Loading...
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/lsm_hooks.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55#include <net/inet_connection_sock.h>
56#include <net/net_namespace.h>
57#include <net/netlabel.h>
58#include <linux/uaccess.h>
59#include <asm/ioctls.h>
60#include <linux/atomic.h>
61#include <linux/bitops.h>
62#include <linux/interrupt.h>
63#include <linux/netdevice.h> /* for network interface checks */
64#include <net/netlink.h>
65#include <linux/tcp.h>
66#include <linux/udp.h>
67#include <linux/dccp.h>
68#include <linux/quota.h>
69#include <linux/un.h> /* for Unix socket types */
70#include <net/af_unix.h> /* for Unix socket types */
71#include <linux/parser.h>
72#include <linux/nfs_mount.h>
73#include <net/ipv6.h>
74#include <linux/hugetlb.h>
75#include <linux/personality.h>
76#include <linux/audit.h>
77#include <linux/string.h>
78#include <linux/selinux.h>
79#include <linux/mutex.h>
80#include <linux/posix-timers.h>
81#include <linux/syslog.h>
82#include <linux/user_namespace.h>
83#include <linux/export.h>
84#include <linux/msg.h>
85#include <linux/shm.h>
86
87#include "avc.h"
88#include "objsec.h"
89#include "netif.h"
90#include "netnode.h"
91#include "netport.h"
92#include "xfrm.h"
93#include "netlabel.h"
94#include "audit.h"
95#include "avc_ss.h"
96
97/* SECMARK reference count */
98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101int selinux_enforcing;
102
103static int __init enforcing_setup(char *str)
104{
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109}
110__setup("enforcing=", enforcing_setup);
111#endif
112
113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116static int __init selinux_enabled_setup(char *str)
117{
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122}
123__setup("selinux=", selinux_enabled_setup);
124#else
125int selinux_enabled = 1;
126#endif
127
128static struct kmem_cache *sel_inode_cache;
129static struct kmem_cache *file_security_cache;
130
131/**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled. If the always_check_network
139 * policy capability is enabled, SECMARK is always considered enabled.
140 *
141 */
142static int selinux_secmark_enabled(void)
143{
144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
145}
146
147/**
148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
149 *
150 * Description:
151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
152 * (1) if any are enabled or false (0) if neither are enabled. If the
153 * always_check_network policy capability is enabled, peer labeling
154 * is always considered enabled.
155 *
156 */
157static int selinux_peerlbl_enabled(void)
158{
159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
160}
161
162static int selinux_netcache_avc_callback(u32 event)
163{
164 if (event == AVC_CALLBACK_RESET) {
165 sel_netif_flush();
166 sel_netnode_flush();
167 sel_netport_flush();
168 synchronize_net();
169 }
170 return 0;
171}
172
173/*
174 * initialise the security for the init task
175 */
176static void cred_init_security(void)
177{
178 struct cred *cred = (struct cred *) current->real_cred;
179 struct task_security_struct *tsec;
180
181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
182 if (!tsec)
183 panic("SELinux: Failed to initialize initial task.\n");
184
185 tsec->osid = tsec->sid = SECINITSID_KERNEL;
186 cred->security = tsec;
187}
188
189/*
190 * get the security ID of a set of credentials
191 */
192static inline u32 cred_sid(const struct cred *cred)
193{
194 const struct task_security_struct *tsec;
195
196 tsec = cred->security;
197 return tsec->sid;
198}
199
200/*
201 * get the objective security ID of a task
202 */
203static inline u32 task_sid(const struct task_struct *task)
204{
205 u32 sid;
206
207 rcu_read_lock();
208 sid = cred_sid(__task_cred(task));
209 rcu_read_unlock();
210 return sid;
211}
212
213/*
214 * get the subjective security ID of the current task
215 */
216static inline u32 current_sid(void)
217{
218 const struct task_security_struct *tsec = current_security();
219
220 return tsec->sid;
221}
222
223/* Allocate and free functions for each kind of security blob. */
224
225static int inode_alloc_security(struct inode *inode)
226{
227 struct inode_security_struct *isec;
228 u32 sid = current_sid();
229
230 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
231 if (!isec)
232 return -ENOMEM;
233
234 mutex_init(&isec->lock);
235 INIT_LIST_HEAD(&isec->list);
236 isec->inode = inode;
237 isec->sid = SECINITSID_UNLABELED;
238 isec->sclass = SECCLASS_FILE;
239 isec->task_sid = sid;
240 inode->i_security = isec;
241
242 return 0;
243}
244
245static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
246
247/*
248 * Try reloading inode security labels that have been marked as invalid. The
249 * @may_sleep parameter indicates when sleeping and thus reloading labels is
250 * allowed; when set to false, returns ERR_PTR(-ECHILD) when the label is
251 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
252 * when no dentry is available, set it to NULL instead.
253 */
254static int __inode_security_revalidate(struct inode *inode,
255 struct dentry *opt_dentry,
256 bool may_sleep)
257{
258 struct inode_security_struct *isec = inode->i_security;
259
260 might_sleep_if(may_sleep);
261
262 if (isec->initialized == LABEL_INVALID) {
263 if (!may_sleep)
264 return -ECHILD;
265
266 /*
267 * Try reloading the inode security label. This will fail if
268 * @opt_dentry is NULL and no dentry for this inode can be
269 * found; in that case, continue using the old label.
270 */
271 inode_doinit_with_dentry(inode, opt_dentry);
272 }
273 return 0;
274}
275
276static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
277{
278 return inode->i_security;
279}
280
281static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
282{
283 int error;
284
285 error = __inode_security_revalidate(inode, NULL, !rcu);
286 if (error)
287 return ERR_PTR(error);
288 return inode->i_security;
289}
290
291/*
292 * Get the security label of an inode.
293 */
294static struct inode_security_struct *inode_security(struct inode *inode)
295{
296 __inode_security_revalidate(inode, NULL, true);
297 return inode->i_security;
298}
299
300/*
301 * Get the security label of a dentry's backing inode.
302 */
303static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
304{
305 struct inode *inode = d_backing_inode(dentry);
306
307 __inode_security_revalidate(inode, dentry, true);
308 return inode->i_security;
309}
310
311static void inode_free_rcu(struct rcu_head *head)
312{
313 struct inode_security_struct *isec;
314
315 isec = container_of(head, struct inode_security_struct, rcu);
316 kmem_cache_free(sel_inode_cache, isec);
317}
318
319static void inode_free_security(struct inode *inode)
320{
321 struct inode_security_struct *isec = inode->i_security;
322 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
323
324 /*
325 * As not all inode security structures are in a list, we check for
326 * empty list outside of the lock to make sure that we won't waste
327 * time taking a lock doing nothing.
328 *
329 * The list_del_init() function can be safely called more than once.
330 * It should not be possible for this function to be called with
331 * concurrent list_add(), but for better safety against future changes
332 * in the code, we use list_empty_careful() here.
333 */
334 if (!list_empty_careful(&isec->list)) {
335 spin_lock(&sbsec->isec_lock);
336 list_del_init(&isec->list);
337 spin_unlock(&sbsec->isec_lock);
338 }
339
340 /*
341 * The inode may still be referenced in a path walk and
342 * a call to selinux_inode_permission() can be made
343 * after inode_free_security() is called. Ideally, the VFS
344 * wouldn't do this, but fixing that is a much harder
345 * job. For now, simply free the i_security via RCU, and
346 * leave the current inode->i_security pointer intact.
347 * The inode will be freed after the RCU grace period too.
348 */
349 call_rcu(&isec->rcu, inode_free_rcu);
350}
351
352static int file_alloc_security(struct file *file)
353{
354 struct file_security_struct *fsec;
355 u32 sid = current_sid();
356
357 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
358 if (!fsec)
359 return -ENOMEM;
360
361 fsec->sid = sid;
362 fsec->fown_sid = sid;
363 file->f_security = fsec;
364
365 return 0;
366}
367
368static void file_free_security(struct file *file)
369{
370 struct file_security_struct *fsec = file->f_security;
371 file->f_security = NULL;
372 kmem_cache_free(file_security_cache, fsec);
373}
374
375static int superblock_alloc_security(struct super_block *sb)
376{
377 struct superblock_security_struct *sbsec;
378
379 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
380 if (!sbsec)
381 return -ENOMEM;
382
383 mutex_init(&sbsec->lock);
384 INIT_LIST_HEAD(&sbsec->isec_head);
385 spin_lock_init(&sbsec->isec_lock);
386 sbsec->sb = sb;
387 sbsec->sid = SECINITSID_UNLABELED;
388 sbsec->def_sid = SECINITSID_FILE;
389 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
390 sb->s_security = sbsec;
391
392 return 0;
393}
394
395static void superblock_free_security(struct super_block *sb)
396{
397 struct superblock_security_struct *sbsec = sb->s_security;
398 sb->s_security = NULL;
399 kfree(sbsec);
400}
401
402/* The file system's label must be initialized prior to use. */
403
404static const char *labeling_behaviors[7] = {
405 "uses xattr",
406 "uses transition SIDs",
407 "uses task SIDs",
408 "uses genfs_contexts",
409 "not configured for labeling",
410 "uses mountpoint labeling",
411 "uses native labeling",
412};
413
414static inline int inode_doinit(struct inode *inode)
415{
416 return inode_doinit_with_dentry(inode, NULL);
417}
418
419enum {
420 Opt_error = -1,
421 Opt_context = 1,
422 Opt_fscontext = 2,
423 Opt_defcontext = 3,
424 Opt_rootcontext = 4,
425 Opt_labelsupport = 5,
426 Opt_nextmntopt = 6,
427};
428
429#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
430
431static const match_table_t tokens = {
432 {Opt_context, CONTEXT_STR "%s"},
433 {Opt_fscontext, FSCONTEXT_STR "%s"},
434 {Opt_defcontext, DEFCONTEXT_STR "%s"},
435 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
436 {Opt_labelsupport, LABELSUPP_STR},
437 {Opt_error, NULL},
438};
439
440#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
441
442static int may_context_mount_sb_relabel(u32 sid,
443 struct superblock_security_struct *sbsec,
444 const struct cred *cred)
445{
446 const struct task_security_struct *tsec = cred->security;
447 int rc;
448
449 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
450 FILESYSTEM__RELABELFROM, NULL);
451 if (rc)
452 return rc;
453
454 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
455 FILESYSTEM__RELABELTO, NULL);
456 return rc;
457}
458
459static int may_context_mount_inode_relabel(u32 sid,
460 struct superblock_security_struct *sbsec,
461 const struct cred *cred)
462{
463 const struct task_security_struct *tsec = cred->security;
464 int rc;
465 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
466 FILESYSTEM__RELABELFROM, NULL);
467 if (rc)
468 return rc;
469
470 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
471 FILESYSTEM__ASSOCIATE, NULL);
472 return rc;
473}
474
475static int selinux_is_sblabel_mnt(struct super_block *sb)
476{
477 struct superblock_security_struct *sbsec = sb->s_security;
478
479 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
480 sbsec->behavior == SECURITY_FS_USE_TRANS ||
481 sbsec->behavior == SECURITY_FS_USE_TASK ||
482 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
483 /* Special handling. Genfs but also in-core setxattr handler */
484 !strcmp(sb->s_type->name, "sysfs") ||
485 !strcmp(sb->s_type->name, "pstore") ||
486 !strcmp(sb->s_type->name, "debugfs") ||
487 !strcmp(sb->s_type->name, "rootfs");
488}
489
490static int sb_finish_set_opts(struct super_block *sb)
491{
492 struct superblock_security_struct *sbsec = sb->s_security;
493 struct dentry *root = sb->s_root;
494 struct inode *root_inode = d_backing_inode(root);
495 int rc = 0;
496
497 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
498 /* Make sure that the xattr handler exists and that no
499 error other than -ENODATA is returned by getxattr on
500 the root directory. -ENODATA is ok, as this may be
501 the first boot of the SELinux kernel before we have
502 assigned xattr values to the filesystem. */
503 if (!root_inode->i_op->getxattr) {
504 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
505 "xattr support\n", sb->s_id, sb->s_type->name);
506 rc = -EOPNOTSUPP;
507 goto out;
508 }
509 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
510 if (rc < 0 && rc != -ENODATA) {
511 if (rc == -EOPNOTSUPP)
512 printk(KERN_WARNING "SELinux: (dev %s, type "
513 "%s) has no security xattr handler\n",
514 sb->s_id, sb->s_type->name);
515 else
516 printk(KERN_WARNING "SELinux: (dev %s, type "
517 "%s) getxattr errno %d\n", sb->s_id,
518 sb->s_type->name, -rc);
519 goto out;
520 }
521 }
522
523 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
524 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
525 sb->s_id, sb->s_type->name);
526
527 sbsec->flags |= SE_SBINITIALIZED;
528 if (selinux_is_sblabel_mnt(sb))
529 sbsec->flags |= SBLABEL_MNT;
530
531 /* Initialize the root inode. */
532 rc = inode_doinit_with_dentry(root_inode, root);
533
534 /* Initialize any other inodes associated with the superblock, e.g.
535 inodes created prior to initial policy load or inodes created
536 during get_sb by a pseudo filesystem that directly
537 populates itself. */
538 spin_lock(&sbsec->isec_lock);
539next_inode:
540 if (!list_empty(&sbsec->isec_head)) {
541 struct inode_security_struct *isec =
542 list_entry(sbsec->isec_head.next,
543 struct inode_security_struct, list);
544 struct inode *inode = isec->inode;
545 list_del_init(&isec->list);
546 spin_unlock(&sbsec->isec_lock);
547 inode = igrab(inode);
548 if (inode) {
549 if (!IS_PRIVATE(inode))
550 inode_doinit(inode);
551 iput(inode);
552 }
553 spin_lock(&sbsec->isec_lock);
554 goto next_inode;
555 }
556 spin_unlock(&sbsec->isec_lock);
557out:
558 return rc;
559}
560
561/*
562 * This function should allow an FS to ask what it's mount security
563 * options were so it can use those later for submounts, displaying
564 * mount options, or whatever.
565 */
566static int selinux_get_mnt_opts(const struct super_block *sb,
567 struct security_mnt_opts *opts)
568{
569 int rc = 0, i;
570 struct superblock_security_struct *sbsec = sb->s_security;
571 char *context = NULL;
572 u32 len;
573 char tmp;
574
575 security_init_mnt_opts(opts);
576
577 if (!(sbsec->flags & SE_SBINITIALIZED))
578 return -EINVAL;
579
580 if (!ss_initialized)
581 return -EINVAL;
582
583 /* make sure we always check enough bits to cover the mask */
584 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
585
586 tmp = sbsec->flags & SE_MNTMASK;
587 /* count the number of mount options for this sb */
588 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
589 if (tmp & 0x01)
590 opts->num_mnt_opts++;
591 tmp >>= 1;
592 }
593 /* Check if the Label support flag is set */
594 if (sbsec->flags & SBLABEL_MNT)
595 opts->num_mnt_opts++;
596
597 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
598 if (!opts->mnt_opts) {
599 rc = -ENOMEM;
600 goto out_free;
601 }
602
603 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
604 if (!opts->mnt_opts_flags) {
605 rc = -ENOMEM;
606 goto out_free;
607 }
608
609 i = 0;
610 if (sbsec->flags & FSCONTEXT_MNT) {
611 rc = security_sid_to_context(sbsec->sid, &context, &len);
612 if (rc)
613 goto out_free;
614 opts->mnt_opts[i] = context;
615 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
616 }
617 if (sbsec->flags & CONTEXT_MNT) {
618 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
619 if (rc)
620 goto out_free;
621 opts->mnt_opts[i] = context;
622 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
623 }
624 if (sbsec->flags & DEFCONTEXT_MNT) {
625 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
626 if (rc)
627 goto out_free;
628 opts->mnt_opts[i] = context;
629 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
630 }
631 if (sbsec->flags & ROOTCONTEXT_MNT) {
632 struct dentry *root = sbsec->sb->s_root;
633 struct inode_security_struct *isec = backing_inode_security(root);
634
635 rc = security_sid_to_context(isec->sid, &context, &len);
636 if (rc)
637 goto out_free;
638 opts->mnt_opts[i] = context;
639 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
640 }
641 if (sbsec->flags & SBLABEL_MNT) {
642 opts->mnt_opts[i] = NULL;
643 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
644 }
645
646 BUG_ON(i != opts->num_mnt_opts);
647
648 return 0;
649
650out_free:
651 security_free_mnt_opts(opts);
652 return rc;
653}
654
655static int bad_option(struct superblock_security_struct *sbsec, char flag,
656 u32 old_sid, u32 new_sid)
657{
658 char mnt_flags = sbsec->flags & SE_MNTMASK;
659
660 /* check if the old mount command had the same options */
661 if (sbsec->flags & SE_SBINITIALIZED)
662 if (!(sbsec->flags & flag) ||
663 (old_sid != new_sid))
664 return 1;
665
666 /* check if we were passed the same options twice,
667 * aka someone passed context=a,context=b
668 */
669 if (!(sbsec->flags & SE_SBINITIALIZED))
670 if (mnt_flags & flag)
671 return 1;
672 return 0;
673}
674
675/*
676 * Allow filesystems with binary mount data to explicitly set mount point
677 * labeling information.
678 */
679static int selinux_set_mnt_opts(struct super_block *sb,
680 struct security_mnt_opts *opts,
681 unsigned long kern_flags,
682 unsigned long *set_kern_flags)
683{
684 const struct cred *cred = current_cred();
685 int rc = 0, i;
686 struct superblock_security_struct *sbsec = sb->s_security;
687 const char *name = sb->s_type->name;
688 struct dentry *root = sbsec->sb->s_root;
689 struct inode_security_struct *root_isec = backing_inode_security(root);
690 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
691 u32 defcontext_sid = 0;
692 char **mount_options = opts->mnt_opts;
693 int *flags = opts->mnt_opts_flags;
694 int num_opts = opts->num_mnt_opts;
695
696 mutex_lock(&sbsec->lock);
697
698 if (!ss_initialized) {
699 if (!num_opts) {
700 /* Defer initialization until selinux_complete_init,
701 after the initial policy is loaded and the security
702 server is ready to handle calls. */
703 goto out;
704 }
705 rc = -EINVAL;
706 printk(KERN_WARNING "SELinux: Unable to set superblock options "
707 "before the security server is initialized\n");
708 goto out;
709 }
710 if (kern_flags && !set_kern_flags) {
711 /* Specifying internal flags without providing a place to
712 * place the results is not allowed */
713 rc = -EINVAL;
714 goto out;
715 }
716
717 /*
718 * Binary mount data FS will come through this function twice. Once
719 * from an explicit call and once from the generic calls from the vfs.
720 * Since the generic VFS calls will not contain any security mount data
721 * we need to skip the double mount verification.
722 *
723 * This does open a hole in which we will not notice if the first
724 * mount using this sb set explict options and a second mount using
725 * this sb does not set any security options. (The first options
726 * will be used for both mounts)
727 */
728 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
729 && (num_opts == 0))
730 goto out;
731
732 /*
733 * parse the mount options, check if they are valid sids.
734 * also check if someone is trying to mount the same sb more
735 * than once with different security options.
736 */
737 for (i = 0; i < num_opts; i++) {
738 u32 sid;
739
740 if (flags[i] == SBLABEL_MNT)
741 continue;
742 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
743 if (rc) {
744 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
745 "(%s) failed for (dev %s, type %s) errno=%d\n",
746 mount_options[i], sb->s_id, name, rc);
747 goto out;
748 }
749 switch (flags[i]) {
750 case FSCONTEXT_MNT:
751 fscontext_sid = sid;
752
753 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
754 fscontext_sid))
755 goto out_double_mount;
756
757 sbsec->flags |= FSCONTEXT_MNT;
758 break;
759 case CONTEXT_MNT:
760 context_sid = sid;
761
762 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
763 context_sid))
764 goto out_double_mount;
765
766 sbsec->flags |= CONTEXT_MNT;
767 break;
768 case ROOTCONTEXT_MNT:
769 rootcontext_sid = sid;
770
771 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
772 rootcontext_sid))
773 goto out_double_mount;
774
775 sbsec->flags |= ROOTCONTEXT_MNT;
776
777 break;
778 case DEFCONTEXT_MNT:
779 defcontext_sid = sid;
780
781 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
782 defcontext_sid))
783 goto out_double_mount;
784
785 sbsec->flags |= DEFCONTEXT_MNT;
786
787 break;
788 default:
789 rc = -EINVAL;
790 goto out;
791 }
792 }
793
794 if (sbsec->flags & SE_SBINITIALIZED) {
795 /* previously mounted with options, but not on this attempt? */
796 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
797 goto out_double_mount;
798 rc = 0;
799 goto out;
800 }
801
802 if (strcmp(sb->s_type->name, "proc") == 0)
803 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
804
805 if (!strcmp(sb->s_type->name, "debugfs") ||
806 !strcmp(sb->s_type->name, "sysfs") ||
807 !strcmp(sb->s_type->name, "pstore"))
808 sbsec->flags |= SE_SBGENFS;
809
810 if (!sbsec->behavior) {
811 /*
812 * Determine the labeling behavior to use for this
813 * filesystem type.
814 */
815 rc = security_fs_use(sb);
816 if (rc) {
817 printk(KERN_WARNING
818 "%s: security_fs_use(%s) returned %d\n",
819 __func__, sb->s_type->name, rc);
820 goto out;
821 }
822 }
823 /* sets the context of the superblock for the fs being mounted. */
824 if (fscontext_sid) {
825 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
826 if (rc)
827 goto out;
828
829 sbsec->sid = fscontext_sid;
830 }
831
832 /*
833 * Switch to using mount point labeling behavior.
834 * sets the label used on all file below the mountpoint, and will set
835 * the superblock context if not already set.
836 */
837 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
838 sbsec->behavior = SECURITY_FS_USE_NATIVE;
839 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
840 }
841
842 if (context_sid) {
843 if (!fscontext_sid) {
844 rc = may_context_mount_sb_relabel(context_sid, sbsec,
845 cred);
846 if (rc)
847 goto out;
848 sbsec->sid = context_sid;
849 } else {
850 rc = may_context_mount_inode_relabel(context_sid, sbsec,
851 cred);
852 if (rc)
853 goto out;
854 }
855 if (!rootcontext_sid)
856 rootcontext_sid = context_sid;
857
858 sbsec->mntpoint_sid = context_sid;
859 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
860 }
861
862 if (rootcontext_sid) {
863 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
864 cred);
865 if (rc)
866 goto out;
867
868 root_isec->sid = rootcontext_sid;
869 root_isec->initialized = LABEL_INITIALIZED;
870 }
871
872 if (defcontext_sid) {
873 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
874 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
875 rc = -EINVAL;
876 printk(KERN_WARNING "SELinux: defcontext option is "
877 "invalid for this filesystem type\n");
878 goto out;
879 }
880
881 if (defcontext_sid != sbsec->def_sid) {
882 rc = may_context_mount_inode_relabel(defcontext_sid,
883 sbsec, cred);
884 if (rc)
885 goto out;
886 }
887
888 sbsec->def_sid = defcontext_sid;
889 }
890
891 rc = sb_finish_set_opts(sb);
892out:
893 mutex_unlock(&sbsec->lock);
894 return rc;
895out_double_mount:
896 rc = -EINVAL;
897 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
898 "security settings for (dev %s, type %s)\n", sb->s_id, name);
899 goto out;
900}
901
902static int selinux_cmp_sb_context(const struct super_block *oldsb,
903 const struct super_block *newsb)
904{
905 struct superblock_security_struct *old = oldsb->s_security;
906 struct superblock_security_struct *new = newsb->s_security;
907 char oldflags = old->flags & SE_MNTMASK;
908 char newflags = new->flags & SE_MNTMASK;
909
910 if (oldflags != newflags)
911 goto mismatch;
912 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
913 goto mismatch;
914 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
915 goto mismatch;
916 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
917 goto mismatch;
918 if (oldflags & ROOTCONTEXT_MNT) {
919 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
920 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
921 if (oldroot->sid != newroot->sid)
922 goto mismatch;
923 }
924 return 0;
925mismatch:
926 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
927 "different security settings for (dev %s, "
928 "type %s)\n", newsb->s_id, newsb->s_type->name);
929 return -EBUSY;
930}
931
932static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
933 struct super_block *newsb)
934{
935 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
936 struct superblock_security_struct *newsbsec = newsb->s_security;
937
938 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
939 int set_context = (oldsbsec->flags & CONTEXT_MNT);
940 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
941
942 /*
943 * if the parent was able to be mounted it clearly had no special lsm
944 * mount options. thus we can safely deal with this superblock later
945 */
946 if (!ss_initialized)
947 return 0;
948
949 /* how can we clone if the old one wasn't set up?? */
950 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
951
952 /* if fs is reusing a sb, make sure that the contexts match */
953 if (newsbsec->flags & SE_SBINITIALIZED)
954 return selinux_cmp_sb_context(oldsb, newsb);
955
956 mutex_lock(&newsbsec->lock);
957
958 newsbsec->flags = oldsbsec->flags;
959
960 newsbsec->sid = oldsbsec->sid;
961 newsbsec->def_sid = oldsbsec->def_sid;
962 newsbsec->behavior = oldsbsec->behavior;
963
964 if (set_context) {
965 u32 sid = oldsbsec->mntpoint_sid;
966
967 if (!set_fscontext)
968 newsbsec->sid = sid;
969 if (!set_rootcontext) {
970 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
971 newisec->sid = sid;
972 }
973 newsbsec->mntpoint_sid = sid;
974 }
975 if (set_rootcontext) {
976 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
977 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
978
979 newisec->sid = oldisec->sid;
980 }
981
982 sb_finish_set_opts(newsb);
983 mutex_unlock(&newsbsec->lock);
984 return 0;
985}
986
987static int selinux_parse_opts_str(char *options,
988 struct security_mnt_opts *opts)
989{
990 char *p;
991 char *context = NULL, *defcontext = NULL;
992 char *fscontext = NULL, *rootcontext = NULL;
993 int rc, num_mnt_opts = 0;
994
995 opts->num_mnt_opts = 0;
996
997 /* Standard string-based options. */
998 while ((p = strsep(&options, "|")) != NULL) {
999 int token;
1000 substring_t args[MAX_OPT_ARGS];
1001
1002 if (!*p)
1003 continue;
1004
1005 token = match_token(p, tokens, args);
1006
1007 switch (token) {
1008 case Opt_context:
1009 if (context || defcontext) {
1010 rc = -EINVAL;
1011 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1012 goto out_err;
1013 }
1014 context = match_strdup(&args[0]);
1015 if (!context) {
1016 rc = -ENOMEM;
1017 goto out_err;
1018 }
1019 break;
1020
1021 case Opt_fscontext:
1022 if (fscontext) {
1023 rc = -EINVAL;
1024 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1025 goto out_err;
1026 }
1027 fscontext = match_strdup(&args[0]);
1028 if (!fscontext) {
1029 rc = -ENOMEM;
1030 goto out_err;
1031 }
1032 break;
1033
1034 case Opt_rootcontext:
1035 if (rootcontext) {
1036 rc = -EINVAL;
1037 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1038 goto out_err;
1039 }
1040 rootcontext = match_strdup(&args[0]);
1041 if (!rootcontext) {
1042 rc = -ENOMEM;
1043 goto out_err;
1044 }
1045 break;
1046
1047 case Opt_defcontext:
1048 if (context || defcontext) {
1049 rc = -EINVAL;
1050 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1051 goto out_err;
1052 }
1053 defcontext = match_strdup(&args[0]);
1054 if (!defcontext) {
1055 rc = -ENOMEM;
1056 goto out_err;
1057 }
1058 break;
1059 case Opt_labelsupport:
1060 break;
1061 default:
1062 rc = -EINVAL;
1063 printk(KERN_WARNING "SELinux: unknown mount option\n");
1064 goto out_err;
1065
1066 }
1067 }
1068
1069 rc = -ENOMEM;
1070 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1071 if (!opts->mnt_opts)
1072 goto out_err;
1073
1074 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1075 if (!opts->mnt_opts_flags) {
1076 kfree(opts->mnt_opts);
1077 goto out_err;
1078 }
1079
1080 if (fscontext) {
1081 opts->mnt_opts[num_mnt_opts] = fscontext;
1082 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1083 }
1084 if (context) {
1085 opts->mnt_opts[num_mnt_opts] = context;
1086 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1087 }
1088 if (rootcontext) {
1089 opts->mnt_opts[num_mnt_opts] = rootcontext;
1090 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1091 }
1092 if (defcontext) {
1093 opts->mnt_opts[num_mnt_opts] = defcontext;
1094 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1095 }
1096
1097 opts->num_mnt_opts = num_mnt_opts;
1098 return 0;
1099
1100out_err:
1101 kfree(context);
1102 kfree(defcontext);
1103 kfree(fscontext);
1104 kfree(rootcontext);
1105 return rc;
1106}
1107/*
1108 * string mount options parsing and call set the sbsec
1109 */
1110static int superblock_doinit(struct super_block *sb, void *data)
1111{
1112 int rc = 0;
1113 char *options = data;
1114 struct security_mnt_opts opts;
1115
1116 security_init_mnt_opts(&opts);
1117
1118 if (!data)
1119 goto out;
1120
1121 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1122
1123 rc = selinux_parse_opts_str(options, &opts);
1124 if (rc)
1125 goto out_err;
1126
1127out:
1128 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1129
1130out_err:
1131 security_free_mnt_opts(&opts);
1132 return rc;
1133}
1134
1135static void selinux_write_opts(struct seq_file *m,
1136 struct security_mnt_opts *opts)
1137{
1138 int i;
1139 char *prefix;
1140
1141 for (i = 0; i < opts->num_mnt_opts; i++) {
1142 char *has_comma;
1143
1144 if (opts->mnt_opts[i])
1145 has_comma = strchr(opts->mnt_opts[i], ',');
1146 else
1147 has_comma = NULL;
1148
1149 switch (opts->mnt_opts_flags[i]) {
1150 case CONTEXT_MNT:
1151 prefix = CONTEXT_STR;
1152 break;
1153 case FSCONTEXT_MNT:
1154 prefix = FSCONTEXT_STR;
1155 break;
1156 case ROOTCONTEXT_MNT:
1157 prefix = ROOTCONTEXT_STR;
1158 break;
1159 case DEFCONTEXT_MNT:
1160 prefix = DEFCONTEXT_STR;
1161 break;
1162 case SBLABEL_MNT:
1163 seq_putc(m, ',');
1164 seq_puts(m, LABELSUPP_STR);
1165 continue;
1166 default:
1167 BUG();
1168 return;
1169 };
1170 /* we need a comma before each option */
1171 seq_putc(m, ',');
1172 seq_puts(m, prefix);
1173 if (has_comma)
1174 seq_putc(m, '\"');
1175 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1176 if (has_comma)
1177 seq_putc(m, '\"');
1178 }
1179}
1180
1181static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1182{
1183 struct security_mnt_opts opts;
1184 int rc;
1185
1186 rc = selinux_get_mnt_opts(sb, &opts);
1187 if (rc) {
1188 /* before policy load we may get EINVAL, don't show anything */
1189 if (rc == -EINVAL)
1190 rc = 0;
1191 return rc;
1192 }
1193
1194 selinux_write_opts(m, &opts);
1195
1196 security_free_mnt_opts(&opts);
1197
1198 return rc;
1199}
1200
1201static inline u16 inode_mode_to_security_class(umode_t mode)
1202{
1203 switch (mode & S_IFMT) {
1204 case S_IFSOCK:
1205 return SECCLASS_SOCK_FILE;
1206 case S_IFLNK:
1207 return SECCLASS_LNK_FILE;
1208 case S_IFREG:
1209 return SECCLASS_FILE;
1210 case S_IFBLK:
1211 return SECCLASS_BLK_FILE;
1212 case S_IFDIR:
1213 return SECCLASS_DIR;
1214 case S_IFCHR:
1215 return SECCLASS_CHR_FILE;
1216 case S_IFIFO:
1217 return SECCLASS_FIFO_FILE;
1218
1219 }
1220
1221 return SECCLASS_FILE;
1222}
1223
1224static inline int default_protocol_stream(int protocol)
1225{
1226 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1227}
1228
1229static inline int default_protocol_dgram(int protocol)
1230{
1231 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1232}
1233
1234static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1235{
1236 switch (family) {
1237 case PF_UNIX:
1238 switch (type) {
1239 case SOCK_STREAM:
1240 case SOCK_SEQPACKET:
1241 return SECCLASS_UNIX_STREAM_SOCKET;
1242 case SOCK_DGRAM:
1243 return SECCLASS_UNIX_DGRAM_SOCKET;
1244 }
1245 break;
1246 case PF_INET:
1247 case PF_INET6:
1248 switch (type) {
1249 case SOCK_STREAM:
1250 if (default_protocol_stream(protocol))
1251 return SECCLASS_TCP_SOCKET;
1252 else
1253 return SECCLASS_RAWIP_SOCKET;
1254 case SOCK_DGRAM:
1255 if (default_protocol_dgram(protocol))
1256 return SECCLASS_UDP_SOCKET;
1257 else
1258 return SECCLASS_RAWIP_SOCKET;
1259 case SOCK_DCCP:
1260 return SECCLASS_DCCP_SOCKET;
1261 default:
1262 return SECCLASS_RAWIP_SOCKET;
1263 }
1264 break;
1265 case PF_NETLINK:
1266 switch (protocol) {
1267 case NETLINK_ROUTE:
1268 return SECCLASS_NETLINK_ROUTE_SOCKET;
1269 case NETLINK_SOCK_DIAG:
1270 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1271 case NETLINK_NFLOG:
1272 return SECCLASS_NETLINK_NFLOG_SOCKET;
1273 case NETLINK_XFRM:
1274 return SECCLASS_NETLINK_XFRM_SOCKET;
1275 case NETLINK_SELINUX:
1276 return SECCLASS_NETLINK_SELINUX_SOCKET;
1277 case NETLINK_ISCSI:
1278 return SECCLASS_NETLINK_ISCSI_SOCKET;
1279 case NETLINK_AUDIT:
1280 return SECCLASS_NETLINK_AUDIT_SOCKET;
1281 case NETLINK_FIB_LOOKUP:
1282 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1283 case NETLINK_CONNECTOR:
1284 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1285 case NETLINK_NETFILTER:
1286 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1287 case NETLINK_DNRTMSG:
1288 return SECCLASS_NETLINK_DNRT_SOCKET;
1289 case NETLINK_KOBJECT_UEVENT:
1290 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1291 case NETLINK_GENERIC:
1292 return SECCLASS_NETLINK_GENERIC_SOCKET;
1293 case NETLINK_SCSITRANSPORT:
1294 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1295 case NETLINK_RDMA:
1296 return SECCLASS_NETLINK_RDMA_SOCKET;
1297 case NETLINK_CRYPTO:
1298 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1299 default:
1300 return SECCLASS_NETLINK_SOCKET;
1301 }
1302 case PF_PACKET:
1303 return SECCLASS_PACKET_SOCKET;
1304 case PF_KEY:
1305 return SECCLASS_KEY_SOCKET;
1306 case PF_APPLETALK:
1307 return SECCLASS_APPLETALK_SOCKET;
1308 }
1309
1310 return SECCLASS_SOCKET;
1311}
1312
1313static int selinux_genfs_get_sid(struct dentry *dentry,
1314 u16 tclass,
1315 u16 flags,
1316 u32 *sid)
1317{
1318 int rc;
1319 struct super_block *sb = dentry->d_inode->i_sb;
1320 char *buffer, *path;
1321
1322 buffer = (char *)__get_free_page(GFP_KERNEL);
1323 if (!buffer)
1324 return -ENOMEM;
1325
1326 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1327 if (IS_ERR(path))
1328 rc = PTR_ERR(path);
1329 else {
1330 if (flags & SE_SBPROC) {
1331 /* each process gets a /proc/PID/ entry. Strip off the
1332 * PID part to get a valid selinux labeling.
1333 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1334 while (path[1] >= '0' && path[1] <= '9') {
1335 path[1] = '/';
1336 path++;
1337 }
1338 }
1339 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1340 }
1341 free_page((unsigned long)buffer);
1342 return rc;
1343}
1344
1345/* The inode's security attributes must be initialized before first use. */
1346static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1347{
1348 struct superblock_security_struct *sbsec = NULL;
1349 struct inode_security_struct *isec = inode->i_security;
1350 u32 sid;
1351 struct dentry *dentry;
1352#define INITCONTEXTLEN 255
1353 char *context = NULL;
1354 unsigned len = 0;
1355 int rc = 0;
1356
1357 if (isec->initialized == LABEL_INITIALIZED)
1358 goto out;
1359
1360 mutex_lock(&isec->lock);
1361 if (isec->initialized == LABEL_INITIALIZED)
1362 goto out_unlock;
1363
1364 sbsec = inode->i_sb->s_security;
1365 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1366 /* Defer initialization until selinux_complete_init,
1367 after the initial policy is loaded and the security
1368 server is ready to handle calls. */
1369 spin_lock(&sbsec->isec_lock);
1370 if (list_empty(&isec->list))
1371 list_add(&isec->list, &sbsec->isec_head);
1372 spin_unlock(&sbsec->isec_lock);
1373 goto out_unlock;
1374 }
1375
1376 switch (sbsec->behavior) {
1377 case SECURITY_FS_USE_NATIVE:
1378 break;
1379 case SECURITY_FS_USE_XATTR:
1380 if (!inode->i_op->getxattr) {
1381 isec->sid = sbsec->def_sid;
1382 break;
1383 }
1384
1385 /* Need a dentry, since the xattr API requires one.
1386 Life would be simpler if we could just pass the inode. */
1387 if (opt_dentry) {
1388 /* Called from d_instantiate or d_splice_alias. */
1389 dentry = dget(opt_dentry);
1390 } else {
1391 /* Called from selinux_complete_init, try to find a dentry. */
1392 dentry = d_find_alias(inode);
1393 }
1394 if (!dentry) {
1395 /*
1396 * this is can be hit on boot when a file is accessed
1397 * before the policy is loaded. When we load policy we
1398 * may find inodes that have no dentry on the
1399 * sbsec->isec_head list. No reason to complain as these
1400 * will get fixed up the next time we go through
1401 * inode_doinit with a dentry, before these inodes could
1402 * be used again by userspace.
1403 */
1404 goto out_unlock;
1405 }
1406
1407 len = INITCONTEXTLEN;
1408 context = kmalloc(len+1, GFP_NOFS);
1409 if (!context) {
1410 rc = -ENOMEM;
1411 dput(dentry);
1412 goto out_unlock;
1413 }
1414 context[len] = '\0';
1415 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1416 context, len);
1417 if (rc == -ERANGE) {
1418 kfree(context);
1419
1420 /* Need a larger buffer. Query for the right size. */
1421 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1422 NULL, 0);
1423 if (rc < 0) {
1424 dput(dentry);
1425 goto out_unlock;
1426 }
1427 len = rc;
1428 context = kmalloc(len+1, GFP_NOFS);
1429 if (!context) {
1430 rc = -ENOMEM;
1431 dput(dentry);
1432 goto out_unlock;
1433 }
1434 context[len] = '\0';
1435 rc = inode->i_op->getxattr(dentry,
1436 XATTR_NAME_SELINUX,
1437 context, len);
1438 }
1439 dput(dentry);
1440 if (rc < 0) {
1441 if (rc != -ENODATA) {
1442 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1443 "%d for dev=%s ino=%ld\n", __func__,
1444 -rc, inode->i_sb->s_id, inode->i_ino);
1445 kfree(context);
1446 goto out_unlock;
1447 }
1448 /* Map ENODATA to the default file SID */
1449 sid = sbsec->def_sid;
1450 rc = 0;
1451 } else {
1452 rc = security_context_to_sid_default(context, rc, &sid,
1453 sbsec->def_sid,
1454 GFP_NOFS);
1455 if (rc) {
1456 char *dev = inode->i_sb->s_id;
1457 unsigned long ino = inode->i_ino;
1458
1459 if (rc == -EINVAL) {
1460 if (printk_ratelimit())
1461 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1462 "context=%s. This indicates you may need to relabel the inode or the "
1463 "filesystem in question.\n", ino, dev, context);
1464 } else {
1465 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1466 "returned %d for dev=%s ino=%ld\n",
1467 __func__, context, -rc, dev, ino);
1468 }
1469 kfree(context);
1470 /* Leave with the unlabeled SID */
1471 rc = 0;
1472 break;
1473 }
1474 }
1475 kfree(context);
1476 isec->sid = sid;
1477 break;
1478 case SECURITY_FS_USE_TASK:
1479 isec->sid = isec->task_sid;
1480 break;
1481 case SECURITY_FS_USE_TRANS:
1482 /* Default to the fs SID. */
1483 isec->sid = sbsec->sid;
1484
1485 /* Try to obtain a transition SID. */
1486 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1487 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1488 isec->sclass, NULL, &sid);
1489 if (rc)
1490 goto out_unlock;
1491 isec->sid = sid;
1492 break;
1493 case SECURITY_FS_USE_MNTPOINT:
1494 isec->sid = sbsec->mntpoint_sid;
1495 break;
1496 default:
1497 /* Default to the fs superblock SID. */
1498 isec->sid = sbsec->sid;
1499
1500 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1501 /* We must have a dentry to determine the label on
1502 * procfs inodes */
1503 if (opt_dentry)
1504 /* Called from d_instantiate or
1505 * d_splice_alias. */
1506 dentry = dget(opt_dentry);
1507 else
1508 /* Called from selinux_complete_init, try to
1509 * find a dentry. */
1510 dentry = d_find_alias(inode);
1511 /*
1512 * This can be hit on boot when a file is accessed
1513 * before the policy is loaded. When we load policy we
1514 * may find inodes that have no dentry on the
1515 * sbsec->isec_head list. No reason to complain as
1516 * these will get fixed up the next time we go through
1517 * inode_doinit() with a dentry, before these inodes
1518 * could be used again by userspace.
1519 */
1520 if (!dentry)
1521 goto out_unlock;
1522 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1523 rc = selinux_genfs_get_sid(dentry, isec->sclass,
1524 sbsec->flags, &sid);
1525 dput(dentry);
1526 if (rc)
1527 goto out_unlock;
1528 isec->sid = sid;
1529 }
1530 break;
1531 }
1532
1533 isec->initialized = LABEL_INITIALIZED;
1534
1535out_unlock:
1536 mutex_unlock(&isec->lock);
1537out:
1538 if (isec->sclass == SECCLASS_FILE)
1539 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1540 return rc;
1541}
1542
1543/* Convert a Linux signal to an access vector. */
1544static inline u32 signal_to_av(int sig)
1545{
1546 u32 perm = 0;
1547
1548 switch (sig) {
1549 case SIGCHLD:
1550 /* Commonly granted from child to parent. */
1551 perm = PROCESS__SIGCHLD;
1552 break;
1553 case SIGKILL:
1554 /* Cannot be caught or ignored */
1555 perm = PROCESS__SIGKILL;
1556 break;
1557 case SIGSTOP:
1558 /* Cannot be caught or ignored */
1559 perm = PROCESS__SIGSTOP;
1560 break;
1561 default:
1562 /* All other signals. */
1563 perm = PROCESS__SIGNAL;
1564 break;
1565 }
1566
1567 return perm;
1568}
1569
1570/*
1571 * Check permission between a pair of credentials
1572 * fork check, ptrace check, etc.
1573 */
1574static int cred_has_perm(const struct cred *actor,
1575 const struct cred *target,
1576 u32 perms)
1577{
1578 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1579
1580 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1581}
1582
1583/*
1584 * Check permission between a pair of tasks, e.g. signal checks,
1585 * fork check, ptrace check, etc.
1586 * tsk1 is the actor and tsk2 is the target
1587 * - this uses the default subjective creds of tsk1
1588 */
1589static int task_has_perm(const struct task_struct *tsk1,
1590 const struct task_struct *tsk2,
1591 u32 perms)
1592{
1593 const struct task_security_struct *__tsec1, *__tsec2;
1594 u32 sid1, sid2;
1595
1596 rcu_read_lock();
1597 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1598 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1599 rcu_read_unlock();
1600 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1601}
1602
1603/*
1604 * Check permission between current and another task, e.g. signal checks,
1605 * fork check, ptrace check, etc.
1606 * current is the actor and tsk2 is the target
1607 * - this uses current's subjective creds
1608 */
1609static int current_has_perm(const struct task_struct *tsk,
1610 u32 perms)
1611{
1612 u32 sid, tsid;
1613
1614 sid = current_sid();
1615 tsid = task_sid(tsk);
1616 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625 int cap, int audit)
1626{
1627 struct common_audit_data ad;
1628 struct av_decision avd;
1629 u16 sclass;
1630 u32 sid = cred_sid(cred);
1631 u32 av = CAP_TO_MASK(cap);
1632 int rc;
1633
1634 ad.type = LSM_AUDIT_DATA_CAP;
1635 ad.u.cap = cap;
1636
1637 switch (CAP_TO_INDEX(cap)) {
1638 case 0:
1639 sclass = SECCLASS_CAPABILITY;
1640 break;
1641 case 1:
1642 sclass = SECCLASS_CAPABILITY2;
1643 break;
1644 default:
1645 printk(KERN_ERR
1646 "SELinux: out of range capability %d\n", cap);
1647 BUG();
1648 return -EINVAL;
1649 }
1650
1651 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1652 if (audit == SECURITY_CAP_AUDIT) {
1653 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1654 if (rc2)
1655 return rc2;
1656 }
1657 return rc;
1658}
1659
1660/* Check whether a task is allowed to use a system operation. */
1661static int task_has_system(struct task_struct *tsk,
1662 u32 perms)
1663{
1664 u32 sid = task_sid(tsk);
1665
1666 return avc_has_perm(sid, SECINITSID_KERNEL,
1667 SECCLASS_SYSTEM, perms, NULL);
1668}
1669
1670/* Check whether a task has a particular permission to an inode.
1671 The 'adp' parameter is optional and allows other audit
1672 data to be passed (e.g. the dentry). */
1673static int inode_has_perm(const struct cred *cred,
1674 struct inode *inode,
1675 u32 perms,
1676 struct common_audit_data *adp)
1677{
1678 struct inode_security_struct *isec;
1679 u32 sid;
1680
1681 validate_creds(cred);
1682
1683 if (unlikely(IS_PRIVATE(inode)))
1684 return 0;
1685
1686 sid = cred_sid(cred);
1687 isec = inode->i_security;
1688
1689 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1690}
1691
1692/* Same as inode_has_perm, but pass explicit audit data containing
1693 the dentry to help the auditing code to more easily generate the
1694 pathname if needed. */
1695static inline int dentry_has_perm(const struct cred *cred,
1696 struct dentry *dentry,
1697 u32 av)
1698{
1699 struct inode *inode = d_backing_inode(dentry);
1700 struct common_audit_data ad;
1701
1702 ad.type = LSM_AUDIT_DATA_DENTRY;
1703 ad.u.dentry = dentry;
1704 __inode_security_revalidate(inode, dentry, true);
1705 return inode_has_perm(cred, inode, av, &ad);
1706}
1707
1708/* Same as inode_has_perm, but pass explicit audit data containing
1709 the path to help the auditing code to more easily generate the
1710 pathname if needed. */
1711static inline int path_has_perm(const struct cred *cred,
1712 const struct path *path,
1713 u32 av)
1714{
1715 struct inode *inode = d_backing_inode(path->dentry);
1716 struct common_audit_data ad;
1717
1718 ad.type = LSM_AUDIT_DATA_PATH;
1719 ad.u.path = *path;
1720 __inode_security_revalidate(inode, path->dentry, true);
1721 return inode_has_perm(cred, inode, av, &ad);
1722}
1723
1724/* Same as path_has_perm, but uses the inode from the file struct. */
1725static inline int file_path_has_perm(const struct cred *cred,
1726 struct file *file,
1727 u32 av)
1728{
1729 struct common_audit_data ad;
1730
1731 ad.type = LSM_AUDIT_DATA_PATH;
1732 ad.u.path = file->f_path;
1733 return inode_has_perm(cred, file_inode(file), av, &ad);
1734}
1735
1736/* Check whether a task can use an open file descriptor to
1737 access an inode in a given way. Check access to the
1738 descriptor itself, and then use dentry_has_perm to
1739 check a particular permission to the file.
1740 Access to the descriptor is implicitly granted if it
1741 has the same SID as the process. If av is zero, then
1742 access to the file is not checked, e.g. for cases
1743 where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745 struct file *file,
1746 u32 av)
1747{
1748 struct file_security_struct *fsec = file->f_security;
1749 struct inode *inode = file_inode(file);
1750 struct common_audit_data ad;
1751 u32 sid = cred_sid(cred);
1752 int rc;
1753
1754 ad.type = LSM_AUDIT_DATA_PATH;
1755 ad.u.path = file->f_path;
1756
1757 if (sid != fsec->sid) {
1758 rc = avc_has_perm(sid, fsec->sid,
1759 SECCLASS_FD,
1760 FD__USE,
1761 &ad);
1762 if (rc)
1763 goto out;
1764 }
1765
1766 /* av is zero if only checking access to the descriptor. */
1767 rc = 0;
1768 if (av)
1769 rc = inode_has_perm(cred, inode, av, &ad);
1770
1771out:
1772 return rc;
1773}
1774
1775/*
1776 * Determine the label for an inode that might be unioned.
1777 */
1778static int selinux_determine_inode_label(struct inode *dir,
1779 const struct qstr *name,
1780 u16 tclass,
1781 u32 *_new_isid)
1782{
1783 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1784 const struct inode_security_struct *dsec = inode_security(dir);
1785 const struct task_security_struct *tsec = current_security();
1786
1787 if ((sbsec->flags & SE_SBINITIALIZED) &&
1788 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1789 *_new_isid = sbsec->mntpoint_sid;
1790 } else if ((sbsec->flags & SBLABEL_MNT) &&
1791 tsec->create_sid) {
1792 *_new_isid = tsec->create_sid;
1793 } else {
1794 return security_transition_sid(tsec->sid, dsec->sid, tclass,
1795 name, _new_isid);
1796 }
1797
1798 return 0;
1799}
1800
1801/* Check whether a task can create a file. */
1802static int may_create(struct inode *dir,
1803 struct dentry *dentry,
1804 u16 tclass)
1805{
1806 const struct task_security_struct *tsec = current_security();
1807 struct inode_security_struct *dsec;
1808 struct superblock_security_struct *sbsec;
1809 u32 sid, newsid;
1810 struct common_audit_data ad;
1811 int rc;
1812
1813 dsec = inode_security(dir);
1814 sbsec = dir->i_sb->s_security;
1815
1816 sid = tsec->sid;
1817
1818 ad.type = LSM_AUDIT_DATA_DENTRY;
1819 ad.u.dentry = dentry;
1820
1821 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1822 DIR__ADD_NAME | DIR__SEARCH,
1823 &ad);
1824 if (rc)
1825 return rc;
1826
1827 rc = selinux_determine_inode_label(dir, &dentry->d_name, tclass,
1828 &newsid);
1829 if (rc)
1830 return rc;
1831
1832 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1833 if (rc)
1834 return rc;
1835
1836 return avc_has_perm(newsid, sbsec->sid,
1837 SECCLASS_FILESYSTEM,
1838 FILESYSTEM__ASSOCIATE, &ad);
1839}
1840
1841/* Check whether a task can create a key. */
1842static int may_create_key(u32 ksid,
1843 struct task_struct *ctx)
1844{
1845 u32 sid = task_sid(ctx);
1846
1847 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1848}
1849
1850#define MAY_LINK 0
1851#define MAY_UNLINK 1
1852#define MAY_RMDIR 2
1853
1854/* Check whether a task can link, unlink, or rmdir a file/directory. */
1855static int may_link(struct inode *dir,
1856 struct dentry *dentry,
1857 int kind)
1858
1859{
1860 struct inode_security_struct *dsec, *isec;
1861 struct common_audit_data ad;
1862 u32 sid = current_sid();
1863 u32 av;
1864 int rc;
1865
1866 dsec = inode_security(dir);
1867 isec = backing_inode_security(dentry);
1868
1869 ad.type = LSM_AUDIT_DATA_DENTRY;
1870 ad.u.dentry = dentry;
1871
1872 av = DIR__SEARCH;
1873 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1874 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1875 if (rc)
1876 return rc;
1877
1878 switch (kind) {
1879 case MAY_LINK:
1880 av = FILE__LINK;
1881 break;
1882 case MAY_UNLINK:
1883 av = FILE__UNLINK;
1884 break;
1885 case MAY_RMDIR:
1886 av = DIR__RMDIR;
1887 break;
1888 default:
1889 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1890 __func__, kind);
1891 return 0;
1892 }
1893
1894 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1895 return rc;
1896}
1897
1898static inline int may_rename(struct inode *old_dir,
1899 struct dentry *old_dentry,
1900 struct inode *new_dir,
1901 struct dentry *new_dentry)
1902{
1903 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1904 struct common_audit_data ad;
1905 u32 sid = current_sid();
1906 u32 av;
1907 int old_is_dir, new_is_dir;
1908 int rc;
1909
1910 old_dsec = inode_security(old_dir);
1911 old_isec = backing_inode_security(old_dentry);
1912 old_is_dir = d_is_dir(old_dentry);
1913 new_dsec = inode_security(new_dir);
1914
1915 ad.type = LSM_AUDIT_DATA_DENTRY;
1916
1917 ad.u.dentry = old_dentry;
1918 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1919 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1920 if (rc)
1921 return rc;
1922 rc = avc_has_perm(sid, old_isec->sid,
1923 old_isec->sclass, FILE__RENAME, &ad);
1924 if (rc)
1925 return rc;
1926 if (old_is_dir && new_dir != old_dir) {
1927 rc = avc_has_perm(sid, old_isec->sid,
1928 old_isec->sclass, DIR__REPARENT, &ad);
1929 if (rc)
1930 return rc;
1931 }
1932
1933 ad.u.dentry = new_dentry;
1934 av = DIR__ADD_NAME | DIR__SEARCH;
1935 if (d_is_positive(new_dentry))
1936 av |= DIR__REMOVE_NAME;
1937 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1938 if (rc)
1939 return rc;
1940 if (d_is_positive(new_dentry)) {
1941 new_isec = backing_inode_security(new_dentry);
1942 new_is_dir = d_is_dir(new_dentry);
1943 rc = avc_has_perm(sid, new_isec->sid,
1944 new_isec->sclass,
1945 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1946 if (rc)
1947 return rc;
1948 }
1949
1950 return 0;
1951}
1952
1953/* Check whether a task can perform a filesystem operation. */
1954static int superblock_has_perm(const struct cred *cred,
1955 struct super_block *sb,
1956 u32 perms,
1957 struct common_audit_data *ad)
1958{
1959 struct superblock_security_struct *sbsec;
1960 u32 sid = cred_sid(cred);
1961
1962 sbsec = sb->s_security;
1963 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1964}
1965
1966/* Convert a Linux mode and permission mask to an access vector. */
1967static inline u32 file_mask_to_av(int mode, int mask)
1968{
1969 u32 av = 0;
1970
1971 if (!S_ISDIR(mode)) {
1972 if (mask & MAY_EXEC)
1973 av |= FILE__EXECUTE;
1974 if (mask & MAY_READ)
1975 av |= FILE__READ;
1976
1977 if (mask & MAY_APPEND)
1978 av |= FILE__APPEND;
1979 else if (mask & MAY_WRITE)
1980 av |= FILE__WRITE;
1981
1982 } else {
1983 if (mask & MAY_EXEC)
1984 av |= DIR__SEARCH;
1985 if (mask & MAY_WRITE)
1986 av |= DIR__WRITE;
1987 if (mask & MAY_READ)
1988 av |= DIR__READ;
1989 }
1990
1991 return av;
1992}
1993
1994/* Convert a Linux file to an access vector. */
1995static inline u32 file_to_av(struct file *file)
1996{
1997 u32 av = 0;
1998
1999 if (file->f_mode & FMODE_READ)
2000 av |= FILE__READ;
2001 if (file->f_mode & FMODE_WRITE) {
2002 if (file->f_flags & O_APPEND)
2003 av |= FILE__APPEND;
2004 else
2005 av |= FILE__WRITE;
2006 }
2007 if (!av) {
2008 /*
2009 * Special file opened with flags 3 for ioctl-only use.
2010 */
2011 av = FILE__IOCTL;
2012 }
2013
2014 return av;
2015}
2016
2017/*
2018 * Convert a file to an access vector and include the correct open
2019 * open permission.
2020 */
2021static inline u32 open_file_to_av(struct file *file)
2022{
2023 u32 av = file_to_av(file);
2024
2025 if (selinux_policycap_openperm)
2026 av |= FILE__OPEN;
2027
2028 return av;
2029}
2030
2031/* Hook functions begin here. */
2032
2033static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2034{
2035 u32 mysid = current_sid();
2036 u32 mgrsid = task_sid(mgr);
2037
2038 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2039 BINDER__SET_CONTEXT_MGR, NULL);
2040}
2041
2042static int selinux_binder_transaction(struct task_struct *from,
2043 struct task_struct *to)
2044{
2045 u32 mysid = current_sid();
2046 u32 fromsid = task_sid(from);
2047 u32 tosid = task_sid(to);
2048 int rc;
2049
2050 if (mysid != fromsid) {
2051 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2052 BINDER__IMPERSONATE, NULL);
2053 if (rc)
2054 return rc;
2055 }
2056
2057 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2058 NULL);
2059}
2060
2061static int selinux_binder_transfer_binder(struct task_struct *from,
2062 struct task_struct *to)
2063{
2064 u32 fromsid = task_sid(from);
2065 u32 tosid = task_sid(to);
2066
2067 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2068 NULL);
2069}
2070
2071static int selinux_binder_transfer_file(struct task_struct *from,
2072 struct task_struct *to,
2073 struct file *file)
2074{
2075 u32 sid = task_sid(to);
2076 struct file_security_struct *fsec = file->f_security;
2077 struct dentry *dentry = file->f_path.dentry;
2078 struct inode_security_struct *isec = backing_inode_security(dentry);
2079 struct common_audit_data ad;
2080 int rc;
2081
2082 ad.type = LSM_AUDIT_DATA_PATH;
2083 ad.u.path = file->f_path;
2084
2085 if (sid != fsec->sid) {
2086 rc = avc_has_perm(sid, fsec->sid,
2087 SECCLASS_FD,
2088 FD__USE,
2089 &ad);
2090 if (rc)
2091 return rc;
2092 }
2093
2094 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2095 return 0;
2096
2097 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2098 &ad);
2099}
2100
2101static int selinux_ptrace_access_check(struct task_struct *child,
2102 unsigned int mode)
2103{
2104 if (mode & PTRACE_MODE_READ) {
2105 u32 sid = current_sid();
2106 u32 csid = task_sid(child);
2107 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2108 }
2109
2110 return current_has_perm(child, PROCESS__PTRACE);
2111}
2112
2113static int selinux_ptrace_traceme(struct task_struct *parent)
2114{
2115 return task_has_perm(parent, current, PROCESS__PTRACE);
2116}
2117
2118static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2119 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2120{
2121 return current_has_perm(target, PROCESS__GETCAP);
2122}
2123
2124static int selinux_capset(struct cred *new, const struct cred *old,
2125 const kernel_cap_t *effective,
2126 const kernel_cap_t *inheritable,
2127 const kernel_cap_t *permitted)
2128{
2129 return cred_has_perm(old, new, PROCESS__SETCAP);
2130}
2131
2132/*
2133 * (This comment used to live with the selinux_task_setuid hook,
2134 * which was removed).
2135 *
2136 * Since setuid only affects the current process, and since the SELinux
2137 * controls are not based on the Linux identity attributes, SELinux does not
2138 * need to control this operation. However, SELinux does control the use of
2139 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2140 */
2141
2142static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2143 int cap, int audit)
2144{
2145 return cred_has_capability(cred, cap, audit);
2146}
2147
2148static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2149{
2150 const struct cred *cred = current_cred();
2151 int rc = 0;
2152
2153 if (!sb)
2154 return 0;
2155
2156 switch (cmds) {
2157 case Q_SYNC:
2158 case Q_QUOTAON:
2159 case Q_QUOTAOFF:
2160 case Q_SETINFO:
2161 case Q_SETQUOTA:
2162 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2163 break;
2164 case Q_GETFMT:
2165 case Q_GETINFO:
2166 case Q_GETQUOTA:
2167 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2168 break;
2169 default:
2170 rc = 0; /* let the kernel handle invalid cmds */
2171 break;
2172 }
2173 return rc;
2174}
2175
2176static int selinux_quota_on(struct dentry *dentry)
2177{
2178 const struct cred *cred = current_cred();
2179
2180 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2181}
2182
2183static int selinux_syslog(int type)
2184{
2185 int rc;
2186
2187 switch (type) {
2188 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2189 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2190 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2191 break;
2192 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2193 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2194 /* Set level of messages printed to console */
2195 case SYSLOG_ACTION_CONSOLE_LEVEL:
2196 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2197 break;
2198 case SYSLOG_ACTION_CLOSE: /* Close log */
2199 case SYSLOG_ACTION_OPEN: /* Open log */
2200 case SYSLOG_ACTION_READ: /* Read from log */
2201 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2202 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2203 default:
2204 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2205 break;
2206 }
2207 return rc;
2208}
2209
2210/*
2211 * Check that a process has enough memory to allocate a new virtual
2212 * mapping. 0 means there is enough memory for the allocation to
2213 * succeed and -ENOMEM implies there is not.
2214 *
2215 * Do not audit the selinux permission check, as this is applied to all
2216 * processes that allocate mappings.
2217 */
2218static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2219{
2220 int rc, cap_sys_admin = 0;
2221
2222 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2223 SECURITY_CAP_NOAUDIT);
2224 if (rc == 0)
2225 cap_sys_admin = 1;
2226
2227 return cap_sys_admin;
2228}
2229
2230/* binprm security operations */
2231
2232static int check_nnp_nosuid(const struct linux_binprm *bprm,
2233 const struct task_security_struct *old_tsec,
2234 const struct task_security_struct *new_tsec)
2235{
2236 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2237 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2238 int rc;
2239
2240 if (!nnp && !nosuid)
2241 return 0; /* neither NNP nor nosuid */
2242
2243 if (new_tsec->sid == old_tsec->sid)
2244 return 0; /* No change in credentials */
2245
2246 /*
2247 * The only transitions we permit under NNP or nosuid
2248 * are transitions to bounded SIDs, i.e. SIDs that are
2249 * guaranteed to only be allowed a subset of the permissions
2250 * of the current SID.
2251 */
2252 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2253 if (rc) {
2254 /*
2255 * On failure, preserve the errno values for NNP vs nosuid.
2256 * NNP: Operation not permitted for caller.
2257 * nosuid: Permission denied to file.
2258 */
2259 if (nnp)
2260 return -EPERM;
2261 else
2262 return -EACCES;
2263 }
2264 return 0;
2265}
2266
2267static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2268{
2269 const struct task_security_struct *old_tsec;
2270 struct task_security_struct *new_tsec;
2271 struct inode_security_struct *isec;
2272 struct common_audit_data ad;
2273 struct inode *inode = file_inode(bprm->file);
2274 int rc;
2275
2276 /* SELinux context only depends on initial program or script and not
2277 * the script interpreter */
2278 if (bprm->cred_prepared)
2279 return 0;
2280
2281 old_tsec = current_security();
2282 new_tsec = bprm->cred->security;
2283 isec = inode_security(inode);
2284
2285 /* Default to the current task SID. */
2286 new_tsec->sid = old_tsec->sid;
2287 new_tsec->osid = old_tsec->sid;
2288
2289 /* Reset fs, key, and sock SIDs on execve. */
2290 new_tsec->create_sid = 0;
2291 new_tsec->keycreate_sid = 0;
2292 new_tsec->sockcreate_sid = 0;
2293
2294 if (old_tsec->exec_sid) {
2295 new_tsec->sid = old_tsec->exec_sid;
2296 /* Reset exec SID on execve. */
2297 new_tsec->exec_sid = 0;
2298
2299 /* Fail on NNP or nosuid if not an allowed transition. */
2300 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2301 if (rc)
2302 return rc;
2303 } else {
2304 /* Check for a default transition on this program. */
2305 rc = security_transition_sid(old_tsec->sid, isec->sid,
2306 SECCLASS_PROCESS, NULL,
2307 &new_tsec->sid);
2308 if (rc)
2309 return rc;
2310
2311 /*
2312 * Fallback to old SID on NNP or nosuid if not an allowed
2313 * transition.
2314 */
2315 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2316 if (rc)
2317 new_tsec->sid = old_tsec->sid;
2318 }
2319
2320 ad.type = LSM_AUDIT_DATA_PATH;
2321 ad.u.path = bprm->file->f_path;
2322
2323 if (new_tsec->sid == old_tsec->sid) {
2324 rc = avc_has_perm(old_tsec->sid, isec->sid,
2325 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2326 if (rc)
2327 return rc;
2328 } else {
2329 /* Check permissions for the transition. */
2330 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2331 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2332 if (rc)
2333 return rc;
2334
2335 rc = avc_has_perm(new_tsec->sid, isec->sid,
2336 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2337 if (rc)
2338 return rc;
2339
2340 /* Check for shared state */
2341 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2342 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2343 SECCLASS_PROCESS, PROCESS__SHARE,
2344 NULL);
2345 if (rc)
2346 return -EPERM;
2347 }
2348
2349 /* Make sure that anyone attempting to ptrace over a task that
2350 * changes its SID has the appropriate permit */
2351 if (bprm->unsafe &
2352 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2353 struct task_struct *tracer;
2354 struct task_security_struct *sec;
2355 u32 ptsid = 0;
2356
2357 rcu_read_lock();
2358 tracer = ptrace_parent(current);
2359 if (likely(tracer != NULL)) {
2360 sec = __task_cred(tracer)->security;
2361 ptsid = sec->sid;
2362 }
2363 rcu_read_unlock();
2364
2365 if (ptsid != 0) {
2366 rc = avc_has_perm(ptsid, new_tsec->sid,
2367 SECCLASS_PROCESS,
2368 PROCESS__PTRACE, NULL);
2369 if (rc)
2370 return -EPERM;
2371 }
2372 }
2373
2374 /* Clear any possibly unsafe personality bits on exec: */
2375 bprm->per_clear |= PER_CLEAR_ON_SETID;
2376 }
2377
2378 return 0;
2379}
2380
2381static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2382{
2383 const struct task_security_struct *tsec = current_security();
2384 u32 sid, osid;
2385 int atsecure = 0;
2386
2387 sid = tsec->sid;
2388 osid = tsec->osid;
2389
2390 if (osid != sid) {
2391 /* Enable secure mode for SIDs transitions unless
2392 the noatsecure permission is granted between
2393 the two SIDs, i.e. ahp returns 0. */
2394 atsecure = avc_has_perm(osid, sid,
2395 SECCLASS_PROCESS,
2396 PROCESS__NOATSECURE, NULL);
2397 }
2398
2399 return !!atsecure;
2400}
2401
2402static int match_file(const void *p, struct file *file, unsigned fd)
2403{
2404 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2405}
2406
2407/* Derived from fs/exec.c:flush_old_files. */
2408static inline void flush_unauthorized_files(const struct cred *cred,
2409 struct files_struct *files)
2410{
2411 struct file *file, *devnull = NULL;
2412 struct tty_struct *tty;
2413 int drop_tty = 0;
2414 unsigned n;
2415
2416 tty = get_current_tty();
2417 if (tty) {
2418 spin_lock(&tty->files_lock);
2419 if (!list_empty(&tty->tty_files)) {
2420 struct tty_file_private *file_priv;
2421
2422 /* Revalidate access to controlling tty.
2423 Use file_path_has_perm on the tty path directly
2424 rather than using file_has_perm, as this particular
2425 open file may belong to another process and we are
2426 only interested in the inode-based check here. */
2427 file_priv = list_first_entry(&tty->tty_files,
2428 struct tty_file_private, list);
2429 file = file_priv->file;
2430 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2431 drop_tty = 1;
2432 }
2433 spin_unlock(&tty->files_lock);
2434 tty_kref_put(tty);
2435 }
2436 /* Reset controlling tty. */
2437 if (drop_tty)
2438 no_tty();
2439
2440 /* Revalidate access to inherited open files. */
2441 n = iterate_fd(files, 0, match_file, cred);
2442 if (!n) /* none found? */
2443 return;
2444
2445 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2446 if (IS_ERR(devnull))
2447 devnull = NULL;
2448 /* replace all the matching ones with this */
2449 do {
2450 replace_fd(n - 1, devnull, 0);
2451 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2452 if (devnull)
2453 fput(devnull);
2454}
2455
2456/*
2457 * Prepare a process for imminent new credential changes due to exec
2458 */
2459static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2460{
2461 struct task_security_struct *new_tsec;
2462 struct rlimit *rlim, *initrlim;
2463 int rc, i;
2464
2465 new_tsec = bprm->cred->security;
2466 if (new_tsec->sid == new_tsec->osid)
2467 return;
2468
2469 /* Close files for which the new task SID is not authorized. */
2470 flush_unauthorized_files(bprm->cred, current->files);
2471
2472 /* Always clear parent death signal on SID transitions. */
2473 current->pdeath_signal = 0;
2474
2475 /* Check whether the new SID can inherit resource limits from the old
2476 * SID. If not, reset all soft limits to the lower of the current
2477 * task's hard limit and the init task's soft limit.
2478 *
2479 * Note that the setting of hard limits (even to lower them) can be
2480 * controlled by the setrlimit check. The inclusion of the init task's
2481 * soft limit into the computation is to avoid resetting soft limits
2482 * higher than the default soft limit for cases where the default is
2483 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2484 */
2485 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2486 PROCESS__RLIMITINH, NULL);
2487 if (rc) {
2488 /* protect against do_prlimit() */
2489 task_lock(current);
2490 for (i = 0; i < RLIM_NLIMITS; i++) {
2491 rlim = current->signal->rlim + i;
2492 initrlim = init_task.signal->rlim + i;
2493 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2494 }
2495 task_unlock(current);
2496 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2497 }
2498}
2499
2500/*
2501 * Clean up the process immediately after the installation of new credentials
2502 * due to exec
2503 */
2504static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2505{
2506 const struct task_security_struct *tsec = current_security();
2507 struct itimerval itimer;
2508 u32 osid, sid;
2509 int rc, i;
2510
2511 osid = tsec->osid;
2512 sid = tsec->sid;
2513
2514 if (sid == osid)
2515 return;
2516
2517 /* Check whether the new SID can inherit signal state from the old SID.
2518 * If not, clear itimers to avoid subsequent signal generation and
2519 * flush and unblock signals.
2520 *
2521 * This must occur _after_ the task SID has been updated so that any
2522 * kill done after the flush will be checked against the new SID.
2523 */
2524 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2525 if (rc) {
2526 memset(&itimer, 0, sizeof itimer);
2527 for (i = 0; i < 3; i++)
2528 do_setitimer(i, &itimer, NULL);
2529 spin_lock_irq(¤t->sighand->siglock);
2530 if (!fatal_signal_pending(current)) {
2531 flush_sigqueue(¤t->pending);
2532 flush_sigqueue(¤t->signal->shared_pending);
2533 flush_signal_handlers(current, 1);
2534 sigemptyset(¤t->blocked);
2535 recalc_sigpending();
2536 }
2537 spin_unlock_irq(¤t->sighand->siglock);
2538 }
2539
2540 /* Wake up the parent if it is waiting so that it can recheck
2541 * wait permission to the new task SID. */
2542 read_lock(&tasklist_lock);
2543 __wake_up_parent(current, current->real_parent);
2544 read_unlock(&tasklist_lock);
2545}
2546
2547/* superblock security operations */
2548
2549static int selinux_sb_alloc_security(struct super_block *sb)
2550{
2551 return superblock_alloc_security(sb);
2552}
2553
2554static void selinux_sb_free_security(struct super_block *sb)
2555{
2556 superblock_free_security(sb);
2557}
2558
2559static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2560{
2561 if (plen > olen)
2562 return 0;
2563
2564 return !memcmp(prefix, option, plen);
2565}
2566
2567static inline int selinux_option(char *option, int len)
2568{
2569 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2570 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2571 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2572 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2573 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2574}
2575
2576static inline void take_option(char **to, char *from, int *first, int len)
2577{
2578 if (!*first) {
2579 **to = ',';
2580 *to += 1;
2581 } else
2582 *first = 0;
2583 memcpy(*to, from, len);
2584 *to += len;
2585}
2586
2587static inline void take_selinux_option(char **to, char *from, int *first,
2588 int len)
2589{
2590 int current_size = 0;
2591
2592 if (!*first) {
2593 **to = '|';
2594 *to += 1;
2595 } else
2596 *first = 0;
2597
2598 while (current_size < len) {
2599 if (*from != '"') {
2600 **to = *from;
2601 *to += 1;
2602 }
2603 from += 1;
2604 current_size += 1;
2605 }
2606}
2607
2608static int selinux_sb_copy_data(char *orig, char *copy)
2609{
2610 int fnosec, fsec, rc = 0;
2611 char *in_save, *in_curr, *in_end;
2612 char *sec_curr, *nosec_save, *nosec;
2613 int open_quote = 0;
2614
2615 in_curr = orig;
2616 sec_curr = copy;
2617
2618 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2619 if (!nosec) {
2620 rc = -ENOMEM;
2621 goto out;
2622 }
2623
2624 nosec_save = nosec;
2625 fnosec = fsec = 1;
2626 in_save = in_end = orig;
2627
2628 do {
2629 if (*in_end == '"')
2630 open_quote = !open_quote;
2631 if ((*in_end == ',' && open_quote == 0) ||
2632 *in_end == '\0') {
2633 int len = in_end - in_curr;
2634
2635 if (selinux_option(in_curr, len))
2636 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2637 else
2638 take_option(&nosec, in_curr, &fnosec, len);
2639
2640 in_curr = in_end + 1;
2641 }
2642 } while (*in_end++);
2643
2644 strcpy(in_save, nosec_save);
2645 free_page((unsigned long)nosec_save);
2646out:
2647 return rc;
2648}
2649
2650static int selinux_sb_remount(struct super_block *sb, void *data)
2651{
2652 int rc, i, *flags;
2653 struct security_mnt_opts opts;
2654 char *secdata, **mount_options;
2655 struct superblock_security_struct *sbsec = sb->s_security;
2656
2657 if (!(sbsec->flags & SE_SBINITIALIZED))
2658 return 0;
2659
2660 if (!data)
2661 return 0;
2662
2663 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2664 return 0;
2665
2666 security_init_mnt_opts(&opts);
2667 secdata = alloc_secdata();
2668 if (!secdata)
2669 return -ENOMEM;
2670 rc = selinux_sb_copy_data(data, secdata);
2671 if (rc)
2672 goto out_free_secdata;
2673
2674 rc = selinux_parse_opts_str(secdata, &opts);
2675 if (rc)
2676 goto out_free_secdata;
2677
2678 mount_options = opts.mnt_opts;
2679 flags = opts.mnt_opts_flags;
2680
2681 for (i = 0; i < opts.num_mnt_opts; i++) {
2682 u32 sid;
2683
2684 if (flags[i] == SBLABEL_MNT)
2685 continue;
2686 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2687 if (rc) {
2688 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2689 "(%s) failed for (dev %s, type %s) errno=%d\n",
2690 mount_options[i], sb->s_id, sb->s_type->name, rc);
2691 goto out_free_opts;
2692 }
2693 rc = -EINVAL;
2694 switch (flags[i]) {
2695 case FSCONTEXT_MNT:
2696 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2697 goto out_bad_option;
2698 break;
2699 case CONTEXT_MNT:
2700 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2701 goto out_bad_option;
2702 break;
2703 case ROOTCONTEXT_MNT: {
2704 struct inode_security_struct *root_isec;
2705 root_isec = backing_inode_security(sb->s_root);
2706
2707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2708 goto out_bad_option;
2709 break;
2710 }
2711 case DEFCONTEXT_MNT:
2712 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2713 goto out_bad_option;
2714 break;
2715 default:
2716 goto out_free_opts;
2717 }
2718 }
2719
2720 rc = 0;
2721out_free_opts:
2722 security_free_mnt_opts(&opts);
2723out_free_secdata:
2724 free_secdata(secdata);
2725 return rc;
2726out_bad_option:
2727 printk(KERN_WARNING "SELinux: unable to change security options "
2728 "during remount (dev %s, type=%s)\n", sb->s_id,
2729 sb->s_type->name);
2730 goto out_free_opts;
2731}
2732
2733static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2734{
2735 const struct cred *cred = current_cred();
2736 struct common_audit_data ad;
2737 int rc;
2738
2739 rc = superblock_doinit(sb, data);
2740 if (rc)
2741 return rc;
2742
2743 /* Allow all mounts performed by the kernel */
2744 if (flags & MS_KERNMOUNT)
2745 return 0;
2746
2747 ad.type = LSM_AUDIT_DATA_DENTRY;
2748 ad.u.dentry = sb->s_root;
2749 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2750}
2751
2752static int selinux_sb_statfs(struct dentry *dentry)
2753{
2754 const struct cred *cred = current_cred();
2755 struct common_audit_data ad;
2756
2757 ad.type = LSM_AUDIT_DATA_DENTRY;
2758 ad.u.dentry = dentry->d_sb->s_root;
2759 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2760}
2761
2762static int selinux_mount(const char *dev_name,
2763 struct path *path,
2764 const char *type,
2765 unsigned long flags,
2766 void *data)
2767{
2768 const struct cred *cred = current_cred();
2769
2770 if (flags & MS_REMOUNT)
2771 return superblock_has_perm(cred, path->dentry->d_sb,
2772 FILESYSTEM__REMOUNT, NULL);
2773 else
2774 return path_has_perm(cred, path, FILE__MOUNTON);
2775}
2776
2777static int selinux_umount(struct vfsmount *mnt, int flags)
2778{
2779 const struct cred *cred = current_cred();
2780
2781 return superblock_has_perm(cred, mnt->mnt_sb,
2782 FILESYSTEM__UNMOUNT, NULL);
2783}
2784
2785/* inode security operations */
2786
2787static int selinux_inode_alloc_security(struct inode *inode)
2788{
2789 return inode_alloc_security(inode);
2790}
2791
2792static void selinux_inode_free_security(struct inode *inode)
2793{
2794 inode_free_security(inode);
2795}
2796
2797static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2798 struct qstr *name, void **ctx,
2799 u32 *ctxlen)
2800{
2801 u32 newsid;
2802 int rc;
2803
2804 rc = selinux_determine_inode_label(d_inode(dentry->d_parent), name,
2805 inode_mode_to_security_class(mode),
2806 &newsid);
2807 if (rc)
2808 return rc;
2809
2810 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2811}
2812
2813static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2814 const struct qstr *qstr,
2815 const char **name,
2816 void **value, size_t *len)
2817{
2818 const struct task_security_struct *tsec = current_security();
2819 struct superblock_security_struct *sbsec;
2820 u32 sid, newsid, clen;
2821 int rc;
2822 char *context;
2823
2824 sbsec = dir->i_sb->s_security;
2825
2826 sid = tsec->sid;
2827 newsid = tsec->create_sid;
2828
2829 rc = selinux_determine_inode_label(
2830 dir, qstr,
2831 inode_mode_to_security_class(inode->i_mode),
2832 &newsid);
2833 if (rc)
2834 return rc;
2835
2836 /* Possibly defer initialization to selinux_complete_init. */
2837 if (sbsec->flags & SE_SBINITIALIZED) {
2838 struct inode_security_struct *isec = inode->i_security;
2839 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2840 isec->sid = newsid;
2841 isec->initialized = LABEL_INITIALIZED;
2842 }
2843
2844 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2845 return -EOPNOTSUPP;
2846
2847 if (name)
2848 *name = XATTR_SELINUX_SUFFIX;
2849
2850 if (value && len) {
2851 rc = security_sid_to_context_force(newsid, &context, &clen);
2852 if (rc)
2853 return rc;
2854 *value = context;
2855 *len = clen;
2856 }
2857
2858 return 0;
2859}
2860
2861static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2862{
2863 return may_create(dir, dentry, SECCLASS_FILE);
2864}
2865
2866static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2867{
2868 return may_link(dir, old_dentry, MAY_LINK);
2869}
2870
2871static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2872{
2873 return may_link(dir, dentry, MAY_UNLINK);
2874}
2875
2876static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2877{
2878 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2879}
2880
2881static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2882{
2883 return may_create(dir, dentry, SECCLASS_DIR);
2884}
2885
2886static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2887{
2888 return may_link(dir, dentry, MAY_RMDIR);
2889}
2890
2891static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892{
2893 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2894}
2895
2896static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2897 struct inode *new_inode, struct dentry *new_dentry)
2898{
2899 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2900}
2901
2902static int selinux_inode_readlink(struct dentry *dentry)
2903{
2904 const struct cred *cred = current_cred();
2905
2906 return dentry_has_perm(cred, dentry, FILE__READ);
2907}
2908
2909static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2910 bool rcu)
2911{
2912 const struct cred *cred = current_cred();
2913 struct common_audit_data ad;
2914 struct inode_security_struct *isec;
2915 u32 sid;
2916
2917 validate_creds(cred);
2918
2919 ad.type = LSM_AUDIT_DATA_DENTRY;
2920 ad.u.dentry = dentry;
2921 sid = cred_sid(cred);
2922 isec = inode_security_rcu(inode, rcu);
2923 if (IS_ERR(isec))
2924 return PTR_ERR(isec);
2925
2926 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2927 rcu ? MAY_NOT_BLOCK : 0);
2928}
2929
2930static noinline int audit_inode_permission(struct inode *inode,
2931 u32 perms, u32 audited, u32 denied,
2932 int result,
2933 unsigned flags)
2934{
2935 struct common_audit_data ad;
2936 struct inode_security_struct *isec = inode->i_security;
2937 int rc;
2938
2939 ad.type = LSM_AUDIT_DATA_INODE;
2940 ad.u.inode = inode;
2941
2942 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2943 audited, denied, result, &ad, flags);
2944 if (rc)
2945 return rc;
2946 return 0;
2947}
2948
2949static int selinux_inode_permission(struct inode *inode, int mask)
2950{
2951 const struct cred *cred = current_cred();
2952 u32 perms;
2953 bool from_access;
2954 unsigned flags = mask & MAY_NOT_BLOCK;
2955 struct inode_security_struct *isec;
2956 u32 sid;
2957 struct av_decision avd;
2958 int rc, rc2;
2959 u32 audited, denied;
2960
2961 from_access = mask & MAY_ACCESS;
2962 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2963
2964 /* No permission to check. Existence test. */
2965 if (!mask)
2966 return 0;
2967
2968 validate_creds(cred);
2969
2970 if (unlikely(IS_PRIVATE(inode)))
2971 return 0;
2972
2973 perms = file_mask_to_av(inode->i_mode, mask);
2974
2975 sid = cred_sid(cred);
2976 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
2977 if (IS_ERR(isec))
2978 return PTR_ERR(isec);
2979
2980 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2981 audited = avc_audit_required(perms, &avd, rc,
2982 from_access ? FILE__AUDIT_ACCESS : 0,
2983 &denied);
2984 if (likely(!audited))
2985 return rc;
2986
2987 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2988 if (rc2)
2989 return rc2;
2990 return rc;
2991}
2992
2993static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2994{
2995 const struct cred *cred = current_cred();
2996 unsigned int ia_valid = iattr->ia_valid;
2997 __u32 av = FILE__WRITE;
2998
2999 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3000 if (ia_valid & ATTR_FORCE) {
3001 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3002 ATTR_FORCE);
3003 if (!ia_valid)
3004 return 0;
3005 }
3006
3007 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3008 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3009 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3010
3011 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3012 && !(ia_valid & ATTR_FILE))
3013 av |= FILE__OPEN;
3014
3015 return dentry_has_perm(cred, dentry, av);
3016}
3017
3018static int selinux_inode_getattr(const struct path *path)
3019{
3020 return path_has_perm(current_cred(), path, FILE__GETATTR);
3021}
3022
3023static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3024{
3025 const struct cred *cred = current_cred();
3026
3027 if (!strncmp(name, XATTR_SECURITY_PREFIX,
3028 sizeof XATTR_SECURITY_PREFIX - 1)) {
3029 if (!strcmp(name, XATTR_NAME_CAPS)) {
3030 if (!capable(CAP_SETFCAP))
3031 return -EPERM;
3032 } else if (!capable(CAP_SYS_ADMIN)) {
3033 /* A different attribute in the security namespace.
3034 Restrict to administrator. */
3035 return -EPERM;
3036 }
3037 }
3038
3039 /* Not an attribute we recognize, so just check the
3040 ordinary setattr permission. */
3041 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3042}
3043
3044static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3045 const void *value, size_t size, int flags)
3046{
3047 struct inode *inode = d_backing_inode(dentry);
3048 struct inode_security_struct *isec = backing_inode_security(dentry);
3049 struct superblock_security_struct *sbsec;
3050 struct common_audit_data ad;
3051 u32 newsid, sid = current_sid();
3052 int rc = 0;
3053
3054 if (strcmp(name, XATTR_NAME_SELINUX))
3055 return selinux_inode_setotherxattr(dentry, name);
3056
3057 sbsec = inode->i_sb->s_security;
3058 if (!(sbsec->flags & SBLABEL_MNT))
3059 return -EOPNOTSUPP;
3060
3061 if (!inode_owner_or_capable(inode))
3062 return -EPERM;
3063
3064 ad.type = LSM_AUDIT_DATA_DENTRY;
3065 ad.u.dentry = dentry;
3066
3067 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3068 FILE__RELABELFROM, &ad);
3069 if (rc)
3070 return rc;
3071
3072 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3073 if (rc == -EINVAL) {
3074 if (!capable(CAP_MAC_ADMIN)) {
3075 struct audit_buffer *ab;
3076 size_t audit_size;
3077 const char *str;
3078
3079 /* We strip a nul only if it is at the end, otherwise the
3080 * context contains a nul and we should audit that */
3081 if (value) {
3082 str = value;
3083 if (str[size - 1] == '\0')
3084 audit_size = size - 1;
3085 else
3086 audit_size = size;
3087 } else {
3088 str = "";
3089 audit_size = 0;
3090 }
3091 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3092 audit_log_format(ab, "op=setxattr invalid_context=");
3093 audit_log_n_untrustedstring(ab, value, audit_size);
3094 audit_log_end(ab);
3095
3096 return rc;
3097 }
3098 rc = security_context_to_sid_force(value, size, &newsid);
3099 }
3100 if (rc)
3101 return rc;
3102
3103 rc = avc_has_perm(sid, newsid, isec->sclass,
3104 FILE__RELABELTO, &ad);
3105 if (rc)
3106 return rc;
3107
3108 rc = security_validate_transition(isec->sid, newsid, sid,
3109 isec->sclass);
3110 if (rc)
3111 return rc;
3112
3113 return avc_has_perm(newsid,
3114 sbsec->sid,
3115 SECCLASS_FILESYSTEM,
3116 FILESYSTEM__ASSOCIATE,
3117 &ad);
3118}
3119
3120static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3121 const void *value, size_t size,
3122 int flags)
3123{
3124 struct inode *inode = d_backing_inode(dentry);
3125 struct inode_security_struct *isec = backing_inode_security(dentry);
3126 u32 newsid;
3127 int rc;
3128
3129 if (strcmp(name, XATTR_NAME_SELINUX)) {
3130 /* Not an attribute we recognize, so nothing to do. */
3131 return;
3132 }
3133
3134 rc = security_context_to_sid_force(value, size, &newsid);
3135 if (rc) {
3136 printk(KERN_ERR "SELinux: unable to map context to SID"
3137 "for (%s, %lu), rc=%d\n",
3138 inode->i_sb->s_id, inode->i_ino, -rc);
3139 return;
3140 }
3141
3142 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3143 isec->sid = newsid;
3144 isec->initialized = LABEL_INITIALIZED;
3145
3146 return;
3147}
3148
3149static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3150{
3151 const struct cred *cred = current_cred();
3152
3153 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3154}
3155
3156static int selinux_inode_listxattr(struct dentry *dentry)
3157{
3158 const struct cred *cred = current_cred();
3159
3160 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3161}
3162
3163static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3164{
3165 if (strcmp(name, XATTR_NAME_SELINUX))
3166 return selinux_inode_setotherxattr(dentry, name);
3167
3168 /* No one is allowed to remove a SELinux security label.
3169 You can change the label, but all data must be labeled. */
3170 return -EACCES;
3171}
3172
3173/*
3174 * Copy the inode security context value to the user.
3175 *
3176 * Permission check is handled by selinux_inode_getxattr hook.
3177 */
3178static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3179{
3180 u32 size;
3181 int error;
3182 char *context = NULL;
3183 struct inode_security_struct *isec = inode_security(inode);
3184
3185 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3186 return -EOPNOTSUPP;
3187
3188 /*
3189 * If the caller has CAP_MAC_ADMIN, then get the raw context
3190 * value even if it is not defined by current policy; otherwise,
3191 * use the in-core value under current policy.
3192 * Use the non-auditing forms of the permission checks since
3193 * getxattr may be called by unprivileged processes commonly
3194 * and lack of permission just means that we fall back to the
3195 * in-core context value, not a denial.
3196 */
3197 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3198 SECURITY_CAP_NOAUDIT);
3199 if (!error)
3200 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3201 SECURITY_CAP_NOAUDIT);
3202 if (!error)
3203 error = security_sid_to_context_force(isec->sid, &context,
3204 &size);
3205 else
3206 error = security_sid_to_context(isec->sid, &context, &size);
3207 if (error)
3208 return error;
3209 error = size;
3210 if (alloc) {
3211 *buffer = context;
3212 goto out_nofree;
3213 }
3214 kfree(context);
3215out_nofree:
3216 return error;
3217}
3218
3219static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3220 const void *value, size_t size, int flags)
3221{
3222 struct inode_security_struct *isec = inode_security(inode);
3223 u32 newsid;
3224 int rc;
3225
3226 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3227 return -EOPNOTSUPP;
3228
3229 if (!value || !size)
3230 return -EACCES;
3231
3232 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3233 if (rc)
3234 return rc;
3235
3236 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3237 isec->sid = newsid;
3238 isec->initialized = LABEL_INITIALIZED;
3239 return 0;
3240}
3241
3242static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3243{
3244 const int len = sizeof(XATTR_NAME_SELINUX);
3245 if (buffer && len <= buffer_size)
3246 memcpy(buffer, XATTR_NAME_SELINUX, len);
3247 return len;
3248}
3249
3250static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3251{
3252 struct inode_security_struct *isec = inode_security_novalidate(inode);
3253 *secid = isec->sid;
3254}
3255
3256/* file security operations */
3257
3258static int selinux_revalidate_file_permission(struct file *file, int mask)
3259{
3260 const struct cred *cred = current_cred();
3261 struct inode *inode = file_inode(file);
3262
3263 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3264 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3265 mask |= MAY_APPEND;
3266
3267 return file_has_perm(cred, file,
3268 file_mask_to_av(inode->i_mode, mask));
3269}
3270
3271static int selinux_file_permission(struct file *file, int mask)
3272{
3273 struct inode *inode = file_inode(file);
3274 struct file_security_struct *fsec = file->f_security;
3275 struct inode_security_struct *isec;
3276 u32 sid = current_sid();
3277
3278 if (!mask)
3279 /* No permission to check. Existence test. */
3280 return 0;
3281
3282 isec = inode_security(inode);
3283 if (sid == fsec->sid && fsec->isid == isec->sid &&
3284 fsec->pseqno == avc_policy_seqno())
3285 /* No change since file_open check. */
3286 return 0;
3287
3288 return selinux_revalidate_file_permission(file, mask);
3289}
3290
3291static int selinux_file_alloc_security(struct file *file)
3292{
3293 return file_alloc_security(file);
3294}
3295
3296static void selinux_file_free_security(struct file *file)
3297{
3298 file_free_security(file);
3299}
3300
3301/*
3302 * Check whether a task has the ioctl permission and cmd
3303 * operation to an inode.
3304 */
3305static int ioctl_has_perm(const struct cred *cred, struct file *file,
3306 u32 requested, u16 cmd)
3307{
3308 struct common_audit_data ad;
3309 struct file_security_struct *fsec = file->f_security;
3310 struct inode *inode = file_inode(file);
3311 struct inode_security_struct *isec = inode_security(inode);
3312 struct lsm_ioctlop_audit ioctl;
3313 u32 ssid = cred_sid(cred);
3314 int rc;
3315 u8 driver = cmd >> 8;
3316 u8 xperm = cmd & 0xff;
3317
3318 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3319 ad.u.op = &ioctl;
3320 ad.u.op->cmd = cmd;
3321 ad.u.op->path = file->f_path;
3322
3323 if (ssid != fsec->sid) {
3324 rc = avc_has_perm(ssid, fsec->sid,
3325 SECCLASS_FD,
3326 FD__USE,
3327 &ad);
3328 if (rc)
3329 goto out;
3330 }
3331
3332 if (unlikely(IS_PRIVATE(inode)))
3333 return 0;
3334
3335 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3336 requested, driver, xperm, &ad);
3337out:
3338 return rc;
3339}
3340
3341static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3342 unsigned long arg)
3343{
3344 const struct cred *cred = current_cred();
3345 int error = 0;
3346
3347 switch (cmd) {
3348 case FIONREAD:
3349 /* fall through */
3350 case FIBMAP:
3351 /* fall through */
3352 case FIGETBSZ:
3353 /* fall through */
3354 case FS_IOC_GETFLAGS:
3355 /* fall through */
3356 case FS_IOC_GETVERSION:
3357 error = file_has_perm(cred, file, FILE__GETATTR);
3358 break;
3359
3360 case FS_IOC_SETFLAGS:
3361 /* fall through */
3362 case FS_IOC_SETVERSION:
3363 error = file_has_perm(cred, file, FILE__SETATTR);
3364 break;
3365
3366 /* sys_ioctl() checks */
3367 case FIONBIO:
3368 /* fall through */
3369 case FIOASYNC:
3370 error = file_has_perm(cred, file, 0);
3371 break;
3372
3373 case KDSKBENT:
3374 case KDSKBSENT:
3375 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3376 SECURITY_CAP_AUDIT);
3377 break;
3378
3379 /* default case assumes that the command will go
3380 * to the file's ioctl() function.
3381 */
3382 default:
3383 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3384 }
3385 return error;
3386}
3387
3388static int default_noexec;
3389
3390static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3391{
3392 const struct cred *cred = current_cred();
3393 int rc = 0;
3394
3395 if (default_noexec &&
3396 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3397 (!shared && (prot & PROT_WRITE)))) {
3398 /*
3399 * We are making executable an anonymous mapping or a
3400 * private file mapping that will also be writable.
3401 * This has an additional check.
3402 */
3403 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3404 if (rc)
3405 goto error;
3406 }
3407
3408 if (file) {
3409 /* read access is always possible with a mapping */
3410 u32 av = FILE__READ;
3411
3412 /* write access only matters if the mapping is shared */
3413 if (shared && (prot & PROT_WRITE))
3414 av |= FILE__WRITE;
3415
3416 if (prot & PROT_EXEC)
3417 av |= FILE__EXECUTE;
3418
3419 return file_has_perm(cred, file, av);
3420 }
3421
3422error:
3423 return rc;
3424}
3425
3426static int selinux_mmap_addr(unsigned long addr)
3427{
3428 int rc = 0;
3429
3430 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3431 u32 sid = current_sid();
3432 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3433 MEMPROTECT__MMAP_ZERO, NULL);
3434 }
3435
3436 return rc;
3437}
3438
3439static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3440 unsigned long prot, unsigned long flags)
3441{
3442 if (selinux_checkreqprot)
3443 prot = reqprot;
3444
3445 return file_map_prot_check(file, prot,
3446 (flags & MAP_TYPE) == MAP_SHARED);
3447}
3448
3449static int selinux_file_mprotect(struct vm_area_struct *vma,
3450 unsigned long reqprot,
3451 unsigned long prot)
3452{
3453 const struct cred *cred = current_cred();
3454
3455 if (selinux_checkreqprot)
3456 prot = reqprot;
3457
3458 if (default_noexec &&
3459 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3460 int rc = 0;
3461 if (vma->vm_start >= vma->vm_mm->start_brk &&
3462 vma->vm_end <= vma->vm_mm->brk) {
3463 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3464 } else if (!vma->vm_file &&
3465 vma->vm_start <= vma->vm_mm->start_stack &&
3466 vma->vm_end >= vma->vm_mm->start_stack) {
3467 rc = current_has_perm(current, PROCESS__EXECSTACK);
3468 } else if (vma->vm_file && vma->anon_vma) {
3469 /*
3470 * We are making executable a file mapping that has
3471 * had some COW done. Since pages might have been
3472 * written, check ability to execute the possibly
3473 * modified content. This typically should only
3474 * occur for text relocations.
3475 */
3476 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3477 }
3478 if (rc)
3479 return rc;
3480 }
3481
3482 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3483}
3484
3485static int selinux_file_lock(struct file *file, unsigned int cmd)
3486{
3487 const struct cred *cred = current_cred();
3488
3489 return file_has_perm(cred, file, FILE__LOCK);
3490}
3491
3492static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3493 unsigned long arg)
3494{
3495 const struct cred *cred = current_cred();
3496 int err = 0;
3497
3498 switch (cmd) {
3499 case F_SETFL:
3500 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3501 err = file_has_perm(cred, file, FILE__WRITE);
3502 break;
3503 }
3504 /* fall through */
3505 case F_SETOWN:
3506 case F_SETSIG:
3507 case F_GETFL:
3508 case F_GETOWN:
3509 case F_GETSIG:
3510 case F_GETOWNER_UIDS:
3511 /* Just check FD__USE permission */
3512 err = file_has_perm(cred, file, 0);
3513 break;
3514 case F_GETLK:
3515 case F_SETLK:
3516 case F_SETLKW:
3517 case F_OFD_GETLK:
3518 case F_OFD_SETLK:
3519 case F_OFD_SETLKW:
3520#if BITS_PER_LONG == 32
3521 case F_GETLK64:
3522 case F_SETLK64:
3523 case F_SETLKW64:
3524#endif
3525 err = file_has_perm(cred, file, FILE__LOCK);
3526 break;
3527 }
3528
3529 return err;
3530}
3531
3532static void selinux_file_set_fowner(struct file *file)
3533{
3534 struct file_security_struct *fsec;
3535
3536 fsec = file->f_security;
3537 fsec->fown_sid = current_sid();
3538}
3539
3540static int selinux_file_send_sigiotask(struct task_struct *tsk,
3541 struct fown_struct *fown, int signum)
3542{
3543 struct file *file;
3544 u32 sid = task_sid(tsk);
3545 u32 perm;
3546 struct file_security_struct *fsec;
3547
3548 /* struct fown_struct is never outside the context of a struct file */
3549 file = container_of(fown, struct file, f_owner);
3550
3551 fsec = file->f_security;
3552
3553 if (!signum)
3554 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3555 else
3556 perm = signal_to_av(signum);
3557
3558 return avc_has_perm(fsec->fown_sid, sid,
3559 SECCLASS_PROCESS, perm, NULL);
3560}
3561
3562static int selinux_file_receive(struct file *file)
3563{
3564 const struct cred *cred = current_cred();
3565
3566 return file_has_perm(cred, file, file_to_av(file));
3567}
3568
3569static int selinux_file_open(struct file *file, const struct cred *cred)
3570{
3571 struct file_security_struct *fsec;
3572 struct inode_security_struct *isec;
3573
3574 fsec = file->f_security;
3575 isec = inode_security(file_inode(file));
3576 /*
3577 * Save inode label and policy sequence number
3578 * at open-time so that selinux_file_permission
3579 * can determine whether revalidation is necessary.
3580 * Task label is already saved in the file security
3581 * struct as its SID.
3582 */
3583 fsec->isid = isec->sid;
3584 fsec->pseqno = avc_policy_seqno();
3585 /*
3586 * Since the inode label or policy seqno may have changed
3587 * between the selinux_inode_permission check and the saving
3588 * of state above, recheck that access is still permitted.
3589 * Otherwise, access might never be revalidated against the
3590 * new inode label or new policy.
3591 * This check is not redundant - do not remove.
3592 */
3593 return file_path_has_perm(cred, file, open_file_to_av(file));
3594}
3595
3596/* task security operations */
3597
3598static int selinux_task_create(unsigned long clone_flags)
3599{
3600 return current_has_perm(current, PROCESS__FORK);
3601}
3602
3603/*
3604 * allocate the SELinux part of blank credentials
3605 */
3606static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3607{
3608 struct task_security_struct *tsec;
3609
3610 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3611 if (!tsec)
3612 return -ENOMEM;
3613
3614 cred->security = tsec;
3615 return 0;
3616}
3617
3618/*
3619 * detach and free the LSM part of a set of credentials
3620 */
3621static void selinux_cred_free(struct cred *cred)
3622{
3623 struct task_security_struct *tsec = cred->security;
3624
3625 /*
3626 * cred->security == NULL if security_cred_alloc_blank() or
3627 * security_prepare_creds() returned an error.
3628 */
3629 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3630 cred->security = (void *) 0x7UL;
3631 kfree(tsec);
3632}
3633
3634/*
3635 * prepare a new set of credentials for modification
3636 */
3637static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3638 gfp_t gfp)
3639{
3640 const struct task_security_struct *old_tsec;
3641 struct task_security_struct *tsec;
3642
3643 old_tsec = old->security;
3644
3645 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3646 if (!tsec)
3647 return -ENOMEM;
3648
3649 new->security = tsec;
3650 return 0;
3651}
3652
3653/*
3654 * transfer the SELinux data to a blank set of creds
3655 */
3656static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3657{
3658 const struct task_security_struct *old_tsec = old->security;
3659 struct task_security_struct *tsec = new->security;
3660
3661 *tsec = *old_tsec;
3662}
3663
3664/*
3665 * set the security data for a kernel service
3666 * - all the creation contexts are set to unlabelled
3667 */
3668static int selinux_kernel_act_as(struct cred *new, u32 secid)
3669{
3670 struct task_security_struct *tsec = new->security;
3671 u32 sid = current_sid();
3672 int ret;
3673
3674 ret = avc_has_perm(sid, secid,
3675 SECCLASS_KERNEL_SERVICE,
3676 KERNEL_SERVICE__USE_AS_OVERRIDE,
3677 NULL);
3678 if (ret == 0) {
3679 tsec->sid = secid;
3680 tsec->create_sid = 0;
3681 tsec->keycreate_sid = 0;
3682 tsec->sockcreate_sid = 0;
3683 }
3684 return ret;
3685}
3686
3687/*
3688 * set the file creation context in a security record to the same as the
3689 * objective context of the specified inode
3690 */
3691static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3692{
3693 struct inode_security_struct *isec = inode_security(inode);
3694 struct task_security_struct *tsec = new->security;
3695 u32 sid = current_sid();
3696 int ret;
3697
3698 ret = avc_has_perm(sid, isec->sid,
3699 SECCLASS_KERNEL_SERVICE,
3700 KERNEL_SERVICE__CREATE_FILES_AS,
3701 NULL);
3702
3703 if (ret == 0)
3704 tsec->create_sid = isec->sid;
3705 return ret;
3706}
3707
3708static int selinux_kernel_module_request(char *kmod_name)
3709{
3710 u32 sid;
3711 struct common_audit_data ad;
3712
3713 sid = task_sid(current);
3714
3715 ad.type = LSM_AUDIT_DATA_KMOD;
3716 ad.u.kmod_name = kmod_name;
3717
3718 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3719 SYSTEM__MODULE_REQUEST, &ad);
3720}
3721
3722static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3723{
3724 return current_has_perm(p, PROCESS__SETPGID);
3725}
3726
3727static int selinux_task_getpgid(struct task_struct *p)
3728{
3729 return current_has_perm(p, PROCESS__GETPGID);
3730}
3731
3732static int selinux_task_getsid(struct task_struct *p)
3733{
3734 return current_has_perm(p, PROCESS__GETSESSION);
3735}
3736
3737static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3738{
3739 *secid = task_sid(p);
3740}
3741
3742static int selinux_task_setnice(struct task_struct *p, int nice)
3743{
3744 return current_has_perm(p, PROCESS__SETSCHED);
3745}
3746
3747static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3748{
3749 return current_has_perm(p, PROCESS__SETSCHED);
3750}
3751
3752static int selinux_task_getioprio(struct task_struct *p)
3753{
3754 return current_has_perm(p, PROCESS__GETSCHED);
3755}
3756
3757static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3758 struct rlimit *new_rlim)
3759{
3760 struct rlimit *old_rlim = p->signal->rlim + resource;
3761
3762 /* Control the ability to change the hard limit (whether
3763 lowering or raising it), so that the hard limit can
3764 later be used as a safe reset point for the soft limit
3765 upon context transitions. See selinux_bprm_committing_creds. */
3766 if (old_rlim->rlim_max != new_rlim->rlim_max)
3767 return current_has_perm(p, PROCESS__SETRLIMIT);
3768
3769 return 0;
3770}
3771
3772static int selinux_task_setscheduler(struct task_struct *p)
3773{
3774 return current_has_perm(p, PROCESS__SETSCHED);
3775}
3776
3777static int selinux_task_getscheduler(struct task_struct *p)
3778{
3779 return current_has_perm(p, PROCESS__GETSCHED);
3780}
3781
3782static int selinux_task_movememory(struct task_struct *p)
3783{
3784 return current_has_perm(p, PROCESS__SETSCHED);
3785}
3786
3787static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3788 int sig, u32 secid)
3789{
3790 u32 perm;
3791 int rc;
3792
3793 if (!sig)
3794 perm = PROCESS__SIGNULL; /* null signal; existence test */
3795 else
3796 perm = signal_to_av(sig);
3797 if (secid)
3798 rc = avc_has_perm(secid, task_sid(p),
3799 SECCLASS_PROCESS, perm, NULL);
3800 else
3801 rc = current_has_perm(p, perm);
3802 return rc;
3803}
3804
3805static int selinux_task_wait(struct task_struct *p)
3806{
3807 return task_has_perm(p, current, PROCESS__SIGCHLD);
3808}
3809
3810static void selinux_task_to_inode(struct task_struct *p,
3811 struct inode *inode)
3812{
3813 struct inode_security_struct *isec = inode->i_security;
3814 u32 sid = task_sid(p);
3815
3816 isec->sid = sid;
3817 isec->initialized = LABEL_INITIALIZED;
3818}
3819
3820/* Returns error only if unable to parse addresses */
3821static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3822 struct common_audit_data *ad, u8 *proto)
3823{
3824 int offset, ihlen, ret = -EINVAL;
3825 struct iphdr _iph, *ih;
3826
3827 offset = skb_network_offset(skb);
3828 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3829 if (ih == NULL)
3830 goto out;
3831
3832 ihlen = ih->ihl * 4;
3833 if (ihlen < sizeof(_iph))
3834 goto out;
3835
3836 ad->u.net->v4info.saddr = ih->saddr;
3837 ad->u.net->v4info.daddr = ih->daddr;
3838 ret = 0;
3839
3840 if (proto)
3841 *proto = ih->protocol;
3842
3843 switch (ih->protocol) {
3844 case IPPROTO_TCP: {
3845 struct tcphdr _tcph, *th;
3846
3847 if (ntohs(ih->frag_off) & IP_OFFSET)
3848 break;
3849
3850 offset += ihlen;
3851 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3852 if (th == NULL)
3853 break;
3854
3855 ad->u.net->sport = th->source;
3856 ad->u.net->dport = th->dest;
3857 break;
3858 }
3859
3860 case IPPROTO_UDP: {
3861 struct udphdr _udph, *uh;
3862
3863 if (ntohs(ih->frag_off) & IP_OFFSET)
3864 break;
3865
3866 offset += ihlen;
3867 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3868 if (uh == NULL)
3869 break;
3870
3871 ad->u.net->sport = uh->source;
3872 ad->u.net->dport = uh->dest;
3873 break;
3874 }
3875
3876 case IPPROTO_DCCP: {
3877 struct dccp_hdr _dccph, *dh;
3878
3879 if (ntohs(ih->frag_off) & IP_OFFSET)
3880 break;
3881
3882 offset += ihlen;
3883 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3884 if (dh == NULL)
3885 break;
3886
3887 ad->u.net->sport = dh->dccph_sport;
3888 ad->u.net->dport = dh->dccph_dport;
3889 break;
3890 }
3891
3892 default:
3893 break;
3894 }
3895out:
3896 return ret;
3897}
3898
3899#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3900
3901/* Returns error only if unable to parse addresses */
3902static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3903 struct common_audit_data *ad, u8 *proto)
3904{
3905 u8 nexthdr;
3906 int ret = -EINVAL, offset;
3907 struct ipv6hdr _ipv6h, *ip6;
3908 __be16 frag_off;
3909
3910 offset = skb_network_offset(skb);
3911 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3912 if (ip6 == NULL)
3913 goto out;
3914
3915 ad->u.net->v6info.saddr = ip6->saddr;
3916 ad->u.net->v6info.daddr = ip6->daddr;
3917 ret = 0;
3918
3919 nexthdr = ip6->nexthdr;
3920 offset += sizeof(_ipv6h);
3921 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3922 if (offset < 0)
3923 goto out;
3924
3925 if (proto)
3926 *proto = nexthdr;
3927
3928 switch (nexthdr) {
3929 case IPPROTO_TCP: {
3930 struct tcphdr _tcph, *th;
3931
3932 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3933 if (th == NULL)
3934 break;
3935
3936 ad->u.net->sport = th->source;
3937 ad->u.net->dport = th->dest;
3938 break;
3939 }
3940
3941 case IPPROTO_UDP: {
3942 struct udphdr _udph, *uh;
3943
3944 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3945 if (uh == NULL)
3946 break;
3947
3948 ad->u.net->sport = uh->source;
3949 ad->u.net->dport = uh->dest;
3950 break;
3951 }
3952
3953 case IPPROTO_DCCP: {
3954 struct dccp_hdr _dccph, *dh;
3955
3956 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3957 if (dh == NULL)
3958 break;
3959
3960 ad->u.net->sport = dh->dccph_sport;
3961 ad->u.net->dport = dh->dccph_dport;
3962 break;
3963 }
3964
3965 /* includes fragments */
3966 default:
3967 break;
3968 }
3969out:
3970 return ret;
3971}
3972
3973#endif /* IPV6 */
3974
3975static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3976 char **_addrp, int src, u8 *proto)
3977{
3978 char *addrp;
3979 int ret;
3980
3981 switch (ad->u.net->family) {
3982 case PF_INET:
3983 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3984 if (ret)
3985 goto parse_error;
3986 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3987 &ad->u.net->v4info.daddr);
3988 goto okay;
3989
3990#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3991 case PF_INET6:
3992 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3993 if (ret)
3994 goto parse_error;
3995 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3996 &ad->u.net->v6info.daddr);
3997 goto okay;
3998#endif /* IPV6 */
3999 default:
4000 addrp = NULL;
4001 goto okay;
4002 }
4003
4004parse_error:
4005 printk(KERN_WARNING
4006 "SELinux: failure in selinux_parse_skb(),"
4007 " unable to parse packet\n");
4008 return ret;
4009
4010okay:
4011 if (_addrp)
4012 *_addrp = addrp;
4013 return 0;
4014}
4015
4016/**
4017 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4018 * @skb: the packet
4019 * @family: protocol family
4020 * @sid: the packet's peer label SID
4021 *
4022 * Description:
4023 * Check the various different forms of network peer labeling and determine
4024 * the peer label/SID for the packet; most of the magic actually occurs in
4025 * the security server function security_net_peersid_cmp(). The function
4026 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4027 * or -EACCES if @sid is invalid due to inconsistencies with the different
4028 * peer labels.
4029 *
4030 */
4031static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4032{
4033 int err;
4034 u32 xfrm_sid;
4035 u32 nlbl_sid;
4036 u32 nlbl_type;
4037
4038 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4039 if (unlikely(err))
4040 return -EACCES;
4041 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4042 if (unlikely(err))
4043 return -EACCES;
4044
4045 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4046 if (unlikely(err)) {
4047 printk(KERN_WARNING
4048 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4049 " unable to determine packet's peer label\n");
4050 return -EACCES;
4051 }
4052
4053 return 0;
4054}
4055
4056/**
4057 * selinux_conn_sid - Determine the child socket label for a connection
4058 * @sk_sid: the parent socket's SID
4059 * @skb_sid: the packet's SID
4060 * @conn_sid: the resulting connection SID
4061 *
4062 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4063 * combined with the MLS information from @skb_sid in order to create
4064 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4065 * of @sk_sid. Returns zero on success, negative values on failure.
4066 *
4067 */
4068static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4069{
4070 int err = 0;
4071
4072 if (skb_sid != SECSID_NULL)
4073 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4074 else
4075 *conn_sid = sk_sid;
4076
4077 return err;
4078}
4079
4080/* socket security operations */
4081
4082static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4083 u16 secclass, u32 *socksid)
4084{
4085 if (tsec->sockcreate_sid > SECSID_NULL) {
4086 *socksid = tsec->sockcreate_sid;
4087 return 0;
4088 }
4089
4090 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4091 socksid);
4092}
4093
4094static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4095{
4096 struct sk_security_struct *sksec = sk->sk_security;
4097 struct common_audit_data ad;
4098 struct lsm_network_audit net = {0,};
4099 u32 tsid = task_sid(task);
4100
4101 if (sksec->sid == SECINITSID_KERNEL)
4102 return 0;
4103
4104 ad.type = LSM_AUDIT_DATA_NET;
4105 ad.u.net = &net;
4106 ad.u.net->sk = sk;
4107
4108 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4109}
4110
4111static int selinux_socket_create(int family, int type,
4112 int protocol, int kern)
4113{
4114 const struct task_security_struct *tsec = current_security();
4115 u32 newsid;
4116 u16 secclass;
4117 int rc;
4118
4119 if (kern)
4120 return 0;
4121
4122 secclass = socket_type_to_security_class(family, type, protocol);
4123 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4124 if (rc)
4125 return rc;
4126
4127 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4128}
4129
4130static int selinux_socket_post_create(struct socket *sock, int family,
4131 int type, int protocol, int kern)
4132{
4133 const struct task_security_struct *tsec = current_security();
4134 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4135 struct sk_security_struct *sksec;
4136 int err = 0;
4137
4138 isec->sclass = socket_type_to_security_class(family, type, protocol);
4139
4140 if (kern)
4141 isec->sid = SECINITSID_KERNEL;
4142 else {
4143 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4144 if (err)
4145 return err;
4146 }
4147
4148 isec->initialized = LABEL_INITIALIZED;
4149
4150 if (sock->sk) {
4151 sksec = sock->sk->sk_security;
4152 sksec->sid = isec->sid;
4153 sksec->sclass = isec->sclass;
4154 err = selinux_netlbl_socket_post_create(sock->sk, family);
4155 }
4156
4157 return err;
4158}
4159
4160/* Range of port numbers used to automatically bind.
4161 Need to determine whether we should perform a name_bind
4162 permission check between the socket and the port number. */
4163
4164static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4165{
4166 struct sock *sk = sock->sk;
4167 u16 family;
4168 int err;
4169
4170 err = sock_has_perm(current, sk, SOCKET__BIND);
4171 if (err)
4172 goto out;
4173
4174 /*
4175 * If PF_INET or PF_INET6, check name_bind permission for the port.
4176 * Multiple address binding for SCTP is not supported yet: we just
4177 * check the first address now.
4178 */
4179 family = sk->sk_family;
4180 if (family == PF_INET || family == PF_INET6) {
4181 char *addrp;
4182 struct sk_security_struct *sksec = sk->sk_security;
4183 struct common_audit_data ad;
4184 struct lsm_network_audit net = {0,};
4185 struct sockaddr_in *addr4 = NULL;
4186 struct sockaddr_in6 *addr6 = NULL;
4187 unsigned short snum;
4188 u32 sid, node_perm;
4189
4190 if (family == PF_INET) {
4191 addr4 = (struct sockaddr_in *)address;
4192 snum = ntohs(addr4->sin_port);
4193 addrp = (char *)&addr4->sin_addr.s_addr;
4194 } else {
4195 addr6 = (struct sockaddr_in6 *)address;
4196 snum = ntohs(addr6->sin6_port);
4197 addrp = (char *)&addr6->sin6_addr.s6_addr;
4198 }
4199
4200 if (snum) {
4201 int low, high;
4202
4203 inet_get_local_port_range(sock_net(sk), &low, &high);
4204
4205 if (snum < max(PROT_SOCK, low) || snum > high) {
4206 err = sel_netport_sid(sk->sk_protocol,
4207 snum, &sid);
4208 if (err)
4209 goto out;
4210 ad.type = LSM_AUDIT_DATA_NET;
4211 ad.u.net = &net;
4212 ad.u.net->sport = htons(snum);
4213 ad.u.net->family = family;
4214 err = avc_has_perm(sksec->sid, sid,
4215 sksec->sclass,
4216 SOCKET__NAME_BIND, &ad);
4217 if (err)
4218 goto out;
4219 }
4220 }
4221
4222 switch (sksec->sclass) {
4223 case SECCLASS_TCP_SOCKET:
4224 node_perm = TCP_SOCKET__NODE_BIND;
4225 break;
4226
4227 case SECCLASS_UDP_SOCKET:
4228 node_perm = UDP_SOCKET__NODE_BIND;
4229 break;
4230
4231 case SECCLASS_DCCP_SOCKET:
4232 node_perm = DCCP_SOCKET__NODE_BIND;
4233 break;
4234
4235 default:
4236 node_perm = RAWIP_SOCKET__NODE_BIND;
4237 break;
4238 }
4239
4240 err = sel_netnode_sid(addrp, family, &sid);
4241 if (err)
4242 goto out;
4243
4244 ad.type = LSM_AUDIT_DATA_NET;
4245 ad.u.net = &net;
4246 ad.u.net->sport = htons(snum);
4247 ad.u.net->family = family;
4248
4249 if (family == PF_INET)
4250 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4251 else
4252 ad.u.net->v6info.saddr = addr6->sin6_addr;
4253
4254 err = avc_has_perm(sksec->sid, sid,
4255 sksec->sclass, node_perm, &ad);
4256 if (err)
4257 goto out;
4258 }
4259out:
4260 return err;
4261}
4262
4263static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4264{
4265 struct sock *sk = sock->sk;
4266 struct sk_security_struct *sksec = sk->sk_security;
4267 int err;
4268
4269 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4270 if (err)
4271 return err;
4272
4273 /*
4274 * If a TCP or DCCP socket, check name_connect permission for the port.
4275 */
4276 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4277 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4278 struct common_audit_data ad;
4279 struct lsm_network_audit net = {0,};
4280 struct sockaddr_in *addr4 = NULL;
4281 struct sockaddr_in6 *addr6 = NULL;
4282 unsigned short snum;
4283 u32 sid, perm;
4284
4285 if (sk->sk_family == PF_INET) {
4286 addr4 = (struct sockaddr_in *)address;
4287 if (addrlen < sizeof(struct sockaddr_in))
4288 return -EINVAL;
4289 snum = ntohs(addr4->sin_port);
4290 } else {
4291 addr6 = (struct sockaddr_in6 *)address;
4292 if (addrlen < SIN6_LEN_RFC2133)
4293 return -EINVAL;
4294 snum = ntohs(addr6->sin6_port);
4295 }
4296
4297 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4298 if (err)
4299 goto out;
4300
4301 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4302 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4303
4304 ad.type = LSM_AUDIT_DATA_NET;
4305 ad.u.net = &net;
4306 ad.u.net->dport = htons(snum);
4307 ad.u.net->family = sk->sk_family;
4308 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4309 if (err)
4310 goto out;
4311 }
4312
4313 err = selinux_netlbl_socket_connect(sk, address);
4314
4315out:
4316 return err;
4317}
4318
4319static int selinux_socket_listen(struct socket *sock, int backlog)
4320{
4321 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4322}
4323
4324static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4325{
4326 int err;
4327 struct inode_security_struct *isec;
4328 struct inode_security_struct *newisec;
4329
4330 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4331 if (err)
4332 return err;
4333
4334 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4335
4336 isec = inode_security_novalidate(SOCK_INODE(sock));
4337 newisec->sclass = isec->sclass;
4338 newisec->sid = isec->sid;
4339 newisec->initialized = LABEL_INITIALIZED;
4340
4341 return 0;
4342}
4343
4344static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4345 int size)
4346{
4347 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4348}
4349
4350static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4351 int size, int flags)
4352{
4353 return sock_has_perm(current, sock->sk, SOCKET__READ);
4354}
4355
4356static int selinux_socket_getsockname(struct socket *sock)
4357{
4358 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4359}
4360
4361static int selinux_socket_getpeername(struct socket *sock)
4362{
4363 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4364}
4365
4366static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4367{
4368 int err;
4369
4370 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4371 if (err)
4372 return err;
4373
4374 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4375}
4376
4377static int selinux_socket_getsockopt(struct socket *sock, int level,
4378 int optname)
4379{
4380 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4381}
4382
4383static int selinux_socket_shutdown(struct socket *sock, int how)
4384{
4385 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4386}
4387
4388static int selinux_socket_unix_stream_connect(struct sock *sock,
4389 struct sock *other,
4390 struct sock *newsk)
4391{
4392 struct sk_security_struct *sksec_sock = sock->sk_security;
4393 struct sk_security_struct *sksec_other = other->sk_security;
4394 struct sk_security_struct *sksec_new = newsk->sk_security;
4395 struct common_audit_data ad;
4396 struct lsm_network_audit net = {0,};
4397 int err;
4398
4399 ad.type = LSM_AUDIT_DATA_NET;
4400 ad.u.net = &net;
4401 ad.u.net->sk = other;
4402
4403 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4404 sksec_other->sclass,
4405 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4406 if (err)
4407 return err;
4408
4409 /* server child socket */
4410 sksec_new->peer_sid = sksec_sock->sid;
4411 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4412 &sksec_new->sid);
4413 if (err)
4414 return err;
4415
4416 /* connecting socket */
4417 sksec_sock->peer_sid = sksec_new->sid;
4418
4419 return 0;
4420}
4421
4422static int selinux_socket_unix_may_send(struct socket *sock,
4423 struct socket *other)
4424{
4425 struct sk_security_struct *ssec = sock->sk->sk_security;
4426 struct sk_security_struct *osec = other->sk->sk_security;
4427 struct common_audit_data ad;
4428 struct lsm_network_audit net = {0,};
4429
4430 ad.type = LSM_AUDIT_DATA_NET;
4431 ad.u.net = &net;
4432 ad.u.net->sk = other->sk;
4433
4434 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4435 &ad);
4436}
4437
4438static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4439 char *addrp, u16 family, u32 peer_sid,
4440 struct common_audit_data *ad)
4441{
4442 int err;
4443 u32 if_sid;
4444 u32 node_sid;
4445
4446 err = sel_netif_sid(ns, ifindex, &if_sid);
4447 if (err)
4448 return err;
4449 err = avc_has_perm(peer_sid, if_sid,
4450 SECCLASS_NETIF, NETIF__INGRESS, ad);
4451 if (err)
4452 return err;
4453
4454 err = sel_netnode_sid(addrp, family, &node_sid);
4455 if (err)
4456 return err;
4457 return avc_has_perm(peer_sid, node_sid,
4458 SECCLASS_NODE, NODE__RECVFROM, ad);
4459}
4460
4461static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4462 u16 family)
4463{
4464 int err = 0;
4465 struct sk_security_struct *sksec = sk->sk_security;
4466 u32 sk_sid = sksec->sid;
4467 struct common_audit_data ad;
4468 struct lsm_network_audit net = {0,};
4469 char *addrp;
4470
4471 ad.type = LSM_AUDIT_DATA_NET;
4472 ad.u.net = &net;
4473 ad.u.net->netif = skb->skb_iif;
4474 ad.u.net->family = family;
4475 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4476 if (err)
4477 return err;
4478
4479 if (selinux_secmark_enabled()) {
4480 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4481 PACKET__RECV, &ad);
4482 if (err)
4483 return err;
4484 }
4485
4486 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4487 if (err)
4488 return err;
4489 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4490
4491 return err;
4492}
4493
4494static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4495{
4496 int err;
4497 struct sk_security_struct *sksec = sk->sk_security;
4498 u16 family = sk->sk_family;
4499 u32 sk_sid = sksec->sid;
4500 struct common_audit_data ad;
4501 struct lsm_network_audit net = {0,};
4502 char *addrp;
4503 u8 secmark_active;
4504 u8 peerlbl_active;
4505
4506 if (family != PF_INET && family != PF_INET6)
4507 return 0;
4508
4509 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4510 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4511 family = PF_INET;
4512
4513 /* If any sort of compatibility mode is enabled then handoff processing
4514 * to the selinux_sock_rcv_skb_compat() function to deal with the
4515 * special handling. We do this in an attempt to keep this function
4516 * as fast and as clean as possible. */
4517 if (!selinux_policycap_netpeer)
4518 return selinux_sock_rcv_skb_compat(sk, skb, family);
4519
4520 secmark_active = selinux_secmark_enabled();
4521 peerlbl_active = selinux_peerlbl_enabled();
4522 if (!secmark_active && !peerlbl_active)
4523 return 0;
4524
4525 ad.type = LSM_AUDIT_DATA_NET;
4526 ad.u.net = &net;
4527 ad.u.net->netif = skb->skb_iif;
4528 ad.u.net->family = family;
4529 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4530 if (err)
4531 return err;
4532
4533 if (peerlbl_active) {
4534 u32 peer_sid;
4535
4536 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4537 if (err)
4538 return err;
4539 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4540 addrp, family, peer_sid, &ad);
4541 if (err) {
4542 selinux_netlbl_err(skb, err, 0);
4543 return err;
4544 }
4545 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4546 PEER__RECV, &ad);
4547 if (err) {
4548 selinux_netlbl_err(skb, err, 0);
4549 return err;
4550 }
4551 }
4552
4553 if (secmark_active) {
4554 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4555 PACKET__RECV, &ad);
4556 if (err)
4557 return err;
4558 }
4559
4560 return err;
4561}
4562
4563static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4564 int __user *optlen, unsigned len)
4565{
4566 int err = 0;
4567 char *scontext;
4568 u32 scontext_len;
4569 struct sk_security_struct *sksec = sock->sk->sk_security;
4570 u32 peer_sid = SECSID_NULL;
4571
4572 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4573 sksec->sclass == SECCLASS_TCP_SOCKET)
4574 peer_sid = sksec->peer_sid;
4575 if (peer_sid == SECSID_NULL)
4576 return -ENOPROTOOPT;
4577
4578 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4579 if (err)
4580 return err;
4581
4582 if (scontext_len > len) {
4583 err = -ERANGE;
4584 goto out_len;
4585 }
4586
4587 if (copy_to_user(optval, scontext, scontext_len))
4588 err = -EFAULT;
4589
4590out_len:
4591 if (put_user(scontext_len, optlen))
4592 err = -EFAULT;
4593 kfree(scontext);
4594 return err;
4595}
4596
4597static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4598{
4599 u32 peer_secid = SECSID_NULL;
4600 u16 family;
4601
4602 if (skb && skb->protocol == htons(ETH_P_IP))
4603 family = PF_INET;
4604 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4605 family = PF_INET6;
4606 else if (sock)
4607 family = sock->sk->sk_family;
4608 else
4609 goto out;
4610
4611 if (sock && family == PF_UNIX)
4612 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4613 else if (skb)
4614 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4615
4616out:
4617 *secid = peer_secid;
4618 if (peer_secid == SECSID_NULL)
4619 return -EINVAL;
4620 return 0;
4621}
4622
4623static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4624{
4625 struct sk_security_struct *sksec;
4626
4627 sksec = kzalloc(sizeof(*sksec), priority);
4628 if (!sksec)
4629 return -ENOMEM;
4630
4631 sksec->peer_sid = SECINITSID_UNLABELED;
4632 sksec->sid = SECINITSID_UNLABELED;
4633 sksec->sclass = SECCLASS_SOCKET;
4634 selinux_netlbl_sk_security_reset(sksec);
4635 sk->sk_security = sksec;
4636
4637 return 0;
4638}
4639
4640static void selinux_sk_free_security(struct sock *sk)
4641{
4642 struct sk_security_struct *sksec = sk->sk_security;
4643
4644 sk->sk_security = NULL;
4645 selinux_netlbl_sk_security_free(sksec);
4646 kfree(sksec);
4647}
4648
4649static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4650{
4651 struct sk_security_struct *sksec = sk->sk_security;
4652 struct sk_security_struct *newsksec = newsk->sk_security;
4653
4654 newsksec->sid = sksec->sid;
4655 newsksec->peer_sid = sksec->peer_sid;
4656 newsksec->sclass = sksec->sclass;
4657
4658 selinux_netlbl_sk_security_reset(newsksec);
4659}
4660
4661static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4662{
4663 if (!sk)
4664 *secid = SECINITSID_ANY_SOCKET;
4665 else {
4666 struct sk_security_struct *sksec = sk->sk_security;
4667
4668 *secid = sksec->sid;
4669 }
4670}
4671
4672static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4673{
4674 struct inode_security_struct *isec =
4675 inode_security_novalidate(SOCK_INODE(parent));
4676 struct sk_security_struct *sksec = sk->sk_security;
4677
4678 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4679 sk->sk_family == PF_UNIX)
4680 isec->sid = sksec->sid;
4681 sksec->sclass = isec->sclass;
4682}
4683
4684static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4685 struct request_sock *req)
4686{
4687 struct sk_security_struct *sksec = sk->sk_security;
4688 int err;
4689 u16 family = req->rsk_ops->family;
4690 u32 connsid;
4691 u32 peersid;
4692
4693 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4694 if (err)
4695 return err;
4696 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4697 if (err)
4698 return err;
4699 req->secid = connsid;
4700 req->peer_secid = peersid;
4701
4702 return selinux_netlbl_inet_conn_request(req, family);
4703}
4704
4705static void selinux_inet_csk_clone(struct sock *newsk,
4706 const struct request_sock *req)
4707{
4708 struct sk_security_struct *newsksec = newsk->sk_security;
4709
4710 newsksec->sid = req->secid;
4711 newsksec->peer_sid = req->peer_secid;
4712 /* NOTE: Ideally, we should also get the isec->sid for the
4713 new socket in sync, but we don't have the isec available yet.
4714 So we will wait until sock_graft to do it, by which
4715 time it will have been created and available. */
4716
4717 /* We don't need to take any sort of lock here as we are the only
4718 * thread with access to newsksec */
4719 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4720}
4721
4722static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4723{
4724 u16 family = sk->sk_family;
4725 struct sk_security_struct *sksec = sk->sk_security;
4726
4727 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4728 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4729 family = PF_INET;
4730
4731 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4732}
4733
4734static int selinux_secmark_relabel_packet(u32 sid)
4735{
4736 const struct task_security_struct *__tsec;
4737 u32 tsid;
4738
4739 __tsec = current_security();
4740 tsid = __tsec->sid;
4741
4742 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4743}
4744
4745static void selinux_secmark_refcount_inc(void)
4746{
4747 atomic_inc(&selinux_secmark_refcount);
4748}
4749
4750static void selinux_secmark_refcount_dec(void)
4751{
4752 atomic_dec(&selinux_secmark_refcount);
4753}
4754
4755static void selinux_req_classify_flow(const struct request_sock *req,
4756 struct flowi *fl)
4757{
4758 fl->flowi_secid = req->secid;
4759}
4760
4761static int selinux_tun_dev_alloc_security(void **security)
4762{
4763 struct tun_security_struct *tunsec;
4764
4765 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4766 if (!tunsec)
4767 return -ENOMEM;
4768 tunsec->sid = current_sid();
4769
4770 *security = tunsec;
4771 return 0;
4772}
4773
4774static void selinux_tun_dev_free_security(void *security)
4775{
4776 kfree(security);
4777}
4778
4779static int selinux_tun_dev_create(void)
4780{
4781 u32 sid = current_sid();
4782
4783 /* we aren't taking into account the "sockcreate" SID since the socket
4784 * that is being created here is not a socket in the traditional sense,
4785 * instead it is a private sock, accessible only to the kernel, and
4786 * representing a wide range of network traffic spanning multiple
4787 * connections unlike traditional sockets - check the TUN driver to
4788 * get a better understanding of why this socket is special */
4789
4790 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4791 NULL);
4792}
4793
4794static int selinux_tun_dev_attach_queue(void *security)
4795{
4796 struct tun_security_struct *tunsec = security;
4797
4798 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4799 TUN_SOCKET__ATTACH_QUEUE, NULL);
4800}
4801
4802static int selinux_tun_dev_attach(struct sock *sk, void *security)
4803{
4804 struct tun_security_struct *tunsec = security;
4805 struct sk_security_struct *sksec = sk->sk_security;
4806
4807 /* we don't currently perform any NetLabel based labeling here and it
4808 * isn't clear that we would want to do so anyway; while we could apply
4809 * labeling without the support of the TUN user the resulting labeled
4810 * traffic from the other end of the connection would almost certainly
4811 * cause confusion to the TUN user that had no idea network labeling
4812 * protocols were being used */
4813
4814 sksec->sid = tunsec->sid;
4815 sksec->sclass = SECCLASS_TUN_SOCKET;
4816
4817 return 0;
4818}
4819
4820static int selinux_tun_dev_open(void *security)
4821{
4822 struct tun_security_struct *tunsec = security;
4823 u32 sid = current_sid();
4824 int err;
4825
4826 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4827 TUN_SOCKET__RELABELFROM, NULL);
4828 if (err)
4829 return err;
4830 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4831 TUN_SOCKET__RELABELTO, NULL);
4832 if (err)
4833 return err;
4834 tunsec->sid = sid;
4835
4836 return 0;
4837}
4838
4839static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4840{
4841 int err = 0;
4842 u32 perm;
4843 struct nlmsghdr *nlh;
4844 struct sk_security_struct *sksec = sk->sk_security;
4845
4846 if (skb->len < NLMSG_HDRLEN) {
4847 err = -EINVAL;
4848 goto out;
4849 }
4850 nlh = nlmsg_hdr(skb);
4851
4852 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4853 if (err) {
4854 if (err == -EINVAL) {
4855 pr_warn_ratelimited("SELinux: unrecognized netlink"
4856 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
4857 " pig=%d comm=%s\n",
4858 sk->sk_protocol, nlh->nlmsg_type,
4859 secclass_map[sksec->sclass - 1].name,
4860 task_pid_nr(current), current->comm);
4861 if (!selinux_enforcing || security_get_allow_unknown())
4862 err = 0;
4863 }
4864
4865 /* Ignore */
4866 if (err == -ENOENT)
4867 err = 0;
4868 goto out;
4869 }
4870
4871 err = sock_has_perm(current, sk, perm);
4872out:
4873 return err;
4874}
4875
4876#ifdef CONFIG_NETFILTER
4877
4878static unsigned int selinux_ip_forward(struct sk_buff *skb,
4879 const struct net_device *indev,
4880 u16 family)
4881{
4882 int err;
4883 char *addrp;
4884 u32 peer_sid;
4885 struct common_audit_data ad;
4886 struct lsm_network_audit net = {0,};
4887 u8 secmark_active;
4888 u8 netlbl_active;
4889 u8 peerlbl_active;
4890
4891 if (!selinux_policycap_netpeer)
4892 return NF_ACCEPT;
4893
4894 secmark_active = selinux_secmark_enabled();
4895 netlbl_active = netlbl_enabled();
4896 peerlbl_active = selinux_peerlbl_enabled();
4897 if (!secmark_active && !peerlbl_active)
4898 return NF_ACCEPT;
4899
4900 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4901 return NF_DROP;
4902
4903 ad.type = LSM_AUDIT_DATA_NET;
4904 ad.u.net = &net;
4905 ad.u.net->netif = indev->ifindex;
4906 ad.u.net->family = family;
4907 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4908 return NF_DROP;
4909
4910 if (peerlbl_active) {
4911 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4912 addrp, family, peer_sid, &ad);
4913 if (err) {
4914 selinux_netlbl_err(skb, err, 1);
4915 return NF_DROP;
4916 }
4917 }
4918
4919 if (secmark_active)
4920 if (avc_has_perm(peer_sid, skb->secmark,
4921 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4922 return NF_DROP;
4923
4924 if (netlbl_active)
4925 /* we do this in the FORWARD path and not the POST_ROUTING
4926 * path because we want to make sure we apply the necessary
4927 * labeling before IPsec is applied so we can leverage AH
4928 * protection */
4929 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4930 return NF_DROP;
4931
4932 return NF_ACCEPT;
4933}
4934
4935static unsigned int selinux_ipv4_forward(void *priv,
4936 struct sk_buff *skb,
4937 const struct nf_hook_state *state)
4938{
4939 return selinux_ip_forward(skb, state->in, PF_INET);
4940}
4941
4942#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4943static unsigned int selinux_ipv6_forward(void *priv,
4944 struct sk_buff *skb,
4945 const struct nf_hook_state *state)
4946{
4947 return selinux_ip_forward(skb, state->in, PF_INET6);
4948}
4949#endif /* IPV6 */
4950
4951static unsigned int selinux_ip_output(struct sk_buff *skb,
4952 u16 family)
4953{
4954 struct sock *sk;
4955 u32 sid;
4956
4957 if (!netlbl_enabled())
4958 return NF_ACCEPT;
4959
4960 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4961 * because we want to make sure we apply the necessary labeling
4962 * before IPsec is applied so we can leverage AH protection */
4963 sk = skb->sk;
4964 if (sk) {
4965 struct sk_security_struct *sksec;
4966
4967 if (sk_listener(sk))
4968 /* if the socket is the listening state then this
4969 * packet is a SYN-ACK packet which means it needs to
4970 * be labeled based on the connection/request_sock and
4971 * not the parent socket. unfortunately, we can't
4972 * lookup the request_sock yet as it isn't queued on
4973 * the parent socket until after the SYN-ACK is sent.
4974 * the "solution" is to simply pass the packet as-is
4975 * as any IP option based labeling should be copied
4976 * from the initial connection request (in the IP
4977 * layer). it is far from ideal, but until we get a
4978 * security label in the packet itself this is the
4979 * best we can do. */
4980 return NF_ACCEPT;
4981
4982 /* standard practice, label using the parent socket */
4983 sksec = sk->sk_security;
4984 sid = sksec->sid;
4985 } else
4986 sid = SECINITSID_KERNEL;
4987 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4988 return NF_DROP;
4989
4990 return NF_ACCEPT;
4991}
4992
4993static unsigned int selinux_ipv4_output(void *priv,
4994 struct sk_buff *skb,
4995 const struct nf_hook_state *state)
4996{
4997 return selinux_ip_output(skb, PF_INET);
4998}
4999
5000static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5001 int ifindex,
5002 u16 family)
5003{
5004 struct sock *sk = skb_to_full_sk(skb);
5005 struct sk_security_struct *sksec;
5006 struct common_audit_data ad;
5007 struct lsm_network_audit net = {0,};
5008 char *addrp;
5009 u8 proto;
5010
5011 if (sk == NULL)
5012 return NF_ACCEPT;
5013 sksec = sk->sk_security;
5014
5015 ad.type = LSM_AUDIT_DATA_NET;
5016 ad.u.net = &net;
5017 ad.u.net->netif = ifindex;
5018 ad.u.net->family = family;
5019 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5020 return NF_DROP;
5021
5022 if (selinux_secmark_enabled())
5023 if (avc_has_perm(sksec->sid, skb->secmark,
5024 SECCLASS_PACKET, PACKET__SEND, &ad))
5025 return NF_DROP_ERR(-ECONNREFUSED);
5026
5027 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5028 return NF_DROP_ERR(-ECONNREFUSED);
5029
5030 return NF_ACCEPT;
5031}
5032
5033static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5034 const struct net_device *outdev,
5035 u16 family)
5036{
5037 u32 secmark_perm;
5038 u32 peer_sid;
5039 int ifindex = outdev->ifindex;
5040 struct sock *sk;
5041 struct common_audit_data ad;
5042 struct lsm_network_audit net = {0,};
5043 char *addrp;
5044 u8 secmark_active;
5045 u8 peerlbl_active;
5046
5047 /* If any sort of compatibility mode is enabled then handoff processing
5048 * to the selinux_ip_postroute_compat() function to deal with the
5049 * special handling. We do this in an attempt to keep this function
5050 * as fast and as clean as possible. */
5051 if (!selinux_policycap_netpeer)
5052 return selinux_ip_postroute_compat(skb, ifindex, family);
5053
5054 secmark_active = selinux_secmark_enabled();
5055 peerlbl_active = selinux_peerlbl_enabled();
5056 if (!secmark_active && !peerlbl_active)
5057 return NF_ACCEPT;
5058
5059 sk = skb_to_full_sk(skb);
5060
5061#ifdef CONFIG_XFRM
5062 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5063 * packet transformation so allow the packet to pass without any checks
5064 * since we'll have another chance to perform access control checks
5065 * when the packet is on it's final way out.
5066 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5067 * is NULL, in this case go ahead and apply access control.
5068 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5069 * TCP listening state we cannot wait until the XFRM processing
5070 * is done as we will miss out on the SA label if we do;
5071 * unfortunately, this means more work, but it is only once per
5072 * connection. */
5073 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5074 !(sk && sk_listener(sk)))
5075 return NF_ACCEPT;
5076#endif
5077
5078 if (sk == NULL) {
5079 /* Without an associated socket the packet is either coming
5080 * from the kernel or it is being forwarded; check the packet
5081 * to determine which and if the packet is being forwarded
5082 * query the packet directly to determine the security label. */
5083 if (skb->skb_iif) {
5084 secmark_perm = PACKET__FORWARD_OUT;
5085 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5086 return NF_DROP;
5087 } else {
5088 secmark_perm = PACKET__SEND;
5089 peer_sid = SECINITSID_KERNEL;
5090 }
5091 } else if (sk_listener(sk)) {
5092 /* Locally generated packet but the associated socket is in the
5093 * listening state which means this is a SYN-ACK packet. In
5094 * this particular case the correct security label is assigned
5095 * to the connection/request_sock but unfortunately we can't
5096 * query the request_sock as it isn't queued on the parent
5097 * socket until after the SYN-ACK packet is sent; the only
5098 * viable choice is to regenerate the label like we do in
5099 * selinux_inet_conn_request(). See also selinux_ip_output()
5100 * for similar problems. */
5101 u32 skb_sid;
5102 struct sk_security_struct *sksec;
5103
5104 sksec = sk->sk_security;
5105 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5106 return NF_DROP;
5107 /* At this point, if the returned skb peerlbl is SECSID_NULL
5108 * and the packet has been through at least one XFRM
5109 * transformation then we must be dealing with the "final"
5110 * form of labeled IPsec packet; since we've already applied
5111 * all of our access controls on this packet we can safely
5112 * pass the packet. */
5113 if (skb_sid == SECSID_NULL) {
5114 switch (family) {
5115 case PF_INET:
5116 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5117 return NF_ACCEPT;
5118 break;
5119 case PF_INET6:
5120 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5121 return NF_ACCEPT;
5122 break;
5123 default:
5124 return NF_DROP_ERR(-ECONNREFUSED);
5125 }
5126 }
5127 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5128 return NF_DROP;
5129 secmark_perm = PACKET__SEND;
5130 } else {
5131 /* Locally generated packet, fetch the security label from the
5132 * associated socket. */
5133 struct sk_security_struct *sksec = sk->sk_security;
5134 peer_sid = sksec->sid;
5135 secmark_perm = PACKET__SEND;
5136 }
5137
5138 ad.type = LSM_AUDIT_DATA_NET;
5139 ad.u.net = &net;
5140 ad.u.net->netif = ifindex;
5141 ad.u.net->family = family;
5142 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5143 return NF_DROP;
5144
5145 if (secmark_active)
5146 if (avc_has_perm(peer_sid, skb->secmark,
5147 SECCLASS_PACKET, secmark_perm, &ad))
5148 return NF_DROP_ERR(-ECONNREFUSED);
5149
5150 if (peerlbl_active) {
5151 u32 if_sid;
5152 u32 node_sid;
5153
5154 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5155 return NF_DROP;
5156 if (avc_has_perm(peer_sid, if_sid,
5157 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5158 return NF_DROP_ERR(-ECONNREFUSED);
5159
5160 if (sel_netnode_sid(addrp, family, &node_sid))
5161 return NF_DROP;
5162 if (avc_has_perm(peer_sid, node_sid,
5163 SECCLASS_NODE, NODE__SENDTO, &ad))
5164 return NF_DROP_ERR(-ECONNREFUSED);
5165 }
5166
5167 return NF_ACCEPT;
5168}
5169
5170static unsigned int selinux_ipv4_postroute(void *priv,
5171 struct sk_buff *skb,
5172 const struct nf_hook_state *state)
5173{
5174 return selinux_ip_postroute(skb, state->out, PF_INET);
5175}
5176
5177#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5178static unsigned int selinux_ipv6_postroute(void *priv,
5179 struct sk_buff *skb,
5180 const struct nf_hook_state *state)
5181{
5182 return selinux_ip_postroute(skb, state->out, PF_INET6);
5183}
5184#endif /* IPV6 */
5185
5186#endif /* CONFIG_NETFILTER */
5187
5188static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5189{
5190 return selinux_nlmsg_perm(sk, skb);
5191}
5192
5193static int ipc_alloc_security(struct task_struct *task,
5194 struct kern_ipc_perm *perm,
5195 u16 sclass)
5196{
5197 struct ipc_security_struct *isec;
5198 u32 sid;
5199
5200 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5201 if (!isec)
5202 return -ENOMEM;
5203
5204 sid = task_sid(task);
5205 isec->sclass = sclass;
5206 isec->sid = sid;
5207 perm->security = isec;
5208
5209 return 0;
5210}
5211
5212static void ipc_free_security(struct kern_ipc_perm *perm)
5213{
5214 struct ipc_security_struct *isec = perm->security;
5215 perm->security = NULL;
5216 kfree(isec);
5217}
5218
5219static int msg_msg_alloc_security(struct msg_msg *msg)
5220{
5221 struct msg_security_struct *msec;
5222
5223 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5224 if (!msec)
5225 return -ENOMEM;
5226
5227 msec->sid = SECINITSID_UNLABELED;
5228 msg->security = msec;
5229
5230 return 0;
5231}
5232
5233static void msg_msg_free_security(struct msg_msg *msg)
5234{
5235 struct msg_security_struct *msec = msg->security;
5236
5237 msg->security = NULL;
5238 kfree(msec);
5239}
5240
5241static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5242 u32 perms)
5243{
5244 struct ipc_security_struct *isec;
5245 struct common_audit_data ad;
5246 u32 sid = current_sid();
5247
5248 isec = ipc_perms->security;
5249
5250 ad.type = LSM_AUDIT_DATA_IPC;
5251 ad.u.ipc_id = ipc_perms->key;
5252
5253 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5254}
5255
5256static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5257{
5258 return msg_msg_alloc_security(msg);
5259}
5260
5261static void selinux_msg_msg_free_security(struct msg_msg *msg)
5262{
5263 msg_msg_free_security(msg);
5264}
5265
5266/* message queue security operations */
5267static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5268{
5269 struct ipc_security_struct *isec;
5270 struct common_audit_data ad;
5271 u32 sid = current_sid();
5272 int rc;
5273
5274 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5275 if (rc)
5276 return rc;
5277
5278 isec = msq->q_perm.security;
5279
5280 ad.type = LSM_AUDIT_DATA_IPC;
5281 ad.u.ipc_id = msq->q_perm.key;
5282
5283 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5284 MSGQ__CREATE, &ad);
5285 if (rc) {
5286 ipc_free_security(&msq->q_perm);
5287 return rc;
5288 }
5289 return 0;
5290}
5291
5292static void selinux_msg_queue_free_security(struct msg_queue *msq)
5293{
5294 ipc_free_security(&msq->q_perm);
5295}
5296
5297static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5298{
5299 struct ipc_security_struct *isec;
5300 struct common_audit_data ad;
5301 u32 sid = current_sid();
5302
5303 isec = msq->q_perm.security;
5304
5305 ad.type = LSM_AUDIT_DATA_IPC;
5306 ad.u.ipc_id = msq->q_perm.key;
5307
5308 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5309 MSGQ__ASSOCIATE, &ad);
5310}
5311
5312static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5313{
5314 int err;
5315 int perms;
5316
5317 switch (cmd) {
5318 case IPC_INFO:
5319 case MSG_INFO:
5320 /* No specific object, just general system-wide information. */
5321 return task_has_system(current, SYSTEM__IPC_INFO);
5322 case IPC_STAT:
5323 case MSG_STAT:
5324 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5325 break;
5326 case IPC_SET:
5327 perms = MSGQ__SETATTR;
5328 break;
5329 case IPC_RMID:
5330 perms = MSGQ__DESTROY;
5331 break;
5332 default:
5333 return 0;
5334 }
5335
5336 err = ipc_has_perm(&msq->q_perm, perms);
5337 return err;
5338}
5339
5340static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5341{
5342 struct ipc_security_struct *isec;
5343 struct msg_security_struct *msec;
5344 struct common_audit_data ad;
5345 u32 sid = current_sid();
5346 int rc;
5347
5348 isec = msq->q_perm.security;
5349 msec = msg->security;
5350
5351 /*
5352 * First time through, need to assign label to the message
5353 */
5354 if (msec->sid == SECINITSID_UNLABELED) {
5355 /*
5356 * Compute new sid based on current process and
5357 * message queue this message will be stored in
5358 */
5359 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5360 NULL, &msec->sid);
5361 if (rc)
5362 return rc;
5363 }
5364
5365 ad.type = LSM_AUDIT_DATA_IPC;
5366 ad.u.ipc_id = msq->q_perm.key;
5367
5368 /* Can this process write to the queue? */
5369 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5370 MSGQ__WRITE, &ad);
5371 if (!rc)
5372 /* Can this process send the message */
5373 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5374 MSG__SEND, &ad);
5375 if (!rc)
5376 /* Can the message be put in the queue? */
5377 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5378 MSGQ__ENQUEUE, &ad);
5379
5380 return rc;
5381}
5382
5383static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5384 struct task_struct *target,
5385 long type, int mode)
5386{
5387 struct ipc_security_struct *isec;
5388 struct msg_security_struct *msec;
5389 struct common_audit_data ad;
5390 u32 sid = task_sid(target);
5391 int rc;
5392
5393 isec = msq->q_perm.security;
5394 msec = msg->security;
5395
5396 ad.type = LSM_AUDIT_DATA_IPC;
5397 ad.u.ipc_id = msq->q_perm.key;
5398
5399 rc = avc_has_perm(sid, isec->sid,
5400 SECCLASS_MSGQ, MSGQ__READ, &ad);
5401 if (!rc)
5402 rc = avc_has_perm(sid, msec->sid,
5403 SECCLASS_MSG, MSG__RECEIVE, &ad);
5404 return rc;
5405}
5406
5407/* Shared Memory security operations */
5408static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5409{
5410 struct ipc_security_struct *isec;
5411 struct common_audit_data ad;
5412 u32 sid = current_sid();
5413 int rc;
5414
5415 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5416 if (rc)
5417 return rc;
5418
5419 isec = shp->shm_perm.security;
5420
5421 ad.type = LSM_AUDIT_DATA_IPC;
5422 ad.u.ipc_id = shp->shm_perm.key;
5423
5424 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5425 SHM__CREATE, &ad);
5426 if (rc) {
5427 ipc_free_security(&shp->shm_perm);
5428 return rc;
5429 }
5430 return 0;
5431}
5432
5433static void selinux_shm_free_security(struct shmid_kernel *shp)
5434{
5435 ipc_free_security(&shp->shm_perm);
5436}
5437
5438static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5439{
5440 struct ipc_security_struct *isec;
5441 struct common_audit_data ad;
5442 u32 sid = current_sid();
5443
5444 isec = shp->shm_perm.security;
5445
5446 ad.type = LSM_AUDIT_DATA_IPC;
5447 ad.u.ipc_id = shp->shm_perm.key;
5448
5449 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5450 SHM__ASSOCIATE, &ad);
5451}
5452
5453/* Note, at this point, shp is locked down */
5454static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5455{
5456 int perms;
5457 int err;
5458
5459 switch (cmd) {
5460 case IPC_INFO:
5461 case SHM_INFO:
5462 /* No specific object, just general system-wide information. */
5463 return task_has_system(current, SYSTEM__IPC_INFO);
5464 case IPC_STAT:
5465 case SHM_STAT:
5466 perms = SHM__GETATTR | SHM__ASSOCIATE;
5467 break;
5468 case IPC_SET:
5469 perms = SHM__SETATTR;
5470 break;
5471 case SHM_LOCK:
5472 case SHM_UNLOCK:
5473 perms = SHM__LOCK;
5474 break;
5475 case IPC_RMID:
5476 perms = SHM__DESTROY;
5477 break;
5478 default:
5479 return 0;
5480 }
5481
5482 err = ipc_has_perm(&shp->shm_perm, perms);
5483 return err;
5484}
5485
5486static int selinux_shm_shmat(struct shmid_kernel *shp,
5487 char __user *shmaddr, int shmflg)
5488{
5489 u32 perms;
5490
5491 if (shmflg & SHM_RDONLY)
5492 perms = SHM__READ;
5493 else
5494 perms = SHM__READ | SHM__WRITE;
5495
5496 return ipc_has_perm(&shp->shm_perm, perms);
5497}
5498
5499/* Semaphore security operations */
5500static int selinux_sem_alloc_security(struct sem_array *sma)
5501{
5502 struct ipc_security_struct *isec;
5503 struct common_audit_data ad;
5504 u32 sid = current_sid();
5505 int rc;
5506
5507 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5508 if (rc)
5509 return rc;
5510
5511 isec = sma->sem_perm.security;
5512
5513 ad.type = LSM_AUDIT_DATA_IPC;
5514 ad.u.ipc_id = sma->sem_perm.key;
5515
5516 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5517 SEM__CREATE, &ad);
5518 if (rc) {
5519 ipc_free_security(&sma->sem_perm);
5520 return rc;
5521 }
5522 return 0;
5523}
5524
5525static void selinux_sem_free_security(struct sem_array *sma)
5526{
5527 ipc_free_security(&sma->sem_perm);
5528}
5529
5530static int selinux_sem_associate(struct sem_array *sma, int semflg)
5531{
5532 struct ipc_security_struct *isec;
5533 struct common_audit_data ad;
5534 u32 sid = current_sid();
5535
5536 isec = sma->sem_perm.security;
5537
5538 ad.type = LSM_AUDIT_DATA_IPC;
5539 ad.u.ipc_id = sma->sem_perm.key;
5540
5541 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5542 SEM__ASSOCIATE, &ad);
5543}
5544
5545/* Note, at this point, sma is locked down */
5546static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5547{
5548 int err;
5549 u32 perms;
5550
5551 switch (cmd) {
5552 case IPC_INFO:
5553 case SEM_INFO:
5554 /* No specific object, just general system-wide information. */
5555 return task_has_system(current, SYSTEM__IPC_INFO);
5556 case GETPID:
5557 case GETNCNT:
5558 case GETZCNT:
5559 perms = SEM__GETATTR;
5560 break;
5561 case GETVAL:
5562 case GETALL:
5563 perms = SEM__READ;
5564 break;
5565 case SETVAL:
5566 case SETALL:
5567 perms = SEM__WRITE;
5568 break;
5569 case IPC_RMID:
5570 perms = SEM__DESTROY;
5571 break;
5572 case IPC_SET:
5573 perms = SEM__SETATTR;
5574 break;
5575 case IPC_STAT:
5576 case SEM_STAT:
5577 perms = SEM__GETATTR | SEM__ASSOCIATE;
5578 break;
5579 default:
5580 return 0;
5581 }
5582
5583 err = ipc_has_perm(&sma->sem_perm, perms);
5584 return err;
5585}
5586
5587static int selinux_sem_semop(struct sem_array *sma,
5588 struct sembuf *sops, unsigned nsops, int alter)
5589{
5590 u32 perms;
5591
5592 if (alter)
5593 perms = SEM__READ | SEM__WRITE;
5594 else
5595 perms = SEM__READ;
5596
5597 return ipc_has_perm(&sma->sem_perm, perms);
5598}
5599
5600static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5601{
5602 u32 av = 0;
5603
5604 av = 0;
5605 if (flag & S_IRUGO)
5606 av |= IPC__UNIX_READ;
5607 if (flag & S_IWUGO)
5608 av |= IPC__UNIX_WRITE;
5609
5610 if (av == 0)
5611 return 0;
5612
5613 return ipc_has_perm(ipcp, av);
5614}
5615
5616static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5617{
5618 struct ipc_security_struct *isec = ipcp->security;
5619 *secid = isec->sid;
5620}
5621
5622static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5623{
5624 if (inode)
5625 inode_doinit_with_dentry(inode, dentry);
5626}
5627
5628static int selinux_getprocattr(struct task_struct *p,
5629 char *name, char **value)
5630{
5631 const struct task_security_struct *__tsec;
5632 u32 sid;
5633 int error;
5634 unsigned len;
5635
5636 if (current != p) {
5637 error = current_has_perm(p, PROCESS__GETATTR);
5638 if (error)
5639 return error;
5640 }
5641
5642 rcu_read_lock();
5643 __tsec = __task_cred(p)->security;
5644
5645 if (!strcmp(name, "current"))
5646 sid = __tsec->sid;
5647 else if (!strcmp(name, "prev"))
5648 sid = __tsec->osid;
5649 else if (!strcmp(name, "exec"))
5650 sid = __tsec->exec_sid;
5651 else if (!strcmp(name, "fscreate"))
5652 sid = __tsec->create_sid;
5653 else if (!strcmp(name, "keycreate"))
5654 sid = __tsec->keycreate_sid;
5655 else if (!strcmp(name, "sockcreate"))
5656 sid = __tsec->sockcreate_sid;
5657 else
5658 goto invalid;
5659 rcu_read_unlock();
5660
5661 if (!sid)
5662 return 0;
5663
5664 error = security_sid_to_context(sid, value, &len);
5665 if (error)
5666 return error;
5667 return len;
5668
5669invalid:
5670 rcu_read_unlock();
5671 return -EINVAL;
5672}
5673
5674static int selinux_setprocattr(struct task_struct *p,
5675 char *name, void *value, size_t size)
5676{
5677 struct task_security_struct *tsec;
5678 struct task_struct *tracer;
5679 struct cred *new;
5680 u32 sid = 0, ptsid;
5681 int error;
5682 char *str = value;
5683
5684 if (current != p) {
5685 /* SELinux only allows a process to change its own
5686 security attributes. */
5687 return -EACCES;
5688 }
5689
5690 /*
5691 * Basic control over ability to set these attributes at all.
5692 * current == p, but we'll pass them separately in case the
5693 * above restriction is ever removed.
5694 */
5695 if (!strcmp(name, "exec"))
5696 error = current_has_perm(p, PROCESS__SETEXEC);
5697 else if (!strcmp(name, "fscreate"))
5698 error = current_has_perm(p, PROCESS__SETFSCREATE);
5699 else if (!strcmp(name, "keycreate"))
5700 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5701 else if (!strcmp(name, "sockcreate"))
5702 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5703 else if (!strcmp(name, "current"))
5704 error = current_has_perm(p, PROCESS__SETCURRENT);
5705 else
5706 error = -EINVAL;
5707 if (error)
5708 return error;
5709
5710 /* Obtain a SID for the context, if one was specified. */
5711 if (size && str[1] && str[1] != '\n') {
5712 if (str[size-1] == '\n') {
5713 str[size-1] = 0;
5714 size--;
5715 }
5716 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5717 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5718 if (!capable(CAP_MAC_ADMIN)) {
5719 struct audit_buffer *ab;
5720 size_t audit_size;
5721
5722 /* We strip a nul only if it is at the end, otherwise the
5723 * context contains a nul and we should audit that */
5724 if (str[size - 1] == '\0')
5725 audit_size = size - 1;
5726 else
5727 audit_size = size;
5728 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5729 audit_log_format(ab, "op=fscreate invalid_context=");
5730 audit_log_n_untrustedstring(ab, value, audit_size);
5731 audit_log_end(ab);
5732
5733 return error;
5734 }
5735 error = security_context_to_sid_force(value, size,
5736 &sid);
5737 }
5738 if (error)
5739 return error;
5740 }
5741
5742 new = prepare_creds();
5743 if (!new)
5744 return -ENOMEM;
5745
5746 /* Permission checking based on the specified context is
5747 performed during the actual operation (execve,
5748 open/mkdir/...), when we know the full context of the
5749 operation. See selinux_bprm_set_creds for the execve
5750 checks and may_create for the file creation checks. The
5751 operation will then fail if the context is not permitted. */
5752 tsec = new->security;
5753 if (!strcmp(name, "exec")) {
5754 tsec->exec_sid = sid;
5755 } else if (!strcmp(name, "fscreate")) {
5756 tsec->create_sid = sid;
5757 } else if (!strcmp(name, "keycreate")) {
5758 error = may_create_key(sid, p);
5759 if (error)
5760 goto abort_change;
5761 tsec->keycreate_sid = sid;
5762 } else if (!strcmp(name, "sockcreate")) {
5763 tsec->sockcreate_sid = sid;
5764 } else if (!strcmp(name, "current")) {
5765 error = -EINVAL;
5766 if (sid == 0)
5767 goto abort_change;
5768
5769 /* Only allow single threaded processes to change context */
5770 error = -EPERM;
5771 if (!current_is_single_threaded()) {
5772 error = security_bounded_transition(tsec->sid, sid);
5773 if (error)
5774 goto abort_change;
5775 }
5776
5777 /* Check permissions for the transition. */
5778 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5779 PROCESS__DYNTRANSITION, NULL);
5780 if (error)
5781 goto abort_change;
5782
5783 /* Check for ptracing, and update the task SID if ok.
5784 Otherwise, leave SID unchanged and fail. */
5785 ptsid = 0;
5786 rcu_read_lock();
5787 tracer = ptrace_parent(p);
5788 if (tracer)
5789 ptsid = task_sid(tracer);
5790 rcu_read_unlock();
5791
5792 if (tracer) {
5793 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5794 PROCESS__PTRACE, NULL);
5795 if (error)
5796 goto abort_change;
5797 }
5798
5799 tsec->sid = sid;
5800 } else {
5801 error = -EINVAL;
5802 goto abort_change;
5803 }
5804
5805 commit_creds(new);
5806 return size;
5807
5808abort_change:
5809 abort_creds(new);
5810 return error;
5811}
5812
5813static int selinux_ismaclabel(const char *name)
5814{
5815 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5816}
5817
5818static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5819{
5820 return security_sid_to_context(secid, secdata, seclen);
5821}
5822
5823static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5824{
5825 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5826}
5827
5828static void selinux_release_secctx(char *secdata, u32 seclen)
5829{
5830 kfree(secdata);
5831}
5832
5833static void selinux_inode_invalidate_secctx(struct inode *inode)
5834{
5835 struct inode_security_struct *isec = inode->i_security;
5836
5837 mutex_lock(&isec->lock);
5838 isec->initialized = LABEL_INVALID;
5839 mutex_unlock(&isec->lock);
5840}
5841
5842/*
5843 * called with inode->i_mutex locked
5844 */
5845static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5846{
5847 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5848}
5849
5850/*
5851 * called with inode->i_mutex locked
5852 */
5853static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5854{
5855 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5856}
5857
5858static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5859{
5860 int len = 0;
5861 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5862 ctx, true);
5863 if (len < 0)
5864 return len;
5865 *ctxlen = len;
5866 return 0;
5867}
5868#ifdef CONFIG_KEYS
5869
5870static int selinux_key_alloc(struct key *k, const struct cred *cred,
5871 unsigned long flags)
5872{
5873 const struct task_security_struct *tsec;
5874 struct key_security_struct *ksec;
5875
5876 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5877 if (!ksec)
5878 return -ENOMEM;
5879
5880 tsec = cred->security;
5881 if (tsec->keycreate_sid)
5882 ksec->sid = tsec->keycreate_sid;
5883 else
5884 ksec->sid = tsec->sid;
5885
5886 k->security = ksec;
5887 return 0;
5888}
5889
5890static void selinux_key_free(struct key *k)
5891{
5892 struct key_security_struct *ksec = k->security;
5893
5894 k->security = NULL;
5895 kfree(ksec);
5896}
5897
5898static int selinux_key_permission(key_ref_t key_ref,
5899 const struct cred *cred,
5900 unsigned perm)
5901{
5902 struct key *key;
5903 struct key_security_struct *ksec;
5904 u32 sid;
5905
5906 /* if no specific permissions are requested, we skip the
5907 permission check. No serious, additional covert channels
5908 appear to be created. */
5909 if (perm == 0)
5910 return 0;
5911
5912 sid = cred_sid(cred);
5913
5914 key = key_ref_to_ptr(key_ref);
5915 ksec = key->security;
5916
5917 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5918}
5919
5920static int selinux_key_getsecurity(struct key *key, char **_buffer)
5921{
5922 struct key_security_struct *ksec = key->security;
5923 char *context = NULL;
5924 unsigned len;
5925 int rc;
5926
5927 rc = security_sid_to_context(ksec->sid, &context, &len);
5928 if (!rc)
5929 rc = len;
5930 *_buffer = context;
5931 return rc;
5932}
5933
5934#endif
5935
5936static struct security_hook_list selinux_hooks[] = {
5937 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5938 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5939 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5940 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5941
5942 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5943 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5944 LSM_HOOK_INIT(capget, selinux_capget),
5945 LSM_HOOK_INIT(capset, selinux_capset),
5946 LSM_HOOK_INIT(capable, selinux_capable),
5947 LSM_HOOK_INIT(quotactl, selinux_quotactl),
5948 LSM_HOOK_INIT(quota_on, selinux_quota_on),
5949 LSM_HOOK_INIT(syslog, selinux_syslog),
5950 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5951
5952 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5953
5954 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5955 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5956 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5957 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5958
5959 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5960 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5961 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5962 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5963 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5964 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5965 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5966 LSM_HOOK_INIT(sb_mount, selinux_mount),
5967 LSM_HOOK_INIT(sb_umount, selinux_umount),
5968 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5969 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5970 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
5971
5972 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
5973
5974 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5975 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5976 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
5977 LSM_HOOK_INIT(inode_create, selinux_inode_create),
5978 LSM_HOOK_INIT(inode_link, selinux_inode_link),
5979 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5980 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5981 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5982 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5983 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5984 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5985 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5986 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5987 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5988 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5989 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5990 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5991 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5992 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5993 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5994 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5995 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5996 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5997 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5998 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
5999
6000 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6001 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6002 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6003 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6004 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6005 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6006 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6007 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6008 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6009 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6010 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6011 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6012
6013 LSM_HOOK_INIT(file_open, selinux_file_open),
6014
6015 LSM_HOOK_INIT(task_create, selinux_task_create),
6016 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6017 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6018 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6019 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6020 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6021 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6022 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6023 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6024 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6025 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6026 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6027 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6028 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6029 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6030 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6031 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6032 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6033 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6034 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6035 LSM_HOOK_INIT(task_wait, selinux_task_wait),
6036 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6037
6038 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6039 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6040
6041 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6042 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6043
6044 LSM_HOOK_INIT(msg_queue_alloc_security,
6045 selinux_msg_queue_alloc_security),
6046 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6047 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6048 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6049 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6050 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6051
6052 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6053 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6054 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6055 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6056 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6057
6058 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6059 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6060 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6061 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6062 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6063
6064 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6065
6066 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6067 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6068
6069 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6070 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6071 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6072 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6073 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6074 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6075 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6076 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6077
6078 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6079 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6080
6081 LSM_HOOK_INIT(socket_create, selinux_socket_create),
6082 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6083 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6084 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6085 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6086 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6087 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6088 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6089 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6090 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6091 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6092 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6093 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6094 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6095 LSM_HOOK_INIT(socket_getpeersec_stream,
6096 selinux_socket_getpeersec_stream),
6097 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6098 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6099 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6100 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6101 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6102 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6103 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6104 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6105 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6106 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6107 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6108 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6109 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6110 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6111 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6112 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6113 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6114 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6115 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6116
6117#ifdef CONFIG_SECURITY_NETWORK_XFRM
6118 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6119 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6120 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6121 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6122 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6123 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6124 selinux_xfrm_state_alloc_acquire),
6125 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6126 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6127 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6128 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6129 selinux_xfrm_state_pol_flow_match),
6130 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6131#endif
6132
6133#ifdef CONFIG_KEYS
6134 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6135 LSM_HOOK_INIT(key_free, selinux_key_free),
6136 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6137 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6138#endif
6139
6140#ifdef CONFIG_AUDIT
6141 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6142 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6143 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6144 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6145#endif
6146};
6147
6148static __init int selinux_init(void)
6149{
6150 if (!security_module_enable("selinux")) {
6151 selinux_enabled = 0;
6152 return 0;
6153 }
6154
6155 if (!selinux_enabled) {
6156 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6157 return 0;
6158 }
6159
6160 printk(KERN_INFO "SELinux: Initializing.\n");
6161
6162 /* Set the security state for the initial task. */
6163 cred_init_security();
6164
6165 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6166
6167 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6168 sizeof(struct inode_security_struct),
6169 0, SLAB_PANIC, NULL);
6170 file_security_cache = kmem_cache_create("selinux_file_security",
6171 sizeof(struct file_security_struct),
6172 0, SLAB_PANIC, NULL);
6173 avc_init();
6174
6175 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6176
6177 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6178 panic("SELinux: Unable to register AVC netcache callback\n");
6179
6180 if (selinux_enforcing)
6181 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6182 else
6183 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6184
6185 return 0;
6186}
6187
6188static void delayed_superblock_init(struct super_block *sb, void *unused)
6189{
6190 superblock_doinit(sb, NULL);
6191}
6192
6193void selinux_complete_init(void)
6194{
6195 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6196
6197 /* Set up any superblocks initialized prior to the policy load. */
6198 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6199 iterate_supers(delayed_superblock_init, NULL);
6200}
6201
6202/* SELinux requires early initialization in order to label
6203 all processes and objects when they are created. */
6204security_initcall(selinux_init);
6205
6206#if defined(CONFIG_NETFILTER)
6207
6208static struct nf_hook_ops selinux_nf_ops[] = {
6209 {
6210 .hook = selinux_ipv4_postroute,
6211 .pf = NFPROTO_IPV4,
6212 .hooknum = NF_INET_POST_ROUTING,
6213 .priority = NF_IP_PRI_SELINUX_LAST,
6214 },
6215 {
6216 .hook = selinux_ipv4_forward,
6217 .pf = NFPROTO_IPV4,
6218 .hooknum = NF_INET_FORWARD,
6219 .priority = NF_IP_PRI_SELINUX_FIRST,
6220 },
6221 {
6222 .hook = selinux_ipv4_output,
6223 .pf = NFPROTO_IPV4,
6224 .hooknum = NF_INET_LOCAL_OUT,
6225 .priority = NF_IP_PRI_SELINUX_FIRST,
6226 },
6227#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6228 {
6229 .hook = selinux_ipv6_postroute,
6230 .pf = NFPROTO_IPV6,
6231 .hooknum = NF_INET_POST_ROUTING,
6232 .priority = NF_IP6_PRI_SELINUX_LAST,
6233 },
6234 {
6235 .hook = selinux_ipv6_forward,
6236 .pf = NFPROTO_IPV6,
6237 .hooknum = NF_INET_FORWARD,
6238 .priority = NF_IP6_PRI_SELINUX_FIRST,
6239 },
6240#endif /* IPV6 */
6241};
6242
6243static int __init selinux_nf_ip_init(void)
6244{
6245 int err;
6246
6247 if (!selinux_enabled)
6248 return 0;
6249
6250 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6251
6252 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6253 if (err)
6254 panic("SELinux: nf_register_hooks: error %d\n", err);
6255
6256 return 0;
6257}
6258
6259__initcall(selinux_nf_ip_init);
6260
6261#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6262static void selinux_nf_ip_exit(void)
6263{
6264 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6265
6266 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6267}
6268#endif
6269
6270#else /* CONFIG_NETFILTER */
6271
6272#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6273#define selinux_nf_ip_exit()
6274#endif
6275
6276#endif /* CONFIG_NETFILTER */
6277
6278#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6279static int selinux_disabled;
6280
6281int selinux_disable(void)
6282{
6283 if (ss_initialized) {
6284 /* Not permitted after initial policy load. */
6285 return -EINVAL;
6286 }
6287
6288 if (selinux_disabled) {
6289 /* Only do this once. */
6290 return -EINVAL;
6291 }
6292
6293 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6294
6295 selinux_disabled = 1;
6296 selinux_enabled = 0;
6297
6298 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6299
6300 /* Try to destroy the avc node cache */
6301 avc_disable();
6302
6303 /* Unregister netfilter hooks. */
6304 selinux_nf_ip_exit();
6305
6306 /* Unregister selinuxfs. */
6307 exit_sel_fs();
6308
6309 return 0;
6310}
6311#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/tracehook.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <linux/bpf.h>
89#include <linux/kernfs.h>
90#include <linux/stringhash.h> /* for hashlen_string() */
91#include <uapi/linux/mount.h>
92#include <linux/fsnotify.h>
93#include <linux/fanotify.h>
94
95#include "avc.h"
96#include "objsec.h"
97#include "netif.h"
98#include "netnode.h"
99#include "netport.h"
100#include "ibpkey.h"
101#include "xfrm.h"
102#include "netlabel.h"
103#include "audit.h"
104#include "avc_ss.h"
105
106struct selinux_state selinux_state;
107
108/* SECMARK reference count */
109static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110
111#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112static int selinux_enforcing_boot __initdata;
113
114static int __init enforcing_setup(char *str)
115{
116 unsigned long enforcing;
117 if (!kstrtoul(str, 0, &enforcing))
118 selinux_enforcing_boot = enforcing ? 1 : 0;
119 return 1;
120}
121__setup("enforcing=", enforcing_setup);
122#else
123#define selinux_enforcing_boot 1
124#endif
125
126int selinux_enabled_boot __initdata = 1;
127#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128static int __init selinux_enabled_setup(char *str)
129{
130 unsigned long enabled;
131 if (!kstrtoul(str, 0, &enabled))
132 selinux_enabled_boot = enabled ? 1 : 0;
133 return 1;
134}
135__setup("selinux=", selinux_enabled_setup);
136#endif
137
138static unsigned int selinux_checkreqprot_boot =
139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141static int __init checkreqprot_setup(char *str)
142{
143 unsigned long checkreqprot;
144
145 if (!kstrtoul(str, 0, &checkreqprot)) {
146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 if (checkreqprot)
148 pr_warn("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n");
149 }
150 return 1;
151}
152__setup("checkreqprot=", checkreqprot_setup);
153
154/**
155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156 *
157 * Description:
158 * This function checks the SECMARK reference counter to see if any SECMARK
159 * targets are currently configured, if the reference counter is greater than
160 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
161 * enabled, false (0) if SECMARK is disabled. If the always_check_network
162 * policy capability is enabled, SECMARK is always considered enabled.
163 *
164 */
165static int selinux_secmark_enabled(void)
166{
167 return (selinux_policycap_alwaysnetwork() ||
168 atomic_read(&selinux_secmark_refcount));
169}
170
171/**
172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173 *
174 * Description:
175 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
176 * (1) if any are enabled or false (0) if neither are enabled. If the
177 * always_check_network policy capability is enabled, peer labeling
178 * is always considered enabled.
179 *
180 */
181static int selinux_peerlbl_enabled(void)
182{
183 return (selinux_policycap_alwaysnetwork() ||
184 netlbl_enabled() || selinux_xfrm_enabled());
185}
186
187static int selinux_netcache_avc_callback(u32 event)
188{
189 if (event == AVC_CALLBACK_RESET) {
190 sel_netif_flush();
191 sel_netnode_flush();
192 sel_netport_flush();
193 synchronize_net();
194 }
195 return 0;
196}
197
198static int selinux_lsm_notifier_avc_callback(u32 event)
199{
200 if (event == AVC_CALLBACK_RESET) {
201 sel_ib_pkey_flush();
202 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 }
204
205 return 0;
206}
207
208/*
209 * initialise the security for the init task
210 */
211static void cred_init_security(void)
212{
213 struct cred *cred = (struct cred *) current->real_cred;
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(cred);
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218}
219
220/*
221 * get the security ID of a set of credentials
222 */
223static inline u32 cred_sid(const struct cred *cred)
224{
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229}
230
231/*
232 * get the objective security ID of a task
233 */
234static inline u32 task_sid(const struct task_struct *task)
235{
236 u32 sid;
237
238 rcu_read_lock();
239 sid = cred_sid(__task_cred(task));
240 rcu_read_unlock();
241 return sid;
242}
243
244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
245
246/*
247 * Try reloading inode security labels that have been marked as invalid. The
248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
249 * allowed; when set to false, returns -ECHILD when the label is
250 * invalid. The @dentry parameter should be set to a dentry of the inode.
251 */
252static int __inode_security_revalidate(struct inode *inode,
253 struct dentry *dentry,
254 bool may_sleep)
255{
256 struct inode_security_struct *isec = selinux_inode(inode);
257
258 might_sleep_if(may_sleep);
259
260 if (selinux_initialized(&selinux_state) &&
261 isec->initialized != LABEL_INITIALIZED) {
262 if (!may_sleep)
263 return -ECHILD;
264
265 /*
266 * Try reloading the inode security label. This will fail if
267 * @opt_dentry is NULL and no dentry for this inode can be
268 * found; in that case, continue using the old label.
269 */
270 inode_doinit_with_dentry(inode, dentry);
271 }
272 return 0;
273}
274
275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
276{
277 return selinux_inode(inode);
278}
279
280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
281{
282 int error;
283
284 error = __inode_security_revalidate(inode, NULL, !rcu);
285 if (error)
286 return ERR_PTR(error);
287 return selinux_inode(inode);
288}
289
290/*
291 * Get the security label of an inode.
292 */
293static struct inode_security_struct *inode_security(struct inode *inode)
294{
295 __inode_security_revalidate(inode, NULL, true);
296 return selinux_inode(inode);
297}
298
299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
300{
301 struct inode *inode = d_backing_inode(dentry);
302
303 return selinux_inode(inode);
304}
305
306/*
307 * Get the security label of a dentry's backing inode.
308 */
309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
310{
311 struct inode *inode = d_backing_inode(dentry);
312
313 __inode_security_revalidate(inode, dentry, true);
314 return selinux_inode(inode);
315}
316
317static void inode_free_security(struct inode *inode)
318{
319 struct inode_security_struct *isec = selinux_inode(inode);
320 struct superblock_security_struct *sbsec;
321
322 if (!isec)
323 return;
324 sbsec = inode->i_sb->s_security;
325 /*
326 * As not all inode security structures are in a list, we check for
327 * empty list outside of the lock to make sure that we won't waste
328 * time taking a lock doing nothing.
329 *
330 * The list_del_init() function can be safely called more than once.
331 * It should not be possible for this function to be called with
332 * concurrent list_add(), but for better safety against future changes
333 * in the code, we use list_empty_careful() here.
334 */
335 if (!list_empty_careful(&isec->list)) {
336 spin_lock(&sbsec->isec_lock);
337 list_del_init(&isec->list);
338 spin_unlock(&sbsec->isec_lock);
339 }
340}
341
342static void superblock_free_security(struct super_block *sb)
343{
344 struct superblock_security_struct *sbsec = sb->s_security;
345 sb->s_security = NULL;
346 kfree(sbsec);
347}
348
349struct selinux_mnt_opts {
350 const char *fscontext, *context, *rootcontext, *defcontext;
351};
352
353static void selinux_free_mnt_opts(void *mnt_opts)
354{
355 struct selinux_mnt_opts *opts = mnt_opts;
356 kfree(opts->fscontext);
357 kfree(opts->context);
358 kfree(opts->rootcontext);
359 kfree(opts->defcontext);
360 kfree(opts);
361}
362
363enum {
364 Opt_error = -1,
365 Opt_context = 0,
366 Opt_defcontext = 1,
367 Opt_fscontext = 2,
368 Opt_rootcontext = 3,
369 Opt_seclabel = 4,
370};
371
372#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
373static struct {
374 const char *name;
375 int len;
376 int opt;
377 bool has_arg;
378} tokens[] = {
379 A(context, true),
380 A(fscontext, true),
381 A(defcontext, true),
382 A(rootcontext, true),
383 A(seclabel, false),
384};
385#undef A
386
387static int match_opt_prefix(char *s, int l, char **arg)
388{
389 int i;
390
391 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
392 size_t len = tokens[i].len;
393 if (len > l || memcmp(s, tokens[i].name, len))
394 continue;
395 if (tokens[i].has_arg) {
396 if (len == l || s[len] != '=')
397 continue;
398 *arg = s + len + 1;
399 } else if (len != l)
400 continue;
401 return tokens[i].opt;
402 }
403 return Opt_error;
404}
405
406#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
407
408static int may_context_mount_sb_relabel(u32 sid,
409 struct superblock_security_struct *sbsec,
410 const struct cred *cred)
411{
412 const struct task_security_struct *tsec = selinux_cred(cred);
413 int rc;
414
415 rc = avc_has_perm(&selinux_state,
416 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
417 FILESYSTEM__RELABELFROM, NULL);
418 if (rc)
419 return rc;
420
421 rc = avc_has_perm(&selinux_state,
422 tsec->sid, sid, SECCLASS_FILESYSTEM,
423 FILESYSTEM__RELABELTO, NULL);
424 return rc;
425}
426
427static int may_context_mount_inode_relabel(u32 sid,
428 struct superblock_security_struct *sbsec,
429 const struct cred *cred)
430{
431 const struct task_security_struct *tsec = selinux_cred(cred);
432 int rc;
433 rc = avc_has_perm(&selinux_state,
434 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
435 FILESYSTEM__RELABELFROM, NULL);
436 if (rc)
437 return rc;
438
439 rc = avc_has_perm(&selinux_state,
440 sid, sbsec->sid, SECCLASS_FILESYSTEM,
441 FILESYSTEM__ASSOCIATE, NULL);
442 return rc;
443}
444
445static int selinux_is_genfs_special_handling(struct super_block *sb)
446{
447 /* Special handling. Genfs but also in-core setxattr handler */
448 return !strcmp(sb->s_type->name, "sysfs") ||
449 !strcmp(sb->s_type->name, "pstore") ||
450 !strcmp(sb->s_type->name, "debugfs") ||
451 !strcmp(sb->s_type->name, "tracefs") ||
452 !strcmp(sb->s_type->name, "rootfs") ||
453 (selinux_policycap_cgroupseclabel() &&
454 (!strcmp(sb->s_type->name, "cgroup") ||
455 !strcmp(sb->s_type->name, "cgroup2")));
456}
457
458static int selinux_is_sblabel_mnt(struct super_block *sb)
459{
460 struct superblock_security_struct *sbsec = sb->s_security;
461
462 /*
463 * IMPORTANT: Double-check logic in this function when adding a new
464 * SECURITY_FS_USE_* definition!
465 */
466 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
467
468 switch (sbsec->behavior) {
469 case SECURITY_FS_USE_XATTR:
470 case SECURITY_FS_USE_TRANS:
471 case SECURITY_FS_USE_TASK:
472 case SECURITY_FS_USE_NATIVE:
473 return 1;
474
475 case SECURITY_FS_USE_GENFS:
476 return selinux_is_genfs_special_handling(sb);
477
478 /* Never allow relabeling on context mounts */
479 case SECURITY_FS_USE_MNTPOINT:
480 case SECURITY_FS_USE_NONE:
481 default:
482 return 0;
483 }
484}
485
486static int sb_finish_set_opts(struct super_block *sb)
487{
488 struct superblock_security_struct *sbsec = sb->s_security;
489 struct dentry *root = sb->s_root;
490 struct inode *root_inode = d_backing_inode(root);
491 int rc = 0;
492
493 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
494 /* Make sure that the xattr handler exists and that no
495 error other than -ENODATA is returned by getxattr on
496 the root directory. -ENODATA is ok, as this may be
497 the first boot of the SELinux kernel before we have
498 assigned xattr values to the filesystem. */
499 if (!(root_inode->i_opflags & IOP_XATTR)) {
500 pr_warn("SELinux: (dev %s, type %s) has no "
501 "xattr support\n", sb->s_id, sb->s_type->name);
502 rc = -EOPNOTSUPP;
503 goto out;
504 }
505
506 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
507 if (rc < 0 && rc != -ENODATA) {
508 if (rc == -EOPNOTSUPP)
509 pr_warn("SELinux: (dev %s, type "
510 "%s) has no security xattr handler\n",
511 sb->s_id, sb->s_type->name);
512 else
513 pr_warn("SELinux: (dev %s, type "
514 "%s) getxattr errno %d\n", sb->s_id,
515 sb->s_type->name, -rc);
516 goto out;
517 }
518 }
519
520 sbsec->flags |= SE_SBINITIALIZED;
521
522 /*
523 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
524 * leave the flag untouched because sb_clone_mnt_opts might be handing
525 * us a superblock that needs the flag to be cleared.
526 */
527 if (selinux_is_sblabel_mnt(sb))
528 sbsec->flags |= SBLABEL_MNT;
529 else
530 sbsec->flags &= ~SBLABEL_MNT;
531
532 /* Initialize the root inode. */
533 rc = inode_doinit_with_dentry(root_inode, root);
534
535 /* Initialize any other inodes associated with the superblock, e.g.
536 inodes created prior to initial policy load or inodes created
537 during get_sb by a pseudo filesystem that directly
538 populates itself. */
539 spin_lock(&sbsec->isec_lock);
540 while (!list_empty(&sbsec->isec_head)) {
541 struct inode_security_struct *isec =
542 list_first_entry(&sbsec->isec_head,
543 struct inode_security_struct, list);
544 struct inode *inode = isec->inode;
545 list_del_init(&isec->list);
546 spin_unlock(&sbsec->isec_lock);
547 inode = igrab(inode);
548 if (inode) {
549 if (!IS_PRIVATE(inode))
550 inode_doinit_with_dentry(inode, NULL);
551 iput(inode);
552 }
553 spin_lock(&sbsec->isec_lock);
554 }
555 spin_unlock(&sbsec->isec_lock);
556out:
557 return rc;
558}
559
560static int bad_option(struct superblock_security_struct *sbsec, char flag,
561 u32 old_sid, u32 new_sid)
562{
563 char mnt_flags = sbsec->flags & SE_MNTMASK;
564
565 /* check if the old mount command had the same options */
566 if (sbsec->flags & SE_SBINITIALIZED)
567 if (!(sbsec->flags & flag) ||
568 (old_sid != new_sid))
569 return 1;
570
571 /* check if we were passed the same options twice,
572 * aka someone passed context=a,context=b
573 */
574 if (!(sbsec->flags & SE_SBINITIALIZED))
575 if (mnt_flags & flag)
576 return 1;
577 return 0;
578}
579
580static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
581{
582 int rc = security_context_str_to_sid(&selinux_state, s,
583 sid, GFP_KERNEL);
584 if (rc)
585 pr_warn("SELinux: security_context_str_to_sid"
586 "(%s) failed for (dev %s, type %s) errno=%d\n",
587 s, sb->s_id, sb->s_type->name, rc);
588 return rc;
589}
590
591/*
592 * Allow filesystems with binary mount data to explicitly set mount point
593 * labeling information.
594 */
595static int selinux_set_mnt_opts(struct super_block *sb,
596 void *mnt_opts,
597 unsigned long kern_flags,
598 unsigned long *set_kern_flags)
599{
600 const struct cred *cred = current_cred();
601 struct superblock_security_struct *sbsec = sb->s_security;
602 struct dentry *root = sbsec->sb->s_root;
603 struct selinux_mnt_opts *opts = mnt_opts;
604 struct inode_security_struct *root_isec;
605 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606 u32 defcontext_sid = 0;
607 int rc = 0;
608
609 mutex_lock(&sbsec->lock);
610
611 if (!selinux_initialized(&selinux_state)) {
612 if (!opts) {
613 /* Defer initialization until selinux_complete_init,
614 after the initial policy is loaded and the security
615 server is ready to handle calls. */
616 goto out;
617 }
618 rc = -EINVAL;
619 pr_warn("SELinux: Unable to set superblock options "
620 "before the security server is initialized\n");
621 goto out;
622 }
623 if (kern_flags && !set_kern_flags) {
624 /* Specifying internal flags without providing a place to
625 * place the results is not allowed */
626 rc = -EINVAL;
627 goto out;
628 }
629
630 /*
631 * Binary mount data FS will come through this function twice. Once
632 * from an explicit call and once from the generic calls from the vfs.
633 * Since the generic VFS calls will not contain any security mount data
634 * we need to skip the double mount verification.
635 *
636 * This does open a hole in which we will not notice if the first
637 * mount using this sb set explict options and a second mount using
638 * this sb does not set any security options. (The first options
639 * will be used for both mounts)
640 */
641 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642 && !opts)
643 goto out;
644
645 root_isec = backing_inode_security_novalidate(root);
646
647 /*
648 * parse the mount options, check if they are valid sids.
649 * also check if someone is trying to mount the same sb more
650 * than once with different security options.
651 */
652 if (opts) {
653 if (opts->fscontext) {
654 rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
655 if (rc)
656 goto out;
657 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
658 fscontext_sid))
659 goto out_double_mount;
660 sbsec->flags |= FSCONTEXT_MNT;
661 }
662 if (opts->context) {
663 rc = parse_sid(sb, opts->context, &context_sid);
664 if (rc)
665 goto out;
666 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
667 context_sid))
668 goto out_double_mount;
669 sbsec->flags |= CONTEXT_MNT;
670 }
671 if (opts->rootcontext) {
672 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
673 if (rc)
674 goto out;
675 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
676 rootcontext_sid))
677 goto out_double_mount;
678 sbsec->flags |= ROOTCONTEXT_MNT;
679 }
680 if (opts->defcontext) {
681 rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
682 if (rc)
683 goto out;
684 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
685 defcontext_sid))
686 goto out_double_mount;
687 sbsec->flags |= DEFCONTEXT_MNT;
688 }
689 }
690
691 if (sbsec->flags & SE_SBINITIALIZED) {
692 /* previously mounted with options, but not on this attempt? */
693 if ((sbsec->flags & SE_MNTMASK) && !opts)
694 goto out_double_mount;
695 rc = 0;
696 goto out;
697 }
698
699 if (strcmp(sb->s_type->name, "proc") == 0)
700 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
701
702 if (!strcmp(sb->s_type->name, "debugfs") ||
703 !strcmp(sb->s_type->name, "tracefs") ||
704 !strcmp(sb->s_type->name, "binder") ||
705 !strcmp(sb->s_type->name, "bpf") ||
706 !strcmp(sb->s_type->name, "pstore"))
707 sbsec->flags |= SE_SBGENFS;
708
709 if (!strcmp(sb->s_type->name, "sysfs") ||
710 !strcmp(sb->s_type->name, "cgroup") ||
711 !strcmp(sb->s_type->name, "cgroup2"))
712 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
713
714 if (!sbsec->behavior) {
715 /*
716 * Determine the labeling behavior to use for this
717 * filesystem type.
718 */
719 rc = security_fs_use(&selinux_state, sb);
720 if (rc) {
721 pr_warn("%s: security_fs_use(%s) returned %d\n",
722 __func__, sb->s_type->name, rc);
723 goto out;
724 }
725 }
726
727 /*
728 * If this is a user namespace mount and the filesystem type is not
729 * explicitly whitelisted, then no contexts are allowed on the command
730 * line and security labels must be ignored.
731 */
732 if (sb->s_user_ns != &init_user_ns &&
733 strcmp(sb->s_type->name, "tmpfs") &&
734 strcmp(sb->s_type->name, "ramfs") &&
735 strcmp(sb->s_type->name, "devpts")) {
736 if (context_sid || fscontext_sid || rootcontext_sid ||
737 defcontext_sid) {
738 rc = -EACCES;
739 goto out;
740 }
741 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
742 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
743 rc = security_transition_sid(&selinux_state,
744 current_sid(),
745 current_sid(),
746 SECCLASS_FILE, NULL,
747 &sbsec->mntpoint_sid);
748 if (rc)
749 goto out;
750 }
751 goto out_set_opts;
752 }
753
754 /* sets the context of the superblock for the fs being mounted. */
755 if (fscontext_sid) {
756 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
757 if (rc)
758 goto out;
759
760 sbsec->sid = fscontext_sid;
761 }
762
763 /*
764 * Switch to using mount point labeling behavior.
765 * sets the label used on all file below the mountpoint, and will set
766 * the superblock context if not already set.
767 */
768 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
769 sbsec->behavior = SECURITY_FS_USE_NATIVE;
770 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
771 }
772
773 if (context_sid) {
774 if (!fscontext_sid) {
775 rc = may_context_mount_sb_relabel(context_sid, sbsec,
776 cred);
777 if (rc)
778 goto out;
779 sbsec->sid = context_sid;
780 } else {
781 rc = may_context_mount_inode_relabel(context_sid, sbsec,
782 cred);
783 if (rc)
784 goto out;
785 }
786 if (!rootcontext_sid)
787 rootcontext_sid = context_sid;
788
789 sbsec->mntpoint_sid = context_sid;
790 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
791 }
792
793 if (rootcontext_sid) {
794 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
795 cred);
796 if (rc)
797 goto out;
798
799 root_isec->sid = rootcontext_sid;
800 root_isec->initialized = LABEL_INITIALIZED;
801 }
802
803 if (defcontext_sid) {
804 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
805 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
806 rc = -EINVAL;
807 pr_warn("SELinux: defcontext option is "
808 "invalid for this filesystem type\n");
809 goto out;
810 }
811
812 if (defcontext_sid != sbsec->def_sid) {
813 rc = may_context_mount_inode_relabel(defcontext_sid,
814 sbsec, cred);
815 if (rc)
816 goto out;
817 }
818
819 sbsec->def_sid = defcontext_sid;
820 }
821
822out_set_opts:
823 rc = sb_finish_set_opts(sb);
824out:
825 mutex_unlock(&sbsec->lock);
826 return rc;
827out_double_mount:
828 rc = -EINVAL;
829 pr_warn("SELinux: mount invalid. Same superblock, different "
830 "security settings for (dev %s, type %s)\n", sb->s_id,
831 sb->s_type->name);
832 goto out;
833}
834
835static int selinux_cmp_sb_context(const struct super_block *oldsb,
836 const struct super_block *newsb)
837{
838 struct superblock_security_struct *old = oldsb->s_security;
839 struct superblock_security_struct *new = newsb->s_security;
840 char oldflags = old->flags & SE_MNTMASK;
841 char newflags = new->flags & SE_MNTMASK;
842
843 if (oldflags != newflags)
844 goto mismatch;
845 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
846 goto mismatch;
847 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
848 goto mismatch;
849 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
850 goto mismatch;
851 if (oldflags & ROOTCONTEXT_MNT) {
852 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
853 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
854 if (oldroot->sid != newroot->sid)
855 goto mismatch;
856 }
857 return 0;
858mismatch:
859 pr_warn("SELinux: mount invalid. Same superblock, "
860 "different security settings for (dev %s, "
861 "type %s)\n", newsb->s_id, newsb->s_type->name);
862 return -EBUSY;
863}
864
865static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
866 struct super_block *newsb,
867 unsigned long kern_flags,
868 unsigned long *set_kern_flags)
869{
870 int rc = 0;
871 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
872 struct superblock_security_struct *newsbsec = newsb->s_security;
873
874 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
875 int set_context = (oldsbsec->flags & CONTEXT_MNT);
876 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
877
878 /*
879 * if the parent was able to be mounted it clearly had no special lsm
880 * mount options. thus we can safely deal with this superblock later
881 */
882 if (!selinux_initialized(&selinux_state))
883 return 0;
884
885 /*
886 * Specifying internal flags without providing a place to
887 * place the results is not allowed.
888 */
889 if (kern_flags && !set_kern_flags)
890 return -EINVAL;
891
892 /* how can we clone if the old one wasn't set up?? */
893 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
894
895 /* if fs is reusing a sb, make sure that the contexts match */
896 if (newsbsec->flags & SE_SBINITIALIZED) {
897 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
898 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
899 return selinux_cmp_sb_context(oldsb, newsb);
900 }
901
902 mutex_lock(&newsbsec->lock);
903
904 newsbsec->flags = oldsbsec->flags;
905
906 newsbsec->sid = oldsbsec->sid;
907 newsbsec->def_sid = oldsbsec->def_sid;
908 newsbsec->behavior = oldsbsec->behavior;
909
910 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
911 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
912 rc = security_fs_use(&selinux_state, newsb);
913 if (rc)
914 goto out;
915 }
916
917 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
918 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
919 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
920 }
921
922 if (set_context) {
923 u32 sid = oldsbsec->mntpoint_sid;
924
925 if (!set_fscontext)
926 newsbsec->sid = sid;
927 if (!set_rootcontext) {
928 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
929 newisec->sid = sid;
930 }
931 newsbsec->mntpoint_sid = sid;
932 }
933 if (set_rootcontext) {
934 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
935 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
936
937 newisec->sid = oldisec->sid;
938 }
939
940 sb_finish_set_opts(newsb);
941out:
942 mutex_unlock(&newsbsec->lock);
943 return rc;
944}
945
946static int selinux_add_opt(int token, const char *s, void **mnt_opts)
947{
948 struct selinux_mnt_opts *opts = *mnt_opts;
949
950 if (token == Opt_seclabel) /* eaten and completely ignored */
951 return 0;
952
953 if (!opts) {
954 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
955 if (!opts)
956 return -ENOMEM;
957 *mnt_opts = opts;
958 }
959 if (!s)
960 return -ENOMEM;
961 switch (token) {
962 case Opt_context:
963 if (opts->context || opts->defcontext)
964 goto Einval;
965 opts->context = s;
966 break;
967 case Opt_fscontext:
968 if (opts->fscontext)
969 goto Einval;
970 opts->fscontext = s;
971 break;
972 case Opt_rootcontext:
973 if (opts->rootcontext)
974 goto Einval;
975 opts->rootcontext = s;
976 break;
977 case Opt_defcontext:
978 if (opts->context || opts->defcontext)
979 goto Einval;
980 opts->defcontext = s;
981 break;
982 }
983 return 0;
984Einval:
985 pr_warn(SEL_MOUNT_FAIL_MSG);
986 return -EINVAL;
987}
988
989static int selinux_add_mnt_opt(const char *option, const char *val, int len,
990 void **mnt_opts)
991{
992 int token = Opt_error;
993 int rc, i;
994
995 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
996 if (strcmp(option, tokens[i].name) == 0) {
997 token = tokens[i].opt;
998 break;
999 }
1000 }
1001
1002 if (token == Opt_error)
1003 return -EINVAL;
1004
1005 if (token != Opt_seclabel) {
1006 val = kmemdup_nul(val, len, GFP_KERNEL);
1007 if (!val) {
1008 rc = -ENOMEM;
1009 goto free_opt;
1010 }
1011 }
1012 rc = selinux_add_opt(token, val, mnt_opts);
1013 if (unlikely(rc)) {
1014 kfree(val);
1015 goto free_opt;
1016 }
1017 return rc;
1018
1019free_opt:
1020 if (*mnt_opts) {
1021 selinux_free_mnt_opts(*mnt_opts);
1022 *mnt_opts = NULL;
1023 }
1024 return rc;
1025}
1026
1027static int show_sid(struct seq_file *m, u32 sid)
1028{
1029 char *context = NULL;
1030 u32 len;
1031 int rc;
1032
1033 rc = security_sid_to_context(&selinux_state, sid,
1034 &context, &len);
1035 if (!rc) {
1036 bool has_comma = context && strchr(context, ',');
1037
1038 seq_putc(m, '=');
1039 if (has_comma)
1040 seq_putc(m, '\"');
1041 seq_escape(m, context, "\"\n\\");
1042 if (has_comma)
1043 seq_putc(m, '\"');
1044 }
1045 kfree(context);
1046 return rc;
1047}
1048
1049static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1050{
1051 struct superblock_security_struct *sbsec = sb->s_security;
1052 int rc;
1053
1054 if (!(sbsec->flags & SE_SBINITIALIZED))
1055 return 0;
1056
1057 if (!selinux_initialized(&selinux_state))
1058 return 0;
1059
1060 if (sbsec->flags & FSCONTEXT_MNT) {
1061 seq_putc(m, ',');
1062 seq_puts(m, FSCONTEXT_STR);
1063 rc = show_sid(m, sbsec->sid);
1064 if (rc)
1065 return rc;
1066 }
1067 if (sbsec->flags & CONTEXT_MNT) {
1068 seq_putc(m, ',');
1069 seq_puts(m, CONTEXT_STR);
1070 rc = show_sid(m, sbsec->mntpoint_sid);
1071 if (rc)
1072 return rc;
1073 }
1074 if (sbsec->flags & DEFCONTEXT_MNT) {
1075 seq_putc(m, ',');
1076 seq_puts(m, DEFCONTEXT_STR);
1077 rc = show_sid(m, sbsec->def_sid);
1078 if (rc)
1079 return rc;
1080 }
1081 if (sbsec->flags & ROOTCONTEXT_MNT) {
1082 struct dentry *root = sbsec->sb->s_root;
1083 struct inode_security_struct *isec = backing_inode_security(root);
1084 seq_putc(m, ',');
1085 seq_puts(m, ROOTCONTEXT_STR);
1086 rc = show_sid(m, isec->sid);
1087 if (rc)
1088 return rc;
1089 }
1090 if (sbsec->flags & SBLABEL_MNT) {
1091 seq_putc(m, ',');
1092 seq_puts(m, SECLABEL_STR);
1093 }
1094 return 0;
1095}
1096
1097static inline u16 inode_mode_to_security_class(umode_t mode)
1098{
1099 switch (mode & S_IFMT) {
1100 case S_IFSOCK:
1101 return SECCLASS_SOCK_FILE;
1102 case S_IFLNK:
1103 return SECCLASS_LNK_FILE;
1104 case S_IFREG:
1105 return SECCLASS_FILE;
1106 case S_IFBLK:
1107 return SECCLASS_BLK_FILE;
1108 case S_IFDIR:
1109 return SECCLASS_DIR;
1110 case S_IFCHR:
1111 return SECCLASS_CHR_FILE;
1112 case S_IFIFO:
1113 return SECCLASS_FIFO_FILE;
1114
1115 }
1116
1117 return SECCLASS_FILE;
1118}
1119
1120static inline int default_protocol_stream(int protocol)
1121{
1122 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1123}
1124
1125static inline int default_protocol_dgram(int protocol)
1126{
1127 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1128}
1129
1130static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1131{
1132 int extsockclass = selinux_policycap_extsockclass();
1133
1134 switch (family) {
1135 case PF_UNIX:
1136 switch (type) {
1137 case SOCK_STREAM:
1138 case SOCK_SEQPACKET:
1139 return SECCLASS_UNIX_STREAM_SOCKET;
1140 case SOCK_DGRAM:
1141 case SOCK_RAW:
1142 return SECCLASS_UNIX_DGRAM_SOCKET;
1143 }
1144 break;
1145 case PF_INET:
1146 case PF_INET6:
1147 switch (type) {
1148 case SOCK_STREAM:
1149 case SOCK_SEQPACKET:
1150 if (default_protocol_stream(protocol))
1151 return SECCLASS_TCP_SOCKET;
1152 else if (extsockclass && protocol == IPPROTO_SCTP)
1153 return SECCLASS_SCTP_SOCKET;
1154 else
1155 return SECCLASS_RAWIP_SOCKET;
1156 case SOCK_DGRAM:
1157 if (default_protocol_dgram(protocol))
1158 return SECCLASS_UDP_SOCKET;
1159 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1160 protocol == IPPROTO_ICMPV6))
1161 return SECCLASS_ICMP_SOCKET;
1162 else
1163 return SECCLASS_RAWIP_SOCKET;
1164 case SOCK_DCCP:
1165 return SECCLASS_DCCP_SOCKET;
1166 default:
1167 return SECCLASS_RAWIP_SOCKET;
1168 }
1169 break;
1170 case PF_NETLINK:
1171 switch (protocol) {
1172 case NETLINK_ROUTE:
1173 return SECCLASS_NETLINK_ROUTE_SOCKET;
1174 case NETLINK_SOCK_DIAG:
1175 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1176 case NETLINK_NFLOG:
1177 return SECCLASS_NETLINK_NFLOG_SOCKET;
1178 case NETLINK_XFRM:
1179 return SECCLASS_NETLINK_XFRM_SOCKET;
1180 case NETLINK_SELINUX:
1181 return SECCLASS_NETLINK_SELINUX_SOCKET;
1182 case NETLINK_ISCSI:
1183 return SECCLASS_NETLINK_ISCSI_SOCKET;
1184 case NETLINK_AUDIT:
1185 return SECCLASS_NETLINK_AUDIT_SOCKET;
1186 case NETLINK_FIB_LOOKUP:
1187 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1188 case NETLINK_CONNECTOR:
1189 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1190 case NETLINK_NETFILTER:
1191 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1192 case NETLINK_DNRTMSG:
1193 return SECCLASS_NETLINK_DNRT_SOCKET;
1194 case NETLINK_KOBJECT_UEVENT:
1195 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1196 case NETLINK_GENERIC:
1197 return SECCLASS_NETLINK_GENERIC_SOCKET;
1198 case NETLINK_SCSITRANSPORT:
1199 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1200 case NETLINK_RDMA:
1201 return SECCLASS_NETLINK_RDMA_SOCKET;
1202 case NETLINK_CRYPTO:
1203 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1204 default:
1205 return SECCLASS_NETLINK_SOCKET;
1206 }
1207 case PF_PACKET:
1208 return SECCLASS_PACKET_SOCKET;
1209 case PF_KEY:
1210 return SECCLASS_KEY_SOCKET;
1211 case PF_APPLETALK:
1212 return SECCLASS_APPLETALK_SOCKET;
1213 }
1214
1215 if (extsockclass) {
1216 switch (family) {
1217 case PF_AX25:
1218 return SECCLASS_AX25_SOCKET;
1219 case PF_IPX:
1220 return SECCLASS_IPX_SOCKET;
1221 case PF_NETROM:
1222 return SECCLASS_NETROM_SOCKET;
1223 case PF_ATMPVC:
1224 return SECCLASS_ATMPVC_SOCKET;
1225 case PF_X25:
1226 return SECCLASS_X25_SOCKET;
1227 case PF_ROSE:
1228 return SECCLASS_ROSE_SOCKET;
1229 case PF_DECnet:
1230 return SECCLASS_DECNET_SOCKET;
1231 case PF_ATMSVC:
1232 return SECCLASS_ATMSVC_SOCKET;
1233 case PF_RDS:
1234 return SECCLASS_RDS_SOCKET;
1235 case PF_IRDA:
1236 return SECCLASS_IRDA_SOCKET;
1237 case PF_PPPOX:
1238 return SECCLASS_PPPOX_SOCKET;
1239 case PF_LLC:
1240 return SECCLASS_LLC_SOCKET;
1241 case PF_CAN:
1242 return SECCLASS_CAN_SOCKET;
1243 case PF_TIPC:
1244 return SECCLASS_TIPC_SOCKET;
1245 case PF_BLUETOOTH:
1246 return SECCLASS_BLUETOOTH_SOCKET;
1247 case PF_IUCV:
1248 return SECCLASS_IUCV_SOCKET;
1249 case PF_RXRPC:
1250 return SECCLASS_RXRPC_SOCKET;
1251 case PF_ISDN:
1252 return SECCLASS_ISDN_SOCKET;
1253 case PF_PHONET:
1254 return SECCLASS_PHONET_SOCKET;
1255 case PF_IEEE802154:
1256 return SECCLASS_IEEE802154_SOCKET;
1257 case PF_CAIF:
1258 return SECCLASS_CAIF_SOCKET;
1259 case PF_ALG:
1260 return SECCLASS_ALG_SOCKET;
1261 case PF_NFC:
1262 return SECCLASS_NFC_SOCKET;
1263 case PF_VSOCK:
1264 return SECCLASS_VSOCK_SOCKET;
1265 case PF_KCM:
1266 return SECCLASS_KCM_SOCKET;
1267 case PF_QIPCRTR:
1268 return SECCLASS_QIPCRTR_SOCKET;
1269 case PF_SMC:
1270 return SECCLASS_SMC_SOCKET;
1271 case PF_XDP:
1272 return SECCLASS_XDP_SOCKET;
1273#if PF_MAX > 45
1274#error New address family defined, please update this function.
1275#endif
1276 }
1277 }
1278
1279 return SECCLASS_SOCKET;
1280}
1281
1282static int selinux_genfs_get_sid(struct dentry *dentry,
1283 u16 tclass,
1284 u16 flags,
1285 u32 *sid)
1286{
1287 int rc;
1288 struct super_block *sb = dentry->d_sb;
1289 char *buffer, *path;
1290
1291 buffer = (char *)__get_free_page(GFP_KERNEL);
1292 if (!buffer)
1293 return -ENOMEM;
1294
1295 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1296 if (IS_ERR(path))
1297 rc = PTR_ERR(path);
1298 else {
1299 if (flags & SE_SBPROC) {
1300 /* each process gets a /proc/PID/ entry. Strip off the
1301 * PID part to get a valid selinux labeling.
1302 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1303 while (path[1] >= '0' && path[1] <= '9') {
1304 path[1] = '/';
1305 path++;
1306 }
1307 }
1308 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1309 path, tclass, sid);
1310 if (rc == -ENOENT) {
1311 /* No match in policy, mark as unlabeled. */
1312 *sid = SECINITSID_UNLABELED;
1313 rc = 0;
1314 }
1315 }
1316 free_page((unsigned long)buffer);
1317 return rc;
1318}
1319
1320static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1321 u32 def_sid, u32 *sid)
1322{
1323#define INITCONTEXTLEN 255
1324 char *context;
1325 unsigned int len;
1326 int rc;
1327
1328 len = INITCONTEXTLEN;
1329 context = kmalloc(len + 1, GFP_NOFS);
1330 if (!context)
1331 return -ENOMEM;
1332
1333 context[len] = '\0';
1334 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1335 if (rc == -ERANGE) {
1336 kfree(context);
1337
1338 /* Need a larger buffer. Query for the right size. */
1339 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1340 if (rc < 0)
1341 return rc;
1342
1343 len = rc;
1344 context = kmalloc(len + 1, GFP_NOFS);
1345 if (!context)
1346 return -ENOMEM;
1347
1348 context[len] = '\0';
1349 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1350 context, len);
1351 }
1352 if (rc < 0) {
1353 kfree(context);
1354 if (rc != -ENODATA) {
1355 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1356 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1357 return rc;
1358 }
1359 *sid = def_sid;
1360 return 0;
1361 }
1362
1363 rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1364 def_sid, GFP_NOFS);
1365 if (rc) {
1366 char *dev = inode->i_sb->s_id;
1367 unsigned long ino = inode->i_ino;
1368
1369 if (rc == -EINVAL) {
1370 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1371 ino, dev, context);
1372 } else {
1373 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1374 __func__, context, -rc, dev, ino);
1375 }
1376 }
1377 kfree(context);
1378 return 0;
1379}
1380
1381/* The inode's security attributes must be initialized before first use. */
1382static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1383{
1384 struct superblock_security_struct *sbsec = NULL;
1385 struct inode_security_struct *isec = selinux_inode(inode);
1386 u32 task_sid, sid = 0;
1387 u16 sclass;
1388 struct dentry *dentry;
1389 int rc = 0;
1390
1391 if (isec->initialized == LABEL_INITIALIZED)
1392 return 0;
1393
1394 spin_lock(&isec->lock);
1395 if (isec->initialized == LABEL_INITIALIZED)
1396 goto out_unlock;
1397
1398 if (isec->sclass == SECCLASS_FILE)
1399 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1400
1401 sbsec = inode->i_sb->s_security;
1402 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1403 /* Defer initialization until selinux_complete_init,
1404 after the initial policy is loaded and the security
1405 server is ready to handle calls. */
1406 spin_lock(&sbsec->isec_lock);
1407 if (list_empty(&isec->list))
1408 list_add(&isec->list, &sbsec->isec_head);
1409 spin_unlock(&sbsec->isec_lock);
1410 goto out_unlock;
1411 }
1412
1413 sclass = isec->sclass;
1414 task_sid = isec->task_sid;
1415 sid = isec->sid;
1416 isec->initialized = LABEL_PENDING;
1417 spin_unlock(&isec->lock);
1418
1419 switch (sbsec->behavior) {
1420 case SECURITY_FS_USE_NATIVE:
1421 break;
1422 case SECURITY_FS_USE_XATTR:
1423 if (!(inode->i_opflags & IOP_XATTR)) {
1424 sid = sbsec->def_sid;
1425 break;
1426 }
1427 /* Need a dentry, since the xattr API requires one.
1428 Life would be simpler if we could just pass the inode. */
1429 if (opt_dentry) {
1430 /* Called from d_instantiate or d_splice_alias. */
1431 dentry = dget(opt_dentry);
1432 } else {
1433 /*
1434 * Called from selinux_complete_init, try to find a dentry.
1435 * Some filesystems really want a connected one, so try
1436 * that first. We could split SECURITY_FS_USE_XATTR in
1437 * two, depending upon that...
1438 */
1439 dentry = d_find_alias(inode);
1440 if (!dentry)
1441 dentry = d_find_any_alias(inode);
1442 }
1443 if (!dentry) {
1444 /*
1445 * this is can be hit on boot when a file is accessed
1446 * before the policy is loaded. When we load policy we
1447 * may find inodes that have no dentry on the
1448 * sbsec->isec_head list. No reason to complain as these
1449 * will get fixed up the next time we go through
1450 * inode_doinit with a dentry, before these inodes could
1451 * be used again by userspace.
1452 */
1453 goto out;
1454 }
1455
1456 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1457 &sid);
1458 dput(dentry);
1459 if (rc)
1460 goto out;
1461 break;
1462 case SECURITY_FS_USE_TASK:
1463 sid = task_sid;
1464 break;
1465 case SECURITY_FS_USE_TRANS:
1466 /* Default to the fs SID. */
1467 sid = sbsec->sid;
1468
1469 /* Try to obtain a transition SID. */
1470 rc = security_transition_sid(&selinux_state, task_sid, sid,
1471 sclass, NULL, &sid);
1472 if (rc)
1473 goto out;
1474 break;
1475 case SECURITY_FS_USE_MNTPOINT:
1476 sid = sbsec->mntpoint_sid;
1477 break;
1478 default:
1479 /* Default to the fs superblock SID. */
1480 sid = sbsec->sid;
1481
1482 if ((sbsec->flags & SE_SBGENFS) &&
1483 (!S_ISLNK(inode->i_mode) ||
1484 selinux_policycap_genfs_seclabel_symlinks())) {
1485 /* We must have a dentry to determine the label on
1486 * procfs inodes */
1487 if (opt_dentry) {
1488 /* Called from d_instantiate or
1489 * d_splice_alias. */
1490 dentry = dget(opt_dentry);
1491 } else {
1492 /* Called from selinux_complete_init, try to
1493 * find a dentry. Some filesystems really want
1494 * a connected one, so try that first.
1495 */
1496 dentry = d_find_alias(inode);
1497 if (!dentry)
1498 dentry = d_find_any_alias(inode);
1499 }
1500 /*
1501 * This can be hit on boot when a file is accessed
1502 * before the policy is loaded. When we load policy we
1503 * may find inodes that have no dentry on the
1504 * sbsec->isec_head list. No reason to complain as
1505 * these will get fixed up the next time we go through
1506 * inode_doinit() with a dentry, before these inodes
1507 * could be used again by userspace.
1508 */
1509 if (!dentry)
1510 goto out;
1511 rc = selinux_genfs_get_sid(dentry, sclass,
1512 sbsec->flags, &sid);
1513 if (rc) {
1514 dput(dentry);
1515 goto out;
1516 }
1517
1518 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1519 (inode->i_opflags & IOP_XATTR)) {
1520 rc = inode_doinit_use_xattr(inode, dentry,
1521 sid, &sid);
1522 if (rc) {
1523 dput(dentry);
1524 goto out;
1525 }
1526 }
1527 dput(dentry);
1528 }
1529 break;
1530 }
1531
1532out:
1533 spin_lock(&isec->lock);
1534 if (isec->initialized == LABEL_PENDING) {
1535 if (!sid || rc) {
1536 isec->initialized = LABEL_INVALID;
1537 goto out_unlock;
1538 }
1539
1540 isec->initialized = LABEL_INITIALIZED;
1541 isec->sid = sid;
1542 }
1543
1544out_unlock:
1545 spin_unlock(&isec->lock);
1546 return rc;
1547}
1548
1549/* Convert a Linux signal to an access vector. */
1550static inline u32 signal_to_av(int sig)
1551{
1552 u32 perm = 0;
1553
1554 switch (sig) {
1555 case SIGCHLD:
1556 /* Commonly granted from child to parent. */
1557 perm = PROCESS__SIGCHLD;
1558 break;
1559 case SIGKILL:
1560 /* Cannot be caught or ignored */
1561 perm = PROCESS__SIGKILL;
1562 break;
1563 case SIGSTOP:
1564 /* Cannot be caught or ignored */
1565 perm = PROCESS__SIGSTOP;
1566 break;
1567 default:
1568 /* All other signals. */
1569 perm = PROCESS__SIGNAL;
1570 break;
1571 }
1572
1573 return perm;
1574}
1575
1576#if CAP_LAST_CAP > 63
1577#error Fix SELinux to handle capabilities > 63.
1578#endif
1579
1580/* Check whether a task is allowed to use a capability. */
1581static int cred_has_capability(const struct cred *cred,
1582 int cap, unsigned int opts, bool initns)
1583{
1584 struct common_audit_data ad;
1585 struct av_decision avd;
1586 u16 sclass;
1587 u32 sid = cred_sid(cred);
1588 u32 av = CAP_TO_MASK(cap);
1589 int rc;
1590
1591 ad.type = LSM_AUDIT_DATA_CAP;
1592 ad.u.cap = cap;
1593
1594 switch (CAP_TO_INDEX(cap)) {
1595 case 0:
1596 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1597 break;
1598 case 1:
1599 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1600 break;
1601 default:
1602 pr_err("SELinux: out of range capability %d\n", cap);
1603 BUG();
1604 return -EINVAL;
1605 }
1606
1607 rc = avc_has_perm_noaudit(&selinux_state,
1608 sid, sid, sclass, av, 0, &avd);
1609 if (!(opts & CAP_OPT_NOAUDIT)) {
1610 int rc2 = avc_audit(&selinux_state,
1611 sid, sid, sclass, av, &avd, rc, &ad, 0);
1612 if (rc2)
1613 return rc2;
1614 }
1615 return rc;
1616}
1617
1618/* Check whether a task has a particular permission to an inode.
1619 The 'adp' parameter is optional and allows other audit
1620 data to be passed (e.g. the dentry). */
1621static int inode_has_perm(const struct cred *cred,
1622 struct inode *inode,
1623 u32 perms,
1624 struct common_audit_data *adp)
1625{
1626 struct inode_security_struct *isec;
1627 u32 sid;
1628
1629 validate_creds(cred);
1630
1631 if (unlikely(IS_PRIVATE(inode)))
1632 return 0;
1633
1634 sid = cred_sid(cred);
1635 isec = selinux_inode(inode);
1636
1637 return avc_has_perm(&selinux_state,
1638 sid, isec->sid, isec->sclass, perms, adp);
1639}
1640
1641/* Same as inode_has_perm, but pass explicit audit data containing
1642 the dentry to help the auditing code to more easily generate the
1643 pathname if needed. */
1644static inline int dentry_has_perm(const struct cred *cred,
1645 struct dentry *dentry,
1646 u32 av)
1647{
1648 struct inode *inode = d_backing_inode(dentry);
1649 struct common_audit_data ad;
1650
1651 ad.type = LSM_AUDIT_DATA_DENTRY;
1652 ad.u.dentry = dentry;
1653 __inode_security_revalidate(inode, dentry, true);
1654 return inode_has_perm(cred, inode, av, &ad);
1655}
1656
1657/* Same as inode_has_perm, but pass explicit audit data containing
1658 the path to help the auditing code to more easily generate the
1659 pathname if needed. */
1660static inline int path_has_perm(const struct cred *cred,
1661 const struct path *path,
1662 u32 av)
1663{
1664 struct inode *inode = d_backing_inode(path->dentry);
1665 struct common_audit_data ad;
1666
1667 ad.type = LSM_AUDIT_DATA_PATH;
1668 ad.u.path = *path;
1669 __inode_security_revalidate(inode, path->dentry, true);
1670 return inode_has_perm(cred, inode, av, &ad);
1671}
1672
1673/* Same as path_has_perm, but uses the inode from the file struct. */
1674static inline int file_path_has_perm(const struct cred *cred,
1675 struct file *file,
1676 u32 av)
1677{
1678 struct common_audit_data ad;
1679
1680 ad.type = LSM_AUDIT_DATA_FILE;
1681 ad.u.file = file;
1682 return inode_has_perm(cred, file_inode(file), av, &ad);
1683}
1684
1685#ifdef CONFIG_BPF_SYSCALL
1686static int bpf_fd_pass(struct file *file, u32 sid);
1687#endif
1688
1689/* Check whether a task can use an open file descriptor to
1690 access an inode in a given way. Check access to the
1691 descriptor itself, and then use dentry_has_perm to
1692 check a particular permission to the file.
1693 Access to the descriptor is implicitly granted if it
1694 has the same SID as the process. If av is zero, then
1695 access to the file is not checked, e.g. for cases
1696 where only the descriptor is affected like seek. */
1697static int file_has_perm(const struct cred *cred,
1698 struct file *file,
1699 u32 av)
1700{
1701 struct file_security_struct *fsec = selinux_file(file);
1702 struct inode *inode = file_inode(file);
1703 struct common_audit_data ad;
1704 u32 sid = cred_sid(cred);
1705 int rc;
1706
1707 ad.type = LSM_AUDIT_DATA_FILE;
1708 ad.u.file = file;
1709
1710 if (sid != fsec->sid) {
1711 rc = avc_has_perm(&selinux_state,
1712 sid, fsec->sid,
1713 SECCLASS_FD,
1714 FD__USE,
1715 &ad);
1716 if (rc)
1717 goto out;
1718 }
1719
1720#ifdef CONFIG_BPF_SYSCALL
1721 rc = bpf_fd_pass(file, cred_sid(cred));
1722 if (rc)
1723 return rc;
1724#endif
1725
1726 /* av is zero if only checking access to the descriptor. */
1727 rc = 0;
1728 if (av)
1729 rc = inode_has_perm(cred, inode, av, &ad);
1730
1731out:
1732 return rc;
1733}
1734
1735/*
1736 * Determine the label for an inode that might be unioned.
1737 */
1738static int
1739selinux_determine_inode_label(const struct task_security_struct *tsec,
1740 struct inode *dir,
1741 const struct qstr *name, u16 tclass,
1742 u32 *_new_isid)
1743{
1744 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1745
1746 if ((sbsec->flags & SE_SBINITIALIZED) &&
1747 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1748 *_new_isid = sbsec->mntpoint_sid;
1749 } else if ((sbsec->flags & SBLABEL_MNT) &&
1750 tsec->create_sid) {
1751 *_new_isid = tsec->create_sid;
1752 } else {
1753 const struct inode_security_struct *dsec = inode_security(dir);
1754 return security_transition_sid(&selinux_state, tsec->sid,
1755 dsec->sid, tclass,
1756 name, _new_isid);
1757 }
1758
1759 return 0;
1760}
1761
1762/* Check whether a task can create a file. */
1763static int may_create(struct inode *dir,
1764 struct dentry *dentry,
1765 u16 tclass)
1766{
1767 const struct task_security_struct *tsec = selinux_cred(current_cred());
1768 struct inode_security_struct *dsec;
1769 struct superblock_security_struct *sbsec;
1770 u32 sid, newsid;
1771 struct common_audit_data ad;
1772 int rc;
1773
1774 dsec = inode_security(dir);
1775 sbsec = dir->i_sb->s_security;
1776
1777 sid = tsec->sid;
1778
1779 ad.type = LSM_AUDIT_DATA_DENTRY;
1780 ad.u.dentry = dentry;
1781
1782 rc = avc_has_perm(&selinux_state,
1783 sid, dsec->sid, SECCLASS_DIR,
1784 DIR__ADD_NAME | DIR__SEARCH,
1785 &ad);
1786 if (rc)
1787 return rc;
1788
1789 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1790 &newsid);
1791 if (rc)
1792 return rc;
1793
1794 rc = avc_has_perm(&selinux_state,
1795 sid, newsid, tclass, FILE__CREATE, &ad);
1796 if (rc)
1797 return rc;
1798
1799 return avc_has_perm(&selinux_state,
1800 newsid, sbsec->sid,
1801 SECCLASS_FILESYSTEM,
1802 FILESYSTEM__ASSOCIATE, &ad);
1803}
1804
1805#define MAY_LINK 0
1806#define MAY_UNLINK 1
1807#define MAY_RMDIR 2
1808
1809/* Check whether a task can link, unlink, or rmdir a file/directory. */
1810static int may_link(struct inode *dir,
1811 struct dentry *dentry,
1812 int kind)
1813
1814{
1815 struct inode_security_struct *dsec, *isec;
1816 struct common_audit_data ad;
1817 u32 sid = current_sid();
1818 u32 av;
1819 int rc;
1820
1821 dsec = inode_security(dir);
1822 isec = backing_inode_security(dentry);
1823
1824 ad.type = LSM_AUDIT_DATA_DENTRY;
1825 ad.u.dentry = dentry;
1826
1827 av = DIR__SEARCH;
1828 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1829 rc = avc_has_perm(&selinux_state,
1830 sid, dsec->sid, SECCLASS_DIR, av, &ad);
1831 if (rc)
1832 return rc;
1833
1834 switch (kind) {
1835 case MAY_LINK:
1836 av = FILE__LINK;
1837 break;
1838 case MAY_UNLINK:
1839 av = FILE__UNLINK;
1840 break;
1841 case MAY_RMDIR:
1842 av = DIR__RMDIR;
1843 break;
1844 default:
1845 pr_warn("SELinux: %s: unrecognized kind %d\n",
1846 __func__, kind);
1847 return 0;
1848 }
1849
1850 rc = avc_has_perm(&selinux_state,
1851 sid, isec->sid, isec->sclass, av, &ad);
1852 return rc;
1853}
1854
1855static inline int may_rename(struct inode *old_dir,
1856 struct dentry *old_dentry,
1857 struct inode *new_dir,
1858 struct dentry *new_dentry)
1859{
1860 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1861 struct common_audit_data ad;
1862 u32 sid = current_sid();
1863 u32 av;
1864 int old_is_dir, new_is_dir;
1865 int rc;
1866
1867 old_dsec = inode_security(old_dir);
1868 old_isec = backing_inode_security(old_dentry);
1869 old_is_dir = d_is_dir(old_dentry);
1870 new_dsec = inode_security(new_dir);
1871
1872 ad.type = LSM_AUDIT_DATA_DENTRY;
1873
1874 ad.u.dentry = old_dentry;
1875 rc = avc_has_perm(&selinux_state,
1876 sid, old_dsec->sid, SECCLASS_DIR,
1877 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1878 if (rc)
1879 return rc;
1880 rc = avc_has_perm(&selinux_state,
1881 sid, old_isec->sid,
1882 old_isec->sclass, FILE__RENAME, &ad);
1883 if (rc)
1884 return rc;
1885 if (old_is_dir && new_dir != old_dir) {
1886 rc = avc_has_perm(&selinux_state,
1887 sid, old_isec->sid,
1888 old_isec->sclass, DIR__REPARENT, &ad);
1889 if (rc)
1890 return rc;
1891 }
1892
1893 ad.u.dentry = new_dentry;
1894 av = DIR__ADD_NAME | DIR__SEARCH;
1895 if (d_is_positive(new_dentry))
1896 av |= DIR__REMOVE_NAME;
1897 rc = avc_has_perm(&selinux_state,
1898 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1899 if (rc)
1900 return rc;
1901 if (d_is_positive(new_dentry)) {
1902 new_isec = backing_inode_security(new_dentry);
1903 new_is_dir = d_is_dir(new_dentry);
1904 rc = avc_has_perm(&selinux_state,
1905 sid, new_isec->sid,
1906 new_isec->sclass,
1907 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1908 if (rc)
1909 return rc;
1910 }
1911
1912 return 0;
1913}
1914
1915/* Check whether a task can perform a filesystem operation. */
1916static int superblock_has_perm(const struct cred *cred,
1917 struct super_block *sb,
1918 u32 perms,
1919 struct common_audit_data *ad)
1920{
1921 struct superblock_security_struct *sbsec;
1922 u32 sid = cred_sid(cred);
1923
1924 sbsec = sb->s_security;
1925 return avc_has_perm(&selinux_state,
1926 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1927}
1928
1929/* Convert a Linux mode and permission mask to an access vector. */
1930static inline u32 file_mask_to_av(int mode, int mask)
1931{
1932 u32 av = 0;
1933
1934 if (!S_ISDIR(mode)) {
1935 if (mask & MAY_EXEC)
1936 av |= FILE__EXECUTE;
1937 if (mask & MAY_READ)
1938 av |= FILE__READ;
1939
1940 if (mask & MAY_APPEND)
1941 av |= FILE__APPEND;
1942 else if (mask & MAY_WRITE)
1943 av |= FILE__WRITE;
1944
1945 } else {
1946 if (mask & MAY_EXEC)
1947 av |= DIR__SEARCH;
1948 if (mask & MAY_WRITE)
1949 av |= DIR__WRITE;
1950 if (mask & MAY_READ)
1951 av |= DIR__READ;
1952 }
1953
1954 return av;
1955}
1956
1957/* Convert a Linux file to an access vector. */
1958static inline u32 file_to_av(struct file *file)
1959{
1960 u32 av = 0;
1961
1962 if (file->f_mode & FMODE_READ)
1963 av |= FILE__READ;
1964 if (file->f_mode & FMODE_WRITE) {
1965 if (file->f_flags & O_APPEND)
1966 av |= FILE__APPEND;
1967 else
1968 av |= FILE__WRITE;
1969 }
1970 if (!av) {
1971 /*
1972 * Special file opened with flags 3 for ioctl-only use.
1973 */
1974 av = FILE__IOCTL;
1975 }
1976
1977 return av;
1978}
1979
1980/*
1981 * Convert a file to an access vector and include the correct open
1982 * open permission.
1983 */
1984static inline u32 open_file_to_av(struct file *file)
1985{
1986 u32 av = file_to_av(file);
1987 struct inode *inode = file_inode(file);
1988
1989 if (selinux_policycap_openperm() &&
1990 inode->i_sb->s_magic != SOCKFS_MAGIC)
1991 av |= FILE__OPEN;
1992
1993 return av;
1994}
1995
1996/* Hook functions begin here. */
1997
1998static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1999{
2000 u32 mysid = current_sid();
2001 u32 mgrsid = task_sid(mgr);
2002
2003 return avc_has_perm(&selinux_state,
2004 mysid, mgrsid, SECCLASS_BINDER,
2005 BINDER__SET_CONTEXT_MGR, NULL);
2006}
2007
2008static int selinux_binder_transaction(struct task_struct *from,
2009 struct task_struct *to)
2010{
2011 u32 mysid = current_sid();
2012 u32 fromsid = task_sid(from);
2013 u32 tosid = task_sid(to);
2014 int rc;
2015
2016 if (mysid != fromsid) {
2017 rc = avc_has_perm(&selinux_state,
2018 mysid, fromsid, SECCLASS_BINDER,
2019 BINDER__IMPERSONATE, NULL);
2020 if (rc)
2021 return rc;
2022 }
2023
2024 return avc_has_perm(&selinux_state,
2025 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2026 NULL);
2027}
2028
2029static int selinux_binder_transfer_binder(struct task_struct *from,
2030 struct task_struct *to)
2031{
2032 u32 fromsid = task_sid(from);
2033 u32 tosid = task_sid(to);
2034
2035 return avc_has_perm(&selinux_state,
2036 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2037 NULL);
2038}
2039
2040static int selinux_binder_transfer_file(struct task_struct *from,
2041 struct task_struct *to,
2042 struct file *file)
2043{
2044 u32 sid = task_sid(to);
2045 struct file_security_struct *fsec = selinux_file(file);
2046 struct dentry *dentry = file->f_path.dentry;
2047 struct inode_security_struct *isec;
2048 struct common_audit_data ad;
2049 int rc;
2050
2051 ad.type = LSM_AUDIT_DATA_PATH;
2052 ad.u.path = file->f_path;
2053
2054 if (sid != fsec->sid) {
2055 rc = avc_has_perm(&selinux_state,
2056 sid, fsec->sid,
2057 SECCLASS_FD,
2058 FD__USE,
2059 &ad);
2060 if (rc)
2061 return rc;
2062 }
2063
2064#ifdef CONFIG_BPF_SYSCALL
2065 rc = bpf_fd_pass(file, sid);
2066 if (rc)
2067 return rc;
2068#endif
2069
2070 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2071 return 0;
2072
2073 isec = backing_inode_security(dentry);
2074 return avc_has_perm(&selinux_state,
2075 sid, isec->sid, isec->sclass, file_to_av(file),
2076 &ad);
2077}
2078
2079static int selinux_ptrace_access_check(struct task_struct *child,
2080 unsigned int mode)
2081{
2082 u32 sid = current_sid();
2083 u32 csid = task_sid(child);
2084
2085 if (mode & PTRACE_MODE_READ)
2086 return avc_has_perm(&selinux_state,
2087 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2088
2089 return avc_has_perm(&selinux_state,
2090 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2091}
2092
2093static int selinux_ptrace_traceme(struct task_struct *parent)
2094{
2095 return avc_has_perm(&selinux_state,
2096 task_sid(parent), current_sid(), SECCLASS_PROCESS,
2097 PROCESS__PTRACE, NULL);
2098}
2099
2100static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2101 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2102{
2103 return avc_has_perm(&selinux_state,
2104 current_sid(), task_sid(target), SECCLASS_PROCESS,
2105 PROCESS__GETCAP, NULL);
2106}
2107
2108static int selinux_capset(struct cred *new, const struct cred *old,
2109 const kernel_cap_t *effective,
2110 const kernel_cap_t *inheritable,
2111 const kernel_cap_t *permitted)
2112{
2113 return avc_has_perm(&selinux_state,
2114 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2115 PROCESS__SETCAP, NULL);
2116}
2117
2118/*
2119 * (This comment used to live with the selinux_task_setuid hook,
2120 * which was removed).
2121 *
2122 * Since setuid only affects the current process, and since the SELinux
2123 * controls are not based on the Linux identity attributes, SELinux does not
2124 * need to control this operation. However, SELinux does control the use of
2125 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2126 */
2127
2128static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2129 int cap, unsigned int opts)
2130{
2131 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2132}
2133
2134static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2135{
2136 const struct cred *cred = current_cred();
2137 int rc = 0;
2138
2139 if (!sb)
2140 return 0;
2141
2142 switch (cmds) {
2143 case Q_SYNC:
2144 case Q_QUOTAON:
2145 case Q_QUOTAOFF:
2146 case Q_SETINFO:
2147 case Q_SETQUOTA:
2148 case Q_XQUOTAOFF:
2149 case Q_XQUOTAON:
2150 case Q_XSETQLIM:
2151 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2152 break;
2153 case Q_GETFMT:
2154 case Q_GETINFO:
2155 case Q_GETQUOTA:
2156 case Q_XGETQUOTA:
2157 case Q_XGETQSTAT:
2158 case Q_XGETQSTATV:
2159 case Q_XGETNEXTQUOTA:
2160 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2161 break;
2162 default:
2163 rc = 0; /* let the kernel handle invalid cmds */
2164 break;
2165 }
2166 return rc;
2167}
2168
2169static int selinux_quota_on(struct dentry *dentry)
2170{
2171 const struct cred *cred = current_cred();
2172
2173 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2174}
2175
2176static int selinux_syslog(int type)
2177{
2178 switch (type) {
2179 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2180 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2181 return avc_has_perm(&selinux_state,
2182 current_sid(), SECINITSID_KERNEL,
2183 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2184 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2185 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2186 /* Set level of messages printed to console */
2187 case SYSLOG_ACTION_CONSOLE_LEVEL:
2188 return avc_has_perm(&selinux_state,
2189 current_sid(), SECINITSID_KERNEL,
2190 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2191 NULL);
2192 }
2193 /* All other syslog types */
2194 return avc_has_perm(&selinux_state,
2195 current_sid(), SECINITSID_KERNEL,
2196 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2197}
2198
2199/*
2200 * Check that a process has enough memory to allocate a new virtual
2201 * mapping. 0 means there is enough memory for the allocation to
2202 * succeed and -ENOMEM implies there is not.
2203 *
2204 * Do not audit the selinux permission check, as this is applied to all
2205 * processes that allocate mappings.
2206 */
2207static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2208{
2209 int rc, cap_sys_admin = 0;
2210
2211 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2212 CAP_OPT_NOAUDIT, true);
2213 if (rc == 0)
2214 cap_sys_admin = 1;
2215
2216 return cap_sys_admin;
2217}
2218
2219/* binprm security operations */
2220
2221static u32 ptrace_parent_sid(void)
2222{
2223 u32 sid = 0;
2224 struct task_struct *tracer;
2225
2226 rcu_read_lock();
2227 tracer = ptrace_parent(current);
2228 if (tracer)
2229 sid = task_sid(tracer);
2230 rcu_read_unlock();
2231
2232 return sid;
2233}
2234
2235static int check_nnp_nosuid(const struct linux_binprm *bprm,
2236 const struct task_security_struct *old_tsec,
2237 const struct task_security_struct *new_tsec)
2238{
2239 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2240 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2241 int rc;
2242 u32 av;
2243
2244 if (!nnp && !nosuid)
2245 return 0; /* neither NNP nor nosuid */
2246
2247 if (new_tsec->sid == old_tsec->sid)
2248 return 0; /* No change in credentials */
2249
2250 /*
2251 * If the policy enables the nnp_nosuid_transition policy capability,
2252 * then we permit transitions under NNP or nosuid if the
2253 * policy allows the corresponding permission between
2254 * the old and new contexts.
2255 */
2256 if (selinux_policycap_nnp_nosuid_transition()) {
2257 av = 0;
2258 if (nnp)
2259 av |= PROCESS2__NNP_TRANSITION;
2260 if (nosuid)
2261 av |= PROCESS2__NOSUID_TRANSITION;
2262 rc = avc_has_perm(&selinux_state,
2263 old_tsec->sid, new_tsec->sid,
2264 SECCLASS_PROCESS2, av, NULL);
2265 if (!rc)
2266 return 0;
2267 }
2268
2269 /*
2270 * We also permit NNP or nosuid transitions to bounded SIDs,
2271 * i.e. SIDs that are guaranteed to only be allowed a subset
2272 * of the permissions of the current SID.
2273 */
2274 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2275 new_tsec->sid);
2276 if (!rc)
2277 return 0;
2278
2279 /*
2280 * On failure, preserve the errno values for NNP vs nosuid.
2281 * NNP: Operation not permitted for caller.
2282 * nosuid: Permission denied to file.
2283 */
2284 if (nnp)
2285 return -EPERM;
2286 return -EACCES;
2287}
2288
2289static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2290{
2291 const struct task_security_struct *old_tsec;
2292 struct task_security_struct *new_tsec;
2293 struct inode_security_struct *isec;
2294 struct common_audit_data ad;
2295 struct inode *inode = file_inode(bprm->file);
2296 int rc;
2297
2298 /* SELinux context only depends on initial program or script and not
2299 * the script interpreter */
2300
2301 old_tsec = selinux_cred(current_cred());
2302 new_tsec = selinux_cred(bprm->cred);
2303 isec = inode_security(inode);
2304
2305 /* Default to the current task SID. */
2306 new_tsec->sid = old_tsec->sid;
2307 new_tsec->osid = old_tsec->sid;
2308
2309 /* Reset fs, key, and sock SIDs on execve. */
2310 new_tsec->create_sid = 0;
2311 new_tsec->keycreate_sid = 0;
2312 new_tsec->sockcreate_sid = 0;
2313
2314 if (old_tsec->exec_sid) {
2315 new_tsec->sid = old_tsec->exec_sid;
2316 /* Reset exec SID on execve. */
2317 new_tsec->exec_sid = 0;
2318
2319 /* Fail on NNP or nosuid if not an allowed transition. */
2320 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2321 if (rc)
2322 return rc;
2323 } else {
2324 /* Check for a default transition on this program. */
2325 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2326 isec->sid, SECCLASS_PROCESS, NULL,
2327 &new_tsec->sid);
2328 if (rc)
2329 return rc;
2330
2331 /*
2332 * Fallback to old SID on NNP or nosuid if not an allowed
2333 * transition.
2334 */
2335 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336 if (rc)
2337 new_tsec->sid = old_tsec->sid;
2338 }
2339
2340 ad.type = LSM_AUDIT_DATA_FILE;
2341 ad.u.file = bprm->file;
2342
2343 if (new_tsec->sid == old_tsec->sid) {
2344 rc = avc_has_perm(&selinux_state,
2345 old_tsec->sid, isec->sid,
2346 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2347 if (rc)
2348 return rc;
2349 } else {
2350 /* Check permissions for the transition. */
2351 rc = avc_has_perm(&selinux_state,
2352 old_tsec->sid, new_tsec->sid,
2353 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2354 if (rc)
2355 return rc;
2356
2357 rc = avc_has_perm(&selinux_state,
2358 new_tsec->sid, isec->sid,
2359 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2360 if (rc)
2361 return rc;
2362
2363 /* Check for shared state */
2364 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2365 rc = avc_has_perm(&selinux_state,
2366 old_tsec->sid, new_tsec->sid,
2367 SECCLASS_PROCESS, PROCESS__SHARE,
2368 NULL);
2369 if (rc)
2370 return -EPERM;
2371 }
2372
2373 /* Make sure that anyone attempting to ptrace over a task that
2374 * changes its SID has the appropriate permit */
2375 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2376 u32 ptsid = ptrace_parent_sid();
2377 if (ptsid != 0) {
2378 rc = avc_has_perm(&selinux_state,
2379 ptsid, new_tsec->sid,
2380 SECCLASS_PROCESS,
2381 PROCESS__PTRACE, NULL);
2382 if (rc)
2383 return -EPERM;
2384 }
2385 }
2386
2387 /* Clear any possibly unsafe personality bits on exec: */
2388 bprm->per_clear |= PER_CLEAR_ON_SETID;
2389
2390 /* Enable secure mode for SIDs transitions unless
2391 the noatsecure permission is granted between
2392 the two SIDs, i.e. ahp returns 0. */
2393 rc = avc_has_perm(&selinux_state,
2394 old_tsec->sid, new_tsec->sid,
2395 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2396 NULL);
2397 bprm->secureexec |= !!rc;
2398 }
2399
2400 return 0;
2401}
2402
2403static int match_file(const void *p, struct file *file, unsigned fd)
2404{
2405 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2406}
2407
2408/* Derived from fs/exec.c:flush_old_files. */
2409static inline void flush_unauthorized_files(const struct cred *cred,
2410 struct files_struct *files)
2411{
2412 struct file *file, *devnull = NULL;
2413 struct tty_struct *tty;
2414 int drop_tty = 0;
2415 unsigned n;
2416
2417 tty = get_current_tty();
2418 if (tty) {
2419 spin_lock(&tty->files_lock);
2420 if (!list_empty(&tty->tty_files)) {
2421 struct tty_file_private *file_priv;
2422
2423 /* Revalidate access to controlling tty.
2424 Use file_path_has_perm on the tty path directly
2425 rather than using file_has_perm, as this particular
2426 open file may belong to another process and we are
2427 only interested in the inode-based check here. */
2428 file_priv = list_first_entry(&tty->tty_files,
2429 struct tty_file_private, list);
2430 file = file_priv->file;
2431 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2432 drop_tty = 1;
2433 }
2434 spin_unlock(&tty->files_lock);
2435 tty_kref_put(tty);
2436 }
2437 /* Reset controlling tty. */
2438 if (drop_tty)
2439 no_tty();
2440
2441 /* Revalidate access to inherited open files. */
2442 n = iterate_fd(files, 0, match_file, cred);
2443 if (!n) /* none found? */
2444 return;
2445
2446 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2447 if (IS_ERR(devnull))
2448 devnull = NULL;
2449 /* replace all the matching ones with this */
2450 do {
2451 replace_fd(n - 1, devnull, 0);
2452 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2453 if (devnull)
2454 fput(devnull);
2455}
2456
2457/*
2458 * Prepare a process for imminent new credential changes due to exec
2459 */
2460static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2461{
2462 struct task_security_struct *new_tsec;
2463 struct rlimit *rlim, *initrlim;
2464 int rc, i;
2465
2466 new_tsec = selinux_cred(bprm->cred);
2467 if (new_tsec->sid == new_tsec->osid)
2468 return;
2469
2470 /* Close files for which the new task SID is not authorized. */
2471 flush_unauthorized_files(bprm->cred, current->files);
2472
2473 /* Always clear parent death signal on SID transitions. */
2474 current->pdeath_signal = 0;
2475
2476 /* Check whether the new SID can inherit resource limits from the old
2477 * SID. If not, reset all soft limits to the lower of the current
2478 * task's hard limit and the init task's soft limit.
2479 *
2480 * Note that the setting of hard limits (even to lower them) can be
2481 * controlled by the setrlimit check. The inclusion of the init task's
2482 * soft limit into the computation is to avoid resetting soft limits
2483 * higher than the default soft limit for cases where the default is
2484 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2485 */
2486 rc = avc_has_perm(&selinux_state,
2487 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2488 PROCESS__RLIMITINH, NULL);
2489 if (rc) {
2490 /* protect against do_prlimit() */
2491 task_lock(current);
2492 for (i = 0; i < RLIM_NLIMITS; i++) {
2493 rlim = current->signal->rlim + i;
2494 initrlim = init_task.signal->rlim + i;
2495 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2496 }
2497 task_unlock(current);
2498 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2499 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2500 }
2501}
2502
2503/*
2504 * Clean up the process immediately after the installation of new credentials
2505 * due to exec
2506 */
2507static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2508{
2509 const struct task_security_struct *tsec = selinux_cred(current_cred());
2510 u32 osid, sid;
2511 int rc;
2512
2513 osid = tsec->osid;
2514 sid = tsec->sid;
2515
2516 if (sid == osid)
2517 return;
2518
2519 /* Check whether the new SID can inherit signal state from the old SID.
2520 * If not, clear itimers to avoid subsequent signal generation and
2521 * flush and unblock signals.
2522 *
2523 * This must occur _after_ the task SID has been updated so that any
2524 * kill done after the flush will be checked against the new SID.
2525 */
2526 rc = avc_has_perm(&selinux_state,
2527 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2528 if (rc) {
2529 clear_itimer();
2530
2531 spin_lock_irq(¤t->sighand->siglock);
2532 if (!fatal_signal_pending(current)) {
2533 flush_sigqueue(¤t->pending);
2534 flush_sigqueue(¤t->signal->shared_pending);
2535 flush_signal_handlers(current, 1);
2536 sigemptyset(¤t->blocked);
2537 recalc_sigpending();
2538 }
2539 spin_unlock_irq(¤t->sighand->siglock);
2540 }
2541
2542 /* Wake up the parent if it is waiting so that it can recheck
2543 * wait permission to the new task SID. */
2544 read_lock(&tasklist_lock);
2545 __wake_up_parent(current, current->real_parent);
2546 read_unlock(&tasklist_lock);
2547}
2548
2549/* superblock security operations */
2550
2551static int selinux_sb_alloc_security(struct super_block *sb)
2552{
2553 struct superblock_security_struct *sbsec;
2554
2555 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
2556 if (!sbsec)
2557 return -ENOMEM;
2558
2559 mutex_init(&sbsec->lock);
2560 INIT_LIST_HEAD(&sbsec->isec_head);
2561 spin_lock_init(&sbsec->isec_lock);
2562 sbsec->sb = sb;
2563 sbsec->sid = SECINITSID_UNLABELED;
2564 sbsec->def_sid = SECINITSID_FILE;
2565 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2566 sb->s_security = sbsec;
2567
2568 return 0;
2569}
2570
2571static void selinux_sb_free_security(struct super_block *sb)
2572{
2573 superblock_free_security(sb);
2574}
2575
2576static inline int opt_len(const char *s)
2577{
2578 bool open_quote = false;
2579 int len;
2580 char c;
2581
2582 for (len = 0; (c = s[len]) != '\0'; len++) {
2583 if (c == '"')
2584 open_quote = !open_quote;
2585 if (c == ',' && !open_quote)
2586 break;
2587 }
2588 return len;
2589}
2590
2591static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2592{
2593 char *from = options;
2594 char *to = options;
2595 bool first = true;
2596 int rc;
2597
2598 while (1) {
2599 int len = opt_len(from);
2600 int token;
2601 char *arg = NULL;
2602
2603 token = match_opt_prefix(from, len, &arg);
2604
2605 if (token != Opt_error) {
2606 char *p, *q;
2607
2608 /* strip quotes */
2609 if (arg) {
2610 for (p = q = arg; p < from + len; p++) {
2611 char c = *p;
2612 if (c != '"')
2613 *q++ = c;
2614 }
2615 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2616 if (!arg) {
2617 rc = -ENOMEM;
2618 goto free_opt;
2619 }
2620 }
2621 rc = selinux_add_opt(token, arg, mnt_opts);
2622 if (unlikely(rc)) {
2623 kfree(arg);
2624 goto free_opt;
2625 }
2626 } else {
2627 if (!first) { // copy with preceding comma
2628 from--;
2629 len++;
2630 }
2631 if (to != from)
2632 memmove(to, from, len);
2633 to += len;
2634 first = false;
2635 }
2636 if (!from[len])
2637 break;
2638 from += len + 1;
2639 }
2640 *to = '\0';
2641 return 0;
2642
2643free_opt:
2644 if (*mnt_opts) {
2645 selinux_free_mnt_opts(*mnt_opts);
2646 *mnt_opts = NULL;
2647 }
2648 return rc;
2649}
2650
2651static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2652{
2653 struct selinux_mnt_opts *opts = mnt_opts;
2654 struct superblock_security_struct *sbsec = sb->s_security;
2655 u32 sid;
2656 int rc;
2657
2658 if (!(sbsec->flags & SE_SBINITIALIZED))
2659 return 0;
2660
2661 if (!opts)
2662 return 0;
2663
2664 if (opts->fscontext) {
2665 rc = parse_sid(sb, opts->fscontext, &sid);
2666 if (rc)
2667 return rc;
2668 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2669 goto out_bad_option;
2670 }
2671 if (opts->context) {
2672 rc = parse_sid(sb, opts->context, &sid);
2673 if (rc)
2674 return rc;
2675 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2676 goto out_bad_option;
2677 }
2678 if (opts->rootcontext) {
2679 struct inode_security_struct *root_isec;
2680 root_isec = backing_inode_security(sb->s_root);
2681 rc = parse_sid(sb, opts->rootcontext, &sid);
2682 if (rc)
2683 return rc;
2684 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2685 goto out_bad_option;
2686 }
2687 if (opts->defcontext) {
2688 rc = parse_sid(sb, opts->defcontext, &sid);
2689 if (rc)
2690 return rc;
2691 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2692 goto out_bad_option;
2693 }
2694 return 0;
2695
2696out_bad_option:
2697 pr_warn("SELinux: unable to change security options "
2698 "during remount (dev %s, type=%s)\n", sb->s_id,
2699 sb->s_type->name);
2700 return -EINVAL;
2701}
2702
2703static int selinux_sb_kern_mount(struct super_block *sb)
2704{
2705 const struct cred *cred = current_cred();
2706 struct common_audit_data ad;
2707
2708 ad.type = LSM_AUDIT_DATA_DENTRY;
2709 ad.u.dentry = sb->s_root;
2710 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2711}
2712
2713static int selinux_sb_statfs(struct dentry *dentry)
2714{
2715 const struct cred *cred = current_cred();
2716 struct common_audit_data ad;
2717
2718 ad.type = LSM_AUDIT_DATA_DENTRY;
2719 ad.u.dentry = dentry->d_sb->s_root;
2720 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2721}
2722
2723static int selinux_mount(const char *dev_name,
2724 const struct path *path,
2725 const char *type,
2726 unsigned long flags,
2727 void *data)
2728{
2729 const struct cred *cred = current_cred();
2730
2731 if (flags & MS_REMOUNT)
2732 return superblock_has_perm(cred, path->dentry->d_sb,
2733 FILESYSTEM__REMOUNT, NULL);
2734 else
2735 return path_has_perm(cred, path, FILE__MOUNTON);
2736}
2737
2738static int selinux_move_mount(const struct path *from_path,
2739 const struct path *to_path)
2740{
2741 const struct cred *cred = current_cred();
2742
2743 return path_has_perm(cred, to_path, FILE__MOUNTON);
2744}
2745
2746static int selinux_umount(struct vfsmount *mnt, int flags)
2747{
2748 const struct cred *cred = current_cred();
2749
2750 return superblock_has_perm(cred, mnt->mnt_sb,
2751 FILESYSTEM__UNMOUNT, NULL);
2752}
2753
2754static int selinux_fs_context_dup(struct fs_context *fc,
2755 struct fs_context *src_fc)
2756{
2757 const struct selinux_mnt_opts *src = src_fc->security;
2758 struct selinux_mnt_opts *opts;
2759
2760 if (!src)
2761 return 0;
2762
2763 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2764 if (!fc->security)
2765 return -ENOMEM;
2766
2767 opts = fc->security;
2768
2769 if (src->fscontext) {
2770 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2771 if (!opts->fscontext)
2772 return -ENOMEM;
2773 }
2774 if (src->context) {
2775 opts->context = kstrdup(src->context, GFP_KERNEL);
2776 if (!opts->context)
2777 return -ENOMEM;
2778 }
2779 if (src->rootcontext) {
2780 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2781 if (!opts->rootcontext)
2782 return -ENOMEM;
2783 }
2784 if (src->defcontext) {
2785 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2786 if (!opts->defcontext)
2787 return -ENOMEM;
2788 }
2789 return 0;
2790}
2791
2792static const struct fs_parameter_spec selinux_fs_parameters[] = {
2793 fsparam_string(CONTEXT_STR, Opt_context),
2794 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2795 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2796 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2797 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2798 {}
2799};
2800
2801static int selinux_fs_context_parse_param(struct fs_context *fc,
2802 struct fs_parameter *param)
2803{
2804 struct fs_parse_result result;
2805 int opt, rc;
2806
2807 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2808 if (opt < 0)
2809 return opt;
2810
2811 rc = selinux_add_opt(opt, param->string, &fc->security);
2812 if (!rc) {
2813 param->string = NULL;
2814 rc = 1;
2815 }
2816 return rc;
2817}
2818
2819/* inode security operations */
2820
2821static int selinux_inode_alloc_security(struct inode *inode)
2822{
2823 struct inode_security_struct *isec = selinux_inode(inode);
2824 u32 sid = current_sid();
2825
2826 spin_lock_init(&isec->lock);
2827 INIT_LIST_HEAD(&isec->list);
2828 isec->inode = inode;
2829 isec->sid = SECINITSID_UNLABELED;
2830 isec->sclass = SECCLASS_FILE;
2831 isec->task_sid = sid;
2832 isec->initialized = LABEL_INVALID;
2833
2834 return 0;
2835}
2836
2837static void selinux_inode_free_security(struct inode *inode)
2838{
2839 inode_free_security(inode);
2840}
2841
2842static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2843 const struct qstr *name, void **ctx,
2844 u32 *ctxlen)
2845{
2846 u32 newsid;
2847 int rc;
2848
2849 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2850 d_inode(dentry->d_parent), name,
2851 inode_mode_to_security_class(mode),
2852 &newsid);
2853 if (rc)
2854 return rc;
2855
2856 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2857 ctxlen);
2858}
2859
2860static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2861 struct qstr *name,
2862 const struct cred *old,
2863 struct cred *new)
2864{
2865 u32 newsid;
2866 int rc;
2867 struct task_security_struct *tsec;
2868
2869 rc = selinux_determine_inode_label(selinux_cred(old),
2870 d_inode(dentry->d_parent), name,
2871 inode_mode_to_security_class(mode),
2872 &newsid);
2873 if (rc)
2874 return rc;
2875
2876 tsec = selinux_cred(new);
2877 tsec->create_sid = newsid;
2878 return 0;
2879}
2880
2881static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2882 const struct qstr *qstr,
2883 const char **name,
2884 void **value, size_t *len)
2885{
2886 const struct task_security_struct *tsec = selinux_cred(current_cred());
2887 struct superblock_security_struct *sbsec;
2888 u32 newsid, clen;
2889 int rc;
2890 char *context;
2891
2892 sbsec = dir->i_sb->s_security;
2893
2894 newsid = tsec->create_sid;
2895
2896 rc = selinux_determine_inode_label(tsec, dir, qstr,
2897 inode_mode_to_security_class(inode->i_mode),
2898 &newsid);
2899 if (rc)
2900 return rc;
2901
2902 /* Possibly defer initialization to selinux_complete_init. */
2903 if (sbsec->flags & SE_SBINITIALIZED) {
2904 struct inode_security_struct *isec = selinux_inode(inode);
2905 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2906 isec->sid = newsid;
2907 isec->initialized = LABEL_INITIALIZED;
2908 }
2909
2910 if (!selinux_initialized(&selinux_state) ||
2911 !(sbsec->flags & SBLABEL_MNT))
2912 return -EOPNOTSUPP;
2913
2914 if (name)
2915 *name = XATTR_SELINUX_SUFFIX;
2916
2917 if (value && len) {
2918 rc = security_sid_to_context_force(&selinux_state, newsid,
2919 &context, &clen);
2920 if (rc)
2921 return rc;
2922 *value = context;
2923 *len = clen;
2924 }
2925
2926 return 0;
2927}
2928
2929static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2930{
2931 return may_create(dir, dentry, SECCLASS_FILE);
2932}
2933
2934static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2935{
2936 return may_link(dir, old_dentry, MAY_LINK);
2937}
2938
2939static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2940{
2941 return may_link(dir, dentry, MAY_UNLINK);
2942}
2943
2944static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2945{
2946 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2947}
2948
2949static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2950{
2951 return may_create(dir, dentry, SECCLASS_DIR);
2952}
2953
2954static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2955{
2956 return may_link(dir, dentry, MAY_RMDIR);
2957}
2958
2959static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2960{
2961 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2962}
2963
2964static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2965 struct inode *new_inode, struct dentry *new_dentry)
2966{
2967 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2968}
2969
2970static int selinux_inode_readlink(struct dentry *dentry)
2971{
2972 const struct cred *cred = current_cred();
2973
2974 return dentry_has_perm(cred, dentry, FILE__READ);
2975}
2976
2977static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2978 bool rcu)
2979{
2980 const struct cred *cred = current_cred();
2981 struct common_audit_data ad;
2982 struct inode_security_struct *isec;
2983 u32 sid;
2984
2985 validate_creds(cred);
2986
2987 ad.type = LSM_AUDIT_DATA_DENTRY;
2988 ad.u.dentry = dentry;
2989 sid = cred_sid(cred);
2990 isec = inode_security_rcu(inode, rcu);
2991 if (IS_ERR(isec))
2992 return PTR_ERR(isec);
2993
2994 return avc_has_perm_flags(&selinux_state,
2995 sid, isec->sid, isec->sclass, FILE__READ, &ad,
2996 rcu ? MAY_NOT_BLOCK : 0);
2997}
2998
2999static noinline int audit_inode_permission(struct inode *inode,
3000 u32 perms, u32 audited, u32 denied,
3001 int result)
3002{
3003 struct common_audit_data ad;
3004 struct inode_security_struct *isec = selinux_inode(inode);
3005 int rc;
3006
3007 ad.type = LSM_AUDIT_DATA_INODE;
3008 ad.u.inode = inode;
3009
3010 rc = slow_avc_audit(&selinux_state,
3011 current_sid(), isec->sid, isec->sclass, perms,
3012 audited, denied, result, &ad);
3013 if (rc)
3014 return rc;
3015 return 0;
3016}
3017
3018static int selinux_inode_permission(struct inode *inode, int mask)
3019{
3020 const struct cred *cred = current_cred();
3021 u32 perms;
3022 bool from_access;
3023 bool no_block = mask & MAY_NOT_BLOCK;
3024 struct inode_security_struct *isec;
3025 u32 sid;
3026 struct av_decision avd;
3027 int rc, rc2;
3028 u32 audited, denied;
3029
3030 from_access = mask & MAY_ACCESS;
3031 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3032
3033 /* No permission to check. Existence test. */
3034 if (!mask)
3035 return 0;
3036
3037 validate_creds(cred);
3038
3039 if (unlikely(IS_PRIVATE(inode)))
3040 return 0;
3041
3042 perms = file_mask_to_av(inode->i_mode, mask);
3043
3044 sid = cred_sid(cred);
3045 isec = inode_security_rcu(inode, no_block);
3046 if (IS_ERR(isec))
3047 return PTR_ERR(isec);
3048
3049 rc = avc_has_perm_noaudit(&selinux_state,
3050 sid, isec->sid, isec->sclass, perms,
3051 no_block ? AVC_NONBLOCKING : 0,
3052 &avd);
3053 audited = avc_audit_required(perms, &avd, rc,
3054 from_access ? FILE__AUDIT_ACCESS : 0,
3055 &denied);
3056 if (likely(!audited))
3057 return rc;
3058
3059 /* fall back to ref-walk if we have to generate audit */
3060 if (no_block)
3061 return -ECHILD;
3062
3063 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3064 if (rc2)
3065 return rc2;
3066 return rc;
3067}
3068
3069static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3070{
3071 const struct cred *cred = current_cred();
3072 struct inode *inode = d_backing_inode(dentry);
3073 unsigned int ia_valid = iattr->ia_valid;
3074 __u32 av = FILE__WRITE;
3075
3076 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3077 if (ia_valid & ATTR_FORCE) {
3078 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3079 ATTR_FORCE);
3080 if (!ia_valid)
3081 return 0;
3082 }
3083
3084 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3085 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3086 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3087
3088 if (selinux_policycap_openperm() &&
3089 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3090 (ia_valid & ATTR_SIZE) &&
3091 !(ia_valid & ATTR_FILE))
3092 av |= FILE__OPEN;
3093
3094 return dentry_has_perm(cred, dentry, av);
3095}
3096
3097static int selinux_inode_getattr(const struct path *path)
3098{
3099 return path_has_perm(current_cred(), path, FILE__GETATTR);
3100}
3101
3102static bool has_cap_mac_admin(bool audit)
3103{
3104 const struct cred *cred = current_cred();
3105 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3106
3107 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3108 return false;
3109 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3110 return false;
3111 return true;
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115 const void *value, size_t size, int flags)
3116{
3117 struct inode *inode = d_backing_inode(dentry);
3118 struct inode_security_struct *isec;
3119 struct superblock_security_struct *sbsec;
3120 struct common_audit_data ad;
3121 u32 newsid, sid = current_sid();
3122 int rc = 0;
3123
3124 if (strcmp(name, XATTR_NAME_SELINUX)) {
3125 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3126 if (rc)
3127 return rc;
3128
3129 /* Not an attribute we recognize, so just check the
3130 ordinary setattr permission. */
3131 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3132 }
3133
3134 if (!selinux_initialized(&selinux_state))
3135 return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3136
3137 sbsec = inode->i_sb->s_security;
3138 if (!(sbsec->flags & SBLABEL_MNT))
3139 return -EOPNOTSUPP;
3140
3141 if (!inode_owner_or_capable(inode))
3142 return -EPERM;
3143
3144 ad.type = LSM_AUDIT_DATA_DENTRY;
3145 ad.u.dentry = dentry;
3146
3147 isec = backing_inode_security(dentry);
3148 rc = avc_has_perm(&selinux_state,
3149 sid, isec->sid, isec->sclass,
3150 FILE__RELABELFROM, &ad);
3151 if (rc)
3152 return rc;
3153
3154 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3155 GFP_KERNEL);
3156 if (rc == -EINVAL) {
3157 if (!has_cap_mac_admin(true)) {
3158 struct audit_buffer *ab;
3159 size_t audit_size;
3160
3161 /* We strip a nul only if it is at the end, otherwise the
3162 * context contains a nul and we should audit that */
3163 if (value) {
3164 const char *str = value;
3165
3166 if (str[size - 1] == '\0')
3167 audit_size = size - 1;
3168 else
3169 audit_size = size;
3170 } else {
3171 audit_size = 0;
3172 }
3173 ab = audit_log_start(audit_context(),
3174 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3175 audit_log_format(ab, "op=setxattr invalid_context=");
3176 audit_log_n_untrustedstring(ab, value, audit_size);
3177 audit_log_end(ab);
3178
3179 return rc;
3180 }
3181 rc = security_context_to_sid_force(&selinux_state, value,
3182 size, &newsid);
3183 }
3184 if (rc)
3185 return rc;
3186
3187 rc = avc_has_perm(&selinux_state,
3188 sid, newsid, isec->sclass,
3189 FILE__RELABELTO, &ad);
3190 if (rc)
3191 return rc;
3192
3193 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3194 sid, isec->sclass);
3195 if (rc)
3196 return rc;
3197
3198 return avc_has_perm(&selinux_state,
3199 newsid,
3200 sbsec->sid,
3201 SECCLASS_FILESYSTEM,
3202 FILESYSTEM__ASSOCIATE,
3203 &ad);
3204}
3205
3206static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3207 const void *value, size_t size,
3208 int flags)
3209{
3210 struct inode *inode = d_backing_inode(dentry);
3211 struct inode_security_struct *isec;
3212 u32 newsid;
3213 int rc;
3214
3215 if (strcmp(name, XATTR_NAME_SELINUX)) {
3216 /* Not an attribute we recognize, so nothing to do. */
3217 return;
3218 }
3219
3220 if (!selinux_initialized(&selinux_state)) {
3221 /* If we haven't even been initialized, then we can't validate
3222 * against a policy, so leave the label as invalid. It may
3223 * resolve to a valid label on the next revalidation try if
3224 * we've since initialized.
3225 */
3226 return;
3227 }
3228
3229 rc = security_context_to_sid_force(&selinux_state, value, size,
3230 &newsid);
3231 if (rc) {
3232 pr_err("SELinux: unable to map context to SID"
3233 "for (%s, %lu), rc=%d\n",
3234 inode->i_sb->s_id, inode->i_ino, -rc);
3235 return;
3236 }
3237
3238 isec = backing_inode_security(dentry);
3239 spin_lock(&isec->lock);
3240 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3241 isec->sid = newsid;
3242 isec->initialized = LABEL_INITIALIZED;
3243 spin_unlock(&isec->lock);
3244
3245 return;
3246}
3247
3248static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3249{
3250 const struct cred *cred = current_cred();
3251
3252 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3253}
3254
3255static int selinux_inode_listxattr(struct dentry *dentry)
3256{
3257 const struct cred *cred = current_cred();
3258
3259 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3260}
3261
3262static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3263{
3264 if (strcmp(name, XATTR_NAME_SELINUX)) {
3265 int rc = cap_inode_removexattr(dentry, name);
3266 if (rc)
3267 return rc;
3268
3269 /* Not an attribute we recognize, so just check the
3270 ordinary setattr permission. */
3271 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3272 }
3273
3274 /* No one is allowed to remove a SELinux security label.
3275 You can change the label, but all data must be labeled. */
3276 return -EACCES;
3277}
3278
3279static int selinux_path_notify(const struct path *path, u64 mask,
3280 unsigned int obj_type)
3281{
3282 int ret;
3283 u32 perm;
3284
3285 struct common_audit_data ad;
3286
3287 ad.type = LSM_AUDIT_DATA_PATH;
3288 ad.u.path = *path;
3289
3290 /*
3291 * Set permission needed based on the type of mark being set.
3292 * Performs an additional check for sb watches.
3293 */
3294 switch (obj_type) {
3295 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3296 perm = FILE__WATCH_MOUNT;
3297 break;
3298 case FSNOTIFY_OBJ_TYPE_SB:
3299 perm = FILE__WATCH_SB;
3300 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3301 FILESYSTEM__WATCH, &ad);
3302 if (ret)
3303 return ret;
3304 break;
3305 case FSNOTIFY_OBJ_TYPE_INODE:
3306 perm = FILE__WATCH;
3307 break;
3308 default:
3309 return -EINVAL;
3310 }
3311
3312 /* blocking watches require the file:watch_with_perm permission */
3313 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3314 perm |= FILE__WATCH_WITH_PERM;
3315
3316 /* watches on read-like events need the file:watch_reads permission */
3317 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3318 perm |= FILE__WATCH_READS;
3319
3320 return path_has_perm(current_cred(), path, perm);
3321}
3322
3323/*
3324 * Copy the inode security context value to the user.
3325 *
3326 * Permission check is handled by selinux_inode_getxattr hook.
3327 */
3328static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3329{
3330 u32 size;
3331 int error;
3332 char *context = NULL;
3333 struct inode_security_struct *isec;
3334
3335 /*
3336 * If we're not initialized yet, then we can't validate contexts, so
3337 * just let vfs_getxattr fall back to using the on-disk xattr.
3338 */
3339 if (!selinux_initialized(&selinux_state) ||
3340 strcmp(name, XATTR_SELINUX_SUFFIX))
3341 return -EOPNOTSUPP;
3342
3343 /*
3344 * If the caller has CAP_MAC_ADMIN, then get the raw context
3345 * value even if it is not defined by current policy; otherwise,
3346 * use the in-core value under current policy.
3347 * Use the non-auditing forms of the permission checks since
3348 * getxattr may be called by unprivileged processes commonly
3349 * and lack of permission just means that we fall back to the
3350 * in-core context value, not a denial.
3351 */
3352 isec = inode_security(inode);
3353 if (has_cap_mac_admin(false))
3354 error = security_sid_to_context_force(&selinux_state,
3355 isec->sid, &context,
3356 &size);
3357 else
3358 error = security_sid_to_context(&selinux_state, isec->sid,
3359 &context, &size);
3360 if (error)
3361 return error;
3362 error = size;
3363 if (alloc) {
3364 *buffer = context;
3365 goto out_nofree;
3366 }
3367 kfree(context);
3368out_nofree:
3369 return error;
3370}
3371
3372static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3373 const void *value, size_t size, int flags)
3374{
3375 struct inode_security_struct *isec = inode_security_novalidate(inode);
3376 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3377 u32 newsid;
3378 int rc;
3379
3380 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3381 return -EOPNOTSUPP;
3382
3383 if (!(sbsec->flags & SBLABEL_MNT))
3384 return -EOPNOTSUPP;
3385
3386 if (!value || !size)
3387 return -EACCES;
3388
3389 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3390 GFP_KERNEL);
3391 if (rc)
3392 return rc;
3393
3394 spin_lock(&isec->lock);
3395 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3396 isec->sid = newsid;
3397 isec->initialized = LABEL_INITIALIZED;
3398 spin_unlock(&isec->lock);
3399 return 0;
3400}
3401
3402static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3403{
3404 const int len = sizeof(XATTR_NAME_SELINUX);
3405 if (buffer && len <= buffer_size)
3406 memcpy(buffer, XATTR_NAME_SELINUX, len);
3407 return len;
3408}
3409
3410static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3411{
3412 struct inode_security_struct *isec = inode_security_novalidate(inode);
3413 *secid = isec->sid;
3414}
3415
3416static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3417{
3418 u32 sid;
3419 struct task_security_struct *tsec;
3420 struct cred *new_creds = *new;
3421
3422 if (new_creds == NULL) {
3423 new_creds = prepare_creds();
3424 if (!new_creds)
3425 return -ENOMEM;
3426 }
3427
3428 tsec = selinux_cred(new_creds);
3429 /* Get label from overlay inode and set it in create_sid */
3430 selinux_inode_getsecid(d_inode(src), &sid);
3431 tsec->create_sid = sid;
3432 *new = new_creds;
3433 return 0;
3434}
3435
3436static int selinux_inode_copy_up_xattr(const char *name)
3437{
3438 /* The copy_up hook above sets the initial context on an inode, but we
3439 * don't then want to overwrite it by blindly copying all the lower
3440 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3441 */
3442 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3443 return 1; /* Discard */
3444 /*
3445 * Any other attribute apart from SELINUX is not claimed, supported
3446 * by selinux.
3447 */
3448 return -EOPNOTSUPP;
3449}
3450
3451/* kernfs node operations */
3452
3453static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3454 struct kernfs_node *kn)
3455{
3456 const struct task_security_struct *tsec = selinux_cred(current_cred());
3457 u32 parent_sid, newsid, clen;
3458 int rc;
3459 char *context;
3460
3461 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3462 if (rc == -ENODATA)
3463 return 0;
3464 else if (rc < 0)
3465 return rc;
3466
3467 clen = (u32)rc;
3468 context = kmalloc(clen, GFP_KERNEL);
3469 if (!context)
3470 return -ENOMEM;
3471
3472 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3473 if (rc < 0) {
3474 kfree(context);
3475 return rc;
3476 }
3477
3478 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3479 GFP_KERNEL);
3480 kfree(context);
3481 if (rc)
3482 return rc;
3483
3484 if (tsec->create_sid) {
3485 newsid = tsec->create_sid;
3486 } else {
3487 u16 secclass = inode_mode_to_security_class(kn->mode);
3488 struct qstr q;
3489
3490 q.name = kn->name;
3491 q.hash_len = hashlen_string(kn_dir, kn->name);
3492
3493 rc = security_transition_sid(&selinux_state, tsec->sid,
3494 parent_sid, secclass, &q,
3495 &newsid);
3496 if (rc)
3497 return rc;
3498 }
3499
3500 rc = security_sid_to_context_force(&selinux_state, newsid,
3501 &context, &clen);
3502 if (rc)
3503 return rc;
3504
3505 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3506 XATTR_CREATE);
3507 kfree(context);
3508 return rc;
3509}
3510
3511
3512/* file security operations */
3513
3514static int selinux_revalidate_file_permission(struct file *file, int mask)
3515{
3516 const struct cred *cred = current_cred();
3517 struct inode *inode = file_inode(file);
3518
3519 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3520 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3521 mask |= MAY_APPEND;
3522
3523 return file_has_perm(cred, file,
3524 file_mask_to_av(inode->i_mode, mask));
3525}
3526
3527static int selinux_file_permission(struct file *file, int mask)
3528{
3529 struct inode *inode = file_inode(file);
3530 struct file_security_struct *fsec = selinux_file(file);
3531 struct inode_security_struct *isec;
3532 u32 sid = current_sid();
3533
3534 if (!mask)
3535 /* No permission to check. Existence test. */
3536 return 0;
3537
3538 isec = inode_security(inode);
3539 if (sid == fsec->sid && fsec->isid == isec->sid &&
3540 fsec->pseqno == avc_policy_seqno(&selinux_state))
3541 /* No change since file_open check. */
3542 return 0;
3543
3544 return selinux_revalidate_file_permission(file, mask);
3545}
3546
3547static int selinux_file_alloc_security(struct file *file)
3548{
3549 struct file_security_struct *fsec = selinux_file(file);
3550 u32 sid = current_sid();
3551
3552 fsec->sid = sid;
3553 fsec->fown_sid = sid;
3554
3555 return 0;
3556}
3557
3558/*
3559 * Check whether a task has the ioctl permission and cmd
3560 * operation to an inode.
3561 */
3562static int ioctl_has_perm(const struct cred *cred, struct file *file,
3563 u32 requested, u16 cmd)
3564{
3565 struct common_audit_data ad;
3566 struct file_security_struct *fsec = selinux_file(file);
3567 struct inode *inode = file_inode(file);
3568 struct inode_security_struct *isec;
3569 struct lsm_ioctlop_audit ioctl;
3570 u32 ssid = cred_sid(cred);
3571 int rc;
3572 u8 driver = cmd >> 8;
3573 u8 xperm = cmd & 0xff;
3574
3575 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3576 ad.u.op = &ioctl;
3577 ad.u.op->cmd = cmd;
3578 ad.u.op->path = file->f_path;
3579
3580 if (ssid != fsec->sid) {
3581 rc = avc_has_perm(&selinux_state,
3582 ssid, fsec->sid,
3583 SECCLASS_FD,
3584 FD__USE,
3585 &ad);
3586 if (rc)
3587 goto out;
3588 }
3589
3590 if (unlikely(IS_PRIVATE(inode)))
3591 return 0;
3592
3593 isec = inode_security(inode);
3594 rc = avc_has_extended_perms(&selinux_state,
3595 ssid, isec->sid, isec->sclass,
3596 requested, driver, xperm, &ad);
3597out:
3598 return rc;
3599}
3600
3601static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3602 unsigned long arg)
3603{
3604 const struct cred *cred = current_cred();
3605 int error = 0;
3606
3607 switch (cmd) {
3608 case FIONREAD:
3609 case FIBMAP:
3610 case FIGETBSZ:
3611 case FS_IOC_GETFLAGS:
3612 case FS_IOC_GETVERSION:
3613 error = file_has_perm(cred, file, FILE__GETATTR);
3614 break;
3615
3616 case FS_IOC_SETFLAGS:
3617 case FS_IOC_SETVERSION:
3618 error = file_has_perm(cred, file, FILE__SETATTR);
3619 break;
3620
3621 /* sys_ioctl() checks */
3622 case FIONBIO:
3623 case FIOASYNC:
3624 error = file_has_perm(cred, file, 0);
3625 break;
3626
3627 case KDSKBENT:
3628 case KDSKBSENT:
3629 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3630 CAP_OPT_NONE, true);
3631 break;
3632
3633 /* default case assumes that the command will go
3634 * to the file's ioctl() function.
3635 */
3636 default:
3637 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3638 }
3639 return error;
3640}
3641
3642static int default_noexec __ro_after_init;
3643
3644static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3645{
3646 const struct cred *cred = current_cred();
3647 u32 sid = cred_sid(cred);
3648 int rc = 0;
3649
3650 if (default_noexec &&
3651 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3652 (!shared && (prot & PROT_WRITE)))) {
3653 /*
3654 * We are making executable an anonymous mapping or a
3655 * private file mapping that will also be writable.
3656 * This has an additional check.
3657 */
3658 rc = avc_has_perm(&selinux_state,
3659 sid, sid, SECCLASS_PROCESS,
3660 PROCESS__EXECMEM, NULL);
3661 if (rc)
3662 goto error;
3663 }
3664
3665 if (file) {
3666 /* read access is always possible with a mapping */
3667 u32 av = FILE__READ;
3668
3669 /* write access only matters if the mapping is shared */
3670 if (shared && (prot & PROT_WRITE))
3671 av |= FILE__WRITE;
3672
3673 if (prot & PROT_EXEC)
3674 av |= FILE__EXECUTE;
3675
3676 return file_has_perm(cred, file, av);
3677 }
3678
3679error:
3680 return rc;
3681}
3682
3683static int selinux_mmap_addr(unsigned long addr)
3684{
3685 int rc = 0;
3686
3687 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3688 u32 sid = current_sid();
3689 rc = avc_has_perm(&selinux_state,
3690 sid, sid, SECCLASS_MEMPROTECT,
3691 MEMPROTECT__MMAP_ZERO, NULL);
3692 }
3693
3694 return rc;
3695}
3696
3697static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3698 unsigned long prot, unsigned long flags)
3699{
3700 struct common_audit_data ad;
3701 int rc;
3702
3703 if (file) {
3704 ad.type = LSM_AUDIT_DATA_FILE;
3705 ad.u.file = file;
3706 rc = inode_has_perm(current_cred(), file_inode(file),
3707 FILE__MAP, &ad);
3708 if (rc)
3709 return rc;
3710 }
3711
3712 if (selinux_state.checkreqprot)
3713 prot = reqprot;
3714
3715 return file_map_prot_check(file, prot,
3716 (flags & MAP_TYPE) == MAP_SHARED);
3717}
3718
3719static int selinux_file_mprotect(struct vm_area_struct *vma,
3720 unsigned long reqprot,
3721 unsigned long prot)
3722{
3723 const struct cred *cred = current_cred();
3724 u32 sid = cred_sid(cred);
3725
3726 if (selinux_state.checkreqprot)
3727 prot = reqprot;
3728
3729 if (default_noexec &&
3730 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3731 int rc = 0;
3732 if (vma->vm_start >= vma->vm_mm->start_brk &&
3733 vma->vm_end <= vma->vm_mm->brk) {
3734 rc = avc_has_perm(&selinux_state,
3735 sid, sid, SECCLASS_PROCESS,
3736 PROCESS__EXECHEAP, NULL);
3737 } else if (!vma->vm_file &&
3738 ((vma->vm_start <= vma->vm_mm->start_stack &&
3739 vma->vm_end >= vma->vm_mm->start_stack) ||
3740 vma_is_stack_for_current(vma))) {
3741 rc = avc_has_perm(&selinux_state,
3742 sid, sid, SECCLASS_PROCESS,
3743 PROCESS__EXECSTACK, NULL);
3744 } else if (vma->vm_file && vma->anon_vma) {
3745 /*
3746 * We are making executable a file mapping that has
3747 * had some COW done. Since pages might have been
3748 * written, check ability to execute the possibly
3749 * modified content. This typically should only
3750 * occur for text relocations.
3751 */
3752 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3753 }
3754 if (rc)
3755 return rc;
3756 }
3757
3758 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3759}
3760
3761static int selinux_file_lock(struct file *file, unsigned int cmd)
3762{
3763 const struct cred *cred = current_cred();
3764
3765 return file_has_perm(cred, file, FILE__LOCK);
3766}
3767
3768static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3769 unsigned long arg)
3770{
3771 const struct cred *cred = current_cred();
3772 int err = 0;
3773
3774 switch (cmd) {
3775 case F_SETFL:
3776 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3777 err = file_has_perm(cred, file, FILE__WRITE);
3778 break;
3779 }
3780 fallthrough;
3781 case F_SETOWN:
3782 case F_SETSIG:
3783 case F_GETFL:
3784 case F_GETOWN:
3785 case F_GETSIG:
3786 case F_GETOWNER_UIDS:
3787 /* Just check FD__USE permission */
3788 err = file_has_perm(cred, file, 0);
3789 break;
3790 case F_GETLK:
3791 case F_SETLK:
3792 case F_SETLKW:
3793 case F_OFD_GETLK:
3794 case F_OFD_SETLK:
3795 case F_OFD_SETLKW:
3796#if BITS_PER_LONG == 32
3797 case F_GETLK64:
3798 case F_SETLK64:
3799 case F_SETLKW64:
3800#endif
3801 err = file_has_perm(cred, file, FILE__LOCK);
3802 break;
3803 }
3804
3805 return err;
3806}
3807
3808static void selinux_file_set_fowner(struct file *file)
3809{
3810 struct file_security_struct *fsec;
3811
3812 fsec = selinux_file(file);
3813 fsec->fown_sid = current_sid();
3814}
3815
3816static int selinux_file_send_sigiotask(struct task_struct *tsk,
3817 struct fown_struct *fown, int signum)
3818{
3819 struct file *file;
3820 u32 sid = task_sid(tsk);
3821 u32 perm;
3822 struct file_security_struct *fsec;
3823
3824 /* struct fown_struct is never outside the context of a struct file */
3825 file = container_of(fown, struct file, f_owner);
3826
3827 fsec = selinux_file(file);
3828
3829 if (!signum)
3830 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3831 else
3832 perm = signal_to_av(signum);
3833
3834 return avc_has_perm(&selinux_state,
3835 fsec->fown_sid, sid,
3836 SECCLASS_PROCESS, perm, NULL);
3837}
3838
3839static int selinux_file_receive(struct file *file)
3840{
3841 const struct cred *cred = current_cred();
3842
3843 return file_has_perm(cred, file, file_to_av(file));
3844}
3845
3846static int selinux_file_open(struct file *file)
3847{
3848 struct file_security_struct *fsec;
3849 struct inode_security_struct *isec;
3850
3851 fsec = selinux_file(file);
3852 isec = inode_security(file_inode(file));
3853 /*
3854 * Save inode label and policy sequence number
3855 * at open-time so that selinux_file_permission
3856 * can determine whether revalidation is necessary.
3857 * Task label is already saved in the file security
3858 * struct as its SID.
3859 */
3860 fsec->isid = isec->sid;
3861 fsec->pseqno = avc_policy_seqno(&selinux_state);
3862 /*
3863 * Since the inode label or policy seqno may have changed
3864 * between the selinux_inode_permission check and the saving
3865 * of state above, recheck that access is still permitted.
3866 * Otherwise, access might never be revalidated against the
3867 * new inode label or new policy.
3868 * This check is not redundant - do not remove.
3869 */
3870 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3871}
3872
3873/* task security operations */
3874
3875static int selinux_task_alloc(struct task_struct *task,
3876 unsigned long clone_flags)
3877{
3878 u32 sid = current_sid();
3879
3880 return avc_has_perm(&selinux_state,
3881 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3882}
3883
3884/*
3885 * prepare a new set of credentials for modification
3886 */
3887static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3888 gfp_t gfp)
3889{
3890 const struct task_security_struct *old_tsec = selinux_cred(old);
3891 struct task_security_struct *tsec = selinux_cred(new);
3892
3893 *tsec = *old_tsec;
3894 return 0;
3895}
3896
3897/*
3898 * transfer the SELinux data to a blank set of creds
3899 */
3900static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3901{
3902 const struct task_security_struct *old_tsec = selinux_cred(old);
3903 struct task_security_struct *tsec = selinux_cred(new);
3904
3905 *tsec = *old_tsec;
3906}
3907
3908static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3909{
3910 *secid = cred_sid(c);
3911}
3912
3913/*
3914 * set the security data for a kernel service
3915 * - all the creation contexts are set to unlabelled
3916 */
3917static int selinux_kernel_act_as(struct cred *new, u32 secid)
3918{
3919 struct task_security_struct *tsec = selinux_cred(new);
3920 u32 sid = current_sid();
3921 int ret;
3922
3923 ret = avc_has_perm(&selinux_state,
3924 sid, secid,
3925 SECCLASS_KERNEL_SERVICE,
3926 KERNEL_SERVICE__USE_AS_OVERRIDE,
3927 NULL);
3928 if (ret == 0) {
3929 tsec->sid = secid;
3930 tsec->create_sid = 0;
3931 tsec->keycreate_sid = 0;
3932 tsec->sockcreate_sid = 0;
3933 }
3934 return ret;
3935}
3936
3937/*
3938 * set the file creation context in a security record to the same as the
3939 * objective context of the specified inode
3940 */
3941static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3942{
3943 struct inode_security_struct *isec = inode_security(inode);
3944 struct task_security_struct *tsec = selinux_cred(new);
3945 u32 sid = current_sid();
3946 int ret;
3947
3948 ret = avc_has_perm(&selinux_state,
3949 sid, isec->sid,
3950 SECCLASS_KERNEL_SERVICE,
3951 KERNEL_SERVICE__CREATE_FILES_AS,
3952 NULL);
3953
3954 if (ret == 0)
3955 tsec->create_sid = isec->sid;
3956 return ret;
3957}
3958
3959static int selinux_kernel_module_request(char *kmod_name)
3960{
3961 struct common_audit_data ad;
3962
3963 ad.type = LSM_AUDIT_DATA_KMOD;
3964 ad.u.kmod_name = kmod_name;
3965
3966 return avc_has_perm(&selinux_state,
3967 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3968 SYSTEM__MODULE_REQUEST, &ad);
3969}
3970
3971static int selinux_kernel_module_from_file(struct file *file)
3972{
3973 struct common_audit_data ad;
3974 struct inode_security_struct *isec;
3975 struct file_security_struct *fsec;
3976 u32 sid = current_sid();
3977 int rc;
3978
3979 /* init_module */
3980 if (file == NULL)
3981 return avc_has_perm(&selinux_state,
3982 sid, sid, SECCLASS_SYSTEM,
3983 SYSTEM__MODULE_LOAD, NULL);
3984
3985 /* finit_module */
3986
3987 ad.type = LSM_AUDIT_DATA_FILE;
3988 ad.u.file = file;
3989
3990 fsec = selinux_file(file);
3991 if (sid != fsec->sid) {
3992 rc = avc_has_perm(&selinux_state,
3993 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3994 if (rc)
3995 return rc;
3996 }
3997
3998 isec = inode_security(file_inode(file));
3999 return avc_has_perm(&selinux_state,
4000 sid, isec->sid, SECCLASS_SYSTEM,
4001 SYSTEM__MODULE_LOAD, &ad);
4002}
4003
4004static int selinux_kernel_read_file(struct file *file,
4005 enum kernel_read_file_id id)
4006{
4007 int rc = 0;
4008
4009 switch (id) {
4010 case READING_MODULE:
4011 rc = selinux_kernel_module_from_file(file);
4012 break;
4013 default:
4014 break;
4015 }
4016
4017 return rc;
4018}
4019
4020static int selinux_kernel_load_data(enum kernel_load_data_id id)
4021{
4022 int rc = 0;
4023
4024 switch (id) {
4025 case LOADING_MODULE:
4026 rc = selinux_kernel_module_from_file(NULL);
4027 default:
4028 break;
4029 }
4030
4031 return rc;
4032}
4033
4034static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4035{
4036 return avc_has_perm(&selinux_state,
4037 current_sid(), task_sid(p), SECCLASS_PROCESS,
4038 PROCESS__SETPGID, NULL);
4039}
4040
4041static int selinux_task_getpgid(struct task_struct *p)
4042{
4043 return avc_has_perm(&selinux_state,
4044 current_sid(), task_sid(p), SECCLASS_PROCESS,
4045 PROCESS__GETPGID, NULL);
4046}
4047
4048static int selinux_task_getsid(struct task_struct *p)
4049{
4050 return avc_has_perm(&selinux_state,
4051 current_sid(), task_sid(p), SECCLASS_PROCESS,
4052 PROCESS__GETSESSION, NULL);
4053}
4054
4055static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4056{
4057 *secid = task_sid(p);
4058}
4059
4060static int selinux_task_setnice(struct task_struct *p, int nice)
4061{
4062 return avc_has_perm(&selinux_state,
4063 current_sid(), task_sid(p), SECCLASS_PROCESS,
4064 PROCESS__SETSCHED, NULL);
4065}
4066
4067static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4068{
4069 return avc_has_perm(&selinux_state,
4070 current_sid(), task_sid(p), SECCLASS_PROCESS,
4071 PROCESS__SETSCHED, NULL);
4072}
4073
4074static int selinux_task_getioprio(struct task_struct *p)
4075{
4076 return avc_has_perm(&selinux_state,
4077 current_sid(), task_sid(p), SECCLASS_PROCESS,
4078 PROCESS__GETSCHED, NULL);
4079}
4080
4081static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4082 unsigned int flags)
4083{
4084 u32 av = 0;
4085
4086 if (!flags)
4087 return 0;
4088 if (flags & LSM_PRLIMIT_WRITE)
4089 av |= PROCESS__SETRLIMIT;
4090 if (flags & LSM_PRLIMIT_READ)
4091 av |= PROCESS__GETRLIMIT;
4092 return avc_has_perm(&selinux_state,
4093 cred_sid(cred), cred_sid(tcred),
4094 SECCLASS_PROCESS, av, NULL);
4095}
4096
4097static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4098 struct rlimit *new_rlim)
4099{
4100 struct rlimit *old_rlim = p->signal->rlim + resource;
4101
4102 /* Control the ability to change the hard limit (whether
4103 lowering or raising it), so that the hard limit can
4104 later be used as a safe reset point for the soft limit
4105 upon context transitions. See selinux_bprm_committing_creds. */
4106 if (old_rlim->rlim_max != new_rlim->rlim_max)
4107 return avc_has_perm(&selinux_state,
4108 current_sid(), task_sid(p),
4109 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4110
4111 return 0;
4112}
4113
4114static int selinux_task_setscheduler(struct task_struct *p)
4115{
4116 return avc_has_perm(&selinux_state,
4117 current_sid(), task_sid(p), SECCLASS_PROCESS,
4118 PROCESS__SETSCHED, NULL);
4119}
4120
4121static int selinux_task_getscheduler(struct task_struct *p)
4122{
4123 return avc_has_perm(&selinux_state,
4124 current_sid(), task_sid(p), SECCLASS_PROCESS,
4125 PROCESS__GETSCHED, NULL);
4126}
4127
4128static int selinux_task_movememory(struct task_struct *p)
4129{
4130 return avc_has_perm(&selinux_state,
4131 current_sid(), task_sid(p), SECCLASS_PROCESS,
4132 PROCESS__SETSCHED, NULL);
4133}
4134
4135static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4136 int sig, const struct cred *cred)
4137{
4138 u32 secid;
4139 u32 perm;
4140
4141 if (!sig)
4142 perm = PROCESS__SIGNULL; /* null signal; existence test */
4143 else
4144 perm = signal_to_av(sig);
4145 if (!cred)
4146 secid = current_sid();
4147 else
4148 secid = cred_sid(cred);
4149 return avc_has_perm(&selinux_state,
4150 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4151}
4152
4153static void selinux_task_to_inode(struct task_struct *p,
4154 struct inode *inode)
4155{
4156 struct inode_security_struct *isec = selinux_inode(inode);
4157 u32 sid = task_sid(p);
4158
4159 spin_lock(&isec->lock);
4160 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4161 isec->sid = sid;
4162 isec->initialized = LABEL_INITIALIZED;
4163 spin_unlock(&isec->lock);
4164}
4165
4166/* Returns error only if unable to parse addresses */
4167static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4168 struct common_audit_data *ad, u8 *proto)
4169{
4170 int offset, ihlen, ret = -EINVAL;
4171 struct iphdr _iph, *ih;
4172
4173 offset = skb_network_offset(skb);
4174 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4175 if (ih == NULL)
4176 goto out;
4177
4178 ihlen = ih->ihl * 4;
4179 if (ihlen < sizeof(_iph))
4180 goto out;
4181
4182 ad->u.net->v4info.saddr = ih->saddr;
4183 ad->u.net->v4info.daddr = ih->daddr;
4184 ret = 0;
4185
4186 if (proto)
4187 *proto = ih->protocol;
4188
4189 switch (ih->protocol) {
4190 case IPPROTO_TCP: {
4191 struct tcphdr _tcph, *th;
4192
4193 if (ntohs(ih->frag_off) & IP_OFFSET)
4194 break;
4195
4196 offset += ihlen;
4197 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4198 if (th == NULL)
4199 break;
4200
4201 ad->u.net->sport = th->source;
4202 ad->u.net->dport = th->dest;
4203 break;
4204 }
4205
4206 case IPPROTO_UDP: {
4207 struct udphdr _udph, *uh;
4208
4209 if (ntohs(ih->frag_off) & IP_OFFSET)
4210 break;
4211
4212 offset += ihlen;
4213 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4214 if (uh == NULL)
4215 break;
4216
4217 ad->u.net->sport = uh->source;
4218 ad->u.net->dport = uh->dest;
4219 break;
4220 }
4221
4222 case IPPROTO_DCCP: {
4223 struct dccp_hdr _dccph, *dh;
4224
4225 if (ntohs(ih->frag_off) & IP_OFFSET)
4226 break;
4227
4228 offset += ihlen;
4229 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4230 if (dh == NULL)
4231 break;
4232
4233 ad->u.net->sport = dh->dccph_sport;
4234 ad->u.net->dport = dh->dccph_dport;
4235 break;
4236 }
4237
4238#if IS_ENABLED(CONFIG_IP_SCTP)
4239 case IPPROTO_SCTP: {
4240 struct sctphdr _sctph, *sh;
4241
4242 if (ntohs(ih->frag_off) & IP_OFFSET)
4243 break;
4244
4245 offset += ihlen;
4246 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4247 if (sh == NULL)
4248 break;
4249
4250 ad->u.net->sport = sh->source;
4251 ad->u.net->dport = sh->dest;
4252 break;
4253 }
4254#endif
4255 default:
4256 break;
4257 }
4258out:
4259 return ret;
4260}
4261
4262#if IS_ENABLED(CONFIG_IPV6)
4263
4264/* Returns error only if unable to parse addresses */
4265static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4266 struct common_audit_data *ad, u8 *proto)
4267{
4268 u8 nexthdr;
4269 int ret = -EINVAL, offset;
4270 struct ipv6hdr _ipv6h, *ip6;
4271 __be16 frag_off;
4272
4273 offset = skb_network_offset(skb);
4274 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4275 if (ip6 == NULL)
4276 goto out;
4277
4278 ad->u.net->v6info.saddr = ip6->saddr;
4279 ad->u.net->v6info.daddr = ip6->daddr;
4280 ret = 0;
4281
4282 nexthdr = ip6->nexthdr;
4283 offset += sizeof(_ipv6h);
4284 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4285 if (offset < 0)
4286 goto out;
4287
4288 if (proto)
4289 *proto = nexthdr;
4290
4291 switch (nexthdr) {
4292 case IPPROTO_TCP: {
4293 struct tcphdr _tcph, *th;
4294
4295 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4296 if (th == NULL)
4297 break;
4298
4299 ad->u.net->sport = th->source;
4300 ad->u.net->dport = th->dest;
4301 break;
4302 }
4303
4304 case IPPROTO_UDP: {
4305 struct udphdr _udph, *uh;
4306
4307 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4308 if (uh == NULL)
4309 break;
4310
4311 ad->u.net->sport = uh->source;
4312 ad->u.net->dport = uh->dest;
4313 break;
4314 }
4315
4316 case IPPROTO_DCCP: {
4317 struct dccp_hdr _dccph, *dh;
4318
4319 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4320 if (dh == NULL)
4321 break;
4322
4323 ad->u.net->sport = dh->dccph_sport;
4324 ad->u.net->dport = dh->dccph_dport;
4325 break;
4326 }
4327
4328#if IS_ENABLED(CONFIG_IP_SCTP)
4329 case IPPROTO_SCTP: {
4330 struct sctphdr _sctph, *sh;
4331
4332 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333 if (sh == NULL)
4334 break;
4335
4336 ad->u.net->sport = sh->source;
4337 ad->u.net->dport = sh->dest;
4338 break;
4339 }
4340#endif
4341 /* includes fragments */
4342 default:
4343 break;
4344 }
4345out:
4346 return ret;
4347}
4348
4349#endif /* IPV6 */
4350
4351static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4352 char **_addrp, int src, u8 *proto)
4353{
4354 char *addrp;
4355 int ret;
4356
4357 switch (ad->u.net->family) {
4358 case PF_INET:
4359 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4360 if (ret)
4361 goto parse_error;
4362 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4363 &ad->u.net->v4info.daddr);
4364 goto okay;
4365
4366#if IS_ENABLED(CONFIG_IPV6)
4367 case PF_INET6:
4368 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4369 if (ret)
4370 goto parse_error;
4371 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4372 &ad->u.net->v6info.daddr);
4373 goto okay;
4374#endif /* IPV6 */
4375 default:
4376 addrp = NULL;
4377 goto okay;
4378 }
4379
4380parse_error:
4381 pr_warn(
4382 "SELinux: failure in selinux_parse_skb(),"
4383 " unable to parse packet\n");
4384 return ret;
4385
4386okay:
4387 if (_addrp)
4388 *_addrp = addrp;
4389 return 0;
4390}
4391
4392/**
4393 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4394 * @skb: the packet
4395 * @family: protocol family
4396 * @sid: the packet's peer label SID
4397 *
4398 * Description:
4399 * Check the various different forms of network peer labeling and determine
4400 * the peer label/SID for the packet; most of the magic actually occurs in
4401 * the security server function security_net_peersid_cmp(). The function
4402 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4403 * or -EACCES if @sid is invalid due to inconsistencies with the different
4404 * peer labels.
4405 *
4406 */
4407static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4408{
4409 int err;
4410 u32 xfrm_sid;
4411 u32 nlbl_sid;
4412 u32 nlbl_type;
4413
4414 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4415 if (unlikely(err))
4416 return -EACCES;
4417 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4418 if (unlikely(err))
4419 return -EACCES;
4420
4421 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4422 nlbl_type, xfrm_sid, sid);
4423 if (unlikely(err)) {
4424 pr_warn(
4425 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4426 " unable to determine packet's peer label\n");
4427 return -EACCES;
4428 }
4429
4430 return 0;
4431}
4432
4433/**
4434 * selinux_conn_sid - Determine the child socket label for a connection
4435 * @sk_sid: the parent socket's SID
4436 * @skb_sid: the packet's SID
4437 * @conn_sid: the resulting connection SID
4438 *
4439 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4440 * combined with the MLS information from @skb_sid in order to create
4441 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4442 * of @sk_sid. Returns zero on success, negative values on failure.
4443 *
4444 */
4445static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4446{
4447 int err = 0;
4448
4449 if (skb_sid != SECSID_NULL)
4450 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4451 conn_sid);
4452 else
4453 *conn_sid = sk_sid;
4454
4455 return err;
4456}
4457
4458/* socket security operations */
4459
4460static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4461 u16 secclass, u32 *socksid)
4462{
4463 if (tsec->sockcreate_sid > SECSID_NULL) {
4464 *socksid = tsec->sockcreate_sid;
4465 return 0;
4466 }
4467
4468 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4469 secclass, NULL, socksid);
4470}
4471
4472static int sock_has_perm(struct sock *sk, u32 perms)
4473{
4474 struct sk_security_struct *sksec = sk->sk_security;
4475 struct common_audit_data ad;
4476 struct lsm_network_audit net = {0,};
4477
4478 if (sksec->sid == SECINITSID_KERNEL)
4479 return 0;
4480
4481 ad.type = LSM_AUDIT_DATA_NET;
4482 ad.u.net = &net;
4483 ad.u.net->sk = sk;
4484
4485 return avc_has_perm(&selinux_state,
4486 current_sid(), sksec->sid, sksec->sclass, perms,
4487 &ad);
4488}
4489
4490static int selinux_socket_create(int family, int type,
4491 int protocol, int kern)
4492{
4493 const struct task_security_struct *tsec = selinux_cred(current_cred());
4494 u32 newsid;
4495 u16 secclass;
4496 int rc;
4497
4498 if (kern)
4499 return 0;
4500
4501 secclass = socket_type_to_security_class(family, type, protocol);
4502 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4503 if (rc)
4504 return rc;
4505
4506 return avc_has_perm(&selinux_state,
4507 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4508}
4509
4510static int selinux_socket_post_create(struct socket *sock, int family,
4511 int type, int protocol, int kern)
4512{
4513 const struct task_security_struct *tsec = selinux_cred(current_cred());
4514 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4515 struct sk_security_struct *sksec;
4516 u16 sclass = socket_type_to_security_class(family, type, protocol);
4517 u32 sid = SECINITSID_KERNEL;
4518 int err = 0;
4519
4520 if (!kern) {
4521 err = socket_sockcreate_sid(tsec, sclass, &sid);
4522 if (err)
4523 return err;
4524 }
4525
4526 isec->sclass = sclass;
4527 isec->sid = sid;
4528 isec->initialized = LABEL_INITIALIZED;
4529
4530 if (sock->sk) {
4531 sksec = sock->sk->sk_security;
4532 sksec->sclass = sclass;
4533 sksec->sid = sid;
4534 /* Allows detection of the first association on this socket */
4535 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4536 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4537
4538 err = selinux_netlbl_socket_post_create(sock->sk, family);
4539 }
4540
4541 return err;
4542}
4543
4544static int selinux_socket_socketpair(struct socket *socka,
4545 struct socket *sockb)
4546{
4547 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4548 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4549
4550 sksec_a->peer_sid = sksec_b->sid;
4551 sksec_b->peer_sid = sksec_a->sid;
4552
4553 return 0;
4554}
4555
4556/* Range of port numbers used to automatically bind.
4557 Need to determine whether we should perform a name_bind
4558 permission check between the socket and the port number. */
4559
4560static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4561{
4562 struct sock *sk = sock->sk;
4563 struct sk_security_struct *sksec = sk->sk_security;
4564 u16 family;
4565 int err;
4566
4567 err = sock_has_perm(sk, SOCKET__BIND);
4568 if (err)
4569 goto out;
4570
4571 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4572 family = sk->sk_family;
4573 if (family == PF_INET || family == PF_INET6) {
4574 char *addrp;
4575 struct common_audit_data ad;
4576 struct lsm_network_audit net = {0,};
4577 struct sockaddr_in *addr4 = NULL;
4578 struct sockaddr_in6 *addr6 = NULL;
4579 u16 family_sa;
4580 unsigned short snum;
4581 u32 sid, node_perm;
4582
4583 /*
4584 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4585 * that validates multiple binding addresses. Because of this
4586 * need to check address->sa_family as it is possible to have
4587 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4588 */
4589 if (addrlen < offsetofend(struct sockaddr, sa_family))
4590 return -EINVAL;
4591 family_sa = address->sa_family;
4592 switch (family_sa) {
4593 case AF_UNSPEC:
4594 case AF_INET:
4595 if (addrlen < sizeof(struct sockaddr_in))
4596 return -EINVAL;
4597 addr4 = (struct sockaddr_in *)address;
4598 if (family_sa == AF_UNSPEC) {
4599 /* see __inet_bind(), we only want to allow
4600 * AF_UNSPEC if the address is INADDR_ANY
4601 */
4602 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4603 goto err_af;
4604 family_sa = AF_INET;
4605 }
4606 snum = ntohs(addr4->sin_port);
4607 addrp = (char *)&addr4->sin_addr.s_addr;
4608 break;
4609 case AF_INET6:
4610 if (addrlen < SIN6_LEN_RFC2133)
4611 return -EINVAL;
4612 addr6 = (struct sockaddr_in6 *)address;
4613 snum = ntohs(addr6->sin6_port);
4614 addrp = (char *)&addr6->sin6_addr.s6_addr;
4615 break;
4616 default:
4617 goto err_af;
4618 }
4619
4620 ad.type = LSM_AUDIT_DATA_NET;
4621 ad.u.net = &net;
4622 ad.u.net->sport = htons(snum);
4623 ad.u.net->family = family_sa;
4624
4625 if (snum) {
4626 int low, high;
4627
4628 inet_get_local_port_range(sock_net(sk), &low, &high);
4629
4630 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4631 snum < low || snum > high) {
4632 err = sel_netport_sid(sk->sk_protocol,
4633 snum, &sid);
4634 if (err)
4635 goto out;
4636 err = avc_has_perm(&selinux_state,
4637 sksec->sid, sid,
4638 sksec->sclass,
4639 SOCKET__NAME_BIND, &ad);
4640 if (err)
4641 goto out;
4642 }
4643 }
4644
4645 switch (sksec->sclass) {
4646 case SECCLASS_TCP_SOCKET:
4647 node_perm = TCP_SOCKET__NODE_BIND;
4648 break;
4649
4650 case SECCLASS_UDP_SOCKET:
4651 node_perm = UDP_SOCKET__NODE_BIND;
4652 break;
4653
4654 case SECCLASS_DCCP_SOCKET:
4655 node_perm = DCCP_SOCKET__NODE_BIND;
4656 break;
4657
4658 case SECCLASS_SCTP_SOCKET:
4659 node_perm = SCTP_SOCKET__NODE_BIND;
4660 break;
4661
4662 default:
4663 node_perm = RAWIP_SOCKET__NODE_BIND;
4664 break;
4665 }
4666
4667 err = sel_netnode_sid(addrp, family_sa, &sid);
4668 if (err)
4669 goto out;
4670
4671 if (family_sa == AF_INET)
4672 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4673 else
4674 ad.u.net->v6info.saddr = addr6->sin6_addr;
4675
4676 err = avc_has_perm(&selinux_state,
4677 sksec->sid, sid,
4678 sksec->sclass, node_perm, &ad);
4679 if (err)
4680 goto out;
4681 }
4682out:
4683 return err;
4684err_af:
4685 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4686 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4687 return -EINVAL;
4688 return -EAFNOSUPPORT;
4689}
4690
4691/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4692 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4693 */
4694static int selinux_socket_connect_helper(struct socket *sock,
4695 struct sockaddr *address, int addrlen)
4696{
4697 struct sock *sk = sock->sk;
4698 struct sk_security_struct *sksec = sk->sk_security;
4699 int err;
4700
4701 err = sock_has_perm(sk, SOCKET__CONNECT);
4702 if (err)
4703 return err;
4704 if (addrlen < offsetofend(struct sockaddr, sa_family))
4705 return -EINVAL;
4706
4707 /* connect(AF_UNSPEC) has special handling, as it is a documented
4708 * way to disconnect the socket
4709 */
4710 if (address->sa_family == AF_UNSPEC)
4711 return 0;
4712
4713 /*
4714 * If a TCP, DCCP or SCTP socket, check name_connect permission
4715 * for the port.
4716 */
4717 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4718 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4719 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4720 struct common_audit_data ad;
4721 struct lsm_network_audit net = {0,};
4722 struct sockaddr_in *addr4 = NULL;
4723 struct sockaddr_in6 *addr6 = NULL;
4724 unsigned short snum;
4725 u32 sid, perm;
4726
4727 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4728 * that validates multiple connect addresses. Because of this
4729 * need to check address->sa_family as it is possible to have
4730 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4731 */
4732 switch (address->sa_family) {
4733 case AF_INET:
4734 addr4 = (struct sockaddr_in *)address;
4735 if (addrlen < sizeof(struct sockaddr_in))
4736 return -EINVAL;
4737 snum = ntohs(addr4->sin_port);
4738 break;
4739 case AF_INET6:
4740 addr6 = (struct sockaddr_in6 *)address;
4741 if (addrlen < SIN6_LEN_RFC2133)
4742 return -EINVAL;
4743 snum = ntohs(addr6->sin6_port);
4744 break;
4745 default:
4746 /* Note that SCTP services expect -EINVAL, whereas
4747 * others expect -EAFNOSUPPORT.
4748 */
4749 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4750 return -EINVAL;
4751 else
4752 return -EAFNOSUPPORT;
4753 }
4754
4755 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4756 if (err)
4757 return err;
4758
4759 switch (sksec->sclass) {
4760 case SECCLASS_TCP_SOCKET:
4761 perm = TCP_SOCKET__NAME_CONNECT;
4762 break;
4763 case SECCLASS_DCCP_SOCKET:
4764 perm = DCCP_SOCKET__NAME_CONNECT;
4765 break;
4766 case SECCLASS_SCTP_SOCKET:
4767 perm = SCTP_SOCKET__NAME_CONNECT;
4768 break;
4769 }
4770
4771 ad.type = LSM_AUDIT_DATA_NET;
4772 ad.u.net = &net;
4773 ad.u.net->dport = htons(snum);
4774 ad.u.net->family = address->sa_family;
4775 err = avc_has_perm(&selinux_state,
4776 sksec->sid, sid, sksec->sclass, perm, &ad);
4777 if (err)
4778 return err;
4779 }
4780
4781 return 0;
4782}
4783
4784/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4785static int selinux_socket_connect(struct socket *sock,
4786 struct sockaddr *address, int addrlen)
4787{
4788 int err;
4789 struct sock *sk = sock->sk;
4790
4791 err = selinux_socket_connect_helper(sock, address, addrlen);
4792 if (err)
4793 return err;
4794
4795 return selinux_netlbl_socket_connect(sk, address);
4796}
4797
4798static int selinux_socket_listen(struct socket *sock, int backlog)
4799{
4800 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4801}
4802
4803static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4804{
4805 int err;
4806 struct inode_security_struct *isec;
4807 struct inode_security_struct *newisec;
4808 u16 sclass;
4809 u32 sid;
4810
4811 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4812 if (err)
4813 return err;
4814
4815 isec = inode_security_novalidate(SOCK_INODE(sock));
4816 spin_lock(&isec->lock);
4817 sclass = isec->sclass;
4818 sid = isec->sid;
4819 spin_unlock(&isec->lock);
4820
4821 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4822 newisec->sclass = sclass;
4823 newisec->sid = sid;
4824 newisec->initialized = LABEL_INITIALIZED;
4825
4826 return 0;
4827}
4828
4829static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4830 int size)
4831{
4832 return sock_has_perm(sock->sk, SOCKET__WRITE);
4833}
4834
4835static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4836 int size, int flags)
4837{
4838 return sock_has_perm(sock->sk, SOCKET__READ);
4839}
4840
4841static int selinux_socket_getsockname(struct socket *sock)
4842{
4843 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4844}
4845
4846static int selinux_socket_getpeername(struct socket *sock)
4847{
4848 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4849}
4850
4851static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4852{
4853 int err;
4854
4855 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4856 if (err)
4857 return err;
4858
4859 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4860}
4861
4862static int selinux_socket_getsockopt(struct socket *sock, int level,
4863 int optname)
4864{
4865 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4866}
4867
4868static int selinux_socket_shutdown(struct socket *sock, int how)
4869{
4870 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4871}
4872
4873static int selinux_socket_unix_stream_connect(struct sock *sock,
4874 struct sock *other,
4875 struct sock *newsk)
4876{
4877 struct sk_security_struct *sksec_sock = sock->sk_security;
4878 struct sk_security_struct *sksec_other = other->sk_security;
4879 struct sk_security_struct *sksec_new = newsk->sk_security;
4880 struct common_audit_data ad;
4881 struct lsm_network_audit net = {0,};
4882 int err;
4883
4884 ad.type = LSM_AUDIT_DATA_NET;
4885 ad.u.net = &net;
4886 ad.u.net->sk = other;
4887
4888 err = avc_has_perm(&selinux_state,
4889 sksec_sock->sid, sksec_other->sid,
4890 sksec_other->sclass,
4891 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4892 if (err)
4893 return err;
4894
4895 /* server child socket */
4896 sksec_new->peer_sid = sksec_sock->sid;
4897 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4898 sksec_sock->sid, &sksec_new->sid);
4899 if (err)
4900 return err;
4901
4902 /* connecting socket */
4903 sksec_sock->peer_sid = sksec_new->sid;
4904
4905 return 0;
4906}
4907
4908static int selinux_socket_unix_may_send(struct socket *sock,
4909 struct socket *other)
4910{
4911 struct sk_security_struct *ssec = sock->sk->sk_security;
4912 struct sk_security_struct *osec = other->sk->sk_security;
4913 struct common_audit_data ad;
4914 struct lsm_network_audit net = {0,};
4915
4916 ad.type = LSM_AUDIT_DATA_NET;
4917 ad.u.net = &net;
4918 ad.u.net->sk = other->sk;
4919
4920 return avc_has_perm(&selinux_state,
4921 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4922 &ad);
4923}
4924
4925static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4926 char *addrp, u16 family, u32 peer_sid,
4927 struct common_audit_data *ad)
4928{
4929 int err;
4930 u32 if_sid;
4931 u32 node_sid;
4932
4933 err = sel_netif_sid(ns, ifindex, &if_sid);
4934 if (err)
4935 return err;
4936 err = avc_has_perm(&selinux_state,
4937 peer_sid, if_sid,
4938 SECCLASS_NETIF, NETIF__INGRESS, ad);
4939 if (err)
4940 return err;
4941
4942 err = sel_netnode_sid(addrp, family, &node_sid);
4943 if (err)
4944 return err;
4945 return avc_has_perm(&selinux_state,
4946 peer_sid, node_sid,
4947 SECCLASS_NODE, NODE__RECVFROM, ad);
4948}
4949
4950static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4951 u16 family)
4952{
4953 int err = 0;
4954 struct sk_security_struct *sksec = sk->sk_security;
4955 u32 sk_sid = sksec->sid;
4956 struct common_audit_data ad;
4957 struct lsm_network_audit net = {0,};
4958 char *addrp;
4959
4960 ad.type = LSM_AUDIT_DATA_NET;
4961 ad.u.net = &net;
4962 ad.u.net->netif = skb->skb_iif;
4963 ad.u.net->family = family;
4964 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4965 if (err)
4966 return err;
4967
4968 if (selinux_secmark_enabled()) {
4969 err = avc_has_perm(&selinux_state,
4970 sk_sid, skb->secmark, SECCLASS_PACKET,
4971 PACKET__RECV, &ad);
4972 if (err)
4973 return err;
4974 }
4975
4976 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4977 if (err)
4978 return err;
4979 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4980
4981 return err;
4982}
4983
4984static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4985{
4986 int err;
4987 struct sk_security_struct *sksec = sk->sk_security;
4988 u16 family = sk->sk_family;
4989 u32 sk_sid = sksec->sid;
4990 struct common_audit_data ad;
4991 struct lsm_network_audit net = {0,};
4992 char *addrp;
4993 u8 secmark_active;
4994 u8 peerlbl_active;
4995
4996 if (family != PF_INET && family != PF_INET6)
4997 return 0;
4998
4999 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5000 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5001 family = PF_INET;
5002
5003 /* If any sort of compatibility mode is enabled then handoff processing
5004 * to the selinux_sock_rcv_skb_compat() function to deal with the
5005 * special handling. We do this in an attempt to keep this function
5006 * as fast and as clean as possible. */
5007 if (!selinux_policycap_netpeer())
5008 return selinux_sock_rcv_skb_compat(sk, skb, family);
5009
5010 secmark_active = selinux_secmark_enabled();
5011 peerlbl_active = selinux_peerlbl_enabled();
5012 if (!secmark_active && !peerlbl_active)
5013 return 0;
5014
5015 ad.type = LSM_AUDIT_DATA_NET;
5016 ad.u.net = &net;
5017 ad.u.net->netif = skb->skb_iif;
5018 ad.u.net->family = family;
5019 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5020 if (err)
5021 return err;
5022
5023 if (peerlbl_active) {
5024 u32 peer_sid;
5025
5026 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5027 if (err)
5028 return err;
5029 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5030 addrp, family, peer_sid, &ad);
5031 if (err) {
5032 selinux_netlbl_err(skb, family, err, 0);
5033 return err;
5034 }
5035 err = avc_has_perm(&selinux_state,
5036 sk_sid, peer_sid, SECCLASS_PEER,
5037 PEER__RECV, &ad);
5038 if (err) {
5039 selinux_netlbl_err(skb, family, err, 0);
5040 return err;
5041 }
5042 }
5043
5044 if (secmark_active) {
5045 err = avc_has_perm(&selinux_state,
5046 sk_sid, skb->secmark, SECCLASS_PACKET,
5047 PACKET__RECV, &ad);
5048 if (err)
5049 return err;
5050 }
5051
5052 return err;
5053}
5054
5055static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5056 int __user *optlen, unsigned len)
5057{
5058 int err = 0;
5059 char *scontext;
5060 u32 scontext_len;
5061 struct sk_security_struct *sksec = sock->sk->sk_security;
5062 u32 peer_sid = SECSID_NULL;
5063
5064 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5065 sksec->sclass == SECCLASS_TCP_SOCKET ||
5066 sksec->sclass == SECCLASS_SCTP_SOCKET)
5067 peer_sid = sksec->peer_sid;
5068 if (peer_sid == SECSID_NULL)
5069 return -ENOPROTOOPT;
5070
5071 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5072 &scontext_len);
5073 if (err)
5074 return err;
5075
5076 if (scontext_len > len) {
5077 err = -ERANGE;
5078 goto out_len;
5079 }
5080
5081 if (copy_to_user(optval, scontext, scontext_len))
5082 err = -EFAULT;
5083
5084out_len:
5085 if (put_user(scontext_len, optlen))
5086 err = -EFAULT;
5087 kfree(scontext);
5088 return err;
5089}
5090
5091static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5092{
5093 u32 peer_secid = SECSID_NULL;
5094 u16 family;
5095 struct inode_security_struct *isec;
5096
5097 if (skb && skb->protocol == htons(ETH_P_IP))
5098 family = PF_INET;
5099 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5100 family = PF_INET6;
5101 else if (sock)
5102 family = sock->sk->sk_family;
5103 else
5104 goto out;
5105
5106 if (sock && family == PF_UNIX) {
5107 isec = inode_security_novalidate(SOCK_INODE(sock));
5108 peer_secid = isec->sid;
5109 } else if (skb)
5110 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5111
5112out:
5113 *secid = peer_secid;
5114 if (peer_secid == SECSID_NULL)
5115 return -EINVAL;
5116 return 0;
5117}
5118
5119static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5120{
5121 struct sk_security_struct *sksec;
5122
5123 sksec = kzalloc(sizeof(*sksec), priority);
5124 if (!sksec)
5125 return -ENOMEM;
5126
5127 sksec->peer_sid = SECINITSID_UNLABELED;
5128 sksec->sid = SECINITSID_UNLABELED;
5129 sksec->sclass = SECCLASS_SOCKET;
5130 selinux_netlbl_sk_security_reset(sksec);
5131 sk->sk_security = sksec;
5132
5133 return 0;
5134}
5135
5136static void selinux_sk_free_security(struct sock *sk)
5137{
5138 struct sk_security_struct *sksec = sk->sk_security;
5139
5140 sk->sk_security = NULL;
5141 selinux_netlbl_sk_security_free(sksec);
5142 kfree(sksec);
5143}
5144
5145static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5146{
5147 struct sk_security_struct *sksec = sk->sk_security;
5148 struct sk_security_struct *newsksec = newsk->sk_security;
5149
5150 newsksec->sid = sksec->sid;
5151 newsksec->peer_sid = sksec->peer_sid;
5152 newsksec->sclass = sksec->sclass;
5153
5154 selinux_netlbl_sk_security_reset(newsksec);
5155}
5156
5157static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5158{
5159 if (!sk)
5160 *secid = SECINITSID_ANY_SOCKET;
5161 else {
5162 struct sk_security_struct *sksec = sk->sk_security;
5163
5164 *secid = sksec->sid;
5165 }
5166}
5167
5168static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5169{
5170 struct inode_security_struct *isec =
5171 inode_security_novalidate(SOCK_INODE(parent));
5172 struct sk_security_struct *sksec = sk->sk_security;
5173
5174 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5175 sk->sk_family == PF_UNIX)
5176 isec->sid = sksec->sid;
5177 sksec->sclass = isec->sclass;
5178}
5179
5180/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5181 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5182 * already present).
5183 */
5184static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5185 struct sk_buff *skb)
5186{
5187 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5188 struct common_audit_data ad;
5189 struct lsm_network_audit net = {0,};
5190 u8 peerlbl_active;
5191 u32 peer_sid = SECINITSID_UNLABELED;
5192 u32 conn_sid;
5193 int err = 0;
5194
5195 if (!selinux_policycap_extsockclass())
5196 return 0;
5197
5198 peerlbl_active = selinux_peerlbl_enabled();
5199
5200 if (peerlbl_active) {
5201 /* This will return peer_sid = SECSID_NULL if there are
5202 * no peer labels, see security_net_peersid_resolve().
5203 */
5204 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5205 &peer_sid);
5206 if (err)
5207 return err;
5208
5209 if (peer_sid == SECSID_NULL)
5210 peer_sid = SECINITSID_UNLABELED;
5211 }
5212
5213 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5214 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5215
5216 /* Here as first association on socket. As the peer SID
5217 * was allowed by peer recv (and the netif/node checks),
5218 * then it is approved by policy and used as the primary
5219 * peer SID for getpeercon(3).
5220 */
5221 sksec->peer_sid = peer_sid;
5222 } else if (sksec->peer_sid != peer_sid) {
5223 /* Other association peer SIDs are checked to enforce
5224 * consistency among the peer SIDs.
5225 */
5226 ad.type = LSM_AUDIT_DATA_NET;
5227 ad.u.net = &net;
5228 ad.u.net->sk = ep->base.sk;
5229 err = avc_has_perm(&selinux_state,
5230 sksec->peer_sid, peer_sid, sksec->sclass,
5231 SCTP_SOCKET__ASSOCIATION, &ad);
5232 if (err)
5233 return err;
5234 }
5235
5236 /* Compute the MLS component for the connection and store
5237 * the information in ep. This will be used by SCTP TCP type
5238 * sockets and peeled off connections as they cause a new
5239 * socket to be generated. selinux_sctp_sk_clone() will then
5240 * plug this into the new socket.
5241 */
5242 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5243 if (err)
5244 return err;
5245
5246 ep->secid = conn_sid;
5247 ep->peer_secid = peer_sid;
5248
5249 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5250 return selinux_netlbl_sctp_assoc_request(ep, skb);
5251}
5252
5253/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5254 * based on their @optname.
5255 */
5256static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5257 struct sockaddr *address,
5258 int addrlen)
5259{
5260 int len, err = 0, walk_size = 0;
5261 void *addr_buf;
5262 struct sockaddr *addr;
5263 struct socket *sock;
5264
5265 if (!selinux_policycap_extsockclass())
5266 return 0;
5267
5268 /* Process one or more addresses that may be IPv4 or IPv6 */
5269 sock = sk->sk_socket;
5270 addr_buf = address;
5271
5272 while (walk_size < addrlen) {
5273 if (walk_size + sizeof(sa_family_t) > addrlen)
5274 return -EINVAL;
5275
5276 addr = addr_buf;
5277 switch (addr->sa_family) {
5278 case AF_UNSPEC:
5279 case AF_INET:
5280 len = sizeof(struct sockaddr_in);
5281 break;
5282 case AF_INET6:
5283 len = sizeof(struct sockaddr_in6);
5284 break;
5285 default:
5286 return -EINVAL;
5287 }
5288
5289 if (walk_size + len > addrlen)
5290 return -EINVAL;
5291
5292 err = -EINVAL;
5293 switch (optname) {
5294 /* Bind checks */
5295 case SCTP_PRIMARY_ADDR:
5296 case SCTP_SET_PEER_PRIMARY_ADDR:
5297 case SCTP_SOCKOPT_BINDX_ADD:
5298 err = selinux_socket_bind(sock, addr, len);
5299 break;
5300 /* Connect checks */
5301 case SCTP_SOCKOPT_CONNECTX:
5302 case SCTP_PARAM_SET_PRIMARY:
5303 case SCTP_PARAM_ADD_IP:
5304 case SCTP_SENDMSG_CONNECT:
5305 err = selinux_socket_connect_helper(sock, addr, len);
5306 if (err)
5307 return err;
5308
5309 /* As selinux_sctp_bind_connect() is called by the
5310 * SCTP protocol layer, the socket is already locked,
5311 * therefore selinux_netlbl_socket_connect_locked() is
5312 * is called here. The situations handled are:
5313 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5314 * whenever a new IP address is added or when a new
5315 * primary address is selected.
5316 * Note that an SCTP connect(2) call happens before
5317 * the SCTP protocol layer and is handled via
5318 * selinux_socket_connect().
5319 */
5320 err = selinux_netlbl_socket_connect_locked(sk, addr);
5321 break;
5322 }
5323
5324 if (err)
5325 return err;
5326
5327 addr_buf += len;
5328 walk_size += len;
5329 }
5330
5331 return 0;
5332}
5333
5334/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5335static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5336 struct sock *newsk)
5337{
5338 struct sk_security_struct *sksec = sk->sk_security;
5339 struct sk_security_struct *newsksec = newsk->sk_security;
5340
5341 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5342 * the non-sctp clone version.
5343 */
5344 if (!selinux_policycap_extsockclass())
5345 return selinux_sk_clone_security(sk, newsk);
5346
5347 newsksec->sid = ep->secid;
5348 newsksec->peer_sid = ep->peer_secid;
5349 newsksec->sclass = sksec->sclass;
5350 selinux_netlbl_sctp_sk_clone(sk, newsk);
5351}
5352
5353static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5354 struct request_sock *req)
5355{
5356 struct sk_security_struct *sksec = sk->sk_security;
5357 int err;
5358 u16 family = req->rsk_ops->family;
5359 u32 connsid;
5360 u32 peersid;
5361
5362 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5363 if (err)
5364 return err;
5365 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5366 if (err)
5367 return err;
5368 req->secid = connsid;
5369 req->peer_secid = peersid;
5370
5371 return selinux_netlbl_inet_conn_request(req, family);
5372}
5373
5374static void selinux_inet_csk_clone(struct sock *newsk,
5375 const struct request_sock *req)
5376{
5377 struct sk_security_struct *newsksec = newsk->sk_security;
5378
5379 newsksec->sid = req->secid;
5380 newsksec->peer_sid = req->peer_secid;
5381 /* NOTE: Ideally, we should also get the isec->sid for the
5382 new socket in sync, but we don't have the isec available yet.
5383 So we will wait until sock_graft to do it, by which
5384 time it will have been created and available. */
5385
5386 /* We don't need to take any sort of lock here as we are the only
5387 * thread with access to newsksec */
5388 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5389}
5390
5391static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5392{
5393 u16 family = sk->sk_family;
5394 struct sk_security_struct *sksec = sk->sk_security;
5395
5396 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5397 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5398 family = PF_INET;
5399
5400 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5401}
5402
5403static int selinux_secmark_relabel_packet(u32 sid)
5404{
5405 const struct task_security_struct *__tsec;
5406 u32 tsid;
5407
5408 __tsec = selinux_cred(current_cred());
5409 tsid = __tsec->sid;
5410
5411 return avc_has_perm(&selinux_state,
5412 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5413 NULL);
5414}
5415
5416static void selinux_secmark_refcount_inc(void)
5417{
5418 atomic_inc(&selinux_secmark_refcount);
5419}
5420
5421static void selinux_secmark_refcount_dec(void)
5422{
5423 atomic_dec(&selinux_secmark_refcount);
5424}
5425
5426static void selinux_req_classify_flow(const struct request_sock *req,
5427 struct flowi *fl)
5428{
5429 fl->flowi_secid = req->secid;
5430}
5431
5432static int selinux_tun_dev_alloc_security(void **security)
5433{
5434 struct tun_security_struct *tunsec;
5435
5436 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5437 if (!tunsec)
5438 return -ENOMEM;
5439 tunsec->sid = current_sid();
5440
5441 *security = tunsec;
5442 return 0;
5443}
5444
5445static void selinux_tun_dev_free_security(void *security)
5446{
5447 kfree(security);
5448}
5449
5450static int selinux_tun_dev_create(void)
5451{
5452 u32 sid = current_sid();
5453
5454 /* we aren't taking into account the "sockcreate" SID since the socket
5455 * that is being created here is not a socket in the traditional sense,
5456 * instead it is a private sock, accessible only to the kernel, and
5457 * representing a wide range of network traffic spanning multiple
5458 * connections unlike traditional sockets - check the TUN driver to
5459 * get a better understanding of why this socket is special */
5460
5461 return avc_has_perm(&selinux_state,
5462 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5463 NULL);
5464}
5465
5466static int selinux_tun_dev_attach_queue(void *security)
5467{
5468 struct tun_security_struct *tunsec = security;
5469
5470 return avc_has_perm(&selinux_state,
5471 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5472 TUN_SOCKET__ATTACH_QUEUE, NULL);
5473}
5474
5475static int selinux_tun_dev_attach(struct sock *sk, void *security)
5476{
5477 struct tun_security_struct *tunsec = security;
5478 struct sk_security_struct *sksec = sk->sk_security;
5479
5480 /* we don't currently perform any NetLabel based labeling here and it
5481 * isn't clear that we would want to do so anyway; while we could apply
5482 * labeling without the support of the TUN user the resulting labeled
5483 * traffic from the other end of the connection would almost certainly
5484 * cause confusion to the TUN user that had no idea network labeling
5485 * protocols were being used */
5486
5487 sksec->sid = tunsec->sid;
5488 sksec->sclass = SECCLASS_TUN_SOCKET;
5489
5490 return 0;
5491}
5492
5493static int selinux_tun_dev_open(void *security)
5494{
5495 struct tun_security_struct *tunsec = security;
5496 u32 sid = current_sid();
5497 int err;
5498
5499 err = avc_has_perm(&selinux_state,
5500 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5501 TUN_SOCKET__RELABELFROM, NULL);
5502 if (err)
5503 return err;
5504 err = avc_has_perm(&selinux_state,
5505 sid, sid, SECCLASS_TUN_SOCKET,
5506 TUN_SOCKET__RELABELTO, NULL);
5507 if (err)
5508 return err;
5509 tunsec->sid = sid;
5510
5511 return 0;
5512}
5513
5514#ifdef CONFIG_NETFILTER
5515
5516static unsigned int selinux_ip_forward(struct sk_buff *skb,
5517 const struct net_device *indev,
5518 u16 family)
5519{
5520 int err;
5521 char *addrp;
5522 u32 peer_sid;
5523 struct common_audit_data ad;
5524 struct lsm_network_audit net = {0,};
5525 u8 secmark_active;
5526 u8 netlbl_active;
5527 u8 peerlbl_active;
5528
5529 if (!selinux_policycap_netpeer())
5530 return NF_ACCEPT;
5531
5532 secmark_active = selinux_secmark_enabled();
5533 netlbl_active = netlbl_enabled();
5534 peerlbl_active = selinux_peerlbl_enabled();
5535 if (!secmark_active && !peerlbl_active)
5536 return NF_ACCEPT;
5537
5538 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5539 return NF_DROP;
5540
5541 ad.type = LSM_AUDIT_DATA_NET;
5542 ad.u.net = &net;
5543 ad.u.net->netif = indev->ifindex;
5544 ad.u.net->family = family;
5545 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5546 return NF_DROP;
5547
5548 if (peerlbl_active) {
5549 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5550 addrp, family, peer_sid, &ad);
5551 if (err) {
5552 selinux_netlbl_err(skb, family, err, 1);
5553 return NF_DROP;
5554 }
5555 }
5556
5557 if (secmark_active)
5558 if (avc_has_perm(&selinux_state,
5559 peer_sid, skb->secmark,
5560 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5561 return NF_DROP;
5562
5563 if (netlbl_active)
5564 /* we do this in the FORWARD path and not the POST_ROUTING
5565 * path because we want to make sure we apply the necessary
5566 * labeling before IPsec is applied so we can leverage AH
5567 * protection */
5568 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5569 return NF_DROP;
5570
5571 return NF_ACCEPT;
5572}
5573
5574static unsigned int selinux_ipv4_forward(void *priv,
5575 struct sk_buff *skb,
5576 const struct nf_hook_state *state)
5577{
5578 return selinux_ip_forward(skb, state->in, PF_INET);
5579}
5580
5581#if IS_ENABLED(CONFIG_IPV6)
5582static unsigned int selinux_ipv6_forward(void *priv,
5583 struct sk_buff *skb,
5584 const struct nf_hook_state *state)
5585{
5586 return selinux_ip_forward(skb, state->in, PF_INET6);
5587}
5588#endif /* IPV6 */
5589
5590static unsigned int selinux_ip_output(struct sk_buff *skb,
5591 u16 family)
5592{
5593 struct sock *sk;
5594 u32 sid;
5595
5596 if (!netlbl_enabled())
5597 return NF_ACCEPT;
5598
5599 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5600 * because we want to make sure we apply the necessary labeling
5601 * before IPsec is applied so we can leverage AH protection */
5602 sk = skb->sk;
5603 if (sk) {
5604 struct sk_security_struct *sksec;
5605
5606 if (sk_listener(sk))
5607 /* if the socket is the listening state then this
5608 * packet is a SYN-ACK packet which means it needs to
5609 * be labeled based on the connection/request_sock and
5610 * not the parent socket. unfortunately, we can't
5611 * lookup the request_sock yet as it isn't queued on
5612 * the parent socket until after the SYN-ACK is sent.
5613 * the "solution" is to simply pass the packet as-is
5614 * as any IP option based labeling should be copied
5615 * from the initial connection request (in the IP
5616 * layer). it is far from ideal, but until we get a
5617 * security label in the packet itself this is the
5618 * best we can do. */
5619 return NF_ACCEPT;
5620
5621 /* standard practice, label using the parent socket */
5622 sksec = sk->sk_security;
5623 sid = sksec->sid;
5624 } else
5625 sid = SECINITSID_KERNEL;
5626 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5627 return NF_DROP;
5628
5629 return NF_ACCEPT;
5630}
5631
5632static unsigned int selinux_ipv4_output(void *priv,
5633 struct sk_buff *skb,
5634 const struct nf_hook_state *state)
5635{
5636 return selinux_ip_output(skb, PF_INET);
5637}
5638
5639#if IS_ENABLED(CONFIG_IPV6)
5640static unsigned int selinux_ipv6_output(void *priv,
5641 struct sk_buff *skb,
5642 const struct nf_hook_state *state)
5643{
5644 return selinux_ip_output(skb, PF_INET6);
5645}
5646#endif /* IPV6 */
5647
5648static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5649 int ifindex,
5650 u16 family)
5651{
5652 struct sock *sk = skb_to_full_sk(skb);
5653 struct sk_security_struct *sksec;
5654 struct common_audit_data ad;
5655 struct lsm_network_audit net = {0,};
5656 char *addrp;
5657 u8 proto;
5658
5659 if (sk == NULL)
5660 return NF_ACCEPT;
5661 sksec = sk->sk_security;
5662
5663 ad.type = LSM_AUDIT_DATA_NET;
5664 ad.u.net = &net;
5665 ad.u.net->netif = ifindex;
5666 ad.u.net->family = family;
5667 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5668 return NF_DROP;
5669
5670 if (selinux_secmark_enabled())
5671 if (avc_has_perm(&selinux_state,
5672 sksec->sid, skb->secmark,
5673 SECCLASS_PACKET, PACKET__SEND, &ad))
5674 return NF_DROP_ERR(-ECONNREFUSED);
5675
5676 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5677 return NF_DROP_ERR(-ECONNREFUSED);
5678
5679 return NF_ACCEPT;
5680}
5681
5682static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5683 const struct net_device *outdev,
5684 u16 family)
5685{
5686 u32 secmark_perm;
5687 u32 peer_sid;
5688 int ifindex = outdev->ifindex;
5689 struct sock *sk;
5690 struct common_audit_data ad;
5691 struct lsm_network_audit net = {0,};
5692 char *addrp;
5693 u8 secmark_active;
5694 u8 peerlbl_active;
5695
5696 /* If any sort of compatibility mode is enabled then handoff processing
5697 * to the selinux_ip_postroute_compat() function to deal with the
5698 * special handling. We do this in an attempt to keep this function
5699 * as fast and as clean as possible. */
5700 if (!selinux_policycap_netpeer())
5701 return selinux_ip_postroute_compat(skb, ifindex, family);
5702
5703 secmark_active = selinux_secmark_enabled();
5704 peerlbl_active = selinux_peerlbl_enabled();
5705 if (!secmark_active && !peerlbl_active)
5706 return NF_ACCEPT;
5707
5708 sk = skb_to_full_sk(skb);
5709
5710#ifdef CONFIG_XFRM
5711 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5712 * packet transformation so allow the packet to pass without any checks
5713 * since we'll have another chance to perform access control checks
5714 * when the packet is on it's final way out.
5715 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5716 * is NULL, in this case go ahead and apply access control.
5717 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5718 * TCP listening state we cannot wait until the XFRM processing
5719 * is done as we will miss out on the SA label if we do;
5720 * unfortunately, this means more work, but it is only once per
5721 * connection. */
5722 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5723 !(sk && sk_listener(sk)))
5724 return NF_ACCEPT;
5725#endif
5726
5727 if (sk == NULL) {
5728 /* Without an associated socket the packet is either coming
5729 * from the kernel or it is being forwarded; check the packet
5730 * to determine which and if the packet is being forwarded
5731 * query the packet directly to determine the security label. */
5732 if (skb->skb_iif) {
5733 secmark_perm = PACKET__FORWARD_OUT;
5734 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5735 return NF_DROP;
5736 } else {
5737 secmark_perm = PACKET__SEND;
5738 peer_sid = SECINITSID_KERNEL;
5739 }
5740 } else if (sk_listener(sk)) {
5741 /* Locally generated packet but the associated socket is in the
5742 * listening state which means this is a SYN-ACK packet. In
5743 * this particular case the correct security label is assigned
5744 * to the connection/request_sock but unfortunately we can't
5745 * query the request_sock as it isn't queued on the parent
5746 * socket until after the SYN-ACK packet is sent; the only
5747 * viable choice is to regenerate the label like we do in
5748 * selinux_inet_conn_request(). See also selinux_ip_output()
5749 * for similar problems. */
5750 u32 skb_sid;
5751 struct sk_security_struct *sksec;
5752
5753 sksec = sk->sk_security;
5754 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5755 return NF_DROP;
5756 /* At this point, if the returned skb peerlbl is SECSID_NULL
5757 * and the packet has been through at least one XFRM
5758 * transformation then we must be dealing with the "final"
5759 * form of labeled IPsec packet; since we've already applied
5760 * all of our access controls on this packet we can safely
5761 * pass the packet. */
5762 if (skb_sid == SECSID_NULL) {
5763 switch (family) {
5764 case PF_INET:
5765 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5766 return NF_ACCEPT;
5767 break;
5768 case PF_INET6:
5769 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5770 return NF_ACCEPT;
5771 break;
5772 default:
5773 return NF_DROP_ERR(-ECONNREFUSED);
5774 }
5775 }
5776 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5777 return NF_DROP;
5778 secmark_perm = PACKET__SEND;
5779 } else {
5780 /* Locally generated packet, fetch the security label from the
5781 * associated socket. */
5782 struct sk_security_struct *sksec = sk->sk_security;
5783 peer_sid = sksec->sid;
5784 secmark_perm = PACKET__SEND;
5785 }
5786
5787 ad.type = LSM_AUDIT_DATA_NET;
5788 ad.u.net = &net;
5789 ad.u.net->netif = ifindex;
5790 ad.u.net->family = family;
5791 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5792 return NF_DROP;
5793
5794 if (secmark_active)
5795 if (avc_has_perm(&selinux_state,
5796 peer_sid, skb->secmark,
5797 SECCLASS_PACKET, secmark_perm, &ad))
5798 return NF_DROP_ERR(-ECONNREFUSED);
5799
5800 if (peerlbl_active) {
5801 u32 if_sid;
5802 u32 node_sid;
5803
5804 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5805 return NF_DROP;
5806 if (avc_has_perm(&selinux_state,
5807 peer_sid, if_sid,
5808 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5809 return NF_DROP_ERR(-ECONNREFUSED);
5810
5811 if (sel_netnode_sid(addrp, family, &node_sid))
5812 return NF_DROP;
5813 if (avc_has_perm(&selinux_state,
5814 peer_sid, node_sid,
5815 SECCLASS_NODE, NODE__SENDTO, &ad))
5816 return NF_DROP_ERR(-ECONNREFUSED);
5817 }
5818
5819 return NF_ACCEPT;
5820}
5821
5822static unsigned int selinux_ipv4_postroute(void *priv,
5823 struct sk_buff *skb,
5824 const struct nf_hook_state *state)
5825{
5826 return selinux_ip_postroute(skb, state->out, PF_INET);
5827}
5828
5829#if IS_ENABLED(CONFIG_IPV6)
5830static unsigned int selinux_ipv6_postroute(void *priv,
5831 struct sk_buff *skb,
5832 const struct nf_hook_state *state)
5833{
5834 return selinux_ip_postroute(skb, state->out, PF_INET6);
5835}
5836#endif /* IPV6 */
5837
5838#endif /* CONFIG_NETFILTER */
5839
5840static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5841{
5842 int rc = 0;
5843 unsigned int msg_len;
5844 unsigned int data_len = skb->len;
5845 unsigned char *data = skb->data;
5846 struct nlmsghdr *nlh;
5847 struct sk_security_struct *sksec = sk->sk_security;
5848 u16 sclass = sksec->sclass;
5849 u32 perm;
5850
5851 while (data_len >= nlmsg_total_size(0)) {
5852 nlh = (struct nlmsghdr *)data;
5853
5854 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5855 * users which means we can't reject skb's with bogus
5856 * length fields; our solution is to follow what
5857 * netlink_rcv_skb() does and simply skip processing at
5858 * messages with length fields that are clearly junk
5859 */
5860 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5861 return 0;
5862
5863 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5864 if (rc == 0) {
5865 rc = sock_has_perm(sk, perm);
5866 if (rc)
5867 return rc;
5868 } else if (rc == -EINVAL) {
5869 /* -EINVAL is a missing msg/perm mapping */
5870 pr_warn_ratelimited("SELinux: unrecognized netlink"
5871 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5872 " pid=%d comm=%s\n",
5873 sk->sk_protocol, nlh->nlmsg_type,
5874 secclass_map[sclass - 1].name,
5875 task_pid_nr(current), current->comm);
5876 if (enforcing_enabled(&selinux_state) &&
5877 !security_get_allow_unknown(&selinux_state))
5878 return rc;
5879 rc = 0;
5880 } else if (rc == -ENOENT) {
5881 /* -ENOENT is a missing socket/class mapping, ignore */
5882 rc = 0;
5883 } else {
5884 return rc;
5885 }
5886
5887 /* move to the next message after applying netlink padding */
5888 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5889 if (msg_len >= data_len)
5890 return 0;
5891 data_len -= msg_len;
5892 data += msg_len;
5893 }
5894
5895 return rc;
5896}
5897
5898static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5899{
5900 isec->sclass = sclass;
5901 isec->sid = current_sid();
5902}
5903
5904static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5905 u32 perms)
5906{
5907 struct ipc_security_struct *isec;
5908 struct common_audit_data ad;
5909 u32 sid = current_sid();
5910
5911 isec = selinux_ipc(ipc_perms);
5912
5913 ad.type = LSM_AUDIT_DATA_IPC;
5914 ad.u.ipc_id = ipc_perms->key;
5915
5916 return avc_has_perm(&selinux_state,
5917 sid, isec->sid, isec->sclass, perms, &ad);
5918}
5919
5920static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5921{
5922 struct msg_security_struct *msec;
5923
5924 msec = selinux_msg_msg(msg);
5925 msec->sid = SECINITSID_UNLABELED;
5926
5927 return 0;
5928}
5929
5930/* message queue security operations */
5931static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5932{
5933 struct ipc_security_struct *isec;
5934 struct common_audit_data ad;
5935 u32 sid = current_sid();
5936 int rc;
5937
5938 isec = selinux_ipc(msq);
5939 ipc_init_security(isec, SECCLASS_MSGQ);
5940
5941 ad.type = LSM_AUDIT_DATA_IPC;
5942 ad.u.ipc_id = msq->key;
5943
5944 rc = avc_has_perm(&selinux_state,
5945 sid, isec->sid, SECCLASS_MSGQ,
5946 MSGQ__CREATE, &ad);
5947 return rc;
5948}
5949
5950static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5951{
5952 struct ipc_security_struct *isec;
5953 struct common_audit_data ad;
5954 u32 sid = current_sid();
5955
5956 isec = selinux_ipc(msq);
5957
5958 ad.type = LSM_AUDIT_DATA_IPC;
5959 ad.u.ipc_id = msq->key;
5960
5961 return avc_has_perm(&selinux_state,
5962 sid, isec->sid, SECCLASS_MSGQ,
5963 MSGQ__ASSOCIATE, &ad);
5964}
5965
5966static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5967{
5968 int err;
5969 int perms;
5970
5971 switch (cmd) {
5972 case IPC_INFO:
5973 case MSG_INFO:
5974 /* No specific object, just general system-wide information. */
5975 return avc_has_perm(&selinux_state,
5976 current_sid(), SECINITSID_KERNEL,
5977 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5978 case IPC_STAT:
5979 case MSG_STAT:
5980 case MSG_STAT_ANY:
5981 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5982 break;
5983 case IPC_SET:
5984 perms = MSGQ__SETATTR;
5985 break;
5986 case IPC_RMID:
5987 perms = MSGQ__DESTROY;
5988 break;
5989 default:
5990 return 0;
5991 }
5992
5993 err = ipc_has_perm(msq, perms);
5994 return err;
5995}
5996
5997static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5998{
5999 struct ipc_security_struct *isec;
6000 struct msg_security_struct *msec;
6001 struct common_audit_data ad;
6002 u32 sid = current_sid();
6003 int rc;
6004
6005 isec = selinux_ipc(msq);
6006 msec = selinux_msg_msg(msg);
6007
6008 /*
6009 * First time through, need to assign label to the message
6010 */
6011 if (msec->sid == SECINITSID_UNLABELED) {
6012 /*
6013 * Compute new sid based on current process and
6014 * message queue this message will be stored in
6015 */
6016 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6017 SECCLASS_MSG, NULL, &msec->sid);
6018 if (rc)
6019 return rc;
6020 }
6021
6022 ad.type = LSM_AUDIT_DATA_IPC;
6023 ad.u.ipc_id = msq->key;
6024
6025 /* Can this process write to the queue? */
6026 rc = avc_has_perm(&selinux_state,
6027 sid, isec->sid, SECCLASS_MSGQ,
6028 MSGQ__WRITE, &ad);
6029 if (!rc)
6030 /* Can this process send the message */
6031 rc = avc_has_perm(&selinux_state,
6032 sid, msec->sid, SECCLASS_MSG,
6033 MSG__SEND, &ad);
6034 if (!rc)
6035 /* Can the message be put in the queue? */
6036 rc = avc_has_perm(&selinux_state,
6037 msec->sid, isec->sid, SECCLASS_MSGQ,
6038 MSGQ__ENQUEUE, &ad);
6039
6040 return rc;
6041}
6042
6043static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6044 struct task_struct *target,
6045 long type, int mode)
6046{
6047 struct ipc_security_struct *isec;
6048 struct msg_security_struct *msec;
6049 struct common_audit_data ad;
6050 u32 sid = task_sid(target);
6051 int rc;
6052
6053 isec = selinux_ipc(msq);
6054 msec = selinux_msg_msg(msg);
6055
6056 ad.type = LSM_AUDIT_DATA_IPC;
6057 ad.u.ipc_id = msq->key;
6058
6059 rc = avc_has_perm(&selinux_state,
6060 sid, isec->sid,
6061 SECCLASS_MSGQ, MSGQ__READ, &ad);
6062 if (!rc)
6063 rc = avc_has_perm(&selinux_state,
6064 sid, msec->sid,
6065 SECCLASS_MSG, MSG__RECEIVE, &ad);
6066 return rc;
6067}
6068
6069/* Shared Memory security operations */
6070static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6071{
6072 struct ipc_security_struct *isec;
6073 struct common_audit_data ad;
6074 u32 sid = current_sid();
6075 int rc;
6076
6077 isec = selinux_ipc(shp);
6078 ipc_init_security(isec, SECCLASS_SHM);
6079
6080 ad.type = LSM_AUDIT_DATA_IPC;
6081 ad.u.ipc_id = shp->key;
6082
6083 rc = avc_has_perm(&selinux_state,
6084 sid, isec->sid, SECCLASS_SHM,
6085 SHM__CREATE, &ad);
6086 return rc;
6087}
6088
6089static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6090{
6091 struct ipc_security_struct *isec;
6092 struct common_audit_data ad;
6093 u32 sid = current_sid();
6094
6095 isec = selinux_ipc(shp);
6096
6097 ad.type = LSM_AUDIT_DATA_IPC;
6098 ad.u.ipc_id = shp->key;
6099
6100 return avc_has_perm(&selinux_state,
6101 sid, isec->sid, SECCLASS_SHM,
6102 SHM__ASSOCIATE, &ad);
6103}
6104
6105/* Note, at this point, shp is locked down */
6106static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6107{
6108 int perms;
6109 int err;
6110
6111 switch (cmd) {
6112 case IPC_INFO:
6113 case SHM_INFO:
6114 /* No specific object, just general system-wide information. */
6115 return avc_has_perm(&selinux_state,
6116 current_sid(), SECINITSID_KERNEL,
6117 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6118 case IPC_STAT:
6119 case SHM_STAT:
6120 case SHM_STAT_ANY:
6121 perms = SHM__GETATTR | SHM__ASSOCIATE;
6122 break;
6123 case IPC_SET:
6124 perms = SHM__SETATTR;
6125 break;
6126 case SHM_LOCK:
6127 case SHM_UNLOCK:
6128 perms = SHM__LOCK;
6129 break;
6130 case IPC_RMID:
6131 perms = SHM__DESTROY;
6132 break;
6133 default:
6134 return 0;
6135 }
6136
6137 err = ipc_has_perm(shp, perms);
6138 return err;
6139}
6140
6141static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6142 char __user *shmaddr, int shmflg)
6143{
6144 u32 perms;
6145
6146 if (shmflg & SHM_RDONLY)
6147 perms = SHM__READ;
6148 else
6149 perms = SHM__READ | SHM__WRITE;
6150
6151 return ipc_has_perm(shp, perms);
6152}
6153
6154/* Semaphore security operations */
6155static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6156{
6157 struct ipc_security_struct *isec;
6158 struct common_audit_data ad;
6159 u32 sid = current_sid();
6160 int rc;
6161
6162 isec = selinux_ipc(sma);
6163 ipc_init_security(isec, SECCLASS_SEM);
6164
6165 ad.type = LSM_AUDIT_DATA_IPC;
6166 ad.u.ipc_id = sma->key;
6167
6168 rc = avc_has_perm(&selinux_state,
6169 sid, isec->sid, SECCLASS_SEM,
6170 SEM__CREATE, &ad);
6171 return rc;
6172}
6173
6174static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6175{
6176 struct ipc_security_struct *isec;
6177 struct common_audit_data ad;
6178 u32 sid = current_sid();
6179
6180 isec = selinux_ipc(sma);
6181
6182 ad.type = LSM_AUDIT_DATA_IPC;
6183 ad.u.ipc_id = sma->key;
6184
6185 return avc_has_perm(&selinux_state,
6186 sid, isec->sid, SECCLASS_SEM,
6187 SEM__ASSOCIATE, &ad);
6188}
6189
6190/* Note, at this point, sma is locked down */
6191static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6192{
6193 int err;
6194 u32 perms;
6195
6196 switch (cmd) {
6197 case IPC_INFO:
6198 case SEM_INFO:
6199 /* No specific object, just general system-wide information. */
6200 return avc_has_perm(&selinux_state,
6201 current_sid(), SECINITSID_KERNEL,
6202 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6203 case GETPID:
6204 case GETNCNT:
6205 case GETZCNT:
6206 perms = SEM__GETATTR;
6207 break;
6208 case GETVAL:
6209 case GETALL:
6210 perms = SEM__READ;
6211 break;
6212 case SETVAL:
6213 case SETALL:
6214 perms = SEM__WRITE;
6215 break;
6216 case IPC_RMID:
6217 perms = SEM__DESTROY;
6218 break;
6219 case IPC_SET:
6220 perms = SEM__SETATTR;
6221 break;
6222 case IPC_STAT:
6223 case SEM_STAT:
6224 case SEM_STAT_ANY:
6225 perms = SEM__GETATTR | SEM__ASSOCIATE;
6226 break;
6227 default:
6228 return 0;
6229 }
6230
6231 err = ipc_has_perm(sma, perms);
6232 return err;
6233}
6234
6235static int selinux_sem_semop(struct kern_ipc_perm *sma,
6236 struct sembuf *sops, unsigned nsops, int alter)
6237{
6238 u32 perms;
6239
6240 if (alter)
6241 perms = SEM__READ | SEM__WRITE;
6242 else
6243 perms = SEM__READ;
6244
6245 return ipc_has_perm(sma, perms);
6246}
6247
6248static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6249{
6250 u32 av = 0;
6251
6252 av = 0;
6253 if (flag & S_IRUGO)
6254 av |= IPC__UNIX_READ;
6255 if (flag & S_IWUGO)
6256 av |= IPC__UNIX_WRITE;
6257
6258 if (av == 0)
6259 return 0;
6260
6261 return ipc_has_perm(ipcp, av);
6262}
6263
6264static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6265{
6266 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6267 *secid = isec->sid;
6268}
6269
6270static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6271{
6272 if (inode)
6273 inode_doinit_with_dentry(inode, dentry);
6274}
6275
6276static int selinux_getprocattr(struct task_struct *p,
6277 char *name, char **value)
6278{
6279 const struct task_security_struct *__tsec;
6280 u32 sid;
6281 int error;
6282 unsigned len;
6283
6284 rcu_read_lock();
6285 __tsec = selinux_cred(__task_cred(p));
6286
6287 if (current != p) {
6288 error = avc_has_perm(&selinux_state,
6289 current_sid(), __tsec->sid,
6290 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6291 if (error)
6292 goto bad;
6293 }
6294
6295 if (!strcmp(name, "current"))
6296 sid = __tsec->sid;
6297 else if (!strcmp(name, "prev"))
6298 sid = __tsec->osid;
6299 else if (!strcmp(name, "exec"))
6300 sid = __tsec->exec_sid;
6301 else if (!strcmp(name, "fscreate"))
6302 sid = __tsec->create_sid;
6303 else if (!strcmp(name, "keycreate"))
6304 sid = __tsec->keycreate_sid;
6305 else if (!strcmp(name, "sockcreate"))
6306 sid = __tsec->sockcreate_sid;
6307 else {
6308 error = -EINVAL;
6309 goto bad;
6310 }
6311 rcu_read_unlock();
6312
6313 if (!sid)
6314 return 0;
6315
6316 error = security_sid_to_context(&selinux_state, sid, value, &len);
6317 if (error)
6318 return error;
6319 return len;
6320
6321bad:
6322 rcu_read_unlock();
6323 return error;
6324}
6325
6326static int selinux_setprocattr(const char *name, void *value, size_t size)
6327{
6328 struct task_security_struct *tsec;
6329 struct cred *new;
6330 u32 mysid = current_sid(), sid = 0, ptsid;
6331 int error;
6332 char *str = value;
6333
6334 /*
6335 * Basic control over ability to set these attributes at all.
6336 */
6337 if (!strcmp(name, "exec"))
6338 error = avc_has_perm(&selinux_state,
6339 mysid, mysid, SECCLASS_PROCESS,
6340 PROCESS__SETEXEC, NULL);
6341 else if (!strcmp(name, "fscreate"))
6342 error = avc_has_perm(&selinux_state,
6343 mysid, mysid, SECCLASS_PROCESS,
6344 PROCESS__SETFSCREATE, NULL);
6345 else if (!strcmp(name, "keycreate"))
6346 error = avc_has_perm(&selinux_state,
6347 mysid, mysid, SECCLASS_PROCESS,
6348 PROCESS__SETKEYCREATE, NULL);
6349 else if (!strcmp(name, "sockcreate"))
6350 error = avc_has_perm(&selinux_state,
6351 mysid, mysid, SECCLASS_PROCESS,
6352 PROCESS__SETSOCKCREATE, NULL);
6353 else if (!strcmp(name, "current"))
6354 error = avc_has_perm(&selinux_state,
6355 mysid, mysid, SECCLASS_PROCESS,
6356 PROCESS__SETCURRENT, NULL);
6357 else
6358 error = -EINVAL;
6359 if (error)
6360 return error;
6361
6362 /* Obtain a SID for the context, if one was specified. */
6363 if (size && str[0] && str[0] != '\n') {
6364 if (str[size-1] == '\n') {
6365 str[size-1] = 0;
6366 size--;
6367 }
6368 error = security_context_to_sid(&selinux_state, value, size,
6369 &sid, GFP_KERNEL);
6370 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6371 if (!has_cap_mac_admin(true)) {
6372 struct audit_buffer *ab;
6373 size_t audit_size;
6374
6375 /* We strip a nul only if it is at the end, otherwise the
6376 * context contains a nul and we should audit that */
6377 if (str[size - 1] == '\0')
6378 audit_size = size - 1;
6379 else
6380 audit_size = size;
6381 ab = audit_log_start(audit_context(),
6382 GFP_ATOMIC,
6383 AUDIT_SELINUX_ERR);
6384 audit_log_format(ab, "op=fscreate invalid_context=");
6385 audit_log_n_untrustedstring(ab, value, audit_size);
6386 audit_log_end(ab);
6387
6388 return error;
6389 }
6390 error = security_context_to_sid_force(
6391 &selinux_state,
6392 value, size, &sid);
6393 }
6394 if (error)
6395 return error;
6396 }
6397
6398 new = prepare_creds();
6399 if (!new)
6400 return -ENOMEM;
6401
6402 /* Permission checking based on the specified context is
6403 performed during the actual operation (execve,
6404 open/mkdir/...), when we know the full context of the
6405 operation. See selinux_bprm_creds_for_exec for the execve
6406 checks and may_create for the file creation checks. The
6407 operation will then fail if the context is not permitted. */
6408 tsec = selinux_cred(new);
6409 if (!strcmp(name, "exec")) {
6410 tsec->exec_sid = sid;
6411 } else if (!strcmp(name, "fscreate")) {
6412 tsec->create_sid = sid;
6413 } else if (!strcmp(name, "keycreate")) {
6414 if (sid) {
6415 error = avc_has_perm(&selinux_state, mysid, sid,
6416 SECCLASS_KEY, KEY__CREATE, NULL);
6417 if (error)
6418 goto abort_change;
6419 }
6420 tsec->keycreate_sid = sid;
6421 } else if (!strcmp(name, "sockcreate")) {
6422 tsec->sockcreate_sid = sid;
6423 } else if (!strcmp(name, "current")) {
6424 error = -EINVAL;
6425 if (sid == 0)
6426 goto abort_change;
6427
6428 /* Only allow single threaded processes to change context */
6429 error = -EPERM;
6430 if (!current_is_single_threaded()) {
6431 error = security_bounded_transition(&selinux_state,
6432 tsec->sid, sid);
6433 if (error)
6434 goto abort_change;
6435 }
6436
6437 /* Check permissions for the transition. */
6438 error = avc_has_perm(&selinux_state,
6439 tsec->sid, sid, SECCLASS_PROCESS,
6440 PROCESS__DYNTRANSITION, NULL);
6441 if (error)
6442 goto abort_change;
6443
6444 /* Check for ptracing, and update the task SID if ok.
6445 Otherwise, leave SID unchanged and fail. */
6446 ptsid = ptrace_parent_sid();
6447 if (ptsid != 0) {
6448 error = avc_has_perm(&selinux_state,
6449 ptsid, sid, SECCLASS_PROCESS,
6450 PROCESS__PTRACE, NULL);
6451 if (error)
6452 goto abort_change;
6453 }
6454
6455 tsec->sid = sid;
6456 } else {
6457 error = -EINVAL;
6458 goto abort_change;
6459 }
6460
6461 commit_creds(new);
6462 return size;
6463
6464abort_change:
6465 abort_creds(new);
6466 return error;
6467}
6468
6469static int selinux_ismaclabel(const char *name)
6470{
6471 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6472}
6473
6474static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6475{
6476 return security_sid_to_context(&selinux_state, secid,
6477 secdata, seclen);
6478}
6479
6480static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6481{
6482 return security_context_to_sid(&selinux_state, secdata, seclen,
6483 secid, GFP_KERNEL);
6484}
6485
6486static void selinux_release_secctx(char *secdata, u32 seclen)
6487{
6488 kfree(secdata);
6489}
6490
6491static void selinux_inode_invalidate_secctx(struct inode *inode)
6492{
6493 struct inode_security_struct *isec = selinux_inode(inode);
6494
6495 spin_lock(&isec->lock);
6496 isec->initialized = LABEL_INVALID;
6497 spin_unlock(&isec->lock);
6498}
6499
6500/*
6501 * called with inode->i_mutex locked
6502 */
6503static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6504{
6505 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6506 ctx, ctxlen, 0);
6507 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6508 return rc == -EOPNOTSUPP ? 0 : rc;
6509}
6510
6511/*
6512 * called with inode->i_mutex locked
6513 */
6514static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6515{
6516 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6517}
6518
6519static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6520{
6521 int len = 0;
6522 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6523 ctx, true);
6524 if (len < 0)
6525 return len;
6526 *ctxlen = len;
6527 return 0;
6528}
6529#ifdef CONFIG_KEYS
6530
6531static int selinux_key_alloc(struct key *k, const struct cred *cred,
6532 unsigned long flags)
6533{
6534 const struct task_security_struct *tsec;
6535 struct key_security_struct *ksec;
6536
6537 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6538 if (!ksec)
6539 return -ENOMEM;
6540
6541 tsec = selinux_cred(cred);
6542 if (tsec->keycreate_sid)
6543 ksec->sid = tsec->keycreate_sid;
6544 else
6545 ksec->sid = tsec->sid;
6546
6547 k->security = ksec;
6548 return 0;
6549}
6550
6551static void selinux_key_free(struct key *k)
6552{
6553 struct key_security_struct *ksec = k->security;
6554
6555 k->security = NULL;
6556 kfree(ksec);
6557}
6558
6559static int selinux_key_permission(key_ref_t key_ref,
6560 const struct cred *cred,
6561 enum key_need_perm need_perm)
6562{
6563 struct key *key;
6564 struct key_security_struct *ksec;
6565 u32 perm, sid;
6566
6567 switch (need_perm) {
6568 case KEY_NEED_VIEW:
6569 perm = KEY__VIEW;
6570 break;
6571 case KEY_NEED_READ:
6572 perm = KEY__READ;
6573 break;
6574 case KEY_NEED_WRITE:
6575 perm = KEY__WRITE;
6576 break;
6577 case KEY_NEED_SEARCH:
6578 perm = KEY__SEARCH;
6579 break;
6580 case KEY_NEED_LINK:
6581 perm = KEY__LINK;
6582 break;
6583 case KEY_NEED_SETATTR:
6584 perm = KEY__SETATTR;
6585 break;
6586 case KEY_NEED_UNLINK:
6587 case KEY_SYSADMIN_OVERRIDE:
6588 case KEY_AUTHTOKEN_OVERRIDE:
6589 case KEY_DEFER_PERM_CHECK:
6590 return 0;
6591 default:
6592 WARN_ON(1);
6593 return -EPERM;
6594
6595 }
6596
6597 sid = cred_sid(cred);
6598 key = key_ref_to_ptr(key_ref);
6599 ksec = key->security;
6600
6601 return avc_has_perm(&selinux_state,
6602 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6603}
6604
6605static int selinux_key_getsecurity(struct key *key, char **_buffer)
6606{
6607 struct key_security_struct *ksec = key->security;
6608 char *context = NULL;
6609 unsigned len;
6610 int rc;
6611
6612 rc = security_sid_to_context(&selinux_state, ksec->sid,
6613 &context, &len);
6614 if (!rc)
6615 rc = len;
6616 *_buffer = context;
6617 return rc;
6618}
6619
6620#ifdef CONFIG_KEY_NOTIFICATIONS
6621static int selinux_watch_key(struct key *key)
6622{
6623 struct key_security_struct *ksec = key->security;
6624 u32 sid = current_sid();
6625
6626 return avc_has_perm(&selinux_state,
6627 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6628}
6629#endif
6630#endif
6631
6632#ifdef CONFIG_SECURITY_INFINIBAND
6633static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6634{
6635 struct common_audit_data ad;
6636 int err;
6637 u32 sid = 0;
6638 struct ib_security_struct *sec = ib_sec;
6639 struct lsm_ibpkey_audit ibpkey;
6640
6641 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6642 if (err)
6643 return err;
6644
6645 ad.type = LSM_AUDIT_DATA_IBPKEY;
6646 ibpkey.subnet_prefix = subnet_prefix;
6647 ibpkey.pkey = pkey_val;
6648 ad.u.ibpkey = &ibpkey;
6649 return avc_has_perm(&selinux_state,
6650 sec->sid, sid,
6651 SECCLASS_INFINIBAND_PKEY,
6652 INFINIBAND_PKEY__ACCESS, &ad);
6653}
6654
6655static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6656 u8 port_num)
6657{
6658 struct common_audit_data ad;
6659 int err;
6660 u32 sid = 0;
6661 struct ib_security_struct *sec = ib_sec;
6662 struct lsm_ibendport_audit ibendport;
6663
6664 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6665 &sid);
6666
6667 if (err)
6668 return err;
6669
6670 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6671 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6672 ibendport.port = port_num;
6673 ad.u.ibendport = &ibendport;
6674 return avc_has_perm(&selinux_state,
6675 sec->sid, sid,
6676 SECCLASS_INFINIBAND_ENDPORT,
6677 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6678}
6679
6680static int selinux_ib_alloc_security(void **ib_sec)
6681{
6682 struct ib_security_struct *sec;
6683
6684 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6685 if (!sec)
6686 return -ENOMEM;
6687 sec->sid = current_sid();
6688
6689 *ib_sec = sec;
6690 return 0;
6691}
6692
6693static void selinux_ib_free_security(void *ib_sec)
6694{
6695 kfree(ib_sec);
6696}
6697#endif
6698
6699#ifdef CONFIG_BPF_SYSCALL
6700static int selinux_bpf(int cmd, union bpf_attr *attr,
6701 unsigned int size)
6702{
6703 u32 sid = current_sid();
6704 int ret;
6705
6706 switch (cmd) {
6707 case BPF_MAP_CREATE:
6708 ret = avc_has_perm(&selinux_state,
6709 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6710 NULL);
6711 break;
6712 case BPF_PROG_LOAD:
6713 ret = avc_has_perm(&selinux_state,
6714 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6715 NULL);
6716 break;
6717 default:
6718 ret = 0;
6719 break;
6720 }
6721
6722 return ret;
6723}
6724
6725static u32 bpf_map_fmode_to_av(fmode_t fmode)
6726{
6727 u32 av = 0;
6728
6729 if (fmode & FMODE_READ)
6730 av |= BPF__MAP_READ;
6731 if (fmode & FMODE_WRITE)
6732 av |= BPF__MAP_WRITE;
6733 return av;
6734}
6735
6736/* This function will check the file pass through unix socket or binder to see
6737 * if it is a bpf related object. And apply correspinding checks on the bpf
6738 * object based on the type. The bpf maps and programs, not like other files and
6739 * socket, are using a shared anonymous inode inside the kernel as their inode.
6740 * So checking that inode cannot identify if the process have privilege to
6741 * access the bpf object and that's why we have to add this additional check in
6742 * selinux_file_receive and selinux_binder_transfer_files.
6743 */
6744static int bpf_fd_pass(struct file *file, u32 sid)
6745{
6746 struct bpf_security_struct *bpfsec;
6747 struct bpf_prog *prog;
6748 struct bpf_map *map;
6749 int ret;
6750
6751 if (file->f_op == &bpf_map_fops) {
6752 map = file->private_data;
6753 bpfsec = map->security;
6754 ret = avc_has_perm(&selinux_state,
6755 sid, bpfsec->sid, SECCLASS_BPF,
6756 bpf_map_fmode_to_av(file->f_mode), NULL);
6757 if (ret)
6758 return ret;
6759 } else if (file->f_op == &bpf_prog_fops) {
6760 prog = file->private_data;
6761 bpfsec = prog->aux->security;
6762 ret = avc_has_perm(&selinux_state,
6763 sid, bpfsec->sid, SECCLASS_BPF,
6764 BPF__PROG_RUN, NULL);
6765 if (ret)
6766 return ret;
6767 }
6768 return 0;
6769}
6770
6771static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6772{
6773 u32 sid = current_sid();
6774 struct bpf_security_struct *bpfsec;
6775
6776 bpfsec = map->security;
6777 return avc_has_perm(&selinux_state,
6778 sid, bpfsec->sid, SECCLASS_BPF,
6779 bpf_map_fmode_to_av(fmode), NULL);
6780}
6781
6782static int selinux_bpf_prog(struct bpf_prog *prog)
6783{
6784 u32 sid = current_sid();
6785 struct bpf_security_struct *bpfsec;
6786
6787 bpfsec = prog->aux->security;
6788 return avc_has_perm(&selinux_state,
6789 sid, bpfsec->sid, SECCLASS_BPF,
6790 BPF__PROG_RUN, NULL);
6791}
6792
6793static int selinux_bpf_map_alloc(struct bpf_map *map)
6794{
6795 struct bpf_security_struct *bpfsec;
6796
6797 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6798 if (!bpfsec)
6799 return -ENOMEM;
6800
6801 bpfsec->sid = current_sid();
6802 map->security = bpfsec;
6803
6804 return 0;
6805}
6806
6807static void selinux_bpf_map_free(struct bpf_map *map)
6808{
6809 struct bpf_security_struct *bpfsec = map->security;
6810
6811 map->security = NULL;
6812 kfree(bpfsec);
6813}
6814
6815static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6816{
6817 struct bpf_security_struct *bpfsec;
6818
6819 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6820 if (!bpfsec)
6821 return -ENOMEM;
6822
6823 bpfsec->sid = current_sid();
6824 aux->security = bpfsec;
6825
6826 return 0;
6827}
6828
6829static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6830{
6831 struct bpf_security_struct *bpfsec = aux->security;
6832
6833 aux->security = NULL;
6834 kfree(bpfsec);
6835}
6836#endif
6837
6838static int selinux_lockdown(enum lockdown_reason what)
6839{
6840 struct common_audit_data ad;
6841 u32 sid = current_sid();
6842 int invalid_reason = (what <= LOCKDOWN_NONE) ||
6843 (what == LOCKDOWN_INTEGRITY_MAX) ||
6844 (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
6845
6846 if (WARN(invalid_reason, "Invalid lockdown reason")) {
6847 audit_log(audit_context(),
6848 GFP_ATOMIC, AUDIT_SELINUX_ERR,
6849 "lockdown_reason=invalid");
6850 return -EINVAL;
6851 }
6852
6853 ad.type = LSM_AUDIT_DATA_LOCKDOWN;
6854 ad.u.reason = what;
6855
6856 if (what <= LOCKDOWN_INTEGRITY_MAX)
6857 return avc_has_perm(&selinux_state,
6858 sid, sid, SECCLASS_LOCKDOWN,
6859 LOCKDOWN__INTEGRITY, &ad);
6860 else
6861 return avc_has_perm(&selinux_state,
6862 sid, sid, SECCLASS_LOCKDOWN,
6863 LOCKDOWN__CONFIDENTIALITY, &ad);
6864}
6865
6866struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6867 .lbs_cred = sizeof(struct task_security_struct),
6868 .lbs_file = sizeof(struct file_security_struct),
6869 .lbs_inode = sizeof(struct inode_security_struct),
6870 .lbs_ipc = sizeof(struct ipc_security_struct),
6871 .lbs_msg_msg = sizeof(struct msg_security_struct),
6872};
6873
6874#ifdef CONFIG_PERF_EVENTS
6875static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6876{
6877 u32 requested, sid = current_sid();
6878
6879 if (type == PERF_SECURITY_OPEN)
6880 requested = PERF_EVENT__OPEN;
6881 else if (type == PERF_SECURITY_CPU)
6882 requested = PERF_EVENT__CPU;
6883 else if (type == PERF_SECURITY_KERNEL)
6884 requested = PERF_EVENT__KERNEL;
6885 else if (type == PERF_SECURITY_TRACEPOINT)
6886 requested = PERF_EVENT__TRACEPOINT;
6887 else
6888 return -EINVAL;
6889
6890 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6891 requested, NULL);
6892}
6893
6894static int selinux_perf_event_alloc(struct perf_event *event)
6895{
6896 struct perf_event_security_struct *perfsec;
6897
6898 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6899 if (!perfsec)
6900 return -ENOMEM;
6901
6902 perfsec->sid = current_sid();
6903 event->security = perfsec;
6904
6905 return 0;
6906}
6907
6908static void selinux_perf_event_free(struct perf_event *event)
6909{
6910 struct perf_event_security_struct *perfsec = event->security;
6911
6912 event->security = NULL;
6913 kfree(perfsec);
6914}
6915
6916static int selinux_perf_event_read(struct perf_event *event)
6917{
6918 struct perf_event_security_struct *perfsec = event->security;
6919 u32 sid = current_sid();
6920
6921 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6922 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6923}
6924
6925static int selinux_perf_event_write(struct perf_event *event)
6926{
6927 struct perf_event_security_struct *perfsec = event->security;
6928 u32 sid = current_sid();
6929
6930 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6931 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6932}
6933#endif
6934
6935/*
6936 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6937 * 1. any hooks that don't belong to (2.) or (3.) below,
6938 * 2. hooks that both access structures allocated by other hooks, and allocate
6939 * structures that can be later accessed by other hooks (mostly "cloning"
6940 * hooks),
6941 * 3. hooks that only allocate structures that can be later accessed by other
6942 * hooks ("allocating" hooks).
6943 *
6944 * Please follow block comment delimiters in the list to keep this order.
6945 *
6946 * This ordering is needed for SELinux runtime disable to work at least somewhat
6947 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
6948 * when disabling SELinux at runtime.
6949 */
6950static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6951 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6952 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6953 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6954 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6955
6956 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6957 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6958 LSM_HOOK_INIT(capget, selinux_capget),
6959 LSM_HOOK_INIT(capset, selinux_capset),
6960 LSM_HOOK_INIT(capable, selinux_capable),
6961 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6962 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6963 LSM_HOOK_INIT(syslog, selinux_syslog),
6964 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6965
6966 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6967
6968 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
6969 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6970 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6971
6972 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6973 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6974 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6975 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6976 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6977 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6978 LSM_HOOK_INIT(sb_mount, selinux_mount),
6979 LSM_HOOK_INIT(sb_umount, selinux_umount),
6980 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6981 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6982
6983 LSM_HOOK_INIT(move_mount, selinux_move_mount),
6984
6985 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6986 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6987
6988 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6989 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6990 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6991 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6992 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6993 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6994 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6995 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6996 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6997 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6998 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6999 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7000 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7001 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7002 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7003 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7004 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7005 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7006 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7007 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7008 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7009 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7010 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7011 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7012 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7013 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7014 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7015
7016 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7017
7018 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7019 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7020 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7021 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7022 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7023 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7024 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7025 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7026 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7027 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7028 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7029
7030 LSM_HOOK_INIT(file_open, selinux_file_open),
7031
7032 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7033 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7034 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7035 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7036 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7037 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7038 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7039 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7040 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7041 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7042 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7043 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7044 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
7045 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7046 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7047 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7048 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7049 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7050 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7051 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7052 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7053 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7054 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7055
7056 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7057 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7058
7059 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7060 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7061 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7062 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7063
7064 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7065 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7066 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7067
7068 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7069 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7070 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7071
7072 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7073
7074 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7075 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7076
7077 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7078 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7079 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7080 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7081 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7082 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7083
7084 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7085 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7086
7087 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7088 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7089 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7090 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7091 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7092 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7093 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7094 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7095 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7096 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7097 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7098 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7099 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7100 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7101 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7102 LSM_HOOK_INIT(socket_getpeersec_stream,
7103 selinux_socket_getpeersec_stream),
7104 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7105 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7106 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7107 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7108 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7109 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7110 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7111 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7112 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7113 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7114 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7115 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7116 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7117 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7118 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7119 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7120 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7121 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7122 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7123 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7124#ifdef CONFIG_SECURITY_INFINIBAND
7125 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7126 LSM_HOOK_INIT(ib_endport_manage_subnet,
7127 selinux_ib_endport_manage_subnet),
7128 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7129#endif
7130#ifdef CONFIG_SECURITY_NETWORK_XFRM
7131 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7132 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7133 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7134 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7135 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7136 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7137 selinux_xfrm_state_pol_flow_match),
7138 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7139#endif
7140
7141#ifdef CONFIG_KEYS
7142 LSM_HOOK_INIT(key_free, selinux_key_free),
7143 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7144 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7145#ifdef CONFIG_KEY_NOTIFICATIONS
7146 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7147#endif
7148#endif
7149
7150#ifdef CONFIG_AUDIT
7151 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7152 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7153 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7154#endif
7155
7156#ifdef CONFIG_BPF_SYSCALL
7157 LSM_HOOK_INIT(bpf, selinux_bpf),
7158 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7159 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7160 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7161 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7162#endif
7163
7164#ifdef CONFIG_PERF_EVENTS
7165 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7166 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7167 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7168 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7169#endif
7170
7171 LSM_HOOK_INIT(locked_down, selinux_lockdown),
7172
7173 /*
7174 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7175 */
7176 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7177 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7178 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7179 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7180#ifdef CONFIG_SECURITY_NETWORK_XFRM
7181 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7182#endif
7183
7184 /*
7185 * PUT "ALLOCATING" HOOKS HERE
7186 */
7187 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7188 LSM_HOOK_INIT(msg_queue_alloc_security,
7189 selinux_msg_queue_alloc_security),
7190 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7191 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7192 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7193 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7194 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7195 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7196 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7197 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7198#ifdef CONFIG_SECURITY_INFINIBAND
7199 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7200#endif
7201#ifdef CONFIG_SECURITY_NETWORK_XFRM
7202 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7203 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7204 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7205 selinux_xfrm_state_alloc_acquire),
7206#endif
7207#ifdef CONFIG_KEYS
7208 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7209#endif
7210#ifdef CONFIG_AUDIT
7211 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7212#endif
7213#ifdef CONFIG_BPF_SYSCALL
7214 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7215 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7216#endif
7217#ifdef CONFIG_PERF_EVENTS
7218 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7219#endif
7220};
7221
7222static __init int selinux_init(void)
7223{
7224 pr_info("SELinux: Initializing.\n");
7225
7226 memset(&selinux_state, 0, sizeof(selinux_state));
7227 enforcing_set(&selinux_state, selinux_enforcing_boot);
7228 selinux_state.checkreqprot = selinux_checkreqprot_boot;
7229 selinux_ss_init(&selinux_state.ss);
7230 selinux_avc_init(&selinux_state.avc);
7231 mutex_init(&selinux_state.status_lock);
7232
7233 /* Set the security state for the initial task. */
7234 cred_init_security();
7235
7236 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7237
7238 avc_init();
7239
7240 avtab_cache_init();
7241
7242 ebitmap_cache_init();
7243
7244 hashtab_cache_init();
7245
7246 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7247
7248 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7249 panic("SELinux: Unable to register AVC netcache callback\n");
7250
7251 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7252 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7253
7254 if (selinux_enforcing_boot)
7255 pr_debug("SELinux: Starting in enforcing mode\n");
7256 else
7257 pr_debug("SELinux: Starting in permissive mode\n");
7258
7259 fs_validate_description("selinux", selinux_fs_parameters);
7260
7261 return 0;
7262}
7263
7264static void delayed_superblock_init(struct super_block *sb, void *unused)
7265{
7266 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7267}
7268
7269void selinux_complete_init(void)
7270{
7271 pr_debug("SELinux: Completing initialization.\n");
7272
7273 /* Set up any superblocks initialized prior to the policy load. */
7274 pr_debug("SELinux: Setting up existing superblocks.\n");
7275 iterate_supers(delayed_superblock_init, NULL);
7276}
7277
7278/* SELinux requires early initialization in order to label
7279 all processes and objects when they are created. */
7280DEFINE_LSM(selinux) = {
7281 .name = "selinux",
7282 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7283 .enabled = &selinux_enabled_boot,
7284 .blobs = &selinux_blob_sizes,
7285 .init = selinux_init,
7286};
7287
7288#if defined(CONFIG_NETFILTER)
7289
7290static const struct nf_hook_ops selinux_nf_ops[] = {
7291 {
7292 .hook = selinux_ipv4_postroute,
7293 .pf = NFPROTO_IPV4,
7294 .hooknum = NF_INET_POST_ROUTING,
7295 .priority = NF_IP_PRI_SELINUX_LAST,
7296 },
7297 {
7298 .hook = selinux_ipv4_forward,
7299 .pf = NFPROTO_IPV4,
7300 .hooknum = NF_INET_FORWARD,
7301 .priority = NF_IP_PRI_SELINUX_FIRST,
7302 },
7303 {
7304 .hook = selinux_ipv4_output,
7305 .pf = NFPROTO_IPV4,
7306 .hooknum = NF_INET_LOCAL_OUT,
7307 .priority = NF_IP_PRI_SELINUX_FIRST,
7308 },
7309#if IS_ENABLED(CONFIG_IPV6)
7310 {
7311 .hook = selinux_ipv6_postroute,
7312 .pf = NFPROTO_IPV6,
7313 .hooknum = NF_INET_POST_ROUTING,
7314 .priority = NF_IP6_PRI_SELINUX_LAST,
7315 },
7316 {
7317 .hook = selinux_ipv6_forward,
7318 .pf = NFPROTO_IPV6,
7319 .hooknum = NF_INET_FORWARD,
7320 .priority = NF_IP6_PRI_SELINUX_FIRST,
7321 },
7322 {
7323 .hook = selinux_ipv6_output,
7324 .pf = NFPROTO_IPV6,
7325 .hooknum = NF_INET_LOCAL_OUT,
7326 .priority = NF_IP6_PRI_SELINUX_FIRST,
7327 },
7328#endif /* IPV6 */
7329};
7330
7331static int __net_init selinux_nf_register(struct net *net)
7332{
7333 return nf_register_net_hooks(net, selinux_nf_ops,
7334 ARRAY_SIZE(selinux_nf_ops));
7335}
7336
7337static void __net_exit selinux_nf_unregister(struct net *net)
7338{
7339 nf_unregister_net_hooks(net, selinux_nf_ops,
7340 ARRAY_SIZE(selinux_nf_ops));
7341}
7342
7343static struct pernet_operations selinux_net_ops = {
7344 .init = selinux_nf_register,
7345 .exit = selinux_nf_unregister,
7346};
7347
7348static int __init selinux_nf_ip_init(void)
7349{
7350 int err;
7351
7352 if (!selinux_enabled_boot)
7353 return 0;
7354
7355 pr_debug("SELinux: Registering netfilter hooks\n");
7356
7357 err = register_pernet_subsys(&selinux_net_ops);
7358 if (err)
7359 panic("SELinux: register_pernet_subsys: error %d\n", err);
7360
7361 return 0;
7362}
7363__initcall(selinux_nf_ip_init);
7364
7365#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7366static void selinux_nf_ip_exit(void)
7367{
7368 pr_debug("SELinux: Unregistering netfilter hooks\n");
7369
7370 unregister_pernet_subsys(&selinux_net_ops);
7371}
7372#endif
7373
7374#else /* CONFIG_NETFILTER */
7375
7376#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7377#define selinux_nf_ip_exit()
7378#endif
7379
7380#endif /* CONFIG_NETFILTER */
7381
7382#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7383int selinux_disable(struct selinux_state *state)
7384{
7385 if (selinux_initialized(state)) {
7386 /* Not permitted after initial policy load. */
7387 return -EINVAL;
7388 }
7389
7390 if (selinux_disabled(state)) {
7391 /* Only do this once. */
7392 return -EINVAL;
7393 }
7394
7395 selinux_mark_disabled(state);
7396
7397 pr_info("SELinux: Disabled at runtime.\n");
7398
7399 /*
7400 * Unregister netfilter hooks.
7401 * Must be done before security_delete_hooks() to avoid breaking
7402 * runtime disable.
7403 */
7404 selinux_nf_ip_exit();
7405
7406 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7407
7408 /* Try to destroy the avc node cache */
7409 avc_disable();
7410
7411 /* Unregister selinuxfs. */
7412 exit_sel_fs();
7413
7414 return 0;
7415}
7416#endif