Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  55#include <net/inet_connection_sock.h>
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>	/* for network interface checks */
  64#include <net/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
  68#include <linux/quota.h>
  69#include <linux/un.h>		/* for Unix socket types */
  70#include <net/af_unix.h>	/* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
  83#include <linux/export.h>
  84#include <linux/msg.h>
  85#include <linux/shm.h>
  86
  87#include "avc.h"
  88#include "objsec.h"
  89#include "netif.h"
  90#include "netnode.h"
  91#include "netport.h"
  92#include "xfrm.h"
  93#include "netlabel.h"
  94#include "audit.h"
  95#include "avc_ss.h"
  96
 
 
 
 
  97/* SECMARK reference count */
  98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
  99
 100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 101int selinux_enforcing;
 102
 103static int __init enforcing_setup(char *str)
 104{
 105	unsigned long enforcing;
 106	if (!kstrtoul(str, 0, &enforcing))
 107		selinux_enforcing = enforcing ? 1 : 0;
 108	return 1;
 109}
 110__setup("enforcing=", enforcing_setup);
 111#endif
 112
 113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 115
 116static int __init selinux_enabled_setup(char *str)
 117{
 118	unsigned long enabled;
 119	if (!kstrtoul(str, 0, &enabled))
 120		selinux_enabled = enabled ? 1 : 0;
 121	return 1;
 122}
 123__setup("selinux=", selinux_enabled_setup);
 124#else
 125int selinux_enabled = 1;
 126#endif
 127
 128static struct kmem_cache *sel_inode_cache;
 129static struct kmem_cache *file_security_cache;
 130
 131/**
 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 133 *
 134 * Description:
 135 * This function checks the SECMARK reference counter to see if any SECMARK
 136 * targets are currently configured, if the reference counter is greater than
 137 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 138 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 139 * policy capability is enabled, SECMARK is always considered enabled.
 140 *
 141 */
 142static int selinux_secmark_enabled(void)
 143{
 144	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 145}
 146
 147/**
 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 149 *
 150 * Description:
 151 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 152 * (1) if any are enabled or false (0) if neither are enabled.  If the
 153 * always_check_network policy capability is enabled, peer labeling
 154 * is always considered enabled.
 155 *
 156 */
 157static int selinux_peerlbl_enabled(void)
 158{
 159	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 160}
 161
 162static int selinux_netcache_avc_callback(u32 event)
 163{
 164	if (event == AVC_CALLBACK_RESET) {
 165		sel_netif_flush();
 166		sel_netnode_flush();
 167		sel_netport_flush();
 168		synchronize_net();
 169	}
 170	return 0;
 171}
 172
 173/*
 174 * initialise the security for the init task
 175 */
 176static void cred_init_security(void)
 177{
 178	struct cred *cred = (struct cred *) current->real_cred;
 179	struct task_security_struct *tsec;
 180
 181	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 182	if (!tsec)
 183		panic("SELinux:  Failed to initialize initial task.\n");
 184
 185	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 186	cred->security = tsec;
 187}
 188
 189/*
 190 * get the security ID of a set of credentials
 191 */
 192static inline u32 cred_sid(const struct cred *cred)
 193{
 194	const struct task_security_struct *tsec;
 195
 196	tsec = cred->security;
 197	return tsec->sid;
 198}
 199
 200/*
 201 * get the objective security ID of a task
 202 */
 203static inline u32 task_sid(const struct task_struct *task)
 204{
 205	u32 sid;
 206
 207	rcu_read_lock();
 208	sid = cred_sid(__task_cred(task));
 209	rcu_read_unlock();
 210	return sid;
 211}
 212
 213/*
 214 * get the subjective security ID of the current task
 215 */
 216static inline u32 current_sid(void)
 217{
 218	const struct task_security_struct *tsec = current_security();
 219
 220	return tsec->sid;
 221}
 222
 223/* Allocate and free functions for each kind of security blob. */
 224
 225static int inode_alloc_security(struct inode *inode)
 226{
 227	struct inode_security_struct *isec;
 228	u32 sid = current_sid();
 229
 230	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 231	if (!isec)
 232		return -ENOMEM;
 233
 234	mutex_init(&isec->lock);
 235	INIT_LIST_HEAD(&isec->list);
 236	isec->inode = inode;
 237	isec->sid = SECINITSID_UNLABELED;
 238	isec->sclass = SECCLASS_FILE;
 239	isec->task_sid = sid;
 240	inode->i_security = isec;
 241
 242	return 0;
 243}
 244
 245static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 246
 247/*
 248 * Try reloading inode security labels that have been marked as invalid.  The
 249 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 250 * allowed; when set to false, returns ERR_PTR(-ECHILD) when the label is
 251 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 252 * when no dentry is available, set it to NULL instead.
 253 */
 254static int __inode_security_revalidate(struct inode *inode,
 255				       struct dentry *opt_dentry,
 256				       bool may_sleep)
 257{
 258	struct inode_security_struct *isec = inode->i_security;
 259
 260	might_sleep_if(may_sleep);
 261
 262	if (isec->initialized == LABEL_INVALID) {
 263		if (!may_sleep)
 264			return -ECHILD;
 265
 266		/*
 267		 * Try reloading the inode security label.  This will fail if
 268		 * @opt_dentry is NULL and no dentry for this inode can be
 269		 * found; in that case, continue using the old label.
 270		 */
 271		inode_doinit_with_dentry(inode, opt_dentry);
 272	}
 273	return 0;
 274}
 275
 276static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 277{
 278	return inode->i_security;
 279}
 280
 281static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 282{
 283	int error;
 284
 285	error = __inode_security_revalidate(inode, NULL, !rcu);
 286	if (error)
 287		return ERR_PTR(error);
 288	return inode->i_security;
 289}
 290
 291/*
 292 * Get the security label of an inode.
 293 */
 294static struct inode_security_struct *inode_security(struct inode *inode)
 295{
 296	__inode_security_revalidate(inode, NULL, true);
 297	return inode->i_security;
 298}
 299
 300/*
 301 * Get the security label of a dentry's backing inode.
 302 */
 303static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 304{
 305	struct inode *inode = d_backing_inode(dentry);
 306
 307	__inode_security_revalidate(inode, dentry, true);
 308	return inode->i_security;
 309}
 310
 311static void inode_free_rcu(struct rcu_head *head)
 312{
 313	struct inode_security_struct *isec;
 314
 315	isec = container_of(head, struct inode_security_struct, rcu);
 316	kmem_cache_free(sel_inode_cache, isec);
 317}
 318
 319static void inode_free_security(struct inode *inode)
 320{
 321	struct inode_security_struct *isec = inode->i_security;
 322	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 323
 324	/*
 325	 * As not all inode security structures are in a list, we check for
 326	 * empty list outside of the lock to make sure that we won't waste
 327	 * time taking a lock doing nothing.
 328	 *
 329	 * The list_del_init() function can be safely called more than once.
 330	 * It should not be possible for this function to be called with
 331	 * concurrent list_add(), but for better safety against future changes
 332	 * in the code, we use list_empty_careful() here.
 333	 */
 334	if (!list_empty_careful(&isec->list)) {
 335		spin_lock(&sbsec->isec_lock);
 336		list_del_init(&isec->list);
 337		spin_unlock(&sbsec->isec_lock);
 338	}
 339
 340	/*
 341	 * The inode may still be referenced in a path walk and
 342	 * a call to selinux_inode_permission() can be made
 343	 * after inode_free_security() is called. Ideally, the VFS
 344	 * wouldn't do this, but fixing that is a much harder
 345	 * job. For now, simply free the i_security via RCU, and
 346	 * leave the current inode->i_security pointer intact.
 347	 * The inode will be freed after the RCU grace period too.
 348	 */
 349	call_rcu(&isec->rcu, inode_free_rcu);
 350}
 351
 352static int file_alloc_security(struct file *file)
 353{
 354	struct file_security_struct *fsec;
 355	u32 sid = current_sid();
 356
 357	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 358	if (!fsec)
 359		return -ENOMEM;
 360
 361	fsec->sid = sid;
 362	fsec->fown_sid = sid;
 363	file->f_security = fsec;
 364
 365	return 0;
 366}
 367
 368static void file_free_security(struct file *file)
 369{
 370	struct file_security_struct *fsec = file->f_security;
 371	file->f_security = NULL;
 372	kmem_cache_free(file_security_cache, fsec);
 373}
 374
 375static int superblock_alloc_security(struct super_block *sb)
 376{
 377	struct superblock_security_struct *sbsec;
 378
 379	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 380	if (!sbsec)
 381		return -ENOMEM;
 382
 383	mutex_init(&sbsec->lock);
 384	INIT_LIST_HEAD(&sbsec->isec_head);
 385	spin_lock_init(&sbsec->isec_lock);
 386	sbsec->sb = sb;
 387	sbsec->sid = SECINITSID_UNLABELED;
 388	sbsec->def_sid = SECINITSID_FILE;
 389	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 390	sb->s_security = sbsec;
 391
 392	return 0;
 393}
 394
 395static void superblock_free_security(struct super_block *sb)
 396{
 397	struct superblock_security_struct *sbsec = sb->s_security;
 398	sb->s_security = NULL;
 399	kfree(sbsec);
 400}
 401
 402/* The file system's label must be initialized prior to use. */
 403
 404static const char *labeling_behaviors[7] = {
 405	"uses xattr",
 406	"uses transition SIDs",
 407	"uses task SIDs",
 408	"uses genfs_contexts",
 409	"not configured for labeling",
 410	"uses mountpoint labeling",
 411	"uses native labeling",
 412};
 413
 
 
 414static inline int inode_doinit(struct inode *inode)
 415{
 416	return inode_doinit_with_dentry(inode, NULL);
 417}
 418
 419enum {
 420	Opt_error = -1,
 421	Opt_context = 1,
 422	Opt_fscontext = 2,
 423	Opt_defcontext = 3,
 424	Opt_rootcontext = 4,
 425	Opt_labelsupport = 5,
 426	Opt_nextmntopt = 6,
 427};
 428
 429#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 430
 431static const match_table_t tokens = {
 432	{Opt_context, CONTEXT_STR "%s"},
 433	{Opt_fscontext, FSCONTEXT_STR "%s"},
 434	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 435	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 436	{Opt_labelsupport, LABELSUPP_STR},
 437	{Opt_error, NULL},
 438};
 439
 440#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 441
 442static int may_context_mount_sb_relabel(u32 sid,
 443			struct superblock_security_struct *sbsec,
 444			const struct cred *cred)
 445{
 446	const struct task_security_struct *tsec = cred->security;
 447	int rc;
 448
 449	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 450			  FILESYSTEM__RELABELFROM, NULL);
 451	if (rc)
 452		return rc;
 453
 454	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 455			  FILESYSTEM__RELABELTO, NULL);
 456	return rc;
 457}
 458
 459static int may_context_mount_inode_relabel(u32 sid,
 460			struct superblock_security_struct *sbsec,
 461			const struct cred *cred)
 462{
 463	const struct task_security_struct *tsec = cred->security;
 464	int rc;
 465	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 466			  FILESYSTEM__RELABELFROM, NULL);
 467	if (rc)
 468		return rc;
 469
 470	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 471			  FILESYSTEM__ASSOCIATE, NULL);
 472	return rc;
 473}
 474
 475static int selinux_is_sblabel_mnt(struct super_block *sb)
 476{
 477	struct superblock_security_struct *sbsec = sb->s_security;
 478
 479	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 480		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 481		sbsec->behavior == SECURITY_FS_USE_TASK ||
 482		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 483		/* Special handling. Genfs but also in-core setxattr handler */
 484		!strcmp(sb->s_type->name, "sysfs") ||
 485		!strcmp(sb->s_type->name, "pstore") ||
 486		!strcmp(sb->s_type->name, "debugfs") ||
 487		!strcmp(sb->s_type->name, "rootfs");
 488}
 489
 490static int sb_finish_set_opts(struct super_block *sb)
 491{
 492	struct superblock_security_struct *sbsec = sb->s_security;
 493	struct dentry *root = sb->s_root;
 494	struct inode *root_inode = d_backing_inode(root);
 495	int rc = 0;
 496
 497	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 498		/* Make sure that the xattr handler exists and that no
 499		   error other than -ENODATA is returned by getxattr on
 500		   the root directory.  -ENODATA is ok, as this may be
 501		   the first boot of the SELinux kernel before we have
 502		   assigned xattr values to the filesystem. */
 503		if (!root_inode->i_op->getxattr) {
 504			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 505			       "xattr support\n", sb->s_id, sb->s_type->name);
 506			rc = -EOPNOTSUPP;
 507			goto out;
 508		}
 509		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 510		if (rc < 0 && rc != -ENODATA) {
 511			if (rc == -EOPNOTSUPP)
 512				printk(KERN_WARNING "SELinux: (dev %s, type "
 513				       "%s) has no security xattr handler\n",
 514				       sb->s_id, sb->s_type->name);
 515			else
 516				printk(KERN_WARNING "SELinux: (dev %s, type "
 517				       "%s) getxattr errno %d\n", sb->s_id,
 518				       sb->s_type->name, -rc);
 519			goto out;
 520		}
 521	}
 522
 
 
 523	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 524		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 525		       sb->s_id, sb->s_type->name);
 526
 527	sbsec->flags |= SE_SBINITIALIZED;
 528	if (selinux_is_sblabel_mnt(sb))
 529		sbsec->flags |= SBLABEL_MNT;
 
 
 
 
 
 
 
 
 
 
 530
 531	/* Initialize the root inode. */
 532	rc = inode_doinit_with_dentry(root_inode, root);
 533
 534	/* Initialize any other inodes associated with the superblock, e.g.
 535	   inodes created prior to initial policy load or inodes created
 536	   during get_sb by a pseudo filesystem that directly
 537	   populates itself. */
 538	spin_lock(&sbsec->isec_lock);
 539next_inode:
 540	if (!list_empty(&sbsec->isec_head)) {
 541		struct inode_security_struct *isec =
 542				list_entry(sbsec->isec_head.next,
 543					   struct inode_security_struct, list);
 544		struct inode *inode = isec->inode;
 545		list_del_init(&isec->list);
 546		spin_unlock(&sbsec->isec_lock);
 547		inode = igrab(inode);
 548		if (inode) {
 549			if (!IS_PRIVATE(inode))
 550				inode_doinit(inode);
 551			iput(inode);
 552		}
 553		spin_lock(&sbsec->isec_lock);
 
 554		goto next_inode;
 555	}
 556	spin_unlock(&sbsec->isec_lock);
 557out:
 558	return rc;
 559}
 560
 561/*
 562 * This function should allow an FS to ask what it's mount security
 563 * options were so it can use those later for submounts, displaying
 564 * mount options, or whatever.
 565 */
 566static int selinux_get_mnt_opts(const struct super_block *sb,
 567				struct security_mnt_opts *opts)
 568{
 569	int rc = 0, i;
 570	struct superblock_security_struct *sbsec = sb->s_security;
 571	char *context = NULL;
 572	u32 len;
 573	char tmp;
 574
 575	security_init_mnt_opts(opts);
 576
 577	if (!(sbsec->flags & SE_SBINITIALIZED))
 578		return -EINVAL;
 579
 580	if (!ss_initialized)
 581		return -EINVAL;
 582
 583	/* make sure we always check enough bits to cover the mask */
 584	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 585
 586	tmp = sbsec->flags & SE_MNTMASK;
 587	/* count the number of mount options for this sb */
 588	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 589		if (tmp & 0x01)
 590			opts->num_mnt_opts++;
 591		tmp >>= 1;
 592	}
 593	/* Check if the Label support flag is set */
 594	if (sbsec->flags & SBLABEL_MNT)
 595		opts->num_mnt_opts++;
 596
 597	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 598	if (!opts->mnt_opts) {
 599		rc = -ENOMEM;
 600		goto out_free;
 601	}
 602
 603	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 604	if (!opts->mnt_opts_flags) {
 605		rc = -ENOMEM;
 606		goto out_free;
 607	}
 608
 609	i = 0;
 610	if (sbsec->flags & FSCONTEXT_MNT) {
 611		rc = security_sid_to_context(sbsec->sid, &context, &len);
 612		if (rc)
 613			goto out_free;
 614		opts->mnt_opts[i] = context;
 615		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 616	}
 617	if (sbsec->flags & CONTEXT_MNT) {
 618		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 619		if (rc)
 620			goto out_free;
 621		opts->mnt_opts[i] = context;
 622		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 623	}
 624	if (sbsec->flags & DEFCONTEXT_MNT) {
 625		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 626		if (rc)
 627			goto out_free;
 628		opts->mnt_opts[i] = context;
 629		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 630	}
 631	if (sbsec->flags & ROOTCONTEXT_MNT) {
 632		struct dentry *root = sbsec->sb->s_root;
 633		struct inode_security_struct *isec = backing_inode_security(root);
 634
 635		rc = security_sid_to_context(isec->sid, &context, &len);
 636		if (rc)
 637			goto out_free;
 638		opts->mnt_opts[i] = context;
 639		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 640	}
 641	if (sbsec->flags & SBLABEL_MNT) {
 642		opts->mnt_opts[i] = NULL;
 643		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 644	}
 645
 646	BUG_ON(i != opts->num_mnt_opts);
 647
 648	return 0;
 649
 650out_free:
 651	security_free_mnt_opts(opts);
 652	return rc;
 653}
 654
 655static int bad_option(struct superblock_security_struct *sbsec, char flag,
 656		      u32 old_sid, u32 new_sid)
 657{
 658	char mnt_flags = sbsec->flags & SE_MNTMASK;
 659
 660	/* check if the old mount command had the same options */
 661	if (sbsec->flags & SE_SBINITIALIZED)
 662		if (!(sbsec->flags & flag) ||
 663		    (old_sid != new_sid))
 664			return 1;
 665
 666	/* check if we were passed the same options twice,
 667	 * aka someone passed context=a,context=b
 668	 */
 669	if (!(sbsec->flags & SE_SBINITIALIZED))
 670		if (mnt_flags & flag)
 671			return 1;
 672	return 0;
 673}
 674
 675/*
 676 * Allow filesystems with binary mount data to explicitly set mount point
 677 * labeling information.
 678 */
 679static int selinux_set_mnt_opts(struct super_block *sb,
 680				struct security_mnt_opts *opts,
 681				unsigned long kern_flags,
 682				unsigned long *set_kern_flags)
 683{
 684	const struct cred *cred = current_cred();
 685	int rc = 0, i;
 686	struct superblock_security_struct *sbsec = sb->s_security;
 687	const char *name = sb->s_type->name;
 688	struct dentry *root = sbsec->sb->s_root;
 689	struct inode_security_struct *root_isec = backing_inode_security(root);
 690	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 691	u32 defcontext_sid = 0;
 692	char **mount_options = opts->mnt_opts;
 693	int *flags = opts->mnt_opts_flags;
 694	int num_opts = opts->num_mnt_opts;
 695
 696	mutex_lock(&sbsec->lock);
 697
 698	if (!ss_initialized) {
 699		if (!num_opts) {
 700			/* Defer initialization until selinux_complete_init,
 701			   after the initial policy is loaded and the security
 702			   server is ready to handle calls. */
 703			goto out;
 704		}
 705		rc = -EINVAL;
 706		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 707			"before the security server is initialized\n");
 708		goto out;
 709	}
 710	if (kern_flags && !set_kern_flags) {
 711		/* Specifying internal flags without providing a place to
 712		 * place the results is not allowed */
 713		rc = -EINVAL;
 714		goto out;
 715	}
 716
 717	/*
 718	 * Binary mount data FS will come through this function twice.  Once
 719	 * from an explicit call and once from the generic calls from the vfs.
 720	 * Since the generic VFS calls will not contain any security mount data
 721	 * we need to skip the double mount verification.
 722	 *
 723	 * This does open a hole in which we will not notice if the first
 724	 * mount using this sb set explict options and a second mount using
 725	 * this sb does not set any security options.  (The first options
 726	 * will be used for both mounts)
 727	 */
 728	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 729	    && (num_opts == 0))
 730		goto out;
 731
 732	/*
 733	 * parse the mount options, check if they are valid sids.
 734	 * also check if someone is trying to mount the same sb more
 735	 * than once with different security options.
 736	 */
 737	for (i = 0; i < num_opts; i++) {
 738		u32 sid;
 739
 740		if (flags[i] == SBLABEL_MNT)
 741			continue;
 742		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
 
 743		if (rc) {
 744			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 745			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 746			       mount_options[i], sb->s_id, name, rc);
 747			goto out;
 748		}
 749		switch (flags[i]) {
 750		case FSCONTEXT_MNT:
 751			fscontext_sid = sid;
 752
 753			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 754					fscontext_sid))
 755				goto out_double_mount;
 756
 757			sbsec->flags |= FSCONTEXT_MNT;
 758			break;
 759		case CONTEXT_MNT:
 760			context_sid = sid;
 761
 762			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 763					context_sid))
 764				goto out_double_mount;
 765
 766			sbsec->flags |= CONTEXT_MNT;
 767			break;
 768		case ROOTCONTEXT_MNT:
 769			rootcontext_sid = sid;
 770
 771			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 772					rootcontext_sid))
 773				goto out_double_mount;
 774
 775			sbsec->flags |= ROOTCONTEXT_MNT;
 776
 777			break;
 778		case DEFCONTEXT_MNT:
 779			defcontext_sid = sid;
 780
 781			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 782					defcontext_sid))
 783				goto out_double_mount;
 784
 785			sbsec->flags |= DEFCONTEXT_MNT;
 786
 787			break;
 788		default:
 789			rc = -EINVAL;
 790			goto out;
 791		}
 792	}
 793
 794	if (sbsec->flags & SE_SBINITIALIZED) {
 795		/* previously mounted with options, but not on this attempt? */
 796		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 797			goto out_double_mount;
 798		rc = 0;
 799		goto out;
 800	}
 801
 802	if (strcmp(sb->s_type->name, "proc") == 0)
 803		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 804
 805	if (!strcmp(sb->s_type->name, "debugfs") ||
 806	    !strcmp(sb->s_type->name, "sysfs") ||
 807	    !strcmp(sb->s_type->name, "pstore"))
 808		sbsec->flags |= SE_SBGENFS;
 809
 810	if (!sbsec->behavior) {
 811		/*
 812		 * Determine the labeling behavior to use for this
 813		 * filesystem type.
 814		 */
 815		rc = security_fs_use(sb);
 816		if (rc) {
 817			printk(KERN_WARNING
 818				"%s: security_fs_use(%s) returned %d\n",
 819					__func__, sb->s_type->name, rc);
 820			goto out;
 821		}
 822	}
 
 823	/* sets the context of the superblock for the fs being mounted. */
 824	if (fscontext_sid) {
 825		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 826		if (rc)
 827			goto out;
 828
 829		sbsec->sid = fscontext_sid;
 830	}
 831
 832	/*
 833	 * Switch to using mount point labeling behavior.
 834	 * sets the label used on all file below the mountpoint, and will set
 835	 * the superblock context if not already set.
 836	 */
 837	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 838		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 839		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 840	}
 841
 842	if (context_sid) {
 843		if (!fscontext_sid) {
 844			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 845							  cred);
 846			if (rc)
 847				goto out;
 848			sbsec->sid = context_sid;
 849		} else {
 850			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 851							     cred);
 852			if (rc)
 853				goto out;
 854		}
 855		if (!rootcontext_sid)
 856			rootcontext_sid = context_sid;
 857
 858		sbsec->mntpoint_sid = context_sid;
 859		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 860	}
 861
 862	if (rootcontext_sid) {
 863		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 864						     cred);
 865		if (rc)
 866			goto out;
 867
 868		root_isec->sid = rootcontext_sid;
 869		root_isec->initialized = LABEL_INITIALIZED;
 870	}
 871
 872	if (defcontext_sid) {
 873		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 874			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 875			rc = -EINVAL;
 876			printk(KERN_WARNING "SELinux: defcontext option is "
 877			       "invalid for this filesystem type\n");
 878			goto out;
 879		}
 880
 881		if (defcontext_sid != sbsec->def_sid) {
 882			rc = may_context_mount_inode_relabel(defcontext_sid,
 883							     sbsec, cred);
 884			if (rc)
 885				goto out;
 886		}
 887
 888		sbsec->def_sid = defcontext_sid;
 889	}
 890
 891	rc = sb_finish_set_opts(sb);
 892out:
 893	mutex_unlock(&sbsec->lock);
 894	return rc;
 895out_double_mount:
 896	rc = -EINVAL;
 897	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 898	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 899	goto out;
 900}
 901
 902static int selinux_cmp_sb_context(const struct super_block *oldsb,
 903				    const struct super_block *newsb)
 904{
 905	struct superblock_security_struct *old = oldsb->s_security;
 906	struct superblock_security_struct *new = newsb->s_security;
 907	char oldflags = old->flags & SE_MNTMASK;
 908	char newflags = new->flags & SE_MNTMASK;
 909
 910	if (oldflags != newflags)
 911		goto mismatch;
 912	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 913		goto mismatch;
 914	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 915		goto mismatch;
 916	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 917		goto mismatch;
 918	if (oldflags & ROOTCONTEXT_MNT) {
 919		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 920		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 921		if (oldroot->sid != newroot->sid)
 922			goto mismatch;
 923	}
 924	return 0;
 925mismatch:
 926	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 927			    "different security settings for (dev %s, "
 928			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 929	return -EBUSY;
 930}
 931
 932static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 933					struct super_block *newsb)
 934{
 935	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 936	struct superblock_security_struct *newsbsec = newsb->s_security;
 937
 938	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 939	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 940	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 941
 942	/*
 943	 * if the parent was able to be mounted it clearly had no special lsm
 944	 * mount options.  thus we can safely deal with this superblock later
 945	 */
 946	if (!ss_initialized)
 947		return 0;
 948
 949	/* how can we clone if the old one wasn't set up?? */
 950	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 951
 952	/* if fs is reusing a sb, make sure that the contexts match */
 953	if (newsbsec->flags & SE_SBINITIALIZED)
 954		return selinux_cmp_sb_context(oldsb, newsb);
 955
 956	mutex_lock(&newsbsec->lock);
 957
 958	newsbsec->flags = oldsbsec->flags;
 959
 960	newsbsec->sid = oldsbsec->sid;
 961	newsbsec->def_sid = oldsbsec->def_sid;
 962	newsbsec->behavior = oldsbsec->behavior;
 963
 964	if (set_context) {
 965		u32 sid = oldsbsec->mntpoint_sid;
 966
 967		if (!set_fscontext)
 968			newsbsec->sid = sid;
 969		if (!set_rootcontext) {
 970			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 971			newisec->sid = sid;
 972		}
 973		newsbsec->mntpoint_sid = sid;
 974	}
 975	if (set_rootcontext) {
 976		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 977		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 
 978
 979		newisec->sid = oldisec->sid;
 980	}
 981
 982	sb_finish_set_opts(newsb);
 983	mutex_unlock(&newsbsec->lock);
 984	return 0;
 985}
 986
 987static int selinux_parse_opts_str(char *options,
 988				  struct security_mnt_opts *opts)
 989{
 990	char *p;
 991	char *context = NULL, *defcontext = NULL;
 992	char *fscontext = NULL, *rootcontext = NULL;
 993	int rc, num_mnt_opts = 0;
 994
 995	opts->num_mnt_opts = 0;
 996
 997	/* Standard string-based options. */
 998	while ((p = strsep(&options, "|")) != NULL) {
 999		int token;
1000		substring_t args[MAX_OPT_ARGS];
1001
1002		if (!*p)
1003			continue;
1004
1005		token = match_token(p, tokens, args);
1006
1007		switch (token) {
1008		case Opt_context:
1009			if (context || defcontext) {
1010				rc = -EINVAL;
1011				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1012				goto out_err;
1013			}
1014			context = match_strdup(&args[0]);
1015			if (!context) {
1016				rc = -ENOMEM;
1017				goto out_err;
1018			}
1019			break;
1020
1021		case Opt_fscontext:
1022			if (fscontext) {
1023				rc = -EINVAL;
1024				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1025				goto out_err;
1026			}
1027			fscontext = match_strdup(&args[0]);
1028			if (!fscontext) {
1029				rc = -ENOMEM;
1030				goto out_err;
1031			}
1032			break;
1033
1034		case Opt_rootcontext:
1035			if (rootcontext) {
1036				rc = -EINVAL;
1037				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1038				goto out_err;
1039			}
1040			rootcontext = match_strdup(&args[0]);
1041			if (!rootcontext) {
1042				rc = -ENOMEM;
1043				goto out_err;
1044			}
1045			break;
1046
1047		case Opt_defcontext:
1048			if (context || defcontext) {
1049				rc = -EINVAL;
1050				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1051				goto out_err;
1052			}
1053			defcontext = match_strdup(&args[0]);
1054			if (!defcontext) {
1055				rc = -ENOMEM;
1056				goto out_err;
1057			}
1058			break;
1059		case Opt_labelsupport:
1060			break;
1061		default:
1062			rc = -EINVAL;
1063			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1064			goto out_err;
1065
1066		}
1067	}
1068
1069	rc = -ENOMEM;
1070	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1071	if (!opts->mnt_opts)
1072		goto out_err;
1073
1074	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1075	if (!opts->mnt_opts_flags) {
1076		kfree(opts->mnt_opts);
1077		goto out_err;
1078	}
1079
1080	if (fscontext) {
1081		opts->mnt_opts[num_mnt_opts] = fscontext;
1082		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1083	}
1084	if (context) {
1085		opts->mnt_opts[num_mnt_opts] = context;
1086		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1087	}
1088	if (rootcontext) {
1089		opts->mnt_opts[num_mnt_opts] = rootcontext;
1090		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1091	}
1092	if (defcontext) {
1093		opts->mnt_opts[num_mnt_opts] = defcontext;
1094		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1095	}
1096
1097	opts->num_mnt_opts = num_mnt_opts;
1098	return 0;
1099
1100out_err:
1101	kfree(context);
1102	kfree(defcontext);
1103	kfree(fscontext);
1104	kfree(rootcontext);
1105	return rc;
1106}
1107/*
1108 * string mount options parsing and call set the sbsec
1109 */
1110static int superblock_doinit(struct super_block *sb, void *data)
1111{
1112	int rc = 0;
1113	char *options = data;
1114	struct security_mnt_opts opts;
1115
1116	security_init_mnt_opts(&opts);
1117
1118	if (!data)
1119		goto out;
1120
1121	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1122
1123	rc = selinux_parse_opts_str(options, &opts);
1124	if (rc)
1125		goto out_err;
1126
1127out:
1128	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1129
1130out_err:
1131	security_free_mnt_opts(&opts);
1132	return rc;
1133}
1134
1135static void selinux_write_opts(struct seq_file *m,
1136			       struct security_mnt_opts *opts)
1137{
1138	int i;
1139	char *prefix;
1140
1141	for (i = 0; i < opts->num_mnt_opts; i++) {
1142		char *has_comma;
1143
1144		if (opts->mnt_opts[i])
1145			has_comma = strchr(opts->mnt_opts[i], ',');
1146		else
1147			has_comma = NULL;
1148
1149		switch (opts->mnt_opts_flags[i]) {
1150		case CONTEXT_MNT:
1151			prefix = CONTEXT_STR;
1152			break;
1153		case FSCONTEXT_MNT:
1154			prefix = FSCONTEXT_STR;
1155			break;
1156		case ROOTCONTEXT_MNT:
1157			prefix = ROOTCONTEXT_STR;
1158			break;
1159		case DEFCONTEXT_MNT:
1160			prefix = DEFCONTEXT_STR;
1161			break;
1162		case SBLABEL_MNT:
1163			seq_putc(m, ',');
1164			seq_puts(m, LABELSUPP_STR);
1165			continue;
1166		default:
1167			BUG();
1168			return;
1169		};
1170		/* we need a comma before each option */
1171		seq_putc(m, ',');
1172		seq_puts(m, prefix);
1173		if (has_comma)
1174			seq_putc(m, '\"');
1175		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1176		if (has_comma)
1177			seq_putc(m, '\"');
1178	}
1179}
1180
1181static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1182{
1183	struct security_mnt_opts opts;
1184	int rc;
1185
1186	rc = selinux_get_mnt_opts(sb, &opts);
1187	if (rc) {
1188		/* before policy load we may get EINVAL, don't show anything */
1189		if (rc == -EINVAL)
1190			rc = 0;
1191		return rc;
1192	}
1193
1194	selinux_write_opts(m, &opts);
1195
1196	security_free_mnt_opts(&opts);
1197
1198	return rc;
1199}
1200
1201static inline u16 inode_mode_to_security_class(umode_t mode)
1202{
1203	switch (mode & S_IFMT) {
1204	case S_IFSOCK:
1205		return SECCLASS_SOCK_FILE;
1206	case S_IFLNK:
1207		return SECCLASS_LNK_FILE;
1208	case S_IFREG:
1209		return SECCLASS_FILE;
1210	case S_IFBLK:
1211		return SECCLASS_BLK_FILE;
1212	case S_IFDIR:
1213		return SECCLASS_DIR;
1214	case S_IFCHR:
1215		return SECCLASS_CHR_FILE;
1216	case S_IFIFO:
1217		return SECCLASS_FIFO_FILE;
1218
1219	}
1220
1221	return SECCLASS_FILE;
1222}
1223
1224static inline int default_protocol_stream(int protocol)
1225{
1226	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1227}
1228
1229static inline int default_protocol_dgram(int protocol)
1230{
1231	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1232}
1233
1234static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1235{
1236	switch (family) {
1237	case PF_UNIX:
1238		switch (type) {
1239		case SOCK_STREAM:
1240		case SOCK_SEQPACKET:
1241			return SECCLASS_UNIX_STREAM_SOCKET;
1242		case SOCK_DGRAM:
1243			return SECCLASS_UNIX_DGRAM_SOCKET;
1244		}
1245		break;
1246	case PF_INET:
1247	case PF_INET6:
1248		switch (type) {
1249		case SOCK_STREAM:
1250			if (default_protocol_stream(protocol))
1251				return SECCLASS_TCP_SOCKET;
1252			else
1253				return SECCLASS_RAWIP_SOCKET;
1254		case SOCK_DGRAM:
1255			if (default_protocol_dgram(protocol))
1256				return SECCLASS_UDP_SOCKET;
1257			else
1258				return SECCLASS_RAWIP_SOCKET;
1259		case SOCK_DCCP:
1260			return SECCLASS_DCCP_SOCKET;
1261		default:
1262			return SECCLASS_RAWIP_SOCKET;
1263		}
1264		break;
1265	case PF_NETLINK:
1266		switch (protocol) {
1267		case NETLINK_ROUTE:
1268			return SECCLASS_NETLINK_ROUTE_SOCKET;
 
 
1269		case NETLINK_SOCK_DIAG:
1270			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1271		case NETLINK_NFLOG:
1272			return SECCLASS_NETLINK_NFLOG_SOCKET;
1273		case NETLINK_XFRM:
1274			return SECCLASS_NETLINK_XFRM_SOCKET;
1275		case NETLINK_SELINUX:
1276			return SECCLASS_NETLINK_SELINUX_SOCKET;
1277		case NETLINK_ISCSI:
1278			return SECCLASS_NETLINK_ISCSI_SOCKET;
1279		case NETLINK_AUDIT:
1280			return SECCLASS_NETLINK_AUDIT_SOCKET;
1281		case NETLINK_FIB_LOOKUP:
1282			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1283		case NETLINK_CONNECTOR:
1284			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1285		case NETLINK_NETFILTER:
1286			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1287		case NETLINK_DNRTMSG:
1288			return SECCLASS_NETLINK_DNRT_SOCKET;
1289		case NETLINK_KOBJECT_UEVENT:
1290			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1291		case NETLINK_GENERIC:
1292			return SECCLASS_NETLINK_GENERIC_SOCKET;
1293		case NETLINK_SCSITRANSPORT:
1294			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1295		case NETLINK_RDMA:
1296			return SECCLASS_NETLINK_RDMA_SOCKET;
1297		case NETLINK_CRYPTO:
1298			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1299		default:
1300			return SECCLASS_NETLINK_SOCKET;
1301		}
1302	case PF_PACKET:
1303		return SECCLASS_PACKET_SOCKET;
1304	case PF_KEY:
1305		return SECCLASS_KEY_SOCKET;
1306	case PF_APPLETALK:
1307		return SECCLASS_APPLETALK_SOCKET;
1308	}
1309
1310	return SECCLASS_SOCKET;
1311}
1312
1313static int selinux_genfs_get_sid(struct dentry *dentry,
1314				 u16 tclass,
1315				 u16 flags,
1316				 u32 *sid)
1317{
1318	int rc;
1319	struct super_block *sb = dentry->d_inode->i_sb;
1320	char *buffer, *path;
1321
1322	buffer = (char *)__get_free_page(GFP_KERNEL);
1323	if (!buffer)
1324		return -ENOMEM;
1325
1326	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1327	if (IS_ERR(path))
1328		rc = PTR_ERR(path);
1329	else {
1330		if (flags & SE_SBPROC) {
1331			/* each process gets a /proc/PID/ entry. Strip off the
1332			 * PID part to get a valid selinux labeling.
1333			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1334			while (path[1] >= '0' && path[1] <= '9') {
1335				path[1] = '/';
1336				path++;
1337			}
1338		}
1339		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1340	}
1341	free_page((unsigned long)buffer);
1342	return rc;
1343}
 
 
 
 
 
 
 
 
1344
1345/* The inode's security attributes must be initialized before first use. */
1346static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1347{
1348	struct superblock_security_struct *sbsec = NULL;
1349	struct inode_security_struct *isec = inode->i_security;
1350	u32 sid;
1351	struct dentry *dentry;
1352#define INITCONTEXTLEN 255
1353	char *context = NULL;
1354	unsigned len = 0;
1355	int rc = 0;
1356
1357	if (isec->initialized == LABEL_INITIALIZED)
1358		goto out;
1359
1360	mutex_lock(&isec->lock);
1361	if (isec->initialized == LABEL_INITIALIZED)
1362		goto out_unlock;
1363
1364	sbsec = inode->i_sb->s_security;
1365	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1366		/* Defer initialization until selinux_complete_init,
1367		   after the initial policy is loaded and the security
1368		   server is ready to handle calls. */
1369		spin_lock(&sbsec->isec_lock);
1370		if (list_empty(&isec->list))
1371			list_add(&isec->list, &sbsec->isec_head);
1372		spin_unlock(&sbsec->isec_lock);
1373		goto out_unlock;
1374	}
1375
1376	switch (sbsec->behavior) {
1377	case SECURITY_FS_USE_NATIVE:
1378		break;
1379	case SECURITY_FS_USE_XATTR:
1380		if (!inode->i_op->getxattr) {
1381			isec->sid = sbsec->def_sid;
1382			break;
1383		}
1384
1385		/* Need a dentry, since the xattr API requires one.
1386		   Life would be simpler if we could just pass the inode. */
1387		if (opt_dentry) {
1388			/* Called from d_instantiate or d_splice_alias. */
1389			dentry = dget(opt_dentry);
1390		} else {
1391			/* Called from selinux_complete_init, try to find a dentry. */
1392			dentry = d_find_alias(inode);
1393		}
1394		if (!dentry) {
1395			/*
1396			 * this is can be hit on boot when a file is accessed
1397			 * before the policy is loaded.  When we load policy we
1398			 * may find inodes that have no dentry on the
1399			 * sbsec->isec_head list.  No reason to complain as these
1400			 * will get fixed up the next time we go through
1401			 * inode_doinit with a dentry, before these inodes could
1402			 * be used again by userspace.
1403			 */
1404			goto out_unlock;
1405		}
1406
1407		len = INITCONTEXTLEN;
1408		context = kmalloc(len+1, GFP_NOFS);
1409		if (!context) {
1410			rc = -ENOMEM;
1411			dput(dentry);
1412			goto out_unlock;
1413		}
1414		context[len] = '\0';
1415		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1416					   context, len);
1417		if (rc == -ERANGE) {
1418			kfree(context);
1419
1420			/* Need a larger buffer.  Query for the right size. */
1421			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1422						   NULL, 0);
1423			if (rc < 0) {
1424				dput(dentry);
1425				goto out_unlock;
1426			}
1427			len = rc;
1428			context = kmalloc(len+1, GFP_NOFS);
1429			if (!context) {
1430				rc = -ENOMEM;
1431				dput(dentry);
1432				goto out_unlock;
1433			}
1434			context[len] = '\0';
1435			rc = inode->i_op->getxattr(dentry,
1436						   XATTR_NAME_SELINUX,
1437						   context, len);
1438		}
1439		dput(dentry);
1440		if (rc < 0) {
1441			if (rc != -ENODATA) {
1442				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1443				       "%d for dev=%s ino=%ld\n", __func__,
1444				       -rc, inode->i_sb->s_id, inode->i_ino);
1445				kfree(context);
1446				goto out_unlock;
1447			}
1448			/* Map ENODATA to the default file SID */
1449			sid = sbsec->def_sid;
1450			rc = 0;
1451		} else {
1452			rc = security_context_to_sid_default(context, rc, &sid,
1453							     sbsec->def_sid,
1454							     GFP_NOFS);
1455			if (rc) {
1456				char *dev = inode->i_sb->s_id;
1457				unsigned long ino = inode->i_ino;
1458
1459				if (rc == -EINVAL) {
1460					if (printk_ratelimit())
1461						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1462							"context=%s.  This indicates you may need to relabel the inode or the "
1463							"filesystem in question.\n", ino, dev, context);
1464				} else {
1465					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1466					       "returned %d for dev=%s ino=%ld\n",
1467					       __func__, context, -rc, dev, ino);
1468				}
1469				kfree(context);
1470				/* Leave with the unlabeled SID */
1471				rc = 0;
1472				break;
1473			}
1474		}
1475		kfree(context);
1476		isec->sid = sid;
1477		break;
1478	case SECURITY_FS_USE_TASK:
1479		isec->sid = isec->task_sid;
1480		break;
1481	case SECURITY_FS_USE_TRANS:
1482		/* Default to the fs SID. */
1483		isec->sid = sbsec->sid;
1484
1485		/* Try to obtain a transition SID. */
1486		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1487		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1488					     isec->sclass, NULL, &sid);
1489		if (rc)
1490			goto out_unlock;
1491		isec->sid = sid;
1492		break;
1493	case SECURITY_FS_USE_MNTPOINT:
1494		isec->sid = sbsec->mntpoint_sid;
1495		break;
1496	default:
1497		/* Default to the fs superblock SID. */
1498		isec->sid = sbsec->sid;
1499
1500		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1501			/* We must have a dentry to determine the label on
1502			 * procfs inodes */
1503			if (opt_dentry)
1504				/* Called from d_instantiate or
1505				 * d_splice_alias. */
1506				dentry = dget(opt_dentry);
1507			else
1508				/* Called from selinux_complete_init, try to
1509				 * find a dentry. */
1510				dentry = d_find_alias(inode);
1511			/*
1512			 * This can be hit on boot when a file is accessed
1513			 * before the policy is loaded.  When we load policy we
1514			 * may find inodes that have no dentry on the
1515			 * sbsec->isec_head list.  No reason to complain as
1516			 * these will get fixed up the next time we go through
1517			 * inode_doinit() with a dentry, before these inodes
1518			 * could be used again by userspace.
1519			 */
1520			if (!dentry)
1521				goto out_unlock;
1522			isec->sclass = inode_mode_to_security_class(inode->i_mode);
1523			rc = selinux_genfs_get_sid(dentry, isec->sclass,
1524						   sbsec->flags, &sid);
1525			dput(dentry);
1526			if (rc)
1527				goto out_unlock;
1528			isec->sid = sid;
1529		}
1530		break;
1531	}
1532
1533	isec->initialized = LABEL_INITIALIZED;
1534
1535out_unlock:
1536	mutex_unlock(&isec->lock);
1537out:
1538	if (isec->sclass == SECCLASS_FILE)
1539		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1540	return rc;
1541}
1542
1543/* Convert a Linux signal to an access vector. */
1544static inline u32 signal_to_av(int sig)
1545{
1546	u32 perm = 0;
1547
1548	switch (sig) {
1549	case SIGCHLD:
1550		/* Commonly granted from child to parent. */
1551		perm = PROCESS__SIGCHLD;
1552		break;
1553	case SIGKILL:
1554		/* Cannot be caught or ignored */
1555		perm = PROCESS__SIGKILL;
1556		break;
1557	case SIGSTOP:
1558		/* Cannot be caught or ignored */
1559		perm = PROCESS__SIGSTOP;
1560		break;
1561	default:
1562		/* All other signals. */
1563		perm = PROCESS__SIGNAL;
1564		break;
1565	}
1566
1567	return perm;
1568}
1569
1570/*
1571 * Check permission between a pair of credentials
1572 * fork check, ptrace check, etc.
1573 */
1574static int cred_has_perm(const struct cred *actor,
1575			 const struct cred *target,
1576			 u32 perms)
1577{
1578	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1579
1580	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1581}
1582
1583/*
1584 * Check permission between a pair of tasks, e.g. signal checks,
1585 * fork check, ptrace check, etc.
1586 * tsk1 is the actor and tsk2 is the target
1587 * - this uses the default subjective creds of tsk1
1588 */
1589static int task_has_perm(const struct task_struct *tsk1,
1590			 const struct task_struct *tsk2,
1591			 u32 perms)
1592{
1593	const struct task_security_struct *__tsec1, *__tsec2;
1594	u32 sid1, sid2;
1595
1596	rcu_read_lock();
1597	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1598	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1599	rcu_read_unlock();
1600	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1601}
1602
1603/*
1604 * Check permission between current and another task, e.g. signal checks,
1605 * fork check, ptrace check, etc.
1606 * current is the actor and tsk2 is the target
1607 * - this uses current's subjective creds
1608 */
1609static int current_has_perm(const struct task_struct *tsk,
1610			    u32 perms)
1611{
1612	u32 sid, tsid;
1613
1614	sid = current_sid();
1615	tsid = task_sid(tsk);
1616	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625			       int cap, int audit)
1626{
1627	struct common_audit_data ad;
1628	struct av_decision avd;
1629	u16 sclass;
1630	u32 sid = cred_sid(cred);
1631	u32 av = CAP_TO_MASK(cap);
1632	int rc;
1633
1634	ad.type = LSM_AUDIT_DATA_CAP;
1635	ad.u.cap = cap;
1636
1637	switch (CAP_TO_INDEX(cap)) {
1638	case 0:
1639		sclass = SECCLASS_CAPABILITY;
1640		break;
1641	case 1:
1642		sclass = SECCLASS_CAPABILITY2;
1643		break;
1644	default:
1645		printk(KERN_ERR
1646		       "SELinux:  out of range capability %d\n", cap);
1647		BUG();
1648		return -EINVAL;
1649	}
1650
1651	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1652	if (audit == SECURITY_CAP_AUDIT) {
1653		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1654		if (rc2)
1655			return rc2;
1656	}
1657	return rc;
1658}
1659
1660/* Check whether a task is allowed to use a system operation. */
1661static int task_has_system(struct task_struct *tsk,
1662			   u32 perms)
1663{
1664	u32 sid = task_sid(tsk);
1665
1666	return avc_has_perm(sid, SECINITSID_KERNEL,
1667			    SECCLASS_SYSTEM, perms, NULL);
1668}
1669
1670/* Check whether a task has a particular permission to an inode.
1671   The 'adp' parameter is optional and allows other audit
1672   data to be passed (e.g. the dentry). */
1673static int inode_has_perm(const struct cred *cred,
1674			  struct inode *inode,
1675			  u32 perms,
1676			  struct common_audit_data *adp)
 
1677{
1678	struct inode_security_struct *isec;
1679	u32 sid;
1680
1681	validate_creds(cred);
1682
1683	if (unlikely(IS_PRIVATE(inode)))
1684		return 0;
1685
1686	sid = cred_sid(cred);
1687	isec = inode->i_security;
1688
1689	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1690}
1691
1692/* Same as inode_has_perm, but pass explicit audit data containing
1693   the dentry to help the auditing code to more easily generate the
1694   pathname if needed. */
1695static inline int dentry_has_perm(const struct cred *cred,
1696				  struct dentry *dentry,
1697				  u32 av)
1698{
1699	struct inode *inode = d_backing_inode(dentry);
1700	struct common_audit_data ad;
1701
1702	ad.type = LSM_AUDIT_DATA_DENTRY;
1703	ad.u.dentry = dentry;
1704	__inode_security_revalidate(inode, dentry, true);
1705	return inode_has_perm(cred, inode, av, &ad);
1706}
1707
1708/* Same as inode_has_perm, but pass explicit audit data containing
1709   the path to help the auditing code to more easily generate the
1710   pathname if needed. */
1711static inline int path_has_perm(const struct cred *cred,
1712				const struct path *path,
1713				u32 av)
1714{
1715	struct inode *inode = d_backing_inode(path->dentry);
1716	struct common_audit_data ad;
1717
1718	ad.type = LSM_AUDIT_DATA_PATH;
1719	ad.u.path = *path;
1720	__inode_security_revalidate(inode, path->dentry, true);
1721	return inode_has_perm(cred, inode, av, &ad);
1722}
1723
1724/* Same as path_has_perm, but uses the inode from the file struct. */
1725static inline int file_path_has_perm(const struct cred *cred,
1726				     struct file *file,
1727				     u32 av)
1728{
1729	struct common_audit_data ad;
1730
1731	ad.type = LSM_AUDIT_DATA_PATH;
1732	ad.u.path = file->f_path;
1733	return inode_has_perm(cred, file_inode(file), av, &ad);
1734}
1735
1736/* Check whether a task can use an open file descriptor to
1737   access an inode in a given way.  Check access to the
1738   descriptor itself, and then use dentry_has_perm to
1739   check a particular permission to the file.
1740   Access to the descriptor is implicitly granted if it
1741   has the same SID as the process.  If av is zero, then
1742   access to the file is not checked, e.g. for cases
1743   where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745			 struct file *file,
1746			 u32 av)
1747{
1748	struct file_security_struct *fsec = file->f_security;
1749	struct inode *inode = file_inode(file);
1750	struct common_audit_data ad;
1751	u32 sid = cred_sid(cred);
1752	int rc;
1753
1754	ad.type = LSM_AUDIT_DATA_PATH;
1755	ad.u.path = file->f_path;
1756
1757	if (sid != fsec->sid) {
1758		rc = avc_has_perm(sid, fsec->sid,
1759				  SECCLASS_FD,
1760				  FD__USE,
1761				  &ad);
1762		if (rc)
1763			goto out;
1764	}
1765
1766	/* av is zero if only checking access to the descriptor. */
1767	rc = 0;
1768	if (av)
1769		rc = inode_has_perm(cred, inode, av, &ad);
1770
1771out:
1772	return rc;
1773}
1774
1775/*
1776 * Determine the label for an inode that might be unioned.
1777 */
1778static int selinux_determine_inode_label(struct inode *dir,
1779					 const struct qstr *name,
1780					 u16 tclass,
1781					 u32 *_new_isid)
1782{
1783	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1784	const struct inode_security_struct *dsec = inode_security(dir);
1785	const struct task_security_struct *tsec = current_security();
1786
1787	if ((sbsec->flags & SE_SBINITIALIZED) &&
1788	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1789		*_new_isid = sbsec->mntpoint_sid;
1790	} else if ((sbsec->flags & SBLABEL_MNT) &&
1791		   tsec->create_sid) {
1792		*_new_isid = tsec->create_sid;
1793	} else {
1794		return security_transition_sid(tsec->sid, dsec->sid, tclass,
1795					       name, _new_isid);
1796	}
1797
1798	return 0;
1799}
1800
1801/* Check whether a task can create a file. */
1802static int may_create(struct inode *dir,
1803		      struct dentry *dentry,
1804		      u16 tclass)
1805{
1806	const struct task_security_struct *tsec = current_security();
1807	struct inode_security_struct *dsec;
1808	struct superblock_security_struct *sbsec;
1809	u32 sid, newsid;
1810	struct common_audit_data ad;
1811	int rc;
1812
1813	dsec = inode_security(dir);
1814	sbsec = dir->i_sb->s_security;
1815
1816	sid = tsec->sid;
 
1817
1818	ad.type = LSM_AUDIT_DATA_DENTRY;
1819	ad.u.dentry = dentry;
1820
1821	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1822			  DIR__ADD_NAME | DIR__SEARCH,
1823			  &ad);
1824	if (rc)
1825		return rc;
1826
1827	rc = selinux_determine_inode_label(dir, &dentry->d_name, tclass,
1828					   &newsid);
1829	if (rc)
1830		return rc;
 
 
1831
1832	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1833	if (rc)
1834		return rc;
1835
1836	return avc_has_perm(newsid, sbsec->sid,
1837			    SECCLASS_FILESYSTEM,
1838			    FILESYSTEM__ASSOCIATE, &ad);
1839}
1840
1841/* Check whether a task can create a key. */
1842static int may_create_key(u32 ksid,
1843			  struct task_struct *ctx)
1844{
1845	u32 sid = task_sid(ctx);
1846
1847	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1848}
1849
1850#define MAY_LINK	0
1851#define MAY_UNLINK	1
1852#define MAY_RMDIR	2
1853
1854/* Check whether a task can link, unlink, or rmdir a file/directory. */
1855static int may_link(struct inode *dir,
1856		    struct dentry *dentry,
1857		    int kind)
1858
1859{
1860	struct inode_security_struct *dsec, *isec;
1861	struct common_audit_data ad;
1862	u32 sid = current_sid();
1863	u32 av;
1864	int rc;
1865
1866	dsec = inode_security(dir);
1867	isec = backing_inode_security(dentry);
1868
1869	ad.type = LSM_AUDIT_DATA_DENTRY;
1870	ad.u.dentry = dentry;
1871
1872	av = DIR__SEARCH;
1873	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1874	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1875	if (rc)
1876		return rc;
1877
1878	switch (kind) {
1879	case MAY_LINK:
1880		av = FILE__LINK;
1881		break;
1882	case MAY_UNLINK:
1883		av = FILE__UNLINK;
1884		break;
1885	case MAY_RMDIR:
1886		av = DIR__RMDIR;
1887		break;
1888	default:
1889		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1890			__func__, kind);
1891		return 0;
1892	}
1893
1894	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1895	return rc;
1896}
1897
1898static inline int may_rename(struct inode *old_dir,
1899			     struct dentry *old_dentry,
1900			     struct inode *new_dir,
1901			     struct dentry *new_dentry)
1902{
1903	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1904	struct common_audit_data ad;
1905	u32 sid = current_sid();
1906	u32 av;
1907	int old_is_dir, new_is_dir;
1908	int rc;
1909
1910	old_dsec = inode_security(old_dir);
1911	old_isec = backing_inode_security(old_dentry);
1912	old_is_dir = d_is_dir(old_dentry);
1913	new_dsec = inode_security(new_dir);
1914
1915	ad.type = LSM_AUDIT_DATA_DENTRY;
1916
1917	ad.u.dentry = old_dentry;
1918	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1919			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1920	if (rc)
1921		return rc;
1922	rc = avc_has_perm(sid, old_isec->sid,
1923			  old_isec->sclass, FILE__RENAME, &ad);
1924	if (rc)
1925		return rc;
1926	if (old_is_dir && new_dir != old_dir) {
1927		rc = avc_has_perm(sid, old_isec->sid,
1928				  old_isec->sclass, DIR__REPARENT, &ad);
1929		if (rc)
1930			return rc;
1931	}
1932
1933	ad.u.dentry = new_dentry;
1934	av = DIR__ADD_NAME | DIR__SEARCH;
1935	if (d_is_positive(new_dentry))
1936		av |= DIR__REMOVE_NAME;
1937	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1938	if (rc)
1939		return rc;
1940	if (d_is_positive(new_dentry)) {
1941		new_isec = backing_inode_security(new_dentry);
1942		new_is_dir = d_is_dir(new_dentry);
1943		rc = avc_has_perm(sid, new_isec->sid,
1944				  new_isec->sclass,
1945				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1946		if (rc)
1947			return rc;
1948	}
1949
1950	return 0;
1951}
1952
1953/* Check whether a task can perform a filesystem operation. */
1954static int superblock_has_perm(const struct cred *cred,
1955			       struct super_block *sb,
1956			       u32 perms,
1957			       struct common_audit_data *ad)
1958{
1959	struct superblock_security_struct *sbsec;
1960	u32 sid = cred_sid(cred);
1961
1962	sbsec = sb->s_security;
1963	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1964}
1965
1966/* Convert a Linux mode and permission mask to an access vector. */
1967static inline u32 file_mask_to_av(int mode, int mask)
1968{
1969	u32 av = 0;
1970
1971	if (!S_ISDIR(mode)) {
1972		if (mask & MAY_EXEC)
1973			av |= FILE__EXECUTE;
1974		if (mask & MAY_READ)
1975			av |= FILE__READ;
1976
1977		if (mask & MAY_APPEND)
1978			av |= FILE__APPEND;
1979		else if (mask & MAY_WRITE)
1980			av |= FILE__WRITE;
1981
1982	} else {
1983		if (mask & MAY_EXEC)
1984			av |= DIR__SEARCH;
1985		if (mask & MAY_WRITE)
1986			av |= DIR__WRITE;
1987		if (mask & MAY_READ)
1988			av |= DIR__READ;
1989	}
1990
1991	return av;
1992}
1993
1994/* Convert a Linux file to an access vector. */
1995static inline u32 file_to_av(struct file *file)
1996{
1997	u32 av = 0;
1998
1999	if (file->f_mode & FMODE_READ)
2000		av |= FILE__READ;
2001	if (file->f_mode & FMODE_WRITE) {
2002		if (file->f_flags & O_APPEND)
2003			av |= FILE__APPEND;
2004		else
2005			av |= FILE__WRITE;
2006	}
2007	if (!av) {
2008		/*
2009		 * Special file opened with flags 3 for ioctl-only use.
2010		 */
2011		av = FILE__IOCTL;
2012	}
2013
2014	return av;
2015}
2016
2017/*
2018 * Convert a file to an access vector and include the correct open
2019 * open permission.
2020 */
2021static inline u32 open_file_to_av(struct file *file)
2022{
2023	u32 av = file_to_av(file);
2024
2025	if (selinux_policycap_openperm)
2026		av |= FILE__OPEN;
2027
2028	return av;
2029}
2030
2031/* Hook functions begin here. */
2032
2033static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2034{
2035	u32 mysid = current_sid();
2036	u32 mgrsid = task_sid(mgr);
2037
2038	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2039			    BINDER__SET_CONTEXT_MGR, NULL);
2040}
2041
2042static int selinux_binder_transaction(struct task_struct *from,
2043				      struct task_struct *to)
2044{
2045	u32 mysid = current_sid();
2046	u32 fromsid = task_sid(from);
2047	u32 tosid = task_sid(to);
2048	int rc;
2049
2050	if (mysid != fromsid) {
2051		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2052				  BINDER__IMPERSONATE, NULL);
2053		if (rc)
2054			return rc;
2055	}
2056
2057	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2058			    NULL);
2059}
2060
2061static int selinux_binder_transfer_binder(struct task_struct *from,
2062					  struct task_struct *to)
2063{
2064	u32 fromsid = task_sid(from);
2065	u32 tosid = task_sid(to);
2066
2067	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2068			    NULL);
2069}
2070
2071static int selinux_binder_transfer_file(struct task_struct *from,
2072					struct task_struct *to,
2073					struct file *file)
2074{
2075	u32 sid = task_sid(to);
2076	struct file_security_struct *fsec = file->f_security;
2077	struct dentry *dentry = file->f_path.dentry;
2078	struct inode_security_struct *isec = backing_inode_security(dentry);
2079	struct common_audit_data ad;
2080	int rc;
2081
2082	ad.type = LSM_AUDIT_DATA_PATH;
2083	ad.u.path = file->f_path;
2084
2085	if (sid != fsec->sid) {
2086		rc = avc_has_perm(sid, fsec->sid,
2087				  SECCLASS_FD,
2088				  FD__USE,
2089				  &ad);
2090		if (rc)
2091			return rc;
2092	}
2093
2094	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2095		return 0;
2096
2097	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2098			    &ad);
2099}
2100
2101static int selinux_ptrace_access_check(struct task_struct *child,
2102				     unsigned int mode)
2103{
2104	if (mode & PTRACE_MODE_READ) {
2105		u32 sid = current_sid();
2106		u32 csid = task_sid(child);
2107		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2108	}
2109
2110	return current_has_perm(child, PROCESS__PTRACE);
2111}
2112
2113static int selinux_ptrace_traceme(struct task_struct *parent)
2114{
 
 
 
 
 
 
2115	return task_has_perm(parent, current, PROCESS__PTRACE);
2116}
2117
2118static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2119			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2120{
2121	return current_has_perm(target, PROCESS__GETCAP);
 
 
 
 
 
 
2122}
2123
2124static int selinux_capset(struct cred *new, const struct cred *old,
2125			  const kernel_cap_t *effective,
2126			  const kernel_cap_t *inheritable,
2127			  const kernel_cap_t *permitted)
2128{
 
 
 
 
 
 
 
2129	return cred_has_perm(old, new, PROCESS__SETCAP);
2130}
2131
2132/*
2133 * (This comment used to live with the selinux_task_setuid hook,
2134 * which was removed).
2135 *
2136 * Since setuid only affects the current process, and since the SELinux
2137 * controls are not based on the Linux identity attributes, SELinux does not
2138 * need to control this operation.  However, SELinux does control the use of
2139 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2140 */
2141
2142static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2143			   int cap, int audit)
2144{
 
 
 
 
 
 
2145	return cred_has_capability(cred, cap, audit);
2146}
2147
2148static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2149{
2150	const struct cred *cred = current_cred();
2151	int rc = 0;
2152
2153	if (!sb)
2154		return 0;
2155
2156	switch (cmds) {
2157	case Q_SYNC:
2158	case Q_QUOTAON:
2159	case Q_QUOTAOFF:
2160	case Q_SETINFO:
2161	case Q_SETQUOTA:
2162		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2163		break;
2164	case Q_GETFMT:
2165	case Q_GETINFO:
2166	case Q_GETQUOTA:
2167		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2168		break;
2169	default:
2170		rc = 0;  /* let the kernel handle invalid cmds */
2171		break;
2172	}
2173	return rc;
2174}
2175
2176static int selinux_quota_on(struct dentry *dentry)
2177{
2178	const struct cred *cred = current_cred();
2179
2180	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2181}
2182
2183static int selinux_syslog(int type)
2184{
2185	int rc;
2186
2187	switch (type) {
2188	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2189	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2190		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2191		break;
2192	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2193	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2194	/* Set level of messages printed to console */
2195	case SYSLOG_ACTION_CONSOLE_LEVEL:
2196		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2197		break;
2198	case SYSLOG_ACTION_CLOSE:	/* Close log */
2199	case SYSLOG_ACTION_OPEN:	/* Open log */
2200	case SYSLOG_ACTION_READ:	/* Read from log */
2201	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2202	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2203	default:
2204		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2205		break;
2206	}
2207	return rc;
2208}
2209
2210/*
2211 * Check that a process has enough memory to allocate a new virtual
2212 * mapping. 0 means there is enough memory for the allocation to
2213 * succeed and -ENOMEM implies there is not.
2214 *
2215 * Do not audit the selinux permission check, as this is applied to all
2216 * processes that allocate mappings.
2217 */
2218static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2219{
2220	int rc, cap_sys_admin = 0;
2221
2222	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2223					SECURITY_CAP_NOAUDIT);
2224	if (rc == 0)
2225		cap_sys_admin = 1;
2226
2227	return cap_sys_admin;
2228}
2229
2230/* binprm security operations */
2231
2232static int check_nnp_nosuid(const struct linux_binprm *bprm,
2233			    const struct task_security_struct *old_tsec,
2234			    const struct task_security_struct *new_tsec)
2235{
2236	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2237	int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2238	int rc;
2239
2240	if (!nnp && !nosuid)
2241		return 0; /* neither NNP nor nosuid */
2242
2243	if (new_tsec->sid == old_tsec->sid)
2244		return 0; /* No change in credentials */
2245
2246	/*
2247	 * The only transitions we permit under NNP or nosuid
2248	 * are transitions to bounded SIDs, i.e. SIDs that are
2249	 * guaranteed to only be allowed a subset of the permissions
2250	 * of the current SID.
2251	 */
2252	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2253	if (rc) {
2254		/*
2255		 * On failure, preserve the errno values for NNP vs nosuid.
2256		 * NNP:  Operation not permitted for caller.
2257		 * nosuid:  Permission denied to file.
2258		 */
2259		if (nnp)
2260			return -EPERM;
2261		else
2262			return -EACCES;
2263	}
2264	return 0;
2265}
2266
2267static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2268{
2269	const struct task_security_struct *old_tsec;
2270	struct task_security_struct *new_tsec;
2271	struct inode_security_struct *isec;
2272	struct common_audit_data ad;
2273	struct inode *inode = file_inode(bprm->file);
2274	int rc;
2275
 
 
 
 
2276	/* SELinux context only depends on initial program or script and not
2277	 * the script interpreter */
2278	if (bprm->cred_prepared)
2279		return 0;
2280
2281	old_tsec = current_security();
2282	new_tsec = bprm->cred->security;
2283	isec = inode_security(inode);
2284
2285	/* Default to the current task SID. */
2286	new_tsec->sid = old_tsec->sid;
2287	new_tsec->osid = old_tsec->sid;
2288
2289	/* Reset fs, key, and sock SIDs on execve. */
2290	new_tsec->create_sid = 0;
2291	new_tsec->keycreate_sid = 0;
2292	new_tsec->sockcreate_sid = 0;
2293
2294	if (old_tsec->exec_sid) {
2295		new_tsec->sid = old_tsec->exec_sid;
2296		/* Reset exec SID on execve. */
2297		new_tsec->exec_sid = 0;
2298
2299		/* Fail on NNP or nosuid if not an allowed transition. */
2300		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2301		if (rc)
2302			return rc;
 
 
2303	} else {
2304		/* Check for a default transition on this program. */
2305		rc = security_transition_sid(old_tsec->sid, isec->sid,
2306					     SECCLASS_PROCESS, NULL,
2307					     &new_tsec->sid);
2308		if (rc)
2309			return rc;
2310
2311		/*
2312		 * Fallback to old SID on NNP or nosuid if not an allowed
2313		 * transition.
2314		 */
2315		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2316		if (rc)
2317			new_tsec->sid = old_tsec->sid;
2318	}
2319
2320	ad.type = LSM_AUDIT_DATA_PATH;
2321	ad.u.path = bprm->file->f_path;
2322
 
 
 
 
2323	if (new_tsec->sid == old_tsec->sid) {
2324		rc = avc_has_perm(old_tsec->sid, isec->sid,
2325				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2326		if (rc)
2327			return rc;
2328	} else {
2329		/* Check permissions for the transition. */
2330		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2331				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2332		if (rc)
2333			return rc;
2334
2335		rc = avc_has_perm(new_tsec->sid, isec->sid,
2336				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2337		if (rc)
2338			return rc;
2339
2340		/* Check for shared state */
2341		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2342			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2343					  SECCLASS_PROCESS, PROCESS__SHARE,
2344					  NULL);
2345			if (rc)
2346				return -EPERM;
2347		}
2348
2349		/* Make sure that anyone attempting to ptrace over a task that
2350		 * changes its SID has the appropriate permit */
2351		if (bprm->unsafe &
2352		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2353			struct task_struct *tracer;
2354			struct task_security_struct *sec;
2355			u32 ptsid = 0;
2356
2357			rcu_read_lock();
2358			tracer = ptrace_parent(current);
2359			if (likely(tracer != NULL)) {
2360				sec = __task_cred(tracer)->security;
2361				ptsid = sec->sid;
2362			}
2363			rcu_read_unlock();
2364
2365			if (ptsid != 0) {
2366				rc = avc_has_perm(ptsid, new_tsec->sid,
2367						  SECCLASS_PROCESS,
2368						  PROCESS__PTRACE, NULL);
2369				if (rc)
2370					return -EPERM;
2371			}
2372		}
2373
2374		/* Clear any possibly unsafe personality bits on exec: */
2375		bprm->per_clear |= PER_CLEAR_ON_SETID;
2376	}
2377
2378	return 0;
2379}
2380
2381static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2382{
2383	const struct task_security_struct *tsec = current_security();
2384	u32 sid, osid;
2385	int atsecure = 0;
2386
2387	sid = tsec->sid;
2388	osid = tsec->osid;
2389
2390	if (osid != sid) {
2391		/* Enable secure mode for SIDs transitions unless
2392		   the noatsecure permission is granted between
2393		   the two SIDs, i.e. ahp returns 0. */
2394		atsecure = avc_has_perm(osid, sid,
2395					SECCLASS_PROCESS,
2396					PROCESS__NOATSECURE, NULL);
2397	}
2398
2399	return !!atsecure;
2400}
2401
2402static int match_file(const void *p, struct file *file, unsigned fd)
2403{
2404	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2405}
2406
2407/* Derived from fs/exec.c:flush_old_files. */
2408static inline void flush_unauthorized_files(const struct cred *cred,
2409					    struct files_struct *files)
2410{
2411	struct file *file, *devnull = NULL;
2412	struct tty_struct *tty;
 
 
2413	int drop_tty = 0;
2414	unsigned n;
2415
2416	tty = get_current_tty();
2417	if (tty) {
2418		spin_lock(&tty->files_lock);
2419		if (!list_empty(&tty->tty_files)) {
2420			struct tty_file_private *file_priv;
2421
2422			/* Revalidate access to controlling tty.
2423			   Use file_path_has_perm on the tty path directly
2424			   rather than using file_has_perm, as this particular
2425			   open file may belong to another process and we are
2426			   only interested in the inode-based check here. */
2427			file_priv = list_first_entry(&tty->tty_files,
2428						struct tty_file_private, list);
2429			file = file_priv->file;
2430			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2431				drop_tty = 1;
2432		}
2433		spin_unlock(&tty->files_lock);
2434		tty_kref_put(tty);
2435	}
2436	/* Reset controlling tty. */
2437	if (drop_tty)
2438		no_tty();
2439
2440	/* Revalidate access to inherited open files. */
2441	n = iterate_fd(files, 0, match_file, cred);
2442	if (!n) /* none found? */
2443		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2444
2445	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2446	if (IS_ERR(devnull))
2447		devnull = NULL;
2448	/* replace all the matching ones with this */
2449	do {
2450		replace_fd(n - 1, devnull, 0);
2451	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2452	if (devnull)
2453		fput(devnull);
2454}
2455
2456/*
2457 * Prepare a process for imminent new credential changes due to exec
2458 */
2459static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2460{
2461	struct task_security_struct *new_tsec;
2462	struct rlimit *rlim, *initrlim;
2463	int rc, i;
2464
2465	new_tsec = bprm->cred->security;
2466	if (new_tsec->sid == new_tsec->osid)
2467		return;
2468
2469	/* Close files for which the new task SID is not authorized. */
2470	flush_unauthorized_files(bprm->cred, current->files);
2471
2472	/* Always clear parent death signal on SID transitions. */
2473	current->pdeath_signal = 0;
2474
2475	/* Check whether the new SID can inherit resource limits from the old
2476	 * SID.  If not, reset all soft limits to the lower of the current
2477	 * task's hard limit and the init task's soft limit.
2478	 *
2479	 * Note that the setting of hard limits (even to lower them) can be
2480	 * controlled by the setrlimit check.  The inclusion of the init task's
2481	 * soft limit into the computation is to avoid resetting soft limits
2482	 * higher than the default soft limit for cases where the default is
2483	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2484	 */
2485	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2486			  PROCESS__RLIMITINH, NULL);
2487	if (rc) {
2488		/* protect against do_prlimit() */
2489		task_lock(current);
2490		for (i = 0; i < RLIM_NLIMITS; i++) {
2491			rlim = current->signal->rlim + i;
2492			initrlim = init_task.signal->rlim + i;
2493			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2494		}
2495		task_unlock(current);
2496		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2497	}
2498}
2499
2500/*
2501 * Clean up the process immediately after the installation of new credentials
2502 * due to exec
2503 */
2504static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2505{
2506	const struct task_security_struct *tsec = current_security();
2507	struct itimerval itimer;
2508	u32 osid, sid;
2509	int rc, i;
2510
2511	osid = tsec->osid;
2512	sid = tsec->sid;
2513
2514	if (sid == osid)
2515		return;
2516
2517	/* Check whether the new SID can inherit signal state from the old SID.
2518	 * If not, clear itimers to avoid subsequent signal generation and
2519	 * flush and unblock signals.
2520	 *
2521	 * This must occur _after_ the task SID has been updated so that any
2522	 * kill done after the flush will be checked against the new SID.
2523	 */
2524	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2525	if (rc) {
2526		memset(&itimer, 0, sizeof itimer);
2527		for (i = 0; i < 3; i++)
2528			do_setitimer(i, &itimer, NULL);
2529		spin_lock_irq(&current->sighand->siglock);
2530		if (!fatal_signal_pending(current)) {
2531			flush_sigqueue(&current->pending);
2532			flush_sigqueue(&current->signal->shared_pending);
2533			flush_signal_handlers(current, 1);
2534			sigemptyset(&current->blocked);
2535			recalc_sigpending();
2536		}
2537		spin_unlock_irq(&current->sighand->siglock);
2538	}
2539
2540	/* Wake up the parent if it is waiting so that it can recheck
2541	 * wait permission to the new task SID. */
2542	read_lock(&tasklist_lock);
2543	__wake_up_parent(current, current->real_parent);
2544	read_unlock(&tasklist_lock);
2545}
2546
2547/* superblock security operations */
2548
2549static int selinux_sb_alloc_security(struct super_block *sb)
2550{
2551	return superblock_alloc_security(sb);
2552}
2553
2554static void selinux_sb_free_security(struct super_block *sb)
2555{
2556	superblock_free_security(sb);
2557}
2558
2559static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2560{
2561	if (plen > olen)
2562		return 0;
2563
2564	return !memcmp(prefix, option, plen);
2565}
2566
2567static inline int selinux_option(char *option, int len)
2568{
2569	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2570		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2571		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2572		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2573		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2574}
2575
2576static inline void take_option(char **to, char *from, int *first, int len)
2577{
2578	if (!*first) {
2579		**to = ',';
2580		*to += 1;
2581	} else
2582		*first = 0;
2583	memcpy(*to, from, len);
2584	*to += len;
2585}
2586
2587static inline void take_selinux_option(char **to, char *from, int *first,
2588				       int len)
2589{
2590	int current_size = 0;
2591
2592	if (!*first) {
2593		**to = '|';
2594		*to += 1;
2595	} else
2596		*first = 0;
2597
2598	while (current_size < len) {
2599		if (*from != '"') {
2600			**to = *from;
2601			*to += 1;
2602		}
2603		from += 1;
2604		current_size += 1;
2605	}
2606}
2607
2608static int selinux_sb_copy_data(char *orig, char *copy)
2609{
2610	int fnosec, fsec, rc = 0;
2611	char *in_save, *in_curr, *in_end;
2612	char *sec_curr, *nosec_save, *nosec;
2613	int open_quote = 0;
2614
2615	in_curr = orig;
2616	sec_curr = copy;
2617
2618	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2619	if (!nosec) {
2620		rc = -ENOMEM;
2621		goto out;
2622	}
2623
2624	nosec_save = nosec;
2625	fnosec = fsec = 1;
2626	in_save = in_end = orig;
2627
2628	do {
2629		if (*in_end == '"')
2630			open_quote = !open_quote;
2631		if ((*in_end == ',' && open_quote == 0) ||
2632				*in_end == '\0') {
2633			int len = in_end - in_curr;
2634
2635			if (selinux_option(in_curr, len))
2636				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2637			else
2638				take_option(&nosec, in_curr, &fnosec, len);
2639
2640			in_curr = in_end + 1;
2641		}
2642	} while (*in_end++);
2643
2644	strcpy(in_save, nosec_save);
2645	free_page((unsigned long)nosec_save);
2646out:
2647	return rc;
2648}
2649
2650static int selinux_sb_remount(struct super_block *sb, void *data)
2651{
2652	int rc, i, *flags;
2653	struct security_mnt_opts opts;
2654	char *secdata, **mount_options;
2655	struct superblock_security_struct *sbsec = sb->s_security;
2656
2657	if (!(sbsec->flags & SE_SBINITIALIZED))
2658		return 0;
2659
2660	if (!data)
2661		return 0;
2662
2663	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2664		return 0;
2665
2666	security_init_mnt_opts(&opts);
2667	secdata = alloc_secdata();
2668	if (!secdata)
2669		return -ENOMEM;
2670	rc = selinux_sb_copy_data(data, secdata);
2671	if (rc)
2672		goto out_free_secdata;
2673
2674	rc = selinux_parse_opts_str(secdata, &opts);
2675	if (rc)
2676		goto out_free_secdata;
2677
2678	mount_options = opts.mnt_opts;
2679	flags = opts.mnt_opts_flags;
2680
2681	for (i = 0; i < opts.num_mnt_opts; i++) {
2682		u32 sid;
 
2683
2684		if (flags[i] == SBLABEL_MNT)
2685			continue;
2686		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
 
2687		if (rc) {
2688			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2689			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2690			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2691			goto out_free_opts;
2692		}
2693		rc = -EINVAL;
2694		switch (flags[i]) {
2695		case FSCONTEXT_MNT:
2696			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2697				goto out_bad_option;
2698			break;
2699		case CONTEXT_MNT:
2700			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2701				goto out_bad_option;
2702			break;
2703		case ROOTCONTEXT_MNT: {
2704			struct inode_security_struct *root_isec;
2705			root_isec = backing_inode_security(sb->s_root);
2706
2707			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2708				goto out_bad_option;
2709			break;
2710		}
2711		case DEFCONTEXT_MNT:
2712			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2713				goto out_bad_option;
2714			break;
2715		default:
2716			goto out_free_opts;
2717		}
2718	}
2719
2720	rc = 0;
2721out_free_opts:
2722	security_free_mnt_opts(&opts);
2723out_free_secdata:
2724	free_secdata(secdata);
2725	return rc;
2726out_bad_option:
2727	printk(KERN_WARNING "SELinux: unable to change security options "
2728	       "during remount (dev %s, type=%s)\n", sb->s_id,
2729	       sb->s_type->name);
2730	goto out_free_opts;
2731}
2732
2733static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2734{
2735	const struct cred *cred = current_cred();
2736	struct common_audit_data ad;
2737	int rc;
2738
2739	rc = superblock_doinit(sb, data);
2740	if (rc)
2741		return rc;
2742
2743	/* Allow all mounts performed by the kernel */
2744	if (flags & MS_KERNMOUNT)
2745		return 0;
2746
2747	ad.type = LSM_AUDIT_DATA_DENTRY;
2748	ad.u.dentry = sb->s_root;
2749	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2750}
2751
2752static int selinux_sb_statfs(struct dentry *dentry)
2753{
2754	const struct cred *cred = current_cred();
2755	struct common_audit_data ad;
2756
2757	ad.type = LSM_AUDIT_DATA_DENTRY;
2758	ad.u.dentry = dentry->d_sb->s_root;
2759	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2760}
2761
2762static int selinux_mount(const char *dev_name,
2763			 struct path *path,
2764			 const char *type,
2765			 unsigned long flags,
2766			 void *data)
2767{
2768	const struct cred *cred = current_cred();
2769
2770	if (flags & MS_REMOUNT)
2771		return superblock_has_perm(cred, path->dentry->d_sb,
2772					   FILESYSTEM__REMOUNT, NULL);
2773	else
2774		return path_has_perm(cred, path, FILE__MOUNTON);
2775}
2776
2777static int selinux_umount(struct vfsmount *mnt, int flags)
2778{
2779	const struct cred *cred = current_cred();
2780
2781	return superblock_has_perm(cred, mnt->mnt_sb,
2782				   FILESYSTEM__UNMOUNT, NULL);
2783}
2784
2785/* inode security operations */
2786
2787static int selinux_inode_alloc_security(struct inode *inode)
2788{
2789	return inode_alloc_security(inode);
2790}
2791
2792static void selinux_inode_free_security(struct inode *inode)
2793{
2794	inode_free_security(inode);
2795}
2796
2797static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2798					struct qstr *name, void **ctx,
2799					u32 *ctxlen)
2800{
2801	u32 newsid;
2802	int rc;
2803
2804	rc = selinux_determine_inode_label(d_inode(dentry->d_parent), name,
2805					   inode_mode_to_security_class(mode),
2806					   &newsid);
2807	if (rc)
2808		return rc;
2809
2810	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2811}
2812
2813static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2814				       const struct qstr *qstr,
2815				       const char **name,
2816				       void **value, size_t *len)
2817{
2818	const struct task_security_struct *tsec = current_security();
 
2819	struct superblock_security_struct *sbsec;
2820	u32 sid, newsid, clen;
2821	int rc;
2822	char *context;
2823
 
2824	sbsec = dir->i_sb->s_security;
2825
2826	sid = tsec->sid;
2827	newsid = tsec->create_sid;
2828
2829	rc = selinux_determine_inode_label(
2830		dir, qstr,
2831		inode_mode_to_security_class(inode->i_mode),
2832		&newsid);
2833	if (rc)
2834		return rc;
 
 
 
 
 
 
 
 
 
 
2835
2836	/* Possibly defer initialization to selinux_complete_init. */
2837	if (sbsec->flags & SE_SBINITIALIZED) {
2838		struct inode_security_struct *isec = inode->i_security;
2839		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2840		isec->sid = newsid;
2841		isec->initialized = LABEL_INITIALIZED;
2842	}
2843
2844	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2845		return -EOPNOTSUPP;
2846
2847	if (name)
2848		*name = XATTR_SELINUX_SUFFIX;
 
 
 
 
2849
2850	if (value && len) {
2851		rc = security_sid_to_context_force(newsid, &context, &clen);
2852		if (rc)
 
2853			return rc;
 
2854		*value = context;
2855		*len = clen;
2856	}
2857
2858	return 0;
2859}
2860
2861static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2862{
2863	return may_create(dir, dentry, SECCLASS_FILE);
2864}
2865
2866static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2867{
2868	return may_link(dir, old_dentry, MAY_LINK);
2869}
2870
2871static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2872{
2873	return may_link(dir, dentry, MAY_UNLINK);
2874}
2875
2876static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2877{
2878	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2879}
2880
2881static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2882{
2883	return may_create(dir, dentry, SECCLASS_DIR);
2884}
2885
2886static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2887{
2888	return may_link(dir, dentry, MAY_RMDIR);
2889}
2890
2891static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892{
2893	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2894}
2895
2896static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2897				struct inode *new_inode, struct dentry *new_dentry)
2898{
2899	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2900}
2901
2902static int selinux_inode_readlink(struct dentry *dentry)
2903{
2904	const struct cred *cred = current_cred();
2905
2906	return dentry_has_perm(cred, dentry, FILE__READ);
2907}
2908
2909static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2910				     bool rcu)
2911{
2912	const struct cred *cred = current_cred();
2913	struct common_audit_data ad;
2914	struct inode_security_struct *isec;
2915	u32 sid;
2916
2917	validate_creds(cred);
2918
2919	ad.type = LSM_AUDIT_DATA_DENTRY;
2920	ad.u.dentry = dentry;
2921	sid = cred_sid(cred);
2922	isec = inode_security_rcu(inode, rcu);
2923	if (IS_ERR(isec))
2924		return PTR_ERR(isec);
2925
2926	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2927				  rcu ? MAY_NOT_BLOCK : 0);
2928}
2929
2930static noinline int audit_inode_permission(struct inode *inode,
2931					   u32 perms, u32 audited, u32 denied,
2932					   int result,
2933					   unsigned flags)
2934{
2935	struct common_audit_data ad;
2936	struct inode_security_struct *isec = inode->i_security;
2937	int rc;
2938
2939	ad.type = LSM_AUDIT_DATA_INODE;
2940	ad.u.inode = inode;
2941
2942	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2943			    audited, denied, result, &ad, flags);
2944	if (rc)
2945		return rc;
2946	return 0;
2947}
2948
2949static int selinux_inode_permission(struct inode *inode, int mask)
2950{
2951	const struct cred *cred = current_cred();
2952	u32 perms;
2953	bool from_access;
2954	unsigned flags = mask & MAY_NOT_BLOCK;
2955	struct inode_security_struct *isec;
2956	u32 sid;
2957	struct av_decision avd;
2958	int rc, rc2;
2959	u32 audited, denied;
2960
2961	from_access = mask & MAY_ACCESS;
2962	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2963
2964	/* No permission to check.  Existence test. */
2965	if (!mask)
2966		return 0;
2967
2968	validate_creds(cred);
2969
2970	if (unlikely(IS_PRIVATE(inode)))
2971		return 0;
2972
2973	perms = file_mask_to_av(inode->i_mode, mask);
2974
2975	sid = cred_sid(cred);
2976	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
2977	if (IS_ERR(isec))
2978		return PTR_ERR(isec);
2979
2980	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2981	audited = avc_audit_required(perms, &avd, rc,
2982				     from_access ? FILE__AUDIT_ACCESS : 0,
2983				     &denied);
2984	if (likely(!audited))
2985		return rc;
2986
2987	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2988	if (rc2)
2989		return rc2;
2990	return rc;
2991}
2992
2993static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2994{
2995	const struct cred *cred = current_cred();
2996	unsigned int ia_valid = iattr->ia_valid;
2997	__u32 av = FILE__WRITE;
2998
2999	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3000	if (ia_valid & ATTR_FORCE) {
3001		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3002			      ATTR_FORCE);
3003		if (!ia_valid)
3004			return 0;
3005	}
3006
3007	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3008			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3009		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3010
3011	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3012			&& !(ia_valid & ATTR_FILE))
3013		av |= FILE__OPEN;
3014
3015	return dentry_has_perm(cred, dentry, av);
3016}
3017
3018static int selinux_inode_getattr(const struct path *path)
3019{
3020	return path_has_perm(current_cred(), path, FILE__GETATTR);
 
 
 
 
 
 
3021}
3022
3023static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3024{
3025	const struct cred *cred = current_cred();
3026
3027	if (!strncmp(name, XATTR_SECURITY_PREFIX,
3028		     sizeof XATTR_SECURITY_PREFIX - 1)) {
3029		if (!strcmp(name, XATTR_NAME_CAPS)) {
3030			if (!capable(CAP_SETFCAP))
3031				return -EPERM;
3032		} else if (!capable(CAP_SYS_ADMIN)) {
3033			/* A different attribute in the security namespace.
3034			   Restrict to administrator. */
3035			return -EPERM;
3036		}
3037	}
3038
3039	/* Not an attribute we recognize, so just check the
3040	   ordinary setattr permission. */
3041	return dentry_has_perm(cred, dentry, FILE__SETATTR);
3042}
3043
3044static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3045				  const void *value, size_t size, int flags)
3046{
3047	struct inode *inode = d_backing_inode(dentry);
3048	struct inode_security_struct *isec = backing_inode_security(dentry);
3049	struct superblock_security_struct *sbsec;
3050	struct common_audit_data ad;
3051	u32 newsid, sid = current_sid();
3052	int rc = 0;
3053
3054	if (strcmp(name, XATTR_NAME_SELINUX))
3055		return selinux_inode_setotherxattr(dentry, name);
3056
3057	sbsec = inode->i_sb->s_security;
3058	if (!(sbsec->flags & SBLABEL_MNT))
3059		return -EOPNOTSUPP;
3060
3061	if (!inode_owner_or_capable(inode))
3062		return -EPERM;
3063
3064	ad.type = LSM_AUDIT_DATA_DENTRY;
3065	ad.u.dentry = dentry;
3066
3067	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3068			  FILE__RELABELFROM, &ad);
3069	if (rc)
3070		return rc;
3071
3072	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3073	if (rc == -EINVAL) {
3074		if (!capable(CAP_MAC_ADMIN)) {
3075			struct audit_buffer *ab;
3076			size_t audit_size;
3077			const char *str;
3078
3079			/* We strip a nul only if it is at the end, otherwise the
3080			 * context contains a nul and we should audit that */
3081			if (value) {
3082				str = value;
3083				if (str[size - 1] == '\0')
3084					audit_size = size - 1;
3085				else
3086					audit_size = size;
3087			} else {
3088				str = "";
3089				audit_size = 0;
3090			}
3091			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3092			audit_log_format(ab, "op=setxattr invalid_context=");
3093			audit_log_n_untrustedstring(ab, value, audit_size);
3094			audit_log_end(ab);
3095
3096			return rc;
3097		}
3098		rc = security_context_to_sid_force(value, size, &newsid);
3099	}
3100	if (rc)
3101		return rc;
3102
3103	rc = avc_has_perm(sid, newsid, isec->sclass,
3104			  FILE__RELABELTO, &ad);
3105	if (rc)
3106		return rc;
3107
3108	rc = security_validate_transition(isec->sid, newsid, sid,
3109					  isec->sclass);
3110	if (rc)
3111		return rc;
3112
3113	return avc_has_perm(newsid,
3114			    sbsec->sid,
3115			    SECCLASS_FILESYSTEM,
3116			    FILESYSTEM__ASSOCIATE,
3117			    &ad);
3118}
3119
3120static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3121					const void *value, size_t size,
3122					int flags)
3123{
3124	struct inode *inode = d_backing_inode(dentry);
3125	struct inode_security_struct *isec = backing_inode_security(dentry);
3126	u32 newsid;
3127	int rc;
3128
3129	if (strcmp(name, XATTR_NAME_SELINUX)) {
3130		/* Not an attribute we recognize, so nothing to do. */
3131		return;
3132	}
3133
3134	rc = security_context_to_sid_force(value, size, &newsid);
3135	if (rc) {
3136		printk(KERN_ERR "SELinux:  unable to map context to SID"
3137		       "for (%s, %lu), rc=%d\n",
3138		       inode->i_sb->s_id, inode->i_ino, -rc);
3139		return;
3140	}
3141
3142	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3143	isec->sid = newsid;
3144	isec->initialized = LABEL_INITIALIZED;
3145
3146	return;
3147}
3148
3149static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3150{
3151	const struct cred *cred = current_cred();
3152
3153	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3154}
3155
3156static int selinux_inode_listxattr(struct dentry *dentry)
3157{
3158	const struct cred *cred = current_cred();
3159
3160	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3161}
3162
3163static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3164{
3165	if (strcmp(name, XATTR_NAME_SELINUX))
3166		return selinux_inode_setotherxattr(dentry, name);
3167
3168	/* No one is allowed to remove a SELinux security label.
3169	   You can change the label, but all data must be labeled. */
3170	return -EACCES;
3171}
3172
3173/*
3174 * Copy the inode security context value to the user.
3175 *
3176 * Permission check is handled by selinux_inode_getxattr hook.
3177 */
3178static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3179{
3180	u32 size;
3181	int error;
3182	char *context = NULL;
3183	struct inode_security_struct *isec = inode_security(inode);
3184
3185	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3186		return -EOPNOTSUPP;
3187
3188	/*
3189	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3190	 * value even if it is not defined by current policy; otherwise,
3191	 * use the in-core value under current policy.
3192	 * Use the non-auditing forms of the permission checks since
3193	 * getxattr may be called by unprivileged processes commonly
3194	 * and lack of permission just means that we fall back to the
3195	 * in-core context value, not a denial.
3196	 */
3197	error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3198			    SECURITY_CAP_NOAUDIT);
3199	if (!error)
3200		error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3201					    SECURITY_CAP_NOAUDIT);
3202	if (!error)
3203		error = security_sid_to_context_force(isec->sid, &context,
3204						      &size);
3205	else
3206		error = security_sid_to_context(isec->sid, &context, &size);
3207	if (error)
3208		return error;
3209	error = size;
3210	if (alloc) {
3211		*buffer = context;
3212		goto out_nofree;
3213	}
3214	kfree(context);
3215out_nofree:
3216	return error;
3217}
3218
3219static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3220				     const void *value, size_t size, int flags)
3221{
3222	struct inode_security_struct *isec = inode_security(inode);
3223	u32 newsid;
3224	int rc;
3225
3226	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3227		return -EOPNOTSUPP;
3228
3229	if (!value || !size)
3230		return -EACCES;
3231
3232	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3233	if (rc)
3234		return rc;
3235
3236	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3237	isec->sid = newsid;
3238	isec->initialized = LABEL_INITIALIZED;
3239	return 0;
3240}
3241
3242static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3243{
3244	const int len = sizeof(XATTR_NAME_SELINUX);
3245	if (buffer && len <= buffer_size)
3246		memcpy(buffer, XATTR_NAME_SELINUX, len);
3247	return len;
3248}
3249
3250static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3251{
3252	struct inode_security_struct *isec = inode_security_novalidate(inode);
3253	*secid = isec->sid;
3254}
3255
3256/* file security operations */
3257
3258static int selinux_revalidate_file_permission(struct file *file, int mask)
3259{
3260	const struct cred *cred = current_cred();
3261	struct inode *inode = file_inode(file);
3262
3263	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3264	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3265		mask |= MAY_APPEND;
3266
3267	return file_has_perm(cred, file,
3268			     file_mask_to_av(inode->i_mode, mask));
3269}
3270
3271static int selinux_file_permission(struct file *file, int mask)
3272{
3273	struct inode *inode = file_inode(file);
3274	struct file_security_struct *fsec = file->f_security;
3275	struct inode_security_struct *isec;
3276	u32 sid = current_sid();
3277
3278	if (!mask)
3279		/* No permission to check.  Existence test. */
3280		return 0;
3281
3282	isec = inode_security(inode);
3283	if (sid == fsec->sid && fsec->isid == isec->sid &&
3284	    fsec->pseqno == avc_policy_seqno())
3285		/* No change since file_open check. */
3286		return 0;
3287
3288	return selinux_revalidate_file_permission(file, mask);
3289}
3290
3291static int selinux_file_alloc_security(struct file *file)
3292{
3293	return file_alloc_security(file);
3294}
3295
3296static void selinux_file_free_security(struct file *file)
3297{
3298	file_free_security(file);
3299}
3300
3301/*
3302 * Check whether a task has the ioctl permission and cmd
3303 * operation to an inode.
3304 */
3305static int ioctl_has_perm(const struct cred *cred, struct file *file,
3306		u32 requested, u16 cmd)
3307{
3308	struct common_audit_data ad;
3309	struct file_security_struct *fsec = file->f_security;
3310	struct inode *inode = file_inode(file);
3311	struct inode_security_struct *isec = inode_security(inode);
3312	struct lsm_ioctlop_audit ioctl;
3313	u32 ssid = cred_sid(cred);
3314	int rc;
3315	u8 driver = cmd >> 8;
3316	u8 xperm = cmd & 0xff;
3317
3318	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3319	ad.u.op = &ioctl;
3320	ad.u.op->cmd = cmd;
3321	ad.u.op->path = file->f_path;
3322
3323	if (ssid != fsec->sid) {
3324		rc = avc_has_perm(ssid, fsec->sid,
3325				SECCLASS_FD,
3326				FD__USE,
3327				&ad);
3328		if (rc)
3329			goto out;
3330	}
3331
3332	if (unlikely(IS_PRIVATE(inode)))
3333		return 0;
3334
3335	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3336			requested, driver, xperm, &ad);
3337out:
3338	return rc;
3339}
3340
3341static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3342			      unsigned long arg)
3343{
3344	const struct cred *cred = current_cred();
3345	int error = 0;
3346
3347	switch (cmd) {
3348	case FIONREAD:
3349	/* fall through */
3350	case FIBMAP:
3351	/* fall through */
3352	case FIGETBSZ:
3353	/* fall through */
3354	case FS_IOC_GETFLAGS:
3355	/* fall through */
3356	case FS_IOC_GETVERSION:
3357		error = file_has_perm(cred, file, FILE__GETATTR);
3358		break;
3359
3360	case FS_IOC_SETFLAGS:
3361	/* fall through */
3362	case FS_IOC_SETVERSION:
3363		error = file_has_perm(cred, file, FILE__SETATTR);
3364		break;
3365
3366	/* sys_ioctl() checks */
3367	case FIONBIO:
3368	/* fall through */
3369	case FIOASYNC:
3370		error = file_has_perm(cred, file, 0);
3371		break;
3372
3373	case KDSKBENT:
3374	case KDSKBSENT:
3375		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3376					    SECURITY_CAP_AUDIT);
3377		break;
3378
3379	/* default case assumes that the command will go
3380	 * to the file's ioctl() function.
3381	 */
3382	default:
3383		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3384	}
3385	return error;
3386}
3387
3388static int default_noexec;
3389
3390static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3391{
3392	const struct cred *cred = current_cred();
3393	int rc = 0;
3394
3395	if (default_noexec &&
3396	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3397				   (!shared && (prot & PROT_WRITE)))) {
3398		/*
3399		 * We are making executable an anonymous mapping or a
3400		 * private file mapping that will also be writable.
3401		 * This has an additional check.
3402		 */
3403		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3404		if (rc)
3405			goto error;
3406	}
3407
3408	if (file) {
3409		/* read access is always possible with a mapping */
3410		u32 av = FILE__READ;
3411
3412		/* write access only matters if the mapping is shared */
3413		if (shared && (prot & PROT_WRITE))
3414			av |= FILE__WRITE;
3415
3416		if (prot & PROT_EXEC)
3417			av |= FILE__EXECUTE;
3418
3419		return file_has_perm(cred, file, av);
3420	}
3421
3422error:
3423	return rc;
3424}
3425
3426static int selinux_mmap_addr(unsigned long addr)
3427{
3428	int rc = 0;
 
3429
 
 
 
 
 
 
3430	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3431		u32 sid = current_sid();
3432		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3433				  MEMPROTECT__MMAP_ZERO, NULL);
 
 
3434	}
3435
3436	return rc;
 
3437}
3438
3439static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3440			     unsigned long prot, unsigned long flags)
3441{
3442	if (selinux_checkreqprot)
3443		prot = reqprot;
3444
3445	return file_map_prot_check(file, prot,
3446				   (flags & MAP_TYPE) == MAP_SHARED);
3447}
3448
3449static int selinux_file_mprotect(struct vm_area_struct *vma,
3450				 unsigned long reqprot,
3451				 unsigned long prot)
3452{
3453	const struct cred *cred = current_cred();
3454
3455	if (selinux_checkreqprot)
3456		prot = reqprot;
3457
3458	if (default_noexec &&
3459	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3460		int rc = 0;
3461		if (vma->vm_start >= vma->vm_mm->start_brk &&
3462		    vma->vm_end <= vma->vm_mm->brk) {
3463			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3464		} else if (!vma->vm_file &&
3465			   vma->vm_start <= vma->vm_mm->start_stack &&
3466			   vma->vm_end >= vma->vm_mm->start_stack) {
3467			rc = current_has_perm(current, PROCESS__EXECSTACK);
3468		} else if (vma->vm_file && vma->anon_vma) {
3469			/*
3470			 * We are making executable a file mapping that has
3471			 * had some COW done. Since pages might have been
3472			 * written, check ability to execute the possibly
3473			 * modified content.  This typically should only
3474			 * occur for text relocations.
3475			 */
3476			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3477		}
3478		if (rc)
3479			return rc;
3480	}
3481
3482	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3483}
3484
3485static int selinux_file_lock(struct file *file, unsigned int cmd)
3486{
3487	const struct cred *cred = current_cred();
3488
3489	return file_has_perm(cred, file, FILE__LOCK);
3490}
3491
3492static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3493			      unsigned long arg)
3494{
3495	const struct cred *cred = current_cred();
3496	int err = 0;
3497
3498	switch (cmd) {
3499	case F_SETFL:
 
 
 
 
 
3500		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3501			err = file_has_perm(cred, file, FILE__WRITE);
3502			break;
3503		}
3504		/* fall through */
3505	case F_SETOWN:
3506	case F_SETSIG:
3507	case F_GETFL:
3508	case F_GETOWN:
3509	case F_GETSIG:
3510	case F_GETOWNER_UIDS:
3511		/* Just check FD__USE permission */
3512		err = file_has_perm(cred, file, 0);
3513		break;
3514	case F_GETLK:
3515	case F_SETLK:
3516	case F_SETLKW:
3517	case F_OFD_GETLK:
3518	case F_OFD_SETLK:
3519	case F_OFD_SETLKW:
3520#if BITS_PER_LONG == 32
3521	case F_GETLK64:
3522	case F_SETLK64:
3523	case F_SETLKW64:
3524#endif
 
 
 
 
3525		err = file_has_perm(cred, file, FILE__LOCK);
3526		break;
3527	}
3528
3529	return err;
3530}
3531
3532static void selinux_file_set_fowner(struct file *file)
3533{
3534	struct file_security_struct *fsec;
3535
3536	fsec = file->f_security;
3537	fsec->fown_sid = current_sid();
 
 
3538}
3539
3540static int selinux_file_send_sigiotask(struct task_struct *tsk,
3541				       struct fown_struct *fown, int signum)
3542{
3543	struct file *file;
3544	u32 sid = task_sid(tsk);
3545	u32 perm;
3546	struct file_security_struct *fsec;
3547
3548	/* struct fown_struct is never outside the context of a struct file */
3549	file = container_of(fown, struct file, f_owner);
3550
3551	fsec = file->f_security;
3552
3553	if (!signum)
3554		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3555	else
3556		perm = signal_to_av(signum);
3557
3558	return avc_has_perm(fsec->fown_sid, sid,
3559			    SECCLASS_PROCESS, perm, NULL);
3560}
3561
3562static int selinux_file_receive(struct file *file)
3563{
3564	const struct cred *cred = current_cred();
3565
3566	return file_has_perm(cred, file, file_to_av(file));
3567}
3568
3569static int selinux_file_open(struct file *file, const struct cred *cred)
3570{
3571	struct file_security_struct *fsec;
3572	struct inode_security_struct *isec;
3573
3574	fsec = file->f_security;
3575	isec = inode_security(file_inode(file));
3576	/*
3577	 * Save inode label and policy sequence number
3578	 * at open-time so that selinux_file_permission
3579	 * can determine whether revalidation is necessary.
3580	 * Task label is already saved in the file security
3581	 * struct as its SID.
3582	 */
3583	fsec->isid = isec->sid;
3584	fsec->pseqno = avc_policy_seqno();
3585	/*
3586	 * Since the inode label or policy seqno may have changed
3587	 * between the selinux_inode_permission check and the saving
3588	 * of state above, recheck that access is still permitted.
3589	 * Otherwise, access might never be revalidated against the
3590	 * new inode label or new policy.
3591	 * This check is not redundant - do not remove.
3592	 */
3593	return file_path_has_perm(cred, file, open_file_to_av(file));
3594}
3595
3596/* task security operations */
3597
3598static int selinux_task_create(unsigned long clone_flags)
3599{
3600	return current_has_perm(current, PROCESS__FORK);
3601}
3602
3603/*
3604 * allocate the SELinux part of blank credentials
3605 */
3606static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3607{
3608	struct task_security_struct *tsec;
3609
3610	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3611	if (!tsec)
3612		return -ENOMEM;
3613
3614	cred->security = tsec;
3615	return 0;
3616}
3617
3618/*
3619 * detach and free the LSM part of a set of credentials
3620 */
3621static void selinux_cred_free(struct cred *cred)
3622{
3623	struct task_security_struct *tsec = cred->security;
3624
3625	/*
3626	 * cred->security == NULL if security_cred_alloc_blank() or
3627	 * security_prepare_creds() returned an error.
3628	 */
3629	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3630	cred->security = (void *) 0x7UL;
3631	kfree(tsec);
3632}
3633
3634/*
3635 * prepare a new set of credentials for modification
3636 */
3637static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3638				gfp_t gfp)
3639{
3640	const struct task_security_struct *old_tsec;
3641	struct task_security_struct *tsec;
3642
3643	old_tsec = old->security;
3644
3645	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3646	if (!tsec)
3647		return -ENOMEM;
3648
3649	new->security = tsec;
3650	return 0;
3651}
3652
3653/*
3654 * transfer the SELinux data to a blank set of creds
3655 */
3656static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3657{
3658	const struct task_security_struct *old_tsec = old->security;
3659	struct task_security_struct *tsec = new->security;
3660
3661	*tsec = *old_tsec;
3662}
3663
3664/*
3665 * set the security data for a kernel service
3666 * - all the creation contexts are set to unlabelled
3667 */
3668static int selinux_kernel_act_as(struct cred *new, u32 secid)
3669{
3670	struct task_security_struct *tsec = new->security;
3671	u32 sid = current_sid();
3672	int ret;
3673
3674	ret = avc_has_perm(sid, secid,
3675			   SECCLASS_KERNEL_SERVICE,
3676			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3677			   NULL);
3678	if (ret == 0) {
3679		tsec->sid = secid;
3680		tsec->create_sid = 0;
3681		tsec->keycreate_sid = 0;
3682		tsec->sockcreate_sid = 0;
3683	}
3684	return ret;
3685}
3686
3687/*
3688 * set the file creation context in a security record to the same as the
3689 * objective context of the specified inode
3690 */
3691static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3692{
3693	struct inode_security_struct *isec = inode_security(inode);
3694	struct task_security_struct *tsec = new->security;
3695	u32 sid = current_sid();
3696	int ret;
3697
3698	ret = avc_has_perm(sid, isec->sid,
3699			   SECCLASS_KERNEL_SERVICE,
3700			   KERNEL_SERVICE__CREATE_FILES_AS,
3701			   NULL);
3702
3703	if (ret == 0)
3704		tsec->create_sid = isec->sid;
3705	return ret;
3706}
3707
3708static int selinux_kernel_module_request(char *kmod_name)
3709{
3710	u32 sid;
3711	struct common_audit_data ad;
3712
3713	sid = task_sid(current);
3714
3715	ad.type = LSM_AUDIT_DATA_KMOD;
3716	ad.u.kmod_name = kmod_name;
3717
3718	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3719			    SYSTEM__MODULE_REQUEST, &ad);
3720}
3721
3722static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3723{
3724	return current_has_perm(p, PROCESS__SETPGID);
3725}
3726
3727static int selinux_task_getpgid(struct task_struct *p)
3728{
3729	return current_has_perm(p, PROCESS__GETPGID);
3730}
3731
3732static int selinux_task_getsid(struct task_struct *p)
3733{
3734	return current_has_perm(p, PROCESS__GETSESSION);
3735}
3736
3737static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3738{
3739	*secid = task_sid(p);
3740}
3741
3742static int selinux_task_setnice(struct task_struct *p, int nice)
3743{
 
 
 
 
 
 
3744	return current_has_perm(p, PROCESS__SETSCHED);
3745}
3746
3747static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3748{
 
 
 
 
 
 
3749	return current_has_perm(p, PROCESS__SETSCHED);
3750}
3751
3752static int selinux_task_getioprio(struct task_struct *p)
3753{
3754	return current_has_perm(p, PROCESS__GETSCHED);
3755}
3756
3757static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3758		struct rlimit *new_rlim)
3759{
3760	struct rlimit *old_rlim = p->signal->rlim + resource;
3761
3762	/* Control the ability to change the hard limit (whether
3763	   lowering or raising it), so that the hard limit can
3764	   later be used as a safe reset point for the soft limit
3765	   upon context transitions.  See selinux_bprm_committing_creds. */
3766	if (old_rlim->rlim_max != new_rlim->rlim_max)
3767		return current_has_perm(p, PROCESS__SETRLIMIT);
3768
3769	return 0;
3770}
3771
3772static int selinux_task_setscheduler(struct task_struct *p)
3773{
 
 
 
 
 
 
3774	return current_has_perm(p, PROCESS__SETSCHED);
3775}
3776
3777static int selinux_task_getscheduler(struct task_struct *p)
3778{
3779	return current_has_perm(p, PROCESS__GETSCHED);
3780}
3781
3782static int selinux_task_movememory(struct task_struct *p)
3783{
3784	return current_has_perm(p, PROCESS__SETSCHED);
3785}
3786
3787static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3788				int sig, u32 secid)
3789{
3790	u32 perm;
3791	int rc;
3792
3793	if (!sig)
3794		perm = PROCESS__SIGNULL; /* null signal; existence test */
3795	else
3796		perm = signal_to_av(sig);
3797	if (secid)
3798		rc = avc_has_perm(secid, task_sid(p),
3799				  SECCLASS_PROCESS, perm, NULL);
3800	else
3801		rc = current_has_perm(p, perm);
3802	return rc;
3803}
3804
3805static int selinux_task_wait(struct task_struct *p)
3806{
3807	return task_has_perm(p, current, PROCESS__SIGCHLD);
3808}
3809
3810static void selinux_task_to_inode(struct task_struct *p,
3811				  struct inode *inode)
3812{
3813	struct inode_security_struct *isec = inode->i_security;
3814	u32 sid = task_sid(p);
3815
3816	isec->sid = sid;
3817	isec->initialized = LABEL_INITIALIZED;
3818}
3819
3820/* Returns error only if unable to parse addresses */
3821static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3822			struct common_audit_data *ad, u8 *proto)
3823{
3824	int offset, ihlen, ret = -EINVAL;
3825	struct iphdr _iph, *ih;
3826
3827	offset = skb_network_offset(skb);
3828	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3829	if (ih == NULL)
3830		goto out;
3831
3832	ihlen = ih->ihl * 4;
3833	if (ihlen < sizeof(_iph))
3834		goto out;
3835
3836	ad->u.net->v4info.saddr = ih->saddr;
3837	ad->u.net->v4info.daddr = ih->daddr;
3838	ret = 0;
3839
3840	if (proto)
3841		*proto = ih->protocol;
3842
3843	switch (ih->protocol) {
3844	case IPPROTO_TCP: {
3845		struct tcphdr _tcph, *th;
3846
3847		if (ntohs(ih->frag_off) & IP_OFFSET)
3848			break;
3849
3850		offset += ihlen;
3851		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3852		if (th == NULL)
3853			break;
3854
3855		ad->u.net->sport = th->source;
3856		ad->u.net->dport = th->dest;
3857		break;
3858	}
3859
3860	case IPPROTO_UDP: {
3861		struct udphdr _udph, *uh;
3862
3863		if (ntohs(ih->frag_off) & IP_OFFSET)
3864			break;
3865
3866		offset += ihlen;
3867		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3868		if (uh == NULL)
3869			break;
3870
3871		ad->u.net->sport = uh->source;
3872		ad->u.net->dport = uh->dest;
3873		break;
3874	}
3875
3876	case IPPROTO_DCCP: {
3877		struct dccp_hdr _dccph, *dh;
3878
3879		if (ntohs(ih->frag_off) & IP_OFFSET)
3880			break;
3881
3882		offset += ihlen;
3883		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3884		if (dh == NULL)
3885			break;
3886
3887		ad->u.net->sport = dh->dccph_sport;
3888		ad->u.net->dport = dh->dccph_dport;
3889		break;
3890	}
3891
3892	default:
3893		break;
3894	}
3895out:
3896	return ret;
3897}
3898
3899#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3900
3901/* Returns error only if unable to parse addresses */
3902static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3903			struct common_audit_data *ad, u8 *proto)
3904{
3905	u8 nexthdr;
3906	int ret = -EINVAL, offset;
3907	struct ipv6hdr _ipv6h, *ip6;
3908	__be16 frag_off;
3909
3910	offset = skb_network_offset(skb);
3911	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3912	if (ip6 == NULL)
3913		goto out;
3914
3915	ad->u.net->v6info.saddr = ip6->saddr;
3916	ad->u.net->v6info.daddr = ip6->daddr;
3917	ret = 0;
3918
3919	nexthdr = ip6->nexthdr;
3920	offset += sizeof(_ipv6h);
3921	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3922	if (offset < 0)
3923		goto out;
3924
3925	if (proto)
3926		*proto = nexthdr;
3927
3928	switch (nexthdr) {
3929	case IPPROTO_TCP: {
3930		struct tcphdr _tcph, *th;
3931
3932		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3933		if (th == NULL)
3934			break;
3935
3936		ad->u.net->sport = th->source;
3937		ad->u.net->dport = th->dest;
3938		break;
3939	}
3940
3941	case IPPROTO_UDP: {
3942		struct udphdr _udph, *uh;
3943
3944		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3945		if (uh == NULL)
3946			break;
3947
3948		ad->u.net->sport = uh->source;
3949		ad->u.net->dport = uh->dest;
3950		break;
3951	}
3952
3953	case IPPROTO_DCCP: {
3954		struct dccp_hdr _dccph, *dh;
3955
3956		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3957		if (dh == NULL)
3958			break;
3959
3960		ad->u.net->sport = dh->dccph_sport;
3961		ad->u.net->dport = dh->dccph_dport;
3962		break;
3963	}
3964
3965	/* includes fragments */
3966	default:
3967		break;
3968	}
3969out:
3970	return ret;
3971}
3972
3973#endif /* IPV6 */
3974
3975static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3976			     char **_addrp, int src, u8 *proto)
3977{
3978	char *addrp;
3979	int ret;
3980
3981	switch (ad->u.net->family) {
3982	case PF_INET:
3983		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3984		if (ret)
3985			goto parse_error;
3986		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3987				       &ad->u.net->v4info.daddr);
3988		goto okay;
3989
3990#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3991	case PF_INET6:
3992		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3993		if (ret)
3994			goto parse_error;
3995		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3996				       &ad->u.net->v6info.daddr);
3997		goto okay;
3998#endif	/* IPV6 */
3999	default:
4000		addrp = NULL;
4001		goto okay;
4002	}
4003
4004parse_error:
4005	printk(KERN_WARNING
4006	       "SELinux: failure in selinux_parse_skb(),"
4007	       " unable to parse packet\n");
4008	return ret;
4009
4010okay:
4011	if (_addrp)
4012		*_addrp = addrp;
4013	return 0;
4014}
4015
4016/**
4017 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4018 * @skb: the packet
4019 * @family: protocol family
4020 * @sid: the packet's peer label SID
4021 *
4022 * Description:
4023 * Check the various different forms of network peer labeling and determine
4024 * the peer label/SID for the packet; most of the magic actually occurs in
4025 * the security server function security_net_peersid_cmp().  The function
4026 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4027 * or -EACCES if @sid is invalid due to inconsistencies with the different
4028 * peer labels.
4029 *
4030 */
4031static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4032{
4033	int err;
4034	u32 xfrm_sid;
4035	u32 nlbl_sid;
4036	u32 nlbl_type;
4037
4038	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4039	if (unlikely(err))
4040		return -EACCES;
4041	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4042	if (unlikely(err))
4043		return -EACCES;
4044
4045	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4046	if (unlikely(err)) {
4047		printk(KERN_WARNING
4048		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4049		       " unable to determine packet's peer label\n");
4050		return -EACCES;
4051	}
4052
4053	return 0;
4054}
4055
4056/**
4057 * selinux_conn_sid - Determine the child socket label for a connection
4058 * @sk_sid: the parent socket's SID
4059 * @skb_sid: the packet's SID
4060 * @conn_sid: the resulting connection SID
4061 *
4062 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4063 * combined with the MLS information from @skb_sid in order to create
4064 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4065 * of @sk_sid.  Returns zero on success, negative values on failure.
4066 *
4067 */
4068static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4069{
4070	int err = 0;
4071
4072	if (skb_sid != SECSID_NULL)
4073		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4074	else
4075		*conn_sid = sk_sid;
4076
4077	return err;
4078}
4079
4080/* socket security operations */
4081
4082static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4083				 u16 secclass, u32 *socksid)
4084{
4085	if (tsec->sockcreate_sid > SECSID_NULL) {
4086		*socksid = tsec->sockcreate_sid;
4087		return 0;
4088	}
4089
4090	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4091				       socksid);
4092}
4093
4094static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4095{
4096	struct sk_security_struct *sksec = sk->sk_security;
4097	struct common_audit_data ad;
4098	struct lsm_network_audit net = {0,};
4099	u32 tsid = task_sid(task);
4100
4101	if (sksec->sid == SECINITSID_KERNEL)
4102		return 0;
4103
4104	ad.type = LSM_AUDIT_DATA_NET;
4105	ad.u.net = &net;
4106	ad.u.net->sk = sk;
4107
4108	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4109}
4110
4111static int selinux_socket_create(int family, int type,
4112				 int protocol, int kern)
4113{
4114	const struct task_security_struct *tsec = current_security();
4115	u32 newsid;
4116	u16 secclass;
4117	int rc;
4118
4119	if (kern)
4120		return 0;
4121
4122	secclass = socket_type_to_security_class(family, type, protocol);
4123	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4124	if (rc)
4125		return rc;
4126
4127	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4128}
4129
4130static int selinux_socket_post_create(struct socket *sock, int family,
4131				      int type, int protocol, int kern)
4132{
4133	const struct task_security_struct *tsec = current_security();
4134	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4135	struct sk_security_struct *sksec;
4136	int err = 0;
4137
4138	isec->sclass = socket_type_to_security_class(family, type, protocol);
4139
4140	if (kern)
4141		isec->sid = SECINITSID_KERNEL;
4142	else {
4143		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4144		if (err)
4145			return err;
4146	}
4147
4148	isec->initialized = LABEL_INITIALIZED;
4149
4150	if (sock->sk) {
4151		sksec = sock->sk->sk_security;
4152		sksec->sid = isec->sid;
4153		sksec->sclass = isec->sclass;
4154		err = selinux_netlbl_socket_post_create(sock->sk, family);
4155	}
4156
4157	return err;
4158}
4159
4160/* Range of port numbers used to automatically bind.
4161   Need to determine whether we should perform a name_bind
4162   permission check between the socket and the port number. */
4163
4164static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4165{
4166	struct sock *sk = sock->sk;
4167	u16 family;
4168	int err;
4169
4170	err = sock_has_perm(current, sk, SOCKET__BIND);
4171	if (err)
4172		goto out;
4173
4174	/*
4175	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4176	 * Multiple address binding for SCTP is not supported yet: we just
4177	 * check the first address now.
4178	 */
4179	family = sk->sk_family;
4180	if (family == PF_INET || family == PF_INET6) {
4181		char *addrp;
4182		struct sk_security_struct *sksec = sk->sk_security;
4183		struct common_audit_data ad;
4184		struct lsm_network_audit net = {0,};
4185		struct sockaddr_in *addr4 = NULL;
4186		struct sockaddr_in6 *addr6 = NULL;
4187		unsigned short snum;
4188		u32 sid, node_perm;
4189
4190		if (family == PF_INET) {
4191			addr4 = (struct sockaddr_in *)address;
4192			snum = ntohs(addr4->sin_port);
4193			addrp = (char *)&addr4->sin_addr.s_addr;
4194		} else {
4195			addr6 = (struct sockaddr_in6 *)address;
4196			snum = ntohs(addr6->sin6_port);
4197			addrp = (char *)&addr6->sin6_addr.s6_addr;
4198		}
4199
4200		if (snum) {
4201			int low, high;
4202
4203			inet_get_local_port_range(sock_net(sk), &low, &high);
4204
4205			if (snum < max(PROT_SOCK, low) || snum > high) {
4206				err = sel_netport_sid(sk->sk_protocol,
4207						      snum, &sid);
4208				if (err)
4209					goto out;
4210				ad.type = LSM_AUDIT_DATA_NET;
4211				ad.u.net = &net;
4212				ad.u.net->sport = htons(snum);
4213				ad.u.net->family = family;
4214				err = avc_has_perm(sksec->sid, sid,
4215						   sksec->sclass,
4216						   SOCKET__NAME_BIND, &ad);
4217				if (err)
4218					goto out;
4219			}
4220		}
4221
4222		switch (sksec->sclass) {
4223		case SECCLASS_TCP_SOCKET:
4224			node_perm = TCP_SOCKET__NODE_BIND;
4225			break;
4226
4227		case SECCLASS_UDP_SOCKET:
4228			node_perm = UDP_SOCKET__NODE_BIND;
4229			break;
4230
4231		case SECCLASS_DCCP_SOCKET:
4232			node_perm = DCCP_SOCKET__NODE_BIND;
4233			break;
4234
4235		default:
4236			node_perm = RAWIP_SOCKET__NODE_BIND;
4237			break;
4238		}
4239
4240		err = sel_netnode_sid(addrp, family, &sid);
4241		if (err)
4242			goto out;
4243
4244		ad.type = LSM_AUDIT_DATA_NET;
4245		ad.u.net = &net;
4246		ad.u.net->sport = htons(snum);
4247		ad.u.net->family = family;
4248
4249		if (family == PF_INET)
4250			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4251		else
4252			ad.u.net->v6info.saddr = addr6->sin6_addr;
4253
4254		err = avc_has_perm(sksec->sid, sid,
4255				   sksec->sclass, node_perm, &ad);
4256		if (err)
4257			goto out;
4258	}
4259out:
4260	return err;
4261}
4262
4263static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4264{
4265	struct sock *sk = sock->sk;
4266	struct sk_security_struct *sksec = sk->sk_security;
4267	int err;
4268
4269	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4270	if (err)
4271		return err;
4272
4273	/*
4274	 * If a TCP or DCCP socket, check name_connect permission for the port.
4275	 */
4276	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4277	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
4278		struct common_audit_data ad;
4279		struct lsm_network_audit net = {0,};
4280		struct sockaddr_in *addr4 = NULL;
4281		struct sockaddr_in6 *addr6 = NULL;
4282		unsigned short snum;
4283		u32 sid, perm;
4284
4285		if (sk->sk_family == PF_INET) {
4286			addr4 = (struct sockaddr_in *)address;
4287			if (addrlen < sizeof(struct sockaddr_in))
4288				return -EINVAL;
4289			snum = ntohs(addr4->sin_port);
4290		} else {
4291			addr6 = (struct sockaddr_in6 *)address;
4292			if (addrlen < SIN6_LEN_RFC2133)
4293				return -EINVAL;
4294			snum = ntohs(addr6->sin6_port);
4295		}
4296
4297		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4298		if (err)
4299			goto out;
4300
4301		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4302		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4303
4304		ad.type = LSM_AUDIT_DATA_NET;
4305		ad.u.net = &net;
4306		ad.u.net->dport = htons(snum);
4307		ad.u.net->family = sk->sk_family;
4308		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4309		if (err)
4310			goto out;
4311	}
4312
4313	err = selinux_netlbl_socket_connect(sk, address);
4314
4315out:
4316	return err;
4317}
4318
4319static int selinux_socket_listen(struct socket *sock, int backlog)
4320{
4321	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4322}
4323
4324static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4325{
4326	int err;
4327	struct inode_security_struct *isec;
4328	struct inode_security_struct *newisec;
4329
4330	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4331	if (err)
4332		return err;
4333
4334	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4335
4336	isec = inode_security_novalidate(SOCK_INODE(sock));
4337	newisec->sclass = isec->sclass;
4338	newisec->sid = isec->sid;
4339	newisec->initialized = LABEL_INITIALIZED;
4340
4341	return 0;
4342}
4343
4344static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4345				  int size)
4346{
4347	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4348}
4349
4350static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4351				  int size, int flags)
4352{
4353	return sock_has_perm(current, sock->sk, SOCKET__READ);
4354}
4355
4356static int selinux_socket_getsockname(struct socket *sock)
4357{
4358	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4359}
4360
4361static int selinux_socket_getpeername(struct socket *sock)
4362{
4363	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4364}
4365
4366static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4367{
4368	int err;
4369
4370	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4371	if (err)
4372		return err;
4373
4374	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4375}
4376
4377static int selinux_socket_getsockopt(struct socket *sock, int level,
4378				     int optname)
4379{
4380	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4381}
4382
4383static int selinux_socket_shutdown(struct socket *sock, int how)
4384{
4385	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4386}
4387
4388static int selinux_socket_unix_stream_connect(struct sock *sock,
4389					      struct sock *other,
4390					      struct sock *newsk)
4391{
4392	struct sk_security_struct *sksec_sock = sock->sk_security;
4393	struct sk_security_struct *sksec_other = other->sk_security;
4394	struct sk_security_struct *sksec_new = newsk->sk_security;
4395	struct common_audit_data ad;
4396	struct lsm_network_audit net = {0,};
4397	int err;
4398
4399	ad.type = LSM_AUDIT_DATA_NET;
4400	ad.u.net = &net;
4401	ad.u.net->sk = other;
4402
4403	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4404			   sksec_other->sclass,
4405			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4406	if (err)
4407		return err;
4408
4409	/* server child socket */
4410	sksec_new->peer_sid = sksec_sock->sid;
4411	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4412				    &sksec_new->sid);
4413	if (err)
4414		return err;
4415
4416	/* connecting socket */
4417	sksec_sock->peer_sid = sksec_new->sid;
4418
4419	return 0;
4420}
4421
4422static int selinux_socket_unix_may_send(struct socket *sock,
4423					struct socket *other)
4424{
4425	struct sk_security_struct *ssec = sock->sk->sk_security;
4426	struct sk_security_struct *osec = other->sk->sk_security;
4427	struct common_audit_data ad;
4428	struct lsm_network_audit net = {0,};
4429
4430	ad.type = LSM_AUDIT_DATA_NET;
4431	ad.u.net = &net;
4432	ad.u.net->sk = other->sk;
4433
4434	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4435			    &ad);
4436}
4437
4438static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4439				    char *addrp, u16 family, u32 peer_sid,
4440				    struct common_audit_data *ad)
4441{
4442	int err;
4443	u32 if_sid;
4444	u32 node_sid;
4445
4446	err = sel_netif_sid(ns, ifindex, &if_sid);
4447	if (err)
4448		return err;
4449	err = avc_has_perm(peer_sid, if_sid,
4450			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4451	if (err)
4452		return err;
4453
4454	err = sel_netnode_sid(addrp, family, &node_sid);
4455	if (err)
4456		return err;
4457	return avc_has_perm(peer_sid, node_sid,
4458			    SECCLASS_NODE, NODE__RECVFROM, ad);
4459}
4460
4461static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4462				       u16 family)
4463{
4464	int err = 0;
4465	struct sk_security_struct *sksec = sk->sk_security;
4466	u32 sk_sid = sksec->sid;
4467	struct common_audit_data ad;
4468	struct lsm_network_audit net = {0,};
4469	char *addrp;
4470
4471	ad.type = LSM_AUDIT_DATA_NET;
4472	ad.u.net = &net;
4473	ad.u.net->netif = skb->skb_iif;
4474	ad.u.net->family = family;
4475	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4476	if (err)
4477		return err;
4478
4479	if (selinux_secmark_enabled()) {
4480		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4481				   PACKET__RECV, &ad);
4482		if (err)
4483			return err;
4484	}
4485
4486	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4487	if (err)
4488		return err;
4489	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4490
4491	return err;
4492}
4493
4494static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4495{
4496	int err;
4497	struct sk_security_struct *sksec = sk->sk_security;
4498	u16 family = sk->sk_family;
4499	u32 sk_sid = sksec->sid;
4500	struct common_audit_data ad;
4501	struct lsm_network_audit net = {0,};
4502	char *addrp;
4503	u8 secmark_active;
4504	u8 peerlbl_active;
4505
4506	if (family != PF_INET && family != PF_INET6)
4507		return 0;
4508
4509	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4510	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4511		family = PF_INET;
4512
4513	/* If any sort of compatibility mode is enabled then handoff processing
4514	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4515	 * special handling.  We do this in an attempt to keep this function
4516	 * as fast and as clean as possible. */
4517	if (!selinux_policycap_netpeer)
4518		return selinux_sock_rcv_skb_compat(sk, skb, family);
4519
4520	secmark_active = selinux_secmark_enabled();
4521	peerlbl_active = selinux_peerlbl_enabled();
4522	if (!secmark_active && !peerlbl_active)
4523		return 0;
4524
4525	ad.type = LSM_AUDIT_DATA_NET;
4526	ad.u.net = &net;
4527	ad.u.net->netif = skb->skb_iif;
4528	ad.u.net->family = family;
4529	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4530	if (err)
4531		return err;
4532
4533	if (peerlbl_active) {
4534		u32 peer_sid;
4535
4536		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4537		if (err)
4538			return err;
4539		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4540					       addrp, family, peer_sid, &ad);
4541		if (err) {
4542			selinux_netlbl_err(skb, err, 0);
4543			return err;
4544		}
4545		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4546				   PEER__RECV, &ad);
4547		if (err) {
4548			selinux_netlbl_err(skb, err, 0);
4549			return err;
4550		}
4551	}
4552
4553	if (secmark_active) {
4554		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4555				   PACKET__RECV, &ad);
4556		if (err)
4557			return err;
4558	}
4559
4560	return err;
4561}
4562
4563static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4564					    int __user *optlen, unsigned len)
4565{
4566	int err = 0;
4567	char *scontext;
4568	u32 scontext_len;
4569	struct sk_security_struct *sksec = sock->sk->sk_security;
4570	u32 peer_sid = SECSID_NULL;
4571
4572	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4573	    sksec->sclass == SECCLASS_TCP_SOCKET)
4574		peer_sid = sksec->peer_sid;
4575	if (peer_sid == SECSID_NULL)
4576		return -ENOPROTOOPT;
4577
4578	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4579	if (err)
4580		return err;
4581
4582	if (scontext_len > len) {
4583		err = -ERANGE;
4584		goto out_len;
4585	}
4586
4587	if (copy_to_user(optval, scontext, scontext_len))
4588		err = -EFAULT;
4589
4590out_len:
4591	if (put_user(scontext_len, optlen))
4592		err = -EFAULT;
4593	kfree(scontext);
4594	return err;
4595}
4596
4597static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4598{
4599	u32 peer_secid = SECSID_NULL;
4600	u16 family;
4601
4602	if (skb && skb->protocol == htons(ETH_P_IP))
4603		family = PF_INET;
4604	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4605		family = PF_INET6;
4606	else if (sock)
4607		family = sock->sk->sk_family;
4608	else
4609		goto out;
4610
4611	if (sock && family == PF_UNIX)
4612		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4613	else if (skb)
4614		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4615
4616out:
4617	*secid = peer_secid;
4618	if (peer_secid == SECSID_NULL)
4619		return -EINVAL;
4620	return 0;
4621}
4622
4623static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4624{
4625	struct sk_security_struct *sksec;
4626
4627	sksec = kzalloc(sizeof(*sksec), priority);
4628	if (!sksec)
4629		return -ENOMEM;
4630
4631	sksec->peer_sid = SECINITSID_UNLABELED;
4632	sksec->sid = SECINITSID_UNLABELED;
4633	sksec->sclass = SECCLASS_SOCKET;
4634	selinux_netlbl_sk_security_reset(sksec);
4635	sk->sk_security = sksec;
4636
4637	return 0;
4638}
4639
4640static void selinux_sk_free_security(struct sock *sk)
4641{
4642	struct sk_security_struct *sksec = sk->sk_security;
4643
4644	sk->sk_security = NULL;
4645	selinux_netlbl_sk_security_free(sksec);
4646	kfree(sksec);
4647}
4648
4649static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4650{
4651	struct sk_security_struct *sksec = sk->sk_security;
4652	struct sk_security_struct *newsksec = newsk->sk_security;
4653
4654	newsksec->sid = sksec->sid;
4655	newsksec->peer_sid = sksec->peer_sid;
4656	newsksec->sclass = sksec->sclass;
4657
4658	selinux_netlbl_sk_security_reset(newsksec);
4659}
4660
4661static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4662{
4663	if (!sk)
4664		*secid = SECINITSID_ANY_SOCKET;
4665	else {
4666		struct sk_security_struct *sksec = sk->sk_security;
4667
4668		*secid = sksec->sid;
4669	}
4670}
4671
4672static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4673{
4674	struct inode_security_struct *isec =
4675		inode_security_novalidate(SOCK_INODE(parent));
4676	struct sk_security_struct *sksec = sk->sk_security;
4677
4678	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4679	    sk->sk_family == PF_UNIX)
4680		isec->sid = sksec->sid;
4681	sksec->sclass = isec->sclass;
4682}
4683
4684static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4685				     struct request_sock *req)
4686{
4687	struct sk_security_struct *sksec = sk->sk_security;
4688	int err;
4689	u16 family = req->rsk_ops->family;
4690	u32 connsid;
4691	u32 peersid;
4692
 
 
 
 
4693	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4694	if (err)
4695		return err;
4696	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4697	if (err)
4698		return err;
4699	req->secid = connsid;
4700	req->peer_secid = peersid;
 
 
 
 
 
4701
4702	return selinux_netlbl_inet_conn_request(req, family);
4703}
4704
4705static void selinux_inet_csk_clone(struct sock *newsk,
4706				   const struct request_sock *req)
4707{
4708	struct sk_security_struct *newsksec = newsk->sk_security;
4709
4710	newsksec->sid = req->secid;
4711	newsksec->peer_sid = req->peer_secid;
4712	/* NOTE: Ideally, we should also get the isec->sid for the
4713	   new socket in sync, but we don't have the isec available yet.
4714	   So we will wait until sock_graft to do it, by which
4715	   time it will have been created and available. */
4716
4717	/* We don't need to take any sort of lock here as we are the only
4718	 * thread with access to newsksec */
4719	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4720}
4721
4722static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4723{
4724	u16 family = sk->sk_family;
4725	struct sk_security_struct *sksec = sk->sk_security;
4726
4727	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4728	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4729		family = PF_INET;
4730
4731	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4732}
4733
4734static int selinux_secmark_relabel_packet(u32 sid)
4735{
4736	const struct task_security_struct *__tsec;
4737	u32 tsid;
4738
4739	__tsec = current_security();
4740	tsid = __tsec->sid;
4741
4742	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4743}
4744
4745static void selinux_secmark_refcount_inc(void)
4746{
4747	atomic_inc(&selinux_secmark_refcount);
4748}
4749
4750static void selinux_secmark_refcount_dec(void)
4751{
4752	atomic_dec(&selinux_secmark_refcount);
4753}
4754
4755static void selinux_req_classify_flow(const struct request_sock *req,
4756				      struct flowi *fl)
4757{
4758	fl->flowi_secid = req->secid;
4759}
4760
4761static int selinux_tun_dev_alloc_security(void **security)
4762{
4763	struct tun_security_struct *tunsec;
4764
4765	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4766	if (!tunsec)
4767		return -ENOMEM;
4768	tunsec->sid = current_sid();
4769
4770	*security = tunsec;
4771	return 0;
4772}
4773
4774static void selinux_tun_dev_free_security(void *security)
4775{
4776	kfree(security);
4777}
4778
4779static int selinux_tun_dev_create(void)
4780{
4781	u32 sid = current_sid();
4782
4783	/* we aren't taking into account the "sockcreate" SID since the socket
4784	 * that is being created here is not a socket in the traditional sense,
4785	 * instead it is a private sock, accessible only to the kernel, and
4786	 * representing a wide range of network traffic spanning multiple
4787	 * connections unlike traditional sockets - check the TUN driver to
4788	 * get a better understanding of why this socket is special */
4789
4790	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4791			    NULL);
4792}
4793
4794static int selinux_tun_dev_attach_queue(void *security)
4795{
4796	struct tun_security_struct *tunsec = security;
4797
4798	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4799			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4800}
4801
4802static int selinux_tun_dev_attach(struct sock *sk, void *security)
4803{
4804	struct tun_security_struct *tunsec = security;
4805	struct sk_security_struct *sksec = sk->sk_security;
4806
4807	/* we don't currently perform any NetLabel based labeling here and it
4808	 * isn't clear that we would want to do so anyway; while we could apply
4809	 * labeling without the support of the TUN user the resulting labeled
4810	 * traffic from the other end of the connection would almost certainly
4811	 * cause confusion to the TUN user that had no idea network labeling
4812	 * protocols were being used */
4813
4814	sksec->sid = tunsec->sid;
4815	sksec->sclass = SECCLASS_TUN_SOCKET;
4816
4817	return 0;
 
4818}
4819
4820static int selinux_tun_dev_open(void *security)
4821{
4822	struct tun_security_struct *tunsec = security;
4823	u32 sid = current_sid();
4824	int err;
4825
4826	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4827			   TUN_SOCKET__RELABELFROM, NULL);
4828	if (err)
4829		return err;
4830	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4831			   TUN_SOCKET__RELABELTO, NULL);
4832	if (err)
4833		return err;
4834	tunsec->sid = sid;
 
4835
4836	return 0;
4837}
4838
4839static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4840{
4841	int err = 0;
4842	u32 perm;
4843	struct nlmsghdr *nlh;
4844	struct sk_security_struct *sksec = sk->sk_security;
4845
4846	if (skb->len < NLMSG_HDRLEN) {
4847		err = -EINVAL;
4848		goto out;
4849	}
4850	nlh = nlmsg_hdr(skb);
4851
4852	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4853	if (err) {
4854		if (err == -EINVAL) {
4855			pr_warn_ratelimited("SELinux: unrecognized netlink"
4856			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
4857			       " pig=%d comm=%s\n",
4858			       sk->sk_protocol, nlh->nlmsg_type,
4859			       secclass_map[sksec->sclass - 1].name,
4860			       task_pid_nr(current), current->comm);
4861			if (!selinux_enforcing || security_get_allow_unknown())
4862				err = 0;
4863		}
4864
4865		/* Ignore */
4866		if (err == -ENOENT)
4867			err = 0;
4868		goto out;
4869	}
4870
4871	err = sock_has_perm(current, sk, perm);
4872out:
4873	return err;
4874}
4875
4876#ifdef CONFIG_NETFILTER
4877
4878static unsigned int selinux_ip_forward(struct sk_buff *skb,
4879				       const struct net_device *indev,
4880				       u16 family)
4881{
4882	int err;
4883	char *addrp;
4884	u32 peer_sid;
4885	struct common_audit_data ad;
4886	struct lsm_network_audit net = {0,};
4887	u8 secmark_active;
4888	u8 netlbl_active;
4889	u8 peerlbl_active;
4890
4891	if (!selinux_policycap_netpeer)
4892		return NF_ACCEPT;
4893
4894	secmark_active = selinux_secmark_enabled();
4895	netlbl_active = netlbl_enabled();
4896	peerlbl_active = selinux_peerlbl_enabled();
4897	if (!secmark_active && !peerlbl_active)
4898		return NF_ACCEPT;
4899
4900	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4901		return NF_DROP;
4902
4903	ad.type = LSM_AUDIT_DATA_NET;
4904	ad.u.net = &net;
4905	ad.u.net->netif = indev->ifindex;
4906	ad.u.net->family = family;
4907	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4908		return NF_DROP;
4909
4910	if (peerlbl_active) {
4911		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4912					       addrp, family, peer_sid, &ad);
4913		if (err) {
4914			selinux_netlbl_err(skb, err, 1);
4915			return NF_DROP;
4916		}
4917	}
4918
4919	if (secmark_active)
4920		if (avc_has_perm(peer_sid, skb->secmark,
4921				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4922			return NF_DROP;
4923
4924	if (netlbl_active)
4925		/* we do this in the FORWARD path and not the POST_ROUTING
4926		 * path because we want to make sure we apply the necessary
4927		 * labeling before IPsec is applied so we can leverage AH
4928		 * protection */
4929		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4930			return NF_DROP;
4931
4932	return NF_ACCEPT;
4933}
4934
4935static unsigned int selinux_ipv4_forward(void *priv,
4936					 struct sk_buff *skb,
4937					 const struct nf_hook_state *state)
 
 
4938{
4939	return selinux_ip_forward(skb, state->in, PF_INET);
4940}
4941
4942#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4943static unsigned int selinux_ipv6_forward(void *priv,
4944					 struct sk_buff *skb,
4945					 const struct nf_hook_state *state)
 
 
4946{
4947	return selinux_ip_forward(skb, state->in, PF_INET6);
4948}
4949#endif	/* IPV6 */
4950
4951static unsigned int selinux_ip_output(struct sk_buff *skb,
4952				      u16 family)
4953{
4954	struct sock *sk;
4955	u32 sid;
4956
4957	if (!netlbl_enabled())
4958		return NF_ACCEPT;
4959
4960	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4961	 * because we want to make sure we apply the necessary labeling
4962	 * before IPsec is applied so we can leverage AH protection */
4963	sk = skb->sk;
4964	if (sk) {
4965		struct sk_security_struct *sksec;
4966
4967		if (sk_listener(sk))
4968			/* if the socket is the listening state then this
4969			 * packet is a SYN-ACK packet which means it needs to
4970			 * be labeled based on the connection/request_sock and
4971			 * not the parent socket.  unfortunately, we can't
4972			 * lookup the request_sock yet as it isn't queued on
4973			 * the parent socket until after the SYN-ACK is sent.
4974			 * the "solution" is to simply pass the packet as-is
4975			 * as any IP option based labeling should be copied
4976			 * from the initial connection request (in the IP
4977			 * layer).  it is far from ideal, but until we get a
4978			 * security label in the packet itself this is the
4979			 * best we can do. */
4980			return NF_ACCEPT;
4981
4982		/* standard practice, label using the parent socket */
4983		sksec = sk->sk_security;
4984		sid = sksec->sid;
4985	} else
4986		sid = SECINITSID_KERNEL;
4987	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4988		return NF_DROP;
4989
4990	return NF_ACCEPT;
4991}
4992
4993static unsigned int selinux_ipv4_output(void *priv,
4994					struct sk_buff *skb,
4995					const struct nf_hook_state *state)
 
 
4996{
4997	return selinux_ip_output(skb, PF_INET);
4998}
4999
5000static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5001						int ifindex,
5002						u16 family)
5003{
5004	struct sock *sk = skb_to_full_sk(skb);
5005	struct sk_security_struct *sksec;
5006	struct common_audit_data ad;
5007	struct lsm_network_audit net = {0,};
5008	char *addrp;
5009	u8 proto;
5010
5011	if (sk == NULL)
5012		return NF_ACCEPT;
5013	sksec = sk->sk_security;
5014
5015	ad.type = LSM_AUDIT_DATA_NET;
5016	ad.u.net = &net;
5017	ad.u.net->netif = ifindex;
5018	ad.u.net->family = family;
5019	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5020		return NF_DROP;
5021
5022	if (selinux_secmark_enabled())
5023		if (avc_has_perm(sksec->sid, skb->secmark,
5024				 SECCLASS_PACKET, PACKET__SEND, &ad))
5025			return NF_DROP_ERR(-ECONNREFUSED);
5026
5027	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5028		return NF_DROP_ERR(-ECONNREFUSED);
5029
5030	return NF_ACCEPT;
5031}
5032
5033static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5034					 const struct net_device *outdev,
5035					 u16 family)
5036{
5037	u32 secmark_perm;
5038	u32 peer_sid;
5039	int ifindex = outdev->ifindex;
5040	struct sock *sk;
5041	struct common_audit_data ad;
5042	struct lsm_network_audit net = {0,};
5043	char *addrp;
5044	u8 secmark_active;
5045	u8 peerlbl_active;
5046
5047	/* If any sort of compatibility mode is enabled then handoff processing
5048	 * to the selinux_ip_postroute_compat() function to deal with the
5049	 * special handling.  We do this in an attempt to keep this function
5050	 * as fast and as clean as possible. */
5051	if (!selinux_policycap_netpeer)
5052		return selinux_ip_postroute_compat(skb, ifindex, family);
5053
5054	secmark_active = selinux_secmark_enabled();
5055	peerlbl_active = selinux_peerlbl_enabled();
5056	if (!secmark_active && !peerlbl_active)
5057		return NF_ACCEPT;
5058
5059	sk = skb_to_full_sk(skb);
5060
5061#ifdef CONFIG_XFRM
5062	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5063	 * packet transformation so allow the packet to pass without any checks
5064	 * since we'll have another chance to perform access control checks
5065	 * when the packet is on it's final way out.
5066	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5067	 *       is NULL, in this case go ahead and apply access control.
5068	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5069	 *       TCP listening state we cannot wait until the XFRM processing
5070	 *       is done as we will miss out on the SA label if we do;
5071	 *       unfortunately, this means more work, but it is only once per
5072	 *       connection. */
5073	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5074	    !(sk && sk_listener(sk)))
5075		return NF_ACCEPT;
5076#endif
 
 
 
 
5077
 
 
 
 
 
5078	if (sk == NULL) {
5079		/* Without an associated socket the packet is either coming
5080		 * from the kernel or it is being forwarded; check the packet
5081		 * to determine which and if the packet is being forwarded
5082		 * query the packet directly to determine the security label. */
5083		if (skb->skb_iif) {
5084			secmark_perm = PACKET__FORWARD_OUT;
5085			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5086				return NF_DROP;
5087		} else {
5088			secmark_perm = PACKET__SEND;
5089			peer_sid = SECINITSID_KERNEL;
5090		}
5091	} else if (sk_listener(sk)) {
5092		/* Locally generated packet but the associated socket is in the
5093		 * listening state which means this is a SYN-ACK packet.  In
5094		 * this particular case the correct security label is assigned
5095		 * to the connection/request_sock but unfortunately we can't
5096		 * query the request_sock as it isn't queued on the parent
5097		 * socket until after the SYN-ACK packet is sent; the only
5098		 * viable choice is to regenerate the label like we do in
5099		 * selinux_inet_conn_request().  See also selinux_ip_output()
5100		 * for similar problems. */
5101		u32 skb_sid;
5102		struct sk_security_struct *sksec;
5103
5104		sksec = sk->sk_security;
5105		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5106			return NF_DROP;
5107		/* At this point, if the returned skb peerlbl is SECSID_NULL
5108		 * and the packet has been through at least one XFRM
5109		 * transformation then we must be dealing with the "final"
5110		 * form of labeled IPsec packet; since we've already applied
5111		 * all of our access controls on this packet we can safely
5112		 * pass the packet. */
5113		if (skb_sid == SECSID_NULL) {
5114			switch (family) {
5115			case PF_INET:
5116				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5117					return NF_ACCEPT;
5118				break;
5119			case PF_INET6:
5120				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5121					return NF_ACCEPT;
5122				break;
5123			default:
5124				return NF_DROP_ERR(-ECONNREFUSED);
5125			}
5126		}
5127		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5128			return NF_DROP;
5129		secmark_perm = PACKET__SEND;
5130	} else {
5131		/* Locally generated packet, fetch the security label from the
5132		 * associated socket. */
5133		struct sk_security_struct *sksec = sk->sk_security;
5134		peer_sid = sksec->sid;
5135		secmark_perm = PACKET__SEND;
5136	}
5137
5138	ad.type = LSM_AUDIT_DATA_NET;
5139	ad.u.net = &net;
5140	ad.u.net->netif = ifindex;
5141	ad.u.net->family = family;
5142	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5143		return NF_DROP;
5144
5145	if (secmark_active)
5146		if (avc_has_perm(peer_sid, skb->secmark,
5147				 SECCLASS_PACKET, secmark_perm, &ad))
5148			return NF_DROP_ERR(-ECONNREFUSED);
5149
5150	if (peerlbl_active) {
5151		u32 if_sid;
5152		u32 node_sid;
5153
5154		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5155			return NF_DROP;
5156		if (avc_has_perm(peer_sid, if_sid,
5157				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5158			return NF_DROP_ERR(-ECONNREFUSED);
5159
5160		if (sel_netnode_sid(addrp, family, &node_sid))
5161			return NF_DROP;
5162		if (avc_has_perm(peer_sid, node_sid,
5163				 SECCLASS_NODE, NODE__SENDTO, &ad))
5164			return NF_DROP_ERR(-ECONNREFUSED);
5165	}
5166
5167	return NF_ACCEPT;
5168}
5169
5170static unsigned int selinux_ipv4_postroute(void *priv,
5171					   struct sk_buff *skb,
5172					   const struct nf_hook_state *state)
 
 
5173{
5174	return selinux_ip_postroute(skb, state->out, PF_INET);
5175}
5176
5177#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5178static unsigned int selinux_ipv6_postroute(void *priv,
5179					   struct sk_buff *skb,
5180					   const struct nf_hook_state *state)
 
 
5181{
5182	return selinux_ip_postroute(skb, state->out, PF_INET6);
5183}
5184#endif	/* IPV6 */
5185
5186#endif	/* CONFIG_NETFILTER */
5187
5188static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5189{
 
 
 
 
 
 
5190	return selinux_nlmsg_perm(sk, skb);
5191}
5192
5193static int ipc_alloc_security(struct task_struct *task,
5194			      struct kern_ipc_perm *perm,
5195			      u16 sclass)
5196{
5197	struct ipc_security_struct *isec;
5198	u32 sid;
5199
5200	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5201	if (!isec)
5202		return -ENOMEM;
5203
5204	sid = task_sid(task);
5205	isec->sclass = sclass;
5206	isec->sid = sid;
5207	perm->security = isec;
5208
5209	return 0;
5210}
5211
5212static void ipc_free_security(struct kern_ipc_perm *perm)
5213{
5214	struct ipc_security_struct *isec = perm->security;
5215	perm->security = NULL;
5216	kfree(isec);
5217}
5218
5219static int msg_msg_alloc_security(struct msg_msg *msg)
5220{
5221	struct msg_security_struct *msec;
5222
5223	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5224	if (!msec)
5225		return -ENOMEM;
5226
5227	msec->sid = SECINITSID_UNLABELED;
5228	msg->security = msec;
5229
5230	return 0;
5231}
5232
5233static void msg_msg_free_security(struct msg_msg *msg)
5234{
5235	struct msg_security_struct *msec = msg->security;
5236
5237	msg->security = NULL;
5238	kfree(msec);
5239}
5240
5241static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5242			u32 perms)
5243{
5244	struct ipc_security_struct *isec;
5245	struct common_audit_data ad;
5246	u32 sid = current_sid();
5247
5248	isec = ipc_perms->security;
5249
5250	ad.type = LSM_AUDIT_DATA_IPC;
5251	ad.u.ipc_id = ipc_perms->key;
5252
5253	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5254}
5255
5256static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5257{
5258	return msg_msg_alloc_security(msg);
5259}
5260
5261static void selinux_msg_msg_free_security(struct msg_msg *msg)
5262{
5263	msg_msg_free_security(msg);
5264}
5265
5266/* message queue security operations */
5267static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5268{
5269	struct ipc_security_struct *isec;
5270	struct common_audit_data ad;
5271	u32 sid = current_sid();
5272	int rc;
5273
5274	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5275	if (rc)
5276		return rc;
5277
5278	isec = msq->q_perm.security;
5279
5280	ad.type = LSM_AUDIT_DATA_IPC;
5281	ad.u.ipc_id = msq->q_perm.key;
5282
5283	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5284			  MSGQ__CREATE, &ad);
5285	if (rc) {
5286		ipc_free_security(&msq->q_perm);
5287		return rc;
5288	}
5289	return 0;
5290}
5291
5292static void selinux_msg_queue_free_security(struct msg_queue *msq)
5293{
5294	ipc_free_security(&msq->q_perm);
5295}
5296
5297static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5298{
5299	struct ipc_security_struct *isec;
5300	struct common_audit_data ad;
5301	u32 sid = current_sid();
5302
5303	isec = msq->q_perm.security;
5304
5305	ad.type = LSM_AUDIT_DATA_IPC;
5306	ad.u.ipc_id = msq->q_perm.key;
5307
5308	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5309			    MSGQ__ASSOCIATE, &ad);
5310}
5311
5312static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5313{
5314	int err;
5315	int perms;
5316
5317	switch (cmd) {
5318	case IPC_INFO:
5319	case MSG_INFO:
5320		/* No specific object, just general system-wide information. */
5321		return task_has_system(current, SYSTEM__IPC_INFO);
5322	case IPC_STAT:
5323	case MSG_STAT:
5324		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5325		break;
5326	case IPC_SET:
5327		perms = MSGQ__SETATTR;
5328		break;
5329	case IPC_RMID:
5330		perms = MSGQ__DESTROY;
5331		break;
5332	default:
5333		return 0;
5334	}
5335
5336	err = ipc_has_perm(&msq->q_perm, perms);
5337	return err;
5338}
5339
5340static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5341{
5342	struct ipc_security_struct *isec;
5343	struct msg_security_struct *msec;
5344	struct common_audit_data ad;
5345	u32 sid = current_sid();
5346	int rc;
5347
5348	isec = msq->q_perm.security;
5349	msec = msg->security;
5350
5351	/*
5352	 * First time through, need to assign label to the message
5353	 */
5354	if (msec->sid == SECINITSID_UNLABELED) {
5355		/*
5356		 * Compute new sid based on current process and
5357		 * message queue this message will be stored in
5358		 */
5359		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5360					     NULL, &msec->sid);
5361		if (rc)
5362			return rc;
5363	}
5364
5365	ad.type = LSM_AUDIT_DATA_IPC;
5366	ad.u.ipc_id = msq->q_perm.key;
5367
5368	/* Can this process write to the queue? */
5369	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5370			  MSGQ__WRITE, &ad);
5371	if (!rc)
5372		/* Can this process send the message */
5373		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5374				  MSG__SEND, &ad);
5375	if (!rc)
5376		/* Can the message be put in the queue? */
5377		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5378				  MSGQ__ENQUEUE, &ad);
5379
5380	return rc;
5381}
5382
5383static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5384				    struct task_struct *target,
5385				    long type, int mode)
5386{
5387	struct ipc_security_struct *isec;
5388	struct msg_security_struct *msec;
5389	struct common_audit_data ad;
5390	u32 sid = task_sid(target);
5391	int rc;
5392
5393	isec = msq->q_perm.security;
5394	msec = msg->security;
5395
5396	ad.type = LSM_AUDIT_DATA_IPC;
5397	ad.u.ipc_id = msq->q_perm.key;
5398
5399	rc = avc_has_perm(sid, isec->sid,
5400			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5401	if (!rc)
5402		rc = avc_has_perm(sid, msec->sid,
5403				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5404	return rc;
5405}
5406
5407/* Shared Memory security operations */
5408static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5409{
5410	struct ipc_security_struct *isec;
5411	struct common_audit_data ad;
5412	u32 sid = current_sid();
5413	int rc;
5414
5415	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5416	if (rc)
5417		return rc;
5418
5419	isec = shp->shm_perm.security;
5420
5421	ad.type = LSM_AUDIT_DATA_IPC;
5422	ad.u.ipc_id = shp->shm_perm.key;
5423
5424	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5425			  SHM__CREATE, &ad);
5426	if (rc) {
5427		ipc_free_security(&shp->shm_perm);
5428		return rc;
5429	}
5430	return 0;
5431}
5432
5433static void selinux_shm_free_security(struct shmid_kernel *shp)
5434{
5435	ipc_free_security(&shp->shm_perm);
5436}
5437
5438static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5439{
5440	struct ipc_security_struct *isec;
5441	struct common_audit_data ad;
5442	u32 sid = current_sid();
5443
5444	isec = shp->shm_perm.security;
5445
5446	ad.type = LSM_AUDIT_DATA_IPC;
5447	ad.u.ipc_id = shp->shm_perm.key;
5448
5449	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5450			    SHM__ASSOCIATE, &ad);
5451}
5452
5453/* Note, at this point, shp is locked down */
5454static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5455{
5456	int perms;
5457	int err;
5458
5459	switch (cmd) {
5460	case IPC_INFO:
5461	case SHM_INFO:
5462		/* No specific object, just general system-wide information. */
5463		return task_has_system(current, SYSTEM__IPC_INFO);
5464	case IPC_STAT:
5465	case SHM_STAT:
5466		perms = SHM__GETATTR | SHM__ASSOCIATE;
5467		break;
5468	case IPC_SET:
5469		perms = SHM__SETATTR;
5470		break;
5471	case SHM_LOCK:
5472	case SHM_UNLOCK:
5473		perms = SHM__LOCK;
5474		break;
5475	case IPC_RMID:
5476		perms = SHM__DESTROY;
5477		break;
5478	default:
5479		return 0;
5480	}
5481
5482	err = ipc_has_perm(&shp->shm_perm, perms);
5483	return err;
5484}
5485
5486static int selinux_shm_shmat(struct shmid_kernel *shp,
5487			     char __user *shmaddr, int shmflg)
5488{
5489	u32 perms;
5490
5491	if (shmflg & SHM_RDONLY)
5492		perms = SHM__READ;
5493	else
5494		perms = SHM__READ | SHM__WRITE;
5495
5496	return ipc_has_perm(&shp->shm_perm, perms);
5497}
5498
5499/* Semaphore security operations */
5500static int selinux_sem_alloc_security(struct sem_array *sma)
5501{
5502	struct ipc_security_struct *isec;
5503	struct common_audit_data ad;
5504	u32 sid = current_sid();
5505	int rc;
5506
5507	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5508	if (rc)
5509		return rc;
5510
5511	isec = sma->sem_perm.security;
5512
5513	ad.type = LSM_AUDIT_DATA_IPC;
5514	ad.u.ipc_id = sma->sem_perm.key;
5515
5516	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5517			  SEM__CREATE, &ad);
5518	if (rc) {
5519		ipc_free_security(&sma->sem_perm);
5520		return rc;
5521	}
5522	return 0;
5523}
5524
5525static void selinux_sem_free_security(struct sem_array *sma)
5526{
5527	ipc_free_security(&sma->sem_perm);
5528}
5529
5530static int selinux_sem_associate(struct sem_array *sma, int semflg)
5531{
5532	struct ipc_security_struct *isec;
5533	struct common_audit_data ad;
5534	u32 sid = current_sid();
5535
5536	isec = sma->sem_perm.security;
5537
5538	ad.type = LSM_AUDIT_DATA_IPC;
5539	ad.u.ipc_id = sma->sem_perm.key;
5540
5541	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5542			    SEM__ASSOCIATE, &ad);
5543}
5544
5545/* Note, at this point, sma is locked down */
5546static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5547{
5548	int err;
5549	u32 perms;
5550
5551	switch (cmd) {
5552	case IPC_INFO:
5553	case SEM_INFO:
5554		/* No specific object, just general system-wide information. */
5555		return task_has_system(current, SYSTEM__IPC_INFO);
5556	case GETPID:
5557	case GETNCNT:
5558	case GETZCNT:
5559		perms = SEM__GETATTR;
5560		break;
5561	case GETVAL:
5562	case GETALL:
5563		perms = SEM__READ;
5564		break;
5565	case SETVAL:
5566	case SETALL:
5567		perms = SEM__WRITE;
5568		break;
5569	case IPC_RMID:
5570		perms = SEM__DESTROY;
5571		break;
5572	case IPC_SET:
5573		perms = SEM__SETATTR;
5574		break;
5575	case IPC_STAT:
5576	case SEM_STAT:
5577		perms = SEM__GETATTR | SEM__ASSOCIATE;
5578		break;
5579	default:
5580		return 0;
5581	}
5582
5583	err = ipc_has_perm(&sma->sem_perm, perms);
5584	return err;
5585}
5586
5587static int selinux_sem_semop(struct sem_array *sma,
5588			     struct sembuf *sops, unsigned nsops, int alter)
5589{
5590	u32 perms;
5591
5592	if (alter)
5593		perms = SEM__READ | SEM__WRITE;
5594	else
5595		perms = SEM__READ;
5596
5597	return ipc_has_perm(&sma->sem_perm, perms);
5598}
5599
5600static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5601{
5602	u32 av = 0;
5603
5604	av = 0;
5605	if (flag & S_IRUGO)
5606		av |= IPC__UNIX_READ;
5607	if (flag & S_IWUGO)
5608		av |= IPC__UNIX_WRITE;
5609
5610	if (av == 0)
5611		return 0;
5612
5613	return ipc_has_perm(ipcp, av);
5614}
5615
5616static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5617{
5618	struct ipc_security_struct *isec = ipcp->security;
5619	*secid = isec->sid;
5620}
5621
5622static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5623{
5624	if (inode)
5625		inode_doinit_with_dentry(inode, dentry);
5626}
5627
5628static int selinux_getprocattr(struct task_struct *p,
5629			       char *name, char **value)
5630{
5631	const struct task_security_struct *__tsec;
5632	u32 sid;
5633	int error;
5634	unsigned len;
5635
5636	if (current != p) {
5637		error = current_has_perm(p, PROCESS__GETATTR);
5638		if (error)
5639			return error;
5640	}
5641
5642	rcu_read_lock();
5643	__tsec = __task_cred(p)->security;
5644
5645	if (!strcmp(name, "current"))
5646		sid = __tsec->sid;
5647	else if (!strcmp(name, "prev"))
5648		sid = __tsec->osid;
5649	else if (!strcmp(name, "exec"))
5650		sid = __tsec->exec_sid;
5651	else if (!strcmp(name, "fscreate"))
5652		sid = __tsec->create_sid;
5653	else if (!strcmp(name, "keycreate"))
5654		sid = __tsec->keycreate_sid;
5655	else if (!strcmp(name, "sockcreate"))
5656		sid = __tsec->sockcreate_sid;
5657	else
5658		goto invalid;
5659	rcu_read_unlock();
5660
5661	if (!sid)
5662		return 0;
5663
5664	error = security_sid_to_context(sid, value, &len);
5665	if (error)
5666		return error;
5667	return len;
5668
5669invalid:
5670	rcu_read_unlock();
5671	return -EINVAL;
5672}
5673
5674static int selinux_setprocattr(struct task_struct *p,
5675			       char *name, void *value, size_t size)
5676{
5677	struct task_security_struct *tsec;
5678	struct task_struct *tracer;
5679	struct cred *new;
5680	u32 sid = 0, ptsid;
5681	int error;
5682	char *str = value;
5683
5684	if (current != p) {
5685		/* SELinux only allows a process to change its own
5686		   security attributes. */
5687		return -EACCES;
5688	}
5689
5690	/*
5691	 * Basic control over ability to set these attributes at all.
5692	 * current == p, but we'll pass them separately in case the
5693	 * above restriction is ever removed.
5694	 */
5695	if (!strcmp(name, "exec"))
5696		error = current_has_perm(p, PROCESS__SETEXEC);
5697	else if (!strcmp(name, "fscreate"))
5698		error = current_has_perm(p, PROCESS__SETFSCREATE);
5699	else if (!strcmp(name, "keycreate"))
5700		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5701	else if (!strcmp(name, "sockcreate"))
5702		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5703	else if (!strcmp(name, "current"))
5704		error = current_has_perm(p, PROCESS__SETCURRENT);
5705	else
5706		error = -EINVAL;
5707	if (error)
5708		return error;
5709
5710	/* Obtain a SID for the context, if one was specified. */
5711	if (size && str[1] && str[1] != '\n') {
5712		if (str[size-1] == '\n') {
5713			str[size-1] = 0;
5714			size--;
5715		}
5716		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5717		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5718			if (!capable(CAP_MAC_ADMIN)) {
5719				struct audit_buffer *ab;
5720				size_t audit_size;
5721
5722				/* We strip a nul only if it is at the end, otherwise the
5723				 * context contains a nul and we should audit that */
5724				if (str[size - 1] == '\0')
5725					audit_size = size - 1;
5726				else
5727					audit_size = size;
5728				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5729				audit_log_format(ab, "op=fscreate invalid_context=");
5730				audit_log_n_untrustedstring(ab, value, audit_size);
5731				audit_log_end(ab);
5732
5733				return error;
5734			}
5735			error = security_context_to_sid_force(value, size,
5736							      &sid);
5737		}
5738		if (error)
5739			return error;
5740	}
5741
5742	new = prepare_creds();
5743	if (!new)
5744		return -ENOMEM;
5745
5746	/* Permission checking based on the specified context is
5747	   performed during the actual operation (execve,
5748	   open/mkdir/...), when we know the full context of the
5749	   operation.  See selinux_bprm_set_creds for the execve
5750	   checks and may_create for the file creation checks. The
5751	   operation will then fail if the context is not permitted. */
5752	tsec = new->security;
5753	if (!strcmp(name, "exec")) {
5754		tsec->exec_sid = sid;
5755	} else if (!strcmp(name, "fscreate")) {
5756		tsec->create_sid = sid;
5757	} else if (!strcmp(name, "keycreate")) {
5758		error = may_create_key(sid, p);
5759		if (error)
5760			goto abort_change;
5761		tsec->keycreate_sid = sid;
5762	} else if (!strcmp(name, "sockcreate")) {
5763		tsec->sockcreate_sid = sid;
5764	} else if (!strcmp(name, "current")) {
5765		error = -EINVAL;
5766		if (sid == 0)
5767			goto abort_change;
5768
5769		/* Only allow single threaded processes to change context */
5770		error = -EPERM;
5771		if (!current_is_single_threaded()) {
5772			error = security_bounded_transition(tsec->sid, sid);
5773			if (error)
5774				goto abort_change;
5775		}
5776
5777		/* Check permissions for the transition. */
5778		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5779				     PROCESS__DYNTRANSITION, NULL);
5780		if (error)
5781			goto abort_change;
5782
5783		/* Check for ptracing, and update the task SID if ok.
5784		   Otherwise, leave SID unchanged and fail. */
5785		ptsid = 0;
5786		rcu_read_lock();
5787		tracer = ptrace_parent(p);
5788		if (tracer)
5789			ptsid = task_sid(tracer);
5790		rcu_read_unlock();
5791
5792		if (tracer) {
5793			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5794					     PROCESS__PTRACE, NULL);
5795			if (error)
5796				goto abort_change;
5797		}
5798
5799		tsec->sid = sid;
5800	} else {
5801		error = -EINVAL;
5802		goto abort_change;
5803	}
5804
5805	commit_creds(new);
5806	return size;
5807
5808abort_change:
5809	abort_creds(new);
5810	return error;
5811}
5812
5813static int selinux_ismaclabel(const char *name)
5814{
5815	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5816}
5817
5818static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5819{
5820	return security_sid_to_context(secid, secdata, seclen);
5821}
5822
5823static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5824{
5825	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5826}
5827
5828static void selinux_release_secctx(char *secdata, u32 seclen)
5829{
5830	kfree(secdata);
5831}
5832
5833static void selinux_inode_invalidate_secctx(struct inode *inode)
5834{
5835	struct inode_security_struct *isec = inode->i_security;
5836
5837	mutex_lock(&isec->lock);
5838	isec->initialized = LABEL_INVALID;
5839	mutex_unlock(&isec->lock);
5840}
5841
5842/*
5843 *	called with inode->i_mutex locked
5844 */
5845static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5846{
5847	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5848}
5849
5850/*
5851 *	called with inode->i_mutex locked
5852 */
5853static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5854{
5855	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5856}
5857
5858static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5859{
5860	int len = 0;
5861	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5862						ctx, true);
5863	if (len < 0)
5864		return len;
5865	*ctxlen = len;
5866	return 0;
5867}
5868#ifdef CONFIG_KEYS
5869
5870static int selinux_key_alloc(struct key *k, const struct cred *cred,
5871			     unsigned long flags)
5872{
5873	const struct task_security_struct *tsec;
5874	struct key_security_struct *ksec;
5875
5876	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5877	if (!ksec)
5878		return -ENOMEM;
5879
5880	tsec = cred->security;
5881	if (tsec->keycreate_sid)
5882		ksec->sid = tsec->keycreate_sid;
5883	else
5884		ksec->sid = tsec->sid;
5885
5886	k->security = ksec;
5887	return 0;
5888}
5889
5890static void selinux_key_free(struct key *k)
5891{
5892	struct key_security_struct *ksec = k->security;
5893
5894	k->security = NULL;
5895	kfree(ksec);
5896}
5897
5898static int selinux_key_permission(key_ref_t key_ref,
5899				  const struct cred *cred,
5900				  unsigned perm)
5901{
5902	struct key *key;
5903	struct key_security_struct *ksec;
5904	u32 sid;
5905
5906	/* if no specific permissions are requested, we skip the
5907	   permission check. No serious, additional covert channels
5908	   appear to be created. */
5909	if (perm == 0)
5910		return 0;
5911
5912	sid = cred_sid(cred);
5913
5914	key = key_ref_to_ptr(key_ref);
5915	ksec = key->security;
5916
5917	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5918}
5919
5920static int selinux_key_getsecurity(struct key *key, char **_buffer)
5921{
5922	struct key_security_struct *ksec = key->security;
5923	char *context = NULL;
5924	unsigned len;
5925	int rc;
5926
5927	rc = security_sid_to_context(ksec->sid, &context, &len);
5928	if (!rc)
5929		rc = len;
5930	*_buffer = context;
5931	return rc;
5932}
5933
5934#endif
5935
5936static struct security_hook_list selinux_hooks[] = {
5937	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5938	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5939	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5940	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5941
5942	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5943	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5944	LSM_HOOK_INIT(capget, selinux_capget),
5945	LSM_HOOK_INIT(capset, selinux_capset),
5946	LSM_HOOK_INIT(capable, selinux_capable),
5947	LSM_HOOK_INIT(quotactl, selinux_quotactl),
5948	LSM_HOOK_INIT(quota_on, selinux_quota_on),
5949	LSM_HOOK_INIT(syslog, selinux_syslog),
5950	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5951
5952	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5953
5954	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5955	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5956	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5957	LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5958
5959	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5960	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5961	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5962	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5963	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5964	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5965	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5966	LSM_HOOK_INIT(sb_mount, selinux_mount),
5967	LSM_HOOK_INIT(sb_umount, selinux_umount),
5968	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5969	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5970	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
5971
5972	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
5973
5974	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5975	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5976	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
5977	LSM_HOOK_INIT(inode_create, selinux_inode_create),
5978	LSM_HOOK_INIT(inode_link, selinux_inode_link),
5979	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5980	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5981	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5982	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5983	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5984	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5985	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5986	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5987	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5988	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5989	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5990	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5991	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5992	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5993	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5994	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5995	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5996	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5997	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5998	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
5999
6000	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6001	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6002	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6003	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6004	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6005	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6006	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6007	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6008	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6009	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6010	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6011	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6012
6013	LSM_HOOK_INIT(file_open, selinux_file_open),
6014
6015	LSM_HOOK_INIT(task_create, selinux_task_create),
6016	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6017	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6018	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6019	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6020	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6021	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6022	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6023	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6024	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6025	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6026	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6027	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6028	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6029	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6030	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6031	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6032	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6033	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6034	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6035	LSM_HOOK_INIT(task_wait, selinux_task_wait),
6036	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6037
6038	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6039	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6040
6041	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6042	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6043
6044	LSM_HOOK_INIT(msg_queue_alloc_security,
6045			selinux_msg_queue_alloc_security),
6046	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6047	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6048	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6049	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6050	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6051
6052	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6053	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6054	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6055	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6056	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6057
6058	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6059	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6060	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6061	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6062	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6063
6064	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6065
6066	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6067	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6068
6069	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6070	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6071	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6072	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6073	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6074	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6075	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6076	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6077
6078	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6079	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6080
6081	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6082	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6083	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6084	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6085	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6086	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6087	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6088	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6089	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6090	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6091	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6092	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6093	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6094	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6095	LSM_HOOK_INIT(socket_getpeersec_stream,
6096			selinux_socket_getpeersec_stream),
6097	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6098	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6099	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6100	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6101	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6102	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6103	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6104	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6105	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6106	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6107	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6108	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6109	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6110	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6111	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6112	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6113	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6114	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6115	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6116
6117#ifdef CONFIG_SECURITY_NETWORK_XFRM
6118	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6119	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6120	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6121	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6122	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6123	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6124			selinux_xfrm_state_alloc_acquire),
6125	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6126	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6127	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6128	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6129			selinux_xfrm_state_pol_flow_match),
6130	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6131#endif
6132
6133#ifdef CONFIG_KEYS
6134	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6135	LSM_HOOK_INIT(key_free, selinux_key_free),
6136	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6137	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6138#endif
6139
6140#ifdef CONFIG_AUDIT
6141	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6142	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6143	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6144	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6145#endif
6146};
6147
6148static __init int selinux_init(void)
6149{
6150	if (!security_module_enable("selinux")) {
6151		selinux_enabled = 0;
6152		return 0;
6153	}
6154
6155	if (!selinux_enabled) {
6156		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6157		return 0;
6158	}
6159
6160	printk(KERN_INFO "SELinux:  Initializing.\n");
6161
6162	/* Set the security state for the initial task. */
6163	cred_init_security();
6164
6165	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6166
6167	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6168					    sizeof(struct inode_security_struct),
6169					    0, SLAB_PANIC, NULL);
6170	file_security_cache = kmem_cache_create("selinux_file_security",
6171					    sizeof(struct file_security_struct),
6172					    0, SLAB_PANIC, NULL);
6173	avc_init();
6174
6175	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6176
6177	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6178		panic("SELinux: Unable to register AVC netcache callback\n");
6179
6180	if (selinux_enforcing)
6181		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6182	else
6183		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6184
6185	return 0;
6186}
6187
6188static void delayed_superblock_init(struct super_block *sb, void *unused)
6189{
6190	superblock_doinit(sb, NULL);
6191}
6192
6193void selinux_complete_init(void)
6194{
6195	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6196
6197	/* Set up any superblocks initialized prior to the policy load. */
6198	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6199	iterate_supers(delayed_superblock_init, NULL);
6200}
6201
6202/* SELinux requires early initialization in order to label
6203   all processes and objects when they are created. */
6204security_initcall(selinux_init);
6205
6206#if defined(CONFIG_NETFILTER)
6207
6208static struct nf_hook_ops selinux_nf_ops[] = {
6209	{
6210		.hook =		selinux_ipv4_postroute,
6211		.pf =		NFPROTO_IPV4,
 
6212		.hooknum =	NF_INET_POST_ROUTING,
6213		.priority =	NF_IP_PRI_SELINUX_LAST,
6214	},
6215	{
6216		.hook =		selinux_ipv4_forward,
6217		.pf =		NFPROTO_IPV4,
 
6218		.hooknum =	NF_INET_FORWARD,
6219		.priority =	NF_IP_PRI_SELINUX_FIRST,
6220	},
6221	{
6222		.hook =		selinux_ipv4_output,
6223		.pf =		NFPROTO_IPV4,
 
6224		.hooknum =	NF_INET_LOCAL_OUT,
6225		.priority =	NF_IP_PRI_SELINUX_FIRST,
6226	},
 
 
6227#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
 
 
6228	{
6229		.hook =		selinux_ipv6_postroute,
6230		.pf =		NFPROTO_IPV6,
 
6231		.hooknum =	NF_INET_POST_ROUTING,
6232		.priority =	NF_IP6_PRI_SELINUX_LAST,
6233	},
6234	{
6235		.hook =		selinux_ipv6_forward,
6236		.pf =		NFPROTO_IPV6,
 
6237		.hooknum =	NF_INET_FORWARD,
6238		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6239	},
6240#endif	/* IPV6 */
6241};
6242
 
 
6243static int __init selinux_nf_ip_init(void)
6244{
6245	int err;
6246
6247	if (!selinux_enabled)
6248		return 0;
6249
6250	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6251
6252	err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6253	if (err)
6254		panic("SELinux: nf_register_hooks: error %d\n", err);
6255
6256	return 0;
 
 
 
 
 
 
 
6257}
6258
6259__initcall(selinux_nf_ip_init);
6260
6261#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6262static void selinux_nf_ip_exit(void)
6263{
6264	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6265
6266	nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
 
 
 
6267}
6268#endif
6269
6270#else /* CONFIG_NETFILTER */
6271
6272#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6273#define selinux_nf_ip_exit()
6274#endif
6275
6276#endif /* CONFIG_NETFILTER */
6277
6278#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6279static int selinux_disabled;
6280
6281int selinux_disable(void)
6282{
6283	if (ss_initialized) {
6284		/* Not permitted after initial policy load. */
6285		return -EINVAL;
6286	}
6287
6288	if (selinux_disabled) {
6289		/* Only do this once. */
6290		return -EINVAL;
6291	}
6292
6293	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6294
6295	selinux_disabled = 1;
6296	selinux_enabled = 0;
6297
6298	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6299
6300	/* Try to destroy the avc node cache */
6301	avc_disable();
6302
6303	/* Unregister netfilter hooks. */
6304	selinux_nf_ip_exit();
6305
6306	/* Unregister selinuxfs. */
6307	exit_sel_fs();
6308
6309	return 0;
6310}
6311#endif
v3.5.6
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/security.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
 
  55#include <net/net_namespace.h>
  56#include <net/netlabel.h>
  57#include <linux/uaccess.h>
  58#include <asm/ioctls.h>
  59#include <linux/atomic.h>
  60#include <linux/bitops.h>
  61#include <linux/interrupt.h>
  62#include <linux/netdevice.h>	/* for network interface checks */
  63#include <linux/netlink.h>
  64#include <linux/tcp.h>
  65#include <linux/udp.h>
  66#include <linux/dccp.h>
  67#include <linux/quota.h>
  68#include <linux/un.h>		/* for Unix socket types */
  69#include <net/af_unix.h>	/* for Unix socket types */
  70#include <linux/parser.h>
  71#include <linux/nfs_mount.h>
  72#include <net/ipv6.h>
  73#include <linux/hugetlb.h>
  74#include <linux/personality.h>
  75#include <linux/audit.h>
  76#include <linux/string.h>
  77#include <linux/selinux.h>
  78#include <linux/mutex.h>
  79#include <linux/posix-timers.h>
  80#include <linux/syslog.h>
  81#include <linux/user_namespace.h>
  82#include <linux/export.h>
  83#include <linux/msg.h>
  84#include <linux/shm.h>
  85
  86#include "avc.h"
  87#include "objsec.h"
  88#include "netif.h"
  89#include "netnode.h"
  90#include "netport.h"
  91#include "xfrm.h"
  92#include "netlabel.h"
  93#include "audit.h"
  94#include "avc_ss.h"
  95
  96#define NUM_SEL_MNT_OPTS 5
  97
  98extern struct security_operations *security_ops;
  99
 100/* SECMARK reference count */
 101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 102
 103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 104int selinux_enforcing;
 105
 106static int __init enforcing_setup(char *str)
 107{
 108	unsigned long enforcing;
 109	if (!strict_strtoul(str, 0, &enforcing))
 110		selinux_enforcing = enforcing ? 1 : 0;
 111	return 1;
 112}
 113__setup("enforcing=", enforcing_setup);
 114#endif
 115
 116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 118
 119static int __init selinux_enabled_setup(char *str)
 120{
 121	unsigned long enabled;
 122	if (!strict_strtoul(str, 0, &enabled))
 123		selinux_enabled = enabled ? 1 : 0;
 124	return 1;
 125}
 126__setup("selinux=", selinux_enabled_setup);
 127#else
 128int selinux_enabled = 1;
 129#endif
 130
 131static struct kmem_cache *sel_inode_cache;
 
 132
 133/**
 134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 135 *
 136 * Description:
 137 * This function checks the SECMARK reference counter to see if any SECMARK
 138 * targets are currently configured, if the reference counter is greater than
 139 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 140 * enabled, false (0) if SECMARK is disabled.
 
 141 *
 142 */
 143static int selinux_secmark_enabled(void)
 144{
 145	return (atomic_read(&selinux_secmark_refcount) > 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146}
 147
 148/*
 149 * initialise the security for the init task
 150 */
 151static void cred_init_security(void)
 152{
 153	struct cred *cred = (struct cred *) current->real_cred;
 154	struct task_security_struct *tsec;
 155
 156	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 157	if (!tsec)
 158		panic("SELinux:  Failed to initialize initial task.\n");
 159
 160	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 161	cred->security = tsec;
 162}
 163
 164/*
 165 * get the security ID of a set of credentials
 166 */
 167static inline u32 cred_sid(const struct cred *cred)
 168{
 169	const struct task_security_struct *tsec;
 170
 171	tsec = cred->security;
 172	return tsec->sid;
 173}
 174
 175/*
 176 * get the objective security ID of a task
 177 */
 178static inline u32 task_sid(const struct task_struct *task)
 179{
 180	u32 sid;
 181
 182	rcu_read_lock();
 183	sid = cred_sid(__task_cred(task));
 184	rcu_read_unlock();
 185	return sid;
 186}
 187
 188/*
 189 * get the subjective security ID of the current task
 190 */
 191static inline u32 current_sid(void)
 192{
 193	const struct task_security_struct *tsec = current_security();
 194
 195	return tsec->sid;
 196}
 197
 198/* Allocate and free functions for each kind of security blob. */
 199
 200static int inode_alloc_security(struct inode *inode)
 201{
 202	struct inode_security_struct *isec;
 203	u32 sid = current_sid();
 204
 205	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 206	if (!isec)
 207		return -ENOMEM;
 208
 209	mutex_init(&isec->lock);
 210	INIT_LIST_HEAD(&isec->list);
 211	isec->inode = inode;
 212	isec->sid = SECINITSID_UNLABELED;
 213	isec->sclass = SECCLASS_FILE;
 214	isec->task_sid = sid;
 215	inode->i_security = isec;
 216
 217	return 0;
 218}
 219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220static void inode_free_security(struct inode *inode)
 221{
 222	struct inode_security_struct *isec = inode->i_security;
 223	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 224
 225	spin_lock(&sbsec->isec_lock);
 226	if (!list_empty(&isec->list))
 
 
 
 
 
 
 
 
 
 
 227		list_del_init(&isec->list);
 228	spin_unlock(&sbsec->isec_lock);
 
 229
 230	inode->i_security = NULL;
 231	kmem_cache_free(sel_inode_cache, isec);
 
 
 
 
 
 
 
 
 232}
 233
 234static int file_alloc_security(struct file *file)
 235{
 236	struct file_security_struct *fsec;
 237	u32 sid = current_sid();
 238
 239	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
 240	if (!fsec)
 241		return -ENOMEM;
 242
 243	fsec->sid = sid;
 244	fsec->fown_sid = sid;
 245	file->f_security = fsec;
 246
 247	return 0;
 248}
 249
 250static void file_free_security(struct file *file)
 251{
 252	struct file_security_struct *fsec = file->f_security;
 253	file->f_security = NULL;
 254	kfree(fsec);
 255}
 256
 257static int superblock_alloc_security(struct super_block *sb)
 258{
 259	struct superblock_security_struct *sbsec;
 260
 261	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 262	if (!sbsec)
 263		return -ENOMEM;
 264
 265	mutex_init(&sbsec->lock);
 266	INIT_LIST_HEAD(&sbsec->isec_head);
 267	spin_lock_init(&sbsec->isec_lock);
 268	sbsec->sb = sb;
 269	sbsec->sid = SECINITSID_UNLABELED;
 270	sbsec->def_sid = SECINITSID_FILE;
 271	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 272	sb->s_security = sbsec;
 273
 274	return 0;
 275}
 276
 277static void superblock_free_security(struct super_block *sb)
 278{
 279	struct superblock_security_struct *sbsec = sb->s_security;
 280	sb->s_security = NULL;
 281	kfree(sbsec);
 282}
 283
 284/* The file system's label must be initialized prior to use. */
 285
 286static const char *labeling_behaviors[6] = {
 287	"uses xattr",
 288	"uses transition SIDs",
 289	"uses task SIDs",
 290	"uses genfs_contexts",
 291	"not configured for labeling",
 292	"uses mountpoint labeling",
 
 293};
 294
 295static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 296
 297static inline int inode_doinit(struct inode *inode)
 298{
 299	return inode_doinit_with_dentry(inode, NULL);
 300}
 301
 302enum {
 303	Opt_error = -1,
 304	Opt_context = 1,
 305	Opt_fscontext = 2,
 306	Opt_defcontext = 3,
 307	Opt_rootcontext = 4,
 308	Opt_labelsupport = 5,
 
 309};
 310
 
 
 311static const match_table_t tokens = {
 312	{Opt_context, CONTEXT_STR "%s"},
 313	{Opt_fscontext, FSCONTEXT_STR "%s"},
 314	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 315	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 316	{Opt_labelsupport, LABELSUPP_STR},
 317	{Opt_error, NULL},
 318};
 319
 320#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 321
 322static int may_context_mount_sb_relabel(u32 sid,
 323			struct superblock_security_struct *sbsec,
 324			const struct cred *cred)
 325{
 326	const struct task_security_struct *tsec = cred->security;
 327	int rc;
 328
 329	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 330			  FILESYSTEM__RELABELFROM, NULL);
 331	if (rc)
 332		return rc;
 333
 334	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 335			  FILESYSTEM__RELABELTO, NULL);
 336	return rc;
 337}
 338
 339static int may_context_mount_inode_relabel(u32 sid,
 340			struct superblock_security_struct *sbsec,
 341			const struct cred *cred)
 342{
 343	const struct task_security_struct *tsec = cred->security;
 344	int rc;
 345	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 346			  FILESYSTEM__RELABELFROM, NULL);
 347	if (rc)
 348		return rc;
 349
 350	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 351			  FILESYSTEM__ASSOCIATE, NULL);
 352	return rc;
 353}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355static int sb_finish_set_opts(struct super_block *sb)
 356{
 357	struct superblock_security_struct *sbsec = sb->s_security;
 358	struct dentry *root = sb->s_root;
 359	struct inode *root_inode = root->d_inode;
 360	int rc = 0;
 361
 362	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 363		/* Make sure that the xattr handler exists and that no
 364		   error other than -ENODATA is returned by getxattr on
 365		   the root directory.  -ENODATA is ok, as this may be
 366		   the first boot of the SELinux kernel before we have
 367		   assigned xattr values to the filesystem. */
 368		if (!root_inode->i_op->getxattr) {
 369			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 370			       "xattr support\n", sb->s_id, sb->s_type->name);
 371			rc = -EOPNOTSUPP;
 372			goto out;
 373		}
 374		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 375		if (rc < 0 && rc != -ENODATA) {
 376			if (rc == -EOPNOTSUPP)
 377				printk(KERN_WARNING "SELinux: (dev %s, type "
 378				       "%s) has no security xattr handler\n",
 379				       sb->s_id, sb->s_type->name);
 380			else
 381				printk(KERN_WARNING "SELinux: (dev %s, type "
 382				       "%s) getxattr errno %d\n", sb->s_id,
 383				       sb->s_type->name, -rc);
 384			goto out;
 385		}
 386	}
 387
 388	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
 389
 390	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 391		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 392		       sb->s_id, sb->s_type->name);
 393	else
 394		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
 395		       sb->s_id, sb->s_type->name,
 396		       labeling_behaviors[sbsec->behavior-1]);
 397
 398	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
 399	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
 400	    sbsec->behavior == SECURITY_FS_USE_NONE ||
 401	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 402		sbsec->flags &= ~SE_SBLABELSUPP;
 403
 404	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
 405	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
 406		sbsec->flags |= SE_SBLABELSUPP;
 407
 408	/* Initialize the root inode. */
 409	rc = inode_doinit_with_dentry(root_inode, root);
 410
 411	/* Initialize any other inodes associated with the superblock, e.g.
 412	   inodes created prior to initial policy load or inodes created
 413	   during get_sb by a pseudo filesystem that directly
 414	   populates itself. */
 415	spin_lock(&sbsec->isec_lock);
 416next_inode:
 417	if (!list_empty(&sbsec->isec_head)) {
 418		struct inode_security_struct *isec =
 419				list_entry(sbsec->isec_head.next,
 420					   struct inode_security_struct, list);
 421		struct inode *inode = isec->inode;
 
 422		spin_unlock(&sbsec->isec_lock);
 423		inode = igrab(inode);
 424		if (inode) {
 425			if (!IS_PRIVATE(inode))
 426				inode_doinit(inode);
 427			iput(inode);
 428		}
 429		spin_lock(&sbsec->isec_lock);
 430		list_del_init(&isec->list);
 431		goto next_inode;
 432	}
 433	spin_unlock(&sbsec->isec_lock);
 434out:
 435	return rc;
 436}
 437
 438/*
 439 * This function should allow an FS to ask what it's mount security
 440 * options were so it can use those later for submounts, displaying
 441 * mount options, or whatever.
 442 */
 443static int selinux_get_mnt_opts(const struct super_block *sb,
 444				struct security_mnt_opts *opts)
 445{
 446	int rc = 0, i;
 447	struct superblock_security_struct *sbsec = sb->s_security;
 448	char *context = NULL;
 449	u32 len;
 450	char tmp;
 451
 452	security_init_mnt_opts(opts);
 453
 454	if (!(sbsec->flags & SE_SBINITIALIZED))
 455		return -EINVAL;
 456
 457	if (!ss_initialized)
 458		return -EINVAL;
 459
 
 
 
 460	tmp = sbsec->flags & SE_MNTMASK;
 461	/* count the number of mount options for this sb */
 462	for (i = 0; i < 8; i++) {
 463		if (tmp & 0x01)
 464			opts->num_mnt_opts++;
 465		tmp >>= 1;
 466	}
 467	/* Check if the Label support flag is set */
 468	if (sbsec->flags & SE_SBLABELSUPP)
 469		opts->num_mnt_opts++;
 470
 471	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 472	if (!opts->mnt_opts) {
 473		rc = -ENOMEM;
 474		goto out_free;
 475	}
 476
 477	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 478	if (!opts->mnt_opts_flags) {
 479		rc = -ENOMEM;
 480		goto out_free;
 481	}
 482
 483	i = 0;
 484	if (sbsec->flags & FSCONTEXT_MNT) {
 485		rc = security_sid_to_context(sbsec->sid, &context, &len);
 486		if (rc)
 487			goto out_free;
 488		opts->mnt_opts[i] = context;
 489		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 490	}
 491	if (sbsec->flags & CONTEXT_MNT) {
 492		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 493		if (rc)
 494			goto out_free;
 495		opts->mnt_opts[i] = context;
 496		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 497	}
 498	if (sbsec->flags & DEFCONTEXT_MNT) {
 499		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 500		if (rc)
 501			goto out_free;
 502		opts->mnt_opts[i] = context;
 503		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 504	}
 505	if (sbsec->flags & ROOTCONTEXT_MNT) {
 506		struct inode *root = sbsec->sb->s_root->d_inode;
 507		struct inode_security_struct *isec = root->i_security;
 508
 509		rc = security_sid_to_context(isec->sid, &context, &len);
 510		if (rc)
 511			goto out_free;
 512		opts->mnt_opts[i] = context;
 513		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 514	}
 515	if (sbsec->flags & SE_SBLABELSUPP) {
 516		opts->mnt_opts[i] = NULL;
 517		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
 518	}
 519
 520	BUG_ON(i != opts->num_mnt_opts);
 521
 522	return 0;
 523
 524out_free:
 525	security_free_mnt_opts(opts);
 526	return rc;
 527}
 528
 529static int bad_option(struct superblock_security_struct *sbsec, char flag,
 530		      u32 old_sid, u32 new_sid)
 531{
 532	char mnt_flags = sbsec->flags & SE_MNTMASK;
 533
 534	/* check if the old mount command had the same options */
 535	if (sbsec->flags & SE_SBINITIALIZED)
 536		if (!(sbsec->flags & flag) ||
 537		    (old_sid != new_sid))
 538			return 1;
 539
 540	/* check if we were passed the same options twice,
 541	 * aka someone passed context=a,context=b
 542	 */
 543	if (!(sbsec->flags & SE_SBINITIALIZED))
 544		if (mnt_flags & flag)
 545			return 1;
 546	return 0;
 547}
 548
 549/*
 550 * Allow filesystems with binary mount data to explicitly set mount point
 551 * labeling information.
 552 */
 553static int selinux_set_mnt_opts(struct super_block *sb,
 554				struct security_mnt_opts *opts)
 
 
 555{
 556	const struct cred *cred = current_cred();
 557	int rc = 0, i;
 558	struct superblock_security_struct *sbsec = sb->s_security;
 559	const char *name = sb->s_type->name;
 560	struct inode *inode = sbsec->sb->s_root->d_inode;
 561	struct inode_security_struct *root_isec = inode->i_security;
 562	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 563	u32 defcontext_sid = 0;
 564	char **mount_options = opts->mnt_opts;
 565	int *flags = opts->mnt_opts_flags;
 566	int num_opts = opts->num_mnt_opts;
 567
 568	mutex_lock(&sbsec->lock);
 569
 570	if (!ss_initialized) {
 571		if (!num_opts) {
 572			/* Defer initialization until selinux_complete_init,
 573			   after the initial policy is loaded and the security
 574			   server is ready to handle calls. */
 575			goto out;
 576		}
 577		rc = -EINVAL;
 578		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 579			"before the security server is initialized\n");
 580		goto out;
 581	}
 
 
 
 
 
 
 582
 583	/*
 584	 * Binary mount data FS will come through this function twice.  Once
 585	 * from an explicit call and once from the generic calls from the vfs.
 586	 * Since the generic VFS calls will not contain any security mount data
 587	 * we need to skip the double mount verification.
 588	 *
 589	 * This does open a hole in which we will not notice if the first
 590	 * mount using this sb set explict options and a second mount using
 591	 * this sb does not set any security options.  (The first options
 592	 * will be used for both mounts)
 593	 */
 594	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 595	    && (num_opts == 0))
 596		goto out;
 597
 598	/*
 599	 * parse the mount options, check if they are valid sids.
 600	 * also check if someone is trying to mount the same sb more
 601	 * than once with different security options.
 602	 */
 603	for (i = 0; i < num_opts; i++) {
 604		u32 sid;
 605
 606		if (flags[i] == SE_SBLABELSUPP)
 607			continue;
 608		rc = security_context_to_sid(mount_options[i],
 609					     strlen(mount_options[i]), &sid);
 610		if (rc) {
 611			printk(KERN_WARNING "SELinux: security_context_to_sid"
 612			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 613			       mount_options[i], sb->s_id, name, rc);
 614			goto out;
 615		}
 616		switch (flags[i]) {
 617		case FSCONTEXT_MNT:
 618			fscontext_sid = sid;
 619
 620			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 621					fscontext_sid))
 622				goto out_double_mount;
 623
 624			sbsec->flags |= FSCONTEXT_MNT;
 625			break;
 626		case CONTEXT_MNT:
 627			context_sid = sid;
 628
 629			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 630					context_sid))
 631				goto out_double_mount;
 632
 633			sbsec->flags |= CONTEXT_MNT;
 634			break;
 635		case ROOTCONTEXT_MNT:
 636			rootcontext_sid = sid;
 637
 638			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 639					rootcontext_sid))
 640				goto out_double_mount;
 641
 642			sbsec->flags |= ROOTCONTEXT_MNT;
 643
 644			break;
 645		case DEFCONTEXT_MNT:
 646			defcontext_sid = sid;
 647
 648			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 649					defcontext_sid))
 650				goto out_double_mount;
 651
 652			sbsec->flags |= DEFCONTEXT_MNT;
 653
 654			break;
 655		default:
 656			rc = -EINVAL;
 657			goto out;
 658		}
 659	}
 660
 661	if (sbsec->flags & SE_SBINITIALIZED) {
 662		/* previously mounted with options, but not on this attempt? */
 663		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 664			goto out_double_mount;
 665		rc = 0;
 666		goto out;
 667	}
 668
 669	if (strcmp(sb->s_type->name, "proc") == 0)
 670		sbsec->flags |= SE_SBPROC;
 
 
 
 
 
 671
 672	/* Determine the labeling behavior to use for this filesystem type. */
 673	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
 674	if (rc) {
 675		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
 676		       __func__, sb->s_type->name, rc);
 677		goto out;
 
 
 
 
 
 
 678	}
 679
 680	/* sets the context of the superblock for the fs being mounted. */
 681	if (fscontext_sid) {
 682		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 683		if (rc)
 684			goto out;
 685
 686		sbsec->sid = fscontext_sid;
 687	}
 688
 689	/*
 690	 * Switch to using mount point labeling behavior.
 691	 * sets the label used on all file below the mountpoint, and will set
 692	 * the superblock context if not already set.
 693	 */
 
 
 
 
 
 694	if (context_sid) {
 695		if (!fscontext_sid) {
 696			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 697							  cred);
 698			if (rc)
 699				goto out;
 700			sbsec->sid = context_sid;
 701		} else {
 702			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 703							     cred);
 704			if (rc)
 705				goto out;
 706		}
 707		if (!rootcontext_sid)
 708			rootcontext_sid = context_sid;
 709
 710		sbsec->mntpoint_sid = context_sid;
 711		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 712	}
 713
 714	if (rootcontext_sid) {
 715		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 716						     cred);
 717		if (rc)
 718			goto out;
 719
 720		root_isec->sid = rootcontext_sid;
 721		root_isec->initialized = 1;
 722	}
 723
 724	if (defcontext_sid) {
 725		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
 
 726			rc = -EINVAL;
 727			printk(KERN_WARNING "SELinux: defcontext option is "
 728			       "invalid for this filesystem type\n");
 729			goto out;
 730		}
 731
 732		if (defcontext_sid != sbsec->def_sid) {
 733			rc = may_context_mount_inode_relabel(defcontext_sid,
 734							     sbsec, cred);
 735			if (rc)
 736				goto out;
 737		}
 738
 739		sbsec->def_sid = defcontext_sid;
 740	}
 741
 742	rc = sb_finish_set_opts(sb);
 743out:
 744	mutex_unlock(&sbsec->lock);
 745	return rc;
 746out_double_mount:
 747	rc = -EINVAL;
 748	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 749	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 750	goto out;
 751}
 752
 753static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754					struct super_block *newsb)
 755{
 756	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 757	struct superblock_security_struct *newsbsec = newsb->s_security;
 758
 759	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 760	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 761	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 762
 763	/*
 764	 * if the parent was able to be mounted it clearly had no special lsm
 765	 * mount options.  thus we can safely deal with this superblock later
 766	 */
 767	if (!ss_initialized)
 768		return;
 769
 770	/* how can we clone if the old one wasn't set up?? */
 771	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 772
 773	/* if fs is reusing a sb, just let its options stand... */
 774	if (newsbsec->flags & SE_SBINITIALIZED)
 775		return;
 776
 777	mutex_lock(&newsbsec->lock);
 778
 779	newsbsec->flags = oldsbsec->flags;
 780
 781	newsbsec->sid = oldsbsec->sid;
 782	newsbsec->def_sid = oldsbsec->def_sid;
 783	newsbsec->behavior = oldsbsec->behavior;
 784
 785	if (set_context) {
 786		u32 sid = oldsbsec->mntpoint_sid;
 787
 788		if (!set_fscontext)
 789			newsbsec->sid = sid;
 790		if (!set_rootcontext) {
 791			struct inode *newinode = newsb->s_root->d_inode;
 792			struct inode_security_struct *newisec = newinode->i_security;
 793			newisec->sid = sid;
 794		}
 795		newsbsec->mntpoint_sid = sid;
 796	}
 797	if (set_rootcontext) {
 798		const struct inode *oldinode = oldsb->s_root->d_inode;
 799		const struct inode_security_struct *oldisec = oldinode->i_security;
 800		struct inode *newinode = newsb->s_root->d_inode;
 801		struct inode_security_struct *newisec = newinode->i_security;
 802
 803		newisec->sid = oldisec->sid;
 804	}
 805
 806	sb_finish_set_opts(newsb);
 807	mutex_unlock(&newsbsec->lock);
 
 808}
 809
 810static int selinux_parse_opts_str(char *options,
 811				  struct security_mnt_opts *opts)
 812{
 813	char *p;
 814	char *context = NULL, *defcontext = NULL;
 815	char *fscontext = NULL, *rootcontext = NULL;
 816	int rc, num_mnt_opts = 0;
 817
 818	opts->num_mnt_opts = 0;
 819
 820	/* Standard string-based options. */
 821	while ((p = strsep(&options, "|")) != NULL) {
 822		int token;
 823		substring_t args[MAX_OPT_ARGS];
 824
 825		if (!*p)
 826			continue;
 827
 828		token = match_token(p, tokens, args);
 829
 830		switch (token) {
 831		case Opt_context:
 832			if (context || defcontext) {
 833				rc = -EINVAL;
 834				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 835				goto out_err;
 836			}
 837			context = match_strdup(&args[0]);
 838			if (!context) {
 839				rc = -ENOMEM;
 840				goto out_err;
 841			}
 842			break;
 843
 844		case Opt_fscontext:
 845			if (fscontext) {
 846				rc = -EINVAL;
 847				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 848				goto out_err;
 849			}
 850			fscontext = match_strdup(&args[0]);
 851			if (!fscontext) {
 852				rc = -ENOMEM;
 853				goto out_err;
 854			}
 855			break;
 856
 857		case Opt_rootcontext:
 858			if (rootcontext) {
 859				rc = -EINVAL;
 860				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 861				goto out_err;
 862			}
 863			rootcontext = match_strdup(&args[0]);
 864			if (!rootcontext) {
 865				rc = -ENOMEM;
 866				goto out_err;
 867			}
 868			break;
 869
 870		case Opt_defcontext:
 871			if (context || defcontext) {
 872				rc = -EINVAL;
 873				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 874				goto out_err;
 875			}
 876			defcontext = match_strdup(&args[0]);
 877			if (!defcontext) {
 878				rc = -ENOMEM;
 879				goto out_err;
 880			}
 881			break;
 882		case Opt_labelsupport:
 883			break;
 884		default:
 885			rc = -EINVAL;
 886			printk(KERN_WARNING "SELinux:  unknown mount option\n");
 887			goto out_err;
 888
 889		}
 890	}
 891
 892	rc = -ENOMEM;
 893	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
 894	if (!opts->mnt_opts)
 895		goto out_err;
 896
 897	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
 898	if (!opts->mnt_opts_flags) {
 899		kfree(opts->mnt_opts);
 900		goto out_err;
 901	}
 902
 903	if (fscontext) {
 904		opts->mnt_opts[num_mnt_opts] = fscontext;
 905		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
 906	}
 907	if (context) {
 908		opts->mnt_opts[num_mnt_opts] = context;
 909		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
 910	}
 911	if (rootcontext) {
 912		opts->mnt_opts[num_mnt_opts] = rootcontext;
 913		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
 914	}
 915	if (defcontext) {
 916		opts->mnt_opts[num_mnt_opts] = defcontext;
 917		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
 918	}
 919
 920	opts->num_mnt_opts = num_mnt_opts;
 921	return 0;
 922
 923out_err:
 924	kfree(context);
 925	kfree(defcontext);
 926	kfree(fscontext);
 927	kfree(rootcontext);
 928	return rc;
 929}
 930/*
 931 * string mount options parsing and call set the sbsec
 932 */
 933static int superblock_doinit(struct super_block *sb, void *data)
 934{
 935	int rc = 0;
 936	char *options = data;
 937	struct security_mnt_opts opts;
 938
 939	security_init_mnt_opts(&opts);
 940
 941	if (!data)
 942		goto out;
 943
 944	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
 945
 946	rc = selinux_parse_opts_str(options, &opts);
 947	if (rc)
 948		goto out_err;
 949
 950out:
 951	rc = selinux_set_mnt_opts(sb, &opts);
 952
 953out_err:
 954	security_free_mnt_opts(&opts);
 955	return rc;
 956}
 957
 958static void selinux_write_opts(struct seq_file *m,
 959			       struct security_mnt_opts *opts)
 960{
 961	int i;
 962	char *prefix;
 963
 964	for (i = 0; i < opts->num_mnt_opts; i++) {
 965		char *has_comma;
 966
 967		if (opts->mnt_opts[i])
 968			has_comma = strchr(opts->mnt_opts[i], ',');
 969		else
 970			has_comma = NULL;
 971
 972		switch (opts->mnt_opts_flags[i]) {
 973		case CONTEXT_MNT:
 974			prefix = CONTEXT_STR;
 975			break;
 976		case FSCONTEXT_MNT:
 977			prefix = FSCONTEXT_STR;
 978			break;
 979		case ROOTCONTEXT_MNT:
 980			prefix = ROOTCONTEXT_STR;
 981			break;
 982		case DEFCONTEXT_MNT:
 983			prefix = DEFCONTEXT_STR;
 984			break;
 985		case SE_SBLABELSUPP:
 986			seq_putc(m, ',');
 987			seq_puts(m, LABELSUPP_STR);
 988			continue;
 989		default:
 990			BUG();
 991			return;
 992		};
 993		/* we need a comma before each option */
 994		seq_putc(m, ',');
 995		seq_puts(m, prefix);
 996		if (has_comma)
 997			seq_putc(m, '\"');
 998		seq_puts(m, opts->mnt_opts[i]);
 999		if (has_comma)
1000			seq_putc(m, '\"');
1001	}
1002}
1003
1004static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005{
1006	struct security_mnt_opts opts;
1007	int rc;
1008
1009	rc = selinux_get_mnt_opts(sb, &opts);
1010	if (rc) {
1011		/* before policy load we may get EINVAL, don't show anything */
1012		if (rc == -EINVAL)
1013			rc = 0;
1014		return rc;
1015	}
1016
1017	selinux_write_opts(m, &opts);
1018
1019	security_free_mnt_opts(&opts);
1020
1021	return rc;
1022}
1023
1024static inline u16 inode_mode_to_security_class(umode_t mode)
1025{
1026	switch (mode & S_IFMT) {
1027	case S_IFSOCK:
1028		return SECCLASS_SOCK_FILE;
1029	case S_IFLNK:
1030		return SECCLASS_LNK_FILE;
1031	case S_IFREG:
1032		return SECCLASS_FILE;
1033	case S_IFBLK:
1034		return SECCLASS_BLK_FILE;
1035	case S_IFDIR:
1036		return SECCLASS_DIR;
1037	case S_IFCHR:
1038		return SECCLASS_CHR_FILE;
1039	case S_IFIFO:
1040		return SECCLASS_FIFO_FILE;
1041
1042	}
1043
1044	return SECCLASS_FILE;
1045}
1046
1047static inline int default_protocol_stream(int protocol)
1048{
1049	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050}
1051
1052static inline int default_protocol_dgram(int protocol)
1053{
1054	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055}
1056
1057static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058{
1059	switch (family) {
1060	case PF_UNIX:
1061		switch (type) {
1062		case SOCK_STREAM:
1063		case SOCK_SEQPACKET:
1064			return SECCLASS_UNIX_STREAM_SOCKET;
1065		case SOCK_DGRAM:
1066			return SECCLASS_UNIX_DGRAM_SOCKET;
1067		}
1068		break;
1069	case PF_INET:
1070	case PF_INET6:
1071		switch (type) {
1072		case SOCK_STREAM:
1073			if (default_protocol_stream(protocol))
1074				return SECCLASS_TCP_SOCKET;
1075			else
1076				return SECCLASS_RAWIP_SOCKET;
1077		case SOCK_DGRAM:
1078			if (default_protocol_dgram(protocol))
1079				return SECCLASS_UDP_SOCKET;
1080			else
1081				return SECCLASS_RAWIP_SOCKET;
1082		case SOCK_DCCP:
1083			return SECCLASS_DCCP_SOCKET;
1084		default:
1085			return SECCLASS_RAWIP_SOCKET;
1086		}
1087		break;
1088	case PF_NETLINK:
1089		switch (protocol) {
1090		case NETLINK_ROUTE:
1091			return SECCLASS_NETLINK_ROUTE_SOCKET;
1092		case NETLINK_FIREWALL:
1093			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094		case NETLINK_SOCK_DIAG:
1095			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096		case NETLINK_NFLOG:
1097			return SECCLASS_NETLINK_NFLOG_SOCKET;
1098		case NETLINK_XFRM:
1099			return SECCLASS_NETLINK_XFRM_SOCKET;
1100		case NETLINK_SELINUX:
1101			return SECCLASS_NETLINK_SELINUX_SOCKET;
 
 
1102		case NETLINK_AUDIT:
1103			return SECCLASS_NETLINK_AUDIT_SOCKET;
1104		case NETLINK_IP6_FW:
1105			return SECCLASS_NETLINK_IP6FW_SOCKET;
 
 
 
 
1106		case NETLINK_DNRTMSG:
1107			return SECCLASS_NETLINK_DNRT_SOCKET;
1108		case NETLINK_KOBJECT_UEVENT:
1109			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
 
 
 
 
 
 
 
 
1110		default:
1111			return SECCLASS_NETLINK_SOCKET;
1112		}
1113	case PF_PACKET:
1114		return SECCLASS_PACKET_SOCKET;
1115	case PF_KEY:
1116		return SECCLASS_KEY_SOCKET;
1117	case PF_APPLETALK:
1118		return SECCLASS_APPLETALK_SOCKET;
1119	}
1120
1121	return SECCLASS_SOCKET;
1122}
1123
1124#ifdef CONFIG_PROC_FS
1125static int selinux_proc_get_sid(struct dentry *dentry,
1126				u16 tclass,
1127				u32 *sid)
1128{
1129	int rc;
 
1130	char *buffer, *path;
1131
1132	buffer = (char *)__get_free_page(GFP_KERNEL);
1133	if (!buffer)
1134		return -ENOMEM;
1135
1136	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137	if (IS_ERR(path))
1138		rc = PTR_ERR(path);
1139	else {
1140		/* each process gets a /proc/PID/ entry. Strip off the
1141		 * PID part to get a valid selinux labeling.
1142		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143		while (path[1] >= '0' && path[1] <= '9') {
1144			path[1] = '/';
1145			path++;
 
 
1146		}
1147		rc = security_genfs_sid("proc", path, tclass, sid);
1148	}
1149	free_page((unsigned long)buffer);
1150	return rc;
1151}
1152#else
1153static int selinux_proc_get_sid(struct dentry *dentry,
1154				u16 tclass,
1155				u32 *sid)
1156{
1157	return -EINVAL;
1158}
1159#endif
1160
1161/* The inode's security attributes must be initialized before first use. */
1162static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163{
1164	struct superblock_security_struct *sbsec = NULL;
1165	struct inode_security_struct *isec = inode->i_security;
1166	u32 sid;
1167	struct dentry *dentry;
1168#define INITCONTEXTLEN 255
1169	char *context = NULL;
1170	unsigned len = 0;
1171	int rc = 0;
1172
1173	if (isec->initialized)
1174		goto out;
1175
1176	mutex_lock(&isec->lock);
1177	if (isec->initialized)
1178		goto out_unlock;
1179
1180	sbsec = inode->i_sb->s_security;
1181	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182		/* Defer initialization until selinux_complete_init,
1183		   after the initial policy is loaded and the security
1184		   server is ready to handle calls. */
1185		spin_lock(&sbsec->isec_lock);
1186		if (list_empty(&isec->list))
1187			list_add(&isec->list, &sbsec->isec_head);
1188		spin_unlock(&sbsec->isec_lock);
1189		goto out_unlock;
1190	}
1191
1192	switch (sbsec->behavior) {
 
 
1193	case SECURITY_FS_USE_XATTR:
1194		if (!inode->i_op->getxattr) {
1195			isec->sid = sbsec->def_sid;
1196			break;
1197		}
1198
1199		/* Need a dentry, since the xattr API requires one.
1200		   Life would be simpler if we could just pass the inode. */
1201		if (opt_dentry) {
1202			/* Called from d_instantiate or d_splice_alias. */
1203			dentry = dget(opt_dentry);
1204		} else {
1205			/* Called from selinux_complete_init, try to find a dentry. */
1206			dentry = d_find_alias(inode);
1207		}
1208		if (!dentry) {
1209			/*
1210			 * this is can be hit on boot when a file is accessed
1211			 * before the policy is loaded.  When we load policy we
1212			 * may find inodes that have no dentry on the
1213			 * sbsec->isec_head list.  No reason to complain as these
1214			 * will get fixed up the next time we go through
1215			 * inode_doinit with a dentry, before these inodes could
1216			 * be used again by userspace.
1217			 */
1218			goto out_unlock;
1219		}
1220
1221		len = INITCONTEXTLEN;
1222		context = kmalloc(len+1, GFP_NOFS);
1223		if (!context) {
1224			rc = -ENOMEM;
1225			dput(dentry);
1226			goto out_unlock;
1227		}
1228		context[len] = '\0';
1229		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230					   context, len);
1231		if (rc == -ERANGE) {
1232			kfree(context);
1233
1234			/* Need a larger buffer.  Query for the right size. */
1235			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236						   NULL, 0);
1237			if (rc < 0) {
1238				dput(dentry);
1239				goto out_unlock;
1240			}
1241			len = rc;
1242			context = kmalloc(len+1, GFP_NOFS);
1243			if (!context) {
1244				rc = -ENOMEM;
1245				dput(dentry);
1246				goto out_unlock;
1247			}
1248			context[len] = '\0';
1249			rc = inode->i_op->getxattr(dentry,
1250						   XATTR_NAME_SELINUX,
1251						   context, len);
1252		}
1253		dput(dentry);
1254		if (rc < 0) {
1255			if (rc != -ENODATA) {
1256				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257				       "%d for dev=%s ino=%ld\n", __func__,
1258				       -rc, inode->i_sb->s_id, inode->i_ino);
1259				kfree(context);
1260				goto out_unlock;
1261			}
1262			/* Map ENODATA to the default file SID */
1263			sid = sbsec->def_sid;
1264			rc = 0;
1265		} else {
1266			rc = security_context_to_sid_default(context, rc, &sid,
1267							     sbsec->def_sid,
1268							     GFP_NOFS);
1269			if (rc) {
1270				char *dev = inode->i_sb->s_id;
1271				unsigned long ino = inode->i_ino;
1272
1273				if (rc == -EINVAL) {
1274					if (printk_ratelimit())
1275						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276							"context=%s.  This indicates you may need to relabel the inode or the "
1277							"filesystem in question.\n", ino, dev, context);
1278				} else {
1279					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280					       "returned %d for dev=%s ino=%ld\n",
1281					       __func__, context, -rc, dev, ino);
1282				}
1283				kfree(context);
1284				/* Leave with the unlabeled SID */
1285				rc = 0;
1286				break;
1287			}
1288		}
1289		kfree(context);
1290		isec->sid = sid;
1291		break;
1292	case SECURITY_FS_USE_TASK:
1293		isec->sid = isec->task_sid;
1294		break;
1295	case SECURITY_FS_USE_TRANS:
1296		/* Default to the fs SID. */
1297		isec->sid = sbsec->sid;
1298
1299		/* Try to obtain a transition SID. */
1300		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302					     isec->sclass, NULL, &sid);
1303		if (rc)
1304			goto out_unlock;
1305		isec->sid = sid;
1306		break;
1307	case SECURITY_FS_USE_MNTPOINT:
1308		isec->sid = sbsec->mntpoint_sid;
1309		break;
1310	default:
1311		/* Default to the fs superblock SID. */
1312		isec->sid = sbsec->sid;
1313
1314		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315			if (opt_dentry) {
1316				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317				rc = selinux_proc_get_sid(opt_dentry,
1318							  isec->sclass,
1319							  &sid);
1320				if (rc)
1321					goto out_unlock;
1322				isec->sid = sid;
1323			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324		}
1325		break;
1326	}
1327
1328	isec->initialized = 1;
1329
1330out_unlock:
1331	mutex_unlock(&isec->lock);
1332out:
1333	if (isec->sclass == SECCLASS_FILE)
1334		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335	return rc;
1336}
1337
1338/* Convert a Linux signal to an access vector. */
1339static inline u32 signal_to_av(int sig)
1340{
1341	u32 perm = 0;
1342
1343	switch (sig) {
1344	case SIGCHLD:
1345		/* Commonly granted from child to parent. */
1346		perm = PROCESS__SIGCHLD;
1347		break;
1348	case SIGKILL:
1349		/* Cannot be caught or ignored */
1350		perm = PROCESS__SIGKILL;
1351		break;
1352	case SIGSTOP:
1353		/* Cannot be caught or ignored */
1354		perm = PROCESS__SIGSTOP;
1355		break;
1356	default:
1357		/* All other signals. */
1358		perm = PROCESS__SIGNAL;
1359		break;
1360	}
1361
1362	return perm;
1363}
1364
1365/*
1366 * Check permission between a pair of credentials
1367 * fork check, ptrace check, etc.
1368 */
1369static int cred_has_perm(const struct cred *actor,
1370			 const struct cred *target,
1371			 u32 perms)
1372{
1373	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376}
1377
1378/*
1379 * Check permission between a pair of tasks, e.g. signal checks,
1380 * fork check, ptrace check, etc.
1381 * tsk1 is the actor and tsk2 is the target
1382 * - this uses the default subjective creds of tsk1
1383 */
1384static int task_has_perm(const struct task_struct *tsk1,
1385			 const struct task_struct *tsk2,
1386			 u32 perms)
1387{
1388	const struct task_security_struct *__tsec1, *__tsec2;
1389	u32 sid1, sid2;
1390
1391	rcu_read_lock();
1392	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1393	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1394	rcu_read_unlock();
1395	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396}
1397
1398/*
1399 * Check permission between current and another task, e.g. signal checks,
1400 * fork check, ptrace check, etc.
1401 * current is the actor and tsk2 is the target
1402 * - this uses current's subjective creds
1403 */
1404static int current_has_perm(const struct task_struct *tsk,
1405			    u32 perms)
1406{
1407	u32 sid, tsid;
1408
1409	sid = current_sid();
1410	tsid = task_sid(tsk);
1411	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412}
1413
1414#if CAP_LAST_CAP > 63
1415#error Fix SELinux to handle capabilities > 63.
1416#endif
1417
1418/* Check whether a task is allowed to use a capability. */
1419static int cred_has_capability(const struct cred *cred,
1420			       int cap, int audit)
1421{
1422	struct common_audit_data ad;
1423	struct av_decision avd;
1424	u16 sclass;
1425	u32 sid = cred_sid(cred);
1426	u32 av = CAP_TO_MASK(cap);
1427	int rc;
1428
1429	ad.type = LSM_AUDIT_DATA_CAP;
1430	ad.u.cap = cap;
1431
1432	switch (CAP_TO_INDEX(cap)) {
1433	case 0:
1434		sclass = SECCLASS_CAPABILITY;
1435		break;
1436	case 1:
1437		sclass = SECCLASS_CAPABILITY2;
1438		break;
1439	default:
1440		printk(KERN_ERR
1441		       "SELinux:  out of range capability %d\n", cap);
1442		BUG();
1443		return -EINVAL;
1444	}
1445
1446	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447	if (audit == SECURITY_CAP_AUDIT) {
1448		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449		if (rc2)
1450			return rc2;
1451	}
1452	return rc;
1453}
1454
1455/* Check whether a task is allowed to use a system operation. */
1456static int task_has_system(struct task_struct *tsk,
1457			   u32 perms)
1458{
1459	u32 sid = task_sid(tsk);
1460
1461	return avc_has_perm(sid, SECINITSID_KERNEL,
1462			    SECCLASS_SYSTEM, perms, NULL);
1463}
1464
1465/* Check whether a task has a particular permission to an inode.
1466   The 'adp' parameter is optional and allows other audit
1467   data to be passed (e.g. the dentry). */
1468static int inode_has_perm(const struct cred *cred,
1469			  struct inode *inode,
1470			  u32 perms,
1471			  struct common_audit_data *adp,
1472			  unsigned flags)
1473{
1474	struct inode_security_struct *isec;
1475	u32 sid;
1476
1477	validate_creds(cred);
1478
1479	if (unlikely(IS_PRIVATE(inode)))
1480		return 0;
1481
1482	sid = cred_sid(cred);
1483	isec = inode->i_security;
1484
1485	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486}
1487
1488/* Same as inode_has_perm, but pass explicit audit data containing
1489   the dentry to help the auditing code to more easily generate the
1490   pathname if needed. */
1491static inline int dentry_has_perm(const struct cred *cred,
1492				  struct dentry *dentry,
1493				  u32 av)
1494{
1495	struct inode *inode = dentry->d_inode;
1496	struct common_audit_data ad;
1497
1498	ad.type = LSM_AUDIT_DATA_DENTRY;
1499	ad.u.dentry = dentry;
1500	return inode_has_perm(cred, inode, av, &ad, 0);
 
1501}
1502
1503/* Same as inode_has_perm, but pass explicit audit data containing
1504   the path to help the auditing code to more easily generate the
1505   pathname if needed. */
1506static inline int path_has_perm(const struct cred *cred,
1507				struct path *path,
1508				u32 av)
1509{
1510	struct inode *inode = path->dentry->d_inode;
1511	struct common_audit_data ad;
1512
1513	ad.type = LSM_AUDIT_DATA_PATH;
1514	ad.u.path = *path;
1515	return inode_has_perm(cred, inode, av, &ad, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
1516}
1517
1518/* Check whether a task can use an open file descriptor to
1519   access an inode in a given way.  Check access to the
1520   descriptor itself, and then use dentry_has_perm to
1521   check a particular permission to the file.
1522   Access to the descriptor is implicitly granted if it
1523   has the same SID as the process.  If av is zero, then
1524   access to the file is not checked, e.g. for cases
1525   where only the descriptor is affected like seek. */
1526static int file_has_perm(const struct cred *cred,
1527			 struct file *file,
1528			 u32 av)
1529{
1530	struct file_security_struct *fsec = file->f_security;
1531	struct inode *inode = file->f_path.dentry->d_inode;
1532	struct common_audit_data ad;
1533	u32 sid = cred_sid(cred);
1534	int rc;
1535
1536	ad.type = LSM_AUDIT_DATA_PATH;
1537	ad.u.path = file->f_path;
1538
1539	if (sid != fsec->sid) {
1540		rc = avc_has_perm(sid, fsec->sid,
1541				  SECCLASS_FD,
1542				  FD__USE,
1543				  &ad);
1544		if (rc)
1545			goto out;
1546	}
1547
1548	/* av is zero if only checking access to the descriptor. */
1549	rc = 0;
1550	if (av)
1551		rc = inode_has_perm(cred, inode, av, &ad, 0);
1552
1553out:
1554	return rc;
1555}
1556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1557/* Check whether a task can create a file. */
1558static int may_create(struct inode *dir,
1559		      struct dentry *dentry,
1560		      u16 tclass)
1561{
1562	const struct task_security_struct *tsec = current_security();
1563	struct inode_security_struct *dsec;
1564	struct superblock_security_struct *sbsec;
1565	u32 sid, newsid;
1566	struct common_audit_data ad;
1567	int rc;
1568
1569	dsec = dir->i_security;
1570	sbsec = dir->i_sb->s_security;
1571
1572	sid = tsec->sid;
1573	newsid = tsec->create_sid;
1574
1575	ad.type = LSM_AUDIT_DATA_DENTRY;
1576	ad.u.dentry = dentry;
1577
1578	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579			  DIR__ADD_NAME | DIR__SEARCH,
1580			  &ad);
1581	if (rc)
1582		return rc;
1583
1584	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585		rc = security_transition_sid(sid, dsec->sid, tclass,
1586					     &dentry->d_name, &newsid);
1587		if (rc)
1588			return rc;
1589	}
1590
1591	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592	if (rc)
1593		return rc;
1594
1595	return avc_has_perm(newsid, sbsec->sid,
1596			    SECCLASS_FILESYSTEM,
1597			    FILESYSTEM__ASSOCIATE, &ad);
1598}
1599
1600/* Check whether a task can create a key. */
1601static int may_create_key(u32 ksid,
1602			  struct task_struct *ctx)
1603{
1604	u32 sid = task_sid(ctx);
1605
1606	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607}
1608
1609#define MAY_LINK	0
1610#define MAY_UNLINK	1
1611#define MAY_RMDIR	2
1612
1613/* Check whether a task can link, unlink, or rmdir a file/directory. */
1614static int may_link(struct inode *dir,
1615		    struct dentry *dentry,
1616		    int kind)
1617
1618{
1619	struct inode_security_struct *dsec, *isec;
1620	struct common_audit_data ad;
1621	u32 sid = current_sid();
1622	u32 av;
1623	int rc;
1624
1625	dsec = dir->i_security;
1626	isec = dentry->d_inode->i_security;
1627
1628	ad.type = LSM_AUDIT_DATA_DENTRY;
1629	ad.u.dentry = dentry;
1630
1631	av = DIR__SEARCH;
1632	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634	if (rc)
1635		return rc;
1636
1637	switch (kind) {
1638	case MAY_LINK:
1639		av = FILE__LINK;
1640		break;
1641	case MAY_UNLINK:
1642		av = FILE__UNLINK;
1643		break;
1644	case MAY_RMDIR:
1645		av = DIR__RMDIR;
1646		break;
1647	default:
1648		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1649			__func__, kind);
1650		return 0;
1651	}
1652
1653	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654	return rc;
1655}
1656
1657static inline int may_rename(struct inode *old_dir,
1658			     struct dentry *old_dentry,
1659			     struct inode *new_dir,
1660			     struct dentry *new_dentry)
1661{
1662	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663	struct common_audit_data ad;
1664	u32 sid = current_sid();
1665	u32 av;
1666	int old_is_dir, new_is_dir;
1667	int rc;
1668
1669	old_dsec = old_dir->i_security;
1670	old_isec = old_dentry->d_inode->i_security;
1671	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672	new_dsec = new_dir->i_security;
1673
1674	ad.type = LSM_AUDIT_DATA_DENTRY;
1675
1676	ad.u.dentry = old_dentry;
1677	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679	if (rc)
1680		return rc;
1681	rc = avc_has_perm(sid, old_isec->sid,
1682			  old_isec->sclass, FILE__RENAME, &ad);
1683	if (rc)
1684		return rc;
1685	if (old_is_dir && new_dir != old_dir) {
1686		rc = avc_has_perm(sid, old_isec->sid,
1687				  old_isec->sclass, DIR__REPARENT, &ad);
1688		if (rc)
1689			return rc;
1690	}
1691
1692	ad.u.dentry = new_dentry;
1693	av = DIR__ADD_NAME | DIR__SEARCH;
1694	if (new_dentry->d_inode)
1695		av |= DIR__REMOVE_NAME;
1696	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697	if (rc)
1698		return rc;
1699	if (new_dentry->d_inode) {
1700		new_isec = new_dentry->d_inode->i_security;
1701		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702		rc = avc_has_perm(sid, new_isec->sid,
1703				  new_isec->sclass,
1704				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705		if (rc)
1706			return rc;
1707	}
1708
1709	return 0;
1710}
1711
1712/* Check whether a task can perform a filesystem operation. */
1713static int superblock_has_perm(const struct cred *cred,
1714			       struct super_block *sb,
1715			       u32 perms,
1716			       struct common_audit_data *ad)
1717{
1718	struct superblock_security_struct *sbsec;
1719	u32 sid = cred_sid(cred);
1720
1721	sbsec = sb->s_security;
1722	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723}
1724
1725/* Convert a Linux mode and permission mask to an access vector. */
1726static inline u32 file_mask_to_av(int mode, int mask)
1727{
1728	u32 av = 0;
1729
1730	if (!S_ISDIR(mode)) {
1731		if (mask & MAY_EXEC)
1732			av |= FILE__EXECUTE;
1733		if (mask & MAY_READ)
1734			av |= FILE__READ;
1735
1736		if (mask & MAY_APPEND)
1737			av |= FILE__APPEND;
1738		else if (mask & MAY_WRITE)
1739			av |= FILE__WRITE;
1740
1741	} else {
1742		if (mask & MAY_EXEC)
1743			av |= DIR__SEARCH;
1744		if (mask & MAY_WRITE)
1745			av |= DIR__WRITE;
1746		if (mask & MAY_READ)
1747			av |= DIR__READ;
1748	}
1749
1750	return av;
1751}
1752
1753/* Convert a Linux file to an access vector. */
1754static inline u32 file_to_av(struct file *file)
1755{
1756	u32 av = 0;
1757
1758	if (file->f_mode & FMODE_READ)
1759		av |= FILE__READ;
1760	if (file->f_mode & FMODE_WRITE) {
1761		if (file->f_flags & O_APPEND)
1762			av |= FILE__APPEND;
1763		else
1764			av |= FILE__WRITE;
1765	}
1766	if (!av) {
1767		/*
1768		 * Special file opened with flags 3 for ioctl-only use.
1769		 */
1770		av = FILE__IOCTL;
1771	}
1772
1773	return av;
1774}
1775
1776/*
1777 * Convert a file to an access vector and include the correct open
1778 * open permission.
1779 */
1780static inline u32 open_file_to_av(struct file *file)
1781{
1782	u32 av = file_to_av(file);
1783
1784	if (selinux_policycap_openperm)
1785		av |= FILE__OPEN;
1786
1787	return av;
1788}
1789
1790/* Hook functions begin here. */
1791
1792static int selinux_ptrace_access_check(struct task_struct *child,
1793				     unsigned int mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794{
 
 
 
 
 
1795	int rc;
1796
1797	rc = cap_ptrace_access_check(child, mode);
1798	if (rc)
1799		return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
 
 
 
1801	if (mode & PTRACE_MODE_READ) {
1802		u32 sid = current_sid();
1803		u32 csid = task_sid(child);
1804		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805	}
1806
1807	return current_has_perm(child, PROCESS__PTRACE);
1808}
1809
1810static int selinux_ptrace_traceme(struct task_struct *parent)
1811{
1812	int rc;
1813
1814	rc = cap_ptrace_traceme(parent);
1815	if (rc)
1816		return rc;
1817
1818	return task_has_perm(parent, current, PROCESS__PTRACE);
1819}
1820
1821static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823{
1824	int error;
1825
1826	error = current_has_perm(target, PROCESS__GETCAP);
1827	if (error)
1828		return error;
1829
1830	return cap_capget(target, effective, inheritable, permitted);
1831}
1832
1833static int selinux_capset(struct cred *new, const struct cred *old,
1834			  const kernel_cap_t *effective,
1835			  const kernel_cap_t *inheritable,
1836			  const kernel_cap_t *permitted)
1837{
1838	int error;
1839
1840	error = cap_capset(new, old,
1841				      effective, inheritable, permitted);
1842	if (error)
1843		return error;
1844
1845	return cred_has_perm(old, new, PROCESS__SETCAP);
1846}
1847
1848/*
1849 * (This comment used to live with the selinux_task_setuid hook,
1850 * which was removed).
1851 *
1852 * Since setuid only affects the current process, and since the SELinux
1853 * controls are not based on the Linux identity attributes, SELinux does not
1854 * need to control this operation.  However, SELinux does control the use of
1855 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856 */
1857
1858static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859			   int cap, int audit)
1860{
1861	int rc;
1862
1863	rc = cap_capable(cred, ns, cap, audit);
1864	if (rc)
1865		return rc;
1866
1867	return cred_has_capability(cred, cap, audit);
1868}
1869
1870static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871{
1872	const struct cred *cred = current_cred();
1873	int rc = 0;
1874
1875	if (!sb)
1876		return 0;
1877
1878	switch (cmds) {
1879	case Q_SYNC:
1880	case Q_QUOTAON:
1881	case Q_QUOTAOFF:
1882	case Q_SETINFO:
1883	case Q_SETQUOTA:
1884		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885		break;
1886	case Q_GETFMT:
1887	case Q_GETINFO:
1888	case Q_GETQUOTA:
1889		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890		break;
1891	default:
1892		rc = 0;  /* let the kernel handle invalid cmds */
1893		break;
1894	}
1895	return rc;
1896}
1897
1898static int selinux_quota_on(struct dentry *dentry)
1899{
1900	const struct cred *cred = current_cred();
1901
1902	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903}
1904
1905static int selinux_syslog(int type)
1906{
1907	int rc;
1908
1909	switch (type) {
1910	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1911	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1912		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913		break;
1914	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1915	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1916	/* Set level of messages printed to console */
1917	case SYSLOG_ACTION_CONSOLE_LEVEL:
1918		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919		break;
1920	case SYSLOG_ACTION_CLOSE:	/* Close log */
1921	case SYSLOG_ACTION_OPEN:	/* Open log */
1922	case SYSLOG_ACTION_READ:	/* Read from log */
1923	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1924	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1925	default:
1926		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927		break;
1928	}
1929	return rc;
1930}
1931
1932/*
1933 * Check that a process has enough memory to allocate a new virtual
1934 * mapping. 0 means there is enough memory for the allocation to
1935 * succeed and -ENOMEM implies there is not.
1936 *
1937 * Do not audit the selinux permission check, as this is applied to all
1938 * processes that allocate mappings.
1939 */
1940static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941{
1942	int rc, cap_sys_admin = 0;
1943
1944	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945			     SECURITY_CAP_NOAUDIT);
1946	if (rc == 0)
1947		cap_sys_admin = 1;
1948
1949	return __vm_enough_memory(mm, pages, cap_sys_admin);
1950}
1951
1952/* binprm security operations */
1953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955{
1956	const struct task_security_struct *old_tsec;
1957	struct task_security_struct *new_tsec;
1958	struct inode_security_struct *isec;
1959	struct common_audit_data ad;
1960	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961	int rc;
1962
1963	rc = cap_bprm_set_creds(bprm);
1964	if (rc)
1965		return rc;
1966
1967	/* SELinux context only depends on initial program or script and not
1968	 * the script interpreter */
1969	if (bprm->cred_prepared)
1970		return 0;
1971
1972	old_tsec = current_security();
1973	new_tsec = bprm->cred->security;
1974	isec = inode->i_security;
1975
1976	/* Default to the current task SID. */
1977	new_tsec->sid = old_tsec->sid;
1978	new_tsec->osid = old_tsec->sid;
1979
1980	/* Reset fs, key, and sock SIDs on execve. */
1981	new_tsec->create_sid = 0;
1982	new_tsec->keycreate_sid = 0;
1983	new_tsec->sockcreate_sid = 0;
1984
1985	if (old_tsec->exec_sid) {
1986		new_tsec->sid = old_tsec->exec_sid;
1987		/* Reset exec SID on execve. */
1988		new_tsec->exec_sid = 0;
1989
1990		/*
1991		 * Minimize confusion: if no_new_privs and a transition is
1992		 * explicitly requested, then fail the exec.
1993		 */
1994		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995			return -EPERM;
1996	} else {
1997		/* Check for a default transition on this program. */
1998		rc = security_transition_sid(old_tsec->sid, isec->sid,
1999					     SECCLASS_PROCESS, NULL,
2000					     &new_tsec->sid);
2001		if (rc)
2002			return rc;
 
 
 
 
 
 
 
 
2003	}
2004
2005	ad.type = LSM_AUDIT_DATA_PATH;
2006	ad.u.path = bprm->file->f_path;
2007
2008	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010		new_tsec->sid = old_tsec->sid;
2011
2012	if (new_tsec->sid == old_tsec->sid) {
2013		rc = avc_has_perm(old_tsec->sid, isec->sid,
2014				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015		if (rc)
2016			return rc;
2017	} else {
2018		/* Check permissions for the transition. */
2019		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021		if (rc)
2022			return rc;
2023
2024		rc = avc_has_perm(new_tsec->sid, isec->sid,
2025				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026		if (rc)
2027			return rc;
2028
2029		/* Check for shared state */
2030		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032					  SECCLASS_PROCESS, PROCESS__SHARE,
2033					  NULL);
2034			if (rc)
2035				return -EPERM;
2036		}
2037
2038		/* Make sure that anyone attempting to ptrace over a task that
2039		 * changes its SID has the appropriate permit */
2040		if (bprm->unsafe &
2041		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042			struct task_struct *tracer;
2043			struct task_security_struct *sec;
2044			u32 ptsid = 0;
2045
2046			rcu_read_lock();
2047			tracer = ptrace_parent(current);
2048			if (likely(tracer != NULL)) {
2049				sec = __task_cred(tracer)->security;
2050				ptsid = sec->sid;
2051			}
2052			rcu_read_unlock();
2053
2054			if (ptsid != 0) {
2055				rc = avc_has_perm(ptsid, new_tsec->sid,
2056						  SECCLASS_PROCESS,
2057						  PROCESS__PTRACE, NULL);
2058				if (rc)
2059					return -EPERM;
2060			}
2061		}
2062
2063		/* Clear any possibly unsafe personality bits on exec: */
2064		bprm->per_clear |= PER_CLEAR_ON_SETID;
2065	}
2066
2067	return 0;
2068}
2069
2070static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071{
2072	const struct task_security_struct *tsec = current_security();
2073	u32 sid, osid;
2074	int atsecure = 0;
2075
2076	sid = tsec->sid;
2077	osid = tsec->osid;
2078
2079	if (osid != sid) {
2080		/* Enable secure mode for SIDs transitions unless
2081		   the noatsecure permission is granted between
2082		   the two SIDs, i.e. ahp returns 0. */
2083		atsecure = avc_has_perm(osid, sid,
2084					SECCLASS_PROCESS,
2085					PROCESS__NOATSECURE, NULL);
2086	}
2087
2088	return (atsecure || cap_bprm_secureexec(bprm));
 
 
 
 
 
2089}
2090
2091/* Derived from fs/exec.c:flush_old_files. */
2092static inline void flush_unauthorized_files(const struct cred *cred,
2093					    struct files_struct *files)
2094{
2095	struct file *file, *devnull = NULL;
2096	struct tty_struct *tty;
2097	struct fdtable *fdt;
2098	long j = -1;
2099	int drop_tty = 0;
 
2100
2101	tty = get_current_tty();
2102	if (tty) {
2103		spin_lock(&tty_files_lock);
2104		if (!list_empty(&tty->tty_files)) {
2105			struct tty_file_private *file_priv;
2106
2107			/* Revalidate access to controlling tty.
2108			   Use path_has_perm on the tty path directly rather
2109			   than using file_has_perm, as this particular open
2110			   file may belong to another process and we are only
2111			   interested in the inode-based check here. */
2112			file_priv = list_first_entry(&tty->tty_files,
2113						struct tty_file_private, list);
2114			file = file_priv->file;
2115			if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2116				drop_tty = 1;
2117		}
2118		spin_unlock(&tty_files_lock);
2119		tty_kref_put(tty);
2120	}
2121	/* Reset controlling tty. */
2122	if (drop_tty)
2123		no_tty();
2124
2125	/* Revalidate access to inherited open files. */
2126	spin_lock(&files->file_lock);
2127	for (;;) {
2128		unsigned long set, i;
2129		int fd;
2130
2131		j++;
2132		i = j * BITS_PER_LONG;
2133		fdt = files_fdtable(files);
2134		if (i >= fdt->max_fds)
2135			break;
2136		set = fdt->open_fds[j];
2137		if (!set)
2138			continue;
2139		spin_unlock(&files->file_lock);
2140		for ( ; set ; i++, set >>= 1) {
2141			if (set & 1) {
2142				file = fget(i);
2143				if (!file)
2144					continue;
2145				if (file_has_perm(cred,
2146						  file,
2147						  file_to_av(file))) {
2148					sys_close(i);
2149					fd = get_unused_fd();
2150					if (fd != i) {
2151						if (fd >= 0)
2152							put_unused_fd(fd);
2153						fput(file);
2154						continue;
2155					}
2156					if (devnull) {
2157						get_file(devnull);
2158					} else {
2159						devnull = dentry_open(
2160							dget(selinux_null),
2161							mntget(selinuxfs_mount),
2162							O_RDWR, cred);
2163						if (IS_ERR(devnull)) {
2164							devnull = NULL;
2165							put_unused_fd(fd);
2166							fput(file);
2167							continue;
2168						}
2169					}
2170					fd_install(fd, devnull);
2171				}
2172				fput(file);
2173			}
2174		}
2175		spin_lock(&files->file_lock);
2176
2177	}
2178	spin_unlock(&files->file_lock);
 
 
 
 
 
 
 
2179}
2180
2181/*
2182 * Prepare a process for imminent new credential changes due to exec
2183 */
2184static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2185{
2186	struct task_security_struct *new_tsec;
2187	struct rlimit *rlim, *initrlim;
2188	int rc, i;
2189
2190	new_tsec = bprm->cred->security;
2191	if (new_tsec->sid == new_tsec->osid)
2192		return;
2193
2194	/* Close files for which the new task SID is not authorized. */
2195	flush_unauthorized_files(bprm->cred, current->files);
2196
2197	/* Always clear parent death signal on SID transitions. */
2198	current->pdeath_signal = 0;
2199
2200	/* Check whether the new SID can inherit resource limits from the old
2201	 * SID.  If not, reset all soft limits to the lower of the current
2202	 * task's hard limit and the init task's soft limit.
2203	 *
2204	 * Note that the setting of hard limits (even to lower them) can be
2205	 * controlled by the setrlimit check.  The inclusion of the init task's
2206	 * soft limit into the computation is to avoid resetting soft limits
2207	 * higher than the default soft limit for cases where the default is
2208	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2209	 */
2210	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2211			  PROCESS__RLIMITINH, NULL);
2212	if (rc) {
2213		/* protect against do_prlimit() */
2214		task_lock(current);
2215		for (i = 0; i < RLIM_NLIMITS; i++) {
2216			rlim = current->signal->rlim + i;
2217			initrlim = init_task.signal->rlim + i;
2218			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2219		}
2220		task_unlock(current);
2221		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2222	}
2223}
2224
2225/*
2226 * Clean up the process immediately after the installation of new credentials
2227 * due to exec
2228 */
2229static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2230{
2231	const struct task_security_struct *tsec = current_security();
2232	struct itimerval itimer;
2233	u32 osid, sid;
2234	int rc, i;
2235
2236	osid = tsec->osid;
2237	sid = tsec->sid;
2238
2239	if (sid == osid)
2240		return;
2241
2242	/* Check whether the new SID can inherit signal state from the old SID.
2243	 * If not, clear itimers to avoid subsequent signal generation and
2244	 * flush and unblock signals.
2245	 *
2246	 * This must occur _after_ the task SID has been updated so that any
2247	 * kill done after the flush will be checked against the new SID.
2248	 */
2249	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2250	if (rc) {
2251		memset(&itimer, 0, sizeof itimer);
2252		for (i = 0; i < 3; i++)
2253			do_setitimer(i, &itimer, NULL);
2254		spin_lock_irq(&current->sighand->siglock);
2255		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2256			__flush_signals(current);
 
2257			flush_signal_handlers(current, 1);
2258			sigemptyset(&current->blocked);
 
2259		}
2260		spin_unlock_irq(&current->sighand->siglock);
2261	}
2262
2263	/* Wake up the parent if it is waiting so that it can recheck
2264	 * wait permission to the new task SID. */
2265	read_lock(&tasklist_lock);
2266	__wake_up_parent(current, current->real_parent);
2267	read_unlock(&tasklist_lock);
2268}
2269
2270/* superblock security operations */
2271
2272static int selinux_sb_alloc_security(struct super_block *sb)
2273{
2274	return superblock_alloc_security(sb);
2275}
2276
2277static void selinux_sb_free_security(struct super_block *sb)
2278{
2279	superblock_free_security(sb);
2280}
2281
2282static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2283{
2284	if (plen > olen)
2285		return 0;
2286
2287	return !memcmp(prefix, option, plen);
2288}
2289
2290static inline int selinux_option(char *option, int len)
2291{
2292	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2293		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2294		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2295		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2296		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2297}
2298
2299static inline void take_option(char **to, char *from, int *first, int len)
2300{
2301	if (!*first) {
2302		**to = ',';
2303		*to += 1;
2304	} else
2305		*first = 0;
2306	memcpy(*to, from, len);
2307	*to += len;
2308}
2309
2310static inline void take_selinux_option(char **to, char *from, int *first,
2311				       int len)
2312{
2313	int current_size = 0;
2314
2315	if (!*first) {
2316		**to = '|';
2317		*to += 1;
2318	} else
2319		*first = 0;
2320
2321	while (current_size < len) {
2322		if (*from != '"') {
2323			**to = *from;
2324			*to += 1;
2325		}
2326		from += 1;
2327		current_size += 1;
2328	}
2329}
2330
2331static int selinux_sb_copy_data(char *orig, char *copy)
2332{
2333	int fnosec, fsec, rc = 0;
2334	char *in_save, *in_curr, *in_end;
2335	char *sec_curr, *nosec_save, *nosec;
2336	int open_quote = 0;
2337
2338	in_curr = orig;
2339	sec_curr = copy;
2340
2341	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2342	if (!nosec) {
2343		rc = -ENOMEM;
2344		goto out;
2345	}
2346
2347	nosec_save = nosec;
2348	fnosec = fsec = 1;
2349	in_save = in_end = orig;
2350
2351	do {
2352		if (*in_end == '"')
2353			open_quote = !open_quote;
2354		if ((*in_end == ',' && open_quote == 0) ||
2355				*in_end == '\0') {
2356			int len = in_end - in_curr;
2357
2358			if (selinux_option(in_curr, len))
2359				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2360			else
2361				take_option(&nosec, in_curr, &fnosec, len);
2362
2363			in_curr = in_end + 1;
2364		}
2365	} while (*in_end++);
2366
2367	strcpy(in_save, nosec_save);
2368	free_page((unsigned long)nosec_save);
2369out:
2370	return rc;
2371}
2372
2373static int selinux_sb_remount(struct super_block *sb, void *data)
2374{
2375	int rc, i, *flags;
2376	struct security_mnt_opts opts;
2377	char *secdata, **mount_options;
2378	struct superblock_security_struct *sbsec = sb->s_security;
2379
2380	if (!(sbsec->flags & SE_SBINITIALIZED))
2381		return 0;
2382
2383	if (!data)
2384		return 0;
2385
2386	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2387		return 0;
2388
2389	security_init_mnt_opts(&opts);
2390	secdata = alloc_secdata();
2391	if (!secdata)
2392		return -ENOMEM;
2393	rc = selinux_sb_copy_data(data, secdata);
2394	if (rc)
2395		goto out_free_secdata;
2396
2397	rc = selinux_parse_opts_str(secdata, &opts);
2398	if (rc)
2399		goto out_free_secdata;
2400
2401	mount_options = opts.mnt_opts;
2402	flags = opts.mnt_opts_flags;
2403
2404	for (i = 0; i < opts.num_mnt_opts; i++) {
2405		u32 sid;
2406		size_t len;
2407
2408		if (flags[i] == SE_SBLABELSUPP)
2409			continue;
2410		len = strlen(mount_options[i]);
2411		rc = security_context_to_sid(mount_options[i], len, &sid);
2412		if (rc) {
2413			printk(KERN_WARNING "SELinux: security_context_to_sid"
2414			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2415			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2416			goto out_free_opts;
2417		}
2418		rc = -EINVAL;
2419		switch (flags[i]) {
2420		case FSCONTEXT_MNT:
2421			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2422				goto out_bad_option;
2423			break;
2424		case CONTEXT_MNT:
2425			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2426				goto out_bad_option;
2427			break;
2428		case ROOTCONTEXT_MNT: {
2429			struct inode_security_struct *root_isec;
2430			root_isec = sb->s_root->d_inode->i_security;
2431
2432			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2433				goto out_bad_option;
2434			break;
2435		}
2436		case DEFCONTEXT_MNT:
2437			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2438				goto out_bad_option;
2439			break;
2440		default:
2441			goto out_free_opts;
2442		}
2443	}
2444
2445	rc = 0;
2446out_free_opts:
2447	security_free_mnt_opts(&opts);
2448out_free_secdata:
2449	free_secdata(secdata);
2450	return rc;
2451out_bad_option:
2452	printk(KERN_WARNING "SELinux: unable to change security options "
2453	       "during remount (dev %s, type=%s)\n", sb->s_id,
2454	       sb->s_type->name);
2455	goto out_free_opts;
2456}
2457
2458static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2459{
2460	const struct cred *cred = current_cred();
2461	struct common_audit_data ad;
2462	int rc;
2463
2464	rc = superblock_doinit(sb, data);
2465	if (rc)
2466		return rc;
2467
2468	/* Allow all mounts performed by the kernel */
2469	if (flags & MS_KERNMOUNT)
2470		return 0;
2471
2472	ad.type = LSM_AUDIT_DATA_DENTRY;
2473	ad.u.dentry = sb->s_root;
2474	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2475}
2476
2477static int selinux_sb_statfs(struct dentry *dentry)
2478{
2479	const struct cred *cred = current_cred();
2480	struct common_audit_data ad;
2481
2482	ad.type = LSM_AUDIT_DATA_DENTRY;
2483	ad.u.dentry = dentry->d_sb->s_root;
2484	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2485}
2486
2487static int selinux_mount(char *dev_name,
2488			 struct path *path,
2489			 char *type,
2490			 unsigned long flags,
2491			 void *data)
2492{
2493	const struct cred *cred = current_cred();
2494
2495	if (flags & MS_REMOUNT)
2496		return superblock_has_perm(cred, path->dentry->d_sb,
2497					   FILESYSTEM__REMOUNT, NULL);
2498	else
2499		return path_has_perm(cred, path, FILE__MOUNTON);
2500}
2501
2502static int selinux_umount(struct vfsmount *mnt, int flags)
2503{
2504	const struct cred *cred = current_cred();
2505
2506	return superblock_has_perm(cred, mnt->mnt_sb,
2507				   FILESYSTEM__UNMOUNT, NULL);
2508}
2509
2510/* inode security operations */
2511
2512static int selinux_inode_alloc_security(struct inode *inode)
2513{
2514	return inode_alloc_security(inode);
2515}
2516
2517static void selinux_inode_free_security(struct inode *inode)
2518{
2519	inode_free_security(inode);
2520}
2521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2523				       const struct qstr *qstr, char **name,
 
2524				       void **value, size_t *len)
2525{
2526	const struct task_security_struct *tsec = current_security();
2527	struct inode_security_struct *dsec;
2528	struct superblock_security_struct *sbsec;
2529	u32 sid, newsid, clen;
2530	int rc;
2531	char *namep = NULL, *context;
2532
2533	dsec = dir->i_security;
2534	sbsec = dir->i_sb->s_security;
2535
2536	sid = tsec->sid;
2537	newsid = tsec->create_sid;
2538
2539	if ((sbsec->flags & SE_SBINITIALIZED) &&
2540	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2541		newsid = sbsec->mntpoint_sid;
2542	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2543		rc = security_transition_sid(sid, dsec->sid,
2544					     inode_mode_to_security_class(inode->i_mode),
2545					     qstr, &newsid);
2546		if (rc) {
2547			printk(KERN_WARNING "%s:  "
2548			       "security_transition_sid failed, rc=%d (dev=%s "
2549			       "ino=%ld)\n",
2550			       __func__,
2551			       -rc, inode->i_sb->s_id, inode->i_ino);
2552			return rc;
2553		}
2554	}
2555
2556	/* Possibly defer initialization to selinux_complete_init. */
2557	if (sbsec->flags & SE_SBINITIALIZED) {
2558		struct inode_security_struct *isec = inode->i_security;
2559		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2560		isec->sid = newsid;
2561		isec->initialized = 1;
2562	}
2563
2564	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2565		return -EOPNOTSUPP;
2566
2567	if (name) {
2568		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2569		if (!namep)
2570			return -ENOMEM;
2571		*name = namep;
2572	}
2573
2574	if (value && len) {
2575		rc = security_sid_to_context_force(newsid, &context, &clen);
2576		if (rc) {
2577			kfree(namep);
2578			return rc;
2579		}
2580		*value = context;
2581		*len = clen;
2582	}
2583
2584	return 0;
2585}
2586
2587static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2588{
2589	return may_create(dir, dentry, SECCLASS_FILE);
2590}
2591
2592static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2593{
2594	return may_link(dir, old_dentry, MAY_LINK);
2595}
2596
2597static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2598{
2599	return may_link(dir, dentry, MAY_UNLINK);
2600}
2601
2602static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2603{
2604	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2605}
2606
2607static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2608{
2609	return may_create(dir, dentry, SECCLASS_DIR);
2610}
2611
2612static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2613{
2614	return may_link(dir, dentry, MAY_RMDIR);
2615}
2616
2617static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2618{
2619	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2620}
2621
2622static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2623				struct inode *new_inode, struct dentry *new_dentry)
2624{
2625	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2626}
2627
2628static int selinux_inode_readlink(struct dentry *dentry)
2629{
2630	const struct cred *cred = current_cred();
2631
2632	return dentry_has_perm(cred, dentry, FILE__READ);
2633}
2634
2635static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
 
2636{
2637	const struct cred *cred = current_cred();
 
 
 
 
 
 
 
 
 
 
 
 
2638
2639	return dentry_has_perm(cred, dentry, FILE__READ);
 
2640}
2641
2642static noinline int audit_inode_permission(struct inode *inode,
2643					   u32 perms, u32 audited, u32 denied,
 
2644					   unsigned flags)
2645{
2646	struct common_audit_data ad;
2647	struct inode_security_struct *isec = inode->i_security;
2648	int rc;
2649
2650	ad.type = LSM_AUDIT_DATA_INODE;
2651	ad.u.inode = inode;
2652
2653	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2654			    audited, denied, &ad, flags);
2655	if (rc)
2656		return rc;
2657	return 0;
2658}
2659
2660static int selinux_inode_permission(struct inode *inode, int mask)
2661{
2662	const struct cred *cred = current_cred();
2663	u32 perms;
2664	bool from_access;
2665	unsigned flags = mask & MAY_NOT_BLOCK;
2666	struct inode_security_struct *isec;
2667	u32 sid;
2668	struct av_decision avd;
2669	int rc, rc2;
2670	u32 audited, denied;
2671
2672	from_access = mask & MAY_ACCESS;
2673	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2674
2675	/* No permission to check.  Existence test. */
2676	if (!mask)
2677		return 0;
2678
2679	validate_creds(cred);
2680
2681	if (unlikely(IS_PRIVATE(inode)))
2682		return 0;
2683
2684	perms = file_mask_to_av(inode->i_mode, mask);
2685
2686	sid = cred_sid(cred);
2687	isec = inode->i_security;
 
 
2688
2689	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2690	audited = avc_audit_required(perms, &avd, rc,
2691				     from_access ? FILE__AUDIT_ACCESS : 0,
2692				     &denied);
2693	if (likely(!audited))
2694		return rc;
2695
2696	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2697	if (rc2)
2698		return rc2;
2699	return rc;
2700}
2701
2702static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2703{
2704	const struct cred *cred = current_cred();
2705	unsigned int ia_valid = iattr->ia_valid;
2706	__u32 av = FILE__WRITE;
2707
2708	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2709	if (ia_valid & ATTR_FORCE) {
2710		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2711			      ATTR_FORCE);
2712		if (!ia_valid)
2713			return 0;
2714	}
2715
2716	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2717			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2718		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2719
2720	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
 
2721		av |= FILE__OPEN;
2722
2723	return dentry_has_perm(cred, dentry, av);
2724}
2725
2726static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2727{
2728	const struct cred *cred = current_cred();
2729	struct path path;
2730
2731	path.dentry = dentry;
2732	path.mnt = mnt;
2733
2734	return path_has_perm(cred, &path, FILE__GETATTR);
2735}
2736
2737static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2738{
2739	const struct cred *cred = current_cred();
2740
2741	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2742		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2743		if (!strcmp(name, XATTR_NAME_CAPS)) {
2744			if (!capable(CAP_SETFCAP))
2745				return -EPERM;
2746		} else if (!capable(CAP_SYS_ADMIN)) {
2747			/* A different attribute in the security namespace.
2748			   Restrict to administrator. */
2749			return -EPERM;
2750		}
2751	}
2752
2753	/* Not an attribute we recognize, so just check the
2754	   ordinary setattr permission. */
2755	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2756}
2757
2758static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2759				  const void *value, size_t size, int flags)
2760{
2761	struct inode *inode = dentry->d_inode;
2762	struct inode_security_struct *isec = inode->i_security;
2763	struct superblock_security_struct *sbsec;
2764	struct common_audit_data ad;
2765	u32 newsid, sid = current_sid();
2766	int rc = 0;
2767
2768	if (strcmp(name, XATTR_NAME_SELINUX))
2769		return selinux_inode_setotherxattr(dentry, name);
2770
2771	sbsec = inode->i_sb->s_security;
2772	if (!(sbsec->flags & SE_SBLABELSUPP))
2773		return -EOPNOTSUPP;
2774
2775	if (!inode_owner_or_capable(inode))
2776		return -EPERM;
2777
2778	ad.type = LSM_AUDIT_DATA_DENTRY;
2779	ad.u.dentry = dentry;
2780
2781	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2782			  FILE__RELABELFROM, &ad);
2783	if (rc)
2784		return rc;
2785
2786	rc = security_context_to_sid(value, size, &newsid);
2787	if (rc == -EINVAL) {
2788		if (!capable(CAP_MAC_ADMIN)) {
2789			struct audit_buffer *ab;
2790			size_t audit_size;
2791			const char *str;
2792
2793			/* We strip a nul only if it is at the end, otherwise the
2794			 * context contains a nul and we should audit that */
2795			if (value) {
2796				str = value;
2797				if (str[size - 1] == '\0')
2798					audit_size = size - 1;
2799				else
2800					audit_size = size;
2801			} else {
2802				str = "";
2803				audit_size = 0;
2804			}
2805			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2806			audit_log_format(ab, "op=setxattr invalid_context=");
2807			audit_log_n_untrustedstring(ab, value, audit_size);
2808			audit_log_end(ab);
2809
2810			return rc;
2811		}
2812		rc = security_context_to_sid_force(value, size, &newsid);
2813	}
2814	if (rc)
2815		return rc;
2816
2817	rc = avc_has_perm(sid, newsid, isec->sclass,
2818			  FILE__RELABELTO, &ad);
2819	if (rc)
2820		return rc;
2821
2822	rc = security_validate_transition(isec->sid, newsid, sid,
2823					  isec->sclass);
2824	if (rc)
2825		return rc;
2826
2827	return avc_has_perm(newsid,
2828			    sbsec->sid,
2829			    SECCLASS_FILESYSTEM,
2830			    FILESYSTEM__ASSOCIATE,
2831			    &ad);
2832}
2833
2834static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2835					const void *value, size_t size,
2836					int flags)
2837{
2838	struct inode *inode = dentry->d_inode;
2839	struct inode_security_struct *isec = inode->i_security;
2840	u32 newsid;
2841	int rc;
2842
2843	if (strcmp(name, XATTR_NAME_SELINUX)) {
2844		/* Not an attribute we recognize, so nothing to do. */
2845		return;
2846	}
2847
2848	rc = security_context_to_sid_force(value, size, &newsid);
2849	if (rc) {
2850		printk(KERN_ERR "SELinux:  unable to map context to SID"
2851		       "for (%s, %lu), rc=%d\n",
2852		       inode->i_sb->s_id, inode->i_ino, -rc);
2853		return;
2854	}
2855
 
2856	isec->sid = newsid;
 
 
2857	return;
2858}
2859
2860static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2861{
2862	const struct cred *cred = current_cred();
2863
2864	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2865}
2866
2867static int selinux_inode_listxattr(struct dentry *dentry)
2868{
2869	const struct cred *cred = current_cred();
2870
2871	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2872}
2873
2874static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2875{
2876	if (strcmp(name, XATTR_NAME_SELINUX))
2877		return selinux_inode_setotherxattr(dentry, name);
2878
2879	/* No one is allowed to remove a SELinux security label.
2880	   You can change the label, but all data must be labeled. */
2881	return -EACCES;
2882}
2883
2884/*
2885 * Copy the inode security context value to the user.
2886 *
2887 * Permission check is handled by selinux_inode_getxattr hook.
2888 */
2889static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2890{
2891	u32 size;
2892	int error;
2893	char *context = NULL;
2894	struct inode_security_struct *isec = inode->i_security;
2895
2896	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2897		return -EOPNOTSUPP;
2898
2899	/*
2900	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2901	 * value even if it is not defined by current policy; otherwise,
2902	 * use the in-core value under current policy.
2903	 * Use the non-auditing forms of the permission checks since
2904	 * getxattr may be called by unprivileged processes commonly
2905	 * and lack of permission just means that we fall back to the
2906	 * in-core context value, not a denial.
2907	 */
2908	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2909				SECURITY_CAP_NOAUDIT);
 
 
 
2910	if (!error)
2911		error = security_sid_to_context_force(isec->sid, &context,
2912						      &size);
2913	else
2914		error = security_sid_to_context(isec->sid, &context, &size);
2915	if (error)
2916		return error;
2917	error = size;
2918	if (alloc) {
2919		*buffer = context;
2920		goto out_nofree;
2921	}
2922	kfree(context);
2923out_nofree:
2924	return error;
2925}
2926
2927static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2928				     const void *value, size_t size, int flags)
2929{
2930	struct inode_security_struct *isec = inode->i_security;
2931	u32 newsid;
2932	int rc;
2933
2934	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2935		return -EOPNOTSUPP;
2936
2937	if (!value || !size)
2938		return -EACCES;
2939
2940	rc = security_context_to_sid((void *)value, size, &newsid);
2941	if (rc)
2942		return rc;
2943
 
2944	isec->sid = newsid;
2945	isec->initialized = 1;
2946	return 0;
2947}
2948
2949static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2950{
2951	const int len = sizeof(XATTR_NAME_SELINUX);
2952	if (buffer && len <= buffer_size)
2953		memcpy(buffer, XATTR_NAME_SELINUX, len);
2954	return len;
2955}
2956
2957static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2958{
2959	struct inode_security_struct *isec = inode->i_security;
2960	*secid = isec->sid;
2961}
2962
2963/* file security operations */
2964
2965static int selinux_revalidate_file_permission(struct file *file, int mask)
2966{
2967	const struct cred *cred = current_cred();
2968	struct inode *inode = file->f_path.dentry->d_inode;
2969
2970	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2971	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2972		mask |= MAY_APPEND;
2973
2974	return file_has_perm(cred, file,
2975			     file_mask_to_av(inode->i_mode, mask));
2976}
2977
2978static int selinux_file_permission(struct file *file, int mask)
2979{
2980	struct inode *inode = file->f_path.dentry->d_inode;
2981	struct file_security_struct *fsec = file->f_security;
2982	struct inode_security_struct *isec = inode->i_security;
2983	u32 sid = current_sid();
2984
2985	if (!mask)
2986		/* No permission to check.  Existence test. */
2987		return 0;
2988
 
2989	if (sid == fsec->sid && fsec->isid == isec->sid &&
2990	    fsec->pseqno == avc_policy_seqno())
2991		/* No change since file_open check. */
2992		return 0;
2993
2994	return selinux_revalidate_file_permission(file, mask);
2995}
2996
2997static int selinux_file_alloc_security(struct file *file)
2998{
2999	return file_alloc_security(file);
3000}
3001
3002static void selinux_file_free_security(struct file *file)
3003{
3004	file_free_security(file);
3005}
3006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3008			      unsigned long arg)
3009{
3010	const struct cred *cred = current_cred();
3011	int error = 0;
3012
3013	switch (cmd) {
3014	case FIONREAD:
3015	/* fall through */
3016	case FIBMAP:
3017	/* fall through */
3018	case FIGETBSZ:
3019	/* fall through */
3020	case FS_IOC_GETFLAGS:
3021	/* fall through */
3022	case FS_IOC_GETVERSION:
3023		error = file_has_perm(cred, file, FILE__GETATTR);
3024		break;
3025
3026	case FS_IOC_SETFLAGS:
3027	/* fall through */
3028	case FS_IOC_SETVERSION:
3029		error = file_has_perm(cred, file, FILE__SETATTR);
3030		break;
3031
3032	/* sys_ioctl() checks */
3033	case FIONBIO:
3034	/* fall through */
3035	case FIOASYNC:
3036		error = file_has_perm(cred, file, 0);
3037		break;
3038
3039	case KDSKBENT:
3040	case KDSKBSENT:
3041		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3042					    SECURITY_CAP_AUDIT);
3043		break;
3044
3045	/* default case assumes that the command will go
3046	 * to the file's ioctl() function.
3047	 */
3048	default:
3049		error = file_has_perm(cred, file, FILE__IOCTL);
3050	}
3051	return error;
3052}
3053
3054static int default_noexec;
3055
3056static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3057{
3058	const struct cred *cred = current_cred();
3059	int rc = 0;
3060
3061	if (default_noexec &&
3062	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
 
3063		/*
3064		 * We are making executable an anonymous mapping or a
3065		 * private file mapping that will also be writable.
3066		 * This has an additional check.
3067		 */
3068		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3069		if (rc)
3070			goto error;
3071	}
3072
3073	if (file) {
3074		/* read access is always possible with a mapping */
3075		u32 av = FILE__READ;
3076
3077		/* write access only matters if the mapping is shared */
3078		if (shared && (prot & PROT_WRITE))
3079			av |= FILE__WRITE;
3080
3081		if (prot & PROT_EXEC)
3082			av |= FILE__EXECUTE;
3083
3084		return file_has_perm(cred, file, av);
3085	}
3086
3087error:
3088	return rc;
3089}
3090
3091static int selinux_mmap_addr(unsigned long addr)
3092{
3093	int rc = 0;
3094	u32 sid = current_sid();
3095
3096	/*
3097	 * notice that we are intentionally putting the SELinux check before
3098	 * the secondary cap_file_mmap check.  This is such a likely attempt
3099	 * at bad behaviour/exploit that we always want to get the AVC, even
3100	 * if DAC would have also denied the operation.
3101	 */
3102	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
 
3103		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3104				  MEMPROTECT__MMAP_ZERO, NULL);
3105		if (rc)
3106			return rc;
3107	}
3108
3109	/* do DAC check on address space usage */
3110	return cap_mmap_addr(addr);
3111}
3112
3113static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3114			     unsigned long prot, unsigned long flags)
3115{
3116	if (selinux_checkreqprot)
3117		prot = reqprot;
3118
3119	return file_map_prot_check(file, prot,
3120				   (flags & MAP_TYPE) == MAP_SHARED);
3121}
3122
3123static int selinux_file_mprotect(struct vm_area_struct *vma,
3124				 unsigned long reqprot,
3125				 unsigned long prot)
3126{
3127	const struct cred *cred = current_cred();
3128
3129	if (selinux_checkreqprot)
3130		prot = reqprot;
3131
3132	if (default_noexec &&
3133	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3134		int rc = 0;
3135		if (vma->vm_start >= vma->vm_mm->start_brk &&
3136		    vma->vm_end <= vma->vm_mm->brk) {
3137			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3138		} else if (!vma->vm_file &&
3139			   vma->vm_start <= vma->vm_mm->start_stack &&
3140			   vma->vm_end >= vma->vm_mm->start_stack) {
3141			rc = current_has_perm(current, PROCESS__EXECSTACK);
3142		} else if (vma->vm_file && vma->anon_vma) {
3143			/*
3144			 * We are making executable a file mapping that has
3145			 * had some COW done. Since pages might have been
3146			 * written, check ability to execute the possibly
3147			 * modified content.  This typically should only
3148			 * occur for text relocations.
3149			 */
3150			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3151		}
3152		if (rc)
3153			return rc;
3154	}
3155
3156	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3157}
3158
3159static int selinux_file_lock(struct file *file, unsigned int cmd)
3160{
3161	const struct cred *cred = current_cred();
3162
3163	return file_has_perm(cred, file, FILE__LOCK);
3164}
3165
3166static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3167			      unsigned long arg)
3168{
3169	const struct cred *cred = current_cred();
3170	int err = 0;
3171
3172	switch (cmd) {
3173	case F_SETFL:
3174		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3175			err = -EINVAL;
3176			break;
3177		}
3178
3179		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3180			err = file_has_perm(cred, file, FILE__WRITE);
3181			break;
3182		}
3183		/* fall through */
3184	case F_SETOWN:
3185	case F_SETSIG:
3186	case F_GETFL:
3187	case F_GETOWN:
3188	case F_GETSIG:
 
3189		/* Just check FD__USE permission */
3190		err = file_has_perm(cred, file, 0);
3191		break;
3192	case F_GETLK:
3193	case F_SETLK:
3194	case F_SETLKW:
 
 
 
3195#if BITS_PER_LONG == 32
3196	case F_GETLK64:
3197	case F_SETLK64:
3198	case F_SETLKW64:
3199#endif
3200		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3201			err = -EINVAL;
3202			break;
3203		}
3204		err = file_has_perm(cred, file, FILE__LOCK);
3205		break;
3206	}
3207
3208	return err;
3209}
3210
3211static int selinux_file_set_fowner(struct file *file)
3212{
3213	struct file_security_struct *fsec;
3214
3215	fsec = file->f_security;
3216	fsec->fown_sid = current_sid();
3217
3218	return 0;
3219}
3220
3221static int selinux_file_send_sigiotask(struct task_struct *tsk,
3222				       struct fown_struct *fown, int signum)
3223{
3224	struct file *file;
3225	u32 sid = task_sid(tsk);
3226	u32 perm;
3227	struct file_security_struct *fsec;
3228
3229	/* struct fown_struct is never outside the context of a struct file */
3230	file = container_of(fown, struct file, f_owner);
3231
3232	fsec = file->f_security;
3233
3234	if (!signum)
3235		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3236	else
3237		perm = signal_to_av(signum);
3238
3239	return avc_has_perm(fsec->fown_sid, sid,
3240			    SECCLASS_PROCESS, perm, NULL);
3241}
3242
3243static int selinux_file_receive(struct file *file)
3244{
3245	const struct cred *cred = current_cred();
3246
3247	return file_has_perm(cred, file, file_to_av(file));
3248}
3249
3250static int selinux_file_open(struct file *file, const struct cred *cred)
3251{
3252	struct file_security_struct *fsec;
3253	struct inode_security_struct *isec;
3254
3255	fsec = file->f_security;
3256	isec = file->f_path.dentry->d_inode->i_security;
3257	/*
3258	 * Save inode label and policy sequence number
3259	 * at open-time so that selinux_file_permission
3260	 * can determine whether revalidation is necessary.
3261	 * Task label is already saved in the file security
3262	 * struct as its SID.
3263	 */
3264	fsec->isid = isec->sid;
3265	fsec->pseqno = avc_policy_seqno();
3266	/*
3267	 * Since the inode label or policy seqno may have changed
3268	 * between the selinux_inode_permission check and the saving
3269	 * of state above, recheck that access is still permitted.
3270	 * Otherwise, access might never be revalidated against the
3271	 * new inode label or new policy.
3272	 * This check is not redundant - do not remove.
3273	 */
3274	return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3275}
3276
3277/* task security operations */
3278
3279static int selinux_task_create(unsigned long clone_flags)
3280{
3281	return current_has_perm(current, PROCESS__FORK);
3282}
3283
3284/*
3285 * allocate the SELinux part of blank credentials
3286 */
3287static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3288{
3289	struct task_security_struct *tsec;
3290
3291	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3292	if (!tsec)
3293		return -ENOMEM;
3294
3295	cred->security = tsec;
3296	return 0;
3297}
3298
3299/*
3300 * detach and free the LSM part of a set of credentials
3301 */
3302static void selinux_cred_free(struct cred *cred)
3303{
3304	struct task_security_struct *tsec = cred->security;
3305
3306	/*
3307	 * cred->security == NULL if security_cred_alloc_blank() or
3308	 * security_prepare_creds() returned an error.
3309	 */
3310	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3311	cred->security = (void *) 0x7UL;
3312	kfree(tsec);
3313}
3314
3315/*
3316 * prepare a new set of credentials for modification
3317 */
3318static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3319				gfp_t gfp)
3320{
3321	const struct task_security_struct *old_tsec;
3322	struct task_security_struct *tsec;
3323
3324	old_tsec = old->security;
3325
3326	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3327	if (!tsec)
3328		return -ENOMEM;
3329
3330	new->security = tsec;
3331	return 0;
3332}
3333
3334/*
3335 * transfer the SELinux data to a blank set of creds
3336 */
3337static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3338{
3339	const struct task_security_struct *old_tsec = old->security;
3340	struct task_security_struct *tsec = new->security;
3341
3342	*tsec = *old_tsec;
3343}
3344
3345/*
3346 * set the security data for a kernel service
3347 * - all the creation contexts are set to unlabelled
3348 */
3349static int selinux_kernel_act_as(struct cred *new, u32 secid)
3350{
3351	struct task_security_struct *tsec = new->security;
3352	u32 sid = current_sid();
3353	int ret;
3354
3355	ret = avc_has_perm(sid, secid,
3356			   SECCLASS_KERNEL_SERVICE,
3357			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3358			   NULL);
3359	if (ret == 0) {
3360		tsec->sid = secid;
3361		tsec->create_sid = 0;
3362		tsec->keycreate_sid = 0;
3363		tsec->sockcreate_sid = 0;
3364	}
3365	return ret;
3366}
3367
3368/*
3369 * set the file creation context in a security record to the same as the
3370 * objective context of the specified inode
3371 */
3372static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3373{
3374	struct inode_security_struct *isec = inode->i_security;
3375	struct task_security_struct *tsec = new->security;
3376	u32 sid = current_sid();
3377	int ret;
3378
3379	ret = avc_has_perm(sid, isec->sid,
3380			   SECCLASS_KERNEL_SERVICE,
3381			   KERNEL_SERVICE__CREATE_FILES_AS,
3382			   NULL);
3383
3384	if (ret == 0)
3385		tsec->create_sid = isec->sid;
3386	return ret;
3387}
3388
3389static int selinux_kernel_module_request(char *kmod_name)
3390{
3391	u32 sid;
3392	struct common_audit_data ad;
3393
3394	sid = task_sid(current);
3395
3396	ad.type = LSM_AUDIT_DATA_KMOD;
3397	ad.u.kmod_name = kmod_name;
3398
3399	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3400			    SYSTEM__MODULE_REQUEST, &ad);
3401}
3402
3403static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3404{
3405	return current_has_perm(p, PROCESS__SETPGID);
3406}
3407
3408static int selinux_task_getpgid(struct task_struct *p)
3409{
3410	return current_has_perm(p, PROCESS__GETPGID);
3411}
3412
3413static int selinux_task_getsid(struct task_struct *p)
3414{
3415	return current_has_perm(p, PROCESS__GETSESSION);
3416}
3417
3418static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3419{
3420	*secid = task_sid(p);
3421}
3422
3423static int selinux_task_setnice(struct task_struct *p, int nice)
3424{
3425	int rc;
3426
3427	rc = cap_task_setnice(p, nice);
3428	if (rc)
3429		return rc;
3430
3431	return current_has_perm(p, PROCESS__SETSCHED);
3432}
3433
3434static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3435{
3436	int rc;
3437
3438	rc = cap_task_setioprio(p, ioprio);
3439	if (rc)
3440		return rc;
3441
3442	return current_has_perm(p, PROCESS__SETSCHED);
3443}
3444
3445static int selinux_task_getioprio(struct task_struct *p)
3446{
3447	return current_has_perm(p, PROCESS__GETSCHED);
3448}
3449
3450static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3451		struct rlimit *new_rlim)
3452{
3453	struct rlimit *old_rlim = p->signal->rlim + resource;
3454
3455	/* Control the ability to change the hard limit (whether
3456	   lowering or raising it), so that the hard limit can
3457	   later be used as a safe reset point for the soft limit
3458	   upon context transitions.  See selinux_bprm_committing_creds. */
3459	if (old_rlim->rlim_max != new_rlim->rlim_max)
3460		return current_has_perm(p, PROCESS__SETRLIMIT);
3461
3462	return 0;
3463}
3464
3465static int selinux_task_setscheduler(struct task_struct *p)
3466{
3467	int rc;
3468
3469	rc = cap_task_setscheduler(p);
3470	if (rc)
3471		return rc;
3472
3473	return current_has_perm(p, PROCESS__SETSCHED);
3474}
3475
3476static int selinux_task_getscheduler(struct task_struct *p)
3477{
3478	return current_has_perm(p, PROCESS__GETSCHED);
3479}
3480
3481static int selinux_task_movememory(struct task_struct *p)
3482{
3483	return current_has_perm(p, PROCESS__SETSCHED);
3484}
3485
3486static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3487				int sig, u32 secid)
3488{
3489	u32 perm;
3490	int rc;
3491
3492	if (!sig)
3493		perm = PROCESS__SIGNULL; /* null signal; existence test */
3494	else
3495		perm = signal_to_av(sig);
3496	if (secid)
3497		rc = avc_has_perm(secid, task_sid(p),
3498				  SECCLASS_PROCESS, perm, NULL);
3499	else
3500		rc = current_has_perm(p, perm);
3501	return rc;
3502}
3503
3504static int selinux_task_wait(struct task_struct *p)
3505{
3506	return task_has_perm(p, current, PROCESS__SIGCHLD);
3507}
3508
3509static void selinux_task_to_inode(struct task_struct *p,
3510				  struct inode *inode)
3511{
3512	struct inode_security_struct *isec = inode->i_security;
3513	u32 sid = task_sid(p);
3514
3515	isec->sid = sid;
3516	isec->initialized = 1;
3517}
3518
3519/* Returns error only if unable to parse addresses */
3520static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3521			struct common_audit_data *ad, u8 *proto)
3522{
3523	int offset, ihlen, ret = -EINVAL;
3524	struct iphdr _iph, *ih;
3525
3526	offset = skb_network_offset(skb);
3527	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3528	if (ih == NULL)
3529		goto out;
3530
3531	ihlen = ih->ihl * 4;
3532	if (ihlen < sizeof(_iph))
3533		goto out;
3534
3535	ad->u.net->v4info.saddr = ih->saddr;
3536	ad->u.net->v4info.daddr = ih->daddr;
3537	ret = 0;
3538
3539	if (proto)
3540		*proto = ih->protocol;
3541
3542	switch (ih->protocol) {
3543	case IPPROTO_TCP: {
3544		struct tcphdr _tcph, *th;
3545
3546		if (ntohs(ih->frag_off) & IP_OFFSET)
3547			break;
3548
3549		offset += ihlen;
3550		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3551		if (th == NULL)
3552			break;
3553
3554		ad->u.net->sport = th->source;
3555		ad->u.net->dport = th->dest;
3556		break;
3557	}
3558
3559	case IPPROTO_UDP: {
3560		struct udphdr _udph, *uh;
3561
3562		if (ntohs(ih->frag_off) & IP_OFFSET)
3563			break;
3564
3565		offset += ihlen;
3566		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3567		if (uh == NULL)
3568			break;
3569
3570		ad->u.net->sport = uh->source;
3571		ad->u.net->dport = uh->dest;
3572		break;
3573	}
3574
3575	case IPPROTO_DCCP: {
3576		struct dccp_hdr _dccph, *dh;
3577
3578		if (ntohs(ih->frag_off) & IP_OFFSET)
3579			break;
3580
3581		offset += ihlen;
3582		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3583		if (dh == NULL)
3584			break;
3585
3586		ad->u.net->sport = dh->dccph_sport;
3587		ad->u.net->dport = dh->dccph_dport;
3588		break;
3589	}
3590
3591	default:
3592		break;
3593	}
3594out:
3595	return ret;
3596}
3597
3598#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3599
3600/* Returns error only if unable to parse addresses */
3601static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3602			struct common_audit_data *ad, u8 *proto)
3603{
3604	u8 nexthdr;
3605	int ret = -EINVAL, offset;
3606	struct ipv6hdr _ipv6h, *ip6;
3607	__be16 frag_off;
3608
3609	offset = skb_network_offset(skb);
3610	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3611	if (ip6 == NULL)
3612		goto out;
3613
3614	ad->u.net->v6info.saddr = ip6->saddr;
3615	ad->u.net->v6info.daddr = ip6->daddr;
3616	ret = 0;
3617
3618	nexthdr = ip6->nexthdr;
3619	offset += sizeof(_ipv6h);
3620	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3621	if (offset < 0)
3622		goto out;
3623
3624	if (proto)
3625		*proto = nexthdr;
3626
3627	switch (nexthdr) {
3628	case IPPROTO_TCP: {
3629		struct tcphdr _tcph, *th;
3630
3631		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3632		if (th == NULL)
3633			break;
3634
3635		ad->u.net->sport = th->source;
3636		ad->u.net->dport = th->dest;
3637		break;
3638	}
3639
3640	case IPPROTO_UDP: {
3641		struct udphdr _udph, *uh;
3642
3643		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3644		if (uh == NULL)
3645			break;
3646
3647		ad->u.net->sport = uh->source;
3648		ad->u.net->dport = uh->dest;
3649		break;
3650	}
3651
3652	case IPPROTO_DCCP: {
3653		struct dccp_hdr _dccph, *dh;
3654
3655		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3656		if (dh == NULL)
3657			break;
3658
3659		ad->u.net->sport = dh->dccph_sport;
3660		ad->u.net->dport = dh->dccph_dport;
3661		break;
3662	}
3663
3664	/* includes fragments */
3665	default:
3666		break;
3667	}
3668out:
3669	return ret;
3670}
3671
3672#endif /* IPV6 */
3673
3674static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3675			     char **_addrp, int src, u8 *proto)
3676{
3677	char *addrp;
3678	int ret;
3679
3680	switch (ad->u.net->family) {
3681	case PF_INET:
3682		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3683		if (ret)
3684			goto parse_error;
3685		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3686				       &ad->u.net->v4info.daddr);
3687		goto okay;
3688
3689#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3690	case PF_INET6:
3691		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3692		if (ret)
3693			goto parse_error;
3694		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3695				       &ad->u.net->v6info.daddr);
3696		goto okay;
3697#endif	/* IPV6 */
3698	default:
3699		addrp = NULL;
3700		goto okay;
3701	}
3702
3703parse_error:
3704	printk(KERN_WARNING
3705	       "SELinux: failure in selinux_parse_skb(),"
3706	       " unable to parse packet\n");
3707	return ret;
3708
3709okay:
3710	if (_addrp)
3711		*_addrp = addrp;
3712	return 0;
3713}
3714
3715/**
3716 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3717 * @skb: the packet
3718 * @family: protocol family
3719 * @sid: the packet's peer label SID
3720 *
3721 * Description:
3722 * Check the various different forms of network peer labeling and determine
3723 * the peer label/SID for the packet; most of the magic actually occurs in
3724 * the security server function security_net_peersid_cmp().  The function
3725 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3726 * or -EACCES if @sid is invalid due to inconsistencies with the different
3727 * peer labels.
3728 *
3729 */
3730static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3731{
3732	int err;
3733	u32 xfrm_sid;
3734	u32 nlbl_sid;
3735	u32 nlbl_type;
3736
3737	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3738	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
 
 
 
 
3739
3740	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3741	if (unlikely(err)) {
3742		printk(KERN_WARNING
3743		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3744		       " unable to determine packet's peer label\n");
3745		return -EACCES;
3746	}
3747
3748	return 0;
3749}
3750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3751/* socket security operations */
3752
3753static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3754				 u16 secclass, u32 *socksid)
3755{
3756	if (tsec->sockcreate_sid > SECSID_NULL) {
3757		*socksid = tsec->sockcreate_sid;
3758		return 0;
3759	}
3760
3761	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3762				       socksid);
3763}
3764
3765static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3766{
3767	struct sk_security_struct *sksec = sk->sk_security;
3768	struct common_audit_data ad;
3769	struct lsm_network_audit net = {0,};
3770	u32 tsid = task_sid(task);
3771
3772	if (sksec->sid == SECINITSID_KERNEL)
3773		return 0;
3774
3775	ad.type = LSM_AUDIT_DATA_NET;
3776	ad.u.net = &net;
3777	ad.u.net->sk = sk;
3778
3779	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3780}
3781
3782static int selinux_socket_create(int family, int type,
3783				 int protocol, int kern)
3784{
3785	const struct task_security_struct *tsec = current_security();
3786	u32 newsid;
3787	u16 secclass;
3788	int rc;
3789
3790	if (kern)
3791		return 0;
3792
3793	secclass = socket_type_to_security_class(family, type, protocol);
3794	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3795	if (rc)
3796		return rc;
3797
3798	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3799}
3800
3801static int selinux_socket_post_create(struct socket *sock, int family,
3802				      int type, int protocol, int kern)
3803{
3804	const struct task_security_struct *tsec = current_security();
3805	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3806	struct sk_security_struct *sksec;
3807	int err = 0;
3808
3809	isec->sclass = socket_type_to_security_class(family, type, protocol);
3810
3811	if (kern)
3812		isec->sid = SECINITSID_KERNEL;
3813	else {
3814		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3815		if (err)
3816			return err;
3817	}
3818
3819	isec->initialized = 1;
3820
3821	if (sock->sk) {
3822		sksec = sock->sk->sk_security;
3823		sksec->sid = isec->sid;
3824		sksec->sclass = isec->sclass;
3825		err = selinux_netlbl_socket_post_create(sock->sk, family);
3826	}
3827
3828	return err;
3829}
3830
3831/* Range of port numbers used to automatically bind.
3832   Need to determine whether we should perform a name_bind
3833   permission check between the socket and the port number. */
3834
3835static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3836{
3837	struct sock *sk = sock->sk;
3838	u16 family;
3839	int err;
3840
3841	err = sock_has_perm(current, sk, SOCKET__BIND);
3842	if (err)
3843		goto out;
3844
3845	/*
3846	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3847	 * Multiple address binding for SCTP is not supported yet: we just
3848	 * check the first address now.
3849	 */
3850	family = sk->sk_family;
3851	if (family == PF_INET || family == PF_INET6) {
3852		char *addrp;
3853		struct sk_security_struct *sksec = sk->sk_security;
3854		struct common_audit_data ad;
3855		struct lsm_network_audit net = {0,};
3856		struct sockaddr_in *addr4 = NULL;
3857		struct sockaddr_in6 *addr6 = NULL;
3858		unsigned short snum;
3859		u32 sid, node_perm;
3860
3861		if (family == PF_INET) {
3862			addr4 = (struct sockaddr_in *)address;
3863			snum = ntohs(addr4->sin_port);
3864			addrp = (char *)&addr4->sin_addr.s_addr;
3865		} else {
3866			addr6 = (struct sockaddr_in6 *)address;
3867			snum = ntohs(addr6->sin6_port);
3868			addrp = (char *)&addr6->sin6_addr.s6_addr;
3869		}
3870
3871		if (snum) {
3872			int low, high;
3873
3874			inet_get_local_port_range(&low, &high);
3875
3876			if (snum < max(PROT_SOCK, low) || snum > high) {
3877				err = sel_netport_sid(sk->sk_protocol,
3878						      snum, &sid);
3879				if (err)
3880					goto out;
3881				ad.type = LSM_AUDIT_DATA_NET;
3882				ad.u.net = &net;
3883				ad.u.net->sport = htons(snum);
3884				ad.u.net->family = family;
3885				err = avc_has_perm(sksec->sid, sid,
3886						   sksec->sclass,
3887						   SOCKET__NAME_BIND, &ad);
3888				if (err)
3889					goto out;
3890			}
3891		}
3892
3893		switch (sksec->sclass) {
3894		case SECCLASS_TCP_SOCKET:
3895			node_perm = TCP_SOCKET__NODE_BIND;
3896			break;
3897
3898		case SECCLASS_UDP_SOCKET:
3899			node_perm = UDP_SOCKET__NODE_BIND;
3900			break;
3901
3902		case SECCLASS_DCCP_SOCKET:
3903			node_perm = DCCP_SOCKET__NODE_BIND;
3904			break;
3905
3906		default:
3907			node_perm = RAWIP_SOCKET__NODE_BIND;
3908			break;
3909		}
3910
3911		err = sel_netnode_sid(addrp, family, &sid);
3912		if (err)
3913			goto out;
3914
3915		ad.type = LSM_AUDIT_DATA_NET;
3916		ad.u.net = &net;
3917		ad.u.net->sport = htons(snum);
3918		ad.u.net->family = family;
3919
3920		if (family == PF_INET)
3921			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3922		else
3923			ad.u.net->v6info.saddr = addr6->sin6_addr;
3924
3925		err = avc_has_perm(sksec->sid, sid,
3926				   sksec->sclass, node_perm, &ad);
3927		if (err)
3928			goto out;
3929	}
3930out:
3931	return err;
3932}
3933
3934static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3935{
3936	struct sock *sk = sock->sk;
3937	struct sk_security_struct *sksec = sk->sk_security;
3938	int err;
3939
3940	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3941	if (err)
3942		return err;
3943
3944	/*
3945	 * If a TCP or DCCP socket, check name_connect permission for the port.
3946	 */
3947	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3948	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
3949		struct common_audit_data ad;
3950		struct lsm_network_audit net = {0,};
3951		struct sockaddr_in *addr4 = NULL;
3952		struct sockaddr_in6 *addr6 = NULL;
3953		unsigned short snum;
3954		u32 sid, perm;
3955
3956		if (sk->sk_family == PF_INET) {
3957			addr4 = (struct sockaddr_in *)address;
3958			if (addrlen < sizeof(struct sockaddr_in))
3959				return -EINVAL;
3960			snum = ntohs(addr4->sin_port);
3961		} else {
3962			addr6 = (struct sockaddr_in6 *)address;
3963			if (addrlen < SIN6_LEN_RFC2133)
3964				return -EINVAL;
3965			snum = ntohs(addr6->sin6_port);
3966		}
3967
3968		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3969		if (err)
3970			goto out;
3971
3972		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3973		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3974
3975		ad.type = LSM_AUDIT_DATA_NET;
3976		ad.u.net = &net;
3977		ad.u.net->dport = htons(snum);
3978		ad.u.net->family = sk->sk_family;
3979		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3980		if (err)
3981			goto out;
3982	}
3983
3984	err = selinux_netlbl_socket_connect(sk, address);
3985
3986out:
3987	return err;
3988}
3989
3990static int selinux_socket_listen(struct socket *sock, int backlog)
3991{
3992	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3993}
3994
3995static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3996{
3997	int err;
3998	struct inode_security_struct *isec;
3999	struct inode_security_struct *newisec;
4000
4001	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4002	if (err)
4003		return err;
4004
4005	newisec = SOCK_INODE(newsock)->i_security;
4006
4007	isec = SOCK_INODE(sock)->i_security;
4008	newisec->sclass = isec->sclass;
4009	newisec->sid = isec->sid;
4010	newisec->initialized = 1;
4011
4012	return 0;
4013}
4014
4015static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4016				  int size)
4017{
4018	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4019}
4020
4021static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4022				  int size, int flags)
4023{
4024	return sock_has_perm(current, sock->sk, SOCKET__READ);
4025}
4026
4027static int selinux_socket_getsockname(struct socket *sock)
4028{
4029	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4030}
4031
4032static int selinux_socket_getpeername(struct socket *sock)
4033{
4034	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4035}
4036
4037static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4038{
4039	int err;
4040
4041	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4042	if (err)
4043		return err;
4044
4045	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4046}
4047
4048static int selinux_socket_getsockopt(struct socket *sock, int level,
4049				     int optname)
4050{
4051	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4052}
4053
4054static int selinux_socket_shutdown(struct socket *sock, int how)
4055{
4056	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4057}
4058
4059static int selinux_socket_unix_stream_connect(struct sock *sock,
4060					      struct sock *other,
4061					      struct sock *newsk)
4062{
4063	struct sk_security_struct *sksec_sock = sock->sk_security;
4064	struct sk_security_struct *sksec_other = other->sk_security;
4065	struct sk_security_struct *sksec_new = newsk->sk_security;
4066	struct common_audit_data ad;
4067	struct lsm_network_audit net = {0,};
4068	int err;
4069
4070	ad.type = LSM_AUDIT_DATA_NET;
4071	ad.u.net = &net;
4072	ad.u.net->sk = other;
4073
4074	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4075			   sksec_other->sclass,
4076			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4077	if (err)
4078		return err;
4079
4080	/* server child socket */
4081	sksec_new->peer_sid = sksec_sock->sid;
4082	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4083				    &sksec_new->sid);
4084	if (err)
4085		return err;
4086
4087	/* connecting socket */
4088	sksec_sock->peer_sid = sksec_new->sid;
4089
4090	return 0;
4091}
4092
4093static int selinux_socket_unix_may_send(struct socket *sock,
4094					struct socket *other)
4095{
4096	struct sk_security_struct *ssec = sock->sk->sk_security;
4097	struct sk_security_struct *osec = other->sk->sk_security;
4098	struct common_audit_data ad;
4099	struct lsm_network_audit net = {0,};
4100
4101	ad.type = LSM_AUDIT_DATA_NET;
4102	ad.u.net = &net;
4103	ad.u.net->sk = other->sk;
4104
4105	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4106			    &ad);
4107}
4108
4109static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4110				    u32 peer_sid,
4111				    struct common_audit_data *ad)
4112{
4113	int err;
4114	u32 if_sid;
4115	u32 node_sid;
4116
4117	err = sel_netif_sid(ifindex, &if_sid);
4118	if (err)
4119		return err;
4120	err = avc_has_perm(peer_sid, if_sid,
4121			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4122	if (err)
4123		return err;
4124
4125	err = sel_netnode_sid(addrp, family, &node_sid);
4126	if (err)
4127		return err;
4128	return avc_has_perm(peer_sid, node_sid,
4129			    SECCLASS_NODE, NODE__RECVFROM, ad);
4130}
4131
4132static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4133				       u16 family)
4134{
4135	int err = 0;
4136	struct sk_security_struct *sksec = sk->sk_security;
4137	u32 sk_sid = sksec->sid;
4138	struct common_audit_data ad;
4139	struct lsm_network_audit net = {0,};
4140	char *addrp;
4141
4142	ad.type = LSM_AUDIT_DATA_NET;
4143	ad.u.net = &net;
4144	ad.u.net->netif = skb->skb_iif;
4145	ad.u.net->family = family;
4146	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4147	if (err)
4148		return err;
4149
4150	if (selinux_secmark_enabled()) {
4151		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4152				   PACKET__RECV, &ad);
4153		if (err)
4154			return err;
4155	}
4156
4157	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4158	if (err)
4159		return err;
4160	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4161
4162	return err;
4163}
4164
4165static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4166{
4167	int err;
4168	struct sk_security_struct *sksec = sk->sk_security;
4169	u16 family = sk->sk_family;
4170	u32 sk_sid = sksec->sid;
4171	struct common_audit_data ad;
4172	struct lsm_network_audit net = {0,};
4173	char *addrp;
4174	u8 secmark_active;
4175	u8 peerlbl_active;
4176
4177	if (family != PF_INET && family != PF_INET6)
4178		return 0;
4179
4180	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4181	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4182		family = PF_INET;
4183
4184	/* If any sort of compatibility mode is enabled then handoff processing
4185	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4186	 * special handling.  We do this in an attempt to keep this function
4187	 * as fast and as clean as possible. */
4188	if (!selinux_policycap_netpeer)
4189		return selinux_sock_rcv_skb_compat(sk, skb, family);
4190
4191	secmark_active = selinux_secmark_enabled();
4192	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4193	if (!secmark_active && !peerlbl_active)
4194		return 0;
4195
4196	ad.type = LSM_AUDIT_DATA_NET;
4197	ad.u.net = &net;
4198	ad.u.net->netif = skb->skb_iif;
4199	ad.u.net->family = family;
4200	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4201	if (err)
4202		return err;
4203
4204	if (peerlbl_active) {
4205		u32 peer_sid;
4206
4207		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4208		if (err)
4209			return err;
4210		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4211					       peer_sid, &ad);
4212		if (err) {
4213			selinux_netlbl_err(skb, err, 0);
4214			return err;
4215		}
4216		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4217				   PEER__RECV, &ad);
4218		if (err)
4219			selinux_netlbl_err(skb, err, 0);
 
 
4220	}
4221
4222	if (secmark_active) {
4223		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4224				   PACKET__RECV, &ad);
4225		if (err)
4226			return err;
4227	}
4228
4229	return err;
4230}
4231
4232static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4233					    int __user *optlen, unsigned len)
4234{
4235	int err = 0;
4236	char *scontext;
4237	u32 scontext_len;
4238	struct sk_security_struct *sksec = sock->sk->sk_security;
4239	u32 peer_sid = SECSID_NULL;
4240
4241	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4242	    sksec->sclass == SECCLASS_TCP_SOCKET)
4243		peer_sid = sksec->peer_sid;
4244	if (peer_sid == SECSID_NULL)
4245		return -ENOPROTOOPT;
4246
4247	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4248	if (err)
4249		return err;
4250
4251	if (scontext_len > len) {
4252		err = -ERANGE;
4253		goto out_len;
4254	}
4255
4256	if (copy_to_user(optval, scontext, scontext_len))
4257		err = -EFAULT;
4258
4259out_len:
4260	if (put_user(scontext_len, optlen))
4261		err = -EFAULT;
4262	kfree(scontext);
4263	return err;
4264}
4265
4266static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4267{
4268	u32 peer_secid = SECSID_NULL;
4269	u16 family;
4270
4271	if (skb && skb->protocol == htons(ETH_P_IP))
4272		family = PF_INET;
4273	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4274		family = PF_INET6;
4275	else if (sock)
4276		family = sock->sk->sk_family;
4277	else
4278		goto out;
4279
4280	if (sock && family == PF_UNIX)
4281		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4282	else if (skb)
4283		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4284
4285out:
4286	*secid = peer_secid;
4287	if (peer_secid == SECSID_NULL)
4288		return -EINVAL;
4289	return 0;
4290}
4291
4292static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4293{
4294	struct sk_security_struct *sksec;
4295
4296	sksec = kzalloc(sizeof(*sksec), priority);
4297	if (!sksec)
4298		return -ENOMEM;
4299
4300	sksec->peer_sid = SECINITSID_UNLABELED;
4301	sksec->sid = SECINITSID_UNLABELED;
 
4302	selinux_netlbl_sk_security_reset(sksec);
4303	sk->sk_security = sksec;
4304
4305	return 0;
4306}
4307
4308static void selinux_sk_free_security(struct sock *sk)
4309{
4310	struct sk_security_struct *sksec = sk->sk_security;
4311
4312	sk->sk_security = NULL;
4313	selinux_netlbl_sk_security_free(sksec);
4314	kfree(sksec);
4315}
4316
4317static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4318{
4319	struct sk_security_struct *sksec = sk->sk_security;
4320	struct sk_security_struct *newsksec = newsk->sk_security;
4321
4322	newsksec->sid = sksec->sid;
4323	newsksec->peer_sid = sksec->peer_sid;
4324	newsksec->sclass = sksec->sclass;
4325
4326	selinux_netlbl_sk_security_reset(newsksec);
4327}
4328
4329static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4330{
4331	if (!sk)
4332		*secid = SECINITSID_ANY_SOCKET;
4333	else {
4334		struct sk_security_struct *sksec = sk->sk_security;
4335
4336		*secid = sksec->sid;
4337	}
4338}
4339
4340static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4341{
4342	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
 
4343	struct sk_security_struct *sksec = sk->sk_security;
4344
4345	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4346	    sk->sk_family == PF_UNIX)
4347		isec->sid = sksec->sid;
4348	sksec->sclass = isec->sclass;
4349}
4350
4351static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4352				     struct request_sock *req)
4353{
4354	struct sk_security_struct *sksec = sk->sk_security;
4355	int err;
4356	u16 family = sk->sk_family;
4357	u32 newsid;
4358	u32 peersid;
4359
4360	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4361	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362		family = PF_INET;
4363
4364	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4365	if (err)
4366		return err;
4367	if (peersid == SECSID_NULL) {
4368		req->secid = sksec->sid;
4369		req->peer_secid = SECSID_NULL;
4370	} else {
4371		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4372		if (err)
4373			return err;
4374		req->secid = newsid;
4375		req->peer_secid = peersid;
4376	}
4377
4378	return selinux_netlbl_inet_conn_request(req, family);
4379}
4380
4381static void selinux_inet_csk_clone(struct sock *newsk,
4382				   const struct request_sock *req)
4383{
4384	struct sk_security_struct *newsksec = newsk->sk_security;
4385
4386	newsksec->sid = req->secid;
4387	newsksec->peer_sid = req->peer_secid;
4388	/* NOTE: Ideally, we should also get the isec->sid for the
4389	   new socket in sync, but we don't have the isec available yet.
4390	   So we will wait until sock_graft to do it, by which
4391	   time it will have been created and available. */
4392
4393	/* We don't need to take any sort of lock here as we are the only
4394	 * thread with access to newsksec */
4395	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4396}
4397
4398static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4399{
4400	u16 family = sk->sk_family;
4401	struct sk_security_struct *sksec = sk->sk_security;
4402
4403	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4404	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4405		family = PF_INET;
4406
4407	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4408}
4409
4410static int selinux_secmark_relabel_packet(u32 sid)
4411{
4412	const struct task_security_struct *__tsec;
4413	u32 tsid;
4414
4415	__tsec = current_security();
4416	tsid = __tsec->sid;
4417
4418	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4419}
4420
4421static void selinux_secmark_refcount_inc(void)
4422{
4423	atomic_inc(&selinux_secmark_refcount);
4424}
4425
4426static void selinux_secmark_refcount_dec(void)
4427{
4428	atomic_dec(&selinux_secmark_refcount);
4429}
4430
4431static void selinux_req_classify_flow(const struct request_sock *req,
4432				      struct flowi *fl)
4433{
4434	fl->flowi_secid = req->secid;
4435}
4436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4437static int selinux_tun_dev_create(void)
4438{
4439	u32 sid = current_sid();
4440
4441	/* we aren't taking into account the "sockcreate" SID since the socket
4442	 * that is being created here is not a socket in the traditional sense,
4443	 * instead it is a private sock, accessible only to the kernel, and
4444	 * representing a wide range of network traffic spanning multiple
4445	 * connections unlike traditional sockets - check the TUN driver to
4446	 * get a better understanding of why this socket is special */
4447
4448	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4449			    NULL);
4450}
4451
4452static void selinux_tun_dev_post_create(struct sock *sk)
 
 
 
 
 
 
 
 
4453{
 
4454	struct sk_security_struct *sksec = sk->sk_security;
4455
4456	/* we don't currently perform any NetLabel based labeling here and it
4457	 * isn't clear that we would want to do so anyway; while we could apply
4458	 * labeling without the support of the TUN user the resulting labeled
4459	 * traffic from the other end of the connection would almost certainly
4460	 * cause confusion to the TUN user that had no idea network labeling
4461	 * protocols were being used */
4462
4463	/* see the comments in selinux_tun_dev_create() about why we don't use
4464	 * the sockcreate SID here */
4465
4466	sksec->sid = current_sid();
4467	sksec->sclass = SECCLASS_TUN_SOCKET;
4468}
4469
4470static int selinux_tun_dev_attach(struct sock *sk)
4471{
4472	struct sk_security_struct *sksec = sk->sk_security;
4473	u32 sid = current_sid();
4474	int err;
4475
4476	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4477			   TUN_SOCKET__RELABELFROM, NULL);
4478	if (err)
4479		return err;
4480	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4481			   TUN_SOCKET__RELABELTO, NULL);
4482	if (err)
4483		return err;
4484
4485	sksec->sid = sid;
4486
4487	return 0;
4488}
4489
4490static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4491{
4492	int err = 0;
4493	u32 perm;
4494	struct nlmsghdr *nlh;
4495	struct sk_security_struct *sksec = sk->sk_security;
4496
4497	if (skb->len < NLMSG_SPACE(0)) {
4498		err = -EINVAL;
4499		goto out;
4500	}
4501	nlh = nlmsg_hdr(skb);
4502
4503	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4504	if (err) {
4505		if (err == -EINVAL) {
4506			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4507				  "SELinux:  unrecognized netlink message"
4508				  " type=%hu for sclass=%hu\n",
4509				  nlh->nlmsg_type, sksec->sclass);
 
 
4510			if (!selinux_enforcing || security_get_allow_unknown())
4511				err = 0;
4512		}
4513
4514		/* Ignore */
4515		if (err == -ENOENT)
4516			err = 0;
4517		goto out;
4518	}
4519
4520	err = sock_has_perm(current, sk, perm);
4521out:
4522	return err;
4523}
4524
4525#ifdef CONFIG_NETFILTER
4526
4527static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
 
4528				       u16 family)
4529{
4530	int err;
4531	char *addrp;
4532	u32 peer_sid;
4533	struct common_audit_data ad;
4534	struct lsm_network_audit net = {0,};
4535	u8 secmark_active;
4536	u8 netlbl_active;
4537	u8 peerlbl_active;
4538
4539	if (!selinux_policycap_netpeer)
4540		return NF_ACCEPT;
4541
4542	secmark_active = selinux_secmark_enabled();
4543	netlbl_active = netlbl_enabled();
4544	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4545	if (!secmark_active && !peerlbl_active)
4546		return NF_ACCEPT;
4547
4548	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4549		return NF_DROP;
4550
4551	ad.type = LSM_AUDIT_DATA_NET;
4552	ad.u.net = &net;
4553	ad.u.net->netif = ifindex;
4554	ad.u.net->family = family;
4555	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4556		return NF_DROP;
4557
4558	if (peerlbl_active) {
4559		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4560					       peer_sid, &ad);
4561		if (err) {
4562			selinux_netlbl_err(skb, err, 1);
4563			return NF_DROP;
4564		}
4565	}
4566
4567	if (secmark_active)
4568		if (avc_has_perm(peer_sid, skb->secmark,
4569				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4570			return NF_DROP;
4571
4572	if (netlbl_active)
4573		/* we do this in the FORWARD path and not the POST_ROUTING
4574		 * path because we want to make sure we apply the necessary
4575		 * labeling before IPsec is applied so we can leverage AH
4576		 * protection */
4577		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4578			return NF_DROP;
4579
4580	return NF_ACCEPT;
4581}
4582
4583static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4584					 struct sk_buff *skb,
4585					 const struct net_device *in,
4586					 const struct net_device *out,
4587					 int (*okfn)(struct sk_buff *))
4588{
4589	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4590}
4591
4592#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4593static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4594					 struct sk_buff *skb,
4595					 const struct net_device *in,
4596					 const struct net_device *out,
4597					 int (*okfn)(struct sk_buff *))
4598{
4599	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4600}
4601#endif	/* IPV6 */
4602
4603static unsigned int selinux_ip_output(struct sk_buff *skb,
4604				      u16 family)
4605{
 
4606	u32 sid;
4607
4608	if (!netlbl_enabled())
4609		return NF_ACCEPT;
4610
4611	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4612	 * because we want to make sure we apply the necessary labeling
4613	 * before IPsec is applied so we can leverage AH protection */
4614	if (skb->sk) {
4615		struct sk_security_struct *sksec = skb->sk->sk_security;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4616		sid = sksec->sid;
4617	} else
4618		sid = SECINITSID_KERNEL;
4619	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4620		return NF_DROP;
4621
4622	return NF_ACCEPT;
4623}
4624
4625static unsigned int selinux_ipv4_output(unsigned int hooknum,
4626					struct sk_buff *skb,
4627					const struct net_device *in,
4628					const struct net_device *out,
4629					int (*okfn)(struct sk_buff *))
4630{
4631	return selinux_ip_output(skb, PF_INET);
4632}
4633
4634static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4635						int ifindex,
4636						u16 family)
4637{
4638	struct sock *sk = skb->sk;
4639	struct sk_security_struct *sksec;
4640	struct common_audit_data ad;
4641	struct lsm_network_audit net = {0,};
4642	char *addrp;
4643	u8 proto;
4644
4645	if (sk == NULL)
4646		return NF_ACCEPT;
4647	sksec = sk->sk_security;
4648
4649	ad.type = LSM_AUDIT_DATA_NET;
4650	ad.u.net = &net;
4651	ad.u.net->netif = ifindex;
4652	ad.u.net->family = family;
4653	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4654		return NF_DROP;
4655
4656	if (selinux_secmark_enabled())
4657		if (avc_has_perm(sksec->sid, skb->secmark,
4658				 SECCLASS_PACKET, PACKET__SEND, &ad))
4659			return NF_DROP_ERR(-ECONNREFUSED);
4660
4661	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4662		return NF_DROP_ERR(-ECONNREFUSED);
4663
4664	return NF_ACCEPT;
4665}
4666
4667static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
 
4668					 u16 family)
4669{
4670	u32 secmark_perm;
4671	u32 peer_sid;
 
4672	struct sock *sk;
4673	struct common_audit_data ad;
4674	struct lsm_network_audit net = {0,};
4675	char *addrp;
4676	u8 secmark_active;
4677	u8 peerlbl_active;
4678
4679	/* If any sort of compatibility mode is enabled then handoff processing
4680	 * to the selinux_ip_postroute_compat() function to deal with the
4681	 * special handling.  We do this in an attempt to keep this function
4682	 * as fast and as clean as possible. */
4683	if (!selinux_policycap_netpeer)
4684		return selinux_ip_postroute_compat(skb, ifindex, family);
 
 
 
 
 
 
 
 
4685#ifdef CONFIG_XFRM
4686	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4687	 * packet transformation so allow the packet to pass without any checks
4688	 * since we'll have another chance to perform access control checks
4689	 * when the packet is on it's final way out.
4690	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4691	 *       is NULL, in this case go ahead and apply access control. */
4692	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
 
 
 
 
 
 
4693		return NF_ACCEPT;
4694#endif
4695	secmark_active = selinux_secmark_enabled();
4696	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4697	if (!secmark_active && !peerlbl_active)
4698		return NF_ACCEPT;
4699
4700	/* if the packet is being forwarded then get the peer label from the
4701	 * packet itself; otherwise check to see if it is from a local
4702	 * application or the kernel, if from an application get the peer label
4703	 * from the sending socket, otherwise use the kernel's sid */
4704	sk = skb->sk;
4705	if (sk == NULL) {
 
 
 
 
4706		if (skb->skb_iif) {
4707			secmark_perm = PACKET__FORWARD_OUT;
4708			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4709				return NF_DROP;
4710		} else {
4711			secmark_perm = PACKET__SEND;
4712			peer_sid = SECINITSID_KERNEL;
4713		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4714	} else {
 
 
4715		struct sk_security_struct *sksec = sk->sk_security;
4716		peer_sid = sksec->sid;
4717		secmark_perm = PACKET__SEND;
4718	}
4719
4720	ad.type = LSM_AUDIT_DATA_NET;
4721	ad.u.net = &net;
4722	ad.u.net->netif = ifindex;
4723	ad.u.net->family = family;
4724	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4725		return NF_DROP;
4726
4727	if (secmark_active)
4728		if (avc_has_perm(peer_sid, skb->secmark,
4729				 SECCLASS_PACKET, secmark_perm, &ad))
4730			return NF_DROP_ERR(-ECONNREFUSED);
4731
4732	if (peerlbl_active) {
4733		u32 if_sid;
4734		u32 node_sid;
4735
4736		if (sel_netif_sid(ifindex, &if_sid))
4737			return NF_DROP;
4738		if (avc_has_perm(peer_sid, if_sid,
4739				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4740			return NF_DROP_ERR(-ECONNREFUSED);
4741
4742		if (sel_netnode_sid(addrp, family, &node_sid))
4743			return NF_DROP;
4744		if (avc_has_perm(peer_sid, node_sid,
4745				 SECCLASS_NODE, NODE__SENDTO, &ad))
4746			return NF_DROP_ERR(-ECONNREFUSED);
4747	}
4748
4749	return NF_ACCEPT;
4750}
4751
4752static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4753					   struct sk_buff *skb,
4754					   const struct net_device *in,
4755					   const struct net_device *out,
4756					   int (*okfn)(struct sk_buff *))
4757{
4758	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4759}
4760
4761#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4762static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4763					   struct sk_buff *skb,
4764					   const struct net_device *in,
4765					   const struct net_device *out,
4766					   int (*okfn)(struct sk_buff *))
4767{
4768	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4769}
4770#endif	/* IPV6 */
4771
4772#endif	/* CONFIG_NETFILTER */
4773
4774static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4775{
4776	int err;
4777
4778	err = cap_netlink_send(sk, skb);
4779	if (err)
4780		return err;
4781
4782	return selinux_nlmsg_perm(sk, skb);
4783}
4784
4785static int ipc_alloc_security(struct task_struct *task,
4786			      struct kern_ipc_perm *perm,
4787			      u16 sclass)
4788{
4789	struct ipc_security_struct *isec;
4790	u32 sid;
4791
4792	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4793	if (!isec)
4794		return -ENOMEM;
4795
4796	sid = task_sid(task);
4797	isec->sclass = sclass;
4798	isec->sid = sid;
4799	perm->security = isec;
4800
4801	return 0;
4802}
4803
4804static void ipc_free_security(struct kern_ipc_perm *perm)
4805{
4806	struct ipc_security_struct *isec = perm->security;
4807	perm->security = NULL;
4808	kfree(isec);
4809}
4810
4811static int msg_msg_alloc_security(struct msg_msg *msg)
4812{
4813	struct msg_security_struct *msec;
4814
4815	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4816	if (!msec)
4817		return -ENOMEM;
4818
4819	msec->sid = SECINITSID_UNLABELED;
4820	msg->security = msec;
4821
4822	return 0;
4823}
4824
4825static void msg_msg_free_security(struct msg_msg *msg)
4826{
4827	struct msg_security_struct *msec = msg->security;
4828
4829	msg->security = NULL;
4830	kfree(msec);
4831}
4832
4833static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4834			u32 perms)
4835{
4836	struct ipc_security_struct *isec;
4837	struct common_audit_data ad;
4838	u32 sid = current_sid();
4839
4840	isec = ipc_perms->security;
4841
4842	ad.type = LSM_AUDIT_DATA_IPC;
4843	ad.u.ipc_id = ipc_perms->key;
4844
4845	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4846}
4847
4848static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4849{
4850	return msg_msg_alloc_security(msg);
4851}
4852
4853static void selinux_msg_msg_free_security(struct msg_msg *msg)
4854{
4855	msg_msg_free_security(msg);
4856}
4857
4858/* message queue security operations */
4859static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4860{
4861	struct ipc_security_struct *isec;
4862	struct common_audit_data ad;
4863	u32 sid = current_sid();
4864	int rc;
4865
4866	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4867	if (rc)
4868		return rc;
4869
4870	isec = msq->q_perm.security;
4871
4872	ad.type = LSM_AUDIT_DATA_IPC;
4873	ad.u.ipc_id = msq->q_perm.key;
4874
4875	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4876			  MSGQ__CREATE, &ad);
4877	if (rc) {
4878		ipc_free_security(&msq->q_perm);
4879		return rc;
4880	}
4881	return 0;
4882}
4883
4884static void selinux_msg_queue_free_security(struct msg_queue *msq)
4885{
4886	ipc_free_security(&msq->q_perm);
4887}
4888
4889static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4890{
4891	struct ipc_security_struct *isec;
4892	struct common_audit_data ad;
4893	u32 sid = current_sid();
4894
4895	isec = msq->q_perm.security;
4896
4897	ad.type = LSM_AUDIT_DATA_IPC;
4898	ad.u.ipc_id = msq->q_perm.key;
4899
4900	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4901			    MSGQ__ASSOCIATE, &ad);
4902}
4903
4904static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4905{
4906	int err;
4907	int perms;
4908
4909	switch (cmd) {
4910	case IPC_INFO:
4911	case MSG_INFO:
4912		/* No specific object, just general system-wide information. */
4913		return task_has_system(current, SYSTEM__IPC_INFO);
4914	case IPC_STAT:
4915	case MSG_STAT:
4916		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4917		break;
4918	case IPC_SET:
4919		perms = MSGQ__SETATTR;
4920		break;
4921	case IPC_RMID:
4922		perms = MSGQ__DESTROY;
4923		break;
4924	default:
4925		return 0;
4926	}
4927
4928	err = ipc_has_perm(&msq->q_perm, perms);
4929	return err;
4930}
4931
4932static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4933{
4934	struct ipc_security_struct *isec;
4935	struct msg_security_struct *msec;
4936	struct common_audit_data ad;
4937	u32 sid = current_sid();
4938	int rc;
4939
4940	isec = msq->q_perm.security;
4941	msec = msg->security;
4942
4943	/*
4944	 * First time through, need to assign label to the message
4945	 */
4946	if (msec->sid == SECINITSID_UNLABELED) {
4947		/*
4948		 * Compute new sid based on current process and
4949		 * message queue this message will be stored in
4950		 */
4951		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4952					     NULL, &msec->sid);
4953		if (rc)
4954			return rc;
4955	}
4956
4957	ad.type = LSM_AUDIT_DATA_IPC;
4958	ad.u.ipc_id = msq->q_perm.key;
4959
4960	/* Can this process write to the queue? */
4961	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4962			  MSGQ__WRITE, &ad);
4963	if (!rc)
4964		/* Can this process send the message */
4965		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4966				  MSG__SEND, &ad);
4967	if (!rc)
4968		/* Can the message be put in the queue? */
4969		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4970				  MSGQ__ENQUEUE, &ad);
4971
4972	return rc;
4973}
4974
4975static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4976				    struct task_struct *target,
4977				    long type, int mode)
4978{
4979	struct ipc_security_struct *isec;
4980	struct msg_security_struct *msec;
4981	struct common_audit_data ad;
4982	u32 sid = task_sid(target);
4983	int rc;
4984
4985	isec = msq->q_perm.security;
4986	msec = msg->security;
4987
4988	ad.type = LSM_AUDIT_DATA_IPC;
4989	ad.u.ipc_id = msq->q_perm.key;
4990
4991	rc = avc_has_perm(sid, isec->sid,
4992			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4993	if (!rc)
4994		rc = avc_has_perm(sid, msec->sid,
4995				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4996	return rc;
4997}
4998
4999/* Shared Memory security operations */
5000static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5001{
5002	struct ipc_security_struct *isec;
5003	struct common_audit_data ad;
5004	u32 sid = current_sid();
5005	int rc;
5006
5007	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5008	if (rc)
5009		return rc;
5010
5011	isec = shp->shm_perm.security;
5012
5013	ad.type = LSM_AUDIT_DATA_IPC;
5014	ad.u.ipc_id = shp->shm_perm.key;
5015
5016	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5017			  SHM__CREATE, &ad);
5018	if (rc) {
5019		ipc_free_security(&shp->shm_perm);
5020		return rc;
5021	}
5022	return 0;
5023}
5024
5025static void selinux_shm_free_security(struct shmid_kernel *shp)
5026{
5027	ipc_free_security(&shp->shm_perm);
5028}
5029
5030static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5031{
5032	struct ipc_security_struct *isec;
5033	struct common_audit_data ad;
5034	u32 sid = current_sid();
5035
5036	isec = shp->shm_perm.security;
5037
5038	ad.type = LSM_AUDIT_DATA_IPC;
5039	ad.u.ipc_id = shp->shm_perm.key;
5040
5041	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5042			    SHM__ASSOCIATE, &ad);
5043}
5044
5045/* Note, at this point, shp is locked down */
5046static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5047{
5048	int perms;
5049	int err;
5050
5051	switch (cmd) {
5052	case IPC_INFO:
5053	case SHM_INFO:
5054		/* No specific object, just general system-wide information. */
5055		return task_has_system(current, SYSTEM__IPC_INFO);
5056	case IPC_STAT:
5057	case SHM_STAT:
5058		perms = SHM__GETATTR | SHM__ASSOCIATE;
5059		break;
5060	case IPC_SET:
5061		perms = SHM__SETATTR;
5062		break;
5063	case SHM_LOCK:
5064	case SHM_UNLOCK:
5065		perms = SHM__LOCK;
5066		break;
5067	case IPC_RMID:
5068		perms = SHM__DESTROY;
5069		break;
5070	default:
5071		return 0;
5072	}
5073
5074	err = ipc_has_perm(&shp->shm_perm, perms);
5075	return err;
5076}
5077
5078static int selinux_shm_shmat(struct shmid_kernel *shp,
5079			     char __user *shmaddr, int shmflg)
5080{
5081	u32 perms;
5082
5083	if (shmflg & SHM_RDONLY)
5084		perms = SHM__READ;
5085	else
5086		perms = SHM__READ | SHM__WRITE;
5087
5088	return ipc_has_perm(&shp->shm_perm, perms);
5089}
5090
5091/* Semaphore security operations */
5092static int selinux_sem_alloc_security(struct sem_array *sma)
5093{
5094	struct ipc_security_struct *isec;
5095	struct common_audit_data ad;
5096	u32 sid = current_sid();
5097	int rc;
5098
5099	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5100	if (rc)
5101		return rc;
5102
5103	isec = sma->sem_perm.security;
5104
5105	ad.type = LSM_AUDIT_DATA_IPC;
5106	ad.u.ipc_id = sma->sem_perm.key;
5107
5108	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5109			  SEM__CREATE, &ad);
5110	if (rc) {
5111		ipc_free_security(&sma->sem_perm);
5112		return rc;
5113	}
5114	return 0;
5115}
5116
5117static void selinux_sem_free_security(struct sem_array *sma)
5118{
5119	ipc_free_security(&sma->sem_perm);
5120}
5121
5122static int selinux_sem_associate(struct sem_array *sma, int semflg)
5123{
5124	struct ipc_security_struct *isec;
5125	struct common_audit_data ad;
5126	u32 sid = current_sid();
5127
5128	isec = sma->sem_perm.security;
5129
5130	ad.type = LSM_AUDIT_DATA_IPC;
5131	ad.u.ipc_id = sma->sem_perm.key;
5132
5133	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5134			    SEM__ASSOCIATE, &ad);
5135}
5136
5137/* Note, at this point, sma is locked down */
5138static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5139{
5140	int err;
5141	u32 perms;
5142
5143	switch (cmd) {
5144	case IPC_INFO:
5145	case SEM_INFO:
5146		/* No specific object, just general system-wide information. */
5147		return task_has_system(current, SYSTEM__IPC_INFO);
5148	case GETPID:
5149	case GETNCNT:
5150	case GETZCNT:
5151		perms = SEM__GETATTR;
5152		break;
5153	case GETVAL:
5154	case GETALL:
5155		perms = SEM__READ;
5156		break;
5157	case SETVAL:
5158	case SETALL:
5159		perms = SEM__WRITE;
5160		break;
5161	case IPC_RMID:
5162		perms = SEM__DESTROY;
5163		break;
5164	case IPC_SET:
5165		perms = SEM__SETATTR;
5166		break;
5167	case IPC_STAT:
5168	case SEM_STAT:
5169		perms = SEM__GETATTR | SEM__ASSOCIATE;
5170		break;
5171	default:
5172		return 0;
5173	}
5174
5175	err = ipc_has_perm(&sma->sem_perm, perms);
5176	return err;
5177}
5178
5179static int selinux_sem_semop(struct sem_array *sma,
5180			     struct sembuf *sops, unsigned nsops, int alter)
5181{
5182	u32 perms;
5183
5184	if (alter)
5185		perms = SEM__READ | SEM__WRITE;
5186	else
5187		perms = SEM__READ;
5188
5189	return ipc_has_perm(&sma->sem_perm, perms);
5190}
5191
5192static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5193{
5194	u32 av = 0;
5195
5196	av = 0;
5197	if (flag & S_IRUGO)
5198		av |= IPC__UNIX_READ;
5199	if (flag & S_IWUGO)
5200		av |= IPC__UNIX_WRITE;
5201
5202	if (av == 0)
5203		return 0;
5204
5205	return ipc_has_perm(ipcp, av);
5206}
5207
5208static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5209{
5210	struct ipc_security_struct *isec = ipcp->security;
5211	*secid = isec->sid;
5212}
5213
5214static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5215{
5216	if (inode)
5217		inode_doinit_with_dentry(inode, dentry);
5218}
5219
5220static int selinux_getprocattr(struct task_struct *p,
5221			       char *name, char **value)
5222{
5223	const struct task_security_struct *__tsec;
5224	u32 sid;
5225	int error;
5226	unsigned len;
5227
5228	if (current != p) {
5229		error = current_has_perm(p, PROCESS__GETATTR);
5230		if (error)
5231			return error;
5232	}
5233
5234	rcu_read_lock();
5235	__tsec = __task_cred(p)->security;
5236
5237	if (!strcmp(name, "current"))
5238		sid = __tsec->sid;
5239	else if (!strcmp(name, "prev"))
5240		sid = __tsec->osid;
5241	else if (!strcmp(name, "exec"))
5242		sid = __tsec->exec_sid;
5243	else if (!strcmp(name, "fscreate"))
5244		sid = __tsec->create_sid;
5245	else if (!strcmp(name, "keycreate"))
5246		sid = __tsec->keycreate_sid;
5247	else if (!strcmp(name, "sockcreate"))
5248		sid = __tsec->sockcreate_sid;
5249	else
5250		goto invalid;
5251	rcu_read_unlock();
5252
5253	if (!sid)
5254		return 0;
5255
5256	error = security_sid_to_context(sid, value, &len);
5257	if (error)
5258		return error;
5259	return len;
5260
5261invalid:
5262	rcu_read_unlock();
5263	return -EINVAL;
5264}
5265
5266static int selinux_setprocattr(struct task_struct *p,
5267			       char *name, void *value, size_t size)
5268{
5269	struct task_security_struct *tsec;
5270	struct task_struct *tracer;
5271	struct cred *new;
5272	u32 sid = 0, ptsid;
5273	int error;
5274	char *str = value;
5275
5276	if (current != p) {
5277		/* SELinux only allows a process to change its own
5278		   security attributes. */
5279		return -EACCES;
5280	}
5281
5282	/*
5283	 * Basic control over ability to set these attributes at all.
5284	 * current == p, but we'll pass them separately in case the
5285	 * above restriction is ever removed.
5286	 */
5287	if (!strcmp(name, "exec"))
5288		error = current_has_perm(p, PROCESS__SETEXEC);
5289	else if (!strcmp(name, "fscreate"))
5290		error = current_has_perm(p, PROCESS__SETFSCREATE);
5291	else if (!strcmp(name, "keycreate"))
5292		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5293	else if (!strcmp(name, "sockcreate"))
5294		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5295	else if (!strcmp(name, "current"))
5296		error = current_has_perm(p, PROCESS__SETCURRENT);
5297	else
5298		error = -EINVAL;
5299	if (error)
5300		return error;
5301
5302	/* Obtain a SID for the context, if one was specified. */
5303	if (size && str[1] && str[1] != '\n') {
5304		if (str[size-1] == '\n') {
5305			str[size-1] = 0;
5306			size--;
5307		}
5308		error = security_context_to_sid(value, size, &sid);
5309		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5310			if (!capable(CAP_MAC_ADMIN)) {
5311				struct audit_buffer *ab;
5312				size_t audit_size;
5313
5314				/* We strip a nul only if it is at the end, otherwise the
5315				 * context contains a nul and we should audit that */
5316				if (str[size - 1] == '\0')
5317					audit_size = size - 1;
5318				else
5319					audit_size = size;
5320				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5321				audit_log_format(ab, "op=fscreate invalid_context=");
5322				audit_log_n_untrustedstring(ab, value, audit_size);
5323				audit_log_end(ab);
5324
5325				return error;
5326			}
5327			error = security_context_to_sid_force(value, size,
5328							      &sid);
5329		}
5330		if (error)
5331			return error;
5332	}
5333
5334	new = prepare_creds();
5335	if (!new)
5336		return -ENOMEM;
5337
5338	/* Permission checking based on the specified context is
5339	   performed during the actual operation (execve,
5340	   open/mkdir/...), when we know the full context of the
5341	   operation.  See selinux_bprm_set_creds for the execve
5342	   checks and may_create for the file creation checks. The
5343	   operation will then fail if the context is not permitted. */
5344	tsec = new->security;
5345	if (!strcmp(name, "exec")) {
5346		tsec->exec_sid = sid;
5347	} else if (!strcmp(name, "fscreate")) {
5348		tsec->create_sid = sid;
5349	} else if (!strcmp(name, "keycreate")) {
5350		error = may_create_key(sid, p);
5351		if (error)
5352			goto abort_change;
5353		tsec->keycreate_sid = sid;
5354	} else if (!strcmp(name, "sockcreate")) {
5355		tsec->sockcreate_sid = sid;
5356	} else if (!strcmp(name, "current")) {
5357		error = -EINVAL;
5358		if (sid == 0)
5359			goto abort_change;
5360
5361		/* Only allow single threaded processes to change context */
5362		error = -EPERM;
5363		if (!current_is_single_threaded()) {
5364			error = security_bounded_transition(tsec->sid, sid);
5365			if (error)
5366				goto abort_change;
5367		}
5368
5369		/* Check permissions for the transition. */
5370		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5371				     PROCESS__DYNTRANSITION, NULL);
5372		if (error)
5373			goto abort_change;
5374
5375		/* Check for ptracing, and update the task SID if ok.
5376		   Otherwise, leave SID unchanged and fail. */
5377		ptsid = 0;
5378		task_lock(p);
5379		tracer = ptrace_parent(p);
5380		if (tracer)
5381			ptsid = task_sid(tracer);
5382		task_unlock(p);
5383
5384		if (tracer) {
5385			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5386					     PROCESS__PTRACE, NULL);
5387			if (error)
5388				goto abort_change;
5389		}
5390
5391		tsec->sid = sid;
5392	} else {
5393		error = -EINVAL;
5394		goto abort_change;
5395	}
5396
5397	commit_creds(new);
5398	return size;
5399
5400abort_change:
5401	abort_creds(new);
5402	return error;
5403}
5404
 
 
 
 
 
5405static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5406{
5407	return security_sid_to_context(secid, secdata, seclen);
5408}
5409
5410static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5411{
5412	return security_context_to_sid(secdata, seclen, secid);
5413}
5414
5415static void selinux_release_secctx(char *secdata, u32 seclen)
5416{
5417	kfree(secdata);
5418}
5419
 
 
 
 
 
 
 
 
 
5420/*
5421 *	called with inode->i_mutex locked
5422 */
5423static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5424{
5425	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5426}
5427
5428/*
5429 *	called with inode->i_mutex locked
5430 */
5431static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5432{
5433	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5434}
5435
5436static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5437{
5438	int len = 0;
5439	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5440						ctx, true);
5441	if (len < 0)
5442		return len;
5443	*ctxlen = len;
5444	return 0;
5445}
5446#ifdef CONFIG_KEYS
5447
5448static int selinux_key_alloc(struct key *k, const struct cred *cred,
5449			     unsigned long flags)
5450{
5451	const struct task_security_struct *tsec;
5452	struct key_security_struct *ksec;
5453
5454	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5455	if (!ksec)
5456		return -ENOMEM;
5457
5458	tsec = cred->security;
5459	if (tsec->keycreate_sid)
5460		ksec->sid = tsec->keycreate_sid;
5461	else
5462		ksec->sid = tsec->sid;
5463
5464	k->security = ksec;
5465	return 0;
5466}
5467
5468static void selinux_key_free(struct key *k)
5469{
5470	struct key_security_struct *ksec = k->security;
5471
5472	k->security = NULL;
5473	kfree(ksec);
5474}
5475
5476static int selinux_key_permission(key_ref_t key_ref,
5477				  const struct cred *cred,
5478				  key_perm_t perm)
5479{
5480	struct key *key;
5481	struct key_security_struct *ksec;
5482	u32 sid;
5483
5484	/* if no specific permissions are requested, we skip the
5485	   permission check. No serious, additional covert channels
5486	   appear to be created. */
5487	if (perm == 0)
5488		return 0;
5489
5490	sid = cred_sid(cred);
5491
5492	key = key_ref_to_ptr(key_ref);
5493	ksec = key->security;
5494
5495	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5496}
5497
5498static int selinux_key_getsecurity(struct key *key, char **_buffer)
5499{
5500	struct key_security_struct *ksec = key->security;
5501	char *context = NULL;
5502	unsigned len;
5503	int rc;
5504
5505	rc = security_sid_to_context(ksec->sid, &context, &len);
5506	if (!rc)
5507		rc = len;
5508	*_buffer = context;
5509	return rc;
5510}
5511
5512#endif
5513
5514static struct security_operations selinux_ops = {
5515	.name =				"selinux",
5516
5517	.ptrace_access_check =		selinux_ptrace_access_check,
5518	.ptrace_traceme =		selinux_ptrace_traceme,
5519	.capget =			selinux_capget,
5520	.capset =			selinux_capset,
5521	.capable =			selinux_capable,
5522	.quotactl =			selinux_quotactl,
5523	.quota_on =			selinux_quota_on,
5524	.syslog =			selinux_syslog,
5525	.vm_enough_memory =		selinux_vm_enough_memory,
5526
5527	.netlink_send =			selinux_netlink_send,
5528
5529	.bprm_set_creds =		selinux_bprm_set_creds,
5530	.bprm_committing_creds =	selinux_bprm_committing_creds,
5531	.bprm_committed_creds =		selinux_bprm_committed_creds,
5532	.bprm_secureexec =		selinux_bprm_secureexec,
5533
5534	.sb_alloc_security =		selinux_sb_alloc_security,
5535	.sb_free_security =		selinux_sb_free_security,
5536	.sb_copy_data =			selinux_sb_copy_data,
5537	.sb_remount =			selinux_sb_remount,
5538	.sb_kern_mount =		selinux_sb_kern_mount,
5539	.sb_show_options =		selinux_sb_show_options,
5540	.sb_statfs =			selinux_sb_statfs,
5541	.sb_mount =			selinux_mount,
5542	.sb_umount =			selinux_umount,
5543	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5544	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5545	.sb_parse_opts_str = 		selinux_parse_opts_str,
5546
5547
5548	.inode_alloc_security =		selinux_inode_alloc_security,
5549	.inode_free_security =		selinux_inode_free_security,
5550	.inode_init_security =		selinux_inode_init_security,
5551	.inode_create =			selinux_inode_create,
5552	.inode_link =			selinux_inode_link,
5553	.inode_unlink =			selinux_inode_unlink,
5554	.inode_symlink =		selinux_inode_symlink,
5555	.inode_mkdir =			selinux_inode_mkdir,
5556	.inode_rmdir =			selinux_inode_rmdir,
5557	.inode_mknod =			selinux_inode_mknod,
5558	.inode_rename =			selinux_inode_rename,
5559	.inode_readlink =		selinux_inode_readlink,
5560	.inode_follow_link =		selinux_inode_follow_link,
5561	.inode_permission =		selinux_inode_permission,
5562	.inode_setattr =		selinux_inode_setattr,
5563	.inode_getattr =		selinux_inode_getattr,
5564	.inode_setxattr =		selinux_inode_setxattr,
5565	.inode_post_setxattr =		selinux_inode_post_setxattr,
5566	.inode_getxattr =		selinux_inode_getxattr,
5567	.inode_listxattr =		selinux_inode_listxattr,
5568	.inode_removexattr =		selinux_inode_removexattr,
5569	.inode_getsecurity =		selinux_inode_getsecurity,
5570	.inode_setsecurity =		selinux_inode_setsecurity,
5571	.inode_listsecurity =		selinux_inode_listsecurity,
5572	.inode_getsecid =		selinux_inode_getsecid,
5573
5574	.file_permission =		selinux_file_permission,
5575	.file_alloc_security =		selinux_file_alloc_security,
5576	.file_free_security =		selinux_file_free_security,
5577	.file_ioctl =			selinux_file_ioctl,
5578	.mmap_file =			selinux_mmap_file,
5579	.mmap_addr =			selinux_mmap_addr,
5580	.file_mprotect =		selinux_file_mprotect,
5581	.file_lock =			selinux_file_lock,
5582	.file_fcntl =			selinux_file_fcntl,
5583	.file_set_fowner =		selinux_file_set_fowner,
5584	.file_send_sigiotask =		selinux_file_send_sigiotask,
5585	.file_receive =			selinux_file_receive,
5586
5587	.file_open =			selinux_file_open,
5588
5589	.task_create =			selinux_task_create,
5590	.cred_alloc_blank =		selinux_cred_alloc_blank,
5591	.cred_free =			selinux_cred_free,
5592	.cred_prepare =			selinux_cred_prepare,
5593	.cred_transfer =		selinux_cred_transfer,
5594	.kernel_act_as =		selinux_kernel_act_as,
5595	.kernel_create_files_as =	selinux_kernel_create_files_as,
5596	.kernel_module_request =	selinux_kernel_module_request,
5597	.task_setpgid =			selinux_task_setpgid,
5598	.task_getpgid =			selinux_task_getpgid,
5599	.task_getsid =			selinux_task_getsid,
5600	.task_getsecid =		selinux_task_getsecid,
5601	.task_setnice =			selinux_task_setnice,
5602	.task_setioprio =		selinux_task_setioprio,
5603	.task_getioprio =		selinux_task_getioprio,
5604	.task_setrlimit =		selinux_task_setrlimit,
5605	.task_setscheduler =		selinux_task_setscheduler,
5606	.task_getscheduler =		selinux_task_getscheduler,
5607	.task_movememory =		selinux_task_movememory,
5608	.task_kill =			selinux_task_kill,
5609	.task_wait =			selinux_task_wait,
5610	.task_to_inode =		selinux_task_to_inode,
5611
5612	.ipc_permission =		selinux_ipc_permission,
5613	.ipc_getsecid =			selinux_ipc_getsecid,
5614
5615	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5616	.msg_msg_free_security =	selinux_msg_msg_free_security,
5617
5618	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5619	.msg_queue_free_security =	selinux_msg_queue_free_security,
5620	.msg_queue_associate =		selinux_msg_queue_associate,
5621	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5622	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5623	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5624
5625	.shm_alloc_security =		selinux_shm_alloc_security,
5626	.shm_free_security =		selinux_shm_free_security,
5627	.shm_associate =		selinux_shm_associate,
5628	.shm_shmctl =			selinux_shm_shmctl,
5629	.shm_shmat =			selinux_shm_shmat,
5630
5631	.sem_alloc_security =		selinux_sem_alloc_security,
5632	.sem_free_security =		selinux_sem_free_security,
5633	.sem_associate =		selinux_sem_associate,
5634	.sem_semctl =			selinux_sem_semctl,
5635	.sem_semop =			selinux_sem_semop,
5636
5637	.d_instantiate =		selinux_d_instantiate,
5638
5639	.getprocattr =			selinux_getprocattr,
5640	.setprocattr =			selinux_setprocattr,
5641
5642	.secid_to_secctx =		selinux_secid_to_secctx,
5643	.secctx_to_secid =		selinux_secctx_to_secid,
5644	.release_secctx =		selinux_release_secctx,
5645	.inode_notifysecctx =		selinux_inode_notifysecctx,
5646	.inode_setsecctx =		selinux_inode_setsecctx,
5647	.inode_getsecctx =		selinux_inode_getsecctx,
5648
5649	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5650	.unix_may_send =		selinux_socket_unix_may_send,
5651
5652	.socket_create =		selinux_socket_create,
5653	.socket_post_create =		selinux_socket_post_create,
5654	.socket_bind =			selinux_socket_bind,
5655	.socket_connect =		selinux_socket_connect,
5656	.socket_listen =		selinux_socket_listen,
5657	.socket_accept =		selinux_socket_accept,
5658	.socket_sendmsg =		selinux_socket_sendmsg,
5659	.socket_recvmsg =		selinux_socket_recvmsg,
5660	.socket_getsockname =		selinux_socket_getsockname,
5661	.socket_getpeername =		selinux_socket_getpeername,
5662	.socket_getsockopt =		selinux_socket_getsockopt,
5663	.socket_setsockopt =		selinux_socket_setsockopt,
5664	.socket_shutdown =		selinux_socket_shutdown,
5665	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5666	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5667	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5668	.sk_alloc_security =		selinux_sk_alloc_security,
5669	.sk_free_security =		selinux_sk_free_security,
5670	.sk_clone_security =		selinux_sk_clone_security,
5671	.sk_getsecid =			selinux_sk_getsecid,
5672	.sock_graft =			selinux_sock_graft,
5673	.inet_conn_request =		selinux_inet_conn_request,
5674	.inet_csk_clone =		selinux_inet_csk_clone,
5675	.inet_conn_established =	selinux_inet_conn_established,
5676	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5677	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5678	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5679	.req_classify_flow =		selinux_req_classify_flow,
5680	.tun_dev_create =		selinux_tun_dev_create,
5681	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5682	.tun_dev_attach =		selinux_tun_dev_attach,
 
 
 
 
 
 
 
 
 
 
 
5683
5684#ifdef CONFIG_SECURITY_NETWORK_XFRM
5685	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5686	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5687	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5688	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5689	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5690	.xfrm_state_free_security =	selinux_xfrm_state_free,
5691	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5692	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5693	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5694	.xfrm_decode_session =		selinux_xfrm_decode_session,
 
 
 
5695#endif
5696
5697#ifdef CONFIG_KEYS
5698	.key_alloc =			selinux_key_alloc,
5699	.key_free =			selinux_key_free,
5700	.key_permission =		selinux_key_permission,
5701	.key_getsecurity =		selinux_key_getsecurity,
5702#endif
5703
5704#ifdef CONFIG_AUDIT
5705	.audit_rule_init =		selinux_audit_rule_init,
5706	.audit_rule_known =		selinux_audit_rule_known,
5707	.audit_rule_match =		selinux_audit_rule_match,
5708	.audit_rule_free =		selinux_audit_rule_free,
5709#endif
5710};
5711
5712static __init int selinux_init(void)
5713{
5714	if (!security_module_enable(&selinux_ops)) {
5715		selinux_enabled = 0;
5716		return 0;
5717	}
5718
5719	if (!selinux_enabled) {
5720		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5721		return 0;
5722	}
5723
5724	printk(KERN_INFO "SELinux:  Initializing.\n");
5725
5726	/* Set the security state for the initial task. */
5727	cred_init_security();
5728
5729	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5730
5731	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5732					    sizeof(struct inode_security_struct),
5733					    0, SLAB_PANIC, NULL);
 
 
 
5734	avc_init();
5735
5736	if (register_security(&selinux_ops))
5737		panic("SELinux: Unable to register with kernel.\n");
 
 
5738
5739	if (selinux_enforcing)
5740		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5741	else
5742		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5743
5744	return 0;
5745}
5746
5747static void delayed_superblock_init(struct super_block *sb, void *unused)
5748{
5749	superblock_doinit(sb, NULL);
5750}
5751
5752void selinux_complete_init(void)
5753{
5754	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5755
5756	/* Set up any superblocks initialized prior to the policy load. */
5757	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5758	iterate_supers(delayed_superblock_init, NULL);
5759}
5760
5761/* SELinux requires early initialization in order to label
5762   all processes and objects when they are created. */
5763security_initcall(selinux_init);
5764
5765#if defined(CONFIG_NETFILTER)
5766
5767static struct nf_hook_ops selinux_ipv4_ops[] = {
5768	{
5769		.hook =		selinux_ipv4_postroute,
5770		.owner =	THIS_MODULE,
5771		.pf =		PF_INET,
5772		.hooknum =	NF_INET_POST_ROUTING,
5773		.priority =	NF_IP_PRI_SELINUX_LAST,
5774	},
5775	{
5776		.hook =		selinux_ipv4_forward,
5777		.owner =	THIS_MODULE,
5778		.pf =		PF_INET,
5779		.hooknum =	NF_INET_FORWARD,
5780		.priority =	NF_IP_PRI_SELINUX_FIRST,
5781	},
5782	{
5783		.hook =		selinux_ipv4_output,
5784		.owner =	THIS_MODULE,
5785		.pf =		PF_INET,
5786		.hooknum =	NF_INET_LOCAL_OUT,
5787		.priority =	NF_IP_PRI_SELINUX_FIRST,
5788	}
5789};
5790
5791#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5792
5793static struct nf_hook_ops selinux_ipv6_ops[] = {
5794	{
5795		.hook =		selinux_ipv6_postroute,
5796		.owner =	THIS_MODULE,
5797		.pf =		PF_INET6,
5798		.hooknum =	NF_INET_POST_ROUTING,
5799		.priority =	NF_IP6_PRI_SELINUX_LAST,
5800	},
5801	{
5802		.hook =		selinux_ipv6_forward,
5803		.owner =	THIS_MODULE,
5804		.pf =		PF_INET6,
5805		.hooknum =	NF_INET_FORWARD,
5806		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5807	}
 
5808};
5809
5810#endif	/* IPV6 */
5811
5812static int __init selinux_nf_ip_init(void)
5813{
5814	int err = 0;
5815
5816	if (!selinux_enabled)
5817		goto out;
5818
5819	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5820
5821	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5822	if (err)
5823		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5824
5825#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5826	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5827	if (err)
5828		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5829#endif	/* IPV6 */
5830
5831out:
5832	return err;
5833}
5834
5835__initcall(selinux_nf_ip_init);
5836
5837#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5838static void selinux_nf_ip_exit(void)
5839{
5840	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5841
5842	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5843#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5844	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5845#endif	/* IPV6 */
5846}
5847#endif
5848
5849#else /* CONFIG_NETFILTER */
5850
5851#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5852#define selinux_nf_ip_exit()
5853#endif
5854
5855#endif /* CONFIG_NETFILTER */
5856
5857#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5858static int selinux_disabled;
5859
5860int selinux_disable(void)
5861{
5862	if (ss_initialized) {
5863		/* Not permitted after initial policy load. */
5864		return -EINVAL;
5865	}
5866
5867	if (selinux_disabled) {
5868		/* Only do this once. */
5869		return -EINVAL;
5870	}
5871
5872	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5873
5874	selinux_disabled = 1;
5875	selinux_enabled = 0;
5876
5877	reset_security_ops();
5878
5879	/* Try to destroy the avc node cache */
5880	avc_disable();
5881
5882	/* Unregister netfilter hooks. */
5883	selinux_nf_ip_exit();
5884
5885	/* Unregister selinuxfs. */
5886	exit_sel_fs();
5887
5888	return 0;
5889}
5890#endif