Loading...
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/lsm_hooks.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55#include <net/inet_connection_sock.h>
56#include <net/net_namespace.h>
57#include <net/netlabel.h>
58#include <linux/uaccess.h>
59#include <asm/ioctls.h>
60#include <linux/atomic.h>
61#include <linux/bitops.h>
62#include <linux/interrupt.h>
63#include <linux/netdevice.h> /* for network interface checks */
64#include <net/netlink.h>
65#include <linux/tcp.h>
66#include <linux/udp.h>
67#include <linux/dccp.h>
68#include <linux/quota.h>
69#include <linux/un.h> /* for Unix socket types */
70#include <net/af_unix.h> /* for Unix socket types */
71#include <linux/parser.h>
72#include <linux/nfs_mount.h>
73#include <net/ipv6.h>
74#include <linux/hugetlb.h>
75#include <linux/personality.h>
76#include <linux/audit.h>
77#include <linux/string.h>
78#include <linux/selinux.h>
79#include <linux/mutex.h>
80#include <linux/posix-timers.h>
81#include <linux/syslog.h>
82#include <linux/user_namespace.h>
83#include <linux/export.h>
84#include <linux/msg.h>
85#include <linux/shm.h>
86
87#include "avc.h"
88#include "objsec.h"
89#include "netif.h"
90#include "netnode.h"
91#include "netport.h"
92#include "xfrm.h"
93#include "netlabel.h"
94#include "audit.h"
95#include "avc_ss.h"
96
97/* SECMARK reference count */
98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101int selinux_enforcing;
102
103static int __init enforcing_setup(char *str)
104{
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109}
110__setup("enforcing=", enforcing_setup);
111#endif
112
113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116static int __init selinux_enabled_setup(char *str)
117{
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122}
123__setup("selinux=", selinux_enabled_setup);
124#else
125int selinux_enabled = 1;
126#endif
127
128static struct kmem_cache *sel_inode_cache;
129static struct kmem_cache *file_security_cache;
130
131/**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled. If the always_check_network
139 * policy capability is enabled, SECMARK is always considered enabled.
140 *
141 */
142static int selinux_secmark_enabled(void)
143{
144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
145}
146
147/**
148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
149 *
150 * Description:
151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
152 * (1) if any are enabled or false (0) if neither are enabled. If the
153 * always_check_network policy capability is enabled, peer labeling
154 * is always considered enabled.
155 *
156 */
157static int selinux_peerlbl_enabled(void)
158{
159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
160}
161
162static int selinux_netcache_avc_callback(u32 event)
163{
164 if (event == AVC_CALLBACK_RESET) {
165 sel_netif_flush();
166 sel_netnode_flush();
167 sel_netport_flush();
168 synchronize_net();
169 }
170 return 0;
171}
172
173/*
174 * initialise the security for the init task
175 */
176static void cred_init_security(void)
177{
178 struct cred *cred = (struct cred *) current->real_cred;
179 struct task_security_struct *tsec;
180
181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
182 if (!tsec)
183 panic("SELinux: Failed to initialize initial task.\n");
184
185 tsec->osid = tsec->sid = SECINITSID_KERNEL;
186 cred->security = tsec;
187}
188
189/*
190 * get the security ID of a set of credentials
191 */
192static inline u32 cred_sid(const struct cred *cred)
193{
194 const struct task_security_struct *tsec;
195
196 tsec = cred->security;
197 return tsec->sid;
198}
199
200/*
201 * get the objective security ID of a task
202 */
203static inline u32 task_sid(const struct task_struct *task)
204{
205 u32 sid;
206
207 rcu_read_lock();
208 sid = cred_sid(__task_cred(task));
209 rcu_read_unlock();
210 return sid;
211}
212
213/*
214 * get the subjective security ID of the current task
215 */
216static inline u32 current_sid(void)
217{
218 const struct task_security_struct *tsec = current_security();
219
220 return tsec->sid;
221}
222
223/* Allocate and free functions for each kind of security blob. */
224
225static int inode_alloc_security(struct inode *inode)
226{
227 struct inode_security_struct *isec;
228 u32 sid = current_sid();
229
230 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
231 if (!isec)
232 return -ENOMEM;
233
234 mutex_init(&isec->lock);
235 INIT_LIST_HEAD(&isec->list);
236 isec->inode = inode;
237 isec->sid = SECINITSID_UNLABELED;
238 isec->sclass = SECCLASS_FILE;
239 isec->task_sid = sid;
240 inode->i_security = isec;
241
242 return 0;
243}
244
245static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
246
247/*
248 * Try reloading inode security labels that have been marked as invalid. The
249 * @may_sleep parameter indicates when sleeping and thus reloading labels is
250 * allowed; when set to false, returns ERR_PTR(-ECHILD) when the label is
251 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
252 * when no dentry is available, set it to NULL instead.
253 */
254static int __inode_security_revalidate(struct inode *inode,
255 struct dentry *opt_dentry,
256 bool may_sleep)
257{
258 struct inode_security_struct *isec = inode->i_security;
259
260 might_sleep_if(may_sleep);
261
262 if (isec->initialized == LABEL_INVALID) {
263 if (!may_sleep)
264 return -ECHILD;
265
266 /*
267 * Try reloading the inode security label. This will fail if
268 * @opt_dentry is NULL and no dentry for this inode can be
269 * found; in that case, continue using the old label.
270 */
271 inode_doinit_with_dentry(inode, opt_dentry);
272 }
273 return 0;
274}
275
276static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
277{
278 return inode->i_security;
279}
280
281static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
282{
283 int error;
284
285 error = __inode_security_revalidate(inode, NULL, !rcu);
286 if (error)
287 return ERR_PTR(error);
288 return inode->i_security;
289}
290
291/*
292 * Get the security label of an inode.
293 */
294static struct inode_security_struct *inode_security(struct inode *inode)
295{
296 __inode_security_revalidate(inode, NULL, true);
297 return inode->i_security;
298}
299
300/*
301 * Get the security label of a dentry's backing inode.
302 */
303static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
304{
305 struct inode *inode = d_backing_inode(dentry);
306
307 __inode_security_revalidate(inode, dentry, true);
308 return inode->i_security;
309}
310
311static void inode_free_rcu(struct rcu_head *head)
312{
313 struct inode_security_struct *isec;
314
315 isec = container_of(head, struct inode_security_struct, rcu);
316 kmem_cache_free(sel_inode_cache, isec);
317}
318
319static void inode_free_security(struct inode *inode)
320{
321 struct inode_security_struct *isec = inode->i_security;
322 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
323
324 /*
325 * As not all inode security structures are in a list, we check for
326 * empty list outside of the lock to make sure that we won't waste
327 * time taking a lock doing nothing.
328 *
329 * The list_del_init() function can be safely called more than once.
330 * It should not be possible for this function to be called with
331 * concurrent list_add(), but for better safety against future changes
332 * in the code, we use list_empty_careful() here.
333 */
334 if (!list_empty_careful(&isec->list)) {
335 spin_lock(&sbsec->isec_lock);
336 list_del_init(&isec->list);
337 spin_unlock(&sbsec->isec_lock);
338 }
339
340 /*
341 * The inode may still be referenced in a path walk and
342 * a call to selinux_inode_permission() can be made
343 * after inode_free_security() is called. Ideally, the VFS
344 * wouldn't do this, but fixing that is a much harder
345 * job. For now, simply free the i_security via RCU, and
346 * leave the current inode->i_security pointer intact.
347 * The inode will be freed after the RCU grace period too.
348 */
349 call_rcu(&isec->rcu, inode_free_rcu);
350}
351
352static int file_alloc_security(struct file *file)
353{
354 struct file_security_struct *fsec;
355 u32 sid = current_sid();
356
357 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
358 if (!fsec)
359 return -ENOMEM;
360
361 fsec->sid = sid;
362 fsec->fown_sid = sid;
363 file->f_security = fsec;
364
365 return 0;
366}
367
368static void file_free_security(struct file *file)
369{
370 struct file_security_struct *fsec = file->f_security;
371 file->f_security = NULL;
372 kmem_cache_free(file_security_cache, fsec);
373}
374
375static int superblock_alloc_security(struct super_block *sb)
376{
377 struct superblock_security_struct *sbsec;
378
379 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
380 if (!sbsec)
381 return -ENOMEM;
382
383 mutex_init(&sbsec->lock);
384 INIT_LIST_HEAD(&sbsec->isec_head);
385 spin_lock_init(&sbsec->isec_lock);
386 sbsec->sb = sb;
387 sbsec->sid = SECINITSID_UNLABELED;
388 sbsec->def_sid = SECINITSID_FILE;
389 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
390 sb->s_security = sbsec;
391
392 return 0;
393}
394
395static void superblock_free_security(struct super_block *sb)
396{
397 struct superblock_security_struct *sbsec = sb->s_security;
398 sb->s_security = NULL;
399 kfree(sbsec);
400}
401
402/* The file system's label must be initialized prior to use. */
403
404static const char *labeling_behaviors[7] = {
405 "uses xattr",
406 "uses transition SIDs",
407 "uses task SIDs",
408 "uses genfs_contexts",
409 "not configured for labeling",
410 "uses mountpoint labeling",
411 "uses native labeling",
412};
413
414static inline int inode_doinit(struct inode *inode)
415{
416 return inode_doinit_with_dentry(inode, NULL);
417}
418
419enum {
420 Opt_error = -1,
421 Opt_context = 1,
422 Opt_fscontext = 2,
423 Opt_defcontext = 3,
424 Opt_rootcontext = 4,
425 Opt_labelsupport = 5,
426 Opt_nextmntopt = 6,
427};
428
429#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
430
431static const match_table_t tokens = {
432 {Opt_context, CONTEXT_STR "%s"},
433 {Opt_fscontext, FSCONTEXT_STR "%s"},
434 {Opt_defcontext, DEFCONTEXT_STR "%s"},
435 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
436 {Opt_labelsupport, LABELSUPP_STR},
437 {Opt_error, NULL},
438};
439
440#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
441
442static int may_context_mount_sb_relabel(u32 sid,
443 struct superblock_security_struct *sbsec,
444 const struct cred *cred)
445{
446 const struct task_security_struct *tsec = cred->security;
447 int rc;
448
449 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
450 FILESYSTEM__RELABELFROM, NULL);
451 if (rc)
452 return rc;
453
454 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
455 FILESYSTEM__RELABELTO, NULL);
456 return rc;
457}
458
459static int may_context_mount_inode_relabel(u32 sid,
460 struct superblock_security_struct *sbsec,
461 const struct cred *cred)
462{
463 const struct task_security_struct *tsec = cred->security;
464 int rc;
465 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
466 FILESYSTEM__RELABELFROM, NULL);
467 if (rc)
468 return rc;
469
470 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
471 FILESYSTEM__ASSOCIATE, NULL);
472 return rc;
473}
474
475static int selinux_is_sblabel_mnt(struct super_block *sb)
476{
477 struct superblock_security_struct *sbsec = sb->s_security;
478
479 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
480 sbsec->behavior == SECURITY_FS_USE_TRANS ||
481 sbsec->behavior == SECURITY_FS_USE_TASK ||
482 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
483 /* Special handling. Genfs but also in-core setxattr handler */
484 !strcmp(sb->s_type->name, "sysfs") ||
485 !strcmp(sb->s_type->name, "pstore") ||
486 !strcmp(sb->s_type->name, "debugfs") ||
487 !strcmp(sb->s_type->name, "rootfs");
488}
489
490static int sb_finish_set_opts(struct super_block *sb)
491{
492 struct superblock_security_struct *sbsec = sb->s_security;
493 struct dentry *root = sb->s_root;
494 struct inode *root_inode = d_backing_inode(root);
495 int rc = 0;
496
497 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
498 /* Make sure that the xattr handler exists and that no
499 error other than -ENODATA is returned by getxattr on
500 the root directory. -ENODATA is ok, as this may be
501 the first boot of the SELinux kernel before we have
502 assigned xattr values to the filesystem. */
503 if (!root_inode->i_op->getxattr) {
504 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
505 "xattr support\n", sb->s_id, sb->s_type->name);
506 rc = -EOPNOTSUPP;
507 goto out;
508 }
509 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
510 if (rc < 0 && rc != -ENODATA) {
511 if (rc == -EOPNOTSUPP)
512 printk(KERN_WARNING "SELinux: (dev %s, type "
513 "%s) has no security xattr handler\n",
514 sb->s_id, sb->s_type->name);
515 else
516 printk(KERN_WARNING "SELinux: (dev %s, type "
517 "%s) getxattr errno %d\n", sb->s_id,
518 sb->s_type->name, -rc);
519 goto out;
520 }
521 }
522
523 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
524 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
525 sb->s_id, sb->s_type->name);
526
527 sbsec->flags |= SE_SBINITIALIZED;
528 if (selinux_is_sblabel_mnt(sb))
529 sbsec->flags |= SBLABEL_MNT;
530
531 /* Initialize the root inode. */
532 rc = inode_doinit_with_dentry(root_inode, root);
533
534 /* Initialize any other inodes associated with the superblock, e.g.
535 inodes created prior to initial policy load or inodes created
536 during get_sb by a pseudo filesystem that directly
537 populates itself. */
538 spin_lock(&sbsec->isec_lock);
539next_inode:
540 if (!list_empty(&sbsec->isec_head)) {
541 struct inode_security_struct *isec =
542 list_entry(sbsec->isec_head.next,
543 struct inode_security_struct, list);
544 struct inode *inode = isec->inode;
545 list_del_init(&isec->list);
546 spin_unlock(&sbsec->isec_lock);
547 inode = igrab(inode);
548 if (inode) {
549 if (!IS_PRIVATE(inode))
550 inode_doinit(inode);
551 iput(inode);
552 }
553 spin_lock(&sbsec->isec_lock);
554 goto next_inode;
555 }
556 spin_unlock(&sbsec->isec_lock);
557out:
558 return rc;
559}
560
561/*
562 * This function should allow an FS to ask what it's mount security
563 * options were so it can use those later for submounts, displaying
564 * mount options, or whatever.
565 */
566static int selinux_get_mnt_opts(const struct super_block *sb,
567 struct security_mnt_opts *opts)
568{
569 int rc = 0, i;
570 struct superblock_security_struct *sbsec = sb->s_security;
571 char *context = NULL;
572 u32 len;
573 char tmp;
574
575 security_init_mnt_opts(opts);
576
577 if (!(sbsec->flags & SE_SBINITIALIZED))
578 return -EINVAL;
579
580 if (!ss_initialized)
581 return -EINVAL;
582
583 /* make sure we always check enough bits to cover the mask */
584 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
585
586 tmp = sbsec->flags & SE_MNTMASK;
587 /* count the number of mount options for this sb */
588 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
589 if (tmp & 0x01)
590 opts->num_mnt_opts++;
591 tmp >>= 1;
592 }
593 /* Check if the Label support flag is set */
594 if (sbsec->flags & SBLABEL_MNT)
595 opts->num_mnt_opts++;
596
597 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
598 if (!opts->mnt_opts) {
599 rc = -ENOMEM;
600 goto out_free;
601 }
602
603 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
604 if (!opts->mnt_opts_flags) {
605 rc = -ENOMEM;
606 goto out_free;
607 }
608
609 i = 0;
610 if (sbsec->flags & FSCONTEXT_MNT) {
611 rc = security_sid_to_context(sbsec->sid, &context, &len);
612 if (rc)
613 goto out_free;
614 opts->mnt_opts[i] = context;
615 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
616 }
617 if (sbsec->flags & CONTEXT_MNT) {
618 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
619 if (rc)
620 goto out_free;
621 opts->mnt_opts[i] = context;
622 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
623 }
624 if (sbsec->flags & DEFCONTEXT_MNT) {
625 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
626 if (rc)
627 goto out_free;
628 opts->mnt_opts[i] = context;
629 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
630 }
631 if (sbsec->flags & ROOTCONTEXT_MNT) {
632 struct dentry *root = sbsec->sb->s_root;
633 struct inode_security_struct *isec = backing_inode_security(root);
634
635 rc = security_sid_to_context(isec->sid, &context, &len);
636 if (rc)
637 goto out_free;
638 opts->mnt_opts[i] = context;
639 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
640 }
641 if (sbsec->flags & SBLABEL_MNT) {
642 opts->mnt_opts[i] = NULL;
643 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
644 }
645
646 BUG_ON(i != opts->num_mnt_opts);
647
648 return 0;
649
650out_free:
651 security_free_mnt_opts(opts);
652 return rc;
653}
654
655static int bad_option(struct superblock_security_struct *sbsec, char flag,
656 u32 old_sid, u32 new_sid)
657{
658 char mnt_flags = sbsec->flags & SE_MNTMASK;
659
660 /* check if the old mount command had the same options */
661 if (sbsec->flags & SE_SBINITIALIZED)
662 if (!(sbsec->flags & flag) ||
663 (old_sid != new_sid))
664 return 1;
665
666 /* check if we were passed the same options twice,
667 * aka someone passed context=a,context=b
668 */
669 if (!(sbsec->flags & SE_SBINITIALIZED))
670 if (mnt_flags & flag)
671 return 1;
672 return 0;
673}
674
675/*
676 * Allow filesystems with binary mount data to explicitly set mount point
677 * labeling information.
678 */
679static int selinux_set_mnt_opts(struct super_block *sb,
680 struct security_mnt_opts *opts,
681 unsigned long kern_flags,
682 unsigned long *set_kern_flags)
683{
684 const struct cred *cred = current_cred();
685 int rc = 0, i;
686 struct superblock_security_struct *sbsec = sb->s_security;
687 const char *name = sb->s_type->name;
688 struct dentry *root = sbsec->sb->s_root;
689 struct inode_security_struct *root_isec = backing_inode_security(root);
690 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
691 u32 defcontext_sid = 0;
692 char **mount_options = opts->mnt_opts;
693 int *flags = opts->mnt_opts_flags;
694 int num_opts = opts->num_mnt_opts;
695
696 mutex_lock(&sbsec->lock);
697
698 if (!ss_initialized) {
699 if (!num_opts) {
700 /* Defer initialization until selinux_complete_init,
701 after the initial policy is loaded and the security
702 server is ready to handle calls. */
703 goto out;
704 }
705 rc = -EINVAL;
706 printk(KERN_WARNING "SELinux: Unable to set superblock options "
707 "before the security server is initialized\n");
708 goto out;
709 }
710 if (kern_flags && !set_kern_flags) {
711 /* Specifying internal flags without providing a place to
712 * place the results is not allowed */
713 rc = -EINVAL;
714 goto out;
715 }
716
717 /*
718 * Binary mount data FS will come through this function twice. Once
719 * from an explicit call and once from the generic calls from the vfs.
720 * Since the generic VFS calls will not contain any security mount data
721 * we need to skip the double mount verification.
722 *
723 * This does open a hole in which we will not notice if the first
724 * mount using this sb set explict options and a second mount using
725 * this sb does not set any security options. (The first options
726 * will be used for both mounts)
727 */
728 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
729 && (num_opts == 0))
730 goto out;
731
732 /*
733 * parse the mount options, check if they are valid sids.
734 * also check if someone is trying to mount the same sb more
735 * than once with different security options.
736 */
737 for (i = 0; i < num_opts; i++) {
738 u32 sid;
739
740 if (flags[i] == SBLABEL_MNT)
741 continue;
742 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
743 if (rc) {
744 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
745 "(%s) failed for (dev %s, type %s) errno=%d\n",
746 mount_options[i], sb->s_id, name, rc);
747 goto out;
748 }
749 switch (flags[i]) {
750 case FSCONTEXT_MNT:
751 fscontext_sid = sid;
752
753 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
754 fscontext_sid))
755 goto out_double_mount;
756
757 sbsec->flags |= FSCONTEXT_MNT;
758 break;
759 case CONTEXT_MNT:
760 context_sid = sid;
761
762 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
763 context_sid))
764 goto out_double_mount;
765
766 sbsec->flags |= CONTEXT_MNT;
767 break;
768 case ROOTCONTEXT_MNT:
769 rootcontext_sid = sid;
770
771 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
772 rootcontext_sid))
773 goto out_double_mount;
774
775 sbsec->flags |= ROOTCONTEXT_MNT;
776
777 break;
778 case DEFCONTEXT_MNT:
779 defcontext_sid = sid;
780
781 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
782 defcontext_sid))
783 goto out_double_mount;
784
785 sbsec->flags |= DEFCONTEXT_MNT;
786
787 break;
788 default:
789 rc = -EINVAL;
790 goto out;
791 }
792 }
793
794 if (sbsec->flags & SE_SBINITIALIZED) {
795 /* previously mounted with options, but not on this attempt? */
796 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
797 goto out_double_mount;
798 rc = 0;
799 goto out;
800 }
801
802 if (strcmp(sb->s_type->name, "proc") == 0)
803 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
804
805 if (!strcmp(sb->s_type->name, "debugfs") ||
806 !strcmp(sb->s_type->name, "sysfs") ||
807 !strcmp(sb->s_type->name, "pstore"))
808 sbsec->flags |= SE_SBGENFS;
809
810 if (!sbsec->behavior) {
811 /*
812 * Determine the labeling behavior to use for this
813 * filesystem type.
814 */
815 rc = security_fs_use(sb);
816 if (rc) {
817 printk(KERN_WARNING
818 "%s: security_fs_use(%s) returned %d\n",
819 __func__, sb->s_type->name, rc);
820 goto out;
821 }
822 }
823 /* sets the context of the superblock for the fs being mounted. */
824 if (fscontext_sid) {
825 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
826 if (rc)
827 goto out;
828
829 sbsec->sid = fscontext_sid;
830 }
831
832 /*
833 * Switch to using mount point labeling behavior.
834 * sets the label used on all file below the mountpoint, and will set
835 * the superblock context if not already set.
836 */
837 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
838 sbsec->behavior = SECURITY_FS_USE_NATIVE;
839 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
840 }
841
842 if (context_sid) {
843 if (!fscontext_sid) {
844 rc = may_context_mount_sb_relabel(context_sid, sbsec,
845 cred);
846 if (rc)
847 goto out;
848 sbsec->sid = context_sid;
849 } else {
850 rc = may_context_mount_inode_relabel(context_sid, sbsec,
851 cred);
852 if (rc)
853 goto out;
854 }
855 if (!rootcontext_sid)
856 rootcontext_sid = context_sid;
857
858 sbsec->mntpoint_sid = context_sid;
859 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
860 }
861
862 if (rootcontext_sid) {
863 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
864 cred);
865 if (rc)
866 goto out;
867
868 root_isec->sid = rootcontext_sid;
869 root_isec->initialized = LABEL_INITIALIZED;
870 }
871
872 if (defcontext_sid) {
873 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
874 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
875 rc = -EINVAL;
876 printk(KERN_WARNING "SELinux: defcontext option is "
877 "invalid for this filesystem type\n");
878 goto out;
879 }
880
881 if (defcontext_sid != sbsec->def_sid) {
882 rc = may_context_mount_inode_relabel(defcontext_sid,
883 sbsec, cred);
884 if (rc)
885 goto out;
886 }
887
888 sbsec->def_sid = defcontext_sid;
889 }
890
891 rc = sb_finish_set_opts(sb);
892out:
893 mutex_unlock(&sbsec->lock);
894 return rc;
895out_double_mount:
896 rc = -EINVAL;
897 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
898 "security settings for (dev %s, type %s)\n", sb->s_id, name);
899 goto out;
900}
901
902static int selinux_cmp_sb_context(const struct super_block *oldsb,
903 const struct super_block *newsb)
904{
905 struct superblock_security_struct *old = oldsb->s_security;
906 struct superblock_security_struct *new = newsb->s_security;
907 char oldflags = old->flags & SE_MNTMASK;
908 char newflags = new->flags & SE_MNTMASK;
909
910 if (oldflags != newflags)
911 goto mismatch;
912 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
913 goto mismatch;
914 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
915 goto mismatch;
916 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
917 goto mismatch;
918 if (oldflags & ROOTCONTEXT_MNT) {
919 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
920 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
921 if (oldroot->sid != newroot->sid)
922 goto mismatch;
923 }
924 return 0;
925mismatch:
926 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
927 "different security settings for (dev %s, "
928 "type %s)\n", newsb->s_id, newsb->s_type->name);
929 return -EBUSY;
930}
931
932static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
933 struct super_block *newsb)
934{
935 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
936 struct superblock_security_struct *newsbsec = newsb->s_security;
937
938 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
939 int set_context = (oldsbsec->flags & CONTEXT_MNT);
940 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
941
942 /*
943 * if the parent was able to be mounted it clearly had no special lsm
944 * mount options. thus we can safely deal with this superblock later
945 */
946 if (!ss_initialized)
947 return 0;
948
949 /* how can we clone if the old one wasn't set up?? */
950 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
951
952 /* if fs is reusing a sb, make sure that the contexts match */
953 if (newsbsec->flags & SE_SBINITIALIZED)
954 return selinux_cmp_sb_context(oldsb, newsb);
955
956 mutex_lock(&newsbsec->lock);
957
958 newsbsec->flags = oldsbsec->flags;
959
960 newsbsec->sid = oldsbsec->sid;
961 newsbsec->def_sid = oldsbsec->def_sid;
962 newsbsec->behavior = oldsbsec->behavior;
963
964 if (set_context) {
965 u32 sid = oldsbsec->mntpoint_sid;
966
967 if (!set_fscontext)
968 newsbsec->sid = sid;
969 if (!set_rootcontext) {
970 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
971 newisec->sid = sid;
972 }
973 newsbsec->mntpoint_sid = sid;
974 }
975 if (set_rootcontext) {
976 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
977 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
978
979 newisec->sid = oldisec->sid;
980 }
981
982 sb_finish_set_opts(newsb);
983 mutex_unlock(&newsbsec->lock);
984 return 0;
985}
986
987static int selinux_parse_opts_str(char *options,
988 struct security_mnt_opts *opts)
989{
990 char *p;
991 char *context = NULL, *defcontext = NULL;
992 char *fscontext = NULL, *rootcontext = NULL;
993 int rc, num_mnt_opts = 0;
994
995 opts->num_mnt_opts = 0;
996
997 /* Standard string-based options. */
998 while ((p = strsep(&options, "|")) != NULL) {
999 int token;
1000 substring_t args[MAX_OPT_ARGS];
1001
1002 if (!*p)
1003 continue;
1004
1005 token = match_token(p, tokens, args);
1006
1007 switch (token) {
1008 case Opt_context:
1009 if (context || defcontext) {
1010 rc = -EINVAL;
1011 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1012 goto out_err;
1013 }
1014 context = match_strdup(&args[0]);
1015 if (!context) {
1016 rc = -ENOMEM;
1017 goto out_err;
1018 }
1019 break;
1020
1021 case Opt_fscontext:
1022 if (fscontext) {
1023 rc = -EINVAL;
1024 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1025 goto out_err;
1026 }
1027 fscontext = match_strdup(&args[0]);
1028 if (!fscontext) {
1029 rc = -ENOMEM;
1030 goto out_err;
1031 }
1032 break;
1033
1034 case Opt_rootcontext:
1035 if (rootcontext) {
1036 rc = -EINVAL;
1037 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1038 goto out_err;
1039 }
1040 rootcontext = match_strdup(&args[0]);
1041 if (!rootcontext) {
1042 rc = -ENOMEM;
1043 goto out_err;
1044 }
1045 break;
1046
1047 case Opt_defcontext:
1048 if (context || defcontext) {
1049 rc = -EINVAL;
1050 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1051 goto out_err;
1052 }
1053 defcontext = match_strdup(&args[0]);
1054 if (!defcontext) {
1055 rc = -ENOMEM;
1056 goto out_err;
1057 }
1058 break;
1059 case Opt_labelsupport:
1060 break;
1061 default:
1062 rc = -EINVAL;
1063 printk(KERN_WARNING "SELinux: unknown mount option\n");
1064 goto out_err;
1065
1066 }
1067 }
1068
1069 rc = -ENOMEM;
1070 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1071 if (!opts->mnt_opts)
1072 goto out_err;
1073
1074 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1075 if (!opts->mnt_opts_flags) {
1076 kfree(opts->mnt_opts);
1077 goto out_err;
1078 }
1079
1080 if (fscontext) {
1081 opts->mnt_opts[num_mnt_opts] = fscontext;
1082 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1083 }
1084 if (context) {
1085 opts->mnt_opts[num_mnt_opts] = context;
1086 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1087 }
1088 if (rootcontext) {
1089 opts->mnt_opts[num_mnt_opts] = rootcontext;
1090 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1091 }
1092 if (defcontext) {
1093 opts->mnt_opts[num_mnt_opts] = defcontext;
1094 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1095 }
1096
1097 opts->num_mnt_opts = num_mnt_opts;
1098 return 0;
1099
1100out_err:
1101 kfree(context);
1102 kfree(defcontext);
1103 kfree(fscontext);
1104 kfree(rootcontext);
1105 return rc;
1106}
1107/*
1108 * string mount options parsing and call set the sbsec
1109 */
1110static int superblock_doinit(struct super_block *sb, void *data)
1111{
1112 int rc = 0;
1113 char *options = data;
1114 struct security_mnt_opts opts;
1115
1116 security_init_mnt_opts(&opts);
1117
1118 if (!data)
1119 goto out;
1120
1121 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1122
1123 rc = selinux_parse_opts_str(options, &opts);
1124 if (rc)
1125 goto out_err;
1126
1127out:
1128 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1129
1130out_err:
1131 security_free_mnt_opts(&opts);
1132 return rc;
1133}
1134
1135static void selinux_write_opts(struct seq_file *m,
1136 struct security_mnt_opts *opts)
1137{
1138 int i;
1139 char *prefix;
1140
1141 for (i = 0; i < opts->num_mnt_opts; i++) {
1142 char *has_comma;
1143
1144 if (opts->mnt_opts[i])
1145 has_comma = strchr(opts->mnt_opts[i], ',');
1146 else
1147 has_comma = NULL;
1148
1149 switch (opts->mnt_opts_flags[i]) {
1150 case CONTEXT_MNT:
1151 prefix = CONTEXT_STR;
1152 break;
1153 case FSCONTEXT_MNT:
1154 prefix = FSCONTEXT_STR;
1155 break;
1156 case ROOTCONTEXT_MNT:
1157 prefix = ROOTCONTEXT_STR;
1158 break;
1159 case DEFCONTEXT_MNT:
1160 prefix = DEFCONTEXT_STR;
1161 break;
1162 case SBLABEL_MNT:
1163 seq_putc(m, ',');
1164 seq_puts(m, LABELSUPP_STR);
1165 continue;
1166 default:
1167 BUG();
1168 return;
1169 };
1170 /* we need a comma before each option */
1171 seq_putc(m, ',');
1172 seq_puts(m, prefix);
1173 if (has_comma)
1174 seq_putc(m, '\"');
1175 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1176 if (has_comma)
1177 seq_putc(m, '\"');
1178 }
1179}
1180
1181static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1182{
1183 struct security_mnt_opts opts;
1184 int rc;
1185
1186 rc = selinux_get_mnt_opts(sb, &opts);
1187 if (rc) {
1188 /* before policy load we may get EINVAL, don't show anything */
1189 if (rc == -EINVAL)
1190 rc = 0;
1191 return rc;
1192 }
1193
1194 selinux_write_opts(m, &opts);
1195
1196 security_free_mnt_opts(&opts);
1197
1198 return rc;
1199}
1200
1201static inline u16 inode_mode_to_security_class(umode_t mode)
1202{
1203 switch (mode & S_IFMT) {
1204 case S_IFSOCK:
1205 return SECCLASS_SOCK_FILE;
1206 case S_IFLNK:
1207 return SECCLASS_LNK_FILE;
1208 case S_IFREG:
1209 return SECCLASS_FILE;
1210 case S_IFBLK:
1211 return SECCLASS_BLK_FILE;
1212 case S_IFDIR:
1213 return SECCLASS_DIR;
1214 case S_IFCHR:
1215 return SECCLASS_CHR_FILE;
1216 case S_IFIFO:
1217 return SECCLASS_FIFO_FILE;
1218
1219 }
1220
1221 return SECCLASS_FILE;
1222}
1223
1224static inline int default_protocol_stream(int protocol)
1225{
1226 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1227}
1228
1229static inline int default_protocol_dgram(int protocol)
1230{
1231 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1232}
1233
1234static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1235{
1236 switch (family) {
1237 case PF_UNIX:
1238 switch (type) {
1239 case SOCK_STREAM:
1240 case SOCK_SEQPACKET:
1241 return SECCLASS_UNIX_STREAM_SOCKET;
1242 case SOCK_DGRAM:
1243 return SECCLASS_UNIX_DGRAM_SOCKET;
1244 }
1245 break;
1246 case PF_INET:
1247 case PF_INET6:
1248 switch (type) {
1249 case SOCK_STREAM:
1250 if (default_protocol_stream(protocol))
1251 return SECCLASS_TCP_SOCKET;
1252 else
1253 return SECCLASS_RAWIP_SOCKET;
1254 case SOCK_DGRAM:
1255 if (default_protocol_dgram(protocol))
1256 return SECCLASS_UDP_SOCKET;
1257 else
1258 return SECCLASS_RAWIP_SOCKET;
1259 case SOCK_DCCP:
1260 return SECCLASS_DCCP_SOCKET;
1261 default:
1262 return SECCLASS_RAWIP_SOCKET;
1263 }
1264 break;
1265 case PF_NETLINK:
1266 switch (protocol) {
1267 case NETLINK_ROUTE:
1268 return SECCLASS_NETLINK_ROUTE_SOCKET;
1269 case NETLINK_SOCK_DIAG:
1270 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1271 case NETLINK_NFLOG:
1272 return SECCLASS_NETLINK_NFLOG_SOCKET;
1273 case NETLINK_XFRM:
1274 return SECCLASS_NETLINK_XFRM_SOCKET;
1275 case NETLINK_SELINUX:
1276 return SECCLASS_NETLINK_SELINUX_SOCKET;
1277 case NETLINK_ISCSI:
1278 return SECCLASS_NETLINK_ISCSI_SOCKET;
1279 case NETLINK_AUDIT:
1280 return SECCLASS_NETLINK_AUDIT_SOCKET;
1281 case NETLINK_FIB_LOOKUP:
1282 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1283 case NETLINK_CONNECTOR:
1284 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1285 case NETLINK_NETFILTER:
1286 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1287 case NETLINK_DNRTMSG:
1288 return SECCLASS_NETLINK_DNRT_SOCKET;
1289 case NETLINK_KOBJECT_UEVENT:
1290 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1291 case NETLINK_GENERIC:
1292 return SECCLASS_NETLINK_GENERIC_SOCKET;
1293 case NETLINK_SCSITRANSPORT:
1294 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1295 case NETLINK_RDMA:
1296 return SECCLASS_NETLINK_RDMA_SOCKET;
1297 case NETLINK_CRYPTO:
1298 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1299 default:
1300 return SECCLASS_NETLINK_SOCKET;
1301 }
1302 case PF_PACKET:
1303 return SECCLASS_PACKET_SOCKET;
1304 case PF_KEY:
1305 return SECCLASS_KEY_SOCKET;
1306 case PF_APPLETALK:
1307 return SECCLASS_APPLETALK_SOCKET;
1308 }
1309
1310 return SECCLASS_SOCKET;
1311}
1312
1313static int selinux_genfs_get_sid(struct dentry *dentry,
1314 u16 tclass,
1315 u16 flags,
1316 u32 *sid)
1317{
1318 int rc;
1319 struct super_block *sb = dentry->d_inode->i_sb;
1320 char *buffer, *path;
1321
1322 buffer = (char *)__get_free_page(GFP_KERNEL);
1323 if (!buffer)
1324 return -ENOMEM;
1325
1326 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1327 if (IS_ERR(path))
1328 rc = PTR_ERR(path);
1329 else {
1330 if (flags & SE_SBPROC) {
1331 /* each process gets a /proc/PID/ entry. Strip off the
1332 * PID part to get a valid selinux labeling.
1333 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1334 while (path[1] >= '0' && path[1] <= '9') {
1335 path[1] = '/';
1336 path++;
1337 }
1338 }
1339 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1340 }
1341 free_page((unsigned long)buffer);
1342 return rc;
1343}
1344
1345/* The inode's security attributes must be initialized before first use. */
1346static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1347{
1348 struct superblock_security_struct *sbsec = NULL;
1349 struct inode_security_struct *isec = inode->i_security;
1350 u32 sid;
1351 struct dentry *dentry;
1352#define INITCONTEXTLEN 255
1353 char *context = NULL;
1354 unsigned len = 0;
1355 int rc = 0;
1356
1357 if (isec->initialized == LABEL_INITIALIZED)
1358 goto out;
1359
1360 mutex_lock(&isec->lock);
1361 if (isec->initialized == LABEL_INITIALIZED)
1362 goto out_unlock;
1363
1364 sbsec = inode->i_sb->s_security;
1365 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1366 /* Defer initialization until selinux_complete_init,
1367 after the initial policy is loaded and the security
1368 server is ready to handle calls. */
1369 spin_lock(&sbsec->isec_lock);
1370 if (list_empty(&isec->list))
1371 list_add(&isec->list, &sbsec->isec_head);
1372 spin_unlock(&sbsec->isec_lock);
1373 goto out_unlock;
1374 }
1375
1376 switch (sbsec->behavior) {
1377 case SECURITY_FS_USE_NATIVE:
1378 break;
1379 case SECURITY_FS_USE_XATTR:
1380 if (!inode->i_op->getxattr) {
1381 isec->sid = sbsec->def_sid;
1382 break;
1383 }
1384
1385 /* Need a dentry, since the xattr API requires one.
1386 Life would be simpler if we could just pass the inode. */
1387 if (opt_dentry) {
1388 /* Called from d_instantiate or d_splice_alias. */
1389 dentry = dget(opt_dentry);
1390 } else {
1391 /* Called from selinux_complete_init, try to find a dentry. */
1392 dentry = d_find_alias(inode);
1393 }
1394 if (!dentry) {
1395 /*
1396 * this is can be hit on boot when a file is accessed
1397 * before the policy is loaded. When we load policy we
1398 * may find inodes that have no dentry on the
1399 * sbsec->isec_head list. No reason to complain as these
1400 * will get fixed up the next time we go through
1401 * inode_doinit with a dentry, before these inodes could
1402 * be used again by userspace.
1403 */
1404 goto out_unlock;
1405 }
1406
1407 len = INITCONTEXTLEN;
1408 context = kmalloc(len+1, GFP_NOFS);
1409 if (!context) {
1410 rc = -ENOMEM;
1411 dput(dentry);
1412 goto out_unlock;
1413 }
1414 context[len] = '\0';
1415 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1416 context, len);
1417 if (rc == -ERANGE) {
1418 kfree(context);
1419
1420 /* Need a larger buffer. Query for the right size. */
1421 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1422 NULL, 0);
1423 if (rc < 0) {
1424 dput(dentry);
1425 goto out_unlock;
1426 }
1427 len = rc;
1428 context = kmalloc(len+1, GFP_NOFS);
1429 if (!context) {
1430 rc = -ENOMEM;
1431 dput(dentry);
1432 goto out_unlock;
1433 }
1434 context[len] = '\0';
1435 rc = inode->i_op->getxattr(dentry,
1436 XATTR_NAME_SELINUX,
1437 context, len);
1438 }
1439 dput(dentry);
1440 if (rc < 0) {
1441 if (rc != -ENODATA) {
1442 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1443 "%d for dev=%s ino=%ld\n", __func__,
1444 -rc, inode->i_sb->s_id, inode->i_ino);
1445 kfree(context);
1446 goto out_unlock;
1447 }
1448 /* Map ENODATA to the default file SID */
1449 sid = sbsec->def_sid;
1450 rc = 0;
1451 } else {
1452 rc = security_context_to_sid_default(context, rc, &sid,
1453 sbsec->def_sid,
1454 GFP_NOFS);
1455 if (rc) {
1456 char *dev = inode->i_sb->s_id;
1457 unsigned long ino = inode->i_ino;
1458
1459 if (rc == -EINVAL) {
1460 if (printk_ratelimit())
1461 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1462 "context=%s. This indicates you may need to relabel the inode or the "
1463 "filesystem in question.\n", ino, dev, context);
1464 } else {
1465 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1466 "returned %d for dev=%s ino=%ld\n",
1467 __func__, context, -rc, dev, ino);
1468 }
1469 kfree(context);
1470 /* Leave with the unlabeled SID */
1471 rc = 0;
1472 break;
1473 }
1474 }
1475 kfree(context);
1476 isec->sid = sid;
1477 break;
1478 case SECURITY_FS_USE_TASK:
1479 isec->sid = isec->task_sid;
1480 break;
1481 case SECURITY_FS_USE_TRANS:
1482 /* Default to the fs SID. */
1483 isec->sid = sbsec->sid;
1484
1485 /* Try to obtain a transition SID. */
1486 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1487 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1488 isec->sclass, NULL, &sid);
1489 if (rc)
1490 goto out_unlock;
1491 isec->sid = sid;
1492 break;
1493 case SECURITY_FS_USE_MNTPOINT:
1494 isec->sid = sbsec->mntpoint_sid;
1495 break;
1496 default:
1497 /* Default to the fs superblock SID. */
1498 isec->sid = sbsec->sid;
1499
1500 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1501 /* We must have a dentry to determine the label on
1502 * procfs inodes */
1503 if (opt_dentry)
1504 /* Called from d_instantiate or
1505 * d_splice_alias. */
1506 dentry = dget(opt_dentry);
1507 else
1508 /* Called from selinux_complete_init, try to
1509 * find a dentry. */
1510 dentry = d_find_alias(inode);
1511 /*
1512 * This can be hit on boot when a file is accessed
1513 * before the policy is loaded. When we load policy we
1514 * may find inodes that have no dentry on the
1515 * sbsec->isec_head list. No reason to complain as
1516 * these will get fixed up the next time we go through
1517 * inode_doinit() with a dentry, before these inodes
1518 * could be used again by userspace.
1519 */
1520 if (!dentry)
1521 goto out_unlock;
1522 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1523 rc = selinux_genfs_get_sid(dentry, isec->sclass,
1524 sbsec->flags, &sid);
1525 dput(dentry);
1526 if (rc)
1527 goto out_unlock;
1528 isec->sid = sid;
1529 }
1530 break;
1531 }
1532
1533 isec->initialized = LABEL_INITIALIZED;
1534
1535out_unlock:
1536 mutex_unlock(&isec->lock);
1537out:
1538 if (isec->sclass == SECCLASS_FILE)
1539 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1540 return rc;
1541}
1542
1543/* Convert a Linux signal to an access vector. */
1544static inline u32 signal_to_av(int sig)
1545{
1546 u32 perm = 0;
1547
1548 switch (sig) {
1549 case SIGCHLD:
1550 /* Commonly granted from child to parent. */
1551 perm = PROCESS__SIGCHLD;
1552 break;
1553 case SIGKILL:
1554 /* Cannot be caught or ignored */
1555 perm = PROCESS__SIGKILL;
1556 break;
1557 case SIGSTOP:
1558 /* Cannot be caught or ignored */
1559 perm = PROCESS__SIGSTOP;
1560 break;
1561 default:
1562 /* All other signals. */
1563 perm = PROCESS__SIGNAL;
1564 break;
1565 }
1566
1567 return perm;
1568}
1569
1570/*
1571 * Check permission between a pair of credentials
1572 * fork check, ptrace check, etc.
1573 */
1574static int cred_has_perm(const struct cred *actor,
1575 const struct cred *target,
1576 u32 perms)
1577{
1578 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1579
1580 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1581}
1582
1583/*
1584 * Check permission between a pair of tasks, e.g. signal checks,
1585 * fork check, ptrace check, etc.
1586 * tsk1 is the actor and tsk2 is the target
1587 * - this uses the default subjective creds of tsk1
1588 */
1589static int task_has_perm(const struct task_struct *tsk1,
1590 const struct task_struct *tsk2,
1591 u32 perms)
1592{
1593 const struct task_security_struct *__tsec1, *__tsec2;
1594 u32 sid1, sid2;
1595
1596 rcu_read_lock();
1597 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1598 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1599 rcu_read_unlock();
1600 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1601}
1602
1603/*
1604 * Check permission between current and another task, e.g. signal checks,
1605 * fork check, ptrace check, etc.
1606 * current is the actor and tsk2 is the target
1607 * - this uses current's subjective creds
1608 */
1609static int current_has_perm(const struct task_struct *tsk,
1610 u32 perms)
1611{
1612 u32 sid, tsid;
1613
1614 sid = current_sid();
1615 tsid = task_sid(tsk);
1616 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625 int cap, int audit)
1626{
1627 struct common_audit_data ad;
1628 struct av_decision avd;
1629 u16 sclass;
1630 u32 sid = cred_sid(cred);
1631 u32 av = CAP_TO_MASK(cap);
1632 int rc;
1633
1634 ad.type = LSM_AUDIT_DATA_CAP;
1635 ad.u.cap = cap;
1636
1637 switch (CAP_TO_INDEX(cap)) {
1638 case 0:
1639 sclass = SECCLASS_CAPABILITY;
1640 break;
1641 case 1:
1642 sclass = SECCLASS_CAPABILITY2;
1643 break;
1644 default:
1645 printk(KERN_ERR
1646 "SELinux: out of range capability %d\n", cap);
1647 BUG();
1648 return -EINVAL;
1649 }
1650
1651 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1652 if (audit == SECURITY_CAP_AUDIT) {
1653 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1654 if (rc2)
1655 return rc2;
1656 }
1657 return rc;
1658}
1659
1660/* Check whether a task is allowed to use a system operation. */
1661static int task_has_system(struct task_struct *tsk,
1662 u32 perms)
1663{
1664 u32 sid = task_sid(tsk);
1665
1666 return avc_has_perm(sid, SECINITSID_KERNEL,
1667 SECCLASS_SYSTEM, perms, NULL);
1668}
1669
1670/* Check whether a task has a particular permission to an inode.
1671 The 'adp' parameter is optional and allows other audit
1672 data to be passed (e.g. the dentry). */
1673static int inode_has_perm(const struct cred *cred,
1674 struct inode *inode,
1675 u32 perms,
1676 struct common_audit_data *adp)
1677{
1678 struct inode_security_struct *isec;
1679 u32 sid;
1680
1681 validate_creds(cred);
1682
1683 if (unlikely(IS_PRIVATE(inode)))
1684 return 0;
1685
1686 sid = cred_sid(cred);
1687 isec = inode->i_security;
1688
1689 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1690}
1691
1692/* Same as inode_has_perm, but pass explicit audit data containing
1693 the dentry to help the auditing code to more easily generate the
1694 pathname if needed. */
1695static inline int dentry_has_perm(const struct cred *cred,
1696 struct dentry *dentry,
1697 u32 av)
1698{
1699 struct inode *inode = d_backing_inode(dentry);
1700 struct common_audit_data ad;
1701
1702 ad.type = LSM_AUDIT_DATA_DENTRY;
1703 ad.u.dentry = dentry;
1704 __inode_security_revalidate(inode, dentry, true);
1705 return inode_has_perm(cred, inode, av, &ad);
1706}
1707
1708/* Same as inode_has_perm, but pass explicit audit data containing
1709 the path to help the auditing code to more easily generate the
1710 pathname if needed. */
1711static inline int path_has_perm(const struct cred *cred,
1712 const struct path *path,
1713 u32 av)
1714{
1715 struct inode *inode = d_backing_inode(path->dentry);
1716 struct common_audit_data ad;
1717
1718 ad.type = LSM_AUDIT_DATA_PATH;
1719 ad.u.path = *path;
1720 __inode_security_revalidate(inode, path->dentry, true);
1721 return inode_has_perm(cred, inode, av, &ad);
1722}
1723
1724/* Same as path_has_perm, but uses the inode from the file struct. */
1725static inline int file_path_has_perm(const struct cred *cred,
1726 struct file *file,
1727 u32 av)
1728{
1729 struct common_audit_data ad;
1730
1731 ad.type = LSM_AUDIT_DATA_PATH;
1732 ad.u.path = file->f_path;
1733 return inode_has_perm(cred, file_inode(file), av, &ad);
1734}
1735
1736/* Check whether a task can use an open file descriptor to
1737 access an inode in a given way. Check access to the
1738 descriptor itself, and then use dentry_has_perm to
1739 check a particular permission to the file.
1740 Access to the descriptor is implicitly granted if it
1741 has the same SID as the process. If av is zero, then
1742 access to the file is not checked, e.g. for cases
1743 where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745 struct file *file,
1746 u32 av)
1747{
1748 struct file_security_struct *fsec = file->f_security;
1749 struct inode *inode = file_inode(file);
1750 struct common_audit_data ad;
1751 u32 sid = cred_sid(cred);
1752 int rc;
1753
1754 ad.type = LSM_AUDIT_DATA_PATH;
1755 ad.u.path = file->f_path;
1756
1757 if (sid != fsec->sid) {
1758 rc = avc_has_perm(sid, fsec->sid,
1759 SECCLASS_FD,
1760 FD__USE,
1761 &ad);
1762 if (rc)
1763 goto out;
1764 }
1765
1766 /* av is zero if only checking access to the descriptor. */
1767 rc = 0;
1768 if (av)
1769 rc = inode_has_perm(cred, inode, av, &ad);
1770
1771out:
1772 return rc;
1773}
1774
1775/*
1776 * Determine the label for an inode that might be unioned.
1777 */
1778static int selinux_determine_inode_label(struct inode *dir,
1779 const struct qstr *name,
1780 u16 tclass,
1781 u32 *_new_isid)
1782{
1783 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1784 const struct inode_security_struct *dsec = inode_security(dir);
1785 const struct task_security_struct *tsec = current_security();
1786
1787 if ((sbsec->flags & SE_SBINITIALIZED) &&
1788 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1789 *_new_isid = sbsec->mntpoint_sid;
1790 } else if ((sbsec->flags & SBLABEL_MNT) &&
1791 tsec->create_sid) {
1792 *_new_isid = tsec->create_sid;
1793 } else {
1794 return security_transition_sid(tsec->sid, dsec->sid, tclass,
1795 name, _new_isid);
1796 }
1797
1798 return 0;
1799}
1800
1801/* Check whether a task can create a file. */
1802static int may_create(struct inode *dir,
1803 struct dentry *dentry,
1804 u16 tclass)
1805{
1806 const struct task_security_struct *tsec = current_security();
1807 struct inode_security_struct *dsec;
1808 struct superblock_security_struct *sbsec;
1809 u32 sid, newsid;
1810 struct common_audit_data ad;
1811 int rc;
1812
1813 dsec = inode_security(dir);
1814 sbsec = dir->i_sb->s_security;
1815
1816 sid = tsec->sid;
1817
1818 ad.type = LSM_AUDIT_DATA_DENTRY;
1819 ad.u.dentry = dentry;
1820
1821 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1822 DIR__ADD_NAME | DIR__SEARCH,
1823 &ad);
1824 if (rc)
1825 return rc;
1826
1827 rc = selinux_determine_inode_label(dir, &dentry->d_name, tclass,
1828 &newsid);
1829 if (rc)
1830 return rc;
1831
1832 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1833 if (rc)
1834 return rc;
1835
1836 return avc_has_perm(newsid, sbsec->sid,
1837 SECCLASS_FILESYSTEM,
1838 FILESYSTEM__ASSOCIATE, &ad);
1839}
1840
1841/* Check whether a task can create a key. */
1842static int may_create_key(u32 ksid,
1843 struct task_struct *ctx)
1844{
1845 u32 sid = task_sid(ctx);
1846
1847 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1848}
1849
1850#define MAY_LINK 0
1851#define MAY_UNLINK 1
1852#define MAY_RMDIR 2
1853
1854/* Check whether a task can link, unlink, or rmdir a file/directory. */
1855static int may_link(struct inode *dir,
1856 struct dentry *dentry,
1857 int kind)
1858
1859{
1860 struct inode_security_struct *dsec, *isec;
1861 struct common_audit_data ad;
1862 u32 sid = current_sid();
1863 u32 av;
1864 int rc;
1865
1866 dsec = inode_security(dir);
1867 isec = backing_inode_security(dentry);
1868
1869 ad.type = LSM_AUDIT_DATA_DENTRY;
1870 ad.u.dentry = dentry;
1871
1872 av = DIR__SEARCH;
1873 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1874 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1875 if (rc)
1876 return rc;
1877
1878 switch (kind) {
1879 case MAY_LINK:
1880 av = FILE__LINK;
1881 break;
1882 case MAY_UNLINK:
1883 av = FILE__UNLINK;
1884 break;
1885 case MAY_RMDIR:
1886 av = DIR__RMDIR;
1887 break;
1888 default:
1889 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1890 __func__, kind);
1891 return 0;
1892 }
1893
1894 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1895 return rc;
1896}
1897
1898static inline int may_rename(struct inode *old_dir,
1899 struct dentry *old_dentry,
1900 struct inode *new_dir,
1901 struct dentry *new_dentry)
1902{
1903 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1904 struct common_audit_data ad;
1905 u32 sid = current_sid();
1906 u32 av;
1907 int old_is_dir, new_is_dir;
1908 int rc;
1909
1910 old_dsec = inode_security(old_dir);
1911 old_isec = backing_inode_security(old_dentry);
1912 old_is_dir = d_is_dir(old_dentry);
1913 new_dsec = inode_security(new_dir);
1914
1915 ad.type = LSM_AUDIT_DATA_DENTRY;
1916
1917 ad.u.dentry = old_dentry;
1918 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1919 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1920 if (rc)
1921 return rc;
1922 rc = avc_has_perm(sid, old_isec->sid,
1923 old_isec->sclass, FILE__RENAME, &ad);
1924 if (rc)
1925 return rc;
1926 if (old_is_dir && new_dir != old_dir) {
1927 rc = avc_has_perm(sid, old_isec->sid,
1928 old_isec->sclass, DIR__REPARENT, &ad);
1929 if (rc)
1930 return rc;
1931 }
1932
1933 ad.u.dentry = new_dentry;
1934 av = DIR__ADD_NAME | DIR__SEARCH;
1935 if (d_is_positive(new_dentry))
1936 av |= DIR__REMOVE_NAME;
1937 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1938 if (rc)
1939 return rc;
1940 if (d_is_positive(new_dentry)) {
1941 new_isec = backing_inode_security(new_dentry);
1942 new_is_dir = d_is_dir(new_dentry);
1943 rc = avc_has_perm(sid, new_isec->sid,
1944 new_isec->sclass,
1945 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1946 if (rc)
1947 return rc;
1948 }
1949
1950 return 0;
1951}
1952
1953/* Check whether a task can perform a filesystem operation. */
1954static int superblock_has_perm(const struct cred *cred,
1955 struct super_block *sb,
1956 u32 perms,
1957 struct common_audit_data *ad)
1958{
1959 struct superblock_security_struct *sbsec;
1960 u32 sid = cred_sid(cred);
1961
1962 sbsec = sb->s_security;
1963 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1964}
1965
1966/* Convert a Linux mode and permission mask to an access vector. */
1967static inline u32 file_mask_to_av(int mode, int mask)
1968{
1969 u32 av = 0;
1970
1971 if (!S_ISDIR(mode)) {
1972 if (mask & MAY_EXEC)
1973 av |= FILE__EXECUTE;
1974 if (mask & MAY_READ)
1975 av |= FILE__READ;
1976
1977 if (mask & MAY_APPEND)
1978 av |= FILE__APPEND;
1979 else if (mask & MAY_WRITE)
1980 av |= FILE__WRITE;
1981
1982 } else {
1983 if (mask & MAY_EXEC)
1984 av |= DIR__SEARCH;
1985 if (mask & MAY_WRITE)
1986 av |= DIR__WRITE;
1987 if (mask & MAY_READ)
1988 av |= DIR__READ;
1989 }
1990
1991 return av;
1992}
1993
1994/* Convert a Linux file to an access vector. */
1995static inline u32 file_to_av(struct file *file)
1996{
1997 u32 av = 0;
1998
1999 if (file->f_mode & FMODE_READ)
2000 av |= FILE__READ;
2001 if (file->f_mode & FMODE_WRITE) {
2002 if (file->f_flags & O_APPEND)
2003 av |= FILE__APPEND;
2004 else
2005 av |= FILE__WRITE;
2006 }
2007 if (!av) {
2008 /*
2009 * Special file opened with flags 3 for ioctl-only use.
2010 */
2011 av = FILE__IOCTL;
2012 }
2013
2014 return av;
2015}
2016
2017/*
2018 * Convert a file to an access vector and include the correct open
2019 * open permission.
2020 */
2021static inline u32 open_file_to_av(struct file *file)
2022{
2023 u32 av = file_to_av(file);
2024
2025 if (selinux_policycap_openperm)
2026 av |= FILE__OPEN;
2027
2028 return av;
2029}
2030
2031/* Hook functions begin here. */
2032
2033static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2034{
2035 u32 mysid = current_sid();
2036 u32 mgrsid = task_sid(mgr);
2037
2038 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2039 BINDER__SET_CONTEXT_MGR, NULL);
2040}
2041
2042static int selinux_binder_transaction(struct task_struct *from,
2043 struct task_struct *to)
2044{
2045 u32 mysid = current_sid();
2046 u32 fromsid = task_sid(from);
2047 u32 tosid = task_sid(to);
2048 int rc;
2049
2050 if (mysid != fromsid) {
2051 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2052 BINDER__IMPERSONATE, NULL);
2053 if (rc)
2054 return rc;
2055 }
2056
2057 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2058 NULL);
2059}
2060
2061static int selinux_binder_transfer_binder(struct task_struct *from,
2062 struct task_struct *to)
2063{
2064 u32 fromsid = task_sid(from);
2065 u32 tosid = task_sid(to);
2066
2067 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2068 NULL);
2069}
2070
2071static int selinux_binder_transfer_file(struct task_struct *from,
2072 struct task_struct *to,
2073 struct file *file)
2074{
2075 u32 sid = task_sid(to);
2076 struct file_security_struct *fsec = file->f_security;
2077 struct dentry *dentry = file->f_path.dentry;
2078 struct inode_security_struct *isec = backing_inode_security(dentry);
2079 struct common_audit_data ad;
2080 int rc;
2081
2082 ad.type = LSM_AUDIT_DATA_PATH;
2083 ad.u.path = file->f_path;
2084
2085 if (sid != fsec->sid) {
2086 rc = avc_has_perm(sid, fsec->sid,
2087 SECCLASS_FD,
2088 FD__USE,
2089 &ad);
2090 if (rc)
2091 return rc;
2092 }
2093
2094 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2095 return 0;
2096
2097 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2098 &ad);
2099}
2100
2101static int selinux_ptrace_access_check(struct task_struct *child,
2102 unsigned int mode)
2103{
2104 if (mode & PTRACE_MODE_READ) {
2105 u32 sid = current_sid();
2106 u32 csid = task_sid(child);
2107 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2108 }
2109
2110 return current_has_perm(child, PROCESS__PTRACE);
2111}
2112
2113static int selinux_ptrace_traceme(struct task_struct *parent)
2114{
2115 return task_has_perm(parent, current, PROCESS__PTRACE);
2116}
2117
2118static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2119 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2120{
2121 return current_has_perm(target, PROCESS__GETCAP);
2122}
2123
2124static int selinux_capset(struct cred *new, const struct cred *old,
2125 const kernel_cap_t *effective,
2126 const kernel_cap_t *inheritable,
2127 const kernel_cap_t *permitted)
2128{
2129 return cred_has_perm(old, new, PROCESS__SETCAP);
2130}
2131
2132/*
2133 * (This comment used to live with the selinux_task_setuid hook,
2134 * which was removed).
2135 *
2136 * Since setuid only affects the current process, and since the SELinux
2137 * controls are not based on the Linux identity attributes, SELinux does not
2138 * need to control this operation. However, SELinux does control the use of
2139 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2140 */
2141
2142static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2143 int cap, int audit)
2144{
2145 return cred_has_capability(cred, cap, audit);
2146}
2147
2148static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2149{
2150 const struct cred *cred = current_cred();
2151 int rc = 0;
2152
2153 if (!sb)
2154 return 0;
2155
2156 switch (cmds) {
2157 case Q_SYNC:
2158 case Q_QUOTAON:
2159 case Q_QUOTAOFF:
2160 case Q_SETINFO:
2161 case Q_SETQUOTA:
2162 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2163 break;
2164 case Q_GETFMT:
2165 case Q_GETINFO:
2166 case Q_GETQUOTA:
2167 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2168 break;
2169 default:
2170 rc = 0; /* let the kernel handle invalid cmds */
2171 break;
2172 }
2173 return rc;
2174}
2175
2176static int selinux_quota_on(struct dentry *dentry)
2177{
2178 const struct cred *cred = current_cred();
2179
2180 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2181}
2182
2183static int selinux_syslog(int type)
2184{
2185 int rc;
2186
2187 switch (type) {
2188 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2189 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2190 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2191 break;
2192 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2193 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2194 /* Set level of messages printed to console */
2195 case SYSLOG_ACTION_CONSOLE_LEVEL:
2196 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2197 break;
2198 case SYSLOG_ACTION_CLOSE: /* Close log */
2199 case SYSLOG_ACTION_OPEN: /* Open log */
2200 case SYSLOG_ACTION_READ: /* Read from log */
2201 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2202 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2203 default:
2204 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2205 break;
2206 }
2207 return rc;
2208}
2209
2210/*
2211 * Check that a process has enough memory to allocate a new virtual
2212 * mapping. 0 means there is enough memory for the allocation to
2213 * succeed and -ENOMEM implies there is not.
2214 *
2215 * Do not audit the selinux permission check, as this is applied to all
2216 * processes that allocate mappings.
2217 */
2218static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2219{
2220 int rc, cap_sys_admin = 0;
2221
2222 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2223 SECURITY_CAP_NOAUDIT);
2224 if (rc == 0)
2225 cap_sys_admin = 1;
2226
2227 return cap_sys_admin;
2228}
2229
2230/* binprm security operations */
2231
2232static int check_nnp_nosuid(const struct linux_binprm *bprm,
2233 const struct task_security_struct *old_tsec,
2234 const struct task_security_struct *new_tsec)
2235{
2236 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2237 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2238 int rc;
2239
2240 if (!nnp && !nosuid)
2241 return 0; /* neither NNP nor nosuid */
2242
2243 if (new_tsec->sid == old_tsec->sid)
2244 return 0; /* No change in credentials */
2245
2246 /*
2247 * The only transitions we permit under NNP or nosuid
2248 * are transitions to bounded SIDs, i.e. SIDs that are
2249 * guaranteed to only be allowed a subset of the permissions
2250 * of the current SID.
2251 */
2252 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2253 if (rc) {
2254 /*
2255 * On failure, preserve the errno values for NNP vs nosuid.
2256 * NNP: Operation not permitted for caller.
2257 * nosuid: Permission denied to file.
2258 */
2259 if (nnp)
2260 return -EPERM;
2261 else
2262 return -EACCES;
2263 }
2264 return 0;
2265}
2266
2267static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2268{
2269 const struct task_security_struct *old_tsec;
2270 struct task_security_struct *new_tsec;
2271 struct inode_security_struct *isec;
2272 struct common_audit_data ad;
2273 struct inode *inode = file_inode(bprm->file);
2274 int rc;
2275
2276 /* SELinux context only depends on initial program or script and not
2277 * the script interpreter */
2278 if (bprm->cred_prepared)
2279 return 0;
2280
2281 old_tsec = current_security();
2282 new_tsec = bprm->cred->security;
2283 isec = inode_security(inode);
2284
2285 /* Default to the current task SID. */
2286 new_tsec->sid = old_tsec->sid;
2287 new_tsec->osid = old_tsec->sid;
2288
2289 /* Reset fs, key, and sock SIDs on execve. */
2290 new_tsec->create_sid = 0;
2291 new_tsec->keycreate_sid = 0;
2292 new_tsec->sockcreate_sid = 0;
2293
2294 if (old_tsec->exec_sid) {
2295 new_tsec->sid = old_tsec->exec_sid;
2296 /* Reset exec SID on execve. */
2297 new_tsec->exec_sid = 0;
2298
2299 /* Fail on NNP or nosuid if not an allowed transition. */
2300 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2301 if (rc)
2302 return rc;
2303 } else {
2304 /* Check for a default transition on this program. */
2305 rc = security_transition_sid(old_tsec->sid, isec->sid,
2306 SECCLASS_PROCESS, NULL,
2307 &new_tsec->sid);
2308 if (rc)
2309 return rc;
2310
2311 /*
2312 * Fallback to old SID on NNP or nosuid if not an allowed
2313 * transition.
2314 */
2315 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2316 if (rc)
2317 new_tsec->sid = old_tsec->sid;
2318 }
2319
2320 ad.type = LSM_AUDIT_DATA_PATH;
2321 ad.u.path = bprm->file->f_path;
2322
2323 if (new_tsec->sid == old_tsec->sid) {
2324 rc = avc_has_perm(old_tsec->sid, isec->sid,
2325 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2326 if (rc)
2327 return rc;
2328 } else {
2329 /* Check permissions for the transition. */
2330 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2331 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2332 if (rc)
2333 return rc;
2334
2335 rc = avc_has_perm(new_tsec->sid, isec->sid,
2336 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2337 if (rc)
2338 return rc;
2339
2340 /* Check for shared state */
2341 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2342 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2343 SECCLASS_PROCESS, PROCESS__SHARE,
2344 NULL);
2345 if (rc)
2346 return -EPERM;
2347 }
2348
2349 /* Make sure that anyone attempting to ptrace over a task that
2350 * changes its SID has the appropriate permit */
2351 if (bprm->unsafe &
2352 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2353 struct task_struct *tracer;
2354 struct task_security_struct *sec;
2355 u32 ptsid = 0;
2356
2357 rcu_read_lock();
2358 tracer = ptrace_parent(current);
2359 if (likely(tracer != NULL)) {
2360 sec = __task_cred(tracer)->security;
2361 ptsid = sec->sid;
2362 }
2363 rcu_read_unlock();
2364
2365 if (ptsid != 0) {
2366 rc = avc_has_perm(ptsid, new_tsec->sid,
2367 SECCLASS_PROCESS,
2368 PROCESS__PTRACE, NULL);
2369 if (rc)
2370 return -EPERM;
2371 }
2372 }
2373
2374 /* Clear any possibly unsafe personality bits on exec: */
2375 bprm->per_clear |= PER_CLEAR_ON_SETID;
2376 }
2377
2378 return 0;
2379}
2380
2381static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2382{
2383 const struct task_security_struct *tsec = current_security();
2384 u32 sid, osid;
2385 int atsecure = 0;
2386
2387 sid = tsec->sid;
2388 osid = tsec->osid;
2389
2390 if (osid != sid) {
2391 /* Enable secure mode for SIDs transitions unless
2392 the noatsecure permission is granted between
2393 the two SIDs, i.e. ahp returns 0. */
2394 atsecure = avc_has_perm(osid, sid,
2395 SECCLASS_PROCESS,
2396 PROCESS__NOATSECURE, NULL);
2397 }
2398
2399 return !!atsecure;
2400}
2401
2402static int match_file(const void *p, struct file *file, unsigned fd)
2403{
2404 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2405}
2406
2407/* Derived from fs/exec.c:flush_old_files. */
2408static inline void flush_unauthorized_files(const struct cred *cred,
2409 struct files_struct *files)
2410{
2411 struct file *file, *devnull = NULL;
2412 struct tty_struct *tty;
2413 int drop_tty = 0;
2414 unsigned n;
2415
2416 tty = get_current_tty();
2417 if (tty) {
2418 spin_lock(&tty->files_lock);
2419 if (!list_empty(&tty->tty_files)) {
2420 struct tty_file_private *file_priv;
2421
2422 /* Revalidate access to controlling tty.
2423 Use file_path_has_perm on the tty path directly
2424 rather than using file_has_perm, as this particular
2425 open file may belong to another process and we are
2426 only interested in the inode-based check here. */
2427 file_priv = list_first_entry(&tty->tty_files,
2428 struct tty_file_private, list);
2429 file = file_priv->file;
2430 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2431 drop_tty = 1;
2432 }
2433 spin_unlock(&tty->files_lock);
2434 tty_kref_put(tty);
2435 }
2436 /* Reset controlling tty. */
2437 if (drop_tty)
2438 no_tty();
2439
2440 /* Revalidate access to inherited open files. */
2441 n = iterate_fd(files, 0, match_file, cred);
2442 if (!n) /* none found? */
2443 return;
2444
2445 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2446 if (IS_ERR(devnull))
2447 devnull = NULL;
2448 /* replace all the matching ones with this */
2449 do {
2450 replace_fd(n - 1, devnull, 0);
2451 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2452 if (devnull)
2453 fput(devnull);
2454}
2455
2456/*
2457 * Prepare a process for imminent new credential changes due to exec
2458 */
2459static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2460{
2461 struct task_security_struct *new_tsec;
2462 struct rlimit *rlim, *initrlim;
2463 int rc, i;
2464
2465 new_tsec = bprm->cred->security;
2466 if (new_tsec->sid == new_tsec->osid)
2467 return;
2468
2469 /* Close files for which the new task SID is not authorized. */
2470 flush_unauthorized_files(bprm->cred, current->files);
2471
2472 /* Always clear parent death signal on SID transitions. */
2473 current->pdeath_signal = 0;
2474
2475 /* Check whether the new SID can inherit resource limits from the old
2476 * SID. If not, reset all soft limits to the lower of the current
2477 * task's hard limit and the init task's soft limit.
2478 *
2479 * Note that the setting of hard limits (even to lower them) can be
2480 * controlled by the setrlimit check. The inclusion of the init task's
2481 * soft limit into the computation is to avoid resetting soft limits
2482 * higher than the default soft limit for cases where the default is
2483 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2484 */
2485 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2486 PROCESS__RLIMITINH, NULL);
2487 if (rc) {
2488 /* protect against do_prlimit() */
2489 task_lock(current);
2490 for (i = 0; i < RLIM_NLIMITS; i++) {
2491 rlim = current->signal->rlim + i;
2492 initrlim = init_task.signal->rlim + i;
2493 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2494 }
2495 task_unlock(current);
2496 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2497 }
2498}
2499
2500/*
2501 * Clean up the process immediately after the installation of new credentials
2502 * due to exec
2503 */
2504static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2505{
2506 const struct task_security_struct *tsec = current_security();
2507 struct itimerval itimer;
2508 u32 osid, sid;
2509 int rc, i;
2510
2511 osid = tsec->osid;
2512 sid = tsec->sid;
2513
2514 if (sid == osid)
2515 return;
2516
2517 /* Check whether the new SID can inherit signal state from the old SID.
2518 * If not, clear itimers to avoid subsequent signal generation and
2519 * flush and unblock signals.
2520 *
2521 * This must occur _after_ the task SID has been updated so that any
2522 * kill done after the flush will be checked against the new SID.
2523 */
2524 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2525 if (rc) {
2526 memset(&itimer, 0, sizeof itimer);
2527 for (i = 0; i < 3; i++)
2528 do_setitimer(i, &itimer, NULL);
2529 spin_lock_irq(¤t->sighand->siglock);
2530 if (!fatal_signal_pending(current)) {
2531 flush_sigqueue(¤t->pending);
2532 flush_sigqueue(¤t->signal->shared_pending);
2533 flush_signal_handlers(current, 1);
2534 sigemptyset(¤t->blocked);
2535 recalc_sigpending();
2536 }
2537 spin_unlock_irq(¤t->sighand->siglock);
2538 }
2539
2540 /* Wake up the parent if it is waiting so that it can recheck
2541 * wait permission to the new task SID. */
2542 read_lock(&tasklist_lock);
2543 __wake_up_parent(current, current->real_parent);
2544 read_unlock(&tasklist_lock);
2545}
2546
2547/* superblock security operations */
2548
2549static int selinux_sb_alloc_security(struct super_block *sb)
2550{
2551 return superblock_alloc_security(sb);
2552}
2553
2554static void selinux_sb_free_security(struct super_block *sb)
2555{
2556 superblock_free_security(sb);
2557}
2558
2559static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2560{
2561 if (plen > olen)
2562 return 0;
2563
2564 return !memcmp(prefix, option, plen);
2565}
2566
2567static inline int selinux_option(char *option, int len)
2568{
2569 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2570 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2571 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2572 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2573 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2574}
2575
2576static inline void take_option(char **to, char *from, int *first, int len)
2577{
2578 if (!*first) {
2579 **to = ',';
2580 *to += 1;
2581 } else
2582 *first = 0;
2583 memcpy(*to, from, len);
2584 *to += len;
2585}
2586
2587static inline void take_selinux_option(char **to, char *from, int *first,
2588 int len)
2589{
2590 int current_size = 0;
2591
2592 if (!*first) {
2593 **to = '|';
2594 *to += 1;
2595 } else
2596 *first = 0;
2597
2598 while (current_size < len) {
2599 if (*from != '"') {
2600 **to = *from;
2601 *to += 1;
2602 }
2603 from += 1;
2604 current_size += 1;
2605 }
2606}
2607
2608static int selinux_sb_copy_data(char *orig, char *copy)
2609{
2610 int fnosec, fsec, rc = 0;
2611 char *in_save, *in_curr, *in_end;
2612 char *sec_curr, *nosec_save, *nosec;
2613 int open_quote = 0;
2614
2615 in_curr = orig;
2616 sec_curr = copy;
2617
2618 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2619 if (!nosec) {
2620 rc = -ENOMEM;
2621 goto out;
2622 }
2623
2624 nosec_save = nosec;
2625 fnosec = fsec = 1;
2626 in_save = in_end = orig;
2627
2628 do {
2629 if (*in_end == '"')
2630 open_quote = !open_quote;
2631 if ((*in_end == ',' && open_quote == 0) ||
2632 *in_end == '\0') {
2633 int len = in_end - in_curr;
2634
2635 if (selinux_option(in_curr, len))
2636 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2637 else
2638 take_option(&nosec, in_curr, &fnosec, len);
2639
2640 in_curr = in_end + 1;
2641 }
2642 } while (*in_end++);
2643
2644 strcpy(in_save, nosec_save);
2645 free_page((unsigned long)nosec_save);
2646out:
2647 return rc;
2648}
2649
2650static int selinux_sb_remount(struct super_block *sb, void *data)
2651{
2652 int rc, i, *flags;
2653 struct security_mnt_opts opts;
2654 char *secdata, **mount_options;
2655 struct superblock_security_struct *sbsec = sb->s_security;
2656
2657 if (!(sbsec->flags & SE_SBINITIALIZED))
2658 return 0;
2659
2660 if (!data)
2661 return 0;
2662
2663 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2664 return 0;
2665
2666 security_init_mnt_opts(&opts);
2667 secdata = alloc_secdata();
2668 if (!secdata)
2669 return -ENOMEM;
2670 rc = selinux_sb_copy_data(data, secdata);
2671 if (rc)
2672 goto out_free_secdata;
2673
2674 rc = selinux_parse_opts_str(secdata, &opts);
2675 if (rc)
2676 goto out_free_secdata;
2677
2678 mount_options = opts.mnt_opts;
2679 flags = opts.mnt_opts_flags;
2680
2681 for (i = 0; i < opts.num_mnt_opts; i++) {
2682 u32 sid;
2683
2684 if (flags[i] == SBLABEL_MNT)
2685 continue;
2686 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2687 if (rc) {
2688 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2689 "(%s) failed for (dev %s, type %s) errno=%d\n",
2690 mount_options[i], sb->s_id, sb->s_type->name, rc);
2691 goto out_free_opts;
2692 }
2693 rc = -EINVAL;
2694 switch (flags[i]) {
2695 case FSCONTEXT_MNT:
2696 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2697 goto out_bad_option;
2698 break;
2699 case CONTEXT_MNT:
2700 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2701 goto out_bad_option;
2702 break;
2703 case ROOTCONTEXT_MNT: {
2704 struct inode_security_struct *root_isec;
2705 root_isec = backing_inode_security(sb->s_root);
2706
2707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2708 goto out_bad_option;
2709 break;
2710 }
2711 case DEFCONTEXT_MNT:
2712 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2713 goto out_bad_option;
2714 break;
2715 default:
2716 goto out_free_opts;
2717 }
2718 }
2719
2720 rc = 0;
2721out_free_opts:
2722 security_free_mnt_opts(&opts);
2723out_free_secdata:
2724 free_secdata(secdata);
2725 return rc;
2726out_bad_option:
2727 printk(KERN_WARNING "SELinux: unable to change security options "
2728 "during remount (dev %s, type=%s)\n", sb->s_id,
2729 sb->s_type->name);
2730 goto out_free_opts;
2731}
2732
2733static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2734{
2735 const struct cred *cred = current_cred();
2736 struct common_audit_data ad;
2737 int rc;
2738
2739 rc = superblock_doinit(sb, data);
2740 if (rc)
2741 return rc;
2742
2743 /* Allow all mounts performed by the kernel */
2744 if (flags & MS_KERNMOUNT)
2745 return 0;
2746
2747 ad.type = LSM_AUDIT_DATA_DENTRY;
2748 ad.u.dentry = sb->s_root;
2749 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2750}
2751
2752static int selinux_sb_statfs(struct dentry *dentry)
2753{
2754 const struct cred *cred = current_cred();
2755 struct common_audit_data ad;
2756
2757 ad.type = LSM_AUDIT_DATA_DENTRY;
2758 ad.u.dentry = dentry->d_sb->s_root;
2759 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2760}
2761
2762static int selinux_mount(const char *dev_name,
2763 struct path *path,
2764 const char *type,
2765 unsigned long flags,
2766 void *data)
2767{
2768 const struct cred *cred = current_cred();
2769
2770 if (flags & MS_REMOUNT)
2771 return superblock_has_perm(cred, path->dentry->d_sb,
2772 FILESYSTEM__REMOUNT, NULL);
2773 else
2774 return path_has_perm(cred, path, FILE__MOUNTON);
2775}
2776
2777static int selinux_umount(struct vfsmount *mnt, int flags)
2778{
2779 const struct cred *cred = current_cred();
2780
2781 return superblock_has_perm(cred, mnt->mnt_sb,
2782 FILESYSTEM__UNMOUNT, NULL);
2783}
2784
2785/* inode security operations */
2786
2787static int selinux_inode_alloc_security(struct inode *inode)
2788{
2789 return inode_alloc_security(inode);
2790}
2791
2792static void selinux_inode_free_security(struct inode *inode)
2793{
2794 inode_free_security(inode);
2795}
2796
2797static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2798 struct qstr *name, void **ctx,
2799 u32 *ctxlen)
2800{
2801 u32 newsid;
2802 int rc;
2803
2804 rc = selinux_determine_inode_label(d_inode(dentry->d_parent), name,
2805 inode_mode_to_security_class(mode),
2806 &newsid);
2807 if (rc)
2808 return rc;
2809
2810 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2811}
2812
2813static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2814 const struct qstr *qstr,
2815 const char **name,
2816 void **value, size_t *len)
2817{
2818 const struct task_security_struct *tsec = current_security();
2819 struct superblock_security_struct *sbsec;
2820 u32 sid, newsid, clen;
2821 int rc;
2822 char *context;
2823
2824 sbsec = dir->i_sb->s_security;
2825
2826 sid = tsec->sid;
2827 newsid = tsec->create_sid;
2828
2829 rc = selinux_determine_inode_label(
2830 dir, qstr,
2831 inode_mode_to_security_class(inode->i_mode),
2832 &newsid);
2833 if (rc)
2834 return rc;
2835
2836 /* Possibly defer initialization to selinux_complete_init. */
2837 if (sbsec->flags & SE_SBINITIALIZED) {
2838 struct inode_security_struct *isec = inode->i_security;
2839 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2840 isec->sid = newsid;
2841 isec->initialized = LABEL_INITIALIZED;
2842 }
2843
2844 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2845 return -EOPNOTSUPP;
2846
2847 if (name)
2848 *name = XATTR_SELINUX_SUFFIX;
2849
2850 if (value && len) {
2851 rc = security_sid_to_context_force(newsid, &context, &clen);
2852 if (rc)
2853 return rc;
2854 *value = context;
2855 *len = clen;
2856 }
2857
2858 return 0;
2859}
2860
2861static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2862{
2863 return may_create(dir, dentry, SECCLASS_FILE);
2864}
2865
2866static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2867{
2868 return may_link(dir, old_dentry, MAY_LINK);
2869}
2870
2871static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2872{
2873 return may_link(dir, dentry, MAY_UNLINK);
2874}
2875
2876static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2877{
2878 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2879}
2880
2881static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2882{
2883 return may_create(dir, dentry, SECCLASS_DIR);
2884}
2885
2886static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2887{
2888 return may_link(dir, dentry, MAY_RMDIR);
2889}
2890
2891static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892{
2893 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2894}
2895
2896static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2897 struct inode *new_inode, struct dentry *new_dentry)
2898{
2899 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2900}
2901
2902static int selinux_inode_readlink(struct dentry *dentry)
2903{
2904 const struct cred *cred = current_cred();
2905
2906 return dentry_has_perm(cred, dentry, FILE__READ);
2907}
2908
2909static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2910 bool rcu)
2911{
2912 const struct cred *cred = current_cred();
2913 struct common_audit_data ad;
2914 struct inode_security_struct *isec;
2915 u32 sid;
2916
2917 validate_creds(cred);
2918
2919 ad.type = LSM_AUDIT_DATA_DENTRY;
2920 ad.u.dentry = dentry;
2921 sid = cred_sid(cred);
2922 isec = inode_security_rcu(inode, rcu);
2923 if (IS_ERR(isec))
2924 return PTR_ERR(isec);
2925
2926 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2927 rcu ? MAY_NOT_BLOCK : 0);
2928}
2929
2930static noinline int audit_inode_permission(struct inode *inode,
2931 u32 perms, u32 audited, u32 denied,
2932 int result,
2933 unsigned flags)
2934{
2935 struct common_audit_data ad;
2936 struct inode_security_struct *isec = inode->i_security;
2937 int rc;
2938
2939 ad.type = LSM_AUDIT_DATA_INODE;
2940 ad.u.inode = inode;
2941
2942 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2943 audited, denied, result, &ad, flags);
2944 if (rc)
2945 return rc;
2946 return 0;
2947}
2948
2949static int selinux_inode_permission(struct inode *inode, int mask)
2950{
2951 const struct cred *cred = current_cred();
2952 u32 perms;
2953 bool from_access;
2954 unsigned flags = mask & MAY_NOT_BLOCK;
2955 struct inode_security_struct *isec;
2956 u32 sid;
2957 struct av_decision avd;
2958 int rc, rc2;
2959 u32 audited, denied;
2960
2961 from_access = mask & MAY_ACCESS;
2962 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2963
2964 /* No permission to check. Existence test. */
2965 if (!mask)
2966 return 0;
2967
2968 validate_creds(cred);
2969
2970 if (unlikely(IS_PRIVATE(inode)))
2971 return 0;
2972
2973 perms = file_mask_to_av(inode->i_mode, mask);
2974
2975 sid = cred_sid(cred);
2976 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
2977 if (IS_ERR(isec))
2978 return PTR_ERR(isec);
2979
2980 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2981 audited = avc_audit_required(perms, &avd, rc,
2982 from_access ? FILE__AUDIT_ACCESS : 0,
2983 &denied);
2984 if (likely(!audited))
2985 return rc;
2986
2987 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2988 if (rc2)
2989 return rc2;
2990 return rc;
2991}
2992
2993static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2994{
2995 const struct cred *cred = current_cred();
2996 unsigned int ia_valid = iattr->ia_valid;
2997 __u32 av = FILE__WRITE;
2998
2999 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3000 if (ia_valid & ATTR_FORCE) {
3001 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3002 ATTR_FORCE);
3003 if (!ia_valid)
3004 return 0;
3005 }
3006
3007 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3008 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3009 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3010
3011 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3012 && !(ia_valid & ATTR_FILE))
3013 av |= FILE__OPEN;
3014
3015 return dentry_has_perm(cred, dentry, av);
3016}
3017
3018static int selinux_inode_getattr(const struct path *path)
3019{
3020 return path_has_perm(current_cred(), path, FILE__GETATTR);
3021}
3022
3023static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3024{
3025 const struct cred *cred = current_cred();
3026
3027 if (!strncmp(name, XATTR_SECURITY_PREFIX,
3028 sizeof XATTR_SECURITY_PREFIX - 1)) {
3029 if (!strcmp(name, XATTR_NAME_CAPS)) {
3030 if (!capable(CAP_SETFCAP))
3031 return -EPERM;
3032 } else if (!capable(CAP_SYS_ADMIN)) {
3033 /* A different attribute in the security namespace.
3034 Restrict to administrator. */
3035 return -EPERM;
3036 }
3037 }
3038
3039 /* Not an attribute we recognize, so just check the
3040 ordinary setattr permission. */
3041 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3042}
3043
3044static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3045 const void *value, size_t size, int flags)
3046{
3047 struct inode *inode = d_backing_inode(dentry);
3048 struct inode_security_struct *isec = backing_inode_security(dentry);
3049 struct superblock_security_struct *sbsec;
3050 struct common_audit_data ad;
3051 u32 newsid, sid = current_sid();
3052 int rc = 0;
3053
3054 if (strcmp(name, XATTR_NAME_SELINUX))
3055 return selinux_inode_setotherxattr(dentry, name);
3056
3057 sbsec = inode->i_sb->s_security;
3058 if (!(sbsec->flags & SBLABEL_MNT))
3059 return -EOPNOTSUPP;
3060
3061 if (!inode_owner_or_capable(inode))
3062 return -EPERM;
3063
3064 ad.type = LSM_AUDIT_DATA_DENTRY;
3065 ad.u.dentry = dentry;
3066
3067 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3068 FILE__RELABELFROM, &ad);
3069 if (rc)
3070 return rc;
3071
3072 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3073 if (rc == -EINVAL) {
3074 if (!capable(CAP_MAC_ADMIN)) {
3075 struct audit_buffer *ab;
3076 size_t audit_size;
3077 const char *str;
3078
3079 /* We strip a nul only if it is at the end, otherwise the
3080 * context contains a nul and we should audit that */
3081 if (value) {
3082 str = value;
3083 if (str[size - 1] == '\0')
3084 audit_size = size - 1;
3085 else
3086 audit_size = size;
3087 } else {
3088 str = "";
3089 audit_size = 0;
3090 }
3091 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3092 audit_log_format(ab, "op=setxattr invalid_context=");
3093 audit_log_n_untrustedstring(ab, value, audit_size);
3094 audit_log_end(ab);
3095
3096 return rc;
3097 }
3098 rc = security_context_to_sid_force(value, size, &newsid);
3099 }
3100 if (rc)
3101 return rc;
3102
3103 rc = avc_has_perm(sid, newsid, isec->sclass,
3104 FILE__RELABELTO, &ad);
3105 if (rc)
3106 return rc;
3107
3108 rc = security_validate_transition(isec->sid, newsid, sid,
3109 isec->sclass);
3110 if (rc)
3111 return rc;
3112
3113 return avc_has_perm(newsid,
3114 sbsec->sid,
3115 SECCLASS_FILESYSTEM,
3116 FILESYSTEM__ASSOCIATE,
3117 &ad);
3118}
3119
3120static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3121 const void *value, size_t size,
3122 int flags)
3123{
3124 struct inode *inode = d_backing_inode(dentry);
3125 struct inode_security_struct *isec = backing_inode_security(dentry);
3126 u32 newsid;
3127 int rc;
3128
3129 if (strcmp(name, XATTR_NAME_SELINUX)) {
3130 /* Not an attribute we recognize, so nothing to do. */
3131 return;
3132 }
3133
3134 rc = security_context_to_sid_force(value, size, &newsid);
3135 if (rc) {
3136 printk(KERN_ERR "SELinux: unable to map context to SID"
3137 "for (%s, %lu), rc=%d\n",
3138 inode->i_sb->s_id, inode->i_ino, -rc);
3139 return;
3140 }
3141
3142 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3143 isec->sid = newsid;
3144 isec->initialized = LABEL_INITIALIZED;
3145
3146 return;
3147}
3148
3149static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3150{
3151 const struct cred *cred = current_cred();
3152
3153 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3154}
3155
3156static int selinux_inode_listxattr(struct dentry *dentry)
3157{
3158 const struct cred *cred = current_cred();
3159
3160 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3161}
3162
3163static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3164{
3165 if (strcmp(name, XATTR_NAME_SELINUX))
3166 return selinux_inode_setotherxattr(dentry, name);
3167
3168 /* No one is allowed to remove a SELinux security label.
3169 You can change the label, but all data must be labeled. */
3170 return -EACCES;
3171}
3172
3173/*
3174 * Copy the inode security context value to the user.
3175 *
3176 * Permission check is handled by selinux_inode_getxattr hook.
3177 */
3178static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3179{
3180 u32 size;
3181 int error;
3182 char *context = NULL;
3183 struct inode_security_struct *isec = inode_security(inode);
3184
3185 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3186 return -EOPNOTSUPP;
3187
3188 /*
3189 * If the caller has CAP_MAC_ADMIN, then get the raw context
3190 * value even if it is not defined by current policy; otherwise,
3191 * use the in-core value under current policy.
3192 * Use the non-auditing forms of the permission checks since
3193 * getxattr may be called by unprivileged processes commonly
3194 * and lack of permission just means that we fall back to the
3195 * in-core context value, not a denial.
3196 */
3197 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3198 SECURITY_CAP_NOAUDIT);
3199 if (!error)
3200 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3201 SECURITY_CAP_NOAUDIT);
3202 if (!error)
3203 error = security_sid_to_context_force(isec->sid, &context,
3204 &size);
3205 else
3206 error = security_sid_to_context(isec->sid, &context, &size);
3207 if (error)
3208 return error;
3209 error = size;
3210 if (alloc) {
3211 *buffer = context;
3212 goto out_nofree;
3213 }
3214 kfree(context);
3215out_nofree:
3216 return error;
3217}
3218
3219static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3220 const void *value, size_t size, int flags)
3221{
3222 struct inode_security_struct *isec = inode_security(inode);
3223 u32 newsid;
3224 int rc;
3225
3226 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3227 return -EOPNOTSUPP;
3228
3229 if (!value || !size)
3230 return -EACCES;
3231
3232 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3233 if (rc)
3234 return rc;
3235
3236 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3237 isec->sid = newsid;
3238 isec->initialized = LABEL_INITIALIZED;
3239 return 0;
3240}
3241
3242static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3243{
3244 const int len = sizeof(XATTR_NAME_SELINUX);
3245 if (buffer && len <= buffer_size)
3246 memcpy(buffer, XATTR_NAME_SELINUX, len);
3247 return len;
3248}
3249
3250static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3251{
3252 struct inode_security_struct *isec = inode_security_novalidate(inode);
3253 *secid = isec->sid;
3254}
3255
3256/* file security operations */
3257
3258static int selinux_revalidate_file_permission(struct file *file, int mask)
3259{
3260 const struct cred *cred = current_cred();
3261 struct inode *inode = file_inode(file);
3262
3263 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3264 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3265 mask |= MAY_APPEND;
3266
3267 return file_has_perm(cred, file,
3268 file_mask_to_av(inode->i_mode, mask));
3269}
3270
3271static int selinux_file_permission(struct file *file, int mask)
3272{
3273 struct inode *inode = file_inode(file);
3274 struct file_security_struct *fsec = file->f_security;
3275 struct inode_security_struct *isec;
3276 u32 sid = current_sid();
3277
3278 if (!mask)
3279 /* No permission to check. Existence test. */
3280 return 0;
3281
3282 isec = inode_security(inode);
3283 if (sid == fsec->sid && fsec->isid == isec->sid &&
3284 fsec->pseqno == avc_policy_seqno())
3285 /* No change since file_open check. */
3286 return 0;
3287
3288 return selinux_revalidate_file_permission(file, mask);
3289}
3290
3291static int selinux_file_alloc_security(struct file *file)
3292{
3293 return file_alloc_security(file);
3294}
3295
3296static void selinux_file_free_security(struct file *file)
3297{
3298 file_free_security(file);
3299}
3300
3301/*
3302 * Check whether a task has the ioctl permission and cmd
3303 * operation to an inode.
3304 */
3305static int ioctl_has_perm(const struct cred *cred, struct file *file,
3306 u32 requested, u16 cmd)
3307{
3308 struct common_audit_data ad;
3309 struct file_security_struct *fsec = file->f_security;
3310 struct inode *inode = file_inode(file);
3311 struct inode_security_struct *isec = inode_security(inode);
3312 struct lsm_ioctlop_audit ioctl;
3313 u32 ssid = cred_sid(cred);
3314 int rc;
3315 u8 driver = cmd >> 8;
3316 u8 xperm = cmd & 0xff;
3317
3318 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3319 ad.u.op = &ioctl;
3320 ad.u.op->cmd = cmd;
3321 ad.u.op->path = file->f_path;
3322
3323 if (ssid != fsec->sid) {
3324 rc = avc_has_perm(ssid, fsec->sid,
3325 SECCLASS_FD,
3326 FD__USE,
3327 &ad);
3328 if (rc)
3329 goto out;
3330 }
3331
3332 if (unlikely(IS_PRIVATE(inode)))
3333 return 0;
3334
3335 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3336 requested, driver, xperm, &ad);
3337out:
3338 return rc;
3339}
3340
3341static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3342 unsigned long arg)
3343{
3344 const struct cred *cred = current_cred();
3345 int error = 0;
3346
3347 switch (cmd) {
3348 case FIONREAD:
3349 /* fall through */
3350 case FIBMAP:
3351 /* fall through */
3352 case FIGETBSZ:
3353 /* fall through */
3354 case FS_IOC_GETFLAGS:
3355 /* fall through */
3356 case FS_IOC_GETVERSION:
3357 error = file_has_perm(cred, file, FILE__GETATTR);
3358 break;
3359
3360 case FS_IOC_SETFLAGS:
3361 /* fall through */
3362 case FS_IOC_SETVERSION:
3363 error = file_has_perm(cred, file, FILE__SETATTR);
3364 break;
3365
3366 /* sys_ioctl() checks */
3367 case FIONBIO:
3368 /* fall through */
3369 case FIOASYNC:
3370 error = file_has_perm(cred, file, 0);
3371 break;
3372
3373 case KDSKBENT:
3374 case KDSKBSENT:
3375 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3376 SECURITY_CAP_AUDIT);
3377 break;
3378
3379 /* default case assumes that the command will go
3380 * to the file's ioctl() function.
3381 */
3382 default:
3383 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3384 }
3385 return error;
3386}
3387
3388static int default_noexec;
3389
3390static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3391{
3392 const struct cred *cred = current_cred();
3393 int rc = 0;
3394
3395 if (default_noexec &&
3396 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3397 (!shared && (prot & PROT_WRITE)))) {
3398 /*
3399 * We are making executable an anonymous mapping or a
3400 * private file mapping that will also be writable.
3401 * This has an additional check.
3402 */
3403 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3404 if (rc)
3405 goto error;
3406 }
3407
3408 if (file) {
3409 /* read access is always possible with a mapping */
3410 u32 av = FILE__READ;
3411
3412 /* write access only matters if the mapping is shared */
3413 if (shared && (prot & PROT_WRITE))
3414 av |= FILE__WRITE;
3415
3416 if (prot & PROT_EXEC)
3417 av |= FILE__EXECUTE;
3418
3419 return file_has_perm(cred, file, av);
3420 }
3421
3422error:
3423 return rc;
3424}
3425
3426static int selinux_mmap_addr(unsigned long addr)
3427{
3428 int rc = 0;
3429
3430 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3431 u32 sid = current_sid();
3432 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3433 MEMPROTECT__MMAP_ZERO, NULL);
3434 }
3435
3436 return rc;
3437}
3438
3439static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3440 unsigned long prot, unsigned long flags)
3441{
3442 if (selinux_checkreqprot)
3443 prot = reqprot;
3444
3445 return file_map_prot_check(file, prot,
3446 (flags & MAP_TYPE) == MAP_SHARED);
3447}
3448
3449static int selinux_file_mprotect(struct vm_area_struct *vma,
3450 unsigned long reqprot,
3451 unsigned long prot)
3452{
3453 const struct cred *cred = current_cred();
3454
3455 if (selinux_checkreqprot)
3456 prot = reqprot;
3457
3458 if (default_noexec &&
3459 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3460 int rc = 0;
3461 if (vma->vm_start >= vma->vm_mm->start_brk &&
3462 vma->vm_end <= vma->vm_mm->brk) {
3463 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3464 } else if (!vma->vm_file &&
3465 vma->vm_start <= vma->vm_mm->start_stack &&
3466 vma->vm_end >= vma->vm_mm->start_stack) {
3467 rc = current_has_perm(current, PROCESS__EXECSTACK);
3468 } else if (vma->vm_file && vma->anon_vma) {
3469 /*
3470 * We are making executable a file mapping that has
3471 * had some COW done. Since pages might have been
3472 * written, check ability to execute the possibly
3473 * modified content. This typically should only
3474 * occur for text relocations.
3475 */
3476 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3477 }
3478 if (rc)
3479 return rc;
3480 }
3481
3482 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3483}
3484
3485static int selinux_file_lock(struct file *file, unsigned int cmd)
3486{
3487 const struct cred *cred = current_cred();
3488
3489 return file_has_perm(cred, file, FILE__LOCK);
3490}
3491
3492static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3493 unsigned long arg)
3494{
3495 const struct cred *cred = current_cred();
3496 int err = 0;
3497
3498 switch (cmd) {
3499 case F_SETFL:
3500 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3501 err = file_has_perm(cred, file, FILE__WRITE);
3502 break;
3503 }
3504 /* fall through */
3505 case F_SETOWN:
3506 case F_SETSIG:
3507 case F_GETFL:
3508 case F_GETOWN:
3509 case F_GETSIG:
3510 case F_GETOWNER_UIDS:
3511 /* Just check FD__USE permission */
3512 err = file_has_perm(cred, file, 0);
3513 break;
3514 case F_GETLK:
3515 case F_SETLK:
3516 case F_SETLKW:
3517 case F_OFD_GETLK:
3518 case F_OFD_SETLK:
3519 case F_OFD_SETLKW:
3520#if BITS_PER_LONG == 32
3521 case F_GETLK64:
3522 case F_SETLK64:
3523 case F_SETLKW64:
3524#endif
3525 err = file_has_perm(cred, file, FILE__LOCK);
3526 break;
3527 }
3528
3529 return err;
3530}
3531
3532static void selinux_file_set_fowner(struct file *file)
3533{
3534 struct file_security_struct *fsec;
3535
3536 fsec = file->f_security;
3537 fsec->fown_sid = current_sid();
3538}
3539
3540static int selinux_file_send_sigiotask(struct task_struct *tsk,
3541 struct fown_struct *fown, int signum)
3542{
3543 struct file *file;
3544 u32 sid = task_sid(tsk);
3545 u32 perm;
3546 struct file_security_struct *fsec;
3547
3548 /* struct fown_struct is never outside the context of a struct file */
3549 file = container_of(fown, struct file, f_owner);
3550
3551 fsec = file->f_security;
3552
3553 if (!signum)
3554 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3555 else
3556 perm = signal_to_av(signum);
3557
3558 return avc_has_perm(fsec->fown_sid, sid,
3559 SECCLASS_PROCESS, perm, NULL);
3560}
3561
3562static int selinux_file_receive(struct file *file)
3563{
3564 const struct cred *cred = current_cred();
3565
3566 return file_has_perm(cred, file, file_to_av(file));
3567}
3568
3569static int selinux_file_open(struct file *file, const struct cred *cred)
3570{
3571 struct file_security_struct *fsec;
3572 struct inode_security_struct *isec;
3573
3574 fsec = file->f_security;
3575 isec = inode_security(file_inode(file));
3576 /*
3577 * Save inode label and policy sequence number
3578 * at open-time so that selinux_file_permission
3579 * can determine whether revalidation is necessary.
3580 * Task label is already saved in the file security
3581 * struct as its SID.
3582 */
3583 fsec->isid = isec->sid;
3584 fsec->pseqno = avc_policy_seqno();
3585 /*
3586 * Since the inode label or policy seqno may have changed
3587 * between the selinux_inode_permission check and the saving
3588 * of state above, recheck that access is still permitted.
3589 * Otherwise, access might never be revalidated against the
3590 * new inode label or new policy.
3591 * This check is not redundant - do not remove.
3592 */
3593 return file_path_has_perm(cred, file, open_file_to_av(file));
3594}
3595
3596/* task security operations */
3597
3598static int selinux_task_create(unsigned long clone_flags)
3599{
3600 return current_has_perm(current, PROCESS__FORK);
3601}
3602
3603/*
3604 * allocate the SELinux part of blank credentials
3605 */
3606static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3607{
3608 struct task_security_struct *tsec;
3609
3610 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3611 if (!tsec)
3612 return -ENOMEM;
3613
3614 cred->security = tsec;
3615 return 0;
3616}
3617
3618/*
3619 * detach and free the LSM part of a set of credentials
3620 */
3621static void selinux_cred_free(struct cred *cred)
3622{
3623 struct task_security_struct *tsec = cred->security;
3624
3625 /*
3626 * cred->security == NULL if security_cred_alloc_blank() or
3627 * security_prepare_creds() returned an error.
3628 */
3629 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3630 cred->security = (void *) 0x7UL;
3631 kfree(tsec);
3632}
3633
3634/*
3635 * prepare a new set of credentials for modification
3636 */
3637static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3638 gfp_t gfp)
3639{
3640 const struct task_security_struct *old_tsec;
3641 struct task_security_struct *tsec;
3642
3643 old_tsec = old->security;
3644
3645 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3646 if (!tsec)
3647 return -ENOMEM;
3648
3649 new->security = tsec;
3650 return 0;
3651}
3652
3653/*
3654 * transfer the SELinux data to a blank set of creds
3655 */
3656static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3657{
3658 const struct task_security_struct *old_tsec = old->security;
3659 struct task_security_struct *tsec = new->security;
3660
3661 *tsec = *old_tsec;
3662}
3663
3664/*
3665 * set the security data for a kernel service
3666 * - all the creation contexts are set to unlabelled
3667 */
3668static int selinux_kernel_act_as(struct cred *new, u32 secid)
3669{
3670 struct task_security_struct *tsec = new->security;
3671 u32 sid = current_sid();
3672 int ret;
3673
3674 ret = avc_has_perm(sid, secid,
3675 SECCLASS_KERNEL_SERVICE,
3676 KERNEL_SERVICE__USE_AS_OVERRIDE,
3677 NULL);
3678 if (ret == 0) {
3679 tsec->sid = secid;
3680 tsec->create_sid = 0;
3681 tsec->keycreate_sid = 0;
3682 tsec->sockcreate_sid = 0;
3683 }
3684 return ret;
3685}
3686
3687/*
3688 * set the file creation context in a security record to the same as the
3689 * objective context of the specified inode
3690 */
3691static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3692{
3693 struct inode_security_struct *isec = inode_security(inode);
3694 struct task_security_struct *tsec = new->security;
3695 u32 sid = current_sid();
3696 int ret;
3697
3698 ret = avc_has_perm(sid, isec->sid,
3699 SECCLASS_KERNEL_SERVICE,
3700 KERNEL_SERVICE__CREATE_FILES_AS,
3701 NULL);
3702
3703 if (ret == 0)
3704 tsec->create_sid = isec->sid;
3705 return ret;
3706}
3707
3708static int selinux_kernel_module_request(char *kmod_name)
3709{
3710 u32 sid;
3711 struct common_audit_data ad;
3712
3713 sid = task_sid(current);
3714
3715 ad.type = LSM_AUDIT_DATA_KMOD;
3716 ad.u.kmod_name = kmod_name;
3717
3718 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3719 SYSTEM__MODULE_REQUEST, &ad);
3720}
3721
3722static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3723{
3724 return current_has_perm(p, PROCESS__SETPGID);
3725}
3726
3727static int selinux_task_getpgid(struct task_struct *p)
3728{
3729 return current_has_perm(p, PROCESS__GETPGID);
3730}
3731
3732static int selinux_task_getsid(struct task_struct *p)
3733{
3734 return current_has_perm(p, PROCESS__GETSESSION);
3735}
3736
3737static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3738{
3739 *secid = task_sid(p);
3740}
3741
3742static int selinux_task_setnice(struct task_struct *p, int nice)
3743{
3744 return current_has_perm(p, PROCESS__SETSCHED);
3745}
3746
3747static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3748{
3749 return current_has_perm(p, PROCESS__SETSCHED);
3750}
3751
3752static int selinux_task_getioprio(struct task_struct *p)
3753{
3754 return current_has_perm(p, PROCESS__GETSCHED);
3755}
3756
3757static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3758 struct rlimit *new_rlim)
3759{
3760 struct rlimit *old_rlim = p->signal->rlim + resource;
3761
3762 /* Control the ability to change the hard limit (whether
3763 lowering or raising it), so that the hard limit can
3764 later be used as a safe reset point for the soft limit
3765 upon context transitions. See selinux_bprm_committing_creds. */
3766 if (old_rlim->rlim_max != new_rlim->rlim_max)
3767 return current_has_perm(p, PROCESS__SETRLIMIT);
3768
3769 return 0;
3770}
3771
3772static int selinux_task_setscheduler(struct task_struct *p)
3773{
3774 return current_has_perm(p, PROCESS__SETSCHED);
3775}
3776
3777static int selinux_task_getscheduler(struct task_struct *p)
3778{
3779 return current_has_perm(p, PROCESS__GETSCHED);
3780}
3781
3782static int selinux_task_movememory(struct task_struct *p)
3783{
3784 return current_has_perm(p, PROCESS__SETSCHED);
3785}
3786
3787static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3788 int sig, u32 secid)
3789{
3790 u32 perm;
3791 int rc;
3792
3793 if (!sig)
3794 perm = PROCESS__SIGNULL; /* null signal; existence test */
3795 else
3796 perm = signal_to_av(sig);
3797 if (secid)
3798 rc = avc_has_perm(secid, task_sid(p),
3799 SECCLASS_PROCESS, perm, NULL);
3800 else
3801 rc = current_has_perm(p, perm);
3802 return rc;
3803}
3804
3805static int selinux_task_wait(struct task_struct *p)
3806{
3807 return task_has_perm(p, current, PROCESS__SIGCHLD);
3808}
3809
3810static void selinux_task_to_inode(struct task_struct *p,
3811 struct inode *inode)
3812{
3813 struct inode_security_struct *isec = inode->i_security;
3814 u32 sid = task_sid(p);
3815
3816 isec->sid = sid;
3817 isec->initialized = LABEL_INITIALIZED;
3818}
3819
3820/* Returns error only if unable to parse addresses */
3821static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3822 struct common_audit_data *ad, u8 *proto)
3823{
3824 int offset, ihlen, ret = -EINVAL;
3825 struct iphdr _iph, *ih;
3826
3827 offset = skb_network_offset(skb);
3828 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3829 if (ih == NULL)
3830 goto out;
3831
3832 ihlen = ih->ihl * 4;
3833 if (ihlen < sizeof(_iph))
3834 goto out;
3835
3836 ad->u.net->v4info.saddr = ih->saddr;
3837 ad->u.net->v4info.daddr = ih->daddr;
3838 ret = 0;
3839
3840 if (proto)
3841 *proto = ih->protocol;
3842
3843 switch (ih->protocol) {
3844 case IPPROTO_TCP: {
3845 struct tcphdr _tcph, *th;
3846
3847 if (ntohs(ih->frag_off) & IP_OFFSET)
3848 break;
3849
3850 offset += ihlen;
3851 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3852 if (th == NULL)
3853 break;
3854
3855 ad->u.net->sport = th->source;
3856 ad->u.net->dport = th->dest;
3857 break;
3858 }
3859
3860 case IPPROTO_UDP: {
3861 struct udphdr _udph, *uh;
3862
3863 if (ntohs(ih->frag_off) & IP_OFFSET)
3864 break;
3865
3866 offset += ihlen;
3867 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3868 if (uh == NULL)
3869 break;
3870
3871 ad->u.net->sport = uh->source;
3872 ad->u.net->dport = uh->dest;
3873 break;
3874 }
3875
3876 case IPPROTO_DCCP: {
3877 struct dccp_hdr _dccph, *dh;
3878
3879 if (ntohs(ih->frag_off) & IP_OFFSET)
3880 break;
3881
3882 offset += ihlen;
3883 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3884 if (dh == NULL)
3885 break;
3886
3887 ad->u.net->sport = dh->dccph_sport;
3888 ad->u.net->dport = dh->dccph_dport;
3889 break;
3890 }
3891
3892 default:
3893 break;
3894 }
3895out:
3896 return ret;
3897}
3898
3899#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3900
3901/* Returns error only if unable to parse addresses */
3902static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3903 struct common_audit_data *ad, u8 *proto)
3904{
3905 u8 nexthdr;
3906 int ret = -EINVAL, offset;
3907 struct ipv6hdr _ipv6h, *ip6;
3908 __be16 frag_off;
3909
3910 offset = skb_network_offset(skb);
3911 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3912 if (ip6 == NULL)
3913 goto out;
3914
3915 ad->u.net->v6info.saddr = ip6->saddr;
3916 ad->u.net->v6info.daddr = ip6->daddr;
3917 ret = 0;
3918
3919 nexthdr = ip6->nexthdr;
3920 offset += sizeof(_ipv6h);
3921 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3922 if (offset < 0)
3923 goto out;
3924
3925 if (proto)
3926 *proto = nexthdr;
3927
3928 switch (nexthdr) {
3929 case IPPROTO_TCP: {
3930 struct tcphdr _tcph, *th;
3931
3932 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3933 if (th == NULL)
3934 break;
3935
3936 ad->u.net->sport = th->source;
3937 ad->u.net->dport = th->dest;
3938 break;
3939 }
3940
3941 case IPPROTO_UDP: {
3942 struct udphdr _udph, *uh;
3943
3944 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3945 if (uh == NULL)
3946 break;
3947
3948 ad->u.net->sport = uh->source;
3949 ad->u.net->dport = uh->dest;
3950 break;
3951 }
3952
3953 case IPPROTO_DCCP: {
3954 struct dccp_hdr _dccph, *dh;
3955
3956 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3957 if (dh == NULL)
3958 break;
3959
3960 ad->u.net->sport = dh->dccph_sport;
3961 ad->u.net->dport = dh->dccph_dport;
3962 break;
3963 }
3964
3965 /* includes fragments */
3966 default:
3967 break;
3968 }
3969out:
3970 return ret;
3971}
3972
3973#endif /* IPV6 */
3974
3975static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3976 char **_addrp, int src, u8 *proto)
3977{
3978 char *addrp;
3979 int ret;
3980
3981 switch (ad->u.net->family) {
3982 case PF_INET:
3983 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3984 if (ret)
3985 goto parse_error;
3986 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3987 &ad->u.net->v4info.daddr);
3988 goto okay;
3989
3990#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3991 case PF_INET6:
3992 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3993 if (ret)
3994 goto parse_error;
3995 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3996 &ad->u.net->v6info.daddr);
3997 goto okay;
3998#endif /* IPV6 */
3999 default:
4000 addrp = NULL;
4001 goto okay;
4002 }
4003
4004parse_error:
4005 printk(KERN_WARNING
4006 "SELinux: failure in selinux_parse_skb(),"
4007 " unable to parse packet\n");
4008 return ret;
4009
4010okay:
4011 if (_addrp)
4012 *_addrp = addrp;
4013 return 0;
4014}
4015
4016/**
4017 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4018 * @skb: the packet
4019 * @family: protocol family
4020 * @sid: the packet's peer label SID
4021 *
4022 * Description:
4023 * Check the various different forms of network peer labeling and determine
4024 * the peer label/SID for the packet; most of the magic actually occurs in
4025 * the security server function security_net_peersid_cmp(). The function
4026 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4027 * or -EACCES if @sid is invalid due to inconsistencies with the different
4028 * peer labels.
4029 *
4030 */
4031static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4032{
4033 int err;
4034 u32 xfrm_sid;
4035 u32 nlbl_sid;
4036 u32 nlbl_type;
4037
4038 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4039 if (unlikely(err))
4040 return -EACCES;
4041 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4042 if (unlikely(err))
4043 return -EACCES;
4044
4045 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4046 if (unlikely(err)) {
4047 printk(KERN_WARNING
4048 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4049 " unable to determine packet's peer label\n");
4050 return -EACCES;
4051 }
4052
4053 return 0;
4054}
4055
4056/**
4057 * selinux_conn_sid - Determine the child socket label for a connection
4058 * @sk_sid: the parent socket's SID
4059 * @skb_sid: the packet's SID
4060 * @conn_sid: the resulting connection SID
4061 *
4062 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4063 * combined with the MLS information from @skb_sid in order to create
4064 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4065 * of @sk_sid. Returns zero on success, negative values on failure.
4066 *
4067 */
4068static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4069{
4070 int err = 0;
4071
4072 if (skb_sid != SECSID_NULL)
4073 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4074 else
4075 *conn_sid = sk_sid;
4076
4077 return err;
4078}
4079
4080/* socket security operations */
4081
4082static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4083 u16 secclass, u32 *socksid)
4084{
4085 if (tsec->sockcreate_sid > SECSID_NULL) {
4086 *socksid = tsec->sockcreate_sid;
4087 return 0;
4088 }
4089
4090 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4091 socksid);
4092}
4093
4094static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4095{
4096 struct sk_security_struct *sksec = sk->sk_security;
4097 struct common_audit_data ad;
4098 struct lsm_network_audit net = {0,};
4099 u32 tsid = task_sid(task);
4100
4101 if (sksec->sid == SECINITSID_KERNEL)
4102 return 0;
4103
4104 ad.type = LSM_AUDIT_DATA_NET;
4105 ad.u.net = &net;
4106 ad.u.net->sk = sk;
4107
4108 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4109}
4110
4111static int selinux_socket_create(int family, int type,
4112 int protocol, int kern)
4113{
4114 const struct task_security_struct *tsec = current_security();
4115 u32 newsid;
4116 u16 secclass;
4117 int rc;
4118
4119 if (kern)
4120 return 0;
4121
4122 secclass = socket_type_to_security_class(family, type, protocol);
4123 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4124 if (rc)
4125 return rc;
4126
4127 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4128}
4129
4130static int selinux_socket_post_create(struct socket *sock, int family,
4131 int type, int protocol, int kern)
4132{
4133 const struct task_security_struct *tsec = current_security();
4134 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4135 struct sk_security_struct *sksec;
4136 int err = 0;
4137
4138 isec->sclass = socket_type_to_security_class(family, type, protocol);
4139
4140 if (kern)
4141 isec->sid = SECINITSID_KERNEL;
4142 else {
4143 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4144 if (err)
4145 return err;
4146 }
4147
4148 isec->initialized = LABEL_INITIALIZED;
4149
4150 if (sock->sk) {
4151 sksec = sock->sk->sk_security;
4152 sksec->sid = isec->sid;
4153 sksec->sclass = isec->sclass;
4154 err = selinux_netlbl_socket_post_create(sock->sk, family);
4155 }
4156
4157 return err;
4158}
4159
4160/* Range of port numbers used to automatically bind.
4161 Need to determine whether we should perform a name_bind
4162 permission check between the socket and the port number. */
4163
4164static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4165{
4166 struct sock *sk = sock->sk;
4167 u16 family;
4168 int err;
4169
4170 err = sock_has_perm(current, sk, SOCKET__BIND);
4171 if (err)
4172 goto out;
4173
4174 /*
4175 * If PF_INET or PF_INET6, check name_bind permission for the port.
4176 * Multiple address binding for SCTP is not supported yet: we just
4177 * check the first address now.
4178 */
4179 family = sk->sk_family;
4180 if (family == PF_INET || family == PF_INET6) {
4181 char *addrp;
4182 struct sk_security_struct *sksec = sk->sk_security;
4183 struct common_audit_data ad;
4184 struct lsm_network_audit net = {0,};
4185 struct sockaddr_in *addr4 = NULL;
4186 struct sockaddr_in6 *addr6 = NULL;
4187 unsigned short snum;
4188 u32 sid, node_perm;
4189
4190 if (family == PF_INET) {
4191 addr4 = (struct sockaddr_in *)address;
4192 snum = ntohs(addr4->sin_port);
4193 addrp = (char *)&addr4->sin_addr.s_addr;
4194 } else {
4195 addr6 = (struct sockaddr_in6 *)address;
4196 snum = ntohs(addr6->sin6_port);
4197 addrp = (char *)&addr6->sin6_addr.s6_addr;
4198 }
4199
4200 if (snum) {
4201 int low, high;
4202
4203 inet_get_local_port_range(sock_net(sk), &low, &high);
4204
4205 if (snum < max(PROT_SOCK, low) || snum > high) {
4206 err = sel_netport_sid(sk->sk_protocol,
4207 snum, &sid);
4208 if (err)
4209 goto out;
4210 ad.type = LSM_AUDIT_DATA_NET;
4211 ad.u.net = &net;
4212 ad.u.net->sport = htons(snum);
4213 ad.u.net->family = family;
4214 err = avc_has_perm(sksec->sid, sid,
4215 sksec->sclass,
4216 SOCKET__NAME_BIND, &ad);
4217 if (err)
4218 goto out;
4219 }
4220 }
4221
4222 switch (sksec->sclass) {
4223 case SECCLASS_TCP_SOCKET:
4224 node_perm = TCP_SOCKET__NODE_BIND;
4225 break;
4226
4227 case SECCLASS_UDP_SOCKET:
4228 node_perm = UDP_SOCKET__NODE_BIND;
4229 break;
4230
4231 case SECCLASS_DCCP_SOCKET:
4232 node_perm = DCCP_SOCKET__NODE_BIND;
4233 break;
4234
4235 default:
4236 node_perm = RAWIP_SOCKET__NODE_BIND;
4237 break;
4238 }
4239
4240 err = sel_netnode_sid(addrp, family, &sid);
4241 if (err)
4242 goto out;
4243
4244 ad.type = LSM_AUDIT_DATA_NET;
4245 ad.u.net = &net;
4246 ad.u.net->sport = htons(snum);
4247 ad.u.net->family = family;
4248
4249 if (family == PF_INET)
4250 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4251 else
4252 ad.u.net->v6info.saddr = addr6->sin6_addr;
4253
4254 err = avc_has_perm(sksec->sid, sid,
4255 sksec->sclass, node_perm, &ad);
4256 if (err)
4257 goto out;
4258 }
4259out:
4260 return err;
4261}
4262
4263static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4264{
4265 struct sock *sk = sock->sk;
4266 struct sk_security_struct *sksec = sk->sk_security;
4267 int err;
4268
4269 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4270 if (err)
4271 return err;
4272
4273 /*
4274 * If a TCP or DCCP socket, check name_connect permission for the port.
4275 */
4276 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4277 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4278 struct common_audit_data ad;
4279 struct lsm_network_audit net = {0,};
4280 struct sockaddr_in *addr4 = NULL;
4281 struct sockaddr_in6 *addr6 = NULL;
4282 unsigned short snum;
4283 u32 sid, perm;
4284
4285 if (sk->sk_family == PF_INET) {
4286 addr4 = (struct sockaddr_in *)address;
4287 if (addrlen < sizeof(struct sockaddr_in))
4288 return -EINVAL;
4289 snum = ntohs(addr4->sin_port);
4290 } else {
4291 addr6 = (struct sockaddr_in6 *)address;
4292 if (addrlen < SIN6_LEN_RFC2133)
4293 return -EINVAL;
4294 snum = ntohs(addr6->sin6_port);
4295 }
4296
4297 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4298 if (err)
4299 goto out;
4300
4301 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4302 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4303
4304 ad.type = LSM_AUDIT_DATA_NET;
4305 ad.u.net = &net;
4306 ad.u.net->dport = htons(snum);
4307 ad.u.net->family = sk->sk_family;
4308 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4309 if (err)
4310 goto out;
4311 }
4312
4313 err = selinux_netlbl_socket_connect(sk, address);
4314
4315out:
4316 return err;
4317}
4318
4319static int selinux_socket_listen(struct socket *sock, int backlog)
4320{
4321 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4322}
4323
4324static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4325{
4326 int err;
4327 struct inode_security_struct *isec;
4328 struct inode_security_struct *newisec;
4329
4330 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4331 if (err)
4332 return err;
4333
4334 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4335
4336 isec = inode_security_novalidate(SOCK_INODE(sock));
4337 newisec->sclass = isec->sclass;
4338 newisec->sid = isec->sid;
4339 newisec->initialized = LABEL_INITIALIZED;
4340
4341 return 0;
4342}
4343
4344static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4345 int size)
4346{
4347 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4348}
4349
4350static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4351 int size, int flags)
4352{
4353 return sock_has_perm(current, sock->sk, SOCKET__READ);
4354}
4355
4356static int selinux_socket_getsockname(struct socket *sock)
4357{
4358 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4359}
4360
4361static int selinux_socket_getpeername(struct socket *sock)
4362{
4363 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4364}
4365
4366static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4367{
4368 int err;
4369
4370 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4371 if (err)
4372 return err;
4373
4374 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4375}
4376
4377static int selinux_socket_getsockopt(struct socket *sock, int level,
4378 int optname)
4379{
4380 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4381}
4382
4383static int selinux_socket_shutdown(struct socket *sock, int how)
4384{
4385 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4386}
4387
4388static int selinux_socket_unix_stream_connect(struct sock *sock,
4389 struct sock *other,
4390 struct sock *newsk)
4391{
4392 struct sk_security_struct *sksec_sock = sock->sk_security;
4393 struct sk_security_struct *sksec_other = other->sk_security;
4394 struct sk_security_struct *sksec_new = newsk->sk_security;
4395 struct common_audit_data ad;
4396 struct lsm_network_audit net = {0,};
4397 int err;
4398
4399 ad.type = LSM_AUDIT_DATA_NET;
4400 ad.u.net = &net;
4401 ad.u.net->sk = other;
4402
4403 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4404 sksec_other->sclass,
4405 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4406 if (err)
4407 return err;
4408
4409 /* server child socket */
4410 sksec_new->peer_sid = sksec_sock->sid;
4411 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4412 &sksec_new->sid);
4413 if (err)
4414 return err;
4415
4416 /* connecting socket */
4417 sksec_sock->peer_sid = sksec_new->sid;
4418
4419 return 0;
4420}
4421
4422static int selinux_socket_unix_may_send(struct socket *sock,
4423 struct socket *other)
4424{
4425 struct sk_security_struct *ssec = sock->sk->sk_security;
4426 struct sk_security_struct *osec = other->sk->sk_security;
4427 struct common_audit_data ad;
4428 struct lsm_network_audit net = {0,};
4429
4430 ad.type = LSM_AUDIT_DATA_NET;
4431 ad.u.net = &net;
4432 ad.u.net->sk = other->sk;
4433
4434 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4435 &ad);
4436}
4437
4438static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4439 char *addrp, u16 family, u32 peer_sid,
4440 struct common_audit_data *ad)
4441{
4442 int err;
4443 u32 if_sid;
4444 u32 node_sid;
4445
4446 err = sel_netif_sid(ns, ifindex, &if_sid);
4447 if (err)
4448 return err;
4449 err = avc_has_perm(peer_sid, if_sid,
4450 SECCLASS_NETIF, NETIF__INGRESS, ad);
4451 if (err)
4452 return err;
4453
4454 err = sel_netnode_sid(addrp, family, &node_sid);
4455 if (err)
4456 return err;
4457 return avc_has_perm(peer_sid, node_sid,
4458 SECCLASS_NODE, NODE__RECVFROM, ad);
4459}
4460
4461static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4462 u16 family)
4463{
4464 int err = 0;
4465 struct sk_security_struct *sksec = sk->sk_security;
4466 u32 sk_sid = sksec->sid;
4467 struct common_audit_data ad;
4468 struct lsm_network_audit net = {0,};
4469 char *addrp;
4470
4471 ad.type = LSM_AUDIT_DATA_NET;
4472 ad.u.net = &net;
4473 ad.u.net->netif = skb->skb_iif;
4474 ad.u.net->family = family;
4475 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4476 if (err)
4477 return err;
4478
4479 if (selinux_secmark_enabled()) {
4480 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4481 PACKET__RECV, &ad);
4482 if (err)
4483 return err;
4484 }
4485
4486 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4487 if (err)
4488 return err;
4489 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4490
4491 return err;
4492}
4493
4494static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4495{
4496 int err;
4497 struct sk_security_struct *sksec = sk->sk_security;
4498 u16 family = sk->sk_family;
4499 u32 sk_sid = sksec->sid;
4500 struct common_audit_data ad;
4501 struct lsm_network_audit net = {0,};
4502 char *addrp;
4503 u8 secmark_active;
4504 u8 peerlbl_active;
4505
4506 if (family != PF_INET && family != PF_INET6)
4507 return 0;
4508
4509 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4510 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4511 family = PF_INET;
4512
4513 /* If any sort of compatibility mode is enabled then handoff processing
4514 * to the selinux_sock_rcv_skb_compat() function to deal with the
4515 * special handling. We do this in an attempt to keep this function
4516 * as fast and as clean as possible. */
4517 if (!selinux_policycap_netpeer)
4518 return selinux_sock_rcv_skb_compat(sk, skb, family);
4519
4520 secmark_active = selinux_secmark_enabled();
4521 peerlbl_active = selinux_peerlbl_enabled();
4522 if (!secmark_active && !peerlbl_active)
4523 return 0;
4524
4525 ad.type = LSM_AUDIT_DATA_NET;
4526 ad.u.net = &net;
4527 ad.u.net->netif = skb->skb_iif;
4528 ad.u.net->family = family;
4529 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4530 if (err)
4531 return err;
4532
4533 if (peerlbl_active) {
4534 u32 peer_sid;
4535
4536 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4537 if (err)
4538 return err;
4539 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4540 addrp, family, peer_sid, &ad);
4541 if (err) {
4542 selinux_netlbl_err(skb, err, 0);
4543 return err;
4544 }
4545 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4546 PEER__RECV, &ad);
4547 if (err) {
4548 selinux_netlbl_err(skb, err, 0);
4549 return err;
4550 }
4551 }
4552
4553 if (secmark_active) {
4554 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4555 PACKET__RECV, &ad);
4556 if (err)
4557 return err;
4558 }
4559
4560 return err;
4561}
4562
4563static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4564 int __user *optlen, unsigned len)
4565{
4566 int err = 0;
4567 char *scontext;
4568 u32 scontext_len;
4569 struct sk_security_struct *sksec = sock->sk->sk_security;
4570 u32 peer_sid = SECSID_NULL;
4571
4572 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4573 sksec->sclass == SECCLASS_TCP_SOCKET)
4574 peer_sid = sksec->peer_sid;
4575 if (peer_sid == SECSID_NULL)
4576 return -ENOPROTOOPT;
4577
4578 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4579 if (err)
4580 return err;
4581
4582 if (scontext_len > len) {
4583 err = -ERANGE;
4584 goto out_len;
4585 }
4586
4587 if (copy_to_user(optval, scontext, scontext_len))
4588 err = -EFAULT;
4589
4590out_len:
4591 if (put_user(scontext_len, optlen))
4592 err = -EFAULT;
4593 kfree(scontext);
4594 return err;
4595}
4596
4597static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4598{
4599 u32 peer_secid = SECSID_NULL;
4600 u16 family;
4601
4602 if (skb && skb->protocol == htons(ETH_P_IP))
4603 family = PF_INET;
4604 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4605 family = PF_INET6;
4606 else if (sock)
4607 family = sock->sk->sk_family;
4608 else
4609 goto out;
4610
4611 if (sock && family == PF_UNIX)
4612 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4613 else if (skb)
4614 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4615
4616out:
4617 *secid = peer_secid;
4618 if (peer_secid == SECSID_NULL)
4619 return -EINVAL;
4620 return 0;
4621}
4622
4623static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4624{
4625 struct sk_security_struct *sksec;
4626
4627 sksec = kzalloc(sizeof(*sksec), priority);
4628 if (!sksec)
4629 return -ENOMEM;
4630
4631 sksec->peer_sid = SECINITSID_UNLABELED;
4632 sksec->sid = SECINITSID_UNLABELED;
4633 sksec->sclass = SECCLASS_SOCKET;
4634 selinux_netlbl_sk_security_reset(sksec);
4635 sk->sk_security = sksec;
4636
4637 return 0;
4638}
4639
4640static void selinux_sk_free_security(struct sock *sk)
4641{
4642 struct sk_security_struct *sksec = sk->sk_security;
4643
4644 sk->sk_security = NULL;
4645 selinux_netlbl_sk_security_free(sksec);
4646 kfree(sksec);
4647}
4648
4649static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4650{
4651 struct sk_security_struct *sksec = sk->sk_security;
4652 struct sk_security_struct *newsksec = newsk->sk_security;
4653
4654 newsksec->sid = sksec->sid;
4655 newsksec->peer_sid = sksec->peer_sid;
4656 newsksec->sclass = sksec->sclass;
4657
4658 selinux_netlbl_sk_security_reset(newsksec);
4659}
4660
4661static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4662{
4663 if (!sk)
4664 *secid = SECINITSID_ANY_SOCKET;
4665 else {
4666 struct sk_security_struct *sksec = sk->sk_security;
4667
4668 *secid = sksec->sid;
4669 }
4670}
4671
4672static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4673{
4674 struct inode_security_struct *isec =
4675 inode_security_novalidate(SOCK_INODE(parent));
4676 struct sk_security_struct *sksec = sk->sk_security;
4677
4678 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4679 sk->sk_family == PF_UNIX)
4680 isec->sid = sksec->sid;
4681 sksec->sclass = isec->sclass;
4682}
4683
4684static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4685 struct request_sock *req)
4686{
4687 struct sk_security_struct *sksec = sk->sk_security;
4688 int err;
4689 u16 family = req->rsk_ops->family;
4690 u32 connsid;
4691 u32 peersid;
4692
4693 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4694 if (err)
4695 return err;
4696 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4697 if (err)
4698 return err;
4699 req->secid = connsid;
4700 req->peer_secid = peersid;
4701
4702 return selinux_netlbl_inet_conn_request(req, family);
4703}
4704
4705static void selinux_inet_csk_clone(struct sock *newsk,
4706 const struct request_sock *req)
4707{
4708 struct sk_security_struct *newsksec = newsk->sk_security;
4709
4710 newsksec->sid = req->secid;
4711 newsksec->peer_sid = req->peer_secid;
4712 /* NOTE: Ideally, we should also get the isec->sid for the
4713 new socket in sync, but we don't have the isec available yet.
4714 So we will wait until sock_graft to do it, by which
4715 time it will have been created and available. */
4716
4717 /* We don't need to take any sort of lock here as we are the only
4718 * thread with access to newsksec */
4719 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4720}
4721
4722static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4723{
4724 u16 family = sk->sk_family;
4725 struct sk_security_struct *sksec = sk->sk_security;
4726
4727 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4728 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4729 family = PF_INET;
4730
4731 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4732}
4733
4734static int selinux_secmark_relabel_packet(u32 sid)
4735{
4736 const struct task_security_struct *__tsec;
4737 u32 tsid;
4738
4739 __tsec = current_security();
4740 tsid = __tsec->sid;
4741
4742 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4743}
4744
4745static void selinux_secmark_refcount_inc(void)
4746{
4747 atomic_inc(&selinux_secmark_refcount);
4748}
4749
4750static void selinux_secmark_refcount_dec(void)
4751{
4752 atomic_dec(&selinux_secmark_refcount);
4753}
4754
4755static void selinux_req_classify_flow(const struct request_sock *req,
4756 struct flowi *fl)
4757{
4758 fl->flowi_secid = req->secid;
4759}
4760
4761static int selinux_tun_dev_alloc_security(void **security)
4762{
4763 struct tun_security_struct *tunsec;
4764
4765 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4766 if (!tunsec)
4767 return -ENOMEM;
4768 tunsec->sid = current_sid();
4769
4770 *security = tunsec;
4771 return 0;
4772}
4773
4774static void selinux_tun_dev_free_security(void *security)
4775{
4776 kfree(security);
4777}
4778
4779static int selinux_tun_dev_create(void)
4780{
4781 u32 sid = current_sid();
4782
4783 /* we aren't taking into account the "sockcreate" SID since the socket
4784 * that is being created here is not a socket in the traditional sense,
4785 * instead it is a private sock, accessible only to the kernel, and
4786 * representing a wide range of network traffic spanning multiple
4787 * connections unlike traditional sockets - check the TUN driver to
4788 * get a better understanding of why this socket is special */
4789
4790 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4791 NULL);
4792}
4793
4794static int selinux_tun_dev_attach_queue(void *security)
4795{
4796 struct tun_security_struct *tunsec = security;
4797
4798 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4799 TUN_SOCKET__ATTACH_QUEUE, NULL);
4800}
4801
4802static int selinux_tun_dev_attach(struct sock *sk, void *security)
4803{
4804 struct tun_security_struct *tunsec = security;
4805 struct sk_security_struct *sksec = sk->sk_security;
4806
4807 /* we don't currently perform any NetLabel based labeling here and it
4808 * isn't clear that we would want to do so anyway; while we could apply
4809 * labeling without the support of the TUN user the resulting labeled
4810 * traffic from the other end of the connection would almost certainly
4811 * cause confusion to the TUN user that had no idea network labeling
4812 * protocols were being used */
4813
4814 sksec->sid = tunsec->sid;
4815 sksec->sclass = SECCLASS_TUN_SOCKET;
4816
4817 return 0;
4818}
4819
4820static int selinux_tun_dev_open(void *security)
4821{
4822 struct tun_security_struct *tunsec = security;
4823 u32 sid = current_sid();
4824 int err;
4825
4826 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4827 TUN_SOCKET__RELABELFROM, NULL);
4828 if (err)
4829 return err;
4830 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4831 TUN_SOCKET__RELABELTO, NULL);
4832 if (err)
4833 return err;
4834 tunsec->sid = sid;
4835
4836 return 0;
4837}
4838
4839static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4840{
4841 int err = 0;
4842 u32 perm;
4843 struct nlmsghdr *nlh;
4844 struct sk_security_struct *sksec = sk->sk_security;
4845
4846 if (skb->len < NLMSG_HDRLEN) {
4847 err = -EINVAL;
4848 goto out;
4849 }
4850 nlh = nlmsg_hdr(skb);
4851
4852 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4853 if (err) {
4854 if (err == -EINVAL) {
4855 pr_warn_ratelimited("SELinux: unrecognized netlink"
4856 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
4857 " pig=%d comm=%s\n",
4858 sk->sk_protocol, nlh->nlmsg_type,
4859 secclass_map[sksec->sclass - 1].name,
4860 task_pid_nr(current), current->comm);
4861 if (!selinux_enforcing || security_get_allow_unknown())
4862 err = 0;
4863 }
4864
4865 /* Ignore */
4866 if (err == -ENOENT)
4867 err = 0;
4868 goto out;
4869 }
4870
4871 err = sock_has_perm(current, sk, perm);
4872out:
4873 return err;
4874}
4875
4876#ifdef CONFIG_NETFILTER
4877
4878static unsigned int selinux_ip_forward(struct sk_buff *skb,
4879 const struct net_device *indev,
4880 u16 family)
4881{
4882 int err;
4883 char *addrp;
4884 u32 peer_sid;
4885 struct common_audit_data ad;
4886 struct lsm_network_audit net = {0,};
4887 u8 secmark_active;
4888 u8 netlbl_active;
4889 u8 peerlbl_active;
4890
4891 if (!selinux_policycap_netpeer)
4892 return NF_ACCEPT;
4893
4894 secmark_active = selinux_secmark_enabled();
4895 netlbl_active = netlbl_enabled();
4896 peerlbl_active = selinux_peerlbl_enabled();
4897 if (!secmark_active && !peerlbl_active)
4898 return NF_ACCEPT;
4899
4900 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4901 return NF_DROP;
4902
4903 ad.type = LSM_AUDIT_DATA_NET;
4904 ad.u.net = &net;
4905 ad.u.net->netif = indev->ifindex;
4906 ad.u.net->family = family;
4907 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4908 return NF_DROP;
4909
4910 if (peerlbl_active) {
4911 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4912 addrp, family, peer_sid, &ad);
4913 if (err) {
4914 selinux_netlbl_err(skb, err, 1);
4915 return NF_DROP;
4916 }
4917 }
4918
4919 if (secmark_active)
4920 if (avc_has_perm(peer_sid, skb->secmark,
4921 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4922 return NF_DROP;
4923
4924 if (netlbl_active)
4925 /* we do this in the FORWARD path and not the POST_ROUTING
4926 * path because we want to make sure we apply the necessary
4927 * labeling before IPsec is applied so we can leverage AH
4928 * protection */
4929 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4930 return NF_DROP;
4931
4932 return NF_ACCEPT;
4933}
4934
4935static unsigned int selinux_ipv4_forward(void *priv,
4936 struct sk_buff *skb,
4937 const struct nf_hook_state *state)
4938{
4939 return selinux_ip_forward(skb, state->in, PF_INET);
4940}
4941
4942#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4943static unsigned int selinux_ipv6_forward(void *priv,
4944 struct sk_buff *skb,
4945 const struct nf_hook_state *state)
4946{
4947 return selinux_ip_forward(skb, state->in, PF_INET6);
4948}
4949#endif /* IPV6 */
4950
4951static unsigned int selinux_ip_output(struct sk_buff *skb,
4952 u16 family)
4953{
4954 struct sock *sk;
4955 u32 sid;
4956
4957 if (!netlbl_enabled())
4958 return NF_ACCEPT;
4959
4960 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4961 * because we want to make sure we apply the necessary labeling
4962 * before IPsec is applied so we can leverage AH protection */
4963 sk = skb->sk;
4964 if (sk) {
4965 struct sk_security_struct *sksec;
4966
4967 if (sk_listener(sk))
4968 /* if the socket is the listening state then this
4969 * packet is a SYN-ACK packet which means it needs to
4970 * be labeled based on the connection/request_sock and
4971 * not the parent socket. unfortunately, we can't
4972 * lookup the request_sock yet as it isn't queued on
4973 * the parent socket until after the SYN-ACK is sent.
4974 * the "solution" is to simply pass the packet as-is
4975 * as any IP option based labeling should be copied
4976 * from the initial connection request (in the IP
4977 * layer). it is far from ideal, but until we get a
4978 * security label in the packet itself this is the
4979 * best we can do. */
4980 return NF_ACCEPT;
4981
4982 /* standard practice, label using the parent socket */
4983 sksec = sk->sk_security;
4984 sid = sksec->sid;
4985 } else
4986 sid = SECINITSID_KERNEL;
4987 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4988 return NF_DROP;
4989
4990 return NF_ACCEPT;
4991}
4992
4993static unsigned int selinux_ipv4_output(void *priv,
4994 struct sk_buff *skb,
4995 const struct nf_hook_state *state)
4996{
4997 return selinux_ip_output(skb, PF_INET);
4998}
4999
5000static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5001 int ifindex,
5002 u16 family)
5003{
5004 struct sock *sk = skb_to_full_sk(skb);
5005 struct sk_security_struct *sksec;
5006 struct common_audit_data ad;
5007 struct lsm_network_audit net = {0,};
5008 char *addrp;
5009 u8 proto;
5010
5011 if (sk == NULL)
5012 return NF_ACCEPT;
5013 sksec = sk->sk_security;
5014
5015 ad.type = LSM_AUDIT_DATA_NET;
5016 ad.u.net = &net;
5017 ad.u.net->netif = ifindex;
5018 ad.u.net->family = family;
5019 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5020 return NF_DROP;
5021
5022 if (selinux_secmark_enabled())
5023 if (avc_has_perm(sksec->sid, skb->secmark,
5024 SECCLASS_PACKET, PACKET__SEND, &ad))
5025 return NF_DROP_ERR(-ECONNREFUSED);
5026
5027 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5028 return NF_DROP_ERR(-ECONNREFUSED);
5029
5030 return NF_ACCEPT;
5031}
5032
5033static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5034 const struct net_device *outdev,
5035 u16 family)
5036{
5037 u32 secmark_perm;
5038 u32 peer_sid;
5039 int ifindex = outdev->ifindex;
5040 struct sock *sk;
5041 struct common_audit_data ad;
5042 struct lsm_network_audit net = {0,};
5043 char *addrp;
5044 u8 secmark_active;
5045 u8 peerlbl_active;
5046
5047 /* If any sort of compatibility mode is enabled then handoff processing
5048 * to the selinux_ip_postroute_compat() function to deal with the
5049 * special handling. We do this in an attempt to keep this function
5050 * as fast and as clean as possible. */
5051 if (!selinux_policycap_netpeer)
5052 return selinux_ip_postroute_compat(skb, ifindex, family);
5053
5054 secmark_active = selinux_secmark_enabled();
5055 peerlbl_active = selinux_peerlbl_enabled();
5056 if (!secmark_active && !peerlbl_active)
5057 return NF_ACCEPT;
5058
5059 sk = skb_to_full_sk(skb);
5060
5061#ifdef CONFIG_XFRM
5062 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5063 * packet transformation so allow the packet to pass without any checks
5064 * since we'll have another chance to perform access control checks
5065 * when the packet is on it's final way out.
5066 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5067 * is NULL, in this case go ahead and apply access control.
5068 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5069 * TCP listening state we cannot wait until the XFRM processing
5070 * is done as we will miss out on the SA label if we do;
5071 * unfortunately, this means more work, but it is only once per
5072 * connection. */
5073 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5074 !(sk && sk_listener(sk)))
5075 return NF_ACCEPT;
5076#endif
5077
5078 if (sk == NULL) {
5079 /* Without an associated socket the packet is either coming
5080 * from the kernel or it is being forwarded; check the packet
5081 * to determine which and if the packet is being forwarded
5082 * query the packet directly to determine the security label. */
5083 if (skb->skb_iif) {
5084 secmark_perm = PACKET__FORWARD_OUT;
5085 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5086 return NF_DROP;
5087 } else {
5088 secmark_perm = PACKET__SEND;
5089 peer_sid = SECINITSID_KERNEL;
5090 }
5091 } else if (sk_listener(sk)) {
5092 /* Locally generated packet but the associated socket is in the
5093 * listening state which means this is a SYN-ACK packet. In
5094 * this particular case the correct security label is assigned
5095 * to the connection/request_sock but unfortunately we can't
5096 * query the request_sock as it isn't queued on the parent
5097 * socket until after the SYN-ACK packet is sent; the only
5098 * viable choice is to regenerate the label like we do in
5099 * selinux_inet_conn_request(). See also selinux_ip_output()
5100 * for similar problems. */
5101 u32 skb_sid;
5102 struct sk_security_struct *sksec;
5103
5104 sksec = sk->sk_security;
5105 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5106 return NF_DROP;
5107 /* At this point, if the returned skb peerlbl is SECSID_NULL
5108 * and the packet has been through at least one XFRM
5109 * transformation then we must be dealing with the "final"
5110 * form of labeled IPsec packet; since we've already applied
5111 * all of our access controls on this packet we can safely
5112 * pass the packet. */
5113 if (skb_sid == SECSID_NULL) {
5114 switch (family) {
5115 case PF_INET:
5116 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5117 return NF_ACCEPT;
5118 break;
5119 case PF_INET6:
5120 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5121 return NF_ACCEPT;
5122 break;
5123 default:
5124 return NF_DROP_ERR(-ECONNREFUSED);
5125 }
5126 }
5127 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5128 return NF_DROP;
5129 secmark_perm = PACKET__SEND;
5130 } else {
5131 /* Locally generated packet, fetch the security label from the
5132 * associated socket. */
5133 struct sk_security_struct *sksec = sk->sk_security;
5134 peer_sid = sksec->sid;
5135 secmark_perm = PACKET__SEND;
5136 }
5137
5138 ad.type = LSM_AUDIT_DATA_NET;
5139 ad.u.net = &net;
5140 ad.u.net->netif = ifindex;
5141 ad.u.net->family = family;
5142 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5143 return NF_DROP;
5144
5145 if (secmark_active)
5146 if (avc_has_perm(peer_sid, skb->secmark,
5147 SECCLASS_PACKET, secmark_perm, &ad))
5148 return NF_DROP_ERR(-ECONNREFUSED);
5149
5150 if (peerlbl_active) {
5151 u32 if_sid;
5152 u32 node_sid;
5153
5154 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5155 return NF_DROP;
5156 if (avc_has_perm(peer_sid, if_sid,
5157 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5158 return NF_DROP_ERR(-ECONNREFUSED);
5159
5160 if (sel_netnode_sid(addrp, family, &node_sid))
5161 return NF_DROP;
5162 if (avc_has_perm(peer_sid, node_sid,
5163 SECCLASS_NODE, NODE__SENDTO, &ad))
5164 return NF_DROP_ERR(-ECONNREFUSED);
5165 }
5166
5167 return NF_ACCEPT;
5168}
5169
5170static unsigned int selinux_ipv4_postroute(void *priv,
5171 struct sk_buff *skb,
5172 const struct nf_hook_state *state)
5173{
5174 return selinux_ip_postroute(skb, state->out, PF_INET);
5175}
5176
5177#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5178static unsigned int selinux_ipv6_postroute(void *priv,
5179 struct sk_buff *skb,
5180 const struct nf_hook_state *state)
5181{
5182 return selinux_ip_postroute(skb, state->out, PF_INET6);
5183}
5184#endif /* IPV6 */
5185
5186#endif /* CONFIG_NETFILTER */
5187
5188static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5189{
5190 return selinux_nlmsg_perm(sk, skb);
5191}
5192
5193static int ipc_alloc_security(struct task_struct *task,
5194 struct kern_ipc_perm *perm,
5195 u16 sclass)
5196{
5197 struct ipc_security_struct *isec;
5198 u32 sid;
5199
5200 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5201 if (!isec)
5202 return -ENOMEM;
5203
5204 sid = task_sid(task);
5205 isec->sclass = sclass;
5206 isec->sid = sid;
5207 perm->security = isec;
5208
5209 return 0;
5210}
5211
5212static void ipc_free_security(struct kern_ipc_perm *perm)
5213{
5214 struct ipc_security_struct *isec = perm->security;
5215 perm->security = NULL;
5216 kfree(isec);
5217}
5218
5219static int msg_msg_alloc_security(struct msg_msg *msg)
5220{
5221 struct msg_security_struct *msec;
5222
5223 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5224 if (!msec)
5225 return -ENOMEM;
5226
5227 msec->sid = SECINITSID_UNLABELED;
5228 msg->security = msec;
5229
5230 return 0;
5231}
5232
5233static void msg_msg_free_security(struct msg_msg *msg)
5234{
5235 struct msg_security_struct *msec = msg->security;
5236
5237 msg->security = NULL;
5238 kfree(msec);
5239}
5240
5241static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5242 u32 perms)
5243{
5244 struct ipc_security_struct *isec;
5245 struct common_audit_data ad;
5246 u32 sid = current_sid();
5247
5248 isec = ipc_perms->security;
5249
5250 ad.type = LSM_AUDIT_DATA_IPC;
5251 ad.u.ipc_id = ipc_perms->key;
5252
5253 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5254}
5255
5256static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5257{
5258 return msg_msg_alloc_security(msg);
5259}
5260
5261static void selinux_msg_msg_free_security(struct msg_msg *msg)
5262{
5263 msg_msg_free_security(msg);
5264}
5265
5266/* message queue security operations */
5267static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5268{
5269 struct ipc_security_struct *isec;
5270 struct common_audit_data ad;
5271 u32 sid = current_sid();
5272 int rc;
5273
5274 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5275 if (rc)
5276 return rc;
5277
5278 isec = msq->q_perm.security;
5279
5280 ad.type = LSM_AUDIT_DATA_IPC;
5281 ad.u.ipc_id = msq->q_perm.key;
5282
5283 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5284 MSGQ__CREATE, &ad);
5285 if (rc) {
5286 ipc_free_security(&msq->q_perm);
5287 return rc;
5288 }
5289 return 0;
5290}
5291
5292static void selinux_msg_queue_free_security(struct msg_queue *msq)
5293{
5294 ipc_free_security(&msq->q_perm);
5295}
5296
5297static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5298{
5299 struct ipc_security_struct *isec;
5300 struct common_audit_data ad;
5301 u32 sid = current_sid();
5302
5303 isec = msq->q_perm.security;
5304
5305 ad.type = LSM_AUDIT_DATA_IPC;
5306 ad.u.ipc_id = msq->q_perm.key;
5307
5308 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5309 MSGQ__ASSOCIATE, &ad);
5310}
5311
5312static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5313{
5314 int err;
5315 int perms;
5316
5317 switch (cmd) {
5318 case IPC_INFO:
5319 case MSG_INFO:
5320 /* No specific object, just general system-wide information. */
5321 return task_has_system(current, SYSTEM__IPC_INFO);
5322 case IPC_STAT:
5323 case MSG_STAT:
5324 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5325 break;
5326 case IPC_SET:
5327 perms = MSGQ__SETATTR;
5328 break;
5329 case IPC_RMID:
5330 perms = MSGQ__DESTROY;
5331 break;
5332 default:
5333 return 0;
5334 }
5335
5336 err = ipc_has_perm(&msq->q_perm, perms);
5337 return err;
5338}
5339
5340static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5341{
5342 struct ipc_security_struct *isec;
5343 struct msg_security_struct *msec;
5344 struct common_audit_data ad;
5345 u32 sid = current_sid();
5346 int rc;
5347
5348 isec = msq->q_perm.security;
5349 msec = msg->security;
5350
5351 /*
5352 * First time through, need to assign label to the message
5353 */
5354 if (msec->sid == SECINITSID_UNLABELED) {
5355 /*
5356 * Compute new sid based on current process and
5357 * message queue this message will be stored in
5358 */
5359 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5360 NULL, &msec->sid);
5361 if (rc)
5362 return rc;
5363 }
5364
5365 ad.type = LSM_AUDIT_DATA_IPC;
5366 ad.u.ipc_id = msq->q_perm.key;
5367
5368 /* Can this process write to the queue? */
5369 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5370 MSGQ__WRITE, &ad);
5371 if (!rc)
5372 /* Can this process send the message */
5373 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5374 MSG__SEND, &ad);
5375 if (!rc)
5376 /* Can the message be put in the queue? */
5377 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5378 MSGQ__ENQUEUE, &ad);
5379
5380 return rc;
5381}
5382
5383static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5384 struct task_struct *target,
5385 long type, int mode)
5386{
5387 struct ipc_security_struct *isec;
5388 struct msg_security_struct *msec;
5389 struct common_audit_data ad;
5390 u32 sid = task_sid(target);
5391 int rc;
5392
5393 isec = msq->q_perm.security;
5394 msec = msg->security;
5395
5396 ad.type = LSM_AUDIT_DATA_IPC;
5397 ad.u.ipc_id = msq->q_perm.key;
5398
5399 rc = avc_has_perm(sid, isec->sid,
5400 SECCLASS_MSGQ, MSGQ__READ, &ad);
5401 if (!rc)
5402 rc = avc_has_perm(sid, msec->sid,
5403 SECCLASS_MSG, MSG__RECEIVE, &ad);
5404 return rc;
5405}
5406
5407/* Shared Memory security operations */
5408static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5409{
5410 struct ipc_security_struct *isec;
5411 struct common_audit_data ad;
5412 u32 sid = current_sid();
5413 int rc;
5414
5415 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5416 if (rc)
5417 return rc;
5418
5419 isec = shp->shm_perm.security;
5420
5421 ad.type = LSM_AUDIT_DATA_IPC;
5422 ad.u.ipc_id = shp->shm_perm.key;
5423
5424 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5425 SHM__CREATE, &ad);
5426 if (rc) {
5427 ipc_free_security(&shp->shm_perm);
5428 return rc;
5429 }
5430 return 0;
5431}
5432
5433static void selinux_shm_free_security(struct shmid_kernel *shp)
5434{
5435 ipc_free_security(&shp->shm_perm);
5436}
5437
5438static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5439{
5440 struct ipc_security_struct *isec;
5441 struct common_audit_data ad;
5442 u32 sid = current_sid();
5443
5444 isec = shp->shm_perm.security;
5445
5446 ad.type = LSM_AUDIT_DATA_IPC;
5447 ad.u.ipc_id = shp->shm_perm.key;
5448
5449 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5450 SHM__ASSOCIATE, &ad);
5451}
5452
5453/* Note, at this point, shp is locked down */
5454static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5455{
5456 int perms;
5457 int err;
5458
5459 switch (cmd) {
5460 case IPC_INFO:
5461 case SHM_INFO:
5462 /* No specific object, just general system-wide information. */
5463 return task_has_system(current, SYSTEM__IPC_INFO);
5464 case IPC_STAT:
5465 case SHM_STAT:
5466 perms = SHM__GETATTR | SHM__ASSOCIATE;
5467 break;
5468 case IPC_SET:
5469 perms = SHM__SETATTR;
5470 break;
5471 case SHM_LOCK:
5472 case SHM_UNLOCK:
5473 perms = SHM__LOCK;
5474 break;
5475 case IPC_RMID:
5476 perms = SHM__DESTROY;
5477 break;
5478 default:
5479 return 0;
5480 }
5481
5482 err = ipc_has_perm(&shp->shm_perm, perms);
5483 return err;
5484}
5485
5486static int selinux_shm_shmat(struct shmid_kernel *shp,
5487 char __user *shmaddr, int shmflg)
5488{
5489 u32 perms;
5490
5491 if (shmflg & SHM_RDONLY)
5492 perms = SHM__READ;
5493 else
5494 perms = SHM__READ | SHM__WRITE;
5495
5496 return ipc_has_perm(&shp->shm_perm, perms);
5497}
5498
5499/* Semaphore security operations */
5500static int selinux_sem_alloc_security(struct sem_array *sma)
5501{
5502 struct ipc_security_struct *isec;
5503 struct common_audit_data ad;
5504 u32 sid = current_sid();
5505 int rc;
5506
5507 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5508 if (rc)
5509 return rc;
5510
5511 isec = sma->sem_perm.security;
5512
5513 ad.type = LSM_AUDIT_DATA_IPC;
5514 ad.u.ipc_id = sma->sem_perm.key;
5515
5516 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5517 SEM__CREATE, &ad);
5518 if (rc) {
5519 ipc_free_security(&sma->sem_perm);
5520 return rc;
5521 }
5522 return 0;
5523}
5524
5525static void selinux_sem_free_security(struct sem_array *sma)
5526{
5527 ipc_free_security(&sma->sem_perm);
5528}
5529
5530static int selinux_sem_associate(struct sem_array *sma, int semflg)
5531{
5532 struct ipc_security_struct *isec;
5533 struct common_audit_data ad;
5534 u32 sid = current_sid();
5535
5536 isec = sma->sem_perm.security;
5537
5538 ad.type = LSM_AUDIT_DATA_IPC;
5539 ad.u.ipc_id = sma->sem_perm.key;
5540
5541 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5542 SEM__ASSOCIATE, &ad);
5543}
5544
5545/* Note, at this point, sma is locked down */
5546static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5547{
5548 int err;
5549 u32 perms;
5550
5551 switch (cmd) {
5552 case IPC_INFO:
5553 case SEM_INFO:
5554 /* No specific object, just general system-wide information. */
5555 return task_has_system(current, SYSTEM__IPC_INFO);
5556 case GETPID:
5557 case GETNCNT:
5558 case GETZCNT:
5559 perms = SEM__GETATTR;
5560 break;
5561 case GETVAL:
5562 case GETALL:
5563 perms = SEM__READ;
5564 break;
5565 case SETVAL:
5566 case SETALL:
5567 perms = SEM__WRITE;
5568 break;
5569 case IPC_RMID:
5570 perms = SEM__DESTROY;
5571 break;
5572 case IPC_SET:
5573 perms = SEM__SETATTR;
5574 break;
5575 case IPC_STAT:
5576 case SEM_STAT:
5577 perms = SEM__GETATTR | SEM__ASSOCIATE;
5578 break;
5579 default:
5580 return 0;
5581 }
5582
5583 err = ipc_has_perm(&sma->sem_perm, perms);
5584 return err;
5585}
5586
5587static int selinux_sem_semop(struct sem_array *sma,
5588 struct sembuf *sops, unsigned nsops, int alter)
5589{
5590 u32 perms;
5591
5592 if (alter)
5593 perms = SEM__READ | SEM__WRITE;
5594 else
5595 perms = SEM__READ;
5596
5597 return ipc_has_perm(&sma->sem_perm, perms);
5598}
5599
5600static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5601{
5602 u32 av = 0;
5603
5604 av = 0;
5605 if (flag & S_IRUGO)
5606 av |= IPC__UNIX_READ;
5607 if (flag & S_IWUGO)
5608 av |= IPC__UNIX_WRITE;
5609
5610 if (av == 0)
5611 return 0;
5612
5613 return ipc_has_perm(ipcp, av);
5614}
5615
5616static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5617{
5618 struct ipc_security_struct *isec = ipcp->security;
5619 *secid = isec->sid;
5620}
5621
5622static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5623{
5624 if (inode)
5625 inode_doinit_with_dentry(inode, dentry);
5626}
5627
5628static int selinux_getprocattr(struct task_struct *p,
5629 char *name, char **value)
5630{
5631 const struct task_security_struct *__tsec;
5632 u32 sid;
5633 int error;
5634 unsigned len;
5635
5636 if (current != p) {
5637 error = current_has_perm(p, PROCESS__GETATTR);
5638 if (error)
5639 return error;
5640 }
5641
5642 rcu_read_lock();
5643 __tsec = __task_cred(p)->security;
5644
5645 if (!strcmp(name, "current"))
5646 sid = __tsec->sid;
5647 else if (!strcmp(name, "prev"))
5648 sid = __tsec->osid;
5649 else if (!strcmp(name, "exec"))
5650 sid = __tsec->exec_sid;
5651 else if (!strcmp(name, "fscreate"))
5652 sid = __tsec->create_sid;
5653 else if (!strcmp(name, "keycreate"))
5654 sid = __tsec->keycreate_sid;
5655 else if (!strcmp(name, "sockcreate"))
5656 sid = __tsec->sockcreate_sid;
5657 else
5658 goto invalid;
5659 rcu_read_unlock();
5660
5661 if (!sid)
5662 return 0;
5663
5664 error = security_sid_to_context(sid, value, &len);
5665 if (error)
5666 return error;
5667 return len;
5668
5669invalid:
5670 rcu_read_unlock();
5671 return -EINVAL;
5672}
5673
5674static int selinux_setprocattr(struct task_struct *p,
5675 char *name, void *value, size_t size)
5676{
5677 struct task_security_struct *tsec;
5678 struct task_struct *tracer;
5679 struct cred *new;
5680 u32 sid = 0, ptsid;
5681 int error;
5682 char *str = value;
5683
5684 if (current != p) {
5685 /* SELinux only allows a process to change its own
5686 security attributes. */
5687 return -EACCES;
5688 }
5689
5690 /*
5691 * Basic control over ability to set these attributes at all.
5692 * current == p, but we'll pass them separately in case the
5693 * above restriction is ever removed.
5694 */
5695 if (!strcmp(name, "exec"))
5696 error = current_has_perm(p, PROCESS__SETEXEC);
5697 else if (!strcmp(name, "fscreate"))
5698 error = current_has_perm(p, PROCESS__SETFSCREATE);
5699 else if (!strcmp(name, "keycreate"))
5700 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5701 else if (!strcmp(name, "sockcreate"))
5702 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5703 else if (!strcmp(name, "current"))
5704 error = current_has_perm(p, PROCESS__SETCURRENT);
5705 else
5706 error = -EINVAL;
5707 if (error)
5708 return error;
5709
5710 /* Obtain a SID for the context, if one was specified. */
5711 if (size && str[1] && str[1] != '\n') {
5712 if (str[size-1] == '\n') {
5713 str[size-1] = 0;
5714 size--;
5715 }
5716 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5717 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5718 if (!capable(CAP_MAC_ADMIN)) {
5719 struct audit_buffer *ab;
5720 size_t audit_size;
5721
5722 /* We strip a nul only if it is at the end, otherwise the
5723 * context contains a nul and we should audit that */
5724 if (str[size - 1] == '\0')
5725 audit_size = size - 1;
5726 else
5727 audit_size = size;
5728 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5729 audit_log_format(ab, "op=fscreate invalid_context=");
5730 audit_log_n_untrustedstring(ab, value, audit_size);
5731 audit_log_end(ab);
5732
5733 return error;
5734 }
5735 error = security_context_to_sid_force(value, size,
5736 &sid);
5737 }
5738 if (error)
5739 return error;
5740 }
5741
5742 new = prepare_creds();
5743 if (!new)
5744 return -ENOMEM;
5745
5746 /* Permission checking based on the specified context is
5747 performed during the actual operation (execve,
5748 open/mkdir/...), when we know the full context of the
5749 operation. See selinux_bprm_set_creds for the execve
5750 checks and may_create for the file creation checks. The
5751 operation will then fail if the context is not permitted. */
5752 tsec = new->security;
5753 if (!strcmp(name, "exec")) {
5754 tsec->exec_sid = sid;
5755 } else if (!strcmp(name, "fscreate")) {
5756 tsec->create_sid = sid;
5757 } else if (!strcmp(name, "keycreate")) {
5758 error = may_create_key(sid, p);
5759 if (error)
5760 goto abort_change;
5761 tsec->keycreate_sid = sid;
5762 } else if (!strcmp(name, "sockcreate")) {
5763 tsec->sockcreate_sid = sid;
5764 } else if (!strcmp(name, "current")) {
5765 error = -EINVAL;
5766 if (sid == 0)
5767 goto abort_change;
5768
5769 /* Only allow single threaded processes to change context */
5770 error = -EPERM;
5771 if (!current_is_single_threaded()) {
5772 error = security_bounded_transition(tsec->sid, sid);
5773 if (error)
5774 goto abort_change;
5775 }
5776
5777 /* Check permissions for the transition. */
5778 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5779 PROCESS__DYNTRANSITION, NULL);
5780 if (error)
5781 goto abort_change;
5782
5783 /* Check for ptracing, and update the task SID if ok.
5784 Otherwise, leave SID unchanged and fail. */
5785 ptsid = 0;
5786 rcu_read_lock();
5787 tracer = ptrace_parent(p);
5788 if (tracer)
5789 ptsid = task_sid(tracer);
5790 rcu_read_unlock();
5791
5792 if (tracer) {
5793 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5794 PROCESS__PTRACE, NULL);
5795 if (error)
5796 goto abort_change;
5797 }
5798
5799 tsec->sid = sid;
5800 } else {
5801 error = -EINVAL;
5802 goto abort_change;
5803 }
5804
5805 commit_creds(new);
5806 return size;
5807
5808abort_change:
5809 abort_creds(new);
5810 return error;
5811}
5812
5813static int selinux_ismaclabel(const char *name)
5814{
5815 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5816}
5817
5818static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5819{
5820 return security_sid_to_context(secid, secdata, seclen);
5821}
5822
5823static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5824{
5825 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5826}
5827
5828static void selinux_release_secctx(char *secdata, u32 seclen)
5829{
5830 kfree(secdata);
5831}
5832
5833static void selinux_inode_invalidate_secctx(struct inode *inode)
5834{
5835 struct inode_security_struct *isec = inode->i_security;
5836
5837 mutex_lock(&isec->lock);
5838 isec->initialized = LABEL_INVALID;
5839 mutex_unlock(&isec->lock);
5840}
5841
5842/*
5843 * called with inode->i_mutex locked
5844 */
5845static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5846{
5847 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5848}
5849
5850/*
5851 * called with inode->i_mutex locked
5852 */
5853static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5854{
5855 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5856}
5857
5858static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5859{
5860 int len = 0;
5861 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5862 ctx, true);
5863 if (len < 0)
5864 return len;
5865 *ctxlen = len;
5866 return 0;
5867}
5868#ifdef CONFIG_KEYS
5869
5870static int selinux_key_alloc(struct key *k, const struct cred *cred,
5871 unsigned long flags)
5872{
5873 const struct task_security_struct *tsec;
5874 struct key_security_struct *ksec;
5875
5876 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5877 if (!ksec)
5878 return -ENOMEM;
5879
5880 tsec = cred->security;
5881 if (tsec->keycreate_sid)
5882 ksec->sid = tsec->keycreate_sid;
5883 else
5884 ksec->sid = tsec->sid;
5885
5886 k->security = ksec;
5887 return 0;
5888}
5889
5890static void selinux_key_free(struct key *k)
5891{
5892 struct key_security_struct *ksec = k->security;
5893
5894 k->security = NULL;
5895 kfree(ksec);
5896}
5897
5898static int selinux_key_permission(key_ref_t key_ref,
5899 const struct cred *cred,
5900 unsigned perm)
5901{
5902 struct key *key;
5903 struct key_security_struct *ksec;
5904 u32 sid;
5905
5906 /* if no specific permissions are requested, we skip the
5907 permission check. No serious, additional covert channels
5908 appear to be created. */
5909 if (perm == 0)
5910 return 0;
5911
5912 sid = cred_sid(cred);
5913
5914 key = key_ref_to_ptr(key_ref);
5915 ksec = key->security;
5916
5917 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5918}
5919
5920static int selinux_key_getsecurity(struct key *key, char **_buffer)
5921{
5922 struct key_security_struct *ksec = key->security;
5923 char *context = NULL;
5924 unsigned len;
5925 int rc;
5926
5927 rc = security_sid_to_context(ksec->sid, &context, &len);
5928 if (!rc)
5929 rc = len;
5930 *_buffer = context;
5931 return rc;
5932}
5933
5934#endif
5935
5936static struct security_hook_list selinux_hooks[] = {
5937 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5938 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5939 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5940 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5941
5942 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5943 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5944 LSM_HOOK_INIT(capget, selinux_capget),
5945 LSM_HOOK_INIT(capset, selinux_capset),
5946 LSM_HOOK_INIT(capable, selinux_capable),
5947 LSM_HOOK_INIT(quotactl, selinux_quotactl),
5948 LSM_HOOK_INIT(quota_on, selinux_quota_on),
5949 LSM_HOOK_INIT(syslog, selinux_syslog),
5950 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5951
5952 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5953
5954 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5955 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5956 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5957 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5958
5959 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5960 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5961 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5962 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5963 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5964 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5965 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5966 LSM_HOOK_INIT(sb_mount, selinux_mount),
5967 LSM_HOOK_INIT(sb_umount, selinux_umount),
5968 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5969 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5970 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
5971
5972 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
5973
5974 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5975 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5976 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
5977 LSM_HOOK_INIT(inode_create, selinux_inode_create),
5978 LSM_HOOK_INIT(inode_link, selinux_inode_link),
5979 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5980 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5981 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5982 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5983 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5984 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5985 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5986 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5987 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5988 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5989 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5990 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5991 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5992 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5993 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5994 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5995 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5996 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5997 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5998 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
5999
6000 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6001 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6002 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6003 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6004 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6005 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6006 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6007 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6008 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6009 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6010 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6011 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6012
6013 LSM_HOOK_INIT(file_open, selinux_file_open),
6014
6015 LSM_HOOK_INIT(task_create, selinux_task_create),
6016 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6017 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6018 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6019 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6020 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6021 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6022 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6023 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6024 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6025 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6026 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6027 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6028 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6029 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6030 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6031 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6032 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6033 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6034 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6035 LSM_HOOK_INIT(task_wait, selinux_task_wait),
6036 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6037
6038 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6039 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6040
6041 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6042 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6043
6044 LSM_HOOK_INIT(msg_queue_alloc_security,
6045 selinux_msg_queue_alloc_security),
6046 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6047 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6048 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6049 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6050 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6051
6052 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6053 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6054 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6055 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6056 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6057
6058 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6059 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6060 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6061 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6062 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6063
6064 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6065
6066 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6067 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6068
6069 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6070 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6071 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6072 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6073 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6074 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6075 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6076 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6077
6078 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6079 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6080
6081 LSM_HOOK_INIT(socket_create, selinux_socket_create),
6082 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6083 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6084 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6085 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6086 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6087 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6088 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6089 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6090 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6091 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6092 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6093 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6094 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6095 LSM_HOOK_INIT(socket_getpeersec_stream,
6096 selinux_socket_getpeersec_stream),
6097 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6098 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6099 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6100 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6101 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6102 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6103 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6104 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6105 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6106 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6107 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6108 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6109 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6110 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6111 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6112 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6113 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6114 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6115 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6116
6117#ifdef CONFIG_SECURITY_NETWORK_XFRM
6118 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6119 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6120 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6121 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6122 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6123 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6124 selinux_xfrm_state_alloc_acquire),
6125 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6126 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6127 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6128 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6129 selinux_xfrm_state_pol_flow_match),
6130 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6131#endif
6132
6133#ifdef CONFIG_KEYS
6134 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6135 LSM_HOOK_INIT(key_free, selinux_key_free),
6136 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6137 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6138#endif
6139
6140#ifdef CONFIG_AUDIT
6141 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6142 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6143 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6144 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6145#endif
6146};
6147
6148static __init int selinux_init(void)
6149{
6150 if (!security_module_enable("selinux")) {
6151 selinux_enabled = 0;
6152 return 0;
6153 }
6154
6155 if (!selinux_enabled) {
6156 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6157 return 0;
6158 }
6159
6160 printk(KERN_INFO "SELinux: Initializing.\n");
6161
6162 /* Set the security state for the initial task. */
6163 cred_init_security();
6164
6165 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6166
6167 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6168 sizeof(struct inode_security_struct),
6169 0, SLAB_PANIC, NULL);
6170 file_security_cache = kmem_cache_create("selinux_file_security",
6171 sizeof(struct file_security_struct),
6172 0, SLAB_PANIC, NULL);
6173 avc_init();
6174
6175 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6176
6177 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6178 panic("SELinux: Unable to register AVC netcache callback\n");
6179
6180 if (selinux_enforcing)
6181 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6182 else
6183 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6184
6185 return 0;
6186}
6187
6188static void delayed_superblock_init(struct super_block *sb, void *unused)
6189{
6190 superblock_doinit(sb, NULL);
6191}
6192
6193void selinux_complete_init(void)
6194{
6195 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6196
6197 /* Set up any superblocks initialized prior to the policy load. */
6198 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6199 iterate_supers(delayed_superblock_init, NULL);
6200}
6201
6202/* SELinux requires early initialization in order to label
6203 all processes and objects when they are created. */
6204security_initcall(selinux_init);
6205
6206#if defined(CONFIG_NETFILTER)
6207
6208static struct nf_hook_ops selinux_nf_ops[] = {
6209 {
6210 .hook = selinux_ipv4_postroute,
6211 .pf = NFPROTO_IPV4,
6212 .hooknum = NF_INET_POST_ROUTING,
6213 .priority = NF_IP_PRI_SELINUX_LAST,
6214 },
6215 {
6216 .hook = selinux_ipv4_forward,
6217 .pf = NFPROTO_IPV4,
6218 .hooknum = NF_INET_FORWARD,
6219 .priority = NF_IP_PRI_SELINUX_FIRST,
6220 },
6221 {
6222 .hook = selinux_ipv4_output,
6223 .pf = NFPROTO_IPV4,
6224 .hooknum = NF_INET_LOCAL_OUT,
6225 .priority = NF_IP_PRI_SELINUX_FIRST,
6226 },
6227#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6228 {
6229 .hook = selinux_ipv6_postroute,
6230 .pf = NFPROTO_IPV6,
6231 .hooknum = NF_INET_POST_ROUTING,
6232 .priority = NF_IP6_PRI_SELINUX_LAST,
6233 },
6234 {
6235 .hook = selinux_ipv6_forward,
6236 .pf = NFPROTO_IPV6,
6237 .hooknum = NF_INET_FORWARD,
6238 .priority = NF_IP6_PRI_SELINUX_FIRST,
6239 },
6240#endif /* IPV6 */
6241};
6242
6243static int __init selinux_nf_ip_init(void)
6244{
6245 int err;
6246
6247 if (!selinux_enabled)
6248 return 0;
6249
6250 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6251
6252 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6253 if (err)
6254 panic("SELinux: nf_register_hooks: error %d\n", err);
6255
6256 return 0;
6257}
6258
6259__initcall(selinux_nf_ip_init);
6260
6261#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6262static void selinux_nf_ip_exit(void)
6263{
6264 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6265
6266 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6267}
6268#endif
6269
6270#else /* CONFIG_NETFILTER */
6271
6272#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6273#define selinux_nf_ip_exit()
6274#endif
6275
6276#endif /* CONFIG_NETFILTER */
6277
6278#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6279static int selinux_disabled;
6280
6281int selinux_disable(void)
6282{
6283 if (ss_initialized) {
6284 /* Not permitted after initial policy load. */
6285 return -EINVAL;
6286 }
6287
6288 if (selinux_disabled) {
6289 /* Only do this once. */
6290 return -EINVAL;
6291 }
6292
6293 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6294
6295 selinux_disabled = 1;
6296 selinux_enabled = 0;
6297
6298 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6299
6300 /* Try to destroy the avc node cache */
6301 avc_disable();
6302
6303 /* Unregister netfilter hooks. */
6304 selinux_nf_ip_exit();
6305
6306 /* Unregister selinuxfs. */
6307 exit_sel_fs();
6308
6309 return 0;
6310}
6311#endif
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/security.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55#include <net/net_namespace.h>
56#include <net/netlabel.h>
57#include <linux/uaccess.h>
58#include <asm/ioctls.h>
59#include <linux/atomic.h>
60#include <linux/bitops.h>
61#include <linux/interrupt.h>
62#include <linux/netdevice.h> /* for network interface checks */
63#include <linux/netlink.h>
64#include <linux/tcp.h>
65#include <linux/udp.h>
66#include <linux/dccp.h>
67#include <linux/quota.h>
68#include <linux/un.h> /* for Unix socket types */
69#include <net/af_unix.h> /* for Unix socket types */
70#include <linux/parser.h>
71#include <linux/nfs_mount.h>
72#include <net/ipv6.h>
73#include <linux/hugetlb.h>
74#include <linux/personality.h>
75#include <linux/audit.h>
76#include <linux/string.h>
77#include <linux/selinux.h>
78#include <linux/mutex.h>
79#include <linux/posix-timers.h>
80#include <linux/syslog.h>
81#include <linux/user_namespace.h>
82#include <linux/export.h>
83#include <linux/msg.h>
84#include <linux/shm.h>
85
86#include "avc.h"
87#include "objsec.h"
88#include "netif.h"
89#include "netnode.h"
90#include "netport.h"
91#include "xfrm.h"
92#include "netlabel.h"
93#include "audit.h"
94#include "avc_ss.h"
95
96#define NUM_SEL_MNT_OPTS 5
97
98extern struct security_operations *security_ops;
99
100/* SECMARK reference count */
101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104int selinux_enforcing;
105
106static int __init enforcing_setup(char *str)
107{
108 unsigned long enforcing;
109 if (!strict_strtoul(str, 0, &enforcing))
110 selinux_enforcing = enforcing ? 1 : 0;
111 return 1;
112}
113__setup("enforcing=", enforcing_setup);
114#endif
115
116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119static int __init selinux_enabled_setup(char *str)
120{
121 unsigned long enabled;
122 if (!strict_strtoul(str, 0, &enabled))
123 selinux_enabled = enabled ? 1 : 0;
124 return 1;
125}
126__setup("selinux=", selinux_enabled_setup);
127#else
128int selinux_enabled = 1;
129#endif
130
131static struct kmem_cache *sel_inode_cache;
132
133/**
134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135 *
136 * Description:
137 * This function checks the SECMARK reference counter to see if any SECMARK
138 * targets are currently configured, if the reference counter is greater than
139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
140 * enabled, false (0) if SECMARK is disabled.
141 *
142 */
143static int selinux_secmark_enabled(void)
144{
145 return (atomic_read(&selinux_secmark_refcount) > 0);
146}
147
148/*
149 * initialise the security for the init task
150 */
151static void cred_init_security(void)
152{
153 struct cred *cred = (struct cred *) current->real_cred;
154 struct task_security_struct *tsec;
155
156 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157 if (!tsec)
158 panic("SELinux: Failed to initialize initial task.\n");
159
160 tsec->osid = tsec->sid = SECINITSID_KERNEL;
161 cred->security = tsec;
162}
163
164/*
165 * get the security ID of a set of credentials
166 */
167static inline u32 cred_sid(const struct cred *cred)
168{
169 const struct task_security_struct *tsec;
170
171 tsec = cred->security;
172 return tsec->sid;
173}
174
175/*
176 * get the objective security ID of a task
177 */
178static inline u32 task_sid(const struct task_struct *task)
179{
180 u32 sid;
181
182 rcu_read_lock();
183 sid = cred_sid(__task_cred(task));
184 rcu_read_unlock();
185 return sid;
186}
187
188/*
189 * get the subjective security ID of the current task
190 */
191static inline u32 current_sid(void)
192{
193 const struct task_security_struct *tsec = current_security();
194
195 return tsec->sid;
196}
197
198/* Allocate and free functions for each kind of security blob. */
199
200static int inode_alloc_security(struct inode *inode)
201{
202 struct inode_security_struct *isec;
203 u32 sid = current_sid();
204
205 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206 if (!isec)
207 return -ENOMEM;
208
209 mutex_init(&isec->lock);
210 INIT_LIST_HEAD(&isec->list);
211 isec->inode = inode;
212 isec->sid = SECINITSID_UNLABELED;
213 isec->sclass = SECCLASS_FILE;
214 isec->task_sid = sid;
215 inode->i_security = isec;
216
217 return 0;
218}
219
220static void inode_free_security(struct inode *inode)
221{
222 struct inode_security_struct *isec = inode->i_security;
223 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224
225 spin_lock(&sbsec->isec_lock);
226 if (!list_empty(&isec->list))
227 list_del_init(&isec->list);
228 spin_unlock(&sbsec->isec_lock);
229
230 inode->i_security = NULL;
231 kmem_cache_free(sel_inode_cache, isec);
232}
233
234static int file_alloc_security(struct file *file)
235{
236 struct file_security_struct *fsec;
237 u32 sid = current_sid();
238
239 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240 if (!fsec)
241 return -ENOMEM;
242
243 fsec->sid = sid;
244 fsec->fown_sid = sid;
245 file->f_security = fsec;
246
247 return 0;
248}
249
250static void file_free_security(struct file *file)
251{
252 struct file_security_struct *fsec = file->f_security;
253 file->f_security = NULL;
254 kfree(fsec);
255}
256
257static int superblock_alloc_security(struct super_block *sb)
258{
259 struct superblock_security_struct *sbsec;
260
261 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262 if (!sbsec)
263 return -ENOMEM;
264
265 mutex_init(&sbsec->lock);
266 INIT_LIST_HEAD(&sbsec->isec_head);
267 spin_lock_init(&sbsec->isec_lock);
268 sbsec->sb = sb;
269 sbsec->sid = SECINITSID_UNLABELED;
270 sbsec->def_sid = SECINITSID_FILE;
271 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272 sb->s_security = sbsec;
273
274 return 0;
275}
276
277static void superblock_free_security(struct super_block *sb)
278{
279 struct superblock_security_struct *sbsec = sb->s_security;
280 sb->s_security = NULL;
281 kfree(sbsec);
282}
283
284/* The file system's label must be initialized prior to use. */
285
286static const char *labeling_behaviors[6] = {
287 "uses xattr",
288 "uses transition SIDs",
289 "uses task SIDs",
290 "uses genfs_contexts",
291 "not configured for labeling",
292 "uses mountpoint labeling",
293};
294
295static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296
297static inline int inode_doinit(struct inode *inode)
298{
299 return inode_doinit_with_dentry(inode, NULL);
300}
301
302enum {
303 Opt_error = -1,
304 Opt_context = 1,
305 Opt_fscontext = 2,
306 Opt_defcontext = 3,
307 Opt_rootcontext = 4,
308 Opt_labelsupport = 5,
309};
310
311static const match_table_t tokens = {
312 {Opt_context, CONTEXT_STR "%s"},
313 {Opt_fscontext, FSCONTEXT_STR "%s"},
314 {Opt_defcontext, DEFCONTEXT_STR "%s"},
315 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316 {Opt_labelsupport, LABELSUPP_STR},
317 {Opt_error, NULL},
318};
319
320#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
321
322static int may_context_mount_sb_relabel(u32 sid,
323 struct superblock_security_struct *sbsec,
324 const struct cred *cred)
325{
326 const struct task_security_struct *tsec = cred->security;
327 int rc;
328
329 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330 FILESYSTEM__RELABELFROM, NULL);
331 if (rc)
332 return rc;
333
334 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335 FILESYSTEM__RELABELTO, NULL);
336 return rc;
337}
338
339static int may_context_mount_inode_relabel(u32 sid,
340 struct superblock_security_struct *sbsec,
341 const struct cred *cred)
342{
343 const struct task_security_struct *tsec = cred->security;
344 int rc;
345 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346 FILESYSTEM__RELABELFROM, NULL);
347 if (rc)
348 return rc;
349
350 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351 FILESYSTEM__ASSOCIATE, NULL);
352 return rc;
353}
354
355static int sb_finish_set_opts(struct super_block *sb)
356{
357 struct superblock_security_struct *sbsec = sb->s_security;
358 struct dentry *root = sb->s_root;
359 struct inode *root_inode = root->d_inode;
360 int rc = 0;
361
362 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363 /* Make sure that the xattr handler exists and that no
364 error other than -ENODATA is returned by getxattr on
365 the root directory. -ENODATA is ok, as this may be
366 the first boot of the SELinux kernel before we have
367 assigned xattr values to the filesystem. */
368 if (!root_inode->i_op->getxattr) {
369 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370 "xattr support\n", sb->s_id, sb->s_type->name);
371 rc = -EOPNOTSUPP;
372 goto out;
373 }
374 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375 if (rc < 0 && rc != -ENODATA) {
376 if (rc == -EOPNOTSUPP)
377 printk(KERN_WARNING "SELinux: (dev %s, type "
378 "%s) has no security xattr handler\n",
379 sb->s_id, sb->s_type->name);
380 else
381 printk(KERN_WARNING "SELinux: (dev %s, type "
382 "%s) getxattr errno %d\n", sb->s_id,
383 sb->s_type->name, -rc);
384 goto out;
385 }
386 }
387
388 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389
390 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392 sb->s_id, sb->s_type->name);
393 else
394 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395 sb->s_id, sb->s_type->name,
396 labeling_behaviors[sbsec->behavior-1]);
397
398 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400 sbsec->behavior == SECURITY_FS_USE_NONE ||
401 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402 sbsec->flags &= ~SE_SBLABELSUPP;
403
404 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
405 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406 sbsec->flags |= SE_SBLABELSUPP;
407
408 /* Initialize the root inode. */
409 rc = inode_doinit_with_dentry(root_inode, root);
410
411 /* Initialize any other inodes associated with the superblock, e.g.
412 inodes created prior to initial policy load or inodes created
413 during get_sb by a pseudo filesystem that directly
414 populates itself. */
415 spin_lock(&sbsec->isec_lock);
416next_inode:
417 if (!list_empty(&sbsec->isec_head)) {
418 struct inode_security_struct *isec =
419 list_entry(sbsec->isec_head.next,
420 struct inode_security_struct, list);
421 struct inode *inode = isec->inode;
422 spin_unlock(&sbsec->isec_lock);
423 inode = igrab(inode);
424 if (inode) {
425 if (!IS_PRIVATE(inode))
426 inode_doinit(inode);
427 iput(inode);
428 }
429 spin_lock(&sbsec->isec_lock);
430 list_del_init(&isec->list);
431 goto next_inode;
432 }
433 spin_unlock(&sbsec->isec_lock);
434out:
435 return rc;
436}
437
438/*
439 * This function should allow an FS to ask what it's mount security
440 * options were so it can use those later for submounts, displaying
441 * mount options, or whatever.
442 */
443static int selinux_get_mnt_opts(const struct super_block *sb,
444 struct security_mnt_opts *opts)
445{
446 int rc = 0, i;
447 struct superblock_security_struct *sbsec = sb->s_security;
448 char *context = NULL;
449 u32 len;
450 char tmp;
451
452 security_init_mnt_opts(opts);
453
454 if (!(sbsec->flags & SE_SBINITIALIZED))
455 return -EINVAL;
456
457 if (!ss_initialized)
458 return -EINVAL;
459
460 tmp = sbsec->flags & SE_MNTMASK;
461 /* count the number of mount options for this sb */
462 for (i = 0; i < 8; i++) {
463 if (tmp & 0x01)
464 opts->num_mnt_opts++;
465 tmp >>= 1;
466 }
467 /* Check if the Label support flag is set */
468 if (sbsec->flags & SE_SBLABELSUPP)
469 opts->num_mnt_opts++;
470
471 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472 if (!opts->mnt_opts) {
473 rc = -ENOMEM;
474 goto out_free;
475 }
476
477 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478 if (!opts->mnt_opts_flags) {
479 rc = -ENOMEM;
480 goto out_free;
481 }
482
483 i = 0;
484 if (sbsec->flags & FSCONTEXT_MNT) {
485 rc = security_sid_to_context(sbsec->sid, &context, &len);
486 if (rc)
487 goto out_free;
488 opts->mnt_opts[i] = context;
489 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490 }
491 if (sbsec->flags & CONTEXT_MNT) {
492 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493 if (rc)
494 goto out_free;
495 opts->mnt_opts[i] = context;
496 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497 }
498 if (sbsec->flags & DEFCONTEXT_MNT) {
499 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500 if (rc)
501 goto out_free;
502 opts->mnt_opts[i] = context;
503 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504 }
505 if (sbsec->flags & ROOTCONTEXT_MNT) {
506 struct inode *root = sbsec->sb->s_root->d_inode;
507 struct inode_security_struct *isec = root->i_security;
508
509 rc = security_sid_to_context(isec->sid, &context, &len);
510 if (rc)
511 goto out_free;
512 opts->mnt_opts[i] = context;
513 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514 }
515 if (sbsec->flags & SE_SBLABELSUPP) {
516 opts->mnt_opts[i] = NULL;
517 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518 }
519
520 BUG_ON(i != opts->num_mnt_opts);
521
522 return 0;
523
524out_free:
525 security_free_mnt_opts(opts);
526 return rc;
527}
528
529static int bad_option(struct superblock_security_struct *sbsec, char flag,
530 u32 old_sid, u32 new_sid)
531{
532 char mnt_flags = sbsec->flags & SE_MNTMASK;
533
534 /* check if the old mount command had the same options */
535 if (sbsec->flags & SE_SBINITIALIZED)
536 if (!(sbsec->flags & flag) ||
537 (old_sid != new_sid))
538 return 1;
539
540 /* check if we were passed the same options twice,
541 * aka someone passed context=a,context=b
542 */
543 if (!(sbsec->flags & SE_SBINITIALIZED))
544 if (mnt_flags & flag)
545 return 1;
546 return 0;
547}
548
549/*
550 * Allow filesystems with binary mount data to explicitly set mount point
551 * labeling information.
552 */
553static int selinux_set_mnt_opts(struct super_block *sb,
554 struct security_mnt_opts *opts)
555{
556 const struct cred *cred = current_cred();
557 int rc = 0, i;
558 struct superblock_security_struct *sbsec = sb->s_security;
559 const char *name = sb->s_type->name;
560 struct inode *inode = sbsec->sb->s_root->d_inode;
561 struct inode_security_struct *root_isec = inode->i_security;
562 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563 u32 defcontext_sid = 0;
564 char **mount_options = opts->mnt_opts;
565 int *flags = opts->mnt_opts_flags;
566 int num_opts = opts->num_mnt_opts;
567
568 mutex_lock(&sbsec->lock);
569
570 if (!ss_initialized) {
571 if (!num_opts) {
572 /* Defer initialization until selinux_complete_init,
573 after the initial policy is loaded and the security
574 server is ready to handle calls. */
575 goto out;
576 }
577 rc = -EINVAL;
578 printk(KERN_WARNING "SELinux: Unable to set superblock options "
579 "before the security server is initialized\n");
580 goto out;
581 }
582
583 /*
584 * Binary mount data FS will come through this function twice. Once
585 * from an explicit call and once from the generic calls from the vfs.
586 * Since the generic VFS calls will not contain any security mount data
587 * we need to skip the double mount verification.
588 *
589 * This does open a hole in which we will not notice if the first
590 * mount using this sb set explict options and a second mount using
591 * this sb does not set any security options. (The first options
592 * will be used for both mounts)
593 */
594 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595 && (num_opts == 0))
596 goto out;
597
598 /*
599 * parse the mount options, check if they are valid sids.
600 * also check if someone is trying to mount the same sb more
601 * than once with different security options.
602 */
603 for (i = 0; i < num_opts; i++) {
604 u32 sid;
605
606 if (flags[i] == SE_SBLABELSUPP)
607 continue;
608 rc = security_context_to_sid(mount_options[i],
609 strlen(mount_options[i]), &sid);
610 if (rc) {
611 printk(KERN_WARNING "SELinux: security_context_to_sid"
612 "(%s) failed for (dev %s, type %s) errno=%d\n",
613 mount_options[i], sb->s_id, name, rc);
614 goto out;
615 }
616 switch (flags[i]) {
617 case FSCONTEXT_MNT:
618 fscontext_sid = sid;
619
620 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621 fscontext_sid))
622 goto out_double_mount;
623
624 sbsec->flags |= FSCONTEXT_MNT;
625 break;
626 case CONTEXT_MNT:
627 context_sid = sid;
628
629 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630 context_sid))
631 goto out_double_mount;
632
633 sbsec->flags |= CONTEXT_MNT;
634 break;
635 case ROOTCONTEXT_MNT:
636 rootcontext_sid = sid;
637
638 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639 rootcontext_sid))
640 goto out_double_mount;
641
642 sbsec->flags |= ROOTCONTEXT_MNT;
643
644 break;
645 case DEFCONTEXT_MNT:
646 defcontext_sid = sid;
647
648 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649 defcontext_sid))
650 goto out_double_mount;
651
652 sbsec->flags |= DEFCONTEXT_MNT;
653
654 break;
655 default:
656 rc = -EINVAL;
657 goto out;
658 }
659 }
660
661 if (sbsec->flags & SE_SBINITIALIZED) {
662 /* previously mounted with options, but not on this attempt? */
663 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664 goto out_double_mount;
665 rc = 0;
666 goto out;
667 }
668
669 if (strcmp(sb->s_type->name, "proc") == 0)
670 sbsec->flags |= SE_SBPROC;
671
672 /* Determine the labeling behavior to use for this filesystem type. */
673 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674 if (rc) {
675 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676 __func__, sb->s_type->name, rc);
677 goto out;
678 }
679
680 /* sets the context of the superblock for the fs being mounted. */
681 if (fscontext_sid) {
682 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683 if (rc)
684 goto out;
685
686 sbsec->sid = fscontext_sid;
687 }
688
689 /*
690 * Switch to using mount point labeling behavior.
691 * sets the label used on all file below the mountpoint, and will set
692 * the superblock context if not already set.
693 */
694 if (context_sid) {
695 if (!fscontext_sid) {
696 rc = may_context_mount_sb_relabel(context_sid, sbsec,
697 cred);
698 if (rc)
699 goto out;
700 sbsec->sid = context_sid;
701 } else {
702 rc = may_context_mount_inode_relabel(context_sid, sbsec,
703 cred);
704 if (rc)
705 goto out;
706 }
707 if (!rootcontext_sid)
708 rootcontext_sid = context_sid;
709
710 sbsec->mntpoint_sid = context_sid;
711 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712 }
713
714 if (rootcontext_sid) {
715 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716 cred);
717 if (rc)
718 goto out;
719
720 root_isec->sid = rootcontext_sid;
721 root_isec->initialized = 1;
722 }
723
724 if (defcontext_sid) {
725 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726 rc = -EINVAL;
727 printk(KERN_WARNING "SELinux: defcontext option is "
728 "invalid for this filesystem type\n");
729 goto out;
730 }
731
732 if (defcontext_sid != sbsec->def_sid) {
733 rc = may_context_mount_inode_relabel(defcontext_sid,
734 sbsec, cred);
735 if (rc)
736 goto out;
737 }
738
739 sbsec->def_sid = defcontext_sid;
740 }
741
742 rc = sb_finish_set_opts(sb);
743out:
744 mutex_unlock(&sbsec->lock);
745 return rc;
746out_double_mount:
747 rc = -EINVAL;
748 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
749 "security settings for (dev %s, type %s)\n", sb->s_id, name);
750 goto out;
751}
752
753static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754 struct super_block *newsb)
755{
756 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757 struct superblock_security_struct *newsbsec = newsb->s_security;
758
759 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
760 int set_context = (oldsbsec->flags & CONTEXT_MNT);
761 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
762
763 /*
764 * if the parent was able to be mounted it clearly had no special lsm
765 * mount options. thus we can safely deal with this superblock later
766 */
767 if (!ss_initialized)
768 return;
769
770 /* how can we clone if the old one wasn't set up?? */
771 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772
773 /* if fs is reusing a sb, just let its options stand... */
774 if (newsbsec->flags & SE_SBINITIALIZED)
775 return;
776
777 mutex_lock(&newsbsec->lock);
778
779 newsbsec->flags = oldsbsec->flags;
780
781 newsbsec->sid = oldsbsec->sid;
782 newsbsec->def_sid = oldsbsec->def_sid;
783 newsbsec->behavior = oldsbsec->behavior;
784
785 if (set_context) {
786 u32 sid = oldsbsec->mntpoint_sid;
787
788 if (!set_fscontext)
789 newsbsec->sid = sid;
790 if (!set_rootcontext) {
791 struct inode *newinode = newsb->s_root->d_inode;
792 struct inode_security_struct *newisec = newinode->i_security;
793 newisec->sid = sid;
794 }
795 newsbsec->mntpoint_sid = sid;
796 }
797 if (set_rootcontext) {
798 const struct inode *oldinode = oldsb->s_root->d_inode;
799 const struct inode_security_struct *oldisec = oldinode->i_security;
800 struct inode *newinode = newsb->s_root->d_inode;
801 struct inode_security_struct *newisec = newinode->i_security;
802
803 newisec->sid = oldisec->sid;
804 }
805
806 sb_finish_set_opts(newsb);
807 mutex_unlock(&newsbsec->lock);
808}
809
810static int selinux_parse_opts_str(char *options,
811 struct security_mnt_opts *opts)
812{
813 char *p;
814 char *context = NULL, *defcontext = NULL;
815 char *fscontext = NULL, *rootcontext = NULL;
816 int rc, num_mnt_opts = 0;
817
818 opts->num_mnt_opts = 0;
819
820 /* Standard string-based options. */
821 while ((p = strsep(&options, "|")) != NULL) {
822 int token;
823 substring_t args[MAX_OPT_ARGS];
824
825 if (!*p)
826 continue;
827
828 token = match_token(p, tokens, args);
829
830 switch (token) {
831 case Opt_context:
832 if (context || defcontext) {
833 rc = -EINVAL;
834 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835 goto out_err;
836 }
837 context = match_strdup(&args[0]);
838 if (!context) {
839 rc = -ENOMEM;
840 goto out_err;
841 }
842 break;
843
844 case Opt_fscontext:
845 if (fscontext) {
846 rc = -EINVAL;
847 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848 goto out_err;
849 }
850 fscontext = match_strdup(&args[0]);
851 if (!fscontext) {
852 rc = -ENOMEM;
853 goto out_err;
854 }
855 break;
856
857 case Opt_rootcontext:
858 if (rootcontext) {
859 rc = -EINVAL;
860 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861 goto out_err;
862 }
863 rootcontext = match_strdup(&args[0]);
864 if (!rootcontext) {
865 rc = -ENOMEM;
866 goto out_err;
867 }
868 break;
869
870 case Opt_defcontext:
871 if (context || defcontext) {
872 rc = -EINVAL;
873 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 goto out_err;
875 }
876 defcontext = match_strdup(&args[0]);
877 if (!defcontext) {
878 rc = -ENOMEM;
879 goto out_err;
880 }
881 break;
882 case Opt_labelsupport:
883 break;
884 default:
885 rc = -EINVAL;
886 printk(KERN_WARNING "SELinux: unknown mount option\n");
887 goto out_err;
888
889 }
890 }
891
892 rc = -ENOMEM;
893 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894 if (!opts->mnt_opts)
895 goto out_err;
896
897 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898 if (!opts->mnt_opts_flags) {
899 kfree(opts->mnt_opts);
900 goto out_err;
901 }
902
903 if (fscontext) {
904 opts->mnt_opts[num_mnt_opts] = fscontext;
905 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906 }
907 if (context) {
908 opts->mnt_opts[num_mnt_opts] = context;
909 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910 }
911 if (rootcontext) {
912 opts->mnt_opts[num_mnt_opts] = rootcontext;
913 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914 }
915 if (defcontext) {
916 opts->mnt_opts[num_mnt_opts] = defcontext;
917 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918 }
919
920 opts->num_mnt_opts = num_mnt_opts;
921 return 0;
922
923out_err:
924 kfree(context);
925 kfree(defcontext);
926 kfree(fscontext);
927 kfree(rootcontext);
928 return rc;
929}
930/*
931 * string mount options parsing and call set the sbsec
932 */
933static int superblock_doinit(struct super_block *sb, void *data)
934{
935 int rc = 0;
936 char *options = data;
937 struct security_mnt_opts opts;
938
939 security_init_mnt_opts(&opts);
940
941 if (!data)
942 goto out;
943
944 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945
946 rc = selinux_parse_opts_str(options, &opts);
947 if (rc)
948 goto out_err;
949
950out:
951 rc = selinux_set_mnt_opts(sb, &opts);
952
953out_err:
954 security_free_mnt_opts(&opts);
955 return rc;
956}
957
958static void selinux_write_opts(struct seq_file *m,
959 struct security_mnt_opts *opts)
960{
961 int i;
962 char *prefix;
963
964 for (i = 0; i < opts->num_mnt_opts; i++) {
965 char *has_comma;
966
967 if (opts->mnt_opts[i])
968 has_comma = strchr(opts->mnt_opts[i], ',');
969 else
970 has_comma = NULL;
971
972 switch (opts->mnt_opts_flags[i]) {
973 case CONTEXT_MNT:
974 prefix = CONTEXT_STR;
975 break;
976 case FSCONTEXT_MNT:
977 prefix = FSCONTEXT_STR;
978 break;
979 case ROOTCONTEXT_MNT:
980 prefix = ROOTCONTEXT_STR;
981 break;
982 case DEFCONTEXT_MNT:
983 prefix = DEFCONTEXT_STR;
984 break;
985 case SE_SBLABELSUPP:
986 seq_putc(m, ',');
987 seq_puts(m, LABELSUPP_STR);
988 continue;
989 default:
990 BUG();
991 return;
992 };
993 /* we need a comma before each option */
994 seq_putc(m, ',');
995 seq_puts(m, prefix);
996 if (has_comma)
997 seq_putc(m, '\"');
998 seq_puts(m, opts->mnt_opts[i]);
999 if (has_comma)
1000 seq_putc(m, '\"');
1001 }
1002}
1003
1004static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005{
1006 struct security_mnt_opts opts;
1007 int rc;
1008
1009 rc = selinux_get_mnt_opts(sb, &opts);
1010 if (rc) {
1011 /* before policy load we may get EINVAL, don't show anything */
1012 if (rc == -EINVAL)
1013 rc = 0;
1014 return rc;
1015 }
1016
1017 selinux_write_opts(m, &opts);
1018
1019 security_free_mnt_opts(&opts);
1020
1021 return rc;
1022}
1023
1024static inline u16 inode_mode_to_security_class(umode_t mode)
1025{
1026 switch (mode & S_IFMT) {
1027 case S_IFSOCK:
1028 return SECCLASS_SOCK_FILE;
1029 case S_IFLNK:
1030 return SECCLASS_LNK_FILE;
1031 case S_IFREG:
1032 return SECCLASS_FILE;
1033 case S_IFBLK:
1034 return SECCLASS_BLK_FILE;
1035 case S_IFDIR:
1036 return SECCLASS_DIR;
1037 case S_IFCHR:
1038 return SECCLASS_CHR_FILE;
1039 case S_IFIFO:
1040 return SECCLASS_FIFO_FILE;
1041
1042 }
1043
1044 return SECCLASS_FILE;
1045}
1046
1047static inline int default_protocol_stream(int protocol)
1048{
1049 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050}
1051
1052static inline int default_protocol_dgram(int protocol)
1053{
1054 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055}
1056
1057static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058{
1059 switch (family) {
1060 case PF_UNIX:
1061 switch (type) {
1062 case SOCK_STREAM:
1063 case SOCK_SEQPACKET:
1064 return SECCLASS_UNIX_STREAM_SOCKET;
1065 case SOCK_DGRAM:
1066 return SECCLASS_UNIX_DGRAM_SOCKET;
1067 }
1068 break;
1069 case PF_INET:
1070 case PF_INET6:
1071 switch (type) {
1072 case SOCK_STREAM:
1073 if (default_protocol_stream(protocol))
1074 return SECCLASS_TCP_SOCKET;
1075 else
1076 return SECCLASS_RAWIP_SOCKET;
1077 case SOCK_DGRAM:
1078 if (default_protocol_dgram(protocol))
1079 return SECCLASS_UDP_SOCKET;
1080 else
1081 return SECCLASS_RAWIP_SOCKET;
1082 case SOCK_DCCP:
1083 return SECCLASS_DCCP_SOCKET;
1084 default:
1085 return SECCLASS_RAWIP_SOCKET;
1086 }
1087 break;
1088 case PF_NETLINK:
1089 switch (protocol) {
1090 case NETLINK_ROUTE:
1091 return SECCLASS_NETLINK_ROUTE_SOCKET;
1092 case NETLINK_FIREWALL:
1093 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094 case NETLINK_SOCK_DIAG:
1095 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096 case NETLINK_NFLOG:
1097 return SECCLASS_NETLINK_NFLOG_SOCKET;
1098 case NETLINK_XFRM:
1099 return SECCLASS_NETLINK_XFRM_SOCKET;
1100 case NETLINK_SELINUX:
1101 return SECCLASS_NETLINK_SELINUX_SOCKET;
1102 case NETLINK_AUDIT:
1103 return SECCLASS_NETLINK_AUDIT_SOCKET;
1104 case NETLINK_IP6_FW:
1105 return SECCLASS_NETLINK_IP6FW_SOCKET;
1106 case NETLINK_DNRTMSG:
1107 return SECCLASS_NETLINK_DNRT_SOCKET;
1108 case NETLINK_KOBJECT_UEVENT:
1109 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110 default:
1111 return SECCLASS_NETLINK_SOCKET;
1112 }
1113 case PF_PACKET:
1114 return SECCLASS_PACKET_SOCKET;
1115 case PF_KEY:
1116 return SECCLASS_KEY_SOCKET;
1117 case PF_APPLETALK:
1118 return SECCLASS_APPLETALK_SOCKET;
1119 }
1120
1121 return SECCLASS_SOCKET;
1122}
1123
1124#ifdef CONFIG_PROC_FS
1125static int selinux_proc_get_sid(struct dentry *dentry,
1126 u16 tclass,
1127 u32 *sid)
1128{
1129 int rc;
1130 char *buffer, *path;
1131
1132 buffer = (char *)__get_free_page(GFP_KERNEL);
1133 if (!buffer)
1134 return -ENOMEM;
1135
1136 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137 if (IS_ERR(path))
1138 rc = PTR_ERR(path);
1139 else {
1140 /* each process gets a /proc/PID/ entry. Strip off the
1141 * PID part to get a valid selinux labeling.
1142 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143 while (path[1] >= '0' && path[1] <= '9') {
1144 path[1] = '/';
1145 path++;
1146 }
1147 rc = security_genfs_sid("proc", path, tclass, sid);
1148 }
1149 free_page((unsigned long)buffer);
1150 return rc;
1151}
1152#else
1153static int selinux_proc_get_sid(struct dentry *dentry,
1154 u16 tclass,
1155 u32 *sid)
1156{
1157 return -EINVAL;
1158}
1159#endif
1160
1161/* The inode's security attributes must be initialized before first use. */
1162static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163{
1164 struct superblock_security_struct *sbsec = NULL;
1165 struct inode_security_struct *isec = inode->i_security;
1166 u32 sid;
1167 struct dentry *dentry;
1168#define INITCONTEXTLEN 255
1169 char *context = NULL;
1170 unsigned len = 0;
1171 int rc = 0;
1172
1173 if (isec->initialized)
1174 goto out;
1175
1176 mutex_lock(&isec->lock);
1177 if (isec->initialized)
1178 goto out_unlock;
1179
1180 sbsec = inode->i_sb->s_security;
1181 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182 /* Defer initialization until selinux_complete_init,
1183 after the initial policy is loaded and the security
1184 server is ready to handle calls. */
1185 spin_lock(&sbsec->isec_lock);
1186 if (list_empty(&isec->list))
1187 list_add(&isec->list, &sbsec->isec_head);
1188 spin_unlock(&sbsec->isec_lock);
1189 goto out_unlock;
1190 }
1191
1192 switch (sbsec->behavior) {
1193 case SECURITY_FS_USE_XATTR:
1194 if (!inode->i_op->getxattr) {
1195 isec->sid = sbsec->def_sid;
1196 break;
1197 }
1198
1199 /* Need a dentry, since the xattr API requires one.
1200 Life would be simpler if we could just pass the inode. */
1201 if (opt_dentry) {
1202 /* Called from d_instantiate or d_splice_alias. */
1203 dentry = dget(opt_dentry);
1204 } else {
1205 /* Called from selinux_complete_init, try to find a dentry. */
1206 dentry = d_find_alias(inode);
1207 }
1208 if (!dentry) {
1209 /*
1210 * this is can be hit on boot when a file is accessed
1211 * before the policy is loaded. When we load policy we
1212 * may find inodes that have no dentry on the
1213 * sbsec->isec_head list. No reason to complain as these
1214 * will get fixed up the next time we go through
1215 * inode_doinit with a dentry, before these inodes could
1216 * be used again by userspace.
1217 */
1218 goto out_unlock;
1219 }
1220
1221 len = INITCONTEXTLEN;
1222 context = kmalloc(len+1, GFP_NOFS);
1223 if (!context) {
1224 rc = -ENOMEM;
1225 dput(dentry);
1226 goto out_unlock;
1227 }
1228 context[len] = '\0';
1229 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230 context, len);
1231 if (rc == -ERANGE) {
1232 kfree(context);
1233
1234 /* Need a larger buffer. Query for the right size. */
1235 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236 NULL, 0);
1237 if (rc < 0) {
1238 dput(dentry);
1239 goto out_unlock;
1240 }
1241 len = rc;
1242 context = kmalloc(len+1, GFP_NOFS);
1243 if (!context) {
1244 rc = -ENOMEM;
1245 dput(dentry);
1246 goto out_unlock;
1247 }
1248 context[len] = '\0';
1249 rc = inode->i_op->getxattr(dentry,
1250 XATTR_NAME_SELINUX,
1251 context, len);
1252 }
1253 dput(dentry);
1254 if (rc < 0) {
1255 if (rc != -ENODATA) {
1256 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1257 "%d for dev=%s ino=%ld\n", __func__,
1258 -rc, inode->i_sb->s_id, inode->i_ino);
1259 kfree(context);
1260 goto out_unlock;
1261 }
1262 /* Map ENODATA to the default file SID */
1263 sid = sbsec->def_sid;
1264 rc = 0;
1265 } else {
1266 rc = security_context_to_sid_default(context, rc, &sid,
1267 sbsec->def_sid,
1268 GFP_NOFS);
1269 if (rc) {
1270 char *dev = inode->i_sb->s_id;
1271 unsigned long ino = inode->i_ino;
1272
1273 if (rc == -EINVAL) {
1274 if (printk_ratelimit())
1275 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276 "context=%s. This indicates you may need to relabel the inode or the "
1277 "filesystem in question.\n", ino, dev, context);
1278 } else {
1279 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1280 "returned %d for dev=%s ino=%ld\n",
1281 __func__, context, -rc, dev, ino);
1282 }
1283 kfree(context);
1284 /* Leave with the unlabeled SID */
1285 rc = 0;
1286 break;
1287 }
1288 }
1289 kfree(context);
1290 isec->sid = sid;
1291 break;
1292 case SECURITY_FS_USE_TASK:
1293 isec->sid = isec->task_sid;
1294 break;
1295 case SECURITY_FS_USE_TRANS:
1296 /* Default to the fs SID. */
1297 isec->sid = sbsec->sid;
1298
1299 /* Try to obtain a transition SID. */
1300 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302 isec->sclass, NULL, &sid);
1303 if (rc)
1304 goto out_unlock;
1305 isec->sid = sid;
1306 break;
1307 case SECURITY_FS_USE_MNTPOINT:
1308 isec->sid = sbsec->mntpoint_sid;
1309 break;
1310 default:
1311 /* Default to the fs superblock SID. */
1312 isec->sid = sbsec->sid;
1313
1314 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315 if (opt_dentry) {
1316 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317 rc = selinux_proc_get_sid(opt_dentry,
1318 isec->sclass,
1319 &sid);
1320 if (rc)
1321 goto out_unlock;
1322 isec->sid = sid;
1323 }
1324 }
1325 break;
1326 }
1327
1328 isec->initialized = 1;
1329
1330out_unlock:
1331 mutex_unlock(&isec->lock);
1332out:
1333 if (isec->sclass == SECCLASS_FILE)
1334 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335 return rc;
1336}
1337
1338/* Convert a Linux signal to an access vector. */
1339static inline u32 signal_to_av(int sig)
1340{
1341 u32 perm = 0;
1342
1343 switch (sig) {
1344 case SIGCHLD:
1345 /* Commonly granted from child to parent. */
1346 perm = PROCESS__SIGCHLD;
1347 break;
1348 case SIGKILL:
1349 /* Cannot be caught or ignored */
1350 perm = PROCESS__SIGKILL;
1351 break;
1352 case SIGSTOP:
1353 /* Cannot be caught or ignored */
1354 perm = PROCESS__SIGSTOP;
1355 break;
1356 default:
1357 /* All other signals. */
1358 perm = PROCESS__SIGNAL;
1359 break;
1360 }
1361
1362 return perm;
1363}
1364
1365/*
1366 * Check permission between a pair of credentials
1367 * fork check, ptrace check, etc.
1368 */
1369static int cred_has_perm(const struct cred *actor,
1370 const struct cred *target,
1371 u32 perms)
1372{
1373 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376}
1377
1378/*
1379 * Check permission between a pair of tasks, e.g. signal checks,
1380 * fork check, ptrace check, etc.
1381 * tsk1 is the actor and tsk2 is the target
1382 * - this uses the default subjective creds of tsk1
1383 */
1384static int task_has_perm(const struct task_struct *tsk1,
1385 const struct task_struct *tsk2,
1386 u32 perms)
1387{
1388 const struct task_security_struct *__tsec1, *__tsec2;
1389 u32 sid1, sid2;
1390
1391 rcu_read_lock();
1392 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1393 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1394 rcu_read_unlock();
1395 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396}
1397
1398/*
1399 * Check permission between current and another task, e.g. signal checks,
1400 * fork check, ptrace check, etc.
1401 * current is the actor and tsk2 is the target
1402 * - this uses current's subjective creds
1403 */
1404static int current_has_perm(const struct task_struct *tsk,
1405 u32 perms)
1406{
1407 u32 sid, tsid;
1408
1409 sid = current_sid();
1410 tsid = task_sid(tsk);
1411 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412}
1413
1414#if CAP_LAST_CAP > 63
1415#error Fix SELinux to handle capabilities > 63.
1416#endif
1417
1418/* Check whether a task is allowed to use a capability. */
1419static int cred_has_capability(const struct cred *cred,
1420 int cap, int audit)
1421{
1422 struct common_audit_data ad;
1423 struct av_decision avd;
1424 u16 sclass;
1425 u32 sid = cred_sid(cred);
1426 u32 av = CAP_TO_MASK(cap);
1427 int rc;
1428
1429 ad.type = LSM_AUDIT_DATA_CAP;
1430 ad.u.cap = cap;
1431
1432 switch (CAP_TO_INDEX(cap)) {
1433 case 0:
1434 sclass = SECCLASS_CAPABILITY;
1435 break;
1436 case 1:
1437 sclass = SECCLASS_CAPABILITY2;
1438 break;
1439 default:
1440 printk(KERN_ERR
1441 "SELinux: out of range capability %d\n", cap);
1442 BUG();
1443 return -EINVAL;
1444 }
1445
1446 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447 if (audit == SECURITY_CAP_AUDIT) {
1448 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449 if (rc2)
1450 return rc2;
1451 }
1452 return rc;
1453}
1454
1455/* Check whether a task is allowed to use a system operation. */
1456static int task_has_system(struct task_struct *tsk,
1457 u32 perms)
1458{
1459 u32 sid = task_sid(tsk);
1460
1461 return avc_has_perm(sid, SECINITSID_KERNEL,
1462 SECCLASS_SYSTEM, perms, NULL);
1463}
1464
1465/* Check whether a task has a particular permission to an inode.
1466 The 'adp' parameter is optional and allows other audit
1467 data to be passed (e.g. the dentry). */
1468static int inode_has_perm(const struct cred *cred,
1469 struct inode *inode,
1470 u32 perms,
1471 struct common_audit_data *adp,
1472 unsigned flags)
1473{
1474 struct inode_security_struct *isec;
1475 u32 sid;
1476
1477 validate_creds(cred);
1478
1479 if (unlikely(IS_PRIVATE(inode)))
1480 return 0;
1481
1482 sid = cred_sid(cred);
1483 isec = inode->i_security;
1484
1485 return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486}
1487
1488/* Same as inode_has_perm, but pass explicit audit data containing
1489 the dentry to help the auditing code to more easily generate the
1490 pathname if needed. */
1491static inline int dentry_has_perm(const struct cred *cred,
1492 struct dentry *dentry,
1493 u32 av)
1494{
1495 struct inode *inode = dentry->d_inode;
1496 struct common_audit_data ad;
1497
1498 ad.type = LSM_AUDIT_DATA_DENTRY;
1499 ad.u.dentry = dentry;
1500 return inode_has_perm(cred, inode, av, &ad, 0);
1501}
1502
1503/* Same as inode_has_perm, but pass explicit audit data containing
1504 the path to help the auditing code to more easily generate the
1505 pathname if needed. */
1506static inline int path_has_perm(const struct cred *cred,
1507 struct path *path,
1508 u32 av)
1509{
1510 struct inode *inode = path->dentry->d_inode;
1511 struct common_audit_data ad;
1512
1513 ad.type = LSM_AUDIT_DATA_PATH;
1514 ad.u.path = *path;
1515 return inode_has_perm(cred, inode, av, &ad, 0);
1516}
1517
1518/* Check whether a task can use an open file descriptor to
1519 access an inode in a given way. Check access to the
1520 descriptor itself, and then use dentry_has_perm to
1521 check a particular permission to the file.
1522 Access to the descriptor is implicitly granted if it
1523 has the same SID as the process. If av is zero, then
1524 access to the file is not checked, e.g. for cases
1525 where only the descriptor is affected like seek. */
1526static int file_has_perm(const struct cred *cred,
1527 struct file *file,
1528 u32 av)
1529{
1530 struct file_security_struct *fsec = file->f_security;
1531 struct inode *inode = file->f_path.dentry->d_inode;
1532 struct common_audit_data ad;
1533 u32 sid = cred_sid(cred);
1534 int rc;
1535
1536 ad.type = LSM_AUDIT_DATA_PATH;
1537 ad.u.path = file->f_path;
1538
1539 if (sid != fsec->sid) {
1540 rc = avc_has_perm(sid, fsec->sid,
1541 SECCLASS_FD,
1542 FD__USE,
1543 &ad);
1544 if (rc)
1545 goto out;
1546 }
1547
1548 /* av is zero if only checking access to the descriptor. */
1549 rc = 0;
1550 if (av)
1551 rc = inode_has_perm(cred, inode, av, &ad, 0);
1552
1553out:
1554 return rc;
1555}
1556
1557/* Check whether a task can create a file. */
1558static int may_create(struct inode *dir,
1559 struct dentry *dentry,
1560 u16 tclass)
1561{
1562 const struct task_security_struct *tsec = current_security();
1563 struct inode_security_struct *dsec;
1564 struct superblock_security_struct *sbsec;
1565 u32 sid, newsid;
1566 struct common_audit_data ad;
1567 int rc;
1568
1569 dsec = dir->i_security;
1570 sbsec = dir->i_sb->s_security;
1571
1572 sid = tsec->sid;
1573 newsid = tsec->create_sid;
1574
1575 ad.type = LSM_AUDIT_DATA_DENTRY;
1576 ad.u.dentry = dentry;
1577
1578 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579 DIR__ADD_NAME | DIR__SEARCH,
1580 &ad);
1581 if (rc)
1582 return rc;
1583
1584 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585 rc = security_transition_sid(sid, dsec->sid, tclass,
1586 &dentry->d_name, &newsid);
1587 if (rc)
1588 return rc;
1589 }
1590
1591 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592 if (rc)
1593 return rc;
1594
1595 return avc_has_perm(newsid, sbsec->sid,
1596 SECCLASS_FILESYSTEM,
1597 FILESYSTEM__ASSOCIATE, &ad);
1598}
1599
1600/* Check whether a task can create a key. */
1601static int may_create_key(u32 ksid,
1602 struct task_struct *ctx)
1603{
1604 u32 sid = task_sid(ctx);
1605
1606 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607}
1608
1609#define MAY_LINK 0
1610#define MAY_UNLINK 1
1611#define MAY_RMDIR 2
1612
1613/* Check whether a task can link, unlink, or rmdir a file/directory. */
1614static int may_link(struct inode *dir,
1615 struct dentry *dentry,
1616 int kind)
1617
1618{
1619 struct inode_security_struct *dsec, *isec;
1620 struct common_audit_data ad;
1621 u32 sid = current_sid();
1622 u32 av;
1623 int rc;
1624
1625 dsec = dir->i_security;
1626 isec = dentry->d_inode->i_security;
1627
1628 ad.type = LSM_AUDIT_DATA_DENTRY;
1629 ad.u.dentry = dentry;
1630
1631 av = DIR__SEARCH;
1632 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634 if (rc)
1635 return rc;
1636
1637 switch (kind) {
1638 case MAY_LINK:
1639 av = FILE__LINK;
1640 break;
1641 case MAY_UNLINK:
1642 av = FILE__UNLINK;
1643 break;
1644 case MAY_RMDIR:
1645 av = DIR__RMDIR;
1646 break;
1647 default:
1648 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1649 __func__, kind);
1650 return 0;
1651 }
1652
1653 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654 return rc;
1655}
1656
1657static inline int may_rename(struct inode *old_dir,
1658 struct dentry *old_dentry,
1659 struct inode *new_dir,
1660 struct dentry *new_dentry)
1661{
1662 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663 struct common_audit_data ad;
1664 u32 sid = current_sid();
1665 u32 av;
1666 int old_is_dir, new_is_dir;
1667 int rc;
1668
1669 old_dsec = old_dir->i_security;
1670 old_isec = old_dentry->d_inode->i_security;
1671 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672 new_dsec = new_dir->i_security;
1673
1674 ad.type = LSM_AUDIT_DATA_DENTRY;
1675
1676 ad.u.dentry = old_dentry;
1677 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679 if (rc)
1680 return rc;
1681 rc = avc_has_perm(sid, old_isec->sid,
1682 old_isec->sclass, FILE__RENAME, &ad);
1683 if (rc)
1684 return rc;
1685 if (old_is_dir && new_dir != old_dir) {
1686 rc = avc_has_perm(sid, old_isec->sid,
1687 old_isec->sclass, DIR__REPARENT, &ad);
1688 if (rc)
1689 return rc;
1690 }
1691
1692 ad.u.dentry = new_dentry;
1693 av = DIR__ADD_NAME | DIR__SEARCH;
1694 if (new_dentry->d_inode)
1695 av |= DIR__REMOVE_NAME;
1696 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697 if (rc)
1698 return rc;
1699 if (new_dentry->d_inode) {
1700 new_isec = new_dentry->d_inode->i_security;
1701 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702 rc = avc_has_perm(sid, new_isec->sid,
1703 new_isec->sclass,
1704 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705 if (rc)
1706 return rc;
1707 }
1708
1709 return 0;
1710}
1711
1712/* Check whether a task can perform a filesystem operation. */
1713static int superblock_has_perm(const struct cred *cred,
1714 struct super_block *sb,
1715 u32 perms,
1716 struct common_audit_data *ad)
1717{
1718 struct superblock_security_struct *sbsec;
1719 u32 sid = cred_sid(cred);
1720
1721 sbsec = sb->s_security;
1722 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723}
1724
1725/* Convert a Linux mode and permission mask to an access vector. */
1726static inline u32 file_mask_to_av(int mode, int mask)
1727{
1728 u32 av = 0;
1729
1730 if (!S_ISDIR(mode)) {
1731 if (mask & MAY_EXEC)
1732 av |= FILE__EXECUTE;
1733 if (mask & MAY_READ)
1734 av |= FILE__READ;
1735
1736 if (mask & MAY_APPEND)
1737 av |= FILE__APPEND;
1738 else if (mask & MAY_WRITE)
1739 av |= FILE__WRITE;
1740
1741 } else {
1742 if (mask & MAY_EXEC)
1743 av |= DIR__SEARCH;
1744 if (mask & MAY_WRITE)
1745 av |= DIR__WRITE;
1746 if (mask & MAY_READ)
1747 av |= DIR__READ;
1748 }
1749
1750 return av;
1751}
1752
1753/* Convert a Linux file to an access vector. */
1754static inline u32 file_to_av(struct file *file)
1755{
1756 u32 av = 0;
1757
1758 if (file->f_mode & FMODE_READ)
1759 av |= FILE__READ;
1760 if (file->f_mode & FMODE_WRITE) {
1761 if (file->f_flags & O_APPEND)
1762 av |= FILE__APPEND;
1763 else
1764 av |= FILE__WRITE;
1765 }
1766 if (!av) {
1767 /*
1768 * Special file opened with flags 3 for ioctl-only use.
1769 */
1770 av = FILE__IOCTL;
1771 }
1772
1773 return av;
1774}
1775
1776/*
1777 * Convert a file to an access vector and include the correct open
1778 * open permission.
1779 */
1780static inline u32 open_file_to_av(struct file *file)
1781{
1782 u32 av = file_to_av(file);
1783
1784 if (selinux_policycap_openperm)
1785 av |= FILE__OPEN;
1786
1787 return av;
1788}
1789
1790/* Hook functions begin here. */
1791
1792static int selinux_ptrace_access_check(struct task_struct *child,
1793 unsigned int mode)
1794{
1795 int rc;
1796
1797 rc = cap_ptrace_access_check(child, mode);
1798 if (rc)
1799 return rc;
1800
1801 if (mode & PTRACE_MODE_READ) {
1802 u32 sid = current_sid();
1803 u32 csid = task_sid(child);
1804 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805 }
1806
1807 return current_has_perm(child, PROCESS__PTRACE);
1808}
1809
1810static int selinux_ptrace_traceme(struct task_struct *parent)
1811{
1812 int rc;
1813
1814 rc = cap_ptrace_traceme(parent);
1815 if (rc)
1816 return rc;
1817
1818 return task_has_perm(parent, current, PROCESS__PTRACE);
1819}
1820
1821static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823{
1824 int error;
1825
1826 error = current_has_perm(target, PROCESS__GETCAP);
1827 if (error)
1828 return error;
1829
1830 return cap_capget(target, effective, inheritable, permitted);
1831}
1832
1833static int selinux_capset(struct cred *new, const struct cred *old,
1834 const kernel_cap_t *effective,
1835 const kernel_cap_t *inheritable,
1836 const kernel_cap_t *permitted)
1837{
1838 int error;
1839
1840 error = cap_capset(new, old,
1841 effective, inheritable, permitted);
1842 if (error)
1843 return error;
1844
1845 return cred_has_perm(old, new, PROCESS__SETCAP);
1846}
1847
1848/*
1849 * (This comment used to live with the selinux_task_setuid hook,
1850 * which was removed).
1851 *
1852 * Since setuid only affects the current process, and since the SELinux
1853 * controls are not based on the Linux identity attributes, SELinux does not
1854 * need to control this operation. However, SELinux does control the use of
1855 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856 */
1857
1858static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859 int cap, int audit)
1860{
1861 int rc;
1862
1863 rc = cap_capable(cred, ns, cap, audit);
1864 if (rc)
1865 return rc;
1866
1867 return cred_has_capability(cred, cap, audit);
1868}
1869
1870static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871{
1872 const struct cred *cred = current_cred();
1873 int rc = 0;
1874
1875 if (!sb)
1876 return 0;
1877
1878 switch (cmds) {
1879 case Q_SYNC:
1880 case Q_QUOTAON:
1881 case Q_QUOTAOFF:
1882 case Q_SETINFO:
1883 case Q_SETQUOTA:
1884 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885 break;
1886 case Q_GETFMT:
1887 case Q_GETINFO:
1888 case Q_GETQUOTA:
1889 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890 break;
1891 default:
1892 rc = 0; /* let the kernel handle invalid cmds */
1893 break;
1894 }
1895 return rc;
1896}
1897
1898static int selinux_quota_on(struct dentry *dentry)
1899{
1900 const struct cred *cred = current_cred();
1901
1902 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903}
1904
1905static int selinux_syslog(int type)
1906{
1907 int rc;
1908
1909 switch (type) {
1910 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
1911 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1912 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913 break;
1914 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1915 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
1916 /* Set level of messages printed to console */
1917 case SYSLOG_ACTION_CONSOLE_LEVEL:
1918 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919 break;
1920 case SYSLOG_ACTION_CLOSE: /* Close log */
1921 case SYSLOG_ACTION_OPEN: /* Open log */
1922 case SYSLOG_ACTION_READ: /* Read from log */
1923 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
1924 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
1925 default:
1926 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927 break;
1928 }
1929 return rc;
1930}
1931
1932/*
1933 * Check that a process has enough memory to allocate a new virtual
1934 * mapping. 0 means there is enough memory for the allocation to
1935 * succeed and -ENOMEM implies there is not.
1936 *
1937 * Do not audit the selinux permission check, as this is applied to all
1938 * processes that allocate mappings.
1939 */
1940static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941{
1942 int rc, cap_sys_admin = 0;
1943
1944 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945 SECURITY_CAP_NOAUDIT);
1946 if (rc == 0)
1947 cap_sys_admin = 1;
1948
1949 return __vm_enough_memory(mm, pages, cap_sys_admin);
1950}
1951
1952/* binprm security operations */
1953
1954static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955{
1956 const struct task_security_struct *old_tsec;
1957 struct task_security_struct *new_tsec;
1958 struct inode_security_struct *isec;
1959 struct common_audit_data ad;
1960 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961 int rc;
1962
1963 rc = cap_bprm_set_creds(bprm);
1964 if (rc)
1965 return rc;
1966
1967 /* SELinux context only depends on initial program or script and not
1968 * the script interpreter */
1969 if (bprm->cred_prepared)
1970 return 0;
1971
1972 old_tsec = current_security();
1973 new_tsec = bprm->cred->security;
1974 isec = inode->i_security;
1975
1976 /* Default to the current task SID. */
1977 new_tsec->sid = old_tsec->sid;
1978 new_tsec->osid = old_tsec->sid;
1979
1980 /* Reset fs, key, and sock SIDs on execve. */
1981 new_tsec->create_sid = 0;
1982 new_tsec->keycreate_sid = 0;
1983 new_tsec->sockcreate_sid = 0;
1984
1985 if (old_tsec->exec_sid) {
1986 new_tsec->sid = old_tsec->exec_sid;
1987 /* Reset exec SID on execve. */
1988 new_tsec->exec_sid = 0;
1989
1990 /*
1991 * Minimize confusion: if no_new_privs and a transition is
1992 * explicitly requested, then fail the exec.
1993 */
1994 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995 return -EPERM;
1996 } else {
1997 /* Check for a default transition on this program. */
1998 rc = security_transition_sid(old_tsec->sid, isec->sid,
1999 SECCLASS_PROCESS, NULL,
2000 &new_tsec->sid);
2001 if (rc)
2002 return rc;
2003 }
2004
2005 ad.type = LSM_AUDIT_DATA_PATH;
2006 ad.u.path = bprm->file->f_path;
2007
2008 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010 new_tsec->sid = old_tsec->sid;
2011
2012 if (new_tsec->sid == old_tsec->sid) {
2013 rc = avc_has_perm(old_tsec->sid, isec->sid,
2014 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015 if (rc)
2016 return rc;
2017 } else {
2018 /* Check permissions for the transition. */
2019 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021 if (rc)
2022 return rc;
2023
2024 rc = avc_has_perm(new_tsec->sid, isec->sid,
2025 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026 if (rc)
2027 return rc;
2028
2029 /* Check for shared state */
2030 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032 SECCLASS_PROCESS, PROCESS__SHARE,
2033 NULL);
2034 if (rc)
2035 return -EPERM;
2036 }
2037
2038 /* Make sure that anyone attempting to ptrace over a task that
2039 * changes its SID has the appropriate permit */
2040 if (bprm->unsafe &
2041 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042 struct task_struct *tracer;
2043 struct task_security_struct *sec;
2044 u32 ptsid = 0;
2045
2046 rcu_read_lock();
2047 tracer = ptrace_parent(current);
2048 if (likely(tracer != NULL)) {
2049 sec = __task_cred(tracer)->security;
2050 ptsid = sec->sid;
2051 }
2052 rcu_read_unlock();
2053
2054 if (ptsid != 0) {
2055 rc = avc_has_perm(ptsid, new_tsec->sid,
2056 SECCLASS_PROCESS,
2057 PROCESS__PTRACE, NULL);
2058 if (rc)
2059 return -EPERM;
2060 }
2061 }
2062
2063 /* Clear any possibly unsafe personality bits on exec: */
2064 bprm->per_clear |= PER_CLEAR_ON_SETID;
2065 }
2066
2067 return 0;
2068}
2069
2070static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071{
2072 const struct task_security_struct *tsec = current_security();
2073 u32 sid, osid;
2074 int atsecure = 0;
2075
2076 sid = tsec->sid;
2077 osid = tsec->osid;
2078
2079 if (osid != sid) {
2080 /* Enable secure mode for SIDs transitions unless
2081 the noatsecure permission is granted between
2082 the two SIDs, i.e. ahp returns 0. */
2083 atsecure = avc_has_perm(osid, sid,
2084 SECCLASS_PROCESS,
2085 PROCESS__NOATSECURE, NULL);
2086 }
2087
2088 return (atsecure || cap_bprm_secureexec(bprm));
2089}
2090
2091/* Derived from fs/exec.c:flush_old_files. */
2092static inline void flush_unauthorized_files(const struct cred *cred,
2093 struct files_struct *files)
2094{
2095 struct file *file, *devnull = NULL;
2096 struct tty_struct *tty;
2097 struct fdtable *fdt;
2098 long j = -1;
2099 int drop_tty = 0;
2100
2101 tty = get_current_tty();
2102 if (tty) {
2103 spin_lock(&tty_files_lock);
2104 if (!list_empty(&tty->tty_files)) {
2105 struct tty_file_private *file_priv;
2106
2107 /* Revalidate access to controlling tty.
2108 Use path_has_perm on the tty path directly rather
2109 than using file_has_perm, as this particular open
2110 file may belong to another process and we are only
2111 interested in the inode-based check here. */
2112 file_priv = list_first_entry(&tty->tty_files,
2113 struct tty_file_private, list);
2114 file = file_priv->file;
2115 if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2116 drop_tty = 1;
2117 }
2118 spin_unlock(&tty_files_lock);
2119 tty_kref_put(tty);
2120 }
2121 /* Reset controlling tty. */
2122 if (drop_tty)
2123 no_tty();
2124
2125 /* Revalidate access to inherited open files. */
2126 spin_lock(&files->file_lock);
2127 for (;;) {
2128 unsigned long set, i;
2129 int fd;
2130
2131 j++;
2132 i = j * BITS_PER_LONG;
2133 fdt = files_fdtable(files);
2134 if (i >= fdt->max_fds)
2135 break;
2136 set = fdt->open_fds[j];
2137 if (!set)
2138 continue;
2139 spin_unlock(&files->file_lock);
2140 for ( ; set ; i++, set >>= 1) {
2141 if (set & 1) {
2142 file = fget(i);
2143 if (!file)
2144 continue;
2145 if (file_has_perm(cred,
2146 file,
2147 file_to_av(file))) {
2148 sys_close(i);
2149 fd = get_unused_fd();
2150 if (fd != i) {
2151 if (fd >= 0)
2152 put_unused_fd(fd);
2153 fput(file);
2154 continue;
2155 }
2156 if (devnull) {
2157 get_file(devnull);
2158 } else {
2159 devnull = dentry_open(
2160 dget(selinux_null),
2161 mntget(selinuxfs_mount),
2162 O_RDWR, cred);
2163 if (IS_ERR(devnull)) {
2164 devnull = NULL;
2165 put_unused_fd(fd);
2166 fput(file);
2167 continue;
2168 }
2169 }
2170 fd_install(fd, devnull);
2171 }
2172 fput(file);
2173 }
2174 }
2175 spin_lock(&files->file_lock);
2176
2177 }
2178 spin_unlock(&files->file_lock);
2179}
2180
2181/*
2182 * Prepare a process for imminent new credential changes due to exec
2183 */
2184static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2185{
2186 struct task_security_struct *new_tsec;
2187 struct rlimit *rlim, *initrlim;
2188 int rc, i;
2189
2190 new_tsec = bprm->cred->security;
2191 if (new_tsec->sid == new_tsec->osid)
2192 return;
2193
2194 /* Close files for which the new task SID is not authorized. */
2195 flush_unauthorized_files(bprm->cred, current->files);
2196
2197 /* Always clear parent death signal on SID transitions. */
2198 current->pdeath_signal = 0;
2199
2200 /* Check whether the new SID can inherit resource limits from the old
2201 * SID. If not, reset all soft limits to the lower of the current
2202 * task's hard limit and the init task's soft limit.
2203 *
2204 * Note that the setting of hard limits (even to lower them) can be
2205 * controlled by the setrlimit check. The inclusion of the init task's
2206 * soft limit into the computation is to avoid resetting soft limits
2207 * higher than the default soft limit for cases where the default is
2208 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2209 */
2210 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2211 PROCESS__RLIMITINH, NULL);
2212 if (rc) {
2213 /* protect against do_prlimit() */
2214 task_lock(current);
2215 for (i = 0; i < RLIM_NLIMITS; i++) {
2216 rlim = current->signal->rlim + i;
2217 initrlim = init_task.signal->rlim + i;
2218 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2219 }
2220 task_unlock(current);
2221 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2222 }
2223}
2224
2225/*
2226 * Clean up the process immediately after the installation of new credentials
2227 * due to exec
2228 */
2229static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2230{
2231 const struct task_security_struct *tsec = current_security();
2232 struct itimerval itimer;
2233 u32 osid, sid;
2234 int rc, i;
2235
2236 osid = tsec->osid;
2237 sid = tsec->sid;
2238
2239 if (sid == osid)
2240 return;
2241
2242 /* Check whether the new SID can inherit signal state from the old SID.
2243 * If not, clear itimers to avoid subsequent signal generation and
2244 * flush and unblock signals.
2245 *
2246 * This must occur _after_ the task SID has been updated so that any
2247 * kill done after the flush will be checked against the new SID.
2248 */
2249 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2250 if (rc) {
2251 memset(&itimer, 0, sizeof itimer);
2252 for (i = 0; i < 3; i++)
2253 do_setitimer(i, &itimer, NULL);
2254 spin_lock_irq(¤t->sighand->siglock);
2255 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2256 __flush_signals(current);
2257 flush_signal_handlers(current, 1);
2258 sigemptyset(¤t->blocked);
2259 }
2260 spin_unlock_irq(¤t->sighand->siglock);
2261 }
2262
2263 /* Wake up the parent if it is waiting so that it can recheck
2264 * wait permission to the new task SID. */
2265 read_lock(&tasklist_lock);
2266 __wake_up_parent(current, current->real_parent);
2267 read_unlock(&tasklist_lock);
2268}
2269
2270/* superblock security operations */
2271
2272static int selinux_sb_alloc_security(struct super_block *sb)
2273{
2274 return superblock_alloc_security(sb);
2275}
2276
2277static void selinux_sb_free_security(struct super_block *sb)
2278{
2279 superblock_free_security(sb);
2280}
2281
2282static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2283{
2284 if (plen > olen)
2285 return 0;
2286
2287 return !memcmp(prefix, option, plen);
2288}
2289
2290static inline int selinux_option(char *option, int len)
2291{
2292 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2293 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2294 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2295 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2296 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2297}
2298
2299static inline void take_option(char **to, char *from, int *first, int len)
2300{
2301 if (!*first) {
2302 **to = ',';
2303 *to += 1;
2304 } else
2305 *first = 0;
2306 memcpy(*to, from, len);
2307 *to += len;
2308}
2309
2310static inline void take_selinux_option(char **to, char *from, int *first,
2311 int len)
2312{
2313 int current_size = 0;
2314
2315 if (!*first) {
2316 **to = '|';
2317 *to += 1;
2318 } else
2319 *first = 0;
2320
2321 while (current_size < len) {
2322 if (*from != '"') {
2323 **to = *from;
2324 *to += 1;
2325 }
2326 from += 1;
2327 current_size += 1;
2328 }
2329}
2330
2331static int selinux_sb_copy_data(char *orig, char *copy)
2332{
2333 int fnosec, fsec, rc = 0;
2334 char *in_save, *in_curr, *in_end;
2335 char *sec_curr, *nosec_save, *nosec;
2336 int open_quote = 0;
2337
2338 in_curr = orig;
2339 sec_curr = copy;
2340
2341 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2342 if (!nosec) {
2343 rc = -ENOMEM;
2344 goto out;
2345 }
2346
2347 nosec_save = nosec;
2348 fnosec = fsec = 1;
2349 in_save = in_end = orig;
2350
2351 do {
2352 if (*in_end == '"')
2353 open_quote = !open_quote;
2354 if ((*in_end == ',' && open_quote == 0) ||
2355 *in_end == '\0') {
2356 int len = in_end - in_curr;
2357
2358 if (selinux_option(in_curr, len))
2359 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2360 else
2361 take_option(&nosec, in_curr, &fnosec, len);
2362
2363 in_curr = in_end + 1;
2364 }
2365 } while (*in_end++);
2366
2367 strcpy(in_save, nosec_save);
2368 free_page((unsigned long)nosec_save);
2369out:
2370 return rc;
2371}
2372
2373static int selinux_sb_remount(struct super_block *sb, void *data)
2374{
2375 int rc, i, *flags;
2376 struct security_mnt_opts opts;
2377 char *secdata, **mount_options;
2378 struct superblock_security_struct *sbsec = sb->s_security;
2379
2380 if (!(sbsec->flags & SE_SBINITIALIZED))
2381 return 0;
2382
2383 if (!data)
2384 return 0;
2385
2386 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2387 return 0;
2388
2389 security_init_mnt_opts(&opts);
2390 secdata = alloc_secdata();
2391 if (!secdata)
2392 return -ENOMEM;
2393 rc = selinux_sb_copy_data(data, secdata);
2394 if (rc)
2395 goto out_free_secdata;
2396
2397 rc = selinux_parse_opts_str(secdata, &opts);
2398 if (rc)
2399 goto out_free_secdata;
2400
2401 mount_options = opts.mnt_opts;
2402 flags = opts.mnt_opts_flags;
2403
2404 for (i = 0; i < opts.num_mnt_opts; i++) {
2405 u32 sid;
2406 size_t len;
2407
2408 if (flags[i] == SE_SBLABELSUPP)
2409 continue;
2410 len = strlen(mount_options[i]);
2411 rc = security_context_to_sid(mount_options[i], len, &sid);
2412 if (rc) {
2413 printk(KERN_WARNING "SELinux: security_context_to_sid"
2414 "(%s) failed for (dev %s, type %s) errno=%d\n",
2415 mount_options[i], sb->s_id, sb->s_type->name, rc);
2416 goto out_free_opts;
2417 }
2418 rc = -EINVAL;
2419 switch (flags[i]) {
2420 case FSCONTEXT_MNT:
2421 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2422 goto out_bad_option;
2423 break;
2424 case CONTEXT_MNT:
2425 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2426 goto out_bad_option;
2427 break;
2428 case ROOTCONTEXT_MNT: {
2429 struct inode_security_struct *root_isec;
2430 root_isec = sb->s_root->d_inode->i_security;
2431
2432 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2433 goto out_bad_option;
2434 break;
2435 }
2436 case DEFCONTEXT_MNT:
2437 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2438 goto out_bad_option;
2439 break;
2440 default:
2441 goto out_free_opts;
2442 }
2443 }
2444
2445 rc = 0;
2446out_free_opts:
2447 security_free_mnt_opts(&opts);
2448out_free_secdata:
2449 free_secdata(secdata);
2450 return rc;
2451out_bad_option:
2452 printk(KERN_WARNING "SELinux: unable to change security options "
2453 "during remount (dev %s, type=%s)\n", sb->s_id,
2454 sb->s_type->name);
2455 goto out_free_opts;
2456}
2457
2458static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2459{
2460 const struct cred *cred = current_cred();
2461 struct common_audit_data ad;
2462 int rc;
2463
2464 rc = superblock_doinit(sb, data);
2465 if (rc)
2466 return rc;
2467
2468 /* Allow all mounts performed by the kernel */
2469 if (flags & MS_KERNMOUNT)
2470 return 0;
2471
2472 ad.type = LSM_AUDIT_DATA_DENTRY;
2473 ad.u.dentry = sb->s_root;
2474 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2475}
2476
2477static int selinux_sb_statfs(struct dentry *dentry)
2478{
2479 const struct cred *cred = current_cred();
2480 struct common_audit_data ad;
2481
2482 ad.type = LSM_AUDIT_DATA_DENTRY;
2483 ad.u.dentry = dentry->d_sb->s_root;
2484 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2485}
2486
2487static int selinux_mount(char *dev_name,
2488 struct path *path,
2489 char *type,
2490 unsigned long flags,
2491 void *data)
2492{
2493 const struct cred *cred = current_cred();
2494
2495 if (flags & MS_REMOUNT)
2496 return superblock_has_perm(cred, path->dentry->d_sb,
2497 FILESYSTEM__REMOUNT, NULL);
2498 else
2499 return path_has_perm(cred, path, FILE__MOUNTON);
2500}
2501
2502static int selinux_umount(struct vfsmount *mnt, int flags)
2503{
2504 const struct cred *cred = current_cred();
2505
2506 return superblock_has_perm(cred, mnt->mnt_sb,
2507 FILESYSTEM__UNMOUNT, NULL);
2508}
2509
2510/* inode security operations */
2511
2512static int selinux_inode_alloc_security(struct inode *inode)
2513{
2514 return inode_alloc_security(inode);
2515}
2516
2517static void selinux_inode_free_security(struct inode *inode)
2518{
2519 inode_free_security(inode);
2520}
2521
2522static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2523 const struct qstr *qstr, char **name,
2524 void **value, size_t *len)
2525{
2526 const struct task_security_struct *tsec = current_security();
2527 struct inode_security_struct *dsec;
2528 struct superblock_security_struct *sbsec;
2529 u32 sid, newsid, clen;
2530 int rc;
2531 char *namep = NULL, *context;
2532
2533 dsec = dir->i_security;
2534 sbsec = dir->i_sb->s_security;
2535
2536 sid = tsec->sid;
2537 newsid = tsec->create_sid;
2538
2539 if ((sbsec->flags & SE_SBINITIALIZED) &&
2540 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2541 newsid = sbsec->mntpoint_sid;
2542 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2543 rc = security_transition_sid(sid, dsec->sid,
2544 inode_mode_to_security_class(inode->i_mode),
2545 qstr, &newsid);
2546 if (rc) {
2547 printk(KERN_WARNING "%s: "
2548 "security_transition_sid failed, rc=%d (dev=%s "
2549 "ino=%ld)\n",
2550 __func__,
2551 -rc, inode->i_sb->s_id, inode->i_ino);
2552 return rc;
2553 }
2554 }
2555
2556 /* Possibly defer initialization to selinux_complete_init. */
2557 if (sbsec->flags & SE_SBINITIALIZED) {
2558 struct inode_security_struct *isec = inode->i_security;
2559 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2560 isec->sid = newsid;
2561 isec->initialized = 1;
2562 }
2563
2564 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2565 return -EOPNOTSUPP;
2566
2567 if (name) {
2568 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2569 if (!namep)
2570 return -ENOMEM;
2571 *name = namep;
2572 }
2573
2574 if (value && len) {
2575 rc = security_sid_to_context_force(newsid, &context, &clen);
2576 if (rc) {
2577 kfree(namep);
2578 return rc;
2579 }
2580 *value = context;
2581 *len = clen;
2582 }
2583
2584 return 0;
2585}
2586
2587static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2588{
2589 return may_create(dir, dentry, SECCLASS_FILE);
2590}
2591
2592static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2593{
2594 return may_link(dir, old_dentry, MAY_LINK);
2595}
2596
2597static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2598{
2599 return may_link(dir, dentry, MAY_UNLINK);
2600}
2601
2602static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2603{
2604 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2605}
2606
2607static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2608{
2609 return may_create(dir, dentry, SECCLASS_DIR);
2610}
2611
2612static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2613{
2614 return may_link(dir, dentry, MAY_RMDIR);
2615}
2616
2617static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2618{
2619 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2620}
2621
2622static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2623 struct inode *new_inode, struct dentry *new_dentry)
2624{
2625 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2626}
2627
2628static int selinux_inode_readlink(struct dentry *dentry)
2629{
2630 const struct cred *cred = current_cred();
2631
2632 return dentry_has_perm(cred, dentry, FILE__READ);
2633}
2634
2635static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2636{
2637 const struct cred *cred = current_cred();
2638
2639 return dentry_has_perm(cred, dentry, FILE__READ);
2640}
2641
2642static noinline int audit_inode_permission(struct inode *inode,
2643 u32 perms, u32 audited, u32 denied,
2644 unsigned flags)
2645{
2646 struct common_audit_data ad;
2647 struct inode_security_struct *isec = inode->i_security;
2648 int rc;
2649
2650 ad.type = LSM_AUDIT_DATA_INODE;
2651 ad.u.inode = inode;
2652
2653 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2654 audited, denied, &ad, flags);
2655 if (rc)
2656 return rc;
2657 return 0;
2658}
2659
2660static int selinux_inode_permission(struct inode *inode, int mask)
2661{
2662 const struct cred *cred = current_cred();
2663 u32 perms;
2664 bool from_access;
2665 unsigned flags = mask & MAY_NOT_BLOCK;
2666 struct inode_security_struct *isec;
2667 u32 sid;
2668 struct av_decision avd;
2669 int rc, rc2;
2670 u32 audited, denied;
2671
2672 from_access = mask & MAY_ACCESS;
2673 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2674
2675 /* No permission to check. Existence test. */
2676 if (!mask)
2677 return 0;
2678
2679 validate_creds(cred);
2680
2681 if (unlikely(IS_PRIVATE(inode)))
2682 return 0;
2683
2684 perms = file_mask_to_av(inode->i_mode, mask);
2685
2686 sid = cred_sid(cred);
2687 isec = inode->i_security;
2688
2689 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2690 audited = avc_audit_required(perms, &avd, rc,
2691 from_access ? FILE__AUDIT_ACCESS : 0,
2692 &denied);
2693 if (likely(!audited))
2694 return rc;
2695
2696 rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2697 if (rc2)
2698 return rc2;
2699 return rc;
2700}
2701
2702static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2703{
2704 const struct cred *cred = current_cred();
2705 unsigned int ia_valid = iattr->ia_valid;
2706 __u32 av = FILE__WRITE;
2707
2708 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2709 if (ia_valid & ATTR_FORCE) {
2710 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2711 ATTR_FORCE);
2712 if (!ia_valid)
2713 return 0;
2714 }
2715
2716 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2717 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2718 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2719
2720 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2721 av |= FILE__OPEN;
2722
2723 return dentry_has_perm(cred, dentry, av);
2724}
2725
2726static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2727{
2728 const struct cred *cred = current_cred();
2729 struct path path;
2730
2731 path.dentry = dentry;
2732 path.mnt = mnt;
2733
2734 return path_has_perm(cred, &path, FILE__GETATTR);
2735}
2736
2737static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2738{
2739 const struct cred *cred = current_cred();
2740
2741 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2742 sizeof XATTR_SECURITY_PREFIX - 1)) {
2743 if (!strcmp(name, XATTR_NAME_CAPS)) {
2744 if (!capable(CAP_SETFCAP))
2745 return -EPERM;
2746 } else if (!capable(CAP_SYS_ADMIN)) {
2747 /* A different attribute in the security namespace.
2748 Restrict to administrator. */
2749 return -EPERM;
2750 }
2751 }
2752
2753 /* Not an attribute we recognize, so just check the
2754 ordinary setattr permission. */
2755 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2756}
2757
2758static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2759 const void *value, size_t size, int flags)
2760{
2761 struct inode *inode = dentry->d_inode;
2762 struct inode_security_struct *isec = inode->i_security;
2763 struct superblock_security_struct *sbsec;
2764 struct common_audit_data ad;
2765 u32 newsid, sid = current_sid();
2766 int rc = 0;
2767
2768 if (strcmp(name, XATTR_NAME_SELINUX))
2769 return selinux_inode_setotherxattr(dentry, name);
2770
2771 sbsec = inode->i_sb->s_security;
2772 if (!(sbsec->flags & SE_SBLABELSUPP))
2773 return -EOPNOTSUPP;
2774
2775 if (!inode_owner_or_capable(inode))
2776 return -EPERM;
2777
2778 ad.type = LSM_AUDIT_DATA_DENTRY;
2779 ad.u.dentry = dentry;
2780
2781 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2782 FILE__RELABELFROM, &ad);
2783 if (rc)
2784 return rc;
2785
2786 rc = security_context_to_sid(value, size, &newsid);
2787 if (rc == -EINVAL) {
2788 if (!capable(CAP_MAC_ADMIN)) {
2789 struct audit_buffer *ab;
2790 size_t audit_size;
2791 const char *str;
2792
2793 /* We strip a nul only if it is at the end, otherwise the
2794 * context contains a nul and we should audit that */
2795 if (value) {
2796 str = value;
2797 if (str[size - 1] == '\0')
2798 audit_size = size - 1;
2799 else
2800 audit_size = size;
2801 } else {
2802 str = "";
2803 audit_size = 0;
2804 }
2805 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2806 audit_log_format(ab, "op=setxattr invalid_context=");
2807 audit_log_n_untrustedstring(ab, value, audit_size);
2808 audit_log_end(ab);
2809
2810 return rc;
2811 }
2812 rc = security_context_to_sid_force(value, size, &newsid);
2813 }
2814 if (rc)
2815 return rc;
2816
2817 rc = avc_has_perm(sid, newsid, isec->sclass,
2818 FILE__RELABELTO, &ad);
2819 if (rc)
2820 return rc;
2821
2822 rc = security_validate_transition(isec->sid, newsid, sid,
2823 isec->sclass);
2824 if (rc)
2825 return rc;
2826
2827 return avc_has_perm(newsid,
2828 sbsec->sid,
2829 SECCLASS_FILESYSTEM,
2830 FILESYSTEM__ASSOCIATE,
2831 &ad);
2832}
2833
2834static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2835 const void *value, size_t size,
2836 int flags)
2837{
2838 struct inode *inode = dentry->d_inode;
2839 struct inode_security_struct *isec = inode->i_security;
2840 u32 newsid;
2841 int rc;
2842
2843 if (strcmp(name, XATTR_NAME_SELINUX)) {
2844 /* Not an attribute we recognize, so nothing to do. */
2845 return;
2846 }
2847
2848 rc = security_context_to_sid_force(value, size, &newsid);
2849 if (rc) {
2850 printk(KERN_ERR "SELinux: unable to map context to SID"
2851 "for (%s, %lu), rc=%d\n",
2852 inode->i_sb->s_id, inode->i_ino, -rc);
2853 return;
2854 }
2855
2856 isec->sid = newsid;
2857 return;
2858}
2859
2860static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2861{
2862 const struct cred *cred = current_cred();
2863
2864 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2865}
2866
2867static int selinux_inode_listxattr(struct dentry *dentry)
2868{
2869 const struct cred *cred = current_cred();
2870
2871 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2872}
2873
2874static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2875{
2876 if (strcmp(name, XATTR_NAME_SELINUX))
2877 return selinux_inode_setotherxattr(dentry, name);
2878
2879 /* No one is allowed to remove a SELinux security label.
2880 You can change the label, but all data must be labeled. */
2881 return -EACCES;
2882}
2883
2884/*
2885 * Copy the inode security context value to the user.
2886 *
2887 * Permission check is handled by selinux_inode_getxattr hook.
2888 */
2889static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2890{
2891 u32 size;
2892 int error;
2893 char *context = NULL;
2894 struct inode_security_struct *isec = inode->i_security;
2895
2896 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2897 return -EOPNOTSUPP;
2898
2899 /*
2900 * If the caller has CAP_MAC_ADMIN, then get the raw context
2901 * value even if it is not defined by current policy; otherwise,
2902 * use the in-core value under current policy.
2903 * Use the non-auditing forms of the permission checks since
2904 * getxattr may be called by unprivileged processes commonly
2905 * and lack of permission just means that we fall back to the
2906 * in-core context value, not a denial.
2907 */
2908 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2909 SECURITY_CAP_NOAUDIT);
2910 if (!error)
2911 error = security_sid_to_context_force(isec->sid, &context,
2912 &size);
2913 else
2914 error = security_sid_to_context(isec->sid, &context, &size);
2915 if (error)
2916 return error;
2917 error = size;
2918 if (alloc) {
2919 *buffer = context;
2920 goto out_nofree;
2921 }
2922 kfree(context);
2923out_nofree:
2924 return error;
2925}
2926
2927static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2928 const void *value, size_t size, int flags)
2929{
2930 struct inode_security_struct *isec = inode->i_security;
2931 u32 newsid;
2932 int rc;
2933
2934 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2935 return -EOPNOTSUPP;
2936
2937 if (!value || !size)
2938 return -EACCES;
2939
2940 rc = security_context_to_sid((void *)value, size, &newsid);
2941 if (rc)
2942 return rc;
2943
2944 isec->sid = newsid;
2945 isec->initialized = 1;
2946 return 0;
2947}
2948
2949static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2950{
2951 const int len = sizeof(XATTR_NAME_SELINUX);
2952 if (buffer && len <= buffer_size)
2953 memcpy(buffer, XATTR_NAME_SELINUX, len);
2954 return len;
2955}
2956
2957static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2958{
2959 struct inode_security_struct *isec = inode->i_security;
2960 *secid = isec->sid;
2961}
2962
2963/* file security operations */
2964
2965static int selinux_revalidate_file_permission(struct file *file, int mask)
2966{
2967 const struct cred *cred = current_cred();
2968 struct inode *inode = file->f_path.dentry->d_inode;
2969
2970 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2971 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2972 mask |= MAY_APPEND;
2973
2974 return file_has_perm(cred, file,
2975 file_mask_to_av(inode->i_mode, mask));
2976}
2977
2978static int selinux_file_permission(struct file *file, int mask)
2979{
2980 struct inode *inode = file->f_path.dentry->d_inode;
2981 struct file_security_struct *fsec = file->f_security;
2982 struct inode_security_struct *isec = inode->i_security;
2983 u32 sid = current_sid();
2984
2985 if (!mask)
2986 /* No permission to check. Existence test. */
2987 return 0;
2988
2989 if (sid == fsec->sid && fsec->isid == isec->sid &&
2990 fsec->pseqno == avc_policy_seqno())
2991 /* No change since file_open check. */
2992 return 0;
2993
2994 return selinux_revalidate_file_permission(file, mask);
2995}
2996
2997static int selinux_file_alloc_security(struct file *file)
2998{
2999 return file_alloc_security(file);
3000}
3001
3002static void selinux_file_free_security(struct file *file)
3003{
3004 file_free_security(file);
3005}
3006
3007static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3008 unsigned long arg)
3009{
3010 const struct cred *cred = current_cred();
3011 int error = 0;
3012
3013 switch (cmd) {
3014 case FIONREAD:
3015 /* fall through */
3016 case FIBMAP:
3017 /* fall through */
3018 case FIGETBSZ:
3019 /* fall through */
3020 case FS_IOC_GETFLAGS:
3021 /* fall through */
3022 case FS_IOC_GETVERSION:
3023 error = file_has_perm(cred, file, FILE__GETATTR);
3024 break;
3025
3026 case FS_IOC_SETFLAGS:
3027 /* fall through */
3028 case FS_IOC_SETVERSION:
3029 error = file_has_perm(cred, file, FILE__SETATTR);
3030 break;
3031
3032 /* sys_ioctl() checks */
3033 case FIONBIO:
3034 /* fall through */
3035 case FIOASYNC:
3036 error = file_has_perm(cred, file, 0);
3037 break;
3038
3039 case KDSKBENT:
3040 case KDSKBSENT:
3041 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3042 SECURITY_CAP_AUDIT);
3043 break;
3044
3045 /* default case assumes that the command will go
3046 * to the file's ioctl() function.
3047 */
3048 default:
3049 error = file_has_perm(cred, file, FILE__IOCTL);
3050 }
3051 return error;
3052}
3053
3054static int default_noexec;
3055
3056static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3057{
3058 const struct cred *cred = current_cred();
3059 int rc = 0;
3060
3061 if (default_noexec &&
3062 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3063 /*
3064 * We are making executable an anonymous mapping or a
3065 * private file mapping that will also be writable.
3066 * This has an additional check.
3067 */
3068 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3069 if (rc)
3070 goto error;
3071 }
3072
3073 if (file) {
3074 /* read access is always possible with a mapping */
3075 u32 av = FILE__READ;
3076
3077 /* write access only matters if the mapping is shared */
3078 if (shared && (prot & PROT_WRITE))
3079 av |= FILE__WRITE;
3080
3081 if (prot & PROT_EXEC)
3082 av |= FILE__EXECUTE;
3083
3084 return file_has_perm(cred, file, av);
3085 }
3086
3087error:
3088 return rc;
3089}
3090
3091static int selinux_mmap_addr(unsigned long addr)
3092{
3093 int rc = 0;
3094 u32 sid = current_sid();
3095
3096 /*
3097 * notice that we are intentionally putting the SELinux check before
3098 * the secondary cap_file_mmap check. This is such a likely attempt
3099 * at bad behaviour/exploit that we always want to get the AVC, even
3100 * if DAC would have also denied the operation.
3101 */
3102 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3103 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3104 MEMPROTECT__MMAP_ZERO, NULL);
3105 if (rc)
3106 return rc;
3107 }
3108
3109 /* do DAC check on address space usage */
3110 return cap_mmap_addr(addr);
3111}
3112
3113static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3114 unsigned long prot, unsigned long flags)
3115{
3116 if (selinux_checkreqprot)
3117 prot = reqprot;
3118
3119 return file_map_prot_check(file, prot,
3120 (flags & MAP_TYPE) == MAP_SHARED);
3121}
3122
3123static int selinux_file_mprotect(struct vm_area_struct *vma,
3124 unsigned long reqprot,
3125 unsigned long prot)
3126{
3127 const struct cred *cred = current_cred();
3128
3129 if (selinux_checkreqprot)
3130 prot = reqprot;
3131
3132 if (default_noexec &&
3133 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3134 int rc = 0;
3135 if (vma->vm_start >= vma->vm_mm->start_brk &&
3136 vma->vm_end <= vma->vm_mm->brk) {
3137 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3138 } else if (!vma->vm_file &&
3139 vma->vm_start <= vma->vm_mm->start_stack &&
3140 vma->vm_end >= vma->vm_mm->start_stack) {
3141 rc = current_has_perm(current, PROCESS__EXECSTACK);
3142 } else if (vma->vm_file && vma->anon_vma) {
3143 /*
3144 * We are making executable a file mapping that has
3145 * had some COW done. Since pages might have been
3146 * written, check ability to execute the possibly
3147 * modified content. This typically should only
3148 * occur for text relocations.
3149 */
3150 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3151 }
3152 if (rc)
3153 return rc;
3154 }
3155
3156 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3157}
3158
3159static int selinux_file_lock(struct file *file, unsigned int cmd)
3160{
3161 const struct cred *cred = current_cred();
3162
3163 return file_has_perm(cred, file, FILE__LOCK);
3164}
3165
3166static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3167 unsigned long arg)
3168{
3169 const struct cred *cred = current_cred();
3170 int err = 0;
3171
3172 switch (cmd) {
3173 case F_SETFL:
3174 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3175 err = -EINVAL;
3176 break;
3177 }
3178
3179 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3180 err = file_has_perm(cred, file, FILE__WRITE);
3181 break;
3182 }
3183 /* fall through */
3184 case F_SETOWN:
3185 case F_SETSIG:
3186 case F_GETFL:
3187 case F_GETOWN:
3188 case F_GETSIG:
3189 /* Just check FD__USE permission */
3190 err = file_has_perm(cred, file, 0);
3191 break;
3192 case F_GETLK:
3193 case F_SETLK:
3194 case F_SETLKW:
3195#if BITS_PER_LONG == 32
3196 case F_GETLK64:
3197 case F_SETLK64:
3198 case F_SETLKW64:
3199#endif
3200 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3201 err = -EINVAL;
3202 break;
3203 }
3204 err = file_has_perm(cred, file, FILE__LOCK);
3205 break;
3206 }
3207
3208 return err;
3209}
3210
3211static int selinux_file_set_fowner(struct file *file)
3212{
3213 struct file_security_struct *fsec;
3214
3215 fsec = file->f_security;
3216 fsec->fown_sid = current_sid();
3217
3218 return 0;
3219}
3220
3221static int selinux_file_send_sigiotask(struct task_struct *tsk,
3222 struct fown_struct *fown, int signum)
3223{
3224 struct file *file;
3225 u32 sid = task_sid(tsk);
3226 u32 perm;
3227 struct file_security_struct *fsec;
3228
3229 /* struct fown_struct is never outside the context of a struct file */
3230 file = container_of(fown, struct file, f_owner);
3231
3232 fsec = file->f_security;
3233
3234 if (!signum)
3235 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3236 else
3237 perm = signal_to_av(signum);
3238
3239 return avc_has_perm(fsec->fown_sid, sid,
3240 SECCLASS_PROCESS, perm, NULL);
3241}
3242
3243static int selinux_file_receive(struct file *file)
3244{
3245 const struct cred *cred = current_cred();
3246
3247 return file_has_perm(cred, file, file_to_av(file));
3248}
3249
3250static int selinux_file_open(struct file *file, const struct cred *cred)
3251{
3252 struct file_security_struct *fsec;
3253 struct inode_security_struct *isec;
3254
3255 fsec = file->f_security;
3256 isec = file->f_path.dentry->d_inode->i_security;
3257 /*
3258 * Save inode label and policy sequence number
3259 * at open-time so that selinux_file_permission
3260 * can determine whether revalidation is necessary.
3261 * Task label is already saved in the file security
3262 * struct as its SID.
3263 */
3264 fsec->isid = isec->sid;
3265 fsec->pseqno = avc_policy_seqno();
3266 /*
3267 * Since the inode label or policy seqno may have changed
3268 * between the selinux_inode_permission check and the saving
3269 * of state above, recheck that access is still permitted.
3270 * Otherwise, access might never be revalidated against the
3271 * new inode label or new policy.
3272 * This check is not redundant - do not remove.
3273 */
3274 return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3275}
3276
3277/* task security operations */
3278
3279static int selinux_task_create(unsigned long clone_flags)
3280{
3281 return current_has_perm(current, PROCESS__FORK);
3282}
3283
3284/*
3285 * allocate the SELinux part of blank credentials
3286 */
3287static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3288{
3289 struct task_security_struct *tsec;
3290
3291 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3292 if (!tsec)
3293 return -ENOMEM;
3294
3295 cred->security = tsec;
3296 return 0;
3297}
3298
3299/*
3300 * detach and free the LSM part of a set of credentials
3301 */
3302static void selinux_cred_free(struct cred *cred)
3303{
3304 struct task_security_struct *tsec = cred->security;
3305
3306 /*
3307 * cred->security == NULL if security_cred_alloc_blank() or
3308 * security_prepare_creds() returned an error.
3309 */
3310 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3311 cred->security = (void *) 0x7UL;
3312 kfree(tsec);
3313}
3314
3315/*
3316 * prepare a new set of credentials for modification
3317 */
3318static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3319 gfp_t gfp)
3320{
3321 const struct task_security_struct *old_tsec;
3322 struct task_security_struct *tsec;
3323
3324 old_tsec = old->security;
3325
3326 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3327 if (!tsec)
3328 return -ENOMEM;
3329
3330 new->security = tsec;
3331 return 0;
3332}
3333
3334/*
3335 * transfer the SELinux data to a blank set of creds
3336 */
3337static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3338{
3339 const struct task_security_struct *old_tsec = old->security;
3340 struct task_security_struct *tsec = new->security;
3341
3342 *tsec = *old_tsec;
3343}
3344
3345/*
3346 * set the security data for a kernel service
3347 * - all the creation contexts are set to unlabelled
3348 */
3349static int selinux_kernel_act_as(struct cred *new, u32 secid)
3350{
3351 struct task_security_struct *tsec = new->security;
3352 u32 sid = current_sid();
3353 int ret;
3354
3355 ret = avc_has_perm(sid, secid,
3356 SECCLASS_KERNEL_SERVICE,
3357 KERNEL_SERVICE__USE_AS_OVERRIDE,
3358 NULL);
3359 if (ret == 0) {
3360 tsec->sid = secid;
3361 tsec->create_sid = 0;
3362 tsec->keycreate_sid = 0;
3363 tsec->sockcreate_sid = 0;
3364 }
3365 return ret;
3366}
3367
3368/*
3369 * set the file creation context in a security record to the same as the
3370 * objective context of the specified inode
3371 */
3372static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3373{
3374 struct inode_security_struct *isec = inode->i_security;
3375 struct task_security_struct *tsec = new->security;
3376 u32 sid = current_sid();
3377 int ret;
3378
3379 ret = avc_has_perm(sid, isec->sid,
3380 SECCLASS_KERNEL_SERVICE,
3381 KERNEL_SERVICE__CREATE_FILES_AS,
3382 NULL);
3383
3384 if (ret == 0)
3385 tsec->create_sid = isec->sid;
3386 return ret;
3387}
3388
3389static int selinux_kernel_module_request(char *kmod_name)
3390{
3391 u32 sid;
3392 struct common_audit_data ad;
3393
3394 sid = task_sid(current);
3395
3396 ad.type = LSM_AUDIT_DATA_KMOD;
3397 ad.u.kmod_name = kmod_name;
3398
3399 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3400 SYSTEM__MODULE_REQUEST, &ad);
3401}
3402
3403static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3404{
3405 return current_has_perm(p, PROCESS__SETPGID);
3406}
3407
3408static int selinux_task_getpgid(struct task_struct *p)
3409{
3410 return current_has_perm(p, PROCESS__GETPGID);
3411}
3412
3413static int selinux_task_getsid(struct task_struct *p)
3414{
3415 return current_has_perm(p, PROCESS__GETSESSION);
3416}
3417
3418static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3419{
3420 *secid = task_sid(p);
3421}
3422
3423static int selinux_task_setnice(struct task_struct *p, int nice)
3424{
3425 int rc;
3426
3427 rc = cap_task_setnice(p, nice);
3428 if (rc)
3429 return rc;
3430
3431 return current_has_perm(p, PROCESS__SETSCHED);
3432}
3433
3434static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3435{
3436 int rc;
3437
3438 rc = cap_task_setioprio(p, ioprio);
3439 if (rc)
3440 return rc;
3441
3442 return current_has_perm(p, PROCESS__SETSCHED);
3443}
3444
3445static int selinux_task_getioprio(struct task_struct *p)
3446{
3447 return current_has_perm(p, PROCESS__GETSCHED);
3448}
3449
3450static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3451 struct rlimit *new_rlim)
3452{
3453 struct rlimit *old_rlim = p->signal->rlim + resource;
3454
3455 /* Control the ability to change the hard limit (whether
3456 lowering or raising it), so that the hard limit can
3457 later be used as a safe reset point for the soft limit
3458 upon context transitions. See selinux_bprm_committing_creds. */
3459 if (old_rlim->rlim_max != new_rlim->rlim_max)
3460 return current_has_perm(p, PROCESS__SETRLIMIT);
3461
3462 return 0;
3463}
3464
3465static int selinux_task_setscheduler(struct task_struct *p)
3466{
3467 int rc;
3468
3469 rc = cap_task_setscheduler(p);
3470 if (rc)
3471 return rc;
3472
3473 return current_has_perm(p, PROCESS__SETSCHED);
3474}
3475
3476static int selinux_task_getscheduler(struct task_struct *p)
3477{
3478 return current_has_perm(p, PROCESS__GETSCHED);
3479}
3480
3481static int selinux_task_movememory(struct task_struct *p)
3482{
3483 return current_has_perm(p, PROCESS__SETSCHED);
3484}
3485
3486static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3487 int sig, u32 secid)
3488{
3489 u32 perm;
3490 int rc;
3491
3492 if (!sig)
3493 perm = PROCESS__SIGNULL; /* null signal; existence test */
3494 else
3495 perm = signal_to_av(sig);
3496 if (secid)
3497 rc = avc_has_perm(secid, task_sid(p),
3498 SECCLASS_PROCESS, perm, NULL);
3499 else
3500 rc = current_has_perm(p, perm);
3501 return rc;
3502}
3503
3504static int selinux_task_wait(struct task_struct *p)
3505{
3506 return task_has_perm(p, current, PROCESS__SIGCHLD);
3507}
3508
3509static void selinux_task_to_inode(struct task_struct *p,
3510 struct inode *inode)
3511{
3512 struct inode_security_struct *isec = inode->i_security;
3513 u32 sid = task_sid(p);
3514
3515 isec->sid = sid;
3516 isec->initialized = 1;
3517}
3518
3519/* Returns error only if unable to parse addresses */
3520static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3521 struct common_audit_data *ad, u8 *proto)
3522{
3523 int offset, ihlen, ret = -EINVAL;
3524 struct iphdr _iph, *ih;
3525
3526 offset = skb_network_offset(skb);
3527 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3528 if (ih == NULL)
3529 goto out;
3530
3531 ihlen = ih->ihl * 4;
3532 if (ihlen < sizeof(_iph))
3533 goto out;
3534
3535 ad->u.net->v4info.saddr = ih->saddr;
3536 ad->u.net->v4info.daddr = ih->daddr;
3537 ret = 0;
3538
3539 if (proto)
3540 *proto = ih->protocol;
3541
3542 switch (ih->protocol) {
3543 case IPPROTO_TCP: {
3544 struct tcphdr _tcph, *th;
3545
3546 if (ntohs(ih->frag_off) & IP_OFFSET)
3547 break;
3548
3549 offset += ihlen;
3550 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3551 if (th == NULL)
3552 break;
3553
3554 ad->u.net->sport = th->source;
3555 ad->u.net->dport = th->dest;
3556 break;
3557 }
3558
3559 case IPPROTO_UDP: {
3560 struct udphdr _udph, *uh;
3561
3562 if (ntohs(ih->frag_off) & IP_OFFSET)
3563 break;
3564
3565 offset += ihlen;
3566 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3567 if (uh == NULL)
3568 break;
3569
3570 ad->u.net->sport = uh->source;
3571 ad->u.net->dport = uh->dest;
3572 break;
3573 }
3574
3575 case IPPROTO_DCCP: {
3576 struct dccp_hdr _dccph, *dh;
3577
3578 if (ntohs(ih->frag_off) & IP_OFFSET)
3579 break;
3580
3581 offset += ihlen;
3582 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3583 if (dh == NULL)
3584 break;
3585
3586 ad->u.net->sport = dh->dccph_sport;
3587 ad->u.net->dport = dh->dccph_dport;
3588 break;
3589 }
3590
3591 default:
3592 break;
3593 }
3594out:
3595 return ret;
3596}
3597
3598#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3599
3600/* Returns error only if unable to parse addresses */
3601static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3602 struct common_audit_data *ad, u8 *proto)
3603{
3604 u8 nexthdr;
3605 int ret = -EINVAL, offset;
3606 struct ipv6hdr _ipv6h, *ip6;
3607 __be16 frag_off;
3608
3609 offset = skb_network_offset(skb);
3610 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3611 if (ip6 == NULL)
3612 goto out;
3613
3614 ad->u.net->v6info.saddr = ip6->saddr;
3615 ad->u.net->v6info.daddr = ip6->daddr;
3616 ret = 0;
3617
3618 nexthdr = ip6->nexthdr;
3619 offset += sizeof(_ipv6h);
3620 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3621 if (offset < 0)
3622 goto out;
3623
3624 if (proto)
3625 *proto = nexthdr;
3626
3627 switch (nexthdr) {
3628 case IPPROTO_TCP: {
3629 struct tcphdr _tcph, *th;
3630
3631 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3632 if (th == NULL)
3633 break;
3634
3635 ad->u.net->sport = th->source;
3636 ad->u.net->dport = th->dest;
3637 break;
3638 }
3639
3640 case IPPROTO_UDP: {
3641 struct udphdr _udph, *uh;
3642
3643 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3644 if (uh == NULL)
3645 break;
3646
3647 ad->u.net->sport = uh->source;
3648 ad->u.net->dport = uh->dest;
3649 break;
3650 }
3651
3652 case IPPROTO_DCCP: {
3653 struct dccp_hdr _dccph, *dh;
3654
3655 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3656 if (dh == NULL)
3657 break;
3658
3659 ad->u.net->sport = dh->dccph_sport;
3660 ad->u.net->dport = dh->dccph_dport;
3661 break;
3662 }
3663
3664 /* includes fragments */
3665 default:
3666 break;
3667 }
3668out:
3669 return ret;
3670}
3671
3672#endif /* IPV6 */
3673
3674static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3675 char **_addrp, int src, u8 *proto)
3676{
3677 char *addrp;
3678 int ret;
3679
3680 switch (ad->u.net->family) {
3681 case PF_INET:
3682 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3683 if (ret)
3684 goto parse_error;
3685 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3686 &ad->u.net->v4info.daddr);
3687 goto okay;
3688
3689#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3690 case PF_INET6:
3691 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3692 if (ret)
3693 goto parse_error;
3694 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3695 &ad->u.net->v6info.daddr);
3696 goto okay;
3697#endif /* IPV6 */
3698 default:
3699 addrp = NULL;
3700 goto okay;
3701 }
3702
3703parse_error:
3704 printk(KERN_WARNING
3705 "SELinux: failure in selinux_parse_skb(),"
3706 " unable to parse packet\n");
3707 return ret;
3708
3709okay:
3710 if (_addrp)
3711 *_addrp = addrp;
3712 return 0;
3713}
3714
3715/**
3716 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3717 * @skb: the packet
3718 * @family: protocol family
3719 * @sid: the packet's peer label SID
3720 *
3721 * Description:
3722 * Check the various different forms of network peer labeling and determine
3723 * the peer label/SID for the packet; most of the magic actually occurs in
3724 * the security server function security_net_peersid_cmp(). The function
3725 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3726 * or -EACCES if @sid is invalid due to inconsistencies with the different
3727 * peer labels.
3728 *
3729 */
3730static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3731{
3732 int err;
3733 u32 xfrm_sid;
3734 u32 nlbl_sid;
3735 u32 nlbl_type;
3736
3737 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3738 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3739
3740 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3741 if (unlikely(err)) {
3742 printk(KERN_WARNING
3743 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3744 " unable to determine packet's peer label\n");
3745 return -EACCES;
3746 }
3747
3748 return 0;
3749}
3750
3751/* socket security operations */
3752
3753static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3754 u16 secclass, u32 *socksid)
3755{
3756 if (tsec->sockcreate_sid > SECSID_NULL) {
3757 *socksid = tsec->sockcreate_sid;
3758 return 0;
3759 }
3760
3761 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3762 socksid);
3763}
3764
3765static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3766{
3767 struct sk_security_struct *sksec = sk->sk_security;
3768 struct common_audit_data ad;
3769 struct lsm_network_audit net = {0,};
3770 u32 tsid = task_sid(task);
3771
3772 if (sksec->sid == SECINITSID_KERNEL)
3773 return 0;
3774
3775 ad.type = LSM_AUDIT_DATA_NET;
3776 ad.u.net = &net;
3777 ad.u.net->sk = sk;
3778
3779 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3780}
3781
3782static int selinux_socket_create(int family, int type,
3783 int protocol, int kern)
3784{
3785 const struct task_security_struct *tsec = current_security();
3786 u32 newsid;
3787 u16 secclass;
3788 int rc;
3789
3790 if (kern)
3791 return 0;
3792
3793 secclass = socket_type_to_security_class(family, type, protocol);
3794 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3795 if (rc)
3796 return rc;
3797
3798 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3799}
3800
3801static int selinux_socket_post_create(struct socket *sock, int family,
3802 int type, int protocol, int kern)
3803{
3804 const struct task_security_struct *tsec = current_security();
3805 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3806 struct sk_security_struct *sksec;
3807 int err = 0;
3808
3809 isec->sclass = socket_type_to_security_class(family, type, protocol);
3810
3811 if (kern)
3812 isec->sid = SECINITSID_KERNEL;
3813 else {
3814 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3815 if (err)
3816 return err;
3817 }
3818
3819 isec->initialized = 1;
3820
3821 if (sock->sk) {
3822 sksec = sock->sk->sk_security;
3823 sksec->sid = isec->sid;
3824 sksec->sclass = isec->sclass;
3825 err = selinux_netlbl_socket_post_create(sock->sk, family);
3826 }
3827
3828 return err;
3829}
3830
3831/* Range of port numbers used to automatically bind.
3832 Need to determine whether we should perform a name_bind
3833 permission check between the socket and the port number. */
3834
3835static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3836{
3837 struct sock *sk = sock->sk;
3838 u16 family;
3839 int err;
3840
3841 err = sock_has_perm(current, sk, SOCKET__BIND);
3842 if (err)
3843 goto out;
3844
3845 /*
3846 * If PF_INET or PF_INET6, check name_bind permission for the port.
3847 * Multiple address binding for SCTP is not supported yet: we just
3848 * check the first address now.
3849 */
3850 family = sk->sk_family;
3851 if (family == PF_INET || family == PF_INET6) {
3852 char *addrp;
3853 struct sk_security_struct *sksec = sk->sk_security;
3854 struct common_audit_data ad;
3855 struct lsm_network_audit net = {0,};
3856 struct sockaddr_in *addr4 = NULL;
3857 struct sockaddr_in6 *addr6 = NULL;
3858 unsigned short snum;
3859 u32 sid, node_perm;
3860
3861 if (family == PF_INET) {
3862 addr4 = (struct sockaddr_in *)address;
3863 snum = ntohs(addr4->sin_port);
3864 addrp = (char *)&addr4->sin_addr.s_addr;
3865 } else {
3866 addr6 = (struct sockaddr_in6 *)address;
3867 snum = ntohs(addr6->sin6_port);
3868 addrp = (char *)&addr6->sin6_addr.s6_addr;
3869 }
3870
3871 if (snum) {
3872 int low, high;
3873
3874 inet_get_local_port_range(&low, &high);
3875
3876 if (snum < max(PROT_SOCK, low) || snum > high) {
3877 err = sel_netport_sid(sk->sk_protocol,
3878 snum, &sid);
3879 if (err)
3880 goto out;
3881 ad.type = LSM_AUDIT_DATA_NET;
3882 ad.u.net = &net;
3883 ad.u.net->sport = htons(snum);
3884 ad.u.net->family = family;
3885 err = avc_has_perm(sksec->sid, sid,
3886 sksec->sclass,
3887 SOCKET__NAME_BIND, &ad);
3888 if (err)
3889 goto out;
3890 }
3891 }
3892
3893 switch (sksec->sclass) {
3894 case SECCLASS_TCP_SOCKET:
3895 node_perm = TCP_SOCKET__NODE_BIND;
3896 break;
3897
3898 case SECCLASS_UDP_SOCKET:
3899 node_perm = UDP_SOCKET__NODE_BIND;
3900 break;
3901
3902 case SECCLASS_DCCP_SOCKET:
3903 node_perm = DCCP_SOCKET__NODE_BIND;
3904 break;
3905
3906 default:
3907 node_perm = RAWIP_SOCKET__NODE_BIND;
3908 break;
3909 }
3910
3911 err = sel_netnode_sid(addrp, family, &sid);
3912 if (err)
3913 goto out;
3914
3915 ad.type = LSM_AUDIT_DATA_NET;
3916 ad.u.net = &net;
3917 ad.u.net->sport = htons(snum);
3918 ad.u.net->family = family;
3919
3920 if (family == PF_INET)
3921 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3922 else
3923 ad.u.net->v6info.saddr = addr6->sin6_addr;
3924
3925 err = avc_has_perm(sksec->sid, sid,
3926 sksec->sclass, node_perm, &ad);
3927 if (err)
3928 goto out;
3929 }
3930out:
3931 return err;
3932}
3933
3934static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3935{
3936 struct sock *sk = sock->sk;
3937 struct sk_security_struct *sksec = sk->sk_security;
3938 int err;
3939
3940 err = sock_has_perm(current, sk, SOCKET__CONNECT);
3941 if (err)
3942 return err;
3943
3944 /*
3945 * If a TCP or DCCP socket, check name_connect permission for the port.
3946 */
3947 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3948 sksec->sclass == SECCLASS_DCCP_SOCKET) {
3949 struct common_audit_data ad;
3950 struct lsm_network_audit net = {0,};
3951 struct sockaddr_in *addr4 = NULL;
3952 struct sockaddr_in6 *addr6 = NULL;
3953 unsigned short snum;
3954 u32 sid, perm;
3955
3956 if (sk->sk_family == PF_INET) {
3957 addr4 = (struct sockaddr_in *)address;
3958 if (addrlen < sizeof(struct sockaddr_in))
3959 return -EINVAL;
3960 snum = ntohs(addr4->sin_port);
3961 } else {
3962 addr6 = (struct sockaddr_in6 *)address;
3963 if (addrlen < SIN6_LEN_RFC2133)
3964 return -EINVAL;
3965 snum = ntohs(addr6->sin6_port);
3966 }
3967
3968 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3969 if (err)
3970 goto out;
3971
3972 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3973 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3974
3975 ad.type = LSM_AUDIT_DATA_NET;
3976 ad.u.net = &net;
3977 ad.u.net->dport = htons(snum);
3978 ad.u.net->family = sk->sk_family;
3979 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3980 if (err)
3981 goto out;
3982 }
3983
3984 err = selinux_netlbl_socket_connect(sk, address);
3985
3986out:
3987 return err;
3988}
3989
3990static int selinux_socket_listen(struct socket *sock, int backlog)
3991{
3992 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3993}
3994
3995static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3996{
3997 int err;
3998 struct inode_security_struct *isec;
3999 struct inode_security_struct *newisec;
4000
4001 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4002 if (err)
4003 return err;
4004
4005 newisec = SOCK_INODE(newsock)->i_security;
4006
4007 isec = SOCK_INODE(sock)->i_security;
4008 newisec->sclass = isec->sclass;
4009 newisec->sid = isec->sid;
4010 newisec->initialized = 1;
4011
4012 return 0;
4013}
4014
4015static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4016 int size)
4017{
4018 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4019}
4020
4021static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4022 int size, int flags)
4023{
4024 return sock_has_perm(current, sock->sk, SOCKET__READ);
4025}
4026
4027static int selinux_socket_getsockname(struct socket *sock)
4028{
4029 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4030}
4031
4032static int selinux_socket_getpeername(struct socket *sock)
4033{
4034 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4035}
4036
4037static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4038{
4039 int err;
4040
4041 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4042 if (err)
4043 return err;
4044
4045 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4046}
4047
4048static int selinux_socket_getsockopt(struct socket *sock, int level,
4049 int optname)
4050{
4051 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4052}
4053
4054static int selinux_socket_shutdown(struct socket *sock, int how)
4055{
4056 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4057}
4058
4059static int selinux_socket_unix_stream_connect(struct sock *sock,
4060 struct sock *other,
4061 struct sock *newsk)
4062{
4063 struct sk_security_struct *sksec_sock = sock->sk_security;
4064 struct sk_security_struct *sksec_other = other->sk_security;
4065 struct sk_security_struct *sksec_new = newsk->sk_security;
4066 struct common_audit_data ad;
4067 struct lsm_network_audit net = {0,};
4068 int err;
4069
4070 ad.type = LSM_AUDIT_DATA_NET;
4071 ad.u.net = &net;
4072 ad.u.net->sk = other;
4073
4074 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4075 sksec_other->sclass,
4076 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4077 if (err)
4078 return err;
4079
4080 /* server child socket */
4081 sksec_new->peer_sid = sksec_sock->sid;
4082 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4083 &sksec_new->sid);
4084 if (err)
4085 return err;
4086
4087 /* connecting socket */
4088 sksec_sock->peer_sid = sksec_new->sid;
4089
4090 return 0;
4091}
4092
4093static int selinux_socket_unix_may_send(struct socket *sock,
4094 struct socket *other)
4095{
4096 struct sk_security_struct *ssec = sock->sk->sk_security;
4097 struct sk_security_struct *osec = other->sk->sk_security;
4098 struct common_audit_data ad;
4099 struct lsm_network_audit net = {0,};
4100
4101 ad.type = LSM_AUDIT_DATA_NET;
4102 ad.u.net = &net;
4103 ad.u.net->sk = other->sk;
4104
4105 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4106 &ad);
4107}
4108
4109static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4110 u32 peer_sid,
4111 struct common_audit_data *ad)
4112{
4113 int err;
4114 u32 if_sid;
4115 u32 node_sid;
4116
4117 err = sel_netif_sid(ifindex, &if_sid);
4118 if (err)
4119 return err;
4120 err = avc_has_perm(peer_sid, if_sid,
4121 SECCLASS_NETIF, NETIF__INGRESS, ad);
4122 if (err)
4123 return err;
4124
4125 err = sel_netnode_sid(addrp, family, &node_sid);
4126 if (err)
4127 return err;
4128 return avc_has_perm(peer_sid, node_sid,
4129 SECCLASS_NODE, NODE__RECVFROM, ad);
4130}
4131
4132static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4133 u16 family)
4134{
4135 int err = 0;
4136 struct sk_security_struct *sksec = sk->sk_security;
4137 u32 sk_sid = sksec->sid;
4138 struct common_audit_data ad;
4139 struct lsm_network_audit net = {0,};
4140 char *addrp;
4141
4142 ad.type = LSM_AUDIT_DATA_NET;
4143 ad.u.net = &net;
4144 ad.u.net->netif = skb->skb_iif;
4145 ad.u.net->family = family;
4146 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4147 if (err)
4148 return err;
4149
4150 if (selinux_secmark_enabled()) {
4151 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4152 PACKET__RECV, &ad);
4153 if (err)
4154 return err;
4155 }
4156
4157 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4158 if (err)
4159 return err;
4160 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4161
4162 return err;
4163}
4164
4165static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4166{
4167 int err;
4168 struct sk_security_struct *sksec = sk->sk_security;
4169 u16 family = sk->sk_family;
4170 u32 sk_sid = sksec->sid;
4171 struct common_audit_data ad;
4172 struct lsm_network_audit net = {0,};
4173 char *addrp;
4174 u8 secmark_active;
4175 u8 peerlbl_active;
4176
4177 if (family != PF_INET && family != PF_INET6)
4178 return 0;
4179
4180 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4181 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4182 family = PF_INET;
4183
4184 /* If any sort of compatibility mode is enabled then handoff processing
4185 * to the selinux_sock_rcv_skb_compat() function to deal with the
4186 * special handling. We do this in an attempt to keep this function
4187 * as fast and as clean as possible. */
4188 if (!selinux_policycap_netpeer)
4189 return selinux_sock_rcv_skb_compat(sk, skb, family);
4190
4191 secmark_active = selinux_secmark_enabled();
4192 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4193 if (!secmark_active && !peerlbl_active)
4194 return 0;
4195
4196 ad.type = LSM_AUDIT_DATA_NET;
4197 ad.u.net = &net;
4198 ad.u.net->netif = skb->skb_iif;
4199 ad.u.net->family = family;
4200 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4201 if (err)
4202 return err;
4203
4204 if (peerlbl_active) {
4205 u32 peer_sid;
4206
4207 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4208 if (err)
4209 return err;
4210 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4211 peer_sid, &ad);
4212 if (err) {
4213 selinux_netlbl_err(skb, err, 0);
4214 return err;
4215 }
4216 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4217 PEER__RECV, &ad);
4218 if (err)
4219 selinux_netlbl_err(skb, err, 0);
4220 }
4221
4222 if (secmark_active) {
4223 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4224 PACKET__RECV, &ad);
4225 if (err)
4226 return err;
4227 }
4228
4229 return err;
4230}
4231
4232static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4233 int __user *optlen, unsigned len)
4234{
4235 int err = 0;
4236 char *scontext;
4237 u32 scontext_len;
4238 struct sk_security_struct *sksec = sock->sk->sk_security;
4239 u32 peer_sid = SECSID_NULL;
4240
4241 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4242 sksec->sclass == SECCLASS_TCP_SOCKET)
4243 peer_sid = sksec->peer_sid;
4244 if (peer_sid == SECSID_NULL)
4245 return -ENOPROTOOPT;
4246
4247 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4248 if (err)
4249 return err;
4250
4251 if (scontext_len > len) {
4252 err = -ERANGE;
4253 goto out_len;
4254 }
4255
4256 if (copy_to_user(optval, scontext, scontext_len))
4257 err = -EFAULT;
4258
4259out_len:
4260 if (put_user(scontext_len, optlen))
4261 err = -EFAULT;
4262 kfree(scontext);
4263 return err;
4264}
4265
4266static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4267{
4268 u32 peer_secid = SECSID_NULL;
4269 u16 family;
4270
4271 if (skb && skb->protocol == htons(ETH_P_IP))
4272 family = PF_INET;
4273 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4274 family = PF_INET6;
4275 else if (sock)
4276 family = sock->sk->sk_family;
4277 else
4278 goto out;
4279
4280 if (sock && family == PF_UNIX)
4281 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4282 else if (skb)
4283 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4284
4285out:
4286 *secid = peer_secid;
4287 if (peer_secid == SECSID_NULL)
4288 return -EINVAL;
4289 return 0;
4290}
4291
4292static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4293{
4294 struct sk_security_struct *sksec;
4295
4296 sksec = kzalloc(sizeof(*sksec), priority);
4297 if (!sksec)
4298 return -ENOMEM;
4299
4300 sksec->peer_sid = SECINITSID_UNLABELED;
4301 sksec->sid = SECINITSID_UNLABELED;
4302 selinux_netlbl_sk_security_reset(sksec);
4303 sk->sk_security = sksec;
4304
4305 return 0;
4306}
4307
4308static void selinux_sk_free_security(struct sock *sk)
4309{
4310 struct sk_security_struct *sksec = sk->sk_security;
4311
4312 sk->sk_security = NULL;
4313 selinux_netlbl_sk_security_free(sksec);
4314 kfree(sksec);
4315}
4316
4317static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4318{
4319 struct sk_security_struct *sksec = sk->sk_security;
4320 struct sk_security_struct *newsksec = newsk->sk_security;
4321
4322 newsksec->sid = sksec->sid;
4323 newsksec->peer_sid = sksec->peer_sid;
4324 newsksec->sclass = sksec->sclass;
4325
4326 selinux_netlbl_sk_security_reset(newsksec);
4327}
4328
4329static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4330{
4331 if (!sk)
4332 *secid = SECINITSID_ANY_SOCKET;
4333 else {
4334 struct sk_security_struct *sksec = sk->sk_security;
4335
4336 *secid = sksec->sid;
4337 }
4338}
4339
4340static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4341{
4342 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4343 struct sk_security_struct *sksec = sk->sk_security;
4344
4345 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4346 sk->sk_family == PF_UNIX)
4347 isec->sid = sksec->sid;
4348 sksec->sclass = isec->sclass;
4349}
4350
4351static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4352 struct request_sock *req)
4353{
4354 struct sk_security_struct *sksec = sk->sk_security;
4355 int err;
4356 u16 family = sk->sk_family;
4357 u32 newsid;
4358 u32 peersid;
4359
4360 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4361 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362 family = PF_INET;
4363
4364 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4365 if (err)
4366 return err;
4367 if (peersid == SECSID_NULL) {
4368 req->secid = sksec->sid;
4369 req->peer_secid = SECSID_NULL;
4370 } else {
4371 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4372 if (err)
4373 return err;
4374 req->secid = newsid;
4375 req->peer_secid = peersid;
4376 }
4377
4378 return selinux_netlbl_inet_conn_request(req, family);
4379}
4380
4381static void selinux_inet_csk_clone(struct sock *newsk,
4382 const struct request_sock *req)
4383{
4384 struct sk_security_struct *newsksec = newsk->sk_security;
4385
4386 newsksec->sid = req->secid;
4387 newsksec->peer_sid = req->peer_secid;
4388 /* NOTE: Ideally, we should also get the isec->sid for the
4389 new socket in sync, but we don't have the isec available yet.
4390 So we will wait until sock_graft to do it, by which
4391 time it will have been created and available. */
4392
4393 /* We don't need to take any sort of lock here as we are the only
4394 * thread with access to newsksec */
4395 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4396}
4397
4398static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4399{
4400 u16 family = sk->sk_family;
4401 struct sk_security_struct *sksec = sk->sk_security;
4402
4403 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4404 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4405 family = PF_INET;
4406
4407 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4408}
4409
4410static int selinux_secmark_relabel_packet(u32 sid)
4411{
4412 const struct task_security_struct *__tsec;
4413 u32 tsid;
4414
4415 __tsec = current_security();
4416 tsid = __tsec->sid;
4417
4418 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4419}
4420
4421static void selinux_secmark_refcount_inc(void)
4422{
4423 atomic_inc(&selinux_secmark_refcount);
4424}
4425
4426static void selinux_secmark_refcount_dec(void)
4427{
4428 atomic_dec(&selinux_secmark_refcount);
4429}
4430
4431static void selinux_req_classify_flow(const struct request_sock *req,
4432 struct flowi *fl)
4433{
4434 fl->flowi_secid = req->secid;
4435}
4436
4437static int selinux_tun_dev_create(void)
4438{
4439 u32 sid = current_sid();
4440
4441 /* we aren't taking into account the "sockcreate" SID since the socket
4442 * that is being created here is not a socket in the traditional sense,
4443 * instead it is a private sock, accessible only to the kernel, and
4444 * representing a wide range of network traffic spanning multiple
4445 * connections unlike traditional sockets - check the TUN driver to
4446 * get a better understanding of why this socket is special */
4447
4448 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4449 NULL);
4450}
4451
4452static void selinux_tun_dev_post_create(struct sock *sk)
4453{
4454 struct sk_security_struct *sksec = sk->sk_security;
4455
4456 /* we don't currently perform any NetLabel based labeling here and it
4457 * isn't clear that we would want to do so anyway; while we could apply
4458 * labeling without the support of the TUN user the resulting labeled
4459 * traffic from the other end of the connection would almost certainly
4460 * cause confusion to the TUN user that had no idea network labeling
4461 * protocols were being used */
4462
4463 /* see the comments in selinux_tun_dev_create() about why we don't use
4464 * the sockcreate SID here */
4465
4466 sksec->sid = current_sid();
4467 sksec->sclass = SECCLASS_TUN_SOCKET;
4468}
4469
4470static int selinux_tun_dev_attach(struct sock *sk)
4471{
4472 struct sk_security_struct *sksec = sk->sk_security;
4473 u32 sid = current_sid();
4474 int err;
4475
4476 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4477 TUN_SOCKET__RELABELFROM, NULL);
4478 if (err)
4479 return err;
4480 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4481 TUN_SOCKET__RELABELTO, NULL);
4482 if (err)
4483 return err;
4484
4485 sksec->sid = sid;
4486
4487 return 0;
4488}
4489
4490static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4491{
4492 int err = 0;
4493 u32 perm;
4494 struct nlmsghdr *nlh;
4495 struct sk_security_struct *sksec = sk->sk_security;
4496
4497 if (skb->len < NLMSG_SPACE(0)) {
4498 err = -EINVAL;
4499 goto out;
4500 }
4501 nlh = nlmsg_hdr(skb);
4502
4503 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4504 if (err) {
4505 if (err == -EINVAL) {
4506 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4507 "SELinux: unrecognized netlink message"
4508 " type=%hu for sclass=%hu\n",
4509 nlh->nlmsg_type, sksec->sclass);
4510 if (!selinux_enforcing || security_get_allow_unknown())
4511 err = 0;
4512 }
4513
4514 /* Ignore */
4515 if (err == -ENOENT)
4516 err = 0;
4517 goto out;
4518 }
4519
4520 err = sock_has_perm(current, sk, perm);
4521out:
4522 return err;
4523}
4524
4525#ifdef CONFIG_NETFILTER
4526
4527static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4528 u16 family)
4529{
4530 int err;
4531 char *addrp;
4532 u32 peer_sid;
4533 struct common_audit_data ad;
4534 struct lsm_network_audit net = {0,};
4535 u8 secmark_active;
4536 u8 netlbl_active;
4537 u8 peerlbl_active;
4538
4539 if (!selinux_policycap_netpeer)
4540 return NF_ACCEPT;
4541
4542 secmark_active = selinux_secmark_enabled();
4543 netlbl_active = netlbl_enabled();
4544 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4545 if (!secmark_active && !peerlbl_active)
4546 return NF_ACCEPT;
4547
4548 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4549 return NF_DROP;
4550
4551 ad.type = LSM_AUDIT_DATA_NET;
4552 ad.u.net = &net;
4553 ad.u.net->netif = ifindex;
4554 ad.u.net->family = family;
4555 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4556 return NF_DROP;
4557
4558 if (peerlbl_active) {
4559 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4560 peer_sid, &ad);
4561 if (err) {
4562 selinux_netlbl_err(skb, err, 1);
4563 return NF_DROP;
4564 }
4565 }
4566
4567 if (secmark_active)
4568 if (avc_has_perm(peer_sid, skb->secmark,
4569 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4570 return NF_DROP;
4571
4572 if (netlbl_active)
4573 /* we do this in the FORWARD path and not the POST_ROUTING
4574 * path because we want to make sure we apply the necessary
4575 * labeling before IPsec is applied so we can leverage AH
4576 * protection */
4577 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4578 return NF_DROP;
4579
4580 return NF_ACCEPT;
4581}
4582
4583static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4584 struct sk_buff *skb,
4585 const struct net_device *in,
4586 const struct net_device *out,
4587 int (*okfn)(struct sk_buff *))
4588{
4589 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4590}
4591
4592#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4593static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4594 struct sk_buff *skb,
4595 const struct net_device *in,
4596 const struct net_device *out,
4597 int (*okfn)(struct sk_buff *))
4598{
4599 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4600}
4601#endif /* IPV6 */
4602
4603static unsigned int selinux_ip_output(struct sk_buff *skb,
4604 u16 family)
4605{
4606 u32 sid;
4607
4608 if (!netlbl_enabled())
4609 return NF_ACCEPT;
4610
4611 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4612 * because we want to make sure we apply the necessary labeling
4613 * before IPsec is applied so we can leverage AH protection */
4614 if (skb->sk) {
4615 struct sk_security_struct *sksec = skb->sk->sk_security;
4616 sid = sksec->sid;
4617 } else
4618 sid = SECINITSID_KERNEL;
4619 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4620 return NF_DROP;
4621
4622 return NF_ACCEPT;
4623}
4624
4625static unsigned int selinux_ipv4_output(unsigned int hooknum,
4626 struct sk_buff *skb,
4627 const struct net_device *in,
4628 const struct net_device *out,
4629 int (*okfn)(struct sk_buff *))
4630{
4631 return selinux_ip_output(skb, PF_INET);
4632}
4633
4634static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4635 int ifindex,
4636 u16 family)
4637{
4638 struct sock *sk = skb->sk;
4639 struct sk_security_struct *sksec;
4640 struct common_audit_data ad;
4641 struct lsm_network_audit net = {0,};
4642 char *addrp;
4643 u8 proto;
4644
4645 if (sk == NULL)
4646 return NF_ACCEPT;
4647 sksec = sk->sk_security;
4648
4649 ad.type = LSM_AUDIT_DATA_NET;
4650 ad.u.net = &net;
4651 ad.u.net->netif = ifindex;
4652 ad.u.net->family = family;
4653 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4654 return NF_DROP;
4655
4656 if (selinux_secmark_enabled())
4657 if (avc_has_perm(sksec->sid, skb->secmark,
4658 SECCLASS_PACKET, PACKET__SEND, &ad))
4659 return NF_DROP_ERR(-ECONNREFUSED);
4660
4661 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4662 return NF_DROP_ERR(-ECONNREFUSED);
4663
4664 return NF_ACCEPT;
4665}
4666
4667static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4668 u16 family)
4669{
4670 u32 secmark_perm;
4671 u32 peer_sid;
4672 struct sock *sk;
4673 struct common_audit_data ad;
4674 struct lsm_network_audit net = {0,};
4675 char *addrp;
4676 u8 secmark_active;
4677 u8 peerlbl_active;
4678
4679 /* If any sort of compatibility mode is enabled then handoff processing
4680 * to the selinux_ip_postroute_compat() function to deal with the
4681 * special handling. We do this in an attempt to keep this function
4682 * as fast and as clean as possible. */
4683 if (!selinux_policycap_netpeer)
4684 return selinux_ip_postroute_compat(skb, ifindex, family);
4685#ifdef CONFIG_XFRM
4686 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4687 * packet transformation so allow the packet to pass without any checks
4688 * since we'll have another chance to perform access control checks
4689 * when the packet is on it's final way out.
4690 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4691 * is NULL, in this case go ahead and apply access control. */
4692 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4693 return NF_ACCEPT;
4694#endif
4695 secmark_active = selinux_secmark_enabled();
4696 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4697 if (!secmark_active && !peerlbl_active)
4698 return NF_ACCEPT;
4699
4700 /* if the packet is being forwarded then get the peer label from the
4701 * packet itself; otherwise check to see if it is from a local
4702 * application or the kernel, if from an application get the peer label
4703 * from the sending socket, otherwise use the kernel's sid */
4704 sk = skb->sk;
4705 if (sk == NULL) {
4706 if (skb->skb_iif) {
4707 secmark_perm = PACKET__FORWARD_OUT;
4708 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4709 return NF_DROP;
4710 } else {
4711 secmark_perm = PACKET__SEND;
4712 peer_sid = SECINITSID_KERNEL;
4713 }
4714 } else {
4715 struct sk_security_struct *sksec = sk->sk_security;
4716 peer_sid = sksec->sid;
4717 secmark_perm = PACKET__SEND;
4718 }
4719
4720 ad.type = LSM_AUDIT_DATA_NET;
4721 ad.u.net = &net;
4722 ad.u.net->netif = ifindex;
4723 ad.u.net->family = family;
4724 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4725 return NF_DROP;
4726
4727 if (secmark_active)
4728 if (avc_has_perm(peer_sid, skb->secmark,
4729 SECCLASS_PACKET, secmark_perm, &ad))
4730 return NF_DROP_ERR(-ECONNREFUSED);
4731
4732 if (peerlbl_active) {
4733 u32 if_sid;
4734 u32 node_sid;
4735
4736 if (sel_netif_sid(ifindex, &if_sid))
4737 return NF_DROP;
4738 if (avc_has_perm(peer_sid, if_sid,
4739 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4740 return NF_DROP_ERR(-ECONNREFUSED);
4741
4742 if (sel_netnode_sid(addrp, family, &node_sid))
4743 return NF_DROP;
4744 if (avc_has_perm(peer_sid, node_sid,
4745 SECCLASS_NODE, NODE__SENDTO, &ad))
4746 return NF_DROP_ERR(-ECONNREFUSED);
4747 }
4748
4749 return NF_ACCEPT;
4750}
4751
4752static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4753 struct sk_buff *skb,
4754 const struct net_device *in,
4755 const struct net_device *out,
4756 int (*okfn)(struct sk_buff *))
4757{
4758 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4759}
4760
4761#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4762static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4763 struct sk_buff *skb,
4764 const struct net_device *in,
4765 const struct net_device *out,
4766 int (*okfn)(struct sk_buff *))
4767{
4768 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4769}
4770#endif /* IPV6 */
4771
4772#endif /* CONFIG_NETFILTER */
4773
4774static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4775{
4776 int err;
4777
4778 err = cap_netlink_send(sk, skb);
4779 if (err)
4780 return err;
4781
4782 return selinux_nlmsg_perm(sk, skb);
4783}
4784
4785static int ipc_alloc_security(struct task_struct *task,
4786 struct kern_ipc_perm *perm,
4787 u16 sclass)
4788{
4789 struct ipc_security_struct *isec;
4790 u32 sid;
4791
4792 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4793 if (!isec)
4794 return -ENOMEM;
4795
4796 sid = task_sid(task);
4797 isec->sclass = sclass;
4798 isec->sid = sid;
4799 perm->security = isec;
4800
4801 return 0;
4802}
4803
4804static void ipc_free_security(struct kern_ipc_perm *perm)
4805{
4806 struct ipc_security_struct *isec = perm->security;
4807 perm->security = NULL;
4808 kfree(isec);
4809}
4810
4811static int msg_msg_alloc_security(struct msg_msg *msg)
4812{
4813 struct msg_security_struct *msec;
4814
4815 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4816 if (!msec)
4817 return -ENOMEM;
4818
4819 msec->sid = SECINITSID_UNLABELED;
4820 msg->security = msec;
4821
4822 return 0;
4823}
4824
4825static void msg_msg_free_security(struct msg_msg *msg)
4826{
4827 struct msg_security_struct *msec = msg->security;
4828
4829 msg->security = NULL;
4830 kfree(msec);
4831}
4832
4833static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4834 u32 perms)
4835{
4836 struct ipc_security_struct *isec;
4837 struct common_audit_data ad;
4838 u32 sid = current_sid();
4839
4840 isec = ipc_perms->security;
4841
4842 ad.type = LSM_AUDIT_DATA_IPC;
4843 ad.u.ipc_id = ipc_perms->key;
4844
4845 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4846}
4847
4848static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4849{
4850 return msg_msg_alloc_security(msg);
4851}
4852
4853static void selinux_msg_msg_free_security(struct msg_msg *msg)
4854{
4855 msg_msg_free_security(msg);
4856}
4857
4858/* message queue security operations */
4859static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4860{
4861 struct ipc_security_struct *isec;
4862 struct common_audit_data ad;
4863 u32 sid = current_sid();
4864 int rc;
4865
4866 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4867 if (rc)
4868 return rc;
4869
4870 isec = msq->q_perm.security;
4871
4872 ad.type = LSM_AUDIT_DATA_IPC;
4873 ad.u.ipc_id = msq->q_perm.key;
4874
4875 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4876 MSGQ__CREATE, &ad);
4877 if (rc) {
4878 ipc_free_security(&msq->q_perm);
4879 return rc;
4880 }
4881 return 0;
4882}
4883
4884static void selinux_msg_queue_free_security(struct msg_queue *msq)
4885{
4886 ipc_free_security(&msq->q_perm);
4887}
4888
4889static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4890{
4891 struct ipc_security_struct *isec;
4892 struct common_audit_data ad;
4893 u32 sid = current_sid();
4894
4895 isec = msq->q_perm.security;
4896
4897 ad.type = LSM_AUDIT_DATA_IPC;
4898 ad.u.ipc_id = msq->q_perm.key;
4899
4900 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4901 MSGQ__ASSOCIATE, &ad);
4902}
4903
4904static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4905{
4906 int err;
4907 int perms;
4908
4909 switch (cmd) {
4910 case IPC_INFO:
4911 case MSG_INFO:
4912 /* No specific object, just general system-wide information. */
4913 return task_has_system(current, SYSTEM__IPC_INFO);
4914 case IPC_STAT:
4915 case MSG_STAT:
4916 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4917 break;
4918 case IPC_SET:
4919 perms = MSGQ__SETATTR;
4920 break;
4921 case IPC_RMID:
4922 perms = MSGQ__DESTROY;
4923 break;
4924 default:
4925 return 0;
4926 }
4927
4928 err = ipc_has_perm(&msq->q_perm, perms);
4929 return err;
4930}
4931
4932static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4933{
4934 struct ipc_security_struct *isec;
4935 struct msg_security_struct *msec;
4936 struct common_audit_data ad;
4937 u32 sid = current_sid();
4938 int rc;
4939
4940 isec = msq->q_perm.security;
4941 msec = msg->security;
4942
4943 /*
4944 * First time through, need to assign label to the message
4945 */
4946 if (msec->sid == SECINITSID_UNLABELED) {
4947 /*
4948 * Compute new sid based on current process and
4949 * message queue this message will be stored in
4950 */
4951 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4952 NULL, &msec->sid);
4953 if (rc)
4954 return rc;
4955 }
4956
4957 ad.type = LSM_AUDIT_DATA_IPC;
4958 ad.u.ipc_id = msq->q_perm.key;
4959
4960 /* Can this process write to the queue? */
4961 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4962 MSGQ__WRITE, &ad);
4963 if (!rc)
4964 /* Can this process send the message */
4965 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4966 MSG__SEND, &ad);
4967 if (!rc)
4968 /* Can the message be put in the queue? */
4969 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4970 MSGQ__ENQUEUE, &ad);
4971
4972 return rc;
4973}
4974
4975static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4976 struct task_struct *target,
4977 long type, int mode)
4978{
4979 struct ipc_security_struct *isec;
4980 struct msg_security_struct *msec;
4981 struct common_audit_data ad;
4982 u32 sid = task_sid(target);
4983 int rc;
4984
4985 isec = msq->q_perm.security;
4986 msec = msg->security;
4987
4988 ad.type = LSM_AUDIT_DATA_IPC;
4989 ad.u.ipc_id = msq->q_perm.key;
4990
4991 rc = avc_has_perm(sid, isec->sid,
4992 SECCLASS_MSGQ, MSGQ__READ, &ad);
4993 if (!rc)
4994 rc = avc_has_perm(sid, msec->sid,
4995 SECCLASS_MSG, MSG__RECEIVE, &ad);
4996 return rc;
4997}
4998
4999/* Shared Memory security operations */
5000static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5001{
5002 struct ipc_security_struct *isec;
5003 struct common_audit_data ad;
5004 u32 sid = current_sid();
5005 int rc;
5006
5007 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5008 if (rc)
5009 return rc;
5010
5011 isec = shp->shm_perm.security;
5012
5013 ad.type = LSM_AUDIT_DATA_IPC;
5014 ad.u.ipc_id = shp->shm_perm.key;
5015
5016 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5017 SHM__CREATE, &ad);
5018 if (rc) {
5019 ipc_free_security(&shp->shm_perm);
5020 return rc;
5021 }
5022 return 0;
5023}
5024
5025static void selinux_shm_free_security(struct shmid_kernel *shp)
5026{
5027 ipc_free_security(&shp->shm_perm);
5028}
5029
5030static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5031{
5032 struct ipc_security_struct *isec;
5033 struct common_audit_data ad;
5034 u32 sid = current_sid();
5035
5036 isec = shp->shm_perm.security;
5037
5038 ad.type = LSM_AUDIT_DATA_IPC;
5039 ad.u.ipc_id = shp->shm_perm.key;
5040
5041 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5042 SHM__ASSOCIATE, &ad);
5043}
5044
5045/* Note, at this point, shp is locked down */
5046static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5047{
5048 int perms;
5049 int err;
5050
5051 switch (cmd) {
5052 case IPC_INFO:
5053 case SHM_INFO:
5054 /* No specific object, just general system-wide information. */
5055 return task_has_system(current, SYSTEM__IPC_INFO);
5056 case IPC_STAT:
5057 case SHM_STAT:
5058 perms = SHM__GETATTR | SHM__ASSOCIATE;
5059 break;
5060 case IPC_SET:
5061 perms = SHM__SETATTR;
5062 break;
5063 case SHM_LOCK:
5064 case SHM_UNLOCK:
5065 perms = SHM__LOCK;
5066 break;
5067 case IPC_RMID:
5068 perms = SHM__DESTROY;
5069 break;
5070 default:
5071 return 0;
5072 }
5073
5074 err = ipc_has_perm(&shp->shm_perm, perms);
5075 return err;
5076}
5077
5078static int selinux_shm_shmat(struct shmid_kernel *shp,
5079 char __user *shmaddr, int shmflg)
5080{
5081 u32 perms;
5082
5083 if (shmflg & SHM_RDONLY)
5084 perms = SHM__READ;
5085 else
5086 perms = SHM__READ | SHM__WRITE;
5087
5088 return ipc_has_perm(&shp->shm_perm, perms);
5089}
5090
5091/* Semaphore security operations */
5092static int selinux_sem_alloc_security(struct sem_array *sma)
5093{
5094 struct ipc_security_struct *isec;
5095 struct common_audit_data ad;
5096 u32 sid = current_sid();
5097 int rc;
5098
5099 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5100 if (rc)
5101 return rc;
5102
5103 isec = sma->sem_perm.security;
5104
5105 ad.type = LSM_AUDIT_DATA_IPC;
5106 ad.u.ipc_id = sma->sem_perm.key;
5107
5108 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5109 SEM__CREATE, &ad);
5110 if (rc) {
5111 ipc_free_security(&sma->sem_perm);
5112 return rc;
5113 }
5114 return 0;
5115}
5116
5117static void selinux_sem_free_security(struct sem_array *sma)
5118{
5119 ipc_free_security(&sma->sem_perm);
5120}
5121
5122static int selinux_sem_associate(struct sem_array *sma, int semflg)
5123{
5124 struct ipc_security_struct *isec;
5125 struct common_audit_data ad;
5126 u32 sid = current_sid();
5127
5128 isec = sma->sem_perm.security;
5129
5130 ad.type = LSM_AUDIT_DATA_IPC;
5131 ad.u.ipc_id = sma->sem_perm.key;
5132
5133 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5134 SEM__ASSOCIATE, &ad);
5135}
5136
5137/* Note, at this point, sma is locked down */
5138static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5139{
5140 int err;
5141 u32 perms;
5142
5143 switch (cmd) {
5144 case IPC_INFO:
5145 case SEM_INFO:
5146 /* No specific object, just general system-wide information. */
5147 return task_has_system(current, SYSTEM__IPC_INFO);
5148 case GETPID:
5149 case GETNCNT:
5150 case GETZCNT:
5151 perms = SEM__GETATTR;
5152 break;
5153 case GETVAL:
5154 case GETALL:
5155 perms = SEM__READ;
5156 break;
5157 case SETVAL:
5158 case SETALL:
5159 perms = SEM__WRITE;
5160 break;
5161 case IPC_RMID:
5162 perms = SEM__DESTROY;
5163 break;
5164 case IPC_SET:
5165 perms = SEM__SETATTR;
5166 break;
5167 case IPC_STAT:
5168 case SEM_STAT:
5169 perms = SEM__GETATTR | SEM__ASSOCIATE;
5170 break;
5171 default:
5172 return 0;
5173 }
5174
5175 err = ipc_has_perm(&sma->sem_perm, perms);
5176 return err;
5177}
5178
5179static int selinux_sem_semop(struct sem_array *sma,
5180 struct sembuf *sops, unsigned nsops, int alter)
5181{
5182 u32 perms;
5183
5184 if (alter)
5185 perms = SEM__READ | SEM__WRITE;
5186 else
5187 perms = SEM__READ;
5188
5189 return ipc_has_perm(&sma->sem_perm, perms);
5190}
5191
5192static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5193{
5194 u32 av = 0;
5195
5196 av = 0;
5197 if (flag & S_IRUGO)
5198 av |= IPC__UNIX_READ;
5199 if (flag & S_IWUGO)
5200 av |= IPC__UNIX_WRITE;
5201
5202 if (av == 0)
5203 return 0;
5204
5205 return ipc_has_perm(ipcp, av);
5206}
5207
5208static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5209{
5210 struct ipc_security_struct *isec = ipcp->security;
5211 *secid = isec->sid;
5212}
5213
5214static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5215{
5216 if (inode)
5217 inode_doinit_with_dentry(inode, dentry);
5218}
5219
5220static int selinux_getprocattr(struct task_struct *p,
5221 char *name, char **value)
5222{
5223 const struct task_security_struct *__tsec;
5224 u32 sid;
5225 int error;
5226 unsigned len;
5227
5228 if (current != p) {
5229 error = current_has_perm(p, PROCESS__GETATTR);
5230 if (error)
5231 return error;
5232 }
5233
5234 rcu_read_lock();
5235 __tsec = __task_cred(p)->security;
5236
5237 if (!strcmp(name, "current"))
5238 sid = __tsec->sid;
5239 else if (!strcmp(name, "prev"))
5240 sid = __tsec->osid;
5241 else if (!strcmp(name, "exec"))
5242 sid = __tsec->exec_sid;
5243 else if (!strcmp(name, "fscreate"))
5244 sid = __tsec->create_sid;
5245 else if (!strcmp(name, "keycreate"))
5246 sid = __tsec->keycreate_sid;
5247 else if (!strcmp(name, "sockcreate"))
5248 sid = __tsec->sockcreate_sid;
5249 else
5250 goto invalid;
5251 rcu_read_unlock();
5252
5253 if (!sid)
5254 return 0;
5255
5256 error = security_sid_to_context(sid, value, &len);
5257 if (error)
5258 return error;
5259 return len;
5260
5261invalid:
5262 rcu_read_unlock();
5263 return -EINVAL;
5264}
5265
5266static int selinux_setprocattr(struct task_struct *p,
5267 char *name, void *value, size_t size)
5268{
5269 struct task_security_struct *tsec;
5270 struct task_struct *tracer;
5271 struct cred *new;
5272 u32 sid = 0, ptsid;
5273 int error;
5274 char *str = value;
5275
5276 if (current != p) {
5277 /* SELinux only allows a process to change its own
5278 security attributes. */
5279 return -EACCES;
5280 }
5281
5282 /*
5283 * Basic control over ability to set these attributes at all.
5284 * current == p, but we'll pass them separately in case the
5285 * above restriction is ever removed.
5286 */
5287 if (!strcmp(name, "exec"))
5288 error = current_has_perm(p, PROCESS__SETEXEC);
5289 else if (!strcmp(name, "fscreate"))
5290 error = current_has_perm(p, PROCESS__SETFSCREATE);
5291 else if (!strcmp(name, "keycreate"))
5292 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5293 else if (!strcmp(name, "sockcreate"))
5294 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5295 else if (!strcmp(name, "current"))
5296 error = current_has_perm(p, PROCESS__SETCURRENT);
5297 else
5298 error = -EINVAL;
5299 if (error)
5300 return error;
5301
5302 /* Obtain a SID for the context, if one was specified. */
5303 if (size && str[1] && str[1] != '\n') {
5304 if (str[size-1] == '\n') {
5305 str[size-1] = 0;
5306 size--;
5307 }
5308 error = security_context_to_sid(value, size, &sid);
5309 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5310 if (!capable(CAP_MAC_ADMIN)) {
5311 struct audit_buffer *ab;
5312 size_t audit_size;
5313
5314 /* We strip a nul only if it is at the end, otherwise the
5315 * context contains a nul and we should audit that */
5316 if (str[size - 1] == '\0')
5317 audit_size = size - 1;
5318 else
5319 audit_size = size;
5320 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5321 audit_log_format(ab, "op=fscreate invalid_context=");
5322 audit_log_n_untrustedstring(ab, value, audit_size);
5323 audit_log_end(ab);
5324
5325 return error;
5326 }
5327 error = security_context_to_sid_force(value, size,
5328 &sid);
5329 }
5330 if (error)
5331 return error;
5332 }
5333
5334 new = prepare_creds();
5335 if (!new)
5336 return -ENOMEM;
5337
5338 /* Permission checking based on the specified context is
5339 performed during the actual operation (execve,
5340 open/mkdir/...), when we know the full context of the
5341 operation. See selinux_bprm_set_creds for the execve
5342 checks and may_create for the file creation checks. The
5343 operation will then fail if the context is not permitted. */
5344 tsec = new->security;
5345 if (!strcmp(name, "exec")) {
5346 tsec->exec_sid = sid;
5347 } else if (!strcmp(name, "fscreate")) {
5348 tsec->create_sid = sid;
5349 } else if (!strcmp(name, "keycreate")) {
5350 error = may_create_key(sid, p);
5351 if (error)
5352 goto abort_change;
5353 tsec->keycreate_sid = sid;
5354 } else if (!strcmp(name, "sockcreate")) {
5355 tsec->sockcreate_sid = sid;
5356 } else if (!strcmp(name, "current")) {
5357 error = -EINVAL;
5358 if (sid == 0)
5359 goto abort_change;
5360
5361 /* Only allow single threaded processes to change context */
5362 error = -EPERM;
5363 if (!current_is_single_threaded()) {
5364 error = security_bounded_transition(tsec->sid, sid);
5365 if (error)
5366 goto abort_change;
5367 }
5368
5369 /* Check permissions for the transition. */
5370 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5371 PROCESS__DYNTRANSITION, NULL);
5372 if (error)
5373 goto abort_change;
5374
5375 /* Check for ptracing, and update the task SID if ok.
5376 Otherwise, leave SID unchanged and fail. */
5377 ptsid = 0;
5378 task_lock(p);
5379 tracer = ptrace_parent(p);
5380 if (tracer)
5381 ptsid = task_sid(tracer);
5382 task_unlock(p);
5383
5384 if (tracer) {
5385 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5386 PROCESS__PTRACE, NULL);
5387 if (error)
5388 goto abort_change;
5389 }
5390
5391 tsec->sid = sid;
5392 } else {
5393 error = -EINVAL;
5394 goto abort_change;
5395 }
5396
5397 commit_creds(new);
5398 return size;
5399
5400abort_change:
5401 abort_creds(new);
5402 return error;
5403}
5404
5405static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5406{
5407 return security_sid_to_context(secid, secdata, seclen);
5408}
5409
5410static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5411{
5412 return security_context_to_sid(secdata, seclen, secid);
5413}
5414
5415static void selinux_release_secctx(char *secdata, u32 seclen)
5416{
5417 kfree(secdata);
5418}
5419
5420/*
5421 * called with inode->i_mutex locked
5422 */
5423static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5424{
5425 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5426}
5427
5428/*
5429 * called with inode->i_mutex locked
5430 */
5431static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5432{
5433 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5434}
5435
5436static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5437{
5438 int len = 0;
5439 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5440 ctx, true);
5441 if (len < 0)
5442 return len;
5443 *ctxlen = len;
5444 return 0;
5445}
5446#ifdef CONFIG_KEYS
5447
5448static int selinux_key_alloc(struct key *k, const struct cred *cred,
5449 unsigned long flags)
5450{
5451 const struct task_security_struct *tsec;
5452 struct key_security_struct *ksec;
5453
5454 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5455 if (!ksec)
5456 return -ENOMEM;
5457
5458 tsec = cred->security;
5459 if (tsec->keycreate_sid)
5460 ksec->sid = tsec->keycreate_sid;
5461 else
5462 ksec->sid = tsec->sid;
5463
5464 k->security = ksec;
5465 return 0;
5466}
5467
5468static void selinux_key_free(struct key *k)
5469{
5470 struct key_security_struct *ksec = k->security;
5471
5472 k->security = NULL;
5473 kfree(ksec);
5474}
5475
5476static int selinux_key_permission(key_ref_t key_ref,
5477 const struct cred *cred,
5478 key_perm_t perm)
5479{
5480 struct key *key;
5481 struct key_security_struct *ksec;
5482 u32 sid;
5483
5484 /* if no specific permissions are requested, we skip the
5485 permission check. No serious, additional covert channels
5486 appear to be created. */
5487 if (perm == 0)
5488 return 0;
5489
5490 sid = cred_sid(cred);
5491
5492 key = key_ref_to_ptr(key_ref);
5493 ksec = key->security;
5494
5495 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5496}
5497
5498static int selinux_key_getsecurity(struct key *key, char **_buffer)
5499{
5500 struct key_security_struct *ksec = key->security;
5501 char *context = NULL;
5502 unsigned len;
5503 int rc;
5504
5505 rc = security_sid_to_context(ksec->sid, &context, &len);
5506 if (!rc)
5507 rc = len;
5508 *_buffer = context;
5509 return rc;
5510}
5511
5512#endif
5513
5514static struct security_operations selinux_ops = {
5515 .name = "selinux",
5516
5517 .ptrace_access_check = selinux_ptrace_access_check,
5518 .ptrace_traceme = selinux_ptrace_traceme,
5519 .capget = selinux_capget,
5520 .capset = selinux_capset,
5521 .capable = selinux_capable,
5522 .quotactl = selinux_quotactl,
5523 .quota_on = selinux_quota_on,
5524 .syslog = selinux_syslog,
5525 .vm_enough_memory = selinux_vm_enough_memory,
5526
5527 .netlink_send = selinux_netlink_send,
5528
5529 .bprm_set_creds = selinux_bprm_set_creds,
5530 .bprm_committing_creds = selinux_bprm_committing_creds,
5531 .bprm_committed_creds = selinux_bprm_committed_creds,
5532 .bprm_secureexec = selinux_bprm_secureexec,
5533
5534 .sb_alloc_security = selinux_sb_alloc_security,
5535 .sb_free_security = selinux_sb_free_security,
5536 .sb_copy_data = selinux_sb_copy_data,
5537 .sb_remount = selinux_sb_remount,
5538 .sb_kern_mount = selinux_sb_kern_mount,
5539 .sb_show_options = selinux_sb_show_options,
5540 .sb_statfs = selinux_sb_statfs,
5541 .sb_mount = selinux_mount,
5542 .sb_umount = selinux_umount,
5543 .sb_set_mnt_opts = selinux_set_mnt_opts,
5544 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5545 .sb_parse_opts_str = selinux_parse_opts_str,
5546
5547
5548 .inode_alloc_security = selinux_inode_alloc_security,
5549 .inode_free_security = selinux_inode_free_security,
5550 .inode_init_security = selinux_inode_init_security,
5551 .inode_create = selinux_inode_create,
5552 .inode_link = selinux_inode_link,
5553 .inode_unlink = selinux_inode_unlink,
5554 .inode_symlink = selinux_inode_symlink,
5555 .inode_mkdir = selinux_inode_mkdir,
5556 .inode_rmdir = selinux_inode_rmdir,
5557 .inode_mknod = selinux_inode_mknod,
5558 .inode_rename = selinux_inode_rename,
5559 .inode_readlink = selinux_inode_readlink,
5560 .inode_follow_link = selinux_inode_follow_link,
5561 .inode_permission = selinux_inode_permission,
5562 .inode_setattr = selinux_inode_setattr,
5563 .inode_getattr = selinux_inode_getattr,
5564 .inode_setxattr = selinux_inode_setxattr,
5565 .inode_post_setxattr = selinux_inode_post_setxattr,
5566 .inode_getxattr = selinux_inode_getxattr,
5567 .inode_listxattr = selinux_inode_listxattr,
5568 .inode_removexattr = selinux_inode_removexattr,
5569 .inode_getsecurity = selinux_inode_getsecurity,
5570 .inode_setsecurity = selinux_inode_setsecurity,
5571 .inode_listsecurity = selinux_inode_listsecurity,
5572 .inode_getsecid = selinux_inode_getsecid,
5573
5574 .file_permission = selinux_file_permission,
5575 .file_alloc_security = selinux_file_alloc_security,
5576 .file_free_security = selinux_file_free_security,
5577 .file_ioctl = selinux_file_ioctl,
5578 .mmap_file = selinux_mmap_file,
5579 .mmap_addr = selinux_mmap_addr,
5580 .file_mprotect = selinux_file_mprotect,
5581 .file_lock = selinux_file_lock,
5582 .file_fcntl = selinux_file_fcntl,
5583 .file_set_fowner = selinux_file_set_fowner,
5584 .file_send_sigiotask = selinux_file_send_sigiotask,
5585 .file_receive = selinux_file_receive,
5586
5587 .file_open = selinux_file_open,
5588
5589 .task_create = selinux_task_create,
5590 .cred_alloc_blank = selinux_cred_alloc_blank,
5591 .cred_free = selinux_cred_free,
5592 .cred_prepare = selinux_cred_prepare,
5593 .cred_transfer = selinux_cred_transfer,
5594 .kernel_act_as = selinux_kernel_act_as,
5595 .kernel_create_files_as = selinux_kernel_create_files_as,
5596 .kernel_module_request = selinux_kernel_module_request,
5597 .task_setpgid = selinux_task_setpgid,
5598 .task_getpgid = selinux_task_getpgid,
5599 .task_getsid = selinux_task_getsid,
5600 .task_getsecid = selinux_task_getsecid,
5601 .task_setnice = selinux_task_setnice,
5602 .task_setioprio = selinux_task_setioprio,
5603 .task_getioprio = selinux_task_getioprio,
5604 .task_setrlimit = selinux_task_setrlimit,
5605 .task_setscheduler = selinux_task_setscheduler,
5606 .task_getscheduler = selinux_task_getscheduler,
5607 .task_movememory = selinux_task_movememory,
5608 .task_kill = selinux_task_kill,
5609 .task_wait = selinux_task_wait,
5610 .task_to_inode = selinux_task_to_inode,
5611
5612 .ipc_permission = selinux_ipc_permission,
5613 .ipc_getsecid = selinux_ipc_getsecid,
5614
5615 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5616 .msg_msg_free_security = selinux_msg_msg_free_security,
5617
5618 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5619 .msg_queue_free_security = selinux_msg_queue_free_security,
5620 .msg_queue_associate = selinux_msg_queue_associate,
5621 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5622 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5623 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5624
5625 .shm_alloc_security = selinux_shm_alloc_security,
5626 .shm_free_security = selinux_shm_free_security,
5627 .shm_associate = selinux_shm_associate,
5628 .shm_shmctl = selinux_shm_shmctl,
5629 .shm_shmat = selinux_shm_shmat,
5630
5631 .sem_alloc_security = selinux_sem_alloc_security,
5632 .sem_free_security = selinux_sem_free_security,
5633 .sem_associate = selinux_sem_associate,
5634 .sem_semctl = selinux_sem_semctl,
5635 .sem_semop = selinux_sem_semop,
5636
5637 .d_instantiate = selinux_d_instantiate,
5638
5639 .getprocattr = selinux_getprocattr,
5640 .setprocattr = selinux_setprocattr,
5641
5642 .secid_to_secctx = selinux_secid_to_secctx,
5643 .secctx_to_secid = selinux_secctx_to_secid,
5644 .release_secctx = selinux_release_secctx,
5645 .inode_notifysecctx = selinux_inode_notifysecctx,
5646 .inode_setsecctx = selinux_inode_setsecctx,
5647 .inode_getsecctx = selinux_inode_getsecctx,
5648
5649 .unix_stream_connect = selinux_socket_unix_stream_connect,
5650 .unix_may_send = selinux_socket_unix_may_send,
5651
5652 .socket_create = selinux_socket_create,
5653 .socket_post_create = selinux_socket_post_create,
5654 .socket_bind = selinux_socket_bind,
5655 .socket_connect = selinux_socket_connect,
5656 .socket_listen = selinux_socket_listen,
5657 .socket_accept = selinux_socket_accept,
5658 .socket_sendmsg = selinux_socket_sendmsg,
5659 .socket_recvmsg = selinux_socket_recvmsg,
5660 .socket_getsockname = selinux_socket_getsockname,
5661 .socket_getpeername = selinux_socket_getpeername,
5662 .socket_getsockopt = selinux_socket_getsockopt,
5663 .socket_setsockopt = selinux_socket_setsockopt,
5664 .socket_shutdown = selinux_socket_shutdown,
5665 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5666 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5667 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5668 .sk_alloc_security = selinux_sk_alloc_security,
5669 .sk_free_security = selinux_sk_free_security,
5670 .sk_clone_security = selinux_sk_clone_security,
5671 .sk_getsecid = selinux_sk_getsecid,
5672 .sock_graft = selinux_sock_graft,
5673 .inet_conn_request = selinux_inet_conn_request,
5674 .inet_csk_clone = selinux_inet_csk_clone,
5675 .inet_conn_established = selinux_inet_conn_established,
5676 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5677 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5678 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5679 .req_classify_flow = selinux_req_classify_flow,
5680 .tun_dev_create = selinux_tun_dev_create,
5681 .tun_dev_post_create = selinux_tun_dev_post_create,
5682 .tun_dev_attach = selinux_tun_dev_attach,
5683
5684#ifdef CONFIG_SECURITY_NETWORK_XFRM
5685 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5686 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5687 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5688 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5689 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5690 .xfrm_state_free_security = selinux_xfrm_state_free,
5691 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5692 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5693 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5694 .xfrm_decode_session = selinux_xfrm_decode_session,
5695#endif
5696
5697#ifdef CONFIG_KEYS
5698 .key_alloc = selinux_key_alloc,
5699 .key_free = selinux_key_free,
5700 .key_permission = selinux_key_permission,
5701 .key_getsecurity = selinux_key_getsecurity,
5702#endif
5703
5704#ifdef CONFIG_AUDIT
5705 .audit_rule_init = selinux_audit_rule_init,
5706 .audit_rule_known = selinux_audit_rule_known,
5707 .audit_rule_match = selinux_audit_rule_match,
5708 .audit_rule_free = selinux_audit_rule_free,
5709#endif
5710};
5711
5712static __init int selinux_init(void)
5713{
5714 if (!security_module_enable(&selinux_ops)) {
5715 selinux_enabled = 0;
5716 return 0;
5717 }
5718
5719 if (!selinux_enabled) {
5720 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5721 return 0;
5722 }
5723
5724 printk(KERN_INFO "SELinux: Initializing.\n");
5725
5726 /* Set the security state for the initial task. */
5727 cred_init_security();
5728
5729 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5730
5731 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5732 sizeof(struct inode_security_struct),
5733 0, SLAB_PANIC, NULL);
5734 avc_init();
5735
5736 if (register_security(&selinux_ops))
5737 panic("SELinux: Unable to register with kernel.\n");
5738
5739 if (selinux_enforcing)
5740 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5741 else
5742 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5743
5744 return 0;
5745}
5746
5747static void delayed_superblock_init(struct super_block *sb, void *unused)
5748{
5749 superblock_doinit(sb, NULL);
5750}
5751
5752void selinux_complete_init(void)
5753{
5754 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5755
5756 /* Set up any superblocks initialized prior to the policy load. */
5757 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5758 iterate_supers(delayed_superblock_init, NULL);
5759}
5760
5761/* SELinux requires early initialization in order to label
5762 all processes and objects when they are created. */
5763security_initcall(selinux_init);
5764
5765#if defined(CONFIG_NETFILTER)
5766
5767static struct nf_hook_ops selinux_ipv4_ops[] = {
5768 {
5769 .hook = selinux_ipv4_postroute,
5770 .owner = THIS_MODULE,
5771 .pf = PF_INET,
5772 .hooknum = NF_INET_POST_ROUTING,
5773 .priority = NF_IP_PRI_SELINUX_LAST,
5774 },
5775 {
5776 .hook = selinux_ipv4_forward,
5777 .owner = THIS_MODULE,
5778 .pf = PF_INET,
5779 .hooknum = NF_INET_FORWARD,
5780 .priority = NF_IP_PRI_SELINUX_FIRST,
5781 },
5782 {
5783 .hook = selinux_ipv4_output,
5784 .owner = THIS_MODULE,
5785 .pf = PF_INET,
5786 .hooknum = NF_INET_LOCAL_OUT,
5787 .priority = NF_IP_PRI_SELINUX_FIRST,
5788 }
5789};
5790
5791#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5792
5793static struct nf_hook_ops selinux_ipv6_ops[] = {
5794 {
5795 .hook = selinux_ipv6_postroute,
5796 .owner = THIS_MODULE,
5797 .pf = PF_INET6,
5798 .hooknum = NF_INET_POST_ROUTING,
5799 .priority = NF_IP6_PRI_SELINUX_LAST,
5800 },
5801 {
5802 .hook = selinux_ipv6_forward,
5803 .owner = THIS_MODULE,
5804 .pf = PF_INET6,
5805 .hooknum = NF_INET_FORWARD,
5806 .priority = NF_IP6_PRI_SELINUX_FIRST,
5807 }
5808};
5809
5810#endif /* IPV6 */
5811
5812static int __init selinux_nf_ip_init(void)
5813{
5814 int err = 0;
5815
5816 if (!selinux_enabled)
5817 goto out;
5818
5819 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5820
5821 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5822 if (err)
5823 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5824
5825#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5826 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5827 if (err)
5828 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5829#endif /* IPV6 */
5830
5831out:
5832 return err;
5833}
5834
5835__initcall(selinux_nf_ip_init);
5836
5837#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5838static void selinux_nf_ip_exit(void)
5839{
5840 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5841
5842 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5843#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5844 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5845#endif /* IPV6 */
5846}
5847#endif
5848
5849#else /* CONFIG_NETFILTER */
5850
5851#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5852#define selinux_nf_ip_exit()
5853#endif
5854
5855#endif /* CONFIG_NETFILTER */
5856
5857#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5858static int selinux_disabled;
5859
5860int selinux_disable(void)
5861{
5862 if (ss_initialized) {
5863 /* Not permitted after initial policy load. */
5864 return -EINVAL;
5865 }
5866
5867 if (selinux_disabled) {
5868 /* Only do this once. */
5869 return -EINVAL;
5870 }
5871
5872 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5873
5874 selinux_disabled = 1;
5875 selinux_enabled = 0;
5876
5877 reset_security_ops();
5878
5879 /* Try to destroy the avc node cache */
5880 avc_disable();
5881
5882 /* Unregister netfilter hooks. */
5883 selinux_nf_ip_exit();
5884
5885 /* Unregister selinuxfs. */
5886 exit_sel_fs();
5887
5888 return 0;
5889}
5890#endif