
4127	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4128}
4129
4130static int selinux_socket_post_create(struct socket *sock, int family,
4131				      int type, int protocol, int kern)
4132{
4133	const struct task_security_struct *tsec = current_security();
4134	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4135	struct sk_security_struct *sksec;
 
 
4136	int err = 0;
4137
4138	isec->sclass = socket_type_to_security_class(family, type, protocol);
4139
4140	if (kern)
4141		isec->sid = SECINITSID_KERNEL;
4142	else {
4143		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4144		if (err)
4145			return err;
4146	}
4147
 
 
4148	isec->initialized = LABEL_INITIALIZED;
4149
4150	if (sock->sk) {
4151		sksec = sock->sk->sk_security;
4152		sksec->sid = isec->sid;
4153		sksec->sclass = isec->sclass;
4154		err = selinux_netlbl_socket_post_create(sock->sk, family);
4155	}
4156
4157	return err;
4158}
4159
4160/* Range of port numbers used to automatically bind.
4161   Need to determine whether we should perform a name_bind
4162   permission check between the socket and the port number. */
4163
4164static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4165{
4166	struct sock *sk = sock->sk;
4167	u16 family;
4168	int err;
4169
4170	err = sock_has_perm(current, sk, SOCKET__BIND);
4171	if (err)
4172		goto out;
4173
4174	/*
4175	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4176	 * Multiple address binding for SCTP is not supported yet: we just
4177	 * check the first address now.
4178	 */
4179	family = sk->sk_family;
4180	if (family == PF_INET || family == PF_INET6) {
4181		char *addrp;
4182		struct sk_security_struct *sksec = sk->sk_security;
4183		struct common_audit_data ad;
4184		struct lsm_network_audit net = {0,};
4185		struct sockaddr_in *addr4 = NULL;
4186		struct sockaddr_in6 *addr6 = NULL;
4187		unsigned short snum;
4188		u32 sid, node_perm;
4189
4190		if (family == PF_INET) {
4191			addr4 = (struct sockaddr_in *)address;
4192			snum = ntohs(addr4->sin_port);
4193			addrp = (char *)&addr4->sin_addr.s_addr;
4194		} else {
4195			addr6 = (struct sockaddr_in6 *)address;
4196			snum = ntohs(addr6->sin6_port);
4197			addrp = (char *)&addr6->sin6_addr.s6_addr;
4198		}
4199
4200		if (snum) {
4201			int low, high;
4202
4203			inet_get_local_port_range(sock_net(sk), &low, &high);
4204
4205			if (snum < max(PROT_SOCK, low) || snum > high) {
4206				err = sel_netport_sid(sk->sk_protocol,
4207						      snum, &sid);
4208				if (err)
4209					goto out;
4210				ad.type = LSM_AUDIT_DATA_NET;
4211				ad.u.net = &net;
4212				ad.u.net->sport = htons(snum);
4213				ad.u.net->family = family;
4214				err = avc_has_perm(sksec->sid, sid,
4215						   sksec->sclass,
4216						   SOCKET__NAME_BIND, &ad);
4217				if (err)
4218					goto out;
4219			}
4220		}
4221
4222		switch (sksec->sclass) {
4223		case SECCLASS_TCP_SOCKET:
4224			node_perm = TCP_SOCKET__NODE_BIND;
4225			break;
4226
4227		case SECCLASS_UDP_SOCKET:
4228			node_perm = UDP_SOCKET__NODE_BIND;
4229			break;
4230
4231		case SECCLASS_DCCP_SOCKET:
4232			node_perm = DCCP_SOCKET__NODE_BIND;
4233			break;
4234
4235		default:
4236			node_perm = RAWIP_SOCKET__NODE_BIND;
4237			break;
4238		}
4239
4240		err = sel_netnode_sid(addrp, family, &sid);
4241		if (err)
4242			goto out;
4243
4244		ad.type = LSM_AUDIT_DATA_NET;
4245		ad.u.net = &net;
4246		ad.u.net->sport = htons(snum);
4247		ad.u.net->family = family;
4248
4249		if (family == PF_INET)
4250			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4251		else
4252			ad.u.net->v6info.saddr = addr6->sin6_addr;
4253
4254		err = avc_has_perm(sksec->sid, sid,
4255				   sksec->sclass, node_perm, &ad);
4256		if (err)
4257			goto out;
4258	}
4259out:
4260	return err;
4261}
4262
4263static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4264{
4265	struct sock *sk = sock->sk;
4266	struct sk_security_struct *sksec = sk->sk_security;
4267	int err;
4268
4269	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4270	if (err)
4271		return err;
4272
4273	/*
4274	 * If a TCP or DCCP socket, check name_connect permission for the port.
4275	 */
4276	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4277	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
4278		struct common_audit_data ad;
4279		struct lsm_network_audit net = {0,};
4280		struct sockaddr_in *addr4 = NULL;
4281		struct sockaddr_in6 *addr6 = NULL;
4282		unsigned short snum;
4283		u32 sid, perm;
4284
4285		if (sk->sk_family == PF_INET) {
4286			addr4 = (struct sockaddr_in *)address;
4287			if (addrlen < sizeof(struct sockaddr_in))
4288				return -EINVAL;
4289			snum = ntohs(addr4->sin_port);
4290		} else {
4291			addr6 = (struct sockaddr_in6 *)address;
4292			if (addrlen < SIN6_LEN_RFC2133)
4293				return -EINVAL;
4294			snum = ntohs(addr6->sin6_port);
4295		}
4296
4297		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4298		if (err)
4299			goto out;
4300
4301		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4302		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4303
4304		ad.type = LSM_AUDIT_DATA_NET;
4305		ad.u.net = &net;
4306		ad.u.net->dport = htons(snum);
4307		ad.u.net->family = sk->sk_family;
4308		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4309		if (err)
4310			goto out;
4311	}
4312
4313	err = selinux_netlbl_socket_connect(sk, address);
4314
4315out:
4316	return err;
4317}
4318
4319static int selinux_socket_listen(struct socket *sock, int backlog)
4320{
4321	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4322}
4323
4324static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4325{
4326	int err;
4327	struct inode_security_struct *isec;
4328	struct inode_security_struct *newisec;
 
 
4329
4330	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4331	if (err)
4332		return err;
4333
4334	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4335
4336	isec = inode_security_novalidate(SOCK_INODE(sock));
4337	newisec->sclass = isec->sclass;
4338	newisec->sid = isec->sid;
 
 
 
 
 
 
4339	newisec->initialized = LABEL_INITIALIZED;
4340
4341	return 0;
4342}
4343
4344static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4345				  int size)
4346{
4347	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4348}
4349
4350static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4351				  int size, int flags)
4352{
4353	return sock_has_perm(current, sock->sk, SOCKET__READ);
4354}
4355
4356static int selinux_socket_getsockname(struct socket *sock)
4357{
4358	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4359}
4360
4361static int selinux_socket_getpeername(struct socket *sock)
4362{
4363	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4364}
4365
4366static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4367{
4368	int err;
4369
4370	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4371	if (err)
4372		return err;
4373
4374	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4375}
4376
4377static int selinux_socket_getsockopt(struct socket *sock, int level,
4378				     int optname)
4379{
4380	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4381}
4382
4383static int selinux_socket_shutdown(struct socket *sock, int how)
4384{
4385	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4386}
4387
4388static int selinux_socket_unix_stream_connect(struct sock *sock,
4389					      struct sock *other,
4390					      struct sock *newsk)
4391{
4392	struct sk_security_struct *sksec_sock = sock->sk_security;
4393	struct sk_security_struct *sksec_other = other->sk_security;
4394	struct sk_security_struct *sksec_new = newsk->sk_security;
4395	struct common_audit_data ad;
4396	struct lsm_network_audit net = {0,};
4397	int err;
4398
4399	ad.type = LSM_AUDIT_DATA_NET;
4400	ad.u.net = &net;
4401	ad.u.net->sk = other;
4402
4403	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4404			   sksec_other->sclass,
4405			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4406	if (err)
4407		return err;
4408
4409	/* server child socket */
4410	sksec_new->peer_sid = sksec_sock->sid;
4411	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4412				    &sksec_new->sid);
4413	if (err)
4414		return err;
4415
4416	/* connecting socket */
4417	sksec_sock->peer_sid = sksec_new->sid;
4418
4419	return 0;
4420}
4421
4422static int selinux_socket_unix_may_send(struct socket *sock,
4423					struct socket *other)
4424{
4425	struct sk_security_struct *ssec = sock->sk->sk_security;
4426	struct sk_security_struct *osec = other->sk->sk_security;
4427	struct common_audit_data ad;
4428	struct lsm_network_audit net = {0,};
4429
4430	ad.type = LSM_AUDIT_DATA_NET;
4431	ad.u.net = &net;
4432	ad.u.net->sk = other->sk;
4433
4434	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4435			    &ad);
4436}
4437
4438static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4439				    char *addrp, u16 family, u32 peer_sid,
4440				    struct common_audit_data *ad)
4441{
4442	int err;
4443	u32 if_sid;
4444	u32 node_sid;
4445
4446	err = sel_netif_sid(ns, ifindex, &if_sid);
4447	if (err)
4448		return err;
4449	err = avc_has_perm(peer_sid, if_sid,
4450			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4451	if (err)
4452		return err;
4453
4454	err = sel_netnode_sid(addrp, family, &node_sid);
4455	if (err)
4456		return err;
4457	return avc_has_perm(peer_sid, node_sid,
4458			    SECCLASS_NODE, NODE__RECVFROM, ad);
4459}
4460
4461static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4462				       u16 family)
4463{
4464	int err = 0;
4465	struct sk_security_struct *sksec = sk->sk_security;
4466	u32 sk_sid = sksec->sid;
4467	struct common_audit_data ad;
4468	struct lsm_network_audit net = {0,};
4469	char *addrp;
4470
4471	ad.type = LSM_AUDIT_DATA_NET;
4472	ad.u.net = &net;
4473	ad.u.net->netif = skb->skb_iif;
4474	ad.u.net->family = family;
4475	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4476	if (err)
4477		return err;
4478
4479	if (selinux_secmark_enabled()) {
4480		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4481				   PACKET__RECV, &ad);
4482		if (err)
4483			return err;
4484	}
4485
4486	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4487	if (err)
4488		return err;
4489	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4490
4491	return err;
4492}
4493
4494static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4495{
4496	int err;
4497	struct sk_security_struct *sksec = sk->sk_security;
4498	u16 family = sk->sk_family;
4499	u32 sk_sid = sksec->sid;
4500	struct common_audit_data ad;
4501	struct lsm_network_audit net = {0,};
4502	char *addrp;
4503	u8 secmark_active;
4504	u8 peerlbl_active;
4505
4506	if (family != PF_INET && family != PF_INET6)
4507		return 0;
4508
4509	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4510	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4511		family = PF_INET;
4512
4513	/* If any sort of compatibility mode is enabled then handoff processing
4514	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4515	 * special handling.  We do this in an attempt to keep this function
4516	 * as fast and as clean as possible. */
4517	if (!selinux_policycap_netpeer)
4518		return selinux_sock_rcv_skb_compat(sk, skb, family);
4519
4520	secmark_active = selinux_secmark_enabled();
4521	peerlbl_active = selinux_peerlbl_enabled();
4522	if (!secmark_active && !peerlbl_active)
4523		return 0;
4524
4525	ad.type = LSM_AUDIT_DATA_NET;
4526	ad.u.net = &net;
4527	ad.u.net->netif = skb->skb_iif;
4528	ad.u.net->family = family;
4529	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4530	if (err)
4531		return err;
4532
4533	if (peerlbl_active) {
4534		u32 peer_sid;
4535
4536		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4537		if (err)
4538			return err;
4539		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4540					       addrp, family, peer_sid, &ad);
4541		if (err) {
4542			selinux_netlbl_err(skb, err, 0);
4543			return err;
4544		}
4545		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4546				   PEER__RECV, &ad);
4547		if (err) {
4548			selinux_netlbl_err(skb, err, 0);
4549			return err;
4550		}
4551	}
4552
4553	if (secmark_active) {
4554		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4555				   PACKET__RECV, &ad);
4556		if (err)
4557			return err;
4558	}
4559
4560	return err;
4561}
4562
4563static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4564					    int __user *optlen, unsigned len)
4565{
4566	int err = 0;
4567	char *scontext;
4568	u32 scontext_len;
4569	struct sk_security_struct *sksec = sock->sk->sk_security;
4570	u32 peer_sid = SECSID_NULL;
4571
4572	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4573	    sksec->sclass == SECCLASS_TCP_SOCKET)
4574		peer_sid = sksec->peer_sid;
4575	if (peer_sid == SECSID_NULL)
4576		return -ENOPROTOOPT;
4577
4578	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4579	if (err)
4580		return err;
4581
4582	if (scontext_len > len) {
4583		err = -ERANGE;
4584		goto out_len;
4585	}
4586
4587	if (copy_to_user(optval, scontext, scontext_len))
4588		err = -EFAULT;
4589
4590out_len:
4591	if (put_user(scontext_len, optlen))
4592		err = -EFAULT;
4593	kfree(scontext);
4594	return err;
4595}
4596
4597static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4598{
4599	u32 peer_secid = SECSID_NULL;
4600	u16 family;
 
4601
4602	if (skb && skb->protocol == htons(ETH_P_IP))
4603		family = PF_INET;
4604	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4605		family = PF_INET6;
4606	else if (sock)
4607		family = sock->sk->sk_family;
4608	else
4609		goto out;
4610
4611	if (sock && family == PF_UNIX)
4612		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4613	else if (skb)
 
4614		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4615
4616out:
4617	*secid = peer_secid;
4618	if (peer_secid == SECSID_NULL)
4619		return -EINVAL;
4620	return 0;
4621}
4622
4623static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4624{
4625	struct sk_security_struct *sksec;
4626
4627	sksec = kzalloc(sizeof(*sksec), priority);
4628	if (!sksec)
4629		return -ENOMEM;
4630
4631	sksec->peer_sid = SECINITSID_UNLABELED;
4632	sksec->sid = SECINITSID_UNLABELED;
4633	sksec->sclass = SECCLASS_SOCKET;
4634	selinux_netlbl_sk_security_reset(sksec);
4635	sk->sk_security = sksec;
4636
4637	return 0;
4638}
4639
4640static void selinux_sk_free_security(struct sock *sk)
4641{
4642	struct sk_security_struct *sksec = sk->sk_security;
4643
4644	sk->sk_security = NULL;
4645	selinux_netlbl_sk_security_free(sksec);
4646	kfree(sksec);
4647}
4648
4649static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4650{
4651	struct sk_security_struct *sksec = sk->sk_security;
4652	struct sk_security_struct *newsksec = newsk->sk_security;
4653
4654	newsksec->sid = sksec->sid;
4655	newsksec->peer_sid = sksec->peer_sid;
4656	newsksec->sclass = sksec->sclass;
4657
4658	selinux_netlbl_sk_security_reset(newsksec);
4659}
4660
4661static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4662{
4663	if (!sk)
4664		*secid = SECINITSID_ANY_SOCKET;
4665	else {
4666		struct sk_security_struct *sksec = sk->sk_security;
4667
4668		*secid = sksec->sid;
4669	}
4670}
4671
4672static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4673{
4674	struct inode_security_struct *isec =
4675		inode_security_novalidate(SOCK_INODE(parent));
4676	struct sk_security_struct *sksec = sk->sk_security;
4677
4678	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4679	    sk->sk_family == PF_UNIX)
4680		isec->sid = sksec->sid;
4681	sksec->sclass = isec->sclass;
4682}
4683
4684static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4685				     struct request_sock *req)
4686{
4687	struct sk_security_struct *sksec = sk->sk_security;
4688	int err;
4689	u16 family = req->rsk_ops->family;
4690	u32 connsid;
4691	u32 peersid;
4692
4693	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4694	if (err)
4695		return err;
4696	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4697	if (err)
4698		return err;
4699	req->secid = connsid;
4700	req->peer_secid = peersid;
4701
4702	return selinux_netlbl_inet_conn_request(req, family);
4703}
4704
4705static void selinux_inet_csk_clone(struct sock *newsk,
4706				   const struct request_sock *req)
4707{
4708	struct sk_security_struct *newsksec = newsk->sk_security;
4709
4710	newsksec->sid = req->secid;
4711	newsksec->peer_sid = req->peer_secid;
4712	/* NOTE: Ideally, we should also get the isec->sid for the
4713	   new socket in sync, but we don't have the isec available yet.
4714	   So we will wait until sock_graft to do it, by which
4715	   time it will have been created and available. */
4716
4717	/* We don't need to take any sort of lock here as we are the only
4718	 * thread with access to newsksec */
4719	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4720}
4721
4722static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4723{
4724	u16 family = sk->sk_family;
4725	struct sk_security_struct *sksec = sk->sk_security;
4726
4727	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4728	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4729		family = PF_INET;
4730
4731	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4732}
4733
4734static int selinux_secmark_relabel_packet(u32 sid)
4735{
4736	const struct task_security_struct *__tsec;
4737	u32 tsid;
4738
4739	__tsec = current_security();
4740	tsid = __tsec->sid;
4741
4742	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4743}
4744
4745static void selinux_secmark_refcount_inc(void)
4746{
4747	atomic_inc(&selinux_secmark_refcount);
4748}
4749
4750static void selinux_secmark_refcount_dec(void)
4751{
4752	atomic_dec(&selinux_secmark_refcount);
4753}
4754
4755static void selinux_req_classify_flow(const struct request_sock *req,
4756				      struct flowi *fl)
4757{
4758	fl->flowi_secid = req->secid;
4759}
4760
4761static int selinux_tun_dev_alloc_security(void **security)
4762{
4763	struct tun_security_struct *tunsec;
4764
4765	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4766	if (!tunsec)
4767		return -ENOMEM;
4768	tunsec->sid = current_sid();
4769
4770	*security = tunsec;
4771	return 0;
4772}
4773
4774static void selinux_tun_dev_free_security(void *security)
4775{
4776	kfree(security);
4777}
4778
4779static int selinux_tun_dev_create(void)
4780{
4781	u32 sid = current_sid();
4782
4783	/* we aren't taking into account the "sockcreate" SID since the socket
4784	 * that is being created here is not a socket in the traditional sense,
4785	 * instead it is a private sock, accessible only to the kernel, and
4786	 * representing a wide range of network traffic spanning multiple
4787	 * connections unlike traditional sockets - check the TUN driver to
4788	 * get a better understanding of why this socket is special */
4789
4790	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4791			    NULL);
4792}
4793
4794static int selinux_tun_dev_attach_queue(void *security)
4795{
4796	struct tun_security_struct *tunsec = security;
4797
4798	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4799			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4800}
4801
4802static int selinux_tun_dev_attach(struct sock *sk, void *security)
4803{
4804	struct tun_security_struct *tunsec = security;
4805	struct sk_security_struct *sksec = sk->sk_security;
4806
4807	/* we don't currently perform any NetLabel based labeling here and it
4808	 * isn't clear that we would want to do so anyway; while we could apply
4809	 * labeling without the support of the TUN user the resulting labeled
4810	 * traffic from the other end of the connection would almost certainly
4811	 * cause confusion to the TUN user that had no idea network labeling
4812	 * protocols were being used */
4813
4814	sksec->sid = tunsec->sid;
4815	sksec->sclass = SECCLASS_TUN_SOCKET;
4816
4817	return 0;
4818}
4819
4820static int selinux_tun_dev_open(void *security)
4821{
4822	struct tun_security_struct *tunsec = security;
4823	u32 sid = current_sid();
4824	int err;
4825
4826	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4827			   TUN_SOCKET__RELABELFROM, NULL);
4828	if (err)
4829		return err;
4830	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4831			   TUN_SOCKET__RELABELTO, NULL);
4832	if (err)
4833		return err;
4834	tunsec->sid = sid;
4835
4836	return 0;
4837}
4838
4839static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4840{
4841	int err = 0;
4842	u32 perm;
4843	struct nlmsghdr *nlh;
4844	struct sk_security_struct *sksec = sk->sk_security;
4845
4846	if (skb->len < NLMSG_HDRLEN) {
4847		err = -EINVAL;
4848		goto out;
4849	}
4850	nlh = nlmsg_hdr(skb);
4851
4852	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4853	if (err) {
4854		if (err == -EINVAL) {
4855			pr_warn_ratelimited("SELinux: unrecognized netlink"
4856			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
4857			       " pig=%d comm=%s\n",
4858			       sk->sk_protocol, nlh->nlmsg_type,
4859			       secclass_map[sksec->sclass - 1].name,
4860			       task_pid_nr(current), current->comm);
4861			if (!selinux_enforcing || security_get_allow_unknown())
4862				err = 0;
4863		}
4864
4865		/* Ignore */
4866		if (err == -ENOENT)
4867			err = 0;
4868		goto out;
4869	}
4870
4871	err = sock_has_perm(current, sk, perm);
4872out:
4873	return err;
4874}
4875
4876#ifdef CONFIG_NETFILTER
4877
4878static unsigned int selinux_ip_forward(struct sk_buff *skb,
4879				       const struct net_device *indev,
4880				       u16 family)
4881{
4882	int err;
4883	char *addrp;
4884	u32 peer_sid;
4885	struct common_audit_data ad;
4886	struct lsm_network_audit net = {0,};
4887	u8 secmark_active;
4888	u8 netlbl_active;
4889	u8 peerlbl_active;
4890
4891	if (!selinux_policycap_netpeer)
4892		return NF_ACCEPT;
4893
4894	secmark_active = selinux_secmark_enabled();
4895	netlbl_active = netlbl_enabled();
4896	peerlbl_active = selinux_peerlbl_enabled();
4897	if (!secmark_active && !peerlbl_active)
4898		return NF_ACCEPT;
4899
4900	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4901		return NF_DROP;
4902
4903	ad.type = LSM_AUDIT_DATA_NET;
4904	ad.u.net = &net;
4905	ad.u.net->netif = indev->ifindex;
4906	ad.u.net->family = family;
4907	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4908		return NF_DROP;
4909
4910	if (peerlbl_active) {
4911		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4912					       addrp, family, peer_sid, &ad);
4913		if (err) {
4914			selinux_netlbl_err(skb, err, 1);
4915			return NF_DROP;
4916		}
4917	}
4918
4919	if (secmark_active)
4920		if (avc_has_perm(peer_sid, skb->secmark,
4921				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4922			return NF_DROP;
4923
4924	if (netlbl_active)
4925		/* we do this in the FORWARD path and not the POST_ROUTING
4926		 * path because we want to make sure we apply the necessary
4927		 * labeling before IPsec is applied so we can leverage AH
4928		 * protection */
4929		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4930			return NF_DROP;
4931
4932	return NF_ACCEPT;
4933}
4934
4935static unsigned int selinux_ipv4_forward(void *priv,
4936					 struct sk_buff *skb,
4937					 const struct nf_hook_state *state)
4938{
4939	return selinux_ip_forward(skb, state->in, PF_INET);
4940}
4941
4942#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4943static unsigned int selinux_ipv6_forward(void *priv,
4944					 struct sk_buff *skb,
4945					 const struct nf_hook_state *state)
4946{
4947	return selinux_ip_forward(skb, state->in, PF_INET6);
4948}
4949#endif	/* IPV6 */
4950
4951static unsigned int selinux_ip_output(struct sk_buff *skb,
4952				      u16 family)
4953{
4954	struct sock *sk;
4955	u32 sid;
4956
4957	if (!netlbl_enabled())
4958		return NF_ACCEPT;
4959
4960	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4961	 * because we want to make sure we apply the necessary labeling
4962	 * before IPsec is applied so we can leverage AH protection */
4963	sk = skb->sk;
4964	if (sk) {
4965		struct sk_security_struct *sksec;
4966
4967		if (sk_listener(sk))
4968			/* if the socket is the listening state then this
4969			 * packet is a SYN-ACK packet which means it needs to
4970			 * be labeled based on the connection/request_sock and
4971			 * not the parent socket.  unfortunately, we can't
4972			 * lookup the request_sock yet as it isn't queued on
4973			 * the parent socket until after the SYN-ACK is sent.
4974			 * the "solution" is to simply pass the packet as-is
4975			 * as any IP option based labeling should be copied
4976			 * from the initial connection request (in the IP
4977			 * layer).  it is far from ideal, but until we get a
4978			 * security label in the packet itself this is the
4979			 * best we can do. */
4980			return NF_ACCEPT;
4981
4982		/* standard practice, label using the parent socket */
4983		sksec = sk->sk_security;
4984		sid = sksec->sid;
4985	} else
4986		sid = SECINITSID_KERNEL;
4987	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4988		return NF_DROP;
4989
4990	return NF_ACCEPT;
4991}
4992
4993static unsigned int selinux_ipv4_output(void *priv,
4994					struct sk_buff *skb,
4995					const struct nf_hook_state *state)
4996{
4997	return selinux_ip_output(skb, PF_INET);
4998}
4999
 
 
 
 
 
 
 
 
 
5000static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5001						int ifindex,
5002						u16 family)
5003{
5004	struct sock *sk = skb_to_full_sk(skb);
5005	struct sk_security_struct *sksec;
5006	struct common_audit_data ad;
5007	struct lsm_network_audit net = {0,};
5008	char *addrp;
5009	u8 proto;
5010
5011	if (sk == NULL)
5012		return NF_ACCEPT;
5013	sksec = sk->sk_security;
5014
5015	ad.type = LSM_AUDIT_DATA_NET;
5016	ad.u.net = &net;
5017	ad.u.net->netif = ifindex;
5018	ad.u.net->family = family;
5019	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5020		return NF_DROP;
5021
5022	if (selinux_secmark_enabled())
5023		if (avc_has_perm(sksec->sid, skb->secmark,
5024				 SECCLASS_PACKET, PACKET__SEND, &ad))
5025			return NF_DROP_ERR(-ECONNREFUSED);
5026
5027	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5028		return NF_DROP_ERR(-ECONNREFUSED);
5029
5030	return NF_ACCEPT;
5031}
5032
5033static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5034					 const struct net_device *outdev,
5035					 u16 family)
5036{
5037	u32 secmark_perm;
5038	u32 peer_sid;
5039	int ifindex = outdev->ifindex;
5040	struct sock *sk;
5041	struct common_audit_data ad;
5042	struct lsm_network_audit net = {0,};
5043	char *addrp;
5044	u8 secmark_active;
5045	u8 peerlbl_active;
5046
5047	/* If any sort of compatibility mode is enabled then handoff processing
5048	 * to the selinux_ip_postroute_compat() function to deal with the
5049	 * special handling.  We do this in an attempt to keep this function
5050	 * as fast and as clean as possible. */
5051	if (!selinux_policycap_netpeer)
5052		return selinux_ip_postroute_compat(skb, ifindex, family);
5053
5054	secmark_active = selinux_secmark_enabled();
5055	peerlbl_active = selinux_peerlbl_enabled();
5056	if (!secmark_active && !peerlbl_active)
5057		return NF_ACCEPT;
5058
5059	sk = skb_to_full_sk(skb);
5060
5061#ifdef CONFIG_XFRM
5062	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5063	 * packet transformation so allow the packet to pass without any checks
5064	 * since we'll have another chance to perform access control checks
5065	 * when the packet is on it's final way out.
5066	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5067	 *       is NULL, in this case go ahead and apply access control.
5068	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5069	 *       TCP listening state we cannot wait until the XFRM processing
5070	 *       is done as we will miss out on the SA label if we do;
5071	 *       unfortunately, this means more work, but it is only once per
5072	 *       connection. */
5073	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5074	    !(sk && sk_listener(sk)))
5075		return NF_ACCEPT;
5076#endif
5077
5078	if (sk == NULL) {
5079		/* Without an associated socket the packet is either coming
5080		 * from the kernel or it is being forwarded; check the packet
5081		 * to determine which and if the packet is being forwarded
5082		 * query the packet directly to determine the security label. */
5083		if (skb->skb_iif) {
5084			secmark_perm = PACKET__FORWARD_OUT;
5085			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5086				return NF_DROP;
5087		} else {
5088			secmark_perm = PACKET__SEND;
5089			peer_sid = SECINITSID_KERNEL;
5090		}
5091	} else if (sk_listener(sk)) {
5092		/* Locally generated packet but the associated socket is in the
5093		 * listening state which means this is a SYN-ACK packet.  In
5094		 * this particular case the correct security label is assigned
5095		 * to the connection/request_sock but unfortunately we can't
5096		 * query the request_sock as it isn't queued on the parent
5097		 * socket until after the SYN-ACK packet is sent; the only
5098		 * viable choice is to regenerate the label like we do in
5099		 * selinux_inet_conn_request().  See also selinux_ip_output()
5100		 * for similar problems. */
5101		u32 skb_sid;
5102		struct sk_security_struct *sksec;
5103
5104		sksec = sk->sk_security;
5105		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5106			return NF_DROP;
5107		/* At this point, if the returned skb peerlbl is SECSID_NULL
5108		 * and the packet has been through at least one XFRM
5109		 * transformation then we must be dealing with the "final"
5110		 * form of labeled IPsec packet; since we've already applied
5111		 * all of our access controls on this packet we can safely
5112		 * pass the packet. */
5113		if (skb_sid == SECSID_NULL) {
5114			switch (family) {
5115			case PF_INET:
5116				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5117					return NF_ACCEPT;
5118				break;
5119			case PF_INET6:
5120				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5121					return NF_ACCEPT;
5122				break;
5123			default:
5124				return NF_DROP_ERR(-ECONNREFUSED);
5125			}
5126		}
5127		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5128			return NF_DROP;
5129		secmark_perm = PACKET__SEND;
5130	} else {
5131		/* Locally generated packet, fetch the security label from the
5132		 * associated socket. */
5133		struct sk_security_struct *sksec = sk->sk_security;
5134		peer_sid = sksec->sid;
5135		secmark_perm = PACKET__SEND;
5136	}
5137
5138	ad.type = LSM_AUDIT_DATA_NET;
5139	ad.u.net = &net;
5140	ad.u.net->netif = ifindex;
5141	ad.u.net->family = family;
5142	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5143		return NF_DROP;
5144
5145	if (secmark_active)
5146		if (avc_has_perm(peer_sid, skb->secmark,
5147				 SECCLASS_PACKET, secmark_perm, &ad))
5148			return NF_DROP_ERR(-ECONNREFUSED);
5149
5150	if (peerlbl_active) {
5151		u32 if_sid;
5152		u32 node_sid;
5153
5154		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5155			return NF_DROP;
5156		if (avc_has_perm(peer_sid, if_sid,
5157				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5158			return NF_DROP_ERR(-ECONNREFUSED);
5159
5160		if (sel_netnode_sid(addrp, family, &node_sid))
5161			return NF_DROP;
5162		if (avc_has_perm(peer_sid, node_sid,
5163				 SECCLASS_NODE, NODE__SENDTO, &ad))
5164			return NF_DROP_ERR(-ECONNREFUSED);
5165	}
5166
5167	return NF_ACCEPT;
5168}
5169
5170static unsigned int selinux_ipv4_postroute(void *priv,
5171					   struct sk_buff *skb,
5172					   const struct nf_hook_state *state)
5173{
5174	return selinux_ip_postroute(skb, state->out, PF_INET);
5175}
5176
5177#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5178static unsigned int selinux_ipv6_postroute(void *priv,
5179					   struct sk_buff *skb,
5180					   const struct nf_hook_state *state)
5181{
5182	return selinux_ip_postroute(skb, state->out, PF_INET6);
5183}
5184#endif	/* IPV6 */
5185
5186#endif	/* CONFIG_NETFILTER */
5187
5188static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5189{
5190	return selinux_nlmsg_perm(sk, skb);
5191}
5192
5193static int ipc_alloc_security(struct task_struct *task,
5194			      struct kern_ipc_perm *perm,
5195			      u16 sclass)
5196{
5197	struct ipc_security_struct *isec;
5198	u32 sid;
5199
5200	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5201	if (!isec)
5202		return -ENOMEM;
5203
5204	sid = task_sid(task);
5205	isec->sclass = sclass;
5206	isec->sid = sid;
5207	perm->security = isec;
5208
5209	return 0;
5210}
5211
5212static void ipc_free_security(struct kern_ipc_perm *perm)
5213{
5214	struct ipc_security_struct *isec = perm->security;
5215	perm->security = NULL;
5216	kfree(isec);
5217}
5218
5219static int msg_msg_alloc_security(struct msg_msg *msg)
5220{
5221	struct msg_security_struct *msec;
5222
5223	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5224	if (!msec)
5225		return -ENOMEM;
5226
5227	msec->sid = SECINITSID_UNLABELED;
5228	msg->security = msec;
5229
5230	return 0;
5231}
5232
5233static void msg_msg_free_security(struct msg_msg *msg)
5234{
5235	struct msg_security_struct *msec = msg->security;
5236
5237	msg->security = NULL;
5238	kfree(msec);
5239}
5240
5241static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5242			u32 perms)
5243{
5244	struct ipc_security_struct *isec;
5245	struct common_audit_data ad;
5246	u32 sid = current_sid();
5247
5248	isec = ipc_perms->security;
5249
5250	ad.type = LSM_AUDIT_DATA_IPC;
5251	ad.u.ipc_id = ipc_perms->key;
5252
5253	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5254}
5255
5256static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5257{
5258	return msg_msg_alloc_security(msg);
5259}
5260
5261static void selinux_msg_msg_free_security(struct msg_msg *msg)
5262{
5263	msg_msg_free_security(msg);
5264}
5265
5266/* message queue security operations */
5267static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5268{
5269	struct ipc_security_struct *isec;
5270	struct common_audit_data ad;
5271	u32 sid = current_sid();
5272	int rc;
5273
5274	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5275	if (rc)
5276		return rc;
5277
5278	isec = msq->q_perm.security;
5279
5280	ad.type = LSM_AUDIT_DATA_IPC;
5281	ad.u.ipc_id = msq->q_perm.key;
5282
5283	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5284			  MSGQ__CREATE, &ad);
5285	if (rc) {
5286		ipc_free_security(&msq->q_perm);
5287		return rc;
5288	}
5289	return 0;
5290}
5291
5292static void selinux_msg_queue_free_security(struct msg_queue *msq)
5293{
5294	ipc_free_security(&msq->q_perm);
5295}
5296
5297static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5298{
5299	struct ipc_security_struct *isec;
5300	struct common_audit_data ad;
5301	u32 sid = current_sid();
5302
5303	isec = msq->q_perm.security;
5304
5305	ad.type = LSM_AUDIT_DATA_IPC;
5306	ad.u.ipc_id = msq->q_perm.key;
5307
5308	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5309			    MSGQ__ASSOCIATE, &ad);
5310}
5311
5312static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5313{
5314	int err;
5315	int perms;
5316
5317	switch (cmd) {
5318	case IPC_INFO:
5319	case MSG_INFO:
5320		/* No specific object, just general system-wide information. */
5321		return task_has_system(current, SYSTEM__IPC_INFO);
5322	case IPC_STAT:
5323	case MSG_STAT:
5324		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5325		break;
5326	case IPC_SET:
5327		perms = MSGQ__SETATTR;
5328		break;
5329	case IPC_RMID:
5330		perms = MSGQ__DESTROY;
5331		break;
5332	default:
5333		return 0;
5334	}
5335
5336	err = ipc_has_perm(&msq->q_perm, perms);
5337	return err;
5338}
5339
5340static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5341{
5342	struct ipc_security_struct *isec;
5343	struct msg_security_struct *msec;
5344	struct common_audit_data ad;
5345	u32 sid = current_sid();
5346	int rc;
5347
5348	isec = msq->q_perm.security;
5349	msec = msg->security;
5350
5351	/*
5352	 * First time through, need to assign label to the message
5353	 */
5354	if (msec->sid == SECINITSID_UNLABELED) {
5355		/*
5356		 * Compute new sid based on current process and
5357		 * message queue this message will be stored in
5358		 */
5359		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5360					     NULL, &msec->sid);
5361		if (rc)
5362			return rc;
5363	}
5364
5365	ad.type = LSM_AUDIT_DATA_IPC;
5366	ad.u.ipc_id = msq->q_perm.key;
5367
5368	/* Can this process write to the queue? */
5369	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5370			  MSGQ__WRITE, &ad);
5371	if (!rc)
5372		/* Can this process send the message */
5373		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5374				  MSG__SEND, &ad);
5375	if (!rc)
5376		/* Can the message be put in the queue? */
5377		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5378				  MSGQ__ENQUEUE, &ad);
5379
5380	return rc;
5381}
5382
5383static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5384				    struct task_struct *target,
5385				    long type, int mode)
5386{
5387	struct ipc_security_struct *isec;
5388	struct msg_security_struct *msec;
5389	struct common_audit_data ad;
5390	u32 sid = task_sid(target);
5391	int rc;
5392
5393	isec = msq->q_perm.security;
5394	msec = msg->security;
5395
5396	ad.type = LSM_AUDIT_DATA_IPC;
5397	ad.u.ipc_id = msq->q_perm.key;
5398
5399	rc = avc_has_perm(sid, isec->sid,
5400			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5401	if (!rc)
5402		rc = avc_has_perm(sid, msec->sid,
5403				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5404	return rc;
5405}
5406
5407/* Shared Memory security operations */
5408static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5409{
5410	struct ipc_security_struct *isec;
5411	struct common_audit_data ad;
5412	u32 sid = current_sid();
5413	int rc;
5414
5415	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5416	if (rc)
5417		return rc;
5418
5419	isec = shp->shm_perm.security;
5420
5421	ad.type = LSM_AUDIT_DATA_IPC;
5422	ad.u.ipc_id = shp->shm_perm.key;
5423
5424	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5425			  SHM__CREATE, &ad);
5426	if (rc) {
5427		ipc_free_security(&shp->shm_perm);
5428		return rc;
5429	}
5430	return 0;
5431}
5432
5433static void selinux_shm_free_security(struct shmid_kernel *shp)
5434{
5435	ipc_free_security(&shp->shm_perm);
5436}
5437
5438static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5439{
5440	struct ipc_security_struct *isec;
5441	struct common_audit_data ad;
5442	u32 sid = current_sid();
5443
5444	isec = shp->shm_perm.security;
5445
5446	ad.type = LSM_AUDIT_DATA_IPC;
5447	ad.u.ipc_id = shp->shm_perm.key;
5448
5449	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5450			    SHM__ASSOCIATE, &ad);
5451}
5452
5453/* Note, at this point, shp is locked down */
5454static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5455{
5456	int perms;
5457	int err;
5458
5459	switch (cmd) {
5460	case IPC_INFO:
5461	case SHM_INFO:
5462		/* No specific object, just general system-wide information. */
5463		return task_has_system(current, SYSTEM__IPC_INFO);
5464	case IPC_STAT:
5465	case SHM_STAT:
5466		perms = SHM__GETATTR | SHM__ASSOCIATE;
5467		break;
5468	case IPC_SET:
5469		perms = SHM__SETATTR;
5470		break;
5471	case SHM_LOCK:
5472	case SHM_UNLOCK:
5473		perms = SHM__LOCK;
5474		break;
5475	case IPC_RMID:
5476		perms = SHM__DESTROY;
5477		break;
5478	default:
5479		return 0;
5480	}
5481
5482	err = ipc_has_perm(&shp->shm_perm, perms);
5483	return err;
5484}
5485
5486static int selinux_shm_shmat(struct shmid_kernel *shp,
5487			     char __user *shmaddr, int shmflg)
5488{
5489	u32 perms;
5490
5491	if (shmflg & SHM_RDONLY)
5492		perms = SHM__READ;
5493	else
5494		perms = SHM__READ | SHM__WRITE;
5495
5496	return ipc_has_perm(&shp->shm_perm, perms);
5497}
5498
5499/* Semaphore security operations */
5500static int selinux_sem_alloc_security(struct sem_array *sma)
5501{
5502	struct ipc_security_struct *isec;
5503	struct common_audit_data ad;
5504	u32 sid = current_sid();
5505	int rc;
5506
5507	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5508	if (rc)
5509		return rc;
5510
5511	isec = sma->sem_perm.security;
5512
5513	ad.type = LSM_AUDIT_DATA_IPC;
5514	ad.u.ipc_id = sma->sem_perm.key;
5515
5516	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5517			  SEM__CREATE, &ad);
5518	if (rc) {
5519		ipc_free_security(&sma->sem_perm);
5520		return rc;
5521	}
5522	return 0;
5523}
5524
5525static void selinux_sem_free_security(struct sem_array *sma)
5526{
5527	ipc_free_security(&sma->sem_perm);
5528}
5529
5530static int selinux_sem_associate(struct sem_array *sma, int semflg)
5531{
5532	struct ipc_security_struct *isec;
5533	struct common_audit_data ad;
5534	u32 sid = current_sid();
5535
5536	isec = sma->sem_perm.security;
5537
5538	ad.type = LSM_AUDIT_DATA_IPC;
5539	ad.u.ipc_id = sma->sem_perm.key;
5540
5541	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5542			    SEM__ASSOCIATE, &ad);
5543}
5544
5545/* Note, at this point, sma is locked down */
5546static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5547{
5548	int err;
5549	u32 perms;
5550
5551	switch (cmd) {
5552	case IPC_INFO:
5553	case SEM_INFO:
5554		/* No specific object, just general system-wide information. */
5555		return task_has_system(current, SYSTEM__IPC_INFO);
5556	case GETPID:
5557	case GETNCNT:
5558	case GETZCNT:
5559		perms = SEM__GETATTR;
5560		break;
5561	case GETVAL:
5562	case GETALL:
5563		perms = SEM__READ;
5564		break;
5565	case SETVAL:
5566	case SETALL:
5567		perms = SEM__WRITE;
5568		break;
5569	case IPC_RMID:
5570		perms = SEM__DESTROY;
5571		break;
5572	case IPC_SET:
5573		perms = SEM__SETATTR;
5574		break;
5575	case IPC_STAT:
5576	case SEM_STAT:
5577		perms = SEM__GETATTR | SEM__ASSOCIATE;
5578		break;
5579	default:
5580		return 0;
5581	}
5582
5583	err = ipc_has_perm(&sma->sem_perm, perms);
5584	return err;
5585}
5586
5587static int selinux_sem_semop(struct sem_array *sma,
5588			     struct sembuf *sops, unsigned nsops, int alter)
5589{
5590	u32 perms;
5591
5592	if (alter)
5593		perms = SEM__READ | SEM__WRITE;
5594	else
5595		perms = SEM__READ;
5596
5597	return ipc_has_perm(&sma->sem_perm, perms);
5598}
5599
5600static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5601{
5602	u32 av = 0;
5603
5604	av = 0;
5605	if (flag & S_IRUGO)
5606		av |= IPC__UNIX_READ;
5607	if (flag & S_IWUGO)
5608		av |= IPC__UNIX_WRITE;
5609
5610	if (av == 0)
5611		return 0;
5612
5613	return ipc_has_perm(ipcp, av);
5614}
5615
5616static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5617{
5618	struct ipc_security_struct *isec = ipcp->security;
5619	*secid = isec->sid;
5620}
5621
5622static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5623{
5624	if (inode)
5625		inode_doinit_with_dentry(inode, dentry);
5626}
5627
5628static int selinux_getprocattr(struct task_struct *p,
5629			       char *name, char **value)
5630{
5631	const struct task_security_struct *__tsec;
5632	u32 sid;
5633	int error;
5634	unsigned len;
5635
5636	if (current != p) {
5637		error = current_has_perm(p, PROCESS__GETATTR);
5638		if (error)
5639			return error;
5640	}
5641
5642	rcu_read_lock();
5643	__tsec = __task_cred(p)->security;
5644
5645	if (!strcmp(name, "current"))
5646		sid = __tsec->sid;
5647	else if (!strcmp(name, "prev"))
5648		sid = __tsec->osid;
5649	else if (!strcmp(name, "exec"))
5650		sid = __tsec->exec_sid;
5651	else if (!strcmp(name, "fscreate"))
5652		sid = __tsec->create_sid;
5653	else if (!strcmp(name, "keycreate"))
5654		sid = __tsec->keycreate_sid;
5655	else if (!strcmp(name, "sockcreate"))
5656		sid = __tsec->sockcreate_sid;
5657	else
5658		goto invalid;
5659	rcu_read_unlock();
5660
5661	if (!sid)
5662		return 0;
5663
5664	error = security_sid_to_context(sid, value, &len);
5665	if (error)
5666		return error;
5667	return len;
5668
5669invalid:
5670	rcu_read_unlock();
5671	return -EINVAL;
5672}
5673
5674static int selinux_setprocattr(struct task_struct *p,
5675			       char *name, void *value, size_t size)
5676{
5677	struct task_security_struct *tsec;
5678	struct task_struct *tracer;
5679	struct cred *new;
5680	u32 sid = 0, ptsid;
5681	int error;
5682	char *str = value;
5683
5684	if (current != p) {
5685		/* SELinux only allows a process to change its own
5686		   security attributes. */
5687		return -EACCES;
5688	}
5689
5690	/*
5691	 * Basic control over ability to set these attributes at all.
5692	 * current == p, but we'll pass them separately in case the
5693	 * above restriction is ever removed.
5694	 */
5695	if (!strcmp(name, "exec"))
5696		error = current_has_perm(p, PROCESS__SETEXEC);
5697	else if (!strcmp(name, "fscreate"))
5698		error = current_has_perm(p, PROCESS__SETFSCREATE);
5699	else if (!strcmp(name, "keycreate"))
5700		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5701	else if (!strcmp(name, "sockcreate"))
5702		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5703	else if (!strcmp(name, "current"))
5704		error = current_has_perm(p, PROCESS__SETCURRENT);
5705	else
5706		error = -EINVAL;
5707	if (error)
5708		return error;
5709
5710	/* Obtain a SID for the context, if one was specified. */
5711	if (size && str[1] && str[1] != '\n') {
5712		if (str[size-1] == '\n') {
5713			str[size-1] = 0;
5714			size--;
5715		}
5716		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5717		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5718			if (!capable(CAP_MAC_ADMIN)) {
5719				struct audit_buffer *ab;
5720				size_t audit_size;
5721
5722				/* We strip a nul only if it is at the end, otherwise the
5723				 * context contains a nul and we should audit that */
5724				if (str[size - 1] == '\0')
5725					audit_size = size - 1;
5726				else
5727					audit_size = size;
5728				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5729				audit_log_format(ab, "op=fscreate invalid_context=");
5730				audit_log_n_untrustedstring(ab, value, audit_size);
5731				audit_log_end(ab);
5732
5733				return error;
5734			}
5735			error = security_context_to_sid_force(value, size,
5736							      &sid);
5737		}
5738		if (error)
5739			return error;
5740	}
5741
5742	new = prepare_creds();
5743	if (!new)
5744		return -ENOMEM;
5745
5746	/* Permission checking based on the specified context is
5747	   performed during the actual operation (execve,
5748	   open/mkdir/...), when we know the full context of the
5749	   operation.  See selinux_bprm_set_creds for the execve
5750	   checks and may_create for the file creation checks. The
5751	   operation will then fail if the context is not permitted. */
5752	tsec = new->security;
5753	if (!strcmp(name, "exec")) {
5754		tsec->exec_sid = sid;
5755	} else if (!strcmp(name, "fscreate")) {
5756		tsec->create_sid = sid;
5757	} else if (!strcmp(name, "keycreate")) {
5758		error = may_create_key(sid, p);
5759		if (error)
5760			goto abort_change;
5761		tsec->keycreate_sid = sid;
5762	} else if (!strcmp(name, "sockcreate")) {
5763		tsec->sockcreate_sid = sid;
5764	} else if (!strcmp(name, "current")) {
5765		error = -EINVAL;
5766		if (sid == 0)
5767			goto abort_change;
5768
5769		/* Only allow single threaded processes to change context */
5770		error = -EPERM;
5771		if (!current_is_single_threaded()) {
5772			error = security_bounded_transition(tsec->sid, sid);
5773			if (error)
5774				goto abort_change;
5775		}
5776
5777		/* Check permissions for the transition. */
5778		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5779				     PROCESS__DYNTRANSITION, NULL);
5780		if (error)
5781			goto abort_change;
5782
5783		/* Check for ptracing, and update the task SID if ok.
5784		   Otherwise, leave SID unchanged and fail. */
5785		ptsid = 0;
5786		rcu_read_lock();
5787		tracer = ptrace_parent(p);
5788		if (tracer)
5789			ptsid = task_sid(tracer);
5790		rcu_read_unlock();
5791
5792		if (tracer) {
5793			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5794					     PROCESS__PTRACE, NULL);
5795			if (error)
5796				goto abort_change;
5797		}
5798
5799		tsec->sid = sid;
5800	} else {
5801		error = -EINVAL;
5802		goto abort_change;
5803	}
5804
5805	commit_creds(new);
5806	return size;
5807
5808abort_change:
5809	abort_creds(new);
5810	return error;
5811}
5812
5813static int selinux_ismaclabel(const char *name)
5814{
5815	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5816}
5817
5818static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5819{
5820	return security_sid_to_context(secid, secdata, seclen);
5821}
5822
5823static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5824{
5825	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5826}
5827
5828static void selinux_release_secctx(char *secdata, u32 seclen)
5829{
5830	kfree(secdata);
5831}
5832
5833static void selinux_inode_invalidate_secctx(struct inode *inode)
5834{
5835	struct inode_security_struct *isec = inode->i_security;
5836
5837	mutex_lock(&isec->lock);
5838	isec->initialized = LABEL_INVALID;
5839	mutex_unlock(&isec->lock);
5840}
5841
5842/*
5843 *	called with inode->i_mutex locked
5844 */
5845static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5846{
5847	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5848}
5849
5850/*
5851 *	called with inode->i_mutex locked
5852 */
5853static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5854{
5855	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5856}
5857
5858static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5859{
5860	int len = 0;
5861	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5862						ctx, true);
5863	if (len < 0)
5864		return len;
5865	*ctxlen = len;
5866	return 0;
5867}
5868#ifdef CONFIG_KEYS
5869
5870static int selinux_key_alloc(struct key *k, const struct cred *cred,
5871			     unsigned long flags)
5872{
5873	const struct task_security_struct *tsec;
5874	struct key_security_struct *ksec;
5875
5876	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5877	if (!ksec)
5878		return -ENOMEM;
5879
5880	tsec = cred->security;
5881	if (tsec->keycreate_sid)
5882		ksec->sid = tsec->keycreate_sid;
5883	else
5884		ksec->sid = tsec->sid;
5885
5886	k->security = ksec;
5887	return 0;
5888}
5889
5890static void selinux_key_free(struct key *k)
5891{
5892	struct key_security_struct *ksec = k->security;
5893
5894	k->security = NULL;
5895	kfree(ksec);
5896}
5897
5898static int selinux_key_permission(key_ref_t key_ref,
5899				  const struct cred *cred,
5900				  unsigned perm)
5901{
5902	struct key *key;
5903	struct key_security_struct *ksec;
5904	u32 sid;
5905
5906	/* if no specific permissions are requested, we skip the
5907	   permission check. No serious, additional covert channels
5908	   appear to be created. */
5909	if (perm == 0)
5910		return 0;
5911
5912	sid = cred_sid(cred);
5913
5914	key = key_ref_to_ptr(key_ref);
5915	ksec = key->security;
5916
5917	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5918}
5919
5920static int selinux_key_getsecurity(struct key *key, char **_buffer)
5921{
5922	struct key_security_struct *ksec = key->security;
5923	char *context = NULL;
5924	unsigned len;
5925	int rc;
5926
5927	rc = security_sid_to_context(ksec->sid, &context, &len);
5928	if (!rc)
5929		rc = len;
5930	*_buffer = context;
5931	return rc;
5932}
5933
5934#endif
5935
5936static struct security_hook_list selinux_hooks[] = {
5937	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5938	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5939	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5940	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5941
5942	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5943	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5944	LSM_HOOK_INIT(capget, selinux_capget),
5945	LSM_HOOK_INIT(capset, selinux_capset),
5946	LSM_HOOK_INIT(capable, selinux_capable),
5947	LSM_HOOK_INIT(quotactl, selinux_quotactl),
5948	LSM_HOOK_INIT(quota_on, selinux_quota_on),
5949	LSM_HOOK_INIT(syslog, selinux_syslog),
5950	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5951
5952	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5953
5954	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5955	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5956	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5957	LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5958
5959	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5960	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5961	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5962	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5963	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5964	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5965	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5966	LSM_HOOK_INIT(sb_mount, selinux_mount),
5967	LSM_HOOK_INIT(sb_umount, selinux_umount),
5968	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5969	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5970	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
5971
5972	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
 
5973
5974	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5975	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5976	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
5977	LSM_HOOK_INIT(inode_create, selinux_inode_create),
5978	LSM_HOOK_INIT(inode_link, selinux_inode_link),
5979	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5980	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5981	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5982	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5983	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5984	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5985	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5986	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5987	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5988	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5989	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5990	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5991	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5992	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5993	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5994	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5995	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5996	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5997	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5998	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
 
 
5999
6000	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6001	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6002	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6003	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6004	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6005	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6006	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6007	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6008	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6009	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6010	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6011	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6012
6013	LSM_HOOK_INIT(file_open, selinux_file_open),
6014
6015	LSM_HOOK_INIT(task_create, selinux_task_create),
6016	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6017	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6018	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6019	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6020	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6021	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6022	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
 
6023	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6024	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6025	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6026	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6027	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6028	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6029	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6030	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6031	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6032	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6033	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6034	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6035	LSM_HOOK_INIT(task_wait, selinux_task_wait),
6036	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6037
6038	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6039	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6040
6041	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6042	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6043
6044	LSM_HOOK_INIT(msg_queue_alloc_security,
6045			selinux_msg_queue_alloc_security),
6046	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6047	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6048	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6049	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6050	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6051
6052	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6053	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6054	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6055	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6056	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6057
6058	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6059	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6060	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6061	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6062	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6063
6064	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6065
6066	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6067	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6068
6069	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6070	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6071	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6072	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6073	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6074	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6075	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6076	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6077
6078	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6079	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6080
6081	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6082	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6083	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6084	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6085	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6086	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6087	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6088	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6089	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6090	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6091	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6092	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6093	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6094	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6095	LSM_HOOK_INIT(socket_getpeersec_stream,
6096			selinux_socket_getpeersec_stream),
6097	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6098	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6099	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6100	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6101	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6102	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6103	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6104	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6105	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6106	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6107	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6108	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6109	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6110	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6111	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6112	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6113	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6114	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6115	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6116
6117#ifdef CONFIG_SECURITY_NETWORK_XFRM
6118	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6119	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6120	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6121	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6122	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6123	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6124			selinux_xfrm_state_alloc_acquire),
6125	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6126	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6127	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6128	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6129			selinux_xfrm_state_pol_flow_match),
6130	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6131#endif
6132
6133#ifdef CONFIG_KEYS
6134	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6135	LSM_HOOK_INIT(key_free, selinux_key_free),
6136	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6137	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6138#endif
6139
6140#ifdef CONFIG_AUDIT
6141	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6142	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6143	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6144	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6145#endif
6146};
6147
6148static __init int selinux_init(void)
6149{
6150	if (!security_module_enable("selinux")) {
6151		selinux_enabled = 0;
6152		return 0;
6153	}
6154
6155	if (!selinux_enabled) {
6156		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6157		return 0;
6158	}
6159
6160	printk(KERN_INFO "SELinux:  Initializing.\n");
6161
6162	/* Set the security state for the initial task. */
6163	cred_init_security();
6164
6165	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6166
6167	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6168					    sizeof(struct inode_security_struct),
6169					    0, SLAB_PANIC, NULL);
6170	file_security_cache = kmem_cache_create("selinux_file_security",
6171					    sizeof(struct file_security_struct),
6172					    0, SLAB_PANIC, NULL);
6173	avc_init();
6174
6175	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6176
6177	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6178		panic("SELinux: Unable to register AVC netcache callback\n");
6179
6180	if (selinux_enforcing)
6181		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6182	else
6183		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6184
6185	return 0;
6186}
6187
6188static void delayed_superblock_init(struct super_block *sb, void *unused)
6189{
6190	superblock_doinit(sb, NULL);
6191}
6192
6193void selinux_complete_init(void)
6194{
6195	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6196
6197	/* Set up any superblocks initialized prior to the policy load. */
6198	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6199	iterate_supers(delayed_superblock_init, NULL);
6200}
6201
6202/* SELinux requires early initialization in order to label
6203   all processes and objects when they are created. */
6204security_initcall(selinux_init);
6205
6206#if defined(CONFIG_NETFILTER)
6207
6208static struct nf_hook_ops selinux_nf_ops[] = {
6209	{
6210		.hook =		selinux_ipv4_postroute,
6211		.pf =		NFPROTO_IPV4,
6212		.hooknum =	NF_INET_POST_ROUTING,
6213		.priority =	NF_IP_PRI_SELINUX_LAST,
6214	},
6215	{
6216		.hook =		selinux_ipv4_forward,
6217		.pf =		NFPROTO_IPV4,
6218		.hooknum =	NF_INET_FORWARD,
6219		.priority =	NF_IP_PRI_SELINUX_FIRST,
6220	},
6221	{
6222		.hook =		selinux_ipv4_output,
6223		.pf =		NFPROTO_IPV4,
6224		.hooknum =	NF_INET_LOCAL_OUT,
6225		.priority =	NF_IP_PRI_SELINUX_FIRST,
6226	},
6227#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6228	{
6229		.hook =		selinux_ipv6_postroute,
6230		.pf =		NFPROTO_IPV6,
6231		.hooknum =	NF_INET_POST_ROUTING,
6232		.priority =	NF_IP6_PRI_SELINUX_LAST,
6233	},
6234	{
6235		.hook =		selinux_ipv6_forward,
6236		.pf =		NFPROTO_IPV6,
6237		.hooknum =	NF_INET_FORWARD,
 
 
 
 
 
 
6238		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6239	},
6240#endif	/* IPV6 */
6241};
6242
6243static int __init selinux_nf_ip_init(void)
6244{
6245	int err;
6246
6247	if (!selinux_enabled)
6248		return 0;
6249
6250	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6251
6252	err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6253	if (err)
6254		panic("SELinux: nf_register_hooks: error %d\n", err);
6255
6256	return 0;
6257}
6258
6259__initcall(selinux_nf_ip_init);
6260
6261#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6262static void selinux_nf_ip_exit(void)
6263{
6264	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6265
6266	nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6267}
6268#endif
6269
6270#else /* CONFIG_NETFILTER */
6271
6272#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6273#define selinux_nf_ip_exit()
6274#endif
6275
6276#endif /* CONFIG_NETFILTER */
6277
6278#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6279static int selinux_disabled;
6280
6281int selinux_disable(void)
6282{
6283	if (ss_initialized) {
6284		/* Not permitted after initial policy load. */
6285		return -EINVAL;
6286	}
6287
6288	if (selinux_disabled) {
6289		/* Only do this once. */
6290		return -EINVAL;
6291	}
6292
6293	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6294
6295	selinux_disabled = 1;
6296	selinux_enabled = 0;
6297
6298	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6299
6300	/* Try to destroy the avc node cache */
6301	avc_disable();
6302
6303	/* Unregister netfilter hooks. */
6304	selinux_nf_ip_exit();
6305
6306	/* Unregister selinuxfs. */
6307	exit_sel_fs();
6308
6309	return 0;
6310}
6311#endif
v4.10.11
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  55#include <net/inet_connection_sock.h>
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>	/* for network interface checks */
  64#include <net/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
  68#include <linux/quota.h>
  69#include <linux/un.h>		/* for Unix socket types */
  70#include <net/af_unix.h>	/* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
  83#include <linux/export.h>
  84#include <linux/msg.h>
  85#include <linux/shm.h>
  86
  87#include "avc.h"
  88#include "objsec.h"
  89#include "netif.h"
  90#include "netnode.h"
  91#include "netport.h"
  92#include "xfrm.h"
  93#include "netlabel.h"
  94#include "audit.h"
  95#include "avc_ss.h"
  96
  97/* SECMARK reference count */
  98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
  99
 100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 101int selinux_enforcing;
 102
 103static int __init enforcing_setup(char *str)
 104{
 105	unsigned long enforcing;
 106	if (!kstrtoul(str, 0, &enforcing))
 107		selinux_enforcing = enforcing ? 1 : 0;
 108	return 1;
 109}
 110__setup("enforcing=", enforcing_setup);
 111#endif
 112
 113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 115
 116static int __init selinux_enabled_setup(char *str)
 117{
 118	unsigned long enabled;
 119	if (!kstrtoul(str, 0, &enabled))
 120		selinux_enabled = enabled ? 1 : 0;
 121	return 1;
 122}
 123__setup("selinux=", selinux_enabled_setup);
 124#else
 125int selinux_enabled = 1;
 126#endif
 127
 128static struct kmem_cache *sel_inode_cache;
 129static struct kmem_cache *file_security_cache;
 130
 131/**
 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 133 *
 134 * Description:
 135 * This function checks the SECMARK reference counter to see if any SECMARK
 136 * targets are currently configured, if the reference counter is greater than
 137 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 138 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 139 * policy capability is enabled, SECMARK is always considered enabled.
 140 *
 141 */
 142static int selinux_secmark_enabled(void)
 143{
 144	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 145}
 146
 147/**
 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 149 *
 150 * Description:
 151 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 152 * (1) if any are enabled or false (0) if neither are enabled.  If the
 153 * always_check_network policy capability is enabled, peer labeling
 154 * is always considered enabled.
 155 *
 156 */
 157static int selinux_peerlbl_enabled(void)
 158{
 159	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 160}
 161
 162static int selinux_netcache_avc_callback(u32 event)
 163{
 164	if (event == AVC_CALLBACK_RESET) {
 165		sel_netif_flush();
 166		sel_netnode_flush();
 167		sel_netport_flush();
 168		synchronize_net();
 169	}
 170	return 0;
 171}
 172
 173/*
 174 * initialise the security for the init task
 175 */
 176static void cred_init_security(void)
 177{
 178	struct cred *cred = (struct cred *) current->real_cred;
 179	struct task_security_struct *tsec;
 180
 181	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 182	if (!tsec)
 183		panic("SELinux:  Failed to initialize initial task.\n");
 184
 185	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 186	cred->security = tsec;
 187}
 188
 189/*
 190 * get the security ID of a set of credentials
 191 */
 192static inline u32 cred_sid(const struct cred *cred)
 193{
 194	const struct task_security_struct *tsec;
 195
 196	tsec = cred->security;
 197	return tsec->sid;
 198}
 199
 200/*
 201 * get the objective security ID of a task
 202 */
 203static inline u32 task_sid(const struct task_struct *task)
 204{
 205	u32 sid;
 206
 207	rcu_read_lock();
 208	sid = cred_sid(__task_cred(task));
 209	rcu_read_unlock();
 210	return sid;
 211}
 212
 213/*
 214 * get the subjective security ID of the current task
 215 */
 216static inline u32 current_sid(void)
 217{
 218	const struct task_security_struct *tsec = current_security();
 219
 220	return tsec->sid;
 221}
 222
 223/* Allocate and free functions for each kind of security blob. */
 224
 225static int inode_alloc_security(struct inode *inode)
 226{
 227	struct inode_security_struct *isec;
 228	u32 sid = current_sid();
 229
 230	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 231	if (!isec)
 232		return -ENOMEM;
 233
 234	spin_lock_init(&isec->lock);
 235	INIT_LIST_HEAD(&isec->list);
 236	isec->inode = inode;
 237	isec->sid = SECINITSID_UNLABELED;
 238	isec->sclass = SECCLASS_FILE;
 239	isec->task_sid = sid;
 240	isec->initialized = LABEL_INVALID;
 241	inode->i_security = isec;
 242
 243	return 0;
 244}
 245
 246static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 247
 248/*
 249 * Try reloading inode security labels that have been marked as invalid.  The
 250 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 251 * allowed; when set to false, returns -ECHILD when the label is
 252 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 253 * when no dentry is available, set it to NULL instead.
 254 */
 255static int __inode_security_revalidate(struct inode *inode,
 256				       struct dentry *opt_dentry,
 257				       bool may_sleep)
 258{
 259	struct inode_security_struct *isec = inode->i_security;
 260
 261	might_sleep_if(may_sleep);
 262
 263	if (ss_initialized && isec->initialized != LABEL_INITIALIZED) {
 264		if (!may_sleep)
 265			return -ECHILD;
 266
 267		/*
 268		 * Try reloading the inode security label.  This will fail if
 269		 * @opt_dentry is NULL and no dentry for this inode can be
 270		 * found; in that case, continue using the old label.
 271		 */
 272		inode_doinit_with_dentry(inode, opt_dentry);
 273	}
 274	return 0;
 275}
 276
 277static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 278{
 279	return inode->i_security;
 280}
 281
 282static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 283{
 284	int error;
 285
 286	error = __inode_security_revalidate(inode, NULL, !rcu);
 287	if (error)
 288		return ERR_PTR(error);
 289	return inode->i_security;
 290}
 291
 292/*
 293 * Get the security label of an inode.
 294 */
 295static struct inode_security_struct *inode_security(struct inode *inode)
 296{
 297	__inode_security_revalidate(inode, NULL, true);
 298	return inode->i_security;
 299}
 300
 301static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 302{
 303	struct inode *inode = d_backing_inode(dentry);
 304
 305	return inode->i_security;
 306}
 307
 308/*
 309 * Get the security label of a dentry's backing inode.
 310 */
 311static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 312{
 313	struct inode *inode = d_backing_inode(dentry);
 314
 315	__inode_security_revalidate(inode, dentry, true);
 316	return inode->i_security;
 317}
 318
 319static void inode_free_rcu(struct rcu_head *head)
 320{
 321	struct inode_security_struct *isec;
 322
 323	isec = container_of(head, struct inode_security_struct, rcu);
 324	kmem_cache_free(sel_inode_cache, isec);
 325}
 326
 327static void inode_free_security(struct inode *inode)
 328{
 329	struct inode_security_struct *isec = inode->i_security;
 330	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 331
 332	/*
 333	 * As not all inode security structures are in a list, we check for
 334	 * empty list outside of the lock to make sure that we won't waste
 335	 * time taking a lock doing nothing.
 336	 *
 337	 * The list_del_init() function can be safely called more than once.
 338	 * It should not be possible for this function to be called with
 339	 * concurrent list_add(), but for better safety against future changes
 340	 * in the code, we use list_empty_careful() here.
 341	 */
 342	if (!list_empty_careful(&isec->list)) {
 343		spin_lock(&sbsec->isec_lock);
 344		list_del_init(&isec->list);
 345		spin_unlock(&sbsec->isec_lock);
 346	}
 347
 348	/*
 349	 * The inode may still be referenced in a path walk and
 350	 * a call to selinux_inode_permission() can be made
 351	 * after inode_free_security() is called. Ideally, the VFS
 352	 * wouldn't do this, but fixing that is a much harder
 353	 * job. For now, simply free the i_security via RCU, and
 354	 * leave the current inode->i_security pointer intact.
 355	 * The inode will be freed after the RCU grace period too.
 356	 */
 357	call_rcu(&isec->rcu, inode_free_rcu);
 358}
 359
 360static int file_alloc_security(struct file *file)
 361{
 362	struct file_security_struct *fsec;
 363	u32 sid = current_sid();
 364
 365	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 366	if (!fsec)
 367		return -ENOMEM;
 368
 369	fsec->sid = sid;
 370	fsec->fown_sid = sid;
 371	file->f_security = fsec;
 372
 373	return 0;
 374}
 375
 376static void file_free_security(struct file *file)
 377{
 378	struct file_security_struct *fsec = file->f_security;
 379	file->f_security = NULL;
 380	kmem_cache_free(file_security_cache, fsec);
 381}
 382
 383static int superblock_alloc_security(struct super_block *sb)
 384{
 385	struct superblock_security_struct *sbsec;
 386
 387	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 388	if (!sbsec)
 389		return -ENOMEM;
 390
 391	mutex_init(&sbsec->lock);
 392	INIT_LIST_HEAD(&sbsec->isec_head);
 393	spin_lock_init(&sbsec->isec_lock);
 394	sbsec->sb = sb;
 395	sbsec->sid = SECINITSID_UNLABELED;
 396	sbsec->def_sid = SECINITSID_FILE;
 397	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 398	sb->s_security = sbsec;
 399
 400	return 0;
 401}
 402
 403static void superblock_free_security(struct super_block *sb)
 404{
 405	struct superblock_security_struct *sbsec = sb->s_security;
 406	sb->s_security = NULL;
 407	kfree(sbsec);
 408}
 409
 410/* The file system's label must be initialized prior to use. */
 411
 412static const char *labeling_behaviors[7] = {
 413	"uses xattr",
 414	"uses transition SIDs",
 415	"uses task SIDs",
 416	"uses genfs_contexts",
 417	"not configured for labeling",
 418	"uses mountpoint labeling",
 419	"uses native labeling",
 420};
 421
 422static inline int inode_doinit(struct inode *inode)
 423{
 424	return inode_doinit_with_dentry(inode, NULL);
 425}
 426
 427enum {
 428	Opt_error = -1,
 429	Opt_context = 1,
 430	Opt_fscontext = 2,
 431	Opt_defcontext = 3,
 432	Opt_rootcontext = 4,
 433	Opt_labelsupport = 5,
 434	Opt_nextmntopt = 6,
 435};
 436
 437#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 438
 439static const match_table_t tokens = {
 440	{Opt_context, CONTEXT_STR "%s"},
 441	{Opt_fscontext, FSCONTEXT_STR "%s"},
 442	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 443	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 444	{Opt_labelsupport, LABELSUPP_STR},
 445	{Opt_error, NULL},
 446};
 447
 448#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 449
 450static int may_context_mount_sb_relabel(u32 sid,
 451			struct superblock_security_struct *sbsec,
 452			const struct cred *cred)
 453{
 454	const struct task_security_struct *tsec = cred->security;
 455	int rc;
 456
 457	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 458			  FILESYSTEM__RELABELFROM, NULL);
 459	if (rc)
 460		return rc;
 461
 462	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 463			  FILESYSTEM__RELABELTO, NULL);
 464	return rc;
 465}
 466
 467static int may_context_mount_inode_relabel(u32 sid,
 468			struct superblock_security_struct *sbsec,
 469			const struct cred *cred)
 470{
 471	const struct task_security_struct *tsec = cred->security;
 472	int rc;
 473	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 474			  FILESYSTEM__RELABELFROM, NULL);
 475	if (rc)
 476		return rc;
 477
 478	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 479			  FILESYSTEM__ASSOCIATE, NULL);
 480	return rc;
 481}
 482
 483static int selinux_is_sblabel_mnt(struct super_block *sb)
 484{
 485	struct superblock_security_struct *sbsec = sb->s_security;
 486
 487	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 488		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 489		sbsec->behavior == SECURITY_FS_USE_TASK ||
 490		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 491		/* Special handling. Genfs but also in-core setxattr handler */
 492		!strcmp(sb->s_type->name, "sysfs") ||
 493		!strcmp(sb->s_type->name, "pstore") ||
 494		!strcmp(sb->s_type->name, "debugfs") ||
 495		!strcmp(sb->s_type->name, "rootfs");
 496}
 497
 498static int sb_finish_set_opts(struct super_block *sb)
 499{
 500	struct superblock_security_struct *sbsec = sb->s_security;
 501	struct dentry *root = sb->s_root;
 502	struct inode *root_inode = d_backing_inode(root);
 503	int rc = 0;
 504
 505	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 506		/* Make sure that the xattr handler exists and that no
 507		   error other than -ENODATA is returned by getxattr on
 508		   the root directory.  -ENODATA is ok, as this may be
 509		   the first boot of the SELinux kernel before we have
 510		   assigned xattr values to the filesystem. */
 511		if (!(root_inode->i_opflags & IOP_XATTR)) {
 512			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 513			       "xattr support\n", sb->s_id, sb->s_type->name);
 514			rc = -EOPNOTSUPP;
 515			goto out;
 516		}
 517
 518		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 519		if (rc < 0 && rc != -ENODATA) {
 520			if (rc == -EOPNOTSUPP)
 521				printk(KERN_WARNING "SELinux: (dev %s, type "
 522				       "%s) has no security xattr handler\n",
 523				       sb->s_id, sb->s_type->name);
 524			else
 525				printk(KERN_WARNING "SELinux: (dev %s, type "
 526				       "%s) getxattr errno %d\n", sb->s_id,
 527				       sb->s_type->name, -rc);
 528			goto out;
 529		}
 530	}
 531
 532	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 533		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 534		       sb->s_id, sb->s_type->name);
 535
 536	sbsec->flags |= SE_SBINITIALIZED;
 537	if (selinux_is_sblabel_mnt(sb))
 538		sbsec->flags |= SBLABEL_MNT;
 539
 540	/* Initialize the root inode. */
 541	rc = inode_doinit_with_dentry(root_inode, root);
 542
 543	/* Initialize any other inodes associated with the superblock, e.g.
 544	   inodes created prior to initial policy load or inodes created
 545	   during get_sb by a pseudo filesystem that directly
 546	   populates itself. */
 547	spin_lock(&sbsec->isec_lock);
 548next_inode:
 549	if (!list_empty(&sbsec->isec_head)) {
 550		struct inode_security_struct *isec =
 551				list_entry(sbsec->isec_head.next,
 552					   struct inode_security_struct, list);
 553		struct inode *inode = isec->inode;
 554		list_del_init(&isec->list);
 555		spin_unlock(&sbsec->isec_lock);
 556		inode = igrab(inode);
 557		if (inode) {
 558			if (!IS_PRIVATE(inode))
 559				inode_doinit(inode);
 560			iput(inode);
 561		}
 562		spin_lock(&sbsec->isec_lock);
 563		goto next_inode;
 564	}
 565	spin_unlock(&sbsec->isec_lock);
 566out:
 567	return rc;
 568}
 569
 570/*
 571 * This function should allow an FS to ask what it's mount security
 572 * options were so it can use those later for submounts, displaying
 573 * mount options, or whatever.
 574 */
 575static int selinux_get_mnt_opts(const struct super_block *sb,
 576				struct security_mnt_opts *opts)
 577{
 578	int rc = 0, i;
 579	struct superblock_security_struct *sbsec = sb->s_security;
 580	char *context = NULL;
 581	u32 len;
 582	char tmp;
 583
 584	security_init_mnt_opts(opts);
 585
 586	if (!(sbsec->flags & SE_SBINITIALIZED))
 587		return -EINVAL;
 588
 589	if (!ss_initialized)
 590		return -EINVAL;
 591
 592	/* make sure we always check enough bits to cover the mask */
 593	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 594
 595	tmp = sbsec->flags & SE_MNTMASK;
 596	/* count the number of mount options for this sb */
 597	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 598		if (tmp & 0x01)
 599			opts->num_mnt_opts++;
 600		tmp >>= 1;
 601	}
 602	/* Check if the Label support flag is set */
 603	if (sbsec->flags & SBLABEL_MNT)
 604		opts->num_mnt_opts++;
 605
 606	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 607	if (!opts->mnt_opts) {
 608		rc = -ENOMEM;
 609		goto out_free;
 610	}
 611
 612	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 613	if (!opts->mnt_opts_flags) {
 614		rc = -ENOMEM;
 615		goto out_free;
 616	}
 617
 618	i = 0;
 619	if (sbsec->flags & FSCONTEXT_MNT) {
 620		rc = security_sid_to_context(sbsec->sid, &context, &len);
 621		if (rc)
 622			goto out_free;
 623		opts->mnt_opts[i] = context;
 624		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 625	}
 626	if (sbsec->flags & CONTEXT_MNT) {
 627		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 628		if (rc)
 629			goto out_free;
 630		opts->mnt_opts[i] = context;
 631		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 632	}
 633	if (sbsec->flags & DEFCONTEXT_MNT) {
 634		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 635		if (rc)
 636			goto out_free;
 637		opts->mnt_opts[i] = context;
 638		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 639	}
 640	if (sbsec->flags & ROOTCONTEXT_MNT) {
 641		struct dentry *root = sbsec->sb->s_root;
 642		struct inode_security_struct *isec = backing_inode_security(root);
 643
 644		rc = security_sid_to_context(isec->sid, &context, &len);
 645		if (rc)
 646			goto out_free;
 647		opts->mnt_opts[i] = context;
 648		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 649	}
 650	if (sbsec->flags & SBLABEL_MNT) {
 651		opts->mnt_opts[i] = NULL;
 652		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 653	}
 654
 655	BUG_ON(i != opts->num_mnt_opts);
 656
 657	return 0;
 658
 659out_free:
 660	security_free_mnt_opts(opts);
 661	return rc;
 662}
 663
 664static int bad_option(struct superblock_security_struct *sbsec, char flag,
 665		      u32 old_sid, u32 new_sid)
 666{
 667	char mnt_flags = sbsec->flags & SE_MNTMASK;
 668
 669	/* check if the old mount command had the same options */
 670	if (sbsec->flags & SE_SBINITIALIZED)
 671		if (!(sbsec->flags & flag) ||
 672		    (old_sid != new_sid))
 673			return 1;
 674
 675	/* check if we were passed the same options twice,
 676	 * aka someone passed context=a,context=b
 677	 */
 678	if (!(sbsec->flags & SE_SBINITIALIZED))
 679		if (mnt_flags & flag)
 680			return 1;
 681	return 0;
 682}
 683
 684/*
 685 * Allow filesystems with binary mount data to explicitly set mount point
 686 * labeling information.
 687 */
 688static int selinux_set_mnt_opts(struct super_block *sb,
 689				struct security_mnt_opts *opts,
 690				unsigned long kern_flags,
 691				unsigned long *set_kern_flags)
 692{
 693	const struct cred *cred = current_cred();
 694	int rc = 0, i;
 695	struct superblock_security_struct *sbsec = sb->s_security;
 696	const char *name = sb->s_type->name;
 697	struct dentry *root = sbsec->sb->s_root;
 698	struct inode_security_struct *root_isec;
 699	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 700	u32 defcontext_sid = 0;
 701	char **mount_options = opts->mnt_opts;
 702	int *flags = opts->mnt_opts_flags;
 703	int num_opts = opts->num_mnt_opts;
 704
 705	mutex_lock(&sbsec->lock);
 706
 707	if (!ss_initialized) {
 708		if (!num_opts) {
 709			/* Defer initialization until selinux_complete_init,
 710			   after the initial policy is loaded and the security
 711			   server is ready to handle calls. */
 712			goto out;
 713		}
 714		rc = -EINVAL;
 715		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 716			"before the security server is initialized\n");
 717		goto out;
 718	}
 719	if (kern_flags && !set_kern_flags) {
 720		/* Specifying internal flags without providing a place to
 721		 * place the results is not allowed */
 722		rc = -EINVAL;
 723		goto out;
 724	}
 725
 726	/*
 727	 * Binary mount data FS will come through this function twice.  Once
 728	 * from an explicit call and once from the generic calls from the vfs.
 729	 * Since the generic VFS calls will not contain any security mount data
 730	 * we need to skip the double mount verification.
 731	 *
 732	 * This does open a hole in which we will not notice if the first
 733	 * mount using this sb set explict options and a second mount using
 734	 * this sb does not set any security options.  (The first options
 735	 * will be used for both mounts)
 736	 */
 737	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 738	    && (num_opts == 0))
 739		goto out;
 740
 741	root_isec = backing_inode_security_novalidate(root);
 742
 743	/*
 744	 * parse the mount options, check if they are valid sids.
 745	 * also check if someone is trying to mount the same sb more
 746	 * than once with different security options.
 747	 */
 748	for (i = 0; i < num_opts; i++) {
 749		u32 sid;
 750
 751		if (flags[i] == SBLABEL_MNT)
 752			continue;
 753		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
 754		if (rc) {
 755			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 756			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 757			       mount_options[i], sb->s_id, name, rc);
 758			goto out;
 759		}
 760		switch (flags[i]) {
 761		case FSCONTEXT_MNT:
 762			fscontext_sid = sid;
 763
 764			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 765					fscontext_sid))
 766				goto out_double_mount;
 767
 768			sbsec->flags |= FSCONTEXT_MNT;
 769			break;
 770		case CONTEXT_MNT:
 771			context_sid = sid;
 772
 773			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 774					context_sid))
 775				goto out_double_mount;
 776
 777			sbsec->flags |= CONTEXT_MNT;
 778			break;
 779		case ROOTCONTEXT_MNT:
 780			rootcontext_sid = sid;
 781
 782			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 783					rootcontext_sid))
 784				goto out_double_mount;
 785
 786			sbsec->flags |= ROOTCONTEXT_MNT;
 787
 788			break;
 789		case DEFCONTEXT_MNT:
 790			defcontext_sid = sid;
 791
 792			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 793					defcontext_sid))
 794				goto out_double_mount;
 795
 796			sbsec->flags |= DEFCONTEXT_MNT;
 797
 798			break;
 799		default:
 800			rc = -EINVAL;
 801			goto out;
 802		}
 803	}
 804
 805	if (sbsec->flags & SE_SBINITIALIZED) {
 806		/* previously mounted with options, but not on this attempt? */
 807		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 808			goto out_double_mount;
 809		rc = 0;
 810		goto out;
 811	}
 812
 813	if (strcmp(sb->s_type->name, "proc") == 0)
 814		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 815
 816	if (!strcmp(sb->s_type->name, "debugfs") ||
 817	    !strcmp(sb->s_type->name, "sysfs") ||
 818	    !strcmp(sb->s_type->name, "pstore"))
 819		sbsec->flags |= SE_SBGENFS;
 820
 821	if (!sbsec->behavior) {
 822		/*
 823		 * Determine the labeling behavior to use for this
 824		 * filesystem type.
 825		 */
 826		rc = security_fs_use(sb);
 827		if (rc) {
 828			printk(KERN_WARNING
 829				"%s: security_fs_use(%s) returned %d\n",
 830					__func__, sb->s_type->name, rc);
 831			goto out;
 832		}
 833	}
 834
 835	/*
 836	 * If this is a user namespace mount, no contexts are allowed
 837	 * on the command line and security labels must be ignored.
 838	 */
 839	if (sb->s_user_ns != &init_user_ns) {
 840		if (context_sid || fscontext_sid || rootcontext_sid ||
 841		    defcontext_sid) {
 842			rc = -EACCES;
 843			goto out;
 844		}
 845		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 846			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 847			rc = security_transition_sid(current_sid(), current_sid(),
 848						     SECCLASS_FILE, NULL,
 849						     &sbsec->mntpoint_sid);
 850			if (rc)
 851				goto out;
 852		}
 853		goto out_set_opts;
 854	}
 855
 856	/* sets the context of the superblock for the fs being mounted. */
 857	if (fscontext_sid) {
 858		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 859		if (rc)
 860			goto out;
 861
 862		sbsec->sid = fscontext_sid;
 863	}
 864
 865	/*
 866	 * Switch to using mount point labeling behavior.
 867	 * sets the label used on all file below the mountpoint, and will set
 868	 * the superblock context if not already set.
 869	 */
 870	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 871		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 872		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 873	}
 874
 875	if (context_sid) {
 876		if (!fscontext_sid) {
 877			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 878							  cred);
 879			if (rc)
 880				goto out;
 881			sbsec->sid = context_sid;
 882		} else {
 883			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 884							     cred);
 885			if (rc)
 886				goto out;
 887		}
 888		if (!rootcontext_sid)
 889			rootcontext_sid = context_sid;
 890
 891		sbsec->mntpoint_sid = context_sid;
 892		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 893	}
 894
 895	if (rootcontext_sid) {
 896		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 897						     cred);
 898		if (rc)
 899			goto out;
 900
 901		root_isec->sid = rootcontext_sid;
 902		root_isec->initialized = LABEL_INITIALIZED;
 903	}
 904
 905	if (defcontext_sid) {
 906		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 907			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 908			rc = -EINVAL;
 909			printk(KERN_WARNING "SELinux: defcontext option is "
 910			       "invalid for this filesystem type\n");
 911			goto out;
 912		}
 913
 914		if (defcontext_sid != sbsec->def_sid) {
 915			rc = may_context_mount_inode_relabel(defcontext_sid,
 916							     sbsec, cred);
 917			if (rc)
 918				goto out;
 919		}
 920
 921		sbsec->def_sid = defcontext_sid;
 922	}
 923
 924out_set_opts:
 925	rc = sb_finish_set_opts(sb);
 926out:
 927	mutex_unlock(&sbsec->lock);
 928	return rc;
 929out_double_mount:
 930	rc = -EINVAL;
 931	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 932	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 933	goto out;
 934}
 935
 936static int selinux_cmp_sb_context(const struct super_block *oldsb,
 937				    const struct super_block *newsb)
 938{
 939	struct superblock_security_struct *old = oldsb->s_security;
 940	struct superblock_security_struct *new = newsb->s_security;
 941	char oldflags = old->flags & SE_MNTMASK;
 942	char newflags = new->flags & SE_MNTMASK;
 943
 944	if (oldflags != newflags)
 945		goto mismatch;
 946	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 947		goto mismatch;
 948	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 949		goto mismatch;
 950	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 951		goto mismatch;
 952	if (oldflags & ROOTCONTEXT_MNT) {
 953		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 954		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 955		if (oldroot->sid != newroot->sid)
 956			goto mismatch;
 957	}
 958	return 0;
 959mismatch:
 960	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 961			    "different security settings for (dev %s, "
 962			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 963	return -EBUSY;
 964}
 965
 966static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 967					struct super_block *newsb)
 968{
 969	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 970	struct superblock_security_struct *newsbsec = newsb->s_security;
 971
 972	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 973	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 974	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 975
 976	/*
 977	 * if the parent was able to be mounted it clearly had no special lsm
 978	 * mount options.  thus we can safely deal with this superblock later
 979	 */
 980	if (!ss_initialized)
 981		return 0;
 982
 983	/* how can we clone if the old one wasn't set up?? */
 984	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 985
 986	/* if fs is reusing a sb, make sure that the contexts match */
 987	if (newsbsec->flags & SE_SBINITIALIZED)
 988		return selinux_cmp_sb_context(oldsb, newsb);
 989
 990	mutex_lock(&newsbsec->lock);
 991
 992	newsbsec->flags = oldsbsec->flags;
 993
 994	newsbsec->sid = oldsbsec->sid;
 995	newsbsec->def_sid = oldsbsec->def_sid;
 996	newsbsec->behavior = oldsbsec->behavior;
 997
 998	if (set_context) {
 999		u32 sid = oldsbsec->mntpoint_sid;
1000
1001		if (!set_fscontext)
1002			newsbsec->sid = sid;
1003		if (!set_rootcontext) {
1004			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1005			newisec->sid = sid;
1006		}
1007		newsbsec->mntpoint_sid = sid;
1008	}
1009	if (set_rootcontext) {
1010		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1011		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1012
1013		newisec->sid = oldisec->sid;
1014	}
1015
1016	sb_finish_set_opts(newsb);
1017	mutex_unlock(&newsbsec->lock);
1018	return 0;
1019}
1020
1021static int selinux_parse_opts_str(char *options,
1022				  struct security_mnt_opts *opts)
1023{
1024	char *p;
1025	char *context = NULL, *defcontext = NULL;
1026	char *fscontext = NULL, *rootcontext = NULL;
1027	int rc, num_mnt_opts = 0;
1028
1029	opts->num_mnt_opts = 0;
1030
1031	/* Standard string-based options. */
1032	while ((p = strsep(&options, "|")) != NULL) {
1033		int token;
1034		substring_t args[MAX_OPT_ARGS];
1035
1036		if (!*p)
1037			continue;
1038
1039		token = match_token(p, tokens, args);
1040
1041		switch (token) {
1042		case Opt_context:
1043			if (context || defcontext) {
1044				rc = -EINVAL;
1045				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1046				goto out_err;
1047			}
1048			context = match_strdup(&args[0]);
1049			if (!context) {
1050				rc = -ENOMEM;
1051				goto out_err;
1052			}
1053			break;
1054
1055		case Opt_fscontext:
1056			if (fscontext) {
1057				rc = -EINVAL;
1058				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1059				goto out_err;
1060			}
1061			fscontext = match_strdup(&args[0]);
1062			if (!fscontext) {
1063				rc = -ENOMEM;
1064				goto out_err;
1065			}
1066			break;
1067
1068		case Opt_rootcontext:
1069			if (rootcontext) {
1070				rc = -EINVAL;
1071				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1072				goto out_err;
1073			}
1074			rootcontext = match_strdup(&args[0]);
1075			if (!rootcontext) {
1076				rc = -ENOMEM;
1077				goto out_err;
1078			}
1079			break;
1080
1081		case Opt_defcontext:
1082			if (context || defcontext) {
1083				rc = -EINVAL;
1084				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1085				goto out_err;
1086			}
1087			defcontext = match_strdup(&args[0]);
1088			if (!defcontext) {
1089				rc = -ENOMEM;
1090				goto out_err;
1091			}
1092			break;
1093		case Opt_labelsupport:
1094			break;
1095		default:
1096			rc = -EINVAL;
1097			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1098			goto out_err;
1099
1100		}
1101	}
1102
1103	rc = -ENOMEM;
1104	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1105	if (!opts->mnt_opts)
1106		goto out_err;
1107
1108	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1109				       GFP_KERNEL);
1110	if (!opts->mnt_opts_flags) {
1111		kfree(opts->mnt_opts);
1112		goto out_err;
1113	}
1114
1115	if (fscontext) {
1116		opts->mnt_opts[num_mnt_opts] = fscontext;
1117		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1118	}
1119	if (context) {
1120		opts->mnt_opts[num_mnt_opts] = context;
1121		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1122	}
1123	if (rootcontext) {
1124		opts->mnt_opts[num_mnt_opts] = rootcontext;
1125		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1126	}
1127	if (defcontext) {
1128		opts->mnt_opts[num_mnt_opts] = defcontext;
1129		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1130	}
1131
1132	opts->num_mnt_opts = num_mnt_opts;
1133	return 0;
1134
1135out_err:
1136	kfree(context);
1137	kfree(defcontext);
1138	kfree(fscontext);
1139	kfree(rootcontext);
1140	return rc;
1141}
1142/*
1143 * string mount options parsing and call set the sbsec
1144 */
1145static int superblock_doinit(struct super_block *sb, void *data)
1146{
1147	int rc = 0;
1148	char *options = data;
1149	struct security_mnt_opts opts;
1150
1151	security_init_mnt_opts(&opts);
1152
1153	if (!data)
1154		goto out;
1155
1156	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1157
1158	rc = selinux_parse_opts_str(options, &opts);
1159	if (rc)
1160		goto out_err;
1161
1162out:
1163	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1164
1165out_err:
1166	security_free_mnt_opts(&opts);
1167	return rc;
1168}
1169
1170static void selinux_write_opts(struct seq_file *m,
1171			       struct security_mnt_opts *opts)
1172{
1173	int i;
1174	char *prefix;
1175
1176	for (i = 0; i < opts->num_mnt_opts; i++) {
1177		char *has_comma;
1178
1179		if (opts->mnt_opts[i])
1180			has_comma = strchr(opts->mnt_opts[i], ',');
1181		else
1182			has_comma = NULL;
1183
1184		switch (opts->mnt_opts_flags[i]) {
1185		case CONTEXT_MNT:
1186			prefix = CONTEXT_STR;
1187			break;
1188		case FSCONTEXT_MNT:
1189			prefix = FSCONTEXT_STR;
1190			break;
1191		case ROOTCONTEXT_MNT:
1192			prefix = ROOTCONTEXT_STR;
1193			break;
1194		case DEFCONTEXT_MNT:
1195			prefix = DEFCONTEXT_STR;
1196			break;
1197		case SBLABEL_MNT:
1198			seq_putc(m, ',');
1199			seq_puts(m, LABELSUPP_STR);
1200			continue;
1201		default:
1202			BUG();
1203			return;
1204		};
1205		/* we need a comma before each option */
1206		seq_putc(m, ',');
1207		seq_puts(m, prefix);
1208		if (has_comma)
1209			seq_putc(m, '\"');
1210		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1211		if (has_comma)
1212			seq_putc(m, '\"');
1213	}
1214}
1215
1216static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1217{
1218	struct security_mnt_opts opts;
1219	int rc;
1220
1221	rc = selinux_get_mnt_opts(sb, &opts);
1222	if (rc) {
1223		/* before policy load we may get EINVAL, don't show anything */
1224		if (rc == -EINVAL)
1225			rc = 0;
1226		return rc;
1227	}
1228
1229	selinux_write_opts(m, &opts);
1230
1231	security_free_mnt_opts(&opts);
1232
1233	return rc;
1234}
1235
1236static inline u16 inode_mode_to_security_class(umode_t mode)
1237{
1238	switch (mode & S_IFMT) {
1239	case S_IFSOCK:
1240		return SECCLASS_SOCK_FILE;
1241	case S_IFLNK:
1242		return SECCLASS_LNK_FILE;
1243	case S_IFREG:
1244		return SECCLASS_FILE;
1245	case S_IFBLK:
1246		return SECCLASS_BLK_FILE;
1247	case S_IFDIR:
1248		return SECCLASS_DIR;
1249	case S_IFCHR:
1250		return SECCLASS_CHR_FILE;
1251	case S_IFIFO:
1252		return SECCLASS_FIFO_FILE;
1253
1254	}
1255
1256	return SECCLASS_FILE;
1257}
1258
1259static inline int default_protocol_stream(int protocol)
1260{
1261	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1262}
1263
1264static inline int default_protocol_dgram(int protocol)
1265{
1266	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1267}
1268
1269static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1270{
1271	switch (family) {
1272	case PF_UNIX:
1273		switch (type) {
1274		case SOCK_STREAM:
1275		case SOCK_SEQPACKET:
1276			return SECCLASS_UNIX_STREAM_SOCKET;
1277		case SOCK_DGRAM:
1278			return SECCLASS_UNIX_DGRAM_SOCKET;
1279		}
1280		break;
1281	case PF_INET:
1282	case PF_INET6:
1283		switch (type) {
1284		case SOCK_STREAM:
1285			if (default_protocol_stream(protocol))
1286				return SECCLASS_TCP_SOCKET;
1287			else
1288				return SECCLASS_RAWIP_SOCKET;
1289		case SOCK_DGRAM:
1290			if (default_protocol_dgram(protocol))
1291				return SECCLASS_UDP_SOCKET;
1292			else
1293				return SECCLASS_RAWIP_SOCKET;
1294		case SOCK_DCCP:
1295			return SECCLASS_DCCP_SOCKET;
1296		default:
1297			return SECCLASS_RAWIP_SOCKET;
1298		}
1299		break;
1300	case PF_NETLINK:
1301		switch (protocol) {
1302		case NETLINK_ROUTE:
1303			return SECCLASS_NETLINK_ROUTE_SOCKET;
1304		case NETLINK_SOCK_DIAG:
1305			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1306		case NETLINK_NFLOG:
1307			return SECCLASS_NETLINK_NFLOG_SOCKET;
1308		case NETLINK_XFRM:
1309			return SECCLASS_NETLINK_XFRM_SOCKET;
1310		case NETLINK_SELINUX:
1311			return SECCLASS_NETLINK_SELINUX_SOCKET;
1312		case NETLINK_ISCSI:
1313			return SECCLASS_NETLINK_ISCSI_SOCKET;
1314		case NETLINK_AUDIT:
1315			return SECCLASS_NETLINK_AUDIT_SOCKET;
1316		case NETLINK_FIB_LOOKUP:
1317			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1318		case NETLINK_CONNECTOR:
1319			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1320		case NETLINK_NETFILTER:
1321			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1322		case NETLINK_DNRTMSG:
1323			return SECCLASS_NETLINK_DNRT_SOCKET;
1324		case NETLINK_KOBJECT_UEVENT:
1325			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1326		case NETLINK_GENERIC:
1327			return SECCLASS_NETLINK_GENERIC_SOCKET;
1328		case NETLINK_SCSITRANSPORT:
1329			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1330		case NETLINK_RDMA:
1331			return SECCLASS_NETLINK_RDMA_SOCKET;
1332		case NETLINK_CRYPTO:
1333			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1334		default:
1335			return SECCLASS_NETLINK_SOCKET;
1336		}
1337	case PF_PACKET:
1338		return SECCLASS_PACKET_SOCKET;
1339	case PF_KEY:
1340		return SECCLASS_KEY_SOCKET;
1341	case PF_APPLETALK:
1342		return SECCLASS_APPLETALK_SOCKET;
1343	}
1344
1345	return SECCLASS_SOCKET;
1346}
1347
1348static int selinux_genfs_get_sid(struct dentry *dentry,
1349				 u16 tclass,
1350				 u16 flags,
1351				 u32 *sid)
1352{
1353	int rc;
1354	struct super_block *sb = dentry->d_sb;
1355	char *buffer, *path;
1356
1357	buffer = (char *)__get_free_page(GFP_KERNEL);
1358	if (!buffer)
1359		return -ENOMEM;
1360
1361	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1362	if (IS_ERR(path))
1363		rc = PTR_ERR(path);
1364	else {
1365		if (flags & SE_SBPROC) {
1366			/* each process gets a /proc/PID/ entry. Strip off the
1367			 * PID part to get a valid selinux labeling.
1368			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1369			while (path[1] >= '0' && path[1] <= '9') {
1370				path[1] = '/';
1371				path++;
1372			}
1373		}
1374		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1375	}
1376	free_page((unsigned long)buffer);
1377	return rc;
1378}
1379
1380/* The inode's security attributes must be initialized before first use. */
1381static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1382{
1383	struct superblock_security_struct *sbsec = NULL;
1384	struct inode_security_struct *isec = inode->i_security;
1385	u32 task_sid, sid = 0;
1386	u16 sclass;
1387	struct dentry *dentry;
1388#define INITCONTEXTLEN 255
1389	char *context = NULL;
1390	unsigned len = 0;
1391	int rc = 0;
1392
1393	if (isec->initialized == LABEL_INITIALIZED)
1394		return 0;
1395
1396	spin_lock(&isec->lock);
1397	if (isec->initialized == LABEL_INITIALIZED)
1398		goto out_unlock;
1399
1400	if (isec->sclass == SECCLASS_FILE)
1401		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1402
1403	sbsec = inode->i_sb->s_security;
1404	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1405		/* Defer initialization until selinux_complete_init,
1406		   after the initial policy is loaded and the security
1407		   server is ready to handle calls. */
1408		spin_lock(&sbsec->isec_lock);
1409		if (list_empty(&isec->list))
1410			list_add(&isec->list, &sbsec->isec_head);
1411		spin_unlock(&sbsec->isec_lock);
1412		goto out_unlock;
1413	}
1414
1415	sclass = isec->sclass;
1416	task_sid = isec->task_sid;
1417	sid = isec->sid;
1418	isec->initialized = LABEL_PENDING;
1419	spin_unlock(&isec->lock);
1420
1421	switch (sbsec->behavior) {
1422	case SECURITY_FS_USE_NATIVE:
1423		break;
1424	case SECURITY_FS_USE_XATTR:
1425		if (!(inode->i_opflags & IOP_XATTR)) {
1426			sid = sbsec->def_sid;
1427			break;
1428		}
 
1429		/* Need a dentry, since the xattr API requires one.
1430		   Life would be simpler if we could just pass the inode. */
1431		if (opt_dentry) {
1432			/* Called from d_instantiate or d_splice_alias. */
1433			dentry = dget(opt_dentry);
1434		} else {
1435			/* Called from selinux_complete_init, try to find a dentry. */
1436			dentry = d_find_alias(inode);
1437		}
1438		if (!dentry) {
1439			/*
1440			 * this is can be hit on boot when a file is accessed
1441			 * before the policy is loaded.  When we load policy we
1442			 * may find inodes that have no dentry on the
1443			 * sbsec->isec_head list.  No reason to complain as these
1444			 * will get fixed up the next time we go through
1445			 * inode_doinit with a dentry, before these inodes could
1446			 * be used again by userspace.
1447			 */
1448			goto out;
1449		}
1450
1451		len = INITCONTEXTLEN;
1452		context = kmalloc(len+1, GFP_NOFS);
1453		if (!context) {
1454			rc = -ENOMEM;
1455			dput(dentry);
1456			goto out;
1457		}
1458		context[len] = '\0';
1459		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
 
1460		if (rc == -ERANGE) {
1461			kfree(context);
1462
1463			/* Need a larger buffer.  Query for the right size. */
1464			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
 
1465			if (rc < 0) {
1466				dput(dentry);
1467				goto out;
1468			}
1469			len = rc;
1470			context = kmalloc(len+1, GFP_NOFS);
1471			if (!context) {
1472				rc = -ENOMEM;
1473				dput(dentry);
1474				goto out;
1475			}
1476			context[len] = '\0';
1477			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
 
 
1478		}
1479		dput(dentry);
1480		if (rc < 0) {
1481			if (rc != -ENODATA) {
1482				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1483				       "%d for dev=%s ino=%ld\n", __func__,
1484				       -rc, inode->i_sb->s_id, inode->i_ino);
1485				kfree(context);
1486				goto out;
1487			}
1488			/* Map ENODATA to the default file SID */
1489			sid = sbsec->def_sid;
1490			rc = 0;
1491		} else {
1492			rc = security_context_to_sid_default(context, rc, &sid,
1493							     sbsec->def_sid,
1494							     GFP_NOFS);
1495			if (rc) {
1496				char *dev = inode->i_sb->s_id;
1497				unsigned long ino = inode->i_ino;
1498
1499				if (rc == -EINVAL) {
1500					if (printk_ratelimit())
1501						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1502							"context=%s.  This indicates you may need to relabel the inode or the "
1503							"filesystem in question.\n", ino, dev, context);
1504				} else {
1505					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1506					       "returned %d for dev=%s ino=%ld\n",
1507					       __func__, context, -rc, dev, ino);
1508				}
1509				kfree(context);
1510				/* Leave with the unlabeled SID */
1511				rc = 0;
1512				break;
1513			}
1514		}
1515		kfree(context);
 
1516		break;
1517	case SECURITY_FS_USE_TASK:
1518		sid = task_sid;
1519		break;
1520	case SECURITY_FS_USE_TRANS:
1521		/* Default to the fs SID. */
1522		sid = sbsec->sid;
1523
1524		/* Try to obtain a transition SID. */
1525		rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid);
 
 
1526		if (rc)
1527			goto out;
 
1528		break;
1529	case SECURITY_FS_USE_MNTPOINT:
1530		sid = sbsec->mntpoint_sid;
1531		break;
1532	default:
1533		/* Default to the fs superblock SID. */
1534		sid = sbsec->sid;
1535
1536		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1537			/* We must have a dentry to determine the label on
1538			 * procfs inodes */
1539			if (opt_dentry)
1540				/* Called from d_instantiate or
1541				 * d_splice_alias. */
1542				dentry = dget(opt_dentry);
1543			else
1544				/* Called from selinux_complete_init, try to
1545				 * find a dentry. */
1546				dentry = d_find_alias(inode);
1547			/*
1548			 * This can be hit on boot when a file is accessed
1549			 * before the policy is loaded.  When we load policy we
1550			 * may find inodes that have no dentry on the
1551			 * sbsec->isec_head list.  No reason to complain as
1552			 * these will get fixed up the next time we go through
1553			 * inode_doinit() with a dentry, before these inodes
1554			 * could be used again by userspace.
1555			 */
1556			if (!dentry)
1557				goto out;
1558			rc = selinux_genfs_get_sid(dentry, sclass,
 
1559						   sbsec->flags, &sid);
1560			dput(dentry);
1561			if (rc)
1562				goto out;
 
1563		}
1564		break;
1565	}
1566
1567out:
1568	spin_lock(&isec->lock);
1569	if (isec->initialized == LABEL_PENDING) {
1570		if (!sid || rc) {
1571			isec->initialized = LABEL_INVALID;
1572			goto out_unlock;
1573		}
1574
1575		isec->initialized = LABEL_INITIALIZED;
1576		isec->sid = sid;
1577	}
1578
1579out_unlock:
1580	spin_unlock(&isec->lock);
 
 
 
1581	return rc;
1582}
1583
1584/* Convert a Linux signal to an access vector. */
1585static inline u32 signal_to_av(int sig)
1586{
1587	u32 perm = 0;
1588
1589	switch (sig) {
1590	case SIGCHLD:
1591		/* Commonly granted from child to parent. */
1592		perm = PROCESS__SIGCHLD;
1593		break;
1594	case SIGKILL:
1595		/* Cannot be caught or ignored */
1596		perm = PROCESS__SIGKILL;
1597		break;
1598	case SIGSTOP:
1599		/* Cannot be caught or ignored */
1600		perm = PROCESS__SIGSTOP;
1601		break;
1602	default:
1603		/* All other signals. */
1604		perm = PROCESS__SIGNAL;
1605		break;
1606	}
1607
1608	return perm;
1609}
1610
1611/*
1612 * Check permission between a pair of credentials
1613 * fork check, ptrace check, etc.
1614 */
1615static int cred_has_perm(const struct cred *actor,
1616			 const struct cred *target,
1617			 u32 perms)
1618{
1619	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1620
1621	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1622}
1623
1624/*
1625 * Check permission between a pair of tasks, e.g. signal checks,
1626 * fork check, ptrace check, etc.
1627 * tsk1 is the actor and tsk2 is the target
1628 * - this uses the default subjective creds of tsk1
1629 */
1630static int task_has_perm(const struct task_struct *tsk1,
1631			 const struct task_struct *tsk2,
1632			 u32 perms)
1633{
1634	const struct task_security_struct *__tsec1, *__tsec2;
1635	u32 sid1, sid2;
1636
1637	rcu_read_lock();
1638	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1639	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1640	rcu_read_unlock();
1641	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1642}
1643
1644/*
1645 * Check permission between current and another task, e.g. signal checks,
1646 * fork check, ptrace check, etc.
1647 * current is the actor and tsk2 is the target
1648 * - this uses current's subjective creds
1649 */
1650static int current_has_perm(const struct task_struct *tsk,
1651			    u32 perms)
1652{
1653	u32 sid, tsid;
1654
1655	sid = current_sid();
1656	tsid = task_sid(tsk);
1657	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1658}
1659
1660#if CAP_LAST_CAP > 63
1661#error Fix SELinux to handle capabilities > 63.
1662#endif
1663
1664/* Check whether a task is allowed to use a capability. */
1665static int cred_has_capability(const struct cred *cred,
1666			       int cap, int audit, bool initns)
1667{
1668	struct common_audit_data ad;
1669	struct av_decision avd;
1670	u16 sclass;
1671	u32 sid = cred_sid(cred);
1672	u32 av = CAP_TO_MASK(cap);
1673	int rc;
1674
1675	ad.type = LSM_AUDIT_DATA_CAP;
1676	ad.u.cap = cap;
1677
1678	switch (CAP_TO_INDEX(cap)) {
1679	case 0:
1680		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1681		break;
1682	case 1:
1683		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1684		break;
1685	default:
1686		printk(KERN_ERR
1687		       "SELinux:  out of range capability %d\n", cap);
1688		BUG();
1689		return -EINVAL;
1690	}
1691
1692	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1693	if (audit == SECURITY_CAP_AUDIT) {
1694		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1695		if (rc2)
1696			return rc2;
1697	}
1698	return rc;
1699}
1700
1701/* Check whether a task is allowed to use a system operation. */
1702static int task_has_system(struct task_struct *tsk,
1703			   u32 perms)
1704{
1705	u32 sid = task_sid(tsk);
1706
1707	return avc_has_perm(sid, SECINITSID_KERNEL,
1708			    SECCLASS_SYSTEM, perms, NULL);
1709}
1710
1711/* Check whether a task has a particular permission to an inode.
1712   The 'adp' parameter is optional and allows other audit
1713   data to be passed (e.g. the dentry). */
1714static int inode_has_perm(const struct cred *cred,
1715			  struct inode *inode,
1716			  u32 perms,
1717			  struct common_audit_data *adp)
1718{
1719	struct inode_security_struct *isec;
1720	u32 sid;
1721
1722	validate_creds(cred);
1723
1724	if (unlikely(IS_PRIVATE(inode)))
1725		return 0;
1726
1727	sid = cred_sid(cred);
1728	isec = inode->i_security;
1729
1730	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1731}
1732
1733/* Same as inode_has_perm, but pass explicit audit data containing
1734   the dentry to help the auditing code to more easily generate the
1735   pathname if needed. */
1736static inline int dentry_has_perm(const struct cred *cred,
1737				  struct dentry *dentry,
1738				  u32 av)
1739{
1740	struct inode *inode = d_backing_inode(dentry);
1741	struct common_audit_data ad;
1742
1743	ad.type = LSM_AUDIT_DATA_DENTRY;
1744	ad.u.dentry = dentry;
1745	__inode_security_revalidate(inode, dentry, true);
1746	return inode_has_perm(cred, inode, av, &ad);
1747}
1748
1749/* Same as inode_has_perm, but pass explicit audit data containing
1750   the path to help the auditing code to more easily generate the
1751   pathname if needed. */
1752static inline int path_has_perm(const struct cred *cred,
1753				const struct path *path,
1754				u32 av)
1755{
1756	struct inode *inode = d_backing_inode(path->dentry);
1757	struct common_audit_data ad;
1758
1759	ad.type = LSM_AUDIT_DATA_PATH;
1760	ad.u.path = *path;
1761	__inode_security_revalidate(inode, path->dentry, true);
1762	return inode_has_perm(cred, inode, av, &ad);
1763}
1764
1765/* Same as path_has_perm, but uses the inode from the file struct. */
1766static inline int file_path_has_perm(const struct cred *cred,
1767				     struct file *file,
1768				     u32 av)
1769{
1770	struct common_audit_data ad;
1771
1772	ad.type = LSM_AUDIT_DATA_FILE;
1773	ad.u.file = file;
1774	return inode_has_perm(cred, file_inode(file), av, &ad);
1775}
1776
1777/* Check whether a task can use an open file descriptor to
1778   access an inode in a given way.  Check access to the
1779   descriptor itself, and then use dentry_has_perm to
1780   check a particular permission to the file.
1781   Access to the descriptor is implicitly granted if it
1782   has the same SID as the process.  If av is zero, then
1783   access to the file is not checked, e.g. for cases
1784   where only the descriptor is affected like seek. */
1785static int file_has_perm(const struct cred *cred,
1786			 struct file *file,
1787			 u32 av)
1788{
1789	struct file_security_struct *fsec = file->f_security;
1790	struct inode *inode = file_inode(file);
1791	struct common_audit_data ad;
1792	u32 sid = cred_sid(cred);
1793	int rc;
1794
1795	ad.type = LSM_AUDIT_DATA_FILE;
1796	ad.u.file = file;
1797
1798	if (sid != fsec->sid) {
1799		rc = avc_has_perm(sid, fsec->sid,
1800				  SECCLASS_FD,
1801				  FD__USE,
1802				  &ad);
1803		if (rc)
1804			goto out;
1805	}
1806
1807	/* av is zero if only checking access to the descriptor. */
1808	rc = 0;
1809	if (av)
1810		rc = inode_has_perm(cred, inode, av, &ad);
1811
1812out:
1813	return rc;
1814}
1815
1816/*
1817 * Determine the label for an inode that might be unioned.
1818 */
1819static int
1820selinux_determine_inode_label(const struct task_security_struct *tsec,
1821				 struct inode *dir,
1822				 const struct qstr *name, u16 tclass,
1823				 u32 *_new_isid)
1824{
1825	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
 
 
1826
1827	if ((sbsec->flags & SE_SBINITIALIZED) &&
1828	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1829		*_new_isid = sbsec->mntpoint_sid;
1830	} else if ((sbsec->flags & SBLABEL_MNT) &&
1831		   tsec->create_sid) {
1832		*_new_isid = tsec->create_sid;
1833	} else {
1834		const struct inode_security_struct *dsec = inode_security(dir);
1835		return security_transition_sid(tsec->sid, dsec->sid, tclass,
1836					       name, _new_isid);
1837	}
1838
1839	return 0;
1840}
1841
1842/* Check whether a task can create a file. */
1843static int may_create(struct inode *dir,
1844		      struct dentry *dentry,
1845		      u16 tclass)
1846{
1847	const struct task_security_struct *tsec = current_security();
1848	struct inode_security_struct *dsec;
1849	struct superblock_security_struct *sbsec;
1850	u32 sid, newsid;
1851	struct common_audit_data ad;
1852	int rc;
1853
1854	dsec = inode_security(dir);
1855	sbsec = dir->i_sb->s_security;
1856
1857	sid = tsec->sid;
1858
1859	ad.type = LSM_AUDIT_DATA_DENTRY;
1860	ad.u.dentry = dentry;
1861
1862	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1863			  DIR__ADD_NAME | DIR__SEARCH,
1864			  &ad);
1865	if (rc)
1866		return rc;
1867
1868	rc = selinux_determine_inode_label(current_security(), dir,
1869					   &dentry->d_name, tclass, &newsid);
1870	if (rc)
1871		return rc;
1872
1873	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1874	if (rc)
1875		return rc;
1876
1877	return avc_has_perm(newsid, sbsec->sid,
1878			    SECCLASS_FILESYSTEM,
1879			    FILESYSTEM__ASSOCIATE, &ad);
1880}
1881
1882/* Check whether a task can create a key. */
1883static int may_create_key(u32 ksid,
1884			  struct task_struct *ctx)
1885{
1886	u32 sid = task_sid(ctx);
1887
1888	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1889}
1890
1891#define MAY_LINK	0
1892#define MAY_UNLINK	1
1893#define MAY_RMDIR	2
1894
1895/* Check whether a task can link, unlink, or rmdir a file/directory. */
1896static int may_link(struct inode *dir,
1897		    struct dentry *dentry,
1898		    int kind)
1899
1900{
1901	struct inode_security_struct *dsec, *isec;
1902	struct common_audit_data ad;
1903	u32 sid = current_sid();
1904	u32 av;
1905	int rc;
1906
1907	dsec = inode_security(dir);
1908	isec = backing_inode_security(dentry);
1909
1910	ad.type = LSM_AUDIT_DATA_DENTRY;
1911	ad.u.dentry = dentry;
1912
1913	av = DIR__SEARCH;
1914	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1915	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1916	if (rc)
1917		return rc;
1918
1919	switch (kind) {
1920	case MAY_LINK:
1921		av = FILE__LINK;
1922		break;
1923	case MAY_UNLINK:
1924		av = FILE__UNLINK;
1925		break;
1926	case MAY_RMDIR:
1927		av = DIR__RMDIR;
1928		break;
1929	default:
1930		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1931			__func__, kind);
1932		return 0;
1933	}
1934
1935	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1936	return rc;
1937}
1938
1939static inline int may_rename(struct inode *old_dir,
1940			     struct dentry *old_dentry,
1941			     struct inode *new_dir,
1942			     struct dentry *new_dentry)
1943{
1944	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1945	struct common_audit_data ad;
1946	u32 sid = current_sid();
1947	u32 av;
1948	int old_is_dir, new_is_dir;
1949	int rc;
1950
1951	old_dsec = inode_security(old_dir);
1952	old_isec = backing_inode_security(old_dentry);
1953	old_is_dir = d_is_dir(old_dentry);
1954	new_dsec = inode_security(new_dir);
1955
1956	ad.type = LSM_AUDIT_DATA_DENTRY;
1957
1958	ad.u.dentry = old_dentry;
1959	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1960			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1961	if (rc)
1962		return rc;
1963	rc = avc_has_perm(sid, old_isec->sid,
1964			  old_isec->sclass, FILE__RENAME, &ad);
1965	if (rc)
1966		return rc;
1967	if (old_is_dir && new_dir != old_dir) {
1968		rc = avc_has_perm(sid, old_isec->sid,
1969				  old_isec->sclass, DIR__REPARENT, &ad);
1970		if (rc)
1971			return rc;
1972	}
1973
1974	ad.u.dentry = new_dentry;
1975	av = DIR__ADD_NAME | DIR__SEARCH;
1976	if (d_is_positive(new_dentry))
1977		av |= DIR__REMOVE_NAME;
1978	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1979	if (rc)
1980		return rc;
1981	if (d_is_positive(new_dentry)) {
1982		new_isec = backing_inode_security(new_dentry);
1983		new_is_dir = d_is_dir(new_dentry);
1984		rc = avc_has_perm(sid, new_isec->sid,
1985				  new_isec->sclass,
1986				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1987		if (rc)
1988			return rc;
1989	}
1990
1991	return 0;
1992}
1993
1994/* Check whether a task can perform a filesystem operation. */
1995static int superblock_has_perm(const struct cred *cred,
1996			       struct super_block *sb,
1997			       u32 perms,
1998			       struct common_audit_data *ad)
1999{
2000	struct superblock_security_struct *sbsec;
2001	u32 sid = cred_sid(cred);
2002
2003	sbsec = sb->s_security;
2004	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2005}
2006
2007/* Convert a Linux mode and permission mask to an access vector. */
2008static inline u32 file_mask_to_av(int mode, int mask)
2009{
2010	u32 av = 0;
2011
2012	if (!S_ISDIR(mode)) {
2013		if (mask & MAY_EXEC)
2014			av |= FILE__EXECUTE;
2015		if (mask & MAY_READ)
2016			av |= FILE__READ;
2017
2018		if (mask & MAY_APPEND)
2019			av |= FILE__APPEND;
2020		else if (mask & MAY_WRITE)
2021			av |= FILE__WRITE;
2022
2023	} else {
2024		if (mask & MAY_EXEC)
2025			av |= DIR__SEARCH;
2026		if (mask & MAY_WRITE)
2027			av |= DIR__WRITE;
2028		if (mask & MAY_READ)
2029			av |= DIR__READ;
2030	}
2031
2032	return av;
2033}
2034
2035/* Convert a Linux file to an access vector. */
2036static inline u32 file_to_av(struct file *file)
2037{
2038	u32 av = 0;
2039
2040	if (file->f_mode & FMODE_READ)
2041		av |= FILE__READ;
2042	if (file->f_mode & FMODE_WRITE) {
2043		if (file->f_flags & O_APPEND)
2044			av |= FILE__APPEND;
2045		else
2046			av |= FILE__WRITE;
2047	}
2048	if (!av) {
2049		/*
2050		 * Special file opened with flags 3 for ioctl-only use.
2051		 */
2052		av = FILE__IOCTL;
2053	}
2054
2055	return av;
2056}
2057
2058/*
2059 * Convert a file to an access vector and include the correct open
2060 * open permission.
2061 */
2062static inline u32 open_file_to_av(struct file *file)
2063{
2064	u32 av = file_to_av(file);
2065
2066	if (selinux_policycap_openperm)
2067		av |= FILE__OPEN;
2068
2069	return av;
2070}
2071
2072/* Hook functions begin here. */
2073
2074static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2075{
2076	u32 mysid = current_sid();
2077	u32 mgrsid = task_sid(mgr);
2078
2079	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2080			    BINDER__SET_CONTEXT_MGR, NULL);
2081}
2082
2083static int selinux_binder_transaction(struct task_struct *from,
2084				      struct task_struct *to)
2085{
2086	u32 mysid = current_sid();
2087	u32 fromsid = task_sid(from);
2088	u32 tosid = task_sid(to);
2089	int rc;
2090
2091	if (mysid != fromsid) {
2092		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2093				  BINDER__IMPERSONATE, NULL);
2094		if (rc)
2095			return rc;
2096	}
2097
2098	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2099			    NULL);
2100}
2101
2102static int selinux_binder_transfer_binder(struct task_struct *from,
2103					  struct task_struct *to)
2104{
2105	u32 fromsid = task_sid(from);
2106	u32 tosid = task_sid(to);
2107
2108	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2109			    NULL);
2110}
2111
2112static int selinux_binder_transfer_file(struct task_struct *from,
2113					struct task_struct *to,
2114					struct file *file)
2115{
2116	u32 sid = task_sid(to);
2117	struct file_security_struct *fsec = file->f_security;
2118	struct dentry *dentry = file->f_path.dentry;
2119	struct inode_security_struct *isec;
2120	struct common_audit_data ad;
2121	int rc;
2122
2123	ad.type = LSM_AUDIT_DATA_PATH;
2124	ad.u.path = file->f_path;
2125
2126	if (sid != fsec->sid) {
2127		rc = avc_has_perm(sid, fsec->sid,
2128				  SECCLASS_FD,
2129				  FD__USE,
2130				  &ad);
2131		if (rc)
2132			return rc;
2133	}
2134
2135	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2136		return 0;
2137
2138	isec = backing_inode_security(dentry);
2139	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2140			    &ad);
2141}
2142
2143static int selinux_ptrace_access_check(struct task_struct *child,
2144				     unsigned int mode)
2145{
2146	if (mode & PTRACE_MODE_READ) {
2147		u32 sid = current_sid();
2148		u32 csid = task_sid(child);
2149		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150	}
2151
2152	return current_has_perm(child, PROCESS__PTRACE);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157	return task_has_perm(parent, current, PROCESS__PTRACE);
2158}
2159
2160static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2161			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2162{
2163	return current_has_perm(target, PROCESS__GETCAP);
2164}
2165
2166static int selinux_capset(struct cred *new, const struct cred *old,
2167			  const kernel_cap_t *effective,
2168			  const kernel_cap_t *inheritable,
2169			  const kernel_cap_t *permitted)
2170{
2171	return cred_has_perm(old, new, PROCESS__SETCAP);
2172}
2173
2174/*
2175 * (This comment used to live with the selinux_task_setuid hook,
2176 * which was removed).
2177 *
2178 * Since setuid only affects the current process, and since the SELinux
2179 * controls are not based on the Linux identity attributes, SELinux does not
2180 * need to control this operation.  However, SELinux does control the use of
2181 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2182 */
2183
2184static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2185			   int cap, int audit)
2186{
2187	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2188}
2189
2190static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2191{
2192	const struct cred *cred = current_cred();
2193	int rc = 0;
2194
2195	if (!sb)
2196		return 0;
2197
2198	switch (cmds) {
2199	case Q_SYNC:
2200	case Q_QUOTAON:
2201	case Q_QUOTAOFF:
2202	case Q_SETINFO:
2203	case Q_SETQUOTA:
2204		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2205		break;
2206	case Q_GETFMT:
2207	case Q_GETINFO:
2208	case Q_GETQUOTA:
2209		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2210		break;
2211	default:
2212		rc = 0;  /* let the kernel handle invalid cmds */
2213		break;
2214	}
2215	return rc;
2216}
2217
2218static int selinux_quota_on(struct dentry *dentry)
2219{
2220	const struct cred *cred = current_cred();
2221
2222	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2223}
2224
2225static int selinux_syslog(int type)
2226{
2227	int rc;
2228
2229	switch (type) {
2230	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2231	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2232		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2233		break;
2234	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2235	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2236	/* Set level of messages printed to console */
2237	case SYSLOG_ACTION_CONSOLE_LEVEL:
2238		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2239		break;
2240	case SYSLOG_ACTION_CLOSE:	/* Close log */
2241	case SYSLOG_ACTION_OPEN:	/* Open log */
2242	case SYSLOG_ACTION_READ:	/* Read from log */
2243	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2244	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2245	default:
2246		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2247		break;
2248	}
2249	return rc;
2250}
2251
2252/*
2253 * Check that a process has enough memory to allocate a new virtual
2254 * mapping. 0 means there is enough memory for the allocation to
2255 * succeed and -ENOMEM implies there is not.
2256 *
2257 * Do not audit the selinux permission check, as this is applied to all
2258 * processes that allocate mappings.
2259 */
2260static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2261{
2262	int rc, cap_sys_admin = 0;
2263
2264	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2265				 SECURITY_CAP_NOAUDIT, true);
2266	if (rc == 0)
2267		cap_sys_admin = 1;
2268
2269	return cap_sys_admin;
2270}
2271
2272/* binprm security operations */
2273
2274static u32 ptrace_parent_sid(struct task_struct *task)
2275{
2276	u32 sid = 0;
2277	struct task_struct *tracer;
2278
2279	rcu_read_lock();
2280	tracer = ptrace_parent(task);
2281	if (tracer)
2282		sid = task_sid(tracer);
2283	rcu_read_unlock();
2284
2285	return sid;
2286}
2287
2288static int check_nnp_nosuid(const struct linux_binprm *bprm,
2289			    const struct task_security_struct *old_tsec,
2290			    const struct task_security_struct *new_tsec)
2291{
2292	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2293	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2294	int rc;
2295
2296	if (!nnp && !nosuid)
2297		return 0; /* neither NNP nor nosuid */
2298
2299	if (new_tsec->sid == old_tsec->sid)
2300		return 0; /* No change in credentials */
2301
2302	/*
2303	 * The only transitions we permit under NNP or nosuid
2304	 * are transitions to bounded SIDs, i.e. SIDs that are
2305	 * guaranteed to only be allowed a subset of the permissions
2306	 * of the current SID.
2307	 */
2308	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2309	if (rc) {
2310		/*
2311		 * On failure, preserve the errno values for NNP vs nosuid.
2312		 * NNP:  Operation not permitted for caller.
2313		 * nosuid:  Permission denied to file.
2314		 */
2315		if (nnp)
2316			return -EPERM;
2317		else
2318			return -EACCES;
2319	}
2320	return 0;
2321}
2322
2323static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2324{
2325	const struct task_security_struct *old_tsec;
2326	struct task_security_struct *new_tsec;
2327	struct inode_security_struct *isec;
2328	struct common_audit_data ad;
2329	struct inode *inode = file_inode(bprm->file);
2330	int rc;
2331
2332	/* SELinux context only depends on initial program or script and not
2333	 * the script interpreter */
2334	if (bprm->cred_prepared)
2335		return 0;
2336
2337	old_tsec = current_security();
2338	new_tsec = bprm->cred->security;
2339	isec = inode_security(inode);
2340
2341	/* Default to the current task SID. */
2342	new_tsec->sid = old_tsec->sid;
2343	new_tsec->osid = old_tsec->sid;
2344
2345	/* Reset fs, key, and sock SIDs on execve. */
2346	new_tsec->create_sid = 0;
2347	new_tsec->keycreate_sid = 0;
2348	new_tsec->sockcreate_sid = 0;
2349
2350	if (old_tsec->exec_sid) {
2351		new_tsec->sid = old_tsec->exec_sid;
2352		/* Reset exec SID on execve. */
2353		new_tsec->exec_sid = 0;
2354
2355		/* Fail on NNP or nosuid if not an allowed transition. */
2356		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2357		if (rc)
2358			return rc;
2359	} else {
2360		/* Check for a default transition on this program. */
2361		rc = security_transition_sid(old_tsec->sid, isec->sid,
2362					     SECCLASS_PROCESS, NULL,
2363					     &new_tsec->sid);
2364		if (rc)
2365			return rc;
2366
2367		/*
2368		 * Fallback to old SID on NNP or nosuid if not an allowed
2369		 * transition.
2370		 */
2371		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2372		if (rc)
2373			new_tsec->sid = old_tsec->sid;
2374	}
2375
2376	ad.type = LSM_AUDIT_DATA_FILE;
2377	ad.u.file = bprm->file;
2378
2379	if (new_tsec->sid == old_tsec->sid) {
2380		rc = avc_has_perm(old_tsec->sid, isec->sid,
2381				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2382		if (rc)
2383			return rc;
2384	} else {
2385		/* Check permissions for the transition. */
2386		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2387				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2388		if (rc)
2389			return rc;
2390
2391		rc = avc_has_perm(new_tsec->sid, isec->sid,
2392				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2393		if (rc)
2394			return rc;
2395
2396		/* Check for shared state */
2397		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2398			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2399					  SECCLASS_PROCESS, PROCESS__SHARE,
2400					  NULL);
2401			if (rc)
2402				return -EPERM;
2403		}
2404
2405		/* Make sure that anyone attempting to ptrace over a task that
2406		 * changes its SID has the appropriate permit */
2407		if (bprm->unsafe &
2408		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2409			u32 ptsid = ptrace_parent_sid(current);
 
 
 
 
 
 
 
 
 
 
 
2410			if (ptsid != 0) {
2411				rc = avc_has_perm(ptsid, new_tsec->sid,
2412						  SECCLASS_PROCESS,
2413						  PROCESS__PTRACE, NULL);
2414				if (rc)
2415					return -EPERM;
2416			}
2417		}
2418
2419		/* Clear any possibly unsafe personality bits on exec: */
2420		bprm->per_clear |= PER_CLEAR_ON_SETID;
2421	}
2422
2423	return 0;
2424}
2425
2426static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2427{
2428	const struct task_security_struct *tsec = current_security();
2429	u32 sid, osid;
2430	int atsecure = 0;
2431
2432	sid = tsec->sid;
2433	osid = tsec->osid;
2434
2435	if (osid != sid) {
2436		/* Enable secure mode for SIDs transitions unless
2437		   the noatsecure permission is granted between
2438		   the two SIDs, i.e. ahp returns 0. */
2439		atsecure = avc_has_perm(osid, sid,
2440					SECCLASS_PROCESS,
2441					PROCESS__NOATSECURE, NULL);
2442	}
2443
2444	return !!atsecure;
2445}
2446
2447static int match_file(const void *p, struct file *file, unsigned fd)
2448{
2449	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2450}
2451
2452/* Derived from fs/exec.c:flush_old_files. */
2453static inline void flush_unauthorized_files(const struct cred *cred,
2454					    struct files_struct *files)
2455{
2456	struct file *file, *devnull = NULL;
2457	struct tty_struct *tty;
2458	int drop_tty = 0;
2459	unsigned n;
2460
2461	tty = get_current_tty();
2462	if (tty) {
2463		spin_lock(&tty->files_lock);
2464		if (!list_empty(&tty->tty_files)) {
2465			struct tty_file_private *file_priv;
2466
2467			/* Revalidate access to controlling tty.
2468			   Use file_path_has_perm on the tty path directly
2469			   rather than using file_has_perm, as this particular
2470			   open file may belong to another process and we are
2471			   only interested in the inode-based check here. */
2472			file_priv = list_first_entry(&tty->tty_files,
2473						struct tty_file_private, list);
2474			file = file_priv->file;
2475			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2476				drop_tty = 1;
2477		}
2478		spin_unlock(&tty->files_lock);
2479		tty_kref_put(tty);
2480	}
2481	/* Reset controlling tty. */
2482	if (drop_tty)
2483		no_tty();
2484
2485	/* Revalidate access to inherited open files. */
2486	n = iterate_fd(files, 0, match_file, cred);
2487	if (!n) /* none found? */
2488		return;
2489
2490	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2491	if (IS_ERR(devnull))
2492		devnull = NULL;
2493	/* replace all the matching ones with this */
2494	do {
2495		replace_fd(n - 1, devnull, 0);
2496	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2497	if (devnull)
2498		fput(devnull);
2499}
2500
2501/*
2502 * Prepare a process for imminent new credential changes due to exec
2503 */
2504static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2505{
2506	struct task_security_struct *new_tsec;
2507	struct rlimit *rlim, *initrlim;
2508	int rc, i;
2509
2510	new_tsec = bprm->cred->security;
2511	if (new_tsec->sid == new_tsec->osid)
2512		return;
2513
2514	/* Close files for which the new task SID is not authorized. */
2515	flush_unauthorized_files(bprm->cred, current->files);
2516
2517	/* Always clear parent death signal on SID transitions. */
2518	current->pdeath_signal = 0;
2519
2520	/* Check whether the new SID can inherit resource limits from the old
2521	 * SID.  If not, reset all soft limits to the lower of the current
2522	 * task's hard limit and the init task's soft limit.
2523	 *
2524	 * Note that the setting of hard limits (even to lower them) can be
2525	 * controlled by the setrlimit check.  The inclusion of the init task's
2526	 * soft limit into the computation is to avoid resetting soft limits
2527	 * higher than the default soft limit for cases where the default is
2528	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2529	 */
2530	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2531			  PROCESS__RLIMITINH, NULL);
2532	if (rc) {
2533		/* protect against do_prlimit() */
2534		task_lock(current);
2535		for (i = 0; i < RLIM_NLIMITS; i++) {
2536			rlim = current->signal->rlim + i;
2537			initrlim = init_task.signal->rlim + i;
2538			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2539		}
2540		task_unlock(current);
2541		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2542			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2543	}
2544}
2545
2546/*
2547 * Clean up the process immediately after the installation of new credentials
2548 * due to exec
2549 */
2550static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2551{
2552	const struct task_security_struct *tsec = current_security();
2553	struct itimerval itimer;
2554	u32 osid, sid;
2555	int rc, i;
2556
2557	osid = tsec->osid;
2558	sid = tsec->sid;
2559
2560	if (sid == osid)
2561		return;
2562
2563	/* Check whether the new SID can inherit signal state from the old SID.
2564	 * If not, clear itimers to avoid subsequent signal generation and
2565	 * flush and unblock signals.
2566	 *
2567	 * This must occur _after_ the task SID has been updated so that any
2568	 * kill done after the flush will be checked against the new SID.
2569	 */
2570	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571	if (rc) {
2572		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573			memset(&itimer, 0, sizeof itimer);
2574			for (i = 0; i < 3; i++)
2575				do_setitimer(i, &itimer, NULL);
2576		}
2577		spin_lock_irq(&current->sighand->siglock);
2578		if (!fatal_signal_pending(current)) {
2579			flush_sigqueue(&current->pending);
2580			flush_sigqueue(&current->signal->shared_pending);
2581			flush_signal_handlers(current, 1);
2582			sigemptyset(&current->blocked);
2583			recalc_sigpending();
2584		}
2585		spin_unlock_irq(&current->sighand->siglock);
2586	}
2587
2588	/* Wake up the parent if it is waiting so that it can recheck
2589	 * wait permission to the new task SID. */
2590	read_lock(&tasklist_lock);
2591	__wake_up_parent(current, current->real_parent);
2592	read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599	return superblock_alloc_security(sb);
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604	superblock_free_security(sb);
2605}
2606
2607static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2608{
2609	if (plen > olen)
2610		return 0;
2611
2612	return !memcmp(prefix, option, plen);
2613}
2614
2615static inline int selinux_option(char *option, int len)
2616{
2617	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2618		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2619		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2620		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2621		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2622}
2623
2624static inline void take_option(char **to, char *from, int *first, int len)
2625{
2626	if (!*first) {
2627		**to = ',';
2628		*to += 1;
2629	} else
2630		*first = 0;
2631	memcpy(*to, from, len);
2632	*to += len;
2633}
2634
2635static inline void take_selinux_option(char **to, char *from, int *first,
2636				       int len)
2637{
2638	int current_size = 0;
2639
2640	if (!*first) {
2641		**to = '|';
2642		*to += 1;
2643	} else
2644		*first = 0;
2645
2646	while (current_size < len) {
2647		if (*from != '"') {
2648			**to = *from;
2649			*to += 1;
2650		}
2651		from += 1;
2652		current_size += 1;
2653	}
2654}
2655
2656static int selinux_sb_copy_data(char *orig, char *copy)
2657{
2658	int fnosec, fsec, rc = 0;
2659	char *in_save, *in_curr, *in_end;
2660	char *sec_curr, *nosec_save, *nosec;
2661	int open_quote = 0;
2662
2663	in_curr = orig;
2664	sec_curr = copy;
2665
2666	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2667	if (!nosec) {
2668		rc = -ENOMEM;
2669		goto out;
2670	}
2671
2672	nosec_save = nosec;
2673	fnosec = fsec = 1;
2674	in_save = in_end = orig;
2675
2676	do {
2677		if (*in_end == '"')
2678			open_quote = !open_quote;
2679		if ((*in_end == ',' && open_quote == 0) ||
2680				*in_end == '\0') {
2681			int len = in_end - in_curr;
2682
2683			if (selinux_option(in_curr, len))
2684				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2685			else
2686				take_option(&nosec, in_curr, &fnosec, len);
2687
2688			in_curr = in_end + 1;
2689		}
2690	} while (*in_end++);
2691
2692	strcpy(in_save, nosec_save);
2693	free_page((unsigned long)nosec_save);
2694out:
2695	return rc;
2696}
2697
2698static int selinux_sb_remount(struct super_block *sb, void *data)
2699{
2700	int rc, i, *flags;
2701	struct security_mnt_opts opts;
2702	char *secdata, **mount_options;
2703	struct superblock_security_struct *sbsec = sb->s_security;
2704
2705	if (!(sbsec->flags & SE_SBINITIALIZED))
2706		return 0;
2707
2708	if (!data)
2709		return 0;
2710
2711	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2712		return 0;
2713
2714	security_init_mnt_opts(&opts);
2715	secdata = alloc_secdata();
2716	if (!secdata)
2717		return -ENOMEM;
2718	rc = selinux_sb_copy_data(data, secdata);
2719	if (rc)
2720		goto out_free_secdata;
2721
2722	rc = selinux_parse_opts_str(secdata, &opts);
2723	if (rc)
2724		goto out_free_secdata;
2725
2726	mount_options = opts.mnt_opts;
2727	flags = opts.mnt_opts_flags;
2728
2729	for (i = 0; i < opts.num_mnt_opts; i++) {
2730		u32 sid;
2731
2732		if (flags[i] == SBLABEL_MNT)
2733			continue;
2734		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2735		if (rc) {
2736			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2737			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2738			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2739			goto out_free_opts;
2740		}
2741		rc = -EINVAL;
2742		switch (flags[i]) {
2743		case FSCONTEXT_MNT:
2744			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2745				goto out_bad_option;
2746			break;
2747		case CONTEXT_MNT:
2748			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2749				goto out_bad_option;
2750			break;
2751		case ROOTCONTEXT_MNT: {
2752			struct inode_security_struct *root_isec;
2753			root_isec = backing_inode_security(sb->s_root);
2754
2755			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2756				goto out_bad_option;
2757			break;
2758		}
2759		case DEFCONTEXT_MNT:
2760			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2761				goto out_bad_option;
2762			break;
2763		default:
2764			goto out_free_opts;
2765		}
2766	}
2767
2768	rc = 0;
2769out_free_opts:
2770	security_free_mnt_opts(&opts);
2771out_free_secdata:
2772	free_secdata(secdata);
2773	return rc;
2774out_bad_option:
2775	printk(KERN_WARNING "SELinux: unable to change security options "
2776	       "during remount (dev %s, type=%s)\n", sb->s_id,
2777	       sb->s_type->name);
2778	goto out_free_opts;
2779}
2780
2781static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2782{
2783	const struct cred *cred = current_cred();
2784	struct common_audit_data ad;
2785	int rc;
2786
2787	rc = superblock_doinit(sb, data);
2788	if (rc)
2789		return rc;
2790
2791	/* Allow all mounts performed by the kernel */
2792	if (flags & MS_KERNMOUNT)
2793		return 0;
2794
2795	ad.type = LSM_AUDIT_DATA_DENTRY;
2796	ad.u.dentry = sb->s_root;
2797	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2798}
2799
2800static int selinux_sb_statfs(struct dentry *dentry)
2801{
2802	const struct cred *cred = current_cred();
2803	struct common_audit_data ad;
2804
2805	ad.type = LSM_AUDIT_DATA_DENTRY;
2806	ad.u.dentry = dentry->d_sb->s_root;
2807	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2808}
2809
2810static int selinux_mount(const char *dev_name,
2811			 const struct path *path,
2812			 const char *type,
2813			 unsigned long flags,
2814			 void *data)
2815{
2816	const struct cred *cred = current_cred();
2817
2818	if (flags & MS_REMOUNT)
2819		return superblock_has_perm(cred, path->dentry->d_sb,
2820					   FILESYSTEM__REMOUNT, NULL);
2821	else
2822		return path_has_perm(cred, path, FILE__MOUNTON);
2823}
2824
2825static int selinux_umount(struct vfsmount *mnt, int flags)
2826{
2827	const struct cred *cred = current_cred();
2828
2829	return superblock_has_perm(cred, mnt->mnt_sb,
2830				   FILESYSTEM__UNMOUNT, NULL);
2831}
2832
2833/* inode security operations */
2834
2835static int selinux_inode_alloc_security(struct inode *inode)
2836{
2837	return inode_alloc_security(inode);
2838}
2839
2840static void selinux_inode_free_security(struct inode *inode)
2841{
2842	inode_free_security(inode);
2843}
2844
2845static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2846					const struct qstr *name, void **ctx,
2847					u32 *ctxlen)
2848{
2849	u32 newsid;
2850	int rc;
2851
2852	rc = selinux_determine_inode_label(current_security(),
2853					   d_inode(dentry->d_parent), name,
2854					   inode_mode_to_security_class(mode),
2855					   &newsid);
2856	if (rc)
2857		return rc;
2858
2859	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2860}
2861
2862static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2863					  struct qstr *name,
2864					  const struct cred *old,
2865					  struct cred *new)
2866{
2867	u32 newsid;
2868	int rc;
2869	struct task_security_struct *tsec;
2870
2871	rc = selinux_determine_inode_label(old->security,
2872					   d_inode(dentry->d_parent), name,
2873					   inode_mode_to_security_class(mode),
2874					   &newsid);
2875	if (rc)
2876		return rc;
2877
2878	tsec = new->security;
2879	tsec->create_sid = newsid;
2880	return 0;
2881}
2882
2883static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2884				       const struct qstr *qstr,
2885				       const char **name,
2886				       void **value, size_t *len)
2887{
2888	const struct task_security_struct *tsec = current_security();
2889	struct superblock_security_struct *sbsec;
2890	u32 sid, newsid, clen;
2891	int rc;
2892	char *context;
2893
2894	sbsec = dir->i_sb->s_security;
2895
2896	sid = tsec->sid;
2897	newsid = tsec->create_sid;
2898
2899	rc = selinux_determine_inode_label(current_security(),
2900		dir, qstr,
2901		inode_mode_to_security_class(inode->i_mode),
2902		&newsid);
2903	if (rc)
2904		return rc;
2905
2906	/* Possibly defer initialization to selinux_complete_init. */
2907	if (sbsec->flags & SE_SBINITIALIZED) {
2908		struct inode_security_struct *isec = inode->i_security;
2909		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2910		isec->sid = newsid;
2911		isec->initialized = LABEL_INITIALIZED;
2912	}
2913
2914	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2915		return -EOPNOTSUPP;
2916
2917	if (name)
2918		*name = XATTR_SELINUX_SUFFIX;
2919
2920	if (value && len) {
2921		rc = security_sid_to_context_force(newsid, &context, &clen);
2922		if (rc)
2923			return rc;
2924		*value = context;
2925		*len = clen;
2926	}
2927
2928	return 0;
2929}
2930
2931static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2932{
2933	return may_create(dir, dentry, SECCLASS_FILE);
2934}
2935
2936static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2937{
2938	return may_link(dir, old_dentry, MAY_LINK);
2939}
2940
2941static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2942{
2943	return may_link(dir, dentry, MAY_UNLINK);
2944}
2945
2946static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2947{
2948	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2949}
2950
2951static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2952{
2953	return may_create(dir, dentry, SECCLASS_DIR);
2954}
2955
2956static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2957{
2958	return may_link(dir, dentry, MAY_RMDIR);
2959}
2960
2961static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2962{
2963	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2964}
2965
2966static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2967				struct inode *new_inode, struct dentry *new_dentry)
2968{
2969	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2970}
2971
2972static int selinux_inode_readlink(struct dentry *dentry)
2973{
2974	const struct cred *cred = current_cred();
2975
2976	return dentry_has_perm(cred, dentry, FILE__READ);
2977}
2978
2979static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2980				     bool rcu)
2981{
2982	const struct cred *cred = current_cred();
2983	struct common_audit_data ad;
2984	struct inode_security_struct *isec;
2985	u32 sid;
2986
2987	validate_creds(cred);
2988
2989	ad.type = LSM_AUDIT_DATA_DENTRY;
2990	ad.u.dentry = dentry;
2991	sid = cred_sid(cred);
2992	isec = inode_security_rcu(inode, rcu);
2993	if (IS_ERR(isec))
2994		return PTR_ERR(isec);
2995
2996	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2997				  rcu ? MAY_NOT_BLOCK : 0);
2998}
2999
3000static noinline int audit_inode_permission(struct inode *inode,
3001					   u32 perms, u32 audited, u32 denied,
3002					   int result,
3003					   unsigned flags)
3004{
3005	struct common_audit_data ad;
3006	struct inode_security_struct *isec = inode->i_security;
3007	int rc;
3008
3009	ad.type = LSM_AUDIT_DATA_INODE;
3010	ad.u.inode = inode;
3011
3012	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3013			    audited, denied, result, &ad, flags);
3014	if (rc)
3015		return rc;
3016	return 0;
3017}
3018
3019static int selinux_inode_permission(struct inode *inode, int mask)
3020{
3021	const struct cred *cred = current_cred();
3022	u32 perms;
3023	bool from_access;
3024	unsigned flags = mask & MAY_NOT_BLOCK;
3025	struct inode_security_struct *isec;
3026	u32 sid;
3027	struct av_decision avd;
3028	int rc, rc2;
3029	u32 audited, denied;
3030
3031	from_access = mask & MAY_ACCESS;
3032	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3033
3034	/* No permission to check.  Existence test. */
3035	if (!mask)
3036		return 0;
3037
3038	validate_creds(cred);
3039
3040	if (unlikely(IS_PRIVATE(inode)))
3041		return 0;
3042
3043	perms = file_mask_to_av(inode->i_mode, mask);
3044
3045	sid = cred_sid(cred);
3046	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3047	if (IS_ERR(isec))
3048		return PTR_ERR(isec);
3049
3050	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
3051	audited = avc_audit_required(perms, &avd, rc,
3052				     from_access ? FILE__AUDIT_ACCESS : 0,
3053				     &denied);
3054	if (likely(!audited))
3055		return rc;
3056
3057	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3058	if (rc2)
3059		return rc2;
3060	return rc;
3061}
3062
3063static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3064{
3065	const struct cred *cred = current_cred();
3066	unsigned int ia_valid = iattr->ia_valid;
3067	__u32 av = FILE__WRITE;
3068
3069	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3070	if (ia_valid & ATTR_FORCE) {
3071		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3072			      ATTR_FORCE);
3073		if (!ia_valid)
3074			return 0;
3075	}
3076
3077	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3078			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3079		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3080
3081	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3082			&& !(ia_valid & ATTR_FILE))
3083		av |= FILE__OPEN;
3084
3085	return dentry_has_perm(cred, dentry, av);
3086}
3087
3088static int selinux_inode_getattr(const struct path *path)
3089{
3090	return path_has_perm(current_cred(), path, FILE__GETATTR);
3091}
3092
3093static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3094{
3095	const struct cred *cred = current_cred();
3096
3097	if (!strncmp(name, XATTR_SECURITY_PREFIX,
3098		     sizeof XATTR_SECURITY_PREFIX - 1)) {
3099		if (!strcmp(name, XATTR_NAME_CAPS)) {
3100			if (!capable(CAP_SETFCAP))
3101				return -EPERM;
3102		} else if (!capable(CAP_SYS_ADMIN)) {
3103			/* A different attribute in the security namespace.
3104			   Restrict to administrator. */
3105			return -EPERM;
3106		}
3107	}
3108
3109	/* Not an attribute we recognize, so just check the
3110	   ordinary setattr permission. */
3111	return dentry_has_perm(cred, dentry, FILE__SETATTR);
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115				  const void *value, size_t size, int flags)
3116{
3117	struct inode *inode = d_backing_inode(dentry);
3118	struct inode_security_struct *isec;
3119	struct superblock_security_struct *sbsec;
3120	struct common_audit_data ad;
3121	u32 newsid, sid = current_sid();
3122	int rc = 0;
3123
3124	if (strcmp(name, XATTR_NAME_SELINUX))
3125		return selinux_inode_setotherxattr(dentry, name);
3126
3127	sbsec = inode->i_sb->s_security;
3128	if (!(sbsec->flags & SBLABEL_MNT))
3129		return -EOPNOTSUPP;
3130
3131	if (!inode_owner_or_capable(inode))
3132		return -EPERM;
3133
3134	ad.type = LSM_AUDIT_DATA_DENTRY;
3135	ad.u.dentry = dentry;
3136
3137	isec = backing_inode_security(dentry);
3138	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3139			  FILE__RELABELFROM, &ad);
3140	if (rc)
3141		return rc;
3142
3143	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3144	if (rc == -EINVAL) {
3145		if (!capable(CAP_MAC_ADMIN)) {
3146			struct audit_buffer *ab;
3147			size_t audit_size;
3148			const char *str;
3149
3150			/* We strip a nul only if it is at the end, otherwise the
3151			 * context contains a nul and we should audit that */
3152			if (value) {
3153				str = value;
3154				if (str[size - 1] == '\0')
3155					audit_size = size - 1;
3156				else
3157					audit_size = size;
3158			} else {
3159				str = "";
3160				audit_size = 0;
3161			}
3162			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3163			audit_log_format(ab, "op=setxattr invalid_context=");
3164			audit_log_n_untrustedstring(ab, value, audit_size);
3165			audit_log_end(ab);
3166
3167			return rc;
3168		}
3169		rc = security_context_to_sid_force(value, size, &newsid);
3170	}
3171	if (rc)
3172		return rc;
3173
3174	rc = avc_has_perm(sid, newsid, isec->sclass,
3175			  FILE__RELABELTO, &ad);
3176	if (rc)
3177		return rc;
3178
3179	rc = security_validate_transition(isec->sid, newsid, sid,
3180					  isec->sclass);
3181	if (rc)
3182		return rc;
3183
3184	return avc_has_perm(newsid,
3185			    sbsec->sid,
3186			    SECCLASS_FILESYSTEM,
3187			    FILESYSTEM__ASSOCIATE,
3188			    &ad);
3189}
3190
3191static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3192					const void *value, size_t size,
3193					int flags)
3194{
3195	struct inode *inode = d_backing_inode(dentry);
3196	struct inode_security_struct *isec;
3197	u32 newsid;
3198	int rc;
3199
3200	if (strcmp(name, XATTR_NAME_SELINUX)) {
3201		/* Not an attribute we recognize, so nothing to do. */
3202		return;
3203	}
3204
3205	rc = security_context_to_sid_force(value, size, &newsid);
3206	if (rc) {
3207		printk(KERN_ERR "SELinux:  unable to map context to SID"
3208		       "for (%s, %lu), rc=%d\n",
3209		       inode->i_sb->s_id, inode->i_ino, -rc);
3210		return;
3211	}
3212
3213	isec = backing_inode_security(dentry);
3214	spin_lock(&isec->lock);
3215	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3216	isec->sid = newsid;
3217	isec->initialized = LABEL_INITIALIZED;
3218	spin_unlock(&isec->lock);
3219
3220	return;
3221}
3222
3223static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3224{
3225	const struct cred *cred = current_cred();
3226
3227	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3228}
3229
3230static int selinux_inode_listxattr(struct dentry *dentry)
3231{
3232	const struct cred *cred = current_cred();
3233
3234	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3235}
3236
3237static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3238{
3239	if (strcmp(name, XATTR_NAME_SELINUX))
3240		return selinux_inode_setotherxattr(dentry, name);
3241
3242	/* No one is allowed to remove a SELinux security label.
3243	   You can change the label, but all data must be labeled. */
3244	return -EACCES;
3245}
3246
3247/*
3248 * Copy the inode security context value to the user.
3249 *
3250 * Permission check is handled by selinux_inode_getxattr hook.
3251 */
3252static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3253{
3254	u32 size;
3255	int error;
3256	char *context = NULL;
3257	struct inode_security_struct *isec;
3258
3259	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3260		return -EOPNOTSUPP;
3261
3262	/*
3263	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3264	 * value even if it is not defined by current policy; otherwise,
3265	 * use the in-core value under current policy.
3266	 * Use the non-auditing forms of the permission checks since
3267	 * getxattr may be called by unprivileged processes commonly
3268	 * and lack of permission just means that we fall back to the
3269	 * in-core context value, not a denial.
3270	 */
3271	error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3272			    SECURITY_CAP_NOAUDIT);
3273	if (!error)
3274		error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3275					    SECURITY_CAP_NOAUDIT, true);
3276	isec = inode_security(inode);
3277	if (!error)
3278		error = security_sid_to_context_force(isec->sid, &context,
3279						      &size);
3280	else
3281		error = security_sid_to_context(isec->sid, &context, &size);
3282	if (error)
3283		return error;
3284	error = size;
3285	if (alloc) {
3286		*buffer = context;
3287		goto out_nofree;
3288	}
3289	kfree(context);
3290out_nofree:
3291	return error;
3292}
3293
3294static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3295				     const void *value, size_t size, int flags)
3296{
3297	struct inode_security_struct *isec = inode_security_novalidate(inode);
3298	u32 newsid;
3299	int rc;
3300
3301	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3302		return -EOPNOTSUPP;
3303
3304	if (!value || !size)
3305		return -EACCES;
3306
3307	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3308	if (rc)
3309		return rc;
3310
3311	spin_lock(&isec->lock);
3312	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3313	isec->sid = newsid;
3314	isec->initialized = LABEL_INITIALIZED;
3315	spin_unlock(&isec->lock);
3316	return 0;
3317}
3318
3319static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3320{
3321	const int len = sizeof(XATTR_NAME_SELINUX);
3322	if (buffer && len <= buffer_size)
3323		memcpy(buffer, XATTR_NAME_SELINUX, len);
3324	return len;
3325}
3326
3327static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3328{
3329	struct inode_security_struct *isec = inode_security_novalidate(inode);
3330	*secid = isec->sid;
3331}
3332
3333static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3334{
3335	u32 sid;
3336	struct task_security_struct *tsec;
3337	struct cred *new_creds = *new;
3338
3339	if (new_creds == NULL) {
3340		new_creds = prepare_creds();
3341		if (!new_creds)
3342			return -ENOMEM;
3343	}
3344
3345	tsec = new_creds->security;
3346	/* Get label from overlay inode and set it in create_sid */
3347	selinux_inode_getsecid(d_inode(src), &sid);
3348	tsec->create_sid = sid;
3349	*new = new_creds;
3350	return 0;
3351}
3352
3353static int selinux_inode_copy_up_xattr(const char *name)
3354{
3355	/* The copy_up hook above sets the initial context on an inode, but we
3356	 * don't then want to overwrite it by blindly copying all the lower
3357	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3358	 */
3359	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3360		return 1; /* Discard */
3361	/*
3362	 * Any other attribute apart from SELINUX is not claimed, supported
3363	 * by selinux.
3364	 */
3365	return -EOPNOTSUPP;
3366}
3367
3368/* file security operations */
3369
3370static int selinux_revalidate_file_permission(struct file *file, int mask)
3371{
3372	const struct cred *cred = current_cred();
3373	struct inode *inode = file_inode(file);
3374
3375	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3376	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3377		mask |= MAY_APPEND;
3378
3379	return file_has_perm(cred, file,
3380			     file_mask_to_av(inode->i_mode, mask));
3381}
3382
3383static int selinux_file_permission(struct file *file, int mask)
3384{
3385	struct inode *inode = file_inode(file);
3386	struct file_security_struct *fsec = file->f_security;
3387	struct inode_security_struct *isec;
3388	u32 sid = current_sid();
3389
3390	if (!mask)
3391		/* No permission to check.  Existence test. */
3392		return 0;
3393
3394	isec = inode_security(inode);
3395	if (sid == fsec->sid && fsec->isid == isec->sid &&
3396	    fsec->pseqno == avc_policy_seqno())
3397		/* No change since file_open check. */
3398		return 0;
3399
3400	return selinux_revalidate_file_permission(file, mask);
3401}
3402
3403static int selinux_file_alloc_security(struct file *file)
3404{
3405	return file_alloc_security(file);
3406}
3407
3408static void selinux_file_free_security(struct file *file)
3409{
3410	file_free_security(file);
3411}
3412
3413/*
3414 * Check whether a task has the ioctl permission and cmd
3415 * operation to an inode.
3416 */
3417static int ioctl_has_perm(const struct cred *cred, struct file *file,
3418		u32 requested, u16 cmd)
3419{
3420	struct common_audit_data ad;
3421	struct file_security_struct *fsec = file->f_security;
3422	struct inode *inode = file_inode(file);
3423	struct inode_security_struct *isec;
3424	struct lsm_ioctlop_audit ioctl;
3425	u32 ssid = cred_sid(cred);
3426	int rc;
3427	u8 driver = cmd >> 8;
3428	u8 xperm = cmd & 0xff;
3429
3430	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3431	ad.u.op = &ioctl;
3432	ad.u.op->cmd = cmd;
3433	ad.u.op->path = file->f_path;
3434
3435	if (ssid != fsec->sid) {
3436		rc = avc_has_perm(ssid, fsec->sid,
3437				SECCLASS_FD,
3438				FD__USE,
3439				&ad);
3440		if (rc)
3441			goto out;
3442	}
3443
3444	if (unlikely(IS_PRIVATE(inode)))
3445		return 0;
3446
3447	isec = inode_security(inode);
3448	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3449			requested, driver, xperm, &ad);
3450out:
3451	return rc;
3452}
3453
3454static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3455			      unsigned long arg)
3456{
3457	const struct cred *cred = current_cred();
3458	int error = 0;
3459
3460	switch (cmd) {
3461	case FIONREAD:
3462	/* fall through */
3463	case FIBMAP:
3464	/* fall through */
3465	case FIGETBSZ:
3466	/* fall through */
3467	case FS_IOC_GETFLAGS:
3468	/* fall through */
3469	case FS_IOC_GETVERSION:
3470		error = file_has_perm(cred, file, FILE__GETATTR);
3471		break;
3472
3473	case FS_IOC_SETFLAGS:
3474	/* fall through */
3475	case FS_IOC_SETVERSION:
3476		error = file_has_perm(cred, file, FILE__SETATTR);
3477		break;
3478
3479	/* sys_ioctl() checks */
3480	case FIONBIO:
3481	/* fall through */
3482	case FIOASYNC:
3483		error = file_has_perm(cred, file, 0);
3484		break;
3485
3486	case KDSKBENT:
3487	case KDSKBSENT:
3488		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3489					    SECURITY_CAP_AUDIT, true);
3490		break;
3491
3492	/* default case assumes that the command will go
3493	 * to the file's ioctl() function.
3494	 */
3495	default:
3496		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3497	}
3498	return error;
3499}
3500
3501static int default_noexec;
3502
3503static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3504{
3505	const struct cred *cred = current_cred();
3506	int rc = 0;
3507
3508	if (default_noexec &&
3509	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3510				   (!shared && (prot & PROT_WRITE)))) {
3511		/*
3512		 * We are making executable an anonymous mapping or a
3513		 * private file mapping that will also be writable.
3514		 * This has an additional check.
3515		 */
3516		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3517		if (rc)
3518			goto error;
3519	}
3520
3521	if (file) {
3522		/* read access is always possible with a mapping */
3523		u32 av = FILE__READ;
3524
3525		/* write access only matters if the mapping is shared */
3526		if (shared && (prot & PROT_WRITE))
3527			av |= FILE__WRITE;
3528
3529		if (prot & PROT_EXEC)
3530			av |= FILE__EXECUTE;
3531
3532		return file_has_perm(cred, file, av);
3533	}
3534
3535error:
3536	return rc;
3537}
3538
3539static int selinux_mmap_addr(unsigned long addr)
3540{
3541	int rc = 0;
3542
3543	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3544		u32 sid = current_sid();
3545		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3546				  MEMPROTECT__MMAP_ZERO, NULL);
3547	}
3548
3549	return rc;
3550}
3551
3552static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3553			     unsigned long prot, unsigned long flags)
3554{
3555	if (selinux_checkreqprot)
3556		prot = reqprot;
3557
3558	return file_map_prot_check(file, prot,
3559				   (flags & MAP_TYPE) == MAP_SHARED);
3560}
3561
3562static int selinux_file_mprotect(struct vm_area_struct *vma,
3563				 unsigned long reqprot,
3564				 unsigned long prot)
3565{
3566	const struct cred *cred = current_cred();
3567
3568	if (selinux_checkreqprot)
3569		prot = reqprot;
3570
3571	if (default_noexec &&
3572	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3573		int rc = 0;
3574		if (vma->vm_start >= vma->vm_mm->start_brk &&
3575		    vma->vm_end <= vma->vm_mm->brk) {
3576			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3577		} else if (!vma->vm_file &&
3578			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3579			     vma->vm_end >= vma->vm_mm->start_stack) ||
3580			    vma_is_stack_for_current(vma))) {
3581			rc = current_has_perm(current, PROCESS__EXECSTACK);
3582		} else if (vma->vm_file && vma->anon_vma) {
3583			/*
3584			 * We are making executable a file mapping that has
3585			 * had some COW done. Since pages might have been
3586			 * written, check ability to execute the possibly
3587			 * modified content.  This typically should only
3588			 * occur for text relocations.
3589			 */
3590			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3591		}
3592		if (rc)
3593			return rc;
3594	}
3595
3596	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3597}
3598
3599static int selinux_file_lock(struct file *file, unsigned int cmd)
3600{
3601	const struct cred *cred = current_cred();
3602
3603	return file_has_perm(cred, file, FILE__LOCK);
3604}
3605
3606static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3607			      unsigned long arg)
3608{
3609	const struct cred *cred = current_cred();
3610	int err = 0;
3611
3612	switch (cmd) {
3613	case F_SETFL:
3614		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3615			err = file_has_perm(cred, file, FILE__WRITE);
3616			break;
3617		}
3618		/* fall through */
3619	case F_SETOWN:
3620	case F_SETSIG:
3621	case F_GETFL:
3622	case F_GETOWN:
3623	case F_GETSIG:
3624	case F_GETOWNER_UIDS:
3625		/* Just check FD__USE permission */
3626		err = file_has_perm(cred, file, 0);
3627		break;
3628	case F_GETLK:
3629	case F_SETLK:
3630	case F_SETLKW:
3631	case F_OFD_GETLK:
3632	case F_OFD_SETLK:
3633	case F_OFD_SETLKW:
3634#if BITS_PER_LONG == 32
3635	case F_GETLK64:
3636	case F_SETLK64:
3637	case F_SETLKW64:
3638#endif
3639		err = file_has_perm(cred, file, FILE__LOCK);
3640		break;
3641	}
3642
3643	return err;
3644}
3645
3646static void selinux_file_set_fowner(struct file *file)
3647{
3648	struct file_security_struct *fsec;
3649
3650	fsec = file->f_security;
3651	fsec->fown_sid = current_sid();
3652}
3653
3654static int selinux_file_send_sigiotask(struct task_struct *tsk,
3655				       struct fown_struct *fown, int signum)
3656{
3657	struct file *file;
3658	u32 sid = task_sid(tsk);
3659	u32 perm;
3660	struct file_security_struct *fsec;
3661
3662	/* struct fown_struct is never outside the context of a struct file */
3663	file = container_of(fown, struct file, f_owner);
3664
3665	fsec = file->f_security;
3666
3667	if (!signum)
3668		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3669	else
3670		perm = signal_to_av(signum);
3671
3672	return avc_has_perm(fsec->fown_sid, sid,
3673			    SECCLASS_PROCESS, perm, NULL);
3674}
3675
3676static int selinux_file_receive(struct file *file)
3677{
3678	const struct cred *cred = current_cred();
3679
3680	return file_has_perm(cred, file, file_to_av(file));
3681}
3682
3683static int selinux_file_open(struct file *file, const struct cred *cred)
3684{
3685	struct file_security_struct *fsec;
3686	struct inode_security_struct *isec;
3687
3688	fsec = file->f_security;
3689	isec = inode_security(file_inode(file));
3690	/*
3691	 * Save inode label and policy sequence number
3692	 * at open-time so that selinux_file_permission
3693	 * can determine whether revalidation is necessary.
3694	 * Task label is already saved in the file security
3695	 * struct as its SID.
3696	 */
3697	fsec->isid = isec->sid;
3698	fsec->pseqno = avc_policy_seqno();
3699	/*
3700	 * Since the inode label or policy seqno may have changed
3701	 * between the selinux_inode_permission check and the saving
3702	 * of state above, recheck that access is still permitted.
3703	 * Otherwise, access might never be revalidated against the
3704	 * new inode label or new policy.
3705	 * This check is not redundant - do not remove.
3706	 */
3707	return file_path_has_perm(cred, file, open_file_to_av(file));
3708}
3709
3710/* task security operations */
3711
3712static int selinux_task_create(unsigned long clone_flags)
3713{
3714	return current_has_perm(current, PROCESS__FORK);
3715}
3716
3717/*
3718 * allocate the SELinux part of blank credentials
3719 */
3720static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3721{
3722	struct task_security_struct *tsec;
3723
3724	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3725	if (!tsec)
3726		return -ENOMEM;
3727
3728	cred->security = tsec;
3729	return 0;
3730}
3731
3732/*
3733 * detach and free the LSM part of a set of credentials
3734 */
3735static void selinux_cred_free(struct cred *cred)
3736{
3737	struct task_security_struct *tsec = cred->security;
3738
3739	/*
3740	 * cred->security == NULL if security_cred_alloc_blank() or
3741	 * security_prepare_creds() returned an error.
3742	 */
3743	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3744	cred->security = (void *) 0x7UL;
3745	kfree(tsec);
3746}
3747
3748/*
3749 * prepare a new set of credentials for modification
3750 */
3751static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3752				gfp_t gfp)
3753{
3754	const struct task_security_struct *old_tsec;
3755	struct task_security_struct *tsec;
3756
3757	old_tsec = old->security;
3758
3759	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3760	if (!tsec)
3761		return -ENOMEM;
3762
3763	new->security = tsec;
3764	return 0;
3765}
3766
3767/*
3768 * transfer the SELinux data to a blank set of creds
3769 */
3770static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3771{
3772	const struct task_security_struct *old_tsec = old->security;
3773	struct task_security_struct *tsec = new->security;
3774
3775	*tsec = *old_tsec;
3776}
3777
3778/*
3779 * set the security data for a kernel service
3780 * - all the creation contexts are set to unlabelled
3781 */
3782static int selinux_kernel_act_as(struct cred *new, u32 secid)
3783{
3784	struct task_security_struct *tsec = new->security;
3785	u32 sid = current_sid();
3786	int ret;
3787
3788	ret = avc_has_perm(sid, secid,
3789			   SECCLASS_KERNEL_SERVICE,
3790			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3791			   NULL);
3792	if (ret == 0) {
3793		tsec->sid = secid;
3794		tsec->create_sid = 0;
3795		tsec->keycreate_sid = 0;
3796		tsec->sockcreate_sid = 0;
3797	}
3798	return ret;
3799}
3800
3801/*
3802 * set the file creation context in a security record to the same as the
3803 * objective context of the specified inode
3804 */
3805static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3806{
3807	struct inode_security_struct *isec = inode_security(inode);
3808	struct task_security_struct *tsec = new->security;
3809	u32 sid = current_sid();
3810	int ret;
3811
3812	ret = avc_has_perm(sid, isec->sid,
3813			   SECCLASS_KERNEL_SERVICE,
3814			   KERNEL_SERVICE__CREATE_FILES_AS,
3815			   NULL);
3816
3817	if (ret == 0)
3818		tsec->create_sid = isec->sid;
3819	return ret;
3820}
3821
3822static int selinux_kernel_module_request(char *kmod_name)
3823{
3824	u32 sid;
3825	struct common_audit_data ad;
3826
3827	sid = task_sid(current);
3828
3829	ad.type = LSM_AUDIT_DATA_KMOD;
3830	ad.u.kmod_name = kmod_name;
3831
3832	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3833			    SYSTEM__MODULE_REQUEST, &ad);
3834}
3835
3836static int selinux_kernel_module_from_file(struct file *file)
3837{
3838	struct common_audit_data ad;
3839	struct inode_security_struct *isec;
3840	struct file_security_struct *fsec;
3841	u32 sid = current_sid();
3842	int rc;
3843
3844	/* init_module */
3845	if (file == NULL)
3846		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
3847					SYSTEM__MODULE_LOAD, NULL);
3848
3849	/* finit_module */
3850
3851	ad.type = LSM_AUDIT_DATA_FILE;
3852	ad.u.file = file;
3853
3854	fsec = file->f_security;
3855	if (sid != fsec->sid) {
3856		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3857		if (rc)
3858			return rc;
3859	}
3860
3861	isec = inode_security(file_inode(file));
3862	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
3863				SYSTEM__MODULE_LOAD, &ad);
3864}
3865
3866static int selinux_kernel_read_file(struct file *file,
3867				    enum kernel_read_file_id id)
3868{
3869	int rc = 0;
3870
3871	switch (id) {
3872	case READING_MODULE:
3873		rc = selinux_kernel_module_from_file(file);
3874		break;
3875	default:
3876		break;
3877	}
3878
3879	return rc;
3880}
3881
3882static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3883{
3884	return current_has_perm(p, PROCESS__SETPGID);
3885}
3886
3887static int selinux_task_getpgid(struct task_struct *p)
3888{
3889	return current_has_perm(p, PROCESS__GETPGID);
3890}
3891
3892static int selinux_task_getsid(struct task_struct *p)
3893{
3894	return current_has_perm(p, PROCESS__GETSESSION);
3895}
3896
3897static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3898{
3899	*secid = task_sid(p);
3900}
3901
3902static int selinux_task_setnice(struct task_struct *p, int nice)
3903{
3904	return current_has_perm(p, PROCESS__SETSCHED);
3905}
3906
3907static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3908{
3909	return current_has_perm(p, PROCESS__SETSCHED);
3910}
3911
3912static int selinux_task_getioprio(struct task_struct *p)
3913{
3914	return current_has_perm(p, PROCESS__GETSCHED);
3915}
3916
3917static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3918		struct rlimit *new_rlim)
3919{
3920	struct rlimit *old_rlim = p->signal->rlim + resource;
3921
3922	/* Control the ability to change the hard limit (whether
3923	   lowering or raising it), so that the hard limit can
3924	   later be used as a safe reset point for the soft limit
3925	   upon context transitions.  See selinux_bprm_committing_creds. */
3926	if (old_rlim->rlim_max != new_rlim->rlim_max)
3927		return current_has_perm(p, PROCESS__SETRLIMIT);
3928
3929	return 0;
3930}
3931
3932static int selinux_task_setscheduler(struct task_struct *p)
3933{
3934	return current_has_perm(p, PROCESS__SETSCHED);
3935}
3936
3937static int selinux_task_getscheduler(struct task_struct *p)
3938{
3939	return current_has_perm(p, PROCESS__GETSCHED);
3940}
3941
3942static int selinux_task_movememory(struct task_struct *p)
3943{
3944	return current_has_perm(p, PROCESS__SETSCHED);
3945}
3946
3947static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3948				int sig, u32 secid)
3949{
3950	u32 perm;
3951	int rc;
3952
3953	if (!sig)
3954		perm = PROCESS__SIGNULL; /* null signal; existence test */
3955	else
3956		perm = signal_to_av(sig);
3957	if (secid)
3958		rc = avc_has_perm(secid, task_sid(p),
3959				  SECCLASS_PROCESS, perm, NULL);
3960	else
3961		rc = current_has_perm(p, perm);
3962	return rc;
3963}
3964
3965static int selinux_task_wait(struct task_struct *p)
3966{
3967	return task_has_perm(p, current, PROCESS__SIGCHLD);
3968}
3969
3970static void selinux_task_to_inode(struct task_struct *p,
3971				  struct inode *inode)
3972{
3973	struct inode_security_struct *isec = inode->i_security;
3974	u32 sid = task_sid(p);
3975
3976	spin_lock(&isec->lock);
3977	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3978	isec->sid = sid;
3979	isec->initialized = LABEL_INITIALIZED;
3980	spin_unlock(&isec->lock);
3981}
3982
3983/* Returns error only if unable to parse addresses */
3984static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3985			struct common_audit_data *ad, u8 *proto)
3986{
3987	int offset, ihlen, ret = -EINVAL;
3988	struct iphdr _iph, *ih;
3989
3990	offset = skb_network_offset(skb);
3991	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3992	if (ih == NULL)
3993		goto out;
3994
3995	ihlen = ih->ihl * 4;
3996	if (ihlen < sizeof(_iph))
3997		goto out;
3998
3999	ad->u.net->v4info.saddr = ih->saddr;
4000	ad->u.net->v4info.daddr = ih->daddr;
4001	ret = 0;
4002
4003	if (proto)
4004		*proto = ih->protocol;
4005
4006	switch (ih->protocol) {
4007	case IPPROTO_TCP: {
4008		struct tcphdr _tcph, *th;
4009
4010		if (ntohs(ih->frag_off) & IP_OFFSET)
4011			break;
4012
4013		offset += ihlen;
4014		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4015		if (th == NULL)
4016			break;
4017
4018		ad->u.net->sport = th->source;
4019		ad->u.net->dport = th->dest;
4020		break;
4021	}
4022
4023	case IPPROTO_UDP: {
4024		struct udphdr _udph, *uh;
4025
4026		if (ntohs(ih->frag_off) & IP_OFFSET)
4027			break;
4028
4029		offset += ihlen;
4030		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4031		if (uh == NULL)
4032			break;
4033
4034		ad->u.net->sport = uh->source;
4035		ad->u.net->dport = uh->dest;
4036		break;
4037	}
4038
4039	case IPPROTO_DCCP: {
4040		struct dccp_hdr _dccph, *dh;
4041
4042		if (ntohs(ih->frag_off) & IP_OFFSET)
4043			break;
4044
4045		offset += ihlen;
4046		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4047		if (dh == NULL)
4048			break;
4049
4050		ad->u.net->sport = dh->dccph_sport;
4051		ad->u.net->dport = dh->dccph_dport;
4052		break;
4053	}
4054
4055	default:
4056		break;
4057	}
4058out:
4059	return ret;
4060}
4061
4062#if IS_ENABLED(CONFIG_IPV6)
4063
4064/* Returns error only if unable to parse addresses */
4065static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4066			struct common_audit_data *ad, u8 *proto)
4067{
4068	u8 nexthdr;
4069	int ret = -EINVAL, offset;
4070	struct ipv6hdr _ipv6h, *ip6;
4071	__be16 frag_off;
4072
4073	offset = skb_network_offset(skb);
4074	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4075	if (ip6 == NULL)
4076		goto out;
4077
4078	ad->u.net->v6info.saddr = ip6->saddr;
4079	ad->u.net->v6info.daddr = ip6->daddr;
4080	ret = 0;
4081
4082	nexthdr = ip6->nexthdr;
4083	offset += sizeof(_ipv6h);
4084	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4085	if (offset < 0)
4086		goto out;
4087
4088	if (proto)
4089		*proto = nexthdr;
4090
4091	switch (nexthdr) {
4092	case IPPROTO_TCP: {
4093		struct tcphdr _tcph, *th;
4094
4095		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4096		if (th == NULL)
4097			break;
4098
4099		ad->u.net->sport = th->source;
4100		ad->u.net->dport = th->dest;
4101		break;
4102	}
4103
4104	case IPPROTO_UDP: {
4105		struct udphdr _udph, *uh;
4106
4107		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4108		if (uh == NULL)
4109			break;
4110
4111		ad->u.net->sport = uh->source;
4112		ad->u.net->dport = uh->dest;
4113		break;
4114	}
4115
4116	case IPPROTO_DCCP: {
4117		struct dccp_hdr _dccph, *dh;
4118
4119		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4120		if (dh == NULL)
4121			break;
4122
4123		ad->u.net->sport = dh->dccph_sport;
4124		ad->u.net->dport = dh->dccph_dport;
4125		break;
4126	}
4127
4128	/* includes fragments */
4129	default:
4130		break;
4131	}
4132out:
4133	return ret;
4134}
4135
4136#endif /* IPV6 */
4137
4138static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4139			     char **_addrp, int src, u8 *proto)
4140{
4141	char *addrp;
4142	int ret;
4143
4144	switch (ad->u.net->family) {
4145	case PF_INET:
4146		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4147		if (ret)
4148			goto parse_error;
4149		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4150				       &ad->u.net->v4info.daddr);
4151		goto okay;
4152
4153#if IS_ENABLED(CONFIG_IPV6)
4154	case PF_INET6:
4155		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4156		if (ret)
4157			goto parse_error;
4158		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4159				       &ad->u.net->v6info.daddr);
4160		goto okay;
4161#endif	/* IPV6 */
4162	default:
4163		addrp = NULL;
4164		goto okay;
4165	}
4166
4167parse_error:
4168	printk(KERN_WARNING
4169	       "SELinux: failure in selinux_parse_skb(),"
4170	       " unable to parse packet\n");
4171	return ret;
4172
4173okay:
4174	if (_addrp)
4175		*_addrp = addrp;
4176	return 0;
4177}
4178
4179/**
4180 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4181 * @skb: the packet
4182 * @family: protocol family
4183 * @sid: the packet's peer label SID
4184 *
4185 * Description:
4186 * Check the various different forms of network peer labeling and determine
4187 * the peer label/SID for the packet; most of the magic actually occurs in
4188 * the security server function security_net_peersid_cmp().  The function
4189 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4190 * or -EACCES if @sid is invalid due to inconsistencies with the different
4191 * peer labels.
4192 *
4193 */
4194static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4195{
4196	int err;
4197	u32 xfrm_sid;
4198	u32 nlbl_sid;
4199	u32 nlbl_type;
4200
4201	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4202	if (unlikely(err))
4203		return -EACCES;
4204	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4205	if (unlikely(err))
4206		return -EACCES;
4207
4208	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4209	if (unlikely(err)) {
4210		printk(KERN_WARNING
4211		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4212		       " unable to determine packet's peer label\n");
4213		return -EACCES;
4214	}
4215
4216	return 0;
4217}
4218
4219/**
4220 * selinux_conn_sid - Determine the child socket label for a connection
4221 * @sk_sid: the parent socket's SID
4222 * @skb_sid: the packet's SID
4223 * @conn_sid: the resulting connection SID
4224 *
4225 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4226 * combined with the MLS information from @skb_sid in order to create
4227 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4228 * of @sk_sid.  Returns zero on success, negative values on failure.
4229 *
4230 */
4231static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4232{
4233	int err = 0;
4234
4235	if (skb_sid != SECSID_NULL)
4236		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4237	else
4238		*conn_sid = sk_sid;
4239
4240	return err;
4241}
4242
4243/* socket security operations */
4244
4245static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4246				 u16 secclass, u32 *socksid)
4247{
4248	if (tsec->sockcreate_sid > SECSID_NULL) {
4249		*socksid = tsec->sockcreate_sid;
4250		return 0;
4251	}
4252
4253	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4254				       socksid);
4255}
4256
4257static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4258{
4259	struct sk_security_struct *sksec = sk->sk_security;
4260	struct common_audit_data ad;
4261	struct lsm_network_audit net = {0,};
4262	u32 tsid = task_sid(task);
4263
4264	if (sksec->sid == SECINITSID_KERNEL)
4265		return 0;
4266
4267	ad.type = LSM_AUDIT_DATA_NET;
4268	ad.u.net = &net;
4269	ad.u.net->sk = sk;
4270
4271	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4272}
4273
4274static int selinux_socket_create(int family, int type,
4275				 int protocol, int kern)
4276{
4277	const struct task_security_struct *tsec = current_security();
4278	u32 newsid;
4279	u16 secclass;
4280	int rc;
4281
4282	if (kern)
4283		return 0;
4284
4285	secclass = socket_type_to_security_class(family, type, protocol);
4286	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4287	if (rc)
4288		return rc;
4289
4290	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4291}
4292
4293static int selinux_socket_post_create(struct socket *sock, int family,
4294				      int type, int protocol, int kern)
4295{
4296	const struct task_security_struct *tsec = current_security();
4297	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4298	struct sk_security_struct *sksec;
4299	u16 sclass = socket_type_to_security_class(family, type, protocol);
4300	u32 sid = SECINITSID_KERNEL;
4301	int err = 0;
4302
4303	if (!kern) {
4304		err = socket_sockcreate_sid(tsec, sclass, &sid);
 
 
 
 
4305		if (err)
4306			return err;
4307	}
4308
4309	isec->sclass = sclass;
4310	isec->sid = sid;
4311	isec->initialized = LABEL_INITIALIZED;
4312
4313	if (sock->sk) {
4314		sksec = sock->sk->sk_security;
4315		sksec->sclass = sclass;
4316		sksec->sid = sid;
4317		err = selinux_netlbl_socket_post_create(sock->sk, family);
4318	}
4319
4320	return err;
4321}
4322
4323/* Range of port numbers used to automatically bind.
4324   Need to determine whether we should perform a name_bind
4325   permission check between the socket and the port number. */
4326
4327static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4328{
4329	struct sock *sk = sock->sk;
4330	u16 family;
4331	int err;
4332
4333	err = sock_has_perm(current, sk, SOCKET__BIND);
4334	if (err)
4335		goto out;
4336
4337	/*
4338	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4339	 * Multiple address binding for SCTP is not supported yet: we just
4340	 * check the first address now.
4341	 */
4342	family = sk->sk_family;
4343	if (family == PF_INET || family == PF_INET6) {
4344		char *addrp;
4345		struct sk_security_struct *sksec = sk->sk_security;
4346		struct common_audit_data ad;
4347		struct lsm_network_audit net = {0,};
4348		struct sockaddr_in *addr4 = NULL;
4349		struct sockaddr_in6 *addr6 = NULL;
4350		unsigned short snum;
4351		u32 sid, node_perm;
4352
4353		if (family == PF_INET) {
4354			addr4 = (struct sockaddr_in *)address;
4355			snum = ntohs(addr4->sin_port);
4356			addrp = (char *)&addr4->sin_addr.s_addr;
4357		} else {
4358			addr6 = (struct sockaddr_in6 *)address;
4359			snum = ntohs(addr6->sin6_port);
4360			addrp = (char *)&addr6->sin6_addr.s6_addr;
4361		}
4362
4363		if (snum) {
4364			int low, high;
4365
4366			inet_get_local_port_range(sock_net(sk), &low, &high);
4367
4368			if (snum < max(PROT_SOCK, low) || snum > high) {
4369				err = sel_netport_sid(sk->sk_protocol,
4370						      snum, &sid);
4371				if (err)
4372					goto out;
4373				ad.type = LSM_AUDIT_DATA_NET;
4374				ad.u.net = &net;
4375				ad.u.net->sport = htons(snum);
4376				ad.u.net->family = family;
4377				err = avc_has_perm(sksec->sid, sid,
4378						   sksec->sclass,
4379						   SOCKET__NAME_BIND, &ad);
4380				if (err)
4381					goto out;
4382			}
4383		}
4384
4385		switch (sksec->sclass) {
4386		case SECCLASS_TCP_SOCKET:
4387			node_perm = TCP_SOCKET__NODE_BIND;
4388			break;
4389
4390		case SECCLASS_UDP_SOCKET:
4391			node_perm = UDP_SOCKET__NODE_BIND;
4392			break;
4393
4394		case SECCLASS_DCCP_SOCKET:
4395			node_perm = DCCP_SOCKET__NODE_BIND;
4396			break;
4397
4398		default:
4399			node_perm = RAWIP_SOCKET__NODE_BIND;
4400			break;
4401		}
4402
4403		err = sel_netnode_sid(addrp, family, &sid);
4404		if (err)
4405			goto out;
4406
4407		ad.type = LSM_AUDIT_DATA_NET;
4408		ad.u.net = &net;
4409		ad.u.net->sport = htons(snum);
4410		ad.u.net->family = family;
4411
4412		if (family == PF_INET)
4413			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4414		else
4415			ad.u.net->v6info.saddr = addr6->sin6_addr;
4416
4417		err = avc_has_perm(sksec->sid, sid,
4418				   sksec->sclass, node_perm, &ad);
4419		if (err)
4420			goto out;
4421	}
4422out:
4423	return err;
4424}
4425
4426static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4427{
4428	struct sock *sk = sock->sk;
4429	struct sk_security_struct *sksec = sk->sk_security;
4430	int err;
4431
4432	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4433	if (err)
4434		return err;
4435
4436	/*
4437	 * If a TCP or DCCP socket, check name_connect permission for the port.
4438	 */
4439	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4440	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
4441		struct common_audit_data ad;
4442		struct lsm_network_audit net = {0,};
4443		struct sockaddr_in *addr4 = NULL;
4444		struct sockaddr_in6 *addr6 = NULL;
4445		unsigned short snum;
4446		u32 sid, perm;
4447
4448		if (sk->sk_family == PF_INET) {
4449			addr4 = (struct sockaddr_in *)address;
4450			if (addrlen < sizeof(struct sockaddr_in))
4451				return -EINVAL;
4452			snum = ntohs(addr4->sin_port);
4453		} else {
4454			addr6 = (struct sockaddr_in6 *)address;
4455			if (addrlen < SIN6_LEN_RFC2133)
4456				return -EINVAL;
4457			snum = ntohs(addr6->sin6_port);
4458		}
4459
4460		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4461		if (err)
4462			goto out;
4463
4464		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4465		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4466
4467		ad.type = LSM_AUDIT_DATA_NET;
4468		ad.u.net = &net;
4469		ad.u.net->dport = htons(snum);
4470		ad.u.net->family = sk->sk_family;
4471		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4472		if (err)
4473			goto out;
4474	}
4475
4476	err = selinux_netlbl_socket_connect(sk, address);
4477
4478out:
4479	return err;
4480}
4481
4482static int selinux_socket_listen(struct socket *sock, int backlog)
4483{
4484	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4485}
4486
4487static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4488{
4489	int err;
4490	struct inode_security_struct *isec;
4491	struct inode_security_struct *newisec;
4492	u16 sclass;
4493	u32 sid;
4494
4495	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4496	if (err)
4497		return err;
4498
 
 
4499	isec = inode_security_novalidate(SOCK_INODE(sock));
4500	spin_lock(&isec->lock);
4501	sclass = isec->sclass;
4502	sid = isec->sid;
4503	spin_unlock(&isec->lock);
4504
4505	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4506	newisec->sclass = sclass;
4507	newisec->sid = sid;
4508	newisec->initialized = LABEL_INITIALIZED;
4509
4510	return 0;
4511}
4512
4513static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4514				  int size)
4515{
4516	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4517}
4518
4519static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4520				  int size, int flags)
4521{
4522	return sock_has_perm(current, sock->sk, SOCKET__READ);
4523}
4524
4525static int selinux_socket_getsockname(struct socket *sock)
4526{
4527	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4528}
4529
4530static int selinux_socket_getpeername(struct socket *sock)
4531{
4532	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4533}
4534
4535static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4536{
4537	int err;
4538
4539	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4540	if (err)
4541		return err;
4542
4543	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4544}
4545
4546static int selinux_socket_getsockopt(struct socket *sock, int level,
4547				     int optname)
4548{
4549	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4550}
4551
4552static int selinux_socket_shutdown(struct socket *sock, int how)
4553{
4554	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4555}
4556
4557static int selinux_socket_unix_stream_connect(struct sock *sock,
4558					      struct sock *other,
4559					      struct sock *newsk)
4560{
4561	struct sk_security_struct *sksec_sock = sock->sk_security;
4562	struct sk_security_struct *sksec_other = other->sk_security;
4563	struct sk_security_struct *sksec_new = newsk->sk_security;
4564	struct common_audit_data ad;
4565	struct lsm_network_audit net = {0,};
4566	int err;
4567
4568	ad.type = LSM_AUDIT_DATA_NET;
4569	ad.u.net = &net;
4570	ad.u.net->sk = other;
4571
4572	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4573			   sksec_other->sclass,
4574			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4575	if (err)
4576		return err;
4577
4578	/* server child socket */
4579	sksec_new->peer_sid = sksec_sock->sid;
4580	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4581				    &sksec_new->sid);
4582	if (err)
4583		return err;
4584
4585	/* connecting socket */
4586	sksec_sock->peer_sid = sksec_new->sid;
4587
4588	return 0;
4589}
4590
4591static int selinux_socket_unix_may_send(struct socket *sock,
4592					struct socket *other)
4593{
4594	struct sk_security_struct *ssec = sock->sk->sk_security;
4595	struct sk_security_struct *osec = other->sk->sk_security;
4596	struct common_audit_data ad;
4597	struct lsm_network_audit net = {0,};
4598
4599	ad.type = LSM_AUDIT_DATA_NET;
4600	ad.u.net = &net;
4601	ad.u.net->sk = other->sk;
4602
4603	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4604			    &ad);
4605}
4606
4607static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4608				    char *addrp, u16 family, u32 peer_sid,
4609				    struct common_audit_data *ad)
4610{
4611	int err;
4612	u32 if_sid;
4613	u32 node_sid;
4614
4615	err = sel_netif_sid(ns, ifindex, &if_sid);
4616	if (err)
4617		return err;
4618	err = avc_has_perm(peer_sid, if_sid,
4619			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4620	if (err)
4621		return err;
4622
4623	err = sel_netnode_sid(addrp, family, &node_sid);
4624	if (err)
4625		return err;
4626	return avc_has_perm(peer_sid, node_sid,
4627			    SECCLASS_NODE, NODE__RECVFROM, ad);
4628}
4629
4630static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4631				       u16 family)
4632{
4633	int err = 0;
4634	struct sk_security_struct *sksec = sk->sk_security;
4635	u32 sk_sid = sksec->sid;
4636	struct common_audit_data ad;
4637	struct lsm_network_audit net = {0,};
4638	char *addrp;
4639
4640	ad.type = LSM_AUDIT_DATA_NET;
4641	ad.u.net = &net;
4642	ad.u.net->netif = skb->skb_iif;
4643	ad.u.net->family = family;
4644	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4645	if (err)
4646		return err;
4647
4648	if (selinux_secmark_enabled()) {
4649		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4650				   PACKET__RECV, &ad);
4651		if (err)
4652			return err;
4653	}
4654
4655	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4656	if (err)
4657		return err;
4658	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4659
4660	return err;
4661}
4662
4663static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4664{
4665	int err;
4666	struct sk_security_struct *sksec = sk->sk_security;
4667	u16 family = sk->sk_family;
4668	u32 sk_sid = sksec->sid;
4669	struct common_audit_data ad;
4670	struct lsm_network_audit net = {0,};
4671	char *addrp;
4672	u8 secmark_active;
4673	u8 peerlbl_active;
4674
4675	if (family != PF_INET && family != PF_INET6)
4676		return 0;
4677
4678	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4679	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4680		family = PF_INET;
4681
4682	/* If any sort of compatibility mode is enabled then handoff processing
4683	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4684	 * special handling.  We do this in an attempt to keep this function
4685	 * as fast and as clean as possible. */
4686	if (!selinux_policycap_netpeer)
4687		return selinux_sock_rcv_skb_compat(sk, skb, family);
4688
4689	secmark_active = selinux_secmark_enabled();
4690	peerlbl_active = selinux_peerlbl_enabled();
4691	if (!secmark_active && !peerlbl_active)
4692		return 0;
4693
4694	ad.type = LSM_AUDIT_DATA_NET;
4695	ad.u.net = &net;
4696	ad.u.net->netif = skb->skb_iif;
4697	ad.u.net->family = family;
4698	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4699	if (err)
4700		return err;
4701
4702	if (peerlbl_active) {
4703		u32 peer_sid;
4704
4705		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4706		if (err)
4707			return err;
4708		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4709					       addrp, family, peer_sid, &ad);
4710		if (err) {
4711			selinux_netlbl_err(skb, family, err, 0);
4712			return err;
4713		}
4714		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4715				   PEER__RECV, &ad);
4716		if (err) {
4717			selinux_netlbl_err(skb, family, err, 0);
4718			return err;
4719		}
4720	}
4721
4722	if (secmark_active) {
4723		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4724				   PACKET__RECV, &ad);
4725		if (err)
4726			return err;
4727	}
4728
4729	return err;
4730}
4731
4732static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4733					    int __user *optlen, unsigned len)
4734{
4735	int err = 0;
4736	char *scontext;
4737	u32 scontext_len;
4738	struct sk_security_struct *sksec = sock->sk->sk_security;
4739	u32 peer_sid = SECSID_NULL;
4740
4741	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4742	    sksec->sclass == SECCLASS_TCP_SOCKET)
4743		peer_sid = sksec->peer_sid;
4744	if (peer_sid == SECSID_NULL)
4745		return -ENOPROTOOPT;
4746
4747	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4748	if (err)
4749		return err;
4750
4751	if (scontext_len > len) {
4752		err = -ERANGE;
4753		goto out_len;
4754	}
4755
4756	if (copy_to_user(optval, scontext, scontext_len))
4757		err = -EFAULT;
4758
4759out_len:
4760	if (put_user(scontext_len, optlen))
4761		err = -EFAULT;
4762	kfree(scontext);
4763	return err;
4764}
4765
4766static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4767{
4768	u32 peer_secid = SECSID_NULL;
4769	u16 family;
4770	struct inode_security_struct *isec;
4771
4772	if (skb && skb->protocol == htons(ETH_P_IP))
4773		family = PF_INET;
4774	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4775		family = PF_INET6;
4776	else if (sock)
4777		family = sock->sk->sk_family;
4778	else
4779		goto out;
4780
4781	if (sock && family == PF_UNIX) {
4782		isec = inode_security_novalidate(SOCK_INODE(sock));
4783		peer_secid = isec->sid;
4784	} else if (skb)
4785		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4786
4787out:
4788	*secid = peer_secid;
4789	if (peer_secid == SECSID_NULL)
4790		return -EINVAL;
4791	return 0;
4792}
4793
4794static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4795{
4796	struct sk_security_struct *sksec;
4797
4798	sksec = kzalloc(sizeof(*sksec), priority);
4799	if (!sksec)
4800		return -ENOMEM;
4801
4802	sksec->peer_sid = SECINITSID_UNLABELED;
4803	sksec->sid = SECINITSID_UNLABELED;
4804	sksec->sclass = SECCLASS_SOCKET;
4805	selinux_netlbl_sk_security_reset(sksec);
4806	sk->sk_security = sksec;
4807
4808	return 0;
4809}
4810
4811static void selinux_sk_free_security(struct sock *sk)
4812{
4813	struct sk_security_struct *sksec = sk->sk_security;
4814
4815	sk->sk_security = NULL;
4816	selinux_netlbl_sk_security_free(sksec);
4817	kfree(sksec);
4818}
4819
4820static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4821{
4822	struct sk_security_struct *sksec = sk->sk_security;
4823	struct sk_security_struct *newsksec = newsk->sk_security;
4824
4825	newsksec->sid = sksec->sid;
4826	newsksec->peer_sid = sksec->peer_sid;
4827	newsksec->sclass = sksec->sclass;
4828
4829	selinux_netlbl_sk_security_reset(newsksec);
4830}
4831
4832static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4833{
4834	if (!sk)
4835		*secid = SECINITSID_ANY_SOCKET;
4836	else {
4837		struct sk_security_struct *sksec = sk->sk_security;
4838
4839		*secid = sksec->sid;
4840	}
4841}
4842
4843static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4844{
4845	struct inode_security_struct *isec =
4846		inode_security_novalidate(SOCK_INODE(parent));
4847	struct sk_security_struct *sksec = sk->sk_security;
4848
4849	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4850	    sk->sk_family == PF_UNIX)
4851		isec->sid = sksec->sid;
4852	sksec->sclass = isec->sclass;
4853}
4854
4855static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4856				     struct request_sock *req)
4857{
4858	struct sk_security_struct *sksec = sk->sk_security;
4859	int err;
4860	u16 family = req->rsk_ops->family;
4861	u32 connsid;
4862	u32 peersid;
4863
4864	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4865	if (err)
4866		return err;
4867	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4868	if (err)
4869		return err;
4870	req->secid = connsid;
4871	req->peer_secid = peersid;
4872
4873	return selinux_netlbl_inet_conn_request(req, family);
4874}
4875
4876static void selinux_inet_csk_clone(struct sock *newsk,
4877				   const struct request_sock *req)
4878{
4879	struct sk_security_struct *newsksec = newsk->sk_security;
4880
4881	newsksec->sid = req->secid;
4882	newsksec->peer_sid = req->peer_secid;
4883	/* NOTE: Ideally, we should also get the isec->sid for the
4884	   new socket in sync, but we don't have the isec available yet.
4885	   So we will wait until sock_graft to do it, by which
4886	   time it will have been created and available. */
4887
4888	/* We don't need to take any sort of lock here as we are the only
4889	 * thread with access to newsksec */
4890	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4891}
4892
4893static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4894{
4895	u16 family = sk->sk_family;
4896	struct sk_security_struct *sksec = sk->sk_security;
4897
4898	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4899	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4900		family = PF_INET;
4901
4902	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4903}
4904
4905static int selinux_secmark_relabel_packet(u32 sid)
4906{
4907	const struct task_security_struct *__tsec;
4908	u32 tsid;
4909
4910	__tsec = current_security();
4911	tsid = __tsec->sid;
4912
4913	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4914}
4915
4916static void selinux_secmark_refcount_inc(void)
4917{
4918	atomic_inc(&selinux_secmark_refcount);
4919}
4920
4921static void selinux_secmark_refcount_dec(void)
4922{
4923	atomic_dec(&selinux_secmark_refcount);
4924}
4925
4926static void selinux_req_classify_flow(const struct request_sock *req,
4927				      struct flowi *fl)
4928{
4929	fl->flowi_secid = req->secid;
4930}
4931
4932static int selinux_tun_dev_alloc_security(void **security)
4933{
4934	struct tun_security_struct *tunsec;
4935
4936	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4937	if (!tunsec)
4938		return -ENOMEM;
4939	tunsec->sid = current_sid();
4940
4941	*security = tunsec;
4942	return 0;
4943}
4944
4945static void selinux_tun_dev_free_security(void *security)
4946{
4947	kfree(security);
4948}
4949
4950static int selinux_tun_dev_create(void)
4951{
4952	u32 sid = current_sid();
4953
4954	/* we aren't taking into account the "sockcreate" SID since the socket
4955	 * that is being created here is not a socket in the traditional sense,
4956	 * instead it is a private sock, accessible only to the kernel, and
4957	 * representing a wide range of network traffic spanning multiple
4958	 * connections unlike traditional sockets - check the TUN driver to
4959	 * get a better understanding of why this socket is special */
4960
4961	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4962			    NULL);
4963}
4964
4965static int selinux_tun_dev_attach_queue(void *security)
4966{
4967	struct tun_security_struct *tunsec = security;
4968
4969	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4970			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4971}
4972
4973static int selinux_tun_dev_attach(struct sock *sk, void *security)
4974{
4975	struct tun_security_struct *tunsec = security;
4976	struct sk_security_struct *sksec = sk->sk_security;
4977
4978	/* we don't currently perform any NetLabel based labeling here and it
4979	 * isn't clear that we would want to do so anyway; while we could apply
4980	 * labeling without the support of the TUN user the resulting labeled
4981	 * traffic from the other end of the connection would almost certainly
4982	 * cause confusion to the TUN user that had no idea network labeling
4983	 * protocols were being used */
4984
4985	sksec->sid = tunsec->sid;
4986	sksec->sclass = SECCLASS_TUN_SOCKET;
4987
4988	return 0;
4989}
4990
4991static int selinux_tun_dev_open(void *security)
4992{
4993	struct tun_security_struct *tunsec = security;
4994	u32 sid = current_sid();
4995	int err;
4996
4997	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4998			   TUN_SOCKET__RELABELFROM, NULL);
4999	if (err)
5000		return err;
5001	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5002			   TUN_SOCKET__RELABELTO, NULL);
5003	if (err)
5004		return err;
5005	tunsec->sid = sid;
5006
5007	return 0;
5008}
5009
5010static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5011{
5012	int err = 0;
5013	u32 perm;
5014	struct nlmsghdr *nlh;
5015	struct sk_security_struct *sksec = sk->sk_security;
5016
5017	if (skb->len < NLMSG_HDRLEN) {
5018		err = -EINVAL;
5019		goto out;
5020	}
5021	nlh = nlmsg_hdr(skb);
5022
5023	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5024	if (err) {
5025		if (err == -EINVAL) {
5026			pr_warn_ratelimited("SELinux: unrecognized netlink"
5027			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5028			       " pig=%d comm=%s\n",
5029			       sk->sk_protocol, nlh->nlmsg_type,
5030			       secclass_map[sksec->sclass - 1].name,
5031			       task_pid_nr(current), current->comm);
5032			if (!selinux_enforcing || security_get_allow_unknown())
5033				err = 0;
5034		}
5035
5036		/* Ignore */
5037		if (err == -ENOENT)
5038			err = 0;
5039		goto out;
5040	}
5041
5042	err = sock_has_perm(current, sk, perm);
5043out:
5044	return err;
5045}
5046
5047#ifdef CONFIG_NETFILTER
5048
5049static unsigned int selinux_ip_forward(struct sk_buff *skb,
5050				       const struct net_device *indev,
5051				       u16 family)
5052{
5053	int err;
5054	char *addrp;
5055	u32 peer_sid;
5056	struct common_audit_data ad;
5057	struct lsm_network_audit net = {0,};
5058	u8 secmark_active;
5059	u8 netlbl_active;
5060	u8 peerlbl_active;
5061
5062	if (!selinux_policycap_netpeer)
5063		return NF_ACCEPT;
5064
5065	secmark_active = selinux_secmark_enabled();
5066	netlbl_active = netlbl_enabled();
5067	peerlbl_active = selinux_peerlbl_enabled();
5068	if (!secmark_active && !peerlbl_active)
5069		return NF_ACCEPT;
5070
5071	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5072		return NF_DROP;
5073
5074	ad.type = LSM_AUDIT_DATA_NET;
5075	ad.u.net = &net;
5076	ad.u.net->netif = indev->ifindex;
5077	ad.u.net->family = family;
5078	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5079		return NF_DROP;
5080
5081	if (peerlbl_active) {
5082		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5083					       addrp, family, peer_sid, &ad);
5084		if (err) {
5085			selinux_netlbl_err(skb, family, err, 1);
5086			return NF_DROP;
5087		}
5088	}
5089
5090	if (secmark_active)
5091		if (avc_has_perm(peer_sid, skb->secmark,
5092				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5093			return NF_DROP;
5094
5095	if (netlbl_active)
5096		/* we do this in the FORWARD path and not the POST_ROUTING
5097		 * path because we want to make sure we apply the necessary
5098		 * labeling before IPsec is applied so we can leverage AH
5099		 * protection */
5100		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5101			return NF_DROP;
5102
5103	return NF_ACCEPT;
5104}
5105
5106static unsigned int selinux_ipv4_forward(void *priv,
5107					 struct sk_buff *skb,
5108					 const struct nf_hook_state *state)
5109{
5110	return selinux_ip_forward(skb, state->in, PF_INET);
5111}
5112
5113#if IS_ENABLED(CONFIG_IPV6)
5114static unsigned int selinux_ipv6_forward(void *priv,
5115					 struct sk_buff *skb,
5116					 const struct nf_hook_state *state)
5117{
5118	return selinux_ip_forward(skb, state->in, PF_INET6);
5119}
5120#endif	/* IPV6 */
5121
5122static unsigned int selinux_ip_output(struct sk_buff *skb,
5123				      u16 family)
5124{
5125	struct sock *sk;
5126	u32 sid;
5127
5128	if (!netlbl_enabled())
5129		return NF_ACCEPT;
5130
5131	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5132	 * because we want to make sure we apply the necessary labeling
5133	 * before IPsec is applied so we can leverage AH protection */
5134	sk = skb->sk;
5135	if (sk) {
5136		struct sk_security_struct *sksec;
5137
5138		if (sk_listener(sk))
5139			/* if the socket is the listening state then this
5140			 * packet is a SYN-ACK packet which means it needs to
5141			 * be labeled based on the connection/request_sock and
5142			 * not the parent socket.  unfortunately, we can't
5143			 * lookup the request_sock yet as it isn't queued on
5144			 * the parent socket until after the SYN-ACK is sent.
5145			 * the "solution" is to simply pass the packet as-is
5146			 * as any IP option based labeling should be copied
5147			 * from the initial connection request (in the IP
5148			 * layer).  it is far from ideal, but until we get a
5149			 * security label in the packet itself this is the
5150			 * best we can do. */
5151			return NF_ACCEPT;
5152
5153		/* standard practice, label using the parent socket */
5154		sksec = sk->sk_security;
5155		sid = sksec->sid;
5156	} else
5157		sid = SECINITSID_KERNEL;
5158	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5159		return NF_DROP;
5160
5161	return NF_ACCEPT;
5162}
5163
5164static unsigned int selinux_ipv4_output(void *priv,
5165					struct sk_buff *skb,
5166					const struct nf_hook_state *state)
5167{
5168	return selinux_ip_output(skb, PF_INET);
5169}
5170
5171#if IS_ENABLED(CONFIG_IPV6)
5172static unsigned int selinux_ipv6_output(void *priv,
5173					struct sk_buff *skb,
5174					const struct nf_hook_state *state)
5175{
5176	return selinux_ip_output(skb, PF_INET6);
5177}
5178#endif	/* IPV6 */
5179
5180static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5181						int ifindex,
5182						u16 family)
5183{
5184	struct sock *sk = skb_to_full_sk(skb);
5185	struct sk_security_struct *sksec;
5186	struct common_audit_data ad;
5187	struct lsm_network_audit net = {0,};
5188	char *addrp;
5189	u8 proto;
5190
5191	if (sk == NULL)
5192		return NF_ACCEPT;
5193	sksec = sk->sk_security;
5194
5195	ad.type = LSM_AUDIT_DATA_NET;
5196	ad.u.net = &net;
5197	ad.u.net->netif = ifindex;
5198	ad.u.net->family = family;
5199	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5200		return NF_DROP;
5201
5202	if (selinux_secmark_enabled())
5203		if (avc_has_perm(sksec->sid, skb->secmark,
5204				 SECCLASS_PACKET, PACKET__SEND, &ad))
5205			return NF_DROP_ERR(-ECONNREFUSED);
5206
5207	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5208		return NF_DROP_ERR(-ECONNREFUSED);
5209
5210	return NF_ACCEPT;
5211}
5212
5213static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5214					 const struct net_device *outdev,
5215					 u16 family)
5216{
5217	u32 secmark_perm;
5218	u32 peer_sid;
5219	int ifindex = outdev->ifindex;
5220	struct sock *sk;
5221	struct common_audit_data ad;
5222	struct lsm_network_audit net = {0,};
5223	char *addrp;
5224	u8 secmark_active;
5225	u8 peerlbl_active;
5226
5227	/* If any sort of compatibility mode is enabled then handoff processing
5228	 * to the selinux_ip_postroute_compat() function to deal with the
5229	 * special handling.  We do this in an attempt to keep this function
5230	 * as fast and as clean as possible. */
5231	if (!selinux_policycap_netpeer)
5232		return selinux_ip_postroute_compat(skb, ifindex, family);
5233
5234	secmark_active = selinux_secmark_enabled();
5235	peerlbl_active = selinux_peerlbl_enabled();
5236	if (!secmark_active && !peerlbl_active)
5237		return NF_ACCEPT;
5238
5239	sk = skb_to_full_sk(skb);
5240
5241#ifdef CONFIG_XFRM
5242	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5243	 * packet transformation so allow the packet to pass without any checks
5244	 * since we'll have another chance to perform access control checks
5245	 * when the packet is on it's final way out.
5246	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5247	 *       is NULL, in this case go ahead and apply access control.
5248	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5249	 *       TCP listening state we cannot wait until the XFRM processing
5250	 *       is done as we will miss out on the SA label if we do;
5251	 *       unfortunately, this means more work, but it is only once per
5252	 *       connection. */
5253	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5254	    !(sk && sk_listener(sk)))
5255		return NF_ACCEPT;
5256#endif
5257
5258	if (sk == NULL) {
5259		/* Without an associated socket the packet is either coming
5260		 * from the kernel or it is being forwarded; check the packet
5261		 * to determine which and if the packet is being forwarded
5262		 * query the packet directly to determine the security label. */
5263		if (skb->skb_iif) {
5264			secmark_perm = PACKET__FORWARD_OUT;
5265			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5266				return NF_DROP;
5267		} else {
5268			secmark_perm = PACKET__SEND;
5269			peer_sid = SECINITSID_KERNEL;
5270		}
5271	} else if (sk_listener(sk)) {
5272		/* Locally generated packet but the associated socket is in the
5273		 * listening state which means this is a SYN-ACK packet.  In
5274		 * this particular case the correct security label is assigned
5275		 * to the connection/request_sock but unfortunately we can't
5276		 * query the request_sock as it isn't queued on the parent
5277		 * socket until after the SYN-ACK packet is sent; the only
5278		 * viable choice is to regenerate the label like we do in
5279		 * selinux_inet_conn_request().  See also selinux_ip_output()
5280		 * for similar problems. */
5281		u32 skb_sid;
5282		struct sk_security_struct *sksec;
5283
5284		sksec = sk->sk_security;
5285		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5286			return NF_DROP;
5287		/* At this point, if the returned skb peerlbl is SECSID_NULL
5288		 * and the packet has been through at least one XFRM
5289		 * transformation then we must be dealing with the "final"
5290		 * form of labeled IPsec packet; since we've already applied
5291		 * all of our access controls on this packet we can safely
5292		 * pass the packet. */
5293		if (skb_sid == SECSID_NULL) {
5294			switch (family) {
5295			case PF_INET:
5296				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5297					return NF_ACCEPT;
5298				break;
5299			case PF_INET6:
5300				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5301					return NF_ACCEPT;
5302				break;
5303			default:
5304				return NF_DROP_ERR(-ECONNREFUSED);
5305			}
5306		}
5307		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5308			return NF_DROP;
5309		secmark_perm = PACKET__SEND;
5310	} else {
5311		/* Locally generated packet, fetch the security label from the
5312		 * associated socket. */
5313		struct sk_security_struct *sksec = sk->sk_security;
5314		peer_sid = sksec->sid;
5315		secmark_perm = PACKET__SEND;
5316	}
5317
5318	ad.type = LSM_AUDIT_DATA_NET;
5319	ad.u.net = &net;
5320	ad.u.net->netif = ifindex;
5321	ad.u.net->family = family;
5322	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5323		return NF_DROP;
5324
5325	if (secmark_active)
5326		if (avc_has_perm(peer_sid, skb->secmark,
5327				 SECCLASS_PACKET, secmark_perm, &ad))
5328			return NF_DROP_ERR(-ECONNREFUSED);
5329
5330	if (peerlbl_active) {
5331		u32 if_sid;
5332		u32 node_sid;
5333
5334		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5335			return NF_DROP;
5336		if (avc_has_perm(peer_sid, if_sid,
5337				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5338			return NF_DROP_ERR(-ECONNREFUSED);
5339
5340		if (sel_netnode_sid(addrp, family, &node_sid))
5341			return NF_DROP;
5342		if (avc_has_perm(peer_sid, node_sid,
5343				 SECCLASS_NODE, NODE__SENDTO, &ad))
5344			return NF_DROP_ERR(-ECONNREFUSED);
5345	}
5346
5347	return NF_ACCEPT;
5348}
5349
5350static unsigned int selinux_ipv4_postroute(void *priv,
5351					   struct sk_buff *skb,
5352					   const struct nf_hook_state *state)
5353{
5354	return selinux_ip_postroute(skb, state->out, PF_INET);
5355}
5356
5357#if IS_ENABLED(CONFIG_IPV6)
5358static unsigned int selinux_ipv6_postroute(void *priv,
5359					   struct sk_buff *skb,
5360					   const struct nf_hook_state *state)
5361{
5362	return selinux_ip_postroute(skb, state->out, PF_INET6);
5363}
5364#endif	/* IPV6 */
5365
5366#endif	/* CONFIG_NETFILTER */
5367
5368static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5369{
5370	return selinux_nlmsg_perm(sk, skb);
5371}
5372
5373static int ipc_alloc_security(struct task_struct *task,
5374			      struct kern_ipc_perm *perm,
5375			      u16 sclass)
5376{
5377	struct ipc_security_struct *isec;
5378	u32 sid;
5379
5380	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5381	if (!isec)
5382		return -ENOMEM;
5383
5384	sid = task_sid(task);
5385	isec->sclass = sclass;
5386	isec->sid = sid;
5387	perm->security = isec;
5388
5389	return 0;
5390}
5391
5392static void ipc_free_security(struct kern_ipc_perm *perm)
5393{
5394	struct ipc_security_struct *isec = perm->security;
5395	perm->security = NULL;
5396	kfree(isec);
5397}
5398
5399static int msg_msg_alloc_security(struct msg_msg *msg)
5400{
5401	struct msg_security_struct *msec;
5402
5403	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5404	if (!msec)
5405		return -ENOMEM;
5406
5407	msec->sid = SECINITSID_UNLABELED;
5408	msg->security = msec;
5409
5410	return 0;
5411}
5412
5413static void msg_msg_free_security(struct msg_msg *msg)
5414{
5415	struct msg_security_struct *msec = msg->security;
5416
5417	msg->security = NULL;
5418	kfree(msec);
5419}
5420
5421static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5422			u32 perms)
5423{
5424	struct ipc_security_struct *isec;
5425	struct common_audit_data ad;
5426	u32 sid = current_sid();
5427
5428	isec = ipc_perms->security;
5429
5430	ad.type = LSM_AUDIT_DATA_IPC;
5431	ad.u.ipc_id = ipc_perms->key;
5432
5433	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5434}
5435
5436static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5437{
5438	return msg_msg_alloc_security(msg);
5439}
5440
5441static void selinux_msg_msg_free_security(struct msg_msg *msg)
5442{
5443	msg_msg_free_security(msg);
5444}
5445
5446/* message queue security operations */
5447static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5448{
5449	struct ipc_security_struct *isec;
5450	struct common_audit_data ad;
5451	u32 sid = current_sid();
5452	int rc;
5453
5454	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5455	if (rc)
5456		return rc;
5457
5458	isec = msq->q_perm.security;
5459
5460	ad.type = LSM_AUDIT_DATA_IPC;
5461	ad.u.ipc_id = msq->q_perm.key;
5462
5463	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5464			  MSGQ__CREATE, &ad);
5465	if (rc) {
5466		ipc_free_security(&msq->q_perm);
5467		return rc;
5468	}
5469	return 0;
5470}
5471
5472static void selinux_msg_queue_free_security(struct msg_queue *msq)
5473{
5474	ipc_free_security(&msq->q_perm);
5475}
5476
5477static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5478{
5479	struct ipc_security_struct *isec;
5480	struct common_audit_data ad;
5481	u32 sid = current_sid();
5482
5483	isec = msq->q_perm.security;
5484
5485	ad.type = LSM_AUDIT_DATA_IPC;
5486	ad.u.ipc_id = msq->q_perm.key;
5487
5488	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5489			    MSGQ__ASSOCIATE, &ad);
5490}
5491
5492static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5493{
5494	int err;
5495	int perms;
5496
5497	switch (cmd) {
5498	case IPC_INFO:
5499	case MSG_INFO:
5500		/* No specific object, just general system-wide information. */
5501		return task_has_system(current, SYSTEM__IPC_INFO);
5502	case IPC_STAT:
5503	case MSG_STAT:
5504		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5505		break;
5506	case IPC_SET:
5507		perms = MSGQ__SETATTR;
5508		break;
5509	case IPC_RMID:
5510		perms = MSGQ__DESTROY;
5511		break;
5512	default:
5513		return 0;
5514	}
5515
5516	err = ipc_has_perm(&msq->q_perm, perms);
5517	return err;
5518}
5519
5520static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5521{
5522	struct ipc_security_struct *isec;
5523	struct msg_security_struct *msec;
5524	struct common_audit_data ad;
5525	u32 sid = current_sid();
5526	int rc;
5527
5528	isec = msq->q_perm.security;
5529	msec = msg->security;
5530
5531	/*
5532	 * First time through, need to assign label to the message
5533	 */
5534	if (msec->sid == SECINITSID_UNLABELED) {
5535		/*
5536		 * Compute new sid based on current process and
5537		 * message queue this message will be stored in
5538		 */
5539		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5540					     NULL, &msec->sid);
5541		if (rc)
5542			return rc;
5543	}
5544
5545	ad.type = LSM_AUDIT_DATA_IPC;
5546	ad.u.ipc_id = msq->q_perm.key;
5547
5548	/* Can this process write to the queue? */
5549	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5550			  MSGQ__WRITE, &ad);
5551	if (!rc)
5552		/* Can this process send the message */
5553		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5554				  MSG__SEND, &ad);
5555	if (!rc)
5556		/* Can the message be put in the queue? */
5557		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5558				  MSGQ__ENQUEUE, &ad);
5559
5560	return rc;
5561}
5562
5563static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5564				    struct task_struct *target,
5565				    long type, int mode)
5566{
5567	struct ipc_security_struct *isec;
5568	struct msg_security_struct *msec;
5569	struct common_audit_data ad;
5570	u32 sid = task_sid(target);
5571	int rc;
5572
5573	isec = msq->q_perm.security;
5574	msec = msg->security;
5575
5576	ad.type = LSM_AUDIT_DATA_IPC;
5577	ad.u.ipc_id = msq->q_perm.key;
5578
5579	rc = avc_has_perm(sid, isec->sid,
5580			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5581	if (!rc)
5582		rc = avc_has_perm(sid, msec->sid,
5583				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5584	return rc;
5585}
5586
5587/* Shared Memory security operations */
5588static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5589{
5590	struct ipc_security_struct *isec;
5591	struct common_audit_data ad;
5592	u32 sid = current_sid();
5593	int rc;
5594
5595	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5596	if (rc)
5597		return rc;
5598
5599	isec = shp->shm_perm.security;
5600
5601	ad.type = LSM_AUDIT_DATA_IPC;
5602	ad.u.ipc_id = shp->shm_perm.key;
5603
5604	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5605			  SHM__CREATE, &ad);
5606	if (rc) {
5607		ipc_free_security(&shp->shm_perm);
5608		return rc;
5609	}
5610	return 0;
5611}
5612
5613static void selinux_shm_free_security(struct shmid_kernel *shp)
5614{
5615	ipc_free_security(&shp->shm_perm);
5616}
5617
5618static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5619{
5620	struct ipc_security_struct *isec;
5621	struct common_audit_data ad;
5622	u32 sid = current_sid();
5623
5624	isec = shp->shm_perm.security;
5625
5626	ad.type = LSM_AUDIT_DATA_IPC;
5627	ad.u.ipc_id = shp->shm_perm.key;
5628
5629	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5630			    SHM__ASSOCIATE, &ad);
5631}
5632
5633/* Note, at this point, shp is locked down */
5634static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5635{
5636	int perms;
5637	int err;
5638
5639	switch (cmd) {
5640	case IPC_INFO:
5641	case SHM_INFO:
5642		/* No specific object, just general system-wide information. */
5643		return task_has_system(current, SYSTEM__IPC_INFO);
5644	case IPC_STAT:
5645	case SHM_STAT:
5646		perms = SHM__GETATTR | SHM__ASSOCIATE;
5647		break;
5648	case IPC_SET:
5649		perms = SHM__SETATTR;
5650		break;
5651	case SHM_LOCK:
5652	case SHM_UNLOCK:
5653		perms = SHM__LOCK;
5654		break;
5655	case IPC_RMID:
5656		perms = SHM__DESTROY;
5657		break;
5658	default:
5659		return 0;
5660	}
5661
5662	err = ipc_has_perm(&shp->shm_perm, perms);
5663	return err;
5664}
5665
5666static int selinux_shm_shmat(struct shmid_kernel *shp,
5667			     char __user *shmaddr, int shmflg)
5668{
5669	u32 perms;
5670
5671	if (shmflg & SHM_RDONLY)
5672		perms = SHM__READ;
5673	else
5674		perms = SHM__READ | SHM__WRITE;
5675
5676	return ipc_has_perm(&shp->shm_perm, perms);
5677}
5678
5679/* Semaphore security operations */
5680static int selinux_sem_alloc_security(struct sem_array *sma)
5681{
5682	struct ipc_security_struct *isec;
5683	struct common_audit_data ad;
5684	u32 sid = current_sid();
5685	int rc;
5686
5687	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5688	if (rc)
5689		return rc;
5690
5691	isec = sma->sem_perm.security;
5692
5693	ad.type = LSM_AUDIT_DATA_IPC;
5694	ad.u.ipc_id = sma->sem_perm.key;
5695
5696	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5697			  SEM__CREATE, &ad);
5698	if (rc) {
5699		ipc_free_security(&sma->sem_perm);
5700		return rc;
5701	}
5702	return 0;
5703}
5704
5705static void selinux_sem_free_security(struct sem_array *sma)
5706{
5707	ipc_free_security(&sma->sem_perm);
5708}
5709
5710static int selinux_sem_associate(struct sem_array *sma, int semflg)
5711{
5712	struct ipc_security_struct *isec;
5713	struct common_audit_data ad;
5714	u32 sid = current_sid();
5715
5716	isec = sma->sem_perm.security;
5717
5718	ad.type = LSM_AUDIT_DATA_IPC;
5719	ad.u.ipc_id = sma->sem_perm.key;
5720
5721	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5722			    SEM__ASSOCIATE, &ad);
5723}
5724
5725/* Note, at this point, sma is locked down */
5726static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5727{
5728	int err;
5729	u32 perms;
5730
5731	switch (cmd) {
5732	case IPC_INFO:
5733	case SEM_INFO:
5734		/* No specific object, just general system-wide information. */
5735		return task_has_system(current, SYSTEM__IPC_INFO);
5736	case GETPID:
5737	case GETNCNT:
5738	case GETZCNT:
5739		perms = SEM__GETATTR;
5740		break;
5741	case GETVAL:
5742	case GETALL:
5743		perms = SEM__READ;
5744		break;
5745	case SETVAL:
5746	case SETALL:
5747		perms = SEM__WRITE;
5748		break;
5749	case IPC_RMID:
5750		perms = SEM__DESTROY;
5751		break;
5752	case IPC_SET:
5753		perms = SEM__SETATTR;
5754		break;
5755	case IPC_STAT:
5756	case SEM_STAT:
5757		perms = SEM__GETATTR | SEM__ASSOCIATE;
5758		break;
5759	default:
5760		return 0;
5761	}
5762
5763	err = ipc_has_perm(&sma->sem_perm, perms);
5764	return err;
5765}
5766
5767static int selinux_sem_semop(struct sem_array *sma,
5768			     struct sembuf *sops, unsigned nsops, int alter)
5769{
5770	u32 perms;
5771
5772	if (alter)
5773		perms = SEM__READ | SEM__WRITE;
5774	else
5775		perms = SEM__READ;
5776
5777	return ipc_has_perm(&sma->sem_perm, perms);
5778}
5779
5780static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5781{
5782	u32 av = 0;
5783
5784	av = 0;
5785	if (flag & S_IRUGO)
5786		av |= IPC__UNIX_READ;
5787	if (flag & S_IWUGO)
5788		av |= IPC__UNIX_WRITE;
5789
5790	if (av == 0)
5791		return 0;
5792
5793	return ipc_has_perm(ipcp, av);
5794}
5795
5796static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5797{
5798	struct ipc_security_struct *isec = ipcp->security;
5799	*secid = isec->sid;
5800}
5801
5802static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5803{
5804	if (inode)
5805		inode_doinit_with_dentry(inode, dentry);
5806}
5807
5808static int selinux_getprocattr(struct task_struct *p,
5809			       char *name, char **value)
5810{
5811	const struct task_security_struct *__tsec;
5812	u32 sid;
5813	int error;
5814	unsigned len;
5815
5816	if (current != p) {
5817		error = current_has_perm(p, PROCESS__GETATTR);
5818		if (error)
5819			return error;
5820	}
5821
5822	rcu_read_lock();
5823	__tsec = __task_cred(p)->security;
5824
5825	if (!strcmp(name, "current"))
5826		sid = __tsec->sid;
5827	else if (!strcmp(name, "prev"))
5828		sid = __tsec->osid;
5829	else if (!strcmp(name, "exec"))
5830		sid = __tsec->exec_sid;
5831	else if (!strcmp(name, "fscreate"))
5832		sid = __tsec->create_sid;
5833	else if (!strcmp(name, "keycreate"))
5834		sid = __tsec->keycreate_sid;
5835	else if (!strcmp(name, "sockcreate"))
5836		sid = __tsec->sockcreate_sid;
5837	else
5838		goto invalid;
5839	rcu_read_unlock();
5840
5841	if (!sid)
5842		return 0;
5843
5844	error = security_sid_to_context(sid, value, &len);
5845	if (error)
5846		return error;
5847	return len;
5848
5849invalid:
5850	rcu_read_unlock();
5851	return -EINVAL;
5852}
5853
5854static int selinux_setprocattr(struct task_struct *p,
5855			       char *name, void *value, size_t size)
5856{
5857	struct task_security_struct *tsec;
 
5858	struct cred *new;
5859	u32 sid = 0, ptsid;
5860	int error;
5861	char *str = value;
5862
5863	if (current != p) {
5864		/* SELinux only allows a process to change its own
5865		   security attributes. */
5866		return -EACCES;
5867	}
5868
5869	/*
5870	 * Basic control over ability to set these attributes at all.
5871	 * current == p, but we'll pass them separately in case the
5872	 * above restriction is ever removed.
5873	 */
5874	if (!strcmp(name, "exec"))
5875		error = current_has_perm(p, PROCESS__SETEXEC);
5876	else if (!strcmp(name, "fscreate"))
5877		error = current_has_perm(p, PROCESS__SETFSCREATE);
5878	else if (!strcmp(name, "keycreate"))
5879		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5880	else if (!strcmp(name, "sockcreate"))
5881		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5882	else if (!strcmp(name, "current"))
5883		error = current_has_perm(p, PROCESS__SETCURRENT);
5884	else
5885		error = -EINVAL;
5886	if (error)
5887		return error;
5888
5889	/* Obtain a SID for the context, if one was specified. */
5890	if (size && str[0] && str[0] != '\n') {
5891		if (str[size-1] == '\n') {
5892			str[size-1] = 0;
5893			size--;
5894		}
5895		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5896		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5897			if (!capable(CAP_MAC_ADMIN)) {
5898				struct audit_buffer *ab;
5899				size_t audit_size;
5900
5901				/* We strip a nul only if it is at the end, otherwise the
5902				 * context contains a nul and we should audit that */
5903				if (str[size - 1] == '\0')
5904					audit_size = size - 1;
5905				else
5906					audit_size = size;
5907				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5908				audit_log_format(ab, "op=fscreate invalid_context=");
5909				audit_log_n_untrustedstring(ab, value, audit_size);
5910				audit_log_end(ab);
5911
5912				return error;
5913			}
5914			error = security_context_to_sid_force(value, size,
5915							      &sid);
5916		}
5917		if (error)
5918			return error;
5919	}
5920
5921	new = prepare_creds();
5922	if (!new)
5923		return -ENOMEM;
5924
5925	/* Permission checking based on the specified context is
5926	   performed during the actual operation (execve,
5927	   open/mkdir/...), when we know the full context of the
5928	   operation.  See selinux_bprm_set_creds for the execve
5929	   checks and may_create for the file creation checks. The
5930	   operation will then fail if the context is not permitted. */
5931	tsec = new->security;
5932	if (!strcmp(name, "exec")) {
5933		tsec->exec_sid = sid;
5934	} else if (!strcmp(name, "fscreate")) {
5935		tsec->create_sid = sid;
5936	} else if (!strcmp(name, "keycreate")) {
5937		error = may_create_key(sid, p);
5938		if (error)
5939			goto abort_change;
5940		tsec->keycreate_sid = sid;
5941	} else if (!strcmp(name, "sockcreate")) {
5942		tsec->sockcreate_sid = sid;
5943	} else if (!strcmp(name, "current")) {
5944		error = -EINVAL;
5945		if (sid == 0)
5946			goto abort_change;
5947
5948		/* Only allow single threaded processes to change context */
5949		error = -EPERM;
5950		if (!current_is_single_threaded()) {
5951			error = security_bounded_transition(tsec->sid, sid);
5952			if (error)
5953				goto abort_change;
5954		}
5955
5956		/* Check permissions for the transition. */
5957		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5958				     PROCESS__DYNTRANSITION, NULL);
5959		if (error)
5960			goto abort_change;
5961
5962		/* Check for ptracing, and update the task SID if ok.
5963		   Otherwise, leave SID unchanged and fail. */
5964		ptsid = ptrace_parent_sid(p);
5965		if (ptsid != 0) {
 
 
 
 
 
 
5966			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5967					     PROCESS__PTRACE, NULL);
5968			if (error)
5969				goto abort_change;
5970		}
5971
5972		tsec->sid = sid;
5973	} else {
5974		error = -EINVAL;
5975		goto abort_change;
5976	}
5977
5978	commit_creds(new);
5979	return size;
5980
5981abort_change:
5982	abort_creds(new);
5983	return error;
5984}
5985
5986static int selinux_ismaclabel(const char *name)
5987{
5988	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5989}
5990
5991static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5992{
5993	return security_sid_to_context(secid, secdata, seclen);
5994}
5995
5996static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5997{
5998	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5999}
6000
6001static void selinux_release_secctx(char *secdata, u32 seclen)
6002{
6003	kfree(secdata);
6004}
6005
6006static void selinux_inode_invalidate_secctx(struct inode *inode)
6007{
6008	struct inode_security_struct *isec = inode->i_security;
6009
6010	spin_lock(&isec->lock);
6011	isec->initialized = LABEL_INVALID;
6012	spin_unlock(&isec->lock);
6013}
6014
6015/*
6016 *	called with inode->i_mutex locked
6017 */
6018static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6019{
6020	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6021}
6022
6023/*
6024 *	called with inode->i_mutex locked
6025 */
6026static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6027{
6028	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6029}
6030
6031static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6032{
6033	int len = 0;
6034	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6035						ctx, true);
6036	if (len < 0)
6037		return len;
6038	*ctxlen = len;
6039	return 0;
6040}
6041#ifdef CONFIG_KEYS
6042
6043static int selinux_key_alloc(struct key *k, const struct cred *cred,
6044			     unsigned long flags)
6045{
6046	const struct task_security_struct *tsec;
6047	struct key_security_struct *ksec;
6048
6049	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6050	if (!ksec)
6051		return -ENOMEM;
6052
6053	tsec = cred->security;
6054	if (tsec->keycreate_sid)
6055		ksec->sid = tsec->keycreate_sid;
6056	else
6057		ksec->sid = tsec->sid;
6058
6059	k->security = ksec;
6060	return 0;
6061}
6062
6063static void selinux_key_free(struct key *k)
6064{
6065	struct key_security_struct *ksec = k->security;
6066
6067	k->security = NULL;
6068	kfree(ksec);
6069}
6070
6071static int selinux_key_permission(key_ref_t key_ref,
6072				  const struct cred *cred,
6073				  unsigned perm)
6074{
6075	struct key *key;
6076	struct key_security_struct *ksec;
6077	u32 sid;
6078
6079	/* if no specific permissions are requested, we skip the
6080	   permission check. No serious, additional covert channels
6081	   appear to be created. */
6082	if (perm == 0)
6083		return 0;
6084
6085	sid = cred_sid(cred);
6086
6087	key = key_ref_to_ptr(key_ref);
6088	ksec = key->security;
6089
6090	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6091}
6092
6093static int selinux_key_getsecurity(struct key *key, char **_buffer)
6094{
6095	struct key_security_struct *ksec = key->security;
6096	char *context = NULL;
6097	unsigned len;
6098	int rc;
6099
6100	rc = security_sid_to_context(ksec->sid, &context, &len);
6101	if (!rc)
6102		rc = len;
6103	*_buffer = context;
6104	return rc;
6105}
6106
6107#endif
6108
6109static struct security_hook_list selinux_hooks[] = {
6110	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6111	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6112	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6113	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6114
6115	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6116	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6117	LSM_HOOK_INIT(capget, selinux_capget),
6118	LSM_HOOK_INIT(capset, selinux_capset),
6119	LSM_HOOK_INIT(capable, selinux_capable),
6120	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6121	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6122	LSM_HOOK_INIT(syslog, selinux_syslog),
6123	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6124
6125	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6126
6127	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6128	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6129	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6130	LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
6131
6132	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6133	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6134	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6135	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6136	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6137	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6138	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6139	LSM_HOOK_INIT(sb_mount, selinux_mount),
6140	LSM_HOOK_INIT(sb_umount, selinux_umount),
6141	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6142	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6143	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6144
6145	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6146	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6147
6148	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6149	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6150	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6151	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6152	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6153	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6154	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6155	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6156	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6157	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6158	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6159	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6160	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6161	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6162	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6163	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6164	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6165	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6166	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6167	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6168	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6169	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6170	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6171	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6172	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6173	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6174	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6175
6176	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6177	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6178	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6179	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6180	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6181	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6182	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6183	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6184	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6185	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6186	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6187	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6188
6189	LSM_HOOK_INIT(file_open, selinux_file_open),
6190
6191	LSM_HOOK_INIT(task_create, selinux_task_create),
6192	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6193	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6194	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6195	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6196	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6197	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6198	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6199	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6200	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6201	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6202	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6203	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6204	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6205	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6206	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6207	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6208	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6209	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6210	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6211	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6212	LSM_HOOK_INIT(task_wait, selinux_task_wait),
6213	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6214
6215	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6216	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6217
6218	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6219	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6220
6221	LSM_HOOK_INIT(msg_queue_alloc_security,
6222			selinux_msg_queue_alloc_security),
6223	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6224	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6225	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6226	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6227	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6228
6229	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6230	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6231	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6232	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6233	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6234
6235	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6236	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6237	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6238	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6239	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6240
6241	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6242
6243	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6244	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6245
6246	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6247	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6248	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6249	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6250	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6251	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6252	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6253	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6254
6255	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6256	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6257
6258	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6259	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6260	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6261	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6262	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6263	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6264	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6265	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6266	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6267	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6268	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6269	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6270	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6271	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6272	LSM_HOOK_INIT(socket_getpeersec_stream,
6273			selinux_socket_getpeersec_stream),
6274	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6275	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6276	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6277	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6278	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6279	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6280	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6281	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6282	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6283	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6284	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6285	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6286	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6287	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6288	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6289	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6290	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6291	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6292	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6293
6294#ifdef CONFIG_SECURITY_NETWORK_XFRM
6295	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6296	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6297	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6298	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6299	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6300	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6301			selinux_xfrm_state_alloc_acquire),
6302	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6303	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6304	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6305	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6306			selinux_xfrm_state_pol_flow_match),
6307	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6308#endif
6309
6310#ifdef CONFIG_KEYS
6311	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6312	LSM_HOOK_INIT(key_free, selinux_key_free),
6313	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6314	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6315#endif
6316
6317#ifdef CONFIG_AUDIT
6318	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6319	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6320	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6321	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6322#endif
6323};
6324
6325static __init int selinux_init(void)
6326{
6327	if (!security_module_enable("selinux")) {
6328		selinux_enabled = 0;
6329		return 0;
6330	}
6331
6332	if (!selinux_enabled) {
6333		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6334		return 0;
6335	}
6336
6337	printk(KERN_INFO "SELinux:  Initializing.\n");
6338
6339	/* Set the security state for the initial task. */
6340	cred_init_security();
6341
6342	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6343
6344	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6345					    sizeof(struct inode_security_struct),
6346					    0, SLAB_PANIC, NULL);
6347	file_security_cache = kmem_cache_create("selinux_file_security",
6348					    sizeof(struct file_security_struct),
6349					    0, SLAB_PANIC, NULL);
6350	avc_init();
6351
6352	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6353
6354	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6355		panic("SELinux: Unable to register AVC netcache callback\n");
6356
6357	if (selinux_enforcing)
6358		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6359	else
6360		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6361
6362	return 0;
6363}
6364
6365static void delayed_superblock_init(struct super_block *sb, void *unused)
6366{
6367	superblock_doinit(sb, NULL);
6368}
6369
6370void selinux_complete_init(void)
6371{
6372	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6373
6374	/* Set up any superblocks initialized prior to the policy load. */
6375	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6376	iterate_supers(delayed_superblock_init, NULL);
6377}
6378
6379/* SELinux requires early initialization in order to label
6380   all processes and objects when they are created. */
6381security_initcall(selinux_init);
6382
6383#if defined(CONFIG_NETFILTER)
6384
6385static struct nf_hook_ops selinux_nf_ops[] = {
6386	{
6387		.hook =		selinux_ipv4_postroute,
6388		.pf =		NFPROTO_IPV4,
6389		.hooknum =	NF_INET_POST_ROUTING,
6390		.priority =	NF_IP_PRI_SELINUX_LAST,
6391	},
6392	{
6393		.hook =		selinux_ipv4_forward,
6394		.pf =		NFPROTO_IPV4,
6395		.hooknum =	NF_INET_FORWARD,
6396		.priority =	NF_IP_PRI_SELINUX_FIRST,
6397	},
6398	{
6399		.hook =		selinux_ipv4_output,
6400		.pf =		NFPROTO_IPV4,
6401		.hooknum =	NF_INET_LOCAL_OUT,
6402		.priority =	NF_IP_PRI_SELINUX_FIRST,
6403	},
6404#if IS_ENABLED(CONFIG_IPV6)
6405	{
6406		.hook =		selinux_ipv6_postroute,
6407		.pf =		NFPROTO_IPV6,
6408		.hooknum =	NF_INET_POST_ROUTING,
6409		.priority =	NF_IP6_PRI_SELINUX_LAST,
6410	},
6411	{
6412		.hook =		selinux_ipv6_forward,
6413		.pf =		NFPROTO_IPV6,
6414		.hooknum =	NF_INET_FORWARD,
6415		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6416	},
6417	{
6418		.hook =		selinux_ipv6_output,
6419		.pf =		NFPROTO_IPV6,
6420		.hooknum =	NF_INET_LOCAL_OUT,
6421		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6422	},
6423#endif	/* IPV6 */
6424};
6425
6426static int __init selinux_nf_ip_init(void)
6427{
6428	int err;
6429
6430	if (!selinux_enabled)
6431		return 0;
6432
6433	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6434
6435	err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6436	if (err)
6437		panic("SELinux: nf_register_hooks: error %d\n", err);
6438
6439	return 0;
6440}
6441
6442__initcall(selinux_nf_ip_init);
6443
6444#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6445static void selinux_nf_ip_exit(void)
6446{
6447	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6448
6449	nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6450}
6451#endif
6452
6453#else /* CONFIG_NETFILTER */
6454
6455#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6456#define selinux_nf_ip_exit()
6457#endif
6458
6459#endif /* CONFIG_NETFILTER */
6460
6461#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6462static int selinux_disabled;
6463
6464int selinux_disable(void)
6465{
6466	if (ss_initialized) {
6467		/* Not permitted after initial policy load. */
6468		return -EINVAL;
6469	}
6470
6471	if (selinux_disabled) {
6472		/* Only do this once. */
6473		return -EINVAL;
6474	}
6475
6476	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6477
6478	selinux_disabled = 1;
6479	selinux_enabled = 0;
6480
6481	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6482
6483	/* Try to destroy the avc node cache */
6484	avc_disable();
6485
6486	/* Unregister netfilter hooks. */
6487	selinux_nf_ip_exit();
6488
6489	/* Unregister selinuxfs. */
6490	exit_sel_fs();
6491
6492	return 0;
6493}
6494#endif