Loading...
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/lsm_hooks.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55#include <net/inet_connection_sock.h>
56#include <net/net_namespace.h>
57#include <net/netlabel.h>
58#include <linux/uaccess.h>
59#include <asm/ioctls.h>
60#include <linux/atomic.h>
61#include <linux/bitops.h>
62#include <linux/interrupt.h>
63#include <linux/netdevice.h> /* for network interface checks */
64#include <net/netlink.h>
65#include <linux/tcp.h>
66#include <linux/udp.h>
67#include <linux/dccp.h>
68#include <linux/quota.h>
69#include <linux/un.h> /* for Unix socket types */
70#include <net/af_unix.h> /* for Unix socket types */
71#include <linux/parser.h>
72#include <linux/nfs_mount.h>
73#include <net/ipv6.h>
74#include <linux/hugetlb.h>
75#include <linux/personality.h>
76#include <linux/audit.h>
77#include <linux/string.h>
78#include <linux/selinux.h>
79#include <linux/mutex.h>
80#include <linux/posix-timers.h>
81#include <linux/syslog.h>
82#include <linux/user_namespace.h>
83#include <linux/export.h>
84#include <linux/msg.h>
85#include <linux/shm.h>
86
87#include "avc.h"
88#include "objsec.h"
89#include "netif.h"
90#include "netnode.h"
91#include "netport.h"
92#include "xfrm.h"
93#include "netlabel.h"
94#include "audit.h"
95#include "avc_ss.h"
96
97/* SECMARK reference count */
98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101int selinux_enforcing;
102
103static int __init enforcing_setup(char *str)
104{
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109}
110__setup("enforcing=", enforcing_setup);
111#endif
112
113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116static int __init selinux_enabled_setup(char *str)
117{
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122}
123__setup("selinux=", selinux_enabled_setup);
124#else
125int selinux_enabled = 1;
126#endif
127
128static struct kmem_cache *sel_inode_cache;
129static struct kmem_cache *file_security_cache;
130
131/**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled. If the always_check_network
139 * policy capability is enabled, SECMARK is always considered enabled.
140 *
141 */
142static int selinux_secmark_enabled(void)
143{
144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
145}
146
147/**
148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
149 *
150 * Description:
151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
152 * (1) if any are enabled or false (0) if neither are enabled. If the
153 * always_check_network policy capability is enabled, peer labeling
154 * is always considered enabled.
155 *
156 */
157static int selinux_peerlbl_enabled(void)
158{
159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
160}
161
162static int selinux_netcache_avc_callback(u32 event)
163{
164 if (event == AVC_CALLBACK_RESET) {
165 sel_netif_flush();
166 sel_netnode_flush();
167 sel_netport_flush();
168 synchronize_net();
169 }
170 return 0;
171}
172
173/*
174 * initialise the security for the init task
175 */
176static void cred_init_security(void)
177{
178 struct cred *cred = (struct cred *) current->real_cred;
179 struct task_security_struct *tsec;
180
181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
182 if (!tsec)
183 panic("SELinux: Failed to initialize initial task.\n");
184
185 tsec->osid = tsec->sid = SECINITSID_KERNEL;
186 cred->security = tsec;
187}
188
189/*
190 * get the security ID of a set of credentials
191 */
192static inline u32 cred_sid(const struct cred *cred)
193{
194 const struct task_security_struct *tsec;
195
196 tsec = cred->security;
197 return tsec->sid;
198}
199
200/*
201 * get the objective security ID of a task
202 */
203static inline u32 task_sid(const struct task_struct *task)
204{
205 u32 sid;
206
207 rcu_read_lock();
208 sid = cred_sid(__task_cred(task));
209 rcu_read_unlock();
210 return sid;
211}
212
213/*
214 * get the subjective security ID of the current task
215 */
216static inline u32 current_sid(void)
217{
218 const struct task_security_struct *tsec = current_security();
219
220 return tsec->sid;
221}
222
223/* Allocate and free functions for each kind of security blob. */
224
225static int inode_alloc_security(struct inode *inode)
226{
227 struct inode_security_struct *isec;
228 u32 sid = current_sid();
229
230 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
231 if (!isec)
232 return -ENOMEM;
233
234 mutex_init(&isec->lock);
235 INIT_LIST_HEAD(&isec->list);
236 isec->inode = inode;
237 isec->sid = SECINITSID_UNLABELED;
238 isec->sclass = SECCLASS_FILE;
239 isec->task_sid = sid;
240 inode->i_security = isec;
241
242 return 0;
243}
244
245static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
246
247/*
248 * Try reloading inode security labels that have been marked as invalid. The
249 * @may_sleep parameter indicates when sleeping and thus reloading labels is
250 * allowed; when set to false, returns ERR_PTR(-ECHILD) when the label is
251 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
252 * when no dentry is available, set it to NULL instead.
253 */
254static int __inode_security_revalidate(struct inode *inode,
255 struct dentry *opt_dentry,
256 bool may_sleep)
257{
258 struct inode_security_struct *isec = inode->i_security;
259
260 might_sleep_if(may_sleep);
261
262 if (isec->initialized == LABEL_INVALID) {
263 if (!may_sleep)
264 return -ECHILD;
265
266 /*
267 * Try reloading the inode security label. This will fail if
268 * @opt_dentry is NULL and no dentry for this inode can be
269 * found; in that case, continue using the old label.
270 */
271 inode_doinit_with_dentry(inode, opt_dentry);
272 }
273 return 0;
274}
275
276static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
277{
278 return inode->i_security;
279}
280
281static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
282{
283 int error;
284
285 error = __inode_security_revalidate(inode, NULL, !rcu);
286 if (error)
287 return ERR_PTR(error);
288 return inode->i_security;
289}
290
291/*
292 * Get the security label of an inode.
293 */
294static struct inode_security_struct *inode_security(struct inode *inode)
295{
296 __inode_security_revalidate(inode, NULL, true);
297 return inode->i_security;
298}
299
300/*
301 * Get the security label of a dentry's backing inode.
302 */
303static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
304{
305 struct inode *inode = d_backing_inode(dentry);
306
307 __inode_security_revalidate(inode, dentry, true);
308 return inode->i_security;
309}
310
311static void inode_free_rcu(struct rcu_head *head)
312{
313 struct inode_security_struct *isec;
314
315 isec = container_of(head, struct inode_security_struct, rcu);
316 kmem_cache_free(sel_inode_cache, isec);
317}
318
319static void inode_free_security(struct inode *inode)
320{
321 struct inode_security_struct *isec = inode->i_security;
322 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
323
324 /*
325 * As not all inode security structures are in a list, we check for
326 * empty list outside of the lock to make sure that we won't waste
327 * time taking a lock doing nothing.
328 *
329 * The list_del_init() function can be safely called more than once.
330 * It should not be possible for this function to be called with
331 * concurrent list_add(), but for better safety against future changes
332 * in the code, we use list_empty_careful() here.
333 */
334 if (!list_empty_careful(&isec->list)) {
335 spin_lock(&sbsec->isec_lock);
336 list_del_init(&isec->list);
337 spin_unlock(&sbsec->isec_lock);
338 }
339
340 /*
341 * The inode may still be referenced in a path walk and
342 * a call to selinux_inode_permission() can be made
343 * after inode_free_security() is called. Ideally, the VFS
344 * wouldn't do this, but fixing that is a much harder
345 * job. For now, simply free the i_security via RCU, and
346 * leave the current inode->i_security pointer intact.
347 * The inode will be freed after the RCU grace period too.
348 */
349 call_rcu(&isec->rcu, inode_free_rcu);
350}
351
352static int file_alloc_security(struct file *file)
353{
354 struct file_security_struct *fsec;
355 u32 sid = current_sid();
356
357 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
358 if (!fsec)
359 return -ENOMEM;
360
361 fsec->sid = sid;
362 fsec->fown_sid = sid;
363 file->f_security = fsec;
364
365 return 0;
366}
367
368static void file_free_security(struct file *file)
369{
370 struct file_security_struct *fsec = file->f_security;
371 file->f_security = NULL;
372 kmem_cache_free(file_security_cache, fsec);
373}
374
375static int superblock_alloc_security(struct super_block *sb)
376{
377 struct superblock_security_struct *sbsec;
378
379 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
380 if (!sbsec)
381 return -ENOMEM;
382
383 mutex_init(&sbsec->lock);
384 INIT_LIST_HEAD(&sbsec->isec_head);
385 spin_lock_init(&sbsec->isec_lock);
386 sbsec->sb = sb;
387 sbsec->sid = SECINITSID_UNLABELED;
388 sbsec->def_sid = SECINITSID_FILE;
389 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
390 sb->s_security = sbsec;
391
392 return 0;
393}
394
395static void superblock_free_security(struct super_block *sb)
396{
397 struct superblock_security_struct *sbsec = sb->s_security;
398 sb->s_security = NULL;
399 kfree(sbsec);
400}
401
402/* The file system's label must be initialized prior to use. */
403
404static const char *labeling_behaviors[7] = {
405 "uses xattr",
406 "uses transition SIDs",
407 "uses task SIDs",
408 "uses genfs_contexts",
409 "not configured for labeling",
410 "uses mountpoint labeling",
411 "uses native labeling",
412};
413
414static inline int inode_doinit(struct inode *inode)
415{
416 return inode_doinit_with_dentry(inode, NULL);
417}
418
419enum {
420 Opt_error = -1,
421 Opt_context = 1,
422 Opt_fscontext = 2,
423 Opt_defcontext = 3,
424 Opt_rootcontext = 4,
425 Opt_labelsupport = 5,
426 Opt_nextmntopt = 6,
427};
428
429#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
430
431static const match_table_t tokens = {
432 {Opt_context, CONTEXT_STR "%s"},
433 {Opt_fscontext, FSCONTEXT_STR "%s"},
434 {Opt_defcontext, DEFCONTEXT_STR "%s"},
435 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
436 {Opt_labelsupport, LABELSUPP_STR},
437 {Opt_error, NULL},
438};
439
440#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
441
442static int may_context_mount_sb_relabel(u32 sid,
443 struct superblock_security_struct *sbsec,
444 const struct cred *cred)
445{
446 const struct task_security_struct *tsec = cred->security;
447 int rc;
448
449 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
450 FILESYSTEM__RELABELFROM, NULL);
451 if (rc)
452 return rc;
453
454 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
455 FILESYSTEM__RELABELTO, NULL);
456 return rc;
457}
458
459static int may_context_mount_inode_relabel(u32 sid,
460 struct superblock_security_struct *sbsec,
461 const struct cred *cred)
462{
463 const struct task_security_struct *tsec = cred->security;
464 int rc;
465 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
466 FILESYSTEM__RELABELFROM, NULL);
467 if (rc)
468 return rc;
469
470 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
471 FILESYSTEM__ASSOCIATE, NULL);
472 return rc;
473}
474
475static int selinux_is_sblabel_mnt(struct super_block *sb)
476{
477 struct superblock_security_struct *sbsec = sb->s_security;
478
479 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
480 sbsec->behavior == SECURITY_FS_USE_TRANS ||
481 sbsec->behavior == SECURITY_FS_USE_TASK ||
482 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
483 /* Special handling. Genfs but also in-core setxattr handler */
484 !strcmp(sb->s_type->name, "sysfs") ||
485 !strcmp(sb->s_type->name, "pstore") ||
486 !strcmp(sb->s_type->name, "debugfs") ||
487 !strcmp(sb->s_type->name, "rootfs");
488}
489
490static int sb_finish_set_opts(struct super_block *sb)
491{
492 struct superblock_security_struct *sbsec = sb->s_security;
493 struct dentry *root = sb->s_root;
494 struct inode *root_inode = d_backing_inode(root);
495 int rc = 0;
496
497 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
498 /* Make sure that the xattr handler exists and that no
499 error other than -ENODATA is returned by getxattr on
500 the root directory. -ENODATA is ok, as this may be
501 the first boot of the SELinux kernel before we have
502 assigned xattr values to the filesystem. */
503 if (!root_inode->i_op->getxattr) {
504 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
505 "xattr support\n", sb->s_id, sb->s_type->name);
506 rc = -EOPNOTSUPP;
507 goto out;
508 }
509 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
510 if (rc < 0 && rc != -ENODATA) {
511 if (rc == -EOPNOTSUPP)
512 printk(KERN_WARNING "SELinux: (dev %s, type "
513 "%s) has no security xattr handler\n",
514 sb->s_id, sb->s_type->name);
515 else
516 printk(KERN_WARNING "SELinux: (dev %s, type "
517 "%s) getxattr errno %d\n", sb->s_id,
518 sb->s_type->name, -rc);
519 goto out;
520 }
521 }
522
523 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
524 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
525 sb->s_id, sb->s_type->name);
526
527 sbsec->flags |= SE_SBINITIALIZED;
528 if (selinux_is_sblabel_mnt(sb))
529 sbsec->flags |= SBLABEL_MNT;
530
531 /* Initialize the root inode. */
532 rc = inode_doinit_with_dentry(root_inode, root);
533
534 /* Initialize any other inodes associated with the superblock, e.g.
535 inodes created prior to initial policy load or inodes created
536 during get_sb by a pseudo filesystem that directly
537 populates itself. */
538 spin_lock(&sbsec->isec_lock);
539next_inode:
540 if (!list_empty(&sbsec->isec_head)) {
541 struct inode_security_struct *isec =
542 list_entry(sbsec->isec_head.next,
543 struct inode_security_struct, list);
544 struct inode *inode = isec->inode;
545 list_del_init(&isec->list);
546 spin_unlock(&sbsec->isec_lock);
547 inode = igrab(inode);
548 if (inode) {
549 if (!IS_PRIVATE(inode))
550 inode_doinit(inode);
551 iput(inode);
552 }
553 spin_lock(&sbsec->isec_lock);
554 goto next_inode;
555 }
556 spin_unlock(&sbsec->isec_lock);
557out:
558 return rc;
559}
560
561/*
562 * This function should allow an FS to ask what it's mount security
563 * options were so it can use those later for submounts, displaying
564 * mount options, or whatever.
565 */
566static int selinux_get_mnt_opts(const struct super_block *sb,
567 struct security_mnt_opts *opts)
568{
569 int rc = 0, i;
570 struct superblock_security_struct *sbsec = sb->s_security;
571 char *context = NULL;
572 u32 len;
573 char tmp;
574
575 security_init_mnt_opts(opts);
576
577 if (!(sbsec->flags & SE_SBINITIALIZED))
578 return -EINVAL;
579
580 if (!ss_initialized)
581 return -EINVAL;
582
583 /* make sure we always check enough bits to cover the mask */
584 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
585
586 tmp = sbsec->flags & SE_MNTMASK;
587 /* count the number of mount options for this sb */
588 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
589 if (tmp & 0x01)
590 opts->num_mnt_opts++;
591 tmp >>= 1;
592 }
593 /* Check if the Label support flag is set */
594 if (sbsec->flags & SBLABEL_MNT)
595 opts->num_mnt_opts++;
596
597 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
598 if (!opts->mnt_opts) {
599 rc = -ENOMEM;
600 goto out_free;
601 }
602
603 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
604 if (!opts->mnt_opts_flags) {
605 rc = -ENOMEM;
606 goto out_free;
607 }
608
609 i = 0;
610 if (sbsec->flags & FSCONTEXT_MNT) {
611 rc = security_sid_to_context(sbsec->sid, &context, &len);
612 if (rc)
613 goto out_free;
614 opts->mnt_opts[i] = context;
615 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
616 }
617 if (sbsec->flags & CONTEXT_MNT) {
618 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
619 if (rc)
620 goto out_free;
621 opts->mnt_opts[i] = context;
622 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
623 }
624 if (sbsec->flags & DEFCONTEXT_MNT) {
625 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
626 if (rc)
627 goto out_free;
628 opts->mnt_opts[i] = context;
629 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
630 }
631 if (sbsec->flags & ROOTCONTEXT_MNT) {
632 struct dentry *root = sbsec->sb->s_root;
633 struct inode_security_struct *isec = backing_inode_security(root);
634
635 rc = security_sid_to_context(isec->sid, &context, &len);
636 if (rc)
637 goto out_free;
638 opts->mnt_opts[i] = context;
639 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
640 }
641 if (sbsec->flags & SBLABEL_MNT) {
642 opts->mnt_opts[i] = NULL;
643 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
644 }
645
646 BUG_ON(i != opts->num_mnt_opts);
647
648 return 0;
649
650out_free:
651 security_free_mnt_opts(opts);
652 return rc;
653}
654
655static int bad_option(struct superblock_security_struct *sbsec, char flag,
656 u32 old_sid, u32 new_sid)
657{
658 char mnt_flags = sbsec->flags & SE_MNTMASK;
659
660 /* check if the old mount command had the same options */
661 if (sbsec->flags & SE_SBINITIALIZED)
662 if (!(sbsec->flags & flag) ||
663 (old_sid != new_sid))
664 return 1;
665
666 /* check if we were passed the same options twice,
667 * aka someone passed context=a,context=b
668 */
669 if (!(sbsec->flags & SE_SBINITIALIZED))
670 if (mnt_flags & flag)
671 return 1;
672 return 0;
673}
674
675/*
676 * Allow filesystems with binary mount data to explicitly set mount point
677 * labeling information.
678 */
679static int selinux_set_mnt_opts(struct super_block *sb,
680 struct security_mnt_opts *opts,
681 unsigned long kern_flags,
682 unsigned long *set_kern_flags)
683{
684 const struct cred *cred = current_cred();
685 int rc = 0, i;
686 struct superblock_security_struct *sbsec = sb->s_security;
687 const char *name = sb->s_type->name;
688 struct dentry *root = sbsec->sb->s_root;
689 struct inode_security_struct *root_isec = backing_inode_security(root);
690 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
691 u32 defcontext_sid = 0;
692 char **mount_options = opts->mnt_opts;
693 int *flags = opts->mnt_opts_flags;
694 int num_opts = opts->num_mnt_opts;
695
696 mutex_lock(&sbsec->lock);
697
698 if (!ss_initialized) {
699 if (!num_opts) {
700 /* Defer initialization until selinux_complete_init,
701 after the initial policy is loaded and the security
702 server is ready to handle calls. */
703 goto out;
704 }
705 rc = -EINVAL;
706 printk(KERN_WARNING "SELinux: Unable to set superblock options "
707 "before the security server is initialized\n");
708 goto out;
709 }
710 if (kern_flags && !set_kern_flags) {
711 /* Specifying internal flags without providing a place to
712 * place the results is not allowed */
713 rc = -EINVAL;
714 goto out;
715 }
716
717 /*
718 * Binary mount data FS will come through this function twice. Once
719 * from an explicit call and once from the generic calls from the vfs.
720 * Since the generic VFS calls will not contain any security mount data
721 * we need to skip the double mount verification.
722 *
723 * This does open a hole in which we will not notice if the first
724 * mount using this sb set explict options and a second mount using
725 * this sb does not set any security options. (The first options
726 * will be used for both mounts)
727 */
728 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
729 && (num_opts == 0))
730 goto out;
731
732 /*
733 * parse the mount options, check if they are valid sids.
734 * also check if someone is trying to mount the same sb more
735 * than once with different security options.
736 */
737 for (i = 0; i < num_opts; i++) {
738 u32 sid;
739
740 if (flags[i] == SBLABEL_MNT)
741 continue;
742 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
743 if (rc) {
744 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
745 "(%s) failed for (dev %s, type %s) errno=%d\n",
746 mount_options[i], sb->s_id, name, rc);
747 goto out;
748 }
749 switch (flags[i]) {
750 case FSCONTEXT_MNT:
751 fscontext_sid = sid;
752
753 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
754 fscontext_sid))
755 goto out_double_mount;
756
757 sbsec->flags |= FSCONTEXT_MNT;
758 break;
759 case CONTEXT_MNT:
760 context_sid = sid;
761
762 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
763 context_sid))
764 goto out_double_mount;
765
766 sbsec->flags |= CONTEXT_MNT;
767 break;
768 case ROOTCONTEXT_MNT:
769 rootcontext_sid = sid;
770
771 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
772 rootcontext_sid))
773 goto out_double_mount;
774
775 sbsec->flags |= ROOTCONTEXT_MNT;
776
777 break;
778 case DEFCONTEXT_MNT:
779 defcontext_sid = sid;
780
781 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
782 defcontext_sid))
783 goto out_double_mount;
784
785 sbsec->flags |= DEFCONTEXT_MNT;
786
787 break;
788 default:
789 rc = -EINVAL;
790 goto out;
791 }
792 }
793
794 if (sbsec->flags & SE_SBINITIALIZED) {
795 /* previously mounted with options, but not on this attempt? */
796 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
797 goto out_double_mount;
798 rc = 0;
799 goto out;
800 }
801
802 if (strcmp(sb->s_type->name, "proc") == 0)
803 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
804
805 if (!strcmp(sb->s_type->name, "debugfs") ||
806 !strcmp(sb->s_type->name, "sysfs") ||
807 !strcmp(sb->s_type->name, "pstore"))
808 sbsec->flags |= SE_SBGENFS;
809
810 if (!sbsec->behavior) {
811 /*
812 * Determine the labeling behavior to use for this
813 * filesystem type.
814 */
815 rc = security_fs_use(sb);
816 if (rc) {
817 printk(KERN_WARNING
818 "%s: security_fs_use(%s) returned %d\n",
819 __func__, sb->s_type->name, rc);
820 goto out;
821 }
822 }
823 /* sets the context of the superblock for the fs being mounted. */
824 if (fscontext_sid) {
825 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
826 if (rc)
827 goto out;
828
829 sbsec->sid = fscontext_sid;
830 }
831
832 /*
833 * Switch to using mount point labeling behavior.
834 * sets the label used on all file below the mountpoint, and will set
835 * the superblock context if not already set.
836 */
837 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
838 sbsec->behavior = SECURITY_FS_USE_NATIVE;
839 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
840 }
841
842 if (context_sid) {
843 if (!fscontext_sid) {
844 rc = may_context_mount_sb_relabel(context_sid, sbsec,
845 cred);
846 if (rc)
847 goto out;
848 sbsec->sid = context_sid;
849 } else {
850 rc = may_context_mount_inode_relabel(context_sid, sbsec,
851 cred);
852 if (rc)
853 goto out;
854 }
855 if (!rootcontext_sid)
856 rootcontext_sid = context_sid;
857
858 sbsec->mntpoint_sid = context_sid;
859 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
860 }
861
862 if (rootcontext_sid) {
863 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
864 cred);
865 if (rc)
866 goto out;
867
868 root_isec->sid = rootcontext_sid;
869 root_isec->initialized = LABEL_INITIALIZED;
870 }
871
872 if (defcontext_sid) {
873 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
874 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
875 rc = -EINVAL;
876 printk(KERN_WARNING "SELinux: defcontext option is "
877 "invalid for this filesystem type\n");
878 goto out;
879 }
880
881 if (defcontext_sid != sbsec->def_sid) {
882 rc = may_context_mount_inode_relabel(defcontext_sid,
883 sbsec, cred);
884 if (rc)
885 goto out;
886 }
887
888 sbsec->def_sid = defcontext_sid;
889 }
890
891 rc = sb_finish_set_opts(sb);
892out:
893 mutex_unlock(&sbsec->lock);
894 return rc;
895out_double_mount:
896 rc = -EINVAL;
897 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
898 "security settings for (dev %s, type %s)\n", sb->s_id, name);
899 goto out;
900}
901
902static int selinux_cmp_sb_context(const struct super_block *oldsb,
903 const struct super_block *newsb)
904{
905 struct superblock_security_struct *old = oldsb->s_security;
906 struct superblock_security_struct *new = newsb->s_security;
907 char oldflags = old->flags & SE_MNTMASK;
908 char newflags = new->flags & SE_MNTMASK;
909
910 if (oldflags != newflags)
911 goto mismatch;
912 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
913 goto mismatch;
914 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
915 goto mismatch;
916 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
917 goto mismatch;
918 if (oldflags & ROOTCONTEXT_MNT) {
919 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
920 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
921 if (oldroot->sid != newroot->sid)
922 goto mismatch;
923 }
924 return 0;
925mismatch:
926 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
927 "different security settings for (dev %s, "
928 "type %s)\n", newsb->s_id, newsb->s_type->name);
929 return -EBUSY;
930}
931
932static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
933 struct super_block *newsb)
934{
935 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
936 struct superblock_security_struct *newsbsec = newsb->s_security;
937
938 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
939 int set_context = (oldsbsec->flags & CONTEXT_MNT);
940 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
941
942 /*
943 * if the parent was able to be mounted it clearly had no special lsm
944 * mount options. thus we can safely deal with this superblock later
945 */
946 if (!ss_initialized)
947 return 0;
948
949 /* how can we clone if the old one wasn't set up?? */
950 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
951
952 /* if fs is reusing a sb, make sure that the contexts match */
953 if (newsbsec->flags & SE_SBINITIALIZED)
954 return selinux_cmp_sb_context(oldsb, newsb);
955
956 mutex_lock(&newsbsec->lock);
957
958 newsbsec->flags = oldsbsec->flags;
959
960 newsbsec->sid = oldsbsec->sid;
961 newsbsec->def_sid = oldsbsec->def_sid;
962 newsbsec->behavior = oldsbsec->behavior;
963
964 if (set_context) {
965 u32 sid = oldsbsec->mntpoint_sid;
966
967 if (!set_fscontext)
968 newsbsec->sid = sid;
969 if (!set_rootcontext) {
970 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
971 newisec->sid = sid;
972 }
973 newsbsec->mntpoint_sid = sid;
974 }
975 if (set_rootcontext) {
976 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
977 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
978
979 newisec->sid = oldisec->sid;
980 }
981
982 sb_finish_set_opts(newsb);
983 mutex_unlock(&newsbsec->lock);
984 return 0;
985}
986
987static int selinux_parse_opts_str(char *options,
988 struct security_mnt_opts *opts)
989{
990 char *p;
991 char *context = NULL, *defcontext = NULL;
992 char *fscontext = NULL, *rootcontext = NULL;
993 int rc, num_mnt_opts = 0;
994
995 opts->num_mnt_opts = 0;
996
997 /* Standard string-based options. */
998 while ((p = strsep(&options, "|")) != NULL) {
999 int token;
1000 substring_t args[MAX_OPT_ARGS];
1001
1002 if (!*p)
1003 continue;
1004
1005 token = match_token(p, tokens, args);
1006
1007 switch (token) {
1008 case Opt_context:
1009 if (context || defcontext) {
1010 rc = -EINVAL;
1011 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1012 goto out_err;
1013 }
1014 context = match_strdup(&args[0]);
1015 if (!context) {
1016 rc = -ENOMEM;
1017 goto out_err;
1018 }
1019 break;
1020
1021 case Opt_fscontext:
1022 if (fscontext) {
1023 rc = -EINVAL;
1024 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1025 goto out_err;
1026 }
1027 fscontext = match_strdup(&args[0]);
1028 if (!fscontext) {
1029 rc = -ENOMEM;
1030 goto out_err;
1031 }
1032 break;
1033
1034 case Opt_rootcontext:
1035 if (rootcontext) {
1036 rc = -EINVAL;
1037 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1038 goto out_err;
1039 }
1040 rootcontext = match_strdup(&args[0]);
1041 if (!rootcontext) {
1042 rc = -ENOMEM;
1043 goto out_err;
1044 }
1045 break;
1046
1047 case Opt_defcontext:
1048 if (context || defcontext) {
1049 rc = -EINVAL;
1050 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1051 goto out_err;
1052 }
1053 defcontext = match_strdup(&args[0]);
1054 if (!defcontext) {
1055 rc = -ENOMEM;
1056 goto out_err;
1057 }
1058 break;
1059 case Opt_labelsupport:
1060 break;
1061 default:
1062 rc = -EINVAL;
1063 printk(KERN_WARNING "SELinux: unknown mount option\n");
1064 goto out_err;
1065
1066 }
1067 }
1068
1069 rc = -ENOMEM;
1070 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1071 if (!opts->mnt_opts)
1072 goto out_err;
1073
1074 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1075 if (!opts->mnt_opts_flags) {
1076 kfree(opts->mnt_opts);
1077 goto out_err;
1078 }
1079
1080 if (fscontext) {
1081 opts->mnt_opts[num_mnt_opts] = fscontext;
1082 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1083 }
1084 if (context) {
1085 opts->mnt_opts[num_mnt_opts] = context;
1086 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1087 }
1088 if (rootcontext) {
1089 opts->mnt_opts[num_mnt_opts] = rootcontext;
1090 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1091 }
1092 if (defcontext) {
1093 opts->mnt_opts[num_mnt_opts] = defcontext;
1094 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1095 }
1096
1097 opts->num_mnt_opts = num_mnt_opts;
1098 return 0;
1099
1100out_err:
1101 kfree(context);
1102 kfree(defcontext);
1103 kfree(fscontext);
1104 kfree(rootcontext);
1105 return rc;
1106}
1107/*
1108 * string mount options parsing and call set the sbsec
1109 */
1110static int superblock_doinit(struct super_block *sb, void *data)
1111{
1112 int rc = 0;
1113 char *options = data;
1114 struct security_mnt_opts opts;
1115
1116 security_init_mnt_opts(&opts);
1117
1118 if (!data)
1119 goto out;
1120
1121 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1122
1123 rc = selinux_parse_opts_str(options, &opts);
1124 if (rc)
1125 goto out_err;
1126
1127out:
1128 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1129
1130out_err:
1131 security_free_mnt_opts(&opts);
1132 return rc;
1133}
1134
1135static void selinux_write_opts(struct seq_file *m,
1136 struct security_mnt_opts *opts)
1137{
1138 int i;
1139 char *prefix;
1140
1141 for (i = 0; i < opts->num_mnt_opts; i++) {
1142 char *has_comma;
1143
1144 if (opts->mnt_opts[i])
1145 has_comma = strchr(opts->mnt_opts[i], ',');
1146 else
1147 has_comma = NULL;
1148
1149 switch (opts->mnt_opts_flags[i]) {
1150 case CONTEXT_MNT:
1151 prefix = CONTEXT_STR;
1152 break;
1153 case FSCONTEXT_MNT:
1154 prefix = FSCONTEXT_STR;
1155 break;
1156 case ROOTCONTEXT_MNT:
1157 prefix = ROOTCONTEXT_STR;
1158 break;
1159 case DEFCONTEXT_MNT:
1160 prefix = DEFCONTEXT_STR;
1161 break;
1162 case SBLABEL_MNT:
1163 seq_putc(m, ',');
1164 seq_puts(m, LABELSUPP_STR);
1165 continue;
1166 default:
1167 BUG();
1168 return;
1169 };
1170 /* we need a comma before each option */
1171 seq_putc(m, ',');
1172 seq_puts(m, prefix);
1173 if (has_comma)
1174 seq_putc(m, '\"');
1175 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1176 if (has_comma)
1177 seq_putc(m, '\"');
1178 }
1179}
1180
1181static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1182{
1183 struct security_mnt_opts opts;
1184 int rc;
1185
1186 rc = selinux_get_mnt_opts(sb, &opts);
1187 if (rc) {
1188 /* before policy load we may get EINVAL, don't show anything */
1189 if (rc == -EINVAL)
1190 rc = 0;
1191 return rc;
1192 }
1193
1194 selinux_write_opts(m, &opts);
1195
1196 security_free_mnt_opts(&opts);
1197
1198 return rc;
1199}
1200
1201static inline u16 inode_mode_to_security_class(umode_t mode)
1202{
1203 switch (mode & S_IFMT) {
1204 case S_IFSOCK:
1205 return SECCLASS_SOCK_FILE;
1206 case S_IFLNK:
1207 return SECCLASS_LNK_FILE;
1208 case S_IFREG:
1209 return SECCLASS_FILE;
1210 case S_IFBLK:
1211 return SECCLASS_BLK_FILE;
1212 case S_IFDIR:
1213 return SECCLASS_DIR;
1214 case S_IFCHR:
1215 return SECCLASS_CHR_FILE;
1216 case S_IFIFO:
1217 return SECCLASS_FIFO_FILE;
1218
1219 }
1220
1221 return SECCLASS_FILE;
1222}
1223
1224static inline int default_protocol_stream(int protocol)
1225{
1226 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1227}
1228
1229static inline int default_protocol_dgram(int protocol)
1230{
1231 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1232}
1233
1234static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1235{
1236 switch (family) {
1237 case PF_UNIX:
1238 switch (type) {
1239 case SOCK_STREAM:
1240 case SOCK_SEQPACKET:
1241 return SECCLASS_UNIX_STREAM_SOCKET;
1242 case SOCK_DGRAM:
1243 return SECCLASS_UNIX_DGRAM_SOCKET;
1244 }
1245 break;
1246 case PF_INET:
1247 case PF_INET6:
1248 switch (type) {
1249 case SOCK_STREAM:
1250 if (default_protocol_stream(protocol))
1251 return SECCLASS_TCP_SOCKET;
1252 else
1253 return SECCLASS_RAWIP_SOCKET;
1254 case SOCK_DGRAM:
1255 if (default_protocol_dgram(protocol))
1256 return SECCLASS_UDP_SOCKET;
1257 else
1258 return SECCLASS_RAWIP_SOCKET;
1259 case SOCK_DCCP:
1260 return SECCLASS_DCCP_SOCKET;
1261 default:
1262 return SECCLASS_RAWIP_SOCKET;
1263 }
1264 break;
1265 case PF_NETLINK:
1266 switch (protocol) {
1267 case NETLINK_ROUTE:
1268 return SECCLASS_NETLINK_ROUTE_SOCKET;
1269 case NETLINK_SOCK_DIAG:
1270 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1271 case NETLINK_NFLOG:
1272 return SECCLASS_NETLINK_NFLOG_SOCKET;
1273 case NETLINK_XFRM:
1274 return SECCLASS_NETLINK_XFRM_SOCKET;
1275 case NETLINK_SELINUX:
1276 return SECCLASS_NETLINK_SELINUX_SOCKET;
1277 case NETLINK_ISCSI:
1278 return SECCLASS_NETLINK_ISCSI_SOCKET;
1279 case NETLINK_AUDIT:
1280 return SECCLASS_NETLINK_AUDIT_SOCKET;
1281 case NETLINK_FIB_LOOKUP:
1282 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1283 case NETLINK_CONNECTOR:
1284 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1285 case NETLINK_NETFILTER:
1286 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1287 case NETLINK_DNRTMSG:
1288 return SECCLASS_NETLINK_DNRT_SOCKET;
1289 case NETLINK_KOBJECT_UEVENT:
1290 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1291 case NETLINK_GENERIC:
1292 return SECCLASS_NETLINK_GENERIC_SOCKET;
1293 case NETLINK_SCSITRANSPORT:
1294 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1295 case NETLINK_RDMA:
1296 return SECCLASS_NETLINK_RDMA_SOCKET;
1297 case NETLINK_CRYPTO:
1298 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1299 default:
1300 return SECCLASS_NETLINK_SOCKET;
1301 }
1302 case PF_PACKET:
1303 return SECCLASS_PACKET_SOCKET;
1304 case PF_KEY:
1305 return SECCLASS_KEY_SOCKET;
1306 case PF_APPLETALK:
1307 return SECCLASS_APPLETALK_SOCKET;
1308 }
1309
1310 return SECCLASS_SOCKET;
1311}
1312
1313static int selinux_genfs_get_sid(struct dentry *dentry,
1314 u16 tclass,
1315 u16 flags,
1316 u32 *sid)
1317{
1318 int rc;
1319 struct super_block *sb = dentry->d_inode->i_sb;
1320 char *buffer, *path;
1321
1322 buffer = (char *)__get_free_page(GFP_KERNEL);
1323 if (!buffer)
1324 return -ENOMEM;
1325
1326 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1327 if (IS_ERR(path))
1328 rc = PTR_ERR(path);
1329 else {
1330 if (flags & SE_SBPROC) {
1331 /* each process gets a /proc/PID/ entry. Strip off the
1332 * PID part to get a valid selinux labeling.
1333 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1334 while (path[1] >= '0' && path[1] <= '9') {
1335 path[1] = '/';
1336 path++;
1337 }
1338 }
1339 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1340 }
1341 free_page((unsigned long)buffer);
1342 return rc;
1343}
1344
1345/* The inode's security attributes must be initialized before first use. */
1346static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1347{
1348 struct superblock_security_struct *sbsec = NULL;
1349 struct inode_security_struct *isec = inode->i_security;
1350 u32 sid;
1351 struct dentry *dentry;
1352#define INITCONTEXTLEN 255
1353 char *context = NULL;
1354 unsigned len = 0;
1355 int rc = 0;
1356
1357 if (isec->initialized == LABEL_INITIALIZED)
1358 goto out;
1359
1360 mutex_lock(&isec->lock);
1361 if (isec->initialized == LABEL_INITIALIZED)
1362 goto out_unlock;
1363
1364 sbsec = inode->i_sb->s_security;
1365 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1366 /* Defer initialization until selinux_complete_init,
1367 after the initial policy is loaded and the security
1368 server is ready to handle calls. */
1369 spin_lock(&sbsec->isec_lock);
1370 if (list_empty(&isec->list))
1371 list_add(&isec->list, &sbsec->isec_head);
1372 spin_unlock(&sbsec->isec_lock);
1373 goto out_unlock;
1374 }
1375
1376 switch (sbsec->behavior) {
1377 case SECURITY_FS_USE_NATIVE:
1378 break;
1379 case SECURITY_FS_USE_XATTR:
1380 if (!inode->i_op->getxattr) {
1381 isec->sid = sbsec->def_sid;
1382 break;
1383 }
1384
1385 /* Need a dentry, since the xattr API requires one.
1386 Life would be simpler if we could just pass the inode. */
1387 if (opt_dentry) {
1388 /* Called from d_instantiate or d_splice_alias. */
1389 dentry = dget(opt_dentry);
1390 } else {
1391 /* Called from selinux_complete_init, try to find a dentry. */
1392 dentry = d_find_alias(inode);
1393 }
1394 if (!dentry) {
1395 /*
1396 * this is can be hit on boot when a file is accessed
1397 * before the policy is loaded. When we load policy we
1398 * may find inodes that have no dentry on the
1399 * sbsec->isec_head list. No reason to complain as these
1400 * will get fixed up the next time we go through
1401 * inode_doinit with a dentry, before these inodes could
1402 * be used again by userspace.
1403 */
1404 goto out_unlock;
1405 }
1406
1407 len = INITCONTEXTLEN;
1408 context = kmalloc(len+1, GFP_NOFS);
1409 if (!context) {
1410 rc = -ENOMEM;
1411 dput(dentry);
1412 goto out_unlock;
1413 }
1414 context[len] = '\0';
1415 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1416 context, len);
1417 if (rc == -ERANGE) {
1418 kfree(context);
1419
1420 /* Need a larger buffer. Query for the right size. */
1421 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1422 NULL, 0);
1423 if (rc < 0) {
1424 dput(dentry);
1425 goto out_unlock;
1426 }
1427 len = rc;
1428 context = kmalloc(len+1, GFP_NOFS);
1429 if (!context) {
1430 rc = -ENOMEM;
1431 dput(dentry);
1432 goto out_unlock;
1433 }
1434 context[len] = '\0';
1435 rc = inode->i_op->getxattr(dentry,
1436 XATTR_NAME_SELINUX,
1437 context, len);
1438 }
1439 dput(dentry);
1440 if (rc < 0) {
1441 if (rc != -ENODATA) {
1442 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1443 "%d for dev=%s ino=%ld\n", __func__,
1444 -rc, inode->i_sb->s_id, inode->i_ino);
1445 kfree(context);
1446 goto out_unlock;
1447 }
1448 /* Map ENODATA to the default file SID */
1449 sid = sbsec->def_sid;
1450 rc = 0;
1451 } else {
1452 rc = security_context_to_sid_default(context, rc, &sid,
1453 sbsec->def_sid,
1454 GFP_NOFS);
1455 if (rc) {
1456 char *dev = inode->i_sb->s_id;
1457 unsigned long ino = inode->i_ino;
1458
1459 if (rc == -EINVAL) {
1460 if (printk_ratelimit())
1461 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1462 "context=%s. This indicates you may need to relabel the inode or the "
1463 "filesystem in question.\n", ino, dev, context);
1464 } else {
1465 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1466 "returned %d for dev=%s ino=%ld\n",
1467 __func__, context, -rc, dev, ino);
1468 }
1469 kfree(context);
1470 /* Leave with the unlabeled SID */
1471 rc = 0;
1472 break;
1473 }
1474 }
1475 kfree(context);
1476 isec->sid = sid;
1477 break;
1478 case SECURITY_FS_USE_TASK:
1479 isec->sid = isec->task_sid;
1480 break;
1481 case SECURITY_FS_USE_TRANS:
1482 /* Default to the fs SID. */
1483 isec->sid = sbsec->sid;
1484
1485 /* Try to obtain a transition SID. */
1486 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1487 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1488 isec->sclass, NULL, &sid);
1489 if (rc)
1490 goto out_unlock;
1491 isec->sid = sid;
1492 break;
1493 case SECURITY_FS_USE_MNTPOINT:
1494 isec->sid = sbsec->mntpoint_sid;
1495 break;
1496 default:
1497 /* Default to the fs superblock SID. */
1498 isec->sid = sbsec->sid;
1499
1500 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1501 /* We must have a dentry to determine the label on
1502 * procfs inodes */
1503 if (opt_dentry)
1504 /* Called from d_instantiate or
1505 * d_splice_alias. */
1506 dentry = dget(opt_dentry);
1507 else
1508 /* Called from selinux_complete_init, try to
1509 * find a dentry. */
1510 dentry = d_find_alias(inode);
1511 /*
1512 * This can be hit on boot when a file is accessed
1513 * before the policy is loaded. When we load policy we
1514 * may find inodes that have no dentry on the
1515 * sbsec->isec_head list. No reason to complain as
1516 * these will get fixed up the next time we go through
1517 * inode_doinit() with a dentry, before these inodes
1518 * could be used again by userspace.
1519 */
1520 if (!dentry)
1521 goto out_unlock;
1522 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1523 rc = selinux_genfs_get_sid(dentry, isec->sclass,
1524 sbsec->flags, &sid);
1525 dput(dentry);
1526 if (rc)
1527 goto out_unlock;
1528 isec->sid = sid;
1529 }
1530 break;
1531 }
1532
1533 isec->initialized = LABEL_INITIALIZED;
1534
1535out_unlock:
1536 mutex_unlock(&isec->lock);
1537out:
1538 if (isec->sclass == SECCLASS_FILE)
1539 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1540 return rc;
1541}
1542
1543/* Convert a Linux signal to an access vector. */
1544static inline u32 signal_to_av(int sig)
1545{
1546 u32 perm = 0;
1547
1548 switch (sig) {
1549 case SIGCHLD:
1550 /* Commonly granted from child to parent. */
1551 perm = PROCESS__SIGCHLD;
1552 break;
1553 case SIGKILL:
1554 /* Cannot be caught or ignored */
1555 perm = PROCESS__SIGKILL;
1556 break;
1557 case SIGSTOP:
1558 /* Cannot be caught or ignored */
1559 perm = PROCESS__SIGSTOP;
1560 break;
1561 default:
1562 /* All other signals. */
1563 perm = PROCESS__SIGNAL;
1564 break;
1565 }
1566
1567 return perm;
1568}
1569
1570/*
1571 * Check permission between a pair of credentials
1572 * fork check, ptrace check, etc.
1573 */
1574static int cred_has_perm(const struct cred *actor,
1575 const struct cred *target,
1576 u32 perms)
1577{
1578 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1579
1580 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1581}
1582
1583/*
1584 * Check permission between a pair of tasks, e.g. signal checks,
1585 * fork check, ptrace check, etc.
1586 * tsk1 is the actor and tsk2 is the target
1587 * - this uses the default subjective creds of tsk1
1588 */
1589static int task_has_perm(const struct task_struct *tsk1,
1590 const struct task_struct *tsk2,
1591 u32 perms)
1592{
1593 const struct task_security_struct *__tsec1, *__tsec2;
1594 u32 sid1, sid2;
1595
1596 rcu_read_lock();
1597 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1598 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1599 rcu_read_unlock();
1600 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1601}
1602
1603/*
1604 * Check permission between current and another task, e.g. signal checks,
1605 * fork check, ptrace check, etc.
1606 * current is the actor and tsk2 is the target
1607 * - this uses current's subjective creds
1608 */
1609static int current_has_perm(const struct task_struct *tsk,
1610 u32 perms)
1611{
1612 u32 sid, tsid;
1613
1614 sid = current_sid();
1615 tsid = task_sid(tsk);
1616 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625 int cap, int audit)
1626{
1627 struct common_audit_data ad;
1628 struct av_decision avd;
1629 u16 sclass;
1630 u32 sid = cred_sid(cred);
1631 u32 av = CAP_TO_MASK(cap);
1632 int rc;
1633
1634 ad.type = LSM_AUDIT_DATA_CAP;
1635 ad.u.cap = cap;
1636
1637 switch (CAP_TO_INDEX(cap)) {
1638 case 0:
1639 sclass = SECCLASS_CAPABILITY;
1640 break;
1641 case 1:
1642 sclass = SECCLASS_CAPABILITY2;
1643 break;
1644 default:
1645 printk(KERN_ERR
1646 "SELinux: out of range capability %d\n", cap);
1647 BUG();
1648 return -EINVAL;
1649 }
1650
1651 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1652 if (audit == SECURITY_CAP_AUDIT) {
1653 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1654 if (rc2)
1655 return rc2;
1656 }
1657 return rc;
1658}
1659
1660/* Check whether a task is allowed to use a system operation. */
1661static int task_has_system(struct task_struct *tsk,
1662 u32 perms)
1663{
1664 u32 sid = task_sid(tsk);
1665
1666 return avc_has_perm(sid, SECINITSID_KERNEL,
1667 SECCLASS_SYSTEM, perms, NULL);
1668}
1669
1670/* Check whether a task has a particular permission to an inode.
1671 The 'adp' parameter is optional and allows other audit
1672 data to be passed (e.g. the dentry). */
1673static int inode_has_perm(const struct cred *cred,
1674 struct inode *inode,
1675 u32 perms,
1676 struct common_audit_data *adp)
1677{
1678 struct inode_security_struct *isec;
1679 u32 sid;
1680
1681 validate_creds(cred);
1682
1683 if (unlikely(IS_PRIVATE(inode)))
1684 return 0;
1685
1686 sid = cred_sid(cred);
1687 isec = inode->i_security;
1688
1689 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1690}
1691
1692/* Same as inode_has_perm, but pass explicit audit data containing
1693 the dentry to help the auditing code to more easily generate the
1694 pathname if needed. */
1695static inline int dentry_has_perm(const struct cred *cred,
1696 struct dentry *dentry,
1697 u32 av)
1698{
1699 struct inode *inode = d_backing_inode(dentry);
1700 struct common_audit_data ad;
1701
1702 ad.type = LSM_AUDIT_DATA_DENTRY;
1703 ad.u.dentry = dentry;
1704 __inode_security_revalidate(inode, dentry, true);
1705 return inode_has_perm(cred, inode, av, &ad);
1706}
1707
1708/* Same as inode_has_perm, but pass explicit audit data containing
1709 the path to help the auditing code to more easily generate the
1710 pathname if needed. */
1711static inline int path_has_perm(const struct cred *cred,
1712 const struct path *path,
1713 u32 av)
1714{
1715 struct inode *inode = d_backing_inode(path->dentry);
1716 struct common_audit_data ad;
1717
1718 ad.type = LSM_AUDIT_DATA_PATH;
1719 ad.u.path = *path;
1720 __inode_security_revalidate(inode, path->dentry, true);
1721 return inode_has_perm(cred, inode, av, &ad);
1722}
1723
1724/* Same as path_has_perm, but uses the inode from the file struct. */
1725static inline int file_path_has_perm(const struct cred *cred,
1726 struct file *file,
1727 u32 av)
1728{
1729 struct common_audit_data ad;
1730
1731 ad.type = LSM_AUDIT_DATA_PATH;
1732 ad.u.path = file->f_path;
1733 return inode_has_perm(cred, file_inode(file), av, &ad);
1734}
1735
1736/* Check whether a task can use an open file descriptor to
1737 access an inode in a given way. Check access to the
1738 descriptor itself, and then use dentry_has_perm to
1739 check a particular permission to the file.
1740 Access to the descriptor is implicitly granted if it
1741 has the same SID as the process. If av is zero, then
1742 access to the file is not checked, e.g. for cases
1743 where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745 struct file *file,
1746 u32 av)
1747{
1748 struct file_security_struct *fsec = file->f_security;
1749 struct inode *inode = file_inode(file);
1750 struct common_audit_data ad;
1751 u32 sid = cred_sid(cred);
1752 int rc;
1753
1754 ad.type = LSM_AUDIT_DATA_PATH;
1755 ad.u.path = file->f_path;
1756
1757 if (sid != fsec->sid) {
1758 rc = avc_has_perm(sid, fsec->sid,
1759 SECCLASS_FD,
1760 FD__USE,
1761 &ad);
1762 if (rc)
1763 goto out;
1764 }
1765
1766 /* av is zero if only checking access to the descriptor. */
1767 rc = 0;
1768 if (av)
1769 rc = inode_has_perm(cred, inode, av, &ad);
1770
1771out:
1772 return rc;
1773}
1774
1775/*
1776 * Determine the label for an inode that might be unioned.
1777 */
1778static int selinux_determine_inode_label(struct inode *dir,
1779 const struct qstr *name,
1780 u16 tclass,
1781 u32 *_new_isid)
1782{
1783 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1784 const struct inode_security_struct *dsec = inode_security(dir);
1785 const struct task_security_struct *tsec = current_security();
1786
1787 if ((sbsec->flags & SE_SBINITIALIZED) &&
1788 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1789 *_new_isid = sbsec->mntpoint_sid;
1790 } else if ((sbsec->flags & SBLABEL_MNT) &&
1791 tsec->create_sid) {
1792 *_new_isid = tsec->create_sid;
1793 } else {
1794 return security_transition_sid(tsec->sid, dsec->sid, tclass,
1795 name, _new_isid);
1796 }
1797
1798 return 0;
1799}
1800
1801/* Check whether a task can create a file. */
1802static int may_create(struct inode *dir,
1803 struct dentry *dentry,
1804 u16 tclass)
1805{
1806 const struct task_security_struct *tsec = current_security();
1807 struct inode_security_struct *dsec;
1808 struct superblock_security_struct *sbsec;
1809 u32 sid, newsid;
1810 struct common_audit_data ad;
1811 int rc;
1812
1813 dsec = inode_security(dir);
1814 sbsec = dir->i_sb->s_security;
1815
1816 sid = tsec->sid;
1817
1818 ad.type = LSM_AUDIT_DATA_DENTRY;
1819 ad.u.dentry = dentry;
1820
1821 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1822 DIR__ADD_NAME | DIR__SEARCH,
1823 &ad);
1824 if (rc)
1825 return rc;
1826
1827 rc = selinux_determine_inode_label(dir, &dentry->d_name, tclass,
1828 &newsid);
1829 if (rc)
1830 return rc;
1831
1832 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1833 if (rc)
1834 return rc;
1835
1836 return avc_has_perm(newsid, sbsec->sid,
1837 SECCLASS_FILESYSTEM,
1838 FILESYSTEM__ASSOCIATE, &ad);
1839}
1840
1841/* Check whether a task can create a key. */
1842static int may_create_key(u32 ksid,
1843 struct task_struct *ctx)
1844{
1845 u32 sid = task_sid(ctx);
1846
1847 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1848}
1849
1850#define MAY_LINK 0
1851#define MAY_UNLINK 1
1852#define MAY_RMDIR 2
1853
1854/* Check whether a task can link, unlink, or rmdir a file/directory. */
1855static int may_link(struct inode *dir,
1856 struct dentry *dentry,
1857 int kind)
1858
1859{
1860 struct inode_security_struct *dsec, *isec;
1861 struct common_audit_data ad;
1862 u32 sid = current_sid();
1863 u32 av;
1864 int rc;
1865
1866 dsec = inode_security(dir);
1867 isec = backing_inode_security(dentry);
1868
1869 ad.type = LSM_AUDIT_DATA_DENTRY;
1870 ad.u.dentry = dentry;
1871
1872 av = DIR__SEARCH;
1873 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1874 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1875 if (rc)
1876 return rc;
1877
1878 switch (kind) {
1879 case MAY_LINK:
1880 av = FILE__LINK;
1881 break;
1882 case MAY_UNLINK:
1883 av = FILE__UNLINK;
1884 break;
1885 case MAY_RMDIR:
1886 av = DIR__RMDIR;
1887 break;
1888 default:
1889 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1890 __func__, kind);
1891 return 0;
1892 }
1893
1894 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1895 return rc;
1896}
1897
1898static inline int may_rename(struct inode *old_dir,
1899 struct dentry *old_dentry,
1900 struct inode *new_dir,
1901 struct dentry *new_dentry)
1902{
1903 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1904 struct common_audit_data ad;
1905 u32 sid = current_sid();
1906 u32 av;
1907 int old_is_dir, new_is_dir;
1908 int rc;
1909
1910 old_dsec = inode_security(old_dir);
1911 old_isec = backing_inode_security(old_dentry);
1912 old_is_dir = d_is_dir(old_dentry);
1913 new_dsec = inode_security(new_dir);
1914
1915 ad.type = LSM_AUDIT_DATA_DENTRY;
1916
1917 ad.u.dentry = old_dentry;
1918 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1919 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1920 if (rc)
1921 return rc;
1922 rc = avc_has_perm(sid, old_isec->sid,
1923 old_isec->sclass, FILE__RENAME, &ad);
1924 if (rc)
1925 return rc;
1926 if (old_is_dir && new_dir != old_dir) {
1927 rc = avc_has_perm(sid, old_isec->sid,
1928 old_isec->sclass, DIR__REPARENT, &ad);
1929 if (rc)
1930 return rc;
1931 }
1932
1933 ad.u.dentry = new_dentry;
1934 av = DIR__ADD_NAME | DIR__SEARCH;
1935 if (d_is_positive(new_dentry))
1936 av |= DIR__REMOVE_NAME;
1937 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1938 if (rc)
1939 return rc;
1940 if (d_is_positive(new_dentry)) {
1941 new_isec = backing_inode_security(new_dentry);
1942 new_is_dir = d_is_dir(new_dentry);
1943 rc = avc_has_perm(sid, new_isec->sid,
1944 new_isec->sclass,
1945 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1946 if (rc)
1947 return rc;
1948 }
1949
1950 return 0;
1951}
1952
1953/* Check whether a task can perform a filesystem operation. */
1954static int superblock_has_perm(const struct cred *cred,
1955 struct super_block *sb,
1956 u32 perms,
1957 struct common_audit_data *ad)
1958{
1959 struct superblock_security_struct *sbsec;
1960 u32 sid = cred_sid(cred);
1961
1962 sbsec = sb->s_security;
1963 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1964}
1965
1966/* Convert a Linux mode and permission mask to an access vector. */
1967static inline u32 file_mask_to_av(int mode, int mask)
1968{
1969 u32 av = 0;
1970
1971 if (!S_ISDIR(mode)) {
1972 if (mask & MAY_EXEC)
1973 av |= FILE__EXECUTE;
1974 if (mask & MAY_READ)
1975 av |= FILE__READ;
1976
1977 if (mask & MAY_APPEND)
1978 av |= FILE__APPEND;
1979 else if (mask & MAY_WRITE)
1980 av |= FILE__WRITE;
1981
1982 } else {
1983 if (mask & MAY_EXEC)
1984 av |= DIR__SEARCH;
1985 if (mask & MAY_WRITE)
1986 av |= DIR__WRITE;
1987 if (mask & MAY_READ)
1988 av |= DIR__READ;
1989 }
1990
1991 return av;
1992}
1993
1994/* Convert a Linux file to an access vector. */
1995static inline u32 file_to_av(struct file *file)
1996{
1997 u32 av = 0;
1998
1999 if (file->f_mode & FMODE_READ)
2000 av |= FILE__READ;
2001 if (file->f_mode & FMODE_WRITE) {
2002 if (file->f_flags & O_APPEND)
2003 av |= FILE__APPEND;
2004 else
2005 av |= FILE__WRITE;
2006 }
2007 if (!av) {
2008 /*
2009 * Special file opened with flags 3 for ioctl-only use.
2010 */
2011 av = FILE__IOCTL;
2012 }
2013
2014 return av;
2015}
2016
2017/*
2018 * Convert a file to an access vector and include the correct open
2019 * open permission.
2020 */
2021static inline u32 open_file_to_av(struct file *file)
2022{
2023 u32 av = file_to_av(file);
2024
2025 if (selinux_policycap_openperm)
2026 av |= FILE__OPEN;
2027
2028 return av;
2029}
2030
2031/* Hook functions begin here. */
2032
2033static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2034{
2035 u32 mysid = current_sid();
2036 u32 mgrsid = task_sid(mgr);
2037
2038 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2039 BINDER__SET_CONTEXT_MGR, NULL);
2040}
2041
2042static int selinux_binder_transaction(struct task_struct *from,
2043 struct task_struct *to)
2044{
2045 u32 mysid = current_sid();
2046 u32 fromsid = task_sid(from);
2047 u32 tosid = task_sid(to);
2048 int rc;
2049
2050 if (mysid != fromsid) {
2051 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2052 BINDER__IMPERSONATE, NULL);
2053 if (rc)
2054 return rc;
2055 }
2056
2057 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2058 NULL);
2059}
2060
2061static int selinux_binder_transfer_binder(struct task_struct *from,
2062 struct task_struct *to)
2063{
2064 u32 fromsid = task_sid(from);
2065 u32 tosid = task_sid(to);
2066
2067 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2068 NULL);
2069}
2070
2071static int selinux_binder_transfer_file(struct task_struct *from,
2072 struct task_struct *to,
2073 struct file *file)
2074{
2075 u32 sid = task_sid(to);
2076 struct file_security_struct *fsec = file->f_security;
2077 struct dentry *dentry = file->f_path.dentry;
2078 struct inode_security_struct *isec = backing_inode_security(dentry);
2079 struct common_audit_data ad;
2080 int rc;
2081
2082 ad.type = LSM_AUDIT_DATA_PATH;
2083 ad.u.path = file->f_path;
2084
2085 if (sid != fsec->sid) {
2086 rc = avc_has_perm(sid, fsec->sid,
2087 SECCLASS_FD,
2088 FD__USE,
2089 &ad);
2090 if (rc)
2091 return rc;
2092 }
2093
2094 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2095 return 0;
2096
2097 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2098 &ad);
2099}
2100
2101static int selinux_ptrace_access_check(struct task_struct *child,
2102 unsigned int mode)
2103{
2104 if (mode & PTRACE_MODE_READ) {
2105 u32 sid = current_sid();
2106 u32 csid = task_sid(child);
2107 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2108 }
2109
2110 return current_has_perm(child, PROCESS__PTRACE);
2111}
2112
2113static int selinux_ptrace_traceme(struct task_struct *parent)
2114{
2115 return task_has_perm(parent, current, PROCESS__PTRACE);
2116}
2117
2118static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2119 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2120{
2121 return current_has_perm(target, PROCESS__GETCAP);
2122}
2123
2124static int selinux_capset(struct cred *new, const struct cred *old,
2125 const kernel_cap_t *effective,
2126 const kernel_cap_t *inheritable,
2127 const kernel_cap_t *permitted)
2128{
2129 return cred_has_perm(old, new, PROCESS__SETCAP);
2130}
2131
2132/*
2133 * (This comment used to live with the selinux_task_setuid hook,
2134 * which was removed).
2135 *
2136 * Since setuid only affects the current process, and since the SELinux
2137 * controls are not based on the Linux identity attributes, SELinux does not
2138 * need to control this operation. However, SELinux does control the use of
2139 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2140 */
2141
2142static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2143 int cap, int audit)
2144{
2145 return cred_has_capability(cred, cap, audit);
2146}
2147
2148static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2149{
2150 const struct cred *cred = current_cred();
2151 int rc = 0;
2152
2153 if (!sb)
2154 return 0;
2155
2156 switch (cmds) {
2157 case Q_SYNC:
2158 case Q_QUOTAON:
2159 case Q_QUOTAOFF:
2160 case Q_SETINFO:
2161 case Q_SETQUOTA:
2162 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2163 break;
2164 case Q_GETFMT:
2165 case Q_GETINFO:
2166 case Q_GETQUOTA:
2167 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2168 break;
2169 default:
2170 rc = 0; /* let the kernel handle invalid cmds */
2171 break;
2172 }
2173 return rc;
2174}
2175
2176static int selinux_quota_on(struct dentry *dentry)
2177{
2178 const struct cred *cred = current_cred();
2179
2180 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2181}
2182
2183static int selinux_syslog(int type)
2184{
2185 int rc;
2186
2187 switch (type) {
2188 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2189 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2190 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2191 break;
2192 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2193 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2194 /* Set level of messages printed to console */
2195 case SYSLOG_ACTION_CONSOLE_LEVEL:
2196 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2197 break;
2198 case SYSLOG_ACTION_CLOSE: /* Close log */
2199 case SYSLOG_ACTION_OPEN: /* Open log */
2200 case SYSLOG_ACTION_READ: /* Read from log */
2201 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2202 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2203 default:
2204 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2205 break;
2206 }
2207 return rc;
2208}
2209
2210/*
2211 * Check that a process has enough memory to allocate a new virtual
2212 * mapping. 0 means there is enough memory for the allocation to
2213 * succeed and -ENOMEM implies there is not.
2214 *
2215 * Do not audit the selinux permission check, as this is applied to all
2216 * processes that allocate mappings.
2217 */
2218static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2219{
2220 int rc, cap_sys_admin = 0;
2221
2222 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2223 SECURITY_CAP_NOAUDIT);
2224 if (rc == 0)
2225 cap_sys_admin = 1;
2226
2227 return cap_sys_admin;
2228}
2229
2230/* binprm security operations */
2231
2232static int check_nnp_nosuid(const struct linux_binprm *bprm,
2233 const struct task_security_struct *old_tsec,
2234 const struct task_security_struct *new_tsec)
2235{
2236 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2237 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2238 int rc;
2239
2240 if (!nnp && !nosuid)
2241 return 0; /* neither NNP nor nosuid */
2242
2243 if (new_tsec->sid == old_tsec->sid)
2244 return 0; /* No change in credentials */
2245
2246 /*
2247 * The only transitions we permit under NNP or nosuid
2248 * are transitions to bounded SIDs, i.e. SIDs that are
2249 * guaranteed to only be allowed a subset of the permissions
2250 * of the current SID.
2251 */
2252 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2253 if (rc) {
2254 /*
2255 * On failure, preserve the errno values for NNP vs nosuid.
2256 * NNP: Operation not permitted for caller.
2257 * nosuid: Permission denied to file.
2258 */
2259 if (nnp)
2260 return -EPERM;
2261 else
2262 return -EACCES;
2263 }
2264 return 0;
2265}
2266
2267static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2268{
2269 const struct task_security_struct *old_tsec;
2270 struct task_security_struct *new_tsec;
2271 struct inode_security_struct *isec;
2272 struct common_audit_data ad;
2273 struct inode *inode = file_inode(bprm->file);
2274 int rc;
2275
2276 /* SELinux context only depends on initial program or script and not
2277 * the script interpreter */
2278 if (bprm->cred_prepared)
2279 return 0;
2280
2281 old_tsec = current_security();
2282 new_tsec = bprm->cred->security;
2283 isec = inode_security(inode);
2284
2285 /* Default to the current task SID. */
2286 new_tsec->sid = old_tsec->sid;
2287 new_tsec->osid = old_tsec->sid;
2288
2289 /* Reset fs, key, and sock SIDs on execve. */
2290 new_tsec->create_sid = 0;
2291 new_tsec->keycreate_sid = 0;
2292 new_tsec->sockcreate_sid = 0;
2293
2294 if (old_tsec->exec_sid) {
2295 new_tsec->sid = old_tsec->exec_sid;
2296 /* Reset exec SID on execve. */
2297 new_tsec->exec_sid = 0;
2298
2299 /* Fail on NNP or nosuid if not an allowed transition. */
2300 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2301 if (rc)
2302 return rc;
2303 } else {
2304 /* Check for a default transition on this program. */
2305 rc = security_transition_sid(old_tsec->sid, isec->sid,
2306 SECCLASS_PROCESS, NULL,
2307 &new_tsec->sid);
2308 if (rc)
2309 return rc;
2310
2311 /*
2312 * Fallback to old SID on NNP or nosuid if not an allowed
2313 * transition.
2314 */
2315 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2316 if (rc)
2317 new_tsec->sid = old_tsec->sid;
2318 }
2319
2320 ad.type = LSM_AUDIT_DATA_PATH;
2321 ad.u.path = bprm->file->f_path;
2322
2323 if (new_tsec->sid == old_tsec->sid) {
2324 rc = avc_has_perm(old_tsec->sid, isec->sid,
2325 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2326 if (rc)
2327 return rc;
2328 } else {
2329 /* Check permissions for the transition. */
2330 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2331 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2332 if (rc)
2333 return rc;
2334
2335 rc = avc_has_perm(new_tsec->sid, isec->sid,
2336 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2337 if (rc)
2338 return rc;
2339
2340 /* Check for shared state */
2341 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2342 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2343 SECCLASS_PROCESS, PROCESS__SHARE,
2344 NULL);
2345 if (rc)
2346 return -EPERM;
2347 }
2348
2349 /* Make sure that anyone attempting to ptrace over a task that
2350 * changes its SID has the appropriate permit */
2351 if (bprm->unsafe &
2352 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2353 struct task_struct *tracer;
2354 struct task_security_struct *sec;
2355 u32 ptsid = 0;
2356
2357 rcu_read_lock();
2358 tracer = ptrace_parent(current);
2359 if (likely(tracer != NULL)) {
2360 sec = __task_cred(tracer)->security;
2361 ptsid = sec->sid;
2362 }
2363 rcu_read_unlock();
2364
2365 if (ptsid != 0) {
2366 rc = avc_has_perm(ptsid, new_tsec->sid,
2367 SECCLASS_PROCESS,
2368 PROCESS__PTRACE, NULL);
2369 if (rc)
2370 return -EPERM;
2371 }
2372 }
2373
2374 /* Clear any possibly unsafe personality bits on exec: */
2375 bprm->per_clear |= PER_CLEAR_ON_SETID;
2376 }
2377
2378 return 0;
2379}
2380
2381static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2382{
2383 const struct task_security_struct *tsec = current_security();
2384 u32 sid, osid;
2385 int atsecure = 0;
2386
2387 sid = tsec->sid;
2388 osid = tsec->osid;
2389
2390 if (osid != sid) {
2391 /* Enable secure mode for SIDs transitions unless
2392 the noatsecure permission is granted between
2393 the two SIDs, i.e. ahp returns 0. */
2394 atsecure = avc_has_perm(osid, sid,
2395 SECCLASS_PROCESS,
2396 PROCESS__NOATSECURE, NULL);
2397 }
2398
2399 return !!atsecure;
2400}
2401
2402static int match_file(const void *p, struct file *file, unsigned fd)
2403{
2404 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2405}
2406
2407/* Derived from fs/exec.c:flush_old_files. */
2408static inline void flush_unauthorized_files(const struct cred *cred,
2409 struct files_struct *files)
2410{
2411 struct file *file, *devnull = NULL;
2412 struct tty_struct *tty;
2413 int drop_tty = 0;
2414 unsigned n;
2415
2416 tty = get_current_tty();
2417 if (tty) {
2418 spin_lock(&tty->files_lock);
2419 if (!list_empty(&tty->tty_files)) {
2420 struct tty_file_private *file_priv;
2421
2422 /* Revalidate access to controlling tty.
2423 Use file_path_has_perm on the tty path directly
2424 rather than using file_has_perm, as this particular
2425 open file may belong to another process and we are
2426 only interested in the inode-based check here. */
2427 file_priv = list_first_entry(&tty->tty_files,
2428 struct tty_file_private, list);
2429 file = file_priv->file;
2430 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2431 drop_tty = 1;
2432 }
2433 spin_unlock(&tty->files_lock);
2434 tty_kref_put(tty);
2435 }
2436 /* Reset controlling tty. */
2437 if (drop_tty)
2438 no_tty();
2439
2440 /* Revalidate access to inherited open files. */
2441 n = iterate_fd(files, 0, match_file, cred);
2442 if (!n) /* none found? */
2443 return;
2444
2445 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2446 if (IS_ERR(devnull))
2447 devnull = NULL;
2448 /* replace all the matching ones with this */
2449 do {
2450 replace_fd(n - 1, devnull, 0);
2451 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2452 if (devnull)
2453 fput(devnull);
2454}
2455
2456/*
2457 * Prepare a process for imminent new credential changes due to exec
2458 */
2459static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2460{
2461 struct task_security_struct *new_tsec;
2462 struct rlimit *rlim, *initrlim;
2463 int rc, i;
2464
2465 new_tsec = bprm->cred->security;
2466 if (new_tsec->sid == new_tsec->osid)
2467 return;
2468
2469 /* Close files for which the new task SID is not authorized. */
2470 flush_unauthorized_files(bprm->cred, current->files);
2471
2472 /* Always clear parent death signal on SID transitions. */
2473 current->pdeath_signal = 0;
2474
2475 /* Check whether the new SID can inherit resource limits from the old
2476 * SID. If not, reset all soft limits to the lower of the current
2477 * task's hard limit and the init task's soft limit.
2478 *
2479 * Note that the setting of hard limits (even to lower them) can be
2480 * controlled by the setrlimit check. The inclusion of the init task's
2481 * soft limit into the computation is to avoid resetting soft limits
2482 * higher than the default soft limit for cases where the default is
2483 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2484 */
2485 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2486 PROCESS__RLIMITINH, NULL);
2487 if (rc) {
2488 /* protect against do_prlimit() */
2489 task_lock(current);
2490 for (i = 0; i < RLIM_NLIMITS; i++) {
2491 rlim = current->signal->rlim + i;
2492 initrlim = init_task.signal->rlim + i;
2493 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2494 }
2495 task_unlock(current);
2496 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2497 }
2498}
2499
2500/*
2501 * Clean up the process immediately after the installation of new credentials
2502 * due to exec
2503 */
2504static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2505{
2506 const struct task_security_struct *tsec = current_security();
2507 struct itimerval itimer;
2508 u32 osid, sid;
2509 int rc, i;
2510
2511 osid = tsec->osid;
2512 sid = tsec->sid;
2513
2514 if (sid == osid)
2515 return;
2516
2517 /* Check whether the new SID can inherit signal state from the old SID.
2518 * If not, clear itimers to avoid subsequent signal generation and
2519 * flush and unblock signals.
2520 *
2521 * This must occur _after_ the task SID has been updated so that any
2522 * kill done after the flush will be checked against the new SID.
2523 */
2524 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2525 if (rc) {
2526 memset(&itimer, 0, sizeof itimer);
2527 for (i = 0; i < 3; i++)
2528 do_setitimer(i, &itimer, NULL);
2529 spin_lock_irq(¤t->sighand->siglock);
2530 if (!fatal_signal_pending(current)) {
2531 flush_sigqueue(¤t->pending);
2532 flush_sigqueue(¤t->signal->shared_pending);
2533 flush_signal_handlers(current, 1);
2534 sigemptyset(¤t->blocked);
2535 recalc_sigpending();
2536 }
2537 spin_unlock_irq(¤t->sighand->siglock);
2538 }
2539
2540 /* Wake up the parent if it is waiting so that it can recheck
2541 * wait permission to the new task SID. */
2542 read_lock(&tasklist_lock);
2543 __wake_up_parent(current, current->real_parent);
2544 read_unlock(&tasklist_lock);
2545}
2546
2547/* superblock security operations */
2548
2549static int selinux_sb_alloc_security(struct super_block *sb)
2550{
2551 return superblock_alloc_security(sb);
2552}
2553
2554static void selinux_sb_free_security(struct super_block *sb)
2555{
2556 superblock_free_security(sb);
2557}
2558
2559static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2560{
2561 if (plen > olen)
2562 return 0;
2563
2564 return !memcmp(prefix, option, plen);
2565}
2566
2567static inline int selinux_option(char *option, int len)
2568{
2569 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2570 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2571 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2572 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2573 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2574}
2575
2576static inline void take_option(char **to, char *from, int *first, int len)
2577{
2578 if (!*first) {
2579 **to = ',';
2580 *to += 1;
2581 } else
2582 *first = 0;
2583 memcpy(*to, from, len);
2584 *to += len;
2585}
2586
2587static inline void take_selinux_option(char **to, char *from, int *first,
2588 int len)
2589{
2590 int current_size = 0;
2591
2592 if (!*first) {
2593 **to = '|';
2594 *to += 1;
2595 } else
2596 *first = 0;
2597
2598 while (current_size < len) {
2599 if (*from != '"') {
2600 **to = *from;
2601 *to += 1;
2602 }
2603 from += 1;
2604 current_size += 1;
2605 }
2606}
2607
2608static int selinux_sb_copy_data(char *orig, char *copy)
2609{
2610 int fnosec, fsec, rc = 0;
2611 char *in_save, *in_curr, *in_end;
2612 char *sec_curr, *nosec_save, *nosec;
2613 int open_quote = 0;
2614
2615 in_curr = orig;
2616 sec_curr = copy;
2617
2618 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2619 if (!nosec) {
2620 rc = -ENOMEM;
2621 goto out;
2622 }
2623
2624 nosec_save = nosec;
2625 fnosec = fsec = 1;
2626 in_save = in_end = orig;
2627
2628 do {
2629 if (*in_end == '"')
2630 open_quote = !open_quote;
2631 if ((*in_end == ',' && open_quote == 0) ||
2632 *in_end == '\0') {
2633 int len = in_end - in_curr;
2634
2635 if (selinux_option(in_curr, len))
2636 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2637 else
2638 take_option(&nosec, in_curr, &fnosec, len);
2639
2640 in_curr = in_end + 1;
2641 }
2642 } while (*in_end++);
2643
2644 strcpy(in_save, nosec_save);
2645 free_page((unsigned long)nosec_save);
2646out:
2647 return rc;
2648}
2649
2650static int selinux_sb_remount(struct super_block *sb, void *data)
2651{
2652 int rc, i, *flags;
2653 struct security_mnt_opts opts;
2654 char *secdata, **mount_options;
2655 struct superblock_security_struct *sbsec = sb->s_security;
2656
2657 if (!(sbsec->flags & SE_SBINITIALIZED))
2658 return 0;
2659
2660 if (!data)
2661 return 0;
2662
2663 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2664 return 0;
2665
2666 security_init_mnt_opts(&opts);
2667 secdata = alloc_secdata();
2668 if (!secdata)
2669 return -ENOMEM;
2670 rc = selinux_sb_copy_data(data, secdata);
2671 if (rc)
2672 goto out_free_secdata;
2673
2674 rc = selinux_parse_opts_str(secdata, &opts);
2675 if (rc)
2676 goto out_free_secdata;
2677
2678 mount_options = opts.mnt_opts;
2679 flags = opts.mnt_opts_flags;
2680
2681 for (i = 0; i < opts.num_mnt_opts; i++) {
2682 u32 sid;
2683
2684 if (flags[i] == SBLABEL_MNT)
2685 continue;
2686 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2687 if (rc) {
2688 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2689 "(%s) failed for (dev %s, type %s) errno=%d\n",
2690 mount_options[i], sb->s_id, sb->s_type->name, rc);
2691 goto out_free_opts;
2692 }
2693 rc = -EINVAL;
2694 switch (flags[i]) {
2695 case FSCONTEXT_MNT:
2696 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2697 goto out_bad_option;
2698 break;
2699 case CONTEXT_MNT:
2700 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2701 goto out_bad_option;
2702 break;
2703 case ROOTCONTEXT_MNT: {
2704 struct inode_security_struct *root_isec;
2705 root_isec = backing_inode_security(sb->s_root);
2706
2707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2708 goto out_bad_option;
2709 break;
2710 }
2711 case DEFCONTEXT_MNT:
2712 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2713 goto out_bad_option;
2714 break;
2715 default:
2716 goto out_free_opts;
2717 }
2718 }
2719
2720 rc = 0;
2721out_free_opts:
2722 security_free_mnt_opts(&opts);
2723out_free_secdata:
2724 free_secdata(secdata);
2725 return rc;
2726out_bad_option:
2727 printk(KERN_WARNING "SELinux: unable to change security options "
2728 "during remount (dev %s, type=%s)\n", sb->s_id,
2729 sb->s_type->name);
2730 goto out_free_opts;
2731}
2732
2733static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2734{
2735 const struct cred *cred = current_cred();
2736 struct common_audit_data ad;
2737 int rc;
2738
2739 rc = superblock_doinit(sb, data);
2740 if (rc)
2741 return rc;
2742
2743 /* Allow all mounts performed by the kernel */
2744 if (flags & MS_KERNMOUNT)
2745 return 0;
2746
2747 ad.type = LSM_AUDIT_DATA_DENTRY;
2748 ad.u.dentry = sb->s_root;
2749 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2750}
2751
2752static int selinux_sb_statfs(struct dentry *dentry)
2753{
2754 const struct cred *cred = current_cred();
2755 struct common_audit_data ad;
2756
2757 ad.type = LSM_AUDIT_DATA_DENTRY;
2758 ad.u.dentry = dentry->d_sb->s_root;
2759 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2760}
2761
2762static int selinux_mount(const char *dev_name,
2763 struct path *path,
2764 const char *type,
2765 unsigned long flags,
2766 void *data)
2767{
2768 const struct cred *cred = current_cred();
2769
2770 if (flags & MS_REMOUNT)
2771 return superblock_has_perm(cred, path->dentry->d_sb,
2772 FILESYSTEM__REMOUNT, NULL);
2773 else
2774 return path_has_perm(cred, path, FILE__MOUNTON);
2775}
2776
2777static int selinux_umount(struct vfsmount *mnt, int flags)
2778{
2779 const struct cred *cred = current_cred();
2780
2781 return superblock_has_perm(cred, mnt->mnt_sb,
2782 FILESYSTEM__UNMOUNT, NULL);
2783}
2784
2785/* inode security operations */
2786
2787static int selinux_inode_alloc_security(struct inode *inode)
2788{
2789 return inode_alloc_security(inode);
2790}
2791
2792static void selinux_inode_free_security(struct inode *inode)
2793{
2794 inode_free_security(inode);
2795}
2796
2797static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2798 struct qstr *name, void **ctx,
2799 u32 *ctxlen)
2800{
2801 u32 newsid;
2802 int rc;
2803
2804 rc = selinux_determine_inode_label(d_inode(dentry->d_parent), name,
2805 inode_mode_to_security_class(mode),
2806 &newsid);
2807 if (rc)
2808 return rc;
2809
2810 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2811}
2812
2813static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2814 const struct qstr *qstr,
2815 const char **name,
2816 void **value, size_t *len)
2817{
2818 const struct task_security_struct *tsec = current_security();
2819 struct superblock_security_struct *sbsec;
2820 u32 sid, newsid, clen;
2821 int rc;
2822 char *context;
2823
2824 sbsec = dir->i_sb->s_security;
2825
2826 sid = tsec->sid;
2827 newsid = tsec->create_sid;
2828
2829 rc = selinux_determine_inode_label(
2830 dir, qstr,
2831 inode_mode_to_security_class(inode->i_mode),
2832 &newsid);
2833 if (rc)
2834 return rc;
2835
2836 /* Possibly defer initialization to selinux_complete_init. */
2837 if (sbsec->flags & SE_SBINITIALIZED) {
2838 struct inode_security_struct *isec = inode->i_security;
2839 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2840 isec->sid = newsid;
2841 isec->initialized = LABEL_INITIALIZED;
2842 }
2843
2844 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2845 return -EOPNOTSUPP;
2846
2847 if (name)
2848 *name = XATTR_SELINUX_SUFFIX;
2849
2850 if (value && len) {
2851 rc = security_sid_to_context_force(newsid, &context, &clen);
2852 if (rc)
2853 return rc;
2854 *value = context;
2855 *len = clen;
2856 }
2857
2858 return 0;
2859}
2860
2861static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2862{
2863 return may_create(dir, dentry, SECCLASS_FILE);
2864}
2865
2866static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2867{
2868 return may_link(dir, old_dentry, MAY_LINK);
2869}
2870
2871static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2872{
2873 return may_link(dir, dentry, MAY_UNLINK);
2874}
2875
2876static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2877{
2878 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2879}
2880
2881static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2882{
2883 return may_create(dir, dentry, SECCLASS_DIR);
2884}
2885
2886static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2887{
2888 return may_link(dir, dentry, MAY_RMDIR);
2889}
2890
2891static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892{
2893 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2894}
2895
2896static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2897 struct inode *new_inode, struct dentry *new_dentry)
2898{
2899 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2900}
2901
2902static int selinux_inode_readlink(struct dentry *dentry)
2903{
2904 const struct cred *cred = current_cred();
2905
2906 return dentry_has_perm(cred, dentry, FILE__READ);
2907}
2908
2909static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2910 bool rcu)
2911{
2912 const struct cred *cred = current_cred();
2913 struct common_audit_data ad;
2914 struct inode_security_struct *isec;
2915 u32 sid;
2916
2917 validate_creds(cred);
2918
2919 ad.type = LSM_AUDIT_DATA_DENTRY;
2920 ad.u.dentry = dentry;
2921 sid = cred_sid(cred);
2922 isec = inode_security_rcu(inode, rcu);
2923 if (IS_ERR(isec))
2924 return PTR_ERR(isec);
2925
2926 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2927 rcu ? MAY_NOT_BLOCK : 0);
2928}
2929
2930static noinline int audit_inode_permission(struct inode *inode,
2931 u32 perms, u32 audited, u32 denied,
2932 int result,
2933 unsigned flags)
2934{
2935 struct common_audit_data ad;
2936 struct inode_security_struct *isec = inode->i_security;
2937 int rc;
2938
2939 ad.type = LSM_AUDIT_DATA_INODE;
2940 ad.u.inode = inode;
2941
2942 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2943 audited, denied, result, &ad, flags);
2944 if (rc)
2945 return rc;
2946 return 0;
2947}
2948
2949static int selinux_inode_permission(struct inode *inode, int mask)
2950{
2951 const struct cred *cred = current_cred();
2952 u32 perms;
2953 bool from_access;
2954 unsigned flags = mask & MAY_NOT_BLOCK;
2955 struct inode_security_struct *isec;
2956 u32 sid;
2957 struct av_decision avd;
2958 int rc, rc2;
2959 u32 audited, denied;
2960
2961 from_access = mask & MAY_ACCESS;
2962 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2963
2964 /* No permission to check. Existence test. */
2965 if (!mask)
2966 return 0;
2967
2968 validate_creds(cred);
2969
2970 if (unlikely(IS_PRIVATE(inode)))
2971 return 0;
2972
2973 perms = file_mask_to_av(inode->i_mode, mask);
2974
2975 sid = cred_sid(cred);
2976 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
2977 if (IS_ERR(isec))
2978 return PTR_ERR(isec);
2979
2980 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2981 audited = avc_audit_required(perms, &avd, rc,
2982 from_access ? FILE__AUDIT_ACCESS : 0,
2983 &denied);
2984 if (likely(!audited))
2985 return rc;
2986
2987 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2988 if (rc2)
2989 return rc2;
2990 return rc;
2991}
2992
2993static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2994{
2995 const struct cred *cred = current_cred();
2996 unsigned int ia_valid = iattr->ia_valid;
2997 __u32 av = FILE__WRITE;
2998
2999 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3000 if (ia_valid & ATTR_FORCE) {
3001 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3002 ATTR_FORCE);
3003 if (!ia_valid)
3004 return 0;
3005 }
3006
3007 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3008 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3009 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3010
3011 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3012 && !(ia_valid & ATTR_FILE))
3013 av |= FILE__OPEN;
3014
3015 return dentry_has_perm(cred, dentry, av);
3016}
3017
3018static int selinux_inode_getattr(const struct path *path)
3019{
3020 return path_has_perm(current_cred(), path, FILE__GETATTR);
3021}
3022
3023static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3024{
3025 const struct cred *cred = current_cred();
3026
3027 if (!strncmp(name, XATTR_SECURITY_PREFIX,
3028 sizeof XATTR_SECURITY_PREFIX - 1)) {
3029 if (!strcmp(name, XATTR_NAME_CAPS)) {
3030 if (!capable(CAP_SETFCAP))
3031 return -EPERM;
3032 } else if (!capable(CAP_SYS_ADMIN)) {
3033 /* A different attribute in the security namespace.
3034 Restrict to administrator. */
3035 return -EPERM;
3036 }
3037 }
3038
3039 /* Not an attribute we recognize, so just check the
3040 ordinary setattr permission. */
3041 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3042}
3043
3044static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3045 const void *value, size_t size, int flags)
3046{
3047 struct inode *inode = d_backing_inode(dentry);
3048 struct inode_security_struct *isec = backing_inode_security(dentry);
3049 struct superblock_security_struct *sbsec;
3050 struct common_audit_data ad;
3051 u32 newsid, sid = current_sid();
3052 int rc = 0;
3053
3054 if (strcmp(name, XATTR_NAME_SELINUX))
3055 return selinux_inode_setotherxattr(dentry, name);
3056
3057 sbsec = inode->i_sb->s_security;
3058 if (!(sbsec->flags & SBLABEL_MNT))
3059 return -EOPNOTSUPP;
3060
3061 if (!inode_owner_or_capable(inode))
3062 return -EPERM;
3063
3064 ad.type = LSM_AUDIT_DATA_DENTRY;
3065 ad.u.dentry = dentry;
3066
3067 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3068 FILE__RELABELFROM, &ad);
3069 if (rc)
3070 return rc;
3071
3072 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3073 if (rc == -EINVAL) {
3074 if (!capable(CAP_MAC_ADMIN)) {
3075 struct audit_buffer *ab;
3076 size_t audit_size;
3077 const char *str;
3078
3079 /* We strip a nul only if it is at the end, otherwise the
3080 * context contains a nul and we should audit that */
3081 if (value) {
3082 str = value;
3083 if (str[size - 1] == '\0')
3084 audit_size = size - 1;
3085 else
3086 audit_size = size;
3087 } else {
3088 str = "";
3089 audit_size = 0;
3090 }
3091 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3092 audit_log_format(ab, "op=setxattr invalid_context=");
3093 audit_log_n_untrustedstring(ab, value, audit_size);
3094 audit_log_end(ab);
3095
3096 return rc;
3097 }
3098 rc = security_context_to_sid_force(value, size, &newsid);
3099 }
3100 if (rc)
3101 return rc;
3102
3103 rc = avc_has_perm(sid, newsid, isec->sclass,
3104 FILE__RELABELTO, &ad);
3105 if (rc)
3106 return rc;
3107
3108 rc = security_validate_transition(isec->sid, newsid, sid,
3109 isec->sclass);
3110 if (rc)
3111 return rc;
3112
3113 return avc_has_perm(newsid,
3114 sbsec->sid,
3115 SECCLASS_FILESYSTEM,
3116 FILESYSTEM__ASSOCIATE,
3117 &ad);
3118}
3119
3120static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3121 const void *value, size_t size,
3122 int flags)
3123{
3124 struct inode *inode = d_backing_inode(dentry);
3125 struct inode_security_struct *isec = backing_inode_security(dentry);
3126 u32 newsid;
3127 int rc;
3128
3129 if (strcmp(name, XATTR_NAME_SELINUX)) {
3130 /* Not an attribute we recognize, so nothing to do. */
3131 return;
3132 }
3133
3134 rc = security_context_to_sid_force(value, size, &newsid);
3135 if (rc) {
3136 printk(KERN_ERR "SELinux: unable to map context to SID"
3137 "for (%s, %lu), rc=%d\n",
3138 inode->i_sb->s_id, inode->i_ino, -rc);
3139 return;
3140 }
3141
3142 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3143 isec->sid = newsid;
3144 isec->initialized = LABEL_INITIALIZED;
3145
3146 return;
3147}
3148
3149static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3150{
3151 const struct cred *cred = current_cred();
3152
3153 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3154}
3155
3156static int selinux_inode_listxattr(struct dentry *dentry)
3157{
3158 const struct cred *cred = current_cred();
3159
3160 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3161}
3162
3163static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3164{
3165 if (strcmp(name, XATTR_NAME_SELINUX))
3166 return selinux_inode_setotherxattr(dentry, name);
3167
3168 /* No one is allowed to remove a SELinux security label.
3169 You can change the label, but all data must be labeled. */
3170 return -EACCES;
3171}
3172
3173/*
3174 * Copy the inode security context value to the user.
3175 *
3176 * Permission check is handled by selinux_inode_getxattr hook.
3177 */
3178static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3179{
3180 u32 size;
3181 int error;
3182 char *context = NULL;
3183 struct inode_security_struct *isec = inode_security(inode);
3184
3185 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3186 return -EOPNOTSUPP;
3187
3188 /*
3189 * If the caller has CAP_MAC_ADMIN, then get the raw context
3190 * value even if it is not defined by current policy; otherwise,
3191 * use the in-core value under current policy.
3192 * Use the non-auditing forms of the permission checks since
3193 * getxattr may be called by unprivileged processes commonly
3194 * and lack of permission just means that we fall back to the
3195 * in-core context value, not a denial.
3196 */
3197 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3198 SECURITY_CAP_NOAUDIT);
3199 if (!error)
3200 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3201 SECURITY_CAP_NOAUDIT);
3202 if (!error)
3203 error = security_sid_to_context_force(isec->sid, &context,
3204 &size);
3205 else
3206 error = security_sid_to_context(isec->sid, &context, &size);
3207 if (error)
3208 return error;
3209 error = size;
3210 if (alloc) {
3211 *buffer = context;
3212 goto out_nofree;
3213 }
3214 kfree(context);
3215out_nofree:
3216 return error;
3217}
3218
3219static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3220 const void *value, size_t size, int flags)
3221{
3222 struct inode_security_struct *isec = inode_security(inode);
3223 u32 newsid;
3224 int rc;
3225
3226 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3227 return -EOPNOTSUPP;
3228
3229 if (!value || !size)
3230 return -EACCES;
3231
3232 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3233 if (rc)
3234 return rc;
3235
3236 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3237 isec->sid = newsid;
3238 isec->initialized = LABEL_INITIALIZED;
3239 return 0;
3240}
3241
3242static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3243{
3244 const int len = sizeof(XATTR_NAME_SELINUX);
3245 if (buffer && len <= buffer_size)
3246 memcpy(buffer, XATTR_NAME_SELINUX, len);
3247 return len;
3248}
3249
3250static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3251{
3252 struct inode_security_struct *isec = inode_security_novalidate(inode);
3253 *secid = isec->sid;
3254}
3255
3256/* file security operations */
3257
3258static int selinux_revalidate_file_permission(struct file *file, int mask)
3259{
3260 const struct cred *cred = current_cred();
3261 struct inode *inode = file_inode(file);
3262
3263 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3264 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3265 mask |= MAY_APPEND;
3266
3267 return file_has_perm(cred, file,
3268 file_mask_to_av(inode->i_mode, mask));
3269}
3270
3271static int selinux_file_permission(struct file *file, int mask)
3272{
3273 struct inode *inode = file_inode(file);
3274 struct file_security_struct *fsec = file->f_security;
3275 struct inode_security_struct *isec;
3276 u32 sid = current_sid();
3277
3278 if (!mask)
3279 /* No permission to check. Existence test. */
3280 return 0;
3281
3282 isec = inode_security(inode);
3283 if (sid == fsec->sid && fsec->isid == isec->sid &&
3284 fsec->pseqno == avc_policy_seqno())
3285 /* No change since file_open check. */
3286 return 0;
3287
3288 return selinux_revalidate_file_permission(file, mask);
3289}
3290
3291static int selinux_file_alloc_security(struct file *file)
3292{
3293 return file_alloc_security(file);
3294}
3295
3296static void selinux_file_free_security(struct file *file)
3297{
3298 file_free_security(file);
3299}
3300
3301/*
3302 * Check whether a task has the ioctl permission and cmd
3303 * operation to an inode.
3304 */
3305static int ioctl_has_perm(const struct cred *cred, struct file *file,
3306 u32 requested, u16 cmd)
3307{
3308 struct common_audit_data ad;
3309 struct file_security_struct *fsec = file->f_security;
3310 struct inode *inode = file_inode(file);
3311 struct inode_security_struct *isec = inode_security(inode);
3312 struct lsm_ioctlop_audit ioctl;
3313 u32 ssid = cred_sid(cred);
3314 int rc;
3315 u8 driver = cmd >> 8;
3316 u8 xperm = cmd & 0xff;
3317
3318 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3319 ad.u.op = &ioctl;
3320 ad.u.op->cmd = cmd;
3321 ad.u.op->path = file->f_path;
3322
3323 if (ssid != fsec->sid) {
3324 rc = avc_has_perm(ssid, fsec->sid,
3325 SECCLASS_FD,
3326 FD__USE,
3327 &ad);
3328 if (rc)
3329 goto out;
3330 }
3331
3332 if (unlikely(IS_PRIVATE(inode)))
3333 return 0;
3334
3335 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3336 requested, driver, xperm, &ad);
3337out:
3338 return rc;
3339}
3340
3341static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3342 unsigned long arg)
3343{
3344 const struct cred *cred = current_cred();
3345 int error = 0;
3346
3347 switch (cmd) {
3348 case FIONREAD:
3349 /* fall through */
3350 case FIBMAP:
3351 /* fall through */
3352 case FIGETBSZ:
3353 /* fall through */
3354 case FS_IOC_GETFLAGS:
3355 /* fall through */
3356 case FS_IOC_GETVERSION:
3357 error = file_has_perm(cred, file, FILE__GETATTR);
3358 break;
3359
3360 case FS_IOC_SETFLAGS:
3361 /* fall through */
3362 case FS_IOC_SETVERSION:
3363 error = file_has_perm(cred, file, FILE__SETATTR);
3364 break;
3365
3366 /* sys_ioctl() checks */
3367 case FIONBIO:
3368 /* fall through */
3369 case FIOASYNC:
3370 error = file_has_perm(cred, file, 0);
3371 break;
3372
3373 case KDSKBENT:
3374 case KDSKBSENT:
3375 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3376 SECURITY_CAP_AUDIT);
3377 break;
3378
3379 /* default case assumes that the command will go
3380 * to the file's ioctl() function.
3381 */
3382 default:
3383 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3384 }
3385 return error;
3386}
3387
3388static int default_noexec;
3389
3390static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3391{
3392 const struct cred *cred = current_cred();
3393 int rc = 0;
3394
3395 if (default_noexec &&
3396 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3397 (!shared && (prot & PROT_WRITE)))) {
3398 /*
3399 * We are making executable an anonymous mapping or a
3400 * private file mapping that will also be writable.
3401 * This has an additional check.
3402 */
3403 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3404 if (rc)
3405 goto error;
3406 }
3407
3408 if (file) {
3409 /* read access is always possible with a mapping */
3410 u32 av = FILE__READ;
3411
3412 /* write access only matters if the mapping is shared */
3413 if (shared && (prot & PROT_WRITE))
3414 av |= FILE__WRITE;
3415
3416 if (prot & PROT_EXEC)
3417 av |= FILE__EXECUTE;
3418
3419 return file_has_perm(cred, file, av);
3420 }
3421
3422error:
3423 return rc;
3424}
3425
3426static int selinux_mmap_addr(unsigned long addr)
3427{
3428 int rc = 0;
3429
3430 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3431 u32 sid = current_sid();
3432 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3433 MEMPROTECT__MMAP_ZERO, NULL);
3434 }
3435
3436 return rc;
3437}
3438
3439static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3440 unsigned long prot, unsigned long flags)
3441{
3442 if (selinux_checkreqprot)
3443 prot = reqprot;
3444
3445 return file_map_prot_check(file, prot,
3446 (flags & MAP_TYPE) == MAP_SHARED);
3447}
3448
3449static int selinux_file_mprotect(struct vm_area_struct *vma,
3450 unsigned long reqprot,
3451 unsigned long prot)
3452{
3453 const struct cred *cred = current_cred();
3454
3455 if (selinux_checkreqprot)
3456 prot = reqprot;
3457
3458 if (default_noexec &&
3459 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3460 int rc = 0;
3461 if (vma->vm_start >= vma->vm_mm->start_brk &&
3462 vma->vm_end <= vma->vm_mm->brk) {
3463 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3464 } else if (!vma->vm_file &&
3465 vma->vm_start <= vma->vm_mm->start_stack &&
3466 vma->vm_end >= vma->vm_mm->start_stack) {
3467 rc = current_has_perm(current, PROCESS__EXECSTACK);
3468 } else if (vma->vm_file && vma->anon_vma) {
3469 /*
3470 * We are making executable a file mapping that has
3471 * had some COW done. Since pages might have been
3472 * written, check ability to execute the possibly
3473 * modified content. This typically should only
3474 * occur for text relocations.
3475 */
3476 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3477 }
3478 if (rc)
3479 return rc;
3480 }
3481
3482 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3483}
3484
3485static int selinux_file_lock(struct file *file, unsigned int cmd)
3486{
3487 const struct cred *cred = current_cred();
3488
3489 return file_has_perm(cred, file, FILE__LOCK);
3490}
3491
3492static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3493 unsigned long arg)
3494{
3495 const struct cred *cred = current_cred();
3496 int err = 0;
3497
3498 switch (cmd) {
3499 case F_SETFL:
3500 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3501 err = file_has_perm(cred, file, FILE__WRITE);
3502 break;
3503 }
3504 /* fall through */
3505 case F_SETOWN:
3506 case F_SETSIG:
3507 case F_GETFL:
3508 case F_GETOWN:
3509 case F_GETSIG:
3510 case F_GETOWNER_UIDS:
3511 /* Just check FD__USE permission */
3512 err = file_has_perm(cred, file, 0);
3513 break;
3514 case F_GETLK:
3515 case F_SETLK:
3516 case F_SETLKW:
3517 case F_OFD_GETLK:
3518 case F_OFD_SETLK:
3519 case F_OFD_SETLKW:
3520#if BITS_PER_LONG == 32
3521 case F_GETLK64:
3522 case F_SETLK64:
3523 case F_SETLKW64:
3524#endif
3525 err = file_has_perm(cred, file, FILE__LOCK);
3526 break;
3527 }
3528
3529 return err;
3530}
3531
3532static void selinux_file_set_fowner(struct file *file)
3533{
3534 struct file_security_struct *fsec;
3535
3536 fsec = file->f_security;
3537 fsec->fown_sid = current_sid();
3538}
3539
3540static int selinux_file_send_sigiotask(struct task_struct *tsk,
3541 struct fown_struct *fown, int signum)
3542{
3543 struct file *file;
3544 u32 sid = task_sid(tsk);
3545 u32 perm;
3546 struct file_security_struct *fsec;
3547
3548 /* struct fown_struct is never outside the context of a struct file */
3549 file = container_of(fown, struct file, f_owner);
3550
3551 fsec = file->f_security;
3552
3553 if (!signum)
3554 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3555 else
3556 perm = signal_to_av(signum);
3557
3558 return avc_has_perm(fsec->fown_sid, sid,
3559 SECCLASS_PROCESS, perm, NULL);
3560}
3561
3562static int selinux_file_receive(struct file *file)
3563{
3564 const struct cred *cred = current_cred();
3565
3566 return file_has_perm(cred, file, file_to_av(file));
3567}
3568
3569static int selinux_file_open(struct file *file, const struct cred *cred)
3570{
3571 struct file_security_struct *fsec;
3572 struct inode_security_struct *isec;
3573
3574 fsec = file->f_security;
3575 isec = inode_security(file_inode(file));
3576 /*
3577 * Save inode label and policy sequence number
3578 * at open-time so that selinux_file_permission
3579 * can determine whether revalidation is necessary.
3580 * Task label is already saved in the file security
3581 * struct as its SID.
3582 */
3583 fsec->isid = isec->sid;
3584 fsec->pseqno = avc_policy_seqno();
3585 /*
3586 * Since the inode label or policy seqno may have changed
3587 * between the selinux_inode_permission check and the saving
3588 * of state above, recheck that access is still permitted.
3589 * Otherwise, access might never be revalidated against the
3590 * new inode label or new policy.
3591 * This check is not redundant - do not remove.
3592 */
3593 return file_path_has_perm(cred, file, open_file_to_av(file));
3594}
3595
3596/* task security operations */
3597
3598static int selinux_task_create(unsigned long clone_flags)
3599{
3600 return current_has_perm(current, PROCESS__FORK);
3601}
3602
3603/*
3604 * allocate the SELinux part of blank credentials
3605 */
3606static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3607{
3608 struct task_security_struct *tsec;
3609
3610 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3611 if (!tsec)
3612 return -ENOMEM;
3613
3614 cred->security = tsec;
3615 return 0;
3616}
3617
3618/*
3619 * detach and free the LSM part of a set of credentials
3620 */
3621static void selinux_cred_free(struct cred *cred)
3622{
3623 struct task_security_struct *tsec = cred->security;
3624
3625 /*
3626 * cred->security == NULL if security_cred_alloc_blank() or
3627 * security_prepare_creds() returned an error.
3628 */
3629 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3630 cred->security = (void *) 0x7UL;
3631 kfree(tsec);
3632}
3633
3634/*
3635 * prepare a new set of credentials for modification
3636 */
3637static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3638 gfp_t gfp)
3639{
3640 const struct task_security_struct *old_tsec;
3641 struct task_security_struct *tsec;
3642
3643 old_tsec = old->security;
3644
3645 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3646 if (!tsec)
3647 return -ENOMEM;
3648
3649 new->security = tsec;
3650 return 0;
3651}
3652
3653/*
3654 * transfer the SELinux data to a blank set of creds
3655 */
3656static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3657{
3658 const struct task_security_struct *old_tsec = old->security;
3659 struct task_security_struct *tsec = new->security;
3660
3661 *tsec = *old_tsec;
3662}
3663
3664/*
3665 * set the security data for a kernel service
3666 * - all the creation contexts are set to unlabelled
3667 */
3668static int selinux_kernel_act_as(struct cred *new, u32 secid)
3669{
3670 struct task_security_struct *tsec = new->security;
3671 u32 sid = current_sid();
3672 int ret;
3673
3674 ret = avc_has_perm(sid, secid,
3675 SECCLASS_KERNEL_SERVICE,
3676 KERNEL_SERVICE__USE_AS_OVERRIDE,
3677 NULL);
3678 if (ret == 0) {
3679 tsec->sid = secid;
3680 tsec->create_sid = 0;
3681 tsec->keycreate_sid = 0;
3682 tsec->sockcreate_sid = 0;
3683 }
3684 return ret;
3685}
3686
3687/*
3688 * set the file creation context in a security record to the same as the
3689 * objective context of the specified inode
3690 */
3691static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3692{
3693 struct inode_security_struct *isec = inode_security(inode);
3694 struct task_security_struct *tsec = new->security;
3695 u32 sid = current_sid();
3696 int ret;
3697
3698 ret = avc_has_perm(sid, isec->sid,
3699 SECCLASS_KERNEL_SERVICE,
3700 KERNEL_SERVICE__CREATE_FILES_AS,
3701 NULL);
3702
3703 if (ret == 0)
3704 tsec->create_sid = isec->sid;
3705 return ret;
3706}
3707
3708static int selinux_kernel_module_request(char *kmod_name)
3709{
3710 u32 sid;
3711 struct common_audit_data ad;
3712
3713 sid = task_sid(current);
3714
3715 ad.type = LSM_AUDIT_DATA_KMOD;
3716 ad.u.kmod_name = kmod_name;
3717
3718 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3719 SYSTEM__MODULE_REQUEST, &ad);
3720}
3721
3722static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3723{
3724 return current_has_perm(p, PROCESS__SETPGID);
3725}
3726
3727static int selinux_task_getpgid(struct task_struct *p)
3728{
3729 return current_has_perm(p, PROCESS__GETPGID);
3730}
3731
3732static int selinux_task_getsid(struct task_struct *p)
3733{
3734 return current_has_perm(p, PROCESS__GETSESSION);
3735}
3736
3737static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3738{
3739 *secid = task_sid(p);
3740}
3741
3742static int selinux_task_setnice(struct task_struct *p, int nice)
3743{
3744 return current_has_perm(p, PROCESS__SETSCHED);
3745}
3746
3747static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3748{
3749 return current_has_perm(p, PROCESS__SETSCHED);
3750}
3751
3752static int selinux_task_getioprio(struct task_struct *p)
3753{
3754 return current_has_perm(p, PROCESS__GETSCHED);
3755}
3756
3757static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3758 struct rlimit *new_rlim)
3759{
3760 struct rlimit *old_rlim = p->signal->rlim + resource;
3761
3762 /* Control the ability to change the hard limit (whether
3763 lowering or raising it), so that the hard limit can
3764 later be used as a safe reset point for the soft limit
3765 upon context transitions. See selinux_bprm_committing_creds. */
3766 if (old_rlim->rlim_max != new_rlim->rlim_max)
3767 return current_has_perm(p, PROCESS__SETRLIMIT);
3768
3769 return 0;
3770}
3771
3772static int selinux_task_setscheduler(struct task_struct *p)
3773{
3774 return current_has_perm(p, PROCESS__SETSCHED);
3775}
3776
3777static int selinux_task_getscheduler(struct task_struct *p)
3778{
3779 return current_has_perm(p, PROCESS__GETSCHED);
3780}
3781
3782static int selinux_task_movememory(struct task_struct *p)
3783{
3784 return current_has_perm(p, PROCESS__SETSCHED);
3785}
3786
3787static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3788 int sig, u32 secid)
3789{
3790 u32 perm;
3791 int rc;
3792
3793 if (!sig)
3794 perm = PROCESS__SIGNULL; /* null signal; existence test */
3795 else
3796 perm = signal_to_av(sig);
3797 if (secid)
3798 rc = avc_has_perm(secid, task_sid(p),
3799 SECCLASS_PROCESS, perm, NULL);
3800 else
3801 rc = current_has_perm(p, perm);
3802 return rc;
3803}
3804
3805static int selinux_task_wait(struct task_struct *p)
3806{
3807 return task_has_perm(p, current, PROCESS__SIGCHLD);
3808}
3809
3810static void selinux_task_to_inode(struct task_struct *p,
3811 struct inode *inode)
3812{
3813 struct inode_security_struct *isec = inode->i_security;
3814 u32 sid = task_sid(p);
3815
3816 isec->sid = sid;
3817 isec->initialized = LABEL_INITIALIZED;
3818}
3819
3820/* Returns error only if unable to parse addresses */
3821static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3822 struct common_audit_data *ad, u8 *proto)
3823{
3824 int offset, ihlen, ret = -EINVAL;
3825 struct iphdr _iph, *ih;
3826
3827 offset = skb_network_offset(skb);
3828 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3829 if (ih == NULL)
3830 goto out;
3831
3832 ihlen = ih->ihl * 4;
3833 if (ihlen < sizeof(_iph))
3834 goto out;
3835
3836 ad->u.net->v4info.saddr = ih->saddr;
3837 ad->u.net->v4info.daddr = ih->daddr;
3838 ret = 0;
3839
3840 if (proto)
3841 *proto = ih->protocol;
3842
3843 switch (ih->protocol) {
3844 case IPPROTO_TCP: {
3845 struct tcphdr _tcph, *th;
3846
3847 if (ntohs(ih->frag_off) & IP_OFFSET)
3848 break;
3849
3850 offset += ihlen;
3851 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3852 if (th == NULL)
3853 break;
3854
3855 ad->u.net->sport = th->source;
3856 ad->u.net->dport = th->dest;
3857 break;
3858 }
3859
3860 case IPPROTO_UDP: {
3861 struct udphdr _udph, *uh;
3862
3863 if (ntohs(ih->frag_off) & IP_OFFSET)
3864 break;
3865
3866 offset += ihlen;
3867 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3868 if (uh == NULL)
3869 break;
3870
3871 ad->u.net->sport = uh->source;
3872 ad->u.net->dport = uh->dest;
3873 break;
3874 }
3875
3876 case IPPROTO_DCCP: {
3877 struct dccp_hdr _dccph, *dh;
3878
3879 if (ntohs(ih->frag_off) & IP_OFFSET)
3880 break;
3881
3882 offset += ihlen;
3883 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3884 if (dh == NULL)
3885 break;
3886
3887 ad->u.net->sport = dh->dccph_sport;
3888 ad->u.net->dport = dh->dccph_dport;
3889 break;
3890 }
3891
3892 default:
3893 break;
3894 }
3895out:
3896 return ret;
3897}
3898
3899#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3900
3901/* Returns error only if unable to parse addresses */
3902static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3903 struct common_audit_data *ad, u8 *proto)
3904{
3905 u8 nexthdr;
3906 int ret = -EINVAL, offset;
3907 struct ipv6hdr _ipv6h, *ip6;
3908 __be16 frag_off;
3909
3910 offset = skb_network_offset(skb);
3911 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3912 if (ip6 == NULL)
3913 goto out;
3914
3915 ad->u.net->v6info.saddr = ip6->saddr;
3916 ad->u.net->v6info.daddr = ip6->daddr;
3917 ret = 0;
3918
3919 nexthdr = ip6->nexthdr;
3920 offset += sizeof(_ipv6h);
3921 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3922 if (offset < 0)
3923 goto out;
3924
3925 if (proto)
3926 *proto = nexthdr;
3927
3928 switch (nexthdr) {
3929 case IPPROTO_TCP: {
3930 struct tcphdr _tcph, *th;
3931
3932 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3933 if (th == NULL)
3934 break;
3935
3936 ad->u.net->sport = th->source;
3937 ad->u.net->dport = th->dest;
3938 break;
3939 }
3940
3941 case IPPROTO_UDP: {
3942 struct udphdr _udph, *uh;
3943
3944 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3945 if (uh == NULL)
3946 break;
3947
3948 ad->u.net->sport = uh->source;
3949 ad->u.net->dport = uh->dest;
3950 break;
3951 }
3952
3953 case IPPROTO_DCCP: {
3954 struct dccp_hdr _dccph, *dh;
3955
3956 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3957 if (dh == NULL)
3958 break;
3959
3960 ad->u.net->sport = dh->dccph_sport;
3961 ad->u.net->dport = dh->dccph_dport;
3962 break;
3963 }
3964
3965 /* includes fragments */
3966 default:
3967 break;
3968 }
3969out:
3970 return ret;
3971}
3972
3973#endif /* IPV6 */
3974
3975static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3976 char **_addrp, int src, u8 *proto)
3977{
3978 char *addrp;
3979 int ret;
3980
3981 switch (ad->u.net->family) {
3982 case PF_INET:
3983 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3984 if (ret)
3985 goto parse_error;
3986 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3987 &ad->u.net->v4info.daddr);
3988 goto okay;
3989
3990#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3991 case PF_INET6:
3992 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3993 if (ret)
3994 goto parse_error;
3995 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3996 &ad->u.net->v6info.daddr);
3997 goto okay;
3998#endif /* IPV6 */
3999 default:
4000 addrp = NULL;
4001 goto okay;
4002 }
4003
4004parse_error:
4005 printk(KERN_WARNING
4006 "SELinux: failure in selinux_parse_skb(),"
4007 " unable to parse packet\n");
4008 return ret;
4009
4010okay:
4011 if (_addrp)
4012 *_addrp = addrp;
4013 return 0;
4014}
4015
4016/**
4017 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4018 * @skb: the packet
4019 * @family: protocol family
4020 * @sid: the packet's peer label SID
4021 *
4022 * Description:
4023 * Check the various different forms of network peer labeling and determine
4024 * the peer label/SID for the packet; most of the magic actually occurs in
4025 * the security server function security_net_peersid_cmp(). The function
4026 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4027 * or -EACCES if @sid is invalid due to inconsistencies with the different
4028 * peer labels.
4029 *
4030 */
4031static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4032{
4033 int err;
4034 u32 xfrm_sid;
4035 u32 nlbl_sid;
4036 u32 nlbl_type;
4037
4038 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4039 if (unlikely(err))
4040 return -EACCES;
4041 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4042 if (unlikely(err))
4043 return -EACCES;
4044
4045 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4046 if (unlikely(err)) {
4047 printk(KERN_WARNING
4048 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4049 " unable to determine packet's peer label\n");
4050 return -EACCES;
4051 }
4052
4053 return 0;
4054}
4055
4056/**
4057 * selinux_conn_sid - Determine the child socket label for a connection
4058 * @sk_sid: the parent socket's SID
4059 * @skb_sid: the packet's SID
4060 * @conn_sid: the resulting connection SID
4061 *
4062 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4063 * combined with the MLS information from @skb_sid in order to create
4064 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4065 * of @sk_sid. Returns zero on success, negative values on failure.
4066 *
4067 */
4068static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4069{
4070 int err = 0;
4071
4072 if (skb_sid != SECSID_NULL)
4073 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4074 else
4075 *conn_sid = sk_sid;
4076
4077 return err;
4078}
4079
4080/* socket security operations */
4081
4082static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4083 u16 secclass, u32 *socksid)
4084{
4085 if (tsec->sockcreate_sid > SECSID_NULL) {
4086 *socksid = tsec->sockcreate_sid;
4087 return 0;
4088 }
4089
4090 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4091 socksid);
4092}
4093
4094static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4095{
4096 struct sk_security_struct *sksec = sk->sk_security;
4097 struct common_audit_data ad;
4098 struct lsm_network_audit net = {0,};
4099 u32 tsid = task_sid(task);
4100
4101 if (sksec->sid == SECINITSID_KERNEL)
4102 return 0;
4103
4104 ad.type = LSM_AUDIT_DATA_NET;
4105 ad.u.net = &net;
4106 ad.u.net->sk = sk;
4107
4108 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4109}
4110
4111static int selinux_socket_create(int family, int type,
4112 int protocol, int kern)
4113{
4114 const struct task_security_struct *tsec = current_security();
4115 u32 newsid;
4116 u16 secclass;
4117 int rc;
4118
4119 if (kern)
4120 return 0;
4121
4122 secclass = socket_type_to_security_class(family, type, protocol);
4123 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4124 if (rc)
4125 return rc;
4126
4127 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4128}
4129
4130static int selinux_socket_post_create(struct socket *sock, int family,
4131 int type, int protocol, int kern)
4132{
4133 const struct task_security_struct *tsec = current_security();
4134 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4135 struct sk_security_struct *sksec;
4136 int err = 0;
4137
4138 isec->sclass = socket_type_to_security_class(family, type, protocol);
4139
4140 if (kern)
4141 isec->sid = SECINITSID_KERNEL;
4142 else {
4143 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4144 if (err)
4145 return err;
4146 }
4147
4148 isec->initialized = LABEL_INITIALIZED;
4149
4150 if (sock->sk) {
4151 sksec = sock->sk->sk_security;
4152 sksec->sid = isec->sid;
4153 sksec->sclass = isec->sclass;
4154 err = selinux_netlbl_socket_post_create(sock->sk, family);
4155 }
4156
4157 return err;
4158}
4159
4160/* Range of port numbers used to automatically bind.
4161 Need to determine whether we should perform a name_bind
4162 permission check between the socket and the port number. */
4163
4164static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4165{
4166 struct sock *sk = sock->sk;
4167 u16 family;
4168 int err;
4169
4170 err = sock_has_perm(current, sk, SOCKET__BIND);
4171 if (err)
4172 goto out;
4173
4174 /*
4175 * If PF_INET or PF_INET6, check name_bind permission for the port.
4176 * Multiple address binding for SCTP is not supported yet: we just
4177 * check the first address now.
4178 */
4179 family = sk->sk_family;
4180 if (family == PF_INET || family == PF_INET6) {
4181 char *addrp;
4182 struct sk_security_struct *sksec = sk->sk_security;
4183 struct common_audit_data ad;
4184 struct lsm_network_audit net = {0,};
4185 struct sockaddr_in *addr4 = NULL;
4186 struct sockaddr_in6 *addr6 = NULL;
4187 unsigned short snum;
4188 u32 sid, node_perm;
4189
4190 if (family == PF_INET) {
4191 addr4 = (struct sockaddr_in *)address;
4192 snum = ntohs(addr4->sin_port);
4193 addrp = (char *)&addr4->sin_addr.s_addr;
4194 } else {
4195 addr6 = (struct sockaddr_in6 *)address;
4196 snum = ntohs(addr6->sin6_port);
4197 addrp = (char *)&addr6->sin6_addr.s6_addr;
4198 }
4199
4200 if (snum) {
4201 int low, high;
4202
4203 inet_get_local_port_range(sock_net(sk), &low, &high);
4204
4205 if (snum < max(PROT_SOCK, low) || snum > high) {
4206 err = sel_netport_sid(sk->sk_protocol,
4207 snum, &sid);
4208 if (err)
4209 goto out;
4210 ad.type = LSM_AUDIT_DATA_NET;
4211 ad.u.net = &net;
4212 ad.u.net->sport = htons(snum);
4213 ad.u.net->family = family;
4214 err = avc_has_perm(sksec->sid, sid,
4215 sksec->sclass,
4216 SOCKET__NAME_BIND, &ad);
4217 if (err)
4218 goto out;
4219 }
4220 }
4221
4222 switch (sksec->sclass) {
4223 case SECCLASS_TCP_SOCKET:
4224 node_perm = TCP_SOCKET__NODE_BIND;
4225 break;
4226
4227 case SECCLASS_UDP_SOCKET:
4228 node_perm = UDP_SOCKET__NODE_BIND;
4229 break;
4230
4231 case SECCLASS_DCCP_SOCKET:
4232 node_perm = DCCP_SOCKET__NODE_BIND;
4233 break;
4234
4235 default:
4236 node_perm = RAWIP_SOCKET__NODE_BIND;
4237 break;
4238 }
4239
4240 err = sel_netnode_sid(addrp, family, &sid);
4241 if (err)
4242 goto out;
4243
4244 ad.type = LSM_AUDIT_DATA_NET;
4245 ad.u.net = &net;
4246 ad.u.net->sport = htons(snum);
4247 ad.u.net->family = family;
4248
4249 if (family == PF_INET)
4250 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4251 else
4252 ad.u.net->v6info.saddr = addr6->sin6_addr;
4253
4254 err = avc_has_perm(sksec->sid, sid,
4255 sksec->sclass, node_perm, &ad);
4256 if (err)
4257 goto out;
4258 }
4259out:
4260 return err;
4261}
4262
4263static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4264{
4265 struct sock *sk = sock->sk;
4266 struct sk_security_struct *sksec = sk->sk_security;
4267 int err;
4268
4269 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4270 if (err)
4271 return err;
4272
4273 /*
4274 * If a TCP or DCCP socket, check name_connect permission for the port.
4275 */
4276 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4277 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4278 struct common_audit_data ad;
4279 struct lsm_network_audit net = {0,};
4280 struct sockaddr_in *addr4 = NULL;
4281 struct sockaddr_in6 *addr6 = NULL;
4282 unsigned short snum;
4283 u32 sid, perm;
4284
4285 if (sk->sk_family == PF_INET) {
4286 addr4 = (struct sockaddr_in *)address;
4287 if (addrlen < sizeof(struct sockaddr_in))
4288 return -EINVAL;
4289 snum = ntohs(addr4->sin_port);
4290 } else {
4291 addr6 = (struct sockaddr_in6 *)address;
4292 if (addrlen < SIN6_LEN_RFC2133)
4293 return -EINVAL;
4294 snum = ntohs(addr6->sin6_port);
4295 }
4296
4297 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4298 if (err)
4299 goto out;
4300
4301 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4302 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4303
4304 ad.type = LSM_AUDIT_DATA_NET;
4305 ad.u.net = &net;
4306 ad.u.net->dport = htons(snum);
4307 ad.u.net->family = sk->sk_family;
4308 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4309 if (err)
4310 goto out;
4311 }
4312
4313 err = selinux_netlbl_socket_connect(sk, address);
4314
4315out:
4316 return err;
4317}
4318
4319static int selinux_socket_listen(struct socket *sock, int backlog)
4320{
4321 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4322}
4323
4324static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4325{
4326 int err;
4327 struct inode_security_struct *isec;
4328 struct inode_security_struct *newisec;
4329
4330 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4331 if (err)
4332 return err;
4333
4334 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4335
4336 isec = inode_security_novalidate(SOCK_INODE(sock));
4337 newisec->sclass = isec->sclass;
4338 newisec->sid = isec->sid;
4339 newisec->initialized = LABEL_INITIALIZED;
4340
4341 return 0;
4342}
4343
4344static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4345 int size)
4346{
4347 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4348}
4349
4350static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4351 int size, int flags)
4352{
4353 return sock_has_perm(current, sock->sk, SOCKET__READ);
4354}
4355
4356static int selinux_socket_getsockname(struct socket *sock)
4357{
4358 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4359}
4360
4361static int selinux_socket_getpeername(struct socket *sock)
4362{
4363 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4364}
4365
4366static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4367{
4368 int err;
4369
4370 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4371 if (err)
4372 return err;
4373
4374 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4375}
4376
4377static int selinux_socket_getsockopt(struct socket *sock, int level,
4378 int optname)
4379{
4380 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4381}
4382
4383static int selinux_socket_shutdown(struct socket *sock, int how)
4384{
4385 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4386}
4387
4388static int selinux_socket_unix_stream_connect(struct sock *sock,
4389 struct sock *other,
4390 struct sock *newsk)
4391{
4392 struct sk_security_struct *sksec_sock = sock->sk_security;
4393 struct sk_security_struct *sksec_other = other->sk_security;
4394 struct sk_security_struct *sksec_new = newsk->sk_security;
4395 struct common_audit_data ad;
4396 struct lsm_network_audit net = {0,};
4397 int err;
4398
4399 ad.type = LSM_AUDIT_DATA_NET;
4400 ad.u.net = &net;
4401 ad.u.net->sk = other;
4402
4403 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4404 sksec_other->sclass,
4405 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4406 if (err)
4407 return err;
4408
4409 /* server child socket */
4410 sksec_new->peer_sid = sksec_sock->sid;
4411 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4412 &sksec_new->sid);
4413 if (err)
4414 return err;
4415
4416 /* connecting socket */
4417 sksec_sock->peer_sid = sksec_new->sid;
4418
4419 return 0;
4420}
4421
4422static int selinux_socket_unix_may_send(struct socket *sock,
4423 struct socket *other)
4424{
4425 struct sk_security_struct *ssec = sock->sk->sk_security;
4426 struct sk_security_struct *osec = other->sk->sk_security;
4427 struct common_audit_data ad;
4428 struct lsm_network_audit net = {0,};
4429
4430 ad.type = LSM_AUDIT_DATA_NET;
4431 ad.u.net = &net;
4432 ad.u.net->sk = other->sk;
4433
4434 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4435 &ad);
4436}
4437
4438static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4439 char *addrp, u16 family, u32 peer_sid,
4440 struct common_audit_data *ad)
4441{
4442 int err;
4443 u32 if_sid;
4444 u32 node_sid;
4445
4446 err = sel_netif_sid(ns, ifindex, &if_sid);
4447 if (err)
4448 return err;
4449 err = avc_has_perm(peer_sid, if_sid,
4450 SECCLASS_NETIF, NETIF__INGRESS, ad);
4451 if (err)
4452 return err;
4453
4454 err = sel_netnode_sid(addrp, family, &node_sid);
4455 if (err)
4456 return err;
4457 return avc_has_perm(peer_sid, node_sid,
4458 SECCLASS_NODE, NODE__RECVFROM, ad);
4459}
4460
4461static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4462 u16 family)
4463{
4464 int err = 0;
4465 struct sk_security_struct *sksec = sk->sk_security;
4466 u32 sk_sid = sksec->sid;
4467 struct common_audit_data ad;
4468 struct lsm_network_audit net = {0,};
4469 char *addrp;
4470
4471 ad.type = LSM_AUDIT_DATA_NET;
4472 ad.u.net = &net;
4473 ad.u.net->netif = skb->skb_iif;
4474 ad.u.net->family = family;
4475 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4476 if (err)
4477 return err;
4478
4479 if (selinux_secmark_enabled()) {
4480 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4481 PACKET__RECV, &ad);
4482 if (err)
4483 return err;
4484 }
4485
4486 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4487 if (err)
4488 return err;
4489 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4490
4491 return err;
4492}
4493
4494static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4495{
4496 int err;
4497 struct sk_security_struct *sksec = sk->sk_security;
4498 u16 family = sk->sk_family;
4499 u32 sk_sid = sksec->sid;
4500 struct common_audit_data ad;
4501 struct lsm_network_audit net = {0,};
4502 char *addrp;
4503 u8 secmark_active;
4504 u8 peerlbl_active;
4505
4506 if (family != PF_INET && family != PF_INET6)
4507 return 0;
4508
4509 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4510 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4511 family = PF_INET;
4512
4513 /* If any sort of compatibility mode is enabled then handoff processing
4514 * to the selinux_sock_rcv_skb_compat() function to deal with the
4515 * special handling. We do this in an attempt to keep this function
4516 * as fast and as clean as possible. */
4517 if (!selinux_policycap_netpeer)
4518 return selinux_sock_rcv_skb_compat(sk, skb, family);
4519
4520 secmark_active = selinux_secmark_enabled();
4521 peerlbl_active = selinux_peerlbl_enabled();
4522 if (!secmark_active && !peerlbl_active)
4523 return 0;
4524
4525 ad.type = LSM_AUDIT_DATA_NET;
4526 ad.u.net = &net;
4527 ad.u.net->netif = skb->skb_iif;
4528 ad.u.net->family = family;
4529 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4530 if (err)
4531 return err;
4532
4533 if (peerlbl_active) {
4534 u32 peer_sid;
4535
4536 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4537 if (err)
4538 return err;
4539 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4540 addrp, family, peer_sid, &ad);
4541 if (err) {
4542 selinux_netlbl_err(skb, err, 0);
4543 return err;
4544 }
4545 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4546 PEER__RECV, &ad);
4547 if (err) {
4548 selinux_netlbl_err(skb, err, 0);
4549 return err;
4550 }
4551 }
4552
4553 if (secmark_active) {
4554 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4555 PACKET__RECV, &ad);
4556 if (err)
4557 return err;
4558 }
4559
4560 return err;
4561}
4562
4563static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4564 int __user *optlen, unsigned len)
4565{
4566 int err = 0;
4567 char *scontext;
4568 u32 scontext_len;
4569 struct sk_security_struct *sksec = sock->sk->sk_security;
4570 u32 peer_sid = SECSID_NULL;
4571
4572 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4573 sksec->sclass == SECCLASS_TCP_SOCKET)
4574 peer_sid = sksec->peer_sid;
4575 if (peer_sid == SECSID_NULL)
4576 return -ENOPROTOOPT;
4577
4578 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4579 if (err)
4580 return err;
4581
4582 if (scontext_len > len) {
4583 err = -ERANGE;
4584 goto out_len;
4585 }
4586
4587 if (copy_to_user(optval, scontext, scontext_len))
4588 err = -EFAULT;
4589
4590out_len:
4591 if (put_user(scontext_len, optlen))
4592 err = -EFAULT;
4593 kfree(scontext);
4594 return err;
4595}
4596
4597static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4598{
4599 u32 peer_secid = SECSID_NULL;
4600 u16 family;
4601
4602 if (skb && skb->protocol == htons(ETH_P_IP))
4603 family = PF_INET;
4604 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4605 family = PF_INET6;
4606 else if (sock)
4607 family = sock->sk->sk_family;
4608 else
4609 goto out;
4610
4611 if (sock && family == PF_UNIX)
4612 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4613 else if (skb)
4614 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4615
4616out:
4617 *secid = peer_secid;
4618 if (peer_secid == SECSID_NULL)
4619 return -EINVAL;
4620 return 0;
4621}
4622
4623static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4624{
4625 struct sk_security_struct *sksec;
4626
4627 sksec = kzalloc(sizeof(*sksec), priority);
4628 if (!sksec)
4629 return -ENOMEM;
4630
4631 sksec->peer_sid = SECINITSID_UNLABELED;
4632 sksec->sid = SECINITSID_UNLABELED;
4633 sksec->sclass = SECCLASS_SOCKET;
4634 selinux_netlbl_sk_security_reset(sksec);
4635 sk->sk_security = sksec;
4636
4637 return 0;
4638}
4639
4640static void selinux_sk_free_security(struct sock *sk)
4641{
4642 struct sk_security_struct *sksec = sk->sk_security;
4643
4644 sk->sk_security = NULL;
4645 selinux_netlbl_sk_security_free(sksec);
4646 kfree(sksec);
4647}
4648
4649static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4650{
4651 struct sk_security_struct *sksec = sk->sk_security;
4652 struct sk_security_struct *newsksec = newsk->sk_security;
4653
4654 newsksec->sid = sksec->sid;
4655 newsksec->peer_sid = sksec->peer_sid;
4656 newsksec->sclass = sksec->sclass;
4657
4658 selinux_netlbl_sk_security_reset(newsksec);
4659}
4660
4661static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4662{
4663 if (!sk)
4664 *secid = SECINITSID_ANY_SOCKET;
4665 else {
4666 struct sk_security_struct *sksec = sk->sk_security;
4667
4668 *secid = sksec->sid;
4669 }
4670}
4671
4672static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4673{
4674 struct inode_security_struct *isec =
4675 inode_security_novalidate(SOCK_INODE(parent));
4676 struct sk_security_struct *sksec = sk->sk_security;
4677
4678 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4679 sk->sk_family == PF_UNIX)
4680 isec->sid = sksec->sid;
4681 sksec->sclass = isec->sclass;
4682}
4683
4684static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4685 struct request_sock *req)
4686{
4687 struct sk_security_struct *sksec = sk->sk_security;
4688 int err;
4689 u16 family = req->rsk_ops->family;
4690 u32 connsid;
4691 u32 peersid;
4692
4693 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4694 if (err)
4695 return err;
4696 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4697 if (err)
4698 return err;
4699 req->secid = connsid;
4700 req->peer_secid = peersid;
4701
4702 return selinux_netlbl_inet_conn_request(req, family);
4703}
4704
4705static void selinux_inet_csk_clone(struct sock *newsk,
4706 const struct request_sock *req)
4707{
4708 struct sk_security_struct *newsksec = newsk->sk_security;
4709
4710 newsksec->sid = req->secid;
4711 newsksec->peer_sid = req->peer_secid;
4712 /* NOTE: Ideally, we should also get the isec->sid for the
4713 new socket in sync, but we don't have the isec available yet.
4714 So we will wait until sock_graft to do it, by which
4715 time it will have been created and available. */
4716
4717 /* We don't need to take any sort of lock here as we are the only
4718 * thread with access to newsksec */
4719 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4720}
4721
4722static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4723{
4724 u16 family = sk->sk_family;
4725 struct sk_security_struct *sksec = sk->sk_security;
4726
4727 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4728 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4729 family = PF_INET;
4730
4731 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4732}
4733
4734static int selinux_secmark_relabel_packet(u32 sid)
4735{
4736 const struct task_security_struct *__tsec;
4737 u32 tsid;
4738
4739 __tsec = current_security();
4740 tsid = __tsec->sid;
4741
4742 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4743}
4744
4745static void selinux_secmark_refcount_inc(void)
4746{
4747 atomic_inc(&selinux_secmark_refcount);
4748}
4749
4750static void selinux_secmark_refcount_dec(void)
4751{
4752 atomic_dec(&selinux_secmark_refcount);
4753}
4754
4755static void selinux_req_classify_flow(const struct request_sock *req,
4756 struct flowi *fl)
4757{
4758 fl->flowi_secid = req->secid;
4759}
4760
4761static int selinux_tun_dev_alloc_security(void **security)
4762{
4763 struct tun_security_struct *tunsec;
4764
4765 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4766 if (!tunsec)
4767 return -ENOMEM;
4768 tunsec->sid = current_sid();
4769
4770 *security = tunsec;
4771 return 0;
4772}
4773
4774static void selinux_tun_dev_free_security(void *security)
4775{
4776 kfree(security);
4777}
4778
4779static int selinux_tun_dev_create(void)
4780{
4781 u32 sid = current_sid();
4782
4783 /* we aren't taking into account the "sockcreate" SID since the socket
4784 * that is being created here is not a socket in the traditional sense,
4785 * instead it is a private sock, accessible only to the kernel, and
4786 * representing a wide range of network traffic spanning multiple
4787 * connections unlike traditional sockets - check the TUN driver to
4788 * get a better understanding of why this socket is special */
4789
4790 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4791 NULL);
4792}
4793
4794static int selinux_tun_dev_attach_queue(void *security)
4795{
4796 struct tun_security_struct *tunsec = security;
4797
4798 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4799 TUN_SOCKET__ATTACH_QUEUE, NULL);
4800}
4801
4802static int selinux_tun_dev_attach(struct sock *sk, void *security)
4803{
4804 struct tun_security_struct *tunsec = security;
4805 struct sk_security_struct *sksec = sk->sk_security;
4806
4807 /* we don't currently perform any NetLabel based labeling here and it
4808 * isn't clear that we would want to do so anyway; while we could apply
4809 * labeling without the support of the TUN user the resulting labeled
4810 * traffic from the other end of the connection would almost certainly
4811 * cause confusion to the TUN user that had no idea network labeling
4812 * protocols were being used */
4813
4814 sksec->sid = tunsec->sid;
4815 sksec->sclass = SECCLASS_TUN_SOCKET;
4816
4817 return 0;
4818}
4819
4820static int selinux_tun_dev_open(void *security)
4821{
4822 struct tun_security_struct *tunsec = security;
4823 u32 sid = current_sid();
4824 int err;
4825
4826 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4827 TUN_SOCKET__RELABELFROM, NULL);
4828 if (err)
4829 return err;
4830 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4831 TUN_SOCKET__RELABELTO, NULL);
4832 if (err)
4833 return err;
4834 tunsec->sid = sid;
4835
4836 return 0;
4837}
4838
4839static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4840{
4841 int err = 0;
4842 u32 perm;
4843 struct nlmsghdr *nlh;
4844 struct sk_security_struct *sksec = sk->sk_security;
4845
4846 if (skb->len < NLMSG_HDRLEN) {
4847 err = -EINVAL;
4848 goto out;
4849 }
4850 nlh = nlmsg_hdr(skb);
4851
4852 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4853 if (err) {
4854 if (err == -EINVAL) {
4855 pr_warn_ratelimited("SELinux: unrecognized netlink"
4856 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
4857 " pig=%d comm=%s\n",
4858 sk->sk_protocol, nlh->nlmsg_type,
4859 secclass_map[sksec->sclass - 1].name,
4860 task_pid_nr(current), current->comm);
4861 if (!selinux_enforcing || security_get_allow_unknown())
4862 err = 0;
4863 }
4864
4865 /* Ignore */
4866 if (err == -ENOENT)
4867 err = 0;
4868 goto out;
4869 }
4870
4871 err = sock_has_perm(current, sk, perm);
4872out:
4873 return err;
4874}
4875
4876#ifdef CONFIG_NETFILTER
4877
4878static unsigned int selinux_ip_forward(struct sk_buff *skb,
4879 const struct net_device *indev,
4880 u16 family)
4881{
4882 int err;
4883 char *addrp;
4884 u32 peer_sid;
4885 struct common_audit_data ad;
4886 struct lsm_network_audit net = {0,};
4887 u8 secmark_active;
4888 u8 netlbl_active;
4889 u8 peerlbl_active;
4890
4891 if (!selinux_policycap_netpeer)
4892 return NF_ACCEPT;
4893
4894 secmark_active = selinux_secmark_enabled();
4895 netlbl_active = netlbl_enabled();
4896 peerlbl_active = selinux_peerlbl_enabled();
4897 if (!secmark_active && !peerlbl_active)
4898 return NF_ACCEPT;
4899
4900 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4901 return NF_DROP;
4902
4903 ad.type = LSM_AUDIT_DATA_NET;
4904 ad.u.net = &net;
4905 ad.u.net->netif = indev->ifindex;
4906 ad.u.net->family = family;
4907 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4908 return NF_DROP;
4909
4910 if (peerlbl_active) {
4911 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4912 addrp, family, peer_sid, &ad);
4913 if (err) {
4914 selinux_netlbl_err(skb, err, 1);
4915 return NF_DROP;
4916 }
4917 }
4918
4919 if (secmark_active)
4920 if (avc_has_perm(peer_sid, skb->secmark,
4921 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4922 return NF_DROP;
4923
4924 if (netlbl_active)
4925 /* we do this in the FORWARD path and not the POST_ROUTING
4926 * path because we want to make sure we apply the necessary
4927 * labeling before IPsec is applied so we can leverage AH
4928 * protection */
4929 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4930 return NF_DROP;
4931
4932 return NF_ACCEPT;
4933}
4934
4935static unsigned int selinux_ipv4_forward(void *priv,
4936 struct sk_buff *skb,
4937 const struct nf_hook_state *state)
4938{
4939 return selinux_ip_forward(skb, state->in, PF_INET);
4940}
4941
4942#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4943static unsigned int selinux_ipv6_forward(void *priv,
4944 struct sk_buff *skb,
4945 const struct nf_hook_state *state)
4946{
4947 return selinux_ip_forward(skb, state->in, PF_INET6);
4948}
4949#endif /* IPV6 */
4950
4951static unsigned int selinux_ip_output(struct sk_buff *skb,
4952 u16 family)
4953{
4954 struct sock *sk;
4955 u32 sid;
4956
4957 if (!netlbl_enabled())
4958 return NF_ACCEPT;
4959
4960 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4961 * because we want to make sure we apply the necessary labeling
4962 * before IPsec is applied so we can leverage AH protection */
4963 sk = skb->sk;
4964 if (sk) {
4965 struct sk_security_struct *sksec;
4966
4967 if (sk_listener(sk))
4968 /* if the socket is the listening state then this
4969 * packet is a SYN-ACK packet which means it needs to
4970 * be labeled based on the connection/request_sock and
4971 * not the parent socket. unfortunately, we can't
4972 * lookup the request_sock yet as it isn't queued on
4973 * the parent socket until after the SYN-ACK is sent.
4974 * the "solution" is to simply pass the packet as-is
4975 * as any IP option based labeling should be copied
4976 * from the initial connection request (in the IP
4977 * layer). it is far from ideal, but until we get a
4978 * security label in the packet itself this is the
4979 * best we can do. */
4980 return NF_ACCEPT;
4981
4982 /* standard practice, label using the parent socket */
4983 sksec = sk->sk_security;
4984 sid = sksec->sid;
4985 } else
4986 sid = SECINITSID_KERNEL;
4987 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4988 return NF_DROP;
4989
4990 return NF_ACCEPT;
4991}
4992
4993static unsigned int selinux_ipv4_output(void *priv,
4994 struct sk_buff *skb,
4995 const struct nf_hook_state *state)
4996{
4997 return selinux_ip_output(skb, PF_INET);
4998}
4999
5000static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5001 int ifindex,
5002 u16 family)
5003{
5004 struct sock *sk = skb_to_full_sk(skb);
5005 struct sk_security_struct *sksec;
5006 struct common_audit_data ad;
5007 struct lsm_network_audit net = {0,};
5008 char *addrp;
5009 u8 proto;
5010
5011 if (sk == NULL)
5012 return NF_ACCEPT;
5013 sksec = sk->sk_security;
5014
5015 ad.type = LSM_AUDIT_DATA_NET;
5016 ad.u.net = &net;
5017 ad.u.net->netif = ifindex;
5018 ad.u.net->family = family;
5019 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5020 return NF_DROP;
5021
5022 if (selinux_secmark_enabled())
5023 if (avc_has_perm(sksec->sid, skb->secmark,
5024 SECCLASS_PACKET, PACKET__SEND, &ad))
5025 return NF_DROP_ERR(-ECONNREFUSED);
5026
5027 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5028 return NF_DROP_ERR(-ECONNREFUSED);
5029
5030 return NF_ACCEPT;
5031}
5032
5033static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5034 const struct net_device *outdev,
5035 u16 family)
5036{
5037 u32 secmark_perm;
5038 u32 peer_sid;
5039 int ifindex = outdev->ifindex;
5040 struct sock *sk;
5041 struct common_audit_data ad;
5042 struct lsm_network_audit net = {0,};
5043 char *addrp;
5044 u8 secmark_active;
5045 u8 peerlbl_active;
5046
5047 /* If any sort of compatibility mode is enabled then handoff processing
5048 * to the selinux_ip_postroute_compat() function to deal with the
5049 * special handling. We do this in an attempt to keep this function
5050 * as fast and as clean as possible. */
5051 if (!selinux_policycap_netpeer)
5052 return selinux_ip_postroute_compat(skb, ifindex, family);
5053
5054 secmark_active = selinux_secmark_enabled();
5055 peerlbl_active = selinux_peerlbl_enabled();
5056 if (!secmark_active && !peerlbl_active)
5057 return NF_ACCEPT;
5058
5059 sk = skb_to_full_sk(skb);
5060
5061#ifdef CONFIG_XFRM
5062 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5063 * packet transformation so allow the packet to pass without any checks
5064 * since we'll have another chance to perform access control checks
5065 * when the packet is on it's final way out.
5066 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5067 * is NULL, in this case go ahead and apply access control.
5068 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5069 * TCP listening state we cannot wait until the XFRM processing
5070 * is done as we will miss out on the SA label if we do;
5071 * unfortunately, this means more work, but it is only once per
5072 * connection. */
5073 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5074 !(sk && sk_listener(sk)))
5075 return NF_ACCEPT;
5076#endif
5077
5078 if (sk == NULL) {
5079 /* Without an associated socket the packet is either coming
5080 * from the kernel or it is being forwarded; check the packet
5081 * to determine which and if the packet is being forwarded
5082 * query the packet directly to determine the security label. */
5083 if (skb->skb_iif) {
5084 secmark_perm = PACKET__FORWARD_OUT;
5085 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5086 return NF_DROP;
5087 } else {
5088 secmark_perm = PACKET__SEND;
5089 peer_sid = SECINITSID_KERNEL;
5090 }
5091 } else if (sk_listener(sk)) {
5092 /* Locally generated packet but the associated socket is in the
5093 * listening state which means this is a SYN-ACK packet. In
5094 * this particular case the correct security label is assigned
5095 * to the connection/request_sock but unfortunately we can't
5096 * query the request_sock as it isn't queued on the parent
5097 * socket until after the SYN-ACK packet is sent; the only
5098 * viable choice is to regenerate the label like we do in
5099 * selinux_inet_conn_request(). See also selinux_ip_output()
5100 * for similar problems. */
5101 u32 skb_sid;
5102 struct sk_security_struct *sksec;
5103
5104 sksec = sk->sk_security;
5105 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5106 return NF_DROP;
5107 /* At this point, if the returned skb peerlbl is SECSID_NULL
5108 * and the packet has been through at least one XFRM
5109 * transformation then we must be dealing with the "final"
5110 * form of labeled IPsec packet; since we've already applied
5111 * all of our access controls on this packet we can safely
5112 * pass the packet. */
5113 if (skb_sid == SECSID_NULL) {
5114 switch (family) {
5115 case PF_INET:
5116 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5117 return NF_ACCEPT;
5118 break;
5119 case PF_INET6:
5120 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5121 return NF_ACCEPT;
5122 break;
5123 default:
5124 return NF_DROP_ERR(-ECONNREFUSED);
5125 }
5126 }
5127 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5128 return NF_DROP;
5129 secmark_perm = PACKET__SEND;
5130 } else {
5131 /* Locally generated packet, fetch the security label from the
5132 * associated socket. */
5133 struct sk_security_struct *sksec = sk->sk_security;
5134 peer_sid = sksec->sid;
5135 secmark_perm = PACKET__SEND;
5136 }
5137
5138 ad.type = LSM_AUDIT_DATA_NET;
5139 ad.u.net = &net;
5140 ad.u.net->netif = ifindex;
5141 ad.u.net->family = family;
5142 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5143 return NF_DROP;
5144
5145 if (secmark_active)
5146 if (avc_has_perm(peer_sid, skb->secmark,
5147 SECCLASS_PACKET, secmark_perm, &ad))
5148 return NF_DROP_ERR(-ECONNREFUSED);
5149
5150 if (peerlbl_active) {
5151 u32 if_sid;
5152 u32 node_sid;
5153
5154 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5155 return NF_DROP;
5156 if (avc_has_perm(peer_sid, if_sid,
5157 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5158 return NF_DROP_ERR(-ECONNREFUSED);
5159
5160 if (sel_netnode_sid(addrp, family, &node_sid))
5161 return NF_DROP;
5162 if (avc_has_perm(peer_sid, node_sid,
5163 SECCLASS_NODE, NODE__SENDTO, &ad))
5164 return NF_DROP_ERR(-ECONNREFUSED);
5165 }
5166
5167 return NF_ACCEPT;
5168}
5169
5170static unsigned int selinux_ipv4_postroute(void *priv,
5171 struct sk_buff *skb,
5172 const struct nf_hook_state *state)
5173{
5174 return selinux_ip_postroute(skb, state->out, PF_INET);
5175}
5176
5177#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5178static unsigned int selinux_ipv6_postroute(void *priv,
5179 struct sk_buff *skb,
5180 const struct nf_hook_state *state)
5181{
5182 return selinux_ip_postroute(skb, state->out, PF_INET6);
5183}
5184#endif /* IPV6 */
5185
5186#endif /* CONFIG_NETFILTER */
5187
5188static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5189{
5190 return selinux_nlmsg_perm(sk, skb);
5191}
5192
5193static int ipc_alloc_security(struct task_struct *task,
5194 struct kern_ipc_perm *perm,
5195 u16 sclass)
5196{
5197 struct ipc_security_struct *isec;
5198 u32 sid;
5199
5200 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5201 if (!isec)
5202 return -ENOMEM;
5203
5204 sid = task_sid(task);
5205 isec->sclass = sclass;
5206 isec->sid = sid;
5207 perm->security = isec;
5208
5209 return 0;
5210}
5211
5212static void ipc_free_security(struct kern_ipc_perm *perm)
5213{
5214 struct ipc_security_struct *isec = perm->security;
5215 perm->security = NULL;
5216 kfree(isec);
5217}
5218
5219static int msg_msg_alloc_security(struct msg_msg *msg)
5220{
5221 struct msg_security_struct *msec;
5222
5223 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5224 if (!msec)
5225 return -ENOMEM;
5226
5227 msec->sid = SECINITSID_UNLABELED;
5228 msg->security = msec;
5229
5230 return 0;
5231}
5232
5233static void msg_msg_free_security(struct msg_msg *msg)
5234{
5235 struct msg_security_struct *msec = msg->security;
5236
5237 msg->security = NULL;
5238 kfree(msec);
5239}
5240
5241static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5242 u32 perms)
5243{
5244 struct ipc_security_struct *isec;
5245 struct common_audit_data ad;
5246 u32 sid = current_sid();
5247
5248 isec = ipc_perms->security;
5249
5250 ad.type = LSM_AUDIT_DATA_IPC;
5251 ad.u.ipc_id = ipc_perms->key;
5252
5253 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5254}
5255
5256static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5257{
5258 return msg_msg_alloc_security(msg);
5259}
5260
5261static void selinux_msg_msg_free_security(struct msg_msg *msg)
5262{
5263 msg_msg_free_security(msg);
5264}
5265
5266/* message queue security operations */
5267static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5268{
5269 struct ipc_security_struct *isec;
5270 struct common_audit_data ad;
5271 u32 sid = current_sid();
5272 int rc;
5273
5274 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5275 if (rc)
5276 return rc;
5277
5278 isec = msq->q_perm.security;
5279
5280 ad.type = LSM_AUDIT_DATA_IPC;
5281 ad.u.ipc_id = msq->q_perm.key;
5282
5283 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5284 MSGQ__CREATE, &ad);
5285 if (rc) {
5286 ipc_free_security(&msq->q_perm);
5287 return rc;
5288 }
5289 return 0;
5290}
5291
5292static void selinux_msg_queue_free_security(struct msg_queue *msq)
5293{
5294 ipc_free_security(&msq->q_perm);
5295}
5296
5297static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5298{
5299 struct ipc_security_struct *isec;
5300 struct common_audit_data ad;
5301 u32 sid = current_sid();
5302
5303 isec = msq->q_perm.security;
5304
5305 ad.type = LSM_AUDIT_DATA_IPC;
5306 ad.u.ipc_id = msq->q_perm.key;
5307
5308 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5309 MSGQ__ASSOCIATE, &ad);
5310}
5311
5312static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5313{
5314 int err;
5315 int perms;
5316
5317 switch (cmd) {
5318 case IPC_INFO:
5319 case MSG_INFO:
5320 /* No specific object, just general system-wide information. */
5321 return task_has_system(current, SYSTEM__IPC_INFO);
5322 case IPC_STAT:
5323 case MSG_STAT:
5324 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5325 break;
5326 case IPC_SET:
5327 perms = MSGQ__SETATTR;
5328 break;
5329 case IPC_RMID:
5330 perms = MSGQ__DESTROY;
5331 break;
5332 default:
5333 return 0;
5334 }
5335
5336 err = ipc_has_perm(&msq->q_perm, perms);
5337 return err;
5338}
5339
5340static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5341{
5342 struct ipc_security_struct *isec;
5343 struct msg_security_struct *msec;
5344 struct common_audit_data ad;
5345 u32 sid = current_sid();
5346 int rc;
5347
5348 isec = msq->q_perm.security;
5349 msec = msg->security;
5350
5351 /*
5352 * First time through, need to assign label to the message
5353 */
5354 if (msec->sid == SECINITSID_UNLABELED) {
5355 /*
5356 * Compute new sid based on current process and
5357 * message queue this message will be stored in
5358 */
5359 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5360 NULL, &msec->sid);
5361 if (rc)
5362 return rc;
5363 }
5364
5365 ad.type = LSM_AUDIT_DATA_IPC;
5366 ad.u.ipc_id = msq->q_perm.key;
5367
5368 /* Can this process write to the queue? */
5369 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5370 MSGQ__WRITE, &ad);
5371 if (!rc)
5372 /* Can this process send the message */
5373 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5374 MSG__SEND, &ad);
5375 if (!rc)
5376 /* Can the message be put in the queue? */
5377 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5378 MSGQ__ENQUEUE, &ad);
5379
5380 return rc;
5381}
5382
5383static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5384 struct task_struct *target,
5385 long type, int mode)
5386{
5387 struct ipc_security_struct *isec;
5388 struct msg_security_struct *msec;
5389 struct common_audit_data ad;
5390 u32 sid = task_sid(target);
5391 int rc;
5392
5393 isec = msq->q_perm.security;
5394 msec = msg->security;
5395
5396 ad.type = LSM_AUDIT_DATA_IPC;
5397 ad.u.ipc_id = msq->q_perm.key;
5398
5399 rc = avc_has_perm(sid, isec->sid,
5400 SECCLASS_MSGQ, MSGQ__READ, &ad);
5401 if (!rc)
5402 rc = avc_has_perm(sid, msec->sid,
5403 SECCLASS_MSG, MSG__RECEIVE, &ad);
5404 return rc;
5405}
5406
5407/* Shared Memory security operations */
5408static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5409{
5410 struct ipc_security_struct *isec;
5411 struct common_audit_data ad;
5412 u32 sid = current_sid();
5413 int rc;
5414
5415 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5416 if (rc)
5417 return rc;
5418
5419 isec = shp->shm_perm.security;
5420
5421 ad.type = LSM_AUDIT_DATA_IPC;
5422 ad.u.ipc_id = shp->shm_perm.key;
5423
5424 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5425 SHM__CREATE, &ad);
5426 if (rc) {
5427 ipc_free_security(&shp->shm_perm);
5428 return rc;
5429 }
5430 return 0;
5431}
5432
5433static void selinux_shm_free_security(struct shmid_kernel *shp)
5434{
5435 ipc_free_security(&shp->shm_perm);
5436}
5437
5438static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5439{
5440 struct ipc_security_struct *isec;
5441 struct common_audit_data ad;
5442 u32 sid = current_sid();
5443
5444 isec = shp->shm_perm.security;
5445
5446 ad.type = LSM_AUDIT_DATA_IPC;
5447 ad.u.ipc_id = shp->shm_perm.key;
5448
5449 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5450 SHM__ASSOCIATE, &ad);
5451}
5452
5453/* Note, at this point, shp is locked down */
5454static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5455{
5456 int perms;
5457 int err;
5458
5459 switch (cmd) {
5460 case IPC_INFO:
5461 case SHM_INFO:
5462 /* No specific object, just general system-wide information. */
5463 return task_has_system(current, SYSTEM__IPC_INFO);
5464 case IPC_STAT:
5465 case SHM_STAT:
5466 perms = SHM__GETATTR | SHM__ASSOCIATE;
5467 break;
5468 case IPC_SET:
5469 perms = SHM__SETATTR;
5470 break;
5471 case SHM_LOCK:
5472 case SHM_UNLOCK:
5473 perms = SHM__LOCK;
5474 break;
5475 case IPC_RMID:
5476 perms = SHM__DESTROY;
5477 break;
5478 default:
5479 return 0;
5480 }
5481
5482 err = ipc_has_perm(&shp->shm_perm, perms);
5483 return err;
5484}
5485
5486static int selinux_shm_shmat(struct shmid_kernel *shp,
5487 char __user *shmaddr, int shmflg)
5488{
5489 u32 perms;
5490
5491 if (shmflg & SHM_RDONLY)
5492 perms = SHM__READ;
5493 else
5494 perms = SHM__READ | SHM__WRITE;
5495
5496 return ipc_has_perm(&shp->shm_perm, perms);
5497}
5498
5499/* Semaphore security operations */
5500static int selinux_sem_alloc_security(struct sem_array *sma)
5501{
5502 struct ipc_security_struct *isec;
5503 struct common_audit_data ad;
5504 u32 sid = current_sid();
5505 int rc;
5506
5507 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5508 if (rc)
5509 return rc;
5510
5511 isec = sma->sem_perm.security;
5512
5513 ad.type = LSM_AUDIT_DATA_IPC;
5514 ad.u.ipc_id = sma->sem_perm.key;
5515
5516 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5517 SEM__CREATE, &ad);
5518 if (rc) {
5519 ipc_free_security(&sma->sem_perm);
5520 return rc;
5521 }
5522 return 0;
5523}
5524
5525static void selinux_sem_free_security(struct sem_array *sma)
5526{
5527 ipc_free_security(&sma->sem_perm);
5528}
5529
5530static int selinux_sem_associate(struct sem_array *sma, int semflg)
5531{
5532 struct ipc_security_struct *isec;
5533 struct common_audit_data ad;
5534 u32 sid = current_sid();
5535
5536 isec = sma->sem_perm.security;
5537
5538 ad.type = LSM_AUDIT_DATA_IPC;
5539 ad.u.ipc_id = sma->sem_perm.key;
5540
5541 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5542 SEM__ASSOCIATE, &ad);
5543}
5544
5545/* Note, at this point, sma is locked down */
5546static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5547{
5548 int err;
5549 u32 perms;
5550
5551 switch (cmd) {
5552 case IPC_INFO:
5553 case SEM_INFO:
5554 /* No specific object, just general system-wide information. */
5555 return task_has_system(current, SYSTEM__IPC_INFO);
5556 case GETPID:
5557 case GETNCNT:
5558 case GETZCNT:
5559 perms = SEM__GETATTR;
5560 break;
5561 case GETVAL:
5562 case GETALL:
5563 perms = SEM__READ;
5564 break;
5565 case SETVAL:
5566 case SETALL:
5567 perms = SEM__WRITE;
5568 break;
5569 case IPC_RMID:
5570 perms = SEM__DESTROY;
5571 break;
5572 case IPC_SET:
5573 perms = SEM__SETATTR;
5574 break;
5575 case IPC_STAT:
5576 case SEM_STAT:
5577 perms = SEM__GETATTR | SEM__ASSOCIATE;
5578 break;
5579 default:
5580 return 0;
5581 }
5582
5583 err = ipc_has_perm(&sma->sem_perm, perms);
5584 return err;
5585}
5586
5587static int selinux_sem_semop(struct sem_array *sma,
5588 struct sembuf *sops, unsigned nsops, int alter)
5589{
5590 u32 perms;
5591
5592 if (alter)
5593 perms = SEM__READ | SEM__WRITE;
5594 else
5595 perms = SEM__READ;
5596
5597 return ipc_has_perm(&sma->sem_perm, perms);
5598}
5599
5600static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5601{
5602 u32 av = 0;
5603
5604 av = 0;
5605 if (flag & S_IRUGO)
5606 av |= IPC__UNIX_READ;
5607 if (flag & S_IWUGO)
5608 av |= IPC__UNIX_WRITE;
5609
5610 if (av == 0)
5611 return 0;
5612
5613 return ipc_has_perm(ipcp, av);
5614}
5615
5616static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5617{
5618 struct ipc_security_struct *isec = ipcp->security;
5619 *secid = isec->sid;
5620}
5621
5622static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5623{
5624 if (inode)
5625 inode_doinit_with_dentry(inode, dentry);
5626}
5627
5628static int selinux_getprocattr(struct task_struct *p,
5629 char *name, char **value)
5630{
5631 const struct task_security_struct *__tsec;
5632 u32 sid;
5633 int error;
5634 unsigned len;
5635
5636 if (current != p) {
5637 error = current_has_perm(p, PROCESS__GETATTR);
5638 if (error)
5639 return error;
5640 }
5641
5642 rcu_read_lock();
5643 __tsec = __task_cred(p)->security;
5644
5645 if (!strcmp(name, "current"))
5646 sid = __tsec->sid;
5647 else if (!strcmp(name, "prev"))
5648 sid = __tsec->osid;
5649 else if (!strcmp(name, "exec"))
5650 sid = __tsec->exec_sid;
5651 else if (!strcmp(name, "fscreate"))
5652 sid = __tsec->create_sid;
5653 else if (!strcmp(name, "keycreate"))
5654 sid = __tsec->keycreate_sid;
5655 else if (!strcmp(name, "sockcreate"))
5656 sid = __tsec->sockcreate_sid;
5657 else
5658 goto invalid;
5659 rcu_read_unlock();
5660
5661 if (!sid)
5662 return 0;
5663
5664 error = security_sid_to_context(sid, value, &len);
5665 if (error)
5666 return error;
5667 return len;
5668
5669invalid:
5670 rcu_read_unlock();
5671 return -EINVAL;
5672}
5673
5674static int selinux_setprocattr(struct task_struct *p,
5675 char *name, void *value, size_t size)
5676{
5677 struct task_security_struct *tsec;
5678 struct task_struct *tracer;
5679 struct cred *new;
5680 u32 sid = 0, ptsid;
5681 int error;
5682 char *str = value;
5683
5684 if (current != p) {
5685 /* SELinux only allows a process to change its own
5686 security attributes. */
5687 return -EACCES;
5688 }
5689
5690 /*
5691 * Basic control over ability to set these attributes at all.
5692 * current == p, but we'll pass them separately in case the
5693 * above restriction is ever removed.
5694 */
5695 if (!strcmp(name, "exec"))
5696 error = current_has_perm(p, PROCESS__SETEXEC);
5697 else if (!strcmp(name, "fscreate"))
5698 error = current_has_perm(p, PROCESS__SETFSCREATE);
5699 else if (!strcmp(name, "keycreate"))
5700 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5701 else if (!strcmp(name, "sockcreate"))
5702 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5703 else if (!strcmp(name, "current"))
5704 error = current_has_perm(p, PROCESS__SETCURRENT);
5705 else
5706 error = -EINVAL;
5707 if (error)
5708 return error;
5709
5710 /* Obtain a SID for the context, if one was specified. */
5711 if (size && str[1] && str[1] != '\n') {
5712 if (str[size-1] == '\n') {
5713 str[size-1] = 0;
5714 size--;
5715 }
5716 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5717 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5718 if (!capable(CAP_MAC_ADMIN)) {
5719 struct audit_buffer *ab;
5720 size_t audit_size;
5721
5722 /* We strip a nul only if it is at the end, otherwise the
5723 * context contains a nul and we should audit that */
5724 if (str[size - 1] == '\0')
5725 audit_size = size - 1;
5726 else
5727 audit_size = size;
5728 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5729 audit_log_format(ab, "op=fscreate invalid_context=");
5730 audit_log_n_untrustedstring(ab, value, audit_size);
5731 audit_log_end(ab);
5732
5733 return error;
5734 }
5735 error = security_context_to_sid_force(value, size,
5736 &sid);
5737 }
5738 if (error)
5739 return error;
5740 }
5741
5742 new = prepare_creds();
5743 if (!new)
5744 return -ENOMEM;
5745
5746 /* Permission checking based on the specified context is
5747 performed during the actual operation (execve,
5748 open/mkdir/...), when we know the full context of the
5749 operation. See selinux_bprm_set_creds for the execve
5750 checks and may_create for the file creation checks. The
5751 operation will then fail if the context is not permitted. */
5752 tsec = new->security;
5753 if (!strcmp(name, "exec")) {
5754 tsec->exec_sid = sid;
5755 } else if (!strcmp(name, "fscreate")) {
5756 tsec->create_sid = sid;
5757 } else if (!strcmp(name, "keycreate")) {
5758 error = may_create_key(sid, p);
5759 if (error)
5760 goto abort_change;
5761 tsec->keycreate_sid = sid;
5762 } else if (!strcmp(name, "sockcreate")) {
5763 tsec->sockcreate_sid = sid;
5764 } else if (!strcmp(name, "current")) {
5765 error = -EINVAL;
5766 if (sid == 0)
5767 goto abort_change;
5768
5769 /* Only allow single threaded processes to change context */
5770 error = -EPERM;
5771 if (!current_is_single_threaded()) {
5772 error = security_bounded_transition(tsec->sid, sid);
5773 if (error)
5774 goto abort_change;
5775 }
5776
5777 /* Check permissions for the transition. */
5778 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5779 PROCESS__DYNTRANSITION, NULL);
5780 if (error)
5781 goto abort_change;
5782
5783 /* Check for ptracing, and update the task SID if ok.
5784 Otherwise, leave SID unchanged and fail. */
5785 ptsid = 0;
5786 rcu_read_lock();
5787 tracer = ptrace_parent(p);
5788 if (tracer)
5789 ptsid = task_sid(tracer);
5790 rcu_read_unlock();
5791
5792 if (tracer) {
5793 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5794 PROCESS__PTRACE, NULL);
5795 if (error)
5796 goto abort_change;
5797 }
5798
5799 tsec->sid = sid;
5800 } else {
5801 error = -EINVAL;
5802 goto abort_change;
5803 }
5804
5805 commit_creds(new);
5806 return size;
5807
5808abort_change:
5809 abort_creds(new);
5810 return error;
5811}
5812
5813static int selinux_ismaclabel(const char *name)
5814{
5815 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5816}
5817
5818static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5819{
5820 return security_sid_to_context(secid, secdata, seclen);
5821}
5822
5823static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5824{
5825 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5826}
5827
5828static void selinux_release_secctx(char *secdata, u32 seclen)
5829{
5830 kfree(secdata);
5831}
5832
5833static void selinux_inode_invalidate_secctx(struct inode *inode)
5834{
5835 struct inode_security_struct *isec = inode->i_security;
5836
5837 mutex_lock(&isec->lock);
5838 isec->initialized = LABEL_INVALID;
5839 mutex_unlock(&isec->lock);
5840}
5841
5842/*
5843 * called with inode->i_mutex locked
5844 */
5845static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5846{
5847 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5848}
5849
5850/*
5851 * called with inode->i_mutex locked
5852 */
5853static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5854{
5855 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5856}
5857
5858static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5859{
5860 int len = 0;
5861 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5862 ctx, true);
5863 if (len < 0)
5864 return len;
5865 *ctxlen = len;
5866 return 0;
5867}
5868#ifdef CONFIG_KEYS
5869
5870static int selinux_key_alloc(struct key *k, const struct cred *cred,
5871 unsigned long flags)
5872{
5873 const struct task_security_struct *tsec;
5874 struct key_security_struct *ksec;
5875
5876 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5877 if (!ksec)
5878 return -ENOMEM;
5879
5880 tsec = cred->security;
5881 if (tsec->keycreate_sid)
5882 ksec->sid = tsec->keycreate_sid;
5883 else
5884 ksec->sid = tsec->sid;
5885
5886 k->security = ksec;
5887 return 0;
5888}
5889
5890static void selinux_key_free(struct key *k)
5891{
5892 struct key_security_struct *ksec = k->security;
5893
5894 k->security = NULL;
5895 kfree(ksec);
5896}
5897
5898static int selinux_key_permission(key_ref_t key_ref,
5899 const struct cred *cred,
5900 unsigned perm)
5901{
5902 struct key *key;
5903 struct key_security_struct *ksec;
5904 u32 sid;
5905
5906 /* if no specific permissions are requested, we skip the
5907 permission check. No serious, additional covert channels
5908 appear to be created. */
5909 if (perm == 0)
5910 return 0;
5911
5912 sid = cred_sid(cred);
5913
5914 key = key_ref_to_ptr(key_ref);
5915 ksec = key->security;
5916
5917 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5918}
5919
5920static int selinux_key_getsecurity(struct key *key, char **_buffer)
5921{
5922 struct key_security_struct *ksec = key->security;
5923 char *context = NULL;
5924 unsigned len;
5925 int rc;
5926
5927 rc = security_sid_to_context(ksec->sid, &context, &len);
5928 if (!rc)
5929 rc = len;
5930 *_buffer = context;
5931 return rc;
5932}
5933
5934#endif
5935
5936static struct security_hook_list selinux_hooks[] = {
5937 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5938 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5939 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5940 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5941
5942 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5943 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5944 LSM_HOOK_INIT(capget, selinux_capget),
5945 LSM_HOOK_INIT(capset, selinux_capset),
5946 LSM_HOOK_INIT(capable, selinux_capable),
5947 LSM_HOOK_INIT(quotactl, selinux_quotactl),
5948 LSM_HOOK_INIT(quota_on, selinux_quota_on),
5949 LSM_HOOK_INIT(syslog, selinux_syslog),
5950 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5951
5952 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5953
5954 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5955 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5956 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5957 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5958
5959 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5960 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5961 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5962 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5963 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5964 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5965 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5966 LSM_HOOK_INIT(sb_mount, selinux_mount),
5967 LSM_HOOK_INIT(sb_umount, selinux_umount),
5968 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5969 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5970 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
5971
5972 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
5973
5974 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5975 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5976 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
5977 LSM_HOOK_INIT(inode_create, selinux_inode_create),
5978 LSM_HOOK_INIT(inode_link, selinux_inode_link),
5979 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5980 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5981 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5982 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5983 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5984 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5985 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5986 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5987 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5988 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5989 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5990 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5991 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5992 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5993 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5994 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5995 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5996 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5997 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5998 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
5999
6000 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6001 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6002 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6003 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6004 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6005 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6006 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6007 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6008 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6009 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6010 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6011 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6012
6013 LSM_HOOK_INIT(file_open, selinux_file_open),
6014
6015 LSM_HOOK_INIT(task_create, selinux_task_create),
6016 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6017 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6018 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6019 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6020 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6021 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6022 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6023 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6024 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6025 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6026 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6027 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6028 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6029 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6030 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6031 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6032 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6033 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6034 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6035 LSM_HOOK_INIT(task_wait, selinux_task_wait),
6036 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6037
6038 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6039 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6040
6041 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6042 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6043
6044 LSM_HOOK_INIT(msg_queue_alloc_security,
6045 selinux_msg_queue_alloc_security),
6046 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6047 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6048 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6049 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6050 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6051
6052 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6053 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6054 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6055 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6056 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6057
6058 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6059 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6060 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6061 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6062 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6063
6064 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6065
6066 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6067 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6068
6069 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6070 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6071 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6072 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6073 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6074 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6075 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6076 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6077
6078 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6079 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6080
6081 LSM_HOOK_INIT(socket_create, selinux_socket_create),
6082 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6083 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6084 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6085 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6086 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6087 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6088 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6089 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6090 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6091 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6092 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6093 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6094 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6095 LSM_HOOK_INIT(socket_getpeersec_stream,
6096 selinux_socket_getpeersec_stream),
6097 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6098 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6099 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6100 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6101 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6102 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6103 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6104 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6105 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6106 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6107 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6108 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6109 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6110 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6111 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6112 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6113 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6114 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6115 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6116
6117#ifdef CONFIG_SECURITY_NETWORK_XFRM
6118 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6119 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6120 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6121 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6122 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6123 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6124 selinux_xfrm_state_alloc_acquire),
6125 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6126 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6127 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6128 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6129 selinux_xfrm_state_pol_flow_match),
6130 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6131#endif
6132
6133#ifdef CONFIG_KEYS
6134 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6135 LSM_HOOK_INIT(key_free, selinux_key_free),
6136 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6137 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6138#endif
6139
6140#ifdef CONFIG_AUDIT
6141 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6142 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6143 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6144 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6145#endif
6146};
6147
6148static __init int selinux_init(void)
6149{
6150 if (!security_module_enable("selinux")) {
6151 selinux_enabled = 0;
6152 return 0;
6153 }
6154
6155 if (!selinux_enabled) {
6156 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6157 return 0;
6158 }
6159
6160 printk(KERN_INFO "SELinux: Initializing.\n");
6161
6162 /* Set the security state for the initial task. */
6163 cred_init_security();
6164
6165 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6166
6167 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6168 sizeof(struct inode_security_struct),
6169 0, SLAB_PANIC, NULL);
6170 file_security_cache = kmem_cache_create("selinux_file_security",
6171 sizeof(struct file_security_struct),
6172 0, SLAB_PANIC, NULL);
6173 avc_init();
6174
6175 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6176
6177 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6178 panic("SELinux: Unable to register AVC netcache callback\n");
6179
6180 if (selinux_enforcing)
6181 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6182 else
6183 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6184
6185 return 0;
6186}
6187
6188static void delayed_superblock_init(struct super_block *sb, void *unused)
6189{
6190 superblock_doinit(sb, NULL);
6191}
6192
6193void selinux_complete_init(void)
6194{
6195 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6196
6197 /* Set up any superblocks initialized prior to the policy load. */
6198 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6199 iterate_supers(delayed_superblock_init, NULL);
6200}
6201
6202/* SELinux requires early initialization in order to label
6203 all processes and objects when they are created. */
6204security_initcall(selinux_init);
6205
6206#if defined(CONFIG_NETFILTER)
6207
6208static struct nf_hook_ops selinux_nf_ops[] = {
6209 {
6210 .hook = selinux_ipv4_postroute,
6211 .pf = NFPROTO_IPV4,
6212 .hooknum = NF_INET_POST_ROUTING,
6213 .priority = NF_IP_PRI_SELINUX_LAST,
6214 },
6215 {
6216 .hook = selinux_ipv4_forward,
6217 .pf = NFPROTO_IPV4,
6218 .hooknum = NF_INET_FORWARD,
6219 .priority = NF_IP_PRI_SELINUX_FIRST,
6220 },
6221 {
6222 .hook = selinux_ipv4_output,
6223 .pf = NFPROTO_IPV4,
6224 .hooknum = NF_INET_LOCAL_OUT,
6225 .priority = NF_IP_PRI_SELINUX_FIRST,
6226 },
6227#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6228 {
6229 .hook = selinux_ipv6_postroute,
6230 .pf = NFPROTO_IPV6,
6231 .hooknum = NF_INET_POST_ROUTING,
6232 .priority = NF_IP6_PRI_SELINUX_LAST,
6233 },
6234 {
6235 .hook = selinux_ipv6_forward,
6236 .pf = NFPROTO_IPV6,
6237 .hooknum = NF_INET_FORWARD,
6238 .priority = NF_IP6_PRI_SELINUX_FIRST,
6239 },
6240#endif /* IPV6 */
6241};
6242
6243static int __init selinux_nf_ip_init(void)
6244{
6245 int err;
6246
6247 if (!selinux_enabled)
6248 return 0;
6249
6250 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6251
6252 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6253 if (err)
6254 panic("SELinux: nf_register_hooks: error %d\n", err);
6255
6256 return 0;
6257}
6258
6259__initcall(selinux_nf_ip_init);
6260
6261#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6262static void selinux_nf_ip_exit(void)
6263{
6264 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6265
6266 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6267}
6268#endif
6269
6270#else /* CONFIG_NETFILTER */
6271
6272#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6273#define selinux_nf_ip_exit()
6274#endif
6275
6276#endif /* CONFIG_NETFILTER */
6277
6278#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6279static int selinux_disabled;
6280
6281int selinux_disable(void)
6282{
6283 if (ss_initialized) {
6284 /* Not permitted after initial policy load. */
6285 return -EINVAL;
6286 }
6287
6288 if (selinux_disabled) {
6289 /* Only do this once. */
6290 return -EINVAL;
6291 }
6292
6293 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6294
6295 selinux_disabled = 1;
6296 selinux_enabled = 0;
6297
6298 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6299
6300 /* Try to destroy the avc node cache */
6301 avc_disable();
6302
6303 /* Unregister netfilter hooks. */
6304 selinux_nf_ip_exit();
6305
6306 /* Unregister selinuxfs. */
6307 exit_sel_fs();
6308
6309 return 0;
6310}
6311#endif
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 * Copyright (C) 2016 Mellanox Technologies
21 *
22 * This program is free software; you can redistribute it and/or modify
23 * it under the terms of the GNU General Public License version 2,
24 * as published by the Free Software Foundation.
25 */
26
27#include <linux/init.h>
28#include <linux/kd.h>
29#include <linux/kernel.h>
30#include <linux/tracehook.h>
31#include <linux/errno.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/task.h>
34#include <linux/lsm_hooks.h>
35#include <linux/xattr.h>
36#include <linux/capability.h>
37#include <linux/unistd.h>
38#include <linux/mm.h>
39#include <linux/mman.h>
40#include <linux/slab.h>
41#include <linux/pagemap.h>
42#include <linux/proc_fs.h>
43#include <linux/swap.h>
44#include <linux/spinlock.h>
45#include <linux/syscalls.h>
46#include <linux/dcache.h>
47#include <linux/file.h>
48#include <linux/fdtable.h>
49#include <linux/namei.h>
50#include <linux/mount.h>
51#include <linux/netfilter_ipv4.h>
52#include <linux/netfilter_ipv6.h>
53#include <linux/tty.h>
54#include <net/icmp.h>
55#include <net/ip.h> /* for local_port_range[] */
56#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
57#include <net/inet_connection_sock.h>
58#include <net/net_namespace.h>
59#include <net/netlabel.h>
60#include <linux/uaccess.h>
61#include <asm/ioctls.h>
62#include <linux/atomic.h>
63#include <linux/bitops.h>
64#include <linux/interrupt.h>
65#include <linux/netdevice.h> /* for network interface checks */
66#include <net/netlink.h>
67#include <linux/tcp.h>
68#include <linux/udp.h>
69#include <linux/dccp.h>
70#include <linux/sctp.h>
71#include <net/sctp/structs.h>
72#include <linux/quota.h>
73#include <linux/un.h> /* for Unix socket types */
74#include <net/af_unix.h> /* for Unix socket types */
75#include <linux/parser.h>
76#include <linux/nfs_mount.h>
77#include <net/ipv6.h>
78#include <linux/hugetlb.h>
79#include <linux/personality.h>
80#include <linux/audit.h>
81#include <linux/string.h>
82#include <linux/selinux.h>
83#include <linux/mutex.h>
84#include <linux/posix-timers.h>
85#include <linux/syslog.h>
86#include <linux/user_namespace.h>
87#include <linux/export.h>
88#include <linux/msg.h>
89#include <linux/shm.h>
90#include <linux/bpf.h>
91
92#include "avc.h"
93#include "objsec.h"
94#include "netif.h"
95#include "netnode.h"
96#include "netport.h"
97#include "ibpkey.h"
98#include "xfrm.h"
99#include "netlabel.h"
100#include "audit.h"
101#include "avc_ss.h"
102
103struct selinux_state selinux_state;
104
105/* SECMARK reference count */
106static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
107
108#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
109static int selinux_enforcing_boot;
110
111static int __init enforcing_setup(char *str)
112{
113 unsigned long enforcing;
114 if (!kstrtoul(str, 0, &enforcing))
115 selinux_enforcing_boot = enforcing ? 1 : 0;
116 return 1;
117}
118__setup("enforcing=", enforcing_setup);
119#else
120#define selinux_enforcing_boot 1
121#endif
122
123#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
124int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
125
126static int __init selinux_enabled_setup(char *str)
127{
128 unsigned long enabled;
129 if (!kstrtoul(str, 0, &enabled))
130 selinux_enabled = enabled ? 1 : 0;
131 return 1;
132}
133__setup("selinux=", selinux_enabled_setup);
134#else
135int selinux_enabled = 1;
136#endif
137
138static unsigned int selinux_checkreqprot_boot =
139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141static int __init checkreqprot_setup(char *str)
142{
143 unsigned long checkreqprot;
144
145 if (!kstrtoul(str, 0, &checkreqprot))
146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 return 1;
148}
149__setup("checkreqprot=", checkreqprot_setup);
150
151static struct kmem_cache *sel_inode_cache;
152static struct kmem_cache *file_security_cache;
153
154/**
155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156 *
157 * Description:
158 * This function checks the SECMARK reference counter to see if any SECMARK
159 * targets are currently configured, if the reference counter is greater than
160 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
161 * enabled, false (0) if SECMARK is disabled. If the always_check_network
162 * policy capability is enabled, SECMARK is always considered enabled.
163 *
164 */
165static int selinux_secmark_enabled(void)
166{
167 return (selinux_policycap_alwaysnetwork() ||
168 atomic_read(&selinux_secmark_refcount));
169}
170
171/**
172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173 *
174 * Description:
175 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
176 * (1) if any are enabled or false (0) if neither are enabled. If the
177 * always_check_network policy capability is enabled, peer labeling
178 * is always considered enabled.
179 *
180 */
181static int selinux_peerlbl_enabled(void)
182{
183 return (selinux_policycap_alwaysnetwork() ||
184 netlbl_enabled() || selinux_xfrm_enabled());
185}
186
187static int selinux_netcache_avc_callback(u32 event)
188{
189 if (event == AVC_CALLBACK_RESET) {
190 sel_netif_flush();
191 sel_netnode_flush();
192 sel_netport_flush();
193 synchronize_net();
194 }
195 return 0;
196}
197
198static int selinux_lsm_notifier_avc_callback(u32 event)
199{
200 if (event == AVC_CALLBACK_RESET) {
201 sel_ib_pkey_flush();
202 call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 }
204
205 return 0;
206}
207
208/*
209 * initialise the security for the init task
210 */
211static void cred_init_security(void)
212{
213 struct cred *cred = (struct cred *) current->real_cred;
214 struct task_security_struct *tsec;
215
216 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
217 if (!tsec)
218 panic("SELinux: Failed to initialize initial task.\n");
219
220 tsec->osid = tsec->sid = SECINITSID_KERNEL;
221 cred->security = tsec;
222}
223
224/*
225 * get the security ID of a set of credentials
226 */
227static inline u32 cred_sid(const struct cred *cred)
228{
229 const struct task_security_struct *tsec;
230
231 tsec = cred->security;
232 return tsec->sid;
233}
234
235/*
236 * get the objective security ID of a task
237 */
238static inline u32 task_sid(const struct task_struct *task)
239{
240 u32 sid;
241
242 rcu_read_lock();
243 sid = cred_sid(__task_cred(task));
244 rcu_read_unlock();
245 return sid;
246}
247
248/* Allocate and free functions for each kind of security blob. */
249
250static int inode_alloc_security(struct inode *inode)
251{
252 struct inode_security_struct *isec;
253 u32 sid = current_sid();
254
255 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
256 if (!isec)
257 return -ENOMEM;
258
259 spin_lock_init(&isec->lock);
260 INIT_LIST_HEAD(&isec->list);
261 isec->inode = inode;
262 isec->sid = SECINITSID_UNLABELED;
263 isec->sclass = SECCLASS_FILE;
264 isec->task_sid = sid;
265 isec->initialized = LABEL_INVALID;
266 inode->i_security = isec;
267
268 return 0;
269}
270
271static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
272
273/*
274 * Try reloading inode security labels that have been marked as invalid. The
275 * @may_sleep parameter indicates when sleeping and thus reloading labels is
276 * allowed; when set to false, returns -ECHILD when the label is
277 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
278 * when no dentry is available, set it to NULL instead.
279 */
280static int __inode_security_revalidate(struct inode *inode,
281 struct dentry *opt_dentry,
282 bool may_sleep)
283{
284 struct inode_security_struct *isec = inode->i_security;
285
286 might_sleep_if(may_sleep);
287
288 if (selinux_state.initialized &&
289 isec->initialized != LABEL_INITIALIZED) {
290 if (!may_sleep)
291 return -ECHILD;
292
293 /*
294 * Try reloading the inode security label. This will fail if
295 * @opt_dentry is NULL and no dentry for this inode can be
296 * found; in that case, continue using the old label.
297 */
298 inode_doinit_with_dentry(inode, opt_dentry);
299 }
300 return 0;
301}
302
303static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
304{
305 return inode->i_security;
306}
307
308static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
309{
310 int error;
311
312 error = __inode_security_revalidate(inode, NULL, !rcu);
313 if (error)
314 return ERR_PTR(error);
315 return inode->i_security;
316}
317
318/*
319 * Get the security label of an inode.
320 */
321static struct inode_security_struct *inode_security(struct inode *inode)
322{
323 __inode_security_revalidate(inode, NULL, true);
324 return inode->i_security;
325}
326
327static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
328{
329 struct inode *inode = d_backing_inode(dentry);
330
331 return inode->i_security;
332}
333
334/*
335 * Get the security label of a dentry's backing inode.
336 */
337static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
338{
339 struct inode *inode = d_backing_inode(dentry);
340
341 __inode_security_revalidate(inode, dentry, true);
342 return inode->i_security;
343}
344
345static void inode_free_rcu(struct rcu_head *head)
346{
347 struct inode_security_struct *isec;
348
349 isec = container_of(head, struct inode_security_struct, rcu);
350 kmem_cache_free(sel_inode_cache, isec);
351}
352
353static void inode_free_security(struct inode *inode)
354{
355 struct inode_security_struct *isec = inode->i_security;
356 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
357
358 /*
359 * As not all inode security structures are in a list, we check for
360 * empty list outside of the lock to make sure that we won't waste
361 * time taking a lock doing nothing.
362 *
363 * The list_del_init() function can be safely called more than once.
364 * It should not be possible for this function to be called with
365 * concurrent list_add(), but for better safety against future changes
366 * in the code, we use list_empty_careful() here.
367 */
368 if (!list_empty_careful(&isec->list)) {
369 spin_lock(&sbsec->isec_lock);
370 list_del_init(&isec->list);
371 spin_unlock(&sbsec->isec_lock);
372 }
373
374 /*
375 * The inode may still be referenced in a path walk and
376 * a call to selinux_inode_permission() can be made
377 * after inode_free_security() is called. Ideally, the VFS
378 * wouldn't do this, but fixing that is a much harder
379 * job. For now, simply free the i_security via RCU, and
380 * leave the current inode->i_security pointer intact.
381 * The inode will be freed after the RCU grace period too.
382 */
383 call_rcu(&isec->rcu, inode_free_rcu);
384}
385
386static int file_alloc_security(struct file *file)
387{
388 struct file_security_struct *fsec;
389 u32 sid = current_sid();
390
391 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
392 if (!fsec)
393 return -ENOMEM;
394
395 fsec->sid = sid;
396 fsec->fown_sid = sid;
397 file->f_security = fsec;
398
399 return 0;
400}
401
402static void file_free_security(struct file *file)
403{
404 struct file_security_struct *fsec = file->f_security;
405 file->f_security = NULL;
406 kmem_cache_free(file_security_cache, fsec);
407}
408
409static int superblock_alloc_security(struct super_block *sb)
410{
411 struct superblock_security_struct *sbsec;
412
413 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
414 if (!sbsec)
415 return -ENOMEM;
416
417 mutex_init(&sbsec->lock);
418 INIT_LIST_HEAD(&sbsec->isec_head);
419 spin_lock_init(&sbsec->isec_lock);
420 sbsec->sb = sb;
421 sbsec->sid = SECINITSID_UNLABELED;
422 sbsec->def_sid = SECINITSID_FILE;
423 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
424 sb->s_security = sbsec;
425
426 return 0;
427}
428
429static void superblock_free_security(struct super_block *sb)
430{
431 struct superblock_security_struct *sbsec = sb->s_security;
432 sb->s_security = NULL;
433 kfree(sbsec);
434}
435
436static inline int inode_doinit(struct inode *inode)
437{
438 return inode_doinit_with_dentry(inode, NULL);
439}
440
441enum {
442 Opt_error = -1,
443 Opt_context = 1,
444 Opt_fscontext = 2,
445 Opt_defcontext = 3,
446 Opt_rootcontext = 4,
447 Opt_labelsupport = 5,
448 Opt_nextmntopt = 6,
449};
450
451#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
452
453static const match_table_t tokens = {
454 {Opt_context, CONTEXT_STR "%s"},
455 {Opt_fscontext, FSCONTEXT_STR "%s"},
456 {Opt_defcontext, DEFCONTEXT_STR "%s"},
457 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
458 {Opt_labelsupport, LABELSUPP_STR},
459 {Opt_error, NULL},
460};
461
462#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
463
464static int may_context_mount_sb_relabel(u32 sid,
465 struct superblock_security_struct *sbsec,
466 const struct cred *cred)
467{
468 const struct task_security_struct *tsec = cred->security;
469 int rc;
470
471 rc = avc_has_perm(&selinux_state,
472 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
473 FILESYSTEM__RELABELFROM, NULL);
474 if (rc)
475 return rc;
476
477 rc = avc_has_perm(&selinux_state,
478 tsec->sid, sid, SECCLASS_FILESYSTEM,
479 FILESYSTEM__RELABELTO, NULL);
480 return rc;
481}
482
483static int may_context_mount_inode_relabel(u32 sid,
484 struct superblock_security_struct *sbsec,
485 const struct cred *cred)
486{
487 const struct task_security_struct *tsec = cred->security;
488 int rc;
489 rc = avc_has_perm(&selinux_state,
490 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
491 FILESYSTEM__RELABELFROM, NULL);
492 if (rc)
493 return rc;
494
495 rc = avc_has_perm(&selinux_state,
496 sid, sbsec->sid, SECCLASS_FILESYSTEM,
497 FILESYSTEM__ASSOCIATE, NULL);
498 return rc;
499}
500
501static int selinux_is_sblabel_mnt(struct super_block *sb)
502{
503 struct superblock_security_struct *sbsec = sb->s_security;
504
505 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
506 sbsec->behavior == SECURITY_FS_USE_TRANS ||
507 sbsec->behavior == SECURITY_FS_USE_TASK ||
508 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
509 /* Special handling. Genfs but also in-core setxattr handler */
510 !strcmp(sb->s_type->name, "sysfs") ||
511 !strcmp(sb->s_type->name, "pstore") ||
512 !strcmp(sb->s_type->name, "debugfs") ||
513 !strcmp(sb->s_type->name, "tracefs") ||
514 !strcmp(sb->s_type->name, "rootfs") ||
515 (selinux_policycap_cgroupseclabel() &&
516 (!strcmp(sb->s_type->name, "cgroup") ||
517 !strcmp(sb->s_type->name, "cgroup2")));
518}
519
520static int sb_finish_set_opts(struct super_block *sb)
521{
522 struct superblock_security_struct *sbsec = sb->s_security;
523 struct dentry *root = sb->s_root;
524 struct inode *root_inode = d_backing_inode(root);
525 int rc = 0;
526
527 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
528 /* Make sure that the xattr handler exists and that no
529 error other than -ENODATA is returned by getxattr on
530 the root directory. -ENODATA is ok, as this may be
531 the first boot of the SELinux kernel before we have
532 assigned xattr values to the filesystem. */
533 if (!(root_inode->i_opflags & IOP_XATTR)) {
534 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
535 "xattr support\n", sb->s_id, sb->s_type->name);
536 rc = -EOPNOTSUPP;
537 goto out;
538 }
539
540 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
541 if (rc < 0 && rc != -ENODATA) {
542 if (rc == -EOPNOTSUPP)
543 printk(KERN_WARNING "SELinux: (dev %s, type "
544 "%s) has no security xattr handler\n",
545 sb->s_id, sb->s_type->name);
546 else
547 printk(KERN_WARNING "SELinux: (dev %s, type "
548 "%s) getxattr errno %d\n", sb->s_id,
549 sb->s_type->name, -rc);
550 goto out;
551 }
552 }
553
554 sbsec->flags |= SE_SBINITIALIZED;
555
556 /*
557 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
558 * leave the flag untouched because sb_clone_mnt_opts might be handing
559 * us a superblock that needs the flag to be cleared.
560 */
561 if (selinux_is_sblabel_mnt(sb))
562 sbsec->flags |= SBLABEL_MNT;
563 else
564 sbsec->flags &= ~SBLABEL_MNT;
565
566 /* Initialize the root inode. */
567 rc = inode_doinit_with_dentry(root_inode, root);
568
569 /* Initialize any other inodes associated with the superblock, e.g.
570 inodes created prior to initial policy load or inodes created
571 during get_sb by a pseudo filesystem that directly
572 populates itself. */
573 spin_lock(&sbsec->isec_lock);
574next_inode:
575 if (!list_empty(&sbsec->isec_head)) {
576 struct inode_security_struct *isec =
577 list_entry(sbsec->isec_head.next,
578 struct inode_security_struct, list);
579 struct inode *inode = isec->inode;
580 list_del_init(&isec->list);
581 spin_unlock(&sbsec->isec_lock);
582 inode = igrab(inode);
583 if (inode) {
584 if (!IS_PRIVATE(inode))
585 inode_doinit(inode);
586 iput(inode);
587 }
588 spin_lock(&sbsec->isec_lock);
589 goto next_inode;
590 }
591 spin_unlock(&sbsec->isec_lock);
592out:
593 return rc;
594}
595
596/*
597 * This function should allow an FS to ask what it's mount security
598 * options were so it can use those later for submounts, displaying
599 * mount options, or whatever.
600 */
601static int selinux_get_mnt_opts(const struct super_block *sb,
602 struct security_mnt_opts *opts)
603{
604 int rc = 0, i;
605 struct superblock_security_struct *sbsec = sb->s_security;
606 char *context = NULL;
607 u32 len;
608 char tmp;
609
610 security_init_mnt_opts(opts);
611
612 if (!(sbsec->flags & SE_SBINITIALIZED))
613 return -EINVAL;
614
615 if (!selinux_state.initialized)
616 return -EINVAL;
617
618 /* make sure we always check enough bits to cover the mask */
619 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
620
621 tmp = sbsec->flags & SE_MNTMASK;
622 /* count the number of mount options for this sb */
623 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
624 if (tmp & 0x01)
625 opts->num_mnt_opts++;
626 tmp >>= 1;
627 }
628 /* Check if the Label support flag is set */
629 if (sbsec->flags & SBLABEL_MNT)
630 opts->num_mnt_opts++;
631
632 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
633 if (!opts->mnt_opts) {
634 rc = -ENOMEM;
635 goto out_free;
636 }
637
638 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
639 if (!opts->mnt_opts_flags) {
640 rc = -ENOMEM;
641 goto out_free;
642 }
643
644 i = 0;
645 if (sbsec->flags & FSCONTEXT_MNT) {
646 rc = security_sid_to_context(&selinux_state, sbsec->sid,
647 &context, &len);
648 if (rc)
649 goto out_free;
650 opts->mnt_opts[i] = context;
651 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
652 }
653 if (sbsec->flags & CONTEXT_MNT) {
654 rc = security_sid_to_context(&selinux_state,
655 sbsec->mntpoint_sid,
656 &context, &len);
657 if (rc)
658 goto out_free;
659 opts->mnt_opts[i] = context;
660 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
661 }
662 if (sbsec->flags & DEFCONTEXT_MNT) {
663 rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
664 &context, &len);
665 if (rc)
666 goto out_free;
667 opts->mnt_opts[i] = context;
668 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
669 }
670 if (sbsec->flags & ROOTCONTEXT_MNT) {
671 struct dentry *root = sbsec->sb->s_root;
672 struct inode_security_struct *isec = backing_inode_security(root);
673
674 rc = security_sid_to_context(&selinux_state, isec->sid,
675 &context, &len);
676 if (rc)
677 goto out_free;
678 opts->mnt_opts[i] = context;
679 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
680 }
681 if (sbsec->flags & SBLABEL_MNT) {
682 opts->mnt_opts[i] = NULL;
683 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
684 }
685
686 BUG_ON(i != opts->num_mnt_opts);
687
688 return 0;
689
690out_free:
691 security_free_mnt_opts(opts);
692 return rc;
693}
694
695static int bad_option(struct superblock_security_struct *sbsec, char flag,
696 u32 old_sid, u32 new_sid)
697{
698 char mnt_flags = sbsec->flags & SE_MNTMASK;
699
700 /* check if the old mount command had the same options */
701 if (sbsec->flags & SE_SBINITIALIZED)
702 if (!(sbsec->flags & flag) ||
703 (old_sid != new_sid))
704 return 1;
705
706 /* check if we were passed the same options twice,
707 * aka someone passed context=a,context=b
708 */
709 if (!(sbsec->flags & SE_SBINITIALIZED))
710 if (mnt_flags & flag)
711 return 1;
712 return 0;
713}
714
715/*
716 * Allow filesystems with binary mount data to explicitly set mount point
717 * labeling information.
718 */
719static int selinux_set_mnt_opts(struct super_block *sb,
720 struct security_mnt_opts *opts,
721 unsigned long kern_flags,
722 unsigned long *set_kern_flags)
723{
724 const struct cred *cred = current_cred();
725 int rc = 0, i;
726 struct superblock_security_struct *sbsec = sb->s_security;
727 const char *name = sb->s_type->name;
728 struct dentry *root = sbsec->sb->s_root;
729 struct inode_security_struct *root_isec;
730 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
731 u32 defcontext_sid = 0;
732 char **mount_options = opts->mnt_opts;
733 int *flags = opts->mnt_opts_flags;
734 int num_opts = opts->num_mnt_opts;
735
736 mutex_lock(&sbsec->lock);
737
738 if (!selinux_state.initialized) {
739 if (!num_opts) {
740 /* Defer initialization until selinux_complete_init,
741 after the initial policy is loaded and the security
742 server is ready to handle calls. */
743 goto out;
744 }
745 rc = -EINVAL;
746 printk(KERN_WARNING "SELinux: Unable to set superblock options "
747 "before the security server is initialized\n");
748 goto out;
749 }
750 if (kern_flags && !set_kern_flags) {
751 /* Specifying internal flags without providing a place to
752 * place the results is not allowed */
753 rc = -EINVAL;
754 goto out;
755 }
756
757 /*
758 * Binary mount data FS will come through this function twice. Once
759 * from an explicit call and once from the generic calls from the vfs.
760 * Since the generic VFS calls will not contain any security mount data
761 * we need to skip the double mount verification.
762 *
763 * This does open a hole in which we will not notice if the first
764 * mount using this sb set explict options and a second mount using
765 * this sb does not set any security options. (The first options
766 * will be used for both mounts)
767 */
768 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
769 && (num_opts == 0))
770 goto out;
771
772 root_isec = backing_inode_security_novalidate(root);
773
774 /*
775 * parse the mount options, check if they are valid sids.
776 * also check if someone is trying to mount the same sb more
777 * than once with different security options.
778 */
779 for (i = 0; i < num_opts; i++) {
780 u32 sid;
781
782 if (flags[i] == SBLABEL_MNT)
783 continue;
784 rc = security_context_str_to_sid(&selinux_state,
785 mount_options[i], &sid,
786 GFP_KERNEL);
787 if (rc) {
788 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
789 "(%s) failed for (dev %s, type %s) errno=%d\n",
790 mount_options[i], sb->s_id, name, rc);
791 goto out;
792 }
793 switch (flags[i]) {
794 case FSCONTEXT_MNT:
795 fscontext_sid = sid;
796
797 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
798 fscontext_sid))
799 goto out_double_mount;
800
801 sbsec->flags |= FSCONTEXT_MNT;
802 break;
803 case CONTEXT_MNT:
804 context_sid = sid;
805
806 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
807 context_sid))
808 goto out_double_mount;
809
810 sbsec->flags |= CONTEXT_MNT;
811 break;
812 case ROOTCONTEXT_MNT:
813 rootcontext_sid = sid;
814
815 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
816 rootcontext_sid))
817 goto out_double_mount;
818
819 sbsec->flags |= ROOTCONTEXT_MNT;
820
821 break;
822 case DEFCONTEXT_MNT:
823 defcontext_sid = sid;
824
825 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
826 defcontext_sid))
827 goto out_double_mount;
828
829 sbsec->flags |= DEFCONTEXT_MNT;
830
831 break;
832 default:
833 rc = -EINVAL;
834 goto out;
835 }
836 }
837
838 if (sbsec->flags & SE_SBINITIALIZED) {
839 /* previously mounted with options, but not on this attempt? */
840 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
841 goto out_double_mount;
842 rc = 0;
843 goto out;
844 }
845
846 if (strcmp(sb->s_type->name, "proc") == 0)
847 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
848
849 if (!strcmp(sb->s_type->name, "debugfs") ||
850 !strcmp(sb->s_type->name, "tracefs") ||
851 !strcmp(sb->s_type->name, "sysfs") ||
852 !strcmp(sb->s_type->name, "pstore") ||
853 !strcmp(sb->s_type->name, "cgroup") ||
854 !strcmp(sb->s_type->name, "cgroup2"))
855 sbsec->flags |= SE_SBGENFS;
856
857 if (!sbsec->behavior) {
858 /*
859 * Determine the labeling behavior to use for this
860 * filesystem type.
861 */
862 rc = security_fs_use(&selinux_state, sb);
863 if (rc) {
864 printk(KERN_WARNING
865 "%s: security_fs_use(%s) returned %d\n",
866 __func__, sb->s_type->name, rc);
867 goto out;
868 }
869 }
870
871 /*
872 * If this is a user namespace mount and the filesystem type is not
873 * explicitly whitelisted, then no contexts are allowed on the command
874 * line and security labels must be ignored.
875 */
876 if (sb->s_user_ns != &init_user_ns &&
877 strcmp(sb->s_type->name, "tmpfs") &&
878 strcmp(sb->s_type->name, "ramfs") &&
879 strcmp(sb->s_type->name, "devpts")) {
880 if (context_sid || fscontext_sid || rootcontext_sid ||
881 defcontext_sid) {
882 rc = -EACCES;
883 goto out;
884 }
885 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
886 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
887 rc = security_transition_sid(&selinux_state,
888 current_sid(),
889 current_sid(),
890 SECCLASS_FILE, NULL,
891 &sbsec->mntpoint_sid);
892 if (rc)
893 goto out;
894 }
895 goto out_set_opts;
896 }
897
898 /* sets the context of the superblock for the fs being mounted. */
899 if (fscontext_sid) {
900 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
901 if (rc)
902 goto out;
903
904 sbsec->sid = fscontext_sid;
905 }
906
907 /*
908 * Switch to using mount point labeling behavior.
909 * sets the label used on all file below the mountpoint, and will set
910 * the superblock context if not already set.
911 */
912 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
913 sbsec->behavior = SECURITY_FS_USE_NATIVE;
914 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
915 }
916
917 if (context_sid) {
918 if (!fscontext_sid) {
919 rc = may_context_mount_sb_relabel(context_sid, sbsec,
920 cred);
921 if (rc)
922 goto out;
923 sbsec->sid = context_sid;
924 } else {
925 rc = may_context_mount_inode_relabel(context_sid, sbsec,
926 cred);
927 if (rc)
928 goto out;
929 }
930 if (!rootcontext_sid)
931 rootcontext_sid = context_sid;
932
933 sbsec->mntpoint_sid = context_sid;
934 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
935 }
936
937 if (rootcontext_sid) {
938 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
939 cred);
940 if (rc)
941 goto out;
942
943 root_isec->sid = rootcontext_sid;
944 root_isec->initialized = LABEL_INITIALIZED;
945 }
946
947 if (defcontext_sid) {
948 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
949 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
950 rc = -EINVAL;
951 printk(KERN_WARNING "SELinux: defcontext option is "
952 "invalid for this filesystem type\n");
953 goto out;
954 }
955
956 if (defcontext_sid != sbsec->def_sid) {
957 rc = may_context_mount_inode_relabel(defcontext_sid,
958 sbsec, cred);
959 if (rc)
960 goto out;
961 }
962
963 sbsec->def_sid = defcontext_sid;
964 }
965
966out_set_opts:
967 rc = sb_finish_set_opts(sb);
968out:
969 mutex_unlock(&sbsec->lock);
970 return rc;
971out_double_mount:
972 rc = -EINVAL;
973 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
974 "security settings for (dev %s, type %s)\n", sb->s_id, name);
975 goto out;
976}
977
978static int selinux_cmp_sb_context(const struct super_block *oldsb,
979 const struct super_block *newsb)
980{
981 struct superblock_security_struct *old = oldsb->s_security;
982 struct superblock_security_struct *new = newsb->s_security;
983 char oldflags = old->flags & SE_MNTMASK;
984 char newflags = new->flags & SE_MNTMASK;
985
986 if (oldflags != newflags)
987 goto mismatch;
988 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
989 goto mismatch;
990 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
991 goto mismatch;
992 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
993 goto mismatch;
994 if (oldflags & ROOTCONTEXT_MNT) {
995 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
996 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
997 if (oldroot->sid != newroot->sid)
998 goto mismatch;
999 }
1000 return 0;
1001mismatch:
1002 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
1003 "different security settings for (dev %s, "
1004 "type %s)\n", newsb->s_id, newsb->s_type->name);
1005 return -EBUSY;
1006}
1007
1008static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009 struct super_block *newsb,
1010 unsigned long kern_flags,
1011 unsigned long *set_kern_flags)
1012{
1013 int rc = 0;
1014 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015 struct superblock_security_struct *newsbsec = newsb->s_security;
1016
1017 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
1018 int set_context = (oldsbsec->flags & CONTEXT_MNT);
1019 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
1020
1021 /*
1022 * if the parent was able to be mounted it clearly had no special lsm
1023 * mount options. thus we can safely deal with this superblock later
1024 */
1025 if (!selinux_state.initialized)
1026 return 0;
1027
1028 /*
1029 * Specifying internal flags without providing a place to
1030 * place the results is not allowed.
1031 */
1032 if (kern_flags && !set_kern_flags)
1033 return -EINVAL;
1034
1035 /* how can we clone if the old one wasn't set up?? */
1036 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037
1038 /* if fs is reusing a sb, make sure that the contexts match */
1039 if (newsbsec->flags & SE_SBINITIALIZED)
1040 return selinux_cmp_sb_context(oldsb, newsb);
1041
1042 mutex_lock(&newsbsec->lock);
1043
1044 newsbsec->flags = oldsbsec->flags;
1045
1046 newsbsec->sid = oldsbsec->sid;
1047 newsbsec->def_sid = oldsbsec->def_sid;
1048 newsbsec->behavior = oldsbsec->behavior;
1049
1050 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052 rc = security_fs_use(&selinux_state, newsb);
1053 if (rc)
1054 goto out;
1055 }
1056
1057 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060 }
1061
1062 if (set_context) {
1063 u32 sid = oldsbsec->mntpoint_sid;
1064
1065 if (!set_fscontext)
1066 newsbsec->sid = sid;
1067 if (!set_rootcontext) {
1068 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069 newisec->sid = sid;
1070 }
1071 newsbsec->mntpoint_sid = sid;
1072 }
1073 if (set_rootcontext) {
1074 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076
1077 newisec->sid = oldisec->sid;
1078 }
1079
1080 sb_finish_set_opts(newsb);
1081out:
1082 mutex_unlock(&newsbsec->lock);
1083 return rc;
1084}
1085
1086static int selinux_parse_opts_str(char *options,
1087 struct security_mnt_opts *opts)
1088{
1089 char *p;
1090 char *context = NULL, *defcontext = NULL;
1091 char *fscontext = NULL, *rootcontext = NULL;
1092 int rc, num_mnt_opts = 0;
1093
1094 opts->num_mnt_opts = 0;
1095
1096 /* Standard string-based options. */
1097 while ((p = strsep(&options, "|")) != NULL) {
1098 int token;
1099 substring_t args[MAX_OPT_ARGS];
1100
1101 if (!*p)
1102 continue;
1103
1104 token = match_token(p, tokens, args);
1105
1106 switch (token) {
1107 case Opt_context:
1108 if (context || defcontext) {
1109 rc = -EINVAL;
1110 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111 goto out_err;
1112 }
1113 context = match_strdup(&args[0]);
1114 if (!context) {
1115 rc = -ENOMEM;
1116 goto out_err;
1117 }
1118 break;
1119
1120 case Opt_fscontext:
1121 if (fscontext) {
1122 rc = -EINVAL;
1123 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124 goto out_err;
1125 }
1126 fscontext = match_strdup(&args[0]);
1127 if (!fscontext) {
1128 rc = -ENOMEM;
1129 goto out_err;
1130 }
1131 break;
1132
1133 case Opt_rootcontext:
1134 if (rootcontext) {
1135 rc = -EINVAL;
1136 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137 goto out_err;
1138 }
1139 rootcontext = match_strdup(&args[0]);
1140 if (!rootcontext) {
1141 rc = -ENOMEM;
1142 goto out_err;
1143 }
1144 break;
1145
1146 case Opt_defcontext:
1147 if (context || defcontext) {
1148 rc = -EINVAL;
1149 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150 goto out_err;
1151 }
1152 defcontext = match_strdup(&args[0]);
1153 if (!defcontext) {
1154 rc = -ENOMEM;
1155 goto out_err;
1156 }
1157 break;
1158 case Opt_labelsupport:
1159 break;
1160 default:
1161 rc = -EINVAL;
1162 printk(KERN_WARNING "SELinux: unknown mount option\n");
1163 goto out_err;
1164
1165 }
1166 }
1167
1168 rc = -ENOMEM;
1169 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170 if (!opts->mnt_opts)
1171 goto out_err;
1172
1173 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174 GFP_KERNEL);
1175 if (!opts->mnt_opts_flags)
1176 goto out_err;
1177
1178 if (fscontext) {
1179 opts->mnt_opts[num_mnt_opts] = fscontext;
1180 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181 }
1182 if (context) {
1183 opts->mnt_opts[num_mnt_opts] = context;
1184 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185 }
1186 if (rootcontext) {
1187 opts->mnt_opts[num_mnt_opts] = rootcontext;
1188 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189 }
1190 if (defcontext) {
1191 opts->mnt_opts[num_mnt_opts] = defcontext;
1192 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193 }
1194
1195 opts->num_mnt_opts = num_mnt_opts;
1196 return 0;
1197
1198out_err:
1199 security_free_mnt_opts(opts);
1200 kfree(context);
1201 kfree(defcontext);
1202 kfree(fscontext);
1203 kfree(rootcontext);
1204 return rc;
1205}
1206/*
1207 * string mount options parsing and call set the sbsec
1208 */
1209static int superblock_doinit(struct super_block *sb, void *data)
1210{
1211 int rc = 0;
1212 char *options = data;
1213 struct security_mnt_opts opts;
1214
1215 security_init_mnt_opts(&opts);
1216
1217 if (!data)
1218 goto out;
1219
1220 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221
1222 rc = selinux_parse_opts_str(options, &opts);
1223 if (rc)
1224 goto out_err;
1225
1226out:
1227 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228
1229out_err:
1230 security_free_mnt_opts(&opts);
1231 return rc;
1232}
1233
1234static void selinux_write_opts(struct seq_file *m,
1235 struct security_mnt_opts *opts)
1236{
1237 int i;
1238 char *prefix;
1239
1240 for (i = 0; i < opts->num_mnt_opts; i++) {
1241 char *has_comma;
1242
1243 if (opts->mnt_opts[i])
1244 has_comma = strchr(opts->mnt_opts[i], ',');
1245 else
1246 has_comma = NULL;
1247
1248 switch (opts->mnt_opts_flags[i]) {
1249 case CONTEXT_MNT:
1250 prefix = CONTEXT_STR;
1251 break;
1252 case FSCONTEXT_MNT:
1253 prefix = FSCONTEXT_STR;
1254 break;
1255 case ROOTCONTEXT_MNT:
1256 prefix = ROOTCONTEXT_STR;
1257 break;
1258 case DEFCONTEXT_MNT:
1259 prefix = DEFCONTEXT_STR;
1260 break;
1261 case SBLABEL_MNT:
1262 seq_putc(m, ',');
1263 seq_puts(m, LABELSUPP_STR);
1264 continue;
1265 default:
1266 BUG();
1267 return;
1268 };
1269 /* we need a comma before each option */
1270 seq_putc(m, ',');
1271 seq_puts(m, prefix);
1272 if (has_comma)
1273 seq_putc(m, '\"');
1274 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275 if (has_comma)
1276 seq_putc(m, '\"');
1277 }
1278}
1279
1280static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281{
1282 struct security_mnt_opts opts;
1283 int rc;
1284
1285 rc = selinux_get_mnt_opts(sb, &opts);
1286 if (rc) {
1287 /* before policy load we may get EINVAL, don't show anything */
1288 if (rc == -EINVAL)
1289 rc = 0;
1290 return rc;
1291 }
1292
1293 selinux_write_opts(m, &opts);
1294
1295 security_free_mnt_opts(&opts);
1296
1297 return rc;
1298}
1299
1300static inline u16 inode_mode_to_security_class(umode_t mode)
1301{
1302 switch (mode & S_IFMT) {
1303 case S_IFSOCK:
1304 return SECCLASS_SOCK_FILE;
1305 case S_IFLNK:
1306 return SECCLASS_LNK_FILE;
1307 case S_IFREG:
1308 return SECCLASS_FILE;
1309 case S_IFBLK:
1310 return SECCLASS_BLK_FILE;
1311 case S_IFDIR:
1312 return SECCLASS_DIR;
1313 case S_IFCHR:
1314 return SECCLASS_CHR_FILE;
1315 case S_IFIFO:
1316 return SECCLASS_FIFO_FILE;
1317
1318 }
1319
1320 return SECCLASS_FILE;
1321}
1322
1323static inline int default_protocol_stream(int protocol)
1324{
1325 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326}
1327
1328static inline int default_protocol_dgram(int protocol)
1329{
1330 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331}
1332
1333static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334{
1335 int extsockclass = selinux_policycap_extsockclass();
1336
1337 switch (family) {
1338 case PF_UNIX:
1339 switch (type) {
1340 case SOCK_STREAM:
1341 case SOCK_SEQPACKET:
1342 return SECCLASS_UNIX_STREAM_SOCKET;
1343 case SOCK_DGRAM:
1344 case SOCK_RAW:
1345 return SECCLASS_UNIX_DGRAM_SOCKET;
1346 }
1347 break;
1348 case PF_INET:
1349 case PF_INET6:
1350 switch (type) {
1351 case SOCK_STREAM:
1352 case SOCK_SEQPACKET:
1353 if (default_protocol_stream(protocol))
1354 return SECCLASS_TCP_SOCKET;
1355 else if (extsockclass && protocol == IPPROTO_SCTP)
1356 return SECCLASS_SCTP_SOCKET;
1357 else
1358 return SECCLASS_RAWIP_SOCKET;
1359 case SOCK_DGRAM:
1360 if (default_protocol_dgram(protocol))
1361 return SECCLASS_UDP_SOCKET;
1362 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363 protocol == IPPROTO_ICMPV6))
1364 return SECCLASS_ICMP_SOCKET;
1365 else
1366 return SECCLASS_RAWIP_SOCKET;
1367 case SOCK_DCCP:
1368 return SECCLASS_DCCP_SOCKET;
1369 default:
1370 return SECCLASS_RAWIP_SOCKET;
1371 }
1372 break;
1373 case PF_NETLINK:
1374 switch (protocol) {
1375 case NETLINK_ROUTE:
1376 return SECCLASS_NETLINK_ROUTE_SOCKET;
1377 case NETLINK_SOCK_DIAG:
1378 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379 case NETLINK_NFLOG:
1380 return SECCLASS_NETLINK_NFLOG_SOCKET;
1381 case NETLINK_XFRM:
1382 return SECCLASS_NETLINK_XFRM_SOCKET;
1383 case NETLINK_SELINUX:
1384 return SECCLASS_NETLINK_SELINUX_SOCKET;
1385 case NETLINK_ISCSI:
1386 return SECCLASS_NETLINK_ISCSI_SOCKET;
1387 case NETLINK_AUDIT:
1388 return SECCLASS_NETLINK_AUDIT_SOCKET;
1389 case NETLINK_FIB_LOOKUP:
1390 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391 case NETLINK_CONNECTOR:
1392 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393 case NETLINK_NETFILTER:
1394 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395 case NETLINK_DNRTMSG:
1396 return SECCLASS_NETLINK_DNRT_SOCKET;
1397 case NETLINK_KOBJECT_UEVENT:
1398 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399 case NETLINK_GENERIC:
1400 return SECCLASS_NETLINK_GENERIC_SOCKET;
1401 case NETLINK_SCSITRANSPORT:
1402 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403 case NETLINK_RDMA:
1404 return SECCLASS_NETLINK_RDMA_SOCKET;
1405 case NETLINK_CRYPTO:
1406 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407 default:
1408 return SECCLASS_NETLINK_SOCKET;
1409 }
1410 case PF_PACKET:
1411 return SECCLASS_PACKET_SOCKET;
1412 case PF_KEY:
1413 return SECCLASS_KEY_SOCKET;
1414 case PF_APPLETALK:
1415 return SECCLASS_APPLETALK_SOCKET;
1416 }
1417
1418 if (extsockclass) {
1419 switch (family) {
1420 case PF_AX25:
1421 return SECCLASS_AX25_SOCKET;
1422 case PF_IPX:
1423 return SECCLASS_IPX_SOCKET;
1424 case PF_NETROM:
1425 return SECCLASS_NETROM_SOCKET;
1426 case PF_ATMPVC:
1427 return SECCLASS_ATMPVC_SOCKET;
1428 case PF_X25:
1429 return SECCLASS_X25_SOCKET;
1430 case PF_ROSE:
1431 return SECCLASS_ROSE_SOCKET;
1432 case PF_DECnet:
1433 return SECCLASS_DECNET_SOCKET;
1434 case PF_ATMSVC:
1435 return SECCLASS_ATMSVC_SOCKET;
1436 case PF_RDS:
1437 return SECCLASS_RDS_SOCKET;
1438 case PF_IRDA:
1439 return SECCLASS_IRDA_SOCKET;
1440 case PF_PPPOX:
1441 return SECCLASS_PPPOX_SOCKET;
1442 case PF_LLC:
1443 return SECCLASS_LLC_SOCKET;
1444 case PF_CAN:
1445 return SECCLASS_CAN_SOCKET;
1446 case PF_TIPC:
1447 return SECCLASS_TIPC_SOCKET;
1448 case PF_BLUETOOTH:
1449 return SECCLASS_BLUETOOTH_SOCKET;
1450 case PF_IUCV:
1451 return SECCLASS_IUCV_SOCKET;
1452 case PF_RXRPC:
1453 return SECCLASS_RXRPC_SOCKET;
1454 case PF_ISDN:
1455 return SECCLASS_ISDN_SOCKET;
1456 case PF_PHONET:
1457 return SECCLASS_PHONET_SOCKET;
1458 case PF_IEEE802154:
1459 return SECCLASS_IEEE802154_SOCKET;
1460 case PF_CAIF:
1461 return SECCLASS_CAIF_SOCKET;
1462 case PF_ALG:
1463 return SECCLASS_ALG_SOCKET;
1464 case PF_NFC:
1465 return SECCLASS_NFC_SOCKET;
1466 case PF_VSOCK:
1467 return SECCLASS_VSOCK_SOCKET;
1468 case PF_KCM:
1469 return SECCLASS_KCM_SOCKET;
1470 case PF_QIPCRTR:
1471 return SECCLASS_QIPCRTR_SOCKET;
1472 case PF_SMC:
1473 return SECCLASS_SMC_SOCKET;
1474#if PF_MAX > 44
1475#error New address family defined, please update this function.
1476#endif
1477 }
1478 }
1479
1480 return SECCLASS_SOCKET;
1481}
1482
1483static int selinux_genfs_get_sid(struct dentry *dentry,
1484 u16 tclass,
1485 u16 flags,
1486 u32 *sid)
1487{
1488 int rc;
1489 struct super_block *sb = dentry->d_sb;
1490 char *buffer, *path;
1491
1492 buffer = (char *)__get_free_page(GFP_KERNEL);
1493 if (!buffer)
1494 return -ENOMEM;
1495
1496 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1497 if (IS_ERR(path))
1498 rc = PTR_ERR(path);
1499 else {
1500 if (flags & SE_SBPROC) {
1501 /* each process gets a /proc/PID/ entry. Strip off the
1502 * PID part to get a valid selinux labeling.
1503 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1504 while (path[1] >= '0' && path[1] <= '9') {
1505 path[1] = '/';
1506 path++;
1507 }
1508 }
1509 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1510 path, tclass, sid);
1511 }
1512 free_page((unsigned long)buffer);
1513 return rc;
1514}
1515
1516/* The inode's security attributes must be initialized before first use. */
1517static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1518{
1519 struct superblock_security_struct *sbsec = NULL;
1520 struct inode_security_struct *isec = inode->i_security;
1521 u32 task_sid, sid = 0;
1522 u16 sclass;
1523 struct dentry *dentry;
1524#define INITCONTEXTLEN 255
1525 char *context = NULL;
1526 unsigned len = 0;
1527 int rc = 0;
1528
1529 if (isec->initialized == LABEL_INITIALIZED)
1530 return 0;
1531
1532 spin_lock(&isec->lock);
1533 if (isec->initialized == LABEL_INITIALIZED)
1534 goto out_unlock;
1535
1536 if (isec->sclass == SECCLASS_FILE)
1537 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1538
1539 sbsec = inode->i_sb->s_security;
1540 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1541 /* Defer initialization until selinux_complete_init,
1542 after the initial policy is loaded and the security
1543 server is ready to handle calls. */
1544 spin_lock(&sbsec->isec_lock);
1545 if (list_empty(&isec->list))
1546 list_add(&isec->list, &sbsec->isec_head);
1547 spin_unlock(&sbsec->isec_lock);
1548 goto out_unlock;
1549 }
1550
1551 sclass = isec->sclass;
1552 task_sid = isec->task_sid;
1553 sid = isec->sid;
1554 isec->initialized = LABEL_PENDING;
1555 spin_unlock(&isec->lock);
1556
1557 switch (sbsec->behavior) {
1558 case SECURITY_FS_USE_NATIVE:
1559 break;
1560 case SECURITY_FS_USE_XATTR:
1561 if (!(inode->i_opflags & IOP_XATTR)) {
1562 sid = sbsec->def_sid;
1563 break;
1564 }
1565 /* Need a dentry, since the xattr API requires one.
1566 Life would be simpler if we could just pass the inode. */
1567 if (opt_dentry) {
1568 /* Called from d_instantiate or d_splice_alias. */
1569 dentry = dget(opt_dentry);
1570 } else {
1571 /*
1572 * Called from selinux_complete_init, try to find a dentry.
1573 * Some filesystems really want a connected one, so try
1574 * that first. We could split SECURITY_FS_USE_XATTR in
1575 * two, depending upon that...
1576 */
1577 dentry = d_find_alias(inode);
1578 if (!dentry)
1579 dentry = d_find_any_alias(inode);
1580 }
1581 if (!dentry) {
1582 /*
1583 * this is can be hit on boot when a file is accessed
1584 * before the policy is loaded. When we load policy we
1585 * may find inodes that have no dentry on the
1586 * sbsec->isec_head list. No reason to complain as these
1587 * will get fixed up the next time we go through
1588 * inode_doinit with a dentry, before these inodes could
1589 * be used again by userspace.
1590 */
1591 goto out;
1592 }
1593
1594 len = INITCONTEXTLEN;
1595 context = kmalloc(len+1, GFP_NOFS);
1596 if (!context) {
1597 rc = -ENOMEM;
1598 dput(dentry);
1599 goto out;
1600 }
1601 context[len] = '\0';
1602 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1603 if (rc == -ERANGE) {
1604 kfree(context);
1605
1606 /* Need a larger buffer. Query for the right size. */
1607 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1608 if (rc < 0) {
1609 dput(dentry);
1610 goto out;
1611 }
1612 len = rc;
1613 context = kmalloc(len+1, GFP_NOFS);
1614 if (!context) {
1615 rc = -ENOMEM;
1616 dput(dentry);
1617 goto out;
1618 }
1619 context[len] = '\0';
1620 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1621 }
1622 dput(dentry);
1623 if (rc < 0) {
1624 if (rc != -ENODATA) {
1625 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1626 "%d for dev=%s ino=%ld\n", __func__,
1627 -rc, inode->i_sb->s_id, inode->i_ino);
1628 kfree(context);
1629 goto out;
1630 }
1631 /* Map ENODATA to the default file SID */
1632 sid = sbsec->def_sid;
1633 rc = 0;
1634 } else {
1635 rc = security_context_to_sid_default(&selinux_state,
1636 context, rc, &sid,
1637 sbsec->def_sid,
1638 GFP_NOFS);
1639 if (rc) {
1640 char *dev = inode->i_sb->s_id;
1641 unsigned long ino = inode->i_ino;
1642
1643 if (rc == -EINVAL) {
1644 if (printk_ratelimit())
1645 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1646 "context=%s. This indicates you may need to relabel the inode or the "
1647 "filesystem in question.\n", ino, dev, context);
1648 } else {
1649 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1650 "returned %d for dev=%s ino=%ld\n",
1651 __func__, context, -rc, dev, ino);
1652 }
1653 kfree(context);
1654 /* Leave with the unlabeled SID */
1655 rc = 0;
1656 break;
1657 }
1658 }
1659 kfree(context);
1660 break;
1661 case SECURITY_FS_USE_TASK:
1662 sid = task_sid;
1663 break;
1664 case SECURITY_FS_USE_TRANS:
1665 /* Default to the fs SID. */
1666 sid = sbsec->sid;
1667
1668 /* Try to obtain a transition SID. */
1669 rc = security_transition_sid(&selinux_state, task_sid, sid,
1670 sclass, NULL, &sid);
1671 if (rc)
1672 goto out;
1673 break;
1674 case SECURITY_FS_USE_MNTPOINT:
1675 sid = sbsec->mntpoint_sid;
1676 break;
1677 default:
1678 /* Default to the fs superblock SID. */
1679 sid = sbsec->sid;
1680
1681 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1682 /* We must have a dentry to determine the label on
1683 * procfs inodes */
1684 if (opt_dentry) {
1685 /* Called from d_instantiate or
1686 * d_splice_alias. */
1687 dentry = dget(opt_dentry);
1688 } else {
1689 /* Called from selinux_complete_init, try to
1690 * find a dentry. Some filesystems really want
1691 * a connected one, so try that first.
1692 */
1693 dentry = d_find_alias(inode);
1694 if (!dentry)
1695 dentry = d_find_any_alias(inode);
1696 }
1697 /*
1698 * This can be hit on boot when a file is accessed
1699 * before the policy is loaded. When we load policy we
1700 * may find inodes that have no dentry on the
1701 * sbsec->isec_head list. No reason to complain as
1702 * these will get fixed up the next time we go through
1703 * inode_doinit() with a dentry, before these inodes
1704 * could be used again by userspace.
1705 */
1706 if (!dentry)
1707 goto out;
1708 rc = selinux_genfs_get_sid(dentry, sclass,
1709 sbsec->flags, &sid);
1710 dput(dentry);
1711 if (rc)
1712 goto out;
1713 }
1714 break;
1715 }
1716
1717out:
1718 spin_lock(&isec->lock);
1719 if (isec->initialized == LABEL_PENDING) {
1720 if (!sid || rc) {
1721 isec->initialized = LABEL_INVALID;
1722 goto out_unlock;
1723 }
1724
1725 isec->initialized = LABEL_INITIALIZED;
1726 isec->sid = sid;
1727 }
1728
1729out_unlock:
1730 spin_unlock(&isec->lock);
1731 return rc;
1732}
1733
1734/* Convert a Linux signal to an access vector. */
1735static inline u32 signal_to_av(int sig)
1736{
1737 u32 perm = 0;
1738
1739 switch (sig) {
1740 case SIGCHLD:
1741 /* Commonly granted from child to parent. */
1742 perm = PROCESS__SIGCHLD;
1743 break;
1744 case SIGKILL:
1745 /* Cannot be caught or ignored */
1746 perm = PROCESS__SIGKILL;
1747 break;
1748 case SIGSTOP:
1749 /* Cannot be caught or ignored */
1750 perm = PROCESS__SIGSTOP;
1751 break;
1752 default:
1753 /* All other signals. */
1754 perm = PROCESS__SIGNAL;
1755 break;
1756 }
1757
1758 return perm;
1759}
1760
1761#if CAP_LAST_CAP > 63
1762#error Fix SELinux to handle capabilities > 63.
1763#endif
1764
1765/* Check whether a task is allowed to use a capability. */
1766static int cred_has_capability(const struct cred *cred,
1767 int cap, int audit, bool initns)
1768{
1769 struct common_audit_data ad;
1770 struct av_decision avd;
1771 u16 sclass;
1772 u32 sid = cred_sid(cred);
1773 u32 av = CAP_TO_MASK(cap);
1774 int rc;
1775
1776 ad.type = LSM_AUDIT_DATA_CAP;
1777 ad.u.cap = cap;
1778
1779 switch (CAP_TO_INDEX(cap)) {
1780 case 0:
1781 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1782 break;
1783 case 1:
1784 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1785 break;
1786 default:
1787 printk(KERN_ERR
1788 "SELinux: out of range capability %d\n", cap);
1789 BUG();
1790 return -EINVAL;
1791 }
1792
1793 rc = avc_has_perm_noaudit(&selinux_state,
1794 sid, sid, sclass, av, 0, &avd);
1795 if (audit == SECURITY_CAP_AUDIT) {
1796 int rc2 = avc_audit(&selinux_state,
1797 sid, sid, sclass, av, &avd, rc, &ad, 0);
1798 if (rc2)
1799 return rc2;
1800 }
1801 return rc;
1802}
1803
1804/* Check whether a task has a particular permission to an inode.
1805 The 'adp' parameter is optional and allows other audit
1806 data to be passed (e.g. the dentry). */
1807static int inode_has_perm(const struct cred *cred,
1808 struct inode *inode,
1809 u32 perms,
1810 struct common_audit_data *adp)
1811{
1812 struct inode_security_struct *isec;
1813 u32 sid;
1814
1815 validate_creds(cred);
1816
1817 if (unlikely(IS_PRIVATE(inode)))
1818 return 0;
1819
1820 sid = cred_sid(cred);
1821 isec = inode->i_security;
1822
1823 return avc_has_perm(&selinux_state,
1824 sid, isec->sid, isec->sclass, perms, adp);
1825}
1826
1827/* Same as inode_has_perm, but pass explicit audit data containing
1828 the dentry to help the auditing code to more easily generate the
1829 pathname if needed. */
1830static inline int dentry_has_perm(const struct cred *cred,
1831 struct dentry *dentry,
1832 u32 av)
1833{
1834 struct inode *inode = d_backing_inode(dentry);
1835 struct common_audit_data ad;
1836
1837 ad.type = LSM_AUDIT_DATA_DENTRY;
1838 ad.u.dentry = dentry;
1839 __inode_security_revalidate(inode, dentry, true);
1840 return inode_has_perm(cred, inode, av, &ad);
1841}
1842
1843/* Same as inode_has_perm, but pass explicit audit data containing
1844 the path to help the auditing code to more easily generate the
1845 pathname if needed. */
1846static inline int path_has_perm(const struct cred *cred,
1847 const struct path *path,
1848 u32 av)
1849{
1850 struct inode *inode = d_backing_inode(path->dentry);
1851 struct common_audit_data ad;
1852
1853 ad.type = LSM_AUDIT_DATA_PATH;
1854 ad.u.path = *path;
1855 __inode_security_revalidate(inode, path->dentry, true);
1856 return inode_has_perm(cred, inode, av, &ad);
1857}
1858
1859/* Same as path_has_perm, but uses the inode from the file struct. */
1860static inline int file_path_has_perm(const struct cred *cred,
1861 struct file *file,
1862 u32 av)
1863{
1864 struct common_audit_data ad;
1865
1866 ad.type = LSM_AUDIT_DATA_FILE;
1867 ad.u.file = file;
1868 return inode_has_perm(cred, file_inode(file), av, &ad);
1869}
1870
1871#ifdef CONFIG_BPF_SYSCALL
1872static int bpf_fd_pass(struct file *file, u32 sid);
1873#endif
1874
1875/* Check whether a task can use an open file descriptor to
1876 access an inode in a given way. Check access to the
1877 descriptor itself, and then use dentry_has_perm to
1878 check a particular permission to the file.
1879 Access to the descriptor is implicitly granted if it
1880 has the same SID as the process. If av is zero, then
1881 access to the file is not checked, e.g. for cases
1882 where only the descriptor is affected like seek. */
1883static int file_has_perm(const struct cred *cred,
1884 struct file *file,
1885 u32 av)
1886{
1887 struct file_security_struct *fsec = file->f_security;
1888 struct inode *inode = file_inode(file);
1889 struct common_audit_data ad;
1890 u32 sid = cred_sid(cred);
1891 int rc;
1892
1893 ad.type = LSM_AUDIT_DATA_FILE;
1894 ad.u.file = file;
1895
1896 if (sid != fsec->sid) {
1897 rc = avc_has_perm(&selinux_state,
1898 sid, fsec->sid,
1899 SECCLASS_FD,
1900 FD__USE,
1901 &ad);
1902 if (rc)
1903 goto out;
1904 }
1905
1906#ifdef CONFIG_BPF_SYSCALL
1907 rc = bpf_fd_pass(file, cred_sid(cred));
1908 if (rc)
1909 return rc;
1910#endif
1911
1912 /* av is zero if only checking access to the descriptor. */
1913 rc = 0;
1914 if (av)
1915 rc = inode_has_perm(cred, inode, av, &ad);
1916
1917out:
1918 return rc;
1919}
1920
1921/*
1922 * Determine the label for an inode that might be unioned.
1923 */
1924static int
1925selinux_determine_inode_label(const struct task_security_struct *tsec,
1926 struct inode *dir,
1927 const struct qstr *name, u16 tclass,
1928 u32 *_new_isid)
1929{
1930 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1931
1932 if ((sbsec->flags & SE_SBINITIALIZED) &&
1933 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1934 *_new_isid = sbsec->mntpoint_sid;
1935 } else if ((sbsec->flags & SBLABEL_MNT) &&
1936 tsec->create_sid) {
1937 *_new_isid = tsec->create_sid;
1938 } else {
1939 const struct inode_security_struct *dsec = inode_security(dir);
1940 return security_transition_sid(&selinux_state, tsec->sid,
1941 dsec->sid, tclass,
1942 name, _new_isid);
1943 }
1944
1945 return 0;
1946}
1947
1948/* Check whether a task can create a file. */
1949static int may_create(struct inode *dir,
1950 struct dentry *dentry,
1951 u16 tclass)
1952{
1953 const struct task_security_struct *tsec = current_security();
1954 struct inode_security_struct *dsec;
1955 struct superblock_security_struct *sbsec;
1956 u32 sid, newsid;
1957 struct common_audit_data ad;
1958 int rc;
1959
1960 dsec = inode_security(dir);
1961 sbsec = dir->i_sb->s_security;
1962
1963 sid = tsec->sid;
1964
1965 ad.type = LSM_AUDIT_DATA_DENTRY;
1966 ad.u.dentry = dentry;
1967
1968 rc = avc_has_perm(&selinux_state,
1969 sid, dsec->sid, SECCLASS_DIR,
1970 DIR__ADD_NAME | DIR__SEARCH,
1971 &ad);
1972 if (rc)
1973 return rc;
1974
1975 rc = selinux_determine_inode_label(current_security(), dir,
1976 &dentry->d_name, tclass, &newsid);
1977 if (rc)
1978 return rc;
1979
1980 rc = avc_has_perm(&selinux_state,
1981 sid, newsid, tclass, FILE__CREATE, &ad);
1982 if (rc)
1983 return rc;
1984
1985 return avc_has_perm(&selinux_state,
1986 newsid, sbsec->sid,
1987 SECCLASS_FILESYSTEM,
1988 FILESYSTEM__ASSOCIATE, &ad);
1989}
1990
1991#define MAY_LINK 0
1992#define MAY_UNLINK 1
1993#define MAY_RMDIR 2
1994
1995/* Check whether a task can link, unlink, or rmdir a file/directory. */
1996static int may_link(struct inode *dir,
1997 struct dentry *dentry,
1998 int kind)
1999
2000{
2001 struct inode_security_struct *dsec, *isec;
2002 struct common_audit_data ad;
2003 u32 sid = current_sid();
2004 u32 av;
2005 int rc;
2006
2007 dsec = inode_security(dir);
2008 isec = backing_inode_security(dentry);
2009
2010 ad.type = LSM_AUDIT_DATA_DENTRY;
2011 ad.u.dentry = dentry;
2012
2013 av = DIR__SEARCH;
2014 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2015 rc = avc_has_perm(&selinux_state,
2016 sid, dsec->sid, SECCLASS_DIR, av, &ad);
2017 if (rc)
2018 return rc;
2019
2020 switch (kind) {
2021 case MAY_LINK:
2022 av = FILE__LINK;
2023 break;
2024 case MAY_UNLINK:
2025 av = FILE__UNLINK;
2026 break;
2027 case MAY_RMDIR:
2028 av = DIR__RMDIR;
2029 break;
2030 default:
2031 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
2032 __func__, kind);
2033 return 0;
2034 }
2035
2036 rc = avc_has_perm(&selinux_state,
2037 sid, isec->sid, isec->sclass, av, &ad);
2038 return rc;
2039}
2040
2041static inline int may_rename(struct inode *old_dir,
2042 struct dentry *old_dentry,
2043 struct inode *new_dir,
2044 struct dentry *new_dentry)
2045{
2046 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2047 struct common_audit_data ad;
2048 u32 sid = current_sid();
2049 u32 av;
2050 int old_is_dir, new_is_dir;
2051 int rc;
2052
2053 old_dsec = inode_security(old_dir);
2054 old_isec = backing_inode_security(old_dentry);
2055 old_is_dir = d_is_dir(old_dentry);
2056 new_dsec = inode_security(new_dir);
2057
2058 ad.type = LSM_AUDIT_DATA_DENTRY;
2059
2060 ad.u.dentry = old_dentry;
2061 rc = avc_has_perm(&selinux_state,
2062 sid, old_dsec->sid, SECCLASS_DIR,
2063 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2064 if (rc)
2065 return rc;
2066 rc = avc_has_perm(&selinux_state,
2067 sid, old_isec->sid,
2068 old_isec->sclass, FILE__RENAME, &ad);
2069 if (rc)
2070 return rc;
2071 if (old_is_dir && new_dir != old_dir) {
2072 rc = avc_has_perm(&selinux_state,
2073 sid, old_isec->sid,
2074 old_isec->sclass, DIR__REPARENT, &ad);
2075 if (rc)
2076 return rc;
2077 }
2078
2079 ad.u.dentry = new_dentry;
2080 av = DIR__ADD_NAME | DIR__SEARCH;
2081 if (d_is_positive(new_dentry))
2082 av |= DIR__REMOVE_NAME;
2083 rc = avc_has_perm(&selinux_state,
2084 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2085 if (rc)
2086 return rc;
2087 if (d_is_positive(new_dentry)) {
2088 new_isec = backing_inode_security(new_dentry);
2089 new_is_dir = d_is_dir(new_dentry);
2090 rc = avc_has_perm(&selinux_state,
2091 sid, new_isec->sid,
2092 new_isec->sclass,
2093 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2094 if (rc)
2095 return rc;
2096 }
2097
2098 return 0;
2099}
2100
2101/* Check whether a task can perform a filesystem operation. */
2102static int superblock_has_perm(const struct cred *cred,
2103 struct super_block *sb,
2104 u32 perms,
2105 struct common_audit_data *ad)
2106{
2107 struct superblock_security_struct *sbsec;
2108 u32 sid = cred_sid(cred);
2109
2110 sbsec = sb->s_security;
2111 return avc_has_perm(&selinux_state,
2112 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2113}
2114
2115/* Convert a Linux mode and permission mask to an access vector. */
2116static inline u32 file_mask_to_av(int mode, int mask)
2117{
2118 u32 av = 0;
2119
2120 if (!S_ISDIR(mode)) {
2121 if (mask & MAY_EXEC)
2122 av |= FILE__EXECUTE;
2123 if (mask & MAY_READ)
2124 av |= FILE__READ;
2125
2126 if (mask & MAY_APPEND)
2127 av |= FILE__APPEND;
2128 else if (mask & MAY_WRITE)
2129 av |= FILE__WRITE;
2130
2131 } else {
2132 if (mask & MAY_EXEC)
2133 av |= DIR__SEARCH;
2134 if (mask & MAY_WRITE)
2135 av |= DIR__WRITE;
2136 if (mask & MAY_READ)
2137 av |= DIR__READ;
2138 }
2139
2140 return av;
2141}
2142
2143/* Convert a Linux file to an access vector. */
2144static inline u32 file_to_av(struct file *file)
2145{
2146 u32 av = 0;
2147
2148 if (file->f_mode & FMODE_READ)
2149 av |= FILE__READ;
2150 if (file->f_mode & FMODE_WRITE) {
2151 if (file->f_flags & O_APPEND)
2152 av |= FILE__APPEND;
2153 else
2154 av |= FILE__WRITE;
2155 }
2156 if (!av) {
2157 /*
2158 * Special file opened with flags 3 for ioctl-only use.
2159 */
2160 av = FILE__IOCTL;
2161 }
2162
2163 return av;
2164}
2165
2166/*
2167 * Convert a file to an access vector and include the correct open
2168 * open permission.
2169 */
2170static inline u32 open_file_to_av(struct file *file)
2171{
2172 u32 av = file_to_av(file);
2173 struct inode *inode = file_inode(file);
2174
2175 if (selinux_policycap_openperm() &&
2176 inode->i_sb->s_magic != SOCKFS_MAGIC)
2177 av |= FILE__OPEN;
2178
2179 return av;
2180}
2181
2182/* Hook functions begin here. */
2183
2184static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2185{
2186 u32 mysid = current_sid();
2187 u32 mgrsid = task_sid(mgr);
2188
2189 return avc_has_perm(&selinux_state,
2190 mysid, mgrsid, SECCLASS_BINDER,
2191 BINDER__SET_CONTEXT_MGR, NULL);
2192}
2193
2194static int selinux_binder_transaction(struct task_struct *from,
2195 struct task_struct *to)
2196{
2197 u32 mysid = current_sid();
2198 u32 fromsid = task_sid(from);
2199 u32 tosid = task_sid(to);
2200 int rc;
2201
2202 if (mysid != fromsid) {
2203 rc = avc_has_perm(&selinux_state,
2204 mysid, fromsid, SECCLASS_BINDER,
2205 BINDER__IMPERSONATE, NULL);
2206 if (rc)
2207 return rc;
2208 }
2209
2210 return avc_has_perm(&selinux_state,
2211 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2212 NULL);
2213}
2214
2215static int selinux_binder_transfer_binder(struct task_struct *from,
2216 struct task_struct *to)
2217{
2218 u32 fromsid = task_sid(from);
2219 u32 tosid = task_sid(to);
2220
2221 return avc_has_perm(&selinux_state,
2222 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2223 NULL);
2224}
2225
2226static int selinux_binder_transfer_file(struct task_struct *from,
2227 struct task_struct *to,
2228 struct file *file)
2229{
2230 u32 sid = task_sid(to);
2231 struct file_security_struct *fsec = file->f_security;
2232 struct dentry *dentry = file->f_path.dentry;
2233 struct inode_security_struct *isec;
2234 struct common_audit_data ad;
2235 int rc;
2236
2237 ad.type = LSM_AUDIT_DATA_PATH;
2238 ad.u.path = file->f_path;
2239
2240 if (sid != fsec->sid) {
2241 rc = avc_has_perm(&selinux_state,
2242 sid, fsec->sid,
2243 SECCLASS_FD,
2244 FD__USE,
2245 &ad);
2246 if (rc)
2247 return rc;
2248 }
2249
2250#ifdef CONFIG_BPF_SYSCALL
2251 rc = bpf_fd_pass(file, sid);
2252 if (rc)
2253 return rc;
2254#endif
2255
2256 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2257 return 0;
2258
2259 isec = backing_inode_security(dentry);
2260 return avc_has_perm(&selinux_state,
2261 sid, isec->sid, isec->sclass, file_to_av(file),
2262 &ad);
2263}
2264
2265static int selinux_ptrace_access_check(struct task_struct *child,
2266 unsigned int mode)
2267{
2268 u32 sid = current_sid();
2269 u32 csid = task_sid(child);
2270
2271 if (mode & PTRACE_MODE_READ)
2272 return avc_has_perm(&selinux_state,
2273 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2274
2275 return avc_has_perm(&selinux_state,
2276 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2277}
2278
2279static int selinux_ptrace_traceme(struct task_struct *parent)
2280{
2281 return avc_has_perm(&selinux_state,
2282 task_sid(parent), current_sid(), SECCLASS_PROCESS,
2283 PROCESS__PTRACE, NULL);
2284}
2285
2286static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2287 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2288{
2289 return avc_has_perm(&selinux_state,
2290 current_sid(), task_sid(target), SECCLASS_PROCESS,
2291 PROCESS__GETCAP, NULL);
2292}
2293
2294static int selinux_capset(struct cred *new, const struct cred *old,
2295 const kernel_cap_t *effective,
2296 const kernel_cap_t *inheritable,
2297 const kernel_cap_t *permitted)
2298{
2299 return avc_has_perm(&selinux_state,
2300 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2301 PROCESS__SETCAP, NULL);
2302}
2303
2304/*
2305 * (This comment used to live with the selinux_task_setuid hook,
2306 * which was removed).
2307 *
2308 * Since setuid only affects the current process, and since the SELinux
2309 * controls are not based on the Linux identity attributes, SELinux does not
2310 * need to control this operation. However, SELinux does control the use of
2311 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2312 */
2313
2314static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2315 int cap, int audit)
2316{
2317 return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2318}
2319
2320static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2321{
2322 const struct cred *cred = current_cred();
2323 int rc = 0;
2324
2325 if (!sb)
2326 return 0;
2327
2328 switch (cmds) {
2329 case Q_SYNC:
2330 case Q_QUOTAON:
2331 case Q_QUOTAOFF:
2332 case Q_SETINFO:
2333 case Q_SETQUOTA:
2334 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2335 break;
2336 case Q_GETFMT:
2337 case Q_GETINFO:
2338 case Q_GETQUOTA:
2339 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2340 break;
2341 default:
2342 rc = 0; /* let the kernel handle invalid cmds */
2343 break;
2344 }
2345 return rc;
2346}
2347
2348static int selinux_quota_on(struct dentry *dentry)
2349{
2350 const struct cred *cred = current_cred();
2351
2352 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2353}
2354
2355static int selinux_syslog(int type)
2356{
2357 switch (type) {
2358 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2359 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2360 return avc_has_perm(&selinux_state,
2361 current_sid(), SECINITSID_KERNEL,
2362 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2363 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2364 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2365 /* Set level of messages printed to console */
2366 case SYSLOG_ACTION_CONSOLE_LEVEL:
2367 return avc_has_perm(&selinux_state,
2368 current_sid(), SECINITSID_KERNEL,
2369 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2370 NULL);
2371 }
2372 /* All other syslog types */
2373 return avc_has_perm(&selinux_state,
2374 current_sid(), SECINITSID_KERNEL,
2375 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2376}
2377
2378/*
2379 * Check that a process has enough memory to allocate a new virtual
2380 * mapping. 0 means there is enough memory for the allocation to
2381 * succeed and -ENOMEM implies there is not.
2382 *
2383 * Do not audit the selinux permission check, as this is applied to all
2384 * processes that allocate mappings.
2385 */
2386static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2387{
2388 int rc, cap_sys_admin = 0;
2389
2390 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2391 SECURITY_CAP_NOAUDIT, true);
2392 if (rc == 0)
2393 cap_sys_admin = 1;
2394
2395 return cap_sys_admin;
2396}
2397
2398/* binprm security operations */
2399
2400static u32 ptrace_parent_sid(void)
2401{
2402 u32 sid = 0;
2403 struct task_struct *tracer;
2404
2405 rcu_read_lock();
2406 tracer = ptrace_parent(current);
2407 if (tracer)
2408 sid = task_sid(tracer);
2409 rcu_read_unlock();
2410
2411 return sid;
2412}
2413
2414static int check_nnp_nosuid(const struct linux_binprm *bprm,
2415 const struct task_security_struct *old_tsec,
2416 const struct task_security_struct *new_tsec)
2417{
2418 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2419 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2420 int rc;
2421 u32 av;
2422
2423 if (!nnp && !nosuid)
2424 return 0; /* neither NNP nor nosuid */
2425
2426 if (new_tsec->sid == old_tsec->sid)
2427 return 0; /* No change in credentials */
2428
2429 /*
2430 * If the policy enables the nnp_nosuid_transition policy capability,
2431 * then we permit transitions under NNP or nosuid if the
2432 * policy allows the corresponding permission between
2433 * the old and new contexts.
2434 */
2435 if (selinux_policycap_nnp_nosuid_transition()) {
2436 av = 0;
2437 if (nnp)
2438 av |= PROCESS2__NNP_TRANSITION;
2439 if (nosuid)
2440 av |= PROCESS2__NOSUID_TRANSITION;
2441 rc = avc_has_perm(&selinux_state,
2442 old_tsec->sid, new_tsec->sid,
2443 SECCLASS_PROCESS2, av, NULL);
2444 if (!rc)
2445 return 0;
2446 }
2447
2448 /*
2449 * We also permit NNP or nosuid transitions to bounded SIDs,
2450 * i.e. SIDs that are guaranteed to only be allowed a subset
2451 * of the permissions of the current SID.
2452 */
2453 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2454 new_tsec->sid);
2455 if (!rc)
2456 return 0;
2457
2458 /*
2459 * On failure, preserve the errno values for NNP vs nosuid.
2460 * NNP: Operation not permitted for caller.
2461 * nosuid: Permission denied to file.
2462 */
2463 if (nnp)
2464 return -EPERM;
2465 return -EACCES;
2466}
2467
2468static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2469{
2470 const struct task_security_struct *old_tsec;
2471 struct task_security_struct *new_tsec;
2472 struct inode_security_struct *isec;
2473 struct common_audit_data ad;
2474 struct inode *inode = file_inode(bprm->file);
2475 int rc;
2476
2477 /* SELinux context only depends on initial program or script and not
2478 * the script interpreter */
2479 if (bprm->called_set_creds)
2480 return 0;
2481
2482 old_tsec = current_security();
2483 new_tsec = bprm->cred->security;
2484 isec = inode_security(inode);
2485
2486 /* Default to the current task SID. */
2487 new_tsec->sid = old_tsec->sid;
2488 new_tsec->osid = old_tsec->sid;
2489
2490 /* Reset fs, key, and sock SIDs on execve. */
2491 new_tsec->create_sid = 0;
2492 new_tsec->keycreate_sid = 0;
2493 new_tsec->sockcreate_sid = 0;
2494
2495 if (old_tsec->exec_sid) {
2496 new_tsec->sid = old_tsec->exec_sid;
2497 /* Reset exec SID on execve. */
2498 new_tsec->exec_sid = 0;
2499
2500 /* Fail on NNP or nosuid if not an allowed transition. */
2501 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2502 if (rc)
2503 return rc;
2504 } else {
2505 /* Check for a default transition on this program. */
2506 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2507 isec->sid, SECCLASS_PROCESS, NULL,
2508 &new_tsec->sid);
2509 if (rc)
2510 return rc;
2511
2512 /*
2513 * Fallback to old SID on NNP or nosuid if not an allowed
2514 * transition.
2515 */
2516 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2517 if (rc)
2518 new_tsec->sid = old_tsec->sid;
2519 }
2520
2521 ad.type = LSM_AUDIT_DATA_FILE;
2522 ad.u.file = bprm->file;
2523
2524 if (new_tsec->sid == old_tsec->sid) {
2525 rc = avc_has_perm(&selinux_state,
2526 old_tsec->sid, isec->sid,
2527 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2528 if (rc)
2529 return rc;
2530 } else {
2531 /* Check permissions for the transition. */
2532 rc = avc_has_perm(&selinux_state,
2533 old_tsec->sid, new_tsec->sid,
2534 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2535 if (rc)
2536 return rc;
2537
2538 rc = avc_has_perm(&selinux_state,
2539 new_tsec->sid, isec->sid,
2540 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2541 if (rc)
2542 return rc;
2543
2544 /* Check for shared state */
2545 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2546 rc = avc_has_perm(&selinux_state,
2547 old_tsec->sid, new_tsec->sid,
2548 SECCLASS_PROCESS, PROCESS__SHARE,
2549 NULL);
2550 if (rc)
2551 return -EPERM;
2552 }
2553
2554 /* Make sure that anyone attempting to ptrace over a task that
2555 * changes its SID has the appropriate permit */
2556 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2557 u32 ptsid = ptrace_parent_sid();
2558 if (ptsid != 0) {
2559 rc = avc_has_perm(&selinux_state,
2560 ptsid, new_tsec->sid,
2561 SECCLASS_PROCESS,
2562 PROCESS__PTRACE, NULL);
2563 if (rc)
2564 return -EPERM;
2565 }
2566 }
2567
2568 /* Clear any possibly unsafe personality bits on exec: */
2569 bprm->per_clear |= PER_CLEAR_ON_SETID;
2570
2571 /* Enable secure mode for SIDs transitions unless
2572 the noatsecure permission is granted between
2573 the two SIDs, i.e. ahp returns 0. */
2574 rc = avc_has_perm(&selinux_state,
2575 old_tsec->sid, new_tsec->sid,
2576 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2577 NULL);
2578 bprm->secureexec |= !!rc;
2579 }
2580
2581 return 0;
2582}
2583
2584static int match_file(const void *p, struct file *file, unsigned fd)
2585{
2586 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2587}
2588
2589/* Derived from fs/exec.c:flush_old_files. */
2590static inline void flush_unauthorized_files(const struct cred *cred,
2591 struct files_struct *files)
2592{
2593 struct file *file, *devnull = NULL;
2594 struct tty_struct *tty;
2595 int drop_tty = 0;
2596 unsigned n;
2597
2598 tty = get_current_tty();
2599 if (tty) {
2600 spin_lock(&tty->files_lock);
2601 if (!list_empty(&tty->tty_files)) {
2602 struct tty_file_private *file_priv;
2603
2604 /* Revalidate access to controlling tty.
2605 Use file_path_has_perm on the tty path directly
2606 rather than using file_has_perm, as this particular
2607 open file may belong to another process and we are
2608 only interested in the inode-based check here. */
2609 file_priv = list_first_entry(&tty->tty_files,
2610 struct tty_file_private, list);
2611 file = file_priv->file;
2612 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2613 drop_tty = 1;
2614 }
2615 spin_unlock(&tty->files_lock);
2616 tty_kref_put(tty);
2617 }
2618 /* Reset controlling tty. */
2619 if (drop_tty)
2620 no_tty();
2621
2622 /* Revalidate access to inherited open files. */
2623 n = iterate_fd(files, 0, match_file, cred);
2624 if (!n) /* none found? */
2625 return;
2626
2627 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2628 if (IS_ERR(devnull))
2629 devnull = NULL;
2630 /* replace all the matching ones with this */
2631 do {
2632 replace_fd(n - 1, devnull, 0);
2633 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2634 if (devnull)
2635 fput(devnull);
2636}
2637
2638/*
2639 * Prepare a process for imminent new credential changes due to exec
2640 */
2641static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2642{
2643 struct task_security_struct *new_tsec;
2644 struct rlimit *rlim, *initrlim;
2645 int rc, i;
2646
2647 new_tsec = bprm->cred->security;
2648 if (new_tsec->sid == new_tsec->osid)
2649 return;
2650
2651 /* Close files for which the new task SID is not authorized. */
2652 flush_unauthorized_files(bprm->cred, current->files);
2653
2654 /* Always clear parent death signal on SID transitions. */
2655 current->pdeath_signal = 0;
2656
2657 /* Check whether the new SID can inherit resource limits from the old
2658 * SID. If not, reset all soft limits to the lower of the current
2659 * task's hard limit and the init task's soft limit.
2660 *
2661 * Note that the setting of hard limits (even to lower them) can be
2662 * controlled by the setrlimit check. The inclusion of the init task's
2663 * soft limit into the computation is to avoid resetting soft limits
2664 * higher than the default soft limit for cases where the default is
2665 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2666 */
2667 rc = avc_has_perm(&selinux_state,
2668 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2669 PROCESS__RLIMITINH, NULL);
2670 if (rc) {
2671 /* protect against do_prlimit() */
2672 task_lock(current);
2673 for (i = 0; i < RLIM_NLIMITS; i++) {
2674 rlim = current->signal->rlim + i;
2675 initrlim = init_task.signal->rlim + i;
2676 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2677 }
2678 task_unlock(current);
2679 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2680 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2681 }
2682}
2683
2684/*
2685 * Clean up the process immediately after the installation of new credentials
2686 * due to exec
2687 */
2688static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2689{
2690 const struct task_security_struct *tsec = current_security();
2691 struct itimerval itimer;
2692 u32 osid, sid;
2693 int rc, i;
2694
2695 osid = tsec->osid;
2696 sid = tsec->sid;
2697
2698 if (sid == osid)
2699 return;
2700
2701 /* Check whether the new SID can inherit signal state from the old SID.
2702 * If not, clear itimers to avoid subsequent signal generation and
2703 * flush and unblock signals.
2704 *
2705 * This must occur _after_ the task SID has been updated so that any
2706 * kill done after the flush will be checked against the new SID.
2707 */
2708 rc = avc_has_perm(&selinux_state,
2709 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2710 if (rc) {
2711 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2712 memset(&itimer, 0, sizeof itimer);
2713 for (i = 0; i < 3; i++)
2714 do_setitimer(i, &itimer, NULL);
2715 }
2716 spin_lock_irq(¤t->sighand->siglock);
2717 if (!fatal_signal_pending(current)) {
2718 flush_sigqueue(¤t->pending);
2719 flush_sigqueue(¤t->signal->shared_pending);
2720 flush_signal_handlers(current, 1);
2721 sigemptyset(¤t->blocked);
2722 recalc_sigpending();
2723 }
2724 spin_unlock_irq(¤t->sighand->siglock);
2725 }
2726
2727 /* Wake up the parent if it is waiting so that it can recheck
2728 * wait permission to the new task SID. */
2729 read_lock(&tasklist_lock);
2730 __wake_up_parent(current, current->real_parent);
2731 read_unlock(&tasklist_lock);
2732}
2733
2734/* superblock security operations */
2735
2736static int selinux_sb_alloc_security(struct super_block *sb)
2737{
2738 return superblock_alloc_security(sb);
2739}
2740
2741static void selinux_sb_free_security(struct super_block *sb)
2742{
2743 superblock_free_security(sb);
2744}
2745
2746static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2747{
2748 if (plen > olen)
2749 return 0;
2750
2751 return !memcmp(prefix, option, plen);
2752}
2753
2754static inline int selinux_option(char *option, int len)
2755{
2756 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2757 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2758 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2759 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2760 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2761}
2762
2763static inline void take_option(char **to, char *from, int *first, int len)
2764{
2765 if (!*first) {
2766 **to = ',';
2767 *to += 1;
2768 } else
2769 *first = 0;
2770 memcpy(*to, from, len);
2771 *to += len;
2772}
2773
2774static inline void take_selinux_option(char **to, char *from, int *first,
2775 int len)
2776{
2777 int current_size = 0;
2778
2779 if (!*first) {
2780 **to = '|';
2781 *to += 1;
2782 } else
2783 *first = 0;
2784
2785 while (current_size < len) {
2786 if (*from != '"') {
2787 **to = *from;
2788 *to += 1;
2789 }
2790 from += 1;
2791 current_size += 1;
2792 }
2793}
2794
2795static int selinux_sb_copy_data(char *orig, char *copy)
2796{
2797 int fnosec, fsec, rc = 0;
2798 char *in_save, *in_curr, *in_end;
2799 char *sec_curr, *nosec_save, *nosec;
2800 int open_quote = 0;
2801
2802 in_curr = orig;
2803 sec_curr = copy;
2804
2805 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2806 if (!nosec) {
2807 rc = -ENOMEM;
2808 goto out;
2809 }
2810
2811 nosec_save = nosec;
2812 fnosec = fsec = 1;
2813 in_save = in_end = orig;
2814
2815 do {
2816 if (*in_end == '"')
2817 open_quote = !open_quote;
2818 if ((*in_end == ',' && open_quote == 0) ||
2819 *in_end == '\0') {
2820 int len = in_end - in_curr;
2821
2822 if (selinux_option(in_curr, len))
2823 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2824 else
2825 take_option(&nosec, in_curr, &fnosec, len);
2826
2827 in_curr = in_end + 1;
2828 }
2829 } while (*in_end++);
2830
2831 strcpy(in_save, nosec_save);
2832 free_page((unsigned long)nosec_save);
2833out:
2834 return rc;
2835}
2836
2837static int selinux_sb_remount(struct super_block *sb, void *data)
2838{
2839 int rc, i, *flags;
2840 struct security_mnt_opts opts;
2841 char *secdata, **mount_options;
2842 struct superblock_security_struct *sbsec = sb->s_security;
2843
2844 if (!(sbsec->flags & SE_SBINITIALIZED))
2845 return 0;
2846
2847 if (!data)
2848 return 0;
2849
2850 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2851 return 0;
2852
2853 security_init_mnt_opts(&opts);
2854 secdata = alloc_secdata();
2855 if (!secdata)
2856 return -ENOMEM;
2857 rc = selinux_sb_copy_data(data, secdata);
2858 if (rc)
2859 goto out_free_secdata;
2860
2861 rc = selinux_parse_opts_str(secdata, &opts);
2862 if (rc)
2863 goto out_free_secdata;
2864
2865 mount_options = opts.mnt_opts;
2866 flags = opts.mnt_opts_flags;
2867
2868 for (i = 0; i < opts.num_mnt_opts; i++) {
2869 u32 sid;
2870
2871 if (flags[i] == SBLABEL_MNT)
2872 continue;
2873 rc = security_context_str_to_sid(&selinux_state,
2874 mount_options[i], &sid,
2875 GFP_KERNEL);
2876 if (rc) {
2877 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2878 "(%s) failed for (dev %s, type %s) errno=%d\n",
2879 mount_options[i], sb->s_id, sb->s_type->name, rc);
2880 goto out_free_opts;
2881 }
2882 rc = -EINVAL;
2883 switch (flags[i]) {
2884 case FSCONTEXT_MNT:
2885 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2886 goto out_bad_option;
2887 break;
2888 case CONTEXT_MNT:
2889 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2890 goto out_bad_option;
2891 break;
2892 case ROOTCONTEXT_MNT: {
2893 struct inode_security_struct *root_isec;
2894 root_isec = backing_inode_security(sb->s_root);
2895
2896 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2897 goto out_bad_option;
2898 break;
2899 }
2900 case DEFCONTEXT_MNT:
2901 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2902 goto out_bad_option;
2903 break;
2904 default:
2905 goto out_free_opts;
2906 }
2907 }
2908
2909 rc = 0;
2910out_free_opts:
2911 security_free_mnt_opts(&opts);
2912out_free_secdata:
2913 free_secdata(secdata);
2914 return rc;
2915out_bad_option:
2916 printk(KERN_WARNING "SELinux: unable to change security options "
2917 "during remount (dev %s, type=%s)\n", sb->s_id,
2918 sb->s_type->name);
2919 goto out_free_opts;
2920}
2921
2922static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2923{
2924 const struct cred *cred = current_cred();
2925 struct common_audit_data ad;
2926 int rc;
2927
2928 rc = superblock_doinit(sb, data);
2929 if (rc)
2930 return rc;
2931
2932 /* Allow all mounts performed by the kernel */
2933 if (flags & MS_KERNMOUNT)
2934 return 0;
2935
2936 ad.type = LSM_AUDIT_DATA_DENTRY;
2937 ad.u.dentry = sb->s_root;
2938 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2939}
2940
2941static int selinux_sb_statfs(struct dentry *dentry)
2942{
2943 const struct cred *cred = current_cred();
2944 struct common_audit_data ad;
2945
2946 ad.type = LSM_AUDIT_DATA_DENTRY;
2947 ad.u.dentry = dentry->d_sb->s_root;
2948 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2949}
2950
2951static int selinux_mount(const char *dev_name,
2952 const struct path *path,
2953 const char *type,
2954 unsigned long flags,
2955 void *data)
2956{
2957 const struct cred *cred = current_cred();
2958
2959 if (flags & MS_REMOUNT)
2960 return superblock_has_perm(cred, path->dentry->d_sb,
2961 FILESYSTEM__REMOUNT, NULL);
2962 else
2963 return path_has_perm(cred, path, FILE__MOUNTON);
2964}
2965
2966static int selinux_umount(struct vfsmount *mnt, int flags)
2967{
2968 const struct cred *cred = current_cred();
2969
2970 return superblock_has_perm(cred, mnt->mnt_sb,
2971 FILESYSTEM__UNMOUNT, NULL);
2972}
2973
2974/* inode security operations */
2975
2976static int selinux_inode_alloc_security(struct inode *inode)
2977{
2978 return inode_alloc_security(inode);
2979}
2980
2981static void selinux_inode_free_security(struct inode *inode)
2982{
2983 inode_free_security(inode);
2984}
2985
2986static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2987 const struct qstr *name, void **ctx,
2988 u32 *ctxlen)
2989{
2990 u32 newsid;
2991 int rc;
2992
2993 rc = selinux_determine_inode_label(current_security(),
2994 d_inode(dentry->d_parent), name,
2995 inode_mode_to_security_class(mode),
2996 &newsid);
2997 if (rc)
2998 return rc;
2999
3000 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
3001 ctxlen);
3002}
3003
3004static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
3005 struct qstr *name,
3006 const struct cred *old,
3007 struct cred *new)
3008{
3009 u32 newsid;
3010 int rc;
3011 struct task_security_struct *tsec;
3012
3013 rc = selinux_determine_inode_label(old->security,
3014 d_inode(dentry->d_parent), name,
3015 inode_mode_to_security_class(mode),
3016 &newsid);
3017 if (rc)
3018 return rc;
3019
3020 tsec = new->security;
3021 tsec->create_sid = newsid;
3022 return 0;
3023}
3024
3025static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3026 const struct qstr *qstr,
3027 const char **name,
3028 void **value, size_t *len)
3029{
3030 const struct task_security_struct *tsec = current_security();
3031 struct superblock_security_struct *sbsec;
3032 u32 newsid, clen;
3033 int rc;
3034 char *context;
3035
3036 sbsec = dir->i_sb->s_security;
3037
3038 newsid = tsec->create_sid;
3039
3040 rc = selinux_determine_inode_label(current_security(),
3041 dir, qstr,
3042 inode_mode_to_security_class(inode->i_mode),
3043 &newsid);
3044 if (rc)
3045 return rc;
3046
3047 /* Possibly defer initialization to selinux_complete_init. */
3048 if (sbsec->flags & SE_SBINITIALIZED) {
3049 struct inode_security_struct *isec = inode->i_security;
3050 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3051 isec->sid = newsid;
3052 isec->initialized = LABEL_INITIALIZED;
3053 }
3054
3055 if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3056 return -EOPNOTSUPP;
3057
3058 if (name)
3059 *name = XATTR_SELINUX_SUFFIX;
3060
3061 if (value && len) {
3062 rc = security_sid_to_context_force(&selinux_state, newsid,
3063 &context, &clen);
3064 if (rc)
3065 return rc;
3066 *value = context;
3067 *len = clen;
3068 }
3069
3070 return 0;
3071}
3072
3073static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3074{
3075 return may_create(dir, dentry, SECCLASS_FILE);
3076}
3077
3078static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3079{
3080 return may_link(dir, old_dentry, MAY_LINK);
3081}
3082
3083static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3084{
3085 return may_link(dir, dentry, MAY_UNLINK);
3086}
3087
3088static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3089{
3090 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3091}
3092
3093static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3094{
3095 return may_create(dir, dentry, SECCLASS_DIR);
3096}
3097
3098static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3099{
3100 return may_link(dir, dentry, MAY_RMDIR);
3101}
3102
3103static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3104{
3105 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3106}
3107
3108static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3109 struct inode *new_inode, struct dentry *new_dentry)
3110{
3111 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3112}
3113
3114static int selinux_inode_readlink(struct dentry *dentry)
3115{
3116 const struct cred *cred = current_cred();
3117
3118 return dentry_has_perm(cred, dentry, FILE__READ);
3119}
3120
3121static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3122 bool rcu)
3123{
3124 const struct cred *cred = current_cred();
3125 struct common_audit_data ad;
3126 struct inode_security_struct *isec;
3127 u32 sid;
3128
3129 validate_creds(cred);
3130
3131 ad.type = LSM_AUDIT_DATA_DENTRY;
3132 ad.u.dentry = dentry;
3133 sid = cred_sid(cred);
3134 isec = inode_security_rcu(inode, rcu);
3135 if (IS_ERR(isec))
3136 return PTR_ERR(isec);
3137
3138 return avc_has_perm_flags(&selinux_state,
3139 sid, isec->sid, isec->sclass, FILE__READ, &ad,
3140 rcu ? MAY_NOT_BLOCK : 0);
3141}
3142
3143static noinline int audit_inode_permission(struct inode *inode,
3144 u32 perms, u32 audited, u32 denied,
3145 int result,
3146 unsigned flags)
3147{
3148 struct common_audit_data ad;
3149 struct inode_security_struct *isec = inode->i_security;
3150 int rc;
3151
3152 ad.type = LSM_AUDIT_DATA_INODE;
3153 ad.u.inode = inode;
3154
3155 rc = slow_avc_audit(&selinux_state,
3156 current_sid(), isec->sid, isec->sclass, perms,
3157 audited, denied, result, &ad, flags);
3158 if (rc)
3159 return rc;
3160 return 0;
3161}
3162
3163static int selinux_inode_permission(struct inode *inode, int mask)
3164{
3165 const struct cred *cred = current_cred();
3166 u32 perms;
3167 bool from_access;
3168 unsigned flags = mask & MAY_NOT_BLOCK;
3169 struct inode_security_struct *isec;
3170 u32 sid;
3171 struct av_decision avd;
3172 int rc, rc2;
3173 u32 audited, denied;
3174
3175 from_access = mask & MAY_ACCESS;
3176 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3177
3178 /* No permission to check. Existence test. */
3179 if (!mask)
3180 return 0;
3181
3182 validate_creds(cred);
3183
3184 if (unlikely(IS_PRIVATE(inode)))
3185 return 0;
3186
3187 perms = file_mask_to_av(inode->i_mode, mask);
3188
3189 sid = cred_sid(cred);
3190 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3191 if (IS_ERR(isec))
3192 return PTR_ERR(isec);
3193
3194 rc = avc_has_perm_noaudit(&selinux_state,
3195 sid, isec->sid, isec->sclass, perms, 0, &avd);
3196 audited = avc_audit_required(perms, &avd, rc,
3197 from_access ? FILE__AUDIT_ACCESS : 0,
3198 &denied);
3199 if (likely(!audited))
3200 return rc;
3201
3202 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3203 if (rc2)
3204 return rc2;
3205 return rc;
3206}
3207
3208static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3209{
3210 const struct cred *cred = current_cred();
3211 struct inode *inode = d_backing_inode(dentry);
3212 unsigned int ia_valid = iattr->ia_valid;
3213 __u32 av = FILE__WRITE;
3214
3215 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3216 if (ia_valid & ATTR_FORCE) {
3217 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3218 ATTR_FORCE);
3219 if (!ia_valid)
3220 return 0;
3221 }
3222
3223 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3224 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3225 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3226
3227 if (selinux_policycap_openperm() &&
3228 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3229 (ia_valid & ATTR_SIZE) &&
3230 !(ia_valid & ATTR_FILE))
3231 av |= FILE__OPEN;
3232
3233 return dentry_has_perm(cred, dentry, av);
3234}
3235
3236static int selinux_inode_getattr(const struct path *path)
3237{
3238 return path_has_perm(current_cred(), path, FILE__GETATTR);
3239}
3240
3241static bool has_cap_mac_admin(bool audit)
3242{
3243 const struct cred *cred = current_cred();
3244 int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3245
3246 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3247 return false;
3248 if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3249 return false;
3250 return true;
3251}
3252
3253static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3254 const void *value, size_t size, int flags)
3255{
3256 struct inode *inode = d_backing_inode(dentry);
3257 struct inode_security_struct *isec;
3258 struct superblock_security_struct *sbsec;
3259 struct common_audit_data ad;
3260 u32 newsid, sid = current_sid();
3261 int rc = 0;
3262
3263 if (strcmp(name, XATTR_NAME_SELINUX)) {
3264 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3265 if (rc)
3266 return rc;
3267
3268 /* Not an attribute we recognize, so just check the
3269 ordinary setattr permission. */
3270 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3271 }
3272
3273 sbsec = inode->i_sb->s_security;
3274 if (!(sbsec->flags & SBLABEL_MNT))
3275 return -EOPNOTSUPP;
3276
3277 if (!inode_owner_or_capable(inode))
3278 return -EPERM;
3279
3280 ad.type = LSM_AUDIT_DATA_DENTRY;
3281 ad.u.dentry = dentry;
3282
3283 isec = backing_inode_security(dentry);
3284 rc = avc_has_perm(&selinux_state,
3285 sid, isec->sid, isec->sclass,
3286 FILE__RELABELFROM, &ad);
3287 if (rc)
3288 return rc;
3289
3290 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3291 GFP_KERNEL);
3292 if (rc == -EINVAL) {
3293 if (!has_cap_mac_admin(true)) {
3294 struct audit_buffer *ab;
3295 size_t audit_size;
3296
3297 /* We strip a nul only if it is at the end, otherwise the
3298 * context contains a nul and we should audit that */
3299 if (value) {
3300 const char *str = value;
3301
3302 if (str[size - 1] == '\0')
3303 audit_size = size - 1;
3304 else
3305 audit_size = size;
3306 } else {
3307 audit_size = 0;
3308 }
3309 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3310 audit_log_format(ab, "op=setxattr invalid_context=");
3311 audit_log_n_untrustedstring(ab, value, audit_size);
3312 audit_log_end(ab);
3313
3314 return rc;
3315 }
3316 rc = security_context_to_sid_force(&selinux_state, value,
3317 size, &newsid);
3318 }
3319 if (rc)
3320 return rc;
3321
3322 rc = avc_has_perm(&selinux_state,
3323 sid, newsid, isec->sclass,
3324 FILE__RELABELTO, &ad);
3325 if (rc)
3326 return rc;
3327
3328 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3329 sid, isec->sclass);
3330 if (rc)
3331 return rc;
3332
3333 return avc_has_perm(&selinux_state,
3334 newsid,
3335 sbsec->sid,
3336 SECCLASS_FILESYSTEM,
3337 FILESYSTEM__ASSOCIATE,
3338 &ad);
3339}
3340
3341static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3342 const void *value, size_t size,
3343 int flags)
3344{
3345 struct inode *inode = d_backing_inode(dentry);
3346 struct inode_security_struct *isec;
3347 u32 newsid;
3348 int rc;
3349
3350 if (strcmp(name, XATTR_NAME_SELINUX)) {
3351 /* Not an attribute we recognize, so nothing to do. */
3352 return;
3353 }
3354
3355 rc = security_context_to_sid_force(&selinux_state, value, size,
3356 &newsid);
3357 if (rc) {
3358 printk(KERN_ERR "SELinux: unable to map context to SID"
3359 "for (%s, %lu), rc=%d\n",
3360 inode->i_sb->s_id, inode->i_ino, -rc);
3361 return;
3362 }
3363
3364 isec = backing_inode_security(dentry);
3365 spin_lock(&isec->lock);
3366 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3367 isec->sid = newsid;
3368 isec->initialized = LABEL_INITIALIZED;
3369 spin_unlock(&isec->lock);
3370
3371 return;
3372}
3373
3374static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3375{
3376 const struct cred *cred = current_cred();
3377
3378 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3379}
3380
3381static int selinux_inode_listxattr(struct dentry *dentry)
3382{
3383 const struct cred *cred = current_cred();
3384
3385 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3386}
3387
3388static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3389{
3390 if (strcmp(name, XATTR_NAME_SELINUX)) {
3391 int rc = cap_inode_removexattr(dentry, name);
3392 if (rc)
3393 return rc;
3394
3395 /* Not an attribute we recognize, so just check the
3396 ordinary setattr permission. */
3397 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3398 }
3399
3400 /* No one is allowed to remove a SELinux security label.
3401 You can change the label, but all data must be labeled. */
3402 return -EACCES;
3403}
3404
3405/*
3406 * Copy the inode security context value to the user.
3407 *
3408 * Permission check is handled by selinux_inode_getxattr hook.
3409 */
3410static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3411{
3412 u32 size;
3413 int error;
3414 char *context = NULL;
3415 struct inode_security_struct *isec;
3416
3417 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3418 return -EOPNOTSUPP;
3419
3420 /*
3421 * If the caller has CAP_MAC_ADMIN, then get the raw context
3422 * value even if it is not defined by current policy; otherwise,
3423 * use the in-core value under current policy.
3424 * Use the non-auditing forms of the permission checks since
3425 * getxattr may be called by unprivileged processes commonly
3426 * and lack of permission just means that we fall back to the
3427 * in-core context value, not a denial.
3428 */
3429 isec = inode_security(inode);
3430 if (has_cap_mac_admin(false))
3431 error = security_sid_to_context_force(&selinux_state,
3432 isec->sid, &context,
3433 &size);
3434 else
3435 error = security_sid_to_context(&selinux_state, isec->sid,
3436 &context, &size);
3437 if (error)
3438 return error;
3439 error = size;
3440 if (alloc) {
3441 *buffer = context;
3442 goto out_nofree;
3443 }
3444 kfree(context);
3445out_nofree:
3446 return error;
3447}
3448
3449static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3450 const void *value, size_t size, int flags)
3451{
3452 struct inode_security_struct *isec = inode_security_novalidate(inode);
3453 u32 newsid;
3454 int rc;
3455
3456 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3457 return -EOPNOTSUPP;
3458
3459 if (!value || !size)
3460 return -EACCES;
3461
3462 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3463 GFP_KERNEL);
3464 if (rc)
3465 return rc;
3466
3467 spin_lock(&isec->lock);
3468 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3469 isec->sid = newsid;
3470 isec->initialized = LABEL_INITIALIZED;
3471 spin_unlock(&isec->lock);
3472 return 0;
3473}
3474
3475static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3476{
3477 const int len = sizeof(XATTR_NAME_SELINUX);
3478 if (buffer && len <= buffer_size)
3479 memcpy(buffer, XATTR_NAME_SELINUX, len);
3480 return len;
3481}
3482
3483static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3484{
3485 struct inode_security_struct *isec = inode_security_novalidate(inode);
3486 *secid = isec->sid;
3487}
3488
3489static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3490{
3491 u32 sid;
3492 struct task_security_struct *tsec;
3493 struct cred *new_creds = *new;
3494
3495 if (new_creds == NULL) {
3496 new_creds = prepare_creds();
3497 if (!new_creds)
3498 return -ENOMEM;
3499 }
3500
3501 tsec = new_creds->security;
3502 /* Get label from overlay inode and set it in create_sid */
3503 selinux_inode_getsecid(d_inode(src), &sid);
3504 tsec->create_sid = sid;
3505 *new = new_creds;
3506 return 0;
3507}
3508
3509static int selinux_inode_copy_up_xattr(const char *name)
3510{
3511 /* The copy_up hook above sets the initial context on an inode, but we
3512 * don't then want to overwrite it by blindly copying all the lower
3513 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3514 */
3515 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3516 return 1; /* Discard */
3517 /*
3518 * Any other attribute apart from SELINUX is not claimed, supported
3519 * by selinux.
3520 */
3521 return -EOPNOTSUPP;
3522}
3523
3524/* file security operations */
3525
3526static int selinux_revalidate_file_permission(struct file *file, int mask)
3527{
3528 const struct cred *cred = current_cred();
3529 struct inode *inode = file_inode(file);
3530
3531 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3532 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3533 mask |= MAY_APPEND;
3534
3535 return file_has_perm(cred, file,
3536 file_mask_to_av(inode->i_mode, mask));
3537}
3538
3539static int selinux_file_permission(struct file *file, int mask)
3540{
3541 struct inode *inode = file_inode(file);
3542 struct file_security_struct *fsec = file->f_security;
3543 struct inode_security_struct *isec;
3544 u32 sid = current_sid();
3545
3546 if (!mask)
3547 /* No permission to check. Existence test. */
3548 return 0;
3549
3550 isec = inode_security(inode);
3551 if (sid == fsec->sid && fsec->isid == isec->sid &&
3552 fsec->pseqno == avc_policy_seqno(&selinux_state))
3553 /* No change since file_open check. */
3554 return 0;
3555
3556 return selinux_revalidate_file_permission(file, mask);
3557}
3558
3559static int selinux_file_alloc_security(struct file *file)
3560{
3561 return file_alloc_security(file);
3562}
3563
3564static void selinux_file_free_security(struct file *file)
3565{
3566 file_free_security(file);
3567}
3568
3569/*
3570 * Check whether a task has the ioctl permission and cmd
3571 * operation to an inode.
3572 */
3573static int ioctl_has_perm(const struct cred *cred, struct file *file,
3574 u32 requested, u16 cmd)
3575{
3576 struct common_audit_data ad;
3577 struct file_security_struct *fsec = file->f_security;
3578 struct inode *inode = file_inode(file);
3579 struct inode_security_struct *isec;
3580 struct lsm_ioctlop_audit ioctl;
3581 u32 ssid = cred_sid(cred);
3582 int rc;
3583 u8 driver = cmd >> 8;
3584 u8 xperm = cmd & 0xff;
3585
3586 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3587 ad.u.op = &ioctl;
3588 ad.u.op->cmd = cmd;
3589 ad.u.op->path = file->f_path;
3590
3591 if (ssid != fsec->sid) {
3592 rc = avc_has_perm(&selinux_state,
3593 ssid, fsec->sid,
3594 SECCLASS_FD,
3595 FD__USE,
3596 &ad);
3597 if (rc)
3598 goto out;
3599 }
3600
3601 if (unlikely(IS_PRIVATE(inode)))
3602 return 0;
3603
3604 isec = inode_security(inode);
3605 rc = avc_has_extended_perms(&selinux_state,
3606 ssid, isec->sid, isec->sclass,
3607 requested, driver, xperm, &ad);
3608out:
3609 return rc;
3610}
3611
3612static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3613 unsigned long arg)
3614{
3615 const struct cred *cred = current_cred();
3616 int error = 0;
3617
3618 switch (cmd) {
3619 case FIONREAD:
3620 /* fall through */
3621 case FIBMAP:
3622 /* fall through */
3623 case FIGETBSZ:
3624 /* fall through */
3625 case FS_IOC_GETFLAGS:
3626 /* fall through */
3627 case FS_IOC_GETVERSION:
3628 error = file_has_perm(cred, file, FILE__GETATTR);
3629 break;
3630
3631 case FS_IOC_SETFLAGS:
3632 /* fall through */
3633 case FS_IOC_SETVERSION:
3634 error = file_has_perm(cred, file, FILE__SETATTR);
3635 break;
3636
3637 /* sys_ioctl() checks */
3638 case FIONBIO:
3639 /* fall through */
3640 case FIOASYNC:
3641 error = file_has_perm(cred, file, 0);
3642 break;
3643
3644 case KDSKBENT:
3645 case KDSKBSENT:
3646 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3647 SECURITY_CAP_AUDIT, true);
3648 break;
3649
3650 /* default case assumes that the command will go
3651 * to the file's ioctl() function.
3652 */
3653 default:
3654 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3655 }
3656 return error;
3657}
3658
3659static int default_noexec;
3660
3661static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3662{
3663 const struct cred *cred = current_cred();
3664 u32 sid = cred_sid(cred);
3665 int rc = 0;
3666
3667 if (default_noexec &&
3668 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3669 (!shared && (prot & PROT_WRITE)))) {
3670 /*
3671 * We are making executable an anonymous mapping or a
3672 * private file mapping that will also be writable.
3673 * This has an additional check.
3674 */
3675 rc = avc_has_perm(&selinux_state,
3676 sid, sid, SECCLASS_PROCESS,
3677 PROCESS__EXECMEM, NULL);
3678 if (rc)
3679 goto error;
3680 }
3681
3682 if (file) {
3683 /* read access is always possible with a mapping */
3684 u32 av = FILE__READ;
3685
3686 /* write access only matters if the mapping is shared */
3687 if (shared && (prot & PROT_WRITE))
3688 av |= FILE__WRITE;
3689
3690 if (prot & PROT_EXEC)
3691 av |= FILE__EXECUTE;
3692
3693 return file_has_perm(cred, file, av);
3694 }
3695
3696error:
3697 return rc;
3698}
3699
3700static int selinux_mmap_addr(unsigned long addr)
3701{
3702 int rc = 0;
3703
3704 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3705 u32 sid = current_sid();
3706 rc = avc_has_perm(&selinux_state,
3707 sid, sid, SECCLASS_MEMPROTECT,
3708 MEMPROTECT__MMAP_ZERO, NULL);
3709 }
3710
3711 return rc;
3712}
3713
3714static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3715 unsigned long prot, unsigned long flags)
3716{
3717 struct common_audit_data ad;
3718 int rc;
3719
3720 if (file) {
3721 ad.type = LSM_AUDIT_DATA_FILE;
3722 ad.u.file = file;
3723 rc = inode_has_perm(current_cred(), file_inode(file),
3724 FILE__MAP, &ad);
3725 if (rc)
3726 return rc;
3727 }
3728
3729 if (selinux_state.checkreqprot)
3730 prot = reqprot;
3731
3732 return file_map_prot_check(file, prot,
3733 (flags & MAP_TYPE) == MAP_SHARED);
3734}
3735
3736static int selinux_file_mprotect(struct vm_area_struct *vma,
3737 unsigned long reqprot,
3738 unsigned long prot)
3739{
3740 const struct cred *cred = current_cred();
3741 u32 sid = cred_sid(cred);
3742
3743 if (selinux_state.checkreqprot)
3744 prot = reqprot;
3745
3746 if (default_noexec &&
3747 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3748 int rc = 0;
3749 if (vma->vm_start >= vma->vm_mm->start_brk &&
3750 vma->vm_end <= vma->vm_mm->brk) {
3751 rc = avc_has_perm(&selinux_state,
3752 sid, sid, SECCLASS_PROCESS,
3753 PROCESS__EXECHEAP, NULL);
3754 } else if (!vma->vm_file &&
3755 ((vma->vm_start <= vma->vm_mm->start_stack &&
3756 vma->vm_end >= vma->vm_mm->start_stack) ||
3757 vma_is_stack_for_current(vma))) {
3758 rc = avc_has_perm(&selinux_state,
3759 sid, sid, SECCLASS_PROCESS,
3760 PROCESS__EXECSTACK, NULL);
3761 } else if (vma->vm_file && vma->anon_vma) {
3762 /*
3763 * We are making executable a file mapping that has
3764 * had some COW done. Since pages might have been
3765 * written, check ability to execute the possibly
3766 * modified content. This typically should only
3767 * occur for text relocations.
3768 */
3769 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3770 }
3771 if (rc)
3772 return rc;
3773 }
3774
3775 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3776}
3777
3778static int selinux_file_lock(struct file *file, unsigned int cmd)
3779{
3780 const struct cred *cred = current_cred();
3781
3782 return file_has_perm(cred, file, FILE__LOCK);
3783}
3784
3785static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3786 unsigned long arg)
3787{
3788 const struct cred *cred = current_cred();
3789 int err = 0;
3790
3791 switch (cmd) {
3792 case F_SETFL:
3793 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3794 err = file_has_perm(cred, file, FILE__WRITE);
3795 break;
3796 }
3797 /* fall through */
3798 case F_SETOWN:
3799 case F_SETSIG:
3800 case F_GETFL:
3801 case F_GETOWN:
3802 case F_GETSIG:
3803 case F_GETOWNER_UIDS:
3804 /* Just check FD__USE permission */
3805 err = file_has_perm(cred, file, 0);
3806 break;
3807 case F_GETLK:
3808 case F_SETLK:
3809 case F_SETLKW:
3810 case F_OFD_GETLK:
3811 case F_OFD_SETLK:
3812 case F_OFD_SETLKW:
3813#if BITS_PER_LONG == 32
3814 case F_GETLK64:
3815 case F_SETLK64:
3816 case F_SETLKW64:
3817#endif
3818 err = file_has_perm(cred, file, FILE__LOCK);
3819 break;
3820 }
3821
3822 return err;
3823}
3824
3825static void selinux_file_set_fowner(struct file *file)
3826{
3827 struct file_security_struct *fsec;
3828
3829 fsec = file->f_security;
3830 fsec->fown_sid = current_sid();
3831}
3832
3833static int selinux_file_send_sigiotask(struct task_struct *tsk,
3834 struct fown_struct *fown, int signum)
3835{
3836 struct file *file;
3837 u32 sid = task_sid(tsk);
3838 u32 perm;
3839 struct file_security_struct *fsec;
3840
3841 /* struct fown_struct is never outside the context of a struct file */
3842 file = container_of(fown, struct file, f_owner);
3843
3844 fsec = file->f_security;
3845
3846 if (!signum)
3847 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3848 else
3849 perm = signal_to_av(signum);
3850
3851 return avc_has_perm(&selinux_state,
3852 fsec->fown_sid, sid,
3853 SECCLASS_PROCESS, perm, NULL);
3854}
3855
3856static int selinux_file_receive(struct file *file)
3857{
3858 const struct cred *cred = current_cred();
3859
3860 return file_has_perm(cred, file, file_to_av(file));
3861}
3862
3863static int selinux_file_open(struct file *file, const struct cred *cred)
3864{
3865 struct file_security_struct *fsec;
3866 struct inode_security_struct *isec;
3867
3868 fsec = file->f_security;
3869 isec = inode_security(file_inode(file));
3870 /*
3871 * Save inode label and policy sequence number
3872 * at open-time so that selinux_file_permission
3873 * can determine whether revalidation is necessary.
3874 * Task label is already saved in the file security
3875 * struct as its SID.
3876 */
3877 fsec->isid = isec->sid;
3878 fsec->pseqno = avc_policy_seqno(&selinux_state);
3879 /*
3880 * Since the inode label or policy seqno may have changed
3881 * between the selinux_inode_permission check and the saving
3882 * of state above, recheck that access is still permitted.
3883 * Otherwise, access might never be revalidated against the
3884 * new inode label or new policy.
3885 * This check is not redundant - do not remove.
3886 */
3887 return file_path_has_perm(cred, file, open_file_to_av(file));
3888}
3889
3890/* task security operations */
3891
3892static int selinux_task_alloc(struct task_struct *task,
3893 unsigned long clone_flags)
3894{
3895 u32 sid = current_sid();
3896
3897 return avc_has_perm(&selinux_state,
3898 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3899}
3900
3901/*
3902 * allocate the SELinux part of blank credentials
3903 */
3904static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3905{
3906 struct task_security_struct *tsec;
3907
3908 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3909 if (!tsec)
3910 return -ENOMEM;
3911
3912 cred->security = tsec;
3913 return 0;
3914}
3915
3916/*
3917 * detach and free the LSM part of a set of credentials
3918 */
3919static void selinux_cred_free(struct cred *cred)
3920{
3921 struct task_security_struct *tsec = cred->security;
3922
3923 /*
3924 * cred->security == NULL if security_cred_alloc_blank() or
3925 * security_prepare_creds() returned an error.
3926 */
3927 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3928 cred->security = (void *) 0x7UL;
3929 kfree(tsec);
3930}
3931
3932/*
3933 * prepare a new set of credentials for modification
3934 */
3935static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3936 gfp_t gfp)
3937{
3938 const struct task_security_struct *old_tsec;
3939 struct task_security_struct *tsec;
3940
3941 old_tsec = old->security;
3942
3943 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3944 if (!tsec)
3945 return -ENOMEM;
3946
3947 new->security = tsec;
3948 return 0;
3949}
3950
3951/*
3952 * transfer the SELinux data to a blank set of creds
3953 */
3954static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3955{
3956 const struct task_security_struct *old_tsec = old->security;
3957 struct task_security_struct *tsec = new->security;
3958
3959 *tsec = *old_tsec;
3960}
3961
3962static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3963{
3964 *secid = cred_sid(c);
3965}
3966
3967/*
3968 * set the security data for a kernel service
3969 * - all the creation contexts are set to unlabelled
3970 */
3971static int selinux_kernel_act_as(struct cred *new, u32 secid)
3972{
3973 struct task_security_struct *tsec = new->security;
3974 u32 sid = current_sid();
3975 int ret;
3976
3977 ret = avc_has_perm(&selinux_state,
3978 sid, secid,
3979 SECCLASS_KERNEL_SERVICE,
3980 KERNEL_SERVICE__USE_AS_OVERRIDE,
3981 NULL);
3982 if (ret == 0) {
3983 tsec->sid = secid;
3984 tsec->create_sid = 0;
3985 tsec->keycreate_sid = 0;
3986 tsec->sockcreate_sid = 0;
3987 }
3988 return ret;
3989}
3990
3991/*
3992 * set the file creation context in a security record to the same as the
3993 * objective context of the specified inode
3994 */
3995static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3996{
3997 struct inode_security_struct *isec = inode_security(inode);
3998 struct task_security_struct *tsec = new->security;
3999 u32 sid = current_sid();
4000 int ret;
4001
4002 ret = avc_has_perm(&selinux_state,
4003 sid, isec->sid,
4004 SECCLASS_KERNEL_SERVICE,
4005 KERNEL_SERVICE__CREATE_FILES_AS,
4006 NULL);
4007
4008 if (ret == 0)
4009 tsec->create_sid = isec->sid;
4010 return ret;
4011}
4012
4013static int selinux_kernel_module_request(char *kmod_name)
4014{
4015 struct common_audit_data ad;
4016
4017 ad.type = LSM_AUDIT_DATA_KMOD;
4018 ad.u.kmod_name = kmod_name;
4019
4020 return avc_has_perm(&selinux_state,
4021 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4022 SYSTEM__MODULE_REQUEST, &ad);
4023}
4024
4025static int selinux_kernel_module_from_file(struct file *file)
4026{
4027 struct common_audit_data ad;
4028 struct inode_security_struct *isec;
4029 struct file_security_struct *fsec;
4030 u32 sid = current_sid();
4031 int rc;
4032
4033 /* init_module */
4034 if (file == NULL)
4035 return avc_has_perm(&selinux_state,
4036 sid, sid, SECCLASS_SYSTEM,
4037 SYSTEM__MODULE_LOAD, NULL);
4038
4039 /* finit_module */
4040
4041 ad.type = LSM_AUDIT_DATA_FILE;
4042 ad.u.file = file;
4043
4044 fsec = file->f_security;
4045 if (sid != fsec->sid) {
4046 rc = avc_has_perm(&selinux_state,
4047 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4048 if (rc)
4049 return rc;
4050 }
4051
4052 isec = inode_security(file_inode(file));
4053 return avc_has_perm(&selinux_state,
4054 sid, isec->sid, SECCLASS_SYSTEM,
4055 SYSTEM__MODULE_LOAD, &ad);
4056}
4057
4058static int selinux_kernel_read_file(struct file *file,
4059 enum kernel_read_file_id id)
4060{
4061 int rc = 0;
4062
4063 switch (id) {
4064 case READING_MODULE:
4065 rc = selinux_kernel_module_from_file(file);
4066 break;
4067 default:
4068 break;
4069 }
4070
4071 return rc;
4072}
4073
4074static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4075{
4076 return avc_has_perm(&selinux_state,
4077 current_sid(), task_sid(p), SECCLASS_PROCESS,
4078 PROCESS__SETPGID, NULL);
4079}
4080
4081static int selinux_task_getpgid(struct task_struct *p)
4082{
4083 return avc_has_perm(&selinux_state,
4084 current_sid(), task_sid(p), SECCLASS_PROCESS,
4085 PROCESS__GETPGID, NULL);
4086}
4087
4088static int selinux_task_getsid(struct task_struct *p)
4089{
4090 return avc_has_perm(&selinux_state,
4091 current_sid(), task_sid(p), SECCLASS_PROCESS,
4092 PROCESS__GETSESSION, NULL);
4093}
4094
4095static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4096{
4097 *secid = task_sid(p);
4098}
4099
4100static int selinux_task_setnice(struct task_struct *p, int nice)
4101{
4102 return avc_has_perm(&selinux_state,
4103 current_sid(), task_sid(p), SECCLASS_PROCESS,
4104 PROCESS__SETSCHED, NULL);
4105}
4106
4107static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4108{
4109 return avc_has_perm(&selinux_state,
4110 current_sid(), task_sid(p), SECCLASS_PROCESS,
4111 PROCESS__SETSCHED, NULL);
4112}
4113
4114static int selinux_task_getioprio(struct task_struct *p)
4115{
4116 return avc_has_perm(&selinux_state,
4117 current_sid(), task_sid(p), SECCLASS_PROCESS,
4118 PROCESS__GETSCHED, NULL);
4119}
4120
4121static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4122 unsigned int flags)
4123{
4124 u32 av = 0;
4125
4126 if (!flags)
4127 return 0;
4128 if (flags & LSM_PRLIMIT_WRITE)
4129 av |= PROCESS__SETRLIMIT;
4130 if (flags & LSM_PRLIMIT_READ)
4131 av |= PROCESS__GETRLIMIT;
4132 return avc_has_perm(&selinux_state,
4133 cred_sid(cred), cred_sid(tcred),
4134 SECCLASS_PROCESS, av, NULL);
4135}
4136
4137static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4138 struct rlimit *new_rlim)
4139{
4140 struct rlimit *old_rlim = p->signal->rlim + resource;
4141
4142 /* Control the ability to change the hard limit (whether
4143 lowering or raising it), so that the hard limit can
4144 later be used as a safe reset point for the soft limit
4145 upon context transitions. See selinux_bprm_committing_creds. */
4146 if (old_rlim->rlim_max != new_rlim->rlim_max)
4147 return avc_has_perm(&selinux_state,
4148 current_sid(), task_sid(p),
4149 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4150
4151 return 0;
4152}
4153
4154static int selinux_task_setscheduler(struct task_struct *p)
4155{
4156 return avc_has_perm(&selinux_state,
4157 current_sid(), task_sid(p), SECCLASS_PROCESS,
4158 PROCESS__SETSCHED, NULL);
4159}
4160
4161static int selinux_task_getscheduler(struct task_struct *p)
4162{
4163 return avc_has_perm(&selinux_state,
4164 current_sid(), task_sid(p), SECCLASS_PROCESS,
4165 PROCESS__GETSCHED, NULL);
4166}
4167
4168static int selinux_task_movememory(struct task_struct *p)
4169{
4170 return avc_has_perm(&selinux_state,
4171 current_sid(), task_sid(p), SECCLASS_PROCESS,
4172 PROCESS__SETSCHED, NULL);
4173}
4174
4175static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4176 int sig, const struct cred *cred)
4177{
4178 u32 secid;
4179 u32 perm;
4180
4181 if (!sig)
4182 perm = PROCESS__SIGNULL; /* null signal; existence test */
4183 else
4184 perm = signal_to_av(sig);
4185 if (!cred)
4186 secid = current_sid();
4187 else
4188 secid = cred_sid(cred);
4189 return avc_has_perm(&selinux_state,
4190 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4191}
4192
4193static void selinux_task_to_inode(struct task_struct *p,
4194 struct inode *inode)
4195{
4196 struct inode_security_struct *isec = inode->i_security;
4197 u32 sid = task_sid(p);
4198
4199 spin_lock(&isec->lock);
4200 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4201 isec->sid = sid;
4202 isec->initialized = LABEL_INITIALIZED;
4203 spin_unlock(&isec->lock);
4204}
4205
4206/* Returns error only if unable to parse addresses */
4207static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4208 struct common_audit_data *ad, u8 *proto)
4209{
4210 int offset, ihlen, ret = -EINVAL;
4211 struct iphdr _iph, *ih;
4212
4213 offset = skb_network_offset(skb);
4214 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4215 if (ih == NULL)
4216 goto out;
4217
4218 ihlen = ih->ihl * 4;
4219 if (ihlen < sizeof(_iph))
4220 goto out;
4221
4222 ad->u.net->v4info.saddr = ih->saddr;
4223 ad->u.net->v4info.daddr = ih->daddr;
4224 ret = 0;
4225
4226 if (proto)
4227 *proto = ih->protocol;
4228
4229 switch (ih->protocol) {
4230 case IPPROTO_TCP: {
4231 struct tcphdr _tcph, *th;
4232
4233 if (ntohs(ih->frag_off) & IP_OFFSET)
4234 break;
4235
4236 offset += ihlen;
4237 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4238 if (th == NULL)
4239 break;
4240
4241 ad->u.net->sport = th->source;
4242 ad->u.net->dport = th->dest;
4243 break;
4244 }
4245
4246 case IPPROTO_UDP: {
4247 struct udphdr _udph, *uh;
4248
4249 if (ntohs(ih->frag_off) & IP_OFFSET)
4250 break;
4251
4252 offset += ihlen;
4253 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4254 if (uh == NULL)
4255 break;
4256
4257 ad->u.net->sport = uh->source;
4258 ad->u.net->dport = uh->dest;
4259 break;
4260 }
4261
4262 case IPPROTO_DCCP: {
4263 struct dccp_hdr _dccph, *dh;
4264
4265 if (ntohs(ih->frag_off) & IP_OFFSET)
4266 break;
4267
4268 offset += ihlen;
4269 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4270 if (dh == NULL)
4271 break;
4272
4273 ad->u.net->sport = dh->dccph_sport;
4274 ad->u.net->dport = dh->dccph_dport;
4275 break;
4276 }
4277
4278#if IS_ENABLED(CONFIG_IP_SCTP)
4279 case IPPROTO_SCTP: {
4280 struct sctphdr _sctph, *sh;
4281
4282 if (ntohs(ih->frag_off) & IP_OFFSET)
4283 break;
4284
4285 offset += ihlen;
4286 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4287 if (sh == NULL)
4288 break;
4289
4290 ad->u.net->sport = sh->source;
4291 ad->u.net->dport = sh->dest;
4292 break;
4293 }
4294#endif
4295 default:
4296 break;
4297 }
4298out:
4299 return ret;
4300}
4301
4302#if IS_ENABLED(CONFIG_IPV6)
4303
4304/* Returns error only if unable to parse addresses */
4305static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4306 struct common_audit_data *ad, u8 *proto)
4307{
4308 u8 nexthdr;
4309 int ret = -EINVAL, offset;
4310 struct ipv6hdr _ipv6h, *ip6;
4311 __be16 frag_off;
4312
4313 offset = skb_network_offset(skb);
4314 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4315 if (ip6 == NULL)
4316 goto out;
4317
4318 ad->u.net->v6info.saddr = ip6->saddr;
4319 ad->u.net->v6info.daddr = ip6->daddr;
4320 ret = 0;
4321
4322 nexthdr = ip6->nexthdr;
4323 offset += sizeof(_ipv6h);
4324 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4325 if (offset < 0)
4326 goto out;
4327
4328 if (proto)
4329 *proto = nexthdr;
4330
4331 switch (nexthdr) {
4332 case IPPROTO_TCP: {
4333 struct tcphdr _tcph, *th;
4334
4335 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4336 if (th == NULL)
4337 break;
4338
4339 ad->u.net->sport = th->source;
4340 ad->u.net->dport = th->dest;
4341 break;
4342 }
4343
4344 case IPPROTO_UDP: {
4345 struct udphdr _udph, *uh;
4346
4347 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4348 if (uh == NULL)
4349 break;
4350
4351 ad->u.net->sport = uh->source;
4352 ad->u.net->dport = uh->dest;
4353 break;
4354 }
4355
4356 case IPPROTO_DCCP: {
4357 struct dccp_hdr _dccph, *dh;
4358
4359 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4360 if (dh == NULL)
4361 break;
4362
4363 ad->u.net->sport = dh->dccph_sport;
4364 ad->u.net->dport = dh->dccph_dport;
4365 break;
4366 }
4367
4368#if IS_ENABLED(CONFIG_IP_SCTP)
4369 case IPPROTO_SCTP: {
4370 struct sctphdr _sctph, *sh;
4371
4372 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4373 if (sh == NULL)
4374 break;
4375
4376 ad->u.net->sport = sh->source;
4377 ad->u.net->dport = sh->dest;
4378 break;
4379 }
4380#endif
4381 /* includes fragments */
4382 default:
4383 break;
4384 }
4385out:
4386 return ret;
4387}
4388
4389#endif /* IPV6 */
4390
4391static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4392 char **_addrp, int src, u8 *proto)
4393{
4394 char *addrp;
4395 int ret;
4396
4397 switch (ad->u.net->family) {
4398 case PF_INET:
4399 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4400 if (ret)
4401 goto parse_error;
4402 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4403 &ad->u.net->v4info.daddr);
4404 goto okay;
4405
4406#if IS_ENABLED(CONFIG_IPV6)
4407 case PF_INET6:
4408 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4409 if (ret)
4410 goto parse_error;
4411 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4412 &ad->u.net->v6info.daddr);
4413 goto okay;
4414#endif /* IPV6 */
4415 default:
4416 addrp = NULL;
4417 goto okay;
4418 }
4419
4420parse_error:
4421 printk(KERN_WARNING
4422 "SELinux: failure in selinux_parse_skb(),"
4423 " unable to parse packet\n");
4424 return ret;
4425
4426okay:
4427 if (_addrp)
4428 *_addrp = addrp;
4429 return 0;
4430}
4431
4432/**
4433 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4434 * @skb: the packet
4435 * @family: protocol family
4436 * @sid: the packet's peer label SID
4437 *
4438 * Description:
4439 * Check the various different forms of network peer labeling and determine
4440 * the peer label/SID for the packet; most of the magic actually occurs in
4441 * the security server function security_net_peersid_cmp(). The function
4442 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4443 * or -EACCES if @sid is invalid due to inconsistencies with the different
4444 * peer labels.
4445 *
4446 */
4447static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4448{
4449 int err;
4450 u32 xfrm_sid;
4451 u32 nlbl_sid;
4452 u32 nlbl_type;
4453
4454 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4455 if (unlikely(err))
4456 return -EACCES;
4457 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4458 if (unlikely(err))
4459 return -EACCES;
4460
4461 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4462 nlbl_type, xfrm_sid, sid);
4463 if (unlikely(err)) {
4464 printk(KERN_WARNING
4465 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4466 " unable to determine packet's peer label\n");
4467 return -EACCES;
4468 }
4469
4470 return 0;
4471}
4472
4473/**
4474 * selinux_conn_sid - Determine the child socket label for a connection
4475 * @sk_sid: the parent socket's SID
4476 * @skb_sid: the packet's SID
4477 * @conn_sid: the resulting connection SID
4478 *
4479 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4480 * combined with the MLS information from @skb_sid in order to create
4481 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4482 * of @sk_sid. Returns zero on success, negative values on failure.
4483 *
4484 */
4485static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4486{
4487 int err = 0;
4488
4489 if (skb_sid != SECSID_NULL)
4490 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4491 conn_sid);
4492 else
4493 *conn_sid = sk_sid;
4494
4495 return err;
4496}
4497
4498/* socket security operations */
4499
4500static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4501 u16 secclass, u32 *socksid)
4502{
4503 if (tsec->sockcreate_sid > SECSID_NULL) {
4504 *socksid = tsec->sockcreate_sid;
4505 return 0;
4506 }
4507
4508 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4509 secclass, NULL, socksid);
4510}
4511
4512static int sock_has_perm(struct sock *sk, u32 perms)
4513{
4514 struct sk_security_struct *sksec = sk->sk_security;
4515 struct common_audit_data ad;
4516 struct lsm_network_audit net = {0,};
4517
4518 if (sksec->sid == SECINITSID_KERNEL)
4519 return 0;
4520
4521 ad.type = LSM_AUDIT_DATA_NET;
4522 ad.u.net = &net;
4523 ad.u.net->sk = sk;
4524
4525 return avc_has_perm(&selinux_state,
4526 current_sid(), sksec->sid, sksec->sclass, perms,
4527 &ad);
4528}
4529
4530static int selinux_socket_create(int family, int type,
4531 int protocol, int kern)
4532{
4533 const struct task_security_struct *tsec = current_security();
4534 u32 newsid;
4535 u16 secclass;
4536 int rc;
4537
4538 if (kern)
4539 return 0;
4540
4541 secclass = socket_type_to_security_class(family, type, protocol);
4542 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4543 if (rc)
4544 return rc;
4545
4546 return avc_has_perm(&selinux_state,
4547 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4548}
4549
4550static int selinux_socket_post_create(struct socket *sock, int family,
4551 int type, int protocol, int kern)
4552{
4553 const struct task_security_struct *tsec = current_security();
4554 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4555 struct sk_security_struct *sksec;
4556 u16 sclass = socket_type_to_security_class(family, type, protocol);
4557 u32 sid = SECINITSID_KERNEL;
4558 int err = 0;
4559
4560 if (!kern) {
4561 err = socket_sockcreate_sid(tsec, sclass, &sid);
4562 if (err)
4563 return err;
4564 }
4565
4566 isec->sclass = sclass;
4567 isec->sid = sid;
4568 isec->initialized = LABEL_INITIALIZED;
4569
4570 if (sock->sk) {
4571 sksec = sock->sk->sk_security;
4572 sksec->sclass = sclass;
4573 sksec->sid = sid;
4574 /* Allows detection of the first association on this socket */
4575 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4576 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4577
4578 err = selinux_netlbl_socket_post_create(sock->sk, family);
4579 }
4580
4581 return err;
4582}
4583
4584/* Range of port numbers used to automatically bind.
4585 Need to determine whether we should perform a name_bind
4586 permission check between the socket and the port number. */
4587
4588static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4589{
4590 struct sock *sk = sock->sk;
4591 struct sk_security_struct *sksec = sk->sk_security;
4592 u16 family;
4593 int err;
4594
4595 err = sock_has_perm(sk, SOCKET__BIND);
4596 if (err)
4597 goto out;
4598
4599 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4600 family = sk->sk_family;
4601 if (family == PF_INET || family == PF_INET6) {
4602 char *addrp;
4603 struct common_audit_data ad;
4604 struct lsm_network_audit net = {0,};
4605 struct sockaddr_in *addr4 = NULL;
4606 struct sockaddr_in6 *addr6 = NULL;
4607 u16 family_sa = address->sa_family;
4608 unsigned short snum;
4609 u32 sid, node_perm;
4610
4611 /*
4612 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4613 * that validates multiple binding addresses. Because of this
4614 * need to check address->sa_family as it is possible to have
4615 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4616 */
4617 switch (family_sa) {
4618 case AF_UNSPEC:
4619 case AF_INET:
4620 if (addrlen < sizeof(struct sockaddr_in))
4621 return -EINVAL;
4622 addr4 = (struct sockaddr_in *)address;
4623 if (family_sa == AF_UNSPEC) {
4624 /* see __inet_bind(), we only want to allow
4625 * AF_UNSPEC if the address is INADDR_ANY
4626 */
4627 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4628 goto err_af;
4629 family_sa = AF_INET;
4630 }
4631 snum = ntohs(addr4->sin_port);
4632 addrp = (char *)&addr4->sin_addr.s_addr;
4633 break;
4634 case AF_INET6:
4635 if (addrlen < SIN6_LEN_RFC2133)
4636 return -EINVAL;
4637 addr6 = (struct sockaddr_in6 *)address;
4638 snum = ntohs(addr6->sin6_port);
4639 addrp = (char *)&addr6->sin6_addr.s6_addr;
4640 break;
4641 default:
4642 goto err_af;
4643 }
4644
4645 ad.type = LSM_AUDIT_DATA_NET;
4646 ad.u.net = &net;
4647 ad.u.net->sport = htons(snum);
4648 ad.u.net->family = family_sa;
4649
4650 if (snum) {
4651 int low, high;
4652
4653 inet_get_local_port_range(sock_net(sk), &low, &high);
4654
4655 if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4656 snum > high) {
4657 err = sel_netport_sid(sk->sk_protocol,
4658 snum, &sid);
4659 if (err)
4660 goto out;
4661 err = avc_has_perm(&selinux_state,
4662 sksec->sid, sid,
4663 sksec->sclass,
4664 SOCKET__NAME_BIND, &ad);
4665 if (err)
4666 goto out;
4667 }
4668 }
4669
4670 switch (sksec->sclass) {
4671 case SECCLASS_TCP_SOCKET:
4672 node_perm = TCP_SOCKET__NODE_BIND;
4673 break;
4674
4675 case SECCLASS_UDP_SOCKET:
4676 node_perm = UDP_SOCKET__NODE_BIND;
4677 break;
4678
4679 case SECCLASS_DCCP_SOCKET:
4680 node_perm = DCCP_SOCKET__NODE_BIND;
4681 break;
4682
4683 case SECCLASS_SCTP_SOCKET:
4684 node_perm = SCTP_SOCKET__NODE_BIND;
4685 break;
4686
4687 default:
4688 node_perm = RAWIP_SOCKET__NODE_BIND;
4689 break;
4690 }
4691
4692 err = sel_netnode_sid(addrp, family_sa, &sid);
4693 if (err)
4694 goto out;
4695
4696 if (family_sa == AF_INET)
4697 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4698 else
4699 ad.u.net->v6info.saddr = addr6->sin6_addr;
4700
4701 err = avc_has_perm(&selinux_state,
4702 sksec->sid, sid,
4703 sksec->sclass, node_perm, &ad);
4704 if (err)
4705 goto out;
4706 }
4707out:
4708 return err;
4709err_af:
4710 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4711 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4712 return -EINVAL;
4713 return -EAFNOSUPPORT;
4714}
4715
4716/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4717 * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4718 */
4719static int selinux_socket_connect_helper(struct socket *sock,
4720 struct sockaddr *address, int addrlen)
4721{
4722 struct sock *sk = sock->sk;
4723 struct sk_security_struct *sksec = sk->sk_security;
4724 int err;
4725
4726 err = sock_has_perm(sk, SOCKET__CONNECT);
4727 if (err)
4728 return err;
4729
4730 /*
4731 * If a TCP, DCCP or SCTP socket, check name_connect permission
4732 * for the port.
4733 */
4734 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4735 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4736 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4737 struct common_audit_data ad;
4738 struct lsm_network_audit net = {0,};
4739 struct sockaddr_in *addr4 = NULL;
4740 struct sockaddr_in6 *addr6 = NULL;
4741 unsigned short snum;
4742 u32 sid, perm;
4743
4744 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4745 * that validates multiple connect addresses. Because of this
4746 * need to check address->sa_family as it is possible to have
4747 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4748 */
4749 switch (address->sa_family) {
4750 case AF_INET:
4751 addr4 = (struct sockaddr_in *)address;
4752 if (addrlen < sizeof(struct sockaddr_in))
4753 return -EINVAL;
4754 snum = ntohs(addr4->sin_port);
4755 break;
4756 case AF_INET6:
4757 addr6 = (struct sockaddr_in6 *)address;
4758 if (addrlen < SIN6_LEN_RFC2133)
4759 return -EINVAL;
4760 snum = ntohs(addr6->sin6_port);
4761 break;
4762 default:
4763 /* Note that SCTP services expect -EINVAL, whereas
4764 * others expect -EAFNOSUPPORT.
4765 */
4766 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4767 return -EINVAL;
4768 else
4769 return -EAFNOSUPPORT;
4770 }
4771
4772 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4773 if (err)
4774 return err;
4775
4776 switch (sksec->sclass) {
4777 case SECCLASS_TCP_SOCKET:
4778 perm = TCP_SOCKET__NAME_CONNECT;
4779 break;
4780 case SECCLASS_DCCP_SOCKET:
4781 perm = DCCP_SOCKET__NAME_CONNECT;
4782 break;
4783 case SECCLASS_SCTP_SOCKET:
4784 perm = SCTP_SOCKET__NAME_CONNECT;
4785 break;
4786 }
4787
4788 ad.type = LSM_AUDIT_DATA_NET;
4789 ad.u.net = &net;
4790 ad.u.net->dport = htons(snum);
4791 ad.u.net->family = address->sa_family;
4792 err = avc_has_perm(&selinux_state,
4793 sksec->sid, sid, sksec->sclass, perm, &ad);
4794 if (err)
4795 return err;
4796 }
4797
4798 return 0;
4799}
4800
4801/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4802static int selinux_socket_connect(struct socket *sock,
4803 struct sockaddr *address, int addrlen)
4804{
4805 int err;
4806 struct sock *sk = sock->sk;
4807
4808 err = selinux_socket_connect_helper(sock, address, addrlen);
4809 if (err)
4810 return err;
4811
4812 return selinux_netlbl_socket_connect(sk, address);
4813}
4814
4815static int selinux_socket_listen(struct socket *sock, int backlog)
4816{
4817 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4818}
4819
4820static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4821{
4822 int err;
4823 struct inode_security_struct *isec;
4824 struct inode_security_struct *newisec;
4825 u16 sclass;
4826 u32 sid;
4827
4828 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4829 if (err)
4830 return err;
4831
4832 isec = inode_security_novalidate(SOCK_INODE(sock));
4833 spin_lock(&isec->lock);
4834 sclass = isec->sclass;
4835 sid = isec->sid;
4836 spin_unlock(&isec->lock);
4837
4838 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4839 newisec->sclass = sclass;
4840 newisec->sid = sid;
4841 newisec->initialized = LABEL_INITIALIZED;
4842
4843 return 0;
4844}
4845
4846static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4847 int size)
4848{
4849 return sock_has_perm(sock->sk, SOCKET__WRITE);
4850}
4851
4852static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4853 int size, int flags)
4854{
4855 return sock_has_perm(sock->sk, SOCKET__READ);
4856}
4857
4858static int selinux_socket_getsockname(struct socket *sock)
4859{
4860 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4861}
4862
4863static int selinux_socket_getpeername(struct socket *sock)
4864{
4865 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4866}
4867
4868static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4869{
4870 int err;
4871
4872 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4873 if (err)
4874 return err;
4875
4876 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4877}
4878
4879static int selinux_socket_getsockopt(struct socket *sock, int level,
4880 int optname)
4881{
4882 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4883}
4884
4885static int selinux_socket_shutdown(struct socket *sock, int how)
4886{
4887 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4888}
4889
4890static int selinux_socket_unix_stream_connect(struct sock *sock,
4891 struct sock *other,
4892 struct sock *newsk)
4893{
4894 struct sk_security_struct *sksec_sock = sock->sk_security;
4895 struct sk_security_struct *sksec_other = other->sk_security;
4896 struct sk_security_struct *sksec_new = newsk->sk_security;
4897 struct common_audit_data ad;
4898 struct lsm_network_audit net = {0,};
4899 int err;
4900
4901 ad.type = LSM_AUDIT_DATA_NET;
4902 ad.u.net = &net;
4903 ad.u.net->sk = other;
4904
4905 err = avc_has_perm(&selinux_state,
4906 sksec_sock->sid, sksec_other->sid,
4907 sksec_other->sclass,
4908 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4909 if (err)
4910 return err;
4911
4912 /* server child socket */
4913 sksec_new->peer_sid = sksec_sock->sid;
4914 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4915 sksec_sock->sid, &sksec_new->sid);
4916 if (err)
4917 return err;
4918
4919 /* connecting socket */
4920 sksec_sock->peer_sid = sksec_new->sid;
4921
4922 return 0;
4923}
4924
4925static int selinux_socket_unix_may_send(struct socket *sock,
4926 struct socket *other)
4927{
4928 struct sk_security_struct *ssec = sock->sk->sk_security;
4929 struct sk_security_struct *osec = other->sk->sk_security;
4930 struct common_audit_data ad;
4931 struct lsm_network_audit net = {0,};
4932
4933 ad.type = LSM_AUDIT_DATA_NET;
4934 ad.u.net = &net;
4935 ad.u.net->sk = other->sk;
4936
4937 return avc_has_perm(&selinux_state,
4938 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4939 &ad);
4940}
4941
4942static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4943 char *addrp, u16 family, u32 peer_sid,
4944 struct common_audit_data *ad)
4945{
4946 int err;
4947 u32 if_sid;
4948 u32 node_sid;
4949
4950 err = sel_netif_sid(ns, ifindex, &if_sid);
4951 if (err)
4952 return err;
4953 err = avc_has_perm(&selinux_state,
4954 peer_sid, if_sid,
4955 SECCLASS_NETIF, NETIF__INGRESS, ad);
4956 if (err)
4957 return err;
4958
4959 err = sel_netnode_sid(addrp, family, &node_sid);
4960 if (err)
4961 return err;
4962 return avc_has_perm(&selinux_state,
4963 peer_sid, node_sid,
4964 SECCLASS_NODE, NODE__RECVFROM, ad);
4965}
4966
4967static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4968 u16 family)
4969{
4970 int err = 0;
4971 struct sk_security_struct *sksec = sk->sk_security;
4972 u32 sk_sid = sksec->sid;
4973 struct common_audit_data ad;
4974 struct lsm_network_audit net = {0,};
4975 char *addrp;
4976
4977 ad.type = LSM_AUDIT_DATA_NET;
4978 ad.u.net = &net;
4979 ad.u.net->netif = skb->skb_iif;
4980 ad.u.net->family = family;
4981 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4982 if (err)
4983 return err;
4984
4985 if (selinux_secmark_enabled()) {
4986 err = avc_has_perm(&selinux_state,
4987 sk_sid, skb->secmark, SECCLASS_PACKET,
4988 PACKET__RECV, &ad);
4989 if (err)
4990 return err;
4991 }
4992
4993 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4994 if (err)
4995 return err;
4996 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4997
4998 return err;
4999}
5000
5001static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5002{
5003 int err;
5004 struct sk_security_struct *sksec = sk->sk_security;
5005 u16 family = sk->sk_family;
5006 u32 sk_sid = sksec->sid;
5007 struct common_audit_data ad;
5008 struct lsm_network_audit net = {0,};
5009 char *addrp;
5010 u8 secmark_active;
5011 u8 peerlbl_active;
5012
5013 if (family != PF_INET && family != PF_INET6)
5014 return 0;
5015
5016 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5017 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5018 family = PF_INET;
5019
5020 /* If any sort of compatibility mode is enabled then handoff processing
5021 * to the selinux_sock_rcv_skb_compat() function to deal with the
5022 * special handling. We do this in an attempt to keep this function
5023 * as fast and as clean as possible. */
5024 if (!selinux_policycap_netpeer())
5025 return selinux_sock_rcv_skb_compat(sk, skb, family);
5026
5027 secmark_active = selinux_secmark_enabled();
5028 peerlbl_active = selinux_peerlbl_enabled();
5029 if (!secmark_active && !peerlbl_active)
5030 return 0;
5031
5032 ad.type = LSM_AUDIT_DATA_NET;
5033 ad.u.net = &net;
5034 ad.u.net->netif = skb->skb_iif;
5035 ad.u.net->family = family;
5036 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5037 if (err)
5038 return err;
5039
5040 if (peerlbl_active) {
5041 u32 peer_sid;
5042
5043 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5044 if (err)
5045 return err;
5046 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5047 addrp, family, peer_sid, &ad);
5048 if (err) {
5049 selinux_netlbl_err(skb, family, err, 0);
5050 return err;
5051 }
5052 err = avc_has_perm(&selinux_state,
5053 sk_sid, peer_sid, SECCLASS_PEER,
5054 PEER__RECV, &ad);
5055 if (err) {
5056 selinux_netlbl_err(skb, family, err, 0);
5057 return err;
5058 }
5059 }
5060
5061 if (secmark_active) {
5062 err = avc_has_perm(&selinux_state,
5063 sk_sid, skb->secmark, SECCLASS_PACKET,
5064 PACKET__RECV, &ad);
5065 if (err)
5066 return err;
5067 }
5068
5069 return err;
5070}
5071
5072static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5073 int __user *optlen, unsigned len)
5074{
5075 int err = 0;
5076 char *scontext;
5077 u32 scontext_len;
5078 struct sk_security_struct *sksec = sock->sk->sk_security;
5079 u32 peer_sid = SECSID_NULL;
5080
5081 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5082 sksec->sclass == SECCLASS_TCP_SOCKET ||
5083 sksec->sclass == SECCLASS_SCTP_SOCKET)
5084 peer_sid = sksec->peer_sid;
5085 if (peer_sid == SECSID_NULL)
5086 return -ENOPROTOOPT;
5087
5088 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5089 &scontext_len);
5090 if (err)
5091 return err;
5092
5093 if (scontext_len > len) {
5094 err = -ERANGE;
5095 goto out_len;
5096 }
5097
5098 if (copy_to_user(optval, scontext, scontext_len))
5099 err = -EFAULT;
5100
5101out_len:
5102 if (put_user(scontext_len, optlen))
5103 err = -EFAULT;
5104 kfree(scontext);
5105 return err;
5106}
5107
5108static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5109{
5110 u32 peer_secid = SECSID_NULL;
5111 u16 family;
5112 struct inode_security_struct *isec;
5113
5114 if (skb && skb->protocol == htons(ETH_P_IP))
5115 family = PF_INET;
5116 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5117 family = PF_INET6;
5118 else if (sock)
5119 family = sock->sk->sk_family;
5120 else
5121 goto out;
5122
5123 if (sock && family == PF_UNIX) {
5124 isec = inode_security_novalidate(SOCK_INODE(sock));
5125 peer_secid = isec->sid;
5126 } else if (skb)
5127 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5128
5129out:
5130 *secid = peer_secid;
5131 if (peer_secid == SECSID_NULL)
5132 return -EINVAL;
5133 return 0;
5134}
5135
5136static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5137{
5138 struct sk_security_struct *sksec;
5139
5140 sksec = kzalloc(sizeof(*sksec), priority);
5141 if (!sksec)
5142 return -ENOMEM;
5143
5144 sksec->peer_sid = SECINITSID_UNLABELED;
5145 sksec->sid = SECINITSID_UNLABELED;
5146 sksec->sclass = SECCLASS_SOCKET;
5147 selinux_netlbl_sk_security_reset(sksec);
5148 sk->sk_security = sksec;
5149
5150 return 0;
5151}
5152
5153static void selinux_sk_free_security(struct sock *sk)
5154{
5155 struct sk_security_struct *sksec = sk->sk_security;
5156
5157 sk->sk_security = NULL;
5158 selinux_netlbl_sk_security_free(sksec);
5159 kfree(sksec);
5160}
5161
5162static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5163{
5164 struct sk_security_struct *sksec = sk->sk_security;
5165 struct sk_security_struct *newsksec = newsk->sk_security;
5166
5167 newsksec->sid = sksec->sid;
5168 newsksec->peer_sid = sksec->peer_sid;
5169 newsksec->sclass = sksec->sclass;
5170
5171 selinux_netlbl_sk_security_reset(newsksec);
5172}
5173
5174static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5175{
5176 if (!sk)
5177 *secid = SECINITSID_ANY_SOCKET;
5178 else {
5179 struct sk_security_struct *sksec = sk->sk_security;
5180
5181 *secid = sksec->sid;
5182 }
5183}
5184
5185static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5186{
5187 struct inode_security_struct *isec =
5188 inode_security_novalidate(SOCK_INODE(parent));
5189 struct sk_security_struct *sksec = sk->sk_security;
5190
5191 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5192 sk->sk_family == PF_UNIX)
5193 isec->sid = sksec->sid;
5194 sksec->sclass = isec->sclass;
5195}
5196
5197/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5198 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5199 * already present).
5200 */
5201static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5202 struct sk_buff *skb)
5203{
5204 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5205 struct common_audit_data ad;
5206 struct lsm_network_audit net = {0,};
5207 u8 peerlbl_active;
5208 u32 peer_sid = SECINITSID_UNLABELED;
5209 u32 conn_sid;
5210 int err = 0;
5211
5212 if (!selinux_policycap_extsockclass())
5213 return 0;
5214
5215 peerlbl_active = selinux_peerlbl_enabled();
5216
5217 if (peerlbl_active) {
5218 /* This will return peer_sid = SECSID_NULL if there are
5219 * no peer labels, see security_net_peersid_resolve().
5220 */
5221 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5222 &peer_sid);
5223 if (err)
5224 return err;
5225
5226 if (peer_sid == SECSID_NULL)
5227 peer_sid = SECINITSID_UNLABELED;
5228 }
5229
5230 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5231 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5232
5233 /* Here as first association on socket. As the peer SID
5234 * was allowed by peer recv (and the netif/node checks),
5235 * then it is approved by policy and used as the primary
5236 * peer SID for getpeercon(3).
5237 */
5238 sksec->peer_sid = peer_sid;
5239 } else if (sksec->peer_sid != peer_sid) {
5240 /* Other association peer SIDs are checked to enforce
5241 * consistency among the peer SIDs.
5242 */
5243 ad.type = LSM_AUDIT_DATA_NET;
5244 ad.u.net = &net;
5245 ad.u.net->sk = ep->base.sk;
5246 err = avc_has_perm(&selinux_state,
5247 sksec->peer_sid, peer_sid, sksec->sclass,
5248 SCTP_SOCKET__ASSOCIATION, &ad);
5249 if (err)
5250 return err;
5251 }
5252
5253 /* Compute the MLS component for the connection and store
5254 * the information in ep. This will be used by SCTP TCP type
5255 * sockets and peeled off connections as they cause a new
5256 * socket to be generated. selinux_sctp_sk_clone() will then
5257 * plug this into the new socket.
5258 */
5259 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5260 if (err)
5261 return err;
5262
5263 ep->secid = conn_sid;
5264 ep->peer_secid = peer_sid;
5265
5266 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5267 return selinux_netlbl_sctp_assoc_request(ep, skb);
5268}
5269
5270/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5271 * based on their @optname.
5272 */
5273static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5274 struct sockaddr *address,
5275 int addrlen)
5276{
5277 int len, err = 0, walk_size = 0;
5278 void *addr_buf;
5279 struct sockaddr *addr;
5280 struct socket *sock;
5281
5282 if (!selinux_policycap_extsockclass())
5283 return 0;
5284
5285 /* Process one or more addresses that may be IPv4 or IPv6 */
5286 sock = sk->sk_socket;
5287 addr_buf = address;
5288
5289 while (walk_size < addrlen) {
5290 addr = addr_buf;
5291 switch (addr->sa_family) {
5292 case AF_UNSPEC:
5293 case AF_INET:
5294 len = sizeof(struct sockaddr_in);
5295 break;
5296 case AF_INET6:
5297 len = sizeof(struct sockaddr_in6);
5298 break;
5299 default:
5300 return -EINVAL;
5301 }
5302
5303 err = -EINVAL;
5304 switch (optname) {
5305 /* Bind checks */
5306 case SCTP_PRIMARY_ADDR:
5307 case SCTP_SET_PEER_PRIMARY_ADDR:
5308 case SCTP_SOCKOPT_BINDX_ADD:
5309 err = selinux_socket_bind(sock, addr, len);
5310 break;
5311 /* Connect checks */
5312 case SCTP_SOCKOPT_CONNECTX:
5313 case SCTP_PARAM_SET_PRIMARY:
5314 case SCTP_PARAM_ADD_IP:
5315 case SCTP_SENDMSG_CONNECT:
5316 err = selinux_socket_connect_helper(sock, addr, len);
5317 if (err)
5318 return err;
5319
5320 /* As selinux_sctp_bind_connect() is called by the
5321 * SCTP protocol layer, the socket is already locked,
5322 * therefore selinux_netlbl_socket_connect_locked() is
5323 * is called here. The situations handled are:
5324 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5325 * whenever a new IP address is added or when a new
5326 * primary address is selected.
5327 * Note that an SCTP connect(2) call happens before
5328 * the SCTP protocol layer and is handled via
5329 * selinux_socket_connect().
5330 */
5331 err = selinux_netlbl_socket_connect_locked(sk, addr);
5332 break;
5333 }
5334
5335 if (err)
5336 return err;
5337
5338 addr_buf += len;
5339 walk_size += len;
5340 }
5341
5342 return 0;
5343}
5344
5345/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5346static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5347 struct sock *newsk)
5348{
5349 struct sk_security_struct *sksec = sk->sk_security;
5350 struct sk_security_struct *newsksec = newsk->sk_security;
5351
5352 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5353 * the non-sctp clone version.
5354 */
5355 if (!selinux_policycap_extsockclass())
5356 return selinux_sk_clone_security(sk, newsk);
5357
5358 newsksec->sid = ep->secid;
5359 newsksec->peer_sid = ep->peer_secid;
5360 newsksec->sclass = sksec->sclass;
5361 selinux_netlbl_sctp_sk_clone(sk, newsk);
5362}
5363
5364static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5365 struct request_sock *req)
5366{
5367 struct sk_security_struct *sksec = sk->sk_security;
5368 int err;
5369 u16 family = req->rsk_ops->family;
5370 u32 connsid;
5371 u32 peersid;
5372
5373 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5374 if (err)
5375 return err;
5376 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5377 if (err)
5378 return err;
5379 req->secid = connsid;
5380 req->peer_secid = peersid;
5381
5382 return selinux_netlbl_inet_conn_request(req, family);
5383}
5384
5385static void selinux_inet_csk_clone(struct sock *newsk,
5386 const struct request_sock *req)
5387{
5388 struct sk_security_struct *newsksec = newsk->sk_security;
5389
5390 newsksec->sid = req->secid;
5391 newsksec->peer_sid = req->peer_secid;
5392 /* NOTE: Ideally, we should also get the isec->sid for the
5393 new socket in sync, but we don't have the isec available yet.
5394 So we will wait until sock_graft to do it, by which
5395 time it will have been created and available. */
5396
5397 /* We don't need to take any sort of lock here as we are the only
5398 * thread with access to newsksec */
5399 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5400}
5401
5402static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5403{
5404 u16 family = sk->sk_family;
5405 struct sk_security_struct *sksec = sk->sk_security;
5406
5407 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5408 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5409 family = PF_INET;
5410
5411 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5412}
5413
5414static int selinux_secmark_relabel_packet(u32 sid)
5415{
5416 const struct task_security_struct *__tsec;
5417 u32 tsid;
5418
5419 __tsec = current_security();
5420 tsid = __tsec->sid;
5421
5422 return avc_has_perm(&selinux_state,
5423 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5424 NULL);
5425}
5426
5427static void selinux_secmark_refcount_inc(void)
5428{
5429 atomic_inc(&selinux_secmark_refcount);
5430}
5431
5432static void selinux_secmark_refcount_dec(void)
5433{
5434 atomic_dec(&selinux_secmark_refcount);
5435}
5436
5437static void selinux_req_classify_flow(const struct request_sock *req,
5438 struct flowi *fl)
5439{
5440 fl->flowi_secid = req->secid;
5441}
5442
5443static int selinux_tun_dev_alloc_security(void **security)
5444{
5445 struct tun_security_struct *tunsec;
5446
5447 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5448 if (!tunsec)
5449 return -ENOMEM;
5450 tunsec->sid = current_sid();
5451
5452 *security = tunsec;
5453 return 0;
5454}
5455
5456static void selinux_tun_dev_free_security(void *security)
5457{
5458 kfree(security);
5459}
5460
5461static int selinux_tun_dev_create(void)
5462{
5463 u32 sid = current_sid();
5464
5465 /* we aren't taking into account the "sockcreate" SID since the socket
5466 * that is being created here is not a socket in the traditional sense,
5467 * instead it is a private sock, accessible only to the kernel, and
5468 * representing a wide range of network traffic spanning multiple
5469 * connections unlike traditional sockets - check the TUN driver to
5470 * get a better understanding of why this socket is special */
5471
5472 return avc_has_perm(&selinux_state,
5473 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5474 NULL);
5475}
5476
5477static int selinux_tun_dev_attach_queue(void *security)
5478{
5479 struct tun_security_struct *tunsec = security;
5480
5481 return avc_has_perm(&selinux_state,
5482 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5483 TUN_SOCKET__ATTACH_QUEUE, NULL);
5484}
5485
5486static int selinux_tun_dev_attach(struct sock *sk, void *security)
5487{
5488 struct tun_security_struct *tunsec = security;
5489 struct sk_security_struct *sksec = sk->sk_security;
5490
5491 /* we don't currently perform any NetLabel based labeling here and it
5492 * isn't clear that we would want to do so anyway; while we could apply
5493 * labeling without the support of the TUN user the resulting labeled
5494 * traffic from the other end of the connection would almost certainly
5495 * cause confusion to the TUN user that had no idea network labeling
5496 * protocols were being used */
5497
5498 sksec->sid = tunsec->sid;
5499 sksec->sclass = SECCLASS_TUN_SOCKET;
5500
5501 return 0;
5502}
5503
5504static int selinux_tun_dev_open(void *security)
5505{
5506 struct tun_security_struct *tunsec = security;
5507 u32 sid = current_sid();
5508 int err;
5509
5510 err = avc_has_perm(&selinux_state,
5511 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5512 TUN_SOCKET__RELABELFROM, NULL);
5513 if (err)
5514 return err;
5515 err = avc_has_perm(&selinux_state,
5516 sid, sid, SECCLASS_TUN_SOCKET,
5517 TUN_SOCKET__RELABELTO, NULL);
5518 if (err)
5519 return err;
5520 tunsec->sid = sid;
5521
5522 return 0;
5523}
5524
5525static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5526{
5527 int err = 0;
5528 u32 perm;
5529 struct nlmsghdr *nlh;
5530 struct sk_security_struct *sksec = sk->sk_security;
5531
5532 if (skb->len < NLMSG_HDRLEN) {
5533 err = -EINVAL;
5534 goto out;
5535 }
5536 nlh = nlmsg_hdr(skb);
5537
5538 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5539 if (err) {
5540 if (err == -EINVAL) {
5541 pr_warn_ratelimited("SELinux: unrecognized netlink"
5542 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5543 " pig=%d comm=%s\n",
5544 sk->sk_protocol, nlh->nlmsg_type,
5545 secclass_map[sksec->sclass - 1].name,
5546 task_pid_nr(current), current->comm);
5547 if (!enforcing_enabled(&selinux_state) ||
5548 security_get_allow_unknown(&selinux_state))
5549 err = 0;
5550 }
5551
5552 /* Ignore */
5553 if (err == -ENOENT)
5554 err = 0;
5555 goto out;
5556 }
5557
5558 err = sock_has_perm(sk, perm);
5559out:
5560 return err;
5561}
5562
5563#ifdef CONFIG_NETFILTER
5564
5565static unsigned int selinux_ip_forward(struct sk_buff *skb,
5566 const struct net_device *indev,
5567 u16 family)
5568{
5569 int err;
5570 char *addrp;
5571 u32 peer_sid;
5572 struct common_audit_data ad;
5573 struct lsm_network_audit net = {0,};
5574 u8 secmark_active;
5575 u8 netlbl_active;
5576 u8 peerlbl_active;
5577
5578 if (!selinux_policycap_netpeer())
5579 return NF_ACCEPT;
5580
5581 secmark_active = selinux_secmark_enabled();
5582 netlbl_active = netlbl_enabled();
5583 peerlbl_active = selinux_peerlbl_enabled();
5584 if (!secmark_active && !peerlbl_active)
5585 return NF_ACCEPT;
5586
5587 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5588 return NF_DROP;
5589
5590 ad.type = LSM_AUDIT_DATA_NET;
5591 ad.u.net = &net;
5592 ad.u.net->netif = indev->ifindex;
5593 ad.u.net->family = family;
5594 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5595 return NF_DROP;
5596
5597 if (peerlbl_active) {
5598 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5599 addrp, family, peer_sid, &ad);
5600 if (err) {
5601 selinux_netlbl_err(skb, family, err, 1);
5602 return NF_DROP;
5603 }
5604 }
5605
5606 if (secmark_active)
5607 if (avc_has_perm(&selinux_state,
5608 peer_sid, skb->secmark,
5609 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5610 return NF_DROP;
5611
5612 if (netlbl_active)
5613 /* we do this in the FORWARD path and not the POST_ROUTING
5614 * path because we want to make sure we apply the necessary
5615 * labeling before IPsec is applied so we can leverage AH
5616 * protection */
5617 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5618 return NF_DROP;
5619
5620 return NF_ACCEPT;
5621}
5622
5623static unsigned int selinux_ipv4_forward(void *priv,
5624 struct sk_buff *skb,
5625 const struct nf_hook_state *state)
5626{
5627 return selinux_ip_forward(skb, state->in, PF_INET);
5628}
5629
5630#if IS_ENABLED(CONFIG_IPV6)
5631static unsigned int selinux_ipv6_forward(void *priv,
5632 struct sk_buff *skb,
5633 const struct nf_hook_state *state)
5634{
5635 return selinux_ip_forward(skb, state->in, PF_INET6);
5636}
5637#endif /* IPV6 */
5638
5639static unsigned int selinux_ip_output(struct sk_buff *skb,
5640 u16 family)
5641{
5642 struct sock *sk;
5643 u32 sid;
5644
5645 if (!netlbl_enabled())
5646 return NF_ACCEPT;
5647
5648 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5649 * because we want to make sure we apply the necessary labeling
5650 * before IPsec is applied so we can leverage AH protection */
5651 sk = skb->sk;
5652 if (sk) {
5653 struct sk_security_struct *sksec;
5654
5655 if (sk_listener(sk))
5656 /* if the socket is the listening state then this
5657 * packet is a SYN-ACK packet which means it needs to
5658 * be labeled based on the connection/request_sock and
5659 * not the parent socket. unfortunately, we can't
5660 * lookup the request_sock yet as it isn't queued on
5661 * the parent socket until after the SYN-ACK is sent.
5662 * the "solution" is to simply pass the packet as-is
5663 * as any IP option based labeling should be copied
5664 * from the initial connection request (in the IP
5665 * layer). it is far from ideal, but until we get a
5666 * security label in the packet itself this is the
5667 * best we can do. */
5668 return NF_ACCEPT;
5669
5670 /* standard practice, label using the parent socket */
5671 sksec = sk->sk_security;
5672 sid = sksec->sid;
5673 } else
5674 sid = SECINITSID_KERNEL;
5675 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5676 return NF_DROP;
5677
5678 return NF_ACCEPT;
5679}
5680
5681static unsigned int selinux_ipv4_output(void *priv,
5682 struct sk_buff *skb,
5683 const struct nf_hook_state *state)
5684{
5685 return selinux_ip_output(skb, PF_INET);
5686}
5687
5688#if IS_ENABLED(CONFIG_IPV6)
5689static unsigned int selinux_ipv6_output(void *priv,
5690 struct sk_buff *skb,
5691 const struct nf_hook_state *state)
5692{
5693 return selinux_ip_output(skb, PF_INET6);
5694}
5695#endif /* IPV6 */
5696
5697static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5698 int ifindex,
5699 u16 family)
5700{
5701 struct sock *sk = skb_to_full_sk(skb);
5702 struct sk_security_struct *sksec;
5703 struct common_audit_data ad;
5704 struct lsm_network_audit net = {0,};
5705 char *addrp;
5706 u8 proto;
5707
5708 if (sk == NULL)
5709 return NF_ACCEPT;
5710 sksec = sk->sk_security;
5711
5712 ad.type = LSM_AUDIT_DATA_NET;
5713 ad.u.net = &net;
5714 ad.u.net->netif = ifindex;
5715 ad.u.net->family = family;
5716 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5717 return NF_DROP;
5718
5719 if (selinux_secmark_enabled())
5720 if (avc_has_perm(&selinux_state,
5721 sksec->sid, skb->secmark,
5722 SECCLASS_PACKET, PACKET__SEND, &ad))
5723 return NF_DROP_ERR(-ECONNREFUSED);
5724
5725 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5726 return NF_DROP_ERR(-ECONNREFUSED);
5727
5728 return NF_ACCEPT;
5729}
5730
5731static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5732 const struct net_device *outdev,
5733 u16 family)
5734{
5735 u32 secmark_perm;
5736 u32 peer_sid;
5737 int ifindex = outdev->ifindex;
5738 struct sock *sk;
5739 struct common_audit_data ad;
5740 struct lsm_network_audit net = {0,};
5741 char *addrp;
5742 u8 secmark_active;
5743 u8 peerlbl_active;
5744
5745 /* If any sort of compatibility mode is enabled then handoff processing
5746 * to the selinux_ip_postroute_compat() function to deal with the
5747 * special handling. We do this in an attempt to keep this function
5748 * as fast and as clean as possible. */
5749 if (!selinux_policycap_netpeer())
5750 return selinux_ip_postroute_compat(skb, ifindex, family);
5751
5752 secmark_active = selinux_secmark_enabled();
5753 peerlbl_active = selinux_peerlbl_enabled();
5754 if (!secmark_active && !peerlbl_active)
5755 return NF_ACCEPT;
5756
5757 sk = skb_to_full_sk(skb);
5758
5759#ifdef CONFIG_XFRM
5760 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5761 * packet transformation so allow the packet to pass without any checks
5762 * since we'll have another chance to perform access control checks
5763 * when the packet is on it's final way out.
5764 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5765 * is NULL, in this case go ahead and apply access control.
5766 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5767 * TCP listening state we cannot wait until the XFRM processing
5768 * is done as we will miss out on the SA label if we do;
5769 * unfortunately, this means more work, but it is only once per
5770 * connection. */
5771 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5772 !(sk && sk_listener(sk)))
5773 return NF_ACCEPT;
5774#endif
5775
5776 if (sk == NULL) {
5777 /* Without an associated socket the packet is either coming
5778 * from the kernel or it is being forwarded; check the packet
5779 * to determine which and if the packet is being forwarded
5780 * query the packet directly to determine the security label. */
5781 if (skb->skb_iif) {
5782 secmark_perm = PACKET__FORWARD_OUT;
5783 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5784 return NF_DROP;
5785 } else {
5786 secmark_perm = PACKET__SEND;
5787 peer_sid = SECINITSID_KERNEL;
5788 }
5789 } else if (sk_listener(sk)) {
5790 /* Locally generated packet but the associated socket is in the
5791 * listening state which means this is a SYN-ACK packet. In
5792 * this particular case the correct security label is assigned
5793 * to the connection/request_sock but unfortunately we can't
5794 * query the request_sock as it isn't queued on the parent
5795 * socket until after the SYN-ACK packet is sent; the only
5796 * viable choice is to regenerate the label like we do in
5797 * selinux_inet_conn_request(). See also selinux_ip_output()
5798 * for similar problems. */
5799 u32 skb_sid;
5800 struct sk_security_struct *sksec;
5801
5802 sksec = sk->sk_security;
5803 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5804 return NF_DROP;
5805 /* At this point, if the returned skb peerlbl is SECSID_NULL
5806 * and the packet has been through at least one XFRM
5807 * transformation then we must be dealing with the "final"
5808 * form of labeled IPsec packet; since we've already applied
5809 * all of our access controls on this packet we can safely
5810 * pass the packet. */
5811 if (skb_sid == SECSID_NULL) {
5812 switch (family) {
5813 case PF_INET:
5814 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5815 return NF_ACCEPT;
5816 break;
5817 case PF_INET6:
5818 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5819 return NF_ACCEPT;
5820 break;
5821 default:
5822 return NF_DROP_ERR(-ECONNREFUSED);
5823 }
5824 }
5825 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5826 return NF_DROP;
5827 secmark_perm = PACKET__SEND;
5828 } else {
5829 /* Locally generated packet, fetch the security label from the
5830 * associated socket. */
5831 struct sk_security_struct *sksec = sk->sk_security;
5832 peer_sid = sksec->sid;
5833 secmark_perm = PACKET__SEND;
5834 }
5835
5836 ad.type = LSM_AUDIT_DATA_NET;
5837 ad.u.net = &net;
5838 ad.u.net->netif = ifindex;
5839 ad.u.net->family = family;
5840 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5841 return NF_DROP;
5842
5843 if (secmark_active)
5844 if (avc_has_perm(&selinux_state,
5845 peer_sid, skb->secmark,
5846 SECCLASS_PACKET, secmark_perm, &ad))
5847 return NF_DROP_ERR(-ECONNREFUSED);
5848
5849 if (peerlbl_active) {
5850 u32 if_sid;
5851 u32 node_sid;
5852
5853 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5854 return NF_DROP;
5855 if (avc_has_perm(&selinux_state,
5856 peer_sid, if_sid,
5857 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5858 return NF_DROP_ERR(-ECONNREFUSED);
5859
5860 if (sel_netnode_sid(addrp, family, &node_sid))
5861 return NF_DROP;
5862 if (avc_has_perm(&selinux_state,
5863 peer_sid, node_sid,
5864 SECCLASS_NODE, NODE__SENDTO, &ad))
5865 return NF_DROP_ERR(-ECONNREFUSED);
5866 }
5867
5868 return NF_ACCEPT;
5869}
5870
5871static unsigned int selinux_ipv4_postroute(void *priv,
5872 struct sk_buff *skb,
5873 const struct nf_hook_state *state)
5874{
5875 return selinux_ip_postroute(skb, state->out, PF_INET);
5876}
5877
5878#if IS_ENABLED(CONFIG_IPV6)
5879static unsigned int selinux_ipv6_postroute(void *priv,
5880 struct sk_buff *skb,
5881 const struct nf_hook_state *state)
5882{
5883 return selinux_ip_postroute(skb, state->out, PF_INET6);
5884}
5885#endif /* IPV6 */
5886
5887#endif /* CONFIG_NETFILTER */
5888
5889static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5890{
5891 return selinux_nlmsg_perm(sk, skb);
5892}
5893
5894static int ipc_alloc_security(struct kern_ipc_perm *perm,
5895 u16 sclass)
5896{
5897 struct ipc_security_struct *isec;
5898
5899 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5900 if (!isec)
5901 return -ENOMEM;
5902
5903 isec->sclass = sclass;
5904 isec->sid = current_sid();
5905 perm->security = isec;
5906
5907 return 0;
5908}
5909
5910static void ipc_free_security(struct kern_ipc_perm *perm)
5911{
5912 struct ipc_security_struct *isec = perm->security;
5913 perm->security = NULL;
5914 kfree(isec);
5915}
5916
5917static int msg_msg_alloc_security(struct msg_msg *msg)
5918{
5919 struct msg_security_struct *msec;
5920
5921 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5922 if (!msec)
5923 return -ENOMEM;
5924
5925 msec->sid = SECINITSID_UNLABELED;
5926 msg->security = msec;
5927
5928 return 0;
5929}
5930
5931static void msg_msg_free_security(struct msg_msg *msg)
5932{
5933 struct msg_security_struct *msec = msg->security;
5934
5935 msg->security = NULL;
5936 kfree(msec);
5937}
5938
5939static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5940 u32 perms)
5941{
5942 struct ipc_security_struct *isec;
5943 struct common_audit_data ad;
5944 u32 sid = current_sid();
5945
5946 isec = ipc_perms->security;
5947
5948 ad.type = LSM_AUDIT_DATA_IPC;
5949 ad.u.ipc_id = ipc_perms->key;
5950
5951 return avc_has_perm(&selinux_state,
5952 sid, isec->sid, isec->sclass, perms, &ad);
5953}
5954
5955static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5956{
5957 return msg_msg_alloc_security(msg);
5958}
5959
5960static void selinux_msg_msg_free_security(struct msg_msg *msg)
5961{
5962 msg_msg_free_security(msg);
5963}
5964
5965/* message queue security operations */
5966static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5967{
5968 struct ipc_security_struct *isec;
5969 struct common_audit_data ad;
5970 u32 sid = current_sid();
5971 int rc;
5972
5973 rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5974 if (rc)
5975 return rc;
5976
5977 isec = msq->security;
5978
5979 ad.type = LSM_AUDIT_DATA_IPC;
5980 ad.u.ipc_id = msq->key;
5981
5982 rc = avc_has_perm(&selinux_state,
5983 sid, isec->sid, SECCLASS_MSGQ,
5984 MSGQ__CREATE, &ad);
5985 if (rc) {
5986 ipc_free_security(msq);
5987 return rc;
5988 }
5989 return 0;
5990}
5991
5992static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5993{
5994 ipc_free_security(msq);
5995}
5996
5997static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5998{
5999 struct ipc_security_struct *isec;
6000 struct common_audit_data ad;
6001 u32 sid = current_sid();
6002
6003 isec = msq->security;
6004
6005 ad.type = LSM_AUDIT_DATA_IPC;
6006 ad.u.ipc_id = msq->key;
6007
6008 return avc_has_perm(&selinux_state,
6009 sid, isec->sid, SECCLASS_MSGQ,
6010 MSGQ__ASSOCIATE, &ad);
6011}
6012
6013static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6014{
6015 int err;
6016 int perms;
6017
6018 switch (cmd) {
6019 case IPC_INFO:
6020 case MSG_INFO:
6021 /* No specific object, just general system-wide information. */
6022 return avc_has_perm(&selinux_state,
6023 current_sid(), SECINITSID_KERNEL,
6024 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6025 case IPC_STAT:
6026 case MSG_STAT:
6027 case MSG_STAT_ANY:
6028 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6029 break;
6030 case IPC_SET:
6031 perms = MSGQ__SETATTR;
6032 break;
6033 case IPC_RMID:
6034 perms = MSGQ__DESTROY;
6035 break;
6036 default:
6037 return 0;
6038 }
6039
6040 err = ipc_has_perm(msq, perms);
6041 return err;
6042}
6043
6044static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6045{
6046 struct ipc_security_struct *isec;
6047 struct msg_security_struct *msec;
6048 struct common_audit_data ad;
6049 u32 sid = current_sid();
6050 int rc;
6051
6052 isec = msq->security;
6053 msec = msg->security;
6054
6055 /*
6056 * First time through, need to assign label to the message
6057 */
6058 if (msec->sid == SECINITSID_UNLABELED) {
6059 /*
6060 * Compute new sid based on current process and
6061 * message queue this message will be stored in
6062 */
6063 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6064 SECCLASS_MSG, NULL, &msec->sid);
6065 if (rc)
6066 return rc;
6067 }
6068
6069 ad.type = LSM_AUDIT_DATA_IPC;
6070 ad.u.ipc_id = msq->key;
6071
6072 /* Can this process write to the queue? */
6073 rc = avc_has_perm(&selinux_state,
6074 sid, isec->sid, SECCLASS_MSGQ,
6075 MSGQ__WRITE, &ad);
6076 if (!rc)
6077 /* Can this process send the message */
6078 rc = avc_has_perm(&selinux_state,
6079 sid, msec->sid, SECCLASS_MSG,
6080 MSG__SEND, &ad);
6081 if (!rc)
6082 /* Can the message be put in the queue? */
6083 rc = avc_has_perm(&selinux_state,
6084 msec->sid, isec->sid, SECCLASS_MSGQ,
6085 MSGQ__ENQUEUE, &ad);
6086
6087 return rc;
6088}
6089
6090static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6091 struct task_struct *target,
6092 long type, int mode)
6093{
6094 struct ipc_security_struct *isec;
6095 struct msg_security_struct *msec;
6096 struct common_audit_data ad;
6097 u32 sid = task_sid(target);
6098 int rc;
6099
6100 isec = msq->security;
6101 msec = msg->security;
6102
6103 ad.type = LSM_AUDIT_DATA_IPC;
6104 ad.u.ipc_id = msq->key;
6105
6106 rc = avc_has_perm(&selinux_state,
6107 sid, isec->sid,
6108 SECCLASS_MSGQ, MSGQ__READ, &ad);
6109 if (!rc)
6110 rc = avc_has_perm(&selinux_state,
6111 sid, msec->sid,
6112 SECCLASS_MSG, MSG__RECEIVE, &ad);
6113 return rc;
6114}
6115
6116/* Shared Memory security operations */
6117static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6118{
6119 struct ipc_security_struct *isec;
6120 struct common_audit_data ad;
6121 u32 sid = current_sid();
6122 int rc;
6123
6124 rc = ipc_alloc_security(shp, SECCLASS_SHM);
6125 if (rc)
6126 return rc;
6127
6128 isec = shp->security;
6129
6130 ad.type = LSM_AUDIT_DATA_IPC;
6131 ad.u.ipc_id = shp->key;
6132
6133 rc = avc_has_perm(&selinux_state,
6134 sid, isec->sid, SECCLASS_SHM,
6135 SHM__CREATE, &ad);
6136 if (rc) {
6137 ipc_free_security(shp);
6138 return rc;
6139 }
6140 return 0;
6141}
6142
6143static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6144{
6145 ipc_free_security(shp);
6146}
6147
6148static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6149{
6150 struct ipc_security_struct *isec;
6151 struct common_audit_data ad;
6152 u32 sid = current_sid();
6153
6154 isec = shp->security;
6155
6156 ad.type = LSM_AUDIT_DATA_IPC;
6157 ad.u.ipc_id = shp->key;
6158
6159 return avc_has_perm(&selinux_state,
6160 sid, isec->sid, SECCLASS_SHM,
6161 SHM__ASSOCIATE, &ad);
6162}
6163
6164/* Note, at this point, shp is locked down */
6165static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6166{
6167 int perms;
6168 int err;
6169
6170 switch (cmd) {
6171 case IPC_INFO:
6172 case SHM_INFO:
6173 /* No specific object, just general system-wide information. */
6174 return avc_has_perm(&selinux_state,
6175 current_sid(), SECINITSID_KERNEL,
6176 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6177 case IPC_STAT:
6178 case SHM_STAT:
6179 case SHM_STAT_ANY:
6180 perms = SHM__GETATTR | SHM__ASSOCIATE;
6181 break;
6182 case IPC_SET:
6183 perms = SHM__SETATTR;
6184 break;
6185 case SHM_LOCK:
6186 case SHM_UNLOCK:
6187 perms = SHM__LOCK;
6188 break;
6189 case IPC_RMID:
6190 perms = SHM__DESTROY;
6191 break;
6192 default:
6193 return 0;
6194 }
6195
6196 err = ipc_has_perm(shp, perms);
6197 return err;
6198}
6199
6200static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6201 char __user *shmaddr, int shmflg)
6202{
6203 u32 perms;
6204
6205 if (shmflg & SHM_RDONLY)
6206 perms = SHM__READ;
6207 else
6208 perms = SHM__READ | SHM__WRITE;
6209
6210 return ipc_has_perm(shp, perms);
6211}
6212
6213/* Semaphore security operations */
6214static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6215{
6216 struct ipc_security_struct *isec;
6217 struct common_audit_data ad;
6218 u32 sid = current_sid();
6219 int rc;
6220
6221 rc = ipc_alloc_security(sma, SECCLASS_SEM);
6222 if (rc)
6223 return rc;
6224
6225 isec = sma->security;
6226
6227 ad.type = LSM_AUDIT_DATA_IPC;
6228 ad.u.ipc_id = sma->key;
6229
6230 rc = avc_has_perm(&selinux_state,
6231 sid, isec->sid, SECCLASS_SEM,
6232 SEM__CREATE, &ad);
6233 if (rc) {
6234 ipc_free_security(sma);
6235 return rc;
6236 }
6237 return 0;
6238}
6239
6240static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6241{
6242 ipc_free_security(sma);
6243}
6244
6245static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6246{
6247 struct ipc_security_struct *isec;
6248 struct common_audit_data ad;
6249 u32 sid = current_sid();
6250
6251 isec = sma->security;
6252
6253 ad.type = LSM_AUDIT_DATA_IPC;
6254 ad.u.ipc_id = sma->key;
6255
6256 return avc_has_perm(&selinux_state,
6257 sid, isec->sid, SECCLASS_SEM,
6258 SEM__ASSOCIATE, &ad);
6259}
6260
6261/* Note, at this point, sma is locked down */
6262static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6263{
6264 int err;
6265 u32 perms;
6266
6267 switch (cmd) {
6268 case IPC_INFO:
6269 case SEM_INFO:
6270 /* No specific object, just general system-wide information. */
6271 return avc_has_perm(&selinux_state,
6272 current_sid(), SECINITSID_KERNEL,
6273 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6274 case GETPID:
6275 case GETNCNT:
6276 case GETZCNT:
6277 perms = SEM__GETATTR;
6278 break;
6279 case GETVAL:
6280 case GETALL:
6281 perms = SEM__READ;
6282 break;
6283 case SETVAL:
6284 case SETALL:
6285 perms = SEM__WRITE;
6286 break;
6287 case IPC_RMID:
6288 perms = SEM__DESTROY;
6289 break;
6290 case IPC_SET:
6291 perms = SEM__SETATTR;
6292 break;
6293 case IPC_STAT:
6294 case SEM_STAT:
6295 case SEM_STAT_ANY:
6296 perms = SEM__GETATTR | SEM__ASSOCIATE;
6297 break;
6298 default:
6299 return 0;
6300 }
6301
6302 err = ipc_has_perm(sma, perms);
6303 return err;
6304}
6305
6306static int selinux_sem_semop(struct kern_ipc_perm *sma,
6307 struct sembuf *sops, unsigned nsops, int alter)
6308{
6309 u32 perms;
6310
6311 if (alter)
6312 perms = SEM__READ | SEM__WRITE;
6313 else
6314 perms = SEM__READ;
6315
6316 return ipc_has_perm(sma, perms);
6317}
6318
6319static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6320{
6321 u32 av = 0;
6322
6323 av = 0;
6324 if (flag & S_IRUGO)
6325 av |= IPC__UNIX_READ;
6326 if (flag & S_IWUGO)
6327 av |= IPC__UNIX_WRITE;
6328
6329 if (av == 0)
6330 return 0;
6331
6332 return ipc_has_perm(ipcp, av);
6333}
6334
6335static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6336{
6337 struct ipc_security_struct *isec = ipcp->security;
6338 *secid = isec->sid;
6339}
6340
6341static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6342{
6343 if (inode)
6344 inode_doinit_with_dentry(inode, dentry);
6345}
6346
6347static int selinux_getprocattr(struct task_struct *p,
6348 char *name, char **value)
6349{
6350 const struct task_security_struct *__tsec;
6351 u32 sid;
6352 int error;
6353 unsigned len;
6354
6355 rcu_read_lock();
6356 __tsec = __task_cred(p)->security;
6357
6358 if (current != p) {
6359 error = avc_has_perm(&selinux_state,
6360 current_sid(), __tsec->sid,
6361 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362 if (error)
6363 goto bad;
6364 }
6365
6366 if (!strcmp(name, "current"))
6367 sid = __tsec->sid;
6368 else if (!strcmp(name, "prev"))
6369 sid = __tsec->osid;
6370 else if (!strcmp(name, "exec"))
6371 sid = __tsec->exec_sid;
6372 else if (!strcmp(name, "fscreate"))
6373 sid = __tsec->create_sid;
6374 else if (!strcmp(name, "keycreate"))
6375 sid = __tsec->keycreate_sid;
6376 else if (!strcmp(name, "sockcreate"))
6377 sid = __tsec->sockcreate_sid;
6378 else {
6379 error = -EINVAL;
6380 goto bad;
6381 }
6382 rcu_read_unlock();
6383
6384 if (!sid)
6385 return 0;
6386
6387 error = security_sid_to_context(&selinux_state, sid, value, &len);
6388 if (error)
6389 return error;
6390 return len;
6391
6392bad:
6393 rcu_read_unlock();
6394 return error;
6395}
6396
6397static int selinux_setprocattr(const char *name, void *value, size_t size)
6398{
6399 struct task_security_struct *tsec;
6400 struct cred *new;
6401 u32 mysid = current_sid(), sid = 0, ptsid;
6402 int error;
6403 char *str = value;
6404
6405 /*
6406 * Basic control over ability to set these attributes at all.
6407 */
6408 if (!strcmp(name, "exec"))
6409 error = avc_has_perm(&selinux_state,
6410 mysid, mysid, SECCLASS_PROCESS,
6411 PROCESS__SETEXEC, NULL);
6412 else if (!strcmp(name, "fscreate"))
6413 error = avc_has_perm(&selinux_state,
6414 mysid, mysid, SECCLASS_PROCESS,
6415 PROCESS__SETFSCREATE, NULL);
6416 else if (!strcmp(name, "keycreate"))
6417 error = avc_has_perm(&selinux_state,
6418 mysid, mysid, SECCLASS_PROCESS,
6419 PROCESS__SETKEYCREATE, NULL);
6420 else if (!strcmp(name, "sockcreate"))
6421 error = avc_has_perm(&selinux_state,
6422 mysid, mysid, SECCLASS_PROCESS,
6423 PROCESS__SETSOCKCREATE, NULL);
6424 else if (!strcmp(name, "current"))
6425 error = avc_has_perm(&selinux_state,
6426 mysid, mysid, SECCLASS_PROCESS,
6427 PROCESS__SETCURRENT, NULL);
6428 else
6429 error = -EINVAL;
6430 if (error)
6431 return error;
6432
6433 /* Obtain a SID for the context, if one was specified. */
6434 if (size && str[0] && str[0] != '\n') {
6435 if (str[size-1] == '\n') {
6436 str[size-1] = 0;
6437 size--;
6438 }
6439 error = security_context_to_sid(&selinux_state, value, size,
6440 &sid, GFP_KERNEL);
6441 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6442 if (!has_cap_mac_admin(true)) {
6443 struct audit_buffer *ab;
6444 size_t audit_size;
6445
6446 /* We strip a nul only if it is at the end, otherwise the
6447 * context contains a nul and we should audit that */
6448 if (str[size - 1] == '\0')
6449 audit_size = size - 1;
6450 else
6451 audit_size = size;
6452 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6453 audit_log_format(ab, "op=fscreate invalid_context=");
6454 audit_log_n_untrustedstring(ab, value, audit_size);
6455 audit_log_end(ab);
6456
6457 return error;
6458 }
6459 error = security_context_to_sid_force(
6460 &selinux_state,
6461 value, size, &sid);
6462 }
6463 if (error)
6464 return error;
6465 }
6466
6467 new = prepare_creds();
6468 if (!new)
6469 return -ENOMEM;
6470
6471 /* Permission checking based on the specified context is
6472 performed during the actual operation (execve,
6473 open/mkdir/...), when we know the full context of the
6474 operation. See selinux_bprm_set_creds for the execve
6475 checks and may_create for the file creation checks. The
6476 operation will then fail if the context is not permitted. */
6477 tsec = new->security;
6478 if (!strcmp(name, "exec")) {
6479 tsec->exec_sid = sid;
6480 } else if (!strcmp(name, "fscreate")) {
6481 tsec->create_sid = sid;
6482 } else if (!strcmp(name, "keycreate")) {
6483 error = avc_has_perm(&selinux_state,
6484 mysid, sid, SECCLASS_KEY, KEY__CREATE,
6485 NULL);
6486 if (error)
6487 goto abort_change;
6488 tsec->keycreate_sid = sid;
6489 } else if (!strcmp(name, "sockcreate")) {
6490 tsec->sockcreate_sid = sid;
6491 } else if (!strcmp(name, "current")) {
6492 error = -EINVAL;
6493 if (sid == 0)
6494 goto abort_change;
6495
6496 /* Only allow single threaded processes to change context */
6497 error = -EPERM;
6498 if (!current_is_single_threaded()) {
6499 error = security_bounded_transition(&selinux_state,
6500 tsec->sid, sid);
6501 if (error)
6502 goto abort_change;
6503 }
6504
6505 /* Check permissions for the transition. */
6506 error = avc_has_perm(&selinux_state,
6507 tsec->sid, sid, SECCLASS_PROCESS,
6508 PROCESS__DYNTRANSITION, NULL);
6509 if (error)
6510 goto abort_change;
6511
6512 /* Check for ptracing, and update the task SID if ok.
6513 Otherwise, leave SID unchanged and fail. */
6514 ptsid = ptrace_parent_sid();
6515 if (ptsid != 0) {
6516 error = avc_has_perm(&selinux_state,
6517 ptsid, sid, SECCLASS_PROCESS,
6518 PROCESS__PTRACE, NULL);
6519 if (error)
6520 goto abort_change;
6521 }
6522
6523 tsec->sid = sid;
6524 } else {
6525 error = -EINVAL;
6526 goto abort_change;
6527 }
6528
6529 commit_creds(new);
6530 return size;
6531
6532abort_change:
6533 abort_creds(new);
6534 return error;
6535}
6536
6537static int selinux_ismaclabel(const char *name)
6538{
6539 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6540}
6541
6542static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6543{
6544 return security_sid_to_context(&selinux_state, secid,
6545 secdata, seclen);
6546}
6547
6548static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6549{
6550 return security_context_to_sid(&selinux_state, secdata, seclen,
6551 secid, GFP_KERNEL);
6552}
6553
6554static void selinux_release_secctx(char *secdata, u32 seclen)
6555{
6556 kfree(secdata);
6557}
6558
6559static void selinux_inode_invalidate_secctx(struct inode *inode)
6560{
6561 struct inode_security_struct *isec = inode->i_security;
6562
6563 spin_lock(&isec->lock);
6564 isec->initialized = LABEL_INVALID;
6565 spin_unlock(&isec->lock);
6566}
6567
6568/*
6569 * called with inode->i_mutex locked
6570 */
6571static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6572{
6573 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6574}
6575
6576/*
6577 * called with inode->i_mutex locked
6578 */
6579static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6580{
6581 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6582}
6583
6584static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6585{
6586 int len = 0;
6587 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6588 ctx, true);
6589 if (len < 0)
6590 return len;
6591 *ctxlen = len;
6592 return 0;
6593}
6594#ifdef CONFIG_KEYS
6595
6596static int selinux_key_alloc(struct key *k, const struct cred *cred,
6597 unsigned long flags)
6598{
6599 const struct task_security_struct *tsec;
6600 struct key_security_struct *ksec;
6601
6602 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6603 if (!ksec)
6604 return -ENOMEM;
6605
6606 tsec = cred->security;
6607 if (tsec->keycreate_sid)
6608 ksec->sid = tsec->keycreate_sid;
6609 else
6610 ksec->sid = tsec->sid;
6611
6612 k->security = ksec;
6613 return 0;
6614}
6615
6616static void selinux_key_free(struct key *k)
6617{
6618 struct key_security_struct *ksec = k->security;
6619
6620 k->security = NULL;
6621 kfree(ksec);
6622}
6623
6624static int selinux_key_permission(key_ref_t key_ref,
6625 const struct cred *cred,
6626 unsigned perm)
6627{
6628 struct key *key;
6629 struct key_security_struct *ksec;
6630 u32 sid;
6631
6632 /* if no specific permissions are requested, we skip the
6633 permission check. No serious, additional covert channels
6634 appear to be created. */
6635 if (perm == 0)
6636 return 0;
6637
6638 sid = cred_sid(cred);
6639
6640 key = key_ref_to_ptr(key_ref);
6641 ksec = key->security;
6642
6643 return avc_has_perm(&selinux_state,
6644 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6645}
6646
6647static int selinux_key_getsecurity(struct key *key, char **_buffer)
6648{
6649 struct key_security_struct *ksec = key->security;
6650 char *context = NULL;
6651 unsigned len;
6652 int rc;
6653
6654 rc = security_sid_to_context(&selinux_state, ksec->sid,
6655 &context, &len);
6656 if (!rc)
6657 rc = len;
6658 *_buffer = context;
6659 return rc;
6660}
6661#endif
6662
6663#ifdef CONFIG_SECURITY_INFINIBAND
6664static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6665{
6666 struct common_audit_data ad;
6667 int err;
6668 u32 sid = 0;
6669 struct ib_security_struct *sec = ib_sec;
6670 struct lsm_ibpkey_audit ibpkey;
6671
6672 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6673 if (err)
6674 return err;
6675
6676 ad.type = LSM_AUDIT_DATA_IBPKEY;
6677 ibpkey.subnet_prefix = subnet_prefix;
6678 ibpkey.pkey = pkey_val;
6679 ad.u.ibpkey = &ibpkey;
6680 return avc_has_perm(&selinux_state,
6681 sec->sid, sid,
6682 SECCLASS_INFINIBAND_PKEY,
6683 INFINIBAND_PKEY__ACCESS, &ad);
6684}
6685
6686static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6687 u8 port_num)
6688{
6689 struct common_audit_data ad;
6690 int err;
6691 u32 sid = 0;
6692 struct ib_security_struct *sec = ib_sec;
6693 struct lsm_ibendport_audit ibendport;
6694
6695 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6696 &sid);
6697
6698 if (err)
6699 return err;
6700
6701 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6702 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6703 ibendport.port = port_num;
6704 ad.u.ibendport = &ibendport;
6705 return avc_has_perm(&selinux_state,
6706 sec->sid, sid,
6707 SECCLASS_INFINIBAND_ENDPORT,
6708 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6709}
6710
6711static int selinux_ib_alloc_security(void **ib_sec)
6712{
6713 struct ib_security_struct *sec;
6714
6715 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6716 if (!sec)
6717 return -ENOMEM;
6718 sec->sid = current_sid();
6719
6720 *ib_sec = sec;
6721 return 0;
6722}
6723
6724static void selinux_ib_free_security(void *ib_sec)
6725{
6726 kfree(ib_sec);
6727}
6728#endif
6729
6730#ifdef CONFIG_BPF_SYSCALL
6731static int selinux_bpf(int cmd, union bpf_attr *attr,
6732 unsigned int size)
6733{
6734 u32 sid = current_sid();
6735 int ret;
6736
6737 switch (cmd) {
6738 case BPF_MAP_CREATE:
6739 ret = avc_has_perm(&selinux_state,
6740 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6741 NULL);
6742 break;
6743 case BPF_PROG_LOAD:
6744 ret = avc_has_perm(&selinux_state,
6745 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6746 NULL);
6747 break;
6748 default:
6749 ret = 0;
6750 break;
6751 }
6752
6753 return ret;
6754}
6755
6756static u32 bpf_map_fmode_to_av(fmode_t fmode)
6757{
6758 u32 av = 0;
6759
6760 if (fmode & FMODE_READ)
6761 av |= BPF__MAP_READ;
6762 if (fmode & FMODE_WRITE)
6763 av |= BPF__MAP_WRITE;
6764 return av;
6765}
6766
6767/* This function will check the file pass through unix socket or binder to see
6768 * if it is a bpf related object. And apply correspinding checks on the bpf
6769 * object based on the type. The bpf maps and programs, not like other files and
6770 * socket, are using a shared anonymous inode inside the kernel as their inode.
6771 * So checking that inode cannot identify if the process have privilege to
6772 * access the bpf object and that's why we have to add this additional check in
6773 * selinux_file_receive and selinux_binder_transfer_files.
6774 */
6775static int bpf_fd_pass(struct file *file, u32 sid)
6776{
6777 struct bpf_security_struct *bpfsec;
6778 struct bpf_prog *prog;
6779 struct bpf_map *map;
6780 int ret;
6781
6782 if (file->f_op == &bpf_map_fops) {
6783 map = file->private_data;
6784 bpfsec = map->security;
6785 ret = avc_has_perm(&selinux_state,
6786 sid, bpfsec->sid, SECCLASS_BPF,
6787 bpf_map_fmode_to_av(file->f_mode), NULL);
6788 if (ret)
6789 return ret;
6790 } else if (file->f_op == &bpf_prog_fops) {
6791 prog = file->private_data;
6792 bpfsec = prog->aux->security;
6793 ret = avc_has_perm(&selinux_state,
6794 sid, bpfsec->sid, SECCLASS_BPF,
6795 BPF__PROG_RUN, NULL);
6796 if (ret)
6797 return ret;
6798 }
6799 return 0;
6800}
6801
6802static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6803{
6804 u32 sid = current_sid();
6805 struct bpf_security_struct *bpfsec;
6806
6807 bpfsec = map->security;
6808 return avc_has_perm(&selinux_state,
6809 sid, bpfsec->sid, SECCLASS_BPF,
6810 bpf_map_fmode_to_av(fmode), NULL);
6811}
6812
6813static int selinux_bpf_prog(struct bpf_prog *prog)
6814{
6815 u32 sid = current_sid();
6816 struct bpf_security_struct *bpfsec;
6817
6818 bpfsec = prog->aux->security;
6819 return avc_has_perm(&selinux_state,
6820 sid, bpfsec->sid, SECCLASS_BPF,
6821 BPF__PROG_RUN, NULL);
6822}
6823
6824static int selinux_bpf_map_alloc(struct bpf_map *map)
6825{
6826 struct bpf_security_struct *bpfsec;
6827
6828 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6829 if (!bpfsec)
6830 return -ENOMEM;
6831
6832 bpfsec->sid = current_sid();
6833 map->security = bpfsec;
6834
6835 return 0;
6836}
6837
6838static void selinux_bpf_map_free(struct bpf_map *map)
6839{
6840 struct bpf_security_struct *bpfsec = map->security;
6841
6842 map->security = NULL;
6843 kfree(bpfsec);
6844}
6845
6846static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6847{
6848 struct bpf_security_struct *bpfsec;
6849
6850 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6851 if (!bpfsec)
6852 return -ENOMEM;
6853
6854 bpfsec->sid = current_sid();
6855 aux->security = bpfsec;
6856
6857 return 0;
6858}
6859
6860static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6861{
6862 struct bpf_security_struct *bpfsec = aux->security;
6863
6864 aux->security = NULL;
6865 kfree(bpfsec);
6866}
6867#endif
6868
6869static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6870 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6871 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6872 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6873 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6874
6875 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6876 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6877 LSM_HOOK_INIT(capget, selinux_capget),
6878 LSM_HOOK_INIT(capset, selinux_capset),
6879 LSM_HOOK_INIT(capable, selinux_capable),
6880 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6881 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6882 LSM_HOOK_INIT(syslog, selinux_syslog),
6883 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6884
6885 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6886
6887 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6888 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6889 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6890
6891 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6892 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6893 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6894 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6895 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6896 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6897 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6898 LSM_HOOK_INIT(sb_mount, selinux_mount),
6899 LSM_HOOK_INIT(sb_umount, selinux_umount),
6900 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6901 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6902 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6903
6904 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6905 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6906
6907 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6908 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6909 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6910 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6911 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6912 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6913 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6914 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6915 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6916 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6917 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6918 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6919 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6920 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6921 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6922 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6923 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6924 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6925 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6926 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6927 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6928 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6929 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6930 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6931 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6932 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6933 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6934
6935 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6936 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6937 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6938 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6939 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6940 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6941 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6942 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6943 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6944 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6945 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6946 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6947
6948 LSM_HOOK_INIT(file_open, selinux_file_open),
6949
6950 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6951 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6952 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6953 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6954 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6955 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6956 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6957 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6958 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6959 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6960 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6961 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6962 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6963 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6964 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6965 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6966 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6967 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6968 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6969 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6970 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6971 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6972 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6973 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6974
6975 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6976 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6977
6978 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6979 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6980
6981 LSM_HOOK_INIT(msg_queue_alloc_security,
6982 selinux_msg_queue_alloc_security),
6983 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6984 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6985 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6986 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6987 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6988
6989 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6990 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6991 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6992 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6993 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6994
6995 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6996 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6997 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6998 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6999 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7000
7001 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7002
7003 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7004 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7005
7006 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7007 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7008 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7009 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7010 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7011 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7012 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7013 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7014
7015 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7016 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7017
7018 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7019 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7020 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7021 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7022 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7023 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7024 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7025 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7026 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7027 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7028 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7029 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7030 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7031 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7032 LSM_HOOK_INIT(socket_getpeersec_stream,
7033 selinux_socket_getpeersec_stream),
7034 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7035 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7036 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7037 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7038 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7039 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7040 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7041 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7042 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7043 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7044 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7045 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7046 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7047 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7048 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7049 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7050 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7051 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7052 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7053 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7054 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7055 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7056#ifdef CONFIG_SECURITY_INFINIBAND
7057 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7058 LSM_HOOK_INIT(ib_endport_manage_subnet,
7059 selinux_ib_endport_manage_subnet),
7060 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7061 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7062#endif
7063#ifdef CONFIG_SECURITY_NETWORK_XFRM
7064 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7065 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7066 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7067 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7068 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7069 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7070 selinux_xfrm_state_alloc_acquire),
7071 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7072 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7073 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7074 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7075 selinux_xfrm_state_pol_flow_match),
7076 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7077#endif
7078
7079#ifdef CONFIG_KEYS
7080 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7081 LSM_HOOK_INIT(key_free, selinux_key_free),
7082 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7083 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7084#endif
7085
7086#ifdef CONFIG_AUDIT
7087 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7088 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7089 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7090 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7091#endif
7092
7093#ifdef CONFIG_BPF_SYSCALL
7094 LSM_HOOK_INIT(bpf, selinux_bpf),
7095 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7096 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7097 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7098 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7099 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7100 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7101#endif
7102};
7103
7104static __init int selinux_init(void)
7105{
7106 if (!security_module_enable("selinux")) {
7107 selinux_enabled = 0;
7108 return 0;
7109 }
7110
7111 if (!selinux_enabled) {
7112 printk(KERN_INFO "SELinux: Disabled at boot.\n");
7113 return 0;
7114 }
7115
7116 printk(KERN_INFO "SELinux: Initializing.\n");
7117
7118 memset(&selinux_state, 0, sizeof(selinux_state));
7119 enforcing_set(&selinux_state, selinux_enforcing_boot);
7120 selinux_state.checkreqprot = selinux_checkreqprot_boot;
7121 selinux_ss_init(&selinux_state.ss);
7122 selinux_avc_init(&selinux_state.avc);
7123
7124 /* Set the security state for the initial task. */
7125 cred_init_security();
7126
7127 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7128
7129 sel_inode_cache = kmem_cache_create("selinux_inode_security",
7130 sizeof(struct inode_security_struct),
7131 0, SLAB_PANIC, NULL);
7132 file_security_cache = kmem_cache_create("selinux_file_security",
7133 sizeof(struct file_security_struct),
7134 0, SLAB_PANIC, NULL);
7135 avc_init();
7136
7137 avtab_cache_init();
7138
7139 ebitmap_cache_init();
7140
7141 hashtab_cache_init();
7142
7143 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7144
7145 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7146 panic("SELinux: Unable to register AVC netcache callback\n");
7147
7148 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7149 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7150
7151 if (selinux_enforcing_boot)
7152 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
7153 else
7154 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
7155
7156 return 0;
7157}
7158
7159static void delayed_superblock_init(struct super_block *sb, void *unused)
7160{
7161 superblock_doinit(sb, NULL);
7162}
7163
7164void selinux_complete_init(void)
7165{
7166 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
7167
7168 /* Set up any superblocks initialized prior to the policy load. */
7169 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
7170 iterate_supers(delayed_superblock_init, NULL);
7171}
7172
7173/* SELinux requires early initialization in order to label
7174 all processes and objects when they are created. */
7175security_initcall(selinux_init);
7176
7177#if defined(CONFIG_NETFILTER)
7178
7179static const struct nf_hook_ops selinux_nf_ops[] = {
7180 {
7181 .hook = selinux_ipv4_postroute,
7182 .pf = NFPROTO_IPV4,
7183 .hooknum = NF_INET_POST_ROUTING,
7184 .priority = NF_IP_PRI_SELINUX_LAST,
7185 },
7186 {
7187 .hook = selinux_ipv4_forward,
7188 .pf = NFPROTO_IPV4,
7189 .hooknum = NF_INET_FORWARD,
7190 .priority = NF_IP_PRI_SELINUX_FIRST,
7191 },
7192 {
7193 .hook = selinux_ipv4_output,
7194 .pf = NFPROTO_IPV4,
7195 .hooknum = NF_INET_LOCAL_OUT,
7196 .priority = NF_IP_PRI_SELINUX_FIRST,
7197 },
7198#if IS_ENABLED(CONFIG_IPV6)
7199 {
7200 .hook = selinux_ipv6_postroute,
7201 .pf = NFPROTO_IPV6,
7202 .hooknum = NF_INET_POST_ROUTING,
7203 .priority = NF_IP6_PRI_SELINUX_LAST,
7204 },
7205 {
7206 .hook = selinux_ipv6_forward,
7207 .pf = NFPROTO_IPV6,
7208 .hooknum = NF_INET_FORWARD,
7209 .priority = NF_IP6_PRI_SELINUX_FIRST,
7210 },
7211 {
7212 .hook = selinux_ipv6_output,
7213 .pf = NFPROTO_IPV6,
7214 .hooknum = NF_INET_LOCAL_OUT,
7215 .priority = NF_IP6_PRI_SELINUX_FIRST,
7216 },
7217#endif /* IPV6 */
7218};
7219
7220static int __net_init selinux_nf_register(struct net *net)
7221{
7222 return nf_register_net_hooks(net, selinux_nf_ops,
7223 ARRAY_SIZE(selinux_nf_ops));
7224}
7225
7226static void __net_exit selinux_nf_unregister(struct net *net)
7227{
7228 nf_unregister_net_hooks(net, selinux_nf_ops,
7229 ARRAY_SIZE(selinux_nf_ops));
7230}
7231
7232static struct pernet_operations selinux_net_ops = {
7233 .init = selinux_nf_register,
7234 .exit = selinux_nf_unregister,
7235};
7236
7237static int __init selinux_nf_ip_init(void)
7238{
7239 int err;
7240
7241 if (!selinux_enabled)
7242 return 0;
7243
7244 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
7245
7246 err = register_pernet_subsys(&selinux_net_ops);
7247 if (err)
7248 panic("SELinux: register_pernet_subsys: error %d\n", err);
7249
7250 return 0;
7251}
7252__initcall(selinux_nf_ip_init);
7253
7254#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7255static void selinux_nf_ip_exit(void)
7256{
7257 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
7258
7259 unregister_pernet_subsys(&selinux_net_ops);
7260}
7261#endif
7262
7263#else /* CONFIG_NETFILTER */
7264
7265#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7266#define selinux_nf_ip_exit()
7267#endif
7268
7269#endif /* CONFIG_NETFILTER */
7270
7271#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7272int selinux_disable(struct selinux_state *state)
7273{
7274 if (state->initialized) {
7275 /* Not permitted after initial policy load. */
7276 return -EINVAL;
7277 }
7278
7279 if (state->disabled) {
7280 /* Only do this once. */
7281 return -EINVAL;
7282 }
7283
7284 state->disabled = 1;
7285
7286 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
7287
7288 selinux_enabled = 0;
7289
7290 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7291
7292 /* Try to destroy the avc node cache */
7293 avc_disable();
7294
7295 /* Unregister netfilter hooks. */
7296 selinux_nf_ip_exit();
7297
7298 /* Unregister selinuxfs. */
7299 exit_sel_fs();
7300
7301 return 0;
7302}
7303#endif